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Abstract

Global agricultural output must increase by 25 to 70% by 2050 to feed the world. The
development of more resilient, higher yield crops using genotype to phenotype prediction is one
promising method to achieve this growth. Progress in genotype to phenotype models has been
constrained by the quantity of hand measurements necessary to accurately describe phenotype
characteristics. The Pancreas unmanned ground vehicle was developed to fill this gap in
capability.

The Pancreas is a four-wheeled unmanned vehicle which carries an electromagnetic
inductance sensor to gather soil moisture data throughout the day. This sensor offers a reduction
in the time required and an increase in the quantity of measurements taken over the typical soil
core methods of measurement. The initial Pancreas prototypes were developed by Dr. Daniel
Flippo and master’s student Calvin Dahms. The author made alterations to these designs to
reflect a change in operational requirements after the testing results of these prototypes. Broadly,
the platform was made more robust, a path following algorithm and new control system were
implemented, and a new power budget was developed.

Though these changes represent necessary improvements, the platform needs more work
and testing to effectively perform its role. Increased power use, sensor accuracy, obstacle

detection and avoidance, and durability remain problems to address in future work.
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1. Feeding the World

1.1. Projected Food Needs

The UN expects world’s population to reach 9.8 billion by 2050 and the world does not
currently produce enough food to support that many people [1]. Future human flourishing

requires finding new ways to feed the world.
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Figure 1: Global Population Growth with UN Predictions for 2100 [2]

Academics disagree on the precise amount by which global agricultural output must
increase to feed the world. Well-regarded predictions from the early 2010’s called for doubling
the food supply by 2050 [3] [4]. The current number, taking into account the gains made in
production in the intervening decade, could range from a 25% to a 70% increase in current

output [5]. This substantial range is not particularly helpful for accurately assessing the danger to



civilization. However, with increasing globalization, even a small disruption in the supply chain
can cause outsized impacts in fragile food supply systems, and the 25% deficit in food
availability predicted in the most conservative projection would be catastrophic to significant
swathes of the developing world with a high import dependency ratio. Import dependency ratio
is a function of the imported food supply compared to the total available food supply.

Increasing the food supply and its resistance to externalities is not only necessary to
sustain civilization, but also comes with benefits which range from a decrease in undernutrition
related health issues to an increase in economic prosperity. In particular, an increase in
agricultural GDP in developing nations is directly linked to a rapid reduction in undernutrition
[6]. As countries modernize and a greater share of the population migrates to urban areas,

countries that favor agricultural investment experience a greater reduction in malnutrition related

illnesses like stunting, as shown in figure 2 below.
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Figure 2: Prevalence of Stunting as a Function of Rural Population Share [6]



More productive farmers free up larger portions of a developing economy to invest in
other industries, reduce domestic food prices, and thereby raise the standard of living. Increasing
the productivity of farmers requires better methods of utilizing fertilizer, efficient agricultural

machinery, and more resilient and productive crop varieties. The last category is the focus of this

paper.

1.2. Current Cereal Production and Consumption, and Its Impacts

The five most consumed cereal grains globally are rice, wheat, corn/maize, barley, and
sorghum [7]. Additionally, cereals make up a vital part of livestock feed. They account for
almost 99% of all cereals produced globally [8]. Taken together, these five make up 46% of the
calories consumed globally on a year-to-year basis as shown in figure 3 [9]. Of that, wheat made

up 26% of all cereals produced in 2021, and so over 10% of total global calories.
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Figure 3: Dietary Energy Supply by Type [9]

In recent history the widespread adoption of fertilizers, mechanized farming, and better

strains of cereal crops have greatly improved agricultural production. Over the past twenty years



wheat output has increased by just over 30% from roughly 600 million metric tons in 2000 to

just under 800 million metric tons in 2021 [7].
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Figure 4: Global Cereal Production [10]

Although such growth could justify relaxation of research and development goals, these
gains should serve as inspiration for further advancement, because the Food and Agriculture
Organization of the United Nations (FAO) still categorizes 2.3 billion people as food insecure
[9]. Mild food insecurity can be reasonable uncertainty about future food availability, and on the
severe end meals are regularly missed.

