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ABSTRACT 
 
 
 

n 1933 the German geneticist Richard Goldschmidt presented 

his theory that major evolutionary events have been driven, 

not by the slow accumulation of small variants, in line with 

Darwinian thought, but instead large-scale mutations which he called 

‘macromutations’. His theory was called “The hopeful monsters 

hypothesis”, as any species arising from such an event would often result 

in evolutionary dead end. This theory was, however, by and large 

rejected due to its stark contrast with that of Darwin’s theory of 

evolution. 

86 years on, thanks to tremendous advancements in genomic 

technologies and evolutionary analysis, we are aware of the existence of 

a myriad of what could be considered ‘macromutations’ (large-scale 

duplications) in the human genome, and the significant role they have 

played in our evolution. Whilst beneficial in the process of shaping who 

we are as a species, these large-scale mutations are not always 

benevolent, having been found to have significant links with a plethora of 

human diseases. 

Using evolutionary data, alongside important biological features of 

human genes, we explore the links between large-scale mutations, 

particularly whole genome duplications, introgressed genes, and 

heritable, parasitic, and viral disease.  
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We find that there are strong links between ancient fragility, 

exposed by divergence between duplicated genes, and heritable disease; 

that co-evolution between humans and the soil borne helminth parasite 

Trichuris trichura has been facilitated by strong selective pressures 

exerted on the ancient genes of the TGFβ superfamily; and that viruses 

target ancient and important gene families and functions. 

It is clear that large-scale mutations, in particular gene and 

genome duplications, have provided the genetic redundancy that 

contributed to the evolution of the complex species we are today. 

However, given the fragility and propensity of genes of this kind to be 

associated with disease of all varieties, our future evolvability, and 

ability to adapt is in question. We must, therefore, readdress 

Goldschmidt’s theory as a question – Are we merely the descendants of 

hopeful monsters?
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LAY ABSTRACT 
 

In 1933 the German scientist Richard Goldschmidt proposed that, 

major transitions in evolution, instead of being a result of small changes 

in the DNA as the followers of Darwin thought, are in fact the result of 

much larger ones. He called this theory “The hopeful monsters 

hypothesis” as it was very likely that most species that began in this way 

would die out.  

We now know that these large mutations have occurred repeatedly 

over the course of human genetic history and have allowed us to evolve 

into the complex species we are today. However, the more we are able to 

find out, the more we find that these large mutations also have strong 

links to many different diseases.  

We explored the evolutionary basis of some of these links, looking 

at inherited genetic disease, parasitic diseases with a genetic component, 

and the way that viruses target human genes. We found that commonly, 

disease of all kinds are linked to very ancient, duplicated genes with 

important properties, which, due to how critical they are, are resistant to 

change.  

We can now see that Goldschmidt’s theory was right, large 

mutations have led to a lot of the major changes in the human genetic 

past, however, given that we are now unable to change without damaging 

these genes we must readdress Goldschmidt’s theory and ask –are we 

merely descendants of hopeful monsters? 
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the wider community. 
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NCBI:  National Center for Biotechnology Information 
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NTD:  Neglected Tropical Disease 

OMIM: Online Mendelian Inheritance In Man Database 
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SSD:  Small-Scale Duplication 

TE:  Transposable Element 

TGFβ: Transforming Growth Factor beta 

UTR:  Un-Translated Region 
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WGD: Whole-Genome Duplication 
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RATIONALE, AND INTRODUCTION TO THE THESIS  
 

This thesis has been written in an alternative format as the work 

conducted has been adapted for submission to peer-reviewed journals and 

is presented as such.  

The main subject area that has been explored within this thesis is 

the cause of human genetic disease from an evolutionary perspective, 

particularly as relates to gene and genome duplications. The thesis is 

presented as an introduction, three original research chapters, and a final 

discussion. The introduction in chapter 1 is designed to acquaint the 

reader with some of the major forms of large-scale mutation that have 

been found within the human genome, technological advancements made 

over the course of the last ~20 years, and some fundamental concepts in 

evolutionary theory. Chapter two explores the role of duplicated genes in 

heritable genetic disease and the basis, and underlying causes of for this 

association. Chapter three leverages the findings of chapter 2 to 

investigate how gene, particularly whole-genome, duplications have 

provided a platform for co-evolution of human and their eukaryotic 

pathogen Trichuris trichura. Chapter 4 leverages the findings of chapter 

two in a different manner to chapter 3, namely, by exploring the links 

between these findings and viruses. This work concludes in chapter 5, by 

discussing the way that gene and genome duplications have, and continue 

to shape the human genome over the last ~3.9 billion years, alongside 

some future implications.  
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All chapters, whilst in the style of a journal article, have been 

formatted to conform to standard thesis formatting regulations, and as 

such, references are included in a consolidated bibliography at the end of 

the work. Overlap between chapters has been avoided where possible, 

however when unavoidable, methods have been replicated between 

chapters, and have been signposted accordingly.  

All data are available at: 

https://github.com/AlexMartinGeary/Hopless_Monsters 

 
Details of author contributions for chapters 2:4 are described 

below:  

Chapter 3: “Gene & genome duplication: Duplication is a 

correlate of monogenic disease, not a cause” 

§ Alexandra Martin-Geary1 co-conceived of the project, sourced 

and curated the data and performed all analysis. 

§ Mark Reardon1 provided vital discussion in the analysis of gene 

age, and haplosufficiency.  

§ David W. Newman1, Benjamin Keith1 and May Tassabehji1 

provided conducted works upon which the early concepts were 

based 

§ David L. Robertson1,2 co-conceived of the project, advised and 

supervised throughout. 
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Chapter 4: “Keep your friends close and your enemies closer: the 

co-evolution of Trichuris trichura and the human TGFβ superfamily” 

This chapter is not a stand-alone paper and will be supplemented 

by the in vivo work performed by Adefunke Ogunkanbi and Jo Pennock, 

and additional phylogenetic analysis performed by David Newman prior 

to publication.  

§ Alexandra Martin-Geary1 co-conceived of the project, obtained 

and curated all data, and performed all analyses contained within 

this thesis. 

§ Adefunke Ogunkanbi1 co-conceived of the project, performed the 

experimental mouse work briefly detailed within the chapter, and 

which provided the basis for exploration of the TGFβ superfamily. 

§ David W. Newman1 performed supplementary phylogenetics not 

contained within this thesis, alongside vital discussion. 

§ David L. Roberson1,2 provided supervision and guidance regarding 

the phylogenetic analyses.  

§ Jo I. Pennock1 co-conceived of the project, provided supervision 

and guidance regarding immunology and Trichuriasis, and 

supervised both Adefunke and Alexandra throughout.  

 
Chapter 5: “Viruses control the human intra-cellular systems by 

exploiting evolutionarily ancient molecules” 
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§ Alexandra Martin-Geary1 sourced all data, with the exception of 

the driver node assignments and VIP classes contained herein, she 

curated all data and performed all analyses presented in this thesis. 

§ Vandana Ravindran2 co-conceived of the project, performed the 

network analysis that formed the initial basis of this project and 

provided the driver node assignments, and provided supervision 

and valuable discussion throughout. 

§ Benjamin Stamp2 provided the VIP class assignments, and 

supplemental work that will be included in the published article. 

§ Haiting Chai2; Jose C Nacher3 performed supplemental work which 

will be included in the published article.  

§ David L Robertson1,2 co-conceived of the project, advised and 

supervised throughout. 
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Manchester, Oxford Rd, Manchester M13 9PT 

2MRC-University of Glasgow Centre for Virus Research, Glasgow 
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3Department of Information Science, Faculty of Science, Toho 
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CHAPTER  
ONE 

 

GENERAL INTRODUCTION 
 
 

“If the eternal dance of molecules 

Is too entangled for us mortal fools 

To follow, on what grounds should we complain? 

Who promised us that Nature’s arcane rules 

Would make sense to a merely human brain?” 

-Peter Shor (Shor, 2019) 
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n 1864, inspired by Charles Darwin’s “On the Origin of 

species” (Darwin, C., 1859), Herbert Spencer coined the 

phrase ‘Survival of the fittest’ to describe the theory of 

natural selection (Spencer, 1864), positing that those organisms with the 

most beneficial micro-evolutionary traits would outlast those without, to 

become new species. 

In 1933 the German geneticist Richard Goldschmidt presented a 

theory in which he coined the term the “Hopeful Monsters” 

(Goldschmidt, R., 1940, 1933). This theory presented a deviation from 

the traditional understanding of Darwin’s theory of natural selection 

(Darwin, C., 1859), suggesting that rather than evolution occurring 

through the steady accumulation of small variations, important 

evolutionary events, such as speciations, are brought about by larger 

mutations which he referred to as ‘macro’ mutations. The success of any 

species produced by such an event, he posited, would be by no means 

certain, with many such organisms failing to flourish, ultimately 

becoming evolutionary dead ends. Those that survived, he claimed, 

would do so as “Hopeful Monsters”, alive, not because of, but despite the 

odds. Sadly, Goldschmidt’s hypothesis was met with derision due to its 

perceived irreconcilable conflicts with the work of Darwin, and it seemed 

as though it too, would result in a dead end. Despite this chilly reception 

it was his sincere hope, that a future scientific community would 

I 
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recognise his theory’s merit (Goldschmidt, 1982), thus, ironically, 

rendering the hypothesis, as its subject matter - a hopeful monster. 

This, however, was not the first occasion that adjustment of the 

traditionally accepted Darwinian mode of evolution sought. From the tail 

end of the 19th century a new movement in evolution had been forming, 

its intention- to reconcile Gregor Mendel’s observations of inheritance, 

with Darwin’s theory of natural selection. This movement, known as Neo 

Darwinism, gave way in 1942 to the ‘Modern Synthesis’ (Huxley, 1942), 

an attempt, in light of new population genetics approaches, and a broader 

understanding of mutation to resolve these developments with Darwin 

and Mendel and provide a more unified theory of evolution, which 

persists to this day. 

Between Goldschmidt’s pre-DNA proposal of evolution by 

macromutation in 1933 and the present, the tools available to biologists, 

and the knowledge gleaned from genomes of humans, alongside a 

plethora of other species, has led to a far greater understanding of the 

role and mechanisms of evolution, and the realization that evolution is 

not a simple process of survival of the fittest. Whilst it may not be 

wholly in line with Goldschmidt’s vision of macro mutations, large-scale 

duplications of genetic material, that marry up Darwinian thought with 

Goldschmidt’s theorem have been found to be integral to evolution. With 

the vast advancements that have been made over recent decades in the 

field of molecular biology, leading to the accumulation of data beyond 

merely animal, to include a wide diversity of our Eukaryotic and 

Prokaryotic brethren, the ideas underlying Darwinism, Neo Darwinism 
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and the Modern Synthesis are now understood to be overly simplistic, it 

having been proposed that we are on the verge of a new synthesis in 

evolution (Koonin, 2009). With every advancement and updated theory 

our understanding of the human condition advances, and the question 

emerges – Where do we go from here, or are we, as Goldschmidt 

theorized almost a century ago, merely hopeful monsters? 

2001 heralded a major milestone in the journey towards answering 

this question, in the form of the publication of the first two complete 

human genomes. One, an amalgam of the genomes of multiple 

individuals, published by the Human Genome Sequencing Consortium, 

and the second, a composite of 5 individuals, published by Celera 

Genomics (Frazer et al., 2009). 

In the almost 15 years since these first genomes were published, it 

has become possible to sequence the genomes of individuals with rapidly 

increasing speed and accuracy. By comparing these genomes with one 

another, and with other species, it has been possible to glean a great deal 

of information regarding inter- and intra-species variation, and the 

evolutionary histories of the sequences contained therein. It has now 

been shown that large-scale mutations can and do occur, and that they 

likely, led to the divergence of humans from other non-human hominids 

(Bailey and Eichler, 2006). The enlightenment afforded by this genomic 

revolution does not however end in our ability to define species, as this 

acceleration in the accumulation of biological data has uncovered a 

plethora of different types of variation, each with their own signature 

involvement in evolution, health, and disease. 
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There are a great many different types of variation that can occur 

within the human genome, from single point mutations in line with 

Darwin’s theory, to the large scale structural variations (Frazer et al., 

2009) of up-to whole-genome size, as proposed by Goldschmidt (1933). 

Early large-scale genomic studies estimated that each individual 

carries a minimum of two possibly disease associated mutations 

(Dorschner et al., 2013; Zhu et al., 2015), and ~400 potentially 

deleterious variants (Xue et al., 2012). It should be noted however, that it 

is was estimated that only in the region of ~10% of genes were liable to 

have an association with disease (Barabási et al., 2011), and that the 

function, and phenotypic implications of large parts of the genome 

remain unknown, therefore these numbers are likely to be far higher than 

prior estimates suggest. 

It is important to highlight, that as sequencing technologies 

advance, our ability to accurately identify variants also improves. The 

numbers of estimated damaging variants are likely to change therefore, 

with both new variants being discovered, and false positives being 

removed. This was highlighted by the 1000 Genome Project, which 

classified ~2.3 million previously identified tentative variants as being 

erroneous (1000 Genomes Project Consortium et al., 2015). 

Progress in the fields of bioinformatics and computational biology 

has proven invaluable in the study of human variation, with potential for 

future computational analysis ever increasing. In September 2015 

completion of the final phase of the thousand-genome project was 

announced, with 2,504 genomes being made publicly available for 
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analysis (Birney and Soranzo, 2015). Since then, phenotype and genotype 

information from a further ~500,000 individuals has been released by the 

UK BioBank (Bycroft et al., 2018), and the sequencing of a further 

~100,000 genomes currently underway as part of an NHS project in the 

U.K (Caulfield et al., 2019). 

Resources such as the 1000 and 100k genomes projects and 

Biobank have been established to permit large-scale study of human 

variation and disease. Further to this, an abundance of primary sequence 

databases are emerging, for humans and other species, containing both 

whole genome and exome data, such as gnomAD (Karczewski et al., 

2019), COSMIC (Tate et al., 2019), and ClinVar (Landrum et al., 2018), 

alongside collections of collated genomic information, such as Ensembl 

(Hunt et al., 2018), to name but a few. Whilst these resources present 

unprecedented potential for the analysis of genomic data, when 

interpreting the output of these analyses we must exercise caution. As the 

quantity of published papers has increased, so too has the presentation of 

often conflicting information. 

Genetic variation and human disease 

Genetic variation of differing types are the key factors that set 

species apart. Be it large-scale variation leading to speciation events, or 

smaller-scale variation that differentiates sub populations and 

individuals, it is a given that variation is fundamental to diversity. 

Comparative genomics studies have found that there is a heightened 

propensity towards human disease mutations to fall within the most 

highly conserved regions across diverse metazoan species (Miller and 
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Kumar, 2001). These regions are, therefore more frequently associated 

with damage to protein sequence, structure, and, consequently, disease 

(Miller and Kumar, 2001). In order to understand genetic variability, it is 

imperative that we thoroughly understand the placement of these 

mutations in their evolutionary context (Henn et al., 2015). It has been 

observed that mutation patterns in disease patients often appear to have 

escaped the pressures of purifying selection triggered by aberrant 

physicochemical properties, when compared with the wild-type (Miller 

and Kumar, 2001). 

As suggested by the UK10K consortium (The UK10K Consortium, 

2015) the idea of a single human genetic profile is unrealistic, given that 

variation within humans has shown to be tremendously diverse. There are 

however population specific patterns that have emerged which, whilst 

unable to elucidate a ‘one size fits all’ profile, provide key indicators of 

population specific patterns of variation over time. This may be 

geographic populations as the UK10K discussed (2015), disease 

populations of phenotypic expression, or, indeed, an amalgam of the two.  

Henn et al (2015) discuss various potential Demographic 

influences on mutation load, including bottlenecks, serial founder effects, 

and population growth. It has been repeatedly noted that genomes have 

been shaped by population dynamics and structure (Cavalli-Sforza et al., 

1991; Frazer et al., 2009; Polvi et al., 2013; Rosenberg, 2002). In support 

of this, a 2015 study (1000 Genomes Project Consortium et al., 2015), 

analysed the genomes of individuals from 26 populations, and showed the 
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presence of variation specific to each population, with 86% of identified 

variants being specific to particular geographic groups (ibid). 

Local adaptations in population history can play a role in the 

understanding of selected traits leading to disease. Take for example the 

disease associated sickle cell anaemia allele, which, whilst is causative of 

a serious blood disorder, has also conferred a degree of protection against 

malaria. This protective pleiotropy has allowed the otherwise deleterious 

allele to evade purifying selection, as it would presumably have allowed 

carriers to survive past reproductive age, where those without would not. 

This association is shown to be an instrumental factor in its persistence 

in regions where malaria is endemic (Allison, 1954; Henn et al., 2015). It 

is, therefore, imperative to consider, when assessing the effects of such 

mutations, the context, both biological and geographical, within which 

the mutation resides. 

Genetic variants in human populations are generally divided into 

two categories: common, and rare. These categories are decided upon by 

the rate of occurrence of a variant in the population, or, in the case of 

single nucleotide polymorphisms, minor allele frequency (MAF) whereby 

a frequency of greater than or equal to 1% is considered common (Frazer 

et al., 2009). It is possible, however for a gene to have an elevated MAF 

and a far lower instance of phenotypic expression (Dorschner et al., 

2013). Dorschner et al (2013) found that, whilst the PKP2 missense 

mutations under investigation in their study occurred at a frequency of 

0.05%, of the 4,200 participants, the disease itself was only evident in 5 

patients, rather than 21, which would be expected of an equally high 
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penetrance allele (Dorschner et al., 2013). It bears noting however that 

there are known issues when assessing such genetic information in 

association with disease, as many medical conditions, particularly those 

that are not considered ‘severe’, or debilitating may go unreported within 

the cohort. This is particularly the case if the focus of the study is on 

specific major diseases and syndromes. Likewise, the time of onset of 

disease must be considered, as many genetic diseases have persisted due 

to late onset, following reproductive age, therefore, it is possible for 

sampling to have taken place prior to disease onset.  

Genetic disease is often, divided into two categories. Monogenic, 

otherwise known as Mendelian for Gregor Mendel (Bateson, 2010): 

referring to single genes that can be linked directly with a specific 

disease phenotype, and complex: wherein numerous genes play an 

interconnected role in the resultant phenotype. Barabási et al (2011) 

reviewed a series of methods of network analyses and concluded that it is 

rare for a disease to result from variants within a single gene, rather, 

disease is more commonly a result of mutations in multiple genes, such 

as has been shown to be the case in Autism (Veenstra-VanderWeele et 

al., 2004), and its vast spectra of potential phenotypes. This is not to 

imply that Mendelian disorders are insignificant, quite the contrary, in 

many cases these diseases require only a single mutant allele in order to 

produce a disease phenotype, as is the case in the majority of cancer 

syndromes; for example, deleterious variation in a single allele of TP53 

gene, also known as “the guardian of the genome” has been found to 
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dramatically increase an individual’s lifetime risk of developing a broad 

range of cancers (Hollstein et al., 1991).   

As previously stated, the analysis of variants, deleterious or 

otherwise, has proven invaluable in the study of human health and 

disease, however, there are biases that bare noting (Dorschner et al., 

2013), specifically, that the majority of studies to date have focused 

disproportionately on individuals of European descent, thus skewing the 

full biological picture by underrepresentation of other populations. This 

is of particular significance given that rare alleles tend to be population 

specific (The UK10K Consortium, 2015), and that it is now known that 

differing populations have clear patterns of admixture, both between each 

other and non-Human hominids, and dispersal following the initial 

migration out of Africa (Prohaska et al., 2019). The analysis of mutation 

load in populations has provided a wealth of information regarding 

genomic disease, whilst shedding light on the complexity and difficulties 

of estimating disease risk directly from sequence data (Henn et al., 

2015). In particular, the assessment of penetrance in disease causing 

mutations requires far greater study, As reported by UK10K (The UK10K 

Consortium, 2015), despite their using a strict criterion, estimations of 

penetrance were likely to exceed the true penetrance of certain disease-

causing alleles. 

The majority of variants within the human genome are not thought 

to be deleterious (Frazer et al., 2009)with an estimated up to 9.5% of 

these variants, consisting of non-damaging gain or loss copy number 

mutations (Zarrei et al., 2015). It is proposed that in the region of 103 
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non-synonymous potentially deleterious mutations are present within “the 

average human genotype” (Sunyaev, 2001), the majority of deleterious 

mutations most likely falling within regions of conservation in other 

species (Miller and Kumar, 2001). Rare mutations, those with a low 

MAF, have been found, not only to be associated with increased disease 

risk, but also to be indicative of a propensity to have an early onset, and 

link to susceptibility to complex disease (Henn et al., 2015). It should be 

noted that an inverse correlation between frequency of variant and 

severity of the resultant disease is not coincidental, as the resultant loss 

of fitness often leads to strong selection against their persistence, 

whereas variants resulting in less deleterious, or later onset phenotypes 

are more permissible (Henn et al., 2015). An inherent, and to a degree 

unavoidable bias exists in the assessment of deleterious mutations, in that 

those individuals who participate in sequencing studies are all, to a 

degree ‘healthy’. This by no means suggests that they are all in fine 

physical form, far from it in fact, as the majority of sequencing has been 

performed on patients with disease phenotypes. However, due to 

survivorship bias (Mangel and F Samaniego, 1984) embryo-lethal genetic 

variations cannot be identified in the majority of sequencing studies as 

they stand. This bias has the serious potential to skew our ability to 

predict genomic variation as the most severe variants are masked.  

Analysis of variation is, at least to a degree, dependant on the type 

of sequencing conducted. As such, the reduced cost and comparative ease 

of exome, rather than whole genome sequencing has led to a large 

proportion of studies using exome data for analysis (Henn et al., 2015). 
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This has been, and remains, an invaluable resource for the analysis of 

variation, having shown, for example that an estimated 50% of exonic 

genes have at some juncture undergone duplication (Richard et al., 2008). 

It has also been found that disease-causing genes have a tendency to be 

more exon rich than their benign counterparts (Lieben, 2016; Wu and 

Hurst, 2016). Exome studies, by definition, result in analyses that 

specifically target DNA coding regions, without accounting for variation 

in the non-protein-coding portions of the genome. This is particularly 

biasing given that ~97% of variants are found in non-coding regulatory 

regions (1000 Genomes Project Consortium et al., 2015) of which 

relatively little is currently known of their potential impact (The UK10K 

Consortium, 2015), with many liable to influence phenotype (Maurano et 

al., 2015; The UK10K Consortium, 2015). We have, therefore, over the 

last half-decade entered a new phase of variant analysis, wherein, given 

the greater accessibility of whole genome data, non-coding regions are 

more readily incorporated into study (The UK10K Consortium, 2015). 

Single Nucleotide Polymorphisms  

The mutation of a single nucleotide, also known as a point 

mutation, or single nucleotide polymorphism (SNP) is the most abundant 

individual form of variation in the human genome (1000 Genomes Project 

Consortium et al., 2015). Point mutations can both occur, and influence 

the phenotype in a variety of ways, dependant on; their location in, or 

proximity to a gene; if they represent a transition, transversion, insertion 

or deletion; and, the degree of functional change, if any, that they induce. 

A very general overview of these types of variation is shown in figure 1.  
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Further to the potential association with disease, these 

polymorphisms can influence the binding affinity of targeted 

pharmaceuticals as discovered by Bloomfield et al (Bloomfield et al., 

2016), a single polymorphism at rs6971 has a highly negative effect on 

the binding affinity of TSPO PET tracers. 

 
Figure 1: Overview of variation. Including type, classification and potential 

outcome 
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SNPs are often categorized, based on their properties, into two 

groups: Synonymous mutations; variants which do not alter the amino 

acid encoded for, and non-synonymous; leading to an alteration in amino 

acid. Studies have shown that, even in situations where a change in 

nucleotide does not alter the resultant amino acid from that of the wild 

type, noticeable phenotypic alterations have been found to occur, and 

should therefore be accounted for (Lieben, 2016; Wu and Hurst, 2016). 

Non-synonymous missense mutations, those that encode a different amino 

acid to the wild type, are commonly, and often erroneously, 

automatically classed as functional, assuming they will have a deleterious 

impact on any resultant product (Henn et al., 2015). However, due to this 

type of mutation encompassing a wide variety of polymorphisms, and any 

functional repercussions being reliant on both the mutation type, and the 

location within, or proximity to a gene, the functional repercussions of 

missense mutations are better viewed as a continuum, covering the span 

between total loss of function, no functional alteration, through to gain of 

function. Functional prediction is by no means easy, and therefore it may 

be attractive to broadly class missense mutations as being ‘functional’ in 

order to expedite analysis. This type of false dichotomy, however, is not 

representative of the true biological picture, and can ultimately lead to 

error and biases.  

Insertions or deletions of nucleotides, known as ‘indels’ cause a 

frameshift, resulting in codon misalignment. These variants therefore 

impact on all subsequent codons in a gene and can radically alter the 

resultant amino acids. Whilst it is not always known what causes this 
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type of variation to occur, Abeysinghe et al (Abeysinghe et al., 2003) 

discovered a link between ‘frameshift hotspots’ and translocation 

breakpoints, highlighting an association between these areas and 

replication slippage. 

Structural Variation 

Whilst less than 0.1% of person-specific variants are classed as 

‘structural’, due to their often very large sizes they can cover a large 

proportion of the genome (1000 Genomes Project Consortium et al., 

2015).  The distributions of structural variants (both genomic and 

population) are similar to that of their point and indel counterparts, with 

the exception of their being enriched in genomic regions that have been 

recently subject to large-scale duplications in recent evolutionary history 

(Frazer et al., 2009). Due to difficulties in sequencing such variation, and 

the propensity to study disease populations, the roles and frequencies of 

large-scale copy-number variations (CNVs) in healthy individuals are 

currently poorly understood (Iafrate et al., 2004). 

Copy number variations (CNVs) wherein one or more genes is 

found in greater, or reduced abundance compared with the expectation, 

can occur on both an individual, and species level ranging from a single 

gene, multiple co-localized genes and their surrounding sequence, to the 

entire genome, with estimates of genetic gain per chromosome ranging 

from 1.1% to 16.4%, and loss from 4.3% to 19.2% (Zarrei et al., 2015). 

As can be seen, CNVs do not occur with uniformity across the genome, 

or even within each chromosome, and, with the exception of genes 

retained following a whole genome duplication (WGD) event, are found 
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to be more abundant in regions of observed pre-existing structural 

variation (Makino et al., 2013a; Schuster-Böckler et al., 2010). CNVs 

arising through WGD events, de novo duplications, singleton duplication 

and segmental duplications, have, in recent years taken a more prominent 

role in the study of human genetics, having been found to play a 

significant role in disease (Bailey and Eichler, 2006; Bertrand et al., 

2010; Dickerson and Robertson, 2012; Diss et al., 2017; Guan et al., 

2007; Rice and McLysaght, 2017), with an estimated two thirds of CNVs 

resulting in a functional change when compared with the wild type 

(Dudley et al., 2012). 

The role of structural variation in disease has been pinpointed by 

studies into schizophrenia and autism, clarifying the involvement of 

specific structural variations on chromosomes 16,22,1 and 15 (Frazer et 

al., 2009; Stefansson et al., 2008). This finding is in support of earlier 

work, which identified a correlation between combined segmental 

duplication, copy number variations, and neurological disorders (Varki et 

al., 2008). It has also been suggested that, in certain cases a tolerated 

increase in copy number may confer disease resistance, for example, 

humans have one copy of the TP53 gene which, as previously noted, has 

an important role in protecting against cancer. Elephants however have 

19 copies and subsequently a greatly reduced average lifetime cancer risk 

(Abegglen et al., 2015).  

The Y chromosome 

Unlike the autosomes, the human sex chromosomes evolved to a 

semblance of their current form in relatively recent evolutionary history, 
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with further population specific shaping occurring as a result of a 

bottleneck at roughly 5,000–7,000 BP (Zeng et al., 2018). The human sex 

chromosomes it is now known, originated as an autosomal pair, however, 

unlike the other autosomes which have maintained relative symmetry, 

one of the pair underwent chromosomal decay resulting in the current Y 

chromosome, with subsequent inactivation of X-linked genes in females 

following this event (Naqvi et al., 2018). It is not however solely the 

origins of allosomes that differ from their autosomal counterparts, as 

unusual patterns of gene CNVs are also found (Lucotte et al., 2018; 

Maranda et al., 2019; Naqvi et al., 2018). Allosomal CNVs exhibit an 

increase of 33% in processed pseudogenes (Maranda et al., 2019), and 

enrichment of expression of ampliconic CNV genes sharing unusual 

patterns of diversity between human populations, are thought to have 

arisen as late as 50,000 years ago (Maranda et al., 2019). CNV genes in 

these chromosomes, have elevated dosage sensitivity, suggested to 

represent an underlying ancestral dosage sensitivity. It is proposed, that 

this ancestral dosage sensitivity can be identified by involvement with 

miRNA mediated repression mechanisms, which may also explain the 

retention of an Y chromosomal partner, or X-inactivation. Likely 

influenced by differential X-inactivation, many sex-specific diseases and 

disorders are now known to be linked to the presence or absence of 

dosage sensitive genes on the sex chromosomes (Graves, 2016). RNA 

influenced differences in paralog expression have recently also been 

identified in the autosomes (El-Brolosy et al., 2019; Ma et al., 2019), 

elucidating the mechanistic basis by which knockouts are found to illicit 
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a less severe phenotypic change than expression reduction in the same 

gene.  

Transposable elements 

There are remarkable differences in genome size, across all life, 

with, in the region of 6,600-fold variation in size between animal species 

alone (Suh, 2019). A recent study investigating the role of transposable 

elements (TEs) in larvacean tunicates, a close relative of vertebrates not 

known to have undergone WGD in their evolutionary history, found that 

~83% of variation in genome size between species was due to differential 

copy numbers of non-autonomous TEs (Naville et al., 2019). In part, the 

increased accumulation and fixation of many small TEs, it has been 

proposed, may have been tolerated due to their being less likely than 

larger autonomous TEs to lead to a deleterious phenotype (Suh, 2019). In 

contrast to this, a second study (Arkhipova and Yushenova, 2019) 

investigated the role of giant TEs and retrotransposons, finding that 

whilst there are instances of very large TEs in the human genome, their 

presence does not automatically infer an excess production of gene 

products, as their expression is heavily regulated by RNA silencing 

mechanisms and chromosomal relocation can allow duplicated genes 

within these regions to gain new, or different function which may to 

some degree, limit their deleteriousness. Despite their potential for 

disruption of stoichiometry, or other potentially deleterious 

consequences, large transposable elements are thought to have become 

fixed due to the important role they likely have played in genetic 
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diversification, novelty and adaptation (Arkhipova and Yushenova, 

2019). 

It is known that there is a strong relationship between TEs and 

viruses, including shared qualities between the two facilitating 

transposition (Arkhipova and Yushenova, 2019; Gilbert and Feschotte, 

2018; Rodriguez et al., 2017). A recent study of the various epigenetic 

features of transposable elements found them to be dependent on the age 

of their component retroviral ancestors (Ohtani et al., 2018), it is 

suggested that a deeper understanding of the differential evolutionary 

histories of retrotransposons and their associations with both the genome 

and epigenome, including the novelty provided by their inclusion and 

subsequent endogenization (Johnson, 2019), may allow a greater insight 

into ‘viral mimicry’ in the human genome, and in turn allow for the 

development of therapeutics that exploit this machinery (Ohtani et al., 

2018). 

Segmental duplication 

A high proportion of human structural variants have been found to 

be made up of segmentally duplicated regions (SDs) also known as low 

copy repeats, or tandem duplications (Bailey and Eichler, 2006). These 

arise largely as the result of non-allelic homologous recombination 

(NAHR), which results in recombination slippage (Bailey and Eichler, 

2006; Varki et al., 2008). These regions are defined as stretches of DNA 

of between 1 and 10 kilobases, that differ by just 10% identity or less 

(Bailey et al., 2003), and occur both inter, and intra chromosomally as a 

result of Robertsonian Constitutional translocation (breakages in the 
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region of the centromeres of two chromosomes that lead to translocation 

of genetic material between the two) (Bailey and Eichler, 2006; 

Linardopoulou et al., 2005), and are influenced by chromatin 

organisation (Ebert et al., 2014; Emanuel and Shaikh, 2001). Flanking 

segmental duplications, SDs with between 50 kilobases and 10 megabases 

of intermediate sequence (Bailey et al., 2003; Sharp et al., 2005) have 

been found to be ‘hotspots’ of variation, with a high correlation between 

them and deleterious genetic traits.  

It is estimated that, providing a neutral molecular clock, and a low 

likelihood of gene conversion, SDs which are fixed in the human genome, 

and share genetic similarity of 90%, emerged in the region of 35Mya 

(Bailey and Eichler, 2006), coinciding with the ‘Grande Coupure’, 

towards the end of the Eocene epoch, an event of rapid change in global 

biodiversity (Mennecart et al., 2018). 

Whilst SDs can occur anywhere in the genome (Zarrei et al., 

2015), they are most commonly found in proximity to the centromeres or 

telomeres (Bailey and Eichler, 2006; Horvath, 2000), or at sites of double 

strand breaks, suggested to be linked to reproductive isolation between 

species (Ebert et al., 2014).  Analysis of SDs in humans and primates has 

uncovered a relationship between tandem repeats found in 3’ un-

translated regions, and divergence in gene expression (Bilgin Sonay et 

al., 2015; Waldron, 2015), which is posited to have played a key role in 

the evolution of the primate lineage, inclusive of rapid expansion and 

fixation that ultimately led to the isolation of the hominid line (Richard 

et al., 2008).  
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Gene duplication (small-scale and whole-genome) 

More than 30 years after Goldschmidt presented his hypothesis, the 

Japanese geneticist Susumu Ohno posited his own, initially contentious 

theory, knowingly or otherwise supporting that of Goldschmidt’s hopeful 

monsters. Ohno’s “2R” hypothesis (Ohno, 1970), proposed that, during 

the course of early vertebrate evolution, the entire genome duplicated not 

once, but twice. These duplication events, among other large-scale 

mutations that followed are now known to have not only increased 

evolutionary capacity via the provision of repurposable genetic material, 

but also instigated a period of explosive sub-speciation (Richard et al., 

2008), brought about by differential loss of genetic material, and 

resultant reproductive isolation.  

Facilitated by the recent advances in genomic technologies it has 

now been identified that genes arising, and having been retained 

following, whole genome duplication events play a significant role in 

human health, disease, and evolution (Dickerson and Robertson, 2012; 

Makino and McLysaght, 2010; Richard et al., 2008; Schuster-Böckler et 

al., 2010; Singh et al., 2015; Van de Peer et al., 2017), with WGDs 

having in particular been linked to the recent divergence in the ancestor 

of hominid and chimpanzee (Bailey and Eichler, 2006).  

There are an estimated 3,544-7,831 human genes thought to have 

arisen and been retained as a result WGD events alone, each displaying 

high degrees of mammalian conservation (Singh et al., 2015). These 

genes, named ohnologs for Susumu Ohno, have been linked to a 

propensity for deleterious mutation (Dickerson and Robertson, 2012; 
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Makino and McLysaght, 2010; Singh et al., 2015), exhibiting an 

enrichment of genes with cancer associations (21.6% to 26% of all 

ohnologs but only 8.3% of non ohnologs), developmental genes such as 

those linked to congenital heart disease (Fotiou et al., 2019), gene 

regulation and signalling, and, in particular autosomal dominant disease 

(Singh et al., 2015), with ~80% of human monogenic disease associated 

genes having been found to be part of a duplicated paralog pair/family 

(Dickerson and Robertson, 2012). 

Although many genes duplicated and retained following both WGD 

and small-scale events (SSDs) appear non-functional (Dudley et al., 

2012), this likely accounts for just a third of their total number. The 

remaining duplicates, if expressed, may contribute to deleterious 

phenotypes (Dudley et al., 2012), with an estimated 50% of exonic genes 

having been found to have a duplicate somewhere in the genome (Richard 

et al., 2008). Potentially due in part to small hominid effective 

population size (Bailey and Eichler, 2006),  these duplicates have, even 

in cases where they prove fatally deleterious when disrupted, become 

fixed in the population (Ebert et al., 2014). This is not wholly surprising 

given that WGD has been found to be the mechanism by which dosage-

threshold sensitive genes are duplicated. The importance of stability of 

copy number of these genes, and therefore their retention, having been 

highlighted by the fact that they are refractory to later duplication 

(Makino and McLysaght, 2010).  

Whilst there is a proven strong association between ohnologs and 

disease, the story of WGDs however is not entirely an unfavourable one, 



GENERAL INTRODUCTION 

 
 

47 

as it has been shown that not only do they confer immediate fitness 

benefits via reduction of expression ‘noise’ (Pires and Conant, 2016), but 

they also lead directly to the evolution of complexity, adaptive plasticity 

and expansion of global biodiversity, through introduction of large 

quantities of repurposable DNA (Innan and Kondrashov, 2010), which 

can lead to sub-division of the ancestral function, novel function, or 

differences in dosage (Conant and Wolfe, 2008).  

This proposition of novel function introduction, however, is in 

direct contrast to that of Singh et al (Singh et al., 2012), who presented a 

modified compensation model of ohnolog fates (Gu et al., 2003). Singh 

suggested that both genes in any ohnolog pair are ‘locked in’ to 

retention, as loss would inevitably lead to, particularly dominant, 

disorders. A second contentious issue associated with genes arising from 

WGD is, to what extent asymmetrical divergence between the two genes 

in the pair occurs, if, in fact it occurs at all (Force et al., 1999; Ohno, 

1970; Pachter, 2015). However, a number of studies investigating this 

issue have shown that asymmetrical evolution within gene pairs, both in 

sequence and function does in fact exist (Dickerson and Robertson, 2012; 

Kellis et al., 2004), but the degree to which it occurs, and appropriate 

measurement thereof is still under scrutiny (Pachter, 2015; Tasdighian et 

al., 2017).  

Largely, the discussion around the interlocking of ohnolog fates 

and evolution revolves around the dosage balance hypothesis, wherein all 

genes are required to remain functionally constrained post duplication to 

maintain systemic stoichiometry (Birchler and Veitia, 2012; Veitia and 
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Birchler, 2010). Gene loss is at its greatest directly following a WGD 

event (Scannell et al., 2006), presumably due to the high energetic 

expense polyploidy represents. Certain genes, however, require 

maintenance following duplication, either to prevent failure of the 

complexes in which they are involved, to prevent disruption of working 

complexes by their incomplete interaction partners, or to act as a buffer 

should the partner lose function (Gu et al., 2003; Hakes et al., 2007; 

Hsiao and Vitkup, 2008; Lopez-Bigas, 2004) (Gu et al., 2003; Hakes et 

al., 2007; Hsiao and Vitkup, 2008; López‐Bigas and Ouzounis, 2004), all 

of which have the potential to directly impact on systemic stoichiometry. 

Various mechanisms to counteract issues of dosage balance are 

present within vertebrate species (Graves, 2016). Whilst these 

mechanisms are predominantly species-specific, it is thought that they 

have individually evolved from far older shared ancient eukaryotic 

mechanisms (Graves, 2016). Surprisingly this variation in compensatory 

mechanisms extends to the complete absence in certain vertebrate species 

(Graves, 2016) however, the underlying causes of this variation and 

absence thereof have not been fully explored. One of the most 

investigated within humans is nonsense mediated mRNA decay, whereby 

mRNA transcripts identified as containing a premature stop codon are 

targeted and terminated. This mechanism having been recently implicated 

in compensation for dosage sensitive genes (El-Brolosy et al., 2019b; Ma 

et al., 2019). 

The disruption of stoichiometric balance posed by variations in 

dosage can be a significant issue to cellular health (Schuster-Böckler et 
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al., 2010). However, due to afore mentioned compensatory mechanisms, 

it can be difficult to establish the degree of imbalance posed by copy 

number variations from genomic data alone (Schuster-Böckler et al., 

2010), as the impact of variation is a sliding scale rather than a binary 

event. This is also true of dosage balance. In the case of duplicated 

genes, variations in copy number, or altered function in existing copies 

may be impactful, which, whilst not necessarily considered to be 

significantly deleterious in a single gene, for interactions between a 

combination of mildly dosage sensitive genes, particularly those within 

an essential network this may result in major phenotypic repercussions 

(Makino et al., 2013b).   

