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Abstract

Since the 1980s, various models have been developed to simulate human thermoregula-

tion. These models have undergone many modifications, maturing from simple geometrical

shapes to more advanced polygon meshes. However, state-of-the-art models still lack the flex-

ibility to be person specific and simulate thermoregulation with anatomical accuracy. Com-

putational human phantoms (CHP), such as voxel phantoms, are anthropomorphic models

developed from person-specific medical imaging data. These models provide the flexibility

to represent a person-specific simulation domain with anatomical accuracy. However, using

voxel phantoms for thermoregulation is challenging. This dissertation focuses on the chal-

lenges of using voxel phantoms for thermoregulation simulation and proposes solutions to

overcome them.

The first challenge associated with voxel phantoms is the stair-step effect introduced due

to the cuboidal nature of voxels. To understand and quantify the surface area error due to

the stair-step effect, a sphere was used, as a sphere represents the worst-case scenario for

3D curved domains. The overestimation of surface area for a sphere was found to be 50%.

Many solutions are available in the literature to reduce this error, but all of them rely on

an unstructured mesh. To maintain the structured nature inherent in voxel phantoms, a

structured cleaving method was developed. This method divides a pixel into four triangles

and a voxel into 24 tetrahedrons. Using the smoothing method described in this dissertation,

the overestimation of the surface area of a sphere was reduced to 16%. This method was

further tested on four tumors obtained from MRI scans. The overestimation of surface area

for these tumors was reduced from 47% to 17% on average using the structured cleaving

method.

The second challenge of thermoregulation models lies in the multiphysics aspect of ther-

moregulation. Blood flow in vasculature is predominantly modeled as one-dimensional,



whereas the blood flow in capillary beds is modeled as three-dimensional. This results in a

mixed-dimensional mesh of vasculature and the tissue-capillary bed. This mixed-dimensional

coupling was addressed using the Dirac distribution function and algorithm obtained from

the literature. This algorithm was further advanced by adding multiscale coupling due to

the difference in mesh resolutions of segmented vasculature and tissue voxels. The mixed-

dimensional, multi-scale mesh was used to create a blood flow - heat transfer coupled solver

and simulate this multi-physics phenomenon on frog tongue data obtained from the litera-

ture. The resulting framework is called the Voxelized Multi-Physics Simulation Framework

(VoM-PhyS), which provides a strong foundation for a full-body thermoregulation simula-

tion.

The third challenge with any voxel domain generated from imaging data is associated with

voxel resolution. Due to the dimensional scale of blood vessels, not all vessels are captured in

a given voxel resolution. This loss of segmentable vascular data results in discontinuous blood

vessels. The pre-capillary vessels, like arterioles, provide the highest resistance to blood flow.

Due to the resolution limitations, these pre-capillary vessels are modeled with the tissue as

a porous domain. In other words, using the porous media method, pre-capillary vessels get

modeled with a capillary bed in a tissue voxel. This results in a loss of information that

could have been modeled if the pre-capillary vessels were segmented and modeled distinct

from capillary bed. These vessels can only be modeled if a very high image resolution is

used, which would also increase the computational cost of the entire simulation domain.

Instead, a mathematical representation of the pressure drop induced in these unsegmented

blood vessels is used. A part of this dissertation focuses on developing a mathematical

equation to calculate the pressure drop parameter, which can be used to accurately model

the flow resistance offered by pre-capillary vessels and simulate blood flow. This dissertation

provides the equations to calculate the pressure drop parameters for any given vasculature

and tissue domain, provided the total pressure drop across the simulation domain and the

total blood steady-state flow rate are known. These equations provide deeper insight into

vascular resistance and strengthen the VoM-PhyS Framework by allowing the flexibility to

reduce the mesh size and computational memory requirements. The effect of substituting



segmented vessels with mathematical pressure drop parameters on heat transfer is analyzed

by simulating a 3D vascular domain of 32 terminal vessels and five generations of bifurcation.

Each generation is successively removed and substituted with the pressure drop parameter

to analyze the error in heat transfer due to a lack of segmentation data. To reduce this error,

two methods are proposed and demonstrated to show considerable energy error reduction.
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Abstract

Since the 1980s, various models have been developed to simulate human thermoregula-

tion. These models have undergone many modifications, maturing from simple geometrical

shapes to more advanced polygon meshes. However, state-of-the-art models still lack the flex-

ibility to be person specific and simulate thermoregulation with anatomical accuracy. Com-

putational human phantoms (CHP), such as voxel phantoms, are anthropomorphic models

developed from person-specific medical imaging data. These models provide the flexibility

to represent a person-specific simulation domain with anatomical accuracy. However, using

voxel phantoms for thermoregulation is challenging. This dissertation focuses on the chal-

lenges of using voxel phantoms for thermoregulation simulation and proposes solutions to

overcome them.

The first challenge associated with voxel phantoms is the stair-step effect introduced due

to the cuboidal nature of voxels. To understand and quantify the surface area error due to

the stair-step effect, a sphere was used, as a sphere represents the worst-case scenario for

3D curved domains. The overestimation of surface area for a sphere was found to be 50%.

Many solutions are available in the literature to reduce this error, but all of them rely on

an unstructured mesh. To maintain the structured nature inherent in voxel phantoms, a

structured cleaving method was developed. This method divides a pixel into four triangles

and a voxel into 24 tetrahedrons. Using the smoothing method described in this dissertation,

the overestimation of the surface area of a sphere was reduced to 16%. This method was

further tested on four tumors obtained from MRI scans. The overestimation of surface area

for these tumors was reduced from 47% to 17% on average using the structured cleaving

method.

The second challenge of thermoregulation models lies in the multiphysics aspect of ther-

moregulation. Blood flow in vasculature is predominantly modeled as one-dimensional,



whereas the blood flow in capillary beds is modeled as three-dimensional. This results in a

mixed-dimensional mesh of vasculature and the tissue-capillary bed. This mixed-dimensional

coupling was addressed using the Dirac distribution function and algorithm obtained from

the literature. This algorithm was further advanced by adding multiscale coupling due to

the difference in mesh resolutions of segmented vasculature and tissue voxels. The mixed-

dimensional, multi-scale mesh was used to create a blood flow - heat transfer coupled solver

and simulate this multi-physics phenomenon on frog tongue data obtained from the litera-

ture. The resulting framework is called the Voxelized Multi-Physics Simulation Framework

(VoM-PhyS), which provides a strong foundation for a full-body thermoregulation simula-

tion.

The third challenge with any voxel domain generated from imaging data is associated with

voxel resolution. Due to the dimensional scale of blood vessels, not all vessels are captured in

a given voxel resolution. This loss of segmentable vascular data results in discontinuous blood

vessels. The pre-capillary vessels, like arterioles, provide the highest resistance to blood flow.

Due to the resolution limitations, these pre-capillary vessels are modeled with the tissue as

a porous domain. In other words, using the porous media method, pre-capillary vessels get

modeled with a capillary bed in a tissue voxel. This results in a loss of information that

could have been modeled if the pre-capillary vessels were segmented and modeled distinct

from capillary bed. These vessels can only be modeled if a very high image resolution is

used, which would also increase the computational cost of the entire simulation domain.

Instead, a mathematical representation of the pressure drop induced in these unsegmented

blood vessels is used. A part of this dissertation focuses on developing a mathematical

equation to calculate the pressure drop parameter, which can be used to accurately model

the flow resistance offered by pre-capillary vessels and simulate blood flow. This dissertation

provides the equations to calculate the pressure drop parameters for any given vasculature

and tissue domain, provided the total pressure drop across the simulation domain and the

total blood steady-state flow rate are known. These equations provide deeper insight into

vascular resistance and strengthen the VoM-PhyS Framework by allowing the flexibility to

reduce the mesh size and computational memory requirements. The effect of substituting



segmented vessels with mathematical pressure drop parameters on heat transfer is analyzed

by simulating a 3D vascular domain of 32 terminal vessels and five generations of bifurcation.

Each generation is successively removed and substituted with the pressure drop parameter

to analyze the error in heat transfer due to a lack of segmentation data. To reduce this error,

two methods are proposed and demonstrated to show considerable energy error reduction.
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Chapter 1

Introduction

Understanding human thermal response is challenging due to the complex physical, biolog-

ical, and chemical processes involved. Human thermoregulation models have been used in

fields of vehicular comfort1, biomedical engineering2, human thermal comfort3;4, buildings

and HVAC4–6, and medicine7. The ability of the human body to regulate its temperature

as a response to feedback is amazing and equally complex. The hypothalamus acts as a

thermostat that receives input signals from different body parts and responds with control

mechanisms to regulate heat exchange and create a homeothermic core. This process of re-

ceiving input signals and providing feedback response is called the human thermoregulation

mechanism. The models used to simulate these phenomena are termed human thermophys-

iological or human thermoregulatory models.

Thermophysiological models consist of two main components: the simulation domain,

which is the human body, and control equations, which are used to determine sweat rate,

shiver rate, changes in respiration rate, and vasomotion. These equations use core tempera-

ture, skin temperature, ambient temperature, and other environmental parameters such as

humidity and thermal radiation to calculate the human thermal response. Control equa-

tions, when coupled with the human anatomical domain for simulation, provide a complete

thermophysiological model. Representation of the simulation domain is critical. Greater

accuracy in the model’s anatomical features can improve the simulation result. In the ther-
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moregulation models found in literature, simple geometrical shapes that can be defined by

quadratic equations are used to model human anatomy. These models are good for prelim-

inary analysis but suffer major limitations due to the lack of anthropomorphic data in the

simulation domain.

Like anatomical accuracy, blood flow modeling affects thermoregulation simulation. Blood

flow plays a crucial role in thermoregulation. Vasomotion regulates the blood flow and its

redistribution within the domain. This provides required fine-tuning to control heat ex-

change occurring between the skin and the environment. By varying blood circulation, the

human body can remove excess heat from a local tissue experiencing higher temperatures or

reduce loss of heat to the environment to conserve heat. Thus, the location of blood vessels,

blood flow rate, and heat transfer between blood vessels and tissue must be understood and

modeled for a complete thermophysiological simulation.

Computational human phantoms (CHPs) are anthropomorphic models generated from

medical imaging data that provide a high-level of accuracy in representing the anatomical

features of human organs and tissues. These phantoms are extensively used in research areas

like radiation dosimetry and biomedical engineering. Surprisingly, the utilization of these

anatomically accurate models in the human thermoregulation field is not reported. This

dissertation focuses on the possibility of using CHP for human thermoregulation research

and associated challenges.

1.1 Problem Statement and Scope of Research

Fig. 1.1 illustrates the objectives of this dissertation. The simulation domain shown in

Fig. 1.1 represents a CHP generated from magnetic resonance imaging (MRI) scans. The

ability of CHPs to be person-specific provides the flexibility to make it unique and applicable

to each individual’s needs and simulate thermoregulation. The control equations to be

analyzed in this dissertation include heat exchange with the environment and heat exchange

between blood vessels and tissue. For modeling heat transfer between blood vessels and

tissue, a mathematical framework to model unsegmented blood vessels is needed in addition
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to blood flow coupled heat transfer solver. The distinct objectives of this dissertation are as

follows:

Figure 1.1: Research outline illustration

1. Identifying the challeges with using CHPs for thermoregulation

Understand the challenges associated with using CHPs for thermoregulation. Conduct

literature review to identify possible solutions in literature to overcome the challenges.

2. Simulating heat exchange between CHP and environment.

Voxel phantoms generated from medical imaging data have incorrect surface areas. The

overestimation of surface area results in inaccurate thermal analysis. The solutions

found in the literature require surface fitting using modeling tools or surface area

correction using a reference domain. An algorithm that smoothens voxelized surfaces

without referring to a reference domain is needed to make the simulation truly person-

specific with the flexibility to model organs directly from imaging data. This algorithm,

its applications, and its drawbacks are covered in this dissertation.
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3. Simulating coupled multiphysics equations.

Thermal regulation in biological domains consists of blood flow coupled with heat

transfer. The effect of convective heat exchange between large blood vessels and tissue

on bioheat transfer has been debated. Due to the lack of in-vivo experimental data,

this remains unknown. However, the location of blood vessels and the capillary net-

work is known to help regulate heat transfer using vasomotion. Part of this dissertation

focuses on developing a multiscale, multidimensional, multiphysics framework for sim-

ulating blood flow coupled with heat transfer. This simulation framework is adaptable

to consider heat exchange between large blood vessels and tissue, along with the heat

exchange occurring within the unsegmented pre-capillary vessels. The ability of this

novel simulation framework to control the location of heat transfer within the vascula-

ture provides a considerable advantage over existing bioheat equations and simulation

frameworks.

4. Simulating flow resistance of unsegmented vascular data.

One of the major drawbacks of voxel phantoms is limitations associated with voxel

resolution. Capillary beds in the human body exist on the scale of micrometers. A

CHP with micrometer voxel size would require excessive memory due to large mesh

size. Thus, obtaining a CHP with vasculature segmented down to capillary bed is a

challenge with existing methods. To simulate the unsegmented capillary bed, tissue

voxels are modeled as porous media with porosity representing the density of capillary

bed in the respective tissues and organs. However, the vasomotion that controls blood

flow and resultant heat transfer occurs in pre-capillaries, and so representing them is

crucial. Furthermore, the resolution of imaging data may not provide segmentable pre-

capillary vessels. Hence, a mathematical model to predict the flow resistances of these

pre-capillary vessels is needed. Chapter 5 of this dissertation presents mathematical

equations used to calculate the flow resistance of unsegmented pre-capillaries. These

equations are one of the major contributions of this dissertation to science.
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Chapter 2

Literature Review

This chapter provides a literature review and a more detailed discussion of dissertation aims.

The first section of this chapter elaborates on the various human thermoregulation models

found in the literature. This review reveals that human thermoregulation research still relies

on stylized phantoms to represent the human anatomy. Modern CHPs should be used to

advance the field of thermoregulation research. A brief review of CHPs is provided in this

chapter.

The other aspect of thermoregulation modeling is the bioheat transfer equations. There

are various bioheat transfer models found in the literature. A review of these existing bioheat

transfer models and their limitations is provided in a mini-review in this chapter. This mini-

review of bioheat transfer equations demonstrates that a simulation framework is required to

accommodate the complexities of bioheat transfer and not be restricted to any single bioheat

transfer equation.

Following that, the main goal of this dissertation to develop a modeling and simulation

framework for thermoregulation for a voxel phantom is emphasized, with three primary chal-

lenges elaborated. Finally, the solutions obtained in literature to address these challenges,

their limitations, and the novel methods developed as part of this dissertation to address

these challenges are introduced.
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2.1 Human Thermal Modeling

Thermoregulation is a vital process for the human body to maintain its homeothermic core

and not readily reach catastrophic conditions such as hyperthermia or hypothermia. Various

attempts to model and simulate this complex phenomenon have been undertaken. The mod-

els used for simulating the human body and its thermoregulation have ranged from a single

lumped system8 to highly complex models used with the latest CFD technology9. A rough

classification scheme divides the existing thermophysiological models into five categories, as

elaborated below. A timeline to illustrate the modifications of these models over time is

given in Fig. 2.1. This timeline is not exhaustive but attempts to specify important models

developed over the course of history.

2.1.1 Single Segment Models

Single-segment models consider the body as a lumped object and do not provide a detailed

thermal distribution within the anatomy. They are further divided into one-node or multi-

node models, based on the location and number of nodes where temperature is determined.

1. One-Node or Empirical Models

One-node models are empirical models that consider the entire human body as one

lumped object exposed to the environment. Franger8, and Givoni and Goldman8 are

examples of these models. These models are generated by collecting data on the hu-

man thermoregulatory reaction to environmental conditions and fitting a mathematical

model. The empirical models are thus applicable only if the exact conditions of the

environment and the subject are met. With variations of environmental and biological

conditions of the subject, empirical models face challenges if those conditions were not

considered when the model was developed.
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Figure 2.1: Timeline of thermophysiological models
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2. Two-Node Models

Empirical models provide a database of the general response of the human body to

certain environmental conditions. The need for a detailed thermal audit provided

more insight into thermoregulation mechanisms within the human body, resulting in

single-segment, two-node models. Gagge10 developed the first single-segment, two-

node model, which has undergone many modifications. Takada11, Kingma11, and Yu12

are other examples of single-segment two-node models. These models divide the human

body in a shell-and-core arrangement where the shell represents the skin layer. Such

models helped determine blood flow distribution between the core and skin. However,

these models do not address the intricacies of human anatomy and organ placement

within the core.

2.1.2 Multi Segment Models

Limitations of single-segment models were overcome by defining different segments allocated

to represent different parts of the human body. These multi-segmented models can be further

classified as follows:

1. Two-Node Models

One of the most basic representations of multi-segment, two-node model is the Jones

model13, which is a modification of the Gagge model10. The Jones model retains

the shell and core structure while dividing the skin further into multiple segments to

represent skin over different parts of the body such as head, torso, arms, and legs.

Other models shown in Fig 2.1, which belong to multi-segment two-node models, have

similar arrangements11. One of the latest models developed by Yu et al.12 uses a two-

node model coupled with a nonlinear heart-rate regulation model to determine human

thermal behavior.

2. Multi-Node Models

The multi-node and the multi-element models are the two most well-developed and

detailed categories of the human thermal model family. The Stolwijk model14 divided
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the human body into 25 nodes and six segments to predict the thermal response of

astronauts in outer space. A central blood pool was used to act as the heart from

which the blood circulates to different nodes across the body. The Stolwijk model does

not consider crossflow heat exchange between arteries and veins nor the local variation

of blood flow and other tissue properties. This model provided a foundation for highly

detailed models like Fiala15–17, Tanabe18, Salloum19;20, Lai and Chen21, and others.

The Fiala15–17 model is a state-of-the-art model used to represent human thermoregu-

lation for subjects exposed to different environments. Tanabe18 modified the Stolwijk

model by increasing the number of nodes from 25 to 65 within 16 body segments. The

Lai and Chen21 model is a modification of the Fiala model that simulates non-uniform

thermal environment surrounding the human subject.

3. Multi-Element Models

Multi-element models are similar to multi-node models, with the major difference being

that each element is constrained to have only one location where the quantity is calcu-

lated. In other words, multi-node models have sub-layers or sub-sections that divide

the element further, whereas in multi-element models, there are no such sub-divisions

within the element. The Wissler model22 is one the most developed multi-element

models, consisting of a detailed blood-flow network based on Pennes’ bioheat equa-

tion23. The Smith24 model and Sun’s25 model are based on Wissler. While Wissler

and Smith used cylinders to represent the anatomy, Sun introduced curvature on the

cylinders to accurately represent human limbs.

The study of human thermoregulation research reveals the fact that almost all models

used are stylized, incorporating geometrical objects such as cylinders and spheres to repre-

sent the human anatomy. Recent models like Nelson et al.26, Tanabe18, 3-D Virtual Human

Model27;28 and Finite Element Model (FEM)29 are adding the anatomical complexities re-

quired for state-of-the-art simulation tools. A detailed review of thermophysiological models

can be found in Refs11;30;31.
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2.2 Computational Human Phantoms (CHPs)

A parallel branch of research that deals with biomedical applications32 and radiation dosime-

try33–35 makes use of CHPs. A brief overview of the advancement in the CHPs is presented

below.

Figure 2.2: Model of the left lung (a) The CSG-type modeling before the boolean operation
(subtraction) is performed between two ellipsoids (b) End result after subtraction (c) A voxel
representation of the lung (d) A BREP-type of modeling of the same lung using polygon
mesh. (Used with permission from Xu.36)

Advancements in CHPs

Radiation dosimetry aims to determine the amount and spatial distribution of energy de-

posited in the human anatomy due to exposure to various radiation sources33–37. Accurate

radiation dosimetry relies on accurate anatomical parameters of the organs and human body

for simulation. Anthropomorphic phantoms provide realistic models of human organs and

tissues. CHPs can be stylized models developed using solid geometrical shapes like cylinders

or ellipsoids, or highly advanced with B-Spline smoothening and mesh surfaces. A brief

review of different categories of CHPs is provided below.

• Stylized Phantoms or Constructive Solid Geometry (CSG)

Stylized phantoms are made using simple geometrical shapes like ellipsoids, spheres,
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cuboids, cylinders, etc., that can be defined by quadratic equations. An example of a

stylized phantom lung is shown in Fig. 2.2.a and Fig. 2.2.b. These models resemble the

initial stylized models used in thermoregulation research described in the prior section.

Similar to the challenge experienced for thermoregulation, many of the human body

organs and anatomical features cannot be defined using quadratic equations. The

Revised ORNL (RORNL)38;39 phantom series is an example of a group of stylized

phantoms.

• Voxel Phantoms

Voxel phantoms provided a one of its kind anthropomorphic models for computational

simulations. Medical imaging data are collected for an individual and used to recon-

struct the anatomy36;40;41 by extruding the pixels to the height of imaging slice thick-

ness. An example of this is shown in Fig. 2.2.c, where a left lung is constructed using

voxels. The challenges associated with voxel phantoms are elaborated in Ref36;42, and

will be described later in this chapter. One of the primary limitations of voxel phantoms

is associated with the image resolution used to collect medical image data. Recent ad-

vancements have resulted in multiscale and multiresolution models43 to overcome this

limitation. In spite of their limitations, voxel phantoms provide major advantages over

stylized phantoms as elaborated in Ref32;36;39;44. One of the major advantages of the

voxel phantom lies in its flexibility and adaptability for existing simulation codes32;45.

Since voxels represent a finite volume element, they are easily transferable to other

finite volume simulations without requiring mesh modifications.

• BREP Phantoms or Mesh Phantoms

Many challenges associated with voxel phantoms were overcome by using polygon-mesh

or NURBS (non-uniform rational B-spline) surfaces32;36;42;46–48. In Boundary Repre-

sentation (BREP) phantoms, the organ’s surface is represented using polygon meshes

which are easily interchangeable with BREP data structures. Using a surface render-

ing method, polygon meshes are fitted over the surface of the voxelized organ, and
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refinement techniques are used to smoothen the surfaces42. Since tetrahedral meshes

are more common for simulation purposes, recent advancements have generated algo-

rithms to convert polygon-mesh phantoms to tetrahedral mesh phantoms49. However,

the major challenge for mesh phantoms is converting complex organs and shapes from

voxel phantoms to mesh phantoms. This process requires manual hours to fine-tune

the NURBS surfaces on voxelized organs and can be cost and labor intensive if required

to be individualized to a specific subject.

2.3 Bioheat Transfer Models

Various models have been developed to simulate the bioheat transfer mechanisms. However,

the complexities associated with metabolic heat generation, heat exchange, blood flow, and

vasomotion makes it challenging to have one model that explains the bioheat transfer thor-

oughly. Due to this, many different equations and models can be found in the literature with

various assumptions for simplicity and their limitations. A small review of a handful of these

models that were considered important is given below. Many more models are available in

the literature not covered in this review.

The available bioheat models can be classified into perfusion-based, countercurrent, and

porous media-based models. Two other classifications of bioheat models exist: phase lag

and statistical models. The physics of phase lag in bioheat equations has been criticized and

debated. The research field has no consensus if the phase lag theory is valid. A detail review

of experimental and numerical validation of dual phase lag bioheat models can be found in

Ref.50. Staistical models are considered obsolete with the advancements in computational

simulations. Due to these reasons, the phase lag models and statistical models are not

considered in this review.

12



2.3.1 Perfusion-Based Bioheat Models

In perfusion-based models, blood is considered to perfuse the tissue domain once it leaves

the segmented blood vessel. Perfusion controlled by the perfusion parameter depends on the

type of tissue. The Pennes Bioheat Model23 is one of the most famous and commonly used

models to simulate bioheat transfer using perfusion phenomena.

Pennes Bioheat Equation

Pennes23 assumes that blood does not exchange heat as it flows in a major supply artery and

vein. Instead, the warm blood flowing in an artery reaches the capillary bed and immediately

achives thermal equilibrium. Thus, the tissue and blood are considered to be at the same

temperature. Once the blood has perfused across the tissue domain, it enters the venous

system at tissue temperature. The Pennes bioheat equation (BHE) is shown in Eq. (2.1)

where ωpennes represents the Pennes perfusion parameter.

ρtcp,t

(
∂Tt
∂t

)
= ∇(kt∇Tt) + ωpennescp,b[Ta − Tt] + q̇ (2.1)

The primary challenges with Pennes bioheat equation are intrinsic to the assumptions

involved51. In the Pennes BHE, the blood perfusion rate is determined via curve-fitting to

experimental data. Thus, this perfusion rate can be used for predicting a thermal map for

tissue only if the same environmental and biological conditions are met. The other limitation

of the Pennes BHE is that the perfusion parameter ωpennes is a scalar quantity. Thus, the

Pennes BHE does not account for spatial variation of perfusion but considers it to be uniform

in the volume. This assumption is not true, as vasomotion varies the blood perfusion in tissue

and organs.

