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Abstract

This thesis aims to understanding the option implied information, including political event
risk, after-hours option trading, and Ross recovered probability. It consists of three essays.

The first essay shows that the option market can ex ante detect and quantify the effects of
political event risk. Focussing on the 2016 UK referendum on EU membership, we find that
the Risk-Neutral Distribution extracted from GBPUSD futures options whose expiry spans
the referendum date becomes bimodal and the Implied Volatility curve exhibits an unusual
W-shape. To the contrary, the corresponding effects for FTSE100 are found to be very limited.
The large swings in expectations regarding the event outcome during the referendum night
allow us to observe the counterfactual and validate the ex ante information revealed in the
option market.

The second essay documents the trading characteristics of the option market in extended
trading hours and explores the intraday intertemporal decisions of liquidity and informed
traders. The option market exhibits low liquidity, low trading activities, high transaction
costs, and a high probability of informed trading in extended trading hours. However, the
introduction of extended trading hours enhances market quality by decreasing the quoted
and effective bid-ask spreads in the following regular trading hours with decreased adverse
selection costs. Moreover, option prices in extended trading hours are informative for the
following regular trading hours in terms of index level and realized volatility.

The third essay presents the importance of an interest rate condition in Ross recovery.
The term structure of interest rates explains the differences between approaches that follow
the original Ross recovery theorem. A flat term structure of interest rates results in a Ross
recovered probability distribution identical to the risk-neutral probability distribution in Ross
recovery. After considering interest rates with a market example, empirical evidence still
shows Ross recovered probabilities are close to the risk-neutral probabilities. We propose new
estimation approaches to reflect the requirements in Ross recovery without imposing additional
assumptions. Ross recovery with a short transition period implies a nonnegative matrix root
for the transition matrix with a long transition period. Different least squares estimations are
not equivalent when there is no unique and exact fitting with the market spot state prices. A
sparse spot state price surface probably results in a relatively stable pricing kernel in Ross
recovery. By taking into account the implicit requirements in Ross recovery, we propose
a recovery estimation labeled Ross Power with a multi-period interest rate condition. This
approach provides insights into the relationship among Ross recovered, generalized recovered,
and risk-neutral probabilities.
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1.1. Background and motivation

Risk-neutral probability distributions, or Arrow Debreu prices, can be extracted from a
cross-section of options and provide the present values for any future cash flows. It describes
the market’s expectations about future economy states considering both asset prices and risk
preferences. Changes in risk-neutral probabilities reflect changes in the expected future asset
prices and/or changes in the risk preferences. Since the breakthrough work of Breeden and
Litzenberger (1978), both parametric and non-parametric risk-neutral estimation methods have
been well developed in the literature (see Figlewski, 2018; Jackwerth, 2004 for an overview).
Therefore, option implied risk-neutral probability distribution may be a useful tool to ex ante
identify the impact of exogenous events such as the 2016 referendum on EU membership
status of the UK.

Option implied information, including option implied volatility, option implied higher mo-
ments, and option implied risk-neutral probability distribution is usually risk-neutral estimated.
Recovering risk-neutral probabilities to physical probabilities relies on the assumptions of the
representative investor’s utility function. Recent literature provides an alternative by consider-
ing non-parametric recovery methods. Ross (2015) proposes a recovery theorem trying to
recover the physical probabilities and the risk preference at the same time solely based on a
snapshot of the option price surface. However, Borovička, Hansen, and Scheinkman (2016)
prove Ross recovered probabilities are long term risk-neutral probabilities instead of physical
probabilities. A growing literature is still working on the understanding of Ross recovery
theorem. Moreover, the option market is still under development as technology advances.
The change in the structure of the option market provides a laboratory to examine whether
market structure changes improve market quality. Segmented option markets are becoming a
integrated nationwide option market in the US (Battalio, Hatch, and Jennings, 2004; Mayhew,
2002). Liquidity in the option market is improving by market structure changes, such as
designated market maker (Anand and Weaver, 2006; Mayhew, 2002) and make-take structure
(Anand, Hua, and McCormick, 2016). Therefore, it is interesting to examine how recent
structure changes in the option market, such as the introduction of extended trading hours for
S&P 500 options, affect market quality.

This thesis applies a variety of option implied information methods and analyzes the equity
and currency option market with political risk, extended trading hours market quality, and
Ross recovered probability.

1.2. Thesis Overview and Contributions

Political events exert a significant impact on financial markets. Turmoil in financial markets,
including currencies, bonds, and stocks, caused by political uncertainty may hurt economic
activity and increase political costs (Bernhard and Leblang, 2006). Electoral probability
during political process impacts equity prices and interest rate (Fowler, 2006; Snowberg,
Wolfers, and Zitzewitz, 2007). Political uncertainty is priced into the option market with a
political risk premium (Kelly, Pástor, and Veronesi, 2016).
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In 2016, the Leave outcome of the UK referendum on EU membership (Brexit referendum)
surprised the financial markets. Before the Brexit referendum, the poll by YouGov indicates a
marginal victory for a Remain outcome. However, GBPUSD and FTSE 100 dropped from
previous day peak to the bottom after the referendum day as -12% and -8.7% with a result of a
Leave outcome. In the first essay, we focus on Brexit referendum as there is much uncertainty
before the referendum date. We extract non-parametric risk-neutral distribution (Figlewski,
2010), Implied Volatility skew (Xing, Zhang, and Zhao, 2010)/ slope (Kelly, Pástor, and
Veronesi, 2016), and implied event probability (Borochin and Golec, 2016) from the option
market. Empirical evidence from GBPUSD and FTSE 100 index options confirms option
markets can ex ante detect the political event risk in the Brexit referendum and it can also
distinguish the differential impacts on different assets.

This essay contributes to the literature on the option implied information and political
event risk. The option market ex ante detects and quantifies the political event impacts
across financial markets. Risk-neutral distributions spanning the Brexit referendum from the
GBPUSD option market are bimodal, indicating a precise high political risk in GBPUSD
market. While risk-neutral distributions from the FTSE100 are unimodal, indicating limited
political risk in the equity market, ex ante estimations from the option market are consistent
with the outcome after the Brexit referendum.

In 2015, CBOE introduced extended trading hours into S&P 500 index options. In the
second essay, we examine the market quality and price informativeness during the newly
introduced extended trading hours in the option market. The market quality of the option
market in the regular trading hours is enhanced after the introduction of extended trading
hours with decreased quoted and effective bid-ask spreads and adverse selection costs. Option
prices in extended trading hours update timely and are informative for the following regular
trading hours in terms of index level and realized volatility.

This essay contributes to the literature on after-hours financial markets. Continuing
the analysis of after-hours stock market (Barclay and Hendershott, 2003, 2004; Chen, Yu,
and Zivot, 2012; Jiang, Likitapiwat, and Mcinish, 2012; Tsai, 2010) and futures market
(Dungey, Fakhrutdinova, and Goodhart, 2009), we use the opportunity of introducing the
extended trading hours option market as a quasi-experiment for market design, providing
novel empirical evidence of enhanced market quality and informative option prices despite of
extreme illiquidity in extended trading hours.

In the third essay, we intend to recover the option implied risk-neutral probability to Ross
(2015) recovered probability with the term structure of interest rates. Following a similar non-
parametric approach as Figlewski (2010), we extract the risk-neutral probability surface from a
cross-section of option prices. Based on the Ross (2015) recovery theorem and the yield curve
(Martin and Ross, 2019), we propose a precise approach for Ross recovery estimation which
correctly reflects the term structure of interest rates in the recovered probability. Moreover,
we present some empirical application difficulties in Ross recovery, including the selection of
transition period and the density of the state price surface.

This essay contributes to the literature on the estimation method of Ross recovery and the
understanding of Ross recovered probability. Previous Ross recovery empirical applications,

11



such as (Audrino, Huitema, and Ludwig, 2021; Jackwerth and Menner, 2020; Ross, 2015),
omit an important interest rate condition. This essay links the term structure of interest
rates and the Ross recovery estimation, providing an accurate estimation process for Ross
recovery. This essay also contributes to the understanding of Ross recovered and risk-neutral
probabilities. When the term structure of interest rates is flat, Ross recovered probability is the
same as risk-neutral probability. Under a market term structure, Ross recovered probability
is still close to risk-neutral probability, indicating little additional information from Ross
recovery.

1.3. Thesis Structure

The thesis structure follows the format accepted by the Manchester Accounting and Finance
Group, Alliance Manchester Business School. The chapters are incorporated into a format
suitable for submission and publication in peer-reviewed academic journals. This thesis
is structured around three essays containing original research in chapters 2, 3, and 4. The
chapters are self-contained, i.e. each chapter has a separate literature review, answers unique
and original questions, and employs distinct analysis with different data sets. Footnotes are
independent and are numbered from the beginning of each chapter. The equations, tables,
figures, page numbers, titles, and subtitles have a sequential order throughout the thesis.

The thesis continues as follows. Chapter 2 detects political event risk in the option market
using the Brexit referendum as an example. Chapter 3 explores market quality and price
informativeness around the introduction of extended trading hours in the option market.
Chapter 4 brings some omitted conditions in previous literature for the empirical application
of the Ross recovery theorem. Chapter 5 concludes.
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2.1. Introduction

Political events can exert a significant impact on financial markets (see Bernhard and
Leblang, 2006; Fowler, 2006; Snowberg, Wolfers, and Zitzewitz, 2007; Kelly, Pástor, and
Veronesi, 2016). Hence, there is a growing interest in identifying the effects of electoral
outcomes on asset prices and volatility. To the extent that an election or referendum outcome
can lead to a dramatic shift in the macroeconomic environment, the institutional framework,
or government policy, such a political process can give rise to event risk.1 This type of risk
naturally affects asset pricing, portfolio choice, and risk management practices.2

Equally importantly, ex ante identification and quantification of political event risk could
affect voters’ decision making. This is particularly true for a polarised event where, in the
absence of an objective measure of the economic impact of its outcomes in real time, the
opposite sides of the campaign typically make sharply contradictory predictions. Wolfers
and Zitzewitz (2016, p. 3) argue that a ”shortcoming of traditional [political] event studies is
that they are retrospective: we usually learn about the expected effects of an event afterwards,
but not in time to affect any policy or political decision involved”. Our study addresses this
shortcoming, showing how the option market can ex ante identify the existence and measure
the effects of political event risk on asset prices and volatility.

We examine the referendum that took place in the United Kingdom (UK) on 23rd June 2016,
asking the electorate whether the UK should remain a member of or leave the European Union
(EU). Table 2.1 contains a chronology of the key political events leading to this referendum.

-Table 2.1 here-

This referendum provides an ideal laboratory to assess the ability of options to detect
and quantify political event risk. It is a single upcoming event with two possible outcomes
that may or may not have distinct effects across different assets. Moreover, the event date is
fixed and publicly known well in advance, so its timing is strictly exogenous to the short-term
fluctuations in asset prices just before the referendum. Hence, there is no uncertainty over
whether and when this event will occur, but only with respect to the outcome and its impact.
In fact, there was substantial disagreement between the opposite sides of the campaign with
respect to the economic impact of a Leave outcome (henceforth also termed as ”Brexit”)3,
leading to contradictory predictions.4

1Following Liu, Longstaff, and Pan (2003) (p. 231), we define event risk as ”the risk of a major event
precipitating a sudden large shock to security prices and volatilities”.

2There is a voluminous literature on the implications of event or ”jump” risk. See, inter alia, the seminal
contributions of Merton (1976), Jorion (1988), Bates (1996, 2000), Duffie, Pan, and Singleton (2000), and Liu,
Longstaff, and Pan (2003). The implications of political event risk have recently attracted significant interest
among practitioners (see, for example, Clark and Amen, 2017; Putnam et al., 2018; Baker, Gillberg, and Thomas,
2018).

3Technically, this referendum outcome did not constitute an immediate change in the EU membership status
of the UK. Legally, it was a non-binding mandate from the electorate to the Government and Parliament to trigger
the rather prolonged process of the UK leaving the EU, which involved a number of subsequent negotiation
rounds, agreements, and ratifications. Nevertheless, at that time, a Leave vote outcome was perceived as a strong
democratic mandate that would initiate this process, which is commonly referred to as ”Brexit”.

4Proponents of Brexit were reassuring that such an outcome would not have a significant adverse long-term
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Uncertainty regarding the outcome of the referendum and the large swings in the outcome
probabilities observed after voting ended render this event an ideal setup for identification
purposes. Opinion polls indicated a marginal result in the run up to the referendum. However,
following the assassination of the Member of Parliament (MP) Jo Cox on 16th June 2016, a
Remain victory was anticipated by the media and the betting market. This anticipation was
reinforced as soon as voting ended. Nevertheless, the first official results revealed that the
Leave vote performed more strongly than expected. A similar trend was observed throughout
the night, albeit with geographical variations, leading to a ”surprise” Leave victory with 51.9%
of the vote. These large swings in expectations reveal the counterfactual and provide a unique
opportunity to validate the ability of the option market to ex ante detect and quantify political
event risk.

This ”surprising” result was followed by sharp movements in asset prices. GBPUSD
dropped from the peak of $1.50 on the night of 23rd June to the trough of $1.32 in the early
morning of 24th June, i.e., a sharp fall of −12%. The FTSE100 Index opened with a drop
of −8.7% relative to the previous day’s close, but this drop was contained to −3.2% by the
end of the trading day. Interestingly, FTSE100 actually rose by 2.6% and 6.1% by the end of
June and July 2016, respectively. To the contrary, GBPUSD continued to trade consistently
below $1.35 until the end of July. Hence, whereas the Brexit outcome has been a major source
of event risk for GBPUSD, this is not true for FTSE100, at least from the viewpoint of a
domestic investor. Motivated by this observation, we examine not only whether the option
market can detect and quantifiy political event risk when there is, but also whether it can signal
the absence of significant event risk when there is not. In other words, we ask whether the
option market can distinguish the potentially differential effects of the same political event
across different assets.

Options are well suited to detect political event risk. First, option prices inherently embed
forward-looking information (see Jackwerth, 2004, for an overview). Second, options come
with different expiries, allowing us to isolate the effects of a political event on the underlying
asset. Comparing the information embedded in options whose expiry spans the event with the
corresponding information in similar options that expire before the event, we can identify the
effects of the latter on the underlying asset. Third, options come with different strikes, enabling
us to measure the counterfactual, even if this is not subsequently realized. The availability of
option prices across a range of strikes can yield the entire Risk-Neutral Distribution (RND) of
the underlying asset price (see Breeden and Litzenberger, 1978), providing information about
the range of possible outcomes and their probabilities. In this study, we utilise options on
GBPUSD futures traded at Chicago Mercantile Exchange (CME) and options on the FTSE100
Index traded at the Intercontinental Exchange (ICE) to extract the corresponding RNDs.5 To
this end, we follow the non-parametric methodology of Figlewski (2010), which allows us to

effect on the UK economy, other than a short-term increase in market volatility. To the contrary, the government’s
official position was that Brexit would have dramatic economic consequences, including a sharp fall in the sterling
pound as well as a large drop in share and house prices, triggering an immediate recession (see Treasury, 2016).

5We focus on GBPUSD rather than GBPEUR because Brexit could also have a direct effect on the Eurozone
economy, blurring the direction of impact of such an outcome on the latter exchange rate. Moreover, we focus on
the FTSE100 Index, as there were no actively traded options on any other UK equity index.
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flexibly recover the underlying RND without imposing strict parametric assumptions.
Our analysis yields a number of interesting results. First, we compare the RNDs extracted

from GBPUSD options on the same trading day but with different expiries, revealing a dramatic
shift in the RNDs for options with expiry spanning the referendum date. These RNDs are
strongly negatively skewed and exhibit much larger dispersion, as compared to the relatively
symmetric RNDs extracted from options that expire before the referendum. Hence, political
event risk with respect to GBPUSD can be clearly detected well in advance of the event. To
the contrary, this effect is much less pronounced when we compare the corresponding RNDs
extracted from FTSE100 options.

Second, in the run up to the referendum, we uncover consistently bimodal GBPUSD
RNDs. Their distinct modes correspond to the range of values that the option market assigns to
GBPUSD in each of the two referendum outcomes. In particular, the left mode of these RNDs
lies between $1.31-$1.35, but with substantial dispersion around it, revealing that the option
market anticipates a large drop in GBPUSD in the event of a Leave outcome. In contrast,
the right mode lies in the region of $1.50-$1.53, with much lower dispersion. As a result,
GBPUSD RNDs signal that the full effect of Brexit (relative to a Remain outcome) lies in
the approximate range of 15¢ -19¢ . On the other hand, the RNDs extracted from FTSE100
options remain clearly unimodal, featuring only a moderate increase in its negative skewenss.

Third, we find that the effect of political event risk is only temporary. In particular, the
GBPUSD RND reverts to its usual, relatively symmetric, and unimodal shape immediately after
the uncertainty regarding the outcome of the referendum is resolved. This finding confirms
that the shift in the shape of the RND in the pre-event period can be entirely attributed to event
risk.

We obtain similarly interesting results when we examine the corresponding Implied Volatil-
ity (IV) curves. In addition to an overall increase in volatility, we find that the IV curve becomes
negatively sloped and concave for GBPUSD options with expiry spanning the referendum. In
contrast, it features the typical (for currency options) convex and relatively symmetric smile
when the expiry does not span this event. This unusual concave shape is another ex ante
manifestation of event risk for the underlying asset. To the contrary, we find only a limited
impact on the shape of the IV curve for FTSE100 options.

We also exploit the large swings in outcome probabilities during the referendum night.
Using over-the-counter (OTC) options, we extract GBPUSD RNDs and their corresponding
moments at the 10-minute frequency. This analysis reveals that the option market immediately
incorporates information from actual voting results, as these high frequency RNDs reflect the
continuously updated beliefs of market participants regarding the event outcome as well as
the price and volatility of GBPUSD. In fact, comparing real-time option-implied information
with the corresponding event probabilities implied by betting odds, we show that the Remain
outcome is associated with a GBPUSD futures price around $1.52 and a low volatility level
(circa 15% p.a.), whereas the Leave outcome is associated with a futures price around $1.34
and a high volatility level (circa 25% p.a.). These findings provide strong validation of the
two modes appearing in the GBPUSD RNDs in the run up to the referendum and confirm the
ability of the option market to quantify the effect of political event risk.
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A number of prior studies have attempted to identify the impact of political event outcomes
on asset prices. Most commonly, these studies estimate this impact by regressing changes
in asset prices on changes in prediction market- or betting odds-implied probabilities during
the pre-event period (see, inter Herron, 2000; Knight, 2007; Coulomb and Sangnier, 2014).
However, such estimates may be affected by reverse causality or other omitted factors (see
Snowberg, Wolfers, and Zitzewitz, 2007, for a critique).

To sidestep these issues, other studies have utilised short windows during which a sharp
exogenous shock to the probability of the event outcome is observed (see, for example, Slemrod
and Greimel, 1999; Snowberg, Wolfers, and Zitzewitz, 2007; Wolfers and Zitzewitz, 2016).
These studies typically extrapolate the relationship estimated during this short window to
assess the full impact of the political event outcome. Naturally, the validity of this approach
depends on the possibility to identify a large political shock and the accuracy of this extrapo-
lation. Wolfers and Zitzewitz (2018) discuss the limitations regarding the external validity
of these event studies. In contrast, utilizing option-implied information allows us to ex ante
identify political event risk without relying on the occurrence of large political shocks. This is
because options come with different strikes, which allow us to measure the full impact of the
counterfactual, even if this is not subsequently realized.

Only a few prior studies have examined the informational content of option prices for
political events. Most notably, Leahy and Thomas (1996) report a multi-modal RND extracted
from options on Canadian dollar futures prior to the 1995 Quebec sovereignty referendum.
Gemmill and Saflekos (2000) examine the RNDs extracted from FTSE100 options around
three UK parliamentary elections, providing mixed evidence and concluding that RNDs do not
have much forecasting power with respect to post-election outcomes. However, both of these
studies impose the ad hoc assumption that the RND is a mixture of three or two lognormal
distributions, respectively, which may undermine parameter identification and stability. To
the contrary, the non-parametric approach of Figlewski (2010) allows us to more accurately
capture the true shape of the RND. In addition, Coutant, Jondeau, and Rockinger (2001),
using a variety of methods, show that the RND extracted from interest rate futures options
anticipated the 1997 French snap election a few days before its official announcement.

Our study is closely related to Hanke, Poulsen, and Weissensteiner (2018), who also
utilise information from GBPUSD options prior to the Brexit referendum, but their focus is
on exchange rate forecasting. Hanke, Poulsen, and Weissensteiner (2018) combine betting
odds-implied event probabilities with a mixture of two lognormal densities estimated from
option prices to extract a blended density. However, they utilise OTC option data with only 5
strikes, which naturally hinders them from fully recovering the true shape of the RND and
the IV curve. In contrast, we use a much wider range of strikes from options traded at CME,
which allow us to extract a bimodal RND for GBPUSD and to reveal a concave IV curve in
the presence of event risk, relying solely on information embedded in option prices. Hence,
we demonstrate the ability of the option market to ex ante detect and quantify the impact of
political event risk without resorting to betting odds that may not be always available.

Ferreira, Gong, and Gozluklu (2022) also examine the Brexit referendum using information
from opinion polls as well as from option and betting markets. Different from our study,
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their focus is on risk-adjusting implied probabilities. They find that markets could have
signalled more accurately the actual referendum result under the assumption of a risk-seeking
representative agent and speculative trading triggered by this binary political event.

The rest of the study is organised as follows. Section 2.2 describes the data and methodolo-
gies employed to extract RNDs and option-implied event probabilities, respectively. Section
2.3 contains the main results of the study using daily options, whereas Section 2.4 illustrates
the price discovery process during the referendum night. Section 2.5 extracts option-implied
event probabilities, latent state prices and volatilities, Section 2.6 presents some further results,
and Section 2.7 concludes.

2.2. Data and Methodology

2.2.1. Data

We use daily option data on the GBPUSD futures contract traded at CME. These are
European-style options with traded quarterly expiries in March, June, September, and De-
cember plus two serial months. Their last trading day is on the second Friday prior to the
third Wednesday of the expiry month and they are physically settled into futures. Each futures
contract amounts to £ 62,500. Their trading hours are Sunday 5pm to Friday 4pm (Central
Time, CT) with a 60-minute break each day beginning at 4pm (CT). Options are quoted in
US$ per British pound increment, with a tick size of 0.0001 (i.e., $6.25). We use option data
with expiries on 3rd June, 8th July, and 5th August 2016. Daily settlement option and futures
prices are sourced from CME Datamine.

We also use daily option data on the FTSE100 Index traded at the ICE. These are European-
style options and serial month expiries are traded for up to two years. Their last trading day
is on the third Friday of the expiry month and they are cash settled. Their trading hours
are from 8am to 4.50pm (London time). Since quarterly FTSE100 futures (March, June,
September, December) expire on the same date as the options, the European-style FTSE100
option contract can be actually regarded as an option on the futures. For serial months, when
the futures contract is not traded, we utilise the futures price implied by put-call parity. Options
are quoted in index points, with a tick size of 0.5, and each contract is valued at £ 10 per
index point. We use options with expiries on 17th June, 15th July, and 19th August 2016. The
source of FTSE100 option data is Refinitiv DataScope.

We further utilise intraday GBPUSD option data around the referendum day. In particular,
we source the implied volatility surfaces computed from over-the-counter (OTC) options and
provided by Bloomberg. More specifically, Bloomberg provides the following information: i)
at-the-money implied volatility (σATM), ii) risk reversals for 10-delta (σRR10∆) and 25-delta
(σRR25∆) options, and iii) butterfly spreads for 10-delta (σBF10∆) and 25-delta (σBF25∆)

options. Following Beber, Breedon, and Buraschi (2010), this information can be used to
compute the following 5 implied volatilies in the delta space:

σ50∆Call = σATM (2.1)
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σ10∆Call = σATM + σBF10∆ + (1/2)σRR10∆ (2.2)

σ10∆Put = σATM + σBF10∆ − (1/2)σRR10∆ (2.3)

σ25∆Call = σATM + σBF25∆ + (1/2)σRR25∆ (2.4)

σ25∆Put = σATM + σBF25∆ − (1/2)σRR25∆ (2.5)

We focus on 1-month maturity options and we extract these implied volatilies at the 10-
minute frequency on the 23rd and 24th June 2016. These implied volatilities are sourced
from Bloomberg using the following conventions: i) the underlying asset is the spot exchange
rate (with USD as domestic and GBP as foreign currency), ii) ATM strike is defined so as to
ensure a delta-neutral straddle, iii) forward deltas are used, without adjustment for the option
premium. Forward rates are also sourced from Bloomberg.

In addition, we source the US$ risk-free rate from OptionMetrics and we interpolate using
a cubic spline to match the horizon of option expiry. Moreover, we use LIBOR as proxy for
the risk-free rate for FTSE100 options. This is sourced from Refinitiv DatasScope, and we
interpolate again using a cubic spline to match the horizon of option expiry. We also use
the probability of a Leave outcome implied by betting odds. The entire time series of this
probability has been provided by Betfair, which is the largest Internet betting exchange.

2.2.2. Methodology

A. Extracting Risk-Neutral Distributions

We follow an approach similar to the non-parametric methodology proposed by Figlewski
(2010) to extract RNDs from option prices. This approach involves a number of steps. First,
we use daily settlement prices of OTM and ATM put and call options and convert them to IVs
using Black (1976) formula. In-the-money options are typically thinly traded and their prices
reflect their intrinsic value, so they are discarded. Moreover, we discard extremely deep OTM
options. In particular, we discard GBPUSD options with price less than 0.001$ per British
pound increment and FTSE100 options with price less than 1 index point.

Table 2.2 reports descriptive statistics for the options we use in our analysis after applying
the above filters. We obtain a large number of OTM and ATM options that enable us to extract
the corresponding RNDs. We should stress that we use settlement prices rather than traded
prices. Settlement prices are thought to reflect the aggregate view of sophisticated market
participants, so they are expected to be more informative than traded prices. For GBPUSD
options, trading volume and open interest information from CME is not relevant, as currency
option trading predominantly takes place OTC. On the other hand, FTSE100 options exhibit
significant trading volume and open interest, which is reported in Table 2.2. Nevertheless, we
still use settlement prices due to their superior informativeness.
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-Table 2.2 here-

Second, we blend the IVs of puts and calls whose strike price X lies within 2% of the
underlying futures price into a single point as follows: IVblend(X) = aIVput(X) + (1 −
a)IVcall(X), where a = (Xhigh − X)/(Xhigh − Xlow). This practice avoids creating an
artificial jump in the IV curve at the ATM region, which may arise from ATM puts potentially
trading at higher IV relative to ATM calls.

In the third step, we interpolate across the computed implied volatilities, fitting a quintic
spline using spaps in MATLAB. A quintic spline ensures that the third derivative of the IV
curve (and option price function) is continuous, leading to a well-behaved RND. This step
yields the smoothest IV curve in the strike space subject to an upper bound (tolerance level)
for the sum of weighted squared errors between the computed and fitted IVs. In the spirit of
Bliss and Panigirtzoglou (2002, 2004), the quintic spline minimizes the following objective
function:

ρ

N∑
i=1

wi

[
IV (Xi)− ÎV (Xi,Θ)

]2
+

∫ ∞

−∞
S(3)(x; Θ)2dx, (2.6)

where wi is the weight applied to the squared fitted implied volatility error of option i, IV (Xi)

is the computed implied volatility for strike Xi, ÎV (Xi,Θ) is the corresponding fitted implied
volatility, which is a function of the parameters Θ that define the quintic spline S(x; Θ), and ρ

is a smoothing parameter that is optimally selected to ensure that the sum of squared implied
volatility errors does not exceed a given tolerance level.6 We extract daily RNDs using equal
weights and setting the tolerance level equal to

∑N
i=1

(
Ṽi x Tick

)2

, where Ṽi is the vega of
option i and Tick is the option tick size.7

The fourth step involves converting the smoothed IV curve back to call prices using again
the Black formula. This yields a set of densely and equally spaced option prices. Fifth, using
this set of prices, we can recover the RND function, f(X), based on the standard result of
Breeden and Litzenberger (1978). In particular, given call option prices for a continuum of
strikes, the density function can be computed as:

f(X) = erT
∂2C

∂X2
. (2.7)

In the absence of a continuum of strikes, we approximate f(X) using finite differences:

f(Xi) ≈ erT
Ci+1 − 2Ci + Ci−1

(∆X)2
, (2.8)

6In particular, parameter ρ controls the tradeoff between the goodness-of-fit and the smoothness of the spline
function, with the latter captured by its integrated squared third derivative. Setting a low tolerance level ensures
that the spline fits well the actual implied volatility points at the expense of smoothness. To the contrary, setting
a high tolerance level yields a rather smooth spline that may not fit well all implied volatility points.

7We use this rather low tolerance level to ensure that the fitted implied volatilities do not considerably deviate
from the actual ones. This choice of tolerance level implicitly acknowledges that the ”true” option price may lie
within one tick size from the observed one. Translated into volatility terms, this choice acknowledges that the
”true” implied volatility may lie within the range of Ṽi x Tick relative to the observed one.

22



whereas the cumulative density function, F (X), is given by:

F (Xi) ≈ erT
[
Ci+1 − Ci−1

Xi+1 −Xi−1

]
+ 1. (2.9)

The previous steps yield the central part of the RND, from the second lowest to the second
highest strikes. To complete the density, we need to append its tails. To this end, following
Birru and Figlewski (2012), we utilise the Generalized Extreme Value (GEV) distribution
and connect each of the right and left tails with the central part of the RND at two points
(strikes). This distributional choice follows from the Fisher-Tippett Theorem stating that the
GEV distribution is a natural candidate for modelling the tails of an unknown density.

The functional form of the GEV distribution is given by:

G(x) = exp

[
−
(
1 + ξ

(
x− µ

σ

))−1/ξ
]

, (2.10)

where ξ controls the tail shape, µ the location, and σ the scale of the distribution. The values of
these three distributional parameters are selected for each tail separately to satisfy the following
three constraints: i) the total probability mass in the fitted tail must equal the missing tail
probability, ii) the density of the GEV tail must be equal to the central RND at the first
connection point; and iii) the density of the GEV tail must be equal to the central RND at the
second connection point, which is further out in the tail. In particular, to append the right tail,
the connection points we use are the highest strike of the central RND, which corresponds to
the distribution percentile αR, and the strike that is closest to the percentile αR − 3%. For the
left tail, we use the lowest strike of the central RND, which corresponds to the distribution
percentile αL, and the strike that is closest to the percentile αL + 3%.

To extract RNDs from high frequency option data provided by Bloomberg, we adjust the
above procedure as follows. Following Reiswich and Wystup (2010), we use the relationship
below to convert the provided 5-point IV curve from the delta space to the strike space:

Xi = fe
−ΦN−1

(
Φ∆f

i

)
σ
√
τ+(1/2)σ2τ , (2.11)

where f is the forward rate, Φ = 1 (−1) for a call (put) option, N−1 is the inverse of the
normal cdf, and ∆f

i is the forward delta of option i. Since we are equipped with the implied
volatility-strike surface, we directly fit the smoothing spline as in the third step of the above
procedure. However, here we set the tolerance level equal to zero, since there are only 5 IV
points available. Moreover, in the fourth step, we convert implied volatilities to option prices
using the Garman and Kohlhagen (1983) formula (see Reiswich and Wystup, 2010). The rest
of the procedure remains the same.

