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Abstract 
This work explores the prevention of hypoglycaemia in children with Congenital 

Hyperinsulinism (CHI). Children with CHI experience severe, unpredictable and often 

asymptomatic episodes of hypoglycaemia. Hypoglycaemia refers to a blood glucose below the 

normal range and carries with it the potential for significant brain injury if left uncontrolled. 

Prevention is a complex process involving action based on prediction. Most existing prediction 

work focuses on short term forecasting of future glucose values using Machine Learning 

processing of continuous glucose monitoring (CGM) data. However, CGM in CHI is 

insufficiently accurate to reliably inform glucose forecasts. Furthermore, the advance warning 

provided by short term prediction is insufficient to be proactive in prevention. An alternative 

approach, described here, uses retrospective review of CGM data to identify periods of repeated 

risk and proactively target action to these areas. Currently available methods for CGM review 

are complex and lack actionable outputs. Here, actionable outputs are generated by aggregation 

of CGM data into discrete chunks to provide a personalised, easy to interpret, visualisation of 

weekly hypoglycaemia risk. We combined this visualisation with persuasive technology to 

ensure predictions were actioned. This resulted in patients performing more targeted glucose 

checks and commenting on how their behaviour had proactively changed, ultimately achieving 

a 25% reduction in hypoglycaemia in free-living conditions. The real world relevance and 

impact of our work can be appreciated in the associated graphical abstract. 
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Chapter 1 -  Introduction and Thesis Overview 

Within this chapter we provide an overview of the topic and the context within which our 

research sits. The research questions are formulated and descriptions of how the answers to 

these provide contributions. An overview of the thesis structure is provided to facilitate the 

reader in their navigation and understanding of a large and multidisciplinary document.  This 

chapter introduces the disease of congenital hyperinsulinism (CHI) in which children suffer 

recurrent and potentially damaging low blood glucose levels (hypoglycaemia). We discuss 

strategies for measuring glucose levels and the use of continuous glucose monitoring (CGM) 

and its limitations in CHI. We outline our new approach to generate targets for change, change 

behaviour, and create habits that will reduce real world hypoglycaemia in the long term.  

1.1 Introduction 

Insulin acts within the body to reduce blood glucose and, in non-disease states, secretion is 

tightly regulated such that blood glucose remains within a narrow range.  Hypoglycaemia refers 

to a state where the level of glucose in the blood is below the ‘normal’ required for functioning 

of all cells. Strict definitions of ‘normal’ vary and the cutoff is dependent on a variety of factors, 

with values varying from 2.6mmol/L to 3.9mmol/L even within the narrow field of Congenital 

Hyperinsulinism (CHI)1.  Irrespective of artificially created cutoffs, there is a real risk of brain 

injury at hypoglycaemia; highest in the developing brains of young children and those for 

whom alternative brain fuel sources (ketones) are supressed2,3. These conditions are met 

simultaneously in patients with CHI. For these patients, a variety of genetic and environmental 

factors result in a final common pathway of autonomous secretion of excess insulin, uncoupled 

from blood glucose levels4. This excessive and dysregulated secretion of insulin results in 

severe, unpredictable and often asymptomatic episodes of hypoglycaemia with associated rates 

of brain injury as high as 48%5. In addition to the devastating impact on families, CHI has an 

annual cost to the NHS of more than £3.4 million6 and is the commonest cause of recurrent and 

severe hypoglycaemia in childhood, with an estimated UK incidence of at least 1:28,0007. 

Given the individual, family, health service and economic impacts of hypoglycaemia in CHI, 

it is clear why prevention is a suitable target for PhD work. CHI also acts as a good model for 

hypoglycaemia and thus forms a template upon which this project can be expanded to other 

hypoglycaemia diseases in the future.  
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Prevention of hypoglycaemia is a two-step process requiring preventative action based on 

prediction. Most existing prediction techniques focus on the forecasting of glucose values in 

the short term future (normally 30 minutes). This requires the continuous provision of high 

granularity glucose data and thus fingerprick self-monitoring of blood glucose (SMBG) is 

insufficient, as most patients only perform between 1-6 tests per day. Sensor based interstitial 

glucose monitoring (such as CGM) provides an attractive alternative as a minimally invasive 

technique which, by measuring subcutaneous glucose levels every five minutes, provides 288 

glucose values per day. The use of CGM in hypoglycaemia disorders such as CHI is still in its 

infancy and we therefore undertook a systematic review of the evidence to provide a 

comprehensive understanding of the opportunities and barriers to use (Chapter 4). While 

opportunities were identified, the barriers are numerous:  

i) Device lag: there is a time delay between a change in blood glucose and the CGM 

device reporting this8. When glucose is falling rapidly (as is common in CHI), 

devices may overestimate glucose by as much as 2.2mmol/L9. 

ii) Alarm fatigue: the constant barrage of hypoglycaemia alarms can result in fatigue 

for users. In fact, users wake to less than a third of alarms overnight10 and report 

alarms as the biggest barrier to CGM use11.  

iii) Difficulty in interpretation: most patients rely on healthcare professionals to 

interpret historical CGM data as existing facilities are overly complex12.  

iv) Accuracy: see below.  

The sufficient accuracy of CGM devices is essential to reliably detect hypoglycaemia. 

Accuracy appears to be poor in patients with CHI, but relevant studies13,14 have been small, 

used older devices, and have not provided any clinical context to accuracy assessments.  To 

address these problems, we used expert consensus and simple mathematics to design and 

implement a new accuracy measure that provides clinical context to CGM error for patients 

with CHI. Using this new measure, we gathered the largest CHI specific paired CGM vs SMBG 

dataset and demonstrated the insufficient accuracy of CGM as a standalone tool for 

hypoglycaemia detection and prevention in those with CHI (Chapter 5).  

An opportunity identified in our systematic review on CGM was the possibility to use Machine 

Learning (ML) techniques to form glucose forecasting algorithms and predict hypoglycaemia. 

ML aims to identify patterns in data that can be used to make predictions about the future (such 

as a glucose level)15. So far, these future predictions, in the field of hypoglycaemia (exclusively 
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diabetes mellitus), have focused on enhancing the power and accuracy of the glucose forecasts 

provided by CGM devices16. However, despite comprehensive training data, and the removal 

of unknown variables by in-silico testing, systematic reviews report insufficient accuracy of 

ML algorithms to reliably predict hypoglycaemia17. The regulation of glucose is a complex 

issue, influenced by many factors, relatively few of which ML is aware. As such, behavioural 

influences on glucose are unknown to ML algorithms, resulting in their restricted accuracy. 

Furthermore, the black box nature of ML precludes any reflection on the cause of 

hypoglycaemia episodes and hinders any deeper understanding. Importantly, ML forecasts 

rarely predict more than 30 minutes ahead18 and fail to address the importance of action 

following prediction. Thus, even when predictions are accurate, they do not translate into 

hypoglycaemia prevention and thus ML approaches reveal themselves to be reactive and 

ineffective in free-living conditions. What is needed is a new approach that not only predicts 

hypoglycaemia with sufficient time to take action, but also focuses on patient reflection and 

the behavioural determinants of hypoglycaemia. Thus, it becomes possible to actually 

understand and prevent hypoglycaemia from occurring.  This proactive, rather than reactive, 

approach to blood glucose management forms the core of this PhD work and is the primary 

contribution.   

1.1.1 The New Approach 

This new approach focuses on the analysis of historic events to identify patterns in 

hypoglycaemia and the extension of these patterns forward into the future. If hypoglycaemia 

can be predicted well in advance and, most importantly, matched with behaviours, this gives 

patients both time and methods to understand and proactively prevent hypoglycaemia. For this 

approach to work, patterns of hypoglycaemia must be discernible from historical CGM data. 

The traditional understanding in CHI is that hypoglycaemia events are random and impossible 

to predict because of the dysregulated secretion of insulin19. However, our analysis of 

retrospective CGM data collected from patients with CHI, revealed daily patterns of 

hypoglycaemia and high-risk periods within which prediction and prevention strategies could 

be concentrated (Chapter 7). Additionally, despite provision of real time CGM, we 

demonstrated frequent and prolonged hypoglycaemia episodes. These prolonged 

hypoglycaemia episodes confirmed suggestions that simply providing data is insufficient to 

prevent hypoglycaemia20 and that our approach must proactively change behaviour through 

patient reflection and increased understanding.  
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To increase understanding, and proactively prevent hypoglycaemia, patients must be able to 

interpret their glucose data. There are no guidelines for CGM interpretation in CHI (nor studies 

investigating patient interpretation) so all data reported is from experience in diabetes. Lack of 

standardisation in CGM software reporting21 creates difficulty in interpretation22, with most 

patients needing health care professionals to interpret historical CGM data12. Subsequently, 

guidelines on CGM interpretation have been introduced for those with diabetes23,24. Despite 

this, a recent survey reported that only 57% of patients found interpretation of presented data 

easy and a third could not even identify hypoglycaemia episodes in historic data25. Our new 

approach condenses large volumes of data into simple visualisations accompanied by short 

explanatory text. By facilitating interpretation of data, we aimed to increase understanding of 

individuals’ behavioural determinants of hypoglycaemia to begin the process of behaviour 

change.  

Behaviour change is a practical target for truly preventing hypoglycaemia in free-living 

conditions. While any one factor is unlikely to lead to complete absence of hypoglycaemia, 

behaviour change is an important component that simultaneously targets multiple factors. As 

an arm of psychology, behaviour change has over 80 different theories on how best to achieve 

the desired outcomes26. These theories primarily focus on the psychology of changing 

behaviour with any digital components simply a method of delivery (e.g. email or SMS). 

Conversely, Persuasive Technology (PT) is a branch of computer science which emphasises 

the intrinsically persuasive nature of the method of delivery and how computers can behave as 

persuasive actors27. PT has been used in a variety of healthcare settings28 to successfully change 

behaviours around healthy eating29 and exercise30. While PT has been employed for patients 

with diabetes31, this has rarely targeted glucose monitoring or management behaviours32 and 

never a reduction in hypoglycaemia. PT has never been used for patients with CHI nor to 

improve children’s health outcomes through modification of parental behaviours.  

Our approach was based on two simple hypotheses: 

i) By aggregating CGM data over the correct time period, we should be able to discern 

repeated patterns in hypoglycaemia. This would provide predictions with long and 

practical prediction horizons. These patterns will be associated with specific (and 

repetitive) behaviours, thus revealing individual behavioural determinants of 

hypoglycaemia..  
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ii) If we facilitate user understanding of these patterns through simple visualisations, 

users will be able to reflect on the behaviours associated with repeated 

hypoglycaemia. PT can then help users to change these behaviours and proactively 

reduce their hypoglycaemia.  

This approach addresses the barriers discussed above: 

 CGM (in)accuracy – The practical use of CGM (alone or in combination with ML) to 

alert the user to impending hypoglycaemia is severely limited by the large point 

inaccuracies found in patients with CHI and the lag intrinsic in CGM devices. Point 

inaccuracies have relatively little effect on the creation of long term patterns.  

 Behaviour/prediction horizon – ML forecasts rarely offer a prediction horizon of longer 

than 30 minutes and never aim to change behaviour following prediction. They are thus 

reactive and fail to prevent free-living hypoglycaemia. Our approach not only offers a 

more practical prediction horizon but also specifically targets behaviour change to 

proactively prevent hypoglycaemia. 

 Reflection – The black box approach of ML denies any reflection on the causes of 

hypoglycaemia. Our approach is based on the influence of behaviours on blood glucose 

and actively encourages reflection to engage and educate users.  

 Alarms – As alarms are so often ineffective, our system has none, and instead targets 

proactive prevention.  

 Interpretation – Patients have traditionally struggled with the interpretation of CGM 

data and relied on healthcare professionals. Our approach simplifies CGM data to 

present only what is required to better understand (and prevent) hypoglycaemia.  

1.2 Research questions 

The following section outlines the research questions that were posed during the course of this 

work. The importance and relevance of each question is discussed in turn and followed by a 

description of where in the thesis an answer can be found. A summary of how research 

questions informed contributions is shown graphically in Figure 1.1.  

 

RQ1. What are the opportunities and barriers for the use of CGM as a method of 

hypoglycaemia prevention in children with CHI? The detection of hypoglycaemia in 

children with CHI is commonly achieved through SMBG. This lacks granularity and trend 
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information and is why, for patients with diabetes, SMBG is being replaced by CGM. While 

CGM may therefore appear to be the obvious solution for the detection of hypoglycaemia 

in CHI, the accuracy and efficacy in this patient group is not known. It was important to 

fully understand the state of the existing literature to assess the barriers and opportunities 

for the use of CGM in patients with CHI as well as undertaking formative assessments.  

Answered in:  

Worth C et al. Continuous Glucose Monitoring for Hypoglycaemia in Children: 

Perspectives in 2020. Pediatric Diabetes. 2020; 5: 697-706 – presented in Chapter 4 and; 

Worth C et al. The Hypoglycaemia Error Grid: a UK-wide Consensus on CGM Accuracy 

Assessment in Hyperinsulinism. Frontiers in Endocrinology 2022. 13:1016072 – presented 

in Chapter 5. 

RQ2. What, if any, is the utility of ML predictive algorithms in the prevention of 

hypoglycaemia in children with CHI? In order to prevent hypoglycaemia, it is necessary 

to predict when it is going to occur. Prediction is all but impossible with routine, unguided 

SMBG measurements and is unreliable with current CGM devices. CGM data has recently 

been supplemented with ML algorithmics to improve future glucose predictions. 

Understanding if this is a theoretically and empirically effective way to prevent real world 

hypoglycaemia in patients with diabetes was an important step in deciding if this approach 

should be used in patients with CHI.  

Answered in: Worth C et al. Machine Learning Approaches to Hypoglycaemia: A Survey.  

Under peer review at ACM Computing Surveys. 2022 – presented in Chapter 6.  

RQ3. How can we use retrospective CGM data to identify patterns in hypoglycaemia 

risk in children with CHI? Rather than using real time CGM and ML to continuously 

predict a short term future glucose value, we wanted to understand if analysis of 

retrospective CGM values could identify useful patterns and trends. Patterns of 

hypoglycaemia have never been described at a group or individual level for patients with 

CHI. If patterns were present at a group level it would be worth investigating for patterns 

in individuals. At an individual level, if CGM data could be aggregated to identify 

hypoglycaemia patterns then these could be mapped to behaviours and used to target 

interventions to proactively prevent episodes. 

Answered in:  
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Worth et al. Clustering of Hypoglycaemia Events in Patients with Hyperinsulinsim: 

Extension of the Digital Phenotype Through Retrospective Data Analysis. Journal of 

Medical Internet Research. 2021; 23(10):e26957 – presented in Chapter 7 and; 

Worth at al. HYPO-CHEAT’s Aggregated Weekly Visualisations of Risk Reduce Real-

World Hypoglycaemia. Digital Health. 2022; 8:1-22 – presented in Chapter 8. 

RQ4. How effectively can we change behaviour through the presentation of 

hypoglycaemia patterns and does that prevent hypoglycaemia? If it is possible to 

identify behavioural hypoglycaemia patterns from retrospective CGM data then these could 

be used as targets for hypoglycaemia prevention. Could Behaviour Change Theory and 

Persuasive Technology be used to change behaviours and prevent hypoglycaemia? 

Furthermore, we wanted to know how, and through which behavioural changes, this is 

achieved.  

Answered in:  

Worth et al. The Behaviour Change Behind a Successful Pilot of Hypoglycaemia Reduction 

with HYPO-CHEAT. Under peer review at Digital Health – presented in Chapter 9 and; 

Auckburally S, Worth C et al. Families’ Experiences of Continuous Glucose Monitoring in 

the Management of Congenital Hyperinsulinism: a thematic analysis. Frontiers in 

Endocrinology. 2022; 10.3389/fendo.2022.894559 – presented in Appendix C.  

1.3 Contributions 

Due to the nature of the work, this thesis offers contributions to the fields of both medicine and 

computer science. The main contributions (Figure 1.1) are: 

1. A comprehensive understanding of the efficacy of current approaches to the 

prevention of hypoglycaemia through glucose monitoring.  

Through four papers, and by answering RQ1 and RQ2, we provide a comprehensive 

assessment of the current approaches to the prevention of hypoglycaemia using glucose 

monitoring. We evaluated the problem faced by children with CHI, and identified that 

a major obstruction to better control was suboptimal detection and prediction of 

hypoglycaemia episodes (Chapter 3). We proposed that this detection and prediction 

might be enhanced by CGM. We therefore conducted a review of CGM in 

hypoglycaemia disorders and identified accuracy as likely to be a limiting factor in the 
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prediction of hypoglycaemia (Chapter 4). To asses this further, we designed an expert-

informed and bespoke method for assessing CGM accuracy in hypoglycaemia disorders 

(Chapter 5). We used this new method to provide the largest and most clinically relevant 

assessment in CHI (Chapter 5) and found CGM accuracy insufficient for standalone, 

unsupervised use. Our review of CGM identified ML as a potential opportunity for 

improved hypoglycaemia prediction. We therefore undertook a review of the use of ML 

in hypoglycaemia prevention and identified fundamental deficiencies in this approach 

(Chapter 6). These deficiencies led us to propose a novel and alternative direction, more 

likely to yield real world results.  

 

2. An approach for aggregating and visualising CGM data that outperforms existing 

methods in the identification of actionable patterns of hypoglycaemia. 

The two papers in Chapters 7 and 8 answer RQ3 and describe the development of a 

new method for the aggregation and visualisation of CGM data. In Chapter 4, we 

identified that difficulty in interpretation of data is an obstruction to the use of CGM in 

preventing hypoglycaemia and devised a new approach. This approach analysed 

historical CGM data from patients with CHI and identified daily periods of high 

hypoglycaemia risk likely linked to behaviours such as sleeping and eating (Chapter 7). 

We developed this approach by aggregating CGM data into discrete buckets to 

demonstrate weekly hypoglycaemia patterns in individuals (Chapter 8). In identifying 

patterns, our weekly aggregations outperformed methods reliant on continuous data 

such as Dexcom Clarity software and Facebook Prophet’s ML algorithm (see Section 

1.4.3). Not only did our approach identify more patterns, but it was able to attribute 

hypoglycaemia risk to individuals’ behaviours and propose targets for change.  

 

3. A method for the application of persuasive technology to reduce hypoglycaemia in 

children in free-living conditions. 

Persuasive Technology (PT) has been utilised in the field of diabetes (never in CHI) 

but never with the intention of reducing hypoglycaemia. Based on our aggregation and 

visualisation methods detailed in contribution 2, we developed a PT designed to change 

SMBG behaviour and prevent hypoglycaemia (Chapter 9). Our PT successfully 

changed behaviours and reduced total hypoglycaemia by 25% even when access to 

CGM data was removed from users. To better understand how this reduction in 

hypoglycaemia (distal outcome) was achieved, we interviewed all participants and 
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undertook a thematic analysis (Appendix C). Not only is this the first PT to reduce 

hypoglycaemia but is also the first PT to improve outcomes in children through 

modification of parental behaviour.   

1.4 Thesis overview 

With the permission of the supervisory team from the Faculty of Science and Engineering, this 

thesis is presented in a journal/alternative format. The main chapters of this work are papers 

that have been published in peer reviewed journals (Chapters 3, 4, 5, 7, 8, Appendix A, 

Appendix B and Appendix C) or are currently under peer review (6 and 9). The journal format 

was used as each paper can be read individually and as a collective they form a narrative that 

describes the research arc of the PhD. The journal format also allowed for the rapid publication 

and dissemination of our work, thus maximising its impact and increasing access to new and 

beneficial technologies for patients with CHI. This was a successful strategy as, during the 

period of PhD study, I published eight papers (two more under review), gave oral presentations 

at four international conferences, was invited onto an expert panel at a fifth and won the final 

of the University of Manchester 3 minute thesis (3MT) competition and reached the last six in 

the national final.   

In this work, our intention was to prevent hypoglycaemia for patients with CHI. I selected this 

topic so as to provide a much needed service to an underserved patient group while also 

contributing a generalisable approach to the larger problem of hypoglycaemia prevention in all 

diseases. Our work underwent three main phases which are summarised below and visualised 

in Figure 1.1. A further understanding of the narrative of this PhD can be obtained by reviewing 

Figure 1.1 and the Graphical Abstract.  

1. The feasibility phase involved comprehensive reviews of: CHI; CGM in 

hypoglycaemia; and ML approaches to hypoglycaemia. The intention was to fully 

understand the current problem and which approaches might and might not work. This 

informed the direction of our formative work.  

2. In the formative phase we undertook initial experiments to better understand the point 

accuracy of CGM as well as establishing hypoglycaemia patterns that could be used in 

retrospective data review. This informed the design of our intervention.  

3. In the summative phase we built, implemented and tested the intervention. We 

conducted a three month quantitative study and this was followed up with a qualitative 

review to create a final approach ready for real world, large scale trials.  
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During this time, I also first-authored two important clinical papers on CHI which were 

published in high impact clinical journals. While not directly related to the work in this thesis, 

they contributed important knowledge to the clinical management of children with CHI. These 

are presented as Appendices A and B.  
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Figure 1.1 Visualisation of how individual papers, presented as chapters, answer research 

questions (RQs) and how these, in turn, result in contributions. 

Blue arrows delineate the flow of work as questions posed by certain papers were addressed 

and answered in later work. Chapters are colour coded by the work phase to which they belong. 

RQ: research question. CGM: continuous glucose monitoring. CHI: Congenital 

Hyperinsulinism. PT: Persuasive Technology.  

 

1.4.1 Feasibility Phase 

The aim for this phase was to comprehensively review the background literature to enable us 

to formulate specific and achievable research questions. As CHI is a rare disease, and PT is a 
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relatively new feature in health research, we started from a position of very little established 

knowledge and allowed the findings to direct our work.  

Chapter 3: We evaluated the difficulties in the clinical management of patients with CHI. This 

identified that a positive contribution could be made by focusing on the detection, prediction 

and prevention of hypoglycaemia episodes.  

Chapter 4: One method identified for achieving this was to use CGM and we therefore 

formulated RQ1 and summarised the literature regarding CGM in childhood hypoglycaemia 

into a comprehensive analysis. This analysis identified both opportunities and barriers for the 

use of CGM in hypoglycaemia prevention in disorders such as CHI. The primary barriers were 

suboptimal accuracy (further investigated in Chapter 5) and difficulty in the automated 

interpretation of data (addressed in Chapter 8). Opportunities included the use of CGM as a 

method for digital phenotyping and hypoglycaemia pattern recognition (addressed in Chapters 

7 and 8) and identified ML as a possible approach to hypoglycaemia prediction (Chapter 6).  

Chapter 6: The above generated RQ2 and prompted a review of the utility of ML in the 

prevention of hypoglycaemia. In this chapter we identified multiple problems with a ML driven 

approach to hypoglycaemia prevention:  

i) It relies on real time CGM and is thus subject to poor accuracy, lag time, 

burdensome alarms and high expense;  

ii) The black box approach offers no ability to reflect on the causes of hypoglycaemia 

and thus the approach remains reactive with no behaviours changed or lessons 

learnt;  

iii) This approach assumes that accurate predictions will automatically reduce 

hypoglycaemia without any consideration given to the action and behaviour change 

required. 

As such, to truly prevent hypoglycaemia, one needs to provide proactive prevention rather than 

reactive predictions (addressed in Chapter 7 as part of RQ3) and to actively target behaviour 

change so as to achieve hypoglycaemia prevention rather than simple prediction (addressed in 

Chapter 9 as part of RQ4).  

1.4.2 Formative Phase 

The formative work began by finalising an answer to RQ1 and addressing the issue of accuracy 

raised in Chapter 4. The poor accuracy of CGM devices in CHI was based on very few studies 
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using old devices and with no measure of the clinical relevance of CGM error. We devised a 

new accuracy measurement chart based on consensus expert opinion and used this to evaluate 

the accuracy of the newest CGM device available (Chapter 5). This confirmed unacceptable 

point accuracy of CGM devices and we concluded that CGM should not be used as a standalone 

tool for the detection and prevention of hypoglycaemia in CHI.  

The inaccuracy of CGM (Chapter 5), and intrinsic problems with ML (Chapter 6), rendered 

acute glucose forecasting an impractical approach, unlikely to be effective. However, in 

Chapters 4, 5 and 6 we identified the potential to use CGM to retrospectively identify 

hypoglycaemia patterns and offer a more practical prediction of hypoglycaemia that:  

i) is less subject to the poor point accuracy of CGM (Chapter 5);  

ii) is proactive in its predictions rather than reactive (Chapters 4 and 6);  

iii) is likely to offer practical targets for intervention through behaviour change.  

We therefore undertook retrospective analysis of CGM data from patients with CHI to extend 

the digital phenotype of the disease and demonstrate daily hypoglycaemia patterns clustered 

around times likely to be associated with behaviours such as sleeping and eating (Chapter 7). 

We also identified that prolonged hypoglycaemia was still present, despite patients wearing 

real time CGM devices with alarms. This confirmed that simple provision of real-time data to 

patients was not sufficient to prevent hypoglycaemia and that one must target action and 

behaviour change (addressed in Chapter 9). This assessment partly answered RQ3 but the 

sparse data, analysed on a group level, did not allow us to investigate for any patterns of 

hypoglycaemia that might repeat over a longer period than a day. We moved on to the 

summative phase of work with this in mind.  

1.4.3 Summative Phase 

In Chapter 7 we demonstrated the possibility of identifying behavioural patterns of 

hypoglycaemia from retrospective CGM data but were restricted, by sparse data, to identifying 

daily repeating patterns at a group level. In order to identify hypoglycaemia patterns in 

individuals as well as determine any naturally repeating time periods beyond that of the 24 

hour day, we began this phase of work with a new approach. This new approach is HYPO-

CHEAT (HYpoglycaemia-Prevention-thrOugh-Cgm-HEatmap-Assisted-Technology) and is 

presented in detail in Chapters 8 and 9, with a qualitative assessment in Appendix C.  
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Chapter 8 details the technical design and performance of this approach. Using CGM data from 

patients with CHI, we ascertained that hypoglycaemia patterns repeated on both a daily and 

weekly basis and we used this new information to design our approach. HYPO-CHEAT 

aggregates individual CGM data into discrete hourly buckets and presents the data as a weekly 

hypoglycaemia heatmap (Figure 1.2). This easy to interpret visualisation is accompanied by 

simple explanations of the high risk areas of the week and suggestions for reflection. We tested 

HYPO-CHEAT prospectively in 10 patients with CHI over a 12 week period. In all cases, 

HYPO-CHEAT identified patterns more successfully and reliably than either Dexcom Clarity 

(Dexcom’s proprietary CGM review software) or Facebook Prophet (machine learning 

forecasting algorithm). Furthermore, in every case, users quickly understood the outputs and 

were able to relate the hypoglycaemia “hotspots” on their heatmaps to specific causative 

behaviours. These behaviours automatically became targets for change (addressed in Chapter 

9).  

 

Figure 1.2 A comparison of Clarity output (left) and HYPO-CHEAT heatmap (right) 

output for a patient 

Assessing 4 months of data, Clarity is unable to identify any patterns in hypoglycaemia for this 

patient. The HYPO-CHEAT heatmap represents all of the hypoglycaemia seen over the last 

four weeks in the format of a week rather than individual days. As such, it is able to identify 

repeated hypoglycaemias that Clarity is unaware of because it is looking on a different scale. 

Blue areas represent one off hypoglycaemia and red areas indicate repeated hypoglycaemia 

with deeper colours representing more hypoglycaemia. Additional yellow and green markers 

highlight areas of frequent repeat.  

 

HYPO-CHEAT does not just provide data aggregation and visualisation. Given what we learnt 

in the feasibility and formative stages of the work, it was clear that any technology designed to 

prevent hypoglycaemia had to target not only prediction but subsequent action. As such, 
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HYPO-CHEAT leverages PT to change behaviour around both SMBG and hypoglycaemia 

associated activities with the ultimate goal of reducing hypoglycaemia. This functionality was 

tested in the same 10 patients as in Chapter 8 and behavioural outcomes were measured 

(Chapter 9). After using HYPO-CHEAT, patients performed 67% more SMBG measurements 

within targets than at other times. This behaviour change translated into an improvement in 

outcomes with targeted hypoglycaemia dropping by 67% despite real time CGM data being 

removed. Total hypoglycaemia reduced by 25% in patients in free-living conditions without 

access to real time CGM. Even for a small, pilot study, this degree of improvement in 

hypoglycaemia is uncommonly high and, due to a worsening of hypoglycaemia seen in the 

control group, is likely to be secondary to HYPO-CHEAT rather than passage of time or study 

effects.  

Finally, to fully establish the mechanism by which HYPO-CHEAT achieved a reduction in 

hypoglycaemia, an interview study was carried out with all users. This was undertaken by a 

member of the clinical team not associated with the initial study and was supervised by me 

(Appendix C). Families spontaneously commented on the behavioural change they had 

experienced after using HYPO-CHEAT and how the new evidence they had received had 

altered the way they managed their disease to proactively prevent hypoglycaemia.  

We conclude the thesis with a summary of results and contributions as well as a discussion of 

the limitations and suggestions for future work.  
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Chapter 2 - Primer and Related Work 

This core of work in this thesis is the prevention of hypoglycaemia for patients with Congenital 

Hyperinsulinism (CHI) through interpretation of Continuous Glucose Monitoring (CGM) data 

and the use of Persuasive Technology (PT). The theoretical base and essential background 

information on these subjects is a prerequisite to understanding the rest of the thesis and, as 

such, we have included such information in this chapter. Specifically, we have included primers 

on CHI, hypoglycaemia and CGM. These primers provide the requisite knowledge to 

understand the related work and theoretical basis for the approach taken in the formative and 

summative phases of the PhD. 

Following the primers, we provide a review of related work in the areas of hypoglycaemia 

prediction and prevention. We briefly outline the use of education as a means to hypoglycaemia 

prevention before providing a comprehensive review of the technological approaches, as befits 

a thesis in computer science.  

The chapter is concluded with a discussion on the use of PT to change behaviours and provide 

a comprehensive overview of those relating to health and children. This section will identify 

the gaps in the literature and explain how our work can fill that gap.  

2.1 Primer 

This section provides the necessary background to understand the wider context within which 

our work is placed. Due to the nature of a journal format thesis, a lot of the information 

presented in this section is repeated in the background/introduction sections of individual 

chapters. However, it is compiled and concentrated in this section to provide an understanding 

of the theoretical and practical background to our work. 

2.1.1 Congenital Hyperinsulinism (CHI) 

A comprehensive background on CHI is included as part of the manuscript presented in 

Chapter 3 and a summary is included here as a primer to the thesis.  

Background and genetics 

Congenital Hyperinsulinism (CHI) was first described in the 1950s33 and is characterised by 

dysfunction in the beta (insulin secreting) cells of the pancreas, leading to excessive insulin 

secretion and recurrent and severe hypoglycaemia (low blood glucose (see 2.1.2))34. CHI is a 
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rare disease but with an estimated incidence of at least 1:28,000 in the UK7. The incidence is 

higher in populations with high rates of consanguinity35 due to the genetic basis of the disease. 

This genetic basis is variable4, with pathogenic gene variants still being uncovered36. However, 

CHI is most commonly due to genetic mutations leading to a loss of function in a beta cell 

potassium channel resulting in the dysregulated and excessive secretion of insulin 19,37. Despite 

ever increasing knowledge of the genetics of CHI, in more than half of patients, a pathogenic 

genetic cause is not found, highlighting the heterogeneous aetiology of the condition38.  

Subtypes and Treatment 

CHI is often characterised into two distinct subtypes: focal and diffuse. Focal CHI is defined 

by the finding of a solitary pancreatic lesion combined with characteristic genetic and 

histological features39,40. Focal CHI is often amenable to cure through limited pancreatic 

resection of the focal lesion. On the other hand, diffuse CHI implies a characteristic 

histopathology41 and the dysfunction of all beta cells in the pancreas. Practically, diffuse CHI 

is diagnosed in the absence of evidence of the focal form of CHI and medical therapy is 

prioritised over pancreatic surgery where possible39. First line medical therapy for CHI is with 

diazoxide, the only FDA-approved treatment. The mechanism of action of diazoxide requires 

normally functioning potassium channels in the pancreatic beta cells and thus is only effective 

in 16%-66% of cases42. In those for whom diazoxide is effective in reducing excessive insulin 

secretion, practical utility can be limited by side effects such as fluid retention, hypertrichosis 

(excessive hair growth), neutropenia (low white blood cells) and life threatening pulmonary 

hypertension (high blood pressure in the lungs)43–47.  

Second line treatment is with a somatostatin receptor analogue (most commonly octreotide) to 

inhibit insulin release both directly and indirectly48. Due to the short half-life of octreotide, it 

must be administered 4-6 times a day by subcutaneous injection or continuous infusion49. 

Longer acting formulations such as LAR octreotide50 or lanreotide51 reduce the burden of 

injections but all somatostatin analogue treatment must be monitored carefully for evidence of 

hepatitis52 and, in neonates, life-threatening necrotising enterocolitis53.  

Other medications such as sirolimus and nifedipine are limited by dangerous side effects54,55 

or poor efficacy56. Future therapies; Dasiglucagon, Exendin 9-39, RZ358, HM15136 and 

CRN04777 are all in trial stages and not currently available for clinical use. In those patients 

with diffuse CHI, for whom glycaemic safety cannot be achieved with medications alone, 

subtotal pancreatectomy (surgical removal of 95% of the pancreas) can be offered57. However, 
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this is not a truly curative option, with 50% of patients experiencing recurrent hypoglycaemia57 

and progression to diabetes mellitus inevitable58,59.  

Monitoring and outcomes 

Regular monitoring of blood glucose levels is essential to ensure efficacy of treatment and 

maximise avoidance of hypoglycaemia. Standard of care is self-monitoring of blood glucose 

(SMBG) with fingerprick glucometers but this intermittent testing strategy risks missing 

hypoglycaemia between tests and offers no predictive capacity nor trend information43. CGM 

has become widespread for those with diabetes mellitus and its use in CHI has been described 

but not evaluated13,14,60,61. This is discussed in much greater detail in section 2.1.3.  

In those children without genetic mutations, and who were small at birth, CHI may well be 

transient. Resolution is seen in about half of patients without genetic mutations62, while those 

with genetic mutations are more likely to have persistent disease. However, even in those with 

identified genetic mutations, severity of disease tends to lessen with time63,64.  

Children with CHI often experience significant feeding difficulties65 which can persist for 

many years66. The recurrent hypoglycaemia seen in young patients with CHI results in high 

rates of adverse neurodevelopment (see section 2.1.2). Rates of adverse neurodevelopment 

remain high in those with both focal and transient forms of the disease5,67–69 suggesting that it 

is the exposure to hypoglycaemia rather than the form of CHI which is important. Finally, the 

economic impact of CHI is hard to evaluate given the difficulty in estimating the cost of 

resultant neurodevelopmental problems. However, conservative estimates, that do not account 

for neurodevelopmental impact, report an annual cost to the NHS of £3,408,3986.  

2.1.2 Hypoglycaemia 

Glucose is a sugar required by the human body for the normal functioning of cells. Glucose is 

absorbed from food and transported in the blood to be used directly for energy or stored as 

glycogen (to be released again at times of fasting, as glucose). Blood glucose levels are 

maintained within a relatively narrow range and hypoglycaemia refers to levels below this 

‘normal’ range. However, definitions of normal vary and thresholds for hypoglycaemia are far 

from fixed. Even within the relatively small and insular world of CHI, the definition remains 

controversial1,43,70. Despite recent, high profile studies suggesting the relative safety of a lower 

cut-off for hypoglycaemia71,72, these did not include patients with CHI and, in the UK, a value 

of 3.5mmol/L continues as a pragmatic cut-off1,73.  
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Recurrent hypoglycaemia leads to inadequate cerebral glucose supply and serious long-term 

neurological impairments2,74 including epilepsy and mental retardation75. MRI imaging 

demonstrates persistent changes in these patients3. Rates of neurological impairment in those 

with hyperinsulinaemic hypoglycaemia (hypoglycaemia caused by excessive insulin such as in 

those with CHI) can be as high as 48%5. Furthermore, the impacts of hypoglycaemia are felt 

via long term effects on the quality of life of both the individual and the extended family76,77 

as well as significant economic costs to healthcare systems6,78,79.  

The cornerstone of management for any condition that carries a risk of hypoglycaemia is that 

of glucose monitoring. This monitoring, until relatively recently, was routinely undertaken with 

intermittent self-monitoring of blood glucose (SMBG) by fingerpick tests. Unfortunately, 

SMBG risks missing hypoglycaemia between tests and its low frequency offers little to no 

trend information. As such, for patients with diabetes, CGM is rapidly replacing SMBG as the 

monitoring method of choice, with national usage as high as 79% in children in high income 

countries80,81.  

2.1.3 Continuous Glucose Monitoring (CGM) 

We have provided a systematic review of CGM in hypoglycaemia disorders in Chapter 4 (and 

a 3-year update in Appendix A). A summary of the paper presented in Chapter 4, with 

additional data published since, is provided here in the interests of a comprehensive 

background to the thesis.  

The first modern CGM device was released in 1999 and allowed clinicians to retrospectively 

view three days of patient glucose data82. Much progress has been made since then and modern 

devices consist of a wearable sensor inserted into the interstitial space where glucose liberates 

electrons and generates an electric current. This current is converted to a blood glucose value8 

via an algorithm that can be fine-tuned by patient or factory calibration83. This process occurs 

every 10 seconds and an average is reported to a nearby receiver device or smartphone for 

patient view every five minutes (Figure 2.1). 
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Figure 2.1 Mechanism of action of a continuous glucose monitoring device. 

Diagrams show from left to right an increasing level of detail from the patient to the chemical 

reaction. Patients attach a sensor to their skin which automatically inserts a subcutaneous 

needle. This resides in the interstitial space and measures glucose concentrations. Via Glucose 

oxidase the sensor generates an electrical current proportional to the glucose concentration 

in the interstitium. This electrical current is passed through a continuously shifting algorithm 

to generate a glucose value which is transmitted wirelessly to the receiving unit or compatible 

smartphone for display to the patient 

 

Accuracy of CGM 

Patient confidence in the accuracy of CGM devices is paramount to their effective use84. The 

most commonly reported measure of accuracy is that of Mean Absolute Relative Difference 

(MARD): the average relative difference between CGM and reference values8. Despite 

significant improvements since first generation CGM devices85, accuracy is worst at 

hypoglycaemia86,87. Even the most up to date CGM device available (Dexcom G7), reports an 

impressive overall MARD of 8.2% but fails to detect 24-27% of hypoglycaemia 

(<3.1mmol/L)88.  

Accuracy in non-diabetes hypoglycaemia is significantly worse. Studies in neonates report 

MARD values between 11% and 16%61,89 and a hypoglycaemia sensitivity of only 59%61. The 

situation is worse still for those with CHI, likely due to the increased discrepancy between 

interstitial and blood glucose when insulin is elevated90. Reported MARD values in CHI range 

from 17.5% to 17.9%13,14 with hypoglycaemia sensitivity only 43%13.  
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Efficacy of CGM 

CGM is only licensed for those with Type 1 and Type 2 Diabetes Mellitus (T1DM and T2DM) 

and for these patients, provision of CGM undoubtedly improves control of blood glucose91–96 

and reduces hypoglycaemia94,95,97. CGM is well tolerated in neonates98,99 and has been shown 

to detect100,101 and reduce102,103 hypoglycaemia in this group, although the long term clinical 

benefit of this is uncertain72,104.  

CGM has been used in a very limited way in children with non-diabetes hypoglycaemia. In 

children with Adrenal Insufficiency, CGM was found to be helpful in the retrospective 

identification of unexpected nocturnal hypoglycaemia105. Similar utility has been demonstrated 

for children with Glycogen Storage Diseases106–110 with a resultant improvement in disease 

markers111 and patient quality of life112. Until recently, no studies had attempted to measure the 

quantitative benefit of CGM in children with CHI, but anecdotal reports discuss the utility of 

understanding glucose trends and guiding SMBG checks13,14,60,61,113,114. However, when 

analysing data from 10 patients with CHI over 8 weeks (data available in Table 9.5 in Chapter 

9), we demonstrated that simple provision of real time CGM with no additional support had no 

impact on time spent hypoglycaemic compared to no CGM (3.9% vs 4.0%)115.  

Barriers to the use of CGM 

CGM improves glucose control for those with T1DM and T2DM and provides utility for those 

with non-diabetes hypoglycaemia disorders. However, it has multiple barriers to use which 

have prevented it from completely supplanting SMBG. These are discussed in detail in 

Chapters 4, 5 and 6 but are outlined here.  

i. Accuracy: See above.  

ii. Lag: Poor reliability of CGM at hypoglycaemia is not only due to poor point 

accuracy but secondary to device lag116. Lag relates to the time delay between a 

change in blood glucose and the reporting of this change. This is comprised of: 

physiological lag (diffusion of glucose between blood and interstitium); sensor 

reaction time (diffusion of glucose between interstitium and sensor) and; sensor 

signal processing (required for calibration and data smoothing). Lag time can vary 

from 8-40 minutes and, when glucose is falling rapidly, result in an overestimation 

of blood glucose by as much as 2.2mmol/L9.  

iii. Alarms: The use of real time CGM to detect impending hypoglycaemia relies upon 

the use of warning alarms. However, alarm fatigue quickly sets in22, increases 
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device burden (see vi) and results in patients with overnight hypoglycaemia waking 

to less than a third of alarms10.  

iv. Cost: Due to the improvements in glycaemic control and quality of life seen with 

CGM, it is considered cost effective for those with T1DM117,118, T2DM119 and in 

neonates120. However, CGM remains significantly more expensive than SMBG 

even in countries with high usage rates118 and is only licenced for use in DM. 

Therefore, for those with non-diabetes hypoglycaemia or living in low-income 

countries, CGM is prohibitively expensive for all but the wealthiest121.  

v. Interpretation: Recently, guidelines for CGM interpretation have been 

introduced23,24 in order to reduce the difficulty patients were reporting12,22,122. 

However, recent data suggest that only 57% of patients find CGM interpretation 

easy and a third cannot identify hypoglycaemia episodes in retrospective data 

review25.  

vi. Burden: CGM improves glycaemic control and quality of life for those with 

diabetes123 when confidence in accuracy and usability are high84. It is therefore 

assumed that all patients with diabetes or other blood glucose disorders would 

desire this technology. In fact a negative psychosocial impact of CGM has been 

described124 with discontinuation rates up to 41% at 12 months125 and device 

technical failure a primary cause122. CGM does not consistently reduce 

hypoglycaemic worry123 and many patients report “information overload”126 and 

struggle to make sense of data downloads122.  

 

Accuracy and usability are low for patients with CHI, device technical failure is high and there 

is no structured training available to aid interpretation of data. As such, it is reasonable to 

assume that device burden may be high in this patient group. Worse than this, there is a 

possibility that the use of unsupported CGM is actively dangerous: if patients come to rely on 

CGM alarms and ignore other hypoglycaemia cues then the poor sensitivity of CGM could 

result in even more missed hypoglycaemia than without.  

2.2 Related Work: Hypoglycaemia prevention 

In the Introduction (Chapter 1) and through the background provided via the Primers (2.1), we 

have made clear the reasons why the prevention of hypoglycaemia in children with CHI is an 

important goal. In a thesis targeting the prevention of hypoglycaemia, it is worth discussing 

how one would theoretically achieve this.  
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Much of the literature around hypoglycaemia prevention conveniently confuses prediction with 

prevention and assumes that the latter will automatically flow from the former. Prediction of a 

hypoglycaemia event is an essential component in its prevention but, as Klasnja et al.127 point 

out, “a successful change in behaviors is a fundamental aspect of prevention”. Health 

behaviours are fundamentally linked to health outcomes128 and thus, when aiming to prevent 

hypoglycaemia, there must be an action (change in behaviour) following the prediction. As 

Mujahid129 notes in their 2021 paper, “a prediction system could […] then guide the patient 

about the steps and measures to be taken to prevent the predicted event”. As such, we discuss 

the large volume of literature surrounding prediction (2.2.1) before moving on to the smaller 

volume of work aiming to truly prevent (2.2.2). 

The vast majority of work aiming to predict and prevent hypoglycaemia has been undertaken 

in patients with T1DM and thus a large proportion of studies exert their effects via the 

interrogation or manipulation of insulin administration. Those studies whose results rely 

heavily on administered insulin as an input variable or as a mediator of effect are not discussed 

in depth as they cannot be extrapolated to patients with CHI in whom insulin secretion is not 

externally controlled.  

Before a detailed description of the related technical work, it is worth briefly discussing 

methods for the prevention of hypoglycaemia not directly related to the work described in this 

thesis. It has been established that one very effective method to reduce hypoglycaemia for those 

with T1DM is the provision of structured education130, with DAFNE131, BGAT132–134 and 

HypoAware135 all well established. However, such education is expensive and requires system 

level change, something unlikely to be provided for a rare disease such as CHI where no 

validated educational tools exist. The other established method of hypoglycaemia prevention 

is though Predictive Low-Glucose Suspend (PLGS). PLGS is used in patients with T1DM 

receiving insulin infusion via a pump and this system automatically pauses insulin infusion 

when glucose drops below a pre-defined threshold136. It is immediately clear that this system 

is of no use to patients with CHI for whom hypoglycaemia is caused by their own (endogenous) 

insulin and not that injected via a pump (exogenous). As such, neither work in PLGS nor 

structured education are discussed further.  

2.2.1 Hypoglycaemia prediction 

Hypoglycaemia prediction is found in two primary categories of work. The first is glucose 

forecasting work which attempts to predict either a continuous glucose value or the impending 



46 

 

drop of glucose below a threshold in the immediate future. The second is that of Decision 

Support Systems (DSS) which aim to facilitate decision making around glycaemic control. 

Many DSSs will incorporate an element of hypoglycaemia prediction in order to inform the 

decision making process. Within both categories the published work exclusively relates to 

patients with diabetes mellitus and thus commonly uses exogenous insulin as a variable for 

either input or action. As discussed above, studies which include insulin as a key component 

will not be discussed in this section as they are not applicable to patients with CHI for whom 

excess insulin is endogenous and not amenable to measurement or manipulation.  

Glucose forecasting  

Many algorithms which pertain to be prediction algorithms are simply hypoglycaemia 

detection algorithms and do not offer any future predictive capacity129. Within those systems 

that are truly predictive, there are three categories of forecasting algorithms: Physiological; 

Data-Driven; Hybrid18. Physiological (and hybrid) models require advanced and in depth 

knowledge of the physiological processes regarding glucose regulation18,137. Their use is 

limited due to the confined number of factors available; multiple (difficult to access) clinical 

measurements required and a lack of personalisation137,138. While many popular models exist 

for use in diabetes139–141, they are not suitable for use in this project and thus their use is not 

discussed further.   

Data driven models forecast future glucose values based on inputs from CGM, insulin, 

nutrition, exercise and other inputs without a pre-programmed understanding of the underlying 

interactions18. These models are often supported by ML techniques and there are therefore 

multiple approaches to the task. As far back as 2007, Sparacino et al.142 reported a proof of 

concept glucose forecast using simple auto regression and demonstrated the feasibility of this 

approach. Further studies143–145 used a similar autoregressive approach to forecast glucose 

values in-silico. Dassau et al.146 then looked specifically for glucose values dropping below a 

threshold as part of a hypoglycaemia prediction algorithm and successfully predicted 91% of 

hypoglycaemia episodes from retrospective data.  

Machine learning techniques have since become more popular and early use of neural networks 

demonstrated improved performance over autoregression147 although other researchers 

demonstrated a hypoglycaemia sensitivity of only 2%148 and more recent studies suggest no 

significant improvement of ML over simple time-series analysis149. Further use of neural 

network techniques has demonstrated increases in accuracy of (in-silico) forecasts150–153. 
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Similarly, Support Vector Machines (SVM) have been used by multiple teams154,155 with the 

most recent study demonstrating a 78% sensitivity for nocturnal hypoglycaemia prediction156. 

Other researchers have leveraged extreme learning157,158, deep learning159 and multiple 

machine learning techniques160–164 and reported improvements over single machine learning 

techniques. These studies are always performed in-silico and never evaluate prediction of 

hypoglycaemias in free-living conditions. Because the majority of algorithms are designed for 

those with diabetes, many machine learning driven forecasts will perform better in the 

hyperglycaemic range than in the hypoglycaemic range165.  

The above studies aim to predict a glucose value in the short term future (prediction horizon 

most commonly 30 minutes18) and thus provide minimal scope for patient reflection or 

preventative action. Sudharsan et al.166 adopted a different approach and used SMBG to predict 

the presence or absence of a hypoglycaemia in the subsequent 24 hours, allowing patients time 

to reflect on the possible causes and take action. When specific predictive features are studied, 

Ahmed et al.167 reported that personal characteristics such as body weight, exercise and lifestyle 

had a significant impact on forecast, while Dave et al.168 discovered that hour of day and day 

of week were better predictors of glucose than either insulin or carbohydrate data.  

Despite this report by Dave et al., during a comprehensive literature search performed multiple 

times over a period of two years, we found no studies that predicted hypoglycaemia over the 

course of a week. Further standout gaps in the literature include:  

 Glucose prediction for patients with a non-diabetes hypoglycaemia disorder 

 Prediction in real patients in free-living conditions rather than on retrospective datasets.  

This thesis aims to address these gaps (Table 2.1).  

2.2.2 Hypoglycaemia Prevention: Decision Support Systems (DSS) 

Decision Support Systems (DSSs) have been around since the mid-1980s when Chanoch et 

al.169 published details of their “Pocket Computer as an Aid” which recommended insulin doses 

based on manually inputted glucose values. During this study, patients changed their behaviour 

to increase self-monitoring and subsequently reduced their HbA1C, although not 

hypoglycaemia. Other systems, before the age of mobile computing, were designed to assist 

clinicians rather than patients170. While some did successfully reduce hypoglycaemia in 

children171, they required significant foresight and planning to use a personal computer and 

always focused on manipulation of insulin dosing to achieve their goals.  
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The advent of mobile computing, and widespread availability of CGM, coincided with the 

boom in AI research and, as such, DSSs now tend to incorporate all of these components172. 

Unfortunately, the vast majority of DSSs continue to focus on the manipulation of insulin, thus 

providing no utility to those with CHI, while those that aim to provide guidance on 

hypoglycaemia prediction and behaviour modification172 are really forecasting algorithms that 

do not offer any decision support.  

While most DSSs focus on manipulation of insulin, and thus are not directly applicable, it is 

still worth assessing their capacity to influence outcomes. Multiple teams156,173,174 have used 

ML processing of insulin and glucose data to predict nocturnal hypoglycaemia with some 

success. Further studies have also targeted the prediction and prevention of exercise induced 

hypoglycaemia with Fabris et al. demonstrating efficacy of an automated insulin adjustment 

based on exercise tracking firstly in-silico175 and then in a controlled lab environment in real 

patients176. Real time adjustment of insulin dosing has demonstrated some efficacy in silico177 

or under very strictly controlled conditions in patients in a lab environment178,179.  

While the above demonstrate a theoretical possibility of DSS efficacy in CHI, more directly 

applicable are those studies that do not rely on adjustment of insulin dosing to reduce 

hypoglycaemia. Prior to the availability of CGM, Shiffrin et al.180 used SMBG data in a 

regression analysis to determine the likelihood of nocturnal hypoglycaemia. The DSS 

component recommended a snack at bedtime if hypoglycaemia was predicted and facilitated a 

reduction in nocturnal hypoglycaemia. Zhang et al.181 focused on improving the visualisation 

of glucose data to help clinicians better understand glycaemic trends and adjust patient care, 

highlighting the key role of education. Skrøvseth et al.182 trialled a multi-faceted DSS which 

demonstrated good efficacy of educational components but no added benefit from the addition 

of ML. Feigerlová et al.183 conducted a meta-analysis of DSSs targeting patient participation 

in glycaemic education and concluded that it is likely to be effective but larger scale, real world 

trials are required to prove this.  

In conclusion, DSSs have the theoretical capacity to reduce hypoglycaemia for patients with 

CHI but examples in the literature are limited by poor interpretability, in silico-testing and an 

associated assumption that all recommendations will be followed in the real world. Tyler et 

al.172 conclude in their review that “it has not yet been shown that a DSS can improve TIR 

[time in range] in human studies”. Our analysis in Chapter 6 concludes that any benefit from 

DSSs is derived from patient reflection and education rather than the addition of ML which 
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provides no additional efficacy179,182,184. It is upon this patient reflection and education that we 

have focused our efforts during this work.  

2.3 Related Work: Persuasive Technology (PT) in Healthcare 

As far back as 2004, Stephen Intille185 identified that persuasive technology (PT) techniques 

had already begun to have an influence on health. This section details related work as pertains 

to the use of PT to change behaviours relating to health outcomes. This draws heavily on the 

background work in Behaviour Change by authors such as Michie186,187 and Abraham188 and 

work on PT by authors such as Fogg27,189 and Oinas-Kukkonen190–192. Background theory on 

these fields is not provided here in order to concentrate the reader’s attention on related work 

rather than underlying theory which can be found in detail in Chapter 9 of the thesis.  

The early themes of PT in healthcare193, that focused on increasing exercise194–196, reducing 

smoking197 and healthy eating198, have largely not changed and these (along with dental health 

and “avoidance of risky sexual behaviour”) remain the focus of the bulk of PT work in 

healthcare28.  

Within PT, significant focus has been paid to the component parts of individual PTs and which 

are likely to exert the most effect. A systematic review of PT in promoting physical activity30 

identified that the majority of studies used self-monitoring as a technique for behaviour change 

but that almost all lacked any system credibility support, often considered of vital importance30. 

Interestingly, when persuasive strategies were investigated for their perceived persuasiveness 

to increase physical activity amongst those with COPD (chronic obstructive pulmonary 

disease), self-monitoring was deemed less persuasive than: personalisation; reminder; and 

commitment199. Despite this, a comprehensive review28 highlighted that self-monitoring 

remains the most frequently employed strategy within healthcare PT and only 3 out of 85 

studies included any system credibility support.  

The majority of PT interventions within the health sphere target health promotion or prevention 

(smoking, exercise, healthy eating etc). This is overall quite successful, with 78% of 80 studies 

in this area reporting a fully positive outcome and only 8% demonstrating no positive effect at 

all28. Closer to our intended work is the use of PT for disease management. This area is much 

smaller, with only a handful of studies in the literature and none targeting rare diseases. As rare 

diseases often have individualised phenotypes, common themes for persuasion are harder to 

identify than in common and widespread conditions such as obesity.    
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Bhatnagar et al.200 used a biometric attendance terminal to help persuade patients to attend for 

Tuberculosis treatment. The system successfully increased attendance at clinics via 

incentivising health workers to convince patients to attend as well as directly persuading 

patients of the importance of the visits. Chatterjee et al.201 used environmental and wearable 

sensors to inform persuasive text messages sent to a single adult patient with diabetes. Results 

from this, and a follow up31, case study, demonstrated a trend towards improved glucose control 

as well as improved weight and self-perception of ability to manage disease.  

As part of the trend towards the increasing use of PT in diabetes care, Jalil et al.202 investigated 

the acceptability of integrating PT into existing technological systems for managing diabetes 

and showed that patients actually preferred to receive recommendations and suggestions from 

a PT over a clinician. Building on this, Sittig et al.203 demonstrated the feasibility of influencing 

diabetes self-management behaviours using an App to provide messages supporting self-care 

behaviours, with higher App usage associated with better outcomes. A similar feasibility and 

acceptability study by Shetty et al.204 demonstrated positive responses to a mHealth App 

designed to facilitate safe exercise for patients with diabetes. Results from randomised trials of 

both Apps are awaited.  

Finally, nudges and reminder systems are common components of PT and have been 

investigated for their ability to alter glucose monitoring behaviour and glycaemic control. In 

their meta-analysis, Kwan et al.205 concluded that, while nudge interventions did improve 

glycaemic outcomes, this did not seem to be mediated through a change in glucose monitoring 

behaviours. More recently, however, Horgan et al.32 demonstrated reminder systems to be 

effective at both improving glycaemic control and altering glucose monitoring behaviour in 

patients with gestational diabetes. Neither study included children or assessed for a reduction 

in hypoglycaemia. 

To conclude, PT has shown good efficacy in health promotion and prevention with efforts 

understandably concentrated on weight, smoking, exercise and healthy eating. Some progress 

has been made to use PT as part of chronic disease management but so far studies have been 

very small and thus shown minimal effect. Initial attempts to change glucose monitoring 

behaviours and glycaemic control through PT have shown mixed results but reviews highlight 

the need for future studies to consider the inclusion of evidence based theories and components 

to PT interventions. Finally, after an exhaustive search and contacting notable authors in the 
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field, we did not find any examples of a PT designed to influence the health outcomes of 

children by targeting behaviour change of their parents.  

2.4 Gap analysis 

Having described the related work in the fields of both hypoglycaemia prevention and 

healthcare PT, an analysis of the gaps within the literature is provided. This summarises the 

above chapter as well as providing a clear focus for how the work presented in this thesis 

attempts to fill those gaps and contribute new knowledge. This is presented in the form of 

tables, with each table detailing the identified gaps and ways to fill them. Table 2.1 presents 

the gaps in the literature surrounding hypoglycaemia prevention and Table 2.2 addresses the 

same for PT.  