Furthermore, recent conflict-related disruptions in the grain import market have
highlighted the importance of wheat cultivation for global stability, because many regions such
as north Africa and East Asia (excluding China) have a high import dependency ratio, being
52.4% and 69.0% as of 2018, respectively [11]. Disproportionate reliance on imports causes

disproportionate impacts from shortages, as in the 2010-11 food price crisis. This crisis was



caused by a drought in Russia, Ukraine and central Asia, which make up about a third of global
wheat exports. This was an exacerbating factor in the Arab Spring uprisings and civil unrest of
the same year [12]. Similarly, the Ukraine war impacting those same wheat exporting regions has
led to uncertainty, and the full effects have yet to be seen at the time of writing. The current state
of food security when viewed holistically demonstrates a need for continued development toward
increasing wheat productivity. Not only does the world need more productive wheat to supply a
growing population, but also to make the food supply more resilient to external threats like
natural disasters and conflict by supplying reserve capacity. To that end, research must produce
new strains of wheat that use available land and fertilizer more efficiently to produce greater

yield and that are less vulnerable to drought or other adverse conditions.
1.3. Wheat Phenotyping

In order to meet the pressing need for greater global wheat production capacity, Kansas
State University, Oklahoma State University and Langston University, applied for and received
EPSCoR grant 1826820 from the National Science Foundation (NSF) to research and develop
modern crop models for genome to phenome prediction [13]. Wheat genome to phenome
prediction is the process of mapping specific genetic traits to their expression in features like
height, leaf size, and, most importantly, yield. Phenotyping, unlike genotyping, has been a slow
and very labor-intensive process because researchers must measure the physical attributes of a
plant in the field by hand. For this reason, it has become the constraining factor in many breeding
operations [14]. Phenotyping provides critical data for predictive crop models, so work is
necessary to develop more rapid data collection and analysis methods by leveraging new sensing

technology and platforms such as computer vision and affordable UAVs to increase the quality



and quantity of data. A variety of such platforms are shown in figure 5. High-throughput

research would allow farmers to select strains of wheat tailored to their growing conditions.
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Figure 5: Modern Sensing Platforms and Roles [15]

The research of the EPSCoR grant takes a four-pronged approach: theory and
computation, modeling, field testbed analysis, and field sensing. Each focus area has a dedicated
team and sub goals. The sub-components of field sensing are areal imaging, gene-expression,

and soil electrical conductivity sensing.
1.4. Autonomous Sensing and Data Collection

Electrical conductivity soil sensing has several benefits over the more common soil core
analysis techniques. Soil core analysis is time consuming and does not capture certain time-
dependent information about soil moisture in the field. Furthermore, each measurement only

provides information about one point in the field, making it difficult to capture a complete



picture of field attributes [13]. Electrical conductivity (EC) does not require researchers to
remove soil samples from the field. Instead, the sensor can be swept over the entire length of the
phenotyping testbeds to gather data about soil properties and the root systems of the test wheat.
Moreover, because the sensor reduces analysis time and requires fewer trips back to the lab,
researchers can take more sensor passes at several different points in the day to provide insight
on time-dependent characteristics of the field.

The grant proposal calls for an autonomous ground vehicle in order to take a large
volume of repeatable measurements over the course of several days in the field. The vehicle
would reduce man-hours spent in data collection and would potentially gather a larger quantity
of consistent data. The EPSCoR proposal calls for several autonomous vehicles of this kind built
of largely non-metallic components which could remain in the field for several days at a time.

Application of these criteria would grow into the autonomous vehicle known as the Pancreas.



2. The Pancreas Platform Background

2.1. Design Criteria and Initial Concept

In order to fulfill the need for an autonomous sensing platform for wheat phenotyping,
Dr. Daniel Flippo, Ph.D. initially designed the Pancreas robot to be a lightweight, solar powered,

unmanned ground vehicle (UGV).

Figure 6: Initial Pancreas Concept

The four-wheeled vehicle design could straddle a row of the phenotyping test wheat and
carry a Geophex Electromagnetic Induction sensor to autonomously take soil moisture
measurements [Appendix B]. The sensor hanging in the middle of the robot would take

measurements while the wheels would travel in the paths between wheat plots. The platform was



designed to remain in the field continuously for several days at time, except for maintenance and

data collection. A set of solar panels charging an onboard battery pack were planned to enable

this long-term field endurance.