B. Option-Implied Event Probabilities

We further utilise option prices to extract information regarding the ex ante probability for
each of the two potential referendum outcomes as well as the corresponding latent GBPUSD
futures price and volatility. To this end, we follow the methodology proposed by Borochin
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and Golec (2016).8

In particular, the current GBPUSD futures price, F0, can be regarded as a probability-
weighted average of the price Fn, which would prevail in the event of a Remain outcome, and
the corresponding price Fn − Ve, which would prevail in the event of a Leave outcome:

F0 = pe (Fn − Ve) + (1− pe)Fn = Fn − peVe, (2.12)

where pe is the ex ante probability of a Leave outcome, and Ve denotes the full price effect due
to a Leave outcome.9 It should be noted that pe is a risk-neutral probability. However, since
we use a very short event window prior to the referendum, its evolution could be interpreted
similarly to the evolution of the corresponding physical probability.

Similarly, the current price O(Xi) of option i with strike Xi, whose expiry spans the refer-
endum date, can be regarded as a probability-weighted average of the theoretical Black price
OB(Fn, σn, Xi) that would prevail in the event of a Remain outcome and the corresponding
price OB(Fn − Ve, σe, Xi) that would prevail in the event of a Leave outcome:

O(Xi) = peO
B(Fn − Ve, σe, Xi) + (1− pe)O

B(Fn, σn, Xi), for i = 1, 2, ..., N , (2.13)

where σe (σn) denotes the volatility in the event of a Leave (Remain) outcome. This relationship
holds for both call and put options.

We can re-write equation (2.12) as:

pe =
Fn − F0

Ve

, (2.14)

and substitute this expression into the system of equations in (2.13). The latter is an overi-
dentified system of N > 4 equations that can be used to estimate the vector of 4 unknown
parameters, θ = {Fn, Ve, σe, σn}, and compute pe. In particular, we estimate θ by minimising
the following sum of squared errors:

SSE =
N∑
i=1

(
O(Xi, θ)−OM(Xi)

)2 , (2.15)

where O(Xi, θ) is the option price for stike Xi determined by the parameter values in θ, as
in equation (2.13), and OM(Xi) denotes the corresponding observable market price. We
minimize this multivariate non-linear objective function using lsqnonlin in MATLAB.

We estimate the set of unknown parameters in θ and compute pe on a daily basis in the run
up to the referendum using daily settlement prices of CME options on GBPUSD futures that
expire on 8th July 2016. Different from Borochin and Golec (2016), we utilise all available
OTM and ATM calls and puts. Since this political event may cause a substantial movement
in the underlying asset’s price, it is helpful to utilise information from option prices across

8This approach is more restrictive than the one by Figlewski (2010) to extract RNDs, since it implicitly
imposes the assumption of mixed lognormality. This is because option prices in each event outcome are assumed
to be determined by the relevant Black-Scholes formula or the binomial model.

9We can ignore potential discounting effects because the time horizon of the event is quite short.
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moneyness levels. We have also found that this approach yields more stable estimates than
using only near-the-money options.

2.3. Main Results

2.3.1. Early Detection of Political Event Risk

Early detection that a political event may be the source of risk for the underlying asset
can be provided by comparing the RND extracted from options whose expiry spans the event
date with the corresponding RND from options whose expiry does not span this date. In
particular, major shifts in the RNDs extracted on the same trading day for adjacent expiries can
be attributed to a horizon effect and the event occurring between these two expiries. Figure
2.1 presents this comparison for options on GBPUSD futures (Panel A) and FTSE100 (Panel
B). Figure 2.1 illustrates these RNDs computed on 17th May 2016 as a means of example to
show that political event risk can be detected quite early, but very similar patterns are found
on other trading days and they are available upon request.

-Figure 2.1 here-

Panel A shows that the RNDs extracted from options on GBPUSD futures expiring on 8th
July and 5th August, i.e., after the referendum, are dramatically different from the correspond-
ing RND computed from options with expiry on 3rd June, i.e., before the referendum.10 In
particular, the RNDs with a post-referendum expiry exhibit a mode shift to the right, much
larger dispersion, and fatter tails. Equally importantly, the latter RNDs become strongly
negatively skewed, whereas the RND from options with expiry not spanning the referendum
is relatively symmetric. Most characteristically, the RNDs from options expiring after the
referendum assign a non-negligible probability to GBPUSD futures values below $1.34, even
though these are essentially zero-probability values under the RND extracted from options
expiring before the referendum. Interestingly, the shape of the RNDs from options with
post-referendum expiries is very similar, and hence there seems to be no substantial horizon
effect between them. In sum, this remarkable shift in the shape of RNDs from options whose
expiry spans the referendum provides a clear indication that this political event is a major
source of risk for GBPUSD futures.

Panel B illustrates the corresponding effect on the RNDs extracted from options on
FTSE100. Here, the effect of political event risk is much less pronounced. The RND from
options expiring before the referendum is already negatively skewed, as it is typically the
case for equity index options, and it becomes more disperse and more negatively skewed for
options expiring after the referendum. Hence, this political event increases the probability of
large drops in FTSE100, but its effect is substantially less pronounced in comparison to the
corresponding effect on the GBPUSD RND.

10The Kolmogorov-Smirnov test rejects the null hypothesis that the RND extracted from options expiring on
8th July is equal to the RND extracted from options expiring on 3rd June with a p-value<0.001. Similarly, it
rejects the corresponding null hypothesis of equality between the RNDs extracted from options expiring on 5th
August and 3rd June with a p-value<0.001.
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Motivated by the previous evidence, it is interesting to see how political event risk is
manifested in the IV curve. Figure 2.2 illustrates the corresponding IV curves for options
on GBPUSD futures (Panels A&B) as well as for options on FTSE100 (Panels C&D). As
with the above presented RNDs, these IV curves are computed on 17th May 2016 as a means
of example, but very similar patterns are found on other trading days, which are available
upon request. Panel A shows the IV curve for options expiring on 3rd June, i.e., before the
referendum. This curve resembles an ”IV smile”, which is typically encountered for exchange
rate options (see Hull, 2009, p. 391). This shape reveals that both OTM puts and OTM calls
exhibit substantially higher implied volatility relative to ATM options. In fact, this pattern is
reflected in the relatively symmetric RND extracted for this expiry, as illustrated in Panel A of
Figure 2.1.

-Figure 2.2 here-

To the contrary, the IV curve becomes slightly concave when options expiring after the
referendum are considered. In particular, Panel B of Figure 2.2 shows this concave IV curve
for options on GBPUSD futures with expiry on 8th July.11 Apart from the overall increase in
the level of implied volatility relative to Panel A, this shape reflects two additional features.
First, the implied volatility of OTM puts is substantially higher than the implied volatility
of both ATM options and OTM calls, giving rise to a negatively sloped curve; this feature
is reflected into a highly negatively skewed RND for this expiry, as illustrated in Panel A of
Figure 2.1. Second, the rate by which the implied volatility of OTM puts drops as we approach
the ATM region is rather slow, creating this concave shape. In other words, both deep OTM
puts and nearer-the-money puts are relatively very expensive, reflecting the willingness of
investors to pay a high price to be protected against a sharp drop in GBPUSD futures. This is
another clear indication of event risk arising due to the forthcoming referendum.

Panel C illustrates the IV curve for options on FTSE100 expiring prior to the referendum
(17th June). The shape of this curve resembles a ”smirk” and it is typical for equity index
options, with deep OTM puts being substantially more expensive than both ATM options
and OTM calls (see Hull, 2009, p. 394). This typical IV curve is reflected into a moderately
negatively skewed RND, as illustrated in Panel B of Figure 2.1. Panel D of Figure 2.2 illustrates
the corresponding IV curve computed from options with expiry spanning the referendum
(15th July). We report again a slightly convex ”smirk”, which is similar to the one presented in
Panel C. Even though the level of implied volatility is overall higher for options expiring after
the referendum, it seems that this event does not dramatically affect the shape of the IV curve.

2.3.2. Effects of Political Event Risk

The above analysis shows that political event risk can be detected quite early by examining
the RND and IV curve of options with expiries spanning the event date. To identify more
accurately the effects of political event risk, we now focus on RNDs and IV curves around

11Interestingly, Hull (2009, p. 400) shows that a concave IV curve can be a reflection of a bimodal RND for
the underlying asset.
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the referendum date from options with the same expiry. Specifically, Figure 2.3 illustrates
the RNDs extracted from options on GBPUSD futures (Panel A) and FTSE100 (Panel B) on
23rd June at settlement, i.e., prior to the polls closing, as well as on 24th June, i.e., after the
referendum result is known.

-Figure 2.3 here-

Panel A reveals the most striking effect of political event risk. The GBPUSD RND
extracted on 23rd June clearly exhibits bimodality.12 The shape of the RND essentially shows
that the option market assigns a distinct range of GBPUSD futures values associated with each
of the two referendum outcomes. The two distinct modes of the RND correspond to GBPUSD
futures values of $1.34 and $1.53, respectively. Given that the underlying was trading around
$1.48 at CME option settlement on 23rd June, this is a clear indication that the option market
was pricing a potential sharp drop in the exchange rate due to the referendum.

A related question is whether the effect of political event risk is permanent or temporary.
If the effect of the political event is temporary, the RND and IV curve would revert to their
standard shapes once the uncertainty surrounding this event is resolved; otherwise, if this
political event causes a structural shift in the RND, this bimodal shape would persist. Panel
A shows that the GBPUSD RND extracted on 24th June becomes unimodal and relatively
symmetric, a shape similar to the one reported in Panel A of Figure 2.1 for options whose
expiry does not span the referendum date. Since the RND reverts back to its standard shape
immediately after the resolution of uncertainty surrounding the political event, we can conclude
that the effect of the latter is only temporary.

Another interesting observation is that the GBPUSD RND extracted on 24th June exhibits
its unique mode at $1.38, providing ex post identification of the two modes observed in
the bimodal RND extracted on 23rd June. The left mode ($1.34) can be associated with a
Leave outcome, whereas the right mode ($1.53) can be associated with a Remain outcome.
Moreover, the shift of the biggest RND mode from $1.53 on 23rd June to $1.38 on 24th June,
which corresponds to a percentage decrease of −9.8%, provides an ex post justification for
characterizing the referendum as a source of political event risk for GBPUSD.

Panel B presents the corresponding RNDs from options on FTSE100. We clearly observe
unimodality in the RND extracted at settlement on 23rd June, so the option market does not
assign a distinct mode to each of the two referendum outcomes. The effect of this political
event on FTSE100 is manifested via a strongly negatively skewed RND. This effect is again
found to be temporary, since the RND extracted on 24th June reverts back to its standard shape
of a moderately negatively skewed distribution (see, e.g., Panel B of Figure 2.1). Moreover,
the mode of the RND shifts from 6,621 on 23rd June to 6,382 on the following day, which
corresponds to a drop of only −3.6%. This relatively smaller effect reveals that, in fact, the
referendum did not pose a substantial event risk for FTSE100.

A plausible explanation for the absence of substantial event risk for FTSE100 lies with the
geographic revenue exposure of its constituent stocks. In addition to the largest UK companies,

12The Hartigan and Hartigan (1985) test formally rejects the null of unimodality with a p-value<0.001.
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this Index comprises a number of multinational companies which hold assets overseas and
whose income is predominantly earned in foreign currency.13 As a result, for “global” firms,
the depreciation of sterling pound would actually increase in GBP terms the value of their
overseas assets and income, and hence the value of their equity. This effect could offset the
potentially sharp drop in equity values for “domestic” firms triggered by the adverse UK
macroeconomic outlook due to a Leave victory.

Validating this conjecture, on the first trading day after the referendum, we indeed observe
markedly heterogeneous share price reactions according to firms’ geographic revenue exposure.
To illustrate this heterogeneous response, CBOE’s BATS constructed two UK indices based
on the proportion of firms’ domestic-to-total revenues.14 On the one hand, Brexit High 50
Index, which comprises the 50 firms in the BATS UK 100 Index that derive the largest portion
of their revenues from the UK market, experienced a sharp drop of −11.8% on 24th June. On
the other hand, Brexit Low 50 Index, which comprises the 50 firms in the BATS UK 100 Index
that derive the lowest portion of their revenues from the UK market, actually rose by 1.1%
on the same day. Providing a characteristic example, the biggest FTSE100 winner was the
Africa-based gold-mining company Randgold, whose share price rose by 14.2% on 24th June,
whereas the biggest loser was the UK residential developer, Taylor Wimpey, whose share price
dropped by −29.3%.

To examine further this heterogeneous effect, we extract the RNDs for four companies with
substantially different geographic exposure. In particular, Figure SA.1 in the Supplementary
Appendix illustrates the RNDs for AstraZeneca (AZN) and GlaxoSmithKline (GSK) around
the referendum date. These two pharmaceutical companies are characteristic examples of
”global” firms and they are constituents of the Brexit Low 50 Index. On the other hand,
Figure SA.2 in the Supplementary Appendix illustrates the corresponding RNDs for British
Telecom (BT) and Sainsbury’s (SBRY), which are examples of ”domestic” firms and they are
constituents of the Brexit High 50 Index.15

Figure SA.1 confirms the absence of substantial event risk for AZN and GSK, as their
RNDs are unimodal and only slightly negatively skewed prior to the referendum. Moreover,
the shape of these RNDs remains very similar right after the referendum. In fact, their modes
shift to the right, since the corresponding share prices actually rose on the 24th June.

To the contrary, one can detect the effect of the referendum on the RNDs of BT and SBRY
presented in Figure SA.2. Most interestingly, we document a bimodal RND for BT on 23rd
June, indicating that the option market priced a possible large drop in its share price. In fact,
BT’s share price decreased from 439.7p on 23rd June to 383.85p on 24th June due to the

13FTSE Russell characterises a company as “global” (“domestic”) if its Global Sales Ratio is greater (lower)
than 80% (20%). Using this criterion, they report that 60% of FTSE100 firms are predominantly global, whereas
only 10% of FTSE100 firms are considered purely domestic. For more details, see https://hub.ipe.com/down-
load?ac=76863.

14For more details, see http://www.cboe.com/resources/general/BatsBrexit5050-Product-Overview-1.pdf
15Option price data for these companies are sourced from Refinitiv DataScope. These are American-style

options with expiry on 15th July, 2016. We extract RNDs following the non-parametric methodology of Figlewski
(2010). Since these are American-style options, we convert option prices to implied volatilities using the Cox-
Ross-Rubinstein binomial tree model via the MATLAB function opstockbycrr. Moreover, when fitting the IV
curve via spaps, we have assigned a higher (lower) weight to observations with relatively high (low) open interest.
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Leave outcome and its RND reverted back to a unimodal and slightly negatively skewed shape.
Regarding SBRY, we find that event risk is manifested via a strongly negatively skewed RND
on 23rd June. Again, its share price experienced a substantial drop on 24th June and its RND
reverted to a much more symmetric shape.

Figure 2.4 illustrates the corresponding effects on the IV curves of GBPUSD and FTSE100.
Panel A presents the IV curve for options on GBPUSD futures at settlement on 23rd June,
revealing a rather unusual shape. The IV curve exhibits an overall negative slope, with OTM
puts trading at substantially higher volatility relative to both ATM options and OTM calls.
Implied volatility decreases as the strike increases but the rate of decrease varies at different
strike regions. In fact, the IV curve switches from convex to concave and back to convex, with
the first inflection point appearing around the $1.34 strike. This unusual W-shape reveals that
the option market assigns relatively high prices for OTM puts with strikes between $1.34-$1.38.
Actually, this feature is the underlying source of bimodality in the RND illustrated in Panel A
of Figure 2.3.

-Figure 2.4 here-

Panel B of Figure 2.4 shows that the IV curve for options on GBPUSD futures reverts back
to a standard ”smile” on 24th June (see also Panel A of Figure 2.2). In other words, once the
uncertainty surrounding this political event is resolved, the IV curve becomes again convex.
This shape is consistent with the unimodal and relatively symmetric RND presented in Panel
B of Figure 2.4. In addition, the overall level of implied volatility is now substantially lower.

Panels C and D of Figure 2.4 repeat this analysis for the FTSE100 IV curve. Panel C
shows that, prior to the referendum, the IV curve exhibits a negative slope, with OTM puts
trading at substantially higher implied volatility relative to both ATM options and OTM calls.
This feature is consistent with the strongly negatively skewed RND presented in Panel B of
Figure 2.3. There is also some evidence of local concavity in the IV curve, but this is much
less clear relative to the corresponding patterns in the GBPUSD IV curve.

Panel D of Figure 2.4 shows that the shape of the FTSE100 IV curve is not dramatically
different on 24th June. In particular, there is no substantial reduction in the level of volatility
and the curve is still characterised by a negative slope. However, this slope now seems to be
less steep, explaining why the corresponding RND on 24th June is less negatively skewed
than the RND on the previous day (see Panel B of Figure 2.3). In sum, the IV curve seems to
revert back to its standard shape (see Panel C of Figure 2.2), and hence we conclude that the
effect due to the referendum is only temporary and much less pronounced.

2.3.3. Bimodality vs. Unimodality and Risk-Neutral Moments

One of the most striking effects of political event risk is the emergence of bimodality in the
GBPUSD RND (see Panel A of Figure 2.3). We examine here how consistent this feature is in
the run up to the referendum. Panels A and B of Figure 2.5 plot GBPUSD RNDs on various
trading days prior to the referendum. We find that these RNDs exhibit clear bimodality already
on 10th June, revealing that the option market is consistently pricing a possible large drop in
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GBPUSD.16 The left mode of these bimodal distributions lies between $1.31-$1.35, revealing
the option market’s anticipation of the exchange rate in the event of a Leave outcome. To the
contrary, the right mode of the RND, which is associated with a Remain outcome, lies in the
region of $1.50-$1.53. The distance between the two modes provides a rough approximation
of the full impact of a Leave outcome (relative to Remain), which is 15¢ -19¢ .

-Figure 2.5 here-

On the other hand, Panels C and D of Figure 2.5 provide no evidence of bimodality in
the FTSE100 RND prior to the referendum. The main effect of this event is manifested in
terms of a fatter left tail. The consistent unimodality of FTSE100 RNDs in the run up to the
referendum provides further evidence that the event risk for FTSE100 is much more limited
relative to the corresponding event risk for GBPUSD.

Motivated by the above analysis, we further examine in more detail how this event risk and
the subsequent resolution of uncertainty are reflected by the evolution of Risk-Neutral moments
computed from the corresponding RND. Figure 2.6 presents the evolution of Risk-Neutral
Volatility (RNV) from 9th May until 5th July.

-Figure 2.6 here-

Panel A of Figure 2.6 shows that the GBPUSD RNV computed from options whose expiry
spans the referendum date is substantially higher relative to the RNV from options expiring
before the referendum. In fact, the RNV computed from options expiring on 8th July is almost
twice as high as the RNV from options expiring on 3rd June. We also observe an upward trend
in RNV during the last three weeks before the referendum, which reaches a peak of 30.8% p.a.
on 22nd June. In contrast, RNV is substantially reduced immediately after the referendum;
the resolution of uncertainty surrounding this political event halves the RNV to 15.9% p.a.
on 29th June. Panel B of Figure 2.6 illustrates the corresponding effects on FTSE100 RNV.
Whereas the RNV computed from options expiring after the referendum is overall higher than
the RNV from options expiring before the referendum, the effect is much less pronounced in
this case.

Figure 2.7 presents the corresponding time-variation in Risk-Neutral Skewness (RNS).
Panel A shows that the GBPUSD RNS computed from options expiring after the referendum
is substantially more negative than the RNS for options expiring before the referendum. This
difference arises due to the political event risk that is manifested as a fat left tail or, even more
clearly, as a second left mode in the RND (see Panel A of Figures 2.1 and 2.3). RNS remains
consistently negative in the run up to the referendum but sharply increases towards zero in
the aftermath of this event, as the RND reverts to its standard, relatively symmetric shape for
currency options (see Panel A of Figure 2.3).

-Figure 2.7 here-

16In all cases of visually bimodal RNDs, the Hartigan and Hartigan (1985) test formally rejects the null
hypothesis of unimodality.
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To the contrary, Panel B of Figure 2.7 shows that the FTSE100 RNS is not substantially
different when comparing options expiring before and after the referendum. RNS takes
substantially negative values throughout the period and across expiries, as it is common for
equity index options, reflecting the RND shape in Panel B of Figure 2.1 and the IV smirk in
Panels C and D of Figure 2.2. Moreover, we observe no notable upward trend in RNS right
after the referendum.

We have identified bimodality in the GBPUSD RND as the primary manifestation of
political event risk. To examine further this feature, we compute the following Bimodality
Coefficient (BC) combining the skewness and kurtosis of a given RND:17

BC =
Skewness2 + 1

Kurtosis
. (2.16)

Panel A of Figure 2.8 presents the evolution of BC for GBPUSD RNDs. First, we find that the
BC for RNDs from options whose expiry spans the referendum date is substantially higher
than the one from options expiring before the referendum. Second, we observe an upward trend
in the last week before the referendum. Third, BC values exhibit a sharp drop immediately
after the referendum.

-Figure 2.8 here-

Panel B of Figure 2.8 presents the corresponding BC values for FTSE100 RNDs. The
relatively high BC values reported here are due to the negative skewness featured by the
unimodal FTSE100 RNDs (see Panel B of Figures 2.1 and 3). Interestingly, the BC values for
RNDs extracted from options expiring on 15th July or 19th August are not substantially higher
than the ones for options expiring before the referendum. We also observe an increase in BC

in the days just before the referendum, reflecting the decrease in RNS that is observed in the
corresponding RND (see Panel B of Figure 2.7). However, we find no dramatic decrease in
BC in the aftermath of the referendum, as FTSE100 RNDs remain negatively skewed (see
Panel B of Figure 2.3).

2.4. Price Discovery in the Option Market

Having documented the effects of political event risk on GBPUSD options in the previous
Section, we examine here their manifestation during the announcement of the referendum
results. This referendum provides a unique setup to capture these effects, offering a validation
test for the option market expectations. This is because a complete reversal of the anticipated
referendum outcome occurred during the vote counting process. In particular, an almost certain
Remain victory right after the polls closed at 22:00 British Summer Time (BST) gave way to a
Leave victory in the early hours of the following day.18 Hence, this referendum provides a rare

17The value of this coefficient can be compared with the benchmark value of 0.555, which is the BC value of a
uniform distribution. Higher values indicate bimodality, whereas lower values indicate unimodality. Nevertheless,
it should be noted that high BC values can also result from heavily skewed unimodal distributions.

18All subsequent times are expressed in British Summer Time.
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opportunity to observe the counterfactual using information from high frequency option prices.
Table 2.3 outlines the key political events during the night of 23rd and the early morning of
24th June 2016.

-Table 2.3 here-

Figure 2.9 provides an overview of GBPUSD RNDs during the referendum night. First,
it presents the RND extracted from CME options at 20:00 (settlement) on 23rd June. As
mentioned above, this RND is bimodal, reflecting the effect of each of the two referendum
outcomes. Second, Figure 2.9 illustrates the RND extracted from OTC options at 23:00. By
that time, on the basis of opinion polls, it is widely anticipated that the Remain side has won,
with leading figures of the Leave campaign conceding their defeat. As a result, the GBPUSD
RND is clearly unimodal with a large concentration of probability mass around the mode
at $1.53. The RND is still negatively skewed, but the probability mass below $1.35 is very
low. Third, this Figure also illustrates the RND extracted at 05:30 on 24th June, when the
final result is announced with a clear victory for the Leave side. The GBPUSD RND takes a
strikingly different shape. The mode of the RND shifts to $1.38, a reduction of 15¢ relative to
the mode of the corresponding RND at 23:00. Moreover, the RND is now much more disperse,
leptokurtic, and strongly negatively skewed with a substantial probability mass below $1.33.

-Figure 2.9 here-

The availability of high frequency OTC option data allows us to examine more closely
how GBPUSD RNDs respond to the announcement of the key results outlined in Table 2.3.
In particular, Figure 2.10 presents twelve RNDs at different stages of the referendum night.
Specifically, Panel A illustrates how the bimodal RND extracted from CME options at 20:00
(settlement) turns into a negatively skewed but unimodal RND by 22:30, when leading figures
of the Leave side, including MEP Farage, concede defeat on the basis of private polls as well
as the YouGov poll conducted on the same day.

-Figure 2.10 here-

Panel B shows the dramatic shifts in the RND as a response to unanticipated actual voting
results. The surprisingly tight result from Newcastle at 23:59, an area expected to be won
by the Remain side with a wide margin, causes a substantial shift of the RND to the left.
In particular, the unimodal RND at 23:30, exhibiting a large concentration of probability
mass around the mode at $1.53, shifts to the left at 00:10, with a mode at $1.47. By 01:00,
a number of further results are announced and early indications of results from other areas
are communicated by the media. On the one hand, the result from Sunderland confirms a
clear pattern that Leave would perform very strongly in North England, whereas on the other
hand, there are indications that Remain would gain a very large share of votes in London. As
a result, even though the RND exhibits a mode at $1.50 at 01:00, it becomes very disperse,
reflecting the fact that the referendum result is a coin toss.

Panel C presents the corresponding RNDs at 02:00, 03:30, and 04:00, respectively, when
actual results from across the country gradually indicate that Leave will most likely win, and
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that the outperformance of Remain in London is not sufficient to offset the outperformance
of Leave in other places. In fact, Panel C illustrates a gradual shift of the RNDs to the left.
All RNDs are clearly unimodal and negatively skewed, with the mode shifting from $1.47 at
02:00 to $1.44 at 03:30, and $1.41 at 04:00. This gradual shift reveals how the option market
updates its beliefs regarding the referendum outcome.

Panel D illustrates the GBPUSD RND at 04:40, when it becomes certain that the Leave
side will be victorious. The RND is clearly unimodal but quite disperse, with the mode
shifted to $1.39. To sum up, the mode of the RND shifts from $1.53 at 23:30 (see Panel
B) to $1.39 at 04:40, i.e., a reduction of 14¢ in 5 hours, as the anticipation of a Remain
victory gives way to the certainty of a Leave victory. The RND becomes less disperse at
05:30, and its mode is at $1.38. Last but not least, it is interesting to observe that the option
market continues reacting to events even after the announcement of the referendum result.
Whereas PM Cameron announces at 08:22 that he will reisgn, the Bank of England Governor
makes a public statement right after, to reassure the market that the central bank is ready to
provide liquidity and take further policy actions to support the economy. Responding to this
announcement, the RND extracted at 08:50 shifts to the right and becomes more symmetric,
with its mode at $1.42.

An alternative way to show how the option market responds to the events unfolding during
the referendum night is to show the evolution of the GBPUSD futures price and RNV together
with the probability of Leave victory implied from betting odds. Panel A of Figure 2.11
presents the evolution of the futures price (left axis) together with the odds-implied probability
of Leave victory (right axis) from 22:00 on 23rd June until 05:50 on 24th June. The overall
picture in Panel A is consistent with the sequence of events outlined in Table 2.3. When voting
ends at 22:00, the probability of Leave victory is near 10%, whereas the GBPUSD futures
is traded at around $1.50. This near certainty of a Remain victory is questioned at midnight,
leading to a sharp increase in the probability of Leave victory to more than 30% and a sharp
drop in the futures price to $1.45.

-Figure 2.11 here-

As the results come in favourably for Leave, the probability of its victory exceeds 50% at
02:00 for the first time and the futures contract trades at $1.42. There is a temporary reversal
of the upward trend for the probability of Leave victory around 02:30, when Remain gains
a bigger than anticipated vote share in a London borough (Wandsworth). However, as it
gradually becomes clear that the outperformance of Remain in London is not sufficient to
offset the outperformance of Leave in other places, the probability of Leave victory continues
its upward trend, with the latter becoming a certainty at around 04:40, when BBC calls the
referendum for Leave. At the same time, the GBPUSD futures price continues its downward
trend, trading at a low of $1.33 at 05:20.

This sequence of events provides us the rare opportunity to observe the counterfactual and
identify the impact of each of the referendum outcomes on GBPUSD futures. Specifically, we
observe a sharp drop of 17¢ , from $1.50 at 22:40 to $1.33 at 05:20. Hence, Panel A of Figure
2.11 provides ex post validation of the two modes appearing in the bimodal GBPUSD RNDs
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before the referendum (see Panels A & B of Figure 2.5), confirming the ability of the option
market to ex ante identify the effects of political event risk.

Panel B of Figure 2.11 illustrates the evolution of GBPUSD RNV (left axis) together with
the odds-implied probability of Leave victory (right axis). When Remain is almost certain
to win at 22:00, RNV fluctuates around 15% p.a.. But as the probability of Leave victory
begins its upward trend, especially after midnight, RNV follows in tandem. Specifically, when
the probability of Leave victory stands at 63% at 02:10, RNV is equal to 23.5%. It actually
reaches a peak of 32.5% p.a. at 04:10, when the probability of Leave victory exceeds 90% and
a sharp drop in the futures price takes place. Interestingly, we also observe a de-escalation of
RNV towards 25% p.a., once the uncertainty regarding the referendum outcome is resolved
after 05:00 and the futures price is stabilised.

The evolution of RNV during the referendum night is consistent with the corresponding
shapes and dispersion of the RNDs illustrated in Figure 2.10. Moreover, we can clearly identify
two distinct states in RNV; a low state around 15% p.a. associated with a Remain victory
and a high state around 25% p.a. associated with a Leave victory. In sum, high frequency
option prices allow us to identify the effect of this political event not only with respect to the
GBPUSD futures price but also with respect to its volatility.

2.5. Option-Implied Event Probability, State Price and Volatil-
ity

The analysis in Section 4 demonstrates that each of the referendum outcomes can be
associated with a distinct state of GBPUSD futures price and volatility. Motivated by this
evidence, in this Section we follow the approach suggested by Borochin and Golec (2016), as
described in Section 2.2.2, to ex ante identify the option-implied GBPUSD futures price and
volatility that would prevail in the case of a Remain or a Leave outcome, respectively. This
approach also allows us to extract the corresponding option-implied probabilities with respect
to the referendum outcome.

Figure 2.12 presents the option-implied probability, pe, of Leave victory from 9th May
until 23rd June, computed on a daily basis using CME options on GBPUSD futures. We also
plot the time series of the corresponding probability implied by betting odds from Betfair.
Overall, we observe that the two time series move in a similar direction in the run up to the
referendum. In particular, we observe an upward trend in both the option-implied and the
betting odds-implied probability of a Leave outcome during the week prior to the murder of the
pro-Remain MP Jo Cox on 16th June. In the aftermath of this event, with official campaigning
from both sides suspended, there is a sharp drop in both probabilities.

-Figure 2.12 here-

Furthermore, the option-implied probability series is quite volatile, showing that the
outcome of this political event was very uncertain and that the option market continuously
updated its beliefs as the events unfolded. Most interestingly, the option-implied probability of
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Leave victory exceeds 50% on 15th and 16th June. Hence, despite the widespread belief among
media and political circles that Remain would win, the option market indicates Leave victory
as the most likely outcome one week before the referendum; the peak of the betting-odds
probability series is 41.2% on 14th June. Even in the aftermath of the murder of MP Cox,
the option-implied probability of a Leave outcome remains high and it is equal to 27.2% on
the day of the referendum. To the contrary, the corresponding probability implied by Betfair
odds is only 10.6%. In sum, this analysis shows that the option market is not only able to
detect political event risk, but it can also quantify the probability of the event’s outcome in an
informative manner.19

Figure 2.13 illustrates the option-implied GBPUSD futures price (Panel A) and volatility
(Panel B) estimates associated with each of the two referendum outcomes. These are again
extracted on a daily basis from CME options from 9th May until 23rd June. In Panel A, we
observe that the GBPUSD futures price associated with a Remain outcome, Fn, fluctuates
around $1.50 throughout the examined period, with $1.52 prevailing at settlement on the
referendum day.20 This range of values is consistent with the right mode of the ex ante
GBPUSD RNDs illustrated in Figures 2.3 and 2.5. The futures price associated with a Leave
outcome, Fn − Ve, fluctuates in the range $1.31-$1.39, which is again consistent with the left
mode of the corresponding RNDs before the referendum as well as the prevailing RND once
the Leave victory becomes certainty (see Panel D of Figure 2.10).21

-Figure 2.13 here-

This analysis also allows us to ex ante quantify the full price effect, Ve, of a Leave outcome
relative to Remain. This is given by the difference between the two latent futures prices. In
particular, we find that this wedge takes values between 12¢ -18¢ during the examined period,
and it is equal to 13.4¢ at settlement on 23rd June. Again, these estimates are very similar to
the difference between the values of the two modes of the GBPUSD RNDs in the run up to
the referendum. Interestingly, the high frequency analysis presented in Section 4 confirms
these estimates.