Hypoglycaemia Prevention 

 Gap in the literature How this could be filled? More detail 

1 All existing work pertains to people living 

with diabetes and thus uses exogenously 

administered insulin as either an input for 

prediction or method of manipulation for 

altering outcomes.  

Concentrate work on non-diabetes 

hypoglycaemia and use alternative 

inputs and outputs for prevention. 

All 

chapters 

 

2 Predictions of hypoglycaemia are in the 

short term future (normally 30 minutes) and 

thus only facilitate a reactive attempt to 

limit hypoglycaemia rather than a proactive 

approach to genuinely understand and 

prevent it.   

Predictions offered on a much larger 

time scale (a week) will A) allow 

sufficient time to proactively 

prevent hypoglycaemia and B) 

facilitate reflection on the causes of 

hypoglycaemia, thus increasing 

understanding of its determinants.  

Chapters: 

6, 7, 8, 9 

3 Continuous glucose forecasting relies upon 

the (very poor) point accuracy of CGM.  

Retrospective analysis of patterns 

over the course of a week would be 

subject to much less influence from 

poor point accuracy.  

Chapters: 

5, 6, 7 

4 Current hypoglycaemia prediction 

algorithms are ignorant of the predictable 

repetition of human behaviour. 

Viewing retrospective patterns of 

hypoglycaemia over the course of a 

week allows for identification of 

repeated hypoglycaemia caused by 

repetitive behaviours.  

Chapters: 

6, 7, 8 

5 The current literature is almost always only 

evaluated in-silico or occasionally in real 

patients but then in strictly controlled, 

laboratory conditions.  

A trial in real patients in free-living 

conditions would offer a realistic 

measure of efficacy.  

Chapters: 

6, 9 

6 Current prevention strategies are actually 

mostly prediction strategies and forget that, 

in order to prevent hypoglycaemia, 

appropriate action is required from patients.  

Combining prediction with a 

method of influencing behaviour 

would target the key aspect of 

hypoglycaemia: suboptimal self-

management.  

Chapters: 

6, 9, 

Appendix 

C 

Table 2.1. Gap analysis of hypoglycaemia prevention 

Here we present the gaps in the literature and possibilities for ways in which these gaps could 

be filled as well as highlighting chapters within which the reader can find more information.  
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Persuasive technology in healthcare 

 Gap in the literature How this could be filled? More detail 

1 There are very few PTs designed for 

management of chronic health 

conditions.  

Any work in this field would be a 

contribution to the very small pool of 

existing research.  

Chapter 9 

2 There are even fewer PTs designed 

to influence glycaemic control and 

glucose monitoring behaviours.  

A PT designed to alter glycaemic 

outcomes would be almost without 

comparison.  

Chapter 9 

3 No PTs aim to influence health 

outcomes for children by targeting 

their parents’ behaviours.  

A PT designed to do just this would 

contribute widely generalisable knowledge 

about the use of PT in paediatric 

healthcare.  

Chapters 

9&10 

Table 2.2. Gap analysis of PT in healthcare. 

Here we present the gaps in the literature and possibilities for ways in which these gaps could 

be filled as well as highlighting chapters within which the reader can find more information.  
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Chapter 3 - Identification of a clinical target 

In Chapters 1 and 2 we have provided an introduction and background to congenital 

hyperinsulinism (CHI), hypoglycaemia, continuous glucose monitoring (CGM), 

hypoglycaemia prediction and persuasive technology. As detailed in Chapter 1, due to the 

nature of rare disease research, we were starting from a point of very little knowledge and thus 

performed significant exploratory work to guide the research and work.  

In this chapter we provide a more comprehensive introduction to the problem of hypoglycaemia 

and CHI. This is followed by a detailed description of the problems faced in the medical 

management of the condition and demonstrates the start of our gap analysis and how we 

identified a target for the rest of our work. The content of this chapter is a paper authored by: 

Chris Worth, Daphne Yau, Maria Salomon-Estebanez, Elaine O’Shea, Karen Cosgrove, Mark 

J Dunne and Indraneel Banerjee. The title of the paper is: Complexities in the Medical 

Management of Hypoglycaemia due to Congenital Hyperinsulinism and is published in 

Clinical Endocrinology, January 2020. DOI 10.1111/cen.14152. 

URL:  https://doi.org/10.1111/cen.14152. The paper is included verbatim with some changes 

to the formatting to ease readability within the thesis.  

Author contribution 

Chris Worth undertook the literature review and wrote the initial paper. All other authors 

contributed clinical and academic expertise and reviewed and accepted the final manuscript.  

Abstract 

Congenital Hyperinsulinism (CHI) is a rare disease of hypoglycaemia but is the most common 

form of recurrent and severe hypoglycaemia causing brain injury and neurodisability in 

children. The management of CHI is complex due to the limited choice of medications, all with 

a limited therapeutic window, often lacking efficacy and associated with serious side effects. 

The therapeutic strategy in CHI is to recognise and treat hypoglycaemia promptly, thereby 

optimising long-term neurological outcomes; this should be achieved through individualised 

treatment plans that deliver glycaemic stability while minimising side effects. Further, such a 

strategy should consider the likelihood of reduction in disease severity over time, with dose 

adjustments and medication withdrawal as indicated to optimise both safety and tolerability. 

https://doi.org/10.1111/cen.14152
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The option for pancreatic surgery should also be considered in specific circumstances as 

appropriate for the patient’s best long-term interests. 

3.1 Introduction 

Congenital Hyperinsulinism (CHI) is a rare disorder characterised by dysregulated insulin 

secretion, leading to unpredictable and often severe hypoglycaemia. The estimated incidence 

ranges from 1:2500 to 1:50,000 with the higher rates found amongst consanguineous 

populations4 and the overall incidence probably even higher when considering less persistent 

and resolving forms of CHI. Although rare, CHI is the commonest cause of severe, recurrent 

hypoglycaemia in infancy and childhood. CHI is also the form of hypoglycaemia most 

recognised to be associated with long term neurodisability and has detrimental outcomes for 

patients, families, societies and the health service as a whole.  

Despite diagnostic improvements in molecular diagnosis and therapeutic advances in the 

management of focal forms, overall CHI remains a high impact disease with rates of long term 

neurodisability of 26-48% in different cohorts5,67,206. These long-term complications result 

from the combination of hypoglycaemia and hypoketonaemia caused by hyperinsulinism at an 

early age when neurons and neuronal networks are likely to be vulnerable to metabolic 

maladaptation74,207. The impact of neuroglycopaenia is unrelated to the subtype of CHI as it 

involves common pathways of neuronal injury resulting from acute and severe 

hypoglycaemia67. Therefore, it is important that the clinical management of hypoglycaemia 

due to CHI ought to be optimised to prevent, recognise and treat hypoglycaemia promptly43. 

The diagnosis of CHI is often hindered by a lack of recognition and a tendency to underestimate 

the severity of hypoglycaemia. Current UK guidelines for neonatal hypoglycaemia are 

understandably biased towards normalisation of glucose levels using feeds to minimise the 

frequency of neonatal admissions208. Such guidelines and management algorithms do include 

CHI as a cause for severe and recurrent hypoglycaemia but only after convincing evidence that 

feeds are unable to maintain plasma glucose levels in the normal range. The cut-off to define 

hypoglycaemia is also contentious with variation in the definition often depending on local 

practices. While it is accepted that neonatal physiology allows for a lower plasma glucose in 

the first 48 hours of life70, there may be a tendency to misunderstand initial hypoglycaemic 

profiles as normal variant episodes, thereby ignoring opportunities to intervene and act with 

suitable treatment. Even when CHI is suspected and investigated, there is reluctance to treat 

hypoglycaemia vigorously enough to maintain plasma glucose above levels that minimise brain 
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impact. While most specialised CHI centres aim to keep plasma glucose above 3.5 mmol/L (63 

mg/dL) as a pragmatic therapeutic cut-off43 the absence of strong evidence that this reduces 

brain injury does not encourage uniform practice across neonatal units. 

A glucose infusion rate (GIR) well above physiological requirements of 4-6 mg/kg/min and 

exceeding 10 mg/kg/min is highly suggestive of CHI43. However, even in the scenario of 

recurrent hypoglycaemia and high GIR indicating CHI, biochemical confirmation is 

complicated by difficulties in the detection of insulin at the time of hypoglycaemia. Insulin has 

a short half-life (5-6 minutes) and this can mask the detection of a receding insulin surge during 

hypoglycaemia screening investigations. On the other hand, newer assays of insulin have lower 

levels of detection and may overdiagnose CHI unnecessarily. It is essential to strike a balance 

between providing adequate treatment to prevent brain damage and minimising harm from 

invasive investigations and treatment. 

3.2 General Principles of Hypoglycaemia Correction 

Clinical hypoglycaemia is defined as a plasma glucose level low enough to cause signs and 

symptoms of neuroglycopenia but these can be very difficult to identify, particularly in 

neonates and infants. Whipple’s triad of low plasma glucose, symptoms of low plasma glucose 

and resolution of symptoms on restoration of normal plasma glucose can be helpful but not 

easily applied to children of a young age. Defining hypoglycaemia with a numerical value of 

plasma glucose is contentious. The previously widely accepted cut-off plasma glucose level of 

2.6 mmol/L74,209 is not based on long-term outcomes and therefore not generally accepted210. 

Further, it is not known if a specific value predisposes to brain injury as individual variation is 

likely to exist70. Nonetheless, a preliminary cut off to identify the possibility of hypoglycaemia 

both in neonates and older children211 is helpful as this focuses further investigation. There are 

currently no guidelines for investigation of hypoglycaemia published or endorsed by the 

European Society for Paediatric Endocrinology (ESPE). The American Pediatric Endocrine 

Society suggest that evaluation and management of hypoglycaemia be carried out when 

laboratory glucose is confirmed to be <3.3mmol/L70. A pragmatic plasma glucose cut off of 

3.0 mmol/L (or 54 mg/dL) may be reasonable as a starting point for medical management.  

Dextrose 

In the acute setting the priority is to rapidly correct hypoglycaemia using intravenous (IV) 

dextrose. Any severe symptomatic hypoglycaemia should be urgently treated with 200mg/kg 
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of dextrose equating to 2ml/kg of 10% dextrose IV, followed by 10% dextrose run at 

maintenance rates. If IV access is difficult to obtain, oral dextrose gel can be used in the short-

term212. If hypoglycaemia is recurrent despite dextrose boluses, a diagnosis of CHI should be 

seriously considered and provision made for delivering higher strength dextrose, if necessary 

by central venous catheters. In the acute stage, plasma glucose should be checked every 20-30 

minutes to ensure glycaemic stability with levels ideally exceeding 3.5mmol/L.  

Neonatal early-onset CHI can be difficult to manage with conventional doses of dextrose 

administered in peripheral venous catheters. In most cases, dextrose concentrations are limited 

to 12.5% via peripheral cannulae with higher concentrations requiring central venous access. 

If umbilical venous catheterisation is not possible, other means to access central veins, 

including surgical venous catheters should be considered. In an emergency, if venous access is 

difficult to obtain, intraosseous access should be considered, although this should be followed 

up by the provision for surgical access for high concentration dextrose infusions.  

The use of central access for high concentration dextrose should be considered early in the 

clinical management of hypoglycaemia rather than run the risk of administering 

supraphysiological fluid volumes which may cause pulmonary overloading. When surgical 

venous access is not possible in a peripheral hospital, a referral to a CHI specialist centre should 

be considered. At the same time, the use of glucagon as an IV infusion should be considered 

early in the management of CHI as this will allow for reduction of GIR and therefore reduce 

the risk of fluid overload while maintaining normoglycaemia.  

Glucagon 

In an emergency glucagon can be given intramuscularly in a dose of 0.5-1.0 mg to rapidly 

correct hypoglycaemia. Glucagon facilitates endogenous glucose production via multiple 

pathways including the conversion of stored glycogen to glucose for release into the circulation 

and correction of hypoglycaemia (Figure 3.1). The plasma glucose response to an injection of 

glucagon is often helpful in the differential diagnosis of hypoglycaemia, although not strictly 

necessary for the diagnosis of CHI213. The real therapeutic benefit of glucagon in CHI is 

achieved by a steady infusion commencing at 2.5-5mcg/kg/hour. While most children respond 

to modest glucagon rates others require escalating doses up to 30mcg/kg/hour although doses 

beyond 20mcg/kg/hour are rare. Care must be taken to monitor for rare but serious side effects 

such as necrolytic migratory erythema which can occur when higher doses are given for longer 

periods of time43. In some centres214 a standard dose of glucagon (1mg per 24 hours) is 
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administered to aid glycaemic stability. Although this dose is not calculated on weight, a 

standard dose is relatively simple to administer and helps to minimise medication errors. 

 

Figure 3.1 The action of glucagon on the liver 

Under healthy conditions, glucagon elevates the concentration of plasma glucose through 

endogenous glucose production. Following receptor activation and the initiation of hepatic 

cell signalling, mediated by increases in cytosolic Ca2+ and cyclic AMP, the processes of 

gluconeogenesis and glycogenolysis are principally activated. Fatty acid synthesis in adipose 

tissue and the liver is stimulated which liberates fatty acids into the circulation as fuel sources, 

and increased lipolysis will derive substrates to support hepatic gluconeogenesis. Glucagon 

also inhibits glycogen synthesis in the liver, and turns off glycolysis in order to shuttle 

metabolic intermediates to gluconeogenesis. Dasiglucagon is a synthetic derivative of 

glucagon developed as a therapy for hypoglycaemia. 

 

The efficacy of intravenous glucagon has been replicated in the use of subcutaneous glucagon 

infusions215 implying the possibility of long-term home management using subcutaneous 

catheters and infusions. However, standard formulations of glucagon fibrillate in slow moving 

catheters resulting in erratic and unsafe drug delivery. Therefore, subcutaneous standard 

glucagon is currently not effective or sustainable for therapy at home.  

In patients receiving large dose glucagon, there is concern over the risk of thromboembolism, 

in keeping with observations in adults with glucagonomas where thrombotic episodes occur in 

50% of patients216. Therefore in those patients receiving larger doses of glucagon, high 
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concentrations of dextrose and total parenteral nutrition, the addition of low molecular weight 

heparin needs to be considered in the medical management. However, in one study, the risk of 

thromboembolism in CHI patients was not shown to be related to the use of glucagon but due 

to a generally heightened risk possibly arising from the inherent thrombophilic nature of 

hyperinsulinism217. 

More recently, several new formulations of glucagon have become available for the therapeutic 

treatment of long-term hypoglycaemia218. These formulations ensure solubility by either 

altering the chemical composition of the vehicle or by altering the amino acid sequence of 

native glucagon to create bioactive analogues. Amongst the latter group, dasiglucagon, appears 

promising with initial pharmacodynamic and pharmacokinetic data being comparable and 

possibly superior to standard formulation glucagon in adult patients with type 1 diabetes219. As 

our experiences with dasiglucagon increase, it remains a possibility that glucagon mimetics 

will offer an effective and safe long-term home option for the treatment of patients with CHI.  

Feeds 

Carbohydrates in milk feeds are critical in the prevention of hypoglycaemia. However, on its 

own, oral feeding is unlikely to provide adequate sustained high dose glucose for management 

of acute hypoglycaemia. Further, oral feeds partly increase insulin secretion, possibly through 

sensitivity to milk protein triggering insulin, to worsen the risk of hypoglycaemia. This is 

further complicated by the high rate of feeding problems in patients with CHI220. The exact 

causes for feeding problems in patients with CHI are not clear but are likely to be multifactorial, 

particularly at a time when children are vulnerable to the stress of illness, painful stimuli, 

suppression of appetite by high concentration dextrose and medication. It is essential to address 

the underlying factors causing feeding problems in a systematic fashion with a view to gradual 

change through persistent feeding strategies220.  

Although reliance on oral feeding is not a crucial part of the clinical management of 

hypoglycaemia in the early phase, oral feeding becomes a priority beyond the acute phase, 

particularly for day to day management after hospital discharge. At this stage, glycaemic 

stability depends heavily on the child’s ability to take and retain feeds. It is not surprising that 

the routines of feeds and medications are pivotal to many families but often create anxiety and 

stress when suboptimal.  

Glucose Monitoring 
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Glucose monitoring is essential to ensure efficacy of strategies to prevent hypoglycaemia and 

consequent brain injury. The standard practice is to use fingerprick plasma glucose testing 

using point of care devices in hospital or handheld glucose meters at home. Such methods are 

inadequate as they are infrequent and do not describe a detailed glycaemic phenotype. In 

contrast, Continuous Glucose Monitoring (CGM) is an attractive alternative and is widely used 

by people with Type 1 diabetes. The accuracy of CGM in babies with hypoglycaemia remains 

contentious with unacceptable levels of correlation with standard methods of glucose testing89. 

However, CGM is increasingly improving with evolution of sensor quality and ability to 

correlate with plasma glucose at the lower end of the glucose range. CGM interpretation is 

likely to improve further with specific mathematical modelling for the prediction of 

hypoglycaemia221; in future CGM may replace plasma glucose as the monitoring tool of choice.  

3.3 Subtypes of CHI 

CHI has several subtypes defined by clinical and histopathological features. While the broad 

general principles discussed above apply to all forms, specific variations arise in the treatment 

strategy for subtypes of CHI. Identification of the subtypes occurs with the unravelling of 

natural history over time and as a consequence of investigation algorithms that aim to establish 

a genetic aetiology and determine the likelihood of focal CHI43,62. 

Channelopathies and metabolopathies 

CHI has a strong genetic component with aetiology associated with gene variants in up to 

40%4,222 of patients. However, in the majority of patients a pathogenic variant is not 

established, indicating that the aetiology of CHI is heterogeneous38. The most frequent variants 

are in the ATP sensitive K+ (KATP) channel subunits encoded by ABCC8 and KCNJ11. 

Pathogenic variants in ABCC8/KCNJ11 causing CHI are termed channelopathies since they 

affect the function of the ion channel, while those due to other causes, including gene variants 

in pathways related directly or indirectly to glucose metabolism, are generally termed 

metabolopathies.  

It is important to establish a genetic diagnosis in patients with severe hyperinsulinism, 

particularly in those who are unresponsive to medical treatment. Rapid sequencing of KATP 

channel genes is now readily available in many specialised centres and results obtained within 

1-2 weeks can be transformative to the clinical management62. Newer technologies include 

targeted gene panels using whole exome sequencing218 for genes associated with CHI. 
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Although timescales for gene panel testing are longer, the yield for a wider range of possible 

pathogenic gene variants justifies the use in many patients. It is generally expected, aside from 

occasional exceptions43,223,224, that patients with homozygous or compound heterozygous 

variants in ABCC8/KCNJ11 are unresponsive to oral diazoxide, a compound that acts to open 

the KATP channel and is the first line medical treatment in CHI. Therefore, in patients 

responsive to modest doses of diazoxide, it is reasonable to postpone rapid KATP channel gene 

sequencing for a wider whole exome approach43. In contrast, in patients where diazoxide 

responsiveness is circumspect, it is important to identify a variant in ABCC8/KNCJ11 as soon 

as possible to recognise potential focal CHI, which is amenable to surgical correction and 

therefore cure.  

The search for a focal lesion causing CHI should start from an early stage in clinical 

management. The identification of a paternally inherited recessive pathogenic gene variant in 

ABCC8/KCNJ11 indicates a high probability of focal CHI225,226. However, it is well recognised 

that a second “hit” is required within the pancreas227 which cannot be determined by 

investigations other than by a biopsy of the focal lesion. The additional genetic event is a loss 

of genes expressed from the maternal allele that are responsible for cell cycle regulation. The 

combination of an unopposed paternal abnormal allele and loss of clonal expansion inhibitors 

results in the formation of a focal lesion with components comprised of hyperfunctioning islets 

producing excess insulin. While biopsies are useful to confirm the histological diagnosis of 

focal CHI40, standard next-step practice in patients with paternally inherited pathogenic 

variants is to arrange 18-fluoro Dopa PET-CT scanning, which non-invasively identifies and 

localises the anatomical site of the lesion for surgical lesionectomy39. Islet cell expansion 

within a focal lesion also presents as two subtypes.  Encapsulated lesions with defined margins 

are reported in 70% of cases, but almost 30% of cases are found to have poorly-defined edges 

requiring a more extensive surgery40. The underlying mechanisms for heterogeneity are 

unknown, but in cases without clear delineation from normal tissue, the onset of disease is 

significantly earlier – on average 3 days vs 48 days following birth40.   

The time required for diagnosis of focal CHI can be lengthy due to constraints in the availability 

of genetic testing and 18-fluorodopa PET-CT scanning. During this time, it is essential that 

glucose levels are stabilised and risks of hypoglycaemia-induced brain injury reduced through 

careful administration of medications and intravenous dextrose while minimising the risks of 

infection and thrombosis. Although there has been a shift to conservative management in many 
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forms of CHI63, surgery remains the treatment of choice for focal CHI unless the lesion is 

present in a part of the pancreas that precludes surgical access (such as around the bile duct). 

In contrast, in diffuse CHI due to dominant and homozygous/compound heterozygous variants 

in ABCC8/KCNJ11, medical management is the preferred option. In diazoxide-unresponsive 

patients, a somatostatin analogue such as octreotide can be used before considering the option 

of subtotal pancreatectomy. Drugs such as sirolimus and everolimus have been used in 

occasional patients but the efficacy has not been well established and the risk of 

immunosuppression is too steep to withhold pancreatectomy54,228. However, subtotal 

pancreatectomy is not always a definitive option as it is associated with the risk of recurrent 

hypoglycaemia in up to 50% of cases57 and with the inevitable risk of progression to insulin 

dependent diabetes in late adolescence58. Some centres rely on the delivery of carbohydrate-

enriched nutrition as a pancreas sparing strategy; however, long-term data and information 

about the impact on feeding, body weight and metabolism are not available to recommend such 

therapy in all but exceptional cases.  

Channelopathies attract the most complexities in medical management. By comparison, the 

metabolopathies are generally more responsive to therapy with diazoxide. However, ease of 

medical management does not imply superior long-term outcomes. Patients with mutations in 

GLUD1 causing disruption of glutamate dehydrogenase229 often have a higher incidence of 

neurological dysfunction. Likewise, some patients with mutations in GCK causing anomalous 

glucokinase activity may be unresponsive to dextrose or diazoxide and may require subtotal 

pancreatectomy230.  The same also applies for syndromic forms of CHI, for example CHI 

associated with Beckwith Wiedemann syndrome, where a proportion of patients do not have a 

resolving course of illness231. 

Diffuse and Focal CHI 

The distinction between focal and diffuse CHI is important in the context of finding a solitary 

pancreatic lesion that could be cured by limited pancreatic surgery. Beyond this, the terms are 

not helpful from the perspective of medical management. Diffuse CHI implies a specific 

histopathological phenotype with a higher frequency of islet cells with enlarged, often 

misshapen nuclei, nucleomegaly and foamy cytoplasm spread throughout the pancreas41. There 

have also been some descriptions of mosaic phenotypes232,233. However, practically the term 

diffuse CHI is used to indicate non-focal CHI where medical therapy should be prioritised over 

pancreatic surgery where possible. While diffuse CHI often implies a suboptimal outcome for 
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families, better understanding of the natural history of CHI provides a more optimistic outcome 

as long as hypoglycaemia management is safe and effective.  

Transient and Persistent CHI 

The natural history of CHI is variable and partly depends on the aetiology. For those without 

known pathogenic gene variants, there is recognition that the natural history is of a gradual 

resolution in most cases62. Although the definition of transient CHI is not well established, in 

most cases resolution occurs by 6 months62. In both types of CHI there is a tendency to gradual 

reduction in severity63, even in those with recognised gene variants234. This includes those with 

some forms of compound heterozygous KATP channel gene variants, implying that medical 

management should reflect the possibility of resolution in clinical follow-up. Importantly, the 

presentation of hypoglycaemia does not predict the subsequent course of illness, and the initial 

severity of CHI does not correlate with the tendency to resolution62. Therefore, in most cases 

there should be regular review to ascertain if reduction in the intensity of therapy is justified. 

Although there is a risk this strategy might compromise glycaemic stability, dose reduction is 

a reasonable approach to minimise drug related side effects, reduce costs and to better 

understand the natural history of CHI.  

The characterisation of transient and persistent CHI is important in prognostication for families 

but without the availability of biomarkers, it can only be made in retrospect. A pragmatic 

approach to manage hypoglycaemia upfront should take priority over a dissection of transience 

or permanence at diagnosis as neurodevelopmental outcomes are similar between both 

groups67. An exploration of severity reduction could be made in follow up with cues from 

glycaemic stability and from reduction in medication dosage based on body weight63. 

3.4 Medical Therapy 

Diazoxide 

Oral diazoxide as first line medication, remains the only FDA approved treatment for CHI 

despite the fact that it is only effective in between 16 and 66% of cases42. Diazoxide acts on 

the SUR1 subunit of the KATP channels of pancreatic β-cells to encourage channels to retain an 

“open” state and thereby prevent cell depolarisation which would stimulate insulin 

hypersecretion (Figure 3.2). This mechanism of action requires functional KATP channels to be 

present in the cell membrane of β-cells; in patients with pathogenic ABCC8/KCNJ11 variants 

resulting in significant channel dysfunction, diazoxide is largely ineffective. However, some 
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patients with dominant variants have a structurally intact KATP channel235 and may respond to 

diazoxide. Openers of the KATP channel may also act as chaperones to overcome impaired 

trafficking of the defective channel protein to the β-cell membrane, even in CHI islets236. 

Although diazoxide is most commonly utilised to treat diffuse CHI, exceptions are possible237 

highlighting the importance that medication application and response should be individualised 

rather than be guided by genotype findings. 

Responsiveness to diazoxide is an important step in the treatment algorithm for CHI43. The 

assumption of diazoxide responsiveness238 suggests a metabolopathy but does not exclude 

genetic aetiology. In fact, ‘responsiveness’ is largely subjective and an empirical definition is 

lacking. In centres where genetic testing is not readily available, gene testing priority could be 

given to those with severe diazoxide unresponsive forms of CHI. However, such prioritisation 

may be impractical as diazoxide is only available in 60% of countries; in many countries 

somatostatin receptor analogues are used as first line therapy. 

For many centres, the diazoxide therapeutic starting dose is low at 5mg/kg/day in three divided 

doses, gradually escalating if response is suboptimal. While a number of special formulations 

are available, a reliable quality-controlled formulation is recommended to ensure efficacy. In 

some centres, higher starting doses of up to 15mg/kg/day are used. While a higher starting dose 

allows for rapid assessment of diazoxide unresponsiveness before proceeding to genetic 

testing, second line treatment and early consideration of surgical options238,239, it does increase 

the risk of side-effects, including the concern over life-threatening pulmonary hypertension44.  

Diazoxide is well known to cause fluid retention43 and pulmonary fluid overload45. Therefore, 

it is advisable to start at a lower dose. In neonates a diuretic such as chlorothiazide (with 

possible synergistic action) should be added while restricting fluid intake to 150ml/kg/day or 

less. The relaxation of fluid restriction should be considered on a case by case basis following 

the acute phase of illness. Reduction in the dose of chlorothiazide should also be considered in 

follow up.  

The use of diazoxide should be considered carefully and preferably started in (or in discussion 

with) a specialist centre. Diazoxide is generally well tolerated in low doses but can be 

complicated by side effects including thrombocytopenia, pericardial effusion and pulmonary 

hypertension44,45. In the initial phases, fluid retention is a common side effect (30%) while in 

the long-term, hypertrichosis is common and reported in 52% of patients240. Older children 

often find excess body hair upsetting enough to discontinue treatment. Diazoxide can also lead 
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to an alteration of facial features. This in turn fosters non-adherence causing recurrence of 

hypoglycaemia. In older patients, particularly in adults with brain injury and short working 

memory due to childhood onset CHI, diazoxide doses can be missed. It is important to warn 

families of the potential for hyperglycaemia during periods of intercurrent illness as diazoxide 

may over-suppress insulin secretion241. If hyperglycaemia occurs it is important to stop 

diazoxide for the duration of illness.  

 

Figure 3.2. Control of insulin release from islet B-cells. 
Under healthy conditions, insulin release is initiated by glucose metabolism and augmented by 

the incretin GLP-1 through increases in cytosolic Ca2+, cyclic AMP and the triggering of 

distal signalling events. Potassium channel inhibition, particularly KATP channels, and the 

activation of voltage-gated Ca2+ channels are critical to the generation of an appropriate 

cytosolic Ca2+ response. Therapeutic modulators of b-cells which have been used in the 

treatment of CHI include: (1) activation of K-channels by diazoxide; (2) inhibition of Ca2+ by 

nifedipine; (3) stimulation of somatostatin receptors (SSTR) by octreotide and lanreotide; (4) 

inverse agonism of the GLP-1 receptor by exendin 9-39; and (5) the action of polyunsaturated 

fatty acids (PUFA) which may suppress insulin release through ion channel modulation. 
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Somatostatin Receptor Analogues  

Somatostatin is an inhibitory hormone that acts in the central nervous system and peripheral 

tissues through different and specific receptor subtypes. In islets, somatostatin is released from 

δ-cells and exhibits a powerful inhibitory influence on the release of insulin and glucagon from 

β-cells and α-cells, respectively (Figure 3.2). In addition to glucose-induced insulin release, 

somatostatin also suppresses glucagon-like-peptide 1 (GLP1)-mediated insulin release. Of the 

five subtypes of somatostatin receptors (SSTRs), four (SSTR1, -2, -3 and -5) are known to be 

expressed in islets242. In β-cells these are thought to be coupled to different elements of stimulus 

secretion coupling mechanisms including the activation of voltage-dependent K+ channels, 

inhibition of voltage-dependent Ca2+channels and lowering the intracellular concentration of 

cAMP. The paracrine regulation of glucagon and insulin release by somatostatin is 

physiologically important as decreased numbers of δ-cells243 and immature δ-cell profiles232,244 

have been associated with the pathology of CHI.    

Somatostatin analogues such as octreotide have pan-selectivity for SSTRs, but preferentially 

act upon SSTR2 and -5 to inhibit insulin secretion245 (Figure 3.2). Octreotide is not licensed 

for use in CHI but is commonly used as second line therapy. Owing to its short half-life of 

around 90 minutes, octreotide has to be administered frequently, up to 4-6 times a day by 

subcutaneous injections. Some centres advise a lower frequency but with bridging feeds 

overnight213. Other centres favour continuous subcutaneous infusions of octreotide with dose 

modulation depending on efficacy246. 

The initial glycaemic response to octreotide is usually satisfactory but efficacy wears off over 

time48. A starting dose of 5mcg/kg/day may result in initial hyperglycaemia but the effect is 

rarely sustained and dose escalation is often required to maintain efficacy. This tachyphylaxis 

is probably related to the loss of selective SSTR subtypes in CHI tissue (Banerjee, Dunne 

unpublished observations). The dose of octreotide is variable but doses beyond 30mcg/kg/day 

are generally ineffective and complicated by side effects247. Octreotide should be used carefully 

in neonates with compromised splanchnic circulation due to concerns over inducing necrotising 

enterocolitis53. The use of octreotide also requires careful monitoring of liver function as 

elevation of liver transaminases suggesting drug induced hepatitis may occur49,52.  

Long-acting formulations of somatostatin receptor analogues are available in the form of long-

acting release (LAR) octreotide and somatuline autogel. If patients are responsive to octreotide, 

a long-acting formulation can be considered. There is also a case to consider long-acting 
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preparations without testing for efficacy of octreotide, for example switching from diazoxide 

to prevent hypertrichosis. LAR octreotide is administered via intramuscular injection every 28 

days at a dose of 10-30mg/dose and a steady state is achieved within three injections248. 

Lanreotide is administered as a subcutaneous injection in doses from 30 to 120 mg every 28 

days. While a lower dose is preferred, the lowest dose available in prefilled syringes is 60 mg; 

therefore, approximation is required to administer a 30 mg dose which is not ideal. Although 

centres report safety and efficacy with long-acting somatostatin receptor analogues249, long-

term safety remains a concern, particularly with the persistence of elevated transaminases in 

more than a third of patients. Nonetheless, patients and families favour long-acting / depot 

formulations as this avoids daily injections250. While using such unlicensed products, 

consideration has to be given to the achievement of glycaemic stability with careful monitoring 

of liver function and review to consider drug withdrawal at periodic intervals.  

Other medications 

In the quest to optimise glycaemic stability some centres combine medications, for example 

diazoxide and octreotide. However, as each medication has significant side effects, 

polypharmacy is not recommended, particularly in the absence of beneficial reported outcomes 

and the concern over additive harm.  

Sirolimus reduces post insulin receptor signaling and was postulated as a promising novel 

therapy251. However subsequent use of sirolimus did not replicate the same efficacy or support 

the proposed mechanism of action, and indeed several studies have demonstrated serious side 

effects55,228. Significant caution is advised in using sirolimus as a treatment for CHI54. 

Alternative treatments include nifedipine, a calcium channel antagonist with effects in vitro but 

without consistent demonstrable in vivo efficacy56. 

Alternatives such as polyunsaturated fatty acids contained in fish oil preparations could be 

considered in diazoxide responsive patients114 as safe and tolerable supplementary therapy. 

However, the longer-term efficacy of such therapy in reducing diazoxide dose and reducing 

the risk of side effects has not been proven.  

A number of new therapeutic developments are likely to improve treatment options for CHI in 

the near future. In addition to soluble glucagon formulations currently in trial, other products 

in development include a monoclonal antibody that is a negative allosteric modulator of the 

insulin receptor which reduces insulin’s action on glucose252. The glucagon-like peptide-1 

(GLP-1) receptor is also a putative target with potential to reduce insulin secretion as evidenced 
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by a drug trial of exendin 9-39 in older children and adults253. Other potential drug candidates 

include newer formulations of somatostatin receptor analogues such as pasireotide, although 

translation to clinical trials are not imminent in the absence of safety evidence in childhood. 

3.5 Conclusions 

The clinical management of the rare disorder of CHI is complex and difficult with high risk of 

severe impact on the brain and lifelong neurodisability. New and more precise tools for 

continuous glucose monitoring in CHI patients are needed. These must be stable over the long-

term and accurate within the low ranges of glucose that are experienced by CHI patients. Our 

current therapeutic strategies are hindered by a restriction of the choice of medications that 

provide safe, effective and tolerable therapy. It is important to use current medications 

judiciously based on individual circumstances and responsiveness, while being open to 

possibilities for pancreatic surgery and new effective therapies in the next few years. However, 

significant advances in the field are still required in the availability of early diagnostic 

biomarkers to aid precision diagnosis of disease subtypes and stratify patients for personalized 

approaches to treatment. Moreover, we require greater understanding of the natural history and 

longitudinal outcomes of CHI patients for improving treatment guidelines and access to 

medicines for all communities. 
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Chapter 4 - CGM for Hypoglycaemia 

 

In Chapter 3 we outlined the difficulties in the medical management of patients with CHI. 

During this review we identified multiple shortcomings in the current care of patients with 

CHI. Amongst them was the detection and prediction of hypoglycaemia; an area in which 

progress could be made and computer science and technology could play a role. We highlighted 

the insufficiency of self-monitoring blood glucose (SMBG) as a method for predicting future 

hypoglycaemia. Due to the low granularity of SMBG, many clinicians and researchers are 

beginning to turn towards the use of CGM to detect and predict hypoglycaemia in non-diabetes 

disorders and we highlighted this possibility in Chapter 2. As the use of CGM in this context 

is in its infancy, there is little available evidence on its use within the literature. In order to 

ensure we were not duplicating work, and to ascertain what the optimal use of CGM might be, 

we performed a thorough evaluation of the state of technology and evidence for the use of 

CGM in hypoglycaemia disorders and present it in this chapter.  

The content of this chapter is a paper authored by: Chris Worth, Mark J Dunne, Arunabha 

Ghosh, Simon Harper and Indraneel Banerjee. The title of the paper is: Continuous Glucose 

Monitoring for Hypoglycaemia in Children: Perspectives in 2020 and is published in 

Pediatric Diabetes, April 2020. DOI 10.1111/pedi.13029. URL: 

https://doi.org/10.1111/pedi.13029. The paper is included verbatim with some changes to the 

formatting to ease readability within the thesis.  

Author contribution 

Chris Worth researched and wrote the initial manuscript. All other authors provided expert 

input and reviewed and approved the final manuscript.  

Abstract 

Hypoglycaemia in children is a major risk factor for adverse neurodevelopment with rates as 

high as 50% in hyperinsulinaemic hypoglycaemia (HH).  A key part of management relies 

upon timely identification and treatment of hypoglycaemia. The current standard of care for 

glucose monitoring is by infrequent fingerprick plasma glucose testing but this carries a high 

risk of missed hypoglycaemia identification. High-frequency Continuous Glucose Monitoring 

(CGM) offers an attractive alternative for glucose trend monitoring and glycaemic phenotyping 

https://doi.org/10.1111/pedi.13029
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but its utility remains largely unestablished in disorders of hypoglycaemia. Attempts to 

determine accuracy through correlation with plasma glucose measurements using conventional 

methods such as Mean Absolute Relative Difference (MARD) overestimate accuracy at 

hypoglycaemia. The inaccuracy of CGM in true hypoglycaemia is amplified by calibration 

algorithms that prioritise hyperglycaemia over hypoglycaemia with minimal objective 

evidence of efficacy in HH. Conversely, alternative algorithm design has significant potential 

for predicting hypoglycaemia to prevent neuroglycopaenia and consequent brain dysfunction 

in childhood disorders. Delays in the detection of hypoglycaemia, alarm fatigue, device 

calibration and current high cost are all barriers to the wider adoption of CGM in disorders of 

hypoglycaemia.  However, machine learning, artificial intelligence and other computer-

generated algorithms now offer significant potential for further improvement in CGM device 

technology and widespread application in childhood hypoglycaemia.  

4.1 Background 

Home testing of glucose was first made available to patients in 1925 by boiling a sample of 

urine with chemical reagents on the stove. Fortunately, steady progress was made throughout 

the 20th century with the development of Clinistix and Dextrostix to dipstick test urine and 

blood respectively254. In 1979 Karam et al described their use of an early form of Continuous 

Glucose Monitoring (CGM) linked to a Dextrose infusion during insulinoma resection255.  

However, progress with CGM stalled until 1999 when the Medtronic MiniMed Continuous 

Glucose Monitoring system was released. This allowed patients with Type 1 Diabetes Mellitus 

(T1DM) to monitor glucose profiles at home, retrospectively view them with their doctor and 

adjust treatment accordingly82. Rapid progress has been made over the last two decades with 

several devices now available for use in patients with diabetes (Table 4.1) including non-

adjunctive devices wearable for 10 days with no requirement for calibration256.  
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 Dexcom 

G6 

Freestyle 

Libre 

Medtronic 

Guardian 

Medtrum A6 

Calibrations None None 2/day (min) 2/day (min) 

Warmup 2 hours 1 hour 2 hours 2 hours 

Wear length 10 days  14 days 7 days 14 days 

MARD  9% 11% 9% 9% 

Low alarms? Yes No Yes Yes 

Age limit 2 years + 4 years + 14 years + 2 years + 

Table 4.1. Comparisons of four common CGM devices licenced for use in children. 

Calibrations relate to the minimum fingerprick calibrations per day recommended by the 

manufacturers. Warmup time relates to the time from insertion of the device to when it begins 

to provide glucose readings. MARD = Mean Absolute Relative Difference and is a commonly 

reported accuracy measure. MARD values quoted here are those reported by the individual 

manufacturers. Low alarms? relates to whether the device provides an auditory alarm if blood 

sugar drops below a certain value. Information all obtained from manufacturer websites.  

 

Modern CGM devices consist of a wearable sensor that automatically measures glucose in 

interstitial fluid (ISF) several times a minute and reports an average every few minutes to a 

wireless receiver nearby. ISF glucose reacts with an enzymatic technology to liberate electrons 

and generate an electric current. Via a continuously shifting algorithm, this electrical current is 

converted to a blood glucose value8. This algorithm is finetuned via patient or factory 

calibration to ensure accuracy over the recording periods257 (Figure 4.1).  

 

Figure 4.1. Mechanism of action of a Continuous Glucose Monitoring device. 

Diagrams show from left to right an increasing level of detail from the patient to the chemical 

reaction. Patients attach a sensor to their skin which automatically inserts a subcutaneous 

needle. This resides in the interstitial space and measures glucose concentrations. Via Glucose 

oxidase the sensor generates an electrical current proportional to the glucose concentration 

in the interstitium. This electrical current is passed through a continuously shifting algorithm 

to generate a glucose value which is transmitted wirelessly to the receiving unit or compatible 

smartphone for display to the patient. 

 



71 

 

CGM devices are currently only licensed for patients with diabetes and most studies have 

targeted a reduction in HbA1C rather than hypoglycaemia episodes as a clinical end point. In 

this paper, we review the evidence available for the use of CGM in hypoglycaemia disorders 

and discuss future developments in this field.  

4.2 The problem of hypoglycaemia 

Recurrent episodes of hypoglycaemia lead to inadequate cerebral glucose supply. In the 

developing brain of neonates and infants, this can lead to serious long-term neurological 

impairments ranging from mild neurocognitive dysfunction to epilepsy, hemiparesis and severe 

mental retardation75. Several studies have demonstrated the significant impact of neonatal 

hypoglycaemia on long-term neurodevelopmental outcomes2,74 with evidence of persistent 

MRI changes in these patients3.  

Hypoglycaemia secondary to hyperinsulinism is even more devastating, with almost 50% of 

children demonstrating neurological impairments5 regardless of the persistence of disease67. 

Hypoglycaemia is difficult to predict in HH as insulin secretion is dysregulated, and recurrent 

hypoglycaemia blunts the clinical signs and counter-regulatory responses, resulting in 

unpredictable and often silent hypoglycaemia episodes258. While this paper concentrates 

mainly on non-diabetic disorders of hypoglycaemia it is worth noting the potentially 

devastating impact of hypoglycaemia on those with diabetes sometimes leading to “dead in 

bed” syndrome259. The cornerstone of management is the timely identification and treatment 

of such episodes. The current standard of care is patient observation and intermittent fingerpick 

testing, but this provides no details of trends and risks missing hypoglycaemia between 

infrequent tests. CGM provides a highly attractive alternative to monitor glucose trends and 

reduce the risk of hypoglycaemia events, but current evidence is scant in relation to both 

accuracy and efficacy in hypoglycaemia disorders in children.  

4.3 Accuracy of CGM at hypoglycaemia 

Accuracy of CGM devices is described as either analytical or clinical. Clinical accuracy is 

based on the mean accuracy of performance or the number of outliers8. Analytical accuracy 

can be reported as either trend or point accuracy, of which Mean Absolute Relative Difference 

(MARD) is the most commonly reported measure8.  MARD is the average of the absolute error 

between all CGM values and is routinely calculated and reported as a key metric by 

manufacturers.  
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Despite significant improvements in CGM since first-generation devices85, accuracy is still not 

clinically acceptable at hypoglycaemia values87,260 and more so in non-diabetic patients: The 

best published MARD value in neonates at hypoglycaemia is 16%89 with only 86% of values 

in Zone A (allowing clinically correct decisions) on a Modified Clarke Error Grid (MCEG)261 

(Figure 4.2).   In the clinical setting these values are suboptimal when compared to 

manufacturers figures for patients with diabetes262,263. Importantly, under controlled 

conditions elevated insulin has been reported to increase the discrepancy between recorded 

ISF glucose and plasma glucose in healthy volunteers and therefore further worsens the 

accuracy of hypoglycaemia-detection90. The mechanism underlying this is has been suggested 

to be related to enhanced uptake of interstitial glucose by adipocytes that is not fully 

compensated for by increased delivery of glucose from the microcirculation90.  In patients with 

HH, these observations are highly relevant to the accuracy of CGM in reporting hypoglycaemia 

as default profiles will over-report incidences of low glucose levels.   
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Figure 4.2. A modified Clarke Error Grid (MCEG). 

An MCEG can be used to compare clinical accuracy of values between a reference method and 

a new device. Values in Zone A will lead to clinically correct decisions being made. Values in 

Zone E represent a significant and dangerous over or underestimate of the true value and have 

the potential to trigger the opposite treatment to that required. Values in Zone D are unlikely 

to trigger the opposite treatment to that required but more likely a lack of treatment (e.g. a 

glucose bolus may not be given to a child in which it is required). Values in Zone C are at risk 

of triggering an appropriate response but likely at a lesser magnitude than required. Values in 

Zone B will trigger clinical decisions that are not correct but are uncritical. Devices with more 

values in Zone A will offer a higher clinical accuracy than those with values in other areas.  

 

While MARD is the most commonly reported measure of accuracy, it is a cross-sectional value 

and does not account for the benefits of trend direction and rate of change that CGM can 

provide8. MARD is reported from clinical trial data but this represents the accuracy of the 

system within that context and should not be understood as a precise value to be used outside 

of the trial264. In practice, this means that from a single MARD value it is not possible to ensure 

meter accuracy will meet ISO criteria, but it is highly likely if MARD falls between 3.25 and 

5.25%265. MARD is calculated by the sensitivity and specificity of values but without reference 

to the timing of hypoglycaemia alarms. If predictive alarms occur too early or late this will 

result in false positive or negative errors, thereby impairing the detection of clinical 

hypoglycaemia266. In contrast to MARD, a more useful report of accuracy for a hypoglycaemia 
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device is the false positive and negative rate as this will provide an indication of how effectively 

the device can alert the user to impending hypoglycaemia. A useful device should have false 

negative and positive rates of <5% and <10% respectively and will typically require a MARD 

of <7.5% to achieve this266. Using such criteria, accuracy in reported studies are well short of 

expected standards with a false positive rate of 60% in neonates83 and a false negative rate of 

35% in HH113 detracting from the confidence of use in clinical practice.  

The accuracy of a CGM device is intrinsically linked to the calibration algorithm used to 

convert the raw electrical signal to a meaningful plasma glucose value. The accuracy of CGM 

at hypoglycaemia values is particularly affected by the calibration algorithm267. If calibration 

is performed at a time of rapid glucose change (as is common in patients with dysregulated 

insulin secretion and wide glucose variability in HH and Glycogen Storage Disease) algorithm 

performance is seriously compromised8. Conversely, MARD is significantly improved if 

calibration glucose values are as widely spaced as possible221.  

Accuracy of CGM can also be improved through the alteration of associated algorithms. Guerra 

et al and Zavitsanou et al both showed an improvement in CGM accuracy using an online, 

automatically updating algorithm268,269. Acciaroli et al demonstrated that a reduction in the 

frequency of calibrations from once a day to no calibration caused only a small deterioration 

in accuracy when using an automatically updating algorithm270. Personalisation of calibration 

algorithms further improves accuracy; King et al reported a Mean Absolute Difference of 

24.5mg/dL during hypoglycaemia with raw sensor data but demonstrated an improvement to 

11.5mg/dL with modelling of group interstitial glucose dynamics and to 10.4mg/dL when 

individual interstitial glucose dynamics were used. Finally, accuracy is improved when 

calibration is performed within the setting it is trying to detect. Monsod et al demonstrated no 

significant difference between sensor and plasma glucose levels when calibration was 

performed during hyperinsulinaemic, hypoglycaemic conditions90. These successes 

demonstrate the potential of algorithm personalisation for improvement of hypoglycaemia 

prediction and application potential for childhood hypoglycaemia. 

4.4 Efficacy of CGM to detect and prevent hypoglycaemia 

Diabetes 

Early trials of CGM in patients with diabetes showed a good reduction in HbA1C271,272 but did 

not demonstrate the expected273 reductions in hypoglycaemia incidence274. This may have been 

because trials were designed to reduce HbA1C rather than time in hypoglycaemia. More 
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recently, trials specifically investigating hypoglycaemia in patients with diabetes have shown 

good improvements275, particularly overnight276 and when using predictive alarms277.  

However, CGM devices have been designed for use in patients with diabetes where there is an 

established relationship between plasma glucose, insulin administration and carbohydrate 

intake. Despite sound theoretical reasons to anticipate benefit from CGM devices, their utility 

and efficacy in other conditions of hypoglycaemia cannot be assumed.  

Neonates 

Several studies have investigated the use of CGM in neonatal intensive care and found it well 

tolerated98. Reducing painful procedures results in improved cognitive and motor function 

outcomes99 and is facilitated by CGM. Between 25%-80% of neonates demonstrated 

hypoglycaemia on CGM that had gone undetected by heelprick glucose monitoring100,101. 

However, despite CGM also reducing the duration of hypoglycaemia episodes102, the long-

term clinical benefit is uncertain as undetected hypoglycaemia was not associated with worse 

neurological outcomes at follow up at two years of age104. 

GSD 

Patients with Glycogen Storage Diseases (GSDs) are at risk of significant hypoglycaemia when 

exposed to prolonged fasting. Euglycaemia is maintained through regular meals, the provision 

of uncooked cornstarch, and often continuous overnight feeding, usually via gastrostomy278. 

Several studies have demonstrated the utility of CGM in detecting unsuspected hypoglycaemia, 

particularly overnight106,107. This allows for the manipulation of diet and treatment and, in GSD 

I, has been shown to be associated with reduced time in hypoglycaemia, reduction in liver size 

and improvement in biochemical markers of disease control111. Further studies have since 

demonstrated improved detection of both hypoglycaemia and hyperglycaemia in patients with 

GSD I, III and IX108. Intermittent use of CGM for glucose profiling in GSD patients is now 

standard practice in many centres as it provides a more accurate picture of a patient’s daily 

profile than is obtainable from an inpatient stay. This has proven to be popular with families 

and has shown not only an improvement in markers of disease severity but also increased 

adherence with medication and improved patient quality of life112.  

Adrenal Insufficiency 

Hypoglycaemia is considered a rare problem for adults with adrenal insufficiency (AI)279. 

However, in those with morning headache or discomfort, overnight CGM revealed 
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hypoglycaemia in 5 out of 6 patients who had all demonstrated normal morning fingerprick 

glucose testing280. Increasing hydrocortisone dosing not only prevented overnight 

hypoglycaemia but also resulted in resolution of symptoms280.  

Hypoglycaemia is a more frequent problem in children with AI but is still difficult to detect on 

routine monitoring. Cambiaso et al studied 11 children with AI and Growth Hormone 

Deficiency (GHD) who were normoglycaemic on routine testing. CGM revealed severe 

hypoglycaemia (<2.7mmol/L) overnight in three children, with time in hypoglycaemia ranging 

from 30 to 150 minutes105. Those with hypoglycaemia had a lower daily dose of hydrocortisone 

(5.9 vs 8.5mg/m2/day, p=0.04) and repeat testing after dose increase revealed resolution of 

hypoglycaemia105. This study demonstrates the added utility of CGM in detecting 

hypoglycaemia that would have otherwise been overlooked.  

Hyperinsulinism 

Hypoglycaemia in children with hyperinsulinism is not only unpredictable and often profound 

but is accompanied by the suppression of alternative fuels and a counterregulatory response. 

Therefore, children with HH are at an unacceptably high risk of brain injury206 irrespective of 

the permanence of their disease67. It is well established that the severity of hypoglycaemia in 

HH determines the extent of brain injury; by contrast, reducing the depth and frequency of 

hypoglycaemia may protect the vulnerable brain in neonates and infants from the irreversible 

effects of neuroglycopaenia. 

There have been no long-term studies on the use of CGM in children with hyperinsulinism to 

demonstrate unequivocal benefit. Anecdotal reports and case studies have commented on the 

usefulness of CGM in categorising the extent and degree of hypoglycaemia in children with 

HH60. The very poor accuracy in this patient group113, may be due to increased discrepancies 

between plasma and sensor glucose at hyperinsulinaemia90. Despite this, CGM allows for a 

dynamic view of hypoglycaemia and enables clinicians to measure responses to 

treatment113,281. Alsaffar et al used a factory-calibrated flash CGM device in a small group of 

children with HH and reported disappointing hypoglycaemia performance14. As in previous 

studies60, parents found glucose trends helpful but were not confident in relying upon CGM 

glucose levels alone in the regular monitoring of blood glucose14.  

In adult patients with HH, 28% of those studied had asymptomatic hypoglycaemia detected by 

CGM and required subsequent treatment alterations282. In adult patients with hypoglycaemia 

secondary to insulinoma, CGM also identified significant hypoglycaemia in patients who were 
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thought to be normoglycaemic. One patient was found to be severely hypoglycaemic 

(<2.2mmol/L) for 48% of the monitoring period with complete resolution following therapy 

with Diazoxide283. The authors of this study acknowledged the significant impact that CGM 

had upon the treatment and monitoring of their patients and its superiority over fingerprick 

glucose monitoring. Similar results have been reproduced elsewhere; Sawyer et al 

demonstrated a reduction in the number of hypoglycaemic events and visits to the hospital for 

one patient with insulinoma after use of CGM284. Multiple centres have demonstrated the utility 

of CGM for diagnosis and surgical monitoring of patients with insulinomas285,286 and to detect 

hypoglycaemia in adult patients following bariatric surgery287,288.  

Acute illness in low-income settings 

In low-income countries, paediatric hypoglycaemia is a life-threatening complication of many 

common diseases such as malaria and malnutrition121. In sub-Saharan Africa, up to 7% of all 

hospital admissions are complicated by hypoglycaemia with an associated increase in the 

mortality rate from 4% to 20%289. Malaria is accompanied by hypoglycaemia in up to 25% of 

cases290 with an increase in the case fatality rate to up to 64% in those with hypoglycaemia291. 

This hypoglycaemia prevalence is likely to be an underestimate as most hospitals in this setting 

use a single glucose test on admission as their screening and therefore risk missing inpatient 

hypoglycaemia121. In a study of children with malaria in Mozambique CGM demonstrated 

significantly more hypoglycaemia than previously thought and allowed better monitoring of 

severely ill patients at risk of life-threatening hypoglycaemia121. However, CGM is expensive 

and is not routinely available in countries threatened by malaria. It is unlikely that CGM will 

be the first-line investigation in such countries unless the value of CGM is established beyond 

doubt and the price of CGM application and consumables reduces through economies of scale. 

4.5 Problems and barriers to use of CGM 

We have outlined the situations in which CGM is used for children with hypoglycaemia and 

discussed the positive impact it can have upon disease monitoring and even therapeutics. We 

have previously discussed the issue of accuracy of CGM at hypoglycaemia and here we will 

outline the other barriers to use of CGM in disorders of hypoglycaemia.  

Lag time 

The lack of reliability of CGM at hypoglycaemia is not only due to poor point accuracy but 

also relates to the issue of lag116. Lag relates to the time delay between a change in plasma 
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glucose and the reporting of this change by the device. Lag time is comprised of 1) 

Physiological lag due to the time required for glucose to diffuse from capillaries to the 

interstitium and is affected by skin blood flow, 2) Sensor reaction time related to the time 

required for glucose to diffuse from the interstitium into the sensor itself and 3) Sensor signal 

processing including the moving average filter and an artefact filter to allow data smoothing8.  

The issue of lag time can result in significant under or overestimation of plasma glucose. When 

glucose is falling rapidly, lag is large and glucose can be overestimated by as much as 

2.2mmol/L9 resulting in non-treatment of hypoglycaemia. However, this mismatch is highly 

variable and therefore cannot be reliably corrected by current device algorithms. Lag time can 

vary from 8-40 minutes depending on the device used, level of glucose, rate of change and skin 

blood flow9. Fortuitously, lag time problems may actually be beneficial in the identification of 

hypoglycaemia in HH patient population where a spike in insulin and subsequent rapid drop in 

interstitial glucose is earlier than a slower subsequent decrease in plasma glucose. The lag on 

the device may, therefore, result in a more accurate reporting of tissue glucose than if there was 

no lag9. This may account for the lack of perceived lag reported in some in vivo studies292.  

Alarms 

As previously discussed, one of the primary benefits of CGM is its ability to predict an 

upcoming hypoglycaemia event using trend information. However, this prediction is only 

possible if device algorithms are accurate enough to alarm at appropriate times. False-positive 

and negative rates of 0-100% can be achieved by altering the alarm threshold on a device266. 

Alarms on CGM devices do help to reduce hypoglycaemia episodes in those with diabetes293 

particularly when these alarms are predictive rather than reactive277. However, alarm fatigue is 

a significant problem in those who use CGM294: Patients with hypoglycaemia overnight only 

wake to 29% of alarms and parents of children with hypoglycaemia only wake to 37%10. 

Furthermore, predictive alarms are based upon the linear correlations of glucose, carbohydrate 

and insulin in patients with diabetes over short periods and have not been designed for patients 

with HH who have more unpredictable hypoglycaemia events. Most devices do not contain 

predictive alarms and rely upon the user to identify impending hypoglycaemia using their 

judgement to make manual adjustments21. Herein lies the potential to automate a glucose 

correction response to continuous glucose sensing to develop a closed-loop system for 

childhood hypoglycaemia.  
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Fingerprick testing 

Historically CGM devices have required user calibration via the measurement of fingerpick 

glucose using a point of care glucometer. While many devices can now self-calibrate, some 

still require fingerprick calibration and this is a major patient complaint254 and further source 

of potential inaccuracy as glucometers used for calibration vary widely and MARD can be as 

high as 17% in certain devices295. The number of fingerprick tests can be reduced to once a day 

or less when calibration tools are implemented270. The most recent devices such as the Dexcom 

G6 and Freestyle Libre are calibrated at production, obviating the need for post-insertion 

fingerprick plasma glucose calibrations.  