13



Wulff Continuum Model

Some limitations of the Pennes BHE were overcome by the Wulff Continuum Model52. The

bioheat equation proposed by Wulff is shown in Eq. (2.2). The Wulff BHE proposes a

vectorized perfusion parameter to simulate the convective heat exchange between blood

vessels and tissue.

ρcp
∂Tt
∂t

= kt∇2Tt + ρcpv⃗b∇Tb + q̇ (2.2)

In Eq. (2.2), the v⃗b represents the blood velocity in capillaries. Similar to Pennes BHE,

Wulff assumes thermal equilibrium between tissue and blood in capillary bed. The estimation

of local blood velocity is complex and thus makes it difficult to use the Wulff BHE52–54. In

addition, Wulff does not consider the effect of heat transfer between large vessels and tissue,

and assumes heat exchange occurs only in the capillary bed.

Chen and Holmes Model

The Wulff BHE and the Pennes BHE consider thermal equilibrium between tissue and cap-

illary bed, and ignore heat transfer between larger vessels and tissue. Chen and Holmes55

proposed not to consider a single continuum model to simulate bioheat transfer but rather

model it using two separate continuums representing tissue and blood, respectively. Chen

and Holmes proposed a model considering larger vessels and their effect on bioheat transfer.

The BHE proposed by Chen and Holmes is given in Eq. (2.3a).

ρcp
∂Tt
∂t

= ∇ (keff∇Tt) + ω∗ρbcp,b [T
∗
a (rin)− Tt]− ρbcp,bv⃗b∇Tt + q̇ (2.3a)

keff = kt + kp (2.3b)
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Chen and Holmes introduced the concept of thermally significant vessels and thermal equili-

bration length. The thermal equilibration length is defined as the minimum length required

for a vessel of a specific diameter to achieve thermal equilibrium with the surrounding. If

a blood vessel has a length less than the required thermal equilibration length, the vessel

is termed a “thermally significant vessel”. This model shows that thermal equilibrium is

achieved by blood vessels whose diameter is within 50 µm and 300µm54;55.

In Eq. (2.3a), keff represents the effective thermal conductivity due to tissue kt and

perfused blood kp. The temperature of blood entering an artery of radius rin is T ∗
a (rin), and

the velocity of blood is v⃗b. The perfusion term ω∗ represents the perfusion rate for blood

vessels with a smaller radius than the arterial blood vessel. A detailed vascular network

is required to accurately implement Chen and Holmes method. Thus, the availability of

vascular network limits the applicability of this method.

2.3.2 Countercurrent Bioheat Models

Perfusion models focus on the capillary bed and tissue while failing to model the heat

exchange between larger vessels and tissues, except the Chen and Holmes55 model. The

counter-current flow behavior of arteries and veins plays a crucial role in bioheat transfer.

The major arteries and veins always run in pairs and are in proximity to each other. This

results in counter-current heat exchange, where a warm fluid loses heat to a cooler fluid

flowing in the opposite direction. This anatomical feature of arteries and veins was studied

and considered in bioheat equations. The models that assume countercurrent flow to affect

bioheat transfer are classified as countercurrent bioheat models.

Mitchell and Myers

Mitchell and Myers56 were the pioneers of the theory of counter-current heat exchange in

bioheat transfer54. Considering control volumes for arterial and venous flow, respectively,

and applying the conservation of energy principle, they proposed a two-equation model. In

these coupled set of equations, Eq. (2.4) is used to calculate the temperature of arterial blood
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and Eq. (2.5) is used to calculate the temperature of venous blood.

Ta(x)− Tt
T0 − Tt

= exp

(
(Nv −Na)(x/L)

2

)[
BcoshA(1− x/L) + sinhA(1− x/L)

BcoshA+ sinhA

]
(2.4)

Tv(x)− Tt
T0 − Tt

= exp

(
(Nv −Na)(x/L)

2

)[
BcoshA(1− x/L)− sinhA(1− x/L)

BcoshA+ sinhA

]
(2.5)

where,

Na =
kaAaL

ṁacp

Nv =
kvAvL

ṁvcp

and

A =
√

(Na +Nv)(Na +Nv + 4Ni)/2

B =
√

(Na +Nv + 4Ni)/(Na +Nv)

In Eqs. (2.4) and (2.5), the temperature at a location x is calculated using tissue tem-

perature Tt and temperature at location x = 0 (T0). The temperature at x = 0 is considered

to be known and provided as a boundary condition to solve the coupled equation set. The

nondimensional conductances Na and Nv are calculated using specific thermal conductivities

for arteries and veins, ka and kv, respectively, and the mass flow rates ṁa and ṁv in arteries

and veins, respectively. The nondimensional conductance Ni represents the conductance

ratio between arteries and veins. Eqs. (2.4) and (2.5) are difficult to solve. Three different

conditions and solutions for each are provided in literature56, but the complexities of these

equations make them difficult to use for simulation in bioheat transfer research.
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Keller and Seiler

Keller and Seiler57 developed a bioheat model for the isothermal subcutaneous layers of

tissue. Their model divides the simulation domain into two regions: an isothermal core

and a peripheral region where the temperature varies from the core to the periphery (skin).

Similar to Chen and Holmes55, the Keller and Seiler BHE models not only the counter-

current heat exchange between arteries and veins but also perfusion in the capillary bed.

The Keller and Sieler BHE consists of an energy equation for tissue (Eq. (2.6)), an energy

equation for arterial flow (Eq. (2.7)), and an energy equation for venous flow (Eq. (2.8)).

Eqs. (2.6) - (2.8) are coupled.

kt

(
d2Tt
d2x

)
+

(
h
As

V
+ cpωb

)
[Ta − Tt] + hb

As

V
[Tv − Tt] + q̇ (2.6)

[
(ṁa)0 −

∫ x

0

ωbdx

]
cp

(
dTa
dx

)
+ hb

As,b

V
[Ta − Tt] = 0 (2.7)

[
(ṁv)0 −

∫ x

0

ωbdx

]
cp

(
dTv
dx

)
+

(
cpωb + hb

As,b

V

)
[Tt − Tv] = 0 (2.8)

keff = − δ

Tb − Ts
kt

(
dTt
dx

)
x=δ

(2.9)

After solving the Eqs. (2.6), (2.7), , and (2.8), the effective thermal conductivity (keff )

of the tissue is calculated using Eq. (2.9). The variable δ represents tissue thickness and at

x = δ, the temperature is considered to be skin temperature (Ts). The term As,b represents

the surface area of blood vessel with tissue and V represents the tissue volume. Similar
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to Chen and Holmes55, and Mitchell and Myers56, the Keller and Seigel coupled BHEs are

complex to solve. In addition, Keller and Siegel model is limited by the availability of detailed

vascular data required to simulate the BHE.

Simplified Bioheat Equation (WJM)

Weinbaum et al.58;59 performed anatomical studies on vasculature in a rabbit thigh. In their

findings, they suggested that the deep tissue layer, intermediate layer, and cutaneos layer

have different thermal interactions at the vessel-tissue interface. These differences in vessel-

tissue thermal interactions are due to the variations in vascular geometry, capillary-bed

density, and shunting of blood flow to cutaneous layer58. They thus proposed a three-layer

model, where the cutaneous layer was modeled as a single pair of vessels in the near skin

plexus, the intermediate layer was modeled as a counter-current transverse pair of terminal

vessels, and deep tissue was modeled as isolated countercurrent large vessels54;58. Due to the

difficulties in implementing this higly complex system of bioheat equations, Weinbaum and

Jiji60 proposed a simplified BHE (Eq. (2.10a))

(ρ̄cp)
∂Tt
∂t

− ∂

∂xi

[
(kij)eff

∂Tt
∂xj

]
= −

π2nA2
s,bk

2
b

4kξ
Pe2lj

∂li
∂xi

∂Tt
∂xj

+ q̇ (2.10a)

ξ =
π

cosh−1 (l/2As,b)
(2.10b)

(kij)eff = kt

(
δij +

π2

4ξk2t
nA2

s,bk
2
bPe

2lilj

)
(2.10c)

In the simplified Weinbaum and Jiji BHE (Eq. (2.10a)), Pe represents the nondimensional

Peclet number, n represents the number of vessel pairs crossing the suraface of control volume

per unit area and ξ is the shape factor given by Eq. (2.10b), l represents the length of a blood
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vessel, and ∂li/∂xi represents the angle between a pair of countercurrent blood vessels. If

the blood vessels are perfectly straight, this term is zero. The effective thermal conductivity

of tissue, (kij)eff , is calculated using Eq. (2.10c). Though Eq. (2.10a) was proposed as a

simplified60 version of previous equations58, the model demands additional details of the

vasculature, which remains a challenge to obtain54.

2.3.3 Porous Media Based Bioheat Models

Unlike the continuum models, the porous media based bioheat models consider the matrix

of capillary bed and tissue to be a porous domain of a given porosity ϕ. The porosity of

tissue represents the density of capillary bed in a given tissue or organ. Using the porous-

media assumption, the tissue-capillay system is then divided into solid and fluid domains

with 0 < ϕ < 1 representing the amount of blood in tissue. The porous media based models

that serve as a foundation for other modified versions are described below.

Roetzel and Xuan

Roetzel and Xuan61 proposed a two equation bioheat model based on the porous media

assumption for tissue. The major deviation from the continuum based approach was in their

assumption of local non-thermal equilibrium between blood vessels and tissue. The energy

equation for tissue (solid region) is given in Eq. (2.11) and for blood (fluid region) is given

in Eq. (2.12).

(1− ϕ)(ρcp)
∂Tt
∂t

= kt,eff∇2Tt + hbAs,b(Tb − Tt) + (1− ϕ)q̇ (2.11)

ϕρcp

[
∂Tb
∂t

+ v⃗b∇Tb
]
= kb,eff∇2Tb + hbAs,b(Tt − Tb) (2.12)

19



The effective thermal conductivities for tissue (kt,eff ) and blood (kb,eff ) are calculated

based on the porosity (ϕ) as kt,eff = (1 − ϕ)kt and kb,eff = ϕkb. Eqs. (2.11) and (2.12) are

coupled via the convective heat exchange between blood and tissue.

If local thermal equilibrium (LTE) between blood and tissue is assumed, then the con-

vective heat exchange term from Eqs. (2.11) and (2.12) equates to zero as Tt equals Tb, and

the two equations can be combined to give Eq. (2.13), where Tb = Tt = T .

((1− ϕ)(ρcp)t + ϕ(ρcp)b)
∂T

∂t
+ ϕ(ρcp)bv⃗b∇T

= (kt,eff + kb,eff )∇2T + (1− ϕ)q̇

(2.13)

The LTE Eq. (2.13) resembles the Wulff BHE with the velocity term vectorizing the

perfusion in porous tissue domain.

Nakayama and Kuwahara

Nakayama and Kuwahara62 formulated a two-energy equation model which was later ex-

tended to a three-energy equation model. The three energy equations are for arteries

(Eq. (2.14)), veins (Eq. (2.15)), and tissue (Eq. (2.16)), respectively. The two-energy equa-

tion model is derived by lumping the arterial and venous system into a single fluid sytem.

ϕa (ρcp)b

[
∂Ta
∂t

+ v⃗a∇Ta
]
= ϕa [kb + kdis,a]∇2Ta

−As,ahb (Ta − Tt)− ωa(ρcp)a(Ta − Tt)

(2.14)

ϕv (ρcp)b

[
∂Tv
∂t

+ v⃗v∇Tv
]
= ϕv [kb + kdis,v]∇2Tv

−As,vhb (Tv − Tt)− ωv(ρcp)v(Tv − Tt)

(2.15)
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(1− ϕa − ϕv)(ρcp)t
∂Tt
∂t

= (1− ϕa − ϕv)kt∇2Tt + As,ahb(Ta − Tt)

+As,vhb(Tv − Tt) + (ρcp)bωa(Ta − Tt) + (ρcp)bωv(Tv − Tt) + (1− ϕa − ϕv)q̇

(2.16)

kdis =
3ϕa [(ρcp)b]

2 |v⃗b|2

14As,ahb
(2.17)

The uniqueness of Nakayama and Kuwahara’s62 BHE model is that it can be reduced to

Pennes23 BHE, Chen and Holmes55 BHE, and Keller and Seiler57 BHE. The thermal dis-

persion conductivity, kdis, represents the thermal conductivity due to the tortuosity of blood

vessels and is given by Eq. (2.17)62;63. For simplicity, the thermal dispersion conductivity

can be considered zero if the tortuosity of blood vessels is not significant. Due to the ability

of Nakayama and Kuwahara’s two-equation model to reproduce other bioheat equations, it

is commonly known as a generalized two-equation model.

2.4 Using Voxel Phantoms for Human Thermoregula-

tion

Sections 2.1 and 2.2 in the current chapter show a distinct difference in the simulation do-

mains used. Thermoregulation research relies prominently on stylized phantoms with few

exceptions18;26–29. Human thermoregulation research can be advanced further by utilizing

advanced CHPs as simulation domain rather than stylized models. CHPs have been demon-

strated to be person-specific and provide anatomically accurate simulation domains. Thus,

using CHPs with thermoregulation control equations can provide a more detailed analysis

lacking in other thermoregulation models.

Anatomically accurate CHPs described in section 2.2 consist of voxel phantoms and

mesh phantoms. Voxel phantoms are directly generated from medical imaging data, whereas

21



mesh phantoms use voxel phantoms to fit a surface over the volume. Mesh phantoms offer

greater accuracy, but developing a mesh phantom from a voxel phantom is highly complex

and requires a lot of pre-processing of each organ to reach an acceptable level42 of anthro-

pomorphic representation. In recent times, advancements have been made to hasten this

process of generating mesh phantoms from voxel phantoms49, which are promising for future

work. A graphical illustration of steps involved in creating a voxel phantom is shown in

Fig. 2.3(Adapted from Xu36).

Figure 2.3: Steps to create a voxel phantom. (Adapted from Xu.36)

An individual mesh phantom represents one body type, reflecting original medical data.

A voxel phantom can be generated directly from individual imaging data and is then readily

accessible for simulation32;36;64–66. This flexibility is absent for mesh phantoms. In addition,

voxel phantoms are generally organ volume-conserving when the adequate image resolution

is used to capture the organ details. Thus, this dissertation focuses on using voxel phantoms

to develop a thermoregulation simulation framework.

The review of bioheat models in section 2.3 demonstrates the variations in the available

bioheat equations. The perfusion bioheat models do not consider the effect of large blood

vessels on heat transfer, and the countercurrent bioheat models require vascular data which

is difficult to obtain. Thus, porous media based models are the best option to be used for

developing a thermoregulation simulation framework using voxel phantoms. The proposed
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simulation framework must consider the effect of large blood vessels on heat transfer with

tissue. Thus a novel framework of porous media based bioheat equations is developed as

part of this dissertation.

Challenges associated with using voxel phantoms for thermoregulation

The challenges associated with voxel phantoms are a result voxel resolution and the geometric

nature of voxels. The primary challenges are elaborated below.

• Stair-step effect

Voxels are cuboidal, and cuboidal structures introduce errors in the surface of a curved

domain40;67. This error or pattern of voxels is known as the stair-step effect66;68;69. The

stair-step effect cannot be avoided when using a voxel phantom unless one modifies it

to a mesh phantom, which is a complicated procedure. A square pixel introduces an

error up to 27% of the total surface area in 2D and a voxel introduces surface area error

up to 50% in 3D. The surface area error is more prominent in smaller and spherical

organs like eyeballs, due to the voxel shape32;36;42;43.

• Blood flow coupled with heat transfer

Blood flow and vasomotion play a critical role in thermoregulation. The blood flowing

from the core to the peripheral skin carries heat and acts as a thermal fluid in the entire

human body. In the case of localized heating, local vasomotion helps diffuse heat away

from the tissue and avoid overheating the region to the best of its capability19;70–74.

Compared to spatial variation of temperature in 3D tissue, the flow and thermal vari-

ation in a blood vessel is limited to its axial flow direction. Hence it is common to

model blood flow as 1D flow. This 1D approximation used in the blood vessels cannot

be used for 3D tissue and introduces a multi-dimensional coupling challenge.

• Discontinuous blood vessel network

Achieving a complete and continuous blood vessel network is difficult when modeling

voxelized phantoms. Blood vessel radii span the micrometer to centimeter scales,
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with a 1.25 cm radius at the aorta, 3µm at the capillary bed, and 1.5 cm at vena

cava75. Currently available in vivo imaging technology does not allow micrometer

resolution. Clinical scanners typically provide images with voxel dimensions in the

range of millimeter.76. This resolution cannot represent the finer blood vessel branches,

and such anatomical structures are absent in voxel phantoms, resulting in an incomplete

and discontinuous blood vessel network. To model the capillary bed and blood flow

in such a domain, porous media methods are typically employed54;61–63;77. However,

the resistances of the pre-capillary vessels regulate vasomotion and hence need to be

understood and modeled correctly.

2.5 Stair-Step Effect Rectification

Various methods have been proposed to address the challenge posed by the cuboidal shape.

Converting voxel phantoms to polygon mesh phantoms32;78 provides better accuracy in sur-

face area. Polygon mesh elements can have more than six facets, resulting in highly complex

equations to be solved for fluid dynamics and heat transfer. Thus, more computational

resources are required to store information and perform calculations on every face of the

element. Though polygon meshes provide exceptional representations of complex surfaces,

the computational requirements pose a challenge for simulation. Polygon meshes are thus

converted to tetrahedral meshes32;48;49 as the mesh element is reduced to have only four

faces, reducing the computational requirements significantly.

Samaras et al.79 proposed using a surface area correction factor with convective heat

transfer coefficient. This correction factor will depend on the overestimation of mesh surface

area with respect to the correct surface area. This method works only when the actual area

of the organ or the individual subject involved in the simulation is known. The value of the

heat transfer coefficient would thus be different for each individual after using the correction

factor. The uncertainties and challenges one could encounter in characterizing the actual

surface area of each individual subject need to be investigated further. Similar to Samaras79,

Dillard et al.80 developed a framework to generate a smooth 3D domain from a cartesian
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grid. The advantage of Dillard’s framework is that it maintains the cartesian grid in which

voxels are obtained from the medical imaging data. However, their smoothing framework

faces challenges when modeling multiple organs.

An algorithm based on the marching cube method69 is used to model two adult and two

children phantoms66. The marching cube method is by far one of the most-used algorithms

to smooth a surface represented by cuboidal structures81. This method converts the outer

layer to a tetrahedral mesh while the internal elements are still hexahedral. In the marching

cube method, a scalar value is stored at the lattice point. This scalar value is the pixel

information in the case of an image. Each lattice point is a corner vertex of a cube and

eight such lattice points define one cubic voxel. This arrangement of information on the

vertices of the cube helps to generate the intersection topologies which results in smooth

surfaces. Such a mesh with information stored on the vertices is excellent for Finite Element

Methods (FEM). Pixels obtained from imaging data can be easily extended to a voxel in 3D

with the information stored in the center of the voxel. A voxel domain generated this way

can be easily used for finite-volume analysis. Since the finite volume method (FVM) uses

flux balance across the faces, the equations are more straightforward and easier to handle for

simulation compared to those of the FEM. However, surface-smoothing algorithms used for a

FEM mesh cannot be used for an FVM mesh and thus methods such as a marching cube face

a challenge. Compared to simulations and models that use FEM, very few models that use

FVM for medical applications can be found. Crockett et al.82 is an example that uses FVM.

They use the volume of fluid (VOF) method to smooth the surface under consideration for

simulation.

Lattice cleaving, developed by Bronson et al.83, is another method to smooth an interface

of a voxel domain. The method generates a tetrahedral mesh to conform approximately

to the surface area interface between materials. The method cuts a body-centered cubic

lattice to match the surface, similar to the marching cube method. The generated mesh is

tetrahedral, unstructured, and allows mesh element sizes to vary, thus having fewer elements

in the region where an interface is not present. The method uses 24 stencil tetrahedrons that

vary based on the cuts on the lattice. The lattice cleaving method creates an unstructured
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mesh with varying mesh element sizes. It is one of the best methods to utilize for stair-step

error rectification. However, the goal of the current dissertation was to create a structured

mesh where the original nature of the voxel is maintained to remain close to the medical

imaging data. Thus, a structured form of the lattice cleaving method was developed and

called as the“Structured Cleaving Method”, discussed in Chapter 3.

2.6 Multiphysics Simulation

Multiphysics simulations are rapidly developing and the simulation frameworks used vary

from commercial CFD tools like ANSYS84 to in-house models85;86 depending on the require-

ments. However, the major challenge lies in the multi-dimensional aspect of modeling. Blood

vessels are highly intricate and form complex patterns87;88. Their effect on heat transfer has

been studied since the 1940s23;31;52;54;60;63. Due to the scale difference between the capillary

bed and the simulation domain, porous media models are commonly used to simulate blood

flow in tissue54;62;63;73;89–91, and the density of capillary bed in the tissue is modeled using

the porosity parameter.

For modeling large vessels that are segmentable from imaging data or of comparable

scale with simulation domain dimensions, blood flow is modeled as 1D flow92;93 with the

vessels considered as 1D pipe segments. The tissue is modeled as a porous domain with

porosity representing the capillary density. When dealing with a multi-scale mesh with

mixed-dimensional coupling, it is common to use different bioheat transfer models for differ-

ent dimensional mesh54;94;95. Thus, for a 1D mesh of segmented blood vessels countercurrent

bioheat models are applicable. For a 3D mesh of tissue and capillaries, porous-media based

bioheat transfer models are useful. The challenge in such a mixed-dimensional multiphysics

simulation lies in coupling the 1D model with the 3D model73;96. The VaPor model devel-

oped by Blowers et al.73 provides a solution for multi-dimensional coupling that can be used

for for thermal analysis97. The VaPor model employs the Rapidly-exploring Random Tree

(RRT) algorithm98 to generate blood vessels that are not segmented due to limitations in

image resolution to simulate counter-current heat exchange at every level of the vasculature.
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In VaPor model, all the voxels that intersect a terminal vessel are made to exchange blood

with that respective vessel. Other voxels that do not intersect with any terminal vessel

rely on perfusion for blood flow. Inter-domain mass transfer thus becomes an important

parameter, which is specified at each vessel terminal. In other words, if a terminal vessel

is intersecting ten tissue voxels, each voxel receives one-tenth the flow rate flowing through

the terminal vessel. The inter-domain mass transfer parameter controls this flow rate be-

tween vessel and tissue. This parameter is further used to determine the diameters of blood

vessels and to calculate pressure drop across the vessel segments. In human thermal model-

ing research11;31;32;99;100, the pressure drop across the cardiovascular domain and blood flow

simulation is important in addition to thermal mapping. The VaPor model provides a novel

way to simulate heat transfer in a mixed domain but lacks the ability to couple pressure

gradient with assigned inter-domain mass transfer73. Furthermore, determining the flow

rate at every vessel terminal is challenging when simulating a very large domain, such as the

human body. Thus, the literature review so far demonstrates a requirement for a framework

that can simulate blood flow with correct pressure distribution, and simulate coupled heat

transfer for a large scale biological domains like organs and human body.

Hodneland et al.101 developed a framework that uses the Dirac distribution function to

couple a 1D blood flow network with 3D porous tissue. This framework uses the Hagen-

Poiseuille equation to model one-dimensional blood flow in large blood vessels and the two-

compartment porous model for a three-dimensional tissue. Due to the flexibility and pres-

sure continuity of Hodneland’s model, this flow simulation model was used to create a novel

multiphysics simulation framework by adding heat transfer capabilities. The resulting mul-

tiphysics, multiscale and multidimensional framework is termed as Voxelized MultiPhysics

Simulation (VoM-PhyS) framework and will be elaborated further in Chapter 4.
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2.7 Pre-Capillary Blood Vessels

Technological advancements enable visualization and modeling of the vasculature87;88 with

the ever-increasing resolution, providing highly detailed blood vessel domains. These do-

mains can be further used to simulate many biophysical mechanisms. When coupled with

accurate biophysics simulations, such realistic models can be used to illustrate, understand,

and predict biological responses to different environmental conditions. Such tools can pre-

dict patient response to medical treatment, changes in blood flow distribution due to burns

or clots102–104, drug distribution, and damage to healthy tissue during hyperthermia treat-

ments65;94.