Panel A of Figure 2.13 also illustrates the actual futures price, F0, during the examined
period. In line with equation (2.12), F0 fluctuates between the latent prices associated with each
of the two referendum outcomes according to the corresponding option-implied probabilities.
In particular, as the probability pe of a Leave outcome increases during the week before the

19We have also examined whether there is a lead-lag relationship between the betting and the option market
during the sample period analyzed in this Section. To this end, we conduct a Granger-causality analysis.
Specifically, we estimate a bivariate VAR model consisted of the betting-odds implied probability of a Leave
outcome and the corresponding option-implied probability. The VAR lag length is selected on the basis of
the Akaike Information Criterion. We find evidence of bi-directional Granger-causality. In particular, we can
reject at the 5% level the null hypothesis that the betting-odds implied probability does not Granger-cause
the option-implied probability. We can also reject at the 5% level the null hypothesis that the option-implied
probability does not Granger-cause the betting-odds implied probability. We thank an anonymous referee for
suggesting this analysis.

20The standard deviation of the option-implied futures prices associated with a Remain outcome during the
examined period is 1.3¢ .

21The standard deviation of the option-implied futures prices associated with a Leave outcome during this
period is 2.4¢ .
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assassination of MP Cox, the futures trades consistently below $1.45, with F0 equal to $1.42 on
15th June. To the contrary, the sharp reduction in pe right after the assassination is associated
with a large increase in F0, which reaches $1.48 on the referendum day.

Panel B of Figure 2.13 shows the evolution of the option-implied volatility estimates for
each of the two referendum outcomes. For comparison, it also plots the annualized realized
volatility of GBPUSD futures, estimated on a daily basis from intraday 1-min log returns.22

A Remain outcome is characterised by a low level of volatility, fluctuating between 10-15%
p.a. during the last two weeks before the referendum.23 To the contrary, the volatility estimate
associated with a Leave outcome is much higher and volatile itself. In fact, it fluctuates in
the region of 25-35% p.a., reaching a peak of 36% p.a. on 22nd & 23rd June.24 Interestingly,
these ex ante estimates of volatility for each of the two outcomes are validated by the high
frequency analysis presented in Section 4. Hence, we conclude that the option market can
identify remarkably well not only the value but also the volatility of the underlying asset
associated with each of the two potential outcomes of this political event.

2.6. Further Results

2.6.1. Risk-adjusted Distributions

Throughout the study, we extract risk-neutral distributions and probabilities from option
prices without performing any risk-adjustment. Arguably, the existence of a risk premium
could potentially affect the interpretation of our results. Whereas it is obvious that a risk-
adjustment would be necessary to compute the physical density for FTSE100, which is an
equity index and is expected to carry a risk premium, it is not clear to what extent this
adjustment is appropriate for GBPUSD. Hanke, Poulsen, and Weissensteiner (2018, p. 2678)
provide an insightful discussion on whether GBPUSD carries a premium or not. In sum,
they argue that as long as the interest rate differential is close to zero, which holds true for
GBPUSD during the examined period, then the exchange rate would be almost drift-free under
the real-world probability measure and the risk premium would be near zero.

Nevertheless, an important question for our analysis is whether the shape of the RNDs
for GBPUSD futures and FTSE100 Index would be substantially modified if we used a risk-
adjusted distribution. Most characteristically, it is natural to ask whether the bimodality we
uncover in the GBPUSD RND prior to the referendum reflects bimodality in the physical
density or this is an artefact of risk-neutrality.

To address these potential concerns, we perform a risk-adjustment to convert the GBPUSD
and FTSE100 RNDs into physical ones. To this end, we follow the standard approach of

22We use the futures contract expiring in September because according to the CME rulebook, this is the
nearest quarterly futures contract that serves as the underlying for GBPUSD options that expire on 8th July. We
compute these intraday returns using mid-quotes from the corresponding CME GBPUSD futures BBO data.

23The standard deviation of the option-implied volatility associated with a Remain outcome during the
examined period is 1.8% p.a.

24The standard deviation of the volatility associated with a Leave outcome during the examined period is 5.2%
p.a.
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Bliss and Panigirtzoglou (2004), as recently implemented in Jackwerth and Menner (2020).
Specifically, we assume a power utility function for the representative agent and we compute
physical probabilities, p(ST ), using the relationship:

p(ST ) =

q(ST )
U ′(ST )∫ q(x)
U ′(x)

dx
, (2.17)

where U ′(ST ) = S−γ
T denotes the marginal utility function with degree of relative risk aversion

γ, ST is the underlying asset price at expiry T , and q(ST ) is the risk-neutral probability.
To examine how the shape of the physical density would change for different levels of

risk aversion, we perform this risk-adjustment using different values of γ. Figure SA.3 in the
Supplementary Appendix illustrates the corresponding physical densities computed on 23rd
June 2016, together with the RND for GBPUSD futures (Panel A) and the FTSE100 Index
(Panel B), respectively.

Given the discussion in Hanke, Poulsen, and Weissensteiner (2018), we illustrate the
physical density for GBPUSD futures using a low (γ = 1) as well as a moderate (γ = 3)
degree of risk aversion. We find that this risk-adjustment has only a minor effect on the shape
of the physical density. Most importantly, we find that the physical density remains bimodal
with its modes located very close to the corresponding modes of the RND. To this end, we
argue that our main conclusions regarding the detection and quantification of political event
risk are not affected by the fact that we rely on RNDs.

For FTSE100, we illustrate the physical density using risk aversion coefficients (γ = 2 and
γ = 4) that are similar in magnitude to the ones employed for equity indices in prior studies
(see Bliss and Panigirtzoglou, 2004; Jackwerth and Menner, 2020). Again, we find that the
shape of the physical density is very similar to the risk-neutral one. The physical density is
clearly unimodal and strongly negatively skewed, and hence the conclusions derived in our
main analysis from the corresponding RND remain intact.

2.6.2. Alternative Measures of Tail Risk

Our main analysis examines the effect of the Brexit referendum on the shape of RNDs and
the evolution of the corresponding risk-neutral moments. To a large extent, these characteristics
reflect the price of protection in the option market against a possible sharp drop in the underlying
asset values due to this political event. Following the suggestion of an anonymous referee, we
examine here alternative measures of tail risk.

First, we estimate the Slope of the IV curve, in the spirit of Kelly, Pástor, and Veronesi
(2016). Specifically, on each trading day, we regress the implied volatilities of OTM puts
on their deltas, including an intercept. We only include delta values that lie in the range of
(−0.5, −0.1). The corresponding slope coefficient estimate yields the Slope measure on a
given trading day for the corresponding option expiry date. Figure SA.4 in the Supplementary
Appendix illustrates the evolution of the Slope measure for GBPUSD (Panel A) and the
FTSE100 Index (Panel B), respectively.

Second, in the spirit of Xing, Zhang, and Zhao (2010), we compute the SKEW of the IV
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curve as another measure that captures the expensiveness of OTM puts. SKEW is defined as
the difference between the annualized implied volatilities of a deep OTM put and an ATM call.
For the deep OTM put, we choose the put with delta closest to -0.25. For the ATM call, we
select the call with delta closest to 0.5. Figure SA.5 in the Supplementary Appendix presents
the evolution of the SKEW measure for GBPUSD (Panel A) and the FTSE100 Index (Panel
B), respectively.

Both of these measures reveal patterns that are similar to the evolution of RNS, as illustrated
in Figure 2.7. For GBPUSD, we observe that on a given trading day, Slope and SKEW
are substantially higher when computed from options expiring after rather than before the
referendum. In addition, the values of these measures remain consistently high in the run up
to the referendum but sharply decrease towards zero right after this event. On the other hand,
the corresponding effects for FTSE100 are less pronounced when comparing options expiring
before and after the referendum. Whereas we observe a spike in Slope and SKEW just before
the referendum date, there is no clear downward trend in the aftermath of this event.

2.6.3. Risk-Neutral Distribution for EuroStoxx50

Arguably, this political event could also affect the Eurozone economy since Brexit could
undermine the integrity of the European Union and its single market. Hence, it is interesting
to examine whether this event risk was priced in the options of a major European stock index.
To this end, we extract RNDs from options on EuroStoxx50 Index, which is consisted of
European stocks with the largest capitalisation. These are European-style options and we
source the relevant price data from Refinitiv DataScope. Figure SA.6 in the Supplementary
Appendix illustrates the RNDs extracted on 23rd and 24th June, respectively, from options
expiring on 15th July 2016.

We observe that the RND of EuroStoxx50 extracted on 23rd June is clearly unimodal.
The main manifestation of event risk is a strongly negatively skewed RND, similar to the
effect observed for FTSE100 prior to the referendum (see Panel B of Figure 2.3). This effect
disappears in the aftermath of the referendum, as the RND reverts back to its standard shape
of a slightly negatively skewed distribution. Interestingly, whereas the EuroStoxx50 Index
experienced a substantial drop from 3,037 on 23rd June to 2,776 on 24th June, it fully recovered
its losses by the option expiry date, closing at 2,958 on 15th July. Hence, similar to FTSE100,
this provides an ex post confirmation that the referendum did not pose a substantial event risk
for EuroStoxx50.

2.7. Conclusions

There is a growing interest in understanding the information signalled by financial markets
with respect to polarised political events. Among other consequences, the outcome of such
events can lead to sharp movements in asset prices and volatility, with adverse implications
for financial stability and social welfare. However, the opposite sides of the campaign usually
make contradictory predictions regarding these effects, causing confusion among voters before
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the event and regret afterwards. Hence, a main challenge is to measure the potential impact of
these outcomes before the event takes place, so that voters can make an informed political
decision.

This study examines the UK referendum on EU membership in June, 2016. We show that
the option market can ex ante detect and quantify the event risk arising due to this referendum.
Most characteristically, the RNDs extracted from GBPUSD futures options, whose expiry
spanned the referendum date, became bimodal. In the run up to the referendum, the left mode
of these RNDs lied between $1.31-$1.35, revealing that the option market anticipated a large
drop in the exchange rate in the event of a Leave outcome. In contrast, the right mode of these
RNDs lied in the region of $1.50-1.53. Hence, one could infer from the option market that the
full effect of a Leave victory on GBPUSD was approximately 15¢ -19¢ .

This referendum also provides a strong validation test for option market expectations,
because the large swings in outcome probabilities during the vote counting process offer us
the rare opportunity to observe the counterfactual. Using high frequency option and futures
prices during the referendum night, we confirm the ability of the option market to ex ante
identify the effects of each outcome.

We also extract option-implied event probabilities. Despite the widespread belief that the
Remain side would win, we find that the option market indicated Leave victory as the most
likely outcome prior to the murder of MP Cox, one week before the referendum. Therefore,
we show that option prices allow us to extract meaningful event probabilities, providing a
good alternative to betting odds-implied probabilities.

Last but not least, we show that the option market not only can detect political event risk
when there is, but it can also indicate the absence of such risk when there is not. In particular,
we show that the effects on the corresponding RNDs and IV curves computed from FTSE100
options are very limited. The RNDs remain clearly unimodal, featuring only a moderate
increase in negative skewness. Interestingly, whereas the Leave victory led to a sharp and
permanent drop in GBPUSD, the effect on FTSE100 was much less pronounced on the first
post-event trading day and it was subsequently reversed, with the index trading by the end of
June higher than its pre-referendum close. Hence, we conclude that the option market can
distinguish the potentially differential effects of the same political event across different assets.
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Figure 2.1:
This Figure shows Risk-Neutral Distributions (RNDs) extracted on 17th May 2016 from options
with expiry spanning as well as options with expiry not spanning the Brexit Referendum date
(23rd June, 2016). In Panel A, RNDs are extracted from options on GBPUSD futures with
expiries on 3rd June (blue), 8th July (red), and 5th August 2016 (green). In Panel B, RNDs
are extracted from options on FTSE100 Index with expiries on 17th June (blue), 15th July
(red), and 19th August 2016 (green).

Panel A

Panel B
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Figure 2.2:
This Figure shows Implied Volatility (IV) curves extracted on 17th May 2016 from options with expiry spanning as well as options with expiry not spanning the
Brexit Referendum date (23rd June, 2016). Panels A and B show the IV curves extracted from options on GBPUSD futures with expiry on 3rd June (Panel A)
and 8th July 2016 (Panel B). Panels C and D show the IV curves extracted from options on FTSE100 Index with expiry on 17th June (Panel A) and 15th July
2016 (Panel B). In all Panels, black dots represent the IVs (p.a.) computed from observable option prices, whereas the coloured curves depict the fitted implied
volatilities according to the spline methodology presented in Section 2.2. The corresponding at-the-money (ATM) point is indicated in all Panels.

Panel A Panel B

Panel C Panel D
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Figure 2.3:
This Figure shows Risk-Neutral Distributions (RNDs) extracted around the Brexit Referendum
date (23rd June, 2016) from options with same expiry. In Panel A, RNDs are extracted on
23rd June (blue) and 24th June 2016 (red) from options on GBPUSD futures with expiry on
8th July 2016. In Panel B, RNDs are extracted on 23rd June (blue) and 24th June 2016 (red)
from options on FTSE100 Index with expiry on 15th July 2016. In both Panels, the mode(s)
of the RNDs are indicated.
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Panel B
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Figure 2.4:
This Figure shows Implied Volatility (IV) curves extracted around the Brexit Referendum date (23rd June, 2016) from options with same expiry. Panels A and B
show the IV curves extracted on 23rd June (Panel A) and 24th June 2016 (Panel B) from options on GBPUSD futures with expiry on 8th July 2016. Panels C and
D show the IV curves extracted on 23rd June (Panel C) and 24th June 2016 (Panel D) from options on FTSE100 Index with expiry on 15th July 2016. In all
Panels, black dots represent the IVs (p.a.) computed from observable option prices, whereas the coloured curves depict the fitted implied volatilities according to
the spline methodology presented in Section 2.2.

Panel A Panel B

Panel C Panel D
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Figure 2.5:
This Figure shows Risk-Neutral Distributions (RNDs) extracted on days in the run up to the Brexit Referendum date (23rd June, 2016). In Panels A and B, RNDs
are extracted from options on GBPUSD futures with expiry on 8th July 2016. Specifically, Panel A shows RNDs extracted on 3rd June (blue) and 10th June 2016
(red), Panel B shows RNDs extracted on 17th June (blue), 22nd June (red), and 23rd June 2016 (green). In Panels C and D, RNDs are extracted from options on
FTSE100 Index with expiry on 15th July 2016. Specifically, Panel C shows RNDs extracted on 3rd June (blue) and 10th June 2016 (red), whereas Panel D shows
RNDs extracted on 17th June (blue), 22nd June (red), and 23rd June 2016 (green). In all Panels, the mode(s) of the RNDs are indicated.

Panel A Panel B

Panel C Panel D
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Figure 2.6:
This Figure shows the evolution of Risk-Neutral Volatility (RNV) (p.a.), which is computed
from the corresponding Risk-Neutral Distribution, extracted from 9th May until 5th July 2016.
Panel A shows RNVs extracted from options on GBPUSD futures with expiry on 3rd June
(blue), 8th July (red), and 5th August 2016 (green). Panel B shows RNVs extracted from
options on FTSE100 Index with expiry on 17th June (blue), 15th July (red), and 19th August
2016 (green). The vertical black line indicates the Brexit Referendum date (23rd June, 2016).

Panel A

Panel B
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Figure 2.7:
This Figure shows the evolution of Risk-Neutral Skewness (RNS) (p.a.), which is computed
from the corresponding Risk-Neutral Distribution, extracted from 9th May until 5th July 2016.
Panel A shows RNSs extracted from options on GBPUSD futures with expiry on 3rd June
(blue), 8th July (red), and 5th August 2016 (green). Panel B shows RNSs extracted from
options on FTSE100 Index with expiry on 17th June (blue), 15th July (red), and 19th August
2016 (green). The vertical black line indicates the Brexit Referendum date (23rd June, 2016).

Panel A

Panel B
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Figure 2.8:
This Figure shows the evolution of the Bimodality Coefficient of the corresponding Risk-
Neutral Distribution (RND), extracted from 9th May until 5th July 2016. Panel A shows the
Bimodality Coefficient of the RND extracted from options on GBPUSD futures with expiry
on 3rd June (blue), 8th July (red), and 5th August 2016 (green). Panel B shows the Bimodality
Coefficient of the RND extracted from options on FTSE100 Index with expiry on 17th June
(blue), 15th July (red), and 19th August 2016 (green). The vertical black line indicates the
Brexit Referendum date (23rd June, 2016).
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Figure 2.9:
This Figure shows GBPUSD Risk-Neutral Distributions (RNDs) extracted on the Brexit
Referendum night (23rd to 24th June, 2016). The blue curve illustrates the RND extracted at
settlement (20:00 BST) on 23rd June from CME options on GBPUSD futures with expiry on
8th July. The red curve illustrates the RND extracted on 23rd June at 23:00 BST from options
on GBPUSD with 1-month maturity, sourced from Bloomberg. The green curve illustrates
the corresponding RND extracted on 24th June at 05:30 BST from options on GBPUSD
with 1-month maturity, sourced from Bloomberg. In all cases, the mode(s) of the RNDs are
indicated.
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Figure 2.10:
This Figure shows GBPUSD Risk-Neutral Distributions (RNDs) extracted on the Brexit Referendum night (23rd to 24th June, 2016). In Panel A, the blue curve
presents the RND extracted at settlement (20:00 BST) on 23rd June from CME options on GBPUSD futures with expiry on 8th July. The green curve presents the
RND extracted on 23rd June at 22:10 BST from options on GBPUSD with 1-month maturity, sourced from Bloomberg, whereas the red curve presents the
corresponding RND extracted at 22:30 BST. Panel B presents the corresponding RNDs at 23:30 (blue), 00:10 (red), and 01:00 BST (green). Panel C presents the
corresponding RNDs at 02:00 (blue), 03:30 (red), and 04:00 BST (green). Panel D presents the corresponding RNDs at 04:40 (blue), 05:30 (red), and 08:50
(green). In all cases, the mode(s) of the RNDs are indicated.
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Figure 2.11:
This Figure shows the GBPUSD futures price and Risk-Neutral Volatility on the Brexit
Referendum night from 22:00 BST on 23rd June to 06:00 BST on 24th June 2016. Panel
A presents the evolution of the GBPUSD futures price (blue, left axis) together with the
probability of a Leave Vote outcome implied by betting odds (red, right axis), provided by
Betfair. Panel B presents the evolution of the Risk-Neutral Volatility (p.a.) (blue, left axis),
extracted from options on GBPUSD with 1-month maturity, sourced from Bloomberg, together
with the probability of a Leave Vote outcome implied by betting odds (red, right axis), provided
by Betfair.

Panel A
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Figure 2.12:
This Figure shows two sets of probabilities of a Leave Vote outcome, computed on a daily
basis in the run up to the Brexit Referendum date (23rd June, 2016). The blue line indicates
the probability of a Leave Vote outcome implied by the prices of options on GBPUSD futures
with expiry on 8th July 2016. The red line indicates the corresponding probability implied by
betting odds provided by Betfair. The vertical black line indicates the date of the murder of
MP Jo Cox (16th June, 2016).
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Figure 2.13:
This Figure illustrates the GBPUSD futures price (Panel A) and Implied Volatility (Panel B)
in the run up to the Brexit Referendum date (23rd June, 2016), corresponding to the event
of a Remain or a Leave Vote outcome, respectively, as computed from options on GBPUSD
futures with expiry on 8th July 2016. Panel A shows the GBPUSD futures price in the event of
a Remain (red) or a Leave (blue) Vote outcome, together with the actual futures price (green).
Panel B shows the GBPUSD futures Implied Volatility (p.a.) in the event of a Remain (red)
or a Leave (blue) Vote outcome, together with the realized volatility (p.a.) computed on a
daily basis from intraday 1-min GBPUSD futures log returns (yellow). The vertical black line
indicates the date of the murder of MP Jo Cox (16th June, 2016).

Panel A

Panel B
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Table 2.1: This Table presents an outline of key political events leading to and associated with
the Brexit 2016 Referendum.

Date Event

23rd January, 2013 Bloomberg Speech: Prime Minister (PM) David Cameron calls for
fundamental reform of the EU and promises an in-out referendum
on UK membership should the Conservatives win a parliamentary
majority at the 2015 General Election

May, 2013 The Conservatives publish a draft EU Referendum Bill, which
would be held no later than 31st December, 2017

22nd May, 2014 UK Independence Party (UKIP) tops the polls for the European
Parliament elections

7th May, 2015 UK General Election: Conservatives win absolute majority in
the House of Commons. Their electoral manifesto included
Cameron’s commitment to hold an inout referendum on UK mem-
bership of the EU by the end of 2017

27th May, 2015 Planned referendum is included in the Queen’s speech

9th June, 2015 The European Union Referendum Act 2015 passes the second
reading in the House of Commons, voted by 544 to 53 in favour

17th December,
2015

The European Union Referendum Act receives Royal Assent. Vot-
ers will be asked whether the UK should Remain a member of EU
or Leave the EU

20th February, 2016 PM Cameron announces that the referendum will be held on 23rd
June, 2016

21st February, 2016 Former Mayor of London and Member of Parliament (MP) Boris
Johnson announces that he will campaign for Vote Leave

16th June, 2016 Pro-Remain Labour MP, Jo Cox, is murdered by an allegedly
far-right supporter. Official campaigning is suspended for three
days

21st June, 2016 The final “Great Debate” is broadcasted by BBC from Wembley
Arena

23rd June, 2016 Referendum is held

24th June, 2016 Referendum result is announced. Leave wins, receiving 51.89%
of valid votes. Cameron announces that he will resign as PM

13th July, 2016 Theresa May succeeds Cameron as PM
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Table 2.2: This Table reports descriptive statistics for the options used to extract Risk-Neutral Densities for GBPUSD futures and the FTSE100 Index, respectively,
during the period from 9th May until 5th July 2016. Descriptive statistics are shown separately for each expiry.

GBPUSD FTSE100
Expiry 3rd June 8th July 5th August 17th June 15th July 19th August
Average number of strikes used per day 18 69 83 54 67 64
Average total trading volume across strikes per day - - - 8,026 6,754 2,660
Average total open interest across strikes per day - - - 277,115 243,969 61,899
Number of trading days 17 41 41 27 41 41
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Table 2.3: This Table presents the key events and announcements related to the Brexit Referen-
dum during the night of 23rd June and the early morning of 24th June, 2016. All time stamps
are in British Summer Time (BST) and correspond to BBC’s election night broadcasting.

Time
(BST)

Event/Announcement

22:00 Polls Close. No “public” Exit Poll was conducted

22:07 BBC quotes the leader of UKIP, MEP Nigel Farage, saying that “Remain
has just edged it”

22:23 BBC psephologist says that the YouGov poll conducted on the same day
indicates a Remain lead by 52% to 48%

22:54 BBC quotes that Farage has “unconceded” the Remain victory

23:59 Result for Newcastle is announced. Marginal victory for Remain (50.7%
to 49.3%). Much lower vote share for Remain than the one anticipated for
this area

00:16 Result for Sunderland is announced. Very strong victory for Leave (61% to
39%). A marginal victory for Leave was anticipated.

00:44 BBC quotes sources from Lewisham (London borough) that Remain may
have gained 83% of the vote in this area

00:53 Result for Swindon is announced. Victory for Leave (55% to 45%). Antici-
pated result if national vote was split 50%-50%

01:18 Result for South Tyneside is announced. Bigger than anticipated victory
for Leave (62% to 38%)

01:42 Result for Hartlepool is announced. Bigger than anticipated victory for
Leave (70% to 30%)

01:54 Result for City of London is announced. Remain victory by 75% to 25%

02:01 Result for Swansea is announced. Victory for Leave by 52% to 48%,
whereas a Remain victory was anticipated

02:04 BBC presenter quotes a leading figure in Labour party saying that they
believe it will be a Leave win

02:14 Arron Banks, a donor and co-founder of Leave.EU campaign, says that
Leave has won. He states that their own poll showed a Leave win by 52%
to 48%

02:19 Result for Lambeth. Bigger than anticipated victory for Remain (79% to
21%). First big London borough to declare result

02:28 Result for Wandsworth (London borough). Bigger than anticipated victory
for Remain (75% to 25%)

03:14 BBC psephologist states that London outperformance for Remain does not
seem sufficient to offset the outperformance of Leave in other places
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03:22 Leave vote has surpassed 51% with 159/382 counting authorities declared

03:46 BBC quotes Farage saying that he “now dares to dream of an independent
UK at dawn”

04:01 Farage claims that Leave has won

04:39 BBC calls the Referendum for Leave, projecting a 52% share of the vote

07:01 Final result: Leave 17,410,742 votes (51.9%) – Remain 16,141,241 votes
(48.1%)

08:22 Cameron announces that he will resign as PM

08:46 Statement by the Bank of England Governor, Mark Carney, that the Bank
is ready to provide liquidity and take further policy actions
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Supplementary Appendix

Figure SA.1:
This Figure shows Risk-Neutral Distributions (RNDs) extracted around the Brexit Referendum
date (23rd June, 2016) from options with same expiry. In Panel A, RNDs are extracted on
23rd June (blue) and 24th June 2016 (red) from options on AstraZeneca (AZN) with expiry
on 15th July 2016. In Panel B, RNDs are extracted on 23rd June (blue) and 24th June (red)
from options on GlaxoSmithKline (GSK) with expiry on 15th July 2016. In both Panels, the
mode(s) of the RNDs are indicated.

Panel A

Panel B
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Figure SA.2:
This Figure shows Risk-Neutral Distributions (RNDs) extracted around the Brexit Referendum
date (23rd June, 2016) from options with same expiry. In Panel A, RNDs are extracted on 23rd
June (blue) and 24th June 2016 (red) from options on British Telecom (BT) with expiry on
15th July 2016. In Panel B, RNDs are extracted on 23rd June (blue) and 24th June (red) from
options on Sainsbury’s (SBRY) with expiry on 15th July 2016. In both Panels, the mode(s) of
the RNDs are indicated.

Panel A

Panel B
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Figure SA.3:
This Figure shows risk-adjusted distributions extracted on 23rd June 2016, for different de-
grees of risk aversion (γ) of the representative agent, using the methodology of Bliss and
Panigirtzoglou (2004). Panel A illustrates risk-adjusted distributions for GBPUSD futures
using γ=1 (red) and γ=3 (green), together with the RND (blue) extracted from options with
expiry on 8th July. Panel B illustrates risk-adjusted distributions for FTSE100 Index using
γ=2 (red) and γ=4 (green), together with the RND (blue) extracted from options with expiry
on 15th July.

Panel A

Panel B
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Figure SA.4:
This Figure shows the evolution of the Slope of the IV curve, which is estimated on a daily
basis by regressing the implied volatilities of out-of-the-money puts on their deltas and an
intercept, from 9th May until 5th July 2016. Panel A shows the Slope estimated from options
on GBPUSD futures with expiry on 3rd June (blue), 8th July (red), and 5th August 2016
(green). Panel B shows the corresponding Slope estimated from options on FTSE100 Index
with expiry on 17th June (blue), 15th July (red), and 19th August 2016 (green). The vertical
black line indicates the Brexit Referendum date (23rd June, 2016).

Panel A

Panel B
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Figure SA.5:
This Figure shows the evolution of the SKEW of the IV curve from 9th May until 5th July
2016. SKEW is computed on a daily basis as the difference between the annualized implied
volatility of a deep out-of-the-money put, with delta closest to -0.25, and the annualized
implied volatility of an at-the-money call, with delta closest to 0.5. Panel A shows the SKEW
computed from options on GBPUSD futures with expiry on 3rd June (blue), 8th July (red), and
5th August 2016 (green). Panel B shows the corresponding SKEW computed from options
on FTSE100 Index with expiry on 17th June (blue), 15th July (red), and 19th August 2016
(green). The vertical black line indicates the Brexit Referendum date (23rd June, 2016).

Panel A

Panel B
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Figure SA.6:
This Figure shows Risk-Neutral Distributions (RNDs) extracted on 23rd June (blue) and 24th
June 2016 (red) from options on EuroStoxx50 Index with expiry on 15th July 2016. The mode
of the RNDs is indicated on the Figure.

Panel A
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Chapter 3

Market Quality and Price
Informativeness: Evidence from Extended
Trading Hours
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3.1. Introduction

Understanding after-hours trading is important for market design as the development of
technology has changed the structure of financial markets. There are growing interests in
presenting characteristics and examining finance theories of after-hours markets (Barclay and
Hendershott, 2003, 2004; Chen, Yu, and Zivot, 2012; Dungey, Fakhrutdinova, and Goodhart,
2009; Jiang, Likitapiwat, and Mcinish, 2012; Tsai, 2010). Traditional financial markets have
formal opening and closing times, such as 09:30–16:00 U.S. Eastern Time1 for core trading
sessions in the New York Stock Exchange (NYSE) and the National Association of Securities
Dealers Automated Quotations Exchange (NASDAQ). Electronic systems extend traditional
financial markets towards trading around the clock. Since 1999 in equity markets, electronic
communication networks have allowed retail investors to trade stocks when the core trading
session is closed. The Chicago Mercantile Exchange provides Standard and Poor (S&P) 500
futures contract that trades from 18:00 to 17:00 (next day). In 2015, Chicago Board Options
Exchange (CBOE) launched Extended Trading Hours2 from 03:00 to 09:15 for S&P 500
options before the opening of Regular Trading Hours3 from 09:30 to 16:15. We aim to present
the features of intraday option trading and examine the impact of extended trading hours on
regular trading hours.

The S&P 500 option market has certain advantages in after-hours market quality analysis.
Previous literature evaluates the market quality in either after hours or regular hours. However,
the direct impact of after-hours trading on regular hours trading is not clear. The S&P 500
index option market provides a quasi-natural experiment to examine the impact on market
quality from the introduction of extended trading hours which is a unique event and not
available in previous after-hours equity or futures markets. Moreover, the option market has
different features in comparison to the equity and futures markets. Unlike the equity and
futures markets, exchange designated market makers provide most liquidity in the option
market. After-hours trading has been applied to the equity and futures markets for a long time
while the extended trading hours option market is newly introduced and understudied. The
lack of empirical evidence raises concerns about extending trading hours in other index and
stock options. Finally, some forward looking information, such as implied higher moments
of future asset returns, can be only estimated from the option market. The option market
provides a chance to examine the relationship between the after-hours market expectation and
the realized outcomes in regular trading hours.

We examine the market quality of the index option market with relatively new tick-by-tick
option data. By comparing the market quality between extended and regular trading hours,
we illustrate an extremely illiquid option market with lower trading activities and higher
transaction costs in extended trading hours. It documents time of day market microstructure
patterns in extended trading hours. Trading activities are higher and bid-ask spreads are wider
at the beginning and the end of extended trading hours. Most importantly, we present a new

1Unless otherwise specified, all timestamps in this chapter are U.S. Eastern Time.
2CBOE also refers to Extended Trading Hours as Global Trading Hours.
3Regular Trading Hours and Core Trading Session are used interchangeably in this chapter.
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intraday phenomenon that there are significant peaks of bid-ask spread after macroeconomic
news announcements.

This study contributes to the literature by using CBOE’s introduction of extended trading
hours into the option market as a quasi-natural experiment to study the impact of incorporating
extended trading hours on market quality in regular trading hours. Extended trading hours are
introduced to S&P 500 index options meanwhile S&P 500 Depositary Receipts ETF options
have no extended trading hours. Difference-in-differences analyses between these two option
markets provide evidence of enhanced market quality from the introduction of extended trading
hours in terms of bid-ask spread and information asymmetry while minimizing the impact
from exogenous variables.