Adaptation, Introgression, Non-Human Hominids, and Non-Human 

Primates 

With the advent of shotgun sequencing technologies came a new 

ability to obtain DNA from previously inaccessible sources – 

archaeological remains (Hofreiter et al., 2015). We had previously been 

able, based on morphological analysis of skeletal remains, to determine 

non-Human hominid (NHH) species and draw some conclusions regarding 

their origins, migration patterns, and ultimate demise, however, due to 

the long time periods since their extinction, any extractable DNA was 

often heavily fragmented and degraded, with high degrees of deamination 

rendering meaningful analysis difficult (Hofreiter, 2001; Hofreiter et al., 

2015).  

Shotgun sequencing, requiring short reads, and producing high 

read depths, however, was perfectly placed to address this issue, and, in 
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2010, 13 years after the first short mitochondrial sequences had been 

extracted (Hofreiter, 2011; Krings et al., 1997), Green et al were able to 

publish the first draft Neanderthal genome(Green et al., 2010). 

Also in 2010, using just a single bone discovered in Siberia, Reich 

et al (Reich et al., 2010) were able to identify a new species of hominid 

from recovered genetic material, this species is now known as the 

Denisovans. 

Currently, relatively little work has been conducted investigating 

the different duplication rates between humans and their closest known 

relatives- Neanderthals and Denisovans. However initial studies indicated 

certain contrasting characteristics between human and Neanderthal CNVs 

(Green et al., 2006), and with increasing quantities of archaic hominid 

material being made more widely accessible (reich.hms.harvard.edu    

Reich, 2019) this, and other work of its kind is likely to be greatly 

expanded in future (Marciniak and Perry, 2017).  

Part of Reich’s early Denisovan analysis (Reich et al., 2010) 

included a cursory investigation into the rates of SDs found within this 

species, when compared with Neanderthal and modern human. 

Surprisingly, it was found that Denisovans had a far higher than expected 

percentage of private SDs (those specific to Denisovans) (Denisovan 

2.27mb; Human 1.32; Neanderthal 0.60). Beyond this, regions of 

similarity were identified, that were nearer chimpanzee than modern 

human or Neanderthal, including areas found to be associated with human 

disease (16p12.1. & 5q13) (Reich et al., 2010). 
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Comparisons between human, NHHs and non-Human primates 

(NHPs) may provide insight into the observed acceleration in CNVs and 

SDs that has occurred in modern humans by comparison with the latter 

and provide insights into other structural aspects of these occurrences 

(Varki et al., 2008). For example, between human and chimpanzee it has 

been found that, of nine observed human specific pericentromeric 

inversions, seven are associated with SDs (Varki et al., 2008). 

The frequency of SDs is far from fixed across species and appears 

to have been increasing in humans and recently related NHPs, with 

human SDs accounting for approximately 5% of the genome, whilst New 

world monkey genomes contain just 2% (Bailey and Eichler, 2006; Ebert 

et al., 2014), and far greater variation than expected between human and 

fly or worm (Bailey and Eichler, 2006). This, it is suggested, is an 

artefact of the relatively low effective population size in hominids when 

compared to the other species (Bailey and Eichler, 2006). This variation 

has also been observed between chromosomes (Emanuel and Shaikh, 

2001) with the estimated evolutionary age of duplications ranging from 

90% similarity in chromosome 19 to 99% in Chr14 (Zarrei et al., 2015). 

In just under a decade, we have been able to accrue vast quantities 

of ancient DNA and have discovered that early Homo sapiens sapiens 

walked the earth with not one, but multiple non-human hominid species, 

and, whilst it was once a controversial assertion, it is now known that 

admixture between these species occurred repeatedly (Browning et al., 

2018; Enard and Petrov, 2018; Reich et al., 2010; Slon et al., 2018). This 

admixture is traceable not only in the genomes of our NHH brethren, but 
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also within the human genome, allowing a far greater understanding of 

the role of introgressed genes in health and disease (Dolgova and Lao, 

2018; Greenbaum et al., 2018; Sanz et al., 2018). One of the major 

insights we have gleaned from this area of study is the intersection 

between introgressed Neanderthal genes in the human genome, and 

adaptation (Enard and Petrov, 2018). Enard et al, found that positive 

directional selection has guided the enrichment of viral interacting 

proteins within the human genome, hypothesizing that this fixation of 

introgressed genes occurs as a result of simultaneous admixture, and viral 

exposure, which they termed the poison/antidote hypothesis(Enard and 

Petrov, 2018).  

Epigenetic variation 

In 2009 it was postulated that research into the epigenome would 

provide “tremendous insights into the genetic architecture of complex 

traits” (Frazer et al., 2009). A number of early studies provided highly 

useful information regarding the epigenetic mechanisms of non-genetic 

inheritance(Szyf, 2015). These mechanisms include noncoding RNA 

regulation, chromatin and histone modifications leading to increased 

accessibility of DNA, and, DNA methylation and phosphorylation, 

leading to chromatin inactivation and interruption of transcription factor 

binding (Szyf, 2015). Szyf (2015) highlighted the difficulties in studying 

parental transmission of epigenetic modifications in humans. The issues 

presented, are largely due to the inherent ethical difficulties in studying 

pre-existing epigenetic triggers, such as the 1998 Quebec ice storms, 
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leading to heightened stress, or the epigenomes of children who have 

been deprived, neglected or abused.  

Epigenetic silencing, particularly of regions high in copy number 

variation, has a notable impact on an individual’s phenotype (Schuster-

Böckler et al., 2010), with a correlation having been found between 

chromatin organization and the occurrence of segmental duplications 

(Ebert et al., 2014). It has also been suggested that factors such as CpG 

hypermutability have led to increased mutation rates and diversification 

(Li et al., 2010), as the rapidity of evolution of epigenetic modifications 

is considerably greater than that of the lengthier process of selection 

(Szyf 2015). Interestingly, it has also been proposed that differential loss 

of duplicate genes following WGD may in part be governed by epigenetic 

mediation (Sémon and Wolfe, 2007). 

As identified by Singmann et al (Singmann et al., 2015) and Koch 

(Koch, 2015) epigenetic mutations reveal different patterns depending on 

biological sex. Singmann et al (2015) found that 1,184 of the CpG sites 

they studied showed differential patterns of methylation between the 

1,799 cisgender men and women in their European cohort. As noted by 

Koch (2015) this casts light on prior findings of differences in disease 

risk and incidence between the cisgender sexes, and is therefore, 

alongside expansion to include non-binary, and trans-sexes, likely to 

become a valuable avenue of study. 

One of the particular difficulties posed by the study of epigenetics, 

is understanding the transmission of somatic mutations to gametes and 

subsequent heritability. Of particular interest is the manner by which 
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epigenetic marks are retained during germ cell differentiation, as it has 

been suggested that such modifications are not completely erased during 

this process (Szyf, 2015). It is proposed that the possible mechanism by 

which this is likely to occur is transmission by noncoding RNAs of 

behavioural signals (Soubry, 2015; Szyf, 2015). Paternal gamete-

mediated epigenetic inheritance in offspring may impact on the 

phenotype (as opposed to the gestational impacts that have mainly been 

studied) as it has been posited that spermatogenesis, a continuing process 

occurring throughout the lifespan of the male, may lead to the 

accumulation of epigenetic modifications in these cells, and subsequently 

be passed to the offspring as a result of parental exposure (Szyf, 2015). 

Further studies are gaining increasing evidence to support the role of 

exposure of toxins and addictive substances in the parent, resulting in 

epigenetically moderated phenotypic changes in the offspring (ibid). 

Establishing gene ages 

As briefly noted above, the exploration of evolutionary attributes is reliant on the 

adequate identification of the origin of said attribute across evolutionary time.  

Several methods exist that aid in identifying the age of genetic elements. The last 

common ancestor (LCA) method of gene assignment assigns ages based on the 

likely age of the common ancestor of all identified orthologues(Domazet-Lošo et al., 

2007; Murahwa et al., 2019). This method has the advantage of being able to identify 

those genes with an ancestor rooted deep in evolutionary history, however lacks the 

ability to achieve the fine scale resolution needed when making between-gene 

comparisons between members of gene families, which have often undergone 

successive duplications. By contrast, the most recent common ancestor (MRCA) 
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method of gene assignment retrieves the shared age of the most recent divergence 

between orthologues in known species (Murahwa et al., 2019), hypothesizing that 

each gene cannot have arisen more recently than this occurrence. Whilst this method 

lacks the ability to detect the deep evolutionary ties of genes arising as a result of a 

recent duplication event, it however, it provides finer resolution when making direct 

comparisons between related genes.  

Function- Gain, loss and co-occurrence 

The analysis of functional repercussions of genetic variation is one 

of the most explored areas in the field of variant analysis. As previously 

discussed, this is best represented in a loss-gain spectrum. It has been 

suggested that ~20% of common, non-synonymous SNPs alter function 

(Sunyaev, 2001), with a 2015 study of 18,903 genes indicating that more 

than 30% contained a mutation likely to have functional repercussions 

(The UK10K Consortium, 2015). 

Miller and Kumar in 2001 proposed that loss of function, rather 

than being an absolute, discernible by the mutation class, is instead, 

dependant on the mutation of particular amino acids at specific locations, 

which would have a discernible impact on phenotype and function. A 

2013 study by Petrovski et al (Petrovski et al., 2013) highlighted within 

their own research the inaccuracies caused by imposing a false 

dichotomy. In their paper, all nonsense, splice, and missense variants 

were categorised as functional, whilst synonymous variants were classed 

as non-functional. This arbitrary dichotomy is repeatedly reported 

throughout the literature. Classification of ‘protein-altering variants’ 

inclusive of all missense variants and truncations, regardless of position, 
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implies that all variants of this kind have a demonstrable functional 

impact (Rackham et al., 2015). Zhu et al (2015) however, whilst initially 

classifying their ‘functional mutations’ in this manner, cross referenced 

all shortlisted genes with the OMIM database, and pre-existing patient 

data for the specific diseases under scrutiny, in order to further rule out 

any erroneously added variants. Their method, while being laudable for 

stringency, cannot account for the presence of de novo mutations, and 

therefore remains wanting in its representation of the true biological 

context. 

The identification of loss of function as a result of genetic 

variation is fraught with difficulties; it has therefore been the case that 

researchers have often been compelled to draw a line of probability. For 

example, Dorschner et al (Dorschner et al., 2013) highlighted variants 

within the Human Gene Mutation Database (HGMD) (Stenson et al., 

2017) which had not been previously identified as disease causing, they 

opted to further investigate these variants, implementing the criteria that 

if they appeared within the first 90% of the gene they were included in 

the study, assuming that they are more likely to result in a deleterious 

truncation (ibid). This is problematic for two reasons. Firstly, variants 

within a gene, no matter the location, do not automatically infer 

truncation, and if they did, this may not infer a total loss of function. 

Secondly, variants in the final 10%, depending on the protein product, 

may be equally as disruptive as a variation occurring earlier (Bell et al., 

1981; Winterer et al., 2008).  
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Miller and Kumar (2001) within their study of cystic fibrosis, 

discuss degrees of loss of function, in that mutations within variable sites 

in conserved genes, whilst not being causative of cystic fibrosis, are 

involved in less severe pulmonary conditions. They conclude this to 

indicate that, whilst polymorphisms in invariable sites within conserved 

genes are most commonly highly deleterious, any change in amino acids 

within these genes is likely to have a degree of deleteriousness. 

Petrovski et al (2013) found contrasting patterns in different 

disease classes relating to the likelihood of their being influenced by 

genes more, or less, tolerant to functional variation. For example, their 

developmental disease class showed a high correlation with genes 

intolerant to functional variation, whilst the immunological class was 

more directly linked to genes with a high frequency of variation (ibid). 

Given that genes intolerant to functional variation are more likely to 

result in an aberrant phenotype it is unsurprising that they are more 

commonly found in the developmental class, as deleterious mutations in 

this class are most likely to result in embryo-lethality, and cascade 

effects. 

The co-occurrence of loss of function is of particular significance 

when assessing the role of variation in complex disorders. As the 

quantity of data available for analysis has increased, we have become 

more aware that genetic interactions between loci are also highly 

contributory to complex disease (Marchini et al., 2005), and that disease 

pairs with variations in functionally similar domains show a greater 

degree of comorbidity than more dissimilar regions in which variation 
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occurs (Barabási et al., 2011). Variation in genes which exhibit co-

segregation has been linked to pathogenicity (Dorschner et al., 2013), 

combined with the analysis of variants within regions of linkage 

disequilibrium (Frazer et al., 2009) this presents a valuable avenue of 

study, and an important consideration when assessing variation in 

complex disease.  

Barabási et al (Barabási et al., 2011) reviewed the field of genetic 

interactions in complex disorders. They discovered high correlations 

between phenotypically similar diseases, and gene and protein network 

interactions. Their findings support the hypothesis that disruptions to 

interactions within protein networks and that of gene products result in 

the same disease, which they found to be ten times greater than would be 

expected to occur at random (ibid). They postulate that predicting 

variants involved in complex disease may therefore be possible by 

identifying ‘disease modules’, comprised of highly associated areas of 

the interactome, and investigating their components.  

Essentiality 

Recent studies have, afforded insight into certain attributes 

common to the majority of genes essential to optimal cellular health. For 

example, essential genes have a tendency towards higher expression; are 

commonly found to be haploinsufficient; and are more likely to be 

involved in a greater degree of protein-protein interactions than their 

non-essential counterparts (T. Wang et al., 2015); they are less likely to 

have a paralog elsewhere in the genome, and have a tendency towards 

greater involvement in such processes as transcription and translation, 
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with comparably less involvement in signalling when compared to non-

essential genes (Blomen et al., 2015). It has also been found that the 

majority of genes involved in proteasome subunits are essential, and that 

new essential genes exhibit higher levels of interaction with their ancient 

counterparts than they do with other ‘new’ genes (Blomen et al., 2015). 

Cellular complexity and essentiality studies have indicated that, 

when compared with single-celled organisms, humans have a far higher 

degree of essentiality. It has been found that rather than added robustness 

through redundancy given our large genome size, increased complexity is 

reliant on greater degrees of essentiality (Blomen et al., 2015). It is 

proposed that organisms with a low degree of complexity also have a 

reduction in genomic fragility as they are able to tolerate more variation, 

due to a propensity towards more frequent functional overlap than that of 

humans (Gu et al., 2003). This proposal was initially contested (Makino 

et al., 2009), however, greater evidence has now been provided in its 

support (Wang et al., 2015). 

Analysis of evolutionary features of genes and genomes has shown 

that, the most highly conserved regions are those most likely to perform 

an essential function (Miller and Kumar, 2001). Conservation analysis 

has revealed that there are large swathes of the genome that exhibit a 

high degree of conservation with distantly diverged species (Henn et al., 

2015; Wang et al., 2015), an estimated 77% of essential genes having 

emerged in a pre-metazoan progenitor (Blomen et al., 2015). These 

regions are purportedly invariant, as any variation within them appears to 

have been subject to strong purifying pressures (Wang et al., 2015). This 
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indicates that mutation within these regions likely leads to major 

deleterious functional outcomes, and cannot therefore be tolerated (Henn 

et al., 2015; Miller and Kumar, 2001; Wang et al., 2015). Population 

studies, however, have shown that, disease can and does occur in genes 

essential to cellular health and, variations can and do persist (Barabási et 

al., 2011). Ohnologs, as the product of WGD, are also highly conserved. 

However, despite this fact, they have been found to show no more, or less 

essentiality than that of their singleton counterparts (Makino and 

McLysaght, 2010). 

Protein network analysis has shown that if an essential gene 

contains a variant, then it is highly common (~88%) for it to be either 

contributory to, or the definable cause of disease (Zhu et al., 2015), 

however, studies to date have focused on small cohorts, therefore larger 

scale analysis would be required to support this. Protein network analysis 

has also shown that essential genes are often associated with hubs present 

in a variety of tissue types (Barabási et al., 2011; Goh et al., 2007). 

These gene hubs are subject to a slower rate of evolution and are often 

older than their non-hub counterparts (Barabási et al., 2011). Conversely 

non-essential disease associated genes have been found to rarely encode 

hubs, often having few interactions, and are most commonly active in 

only limited tissue types (Barabási et al 2011). This further lends 

credence to the prior proposal that; human disease variants are unlikely 

to represent the most severe variation capable of accumulating in the 

genome, as these variations would automatically infer embryo-lethality.  

 



GENERAL INTRODUCTION 

 
 

61 

Evolutionary and conservation studies 

Analysis of conservation and other evolutionary properties, such as 

substitution ratios, and phylogenetic relationships, are some of the most 

well-established methods of analysing genomic differences. As 

previously discussed, population-based methods often take into account 

allele frequency and investigate rates of variation both within, and 

between geographical populations, or as is often the case with disease 

populations, groupings based on phenotype. Evolutionary analyses have 

been used to investigate genomic variation in a broad spectra of species, 

assessing inter, and intra species conservation and diversity, based on 

amino acid characteristics or phylogenetic conservation (Braga et al., 

2018; Newman et al., 2019; Olabode et al., 2016; Petrovski et al., 2013; 

Puigbò et al., 2019; Wood et al., 2018), and ultimately drawing 

conclusions about speciation, function, homology and disease based on 

these findings, alongside elucidating the mechanisms (such as 

duplications, gene transfer, transitions and transversions, selection 

pressures etc) by which different parts of the genome arose and evolved.  

Genome Alignment 

Appropriate alignment methods are a powerful tool for the 

identification and elimination of errors arising prior to, or during the 

sequencing process, however they are not infallible as, whilst appropriate 

alignment is able to account for many false sequencing calls, true 

variants, specifically de novo mutations may often be excluded (Peng et 

al., 2013).  
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Architectural differences, and the accurate alignment thereof, have 

been cited as being of key importance (Henn et al., 2015) with emphasis 

on the need for integrated experimental and bioinformatics studies to 

verify findings, and provide a better understanding of the role of both 

structural variation and chromatin organization in human variation and 

disease. 

Beyond complications posed by sequencing method, there are 

numerous post-sequencing issues related to the composition of the 

sequence itself. The most profound of which being the alignment of 

regions with complex and repetitive sequence, as is often found with 

large-scale duplications. These regions are difficult to differentiate, and 

are underrepresented in sequencing output (Bailey, 2002; Bishara et al., 

2015; Jain et al., 2018) this is especially the case with cross-

chromosomal duplications (Horvath, 2000) and flanking segmental 

duplications. These biases must, therefore, be accounted for when 

selecting the appropriate datasets for analysis. Issues posed by both 

sequencing and alignment may in some way, however, be mollified by the 

rise of long read, and single cell sequencing, which, while currently not 

as widely used as shotgun techniques, are rising in popularity (Chaisson 

et al., 2015; Jain et al., 2018; Pendleton et al., 2015). 

Genome-wide association studies 

Genome wide association studies have been used extensively in the 

analysis of human variation. They have revealed the involvement of sub-

phenotypes, suggesting that, whilst multiple pathways are associated with 

certain diseases, patients do not necessarily require a disruption in all 
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pathways, rather a combination of one or more may lead to the disease 

phenotype (Esposito et al., 2018; Frazer et al., 2009). 

Despite their obvious power, association studies have increasingly 

bourn criticism, as it has been noted that they lack the ability to identify 

rare variants and small-scale interactions (Frazer et al., 2009; Sazonovs 

and Barrett, 2018; Shaw et al., 2019). A study conducted by Ladouceur et 

al (Ladouceur et al., 2012) compared a number of association study 

methods and concluded that no single method worked optimally, and all 

lacked power to detect variants with low causal effects. Marchini et al 

(Marchini et al., 2005) suggested that interaction-based searches would 

improve the abilities of association studies to identify variants. Whilst 

this method was not reviewed by Ladouceur et al (2012), a similar 

method combining effects and interactions, proposed by Liu and Leal 

(Liu and Leal, 2010), which attempts to identify rare variants by 

tabulating genotype data was included. Although this method was not, at 

the time found to have optimum performance, it was later used as a basis 

for improved methods (Ladouceur et al., 2012). Due to these issues, it is 

now accepted that GWAS studies alone cannot elucidate the true 

landscape of both common and rare variants, however, combined with 

complementary methods to incorporate rare variants their utility has 

continued to be proven (Sazonovs and Barrett, 2018; Shaw et al., 2019). 

It is clear that genome wide association studies, whilst proving 

useful in certain scenarios, have profound limitations. It is therefore 

important when considering the use of GWAS to ensure not only 
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compatibility, but also, account for the limitation of each association 

type before drawing conclusions (Ladouceur et al., 2012).  

Variant effect prediction 

Assignment of degree of ‘deleteriousness’ of a variant depends 

heavily on its predicted functional outcome. As noted by Henn et al 

(2015) the choice of algorithm used to make such assessments can have a 

distinctive impact on the final analysis. In 2013 Petrovski et al (2013) 

conducted a study into the effects of variation on personal genomes. The 

initial phase of the study, as discussed earlier, erroneously classified all 

missense mutations as being functional, however, by supplementing the 

analysis with the use of PolyPhen2 (Adzhubei et al., 2010), a rule based 

physical and comparative selection tool to perform between-population 

comparisons, they found a reduction of mutations classified as functional 

of 33%, illustrating the utility of using such tools to supplement 

predictions of phenotypic outcome.  

It is clear that we need to relinquish pre-existing assumptions 

regarding a binary understanding of mutation types, specifically the 

expectation that all missense mutations are functional. The Petrovski et 

al (2013) study presented a method of predicting disease genes based on 

a residual variance intolerance score (RVIS), using patterns of normal 

variation, cross referenced with variation in disease cohorts to produce a 

statistical analysis of a variant’s propensity to cause disease. This 

method was later reviewed by Rackham et al, who presented an 

alternative (EvoTol) (Rackham et al., 2015), leveraging conservation and 

expression data to predict disease genes. It was found that when applied 
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to the same data, each method yielded different results. However, they 

clearly highlight the utility of leveraging evolutionary data in the 

prediction of human disease associations. Wang et al (2015) also discuss 

the extension of pre-existing methodologies for use in bioinformatics 

analysis, this time with reference to epigenetic modifications. By 

adapting existing techniques to target negative selection, cross referenced 

with essential genes, they found that combining their technique with 

CRISPR data, they were able to predict gene essentiality with a high 

degree of accuracy (Wang et al., 2015). 

Maurano et al (Maurano et al., 2015) discovered upwards of 

60,000 variants impacting on regulatory DNA accessibility, and 

transcription factor occupancy. Using DNase I hypersensitive site 

sequencing, combined with DNA genotyping on multiple tissues and 

individuals, they were able to identify 500,000 variants, common to 

regulatory regions, which directly impact transcription factor occupancy 

(ibid). This work highlights the importance of both the involvement of 

epigenetic modification data in genetic disease prediction, but also the 

need to account for both non-coding DNA, and cell specific processes. 

Many of the tools and methods currently in use have been designed 

to assess large populations as a cohort; therefore, their clinical use for 

individual diagnostic purposes is often limited. This is especially true 

when analysing certain anonymised data, as, for example, ExAC’s 

(Exome Aggregation Consortium et al., 2016) anonymity criteria make it 

impossible to extract individual participants and compare different 

regions of one individual’s DNA. The 1000 (1000 Genomes Project 
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Consortium et al., 2015) and 100k genomes data (Caulfield et al., 2019) 

however do allow the assessment of an individual and, particularly with 

the latter, may prove their worth in this regard. 

One key area that is still lacking in empirical support is the 

relationship between genotype and phenotype. Work is being conducted 

into this with resources such as the Gen2Phen (Webb et al., 2011) 

project, a standardized tool for analysis of variants which aims to create 

a consolidated ‘biomedical knowledge environment’ through which to 

analyse genotype to phenotype information. In addition to this, 

bioinformatics analyses are being conducted in an attempt to clarify the 

relationships between gene and protein networks and expression levels 

(Yu et al., 2015), which may, to some degree, provide a greater insight 

into this complex relationship.  

Network analysis 

Network analysis has become an important tool in the biologist’s 

repertoire, having been successfully used to analyse gene and protein 

interactions (Boyle et al., 2018; Kuzmin et al., 2018; Monaco et al., 

2018; Szklarczyk et al., 2017), ecological systems (Brodie et al., 2018; 

Muscente et al., 2018; Rebolledo et al., 2019), and host-pathogen 

interactions (Ahmed et al., 2018; Lee et al., 2018; Ravindran et al., 

2019), amongst a plethora of others (Barabási et al., 2011; Emilsson et 

al., 2018; Gosak et al., 2018; Zhou et al., 2014). 
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A recent paper by Ravindran et al (2019) elucidated the manner by 

which viruses exploit human systems. Using network analysis, they were 

able to identify ‘hub’ genes involved in important cellular processes 

which, when targeted by viruses allow them to wrest control of the cell 

(Ravindran et al., 2019). In the investigation of heritable disease Zhong 

et al (Zhong et al., 2009) found that, whilst loss of function of gene 

product nodes are strongly linked to mendelian disorders, the disruption 

of interactions, termed ‘edgetic perturbations’ are also associated with 

both mendelian disorders and complex relationships between genotype 

and phenotype, yielding quite different consequences to that of node 

removal. Since this time Networks have proven their worth in the attempt 

to resolve the relationship between genotype and phenotype, providing a 

mathematical framework for the analysis of often complex systems  

Barabási et al (2011) reviewed contemporary methods of network 

analysis in relation to the human disease network (Figure 2). They 

Figure 2 : Human disease network. Each node represents a disease 
(Barabási et al 2011) 
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established that methods of predicting disease genes fall into three 

categories: diffusion-based methods, which algorithmically calculate the 

likelihood of a gene being associated with disease, based on interaction 

with a known disease gene product; linkage methods, wherein genes are 

predicted based on their observed interaction with known disease gene 

products; and disease module-based methods, which use functional and 

interaction information to predict disease genes. When assessing the 

utility of these methods it was found that a comparison between linkage 

and diffusion-based methods on the same data showed the latter to be a 

more powerful tool (Navlakha and Kingsford, 2010). 

More recently updated mathematical methods have been 

incorporated into the analysis of networks. Whist useful in its time, 

analysis no longer depends on the arbitrary counting of interaction 

partners to define important nodes, nor does it rely on already having 

knowledge of network properties in order to predict important nodes or 

subunits. One such new method is based on control theory, with the 

addition of minimum dominating sets (MDS), briefly explained in figure 

3, to assign critical, intermittent and redundant nodes, control theory 

explores topological features of networks, and establishes network 

control capabilities, of all nodes in the network (Lombardi and 

Hörnquist, 2007; Nacher and Akutsu, 2016; Ravindran et al., 2019).  
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Figure 3: Example of critical, intermittent and redundant node assignment in 

complex biological networks using control theory and minimum dominating sets. 
Network traversal routes are shown as red lines, ‘active’ nodes, acting as conduits 
are outlined in red. Critical nodes, those that are integral to systemic control, are 

shown in black, intermittent nodes, which are inconsistently found to be critical, are 
shown in yellow, and redundant nodes which are not found to be essential to control, 

are shown in blue. 

A tool more commonly associated with engineering and 

mathematics, control theory aims to elucidate the dynamic nature of 

complex systems and identify key components of these systems (Del 

Vecchio et al., 2018; Kremling, 2013; Tsongalis, 2018). Recently applied 

to biological problems, control theory as used to explore biological 

networks has provided strong evidence for both plasticity and essential 

components (de Anda-Jáuregui et al., 2018; Peyraud et al., 2018; 

Ravindran et al., 2019), and how this control reconciles with evolution 

(Badyaev, 2019). 
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Figure 4: Number of genomes in each dataset by population (Lek et al) 

 
Machine Learning Methods 

Machine learning methods are a series of computational 

applications of varying complexity ranging from the simple, such as 

clustering techniques, to complex, such as deep learning algorithms. 

They can be grouped into three forms; supervised, wherein the user 

provides both input and output data, and the algorithm determines the 

route between the two (Kotsiantis, 2007; Libbrecht and Noble, 2015). 

Unsupervised learning, which does not require output data, rather the 

algorithm, determines the underlying structure of the data and draws 

inferences directly (Libbrecht and Noble, 2015); and semi-supervised 

learning, wherein only some of the data is labelled and therefore a 

combination of supervised and unsupervised learning is required to 

determine structure and output (Libbrecht and Noble, 2015). 
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These methods have, over the last decade been proven to assist in 

inference and prediction drawn from large-scale multi-dimensional 

biological data, either alone, or in conjunction with other methods such 

as network analysis (Bzdok et al., 2018; Camacho et al., 2018). It is this 

ability to handle large data, in an era of post-genomic biology, wherein 

there has been a vast increase in the quantities of data generated each 

year (Che et al., 2013; Jin et al., 2015; Kaisler et al., 2013), that sets 

machine learning methods apart from more traditional statistical 

methods, as these often struggle with large data (Bzdok et al., 2018). 

Despite their obvious benefits to biological analysis however, 

machine-learning methods have some disadvantages when compared with 

more conventional statistical analyses. Most notably, the difficulty in 

equating their results with the broader biological context (Bzdok et al., 

2018), which can often lead to difficulties in interpreting their results 

(Libbrecht and Noble, 2015). Machine learning algorithms are not, 

however completely distinct from established statistical methods, as a 

number incorporate tried and tested statistical techniques in order to 

produce robust predictions (Bzdok et al., 2018).  

For example, random forests, one of the more commonly used 

machine learning methods in biology relies on bootstrapping, to inform 

its predictions and determine accuracy (Bzdok et al., 2018; Paul et al., 

2017; Z. Wang et al., 2015), which has a proven utility in traditional 

statistical analysis and phylogenetics.  

Machine learning has, over the last decade, revolutionised the 

study of biology, particularly with reference to the prediction of disease 
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associations in biological systems (Camacho et al., 2018; Chen et al., 

2018; Gao et al., 2018; Haq et al., 2018; Kannan and Vasanthi, 2019; 

Nilashi et al., 2018; Poplin et al., 2018), and as a tool still in its relative 

infancy, this is likely to continue.  

Nomenclature and data standardization 

Issues with nomenclature, and a lack of standardization, are rife in 

pre-existing datasets and analyses. This, to a degree, is being addressed 

by projects such as the HGNC (Braschi et al., 2019; Stenson et al., 2017); 

however, standardization has by no means been adopted universally. 

Vihinen (Vihinen, 2015) also discuss inconsistency in reporting within 

pre-existing literature, for example the use of ambiguous or nuanced 

terms, which may lead to contrasting interpretations by different readers. 

Of particular significance is the misuse of terms which specifically relate 

to either DNA, mRNA, or proteins, being used incorrectly (i.e., a DNA 

term being used for proteins), this, as highlighted by Vihinen (ibid) can 

easily lead to misinterpretation, not only by researchers, but more so by 

automated analytical engines commonly used in large scale text mining 

projects, as these programs are less able to pare out the intended meaning 

based on linguistic context clues. 

Datasets 

Over the last two decades, as sequencing methods have become cheaper, 

faster, and more precise (The UK10K Consortium, 2015) there has been a 

deluge of data deposited in both publicly available, and proprietary 

datasets. The 1000 genomes project, combining open-source data and 
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tools to access it (The 1000 Genomes Project Consortium et al., 2012), 

was one of the pioneers in data redistribution, with 2,504 human genomes 

made publicly available. Since this time large-scale publicly available 

data repositories such as GnomAD (Karczewski et al., 2019), and 

proprietary health data such as UK biobank (Sudlow et al., 2015) and the 

100k genomes project (Caulfield et al., 2019) have radically increased 

the data available. One of the major advantages of this increase is the 

ability to identify variants, which would have otherwise been missed 

when analysing fewer individuals. However, as has previously been 

noted, sequencing projects have largely preferentially focused on 

individuals of European ancestry (Exome Aggregation Consortium et al., 

2016).  

There are a wide variety of sequence types available, ranging from whole 

genome sequences, exomes, and epigenomes, to individual genes, each of 

which has its own merits and pitfalls, such as exclusion of non-coding 

regions, specific focus on certain disease data and sequencing 

shortcomings, which are too numerous to detail within the scope of this 

report. 

As the ability to sequence living organisms has improved, so too has our 

ability to extract DNA from both museum specimen (Wood et al., 2018) 

and archaeological remains (Damgaard et al., 2015; Hofreiter et al., 

2015; Leonardi et al., 2016; Slatkin and Racimo, 2016). A publicly 

available dataset of ancient NHH data having recently been released, to 

aid in answering questions, both ancient, and modern 

(reich.hms.harvard.edu  Reich, 2019).  
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One of the major obstacles to the selection of data is accessibility. This 

is in some cases owing to certain datasets, due to the significant financial 

outlay that they can represent, not being open publicly, or requiring 

subscription. Further issue to the studies themselves, often requiring the 

proprietisation of subsequent data are the ethical implications of 

sequencing individuals. Predominantly participant’s genomes have been 

anonymised, which, whilst an important ethical requirement, can lead to 

an inability to associate genomic data with patient information. Studies 

such as the 100k genomes project, which aim to provide genomic data 

alongside corresponding medical information, have been heavily 

scrutinised due to the potential loss of patient anonymity, despite their 

inherent value to the identification of disease variants within individuals 

whom exhibit phenotypic indicators. 

Further issues are engendered by the existence of patented 

proprietary data, specifically pertaining to cases such as the high-profile 

patenting of BRCA genes by Myriad Genetics. The monopoly initially 

held on sequencing of the BRCA genes allowed the accumulation of large 

quantities of information relating to other variants in patients’ genomes 

by a single company, which, whilst the BRCA genes are no longer 

covered by an active patent, will remain proprietary (Conley et al., 

2014). 

Of the datasets currently available, many of the largest contain 

consolidated and ‘treated’ data from other sources, which in many cases 

are not available individually. Some of the most high profile of these 

open source datasets, which have been used extensively in recent years 
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are ExAC (Exome Aggregation Consortium et al., 2016), containing 

60K+ exomes from 17 contributory projects; The European Genome-

Phenome archive (Lappalainen et al., 2015), containing 1,624 datasets 

comprising of 574,120 samples; UK10K (The UK10K Consortium, 2015), 

with 16,637 samples from 32 projects; The ClinVar database (Landrum et 

al., 2018), containing 172,053 submissions from 416 contributors; 

GnomAD (Karczewski et al., 2019) containing 125,748 exomes and 

15,708 genomes; and the Leiden Open Variation Database (Fokkema et 

al., 2005) with more than 22,080 entries from across the globe. 

The maintenance and storage of such datasets, however, pose a 

significant financial outlay; therefore, despite their obvious medical and 

scientific value, the futures of open datasets are not always certain. Over 

recent years the funding to support a number of the most highly accessed 

variant databases has been cut (Kaiser, 2016). It is not certain how this 

will impact on their futures in the long-term, however it would be a 

travesty for such valuable resources to be lost, on the basis of fiscal 

concerns. 

Despite the large quantities of data now at our disposal, and 

additions to this data on the horizon, as observed by the UK10K 

consortium (The UK10K Consortium, 2015), without the appropriate 

tools to analyse, identify and clinically assess variation within the human 

genome our ability to draw meaningful conclusions will remain limited. 

It is clear that the human genome and epigenome are prone to vicissitude. 

Variants, both small and large are numerous and diverse, with 

ramifications that range from foetal inviability, to zero phenotypic 
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change. The analysis of variation and its role in human disease has 

reached a crossroads. Whilst, as has been highlighted, the rapid rise in 

available data has led to much advancement, it has also been the catalyst 

for an excess of issues. The large quantities of data now available to 

scientists, combined with pressures to ‘publish or perish’, has facilitated 

a flood of publication over the past decade, particularly following the 

advent of high throughput sequencing. Whilst much of the data presented 

has been beneficial, there are high quantities of publications with often 

flawed or conflicting results. Rather than affording insight into the field 

of variant analysis, this overabundance has served to cloud it further. 

Perhaps as a repercussion of this, the erroneous use of terminology, and 

proliferation of disparate nomenclature relating to the same entities has 

occurred, which it is imperative that we quell through standardisation. 

Compounding this further are a number of analytical issues. Firstly, 

limitations posed by the inability to segregate individual patient data 

within certain disease datasets. Further to this, and of particular 

significance to the study of variation and disease, is poor quality, or a 

complete absence of phenotypic data, with relation to sequence 

information. As has been discussed throughout, it is imperative, when 

analysing biological data of any kind to always consider the broader 

biological context. This can impact not only the conclusions drawn but is 

also a key governing factor in the initial data selection process, and the 

tools and methodologies used. The methodological issues however, it has 

been shown, may in certain cases be mollified by the use of multiple 

strategies in combination with one and other, however, inherent biases in 
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analytical techniques must still be accounted for. The final, and perhaps 

most profound issue raised within the literature presented here, is the 

repeated, and often arbitrary functional misclassification of variants, the 

most abundant of which being the classification of all missense variation 

as affecting function. This unnecessarily binary view of these classes of 

point mutation opens the door for both type one and two errors to be 

easily made. It would be obtuse to claim that attribution of functional 

consequences of variation is straightforward, far from it, however rather 

than the erroneous binary attribution of function, a more varied 

framework of ‘expected functional classification’ needs to be devised. 

In contrast to this bleak view of variant analysis there are 

emergent areas, likely to facilitate profound advancement and far greater 

precision. Four specific points, which are likely to lead to this 

advancement are; single molecule sequencing, epigenetic analysis, large-

scale combinatorial evolutionary studies, and the publication of 

comprehensive variant databases with links to health data. There is 

evidently already an abundance of data emerging, however, new 

sequences garnered from technologies such as single molecule 

sequencing will serve to supplement this with greater precision and 

clarity. A further advantage of new sequencing technologies will be the 

ability to cross-reference new, with existing data, and provide clarity and 

correction to prior analyses. It is evident that as we are able to more fully 

understand the role of the epigenome and the mechanisms by which these 

modifications occur and are transmitted, that this avenue of investigation 

will also prove invaluable to the study of genomic disease, particularly 
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within evolutionary and adaptive contexts. As, whilst still in its relative 

infancy, it has provided much insight into previously undetectable 

variants leading to aberrant phenotypes. 

Large-scale and structural variations have clearly played a 

profound role in human evolution, having been instrumental in speciation 

events, and facilitation of increased complexity, however, it is also clear 

that they represent significant association with human disease 

susceptibility. The analysis of variation and genetic mutations has come a 

long way since Goldschmidt first presented his hypothesis almost 100 

years ago. Goldschmidt’s original hypothesis has been substantiated, as 

presented here, at the very least, we are clearly descended from hopeful 

monsters, however the ensuing question as-yet remains unanswered; 

given the extent of both small, and large-scale variation in the human 

genome, and the potential for negative implications that newly accrued 

variants pose to human health, are we still the hopeful monsters? 

It is the aim of this thesis to better understand the role of gene 

duplications in human disease, and more specifically, the implications for 

human evolution of being descended from whole genome duplication 

events in early vertebrates. Each of the three research chapters will 

address this aim via covering a number of objectives. Firstly, in chapter 

3, we explore the role of duplicates arising as a result of both whole-

genome, and small-scale duplication events in human heritable disease. 

Secondly, in chapter four, we will look at the potential role shared 

ancestry may have in the perpetuation of the host-pathogen relationship 

between the parasite Trichuris Trichura and humans, via a deep 
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evolutionary relationship between genes in the TGFβ superfamily, and a 

T.trichura homolog. And lastly, in chapter five, we shed light on the 

interplay between paralog status, virus interactions and heritable disease 

in the human PPI network, and how these features relate to the control of 

biological systems. 
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CHAPTER 
 TWO  

 

 

“Among the current discussions, the impact of new and sophisticated methods in the 
study of the past occupies an important place” 

-(Fogel, Robert William, and Elton Geoffrey Rudolph., 1983) 
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 ‘preliminary’’ dataset is used as the foundation of the 

three analyses presented herein. This data pertains to 

gene age, Disease status, paralog status, 

haplosufficiency, and asymmetry, on a per-gene basis. The methods for 

the generation of this data are presented here and may be referred to 

when discussing the ‘preliminary’ data (Table 1). 

Table 1: Example 10 row excerpt from the preliminary data compiled using the 
'General methods'. Data and generation code available at: 
https://github.com/AlexMartinGeary/Hopless_Monsters/blob/master/Universal_Met
hods/Preliminary_dataset.csv. 