Clinician inertia and usability 

Physicians are considered one of the major barriers to wider adoption of CGM21. Adoption of 

new technology by clinicians requires a significant investment in time and training for 

something that is likely to benefit only a small number of their patients. There is very little in 

the way of formal training available for clinicians using CGM particularly amongst those 

working with children with non-diabetic hypoglycaemia. There is also a need for continued 

improvement in the usability of CGM. This is related not only to the speed of connectivity 

between the sensor and the receiver/cloud storage device, but also the sites at which CGM is 

worn on the skin – which in neonates is limited, and the length of time that they can be worn. 

The Advanced Technologies and Treatments for Diabetes (ATTD) Congress devised a 

consensus recommendation for CGM data utilisation to try to aim interpretation and 

standardise use296.  The development of an automated interpretation of CGM data specific to 

those with hypoglycaemia disorders would go a long way to reducing this particular barrier to 

wider adoption of CGM.  

Cost 

In the United Kingdom, CGM is available under certain conditions for those with diabetes. In 

countries where individuals rely on health insurance to provide cover this situation is even 

more complicated and access more limited. No CGM manufacturer has a licence for use in 

hypoglycaemia disorders and correspondingly these are either paid for by patients or individual 

healthcare departments, usually only for investigative or research purposes. In low-income 

countries, the cost of CGM is completely prohibitive for all but the most well-off patients121.  
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4.6 The future for hypoglycaemia prediction 

4.6.1 CGM developments 

Current CGM device manufacturers are focused on the use of CGM in patients with Type I and 

Type II Diabetes Mellitus with current development focusing on expansion to include pregnant 

women and ease of use for these patient groups. Sensors are likely to be further miniaturised 

with advancing technology and therefore become less invasive. For example, there are future 

plans to integrate CGM into contact lenses297 and mouth guards116 to measure tear and salivary 

glucose respectively as surrogates of interstitial glucose.  

4.6.2 Predictive blood glucose algorithms 

Patients have very different physiologies regarding glucose metabolism18 and factors affecting 

blood glucose include but are not limited to: long and short term blood glucose history, insulin 

secretion/administration, physical activity, dietary intake, body mass index (BMI), stress level, 

amount of sleep, presence of illness, medications, smoking, menstruation, allergies and 

altitude16. CGM devices cannot currently process any of these factors to account for variability 

related to lifestyle choices.  

There are three main types of blood glucose prediction algorithms: Physiological, Data-Driven 

and Hybrid (Table 4.2)18. These algorithms often use a frequentist approach (regression 

analysis) to predict a single value but more recently a Bayesian approach (via Machine 

Learning, Artificial Neural Networks and Deep Learning) has been taken, resulting in a 

probability distribution for outcomes rather than a single value. Outcomes of all of these 

algorithms can either be a continuous glucose value or a classification such as the risk of 

hypoglycaemia18 or the certainty/uncertainty of hypoglycaemia. Algorithms with a 

classification outcome are not suitable for projects such as the artificial pancreas where a 

continuous variable is required to calculate insulin delivery rate. However, they can provide 

significant benefit in the prediction of hypoglycaemia in children.  
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Type of 

Algorithm 

Description 

Physiological Model blood glucose dynamics based on a comprehensive knowledge of the 

patient’s physiology. These models require extensive expert input to create 

but can then be used without any prior patient data.  

Data Driven These algorithms use data mining from large CGM datasets and regression 

analysis to provide a mathematical prediction of future glucose trends 

(known as a black-box approach). This requires less expert input initially but 

is dependent upon the availability of existing datasets and assumes 

similarities between those patients using the algorithm for prediction and 

those from whom the initial data was taken.  

Hybrid These models combine physiological knowledge with data-driven regression 

to produce a complex predictive algorithm. 

Table 4.2. Description of the three main types of blood glucose predictive algorithm. 

Different approaches are taken towards the prediction of blood glucose values, with each 

approach benefiting from a different strength. Multiple examples of each type of algorithm are 

available and vary widely in their predictive accuracy. Outcomes of all three types of algorithm 

can either be as a continuous glucose value or as a binary classification e.g hypoglycaemia or 

not.  

 

Early attempts at using CGM values to predict future continuous blood glucose values proved 

very inaccurate: Pappada et al demonstrated an MARD of 22% and a hypoglycaemia detection 

rate of only 2% using neural network algorithms148. Significant improvements have been made 

with Contreras et al achieving an MARD of 12% and employing a glucose specific cost 

function which takes in to account the clinical harmfulness of deviations from euglycaemia298. 

Most recently Li et al used deep neural networks to achieve an MARD of 5% and 10% when 

their algorithm was tested on simulated and real patient data respectively299. Due to large inter-

patient variability, those algorithms which incorporated an element of personalisation 

improved their performance significantly300.  

Predictive algorithms work better in one specific circumstance than another16 and therefore 

algorithms predicting continuous variables often have a poor accuracy at detecting 

hypoglycaemia. Jensen et al developed a model to predict the incidence of nocturnal 

hypoglycaemia and, despite a long prediction horizon (PH) of 3-6 hours achieved a Receiver 

Operating Characteristic (ROC) Area Under the Curve (AUC) of 0.79 (equivalent to an 

algorithm correctly categorising independent variables 79% of the time) and a negative 

predictive value of 97%301. Seo et al used a simple model with a PH of 30 minutes to predict 

postprandial hypoglycaemia with an AUC of 0.97 and high sensitivity and specificity of 89% 

and 91% respectively162.  
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Recent studies have combined continuous value prediction with classification algorithms. 

Mosquera-Lopez et al devised a generalised classification model and applied individualised 

smoothing to improve hypoglycaemia prediction from 80% to 90%302. Their continuous value 

prediction resulted in 99% of values in Zone A on an MCEG. While this was calculated with 

CGM values instead of fingerprick or laboratory plasma glucose values, the authors 

demonstrated the superiority of their predictions over that of Dexcom G6, highlighting the 

potential benefit of individualised algorithms302. Vehi et al have recently developed an 

integrated system involving a classification approach for hypoglycaemia detection as well as a 

continuous variable prediction to allow the user to respond appropriately to a hypoglycaemia 

event. This not only allows a more personalised response to hypoglycaemia but reduces the 

chance of an undetected event174.  

The potential for computer-generated algorithms to improve the detection of hypoglycaemia is 

significant but requires considerable and robust real-life applications. Few algorithms to date 

have incorporated stress, medication or illness scenarios into their predictions; most studies 

compare predictions with CGM values rather than a gold standard and the majority only 

calculate MARD rather than the ability to predict hypoglycaemia. Furthermore, most 

algorithms are tested on simulated or historical patient data and not in patients, in real-time, 

and in real-life situations.  Clearly, rigorous testing must be performed if predictive algorithms 

are to form a part of hypoglycaemia prediction and prevention clinical strategies in children 

with hypoglycaemia.  

4.7 Conclusions 

Detection of glucose levels at home has undergone significant changes over the last 100 years. 

Use of CGM is revolutionising the care of patients with diabetes and demonstrating significant 

improvements in clinical outcomes. However, the accuracy of CGM at hypoglycaemia remains 

poor and the efficacy of its use in disorders of hypoglycaemia in children is at best suboptimal. 

Small case series highlight the potential benefit of CGM in the management of these children 

but there are multiple barriers to regular clinical use. The use of computer-generated predictive 

algorithms which make use of CGM values is likely to form a significant part of hypoglycaemia 

prediction in the near future but will require investment and incentivisation by industry. 

Summary 
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Within this paper we have thoroughly evaluated the current use of CGM for patients with 

hypoglycaemia disorders. We have provided a comprehensive summary of how CGM is 

currently used as well as the opportunities and barriers to use. The primary opportunity that 

was identified was the possibility to use predictive algorithms (namely machine and deep 

learning techniques) as a way to predict and prevent impending hypoglycaemia. We therefore 

performed a survey of machine learning to predict and prevent hypoglycaemia and this is 

presented in Chapter 6. However, prior to that we addressed the issue of suboptimal accuracy 

that had been highlighted in this chapter. Given the paucity of studies evaluating CGM 

accuracy in CHI (and none including a clinical assessment of inaccuracy risk and none using 

the most recent devices), we decided to design our own method of evaluation and use it to 

perform an evaluation of clinical CGM accuracy for patients with CHI. This is presented in 

Chapter 5.  
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Chapter 5 - Accuracy of CGM in CHI 

 

In Chapter 4, we identified CGM as a potential method for detecting, predicting and preventing 

hypoglycaemia for patients with CHI. However, for patients to be able to rely on predictions 

from CGM devices, the accuracy of their glucose detection must be high or predictions will be 

inaccurate; resulting in missed hypoglycaemia and unnecessary and burdensome alarms. There 

have been very few assessments of the accuracy of CGM devices in patients with CHI and 

none are comprehensive; they either use old devices, include non-CHI patients or, have no 

evaluation of the clinical impact of device inaccuracy. Furthermore, very few studies report on 

the pairing synchronicity of CGM and SMBG measurements and thus the validity of results 

are uncertain.  

As our plan at this stage was to utilise CGM as part of a predictive algorithm for 

hypoglycaemia, it was vital that we had an up to date and robust analysis of CGM accuracy. 

We therefore set about designing our own assessment of clinical accuracy, based on expert 

consensus, and used this to perform the largest evaluation of CGM accuracy in CHI. This is 

presented in this chapter.  

The content of this chapter is a paper authored by: Chris Worth, Mark J Dunne, Maria 

Salomon-Estebanez, Simon Harper, Paul W Nutter, Antonia Dastamani, Senthil Senniappan 

and Indraneel Banerjee. The title of the paper is: The Hypoglycaemia Error Grid: a UK-wide 

Consensus on CGM Accuracy Assessment in Hyperinsulinism and is published in Frontiers 

in Endocrinology November 2022. DOI 10.3389/fendo.2022.1016072. URL: 

https://www.frontiersin.org/articles/10.3389/fendo.2022.1016072/full. The paper is included 

verbatim with some changes to the formatting to ease readability within the thesis.  

Note on statistics: As this chapter is a published paper, it was not possible to amend the main 

content but further clarification on the statistical methods was requested and is provided here. 

The study sample size was a pragmatic decision based on no previously available evidence as 

well as the practicalities of recruiting patients with a rare disease. Sample sizes were not 

determined based on power calculations. While there were many repeated values from each 

participant in this study, and thus a risk of repeated measures correlation, this study did not 

look to determine correlation but to establish the degree of correlation. Due to this, and the 

https://www.frontiersin.org/articles/10.3389/fendo.2022.1016072/full
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nature of the aims, repeated measurements from individuals was an inherent part of the 

methods.   

Author contribution 

CW designed and ran the data collection process as well as designing the questionnaire for the 

error grid, collating information, writing the code for generation of the grid and developing the 

grid. CW also drafted the first version of the manuscript. MJD, MSE, SH, PWN, AD, SS and 

IB contributed to the development of the error grid and reviewed and approved the final version 

of the manuscript.  

Abstract 

Objective 

Continuous Glucose Monitoring (CGM) is gaining in popularity for patients with paediatric 

hypoglycaemia disorders such as Congenital Hyperinsulinism (CHI), but no standard measures 

of accuracy or associated clinical risk are available. The small number of prior assessments of 

CGM accuracy in CHI have thus been incomplete. We aimed to develop a novel 

Hypoglycaemia Error Grid (HEG) for CGM assessment for those with CHI based on expert 

consensus opinion applied to a large paired (CGM/blood glucose) dataset.  

Design and Methods 

Paediatric endocrinology consultants regularly managing CHI in the two UK centres of 

excellence were asked to complete a questionnaire regarding glucose cutoffs and associated 

anticipated risks of CGM errors in a hypothetical model. Collated information was utilised to 

mathematically generate the HEG which was then approved by expert, consensus opinion. Ten 

patients with CHI underwent 12 weeks of monitoring with a Dexcom G6 CGM and self-

monitored blood glucose (SMBG) with a Contour Next One glucometer to test application of 

the HEG and provide an assessment of accuracy for those with CHI.  

Results 

CGM performance was suboptimal, based on 1441 paired values of CGM and SMBG showing 

Mean Absolute Relative Difference (MARD) of 19.3% and hypoglycaemia (glucose 

<3.5mmol/L (63mg/dL)) sensitivity of only 45%. The HEG provided clinical context to CGM 

errors with 15% classified as moderate risk by expert consensus when data was restricted to 
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that of practical use. This provides a contrasting risk profile from existing diabetes error grids, 

reinforcing its utility in the clinical assessment of CGM accuracy in hypoglycaemia. 

Conclusions 

The Hypoglycaemia Error Grid, based on UK expert consensus opinion has demonstrated 

inadequate accuracy of CGM to recommend as a standalone tool for routine clinical use. 

However, suboptimal accuracy of CGM relative to SMBG does not detract from alternative 

uses of CGM in this patient group, such as use as a digital phenotyping tool. The HEG is freely 

available on GitHub for use by other researchers to assess accuracy in their patient populations 

and validate these findings.  

5.1 Introduction 

Congenital Hyperinsulinism (CHI) is a disease of recurrent, severe and unpredictable 

hypoglycaemia, with an estimated incidence of 1 in 28,000 births in the UK7. Management of 

CHI relies upon detection and treatment of episodes of hypoglycaemia in children who may be 

completely asymptomatic. Since the first description of the condition in the 1950s33, patients 

have relied upon self-monitoring of blood glucose (SMBG) by intermittent fingerprick testing 

to obtain knowledge about glucose levels. Unfortunately, this provides no trend information 

and there is a significant risk of missed episodes between tests, particularly overnight. Thus, 

over recent years, there has been a move towards the use of Continuous Glucose Monitoring 

(CGM) in CHI and other non-diabetic hypoglycaemia disorders to override problems inherent 

in SMBG303.  

Despite there being well established accuracy criteria for assessment and use of CGM in 

patients with diabetes304, there are no such criteria for use in CHI. The CHI community has 

therefore relied upon routine measures such as mean absolute relative difference (MARD), 

hypoglycaemia sensitivity and occasional use of (diabetes specific) error grids to determine 

accuracy of CGM303. There are three error grids that are used to report CGM accuracy. None 

were designed to asses CGM accuracy specifically and all are inappropriate for  use in patients 

with CHI. The Clarke Error Grid (CEG) was developed in 1987 as a way of evaluating various 

blood glucose monitoring systems and analysing historical clinical data305 but was criticised 

for its placement of risk boundaries and the small number of clinicians who informed its 

design306. The Parkes Error Grid (PEG) was designed in 1994 and published in 2000 with the 

intention of assessing the clinical accuracy of various glucometers for patient use307. It was 
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considered an improvement over the CEG due to its focus on clinical risk rather than percentage 

accuracy and its development via a consensus of 100 clinicians. Finally, the Surveillance Error 

Grid (SEG) was published in 2014308 and based upon clinician responses to various clinical 

scenarios all involving patients with diabetes. This grid is mathematically complex and can 

only be readily interacted with on a designated website and in a limited way. The code for 

independent replication is not freely available, thereby limiting its use for comparative analysis.  

While the PEG and SEG may be improvements over the CEG, all three are designed to assess 

risk of glucose measurement errors in patients with diabetes and thus do not represent the risks 

faced by those with CHI. For example, all three report “very high risk” for a large under-reading 

at hyperglycaemia. This is entirely appropriate for patients receiving exogenous insulin therapy 

who might fail to administer the required dosage but poses minimal risk for a patient with CHI 

(Figure 5.1). Similarly, “no risk” is reported for measured values just above the hypoglycaemia 

threshold when the true value lies below this (false negative for hypoglycaemia). This situation 

would represent a potential risk for patients with CHI who are routinely advised by UK 

consensus that values above 3.5 mmol/L(63 mg/dL) are safe and below 3.5 mmol/L are not43,73 

(Figure 5.1). Finally, all grids are designed to evaluate the difference between blood glucose 

meters and a gold standard rather than between CGM and SMBG. Thus, when CGM vs SMBG 

values are plotted on any of the established grids, the output does not accurately represent the 

risk posed to CHI patients using CGM for glucose measurement. 
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Figure 5.1. Parkes Error Grid (left) and Clarke Error Grid (right) demonstrating 

inappropriate risk areas for assessing CGM in CHI patients. 

For PEG: A = no effect on clinical outcomes, B = altered clinical action with little or no effect 

on clinical outcome, C = altered clinical action likely to result in altered outcome, D = altered 

clinical action could have significant medical risk, E =could have dangerous consequences. 

For CEG: A = values within 20% reference of the sensor, B = outside 20% but would not lead 

to inappropriate treatment, C = would lead to unnecessary treatment, D = potentially 

dangerous failure to detect hypo or hyperglycaemia, E = would confuse treatment of hypo for 

hyperglycaemia and vice versa. The red outlined box indicates false negatives for 

hypoglycaemia (<3.5 mmol/L). Both charts contain areas which categorise these false 

negatives as low risk (shaded blue) or no risk (shaded red) which, in reality, could be 

dangerous for a patient with CHI. Both charts also have large risk areas associated with 

missed hyperglycaemia which pose minimal risk (shaded yellow and green) to patients with 

CHI and could be re-categorised as risk A or B.  

 

There are no studies reporting CGM accuracy in CHI using a standardised format. The first 

report on CGM accuracy in CHI used the FreeStyle Libre flash glucose monitor to show a 

MARD of 17.9% and a mean difference of +0.29 mmol/L (5.22mg/dL) based on 467 blood 

glucose readings with associated CGM values14. Paired values were plotted on a SEG. The first 

report for the Dexcom system (G5) came in 2019 with 1155 paired values giving a MARD of 

17.5%, a mean difference of -1.01 mmol/L (-8.09mg/dL) and no error grid analysis13. Two 

more recent studies from mixed populations including some patients with CHI (60-64%) have 

shown MARD of 11.0%61 and 13.1%309 with one study plotting paired values on a CEG. These 

analyses all include multiple values of glucose >4mmol/L which are of great importance to a 

patient living with diabetes who may have to adjust insulin doses at higher glucose ranges but 

of limited practical interest to most patients with CHI who use CGM exclusively for 

hypoglycaemia detection. These analyses therefore likely overestimate the practical accuracy 
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of devices at hypoglycaemia. Hypoglycaemia sensitivity is arguably the most useful measure 

of a device’s accuracy for patients with CHI as it focuses on the detection of hypoglycaemia266. 

Reported results for hypoglycaemia sensitivity in CHI range from 43-73%13,61.  

These studies do not describe how CGM and SMBG values were paired, thereby remaining 

ambiguous about pairing synchronicity and proximity of values. Further, the mean or 

maximum time difference between measurements and the mean absolute difference to 

understand error ranges are not consistently reported. Most importantly, these studies were not 

able to specify clinical risk of hypoglycaemia as they did not have access to an appropriate 

error grid.  

Our aim was to therefore create a hypoglycaemia specific error grid with suitable CGM-SMBG 

pairing to assess the accuracy (and associated clinical risk) of a CGM device specifically for a 

patient with CHI or other hypoglycaemia disorder. We also aimed to use our newly developed 

error grid to evaluate the clinical risk of CGM inaccuracy in CHI using a Dexcom G6 and to 

set a baseline against which the accuracy of future devices can be tested. 

5.2 Methods 

5.2.1 Development of the Hypoglycaemia Error Grid 

In order to create our error grid, we followed the example laid out by Parkes et al306 and 

administered a questionnaire to all UK based paediatric endocrinology consultants working 

regularly with patients with CHI in the two UK centres of excellence: Northern Congenital 

Hyperinsulinism Service (NORCHI) based at Royal Manchester Children’s Hospital (RMCH) 

and Alder Hey Children’s Hospital (AHCH); and Great Ormond Street Hospital (GOSH) 

Congenital Hyperinsulinism Service310. Hypoglycaemia was predicated on a cut-off level of 

3.5 mmol/L (63 mg/dL) as per UK consensus in the management of hypoglycaemia in patients 

with CHI1,73. The questionnaire asked respondents to define five blood glucose ranges 

(Appendix 5.1) and then assign levels of clinical risk (A: none, B: slight, C: moderate and D: 

severe) to hypothetical discrepancies between CGM and SMBG values. The full questionnaire 

is provided in Appendix 5.1.  

Following this, all questionnaires were mathematically collated. A grid was generated from 0.0 

mmol/L to 10.0 mmol/L in 0.1 mmol/L increments on both the x and y axes for SMBG and 

CGM respectively, thus representing all possible 10,000 (100 x 100) combinations of CGM and 

SMBG values. Each respondent’s levels of risk (A, B, C or D) were plotted across the grid and 
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a mean risk was generated for each of the 10,000 combinations. Most boundaries between risk 

levels were horizontal or vertical lines and were thus, not altered. Where staggered line 

boundaries occurred, the research team made decisions about where the straight boundary line 

should lie within the staggered line (Figure 5.2) in order to facilitate practical use of the grid. 

Straight lines of best fit were drawn through staggered edges and approved by consensus expert 

opinion to retain fidelity of clinical interpretation.  

 

Figure 5.2. Demonstration of the averaged risk scores for all 10,000 combinations of 

SMBG vs CGM values before (left) and after smoothing (right). 

Risk levels: green = A, yellow = B, orange = C, red = D. The original grid generated by 

responses is demonstrated on the left with the smoothed grid on the right. For the final version, 

the slim vertical yellow column and the adjacent orange sections were combined. Staggered 

edges were converted to angled straight lines by consensus to aid usability and replication.  

 

5.2.2 Accuracy assessment of Dexcom G6 CGM in patients with CHI 

Patients with CHI were enrolled from the NORCHI service and all wore CGM (Dexcom G6) 

for 12 weeks. Of the 12 weeks for which patients wore CGM, the device was blinded for eight 

of these weeks. They were also asked to undertake at least two SMBG measurements per day 

(although not for calibration as the G6 device is factory calibrated) and whenever the CGM 

device reported a hypoglycaemia during the unblinded period. SMBG measurements were 

undertaken with a Contour Next One glucometer, independently verified as the home 

glucometer with the highest level of accuracy311 and recommended by Dexcom for calibration 

of G5, a previous generation CGM device requiring calibration.  
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In order to maximize the interpretation of information, accuracy was assessed via two separate 

means. Firstly, a detection rate of hypoglycaemia was determined by examining all CGM 

values in a 30 minute time period (15 minutes before and after) around all SMBG detected 

hypoglycaemia. This enabled the interpretation of CGM as a predictive marker for 

hypoglycaemia over a diffuse time window instead of simple discrete point prediction. 

Separately, CGM and SMBG values were paired to assess for point accuracy to correlate with 

similar measures in other studies. Pairing of CGM and SMBG was restricted to a 5 minute 

window either side of the SMBG value to ensure close and suitable temporal matching of 

subcutaneous and blood glucose levels. This method ensured that CGM values always 

overlapped the SMBG measurement of interest. To obtain paired values, we wrote an analysis 

script in Python 3.8.8 which analysed each SMBG value and searched the CGM files for the 

closest value within five minutes before or after the SMBG and with a matching patient ID. 

Matched pairs were then assessed for various measures of accuracy and plotted on four separate 

error grids.  

The study was undertaken under REC and HRA ethical approval (REC reference 

07/H1010/88).  

5.3 Results 

5.3.1 Error Grid Creation 

Questionnaires were administered to, and returned from, all 14 paediatric endocrinology 

consultants working regularly with patients with CHI in the two UK centres of excellence. The 

Hypoglycaemia Error Grid (HEG) was generated as described and is freely available on 

GitHub312 and displayed in Figure 5.3.  
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Figure 5.3. The new Hypoglycaemia Error Grid (HEG). 
Based upon the consensus opinion of 14 consultant paediatric endocrinologists working 

regularly with patients with CHI in the two UK centres of excellence. In contrast to error grids 

designed for use in diabetes, the HEG assigned relatively low risk to missed hyperglycaemia 

and relatively high risk to small errors around missed hypoglycaemia. As risks did not alter 

beyond 4.0mmol/L, the grid was extended from 10mmol/L to 12mmol/L with the same lines to 

incorporate the occasional value in this range.  

 

5.3.2 Accuracy Results 

Ten patients were recruited to undertake regular SMBG readings and wear Dexcom G6 CGM 

device. Mean age was 8 years 11 months with a range from 21 months to 17 years and clinical 

details are provided in Table 5.1. Nine of the ten patients wore a Dexcom G6 CGM for 12 

weeks and undertook regular fingerprick tests with a Contour Next One glucometer. One 

patient withdrew from the study after eight weeks due to complaints of painful sensor insertions 

and irritation with sensor alarms. Using a cutoff of 3.5mmol/L, CGM detected 96 of 188 SMBG 

detected hypoglycaemias, thus providing a detection rate of 51% over a 30 minute time 

window. When hypoglycaemia cutoffs were altered to 3.0mmol/L and 3.9mmol/L, detection 

rates were 50% and 68% respectively.  
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Patient Age 

(years) 

Gender Time 

since 

diagnosis 

(years) 

Genetic pathology Medications 

Patient 1 14.5 Female 14.5 Paternally inherited KCNJ11 

mutation + interruption of 

Chromosome 1  

Diazoxide 

Patient 2 3.2 Female 3.0 Not identified  Diazoxide 

Patient 3 12.3 Male 11.9 Not identified  Diazoxide 

Patient 4 5.4 Male 5.4 Maternally inherited dominant 

ABCC8 mutation 

Diazoxide 

Patient 5 3.1 Male 3.1 Homozygous ABCC8 mutation Octreotide 

Patient 6 3.4 Female 3.4 Maternally inherited dominant 

ABCC8 mutation 

Diazoxide 

Patient 7 17.3 Male 17.1 GLUD1 mutation (de novo) Diazoxide 

Patient 8 13.3 Female 13.0 Homozygous HADH mutation Diazoxide 

Patient 9 17.7 Male 7.4 GCK mutation (inheritance not 

determined) 

Diazoxide 

Patient 

10 

2.1 Male 2.1 Heterozygous HNF4A partial 

deletion 

Diazoxide 

Table 5.1. Demographics and clinical details of all patients included in the study. All patients 

continued on their medications for the duration of the study. Patient 6 withdrew from the study 

at the end of week 8 due to dissatisfaction with the CGM device.  

 

In total, 1441 paired readings were obtained from a possible 1,562 SMBG and 216,935 CGM 

readings with a mean absolute time difference of 1.3 minutes between CGM and SMBG 

readings. There were 185 SMBG values (13%) below 3.5 mmol/L in the paired dataset and 528 

pairs where at least one value was <4mmol/L. The mean difference (CGM minus SMBG) 

between readings was +0.43 mmol/L, demonstrating that, on average, the Dexcom G6 reported 

a higher value than the SMBG. This difference reduced with increasing values of glucose 

(Figure 5.4(i)). However, when two outliers (>14mmol/L) were removed, the mean difference 

remained positive and static across all values of glucose (Figure 5.4(ii)). The mean absolute 

difference (MAD) was 0.93 mmol/L, demonstrating that the average error of a CGM reading 

was almost ± 1mmol/L.  
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Figure 5.4. Scatter plot of difference (CGM minus SMBG) by glucose value. 

Yellow line = linear line of best fit, red line = 2nd degree polynomial line of best fit, black dotted 

line = mean difference. Figure i) shows an inverse correlation between glucose value and 

difference with difference changing from positive to negative as glucose increases. However, 

when the two outliers (red) are removed, the difference does not vary by glucose value but 

remains positive across all glucose values(ii).  

 

Mean absolute relative difference (MARD) was 19.3% and absolute relative difference (ARD) 

varied by glucose value: highest accuracy (lowest ARD) was seen in the glucose range of 5-

9mmol/L with an increase in ARD at values above and below this (Figure 5.5). Sensitivity and 

specificity were 43.8% and 92.4% respectively for hypoglycaemia (<3.5 mmol/L) and 39.6% 

and 95.7% for severe hypoglycaemia (<3.0mmol/L). When hypoglycaemia threshold was 

increased to 3.9 mmol/L, sensitivity and specificity were 52.6% and 89.1% respectively. While 

the hypoglycaemia sensitivity was low, the incidence of true hypoglycaemia when CGM was 

reading >4mmol/L and >5mmol/L was 4.2% and 0.96% respectively. Table 5.2 presents the 

Odds Ratios for a true hypoglycaemia at various CGM device reported values.  
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Figure 5.5. Scatter plot of absolute relative difference (ARD) between CGM and SMBG 

by glucose value. 

Yellow line = linear line of best fit, red line = 2nd degree polynomial line of best fit, black dotted 

line = mean absolute relative difference (MARD). Figure i) shows a linear negative correlation 

between glucose value and ARD with ARD decreasing as glucose increases. However, the 2nd 

degree polynomial shows a U shaped curve with the greatest accuracy in the normal glucose 

range from 5-9mmol/L. When the two hyperglycaemia outliers (red) are removed, the 

relationships are not significantly altered (ii).  

 

 

CGM reporting n OR true 

glucose 

<3.5mmol/L 

(n = 185) 

OR true 

glucose 

<3.0mmol/L 

(n = 48) 

>6.0mmol/L 401 0.007 0.002 

>5.0mmol/L 729 0.010 0.001 

>4.0mmol/L 1093 0.042 0.003 

>3.5mmol/L 1250 0.079 0.010 

Table 5.2. Odds Ratios (OR) for true (SMBG) hypoglycaemia at various CGM glucose 

values. 

n = number. As CGM values increase the odds of the true value being < 3.5 or 3.0 decreases. 

A CGM value >4mmol/L results in a 4% chance of a true value <3.5mmol/L and a 0.3% chance 

of a true value <3.0.  

 

Results plotted on the CEG, PEG, SEG and our HEG provided different results, as expected 

from the premise of our study. Using the CEG (Figure 5.6A), there were 53 datapoints (3.7%) 

that were classified as A (no risk) that were a false negative for hypoglycaemia. The percentage 

of points classed as low (B), moderate (C) and severe (D) risk was 29.6%, 0.0% and 7.4% 

respectively.  
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Figure 5.6. All four error grids plotted with 1441 paired values from CHI dataset. 

The red lined box in A and B indicates false negatives for hypoglycaemia. Several glucose 

datapoints in this box on the CEG (53) and PEG (84) would be classified as no risk but would 

potentially pose a risk to a patient with CHI. In plot C, due to a lack of colouring of the plots, 

categories are less defined than in a grid model. Data points appear clustered in the left lower 

corner as numerical values on x and y axis are immovable by software constraints. For the 

HEG (D) 4.7% of values have been classified as moderate risk to the patient; these represent 

an over reading by the CGM device at a time of hypoglycaemia (<3.5mmol/L). There are no 

false negatives classed as no risk. False negatives are differentiated in representation by being 

plotted as a cross rather than a dot. 
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The PEG (Figure 5.6B) provided different results for the percentage of values within each 

risk category (Table 5.3. Comparison of percentage risk allocated to each category 

between error grids.  

). Using the PEG, there were 84 datapoints (5.8%) that were classified as no risk but which 

represented a false negative for hypoglycaemia. Data plotted on PEG were biased to report a 

lower risk with only 2.0% of values being classed as moderate or high risk (C+).  

Analysis of the results with the SEG was limited due to the restricted functionality of its 

use on a website. Requests were made for access to the underlying code so further analysis 

could be undertaken but unfortunately were not granted. We were thus not able to 

ascertain the number of false negatives for hypoglycaemia classed as low risk. However, 

some results were obtained, and these are shown in Figure 5.6C and Table 5.3. 

Comparison of percentage risk allocated to each category between error grids.  

. While the SEG did grade more results in category C, it labels this category as only “Slight, 

Higher risk” rather than the allocation given to C in the CEG and PEG which is “altered clinical 

action, likely to affect clinical outcome” and thus is hard to directly compare.  

5.3.3 Practical Accuracy Results 

The above results are based upon all of the paired values in the available dataset, irrespective 

of the glucose value. While this offers a meaningful comparison with previous studies, and 

across various error grids, it does not provide the most practical assessment of accuracy for 

those living with CHI. All respondents to the HEG questionnaire provided 4mmol/L or lower 

as a cut-off above which patients did not need to actively manage their glucose. Four possible 

combinations of CGM and SMBG values are thus available: 

1. False negative (SMBG <4, CGM >4) 

2. False positive (SMBG >4, CGM <4) 

3. True positive (SMBG <4, CGM <4) 

4. True negative (SMBG >4, CGM >4) 

Combinations 1 to 3 were all identified as being of interest to the patient with CHI and accuracy 

in these situations should be assessed. Because information about glucose is not required for 

insulin dosing for the majority of patients with CHI, combination 4 is rarely of interest and 

should not be included in an assessment for fear of overestimating practical accuracy.  

We therefore restricted the dataset to those pairs represented by combinations 1-3. This 

resulted in 528 paired values and these are plotted on the HEG in Figure 5.7 and detailed 
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further here and in Table 5.3. Comparison of percentage risk allocated to each category 

between error grids.  

. Using this new dataset, mean difference was +0.08mmol/L, MAD was 0.89mmol/L and 

MARD was 23.2% demonstrating a further reduction in accuracy within the area of greatest 

interest and practicality.  

 

Figure 5.7. Hypoglycaemia Error Grid plotted with paired values restricted to those in 

which at least one value was <4mmol/L. 
It is possible to immediately appreciate the increase in values categorised as slight to moderate 

risk when the dataset is restricted to that of interest to a patient living with CHI.  

 

We present the first use of our novel, consensus based HEG designed specifically to analyse 

the risk of CGM inaccuracies for patients with CHI (Figure 5.6D). This error grid presents risk 

levels specific to the use of CGM in CHI and thus there are no values classed as no risk for 

missed hypoglycaemia. This error grid has the added functionality of plotting false negative 

values as crosses instead of dots, thereby clearly defining this risk category important to the 

management of patients with hypoglycaemia. False negatives never fall in the no risk area (A) 

with no values in the highest risk (D) area.  
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The relative frequencies of the risks reported by the three error grids are presented in 

Table 5.3. Comparison of percentage risk allocated to each category between error grids.  

.  

 Percentage values falling into each risk category 

Error Grid A 

(total) 

A (false 

negative) 

B C D E C+ 

CEG 63.2 3.7 29.6 0.0 7.4 0.0 7.4 

PEG 77.0 5.8 21.0 2.0 0.1 0.0 2.0 

SEG 65.0 ?? 23.6 11.2 0.2 0.0 11.4 

HEG (all) 88.3 0.0 7.0 4.7 0.0 NA 4.7 

HEG 

(<4mmol/L) 

63.6 0.0 21.3 15.2 0.0 NA 15.2 

Table 5.3. Comparison of percentage risk allocated to each category between error grids.  

HEG = Hypoglycaemia Error Grid. The HEG allocates a slightly lower percentage of values 

to categories of moderate and higher risk (C+) than the average over the charts due to the 

allocation of low risk to missed hyperglycaemia. However, this is reversed when the HEG is 

used only with pairs where at least one value is <4mmol/L and offers a practical risk of 15.2% 

of values categorised as C+. The CEG and PEG (and likely SEG) classify several false 

negatives for hypoglycaemia as no risk, while the HEG classifies all false negatives as at least 

low risk. It is not possible to quantify false negatives assessed by the SEG due to the limited 

way with which it can be interacted.  

 

5.4 Discussion 

The utility of CGM in childhood hypoglycaemia disorders has not been fully established. While 

the application in diabetes is clear91,93,97, the use of CGM in hypoglycaemia disorders like CHI 

is currently being explored. There has been concern over the accuracy of CGM sensor 

performance in the hypoglycaemia range, with observational studies reporting on false positive 

errors13 by graphical methods that categorised errors into discrete grids61. However, existing 

error grids do not accurately represent the risk of CGM inaccuracy for patients with CHI as 

they are designed to test accuracy in patients with diabetes. They underemphasise the risk of 

missed hypoglycaemia and overemphasise the risk of missed hyperglycaemia as well as 

attributing importance to higher values of glucose that are of no relevance to the majority of 

those with CHI. Hence, there is a clear need to develop a hypoglycaemia specific error grid 

that identifies the risk of missing hypoglycaemia in a clinically meaningful way. Our HEG 

provides an appropriate tool to understand the true risk of misidentifying hypoglycaemia by 

rapidly evolving technologies incorporating CGM.  
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The HEG provides risk identification that is specific to hypoglycaemia in contrast to other 

available error grids designed for use in diabetes. The consensus for the development of the 

HEG has been limited to UK specialists given an established network (the CHI Special Interest 

Group) within the National Health Service in the UK. Our study is therefore limited by the lack 

of an international consensus. However, at present, there is no uniform international consensus 

guiding the practical management of hypoglycaemia scenarios in CHI. Further, our proposed 

grid is not limited for use in the UK and is freely testable for other consensus opinions. To 

facilitate alternative iterations and interpretations, the code is now freely available on Github312 

with descriptions on: how to plot paired values within the grid; adapt this for alternative 

thresholds of hypoglycaemia; and calculate the percentage of values lying within each risk 

category. The study team are available to facilitate this analysis for any research teams who 

wish to contribute.  

To demonstrate the utility of our new HEG we have also presented a large dataset of paired 

CGM vs SMBG values in a population of CHI patients in free-living conditions. This is also 

the first evaluation in patients with CHI of the accuracy of the Dexcom G6, a device which is 

increasingly used in this patient group but has not been previously assessed for accuracy. The 

average over-reading of the G6 device for all values of glucose is of concern given the level of 

inaccuracy of almost ± 1 mmol/L for every reading and the worsening of accuracy below 

glucose levels of 5mmol/L. Although, CGM hypoglycemia detection rates were marginally 

higher over a 30 minute window around an SMBG hypoglycaemia, our findings suggest that 

Dexcom G6 CGM (vis a vis SMBG) is inapplicable as a standalone tool for the detection of 

hypoglycaemia. 

A strength of our study is the ability to pair SMBG and CGM values using a consistent and 

time aligned approach. We paired SMBG to the nearest 5 minute CGM value either before or 

after the hypoglycaemia event. An alternative strategy proposed by CGM device manufacturers 

is to find the closest CGM value after each SMBG value. This latter technique only includes 

CGM values with timestamps after the matched SMBG value and thus is prone to report better 

accuracy due to the time lag on the CGM device. However, most authors describing paediatric 

use of CGM had opted for pairing of the closest CGM value; thus our method is consistent with 

previous use of CGM pairing strategies for hypoglycaemia. This method also increases clinical 

relevance: it reduces the mean time difference between values; excluding values before the 

SMBG is counter intuitive as the value the patient will be looking at is likely to be the one 

before (and to have triggered) the SMBG value.  
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Given that hypoglycaemia sensitivity is low (44%) and false negatives are high (104 values 

(7.2%)) it is vital that clinicians consider error margins when using CGM in clinical practice. 

When paired values are restricted to the area of interest for those with CHI (<4mmol/L), the 

percentage of values classed as moderate risk is 15%, further suggesting that sole reliance on 

current CGM devices to detect hypoglycaemia for patients with CHI is potentially unsafe. The 

use of all error grids are somewhat limited in the analysis of CGM accuracy as they do not 

account for the trend information provided to users and this must be taken into account when 

interpreting the above results.  

Somewhat reassuringly, the frequent advice given to patients that they can trust CGM accuracy 

when in the normal range was found to be largely true for values >5mmol/L where patients 

were very unlikely to be hypoglycaemic. For CGM values >4mmol/L and >5mmol/L the 

incidence of hypoglycaemia was 4% and 1% respectively, although these values may be 

artificially low due to minimal incentive to check an SMBG when CGM is reading normal and 

thus small numbers. Table 5.2 can be used to facilitate discussions with patients and families 

to explain the risk of missed hypoglycaemia. It is also important for those families requesting 

CGM to understand the average divergence from SMBG is almost 1mmol/L and the resulting 

clinical implications if solely relying on CGM to identify hypoglycaemia. Nonetheless, low 

accuracy does not detract from utilising CGM in alternative ways, for instance in the analysis 

of trends and digital phenotypes as has been reported in both diabetes313,314 and CHI1,315. 

Finally, it is of the utmost importance that families’ opinions on their experiences of CGM 

devices are sought and documented, as has been achieved for the first time recently316.  

The HEG has the potential to engineer the design and development of next generation CGM 

sensors that are more specific to hypoglycaemia, assuming that manufacturers design 

algorithms to target hypoglycaemia rather than hyperglycaemia90. While the majority of 

patients using CGM will have diabetes, the number of patients using CGM as part of a non-

diabetes condition is increasing; therefore, the HEG is a prompt for device manufacturers to 

include specific application in hypoglycaemia in their sensor and algorithm development 

strategy.  

5.5 Conclusion 

The Hypoglycaemia Error Grid (HEG) developed by a consensus of paediatric endocrinologists 

in the UK is a specific hypoglycaemia tool to identify the clinical risk in hypoglycaemia 

disorders such as CHI. The tool is specific for application in hypoglycaemia and is superior to 
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available error grids designed for use in diabetes. Using the HEG, analysis of the largest CHI 

specific paired CGM dataset demonstrated insufficient accuracy and low rates of 

hypoglycaemia detection. Thus, at present the routine use of CGM as a standalone diagnostic 

tool in patients with CHI is not recommended. The application of CGM in hypoglycaemia 

disorders requires further research and development.  

Appendix 5.1 

A copy of the questionnaire sent to consultants 

Please provide what you think should be the glucose ranges for patients (irrespective of 

symptoms) with HI for each of the codes and actions below. CGM = continuous glucose 

monitoring.  SMBG = Self monitored blood glucose (fingerprick) 

 

We will now ask you to assign a level of risk to 25 categories in the table below based on the 

codes you have just assigned. The degrees of risk are described before the table. Please note 

that the risk is of the discrepancy between CGM and SMBG, not of the glucose value itself. 

Thus there is no risk when the methods report the same value and the codes are the same. As 

such, the table is prepopulated with risk A (none) in these spaces. Risk is likely to be highest 

(D) for e.g. at times when CGM reports a high value (e.g. Code 5) but in fact SMBG value is 

low (code 1) and thus patient is unaware of a severe hypo occurring.  

This assumes the patient is acting simply on values presented on CGM meter (rather than 

symptoms) and the true value is that from the SMBG.  

Degrees of risk: 

A: None, B: slight, C: moderate, D: severe/dangerous 

BG ranges and associated actions 

Code Action Suggested glucose range (e.g. 0.0-

2.0) 

1 Emergency treatment for hypo (e.g. IM 

glucagon) 

 

2 Quick treatment for hypo (e.g. glucogel)  

3 Eat if due meal and/or check again in 10 

mins 

 

4 No action required but close monitoring  

5 No action required. No repeat monitoring.   
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Degree of risk 

CGM is reading 

Code 

Action patient is 

therefore taking 

Actual (SMBG value) is 

Code 

Degree of risk 

(A, B, C or D) 

 

 

1 

 

Emergency 

treatment for hypo 

(e.g. IM glucagon) 

1 A 

2  

3  

4  

5  

 

 

2 

 

Quick treatment for 

hypo (e.g. glucogel) 

1  

2 A 

3  

4  

5  

 

 

3 

 

Eat if due meal 

and/or check again in 

10 mins 

1  

2  

3 A 

4  

5  

 

 

4 

 

No action required 

but close monitoring 

1  

2  

3  

4 A 

5  

 

 

5 

 

No action required. 

No repeat monitoring 

1  

2  

3  

4  

5 A 
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Chapter 6 - Utility of Machine Learning in 

Hypoglycaemia Prevention 

In Chapter 4 we evaluated the utility and efficacy of CGM for patients with hypoglycaemia 

disorders such as CHI. We highlighted suboptimal accuracy as a clear barrier to use and 

confirmed this problem in Chapter 5 with our own evaluation of CGM accuracy. However, 

Chapter 4 also identified the possibility of using predictive algorithms driven by machine 

learning to predict and prevent impending hypoglycaemia episodes. This seemed a promising 

focus for our work and this thesis so we embarked on a thorough evaluation of the literature 

surround hypoglycaemia prediction and prevention through machine learning. Not only this, 

but we cast a critical eye over this entire approach to evaluate if this was the most effective 

way to prevent hypoglycaemia for our patient group. This evaluation is presented in this 

chapter.  

The content of this chapter is a paper authored by: Chris Worth, Hood Thabit, Paul W Nutter, 

Indraneel Banerjee and Simon Harper. The title of the paper is: A Survey of Machine 

Learning Approaches to Hypoglycaemia: time for a humanistic approach and is in peer 

review at ACM Computing Surveys. The paper is included verbatim with some changes to the 

formatting to ease readability within the thesis.  

Author contribution 

CW performed the literature review and critique of machine learning and wrote the first draft 

of the manuscript. Other authors offered expert input and reviewed and approved the final 

version prior to submission.   

Abstract 

Machine Learning is the dominant method by which continuous time series data predicts 

physiological variables. We focus on blood glucose data as it relates to hypoglycaemia 

disorders. The current prediction horizon for blood glucose stands at 30 minutes; with no focus 

on subsequent action required. Therefore, this is often insufficient to reactively treat 

hypoglycaemic events and new, proactive approach is required. This should incorporate 

behavioural features of hypoglycaemia risk, something missed by the minimal physiological 

features sets in machine learning. Complementary approaches to machine learning are 
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necessary where predictions must facilitate reflection and action if outcomes are to be 

improved. 

6.1 Introduction 

Machine learning (ML) has emerged as the dominant method by which continuous time series 

data has been used to predict future values of many physiological variables. In this survey, we 

focus our attention on the forecasting of blood glucose values with ML now forming a large 

proportion of research into hypoglycaemia (low blood glucose)16,129. Hypoglycaemia is a life-

threatening reality for both children and adults living with diabetes mellitus or one of the rarer 

hypoglycaemia disorders such as congenital hyperinsulinism (CHI). Regardless of the 

underlying cause, for people living with hypoglycaemia (PWH), prevention is the ultimate aim. 

Prevention is a complex process that involves not just prediction of events but taking 

subsequent preventative action within each individual’s social and cultural context. However, 

for the last two decades, prediction has incorrectly become synonymous with prevention and 

continuous glucose monitoring (CGM) has formed the core of this strategy317. ML has 

attempted to enhance CGM predictions but, despite over 15 years of work in the field142, it has 

failed to demonstrate any significant advantages over simple time series forecasting149 due to 

incomplete and unknown feature sets. More importantly, ML forecasts neglect to consider the 

required action following prediction and, as such, have not yet delivered a clear clinical benefit 

for PWH in the real world.  

We believe that ML has become something of a fixation within this field and that it may be 

time for a new and proactive approach. As such, in this survey, we review and discuss the 

available information on hypoglycaemia, CGM and ML to ascertain if ML is the best approach 

to hypoglycaemia, or if it is a fixation in urgent need of disruption. We begin with a background 

to hypoglycaemia in order to orientate the reader and move on to discuss CGM; a powerful 

tool, which we believe could be better utilised in non-simulated, real-world scenarios. Finally 

we propose a complementary, proactive approach using a human in the loop (HITL) system 

with a view to truly preventing, and not just predicting, hypoglycaemia for PWH in their daily 

lives. 
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6.1.1 Hypoglycaemia 

The James Lind Alliance provides Priority Setting Partnerships in collaboration with people 

living with diabetes (PWD) and lists improvement of awareness and prevention of 

hypoglycaemia as a top priority318. To better illustrate why hypoglycaemia prevention is of 

vital importance we discuss the definition and impact before expanding on the current approach 

towards prevention.  

Definition 

Glucose is a sugar absorbed from food and transported in the blood to be either used directly 

for energy or stored as glycogen. Hypoglycaemia infers glucose levels below the lower limit 

of the “normal” range (typically 4mmol/L (70mg/dL))319 but definitions and thresholds vary 

widely and are dependent upon a range of factors including age, underlying condition, 

treatment and place of care. Whipple’s triad offers a traditional and workable definition: 

symptoms of hypoglycaemia, a plasma glucose below the “normal range”, and resolution of 

symptoms when glucose levels increase320. More clinically relevant is severe hypoglycaemia, 

defined by the American Diabetes Association (ADA) and International Hypoglycaemia Study 

Group as “altered mental and/or physical functioning that requires assistance from another 

person for recovery”319 . While this definition is less applicable to small children, who will 

always need assistance, it does convey the severity of the event and is widely used321. The 

definition of hypoglycaemia in newborns remains controversial, particularly in the diagnosis 

and treatment of Congenital Hyperinsulinism (CHI)43,70. There is increasing recognition of the 

need to treat infants with CHI and other hypoglycaemic disorders at glucose levels < 3·3 

mmol/L (60 mg/dL) although it is problematic to extend this numerical threshold to all71. 

Impact 

Numerically, most hypoglycaemia episodes occur in PWD where the threat of “dead in bed” 

syndrome is never completely removed259. However, no less important are the many patients 

living with one of the rarer hypoglycaemia disorders such as CHI, where as many as half of all 

patients suffer from hypoglycaemic brain injury5,322. The impact of hypoglycaemia is felt not 

only acutely by the PWH, but via short to medium term knock-on effects on both the 

individual’s and extended family’s quality of life76,77, as well as long term neurodevelopmental 

changes67 and emotional trauma from fear of hypoglycaemia323. The economic cost is 

impossible to measure accurately, but is estimated to be high in both diabetes78,79 and 

hypoglycaemia disorders6. 
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For PWD, hypoglycaemia is not only a potentially life-threatening complication of insulin 

therapy, but operates as the main barrier to achieving optimal glycaemic control130. For all 

PWH, regardless of the underlying cause, hypoglycaemia awareness worsens with the 

frequency of episodes324 and severe and undetected hypoglycaemia becomes a significant risk.    

Current approach 

Structured education is an essential component of hypoglycaemia prevention and has been 

shown to be effective, evidence based and low cost130. These interventions take several forms, 

with DAFNE 131, BGAT132–134 and HypoAware135 all well established as effective 

interventions.  

Glucose monitoring is essential for any PWH and the current standard of care is intermittent 

fingerprick self-monitoring of blood glucose (SMBG). This technique offers very low 

granularity, leading to hypoglycaemia episodes invariably being missed between tests. Pain 

and high burden result in suboptimal adherence. However, most relevant to our discussion, 

SMBG offers minimal trend information, thus restricting its use for the prediction of 

hypoglycaemia episodes. In contrast, CGM, with its high frequency, relatively non-invasive 

sampling and near real-time information display, offers the potential to: eliminate missed 

hypoglycaemia events; reduce pain and burden; help understand glycaemic phenotypes; and 

provide vital trend information303. Additionally, we know that the computationally simple 

method of predictive low-glucose suspend (PLGS) also prevents hypoglycaemia in the real 

world136. As this system relies on the automatic cessation of insulin infusion based on predicted 

hypoglycaemia from time series CGM data, it is of no use to those not receiving exogenous 

insulin therapy. 

6.1.2 CGM 

Modern CGM devices measure interstitial glucose several times a minute via a wearable sensor 

and generate an average value every five minutes. Interstitial glucose values are converted, via 

a continuously shifting algorithm, to an equivalent blood glucose value which is then 

transmitted to a receiver device303. For PWD, the acute use of CGM undoubtedly improves 

glucose control91,93 and the frequency of hypoglycaemia events97. Unfortunately, in non-

diabetic hypoglycaemia disorders, the picture is much more complicated with no large-scale 

evidence of efficacy303. There are also multiple barriers to use for all patients and thus, despite 

its proven utility to improve glycaemic control for PWD, CGM has not become a universally 

adopted tool. These barriers and limitations to use are discussed below.  
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For all the recent improvements, accuracy (measured by Mean Absolute Relative Difference 

(MARD)) of CGM devices in the hypoglycaemic range is still not clinically acceptable, even 

for PWD86,87. It is worse still in non-diabetes conditions89,261 due to generic calibration 

algorithms268 biased towards detection of high blood glucose221. Other, more useful, measures 

of accuracy include FDA iCGM (integrated CGM) standards and hypoglycaemia sensitivity 

and specificity rates. These highlight the real problem with false negative (missed 

hypoglycaemia) rates as high as 35% for people living with CHI113.  

Further barriers to use of CGM include, but are not limited to: lag time293, alarm fatigue10, 

clinician inertia21 and cost121. CGM is still more expensive than self-monitoring of blood 

glucose (SMBG) and is likely to remain this way for the majority of PWH worldwide325. CGM 

does not consistently reduce hypoglycaemic worry123 and many patients report “information 

overload”126 and struggle to make sense of data downloads122. This negative psychosocial 

impact can be so strong as to override the benefit from improvements in glycaemic control124. 

This results in discontinuation rates up to 41% at 12 months125, with device technical failure a 

primary cause122. Given the multiple limitations to use, it is important to consider alternative 

ways to use CGM325. Below, we move on to discuss if ML is the alternative required to help 

prevent hypoglycaemia for PWH.  

6.2 The Role of Machine Learning 

Machine Learning (ML) has shown a surge in popularity in recent years and has become the 

dominant method by which physiological variables are predicted. In the following, we outline 

a brief background to the subject before concentrating on a survey of the performance of ML 

in various areas of hypoglycaemia prevention.  

 

6.2.1 A Background 

Machine Learning (ML) is concerned with methods for identifying patterns in data which can 

then be used to make predictions about the future15. The use of ML in healthcare research has 

seen an exponential increase over recent years15 and rapid expansion into the field of 

hypoglycaemia129.  

Historically, when detecting and predicting hypoglycaemia through ML methods, input 

features have been physiological time series data such as cerebral or cardiac electrical 

activity16. The rapid increase in self-monitoring over recent years has resulted in the recent 



109 

 

emergence of ML systems trained on large volumes of historical CGM data17. It is important 

to understand that ML models for glucose prediction are trained on feature poor data often 

including only one or two features (CGM and insulin data) with poorly defined exercise and 

nutritional information occasionally included18. However, regulation of blood glucose is based 

on at least 42 separate features326, the vast majority of which are not accounted for in ML 

forecasts and are behavioural rather than physiological in nature. For this reason, ML forecasts 

may look attractive in-silico but fail when applied to feature rich datasets in the real world 

subject to human behaviour15. 

With increasing emphasis on automation and digital health within healthcare systems, it is 

understandable that ML has been widely trialled and tested on many glycaemic datasets, often 

accessible from large numbers of PWD. ML application in this field has centred around three 

key areas: 1) Generation of an artificial pancreas 2) Glucose forecasting and 3) Decision 

support systems. Because the artificial pancreas (AP) is a highly specific area and not primarily 

focused on hypoglycaemia, we will only discuss this briefly before discussing the other areas 

in greater detail.  

Table 6.1 summarises the differing methods (ML and not) of hypoglycaemia prediction and 

prevention, provides important, recent and/or high profile examples, and discusses their 

relative effectiveness. It is not intended as a systematic review of these approaches as this has 

been expertly achieved recently17,129,172. All of the referenced studies are discussed in more 

detail in the following sections. 
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Lead 

author 

and year 

Method Outcome ML? Real-

world 

testing? 

Relative 

reduction in 

hypo? 

Comments 

Glucose Forecasting 

Georga 

2013327 

ML model to predict 

hypos. 

Hypo events predicted 

with 94% sensitivity in 

silico 

Yes No No Very complex data collection 

including dietician analysis of all food 

intake 

Oviedo 

201718 

Summary of ML 

glucose prediction 

models 

No report of accuracies Yes No No Conclude that in-silico testing means 

there is a lack of clinical evidence and 

that PH must be extended.  

Vehi 

2019174 

Multiple glucose 

forecasting 

algorithms 

Level 2 hypo prediction 

sensitivity was 75% (only 

44% overnight) in silico 

Yes No No Three part model provides some 

helpful safety features but testing to 

measure accuracy in the real world.  

Jensen 

2019301 

Nocturnal hypo 

prediction algorithm 

ROC AUC 0·79, NPV 

97%, PPV 20% in silico. 

PH all night.  

Yes No No Excellent PH in-silico (overnight) with 

potential to help patients if this 

translated to real patients.  

Dave 

2020168 

Event selection and 

ML algorithm for 

glucose forecasting 

91% sensitivity of 

hypoglycaemia at 30 and 

60 minutes in silico.  

Yes No No Hour of day and day of week very 

important predictive factors. 

Smartphone pilot study planned.  

Diouri 

2021328 

Review of all 

hypoglycaemia 

prediction techniques 

No report of accuracy or 

efficacy.  

Yes No No Conclusion: algorithms are far from 

real life and differing performance 

metrics complicate model 

comparisons 

Kodama 

202117 

Meta-analysis of ML 

glucose forecasting 

Pooled result was 0·8 

sensitive and 0·92 specific 

for predicting hypo in 

silico. 