We explore the possible mechanisms for the changes in market quality as a consequence
of the intertemporally strategic decisions of liquidity suppliers and demanders following
the discussion of network effect (Madhavan, 2000) and liquidity externality (Barclay and
Hendershott, 2004). Network effect and liquidity externality arise from the heterogeneously
intertemporal choices of uninformed liquidity traders and informed traders. The overall
outcome of the interaction of concentrated-trading liquidity traders (Admati and Pfleiderer,
1988) and aggressively competed informed traders (Holden and Subrahmanyam, 1992) is that
there are little liquidity trading and substantial informed trading in extended trading hours
with a reduction of informed trading in regular trading hours. As a result, market quality in
extended trading hours is expected to be relatively low while market quality in regular trading
hours is enhanced. It provides new evidence for the negative liquidity externality between
liquidity suppliers and demanders with high adverse selection as discussed by Tham, Sojli,
and Skjeltorp (2018).

This research about extended trading hours complements studies about price informa-
tiveness with liquidity conditions. Price formation is one of the most important financial
market functions. On one hand, low liquidity conditions may restrict the price informativeness
as a limit to arbitrage and hedging (Kerr, Sadka, and Sadka, 2020). The generally extreme
illiquidity in extended trading hours may result in stale and uninformative prices, which may
further indicate potential market failure. However, on the other hand, exchange designated
market makers, such as Prime Market Makers in the option market, have the obligation to
continuously provide bid and ask quotes and some informed traders, such as volatility in-
formation traders, may allocate their trading to extended trading hours. The participation
of market makers and informed traders may be beneficial to price formation. This contrast
is worth researching to what extent the extreme illiquid market in extended trading hours
incorporates market information. Price informativeness is tested by comparing the option
implied information in extended trading hours with realized values in regular trading hours,
such as option implied index level at the close of extended trading hours vs. at the opening
of the regular trading hours, and option implied volatility vs. realized volatility respectively.
We present that, despite the poor market quality in extended trading hours, the option market
in extended trading hours is important for incorporating market news and contains accurate
expectations for the following regular trading hours.

Market participants may have a better understanding of the trading risk in the extended
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trading hours option market, including low liquidity and a high probability of trading against
informed traders. They may also have better trading performance by utilizing the implied
information from the option market in extended trading hours, given the identified relationship
between option implied index level and volatility in extended trading hours with realized
values in regular trading hours.

The rest of this chapter is organized as seven parts. Section 3.2 reviews previous literature
and brings the hypotheses for this study. Section 3.3 describes the data and institutional
background. Section 3.4 compares the option market both in extended and regular trading
hours with summary statistics. Section 3.5 tests market quality around the introduction of
extended trading hours through a difference-in-differences analysis on quoted and effective
spreads. Section 3.6 explores the components that explain differences in market quality by
applying the spread decomposition models. Section 3.7 examines whether the option prices in
extended trading hours incorporate overnight information and are informative for the following
regular trading hours. Section 3.8 concludes.

3.2. Literature Review and Hypotheses Development

In classic market microstructure theory, market participants are categorized as liquidity
suppliers and demanders. Liquidity demanders include uninformed liquidity traders and
informed traders (Huang and Stoll, 1997; Lin, Sanger, and Booth, 1995; Madhavan, Richardson,
and Roomans, 1997). On one hand, there is no strong barrier that prevents order flows between
extended and regular trading hours4. The market structures in extended trading hours and
regular trading hours are similar. In equilibrium, the trading activities and trading costs across
the day should also be similar. However, on the other hand, intertemporal liquidity externality
theory argues that by bringing liquidity providers and demanders together across time the
trading costs will be reduced for all investors. First, intraday discretionary liquidity trading is
concentrated in equilibrium (Admati and Pfleiderer, 1988, Barclay and Hendershott, 2004).
If a market is already in equilibrium, as liquidity providers and suppliers congregate in regular
trading hours so that the trading costs for all investors are reduced, liquidity demanders will
have no incentive to move their trades out of regular trading hours as they may bear higher
transaction costs. Thus, extended trading hours have a reduction in liquidity trading. Second,
although informed traders may participate more actively with the concentrated liquidity trading
(Admati and Pfleiderer, 1988), informed traders may still prefer immediate trading in extended
trading hours rather than waiting until regular trading hours as a result of competition among
informed traders (Holden and Subrahmanyam, 1992). Consequently, some informed trading
may be endogenously shifted from regular trading hours to extended trading hours resulting in
high adverse selection in extended trading hours. The liquidity externality between liquidity
suppliers and demanders is negative when adverse selection is high (Tham, Sojli, and Skjeltorp,
2018), i.e. the increment of informed traders cannot attract more liquidity suppliers. If this

4Brokers need to apply for Trading Permit in extended trading hours which is independent of Trading Permit
in regular trading hours. Retail investors need to be aware of the material trading risks in extended trading hours
before placing orders (Rules of Cboe Exchange).
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classic theory about market microstructure is correct, extremely low market quality in extended
trading hours and enhanced market quality in regular trading hours will be expected.

Low market quality after hours is documented in both the equity and futures markets.
After-hours market quality in terms of trading volume, transaction costs, and information
asymmetry is lower in NASDAQ (Barclay and Hendershott, 2003, 2004). McInish and Wood
(1992) also find similar conclusions with trading volume and transaction costs in NYSE. In
the futures market, thinly traded S&P 500 and NASDAQ 100 futures also confirm the intraday
concentration of trading in regular trading hours (Dungey, Fakhrutdinova, and Goodhart,
2009). What is more, Mishra and Daigler (2014) examine intraday market microstructure
characteristics only in regular trading hours. We firstly extend the interest of the market
microstructure characteristics in both extended and regular trading hours. Based on the theory
and documented patterns in the equity and futures markets, we address the first hypothesis as

Hypothesis 1 (H1). In equilibrium, market quality and trading activity are extremely low in
extended trading hours.

Although the after-hours stock market has low trading volume, it is important for price
discovery. Trades before the opening of regular hours are possibly the most informed as
information asymmetry is high before markets open and low after markets close (Barclay and
Hendershott, 2003). Past literature on option market quality and market design about liquidity
externality mainly focuses on the impact from the spatial dimension, such as intermarket
competition (Mayhew, 2002), evolution of the equity option market to a national market
system (Battalio, Hatch, and Jennings, 2004). However, intertemporal liquidity externality
is still under discussion (Barclay and Hendershott, 2004). The impact of after-hours trading
on the following regular trading hours market quality is not examined in previous literature.
The introduction of extended trading hours raises a new issue in intertemporal market design
literature whether the introduction of extended trading hours has a positive impact on the
existing market liquidity. Based on the classic market microstructure theory, we address the
second hypothesis as

Hypothesis 2 (H2). The introduction of extended trading hours enhances the market quality
in regular trading hours.

Besides, if Hypothesis 1 is true, arbitrage and hedging may be limited as a lack of liquidity
in the extended trading hours option market. Liquidity condition is one of the determinants
for price informativeness, such as liquid stock prices are more informative than illiquid stock
prices considering future firm earnings (Kerr, Sadka, and Sadka, 2020). It is unclear whether
information is still aggregated into the option market and whether option prices contain the
latest aggregate expectation in extremely illiquid markets. Previous literature provides some
evidence of the price informativeness in extended trading hours. The stock prices in the
pre-open session increase the efficiency of the opening prices (Barclay and Hendershott, 2008).
After-hours stock realized volatility improves the predictability of stock volatility in the next
day (Chen, Yu, and Zivot, 2012). According to previous evidence between after-hours trading
and regular hours trading, we address the third hypothesis as
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Hypothesis 3 (H3). Despite low liquidity conditions, the option prices in extended trading
hours are informative for the following regular trading hours.

The results of price informativeness also connect and contribute to the literature on
volatility forecasting. We suggest the relevance of option implied volatility in one-day realized
volatility forecasting. Widely used volatility forecasting models, such as Heterogeneous
Autoregressive (HAR) Model (Corsi, 2009) and HAR Model with Realized Quarticity (HARQ)
(Bollerslev, Patton, and Quaedvlieg, 2016), use estimates based on past intraday returns to
forecast future realized volatility. Implied volatility contains additional information for future
realized volatility and is an unbiased forecast in stock markets (Busch, Christensen, and
Nielsen, 2011). Macroeconomic news and global trading in other economies overnight may
change the expectation for future asset volatility. We test whether the index option market
in extended trading hours incorporates the latest information and provides better volatility
forecasts than models based on information before extended trading hours.

3.3. Data and Institutional Details

This section describes the background of CBOE’s introduction of extended trading hours
in the option market, the data, and the measures of market quality.

3.3.1. CBOE’s S&P 500 Index Option Market

As Table 3.1 shows, CBOE provides four types of options with underlying assets related
to the S&P 500 index: S&P 500 index traditional options (SPX), S&P 500 index weekly
non-traditional options (SPXW)5, S&P 500 index mini-options (XSP), and Standard & Poor’s
Depositary Receipts ETF options (SPY). These options share similar impacts from economic
variables. CME also provides index options with underlying as S&P 500 futures which is
traded in both extended and regular trading hours. As the CBOE S&P 500 index options are
the most widely recognized by the market considering the trading volume, we only focus on
the S&P 500 index options in CBOE.

-Table 3.1 here-

SPXW and SPY options are the treatment and the control groups respectively to minimize
the impact from exogenous variables. First, since March 9, 2015, SPX and SPXW options
have been traded in both extended and regular trading hours while SPY and XSP options are
only traded in regular trading hours. Second, XSP options’ underlying asset is at 1/10th of the
S&P 500 index level. They may be less preferred by institutional investors, as reflected by their
extremely low trading volume among S&P 500 options. Accordingly, XSP is excluded from

5CBOE added expiry dates into SPXW options over time. SPXW firstly included options with expiry dates
on non-third Friday and end of the month. On August 15, 2016, CBOE launched S&P 500 Monday Weeklys
for SPXW. On February 23, 2016, CBOE launched S&P 500 Wednesday Weeklys for SPXW. On May 1, 2017,
CBOE changed the symbol for the existing S&P 500 third Friday PM-settled option series (SPXPM) to option
symbol SPXW
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this study. Third, SPXW and SPY options were traded on the same system, Hybrid Trading
Platform, while SPX options were traded on Hybrid 3.0 Platform around the introduction of
extended trading hours6. SPX options are excluded from this study as they may be affected by
other market structure factors.

In the CBOE SPXW option market, trading participants are clearing trading permit
holders, Electronic Access Permit (EAP) brokers, EAP customers, Lead Market Makers
(LMMs), and proprietary traders7. Non-public and public customers trade though EAP
brokers and EAP customers respectively. Based on market microstructure theory, trading
participants are categorized into two groups, liquidity suppliers and liquidity demanders.
Liquidity suppliers are LMMs and discretionary market makers who can be EAP brokers,
EAP customers, or proprietary traders. LMMs are appointed by CBOE and have the obligation
to submit continuous bid and ask quotes to the exchange8 while discretionary market makers
are other participants who act as market makers and provide liquidity based on their own
circumstances. In the limit order book, the best bid and ask quotes reflect the competition
outcomes of all LMMs and discretionary market makers. The main market structure difference
between extended and regular trading hours is that there are only three LMMs in extended
trading hours but multiple LMMs in regular trading hours.

Liquidity demanders are uninformed liquidity traders and informed traders from EAP
brokers, EAP customers, and proprietary traders. Uninformed liquidity traders implement
their liquidity demand by taking transaction costs, i.e. bid-ask spread, which is the profit for
liquidity suppliers. While liquidity suppliers have a loss when they trade against informed
traders.

Moreover, the matching algorithm for both extended and regular trading hours is the same
as Price-Time Priority. The regular and extended trading hours are connected by the queuing
order book for the opening process of regular trading hours. Active orders at the end of
extended trading hours join the queuing order book. The opening price of the regular trading
hours is determined by an open auction with the queuing order book9.

The SPY and SPXW options have a similar market structure. Instead of LMMs, CBOE
appoints one Designated Primary Market Maker (DPM) for SPY options. DPM has similar
obligations like LMMs that they have to provide continuous bid and ask quotes. The difference
between LMMs in SPXW market and DPM in SPY market has only limited impacts on our
analysis.

3.3.2. Data and Sample

We use the trades, best bid and best ask data of SPXW and SPY options in Refinitiv
DataScope Tick History Time and Sales to examine the market quality around the introduction
of extended trading hours. It contains nanosecond timestamped quotes and trades for all

6CBOE Regulatory Circular RG17-136
7CBOE GTH Participants Providing Partial Access
8Rules of Cboe Exchange
9CBOE US Options opening Process
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SPXW and SPY options and tick-by-tick last for the S&P 500 index. The analyses of market
quality and information asymmetry (Hypothesis 1 and Hypothesis 2) are based on six months
SPXW and SPY option data around CBOE’s introduction of extended trading hours, from
December 1, 2014 to May 31, 2015 when the S&P 500 index level was relatively stable10 and
there was no major change in option market structures (see Table 3.2).

-Table 3.2 here-

Because CBOE options are mainly electronically traded and the execution time of the
trades is reliable. Trades are matched with the latest quotes. Trade direction is determined
by Lee and Ready (1991) original algorithm with the most recent bid-ask quote to determine
buyer- or seller-initiated trades, as Savickas and Wilson (2003) compare four classification
rules for option trades: quote rule, tick rule, Lee and Ready (1991) rule, and the Ellis, Michaely,
and O’Hara (2000) (EMO) rule and conclude Lee and Ready (1991) rule is slightly more
accurate than EMO rule in the option market. A recent study by Li, French, and Chen (2017)
also uses Lee and Ready (1991) rule with the most recent midquote. If the transaction price is
higher (lower) than the midquote, the trade is buyer- (seller-) initiated. If the transaction price
is equal to the midquote, the tick direction is applied: an upward (downward) tick direction
indicates a buyer- (seller-) initiated trade. The moneyness of the option contract is calculated
as the strike price divided by the previous day close level of the underlying index.

U.S. risk-free rate is the zero-coupon rate from OptionMetrics. Cubic spline interpolation11

is applied to the zero-coupon rate curve to get the risk-free rate with the same time to maturity
as the option contract. Daily S&P 500 dividend rate is extracted from OptionMetrics. To
estimate realized volatility in extended trading hours, S&P 500 E-mini futures tick-by-tick
trade data is extracted from Refinitiv DataScope.

We also use one-minute frequency SPX index level to estimate daily realized volatility and
SPXW option data at 09:15, 09:30, and 16:15 in Refinitiv DataScope Tick History Intraday
Summaries from the March 9, 2015 to December 31, 2018 to examine the price informativeness
in extended trading hours.

SPXW and SPY option data used in this study originate from Options Price Reporting
Authority (OPRA) Best-Bid-Offer (BBO). We delete records with a quote size of zero. We
also delete records with the same bid and ask quotes with the same timestamp.

3.3.3. Measures of Market Quality

We use OPRA BBO data to calculate bid-ask spread as the main market quality measure,
as wide (narrow) quoted and effective spreads indicate low (high) market quality. The dollar
quoted spread ($) is the difference between the best bid and best ask quotes. The dollar effective
spread ($) is double the difference between the midquote of BBO and the transaction price.

10The average daily close S&P 500 index level was 2054.41 from December 1, 2014 to February 28, 2015
and 2094.74 from March 9, 2015 to May 31, 2015. While from October 15, 2014 to November 30, 2014, the
S&P 500 index level increased from 1862.49 to 2067.56 with a return as 11.01%. U.S. equity market may be in
different regimes before and after December 2014.

11Cubic spline interpolation is conducted by MATLAB built-in function spaps.
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The proportional quoted spread (%) and the proportional effective spread (%) are the dollar
quoted spread ($) and the dollar effective spread ($) divided by midquote of BBO respectively.
The average quoted spread is equally weighted by quote updates. The average effective spread
is weighted by trade volume.

To adjust for the cross-sectional differences of option contracts with different strike prices
and time to maturities, and present the relative changes of bid-ask spread with the same option
contract in a day, we transform quoted and effective bid-ask spreads into normalized spreads
as an additional market quality measure. The intraday bid-ask spread is divided by the average
bid-ask spread of the day for the same option contract in the intraday analysis. It captures the
intraday seasonality of bid-ask spread and minimizes the impact from the cross-section of
strike prices and time to maturities.

3.4. Trading Characteristics of the S&P 500 Index Options

This section documents and compares the descriptive statistics of trading activities and
liquidity in extended and regular trading hours from December 1, 2014 to May 31, 2015. It
presents an initial analysis of the intraday intertemporal choices of liquidity and informed
traders in the S&P 500 index option market, and examines the Hypothesis 1 that market quality
and trading activity are extremely low in extended trading hours.

3.4.1. Trading Activities

Table 3.3 compares the trading activities between extended and regular trading hours
for SPXW options. The summary of SPXW option trading volume is grouped by option
moneyness. Realized volatility of the S&P 500 index is calculated as the annualized realized
volatility from S&P 500 E-mini futures one-minute returns. Table 3.3 shows that after the
introduction of extended trading hours, trading activities are extremely low in extended trading
hours. Extended and regular trading hours have a similar length of trading hours, 6.25 hours vs.
6.45 hours respectively, while more than 99% volume and trades are concentrated in regular
trading hours. Trading volume categorized by moneyness presents similar preferences across
the day, highest trading volume with at-the-money options and little trading volume with
in-the-money options. In the rest of this chapter, only out-of-money and at-the-money options
are focused on. The frequency of quote changes and realized volatility are also significantly
lower in extended trading hours at 1% significance level, as the frequency of quote changes is
248 vs. 821 and realized volatility is 6.64% vs. 9.97% for extended and regular trading hours
respectively. However, French and Roll (1986) document that the variance of stock returns
in regular trading hours is five times larger than the variance overnight. It is possible that
the trading of S&P 500 E-mini futures increases the realized volatility in extended trading
hours. The average trade sizes in regular trading hours are significantly larger with a large
standard deviation, indicating a higher potential for large transactions in regular trading hours.
In conclusion, the extremely low trading activity in extended trading hours is consistent with
liquidity externality theory and the expectation of intraday decisions of liquidity and informed
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traders.

-Table 3.3 here-

Figure 3.1 shows the intraday patterns of trading volume, the frequency of quote changes,
and realized volatility. In panel A, during regular trading hours, they all exhibit a well-
documented U-shaped pattern. Half-hour interval summary across the day confirms that the
trading activities are much lower in extended trading hours. In panel B, in extended trading
hours, the frequency of quote changes presents a U-shaped pattern while the realized volatility
resents a J-shaped pattern. Trading activities are much higher at the end and at the beginning
relative to the middle of extended trading hours. The beginning of extended trading hours
in the SPXW option market is also the beginning of regular trading hours in European stock
exchanges12. Extended trading hours connect European financial markets and the US option
markets. Moreover, the high trading activities at the end of extended trading hours may be
explained by two reasons. First, the macroeconomic news announcements at 08:30 are at the
end of extended trading hours and may have a strong influence on the S&P 500 index. Second,
the end of extended trading hours can be also regarded as the pre-open session for regular
trading hours. Some trading may be shifted from the opening of regular trading hours to the
pre-open session. However, this shift is relatively limited in comparison to the enormous
amount of trading in regular hours.

-Figure 3.1 here-

3.4.2. Trading Costs

This part compares the dollar, proportional, and intraday normalized quoted and effective
spreads between extended and regular trading hours.

Table 3.4 shows that trading costs are significantly higher in extended trading hours. Both
quoted and effective spreads in extended trading hours are about twice wider in comparison to
them in regular trading hours. Dollar, proportional, and intraday normalized quoted spreads
decline at 1% significance level from extended trading hours to regular trading hours by $1.02,
5.97%, and 72.31% respectively. Dollar effective spread declines from extended trading
hours to regular trading hours by $1.1 at 5% significance level. Proportional and intraday
normalized effective spreads also decline from extended trading hours to regular trading hours
by 3.23% and 117.43% at 1% significance level respectively. High trading costs in extended
trading hours confirm that most liquidity traders congregate in regular trading hours as the
concentration of liquidity trading can reduce overall trading costs. Moreover, high standard
deviations relative to the averages of dollar and proportional spreads present the problem that
direct comparison among bid-ask spreads with different moneyness and time to maturities
may incorporate the information in the cross-section of option bid-ask spread.

-Table 3.4 here-

12There may be some small variations as the Daylight Savings Time (DST) is applied differently across
countries.
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Figure 3.2 shows the intraday patterns of normalized quoted spread in five-minute intervals.
Panel A confirms the results in Table 3.4 that trading costs are approximately twice higher in
extended trading hours after considering the intraday variations of bid-ask spread. In panel B,
news announcements are scheduled macroeconomic announcements at 08:30 in U.S. Bureau
of Labor Statistics Release Calendar13 and U.S. Bureau of Economic Analysis 2014 and 2015
News Release Schedule14. Quoted spread is wide at the beginning and at the end relative
to the rest of extended trading hours. Besides, there is a significant peak of quoted spread
around 08:30 when scheduled macroeconomic announcements are released. Quoted spread
increases by 60% around macroeconomic announcements on news dates while there is no
such peak on non-news dates. As there is no peak in trading volume or volatility around
08:30 (see Figure 3.1), the order processing costs and inventory holding costs for market
makers are not noticeably different around the macroeconomic news announcements. Thus,
the temporally increased bid-ask spread is probably a result of information asymmetry as some
investors may have better pricing skills for the news announcements. In panel C, the news is the
Federal Open Market Committee (FOMC) Minutes at 14:0015. In regular trading hours option
quoted spread is approximately L-shaped. Quoted spread is wider when the market opens
and decreases to a relatively stable level in the rest of regular hours. When there is an FOMC
Minutes announcement, quoted spread is twice wider than a regular level which is a similar
pattern as 08:30 macroeconomic announcements. At 10:00, which is also the time of some
macroeconomic news announcements, there is a small peak in quoted spread. The intraday
peaks of quoted spread suggest the importance of macroeconomic news announcements as
one determinant of market quality and imply the possible temporally increased information
asymmetry in the option market.

The documented patterns in this chapter bring a new phenomenon that there are peaks
of bid-ask spread around the macroeconomic announcements which is not documented in
previous papers (see Chan, Chung, and Johnson, 1995, Mishra and Daigler, 2014). One main
reason is that previous papers use average dollar quoted spread and we use intraday normalized
quoted spread. As presented in Table 3.4, dollar quoted spread has a large standard deviation
across different moneyness and time to maturities. However, intraday normalized spread
controls the cross-sectional differences and compares bid-ask spread for the same option
contract and therefore provides more accurate results in describing intraday dynamics.

-Figure 3.2 here-

3.4.3. Probability of Informed Trading

As discussed in Section 3.2, the theory predicts a high probability of informed trading and
high adverse selection costs in extended trading hours as a result of heterogeneous preferences

13https://www.bls.gov/schedule/2014/home.htm; https://www.bls.gov/schedule/2015/ho
me.htm

14https://www.bea.gov/news/archive?field_related_product_target_id=All&created_1=A
ll&title=

15https://www.federalreserve.gov/monetarypolicy/fomchistorical2014.htm;
https://www.federalreserve.gov/monetarypolicy/fomchistorical2015.htm
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of liquidity and informed traders. This part tries to explain the difference in market quality
between extended and regular trading hours using the Probability of Informed Trading (PIN)
model (Easley, Hvidkjaer, and O’ Hara, 2002). Because SPXW options are not frequently
traded in extended trading hours, it is not possible to extract adverse selection costs by spread
decomposition models directly. The estimated PIN is a proxy for adverse selection costs. A
high PIN may explain the wide quoted and effective spreads in the extended trading hours
option market, as liquidity providers require more compensation to trade against potential
informed traders.

Following the PIN model, buying a call option and selling a put option are both driven by
the ‘good-news’ in the market. Buyer-initiated call option trades and seller-initiated put option
trades are regarded as buy trades for the PIN model in this study. Conversely, selling a call
option and buying a put option are both driven by ‘bad-news’ in the market. Seller-initiated
call option trades and buyer-initiated put option trades are regarded as sell trades in the PIN
model. Trades are categorized into buy trades and sell trades in half-hour intervals for all
SPXW options.

In each half hour interval, PIN is estimated with the extended PIN model. Assuming a
Poisson arrival process, the likelihood function for each half hour is specified as:

L((B, S)|θ) = (1− α)e−εbT
(εbT )

B

B!
e−εsT

(εsT )
S

S!

+ αδe−εbT
(εbT )

B

B!
e−(µ+εs)T

((µ+ εs)T )
S

S!

+ α(1− δ)e−εsT
(εsT )

S

S!
e−(µ+εb)T

((µ+ εb)T )
B

B!

(3.1)

where B and S are total buy trades and sell trades during the period, α is the probability
of an information event, δ is the probability of a ‘bad-news’ day, εb is the arrival rate of
uninformed buy orders, εs is the arrival order of uninformed sell orders, and µ is the arrival
rate of informed orders, T is the length of the period, assuming that every trading day the
process is independent, the parameters are estimated by Maximum Likelihood Estimation
(MLE).

The probability of informed trading is the expected number of private information-based
transactions to the expected total number of trades:

PIN =
αµ

εb + εs + αµ
(3.2)

The PIN and parameters in the PIN model are estimated by pin_test function and confi-
dence intervals are estimated by pin_confint function in R package pinbasic (version 1.2.2)
respectively. Table 3.5 presents empirical estimations of the PIN from December 1, 2014 to
May 31, 2015. In Table 3.5 the last column shows the PIN with aggregated trades in extended
and regular trading hours as 19.66% and 11.19% respectively. We further use a non-parametric
bootstrap resampling to compare the PINs in ETH and RTH. Based on 10000 simulations
of bootstrap, the PIN in ETH is significantly higher than the PIN in RTH at 1% significance
level, which is consistent with the theoretical expectation that most liquidity traders stay in
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regular trading hours and some informed traders shift their trades from regular trading hours
to extended trading hours. Wide quoted and effective spreads in extended trading hours can
be explained by a much higher probability of informed trading. Besides, the PIN in half-hour
intervals shows the same conclusion that the PIN is significantly higher in extended trading
hours.

However, Gan, Wei, and Johnstone (2017) criticize that the PIN model only weakly fits
actual trade data, and suggest that using the PIN as an explanatory variable may result in
unreliable results. Duarte, Hu, and Young (2020) show that the PIN fails to match the changes
of noise trade. In this chapter, the PIN estimated in this section is not the sole explanatory
variable for the characteristics in extended trading hours. The rest of the chapter provides
other consistent evidence that the information asymmetry is higher in extended trading hours
in comparison to regular trading hours based on the intraday choices of liquidity and informed
traders.

-Table 3.5 here-

3.5. Market Quality around CBOE’s Introduction of Ex-
tended Trading Hours

The previous section presents an illiquid option market in extended trading hours that
demonstrates the difficulties of introducing extended trading hours to existing markets. It also
brings the question in market design whether it is necessary to have the extended trading hours
option market with low market quality. This section aims to test whether the introduction
of extended trading hours enhances market quality in regular trading hours as discussed in
Hypothesis 2. CBOE launched extended trading hours for SPXW and SPX options on March
9, 2015. There is no other market structure change around this event. Before the introduction
of extended trading hours in the option market, private information, such as expectations of
future volatility, in extended trading hours is aggregated until the opening of regular trading
hours. Informed traders have to wait until the opening of regular trading hours although they
may want to exploit the trading opportunities in extended trading hours. In regular trading
hours, information asymmetry and adverse selection costs may be high due to the accumulated
information. Liquidity providers require high compensation given the high level of information
asymmetry. Therefore, relatively high quoted and effective spreads are expected before the
introduction of extended trading hours. After the introduction of extended trading hours,
private information in extended trading hours can be immediately incorporated into the market.
Informed traders compete with each other and take an immediate transaction in extended
trading hours. Information asymmetry and adverse selection costs decrease as a result of
reduced informed trading in the following regular trading hours. Liquidity providers require
less compensation when information asymmetry is low, resulting in relatively low quoted and
effective spreads that are indications of enhanced market quality.
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3.5.1. Determinants of Bid-Ask Spread

To identify the impact of the introduction of extended trading hours on bid-ask spread,
variables with fixed effects have to be controlled first. Option price, trading volume, and time
to maturity are the three most relevant control variables in this study.

Mayhew (2002) asserts that option price, option trading volume, and the volatility of
the underlying stock are the most important control variables for bid-ask spread analysis.
Anand, Hua, and McCormick (2016) also use these control variables in their panel regression.
Moreover, option price is related to not only the dollar quoted spread but also the percentage
quoted spread.

The underlying assets of SPXW and SPY options have similar volatility as they are
proportional to the S&P 500 index level. Also, the daily differences in underlying volatility
can be captured by the date fixed effect. Therefore, underlying volatility is not incorporated in
our analysis.

Besides the variables described above, there is a maturity effect in implied volatility spread,
as discussed by Chong, Ding, and Tan (2003) and Hsieh and Jarrow (2019). As maturity nears,
the implied volatility spread increases. Anand and Weaver (2006) also use time to maturity as
a control variable in their regression for bid-ask spread. Therefore, we incorporate time to
maturity as the third control variable.

3.5.2. Bid-Ask Spread around the Introduction of Extended Trading
Hours

Previous literature uses matched samples (Mayhew, 2002), regressions (Anand and Weaver,
2006), and categorized difference-in-differences (Anand, Hua, and McCormick, 2016) to
study the impact of market structure changes on option market quality. Mayhew (2002) uses
a matched sample method to control variables affecting option market quality other than
multi-listing and Designated Primary Market Maker (DPM) structures. Option contracts
are matched by price, volume, and volatility for all stock options in CBOE. The differences
in paired option bid-ask spreads show the impact of market structure changes. Anand and
Weaver (2006) use regression to analyze the impact of the DPM system. They control for
the effects of maturity, moneyness, and option price with multiple-listed options. As CBOE
has introduced the DPM system whereas other exchanges have not, the interaction variable
between CBOE/non-CBOE and Before DPM/Post DPM presents the DPM system’s impact
on the option market. Anand, Hua, and McCormick (2016) categorize option contracts by
their prices and conduct a difference-in-differences analysis within each option price group.
They also apply panel regression with fixed entity effect and fixed date effect to confirm the
results from the difference-in-differences method.

Following Anand, Hua, and McCormick (2016), and using the introduction of the extended
trading hours option market as an event, we conduct a difference-in-differences analysis with
controlled variables between SPXW and SPY options to analyze the impact of extended
trading hours on the option market. SPY options cannot be traded in extended hours but are
affected by the same information as SPXW options. Moreover, the SPDR ETF price is 1/10th
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of the S&P 500 index level; hence, ten SPY option contracts are approximately the same
as one SPXW option contract plus the early exercise opportunity in American options. The
midquote and bid-ask spread of SPY options are multiplied by 10 to match the notional value
of SPXW options.

Following Anand, Hua, and McCormick (2016), we categorize option contracts by their
prices. Option midquote is the approximation for intraday updated option price. As bid-
ask spread is not linearly related to option price, the difference-in-differences regression is
conducted in each price category and specified as

Spreadi,t,m = β0 + β1TTMi,t,m + β2Midi,t,m + β3V olumei,t,m

+ β4Dt + β5Ds + β6(Dt ·Ds) + ε
(3.3)

where Spreadi,t,m is the average bid-ask spread (dollar quoted spread, proportional quoted
spread, dollar effective spread, and proportional effective spread are separately estimated)
of option contract i on day t in midquote category m; Dt is period dummy variable, which
equals 1 if after March 9, 2015, and 0 if before February 28, 2015; Ds is the sample dummy
variable, which equals 0 for SPY options, and 1 for SPXW options; TTM ,Mid,and V olume

are the control variables in this study; TTM is the logarithm of days to maturity, Mid is
the midquote for the corresponding bid-ask spread; and V olume is the logarithm of trading
volume, it is set to 0 if the trading volume is 0; β0 is the intercept; β1, β2, and β3 are the fixed
effects of the control variables; β4 is the fixed effect of time; β5 is the fixed effect of option
class; β6 is the impact of the introduction of extended trading hours on option market quality.