However, a very high resolution data is required to visualize vasculature for the entire

human body. As described in section 2.4, the resolution of the voxel phantom limits the

visualization of blood vessels that can be modeled. Although capillary beds can be modeled

using porous media assumption in tissue, pre-capillary vessels that are considered to affect

heat transfer by WJM59;60;105 also play a crucial role in vasomotion. The arterioles, which

can vary flow resistance, are present in pre-capillary vessels that often get overlooked in

bioheat transfer. For a complete human thermoregulation framework, the ability to simulate

vasomotion is important; thus, modeling the pre-capillary network is crucial.

In a voxel domain generated from imaging data, a blood vessel ends where the resolution

of the voxel can no longer identify it. One option to simulate the pre-capillary vessels

from this point would be the mathematical modeling of blood vessels or an algorithm to

simulate vascularization and generate blood vessels. Vascularization and angiogenesis are

highly complex phenomena that include chemical, physical, and biological processes106–110.

Vascular Endothelial Growth Factor (VEGF) signaling released by the tissue cells directs

the tip cell to guide vascularization. Various biocomputational models have been developed

to simulate vascularization111–114.

Computational models developed from a biological perspective114 are different from mod-

els developed from an engineering perspective. One of the primary approaches engineers use

to model blood vessel growth is modeling blood vessels as fractals115–120. The Diffusion
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Aggregation Method proposed by Fleury121–123 is commonly used to model blood vessels as

fractals. This is a “random walker” method where a particle is released from the periph-

ery and “walks” randomly until it merges with an existing branch. The challenge with this

method is that there is no way to control the dimension of blood vessels. Moreover, a random

walker method is highly accurate when an oxygen diffusion map is used to guide the random

walker. However, this requires solving mass transfer equations for oxygen concentration after

adding every random walker to the existing blood vessel, which is computationally expensive

for a large domain like an organ or human body.

Another method that provides a better alternative is called Constrained Constructive

Optimization (CCO)124–127. In CCO, the main assumption is that blood flow is equally

distributed in the specific organ domain. Based on this assumption, the supply blood flow

rate in the organ is equally distributed in a given number of terminals. The blood flow rate

passing through a single terminal vessel and the pressure drop between the supply node and

the terminal of vasculature are provided as constraints. A random point is selected within

the domain and a new branch is grown towards the point. The radius of the new branch

is calculated such that the total volume of the vasculature is minimized. The CCO method

has undergone various modifications such as parallelizing the growth of blood vessels127–129

to increase computational efficiency.

An example of the application of the CCO model is found in Correa-Alfonso’s work of

vascularization on mesh liver model86. The minimum diameter of a blood vessel in this liver

model is 100µm. The blood vessels in this model are also shunted, i.e., arteries are directly

connected with veins. This model lacks blood vessels with diameters less than 100µm. The

shunt between arteries and veins at 100 µm cannot model the time blood spends in the

capillary bed. Blood flow is the slowest in the capillary bed and is expected to have a higher

energy absorption rate due to the time spent there. The challenge with using the CCO

method with voxel phantom is associated with voxel resolution. For example, in the mesh

liver model, to model the blood vessels of 100µm, a voxel resolution of less than 100 µm is

required. When a cubodial voxel of size 500 µm is used to voxelize the mesh, the domain

has a total of 1.36 × 107 voxels. About 70% of hepatic arteries are lost in the voxelization
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of the liver mesh as they have a diameter of less than 500 µm.

Modeling every blood vessel to the capillary bed is not a feasible solution. Thus, a

new method is required to model the flow resistance and heat transfer of blood vessels

that exist between the capillary bed and the segmented blood vessels. In Hodneland’s

model101, the pressure drop parameter is used to simulate the resistance of the “virtual”

blood vessels that are not segmented. Determining the resistance of unsegmented vessels

from available vascular data will addresses the challenge of mathematically modeling the

pre-capillary vessels. Chapter 5 of this dissertation focuses on mathematical derivation of

equations that can be used for modeling virtual blood vessels.
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Chapter 3

Structured Cleaving Mesh

One primary challenge with voxelized domains is the stair-step effect resulting from the

cuboidal structure of voxels. A detailed review of various methods found in the literature

to reduce the surface area error due to stair-step effect is given in Chapter 2. The Lattice

cleaving method83 smoothens the voxel mesh by converting it to an unstructured tetrahedral

mesh. This chapter focuses on developing an algorithm that develops a tetrahedral mesh

and smoothing technique for a structured mesh, and is termed as the “Structured Cleaving

Method”.

In this chapter, the amount of error in the surface area of a voxel mesh is quantified using

a circle for 2D and a sphere for 3D as a reference domain, respectively. Since the circle and

sphere represent the worst-case scenarios for a curved geometry that is represented using

voxel mesh, quantifying the surface area error on these geometries represents the maximum

possible error. Two surface area smoothing techniques are elaborated – the addition method

and the removal method. The application and the effect of these methods on the triangular

mesh (2D) and tetrahedral mesh (3D) are described in this chapter. Finally, the application

of the structured cleaving method for heat transfer analysis is demonstrated on four mice

tumors obtained from MRI scans. These scans were provided by the Biomedical Computing

Device Laboratory at Kansas State University.
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3.1 2D Analysis

Fig. 3.1.a shows two possibilities of a single pixel representing a circular structure in a course

mesh. The pixel can be either larger than the circle, as shown by the blue square, or smaller

than the circle, as shown by the green square. Fig. 3.1.b shows the comparison of a finer

(green) and coarser mesh (blue). As the mesh is refined, a stair-step path is followed along

the surface (circumference) of the circle. As will be shown later, this limits surface area

convergence and is a major source of error.

(a) courser mesh (b) courser and finer mesh

Figure 3.1: Square pixel representation of a circle

Consider a mesh grid shown in Fig. 3.2. The mesh cell “i,j” is surrounded by four

rectangles as shown. Heat transfer interactions that take place within the domain are shown

with red arrows. The steps taken to obtain a discrete heat diffusion equation are as follows:

A general 2D heat diffusion equation for a heat generating domain is shown in Eq. (3.1).

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+ q̇ = 0 (3.1)

The terms k, T , and q̇ represent thermal conductivity, temperature and volumetric heat

generation rate, respectively, at a point x, y.

Integrating Eq. 3.1 over the volume ∆x×∆y, Eq (3.2) and Eq. (3.3) are derived.
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Figure 3.2: Square pixel mesh
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where,
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∆x/2
(3.3.a)
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kAc,bottom

(
∂T

∂y

)
bottom

= kAc,bottom
Ti,j−1 − Ti,j

∆y/2
(3.3.d)

In Eq. (3.3), the subscripts left, right, top and bottom are with respect to the location of

cell i, j. Thus, left, right, top, and bottom represent cells (i-1,j ), (i+1, j ), (i, j+1 ), and (i,

j-1 ), respectively. The term Ac represents the cross-section area of the cell.

Expanding the concept, the pseudo overall heat transfer coefficient (U ) is calculated

using Eq. (3.4), where knbr represents the thermal conductivity of the neighboring cell.

1

U
=

∆s

2knbr
+

∆s

2k
(3.4)

At a boundary interface of tissue and air, the pseudo overall heat-transfer coefficient is

calculated using Eq. (3.5)

1

Uskin−air

=
1

hamb

+
∆s

2ki,j
(3.5)

Using the energy conservation principle and Eq. (3.3),

(UAc)left(Ti−1,j − Ti,j) + (UAc)right(Ti+1,j − Ti,j) + (3.6)

(UAc)top(Ti,j+1 − Ti,j) + (UAc)bottom(Ti,j−1 − Ti,j) + q̇∆V = 0

The discretized equation Eq. (3.6) allows the properties to vary from pixel to pixel and

thus can be applied to highly inhomogenous structures such as the human body.

In the process of refining the mesh (shown in Fig. 3.2.b), it is observed that the curva-

ture of the geometry is replaced with a perpendicular stair-step effect of the square pixels.

This results in an error in the total surface area of the geometry, which cannot be avoided

irrespective of mesh resolution. If the radius of the cylinder is defined to be “a” and a unit
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thickness in the z -direction is assumed, the surface area of the cylinder (circumference of

circle in 2D) is given by 2πa. The pixel dimensions of the perfect square pixel represented

by the blue square in Fig. 3.2 are 2a× 2a. The perimenter of a square is considered as the

surface area and is given as 8a. Regardless of pixel dimensions (fine mesh or course mesh),

the total surface area of pixels representing a circular domain always remains 8a (Fig. 3.1.b),

resulting in a constant surface-area error of 1.72a. This error of 1.72a corresponding to an

overestimate of 27%. To demonstrate this error, a circle of radius 0.03m generating heat at

1333Wm−3 was simulated exposed to air at 20 ◦C. The parameters used for this simulation

are given in Table 3.1. Using Eq. (3.6), the temperatures at the circumference of the domain

are shown in Fig. 3.3.

Table 3.1: Simulation parameter for pixel surface area error analysis

Parameter Symbol Value Units
Ambient Temperature Tamb 20 ◦C
Radius r 0.03 m
Thermal conductivity k 0.3 Wm−1 ◦C−1

Convective heat transfer coefficient hamb 3.0 Wm−2 ◦C−1

Internal heat generation q̇ 1333 Wm−3

Figure 3.3: Intrinsic surface area error
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In Fig. 3.3, the analytical solution for a perfect circle shows the circumference at a

constant temperature of 26.5 ◦C. When different pixel sizes are used to construct the same

circle, the circumference temperature is reduced to 25 ◦C to 25.45 ◦C. This is due to the

stair-step effect of the square pixels. As the surface area of a pixelized circle is larger, more

heat loss occurs to the environment, reducing the domain temperature.

3.1.1 Sub-Pixelization

Figure 3.4: Triangle pixel mesh

One solution to reduce this error is to convert square pixels to triangular pixels as shown

in Fig. 3.4. The triangular pixels are generated such that when grouped they comprise square

pixels from which they were generated. This method is thus considered a sub-pixelization

approach in 2D and a sub-voxelization approach in 3D.

In Fig. 3.4, red arrows show the heat exchange occuring around cell 1 with cells 2, 6, and

8. Cell 2 shares a non-hypotenuse side with cell 1. Similarly, cell 6 shares a non-hypotenuse

side with cell 1. These non-hypotenuse sides will be referred to as “rectangular sides” for

this dissertation. Cell 8 and cell 1 share a hypotenuse side of the triangular pixel. The

pseudo-overall heat transfer coefficient at a rectangular side is calculated using Eq. (3.7).
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1

U
=

∆s

6knbr,tri
+

∆s

6k
(3.7)

Triangular pixels have the advantage of using the hypotenuse to reduce the stair-step

effect. The pseudo-overall heat transfer coefficient for a hypotenuse side is calculated using

Eq. (3.8)

1

U
=

∆s

6
√
2knbr,tri

+
∆s

6
√
2k

(3.8)

In Eqs. (3.7) and (3.8), ∆s represents ∆x or ∆y depending on the axis of heat transfer.

Similarly, the pseudo overall heat transfer coefficient for a cell exposed to air is calculated

using Eqs. (3.9) and (3.10) for rectangular side and hypotenuse side, respectively.

1

U
=

1

h
+

∆s

6k
(3.9)

1

U
=

1

h
+

∆s

6
√
2k

(3.10)

Once the pixels are converted into triangle sub-pixels, a smoothing method is needed

to reduce the surface area. Two methods are proposed to smoothen the surface of a pixel

mesh (2D) and voxel mesh (3D). These methods are termed as the removal method and the

addition method, respectively.
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3.1.2 Removal Method

After sub-pixelization, the triangular elements can be removed from the domain to smooth

the outer surface without a significant effect on volume. Here, removal means the material of

that specific pixel is changed to the material it is being exposed to. For this simple example,

the domain is composed of only two materials: air and tissue. The process steps are shown

below.

1. Each pixel is tagged with its number of sides exposed to a different material. If only

one side is exposed to a material different than that of the pixel itself, then 1; if two

sides are exposed then 2, and so on.

2. If zero or one side of the tissue pixel is exposed to air, no change is made to the sub-pixel.

Figure 3.5: Removal method algorithm
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3. If two sides of the tissue pixel are exposed to air, the tag of diagonal portion exposed

to air is changed to air. This means half of the sub-pixel is converted to air, separated

by the hypotenuse.

4. If three sides of tissue pixels are exposed to air, the entire pixel tag is changed air.

The results of applying the algorithm are shown in Fig. 3.6. The purple triangles represent

the triangualar cells for which the material tag was changed from tissue to air.

(a) (b)

Figure 3.6: Removal of material: (a) overall view of the effect of removal method (b) zoomed-
in version of the surface

3.1.3 Addition Method

In this method, extra material is added to the object’s periphery to mitigate the stair-step

effect. In other words, if tissue is exposed to air, the triangular cells of air at the interface of

tissue-air are converted to tissue. The algorithm is similar to the removal method, with the

difference being that the non-object material pixels are altered. In the removal method, the

tissue pixels were changed to air, whereas in the addition method, air pixels are changed to

tissue.

Fig. 3.7.a shows the overall effect of the addition method on the domain. The blue

pixels represent the domain under consideration. Fig. 3.7.b shows a zoomed-in version of

the surface. The pink triangular pixels are the material being added to the domain.
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(a) (b)

Figure 3.7: Addition of material: (a) overall view of the effect of addition method (b)
zoomed-in version of the surface

3.1.4 Analysis and Results

(a) (b) (c)

Figure 3.8: 2D smoothing (a) unsmoothed (b) removal method (c) addition method

An unsmoothed circle, smoothed circle using the removal method, and smoothed circle

using the addition method, are shown in Fig. 3.8. When the removal method is applied, loss

of volume occurs because the material tags are changed to surrounding material. Similarly,

the addition method results in more volume than the original as the material is added to

smoothen the surface. Neither of these options is perfect, as voxel meshes are expected to

have correct volume representation and any variation in volume can introduce additional

error due to differences in total heat generated by metabolic heat generation. Thus an

analysis to understand the error in volume introuduced due to the use of the addition and
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removal method, respectively, compared to reduction in the surface area error was conducted.

The reduction in surface area error and the resultant volume error can be seen in Fig. 3.9.

Fig. 3.9.a shows the ratio of mesh volume to actual reference volume for different pixel sizes.

Fig. 3.9.b shows the surface area ovestimation for a mesh for different pixel sizes. For larger

pixel sizes, there is greater volume error. As the pixel size is reduced, the error introduced

due to the use of addition or removal methods converges to less than 1% and the surface

area error is reduced to less than 10%. From Fig. 3.9, it can be seen that the removal and

addition method have similar effect on the volume error and surface area error convergence.

Thus, only the removal method was used for further analysis for simplicity.

Figure 3.9: Surface area and volume convergence in 2D

To demonstrate the effectiveness of the removal method, an inhomogeneous domain was

designed as shown in Fig. 3.10, with parameters given in Table 3.2. Fig. 3.11.a shows

the temperature of triangularized pixels along the circumference of skin-air interface. The

analytical solution results in a uniform circumferential temperature of 26.48 ◦C. As can be

seen in Fig. 3.11.a and Fig. 3.11.b, there is an average error of 1.4 ◦C for square pixels and

0.39 ◦C for triangularized smoothened pixels.
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Table 3.2: Simulation parameter for inhomogeneous domain

Parameter Symbol Value Units
Ambient Temperature Tamb 20 ◦C
Radius - bone rbo 6 mm
Radius - tissue rt 27 mm
Radius - skin rs 30 mm
Thermal conductivity of skin130 ks 0.37 Wm−1 ◦C−1

Thermal conductivity of tissue130 kt 0.49 Wm−1 ◦C−1

Thermal conductivity of bone130 kbo 0.31 Wm−1 ◦C−1

Convective heat transfer coefficient hamb 3.1 Wm−2 ◦C−1

Internal heat generation q̇ 1333 Wm−3

Figure 3.10: Inhomoegeneous domain

Figure 3.11: Inhomogeneous domain temperature analysis (a) Temperature along the cir-
cumference (b) Error distribution for pixel mesh and triangular-smoothed mesh
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3.2 3D Analysis

In the previous section, the cleaving method for a 2D domain was discussed. This section

illustrates the methodology for extending the cleaving method for 3D.

Step 1: Pre-processing to Determining interface voxels

Voxels in voxel phantoms are assigned different tags, which can represent the voxel material

or different properties of the voxel. Along with these existing voxel tags, a new tag is created

that will differentiate a voxel on the surface of the domain from a voxel on the interior. This

tag will be called the “side-exposed tag” for this dissertation. The side-exposed tag stores

information about which sides of the voxel are exposed to different materials, which will be

used to smooth the surface in the following steps.

Step 2: Converting voxels to tetrahedrons

Consider a voxel shown in Fig. 3.12.a, which is cut along all the diagonals shown by AF, BE,

EC, AG, BC, and AD on all sides. The cut along the diagonals results in 24 tetrahedrons that

share a common vertex with the centroid of the voxel. Each side of voxel is now represented

with four tetrahedrons. Fig. 3.12.b shows a cross-section of tetrahedrons in a voxel. The

exploded view of Fig. 3.12.b, showing the tetrahedrons separated, is in Fig. 3.12.c, and all

24 tetrahedrons are shown in Fig. 3.12.d in an exploded view. Each of these tetrahedrons

has the same material as that of the parent voxel.
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Figure 3.12: Voxel to tetrahedron

Step 3: Smoothing the surface

Converting the voxels to tetrahedrons does not alone solve the problem of the stair-step

effect on the surface. A smoothing algorithm is needed to smooth the surface of the object

after converting voxels to tetrahedrons, similar to the removal method used for 2D domain.
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Consider the parent voxel shown in Fig. 3.13, surrounded by neighboring parent voxels. The

red arrows show the six directions with reference to the voxel under consideration. Fig. 3.14

shows the possible modifications during the smoothing process, while Fig. 3.15 shows the

methodology to smoothen a matrix of 3 × 3 × 3 voxels. In Fig. 3.15.a an unsmoothed

domain with one-side, two-sides, and three-sides exposed voxels marked in white, blue, and

green outlines for reference, respectively, are exhibited. The entire domain is made up of

the same material and is exposed to the surrounding, which is not shown. The smoothing

procedure shown using Figs. 3.13, 3.14, and 3.15 is described in the following steps.

1. If the parent voxel has no side or only one side exposed to a different material, then

the voxel does not undergo modification. In Fig. 3.15.a, the voxel marked with a white

outline is an example of such a voxel with only one side exposed to different material.

This voxel will not be changed.

2. If the parent voxel has more than one neighboring voxel of a different material, for

example, north and front voxels, the material tags of the tetrahedrons, which are part

of the side exposed to these voxels, will be changed from the parent material to the

neighboring voxel material. The parent voxel after modification is shown in Fig. 3.14.a.

3. The side-exposed tag of neighboring tissue voxels will now be checked. From Fig. 3.14.a

it can be seen when two sides are modified, a valley-like surface is formed. To avoid

this, the neighboring tissue voxels need to be modified, as well. In the example consid-

ered, the north and front sides were exposed to a different-material, and the respective

tetrahedrons material was changed in previous step. Now the east and west sides of

tissue-voxel neighbors will be checked for their side-exposed tag. If the east-neighboring

voxel has more than one side exposed to a different material, the neighboring voxel

will be modified. This would result in the material tags of tetrahedrons that share the

edge with east-north and east-front sides to change. The result is shown in Fig. 3.14.b.
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Figure 3.13: Voxel array

Figure 3.14: Modification of parent voxel
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Figure 3.15: Methodology of smoothing

4. Similar to the east side, if the side-exposed tag of west-neighboring voxels has more

than one side exposed to different material, the material tags of tetrahedrons that share

the edge with the west-north and west-front sides will be changed. This modification

is shown in Fig. 3.14.c, and would result in a smooth diagonal cut of the parent voxel

under consideration. The final result of steps 2, 3 and 4 is shown in Fig. 3.15 as a

transformation from Fig. 3.15.a to Fig. 3.15.b. The two-side exposed voxels marked in

blue in Fig. 3.15.a result in the diagonal cut voxels as shown in Fig. 3.15.b

5. Consider a voxel with north, front, and east sides exposed to neighbors, i.e., three sides

exposed. Similar to the two-sides-exposed condition, material tags of the tetrahedrons

that are part of the voxel’s three sides will be changed to the material of the neighboring

voxels in the respective direction. In other words, the material of these tetrahedrons

will be changed to that of the surrounding material to the domain. The resultant

parent voxel structure is shown in Fig. 3.14.d. In Fig. 3.15.a, the three sides exposed

voxel is shown on a vertex marked by a green outline. This voxel after undergoing the

modification is transformed in a shape as shown in Fig. 3.15.c. When the steps 1, 2,

3 and 4 are repeated over a corner of the matrix, a partially smoothed domain similar
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to one shown in Fig. 3.15.d. is achieved.

6. For a case where five sides are exposed to different materials, the resultant parent voxel

is a pyramid with one side that is not exposed to a different material. This is shown in

Fig. 3.14.e. A five-sides-exposed voxel will be completely converted to the neighboring

material. This is done because the the pyramid like structure shown in Fig. 3.14.e has

more surface area than the base of that pyramid. To reduce the surface area error

further, the pyramid structure is avoided and hence a voxel with five sides exposed tag

is removed completely.

7. The end result of applying the smoothing algorithm on the grid shown in Fig. 3.15.a.

results in a domain shown in Fig. 3.15.e.

3.3 Structured Cleaving Mesh and Heat Transfer

MRI scans of four lab mice with tumors were obtained from the Biomedical Computing and

Devices Laboratory at Kansas State University to demonstrate the methodology described.

The tumors in these scans were manually segmented using 3DSlicer (version 4.8.1)131. The

voxel size obtained from these scans was 0.117mm × 0.117mm × 1.5mm. A 3D unstructured

mesh of each tumor was generated using the 3DSlicer meshing feature. This mesh was

converted to a NURBS surface using Rhinoceros (version 5)132 to obtain a reference surface

area and volume. The domain was re-voxelized with cuboidal voxels with the dimensions of

0.12mm in all three axes. This process is described in Fig. 3.16, which shows, using blue

arrows, development from an MRI scan to the final, tetrahedral-smoothed tumor undertaken

for this research. The golden arrow from Fig. 3.16.c to Fig. 3.16.f indicates that though a

NURBS surface was generated to use as a reference, there is no need to generate a NURBS

surface to apply the proposed method of smoothing a voxel mesh obtained from a medical

imaging dataset. To show the effect of this method on simple geometric objects, a sphere

and a cylinder were also considered. The volume and surface area convergence for a sphere

with a radius of 1 cm and a cylinder with a radius of 1 cm and height 2 cm are demonstrated.
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Figure 3.16: Example

The heat transfer equation for a 3D domain (Eq. (3.11)) is discretized as described

previously. Using the discretization method, Eq. (3.11) can be written as Eq. (3.12a). Where

UA is calculated using Eq. (3.12b) if the neighboring cell is tissue, and Eq. (3.12c) if the

neighboring cell is air, respectively.

∇2(ktT ) + q̇ = 0 (3.11)

n∑
i=1

(UA)i(Ti − T0) + q̇∆V = 0 (3.12a)

1

(UA)i
=

1

Ai

(
∆s

2ki
+

∆s

2k0

)
(3.12b)

1

(UA)i
=

1

Ai

(
1

h
+

∆s

2k0

)
(3.12c)

The variable n represents the total number of sides of the mesh element. The value of n

is 6 for a voxel (hexahedral mesh element) and 4 for a tetrahedron. The values taken by i
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from 1 to n represent different directions to the mesh element and 0 is reserved for the mesh

element under consideration. Thus, for a voxel mesh, 1 to 6 represent north, south, east,

west, front, and back, while tetrahedron 1 to 4 represent the neighboring tetrahedra to its

four sides. The term ∆s is a generic representation of voxel dimensions, ∆x, ∆y, and ∆z

in the x, y, and z directions respectively. A represents the cross-sectional area of the side

under consideration.

3.3.1 Benchmarking with Sphere

Benchmarking the heat transfer simulation is first completed by considering a spherical tissue

domain since an analytical solution for a sphere is readily available. To study the effect

of voxel representation and tetrahedral smoothing, the steady-state surface temperature

is calculated and compared with the exact analytical solution. When using the removal

technique for smoothing described previously, material is “lost”. Thus, it is important to find

a balance between the loss of material and accurate surface representation. The difference in

the volume resulting from material loss will influence total heat generated, which will affect

surface temperature. To handle the volume error introduced due to the removal method and

its effect on domain temperature, an equation to determine the allowable tolerance in volume

is derived from Newton’s law of convection heat transfer. The convection heat-transfer in a

domain with heat generation is shown in Eq. (3.13)).