Figure 7: Geophex GEM-2 (left), Solar Panels on First Prototype (right)

Because it was absolutely essential that the wheat not be crushed by the wheels of the robot, as
that would negatively affect data collection for the larger EPSCoR phenotyping project, the
platform required reliable path finding and obstacle avoidance. Master’s student Calvin Dahms
implemented the initial prototype and iterated on it over the course of 2020 and 2021. He built a
second prototype, whose design features are described below.
2.2. Prototype Two Frame
After finding 1.27 cm rods too flexible, Dahms built the second vehicle out of 2.54 cm

diameter carbon fiber tubing and 3D printed plastic components. These materials minimize

interference with the underslung EM sensor which is sensitive to electromagnetic interference



from metallic and electrical components. However, some metallic components, like the drive and
steering motors, the bearings and the bearing housings are integral to the platform’s
functionality, and could not be made from non-metallic materials. To minimize interference,
these metallic components needed to be placed as far as possible from the sensor. Those
consulting on the project initially considered it sufficient to place all electronics, metal, and
motors at least 1m away from the EM sensor. The dimensions of the individual wheat plots also
constrained the size and shape of the UGV’s frame. The robot needed to straddle a single wheat
plot which was 135 cm across and approximately 100 cm tall when fully grown, depending on
the individual strain of wheat. The platform’s motors and leg assembly also needed to fit in the

32 cm gap between plots.
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Figure 8: Overhead, Infrared View of Test Plot [16]

Based on these constraints, the frame was made of 12, 2.54 cm diameter carbon fiber tubes of
152 cm length with 3D printed ABS plastic gussets and fenders. The frame stands at 132 cm with

sufficient clearance for a wheat row underneath.
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Figure 9: Second Prototype in Field

The vehicle has four, independently-steered wheels, each initially powered by high
torque servo motors which turn the whole carbon fiber leg on which the wheel is attached. All
these features make for a lightweight maneuverable platform, able to carry the EM sensor for

long periods in the field.

2.3. Prototype Two Power

To power the platform, two HQST, 100 W, 18 V solar panels, wired in series, charge two
11.1V, 10.5 Ah, lithium polymer batteries through a solar charging regulator [Appendix B].
These batteries are also wired in series to make a 22.2 V battery pack. The solar panel’s 100 W
rating is based on a solar panel perpendicular to the incident sunlight during clear weather
conditions. Because outside conditions vary, the amount of power generated by the panels is
highly dependent on time of day and weather. As a result, the battery capacity must be large

enough to buffer the peaks and troughs in power generation during normal operation. During the

11



initial prototype phase of development, the Pancreas was expected to draw about 100 W during
use.

A 12 V regulator steps the power down from 22.2 V to 12 V for the control electronics,
computer, and GPS. The onboard computer reduces voltage internally to 5 V and supplies power

to some of the sensors.
2.4. Prototype Two Sensors

There is a small margin for error in navigating through the test wheat field. With that in mind
the robot uses a suite of sensors to accurately follow a preset path and avoid the project wheat.
With a gap between wheat plots of 32 cm, sub meter geo-location precision is needed for
accurate path following along with object detection and avoidance protocols. The onboard GPS,
Topcon B-125 unit, enables this precision. The B-125 is capable of sub centimeter accuracy with
a position update rate of up to 100Hz [Appendix B], This rate is more than sufficient for a slow-
moving agricultural robot. A single board computer called a Latte Panda processes the incoming
GPS data over its USB port. In this stage of the design process, the path following algorithm had

not been implemented, so the GPS data has been saved for later use.
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Figure 10: B-125 (left), Latte Panda Computer (center), PMod Compass (right)

The onboard compass, which supplies the vehicle’s heading to orient the robot in its
environment for path following, is a Pmod CMPS2. This is a 3-axis digital compass that
communicates using the 12C protocol [Appendix B]. The compass, the voltage sensor and the
current sensors communicate with the Latte Panda’s built-in Arduino Leonardo which then feeds
that data to the main computer to be recorded for future analysis.

Several sensors supply different channels of feedback about the robot’s immediate
environment to provide the object detecting capabilities needs of the robot. A pair of Adafruit
VL53L0X Time of Flight Distance Sensors (TOF) are mounted on a front leg of the second
prototype and determine how close and at what angle the wheat rows were relative to the robot.
This sensor input could be used in the future to supply angle corrections to prevent collision with
the test wheat. Angle calculations are made by taking measurements from each sensor and
checking the difference between them. Another method of obstacle detection was proposed but

not implemented on the second prototype. The method checks the color of the objects in front of

13



the wheel with the Sparkfun AS7265x Spectral Triad spectroscopy sensor to determine whether
or not to avoid them. The author designed the mounts for the TOF and Spectroscopy sensors,

shown below, and the code for the Spectroscopy sensor.