If the theory about intraday decisions of liquidity and informed traders is valid and con-
sequently the introduction of extended trading hours in the option market improves market
quality as discussed in Hypothesis 2, the bid-ask spread will be reduced in the SPXW option
market after the introduction of extended trading hours in comparison to the bid-ask spread
changes of SPY options. The null hypothesis for bid-ask spread is H0 : β6 = 0. If market
quality improves with extended trading hours, the null hypothesis will be rejected and β6

will be significantly negative. Significance tests use standard errors clustered on option class,
which is categorized by the underlying asset and date.

3.5.3. Empirical Results of Bid-Ask Spread

To explore the impact on bid-ask spread, this section uses five filters for sample data. First,
options with midquote less than $3 are excluded because SPXW options have a different
minimum tick size from SPY options below $3. The minimum price increments for SPXW
are $0.05 under $3 and $0.10 above $316. The minimum price increment for all SPY option
series is $0.0117. As ten SPY option contracts have approximately the same notional value
as one SPXW option contract, the minimum price increments are the same only for SPY
and SPXW options with prices above $3. Also, options with prices below $3 are far deep

16CBOE Regulatory Circular RG15-029
17CBOE Regulatory Circular RG10-051
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out-of-the-money options, which are not frequently traded. Second, options with midquote
greater than $100 are also excluded. In this sample, the average one SPXW at-the-money
option price is $41 and the average price of ten SPY at-the-money options is $53. Options
with prices greater than $100 are deep in-the-money options or long time-to-maturity options
that are not liquid in the option market. Third, options with time to maturity greater than
252 business days are excluded as long time to maturity options are not active. Fourth, only
at-the-money and out-of-the-money options are included in this analysis, call options with
moneyness greater than 0.995 and put options with moneyness smaller than 1.005 are included
in the analysis. Fifth, in the calculation of aggregate average effective spread in regular trading
hours, options with volume under five contracts in a day are excluded. Such inactive options
often have stale quotes that make the effective spread measure inaccurate.

Panels A, B, C, and D of Table 3.6 present the impact of CBOE’s introduction of extended
trading hours (the coefficient β6 of Dt · Ds in equation (3.3)) on dollar quoted spread ($),
proportional quoted spread (%), dollar effective spread ($), and proportional effective spread
(%) in regular trading hours. Panels A and B of Table 3.6 show the introduction of extended
trading hours reduces quoted spread by $0.15 or 0.92% at 1% significance. The $0.15 decrease
in dollar quoted spread is economically significant as the minimum tick size is $0.1 and the
average dollar quoted spread is $0.66 (see Table 3.4). The sample includes options with prices
from $3 to $100, 0.92% change in proportional quoted spread is also economically significant
for trading as the average percentage quoted spread is 7.07% (see Table 3.4). What is more,
the bid-ask spread analysis in different option price groups confirms the overall results. The
impact of the introduction of extended trading hours on dollar quoted spread increases with
option prices while the impact on proportional quoted spread is higher for low price options.

Panels C and D of Table 3.6 show that the introduction of extended trading hours reduces
effective spread by $0.06 or 0.47% at 1% significance. The decreases in effective spreads are
economically significant as the average dollar and percentage effective spreads are $0.17 and
8.69% respectively. As with quoted spread, the dollar impact increases with option prices and
the proportional impact is lower for options with high prices.

The adjusted R2 in effective spread analysis is much lower than that with quoted spread,
0.41 and 0.49 for dollar and percentage quoted spreads while 0.08 for dollar and percentage
effective spreads. First, the bid-ask spread analysis in this study only has two types of options,
SPXW and SPY. A successful control variable in previous research, underlying asset volatility,
is not able to contribute explanatory power among different S&P 500 based options. Second,
the calculation of volume-weighted average effective spread in this study may be still affected
by the low liquidity and stale quote. Although we require that the trading volume of one
option is at least five contracts in a day to filter outliers, however, some illiquid options are
still included in the study. Third, effective spread is affected by inside spread liquidity. Inside
spread liquidity, such as immediate-or-cancel limit order, resulting in a lower bid-ask spread
in comparison to quoted spread. Current literature has not fully researched the inside spread
liquidity which makes the control variable for quoted spread hard to explain the variations
of effective spread. Low adjusted R2 for effective spread suggests the importance of further
research on the inside spread liquidity.
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Overall, as the empirical results in Table 3.6 show, market quality in terms of bid-ask
spread is enhanced after the introduction of extended trading hours, providing direct evidence
for the hypothesis that the introduction of extended trading hours enhances the market quality
in regular trading hours and indirect evidence for the intraday decisions of liquidity and
informed traders. Quoted and effective spreads in both dollars and percentages decrease from
the pre-introduction period to the post-introduction period. The impact of the introduction
of extended trading hours on bid-ask spread is both statistically significant and economically
large. The null hypothesis that market quality is not enhanced with extended trading hours is,
thus, rejected. It shows the importance of introducing extended trading hours into financial
markets although market quality in extended trading hours is low. Market information can be
incorporated into the option market immediately in extended trading hours as some informed
traders move from regular trading hours to extended trading hours, information asymmetry is
lower after the introduction of extended trading hours in the option market. Transaction costs
are reduced as market makers require lower compensation for providing liquidity with lower
information asymmetry.

-Table 3.6 here-

3.5.4. Intraday Impact on Bid-Ask Spread

Figure 3.2 in section 3.4 shows that quoted spread presents a U-shaped pattern in regular
trading hours. To incorporate intraday seasonality of bid-ask spread, Table 3.7 applies the same
estimations of Table 3.6 into intraday analysis, showing the impact of introducing extended
trading hours (the coefficient β6 of Dt ·Ds in equation (3.3)) every half hour from 09:30 to
16:00.

The intraday estimations confirm extended trading hours consistently decrease quoted
spread at 1% significance level across different intervals of the day. The impact on effective
spread is especially high in the first half hour interval as a reduction of $0.14 in comparison
to an average reduction of $0.06 in regular trading hours which is consistent with the theory
that overnight accumulated information results in the highest information asymmetry at the
beginning of regular trading hours. Moreover, the price sub-samples of intraday estimations
basically support the conclusion that the introduction of extended trading hours enhances
market quality.

However, there are some exceptions to Hypothesis 2. First, some results with low option
prices in 09:30-10:00 interval are not significant. This is probably due to the high market
volatility and initiation of quoting from market makers when markets open in regular trading
hours. Second, in 14:00-14:30 interval the estimated impact from extended trading hours is
not significant. As section 3.4 shows, macroeconomic news has a significant impact on quoted
spread and FOMC announcements are released during 14:00 - 14:30. The exogenous shocks
from FOMC announcements decrease the significance of the test. Third, the high option price
sub-samples of effective spread analysis are not statistically significant or have contradicted
conclusions. Trading volume with high option prices is much lower. Grouping by both option
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price and time of the day results in an extreme small sample size which makes the effective
spread analysis with high option price less reliable.

-Table 3.7 here-

3.5.5. Robustness Check with Bid-Ask Spread Analysis

One of the most important assumptions in difference-in-differences analysis is the parallel
trend assumption. Under the assumption, before the event day, the treatment group and the
control group should have a parallel trend movement when fixed effects are controlled.

We examine the parallel trend assumption with a placebo test. The only difference between
the placebo test and the market quality analysis in Table 3.6 and 3.7 is the sample period. In the
placebo test, the Pre-event and Post-event are both before the introduction of extended trading
hours, March 9, 2015. Pre-event is from December 1, 2014 to January 14, 2015. Post-event is
from January 15, 2015 to February 28, 2015. Because the placebo test contains 6-week in
Pre/Post-event period rather than 3-month. Another 6-week impact is conducted in a similar
way as Table 3.6 with a 6-week sample.

Table 3.8 shows the coefficient β6 of Dt ·Ds in equation (3.3) with placebo and 6-week
tests. The placebo tests confirm there is no economically large or statistically significant
change before the introduction of extended trading hours in dollar and percentage quoted
spreads as the null hypothesis of β6 = 0 is not rejected. Dollar effective spread also follows the
parallel trend assumption except for the option price group from $50 to $100. Dollar effective
spread with option price higher than $50 are relatively less frequently traded considering the
average at-the-money option prices are $41 and $53 for SPXW and SPY options. Percentage
effective spread presents a statistically significant trend before the introduction of extended
trading hours. But the effect is smaller than 6-week test as -0.18% and -0.34% for placebo
and 6-week tests respectively. Overall, the 6-week tests confirm the conclusions with 3-month
sample periods in Table 3.6. Dollar and percentage quoted spreads decrease by $0.09 and
0.67% respectively in 6 weeks at 1% significance level. Dollar and percentage effective spreads
decrease by $0.06 at 10% significance level and 0.34% at 5% significance level respectively.
Market quality tests with option price sub-samples also support the conclusion that market
quality is improved after the introduction of extended trading hours except for the effective
spread sub-samples with option prices of $5 to $10 and $30 to $50 that have smaller sample
size because of the shorter sample period.

-Table 3.8 here-

3.6. Information Asymmetry around the Introduction of
Extended Trading Hours

Although the decreased bid-ask spread after the introduction of extended trading hours
is consistent with intraday intertemporal choices of liquidity and informed traders, other
explanations may be still possible, such as heterogeneous effects on SPXW and SPY options
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from the same exogenous change. This part directly examines the components of bid-ask
spread around the introduction of extended trading hours using spread decomposition models.
In the structure spread decomposition models, bid-ask spread is decomposed into asymmetric
information costs, inventory holding costs, and order processing costs. As extended trading
hours allow market information to be immediately incorporated into the market, asymmetric
information costs are expected to be lower in the regular trading hours while order processing
costs and inventory holding costs may remain unchanged.

3.6.1. Huang and Stoll (1997) Spread Decomposition Model

Quoted spread decomposition model (Huang and Stoll, 1997) decomposes quoted spread
into order processing, adverse selection, and inventory holding components. The change in
midquote reflects the private information and inventory holding costs from last trade with
non-surprise information deducted and the public information component. It is specified as

E(xt−1|xt−2) = (1− 2ϕ)xt−2

∆Mt = (α + β)
st−1

2
xt−1 − α(1− 2ϕ)

st−2

2
xt−2 + εt

(3.4)

where t denotes the trade time, xt is the trade direction, st is the dollar quoted spread, ∆Mt is
the midquote change from time t−1 to time t, α measures adverse selection costs, β measures
inventory holding costs, and ϕ is the probability that trade price reverses from time t− 1 to
time t, 1− α− β measures the order processing costs.

The parameters in model (3.4) are estimated by a generalized method of moments (GMM)
as GMM has very weak assumptions about the distribution and accounts for the conditional
heteroscedasticity. The moments conditions of model (3.4) for GMM estimation are specified
as

E

 (xt−1 − (1− 2ϕ)xt−2))xt−2

(∆Mt − (α− β) st−1

2
xt−1 − α(1− 2ϕ) st−2

2
xt−2)xt−1

(∆Mt − (α− β) st−1

2
xt−1 − α(1− 2ϕ) st−2

2
xt−2)xt−2

 = 0 (3.5)

where α and β are estimated with boundary from 0 to 1, ϕ is estimated with boundary from
0.5 to 1.

In applying the quoted spread decomposition model, we use two data filters. First, for a
reliable estimation of the model, the option contract needs to be traded frequently. Following
Madhavan, Richardson, and Roomans (1997), only options with at least 250 trades from 09:30
to 16:00 are considered in this study. Second, following the adjustment of bunching related
data (Huang and Stoll, 1997), sequential trades with the same trade price and same bid-ask
quote within 3 seconds are considered as one order.

3.6.2. Lin, Sanger, and Booth (1995) Spread Decomposition Model

This part briefly reviews the spread decomposition model developed by Lin, Sanger, and
Booth (1995). The effective spread can be decomposed into adverse selection and order
processing components. It assumes a buy order only occurs at ask quote and a sell order only
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occurs at bid quote. A sell order at time t indicates that the transaction price Pt equals bid
quote Bt. With the probability of order continuation δ, the expected transaction price Et(Pt+1)

at time t+ 1 is calculated from bid quote Bt+1 and ask quote At+1 as δBt+1 + (1− δ)At+1.
Therefore, the conditional profit for the liquidity supplier after a sell order is specified as

Et(Pt+1)− Pt = δBt+1 + (1− δ)At+1 −Bt (3.6)

where Pt is the trade price, At+1 and Bt+1 are the ask quote and bid quote respectively.
Besides, as midquote is the average of bid and ask quotes Mt = (At + Bt)/2, one half

of effective spread for a sell order is the difference between transaction price and midquote
zt = Pt −Mt. The quote revisions are assumed to be Bt+1 = Bt + λzt and At+1 = At + λzt

where λ is the proportion of spread due to adverse selection. The liquidity providers’ profit
(equation (3.6)) is represented by effective spread as

Et(Pt+1)− Pt = δBt+1 + (1− δ)At+1 −Bt

= λzt + (1− 2δ)[Mt −Bt] +Mt − Pt

= −(1− λ− θ)zt

(3.7)

where the persistence of order flow θ = 2δ − 1, the order processing costs γ = 1− λ− θ.
Since λ is the proportion of quote revision of effective spread and θ is the extent of order

persistence, together with equation (3.7), parameters in effective spread decomposition model
can be estimated with the regressions as follows:

Mt+1 −Mt = λzt + et+1

zt+1 = θzt + ηt+1

Pt+1 − Pt = −γzt + ut+1

(3.8)

where et+1, ηt+1, and ut+1 are uncorrelated, parameters λ, θ, γ are estimated by ordinary least
squares (OLS) with boundary from 0 to 1. We apply the same data filters for effective spread
decomposition model as specified in Huang and Stoll (1997) quoted spread decomposition
model.

3.6.3. Components of Bid-Ask Spread around the Introduction

Following the theory about the intertemporal choices of liquidity and informed traders,
the adverse selection costs will be reduced after the introduction of extended trading hours. In
the absence of extended trading hours, asymmetric information accumulates during extended
trading hours which results in high adverse selection costs in regular trading hours. With
extended trading hours, the option market can incorporate information immediately and
therefore reduce the information asymmetry in the following regular trading hours.

As with the analysis of bid-ask spread in section 3.5, a difference-in-differences regression
for the components of bid-ask spread with control variables as with equation (3.3) is conducted
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as

yi,t = β0 + β1TTMi,t + β2Midi,t + β3V olumei,t

+ β4Dt + β5Ds + β6(Dt ·Ds) + ε
(3.9)

where yi,t is α, β, 1 − α − β, ϕ from model (3.4) and λ, θ, γ from model (3.8), for each
difference-in-differences estimation respectively, of option contract i on day t, other variables
are the same as defined for equation (3.3). Significant tests of coefficients use clustered errors
on Date.

The components estimated from spread decomposition models are presented as percentages
of quoted and effective spreads. We also examine the components of spreads in dollars by
multiplying the components in percentages with the average quoted spread or effective spread
of the day respectively. Then, the difference-in-differences regression of equation (3.9) is
applied to yi,t in dollars.

As with bid-ask spread analysis in the previous section, if the theory of intraday decisions
of liquidity and informed traders is correct and the hypothesis that market quality is enhanced
with extended trading hours, information asymmetry will be reduced after the introduction of
extended trading hours. Therefore, the hypothesis expects that the estimated β6 in regression
(3.9) for adverse selection costs in percentages and dollars are significantly negative.

3.6.4. Empirical Results

The last column in Table 3.9 reports the coefficient β6 of Dt · Ds in equation (3.9),
showing economically large and statistically significant reduction in adverse selection costs
after the introduction of extended trading hours for both quoted and effective spreads. After
the introduction of extended trading hours, proportional adverse selection costs decrease
by 5.13% and 8.38% for quoted and effective spread respectively at 1% significance level.
Similarly, adverse selection costs in dollars decrease by 0.75¢ and 0.47¢ for quoted and
effective spread respectively at 5% significance level. Meanwhile, order processing costs
increase by 10.28% at 1% significance level and 4.27% at 5% significance level for quoted and
effective spread respectively. Order processing costs in dollars are not significantly different
around the introduction of extended trading hours.

Therefore, enhanced market quality is due to declined adverse selection costs. Both bid-ask
spread and information asymmetry confirm the hypothesis that market quality is enhanced
by incorporating extended trading hours, indicating the benefits of after-hours trading for the
core trading sessions.

However, the dollar changes in the components of bid-ask spread are much smaller than
the bid-ask spread changes estimated in the previous section. First, to have reliable estimations
from spread decomposition models, we only focus on the options with at least 250 trades per
day which are only liquid options. The sample in information asymmetry analysis is only a
portion of the sample in bid-ask spread analysis. Second, the BBO data only contains the best
bid and ask quotes in the limit order book while in markets there are inside spread liquidity,
e.g. immediate-or-cancel limit order may be executed inside bid-ask spread but this order will
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not enter the order book if it is not executed. The inside spread liquidity is not considered in
the spread decomposition models.

-Table 3.9 here-

3.7. Predictability and Price Informativeness

This section tests the price informativeness in the extended trading hours option market
and examines the Hypothesis 3 that the option prices in extended trading hours are informative
for the following regular trading hours. It presents that in the extreme illiquid condition, the
put-call parity implied index level and the option implied volatility still update efficiently and
predict the index opening level and realized volatility in the following regular trading hours
respectively.

3.7.1. Put-Call Parity Implied Index Level

The underlying asset of S&P 500 weekly options is the S&P 500 index which is not
available in extended trading hours. Traded S&P 500 derivatives in extended trading hours
include S&P 500 futures and S&P 500 Emini futures. However, the expiry dates of S&P 500
futures and S&P 500 E-mini futures are different from the expiry dates of S&P 500 weekly
options. The option implied index from put-call parity may provide independent information
about the S&P 500 index level.

Because there may be deviations from put-call parity (Cremers and Weinbaum, 2010) and
other market microstructure effects, intraday option implied index level is not necessarily the
same as the index levels in regular trading hours. Option implied index level at the close of
extended trading hours SETH,t, at the opening of regular trading hours SOpen,t, and at the end
of regular trading hours SClose,t on day t from put-call parity are specified as option implied
futures with the shortest time to maturity

Si,t = ct +Xe−rT − pt (3.10)

where ct and pt are call and put option last midquote at 09:15, 09:30, 16:15 on day t for
option implied index level SETH,t, SOpen,t, and SClose,t respectively, X is the strike price, r is
risk-free rate, T is the time to maturity. The average of put-call parity implied index levels
across different moneyness with the shortest time to maturity is used as the option implied
index level. Option implied index overnight return, extended trading hours return, opening
return are calculated as the log return of option implied index level respectively.

3.7.2. Option Implied Volatility and Realized Volatility

We follow Bakshi, Kapadia, and Madan (2003) model free implied volatility to extract
option implied volatility. Before applying model free implied volatility, option data is filtered
by no-arbitrage rule and minimum number of contracts rule. First, if call (put) options with
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higher (lower) strike prices have higher or the same prices for the same time to maturity, they
will be excluded from this study. Second, after no-arbitrage rule, an option expiry date with
no more than 10 option contracts is excluded. Then, the model free implied volatility with
discrete out-of-the-money strike prices is approximated as

M1 = erT − 1

M2 =
2

S2
0

[
∑
XPi

pi(XPi −XPi−1) +
∑
XCi

ci(XCi −XCi−1)]

IV = [erTM2 −M2
1 ]

1
2

(3.11)

where S0 is the corresponding option implied index level estimated from formula (3.10),
XPi and pi are out-of-the-money put option strike price and option price, XCi and ci are
out-of-the-money call option strike price and option price.

Daily realized volatility is estimated as

RVt =

√√√√(
M∑
i=1

r2t,i) (3.12)

where M is 390 for one-minute return and 78 for five-minute return, rt,i is the logarithm return
of the S&P 500 index last level in regular trading hours.

3.7.3. Overnight Changes in the Option Market

In the absence of extended trading hours, the opening process of the option market from
09:15 to 09:30 plays an important role in incorporating overnight information. Overnight
changes between the close in previous day and the open in regular trading hours in the option
market is fully determined by the opening process. However, extended trading hours provide
an opportunity to timely update overnight information. It is not clear whether the opening
process still contribute to price discovery with extended trading hours. We compare the
option implied index level and implied volatility at 16:15 previous day, 09:15, and 09:30. The
opening process is trivial if overnight changes from 16:15 previous day to 09:15 fully explain
extended trading hours changes from 16:15 previous day to 09:30. Table (3.10) describes the
summary statistics of overnight returns/changes from 16:15 previous day to 09:30, extended
trading hours returns/changes from 16:15 previous day to 09:15, opening returns/changes
from 09:15 to 09:30 for option implied index level and implied volatility respectively. The
average overnight option implied index return is economically and statistically close to zero.
Most overnight standard deviation is reflected in extended trading hours. The extended trading
hours determine the option implied index level at the opening. Similar to option implied index
level, option implied volatility mainly changes in extended trading hours. However, option
implied volatility presents a significant negative overnight change as -2.32% and the opening
process shows a non-trivial change in option implied volatility. The information incorporation
process may be limited as a result of illiquid option market in extended trading hours. Unlike
S&P 500 index level, the opening process of the open market still play an important role in
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determining the opening value of option prices.

-Table 3.10 here-

This part further quantifies how much overnight changes are explained by extended trading
hours. If the option market is efficient in extended trading hours, overnight information will
be timely updated in the option market. Extended trading hours changes will reflect most
overnight changes.

Option implied index level and implied volatility at the close of extended trading hours
is compared with option implied index level and implied volatility at the opening of regular
trading hours respectively as

ro,t = αr + (βr − 1)re,t + εr,t (3.13a)

∆IVo,t = αIV + (βIV − 1)∆IVe,t + εIV,t (3.13b)

where ro,t and re,t are the log returns of option implied index level from 16:15 on day t− 1

to 09:30 and 09:15 on day t respectively, IVo,t and IVe,t are the differences between option
implied volatility from 16:15 on day t− 1 to 09:30 and 09:15 on day t respectively, the null
hypothesis is that the extended trading hours option market incorporates the information about
the underlying index level and implied volatility, α and β are close to zero and insignificant,
the adjusted R2 is close to 100%.

Put-call parity implied index level and option implied volatility are estimated from March
9, 2015 to December 31, 2018. Table 3.11 shows the estimation of regression equation (3.13).
Panel A proves put-call parity implied S&P 500 index level estimated at 09:15 is consistent
with the opening level of the S&P 500 index at 09:30. Overnight information about the index
level is fully incorporated into the option market. As the adjusted R2 is 0.97, α and β are
statistically and economically zero, extended trading hours update all information related to
the S&P 500 index overnight and the opening process of regular trading hours from 09:15 to
09:30 provides little contribution to price discovery.

Panel B of Table 3.11 shows information about option implied volatility is not fully
incorporated into the option market during extended trading hours as the adjusted R2 is 0.88, α
and β are statistically different from zero. It is consistent with the overnight implied volatility
changes summary statistics. The opening process of option market is still important for the
opening level of S&P 500 index implied volatility which may be a result of the extremely
low liquidity in extended trading hours. The results support the hypothesis that option prices
timely incorporate market information in extended trading hours and are informative for the
following regular trading hours.

-Table 3.11 here-

3.7.4. Realized Volatility Forecasting

Previous part shows extended trading hours reflect most overnight changes of implied
volatility. This part explores whether the implied volatility at the end of extended trading
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hours provides additional information about the realized volatility in regular trading hours in
comparison to the implied volatility at the close of regular trading hours on the previous day.

We apply two widely realized volatility forecasting models, Heterogeneous Autoregressive
model (HAR) (Corsi, 2009) and Heterogeneous Autoregressive with Realized Quarticity model
(HARQ) (Bollerslev, Patton, and Quaedvlieg, 2016) models, and Implied Volatility for one-day
Realized Volatility (RV) forecasting. Besides, following the idea of Busch, Christensen, and
Nielsen (2011), implied volatility is incorporated into HAR and HARQ models to examine
whether implied volatility in extended trading hours has additional information for the realized
volatility in the following regular trading hours. Realized volatility forecasting models with
implied volatility at the close of previous trading day (IV RTH

t−1 ) are benchmarks while models
with implied volatility at the end of extended trading hours (IV ETH

t ) are the tested models.
The stardard HAR model is

RVt = α + γ1RVt−1 + γ2RVt−5,t−1 + γ3RVt−22,t−1 + εt (3.14)

and HAR models with implied volatility are specified as

RVt = α + γ1RVt−1 + γ2RVt−5,t−1 + γ3RVt−22,t−1 + β1IV
RTH
t−1 + εt (3.15a)

RVt = α + γ1RVt−1 + γ2RVt−5,t−1 + γ3RVt−22,t−1 + β1IV
ETH
t + εt (3.15b)

where RVt and RVt−1 are the realized volatilities on day t and t−1, RVt−5,t−1 and RVt−22,t−1

are average realized volatilities in previous 5 days and 22 days respectively, IV RTH
t−1 IV ETH

t

are the model free implied volatility from formula (3.11) at 16:15 on day t− 1 and at 09:15
on day t respectively.

The standard HARQ model is

RVt = α + γ1RVt−1 + γ2RVt−5,t−1 + γ3RVt−22,t−1 + γ4RVt−1RQ
1/2
t−1 + εt (3.16)

and HARQ models with implied volatility are specified as

RVt = α+γ1RVt−1+γ2RVt−5,t−1+γ3RVt−22,t−1+γ4RVt−1RQ
1/2
t−1+β1IV

RTH
t−1 +εt (3.17a)

RVt = α+γ1RVt−1+γ2RVt−5,t−1+γ3RVt−22,t−1+γ4RVt−1RQ
1/2
t−1+β1IV

ETH
t +εt (3.17b)

where RQt−1 ≡ M
3

∑M
i=1 r

4
t,i, and other variables are the same as formula 3.15.

Besides, we also compare the predictability of IV as a sole explanatory variable. Assuming
RV is linearly related to IV, implied volatility models are specified as

RVt = α + β1IV
RTH
t−1 + εt (3.18a)
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RVt = α + β1IV
ETH
t + εt (3.18b)

where all variables are the same as formula 3.15.
Following Patton (2011), Mean Squared Error (MSE) and QLIKE loss function (for-

mula 3.19) with Diebold-Mariano Test are used to evaluate out-of-sample realized volatility
forecasting performance.

QLIKE =
σ̂2

σ2
− log

σ̂2

σ2
− 1 (3.19)

where σ̂ is the market realized volatility, σ is the model forecasted realized volatility.
The null hypothesis for volatility forecasting is that the option market in extended trading

hours contains no additional information for the realized volatility in the following regular
trading hours. MSE and QLIKE of models with implied volatility in extended trading hours
are not significantly lower than those measures of models with implied volatility at previous
market close.

Figure 3.3 shows the time series of implied volatility at 09:15 and realized volatility
in the following regular trading hours. Panels A and B present that daily movements of
realized volatility based on one-minute and five-minute returns are similar. Extended trading
hours implied volatility is highly correlated with the following regular trading hours realized
volatility, especially from a low volatility regime to a high volatility regime, which is hardly
captured by historical realized volatility models.

-Figure 3.3 here-

Table 3.12 examines whether extended trading hours incorporates updated expectation
for realized volatility forecasting. After the incorporation of implied volatility at the end
of extended trading hours, in-sample and out-of-sample predictability of HAR and HARQ
models are improved. With implied volatility, the in-sample adjusted R2 increases from
75.44% to 82.15% for HAR model, from 75.41% to 82.16% for HARQ model, respectively.
The out-of-sample MSE decreases from 2.81×10−6 to 2.14×10−6 for HAR model, from
3.07×10−6 to 2.26×10−6 for HARQ model. The improvement of out-of-sample predictability
is significant at 1% significance level.

Implied volatility at the end of extended trading hours also provides additional information
in comparison to implied volatility at the end of previous trading day. The in-sample adjusted
R2 increases from 77.78% to 82.15% for HAR-IV model, from 77.79% to 82.16% for HARQ-
IV model, and from 67.3% to 72% for IV model respectively. The out-of-sample MSE
decreases from 2.74×10−6 to 2.14×10−6 for HAR-IV model, from 2.96×10−6 to 2.26×10−6

for HARQ-IV model, and from 4.12×10−6 to 2.9×10−6 for IV model respectively. QLIKE
decreases from 0.033 to 0.027 for HAR model, from 0.034 to 0.028 for HARQ model, and from
0.055 to 0.038 for IV model respectively. The improvement of out-of-sample predictability is
significant at 1% significance level for all models based on Diebold-Mariano test. Implied
volatility as the sole explanatory is less accurate as HAR-IV or HARQ-IV models.

-Table 3.12 here-
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Overall, the extended trading hours option market provides informative prices for the
following regular trading hours despite the extremely low trading activity in extended trading
hours, indicating a strong price formation function. The overnight index return and implied
volatility changes are mainly reflected in extended trading hours. Option implied volatility in
extended trading hours contains additional information for realized volatility forecasting in
the regular trading hours.

3.8. Conclusions

We examine extended trading hours in the option market by comparing extended trading
hours vs. regular trading hours, SPXW options vs. SPY options, and pre-introduction vs. post-
introduction. We present the intraday market quality, discusses the intertemporal decisions of
liquidity and informed traders, and shows the option implied information in the option market.

On one hand, despite potential impacts from global financial markets in extended trading
hours and intertemporal liquidity externality from regular trading hours, market quality and
trading activity are significantly lower in extended trading hours. The discretionary liquidity
traders are still concentrated in regular trading hours while a few informed traders prefer
immediate trading in extended trading hours. High trading risk suggests the difficulties for
policymakers and exchange owners to provide extended trading hours.

On the other hand, the introduction of extended trading hours in the option market improves
market quality in regular trading hours, according to the difference-in-differences analysis
between SPXW and SPY options around CBOE’s introduction of extended trading hours.
Market quality measures in terms of quoted and effective spreads show the enhanced market
quality across different option categories during regular trading hours as a result of a reduced
accumulation of asymmetric information overnight.

Extended trading hours also change the price formation process overnight and provide
informative option prices for the following regular trading hours. Although the liquidity
of the option market is extremely low, the option market successfully incorporates updated
information in extended trading hours. The opening process of regular trading hours plays
a relatively small part in determining the option pricing factors after introducing extended
trading hours, including the put-call parity implied index level and implied volatility. What
is more, implied volatility in extended trading hours contains incremental information in
comparison to models based on information in the previous day for one-day realized volatility
forecasting.
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Table 3.1: Comparison of S&P 500 options.

This table compares options directly or indirectly related to the S&P 500 index provided by CBOE. The information is extracted from the CBOE website.

S&P 500 Options S&P 500 PM-
settled Traditional

S&P 500 3rd
Fridays Options

S&P 500
weeklys options

S&P 500
Mini options

SPDR
ETF options

Option Root Ticker SPX SPXPM SPXW XSP SPY
Underlying S&P 500 index S&P 500 index S&P 500 index 0.1× S&P 500 index SPDR ETF

Settlement Type AM-settled PM-settled PM-settled PM-settled PM-settled

Settlement Date 3rd Fridays 3rd Fridays
Monday, Wednesday,

Friday weeklys.
End of the month

Fridays Fridays or
End of Quarters

Settlement Type Cash Cash Cash Cash Physical ETF
Exercise Style European European European European American

Extended Hours Trading Yes Yes Yes No No

Note
SPXPM ticker

merged to SPXW
on May 1st, 2017

SPX Monday Weeklys
- Launched August

15th, 2016
SPX Wednesday Weeklys

- Launched February
23rd, 2016
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Table 3.2: Market structure changes of S&P 500 options.
This table shows the market structure changes of S&P 500 weeklys and S&P 500 ETF options from 2014 to 2015.