Yes No No “insufficient ability to detect 

hypoglycaemia” 

Decision Support System (DSS) 

Skrovseth 

2015182 

DSS with diabetes 

diary with and 

without data-driven 

(ML) feedback 

Reduction in TIR and “out 

of range” values. No 

difference between groups 

Yes Yes Not for 

addition of 

ML aspect 

Feedback and reflection do improve 

glucose control but ML does not 

provide additional benefit 

Reddy 

2016184 

Insulin bolus 

recommendations 

from a ML model 

No significant reduction in 

postprandial 

hypoglycaemia (P = 0·1) 

Yes Yes No There was a trend towards a reduction 

in postprandial hypos (primary 

outcomes) but P =0·1 

Breton 

2018178 

A DSS based on an 

expert system and 

simple regression 

Hypoglycaemia reduced 

from 3·8% to 1·8% 

No Yes 53% 

reduction in 

time 

<3·9mmol/L 

Very strict conditions (not free-living) 

but system did reduce time in hypo but 

did not use ML.  

Perez-

Gandia 

2018329 

DSS using ML to 

provide corrective 

insulin doses 

No difference in glucose 

variability or risk of 

hypoglycaemia.   

Yes Yes No Patients had to manually input CGM 

values to the model as real-time CGM 

was not available to the authors.  

Tyler,  

2020177 

ML DSS to suggest 

insulin dosing 

In silico: TIR increased 

from 59·5 to 79·8%. 

Hypos were maintained at 

<2% 

Yes No No Impressive in-silico performance but 

unclear how well this would translate 

to the real world.  

Tyler,  

2020172 

Review of all DSSs 

using ML 

Best in-silico results show 

hypo reduction from 5·9% 

to 0·97% and 13·4% to 

3·9% 

Yes No No Some in-silico analyses reduce hypos 

to 0% (not reflective of real life). All 

real world studies are reported 

separately.  

Liu 

2020179 

A 4 module DSS with 

1 module using ML 

but that module not 

used.  

Time spent hypo reduced 

from 0·82 to 0·33%.  

No Yes 60% 

reduction in 

time 

<3·0mmol/L  

One module using ML is described but 

then not used in the evaluation. 

Modules used in the evaluation do not 

use ML.  

Artificial Pancreas (AP) 

Moshe 

2013330 

AP with fuzzy logic 

ML vs sensor 

augmented pump 

therapy at diabetes 

camp. 

A 68% reduction in hypo 

episodes in children at a 

diabetes camp 

Yes Yes 68% 

reduction in 

number of 

episodes 

<3·5mmol/L 

Demonstrates efficacy of AP but not 

clear how instrumental ML aspect of 

this is.  
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Thabit 

2015331 

AP (no ML) vs sensor 

augmented pump 

therapy at home 

Improved time in range 

and a 42% reduction in 

hypos 

No Yes 42% 

reduction in 

time 

<3·5mmol/L 

First demonstration of efficacy of AP 

to reduce hypoglycaemia in free-living 

conditions. No requirement for ML.  

Messori 

2017332 

Adaptive (ML) AP vs 

non-adaptive AP 

No difference in time in 

range (TIR) 

Yes Yes No Addition of ML to AP made no 

difference to TIR 

Wang 

2017333 

AP with learning vs 

open loop 

Time in range improved 

from 52% to 72% but no 

change in hypos 

Yes Yes No Incredibly restrictive conditions (not 

free-living) and not clear if ML aspect 

improved AP 

Palisaitis 

2020334 

AP with learning 

(ML) vs AP without 

learning 

No difference in TIR or 

time hypoglycaemic 

Yes Yes No Addition of ML to AP made no 

difference to TIR or hypos 

Lee 

2021335 

Description of fully 

automated ML AP 

Not tested  Yes No No Not tested so no data on ability to 

reduce hypoglycaemia 

Education 

Cox 

2001134 

Long term evaluation 

of BGAT-2 

Improved detection of 

hypos. Reduction in severe 

hypos and hypo fear.  

No Yes Reduction in 

severe hypos 

by 1/3 

Demonstration of the long lasting 

effects on not only severe hypos but 

also awareness and hypo fear. 

Plank 

2004336 

Long term evaluation 

of structured 

education 

Hypo episodes reduced 

from 0·49 to 0·14, 0·19 

and 0·16 at 3, 6 and 12 

years after education 

No Yes 67% 

reduction in 

severe hypo 

episodes  12 

years later 

Demonstration of the real and long-

lasting impact of structured education 

on hypoglycaemia incidence.  

Hopkins 

2012131 

Structured education 

using DAFNE 

After 12m: Improvement 

in HbA1c, severe hypos 

and hypo recognition 

No Yes 65% 

reduction in 

severe hypo 

episodes 

A lasting and real improvement seen in 

HbA1c (0·3), severe hypo incidence 

(65%) and hypoglycaemia fear (43%) 

12 months later.  

Rondags 

2016135 

RCT of HypoAware Reduction in hypo fear and 

distress as well as severe 

hypos 

No Yes 60% 

reduction in 

median 

severe hypo 

episodes 

Partially web based intervention 

demonstrating effectiveness of 

education in reducing hypos as well as 

hypo fear and distress.  

Iqbal 

2018130 

Review of education 

in hypo reduction 

Report a 50% lasting 

reduction in 

hypoglycaemia 

No Yes 50% 

reduction in 

time in 

severe hypo 

Included longitudinal observational 

studies which support 50% value 

Continuous Glucose Monitoring (CGM) 

Lind 

201791 

CGM vs standard 

care in adults with 

T1DM 

Improvement in HbA1c, 

time spent hypo, hypo fear. 

No Yes 50% 

reduction in 

time <3·0 

and 

3·9mmol/L 

CGM reduced time spent 

hypoglycaemic by a mean of 50% 

Forlenza 

2018136 

Predictive low 

glucose suspend vs 

sensor augmented 

pump 

Time in hypoglycaemia 

reduced from 3·6% to 

2·6%.  

No Yes 28% 

reduction in 

time 

<3·9mmol/L 

 

Thabit 

202093 

CGM vs SMBG in 

young people with 

T1DM 

Improved TIR but not time 

hypo. 

No Yes No Demonstration that provision of CGM 

improves TIR 

Table 6.1. Comparison of differing methods of hypoglycaemia prevention reported in the 

literature with specific examples from each. 

All of the papers which have demonstrated effectiveness at preventing hypoglycaemia 

(highlighted green) have either not used ML or the use of ML has not definitively contributed 

to the success.  
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6.2.2 Artificial Pancreas 

The artificial pancreas combines a glucose sensor with an insulin infusion device, linked via a 

control algorithm allowing the automatic adjustment of insulin dosing based on glucose levels. 

In 2013, Moshe et al.330 presented data showing that AP with a fuzzy logic ML algorithm 

reduced the incidence of hypoglycaemia in children at a diabetes camp. Wang et al. 333 also 

used a ML-enhanced AP to show a small improvement in TIR but no significant change in the 

number of hypoglycaemia events. Efficacy in both adults and children at home was 

demonstrated by Thabit et al.331 using AP without ML, and demonstrating that AP was a 

feasible treatment for patients in free-living conditions. Despite these successes, a 2017 review 

article18 noted that the main obstacle to achieving a reliable AP is the lack of reliable glucose 

prediction models. ML algorithms have not thus far overcome this obstacle, and no significant 

improvement in the performance of ML AP has been noted when tested against AP without 

learning332,334. AP may now be technologically feasible but there is no evidence of  additional 

benefit derived from ML182.   

6.2.3 Glucose Forecasting 

Glucose forecasting is the practice of using a variety of techniques to predict future glucose 

levels, normally as a continuous value18. There are three main types of glucose prediction 

algorithms: physiological, data-driven and hybrid18. Physiological and hybrid models require 

extensive expert input to create workable models and so are rarely practical, particularly in rare 

diseases or if individual predictions are desired. Alternatively, data-driven models form the 

bulk of ML research in hypoglycaemia and use a “black-box” approach to generate a 

probability distribution for outcomes18. 

Accuracy of forecasting models 

A recent systematic review by Mujahid et al.129 and meta-analysis by Kodama et al.17 provide 

comprehensive summaries of ML models targeting hypoglycaemia, so a systematic review is 

not repeated as part of this survey. While various teams have demonstrated models with 

reasonable accuracy when tested in-silico174,301, a meta-analysis of all ML models designed to 

predict and detect hypoglycaemia showed a pooled sensitivity and specificity of 79% and 80% 

and positive and negative likelihood ratios of 4·05 and 0·26 respectively17. The authors 

therefore concluded that current ML algorithms have insufficient ability to detect 

hypoglycaemia and that further refinement is required before applying ML in clinical settings 

rather than simply in-silico17,129.  
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In-silico vs in vivo testing 

The clinical, real world, accuracy of ML in hypoglycaemia prediction is likely to be even lower 

than reported above, as the majority of studies are only validated with in-silico data16,328. This 

provides optimistic estimations of accuracy, due the lack of unknown variables modulating 

glycaemic control in real world scenarios172 and an assumption of perfect adherence177. The 

problem of in-silico testing is not simply researcher laziness but is in part due to an absence of 

a real-time testbed. Testing algorithms in PWH in the real world requires real-time access to 

CGM from device manufacturers, something that is routinely denied in all but the most high 

profile of studies329. On the rare occasions when models are tested in PWH in day to day life, 

the black box approach of ML precludes any user or clinician reflection, preventing any real-

time feedback to inform learning or proactive changes335. This black-box approach ignores 

reports highlighting the utmost importance of education in hypoglycaemia prevention337.  

6.2.4 Decision Support Systems 

Decision Support Systems (DSS), whereby decision making is facilitated based upon various 

inputs and predicted outcomes, is another area in which ML has been utilised. A systematic 

review of all examples of ML in DSS has been expertly achieved recently172 and is not repeated 

here. Many of the problems inherent in ML-driven glucose prediction remain present in DSS, 

such as poor interpretability, incomplete data and feature sets, in-silico testing, and an 

assumption that PWH will follow 100% of suggestions perfectly without any consideration of 

the complex topic of behaviour change and persuasive technology338. While some DSS have 

reported successful outcomes327, these often require hugely complicated inputs (e.g. dietitian 

review of all meal information) and are not tested with PWH in free-living conditions. As Tyler 

et al.172 conclude in their review, “it has not yet been shown that a DSS can improve TIR [time 

in range: a measure of percentage time spent in a desirable glucose range] in human studies” 

as in-silico evaluations render it impossible to assess. Breton et al.178 showed a real reduction 

in hypoglycaemia using their DSS but under very strict conditions, and through use of an expert 

system and regression analysis rather than ML.  

When DSSs are evaluated in PWH in their daily lives there is a clear benefit derived from the 

system, but neither performance nor efficacy are enhanced by the addition of ML179,182,184. 

Thus, revealing that the real difference is achieved through engaging with the PWH through 

reflection and education, rather than an over-reliance on technology.  
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6.2.5 The Human In The Loop (HITL) 

So far we have discussed the accuracy and testing of ML algorithms for the prediction and 

prevention of hypoglycaemia via glucose forecasting and DSSs. While these issues are 

important, there is potential for them to be improved upon by future work and better access to 

real time testbeds. However, there is a more fundamental problem with the approach of actually 

preventing hypoglycaemia with short term ML-driven prediction of glucose.  

Even a theoretically perfect model, on its own, does not prevent hypoglycaemia events for 

PWH in the real world. Many ML systems are merely detection models and do not forecast 

future events129, while those that do forecast glucose values rarely do so beyond a short 

prediction horizon (PH) of 30 minutes18. Given the long lag time of CGM with impending 

hypoglycaemia9, the time taken to find and administer appropriate treatment (normally food), 

and time for this to be absorbed from the gut, a 30 minute prediction is rarely enough to actually 

prevent the impending hypoglycaemia, and certainly offers no time for reflection on the root 

cause. Accuracy of glucose prediction tends to plummet beyond 30 minutes as this is the point 

at which the auto-correlation of CGM breaks down327 and very few complex algorithms 

provide better results than simple logistic regression based on CGM values17,149. As such, 30 

minutes remains by far the most commonly used PH18, despite good reasons to believe that a 

longer PH would offer significant benefit to PWH16. ML forecasting thus reveals itself as an 

inherently reactive approach that does not allow for sufficiently accurate, or timely, prediction 

of hypoglycaemia and thus fails to truly aid PWH in the prevention of episodes.  

More importantly, investing time and resource in to developing the perfect ML model for 

glucose forecasting and hypoglycaemia prediction ignores the complexity of human behaviour 

and the HITL. Unlike computers, humans do not always respond as expected, or as they are 

told. A theoretically perfect glucose forecasting model only actually helps the user to prevent 

hypoglycaemia if: it alerts in time; the user has the alerts turned on; hears the alert; understands 

the alert; knows how to respond to the alert; has the motivation to respond, and, most 

importantly, has the knowledge, skills and ability to respond338. These are not minor issues, but 

are in fact fundamental components of behaviour change191 that are routinely ignored in the 

interest of small incremental improvements in algorithmic accuracy. These incremental 

improvements offer no tangible benefit, as suboptimal self-management remains the 

commonest reason why hypoglycaemia occurs339.  
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ML algorithms also ignore other important aspects of human behaviour: repetitiveness and 

habit.  By treating all time as a continuum, such algorithms ignore the fact that hypoglycaemia 

events are not spread evenly or randomly throughout the day but, are in fact, clustered in 

periods of high risk due to repetitive behaviours such as sleeping and eating at regular 

times1,315,340. While, for many patients, inconsistent self-management may result in a lack of 

patterns, for the majority there will be some element of repetitiveness in glucose excursions. 

In fact, this effect is so important that, when accounted for, hour of day and day of week are 

better predictors of glucose than complex CGM, insulin and carbohydrate data in a ML 

model168.  

6.3 A Possible Future for Computer Science in Hypoglycaemia 

In the first two sections of this survey we have reflected on the use of ML to prevent 

hypoglycaemia. Unfortunately, the evidence shows that the current use of ML is flawed due to 

insufficient accuracy, a lack of real-world testing, poor interpretability, a reactive approach 

and, more importantly, the ignorance of the majority of glucose influencing features 

encompassed by the complexities of human behaviour. Practically, this approach is also reliant 

upon continuous CGM, currently unavailable to the vast majority of PWH worldwide325. ML 

holds great promise for the detection of patterns in glucose data but currently is working with 

the majority of its many hands tied behind its back! Human glucose levels are influenced by 

42 separate factors326, of which ML algorithms are normally aware of only one or two18. The 

physiological variables which ML processes, do not represent human behaviour. In order to 

better understand the behavioural determinants of hypoglycaemia (which can be more easily 

changed than physiological processes), one must involve the HITL. The HITL is intrinsically 

aware of many of the features to which ML is blind and, with some prompting, will often 

understand the behaviours encompassing and influencing these features, unlike the black box 

approach of ML. Therefore we require a new and hybrid approach that disrupts the current 

fixation on ML driven glucose forecasting and instead complements the potential of ML with 

a humanistic approach that can be implemented immediately, for low cost and at scale.   

Here, we present an evidence based argument for a novel HITL approach to the prevention of 

hypoglycaemia that we believe addresses the issues identified thus far. This offers an 

opportunity to genuinely prevent hypoglycaemia for PWH in free-living conditions in the 

immediate future. We use the term HITL to demonstrate a humanistic approach to design where 

the human is considered an intrinsic part of the system who will both influence, and be 
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influenced by, the approach rather than simply as a user. The HITL can account for many of 

the features that are not available to ML and equally can reflect on relationships to understand 

how behaviour, rather than physiology, can be changed. Education and behaviour change are 

placed at the core of this new approach as interventions with a firm evidence base in 

hypoglycaemia reduction. To begin the process of understanding how behavioural features, 

missed by ML, are influencing individual risk of hypoglycaemia, we outline digital 

phenotyping.  

6.3.1 Digital Phenotyping 

Human beings are creatures of repeated and predictable patterns, both in terms of behaviour 

and physiology340. This is borne out in our glycaemic control with variations dependent on time 

of day throughout the 24 hour period1,315,341. These predictable patterns can be ascertained 

through digital phenotyping, the moment by moment quantification of phenotype by inputs 

such as CGM342. There has been initial success using short term CGM to ascertain specific 

“glucotypes” to further understand digital phenotypes of both individuals and disease 

subgroups313–315, with larger scale studies planned343. These digital phenotypes offer 

information around the timings of hypoglycaemia on a daily and weekly basis, highlighting 

periods for targeted change315 and importantly, filling in the gaps of features unavailable to ML 

algorithms. While, the individual features affecting hypoglycaemia risk may not be fully 

categorised, this is of minimal importance if the hypoglycaemia causing behaviour can be 

changed. Digital phenotypes can be ascertained through use of short periods of intermittent 

CGM313,315 thus vastly reducing cost and burden for PWH compared with continuous CGM325.  

A short period of CGM phenotyping for each patient and a resultant visualisation of the 

individual’s hypoglycaemia over the course of a week would provide much needed information 

on the behavioural components of hypoglycaemia to fill some of the gaps missed by traditional 

ML processing.  

6.3.2 Education and feedback to inform behaviour change 

Following on from a period of digital phenotyping, the PWH could receive education on 

periods of weekly high hypoglycaemia risk. PWH would thus develop an understanding of the 

weekly behavioural causes of their hypoglycaemia which could be complimented by ML 

processing of physiological minute by minute risk if desired. The use of persuasive 

technology27,127,344 could enhance the delivery of these messages so that information is not 
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simply provided but translated into action and behaviour change. Continuous, iterative 

assessment would allow the system to anticipate and adapt to changes in hypoglycaemia pattern 

as PWH changed their behaviours. This approach would address many of the identified 

problems with the current ML approach to hypoglycaemia (Table 6.2) and increase the chances 

of a real world reduction in episodes. 
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Category Problem Description New hybrid approach 

SMBG Infrequency No trend information 

Misses episodes between tests 

Trends initially informed via high granularity CGM data 

CGM Accuracy Point accuracy at hypoglycaemia is 

poor, particularly for those living with 

non-diabetes hypoglycaemia disorders.  

Point accuracy is unimportant as information is contained 

within weekly trends. Point accuracy is not affected by time of 

day or day of week and thus trends can be relied upon.  

Lag There is a lag between the onset of 

hypoglycaemia and that being reported 

by a CGM device. This results in less 

warning of impending hypoglycaemia.  

As predictions are proactive and offered over the course of a 

week, device lag time is of minimal importance. PWH are 

offered hypoglycaemia predictions many days in advance and 

can take proactive steps to detect and avoid these episodes.  

Alarm 

Fatigue 

The volume of alarms on most CGM 

devices results in alarm fatigue. This 

results in parents of PWH waking to 

less than a third of hypoglycaemia alert 

alarms10.  

No alarms. Prevention is achieved proactively, and ahead of 

time, rather than reactively in response to alarms based on 

insufficiently accurate and lagged CGM values.   

Cost Continuous CGM is significantly more 

expensive and not provided free of 

charge for the majority of PWH 

worldwide.  

Requires a short period of CGM phenotyping after which CGM 

can be discontinued and used for another PWH if desired.  

Burden Burden of CGM devices relate to the 

issues above, as well as information 

overload and difficulty in interpretation 

of large volumes of data.  

Above issues are addressed and information is succinctly 

summarised and explained to PWH on demand.  

ML 

forecasting 

and DSSs 

Accuracy In a recent meta-analysis, ML 

algorithms were found to have 

“insufficient ability to detect 

hypoglycaemia”  

Prediction of individual hypoglycaemia episodes acutely is not 

required as PWH will begin to understand their behavioural 

determinants of hypoglycaemia.  

In silico vs 

in vivo 

The majority of ML forecasting and 

DSSs have only been tested in 

silico16,328. This offers an unrealistic 

picture of real-world efficacy. In vivo 

testing requires real time access to 

CGM data, something that is routinely 

denied by CGM manufacturers.  

CGM data is viewed retrospectively and can be downloaded 

directly from freely available software, thus eliminating the 

need to collaborate with device manufacturers. This is simple 

and can be immediately rolled out for in vivo testing with 

minimal costs or setup.  

Small 

feature sets 

ML algorithms routinely only have 

access to one or two physiological 

variables and no behavioural variables.  

Digital phenotyping and presentation of this over a week would 

intrinsically incorporate many behavioural variables missed by 

ML 

HITL - 

action 

ML forecasts and DSSs rely on the 

assumption that accurate predictions of 

events will automatically result in 

prevention of episodes ignoring the 

importance of changing behaviour.  

Actively targets behaviour change as a core component of the 

system. Predictions are followed up with suggestions for change 

and aim to proactively prevent hypoglycaemia.  

HITL - 

habits 

ML systems ignore the repetitiveness 

of human behaviour and treat all time 

as a continuum despite evidence that 

hypoglycaemia occurs in predictable 

and discrete patterns.  

Provides data over the course of a week to capture the essence 

of hypoglycaemias caused by behaviour rather than physiology. 

This allows for understanding of the cause and facilitates 

behaviour change to proactively prevent future hypoglycaemia.  

Table 6.2. Summary of the limitations of current approaches to hypoglycaemia 

prevention and a possible solution presented by the new approach. 

6.3.3 Strengths 

It is reasonable to believe that this method would offer accurate predictions of hypoglycaemia 

as both hour of day and day of week are strong predictors of hypoglycaemia risk in 

individuals168,345. The prediction horizon would be practical with users offered a profile 

demonstrating hypoglycaemia risk throughout the upcoming week346, allowing action to be 
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taken pre-emptively. Not only would this method offer sufficient time to prevent predicted 

hypoglycaemia events but will also allow for education of individuals on the behavioural 

determinants of their hypoglycaemia, thus allowing preventative actions of non-forecasted 

events. This method places individual behaviour at its core, and recognises the importance of 

not merely providing predictions but engaging with PWH and using existing persuasive 

technology methods to change behaviour127 and actually prevent hypoglycaemia.  

This approach does not rely on provision of long term CGM, complex computing skills, new 

medical devices or industry collaboration. It can therefore be trialled quickly and repeatedly by 

multiple teams, in multiple settings, in free-living conditions. 

6.3.4 Limitations and solutions 

The main limitation of this approach is that, on its own, it will not predict individual 

hypoglycaemia episodes in unusual individual circumstances deviating from repetitive 

behavioural trends. However, the guided, proactive reflection inherent in this model will 

increase awareness of individual behavioural determinants of hypoglycaemia thus allowing for 

a pre-emptive, patient-led prevention even for non-forecast events. Additionally, this approach 

is complementary and for those PWH who choose to use ongoing CGM, device predictions 

(+/- ML processing) will continue as usual. Importantly, as this approach can be easily 

implemented in free-living conditions in the immediate future, even if effect sizes are small, 

these will have more tangible benefit for PWH than a theoretically brilliant ML model being 

tested on simulated data as per the current state. This method meets all of the desirable criteria 

for a hypoglycaemia technology16: considers contextual information; provides a longer PH; can 

be easily tested under free-living conditions and can be implemented for real PWH in ample 

numbers.  

6.4 Conclusions 

We believe ML has been given more than enough time to prove its worth and it is time to end 

the fixation and move into a new and evidence-based method of hypoglycaemia prevention in 

which the HITL takes centre stage. We have outlined a novel approach which we believe will 

achieve this, and we hope that other researchers will join us in moving forward rapidly to 

prevent hypoglycaemia for PWH in the near and real future.   



120 

 

Chapter 7 - Identification of Group Hypoglycaemia 

Patterns Through Retrospective Data Review 

 

Through Chapters 3-6 of this thesis we have been performing feasibility and formative work 

to establish the best approach with which we can use technology to reduce real world 

hypoglycaemia for patients with CHI. Chapter 4 presented opportunities for the use of CGM 

to perform this task but identified point accuracy as a limiting factor in the ability to accurately 

predict impending hypoglycaemia; our work in Chapter 5 confirmed this. Chapter 6 

investigated the possibility of using machine learning algorithms to enhance the predictive 

capacity of CGM as a method of hypoglycaemia prevention. However, our literature review 

found that machine learning algorithms are currently insufficiently accurate to perform this 

task well. More importantly, our evaluation of this approach revealed that acute glucose 

forecasting using machine learning processed CGM data was ultimately a reactive approach 

that was unlikely to result in any real world hypoglycaemia prevention. Due to the failure of 

this approach to address the behaviour change required for true hypoglycaemia prevention, we 

deemed it an inappropriate target for our future work.  

We proposed a new approach in Chapter 6 that focuses on the retrospective identification of 

hypoglycaemia patterns tied to behaviours. If patterns of hypoglycaemia were found through 

retrospective review, and they could be associated with repetitive behaviours, then it should be 

possible to target these behaviours to ultimately reduce hypoglycaemia.  

The accepted wisdom for patients with CHI is that hypoglycaemia episodes are random, due to 

the dysregulated secretion of insulin, and thus cannot be predicted. In order to ascertain if 

retrospective data review could identify patterns in this patient group, we performed our final 

formative experiment. This was a retrospective review of pre-existing data and is presented in 

this chapter.  

The content of this chapter is a paper authored by: Chris Worth, Simon Harper, Maria 

Salomon-Estebanez, Elaine O’Shea, Paul W Nutter, Mark J Dunne and Indraneel Banerjee. 

The title of the paper is: Clustering of Hypoglycaemia Events in Patients with 

Hyperinsulinism: Extension of the Digital Phenotype Through Retrospective Data Analysis 

and is published in The Journal of Medical Internet Research (JMIR), October 2021. DOI 
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10.2196/26957. URL: https://www.jmir.org/2021/10/e26957 . The paper is included verbatim 

with some changes to the formatting to ease readability within the thesis.  

Note on statistics: As this chapter is a published paper, it was not possible to amend the main 

content but further clarification on the statistical methods was requested and is provided here. 

The study sample size was a pragmatic decision based on no previously available evidence as 

well as the practicalities of recruiting patients with a rare disease. Sample sizes were not 

determined based on power calculations. Because of the small numbers of participants 

available for recruitment in this study, there were many repeated values from each participant 

and some representing larger proportions of the data than others. As such, certain patients’ 

patterns may be overrepresented in the data. This limitation is addressed in later studies which 

focus on individual, rather than group, patterns of hypoglycaemia. A further limitation of this 

study that was not addressed within the body of this paper is that of multiple testing. A large 

number of statistical tests are performed, increasing the chance of at least one result appearing 

statistically significant if a suitable level of confidence is not chosen. Therefore, a Bonferroni 

correction would have been appropriate. Within this study, 11 statistical tests are performed to 

assess for differences between groups. As such, a new level of statistical significance would be 

0.05/11 = 0.004. This new level of statistical significance is achieved by all of the results that 

were achieving the previously described value of 0.05 and thus the conclusions of the paper 

remain the same.   

Author contribution 

CW developed the idea for the paper, collected some of the raw data, wrote the code for 

analysis, performed all data cleaning and analysis and wrote the manuscript. EOS performed 

the majority of the data collection. Other authors offered expert input and reviewed and 

approved the final version prior to submission.   

Abstract 

Background 

Hyperinsulinism (HI) due to excess and dysregulated insulin secretion is the most common 

cause of severe and recurrent hypoglycaemia in childhood. High cerebral glucose utilisation in 

the early hours results in high risk of hypoglycaemia for people with diabetes and carries a 

significant risk of brain injury. Prevention of hypoglycaemia is the cornerstone of management 

for HI but the risk of hypoglycaemia at night or indeed the timing of hypoglycaemia in children 

https://www.jmir.org/2021/10/e26957
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with HI have not been studied, and thus the digital phenotype remains incomplete and 

management suboptimal.  

Objective 

We aimed to quantify the timing of hypoglycaemia in patients with HI, to describe glycaemic 

variability and to extend the digital phenotype. This will facilitate future work using 

computational modelling to enable behaviour change and reduce exposure of HI patients to 

injurious hypoglycaemia events.  

Methods 

Patients underwent Continuous Glucose Monitoring (CGM) with a Dexcom G4 or G6 CGM 

device as part of their clinical assessment for either HI (n = 23) or Idiopathic Ketotic 

Hypoglycaemia (IKH) (n = 24). CGM data was analysed for temporal trends. Hypoglycaemia 

was defined as glucose < 3.5mmol/L.   

Results 

449 hypoglycaemia events totalling 15,610 minutes were captured over a total of 237 days 

from 47 patients (29 male, mean age 70 months). Mean length of hypoglycaemia event was 35 

minutes. There was a clear tendency to hypoglycaemia in the early hours (0300H to 0700H), 

particularly for those HI patients over 10 months of age where 7.6% of time (1480/19370 

minutes) in this period was in hypoglycaemia compared to 2.6% (2405/92840 minutes) outside 

(P < .001). This tendency was less pronounced in HI patients under 10 months and those 

negative for genetic mutations as well as those patients with IKH. Despite real-time CGM, 

there were 42 hypoglycaemia events from 13 separate HI patients lasting > 30 minutes.  

Conclusions 

In this study, we have taken the first step in extending the digital phenotype of HI by describing 

the glycaemic trends and identifying the timings of hypoglycaemia measured by CGM. We 

have identified the early hours as a time of high hypoglycaemia risk for patients with HI and 

demonstrated that simple provision of CGM data to patients is not sufficient to eliminate 

hypoglycaemia.  

Future work in HI should concentrate on the early hours as a period of high risk for 

hypoglycaemia and must target personalised hypoglycaemia predictions.  Focus must move to 

the human-computer interaction as an aspect of the digital phenotype that is susceptible to 
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change rather than simple mathematical modelling to produce small improvements in 

hypoglycaemia prediction accuracy.   

7.1 Introduction 

Hyperinsulinism (HI) is a diverse collection of disorders united by the pathology of 

inappropriate insulin secretion causing hyperinsulinaemic hypoglycaemia with simultaneous 

suppression of alternative fuel sources. It has an estimated UK incidence of 1:280007 and is the 

most common cause of severe and recurrent hypoglycaemia in childhood. This recurrent 

hypoglycaemia, with corresponding suppression of ketones as an alternative fuel source, results 

in brain damage in an unacceptably high proportion of cases: up to 48%5. The risk of brain 

damage is independent of the chronicity of the disease67 as damage often occurs early in life 

during a time when the neonatal brain is highly susceptible to such insults74,207. 

Significant progress in the understanding of the underlying pathophysiology of HI has been 

made since its first detailed description in 195333. Increased knowledge of changes at the 

organic40, cellular19 and genetic levels4,37 has led to improvements in the care of these patients 

and recent studies even suggest a lowering of the subsequent rate of brain injury347. As first 

suggested by Richard Dawkins in 1976, there is an “extended phenotype” of all conditions, not 

just limited to observable physical traits or cellular changes348. The most recent extension of 

this is that of a digital phenotype, encompassing aspects of patients’ behaviours related to and 

measured by technology349. The digital phenotype includes everything from interactions with 

others on social media to digitally collected location data and continuously measured 

physiological parameters such as glucose and heart rate. These measures sit alongside the 

traditional characterisation of diseases to form a more comprehensive picture and facilitate a 

more nuanced approach to management. Current management of HI is complex balancing the 

risks and benefits of a limited repertoire of medications, all of which have a small therapeutic 

window and significant side effect profiles73. Because of the dysregulated secretion of insulin 

in these patients, hypoglycaemia events are often very difficult to predict. The standard of care 

for home monitoring of hypoglycaemia is intermittent fingerpick testing for blood glucose. 

However, patients rarely achieve more than three to four such measurements a day and this 

infrequent testing strategy risks missing hypoglycaemia between tests, particularly 

overnight350. This practice also offers little in the way of disease characterisation and does very 

little to extend the phenotype or the scientific understanding of HI.  
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Over recent years Continuous Glucose Monitoring (CGM) has become an alternative, offering 

an insight into glucose trends. CGM measures subcutaneous glucose at frequent intervals over 

extended periods (7-10 days) to provide glycaemic phenotypes in patients with hypoglycaemia 

and diabetes and contributes to the digital phenotype351. Application of CGM may not yet be 

readily applicable in patients with HI as a reliable means of hypoglycaemia detection or 

prediction303. However, as CGM is a passive form of monitoring, it can record data at a high 

granularity with very minimal response burden on users352 and therefore has the potential to 

interrogate detailed glycaemic data while being acceptable to patients on a long term basis. 

There have been a limited number of papers describing the utility of CGM in patients with 

HI13,14,60,353 and none describing the timing of hypoglycaemia events or glycaemic trends.  

There is good empirical evidence340 to suggest that hypoglycaemia events may not be evenly 

distributed throughout the day and that risk of hypoglycaemia may be disproportionately higher 

during periods of reduced food intake. In all but the youngest children, each day is divided into 

two distinct phases, one of activity and eating and the other of fasting and rest340. It is well 

established that hormones such as cortisol vary throughout the day, with peak levels varying in 

relation to time of sunrise354. Glucose homeostasis also varies with time of day341 but this 

variability is not likely to be directly related to cortisol355,356. Rather, there is likely a direct 

circadian control involving the suprachiasmatic nucleus (SCN) in the hypothalamus357,358 and 

peripheral clock-gene regulated components in the pancreas340.  

Prior to waking, early morning is a high-risk period for hypoglycaemia, as glucose utilisation 

is at its highest340. Normally, this is counteracted by a high rate of gluconeogenesis340 but in 

patients with HI this is suppressed due to inappropriate secretion of insulin resulting in an 

imbalance of glucose homeostasis weighted towards hypoglycaemia258. The high risk in early 

morning is exacerbated by the time-independent, high glucose requirement of the brain in late 

sleep359.  

Despite over 30 years of investigation into nocturnal hypoglycaemia in children with 

diabetes360 estimates of  incidence remain as high as 68%87. Over half of all severe 

hypoglycaemia events occur overnight361 and up to 18% of deaths in young diabetics are 

attributed to nocturnal hypoglycaemia362.  

The potential for CGM data to contribute to the digital phenotype of HI has not been 

investigated. Despite the physiological and empirical evidence from healthy and diabetic 

participants of the risks of nocturnal hypoglycaemia no study has investigated the timing of 
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hypoglycaemia events in children with HI. It is important to identify periods of greater risk of 

hypoglycaemia to design targeted detection, prediction and prevention strategies and 

traditional medical management techniques do not allow for this. Hall et al313, Colas et al314 

and Lunt et al342 all used CGM as a short-term phenotyping tool to better understand patient 

profiles and categorise risks.  Larkin et detail their intention to use CGM as part of a long term 

phenotyping tool on a large scale to provide personalised insights into disease343.  

Digital phenotyping allows for two important changes in how we view disease management. 

Firstly, the detailed analysis of CGM data provides an extension of the digital phenotype for 

both the disease and the individual and allows for the targeting of interventions to times when 

they will achieve the optimum effect. Secondly, patients and parents are not passive bystanders 

in the management of HI and an analysis of how they interact with and respond to the 

technology further extends the digital phenotype363 as well as enabling and enhancing 

behaviour change325.  Knowledge of an extended digital phenotype will not, in and of itself, 

improve outcomes but does improve understanding of how future interventions can be adapted 

to achieve the most significant and lasting behaviour change364.   

In this study, we take the first step in extending the digital phenotype of HI by describing 

glycaemic trends and identifying timings of hypoglycaemia measured by CGM. The following 

findings provide a base for future work concentrating on utilising the newly extended digital 

phenotype with human-computer interactions and ultimately altering care behaviours of 

parents to reduce the incidence of damaging hypoglycaemia. Our original code is provided as 

an appendix and is freely available on GitHub.  

7.2 Methods 

Patients were recruited between July 2017 and October 2020. Three distinct groups of patients 

were enrolled in the study: those with a diagnosis of HI who were in hospital for acute 

management (n = 6); those in an outpatient setting with a diagnosis of HI and for whom 

glycaemic control was suboptimal (n = 17) and those with a diagnosis of idiopathic ketotic 

hypoglycaemia (IKH) for whom glycaemic control was unstable (n = 24). The IKH group was 

selected to investigate CGM profiles in an alternative clinical model of hypoglycaemia not 

involving excess insulin secretion. All patients underwent CGM with the primary intention of 

better understanding their glucose control for clinical purposes. All patients were approached 

by the research team to seek consent to use anonymised CGM data for research purposes as 

per a local research ethics protocol (REC/H1010/88).  
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Within the HI group there was further subcategorisation as either diffuse or focal disease43. 

Focal HI is characterised by the formation of a focal lesion within the pancreas comprised of 

hyperfunctioning islets and is potentially curative by focal lesionectomy. Diffuse HI implies 

some specific histopathological features but practically implies non-focal HI in which medical 

therapy should be prioritised over surgery when possible.   

Patient recruitment to the study was based on a pragmatic design in the absence of previous 

studies to derive sample size in a rare disease. Previous studies investigating CGM in patients 

with HI have recruited between 11 and 15 patients13,14. We recruited all patients undergoing 

CGM for clinical reasons over a three year period.  

Patients undergoing inpatient monitoring had their CGM device (Dexcom™ G4 or G6 

dependent upon date) attached between one and five days prior to pancreatic surgery 

(lesionectomy or subtotal pancreatectomy) and removed after plasma glucose levels stabilised, 

reducing the need for frequent monitoring. All other patients were brought to the Royal 

Manchester Children’s Hospital to have their CGM device attached by specialist nurse and then 

returned home for the remainder of the monitoring period. Patients returned CGM devices to 

the department at the end of the monitoring period. CGM devices were always inserted in the 

daytime to ensure that full calibration had occurred before the evening and data could be relied 

upon overnight. Data were collected for between 4 and 10 days from each patient.  

For patients who underwent a controlled fast in hospital (n = 0 for HI, n = 2 for IKH) during 

CGM, data during the fast were deleted from the analysis and the only data utilised was that 

acquired from home monitoring after discharge from hospital. Dexcom™ G4 devices were 

used from the beginning of the study period until March 2019 from which point all patients 

were monitored using a Dexcom™ G6 device. All devices were un-blinded so that parents and 

staff could see glucose values in real time and alarms would sound if glucose dropped (or was 

predicted to drop) below 3.5mmol/L for those with HI and 3.3mmol/L for those with IKH (as 

per lowest allowable device settings). Fall rate and Urgent Low Soon alarms were set to “on” 

when the device was given to the patient. Patient modification of alarms was not routinely 

investigated.  

Hypoglycaemia was defined as any glucose value < 3.5mmol/L (63 mg/dL) as a safe cut-off 

used by most specialised centres for the everyday management of HI73. Dexcom™ CGM 

devices report a glucose value every 5 minutes so hypoglycaemia events were measured in 5 
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minute intervals with a minimum duration of 5 minutes.  The term “early hours” is used 

throughout the manuscript to refer to the period 0300H-0700H.  

Data was downloaded from CGM devices to Dexcom’s online Clarity™ database and raw data 

was downloaded for analysis using Python 3.8. We analysed the total number of 

hypoglycaemia events by start time irrespective of length and separately the total amount of 

time spent in hypoglycaemia within each hour period.  

As data was not normally distributed, non-parametric tests (Mann-Whitney U (MWU)) were 

used to assess for differences between continuous variables. Chi-squared tests were used to 

assess for differing proportions or percentages between groups. Results provided are as raw 

test statistics and associated P values.  

Glucose testing using alternative methods (plasma glucose measured by point of care testing 

or hand-held home glucose monitoring) was not routinely performed alongside CGM as 

assessment of CGM accuracy was not the intention or focus of this study. Correlations of CGM 

derived subcutaneous glucose with plasma glucose have been reported previously in patients 

with HI13,14.   

7.3 Results 

Baseline data showed a male predominance (29 male, 18 female) and mean age (months) at 

time of CGM was higher in those with IKH than with HI (82 vs 57, P = .03), as expected, given 

that HI is prevalent at a younger age than IKH. At the time of CGM testing, mean time (months) 

from diagnosis did not differ significantly between those with IKH and HI (33 vs 49, P = .43) 

(Table 7.1). Twenty eight patients underwent monitoring with a Dexcom G4 device and 19 

with a Dexcom G6. 
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 CHI  

N=23 

IKH  

N=24 

P 

Male (%) 17 (74) 12 (50) 0.09 

Female (%) 6 (26) 12 (50) 

Age (SD) (months) 57 (60) 82 (43) 0.03 

Time since diagnosis 

(SD) (months) 

49 (52) 33 (44) 0.43 

Table 7.1. Demographics of CHI and IKH groups. 

CHI = Congenital Hyperinsulinism, IKH – Idiopathic Ketotic Hypoglycaemia, P = P value for 

difference between groups calculated via Chi square for gender and Mann-Whitney U for 

continuous values. SD = standard deviation. Demographic data demonstrate that the only 

difference between groups at baseline was that patients with IKH had a higher mean age at 

time of CGM. 

 

A total of 449 hypoglycaemia events (189 in HI and 260 in IKH) were captured over 237 days. 

The time spent in hypoglycaemia was 15,610 out of a total 342,355 minutes (4.6%). Mean 

duration (standard deviation (SD)) of hypoglycaemia event was 35 minutes (57) and was longer 

in those with IKH than with HI (40 vs 28). Mean (SD) lowest glucose per hypoglycaemia event 

was 3.1mmol/L (0.37). Mean (SD) number of hypoglycaemia events per patient was 9.5 (9.6) 

with a positive skew to the distribution (Figure 7.1) illustrating the small number of patients 

with a very large number of hypoglycaemia events. In patients with HI there were 42 

hypoglycaemia events lasting more than 30 minutes from 13 separate patients. The mean (SD) 

duration of such prolonged hypoglycaemia events was 79 minutes (72) with a mean lowest 

glucose of 2.8mmol/L. Patient characteristics for those with HI are provided in Table 7.2.  
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Figure 7.1. Frequency plot of number of hypoglycaemia events (hypos) per patient. 

This plot demonstrates the positive skew to the distribution of hypoglycaemia events. Mean 

number of hypoglycaemia events was 9.5 per patient and median was 6.0 with six patients 

having no episodes of hypoglycaemia and one patient having more than 30 separate 

hypoglycaemia events. The majority of patients had 5-20 hypoglycaemia events 
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 Gender Mutation Type Surgery Age 

(m) 

Location Rx 

1 Male Not done Diffuse None 88 Outpatient None 

2 Male Not done Diffuse None 8 Outpatient None 

3 Female Negative Diffuse None 92 Outpatient None 

4 Male SLC16A1 Diffuse None 34 Outpatient CHO 

5 Male SLC16A1 Diffuse None 37 Outpatient CHO 

6 Female Negative Diffuse None 119 Outpatient None 

7 Male ABCC8 Diffuse None 58 Outpatient Diazoxide 

8 Male GCK Diffuse None 190 Outpatient Diazoxide 

9 Male ABCC8 Diffuse Subtotal 141 Outpatient None 

10 Male ABCC8 Diffuse Subtotal 132 Outpatient None 

11 Male ABCC8 Focal Lesionectomy 2 Inpatient Octreotide 

12 Male ABCC8 Diffuse None 36 Outpatient None 

13 Female ABCC8 Diffuse Subtotal 51 Outpatient Octreotide 

14 Male ABCC8 Focal Lesionectomy 36 Outpatient Octreotide 

15 Female Negative Diffuse None 17 Outpatient Diazoxide 

16 Female ABCC8 Focal Lesionectomy 3 Inpatient Octreotide 

17 Male Negative Diffuse None 63 Outpatient Diazoxide 

18 Male Negative Diffuse None 10 Outpatient Diazoxide 

19 Male ABCC8 Diffuse Subtotal 193 Outpatient None 

20 Male ABCC8 Focal Lesionectomy 1 Inpatient None 

21 Male ABCC8 Focal Lesionectomy 3 Inpatient Octreotide 

22 Female ABCC8 Focal Lesionectomy 1 Inpatient Octreotide 

23 Male ABCC8 Focal Lesionectomy 3 Inpatient Octreotide 

Table 7.2. Characteristics of patients with HI included in the study. 

Important characteristics relating to HI and CGM are listed for all HI patients individually. 

Subtotal = subtotal pancreatectomy; m = months; Rx = medical treatment at the time of CGM, 

CHO = carbohydrate supplementation in feeds.   

 

7.3.1 Timings of hypoglycaemia in CHI 

Figure 7.2 presents the number of hypoglycaemia events by start time in patients with HI (n = 

23). This does not account for duration of hypoglycaemia episodes and is only representative 

of the hour in which the event started. There was a higher risk of a hypoglycaemia event 

beginning in the later part of the night/early morning compared with the rest of the day. Figure 

7.3 illustrates the percentage time spent in hypoglycaemia by HI patients within each hour of 

the day. There was an increase in prevalence of hypoglycaemia in the early hours (0300H to 

0700H) with 6.4% of this time (1665/25875 minutes) hypoglycaemic compared with only 2.9% 

of time (3585/123490 minutes) outside this period (Chi-square 98.4, P < .001). This represents 

a more than doubling of risk within this period. Although the frequency of hypoglycaemia was 

greater in the early hours, the mean duration (minutes) of individual hypoglycaemia episodes 

in this period was the same as the rest of the day (28.2 vs 28.1, P = .99).  
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Figure 7.2. Number of hypolycaemia events (hypos) plotted by start time in patients with 

HI. 

The X-axis represents hours of each 24 hour period. Bars represent the number of 

hypoglycaemia events starting at any particular point in the day but do not indicate the 

duration of each episode. What is demonstrated is the increased number of hypoglycaemia 

episodes starting in the later hours of the night and early morning (black) compared with the 

rest of the day (grey).  
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Figure 7.3. Percentage time spent in hypoglycaemia by hour of the day in HI patients. 

This illustrates the percentage time spent hypoglycaemic by all HI patients by hour of the day 

over the entire monitoring period. There is a clear period of high risk for hypoglycaemia 

between 0300H and 0700H (dark blue) which represents the early hours. There are also three 

distinct spikes of increased hypoglycaemia prevalence at 0900H, 1500H and 1900H (orange) 

which may represent post-prandial hypoglycaemia.  

 

The other periods of increased risk were the separate hours of 0900H, 1500H and 1900H within 

which there were a higher proportion of minutes spent hypoglycaemic than the rest of the 

daytime/evening (0700H – 2400H) (5.2% (320/6140 minutes), 4.2% (250/6015 minutes) and 

3.7% (230/6265 minutes) respectively vs 2.8% (2915/103910 minutes), P < .001).  

7.3.2 Subgroup analysis in CHI 

Analysis of time spent in hypoglycaemia by HI patients over (n = 16) and under (n = 7) 10 

months of age (i.e. age by which time a weaning diet with solid food is well established) 

demonstrated that the risk of early hours hypoglycaemia was even more pronounced in the 

group over 10 months of age (Figure 7.4). Within the early hours, 7.6% of time (1480/19370 

minutes) was hypoglycaemic compared with 2.6% of time (2405/92840 minutes) outside of 

this period (Chi-square 146.4, P < .001) indicating an almost trebling of the risk of 

hypoglycaemia. In the group under 10 months of age no obvious patterns of hypoglycaemia 
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were visible with risk of hypoglycaemia distributed randomly throughout the day other than an 

unexplained peak of risk at 1900H (Figure 7.5).  

 

Figure 7.4. Percentage time spent hypoglycaemic by hour of the day in HI patients > 10 

months of age. 

Percentage time spent hypoglycaemic by hour of the day in HI patients > 10 months of age. 

Analysis of timings of hypoglycaemia in this subgroup show a greater tendency to early hours 

hypoglycaemia between the hours of 0300H and 0700H (dark blue) with a persistence of spikes 

in hypoglycaemia risk at 0900H and 1500H (orange). No spike is observed at 1900H in 

contrast to the analysis for all ages 
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Figure 7.5. Percentage time spent hypoglycaemic by hour of the day in HI patinets <10 

months of age. 

Analysis of timings of hypoglycaemia in this subgroup are limited by numbers but clearly show 

a very different pattern of hypoglycaemia compared with the group > 10 months of age. There 

is no obvious pattern of hypoglycaemia and no obvious periods of higher risk.   

 

Further comparisons was performed between the following HI subgroups: mutation positive vs 

mutation negative and on medication vs off medication. Results are summarised in Table 7.3 

and reported in more detail (along with Figure 7.8, Figure 7.9, Figure 7.10 and Figure 7.11) in 

Appendix 7.1: further HI subgroup comparisons.  
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Subcategories % time hypo 

in early hours 

% time hypo 

outside early hours 

% of all hypos contained 

in early hours (expected 

16.7%) 

Period of risk 

(compared with 

all HI) 

All HI 6.4 2.9 31.7 Early Hours 

Age 

>10 months 7.6 2.6 38.1 Early Hours ++ 

<10 months 2.8 3.8 13.5 Evenly 

distributed 

HI causing mutation 

Positive 6.7 2.8 33.1 Early Hours + 

Negative 5.9 3.6 29.0 Early Hours - 

Medication 

On 5.4 3.4 24.8 Early Hours - - 

Off 7.6 2.2 42.4 Early Hours ++ 

Table 7.3. Comparisons of timings of hypoglycaemia between HI subgroups. 
Detailed is the difference in percentage time hypoglycaemic in the early hours (0300-0700H). 

Also reported is percentage of all hypoglycaemia minutes spent in the early hours as a 

comparison to the expected 16.7% that would be seen if hypoglycaemia was distributed evenly. 

The table demonstrates an exaggerated tendency to early hours hypoglycaemia in those > 10 

months, off medication and with a known HI causing mutation. 

 

7.3.3 Timings of hypoglycaemia in Idiopathic Ketotic Hypoglycaemia 

Timings of hypoglycaemia in those patients with IKH showed a more evenly distributed pattern 

than those with HI. The number of hypoglycaemia episodes starting overnight was slightly 

higher than during the day (Figure 7.6) but not as markedly as in those patients with HI. Total 

minutes spent hypoglycaemic was also more evenly distributed throughout the day than in 

those with HI (Figure 7.7). There was no clear period of higher than average risk of 

hypoglycaemia, rather a period of relatively low risk was observed in the evening and early 

night (1800H – 0100H). Within this period the risk of any given minute being hypoglycaemic 

was 2.8% (1575/57195 minutes) compared with 6.5% (8785/135805 minutes) outside of this 

period (Chi-square 132.2, P < .001).  
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Figure 7.6. Number of hypoglycaemia events (hypos) plotted by hours of the day in 

patients with IKH. 

This demonstrates the risk of a hypoglycaemia event starting at any particular point in the day 

but does not account for the length of this episode. An increased number of hypoglycaemia 

episodes starting in the later hours of the night and early morning (dark blue) is observed, 

compared with the rest of the day (light blue). This, however, is less pronounced than in those 

patients with HI.  
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Figure 7.7. Percentage time hypoglycaemic by hour of the day in IKH patients. 

There is no period of particularly high risk as seen in HI patients. In contrast, a short period 

of lower than average risk in the evening and early night (green) can be observed 

 

Subgroup analysis of patients with IKH was not performed as no patients within this group 

were under 10 months of age and this group was primarily analysed as a comparison group for 

those with HI.  

7.3.4 Altering threshold for hypoglycaemia 

Since the definition of hypoglycaemia differs between countries, regions and even hospital 

departments we performed further analysis by altering the threshold for hypoglycaemia. The 

cut-offs of 3.9mmol/L, 3.5mmol/L and 3.0mmol/L were chosen as commonly used definitions 

for hypoglycaemia in children43,211. Further analysis of values below this were deemed unlikely 

to be meaningful as they are rare events and the DexcomTM CGM devices only measure glucose 

down to 2.2mmol/L, below which values are reported as “Low”.  

Data for HI patients over 10 months of age were compared with IKH patients as these two 

groups were more comparable in terms of age. As hypoglycaemia threshold was reduced from 

3.9mmol/L to 3.5mmol/L and then 3.0mmol/L, the tendency to early hours hypoglycaemia was 

emphasised in HI patients. In HI patients, the early hours contained 41% of all minutes (63/152 

minutes) spent with a BG < 3.0mmol/L despite this period only representing 16.7% of the 24 

hour period.  A similar trend began to emerge in those patients with IKH when hypoglycaemia 

threshold was reduced and the proportion of all minutes spent hypoglycaemic that lay within 

the early hours increased from 21% (842/3998 minutes) to 27% (157/577 minutes). Figure 7.13 

provides a visualisation of this change and is provided in Appendix 7.2. 

7.4 Discussion 

We have provided novel analysis of the timing of hypoglycaemia events in patients with HI 

using CGM data. Our data provide new and clinically useful information to extend the digital 

phenotype of HI. This aspect of the newly described digital phenotype demonstrates a tendency 

to hypoglycaemia during the early hours (0300-0700) where risk is 2-3 times higher than at 

other times of day. The relative risk of nocturnal hypoglycaemia compared with daytime 

hypoglycaemia is greater in patients with HI than in those with IKH. This risk is greater still in 

HI patients over 10 months of age, those with genetic mutations and in those off medication.  
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A strength of the study is the novel examination of a glycaemic phenotype using CGM in HI 

patients while using an alternative model of hypoglycaemia in children with IKH as a 

contrasting paradigm, demonstrating the specificity of glycaemic profiles within each 

condition’s digital phenotype. While home blood glucose monitoring remains standard of care 

for monitoring in HI patients, we have used high granularity glucose data to expand the 

phenotype of HI and highlight an important role for CGM, i.e. describing nocturnal glycaemic 

status in real time with high ecological validity. Alternative strategies to identify periods of 

hypoglycaemia based upon parent interviews would be open to recall bias and unable to 

identify unexpected hypoglycaemia as self-monitoring of blood glucose (SMBG) is rarely 

performed overnight. With increasing refinements in CGM technology and increasing 

popularity of the use of CGM in children with hypoglycaemia disorders, our study has pointed 

to the need for a targeted application of CGM. While previous studies have used simplistic 

correlation methods to test the accuracy of CGM in the detection of hypoglycaemia vis-à-vis 

home blood glucose monitoring, our study has interrogated a deeper phenotype with significant 

clinical impact.  

Our study is exploratory as similar analysis of CGM data has never been attempted. Therefore, 

it is not possible to validate the strength of our observations, except that the glycaemic 

phenotype is replicable across the whole group with HI in contrast to an alternative model of 

hypoglycaemia in IKH. Patient numbers in HI were large for a rare disease and the total number 

of measurements in the dataset adds strength to the rigour of the study.  

It is not possible to investigate the cause of early hours hypoglycaemia from the design of our 

study and neither was this the intended purpose. We speculate that the unavailability of 

carbohydrates due to the nocturnal fasting period, high glucose demand in the brain at this 

time340,359 and the suppression of counter-regulatory gluconeogenesis in patients with HI258 

could be probable causes. The latter view is supported by the observation of a reduced tendency 

to early hours hypoglycaemia in IKH patients and an increased tendency in those positive for 

genetic mutations known to cause HI. Patients with IKH do not have underlying metabolic 

disturbances and are therefore capable of mounting adequate counter-regulatory responses. In 

contrast, those positive for HI mutations tend to have more severe disease347 and less ability to 

mount counter-regulatory responses. Further investigation of the metabolic and counter-

regulatory hormonal milieu in HI patients may be required to refine specific causation. It is not 

clear why patients negative for mutations had a relatively high incidence of hypoglycaemia 

between 0900-1000H and further work will be needed to investigate this apparent trend.  
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We observed a tendency to early hours hypoglycaemia in HI patients over 10 months of age 

(Figure 7.4); this may be explained by older children sleeping longer and requiring less frequent 

feeds through the night. We did not record sleep-wake cycles in our study to confirm or refute 

this possibility. However, children under 10 months of age were also more likely to be 

inpatients during the period of monitoring and the lack of early hours hypoglycaemia tendency 

may reflect 24-hour nursing care and a reduction in ecological validity. The reason for the 

significant increase in time spent in hypoglycaemia between 1900-2000H is unclear and may 

reflect the small number of patients from whom this sample was taken. Further data would be 

needed to validate or refute this finding.  

Those HI patients who were no longer receiving HI medications showed the clear tendency to 

early hours hypoglycaemia seen in other groups. This response was not seen in those receiving 

medications for HI (diazoxide or octreotide). This may reflect the efficacy of HI medications 

in preventing nocturnal hypoglycaemia but may also be simply reflective of the much higher 

median age in the off-treatment group and the subsequent effects described above. Due to the 

way this study was completed it is not possible to assess the relative impacts of age and 

medication on the timings of hypoglycaemia in HI patients and further work is required.  

Tendency to hypoglycaemia was shown to reduce throughout the day in patients in HI but with 

small increases in risk at 0900H, 1500H and 1900H (Figure 7.3). These periods of increased 

risk are likely to correlate with post-mealtimes in those having three meals a day, suggesting 

possible post-prandial hypoglycaemia secondary to the hyperinsulinaemic response to food 

sometimes observed in HI patients365. This trend was not seen in IKH patients who had fasting 

rather than post-prandial hypoglycaemia. Nor was this seen in those HI patients under 10 

months of age who would have been receiving a high proportion of caloric intake as milk feeds 

distributed more frequently throughout the day/night.  

As hypoglycaemia thresholds were reduced from 3.9mmol/L to 3.5mmol/L and 3.0mmol/L the 

number of hypoglycaemia events and total minutes spent hypoglycaemic also reduced 

significantly as reflected in the differing Y axes in Appendix 7.2: Figure 7.12 and Figure 7.13. 