(a) Reference sphere (b) Voxel sphere (c) Tetra sphere

Figure 3.17: Sphere
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Figure 3.18: Allowable percentage volume error

q̇V = hAs(Ts − Tamb) (3.13)

Rearranging Eq. (3.13) and dividing by the reference volume V results in an equation

that can be used to determine the volume tolerance, which is given in Eq. (3.14)

∆V

V
=

(
∆Ter

h

q̇

As

V

)
(3.14)

In Eq. (3.14), ∆Ter is the allowable temperature variation due to error in the volume ∆V

for the same surface area. Smaller voxel resolution is needed for a smaller value of ∆Ter,

which results in an increase in mesh elements and higher computational memory. Thus, an

optimum value of acceptable ∆Ter is needed based on the available computational resources

and domain size. This optimum value for the present study was considered as ±0.1 ◦C.

Using this value, the allowable error in the volume ∆V is calculated. In other words, for
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the same surface area, the difference in volume should be within ∆V so that the variation

of surface temperature due to volume difference would not be more than ±0.1 ◦C. This

allowable percent error in volume against the radius of sphere for different heat generation

rates is shown in Fig. 3.18. Here, a convective heat transfer coefficient of 2Wm−2K−1 was

used. The plot shows for a given heat transfer rate, the allowable error in volume decreases

as the size of the domain under consideration increases. In this case, as the radius of the

sphere increases, the allowable tolerance in volume error decreases.

Using Eq. (3.14), the acceptable error in volume for a sphere with a radius of 1 cm

and a heat-generation rate of 1000Wm−3 is 6%. Given that volume tolerance is inversely

proportional to the heat generation rate and size of the domain, as radius increases the

volume tolerance decreases for a given heat generation rate. Thus, for a heat generation

rate of 1000Wm−3 and 10 cm radius sphere, which is an average size of the human head

when approximated as a sphere, the allowable volume error is 0.6%. For research purpose,

a sphere of 1 cm radius with thermal conductivity of 0.3Wm−1K−1 was considered with a

heat generation rate of 1000Wm−3, exposed to air at 20 ◦C, assuming a convective heat

transfer coefficient 2Wm−2K−1. This is shown in Fig. 3.18 as a green dot at radius 1 cm

and 6% volume error. The voxel size for the simulation used was 0.8 mm.

Heat Transfer Application With Medical Imaging Data

Once the code was benchmarked, heat transfer simulations for four different tumors generated

fromMRI scans were conducted. The MRI scans showed that these tumors were anatomically

present at a subcutaneous level. A medical probe was seen in the MRI scans closer to the

tumor with a small air gap between the mouse and the probe. For the simulation, the tumors

were considered to be deep, meaning that they are surrounded on all sides with healthy tissue

for simplicity. The resolution of the MRI scans resulted in an elongated, pin-like voxel with

its length in the z -axis that represents slice thickness. To smooth the tumor, the geometry

was re-voxelized to have a cuboidal voxel with dimensions of voxel the same in all three

axes. The simulation on the tumors was performed for a voxel size of 0.12mm x 0.12mm
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x 0.12mm. This was done to maintain the dimension of the voxel similar to the x -axis and

y-axis resolutions of the MRI scans. These tumors are shown in Fig. 3.19. Figs. 3.20 and 3.21

show the tumors in voxelized mesh and after the application of structured cleaving method,

respectively.

(a) Tumor 1 (b) Tumor 2 (c) Tumor 3 (d) Tumor 4

Figure 3.19: NURBS tumors

(a) Tumor 1 (b) Tumor 2 (c) Tumor 3 (d) Tumor 4

Figure 3.20: Voxel tumors

(a) Tumor 1 (b) Tumor 2 (c) Tumor 3 (d) Tumor 4

Figure 3.21: Tetrahedralized smoothed tumors
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For the tumor, the metabolic heat-rate generation was considered to be 1.2mWmm−3

based on the metabolic heat-production rate proposed by F. J. Gonzalez133 for breast tumors

using a non-invasive method and numerical simulation for humans. For the surrounding tis-

sue, the metabolic heat-rate generation was considered as 0.001mWmm−3 based on values

obtained from the IT’IS Foundation database for muscle tissues130. The thermal conductivity

for the tumor and surrounding tissue was considered to be 0.5mWmm−1 ◦C−1, representa-

tive of tissue130. A Dirichlet boundary condition of 30 ◦C was imposed on the edge of the

simulation domain in all directions.

Table 3.3: Parameters used for energy simulation of 3D tumors

Parameter Symbols Value Units
Voxel size 0.12 mm
Thermal Conductivity130 kt 0.5 mWmm−1 ◦C−1

Tumor Metabolic heat gen. rate133 q̇m,tumor 1.2 mWmm−3

Healthy Tissue Metabolic heat gen. rate130 q̇m 0.001 mWmm−3

Ambient tissue temperature T∞ 30 ◦C

3.3.2 Results and Analysis

A sphere represents the worst possible overestimate of surface area in 3D for a convex shape

when voxelized. The voxel mesh overestimates surface area by 50%, and the overestimate

is reduced to around 16% using the structured tetrahedral smoothing method proposed in

this work. For the 2D circle (analogous to an infinite cylinder) the surface area overestimate

dropped from 20% to 4% using the smoothing methodology. It is expected that other

objects would demonstrate surface area overestimates between the cylinder and sphere. This

is observed when investigating surface areas for the four tumors in Fig. 3.22.c and Fig. 3.22.d.

Each of the tumors surface-area ratios show a steady drop from an average of 42.5% to 15%,

roughly bounded by the overestimations for the cylinder and sphere.

54



Figure 3.22: Convergence of volume and surface area

The effect of surface area overestimation for heat transfer simulation is shown with the

example of a sphere. Fig. 3.23 shows the radial temperature plot for the sphere. The voxel

mesh, having the highest overestimation of surface area, results in the most heat loss from

the sphere and the lowest surface temperature. The tetrahedral smoothed domain reduces
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this error by around 50%. For the voxel sphere, the surface area is overestimated by about

50%, and the temperature error obtained is 0.55 ◦C. This surface error is reduced to around

16%, and the temperature error is 0.25 ◦C. Since the smoothing method does not affect a

flat boundary or surface, no change would be observed in the area on two ends of a finite

cylinder.

Figure 3.23: Radial temperature distribution in a sphere

The heat transfer simulation results for tumor 1 are shown in Fig. 3.24, which shows a

comparison of the temperature map of a voxel and tetrahedral smoothed tumor at a cross-

section taken at the midpoint of the z-axial length. Referencing Fig. 3.22, the volume of

the voxel domain is more than the NURBS reference for the tumors due to the resolution of

the MRI scan. A finer resolution would result in better volume convergence of the voxelized

mesh to the actual domain. As the voxel resolution increases, the amount of volume lost

during the removal method decreases, and the volume difference becomes negligible.
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Figure 3.24: Cross-section of tumor 1 in x-y plane at the midpoint of z-axial length

Figure 3.25: Cross-section of tumor 2 in x-y plane at the midpoint of z-axial length

At the voxel resolution used for the tumor simulations, there is a 4% reduction in the

volume of the tumors after the application of the removal method. Since the voxel tumor

volumes were already greater than the reference NURBS tumor volumes, the reduction in

volume results in a better accuracy of volume and surface area with respect to NURBS

tumors. The voxelized tumors thus show a higher core temperature than the corresponding

smoothed tumor due to the volume difference. This difference in maximum temperatures

for all four tumors is within 0.5 ◦C for the simulations conducted. The thermal maps for the

remaining three tumors studied are shown in Fig. 3.25, Fig. 3.26 and Fig. 3.27. These three

tumors show a similar temperature profile to that observed in Fig. 3.24. As stated previously,
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when voxel dimensions are decreased further, this difference in volume becomes negligible

and only changes in surface area are observed. Execution of the smoothing method and heat

transfer simulation for the tumors was used to demonstrate the applicability of the proposed

methodology on a domain directly generated from MRI data. Thus, it can be applied to any

animal or human using medical imaging data of the subject.

Figure 3.26: Cross-section of tumor 3 in x-y plane at the midpoint of z-axial length

Figure 3.27: Cross-section of tumor 4 in x-y plane at the midpoint of z-axial length

To maintain the simplicity of this study, the perfusion rate of the blood flow was taken as

zero, and other than metabolic generation of heat, no additional heat source is acting on the

domain. In the Pennes BHE (Eq. (2.1)), the blood perfusion term (ωpennes) is specified per
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unit volume. The addition or removal method described earlier has been shown to change

the volume of the domain (Fig. 3.22). The acceptable volume error for this simulation

was considered without blood perfusion. This analysis of acceptable volume error needs to

be conducted before simulating blood perfusion using the addition or removal method of

smoothing.

As discussed in the previous chapter (2.1), skin temperature and core temperature act as

input signals to the hypothalamus. Accuracy in these values is important when simulating

the human thermoregulatory mechanism. Surface area error results in reduced accuracy

for skin and core temperatures. Reduction of surface area error from 50% to 16% for the

sphere and 42.5% to 15% for tumors is significant, but requires more work for to reduce

the error further. The surface area error is much smaller when modeling the domain with a

polygon mesh or unstructured mesh, since the techniques, such as lattice cleaving83, can be

used to represent curvature with greater accuracy. However, these techniques present other

challenges in terms of modeling bioheat transfer, especially for the entire human body. Since

the goal is to extend this work to such a domain, a direct technique to generate models from

medical imaging data and maintain approximate representation is important. In a simple

case such as the sphere, the actual surface area is known and thus surface area error due to

voxel representation can be calculated. When the domain is generated from medical imaging

data, actual surface area and volume are not known. The proposed methodology can be used

to represent an individual’s organ of any shape, or an entire human body, and perform heat

transfer simulations with better surface area accuracy than can be achieved with voxels.

The structured cleaving method is not the most efficient method, as it divides a single

voxel in 24 tetrahedrons. The mesh size increases by 24 times and still has an error in

surface area of around 15%. This increase in mesh size results in an increased computational

time and memory resource requirements. This can be avoided by modifying the structured

cleaving method.

One solution to avoid the increase in mesh density would be to calculate the area cor-

rection parameter for each voxel at an interface that needs correction rather than dividing

the voxel in 24 tetrahedrons. This can be achieved by developing an algorithm that uses a
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surface normal vector to calculate error rectification. Newell’s algorithm is used in the com-

putational graphic research field to calculate the normal vector of irregular surfaces134. This

algorithm can calculate the normal at each voxel, and then a correcting factor to smoothen

the region can be determined. This will avoid dividing a voxel into 24 sub-tetrahedrons and

reduce the computational requirements. Such a method will not be limited to the angle of

voxel slicing and is expected to reduce the surface area error further.

Another solution would be to use the cut-cell method of mesh modification135. In the

cut-cell method, only the voxels at the interface requiring modification are divided into

sub-voxels using quadtree or octree methods. In a quadtree, a voxel is divided into four

sub-voxels; in an octree, a voxel is divided into eight sub-voxels. Once the voxels at the

interfaces are subdivided, the structured cleaving method can be implemented only at the

interface. This would reduce the number of mesh elements compared to dividing the entire

voxel mesh into 24 tetrahedrons.

3.4 Chapter Summary

Voxel meshes overestimate the surface area by 27% in 2D and 50% in 3D. This surface area

error results in inaccuracies in heat transfer simulation. The rectification methods found

in the literature rely on an unstructured tetrahedral mesh. To avoid losing the structured

aspect of a voxel mesh to reduce the surface area error, a structured cleaving method was

developed tested.

The structured cleaving method divides a pixel into four triangles and a voxel into 24

tetrahedrons. This new triangular mesh for 2D and tetrahedral mesh for 3D is treated with

either of the two smoothing algorithms: the removal method or the addition method. After

the application of the removal method, the surface area error was demonstrated to reduce

from 27% to 4% for a 2D mesh of circle, and from 50% to 16% for a 3D mesh of a sphere,

respectively. The structured cleaving method and the removal method, when applied on four

mice tumors obtained from MRI scans, reduced the surface area error from 42.5% to 15%.
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Chapter 4

VoM-PhyS Framework

The literature review on bioheat equations in Chapter 2 elaborated on the limitations of

various bioheat models. Simulation of bioheat transfer is challenging, and a simulation

framework adaptable to different tissue domains to verify various other models is required.

This chapter describes the development of a novel Voxelized Multiphysics Simulation (VoM-

PhyS) Framework.

The VoM-PhyS framework is developed using the existing multidimensional coupled

blood flow method solver found in the literature. In this chapter, this existing blood flow

solver is explained briefly. The development of the novel VoM-PhyS framework using the

blood flow solver is demonstrated by coupling heat transfer with blood flow then used along

with frog tongue data found in the literature to demonstrate the framework’s ability to

consider different bioheat transfer assumptions.

4.1 Existing Blood Flow Model

Macro- and micro-scale blood flows are modeled in a coupled fashion for continuous blood

flow. The macro-scale blood flow model employs the Hagen-Poiseuille equation in a 1D

flow domain. The 3D micro-scale blood flow is modeled with the two-compartment model

theory104;136 and the Darcy equation for porous media.
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Figure 4.1: Resistance diagram of mixed-dimensional simulation framework

A resistance diagram of Hodneland’s101 mixed-dimensional blood flow framework is shown

in Fig. 4.1 and a graphical representation is shown in Fig. 4.2. Blood vessels that can be

recreated from imaging data are represented in red for arteries and blue for veins in Fig. 4.1

and Fig. 4.2. The flow resistance offered by each element of these blood vessels is represented

byRji in Fig. 4.1. Blood vessels that cannot be segmented from imaging data are represented

using dotted arrows in Fig. 4.2 and the flow resistance offered by them is shown using

pink and light blue resistances in Fig. 4.1. The capillary bed and tissue are modelled as a

two-compartment porous domain shown in Fig. 4.2. The inter-voxel permeability between
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arterial and venous compartment is represented using light green arrows in Fig. 4.2 and the

respective flow resistance using light green resistances in Fig. 4.1. Within the voxel, the

arterial to venous compartment perfusion is represented using dark green arrow in Fig. 4.2,

and the respective flow resistance using dark green resistor in Fig. 4.1.

Figure 4.2: Graphical illustration of mixed-dimensional simulation framework

The segmented blood vessels were modelled as a 1D pipe network using the Hagen-

Poiseuille equation (Eq. (4.1)). The blood was assumed to be laminar, at steady state, and

the pulsatile behavior of blood was ignored.

qv,ji = κji∆pji (4.1)

where

Rji
−1 = κji =

πR4
ji

8µLji

(4.1a)

∆pji = pj − pi (4.1b)

In Eq. (4.1), the flow conductivity offered by a blood vessel element is represented as
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κji, the net flow from an element is given by qv,ji, and the radius and length of the specific

element are represented by R and L, respectively. The nodes represented by j and i are

the locations for which pressure is calculated and are represented as black dots (pressure

nodes) in Fig. 4.1. The pressure drop parameter (γβ) is used to calculate effective resistance

(R(j,x),β) in the unresolved network extending from the resolvable blood vessels to tissue

voxels101.

The 3D voxel domain consists of tissue and a capillary bed. Each voxel has two com-

partments: one representing the arterial capillary bed and tissue (referred to as arterial

compartment), and the other representing the venous capillary bed and tissue (referred to as

venous compartment). Darcy’s equation (Eq. (4.2)) provides the relationship between mass

flux u and pressure drop across the porous domain.

u = −K

µ
∇P (4.2)

The viscosity µ is considered constant and K represents the permeability of the porous

domain. The cross-voxel flow resistance (Ra,Rv), shown using the light green resistance

network in Fig. 4.1, controls the distribution of blood across neighboring voxels. The sub-

scripts a and v denote the arterial and venous compartment properties, respectively. The

estimation of tissue permeability (Ka, Kv) was obtained from literature.137.

Perfusion between the arterial compartment and the venous compartment represents the

transition of blood from oxygenated to deoxygenated state. This perfusion is driven by the

pressure difference and perfusion proportionality factor α as shown in Eq. (4.3).

uperf = α(Pa − Pv) (4.3)

The perfusion parameter α controls the resistance offered to the flow between the com-

partments in a voxel of volume V .
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The mass conservation equation for an incompressible fluid at steady state and constant

density (Eq. (4.4)), when applied to a porous domain with two compartments, results in

Eqs. (4.5a) and (4.5b).

∇ · u = G (4.4)

−∇
(
Ka

µ
∇Pa

)
= −α(Pa − Pv) +

∑
i∈NT

a,j

Ga,i (4.5a)

−∇
(
Kv

µ
∇Pv

)
= α(Pa − Pv)−

∑
i∈NT

v,j

Gv,i (4.5b)

In the arterial compartment, the oxygenated blood enters from the arteries and is repre-

sented as a mass source term Ga. Similarly, in the venous compartment, the deoxygenated

blood leaves the tissue and enters the veins. This is represented by a sink term Gv in the

venous compartment. Ga,i represents the mass flow rate of blood arriving at the arterial

compartment from an i-th arterial terminal. A voxel can receive blood from multiple arterial

terminals (NT
a,j). Similarly, Gv,i represents the mass flow rate of blood leaving the tissue to

i-th venous vessels. A voxel can exchange blood with multiple venous terminals (NT
v,j). The

amount of blood flow exchange (Ga,i, Gv,i) that occurs between a tissue voxel and a blood

vessel is determined using a Dirac function (Eq. (4.6a)).

Gϵ(x) =

∫
Ω

G(y)ηϵ(x− y)ds (4.6a)
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ηϵ(x) =
1

ϵn
η
(x
ϵ

)
(4.6b)

η(x) =


C exp

(
1

|x|2−1

)
, if |x| < 1

0, if |x| ≥ 1

(4.6c)

∫
Ω

ηϵ(x)dx = 0 (4.6d)

Eq. (4.6a) is a distribution function of flow between the terminal points of the arterial or

venous tree and the voxels in the neighborhood of the terminal. The distribution function is

applied over the computational domain Ω. Q(y) represents the flow in the terminal arterial

and venous elements. Considering an arterial tree, G(y) represents flow in the terminal

arterial element, and a voxel at location x receives Gϵ(x) amount of flow from the respective

terminal arterial element. The amount of flow that a voxel receives from a specific arterial

element depends on the distance between the voxel and the respective arterial terminal. For

this work, the blood flow distrubution from a blood vessel terminal was considered to be

normal distribution. This normal distribution given by the function ηϵ(x) depends on the

characteristic radius ϵ and constant C. The superscript n in Eq. (4.6b) is the number of

dimensions of simulation domain. The characteristic radius, ϵ, is the radius of the sphere

of influence (SoI). Any voxel that falls within the SoI of a terminal vessel, exchanges blood

with that respective vessel. The value of constant C depends on characteristic radii and is

calculated using Eq. (4.6d). Eq. (4.6d) conserves the mass in the virtual unresolved blood

vessels. The finite volume two-point flux approximation (TPFA)138 provides the discretized

flow equation for the voxel domain given in Eq. (4.7) and Eq. (4.8) for the arterial and venous

compartments, respectively101.
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∑
j∈N

τij(Pa,i − Pa,j) + αi(Pa,i − Pv,i)Vi −∑
k∈NT

a,i

qa,kη
ϵ
a,k(xi − xk)Vi = 0 (4.7)

where

qa,k = κa,jk(pa,j − pa,k) j ∈ N (NT
a,k)

and

∑
j∈N

τij(Pv,i − Pv,j)− αi(Pa,i − Pv,i)Vi −∑
k∈NT

v

qv,kη
ϵ
v,k(xi − xk)Vi = 0 (4.8)

where

qv,k = κv,jk(pv,j − pv,k) j ∈ N (NT
v,k)

In Eq. (4.7) and Eq. (4.8), N represents the number of neighboring voxels exchanging

blood with voxel i and, NT
a and NT

v represent the set of terminal arterial and venous nodes

exchanging blood with voxels, respectively. N represents the nodes that are neighboring the

k-th blood vessel element. The sub-script j represents the node of a terminal blood vessel

element, which is connected to node k. The last equation to complete the system is the

pressure continuity equation (Eq. (4.9)).

qβ,k =
γβ
µ
(pβ,k −

∑
j∈NV

β,k

(ηϵβ,k(xj − xk)Pβ,jVj) k ∈ NT
β (4.9)
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β =


a : artery

v : vein

Eq. (4.9) represents the pressure continuity across the virtual blood vessels which are

modeled using Eq. (4.6a). NT
β represents all the terminal blood vessels and NV

β,k represents

the set of tissue voxels that fall within the SoI of vessel terminal k.

Eqs. (4.1), (4.7), (4.8), and (4.9) provide a set of equations that can be solved to calculate

pressure at each pressure node when applied to blood vessel elements and arterial and venous

compartments of voxels. A more detailed description and derivation of these equations can

be found in literature101;138;139. A detailed description of matrix generation using these

equations is presented below.

4.1.1 Blood Flow Matrix Generation

Rearranging the mass balance equations (Eq. (4.7) and Eq. (4.8)) results in Eqs. (4.10) and

(4.11) for blood flow in arterial and venous compartments of tissue voxels, respectively.

[∑
j∈N

τij + αiVi

]
(Pa,i)−

∑
j∈N

tij(Pa,j)− αi(Pv,i)Vi

−
∑

j∈N (Na,k)

k∈NT
a

κa,jkη
ϵ
a,k(xi − xk)Vi(pa,j)−

∑
j∈N (Na,k)

k∈NT
a

κa,jkη
ϵ
a,k(xi − xk)Vi(pa,k) = 0

(4.10)

[∑
j∈N

τij + αiVi

]
(Pv,i)−

∑
j∈N

tij(Pv,j)− αi(Pa,i)Vi

−
∑

j∈N (Nv,k)

k∈NT
v

κv,jkη
ϵ
v,k(xi − xk)Vi(pv,j)−

∑
j∈N (Nv,k)

k∈NT
v

κv,jkη
ϵ
v,k(xi − xk)Vi(pv,k) = 0

(4.11)

Applying Eqs. (4.10) and (4.11) over all the tissue voxels, a sub-matrix of size (2Nt)

× (2Nt +Na +Nv) is generated, where Nt, Na and Nv represent number of tissue voxels,
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number of arterial nodes and number of venous nodes, respectively. The column matrix

b2Nt×1 is a zero matrix.

Applying the mass conservation equation to every intermediate node in the arterial and

venous tree, a set of N I
a + N I

v equations is generated using Eq. (4.12) and Eq. (4.13). The

superscripts T , I and R represent terminal, intermediate and root nodes of blood vessel tree,

respectively. The root nodes are the ones where the Dirichlet boundary condition is applied.

Terminal nodes are the last vascular nodes within the tissue. The intermediate nodes are all

the nodes between root and terminals.

∑
j∈N (Na,k)

(κa,jk(pa,j − pa,k)) = 0 (4.12)

∑
j∈N (Nv,k)

(κv,jk(pa,j − pa,k)) = 0 (4.13)

For the number of terminals nodes (NT
a , N

T
v ), rearranging the pressure continuity Eq. (4.9)

results in Eq. (4.14) and Eq. (4.15) for arterial and venous tree, respectively.

κa,kpa,j −
[
κa,k +

γa
µ

]
pa,k +

γa
µ

∑
i∈N (Nv

a,k)

ηϵa,k(xi − xk)ViPa,i = 0 (4.14)

κv,kpv,j −
[
κv,k +

γv
µ

]
pv,k +

γv
µ

∑
i∈N (Nv

v,k)

ηϵv,k(xi − xk)ViPv,i = 0 (4.15)

Eq. (4.16) and Eq. (4.17) represent the Dirichlet boundary condition for pressure applied

at the root nodes of arterial and venous tree
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pa,k = Pin k ∈ NR
a (4.16)

pv,k = Pout k ∈ NR
v (4.17)

For the matrix equation Anx = b, n = 2Nt +Na +Nv and column matrix x is as shown

below.

xT = [ Pa,1 Pa,2 ... Pa,Nt Pv,1 Pv,2 ... Pv,Nt pa,1 pa,2 ... pa,Na pv,1 pv,2 ... pv,Nv ]

x[1 : Nt] - Pressure in arterial compartment of tissue voxels (Pa,i)

x[Nt + 1 : 2Nt] - Pressure in venous compartments of tissue voxels (Pv,i)

x[2Nt + 1 : 2Nt +Na] - Pressure in arterial tree nodes (pa,i)

x[2Nt +Na + 1 : 2Nt +Na +Nv] - Pressure in venous tree nodes (pv,i)

The coefficient matrix A is generated using Eqs. (4.10) to Eqs. (4.17) on respective mesh

elements. Column matrix b consists of the pressure boundary condition applied at the arterial

and venous nodes.

b[k] =


Pin if k ∈ NR

a

Pout if k ∈ NR
v

0 if k ̸∈ (NR
a , N

R
v )

Simulation

The flow matrix generated above was simulated using a Python140 script on the Beocat

High-Performance Computing (HPC) cluster at Kansas State University. The developed

Python script can be found at VoM-PhyS.
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4.2 Modeling Heat Transfer Coupled with Blood Flow

Figure 4.3: An illustrative description of the heat transfer model
(a) A small voxel domain representing artery, vein, and tissue, with SoI for an artery and
vein (b) Zoomed in voxel (i, j) with its neighbor. (c) Multiscale mesh example for heat
transfer between a blood vessel and tissue. The arterial element represented using a thick
border consists of multiple arterial voxels.
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Each voxel acts as a control volume (CV) exchanging heat with its surroundings. For

flow simulation, the CV was defined as a compartment of the voxel. Thus, for flow sim-

ulation, each voxel contains two CVs, representing the arterial and venous compartments.