Effective Date Regulatory Circular Applicable on SPXW/SPY Content
January 30, 2014 RG14-010 SPXW · Expansion of Number of Expirations
February 1, 2014 RG13-158 SPXW · Changes to the Fees Schedule for CBOE

September 5, 2014 RG14-130 SPY · Amendment to Increase $1 Strikes
November 1, 2014 RG14-125 SPXW · Implementation of SPX Combo Order Indicator
November 14, 2014 RG14-158 SPXW/SPY · Bid-Ask Differentials and Minimum Quote Size
December 1, 2014 RG14-170 SPXW · Changes to the Fees Schedule for CBOE
January 26, 2015 RG15-006 SPXW/SPY · New Quote Risk Monitor (QRM) Features
October 9, 2015 RG15-142 SPY/SPXW · Multi-Class Broad-Based Index Spread Orders

From September 27, 2012
to July 12, 2015

RG12-132,
RG13-148, RG15-009 SPY · A pilot program that eliminates position

and exercise limits for physically-settled options
November 2, 2015 RG15-154 SPXW · Changes to the Fees Schedule for CBOE
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Table 3.3: Summary statistics of trading activities in extended and regular trading hours.

This table shows the averages and standard deviations of daily trading volume18, trade size,

number of trade, and frequency of quote changes per contract of SPXW options. S&P 500

index volatility is proxied by realized volatility of S&P 500 E-mini futures. The last column

shows the average differences between extended and regular trading hours with the two-sample

t-test. The sample period is from December 1, 2014 to May 31, 2015. ***, **, and * indicate

statistical significance at 1%, 5%, and 10% levels, respectively.
Extended Hours Regular Hours DiffMean Std. Dev. Mean Std. Dev.

Aggregate Volume 227 520 377523 140538 -377296***
ATM Volume 182 421 241676 92790 -241493***

Near OTM Volume 42 175 99709 47528 -99667***
Deep OTM Volume 2 15 35446 27904 -35444***
Near ITM Volume 0 1 437 539 -437***
Deep ITM Volume 1 6 307 1691 -306*

Trade Size 11 56 27 132 -16***
Number of Trades 43 37 13987 5006 -13945***

Number of Quote Changes 248 473 821 623 -574***
Realized Volatility 6.64% 2.80% 9.97% 3.53% -3.33%***

18ATM options have moneyness from 0.95 to 1.05. Near ITM (OTM) options are call (put) options with
moneyness from 0.85 to 0.95 and put (call) options with moneyness from 1.05 to 1.15. Deep ITM (OTM) options
are call (put) options with moneyness smaller than 0.85 and put (call) options with moneyness greater than 1.15.
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Table 3.4: Summary statistics of trading costs in extended and regular trading hours.

This table compares the averages and standard deviations of SPXW option trading costs. The

last column shows the average differences between extended and regular trading hours with the

two-sample t-test. Quoted spread excludes in-the-money options that are call (put) options with

moneyness smaller (greater) than 0.95 (1.05). Effective spread uses all traded option contracts.

Dollar quoted/effected spread is expressed in dollars. Proportional quoted/effected spread and

normalized quoted/effective spread are expressed in percentages. The sample period is from

December 1, 2014 to May 31, 2015. ***, **, and * indicate statistical significance at 1%, 5%,

and 10% levels, respectively.
Extended Hours Regular Hours DiffMean Std. Dev. Mean Std. Dev.

Dollar Quoted Spread ($) 2.03 2.44 1.01 0.98 1.02***
Proportional Quoted Spread (%) 18.00 22.73 12.03 15.93 5.97***
Normalized Qutoed Spread (%) 166.12 109.74 93.81 15.42 72.31***

Nobs (per day) 2440 2454
Dollar Effective Spread ($) 1.4 18.7 0.3 3.05 1.1**

Proportional Effective Spread (%) 18.43 36.65 15.20 37.52 3.23***
Normalized Effective Spread (%) 217.35 454.65 99.92 3.46 117.43***

Nobs (per day) 24 863
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Table 3.5: The probability of informed trading (PIN).

This table shows the PIN (Easley, Hvidkjaer, and O’ Hara, 2002) of SPXW options. The PIN is estimated in half-hour intervals from 03:00 to 16:00. The last

column shows the PIN estimated with aggregate trades in extended and regular trading hours. 95% confidence intervals are simulated with function pin_confint

in R pinbasic package. Values are expressed in percentages. The sample period is from December 1, 2014 to May 31, 2015.
PIN (%) in extended trading hours

03:30 04:00 04:30 05:00 05:30 06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:3019 Extended Hours
PIN 40.77 47.38 38.59 33.1 50.5 42.03 59.73 47.96 39.96 29.56 48.76 39.67 55.19 19.66
2.5% 29.70 27.14 12.60 0.00 26.89 16.10 38.62 29.20 19.67 12.33 29.92 21.36 41.69 10.66
97.5% 50.02 62.61 57.89 67.84 66.16 76.99 72.93 70.82 59.89 49.70 66.13 53.38 66.44 27.93
PIN (%) in regular trading hours

10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 Regular Hours
PIN 10.3 13.23 11.42 10.45 16.62 12.01 15.15 16.84 12.55 17.21 14.04 11.5 13.67 11.19
2.5% 7.92 10.76 8.47 7.63 13.25 8.51 11.66 13.74 9.09 13.75 10.79 8.32 10.41 9.01
97.5% 12.66 15.61 14.32 13.31 19.90 15.41 18.48 19.80 16.13 20.48 17.15 14.64 16.70 13.24

19In 09:00 to 09:30 interval, the trading period is from 09:00 to 09:15.
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Table 3.6: Impact of CBOE’s introduction of extended trading hours in the option market on bid-ask spread.

This table reports the results of the difference-in-differences analysis (see equation 3.3) about the impact of CBOE’s introduction of extended trading hours

estimated by the coefficient β6 of Dt ·Ds on dollar quoted spread ($), proportional quoted spread (%), dollar effective spread ($), and proportional effective

spread (%) respectively. Standard errors are in parentheses. The treatment group is SPXW options; the control group is SPY options. The pre-introduction

sample period is three months before the introduction of extended trading hours, from December 1, 2014 to February 28, 2015. The post-introduction sample

period is three months after the introduction of extended trading hours, from March 9, 2015 to May 31, 2015. The whole sample is categorized by option prices.

Significance tests use standard errors clustered on option class and date. Coefficient β6 of Dt ·Ds in panels A and C are expressed in U.S. dollars. Coefficient β6

of Dt ·Ds in panels B and D are expressed in percentages. ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, respectively.
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Overall 3<Price≤5 5<Price≤10 10<Price≤30 30<Price≤50 50<Price≤100
Panel A: Quoted spread($)

Dt ·Ds -0.15*** -0.04*** -0.06*** -0.17*** -0.25*** -0.37***
(0.02) (0.01) (0.01) (0.03) (0.03) (0.05)

N 217417 31513 45519 80214 34959 25212
Adjusted R2 0.41 0.56 0.58 0.22 0.40 0.35

Panel B: Percentage quoted spread (%)
Dt ·Ds -0.92*** -0.82*** -0.85*** -0.92*** -0.64*** -0.57***

(0.16) (0.29) (0.2) (0.14) (0.08) (0.08)
N 217417 31513 45519 80214 34959 25212

Adjusted R2 0.49 0.57 0.59 0.36 0.41 0.36
Panel C: Effective spread($)

Dt ·Ds -0.06*** -0.04** -0.02** -0.09*** -0.07*** -0.12***
(0.02) (0.02) (0.01) (0.02) (0.02) (0.02)

N 80306 11189 17992 33014 11401 6710
Adjusted R2 0.08 0.01 0.03 0.06 0.03 0.04

Panel D: Percentage effective spread(%)
Dt ·Ds -0.47*** -0.56*** -0.33*** -0.53*** -0.20*** -0.25***

(0.09) (0.14) (0.12) (0.12) (0.06) (0.03)
N 80306 11189 17992 33014 11401 6710

Adjusted R2 0.08 0.04 0.04 0.05 0.04 0.04
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Table 3.7: Intraday impact of CBOE’s introduction of extended trading hours in the option market on bid-ask spread.

This table reports the results of the difference-in-differences analysis (see equation 3.3) about the impact of CBOE’s introduction of extended trading hours

estimated by the coefficient β6 of Dt ·Ds on dollar quoted spread ($), proportional quoted spread (%), dollar effective spread ($), and proportional effective

spread (%) respectively in 30-minute intervals. The treatment group is SPXW options; the control group is SPY options. The pre-introduction sample period is

three months before the introduction of extended trading hours, from December 1, 2014 to February 28, 2015. The post-introduction sample period is three

months after the introduction of extended trading hours, from March 9, 2015 to May 31, 2015. The whole sample is categorized by option prices and 30-minute

intervals. Significance tests use standard errors clustered on option class and date. Values in panel A and C are expressed in U.S. dollars. Values in panel B and D

are expressed in percentages. ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, respectively.
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Panel A: Quoted spreads ($)
10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

Overall -0.13 -0.16 -0.15 -0.16 -0.14 -0.14 -0.13 -0.13 -0.12 -0.17 -0.18 -0.14 -0.14
*** *** *** *** *** *** *** *** *** *** *** ***

3<Price≤5 -0.02 -0.04 -0.04 -0.05 -0.04 -0.04 -0.03 -0.03 -0.06 -0.04 -0.05 -0.04 -0.04
*** *** *** *** *** *** ** * * ** *** ***

5<Price≤10 -0.03 -0.07 -0.06 -0.08 -0.07 -0.07 -0.06 -0.06 -0.09 -0.09 -0.09 -0.07 -0.08
*** *** *** *** *** *** *** *** *** *** *** ***

10<Price≤30 -0.12 -0.15 -0.14 -0.16 -0.15 -0.14 -0.12 -0.13 -0.11 -0.22 -0.17 -0.14 -0.5
** *** *** *** *** *** *** *** ** * *** *** ***

30<Price≤50 -0.27 -0.28 -0.28 -0.26 -0.24 -0.23 -0.22 -0.23 -0.21 -0.29 -0.30 -0.25 -0.24
*** *** *** *** *** *** *** *** *** * *** *** ***

50<Price≤100 -0.42 -0.45 -0.45 -0.40 -0.37 -0.36 -0.36 -0.35 -0.31 -0.29 -0.43 -0.35 -0.331
*** *** *** *** *** *** *** *** *** *** *** ***

Panel B: Percentage quoted spreads (%)
10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

Overall -0.63 -0.98 -0.94 -1.01 -0.93 -0.90 -0.78 -0.80 -1.01 -0.98 -1.08 -0.84 -0.93
*** *** *** *** *** *** *** *** *** *** *** *** ***

3<Price≤5 -0.40 -1.04 -1.04 -1.12 -0.98 -1.02 -0.73 -0.67 -1.42 -0.79 -1.23 -0.93 -1.11
*** *** *** *** *** *** ** * ** *** ***

5<Price≤10 -0.29 -0.92 -0.91 -1.16 -0.99 -0.96 -0.83 -0.84 -1.23 -1.19 -1.20 -0.91 -1.06
*** *** *** *** *** *** *** *** *** *** *** ***

10<Price≤30 -0.59 -0.80 -0.76 -0.91 -0.82 -0.79 -0.68 -0.73 -0.59 -1.12 -0.95 -0.74 -0.82
** *** *** *** *** *** *** *** *** ** *** *** ***

30<Price≤50 -0.71 -0.74 -0.74 -0.68 -0.62 -0.60 -0.56 -0.58 -0.52 -0.74 -0.78 -0.65 -0.61
*** *** *** *** *** *** *** *** *** * *** *** ***

50<Price≤100 -0.62 -0.68 -0.68 -0.62 -0.57 -0.55 -0.56 -0.54 -0.48 -0.46 -0.67 -0.54 -0.51
*** *** *** *** *** *** *** *** *** *** *** ***
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Panel C: Effective spreads ($)
10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

Overall -0.14 -0.05 -0.04 -0.04 -0.03 -0.03 -0.03 -0.04 -0.04 -0.08 -0.04 -0.04 -0.05
** *** *** *** *** *** *** *** *** *** *** *** ***

3<Price≤5 -0.01 -0.03 -0.03 -0.02 -0.02 -0.02 -0.03 -0.02 -0.04 -0.00 -0.02 -0.02 -0.02
*** *** *** *** ** *** *** *** *** *** ***

5<Price≤10 -0.01 -0.03 -0.02 -0.03 -0.03 0.00 -0.02 -0.04 -0.03 -0.04 -0.03 -0.02 -0.03
*** *** *** *** ** *** *** *** ** ***

10<Price≤30 -0.30 -0.07 -0.04 -0.04 -0.04 -0.04 -0.03 -0.06 -0.03 -0.12 -0.04 -0.05 -0.06
* *** *** *** *** *** *** *** *** *** *** *** ***

30<Price≤50 -0.05 -0.03 -0.06 -0.07 -0.05 -0.03 -0.02 -0.03 -0.09 -0.09 -0.09 0 -0.03
* ** *** ** *** ***

50<Price≤100 -0.07 -0.02 -0.20 -0.06 0.24 0.17 0.08 0.02 0.03 -0.12 0.09 -0.11 -0.13
*** *** **

Panel D: Percentage effective spreads (%)
10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

Overall -0.27 -0.45 -0.34 -0.3 -0.35 -0.15 -0.28 -0.45 -0.37 -0.27 -0.34 -0.33 -0.37
*** *** *** *** *** * *** *** *** *** *** ***

3<Price≤5 -0.34 -0.72 -0.79 -0.54 -0.57 -0.41 -0.64 -0.58 -0.92 0.72 -0.58 -0.60 -0.58
* *** *** *** *** *** *** *** *** *** *** *** ***

5<Price≤10 -0.13 -0.41 -0.31 -0.37 -0.47 0.00 -0.20 -0.62 -0.43 -0.40 -0.41 -0.25 -0.41
*** *** *** *** *** *** *** *** ***

10<Price≤30 -0.33 -0.43 -0.26 -0.24 -0.26 -0.20 -0.18 -0.31 -0.16 -0.58 -0.23 -0.27 -0.29
*** *** *** *** *** ** *** *** ** *** *** ***

30<Price≤50 -0.12 -0.13 -0.17 -0.19 -0.12 -0.09 -0.05 -0.11 -0.22 -0.15 -0.27 0.01 -0.11
* * ** *** *** *** *** *** *** *** ***

50<Price≤100 -0.13 -0.02 -0.33 -0.10 0.33 0.20 0.14 0.01 -0.02 -0.26 0.13 -0.21 -0.21
*** ** * *** *** *** *** *** ***
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Table 3.8: Robustness check of the impact of CBOE’s introduction of extended trading hours in the option market on bid-ask spread.

This table reports the results of the difference-in-differences analysis (see equation 3.3) about the impact of CBOE’s introduction of extended trading hours

estimated by the coefficient β6 of Dt ·Ds on dollar quoted spread ($), proportional quoted spread (%), dollar effective spread ($), and proportional effective

spread (%) respectively. Standard errors are in parentheses. The treatment group is SPXW options; the control group is SPY options. In Panel A of the placebo

test, the pre-introduction sample period is from December 1, 2014 to January 14, 2015. The post-introduction sample period is from January 15, 2015 to February

28, 2015. In Panel B of 6-week analysis, the pre-introduction sample period is from January 15, 2015 to February 28, 2015. The post-introduction sample period

is from March 9, 2015 to April 17, 2015. The whole sample is categorized by option prices. Significance tests use standard errors clustered on option class and

date. Values with quoted spread ($) and effective spread ($) are expressed in U.S. dollars. Values with percentage quoted spread (%) and percentage effective

spread (%) are expressed in percentages. ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, respectively.

105



Panel A: Placebo Tests
Overall 3<Price≤5 5<Price≤10 10<Price≤30 30<Price≤50 50<Price≤100

Quoted Spread ($) 0.01 0.02 0.02 0.03 0.02 -0.06
(0.03) (0.02) (0.02) (0.03) (0.04) (0.07)

Percentage Quoted Spread (%) -0.08 0.61 0.2 0.14 0.04 -0.05
(0.24) (0.47) (0.29) (0.17) (0.11) (0.1)

Effective Spread ($) -0.01 -0.01 -0.02 -0.02 -0.03 -0.01***
(0.01) (0.01) (0.01) (0.01) (0.03) (0)+20

Percentage Effective Spread (%) -0.18** -0.08 -0.29* -0.23*** -0.08 -0.03***
(0.09) (0.18) (0.15) (0.08) (0.08) (0)+

Panel B: 6-week impact of the introduction
Quoted Spread ($) -0.09*** -0.05*** -0.04** -0.17*** -0.16*** -0.12**

(0.03) (0.01) (0.02) (0.06) (0.03) (0.06)
Percentage Quoted Spread (%) -0.67*** -1.10*** -0.51* -0.85*** -0.41*** -0.23**

(0.17) (0.35) (0.26) (0.23) (0.08) (0.09)
Effective Spread ($) -0.06* -0.05 -0.01 -0.08*** -0.05 -0.05***

(0.03) (0.03) (0.02) (0.03) (0.04) (0)
Percentage Effective Spread (%) -0.34** -0.49* -0.16 -0.44** -0.15 -0.13***

(0.16) (0.28) (0.2) (0.19) (0.12) (0.02)

20+ denotes the adjustment by Cameron (n.d.) that set negative variance as zero in two-way clustered errors
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Table 3.9: The components of bid-ask spread around the introduction of extended trading hours.

This table reports the components of quoted and effective spreads estimated by the models of Huang and Stoll (1997) and Lin et al. (1995), respectively. Quoted

spread is decomposed into adverse selection costs (α), inventory holding costs (β), and order processing costs (1−α− β). ϕ is the probability that trade direction

reverses. Effective spread is decomposed into adverse selection costs (λ) and order processing costs (γ). θ is the persistence of order flow. Column Diff-in-Diffs

shows the impact of the introduction of extended trading hours on the components of spreads by difference-in-differences analysis, the coefficient β6 of Dt ·Ds

in equation (3.9). The treatment group is SPXW options; the control group is SPY options. The pre-introduction (“Pre”) sample is defined as three months

before the introduction of extended trading hours from December 1, 2014 to February 28. The post-introduction (“Post”) sample is defined as three months after

the introduction of extended trading hours from March 9, 2015 to May 31, 2015. All options with over 250 trades during regular trading hours in a day are

considered. Significant tests of coefficients in difference-in-differences use clustered errors on Date. Columns Pre and Post show the average of each component.

Column Difference shows the results of two-sample t-test comparing the averages of Pre sample and Post sample. ***, **, and * indicate statistical significance at

1%, 5%, and 10% levels, respectively.
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SPXW Options SPY Options Diff-in-diffsComponents Pre Post Difference Pre Post Difference
Panel A: The decomposition of quoted spread

α
¢ 3.62 2.37 -1.25*** 4.43 4.31 -0.12 -0.75*
% 10.35 7.63 -2.72*** 19.2 21.39 2.2*** -5.13***

β
¢ 3.42 2.19 -1.23** 4.46 4.38 -0.08 -0.69*
% 10.1 7.75 -2.35** 18.91 21.52 2.61*** -5.15***

1− α− β
¢ 26.13 20.51 -5.63*** 15.41 12.32 -3.09*** -0.43
% 79.55 84.61 5.07*** 61.89 57.08 -4.81*** 10.28***

ϕ % 50.12 50.16 0.04 50.11 50.12 0.01 0.01
Panel B: The decomposition of effective spread

λ
¢ 2.47 1.74 -0.73*** 3.04 3.14 0.1 -0.47**
% 33.67 28.99 -4.68** 36.29 40.5 4.21*** -8.38***

γ
¢ 3.36 2.45 -0.91*** 3.81 3.39 -0.42*** 0.37
% 52.43 55.14 2.71 48.24 45.93 -2.3*** 4.27**

θ % 14.6 16.7 2.1* 16.23 14.2 -2.03*** 4.37***
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Table 3.10: Summary Statistics of overnight changes of S&P 500 implied index level and

volatility.

Column Mean is tested by one sample t-test with a null hypothesis as mean zero. ***, **, and

* indicate statistical significance at 1%, 5%, and 10% levels, respectively. The sample period

is from March 9, 2015 to December 31, 2018.
SPXW Mean (%) Std (%) Skewness Kurtosis Sample Size

Implied Index
Return

Overnight 0.01 0.52 -0.55 9.26
ETH 0.01 0.51 -0.61 9.26 953

Opening 0.01* 0.09 -0.01 9.68

Implied Volatility
Change

Overnight -2.32*** 3.0 -1.73 13.18
ETH -1.9*** 3.11 -0.6 16.02 953

Opening -0.41*** 1.08 -7.25 77.45
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Table 3.11: Overnight option implied index level and volatility.

This table presents the results of regression analysis equations 3.13a and 3.13b, examining

the relationship between changes in extended trading hours and overnight changes of implied

index levels and volatility. The sample period is from March 9, 2015 to December 31, 2018.
Coefficient Std t p

Panel A: Option Implied Index Level
α 5.34E-05 2.86E-05 1.87 0.06
β -1.23E-03 5.63E-03 -0.22 0.83

Adjusted R2 0.97
Panel B: Option Implied Volatility

α -5.95E-03 3.94E-04 -15.11 0
β -9.59E-02 1.08E-02 -8.88 0

Adjusted R2 0.88
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Table 3.12: Realized volatility forecasting with implied volatility.

This table compares one-day realized volatility forecasting models with implied volatilities at the end of previous trading day (IVRTH
t-1 ) and at the end extended

trading hours (IVETH
t ). Realized volatility is calculated with one-minute log returns. Models are estimated by OLS. Standard errors are in parentheses. Adj. R2 is

the adjusted R2 for the in-sample regression. MSE and QLIKE are measures for out-of-sample prediction accuracy with 252-day rolling window. Significance

tests for MSE and QLIKE use Diebold-Mariano Test with benchmarks as the standard HAR and HARQ models in Panels A and B respectively. In Panel C, the

bench mark is implied volatility at the end of previous trading day (IVRTH
t-1 ). ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, respectively.

Model Intercept
(×10−4)

RVt−22,t−1

( ×10−1)
RVt−5,t−1

( ×10−1)
RVt−1

( ×10−1) RQ
1/2
t−1 ·RVt−1

IV ETH
t

( ×10−1)
IV RTH

t−1

( ×10−1)
Adj. R2

(%)
MSE

( ×10−6)
QLIKE

( ×10−1)
Panel A: HAR Model

HAR 2.72 -0.63 8.14 2.01 75.44 2.81 0.31
(1.34) (0.40) (0.54) (0.39)

HAR-IVRTH
t-1 -2.61 -0.51 6.68 0.51 2.44 77.78 2.74 0.33

(1.38) (0.38) (0.53) (0.4) (0.25)
HAR-IVETH

t -2.47 -0.93 5.56 0.86 3.71 82.15 2.14*** 0.27***
(1.17) (0.34) (0.48) (0.34) (0.2)

Panel B: HARQ Model
HARQ 2.70 -0.64 8.12 2.05 -6.98 75.41 3.07 0.33

(1.36) (0.41) (0.55) (0.49) (59.52)
HARQ-IVRTH

t-1 -2.98 -0.6 6.51 0.82 -68.39 2.48 77.79 2.96** 0.34
(1.41) (0.39) (0.55) (0.48) (56.89) (0.25)

HARQ-IVETH
t -2.75 -1 5.42 1.14 -58.75 3.72 82.16 2.26*** 0.28***

(1.19) (0.35) (0.49) (0.42) (50.77) (0.2)
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Model Intercept
(×10−4)

RVt−22,t−1

( ×10−1)
RVt−5,t−1

( ×10−1)
RVt−1

( ×10−1) RQ
1/2
t−1 ·RVt−1

IV ETH
t

( ×10−1)
IV RTH

t−1

( ×10−1)
Adj. R2

(%)
MSE

( ×10−6)
QLIKE

( ×10−1)
Panel C: IV Model

IVRTH
t-1 -1.42 6.53 67.3 4.12 0.55

(1.39) (0.15)
IVETH

t 1.65 7.19 72 2.9*** 0.38***
(1.19) (0.15)
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Figure 3.1: Trading volume, realized volatility, and the frequency of quote changes in half-hour

intervals.

Panel A and B show the averages of aggregate trading volume of all SPXW options, the

frequency of SPXW quote changes, realized volatility of S&P 500 E-mini futures in half-hour

intervals. The sample period is from December 1, 2014 to May 31, 2015.
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Figure 3.2: Intraday normalized quoted spread.

This figure shows the intraday average normalized quoted spread pattern in five-minute intervals

for SPXW options. In-the-money options are excluded. In panel B, news (non-news) dates

are dates with (without) macroeconomic news announcements at 08:30. In panel C, news

(non-news) dates are dates with (without) FOMC announcements after 14:00. The sample

period is from December 1, 2014 to May 31, 2015.
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Panel B: Normalized quoted spread in extended trading hours
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Figure 3.3: Daily dynamics of realized volatility and implied volatility.

Panel A and B plot the realized volatility estimated from one-minute and five-minute returns

respectively. Implied volatility is estimated by model free volatility (Bakshi, Kapadia, and

Madan, 2003) with the last midquote at 09:15. The sample period is from March 9, 2015 to

December 31, 2018.
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Chapter 4

The Ross Recovery Theorem and the Term
Structure of Interest Rates
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4.1. Introduction

Computing the physical probability distribution of future asset prices is important for all
aspects of finance. Estimation methods of risk-neutral probability distribution have already
been well developed (see Jackwerth, 2004 and Figlewski, 2018 for an overview). Empirical
analysis shows the risk-neutral probability distribution contains important market information
(Figlewski, 2018). However, risk-neutral probabilities are adjusted by market investors’ risk
preferences. It is still difficult to recover the physical probabilities from the risk-neutral
probabilities without specifying a representative agent’s utility function. Ross (2015) tries to
solve the problem and proposes a theorem to recover the ‘physical’1 probability distribution
and the pricing kernel at the same time with just a snapshot of option prices.

A list of literature has been developed around Ross recovery. First, the Ross recovery theo-
rem is limited by discrete and bounded states. Dillschneider and Maurer (2019) and Golec, Xu,
and Yao (2022) extend the original discrete Ross recovery to continuous states. Walden (2017)
extends Ross recovery with unbounded diffusion processes. Second, empirical applications try
to identify the information in Ross recovered probabilities but with contradicted conclusions.
On one hand, Audrino, Huitema, and Ludwig (2021) show Ross recovered moments yield
additional predictive information to risk-neutral moments. And Ross recovered probabilities
can be distinctly different from risk-neutral probabilities. On the other hand, extensions of
Ross recovery, Ross stable (Jackwerth and Menner, 2020) and generalized recovery (Jensen,
Lando, and Pedersen, 2019)2 yield a relatively stable pricing kernel, indicating only a small
difference between the risk-neutral measure and the Ross recovery measure. They present that
Ross recovered probability distributions fail to predict future returns or realized volatility. In
addition, based on different estimation approaches to Ross recovery, Jackwerth and Menner
(2020) present completely different recovered probabilities from the same spot state prices. A
reliable and consistent Ross recovery estimation process is needed in empirical studies. Third,
some literature examines the explicit and implicit assumptions in Ross recovery. Theoretically,
Borovička, Hansen, and Scheinkman (2016) argue that instead of recovering physical probabil-
ities, Ross recovery implicitly assumes the martingale component of stochastic discount factors
as identical to unity and recovers long-term risk-neutral probabilities. Empirical evidence
also shows that the implicit assumption of the martingale component in Ross recovery is not
correct for recovering physical probabilities (Bakshi, Chabi-Yo, and Gao, 2018). Qin, Linetsky,
and Nie (2018) further show that the bond market evidence is against one of Ross recovery
assumptions that the transition is independent over time.

Although Ross recovered probabilities may be not physical probabilities, it is still unclear
whether Ross recovered probabilities provide additional information in comparison to risk-
neutral probabilities. Existing literature provides no explanation why different approaches to
Ross recovery yield substantially different recovered probabilities while the assumptions are

1We use ‘physical’ with apostrophes to indicate that Ross (2015) recovered probabilities may be different from
the true physical probabilities as Bakshi, Chabi-Yo, and Gao (2018) and Borovička, Hansen, and Scheinkman
(2016) argue.

2We use generalized recovery by Jensen, Lando, and Pedersen (2019) and Ross Stable by Jackwerth and
Menner (2020) interchangeably as they independently propose this recovery estimation.
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the same. Martin and Ross (2019) theoretically present an important relationship between
Ross recovery and the term structure of interest rates. This chapter contributes to the literature
of Ross recovery by proposing an implied condition of interest rates and presents that Ross
recovered probabilities are heavily affected by the term structure of interest rates.

We show that existing Ross recovery estimations omit an interest rate condition. As a
result, Ross recovery implied term structure of interest rates substantially deviates from the
market term structure and Ross recovered probabilities are not correctly estimated. This
methodological explanation contributes to the understanding of the empirical differences
between the original Ross recovery estimation and generalized recovery.

Incorporating the interest rate condition provides a reliable and consistent estimation
process for Ross recovery. Ross recovered probabilities are the same as the risk-neutral
probabilities when the term structure of interest rates is flat. In reality, when the term structure
is not flat, Ross recovery with an interest rate condition yields recovered probabilities close to
the risk-neutral probabilities as with generalized recovery.

In addition, we contribute to the literature by presenting three other challenges in Ross
recovery estimations. First, different choices of the period length regarding transition matrix are
not equivalent. The transition matrix with a short period implies the existence of a nonnegative
nth root of a transition matrix with a long period. Thus, the recovered probabilities may
be considerably different depending on the choice of the period length. Second, different
least squares representations are not equivalent when there is no unique and exact transition
matrix for the spot state prices. Linear and nonlinear representations of Ross recovery imply
substantially different term structures of interest rates. Third, the number of states in the
transition matrix also plays an important role in Ross recovery estimation. Ross recovery results
in more stable and well-behaved recovered probabilities with sparse states in comparison to
dense states for the same number of expiries.

We further propose a multi-period Ross recovery estimation so that both the fitted state
price surface in Ross recovery is correctly represented and the implied term structure of
interest rates is consistent with the market term structure. This new Ross recovery estimation
addresses the difference between the original Ross recovery and generalized recovery that Ross
recovery requires a time-homogeneous transition matrix or a Markov chain process for the spot
state price surface. With this empirical approach, we find that there is only small difference
between Ross recovered probabilities comparing to both risk-neutral and generalized recovered
probabilities with a market example.

This chapter also relates to the non-parametric Risk-Neutral Distribution (RND) estimation
developed by Figlewski (2010). The non-parametric method provides an unbiased spot state
price surface in comparison to other parametric risk-neutral distribution methods. We extend
Figlewski’s non-parametric estimation into different horizons and make the term structure of
interest rates correctly captured in the risk-neutral probability surface. An accurate risk-neutral
probability surface is the prerequisite for Ross recovery.

The rest of this chapter is organized as eight parts. Section 4.2 reviews the Ross recovery
theorem and presents the implied term structure of interest rates. Section 4.3 shows the spot
state price surface estimation. Section 4.4 reviews existing approaches to Ross recovery, labeled
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Ross Basic and Ross Stable. It addresses that the term structure of interest rates is omitted
in existing literature if we intend to extract information from Ross recovered probabilities.
Section 4.5 is the main discussion of this chapter. By incorporating the term structure into
Ross recovery, recovered probabilities are stable and close to risk-neutral probabilities. Section
4.6 discusses the nonlinear multi-period Ross recovery estimation. Section 4.7 presents our
proposed Ross Root estimation to discuss the choice of transition period length. Section
4.8 compares the Ross recovery implied information from different approaches. Section 4.9
concludes.