 

A 
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Figure 5: Flow chart showing the generation of preliminary data. Dark blue shows 
the template gene list, each analytical step is shown in medium blue, and light blue 
shows the sources of additional data incorporated at each step, culminating it the 
‘preliminary dataset’ shown in the white box with dark blue border. 

2.1 Assigning gene age 

In order to assign ages to the genes, most recent common ancestors 

(MRCA) were calculated. A list of human protein coding genes was 

obtained from Ensembl BioMart release 97 (GRCh38.p7). Orthologs of 

these genes were obtained from Ensembl using the Ensembl Compara 

homology Perl API (Herrero et al., 2016) with output limited to the 

following: 

Table 2: Example 10 row excerpt from initial homology-relationship table obtained 
from Ensembl compara. Data and code used to generate it available at 
https://github.com/AlexMartinGeary/Hopless_Monsters/blob/master/Universal_Met
hods/Ortho_out.csv 
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Homology type as shown in figure 6A and Table 2 was restricted 

to - “ortholog_one2one” wherein there is a single identified gene in the 

homology relationship between the query taxa (in this case human) and 

target taxa; “ortholog_one2many” wherein there is a single extant gene in 

the homology relationship between the query taxa (in this case human), 

but multiple othologs are present within the target taxa, thus accounting 

for paralogs arising in the target taxa following the shared speciation 

event.  

For stringency – output was restricted to recorded relationships 

that are defined by Ensembl as high confidence of true orthology, based 

on a combination of gene order conservation scores, and whole genome 

alignment score. 

Further to this, any orthologous relationships that were identified 

as not being compliant with the Compara protein tree, for example those 

that are difficult to resolve due to gene loss, or confounded by dubious 

duplication nodes, were excluded. An example of the resultant output can 

be seen in figure 6B. 
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Figure 6: Graphical representation of the age assignment process. A) 
Tree showing relationships between homologs. A one-to-many 
relationship (indicated here with purple solid lines) is found where 
duplications occurred following the divergence between species. One-to-
one relationships (shown with green dashed lines) exist where no further 
duplications have occurred following divergence. Figure modified from 
Ensembl. B) Example of the relationship table obtained in step 1. C) 
Example of the final assignment of age resulting from data shown in A0 
and B). 

For each gene a presence/absence matrix was subsequently 

generated recording each taxonomic level in the human lineage within 

which an ortholog had been identified. This was output alongside stable 

ID and gene name, and a relative age of first identified speciation node, 

corresponding to the speciation point of the earliest taxonomic level with 

a recorded ortholog (MRCA). 

A)

Chimpanzee’

Chimpanzee
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Polar Bear

Cat

Taxonomic oldest 
divergence (in this 
case Boreoeutheria)

One to one 
relationships (a 
single homolog 
per species)

One to many 
relationships 
(multiple 
homologs)

Homologous gene Species between Type Taxonomic level
Cat_homolog_1 Human:Cat One to one Boreoeutheria

Polar_bear_homolog_1 Human:Polar_bear One to one Boreoeutheria

Chimpanzee_homolog_1 Human:Chimpanzee One to many Hominines

Chimpanzee_homolog_2 Human:Chimpanzee One to many Hominines

Gene Taxonomic level of oldest divergence Age of divergence
Human_gene_1 Boroeutheria 96.5 MYA

B)

C)

Duplication node

Speciation node
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2.2 Disease status, paralog status, and haplosufficiency 

In addition to gene ages, data was gathered pertaining to disease 

association, gene age and paralog status of all ‘known’ genes. For 

paralog status, a list of ohnolog pairs within the strict and intermediate 

categories having q-scores for both self-comparison, and outgroup of 

<0.001 and 0.01 respectively was obtained from Ohnologs-2 

(ohnologs.curie.fr) and compared with a list of human paralogous genes 

and their partners obtained from Ensembl BioMart (Zerbino et al., 2018). 

Genes found in the ohnolog list were defined as ohnologs, any genes not 

in this list, but present in the Ensembl paralog data were determined to be 

SSDs, and all remaining genes classed as singletons. 

Data pertaining to disease association were obtained from OMIM 

in the form of the Genemap2 dataset 

(https://data.omim.org/downloads/dI1aeTBYTNet3PfqZqIS_w/genemap2.

txt). Information contained therein used in the current analysis was 

compiled by OMIM from the following sources: Ensembl gene id –

Ensembl; Phenotype data – OMIM. A text-based search was performed on 

this file to establish, firstly, if each gene in our ‘known’ set existed 

within the OMIM dataset, and if so, whether their association was with 

dominant, recessive or unknown disease inheritance, subsequent 

assignment of disease status was conducted according to these findings. 

For rare instances where genes had both dominant and recessive 

associations their status was defined as ‘both’ and genes not present in 

Genemap2, were defined as ‘none’. 
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Haploinsufficiency (HI) scores (Huang et al., 2010) were obtained 

from Decipher (Firth et al., 2009) (Haploinsufficiency Predictions 

Version 3 bed file). Due to the fact that the entries in this file listed 

genes using HGNC identifiers, to bring them in line with the Ensembl 

naming convention used in the analysis it was necessary to cross 

reference gene names with their Ensembl counterparts. To this end 

Ensembl GRCh38.p7 gene names and HGNC IDs were obtained from 

Ensembl BioMart (Zerbino et al., 2018), and, where possible HGNC IDs 

substituted in the Haploinsufficiency data, for Ensembl gene IDs. 

Haplosufficiency scores and ranks were then obtained for each ‘known’ 

gene. A consolidated dataset was then created (Data S1), containing 

Ensembl gene name, disease status, paralog status and rank, which 

provided the basis for the initial analysis of gene age, paralog status, 

disease status and haplosufficiency. 

2.3 Asymmetry 

In order to investigate asymmetry a further dataset was compiled 

from data obtained from the above sources, specifically pertaining to 

genes in ohnolog pairs. For this, comparisons were made on a per pair 

basis. Each gene in the pair was named Conserved ‘C’ or Diverged ‘D’, 

where gene C had the lowest dN/dS ratio when compared with 

chimpanzee as obtained from Ensembl biomart, and was therefore 

considered the most conserved, and gene D the greatest ratio, and 

therefore considered the most diverged. Pairs with no divergence were 
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excluded. Disease association per pair was then calculated, and disease 

associations previously listed as ‘both’ were considered dominant. 

To further detect asymmetry between the pairs a novel method of 

functional dissimilarity was devised to provide a dissimilarity metric to 

genes in paralog pairs (Table 3). The complete list of human gene 

ontology (GO) annotations was downloaded from the gene ontology 

consortium (Ashburner et al., 2000), on 06/08/19, these were then stored 

for each gene, and compared between genes in each pair. For each term 

not present in the other gene in the pair, the functional divergence score 

was increased by one. Any pairs with a proportional difference of less 

than 25% of the total recorded annotations for that pair was considered 

not to exhibit true asymmetry, and therefore dropped from the asymmetry 

data. Further to this, any pairs with a dissimilarity in dN/dS ratio of less 

than 0.0005 were also excluded.  

Table 3 : Table showing the functional divergence scoring system method, using 
examples of two ohnologs pairs taken from the TGFβ superfamily. Corresponding 
gene ontology terms are highlighted in green, conflicting terms are highlighted in 
orange. The cumulative score is retrieved, and proportional score calculated (right). 

 

Unless otherwise stated, computational analysis of data was 

performed using Perl 5, version 18, subversion 2 (v5.18.2) (Wall, 2000), 

GDF9 BMP15 Cumulative Score Proportional score
GO:0005125 : enables cytokine activity GO:0005125 : enables cytokine activity 0

0%
GO:0008083 : enables growth factor 
activity

GO:0008083 : enables growth factor 
activity

0

GO:0070698 : enables type I activin 
receptor binding

GO:0070698 : enables type I activin 
receptor binding

0

BMP8A BMP8B Cumulative Score Proportional score
GO:0005576 : extracellular region - 1

100%

GO:0005615 : is_active_in extracellular 
space

- 2

- GO:0005125 : enables cytokine activity 3

- GO:0008083 : enables growth factor 
activity

4

- GO:0070700 : enables BMP receptor 
binding

5
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with all further analysis and image generation conducted  using R version 

3.3.2 (2016-10-31) "Sincere Pumpkin Patch" (R Core Team, 2016), and 

the following libraries; ggplot2 (Wickham, 2009) ggfortify (Yuan T, 

2016); dplyr (Wickham et al., 2017); lattice (Sarkar, 2017); plyr 

(Wickham, 2016); raster (Hijmans et al., 2017) ; gridExtra (Auguie and 

Antonov, 2017); tidyr (Wickham et al., 2018a); cluster (Maechler et al., 

2018); FactoMineR (Husson et al., 2018) ; Devtools (Wickham et al., 

2018b); factoextra (Kassambara and Mundt, 2017), and, corrplot (Wei et 

al., 2017). The graphical representation of gene age method in Figure 6 

was generated using Microsoft PowerPoint. 
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CHAPTER 
 THREE  

 

 

“We must, however, acknowledge, 

 as it seems to me, that man with all his noble qualities…  

still bears in his bodily frame the indelible stamp 

 of his lowly origin.” 

 – Charles Darwin (1872) 
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GENE & GENOME DUPLICATION: DUPLICATION IS A 
CORRELATE OF MONOGENIC DISEASE, NOT A CAUSE 
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3.1  Abstract.  
 

The ability to predict disease association in human genes is 

enhanced by an evolutionary understanding. Interestingly, genes readily 

linked with heritable disease, particularly dominant disorders, have 

frequently undergone whole genome duplication (WGD) in our early 

vertebrate ancestors, with a strong asymmetric relationship wherein it is 

likely that just one gene in each pair will be disease associated. Using 

whole-genome comparative analysis of evolutionarily significant 

features, we show that contrary to the accepted compensatory model of 

disease evolution explaining this association, the majority of disease-

associations reside with the more evolutionary constrained gene, inferred 

to resemble the duplicates’ progenitor most closely. This indicates that 

the strong association between paralogs, specifically ohnologs, and 

dominant disorders is often a consequence of a mechanism (WGD) 

through which pre-existing dosage sensitive/haploinsufficient genes are 

successfully duplicated and retained, rather than their inherent 

‘dangerousness’. Heritable disease is thus as much a consequence of the 

fragility of evolutionarily more ancient genes as compensatory 

mechanisms. From these findings, we demonstrate the utility of a new 

model with which to predict disease-associated genes in the human 

genome.  

Key words: Asymmetry, Ohnologs, SSDs, function 
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3.2  Introduction 

 
ore than 150 years since Gregor Mendel’s findings 

were first published, the role of evolution and 

heritability in human genetics, and specifically 

disease association, is still, by necessity, being explored. We now know 

that whilst Mendel’s foundation of dominant versus recessive alleles is 

broadly correct, a myriad of factors contribute to both penetrance and 

phenotypic severity, but also that complex genetic interactions, where the 

interplay between multiple genes, rather than the simple ‘one gene- one 

trait’ model is the norm (Cooper et al., 2013). In terms of mono-genic 

disease association, a striking association has been found to exist 

between genes duplicated in vertebrate evolution and disease with 80% of 

human heritable disease genes residing in a paralog in the human genome 

(Dickerson and Robertson, 2012). Why does this strong one gene to 

phenotype relationship exist with genes that have a duplication event in 

their history? 

While ‘duplicability’ of a gene can be influenced by genomic 

context, such as sequence composition and chromosomal location, and 

accessibility, leading to much of the copy number variation observed 

within the human genome (Schuster-Böckler et al., 2010; Truty et al., 

2018), differential retention biases have played a much more significant 

role in the landscape of paralogs observed in genomes particularly when 

small- and larger-scale duplication events are compared (Hakes et al., 

M 
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2007). Notwithstanding stochastic sampling processes in evolution 

associated with smaller population sizes (Lynch and Conery, 2003), this 

will often be a result of factors associated with gene product fitness. 

Whole genome duplication in particular, is hypothesised to increase the 

chance of retention of dosage-threshold sensitive genes, as a consequence 

of maintenance of stoichiometric balance in the cellular system (Papp et 

al., 2003), which, due to its negative/deleterious impact, would be very 

unlikely to be retained within the context of small-scale duplication 

(SSD) events (Makino and McLysaght, 2010). This is supported by the 

observation that copy-number associated duplicates tend to be refractory 

for the retention of dosage-sensitive paralogs (Rice and McLysaght, 

2017a). 

In order to disentangle the relationship between gene duplication 

and disease it is imperative to have an understanding of the processes by 

which genes arise and are retained (Innan and Kondrashov, 2010). 

Exemplifying this perspective is the strikingly strong association 

observed between genes which have undergone duplication in vertebrate 

evolutionary history, in particular WGDs, and heritable human disease 

(Makino and McLysaght, 2010). Following a ‘compensation model’, 

where duplicates contribute to redundancy (Gu et al., 2003), we 

previously hypothesised that this relationship was due to the 

accumulation of otherwise deleterious mutations in the context of 

duplication events (Dickerson and Robertson, 2012), with disease 

associations emerging as new genes arise and are retained, i.e., 

duplication introducing disease potential by ‘masking’ of otherwise 
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deleterious mutations. Singh et al (Singh et al., 2012) presented a 

modified version of the compensation model, in which the compensation 

for deleterious variation, in particular for dominant disorders, is ‘locked 

in’ by the WGD event, and subsequently neither gene in the duplicate 

pair can be lost without severe consequences to fitness. Furthermore, it 

has been proposed that whole-genome duplication (WGD) events confer 

an immediate fitness benefit to the organism by reducing expression 

‘noise’ (Pires and Conant, 2016). 

What is often neglected, however, is the asymmetric relationship 

of disease within gene families/paralogs (Dickerson and Robertson, 

2012), which must be considered in any analysis. Due to random 

mutations (neutral or functional/adaptive), following a duplication event 

the two paralogous genes are unlikely to remain the same for long. Over 

time the accumulation of variants in either or both of the duplicates leads 

to divergence. This divergence can result in differing functions of the 

two genes, sub- or neo-functionalization, or pseudogenization amongst 

others. The relative proportions of these outcomes is a contentious 

subject, with conflicting theories surrounding not only differential 

retention, but also the likelihood of and degree to which evolutionary 

asymmetry may occur (Pachter, Lior, 2015). Fundamentally, the 

discussion revolves around two arguments: the first, that paralog pairs 

tend to show asymmetry where the less constrained copy is likely to be 

harmless to the organism, presented by Ohno et al (Ohno, Susumu, 1970) 

and the second, proposed by Force et al (Force et al., 1999) that 

evolution following duplication is unlikely to be asymmetric. The current 
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consensus agrees with Ohno’s proposition that evolutionary asymmetry 

does exist (Kellis et al., 2004), although the statistical measurement 

employed remains contested (Pachter, Lior, 2015), and may be dependent 

on the degree of dosage sensitivity within any given paralog pair 

(Tasdighian et al., 2017). 

It has also been hypothesised that, following duplication, 

redundant genes confer robustness (Hakes et al., 2007) with one paralog 

acting as a ‘buffer’ to the phenotypic manifestation of deleterious 

disruptions in its partner gene (Gu et al., 2003; Hakes et al., 2007; Hsiao 

and Vitkup, 2008; López‐Bigas and Ouzounis, 2004). It is proposed that 

this dilution of ‘deleteriousness’ via the addition of a compensatory 

partner, permits the retention of disease-associated genes, which would 

otherwise be subject to purifying selection. Whilst there is some 

argument to be made that this phenotypic masking is a relatively 

infrequent event, the studies that have shown this highlighted that, within 

Caenorhabditis elegans there is an enrichment for older, more essential 

genes within the set where masking does occur, with new, more plastic 

duplicates being unlikely to show masking behaviours (Woods et al., 

2013). Whilst the accumulation of new duplicates in C. elegans has not 

been directly compared to human, given the high proportion of human 

duplicates retained following WGD, which are both ancient, and enriched 

for essential genes (Makino et al., 2009) we suggest that their findings 

are indicative that within humans the proportion of genes which exhibit 

phenotypic masking is liable to relatively high, with less frequent 

masking behaviours associated with SSDs. In both this, and a similar 
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study in Saccharomyces cerevisiae (He and Zhang, 2006) mechanisms of 

duplication were not accounted for, which would likely strongly alter 

outcomes between that of C. elegans and S. cerevisiae genomes, and that 

of humans.  Given this ‘compensation’ model, and the known 

consequences of the subsequent relaxation of purifying selection more 

freely permitting accumulation of slightly deleterious mutations, i.e., 

non-lethal disease-causing mutations (Dudley et al., 2012), we would 

predict that disease-associated mutations would mostly be found on the 

less constrained gene within the pair (Dickerson and Robertson, 2012). 

Thus, explaining the connection between paralogs and heritable disease.  

To investigate the association between evolution, the diploid 

nature of human genes and human disease further, we constructed a 

large-scale dataset of human genes, their paralog type, and 

haplosufficiency status, and found that heritable disease genes tend to be 

evolutionary ancient and associated with gene duplication, and in the 

case of dominant disorders found that the underlying association is due to 

WGD being the mechanism for duplicating haploinsufficient genes. 

Furthermore, we find disease-associated mutations tended to associate 

with the more constrained gene in WGD paralog pairs and are thus more 

likely to be associated with the ancestral function. We discuss these 

findings and the implication that disease states are due to a pre-existing 

ancient fragility within the ancestral genome, rather than the product of 

later duplication events.  
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3.3  Methods 
 

The foundation data for this analysis are the primary data 

generated using the general methods (see chapter 1). This data pertains to 

gene age, Disease status, paralog status, haplosufficiency, and 

asymmetry, on a per-gene basis. 

Family analysis 

For the stages in the analysis wherein we looked at profiles of 

disease association, haplosufficiency and paralog status within families 

we obtained a list of all human paralogous genes from ensembl biomart. 

We grouped these genes into sets of paralogs, which were then defined as 

families and added the group IDs to the previously generated data. For 

the asymmetry data we used a perl script to calculate and extract the 

oldest 25% of each family based on their calculated MRCA age, for 

inclusion in a separate dataset, for the youngest 75% these were obtained 

by extracting the oldest 25% using R. 

Statistical testing 

In order to ascertain enrichment of disease genes in the more 

ancient age categories we performed statistical testing in R. To do this all 

genes with an age of 435MY (roughly contemporary with the last round 

of whole genome duplication) or older were grouped into a “WGD and 

earlier” category and counted, and those with an age of less than 435MY 

were classified as “post WGD” and counted. We then subset these groups 

and counted only those genes with a heritable disease status of 
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“Dominant”, “Recessive” or “Both”. The proportion of the total genes in 

the “WGD and earlier”, and “post WGD” groups that heritable disease 

genes represent was then computed, and an X-squared P-value generated 

using the inbuilt prop.test function in R. A prop.test in R was also 

conducted to compare the proportion of Older SSDs that are associated 

with recessive disorders, and the proportion of younger SSDs that are 

associated with recessive disorders. 

For the statistical analysis of asymmetry in genes pairs with a 

single disease association the pairwise proportions of gene pairs where a 

that gene is the more conserved/ diverged and more/less haploinsufficient 

were calculated, and the proportion of the total number of pairs that each 

of these groups represent compared using the pairwise.prop.test function 

in R with Bonferroni adjustment.  
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3.4  Results  

 
Gene age and disease association 

 
Figure 7 : Bar chart showing numbers of genes with differing disease states during 

our evolutionary past (inferred from taxonomic levels), showing a clear trend in 
older genes being disease-associated, and a spike at 311 and 105 MYA in our ancient 
ancestors, likely representing the diversification of the amniote line and branching of 

placental mammals respectively, which occurred at these time points (A). Inset: 
cumulative frequency of disease genes over time for dominant and recessive disease 

associated genes (B). 

Using a method of dating genes by determining their most recent common 

ancestor (MRCA) (see methods), we were able to assign singleton and 

duplicate gene ages and compare properties of disease and non-disease 

genes. From this analysis, we have been able to determine that both 

dominant and recessive disease-associated genes, as identified within the 

OMIM database (McKusick-Nathans Institute of Genetic Medicine, 

2018), tend to be relatively evolutionarily ancient (6A). Significantly, the 
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majority of these genes arose either with the two rounds of whole genome 

duplication (WGD, ~435 MYA in our Euteleostomi/fish ancestors before 

the split between cartilaginous and bony vertebrates) or predate them, 

with proportionally relatively few disease-associated genes arising 

thereafter (X-squared p= 2.2e-16). The cumulative frequency of heritable 

disease-associated genes within the human genome (Figure 7B) reveals a 

relative plateau in the introduction of obviously disease-associated genes 

in more recent evolutionary history, the onset of which coincides with the 

most recent round of WGD ~435 million years ago (MYA). This is 

consistent with the proposal that there has been a relatively low rate of 

disease associated gene introduction following the last round of WGD, 

with the majority of disease associated genes being evolutionarily 

ancient. 

Haplosufficiency, disease association and gene age 

Support for this finding of a high association between ancient 

genes and their fragility leading to disease is provided by the results of 

our analysis of gene age and haploinsufficiency (HI), using the Decipher 

haploinsufficiency scores (Firth et al., 2009) (Figure 8). Whilst 

haplosufficiency scores range between 1 and 100, genes falling into the 

haploinsufficient decile, as defined by Decipher are only those in the 

bottom 0-10 (Firth et al., 2009). These are predominantly ancient, with, 

in general, decreasing numbers of haploinsufficient genes arising over 

time. Whilst in their paper Makino and McLysaght (2010) also looked at 

the link between dosage and ohnologs, they did not directly measure this 

using haploinsufficiency rather assuming HI to be a property of the 
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ohnologs.

 

Figure 8 : Notched box and whisker plot showing haplosufficiency ranks of genes 
within each gene age bin, where 0 is the highest, and 100 is the lowest 
haploinsufficient (HI) rank. The dashed red line shows the conservative cut-off of 
haploinsufficiency proposed by Decipher (Firth et al., 2009), above which they 
predict ‘true’ haploinsufficient genes to reside. Overlaid is a line graph plotting the 
normalized frequency of disease genes in each age, between 0 and 1, arising at each 
time point. 

 

Paralog status, gene age, haplosufficiency, and disease 

To test the significance of this association we investigated the relationship between 

disease, haploinsufficiency, paralog status, and gene age (Figure 9). The multiple 

correspondence analysis (MCA) of these four features demonstrates a strong 

relationship between disease, paralog status, gene age, and haplosufficiency rank, in 

particular, for duplicated genes with dominant disease-associations. This indicates 
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haploinsufficiency is providing the underlying structure of their interactions. 

 

Figure 9 : Total proportion of genes from various disease and duplication states 
which reside in each haploinsufficiency decile (A); 1 being the least and 10 being the 

most haploinsufficient; solid lines show genes with dominant disease-associations, 
and dashed lines show those with recessive disease-associations. Multiple 

correspondence analysis of haploinsufficiency, gene age, paralog status and disease 
status (B); the 10 haploinsufficiency deciles are highlighted by the coloured ellipses. 

Asymmetry in gene pairs 

We tested the hypothesis that disease-association preferentially 

tracks to the more diverged gene within any paralog pair. In order to do 

this, we established relative divergence by measuring adaptive evolution: 

comparative synonymous to non-synonymous substitution ratios between 

the two genes and their closest non-human primate homologous 

counterparts, combined with identifying differences in functional 

annotation assigned to the two genes. The assumption is the functionally 
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diverged duplicate will have undergone more adaptive evolution, whilst 

subfunctionalized pairs would evolve at a similar rate to one another.  

 
Figure 10 : Bar charts showing asymmetry between ohnolog pairs with differing 
disease-associations, evolutionary divergence, and haploinsufficiency for all 
duplicate pairs (A), ohnolog pairs by inheritance type (B). Dark bars correspond to 
pairs where the most conserved gene is also the most haploinsufficient; light bars are 
pairs where the more diverged gene is the more haploinsufficient. Disease-
associations are shown on the x-axis. 

 

Confirming our previous analysis (Dickerson and Robertson, 
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are associated with the more constrained, (54%/354 pairs), rather than the 

evolutionary less constrained gene (46%/306 pairs) (Figure 10A) as 

predicted by the disease being due to disease mutations accumulating as a 

consequence of relaxed selection (Dickerson and Robertson, 2012), 

which we have confirmed to be statistically significant (X2 P-value 

=0.009). This indicates that heritable disease is often a consequence of 

mutations disrupting the ancestral function, i.e., inferred to be retained 

by the more conserved paralog.  

For the diseases associated with the conserved paralog these are 

over-represented for the more haploinsufficient genes (77%), further 

confirming the role of haploinsufficient genes in disease. This focus on 

asymmetry shows that disease propensity is most frequently associated 

with a combination of both haploinsufficiency and conservation, wherein 

the disease-associated paralog retains a greater sequence similarity to the 

ancestral gene than its partner. 

Incorporating heritable disease type into this analysis, disease, 

particularly dominant disease, being associated with the conserved 

branch was again the case, with more tending to be haploinsufficient 

(Figure 10B). The major role of haploinsufficiency is supported by gene 

pairs that possess a dominant disease-association only in the more 

diverged gene (Dominant D, Figure 10), whilst these occur considerably 

less frequently than pairs whose disease association resides in the more 

conserved gene, when they do, it is predominantly the case that the 

disease gene also ranks more highly in the haploinsufficiency scale. 

Indeed, there is a highly significant trend in the increase in the number of 
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pairs where disease is present in only one gene, which is also both more 

conserved and has a greater haploinsufficiency score (pairwise 

proportional p-value range < 2e-16:1.5e-11). 

These results indicate it is frequently the paralog that retains the 

ancestral function that has a tendency towards fragility and therefore 

disease. This asymmetric relationship confirms that disease tends in 

general to be associated with the more constrained/older gene function. 

Haploinsufficiency, paralog status, disease association and gene families 

Figure 11 shows the results of our analysis of haplosufficiency within families. It 

clearly shows an elevated propensity for the oldest 25% of genes arising in gene 

families, the most highly conserved across taxa, to be more inclined to be 

haploinsufficient than the younger 75%, this is especially visible within the SSD 

sets. 
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Figure 11 : Violin plots of the spread of haplosufficiency ranks in different paralog 
types in (A) the oldest ~25% of genes in gene families with 4 or more members, and 
(B) the younger ~75% of genes in families with 4 or more members. Mean and 
standard deviation are shown by the point and vertical lines, the horizontal lines 
represent the point below which decipher determine truly haploinsufficient genes to 
lie. 
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Figure 12 : Bar plot showing the proportion of genes within each age group that are 
disease associated, subdivided by paralog status. 

 

As can be seen in figure 12, the proportional distribution of 

disease types within each age group (25% and 75%), and paralog type are 

broadly similar, with the exception of a marginal reduction in genes 

without a disease association in the older group, and interestingly, an 

elevation in the proportion of older SSDs, which are associated with 

recessive disease when compared with the younger group (P = 6.092e-

05).   
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Figure 13 : Violin plots of the proportional spread of disease-associated genes in 
families associated with different ages of initial duplication. Mean and standard 
deviation are shown by the point, and horizontal line respectively. The vertical 
dashed line indicates 75% point, everything to the right of which represents the 
upper quartile of disease association. 
 

As can be seen in figure 13, gene families with an initial duplication 

around the time of the last round of whole genome duplication, or earlier 

have a higher propensity to contain greater proportions of disease genes, 

with higher quantities of families being in the upper quartile of disease 

associations. This is particularly true of Sarcopterygii (the event directly 

following the proposed final round of WGD) which has both a marked 

enrichment for families of >75% disease associated genes, but 

interestingly, also a ‘tail’ of families wherein there are no disease genes 

whatsoever. One hypothesis for this may be that, given the high 

propensity for disease association within the other families in this group, 

those without disease association could be indicative of  ‘survivorship 

bias’ wherein they are so intolerant to variation that they would be 
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embryo-lethal. These findings are supportive of our earlier results that 

disease arises as a result of the exposed ancient fragility of both pair, and 

family progenitors. 
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3.5  Discussion 

 
Our findings demonstrate that the association between ohnologs 

and dominant disease exists for the most part due to their tendency to be 

haploinsufficient, a feature most commonly associated with genes arising 

prior to the two known WGD events in our early vertebrate ancestors. 

The overrepresentation of disease genes within this set then arises 

because WGD is the main process by which haploinsufficient genes can 

be both duplicated and have a high probability of being retained. This 

provides an understanding of why so many dominant diseases exist 

within human populations (Veitia and Birchler, 2010), i.e., those where a 

single functioning copy of the diploid gene alone are unable to ‘support’ 

the wild-type function.  

Our results disentangle the ‘dangerousness’ of a WGD, due to 

locked in variation/potentially deleterious alleles (Singh et al., 2012), 

from the property of the gene itself, i.e., its haploinsufficiency. 

Haploinsufficiency is well known to be strongly associated with gene 

duplication (Kondrashov and Koonin, 2004; Papp et al., 2003; Pires and 

Conant, 2016), with haploinsufficient genes having generally been found 

to have a greater number of paralogs than haplosufficient genes. Our 

novelty here is explaining their link to WGDs. As already mentioned, this 

is likely due to the need to retain genes of this kind following duplication 

events/dosage effects as they have a greater likelihood of negatively 

impacting on the system, leading to stoichiometric imbalance should 
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aberrant copy numbers arise (Makino and McLysaght, 2010). Note, while 

the paper by Makino and McLysaght (2010) also looked at the link 

between dosage and ohnologs, they did not directly measure this using 

haploinsufficiency rather assumed haploinsufficiency to be a property of 

the ohnologs 

Our results are consistent with a recent study by Diss et al (Diss et 

al., 2017) who investigated the impact on the system caused by the 

introduction of interdependent paralogs and show differential dependence 

in the model organism yeast, suggesting that duplication has introduced 

fragility and not increased robustness as expected. This supports the 

hypothesis of ‘equivalent divergence’ (and therefore absence of 

asymmetry) presented by Force et al (Force et al., 1999), as disruption of 

interdependent subfunctions of one of the duplicated paralogs in a 

subfunctionalised pair would produce a deleterious phenotype.  

Evolution of the complexity of multi-cellular life has been 

facilitated by gene duplication mechanisms, particularly WGD events, 

which have facilitated the introduction of repurposable genetic material, 

despite the pre-existing fragility of more evolutionarily ancient molecular 

functions. Ohnologs are a source of functional divergence (Acharya and 

Ghosh, 2016) as they increase the probability of a dosage-dependent gene 

being retained, their later divergence is indicative of novel function 

which, in terms of disease, is likely either to be associated with complex 

disease or no disease. That only one of the duplicates retains dosage-

sensitivity is in line with theoretical work that incorporates retention bias 

due to dosage constraints (Teufel et al., 2016).  
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Importantly, there are, however, a proportion of genes which, 

whilst likely to fit our criteria of greater constraint and 

haploinsufficiency will never be observed to be disease associated. In the 

case of these genes this is due to the fundamental inviability which would 

be introduced as a result of their disruption, and which, as highlighted by 

previously observed links between essentiality, developmental processes 

and ohnologs (Makino et al., 2009), are likely to be overrepresented in 

genes which have resulted from a WGD event. 

Our analysis of haploinsufficiency and paralog-associated disease 

asymmetry within duplicated gene pairs and families, has demonstrated 

that the observed enrichment of dominant disease-association is an 

artefact of pre-existing haploinsufficiency, and any subsequent disease 

states are due to this, rather than the somewhat counterintuitive 

hypothesis that it is dominant disease-association, so-called 

‘dangerousness’, which leads to retention (Singh et al., 2012). It should 

be noted that the second round of WGD (Acharya and Ghosh, 2016) will 

add at least one additional disease-associated gene, so ohnologs do also 

add disease-prone genes to the genome. These haploinsufficient 

duplicates, which can persist due to the initial presence of a functionally 

identical partner, are then able to evolve away from their 

haploinsufficient disease-associated state. A high abundance of 

haploinsufficient disease-associated genes were already extant in the 

ancestral genome, and what we observe within ohnologs is an increase in 

genes with an on-going reduction in potential for monogenic disease 

associations compared with the pre-WGD genome. 
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In conclusion, the ancestral role of the progenitor genes was likely 

the provision of relatively more ‘core’ functions common to most life, 

which leads to the observed associations with haploinsufficiency, 

essentiality and, as a consequence, a tendency towards fragility, all of 

which are traits passed on to their duplicated ‘daughters’. The lack of 

obvious monogenic disease-association in more recent evolutionary 

history will be a consequence of a reduction in the relative importance of 

any individual gene in the context of greater functional complexity. 
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CHAPTER  
FOUR 

 
 

 

“Friendship sometimes rests on sharing early memories, as do brothers and 
schoolfellows, who often, but for that now affectionate familiarity with the same old 
days, would dislike and irritate one another extremely…One’s friends are that part 

of the human race with which one can be human.” 

 
- George Santayana (1923) 
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KEEP YOUR FRIENDS CLOSE AND YOUR ENEMIES 
CLOSER: THE CO-EVOLUTION OF TRICHURIS TRICHURA 

AND THE HUMAN TGFβ SUPERFAMILY 
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4.1 Abstract 
 

Trichuris trichura is a soil borne helminth, and the causal agent of Trichuriasis, a 

neglected tropical disease currently endemic in many low-income countries. The 

continued relationship between Trichuris trichura and human, it has been proposed, 

represents their ‘old friendship’, wherein continued exposure to the pathogen has led 

to interdependence between T.trichura and its host. Interestingly, it has been found 

that individuals suffering from Trichuriasis exhibit elevated levels of TGFβ1 

release.  

Here we use evolutionary techniques to investigate the relationship between the 

human TGFβ superfamily, and the Trichuris homolog, their shared ancestry, and 

relationship between the two since the two species diverged roughly 800 million 

years ago.  

We propose that the growth factor domain of genes in the TGFβ superfamily, due to 

underlying important features, are liable to be under significant negative selective 

pressure. Whilst this is protective against heritable disease, it has provided the 

foundation for the old, co-evolutionary ‘friendship’ we observe between human and 

T.trichura 
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4.2 Introduction 

 
richuris trichura is a soil-borne pathogenic nematode that 

affects human hosts, with greater than 50 species within the 

Trichuris genus that are known to be infective to a broad range 

of mammalian species (Hayes et al., 2010). Once ingested Trichuris eggs, commonly 

found in soil, make their way through the gastrointestinal tract to the distal small 

intestine, where they hatch. Following this the larvae are transported to the cecum, 

and proximal large intestine where they reach maturity. Once mature, these 

nematodes can survive for up to a year, during which time they can produce in the 

region 20,000 eggs a day (Hayes et al., 2010), all the while utilising strategies of 

immune modulation to evade expulsion (Anthony et al., 2007; Daniłowicz-Luebert 

et al., 2011; Lagatie et al., 2017; Maizels and McSorley, 2016). 

Trichuriasis, the disease induced by active Trichuris trichura infection is 

currently classed by the World Health Organisation as a neglected tropical disease 

(NTD) (Centers for Disease Control and Prevention, 2011; Viswanath and Williams, 

2018; World Health Organisation, 2018a). It is one of a number of diseases caused 

by soil transmitted helminth infections, that are currently thought to infect in the 

region of 1.5 billion people worldwide. Of these, between 600 and 800 million suffer 

with Trichuriasis (4-5%), with greater numbers of helminth infections located in 

low-income countries, and in the region of 4 billion people considered to be at risk 

worldwide. (WHO/CDC (Centers for Disease Control and Prevention, 2011, 2013; 

World Health Organisation, 2018a)). 

T 
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A widespread programme of mass administration of various anti-helminth 

pharmaceuticals is currently in place to treat the adult stage of the helminth infection 

and to fight the spread. However, expansion of this program to provide more 

frequent treatment has been advised against, as, based on observed evolution of 

resistance in closely related animal populations, further treatment may lead to 

helminth resistance in humans (World Health Organisation, 2018b). 

TGFβ1 is known to play an extensive role in wound healing, reproduction, 

cell proliferation, and differentiation amongst others, and is ubiquitously expressed 

across most cell types and life stages in humans (Ingman and Robertson, 2009; 

Moore et al., 2018).Organisms with an active Trichuris trichura infection exhibit 

increased release of TGFβ1 (Levison et al., 2010). It has been found in vivo that 

Trichuris muris TGFβ excretory/secretory component, and Trichuris homogenate is 

capable of both TGFβ1 related bioactivity and inducing the release of latent TGFβ1 

in the host (Pennok and Ogunkanbi, 2019). Prior work by our group, had tentatively 

identified this Trichuris trichura TGFβ family homolog as an ortholog of a TGFβ 

superfamily member, suggestive that exploitation of this relationship may be one of 

the underlying mechanisms by which Trichuris is both activated, and stimulates this 

elevated release of TGFβ1 in the host. 

The ‘hygiene’ hypothesis, first proposed in 1989 (Andreae and Nowak-

Węgrzyn, 2017; Strachan, 1989) suggested that, without early exposure to certain 

previously endemic pathogens such as those in the helminth family, the human 

immune system is improperly able to mature (Briggs et al., 2016; Jackson et al., 

2009; Strachan, 1989). It posited that the rise in immune and immune related 

disorders across Europe was, therefore, due in part to the large-scale eradication of 

helminth infections. This hypothesis was popular amongst researchers for a number 
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of years, as it seemed to provide an explanation of the correlation between the 

reduction in helminth infections and rise in immune disorders. However, over time 

the hygiene hypothesis fell out of favour, particularly with regards to the effect of 

helminth infections, as it does not fit with the wider biological context wherein 

helminths have been shown to exacerbate certain autoimmune disorders (Briggs et 

al., 2016). An alternative, the ‘old friends’ hypothesis has been proposed to replace 

the hygiene hypothesis (Rook et al., 2003). This postulates that due to the prolonged 

evolutionary history of mammalian infection by immune-modulating pathogens, the 

two groups have evolved a degree of interdependence (Rook et al., 2013). The 

hypothesis as it relates to T. trichura is that the human adaptive immune system has 

evolved dependence on certain helminths and microbial communities, selectively 

retaining features that are beneficial in the presence of heightened levels of 

regulatory, and type II T-helper cells characteristic of helminth infection. 

Furthermore, it posits that without their stimulus, humans have an increased 

susceptibility to both viral and bacterial infection (Jackson et al., 2009), autoimmune 

disorders (Machado et al., 2012), and cancers (Thomas et al., 2018).  

It has been suggested that the once near ubiquitous prevalence of helminths 

in the human population led to their presence being tolerated. Such systems 

dependencies are commonplace for many parasites, wherein they have evolved 

dependence on aspects of the host systems (Decaestecker et al., 2007; Woolhouse et 

al., 2002). 

CKGF, the proposed ancestor of TGFβ superfamily genes, is postulated to 

have appears to have arisen during the metazoan period (Duran et al., 2018; Hinck et 

al., 2016; Pirruccello-Straub et al., 2018), prior to bilateria, which is consistent with 

the presence of a homologue in Trichuris and human. Genes within the TGFβ 
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superfamily are characterised by high levels of sequence similarity in a conserved 

Growth-Factor (GF) domain at the C-terminus, inclusive of a characteristic cysteine 

repeat motif, and a pro-domain which a much lower degree of conservation than that 

found in the GF domain (Burt, 1992; Hinck et al., 2016). The high level of sequence 

conservation within the GF domain, particularly the cysteine repeat motif that all 

genes in this family share, is indicative of purifying selection, likely due to the 

essential functions of the protein products that they encode.  

Protein products encoded by genes in the TGFβ superfamily dimerize. For 

some this is a promiscuous dimerization as they are able to form a heterodimer 

between different TGFβ family members, while others such as TGFβ1 form 

homodimers (Hinck, 2012). TGFβ1, MSTN, and GDF11 dimers interact with latent 

transforming growth factor binding proteins (LTBPs) in the extracellular matrix, 

where they are stored awaiting cleavage and activation by furin, or in the case of 

myostatin (MSTN) bone morphogenetic protein 1 (BMP1) (Walker et al., 2016; 

Wolfman et al., 2003). It has been suggested that the mechanisms that allow this 

storage are driven by differences in sequence composition in the pro-domain, which 

has aided in fine-tuning tissue-specific activation of these proteins by blocking both 

overexpression and furin processing (Walker et al., 2016). 

The TGFβ superfamily gene products undergo three stages before they 

become biologically active: expression, latency, and activation. As briefly 

mentioned, following initial expression, certain members of the TGFβ superfamily, 

such as TGFβ1, 2, and 3, GDF11, BMP10 and MSTN,  are able to remain anchored 

in the extra-cellular matrix in a latent form prior to activation (Moore et al., 2018). 