The heat transfer simulation incorporates the Pennes bioheat model (PBM) assumption of

instant thermal equilibrium once the blood enters the tissue voxel. Blood enters the tissue

voxel in an arterial compartment and perfuses to venous compartment. An assumption of

thermal equilibrium was made within a tissue voxel. Due to this assumption, the arterial

compartment, the venous compartment, and blood within these compartments are at equal

temperature, and blood perfusion occuring between the arterial and venous compartment

has no effect on temperature. Hence, this perfusion was ignored for heat transfer analysis.

An illustration of the heat transfer model proposed in this study is shown in Fig. 4.3.

Fig. 4.3.a shows a 2D voxel domain to represent an artery, vein, and tissue. For simplicity,

only the terminal elements of arterial and venous tree are shown with the arterial terminal

outlet and venous terminal inlets marked with dots. For a SoI of a given ϵ, the resultant 2D

circles are shown in red for the arterial terminal and blue for the venous terminal, with their

centers at the ends of the respective terminal elements. Fig. 4.3.b shows a zoomed in image

of tissue voxel (i, j) with its four neighbors. The neighboring voxels (i, j + 1) and (i, j − 1)

are tissues, voxel (i− 1, j) is part of the arterial terminal element, and (i+ 1, j) is air.

If a tissue voxel falls within the SoI of any arterial terminal element, it receives blood

from that element. In Fig 4.3.b, voxel (i, j) is one of the tissue voxels that falls within the

SoI, and thus it receives a specific amount of blood from the respective arterial element. This

source term of blood discussed in the previous section is shown in Fig 4.3.b for voxel (i, j).

Similarly, if the tissue voxel falls within the SoI of a venous terminal element, a sink term

that collects blood from the voxel and transports it to the venous terminal. This sink term

is shown for voxel (i, j), as it falls in the SoI of a venous terminal element in Fig 4.3. The

amount of blood flow related to a source or sink term depends on the distance of the voxel

(i, j) from the arterial and venous terminal element, respectively, as calculated by Eq. (4.6a).

If the voxel falls within the SoI of multiple arterial or venous terminal elements, multiple

source and sink terms are applied to the voxel.
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The blood flow model considers blood perfusion among tissue voxels. This perfusion of

blood results in advection. In Fig 4.3.b, the inter-voxel perfusion and resulting advection

among the tissue voxels is shown for (i, j+1) and (i, j−1) with (i, j). Blood cannot permeate

through a blood vessel wall to a tissue, so there is no direct mass transfer between voxel

(i−1, j) and tissue voxel (i, j). This is one of foundational differences of VoM-PhyS with the

VaPor model73, in which blood perfusion occurs across the vessel walls. Heat is exchanged

between a neighboring blood vessel and tissue via convection. Similarly, convective heat

exchange takes place with the environment the boundary is exposed to as shown between

(i, j) and (i+ 1, j). The source term that appears in the tissue voxel brings blood from the

respective arterial terminal element as shown in Fig 4.3. The mass source term that appears

in an arterial compartment of voxel (Eq. (4.6a) and Eq. (4.7)) results in the addition of

energy in the voxel due to advection. Each tissue voxel also has metabolic heat generation,

represented by the term q̇m. Considering these possible heat exchanges across the CV and

the thermal equilibrium of blood and tissue in a voxel, the problem is similar to a moving

solid with heat generation. An energy equation for this problem is given in Eq. (1-36),

(1-37), and (1-38) in Ozisik141. The combined form of these equations is Eq. (4.18)

ρtcp,t
∂Tt
∂t

= ∇(kt∇Tt)− ρcp,b∇(Ttv⃗) + Q̇ (4.18)

In Eq. (4.18), Tt represents the tissue temperature and V represents the voxel volume.

Due to the assumption of thermal equilibrium between blood and tissue in a voxel, the tem-

perature of blood in a voxel is the same as tissue temperature, Tt. Thermal conductivity and

specific heat capacity of tissue are represented by kt and cp,t, respectively. The specific heat

capacity of blood is represented by cp,b and the velocity of blood across voxels is represented

by v⃗. Traditionally, the velocity vector v⃗ is assumed to be constant along the flow direction,

as there is no mass source or sink term. However, in this framework, the CV consists of

volumetric source and sink terms that need to be considered in the mass conservation and

the resultant energy conservation. Here, blood is considered as the moving solid, and within
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a tissue voxel, blood and tissue are at same temperature. The coupling of heat equations

with flow equations occurs for blood flow, resulting in the addition of energy due to blood

entering a tissue voxel via source terms. This is incorporated by using Eq. (4.19). The term

Q̇ in Eqs. (4.18) and (4.19) is a sum of metabolic heat generation rate (q̇m) and advection.

Advection in Eq. (4.19) is a result of Ns source terms that appears in a tissue voxel (arterial

compartment). These source terms supply blood directly from the respective Ns arteries.

The temperature of blood received from these arterial elements by a voxel is given as Ti.

Q̇ = q̇m +
Ns∑
i

micp,bTi
V

(4.19)

The convective heat loss from a voxel to a neighboring blood vessel is given by Eq. (4.20).

Tt represents the temperature of the tissue voxel next to a blood vessel element denoted by

subscript k. The blood vessel element can be an artery or vein represented by β. The surface

area of the voxel in contact with the blood vessel is shown by As, and the convective heat

transfer coefficient between blood and tissue is hb.

Q̇β =
hbAs

V
(Tβ,k − Tt) (4.20)

where

β =


a : artery

v : vein

Similarly, the convective heat exchange between a voxel and air is given by Q̇∞, calculated

using Eq. (4.21). Here, T∞ represents the ambient air temperature and h∞ represents the

convective heat transfer coefficient between air and tissue.

Q̇∞ =
h∞As

V
(T∞ − Tt) (4.21)
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Combining Eqs. (4.18), (4.19), (4.20) and (4.21), leads to the differential Eq. (4.22)

ρcp,t
∂Tt
∂t

= kt∇2Tt − ρcp,b∇v⃗Tt +
Ns∑
i

micp,bTi
V

+ q̇m

+
h∞As

V
(T∞ − Tt) +

hbAs

V
(Tβ,k − Tt) (4.22)

and

β =


a : artery

v : vein

Eq. (4.22) is discretized using a first-order Finite Volume Method (FVM) to arrive at

Eq. (4.23a).

ρcp,tV
∆Tt,j
∆t

=
∑
i∈N

UA(Tβ,i − Tt,j) +
∑
i∈Nn

micp,b(Tt,i − Tt,j)

+
∑
k∈Ns

ma,kcp,b(Ta,k − Tt,j) + q̇mV (4.23a)

U =

[
∆s

2kt
+

∆s

2kt

]−1

=
kt
∆s

(4.23b)

U =

[
∆s

2kt
+

1

h∞

]−1

(4.23c)

U =

[
∆s

2kt
+

1

hb

]−1

(4.23d)

and

β =


a : artery

v : vein

t : tissue
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Each voxel has six neighbors in 3D and four neighbors in 2D. The voxel neighbors can

be any material, so the solution must accommodate the previously-described heat transfer

mechanisms. The first term on the right-hand-side in Eq. (4.23a) addresses heat exchange

between neighboring voxels. In this term, N is the total number of neighbors of a voxel. The

overall heat transfer coefficient U varies based on the material of the neighboring voxel. If

the neighboring voxel is tissue, then U = kt/∆s as shown in Eq. (4.23b). If the neighboring

voxel is air or a blood vessel, the value of the overall heat transfer coefficient U is calculated

using Eq. (4.23c) or Eq. (4.23d), respectively.

Some neighboring voxels may not supply blood to the voxel under consideration but

rather may receive from it due to pressure differential. Nn in the second summation term in

Eq. (4.23a), represents the number of neighbors from which blood is flowing into the current

voxel. Nn may be less than or equal to N, depending on the pressure differentials. The third

summation term in Eq. (4.23a) represents the energy delivered to the voxel via advection

from Ns number of arterial sources that supply blood to the voxel. The fourth term in

Eq. (4.23a) is the heat added to the voxel due to metabolic heat generation.

4.2.1 Multiscale Meshing

Figure 4.4: Multiscale mesh

A graphical illustration of a multiscale mesh is shown in Fig. 4.4. The major blood vessels

that can be generated from imaging data are modeled as 1D pipe networks and are divided

into elements only along the flow direction. The dimensional scale of elemental division may
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not be the same as the voxel dimension, resulting in different mesh scales. Due to this scale

difference, one blood vessel element can traverse multiple tissue voxels along its length. Each

blood vessel element acts as a differential cell and the entire element is considered to be at

the same temperature.

An illustration of this can also be seen in Fig 4.3.a and Fig 4.3.c. In Fig 4.3.a, the

five voxels tagged as Arterial Voxel represent a section of an arterial tree. Fig 4.3.c shows

the difference between an arterial element and arterial voxel. The three arterial voxels

surrounded by thick black border create one arterial tree element. A similar venous tree

element is shown in Fig 4.3.a. In Fig 4.3.c, voxels (i− 1, j), (i− 1, j − 1), and (i− 1, j − 2)

will have a uniform temperature as they fall under the same arterial element. This one

element of the blood vessel mesh is at a different scale than the tissue voxels, resulting in

multiple tissue voxels surrounding a single blood vessel element. This is shown in Fig. 4.3 and

Fig. 4.4. The surrounding tissue voxels are not isothermic and exchanges heat via convection

governed by the convective heat transfer coefficient. The energy balance for the blood vessel

tree is modeled using Eq. (4.24).

ρbcp,bVβ,e
∆Tj
∆t

=
∑

β,k∈Nk

mkcp,b(Tβ,k − Tβ,j) +
∑
i∈NV

i

hbAi(Ti − Tβ,j) (4.24)

In Eq. (4.24), the first term on the RHS represents the advection heat added to the blood

vessel element under consideration at temperature Tβ,j. This advection is the result of the

mass flow of blood from one vessel element to another as it flows across the blood vessel

network. In the arterial tree, following the direction of flow, the elements divide further, so

each element receives blood only from one element. Conversely, in a venous tree, multiple

blood vessel elements merge to form single element. Thus, one element may receive blood

from multiple elements or from multiple voxels that fall within the SoI. The number of voxels

or blood vessel elements that supply blood to the current vessel element is given by Nk. This

blood vessel element is also exchanging heat with surrounding tissue given by the second

term. NV
i shows the tissue voxels that are in immediate contact with the blood vessel element
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under consideration. These voxels will be at temperatures Ti and have different surface areas

Ai in contact with the element.

4.2.2 Matrix Generation

Rearranging Eq. 4.23a for steady state results in Eq. (4.25). Eq. (4.25) represents energy

conservation for a i-th tissue voxel. Ni is a set of voxels that surround tissue voxel i and

Nn represents the neighboring tissue from which blood flows into voxel i. Ns is a set of

arterial outlets which supply blood to voxel i. Eq. (4.25) when iterated over all the tissue

voxels in the domain generates a coefficient matrix of size Nt x (Nt +Na +Nv), where Nt,

Na and Nv represent the total number of tissue voxels, arterial elements and venous elements

respectively. The column matrix bNt is generated using RHS of Eq. (4.25)

∑
j∈Ni

(UA)(ij)(Tβ,j) +
∑
j∈Nn

m(ij)cp,b(Tt,j) +
∑
k∈Ns

ma,kcp,b(Ta,k)

−

[∑
j∈Ni

(UA)(ij) +
∑
j∈Nn

m(ij)cp,b +
∑
k∈Ns

ma,kcp,b

]
(Tt,i) = −q̇mVi

(4.25)

β =


a : artery

v : vein

Ni : Set of voxels neighboring tissue voxel i

Nn : Set of tissue voxels supplying blood to tissue voxel i

Ns : Set of arterial terminals supplying blood to tissue voxel i

Eq. (4.26) and Eq. (4.27) present a rearrangement of Eq. 4.25 and ensure energy conser-

vation for a i-th blood vessel element of arterial and venous tree, respectively. Nk represents

the set of blood vessel elements that supply blood to i-th element and, Nv is a set of tissue

voxels that surround the i-th blood vessel element and exchange heat via convection with

it. Eq. (4.26) is applicable to all the blood vessel elements except for the elements that are

identified as inlets.
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∑
k∈Nk

mkcp,b(Ta,k) +
∑
j∈Nv

hbAj(Tj)−

[ ∑
a,k∈Nk

mkcp,b +
∑
j∈Nv

hbAj

]
(Ta,i) = 0 (4.26)

∑
k∈Nk

mkcp,b(Tv,k) +
∑
j∈Nv

hbAj(Tj)−

[ ∑
v,k∈Nk

mkcp,b +
∑
j∈Nv

hbAj

]
(Tv,i) = 0 (4.27)

Nk : Set of blood vessel elements supplying blood to vessel i

Nv : Set of tissue voxels neighboring blood vessel element i

The last set of equations needed are the boundary conditions. Eq. (4.28) represents the

Dirichlet boundary condition of inlet temperature applied to the arterial tree roots.

Ta,k = Tin k ∈ NR
a (4.28)

Considering the matrix equation Amx = b, m = (Nt +Na +Nv), and column matrix x

is as shown below.

xT = [ Tt,1 Tt,2 ... Tt,Nt Ta,1 Ta,2 ... Ta,Na Tv,1 Tv,2 ... Tv,Nv ]

xT [1 : Nt] - Temperature of tissue voxels

xT [Nt + 1 : Nt +Na] - Temperature of arterial tree elements

xT [Nt +Na + 1 : Nt +Na +Nv] - Temperature of venous tree elements

The coefficient matrix A is generated using Eq. (4.25), (4.26), (4.27) and (4.28) on

respective mesh elements.
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4.2.3 Domain Modification

Figure 4.5: (a) Original frog tongue data with arteries in red and veins in blue. The number
of pixels in original 2D data are 634 x 515, with pixel dimensions as 0.063mm x 0.064mm
x 1mm. The slice was modified for generating three slices each one-third the thickness as
follows (a) Layer 1: Arterial tree and tissue (b) Layer 2: Tissue (c) Layer 3: Venous tree
and tissue.

The original imaging data of the frog tongue obtained from literature101 was 2D, as it

consisted of only a single layer of voxels. Fig 4.5.a shows the original frog tongue data with

the arterial tree in red and the venous tree in blue. The thickness of the original slice was

1mm. When such a 2D slice is used for simulation, the source and sink terms generated

by the terminals of arteries and veins in the domain are decoupled. This prevents blood

perfusion between a tissue-blood interface. As a result, the blood vessels become a separator
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between source and sink terms and the flow system is discontinuous. To address this, the

blood vessels were completely separated from the domain and the entire system was assumed

to be tissue101. To simulate convective heat exchange at the blood-tissue interface, blood

vessel locations are required with reference to surrounding tissue. Hence, the 2D frog tongue

domain was converted to 3D by dividing the single slice into three sub-slices across the depth.

The top layer contains the main arterial tree, the middle layer consists only of tissue, and the

bottom layer contains the venous tree. These layers will be addressed as Layer 1, Layer 2,

and Layer 3, respectively, and are shown in Fig. 4.5. In Fig. 4.5 ▲ represents the arterial tree

root nodes and ▼ represents the venous tree root nodes with Dirichlet boundary condition,

respectively.

The order of these layers affects the blood perfusion across the domain. Since the arteries

and veins are in the top and bottom layer separated by a tissue, blood entering the domain

via source terms in the top layer (Layer 1) must perfuse across the tissue layer (Layer 2)

to reach the venous sinks in the bottom layer (Layer 3). If the layers were to be otherwise

ordered, the proximity of the source and the sink terms would reduce the perfusion of blood

in the tissue layer (Layer 2).

4.2.4 Simulation

To demonstrate the VoM-PhyS framework, a steady state simulation on the frog tongue

shown in Fig. 4.5 was conducted. Frogs are cold-blooded and have low metabolic heat gen-

eration rates143. For this study, the metabolic heat generation rate was taken to be zero,

and other thermo-physiological parameters were obtained from literature101;137;142. These

parameters are presented in Table 4.1. Here, ϵ = 10mm was used for flow simulation and

heat transfer. This value ensures that each voxel has at least one direct source of blood from

the arterial tree and at least one sink to the venous tree. No tissue voxel relies solely on

cross-voxel permeability to receive blood from the arterial tree or deliver blood to the venous

tree.
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Figure 4.6: Convergence Analysis

Table 4.1: Parameters used for simulation

Domain Parameter Symbols Value Units

Tongue Specific heat142 cpt 3421 J kg−1 ◦C−1

Density142 ρt 1090 kgm−3

Thermal conductivity142 kt 0.49 Wm−1 ◦C−1

Perfusion142 α 1× 10−6 mskg−1

Arterial permeability101;137 Ka 1× 10−12 m2

Venous permeability101;137 Kv 5× 10−10 m2

Metabolic heat gen. rate143 q̇m 0 Wm−3 s−1

Blood Specific heat142 cpb 3617 J kg−1 ◦C−1

Viscosity101 µ 3× 10−3 Pa s
Thermal conductivity142 kb 0.52 Wm−1 ◦C−1

Density142 ρb 1050 kgm−3

Pressure drop parameter101 γ 1× 10−14 m3

Arterial inlet pressure101 Pin 10.6 kPa
Venous outlet pressure101 Pout 1.60 kPa
Voxel dimensions101 64 x 64 x 333 µm3

Ambient temperature T∞ 20 ◦C
Inlet blood temperature Tin 35 ◦C
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The blood flow matrix An was generated using Eqs. (4.10), (4.11), (4.12), (4.13), (4.14),

(4.15), (4.16), and (4.17) on flow mesh elements. A heat transfer matrix Am was generated

using Eq. (4.25), (4.26), (4.27), and (4.28), on respective heat mesh elements. Both matrices

An and Am had a sparsity of 99.99% and matrix size n = 1111 803 and m = 556 078,

respectively. These matrices were solved using the Generalized Minimal Residual (GMRES)

method144;145. To increase the solver speed, incomplete LU decomposition of the matrices

was used as a preconditioner M . The convergence study conducted for this problem to

determine the appropriate tolerance setting is shown in Fig. 4.6. The residual r⃗ = Amx⃗− b⃗

was calculated and the maximum of |r⃗| is plotted against number of iterations needed in

Fig. 4.6. At a tolerance value of 1 × 10−8, the maximum residual error is 6.35 × 10−10W,

and continues to reduce exponentially as the tolerance is decreased. Thus, a tolerance of

1 × 10−8 was used for GMRES function in Python140. The Python script can be found at

VoM-PhyS.

4.2.5 Parameter Sensitivity Analysis

A numerical sensitivity analysis was conducted to determine how uncertainties in input pa-

rameter values propagate through the model and affect the output parameter. The primary

aim of this study was to analyse propagation of error from an input parameter to the fi-

nal result. A one-at-a-time (OAT) method101 was used to calculate normalized sensitivity

coefficient Xi,w using Eq. (4.29a)

Xi,x =
∂θi/θi
∂x/x

(4.29a)

θi = Ti − T∞ (4.29b)

The relative sensitivity coefficient Xi,x was calculated for input variable x at location i.

A temperature offset θ was used for the sensitivity analysis. The offset was calculated by
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subtracting a reference temperature value throughout the entire domain. In Eq. (4.29a),

subscript i represents every mesh element for which temperature is calculated as an output

parameter. The relative sensitivity coefficient is represented using an average calculated

across the entire domain X̄x using Eq. (4.30). In Eq. (4.30), N is the total number of

unknowns for which temperature is calculated. Each input variable was increased by 1% to

calculate X̄x.

X̄x =

∑
i
NXi,x

N
(4.30)

4.3 Results

4.3.1 Flow Simulation

Figure 4.7: For ϵ = 10mm (a) Arterial compartment pressure of Layer 1 (b) Venous com-
partment pressure of Layer 3

Fig. 4.7 shows the pressure map for flow simulation using a 10mm SoI radius. Fig. 4.7.a,

shows the pressure for the arterial compartment of Layer 1. The pressure is greatest

(10.6 kPa) at the inlet and continues to drop along the blood flow in the arterial tree. The
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minimum pressure observed in the arterial compartments of the entire domain is around

9 kPa. Fig. 4.7.b shows the pressure map of the venous compartment in Layer 3. The blood

in the venous compartment side of the voxel is at approximately 1.95 kPa in the tissue.

We observe a pressure drop of around 8 kPa across the capillary bed within the voxels. As

the blood flows from the venous compartment of tissue towards the venous outlet through

veins, it loses more pressure and the blood exits at 1.6 kPa, which is the defined boundary

condition.

4.3.2 Pennes Bioheat Model Assumption

Figure 4.8: Thermal map using PBM Assumption hb = 0.001Wm−2 ◦C−1 and ϵ = 10mm
(a) Layer 1 (b) Layer 2 (c) Layer 3

For this simulation, the convective heat transfer coefficient for blood vessels and ambient

air were taken to be as 0.001Wm−2 ◦C−1 and 20Wm−2 ◦C−1, respectively. The SoI radius

was again taken to be 10mm. The blood temperature leaving the domain was 25.8 ◦C at a

steady state. The minimum and maximum tissue temperatures observed were 22.5 ◦C and

27.3 ◦C, respectively. The temperature profiles for the three layers are shown in Fig. 4.8.

The blood temperature remains constant at 35 ◦C from the entrance to the extremities in the

arterial tree and enters tissue at the same temperature. Every voxel that directly receives

blood from an artery receives it at 35 ◦C regardless of how far the voxel is from the inlet

boundary condition. Once the blood has perfused across the tissue, it enters the venous

85



tree through various volumetric sink terms coupled to venous extremities. The temperatures

at which blood enters through the extremities in a venous tree are different due to local

temperature variations within the tissue domain.

4.3.3 Weinbaum and Jiji Model Assumption

Figure 4.9: Thermal map using WJM Assumption hb = 10Wm−2 ◦C−1 and ϵ = 10mm (a)
Layer 1 (b) Layer 2 (c) Layer 3

For this simulation, the convective heat transfer coefficient for blood vessels and ambient

air were taken to be 10Wm−2 ◦C−1 and 20Wm−2 ◦C−1, respectively. The SoI radius was

again taken to be 10mm. The temperature of blood leaving the domain was 25.9 ◦C at a

steady state. The minimum and maximum tissue temperatures observed were 23.1 ◦C and

27.4 ◦C. The temperature profiles for the three layers are shown in Fig 4.9.

Blood loses heat as it enters the arterial tree and flows towards the extremities to enter

the tissue region. Each voxel receives blood at a temperature that depends on its distance

from the inlet. The minimum temperature observed in the arterial tree was 27.7 ◦C at the

extremity where blood enters the tissue. Similar to the PBM simulation shown in Fig. 4.8,

blood enters the venous tree at different temperatures but gains heat from the tissue along

the flow direction. This effect can be observed via the temperature difference at which the

blood leaves the domain through the venous side. Blood leaves at 25.8 ◦C and 25.9 ◦C when

the convective heat transfer coefficient between blood and tissue is used as 0.001Wm−2 ◦C−1
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and 10Wm−2 ◦C−1, respectively.

4.4 Discussion

Figure 4.10: Distribution plots
(a) ϵ = 10mm and hb = 10Wm−2 ◦C−1 (b) ϵ = 10mm and hb = 0.001Wm−2 ◦C−1

(c) ϵ = 5mm and hb = 10Wm−2 ◦C−1 (d) ϵ = 5mm and hb = 0.001Wm−2 ◦C−1

To study the effect of SoI and convective heat transfer coefficient in VoM-PhyS model, the

SoI radius was varied between 5mm and 10mm, and heat transfer coefficient between blood

vessel and tissue was varied between 0.001Wm−2 ◦C−1 and 10Wm−2 ◦C−1. A distribution

plot for the voxel temperature is shown in Fig. 4.10. The distributions are non-normal and

skewed, and hence non-parametric statistical tests were considered to study the significance

in the differences. Since the results are compared with each other for the respective reference

voxel, the statistical test used was Wilcoxon signed Rank Test146;147.
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Figure 4.11: Effect of convective heat exchange between blood and tissue. The positive
temperature difference shows the regions which are warmer when we use the PBM assumption
and the negative temperature difference shows the region where the WJM assumption results
in higher temperature.
ϵ = 5mm - (a) Layer 1 (b) Layer 2 (c) Layer 3
ϵ = 10mm - (d) layer 1 (e) Layer 2 (f) Layer 3

Table 4.2: Statistical significance of Fig. 4.11. Parameter V+ represents percentage of
domain volume that has ∆T ≥ 1 ◦C. Parameter V− represents percentage of domain volume
that has ∆T ≤ −1 ◦C. Parameter V0 represents percentage of domain volume that has −1 ◦C
< ∆T < 1 ◦C.