This is unsurprising as patients with HI are told to maintain glucose levels > 3.5mmol/L and 

those with IKH > 3.0mmol/L. Reducing the hypoglycaemia threshold emphasised the tendency 

to early hours hypoglycaemia in those with HI and allowed it to become apparent in those with 

IKH. These likely better reflect the true hypoglycaemia events which would be acted upon by 

parents.  
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There were 42 hypoglycaemia events lasting more than 30 minutes in patients with HI despite 

them wearing an un-blinded CGM device programmed to alarm at BG < 3.5mmol/L and 

parents being aware of the importance of keeping BG ≥ 3.5mmol/ at all times.  This high 

prevalence of prolonged and potentially dangerous hypoglycaemia events may reflect CGM 

inaccuracy and these events may represent false positives not acted on by parents. However, 

this is unlikely to explain all prolonged hypoglycaemia events.  

While CGM provides vital information, the volume of data provided by continuous monitoring 

such as CGM can be overwhelming for both healthcare professionals and patients366 and simple 

detection and reporting of glucose values will not be sufficient to eliminate all hypoglycaemia. 

It is well recognised that alarm fatigue is a significant problem294 and that only 37% of parents 

will wake to hypoglycaemia alarms which sound overnight10. Other behavioural explanations 

are possible, including voluntary alarm switch off and leaving the receiver out of earshot. The 

engagement of parents with the CGM device and their behaviours in response to data provided 

comprise a vital extension of the digital phenotype of HI363,364.  

Future work must further evaluate this aspect of the digital phenotype of HI to better understand 

not only the underlying pathophysiology but the human in the loop.  Simple mathematical 

modelling to generate ever better glycaemic predictions is unable to eradicate hypoglycaemia 

events in the real world if it does not factor in how human behaviours respond to the data.  

7.5 Conclusion 

We provide the first analysis of the timing of hypoglycaemia in patients with hypoglycaemia 

due to hyperinsulinism using CGM data and in doing so expand the digital phenotype. In 

contrast to the phenotype of hypoglycaemia in children with idiopathic ketotic hypoglycaemia 

(IKH), a clear period of high risk for hypoglycaemia was observed in patients with HI in the 

early hours (0300H – 0700H). Such hypoglycaemia was particularly frequent in those with 

genetic mutations known to cause HI and in children older than 10 months. Despite un-blinded 

state of the art technology, prolonged and potentially harmful hypoglycaemia events were 

detected in patients with HI. Early hours hypoglycaemia poses a high risk for neuroglycopaenic 

brain injury and behavioural aspects of the digital phenotype in HI must be evaluated so that 

interventions can be designed to maximise effect.  
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Appendix 7.1 Further CHI subgroup comparisons 

The tendency to early hours hypoglycaemia was preserved in those datasets from HI patients 

who tested positive for a mutation (n = 16) in genes known to cause hyperinsulinism (ABCC8 

(n = 13), GCK (n = 1) and SLC16A1 (n = 2)) (Figure 7.8) but less clearly in those who either 

tested negative (n = 5) or were not tested (n = 2) (Figure 7.9). In the mutation positive group, 

risk of early hours hypoglycaemia was 6.7% (1135/17005 minutes) compared with a 2.8% 

(290/81810) risk outside the early hours (Chi-square 78.1, P < .001). This indicates that those 

with severe forms of HI due to gene mutations had a greater tendency to nocturnal 

hypoglycaemia. For those in the mutation negative/not tested group, risk of early hours vs other 

time (day/night) hypoglycaemia was less pronounced but still significant (5.9% (530/8870) vs 

3.1% (1295/41680), Chi-square 21.5, P < .001), indicating that the tendency to nocturnal 
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hypoglycaemia was regulated by aetiology wider than genetic influence alone

 

Figure 7.8. Percentage time hypoglycaemic by hour of the day in mutation positive HI 

patients.  

Analysis of timings of hypoglycaemia in those HI patients positive for a mutation in genes 

known to cause HI demonstrates a clear tendency to early hours hypoglycaemia 
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Figure 7.9. Percentage time hypoglycaemic by hour of the day in mutation negative HI 

patients. 

Analysis of timings of hypoglycaemia in those HI patients negative or not tested for a mutation 

in genes known to cause HI demonstrates less of tendency to early hours (dark blue) 

hypoglycaemia than in other groups.   

 

The exaggerated tendency to early hours hypoglycaemia in the mutation positive group was 

not explained by an older age at investigation. In the mutation positive group, age (months) 

was marginally lower than the mutation negative/not tested group (49 vs 73, P = .213) and 

there was greater frequency of cases in the younger (< 10 month) subcategory (6/7 vs 1/7, P = 

.172).   

Timing of hypoglycaemia was also tested for differences between those on and off medication 

(diazoxide or octreotide). Those patients off medication displayed a much clearer tendency 

towards early hours hypoglycaemia (Figure 7.10) than those still on medication (Figure 7.11). 

In those off medication, 32% of all hypoglycaemia was in the early hours compared with only 

18% in those on medication. If hypoglycaemia was distributed entirely evenly throughout the 

day then one would expect 16% of hypoglycaemia in these hours. There was a difference in 

mean age (months) between the off and on medications groups (80 vs 36, P = 0.079.  
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Figure 7.10. Percentage of time spent hypoglycaemic by hour of the day in HI patients off 

medication. 

A clear tendency to early hours (dark blue) hypoglycaemia is seen.  

 

Figure 7.11. Percentage of time spent hypoglycaemic by hour of the day in HI patients on 

medication. 

The early hours tendency to hypoglycaemia seen in those off medications is not replicated in 

those still on medications.  
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Further analyses of subgroups were undertaken between focal vs diffuse HI. Visualisations and 

statistics are not reported for these subgroups as there was a significantly different mean age 

(months) (7 vs 79, P < .001) and any differences are likely a direct reflection of the differences 

found between the groups under and over 10 months of age. 

Appendix 7.2 

 
Figure 7.12. Percentage time hypoglycaemic by hour of the day in HI patients > 10 months 

of age with differing thresholds of hypoglycaemia. 

Lowering the threshold of hypoglycaemia from 3.9mmol/L to 3.5mmol/L and 3.0mmol/L 

demonstrates the persistence of the early hours as the period of highest risk for hypoglycaemia.  

 

Figure 7.13. Percentage time hypoglycaemic by hour of the day in IKH patients with 

differing thresholds of hypoglycaemia. 

Lowering the threshold of hypoglycaemia from 3.9mmol/L to 3.5mmol/L and 3.0mmol/L allows 

for the emergence of the early hours as the period of highest risk of hypoglycaemia in this 

cohort.  
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Chapter 8 – Individual Hypoglycaemia Pattern 

Identification: Algorithmics of HYPO-CHEAT 

 

The previous chapter concludes the feasibility and formative stages of this thesis and the 

remaining work forms the final summative phase. Work presented thus far has demonstrated 

an insufficient ability of patients and clinicians to detect impending hypoglycaemia for patients 

with CHI. Use of CGM has been identified as a candidate for improved performance in this 

area but analysis of current capabilities reveals insufficient accuracy for point detection and 

suboptimal analysis software to allow for useful retrospective review.  

The addition of machine learning techniques to CGM may offer a small increase in predictive 

accuracy but does nothing to address the behaviour change required to deal with predicted 

hypoglycaemias and is, currently, reactive and insufficiently accurate to be of use to patients 

in the real world. Thus, in Chapter 7 we began the process of evaluating if retrospective review 

of CGM data for patients with CHI could lead to the identification of repetitive and predictable 

hypoglycaemia, with the assumption that these repeats could be associated with behaviours. 

The formative experiment detailed in Chapter 7 demonstrated that hypoglycaemia was not 

randomly distributed throughout the 24 hour period but in fact clustered around periods of high 

risk, likely associated with behavioural factors such as sleeping and eating.   

We therefore set about building a new method of aggregating CGM data that would focus on 

the identification of and individual’s weekly hypoglycaemia patterns that we hypothesised 

would be associated with repetitive behaviours and thus amenable to change and hopefully a 

reduction in hypoglycaemia. We trialled this in 10 patients with CHI over a 10 week period as 

our final experiment and evaluation of our work. The technical details regarding the way CGM 

data was aggregated and displayed is presented in this chapter with some results regarding the 

change in hypoglycaemia. Detailed information regarding the behaviour change theories and 

results in presented in the subsequent chapter (Chapter 9).     

The content of this chapter is a paper authored by: Chris Worth, Paul W Nutter, Mark J Dunne, 

Maria Salomon-Estebanez, Indraneel Banerjee and Simon Harper. The title of the paper is: 

HYPO-CHEAT’s aggregated weekly visualisations of risk reduce real world hypoglycaemia 

and is published in Digital Health, October 2022. DOI 10.1177/20552076221129712. URL 
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https://journals.sagepub.com/doi/10.1177/20552076221129712. The paper is included 

verbatim with some changes to the formatting to ease readability within the thesis.  

Note on statistics and results: As this chapter is a published paper, it was not possible to 

amend the main content but further clarification on the statistical methods was requested and 

is provided here. The study sample size was a pragmatic decision based on no previously 

available evidence as well as the practicalities of recruiting patients with a rare disease. Sample 

sizes were not determined based on power calculations. As the (small number of) participants 

in this study were non-randomly split by virtue of their time below range (TBR), an alternative 

interpretation of the differing outcomes between the groups is that they were simply regressing 

towards the mean. This possibility must be taken into account when interpreting the results. 

However, evidence for true efficacy of the system is supported by the change in behaviour seen 

both through fingerprick testing data but also patients’ reports of this being influenced by 

HYPO-CHEAT.  

Additionally, the paper below does not comment on whether the consistent patient 

identification of behavioural patterns in HYPO-CHEAT outputs could be a result of fitting the 

results onto daily experience rather than a true pattern. This could have been tested by the 

provision of fictional HYPO-CHEAT outputs to families to determine if behavioural patterns 

were also identified in these charts. If so, this would weaken the argument that true behavioural 

patterns were identified. While this would not necessarily weaken the power of visualising the 

true patterns for families, it would be of interest academically and would have contributed more 

knowledge if this had been performed. We recognise this, retrospectively, as a limitation of 

this study.  

Author contribution 

CW designed and built the analytics required for the project. CW designed and ran the clinical 

trial of HYPO-CHEAT. CW wrote the manuscript. All authors provided expert input into the 

design and running of the study, reviewed and edited the manuscript and approved the final 

version.   

Abstract 

Background 

Children with Congenital Hyperinsulinism (CHI) are at constant risk of hypoglycaemia with 

the attendant risk of brain injury. Current hypoglycaemia prevention methods centre on the 

https://journals.sagepub.com/doi/10.1177/20552076221129712
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prediction of a continuous glucose variable using machine learning (ML) processing of 

continuous glucose monitoring (CGM). This approach ignores repetitive and predictable 

behavioural factors and is dependent upon ongoing CGM. Thus, there has been very limited 

success in reducing real-world hypoglycaemia with a ML approach in any condition. 

Objectives 

We describe the development of HYPO-CHEAT (HYpoglycaemia-Prevention-thrOugh-Cgm-

HEatmap-Technology), designed to overcome these limitations by describing weekly 

hypoglycaemia risk. We tested HYPO-CHEAT in a real world setting to evaluate change in 

hypoglycaemia.  

Methods 

HYPO-CHEAT aggregates individual CGM data to identify weekly hypoglycaemia patterns. 

These are visualised via a hypoglycaemia heatmap along with actionable interpretations and 

targets. The algorithm is iterative and reacts to anticipated changing patterns of hypoglycaemia.  

HYPO-CHEAT was compared to Dexcom Clarity’s pattern identification and Facebook 

Prophet’s forecasting algorithm using data from 10 children with CHI using CGM for 12 

weeks. HYPO-CHEAT’s efficacy was assessed via change in time below range (TBR).  

Results 

HYPO-CHEAT identified hypoglycaemia patterns in all patients. Dexcom Clarity identified 

no patterns. Predictions from Facebook Prophet were inconsistent and difficult to interpret. 

Importantly, the patterns identified by HYPO-CHEAT matched the lived experience of all 

patients, generating new and actionable understanding of the cause of hypos. This facilitated 

patients to significantly reduce their time in hypoglycaemia from 7.1% to 5.4% even when real-

time CGM data was removed.  

Conclusions 

HYPO-CHEAT's personalised hypoglycaemia heatmaps reduced total and targeted TBR even 

when CGM was reblinded. HYPO-CHEAT offers a highly effective and immediately available 

personalised approach to prevent hypoglycaemia and empower patients to self-care.  
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8.1 Introduction 

Congenital Hyperinsulinism (CHI) is a disorder of unregulated and unpredictable insulin 

secretion and is the commonest cause of severe and unpredictable hypoglycaemia in children. 

Hypoglycaemia (hypo) refers to blood glucose levels below the lower limit of normal and, in 

children with CHI, a pragmatic cut-off of 3.5mmol/L is frequently used1,73. Recurrent 

hypoglycaemia in early childhood from any cause can lead to severe long-term impairments 

such as epilepsy, hemiparesis and mental retardation75. In CHI, rates range from 15% to almost 

50%5,347. Hypoglycaemia has acute clinical impact and delayed consequential impact on 

quality of life and the healthcare economy6,76.  

Monitoring and review of glucose levels 

The current method of hypoglycaemia monitoring, detection and prevention for most patients 

worldwide is intermittent fingerprick testing. However, the lack of trend information provides 

little opportunity to truly predict and prevent episodes and thus there is opportunity for missed 

hypoglycaemia between tests. As a consequence of this, continuous glucose monitoring (CGM) 

has emerged as a popular option in recent years. CGM devices monitor interstitial glucose 

levels and report a value to a receiver device every five minutes. While CGM does improve 

time in range (TIR) for those with Type 1 Diabetes Mellitus (T1DM)93, there is no evidence of 

this in patients with CHI and its ability to predict the onset of impending hypoglycaemia is 

limited303. Currently available methods for users to retrospectively review CGM data (e.g. 

Dexcom Clarity) present large volumes of difficult to understand information with minimal 

interpretation and no clear actions to reduce hypos. While little attention has been paid to 

improving the interpretability and actionability of retrospective CGM review, there has been 

great interest in using modern algorithmics to acutely predict future glucose values and thus 

the onset of impending hypoglycaemia. 

Prediction of glucose (and thus hypoglycaemia) 

The majority of this research has focused on using machine learning (ML) and continuous 

CGM (in contrast to intermittent CGM: short periods of use to understand individual patterns 

and level of control) to predict a continuous glucose variable with a short prediction horizon of 

30 minutes18. This approach has multiple problems and so far has not demonstrated a reduction 

of hypoglycaemia in the real world. The limitations of this approach are discussed in detail in 

Section 2 but are briefly summarised here. These algorithms invariably focus on the use of 
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physiological measures to predict a continuous variable, ignoring the fact that patterns of 

hypoglycaemia are dependent on hour of day and day of week168,367,368 and thus are influenced 

by repetitive behaviours rather than physiology. Hypoglycaemia risk is assumed to be 

consistent across days and thus all days are treated equally despite the differences created by 

routines such as school, work, hobbies and exercise. These algorithms offer a prediction of 

future glucose values up to 30 minutes ahead18 but, given device lag and the time required to 

find and administer treatment (glucose), this information is rarely actionable as this is often too 

short a time to act to prevent a rapidly developing hypoglycaemia in children with CHI. 

Furthermore, no underlying reasons for the hypoglycaemia are provided and so no lessons are 

learnt for the future. Finally, these algorithms all require continuous CGM to function and are 

thus expensive and not available to the majority of patients worldwide121. Access to real time 

CGM data from device manufacturers is possible in certain cases but certainly far from 

straightforward for the majority of research teams outside commercial studies. This 

significantly restricts the ability to test algorithms in the real world329 and the vast majority are 

only evaluated in-silico with no assessment of their ability to reduce hypoglycaemia for real 

patients in free-living conditions.  

Our approach  

With no readily available way to easily interpret CGM data in an actionable format, and ML-

driven glucose forecasting approaches to prediction severely limited, a new and 

complementary approach was required. Based on formative work demonstrating predictable 

patterns in hypoglycaemia risk in patients with CHI367,368 we hypothesised that a novel 

approach that aggregates data to calculate discrete weekly hypoglycaemia risk and concisely 

presents this visually to patients and with limited but defined actions would be of great practical 

use (Figure 8.1).  
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Figure 8.1. Graphical representation of HYPO-CHEAT's approach. 

On the left is the Dexcom Clarity output for 4 weeks of CGM data from one user. No patterns 

have been identified and there are no suggestions to aid improvement nor actionable data. On 

the right is the HYPO-CHEAT output for this same period, demonstrating a succinct and clear 

visualisation of aggregated data, presented in a way to facilitate reflection and prompt simple 

action to improve outcomes. This visualisation would be accompanied by a suggestion to focus 

on Saturday morning and Sunday afternoon.  

 

This was the basis for the development of HYPO-CHEAT, which aggregates several weeks of 

individual CGM data to generate hourly risk of hypoglycaemia for each separate day in a week. 

This is visualised as a personalised hypoglycaemia risk heatmap along with text-based 

interpretations and actionable suggestions for reflection. This user-friendly visualisation is 

shown to patients who can use this data to proactively prevent hypoglycaemia in the upcoming 

weeks without the need for ongoing CGM. This iterative and proactive approach stands HYPO-

CHEAT apart from other hypoglycaemia prevention algorithms and available CGM review 

software which are frequently reactive in their provision of non-actionable data and thus fail to 

look forward to proactively prevent hypos. HYPO-CHEAT is designed to be either used alone 

when access to CGM is limited, or, in resource rich environments, as a complementary 

approach to recursive algorithms offering acute hypoglycaemia prediction.  

We performed a pilot evaluation HYPO-CHEAT in 10 patients with CHI who were using CGM 

for 12 weeks in free-living conditions. HYPO-CHEAT identified weekly patterns of 

hypoglycaemia and, when asked to reflect on hotspots, patients were able to identify repetitive 

behaviours associated with hypoglycaemia events. Neither Dexcom Clarity nor Facebook 

Prophet reliably identified these patterns. Despite the removal of CGM data from patients (by 

blinding the device), use of HYPO-CHEAT significantly reduced the time patients spent 

hypoglycaemic (time below range [TBR]).  



152 

 

Using a novel aggregation of data to weekly hypoglycaemia risk and the presentation of this in 

a concise and actionable format, our approach can reduce TBR for patients with CHI in addition 

to obviating the need for ongoing CGM and thus reducing cost (albeit still requiring a period 

of high cost CGM) and patient burden.  

8.2 Related Work 

The focus of this work intersects with other methods of hypoglycaemia prevention which 

primarily fall into one of three categories: Glucose Forecasting; Decision Support Systems; 

and provision and analysis of CGM data. The artificial pancreas is an effective area within 

T1DM for hypoglycaemia prevention but is not relevant to our patient population where the 

primary focus is hypoglycaemia and thus we do not discuss it. Structured education is an 

effective technique to prevent hypoglycaemia but an in-depth discussion of this is of limited 

use when discussing algorithmic approaches and is therefore not provided.  

8.2.1 Machine learning approaches 

Machine Learning has become a dominant force in hypoglycaemia prediction and prevention 

in recent years129 and is now the primary tool used in Glucose Forecasting and Decision 

Support Systems.  

Glucose Forecasting 

Glucose forecasting algorithms aim to prevent hypoglycaemia by continuously predicting a 

glucose value within the prediction horizon (normally 30 minutes) and thus alerting the patient 

to any values that may fall below a threshold. Simple time series models have shown good in-

silico performance145 and some data would suggest that these algorithms perform as well as 

those driven by ML149. However, ML now forms the bulk of this work and these algorithms 

come in one of three formats: physiological; data-driven; and hybrid18. Data-driven and hybrid 

are of interest to the computer science community, being driven by ML in a “black-box” 

approach to variable prediction. Various individual groups have had some success in using ML 

to predict a future glucose value in silico174,301 and, within the artificial pancreas environment, 

even in real subjects (under strict laboratory conditions with exercise and insulin as additional 

algorithmic inputs)369. However, a meta-analysis reported an overall sensitivity and specificity 

of 79% and 80% for prediction of hypoglycaemia in silico from all ML approaches17. It was 

concluded in both this meta-analysis and a further systematic review129 that current ML 

algorithms are currently not sufficiently accurate to be effective in a clinical setting.  
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Unfortunately, the vast majority of studies are conducted in silico rather than clinically328 and 

this is likely to enhance reported accuracy over real world testing due to the lack of real-world 

variables confounding glycaemic predictions172. Most importantly, the black box approach of 

ML precludes any reflection on the hypoglycaemia events335 and thus prevents the 

development of a better understanding of the patterns or causes of hypoglycaemia upon which 

the patient could act. These algorithms also ignore the human in the loop and assume that mere 

provision of data will prevent hypoglycaemia despite good evidence demonstrating that poor 

self-management (rather than a lack of information) is the commonest cause of 

hypoglycaemia339 and mere provision of data does not prevent events367.  

Decision Support Systems (DSSs) 

DSSs improve over glucose forecasting by recognising the human in the loop and aim to 

facilitate decision making using algorithmics based on various inputs and predictions. Various 

DSSs have reported successful outcomes but either require hugely complex inputs from 

users178 and/or are only evaluated in silico177. Both 182 and 179 showed real world reductions in 

hypoglycaemia with their DSSs, but showed no additional benefit from the addition of ML 

algorithmics, aptly demonstrating that what really helped to reduce hypoglycaemia was 

feedback and reflection.  

DSSs are plagued by the same issues as glucose forecasting algorithms, namely: poor 

interpretability; in silico testing; assumptions that all recommendations are followed without 

focusing on how to achieve this; and incomplete feature sets. Thus, Tyler and Jacobs conclude 

in their review of ML in DSSs, that “it has not yet been shown that a DSS can improve TIR in 

human studies”172.  

8.2.2 Provision and analysis of CGM 

Rather than use algorithmics to try and predict hypoglycaemia, it is possible to simply provide 

patients with a CGM device and assume that the availability of live data will translate into 

reduced hypoglycaemia. While there is evidence that continuous CGM improves TIR for those 

with T1DM on a large scale93,97, evidence is sadly lacking for those with non-hypoglycaemia 

disorders such as CHI303. From our prior work, we know that simple provision of CGM is not 

sufficient to prevent hypoglycaemia367, likely due to the multiple barriers patients face: lag 

time9; alarm fatigue10; and poor accuracy (Section 2.2.1).  
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Accuracy of CGM 

Accuracy is a particular problem for acute detection and prevention of hypoglycaemia and is 

significantly worse for those with non-diabetes hypoglycaemia89,370. Studies conducted 

exclusively on patients with CHI show mean absolute relative difference (MARD) of 17.9%14 

and 17.5%13 and a hypoglycaemia (<3.9mmol/L) sensitivity of only 43%13. Our own analysis 

has demonstrated a MARD of 19.3% and hypoglycaemia (glucose <3.5mmol/L) sensitivity of 

44% with the latest available device (Dexcom G6)371. This suggests that if patients rely solely 

on acute hypoglycaemia detection using CGM they risk more than half of hypoglycaemia 

episodes going undetected by the device. It is clear that this reactive system is not sufficient to 

keep patients safe and a proactive approach is required. The use of CGM as a phenotyping tool 

is less sensitive to suboptimal accuracy as the stress is placed on patterns rather than point 

accuracy. Since accuracy does not vary by time of day, patterns of hypoglycaemia can be relied 

upon to be a reasonable representation of the true picture with the added advantage of offering 

actionable data well ahead of the likely hypoglycaemia.  

Review of CGM data 

With extended use of CGM, it might be expected that patients would come to understand their 

patterns of hypoglycaemia and act to avoid these. Unfortunately, the currently available 

methods for reviewing CGM data are cumbersome, data heavy and do not synthesise data into 

easy to interpret, actionable outputs from which patients could inform behaviour change to 

prevent hypos. Additionally, CGM is often prohibitively expensive and rarely funded by health 

services for patients with CHI121. Thus, provision of continuous CGM in CHI is unfortunately 

beyond the reach of many patients.  

8.3 Our Approach 

We have outlined the problems with the current approaches to hypoglycaemia prevention. 

Below we describe our novel approach in patients with CHI and examine how this differs from 

the work discussed above.  

 

8.3.1 Experimental prototype of HYPO-CHEAT  

The fundamental problem with current approaches is that they are either reactive (ML based 

prediction) or provide an overwhelming amount of non-actionable data (CGM review). They 
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are blind to repetitive and predictable behaviour and assume that provision of information will 

automatically result in an improvement in outcomes. To ensure HYPO-CHEAT does not 

stumble into these pitfalls we outline our approach as follows: 

 Aggregation of data into discrete hourly buckets rather than prediction of a 

continuous variable. This allows for future prediction of hypoglycaemia and is 

proactive rather than reactive.  

 Recognition of patterns of hypoglycaemia that can be associated with behaviours 

and thus are amenable to reflection on their causes and provide an element of education.  

 Visualisation of a select amount of clear data which is easy to interpret and can be 

easily actioned by patients; this is in contrast to the large volumes of unedited data with 

no clearly associated actions provided by current CGM review websites.  

 An iterative system which not only adapts to changing patterns of behaviour and 

hypoglycaemia but expects and looks for this change following suggestions. 

 A system that is informed by CGM but does not rely on continuous CGM for long 

periods, thus reducing cost and patient burden as well as increasing the ease of real-

world evaluation.  

8.3.1.1 Generation of the best possible dataset 

Due to the imperfect accuracy of CGM, patients often show short fluctuations (one or two 

values representing five to ten minutes) below a hypoglycaemia threshold. These normally do 

not represent true hypos. In order to increase the proportion of hypoglycaemia analysed that is 

genuine, HYPO-CHEAT defines hypos as per the American Diabetes Association (ADA) 

criteria304: three consecutive CGM values below a threshold (>15 minutes) to commence a 

hypo and three above a threshold (> 15 minutes) to end the hypo. Once these criteria are met, 

then the first below-threshold value is taken as the start time and the first above-threshold value 

as the end time. 

To further increase the proportion of hypos that are genuine, all fingerprick glucometer values 

(higher level of accuracy) are compared with CGM hypos and if glucometer values lie within 

the time period of a CGM reported hypo but are above threshold then this episode is removed.  

8.3.1.2 Aggregation of data to detail time in hypoglycaemia 

As detailed above, there are multiple problems with trying to prevent hypoglycaemia using ML 

and CGM to predict a continuous variable based on physiological measures. HYPO-CHEAT 

overcomes each of these issues by approaching the problem from a novel direction.  

HYPO-CHEAT is designed to solely assess for hypoglycaemia. Glucose values above the set 

threshold can add unnecessary complexity and are therefore ignored. HYPO-CHEAT does not 
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attempt to predict a glucose value at any given time but rather aggregates data to detail 

frequency of hypos by every hour of every day. After the initial phenotyping period of several 

weeks HYPO-CHEAT has generated a profile of repeating hypo risk (by each hour of each 

day) for each patient which is likely to reflect individual behaviour rather than simple 

physiology. This digital phenotype also highlights periods that contain hypos every (or almost 

every) week and thus, given the repetitive nature of human behaviour, can be used to predict, 

and hopefully prevent, the following week’s hypos.  

8.3.1.3 Formulation of an appropriate window 

The next step was to understand the repeating window within which the aggregated data sits. 

Given the social construct of the seven-day week and the organisation of most people’s lives 

around this idea, it was felt that seven days was likely to offer a useful repeating window for 

assessment of hypoglycaemia risk. There is support in the literature for this hypothesis: 168 

reported that day of week was a strong predictor of glucose values. To ensure that this was the 

case for our data, we used Facebook Prophet time series forecasting to assess for patterns in 

CGM data from 10 patients.  

Facebook Prophet is designed to predict a continuous variable such as glucose value. To avoid 

a potential negating effect of high glucose values on low glucose values, we converted the input 

to percentage time hypoglycaemic/hour. This provided a more useful prediction than an 

average glucose value. The averaging effect of this algorithm results in a predicted negative 

percent time hypoglycaemic for some periods and is thus of limited use for predicting future 

periods of risk. However, its analytical power does provide good pattern recognition and thus 

allows us to identify repeating patterns. For all patients this showed a daily and weekly pattern 

to the data and confirmed our hypothesis (Figure 8.2). Thus, HYPO-CHEAT uses a weekly 

window for visualisation and iterative analysis of change to the aggregated data described in 

3.1.2.  
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Figure 8.2. Percent time hypoglycaemic (per hour) plotted and forecast for two patients 

by Facebook Prophet. 

These graphs demonstrate the daily and weekly patterns in percent time hypoglycaemic for two 

separate patients. Black dots indicate measured time hypoglycaemic per hour (median 0, hence 

the black line at this level); the dark blue line indicates the forecast of percent time 

hypoglycaemic and the light blue area represents uncertainty intervals. The dark blue forecast 

line shows a clear spike each day with a broader, repeating pattern every seven days (indicated 

by red lines and confirmed by seven day gaps between the dates on the x axis), confirming a 

weekly pattern of percentage time hypoglycaemic. What can also be appreciated from this 

basic analysis in both patients is the difference between Friday and Saturday (higher risk) and 

Sunday to Thursday (lower risk).  

 

This approach has multiple benefits. HYPO-CHEAT is fundamentally based around the idea 

that humans are creatures of habit and will engage in regular activities that increase 

hypoglycaemia risk at certain time points in the week (e.g. exercise, prolonged fasting, 

repeating meal habits)372,373. These may not be at the same time each day (e.g. many people’s 

routines will be different on a Tuesday to a Saturday) and thus are missed if one does not 

consider each day as a different entity. HYPO-CHEAT considers all days as individual periods 

and thus can spot patterns that occur at specific times on specific days that would be missed 

otherwise. Provision of a risk profile for the entire upcoming week allows patients to plan 

sufficiently in advance to prevent their hypo and also allows for reflection on the causes of 

these repeated hypos. The final advantage is one of cost and patient burden: after a period of 

CGM sufficiently long to generate a reliable phenotype, the CGM can be discontinued and thus 

reduce both patient burden and healthcare costs. Future periods of phenotyping may be required 

but will always be short term. This significantly increases the practical utility of HYPO-

CHEAT over algorithms that require continuous CGM.  

8.3.1.4 Fine tuning of risk profile and provision of targets 

Hypos do not all pose the same risk: in those in which the glucose drops to a lower level (deeper 

hypo), the risk to the patient is higher374. Therefore, after discussions with the clinical team, it 
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was felt to be appropriate to add a depth multiplier to the percentage time hypo for each hour 

of each day. After discussion it was decided that {THRESHOLD – value +1} represented the 

most appropriate increase in severity for a depth multiplier. The way the multiplier works 

(Figure 8.3) is: for each hour containing any hypoglycaemia, the mean glucose value is 

calculated and subtracted from the threshold value. 1 is then added to prevent a situation of 

negative multipliers (e.g. 3.5 – 4.1 = -0.6). This number is multiplied by the percentage time 

hypoglycaemic for that hour (Figure 8.2).  Thus, the degree to which the hypo drops below the 

hypoglycaemia threshold results in hypos with lower values being allocated more importance 

as the depth multiplier is a larger number.  

HYPO-CHEAT subsequently evaluates every overlapping three-hour bucket (e.g. 01:00-

03:59H, 02:00-04:59H, 03:00-05:59H) within the seven day window to ascertain the areas with 

the highest amount of hypoglycaemia (percent time hypo x depth multiplier) (Figure 8.3). 

Three-hour buckets were chosen after a trial of one, three and five hour buckets in consultation 

with users. Odd numbers were used so that the central hour could be used as the bucket label. 

One hour buckets provided very little smoothing effect and patterns were difficult to detect as 

individual buckets did not reliably capture repeating behaviours. Five hour buckets offered too 

much smoothing and it was harder to attribute hypos to single activities or behaviours. Three 

hour buckets more reliably capture repetitive behaviours where times may vary slightly and be 

missed by one-hour buckets (e.g. start time 07:50 one week but 08:05 the next) but not be so 

large as to capture multiple behaviours. Thus, each bucket represents the risk from a limited 

activity profile and offers more utility on reflection of the causes of repeated hypoglycaemia.  
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Figure 8.3. Visualisation of depth multiplier and the three-hour buckets. 

a) Shows the percentage time hypoglycaemic for each hour of each day. b) Demonstrates the 

way that mean glucose per hour is used as a depth multiplier to result in a compound risk 

shown in c) which shows coloured boxes which each represent a new bucket containing the 

composite hypoglycaemia risk for each containing hour. A mean is then computed for each 

bucket with the median hour providing the label for the bucket and its location on the heatmap. 

Thus, the periods of highest hypoglycaemia risk are ascertained, and an element of smoothing 

can be achieved across the heatmap.  

 

A separate function ascertains which of the buckets contain a hypo every week and this is 

combined with the areas of highest risk to produce a set of buckets, which pose the greatest 

risk to patients based on a composite of time spent hypoglycaemic, depth of hypoglycaemia 

and frequency of recurrence. Each bucket is then compared with corresponding buckets on 

other days (+/- 2 hours from the median). Areas of outstanding high risk compared with other 

days at the same time are added to the list of targets to be presented to the user. Areas of 

outstanding low risk are also highlighted if there is >50% less hypoglycaemia on one day than 

all other days at the same time. This results in the significant outliers being reported to users 

who then can reflect on what is either causing or preventing hypos on that/those particular 

day(s) compared with other days at that time.  

Any one-off hypos that represent a certain percentage of the highest repeat risk areas (set at 

50% for our evaluation) are also reported. A cut off of 50% was decided upon after evaluation 

of multiple levels from 20-80%.  When the percentage was set very low there were too many 

one-off hypos to report and they distracted from the importance of the repeat hypos. At too 

high a level, no one-off hypos were ever reported. The level of 50% provided a point at which 

the occasional hypo would be reported but very rarely more than two. A cutoff of two one-off 

hypos was also set for reporting to users. These are reported separately to repeat hypos and 
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allow for reflection on a recent serious hypo but also to highlight this new area to try and avoid 

it becoming a repeat risk.  

8.3.1.5 Visualisation of risk 

A vital step of HYPO-CHEAT is the powerful way in which it presents the above information 

to users in the form of an easy to interpret heatmap. On a graph representing the week, this 

function allocates repeated periods of hypo risk a red marker on the heatmap, where the shading 

indicates the compound severity of event as discussed above (e.g. Figure 8.4). The heatmap 

reads across in days from left to right and down in hours from midnight to 23:00. This order 

was chosen to mirror popular online and digital calendars and thus aid quick interpretation by 

users.  

 

Figure 8.4. An example of a heatmap for Pt5 generated over a period of four weeks (4w). 

This heatmap shows areas of repeat risk with darker areas representing higher compound risk 

(based on frequency and depth of hypos). Areas of repeat risk between 01:00 – 02:00 on 

Wednesday as well as between 0800-0900 on Thursday and Friday are quickly appreciated as 

the highest risk areas.   
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Coloured markers are added to those areas in which hypos have occurred every (or most) 

week(s) since the previous analysis to draw even more attention to these areas of repeat risk 

and add to the ease of pattern identification for the user (Figure 8.5).  

 

Figure 8.5. The addition of repeat markers to the heatmap for the same patient. 

Two of the three areas which previously appeared as the highest risk have received a repeat 

marker but that on Wednesday at 01:00-02:00 has not. This indicates that this risk area does 

not repeat every week and is based on fewer hypos. A new area has been identified as repeating 

every week (Monday 09:00). Thus the areas upon which the user is asked to concentrate may 

have shifted away from Wednesday 01:00-0200 and onto Monday in addition to Thursday and 

Friday around 08:00 – 09:00.  

 

To avoid the loss of any information, any hypos which have not been seen to repeat are also 

represented on the same graph in blue (Figure 8.6). The maximum depth of colour for both red 

and blue is determined by the maximum compound hypo risk found in either category. This 

way, repeat areas (red) are likely to be primarily brought to the user’s attention but any very 

severe one-off hypos (blue) will also be clear. This differentiation between repeat and one-off 

hypos allows the user to focus on areas of repeat (in red) without losing the important 

information about one-off hypos. In many cases this can aid pattern finding as patients may 
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have repeat hypos at a certain time on most days. Over a short monitoring period, a red risk 

area may not be created but a blue (and red) horizontal band of risk would be clear at that time 

of day across the week (e.g. the period 8:00 – 9:00 in Figure 8.6). This would not be visible if 

one-off hypos were excluded, and a pattern could be missed.  

 

Figure 8.6. A fully complete heatmap for Pt5. 

The addition of blue areas representing one-off hypos has contributed novel insight for the 

patient. Where before, one would have assumed that 01:00-03:00 was relatively safe other than 

on a Wednesday, it is now clear that the user often has hypos at this time but on variable days 

of the week. The addition of blue does not detract from the clear areas of highest risk on 08:00-

09:00 on Monday, Thursday and Friday. However the user can now understand that their 

patterns are primarily determined by time of day (08:00-09:00) but with an increase in this 

risk on certain days (Wednesday and Thursday) and a reduction on other days (Tuesday and 

Wednesday). This composite graph thus offers clear targets for focus but with additional 

information on which the user can reflect if they wish.  

 

8.3.1.6 Iterative component (assessing for improvement and providing feedback) 

HYPO-CHEAT is not a static algorithm but has iterative functionality to allow for comparison 

of varying time periods. Once users have undergone an initial monitoring period with CGM to 

generate a first digital phenotype, then this will be adapted as they respond to targets and 
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suggestions. Clear, text-based interpretation and feedback are also provided to facilitate 

understanding of what is indicated in the heatmap. HYPO-CHEAT is designed to be used 

periodically to allow adequate time for significant changes in the weekly risk profile to have 

occurred. At each interaction with HYPO-CHEAT the user is provided with an evaluation of 

how their risk profile has changed: Previous targets are assessed for the proximal outcome of 

fingerprick tests in these times and the more distal outcome of a change in composite 

hypoglycaemia risk. Users are praised for having undertaken fingerprick tests during target 

times and also if hypoglycaemia risk has decreased during targets. A comment is provided on 

whether the previous targets remain as targets or have been replaced by new time periods.   

Severe, one-off hypos highlighted at the last interaction with HYPO-CHEAT are evaluated to 

assess if they have become repeats. If this is the case, then attention is drawn to this, and the 

user is asked to reflect on what has changed and why hypos in this period have worsened.   

HYPO-CHEAT does have the capacity to function simply on fingerprick values after the initial 

period of CGM phenotyping. In this situation, hypos will be cleared from the heatmap via 

targeted fingerprick tests that demonstrate repeat values above the threshold at times of 

previous risk. New areas of hypoglycaemia will be added via a system of fingerprick checks at 

suggested times that will slowly roll forward. However, for this pilot study, to ensure as much 

information was obtained as possible, all assessments of change in hypos were based upon 

ongoing CGM data since the last HYPO-CHEAT interaction. 

8.4 Evaluation 

It was vitally important to us that HYPO-CHEAT was evaluated on real data and used with 

real patients in free-living conditions. Only by doing this could we truly evaluate if it was 

effective and identify areas for improvement and development. We thus designed a pilot project 

to test HYPO-CHEAT with 10 patients with CHI.  

8.4.1 Methods 

Patients with CHI were approached through the NORCHI (Northern Congenital 

Hyperinsulinism) highly specialised service at Royal Manchester Children’s Hospital 

(RMCH). Patients were eligible for inclusion if they:  

 had a confirmed diagnosis of CHI;  

 were receiving medication for treatment of CHI;  

 were under the age of 18 years.  
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Exclusion criteria were:  

 already using a CGM device;  

 likely to be able to stop treatment for CHI within the next 12 weeks;  

 unable to attend 4 weekly appointments at RMCH.  

 

Clinical leads were asked to suggest eligible patients for inclusion, and they were contacted via 

telephone by the research lead. Patient numbers were not based on any predetermined power 

calculations but as per feasibility for a rare disease in a pilot study. As this system has not been 

tested previously, it was not known what reduction in hypoglycaemia could be expected so any 

power calculations would have been ill informed and inaccurate.  

All families attended the clinical research facility at RMCH where an initial CGM device 

(Dexcom G6) was attached and training on device usage was given. The study outline was 

explained to patients, as illustrated in Figure 8.7. Families were also provided with a Contour 

Next One glucometer and (in addition to targeted fingerpricks suggested later in the study by 

HYPO-CHEAT) were asked to undertake at least two fingerprick glucose tests per day to allow 

for an assessment of CGM device accuracy at the end of the study. For clinical safety, patients 

were asked to perform a fingerprick test each time the CGM device reported hypoglycaemia 

when unblinded (see below).  
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Figure 8.7. Outline of the study structure demonstrating the two groups separated by 

presence (left) or absence (right) of initial hypoglycaemia (TBR less than or more than 

1%) in the first blinded period. 

Periods during which the CGM device was blinded (0-4w and 8-12w) are denoted in blue and 

the period of unblinded CGM use (4-8w) is denoted in green. 

 

For the first four weeks of the study the CGM device was blinded to the users, so they were 

unable to see any readings. This period was designed as a baseline assessment of patients’ 

glucose control and devices were blinded to ensure that patients were behaving and treating 

hypos as close to their normal as possible. At Week 4 the device was unblinded for the 

following four weeks, so patients had access to real time readings, as well as the standard 

alarms on a Dexcom G6 (including low glucose and urgent low soon). At Week 8 families were 

invited to a clinic appointment to use HYPO-CHEAT. They were provided with a single A4 

PDF output of HYPO-CHEAT as well as being given a login to Dexcom’s Clarity software 

and time to review their data. Dexcom’s Clarity software is a standard interface provided by 

Dexcom for users to explore their glucose history and make changes to management. Initially, 

no explanation nor instruction was given on how to use either. The study team compared 

HYPO-CHEAT’s analysis with that of Dexcom Clarity (which has a dedicated section for 

patterns it has identified) and Facebook Prophet time series analysis 

[https://facebook.github.io/prophet/]. Ability to spot patterns of hypoglycaemia was compared 

between all three. These patterns and outputs from HYPO-CHEAT and Dexcom Clarity were 

discussed with families.  
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As Facebook Prophet is a forecasting algorithm and not designed for patient use, this output 

was not discussed with families but instead interpreted by the research team. Facebook Prophet 

is primarily designed to forecast a continuous variable and thus an initial use of Facebook 

Prophet where glucose values were used as the input did not yield interpretable results. Because 

we were not interested in the continuous variable, and to offer a fair comparison with our 

algorithm, we converted the input for Facebook Prophet to an hourly percentage of time spent 

hypoglycaemic rather than glucose values. This allowed the forecast to be of time spent 

hypoglycaemic (much like that of HYPO-CHEAT) rather than a continuous glucose value. 

This comparison offered an assessment of whether a ML algorithm would be able to identify 

more or less hypoglycaemia patterns than HYPO-CHEAT.  

Finally, the CGM device was blinded again, and patients underwent a final four weeks of 

monitoring without access to real time data but with the knowledge of the previous eight weeks’ 

data from HYPO-CHEAT. At the end of the monitoring period, analysis was undertaken to 

compare the time spent hypoglycaemic between each period (blinded – UNblinded – 

REblinded). All periods were conducted under free-living conditions as patients went about 

their daily lives. No restrictions or requirements were placed upon patients other than to 

continue using CGM devices and provide regular SMBG checks.  

8.4.2 Results 

The target for recruitment was ten patients. Ultimately 12 families were approached. One 

family declined to take part due to the travel requirements of the study. A second patient 

declined, citing fear of painful CGM sensor insertion.  

One patient withdrew from the study at the end of week eight citing problems with painful 

sensor insertion and overwhelming disturbance by CGM alarms. Of the remaining patients, 

there were five who demonstrated significant hypoglycaemia (TBR >1%) in the initial four-

week period (mean TBR 7.1%) and four who were almost completely free of hypoglycaemia 

(mean TBR 0.2%). HYPO-CHEAT was used with all nine patients but for those with no initial 

hypoglycaemia there was almost no hypoglycaemia data to aggregate and analyse and thus 

minimal utility of either HYPO-CHEAT or any other approach to prevent hypoglycaemia.  

8.4.2.1 Pattern identification 

The primary function of HYPO-CHEAT is a novel aggregation of CGM data into discrete 

weekly buckets and the presentation of this to patients in an actionable form. There was a clear 
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pattern of hypoglycaemia visible for all five patients with initial hypoglycaemia and these are 

discussed in turn. Full results are reported for the first patient (Patient 2) to orientate the reader 

to the method of result reporting. Individual results for other patients are provided in brief 

within this section and in full detail in Appendix 8.1.  

Patient 2 

Patient 2’s family had not noticed any patterns in hypoglycaemia over the previous four weeks 

of blinded CGM use and 4 weeks of unblinded CGM use. HYPO-CHEAT highlighted a clear 

hotspot on Sunday around 1pm for this patient (Figure 8.8). This hypo was repeated every week 

during this period. On being shown this output, the parents immediately identified that Patient 

2 had a longer and later than usual nap on Sunday and, on reflection, realised that they did often 

wake up from this with a hypo.  

When interrogating Facebook Prophet’s analysis, Sunday around 1pm is also identifiable as a 

period of high risk (Figure 8.9). However, from this output it is not possible to ascertain how 

long this hypo normally lasts and the risk also appears to continue into Monday which, in 

reality, it does not (no repeats on Figure 8.8 on Mondays). No patterns were identified by 

Dexcom Clarity (Figure 8.10). 
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Figure 8.8. HYPO-CHEAT heatmap for Patient 2 (Pt2) at the end of the UNblinded 

period of four weeks (4w). 

 

 

Figure 8.9. Facebook Prophet output for the same input as Figure 8.8. 

This algorithm predicts a continuous variable which in this case is based on percentage time 

hypoglycaemic per hour. The y axis reports a predicted percentage time hypoglycaemic. The 

obvious problem with a negative percentage time is clear but its use here is to simply spot the 

highest risk areas rather than absolute numbers. a) shows Sunday as the highest risk day and 
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b) shows 1pm as the highest risk time. The risk seems to carry forward into Monday, which in 

reality is not true. 

 

Figure 8.10. A composite Dexcom Clarity output for Patient 2 for the same four week 

period as Figure 8.8 and Figure 8.9. 

This screenshot (combined from two separate screenshots to display more information) 

displays the data available in the Patterns tab (text indicating no patterns) and an example of 

data from the Overlay tab (1 week shown at a time). Because the overlay only displays one 

week at a time, it cannot be appreciated that this patient suffers from more hypos on a Sunday 

afternoon despite the absolute consistency of this throughout the monitoring period (Figure 

8.8).  

 

Patient 3 

Patient 3 and their family had not noticed any patterns in their hypoglycaemia. Following 

review of HYPO-CHEAT, clear behavioural causes for hypoglycaemia were identified. 

Dexcom Clarity reported no patterns and Facebook Prophet’s output was non specific. More 

details, as well as visualisations, are provided in Appendix 8.1.  

Patient 5 

The family of Patient 5 had spontaneously noticed early morning hypoglycaemia but no 

distinctive patterns. On review of HYPO-CHEAT they identified later parental waking as 

contributing to worse early morning hypoglycaemia for patient 5 on certain days. Dexcom 

Clarity and Facebook Prophet output, as well as more HYPO-CHEAT data and visualisations 

are provided in Appendix 8.1.  

Patient 8 

Given the large amount of hypoglycaemia experienced by Patient 8, it is not surprising that 

they had not noticed any distinct patterns. After review of HYPO-CHEAT, this family 
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identified behavioural causes for the hotspots on 2 separate occasions. Dexcom Clarity and 

Facebook Prophet output, as well as more HYPO-CHEAT data and visualisations are provided 

in Appendix 8.1.  

Patient 9 

Prior to review of HYPO-CHEAT, Patient 9 was adamant that no patterns of hypoglycaemia 

were present. However, after being shown their heatmap, Patient 9 identified clear behavioural 

causes for recurrent hypoglycaemia. These, along with Dexcom Clarity and Facebook Prophet 

outputs, are detailed in Appendix 8.1.  

Other patients 

For the remaining patients there was little to compare as the amount of time spent 

hypoglycaemic was so low, no patterns were identifiable (or likely present). Initial TBR was 

0.2% for these patients and, while this did rise to 1.6% during the UNblinded period, this was 

artificially elevated by a single patient who was unwell for a week, which resulted in a large 

numbers of hypos. Excluding this episode resulted in a mean TBR of 0.4% and thus the lack 

of repeatable patterns was maintained. Therefore, the analysis is restricted to those patients 

with initial hypoglycaemia and thus patterns that could be identified.  

8.4.2.2 Change in hypoglycaemia 

Analysis of time spent hypoglycaemic (time below range [TBR]) was the most distal outcome 

measured in this study and is summarised in Figure 8.7 and reported below. Proximal outcomes 

of behaviour change are reported in a separate paper focused on the behavioural change aspects 

of HYPO-CHEAT375.  

Of the nine patients who completed the study, five had initial hypoglycaemia (TBR >1%), with 

mean (range) TBR in the blinded (baseline) period of 7.1% (1.9 – 13.6). Following use of 

HYPO-CHEAT devices were reblinded for the final period and patients had no access to real 

time data. During this period, TBR was 25% below baseline levels at 5.4% (2.8-11.0) and was 

significantly elevated by one patient who had spent a week in hospital very unwell with 

recurrent hypoglycaemia.  

For the four patients with almost no hypoglycaemia during the initial blinded (baseline) period 

the mean TBR was 0.2%. While these patients were given access to HYPO-CHEAT, it was of 

little value as it is designed to prevent hypoglycaemia and for these patients there was little to 

prevent. Throughout the course of the study, however, the TBR for these patients increased and 
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during the final period was 3.2%. This increase in time hypoglycaemic is possibly reflective of 

patients having very tight control initially due to a feeling of being monitored and then possibly 

becoming complacent as the study progressed. It provides a useful comparison group to see 

how TBR changed when HYPO-CHEAT was not used and contrasts very starkly with the 

decrease in TBR seen in those who used HYPO-CHEAT.  

8.4.2.3 User feedback on HYPO-CHEAT and Dexcom Clarity 

Other than one parent, who found the volume of data on Clarity to be helpful, all families 

reported that Clarity provided too much information and it was very difficult to understand 

what their patterns were and what actions they should take to reduce their hypos. All families 

found utility in HYPO-CHEAT, preferring it to Dexcom Clarity as it was able to summarise 

their data and inform them if things were improving or not. Most importantly, families 

appreciated that following a quick read of HYPO-CHEAT’s output they were able to reflect on 

behaviour and determine actions that could be taken to reduce the number and severity of 

hypos. The concentration of all the CGM info and its trends into a single A4 page was 

appreciated by families who liked the ability to quickly understand how things were going and 

what still needed to be done.  

 

Families particularly valued the separation of one-off and repeated hypos in the heatmap as 

this allowed them to consider behaviours that were contributing to repeat hypos. They valued 

the repeat green and yellow markers for the same reason. Finally, many of the families 

appreciated the provision of text-based interpretation and recommendations for improvement 

as it reduced the requirement for personal interpretation of a graph. 

8.5 Discussion 

We have outlined the development of HYPO-CHEAT, a novel approach to the detection, 

interpretation and visualisation of hypoglycaemia for patients with Congenital 

Hyperinsulinism which avoids the pitfalls faced by ML algorithms trying to predict a 

continuous glucose variable. At the base of the difference between HYPO-CHEAT and other 

algorithms is the use of the week as a discrete repeating unit. When days and hours are used as 

the repeating units, larger patterns are missed due to averaging effects. In most people, each 

day will not be the same as the others in the week and thus a daily repeating pattern is of limited 

use in most cases. This can be seen in the results above for HYPO-CHEAT, where only 1 out 
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of 5 patients had a daily repeating pattern. All other patients had a weekly repeating pattern 

where hypos were clearly linked to behaviours performed on certain days of the week.  

We compared HYPO-CHEAT’s ability to evaluate CGM data and identify hypoglycaemia 

patterns with that of Dexcom’s Clarity software and Facebook Prophet time series forecasting 

algorithm. In all the patients who demonstrated significant TBR, HYPO-CHEAT was able to 

identify patterns of hypoglycaemia risk by interpreting each day of the week as a separate 

entity. In every case, the identified patterns correlated with the lived patient experiences and, 

thanks to HYPO-CHEAT’s simple visualisations and text-based explanations, families were 

able to identify specific behaviours causing, or contributing towards, these areas of risk. More 

importantly, this enabled them to take action to limit further events, potentially leading to 

improved outcomes in the long-term for patients. In each of these cases, families had not 

identified these patterns without the visualisation and prompting provided by HYPO-CHEAT.  

Dexcom’s Clarity software was unable to identify any patterns of hypoglycaemia. Clarity’s 

inability to identify these patterns lies in its assumption that all days are the same and thus, if 

hypos are happening at different times on different days (as is to be expected when hypos are 

linked to behaviours such as eating, fasting, exercising etc), these are not identified as a pattern 

as they do not repeat frequently enough.  

Facebook Prophet time series forecasting algorithm offered variable results in the successful 

identification of hypoglycaemia risk patterns. When a hypo was only seen at one time of day 

(such as Patients 2 and 5) it was possible to ascertain this time of risk, as well as the days on 

which this was worst, from the algorithm’s output. However, if differing days showed hypos 

at different times (such as in Patients 3, 8 and 9) then the averaging effect of this algorithm 

meant that interpretation of the output either resulted in an incomplete picture (Patient 9 

showed no Sunday afternoon risk) or a completely incorrect picture (Patient 3’s output 

appeared to show Monday as a high risk at three times of day despite no hypos recorded on a 

Monday). Facebook Prophet time series forecasting was used to offer a comparison to HYPO-

CHEAT and assess the differing abilities of the algorithms to identify patterns. However, 

Facebook Prophet is not designed for patient use and its output is therefore often difficult to 

interpret for non-expert users. As such, HYPO-CHEAT offers a clear advantage to patients.  

A further advantage of HYPO-CHEAT is that, as hypos are visualised over the week, they can 

be associated with specific behaviours and those behaviours can be adapted. All patients were 

able to identify the behaviours contributing to their hypoglycaemia hotspots and thus had 
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targets to action. This is cemented by HYPO-CHEAT providing each patient with text-based 

explanations of three targets for improvement before the next review and thus relieving the 

patient of the need to interpret graphs and charts if they do not want/are not able to do so. 

Neither Dexcom Clarity nor Facebook Prophet provide the relevant information that patients 

require to make decisions around their hypoglycaemias.  

A proximal outcome of this pattern recognition was the improvement in TBR in those five 

patients who showed initial significant TBR and thus used HYPO-CHEAT for its intended 

purpose. The fact that TBR increased in those who did not use HYPO-CHEAT (due to very 

minimal initial hypoglycaemia) strengthens the argument that it is the use of HYPO-CHEAT 

which allowed patients to take control of their glucose profiles and prevent hypos from 

occurring. This is the very first demonstration of a CGM-informed algorithm effectively 

reducing hypoglycaemia in patients with CHI. To the best of our knowledge this is also the 

only hypoglycaemia prevention algorithm not reliant on continuous CGM that has been shown 

to effectively reduce hypoglycaemia in free-living conditions.  

HYPO-CHEAT has also been designed with cost saving in mind. CGM is expensive and not 

available to the majority of patients worldwide121. For this pilot, HYPO-CHEAT adapted each 

patient’s heatmap based on CGM, but the final outcomes were improved despite no access to 

CGM. Future steps will extend HYPO-CHEAT further to include prompts and remove the 

requirement for long term CGM to remain iterative and up to date. Once HYPO-CHEAT has 

built a stable phenotype of a patient’s hypoglycaemia profile, CGM will be removed, and 

patients will be directed to undertake fingerprick glucose testing at particular times of day 

corresponding to periods of high risk. This will interact with and update the heatmap and 

feedback and targets will be provided. Intermittently, patients can undergo a period of CGM 

based re-phenotyping to ensure the model is as up to date as possible. This method will generate 

huge cost savings as well as being available to a wider range of communities and healthcare 

settings rather than being restricted to economically advantaged healthcare systems. In the 

future, we intend to expand this approach to work with patients with T1DM and overcome the 

limitations currently in place to prevent this use (Section 8.6).  

8.6 Limitations 

HYPO-CHEAT addresses a lot of the issues inherent in preventing hypoglycaemia using ML 

and long-term CGM. However, there are inevitable limitations to our approach. The first is 

that, because HYPO-CHEAT is built around patterns, this model will not alert patients to 
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impending and unexpected hypoglycaemia outside of recurrent behavioural patterns. This is a 

limitation that, it could be argued, is not faced by acute, continuous variable prediction 

algorithms. However, we believe that, with sufficient engagement with HYPO-CHEAT, 

patients will learn about behavioural triggers of hypoglycaemia and thus, unexpected hypos 

will become less common as patients change their behaviour appropriately. Ultimately, it is 

assumed that HYPO-CHEAT will offer a complementary approach to that of recursively 

updated dynamic prediction models (where ongoing CGM is available) so that patients will 

benefit from both behavioural pattern information as well as acute predictions. In situations 

where access to CGM is limited, HYPO-CHEAT offers a practical approach to maximise utility 

across a large patient group.  

The second limitation of HYPO-CHEAT is that it still relies on a period of relatively expensive 

CGM wear to establish an initial digital phenotype. While the requirement for CGM is much 

lower than most alternative models, it is not zero and will potentially prevent the use of this 

approach in very low-income settings. Alternative models all require real time CGM (live 

reporting of values) to function, but HYPO-CHEAT could be initially informed using non-real 

time CGM (glucose measured continuously but only seen by the user when the device is 

scanned) such as the Freestyle Libre and thus make further cost savings.  