4.2. Ross recovery theorem

This section reviews the Ross recovery theorem and its implied term structure of interest
rates. Based on a spot state price matrix, Ross proposes a recovery method to extract the
transition matrix, ‘physical’ probability distributions, and the pricing kernel at the same time.
This section summarizes the existing and our proposed empirical approaches to Ross recovery.

4.2.1. Original Ross Recovery Theorem

We focus on Ross recovery with finite discrete states. The Ross recovery theorem explicitly
makes three assumptions. First, it assumes a time-homogeneous one-period transition matrix
that links the state prices at time t and state prices at time t+ h as a Markov chain process. A
state price π(t, t+ h, i, j) with t > 0 is the transition price from time t to t+ h and from state
i to state j. Transition state prices are not directly observable in the market. Ross recovery
assumes the one-period transition matrix is time-homogeneous, independent from time t. As
a result, the one-period transition state price , π(t, t+ h, i, j) = a(i, j)∀t, is only determined
by the start state i and end state j given a transition period h. Based on spot state prices at
time t and the transition matrix, each state j at time t+ h is calculated as:

π0(t+ h, j) =
∑
i∈N

π0(t, i)a(i, j), ∀j ∈ N (4.1)

where N is the set of all states. a(i, j) is the transition state price from state i to state j during
any one-period time h and is the entry in the transition matrix A = [a(i, j), i, j ∈ N ]. The
spot state prices with horizon t = 0 is determined by the current state as Π0. The one-period
state price transition matrix implies spot state prices at any time n · h(n ∈ N) as

Πn = Π0 ×An (4.2)

where Πn = [π0(n · h, j)] is a row vector indicating the spot state prices from current state to
state j at time n · h, Π0 and Πn are the 0th and nth row in the spot state price surface Π.

Second, the Ross recovery theorem assumes all transition state prices in A are positive.
Third, as the stochastic discount factor (m) links the physical probability (p) and state price

(π) in the form of p = π/m, Ross further assumes the stochastic discount factor is transition
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independent. Then the one-period stochastic discount factor from state i to state j is

mi,j = δ
u

′
j

u
′
i

(4.3)

where u′ and δ can be interpreted as marginal utility and a utility discount factor, respectively.
Based on the above stochastic discount factors, we can derive that the one-period state

price transition matrix A corresponds to a one-period Ross recovered probability transition
matrix S. Each row in the matrix S indicates all possible outcomes from a state during one
period. Therefore, the sum of each row in the matrix S equals one. Based on this idea, the
state price transition matrix satisfies the following equation:

A × Z = δZ (4.4)

where Z is a vector of the inverse u′
i, i.e. zi = 1/u

′
i.

Equation (4.4) is an eigenvalue problem. By using the Perron-Frobenius theorem, the
largest eigenvalue corresponds to the only eigenvector with strictly positive zi. Therefore,
given the state price transition matrix, based on the solution of equation (4.4), the stochastic
discount factors and Ross recovered probabilities are uniquely determined. The spot state price
surface Π can be transformed to a Ross recovered probability surface P with the stochastic
discount factors. Ross recovered probabilities at time n · h in the Ross recovered probability
surface P is calculated in a similar way as equation (4.2)

Pn = P0 × Sn (4.5)

where P0, Pn are the 0th and nth row in the Ross recovered probability surface P . As the
state price transition matrix directly implies the recovered probability transition matrix, Ross
recovery only needs to extract the state price transition matrix from the spot state price matrix.

4.2.2. Ross Recovery Implied Interest Rate

In an economy that follows the Ross recovery theorem, the transition matrix fully deter-
mines interest rates, including the state interest rate, the spot rate curve, and the forward rate
curve.

The sum of each row in the state price transition matrix is the one-period interest rate
discount factor in the corresponding state. The state interest rate vector is

R = [ri], and ri = −log(
∑
j

a(i, j)) (4.6)

where ri stands for the one-period interest rate if the economy is at state i, and a(i, j) is
the one-period transition state price from Ross recovery. Because the transition matrix is
time-homogeneous, state interest rates R are also independent of time.

Martin and Ross (2019) and Ross (2015) are especially interested in the long end interest
rate because of the convergence of the transition matrix with an infinite horizon. However, the
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long end interest rate is not directly observable in the market. We use the current state and the
transition matrix to calculate the Ross recovery implied interest rates. Based on the current
spot state price vector Π0 and the transition matrix A, the N-period state prices are calculated
as Π0 × An. Then the N-period spot rate is calculated as

yn = −log(
∑
j

π0(n · h, j)), and Πn = [π0(n · h, j)] = Π0 × An (4.7)

where yn is the N-period spot rate from time 0 to time n ·h, Πn = [π0(n ·h, j)] is the n-period
Ross recovery implied spot state prices which is calculated by formula (4.2).

The forward rate bn is the interest rate from time n · h to time (n + 1) · h. There are
two ways to calculate the forward rate. First, the forward rate can be inferred from the spot
rate curve in equation (4.7). Second, the forward rate can be also estimated from the state
interest rate in equation (4.6). Moreover, the state price transition matrix uniquely determine
a transition Ross recovered probability matrix as equation (4.5). The nth one-period forward
rate from time n · h to time (n+ 1) · h is calculated as

bn = −log(Pn ·R) = −log(
∑

(P0 × Sn) ·R) (4.8)

where Pn is the nth period Ross recovered probability as formula (4.5), R is the state interest
rate as formula (4.6).

4.2.3. A comparison of Ross recovery approaches

We use the original Ross recovery estimation (Ross, 2015), labeled Ross Basic (Jackwerth
and Menner, 2020), as the benchmark. Ross (2015) and Jackwerth and Menner (2020) notice
the unreasonable state interest rates in Ross Basic. They further propose incorporating extra
conditions to Ross Basic estimation, such as imposing upper and lower bounds in the transition
matrix implied interest rates (Ross Bounded) or assuming there is only one mode in each row
of the transition matrix (Ross Unimodal). However, those conditions and constraints are not
implied in the original Ross Recovery theorem. Recovered probabilities may include other
information by imposing such conditions. We intend to extract the information only in Ross
recovery and therefore exclude Ross recovery approaches with additional assumptions from
this study.

Table 1 compares different approaches to Ross recovery. Ross Stable rearranges the original
Ross recovery and drops the time-homogeneous transition matrix assumption. However, Ross
Stable can only be estimated by a non-linear equation system. As proposed by Jensen, Lando,
and Pedersen (2019), Ross Stable Linear uses a linear approximation for the utility discount
factor δ in Ross Stable. As a result, Ross Stable Linear can be estimated by a linear least
squares estimation. We propose three new approaches to Ross recovery labeled as Ross Spot
Rate, Ross Power, and Ross Root. These approaches illustrate how the term structure of
interest rates, the representation of least squares estimation, and the choice of transition period
affect the recovered probabilities as shown in later sections.

-Table 1 here-

122



4.3. Spot State Price Surface

A state price π(t0, t0 + t, i, j), or Arrow-Debreu price3, is the expected price at time t0 for
a unit payment at time t0 + t when the economy transforms from one state i to another state j
accordingly. Using a cross-section of options with a series of strike prices, the spot state price
π0(t, j) is determined by the state j in horizon t given a spot state i = i0 at spot time t0 = 0.
The spot state price estimation is independent of the Ross recovery theorem. A reliable spot
state price surface is the prerequisite for Ross recovery estimation as the transition matrix in
Ross recovery theorem is directly estimated from the spot state price surface.

We use Figlewski (2010) non-parametric risk-neutral distribution to estimate spot state
prices at different expiries. We also make some adjustments for Figlewski’s method to ensure
that the risk-neutral distribution accurately reflects the term structure of interest rates and the
state prices are fully extracted in both moneyness and time-to-maturity dimensions.

4.3.1. Data

We use the S&P 500 weekly options (SPXW) on January 4, 2019, as an example for
empirical analysis. The estimation process can be easily extended to other assets or dates.
S&P 500 weekly European put and call option quotes are extracted from Refinitiv DataScope.
The last midquote on each date is used as the option close price. Further studies can be applied
to intraday data. S&P 500 weekly option has more expiry dates4 than the standard S&P 500
options so that a more detailed S&P 500 state price surface is possible. The moneyness of
each S&P 500 option contract is the strike price divided by the corresponding S&P 500 index
level.

U.S. interest rate is the zero-coupon yield from OptionMetrics. A cubic spline interpola-
tion5 is applied to the zero-coupon bond price based on the zero-coupon yield. The interest
rate with the same time to maturity as the option contract is estimated from the interpolated
zero-coupon bond price curve. Daily S&P 500 index dividend yields are also from Option-
Metrics. The dividend ratio is the average realized dividend yields from the trading date to
the expire date of each option contract.

4.3.2. Risk-Neutral Distribution Surface

We exclude in-the-money option contracts that are call options with moneyness lower
than 99.5% and put options with moneyness higher than 100.5%. Based on the standard
option pricing model of Black and Scholes (1973), at-the-money and out-of-the-money option
prices are transformed into Implied Volatilities (IVs). A discrete IV surface consists of option
IVs with their moneyness and time to maturity. A fourth degree spline interpolation on both
moneyness and time to maturity6 is conducted on the discrete IV surface to get a smooth

3We uses state price and Arrow-Debreu price interchangeably
4SPXW options provide the weekly Monday, Wednesday, Friday expiry dates
5The cubic spline interpolation is conducted by MATLAB function spaps.
6The spline interpolation uses scipy.interpolate.bisplrep function in Python package scipy version 1.4.1
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fitted IV surface IV = [IV (Xj, T )]. The interpolation is from 1 day to 252 days with a 1-day
interval and from moneyness 0 to moneyness 2 with an interval of 0.0001. The extrapolated IV
beyond the minimum or maximum market moneyness is excluded in the next step to avoid any
unreliable shape in the deep tails. The fitted IV surface is transformed back to the call option
price surface C = [C(Xj, T )] by the Black-Scholes model again. The risk-neutral probability
density f(X,T ) and cumulative risk-neutral probability F (X,T ) at strike price Xj and time
to maturity T is estimated by the approximation formula of Breeden and Litzenberger (1978)

f(Xi, T ) ≈ erT
Ci+1,T − 2Ci,T + Ci−1,T

(∆X)2
(4.9)

and the cumulative probability function is

F (Xi, T ) ≈ erT [
Ci+1,T − Ci−1,T

Xi+1,T −Xi−1,T

] + 1 (4.10)

The above procedures provide a central risk-neutral probability distribution from the
minimum market strike price to the highest market strike price. The tails of the risk-neutral
probability distribution are estimated with Generalized Extreme Value (GEV) distribution in
the form of

G(x) = exp[−(1 + ξ
ST − µ

σ
)
1
ξ ] (4.11)

where ξ determines the shape, µ is the mean, σ is the variance of GEV model.
The six parameters of the left and right tails are estimated together by satisfying the

following constraints: i) the density of the GEV tail equals the density of the central RND at
the first and the second connection points in both left and right tails. The first connection point
of the right tail is the strike at the 97% cumulative risk-neutral probability or the maximum
market strike whichever is smaller. The percentile of the first right connection point is αR

The second connection point is the strike that is closest to the percentile αR − 3%. The first
connection point of the left tail is the strike at the 3% cumulative risk-neutral probability or the
minimum market strike whichever is greater. The percentile of the first left connection point is
αL. The second left connection point is the strike that is closest to the percentile αL+3%. ii)
The sum of central RND and tail probability equals 100%. iii) The expectation of moneyness
based on central density and tail distribution equals corresponding risk-neutral measure, the
interest rate return minus the dividend ratio as exp((r − q)T ).

The procedures above provide a smooth and well-behaved RND surface. Panel A of Figure
4.1 shows that the RND surface estimated on January 4, 2019 is smooth and reliable. Panel B
of Figure 4.1 shows the term structure of RND from short to long horizons. The shorter term
RNDs are more concentrated around at-the-money and relatively symmetric. The longer term
RNDs are more disperse and negatively skewed.

-Figure 4.1 here-
The expectation of a RND reflects the corresponding interest rate. RND implied interest

rates should equal to the market interest rates. Figure 4.2 compares the implied interest rates
from the RND surface and market interest rates. The market interest rate is from 2.4% to 2.8%
for horizons within one year. It increases sharply in the short term and decreases slowly in the
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medium and long terms as the horizon increases. The RND implied interest rate is consistent
with the market interest rate indicating a reliable estimation based on the risk-neutral measure.

-Figure 4.2 here-
The number of distinct economy states determines the number of strikes or moneyness

in RND that further determines the size of unknown parameters in Ross recovery. To have
a relatively good balance between the smoothness of state price surface and the number of
unknown parameters in the following Ross recovery, we apply 100 states from moneyness 0 to
moneyness 2 with an interval of 0.02. The horizon is from 2 days to 250 days with an interval
of 2 days. The RND surface is reduced into a 125× 100 RND matrix Q = [q(t, i)] where t is
the horizon of the RND and i is the moneyness. Each row in RND matrix Q is a RND with
time to maturity as t. Each column in the RND matrix Q shows the risk-neutral probability at
state i. In the later part of this chapter, the economy states are further reduced into 20 states
with an interval of 0.1 moneyness because of time-consuming nonlinear calculations.

4.3.3. Risk-Neutral Distribution to State Price

The risk-neutral probability matrix Q and the spot state price matrix Π = [π0(t, i)] are
linked via interest rates. Risk neutral probability q(t, i) is transformed to spot state price
π0(t, i) directly by the corresponding interest rate rtf . With continuous compounding,

π0(t, i) = q(t, i)exp(−rtf · t) (4.12)

Besides, the spot state price with horizon t = 0 equals one for the current state and zero
for all other states, i.e. a state price vector Π0 with only one non-zero entry. The t = 0 state
price vector can be added to the spot state price matrix as the first row to have a complete spot
state price matrix Π from time 0 to time T.

4.4. Existing Empirical Approaches to Ross Recovery

This section reviews Ross Basic and Ross Stable. It explores the implied term structure
of interest rates in Ross Stable and discusses how small errors in the utility discount factor
heavily affect the recovered probabilities in Ross Stable.

4.4.1. Ross Basic Estimation

In the original estimation by Ross (2015) and the Ross Basic estimation labeled by Jack-
werth and Menner (2020), the state price transition matrix is estimated by minimizing the
one-period transition errors. Following Jackwerth and Menner (2020), we use an overlapping
approach to estimate the transition matrix. The spot state price surface Π from day 0 to day
250 with an interval of 2 days as estimated in section 4.3 is rearranged into two subgroups
of spot state price surfaces Πa and Πb. Spot state price surface Πa is from day 0 to day 230.
Spot state price surface Πb is from day 20 to day 250. The one-period transition is 20 business
days (one month). The 20-day state price transition matrix A links the spot state prices at day
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t with spot state prices at day t+20 as Πb = Πa ×A. This equation is solved by minimizing
the following least squares estimation

min
a(i,j)

∑
j∈N

230∑
t=0

(π0(t+ 20, j)−
∑
i∈N

π0(t, i)a(i, j))
2 s.t. a(i, j) ≥ 0 (4.13)

where π0(t, i) and π0(t, j) are the spot state prices in the spot state price surface Π. This least
squares problem is estimated by lsqnonneg function in MATLAB7.

Figure 4.3 shows the state price transition matrix by Ross Basic. Panel A of Figure 4.3
presents that there is an extreme state price in the transition matrix when the moneyness is
close to 0. Market spot state prices with moneyness below 0.4 and above 1.4 are close to
0. They correspond to the deep tails of risk-neutral probability distributions. There is little
information for the estimation of transition matrix with transition start state below moneyness
0.4 or above moneyness 1.4. Therefore, some extreme values in the rows corresponding to the
deep tails of the spot state prices have no obvious impact on the estimation process. Panel B
of Figure 4.3 excludes the rows in the transition matrix corresponding to the deep tails and
starts from moneyness 0.4 to moneyness 1.4. Similar to the results of Jackwerth and Menner
(2020), the main diagonal of the transition matrix has relatively higher state prices because of
higher probabilities of the same state at the end of the transition period as the initial of the
transition period. However, it is difficult to understand the state prices away from the main
diagonal. Especially high state prices are next to state prices close to 0.

-Figure 4.3 here-
Figure 4.4 compares the fitted risk-neutral and recovered probabilities from the market risk-

neutral probabilities. The fitted one-period risk-neutral probabilities at time t are calculated
by the market risk-neutral probabilities at time t − h and the one-period transition matrix.
The multi-period fitted risk-neutral probabilities at time t is based on the spot state prices Π0

multiply by (t/h)th (20 days per period, 6 periods for 120 days in this example) power function
of the transition matrix as formula (4.2). Recovered probabilities are the multi-period risk-
neutral probabilities recovered by the transition matrix implied stochastic discount factors. The
fitted one-period risk-neutral probabilities are not necessarily the same as the Ross recovery
implied multi-period risk-neutral probabilities because of estimation errors.

Ross Basic fits well with the spot state prices. There is no obvious difference between the
fitted one-period risk-neutral probabilities and the market risk-neutral probabilities for the
20-day horizon. However, in the long term, there are some differences around the mode of the
distributions. 120-day fitted risk-neutral probabilities based on a one-period transition present
small differences from the market risk-neutral probabilities while 120-day fitted risk-neutral
probabilities based on multi-period transitions show relatively large estimation errors. If you
minimize errors in one-period transition and use this as an input for multi-period, it may not
be a good fit for multi periods. The Ross Basic least squares problem (4.13) is an overspecified
linear equation system with a nonnegativity constraint for transition state prices, an exact

7Least squares problem (4.13) can be written in a standard C · x− d form as Appendix A.4.1. lsqnonneg
function in MATLAB provides a fast and reliable solution to the standard C · x− d linear least squares problem.
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solution is not possible given the spot state prices. The least squares estimation provides a
satisfying but not the same fitted spot state price surface as the market spot state price surface.

Despite only small errors in Ross Basic, the recovered probability distribution is not
smooth or well-behaved. The recovered probability at moneyness 0.94 is negligible while
the risk-neutral probability is substantial at the same moneyness for the 20-day horizon as
shown in Panel A of Figure 4.4. 120-day recovered probability distribution has even more
kinks. Ross Basic in (4.13) only minimizes the one-period transition errors. Longer term,
such as 120-day, recovered probability distribution therefore may have more estimation errors
and unreliable shapes.

-Figure 4.4 here-
Figure 4.5 shows the Ross transition matrix implied interest rates. Panel A shows the state

interest rates. Panel B compares the implied with market spot rates. First, the state interest
rates take extreme values. Ross Basic results in unreasonable large and negative interest rates.
Second, the implied spot rate curve is far different from the market spot rate curve. Ross Basic
fails to incorporate the market interest rates that determine the sum of spot state prices in
each horizon. A spot state price surface provides a solution for least squares problem (4.13).
However, such a solution is not necessarily consistent with Ross recovery as Ross implicit
assumptions are not addressed. As a result, the recovered probabilities and stochastic discount
factors from Ross Basic are not consistent with the Ross recovery theorem.

-Figure 4.5 here-

4.4.2. Ross Stable/ Generalized Recovery

In contrast to imposing additional constraints or assumptions to the Ross recovery theorem,
generalized recovery (Jensen, Lando, and Pedersen, 2019) and Ross Stable (Jackwerth and
Menner, 2020) only keep the assumption of transition-independent stochastic discount factors.
The one-period time-homogeneous transition matrix is excluded from generalized recovery and
Ross Stable. With the assumption that the stochastic discount factor is transition-independent
as in the equation (4.3), the spot state price surface can be transformed to a surface of recovered
probabilities. A set of equations without transition matrix is specified as follows


π0(1, 1) ... π0(1, j) ... π0(1, N)

π0(2, 1) ... π0(2, j) ... π0(2, N)
...

... ...
...

π0(T, 1) ... π0(T, j) ... π0(T,N)

×



z1/z1
...

zk−1/z1

zk/z1
...

zN/z1


=



δ1

δ2

...
δT−1

δT


(4.14)

where π0(t, j) is the spot state price in the spot state price surface Π, zk and δ are the inverse
of marginal utility and the utility discount factor, respectively, each row indicates that the sum
of recovered probabilities equals one. This equation system is estimated by minimizing the
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squared errors labeled Ross Stable as

min
zk,δ

t=250∑
t=1

((
N∑
k=1

π0(t, k)zk/z1)− δt)2 s.t. zk ≥ 0, δ ≥ 0 (4.15)

Figure 4.6 shows the recovered probability distributions of Ross Stable. Panels A and B
show that Ross Stable recovered probabilities are close to the market risk-neutral probabilities
for both 20-day and 120-day horizons. This result is consistent with the empirical result of
Jackwerth and Menner (2020). They also find that the stochastic discount factor is stable and
close to one.

-Figure 4.6 here-
The stable stochastic discount factor suggests that the recovered probabilities are close to

risk-neutral probabilities empirically. Ross Basic provides well-fitted risk-neutral probabilities.
However, Ross Basic recovered probabilities and Ross Stable recovered probabilities present
significant differences while they both have the same form of pricing kernel. It is not clear
which approach provides recovered probabilities correctly reflecting the time-homogeneous
pricing kernel. The rest of this chapter tries to explain the differences between Ross Basic and
Ross Stable mainly as a result of an omitted interest rate condition in Ross Basic.

Ross Stable in the form of equation (4.14) is close to a linear system, but the right hand
side is a power function of the utility discount factor δ. Jensen, Lando, and Pedersen (2019)
propose a linear approximation δt ≈ αt + βtδ around δ0 = 0.97 and Ross Stable becomes a
linear system as


−β1 π0(1, 1) ... π0(1, j) ... π0(1, N)

−β2 π0(2, 1) ... π0(2, j) ... π0(2, N)
... ... ... ... ...

...
−βT π0(T, 1) ... π0(T, j) ... π0(T,N)

×



δ

z1/z1
...

zk−1/z1

zk/z1
...

zN/z1


=



α1

α2

...
αT−1

αT


(4.16)

where αt = −(t− 1)δt0 and βt = tδt−1
0 , with other variables being the same as equation (4.14).

Jensen, Lando, and Pedersen (2019) present the closed-form solution for this system. However,
the closed form solution zk of this system may be negative. To ensure the nonnegativity of zk,
an additional constraint zk ≥ 0 is required for this equation system. With this nonnegativity
constraint, there is no closed from solution. Instead, this closed form approach has to be
estimated by a least squares estimation similarly as Ross Stable

min
zk,δ

t=250∑
t=1

((
N∑
k=1

π0(t, k)zk/z1)− (αt + βtδ))
2 s.t. zk ≥ 0, δ ≥ 0 (4.17)

this least squares problem is estimated by lsqnonneg function in MATLAB because it is
already in the standard C · x− d form. This estimation is labeled as Ross Stable Linear.
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Figure 4.7 compares the linear approximation and the original power function of δt. The
linear approximation works well as αt + βtδ is close to δt within one year horizon.

-Figure 4.7 here-
Figure 4.8 shows the Ross Stable Linear recovered probabilities and the market risk-neutral

probabilities. Although the linear approximation only has small differences from the original
δt, the recovered probabilities substantially deviate from the Ross Stable recovered probabilities
with many kinks. A small change in the utility discount factor results in a substantial change
in the pricing kernel. It suggests the importance of the utility discount factor in transition-
independent recovery. The empirical results of Ross Stable Linear are less precise than Ross
Stable. Ross recovery implied information may be largely different from Ross Stable Linear
recovered information.

-Figure 4.8 here-
The difference between Ross Stable Linear and Ross Stable shows how recovered proba-

bilities are sensitive to time discount factors. As Ross Basic fails to reflect the term structure
of interest rates that determine the risk-free discount factors, it will improve the accuracy of
recovered probabilities by considering interest rates for Ross recovery estimations as the next
section shows.

4.5. Recovery with Interest Rates

In the previous section, Ross Basic and Ross Stable provide different recovered probabilities
for the same spot state price surface. This section discusses the omitted condition in Ross
Basic and how flat term structure results in a risk-neutral recovery.

4.5.1. A Flat Term Structure

Assume we start our analysis with a flat term structure of interest rates. In an economy
following the assumptions in Ross recovery or Ross Stable, no matter the shape of the spot
state price surface, the recovered probabilities degenerate to risk-neutral probabilities when
the term structure of interest rates is flat.

Based on Ross recovery, there is a recovered probability surface P from spot state price
surface Π according to formula (4.5). A subgroup probability surface P̂ consists of T = N

consecutive recovered probability from the original recovered probability surface P . The
probability surface P̂ is a square probability matrix with the sum of each row equals one.
Assuming the probability surface P̂ is invertible

P̂ e = e

e = P̂−1e (4.18)

where e is a column unit vector.
In a Ross recovery economy, the state interest rate vector R is estimated from the transition

matrix shown as formula (4.6). The expected one-period forward rate from any time t is
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E(bt) = PtR. Given a market forward rate curve B̂ = [b1, b2, ..., bN ]
′, and time-homogeneous

state interest rate vector R = [rt1, rt2, ..., rT ]
′

P̂R = B̂ (4.19)

If the term structure is flat, i.e. B̂ = [b1, b2, ..., bN ]
′ = be,

P̂R = B̂

R = P̂−1be

R = be (4.20)

i.e. when the forward rates on all trading dates are the same, Ross Recovery transition matrix
implied interest rates are state independent and equal to the forward rate. According to the
Ross recovery theorem, if the interest rate is state independent, recovered probabilities become
risk-neutral probabilities. The flat term structure uniquely determines a stable pricing kernel
in the Ross recovery theorem. Therefore, Ross Recovery provides no additional information
in comparison to risk-neutral estimation when the term structure is flat.

In Ross Stable, the stochastic discount factor is transition-independent. If the term structure
of interest rates is flat, it can be noticed that a unit vector and the interest rate discount factor
are always one set of solution for equation system (4.14)

zk = 1,∀i ∈ N, and δ = exp(y1) (4.21)

where y1 is spot rate.
This solution is independent of the shape of the spot state price surface. As long as the

term structure is flat, risk-neutral estimation is always one solution of Ross Stable. This result
is similar to Ross recovery, indicating that the assumption of transition-independent stochastic
discount factors has an important impact on the recovery estimation. In reality, although the
term structure may be not flat, it is unlikely to change substantially. The numerical solution of
(4.14) may be still close to formula (4.21) as shown in the empirical result of Ross Stable in
previous section. Jensen, Lando, and Pedersen (2019) also point out, in generalized recovery/
Ross stable, the risk-neutral solution may be not unique under a flat term structure.

4.5.2. Ross Recovery Estimation with an Interest Rate Condition

The term structure of interest rates is usually not flat. E.g. the term structure on January 4,
2019 increases with time in the short and medium terms but slightly decreases in the long
term (see Figure 4.1). We therefore propose an interest rate condition for Ross recovery.
The transition matrix in Ross recovery implies a forward rate curve and a spot rate curve as
discussed in section 4.2.2. The expected forward rate under Ross recovery should equal the
market one-period forward rate. And the Ross recovery implied spot rate for any horizon
should equal the market spot rate.
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A. Ross Forward Rate Estimation

We propose a Ross recovery estimation labeled Ross Forward Rate which minimizes the
errors between the implied forward rate and the market forward rate in comparison to Ross
Basic. Like Ross Basic, we have the following least squares estimation

min
a(i,j)

∑
j∈N

230∑
t=0

(π0(t+ 20, j)−
∑
i∈N

π0(t, i)a(i, j))
2 +

230∑
t=0

(bt − b̂t)
2 s.t. a(i, j) ≥ 0 (4.22)

where bt is the transition matrix implied forward rate as in formula (4.8), b̂t is the market
forward rate from the term structure, other variables are the same as in the Ross Basic.

However, this method has to find the Perron–Frobenius eigenvalue in each iteration during
the optimization process. Thus, Ross Forward Rate is a nonlinear equation system. It is
computation-intensive to find the local minimum. As a forward rate curve can be transformed
to a spot rate curve directly, the following Ross Spot Rate estimation provides an alternative
approach to incorporating the term structure of interest rates without imposing a nonlinear
constraint to Ross Basic.

B. Ross Spot Rate Estimation

The Ross Spot Rate estimation tries to minimize the errors between implied spot rates and
market spot rates. As the sum of spot state prices for any horizon t is the interest rate discount
factor, Ross Spot Rate requires that fitted interest rate discount factors equal market interest
rate discount factors.

min
a(i,j)

∑
j∈N

230∑
t=0

(π0(t+ 20, j)−
∑
i∈N

π0(t, i)a(i, j))
2 + ω

230∑
t=0

(
∑
j∈N

(π0(t+ 20, j)

−
∑
j∈N

∑
i∈N

π0(t, i)a(i, j))
2 s.t. a(i, j) ≥ 0 (4.23)

where ω determines the relative importance of Ross Basic and the interest rate condition, ω
is set to a large value 100000 to ensure that the interest rate condition is satisfied, all other
variables are the same as Ross Basic. This optimization problem is estimated in a similar way
as Ross Basic through lsqnonneg function in MATLAB8.

Figure 4.9 shows the estimated state price transition matrix by Ross Spot Rate approach.
As the spot state prices are close to zero in the deep tails, the Ross Spot Rate transition matrix
has some extreme values in the states corresponding to deep tails. Panel B of Figure 4.9 shows
the center part of the transition matrix. The state prices on the diagonal are higher than other
states in the transition matrix.

-Figure 4.9 here-
Panels A and B of Figure 4.10 are fitted risk-neutral and recovered probabilities for

8Least squared problem (4.23) can be written in a standard C · x− d form as Appendix A.4.3.

131



20-day and 120-day horizons, respectively. 20-day fitted risk-neutral probabilities are not
substantially different from market risk-neutral probabilities. Overall, 120-day fitted risk-
neutral probabilities are close to the market risk-neutral probabilities. However, the fitted risk-
neutral probability distribution deviates from the market risk-neutral probability distribution
around its mode. Unlike Ross Basic, the recovered probability distributions are close to the
fitted risk-neutral probability distribution, especially for the 20-day horizon. Ross Spot Rate
provides similar results as the Ross Stable, indicating a relatively stable pricing kernel. As the
additional constraint of Ross Spot Rate in comparison to Ross Basic is implied by the Ross
recovery theorem, the strange shape of the Ross Basic recovered probability distribution is a
result of the ill-conditioned estimation process. The Ross Spot Rate estimation complements
the Ross recovery estimation by taking into account the implied spot rate curve.

-Figure 4.10 here-
Panel A of Figure 4.11 shows one-period state interest rates. It is similar to Ross Basic,

Ross Spot Rate still results in states with extreme positive and negative interest rates. However,
Ross Spot Rate state interest rates are less volatile comparing to Ross Basic. Panel B of Figure
4.11 shows that Ross Spot Rate implied interest rates are close to market interest rates. The
Ross Spot Rate implied interest rates from the one-period calculation are consistent with
market interest rates, indicating an accurate estimation for the optimization problem (4.23).
However, implied interest rates based on the multi-period calculation for 120-day are not the
same as the market interest rates. Ross Spot Rate only minimizes the one-period estimation
errors.

-Figure 4.11 here-

4.6. Multi-Period Ross Recovery Estimation

In the above Ross Basic and Ross Spot Rate estimations, the fitted spot state price at time t
is represented as the market spot state price at time t−1 times the one-period transition matrix.
However, based on the equation (4.2), fitted spot state prices at time t are also represented
as market spot state prices at time t0 times the power function of the transition matrix. We
propose a new approach termed Ross Power estimation by minimizing the errors between the
market spot state prices and the fitted spot state prices calculated through the power function
of the transition matrix.