This storage is possible due to the interaction of these proteins in their dimeric form 



  4.2 INTRODUCTION 

 
 

121 

with extra-cellular matrix proteins such as perlecan and fibrillin, which allow them 

to become biologically inactive until subsequent cleavage (Harrison et al., 2011). 

Receptor binding within the TGFβ superfamily can be divided into two categories; 

type 1 receptors, which bind with differing levels of specificity to the TGFβs 

(binding specific), GDF11, MSTN (promiscuous, both type 1&2 binding), and the 

activin genes; and Type 2 receptors which bind to the other members of the family 

(Hinck et al., 2016). Extracellular bioavailability of GDF11, like TGFβ is therefore, 

supported (Duran et al., 2018; Hinck et al., 2016; Pirruccello-Straub et al., 2018). 

TGFβ superfamily genes have been well studied, and as such, are known to 

play pivotal roles in diverse human genetic diseases from Loeys-Dietz syndrome 4 

(aortal aneurisms - TGFΒ2) to Osteogenesis imperfecta (BMP1) (McKusick-Nathans 

Institute of Genetic Medicine, 2018). The strong association between genes in the 

TGFβ superfamily, and often-severe human heritable disease, is indicative of the 

important functions that the TGFβ genes serve from early development, throughout 

the entirety of the human lifespan.  The TGFβ superfamily genes TGFβ1, GDF11, 

and MSTN have been shown increase levels of phosphorylation and to be especially 

essential to both human development, and the aging process more generally, with 

particular associations with the musculo-skeletal systems (Duran et al., 2018; Walker 

et al., 2016). They are, as a consequence linked with disorders in these tissues, for 

example Camurati-Engelmann disease, characterised by limb and cranial 

hyperostosis (Hughes et al., 2019), muscle hypertrophy (Schafer et al., 2016), 

cardiovascular disease, and some cancers (Zhang et al., 2017), with GDF11 

deficiency found to be embryonically lethal in mice (Walker et al., 2016). 

Unlike many TGFβ superfamily members, rather than a single cleavage site 

being required to activate the protein, GDF11 and MSTN require two cleavages. 
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Firstly, a furin or PCSK5 cleavage is required, resulting in a latent complex. This is 

followed by a second cleavage by either a tolloid or BMP gene product, both found 

within the TGFβ superfamily, which finally produces the activated protein 

(Pirruccello-Straub et al., 2018; Walker et al., 2016) 

Genes subject to differing evolutionary pressures are known to exhibit 

divergent rates of evolution (Yang et al., 2000), with those that have duplicate events 

in their evolutionary past, also tending to have a greater association with disease 

(Dickerson and Robertson, 2012). Of duplicate types there is a particular that have 

been shown to have a heightened association with haploinsufficiency (being unable 

to provide wild-type function without both copies functioning adequately), and 

disease (Makino and McLysaght, 2010; Martin-Geary et al., 2019) than their small 

scale duplicated (SSD) counterparts. These genes, known as ohnologs, are the result 

of whole genome duplication (WGD), of which two rounds are posited to have 

occurred at the base of the vertebrate lineage (Ohno, Susumu, 1970). The retention 

bias towards ohnologs has been hypothesised as being the result of dosage 

sensitivity, in that, interdependent components of the larger biological system, 

having been duplicated together, allow balance within the system to be maintained. 

Whilst differential loss of certain genes is tolerated, others disrupt systemic 

stoichiometry to such an extent that they result in a deleterious phenotype. It is 

proposed that these genes expose the ‘fragility’ of their ancestors, and therefore their 

maintenance, is essential to human health (Makino et al., 2009; Martin-Geary et al., 

2019).  

Duplication events, in particular WGD, have been linked to large-scale 

speciation (Acharya and Ghosh, 2016; Sémon and Wolfe, 2007). This is due to 

differential loss of non-dosage sensitive genes leading to reproductive isolation, and 
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subsequent diversification of function provided by the introduction of large 

quantities of redundant genetic material (Acharya and Ghosh, 2016) and the 

subsequent complexity this brings.  

Here we show that the ancient host-pathogen relationship between Trichuris 

species and mammals is likely successful due to the close evolutionary relationship 

between members of the TGFβ superfamily, in particular GDF11, and, using 

evolutionary analysis we propose an explanation for how and why this relationship 

arose and has been maintained. 

 



 

 124 

4.3 Methods 
 

 

Figure 14: Flow chart showing the methods used to perform the analysis of the 
TGFβ superfamily. Initial identification of the gene is shown in dark blue, analysis 
steps are shown in medium blue, and additional tools and data are shown in light 
blue. The preliminary dataset generated using the general methods is shown with a 
dark blue border, and the resultant tree, and data used in this analysis are bordered in 
orange. 
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BLAST. The Trichuris gene was identified as a gene of interest 
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constituent domains. Using HMMER, a hidden markov model multiple alignment 

tool each domain was subsequently aligned against the human genome. This tool has 

the benefit of increased sensitivity of homology detection over pairwise local 

alignment algorithms (Finn et al., 2011). 

Protein sequence data for members of the human TGFβ superfamily as defined by 

Ensembl, were obtained from Ensembl BioMart (Zerbino et al., 2018). A single 

putatively canonical amino acid sequence for each gene was chosen by cross 

referencing APPRIS scores (Rodriguez et al., 2013), with transcript length (including 

UTRs and CDS), both obtained from Ensembl. The resultant Protein IDs can be seen 

in table 4. 

Table 4 : Ensembl gene ID, Protein stable ID, APPRIS annotation and length of 
selected representative proteins for each member of the TGFβ superfamily 

Gene stable ID Protein stableID APPRIS Transcript length 

ENSG00000092969 ENSP00000355897 principal1 5868 

ENSG00000101144 ENSP00000379204 principal1 4021 

ENSG00000105329 ENSP00000221930 principal1 2769 

ENSG00000112175 ENSP00000359866 principal1 3970 

ENSG00000116985 ENSP00000361915 principal1 4826 

ENSG00000119699 ENSP00000238682 principal1 2522 

ENSG00000122641 ENSP00000242208 principal1 6046 

ENSG00000123999 ENSP00000243786 principal1 1351 

ENSG00000125378 ENSP00000245451 principal1 1931 

ENSG00000125845 ENSP00000368104 principal1 3545 

ENSG00000125965 ENSP00000363492 principal1 2572 

ENSG00000130283 ENSP00000247005 principal1 2579 

ENSG00000130385 ENSP00000252677 principal1 1179 

ENSG00000130513 ENSP00000252809 principal1 1200 

ENSG00000135414 ENSP00000257868 principal1 8657 

ENSG00000138379 ENSP00000260950 principal1 2822 

ENSG00000139269 ENSP00000266646 principal1 2460 

ENSG00000143768 ENSP00000355785 principal1 2019 

ENSG00000143869 ENSP00000272224 principal1 9267 
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ENSG00000152785 ENSP00000282701 principal1 6092 

ENSG00000153162 ENSP00000283147 principal1 3784 

ENSG00000156466 ENSP00000287020 principal1 3712 

ENSG00000156574 ENSP00000287139 principal1 1665 

ENSG00000163083 ENSP00000295228 principal1 3206 

ENSG00000163217 ENSP00000295379 principal1 6036 

ENSG00000164404 ENSP00000367942 principal3 2640 

ENSG00000175189 ENSP00000308716 principal1 3202 

ENSG00000183682 ENSP00000327440 principal1 5636 

ENSG00000184344 ENSP00000331745 principal1 1236 

ENSG00000243709 ENSP00000272134 principal1 1626 

ENSG00000263761 ENSP00000463051 principal1 1955 

ENSG00000266524 ENSP00000464145 principal1 2677 

 

Phylogenetic analysis & sequence alignment. 

An initial alignment of TGFβ superfamily proteins using clustalO (Sievers et al., 

2011), implemented in SeaView Version 4 (Gouy et al., 2010), indicated that the 

furin cleavage site (RXXR/RXKR) previously identified in the T’ gene and human 

TGFβ1 was not universally conserved across the TGFβ superfamily. It was therefore 

necessary to use a cleavage prediction tool (ProP v.1.0b Duckert et al., 2004) to 

establish likely cleavage locations within each of our amino acid sequences. For 

genes with multiple predicted possible cleavage sites, a single candidate was selected 

by cross-referencing the ProP score of each predicted site with similarity to the 

T’/TGFβ1 RXXR/RXKR motif. For genes with no predicted cleavage sites above 

the cut-off score threshold, sites were selected based on alignment against family 

members with high confidence cleavage sites.  

In order to root the phylogenetic tree, it was necessary to source an 

appropriate out-group gene that is both a member of the TGFβ-superfamily, and 

within an organism whose divergence pre-dates that of trichuris and human. Due to 
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the fact that the divergence of human and trichuris is near-contemporary with the 

proposed origin of the TGFβ-superfamily very few species with identified TGFβ 

genes predate the trichuris/human split, with only Trichoplax and sponges having 

been tentatively identified TGFβ-superfamily homologs (Savage-Dunn and Padgett, 

2017). A putative Sycon Ciliatum (sponge) homologous gene (TGFβD), sequenced 

and annotated by Leininger et al, and identified as having increased expression 

during early development was selected, the protein sequence was obtained from the 

NCBI (Accessions: CDO67923) and cleaved using ProP in the same manner as the 

human and trichuris genes. 

An alignment of the resultant human, trichuris, and S.ciliatum peptides was 

made using the MAFFT-DASH tool (Rozewicki et al., 2019), leveraging both 

structural, and sequence data in order to build alignments, with the following 

parameters: Use DASH to add homologous structures; Adjusted direction according 

to first sequence; L-INS-i iterative refinement strategy providing increased accuracy 

for distantly related homologs; unalign level 0.0; retain gaps; BLOSUM62 scoring 

matrix; gap penalty = 1.53; offset value = 0.0; nzero; and Mafft-homologs selected 

with UniRef50, using PSI-BLAST to retrieve homologs in order to improve 

alignment. This was then imported into the MegaX environment (Stecher et al., 

2020), and manually edited to correct any remaining misalignments. 

Using the resultant alignment and the MEGAX software (Stecher et al., 

2020) a phylogenetic model was selected using the MEGAX model selection tool, 

and the following parameters: Automatic neighbour-joining tree; maximum 

likelihood statistical method; Use all sites ; and a ‘very weak’ branch-swap filter, in 

order to explore the maximum possible space. It must be noted however, that it has 

recently been suggested that model selection may not have any profound impact in 
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accuracy of the resultant tree (Spielman, 2019). A maximum likelihood tree was 

built using the recommended Jones-Taylor-Thornton+G +I model, with Gamma=2, 

Subtree-Pruning-Regrafting (level 5), 1000 bootstraps, and eight cores. This was 

subsequently visualised using FigTree V1.4.2 (Rambaut, 2014), and manually 

adjusted to improve readability.  

The TGFβ superfamily dataset. 

In order to perform our analysis and infer evolutionary histories and relationships 

between genes in the TGFβ superfamily we used the preliminary dataset (see general 

methods), divided into two sets; genes within the TGFβ superfamily, and those 

without.  Statistical analysis and figures were generated in R version 3.3.2 (R Core 

Team, 2016), using the following packages: plyr (Wickham, 2016), ggfortify (Yuan 

T, Masaaki H, Wenxuan L, 2016), gridExtra (Auguie and Antonov, 2017), grid 

(Murrell, 2018), and ggplot2 (Wickham, H, 2009). 

In order to draw meaningful comparisons between evolutionary features as 

they relate to the TGFβ superfamily, statistical comparisons were made relative to 

the distribution of those features in the rest of the genome. Given the vast difference 

between quantities of genes contained within these two sets, it was necessary to 

perform these comparisons as proportions rather than absolute gene counts. This was 

done using the base R prop.test function. 
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4.4 Results 
 

Identifying the Trichuris homolog 

Having divided the T. muris gene (TMUE_2000007822) into its constituent 

domains, it was found that rather than being most closely related to TGFβ1, as had 

previously been indicated, both domains shared greater identity with human GDF11, 

with secondary matches to MSTN/Myostatin (Figure 15).  This is concordant with 

the findings of WormBase ParaSite which also identified the T’ gene as a homolog 

of GDF11. 

 

 

Figure 15 : HMMER output for Human/T’ sequence alignment 

 

The characteristic element diagnostic of genes within the TGFβ superfamily 

is a highly conserved C-terminus growth factor domain containing a distinctive motif 

of cysteine repeats (Figure 16), with a highly divergent N-terminus pro-domain. As 

has previously been identified (Burt, 1992; Hinck et al., 2016) due to the high 

divergence of sites within the pro-domain of the TGFβ superfamily members in 

relation to the GF domain, reliably establishing a root for trees built using complete 

genes/proteins presents a serious challenge, as out-group genes tend as a result of the 

divergence of the pro-domain, to align to clades within, rather than external to the 

tree.  
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Figure 16 : Subset of the manually adjusted alignment of TGFβ superfamily 
canonical GF domain proteins, showing the highly conserved cysteine repeat motif 
in gold, alongside the T’ protein (top) and Sycon Scilliatum outgroup protein 
(bottom).  

 

Phylogenetic analysis 

In order to infer phylogenetic relationships between members of the TGFβ 

superfamily, we used an amino acid sequence alignment, as these often exhibit 

greater conservation than their nucleotide counterparts.  Similar to the method used 

by Hinck et al (2012) we only considered amino acids downstream of the furin 

cleavage site, thereby utilising the maximally conserved C-terminus region. This 

retained only homologous, highly conserved elements of the family key to our study, 

whilst minimising the previously discussed difficulties in root assignment, therefore 

allowing a potential root to be established (Figure 17). 

.  
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Figure 17 : Phylogram showing the divergence of genes in the TGFβ superfamily, 
and the T’ gene (shown as T.trichura. Genes in the GDF11 clade are highlighted in 
pink. The outgroup gene is shown at the bottom (Sycon Scilliatum). The tree was 
constructed using the maximum likelihood method with the JTT matrix based model. 
Bootstrap values are shown as percentages adjacent to their respective nodes. 

As can be seen in figure 17, phylogenetic analysis indicates that the 

divergence of the T’ gene from its human homologs occurred prior to the 

event that gave rise to MSTN and GDF11. The closer sequential 

proximity between GDF11 and the Trichuris homolog by contrast with 

MSTN is  indicative of a higher degree of conservation of GDF11 when 

compared with MSTN.  

Interestingly, both GDF11 and TGFβ are more proximal to the root of the 

tree compared with the BMP and remaining GDF genes. This result is 
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somewhat unexpected as previous studies have suggested that the BMP 

genes are some of the earliest members of the TGFβ superfamily, with 

the TGFβ 1/2/3 clade arising much more recently than our findings 

indicate (Hinck, 2012).  

Paralog status in human TGFβ superfamily genes 

Due to the nature of paralog families, every gene in the TGFβ 

superfamily arose as a result of  a duplication event. What is noteworthy, 

is the quantity of genes within the TGFβ superfamily that are ohnologs of 

strict or intermediate type (~44% N=14) compared with the instance of 

small scale duplicates, a mild elevation of the proportions of ohnologs 

relative to SSDs in the genome P=0.5423 (Figure 18). 

 

Figure 18 : Plot showing proportion of genes in the TGFβ superfamily in each 
duplication group (pink N=32) vs. Genome duplicate proportions (black N=16,036). 
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Gene ages of TGFβ superfamily genes 

By dating each gene in relation to its earliest ortholog within other 

Ensembl Compara vertebrate species, we found that genes within the 

TGFβ superfamily are, on the whole, relatively evolutionarily ancient, 

with the mode first appearance falling at ~615mya, and no genes having 

arisen later than ~105mya (Figure 19). 

 

Figure 19 : The distribution of genes arising at each gene age group within the 
genome (black N=19,598), alongside by the distribution of genes arising at each 
gene age (MYA) within the TGFβ superfamily (green N=32) 

 
Plotting the gene ages against that of the full genome (Figure 19) shows a significant 

difference in the distribution of TGFβ superfamily ages within two age brackets in 

particular, corresponding to the estimated time of the last round of whole genome 

duplication (~435MYA, Euteleostomi, P= 0.04625). We also found a  significant 

depletion of genes predating the two rounds of WGD (~796mya, P= 0.0254). 



4.4 RESULTS 

 
 

134 

Duplication relationships over evolutionary time 

Figure 20 shows the distribution of gene ages within the TGFβ superfamily in 

relation to the major biological events occurring between the split at bilateria, and 

the present, capturing the earliest appearance of each individual gene as they occur 

within the Ensembl vertebrate tree. Surprisingly, GDF11 appears to be one of the 

youngest genes in the TGFβ superfamily, the oldest retained ortholog having been 

identified in species diverging from the Homo sapiens sapiens line at Eutheria. 

MSTN however, shares orthologs with species diverging much earlier, at 

Sarcopterygii.  

When comparing this with our phylogenetic analysis we can see that the ages 

and evolutionary relationships are not concordant. This is likely due, at least in part, 

to the vertebrate centric data from which the ages were generated, and only a limited 

ability to detect both gene loss and ancestral origin. However, in reconciling the two 

we may infer that GDF and BMP genes are some of the oldest genes in the family, 

but that the TGFβ genes, MSTN and GDF11 are products of an ancient ancestor 

which is likely to have arisen early in the TGFβ superfamily
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Figure 20 : The most recent common ancestor of each TGFβ superfamily gene is shown, Links between genes (solid line) represent direct ancestry 
observed in the phylogenetic tree (Figure 16), with deeper relationships shown as dotted lines. Genes originating as a r 
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Haplosufficiency in the TGFβ superfamily 

Distribution of Haplosufficiency ranks within the TGFβ superfamily (Figure 21) by 

comparison with the rest of the genome show that a large proportion of TGFβ 

superfamily genes fall within the more likely to be haploinsufficient ranks (0-10, 

N=12, ~37.5%) as defined by decipher (Firth et al., 2009), a significant elevation 

compared with the genome proportions (p= 1.657e-05, genome = 10%) and likely to 

result in a deleterious phenotype should their diploid state be disrupted.  

 

  

 
Figure 21 : Histogram showing haplosufficiency deciles for genes in the TGFβ 
superfamily. 

 
For the subset of genes within the TGFβ superfamily that fall within the 

haploinsufficient ranks (0-10), a striking trend may be observed: these genes 

predominantly fall into the upper ranks, with 10 of the 12 genes within top 5% of 
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most haploinsufficient genes in the genome, four of which being in the top 1%. the 

most highly ranked of which being TGFβ 1, which is the 24th most highly ranked 

gene in the human genome (top 0.001%). GDF11 however, falls just outside of the 

bracket indicated by decipher as being haploinsufficient (0-10), with a score of 

14.75, whilst MSTN is squarely within the decipher criteria with a haplosufficiency 

rank of 2.28. This shows that predominantly, genes in the TGF β superfamily have a 

propensity to be haploinsufficient, therefore resulting in deleterious phenotypes if 

disrupted. 

Protein-protein interaction partners in TGFβ superfamily genes 

The number of interaction partners a protein possesses, has long been known to be 

indicative of its importance within the cellular system. Proteins with large numbers 

of interaction partners are identified as ‘hubs’, exhibiting a high degree within the 

network (Vallabhajosyula et al., 2009), disruption or perturbation of which is liable 

to result in major failure of part, or the entirety of the system, and is particularly 

significant if it is a pleiotropic gene, which plays a part in multiple, or important 

pathways (Promislow, 2004). 

We found (Figure 22) that only three out of the thirty-two genes in the TGFβ 

superfamily (~9%) fall below the mean number of protein interactions within the 

genome (N= 1015). Of the remaining 29 genes, 22 fall within one standard deviation 

exceeding the mean, and 7 (~22%) exceed it. The most noteworthy of these is 

TGFβ1, which is within the top ~0.8% of all genes (N=22722), and the top 1.1% of 

genes with a connectivity score of 1 or more (N=18865) with GDF11 being found 

within the top 5% of all genes, and the top 7% of genes with one or more protein 

interaction. 
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Figure 22 : Plot showing proportion of genes in the TGFβ superfamily (orange 
N=32) that fall within each protein-protein interaction count decile. 

When looking at the distribution of TGFβ superfamily genes across the PPI 

deciles a significant elevation can be seen in decile 8 (top 20-30% of genes in the 

genome). When compared with the proportion of genes in the genome ~10%, p = 

9.849e-07. 

It should be noted that there are caveats associated with the use of PPI data. The 

STRING data contains information regarding known interactions; however, this is 

liable to be biased towards more highly studied genes, which may influence the 

TGFβ1 score for example. Of particular note, however, is that there are likely to be a 

proportion of genes which have no record, but for which protein interactions do 

exist. Whilst these false negatives can be avoided by selecting only genes with a PPI 

connectivity of 1 or more as the genome scale data, this introduces a new bias, by 

not only omitting genes which code for independently acting proteins, but also genes 

such as important regulators and other non protein-coding genes. 
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3.5 Discussion 

 
We have found that genes in the TGFΒ superfamily are evolutionarily old, 

predominantly originating at, or prior to the last round of whole genome duplication, 

which is consistent with the proposal of a pre-existing progenitor in the metazoan 

period (Duran et al., 2018; Hinck et al., 2016; Pirruccello-Straub et al., 2018). The 

finding of a significant elevation in genes contemporary with the last round of whole 

genome duplication is of particular interest given importance of evolutionarily 

ancient genes, their essentiality, and contribution to system fragility (Martin-Geary 

et al., 2019), which is known to lead to higher levels of conservation.  

The presence of the GDF11 homolog in Trichuris suggests that despite the 

extant genes’ younger appearance, GDF11, MSTN and T’ genes share a common 

ancestor that is at least bilateria in origin. The significant depletion of genes in the 

oldest time point, corresponding to early in the vertebrate lineage (~796mya, P= 

0.0254), suggests that diversification of the TGFβ superfamily occurred as a result of 

successive duplication events early in the vertebrate lineage, around the time of the 

two rounds of whole genome duplication. This may to some extent explain why 

there are so few TGFB family members in helminths, as the majority arose following 

divergence of helminths and humans. 

Whilst we have not explored the root of GDF11’s surprisingly evolutionarily 

youthful age compared to expectations, there are a number of explanations that may 

be made. Firstly, the method of dating used has the potential for bias as a result of its 

vertebrate focus, however, an alternative hypothesis is that GDF11 did pre-exist the 

date proposed by our method of dating but was lost in some of the more divergent 
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species. It is known that GDF11 is essential to human development, however it may 

not be essential to non-human lineage-specific function. The potential loss of GDF11 

within other vertebrate species, therefore, would not necessarily be unexpected, 

given that it falls outside of Decipher’s criteria for haploinsufficient genes, unlike 

many other members of the superfamily, therefore, its loss is less likely to result in 

as deleterious a phenotype as would, say, TGFβ1 or MSTN. It would be interesting 

to see if those species that retain GDF11 are also host species for pathogens in the 

Trichuris genus, whilst those without it are not, as this may further support the 

proposition of the exploitation of shared ancestry of the TGFβ in helminth 

infections. 

The close relationship between the TGFβ and the MSTN/GDF11 clades 

identified in prior studies is congruent with our findings, however, the results of our 

phylogenetic analysis of genes within the TGFβ superfamily regarding relative clade 

age within the TGFβ superfamily did not confirm the findings of prior works (Hinck, 

2012). This may, in part, be due to the high number of members now known to 

reside within the superfamily included in our analysis, by comparison with prior 

studies, or that, to our knowledge, ours is the first study to conduct a phylogenetic 

analysis using an outgroup.  

We have found that many genes within the TGFβ superfamily are highly 

connected within the human PPI network. Loss, or significant change of these genes 

has the potential to cause a reduction in binding affinity, and therefore carries a 

higher-than-average likelihood of being disruptive to the network. Recent studies 

have linked highly connected nodes critical to the molecular system as being 

preferential targets for viruses (Ravindran et al., 2019). Given that GDF11 is within 

the top 5% of connected genes in the human genome it may be hypothesized that this 
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has the potential to lead it to be a target for opportunistic pathogens, via provision of 

beneficial network controllability. Whilst it is beyond the scope of the current 

analysis to do so, it would be interesting to ascertain the degree, and control status of 

genes in the TGFβ superfamily, particularly as control genes are liable to be under 

greater constraint than their less critical counterparts. This could also in part explain 

the ability of Trichuris species to maintain a prolonged niche in their respective 

hosts. 

It has been suggested that the pro-domains of genes in the TGFβ superfamily 

have been under greater pressure to diverge than the conserved growth-factor 

domains (Hinck et al., 2016), potentially resulting in differential binding specificity, 

however this could also be considered to be less constraint than is found in the 

growth factor domain. This near fourfold greater divergence (Hinck et al., 2016) in 

the pro-domain may be more indicative of a relaxation of constraint in this region 

following expansion in the superfamily, facilitating the evolution of novel functions 

of these genes when compared with their ancestor. 

These features combined suggest that genes in the TGFβ superfamily, in 

particular TGFβ1, have retained a high degree of amino acid conservation over the 

course of the bilateria lineage, due to their being important genes within most 

mammals. Whilst this has been essential in order to ‘protect’ against human heritable 

genetic disease, we propose  it has likely provided a platform that has proven 

beneficial to the evolution of the adaptive immune system in humans in the presence 

of once endemic opportunistic helminth parasites such as Trichuris trichura. This is 

further supported by earlier work by Machado et al (Machado et al., 2012), who 

found that there is an increased susceptibility to autoimmune disease in the absence 
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of a  Trichuris infection and is illustrative of susceptibility to autoimmune disorders 

having both a genetic and environmental component.  

Our analysis shows preliminary evidence of a persistent co-evolutionary 

relationship between helminths and mammals throughout the course of mammalian 

evolution (Jackson et al., 2009; Thomas et al., 2018). This argument, in line with the 

old friends hypothesis (Rook et al., 2003), hinges on an observable reduction in 

efficacy of the adaptive immune system in helminth-free populations by comparison 

with populations wherein helminths are endemic. 

Our findings show that the established relationship between Trichuris and 

mammals may be seen in the close association between the Trichuris homolog 

TMUE_2000007822 (T’) and GDF11/MSTN genes. This host-pathogen interaction 

is likely to have provided the vehicle for both their old friendship, and the continued 

exploitation of mammalian biology, wherein Trichuris is both activated, able to 

stimulate the release of TGFβ1 in the host.  
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CHAPTER  
FIVE 

 
 

 

“The facts of variability, of the struggle for existence, of adaptation to conditions, 
were notorious enough; but none of us had suspected that the road to the heart of the 

species problem lay through them.” 

 – Thomas Henry Huxley (1887) 
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VIRUSES CONTROL THE HUMAN INTRA-CELLULAR 
SYSTEMS BY EXPLOITING EVOLUTIONARILY ANCIENT 

MOLECULES 
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5.1 Abstract 
 

Virus-host interactions leave distinctive indicators of adaptation on the genome of 

the host. An estimated 75% of human genetic adaptation have occurred within the 

most highly constrained genes in the genome, driven by a history of virus exposure 

(Castellano et al., 2019). This is particularly significant when you consider that 

heritable disease associated genes tend to also be highly conserved (Miller and 

Kumar, 2001; Petrovski et al., 2013). Using a combination of network analysis, and 

evolutionary data we explored to what extent, if any virus interacting proteins (VIPs) 

and control nodes, those nodes that within the human protein interaction network are 

integral to control, are associated with susceptibility to genetic disease and the. We 

confirm that there is a substantial intersection between human heritable disease, and 

VIPs. This observed correlation between heritable disease and VIP status of certain 

genes is not a result of VIPs specifically targeting disease associated genes however, 

but rather the underlying evolutionary importance of these genes leading to ’new’ 

associations. Looking at the duplication status of genes that are disease associated, 

virus associated, or both, we also find that genes arising from duplication events, 

despite being heavily linked with human heritable disease (Dickerson and Robertson, 

2012; Makino and McLysaght, 2010; Richard et al., 2008; Schuster-Böckler et al., 

2010; Singh et al., 2015; Van de Peer et al., 2017) have potentially contributed 

robustness to the system rather than fragility. 
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5.2 Introduction 
 

he use of network analysis to aid in the interpretation of  

complex interactions (Boyle et al., 2018; Kuzmin et al., 2018; 

Monaco et al., 2018; Szklarczyk et al., 2017), and the 

relationship between pathogens and their hosts (Ahmed et al., 2018; Lee et al., 2018; 

Ravindran et al., 2019) has revolutionised our understanding of biological data. A 

vast array of novel, models for network analysis have provided robust frameworks 

for the analysis of, often prohibitively complex systems (Barabási et al., 2011; 

Emilsson et al., 2018; Gosak et al., 2018; Zhou et al., 2014) 

The application of such methods has proven particularly beneficial when 

looking at human heritable disease, having substantially aided in the elucidation of 

the underlying features governing human heritable diseases and their evolution. A 

number of methods have more recently expanded to incorporate key components 

from control theory, identifying key elements of biological systems integral to 

control (Del Vecchio et al., 2018; Kremling, 2013; Tsongalis, 2018). The application 

of control theory to biological data has shed light on essentiality, plasticity, and the 

reconciliation of control and evolution (Badyaev, 2019; de Anda-Jáuregui et al., 

2018; Peyraud et al., 2018; Ravindran et al., 2019). Using components of both 

control and graph theory; we recently employed the method of  ‘maximum 

matching’ and ‘minimum dominating sets’(MDS) (Ravindran et al., 2019) to 

uncover the way in which viruses exploit human systems, and via their interaction 

with human gene products, can wrest control of the cell.  

T 
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Barabási et al (Goh et al., 2007) reviewed network analytical methods 

applied to heritable disease, and found that monogenic disease, wherein disruption of 

a single gene leads to a deleterious phenotype is relatively rare, instead, disease is 

more commonly a result of the interplay between variants in multiple interacting 

genes within the network. Disease causing mutations have been found to be enriched 

within regions of the genome that are the most highly conserved across diverse 

metazoan species (Miller, 2001). Unsurprisingly, this also the case when looking at 

related genes, with the more conserved gene in a gene pair being more commonly 

heritable disease associated (Martin-Geary et al., 2019).  

Ohnologs, genes that arose and were retained, following, the two rounds of 

whole genome duplication (WGD) early in the vertebrate lineage, have been found 

to play an important role in human evolution and disease (Dickerson and Robertson, 

2012; Makino and McLysaght, 2010; Richard et al., 2008; Schuster-Böckler et al., 

2010; Singh et al., 2015; Van de Peer et al., 2017). These genes are enriched for 

involvement in developmental processes and subsequent disease (Fotiou et al., 

2019); signalling; regulation; cancer associations; and, in particular, autosomal 

Dominant disease (Singh et al., 2015).Duplicated genes have a strong association 

with heritable disease more generally, with in the region of 80% of human 

monogenic disease associated genes having been identified as part of a duplicated 

paralog pair/family (Dickerson and Robertson, 2012). Small-scale duplications 

(SSDs) wherein smaller blocks of the genome have been duplicated, and their whole-

genome duplication events are thought to have expanded evolutionary capacity by 

providing additional, redundant, genetic material (Innan and Kondrashov, 2010; Van 

de Peer et al., 2017). Although many duplicated genes do not appear to be functional 
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(Dudley et al., 2012), an estimated two thirds, if expressed, are thought to have the 

potential to contribute to deleterious phenotypes (ibid).  

Potentially due in part to the fact that whole genome duplication has been 

found to be the mechanism by which  dosage-threshold sensitive genes are able to be 

duplicated, alongside the small effective population size in hominids (Bailey and 

Eichler, 2006), ohnologs have become fixed in the population, despite their heavy 

association with deleterious phenotypes (Ebert et al., 2014). These negative 

associations are highlighted by the effects on systemic stoichiometry if they are 

subjected to copy-number aberrations (Birchler and Veitia, 2012; Veitia and 

Birchler, 2010), and underlined by the fact that they have been found to be refractory 

to further duplication (Makino and McLysaght, 2010). This disruption of 

stoichiometric balance caused by disruption or duplication of dosage threshold 

sensitive genes can have a profound impact on cellular health (Schuster-Böckler et 

al., 2010).  

There are numerous fates that can befall a gene directly following a 

duplication event. These include, but are not limited to; neo-functionalization where 

new functions are gained, sub-functionalization, where the ancestral function is 

divided between the duplicates, and pseudogenisation wherein function is lost 

(Cañestro et al., 2013). It is proposed that immediately following duplication events, 

newly redundant genes are able to increase genomic robustness (Hakes et al., 2007) 

with each new gene being able to compensate for disruption to its partner gene (Gu 

et al., 2003; Hakes et al., 2007; Hsiao and Vitkup, 2008; Lopez-Bigas, 2004), 

permitting disease-associated genes, to be retained, in spite of purifying selection 
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pressures, acting as a form of phenotypic masking. It is not currently known 

however, to what extent this phenotypic masking occurs in humans. 

Here we show that duplication, particularly whole-genome is likely to have 

played an important role in the evolution of biological systems, and that the 

propensity of viruses to target the nodes most closely associated with heritable 

disease, is not related to disease status, but the critical nature of the genes that both 

allow systemic control, and catastrophic results when disrupted. In contrast to our 

expectations, however, the role of duplicates may not have been to supplement this 

fragility, but rather included driving diversification of the system via the provision of 

alternate paths, therefore contributing to systemic robusticity. 
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5.3 Methods 
 

 

Figure 23: Flow chart showing the methods used to investigate VIPs Evolution and 
Disease. Primary data, as generated using the general methods is shown with a dark 
blue border, additional data is shown in pale blue, analysis steps mid-blue and 
resultant dataset in white with an orange border.  

PPI and VIP Data 

The initial list of gene interactions obtained from the Hippi database did not contain 

up-to date approved gene accessions for all of the proteins contained therein. It was 

therefore necessary to map the NCBI gene names to their most current approved 

accession. To do this a custom dataset containing approved gene names, and their 

corresponding NCBI counterparts was obtained from the Hugo Gene Nomenclature 

HIPPI iGraph

PPI Network Graph 
generated

Protein interactions 
obtained

Viral interactions 
added

MDS/betweenness/
connectivity 
calculated

Addition of 
evolutionary 

features

Preliminary 
dataset

Human/VIP dataset



  5.3 METHODS 
 

 
 

151 

Committee (HGNC 10/02/2020,), and cross referenced with the initial PPI list using 

perl 5 v18 to produce the list of interactions used in the network. 

A list was also compiled containing high quality virus-gene associations, taxonomy , 

and classifications using data obtained from the International Committee on 

Taxonomy of Viruses (ICTV) (“International Committee on Taxonomy of Viruses 

ICTV,”). 

Processing the VIP data to map between NCBI and UniProt 

accessions 

Each host protein contained within the compiled list of viral interactions as then 

mapped onto the corresponding NCBI gene using perl 5 v18 and a custom dataset of 

UniProt IDs and their corresponding NCBI IDs obtained from HGNC (11/02/2020). 

This data was subsequently used to compute the number, family and class of viral 

interactions for each gene. 

Assignment of gene ages 

Gene ages were computed using the general methods detailed in chapter 1. 

Data for Ohnologs and other information 

A list of approved gene symbols and their corresponding Ensembl IDs was obtained 

from HGNC. A preliminary file containing evolutionary information for each 

Ensembl gene within this set was then created using perl 5 v18. Disease associations 

were obtained from the Online Mendelian Inheritance in man database (OMIM 

https://www.omim.org) via the genemap2 file (11/02/2020, Supplementary file N). 

Each row within this file was cross-referenced, and only gene associations with an 
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observed phenotype, not previously flagged by OMIM as “non-disease” were 

retained. 

Heritability was assigned based on a text search of the genemap2 file for the 

terms “Dominant” and “Recessive”, any further association achieving the initial 

criteria, but lacking a match to “Dominant “ or “Recessive” was assigned 

“Unknown” heritability. All remaining genes were classified as “None”. 

Pre-computed gene and family ages (see general methods) were cross-

referenced with this list and added accordingly. Haplosufficiency ranks were 

downloaded from Decipher (https://decipher.sanger.ac.uk) via the HI Predictions 

Version3 file on the 11/02/2020, and cross-referenced with the preliminary gene list. 

Paralog statuses were computed using a combination of data obtained from 

Ohnologs2 (ohnologs.curie.fr 11/02/2020) and Ensembl. Whole genome duplication 

status was defined if the gene was present in either the ‘strict’ or ‘intermediate’ 

human pairs sets, having a q-score of less than 0.001 or 0.01 respectively for both 

outgroups and self-comparison. Small scale duplication (SSD) status was assigned 

by cross-referencing any genes not already identified as ohnologs with a list of all 

paralogous human genes per chromosome and their partners obtained from Ensembl 

99, GRCh38.p13. Any remaining genes, not present in either the Ohnologs2 or 

Ensembl data were termed ‘Singleton’. These attributes were collated into a dataset 

of 38024 human genes, and subsequently subset using Perl 5 v18, to cover only 

those genes present in our network (Supplementary file N). 
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Statistical analysis of Disease/VIP intersect 

In order to ascertain the significance of the proportion of genes that fall within the 

intersection between disease and VIP it was necessary to compare the observed 

number of genes, with that which we would expect to see given a random 

distribution. To do this we implemented the following in R: We first restricted the 

data to only genes with both a known VIP and disease status (including statuses of 

“none”). All genes with a disease status that was not “none” were defined as 

heritable disease, and all genes with a VIP type that was not “none” were defined as 

VIP. Using Plyr (Wickham, 2016) and VennDiagram (Chen and Boutros, 2011) 

packages both the total number of genes within the test population (VIPs, Ancient 

genes, Ohnologs and SSDs) and the number of genes from that population observed 

in the disease/VIP intersection were recorded. N genes (where N is the total number 

of genes in the population) were then sampled from the full data 10,000 times, and 

the mean number of genes from this sampling that were also disease and VIP 

associated was recorded. Using the prop.test function within R, the observed number 

of intersecting genes for each test population, and the expected number (the mean 

observed following random sampling), as proportions of the total number of genes in 

that population were compared, and a X-squared p-value generated. 

This process was repeated to look at the specific heritable disease types 

(Dominant and Recessive), where, rather than retaining all “none” disease 

associations, defined as heritable disease, we only considered the desired disease 

type (Dominant or Recessive), the remaining disease genes were retained in the 

sample pool and treated, for the purpose of the sampling step as ‘none’. 
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Identification and classification of driver nodes 

Driver nodes for the network are identified by calculating the minimum dominating 

set. For a graph G(V, E), where V is set of nodes and E is set of edges, a subset S ⊆ 

V is called dominating set (DS) if every node in V is either an element of S or is 

adjacent to an element of S. That is for an undirected graph, any node v ∈ V,v ∈ S 

holds or there is a node u ∈ S such that there exists an edge (u,v) ∈ E then we say 

that v is dominated by u. S is dominating set if each node in V is either in S or 

dominated by some node in S. A minimum dominating set (MDS) is a dominating 

set with the minimum number of nodes. The MDS forms the driver node set. Since 

the computation of MDS is NP-hard, we used integer linear programming (ILP) to 

compute the MDS by assigning 0 − 1 variable to each vertex, where 1 is if v is part 

of MDS else 0 (Nacher and Akutsu, 2012). A graph can have multiple minimum 

dominating sets and hence multiple minimum driver node sets with the same size 

ND. So, each node is categorized based on its presence in the driver node set. If a 

node is always present in all MDS, it is a critical driver node, occasionally present in 

MDS then it is an intermittent driver node and if a node is never part of any MDS 

then it is a redundant node (Nacher and Akutsu, 2014). Degree centrality measures 

were computed using the igraph package in R (CSARDI, 2006). An example of the 

final compiled dataset  can be seen  in table 5.
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Table 5 : Example of selected rows and columns from the compiled preliminary data-VIP-network dataset. Data available at: 

https://github.com/AlexMartinGeary/Hopless_Monsters/blob/master/VIPs/Masterfile_14Feb.csv 

Gene_ID Uniprot_ID

Aproved_gene

_name ENS_Gene_id Ortho_Age

Paralog

_status

Haplosufficiency

_Rank

Disease_

Association Family_ID

Average Shortest 

Path Length

Betweenness

Centrality

Clustering

Coefficient

Control

.category Degree

Neighborhood

Connectivity

Topological

Coefficient

VIP_

type

1 A1BG_HUMAN A1BG ENSG00000121410 96 SSD 90.38 None 1461 2.96737983 3.02E-05 0.03162055 intermittent 23 146.782609 0.06335242 NA

2 A2MG_HUMAN A2M ENSG00000175899 158 SSD 49.36 None 2732 2.58243957 0.000978 0.03568512 intermittent 157 115.439491 0.01496538 Multi

9 ARY1_HUMAN NAT1 ENSG00000171428 435 SSD 59.87 None 7849 3.29974993 1.00E-08 0 intermittent 2 379.5 0.53385049 NA

10 ARY2_HUMAN NAT2 ENSG00000156006 435 SSD 80.21 None 7849 2.84162267 6.98E-06 0.12121212 intermittent 22 245.818182 0.0622695 DNA

12 AACT_HUMAN SERPINA3 ENSG00000196136 158 SSD 97.04 None 339 2.85468186 0.000126 0.01282051 intermittent 40 121.45 0.03226302 NA

14 AAMP_HUMAN AAMP ENSG00000127837 796 SSD 18.04 None 4734 2.78288413 3.39E-05 0.04836415 intermittent 38 215.894737 0.04601472 NA

15 SNAT_HUMAN AANAT ENSG00000129673 435 Singleton 74.21 None 0 3.05779383 1.33E-06 0.1 intermittent 5 319.4 0.22062284 NA

16 SYAC_HUMAN AARS1 ENSG00000090861 796 SSD NA None 1570 2.58577383 2.89E-05 0.21812596 intermittent 63 433.587302 0.05508669 RNA

18 GABT_HUMAN ABAT ENSG00000183044 796 SSD 41.04 None 749 2.87096416 4.08E-05 0.09090909 intermittent 11 409.181818 0.11322085 DNA

19 ABCA1_HUMAN ABCA1 ENSG00000165029 176 Ohnolog 9.43 None 731 2.73375938 0.000203 0.04091175 intermittent 59 170.016949 0.03157245 Multi
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5.4 Results 

Critical driver nodes are molecular drivers in PPI networks; Highly 

connected and central host proteins are critical in PPIs.  