Figure 11: Distance (left and right) and Spectroscopy (center) Sensors

Color spectroscopy allows the platform to determine whether or not a plant is a weed or wheat to
avoid because under IR and UV wavelengths different plants will have distinct reflectance.
Finally, the most sophisticated method of obstacle detection and avoidance uses machine
learning and computer vision to identify and avoid wheat from video taken on an OpenCV Al

camera.
2.5. Prototype Two Controls and Propulsion

A high torque Lynx Motion Smart Servo steers each of the four wheels. Automobile window
motors power the four drive wheels and are controlled by a pair of Sabertooth 2x32 motor
controllers. The window motors are self-locking, worm gear motors with a high continuous
torque rating of 3 Nm for their size. Four Accu-coder encoders from Encoder Outlet provided

feedback from the window motors. A NI LabVIEW MyRio manages all the high level PID and

14



steering control which received user input from an iPad running a LabVIEW data dashboard to

steer manually and enable test data collection for the initial prototype phase of the platform.

Figure 12: MyRio (left), Servo Motor (center), Motor Controller (right)

The platform turns using a method called Ackermann steering which is typically implemented by
a mechanical linkage between two wheels. The Pancreas does this with digital controls.
Ackermann steering reduces wheel slip by giving each wheel’s turning arc the same center which

reduces wear on the wheels and strain on the frame.
2.6. Prototype Two Feedback

Calvin Dahms’ initial prototype design choices and alterations allowed for essential data
collection and important insights for future work. The author’s work on the platform began
largely after the implementation of the second prototype. Data analysis determined thata 1 m
bubble was insufficient to remove interference from electrical and metallic equipment on the
UGV during sensing operations. As a result, the frame was expanded and the sensor was dropped
closer to the ground. Because of the wheat row constraints, the frame had to be doubled in width

to straddle two rows of wheat instead of one, rather than increased only enough to accommodate

15



the new metal-free bubble. In addition, National Instruments no longer supported the LabVIEW
iPad control software, and the software was incompatible with future versions of LabVIEW. The
author removed the MyRio and LabVIEW entirely in favor of a Python-based, radio control
approach. Part of the motivation for this was the author’s more significant experience with, and
preference for Python.

In addition, the computer vision obstacle detection demonstrated issues that needed to be
resolved before final implementation. Training a computer vision system to accurately specific
identify objects in a scene requires large volumes of labelled data. The proof-of-concept machine
learning algorithm used labelled images only of wheat heads and so, was of limited use for path
following. Path following would require labelled images of paths between wheat rows, or the
wheat blocks themselves. These do not exist because they are very domain specific. The only
way to get labelled images of this kind would be to manually label thousands of images
personally taken at the angles from which the robot would view the field. While this work may
be an area for future research, the author put it aside in favor of implementing reliable path
following.

The criteria updates for size necessitated substantial alterations to the frame and control
system to support the increased load, motor power, and electrical requirements. Additionally, the
change in computer control required many changes had to be made to the wiring and electronic

layout of the platform.
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3. Hardware Changes for Prototype Three

3.1. Frame Adjustment and Reinforcement
To expand the frame to the 3 m required to span two rows of wheat, the author replaced
four of the 2.54 cm diameter, 1.5 m long carbon fiber tubes which made up opposite sides of the

robot with 3 m long Fiber Reinforced Plastic (FRP) fiberglass tubes of the same diameter.
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Figure 13: FRP (right) and Carbon Fiber (left)

The previous carbon fiber tubes had a wall thickness of 2.16 mm, and the replacement fiberglass
tubes have a wall thickness of 6.35 mm. Fiberglass was selected instead of carbon fiber for its
availability. At the time of construction, carbon fiber in the length required would have taken

several months to arrive because of lingering supply chain issues and was cost prohibitive.

17



Figure 14: Pancreas with Fiberglass Extended Frame

Fiberglass on the other hand offered a reasonable trade off in stiffness and an increase in weight
for being more available. The important characteristic for stiffness is flexural rigidity. The
equation for flexural rigidity is shown in (1).

Flexural Rigidity = EI

(1)

Where E is Young’s modulus and I is the area moment of inertia. The area moment of inertia for

a tube is calculated in (2).