ϵ (mm) Wilcoxon statistic p-value V+ (%) V− (%) V0 (%)
5 2.72× 109 0.0 6.13 16.82 77.04
10 5.4× 108 0.0 2.14 9.04 88.8
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Fig 4.11 shows the effect of convective heat transfer coefficient between blood vessel and

tissue for different SoI radius. A characteristic thermal pattern can be seen in Fig. 4.11.

There is a difference of a maximum of 1 ◦C throughout the tissue domain. The extremities

are warmer by 1 ◦C when hb = 0.001Wm−2 ◦C−1 and the region farther away from arterial

terminal elements is warmer by 1 ◦C when hb = 10Wm−2 ◦C−1. This difference shows the

regions that are dominantly dependent on convective heat exchange between the blood vessel

and tissue. The tissue regions further from the arterial outlets primarily rely on inter-tissue

blood perfusion. When hb = 10Wm−2 ◦C−1, the convective heat exchange warms this region

and the extremities receive cooler blood. Blood is at a maximum temperature at the inlet for

this domain. Under the PBM assumption (hb = 0.001Wm−2 ◦C−1), blood reaches the entire

arterial tree at the same temperature. For the WJM assumption, the blood loses heat along

its flow. The highest tissue temperature difference is observed in the region closest to the

inlet boundary condition. This is where blood is warmest and, if the convective coefficient is

significant, it will exchange heat and raise the temperature of the tissue. This warmer tissue,

in return, heats the venous return blood, and thus a warmer blood at the outlet is obtained

compared to hb = 0.001Wm−2 ◦C−1 as shown in Table 4.3. This is the system described by

Weinbaum in the literature58. The work of Coccarelli99 shows that inner convection plays

a crucial role in organ temperatures when there exists a major artery in proximity, and so

the results obtained from this simulation support the work of Coccarelli for a micro-scale

domain.

Table 4.3: Temperature for different simulation conditions

Parameters units ϵ = 10mm ϵ = 5mm ϵ = 2mm
Convective coefficient Wm−2 ◦C−1 10 0.001 10 0.001 10 0.001
Inlet temperature ◦C 35.0 35.0 35.0 35.0 35.0 35.0
Outlet temperature ◦C 25.9 25.8 25.9 25.8 26.1 26.0
Min arterial temperature ◦C 27.7 35.0 27.4 35.0 27.4 35.0
Min venous temperature ◦C 24.1 23.7 23.5 22.9 23.1 22.3
Max venous temperature ◦C 26.8 26.6 27.6 27.5 29.0 29.1
Min tissue temperature ◦C 23.1 22.5 22.8 21.5 22.6 21.3
Max tissue temperature ◦C 27.4 27.3 29.0 28.9 31.6 31.8
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Figure 4.12: Temperature difference between ϵ = 5mm and ϵ = 10mm. The positive tem-
perature difference shows the region which is warmer when ϵ is smaller.
hb = 0.001Wm−2 ◦C−1 - (a) Layer 1 (b) Layer 2 (c) Layer 3
hb = 10Wm−2 ◦C−1 - (d) Layer 1 (e) Layer 2 (f) Layer 3

Table 4.4: Statistical significance of Fig. 4.12. Parameter V+ represents percentage of domain
volume that has ∆T ≥ 1 ◦C. Parameter V− represents percentage of domain volume that
has ∆T ≤ −1 ◦C. Parameter V0 represents percentage of domain volume that has −1 ◦C
< ∆T < 1 ◦C.

hb(Wm−2 ◦C−1) Wilcoxon statistics p-value V+ (%) V− (%) V0 (%)
0.001 25.9× 109 0.0 25.11 32.4 42.48
10 17.3× 109 0.0 19.5 28.33 52.16
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The Wilcoxon signed-rank test was performed to study the significance of temperature

difference observed in Fig. 4.11 and the data are shown in Table 4.2. The test resulted in

minimum of sum of the ranks of differences above or below zero as 5.4 × 108 and 2.7 × 109

for SoI radius as 5mm and 10mm, respectively. For both, the p-value of test was very small,

which gives the confidence that the results compared are different. Three new parameters V+,

V−, and V0 were calculated. V+ represents the percentage of volume that has temperature

difference higher than 1 ◦C. Similarly, V− represents the percentage of volume that has

temperature difference lower than −1 ◦C, and V0 represents percentage of volume that has

temperature difference between ±1 ◦C. As shown in Table 4.2, 88.8% of total voxels in the

domain do not have a temperature difference of ±1 ◦C for ϵ = 10mm. Thus, the effect of

convective heat transfer between tissue and voxel is not significantly seen in majority of the

domain for a larger ϵ.

Fig. 4.12 shows the effect of varying ϵ when the convective heat transfer coefficient be-

tween blood and tissue is constant. The positive temperature difference shows a higher

temperature when ϵ is smaller. The SoI controls the volume over which the flow is dis-

tributed in the tissue. A larger volume in the SoI results in a lesser of flow to each tissue

voxel. Thus, higher temperatures for tissues in close proximity to arterial outlets are observed

when SoI is smaller. The negative temperature differences are observed away from arterial

outlets. These regions rely on a larger SoI to receive blood from arteries and, thus, higher

temperatures are observed with ϵ = 10mm compared to those observed with ϵ = 5mm.

Table 4.4 shows the Wilcoxon signed-rank test results for Fig. 4.12. Similar to Table 4.2,

a temperature difference of minimum ±1 ◦C is considered. The minimum of sum of the

ranks of differences above or below zero and their respective p-value are given in Table 4.4.

Unlike the results observed in Table 4.2, more than 50% of total voxels have a temperature

difference more than ±1 ◦C between ϵ = 5mm and 10mm for hb =0.001Wm−2 ◦C−1 and

only 52.16% of total voxels have a temperature difference less than ±1 ◦C between ϵ = 5mm

and 10mm for hb =10Wm−2 ◦C−1. This shows a significant difference in the thermal maps

can be observed based on the SoI radius. Thus, the SoI radius and the corresponding Dirac

distribution method used in this work and in literature137 play a crucial role in the analysis.
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The RRT method98 used in the VaPor model73 generates additional levels of blood vessels

that cannot be segmented from medical imaging data. Blowers73 demonstrated this on a

brain by generating additional blood vessels to simulate hyperthermia. Wang et al.96 use

the same VaPor model and RRT method for thermal analysis of the skin and foot. In both

of these simulations, blood perfusion happens across the terminal vessels - tissue interface.

This modeled perfusion is uniform across the entire length of the terminal vessel and every

voxel that intersects the vessel receives equal amount of flow. This is very efficient when a

single organ is under consideration and the density of the blood vessels can be modeled to the

level where such perfusion physically takes place. However, such detailed micro-vasculature

at the level of the skin over the entire human is likely to incur a very large computational

cost. In the research area of human thermoregulation and human thermal modeling74;148;149,

accurate localized skin temperature over the entire human body is important. This skin

temperature is regulated by blood flow across the skin and acts as a feedback signal to

the hypothalamus for thermal regulation. Recently developed thermoregulation models4 are

designed to be able to couple with thermal manikins. These models require an accurate,

local skin temperature, and thus a blood vessel network that can provide accurate results. If

the blood vessels generated using the RRT algorithm do not reach the capillary level, where

the assumption of blood perfusion across the vessel wall is valid, it would result in pressure

drop error. VoM-PhyS provides the solution to find the optimum level to generate additional

branches using the RRT method and later use SoI technique to supply blood to a volume of

region from the terminal vessels.

In the VoM-PhyS framework, the SoI radius ensures that each voxel has at least one source

and one sink term. This guarantees that no voxel is left unperfused when the pressure drop

across the domain is applied. Many levels of vasculature would be required to achieve this

using RRT method, which is tantamount to recreating the entire capillary blood network

as obtained from literature87;88;150. A model that can simulate blood flow and heat transfer

needs to map pressure boundary conditions across the vascular network. This becomes more

challenging as the relative domain size increases when compared to the size of capillary

network. Using the porous media approximation is one way to represent these capillaries.

92



The coupling between discretized blood vessels and this porous media domain plays a key

role on addressing the issue of pressure and blood flow. Such a framework can be used to

simulate a tracer distribution as shown in literature101. The VoM-Phys framework provides

the ability to model the pressure distribution, blood flow, and heat transfer, irrespective of

the domain size relative to the capillary bed.

The VoM-PhyS framework relies on the Dirac distribution method (Eq. (4.6a)) and the

pressure drop parameter to simulate pre-capillary vessels. These two parameters are analysed

and discussed in the next chapter. Determining the correct value of the SoI radius (ϵ)

remains a challenge that requires further research. The present study considers laminar flow

throughout the blood vessel network and porous media. This assumption has its limitations

which are not covered here. As blood enters a capillary bed, it behaves as a non-Newtonian

fluid151–153. The effect of non-Newtonian blood in the VoM-PhyS framework is beyond the

scope of this dissertation but needs to be studied in future work. The domain generated from

imaging data relies on the accuracy on image and segmentation process involved to create

the domain. The diameters of blood vessels obtained during segmentation are dependent

on the state of vasodilation or vasoconstriction at the moment when the image was taken.

These parameters are expected to affect the blood flow. The future work for present study

would require to consider transient analysis of blood flow and spatial and transient variations

due to thermal response.

4.4.1 Propagation of Error

In Fig. 4.13, the relative sensitivity coefficient averaged over the domain (X̄x) is plotted for

various input parameters. X̄x represents an average percent change in temperature offset for

a 1% change in a given input parameter value. The reference inlet temperature offset θin

is 15 ◦C. When the inlet temperature is specified as 35.15 ◦C to simulate for 1% increase in

θin, an average increase of 1.023% is observed. Since metabolic generation is defined to be

zero for the simulation, the temperature variation in the domain shows a linear relationship

with inlet temperature. When the convective heat transfer coefficient of ambient air (h∞) is
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increased by 1%, the average temperature offset reduces by 0.65%. This is due to more heat

being convected out of the domain reducing the overall domain temperature. For a percent

increase of arterial to venous compartmental perfusion (α), an average of 0.4% increase in

temperature was observed. Other flow resistance parameters used in VoM-PhyS (Ka, Kv, γa

and γv) exhibited an average change of less than ± 0.1% in temperature.

Figure 4.13: Parameter sensitivity analysis

4.5 Chapter Summary

In this chapter, the existing blood flow model137 was described, which was used to develop

the novel VoM-PhyS framework. This simulation framework was developed to simulate heat

exchange coupled with blood flow for a voxel mesh obtained from medical imaging data. The

VoM-PhyS framework was demonstrated on frog tongue data obtained from the literature.

The VoM-PhyS framework was designed to accommodate different assumptions of bioheat

transfer. Classification of thermally significant vessels has been a topic of debate in the

literature. The VoM-PhyS framework allows the flexibility to vary thermally significant

vessels. This adaptability of the VoM-PhyS framework was demonstrated by varying the

heat transfer coefficient of segmented vessels to simulate the Weinbaum and Jiji58;60 BHM

and the Pennes23 BHM.

The SoI is a spherical tissue volume within which a segmented terminal vessel exchanges
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blood with tissue voxels. The SoI couples the 1D vessel mesh with 3D tissue mesh. The value

of SoI radius ϵ remains empirical with no in vivo data available for benchmarking. The effect

of different values of ϵ in the VoM-PhyS was studied. Use of smaller values of ϵ demonstrated

locally warmer regions compared to the more uniform temperature distribution observed

when using larger ϵ. The Wilcoxon statistical test was used to analyze the significance of

the difference due to different ϵ values and heat exchange between the segmented vessels and

tissue. The statistical analysis revealed that ϵ had a more significant effect on the simulation

results than convective heat exchange between blood vessels and tissue.
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Chapter 5

Mixed-Dimensional Coupling

In the VoM-PhyS Framework (described in Chapter 4), the multi-dimensional coupling is

achieved using the SoI radius (ϵ) and the pressure drop parameter (γ). The SoI controls

the number of tissue voxels exchanging blood with the segmented blood vessels. The pres-

sure drop parameter dictates the flow resistance offered by the mathematical blood vessels

within the SoI. The availability of segmented blood vessels is primarily limited by image

resolution. However, in addition to image resolution, memory requirements can also restrict

segmentation of blood vessels. An example of this is the mesh-based liver vasculature model

developed by Correa-Alfonso et al.86. In this liver model, the blood vessels are generated

using the Constrained Constructive Optimization (CCO) algorithm. The smallest diameter

of the blood vessel modeled is 100 µm. A voxel mesh of this liver model with a voxel size

of 500µm results in 13.6 × 106 voxels and 71.4% of hepatic arteries are lost as their diam-

eter is less than 500µm. The memory required for a voxel mesh of this size is in the range

in terabytes. Unsegmented blood vessels are modeled using the SoI and the pressure drop

parameter in the VoM-PhyS Framework. Hence, understanding these parameters and their

effect on the simulation is crucial.

This chapter focuses on the effect of the SoI and the pressure drop parameter on simu-

lation accuracy. Using a 2D domain, a set of two equations to calculate the pressure drop

parameter for arterial and venous networks is presented. A reference domain of vascular
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networks is used to demonstrate the application of derived pressure drop equations. The

effect of replacing segmented vasculature with the pressure drop parameter on heat transfer

simulation is presented, and two methods to reduce the resulting temperature errors are

proposed and analyzed.

5.1 Methodology

To study the effect of SoI and pressure drop parameter γβ (β = a for arterial and β = v

for venous), a simulation domain shown in Fig. 5.1 was created. A thin tissue slice of

thickness 0.001m and 0.09m x 0.09m was connected to a vasculature. The arterial and

venous networks consist of bifurcations at every level. The daughter vessels have a bifurcation

angle of 30◦ between them151. The radii of parent and daughter vessels are restricted using

the Murray’s Principle of Bifurcation154, shown in Eq. (5.1).

rλp = rλd1 + rλd2 (5.1)

Figure 5.1: Simulation Domain (a) Nt64 (b) Nt32 (c) Nt16 (d) Nt8 (e) Nt4 (f) Nt2
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In Eq. (5.1), subscripts d1 and d2 represent daughter-1 and daughter-2 of parent vessel,

respectively. The value of λ has been researched extensively. In literature, λ = 3 is shown

to provide uniform wall shear stress throughout the vasculature86;125;126;154;155, while, λ = 2

minimizes the total cross-sectional area available for blood flow155. The blood vessel model

developed for this research was only for preliminary study to understand the pressure drop

parameter and SoI. Variation in the λ value is not expected to affect the correlation of the

pressure drop parameter and SoI with the available vasculature. Thus, a value of λ = 2.5

was used for this work.

The arterial and venous networks will be addressed in this dissertation based on the num-

ber of terminal vessels (Nt). The arterial and venous networks bifurcate at each generation

resulting in 2n terminals, where n represents the branch generation level. The 6 generation

tree consists of 64 terminals and was assumed to be the most detailed model for simulation

purposes, and will be referred to as Nt64.

To generate the vasculature, the radii of terminal arterial vessels for Nt64 were equated

to one voxel dimension. Similarly, the radii of terminal venous vessels for Nt64 were equated

to 1.5 voxel dimension since veins are larger than arteries in general156;157. Using the bifur-

cation angle and Eq. 5.1, the radii and length of the vascular network were calculated. The

dimensions of the blood vessels in the arterial and the venous networks at every branching

level are shown in Table 5.1, where branch level 0 is the root branch of the arterial and the

venous networks. Nt64 is shown in Fig. 5.1.a. To simulate the lack of detailed vasculature

data, the terminal vessels of the networks were removed keeping the radii and length of the

Table 5.1: Dimensions of simulation domain
Arterial Tree Venous Tree

Branch Level radius (mm) length (mm) radius (mm) length (mm)
0 5.27 100.00 7.91 100.00
1 4.00 77.88 6.00 77.80
2 3.03 77.62 4.54 77.62
3 2.29 38.32 3.44 38.32
4 1.74 38.32 2.61 38.32
5 1.32 19.65 1.98 19.65
6 1.00 18.68 1.50 18.68
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rest of the branches same. Following this procedure, Nt32, Nt16, Nt8, Nt4 and Nt2 networks

were generated as shown in Fig. 5.1.

Table 5.2: Parameters used for 2D flow simulation
Parameter Symbol Value Units

Perfusion α 0.5 m s kg−1

Arterial permeability137 Ka 1× 10−5 m2

Venous permeability137 Kv 1× 10−5 m2

Viscosity130 µ 3× 10−3 Pa s
Arterial inlet pressure Pin 100 Pa
Venous outlet pressure Pout 0 Pa
Voxel dimensions 1 x 1 x 1 mm3

The importance of the SoI radius is discussed in Chapter 4. A schematic to illustrate

the same is shown in Fig. 5.2. In Fig. 5.2.a, four vascular terminals are shown each having a

SoI of radius ϵ. The spread of the SoI from the four terminals does not cover the entire cell

array. Thus, some cell voxels rely on inter-voxel perfusion to receive and exchange blood. In

such a system, these cells could be oxygen deprived. To ensure that no cell-voxel is deprived

of oxygenated blood, the ϵ of SoI was selected such that each cell-voxel lies within the spread

of at least one arterial and one venous terminal, respectively. A 100% coverage of tissue

volume within SoI is shown in Fig. 5.2.b. As the number of vascular terminals reduces, the

ϵ required to achieve a 100% coverage of tissue volume within SoI increases. This is shown

in Fig. 5.2.c and Fig. 5.2.d. For the simulation domains shown in Fig. 5.1, the percentage of

volume coverage achieved for different values of ϵ is shown in Fig. 5.3.

The parameters used for simulation are given in Table 5.2. The value of the perfusion

parameter (α) was limited by the total flow resistance offered by the arterial and venous

networks. This was done because if the flow resistance between the arterial and venous com-

partments is larger than the flow resistance of the segmented vascular network, an unphysical

condition of a negative flow rate results. Since the simulation domain was generated and

not obtained from any medical imaging data or literature, the value of α was varied to avoid

this condition.
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(a)

(b)

(c)

(d)

Figure 5.2: Representation of tissue volume coverage for different values of ϵ
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Figure 5.3: Effect of Nt and SoI on the fraction of tissue volume receiving direct blood
from the arterial tree.

Figure 5.4: Pressure map for 64 terminals, ϵ = 20mm and γ = 1 × 10−5m3 (a) Arterial
compartment in tissue (b) Venous compartment in tissue

Using the simulation parameters given in Table 5.2 and Eqs. (4.10), (4.11), (4.12), (4.13),

(4.14), (4.15), (4.16), and (4.17), the blood flow matrix was solved and the resulting total

flow rate flowing through domain Nt64 was calculated. For this simulation, the pressure drop

parameter for arterial and venous networks was taken to be 1× 10−5m3. The pressure drop

parameter represents the flow conductivity of the unsegmented, mathematically modeled

blood vessels. A value of γ = 1×10−5m3 was selected because it offered the flow conductivity

of unsegmented vessels higher than the conductivity of segmented vascular tree. In other
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words, for a value of γ = 1×10−5m3, the flow resistance of segmented vasculature dominates

the flow in Nt64. This results in a total flow rate Q that is dependent on the physical blood

vessels in Nt64, ensuring that Nt64 represents the most detailed network for this study. Once

the total flow rate was obtained, the equivalent flow resistance (Req) offered by Nt64 was

calculated using Eq. (5.2).

Req =
Pin − Pout

Q
(5.2)

As discussed earlier, ϵ determines the volume fraction covered by the SoIs of terminal

vessels. As shown in Fig. 5.3, ϵ = 20mm for Nt64 results in 99.9% coverage. The pressure

maps for the arterial and venous compartments for Nt64 and ϵ = 20mm are shown in Fig. 5.4.

This solution of Nt64 with ϵ = 20mm is considered as the reference to which other simulation

cases are compared.

5.1.1 Effect of the SoI Radius

The value of ϵ determines how much of tissue volume directly exchanges blood with the

segmented vasculature. To study any variation that could occur in the results due to ϵ,

different values of ϵ were simulated, and the results were compared.

Fig. 5.5 shows the pressure drop along the flow direction from the inlet of the arterial

tree (0) to the outlet of the venous network (17). The pressure plots are shown for Nt64 for

ϵ = 20mm and ϵ = 10mm. In Fig. 5.5 nodes 8 and 9 represent the average pressure in the

arterial and venous compartments of tissue voxels, respectively. Nodes 7 and 10 represent

the terminal nodes of the arterial and venous vascular network for Nt64, respectively. Since

the vascular networks are symmetric, the pressure gradient in daughter vessels is identical

to each other.

It can be seen from Fig. 5.5 that the pressure slopes are identical. The value of ϵ does not

affect the pressure drop across the vascular tree. The contour pressure maps in the arterial
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and venous compartment of tissue voxel for ϵ = 10mm (Nt64) are shown in Fig. 5.6.a and

Fig. 5.6.b, respectively. The pressure error for ϵ = 20mm and ϵ = 10mm is shown in Fig. 5.6.c

and Fig. 5.6.d for arterial and venous compartment, respectively.

Figure 5.5: Effect of Nt and SoI on the fraction of tissue volume receiving direct blood
from the arterial network.

The maximum error observed due to different ϵ is 0.019Pa. Compared to a pressure drop

of 100Pa imposed as a boundary condition, the maximum error is less than 0.1%. Thus, it

can be concluded that ϵ does not affect flow simulation and the resulting pressure maps.
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Figure 5.6: Pressure map for 64 terminals, ϵ = 10mm and γ = 1× 10−5m3

(a) Arterial compartment in tissue (b) Venous compartment in tissue
Pressure difference between ϵ = 20mm and 10mm (c) Arterial compartment (d) Venous
compartment
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5.1.2 Effect of the Pressure Drop Parameter

The pressure drop parameter represents the effective conductivity of the vasculature that

could not be represented from medical imaging data due to lack of spatial resolution or

computational memory limitations. The effect of lack of segmentation data on pressure

gradient is shown in Fig. 5.7. As the available segmented vasculature decreases, the pressure

gradient becomes more negative, i.e., the total flow rate flowing in the domain increases.

Figure 5.7: Effect of number of branch generations on Req

As the number of branch generations are reduced, the Req offered by the network de-

creases, and the resultant flow rate Q increases for a constant pressure drop. In Fig. 5.7, a

change in the Req is seen in the steepness of pressure gradient.

When the pressure drop parameter is adjusted as shown in Fig. 5.8, theReq of the network

can be recovered. This demonstrates the importance of determining the correct pressure drop

parameter when simulating blood flow network using the VoM-PhyS framework. In Fig. 5.8,

when the pressure drop parameter is varied from 1× 10−5m3 to 8× 10−11m3 for Nt32, the

pressure drop slopes shift closer to the reference solution, thus indicating that the correct

pressure drop parameter can rectify the flow error.

Fig. 5.9.a, Fig. 5.9.b, Fig. 5.9.c and Fig. 5.9.d show the variation of flow rate Q for

different values of γ for Nt32, Nt16, Nt8 and Nt4, respectively. The solution obtained for
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Nt = 64, ϵ = 20mm and γa = γv = 1 × 10−5m3 is used as a reference. The resulting flow

rate in Nt64 for these parameters was 21.7 cm3 s−1.

Figure 5.8: Effect of γ on Req

For all the vascular networks shown (Nt32, Nt16, Nt8, and Nt4), the flow rate remains

nearly constant up to a threshold value, and then it starts to decrease. This threshold value

corresponds to the value where flow conductance (γa and γv) of virtual vessels equals the

overall flow conductance offered by the physical vasculature. Before the threshold, the values

of γa and γv offer higher flow conductance than the physical vessels, and the resistance of

segmented blood vessels limits the flow rate. This is demonstrated by the plateaus observed

in Fig. 5.9.

Once the values of γa for a given γv are lowered beyond the threshold, the flow resistance

offered by the mathematical vessels is dominant and controls the overall flow rate. This

behavior is observed by the sudden drop from plateau converging towards zero in Fig. 5.9.