One of the primary goals of the investigation of biological networks is to expand our 

understanding of the behaviour of the system. As an example, this could mean 

elucidating the basis of changes in phenotype, such as from a healthy to a diseased 

state or vice versa. In order to establish the importance of a protein and its role in 

driving the state of the system, we computed the driver nodes for the human protein-

protein interaction (PPI) network, and characterised their biological importance in 

terms of their interaction with viral pathogens, and involvement in heritable disease. 

In terms of network controllability, driver nodes are those that can steer the state of 

the system from an initial state to a final state in finite time. We identified the driver 

nodes in our PPI network using the minimum dominating set (MDS) method 

(Nacher and Akutsu, 2012). According to MDS, those nodes that are part of the 

minimum dominating set are the driver nodes. For a network, given the possibility of 

multiple traversal routes, multiple minimum dominating sets may exist, we therefore 

further classify each node in the PPI network as critical, if they are always present in 

all dominating sets, intermittent, if they are sometimes present and redundant if they 

do not appear in any MDS. In our network of 18,008 nodes and 359,379 edges, we 

found 203 critical driver nodes, 16,467 intermittent driver nodes and 1,338 

redundant nodes. 
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Figure 24 : Average connectivity/ degree (k) of (a) driver nodes and (b) VIP, 
disease, and paralog genes in the PPI network. Average betweenness centrality (b) of 
(c) driver nodes and (d) VIP, disease, and paralog genes 

 

Driver Nodes 

To better characterise to what extent the viral-targeted, and disease associated host 

proteins affect the functioning and the robustness of the PPI network, we analysed 

their topological properties. We calculated the connectivity/degree (k), a count of the 

number of direct interacting partners of each protein, and betweenness centrality (b), 

a measure of the number of shortest paths that pass-through a given node, for each 
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protein in our network. Figure 24a shows that the critical driver nodes (mean = 

391.33) have a higher k compared to intermittent (mean=38.72) and redundant 

(mean= 1.25) nodes (P value= < 2X10−16 pairwise Wilcoxon test). 

The critical driver nodes (mean=8.87X10−3) had higher betweenness 

centrality than intermittent (mean=7.16X10−5) and redundant nodes 

(mean=6.98X10−8) driver nodes (P value= < 2X10−16, Figure 24c). Further to this, 

the VIPs (mean= 78.18) have both a significantly higher degree k compared to non-

VIP (mean=22.40) (P value= < 2X10−16 one-tailed Wilcoxon test) and had higher 

centrality than non-VIPs (mean=1.23X10−4) (P value= < 2X10−16). It is known that 

network dominating nodes are integral for signalling and cellular function 

(Milenković et al., 2011), and this is also what we find. We propose that this leads to 

highly connected, and important genes becoming ideal targets for viral interaction. 

Disease Genes 

Among the heritable disease genes, the disease group (mean=52.59) had a 

significantly higher mean k (39.58) compared to those without a known disease 

association (P value= 1.408X10−21). Looking at the topological features, these 

genes had a significantly higher centrality (mean=1.70X10−4) compared to non-

disease genes (mean=1.68X10−4) (P value= 9.20X10−26 one-tailed Wilcoxon test), 

which we would expect given that their disruption is known to lead to deleterious 

phenotypes.  

Paralogs 

When looking at the connectivity among duplicated genes we observed that 

ohnologs (mean=45.57) had significantly higher connectivity compared to SSD 
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(mean=39.99) and singleton genes (mean=34.01) (P value= < 2X10−16 pairwise 

wilcoxon test) (Figure 24b). Given that ohnologs are by definition evolutionarily 

ancient, and have been found to be largely essential this finding makes sense, 

particularly given their high associations with heritable, largely dominant disease. 

Interestingly there is a marked elevation in the variance of centrality (b) scores for 

the singleton group when compared with the other categories (Figure 24d). Looking 

more closely at our network it was found that this is caused by an outlier gene 

(IGFLR1) which, rather than being found in the full ‘hairball network’ graph, is 

central to a second fragmented graph containing only a few nodes. This 

fragmentation results from the fact that, at present, interaction information for 

biological networks is incomplete, therefore on occasion smaller ‘fragmentary 

graphs’ are found to occur alongside, and distinct from the larger network graph. 

VIPs target critical driver nodes  

Viral interacting proteins are those host proteins that have been identified as either 

being targets of, or acting against viruses. We have previously shown the importance 

of driver nodes as potential VIPs (Ravindran et al., 2019). For the purpose of this 

analysis, we not only identified a confident set of viral interacting proteins, but 

further classified these into three virus-type sub-categories depending on the type of 

virus with which the protein is known to interact; DNA, RNA and Multi (those 

proteins that are targeted by both DNA and RNA). We found a statistically 

significant enrichment (P value= < 2e−16) of VIPs among critical driver nodes ( 

70%) compared to intermittent (33%) and redundant nodes (4%) (Figure 25). Among 

these critical-VIP nodes, there was no significant difference between the proportions 

of those associated with DNA (17%) or RNA (13%) viruses, however, in contrast 
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with both of these groups, we found that the proportion of genes in the ’multi’ group 

(70%) was significantly elevated (P value= < 2e−16), demonstrating a prevalence of 

critical status among nodes which also interact with both DNA and RNA viruses. 

Among the intermittent nodes there is no particular enrichment for any specific VIP 

category with roughly a third belonging to each virus interacting group (Figure 25). 

 

Figure 25 : Bar charts showing the ages of genes in the human genome, as 
calculated using the most recent common ancestor method of age assignment. A) 
Stacked bar chart showing the ages of disease genes. Stack colours represent the 
various disease associations (Unknown disease association -blue, Recessive -pink, 
Both -green, and Dominant -black). B) Venn diagram illustrating the previously 
observed intersect between VIP (grey), and Heritable disease associated genes 
(orange), as observed within our network. C,D & E) Bar charts showing the 
distribution of ages within the critical (black), Intermittent (blue), and relaxed 
(green) node sets respectively. F) Stacked bar chart showing the relative ages of 
VIPs. Stack colours represent viral associations DNA -blue, RNA -green, and Multi -
black 
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Figure 26 : Comparison of VIP types among driver nodes. Genes that interact with 
DNA viruses are shown in dark purple; RNA in yellow and both DNA and RNA 
viruses in blue. Non VIP interacting nodes are shown in the columns to the right in 
green. 

VIPs and disease genes intersect 

VIP and Heritable disease genes have been found to commonly intersect (Navratil et 

al., 2011), and our results confirm this (Figure 26B). Specifically, we found that a 

significantly greater proportion of VIP genes intersect with heritable disease than 
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would be expected to occur at random (P value= 0, n=438, 7.8%). This is also the 

case when comparing VIP status with the known disease sub-categories, as, there is a 

continued over-representation beyond the expectation of both Dominant (P value= 

0), and Recessive (P value= 0.0246) disease groups. 

Disease genes are predominantly ancient 

A large proportion of human genes arose at the time of, or prior to the last round of 

whole genome duplication (Figure 26A). Within our network we found that, of the 

16,931 genes for which an age was able to be computed, 11,220 (66%) are ancient, 

having occurred at the time of, or prior to the estimated two rounds of WGD (age 

cut-off 435 MYA), and 5,711 (34%) having arisen more recently. Given the fact that 

evolutionarily ancient genes are more likely to be associated with disease (Martin-

Geary et al., 2019) it was our expectation that there would be an enrichment of the 

genetic-disease associated genes present within the ancient (615my or older) group, 

with very few having arisen since the last round of WGD. When comparing the 

proportion of disease genes arising at or prior to the last round of WGD with the 

total proportion of genes arising at this point this is indeed what we see (N=863/75% 

P value= 2.618e − 09, Figure 26A). 

Duplicated genes (Ohnologs) are often disease associated 

As briefly highlighted above, there is a strong link between paralog status, 

specifically genes that are known to have arisen following a duplication event, and 

heritable disease. In order to explore this relationship in genes within our network, 

we compared the proportions of dominant and recessive disease associated genes in 

the three paralog status groups (Ohnolog, SSD, Singleton), with the overall network 
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proportions (Table 6). We found that in the full gene set (17,696 genes for which 

data were available), 1062 genes (6%) had a known disease association (’dominant’, 

’recessive’ or ’both’) Of which 313 (29%) were dominant, 600 (56%) recessive, and 

149 (14%) had both dominant and recessive known disease associations. When 

looking within the three duplication types (Ohnolog, SSD, and singleton); of the 

5,525 Ohnolog genes, 373 (7%) were found to be associated with heritable disease. 

151 (40%) of these associations were exclusively dominant, 166 (45%) recessive, 

and 56 (15%) were found to be associated with both dominant and recessive 

diseases. Within the SSD gene group, we found that of the 8,316 genes, 476 (6%) 

were associated with heritable disease. Of these, 119 (25%) were associated with 

dominant disorders, 273 (57%) recessive, and 75 (16%) both. Lastly, within the 

3,855 singleton genes, we found that 222 (6%) were associated with heritable 

disease. 43 (19%) of which being dominant disease associations, 161 (73%) 

recessive, and 18 (8%) both. 

Table 6 : Profile of disease genes within the differing paralog types (Ohnolog, SSD, 
and Singleton) vs the whole network 

 

All Disease Dominant Recessive 

Network 6.5% 1.7% 3.3% 

Ohnologs 7.4% 2.7% 3% 

SSDs 6.1% 1.4% 3.2% 

Singletons 6.1% 1.1% 4.1% 

 

A comparison of proportions of disease genes 

(Recessive/Dominant/Both/Unknown/None) within each paralog group by 

comparison with the proportions of each disease set observed across the full 

network, showed that ohnologs are enriched for Dominant disease genes (P value= 
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1.005e − 05) and depleted for genes without a disease association (P value= 

0.02244). Singletons, however, were found to be depleted of both dominant, and 

dominant and multi-heritability associated genes, but enriched for recessive disease 

associated genes. 

Ohnologs are enriched for intermittent nodes 

It has previously been identified that Ohnolog genes are more likely to be associated 

with dominant disease (Fotiou et al., 2019; Makino and McLysaght, 2010; Martin-

Geary et al., 2019). However, we wanted to further explore the role of paralogs, in 

particular the overlap between duplication and network control. To explore this, we 

calculated the proportion of genes belonging to each control category found within 

each of the three paralog statuses and compared these proportions with the total 

proportion of each control group found in the full network. We found that ohnologs 

are enriched for intermittent nodes (2.2e-16) and depleted for redundant ones (2.2e-

16), SSDs are depleted of intermittent (0.02753) and enriched for redundant nodes 

(0.04631) whilst, perhaps unsurprisingly, singletons are depleted for critical 

(0.003143) and intermittent nodes (2.726e-09) and enriched for redundants (7.935e-

14). When juxtaposing this analysis by looking at the proportions of the different 

paralog groups within each control category compared with the network totals, we 

find that critical nodes are significantly less likely to be singletons than would be 

expected (0.0004491). Intermittent nodes are more commonly found to be ohnologs 

than expected (0.0261), and Redundant nodes are significantly depleted for ohnologs 

(2.2e-16), whilst being enriched for SSDs (0.001645) and Singletons (2.2e-16). This 

means that evolutionarily important genes, when duplicated, have a propensity to 

become intermittent. This, we propose, is likely due to the subsequent rapid sub-
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functionalisation of genes within these duplicated pairs (Su, 2005). This is 

particularly true of ohnolog genes, likely due to their strong links with essential 

function and fragility. This finding is indicative that whole genome duplication acts 

as a buffering mechanism in which genes with a heightened propensity for fragility 

(Martin-Geary et al., 2019) may become more robust to variation, whilst maintaining 

important functions. 

How Driver/paralog status relates to VIP status 

We next explored the relationship between paralog status and a gene’s propensity to 

be viral interacting (Table 7). We found that of the 5,649 VIP genes in the full 

network 1,900 (34%) were Ohnologs, which, when compared with both the network 

proportions (5525/31%) and expected values (mean exp= 1,764) is a significant 

enrichment (network P value=0.0007425, expected P value=0.006591), 2,469 (44%) 

were SSDs (Network= 8316/47%, mean exp= 2,655), a significant depletion 

(Network P value= 1.717e − 05, expected P value= 0.000465), and 1,280 (23%) 

were singletons (Network P= 3,855/22%, mean exp P= 1,230), which is not 

significantly different to either the full network or the mean expected values. 

Table 7 : Raw observed/expected number of critical, intermittent, and redundant 
nodes in each paralog status set, alongside their comparative P-values (prop.test). 

Statistically significant differences are shown in green. 
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Critical and intermittent nodes tend to be ancient 

When assessing the relative ages of genes in the differing network control groups, 

we found that, of the 202 critical nodes for which ages were calculable 140 (69%) 

are ancient, and 62 (31%) have arisen since the last round of WGD (Figure26 C). Of 

the 15,856 intermittent nodes for which age was calculable, 10,682 (67%) were 

found to be ancient, and 5,174 (33%) have arisen since the last round of WGD 

(Figure 26 D), and for the 873 redundant nodes, we found that 398 (46%) are 

ancient, with 475 (54%) having arisen since the last WGD (Figure 26 E). Comparing 

the proportions of ancient genes between each of the three control sets we found that, 

whilst the proportions of ancient genes in the critical and intermittent node groups 

are broadly similar, they are both significantly enriched for ancient genes by 

comparison with the redundant group (Pairwise P value= 1.8e − 13 and P value= 2e 

− 16 respectively). This is consistent with younger genes being less integral to 

network control, and having less involvement in important biological function. 

Pathways analysis of VIP and disease genes 

In this analysis, we show that heritable disease and VIP status can provide valuable 

information regarding the evolution of network control nodes. However, they alone 

cannot explain the complex mechanisms involved in the disease progression. To 

explore this issue further, we performed pathway enrichment analysis using 

Reactome (Jassal et al., 2019). In total we analysed 438 proteins that are both VIPs 

and disease associated. We found that the top pathway enriched for VIP-disease 

genes relates to cellular response to stress, a pathway essential to maintain tissue 

homeostasis when the metabolic and signalling processes are perturbed (Galluzzi et 
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al., 2018), with others relating to transcription, translation processes and, 

unsurprisingly, the immune system (Table 8). 

Table 8 : Top 10 enriched pathways for VIP and Disease genes 

 

To further understand how the properties of our data intersect with biological 

function more broadly, we selected a small portion of one of the top ten, and highly 

conserved pathways in eukaryotes (Wahle, 1999) for visualisation. Figure 27 shows 

the locations of the nodes within our network that fall into each combination of 

driver and paralog status. Predominantly, the nodes within this sub-pathway are 

intermittent, which is consistent with our expectations given the importance of the 

pathway, and the large number of intermittent nodes in the Human PPI network. 

What is interesting to note, is the relative frequency with which critical nodes are 

also Ohnologs within this pathway. Whilst It is beyond the scope of the current 

analysis to investigate this further, it raises some interesting questions regarding the 

possibility that there may be pathway specific relationships between driver and 

paralog status. 
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Figure 27 : An example subset of the ‘Processing of Capped Intron-Containing Pre-
mRNA’ Pathway modified from Reactome. Ohnologs are represented as squares, 
SSDs as circles, and Singletons as Triangles. Critical nodes are shaded in dark blue, 
intermittent nodes in mid-blue and redundant nodes in pale blue. Small molecules, 
such as ATP are shown as yellow ovals, and protein complexes are shown as grey 
rectangles, with the constituent proteins totalled in each paralog-driver group.  
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5.5 Discussion 
 

Our observed correlation between heritable disease and VIP status of certain genes is 

not a result of VIPs targeting disease associated genes, but rather the underlying 

evolutionary importance of these genes leading to ’new’ associations. 

Critical driver nodes have a higher degree, and betweenness centrality 

compared to intermittent and redundant. This is indicative of their importance as 

’hubs’ within the network, and the fundamental biological processes in which they 

are components. We have previously found that certain viruses target critical nodes 

that would allow them to effectively wrest control of the host cell (Ravindran et al., 

2019). Our findings here, that VIPs of a much broader range of viruses are found to 

have significantly higher degree and betweenness centrality therefore supports both 

these prior findings, and the utility of the MDS method of modelling complex and 

dynamic biological systems. 

Here we show the strong relationship between VIPs and critical nodes, the 

majority of critical VIPs being proteins which are targeted by both DNA and RNA 

viruses. This has, to an extent been alluded to previously, and explained as a 

propensity of viruses to target hubs for efficiency. What we would suggest however, 

is that it is not the high degree that renders a node more likely to be a VIP, but 

instead the likely fundamental biological processes that these genes encode for that 

makes them optimal targets for both DNA and RNA virus types, specifically the 

exploitation of biological machinery that is key to both replication and immune 

evasion. 
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It is not unexpected that, when incorporating heritable genetic disease associations, 

we find that disease associated genes also have a higher degree and betweenness 

centrality than their non-disease counterparts. The fact that we are seeing such high 

values here, underlies the capacity of these genes to lead to undesirable phenotypes 

if disrupted. High betweenness centrality of disease genes has previously been 

explored relative to pleiotropy and disease diversity (Chavali (2010) and Zhou 

(Barabasi 2014) and used as a feature in the prediction of disease genes (Ozgur 

2008). We find that more disease genes are VIPs than would be expected to occur at 

random, regardless of disease type. This is likely due to the fact that disease 

associations expose exactly the features of important genes that viruses preferentially 

exploit, i.e., the high levels of connectivity and betweenness centrality that we have 

shown are key aspects of critical driver nodes. The underlying functions of these 

molecules are likely essential and their products highly expressed, which in turn 

leads to a greater probability of heritable disease associations if they were to be 

disrupted. The intersection between heritable disease and viral interaction we 

suggest, is therefore a correlative, rather than causal one. 

D’Antonio et al (D’Antonio and Ciccarelli, 2011) found that highly 

conserved, ancient genes are commonly ‘hub’ proteins. As discussed earlier, genes 

arising as a result of whole genome duplication tend to be under greater levels of 

negative selection  (Dudley et al., 2012) and, given that the two rounds of WGD in 

the vertebrate lineage occurred 441mya - they are by definition ancient. It is 

unsurprising therefore that, in line with the findings of D’Antonio et al, we have 

found that ohnologs have a significantly higher degree than their small-scale and 

singleton counterparts. It was found that the observed occurrence of ancient genes 

significantly exceeded the expectation, when all disease genes were considered 
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together, and when looking only at genes with recessive heritable disease 

association, but not genes associated with Dominant heritability. The most likely 

explanation for this is the overlap between disease and age. Ancient genes are more 

likely to code for important/conserved proteins that contribute fundamental 

functions, so an over-representation of these genes within the intersect of disease and 

viral interaction is to be expected. What is interesting however is that whilst there is 

a minor elevation, there is not a significant enrichment for Ancient genes in the 

VIP/Dominant disorder group. Whilst it is possible that this is due to the small 

number of genes in this group not allowing for detection of statistical significance, it 

may also be hypothesised that there will be a small number of ancient genes which 

are so important to the host that they do not make for good viral targets i.e., due to 

the likely profound negative implications of disruption of these molecules, and the 

subsequent negative impact this would have on viral ’success’. 

Within the intersection of VIP and disease it was found that, whilst there was 

a minor elevation in the number of ohnologs within the ’all disease’ and dominant 

groups, paralog status does not appear to drive a gene’s propensity to be 

simultaneously disease associated and viral interacting. VIP status aside, we have 

found that contrary to our expectations given the properties of ohnologs and their 

high propensity to be essential, Ohnologs are not enriched for critical nodes, but 

rather intermittent ones. This is also true of small-scale duplicates. An explanation 

for this may tie-in to what we know about the main types of functional fate of 

duplicated genes. For example, a certain group of duplicated genes, those that retain 

ancestral function following duplication are able to compensate for their partner. 

Provision of functional redundancy in this way is a phenomenon known as 

phenotypic masking. This has recently been investigated (El-Brolosy et al., 2019; 
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Ma et al., 2019) and linked to the nonsense mediated RNA decay pathway via 

nonsense-induced transcriptional compensation. A second possible functional 

outcome arising from duplication is sub-functionalisation, wherein the ancestral 

function is subdivided between the ’daughter’ genes. This, it is hypothesised, occurs 

rapidly following duplication events, and can be traced via a reduction in average 

number of splice forms in ancient duplicates and large gene families (Su, 2005). It 

may be the case that what we are seeing here is indicative of a division of ancestral 

function ’dampening’ the impact of ancestral node removal, due to a portion of the 

ancestral function being provided by the sibling gene. It is possible therefore that 

what our results show is a combination of phenotypic masking and subfunctional 

dampening, turning what would otherwise have been ’critical’ functions to a more 

’intermediate’ state. The reason that we are seeing a marked over-representation of 

SSDs as opposed to ohnologs may be due to ohnologs’ need to retain dosage as part 

of a complex. This means that SSDs have a greater level of plasticity (and therefore 

probability of being intermittent) due to not being intrinsically linked with the fates 

of their interacting partners, and therefore posing a reduced risk of stoichiometric 

imbalance. 

Whilst we found that the only instance of a greater number of genes being 

found in the pre-WGD ’ancient’ group than the post-WGD set was within that of 

critical nodes, this increase was not statistically significant. However, in terms of 

depletion of genes within the ancient set, we found that redundant genes were 

significantly less likely to be ancient. This means that ancient genes are more likely 

to exhibit some degree of network control, albeit not necessarily in a critical 

capacity. 
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These combined findings from our analysis of evolutionary and disease related 

properties of the human PPI network, identify that paralog status may have played a 

significant role in the evolution of biological pathways, but not in the way we would 

expect. Rather than the underlying fragility of ohnologous genes leading to their 

being critical to the system, we find that ohnologs, via the provision of redundancy, 

may have provided new routes within the network, resulting in a greater level of 

robusticity than would have been the case had their fragile progenitors remained un-

duplicated.  
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DISCUSSION: WE ARE THE DESCENDANTS OF HOPEFUL 
MONSTERS 

 
 

“it must be the case that the hopeful monster  

will not, in a crucial way, know what is” 

(Jackson, 1997) 
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nderstanding evolution is vital to the study of human 

health and disease. With a greater understanding of 

the mechanisms and processes that inform the 

evolution, not only of humans, but also their pathogens, we have 

provided ourselves with vital ammunition in the war on disease. Notably, 

at the start of 2019 the Institute of Cancer Research made headlines, 

recognising the importance of an evolutionary understanding of disease, 

by pledging £75 million to found a centre of expertise in cancer evolution 

(Le Page, 2019; The Institute of Cancer Research, 2019). It is not, 

however, solely evolution that is relevant to this thesis that has been 

making waves in the science community, but also, following the closure 

of one of the U.K.’s foremost animal facilities (Else, 2019; McKie, 

2019), the increased pressure to produce robust and reliable in-silico 

models for scientific research. 

Despite the relative youthfulness of computational analysis of 

biological data, computational methods have, by and large, been 

embraced by the scientific community. Particularly as performed from an 

evolutionary perspective. Phylogenetics, network analysis, and machine-

learning methodologies are increasingly relevant in day-to-day biological 

research, and robust computational skills are essential to the modern 

scientist. As has been shown in chapters 3:5, the application of diverse 

computational and evolutionary methods has the power to shed light on a 

wide range of human concerns, with the understanding of heritable 

disease, parasitic co-evolution, and virus susceptibility, being just a few 

of the areas in which computational biology has proven integral.  

U 
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In order to fully understand the shaping of the human genome, we 

must understand its journey; the root of all life is thought to have 

emerged on earth ~3.9 billion years ago (BYA) (Tashiro et al., 2017), 

with the division of animalia, fungi and plants beginning at 

~1.5BYA(Wang et al., 1999), and vertebrates arriving on the scene at an 

estimated 530 million years ago (MYA) (Conway Morris, 2000; Newman, 

2002). It is known that at least one whole genome duplication (WGD) 

occurred shortly before this point, however, the timing of the second is 

hotly contested, potentially having occurred either directly following the 

first round, or shortly after the emergence of vertebrates (Donoghue and 

Keating, 2014; Holland and Ocampo Daza, 2018; Keating et al., 

2018). Even without a pinpointed date for the second round, it is clear 

these duplications directly correspond with mass speciation events that 

are indelibly linked with all vertebrate life, as, coincident with the first 

proposed WGD was the onset of the Cambrian explosion, which 

ultimately can be traced as the origin of the many modern metazoan 

species (Deline et al., 2018). Just 2-3 hundred million years ago the next 

major event in the human lineage occurred, with the appearance of the 

sex chromosomes (Bachtrog, 2013), and concluded with their 

morphogenesis into their current form via decay, some time after 166 

MYA (Warren et al., 2008). Jumping rapidly ahead to our very recent 

evolutionary history, humans split from chimpanzee between 4 and 7 

million years ago (Gibbons, 2012) with duplications likely having also 

played a significant role in this event (Bailey and Eichler, 2006). 
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The earliest hominins are thought to have arisen in the region of 4 MYA, 

with the ancestor of our closest non-human hominid (NHH) relatives; Neanderthals 

and Denisovans, dividing from our shared ancestor in the region of 734 thousand 

years ago (Rogers et al., 2017). This was followed just 10,000 years later by the 

divergence of Neanderthal and Denisovan, likely as a result of geographical isolation 

following their migration out of Africa (Rogers et al., 2017).  Their ancient Homo 

sapiens sapiens (Humans) cousin arose from the shared ancestor with Neanderthal 

and Denisovans somewhere between 1 million and just 100 thousand years ago 

(KYA) (Ackermann et al., 2019). Human expansion out of Africa to join their NHH 

relatives occurred between 45 and 60 KYA, however, we now know that the genetic 

fidelity of these early migrants was quickly compromised, as serial founder effects 

rapidly led to huge loss in genetic diversity (Deshpande et al., 2009; Henn et al., 

2019), which can still be seen today when comparing African populations with those 

outside of Africa (Henn et al., 2019). Due to the differing proportions of introgressed 

genes; those found to have evolved in the NHH rather than Homo sapiens sapiens 

lineage in differing populations, it is now known that admixture between 

Neanderthal and Denisovan in the extant human lineages, occurred following the 

initial waves of ancient human migration out of Africa (Ackermann et al., 2019; 

Enard and Petrov, 2018b), and at different frequencies in different populations across 

the globe. 

It is unclear at what point on our journey across the earth we began 

encountering both pathogens and heritable disease, but as discussed in chapters 3:5, 

the duplication events that shaped our genomes, are also key to our susceptibility to 

both. From archaeological data and evolutionary analysis, we are able to infer that 

prokaryotic pathogens such as Treponema Pallidum, eukaryotic pathogens such as 
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Trichuris trichura, and a plethora of viruses, likely have been infecting humans for 

thousands of years (Anastasiou and Mitchell, 2013; Dutour, 2013; Enard and Petrov, 

2018b; Johnson, 2019; Søe et al., 2015, 2018), with viruses not only having co-opted 

the important features of certain human genes, as discussed in chapter 5, but also, in 

the case of RNA viruses, playing a large role in shaping whole swathes of our DNA 

(Enard and Petrov, 2018b). The co-option of introgressed material from our NHH 

relatives has proven vital to our survival as a species, having a key hand in shaping 

the immune genes that provide us with resistance to pathogens. Further to this 

however it has also, to a degree counteracted serial founder effects which occurred 

following our migration out of Africa, by introducing an important reservoir of 

tolerated variation into different human populations (Ackermann et al., 2019). 

Whilst relatively little genetic change has occurred in the short time since the 

extinction of our NHH relatives, humans as a species have come a long way. A large 

part of that progress has been made in the fields of science, and medicine. As 

discussed in the introduction to this thesis, the sequencing revolution has allowed us 

to gain unprecedented insight into the major mutations that have brought us to where 

we stand today, but it has also provided us with a good deal of insight into human 

disease. As previously discussed, (chapter 5) viruses have played a key role in 

shaping the human genome, but now, given our refined understanding of how they 

evolve and interact with human physiology we are able to limit their annual death 

toll with the use of vaccines. Modern medicine has provided an evolutionary escape, 

where previously, outbreaks would have resulted in a large death toll such as the 

case of the H1N1 pandemic in 1918, which killed an estimated fifty million people 

(Chandra et al., 2018). It is our hope that analyses such as our study in chapter 5 may 

help to push these advancements further. The placement of viral targets within the 
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broader context of both pathways, and the larger biological system provides an 

insight into the key features of genes involved in viral infection, and can inform the 

way that new pharmaceuticals act to combat viral attack, without disruption to the 

broader network in which they are integral components. 

Similar to the advancements in technologies for the treatment of viral 

infection, with the use of increasingly sophisticated methods we can now secure the 

survival of many sufferers of both heritable, and somatic diseases. For example, in 

1995 the overall 8-year survival rate of patients undergoing the, then-new trial for 

treatment of Acute Myeloid Leukaemia, of which I was a member, was 38-40% 

whereas, by 2015 this figure had increased to 74% in the child cohort alone (Burnett 

et al., 2010; Reedijk et al., 2019). It should be noted that, to date the majority of 

causal variants linked to genetic disease have been uncovered in protein coding 

regions. Whilst it is likely that the lion’s share of disease is indeed attributable to 

coding variation, there are vast swathes of the genome that contain important 

functions, for example regulatory elements and splicing, that are to date poorly 

characterised, but likely to be deleterious if disrupted. There is, it seems far more to 

health and disease than can be found in the protein coding regions alone.  

Whilst it is beyond question that advancements in the treatment of human 

disease are outstanding, it also means that, to a degree we have managed to evade 

purifying selection by providing individuals who are potential carriers of deleterious 

genetic traits, to survive to reproductive age. It is important to make clear that, 

despite the often bleak or negative terminology used when discussing heritable 

disease, what we call disease is not universally pernicious, and in a number of cases, 

particularly within some of the impacted communities, this diversity is seen, 

rightfully, as something to be celebrated. This increasing saturation of genetic 
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disease in the human population, does however require us to obtain a far greater 

understanding of the basis and mechanisms that lead to heritable disease, in order to, 

for want of a better word, either ‘correct’ these variants, or, at the very least account 

for them. In chapter three we found that heritable disease, within gene pairs, most 

commonly tracks to both the most conserved and haploinsufficient of the two. This 

type of understanding is integral to both downstream prediction, and discovery of 

specific disease associations, which in turn, we hope, will lead to the development of 

novel therapeutics, or the repurposing of existing ones.  

The role that large-scale mutations, particularly duplications play in the 

human condition is complex, both in terms of the nuanced ways in which they have 

shaped both disease and health, but also in their key involvement in the evolution of 

lineage specific complexity. Gene duplication is now known to be highly associated 

with eukaryotic transcriptional complexity and morphological diversity, and is 

linked to both chromatin remodelling, and epigenetic factors not present in 

prokaryotes (Hajheidari et al., 2019). Even within prokaryotes, duplicated genes 

have been found to be important, encoding for functions that aid in proliferation and 

ultimately, species survival (Bratlie et al., 2010). This association with survival is 

not limited to prokaryotes however, as gene and genome duplications, it is proposed, 

have contributed to reduced extinction risk in many eukaryote species, via provision 

of a heightened ability to adapt, mutational robustness, increased evolutionary rates, 

and functional redundancy (Crow, 2006). Our interpretation of the findings we set 

forth in chapter 5 are in support of this increased plasticity afforded by duplication. 

The fact that duplicated genes provide intermittent control of human biological 

networks in place of their, likely-critical progenitors, is suggestive of a ‘rewiring’ of 

underlying fragility that has contributed to an increase in systemic robustness, and 
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may to a degree, implicate a level of defence against viruses, which favour the 

targeting of critical nodes. 

Relatively recently, in evolutionary terms, it is evident that duplication has 

played a continued part in shaping the genomes, and in turn the physiology of 

complex organisms. The innate immune system, for example, is likely to have 

appeared at the same time as the emergence of vertebrates (Boehm et al., 2012), with 

later addition, due to duplication, of class I MHC genes occurring in the human line 

some time following our divergence from birds and sharks (Kulski et al., 

2002). Lineage-specific biological differences between five species of hominoid 

including human and great apes, have been identified, and directly linked with copy 

number variations (Fortna et al., 2004; Hurles, 2004), alongside human specific traits 

directly stemming from transcription derived gene fusion as a result of segmental 

duplication (Am et al., 2019). 

The planet on which we live is populated by diverse species, each with a 

level of interdependence on each other, many having shaped each other’s histories. 

We have discussed the co-evolution of pathogens, and the ways that viruses have 

helped mould the human genome, however not all interactions are negative. Early 

farming practices, for example, involving the cultivation of maize and secondary 

animal products such as milk have directly impacted human physiology, behaviour, 

and genetics (Prohaska et al., 2019). Many species show high levels of genetic 

adaptation to their ecological niche. Humans, under the right circumstances have the 

ability to adapt to changing oxygen abundance, with modern humans living in high 

altitude areas having been shown to genetically adapt to the associated reduction in 

oxygen levels (Azad et al., 2017; Gnecchi-Ruscone et al., 2018; Horscroft et al., 

2017; Yang et al., 2017). When habitats change more rapidly than a species’ ability 
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to adapt, the results can be detrimental. Directly following the mass expansion of 

biodiversity due to WGD during the Cambrian explosion, were the Botomian and 

Toyonian periods, two major periods of mass extinction. These events it is now 

understood, were due, at least in part, to atmospheric oxygen depletion (He et al., 

2019). 

As discussed in chapter 3, a good deal of biological complexity is liable to be 

due to the asymmetric evolution of both small-scale and whole genome duplicated 

gene pairs, which not only has shown to allow the provision of repurposable genetic 

material via the relaxation of constraint on the more divergent, less ancient gene. But 

has, as illustrated in chapter 5, in certain circumstances provided a degree of 

redundancy, wherein a second copy of an important molecule may be available to act 

in a compensatory manner, should its partner be lost (El-Brolosy et al., 2019b; Ma et 

al., 2019). The asymmetric relationship of duplicates in evolution, alongside added 

variation, and large-scale mutation in general, are therefore important to the human 

condition in a bi-fold manner, wherein they have provided both a degree of 

redundancy, and repurposable genetic material that has directly contributed to 

features that define our species.  

It is not the provision of new material alone that has been important to human 

health and disease however, but the way in which this material is transcribed and 

expressed. A recent study into differential expression of essential duplicates found 

that, within gene pairs where both genes are found to be essential, i.e., resulting in a 

lethal phenotype should one copy be lost, expression of these genes tends to occur 

during different stages of development. (Kabir et al., 2019). This finding is 

important to our understanding of the different fates of duplicated genes, as, 

discussed earlier and in chapter 3, compensation has provided an important 
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mechanism for the prevention of disease phenotypes, which has clearly been 

illustrated to be impossible in these instances. In line with this - rather than providing 

increased redundancy via the provision of compensatory copies as found in chapter 

5, in some instances duplication via processes such as the subfunctionalization that 

lead to the division of essential function, may result in both genes in a duplicated 

pair becoming essential as has likely occurred in the more highly constrained 

ohnolog gene pairs in chapter 3. When this is the case, the result is a doubling of 

potential disease in the genome, and an overall increase in organismal fragility. This 

is particularly significant when you consider the underlying cause of disease 

associations in many of these genes, that of ancient fragility (chapter 3). Given the 

fact that whole genome duplication has occurred not once, but twice, it may be the 

case therefore, that whilst the first round afforded some degree of protection, the 

second introduced greater numbers of potential heritable disease associations into the 

system. 

In chapters 4 and 5 we have discussed the role of duplicated genes in human 

susceptibility to pathogens. For both parasites and viruses, we have unveiled the 

underlying features by which ancient duplicates can be co-opted to the benefit of the 

pathogen. Largely this is due to the systemic importance of genes of this kind, in that 

they tend to be heavily conserved in both sequence composition and across diverse 

species. This is important to pathogens for two reasons, firstly the relative stability of 

these genes makes them less able to accumulate ‘evasive’ variants to protect against 

such interactions, as they are under heavy purifying selection. And secondly, their 

presence in diverse host species allows a greater potential for them to jump species 

boundaries and be infective to a greater range of hosts. 
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As discussed, the fixation of large variants has proven exceptionally 

beneficial to human evolution, however, it must be noted that beneficial mutations of 

this kind are fleetingly rare. It is now known that significant developmental disorders 

such as Edwards and Patau’s syndromes are caused by chromosomal abnormalities 

and trisomy (Sun et al., 2019; Williams and Brady, 2019). There is no cure for these 

conditions, however screening is in place within the UK to forewarn parents if a 

child is at risk of suffering from these and other genetic disorders (Sun et al., 2019). 

This early detection however can present some major ethical concerns that underlie 

much research into genetic medicine. Whilst there is not the scope in this document 

to explore the full array of these concerns, one of the foremost, that has become 

increasingly prevalent in recent times is – should humans be allowed to modify their 

DNA? and, if there is no repair possible, at what developmental cut-off is 

termination acceptable? Ultimately these are issues which fall to the individual, or 

their representatives to make, however legislation, informed by scientists and 

medical professionals is required to prevent extreme cases of misuse. As 

technologies and techniques for the detection and modification of deleterious 

variants is accelerating, so too is the desire to rapidly introduce these technologies 

into mainstream medicine. Given the often-long timeframes that this can take 

however, a growing collection of individuals have decided to take matters into their 

own hands. These individuals, known as ‘biohackers’ are procuring cutting edge 

technology and attempting to treat themselves at home in an unregulated manner, 

often to detrimental effect. In August 2019, the first laws were passed in the US to 

regulate “biohacking” (Gent, 2019), which, while being unable to prevent people 

experimenting on themselves, will restrict the sale of gene therapy materials by 

“biohacking” companies to individuals.  
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In chapter 3 we discussed how important genes with ancient origins are not 

tolerant of variation, as, when they do vary this often leads to disease due to the 

underlying ‘fragility’, or importance of these genes’ progenitors. This turns on its 

head the suggestion that duplication is permissive for disease by providing 

redundancy, and is a whole new way of thinking about the mechanics of the 

association between ohnologs and disease, linked to splitting first duplicates into 

small scale vs WGD and then identifying the “older” WGD as being disease 

associated.  

 The extent of this is highlighted in chapters 4 and 5, where we find that 

despite the obvious negative connotations of these genes being targets of viruses and 

other parasites, and are subsequently under pressure to diverge, this is likely 

surpassed by their need to remain constrained. This is an important finding, as, 

following the identification that viruses tend to target disease associated genes, it has 

been assumed that the link between them was through the molecules overlapping, 

however, we show that this is instead due to viruses targeting core/ancestral 

functions. 