Our evaluation of HYPO-CHEAT is somewhat limited by the lack of a true comparator group. 

While the patients with no initial hypoglycaemia did offer a useful comparison, they were not 

randomly selected, and they did have access to HYPO-CHEAT if desired (although no patterns 

would be recognised on such limited hypoglycaemia data). Future studies should randomise 

patients to HYPO-CHEAT or alternatives such as: simple CGM use; CGM use with clinician 

review; CGM use with patient review of Dexcom Clarity reports. Longer studies are also 

required to assess if TBR remains below baseline or if this effect reduces, or indeed increases, 

with time.  

Finally, there is a limitation in the wider application of HYPO-CHEAT as it currently stands. 

HYPO-CHEAT is designed for patients with CHI who have recurrent hypoglycaemia but do 

not have to worry about high blood glucose (hyperglycaemia). If HYPO-CHEAT were to be 

extended to use in conditions such as diabetes, where hypo and hyperglycaemia are 

considerations, then significant adaptations would be required.  
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8.7 Conclusions 

Current methods of hypoglycaemia prevention focus on the prediction of a continuous glucose 

value via ML and continuous CGM. Due to the multiple problems and reactive approach of 

this method, it is yet to show any real reduction in hypoglycaemia for patients in free-living 

conditions. HYPO-CHEAT is a novel approach to hypoglycaemia prevention that uses 

distinctive algorithmics to aggregate CGM data to discrete buckets and generate actionable 

visualisations and targets designed to proactively reduce hypoglycaemia for patients in the real 

world. A pilot of HYPO-CHEAT in 10 patients shows significantly improved performance 

over existing algorithms in the detection of patterns of hypoglycaemia that patients can act 

upon and thus have an effect. This pilot also shows the first reduction in hypoglycaemia using 

an algorithm not reliant on continuous CGM. Because our approach is both effective and cheap, 

HYPO-CHEAT has the potential to make a significant difference to patients in a short time 

frame. Related work describes the outcomes from the use of HYPO-CHEAT in terms of the 

more proximal outcomes of behaviour change375. Work is already underway to add further 

functionality for HYPO-CHEAT to be used with simple fingerprick monitoring along with 

more iterative analysis and assessment of and adaption to irregular changes in behaviour. 

Prompt and nudge technologies will be incorporated into future versions of HYPO-CHEAT 

and new patients groups will be engaged to assess the utility in varying pathologies. Finally, it 

is envisioned that, rather than an alternative approach, HYPO-CHEAT will be used as a 

complementary system alongside a recursive predictive algorithm and offer the best of both 

worlds.  

Appendix 8.1 

Patient 3 

Patient 3 and their family had not noticed any patterns in their hypoglycaemia during the 

blinded or unblinded periods of monitoring. HYPO-CHEAT showed a clear hotspot on 

Saturday morning at 10am and a lesser hotspot on Sunday early evening (Figure 8.11). When 

reviewing this, the family realised that Patient 3 always woke later on a Saturday compared to 

every other day, as Monday-Friday they had school and on Sunday they played football in the 

morning. Sunday morning football was identified as not only protective against morning 

hypoglycaemia (because they had to get up early) but likely contributory towards the afternoon 

hypoglycaemia.   
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It is impossible to appreciate the different time of day posing the highest risk on different days 

from Facebook Prophet analysis and Monday is attributed risk which in reality does not exist 

(Figure 8.12). No patterns were identified by Dexcom Clarity.  

 

Figure 8.11. HYPO-CHEAT heatmap for Patient 3 (Pt3) at the end of the UNblinded 

period. 
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Figure 8.12. Facebook Prophet output for the same input as Figure 8.11. 

 

Patient 5 

When asked if Patient 5 had any patterns to their hypoglycaemia, their family stated that they 

had some hypos in the morning but no pattern. HYPO-CHEAT showed that Patient 5 regularly 

had hypos every morning of the week apart from Sunday (Figure 8.13). This was clearly worse 

on Friday and Saturday mornings. On reflection, Patient 5’s parents acknowledged that they 

normally woke later on Friday and Saturday and thus they received their breakfast later on 

those days and this was likely contributing to the high incidence of hypoglycaemia on those 

days. Sunday morning was identified by HYPO-CHEAT as an outlier and parents were asked 

to reflect on what they did differently on either Sunday morning or Saturday night.  

Facebook Prophet’s algorithm identified Saturday at around 7am as a risk spot but attributed 

similar risk to Friday and Sunday (Figure 8.14) which is misleading and inaccurate. Dexcom’s 

Clarity software did identify a pattern but this was of hyperglycaemia (high blood glucose) 

rather than hypoglycaemia (Figure 8.15). This demonstrates one of the issues inherent in using 

software not designed for a single and specific purpose (e.g. to prevent hypoglycaemia). 

Dexcom Clarity did not identify any patterns of hypoglycaemia during this period.   
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Figure 8.13. HYPO-CHEAT heatmap for Patient 5 (Pt5) at the end of the UNblinded 

period. 

 

Figure 8.14. Facebook Prophet output for the same input as Figure 8.13. 
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Figure 8.15. Dexcom Clarity Pattern tab for Patient 5 for the same four week period as 

Figure 8.13 and Figure 8.14. 

For this patient, Dexcom Clarity did identify a daily pattern of high blood glucose but failed 

to identify any patterns of hypoglycaemia (the hypoglycaemia following high blood glucose 

can be appreciated on the day highlighted in this Figure). Patient name and date have been 

redacted to preserve confidentiality. 

 

Patient 8 

Patient 8’s family had not identified any patterns of hypoglycaemia over the previous unblinded 

monitoring period. Given the large number of hypos experienced by this patient (11-14% of 

the time) it was understandable that parents had not identified patterns. However, some patterns 

were visible when viewing HYPO-CHEAT’s output (Figure 8.16). The standout areas of risk 

were Tuesday around 4pm and very early on Sunday morning. When showed this output, the 

patient themselves identified that they did physical education lessons (PE) at school on Tuesday 

afternoon and then walked home and this was likely causing this hotspot. Then patient’s parents 

identified that mealtimes were very different on a Saturday, and this was likely causing the 

hypos overnight Saturday into Sunday.  

The Facebook Prophet output is hard to interpret (Figure 8.17) and certainly does not show 

Tuesday at 4pm and Sunday at 1am as clear hotspots. No patterns were identified by Dexcom 

Clarity. 
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Figure 8.16. HYPO-CHEAT heatmap for Patient 8 (Pt8) at the end of the UNblinded 

period. 

 

 

Figure 8.17. Facebook Prophet output for the same input as Figure 8.16. 

 

Patient 9 

Patient 9 was very clear that they had not spotted any patterns of hypoglycaemia as they had 

simply been irritated by the low alert alarms and had thus not noticed the patters of when they 
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occurred. HYPO-CHEAT identified the main areas of risk for Patient 9 as overnight on 

Saturday and Tuesday with a separate and lesser spot on Sunday evening (Figure 8.18). After 

being shown this output, Patient 9 identified that overnight hypos were very likely associated 

with athletic training the night before as well as possible alcohol consumption. They also 

commented that the Sunday afternoon hypo was similarly following athletic activities.  

Facebook Prophet correctly showed overnight as the higher risk period and Saturday as the 

worst day with a smaller peak on Tuesday. However, due to averaging effects, there was no 

identification of the Sunday afternoon risk period (Figure 8.19). No patterns were identified by 

Dexcom Clarity. 

 

Figure 8.18. HYPO-CHEAT heatmap for Patient 9 (Pt9) at the end of the UNblinded 

period. 

Saturday and Tuesday overnight were clear risk periods with a lesser period of risk on Sunday 

afternoon.  
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Figure 8.19. Facebook Prophet output for the same input as Figure 8.18. 
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Chapter 9 – Behaviour change behind HYPO-CHEAT 

 

In the previous chapter we provided a comprehensive description of the algorithmics behind 

the data aggregation and visualisation capabilities of HYPO-CHEAT. We demonstrated the 

superior ability of HYPO-CHEAT, over other existing technologies, to identify weekly 

hypoglycaemia patterns for patients. Most importantly, in the previous chapter, we showed that 

HYPO-CHEAT reduced hypoglycaemia for patients with CHI in a small pilot study.  

However, understanding the mechanism of action of HYPO-CHEAT to reduce hypoglycaemia 

is vital so that lessons can be learnt and our team, and others, can move forward and improve 

upon this research in the future. The way in which HYPO-CHEAT exerts its effect upon users 

is through the identification of hypoglycaemia patterns that are likely associated with 

behaviours (Chapter 8) and then, most importantly, persuading the users to change behaviours 

in order to prevent real world hypoglycaemia in their daily lives.  

Understanding this persuasive capacity of HYPO-CHEAT to change behaviour is a core 

component of our work and is explained in detail in this chapter. This not only explains the 

rationale and theory behind HYPO-CHEAT but provides understanding of its mechanism of 

action and how proximal changes result in distal outcomes. Due to the nature of this thesis 

being presented in a journal format, there is inevitably some overlap between chapters 8 and 9 

as they were published as standalone papers both requiring suitable background work.  

The content of this chapter is a paper authored by: Chris Worth, Paul W Nutter, Maria Salomon-

Estebanez, Sameera Auckburally, Mark J Dunne, Indraneel Banerjee and Simon Harper. The 

title of the paper is: The behaviour change behind a successful pilot of hypoglycaemia 

reduction with HYPO-CHEAT and is under peer review at Digital Health. The paper is 

included verbatim with some changes to the formatting to ease readability within the thesis.  

Note on statistics and results: As this chapter is a published paper, it was not possible to 

amend the main content but further clarification on the statistical methods was requested and 

is provided here. The study sample size was a pragmatic decision based on no previously 

available evidence as well as the practicalities of recruiting patients with a rare disease. Sample 

sizes were not determined based on power calculations. As the (small number of) participants 

in this study were non-randomly split by virtue of their time below range (TBR), an alternative 

interpretation of the differing outcomes between the groups is that they were simply regressing 
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towards the mean. This possibility must be taken into account when interpreting the results. 

However, evidence for true efficacy of the system is supported by the change in behaviour seen 

both through fingerprick testing data but also patients’ reports of this being influenced by 

HYPO-CHEAT.  

Author contribution 

CW designed and built the analytics required for the project. CW designed and ran the clinical 

trial of HYPO-CHEAT. CW wrote the manuscript. All authors provided expert input into the 

design and running of the study, reviewed and edited the manuscript and approved the final 

version.   

Abstract 

Children with hypoglycaemia disorders, such as Congenital Hyperinsulinism (CHI), are at 

constant risk of hypoglycaemia (low blood sugars) with the attendant risk of brain injury. 

Current approaches to hypoglycaemia detection and prevention vary from fingerprick glucose 

testing to provision of continuous glucose monitoring (CGM) to machine learning (ML) driven 

glucose forecasting.  

Recent trends for ML have had limited success in preventing free-living hypoglycaemia, due 

to a focus on increasingly accurate glucose forecasts and a failure to acknowledge the human 

in the loop and the essential step of changing behaviour. The wealth of evidence from the fields 

of Behaviour Change and Persuasive Technology allows for the creation of a theory-informed 

and technologically considered approach. We used the Behaviour Change Technique 

Taxonomy and Persuasive-Systems-Design models to create HYPO-CHEAT 

(HYpoglycaemia-Prevention-thrOugh-Cgm-HEatmap-Assisted-Technology): a novel 

approach that presents aggregated CGM data in simple visualisations. The resultant ease of 

data interpretation is intended to facilitate behaviour change and subsequently reduce 

hypoglycaemia.  

HYPO-CHEAT was piloted in 10 patients with CHI over 12 weeks and successfully identified 

weekly patterns of hypoglycaemia. These patterns consistently correlated with identifiable 

behaviours and were translated into both a change in proximal fingerprick behaviour and 

ultimately, a significant reduction in aggregated hypoglycaemia from 7.1% to 5.4% with 4 out 

of 5 patients showing clinically meaningful reductions in hypoglycaemia.  
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9.1 Introduction 

Congenital Hyperinsulinism (CHI) is a disease of disordered and unregulated insulin secretion 

which results in severe and unpredictable hypoglycaemia (low blood glucose). The definition 

of hypoglycaemia for children with CHI has not reached an international consensus but a 

pragmatic cut-off of <3.5mmol/L is frequently used in UK centres43. Regardless of the cause, 

recurrent hypoglycaemia episodes (hypos) in early childhood can have a long term impact on 

developmental outcomes2,74. CHI is the commonest cause of recurrent and severe 

hypoglycaemia in early childhood and rates of neurological impairment range from 15%347 to 

almost 50%5. Non-clinical outcomes from hypoglycaemia are also significant, with effects on 

quality of life and the healthcare economy6,76.  

Given the serious impact of hypoglycaemia on children with CHI and other conditions 

associated with hypoglycaemia (such as Type 1 Diabetes Mellitus (T1DM)), prediction and 

prevention are vital. Standard practice for children with CHI is the use of a limited repertoire 

of disease modifying drugs combined with intermittent fingerprick glucose testing to reduce, 

detect and prevent hypos73. However, the low granularity and lack of trend information 

provided by fingerprick testing results in missed hypoglycaemia between tests and offers little 

ability to predict future hypos. Consequently, there has been a surge in interest of using 

continuous glucose monitoring (CGM) and modern algorithmics to accurately predict future 

glucose levels with an aim to anticipate and prevent hypoglycaemia. The reporting of five 

minutely glucose values by CGM devices has been shown to improve the amount of time 

patients spend with a glucose in a safe and desirable range (time in range (TIR)) for those with 

T1DM93 but not yet in patients with CHI303. The more recent trend to try and prevent 

hypoglycaemia through the forecasting of future values with modern algorithmics is a 

somewhat flawed approach that ignores the human in the loop and the importance of 

considering behaviour change rather than simply providing more information.  

To this end, we developed HYPO-CHEAT (HYpoglycaemia-Prevention-thrOugh-Cgm-

HEatmap-Assisted-Technology): a novel approach based around persuasion, behaviour 

change and proactive hypoglycaemia prevention. At its core, HYPO-CHEAT aggregates 

individual CGM data to generate a weekly risk profile of hypoglycaemia and presents this as 

hourly chunks for each day of the week on a “heatmap”. Users are directed to focus on 

“hotspots” by directing fingerprick glucose checks to these areas, reflecting on causes of repeat 

hypos and changing behaviour. Throughout the paper the terms “patients” and “families” are 
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used interchangeably to refer to the individual responsible for provision of care. The patients 

in the study varied by age and therefore in the level of parental support in their care. For young 

patients, all data was reviewed by the family and in older patients this was a collaboration 

between the patient and their family.  

9.2 Research motives and objectives 

Given the obvious clinical need for a reliable way to reduce hypoglycaemia and the 

insufficiency of the current approach, there has been great interest in recent years in designing 

an algorithm to help prevent hypoglycaemia. Most approaches have focused on the generation 

of increasingly accurate in silico predictions of future glucose values using machine learning 

(ML) and continuous CGM376. We have written in great detail elsewhere about the significant 

limitations of this approach to predict future glucose values when the ultimate aim is to actually 

prevent hypoglycaemia376,377 and, in the interests of presenting a complete picture, we briefly 

summarise these below.  

Multiple groups have shown good accuracy in forecasting future glucose values but only when 

tested in silico and thus provide no indication of their ability to actually reduce hypoglycaemia 

in vivo168,174,301,327. Decision Support Systems (DSSs) have demonstrated reductions in 

hypoglycaemia but also in silico177 or with vastly complex inputs required by patients178. Those 

DSSs that have been evaluated in vivo mostly fail to demonstrate a reduction in 

hypos172,182,184,329. Liu et al 179did demonstrate a reduction in hypos in patients in free-living 

conditions from their DSS which recommended insulin doses, but this has no applicability for 

patients not receiving therapeutic insulin such as those with CHI.  

While the use of in-silico testing is just a gap in the current evidence which could (and likely 

will) be filled, there is also a fundamental flaw in the underlying theory of such approaches. 

They all ignore the essential fact that simple provision of information does not necessarily 

translate into action and a resultant improvement in outcomes.  A vital determinant of health 

outcomes is health behaviours128 and, in particular, a capacity to self-manage. The Fogg 

Behaviour Model (FBM) outlines three components required to change behaviour: motivation, 

ability and, trigger (prompt); all must converge at the same point for behaviour change to 

occur189, in this case action to prevent or terminate a hypo. Provision of information such as a 

predicted future glucose value serves as a simple prompt (if the user is even motivated to look 

at it) and is unlikely to successfully change behaviour if the approach fails to address 

motivation and ability.  We have demonstrated in previous work368 that, despite the provision 
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of hypo prompts through real time CGM (live values displayed constantly and alarms available) 

to patients with CHI, there were still significant numbers of prolonged hypos. Therefore, future 

work must focus on all aspects of behaviour change rather than simply provide more complex 

algorithms for the generation of slightly more accurate prompts.  

To this end, we developed HYPO-CHEAT: an algorithm to aggregate CGM data and present 

this to patients with the express intention of changing behaviour and subsequently reducing 

hypoglycaemia. We have described the technical development of the algorithmics behind 

HYPO-CHEAT in a separate publication377 and discussed the evidence-based methodology of 

its development as a data aggregation tool. In this paper we aim to describe the essential 

behaviour change and persuasive technology elements of HYPO-CHEAT that were designed 

to ensure that the information provided to patients translated into a change in behaviour and 

ultimately improved outcomes. HYPO-CHEAT was designed through the selection of 

behavioural theory-informed Behaviour Change Techniques (BCTs)186 and the subsequent use 

of the O/C (outcome/change) matrix and PSD model378  to ensure the technical delivery of the 

system was considered and persuasiveness was maximised.  

When evaluating behaviour change interventions, Klasnja et al.127 highlight the difficulty in 

demonstrating a definitive change in behaviour without large scale studies performed over long 

periods of time. In the absence of such studies, it is vital to measure proximal outcomes to 

assess if and how the system is working, as well as seeking stakeholder feedback to understand 

why the system is or isn’t working and how it could be improved127. This allows researchers to 

better understand the relationships between intervention and mediator, and mediator and 

outcome, so that both failed and successful interventions can provide more useful 

information379. Kwan et al.205 highlighted this when reporting that nudge interventions 

improved the distal outcome of HbA1C (biochemical surrogate marker of diabetes 

complication risk93) but not glucose monitoring behaviours (proximal outcome). Thus, the 

mechanism for improvement was not clear as the intervention changed the outcome but not via 

the predicted mediator.  

With this in mind, we provide the results of an initial evaluation of HYPO-CHEAT’s ability to 

change behaviour measured through both proximal and distal outcomes, as well as a thorough 

and independent report of patient feedback on the system via interview and thematic analysis. 

By reporting multiple measures of our approach’s efficacy, we aim to better describe how and 

why our approach works in a pilot setting and thus contribute useful information to multiple 
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areas of the knowledge base and future large scale trials, rather than simply reporting a final 

distal outcome of our system with no understanding of how this was arrived at.  

We evaluated HYPO-CHEAT in 10 patients with CHI who were using CGM for 12 weeks in 

free-living conditions. We discussed the patterns identified by HYPO-CHEAT with patients 

and their families and explored the behavioural aspects behind these patterns. We monitored 

changes in fingerprick behaviour as a proximal measure of HYPO-CHEAT’s ability to 

influence health behaviours and patients’ engagement with the system. Finally, reduction in 

hypoglycaemia (time below range (TBR)) was evaluated as a primary endpoint to assess if 

HYPO-CHEAT was able to influence more distal outcomes over a short time period and thus 

potentially change health outcomes in the future. TBR is a practical measure of time spent in 

hypoglycaemia and, given UK consensus on hypoglycaemia cutoffs73, is a useful outcome 

marker.  

However, defining a minimum clinically important difference (MCID) in TBR has not been 

described before in CHI as CGM defined hypoglycaemia has not yet been correlated with 

neurodevelopmental outcomes and is not immediately translatable to clinical practice but is a 

retrospective monitoring tool. We therefore had to define the MCID for this study. We used 

the distribution approach 380 based on work by Cohen et al.381 describing differences based on 

standard deviation (SD) from the mean as small (0.2SD units), medium (0.5SD) or large 

(0.8SD). The standard deviation for TBR for patients with CHI was calculated from a large and 

heterogeneous dataset as 3.05%1. A medium difference for TBR, in this patient group, is 

therefore (0.5 * 3.05%) 1.5% and this absolute reduction was used as the MCID for this work.   

By concentrating on patient behaviour and involving patients from the very start of our 

approach, we have been able to design a system that aggregates and presents data in a way that 

is easy to understand. Consequently, it has the potential to change health behaviours and 

improve health outcomes for patients in free-living conditions in the immediate future.  

Our primary objectives were: 

1. Assessment of HYPO-CHEAT’s ability to change proximal fingerprick behaviour 

around times of predicted hypoglycaemia 

2. Assessment of the difference in TBR between a period of blinded CGM before using 

HYPO-CHEAT and blinded CGM after using HYPO-CHEAT (efficacy of HYPO-

CHEAT).  
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9.3 Related work 

As our approach was to use HYPO-CHEAT to change behaviour, here we summarise the 

background theories and related work from the fields of Behaviour Change, Digital Behaviour 

Change Interventions (DBCIs) and Persuasive Technology (PT) rather than focusing on 

different approaches to detection and prevention, which are summarised in section 2 and 

discussed at length elsewhere 377.  

9.3.1 Behaviour change 

Vitally and intrinsically linked to health outcomes are health behaviours128. Behaviour change 

is thus a practical target for those wanting to alter health outcomes. Webb et al382 highlight that 

if one wants to intervene to target health behaviours then using a theory driven construct of 

behaviour change is beneficial, but the sheer volume of these theories can be daunting. In this 

section we discuss behaviour change theories, as well as the use of behaviour change 

techniques (BCTs) and (digital) behaviour change interventions to facilitate the choice and 

practical use of theories.  

Behaviour change theories 

The use of an established theory has traditionally been seen as an integral step in the design of 

an intervention to improve health383. This allows the determinants of change to be established, 

the component behaviour change techniques (BCTs) selected 186,384 and theoretical mediators 

of effect to be investigated 385. However, there are more than 80 behaviour change theories for 

researchers and developers to choose from26. While only four are used regularly26, it can be 

challenging to choose the appropriate theory386.  The Transtheoretical/Stages of Change 

Model387 is the most frequently used but has received criticism of its utility 388389 and Davis et 

al26 suggest that commonly used theories will continue to be used most frequently regardless 

of evaluated efficacy.  

Behaviour change techniques (BCTs) 

Michie and Abraham developed a taxonomy of BCTs (BCTTv1)187,188,390 to allow for the 

provision of a theoretically underpinned approach to intervention design without the need for 

an in depth knowledge of all behaviour change theories. The BCTTv1 contains 93 BCTs (in 

16 categories) based on the smallest features of behaviour change theories that have the 

potential to change a behaviour. The BCTTv1 also provides interchangeable terms to promote 

accurate replication and faithful implementation of effective interventions390.  
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Innumerable studies have utilised BCTs in the development of their interventions and 

systematic reviews have evaluated which BCTs are most frequently associated with a targeted 

change in behaviour. Van Achterberg et al391 evaluated 23 systematic reviews and concluded 

that, while no BCTs demonstrated a consistent effect in all studies, those that were effective 

most often were: self-monitoring of behaviour; risk communication and; use of social support. 

Closer to our intended patient population are those with diabetes and within this group, 

Presseau et al392 applied the BCTTv1 to numerous interventions for managing diabetes and 

found that those utilising BCTs were often effective in changing behaviour and most commonly 

included: adding objects to the environment, credible source, goal setting and, feedback on 

behaviour.  

Digital behaviour change interventions (DBCIs) 

BCTs are brought together to form digital behaviour change interventions (DBCIs) that “use 

computer technology to promote behaviour change”393. Michie et al provide guidance on how 

to design such interventions with their COM-B model whereby behaviour (B) is changed by 

the presence of: Capability (C), Opportunity (O) and, Motivation (M)394. One of the first 

examples of a DBCI was “Happy Ending”, an internet-based intervention designed to promote 

smoking abstinence197.  

Webb et al382 analysed 85 DBCI studies including data from 43,000 participants and found 

those interventions targeting a single behaviour had more effect than those targeting multiple 

behaviours. Those interventions based on the Theory of Planned Behaviour had a larger effect 

size than other theories and the most effective BCTs (not specifically related to abstinence 

maintenance) were: demonstrate the behaviour, social comparison, goal setting, action 

planning, feedback and, barrier identification/problem solving382. The most effective mode of 

delivery was automated tailored feedback and access to advisor to request advice382.  This meta-

analysis informed the development of HYPO-CHEAT to select the BCTs and method of 

delivery with the most evidence for effect on behaviour change.  

9.3.2 Persuasion  

As interventions become more interactive and adaptive, current behaviour theories may be 

inadequate395 and the technology itself must be considered396. Parallel to Behaviour Change 

Theory, Computer Science evolved specific theories such as the Technology Acceptance 

Model397 and Unified Theory of Use and Acceptance of Technology398 to take account of the 

computer as an intrinsic part of the system rather than simply a mode of delivery.  
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In 2003 Fogg coined the term Persuasive Technology (PT) and defined persuasion as an 

attempt to “change attitude or behaviours or both without using coercion or deception”338. 

Persuasion has its own background theories  upon which interventions can be based399 but 

again, these theories are numerous and require an in-depth knowledge. Thus, the PT systems 

created by authors such as Fogg and Oinas-Kukkonen allow for the development of evidence-

based and replicable PT interventions without a comprehensive study of background 

theories189,190 while simultaneously considering the computer as a vital component of the 

system.  

Persuasive Technology (PT) 

Human-computer persuasion192 forms the basis of PT and involves persuasion of individuals 

by the computer rather than through the computer (e.g. via email)191. PT targets automation of 

behaviour change189 through influencing the determinants of behaviour, such as attitude, 

beliefs and social norms, to improve the users’ intentions to perform the target behaviour400.  

PT can operate: as a tool to facilitate target behaviour; through exploration of cause and effect; 

and as a social actor338. Each of the three basic components can be further subdivided to provide 

practical strategies to persuade and bring about behaviour change. Fogg338 detailed these 

subcomponents in his original work , and they have subsequently been refined and improved 

upon by multiple authors as discussed below.   

Behaviour change support systems 

The implementation of PT is referred to as a persuasive system191 or a behaviour change 

support system (BCSS)190 dependent on the date of publication. The structure for development 

of BCSSs has evolved over many years and here we provide an insight into the major 

developments and how they relate to our work.  

The Persuasive System Design (PSD) model describes three stages to designing a persuasive 

system which are outlined in Figure 9.1 378and utilised in Section 4.1.3.  
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Figure 9.1. The Persuasive Systems Design (PSD) model. 

First, one must understand the seven key postulates which exist behind the persuasive system. 

Secondly, the persuasion context can be understood as comprising intent, event and strategy. 

Finally, the persuasive software features highlight the importance of considering the 

technology as part of the system and provide a structure for the design of a persuasive system.  

Figure from Oinas-Kukkonen, H. A foundation for the study of behaviour change support 

systems. Personal and Ubiquitous Computing. 2013:17(6); 1223-1235.  

 

The key component of intent (Figure 9.1) was further refined by the O/C matrix (Table 9.1), 

allowing for an analysis of system persuasive potential190. This approach allocates significant 

importance to the technological platform rather than relying on “black-box thinking of software 

systems” as is common in the development of DBCIs378.  

 C- Change B-Change A-Change 

F-Outcome Forming an act of complying (F/C) Forming a behaviour (F/B) Forming an attitude (F/A) 

A-Outcome Altering an act of complying (A/C) Altering a behaviour (A/B) Altering an attitude (A/A) 

R-Outcome Reinforcing an act of complying (R/C) Reinforcing a behaviour (R/B) Reinforcing an attitude (R/A) 

Table 9.1. The O/C matrix designed by Oinas-Kukkonen as a tool to analyse the intent of 

a BCSS. 

The type of change is increasingly difficult to achieve as one progresses from C to A, with 

attitudes harder to influence than behaviours or compliance. Lower levels of changes (such as 

C) may lead to higher level changes such as B and A. The consideration of which cell(s) to 

target as well as how to move between them is considered an essential but neglected area of 

BCSS research.  
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The Fogg Behaviour Model (FBM) 189 and Behavioural Intervention Technology (BIT) 401 

provide similar structures for the design of a BCSS to that of the PSD model. However, due to 

the comprehensive nature of the O/C matrix/PSD model, and its explicit consideration for 

software requirements and implementation, it was felt to offer the most comprehensive model. 

As such HYPO-CHEAT was designed using the O/C matrix/PSD model and the FBM and BIT 

were not used. As such, thus further details regarding FBM and BIT are not provided here.  

9.3.3 BCSSs in the healthcare setting 

This section discusses examples of the use of PT in the healthcare setting, within which HYPO-

CHEAT will be operating. A systematic review of PT in health (mostly physical activity, dental 

health and disease management) found that there was a fully positive outcome in 64 of 85 

(75%)f studies and that targets for future work should be participatory design (involving users) 

and studies targeting children28.  

Interventions targeting glucose control 

As HYPO-CHEAT is designed to reduce hypos, here we provide a review of the small number 

of BCSSs or DBCIs that have targeted a change in behaviour relating to blood glucose control. 

Jalil et al202 investigated patient perceptions of PT and found that a majority of patients reported 

a preference for a PT over a human when it comes to advice about food relating to their 

diabetes.  

Knowing that tailored feedback results in more desirable health behaviours402, Whelan et al403 

used functional MRI scanning to investigate the types of feedback that would likely evoke the 

strongest responses. They discovered that personalised feedback regarding interstitial glucose 

levels (as obtained via CGM) resulted in greater responses than when feedback related to 

behaviour and as such recommended that behavioural feedback should be combined with 

physiological feedback to encourage behaviour change. HYPO-CHEAT aims to do exactly 

this.  

Finally, Kwan et al205 undertook a systematic review of 38 studies to investigate the impact of 

“nudge” interventions on glucose monitoring behaviour. Their results demonstrated that 

nudges did not affect glucose monitoring behaviours (proximal outcome) but did impact 

positively on HbA1C (distal outcome). Further analysis revealed that those interventions that 

included gamification and reminders were the most likely to result in positive outcomes205; this 

was taken into account when designing HYPO-CHEAT.  
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9.4 Approach (HYPO-CHEAT) 

When designing HYPO-CHEAT we followed a structure based on PT and BCSSs rather than 

Behaviour Change and DBCIs. This was largely due to the significant focus on the technology 

as an intrinsic part of the intervention that PT allows but is somewhat ignored by DCBI 

structures. However, because PT structures are less intrinsically theory based, we used the 

BCTTv1 to select BCTs to ensure that our initial idea was evidence and theory based. Thus, 

we used a hybrid approach incorporating BCTs from the BCTTv1 into the BCSS structure 

outlined by Oinas-Kukkonnen in his O/C matrix/PSD approach190.   

The ultimate intention of HYPO-CHEAT was to reduce hypoglycaemia (as measured by TBR) 

without the requirement for real time CGM (access to live data). This was so that we could 

better understand how HYPO-CHEAT changed behaviours based on feedback (rather than live 

CGM changing behaviours) and also because if we demonstrated efficacy in this approach it 

would reduce the need for ongoing CGM in the patient population and thus reduce cost and 

patient burden.  

The design of HYPO-CHEAT underwent three distinct phases (analysis of intent, selection of 

BCTs, PSD structure) in order to maximise the likelihood of efficacy based on theory, develop 

learning points and provide contributions to the field. The usual approach in the field of 

Behaviour Change would be to identify a behavioural theory on which to base the intervention. 

We have opted not to do this, given Riley’s finding that current behaviour theories are not fit 

for modern adaptive interventions395, and the intrinsic use of theory within the BCTTv1390. Our 

three phases therefore began by analysing our intent using the O/C matrix (9.4.1). In the second 

phase, we chose BCTs from the BCTTv1 based upon available evidence of those with the 

greatest efficacy (9.4.2). In the third and final stage, we applied these BCTs to our intervention 

using the PSD structure (9.4.3).  

9.4.1 Analysis of intent (O/C matrix) 

As suggested by Oinas-Kukkonen, we began our approach by evaluating our intent using the 

O/C matrix described above. We identified three elements of the O/C matrix that were intended 

targets for our intervention. These are detailed in Table 9.2.  
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O/C matrix Intent for HYPO-CHEAT  

Forming an act of complying 

(F/C) 

Users to comply with the intervention. This requires them 

to use their CGM and interact with HYPO-CHEAT on a 

semi-regular basis.  

Altering a behaviour (A/B1) Alter behaviours relating to glucose control such as eating 

and exercise. 

Altering a behaviour (A/B2) Alter fingerprick behaviour so that users undertake 

fingerpricks at times of high hypoglycaemia risk. 

Reinforcing an attitude (R/A) We intend to reinforce the attitude that hypoglycaemia 

must be avoided or minimised at every opportunity.  

Table 9.2. The intended outcomes for HYPO-CHEAT as per the O/C matrix described 

by Oinas-Kukkonen. 

In addition to patients and families, members of the clinical team (doctors, nurses, clinical 

psychologist and dieticians) were identified as key stakeholders in the development of HYPO-

CHEAT. Discussions with these members of the clinical team in a multi-disciplinary team 

(MDT) setting concluded that compliance with HYPO-CHEAT was very low burden and 

reinforcing the risks of hypoglycaemia would not be difficult. Further discussions identified 

that, due to routines patients have built up, often over many years, the two A/B changes were 

likely to be the hardest to change. As such, much of HYPO-CHEAT was designed to focus on 

persuasion in this area.  

9.4.2 Selection of BCTs from the BCTTv1 

Rather than select a specific behaviour change theory which may not have been developed with 

rapidly adapting, digitally delivered interventions in mind we instead opted to design our 

intervention using BCTs. This approach has multiple advantages: it is rooted in, and based 

upon, behaviour change theory. It is a modern approach that has been designed with digital 

delivery in mind, so the established structure allows for easier interpretation of the end result. 

This offers more information regarding which techniques affect behaviour change in this field 

and thus contributes more generally to the literature.  

Having established which BCTs in the BCTTv1 were most likely to have an effect in our patient 

population (see section 9.3.1), we selected 17 BCTs from seven different categories that would 

contribute towards our aims identified in the O/C matrix. All 93 BCTS from all 16 groups were 

considered for inclusion and are examined further in Table 9.3.   
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BCT Category BCTs included Method of inclusion O/C target 

1. Goals and 

planning 

1.2 Problem solving Encourage to reflect on fingerprick behaviour and why it is at certain times A/B2 

1.3 Goal setting Set a goal for targeted fingerpricks 

Set the goal to reduce total hypoglycaemia 

Set the goal to specifically reduce hypos in hotspots 

F/C, A/B2 

F/C, A/B1 

F/C, A/B1 

1.4 Action planning Set details of when and how often to fingerprick F/C, A/B2 

1.5 Review behaviour goal(s) Automatic review of goals set in 1.3. Provide praise if goals met.  F/C, A/B2 

1.6 Discrepancy between 

current behaviour and goal 

Highlight if goals not met and remind of goals F/C, R/A 

1.7 Review outcome goal(s) Modify fingerprick and hypo goals based on success failure and new data from 

CGM 

A/B1, 

A/B2 

1.9 Commitment Ask users to confirm their commitment to goals set in 1.3 at the outset F/C, R/A 

2. Feedback and 

monitoring 

2.2 Feedback on behaviour Provide information on frequency and timing of fingerpricks  A/B1 

2.6 Biofeedback Provide feedback on CGM data focusing on timing and patterns of 

hypoglycaemia to allow targeting of fingerpricks and alteration of meal and 

exercise etc to reduce hypoglycaemia hotspots 

A/B1, 

A/B2 

2.7 Feedback on outcome(s) of 

behaviour 

Provide feedback on change in hypos within fingerprick target area and if an 

increased check frequency has changed hypos 

A/B1, 

A/B2 

5. Natural 

consequences 

5.1 Information about health 

consequences 

Remind users that failure to engage in suggested behaviour to reduce hypos 

could be dangerous for health 

F/C, R/A 

8. Repetition 

and substitution 

8.6 generalisation of target 

behaviour 

Suggest shifting fingerprick behaviour to target areas A/B2 

9. Comparison 

of outcomes 

9.1 Credible source Ensure design of feedback emphasises information coming from medical team 

that users already know and trust 

F/C 

10. Reward and 

threat 

10.4 Social reward Provide congratulations for patients who undertake suggested fingerprick 

behaviour and also who subsequently reduce hypos 

F/C, R/A 

10.5 Social incentive Point forward to expectation that praise will be given for following suggestions F/C 

15. Self-belief 15.1 Verbal persuasion about 

capability 

Highlight reductions in hypos when users might expect them to increase – 

focus on users’ roles in this success 

F/C 

Categories from which no BCTs were selected for inclusion in HYPO-CHEAT   

BCT category Reason for the lack of inclusion  

3. Social 

Support 

Given the very small number of patients with CHI (incidence 1:28,000 in the UK7) it is not practical to offer this 

while maintaining confidentiality.  

 

4. Shaping 

knowledge 

Users already know how to perform all skills (fingerprick, eating, exercising etc) and HYPO-CHEAT is focused 

on changing when and how these are done.  

 

6. Comparison 

of behaviour 

Comparing behaviours performed by parents in relation to how they care for their children to others is likely to 

be perceived negatively and would reduce engagement with the system 

 

7. Associations This category includes the provision of prompts to patients. This is something that is likely to enhance HYPO-

CHEAT but we did not have the capacity to deliver for this pilot project. It will be included in future iterations.  

 

11. Regulation This category largely relates to preventing unwanted behaviour and is not relevant  

12. Antecedents This category is about avoiding antecedents of unwanted behaviour and is thus not relevant to HYPO-CHEAT’s 

intention 

 

13. Identity The clinical MDT agreed that user identity was unlikely to be a factor in how they performed the tasks relevant 

to HYPO-CHEAT  

 

14. Schedules 

consequences 

This category contains BCTs that relate to negative consequences for unwanted behaviour (not relevant) or 

rewards for wanted behaviour. We did not have access to rewards and decided that the reward of improved 

health and reduced risk would be sufficient for most users 

 

16. Covert 

learning 

This was considered to be very high burden and not relevant to HYPO-CHEAT   

Table 9.3. BCTs from the BCTTv1 included in HYPO-CHEAT and the intended target 

from our O/C matrix. 

Those categories of the BCTTv1 from which no BCTs were selected are also briefly discussed.  

 

9.4.3 PSD model and practical design of HYPO-CHEAT  

Once we had selected the appropriate BCTs for our system, we utilised the PSD approach 

designed by Oinas-Kukkonen378 to ensure the persuasive potential of our system was 
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maximised and to allow for a practical design approach that took into account the importance 

of the mode and method of delivery.  

Key postulates behind Persuasive Systems 

There are seven key postulates behind persuasive systems that must be addressed when 

designing a BCSS. These are discussed in turn along with the subsequent impact upon the 

design of HYPO-CHEAT.  

1. Information technology is never neutral – a BCSS is always on and always offering 

some persuasion. Thus, HYPO-CHEAT is designed to adapt to changes in behaviour 

and levels of interaction by feeding back on those to users and encouraging ongoing 

participation.  

2. People like their world views to be organised and consistent – to ensure consistency 

and commitment, we asked HYPO-CHEAT users to commit to reducing hypos and 

performing targeted fingerprick checks. Cognitive consistency399 was used in the 

following manner: most parents of children with CHI will believe they are doing 

everything they can to keep their children safe. If they are then presented with evidence 

that their children are having frequent and predictable hypos (at the same time each 

week) then this belief must be challenged, and behaviour change will result with a 

restoration of cognitive consistency.  

3. Direct and indirect routes are key persuasion strategies – HYPO-CHEAT employs 

both: it offers detailed analysis of CGM data for users’ consideration and reflection 

(direct route) and it provides a simple “heatmap” with areas of high risk presented in 

dark red (Figure 9.3) to convey severity and prompt an immediate emotional reaction 

of concern worthy of intervention (indirect).  

4. Persuasion is often incremental – HYPO-CHEAT only suggests a maximum of three 

targets for improvement at any one time. This allows for users to slowly and 

incrementally reduce their hypoglycaemia hotspots rather than trying to eliminate them 

all immediately and reduces the chance of overwhelming the user.  

5. Persuasion through persuasive systems should always be open – all users of HYPO-

CHEAT were expressly aware of the designers’ desire to change behaviour to reduce 

hypos.  
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6. Persuasive systems should aim at unobtrusiveness – since the current version of HYPO-

CHEAT does not nudge or prompt users it is very unobtrusive and is simply available 

when required by users.  

7. Persuasive systems should aim at being both useful and easy to use – HYPO-CHEAT 

was designed, as far as possible, to be very easy to use (simply read an A4 PDF) and 

useful in its design to reduce hypos.  

Persuasion Context 

The context of the persuasion is vital and encompasses three key elements: the information is 

presented to the user; the user must pay attention and comprehend this information, and finally; 

the user may yield to the position presented, retain this information and, if persuasion is 

successful, take action to comply with the new position404.  

The INTENT 

The purpose of this is to analyse who the persuader is and thus the type of persuasion that is 

ongoing. As HYPO-CHEAT was designed and used by the clinical team, its persuasion is thus 

both endogenous and exogenous 405. Users will also likely be keen to reduce their hypos and 

so the system is also somewhat autogenous405. The intent largely reproduces the O/C matrix 

described above and thus not repeated here.  

The EVENT 

It is assumed in most health-related persuasive systems that users will have the necessary 

information to act and simply have formed bad habits which prevent them from improving their 

health378. This is an unlikely use context for our users. It is highly likely that users do not have 

a complete understanding of their patterns of hypoglycaemia and thus it is provision of new 

information that will act to persuade a change in behaviour rather than the usual attitude 

reinforcement.  

The STRATEGY 

The strategy of persuasion of a system is built on the concept that there is a central message 

and the persuader is trying to convince the persuadee of something404. This message can act 

via triggering of emotions or appeals to reason and intelligence406. The central message of 

HYPO-CHEAT is to demonstrate that there is a pattern to hypos that users may not have 

previously noticed, and that there is therefore an opportunity to reduce hypos which is currently 

not being taken. This is both relatively easy to change and vitally important for the long-term 
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health of the patient. The route by which this message is delivered can be via the direct and 

indirect route which have both been discussed above.  

Design of System Features 

In the original paper on PSD, Oinas-Kukkonen and Harjumaa acknowledge that much of the 

design of system features have been adopted and modified from Fogg’s original work on PT378. 

However, the benefit of PSD over FBM is the explicit consideration of how the design 

principles are translated into software features and implementation as actual features in a 

system. Oinas-Kukkonen and Harjumaa argue that system qualities are not something that 

should be thought about afterwards but are intrinsic to the persuasiveness of the system as a 

whole378.  

Once the persuasion context has been evaluated (Section 9.4.1), one can select persuasive 

design principles from four categories: primary task support, dialogue, system credibility, and 

social support. Because of the significant overlap between these principles and the BCTs 

provided by the BCTTv1, we used the list of persuasive design principles to look for gaps in 

our approach rather than duplicate components of our system. We assessed our list of BCTs 

against each category of persuasive design principles in order. 

Primary Task Support 

This relates to the methods by which the system will support the user in achieving their primary 

goal: simplifying behaviour change into simple tasks, guiding this process, tailoring it to the 

user and providing monitoring and feedback. All of these principles (reduction, tunnelling, 

tailoring, personalisation, self-monitoring) are covered in detail by a large number of our BCTs.  

Dialogue Support 

This focuses on the way the system will interact with users including praise and rewards, which 

are well covered by BCTs such as: 2.2 feedback on behaviour and 10.4 social reward. It also 

covers the provision of suggestions, which HYPO-CHEAT provides as part of its functionality 

and is partially captured by BCT 8.6 generalisation of target behaviour (see Table 9.3). 

Dialogue support mimics BCTTv1 category 7 (associations) by suggesting the provision of 

reminders or prompts. Unfortunately, as previously discussed, we did not have the capacity to 

develop this for the pilot of HYPO-CHEAT, but this will certainly be incorporated into future 

versions.  

System Credibility Support 
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System credibility support recognises the importance of the mode of delivery of the 

intervention and how this impacts upon the persuasiveness of the system as a whole.  

Given that HYPO-CHEAT is to be used by healthcare professionals as part of patient care, the 

information provided will be truthful and fair and thus trustworthiness is implicit. System 

credibility support includes expertise, authority, “real world feel”, and third-party 

endorsements, which have all been included in HYPO-CHEAT.  As users are all patients within 

a quaternary specialist service (Northern Congenital Hyperinsulinism Service – NORCHI) they 

understand the expertise and authority within this system. We ensured that this trust was 

extended to HYPO-CHEAT through the provision of NORCHI logos within the output as well 

as multiple references to well-known and highly trusted members of staff within the service. 

Finally, users were all referred to use HYPO-CHEAT by their consultant and so third-party 

endorsement was achieved. Further expertise and authority feel will be achieved in future 

versions by the provision of references for statements such as “We know that hypos can have 

long term effects for patients with CHI”.  

Surface credibility was considered when designing the system, and much work was undertaken 

to ensure that the product provided to users was professional in appearance, attractive, easy to 

look at and can be easily understood and interpreted by the user. If further resources had been 

available, this could have been improved further using a professional design company.  

Social Support 

Given the clinical nature of the system, it was not appropriate to offer any kind of social support 

such as cooperation, competition or recognition as part of HYPO-CHEAT. Even if user details 

had been kept anonymous within a social space, the rare nature of CHI and the existence of 

widely used family support groups could have easily resulted in the accidental de-

anonymisation of certain users by others.  

9.4.4 Final design of HYPO-CHEAT  

Through use of all of the above steps, a first version of HYPO-CHEAT was developed. The 

technical specifics of HYPO-CHEAT are discussed in detail in a separate paper [in submission] 

but a brief summary of HYPO-CHEAT’s approach is discussed here. An example output is 

provided in full in Appendix 9.1.  

HYPO-CHEAT aggregates CGM data from users and generates a hypoglycaemia heatmap 

based on the frequency, recurrence and severity of hypos throughout the week. This is 
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presented to patients and accompanied by text-based simple interpretations of the heatmap 

(Figure 9.2) to improve ease of use for those who do not want or are not able to interpret the 

graph (Appendix 9.1). Further analysis is performed to ascertain the times of week which pose 

the greatest risk to users and up to three targets are generated. These are presented to users and 

they are asked to: 

 Target fingerprick tests to these periods. This provides the dual purpose of both forcing 

the user to concentrate on the times of most risk as well as generating a second check 

on the CGM data with a more accurate device. If the user finds that fingerprick tests 

done at this time are indeed reflective of hypoglycaemia, then they will be prompted to 

act upon this. If the fingerprick tests refute the CGM informed hotspots, then the user 

is praised, and the hotspot is removed at the following HYPO-CHEAT interaction.  

 Reflect on what is different about this specific time within the week. HYPO-CHEAT 

will only identify areas of outstanding high or low risk and thus users are provided with 

a difference on which to reflect.  
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Figure 9.2. Example of a hypoglycaemia heatmap from HYPO-CHEAT. 

Red areas indicate repeated hypos and blue areas represent one off hypos. Darker colours 

represent an increase in composite of frequency, recurrence and severity of hypos. Yellow and 

green dots provide additional information about periods in which hypos repeated every, or 

most, weeks respectively. This heatmap, generated from 4 weeks (4w) of data from a 

representative patient (Pt 5), clearly shows areas of high hypoglycaemia risk between 7am and 

9am. This risk is highest on Friday and Saturday, and non-existent on Sundays. In HYPO-

CHEAT’s output this heatmap would be accompanied by interpretation and the user would be 

asked to reflect on the difference between Friday and Saturday morning vs Sunday morning 

(Appendix 9.1).  

 

Further functionality is provided by assessing if previous suggestions have been followed to 

a) perform fingerpricks in certain areas and b) try to reduce hypos in these same areas. If 

suggestions have been followed and/or hypos have been reduced, the user is congratulated. If 

attempts have been made, then this is encouraged. If no attempts have been made, then the 

user is reminded of the clinical importance of reducing hypos. Further iterative feedback is 

provided on one-off hypos and their evolution to repeat hypos as well as previous hotspots 

that have successfully been removed.  
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As key stakeholders, patients and families with CHI were intrinsically involved in the 

development of HYPO-CHEAT. Early versions of the system did not differentiate between 

one off and repeat hypos and repeat yellow and green markers (see Figure 9.3) were not 

present. Patients and families commented on the difficulty in spotting patterns when certain 

“hotspots” could be generated from a single hypo or one repeated each week. As such, the 

functionality described above was added and received positive feedback from users.  

There are many other aspects of HYPO-CHEAT based upon the BCTs we selected that can 

be appreciated by interrogating an example HYPO-CHEAT output in Appendix 9.1. These 

functionalities, and the evidence behind them, are also discussed further in a separate paper377.  

9.5 Evaluation of HYPO-CHEAT  

Early versions of HYPO-CHEAT were discussed with patients and families to gather feedback 

about aspects of the system that were helpful and those that were not. Following this, we 

performed a pilot study to assess the feasibility of implementing HYPO-CHEAT as well as an 

initial evaluation of its persuasive potential. Here we discuss the methods of evaluation as well 

as presenting results of this pilot study and user feedback from interviews.  

9.5.1 Methods of evaluation 

Patients with CHI were approached through the NORCHI; a highly specialised CHI service 

based at the Royal Manchester Children’s Hospital (RMCH), Manchester, UK. Patients were 

chosen for inclusion in the study if they: had a confirmed diagnosis of CHI; were receiving 

medication for treatment of CHI; and were under the age of 18 years. Patients were not included 

if they were: already using a CGM device; likely to stop treatment within the next 12 weeks; 

or unable to attend appointments every 4 weeks at RMCH. Clinical leads were asked to 

consider patients eligible for the study based on the criteria above and pass on suggestions to 

the research team. All families involved in the study were asked to attend the clinical research 

facility at RMCH, where an outline of the study was presented to patients (Figure 9.3). Here, 

an initial CGM device (Dexcom G6) was attached and training on the device usage was 

provided. The families were provided with a Contour Next One glucometer and (in addition to 

targeted fingerpricks suggested by HYPO-CHEAT) were asked to undertake at least two 

fingerprick glucose tests per day to allow for a retrospective assessment of CGM device 

accuracy. For clinical safety, patients were asked to perform a fingerprick each time the CGM 

device reported hypoglycaemia.  
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Figure 9.3. Outline of the study structure demonstrating the two groups separated by 

presence (left) or absence (right) of initial hypoglycaemia (TBR less than or more than 

1%) in the first blinded period. 

Periods during which the CGM device was blinded (0-4w and 8-12w) are denoted in blue and 

the period of unblinded CGM use (4-8w) is denoted in green.  

 

During the first four weeks of the study, the CGM device was blinded to the users, which 

prevented them from seeing any glucose readings. This period was designed as a baseline 

assessment of the patients’ glucose control, without access to live CGM readings and to prevent 

patient intervention in light of CGM activity. At Week 4, the device was unblinded and for the 

following four weeks patients had access to real time readings, as well as the standard alarms 

on a Dexcom G6 (including ‘low glucose’ and ‘urgent low soon’). At Week 8, families were 

invited to a clinic appointment where data was collected and analysed by HYPO-CHEAT and 

outputs were shown to families of those patients with initial TBR >1%. They were provided 

with a single A4 PDF output of HYPO-CHEAT. No explanation or instructions were given on 

how to interpret this data unless patients asked. If patients asked for further clarification, then 

this was provided. Once patients had had a chance to process their HYPO-CHEAT output, the 

analysis and suggestions were discussed with families, and opinions were sought on whether 

they thought HYPO-CHEAT was helpful.  
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The CGM device was blinded again, and patients underwent a final four weeks of monitoring 

without access to real time data again so patients cannot take action in light of CGM activity.  

However those patients with initial TBR >1% had the knowledge provided from the previous 

eight weeks’ data using HYPO-CHEAT, which provided personalised targets and suggestions 

for reflection. They all took their HYPO-CHEAT output home with them to aid further 

reflection in their own time. Patients then came back for one final visit and used HYPO-

CHEAT for a second time to understand how their profiles had changed during the four weeks 

and to receive feedback on behaviour and outcomes.  

Analysis was undertaken to compare the three distinct time periods, with interpretations based 

around relation to use of HYPO-CHEAT. Analysis primarily focused on proximal outcomes 

of whether patients had changed their behaviour and followed suggestions for targeted 

fingerpricks, as well as the more distal outcome of change in hypoglycaemia within targeted 

areas and overall. Analysis of TBR between blinded and unblinded periods (periods 1 and 2) 

was performed for all patients as these periods were the same for all. Analysis of the difference 

between the two blinded periods was performed only for those five who had used HYPO-

CHEAT. Our primary outcome was the number of patients to achieve the predefined MCID in 

TBR between the two comparative blinded periods (before and after using HYPO-CHEAT).  

To better understand user perceptions of HYPO-CHEAT and see if and how it had changed 

their behaviour, we sought some feedback. This work was performed by a member of the 

research team who had no association with the primary study and who could thus act 

independently. This also increased the likelihood that users would offer honest feedback and 

not feel pressured to be positive to a member of the research team which whom they had built 

a relationship. Full details are provided in a separate publication316 but a summary of methods 

is provided here. Semi structured interviews were undertaken with all families with an 

interview guide developed through researcher, clinician and psychologist consensus. Thematic 

analysis as described by Braun and Clarke407 was then performed. This involved: recording of 

interviews; verbatim transcription; confirmatory review of transcriptions; inductive approach 

to code the data; codes combined to create themes reflecting families’ experiences316. Here, we 

have provided just a subset of the interview data that pertained to HYPO-CHEAT and 

behaviour change.  
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9.5.2 Results 

The target for recruitment was 10 patients and ultimately 12 families were approached to 

achieve this target. One patient declined due to the travel requirements, and a second due to 

fear of the perceived pain of CGM sensor insertion. A summary of demographics and clinical 

details is provided in Table 9.4.  

Patient Age 

(years) 

Gender Time since 

diagnosis 

(years) 

Genetic pathology Medications 

Patient 1 14.5 Female 14.5 Paternally inherited KCNJ11 mutation + 

interruption of Chromosome 1  

Diazoxide 

Patient 2 3.2 Female 3.0 Not identified  Diazoxide 

Patient 3 12.3 Male 11.9 Not identified  Diazoxide 

Patient 4 5.4 Male 5.4 Maternally inherited dominant ABCC8 

mutation 

Diazoxide 

Patient 5 3.1 Male 3.1 Homozygous ABCC8 mutation Octreotide 

Patient 6 3.4 Female 3.4 Maternally inherited dominant ABCC8 

mutation 

Diazoxide 

Patient 7 17.3 Male 17.1 GLUD1 mutation (de novo) Diazoxide 

Patient 8 13.3 Female 13.0 Homozygous HADH mutation Diazoxide 

Patient 9 17.7 Male 7.4 GCK mutation (inheritance not determined) Diazoxide 

Patient 10 2.1 Male 2.1 Heterozygous HNF4A partial deletion Diazoxide 

Table 9.4. Demographics and clinical details of participants. 

At the end of week eight, one patient withdrew from the study (at the initial HYPO-CHEAT 

appointment) because of problems with painful sensor insertion and intolerable disturbance by 

device alarms. Of the nine patients who completed the study, four had almost no 

hypoglycaemia during the initial blinded (baseline) period with a mean time below range 

(TBR) of just 0.2%. While these patients were given access to HYPO-CHEAT, it was of little 

value as it has been designed to aggregate data to identify patterns of hypoglycaemia and to 

use this data to influence behaviour change. For these patients, as there were no hypoglycaemia 

patterns to identify, there were no targets offered. It provides a useful comparison group (albeit 

neither matched nor randomised) to see how TBR changed when HYPO-CHEAT was not used.  

Results of proximal behaviour change measures 

Fingerprick tests were used as a proximal measure of whether HYPO-CHEAT had the potential 

to change behaviour relating to hypoglycaemia. The five patients with initial hypoglycaemia 

(TBR > 1%) were shown their hypoglycaemia patterns in HYPO-CHEAT and given up to three 

targets upon which to focus their fingerpricks. This resulted in 13 targets (52 over a four-week 

period) representing 156 hours (each target covers a 3-hour period). Fingerpricks were 

performed in 31 of the 52 targets (60%) resulting in a fingerprick rate of 0.20 checks per hour. 
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This was 67% higher than the background (non-targeted) fingerprick rate of 0.12 checks per 

hour (Chi-square = 7.1, P = 0.008), demonstrating that provision of targets is likely to have 

changed users’ behaviours to increase checking of glucose during times of identified 

hypoglycaemia risk.  

Results of distal outcomes (change in TBR) 

A comparison of blinded and unblinded periods (periods 1 and 2) for all 10 patients showed a 

change in TBR from mean 3.9% to mean 4.0%, indicating no average reduction in 

hypoglycaemia from device unblinding. For the five patients with initial hypoglycaemia, we 

have shown that HYPO-CHEAT affected a change in fingerprick behaviour within these 

targets, but we also assessed for the ultimate outcome of a change in TBR. We have presented 

the results of this outcome in two ways. The first is via an aggregated mean change in TBR 

followed by a report of individual changes in TBR, and whether this met the MCID for each 

patient.  