Conducting a graphical analysis, the value of γa can be extracted for a reference flow rate

of 21.7 cm3 s−1 for a given γv. This combination of γa and γv where the net flow rate of

21.7 cm3 s−1 represents the optimum values of pressure drop parameter to be used in the

simulation. The γa tends to lie between 1× 10−9m3 and 1× 10−10m3 for Nt32 (Fig. 5.9.a),

Nt16 (Fig. 5.9.b), Nt8 (Fig. 5.9.c), and Nt4 (Fig. 5.9.d).
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(a)

(b)

(c)

(d)

Figure 5.9: Variation in total flow rate with γ for (a) Nt32 (b) Nt16 (c) Nt8 (d) Nt4
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5.2 Pressure Drop Parameter Equation

From the observations discussed in the previous section, it is evident that the pressure drop

parameter is the key to simulating the correct pressure map in VoM-PhyS Framework. The

previous section elaborates calculating the pressure drop parameter using graphical analysis.

In this subsection, a mathematical equation to calculate the pressure drop parameter is

derived.

Figure 5.10: Example domain illustration

Fig. 5.10 illustrates an example domain with arterial and venous vasculature shown in

the red and blue networks, respectively. The porous tissue region is represented using the

pressure nodes for the arterial compartment and venous compartment. The net blood flow

rate flowing in the volume is Qin from the arterial side, and the net flow rate leaving the

domain is Qout, respectively. Since mass is conserved, Qin is equal to Qout as shown in

Eq. (5.3)

Q = Qin = Qout (5.3)

The flow entering the tissue domain is considered to be uniformly distributed85;86;124;125.
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Thus, the flow rate leaving the arterial terminals (nodes: 3) is considered to be equal. With

the equal distribution assumption, the blood flow rate in the terminal vessels is calculated

using Eq. (5.4) where n represents the number of bifurcation generations. In the illustrated

example, n is equal to 2.

Qterm =
Q
2n

(5.4)

In Fig. 5.10, the arteries and veins are considered to be the segmented vasculature for

which the length and diameter can be calculated from imaging data. Using the dimensions

of the vasculature, the equivalent flow resistance offered by each arterial and venous vascular

tree can be calculated using parallel and series resistance methods. The equivalent resistance

of arterial and venous trees are represented as RA and RV , respectively, and shown in

Fig. 5.11. The blood flow equation for the arterial and venous trees is shown in Eq. (5.5)

and Eq. (5.6), respectively.

(Pin − PA,term) = QRA (5.5)

(PV,term − Pout) = QRV (5.6)

In Eq. (5.5) and Eq. (5.6), The terminal pressure for arterial tree and venous tree is rep-

resented as PA,term and PV,term, respectively. Rearranging Eq. (5.5) and Eq. (5.6), Eq. (5.7)

and Eq. (5.8) are obtained.

PA,term = Pin −QRA (5.7)
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Figure 5.11: Simplified domain

PV,term = Pout +QRV (5.8)

The total pressure drop between terminal arteries and terminal veins can be calculated

using Eq. (5.9), where ∆PA,term→t and ∆Pt→V,term represent the pressure drop between the

terminal artery and arterial compartment, and, venous compartment and terminal vein,

respectively. ∆Pt represents the pressure drop across arterial and venous compartments

within the tissue and is calculated using the perfusion coefficient (α) as shown in Eq. (5.10).

PA,term − PV,term = ∆Pterm = ∆PA,term→t +∆Pt +∆Pt→V,term (5.9)

∆Pt =
Q
αV

(5.10)

In the previous section, a correlation between the flow resistance of arterial and venous

trees and the pressure drop between terminal vessels and tissue was observed. Thus, a

hypothesis is proposed between the flow resistance and pressure drop between terminal vessels
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and tissue as shown in Eq. (5.11)

∆PA,term→t

∆Pt→V,term

=

[
RA

RV

]
= ψ (5.11)

∆PA,term→t = ψ∆Pt→V,term (5.12)

Using Eq.(5.12) and substituting in Eq. (5.9), equations for ∆PA,term→t and ∆Pt→V,term

are derived, shown in Eq. (5.13) and Eq. (5.14), respectively

∆PA,term→t =
ψ(∆Pterm −∆Pt)

(ψ + 1)
(5.13)

∆Pt→V,term =
(∆Pterm −∆Pt)

(ψ + 1)
(5.14)

The resistance equation for flow in virtual vessels can be written as Eq. (5.15) and (5.16)

where the resistance offered by virtual arterial and venous networks is represented using

blood viscoity µ and pressure drop parameter γβ

∆PA,term→t = QA,term
µ

γa
(5.15)

∆Pt→V,term = QV,term
µ

γv
(5.16)

Using Eq. (5.13), (5.14) and Eq. (5.15), (5.15), the equations to determine pressure drop

parameter for the arterial and venous tree is derived as shown in Eq. (5.17) and Eq. (5.18),

respectively.
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γa =
Qµ

2n∆PA,term→t

(5.17)

γv =
Qµ

2n∆Pt→V,term

(5.18)

The Equations can be further modified by substituting Eq. (5.13) and Eq. (5.14) to obtain

Eq. (5.19) and Eq. (5.20).

γa =
Qµ
2n

(ψ + 1)

ψ
[
∆Pterm − Q

αV

] (5.19)

γv =
Qµ
2n

(ψ + 1)[
∆Pterm − Q

αV

] (5.20)

Eq. (5.17) and Eq. (5.18) are further modified as Eq. (5.21) and Eq. (5.22)

γa =
µQ
2n

(RA

RV
+ 1)

RA

RV
[∆P −Q [RA +RV + (αV )−1]]

(5.21)

γv =
µQ
2n

(RA

RV
+ 1)

[∆P −Q [RA +RV + (αV )−1]]
(5.22)

Eq. (5.21) and Eq. (5.22) are the final forms of equations to calculate the pressure drop

parameter for arterial and venous trees. It can be seen from these equations that the pressure

drop parameters can be calculated using total blood flow rate in the simulation domain,

pressure drop across the simulation domain and the equivalent resistance of arterial and

venous trees calculated from the segmented vasculature.
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5.3 Application of the Pressure Drop Parameter Equa-

tion

5.3.1 2D Domain

The domain in Fig. 5.12 is similar to Fig. 5.1, the only difference being, two extra generations

of bifurcation have been modeled to create Nt256. To get a reference flow rate for Nt256,

the γa and γv were considered as 1 × 10−5m3. This was done to provide a very high flow

conductivity in the mathematically modeled vessels for Nt256. The resultant flow rate from

this simulation was considered as the reference flow rate for analysis. The pressure drop

parameter value for Nt256 are shown in Table 5.3. The pressure drop parameter for arterial

and venous trees is calculated using Eq. (5.21) and Eq. (5.22). The pressure drop parameter

for Nt256 shown in Table 5.3 represents the minimum value for which reference flow rate

will be affected only by the resistance of physical vasculature.

Table 5.3: Pressure drop parameters obtained from Eq. (5.21) and Eq. (5.22) for 2D domain
Nt γa (m3) γv (m3) % error in Q
256 1.54× 10−7 1.45× 10−6 0.00
128 1.05× 10−10 9.83× 10−10 0.01
64 1.26× 10−10 1.19× 10−9 0.04
32 1.49× 10−10 1.4× 10−9 0.08
16 2.35× 10−10 2.21× 10−9 0.05
8 3.70× 10−10 3.47× 10−9 0.01
4 6.47× 10−10 6.07× 10−9 0.06
2 1.10× 10−9 1.03× 10−8 0.36

Fig. 5.13 and Fig. 5.14 show the pressure maps for (a) arterial compartment, (b) venous

compartment, and error in the pressure maps with reference to Nt256 in (c) arterial com-

partment and (d) venous compartment, respectively. The pressure maps and error maps for

Nt64, Nt32, Nt16, Nt8, and Nt4 are shown in the Appendix as Fig. A.1, Fig. A.2, Fig. A.3,

Fig. A.4, and Fig. A.5, respectively.

From Table 5.3 and Figs. 5.13 and 5.14, it is confirmed that the equations for pressure

drop parameters (Eq. (5.21) and Eq. (5.22)) derived in previous section are accurate and can
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determine the flow resistance of unsegmented vessels.

Figure 5.12: Simulation domain Nt256
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Figure 5.13: Nt128
(a) Arterial compartment pressure map (b) Venous compartment pressure map (c) Error
in arterial compartmental pressure compared to Nt256 (d) Error in venous compartmental
pressure compared to Nt256
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Figure 5.14: Nt2
(a) Arterial compartment pressure map (b) Venous compartment pressure map (c) Error
in arterial compartmental pressure compared to Nt256 (d) Error in Venous compartmental
pressure compared to Nt256
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5.3.2 3D Domain analysis

To verify the applicability of the Eq. (5.21) and Eq. (5.22) on a 3D domain, a test case shown

in Fig. 5.15 was generated using Rhinoceros132. The domain modeled had 32 terminals for

arterial and venous trees, and the cuboidal tissue size encasing the vasculature was 20 cm

x 20 cm x 20 cm. The voxel dimensions were 2.5mm x 2.5mm x 2.5mm. The 32 terminal

domain was considered as a reference solution for comparison and will be referred to as Case 1

henceforth. Similar to the 2D domain, the number of terminals was reduced gradually to

create different simulation domains which are shown in Fig. 5.16. The resultant domains

are termed Case 2, Case 3, Case 4, and Case 5 for 16, 8, 4, and 2 terminals, respectively

(Fig. 5.16).

Figure 5.15: 3D simulation domain

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5

Figure 5.16: 3D simulation domain cases
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The dimensions of arterial and venous tree were considered same for this simulation for

simplicity and are given in Table 5.4

Table 5.4: Dimensions of vasculature in 3D Domain
Branch level radius (mm) length (mm)

0 8.00 50.00
1 6.06 44.70
2 4.60 31.60
3 3.48 36.70
4 2.64 23.50
5 2.00 33.10

An inlet pressure of 1000Pa was applied at the arterial inlet node and an exit pressure

of 1Pa at the venous outlet node. To calculate the reference flow rate, the pressure drop

parameter for arterial and venous trees were taken as 1m3. Similar to 2D analysis, this

was done to ensure that the resultant flow rate is limited by physical vasculature and not

mathematical pressure drop parameter. Using the calculated net flow equivalent flow rate,

the pressure drop parameter for various case were calculated using Eq. (5.21) and Eq. (5.22),

and are given in Table 5.5.

Table 5.5: Pressure drop parameters calculated using Eq. (5.21) and Eq. (5.22) for 3D domain
case Nt γa (m3) γv (m3)
1 32 8.29× 10−7 8.29× 10−7

2 16 3.78× 10−10 3.78× 10−10

3 8 5.16× 10−10 5.16× 10−10

4 4 7.76× 10−10 7.76× 10−10

5 2 1.36× 10−9 1.36× 10−9

The pressure maps for the arterial compartment and venous compartment at z = 40

are shown in Fig. 5.18 and Fig. 5.19, respectively. The location of slice z = 40 is shown in

Fig. 5.17. The pressure maps are fairly consistent as seen in Fig. 5.20 with errors less than

± 0.7Pa. The pressure maps for other z locations are given in Appendix B.

Similar to the 2D analysis, the pressured drop parameter equations (Eqs. (5.21) and

(5.22)) are accurate in simulating flow and pressure maps for domains where segmented

vasculature is limited, as can be seen from the pressure maps.
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Figure 5.17: Location of z = 40

Figure 5.18: Arterial compartment pressure map of five simulation cases at z = 40
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Figure 5.19: Venous compartment pressure map of five simulation cases at z = 40

Figure 5.20: Pressure error at z = 40
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5.4 Energy Analysis

Once the pressure maps across the simulation domain were examined, analysis to determine

the changes in heat exchange due to lack of segmentation data was conducted. The goal was

to observe the error introduced in the simulation due to the lack of segmentation data. The

parameters used for energy analysis are given in Table 5.6.

Table 5.6: Parameters used for 3D energy simulation

Parameter Symbols Value Units

Specific heat cpt 1000 J kg−1 ◦C−1

Density ρt 1000 kgm−3

Thermal conductivity130 kt 0.5 Wm−1 ◦C−1

Perfusion α 1× 10−3 mskg−1

Arterial permeability137 Ka 1× 10−5 m2

Venous permeability137 Kv 1× 10−5 m2

Metabolic heat gen. rate q̇m 1000 Wm−3 s−1

Viscosity130 µ 3× 10−3 Pa s
Ambient temperature T∞ 20 ◦C
Inlet blood temperature Tin 35 ◦C
Ambient convective heat transfer coefficient hamb 10 Wm−2 ◦C−1

Blood convective heat transfer coefficient hb 10 Wm−2 ◦C−1

The temperature contours at z = 40 for Case 1, Case 2, Case 3, Case 4 and Case 5 are

shown in Fig. 5.21. The temperature plots for other z locations are given in the Appendix

(Fig. C.1, Fig. C.2, Fig. C.3, Fig. C.4). The thermal map of Case 1 (32 vascular terminals)

was considered as the reference solution. The temperature maps of Case 2 (16 terminals),

Case 3 (8 terminals), Case 4 (4 terminals), and Case 5 (2 terminals) are compared with the

reference solution of Case 1. To analyze the error, the dimensionless temperature error θi is

calculated using Eq. (5.23).

θi =
Tc,i − Tref,i
Tin − Tamb

(5.23)

In Eq. (5.23), subscript i represents the voxel index, c represents the case number 2,3,4,

and 5, and ref represents Case 1.
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(a)

(b)

Figure 5.21: Temperature at z = 1

The observed maximum dimensionless temperature error and maximum temperature

error are given in Table 5.7. The temperature error for various cases at z = 40 are shown in

Fig. 5.22, Fig. 5.23, Fig. 5.24, and Fig. 5.25. The temperature error plot at other z locations

is given in the Appendix D. Fig. 5.26 and Fig. 5.27 show the error plots at z = 1 and z = 80

for all the cases.
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Table 5.7: Maximum temperature error observed in various simulation cases

Case θ ∆T (◦C)
Case 2 ± 0.09 ± 1.37
Case 3 ± 0.10 ± 1.50
Case 4 ± 0.13 ± 2.05
Case 5 ± 0.18 ± 2.74

Figure 5.22: Temperature error in Case 2 at z = 40 (a) Temperature map of Case 1 (b) Tem-
perature map of Case 2 (c) Temperature difference between Case 2 and Case 1 (d) Non-
dimensional temperature error between Case 2 and Case 1

As can be seen from Fig. 5.22 to Fig. 5.27, the maximum error is observed at the four

edges of the cuboidal tissue domain. It is important to note that such sharp edges are

not typically observed in biological tissues and organs. An important observation from the

above simulation is that the maximum error in Case 5 is −1.26 ◦C in the region away from

the extremities of tissue. Similarly, the maximum errors for Case 2, Case 3, and Case 4

in the region away from eight corners of the tissue were −0.3 ◦C, −0.93 ◦C, and −1.17 ◦C,

respectively. The negative temperature error shows that lack of segmented vascular data

results in lower temperatures than the reference domain.
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Figure 5.23: Temperature error in Case 3 at z = 40 (a) Temperature map of Case 1 (b) Tem-
perature map of Case 3 (c) Temperature difference between Case 3 and Case 1 (d) Non-
dimensional temperature error between Case 3 and Case 1

Figure 5.24: Temperature error in Case 4 at z = 40 (a) Temperature map of Case 1 (b) Tem-
perature map of Case 4 (c) Temperature difference between Case 4 and Case 1 (d) Non-
dimensional temperature error between Case 4 and Case 1
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Figure 5.25: Temperature error in Case 5 at z = 40 (a) Temperature map of Case 1 (b) Tem-
perature map of Case 5 (c) Temperature difference between Case 5 and Case 1 (d) Non-
dimensional temperature error between Case 5 and Case 1
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(a)

(b)

Figure 5.26: Temperature error at z = 1
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(a)

(b)

Figure 5.27: Temperature error at z = 80
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5.4.1 Error Analysis in Different Modes of Bioheat Transfer

A further analysis was conducted by examining the energy exchange error at the individual

tissue voxel level. Three different modes of bioheat transfer occur at a tissue voxel level -

(1) advection-conduction with neighboring tissue voxels (2) advection from arterial terminals;

and (3) convection with a neighboring vessels. The energy exchanges (W) are calculated for

each tissue voxel in these three processes and compared with those from reference Case 1.

The equations used to calculate the error are given in Eq. (5.24), Eq. (5.25), and Eq. (5.26).

∆Eterm,art,k =
∑

i∈NA,term,ci

ṁart,i,ciρbcpTart,i,ci −
∑

j∈NA,term,c1

ṁart,j,c1ρbcpTart,j,c1 (5.24)

∆Eves,conv,k =
∑
i∈N

(
1

hb
+

kt
2∆s

)
AsTi,ci −

∑
j∈N

(
1

hb
+

kt
2∆s

)
AsTj,c1 (5.25)

∆Etis,k =
∑
i∈N

(
ṁb,icpρb +

kt
ds
A

)
Ti −

∑
j∈N

(
ṁb,jcp, ρb +

kt
∆s

A

)
Tj (5.26)

Eq. 5.24 represents the difference in energy a voxel recieves via advection from terminal

arteries. This difference is calculated for a simulation case with respect to Case 1. The first

term on right hand side (RHS) of Eq. (5.24), represents the total energy a tissue voxel k

recieves via advection from arterial terminals in set NA,term for a specific simulation case.

The second term on RHS of Eq. (5.24) represents the total energy a tissue voxel k recieves

via advection from arterial terminals in set NA,term for Case 1.

Eq. (5.25) represents the difference in energy a voxel receives via convection with a

neighboring vessel. The first term on RHS of Eq. (5.25) represents the total energy a tissue

voxel k receives via convection if it is next to a blood vessel of temperature Ti,ci for a

specific simulation case represented by subscript ci. The second term on RHS of Eq. (5.25)
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represents the total energy a tissue voxel k receives via convection if it is next to a blood

vessel of temperature Tj,c1 for Case 1.

Eq. (5.26) represents the difference in energy a voxel receives via conduction-advection

with a neighboring tissue voxel. The first term on RHS of Eq. (5.26) represents the sum of

energy a tissue voxel k receives via advection and conduction from tissue voxels surrounding

it for a specific simulation case. The second term on RHS of Eq. (5.26) represents the sum of

energy a tissue voxel k receives via advection and conduction from neighboring tissue voxels

for Case 1.

The energy exchange error plots are shown in Fig. 5.28 and Fig. 5.29 for all the cases

at z = 1 and z = 80. The energy exchange error plots at other z locations are given in

Appendix D. The maximum and minimum energy errors observed in the domain are given

in Table 5.8. Fig. 5.28 and Fig. 5.29 represent the bottom and top cross-section layers

in the simulation domain. There isn’t any blood vessel physically present in these slices,

thus there is no error observed in convective heat exchange from a vessel. Due to their

location being farther away from the supply artery, as the branch generations are reduced,

we observe less energy being transmitted via advection from supply arterial terminals. Since

the tissue receives less energy from the supply artery, it results in less energy exchange

between neighboring tissues compared to Case 1, and thus prominent error contours in the

corners as observed in Fig. 5.26 and Fig. 5.27, when compared to Fig. D.17, Fig. D.18, and

Fig. D.19.

Table 5.8: Energy error observed in various simulation cases

Case ∆Etis (W) ∆Eves,conv (W) ∆Eterm,art (W)
min max min max min max

2 1.43 −3.48 9.51× 10−7 −0.0064 −0.17 0.575
3 2.39 −3.48 7.9× 10−7 −0.0064 −0.23 0.67
4 1.76 −3.76 3.97× 10−7 −0.0085 −0.2 0.45
5 1.11 −4.11 1.43× 10−7 −0.0085 −0.17 0.39
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(a)

(b)

Figure 5.28: Energy error analysis at z = 1
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(a)

(b)

Figure 5.29: Energy error analysis at z = 80
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5.5 Methods to Reduce Energy Error

An important observation in Figs. 5.28, 5.29, D.20, D.21, and D.22 is that the maximum

energy exchange error is observed within advection - conduction between neighboring tissue

voxels compared to other forms of energy exchange. Due to this a correction factor in the

thermal conductivity of tissue could be a potential solution. The Weinbaum group60;158

studied the effect of counter-current heat exchange in capillary beds. To model the effect of

this heat transfer process, they introduced an effective tissue conductivity in their proposed

new bioheat equation60. A similar approach could be undertaken to determine the variation

in the thermal conductivity of tissue due to the lack of segmentation data.

The other alternative to reduce the energy error is varying the SoI radius. In section 4.4,

it was shown that SoI plays a critical role in heat transfer. Earlier in this chapter, SoI radius

was shown to not affect the pressure map; however, its effect on heat transfer could prove

advantageous to reduce the energy error.

5.5.1 Modified Tissue Thermal Conductivity

As less blood vessels are segmented, they lie hidden within the tissue. The tissue now

consists of larger blood vessel (un-segmented) than the reference domain. In the energy

error analysis conducted, it can be seen that more error is observed in the advection -

conduction heat exchange between neighboring tissues. Advection between two neighboring

tissues is dictated by the pressure difference and resistance between the two voxels. From

the flow analysis, the pressure map is shown to be consistent and the flow resistance between

voxels is not varied. Hence, conduction between the tissue voxels is a key phenomenon. In

literature, effective thermal conductivity is used to consider the effect of unsegmented blood

vessels and counter-current heat exchange as described in Section 2.3. The same concept of

effective thermal conductivity is used to compensate for the effect of cross-flow heat exchange

between unsegmented blood vessels.

For this analysis, only Case 5 is considered as it represents the worst-case scenario in this

study. As observed earlier, the maximum temperature error observed is −2.74 ◦C between
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Case 5 and Case 1. The maximum temperature error and non-dimensional temperature error

observed for different values of thermal conductivity are given in Table 5.9. The contour

maps of temperature errors for different values of thermal conductivity are given in Fig. 5.30

and Fig. 5.31, for z = 1 and 80, respectively.

Figure 5.30: Effect of thermal conductivity at z = 1 for ϵ = 177.5mm

Table 5.9: Effect of tissue thermal conductivity on temperature error

kt (Wm−1 ◦C−1) max ∆T (◦C) max abs(∆T) (◦C) max abs( θ )
0.50 -2.74 2.74 0.183
0.75 -2.03 2.03 0.135
1.00 -1.67 1.67 0.112
1.25 1.45 1.45 0.097
1.50 1.46 1.46 0.098
1.75 1.47 1.47 0.098
2.00 1.48 1.48 0.099

The minimum error is observed when kt is 1.25Wm−1 ◦C−1. From Table 5.9 and Ta-

ble 5.7, it can be seen that the maximum error when thermal conductivity was 1.25Wm−1 ◦C−1

for Case 5 is less than the maximum error for Case 3 (kt = 0.5Wm−1 ◦C−1). The Case 3

has more segmented bood vessels than Case 5. This reduction of error is substantial. The

behavior observed for the temperature error in Table 5.9 shows there exists a minima. This
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value of tissue thermal conductivity where the temperature error was minimum for Case 5 is

termed as “optimum thermal conductivity”. What factors affect this value and how it can

be calculated is beyond the scope of this dissertation.

Figure 5.31: Effect of thermal conductivity at z = 80 for ϵ = 177.5mm

5.5.2 Larger Sphere of Influence Radius

The top (z = 80) and bottom (z = 1) layers of the domain do not have any physical blood

vessels. As the number of segmented blood vessels is reduced, these layers fall closer to

the extremities of the SoI due to their distance from the terminal arteries and veins. For

the simulation so far, the SoI radius was considered to be the minimum radius at which

100% volume coverage is achieved to ensure no voxel is starved of oxygen due to its distance

from the supply artery. However, as the number of terminals decreases, the average distance

between tissue voxels and terminal vessel increases. This results in lower flow rates between

terminal vessels and distant tissue voxels. This behavior though not observed in pressure

maps it can be seen in the error introduced in energy analysis. Thus, the other solution to

reduce the energy error could be to have larger SoI. When the ϵ is not restricted to minimum

value at which 100% coverage is achieved, more blood can be supplied to the tissue voxels
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farther away from arterial terminals.

Figure 5.32: Effect of larger SoI at z = 1 for kt = 0.5Wm−1 ◦C−1

Figure 5.33: Effect of larger SoI at z = 80 for kt = 0.5Wm−1 ◦C−1

The contour plots for temperature error for kt = 0.5Wm−1 ◦C−1 at z = 1 and z = 80

(case 5) are shown in Fig. 5.32 and Fig. 5.33, respectively. In Appendix E Table E.1 and
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Table E.2 show the maximum temperature error observed for different values of ϵ and tissue

thermal conductivity, and the minimum error observed is marked with “∗”.