We also have discussed recent findings that within complex organisms, due 

to elevated levels of essentiality, reduction in robustness and redundancy occur. This 

poses real limitations to the future evolvability of both ancient genes arising as a 

result of WGD, that make up, in the region of a third of the genome, and genes 

which have evolved novel functions, meaning that potentially relatively little of the 

human genome has an ample capacity for adaptation.  

With regards the future directions of human evolution, there are many 

pressures on a species’ genome that can influence its longevity. These can include 

degree of diversity, which allows continual procreation without the negative effects 
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of inbreeding, directly tied into effective population size; the rate at which the 

species is able to accumulate new variants; the birth rate and ‘litter’ sizes of the 

species; and to what degree they can tolerate large-scale mutations. Living fossils, 

organisms found to exhibit little morphological change over time, and with few 

extant related species (Turner, 2019), have been found to have undergone a 

significant “deceleration” in molecular evolution (Soltis et al., 2002), and require 

both a low extinction rate and low speciation rate in their lineage (Bennett et al., 

2017). By contrast humans have a higher evolutionary rate. As shown throughout 

this thesis however, humans struggle to adapt with any degree of immediacy without 

negative consequences. Dwindling within-species diversity, small effective 

population size, small litter sizes meaning lower likelihood of a ‘temporally 

beneficial' large-scale mutation becoming fixed, and a rapidly changing 

environment, could mean that, for humans it may already be too late.  

It is clear that the imposition of false dichotomies when looking at cases such as that 

of Goldschmidt’s hopeful monsters, the dosage balance hypothesis, or the 

Force/Ohno argument of the existence of asymmetry, can lead to obfuscation of the 

true biological picture. As is the case with Goldschmidt and Darwin, it was not they 

who defined the argument as dichotomous, however, the result was, that for decades 

our understanding of biology may have been marred by Goldschmidt’s theory having 

failed to gain traction. Since the 1950s Richard Goldschmidt’s hopeful monsters 

hypothesis has, to a degree been revived, and did not in fact, become a dead end, but 

was he right? Looking at what is known about the evolutionary history of humans as 

presented here, a clear argument can be made for the role of large-scale mutations in 

vertebrate evolution being a significant one. They have provided sizable quantities of 

DNA for repurposing, that have allowed us to thrive and gain novelty, complexity, 
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and environmental plasticity. This however is not the end of their involvement, as; 

accompanying these benefits is a decrease in redundancy in line with the increased 

essentiality that accompanies complexity. This has meant that the ancestral fragility 

underlying many duplicated genes and structural variants, has provided a platform 

for the emergence of more of the same. 

Evolution, at the molecular level, is a slow lottery, and we could be forgiven 

for feeling like we are static in the situation – however, we are not. It will be difficult 

to truly predict where we go from here, can we survive in a changing environment if 

our ability to accumulate beneficial large-scale mutations is impaired, and, if we do 

acquire them, due to small litter sizes could they become fixed? Are point mutations 

alone enough, not only to provide us with the novelty needed to cope with change, 

but also the diversity required to avoid species-wide deleterious homogeneity? Or, is 

the curtain closing on Homo sapiens?   

Given the rate of advancement in the field of genetics it is not beyond the 

realm of possibility that we could soon be able to supplement natural evolutionary 

processes and introduce new redundancy to the system, encourage our environment 

to adapt to us, or better still, slow the current rate of change. Of course, given the 

state of global affairs as it currently stands, for humans to be able to make the 

discoveries required to ensure our future we are going to need to be a lot more 

‘hopeful’ than might’ve been the case two decades ago. An increasing sense of 

mistrust in “so-called experts” instigated and fuelled largely by grandstanding 

charlatans for their personal, often political gain, coupled with some high-profile 

cases of indefensible scientific misconduct, are directly influencing the funding of 

vital areas of research such as these, and may have sealed our fates as hopeless 

monsters at a time when it is critical to understand the nature of life, the universe, 
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and our place within them. The research presented within this thesis is novel, 

however the conclusions are not. As phrased best by H.G. Wells in 1945: 

“A series of events has forced upon the intelligent observer the 

realisation that the human story has already come to an end and that 

Homo sapiens, as he has been pleased to call himself, is in his present 

form played out. The stars in their courses have turned against him and 

he has to give place to some other animal better adapted to face the fate 

that closes in more and more swiftly upon mankind. 

That new animal may be an entirely alien strain, or it may arise as a new 

modification of the Hominidae, and even as a direct continuation of the 

human phylum, but it will certainly not be human. There is no way out for 

Man but steeply up or steeply down. Adapt or perish, now as ever, is 

Nature’s inexorable imperative” (Wells, 1945) 
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1. ABSTRACT  
It has been found that each individual carries, on average, two potentially disease 

causing mutations (Dorschner et al 2013; Zhu et al 2012) and between 103 (Sunyaev 

et al 2001) and 400 potentially damaging variants. These variants are not however, 

uniformally distributed throughout the genome, with certain genes being more prone 

to disease associations than others. Using the phase three data produced by the 1000 

genomes project, which details genomic variation in 2504 individuals from five 

super-populations across the globe, alongside data pertaining to genes which have 

arisen from whole genome duplication events, known as ohnologs, and OMIM 

disease data, it has been found that healthy individuals are able to tolerate relatively 

high proportions of variation in ohnologous genes linked with both dominant and 

recessive disorders. This, it is hypothesized, is due to the presence of gene pairs 

which are able balance dosage in healthy individuals, and a pattern of compound 

heterozygosity leading to compensation. 
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3. INTRODUCTION 
 
It has been found that each individual carries, on average, two potentially disease 

causing mutations (Dorschner et al 2013; Zhu et al 2012) and between 103 (Sunyaev 

et al 2001) and 400 potentially damaging variants (1000 Genomes 2012), with ~10% 

of genes known to have disease associations (Barabási et al 2011).  

Genetic variation is by no means uniform across the genome. Conservation studies 

have shown that between species there is a heightened propensity towards potentially 

deleterious variants in the most conserved regions in the metazoan lineage (Miller 

and Kumar 2001), whilst regions of interspecies plasticity are far less likely to 

contain potentially disease associated mutations (ibid). In order to obtain a clearer 

understanding of variation, and subsequently predict the occurrence of deleterious 

mutations, it is important to understand the patterns of distribution and evolution of 

variants across the human genome (Henn et al 2015). 

The nature of human diversity is such that it is unlikely that we will be able to 

establish a ‘one size fits all’ Human profile (UK10K 2015). However population 

specific patterns are beginning to be seen which may assist in the elucidation of 

population profiles. Of course, given increasing migration and admixture, this may 

in future change. It is clear that the evolution of the human genome has, in no small 

part been moulded by population structure and dynamics (Cavalli-Sforza et al; Polvi 

et al 2013, Rosenberg et al 2002, Frazer et al 2009), this having been highlighted in 

late 2015 when an analysis of individuals from 26 populations showed significant 

inter-population variation, with ~86% of variants being found to be population 

specific (1000 genomes 2015). 

3.1 SMALL-SCALE VARIATIONS 
Disease causing variation is divided, as standard, into two categories: Mendelian – 

wherein one gene equates to one outcome and, more commonly complex – where a 

composite of variants in multiple genes results in a disease phenotype (Barabási et al 

2011). The majority of variants however are not thought to be deleterious (Frazer et 

al 2009), with a suggested 9.5% of the human genome composed of non-damaging 

mutations (Zarrei et al 2015). Conversely the most deleterious variants are unlikely 

to be seen within sequencing studies, as these variations are likely to result in foetal 
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inviability. Therefore it is unlikely that the ‘worst case’ variants will ever appear in 

the raw data. 

Many considerations need to be made when assessing disease susceptibility and 

mutational load. Population specific factors have been briefly discussed, further to 

this however, are penetrance, frequency, hetero and homogeneity, epistasis, the 

presence of de-novo mutations, epigenetic modifications, and, as shown in figure 1 

variant type, and location.  

In September 2015 

completion of the 

final phase of the 

thousand-genome 

project (1000g) was 

announced, with 2504 

genomes being made 

publically available 

for analysis (Birney 

and Soranzo 2015). 

From this data it has 

been found that ~97% 

of variants are found 

in non-coding 

regulatory regions 

(1000 genome 2015) 

the impact of which 

relatively little is 

known (UK10K 

2015). Many of 

these variants however, are likely to impact upon the resultant phenotype (UK10K 

2015; Maurano et al 2015). We are therefore entering a new phase of variant 

analysis, where, given the greater accessibility of whole genome data, it is 

imperative that non-coding regions are more readily incorporated into study (UK10K 

2015).  

Figure 28: Overview of variation. Including type, classification 
and potential outcome 
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The mutation of a single base, known as point mutation, or single nucleotide 

polymorphism (SNP) is the most abundant individual form of mutation in the human 

genome (1000 Genome 2015), their influence on phenotype being dependent on; 

their location in, or proximity to a gene. Single nucleotide polymorphisms are often 

categorized, based on their properties, into either Synonymous mutations; variants 

which do not radically alter the genomic function, or non-synonymous; leading to 

altered function, which occur at an average rate of one per 1000 amino acids 

(Sunyaev et al 2001). It has been suggested that ~20% of common, non-synonymous 

SNPs alter function (Sunyaev et al 2001), with a recent study of 18,903 genes 

indicating that 576 of those contained a mutation likely to have functional 

repercussions (UK10K 2015).One highly contentious element of this latter type of 

mutation are missense variants (both conservative and non-conservative). These 

mutations are commonly, and often erroneously, classed as functional (Henn et al 

2015). The functional repercussions of missense mutations are better viewed as a 

continuum, covering the span between total loss of function, to gain of function. In 

2013 Petrovski et al conducted a study into the effects of variation on personal 

genomes. The initial phase of the study, mistakenly classified all missense mutations 

as being functional, however, by supplementing the analysis with the use of 

PolyPhen2 , they found a reduction of mutations classified as functional of 33%, 

illustrating the utility of using such tools. 

The ramifications of insertions or deletions (indels) are often easier to predict, as 

they result in codon misalignments, however, this does not always result in an 

aberrant phenotype. Further to this, analysis of splice variants has shown that RNA 

mis-splicing and the accumulation therein of variants and polymorphisms, has led to 

numerous human diseases (Cáceres and Kornblihtt 2002 & Cartegni et al 2002, 

Scotti and Swanson 2016). 

3.2 STRUCTURAL VARIATIONS 
Whilst single nucleotide polymorphisms account for the largest proportion of total 

mutations, structural variations account for an estimated ~20 million nucleotides 

(1000 genome 2015) often spanning many thousands of bases. Distribution patterns 

of structural variants are similar to that of their point and indel counterparts, being 

enriched in genomic regions that have been recently subjected to large-scale 
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duplications (Frazer et al 2009). An estimated ~5% of the human genome is made up 

of such regions, which, impact on phenotypic variation from the norm (Bishara et al 

2015). Targeting regions high in repeated sequence is difficult, in terms of both 

sequencing, and alignment. Due to these difficulties, the role of large-scale copy-

number variants (CNVs) in healthy individuals are poorly understood (Iafrate et al 

2004). A recent study by the 1000 genome consortium however, has attempted to 

quantify various types of structural variation within the human genome (Table 1). 

Table 9: structural variants (1000 genome 2015). 

CNVs arising through whole genome 

duplication events, de novo duplications, 

singleton duplication and segmental 

duplication, have, in recent years begun 

to be more thoroughly investigated, and 

found to play a significant role in disease 

(McLysaght et al 2014), with in the region of two thirds of CNVs resulting in 

functional change (Dudley et al 2012).  These CNVs can represent both increase, and 

decrease in gene numbers, with estimates of gain per chromosome ranging from 

1.1% to 16.4%, and loss from 4.3% to 19.2% (Zarrei et al 2015) alongside large 

scale variation caused by both chromosomal inversions, and translocations (Lupski 

1998; Abeysinghe et al 2003). 

 
Figure 29: Involvement of Ohnologs within disease (Singh et al 2015) 

Whole genome duplication is a contributory factor to structural variation, postulated 

to have occurred twice in human evolutionary history (Dehal and Boore 2005). 

Mutation Type Occurrences 
Large Deletions ~1000 
Alu Insertions ~915 

CNVs ~160 
L1 insertions ~128 

SVA insertions ~51 
Inversions ~10 
NUMTs ~4 
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CNVs arising, and having been retained as a result of these instances of WGD, are 

known as Ohnologs (Wolfe 2000). There are approximately 3544-7831 of these in 

the human genome (Singh et al 2015), and have been linked to a propensity for 

deleterious mutation and association with cancer genes (Figure 2), which account for 

21.6% to 26% of all Ohnologs (8.3% of non Ohnologs), developmental genes, gene 

regulation and signalling, and autosomal Dominant disease (Singh et al 2015). 

3.3 EPIGENETICS 
Whilst still being in its relative infancy, the study of epigenetic variations has 

provided useful information regarding mechanisms of non-genetic inheritance (Szyf 

2015), including the role of noncoding RNAs, Chromatin and histone modifications 

leading to increased accessibility of DNA, and, DNA methylation and 

phosphorylation leading to chromatin inactivation and interruption of transcription 

factor binding (Szyf 2015). Epigenetic silencing, particularly of regions high in 

CNV, has a notable impact on an individual’s phenotype (Schuster-Böckler et al 

2009), and a high correlation between chromatin organization and the occurrence of 

segmental duplications (Ebert et al 2014). It has also been suggested that factors 

such as CpG hypermutability have led to increased mutation rates and diversification 

(Li et al 2010), as the rapidity of evolution of epigenetic modifications is 

considerably greater than that of the lengthier process of genetic selection (Szyf 

2015). 

One of the particular difficulties posed by the study of epigenetics however, is 

understanding heritability, as the majority of parental epigenetic modifications are 

erased during meiosis (Szyf 2015). It is proposed that the mechanism by which 

retention is most likely to occur, is through transmission by noncoding RNAs of 

behavioural signals (Szyf 2015; Soubry 2015). Paternal gamete-mediated epigenetic 

inheritance in offspring may impact on the phenotype (as opposed to the gestational 

impacts that have mainly been studied) as spermatogenesis, a continuing process 

occurring throughout the lifespan of the male, may lead to the accumulation of 

epigenetic modifications retained in this cell type (Szyf 2015). 
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3.4 GENETIC INTERACTIONS 
The co-occurrence of loss of function is of particular significance when assessing the 

role of variation in complex disorders, it has been shown, as the quantities of data 

available for analysis has increased, that genetic interactions between loci are highly 

contributory to complex disease (Marchini et al 2005), and that disease pairs with 

variations in functionally similar domains show a greater degree of comorbidity than 

those in which variation occurs in more dissimilar regions (Barabási et al 2011).  

3.5 ESSENTIALITY, TOLERANCE, AND DOSAGE 
BALANCE 

An estimated 77% of essential genes emerged in a pre-metazoan progenitor (Blomen 

et al 2015). These regions are purportedly invariant, as any variation within them 

appears to have been subject to strong purifying pressures (Wang et al 2015). This 

indicates that variation within these regions likely leads to major deleterious 

functional outcomes, and cannot therefore be tolerated (Miller and Kumar 2001; 

Henn et al 2015; Wang et al 2015). Population studies however, have shown that, 

disease can, and does, occur in genes essential to cellular health, and, variations 

persist (Barabási et al 2011). Ohnologs, as the product of whole genome 

duplications, are also highly conserved. However, despite this fact, they have been 

found to show no more, or less essentiality than that of singletons (Makino & 

McLysaght 2010). 
The disruption of stoichiometric balance posed by variations in dosage can be a significant 

issue to cellular health (Schuster-Böckler et al 2009). However, due to compensatory 

mechanisms, alongside epigenetic silencing, it can be difficult to establish the degree of 

imbalance posed by CNVs from genomic data alone (ibid). It has been found that there are a 

number of genes, which may be considered ‘mildly dosage sensitive’, in the case of these 

genes, variations in copy number may have an impact, which, whilst variation may not be 

viewed as significantly deleterious in a single gene, interactions between a combination of 

mildly dosage sensitive genes, particularly those within an essential network may have 

major phenotypic repercussions (McLysaght et al 2013). 
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3.6 THE RELATIONSHIP BETWEEN GENOTYPE AND 
PHENOTYPE 

In order to better understand and predict both functional and wider disease 

ramifications of genetic variants with greater precision, one must consider the 

molecular components, global organization and interconnected environment of the 

cell (Wang et al 2015; Barabási et al 2011). Beyond this it is suggested that in order 

to understand phenotypes resulting from rare variants, allelic architecture between 

loci should be more thoroughly characterised (UK10K 2015).  

Maurano et al’s seminal study (2015) discovered upwards of 60 thousand variants 

impacting on regulatory DNA accessibility, and transcription factor occupancy. 

Using DNase I hypersensitive site sequencing, combined with DNA genotyping on 

multiple tissues and individuals, they were able to identify 500,000 variants, 

common to regulatory regions, which directly impact transcription factor occupancy 

(ibid). This work highlights the importance of both the involvement of epigenetic 

modification in genetic disease, but also the need to account for both non-coding 

DNA, and, cell specific processes. 

3.7 METHODOLOGICAL CONSIDERATIONS 
Many of the tools and 

methods currently used 

have been designed to 

assess large populations 

as a cohort; therefore, 

their clinical use for 

individual diagnostic 

purposes is limited. For 

example, ExAC’s 

anonymity criteria make 

it impossible to extract a 

single participant, and 

compare regions of one 

individual’s DNA. Over 

the last fifteen years, as 

Figure 30: Number of genomes in each dataset by 
population (Lek et al 2015) 
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sequencing methods have become cheaper, faster, and more precise (UK10K 2015) 

there has been a deluge of data garnered in both publicly available and private 

datasets. The 1000 genomes project, combining open source data and tools to access 

it (Clarke et al 2012), is illustrative of this, with 2504 human genomes having 

recently been made publically available.  

It has been highlighted (Dorschner et al 2013) however, that studies have focused 

disproportionately on individuals of European descent, thus skewing the findings by 

underrepresentation of other populations. This is of particular significance given that 

rare alleles tend to be population specific (UK10K 2015). 

Despite the large quantities of data now at our disposal, and additions to this data on 

the horizon, as observed by the UK10K consortium (2015) (Figure 3) regarding their 

use of the ClinVar database; without the appropriate tools to analyse, identify and 

clinically assess the variation within the human genome our ability to draw 

meaningful conclusions will remain limited. 

It is clear that the human genome and epigenome are prone to vicissitude. Variation 

of both small and large scales are numerous and diverse, the functional ramifications 

of which are wide reaching, from foetal inviability, to lethality, to zero phenotypic 

change, to benefit, or a combination thereof. The analysis of human variation and its 

role in disease has reached a crossroads. Whilst, as has been highlighted, the rapid 

rise in available data has led to much advancement, it has also been the catalyst for 

an excess of issues. Perhaps as a repercussion of this, the erroneous use of 

terminology, and proliferation of disparate nomenclature relating to the same entities 

has occurred, which it is imperative that we quell through standardisation. 

3.9 HYPOTHESIS AND AIMS 
It is hypothesized that there are as yet undiscovered underlying dependencies in the 

organisation of our system arising from being an evolved system, which lead to 

disparate disease propensities in differing genes, and regions of the genome. The aim 

of this research will be to identify these propensities and establish potential patterns 

of inheritance, and evolutionary histories, influencing disease in human populations.  
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4. METHODS 
The analysis primarily focused on the 1000g phase 3 data. This data had been pre-

prepared to create a database instance for use with the MongoDB client (Abramovs 

2016). This was divided into a number of indexes to aid in the ease of data 

extraction. Given prior reporting of variant frequencies within this data (60,000 

structural variants, 3.6 million indels and 84.7million single nucleotide 

polymorphisms (1000 Genomes Project Consortium 2015))  for the purpose of the 

research it was decided that initially the focus would be single nucleotide 

polymorphisms (SNPs) as the most abundant variation type available through the 

variants index. Table 2 shows an example of the data extracted from within this 

index. 

Table 10:  Data extracted from 1000g MongoDB instance. 

MongoDB 1000 genomes database interface, Variants Index (N. Abramovs) 
Element Description Example 
id  A concatenated variant identifier, containing Chromosome, position, 

Reference allele and alternate allele. 
1_12345678_A_T 

VT Type of variant (in this instance this was refined to just the single 
nucleotide polymorphisms). 

SNP 

INDIVIDUALS 
 

Key-Value pairs where the key represents the individual and the value is 
the zygosity of the variant therein. 

HG00551 => 1|0 

 

Zygosity scores within this index were taken directly from the 1000g raw data and 

are presented as follows: For nucleotides congruent with the reference (REF) the 

value is 0, therefore a diploid call, homozygous for the REF the representation is 0|0. 

Heterozygous variants where the alternate base (ALT) is on the first allele are 1|0, 

and on the second allele 0|1. Homozygous ALT calls are 1|1, and for the haploid Y 

chromosome, 4.Individuals within the 1000g data were also placed into five super-

populations Table 3. 

Table 11:Super (column 1) and Sub (column 2) populations sampled in the 1000g 
project 

1000g Populations 
Super-Population Sub-Populations 
AFR (African) YRI Yoruba in Ibadan, Nigeria, LWK Luhya in Webuye, Kenya, GWD Gambian in Western 

Divisions in the Gambia MSL Mende in Sierra Leone, ESN Esan in Nigeria,  ASW Americans of 
African Ancestry in SW USA,  ACB African Caribbeans in Barbados 

AMR (Ad-mixed 
American) 

MXL Mexican Ancestry from Los Angeles USA, PUR Puerto Ricans from Puerto Rico, CLM 
Colombians from Medellin, Colombia, PEL Peruvians from Lima, Peru 

EAS (East Asian) CHB Han Chinese in Bejing, China, JPT Japanese in Tokyo, Japan, CHS Southern Han Chinese, 
CDX Chinese Dai in Xishuangbanna, China, KHV Kinh in Ho Chi Minh City, Vietnam 

EUR (European) CEU Utah Residents (CEPH) with Northern and Western Ancestry, TSI Toscani in Italia, FIN 
Finnish in Finland, GBR, British in England and Scotland, IBS Iberian Population in Spain 
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SAS (South Asian) GIH Gujarati Indian from Houston, Texas, PJL Punjabi from Lahore, Pakistan, BEB  Bengali 
from  Bangladesh, STU Sri Lankan Tamil from the UK, ITU Indian Telugu from the UK 

 

Files were extracted from MongoDB using a Python script (Mongo_populations.py) 

written in collaboration with Nikita Abramovs. These files formed a matrix of all 

SNPs in each of the five super populations, subdivided by chromosome, presenting 

the SNP id, Individual identifier, and zygosity score. It was not possible to output 

data per population for the whole genome in this initial phase, as the size of data 

being handled, it was rapidly realized was computationally exhaustive. For the 

purpose of these matrices zygosities were presented as follows: 0 = homozygous for 

REF, 1 = Heterozygous with ALT on the first allele, 2 = Heterozygous with ALT on 

the second allele, 3 = Homozygous for ALT, and 4 Hemizygous for ALT 

(appendix).Subsequent analysis was divided into phases, with any further scripts 

written in the Perl language. The following flow chart (Figure 4) outlines these 

phases, the flow of information between them, and any supplementary data used. 
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Figure 31: Programmatic analysis flowchart 

 

4.1 ANALYSIS PHASE 1 
The first phase of the analysis primarily involved the extraction and garnering a 

greater understanding of the 1000g data. As previously noted, a large portion of this 

was the extraction of suitable datasets using MongoDB and the 

Mongo_populations.py script.   

Following extraction, this was interrogated using 3 Perl programs; Firstly the 

Base_freq2.pl script, designed to produce tab delimited text files per population per 

chromosome with SNP ids followed by the occurrence of each nucleotide within the 

super-population at that location (appendix). Following this the Deviant_bases.pl 

script was devised to establish the frequency with which the ALT occurred a greater 

number of times than the ref at each position (appendix). The final of the three main 
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Perl scripts used in this phase of analysis was All_SNPs2.pl. The function of this 

script was to amalgamate SNP data across the five super-populations and output a 

list of all SNPs, eradicating any duplicate SNPs (occurring in multiple populations) 

and provide a genomic representation of the SNPs for use in later phases of analysis. 

Beyond this, a number of smaller programs were devised to quantify various aspects 

of the SNP distribution within each population in the 1000g data. 

4.2 ANALYSIS PHASE 2 
The second phase of the analysis involved cross referencing the 1000g SNP data 

with a number of files from external sources. It was decided that in order to more 

appropriately manage such large data and address relevant questions the focus 

should be on a modular analysis. For this purpose two avenues were pursued; 

relationships with Ohnologs throughout phase 3, and Inheritance types (Dominant 

and recessive) as detailed in phase 4.  

Firstly a list of Ohnolog pairs was obtained from http://ohnologs.curie.fr. This file 

(HUMAN.PAIRS.*.2R.txt) contains a list of gene pairs produced by Singh et al 

(2015) divided into three files conforming to the stringency criteria proposed therein 

(appendix). These files were prepared for use with Pair_Strip.pl by extracting the 

stable Id for each gene and the corresponding pair and outputting as a list (appendix).  

The next step was to extract from ensembl a large file (Ensembl_info.txt) containing 

relevant data for all genes within the database (in collaboration with Ana Barradas).  

This was a tab delimited text file containing: Gene name, Stable ID, Description, 

Gene type, Chromosome, Region start, Region end, Strand, and Synonyms 

(appendix). 

These two files were cross referenced using Ohnolog_locations.pl to produce a list of 

start and end bases of each ohnolog gene using the stable id (appendix). The original 

matrix files were then revisited using the VarCC2.pl script. This program output a 

tab delimited file containing; Variant id, followed by the occurrence of each zygosity 

per variant for use in later analysis (appendix). These files were then cross 

referenced with the Ohnolog location files using Ohnolog_(non_o_)SNPs.pl to 

output a tab delimited file containing each variant id, if they resided within an 

ohnolog – the id thereof, genomic start and end points. For those SNPS which did 

not reside within an ohnolog, the SNP id was output as a separate list (appendix).  
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Due to disparities in reference chromosomes used by various data sources it was 

necessary to, at this point to convert the SNP coordinates from HG37 as used by 

Ensembl, 1000g and Singh et al to HG38, used by the Online Mendelian Inheritance 

in Man (OMIM) database before proceeding further. This was achieved by using 

Convert_prep.pl and Bed_convert.pl to produce a .bed file per chromosome. These 

files were then converted using the Liftover tool (available from 

genome.ucsc.edu/util.html) provided by UCSC on an Ubuntu platform to convert 

between the two reference genomes. 

4.3 ANALYSIS PHASE 3 
The third phase of analysis extended the ohnolog investigation to look into the 

relationship between SNPs and ohnolog families. The family information was 

obtained from http://ohnologs.curie.fr. Once again, three files were obtained 

representing the three stringency criteria. These files contained the ohnolog family 

name, number of genes in that family, followed by the names of each gene in that 

family. Due to the fact that the gene names were not in stable id format, it was 

necessary to convert these into their stable ids by cross referencing this file with the 

previously obtained ensembl data, using Family_IDs.pl. the output of this script was 

a file in the same format as the original ohnolog family files, with the gene name 

substituted for stable id. The locations of each gene were then established once again 

using the ensembl data (family_locations.pl) (appendix). 

Once the Ohnolog family data had been appropriately prepared it was possible to 

cross reference the location files with the complete lists of SNPs present in each 

chromosome provided by All_SNPs2.pl using family_SNPs.pl. This provided an 

output file for each chromosome containing the ohnolog family name, stable id of 

each gene within each family, chromosome, start and end coordinates, and each SNP 

located therein (appendix) and a final file containing the ids of all SNPs for the 

whole genome.  

The family_matrix.pl program was then used to cross reference the output from 

family_SNPs.pl with the original matrix files extracted from the 1000g data. This 

provided files per chromosome which were similar in format to the original matrices.  

The addition of two prefixing columns containing ohnlolog family name and gene 

(appendix) was then provided by family_CSV.pl. 
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The final stage in phase three was to output a file per ohnolog family containing; 

stable id, SNP id, followed by each individual id and the corresponding zygosity 

using Stripped_SNP_Individ2.pl (appendix).  

4.4 ANALYSIS PHASE 4 
The fourth stage of the analysis, as previously mentioned focused on establishing the 

relationship between SNPs and inheritance (dominant/recessive). The 

GENEMAP2.txt data file containing OMIM's Synopsis of the Human Gene Map, 

alongside genomic coordinates and inheritance was downloaded from the OMIM 

FTP (11/02/16). This was then parsed using the Dominant_Recessive.pl program in 

order to split the data into three files containing all rows listed as having associations 

with; dominant disorders, recessive disorders, and those with dual inheritance 

patterns. 

The SNP files previously converted to HG38 were then cross referenced with the 

three OMIM files to produce files containing the original data provided, followed by 

a list of all SNPs contained within the start and end coordinates for each gene 

(appendix). Metrics for this data were then produced using the Metric_Calc.pl and 

Metric_calc_OMIM_bases.pl programs. 
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5. RESULTS 

5.1 PHASE 1 RESULTS 
The results from phase one were largely calculations of the composition of the 1000g 

data.  

The initial 

extraction, 

and 

subsequent 

analysis of 

bases which 

deviate from 

the consensus 

to a higher 

degree than 

the reference are shown in table 4 and figure 5. 

Table 12: Table showing the number of individs, and SNP counts for each 
population, deviant base count, and Total number of SNPs occurring across all 

Individuals. (Total SNPs across all populations without duplicates) 

 

Population 
Total 
Individuals 

Total 
Variants 

Deviant 
bases 

Total ALTs (-
REF)  

AFR 661 40910992 3364047 2953423599 
AMR 347 27237493 3240789 1298710315 
EAS 504 23078028 3341964 1840017336 
EUR 503 23339891 3233930 1836586497 
SAS 489 25974082 3277549 1820512807 

SNP proportions by population and reference conformity 
in the 1000g data (Normalized to population size)

AFR_Dev
AFR_SNP
AMR_Dev
AMR_SNP
EAS_Dev
EAS_SNP
EUR_Dev
EUR_SNP
SAS_Dev
SAS_SNPFigure 5: SNP proportions by population and reference conformity 

in the 1000g data (Normalized to population size) 
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As can be seen, there are a relatively high proportion of ‘deviant bases’ per 

population. When represented as a proportion of total variants the results are as 

follows: AFR – 8.222844; AMR – 11.89826; EAS – 14.48115; EUR – 13.85581; 

SAS - 12.61854. This result shows that, due to the high occurrence and the fact that 

these variants are largely population specific, rather than the utilization of a ‘one size 

fits all’ reference sequence, it would be beneficial to establish population specific 

references, particularly for super populations, if not to the sub-population level. 

When the data for each population was consolidated, it provided a quantification of 

total unique variants per chromosome, as shown in table 5, and the relative 

proportion of each chromosome made up of SNPs (Fig 6). 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:Proportion of each chromosome represented by unique point 
mutations 
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Table 13: Number of unique point mutations 
per chromosome 
 

Unfortunately the autosomal data shown in figure 

6 is not truly representative of the biological 

picture. This is due to the manner in which the 

variants for the allosomes were called within the 

1000g data (see discussion). 

5.2 PHASE 2 RESULTS 
Metrics for Ohnolog pair data are shown in Table 

6. Losses were incurred if, when cross referenced 

with gene data from Ensembl there was no 

matching location information. However this 

represents a very small quantity of the total genes, 

and may be rectified manually at a later date. 

 
As can be seen in table 7, the quantities of unique 

genes are not, double that of the pairs. This is due 

to the fact that a proportion of the genes in each 

dataset belong to more than one pair set. 

 Table 14: Gene quantities within the Ohnolog pairs data files. 

 
 

 

 

 

 
As can be seen in table 7, the proportion of ohnologous genes in each chromosome is 

by no means an equal distribution, with strict criteria ohnologs per chromosome 

ranging from  355 in chromosome 1 to 17 in chromosome 21.  

 

The following table (Table 8) Table 15: Ohnologous genes per chromosome 

Chromosome 
Unique 
SNPs 

1 6197318 
2 6787257 
3 5586665 
4 5481942 
5 5040053 
6 4801408 
7 4519682 
8 4421880 
9 3417598 

10 3826403 
11 3880403 
12 3698416 
13 2728216 
14 2540328 
15 2321569 
16 2599165 
17 2227931 
18 2172105 
19 1753777 
20 1739591 
21 1055458 
22 1056332 

X & Y 3276242 

Criteria Pairs Unique Genes 
Losses (no loc 
info) 

Strict 2695 3544 8 
Intermediate 4827 5504 14 
Relaxed 8178 7831 19 

Chromosome Strict Intermediate Relaxed 
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represents the quantification of data output 

by the VarCC2.pl program. It shows the 

quantities of each variant zygosity for each 

within each chromosome per population. 

As can be seen, on average the highest 

quantity of SNPs in each chromosome are 

Homozygous, with only a small number of 

instances per population which deviate 

from this.  

 
 
 
 
 
 
 
 
  

1 355 569 782 
2 247 373 517 
3 171 292 434 
4 177 240 322 
5 260 344 430 
6 106 223 337 
7 134 229 351 
8 152 231 306 
9 136 198 273 

10 179 256 325 
11 136 242 401 
12 191 319 457 
13 68 103 150 
14 146 177 235 
15 108 195 254 
16 141 194 273 
17 214 317 468 
18 53 85 122 
19 224 330 511 
20 131 176 243 
21 17 27 60 
22 62 119 182 
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Table 16: Zygosity counts per chromosome by population 

Zygosity counts (VarCC2) 
AFR Chr Hetero strand 1 Hetero strand2 Homozygous Hemizygous 

1 73575260 73363911 74246013 0 
2 78994981 78892446 79875671 0 
3 67264272 67285172 69335714 0 
4 69723545 69675855 71795718 0 
5 60115413 60113803 59468067 0 
6 61452194 61580278 64266700 0 
7 55931441 55929417 57827460 0 
8 53201222 53358766 53833772 0 
9 40897534 40946925 40622648 0 

10 47418297 47506021 47240352 0 
11 46913236 46834679 48318978 0 
12 44692848 44501014 44570954 0 
13 34096498 34137215 35016683 0 
14 30548962 30517972 31829039 0 
15 27927264 27910467 27953326 0 
16 30176630 30163840 30664706 0 
17 26102895 26101877 26369589 0 
18 26963589 26954591 27032753 0 
19 22576620 22613532 23452004 0 
20 21112894 21221305 20937075 0 
21 14141482 14109234 15408010 0 
22 13175505 13184440 13773592 0 

X 20090375 20156798 20602609 34466796 
Y 0 0 0 362855 
AMR Chr Hetero strand 1 Hetero strand2 Homozygous Hemizygous 

1 29820054 29861685 39510757 0 
2 31646936 31617395 41513055 0 
3 27414298 27455761 34443142 0 
4 28285220 28394733 38650205 0 
5 24221412 24176232 28586496 0 
6 25863540 25990161 31670980 0 
7 22953237 22848551 27722978 0 
8 21141754 21246771 26137751 0 
9 16591567 16507402 20835549 0 

10 19711088 19619533 24977358 0 
11 18974813 19007088 26991685 0 
12 18246649 18404678 23931575 0 
13 14089166 14071717 20597952 0 
14 12430483 12403472 16335684 0 
15 11122736 11138454 14846824 0 
16 11993672 11925600 14938512 0 
17 10496178 10502469 12746760 0 
18 10930731 11025631 14896615 0 
19 9028460 9074262 10132362 0 
20 8481763 8489826 9672395 0 
21 5671713 5656597 7327607 0 
22 5349895 5350878 6192052 0 
X 7027240 7027241 8854258 13821006 
Y 0 0 0 88015 

EAS Chr Hetero strand 1 Hetero strand2 Homozygous Hemizygous 
1 39579336 39548291 62873849 0 
2 41131645 41103185 65702254 0 
3 35719920 35794092 55460005 0 
4 37373692 37459723 60705997 0 
5 31630234 31631003 42770294 0 
6 34448666 34420468 51014114 0 



APPENDIX I: CONTINUATION REPORT 

 
 

261 

7 30365769 30337637 43923138 0 
8 28029949 28073935 40231362 0 
9 22109627 22061027 32808225 0 

10 25871564 25919684 39556541 0 
11 25139959 25264011 41079179 0 
12 24286186 24300637 38116440 0 
13 18456084 18496852 32139911 0 
14 16830028 16756474 25013889 0 
15 14933540 14967361 22946249 0 
16 15946604 15969052 23341073 0 
17 13542433 13529510 19734451 0 
18 14652943 14628679 23406887 0 
19 11967115 11960622 15093213 0 
20 11016893 11093919 15809293 0 
21 7702223 7724434 11027030 0 
22 6993693 7011335 10021734 0 

X 8766703 8836004 14281922 19380295 
Y 0 0 0 197250 
EUR Chr Hetero strand 1 Hetero strand2 Homozygous Hemizygous 

1 41770256 41691910 56374537 0 
2 44788760 44867722 58675226 0 
3 38490743 38449813 48440891 0 
4 39949415 39961813 55163146 0 
5 34080004 34214037 41202043 0 
6 36937499 36833274 43729944 0 
7 32303157 32350921 38827968 0 
8 29762234 29806852 37156641 0 
9 23433746 23357428 29299186 0 

10 27607407 27670896 36128122 0 
11 27201986 27193211 38770969 0 
12 25898312 25992932 34254239 0 
13 19796593 19900427 30072886 0 
14 17514766 17416577 23294206 0 
15 15553753 15569552 21413596 0 
16 16903847 16903691 21255817 0 
17 14910765 14886818 18303408 0 
18 15367841 15432926 21453072 0 
19 12791655 12785467 14293214 0 
20 11969753 11986282 13520571 0 
21 8042386 8046948 10426363 0 
22 7663693 7653725 8495949 0 

X 9664847 9670346 12602344 18182855 
Y 0 0 0 202318 
SAS Chr Heterozygous strand 1 Heterozygous strand2 Homozygous Hemizygous 

1 41552872 41634426 55660328 0 
2 44207010 44010419 58381442 0 
3 37874733 37843725 48702202 0 
4 39614751 39598341 54298024 0 
5 33572362 33641831 40601201 0 
6 36185569 36017254 44774967 0 
7 30918479 30999625 39824433 0 
8 29818839 29882724 36660799 0 
9 23349905 23379067 29175967 0 

10 27473554 27439554 35521213 0 
11 26606895 26531032 38026471 0 
12 25569377 25580235 34151779 0 
13 19587070 19585394 29463936 0 
14 17572352 17641603 23099419 0 
15 15722768 15680747 20654648 0 
16 16734962 16842314 21262426 0 
17 14511935 14538812 18014464 0 
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18 15179317 15194863 21088062 0 
19 12798701 12823497 14381556 0 
20 11772258 11771818 13813855 0 
21 8010273 8012110 10448950 0 
22 7585928 7639586 8754929 0 

X 8831060 8883869 11617415 20594684 
Y 0 0 0 178008 

 
Table 9 shows the quantities of polymorphisms within each population per 

chromosome which occur within, and outside of ohnologs. This data is a 

quantification of the individual SNPs as separated by Ohnolog_(non_O)SNPs.pl. As 

would be expected, given the size of the genomic coverage of each, the majority of 

SNPs fall outside of ohnologous genes. Whilst it may be an artefact of differing 

population sizes in the sampled data, there are clear differences in the number of 

ohnolog SNPs per chromosome per population. 

Table 17: Total Ohnolog and non ohnolog SNPs. 