As documented above, patients were given up to three targets within which they were asked to 

reflect on the causes of hypoglycaemia. Following the use of HYPO-CHEAT, all patients 

reduced the TBR in their provided targets (Figure 9.4, Table 9.5). The mean (range) reduction 

in hypoglycaemia within targets was 67% (43-100%) despite users going from a period of 

unblinded CGM (access to real time data) to blinded CGM (no access to real time data). As 

expected, when devices were reblinded, the aggregated mean total TBR did increase slightly 

from 4.5% to 5.4%. However, the aggregated total TBR of 5.4% remained 25% lower than the 

other comparable blinded period (7.1%) before patients used HYPO-CHEAT (Figure 9.4). 

Analysed at an individual level, four out of the five patients (80%) achieved the MCID in TBR 

in blinded periods after using HYPO-CHEAT (Table 9.5). One patient showed an increase in 

TBR between these periods, although: this patient was admitted to hospital for 6 days with an 

intercurrent illness during the final blinded period which significantly increased TBR. Overall, 

the failure of unblinding to reduce TBR for all patients and the  reductions in TBR between 

comparable blinded periods for those using HYPO-CHEAT suggest that the behaviour change 

resulting from HYPO-CHEAT (rather than live data provision) actually reduced both targeted 

and total TBR from baseline.   
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Figure 9.4. Visualisation of the relative change in TBR between periods for the group 

with initial hypoglycaemia. 

When devices were unblinded, TBR improved by 37%. At the end of this period patients used 

HYPO-CHEAT and received targets for improvement. Unsurprisingly, when devices were 

reblinded and live data was taken away TBR increased slightly by 20%. However, targeted 

TBR improved by mean 67% suggesting patients were following suggestions made by HYPO-

CHEAT. Most importantly, the final blinded period contained 25% less aggregated 

hypoglycaemia than the initial blinded period, suggesting that HYPO-CHEAT can reduce TBR 

when patients have no access to live CGM data.  
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 TBR (<3.5mmol/L) (%) Change in TBR between blinded 

periods 

Relative change 

in TBR within 

provided 

targets 

 Blinded Unblinded Blinded Absolute  Relative MCID 

achieved? 

Patients with initial hypoglycaemia (TBR >1% in Blinded period) 

Pt2 1.9 1.1 3.6 +1.7 +89% No -50% 

Pt4 4.3 0.7 2.5 -1.8 -42% Yes -100% 

Pt5 6.7 2.2 2.8 -3.9 -58% Yes -43% 

Pt8 13.6 11.6 11.0 -2.6 -19% Yes -49% 

Pt9 9.2 6.8 7.0 -2.2 -24% Yes -93% 

Mean 7.1 4.5 5.4 -1.8 -25% Yes -67% 

Pt6* 3.1 11.2 N/A N/A N/A N/A N/A 

Patients without initial hypoglycaemia (TBR <1% in Blinded period) 

Pt1 0.2 5.4 0.1 -0.1 -50 Yes N/A 

Pt3 0.6 0.8 8.7 +8.1 +1350 No N/A 

Pt7 0.1 0.3 0.2 +0.1 +100 No N/A 

Pt10 0.0 0.0 3.6 +3.6 N/A No N/A 

Mean 0.2 1.6 3.2 +2.9 +1300 No N/A 

All patients (irrespective of initial TBR and use of HYPO-CHEAT)  

Mean 3.9 4.0 4.4 N/A N/A N/A N/A 

Table 9.5. TBR (%) as well as absolute and relative change by patient. 

Details of Patient 6 (Pt6) are included for the sake of completion but are not included in 

calculation of means as the patient did not complete the study. Minimum Clinically Important 

Difference (MCID) was set at an absolute TBR reduction of 1.5% and was achieved by four of 

five patients (80%).  

 

For the patient group who showed no discernible pattern of hypoglycaemia in the first part of 

the trial, HYPO-CHEAT had nothing to report, and so no recommendations were made. Thus, 

HYPO-CHEAT was not of use to these patients at the beginning of the study. However, 

throughout the remainder of the study, the TBR for these patients steadily increased from a 

baseline level of 0.2% in the first blinded period to 3.2% in the final period (Table 9.5). This 

is to be expected, as the effect of being observed (Hawthorn effect) is likely to have increased 

tight glycaemic monitoring408 but this effect lessens over time 409 and thus offers further support 

for the hypothesis that it is the use of HYPO-CHEAT that reduced TBR in the other group and 

not simply a reduction over time.  

9.5.3 User feedback on HYPO-CHEAT  

We have presented results that are suggestive of a reduction in TBR, mediated by an intended 

behaviour change, following the use of HYPO-CHEAT in a test group of patients with CHI. 

However, because of the lack of a randomised comparator group, it is impossible to say for 

certain that HYPO-CHEAT was responsible for the behaviour change and subsequent 
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reduction in the TBR. We therefore sought feedback from users to investigate if they felt that 

HYPO-CHEAT had been useful in changing their behaviour and reducing hypos. 

A full report of the semi structured interview and thematic analysis (primarily focused on CGM 

in CHI) is provided in a separate paper316; here we will briefly discuss the elements pertaining 

to HYPO-CHEAT and behaviour change that emerged during the interviews. All nine families 

mentioned the way in which knowledge of CGM data and summaries via HYPO-CHEAT had 

influenced behaviour change.  

Patients obtained new insights into their glucose profiles from using HYPO-CHEAT:  

“it showed some certain times I was getting a lower, like, say on a Friday 

morning, because I start late, I don’t get out of bed until later on so I start -my 

blood was dropping” 

 “it’s made us more aware that it’s happening during the night” 

“it made us realise from the graph before what areas to concentrate on for his 

low sugars” 

This translated into a change in fingerprick behaviour: 

“there were some Saturday mornings that they were really dipping quite low, 

but we still have to drag him out of bed to make sure” 

“we started doing, like, two extra [fingerpricks] a day in between them 

[meals]” 

And ultimately resulted in patients predicting hypos ahead of time and proactively changing 

behaviour to take control of their glucose profiles and prevent hypos: 

“it’s made us more aware that he definitely needs something before he goes to 

bed after sport even if he doesn’t want it” 

 “[I] make sure that he had something a bit more sugary in the evening or have 

a late dinner, just to make up for those late hours in the morning where he’s 

getting those low sugars” 

“Previously we would […] wait until something was to happen to actually look 

for, you know, the blood sugars. But with this one, it kind of made us […] pay 
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more attention to her and, you know, tell her ‘have you eaten’, ‘make sure you 

eat your breakfast’ ” 

This small selection of quotes demonstrates the powerful way in which HYPO-CHEAT 

presented data to patients and changed their understanding of their glucose profiles to allow 

them to reflect and change their behaviour to successfully reduce hypos.  

9.5.4 Discussion 

In this paper, we have outlined the devastating impact that hypoglycaemia can have upon 

children with CHI. We have discussed the current methods for prediction and prevention of 

hypoglycaemia in children and how these primarily focus on either using ML and continuous 

CGM to predict future values or on the provision of CGM with review of data. Unfortunately, 

the ML approach has yet to demonstrate any real-world effect, and the CGM approach is 

insufficient with most methods of data review lacking proper data aggregation, failing to 

provide helpful visualisations upon which patients can act to change future glucose profiles.  

The primary problem with existing approaches is that they fail to account for the human in the 

loop and the importance of not simply providing information but of designing the delivery of 

that information such that it has the capacity to trigger reflection and subsequent behaviour 

change. The fields of behaviour change and persuasive technology thus have much to offer, 

and provide an evidence-based background upon which we can develop new approaches to 

genuinely prevent hypoglycaemia in free-living conditions rather than detect and react to it.  

HYPO-CHEAT has been designed as a BCSS, based upon a dual approach incorporating the 

behavioural theory-informed BCTs of behaviour change and the delivery-orientated PSD 

model of persuasive technology. This method of design has ensured that HYPO-CHEAT is 

rooted in established behavioural theory while not ignoring the importance of mode and 

methods of delivery which themselves contribute to the persuasiveness of a system.  

Unlike the vast majority of technological approaches to prevent hypoglycaemia, we have 

conducted an in-vivo analysis of HYPO-CHEAT in free-living conditions, in 10 patients with 

the target condition. To better understand not only if but how our system works, we designed 

our evaluation to measure both proximal and distal outcomes and thus contribute important 

knowledge to multiple areas of the literature. Our pilot evaluation suggests that HYPO-CHEAT 

is an effective way to reduce TBR for patients with CHI and that it likely achieves this through 

targeted behaviour change. We demonstrated that HYPO-CHEAT achieved its proximal goal 
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of affecting changes in fingerprick behaviour to target checks around periods of high risk. The 

impact of this was to increase patient awareness of times of hypos as well as to confirm or 

refute the presence of troublesome and repetitive hypoglycaemia. There is, however, scope for 

improvement: despite patients understanding the potential risk of hypoglycaemia and being 

shown times of heightened risk, 21 of 52 targets went unchecked by fingerprick test. Patients 

had no access to real time CGM data in this period, and it is likely that many simply forgot to 

check a fingerprick during their targets. Reminders delivered by email or SMS are likely to 

increase adherence to suggestions205 and will certainly be incorporated into future versions of 

HYPO-CHEAT to ensure more high-risk periods are monitored with fingerpricks.  

HYPO-CHEAT also achieved its distal goal (and primary outcome) of reducing the TBR for 

patients with CHI without access to real time CGM data. This was demonstrated on an 

aggregated level as well as for 80% of patients on an individual level who achieved a reduction 

in TBR of at least the MCID. From thematic analysis of data from semi-structured interviews, 

we were able to ascertain that this reduction in hypoglycaemia was achieved through predictive 

and proactive measures taken by families to prevent hypoglycaemia. This behaviour change is 

coordinated using multiple BCTs from a wide range of categories that can target multiple 

methods for behaviour change. Importantly, the means by which HYPO-CHEAT is delivered 

used the considered and evidence-based approach of the PSD model to maximise the chances 

of optimal and effective persuasion. There are very few algorithmic approaches that have been 

shown to effectively reduce hypoglycaemia without the need for ongoing CGM, thus a pilot of 

HYPO-CHEAT suggests its unique ability in this area. The relatively simple algorithmics, low 

cost and short lead-in time of this system allow it to be scaled up very quickly and tested in 

large patient groups in multiple environments without the need for either large grants or CGM 

manufacturer collaboration, both frequent stumbling blocks for hypoglycaemia prevention 

technologies329. More importantly, this is the first innovation aiming to reduce hypoglycaemia 

for patients with CHI and thus providing much needed support for this often-underserved 

group.  

9.6 Limitations and Future Work 

The primary limitation of HYPO-CHEAT is that it is not able to predict acute and unexpected 

hypoglycaemia in the same way that a glucose forecasting algorithm might. This has the 

potential to result in undetected hypos once patients have undergone their CGM phenotyping 

and no longer have access to live CGM data. While this limitation is undoubtedly true, the 
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impact may be somewhat tempered by the patient reflection on individual precipitants of 

hypoglycaemia (e.g. sport before bed) that we have demonstrated HYPO-CHEAT is capable 

of stimulating. Furthermore, HYPO-CHEAT can be used alongside CGM if desired and thus 

acute alarms will remain present in addition to the pattern recognition capacity of HYPO-

CHEAT. Finally, CGM is not currently standard of care for patients with CHI and thus by 

providing HYPO-CHEAT to this patient group, no monitoring or treatment is taken away.  

A second, and important, limitation to our work is the short time frame and small patient 

numbers involved in the pilot study. Furthermore, this pilot was not randomised and thus results 

have to be interpreted with the caution appropriate for pilot studies until larger scale, 

randomised trials can be undertaken.  

Even within the relatively short four-week period of using HYPO-CHEAT, patients by no 

means undertook all suggestions for fingerpricks. It is possible, and even likely, that 

engagement with HYPO-CHEAT would fade over time as patients improve their TBR and 

gather less benefit from the use of HYPO-CHEAT. It is important to plan for this so-called 

‘gateway’ effect when the persuasive system will no longer be required410, and the system can 

even be expressly designed with this effect in mind411, and to plan for user abandonment. As 

patients reduce their TBR, future iterations of HYPO-CHEAT will suggest less frequent 

interactions, with the intention to reduce the chance of patients becoming bored with the 

system. The addition of prompts and nudges to perform fingerprick checks at high-risk times, 

or to think about pre-bed routines for preventing predicted overnight hypos would theoretically 

increase engagement with HYPO-CHEAT as well possibly improve its efficacy205. Finally, 

gamification will be added to future versions of HYPO-CHEAT to try and improve engagement 

and adherence412. Once the initial CGM phenotyping is complete and patients are provided 

with their individualised heatmap they will be challenged to try and clear the heatmap by 

performing targeted fingerprick tests demonstrating normoglycaemia (normal blood glucose) 

at times of historic hypos and thus slowly remove hotspots from their heatmap. A system of 

rolling fingerprick checks will slowly check the rest of the week and ensure new and/or old 

hypos have not (re)emerged.  

Future work will concentrate on determining the minimal time period required to establish a 

reliable and stable digital phenotype of an individual’s glucose profile upon which HYPO-

CHEAT can then work with fingerprick data. Future studies must evaluate the impact of 

prompts and gamification on the efficacy of HYPO-CHEAT and a large, randomised controlled 
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trial is required to confirm or refute pilot findings and investigate long term behaviour change. 

Finally, a micro-randomised trial approach would allow for fine tuning of the system413 with 

multiple decision points each day being assessed for efficacy on an individual basis.  

9.7 Conclusions 

In this paper we have provided a detailed description of the behaviour change basis of HYPO-

CHEAT, a novel approach to aggregate and present CGM data to patients with CHI with the 

intention of changing proximal behaviours to reduce hypoglycaemia in free-living conditions. 

We have demonstrated the utility of HYPO-CHEAT in a small pilot study within the target 

patient population and provided a thorough analysis of how this utility has been achieved. 

Preliminary results indicate that HYPO-CHEAT may offer an effective and practical approach 

to reduce hypoglycaemia for patients in free-living conditions in the immediate future. This 

system does not require expensive algorithmics, monitoring equipment or industry 

collaboration. HYPO-CHEAT’s mechanism of action is through targeted provision of 

actionable information designed to change behaviour and empowers patients to engage with 

self-care and improve their future health outcomes. Further, large studies are required to 

validate these findings.  
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Appendix 9.1 – example HYPO-CHEAT output for one patient 
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Chapter 10 - Conclusion and Future Work 

The aim of this PhD and thesis was to reduce hypoglycaemia for patients with Congenital 

Hyperinsulinism (CHI) through the use of technology. We believe we have achieved that for 

the patients in our study and have shown a feasible route to achieving this on a large scale. Due 

to the paucity of work in rare diseases such as CHI, and the relative infancy of the technological 

glucose revolution, we began this work with very few assumptions and allowed our early 

reviews to guide the work in the direction most likely to yield real world results and contribute 

some novel understanding. The real world relevance and impact of our work can be quickly 

understood by revision of the graphical abstract.  

We began the feasibility phase of our work with a review of the problems faced by patients 

with CHI, presented in Chapter 3. This chapter identified hypoglycaemia detection and 

prediction as a key area within which progress could be made that would provide a meaningful 

difference to patients and their families. Given the insufficiency of SMBG to detect and predict 

hypoglycaemia, we investigated the utility of CGM to perform this task. Our evaluation, in 

Chapter 4, identified several barriers to the use of CGM, such as poor point accuracy; which 

we investigated further and more thoroughly through a formative experiment in Chapter 5. 

Additionally, we saw promise in the use of machine learning (ML) as an adjunctive tool to 

facilitate the prediction and prevention of hypoglycaemia and directed our work accordingly. 

This took the form of a survey on the current use of ML for the prevention of hypoglycaemia 

and is presented in Chapter 6. This chapter concluded that, if the goal is to prevent 

hypoglycaemia, the current approach of ML-driven glucose forecasting is flawed: algorithms 

are insufficiently accurate; they ignore the repetitions of human behaviour; prediction horizons 

are too short to allow proactive prevention and; fundamentally, this approach fails to 

acknowledge human behaviour as the primary cause of hypoglycaemia.  

Having identified these flaws, we presented an alternative approach to that of ML-driven 

glucose forecasting that we believed could result in real change for patients in their daily lives. 

This approach, of retrospective CGM analysis and visualisation leading to proactive and 

targeted behaviour change, became the new direction for our work and forms the final 

formative paper and entire summative phase of our work.  

To understand if retrospective analysis of CGM data was a feasible method for understanding 

patterns of hypoglycaemia (that could subsequently be targeted), we performed an analysis of 
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existing data from patients with CHI in Chapter 7. This chapter identified that, at a group level, 

patients with CHI showed daily periodicity to their hypoglycaemia but also that, despite 

provision of real time CGM data, hypoglycaemia events were often prolonged and repeated. 

From this formative experiment we learnt that:  

- Retrospective analysis of CGM data can identify hypoglycaemia patterns but that, if 

one wants to alter these patterns and prevent hypoglycaemia, these must be viewed in 

the context of human behaviour.  

- Provision of real time CGM data alone does not eliminate hypoglycaemia. This is likely 

due to a combination of factors including: information overload; alarm fatigue; poor 

engagement.   

Having identified an approach (Chapter 6) and determined its feasibility (Chapter 7), we began 

the summative phase of our work – the development and testing of HYPO-CHEAT. 

The basic idea of HYPO-CHEAT was to aggregate CGM data into a visualisation of weekly 

hypoglycaemia risk that could be used by patients to better appreciate their periods of repeated 

hypoglycaemia and understand the causative behaviours. We began by writing the code to 

aggregate the CGM data and provide this as a weekly visualisation of repeated hypoglycaemia 

(Chapter 8). Further work established an expert system for descriptions of the hypoglycaemia 

repeats and methods for establishing three targets for hypoglycaemia reduction. This system 

(HYPO-CHEAT) was compared to the pattern recognition built into Dexcom Clarity and also 

provided by Facebook Prophet. Neither Clarity nor Prophet provided any useful pattern 

information for the five patients in our pilot study. HYPO-CHEAT described repetitive 

episodes in all five patients and, in each case, patients reliably associated these with known 

repetitive behaviours.  

Chapter 8 describes HYPO-CHEAT from an alternative perspective: that of the behaviour 

change required to bring about the distal outcome (a reduction in hypoglycaemia). HYPO-

CHEAT was designed from the ground up as, not simply a data aggregation tool, but a 

persuasive technology, designed to change behaviour. We performed an exhaustive search of 

the literature for behaviour change techniques and persuasive technology and their role in 

health behaviours. This knowledge was used to leverage the techniques with the best evidence 

for efficacy and design HYPO-CHEAT to change behaviour in line with identified 

hypoglycaemia patterns.  
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HYPO-CHEAT was then tested in a real world trial with patients using it in free living 

conditions and with no artificial constraints on their day to day behaviour. We performed 

multiple analyses of efficacy to provide as transparent an analysis as possible (Chapter 9). The 

first was a simple analysis of the mean reduction in hypoglycaemia seen from before using 

HYPO-CHEAT to after using HYPO-CHEAT and demonstrated a mean reduction of 25% in 

the time below range (TBR): a measure of time spent hypoglycaemic. The second analysis was 

on a per patient basis and assessed how many patients demonstrated a clinically meaningful 

reduction in their TBR. This second analysis revealed that four of five patients achieved this 

reduction and thus benefited from the use of HYPO-CHEAT.  

Finally, we were interested in discovering how HYPO-CHEAT achieved a reduction in 

hypoglycaemia and if patients had followed suggestions. Our analysis of fingerprick behaviour 

(Chapter 9) demonstrated that patients performed significantly more fingerprick glucose tests 

during provided targets than outside of these and thus the provision of targets had changed 

behaviour. Our qualitative analysis, provided in Appendix C, offered further analysis of how 

HYPO-CHEAT had changed perceptions, provided new insight and ultimately changed 

behaviours to proactively prevent hypoglycaemia.  

11.1 Main Findings 

1. Neither SMBG nor unsupported CGM are sufficient to prevent hypoglycaemia 

for patients with CHI. We identified early in the process that SMBG was not suitable 

for the prediction and prevention of hypoglycaemia events due to the low granularity 

and lack of trend information. We conducted a thorough review on the use of CGM in 

hypoglycaemia disorders (Chapter 4) and showed that CGM had potential for utility 

but multiple barriers to use including suboptimal accuracy. We confirmed the poor 

accuracy of modern CGM devices in CHI with our own experiment (Chapter 5). 

Finally, we demonstrated that when patients are provided with real time CGM devices 

they still experience prolonged hypoglycaemia episodes (Chapter 7) and data suggest 

unsupported provision does not reduce hypoglycaemia (Table 9.5 in Chapter 9). Further 

support is required.  

 

2. The current use of ML to prevent hypoglycaemia, while promising, fails to 

demonstrate any real reduction in hypoglycaemia due to its reactive approach and 

lack of real world testing. Our discovery that unsupported CGM was insufficient to 
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prevent hypoglycaemia led to an evaluation of the use of ML to enhance this 

technology. While we found some evidence of a small increase in prediction accuracy 

when using ML over simple time series forecast, we discovered multiple pitfalls in the 

current ML approach to hypoglycaemia prevention. Current ML approaches focus on 

the prediction of a continuous glucose value in the near future. Not only is this heavily 

restricted by the poor point accuracy of CGM in CHI but fails to acknowledge the 

importance of human behaviour in the prevention of hypoglycaemia: Provision of short 

term prediction does not allow for any reflection on the causes of hypoglycaemia and 

thus precludes proactive prevention through behaviour change (ignoring suboptimal 

self-management as the primary cause of hypoglycaemia). As such, we proposed an 

alternative model that accounted for the human in the loop and focused on provision of 

data targeted to change behaviour for a proactive prevention of real world 

hypoglycaemia.  

 

3. Aggregation of CGM data into weekly patterns using our approach is superior to 

existing techniques in the identification of hypoglycaemia patterns. Our proposed, 

proactive approach required a system for prediction of hypoglycaemia beyond that of 

the usual 30 minutes provided by CGM and ML. We hypothesised that patients with 

CHI would demonstrate both daily and weekly patterns in hypoglycaemia and that 

provision of weekly patterns would allow for the pairing of repeated hypoglycaemia 

with repetitive behaviours. The existence of daily and weekly patterns were confirmed 

through testing of retrospective datasets in Chapters 7 & 8. We subsequently developed 

a system for the aggregation of CGM data into visualisations of weekly hypoglycaemia 

risk and confirmed that patterns were associated with patient identified repetitive 

behaviours such as eating and exercise (Chapter 8). Comparison of our system against 

established proprietary CGM software and ML forecasting algorithms demonstrated a 

clear benefit to our new system with the simple to interpret patterns reliably identified.  

 

4. Focusing on changing behaviour through provision of targeted information and 

reflection results in a real world reduction in hypoglycaemia. The final stage of this 

thesis was to use the collected knowledge and formative experiments to actually prevent 

real world hypoglycaemia for patients with CHI. While other systems focus on the 

prediction of hypoglycaemia and the simple reporting of these predictions, our system 

was focused on the proximal behaviour changes required to actually prevent 
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hypoglycaemia (the distal outcome). As such, we leveraged persuasive technology 

techniques to target focused behaviour change in patients with CHI based upon 

visualisations of aggregated CGM data. A pilot experiment of this system was 

successful and demonstrated a mean 25% reduction in hypoglycaemia, with four of the 

five patients seeing a clinically meaningful reduction in hypoglycaemia in free-living 

conditions.  

11.2 Limitations 

Our work is heavily based around data collected using CGM devices. We have discussed in 

great detail the limitations of CGM devices (Chapters 4 & 5) and how our approach aims to 

limit these (Chapter 6). However, all data used to inform HYPO-CHEAT was collected from 

these devices and thus is subject to potential inaccuracies. False readings from CGM devices 

could result in erroneous hypoglycaemia patterns for both patient groups and individuals. This 

is largely mitigated by the requirement for patterns to only be displayed if repeated over several 

weeks. Similarly, the focus on time of day and day of week allow for patterns less influenced 

by CGM point accuracy. However, we must admit to the possibility that perceived patterns 

could be generated by CGM error when unconfirmed by blood glucose checking.  

Chapter 7 details patterns of hypoglycaemia at a group level and was a catalyst for much of the 

latter work in this thesis. However, the data which informed this chapter was not collected 

primarily for research purposes and data quality was variable with individual contributions of 

CGM data volume varying from 1 day to 10 days and collected from two different CGM 

devices. None of this data was double checked with blood glucose measurements. While 

similar hypoglycaemia patterns were seen in both Chapter 8 and Appendix B, indicating that 

any inaccuracy at this formative phase was negligible, the possibility must be acknowledged.  

Large sections of this thesis concentrate on the high expense of long term CGM as a monitoring 

tool and our approach is not free from this requirement. The majority of our summative work 

(Chapters 8 & 9), and some of our formative work (Chapters 5 & 7) were dependent on data 

derived from CGM devices. We have alluded to the possibility of using HYPO-CHEAT 

without ongoing CGM and simply relying on initial phenotyping with CGM and then follow 

up with SMBG. Unfortunately, due to the small UK patient pool and a concurrent national trial 

involving use of CGM, it was not possible to test how effective HYPO-CHEAT would remain 

if continuous CGM were discontinued and SMBG alone used to update hypoglycaemia 

patterns. This is therefore a limitation of the full assessment of how we imagined HYPO-
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CHEAT would bring the maximum benefit for the largest number of patients and will simply 

have to wait for future work.  

A limitation of HYPO-CHEAT as a clinical tool is discussed in Chapters 8 and 9 and focuses 

on the inability of HYPO-CHEAT to alert the user to hypoglycaemia episodes in unusual 

individual circumstances deviating from repetitive behavioural trends. HYPO-CHEAT does 

not have a function to acutely predict and warn of impending hypoglycaemia in the same way 

that a CGM device does. However, the proactive reflection in our approach should increase 

awareness of individual determinants of hypoglycaemia thus reducing the likelihood of 

unpredicted events. Furthermore, HYPO-CHEAT can be used alongside real time CGM if 

desired and thus provide complementary support rather than a strictly alternative method. It is 

important to acknowledge that the same team conceived of, designed, developed and tested 

HYPO-CHEAT and thus there is the possibility of some bias arising from a belief in the system. 

This is very difficult to mitigate against on a small scale but will be appropriately addressed by 

any future randomised trials.  

Finally, this thesis was always to be focused on an improvement in clinical outcomes for 

patients with CHI and thus dependent on a clinical, real world study. The main limitation of 

our work is that this clinical study was in a small number of non-randomised patients for a 

short period of time and only involved a single use of HYPO-CHEAT rather than multiple 

iterations. It is thus not possible for us to conclusively state that HYPO-CHEAT reduces 

hypoglycaemia for this patient group and we can only comment that the pilot data (Chapters 8 

& 9), and associated patient feedback (Appendix C), strongly suggest a positive effect. While 

this limitation is important, it should be viewed within the context of similar studies. As 

discussed in detail in Chapters 1, 2 and 6, the great majority of studies aiming to use computer 

science and technology to prevent hypoglycaemia are only ever tested in-silico. Thus, while 

our pilot study is only small, it offers significantly more real world evidence for its use than 

the bulk of similar research and must be viewed in this context. Furthermore, clinical trials are 

expensive and time consuming to run and, within the scope of a PhD, it is not feasible to 

perform a large randomised controlled trial.  

11.3 Future work 

In previous chapters we have highlighted opportunities for future work which, in some cases, 

we have then performed in subsequent chapters (e.g. Chapters 8 & 9 detail the future work that 

we suggest in Chapter 6). Here, we summarise the future work that we believe is possible from 
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the thesis as a whole, much of which directly addresses the limitations identified in the previous 

section: 

Nudges: Our approach (HYPO-CHEAT) works through provision of targets within which 

patients are asked to try and check blood glucose and change behaviour to ultimately reduce 

hypoglycaemia. Currently, HYPO-CHEAT provides these targets when patients interact with 

the system and does not offer any reminders. The use of nudge technology422 is a popular way 

to provide minimally invasive reminders about tasks and a key component of many persuasive 

technology189,378 and behaviour change392 interventions. The evidence for nudge technology is 

somewhat inconclusive with a recent meta-analysis demonstrating a positive effect423 but 

subsequent analysis by other groups arguing that this effect was due to publication bias424. 

Within the context of PT to influence health behaviour, those interventions that contained 

reminders or gamification were found to be the most effective205. Nudges to check an SMBG 

could be introduced to HYPO-CHEAT as SMS messages or emails pushed to users at times of 

high hypoglycaemia risk. Furthermore, nudges could even incorporate suggestions for 

behavioural change such as eating before exercise. It is vital that nudges are not overwhelming 

and provided only when required. Due to the provision of a small number of targets, nudges 

from HYPO-CHEAT would not exceed four per week and thus would be unlikely to 

overburden users. 

Gamification: As mentioned above, in a review by Kwan et al205, studies containing 

gamification were more likely to have a statistically significant outcome. Gamification is “the 

use of game design elements in non-game contexts”425 and reviews suggest that it does often 

work426 although this effect is currently unclear in the field of health427. Within HYPO-

CHEAT, we envisage a system whereby patients are encouraged to “clear their heatmap” by 

performing SMBG checks at targeted times and demonstrating values above the 

hypoglycaemia threshold. This would support the core mechanism by which HYPO-CHEAT 

has its effect while potentially increasing SMBG checks at target times through the dual 

motivation of hypoglycaemia avoidance and heatmap clearance. If HYPO-CHEAT were 

adapted for use as software or an app then simple in-app rewards could be provided for 

achieving heatmap clearance.  

Removal of CGM: As discussed in the limitations of the work (Section 11.2), HYPO-CHEAT 

was intended to be used without the need for long term CGM. After an initial phenotyping 

period with CGM, devices could be removed from users and future heatmaps could be updated 
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with SMBG information. A study is required to ascertain how well an SMBG informed 

heatmap would reflect a heatmap informed by ongoing CGM. Additionally, work would need 

to be undertaken to ascertain the minimum period of CGM phenotyping required to provide an 

accurate reflection of the user’s hypoglycaemia patterns. If SMBG informed heatmaps proved 

to be a viable option, following a formal assessment of performance, then an SMBG driven 

version of HYPO-CHEAT would provide significant cost savings.  

Fictional HYPO-CHEAT outputs to determine true pattern finding: In Chapter 8 we report 

that all families identified behavioural patterns in their HYPO-CHEAT outputs. We did not 

comment on whether the consistent patient identification of behavioural patterns in HYPO-

CHEAT outputs could be a result of fitting the results onto daily experience rather than a true 

pattern. This could have been tested by the provision of fictional HYPO-CHEAT outputs to 

families to determine if behavioural patterns were also identified in these charts. If so, this 

would weaken the argument that true behavioural patterns were identified. While this would 

not necessarily weaken the power of visualising the true patterns for families, it would be of 

interest academically and will be included in future work on HYPO-CHEAT.  

Micro-Randomised Trial (MRT)/Just-in-time Adaptive Interventions (JITAI): There are 

multiple factors within HYPO-CHEAT that are likely to have more or less effect depending 

upon the user in question. The presence or absence of nudges and gamification; the timing and 

volume of nudges; the number of targets provided: these are all aspects of HYPO-CHEAT 

which can easily be varied depending on their relative efficacy in changing behaviour and 

reducing hypoglycaemia. The use of a micro-randomised trial413 would facilitate the testing of 

each of these components and their relative efficacies for each individual. This would lead to 

the development of Just-In-Time Adaptive Interventions (JITAI): reminders/nudges that are 

delivered “at the moment and in the context that the person needs it most and is most likely to 

be receptive”428. These JITAIs would be adaptive not only between individuals, but also within 

individuals as behaviour (and thus hypoglycaemia patterns) change(s). The use of JITAIs has 

been shown to be highly effective in changing behaviour429 and would provide additional utility 

to HYPO-CHEAT. Due to the high frequency of decision points in an MRT, small patient 

numbers (due to a rare disease such as CHI) would not be an obstruction to this trial design.   

Other conditions/diabetes: While HYPO-CHEAT has been designed specifically for use by 

those patients with CHI, its core concept could be utilised by any patients who experience 

hypoglycaemia. In a Patient and Public Involvement (PPI) workshop with 8 people living with 
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diabetes, HYPO-CHEAT’s visualisations received very positive responses as providing novel 

information that would help guide behaviour to reduce hypoglycaemia. If HYPO-CHEAT were 

to be used by people living with diabetes, then significant adaptations to incorporate 

hyperglycaemia as well as hypoglycaemia would be required.  

Large, RCT: As outlined in the limitations (Section 11.2), the clinical trial of HYPO-CHEAT 

was small, short, non-randomised, lacking a true control group and only underwent a single 

iteration of HYPO-CHEAT use. To fully establish the efficacy of HYPO-CHEAT, a further 

trial must be performed and should be: larger (more patients), randomised, controlled and long 

enough to include multiple iterations of HYPO-CHEAT to demonstrate how it can adapt to 

changes in behaviour and hypoglycaemia patters and how these changes affect usage of the 

system. This trial will require the formalisation of HYPO-CHEAT from a functioning piece of 

Python code to a user friendly App, website and/or software that can function on demand from 

patients, without researcher input.  
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Appendix A – Continuous Glucose 

Monitoring for Children with 

Hypoglycaemia: evidence in 2023 
 

Following on from the success and impact of the paper presented in Chapter 4 (19 citations at 

the time of writing), CW was invited to write and submit an updated review paper on CGM in 

hypoglycaemia disorders for a special research topic in Frontiers in Endocrinology. The 

research topic is The Problem of Childhood Hypoglycaemia: Volume II. The paper that we 

wrote for this topic does not form a direct part of the original work for this thesis but does 

provide a comprehensive review of the change in the research landscape from when we began 

work on this thesis to the end. This review paper is helpful to update the reader of this thesis 

on how things had changed in the three years of this PhD and the significant proportion of work 

in the field that has been generated by our work.  

The content of this chapter is a paper authored by: Chris Worth, Lucy Hoskyns, Maria 

Salomon-Estebanez, Paul W Nutter, Simon Harper, Terry G J Derks, Kathy Beardsall and 

Indraneel Banerjee. The title of the paper is: Continuous Glucose Monitoring for Children 

with hypoglycaemia: evidence in 2023 and is published in Frontiers in Endocrinology, 

January 2023. DOI: 10.3389/fendo.2023.1116864. URL: 

https://www.frontiersin.org/articles/10.3389/fendo.2023.1116864/full. The paper is included 

verbatim with some changes to the formatting to ease readability within the thesis.  

Author contribution 

Chris Worth researched and wrote the initial manuscript. All other authors provided expert 

input and reviewed and approved the final manuscript.  

Abstract 

In 2023, childhood hypoglycaemia remains a major public health problem and significant risk 

factor for consequent adverse neurodevelopment. Irrespective of the underlying cause, key 

elements of clinical management include the detection, prediction and prevention of episodes 

of hypoglycaemia. These tasks are increasingly served by Continuous Glucose Monitoring 

(CGM) devices that measure subcutaneous glucose at near-continuous frequency. While the 

https://www.frontiersin.org/articles/10.3389/fendo.2023.1116864/full


260 

 

use of CGM in type 1 diabetes is well established, the evidence for widespread use in rare 

hypoglycaemia disorders is less than convincing. However, in the few years since our last 

review there have been multiple developments and increased user feedback, requiring a review 

of clinical application. Despite advances in device technology, point accuracy of CGM remains 

low for children with non-diabetes hypoglycaemia. Simple provision of CGM devices has not 

replicated the efficacy seen in those with diabetes and is yet to show benefit. Machine learning 

techniques for hypoglycaemia prevention have so far failed to demonstrate sufficient prediction 

accuracy for real world use even in those with diabetes. Furthermore, access to CGM globally 

is restricted by costs kept high by the commercially-driven speed of technical innovation. 

Nonetheless, the ability of CGM to digitally phenotype disease groups has led to a better 

understanding of natural history of disease, facilitated diagnoses and informed changes in 

clinical management. Large CGM datasets have prompted re-evaluation of hypoglycaemia 

incidence and   facilitated improved trial design. Importantly, an individualised approach and 

focus on the behavioural determinants of hypoglycaemia has led to real world reduction in 

hypoglycaemia. In this state of the art review, we critically analyse the updated evidence for 

use of CGM in non-diabetic childhood hypoglycaemia disorders since 2020 and provide 

suggestions for qualified use.    

A.1 Introduction 

In 2023, non-diabetes hypoglycaemia remains a major global problem for children. Its effects 

are far reaching, with impacts on quality of life430,431, health economics6, hypoglycaemia 

fear323, reaching beyond the individual to the extended family77,432. Although recent studies72, 

complimenting previous work104,433, have suggested a lesser effect of transient neonatal 

hypoglycaemia74, there remains little doubt of the impact of severe childhood hypoglycaemia 

on neurodevelopmental delay, particularly in those children with severe and recurrent 

hypoglycaemia due to congenital hyperinsulinism (CHI) 5,74,433. 

Essential to all hypoglycaemia management, irrespective of the cause, is the detection, 

prediction and prevention of episodes through glucose testing73,303. The first of these three tasks 

has been traditionally performed by fingerprick blood glucose testing303, with prediction and 

prevention reliant on clinical skill and patient experience. However, over recent years, all three 

tasks are increasingly being performed by continuous glucose monitoring (CGM) in either its 

raw form or through its manipulation by modern computer algorithmics. For people living with 

diabetes, CGM and associated predictive algorithms are widely used and well established in 



261 

 

the reduction of hypoglycaemia94–96,434 and cost-effectiveness117–119. However, for those with 

a non-diabetes hypoglycaemia disorder, the utility in diabetes has not been replicated and CGM 

has not been established in routine clinical practice.  

The use of CGM in rare hypoglycaemia disorders is a rapidly evolving and expanding field. In 

this review we have followed on from a comprehensive review in 2020 303, to provide an update 

on improvements in the technology and utility of CGM focusing mainly on CHI, glycogen 

storage diseases (GSD) and neonatal prematurity.  We reflect on our predictions from 2020, 

synthesise current understanding and look to the future.  

A.2 Accuracy 

We have detailed the background to accuracy assessments in CGM elsewhere 303 but it is worth 

outlining the two differing approaches to accuracy assessment: 1) pairing CGM values with 

fingerprick glucometer values and measuring difference; 2) evaluating the ability of CGM 

devices to ‘detect’ hypo(or hyper)glycaemia within a time window and thus utilising to a fuller 

extent the semi-continuous nature of CGM. Measures of accuracy differ widely throughout the 

literature, but the former is more commonly used and tends to incorporate mean absolute 

relative difference (MARD), mean absolute difference and hypoglycaemia 

sensitivity/specificity. A summary of CGM accuracy studies by various groups using different 

CGM devices in non-diabetes hypoglycaemia is presented in Table A.1. 

Publication Patient 

group 

Device MARD 

(%) 

MD 

(mmol/L) 

MAD 

(mmol/L) 

R2 Hypo 

sensitivity 

Beardsall ‘0598 Neonates Medtronic 

MiniMed 

--- -0.1 --- 0.87 N/A 

Beardsall ‘13435 Neonates Medtronic 

System Gold 

--- --- --- 0.94 (2.6mmol/L) 

17% 

Win61 Neonates 

(+/- 

CHI) 

Medtronic 

Paradigm 

OR Dexcom 

G4 

11.0 --- --- --- (2.6mmol/L) 

59% 

Vijayanand309 Neonates 

(+/- 

CHI) 

Dexcom G4 13.1 +0.3 --- --- (3.5mmol/L) 

78% 

(3.0mmol/L) 

54% 

Alsaffar14 CHI Abbott 

Freestyle 

Libre 

17.9 +0.3 --- 0.70 (3.5mmol/L) 

52% 
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Rayannavar13 CHI Dexcom G5 17.5 -0.4 --- --- (3.9mmol/L) 

86% 

(3.0mmol/L) 

66% 

Worth371 CHI Dexcom G6 19.3 +0.4 0.9 --- (3.9mmol/L) 

52% 

(3.5mmol/L) 

45% 

(3.0mmol/L) 

40% 

Kasapkara111 GSD Medtronic --- --- --- 0.74 --- 

Herbert108 GSD Dexcom G4 --- --- --- 0.57 --- 

Rossi109 GSD Dexcom G6 --- +0.9 --- --- --- 

Table A.1. Accuracy data for CGM use in non-diabetes childhood hypoglycaemia disorders. 

MARD = mean absolute relative difference, MD = mean difference, MAD = mean absolute 

difference, R2 = correlation coefficient between blood glucose and CGM glucose levels, Hypo 

= hypoglycaemia.  

 

A.2.1 Neonates 

Beardsall et al first evaluated the accuracy of CGM devices in neonates in 200598 and later in 

2013435; they reported a correlation coefficient of 0.69-0.94 with safe results on an error grid 

(albeit one designed for those with diabetes). However, hypoglycaemia sensitivity was found 

to be only 17%. More recent results from the same group showed a relatively small MARD of 

11% but a hypoglycaemia sensitivity of only 59% with the latest devices and technologies 61. 

These calculations were based on a lower threshold for hypoglycaemia (<2.6mmol/l) than is 

usually used outside the neonatal unit. Furthermore, as described above, sensitivity is based on 

point comparisons of accuracy which can underestimate the clinical value of sensor glucose 

trends in detecting hypoglycaemic events. Recent work in Australia by Vijayanand et al.309 has 

confirmed the poor hypoglycaemia sensitivity seen in this group with results of 54% when 

using point comparisons.  

A.2.2 Childhood hypoglycaemia disorders 

CGM is not routinely used in patients with CHI and therefore data is relatively sparse (Table 

A.1). In the first evaluation of CGM in CHI, Alsaffar et al.14 reported a hypoglycaemia 

(3.5mmol/L) sensitivity of only 52% but did not report a MARD. While an evaluation of a 

more up to date device by Rayannavar et al.13 showed a better hypoglycaemia sensitivity of 

86%, this was calculated using a higher cut-off for hypoglycaemia (3.9mmol/L), as is standard 

practice in some countries. When hypoglycaemia <3.0mmol/L was investigated, a low 
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sensitivity of 66% was demonstrated. As existing error grids (such as Parks and Clarke) are 

designed for evaluation of CGM accuracy for those with diabetes, they have not been used as 

standard in assessments in CHI. Recently Worth et al.371 developed an expert-consensus error 

grid for use in CHI and used this to evaluate the accuracy of one of the most recent CGM 

sensors, the Dexcom G6. Results suggested the presence of significant clinical risk in the use 

of CGM for patients with CHI due to poor device accuracy on error grid analysis and 

hypoglycaemia sensitivity of only 45%. Analysis of the ability of the Dexcom G6 to detect 

glucometer-measured hypoglycaemia within a 30 minute window was marginally better but 

still unreliable at 51%371.  

Equally, CGM is also not used routinely in patients with GSD and assessments of CGM 

accuracy for this group have been largely incomplete (Table A.1). These demonstrate 

correlation between CGM and glucometer values but the magnitude of error has not been 

reported. Papers108,111 report mean difference or correlation but due to the presence of both 

overestimation and underestimation, and no report of mean absolute difference, it is impossible 

to determine the average magnitude of errors. Rossi et al.109 went on to evaluate CGM error by 

glucose value and also between those with GSD1a and healthy volunteers. They found that 

CGM overestimation was worse for those with GSD1a and at glucose values <3.9mmol/L, 

thereby increasing the risk of missed hypoglycaemia for the most vulnerable groups at the time 

of greatest need.  

A.3 Efficacy of CGM to detect and prevent hypoglycaemia 

We have previously summarised the efficacy of CGM for children with non-diabetes 

hypoglycaemia due to various conditions303. Here we summarise recent developments in the 

field with regards to the conventional use of CGM to detect and prevent hypoglycaemia by 

simple provision to patients and clinicians. The non-conventional use of CGM is discussed 

later in Section 7.  

A.3.1 Neonates 

Previously summarised studies303 have demonstrated the utility of CGM to reduce painful 

procedures, detect unsuspected hypoglycaemia and reduce hyperglycaemia. More recently, 

Fernández Martínez et al.436 confirmed the ability of CGM to detect unsuspected and prolonged 

hypoglycaemia in very low birth weight (VLBW) neonates. Win et al.61 have since 

demonstrated significant fluctuations in glucose in neonates; more pronounced in those with 
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CHI. The same group recently published the results of an international, multi-centre RCT 

investigating the use of CGM in preterm neonates and clearly demonstrated a reduction in 

hypoglycaemia and hyperglycaemia for those in the CGM group103 encouraging CGM as a 

potential tool for regular use in the neonatal intensive care unit.  

A.3.2 Hypoglycaemia associated with rare endocrine conditions 

At the time of our previous review in 2020, there was no evidence for CGM reducing 

hypoglycaemia for children with any endocrine conditions other than diabetes mellitus. In the 

absence of larger scale studies, we discussed303 minimal evidence for use of CGM for both 

adults and children with adrenal insufficiency (AI) and the anecdotal reports of CGM use for 

those with CHI.  

Further single-case, anecdotal reports of utility of CGM in CHI437 and hypopituitarism438 have 

since been published. Importantly however, Worth et al. have recently published non-

randomised data on CHI patients with periods of blinded and unblinded CGM375; suggesting 

that the simple provision of CGM (without expert or algorithmic interpretative support) does 

not reduce hypoglycaemia for those with CHI. The addition of interpretative algorithmic or 

clinical support is discussed in Section 7. However, at the time of writing, there are no 

comprehensive studies evaluating the efficacy of CGM to reduce hypoglycaemia for children 

with endocrine hypoglycaemia. 

A.3.3 Hypoglycaemia associated with rare hereditary metabolic disorders 

We have previously outlined303 the utility of CGM to detect unsuspected hypoglycaemia and 

facilitate manipulation of diet and treatment for patients with GSD. Previous anecdotal reports 

highlighted the utility of retrospective CGM data analysis but advised against the provision of 

real-time CGM to patients for fear of inappropriate treatment alterations112. Since our previous 

review, there have been further anecdotal reports of CGM utility in the detection of glycaemic 

variability and excursions for patients with metabolic causes of hypoglycaemia439–441 but no 

systematic evaluations of the use of CGM to actually prevent or reduce hypoglycaemia.  

A.4 Family perspectives 

Our previous review discussed families with CHI and GSD reporting marginal benefit from 

the use of CGM as secondary outcomes of studies. Anecdotally, families found glucose trends 

helpful. Since 2020, the significant increase in the use of CGM in hypoglycaemia disorders has 
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led to an increase in literature regarding families’ perceptions of this emerging technology, 

described below.  

A.4.1 Patient charity reports 

Patient charities fulfil a vital role of providing support to those with hypoglycaemia conditions 

but also provide an important window into the views and opinions of families. In a recent 

unpublished study (summarised in an opinion paper442), the UK Children’s Hyperinsulinism 

Charity (UK CHC) reported that families with CHI find CGM: offers a safety net, improves 

quality of life, and reduces worry. Patients reported 442 difficulty in access to CGM and a call 

was made for wider availability for families with CHI. While this survey is likely subject to 

significant positive sampling bias, it does offer an important insight into the opinions of some 

families with CHI.  

The charity Congenital Hyperinsulinism International (CHI) recently revealed that 45.7% of 

respondents to a global registry use CGM but that access to devices is often a problem and trust 

in the data generated is often low431. They also report that families generally find devices useful 

but that patients experience problems with poor accuracy432. Again, this is likely open to 

sampling bias but offers an important user-perspective. Within GSD, CGM is a much higher 

research priority for healthcare professionals than it is for patients and carers who rank it as a 

lower priority443.  

A.4.2 Qualitative studies 

While patient organisations have called for wider access to CGM, it is important to formally 

assess families’ experiences of CGM to actively seek out both positive and negative views. As 

recently highlighted by Peeks et al.444, “glucose management as assessed with CGM should be 

balanced against psychosocial well-being and quality of life” which cannot be assumed to be 

higher with CGM than without.  

In CHI patients, Auckburally et al.316 undertook semi-structured interviews with families who 

had been provided with a CGM for 12 weeks as part of a research project. As there was no 

existing information on CHI families’ experiences of CGM, the authors performed a thematic 

analysis to identify themes important to patients and their families. Such detailed analysis 

revealed a rich and complex mixture of attitudes towards CGM. Families reported positive 

feelings about CGM’s function as an educational tool which could motivate behavioural 
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changes to prevent hypoglycaemia. However, the problematic issues of poor accuracy and 

irritating alarms were raised by all participants.  

In order to better understand the reasons for a high rate of dissatisfaction with CGM seen in 

CHI families, Ahmad et al.445 performed semi-structured telephone interviews with those who 

had discontinued use. Primary reasons for discontinuation were pain, device inaccuracy, issues 

with technical setup and 90% of those surveyed thought that CGM device use would have been 

easier if their child had been a different age (either younger or older)445. Comprehensive 

assessments of families’ experiences of CGM, with a focus on the reduction of selection bias, 

are essential in the journey to establish CGM as a therapeutic option for paediatric 

hypoglycaemia disorders. The authors are aware of two separate studies aiming to achieve this 

for families with CHI and the results are eagerly awaited.  

A.5 Barriers to the use of CGM 

In our 2020 review we highlighted the barriers to wider use of CGM in paediatric 

hypoglycaemia disorders and to date there are no improvements with regards to lag time, 

alarms or fingerprick testing. However, with regards to clinician inertia and cost, an update is 

worthwhile.  

A.5.1 Clinician inertia and usability 

Over the last three years, the authors have noticed a significant increase in the interest in CGM 

by clinicians working in paediatric hypoglycaemia disorders. There is now less suspicion of 

the technology and a higher acceptance of using CGM as a routine part of care. This is mirrored 

in the significant increase in publications relating to CGM in both hypoglycaemia disorders 

and neonatology. However, the interest and marketing strategy of device manufacturers 

remains firmly focused on diabetes mellitus, precluding wider adoption and development 

specific to hypoglycaemia.  

A.5.2 Cost and widening access 

As CGM technology develops, it is important that the availability of devices is considered, 

especially for those in low-income countries (LICs) and for patients with rare diseases. These 

groups are often marginalised and disadvantaged in the commercially-driven push for 

technological progeression but efforts must be made to minimise access inequalities446. As a 

technology, CGM could arguable have significant impact in LICs due to the added burden of 
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hypoglycaemia from malaria, malnutrition, diarrhoea and sepsis121. Additionally, for people 

living with diabetes, access to insulin is often intermittent in LICs,447 leading to hypoglycaemia 

and hyperglycaemia. CGM would also be highly valuable in the neonatal setting as capacity 

for regular glucose monitoring in neonatal units in LICs is often limited and neonatal mortality 

is high448. Indeed, neonatal hypoglycaemia is often present in otherwise uncomplicated 

newborn infants, and recognition and treatment may have a significant impact on neonatal 

outcomes449,450.  

Moreover, the long-term impacts associated with childhood hypoglycaemia, such as 

neurodisability, epilepsy and reduced cognitive function3,433 have a higher burden in LICs, 

being poorly understood by wider society and suboptimally managed due to meagre 

resources451–453. So, while the costs of CGM may be high, its implementation may enable faster, 

accurate treatment modification, improving outcomes440 and likely contributing to value based 

healthcare in both common, high volume disease 454 and rare, low volume disease such as 

GSD455. However, it is important to recognise that technology developed for a high-income 

setting is not always appropriate for LICs where the environment is different; there can be 

extremes of temperatures, intermittent access to internet and electricity, high levels of dust and 

minimal access to engineers to repair devices450,456–458. A target product profile (TPP)-based 

approach has been developed to identify key specifications for product innovation in LICs. 

This approach has been particularly successful in development of neonatal devices, most 

notably in bubble CPAP, and a similar approach should be considered in the development of 

CGM devices450,459.  

A.6 Updates on previously suggested developments 

In our 2020 review we predicted that future developments would be focused on CGM device 

technology and predictive hypoglycaemia algorithms. Here we provide an update on the 

developments in these areas over the last three years before moving on to discuss alternative 

and novel areas for CGM use in Section 7.  

A.6.1 CGM device technology 

The direction for CGM device technology development continues towards miniaturisation, 

with a focus on reducing the invasive nature of some CGM devices. Dexcom® have since 

released the G7 device which is smaller, thinner and predicted to be more accurate. Abbott® 

have released the Freestyle Libre 3, also smaller and thinner and now offering real time 
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readings with optional alerts. Eversense® now have an implantable sensor with a six month 

wear time and requiring only a single calibration per day.  

There has also been significant interest in the last few years on optical sensors that detect 

photons to determine the glucose concentration via the interaction between glucose molecules 

and different wavelengths of light460. Other sensor developments focus on the non-invasive 

measurement of sweat, urine, saliva, tears461 and even thermal monitoring462; however, these 

ideas have not yet translated to a commercially viable stage.  

A.6.2 Predictive hypoglycaemia algorithms 

Our 2020 review303 outlined the background to the use of predictive algorithms for 

hypoglycaemia and the different forms that these can take; physiological, data-driven, and 

hybrid18. While non-machine learning algorithms such as Model Predictive Control have been 

beneficial for adults463 and neonates464 using closed loop insulin delivery, these systems are of 

no use to the majority of patients with rare hypoglycaemia disorders whose hypoglycaemia is 

not caused by exogenous insulin. Work in the field of data-driven predictions continues to 

expand rapidly in diabetes and artificial intelligence and machine learning methods using large 

historical datasets continue to be used to derive theoretical prediction models (Figure A.1). 

While, multiple groups have continued to publish increasingly accurate in-silico 

algorithms156,164,165,168, these have been evaluated by systematic review129 and meta-analysis17 

and found to have insufficient ability to detect and prevent hypoglycaemia. The authors 

conclude that improvement is required before application in clinical settings. As suggested, 

these algorithms have been evaluated in-silico only with no conclusive examples of Machine 

Learning-driven predictive algorithms reducing hypoglycaemia in the real world.  
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Figure A.1 Publications by year with the search terms “continuous glucose monitoring” (CGM) 

and “machine learning” (ML) or “artificial intelligence” (AI), found on Google Scholar.  

 

Decision Support Systems (DSS) are an extension of glucose predictive algorithms and 

facilitate decision making (e.g. food intake) based on various inputs (e.g. CGM data) and 

predicted outcomes (e.g. hypoglycaemia). Recent DSSs have shown in-silico177 and possibly 

real world179 reduction in hypoglycaemia through modification of insulin dosing for people 

living with diabetes. However, Tyler et al.172 note in their systematic review that “it has not yet 

been shown that a DSS can improve time in range in human studies” and more work is required. 

Vitally, all DSSs focus on the use of exogenous insulin as either an input or output and are 

therefore of no use to those with a rare hypoglycaemia disorder such as CHI or GSD but may 

have potential in neonates on insulin therapy464.  

A.7 Novel directions and a possible future for CGM in hypoglycaemia 

So far we have provided updates on areas covered in our previous review. In this section we 

move on to discuss novel areas and uses for CGM which have either emerged since 2020 or 

are now gaining prominence. Person-centred outcome measures have been defined for type 1 

diabetes465,466 but are currently lacking for rare hypoglycaemia disorders. This causes difficulty 

in comparing studies and evaluating day to day impact for patients. Consensus, person-centred 
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outcomes would greatly enhance routine healthcare and research for these groups, particularly 

with regards to emerging but as yet unproven technologies such as CGM.  

A.7.1 CGM to elicit patterns and digital phenotypes 

There is increasing recognition of phenotypes beyond those classically described by physical 

traits or cellular changes. Most recently established is the “digital phenotype”349. The digital 

phenotype covers both aspects of behaviours related to technology such social media use as 

well as behaviours measured by technology such as heart rate monitors, accelerometers and 

CGM. These new measures facilitate a more comprehensive and individualised picture of 

patients’ health and contribute to “P4 medicine”467; allowing for a predictive, preventative, 

personalised and participatory approach to management.  

Worth et al.368 took the first steps towards extending the digital phenotype of CHI with their 

analysis of retrospectively collected CGM data. Previously collected CGM data was used to 

identify periods of high hypoglycaemia risk in the early morning in patients with CHI; opening 

the door for targeted interventions on a group and individual level. Further work by this 

group377 investigated patterns of hypoglycaemia at an individual level and found that each 

patient with CHI had clear and individual weekly patterns for repeated hypoglycaemia. Peeks 

et al.444 performed a similar analysis in patients with hepatic GSD to provide the first insight 

into CGM profiles in this patient group and similarly concluded that analysis on a group level 

was of some use but improved when performed on an individual basis.  

Further contributions to the digital phenotypes of hypoglycaemia disorders have been made by 

Rossi et al. 109 who provided CGM metrics for glycaemic variation and control in adult patients 

with GSD1a and compared this to healthy volunteers. Worth et al.1 performed a similar analysis 

for patients with CHI on a larger scale (3.4 million data points) but without healthy controls to 

establish a national baseline of hypoglycaemia and confirm earlier reports368 of daily 

hypoglycaemia patterns at a group level. Finally, Park et al.468 recently reported preliminary 

data from the GRACE trial, establishing the extent of glucose variability in children with 

adrenal insufficiency compared to healthy controls.  