Figure 5.34: RMSE plot for comparing the effect of effective thermal conductivity and larger
SoI on temperature error

Figure 5.35: Summation error plot for comparing the effect of effective thermal conductivity
and larger SoI on temperature error

From Table E.1 and Table E.2, it can be seen that the minimum temperature error

observed for larger SoI is 1.38 ◦C, and is lower than the temperature error observed when

tissue thermal conductivity is varied. Root mean square error (RMSE) and the sum of
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temperature error (STE) in the entire domain (
∑

∆Tt) were calculated. The data is shown

in Table E.1 and Table E.2 and a graphical plot of RMSE and
∑

∆Tt for the different values

of kt and ϵ is shown in Fig. 5.34 and Fig. 5.35, respectively.

Table 5.10: Threshold value of ϵ and the corresponding summation of temperature error for
Case 5

kt (Wm−1 ◦C−1) RMSE (◦C) ϵ (mm)
∑

∆Tt
◦C

0.50 0.053 209.00 5489.66
0.75 0.054 206.50 4865.98
1.00 0.057 204.75 4497.26
1.25 0.059 203.25 4158.20
1.50 0.062 201.75 3892.51
1.75 0.065 201.00 3770.50

Table 5.11: Value of ϵ where summation of temperature error in Case 5 equals to zero and
the resultant RMSE

kt (Wm−1 ◦C−1) ϵ (mm) RMSE (◦C)
0.50 191.73 0.069
0.75 191.60 0.065
1.00 191.22 0.065
1.25 190.90 0.066
1.50 190.41 0.068
1.75 190.02 0.069

In Fig. 5.34, it can be seen that as kt increases, the RMSE decreases for ϵ till a threshold

value. Beyond the threshold, the RMSE increases with an increase in kt. Using polynomial

regression, six polynomial functions of the fourth order were fitted for RMSE for each value

of kt, respectively. Similarly, six polynomial functions of the fourth order were fitted for

STE for each value of kt. Using the RMSE function, the threshold where minimum RMSE

occurs is calculated, along with the corresponding STE. These values are given in Table 5.10.

It is noteworthy that the STE is positive for all kt at the threshold ϵ of minimum RMSE.

This denotes that the VoM-PhyS framework would result in higher temperatures than the

reference for a less segmented vascular domain.

Similarly, the ϵ where STE equals zero was calculated along with the corresponding

RMSE. These values are given in Table 5.11. The values of ϵ where STE is zero are not the
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same where minimum RMSE occurs, as can be seen. A further detailed statistical analysis

of these values could lead to greater insight into the performance of the proposed energy

error reduction methods. A further analysis is needed to determine what parameters affect

the value of ϵ for any given vascular data.

The other noteworthy observation is that the minimum temperature for larger SoI is

for kt = 0.5Wm−1 ◦C−1, and this error increases for the same SoI when tissue thermal

conductivity is varied. A SoI larger than the minimum required for 100% coverage ensures

the tissue domain lies closer to the source than the periphery of the SoI. This provides more

blood flow to the entire tissue domain than the simulation case when SoI is restricted to

minimum ϵ for 100% coverage. As the SoI is increased, it is expected to achieve equal

distribution in the entire tissue domain. This is illustrated in Fig. 5.37. This is expected

when the SoI is considerably larger than the domain dimensions. This behavior ensures that

we reach a plateau beyond which the temperature error cannot be decreased even if the SoI is

increased. In Fig. 5.37 as the ϵ is increased, the distribution reaches near normal distribution

as shown in Fig. 5.37.d. This behavior can also be seen in Table E.1 and Table E.2, the

temperature error for a given tissue thermal conductivity reaches a minimum beyond which

it does not reduce when SoI is increased.

Increasing the thermal conductivity of tissue reduced the temperature error for Case 5

(kt = 1.25Wm−1 ◦C−1) to lower than the maximum temperature error observed for Case 3

(kt = 0.5Wm−1 ◦C−1). In comparison, increasing the SoI reduced the temperature error for

Case 5 to that of Case 2. This can be seen in the temperature error contour plots shown in

Fig. 5.36. This is a substantial reduction in error as Case 2 represents a 16 terminal domain

compared to Case 5 of 2 terminals. The variation of SoI did not affect the pressure map and

reduced the temperature error. This is promising to further this research to minimize the

temperature error in simulations due to the lack of segmented vasculature.
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(a)

(b)

(c)

Figure 5.36: Effect of larger SoI for kt = 0.5Wm−1 ◦C−1 at (a) x = 1 (b) x = 40 (c) x = 1
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(a)

(b)

(c)

(d)

Figure 5.37: Effect of larger ϵ resulting in near normal distribution
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5.6 Chapter Summary

This chapter provided a detailed analysis of the effect of SoI and the pressure drop parameter

on flow and heat transfer simulation. The SoI radius did not affect the pressure map in flow

simulation. In contrast, the pressure drop parameter showed to have a considerable effect.

Since the pressure drop parameter represents the flow conductivity of virtual blood vessels,

determining its value helps to recover the flow resistance of blood vessels that could not

be segmented. No data was available in the literature to determine the correct pressure

drop parameter for a given vasculature. This chapter derived the mathematical equation to

calculate the pressure drop parameter for arterial and venous trees for a given vasculature,

provided the total pressure drop across the simulation domain and a steady-state flow rate

are known. This pressure drop parameter was used to simulate the lack of segmentation

data on an example 3D domain and demonstrated very accurate flow simulation results.

The lack of segmentation data and varying the SoI radius affected energy analysis. Two

methods were proposed to reduce this error. One method is to calculate an effective thermal

conductivity for a domain with few segmented vasculatures. The other method is increasing

the SoI radius until a near-equal distribution throughout the domain is achieved. Both

these methods showed a reduction in energy error. Increasing the SoI radius provided better

accuracy with less segmented data than varying the thermal conductivity of tissue for bioheat

transfer.
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Chapter 6

Summary and Conclusion

Multiphysical biological processes are complex, and simulating them remains a challenge.

One needs to understand and model each of the processes involved and the relation of one

process with another. This dissertation provides insight into using a voxel phantom for

simulating thermoregulation using a novel Voxelized Multi-Physics Simulation (VoM-PhyS)

Framework.

Chapter 2 provides a literature review of various thermophysiological models found in

the literature and their limitations. An introduction to the computational human phan-

toms (CHPs) is provided to build the case for the requirement of a framework to simulate

thermoregulation using a voxel phantom. Modeling the simulation domain directly from

the imaging data provides the closest approximation to the actual research subject. Hence,

voxel phantoms were used for simulation. However, the cuboidal nature of voxel phantoms

results in stair-step effect, which causes an overestimation of surface area. These imaging

data require post-processing that involves surface fitting to rectify the error introduced due

to the image resolution and pixel/voxel structure. Such a reference surface area or curve

fitting might not be available. Thus, an algorithm to reduce the surface area error indepen-

dent of the overall shape of the domain was developed. The algorithm was tested for the

worst-case scenario - a circle in 2D and a sphere in 3D. The overestimation of surface area

was demonstrated to reduce from 27% to 4% in 2D and 50% to 16% in 3D. The stair-step
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effect of voxel phantoms and the structured cleaving method to reduce the surface area error

are elaborated in Chapter 3.

The novel VoM-PhyS framework provides one of its kind multiphysics platform for simu-

lating multiscale and multidimensional problems. The development of the VoM-PhyS frame-

work is elaborated in Chapter 4. The VoM-PhyS framework was demonstrated on frog tongue

data obtained from the literature. The SoI is used as a Dirac function to couple 1D and

3D mesh in VoM-PhyS. The effect of SoI on heat transfer and the ability of VoM-PhyS to

simulate competing hypotheses regarding the location of thermally significant vessels was

studied on the frog tongue data. The SoI was found to have a more comparable effect than

a small variation in convective heat exchange between vessel and tissue.

The SoI and the pressure drop parameter are the two mathematical parameters used

in the VoM-PhyS Framework to couple 1D mesh with 3D mesh. The SoI controls the

distribution spread with maxima centered at the location of the terminal vessel. In contrast,

the pressure drop parameter controls the flow resistance offered by the virtual vessels within

the SoI. No data is available in the literature to determine the pressure drop parameter

for a given vasculature. Chapter 5 extensively analyzes the SoI and the pressure drop

parameter and provides two equations to calculate the pressure drop parameter for any given

vasculature, provided the total pressure drop across the domain and the steady state flow

rate is known. To study the accuracy of these equations, a 3D vascular domain of 32 arterial

and venous terminals, respectively, was generated using Rhinoceros132, and each bifurcation

level was gradually removed to simulate the lack of segmentation data. The vessels removed

were substituted using the pressure drop parameter calculated from the developed equations,

and the results were compared with the 32 terminal reference 3D domain. The analysis

demonstrated less than 1% error in flow simulations for lack of segmentations. The ability

to calculate the flow resistances of pre-capillary vasculature that cannot be segmented due

to image resolution opens new research areas. The pressure drop parameter equations are

one of the major contributions of this dissertation to science, as they can simulate blood

flow coupled with heat transfer with very high accuracy, even with fewer segmented vessels.

The error in heat transfer due to lack of segmentation data was studied, and two methods
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to reduce this error were elaborated. The effective tissue thermal conductivity to compensate

for unsegmented pre-capillary vessels in tissue was studied for temperature error reduction.

Another method of increasing the SoI radius to achieve a near-equal distribution was pro-

posed and studied for temperature error reduction. A larger SoI was shown to have a

comparably greater reduction in energy error than effective thermal conductivity.

This dissertation addresses three challenges associated with simulating thermoregulation

using a voxel phantom. The major contributions of this dissertation to science are as follows:

• An algorithm that smoothens the voxel mesh to reduce surface area error and maintain

a structured mesh nature of a voxel phantom. The method demonstrated to reduce

the surface area error from 50% to 25% in a worse-case-scenario in 3D.

• The VoM-PhyS framework is a state-of-the-art simulation framework for multiphysics.

This framework can be easily extended to add more bio-physical processes like mass

transfer, radiation dosimetry, and thermoregulatory response like vasomotion, coupled

with the existing ones with ease.

• The pressure drop equations derived in this dissertation are not found in the literature.

These equations provide an advantage to the VoM-PhyS framework to be applicable

to any domain size and provide a way to recover the flow resistance data lost in image

resolution.

• This dissertation’s findings are a strong foundation to create a full-body thermoregu-

lation simulation with highly advanced capabilities absent from current models.

This research provides foundational pieces to build a complete human thermoregulation

simulation. One major challenge in using CHPs for thermoregulation is the mesh size and

resulting computational requirements. Due to this, small domains like 3D tumors obtained

from MRI scans and frog tongue were used to conduct the preliminary analysis. A hu-

man body was not used to demonstrate the VoM-PhyS framework; however, the VoM-PhyS

framework is designed to be easily applicable to any domain and organ. Thus, the VoM-PhyS

framework can be used for a complete human thermoregulation simulation.
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This research has established the groundwork for exploring a multidisciplinary area in

computational simulation. The goal of this dissertation was limited to Human Thermoreg-

ulation, and thus the domain used for simulation consisted of biological tissue and blood

vessels obtained from medical imaging data or medical textbooks. But VoM-PhyS by no

means is limited to only biomedical applications. The VoM-PhyS framework has the po-

tential to be used for simulation in various other research areas like fracking, geothermal

and microbiological processes involving interstitial fluids. These areas are not studied in

this dissertation, but due to the similarities in the domain structures, the possibility can be

suggested for exploration. The recommendations for furthering this study are as follows:

1. Developing an algorithm that uses a surface normal vector to calculate error rectifica-

tion without further dividing the mesh. Newell’s algorithm is used in the computational

graphic research field to calculate the normal of irregular surfaces134. This algorithm

can be used to calculate the normal at each voxel, and a correction factor to smoothen

the region can be determined. This will avoid dividing a voxel into 24 sub-tetrahedrons

and reduce the computational requirements.

2. Experimental studies to determine equations to calculate Sphere of Influence (SoI)

for various applications. An experimental setup with a porous domain and 3D pipe

network exchanging fluid can be used to derive equations for determining SoI for a

domain. Such an experimental setup will require the ability to have a detailed 3D

vasculature with the ability to remove terminals to simulate a lack of segmentation

data.

3. Further analysis to understand the effect of elasticity of blood vessels on pressure drop

parameter. The pressure drop parameter equations developed in this dissertation are

limited to a Newtonian and laminar flow assumption of blood. In vivo the blood

vessels are elastic and provide a damping effect for pulsatile flow, and blood is non-

Newtonian. These physical properties of blood vessels and blood must be studied to

determine a pressure drop equation applicable to non-Newtonian blood flow and elastic

blood vessels.
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4. Determining the time constant for blood distribution within the SoI for transient sim-

ulations. The simulations conducted in this dissertation were for steady state. Within

a SoI, the tissue farther away from the terminal will receive blood later than the tissue

closer to the terminal. This introduces a temporal distribution function within the SoI.

A detailed analysis is required to determine this temporal function for different values

of SoI radius.

5. Adding a feedback loop that simulates vasomotion by varying the resistances of blood

vessels. Thermoregulation consists of a feedback signal to the hypothalamus and a

regulatory signal controlling vasomotion, shivering, and sweating. These regulatory

mechanisms are locally controlled by the chemical reaction within tissue cells and

globally by the hypothalamus. Equations to vary the resistance of blood vessels as a

response to temperature will provide a regulatory loop to the VoM-PhyS Framework.

6. The regulatory feedback signal will require determining which blood vessel and where

vasomotion would occur for a specific feedback signal, followed by blood redirection

within the domain for volume conservation. Blood volume within the human body

remains constant, and vasomotion redirects the blood flow to maintain blood pressure

and regulate temperature. Thus understanding blood redistribution is very important

to simulate successful vasomotion.

7. Further analysis to derive a mathematical equation to calculate the changes in tis-

sue thermal parameters as fewer blood vessels are segmented is required. Since non-

segmented blood vessels will lie within the tissue domain, these blood vessels of larger

dimensions than the capillary bed will vary the porosity of tissue. A preliminary anal-

ysis of the effect of effective thermal conductivity is given in this dissertation. The

other parameter that needs to be considered is the permeability of tissue. As larger

blood vessels are part of the 3D tissue domain, the permeability of tissue is expected

to change. An equation to determine the correct permeability of tissue for a given

vasculature is needed.
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8. Sweating and drug delivery are the mass transport phenomena that occur within the

human body. Adding the set of mass transport equations to VoM-PhyS will be highly

useful.

9. Considering the computational requirements for thermoregulation using a CHP, per-

forming a comparison study between thermoregulation simulation using stylized phan-

tom and voxel phantom will be highly beneficial. This study could provide additional

insights, various research questions, and avenues for advancing this work.
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Appendix A

Pressure Maps for 2D Analysis

Figure A.1: Pressure map of ref. Nt256 compared with Nt64
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Figure A.2: Pressure map of ref. Nt256 compared with Nt32
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Figure A.3: Pressure map of ref. Nt256 compared with Nt16
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Figure A.4: Pressure map of ref. Nt256 compared with Nt8
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Figure A.5: Pressure map of ref. Nt256 compared with Nt4
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Appendix B

Pressure Maps for 3D Analysis

B.1 Pressure Analysis at z = 1

Figure B.1: Location of z = 1
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Figure B.2: Arterial compartment pressure map of five simulation cases at z = 1
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Figure B.3: Venous Compartment pressure map of five simulation cases at z = 1

Figure B.4: Pressure error at z = 1
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B.2 Pressure Analysis at z = 20

Figure B.5: Location of z = 20

Figure B.6: Arterial compartment pressure map of five simulation cases at z = 20
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Figure B.7: Venous Compartment pressure map of five simulation cases at z = 20

Figure B.8: Pressure error at z = 20
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B.3 Pressure Analysis at z = 60

Figure B.9: Location of z = 60

Figure B.10: Arterial compartment pressure map of five simulation cases at z = 60
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Figure B.11: Venous Compartment pressure map of five simulation cases at z = 60

Figure B.12: Pressure error at z = 60
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B.4 Pressure Analysis at z = 80

Figure B.13: Location of z = 80

Figure B.14: Arterial compartment pressure map of five simulation cases at z = 80
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Figure B.15: Venous Compartment pressure map of five simulation cases at z = 80

Figure B.16: Pressure error at z = 80
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Appendix C

Temperature Plots for 3D Energy

Analysis
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(a)

(b)

Figure C.1: Temperature at z = 1
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(a)

(b)

Figure C.2: Temperature at z = 20
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(a)

(b)

Figure C.3: Temperature at z = 60
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(a)

(b)

Figure C.4: Temperature at z = 80
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Appendix D

Temperature Error Plots for 3D

Analysis
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Figure D.1: Temperature Error in Case 2 at z = 1 (a) Temperature map of Case 1 (b)
Temperature map of Case 2 (c) Temperature difference between Case 2 and Case 1 (d) Non-
dimensional temperature error between Case 2 and Case 1
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Figure D.2: Temperature Error in Case 2 at z = 20 (a) Temperature map of Case 1 (b)
Temperature map of Case 2 (c) Temperature difference between Case 2 and Case 1 (d) Non-
dimensional temperature error between Case 2 and Case 1
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Figure D.3: Temperature Error in Case 2 at z = 60 (a) Temperature map of Case 1 (b)
Temperature map of Case 2 (c) Temperature difference between Case 2 and Case 1 (d) Non-
dimensional temperature error between Case 2 and Case 1
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Figure D.4: Temperature Error in Case 2 at z = 80 (a) Temperature map of Case 1 (b)
Temperature map of Case 2 (c) Temperature difference between Case 2 and Case 1 (d) Non-
dimensional temperature error between Case 2 and Case 1
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Figure D.5: Temperature Error in Case 3 at z = 1 (a) Temperature map of Case 1 (b)
Temperature map of Case 3 (c) Temperature difference between Case 3 and Case 1 (d) Non-
dimensional temperature error between Case 3 and Case 1
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Figure D.6: Temperature Error in Case 3 at z = 20 (a) Temperature map of Case 1 (b)
Temperature map of Case 3 (c) Temperature difference between Case 3 and Case 1 (d) Non-
dimensional temperature error between Case 3 and Case 1
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Figure D.7: Temperature Error in Case 3 at z = 60 (a) Temperature map of Case 1 (b)
Temperature map of Case 3 (c) Temperature difference between Case 3 and Case 1 (d) Non-
dimensional temperature error between Case 3 and Case 1
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Figure D.8: Temperature Error in Case 3 at z = 80 (a) Temperature map of Case 1 (b)
Temperature map of Case 3 (c) Temperature difference between Case 3 and Case 1 (d) Non-
dimensional temperature error between Case 3 and Case 1

200



Figure D.9: Temperature Error in case 4 at z = 1 (a) Temperature map of Case 1 (b)
Temperature map of Case 4 (c) Temperature difference between Case 4 and Case 1 (d) Non-
dimensional temperature error between Case 4 and Case 1
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Figure D.10: Temperature Error in Case 4 at z = 20 (a) Temperature map of Case 1 (b)
Temperature map of Case 4 (c) Temperature difference between Case 4 and Case 1 (d) Non-
dimensional temperature error between Case 4 and Case 1
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Figure D.11: Temperature Error in Case 4 at z = 60 (a) Temperature map of Case 1 (b)
Temperature map of Case 4 (c) Temperature difference between Case 4 and Case 1 (d) Non-
dimensional temperature error between Case 4 and Case 1
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Figure D.12: Temperature Error in Case 4 at z = 80 (a) Temperature map of Case 1 (b)
Temperature map of Case 4 (c) Temperature difference between Case 4 and Case 1 (d) Non-
dimensional temperature error between Case 4 and Case 1
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Figure D.13: Temperature Error in Case 5 at z = 1 (a) Temperature map of Case 1 (b)
Temperature map of Case 5 (c) Temperature difference between Case 5 and Case 1 (d) Non-
dimensional temperature error between Case 5 and Case 1
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Figure D.14: Temperature Error in Case 5 at z = 20 (a) Temperature map of Case 1 (b)
Temperature map of Case 5 (c) Temperature difference between Case 5 and Case 1 (d) Non-
dimensional temperature error between Case 5 and Case 1
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Figure D.15: Temperature Error in Case 5 at z = 60 (a) Temperature map of Case 1 (b)
Temperature map of Case 5 (c) Temperature difference between Case 5 and Case 1 (d) Non-
dimensional temperature error between Case 5 and Case 1
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Figure D.16: Temperature Error in Case 5 at z = 80 (a) Temperature map of Case 1 (b)
Temperature map of Case 5 (c) Temperature difference between Case 5 and Case 1 (d) Non-
dimensional temperature error between Case 5 and Case 1
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(a)

(b)

Figure D.17: Temperature error at z = 20
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(a)

(b)

Figure D.18: Temperature error at z = 40
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(a)

(b)

Figure D.19: Temperature error at z = 60
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(a)

(b)

Figure D.20: Energy error analysis at z = 20
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(a)

(b)

Figure D.21: Energy error analysis at z = 40
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(a)

(b)

Figure D.22: Energy error analysis at z = 60
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Appendix E

Effect of SoI radius and Thermal

Conductivity on Temperature Error

Table E.1: Effect of larger SoI and tissue thermal conductivity on temperature error

ϵ kt max ∆Tt max abs(∆Tt) max abs( θ ) RMSE
∑

∆Tt
(mm) (Wm−1 ◦C−1) (◦C) (◦C) (◦C) (◦C)
177.5 0.50 -2.74 2.78 0.183 0.128 -9750.9
187.5 -1.88 1.88 0.125 0.081 -2155.0
200.0 1.39 1.39 0.093 0.057 3194.7
212.5 1.39 1.39 0.093 0.055 6076.3
225.0 1.39 1.39 0.092 0.058 7760.6
237.5* 1.38 1.38 0.092 0.061 8835.9
250.0* 1.38 1.38 0.092 0.064 9573.0
262.5* 1.38 1.38 0.092 0.066 10106.3
177.5 0.75 -2.03 2.03 0.135 0.114 -9254.8
187.5 1.42 1.42 0.094 0.074 -2006.7
200.0 1.41 1.41 0.094 0.056 3150.2
212.5 1.41 1.41 0.094 0.056 5959.6
225.0 1.41 1.41 0.094 0.06 7615.1
237.5 1.41 1.41 0.094 0.063 8677.3
250.0 1.41 1.41 0.094 0.066 9407.6
262.5 1.41 1.41 0.094 0.068 9936.9
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Table E.2: Effect of larger SoI and tissue thermal conductivity on temperature error

ϵ kt max ∆Tt max abs(∆Tt) max abs( θ ) RMSE
∑

∆Tt
(mm) (Wm−1 ◦C−1) (◦C) (◦C) (◦C) (◦C)
177.5 1.00 -1.67 1.67 0.112 0.106 -8737.1
187.5 1.43 1.43 0.096 0.071 -1787.7
200.0 1.43 1.43 0.096 0.058 3196.8
212.5 1.43 1.43 0.095 0.059 5937.3
225.0 1.43 1.43 0.095 0.063 7562.7
237.5 1.43 1.43 0.095 0.066 8609.8
250.0 1.43 1.43 0.095 0.069 9331.7
262.5 1.43 1.43 0.095 0.071 9855.7
177.5 1.25 1.45 1.45 0.097 0.1 -8250.6
187.5 1.45 1.45 0.097 0.071 -1559.1
200.0 1.45 1.45 0.097 0.06 3273.2
212.5 1.45 1.45 0.097 0.062 5950.5
225.0 1.44 1.44 0.096 0.066 7547.3
237.5 1.44 1.44 0.096 0.069 8579.6
250.0 1.44 1.44 0.096 0.072 9292.8
262.5 1.44 1.44 0.096 0.074 9811.3
177.5 1.50 1.46 1.46 0.098 0.096 -7802.5
187.5 1.46 1.46 0.098 0.071 -1336.9
200.0 1.46 1.46 0.097 0.063 3360.0
212.5 1.46 1.46 0.097 0.065 5979.7
225.0 1.46 1.46 0.097 0.069 7549.8
237.5 1.46 1.46 0.097 0.072 8568.0
250.0 1.46 1.46 0.097 0.074 9272.8
262.5 1.46 1.46 0.097 0.076 9785.8
177.5 1.75 1.47 1.47 0.098 0.094 -7390.8
187.5 1.47 1.47 0.098 0.071 -1125.6
200.0 1.47 1.47 0.098 0.065 3449.7
212.5 1.47 1.47 0.098 0.068 6016.7
225.0 1.47 1.47 0.098 0.072 7561.9
237.5 1.47 1.47 0.098 0.075 8566.7
250.0 1.47 1.47 0.098 0.077 9263.5
262.5 1.47 1.47 0.098 0.078 9771.2
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