Pop Chrom 
Total 
SNPs 

Ohnolog 
SNPs 

Non ohnolog 
SNPs Pop Chrom Total SNPs Ohnolog SNPs 

Non ohnolog 
SNPs 

AFR 1 3103738 516341 2581113 AFR 13 1383199 192896 702725 

AMR 1 2074870 341704 1729464 
AM
R 13 928515 127039 470080 

EAS 1 1765661 294441 1469931 EAS 13 789140 108885 393494 

EUR 1 1789640 297555 1490225 EUR 13 802244 108718 395542 

SAS 1 1974004 328044 1643599 SAS 13 893223 123397 441507 

AFR 2 3383829 430941 1659309 AFR 14 1284306 234860 516865 

AMR 2 2246595 283188 1117883 
AM
R 14 856969 156330 344737 

EAS 2 1908495 243548 939317 EAS 14 727076 133091 290544 

EUR 2 1916542 241879 956315 EUR 14 729865 131842 296895 

SAS 2 2149258 273645 1061514 SAS 14 819265 150385 325842 

AFR 3 2791417 397408 1797293 AFR 15 1173780 190469 477487 

AMR 3 1882268 266005 1203028 
AM
R 15 761220 121119 318592 

EAS 3 1589016 224930 1023122 EAS 15 666046 108778 272901 

EUR 3 1602625 227656 1030425 EUR 15 660116 107048 276282 

SAS 3 1786553 253473 1146240 SAS 15 741253 119883 307272 

AFR 4 2791050 431879 1605350 AFR 16 1300273 209082 2387390 

AMR 4 1875246 288319 1079403 
AM
R 16 856287 137803 1612268 

EAS 4 1566297 243859 911477 EAS 16 730794 115963 1362604 

EUR 4 1602163 246483 923597 EUR 16 739391 119223 1372865 

SAS 4 1781849 276268 1029407 SAS 16 823279 132108 1530593 

AFR 5 2538079 402156 1186688 AFR 17 1121199 169895 2354208 

AMR 5 1683594 261663 799271 
AM
R 17 729283 108976 1584147 

EAS 5 1399884 223365 679383 EAS 17 625583 94904 1322006 

EUR 5 1429827 230227 692292 EUR 17 638548 96711 1354572 

SAS 5 1585255 248329 768370 SAS 17 703439 106851 1504186 

AFR 6 2458725 183036 1050442 AFR 18 1101569 107828 2187695 
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AMR 6 1655155 119839 701415 
AM
R 18 744438 72543 1454335 

EAS 6 1431254 103108 595525 EAS 18 627692 59419 1207785 

EUR 6 1436389 103519 599114 EUR 18 625998 60052 1234459 

SAS 6 1582216 115672 670306 SAS 18 702911 67231 1368865 

AFR 7 2303174 239277 982108 AFR 19 894853 123114 2268523 

AMR 7 1535593 156359 639512 
AM
R 19 605622 80432 1530828 

EAS 7 1285788 133256 557552 EAS 19 511140 70928 1325876 

EUR 7 1316436 134827 552964 EUR 19 518449 70722 1330027 

SAS 7 1446896 149213 621303 SAS 19 576946 79388 1463210 

AFR 8 2242265 351141 1087751 AFR 20 873993 169230 2057920 

AMR 8 1478097 230287 716553 
AM
R 20 585722 114492 1375756 

EAS 8 1231401 195552 614213 EAS 20 491483 97543 1151231 

EUR 8 1251599 194674 619138 EUR 20 493238 97095 1179699 

SAS 8 1396760 218035 689961 SAS 20 551809 109532 1295206 

AFR 9 1727004 282137 951558 AFR 21 546040 27327 1885583 

AMR 9 1136790 185174 620610 
AM
R 21 363625 17765 1244631 

EAS 9 977353 158941 531680 EAS 21 305721 14705 1034678 

EUR 9 982881 160044 542625 EUR 21 312524 14953 1055234 

SAS 9 1097594 178193 597304 SAS 21 342569 15996 1176145 

AFR 10 1955912 293322 990706 AFR 22 540844 61544 1441199 

AMR 10 1314550 194717 670098 
AM
R 22 359704 40095 949568 

EAS 10 1106260 166837 567517 EAS 22 308983 35619 817822 

EUR 10 1124818 167759 564927 EUR 22 312116 35171 821785 

SAS 10 1249420 186995 634478 SAS 22 348050 40052 918066 

AFR 11 1953612 150619 771907 AFR X 1557532 159210 1394385 

AMR 11 1303999 97748 525481 
AM
R X 994480 101284 891422 

EAS 11 1108528 84051 441231 EAS X 851930 86994 764065 

EUR 11 1116458 84246 448537 EUR X 845270 84880 759322 

SAS 11 1243920 95495 498328 SAS X 965672 97496 866671 

AFR 12 1865400 255638 2945293 AFR Y 19199 2 19200 

AMR 12 1251444 169395 1959115 
AM
R Y 13427 2 13428 

EAS 12 1057270 144749 1663567 EAS Y 15233 2 15234 

EUR 12 1069068 144043 1672404 EUR Y 23686 2 11844 

SAS 12 1193395 162252 1873068 SAS Y 18545 2 18546 
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Table 18: average losses per population per region (O- ohnolog,  
N- non-ohnolog) 

Due to differences in assembly 

between the HG37 and HG38 

reference builds, when the SNPs 

were converted between the two 

losses were incurred. For each 

criteria the losses were as 

follows:  Strict,  ohnolog losses – 

Min % = 0 Max % = 

0.22772766; Intermediate, 

ohnolog losses– Min % = 0 Max 

% = 0.173340991; Relaxed, ohnolog losses– Min %  = 0 Max % = 0.141037442; 

Strict  non-ohnolog losses – Min %  = 0.00095992 Max % = 0.33746498; 

Intermediate non-ohnolog losses– Min %  = 0.050363877 Max %  = 0.344364976; 

Relaxed  non-ohnolog losses– Min % = 0.051384965 Max % = 0.365478514. Table 

10 shows the maximum losses per population, per stringency criteria (full raw data 

can be seen in appendix) . 

5.3 PHASE 3 RESULTS 
The original family source file, obtained from http://ohnologs.curie.fr following 

assignment of gene name data from ensemble, and division into the three location 

criteria, contained the information as shown in table 11. 

Table 19: Genes contained in the ohnolog families source data 

This 

phase 

resulted 

in the 

loss of 

between 

4 and 18 families across the stringency criteria. This was due, not to a lack of stable 

Ids but to complicated patterns of inheritance between duplicates of ancient and 

recent origin.   

 

POP Strict Intermediate Relaxed 
AFR O 0.014522 0.015271717 0.0137892 
AMR 
O 0.017374 0.027119723 0.0238672 
EAS O 0.02009 0.03071027 0.0271482 
EUR O 0.019584 0.029788996 0.0263481 
SAS O 0.017559 0.026753076 0.023494 
AFR N 0.044395 0.044910012 0.0474822 
AMR 
N 0.060726 0.061369256 0.064883 
EAS N 0.067563 0.06830249 0.0722284 
EUR N 0.068155 0.069073671 0.0730256 
SAS N 0.060747 0.061570769 0.0652344 

Category Strict Intermediate  Relaxed 
Source file families 1381 2024 2642 
Contained genes 3274 4994 6795 
Maximum genes in families 6 11 24 
Retained families 1374 1994 2623 
Retained genes 3259 4928 6755 
Maximum retained genes in families 6 11 24 
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Table 20: SNPs per criteria per chromosome 

 

Table 12 shows the number of SNPs found to be contained within each criteria per 

chromosome. 

The following tables (13-14) and figure 5 show how these SNPs were distributed 

across the five super populations per criteria, per chromosome.  

 

 

Table 21: SNP distribution per population per criteria 

Stringency 
criteria Chromosome 

AFR 
SNPs 

AMR 
SNPs 

EAS 
SNPs 

EUR 
SNPs 

SAS 
SNPs 

Strict 1 510208 337654 290971 294180 324321 
Strict 2 407279 267691 229902 228440 258372 
Strict 3 388896 260275 219990 222804 247938 
Strict 4 404557 270242 228781 231067 259447 
Strict 5 311756 204212 173013 174924 194610 
Strict 6 180448 118064 101569 101983 113991 
Strict 7 237630 155297 132392 133972 148436 
Strict 8 348530 228365 194232 193180 216872 
Strict 9 273101 179410 153841 154648 172348 
Strict 10 283510 188485 161083 162274 180925 
Strict 11 146912 95410 82123 82159 93082 
Strict 12 229690 151966 130057 129272 145821 
Strict 13 179564 118453 101051 101027 114577 
Strict 14 220808 147441 125266 124470 141536 
Strict 15 184919 117699 105793 104042 116491 
Strict 16 169622 111757 94413 96685 107297 
Strict 17 161082 103396 90000 91860 101245 

Chrom Strict Intermediate Relaxed Chrom  Strict Intermediate Relaxed 
1 1037947 1223071 1557974 13 311982 388027 474185 
2 565327 719405 1020032 14 53331 119046 235965 
3 302496 610619 954014 15 125162 228229 296043 
4 461982 664159 952396 16 782540 1033909 1458576 
5 360058 452418 523703 17 804535 1000245 1181723 
6 444337 475683 627377 18 632404 871189 1085129 
7 372063 637248 796149 19 361741 661468 848449 
8 339435 404869 504782 20 477103 898815 1197664 
9 327792 452575 587636 21 688088 961677 1157947 

10 187254 377467 508984 22 544521 688251 849115 
11 227748 308174 383769 X 275486 399769 526126 
12 830415 1312965 1676837 Y 0 92 92 
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Strict 18 94090 63449 51984 52672 58885 
Strict 19 111982 73210 64450 64245 72188 
Strict 20 153051 103319 88473 87367 98764 
Strict 21 27327 17765 14705 14953 15996 
Strict 22 61256 39915 35449 35021 39897 
Strict X 131496 83108 71770 70246 79893 
Strict Y 0 0 0 0 0 
TOTAL   5217714 3436583 2941308 2951491 3302931 
Intermediate 1 599637 395782 342427 344578 382216 
Intermediate 2 647464 426497 366411 365732 411601 
Intermediate 3 510109 338890 289490 292174 325231 
Intermediate 4 502346 333870 284082 285239 321302 
Intermediate 5 429681 281393 238705 241013 268846 
Intermediate 6 329981 216959 186915 186471 208139 
Intermediate 7 453593 297367 250927 255633 283709 
Intermediate 8 485794 318972 270625 271011 303765 
Intermediate 9 343645 226086 195582 195973 218374 
Intermediate 10 363010 241810 206012 206344 231249 
Intermediate 11 300147 196923 167506 169582 190307 
Intermediate 12 328046 216053 186641 186123 210100 
Intermediate 13 226609 150125 128422 128589 144096 
Intermediate 14 236354 157761 134006 133645 151666 
Intermediate 15 317485 203234 181580 179275 201303 
Intermediate 16 203094 133286 113009 114835 128050 
Intermediate 17 223653 144398 125983 127742 141094 
Intermediate 18 189644 128076 107555 108040 121674 
Intermediate 19 152250 99925 86732 87509 97876 
Intermediate 20 190392 128130 109827 108735 122517 
Intermediate 21 60781 39246 32941 34045 36499 
Intermediate 22 114055 75343 64589 65374 73086 
Intermediate X 189746 119441 102378 101155 115432 
Intermediate Y 32 28 23 50 33 
TOTAL   7397548 4869595 4172368 4188867 4688164 
Relaxed 1 765259 505036 437448 439569 488365 
Relaxed 2 828322 546349 467346 468134 525391 
Relaxed 3 720849 480627 410463 412547 461808 
Relaxed 4 592277 392593 333906 336513 377799 
Relaxed 5 536963 352361 297909 301339 335646 
Relaxed 6 423716 278789 240905 240444 267634 
Relaxed 7 603170 395918 335703 340152 377414 
Relaxed 8 584908 383228 326196 327158 365993 
Relaxed 9 424296 278671 241254 241276 269659 
Relaxed 10 515025 344211 292356 294900 329250 
Relaxed 11 470729 311056 263572 267225 299656 
Relaxed 12 471167 311772 268050 267083 302117 
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Relaxed 13 263507 174843 150002 150774 168447 
Relaxed 14 310601 207848 176437 175245 200597 
Relaxed 15 397608 254732 226748 223573 251979 
Relaxed 16 251378 165258 141026 142720 159373 
Relaxed 17 291137 188121 163767 165949 183271 
Relaxed 18 255322 171371 144478 144615 162890 
Relaxed 19 190000 125445 108095 109692 122677 
Relaxed 20 232404 156101 133554 132396 149464 
Relaxed 21 121212 79743 67272 68970 75163 
Relaxed 22 147445 96784 83421 84032 94441 
Relaxed X 248043 155499 133773 132619 151228 
Relaxed Y 32 28 23 50 33 
TOTAL   9645370 6356384 5443704 5466975 6120294 

 

 
Figure 32: Ohnolog SNP distributions between population and criterion 

 
Table 22: Ohnolog SNP distribution between populations and stringency criteria 

Ohnolog SNP distribution between populations and stringency 
criteria 
Criteria AFR AMR EAS EUR SAS 
Strict 7893.667 9903.697 5835.929 5867.775 6754.46 
Intermediate 11191.45 14033.41 8278.508 8327.767 9587.247 
Relaxed 14592.09 18318.11 10801 10868.74 12515.94 

 

5.4 PHASE 4 RESULTS 
When divided into the differing inheritance types the 

Ohnolog.Families.$criteria.2R.txt file was found to contain 1348 genes specifically 
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associated with dominant disorders, 1747 recessive associated genes, and 400 genes 

which have both dominant and recessive associations.  

When cross referenced with the converted HG38 SNP data the distributions of SNPs 

it was found that there were a quantity of ohnolog associated SNPs within disease 

associated genes as shown in figure 6. As can be seen, genes with associations with 

both dominant ad recessive diseases contain the greater variations within ohnologs 

than outside. This is interesting, as it suggests a greater complexity of associations 

with complicated inheritance types within ohnologs than occurs outside. Given that 

the data represented here pertains to healthy populations the findings of non-

anecdotal proportions of variation within genes with associations with dominant 

disorders is surprising, particularly within ohnologs. These results suggest that there 

is an underlying mechanism by which healthy individuals are able to tolerate such 

variation. 

0

50000

100000

150000

200000

250000

AFR AMR EAS EUR SAS

Dominant

N-O

N-N

0

1000

2000

3000

4000

5000

6000

AFR AMR EAS EUR SAS

Recessive

N-O

N-N

0

2

4

6

8

10

12

14

16

AFR AMR EAS EUR SAS

R and D

N-O

N-N

0

50000

100000

150000

200000

250000

AFR AMR EAS EUR SAS

Dominant

N-O

N-N



APPENDIX I: CONTINUATION REPORT 

 
 

269 

 
Figure 33: SNP distribution by Inheritance type and criteria (Strict in purple, 

Intermediate in blue and Relaxed in green) 
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6. DISCUSSION 
 

In support of the findings of  the UK10K the nature of human diversity is such that it 

is unlikely that we will be able to establish a ‘one size fits all’ Human profile 

(UK10K 2015), given the high proportions of nucleotides found in frequencies in 

excess of the reference in each population, it is clear that population specific 

variatation is highly contributory to the overall variant calls within the 1000g data, 

and therefore population specific reference genomes are required. Firstly this will 

reduce any biases introduced when quantifying variation, as these ‘deviant bases’ are 

not, in fact true variants in the classical sense, but are illustrative of the fact that the 

reference was built from the genomes of individuals from only one geographical 

location. This can be clearly seen when comparing the quantities of deviant bases in 

each population, as the lowest frequency (AMR – 1298710315) is in the population 

to which the reference individuals were native. It would be expected, however, that 

given the high frequencies at which these ‘deviant bases’ occur, it is likely that they 

will be synonymous. This in itself is interesting, as, by mapping the loci of 

commonly occurring population specific variation, we may be able to observe 

patterns of highly tolerated variation in healthy populations, however, the introduced 

bias towards European, and, in this case particularly, American populations needs to 

be borne in mind when analysing such data. 

One of the major issues encountered when processing the 1000g data has been the 

manner in which variants have been called in the allosomes. For female individuals a 

diploid alignment for the two copies of X was aligned, in the same manner as was 

done for the autosomes. For the Male participants however, the portions of the Y 

chromosome  matching X have been mapped as diploid, however, for those regions 

which are not shared between the two chromosomes this has been treated as haploid. 

It is therefore the case that the data for the X and Y chromosomes are not directly 

comparable to the autosomes unless pooled, as they are not a complete view of the 

specific chromosomes they represent. To pool the data for allosomes however, is 

undesirable, as this masks sex specific variation, which, given the unusual 

evolutionary history, and relative youthfulness of the Y chromosome, would be 

liable to yield interesting patterns of variation when compared with the other 

chromosomes. . 
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The most surprising result to have emerged from the research thus far, is the 

evidence of relatively high quantities of SNPs within ohnologous genes with known 

dominant disease associations in healthy individuals. Whilst this must be 

investigated further, particularly with regards to identifying which, if any, of these 

are likely to be non-synonymous, and the functional ramifications of which, it is 

particularly surprising given the previously identified strong relationship between 

ohnologs and disease (McLysaght et al 2014). It is hypothesized that, due to 

evolutionary constraints and underlying dependencies, the ability to tolerate such 

variation may be due to a composite of heterozygous variants in gene pairs 

compensating for dosage imbalances, which is supportive of the initial research 

hypothesis. Whilst it is clearly not an immediate concern, this method of 

compensation within the genome may become an issue as the ohnologous gene pairs 

continue to evolve. This is due to the fact that it has been observed that whilst 

ancestral ohnologous genes have high degrees of conservation, the more recent 

copies are more prone to the accumulation of variation. As this asymmetric evolution 

continues, these genes will become more functionally divergent, to the point where 

the function of each gene in the pair will become so disparate, that one will no longer 

be capable of providing dosage compensation for the other. 

Much still needs to be done in order to resolve any patterns, it is clear from the initial 

data emerging from this research, that propensities towards the tolerance of variation 

in healthy individuals, may be observed. Whilst it is unlikely to be possible to plot 

these variations to a global reference, through the understanding of population 

specific variation, alongside patterns of variation in genes with differing 

evolutionary histories, we are gaining insight into patterns of normal variation. These 

findings are likely to provide a basis for comparison and prediction of disease 

causing variation within the human genome, and, within individual genotypes. 
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7. FUTURE WORK 
The future analysis will be divided into a series of ‘aims’, for which the results will 

be linked.  Thus far this approach has been taken in the phases detailed in this report, 

focusing on variants within ohnologous genes. This is by no means complete; there 

are a number of outstanding analyses to be conducted on this gene set. Following 

completion of the ohnolog analysis, the research will extend to incorporate further 

aims of evolutionary importance. This will include different types of CNVs, 

inclusive of singly duplicated genes and large structural duplications, such as 

segmental duplications, alongside genes without duplicates. Further to this, it is 

intended to complete the research by incorporating information pertaining to sources 

outside the genome which may act upon it, such as sites of phosphorylation and 

methylation. 

7.1 AIM 1 
The immediate steps to be taken in order to complete the ohnolog module are as 

follows; the primary immediate concern will be the production of phylogenetic trees 

for all genes. This will be achieved by creating alignments of each of the two copies 

per individual, to be treated as ‘parental’ sequences. It will be necessary at this point 

to account for recombination, this will be done using software, of which a number of 

programs are available, for example, Splitstrees. Following this, trees will be 

produced for the resultant 5008 genes representing the phylogenies of each gene 

whilst accounting for heterozygous variations. It expected that individuals within 

each population will cluster together, whilst differential branch lengths between trees 

for gene pairs will show a greater representation of asymmetrical evolution between 

ancestral and duplicated ohnologous genes. This will then be followed by 

establishing trees for these genes on a wider scale incorporating species with wider 

evolutionary divergence, inclusive of the ancient hominids, in order to track patterns 

of divergence of duplicates over larger timescales. 

Following this it is intended to investigate co-occurrence of heterozygous mutations 

across ohnolog pairs and families. It is hypothesized that the presence of variation 

within disease associated genes in healthy individuals is permitted due to a process 

of compound heterozygosity. It will be necessary, in order to test this to define 

specifically disease causing individual variants in disease associated ohnologs. This 
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will be done by cross referencing the current data obtained from phase four, with 

information on known disease causing variants from ClinVar and the HGVD, 

alongside the 1000g project’s predicted consequence data. Each pair and family set 

will then be tested to establish heterozygous SNPs which occur together with relative 

frequency between genes, and the likely outcome of the proposed consequences of 

these combinations of variants on dosage (hereafter referred to as compound 

heterozygosity). We hypothesize that the expected ‘norm’ would be a compensatory 

process wherein the older, and more highly constrained gene copies, which are 

known to contain fewer variants are likely to compensate for asymmetrical patterns 

of potentially disease causing polymorphisms in the ‘daughter’ copies, which are 

more permissive of variation and are therefore more inclined to contain deleterious 

polymorphisms. 

The final stage of the ohnolog analysis will be to divide the 1000g data into subsets; 

protein coding genes, and genes coding for regulatory factors and RNA, which act 

upon each of the genes in the ohnolog data, to establish relationships between the 

abstract interactions found in ohnologous pairs and their regulation. Once these steps 

have been completed it is hoped that they will assist in resolving the relationships 

between co-occurrence of heterozygous mutations within ohnolog families, and their 

presence in disease associated genes. Completion of this module is expected by 

November 2016. 

7.2 AIM 2  
 The second research ‘aim’ will incorporate a new gene set. In this instance I will be 

looking at structural variants known as segmental duplications, available via the 

Database of Genomic Variants (DGV). These are large scale duplications which 

occur both inter and intrachromosomally, often with close relationships with 

pericentromeric, and subtelomeric regions. Given that segmental duplications are not 

distributed evenly across each chromosome, and that there are clear differences in 

quantities of duplicated genes within them, alongside the fact that there is a 

heightened propensity towards disease genes in this type of structural variation, their 

inclusion in this research is imperative.  The analysis of segmental duplications will 

follow a similar structure to that of ohnologous genes, with the core difference being 
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that in place of the family element, I will look at gene duplicates within paired 

segmentally duplicated regions. Completion of this module is expected by mid 2017.  

7.3 AIM 3  
To compliment the first two aims, the third will focus on singleton duplications 

across the genome. Again the analysis will be conducted in much the same way as 

the first two modules. This will then be cross referenced with the findings from 

module one and two in order to further refine our understanding of the role of CNVs 

with differing evolutionary pressures, in conjunction with small-scale variation in a 

normal human genome.  

7.4 AIM 4 
Following this, aim four will expand to incorporate the remaining types of variation 

identified by the 1000g project. These include insertion/deletions and structural 

variations. These will be overlaid on the findings from the previous three modules in 

order to define any potential patterns in their accumulation and regulation, the 

completion of which is expected by late 2017. 

7.5 AIM 5 
The fifth proposed aim will take the profiles of variation in normal populations as 

provided by modules one to four, it will then overlay this information on new 

genomic data pertaining to ‘non-normal’ populations. Currently a number of disease 

datasets are available, however they are predominantly anonymised in such a way 

that it is not possible to link variations within an individual (as is the case, for 

example with ExAc). There are however a collection of smaller datasets already 

publicly available, and proposed large scale sequencing projects which aim to 

provide such information due to be published, for example the 100,000 genome 

project, due to be released in late 2017. This key module will allow an analysis of 

the differences between healthy and diseased populations, providing an insight into 

non conformity between the two sets which will aid not only in the identification and 

understanding of population specific disease evolution, but also understanding 

disease in the context of an individual’s genotype, This is liable to be far more time 

consuming than the previous modules, as, in order to understand the various 
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functional aspects of disease variants, it will be necessary to divide this data into 

disease subsets and treat each disease type accordingly, by geographical super 

population. It is therefore expected that this module will not be completed in its 

entirety until the end of 2018.  

7.6 AIM 6 
The final aim, which will be included, providing time constraints have not been 

encountered, will be the overlaying of epigenetic data onto the findings from 

modules one to five. There currently are a number of sources of epigenetic 

information available, such as the epigenetic roadmap, and identified sites of 

phosphorylation within the 1000g project data which will inform this analysis, 

however, it is anticipated that between 2016  and 2018 greater and more refined 

sources of epigenetic information will become available.  This final module, it is 

proposed, will aid in our understanding of the external pressures acting on the 

genome and ascertain whether there are patterns of association between these sites 

and both normal and non-normal variation, and disease. 
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Abstract   

 

Background: Most cases of congenital heart disease (CHD) are 

sporadic and non-syndromic, with poorly understood aetiology. Rare 

genetic variants have been found to affect the risk of sporadic, non-

syndromic CHD, but individual studies to date are of only moderate 

sizes, and none to date has incorporated the ohnolog status of candidate 

genes in the analysis. Ohnologs are genes retained from ancestral whole-

genome duplications during evolution; multiple lines of evidence suggest 

ohnologs are over-represented among dosage-sensitive genes. We 

integrated large-scale data on rare variants with evolutionary information 

on ohnolog status to identify novel genetic loci predisposing to CHD. 

Methods: We compared copy number variants (CNVs) present in 

4,634 non-syndromic CHD cases derived from publicly available data 

resources and the literature, and >27,000 healthy individuals. We 

analysed deletions and duplications independently and identified CNV 

regions exclusive to cases. These data were integrated with whole-exome 

sequencing data from 829 sporadic, non-syndromic patients with 

Tetralogy of Fallot. We placed our findings in an evolutionary context by 

comparing the proportion of vertebrate ohnologs in CHD cases and 

controls. 

Results: Novel genetic loci in CHD cases were significantly 

enriched for ohnologs compared to the genome (χ2-test, p<0.0001, 

OR=1.253, 95% CI:1.199-1.309). We identified 54 novel candidate 
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protein-coding genes supported by both: (i) CNV and whole-exome 

sequencing data; and (ii) ohnolog status.  

Conclusions: We have identified new CHD candidate loci, and 

shown for the first time that ohnologs are over-represented among CHD 

genes. Incorporation of evolutionary metrics may be useful in refining 

candidate genes emerging from large-scale genetic evaluations of CHD. 

 

Keywords: non-syndromic, congenital heart disease, copy number 

variants, whole-exome sequencing, ohnologs 

 

Abbreviations: 

CHD Congenital heart disease 

CNV Copy number variant 

DEL Deletion 

DUP Duplication 

SNV Single nucleotide variant 

SSD Small-scale duplication 

TOF Tetralogy of Fallot 

WES Whole exome sequencing 

WGD Whole-genome duplication 

All Tables are supplied at the end of the document. 
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Background  

Congenital heart disease (CHD) is the most prevalent birth defect 

in humans, occurring in approximately 8 per 1000 live births, and 

consisting of malformation of the heart and/or the great vessels. Around 

20% of all CHDs can be attributed to chromosomal imbalances such as 

Down and Turner, and 22q11 deletion syndromes; around 80% occur as 

sporadic, non-syndromic CHD. In such cases, CHD behaves overall as a 

genetically complex trait with moderate heritability. Previous genome-

wide investigations into CHD have found evidence for rare causative 

copy number variants (CNVs) and single nucleotide variants (SNVs); and 

associations with common SNVs in GWAS2-6. It has been estimated in 

previous studies that several hundred genes may be involved in polygenic 

CHD susceptibility; therefore, many remain to be discovered7.  

CNVs are 1 kilobase (kb) to several megabase (Mb) sized regions 

of duplication (DUP) and deletion (DEL) in the genome. A 2014 meta-

analysis of CNVs in 1694 non-syndromic CHD cases identified 79 

chromosomal regions in which 5 or more CHD cases had overlapping 

imbalances5. The estimated prevalence of pathogenic CNVs in non-

syndromic CHD patients is 4-14%, whereas in syndromic CHD patients it 

is 15-20% (the most common being 22q11 deletion syndrome)3,  8 ,  9. There 

are multiple mechanisms by which a CNV may lead to disease including 

the disruption of chromosome structure, alteration of gene expression due 

to disruption of regulatory elements, and changes of the relative amounts 

of dosage-sensitive genes10. 
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The dosage-balance model postulates that, for genes that are in 

stoichiometric relationships (for example with other genes forming 

protein complexes), any perturbation in their relative ratios will be 

deleterious10. In the early course of vertebrate evolution, around 500 

million years ago, two whole-genome duplications (WGD), during which 

gene stoichiometry throughout the genome was preserved, as all genes 

were duplicated, took place. Periods of gene loss followed each of these 

events, resulting in the retention of some WGD paralogs in the genome 

(termed “ohnologs”) and the loss of others. The dosage-balance model 

would predict that ohnologs should be enriched for dosage-sensitive 

genes. 11 Ohnologs, of which there are around 7,000 in the human 

genome, have indeed been shown to exhibit characteristics consistent 

with dosage-sensitivity: for example, ohnologs are enriched for 

haploinsufficient genes11,12; and Makino et al. reported, based on CNV 

data in healthy individuals from the Database of Genomic Variants 

(DGV), that genomic regions (~2Mb in size) near ohnologs are CNV 

deserts, indicating that those regions are dosage-balanced13. 

The formation and fixation of gene duplications within the genome 

is subject to different evolutionary mechanisms –small scale duplications 

(SSD) involving relatively few genes, and WGD. A strong relationship 

between the evolutionary mechanism of duplication and phenotypic 

consequences, including heritable diseases, has been previously shown14 

15,  16.  Ohnologs have a significant association with certain human genetic 

diseases; for example 12 out of 16 reported candidate genes within the 

Down syndrome critical region (21q22.12, 21q22.13 and 21q22.2) are 
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dosage-balanced ohnologs11. By contrast, genes arising from SSDs have 

considerably fewer associations with disease17. In addition, ohnologs are 

enriched for genes involved in signalling and gene regulation, key 

cardiovascular developmental processes11. These considerations led us to 

hypothesise that ohnologs may be enriched among CHD causative genes.  

We tested this hypothesis in a meta-analysis of CNV data 

including 4,634 non-syndromic CHD cases, and integrated these data 

with a whole-exome sequencing (WES) study of 829 cases of Tetralogy 

of Fallot (TOF), the commonest cyanotic CHD phenotype, which has 

been previously shown to have a significant aetiological contribution 

from CNVs6. Control data were derived from large-scale genomic 

resources18-21.  
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Methods 

The appropriate institutional review bodies approved all 

recruitment of human participants in this study. The study corresponded 

with the stipulations of the Declaration of Helsinki, and all participants 

(or their parents, if affected probands were children too young to 

themselves consent) provided informed consent. Data from consortia 

were accessed subject to the applicable data-sharing agreements. 

Summary data, analytic methods, and summary study materials will be 

made available to other researchers for purposes of reproducing the 

results or replicating the analyses reported here, on request to the 

corresponding authors. Full Materials and Methods are available in 

the Data supplement of the article. 
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Results 

Update of CHD CNV dataset and generation of control CNV 

dataset 

We updated the previous meta-analysis of CNVs in non-syndromic 

CHD cases5, in a further 2,882 non-syndromic CHD cases from 

DECIPHER, ECARUCA and ISCA databases and further published 

studies investigating the role of CNVs in CHD4,  20,  22-32. The updated 

CHD case CNV dataset consists of 4,634 unrelated individuals of 

different ancestries (Table 1). The outline workflow to identify candidate 

genes is shown in Figure 1. Filtering of the CHD case population against 

DECIPHER known microdeletion/microduplication syndromes resulted in 

224 cases being removed; this left 4,410 CHD cases with 3,362 DEL 

CNVs and 2,540 DUP CNVs which were used for further analysis 

(Supplementary figure 1).  
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Figure 1:  Overall methodology. Flowchart showing the methodology used to 
identify novel genetic loci for non-syndromic CHD cases. Potential pathogenic 
variants were novel or rare SNVs (either absent from ExAC or with frequency of 
<0.01). Candidate genes identified at the end of the workflow were subsequently 
analysed for ohnolog status. 
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A control CNV dataset was generated by acquiring CNV data from 

individuals not explicitly identified as having a developmental disorder, 

who were enrolled in the 1000 Genome Project Phase 3, DGV, 

DECIPHER, and published studies21,  27,  28,  33,  34. The control CNV dataset 

resulted in 256,511 DEL CNVs, 84,343 DUP CNVs and 6,403 BOTH 

CNVs, i.e. either DEL or DUP. gnomAD CNVs35 were incorporated into 

the analysis as they became available, and resulted in an additional 

51,420 DUP CNVs and 198,611 DEL CNVs. 

Comparison of CHD CNV regions with control CNV regions 

All CHD DEL and DUP CNV regions (coordinates hg19) were 

compared against control DEL and DUP CNV regions, respectively. Any 

CHD CNV regions overlapping control CNV regions were excluded. As a 

result, we identified DEL and DUP CNV regions only seen in non-

syndromic CHD cases. The genes located in those regions were annotated 

using the Ensembl database. There were a number of genes that already 

had an assigned phenotype (OMIM)36;  among these, 59 had been 

previously associated with CHD pathogenesis such as ZIC3, NKX2-6, 

GATA4, JAG1, GJA1 and TBX5. All genes with OMIM assigned 

phenotypes were excluded from further analysis. 

Novel genes found in the CNV regions only seen in CHD cases 

were then compared to an in-house list of 12,771 genes with novel or rare 

SNVs (either absent from ExAC or with frequency of <0.01) from WES 

data in 829 TOF cases6. Genes supported by both CNV and WES data 

were included for further analysis. In total, 3,082 genes in DEL CNVs, 

4,297 genes in DUP CNVs and 3,068 in BOTH CNVs (i.e. genes found in 
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DEL and DUP CNVs) were also found in the TOF WES data with either 

high (nonsense variants, frameshift, splice variants) or medium 

(missense, splice variants) impact SNVs. This intersection of CNV and 

WES data led to an overall reduction of ~60% in the number of candidate 

genes for CHD (Figure 2).  
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Figure 2:  Intersection of CNV and WES data. Numbers of genes involved in the 
final stages of the workflow depicted in Figure 1 are shown. Genes with assigned 
phenotypes (circles with dashed line) were excluded from further analysis.  

Ohnologs are highly enriched in CHD cases whereas small-scale 

duplications (SSD) and singleton genes are not. 

Ohnologs (N=7,023) were identified using data from Singh et al 

(2015)37, available at http://ohnologs.curie.fr/. SSDs (N=7,014) were 

extracted from Ensembl gene trees12. Any remaining genes that were 

neither found in the ohnolog dataset nor identified as having a direct 

paralog were considered for the purpose of this study to be singletons. 

The frequencies of ohnologs, SSDs and singletons among the candidate 

CHD genes were compared with their frequency in the human genome. 

Novel genes supported by the CNV data in CHD cases were found to be 

enriched for ohnologs (14.65% vs 12.05%, χ2 test, p<0.0001, OR=1.253, 

95% CI: 1.199-1.309,) (Figure 3A). There were no differences in SSDs 

(Figure 3B) and an under-representation for singletons (Figure 3C) 

compared to the human genome. There was a 2.3-fold increased 

enrichment of ohnologs in the genes supported by both CNV and WES 

data in CHD cases (χ2 test, p< 0.0001, OR=3.751, 95% CI: 3.574-3.937). 

In this instance, SSDs were also enriched in CHD cases compared to the 

human genome (χ2 test, p< 0.0001, OR=1.437, 95% CI: 1.356-1.905). 

However, ohnologs were 2-times elevated compared to SSD genes 

(33.94% versus 16.43%). Additionally, we assessed our methodology by 

applying it to a group of genes with strong a priori evidence for 

pathogenicity. The crowd-sourced Genomics England “PanelApp” gene 

list for CHD (available at 

https://panelapp.genomicsengland.co.uk/panels/212/), which represents a 
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consensus view of causative genes, was highly enriched for ohnologs 

(76.6% vs 12.05%, χ2 test, p<0.0001, OR=23.89, 95% CI: 12.33-46.18). 

We therefore used ohnolog status as an additional candidate gene filter. 

 
Figure 3: Ohnologs are enriched in CHD cases. Graphs show the percentage of 
genes that are A) ohnologs B) small scale duplications (SSD) and C) singletons. 
Statistical significance was tested using two-tailed Chi-square test with Yates’s 
correction, p<0.05 was considered statistically significant. 

Candidate genes supported by both CNV and WES data of CHD 

cases 

* = p <0.0001 
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In order to further refine our candidate genes, we integrated 

additional genomic resources including the top 5% ExAC CNV 

intolerance scores, probability of haploinsufficiency (pHI)38, probability 

of loss-of-function intolerance (pLI)19, and RNAseq expression data from 

mouse embryonic hearts39. Lastly, we incorporated ohnolog status. Genes 

from BOTH CNVs were analysed twice; once with the metrics used for 

genes from DEL CNVs and once with the metrics used for genes from 

DUP CNVs (Figure 4). 

 

 
Figure 4: Filtering process using large-scale genomic data resources. Both 
graphs are in logarithmic scale and represent the consecutive filtering of the genes 
using the different metrics for A) deleted (DEL) and both CNV genes B) duplicated 
(DUP) and both CNV genes. There is approximately 70% reduction in the number of 
candidate genes when we apply the evolutionary duplication metric – ohnolog. Also, 
none of our candidates were present in the list of homozygous deleted genes (non-

A) 

B) 
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essential) from the Sudmant study as well as not present in the list of genes curated 
from the DDD study.  
 

This led to the identification of 9 candidate genes from DEL and 

BOTH CNVs: BRWD1, DIP2C, EYA3, GRB10, HNRNPC, RC3H2, SLIT3, 

TLN1 and UBASH3B. All 9 have the following properties: a) loss-of-

function (LoF) variants in the WES data, b) found in DEL or BOTH CNV 

regions only seen in non-syndromic CHD cases, c) top 5% of ExAC DEL 

CNV intolerance scores, d) haploinsufficient (pHI≥0.65) and/or unable to 

tolerate LoF variants (pLI≥0.9), e) in the top 25% of highly expressed 

genes in mouse heart at E9.5 and/or E14.5, f) ohnolog, g) not present in 

the list of genes curated from the DDD study, h) not classified as human 

non-essential genes from the Sudmant study21 (Table 2).  

In addition, we found 45 candidate genes from DUP and BOTH 

CNVs, which had the following properties: a) high or medium impact 

SNVs in the WES data, b) found in DUP and BOTH CNV regions only 

seen in non-syndromic CHD cases, c) top 5% of ExAC DUP CNV 

intolerance scores, d) in the top 25% of highly expressed genes in mouse 

heart at E9.5 and/or E14.5, e) ohnolog, f) not present in the list of genes 

curated from the DDD study, g) not in the list of non-essential human 

genes from the Sudmant study21 (Table 2).  

Pathway enrichment and gene ontology analysis 

We performed pathway enrichment analysis, using the Reactome 

Pathways Analysis tool40, on the final 54 candidate genes supported by 

both CNV and WES data in non-syndromic CHD cases. This resulted in 

11 pathways, where >5 of our candidate genes were involved in those 
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pathways (Table 3). The top 3 pathways based on entities ratio (entities 

found/total entities) from Reactome were ‘’axon guidance’’, ‘’signalling 

by receptor tyrosine kinases’’ and ‘’cellular responses to external 

stimuli’’. In addition, Ingenuity pathway analysis (IPA) was also used 

with the only pathway including >5 genes being ‘’axon guidance 

signalling’’. Gene ontology analysis41 of our candidate genes revealed 22 

Gene ontology (GO) terms with particular enrichment on 4 GO terms; 

apoptotic process involved in luteolysis (GO0061364) (FDR corrected p-

value= 0.0462), ventricular septum morphogenesis (GO0060412) (FDR 

corrected p-value=0.00921), ventricular septum development 

(GO0003281) (FDR corrected p-value=0.0343) and cardiac septum 

morphogenesis (GO0060411) (FDR corrected p-value=0.036). Both 

pathway and gene ontology analysis identified processes in which the 

genes ABLIM1, ARHGEF12, SLIT2 and SLIT3 are involved (Figure 5).  
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Figure 5: Genes in the top significant pathways and biological processes. SLIT2 
and SLIT3 genes were supported by multiple lines of evidence 

SLIT2 and SLIT3 variants in CHD 

SLIT2 and SLIT3 were the most strongly supported genes found 

both by pathway analysis and gene ontology (Figure 5). Therefore, we 

further explored the phenotypic associations of these genes within our 

population. 

In the present study, individuals with CNVs including SLIT3 were 

reported with malformation of the heart and great vessels (n=1), VSD 

(n=1), atrial septal defect (n=3) and TOF (n=1) whereas individuals with 

SLIT2 CNVs were reported with malformation of the heart and great 

vessels (n=1), VSD (n=2) and double outlet right ventricle (n=1). In 

addition, 20 missense SNVs and 3 splice-site SNVs in SLIT3 were found 

in 24 out of 829 TOF cases (2.9%, 95% CI: 1.91%-4.35%) and SLIT2 had 

12 missense SNVs and 2 splice-site SNVs in 14 out of 829 TOF cases 

(1.7%, 95% CI: 0.9%-2.9%). Probands were available for 12 SLIT3 

variants and 5 SLIT2 variants which were confirmed by Sanger 

sequencing. Remaining variants were confirmed to have good coverage 

using Integrative Genomics Viewer (IGV). Samples from both parents 

were available for 9 probands with SLIT3 variants and were analysed for 

variant inheritance; 2 of the 9 SLIT3 variants tested were identified as de 

novo. Samples from both parents were available for 5 probands with 

SLIT2 variants and were all either maternally or paternally inherited. 
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Table 1. Number of cases in previous and current meta-analysis studies as well as controls used in the current study.  