Based on the equation (4.2), the spot state price surface is solely represented by the
transition matrix. Following the same idea of overlapping spot state price surface as in Ross
Basic, spot state prices are specified as

Πi+20n = Πi ×An, where i = 0, 1, ..., 19, n = 1, 2, ... (4.24)

This multi-period representation is not a linear equation. It consists of nth power function
of the transition matrix for nth period spot state prices. In addition, a penalty term ω on the
error between the market interest rate discount factor and Ross implied interest rate discount
factor for each horizon captures the relative importance of fitting the state prices and fitting
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the interest rate condition.

min
a(i,j)

∑
j∈N

250∑
t=20

(π0(t, j)− π̂0(t, j))
2 + ω

250∑
t=20

(
∑

π0(t, j)−
∑

π̂0(t, j))
2

where Π̂ = [π̂0(t, j)], s.t. a(i, j) ≥ 0 (4.25)

where Π̂t = [π̂0(t, j)] is the Ross Power method fitted spot state prices at time t calculated as
formula (4.24).

If there is an exact and unique Ross recovery transition matrix satisfying the market spot
state price surface, different approaches, including Ross Basic, Ross Spot Rate, and Ross
Power, will have the same solution for the Ross recovery theorem. However, the market spot
state price surface usually implies no exact transition matrix for Ross recovery. Least squares
estimations with different representations are not equivalent when there is no exact solution.
The least squares solution for Ross Basic or Ross Spot Rate is not necessarily the solution for
Ross Power. Ross Power has the advantage of correctly representing the long-term spot state
prices and interest rates as a result of the nth power function of the transition matrix.

In previous linear least squares representations of Ross recovery estimation, there are
100 states which result in a transition matrix with 1002 = 10000 unknown parameters. To
reduce the computational intensity of Ross Power, this section uses a simplified spot state
price surface with 20 states from moneyness 0 to moneyness 2 with an interval as moneyness
0.1. Thus, the number of unknown parameters in the nonlinear least squares problem (4.25)
decreases from 10000 to 400 which makes the computation feasible. Also, the nonlinear least
squares problem (4.25) may have many local minimum values. To compare with Ross Spot
Rate, Ross Power uses the output of Ross Spot Rate as the starting guess in the optimization
process.

Figure 4.12 shows the estimated state price transition matrix by Ross Power. It is similar
to other Ross recovery estimations, the transition matrix has some extreme values in the states
corresponding to the deep tails. The state prices at the main diagonal of the transition matrix
are much higher than other state prices in the transition matrix.

-Figure 4.12 here-
Panels A and B of Figure 4.13 are the Ross Power fitted risk-neutral and recovered proba-

bilities for 20-day and 120-day horizons. Ross Power fitted risk-neutral probability distribution
has more deviations from the market risk-neutral probability distribution than other Ross
recovery approaches as a result of more strict constraints from the power function of the tran-
sition matrix. This evidence is against Ross’s assumption of a time-homogeneous one-period
transition matrix. Therefore, Ross recovered probabilities may be different from generalized
recovered/ Ross Stable recovered probabilities depending on how market spot state prices
deviate from a Markov chain process with a time-homogeneous transition matrix. Given
the empirical fact that there is no exact transition matrix for market spot state prices, Ross
recovered probabilities incorporate the information of a transition matrix in comparison to
generalized recovery.

When a spot state price surface satisfies a time-homogeneous one-period transition matrix
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as the Ross Power fitted spot state prices, Ross recovered probabilities are close to the risk-
neutral probabilities and provide little additional information. Audrino, Huitema, and Ludwig
(2021) find Ross recovered probabilities are informative with an additional stability term
but without the interest rate condition. Their recovered probabilities are not Ross recovered
probabilities as their estimated transition matrix may be inconsistent with the market term
structure of interest rates. However, examining how their estimation process incorporates
other informative factors may be useful for future research.

-Figure 4.13 here-
Panel A of Figure 4.14 shows state interest rates. Ross Power implies relatively stable

state interest rates around at-the-money states. Only the states corresponding to the deep left
tail of the market risk-neutral distribution implies extreme state interest rates. There is no
extreme state interest rate around at-the-money states. Panel B of Figure 4.14 shows that Ross
Power implies a term structure of interest rates that is almost the same as the market term
structure. The nonlinear Ross Power estimation correctly represents the long-term interest
rates in comparison to other Ross recovery approaches.

-Figure 4.14 here-
Overall, we suggest that applications of Ross recovery should reflect all implied require-

ments, such as the term structure of interest rates and the multi-period transition. Ross Power
can be a successful approach as it incorporates all known requirements for Ross recovery.
The empirical analysis from Ross Power shows when a market term structure is not flat
but short-term upward-sloping, Ross recovered probabilities are still close to risk-neutral
probabilities.

4.7. Ross Root Estimation

This section addresses another challenge in Ross recovery estimations. Different lengths
of transition periods are likely to result in substantially different recovered transition matrices.
Transition matrix with a short period implicitly has a condition that the power function of the
one-period transition matrix is the multi-period transition matrix. This is equivalent as that
the long term transition matrix has a nonnegative kth root.

4.7.1. The One-period Transition

Based on the assumption in the Ross recovery theorem, there is a time-homogeneous
one-period transition matrix. Ross makes no further assumption on the period length of
transition that can be one day or one month. However, in the empirical estimations, different
lengths of transition imply different conditions.

As it is in Ross Basic, the spot state price surface Π can be rearranged into two subgroups
Πa and Πb with a time lag h. A state price transition matrix Ah with a transition period
h links these two subgroups as Πb = Πa × Ah. Besides, the transition matrix Ah can be
calculated from a state price transition matrix Ah/2 with a transition period h/2 as Ah = A2

h/2.
Then the two subgroups can be linked by the transition matrix Ah/2 as Πb = Πa × A2

h/2.
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Therefore, there are two approaches to estimate the transition matrix given a spot state price
surface. The approach of estimating Ah/2 is equivalent to estimating Ah with a condition that
Ah has a nonnegative square root. According to the uniqueness and existence condition of a
nonnegative square root of a nonnegative matrix by Tam and Huang (2016), a long period
transition matrix Ah directly estimated from Ross Basic approach may have no nonnegative
square root.

The above analysis can be easily extended to kth root of the transition matrix. In Ross
Recovery estimations, by choosing a relatively long transition period, the estimation process
has more flexibility to fit the market spot state prices. By choosing a relatively short transition
period, the estimation process implicitly incorporates the existence of a nonnegative kth root
of a long period transition matrix.

4.7.2. Transition Period of Two days

In Ross Basic, the transition period is 20 days. We propose a new estimation method
labeled Ross Root with a transition period of 2 days. Ross Root implicitly requires the existence
of a nonnegative 10th root for a one-month transition matrix while the one-month transition
matrix in Ross Basic may have no such nonnegative 10th root.

Spot state price surfaces Πa and Πb are the same as Ross Basic. The 2-day state price
transition matrix A2d links the state prices at day t with state prices at day t+20 as Πb =

Πa ×A10
2d. It is difficult to calculate the 10th root of the matrix A10

2d. Therefore, Ross Root is
estimated by the same least squares problem (4.13) but changing the transition time from 20
days to 2 days.

Figure 4.15 shows the state price transition matrix of Ross Root. First, the transition states
corresponding to the deep tails of the spot state price surface present extreme values as with
other Ross recovery approaches. Second, the state prices are much higher on the main diagonal
of the transition matrix as with Ross Basic. However, by changing the transition period h,
Ross Root provides a substantially different transition matrix to Ross Basic.

-Figure 4.15 here-
Figure 4.16 shows recovered distributions from Ross Root. Panels A and B show risk-

neutral probabilities and recovered probabilities with 20-day and 120-day horizons, respec-
tively. Like Ross Basic, Ross Root fits well with the market spot state prices. For the 20-day
horizon, Ross Root fitted risk-neutral probabilities present no obvious difference from the
market risk-neutral probabilities. For the 120-day horizon, there are some minor differences
between the fitted and the market risk-neutral probabilities around the mode. Unlike Ross
Basic, the fitted risk-neutral probability distributions from one-period and multi-period es-
timations are not different as the one-month transition matrix is calculated by 10th power
function of the 2-day transition matrix. The nonlinearity of long-term Ross fitted risk-neutral
probability distribution is reflected in Ross Root.

Although Ross Root is similar to Ross Basic with fitted risk-neutral probability distribu-
tions, Ross Root recovered probabilities are dramatically different from Ross Basic recovered
probabilities. Ross Root recovered probability distribution is not smooth, indicating stochastic
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discount factors with dramatic shapes.
-Figure 4.16 here-

Figure 4.17 shows the Ross Root implied interest rates. Ross Root implied interest rates
have a similar pattern as Ross Basic implied interest rates. First, there are extreme implied
state rates, e.g. over 6000% annualized state interest rate. Second, the implied spot rates, from
-10% to 15%, are far different from the market spot rates. Ross Root fails to incorporate the
market interest rates. It is not a surprise that Ross Root has similar problems as Ross Basic
because they are estimated by the same least squares problem. However, it should be noticed
that by changing the transition period to a shorter time, Ross Basic provides substantially
different results from the same spot state price surface.

-Figure 4.17 here-
Existing literature provides no guidance to the choice of period length for transition matrix.

Following previous literature, we focus on the one-month transition matrix.

4.8. Ross Recovery Implied Information

This section compares the implied information from different approaches of Ross recovery.
Because of the computational limitation in Ross Power, this section estimates different Ross
recovery approaches using the relatively sparse spot state price surface with 20 states from
moneyness 0 to moneyness 2 with an interval as moneyness 0.1.

The accuracy of the transition matrix is estimated as the Sum of Squared Errors (SSE)
between the fitted spot state prices and the market spot state prices from 20 days to 250 days.
Estimation accuracies of Ross Stable and Ross Stable Linear are estimated as the Sum of
Squared Errors between the sum of recovered probability and 100% as there is no transition
matrix.

Table 2 shows the estimation accuracies of different Ross recovery approaches. Overall,
there are only small errors in all Ross recovery approaches. The estimated one-period transition
matrix provides a reliable representation for the whole spot state price surface. The one-period
transition matrix yields forecasts about the long-term risk-neutral probability distribution that
is not directly observable in the market. SSE of Ross Basic is the smallest among all Ross
recovery approaches as Ross Basic ignores some implicit conditions. The largest SSE of Ross
Root indicates that by choosing a short transition period, the market spot state prices are not
consistent with Ross recovery assumptions. However, the optimal period length of transition
still requires further research. Ross Spot Rate and Ross Power have greater SSE than Ross
Basic because of an additional interest rate condition. Applications of Ross recovery have
to determine the relative importance between fitting the overall spot state price surface and
fitting the term structure of interest rates. If the term structure of interest rates is ignored, a
linear estimation of Ross recovery is Ross Basic with small SSE. If fitting the interest rate term
structure is the priority, such as Ross Spot Rate, relatively large SSE come with the interest
rate condition. Because Ross Stable only uses the time-homogeneous stochastic discount
factor assumption in Ross recovery without assuming a time-homogeneous transition matrix,
the SSE of Ross Stable and Ross Stable Linear are extremely small.
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-Table 2 here-
The stochastic discount factors show the pricing kernel between the risk-neutral measure

and Ross recovery measure. Figure 4.18 compares the 20-day stochastic discount factors of
all approaches to Ross recovery theorem on January 4, 2019 with 20-state spot state price
surface. Extreme recovered probabilities and volatile shapes of stochastic discount factors in
Ross Basic and Ross Root are probably due to the ill-conditioned estimation process.

Unlike the result of the 100-state state price surface (see the difference of fitted risk-neutral
distribution and recovered probability distribution as Figure 4.8), stochastic discount factors
of Ross Stable Linear are similar to that of Ross Stable with the 20-state state price surface.
Fitting the transition matrix in a dense spot state price surface is more likely to result in a
relatively volatile pricing kernel. Ross Spot Rate with a 20-state state price surface also implies
a more stable pricing kernel to Ross Spot Rate with a 100-state state price surface.

Ross Stable, Ross Stable Linear, Ross Spot Rate, and Ross Power all have relatively stable
pricing kernels, especially around at-the-money. The relatively stable stochastic discount factor
suggests similar information between the risk-neutral measure and the long-term risk-neutral
measure. Ross Spot Rate and Ross Power require a time-homogeneous transition matrix in
comparison to Ross Stable. Empirically, Ross Spot Rate and Ross Power have relatively more
volatile pricing kernels.

-Figure 4.18 here-
Based on the transition matrix, Ross recovery has the advantages of calculating spot state

prices beyond market horizons of spot state prices. We select a long-term horizon, 10 years,
to present the long-term convergence in Ross recovery. The sum of spot state prices reflects
the interest rate discount factor that is horizon dependent. Figure 4.19 presents the long-term
risk-neutral and recovered probability distributions. The time-homogeneous transition matrix
estimated from a one-year spot state price surface implies approximately bimodal risk-neutral
distributions in the long term with an upside movement and a downside movement in the
underlying asset price. Market option contracts on January 4, 2019 include expiries only
within a horizon of 258 days. The transition matrix provides a novel method for long-term
expectations. Although Ross recovered probabilities are empirically close to the risk-neutral
probabilities, the reasons for the implied long-term bimodal risk-neutral distribution are
unclear. Similar to risk-neutral probability distributions, recovered probability distributions
also converge to their long-term stationary distributions. Consistent to Figure 4.18 of the
stochastic discount factors, the stationary recovered probabilities of Ross Basic and Ross Root
indicate strange shapes while the stationary recovered probabilities of Ross Spot Rate and
Ross Power are close to the fitted risk-neutral probability distributions.

-Figure 4.19 here-
Table 3 quantifies the differences between fitted risk-neutral probabilities and recovered

probabilities of different Ross approaches with their moments. For one-period horizon,
moments of fitted risk-neutral distributions are close to moments of market risk-neutral
distributions, indicating again a relatively accurate fitting of the transition matrix with the
market spot state price surface. The first four moments of recovered probability distributions
from Ross Spot Rate and Ross Power are similar to their corresponding fitted risk-neutral
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moments while recovered moments of Ross Basic and Ross Root are largely different from their
corresponding fitted risk-neutral moments. The first four moments of recovered probability
distributions from Ross Stable, and Ross Stable Linear are close to the market risk-neutral
moments. This is consistent with the shapes of their stochastic discount factors in Figure 4.18.
Table 3 panel B confirms in the long term, moments of both recovered probabilities and fitted
risk-neutral probabilities from Ross Spot Rate and Ross Power are close to each other while
moments of recovered probabilities from Ross Basic and Ross Root are different from other
approaches.

-Table 3 here-

4.9. Conclusions

We propose the importance of the term structure of interest rates in Ross recovery. When
the term structure of interest rates is flat, Ross recovery and generalized recovery are always
the same as a risk-neutral estimation. When the term structure of market interest rates is not
constant across different horizons, an interest condition is necessary for Ross recovery. Using
market interest rates on January 4, 2019 as an example, empirical Ross recovered probabilities
are still close to risk-neutral probabilities. Previous literature omits this interest rate condition
in Ross recovery. By incorporating the interest rate condition into Ross recovery, we explain
the difference between the Ross Basic and generalized recovery/ Ross Stable.

In addition, we examine that the period length of transition and the specification of least
squares estimation affect the recovered probabilities. A short one-period transition period
in Ross recovery implies the requirement for a nonnegative root of the long-term transition
matrix which is a strong extra constraint in Ross recovery estimation. Selecting a longer period
of transition would fit better with the market spot state price surface all else equal.

Linear least squares representation of Ross recovery is a fast estimation. However, when
there is no exact transition matrix satisfying the spot state price surface, the linear representation
is not accurate in representing the term structure of Ross recovery implied interest rate. A
nonlinear representation of Ross recovery solves this problem. Further research about the
optimization calculation of the nonlinear representation of Ross recovery may provide a more
accurate estimation of Ross recovery.
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Table 1: A comparison between different approaches to Ross recovery.
This table compares different approaches to Ross recovery approaches in this study. ”Yes” (”No”) indicates whether this assumption/condition is (not) included
in the approach. ”Na” presents that this assumption/condition is not related in the approach. Ross assumption 1 is the time-homogeneous transition matrix
assumption.

Ross Basic Ross Stable Ross Stable Linear Ross Spot Rate Ross Power Ross Root
Ross assumption 1 Yes No No Yes Yes Yes
Linear least squares representation Yes No Yes Yes No Yes
Interest rate condition No Na Na Yes Yes No
Transition period (days) 20 Na Na 20 20 2
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Table 2: Estimation Accuracy.
This table shows the Sum of Squared Errors (SSE) of different Ross recovery approaches with
the S&P 500 weekly option data on January 4, 2019. SSE of Ross Basic, Ross Spot Rate,
Ross Power, and Ross Root show the difference between Ross fitted spot state price surface
and the market spot state price surface. SSE of Ross Stable and Ross Stable Linear show the
difference between the sum of the recovered probability and 100%.

SSE
Ross Basic 2.64e-02

Ross Spot Rate 3.14e-02
Ross Power 3.14e-02
Ross Root 6.74e-02

Ross Stable 2.40e-30
Ross Stable Linear 2.40e-30

141



Table 3: Moments.
This table shows the moments of fitted and recovered probability distributions from different
Ross recovery estimations with the S&P 500 weekly option data on January 4, 2019. In panel
A, mean and standard deviation are annualized.

Panel A: One Period
Mean (%) Std (%) Skewness Kurtosis

Market Risk-neutral probability 0.85 20.36 -0.95 4.37

Ross Basic Fitted 1.00 20.16 -0.87 4.27
Recovered -1.53 27.14 -0.64 3.80

Ross Spot Rate Fitted 0.87 20.37 -0.96 4.40
Recovered 0.85 20.39 -0.96 4.41

Ross Power Fitted 1.17 19.97 -0.85 4.30
Recovered 1.06 20.02 -0.84 4.30

Ross Root Fitted 0.92 19.87 -0.82 4.18
Recovered -19.32 31.55 -0.08 2.92

Ross Stable 1.17 19.97 -0.85 4.30
Ross Stable Linear 1.06 20.02 -0.84 4.30

Panel B: Long Term
Mean (%) Std (%) Skewness Kurtosis

Ross Basic Fitted 1.23 22.05 -0.32 2.01
Recovered 9.14 26.00 -0.85 2.53

Ross Spot Rate Fitted 0.93 21.08 -0.37 2.12
Recovered 0.83 21.15 -0.37 2.14

Ross Power Fitted 0.93 21.08 -0.37 2.12
Recovered 0.83 21.15 -0.37 2.14

Ross Root Fitted 1.74 19.83 -0.48 2.78
Recovered 0.83 31.03 -0.49 2.15
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Figure 4.1: RND surface of SPXW options on January 4, 2019.
Panel A shows the risk-neutral distribution surface. Panel B selects four RNDs from the
surface.

Panel A: RND Surface.
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Figure 4.2: A comparison between RND implied interest rates and the market interest rates.
Market interest rates are based on the US zero-coupon yield. Fitted interest rates are interpo-
lated interest rates. RND implied interest rates are the expected returns of the RND plus the
corresponding dividend yields for each horizon. Sample date is on January 4, 2019.
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Figure 4.3: Ross Basic Transition Matrix.
This figure shows the one-period state price transition matrix based on Ross Basic with SPXW
options on January 4, 2019. Panel B focuses on the states with moneyness from 0.4 to 1.4.
State i is the state at time t. State j is the state at time t+ 1.

Panel A: Transition Matrix

Panel B: Transition Matrix Center
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Figure 4.4: Recovered Ross Basic Probability Distributions.
This figure shows fitted risk-neutral (RN) probabilities and recovered probabilities based on
Ross Basic with SPXW options on January 4, 2019. Fitted RN Probabilities (One Period) are
calculated with the market spot state prices at time t− 1 and the transition matrix. Fitted RN
Probabilities (Multi Periods) are calculated with the market spot state prices at t0 and the nth

power of the transition matrix.
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Figure 4.5: Ross Basic Implied Interest Rates.
This figure shows the implied interest rates based on Ross Basic with SPXW options on
January 4, 2019. Panel A shows the one-period state interest rates. In Panel B, Recovery
implied spot rates (One Period) are calculated with the market spot state prices at time t− 1
and the transition matrix. Recovery implied spot rates (Multi Periods) are calculated with the
market spot state prices at t0 and the nth power of the transition matrix.
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Figure 4.6: Recovered Ross Stable Probability Distributions.
This figure shows market risk-neutral (RN) probabilities and recovered probabilities based on
Ross Stable with SPXW options on January 4, 2019.
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Figure 4.7: The Linear Approximation of Time Discount Factor. This figure shows the linear
approximation of the utility discount factor as αt + βtδ and the original utility discount factor
δt based on Ross Stable Linear with SPXW options on January 4, 2019.
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Figure 4.8: Recovered Ross Stable Linear Probability Distributions.
This figure shows market risk-neutral (RN) probabilities and recovered probabilities based on
Ross Stable Linear with SPXW options on January 4, 2019.
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Figure 4.9: Ross Spot Rate Transition Matrix.
This figure shows the one-period state price transition matrix based on Ross Spot Rate with
SPXW options on January 4, 2019. Panel B focuses on the states with moneyness from 0.4 to
1.4. State i is the state at time t. State j is the state at time t+ 1.

Panel A: Transition Matrix

Panel B: Transition Matrix Center
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Figure 4.10: Recovered Ross Spot Rate Probability Distributions.
This figure shows fitted risk-neutral (RN) probabilities and recovered probabilities based on
Ross Spot Rate with SPXW options on January 4, 2019. Fitted RN Probabilities (One Period)
are calculated with the market spot state prices at time t− 1 and the transition matrix. Fitted
RN Probabilities (Multi Periods) are calculated with the market spot state prices at t0 and the
nth power of the transition matrix.
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Figure 4.11: Ross Spot Rate Implied Interest Rates.
This figure shows the implied interest rates based on Ross Spot Rate with SPXW options on
January 4, 2019. Panel A shows the one-period state interest rates. In Panel B, Recovery
implied spot rates (One Period) are calculated with the market spot state prices at time t− 1
and the transition matrix. Recovery implied spot rates (Multi Periods) are calculated with the
market spot state prices at t0 and the nth power of the transition matrix.
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Figure 4.12: Ross Power Transition Matrix.
This figure shows the one-period state price transition matrix based on Ross Power with SPXW
options on January 4, 2019.

154



Figure 4.13: Recovered Ross Power Probability Distributions.
This figure shows fitted risk-neutral (RN) probabilities and recovered probabilities based on
Ross Power with SPXW options on January 4, 2019. Fitted RN Probabilities (One Period) are
calculated with the market spot state prices at time t− 1 and the transition matrix. Fitted RN
Probabilities (Multi Periods) are calculated with the market spot state prices at t0 and the nth

power of the transition matrix.
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Figure 4.14: Ross Power Implied Interest Rate.
This figure shows the implied interest rate based on Ross Power with SPXW options on January
4, 2019. Panel A shows the one-period state interest rates. In Panel B, Recovery implied
spot rates (One Period) are calculated with the market spot state prices at time t− 1 and the
transition matrix. Recovery implied spot rates (Multi Periods) are calculated with the market
spot state prices at t0 and the nth power of the transition matrix.
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Figure 4.15: Ross Root Transition Matrix.
This figure shows the one-period state price transition matrix based on Ross Basic with SPXW
options on January 4, 2019. Panel B focuses on the states with moneyness from 0.4 to 1.4.
State i is the state at time t. State j is the state at time t+ 1.

Panel A: Transition Matrix

Panel B: Transition Matrix Center
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Figure 4.16: Recovered Ross Root Probability Distributions.
This figure shows fitted risk-neutral (RN) probabilities and recovered probabilities based on
Ross Root with SPXW options on January 4, 2019. Fitted RN Probabilities (One Period) are
calculated with the market spot state prices at time t− 1 and the transition matrix. Fitted RN
Probabilities (Multi Periods) are calculated with the market spot state prices at t0 and the nth

power of the transition matrix.
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Figure 4.17: Ross Root Implied Interest Rates.
This figure shows the implied interest rates based on Ross Root with SPXW options on January
4, 2019. Panel A shows the one-period state interest rates. In Panel B, Recovery implied
spot rates (One Period) are calculated with the market spot state prices at time t− 1 and the
transition matrix. Recovery implied spot rates (Multi Periods) are calculated with the market
spot state prices at t0 and the nth power of the transition matrix.
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Figure 4.18: Stochastic Discount Factors.
This figure compares the inverse of stochastic discount factor m−1 = zj/(z0δ). The horizontal
line is the stochastic discount factor of a constant one.
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Figure 4.19: Long-Term Probability Distributions.
This figure compares the long-term (10 years) probability distributions from different Ross
recovery approaches. The dash lines are fitted risk-neutral probability distributions. The solid
lines are recovered probability distributions.
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Appendix: Least Squares Estimation for Ross recovery

This section explicitly provides the standard C ·x−d form linear equation system for Ross
recoveryn. In a standard C · x− d form linear equation system, x is a column vector with n

unknown variables, C is a matrix with n columns, d is a column vector with the same length as
the rows of matrix C. The MATLAB function lsqnonneg provides a fast and reliable solution
to a Standard C · x− d form linear equation system.

Least Squares Estimation for Ross Basic

Given the market spot state price surfaces Πa = [Π′
a1, ...,Π

′
ai, ...,Π

′
aT ]

′, where Πai is the
row vector in Πa, Πb = [Π′

b1, ...,Π
′
bi, ...,Π

′
bT ]

′, where Πbi is the row vector in Πb, and the state
price transition matrix A = [A1, A2, ..., AN ], where Aj is the column vector in the transition
matrix. A row vector with all zero entries 0N = [0, ..., 0]N has the same length as the number
of states N in transition matrix A. The original matrix equation Πb = Πa ×A is equivalent
to a new equation system as



C1

C2

...
Ci

...
CT


×



A1

A2

...
Aj

...
AN−1

AN


=



Π′
b1

Π′
b2
...

Π′
bi
...

Π′
bT


,where Ci =



Πai 0N ... 0N ... 0N

0N Πai ... 0N ... 0N

... ... ... ... ...
...

0N 0N ... Πai ... 0N

... ... ... ... ...
...

0N 0N ... 0N ... Πai


(A.4.1)

such that the new equation system follows the standard C · x− d form.
Similarly, Ross Root also has a standard C · x− d form by replacing the transition period

in Ross Basic to a shorter period.
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Least Squares Estimation for Ross Spot Rate

Ross Spot Rate has an additional interest rate condition in comparison to Ross Basic
estimation. The sum of fitted spot state prices equals the sum of market spot state prices for
any horizons. With a unit row vector e = [1, ..., 1]N , the interest rate condition is



eC1

eC2

...
eCi

...
eCT


×



A1

A2

...
Aj

...
AN−1

AN


=



∑
Πb1∑
Πb2

...∑
Πbi

...∑
ΠbT


,where Ci =



Πai 0N ... 0N ... 0N

0N Πai ... 0N ... 0N

... ... ... ... ...
...

0N 0N ... Πai ... 0N

... ... ... ... ...
...

0N 0N ... 0N ... Πai


(A.4.2)

This interest rate condition is applied to Ross Basic estimation,



C1

C2

...
Ci

...
CT

ωeC1

ωeC2

...
ωeCi

...
ωeCT



×



A1

A2

...
Aj

...
AN−1

AN


=



Π′
b1

Π′
b2
...

Π′
bi
...

Π′
bT

ω
∑

Πb1

ω
∑

Πb2

...
ω
∑

Πbi

...
ω
∑

ΠbT



whereCi =



Πai 0N ... 0N ... 0N

0N Πai ... 0N ... 0N

... ... ... ... ...
...

0N 0N ... Πai ... 0N

... ... ... ... ...
...

0N 0N ... 0N ... Πai


(A.4.3)

where the weight parameter ω (ω is 100000 in this chapter to guarantee the interest rate
condition is satisfied) determines the relative importance between Ross Basic and the interest
rate condition. Therefore, Ross Spot Rate as (A.4.3) is a standard form C · x− d least square
problem.
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Chapter 5

Conclusions and Suggestions for Future
Research
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This thesis is an effort to understand the option implied information. It consists of three
essays on political risk, extended trading hours, and Ross (2015) recovered probability respec-
tively.

In the first essay, we examine the Brexit referendum that took place on 23rd June 2016.
The option market can ex ante detect and quantify the political risk due to a scheduled political
event. Risk-Neutral Densities estimated by the non-parametric method developed by Figlewski
(2010) present bimodal distributions with a left mode indicating large potential downside
movement from the Leave outcome of the Brexit referendum. The unusual bimodal Risk-
Neutral Distribution is associated with an Implied Volatility curve with local concavity. Option
implied event probabilities following the method by Borochin and Golec (2016) show an
independent source of expected probability for the outcome of the Brexit referendum besides
public media polls and betting implied odds. Based on the large swings in outcome probabilities
during the counting process of the Brexit referendum, the impacts of the Brexit referendum
on financial markets with both Leave and Remain outcomes are consistent with the ex ante
expectations in the option markets. Besides, the option markets distinguish the differential
impacts of a political event on different financial markets. The option markets show significant
political risk with GBPUSD and less pronounced risk with FTSE 100. GBPUSD rates and
FTSE 100 index movements after the Brexit referendum validate the ex ante expectation from
the option market.

In the second essay, we compare the market quality around the introduction of extended
trading hours for S&P 500 options. This essay contributes to the literature about after-hours
financial markets (see Barclay and Hendershott, 2003, 2004; Chen, Yu, and Zivot, 2012;
Dungey, Fakhrutdinova, and Goodhart, 2009; Jiang, Likitapiwat, and Mcinish, 2012; Tsai,
2010) by using the introduction of extended trading hours as a quasi-natural experiment. After
controlling the fixed effects from other variables by using S&P 500 SPDR ETF options, we
present evidence that the introduction of extended trading hours has enhanced market quality
in the following regular trading hours in terms of bid-ask spreads and asymmetric information
costs. Extended trading hours play an important role in determining the opening price in the
option market. The opening process of S&P 500 options from 09:15 to 09:30 contributes
little to the opening level of S&P 500 index options after introducing the extended trading
hours. The put-call parity implied index level and the Implied Volatility at the opening of
regular trading hours are close to the values at the close of extended trading hours compared
to the values at the close of the previous trading day. The extended trading hours are also
informative for future asset prices despite extreme illiquidity in the extended trading hours.
The Implied Volatility at the end of extended trading hours provides significantly additional
information for the realized volatility in the following regular trading hours in comparison to
models based on information from the previous day.

In the third chapter, we present the importance of the term structure of interest rates
for Ross recovered probabilities (Ross, 2015) and generalized recovery (Jensen, Lando, and
Pedersen, 2019). Previous applications of Ross recovery (such as Audrino, Huitema, and
Ludwig, 2021; Jackwerth and Menner, 2020; Ross, 2015) omit a interest rate condition and
result in significantly different recovered probabilities. After incorporating the interest rate
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condition, Ross recovered probability is identical to risk-neutral probability when the term
structure of interest rate is flat and is close to risk-neutral probability when the term structure
of interest rate is upward sloping with a market example. The link between risk-neutral
probability and Ross recovered probability through the term structure of interest rates supports
that Ross recovered probabilities are long-term risk-neutral probabilities (Borovička, Hansen,
and Scheinkman, 2016) instead of physical probabilities. Besides, although Ross recovery
Theorem allows a flexible shape of a pricing kernel, hidden constraints in Ross recovery,
including the length of transition period and the Linear least squares representation, restrict
the shape of the pricing kernel and should be noticed before any empirical conclusions.

This thesis can be further studied in different directions based on the analysis in each
essay. The first essay can be easily extended to an analysis of political, or more general
analysis of any risk due to scheduled polarised events. The quasi-natural experiment analysis
between different options with the same underlying asset in the second essay can be applied to
other market structure changes. The third essay empirically points out the limitation of Ross
recovered probability. However, the time homogeneous transition matrix assumption in Ross
recovery theorem may still be applied for further studies. With the help of the Markov chain,
the term structure of risk-neutral distribution is connected across periods and can to applied to
study the horizon effect in the option market. As Ross recovery requires only a snapshot of
option prices, the time homogeneous transition matrix can be applied to high frequency data
for intraday analysis.
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