7-[(7'04 - ri4)
Itube = T

(2)

Where r, is the outer radius and r; the inner radius. For anisotropic composites like the FRP
fiberglass and carbon fiber used in the Pancreas, flexural or bending modulus is used instead of

Young’s modulus. This is because there are different material properties depending on fiber
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orientation in the composite. These material constants are rough estimates because properties
vary by manufacturer, and the study of the material properties of composites is well outside the
scope of this paper. The industry standard flexural modulus ranges from roughly 5.5GPa to
9.5GPa for FRP tube. Carbon fiber of the type used on the platform has a flexural modulus that
ranges from about 75GPa to 125GPa Filling in the equation for both materials using the lower
estimate for each we have results for flexural resistance for carbon fiber and fiberglass in (3) and

(4), respectively.

0.0254m,, _ (0.0232m)4

z - = 465.8Nm?

FRcarbon Fiber = (75 * 109Pa) * T * 4

(3)

0.02254m)4 3 (0.01291m)4

FRegp Fiberglass = (5.5 10°Pa) * m * = 76.4Nm?

4

(4)

As shown above, the carbon fiber is about six times more rigid than the FRP tube. In
addition, the fiberglass weighs 0.358 kg/m of tube, while the carbon fiber weighs 0.126 kg/m of
tube, or approximately three times lighter. In total this change from carbon fiber to FRP adds
about 3kg in added weight, which is fairly reasonable considering the weight of all other
reinforcing components added later.

The substantial increase in robot width causes an increase in frame flexibility and a larger
moment arm which increases the torques from forces experienced by the robot. Excessive
bending occurred during turns, resulting in the robot legs tilting inward and bowing the middle of
the frame upward. This bending is caused by lateral force on the wheels coming from uneven
terrain and small misalignments in the wheels and frame. This bending action forces the wheels

to have substantial positive camber and reduces wheel contact with the ground. Furthermore,
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reduced traction causes skidding. In addition, the bending places strain on the robot legs and
wheel housings increasing the likelihood of component failure.

o

CENTER LINE
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INCLINATION POSITIVE
CAMBER
TRUE
VERTICAL

LEFT HAND FRONT VIEW
Figure 15: Positive Camber [17]
In order to mitigate this issue, the author modified the old gussets and leg supports in
several ways. Moving the leg brace supports lower down the leg, toward the fender, left a much

shorter unbraced section of leg. Next, the plastic section of the brace support was also redesigned

to include bearings, which reduce friction and component wear.
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Figure 16: Brace Bearing Block

The carbon fiber sections of the supports also attach at a more obtuse angle, further increasing

resistance to lateral forces.

Figure 17: New Brace (left), Old Brace (right)
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Because the brace attachment points to the upper frame are at an angle where they can no
longer be fixed to the gusset, the author developed a new component for attaching the leg
supports to the upper frame. The new components are made of two, 3D printed plastic parts
which use brass insert nuts, heat formed into the plastic, and machine screws to clamp around the

carbon fiber and fiberglass tubes of the upper frame.

Figure 18: Brace Attachment Bracket

These adjustments stabilize the frame during operation and improve durability and mobility in
the field by keeping more of the wheel in contact with the ground.
3.2. Reinforced Fenders
In addition to the leg supports being insufficient for the new, larger design, the wheel
fenders also experienced excessive load, leading to failure. After driving a short distance, the
sides of the fenders bent, and the wheel detached itself from the motor encoder and developed a

severe cant to one side. To remedy this issue, the author designed a new fender.
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Figure 19: Left Fender Plate (left), Leg Socket (center), Right Fender Plate (right)

The new construction uses two, 1.9 cm thick sheets of HDPE plastic, which sandwich a 5.7 cm
wide, 3D printed ABS plastic component with a socket that attaches to the robot leg. HDPE was
chosen for its stiffness and ease of machining. The 3D printed component is attached to the
HDPE sheets with 8 6mm bolts. The HDPE sheets, in turn, provide the attachment points for the
drive motors and encoder. The middle 3D printed component’s layer lines are perpendicular to
the bolts securing the two sheets to it, which prevents the component from splitting when the
bolts are tightened. Layer orientation needs consideration because 3D prints using FDM are
anisotropic, meaning that they do not have the same strength in all directions and are vulnerable

to layer separation under stress.
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Figure 20: Wheel Assembly

The socket is slightly oversized to accommodate the robot leg, and a 25 mm Actorobotics

clamping hub secures it [Appendix B].