DECIPHER= Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources, ISCA= International Standards for 

Cytogenomic Arrays, ECARUCA= European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations, WES TOF= whole 

exome sequencing of Tetralogy of Fallot, DGV= Database of Genomic Variants, WTCC2= Wellcome Trust Case Control Consortium 2, DDD= 

Deciphering Developmental Disorders study 

Databases for CHD cases Thorsson et al. study Current study Databases for controls Current study 

DECIPHER 279 1,252 1,000 Genome phase 3 2,504 

ISCA 331 1,107 DGV >6,430 

Published literature 814 1,900 gnomAD 10,738 

CHDwiki 328 328 Published literature 356 

ECARUCA 0 47 WTCC2 ~6,000 

WES TOF (Page et al. 2019) N/A 829 DDD 845 
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Table 2. Candidate genes supported by both CNV and WES data of CHD cases. 54 protein-coding candidate genes supported by CNV and 

WES data in non-syndromic CHD cases. All genes in the list are strict ohnologs. Data presented includes the Ensembl ID and the nature of the 

chromosomal imbalance for which the gene is either deleted (DEL), duplicated (DUP) or deleted/duplicated (BOTH).  

TOF= tetralog 

 

ENS gene ID Gene name Chr 
Start 

(hg19) 

End 

(hg19) 
DEL/DUP/BOTH 

TOF 

LOF 

var 

count 

TOF 

HIGH 

impact 

var count 

TOF 

MED 

impact 

var count 

Case 

CNVs 

overlap: 

FULL 

Case CNVs 

overlap: 

PARTIAL 

ENSG00000058668 ATP2B4 1 203595689 203713209 DUP 0 0 13 3 1 

ENSG00000064042 LIMCH1 4 41361624 41702061 DUP 6 6 21 4 0 

ENSG00000083223 ZCCHC6 9 88902648 88969369 DUP 1 1 8 4 0 

ENSG00000092847 AGO1 1 36335409 36395211 DUP 0 0 2 3 0 

ENSG00000094916 CBX5 12 54624724 54673886 DUP 0 0 1 2 0 

ENSG00000101367 MAPRE1 20 31407699 31438211 DUP 0 0 1 5 0 

ENSG00000108387 SEPT4 17 56597611 56618179 DUP 0 0 6 5 1 
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ENSG00000108389 MTMR4 17 56566898 56595266 DUP 0 0 9 10 0 

ENSG00000109332 UBE2D3 4 103715540 103790053 DUP 2 2 0 3 0 

ENSG00000109685 WHSC1 4 1873151 1983934 DUP 0 0 12 6 0 

ENSG00000112079 STK38 6 36461669 36515247 DUP 0 0 3 5 1 

ENSG00000113108 APBB3 5 139937853 139973337 DUP 1 2 8 8 0 

ENSG00000122515 ZMIZ2 7 44788180 44809477 DUP 1 1 10 10 0 

ENSG00000138641 HERC3 4 89442199 89629693 DUP 0 0 5 14 0 

ENSG00000138835 RGS3 9 116207011 116360018 DUP 1 1 19 5 0 

ENSG00000140403 DNAJA4 15 78556428 78574538 DUP 0 0 8 9 0 

ENSG00000140497 SCAMP2 15 75136071 75165706 DUP 0 0 1 6 0 

ENSG00000145147 SLIT2 4 20254883 20622184 DUP 0 0 14 3 0 

ENSG00000146463 ZMYM4 1 35734568 35887659 DUP 0 0 12 26 1 

ENSG00000179361 ARID3B 15 74833518 74890472 DUP 0 0 6 5 0 

ENSG00000185658 BRWD1 21 40556102 40693485 DEL 5 5 16 10 1 

ENSG00000151240 DIP2C 10 320130 735683 DEL 1 1 15 4 0 

ENSG00000158161 EYA3 1 28296855 28415207 DEL 1 1 2 4 0 
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ENSG00000106070 GRB10 7 50657760 50861159 DEL 1 2 8 3 0 

ENSG00000154127 UBASH3B 11 122526383 122685181 DEL 1 1 5 9 0 

ENSG00000092199 HNRNPC 14 21677295 21737653 BOTH 1 1 2 6 0 

ENSG00000056586 RC3H2 9 125606835 125667620 BOTH 1 1 8 3 1 

ENSG00000184347 SLIT3 5 168088745 168728133 BOTH 2 2 21 3 0 

ENSG00000137076 TLN1 9 35696945 35732392 BOTH 4 4 22 9 0 

ENSG00000010017 RANBP9 6 13621730 13711796 BOTH 0 0 14 3 0 

ENSG00000020577 SAMD4A 14 55033815 55260033 BOTH 0 0 11 8 0 

ENSG00000033800 PIAS1 15 68346517 68483096 BOTH 0 0 4 7 1 

ENSG00000064726 BTBD1 15 83685174 83736106 BOTH 1 1 7 5 0 

ENSG00000083312 TNPO1 5 72112139 72212560 BOTH 0 0 4 5 0 

ENSG00000091009 RBM27 5 145583113 145718814 BOTH 0 0 7 4 0 

ENSG00000099204 ABLIM1 10 116190872 116444762 BOTH 3 3 14 12 0 

ENSG00000100320 RBFOX2 22 36134783 36424473 BOTH 0 0 5 2 0 

ENSG00000100330 MTMR3 22 30279144 30426855 BOTH 0 0 11 4 0 

ENSG00000100592 DAAM1 14 59655364 59838123 BOTH 0 0 9 14 0 
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ENSG00000113649 TCERG1 5 145826874 145891524 BOTH 0 0 6 9 0 

ENSG00000116191 RALGPS2 1 178694300 178889238 BOTH 0 0 1 2 0 

ENSG00000120899 PTK2B 8 27168999 27316903 BOTH 0 0 8 4 0 

ENSG00000127022 CANX 5 179105629 179157926 BOTH 0 0 10 2 0 

ENSG00000135074 ADAM19 5 156822542 157002783 BOTH 2 2 10 7 1 

ENSG00000137573 SULF1 8 70378859 70573150 BOTH 1 1 10 3 0 

ENSG00000137962 ARHGAP29 1 94614544 94740624 BOTH 0 0 12 3 0 

ENSG00000138107 ACTR1A 10 104238986 104262482 BOTH 0 0 2 2 1 

ENSG00000155506 LARP1 5 154092462 154197167 BOTH 2 2 13 6 0 

ENSG00000166747 AP1G1 16 71762913 71843104 BOTH 0 1 4 4 1 

ENSG00000166888 STAT6 12 57489191 57525922 BOTH 0 0 7 5 0 

ENSG00000180340 FZD2 17 42634925 42636907 BOTH 0 0 8 8 0 

ENSG00000180776 ZDHHC20 13 21950263 22033509 BOTH 1 1 2 6 0 

ENSG00000196914 ARHGEF12 11 120207787 120360645 BOTH 0 0 14 12 0 

ENSG00000213079 SCAF8 6 155054459 155155192 BOTH 0 0 13 14 0 

 
Table 3. Top pathways overrepresented in our 54 candidate genes.   
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# = number 
Pathway tool Pathway name # Entities found # Entities total Entities ratio (%) 

Reactome Axon guidance 8 583 1.372212693 

Ingenuity pathway analysis Axon guidance signalling pathway 7 501 1.397206 

Reactome Signaling by Receptor Tyrosine Kinases 5 521 0.959692898 

Reactome Cellular responses to external stimuli 5 621 0.805152979 

Reactome Signalling by Interleukins 5 641 0.780031201 

Reactome Developmental Biology 8 1177 0.679694138 

Reactome Adaptive Immune System 6 998 0.601202405 

Reactome Cytokine Signalling in Immune system 6 1056 0.568181818 

Reactome Signal Transduction 15 3202 0.468457214 

Reactome Post-translational protein modification 7 1594 0.439146801 

Reactome Immune System 11 2662 0.41322314 

Reactome Metabolism of proteins 9 2354 0.382327952 
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Abstract 

Effective methods of individual identification and genetic sampling are necessary to 

properly determine elasmobranch population densities and genetic health. As 

populations decline, the need to develop non-invasive methods of population 

assessment becomes ever more urgent. The undulate ray, Raja undulata, is a globally 

endangered, but often locally-abundant species that has various protection levels 

throughout its range. However, there is a heavy reliance on fisheries data to conduct 

population analysis for the management and conservation of R. undulata despite 

being threatened with extinction. Here, we conduct the first global genetic 

assessment of wild R. undulata using microsatellites marker analysis of 143 

individuals from mucus and tissue sampling. To collect underwater mucus samples, 

we developed a successful non-invasive method for resting R. undulata using scuba 

divers. Secondly, between 2012 and 2018, we conducted a capture mark-recapture 

study on an underwater sampling site on the coast of Dorset, UK, and processed 

images through Wild-ID to identify 263 individuals. The genetic results exhibited an 

overall high average genetic diversity (Ho = 0.66, He = 0.85, average alleles per 

locus = 19.8). Capture mark-recapture analysis demonstrated the highest number of 

R. undulata were present in autumn, and that the average estimated population size 

was 228 (maximum standard error ± 87). Despite a low probability of recapture (p = 

0.035), the individual survivorship rate between visits was high (φ = 0.969). Finally, 

we use network analysis to investigate the social behaviour of R. undulata, 

demonstrating that distinct pairs of rays are present at a higher frequency than is 

expected by chance (95% confidence interval P ≤ 0.02), indicating a high probability 

of same pair migration and social interaction. 
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Introduction 

Overfishing is the main cause of the decline of shark, skate and ray (elasmobranchs) 

populations around the globe (Dulvy et al., 2014; Worm et al., 2013). 

Coincidentally, because of the difficulties surrounding the direct observation of 

individuals within the marine environment, fishing data also form the main source of 

the fish stock assessments that influence conservation management (Beddington et 

al., 2007). Monitoring the change in capture rates is the simplest and most common 

method of estimating population size, while sample collection from fisheries of 

either tissue or whole specimens has assisted in species identification and population 

genetics (Larson et al., 2017). As of 2014, a quarter of all elasmobranchs were 

classified as threatened with extinction under the IUCN Red List (Dulvy et al., 2014; 

IUCN, 2014). Thus, there is an urgent need to develop and implement better 

methods of population assessment. 

The undulate ray, Raja undulata, is a globally endangered species of skate with a 

fragmented population distribution from the North-east Atlantic to the equator and 

the Mediterranean Sea (Coelho et al., 2009). In 2009, the EU enforced laws that 

prohibited landings in the North-east Atlantic, and placed restrictions on landings in 

the Mideast-Atlantic and Mediterranean (CEC, 2010). In North Africa however, high 

levels of illegal, unregulated and unreported (IUU) (CoC, 2015) fishing means there 

is little management enforced for this species. The landing restrictions within the 

North-east Atlantic were a controversial topic due to claims that the fisheries were 

catching large quantities (Ellis et al., 2012). Independent trawler surveys were 

conducted to provide evidence for abundance and the results contributed towards a 

regional delisting of the species to Near Threatened  and a gradual increase in quota 

sizes (Ellis et al., 2015). However, despite these stock assessments relatively little is 
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known about the movements and the connectivity of R. undulata between sites (Ellis 

et al., 2012).  

More recently, studies have employed tagging and satellite tracking to investigate 

elasmobranch movements and population abundance through capture mark-recapture 

(CMR) (Feldheim et al., 2002; Guttridge et al., 2010; Hunter et al., 2005). Capture 

mark-recapture uses tagging to identify individuals, allowing  recording of presence 

and absence data, and movements between study areas (McCrea and Morgan, 2014). 

Analysis of CMR data can provide population estimates, and population viability 

and survivorship probabilities (McCrea and Morgan, 2014), without the need to 

destroy individuals. Furthermore, due to developments in recognition software 

(Speed et al., 2007), non-invasive methods such as photographs can now be used to 

confidently identify individuals. Large image databases of specific regions of the 

fish that hold unique markings, such as patterns or marks, pigmentation, or long-

standing scars, can be used to identify individuals over long periods of time. 

Examples include images of the dorsal fin in white sharks Carcharodon carcharias 

(Andreotti et al., 2018), spot patterns on the dorsal side of the spotted eagle ray 

Aetobatus narinari (González-Ramos et al., 2017) and the ventral side’s natural 

pigmentation and spots on manta rays Manta alfredi and Manta birostris (Ari, 2015; 

Marshall and Pierce, 2012). Recognition software overcomes inherent sources of 

bias associated with invasive tagging methods such as mortality from tag 

application, non-reported or non-recovered tags, and tag shedding (Kohler and 

Turner, 2001). 

Genetic techniques have previously been used to validate the use of recognition 

software in elasmobranch species (Andreotti et al., 2016). Furthermore, genetic 

sampling is a powerful tool for understanding population dynamics, separate to or 
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alongside, CMR data. However, the collection of DNA no longer depends on 

invasive methods such as tissue or blood sampling, which often increase the risk of 

mortality or rely on the collection of fished individuals. The use of mucus sampling 

to collect DNA is a recently established non-invasive technique that has proven a 

viable alternative for in situ populations of the basking shark Cetorhinus maximus 

(Lieber et al., 2013) and manta ray Manta birostris (Kashiwagi et al., 2015), and ex 

situ captive populations of R. undulata (Fox et al., 2018). 

Here we use 17 microsatellite markers, previously defined by Hunter et al. (2016) 

and Fox et al. (2018), to investigate the genetic relationships of R. undulata between 

12 sample sites across their global distribution. We analyse genetic health and 

review differences between previously prohibited fishing regions (England, North-

east Atlantic), areas with restricted quotas (mainland Europe, Mideast-Atlantic) and 

areas with no known quotas/high levels of IUU fishing activity (Morocco, North 

Africa). Secondly, with the use of CMR on a known site in England, we compare 

population estimates with genetic effective population size measured as effective 

number of breeders. Finally, we review the probability of recapture, survivorship and 

relationships between individuals within our single population of R. undulata, 

which, for most of this study, has been a protected species in the UK.  
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Methods 

Global genetic analysis 

DNA sampling 

Tissue samples of R. undulata were collected as a by-product from fish markets in 

Portugal, Spain, and Morocco between 2015 and 2018 (Figure 1.). Samples were 

stored in RNAlater® at -4˚C before being transferred to -80°C at the Manchester 

Institute of Biotechnology.  

 

Figure 1. A map displaying the locations and total number of either tissue or mucus samples per 

site created using Python (v 2.7.16, (van Rossum, 1995) from the basemap library. Note, Rays’ 

Repose was not displayed due to its close location between Weymouth and Southampton. 

Non-invasive underwater mucus swabs from R. undulata were collected by a group 

of volunteer recreational British Sub Aqua Club (BSAC) accredited scuba divers 

between April 2017 and October 2018, on a site within the Studland to Portland 

Special Area of Conservation, Dorset, England. The site, hereafter referred to as 

Rays’ Repose, is approximately 50 metres wide and over 200 metres from north to 
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south, forming part of the Kimmeridge Ledges (50° 35.5’ N  2° 7.5' W); a series of 

shallow flat ledges reaching out to sea for up to a mile. Qualified divers followed 

Supplementary Methods 1. to collect samples and take photographs for 

identification. Swab samples were taken using an autoclaved heavy-duty green 

scrubber (Robert Scott Ltd. Code 102450) attached to a 10 cm handle 

(Supplementary Methods 1.). The scrubber was gently pressed on the upper dorsal of 

the nearest wing and moved towards the tail end between one and three times, before 

placing the sample into a marked zip locked bag (Supplementary Methods 1.).  A 

photograph was then taken of the marked zip lock bag to correspond to the 

identification image. After the dive, the green scrubber with the mucus was removed 

from the handle, placed into a 50 ml tube containing 40 ml of 98% ethanol and 

transferred onto ice. A further set of non-invasive mucus samples were collected 

from recreational sea anglers in both Southampton (27 miles due east) and 

Weymouth (15 miles due west) in 2017. Between June and October 2017 we used 

the same swabbing method on non-targeted, accidental by-catch R. undulata, which 

were collected, sampled, and returned following Brownscombe et al., (2017) “best 

angling practices guide”. For each individual we collected three mucus swabs to 

increase the probability of successful DNA analysis. Once the samples were in a 

controlled environment, they were kept at -20°C before returning to the lab where 

they were stored at -80°C. 

DNA extraction, amplification and genotyping 

A Bioline (“ISOLATE II Genomic DNA Kit Product Manual,” n.d.) was used to 

extract DNA from the tissue samples, following the manufacturer’s protocol. DNA 

was extracted from the swabs using an adapted method with an E.Z.N.A Mollusc 

DNA Kit (Omega Bio-Tek, Norcross, USA). In addition to the manufacturer 



HOOK ET AL 2019 

 
 

317 

protocol, we added a two stage digestion to obtain the maximum amount of mucus 

from each sample. Firstly, the 0.5 cm3 of the scrubber with the most visible mucus 

was selected, together with the top layer of the remaining scrubber with any further 

visible mucus. The sections were added to a 1.5 ml tube and left for five minutes in a 

fume hood to remove the remaining ethanol. Secondly, the ethanol-fixed mucus that 

had fallen from the scrubber within the 50 ml falcon tube was centrifuged at 5000 

rpm at 4˚C for 1 hour to create a mucus pellet. The ethanol was gently poured off the 

mucus pellet and left for five minutes in a fume hood to remove the residual ethanol. 

A total of 350 µl of ML1 lysis buffer was added to the falcon tube and vortexed for 

15 seconds to re-suspend the mucus pellet into the buffer. This solution was then 

pipetted into the corresponding 1.5 ml tube containing the cut scrubber and visible 

mucus, and 25 µl of proteinase K was then added to the tube and digested at 60˚C for 

five hours, or 37°C overnight, to digest contaminating proteins. Once digested, the 

DNA was extracted following the original E.Z.N.A Mollusc DNA Kit protocol but 

with a single elution extended to 10 minutes at 70˚C to maximize yield. DNA 

extractions were quantified using a NanoDrop ND-1000 spectrophotometer (Thermo 

Fisher Scientific, Carlsbad, USA) to ensure yields were ≥10 ng/µl. Samples were 

stored at -20˚C.  

A total of 17 R. undulata species-specific microsatellite primers were used from 

Hunter et al. (2016) and Fox et al. (2018). Two different universal tails were added 

to the primers and Polymerase Chain Reactions (PCRs) were conducted under a 

three primer approach (6-FAM or HEX; Blacket et al., 2012) to create five 

multiplexes (Supplementary Table 1.). Reaction volumes (5 µl) consisted of 0.5 μl 

multiplex primer mix, 1.5 μl Type-it® microsatellite master mix and 2.5 μl double 

distilled H2O added to 0.5 µl of the 10-70 ng/µl genomic DNA used for 
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amplification. Thermal cycler conditions were as follows: initial denaturation at 5 

minutes at 95˚C, 35 cycles of 30 seconds at 94˚C, 90 seconds of annealing at 60˚C 

and 30 seconds of extension at 72˚C, followed by 1 cycle of 30 minutes at 60˚C (Fox 

et al., 2018). PCR products were visualized on a 1.5% agarose gel (using a Gel 

Green nucleic acid stain) under a UV light source to confirm successful 

amplification. Following successful amplification, the products were genotyped 

using an ABI™ sequencer at the University of Manchester DNA Sequencing Facility 

with GeneScan™ 500 LIZ™ dye size standard and scored using GeneMapper v.4.0 

(Applied Biosystems).  Allele scores were checked for user error in Microchecker 

(van Oosterhout et al., 2004) and Microsatellite Toolkit (Park, 2001). 

Genotype statistical analysis: genetic health and structure 

We investigated observed (Ho) and expected heterozygosity (He) as a measure of 

genetic diversity for each of the loci, using GenePop on the Web v4.2 (Raymond and 

Rousset, 1995). To identify sample location diversity levels we collected average Ho, 

He, number of alleles per locus and the number of unique alleles (private alleles) for 

each sample location using the allele frequencies calculated in GenePop on the Web, 

and confirmed this with Cervus v3.0.7 (Marshall et al., 1998). To calculate an 

approximate number of genetic populations (K) we ran STRUCTURE’s (Pritchard et 

al., 2009) systematic Bayesian clustering approach, that applies Markov Chain 

Monte Carlo (MCMC) estimation at 10,000 repetitions to model the possible number 

of clusters (K = 1 to 15) at fifteen iterations. This data was inputted into 

STRUCTURE HARVESTER software (Earl and VonHoldt, 2012) which uses the 

Evanno method (Evanno et al., 2005) to calculate ∆K, and CLUMPP (Jakobsson and 

Rosenberg, 2007) as a more accurate predictor of the cluster number. The Evanno 

method uses the rate of change in the log probability of the data provided from 
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STRUCTURE to account for non-homogeneous dispersal among populations (∆K) 

(Evanno et al., 2005). CLUMPP defines the number of K by implementing three 

algorithms against the STRUCTURE analysis to align clusters via a membership 

coefficient (Jakobsson and Rosenberg, 2007). 

Lastly, we calculated the effective number of breeders (Neb) as a measure of genetic 

population size under the molecular co-ancestry method (Nomura, 2008) using 

software NeEstimator v2.1 (Do et al., 2014). This method provides unbiased 

estimates of Neb without the need for demographic information, such as age. The 

molecular co-ancestry method also overcomes issues found in previous methods 

which may not be suitable to study natural populations of endangered species 

(Nomura, 2008). We analysed each sample site separately before grouping locations 

in the North Atlantic (Figure 1.) to gain a better understanding of Neb in this region, 

which is likely linked with the single site capture mark-recapture site Rays’ Repose. 

Single Site Capture Mark-Recapture (CMR) 

Dataset collection 

Between April 2012 and October 2018, photographs were collected from resting 

R. undulata on Rays’ Repose by the same group of scuba divers who conducted the 

genetic sampling.  Each dive consisted of up to 3 experienced scuba divers with an 

average dive time of 51 minutes and maximum dive depth of 17.5 metres (tide 

dependent) (Supplementary Methods 1.). 

Diving was conducted during daylight hours when the rays were found on the seabed 

in a resting position, consistent with ray behaviour described by Humphries et al. 

(2017) for other UK skate species (Humphries et al., 2017).  The number of 

individuals photographed on any dive was limited by the dive conditions (such as 

visibility, tides and currents), individual diver constraints and may have been 
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influenced by individual rays becoming ‘trap-shy’ (avoidance of the divers). Full 

protocols were made to minimise ray disturbance, increasing the probability of 

retrieving dorsal pattern photographs (Supplementary Methods 1.). Photographs of 

the dorsal side of the fish were taken in .jpg and RAW format with various compact 

and single-lens reflex (SLR) cameras. In total, 144 dives were completed on the site, 

collecting CMR data for 263 individuals. 

Computer assisted photo-ID 

Each photograph had the colour removed, and was converted into a standard 

orientation and on-screen size (20-cm x 20-cm) using Adobe® Photoshop (Figure 2.). 

To assist the computer recognition program, areas of surrounding seabed were 

cropped from the image to leave only the ray’s dorsal surface (Figure 2.). Each 

formatted photograph was entered into Wild-ID (Bolger et al., 2012). Wild-ID 

compares each new image and provides a numerical matching coefficient for the 20 

most likely existing photos already in the dataset (Bolger et al., 2012). Where the 

dorsal pattern was clear, the software identified images of the same ray and clearly 

discriminated from other rays with a higher numerical matching coefficient. 

However, where the dorsal pattern was obscured, matching images were 

discriminated less clearly from images of the other rays, hence, the final decision for 

a true match was made manually by the same two users from the 20 most likely 

candidates identified by the software. On first capture each individual received a 

unique sighting number of which all future recaptures would then be associated to. 

The results from Wild-ID were cross-examined with a second photo-recognition 

software, I3S Pattern, revealing the same exact matches between images, and thus 

validating the use of Wild-ID (Speed et al., 2007). 
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Figure 2. (A) The first cropped image of the dorsal pattern with the original substrate, 

orientated with the nose at the top of the image, and the tail at the bottom of the image. (B) 

Image A edited without colour and removal of the surrounding substrate. Both images are of 

the same individual ray ID 831, named ‘Watson’. 

Statistical analysis 

In 2017, one individual from Rays’ Repose was photographed by a recreational diver 

at Chesil Beach, Portland, Dorset (Ray ID 598), approximately 34 miles, west of 

Rays’ Repose (Openshaw and Openshaw, 2018). This indicates that the population is 

open, and therefore we conducted the analysis under this assumption. We used 

RStudio v.1.0.143 (RStudio Team, 2016) to investigate whether the seasons had an 

influencing factor on the number of rays captured using one-way ANOVA test of 

equal variances from a Welch's t-test. Secondly, we created loglinear models to 

estimate population abundance between years in the R-package Rcapture 

(Baillargeon and Rivest, 2007). 

To investigate an individual’s probability of survival (φ) and recapture (p) we used a 

Cormack-Jolly-Seber model (CJS) in the R-package “marked” (Laake et al., 2013; 

RStudio Team, 2016). Duration between site visits varied in length due to weather 

restrictions, tide, and other time constraints. We therefore were interested in the φ 

A. B. 
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with the variation of time between site visits as a parameter. We also used individual 

sex as a parameter to determine whether there was a bias on φ and p estimates in 

separate models. 

Network analysis 

Sampling visits that occurred within a five day period were clustered together to 

address a potential low probability of recapture, where individuals could be present 

but may not be observed. The total number of clustered mark-recapture visits was 40 

(original number of visits = 73). Using the clustered mark-recapture data we 

investigated whether the co-occurrence of observed paired individuals appearing on 

the site exceeded the modelled prediction which could be expected to occur at 

random. To model our predicted data we used the EcoSimR package (v6.0, (Gotelli 

et al., 2015) in RStudio v.1.0.143 ((RStudio Team, 2016), which uses the curveball 

algorithm (Strona et al., 2014) of matrix shuffling to generate ‘random’ matrices, 

based on the observed data, whilst maintaining row and column totals (in our case 

individual and time point respectively). In using the curveball algorithm rather than 

the more traditional sequential swap, transient effect biases are minimised and 

therefore the resulting matrices have demonstrably greater reliability (Strona et al., 

2014). We ran the EcoSimR algorithm 5 times, with 10,000 iterations each. 
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Results 

Global genetic results 

A total of 143 individuals from the 12 sites were amplified using the 17 loci defined 

by Hunter et al. (2016) and Fox et al. (2018). Total average genetic diversity 

measures per locus were Ho = 0.66, He = 0.85, and mean number of alleles per locus 

= 19.8 (Supplementary Table 1.). Further to this, we investigated mean Ho, mean He, 

mean polymorphic information content (PIC), and mean number of private alleles 

(Pa) for each sample site (Table 1.). We found the largest number of private alleles to 

be at El Jadida (Morocco, Pa = 37), whilst the lowest number was found at Larache 

and Casablanca (Morocco, Pa = 0). Overall the number of private alleles for each 

country was: England, Pa = 34; Portugal, Pa = 19; Spain, Pa = 17, Morocco, Pa = 

47.  

 
Table 1. Genetic diversity levels for the samples taken at each site, measured as 
average observed and expected heterozygosity (Ho and He), Polymorphic 
Information Content (PIC), number of private alleles (Pa) and estimated effective 
number of breeders (Neb) and Neb at 95% confidence interval (CINeb) 

 

 

 

Sample Site N Ho He PIC Pa Neb CINeb  
Rays’ Repose 16 0.141 0.296 0.242 12 - - 

Southampton 20 0.545 0.601 0.551 7 - - 

Weymouth 13 0.553 0.623 0.551 5 - - 

Peniche 8 0.539 0.688 0.597 9 - - 

Algarve 9 0.667 0.791 0.704 10 28.9 80.4 

Algeciras 13 0.733 0.798 0.651 17 12.5 21.1 

Tangier 5 0.515 0.606 0.489 1 2585.8 12980.8 

Larache 2 0.441 0.461 0.294 0 - - 

Casablanca 5 0.549 0.617 0.504 0 133.2 668.5 

El Jadida 33 0.678 0.848 0.788 37 21.8 46.1 

Essouira 14 0.706 0.808 0.721 7 - - 

Agadir 5 0.500 0.564 0.284 2 44.6 224.0 
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Population Structure 

Through the use of STRUCTURE (Pritchard et al., 2009) and STRUCTURE 

HARVESTER (Earl and VonHoldt, 2012; Evanno et al., 2005) we found that there 

were six genetically distinct populations (K) within the sample set (Figure 3.), and 

that there is a higher level of connectivity between sample locations that are 

geographically closer together (Figure 3.). From the STRUCTURE results, the 

Evanno method and the CLUMPP analysis confirmed a K of 6 (K = 6, ∆K = 4.03, 

iterations = 15). 

  

Figure 3. A colour map of the normalized data displaying the number of individuals 
from each sample location (y) compared with the population assignment K= 6 
calculated in STRUCTURE and Structure HARVESTER with use of the Evanno 
method and CLUMPP. Colour bar represents the normalized data (fractions). Sample 
locations (y) are arranged north to south. The colour map was created using Python 
program Matplotlib. 
Molecular co-ancestry effective number of breeders (Neb) 
When combining the North Atlantic samples (N = 49) and using the molecular co-

ancestry method as defined by Nomura (2008), the estimated number of breeders as 
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a measure of population size was unknown because the data were not sufficiently 

informative at a 95% confidence level. This was the case for 50% of the sample sites 

(Table 1.). 

Single Site Capture Mark-Recapture (CMR) Results 

Single site capture mark-recapture 

In total, we identified 263 individuals that were present on the Ray’s Repose site 

between spring of 2012 and autumn of 2018. Of the 263 individuals, six previously 

unmarked individuals were photographed on the last visit and therefore were 

removed from the CJS CMR model. Of the total 263 individuals, 82 were males, 173 

were females, seven were juveniles and one was unknown, although these figures 

may be inaccurate being based only on an underwater visual assessment of maturity 

and gender.   

Population distribution and estimates 

The number of rays that were found varied across the seasons, dependent on the year 

(Figure 4.). Overall the highest number of rays was found in autumn and the lowest 

number in spring (one-way ANOVA test of equal variance p = 0.122, Welch F-test 

of unequal variances p = 0.050); months for each season where taken from the UK 

set dates. From the average number of individuals observed, more rays were present 

in summer than in any other month; average number of individuals per season was 

calculated from the number of rays per site visit. Population estimates for Rays’ 

Repose fluctuated between 150 and 400 (maximum standard error +/- 125; Figure 4.) 

and average estimate for the site was 228 (maximum standard error +/- 87). 
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Figure 4. Average seasonal occurrence and population estimates of R. undulata at Rays’ Repose 

between spring 2012 and autumn 2018. 

Survival and capture probabilities 

Using the CJS models under the assumption that time between visits is a variable 

parameter for φ and p we found that the overall estimate of probability of survival φ 

= 0.969 (standard error (SE) = 0.0054, 95% upper and lower confidence levels = 

0.956 to 0.978) and capture probability p = 0.035, (SE = 0.004, 95% upper and lower 

confidence levels = 0.028 to 0.043). 

Network analysis 

When applying the curveball algorithm matrix reshuffling, the observed data 

exceeded both the one, and two tailed 95% confidence intervals (p = ≤ 0.02), 

indicating that the observed co-occurrence of undulata rays on Rays’ Repose is not 

random. Furthermore, we can see from the network analysis (Figure 5.) that pairs 
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types are likely to either be female to female (19 pairs) or female to male (15 pairs) 

rather than male to male (6 pairs).Using probability tests we found no statistical 

significance between the pairing type, the possible number of pairings (NP) and the 

actual number of pairs (AP); female to female, NP = 300, AP = 21; female to male 

NP = 350, AP = 18; male to male, NP = 91, AP =3. 

 

 

Figure 5. A network analysis showing the networks of pairs which occurred in 2 or 3 clusters 

together. Total number of pairs = 42, Number of retained individuals = 39.  
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Discussion 

Here, we developed a successful method for non-invasive, underwater mucus 

sampling to extract DNA and examine the genetic health of R. undulata. This is the 

first study to combine mucus samples (collected by scuba divers and recreational sea 

anglers) and tissue samples (collected from fish markets) to review the global 

genetic population structure for any elasmobranch. Lastly, this is the first long term 

(7 year) capture mark-recapture (CMR) study conducted on any skate or ray (batoid) 

population, without the use of an invasive tagging method.  

Prior to this research, similar mucus sampling techniques have been successfully 

used on other neotropical batoids (Domingues et al., 2019; Kashiwagi et al., 2015; 

Lieber et al., 2013) and with captive individuals (Hunter, 2016). With the exception 

of Kashiwagi et al. (2015), these studies have required invasive capture methods 

where the individual is removed from the water to conduct non-invasive sampling 

via mucus swabs (usually by fishing). Elasmobranch mortality post-capture can 

range depending on fishing practice such as gear type, location, fishing depth, 

species, and on-board conditions (Ellis et al., 2017). In our sample collection, R. 

undulata were non-targeted, accidental by-catch from recreational sea anglers using 

rod and line, whereby mucus swabs were non-invasively taken prior to release. Sea 

anglers followed the ‘best angling practices guide’ (Brownscombe et al., 2017) to 

increase probability of survivorship post release. Divers used a site-specific protocol 

adapted from The Underwater Photographers Code of Conduct (The British Society 

of Underwater Photographers, n.d.) to safely capture images and take mucus samples 

with little intrusion to the rays’ natural behaviour and having no known effect on 

mortality (Supplementary Methods 1.). To our knowledge, we are the first study to 

employ mucus sampling method on resting batoids, collected by scuba divers. 
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We found that, despite R. undulata being globally endangered (Coelho et al., 2009), 

average genetic diversity was overall high (Ho = 0.66, He = 0.85, average alleles per 

locus = 19.8). This is similar to other elasmobranch species threatened with 

extinction such as the small sawtooth Pristis pectinate (Chapman et al., 2011), the 

scalloped hammerhead Sphyrna lewini (Ho = 0.67, He = 0.72; (Green et al., 2017; 

Nance et al., 2009) and the longheaded eagle ray Aetobatus flagellum (Ho = 0.47, He 

= 0.48; (Yagishita and Yamaguchi, 2009). No study has investigated the true effects 

of elasmobranch genetic diversity changes due to population decreases. As 

elasmobranchs have long life history traits, it may be that we do not observe a 

decrease in genetic diversity for many generations, as life spans of animals are often 

longer than the time span of data available. Furthermore, with the exclusion of Rays 

Repose’, we observed little differences between populations that previously had full 

protection in the north-east Atlantic, and various fished populations in the mid-

Atlantic. STRUCTURE defined six genetically unique populations. Rays’ Repose 

individuals fell into numerous populations; however the majority of individuals were 

clustered within population 5, which also included the majority of Southampton 

individuals. However, this may be due to a reduced amplification rate from the 

underwater mucus swabs when compared to the sea angler mucus swabs. 

Structurally, there is almost a near north to south divide, with the majority of 

Morocco samples falling in populations 1 to 3 and the majority of northern sample 

sites falling into populations 4 to 6 (Figure 3.). The fact that nearly all sample sites 

have individuals which fall into every population identified by STRUCTURE 

indicates a level of shared genotypes and therefore possible geneflow between 

regions. 
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The effective number of breeders could not be determined by the molecular co-

ancestry method (Nomura, 2008) for 50% of sample sites because it results in an 

infinite (∞) estimated Neb (including confidence intervals). For all sites where 

samples were collected by non-intrusive methods, Neb was unknown because the data 

is not informative enough. This was the same for only three out of the nine invasive 

sample sites and could be the product of a lack of population structure. It is 

interesting to note that Neb could only be calculated in the more tropical regions 

around the strait of Gibraltar (south Portugal and Spain) into the mid-Atlantic 

(Morocco). The largest estimate, with the exception of ∞, was at Tangier, Morocco 

(Neb = 2585.8) whilst the smallest number was in Algeciras, Spain (Neb = 12.5). 

Despite the success of using the unique dorsal patterns for individual recognition, 

certain caveats should be acknowledged. The challenge of photographing rays in 

their wild environment means that photographs are often lesser quality for 

identification purposes than what could be achieved in a controlled environment.  

The computer recognition process is dependent on the quality of the photographs and 

therefore false negatives may exist. To overcome this, we used a manual matching 

process to validate the identifications made within Wild.ID, which can be time 

consuming. We also confirmed Wild-ID with I3S, indicating both software were able 

to match individuals. As photographic equipment and recognition software improves 

over time, we can predict that error rates will decrease.  

The frequency at which individuals are caught in CMR studies can depend on the 

methodology, and may either influence an over- or underestimate of the population 

size. For example fishing for individuals may cause them to become ‘trap shy’, while 

baiting vessels to attract individuals may cause them to become ‘trap happy’ 

(attracted to the method of CMR) (Towner et al., 2013). With the exception of 2017 
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and 2018, individuals on Rays’ Repose were only photographed, causing minimal to 

no disruption while rays were resting. As the R. undulata did not receive a known 

benefit from the divers, it is unlikely that they would become trap-happy; however, 

any minimal disruption from the divers may have encouraged individuals to move 

off the site (trap-shy). As divers visit on relatively few occasions (averaged ≤5.6% of 

the year), if individuals became trap-shy, they would likely return to the site once 

divers had left, causing minimal disruption to their natural behaviour. This along 

with sampling effort, tidal conditions, length of dive and underwater visibility could 

be contributing factors on why the probability of recapture is low (p = 0.035). It 

could be argued that the level of camouflage R. undulata have against the seabed at 

Rays’ Repose may have also contributed to the low probability of recapture. This 

camouflage is likely the reason we observed them resting for such long periods of 

time, and a contributing factor for such a successful survivorship (φ = 0.969). A 

niche habitat coupled with high levels of protection and strict landing quotas since 

2009 (ICES, 2016), could have contributed to the near stable population sizes we 

estimated. The longest period between first and last sighting of the same ray was 

2,186 days, approximately six years, highlighting the importance of long term 

studies and specific sites to individual fish. 

Lastly, from our CMR data collected at Rays’ Repose, we found the first evidence 

that there are social interactions between individual R. undulata, which may 

influence their migratory patterns when appearing on the site. The observed patterns 

of co-occurrence of individuals highlight possible levels of social behaviour not 

previously explored in R. undulata. As the site appears to be used only for resting, it 

can be questioned whether the networks are moving off site together to conduct the 

same natural behaviours, such as feeding or mating. As the networks appear to be 
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primarily female pairings, or female to male pairings, it can be questioned whether 

there is an active avoidance between males. However further data and research 

would be required to test true significance between these pairings. Furthermore, it 

would be interesting to investigate movement and behaviours when individuals are 

on a different site as we only found evidence of resting on Rays’ Repose.  

The knowledge of the site, the length of study, and the presence of rays has made 

this unique in its field. To replicate the CMR study elsewhere, similar conditions 

would have to be met. With the correct equipment, diver experience and knowledge 

of batoid resting sites, non-invasive methods of CMR compete with traditional 

invasive tagging methods as a cheaper and more accessible tool for site-specific 

population assessments, assisting in conservation management across a range of 

species. Although the Ray’s Repose site is already situated in a protected European 

Marine Site, the Studland to Portland SAC, undulate rays are not a qualifying 

designated feature for that site and therefore receive no specific protection. Due to 

the site’s topography, Rays’ Repose will not likely be subjected to any bottom-

destructive fishing, such as trawling (offering a level of protection) as the fishing 

gear would be damaged. Despite this, set net fishers do operate in the area, targeting 

rays and flatfish amongst others; recreational anglers also fish for rays along the 

coastline. At the present time, continued observation could be the best management 

for this population before other means such as voluntary codes of conduct or local 

fisheries by-laws such as bag limits or closed areas need to be considered. The 

application of these developed sampling techniques to other areas or taxa will 

increase our knowledge and understanding of elasmobranch populations and 

behaviour more globally. 
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