A.7.2 CGM as a behaviour change tool 

CGM is still in its infancy as a technology and new ways are being explored to derive positive 

impact for patients’ health. Traditional usage has focused on high frequency glucose data to 

allow patients to adjust insulin doses and to predict upcoming excursions from euglycaemia. 
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As discussed above, CGM has been adopted by the computer science community with a focus 

on the development of glucose forecasting algorithms16,18 to improve the accuracy with which 

these excursions are predicted.  

However, a new direction for CGM use is now being investigated, CGM as a behaviour change 

tool. In their review, Ehrhardt and Zaghal469 conclude that “Rather than being used as a 

“reactionary device” for hypoglycaemia prevention and glycaemic management, CGM should 

be assessed for its use as a prevention tool. Its potential role as an adjunct to lifestyle changes 

[…] calls for further evaluation". In a survey of 40 people living with diabetes470, 90% 

commented that CGM contributed to a healthier lifestyle, with 87% modifying food choices 

and 47% increasing physical activity based on CGM. Recent publications have also suggested 

that CGM could act as a behaviour modification tool for those with obesity471.  

Combining pattern recognition with behaviour change has the potential to significantly 

improve self-management behaviours472. Worth et al. used CGM to identify individual patterns 

in weekly hypoglycaemia risk of patients with CHI377. The same group developed interpretative 

algorithms to facilitate patient understanding of patterns and provided suggestions for 

reflection designed to modify parental behaviours375. The resulting change in fingerprick and 

self-management behaviours led to a reduction in real world hypoglycaemia of 25%375,377, 

demonstrating the potential power of using CGM as a tool to identify and modify the 

behavioural determinants of hypoglycaemia. Due to the focus on weekly patterns and 

behavioural determinants of hypoglycaemia, this approach is less subject to problems with poor 

point accuracy and patient dissatisfaction with alarms, suggesting a novel and sustainable path 

to CGM application.  

A.7.3 CGM to diagnose and inform management 

While children with rare hypoglycaemia disorders do not have exogenous insulin to adjust 

based on CGM readings, there are many other diagnostic and management decisions that can 

be made upon the basis of CGM outputs. Work evaluating the CGM profiles of healthy 

subjects473,474 provides more data with which researchers can compare results from disease 

cohorts and evaluate glycaemic control in context. Rossi et al.109 have shown this with their 

own assessment of healthy subjects in comparison to those with GSDIa. Separately, Rossi et 

al.110 propose the use of CGM in a hybrid approach to determine fasting tolerance in children 

with GSDs rather than the traditional “controlled fast” with multiple fingerprick tests. They go 

on to highlight the efficacy of CGM to determine incidence of nocturnal hypoglycaemia as 
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well as the impact of diet and medications on glycaemic profiles. Peeks et al.444 support this 

approach and have documented their use of CGM to monitor the impact of nocturnal dietary 

interventions, changes in starch loads, and treatment with empagliflozin for patients with 

hepatic GSDs.  In the case of treatment with empagliflozin, the authors highlight the utility of 

CGM to detect the potential hypoglycaemia resulting from medication-induced glycosuria444. 

Logel et al.475 similarly used intermittent CGM to initiate and then titrate doses of diazoxide in 

a patient with Glut1 deficiency who had failed ketogenic diet; without the high granularity data 

of CGM it was felt that diazoxide would have been administered at incorrect doses, risking the 

loss of efficacy seen in other cases treated without CGM.  

A.7.4 CGM as an outcome marker in clinical trials 

In recent years CGM has become popular as an outcome in clinical trials to determine efficacy 

of interventions to reduce hypoglycaemia. The high granularity data generated by CGM 

reduces the chance of type II errors in clinical trials and allows investigators better insight into 

glycaemic changes secondary to therapeutics. 

CGM has recently been used as an outcome measure for: hypoglycaemia after paediatric 

cardiac surgery476; treatment of CHI with Dasiglucagon477; treatment of CHI with RZ358478; 

treatment of GSDIa with AAV8 gene transfer479 and is planned for more upcoming therapeutic 

trials in rare hypoglycaemia disorders. An essential component of using CGM as an outcome 

measure is understanding the baseline data for each disease and population444. This requires 

quantification of as many patients as possible467; Rossi et al.109 recently provided the first 

publication of CGM metrics for patients with GSD1a, as did Worth et al.1,368 for patients with 

CHI, essential datasets for those utilising baseline characteristics when designing future 

therapeutic trials using CGM for primary or secondary outcomes.  

A.8 Conclusion 

There has been considerable progress in the development of the relatively new technology of 

CGM. However, in childhood hypoglycaemia disorders many historical problems remain. 

CGM continues to be insufficiently accurate, somewhat burdensome for patients and their 

families, costly, and lacking in evidence for its ability to reduce hypoglycaemia when provided 

to families without support. However, there is scope for optimism. Devices continue to 

miniaturise, improve in accuracy and reduce patient burden. Research and clinical teams are 

working around suboptimal point accuracy and lack of patient educational resources to develop 
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novel ways of utilising this technology. CGM is being used for diagnostics, monitoring changes 

in management, establishment of baseline characteristics, modifying behaviour, and ultimately 

to reduce hypoglycaemia when used retrospectively and combined with interpretative 

algorithms or clinical expertise. Use in neonatal medicine is becoming established, with good 

evidence for a reduction and early recognition in neonatal hypoglycaemia. 

A lack of guidelines for the use of CGM in hypoglycaemia disorders has restricted progress 

but given rapid technological advances, it is predicted to play a larger role in all forms of 

childhood hypoglycaemia disorders. The challenge is to adapt CGM technology to clinical 

application with research designed to bring CGM innovations for patient benefit.  
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Appendix B – Insight into Hypoglycaemia 

Frequency in CHI 
 

In addition to the extra paper presented in Appendix A, we also wrote another paper during the 

course of this PhD which was not directly related to the thesis but partly generated from its 

data. We collaborated with the other two CHI centres in the UK to generate a large CGM 

dataset and evaluate the frequency of hypoglycaemia in this patient group. This paper was 

largely targeted to an audience of researchers who would need this data to understand baseline 

trends and power trials sufficiently.  

The content of this chapter is a paper authored by: Chris Worth, Yesica Tropeano, Pon Ramya 

Gokul, Karen E Cosgrove, Maria Salomon-Estebanez, Senthil Senniappan, Antonia Dastamani 

and Indraneel Banerjee. The title of the paper is: Insight into Hypoglycaemia Frequency in 

Congenital Hyperinsulinism: evaluation of a large UK CGM dataset and is published in 

BMJ Open Diabetes Research & Care, June 2022. DOI: 10.1136/bmjdrc-2022-002849. URL: 

https://drc.bmj.com/content/10/3/e002849 . The paper is included verbatim with some changes 

to the formatting to ease readability within the thesis.  

Author contribution 

CW collected the CGM data for RMCH patients and then collated and analysed the complete 

dataset and wrote the first draft of the manuscript. YT collected the CGM data for GOSH 

patients and reviewed and approved the final manuscript. PRG contributed to the write up of 

the manuscript and reviewed and approved the final version. KC contributed to the write up of 

the first manuscript and provided basic science input as well as reviewing and approving the 

final draft. MSE was co-lead consultant for the RMCH patients, contributed to the manuscript 

write up and approved the final version. SS was lead consultant for the AHCH patients, 

provided CGM data from this patient group and approved the final manuscript. AD was lead 

consultant for the GOSH patients, contributed to the collected of CGM data from these patients 

and approved the final version of the manuscript. IB was co-lead consultant for RMCH 

patients, helped draft the first version of the manuscript and approved the final version.  

Abstract 

Introduction 

https://drc.bmj.com/content/10/3/e002849
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Hypoglycaemia is often recurrent and severe in patients with Congenital Hyperinsulinism 

(CHI). However, there is little information regarding frequency or patterns of episodes to 

inform clinical management and future trial design.  

Research Design and Methods 

We aimed to describe frequency and patterns of hypoglycaemia by varying thresholds through 

a large continuous glucose monitoring (CGM) dataset. Through the UK CHI centres of 

excellence, data was analysed from patients with CHI over a 5-year period. Hypoglycaemia 

thresholds of 3.0 (H3.0), 3.5(H3.5) and 3.9(H3.9) mmol/L were used to test threshold change 

on hypoglycaemia frequencies. 

Results 

From 63 patients, 3.4million data points, representing 32 years of monitoring, were analysed. 

By UK consensus threshold H3.5, patients experienced a mean 1.3 hypoglycaemia episodes 

per day. Percent time hypoglycaemic increased from 1.2% to 3.3% to 6.9% when threshold 

changed from H3.0 to H3.5 and H3.9. Merged data showed periodicity of hypoglycaemia risk 

in 24 hour periods in all patients. 

Conclusions 

We have evaluated a large dataset to provide a comprehensive picture of the frequency and 

patterns of hypoglycemia for patients with CHI in the UK. This data establishes a baseline risk 

of hypoglycaemia by CGM monitoring and provides a framework for clinical management and 

clinical trial design.  

B.1 Introduction 

Congenital Hyperinsulinism (CHI) is the commonest cause of recurrent and severe 

hypoglycaemia in early childhood but knowledge about the frequency of hypoglycaemia is 

absent. This is, in part, due to a lack of agreement regarding hypoglycaemia thresholds, with 

no conclusive evidence of a definitive cutoff above which neurological impact is minimised. 

In the UK, and most of Europe, 3.5mmol/L (63mg/dL) is felt to offer a safe and pragmatic level 

at which neuroglycopenia is minimised and treatment burden is manageable43.  

While glucose ranges in CHI have been described by low frequency self-monitoring of blood 

glucose (SMBG) with glucometer480, very few studies have described hypoglycaemia 

frequency using the high granularity data available from continuous glucose monitoring 
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(CGM) and these have only been on a small scale114,368. Incidence of hypoglycaemia is, 

unsurprisingly, higher when measured by CGM over SMBG13 and thus it is important to utilise 

CGM to estimate the true incidence as SMBG will report a significant underestimate, more so 

overnight368.  

The interest in novel therapies for the treatment of CHI has increased significantly over the last 

few years73,481 and many of these will be coming to trial in the near future. In order to ensure 

that expensive and burdensome trials address therapy outcomes robustly, it is essential for trial 

design to be based upon credible data. To this end, we aimed to provide a description of the 

frequency and pattern of hypoglycaemia by CGM in patients from a large and heterogeneous 

dataset, representative of the UK CHI population and upon which future trials can be based. 

Furthermore, we aimed to describe the relative frequencies and daily patterns of hypoglycaemia 

by varying thresholds to demonstrate how threshold changes affect the frequency of recorded 

hypoglycaemia.  

B.2 Research Design and Methods 

This study was performed as a national service evaluation project collating anonymised 

datasets derived from children with CHI under the care of the two highly specialised CHI 

services in the UK: Northern Congenital Hyperinsulinism Service (NORCHI) based at Royal 

Manchester Children’s Hospital (RMCH) and Alder Hey Children’s Hospital (AHCH); and 

Great Ormond Street Hospital (GOSH) Congenital Hyperinsulinism Service. All patients with 

confirmed CHI under the care of the two centres, who had undergone monitoring with CGM, 

were eligible for inclusion. CHI was confirmed by the finding of detectable serum insulin at 

the time of hypoglycaemia (glucose <3.0mmol/L) in patients with a glucose infusion rate (GIR) 

exceeding 8 mg/kg/min, consistent with a diagnosis of CHI. Patients with transient CHI 

(resolution at <12 months of age) or diabetes secondary to subtotal/near total pancreatectomy 

were excluded. Retrospective CGM data was downloaded from the Dexcom Clarity website in 

.csv file format and anonymised by each hospital team. Anonymised files were collated by the 

study team along with minimal clinical data including genetic mutation status (positive 

mutation identified on 13 gene CHI panel (R144 in National Genomic Test Directory) vs 

negative/not tested), and medication status (on or off disease-modifying medications for CHI) 

but excluding patient identifiable information.  

CGM data was processed as per American Diabetes Association (ADA) guidelines for 

definition of CGM hypoglycaemia304 : three values (≥ 15 minutes) below a threshold to 
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commence a hypoglycaemia episode and three values (≥ 15 minutes) above a threshold to 

terminate an episode. These guidelines were used as a practical way to exclude  short lived 

hypoglycaemia episodes detected by CGM that were unlikely to represent true hypoglycaemia, 

thereby enhancing data confidence. Therefore, use of the ADA hypoglycaemia criteria was 

agnostic of the underlying disease. Data were analysed using purpose built scripts in Python 

3.8.8. Scripts were designed to assess the number of hypoglycaemia episodes per day as well 

as percentage time spent hypoglycaemic as defined by varying glucose cutoffs (H3.0, H3.5, 

H3.9 for 3.0, 3.5, 3.9mmol/L). Differences in percentage time hypoglycaemic between 

subgroups were analysed using Chi-square tests. The study aim was to evaluate the incidence 

of hypoglycaemia in the UK CHI population and investigate change in hypoglycaemia 

frequency with variable thresholds.  

As the study was designed as a service evaluation, ethical approval was not sought.  

B.3 Results 

Data was obtained from 63 patients with CHI over a period of 5 years (2017-2021). Mean age 

(range) was 6 years 3 months (1 month to 18 years) with 54 patients (86%) over 12 months of 

age.  The mean (range) number of days of data per patient was 182 (1-1490), resulting in 3.4 

million data points representing almost 17 million minutes (over 32 years) of glycaemic 

monitoring. All patients used a Dexcom CGM device, either a G4 or a G6 depending on the 

year of insertion. Prior to 2019, 14 patients used the G4 device while in all other patients the 

later generation G6 device was used. Indications for the use of CGM were at the discretion of 

the clinical teams and were not evaluated as part of this study. Patients who met eligibility 

criteria but in whom CGM data was not accessible via Dexcom Clarity, were not included. For 

hypoglycaemia by UK consensus H3.5 criteria, a mean of 1.3 hypoglycaemic episodes per day 

were observed, for a mean duration of 36 minutes with patients spending 3.3% of their time in 

hypoglycaemia (Table B.1). For more severe hypoglycaemia by H3.0 criteria, there were 0.5 

hypoglycaemic episodes per day, for a mean duration of 35 minutes and resulting in 1.2% of 

the time below threshold (Table B.1). In contrast, by a higher threshold (H3.9), the mean 

number of hypoglycaemic episodes increased to 2.4 per day, for a mean duration of 42.4 

minutes and 6.9% time below threshold. Therefore the use of a higher or lower hypoglycaemia 

threshold than the UK consensus H3.5 threshold led to a significantly increased or decreased 

percentage time in hypoglycaemia. As the analyses of varying thresholds were performed on 
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identical data, the differences in percentage time hypoglycaemic are not subject to any 

likelihood of being caused by chance and thus a test for statistical significance is not required.  

   3.9mmol/L (70mg/dL) 3.5mmol/L (63mg/dL) 3.0mmol/L (54mg/dL) 

 Patients Data 

points 

% time 

hypo 

Hypos/ 

day 

Mean 

duration 

(min) 

% 

time 

hypo 

P value Hypos/ 

day 

Mean 

duration 

(min) 

% 

time 

hypo 

Hypos/ 

day 

Mean 

duration 

(min) 

All 63 3397713 6.90 2.4 42.4 3.26  1.3 36.4 1.21 0.5 34.6 

Mutation 

positive 

43 1919470 

 

6.39 2.1 44.1 3.01  

<0.001 

1.2 36.8 1.11 0.5 33.3 

Mutation 

negative 

20 1478243 7.56 2.7 40.6 3.58 1.4 36.0 1.35 0.5 36.1 

On CHI 

medications 

49 2818276 5.53 1.9 42.6 2.54  

<0.001 

1.0 36.0 0.91 0.4 32.7 

Off CHI 

medications 

14 579437 13.6 4.7 41.8 6.74 2.6 37.2 2.65 1.0 38.3 

All (non 

ADA) 

63 3397713 7.36 4.1 25.9 3.61  2.4 21.5 1.40 19.1 19.1 

Table B.1. Hypoglycaemia values as per varying thresholds for hypoglycaemia. Hypos = 

hypoglycaemia episodes. P value = P value for difference in % time hypo (<3.5mmol/L) 

between subgroups, calculated via Chi-square test. Mean length is presented in minutes. 

Mutation positive = any known CHI causing mutation demonstrated. Mutation negative = 

either CHI gene panel negative or not done. All values are provided as per ADA criteria unless 

otherwise specified.   

 

As a point of comparison, we analysed CGM data point by point (single values below a 

hypoglycaemia threshold) rather than using the ADA criteria. By non-ADA criteria and using 

the H3.5 threshold, patients had 2.4 hypoglycaemic episdes per day, lasting 22 minutes with 

3.6% time below threshold. Data for alternative hypoglycaemia thresholds are presented in 

Table B.1.  

Subgroup analysis revealed small but statistically significant differences between those with 

and without pathological genetic mutations causing CHI. Those without mutations (n = 20) 

spent marginally greater time below all thresholds of hypoglycaemia than those with mutations 

(n = 43) (for H3.5: 3.58% vs 3.01%, Chi-square statistic = 1970, P <0.001) as well as having 

more hypoglycaemia episodes per day (Table B.1). Those patients not receiving treatment for 

CHI at the time of glycaemic monitoring (n = 14) spent significantly more time below all 

thresholds of hypoglycaemia than those receiving medications (n = 49) (for H3.5: 6.74% vs 

2.54%, Chi-square statistic = 58698, P < 0.001). 

Analysis of glucose trends in merged data over 24 hour periods showed hypoglycaemia 

periodicity with increased risk before traditional mealtimes and around 9-10pm (Figure B.1). 
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This pattern varied as hypoglycaemia cutoffs were changed between H3.9, H3.5 and H3.0 but 

risk was lowest at 8 am for all thresholds.  

 

Figure B.1. Distribution of hypoglycaemia over 24 hour periods showing periodicity with three 

peaks (3-6am, 3-6pm and 9-10pm) with relatively low risk at 8am and a small, short-lived but 

consistent peak in risk at midday . As hypoglycaemia thresholds are reduced from H3.9 to H3.5 

and subsequently to H3.0, the % time in hypoglycaemia reduced although periodicity is 

retained. 

 

B.4 Discussion  

We have evaluated a large database comprising 3.4 million data points by CGM to demonstrate 

variable frequency of hypoglycaemia at different thresholds. While the range of glucose levels 

have been described in observational studies56,480, the majority have reported low frequency 

blood/plasma glucose levels with only a few reporting glucose levels by CGM114,368 outside of 

studies analysing CGM accuracy13. Our study is the first major analysis of real world CGM 

profiles describing the frequency of hypoglycaemia in CHI patients and, given the size of the 

combined dataset, presents a comprehensive picture, overriding anomalies related to skewed 

recruitment, data quality and other biases inherent in an observational cohort. Given that the 

use of CGM is not routine in the management of CHI, there is a possible bias towards severity 

affecting the generalisability of results.  

Hypoglycaemia cut offs for CHI are arbitrary and artificial. Traditional cut off glucose levels 

of 2.6 mmol/L had been derived from studies that are not relevant to CHI74 and most medium 

to long-term studies reporting neurodevelopment either exclude CHI patients71 or do not 

specify CHI inclusion433. While hypoglycaemia may not be attributable to a single glucose test 

and is probably individualised for the risk of neuroglycopaenia, the definition of 

hypoglycaemia is a pivotal starting point that guides further investigation and treatment. 

Therefore, it is important to compare different thresholds of hypoglycaemia to quantify relative 

frequencies at each threshold.  
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At present, the treatment threshold of hypoglycaemia in CHI is pragmatic and based on the 

need to minimise the risk of neuroglycopaenia with the least intensity of treatment support43. 

In CHI, this threshold is chosen by UK consensus at 3.5 mmol/L73. However, there is no 

baseline data on treated or untreated patients with CHI. It is unknown if a hypoglycaemia cut 

off of 3.5 mmol/L corresponds to different frequencies of hypoglycaemia than higher (3.9 

mmol/L) or lower (3.0 mmol/L) thresholds. At present there is no data on long term 

neurodevelopmental impact of various CGM derived hypoglycaemia thresholds. However, 

there is an immediate need to utilise CGM in clinical practice and to determine clinical trial 

design for novel therapies in CHI. In the absence of long range robust outcome markers, our 

study provides a comparative evaluation of differential thresholds to establish baseline 

hypoglycaemia. We have shown that the frequency of hypoglycaemia by ADA criteria is 3.3% 

at 3.5 mmol/L but rising significantly (112% increase) at 3.9 mmol/L. 

While we did not set out to describe the level of glycaemic control between CHI subgroups, 

the large difference in percentage time hypoglycaemic between those patients on and off 

treatment for CHI is apparent. The latter group represented those non-responsive to diazoxide, 

those being weaned off medications or undergoing pancreatic surgery and those receiving non-

disease modifying medications such as acarbose, contributing to the heterogeneity of 

hypoglycaemia phenotypes. Because this project was a service evaluation, minimal clinical 

details were obtained and thus no clear conclusions can be drawn. However, the  increase in 

hypoglycaemia seen in the off medication group may be due to several factors beyond the remit 

of our study design; these could include persistent unrecognised hypoglycaemia in post-

pancreatectomy CHI and relative improved glycaemic control in those on medications.  

We have demonstrated a replication of the characteristic risk profile of hypoglycaemia 

throughout the day that has previously been described in CHI patients368. The risk of 

hypoglycaemia is not static throughout the day and shows periodicity with increased risk 

through overnight fasting in almost all patients. Further peaks throughout the day are likely to 

represent pre-meal times for patients. Variations in the risk of hypoglycaemia throughout the 

day provide a further focus for those designing interventions to reduce hypoglycaemia in a 

clinical trial setting.  

Our study establishes baseline risk of hypoglycaemia at different thresholds that are likely to 

be used in the design of clinical trials based on CGM output. A strength of our study is the size 

and heterogeneity of the sample population drawn from the entire UK, providing a 
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representative sample of the populations for future clinical trials. While SMBG remains 

standard of practice303, the higher frequency and the propensity for CGM to identify nocturnal 

hypoglycaemia368 clearly demonstrates the superiority of CGM in clinical trial application even 

in the presence of suboptimal error rates. Therefore, our study outcomes provide valuable 

baseline data in order to test for risk and benefit with novel therapies. 

Our study does not test accuracy of CGM in relation to paired SMBG values; this has been 

described elsewhere by other groups and is the current focus of a separate study by our group. 

We accept that diversity of the patient profile and different management styles may impact on 

the glucose profile, thereby introducing centre specific bias. However, such bias reflects real 

world scenarios that permeate into clinical practice as well as research studies and will be a 

consideration for any future clinical trials.  

B.5 Conclusions 

We have described hypoglycaemia frequency in CHI in a large dataset derived from a national 

cohort. Using CGM, we have demonstrated large variations in hypoglycaemia frequency when 

thresholds are altered from H3.5 to H3.0 or H3.9 mmol/L. We have also demonstrated 

periodicity of risk of hypoglycaemia through the day. Such factors should be considered in 

routine clinical management and influence the design of interventional trials in CHI.  
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Appendix C – Qualitative Review of Families’ Experiences of 

CGM and HYPO-CHEAT  

In chapters 8 and 9 we have covered the summative phase of our work in this thesis and the 

successful trial of HYPO-CHEAT as a method for hypoglycaemia prevention for patients with 

CHI in the real world. The mechanism of action of HYPO-CHEAT and how proximal 

outcomes have translated into distal outcomes has been explained in some detail in the previous 

chapter. However, as numbers of users in the pilot study was small and proximal outcomes 

(fingerprick behaviour) were minimal, we were keen to better understand if users really had 

been influenced by HYPO-CHEAT and how the use of that, and simple CGM, had changed 

behaviour.  

As an interview study simply addressing HYPO-CHEAT would not have been of enough 

general interest to publish, we undertook a slightly more general study to also evaluate patients’ 

and families’ experiences of CGM as a whole and provide a more rounded paper. As such, 

HYPO-CHEAT is not mentioned in name but is referenced by patients when discussing review 

with clinician. This qualitative study allows an insight into how the use of CGM, and review 

via HYPO-CHEAT, provided novel insight and changed behaviours. It also confirms reports 

from the literature (Chapter 4) on the limitations of CGM such as problems with accuracy and 

alarms. The interviews and analysis required for this study were performed by another clinician 

and thus the work in this chapter, while complimentary to the thesis, does not constitute as 

much work as the other chapters with regards to the PhD itself.  

The content of this chapter is a paper authored by: Sameera Hannah Auckburally, Chris 

Worth, Maria Salomon-Estebanez, Jacqueline Nicholson, Simon Harper, Paul W Nutter and 

Indraneel Banerjee. The title of the paper is: Families’ Experiences of Continuous Glucose 

Monitoring in the management of Congenital Hyperinsulinism: a thematic analysis and 

is published in Frontiers in Endocrinology, July 2022. DOI 10.3389/fendo.2022.894559. URL: 

https://doi.org/10.3389/fendo.2022.894559. The paper is included verbatim with some changes 

to the formatting to ease readability within the thesis.  
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Abstract 

Background and Aims 

In patients with congenital hyperinsulinism (CHI), recurrent hypoglycaemia can lead to 

longstanding neurological impairments. At present, glycaemic monitoring is with intermittent 

fingerprick blood glucose testing but this lacks utility to identify patterns and misses 

hypoglycaemic episodes between tests. Although continuous glucose monitoring (CGM) is 

well established in type 1 diabetes, its use has only been described in small studies in patients 

with CHI. In such studies, medical perspectives have been provided without fully considering 

the views of families using CGM. In this qualitative study, we aimed to explore families’ 

experiences of using CGM in order to inform future clinical strategies for the management of 

CHI. 

Methods 

Ten patients with CHI in a specialist centre used CGM for twelve weeks. All were invited to 

participate. Semi-structured interviews were conducted with nine families in whom patient 

ages ranged between two and seventeen years. Transcripts of the audio-recorded interviews 

were analysed using an inductive thematic analysis method. 

Results 

Analysis revealed five core themes: CGM’s function as an educational tool; behavioural 

changes; positive experiences; negative experiences; and design improvements. Close 

monitoring and retrospective analysis of glucose trends allowed for enhanced understanding of 

factors that influenced glucose levels at various times of the day. Parents noted more 

hypoglycaemic episodes than previously encountered through fingerprick tests; this new 

knowledge prompted modification of daily routines to prevent and improve the management 

of hypoglycaemia. CGM use was viewed favourably as offering parental reassurance, reduced 

fingerprick tests and predictive warnings. However, families also reported unfavourable 

aspects of alarms and questionable accuracy at low glucose levels. Adolescents were frustrated 

by the short proximity range for data transmission resulting in the need to always carry a 

separate receiver. Overall, families were positive about the use of CGM but expected 

application to be tailored to their child’s medical condition.  
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Conclusions 

Patients and families with CHI using CGM noticed trends in glucose levels which motivated 

behavioural changes to reduce hypoglycaemia with advantages outweighing disadvantages. 

They expected CHI-specific modifications to enhance utility. Future design of CGM should 

incorporate end users’ opinions and experiences for optimal glycaemic monitoring of CHI.  

C.1 Introduction 

Congenital hyperinsulinism (CHI) is a disorder characterised by severe hypoglycaemia due to 

inappropriate secretion of insulin by the pancreatic β-cells365. Despite CHI being a rare disorder 

with an estimated incidence of 1:28,389 in the UK, it is the most common cause of persistent 

hypoglycaemia in children7,43. 

In addition to causing hypoglycaemia, excessive and dysregulated insulin secretion suppresses 

the production of ketones, which normally act as an important alternative fuel to preserve 

neuronal function when there is insufficient glucose67. CHI is therefore well-recognised for its 

association with poor neurodevelopmental outcomes in patients, with 15% - 48% of children 

with CHI having long-term neurodevelopmental impairment at follow-up5,67,68,73,347. Prompt 

detection and treatment of hypoglycaemia in CHI is therefore vital. Standard clinical practice 

for the monitoring of glucose in CHI is with regular fingerprick blood glucose testing using a 

point-of-care device or a home glucometer, whilst management includes the optimisation of 

feeds, medications such as diazoxide and octreotide, and pancreatectomy dependent on the type 

of CHI73. 

Advancements in technology have resulted in the increasingly widespread use of continuous 

glucose monitoring (CGM) rather than fingerprick blood glucose monitoring in patients with 

type 1 diabetes mellitus414. The minimally invasive CGM device is attached to the skin, detects 

changes in interstitial glucose levels and displays the readings to the user every five minutes 

via a hand-held receiver or a mobile phone8. Frequent glucose monitoring is a cornerstone of 

intensive CHI management and CGM provides an attractive alternative to intermittent 

fingerprick testing, which has too low a granularity to offer trend information and can miss 

hypoglycaemic episodes in between measurements.  

Although there is heightened interest about the use of CGM in patients with CHI, the clinical 

utility has not been explored carefully415. There is growing interest in the application of CGM 

to improve glycaemic control in neonates with CHI103,353. Win et al reported that CGM showed 
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rapid fluctuations in glucose levels in fourteen neonates with CHI alongside persistent 

hypoglycaemia, reflecting the high risk of undetected hypoglycaemic episodes when managed 

on intermittent fingerprick glucose tests61. Rayannavar et al’s observational study 

demonstrated a high false positive rate for hypoglycaemia readings for children with CHI over 

a two week period; the authors determined that CGM should be used as an adjunct to glucose 

monitoring rather than a sole monitoring device due to its suboptimal accuracy13. More 

recently, Worth et al conducted an exploratory study in which CGM was used to collect detailed 

glycaemic data over a period of four to ten days in twenty-three patients with CHI and found 

that there was an increased risk of hypoglycaemia in the early hours of the morning (Chapter 

7).  

The HI Global Registry, a patient-powered CHI registry, found that 49% of parents of children 

under five reported the management of CHI to be ‘demanding’416. A recent review considering 

the unmet needs of patients and families with CHI suggested the wider application of CGM, 

while recognising shortcomings in its present use415. While CGM has the potential to improve 

glycaemic monitoring and hence outcomes in CHI, it is vital that end users’ opinions on using 

the device are gathered before broader implementation. By way of a questionnaire, Vijayanand 

et al sought to evaluate parents’ experiences of CGM; the majority preferred using CGM to a 

fingerprick glucometer, although seven out of the eleven parents felt that it was not accurate 

all the time309. However, deeper analysis of patients’ and families’ experiences through 

interview was not available. In our study, we aimed to gain a richer understanding of the 

experiences of families using CGM; we conducted the first qualitative study employing 

thematic analysis of semi-structured interviews with adolescents with CHI and parents of 

young children with CHI. 

C.2 Methods 

We undertook a qualitative study to perform an in-depth analysis of families’ experiences of 

CGM use in a small group (n=9) of CHI patients. As little is known about the experiences of 

CGM in families with CHI, a rare disease of hypoglycaemia, qualitative methods are ideal for 

investigating the subject in a small targeted population in contrast to structured questionnaires 

in a larger group417. They allow for participants to freely disclose their thoughts and 

experiences without constraint, providing a unique depth of understanding that cannot be 

gained from a closed question survey418. Further, qualitative methods and analysis enables open 
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representation of user perceived concepts and themes reducing prior prejudice and investigator 

bias from influencing the results.  

This qualitative study was the second phase of a related study in which patients with CHI had 

used CGM (Dexcom G6) for twelve weeks and received expert review of glucose profiles at 

weeks eight and twelve without pharmacological intervention [Chapter 9]. The Dexcom G6 

used in the study employed a separate hand-held receiver. CGM glucose was reported in 

mmol/L; as per UK consensus, hypoglycaemia was defined as less than 3.5mmol/l 

(63mg/dL)43. If CGM reported a glucose level of less than 3.5 mmol/l, families were instructed 

to also check the glucose level with a fingerprick blood glucose test and treat hypoglycaemia 

if confirmed.  

During the first four weeks, families were blinded to the glucose readings, which are usually 

displayed in real time by CGM. They were then able to use CGM unblinded, with readings 

available for four weeks, before a review of the glucose trends during this time period was 

conducted with a research clinician. For the final four weeks of the study, the device was 

blinded once more and followed by a final review of glucose profile. For inclusion in the study, 

patients with CHI were approached through the Northern Congenital Hyperinsulinism Service 

(NORCHI), Manchester, United Kingdom. Patients were eligible for inclusion to the CGM 

study if they were under the age of eighteen years and receiving medication for treatment of 

confirmed CHI.  

For this qualitative study, inclusion criteria included parents/guardians of children with CHI, 

adolescents with CHI (defined as greater than twelve years of age) and the use of CGM for at 

least six weeks during the study period (including four weeks of unblinded CGM). All families 

of participants of the initial study were approached to be included in the qualitative phase of 

the study. All ten families initially consented to participate in the study. However, one family 

did not maintain contact thus preventing them from inclusion in the interviews.  Two of the 

five adolescents did not participate in the interview alongside their parent(s) after having 

previously consented to participation; this was due to fatigue at the time of interview for Patient 

3; and the mother of Patient 5 only being available for interview during the day, whilst her 

daughter was at school. 

The protocol, consent forms and interview topic guide were approved by the ethics committee 

of the University of Manchester and the Health Research Authority of the National Health 

Service (REC reference 07/H1010/88). Adolescents and parents of the younger children gave 
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written informed consent. Further verbal consent was obtained at routine research follow-up 

clinic appointments prior to organising interviews. Incentives were not provided for 

participation. 

Semi-structured interviews with parents and adolescents were conducted in December 2021 

via videoconferencing platforms to explore families’ experiences of CGM use. At the time of 

interview, all families had used CGM for twelve weeks during the study and had continued to 

use unblinded CGM for a further four weeks. The semi-structured approach was selected as it 

permitted the flexibility for participants to speak about the issues they perceived to be most 

important, and for those to be explored, whilst the topic guide helped to ensure data collection 

remained relevant to the study aim. The appendix includes the interview topic guide which 

consisted of prompts and questions on families’ opinions and experiences of CGM and the 

perceived benefits and challenges of using CGM. The interview guide was developed through 

consensus with researchers, clinicians and psychologists with expertise in CHI. 

Braun and Clarke’s approach to thematic analysis was chosen as the mode of analysis as it 

allowed a pragmatic approach to analyse participants’ lived experiences, behaviours, and 

perspectives407. Its flexibility also allows for use on small datasets, which is especially 

important given CHI is a rare condition. Thematic analysis was favoured over interpretative 

phenomenological analysis, which can also be conducted on small homogenous samples, as it 

places greater emphasis on patterns across participants whilst the latter phenomenological 

approach notes patterns but focuses on how each unique individual makes sense of events419.  

In terms of reflexivity, interviews were conducted by a clinical research paediatrician who was 

not involved in the first phase of the CGM research study and did not have prior information 

about the patients or families. Importantly, the families understood that reporting on their 

experiences would not affect their potential future supplies of CGM equipment or clinical care. 

Families were interviewed together and each interview lasted between twenty and thirty 

minutes. Respondent validation, whereby participants confirmed accuracy of the information 

they had provided, was conducted throughout the interview process. 

Interviews were transcribed verbatim and subsequently checked for accuracy against the audio 

recordings. This stage, along with repeated reading of the transcripts and noting early 

impressions, allowed for further familiarisation with the data. Personal identifiers were 

removed in the transcription process.  
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As there was little predetermined knowledge about CGM experiences in CHI, a predominantly 

inductive approach was used to code the data. Hence, research findings were derived from the 

data rather than using a pre-defined coding framework. It was not deemed appropriate to use 

multiple coders in this thematic analysis approach; inter-coder reliability merely shows that 

researchers have been trained to interpret data in similar ways420,421. Qualitative data analysis 

software (NVivo) was used to facilitate the application of initial codes to the entire dataset. 

Multiple codes were then combined to create themes, which captured common, recurring 

patterns across the data that described and explained participants’ experiences. Prior to defining 

and naming of the themes, they were refined by reviewing all collated extracts for each theme 

to ensure there was sufficient supporting data.  

C.3 Results 

Nine families were included in the study of which there were five parents of younger children, 

five parents of adolescents and three adolescents. For each patient with CHI, at least one parent 

or patient were involved in the interview as described in Table 0.1. The demographics of 

patients, alongside CHI medications and the time since diagnosis are also presented in Table 

0.1.  

The results are presented as five major themes that were derived from the data:  

1. Positive Experiences 

2. Educational Tool 

3. Behavioural Change 

4. Negative Experiences  

5. Design Improvements.  

A rich and detailed analysis of the themes are accompanied by illustrative quotations to ensure 

robustness, whilst Table 0.2 provides a summary of the themes in families’ experiences of 

CGM in CHI.  
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Interview 

Participant 

Patient Age at 

Time of 

Interview/

years 

Gende

r 

Time since 

diagnosis of 

CHI/years 

Genetics Medications 

Participant 1 [P1]- 

Father of Patient 1 

Patient 1 3.1 Male 3.1 Homozygous 

ABCC8 

mutation 

Subcutaneous 

injections of octreotide 

three times daily 

Participant 2 [P2]-

Patient 2 

Patient 2 14.5 Female 14.5 Paternally 

inherited 

KCNJ11 

mutation 

Oral diazoxide twice 

daily 

Participant 3 [P3]- 

Mother of Patient 

2 

Participant 4 [P4]- 

Mother of Patient 

3 

Patient 3 12.3 Male 11.9 No genetic 

cause 

identified 

Oral diazoxide twice 

daily 

Participant 5 [P5]- 

Mother of Patient 

4 

Patient 4 5.4 Male 5.4 Maternally 

inherited 

ABCC8 

mutation 

Oral diazoxide three 

times daily 

Participant 6 [P6]- 

Mother of Patient 

5 

Patient 5 13.3 Female 13.0 HADH 

mutation 

Oral diazoxide twice 

daily 

Participant 7 [P7]- 

Patient 6 

Patient 6 17.7 Male 7.4 GCK mutation Oral diazoxide twice 

daily 

Participant 8 [P8]- 

Mother of Patient 

6 

Participant 9 [P9]- 

Mother of Patient 

7 

Patient 7 3.2 Female 3.0 No genetic 

cause 

identified 

Oral diazoxide three 

times daily, 

chlorothiazide twice 

daily, cornstarch 

Participant 10 

[P10] – Mother of 

Patient 8 

Patient 8 2.1 Male 2.1 HNF4A 

mutation 

Oral diazoxide three 

times daily 

Participant 11 

[P11]- 

Father of Patient 8 

Participant 12 

[P12]- 

Patient 9 

Patient 9 17.3 Male 17.1 GLUD1 

mutation 

Oral diazoxide three 

times daily 

Participant 13 

[P13]-Mother of 

Patient 9 

Table 0.1. Interview Participants and demographics of patients with CHI 
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Theme Positive 

Experiences 

Educational 

Tool 

Behavioural 

Change 

Negative 

Experiences 

Design 

Improvements 

Theme 

Description 

Factors 

regarded as 

positive/helpful 

by participants  

Learning from 

CGM to improve 

management 

Changes to 

routine due to 

CGM 

Factors 

regarded as 

negative by 

participants  

Refinements to 

design of CGM 

Subthemes Reassurance  New knowledge 

of glucose trends 

Timing of 

meals changed 

Alarms Increase receiver 

range  

Less stressful 

management 

More 

hypoglycaemia 

than previously 

thought 

Ensured 

medications 

given on time 

The need to 

carry receiver 

due to range 

Incorporate 

wearable receiver 

Reduced 

fingerprick 

tests 

Heightened 

awareness of 

hypoglycaemic 

times of the day 

Improved 

family 

dynamics 

Accuracy Sensor size 

 

Glucose trend 

predictions 

Reflection on 

reasons for 

hypoglycaemias 

Adolescents 

taking 

increased 

responsibility 

for own 

condition 

Sensor 

insertion 

Tailor CGM for 

those with CHI 

e.g. improve 

accuracy at lower 

glucose levels 

Objective 

evidence of low 

glucose 

Adhesive 

problems 

Optimisation of 

blood glucose 

control 

Table 0.2. Description of 5 major themes and subthemes in families' experiences of CGM 

use in CHI 

C.3.1 Positive Experiences 

Whilst families had become accustomed to living with CHI, their day-to-day life was felt to be 

less stressful with CGM as they were reassured about normoglycaemia, especially at night-

time. “But again, it’s just peace of mind for parents that - just to see what’s happening. 

Especially at night - if it works at night when she’s poorly then I don’t have to prick her as it 

might wake her up. So it’s really good at night.” – P9. 

Managing the condition was also perceived to be simpler with CGM enabling families to have 

more time to focus on other matters. Older siblings were also able to gain a sense of 

responsibility by helping out. “When you’ve got a lot of other medical issues going on, it’s just 

one thing that makes life a lot easier. Life’s quite hectic. So we’ve got that one little thing that 

you ain’t got to do which is like checking his blood sugars every time we eat.”- P11.  “Even 

our teenage children -  they can be aware of it as well, because they haven’t got to start messing 

with the pins and whatever. They can just look on the monitor. Gives us a little bit, not a lot, 

but a bit more leeway of doing other things in the house.” – P10. 

A significant positive outcome through the use of CGM was the reduced number of fingerprick 

tests required: “Also I like the fact I’m not having to check his bloods myself as much so that 

saves his little fingers.”-P5. Parents of younger children felt that day-to-day life for their 
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children was less disrupted, especially at nursery and when playing outside, which would often 

require finding a space to remove clothing to do fingerprick tests. One parent [P6] discussed 

the environment: they perceived CGM to be more environmentally friendly than fingerprick 

monitoring techniques, which resulted in a perceived increase of non-recyclable wastage of 

testing strips and needles.   

Parents of adolescents liked that CGM assisted them with objective evidence of hypoglycaemic 

episodes that could not be ignored continually by their children. Previously, as they were 

asymptomatic, the adolescent would often report that a fingerprick test was not required. “We 

were saying to him, well I know for a fact that your sugars are 2.5, you need to have something 

to eat” – P4 “But now we both can see that, okay, it’s low, and she’ll read it’s low, rather than 

us arguing.” – P3. 

CGM’s feature of predicting future glucose values was found to be particularly useful to 

prevent hypoglycaemia: “because it does kind of alert you if my son’s about to have a low and 

then I can act on that ”-P5 Through predictive warnings and optimisation of mealtimes and 

medication timings, CGM allowed for general and persistent improvement in blood glucose 

control compared to management pre-CGM. “Mainly, in my opinion, it [CGM] has helped 

[patient’s name] not get any low sugars and to contain his sugar levels, which, obviously, low 

sugar levels are not good for you anyway. So, in our opinion, it’s helped us not get any low 

sugars.” – P1. 

C.3.2 Educational Tool 

CGM was perceived to be an enlightening educational tool; the technology allowed families to 

obtain new knowledge about glucose trends specific to their child: “It takes about an hour, just 

over an hour, for his sugar levels to go up. We used to be under the impression that the 

[octreotide] injection takes fifteen minutes and that could tell us but that wasn’t the case so we 

realised to pay a lot more attention between feeds” – P1. Most young patients with CHI are 

unable to verbalise symptoms of hypoglycaemia and many develop relative hypoglycaemia 

unawareness through recurrence258; for these reasons, CGM was described as a “lifechanger” 

as it drew attention to low glucose levels when there were no demonstrable signs of 

hypoglycaemia. “If it wasn’t for that machine, I wouldn’t even know, because my son doesn’t 

even display any symptoms” – P5. 

Parents felt that they had been managing the condition appropriately prior to study participation 

but were surprised by the unexpected number of hypoglycaemias highlighted by CGM, 
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especially in between the times of their usual fingerprick tests. Having gained the new 

information from CGM about recurrent hypoglycaemia, families had heightened awareness of 

low glucose levels at certain times of the day: “It kind of made you more aware that when you 

had access to it, you knew that it was going to dip at a certain point and you thought – ‘well, 

he’s just played football for an hour and a half, he’s going to need something’ “ –P4. This 

allowed parents to reflect and analyse the possible reasons for hypoglycaemia at specific times, 

prompting preventative action to achieve normoglycaemia.  

C.3.3 Behavioural Change 

Long-term behavioural change due to CGM was noted in all but one of the families, especially 

with regards to mealtimes. “So we would make sure that he had something a bit more sugary 

in the evening or have a late dinner, just to make up for those late hours in the morning where 

he’s getting those low sugars” – P1. “It showed some certain times I was getting a lower, like, 

say on a Friday morning, because I start late, I don’t get out of bed until later on so I start-my 

blood was dropping so I then did end up making a slight change to my diet by eating, by making 

sure I definitely ate the night before and waking up slightly earlier.” –P7. 

The timing of medications was not generally changed by families, but there was increased 

appreciation for ensuring medications were not missed and given on time as it was noted that 

glucose levels gradually decreased as the time for medication approached. “I give her 

medications earlier most of the time. Her normal dose should be at midnight, but I’m really 

tired most of the night. I can’t stay up until then. Normally when I sleep before midnight, 

chances are, I would miss her midnight dose. And then she would wake up with a low in the 

morning.” – P3. CGM was also thought to potentially influence dose adjustments as thorough 

review of glucose trends was undertaken by families and clinicians. “But there is talks of 

hopefully dropping the daytime dose of diazoxide. Maybe we wouldn’t have been able to do 

that if it weren’t for the Dexcom. We’ve been able to monitor it more closely. But because 

we’ve had a couple of lows, they’ve told us to hold back on it but hopefully soon.” -P10. 

Pre-CGM, parents described having to persistently remind their older children to check their 

glucose levels with fingerprick tests and manage their condition effectively. Because of CGM, 

family dynamics were reported to have changed for the better: “We are more calm as well, me 

and her, we don’t argue more because our arguments always stem from her testing her blood 

sugars. So it kind of reduces that as well. It makes it more peaceful.” – P3. CGM use also 

allowed for adolescents to gain more independence and responsibility as they developed further 
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understanding of their own condition through monitoring of glucose trends, rather than 

performing fingerprick tests purely because they were told to do so. “So she has got her snacks 

with her - if she’s gone to another lesson – she knows, right, my sugar’s this and, I think, by 

the time I get to another lesson, it might go down so she’s advanced, she’s had something to 

eat. So then it stays really good.” – P6. 

C.3.4 Negative Experiences 

Although feedback was largely positive, barriers to CGM use were described, such as 

disruption from alarms, accuracy, sensor insertion and problems with the receiver range.   

All participants independently raised the issue of alarms. When using CGM initially, the alarms 

due to hypoglycaemia caused panic in the parents of younger children. With increased 

familiarity with CGM, parents would simply check their child’s glucose level with a 

fingerprick test and act accordingly. However, some families expressed frustration at the 

constant disruptions, especially at night and at school, resulting in an element of alarm fatigue. 

“and then when they are actually low, it just..it just went crazy to be honest. We were kind of 

thinking, to the point where we had to actually turn it off so we could sleep. So that was a bit 

of a.. That’s the only negative thing, to be honest”- P3. For one adolescent, it seemed CGM 

audibly distinguished her as different from the rest of her class. She wished to keep her 

condition private and the alarms accompanying CGM were not discreet in that regard. 

However, the other adolescents did not acknowledge similar problems at school.  

An alarm was also triggered when the receiver was out of range of the sensor, which would 

occur at a distance of greater than six metres. Adolescents strongly disliked having to always 

carry the receiver with them and would often forget the receiver, resulting in further frustration 

from an activated alarm. “Well, ‘cause it’s just annoying having to carry, like, a monitor in my 

pocket, where I have to know where it is” – P12. “Or sometimes she’ll go to the toilet and 

she’ll forget to take it with her and it’ll beep. And she’ll be like ‘Oh my god, I’m in the toilet!’ 

– P3. 

Families questioned the accuracy of the CGM readings. A low glucose reading of less than 

3.5mmol/l would trigger an alarm as advised and set by the clinical team. However, a check 

fingerprick test would typically demonstrate a higher blood glucose level than the CGM value. 

“There was a few times where the machine was going low, but actually when we tested it, for 

[patient’s name] it was fine. So yeah, it was a bit of a tricky..like ooh what do you believe?” – 

P12. Participants believed the inaccuracy at low glucose levels was the reason for many of the 
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unnecessary alarms during the study period: “It seems to do that quite a lot where the machine 

is just beeping, beeping, beeping – you know his glucose levels are 2.4. It’s like in my mind 

that doesn’t even make sense because actually well he’s on a nighttime feed, he’s getting milk, 

so how can it be?” –P5. “It was, giving us, like, these warnings to say that her blood sugars 

were low. It wasn’t. It was actually not a lot of times. And it kind of was a bit of a nuisance for 

a while, because it would beep, just unnecessarily” – P3. 

A challenging aspect for the majority of parents with young children was changing the sensor, 

which took place every eight to ten days. They viewed the sensor changes to be somewhat 

uncomfortable and frightening for children. “I would love to have it [CGM] permanently for 

my son even though he does have that episode of going crazy when I’m changing it and putting 

it on. It’s quite hard for me as well, ‘cause he is really, gets himself really worked up. But I’m 

okay with him getting worked up for those 5 minutes, because of what the machine provides.”- 

P5. 

Parents also reported problems related to the adhesive used to attach the sensor to the body: 

“It’s really difficult to take off even with the…I bought this ‘Zoff’ – everybody has tried to use 

that. It helps but it’s still very sticky, which obviously keeps it in place. It’s just when we’re 

trying to remove it, it’s not too pleasant.” – P9. This was generally apparent in younger 

children, but the opposite was noted with one adolescent: “I do think, however, the sticky 

plaster around it is not strong enough. Especially for [patient’s name], ‘cause he’s hairy.” -

P13. 

The blinded aspect of the study was understandably not appreciated; adolescents felt it was 

pointless to carry a device that did not supply immediate glucose readings and parents felt 

increased anxiety as they had started to rely on the unblinded CGM readings.  “So, it’s almost 

made you a little bit on edge because you’re thinking ‘Do I test his sugars? I know he said he’s 

alright and he’s not had anything to eat, but this time last week when we could see the results, 

it was saying this and so is it going to be like that? Do I need to check him? Does he feel 

alright? Does he not feel alright?’ “ – P4. However, there was some subtle acknowledgement 

that families can become fixated on the readings: one parent of an adolescent preferred the 

CGM readings being blinded to her as she “wasn’t looking at it all the time. You do become a 

little bit obsessed with it, especially when it’s unblinded, because you’re just constantly looking 

at the readings.” – P13. 
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The families were able to use the CGM device as part of a study and therefore did not require 

self-payment for device components or consumables. However, they acknowledged the high 

cost of the supplies would potentially prevent continued usage of the technology. “To fund it 

yourself, it’s a lot of money. I think it’s about £150-200 a month, which is a lot of money.” – 

P5. “We’ve found it quite more easy but cost-wise it’s quite expensive as well.” – P6. 

C.3.5 Design Improvements 

The families described some improvements they felt could be made before potential 

widespread usage of the technology for those with CHI.  

A short proximity range for data transmission was cited as a problem. This would be aggravated 

during routine daily activities such as during sport or when the receiver was accidentally 

forgotten. The range was identified by adolescents and their parents as one of the main 

improvements they would like to occur to the existing device. “Or if he’s playing football 

obviously, we leave it at the halfway line in his bag. Then obviously it doesn’t always pick up 

because you’re not within that distance that it should be” – P12. “So he could give it to one of 

his coaches during a rugby game or rugby training, because he can’t physically have it on him 

when he’s tackling. So the range if it was slightly longer, it would be more beneficial for him.” 

-P8. Parents of younger children bypassed the issue by using a small bag strapped across the 

child to hold the receiver when the child was at nursery or outside “..yeah, you have to carry 

it around, that’s quite.. yeah.. not annoying, but, like it could be a bit better. [Patient’s name] 

wears a little pouch around her to carry it around.” – P9. 

An alternative design improvement to the issue of receiver range was for the sensor to transmit 

signals to a mobile phone or a wearable receiver, such as a watch: “that monitor should be in 

to like a watch so that they can just wear it, you know, round their wrist. So that’s 24 hours 

with them, the whole day. And they don’t take it off.”-P6. It should be noted that this is available 

for older children and adults, but a separate receiver was used for the first phase of the study.  

Families expected CGM interpretation and use to be tailored for those with CHI. They 

appreciated that the CGM had been initially designed for those with type 1 diabetes, however 

they thought increased utility could be gained from improved accuracy at lower glucose levels 

and refined predictive warnings based on glucose trends from those with CHI: “Sometimes it’s 

expecting what it’s going to be a blood sugar and obviously they base it on diabetic people. I 

think they, how the sugar levels go up and down is different than [patient’s name] so maybe 

diabetics shoots very quickly, [patient’s name] less so” – P9. 
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Participants thought that a smaller sensor could improve the level of comfort. As the CGM 

sensor was attached to the body (often on the abdominal wall), the sensor could sometimes 

disrupt sleep and be obstructive for fastening trousers. “The monitor that we put on the 

stomach, the CGM thing. I think we wanted it to be a bit smaller. It was quite big. I think if it 

was a bit more smaller, they would find it a bit comfortable.”– P6. 

C.4 Discussion 

This study is the first qualitative exploration of experiences of CGM amongst families of 

patients with CHI. The strengths in this study lie in gathering rich data on the experiences of 

both adolescents and parents of younger children, with matters examined in depth within semi-

structured interviews. Furthermore, the analysis was conducted by an investigator without 

previous involvement in CGM studies in CHI or prior information about the patients, allowing 

for an inductive coding approach limiting researcher bias. We have observed emergent themes 

in this study, such as CGM being a catalyst for behavioural change and end users’ design 

improvements of the device, that have not been reported before.  This study highlights the 

importance of incorporating end-user experience in the clinical application of medical devices. 

While innovations in healthcare and adoption of new technologies such as CGM are welcomed 

in CHI415, it should not be assumed that end users will invariably favour CGM over fingerprick 

tests for glucose monitoring. It is important that user experience is factored in the clinical 

decision for use of CGM in patients with CHI.  

All parents wished to continue to use CGM in the future with the view that the positive aspects, 

such as continued reassurance, predictive warnings, and less demanding glycaemic 

management outweighed the disadvantages. Adolescents, however, were more reluctant to 

carry on using the same version of the device due to problems with range, frustration with 

alarms and the need to carry a separate receiver.  

Families noted that close monitoring and retrospective analysis of glucose trends enhanced 

their understanding of factors that influence glucose levels at different times of the day. 

Although parents were surprised that CGM revealed more hypoglycaemic episodes than 

previously encountered through intermittent fingerprick tests, the new knowledge obtained 

from CGM allowed for modification of routines to improve management of CHI.  

Refinements to the design of CGM were discussed by participants; interestingly, it was clear 

to families that the system had not been designed for patients with CHI. In keeping with 
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clinician perspectives [Chapter 4], parents and patients with CHI commented on the need for 

future work on glucose forecasting algorithms to improve hypoglycaemia accuracy and 

predictions in CHI. 

Participants’ experiences with poor accuracy is in keeping with previous studies: flash glucose 

monitoring systems were found to overestimate glucose levels compared to fingerprick tests14, 

whilst CGM measurements, on average, were lower than fingerprick glucose measurements13. 

Furthermore, Worth et al reported a hypoglycaemia sensitivity of 44% with the Dexcom G6 

device [Chapter 5]. In response to questionnaires, most of the parents within Vijayanand et al’s 

study reported better sleep309. In our study, whilst there was increased parental reassurance of 

normoglycaemia during the night, participants’ sleep was often disrupted due to alarms, 

especially on initial use of CGM.   

Whilst parents reported on their experiences and on behalf of their young children, full 

exploration of children’s views was not grasped in this study. This was also the case for two 

out of the five adolescents who were either unavailable or did not wish to participate in the 

discussion. The adolescents that did participate were interviewed alongside a parent, which 

allowed for parental clarification of adolescents’ points. However, although every effort was 

made by the interviewing researcher to fully explore the young people’s views, the presence of 

parents may have unintentionally limited the adolescents’ contributions.  

One family that withdrew from the previous phase of the study initially agreed to participate in 

the qualitative study but was subsequently lost to follow up arrangements. Exclusion of this 

patient may have introduced an element of positive bias into the remainder analysis. Future 

efforts should actively seek out those who did not find CGM useful. Interestingly, whilst the 

other nine out of ten families completed all twelve weeks of the CGM study; at the time of 

writing, three further patients have since withdrawn from follow-up provision of CGM now 

that regular expert review of glucose profiles has ceased, suggesting that unsupported CGM at 

home is not universally popular amongst those with CHI and participating in the parent study 

may have unintentionally influenced the findings of the analysis. 

A nationwide survey is being developed to be distributed to patients with CHI in the UK to 

gather the views of all families using CGM. This process of methodological triangulation will 

aim to establish further validity of the findings from the thematic analysis. 

In conclusion, the family experience for the use of CGM in CHI was generally positive. CGM 

allowed families to learn from glucose trends, prompting the prevention of hypoglycaemic 



298 

 

episodes with simple routine changes. Whilst CGM increased reassurance and patients had 

fewer fingerprick tests, participants disliked the receiver proximity range and alarms. Attention 

to CHI-specific modifications for CGM, such as improved hypoglycaemic accuracy, is needed 

to enhance the end user experience for this often underserved patient group. 
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