Figure 21: Clamping Hub

24



The clamp is inset in the socket face and secured with machine screws and brass inserts. The new

fenders are easy to disassemble and are substantially more robust than the previous iteration.
3.3. Stepper Motor Steering

In addition to frame and fender failure, the motors also struggled with the alterations.
Several of the high-torque servo motors used for turning the robot legs burnt out under the
increased load. Because the servos used were already on the upper end of what is commonly
available in terms of torque rating for servo motors, the robot needed a new type of motor. The

author selected four, Nema 23, 4.25:1 geared stepper motors for their high torque and robust

construction as well as the angular precision that stepper motors have.

Figure 22: Stepper Motor (left), Encoder & Mount (center), U-Channel (right)

The motors have a holding torque of 8 Nm which is sufficient to turn the wheels under increased
load on uneven terrain [Appendix B]. Closed loop control is necessary because the motors can
still be forced out of alignment during operation and because accurate navigation requires
precision control of the wheel angles. Using AS5600 magnetic rotary encoders mounted to the

motor with a 3D printed component, one of the onboard micro-controllers can provide
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corrections when a wheel is in an improper position. The motor is mounted in place over the
robot leg using a 3D printed plastic part. The part secures the face of the motor to the top of the
Actobotics U-channel at the corners of the Pancreas frame. The complete assembly is shown

below alongside the CAD models in the figure below.

Figure 23: Stepper Motor U-Channel Mount CAD Model (left), Complete Assembly
(middle), Encoder Cap CAD Model (right)

The author redesigned the 3D component with more material around the motor
connection area after several instances of layer separation caused by rough handling during
vehicle transit. The output shaft is attached to the carbon fiber robot leg with a friction fit collar
and set screw. The output pulses from the microcontroller are converted into motor steps by four,

TB6600 microstep drivers, which are also secured to the U-channel.
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Figure 24: Microstepper
Because of the increased pin number, as well as the time delays when taking code blocking

sensor readings, an additional Sparkfun RedBoard microcontroller, takes on the motor control

functions of the platform [Appendix B].
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Figure 25: RedBoard (left), 12C Mux (right)

The Arduino-like board comes with a built-in quick disconnect, 12C port called a giic port. This
additional microcontroller communicates with the main computer code over USB. In addition, a

Sparkfun 12C mux board was added to the control box to manage the encoder wires [Appendix
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B]. The board switches between output ports allowing encoder feedback from all four motors

while using only one quiic input port on the microcontroller.

3.4. Stronger Drive Motors

The window motors on the previous iteration were rated for a continuous torque of 2.9
Nm and were insufficient to move the weight of the larger robot up slight inclines and over
rough ground. The previous iteration of the robot weighed in at 27.7 kg while the new version
with all the reinforcements weighed in at 54.4kg without the final battery. After a short time at
stall current, the built-in thermal fuse would trip, and the motor would shut off until it cooled
down. A new 12V DC Bemonoc worm gear motor was selected to replace the old motors. The
new motor had a rated continuous torque of 6 Nm which would have been able to propel the
larger platform. However, because of quality control issues with these motors, a yet newer,

higher quality motor from a more reputable supplier had to be selected.
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Figure 26: Window Motor (left), Bemonoc Motor (center), AM Motor (right)
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To properly specify the new motors, equation (5) was used to find the total force required to
propel the vehicle, equation (6) to find the total torque required based on wheel diameter, and

equation (7) to find the desired RPM:

m * Vmax _
Ftotal (N) = Crr * W +f+ W * sin (@)

(5)
D
Ttotal (Nm) = Ftotal * 7% RF

(6)

60

Motor Speed (RPM) = Vmax * —

D
(7)

Where Vmax is the maximum desired speed in m/s, Crr is the coefficient of rolling resistance, W
is the robot weight, t is the time to accelerate to top speed, a is the maximum grade, m is the
robot mass, D is the wheel diameter, and RF is the resistance factor of the gearbox and motor
components. The motor specifications for torque are obtained by dividing the total required
torque by the number of wheels on the robot. Values for Crr and RF were estimated using a
reference table from a University of Florida Mechanical and Aerospace Engineering course [18].
Assuming a maximum grade of 3-5% and a robot speed of 0.45 m/s the necessary rated
continuous torque of the motors needed to be around 6-7 Nm, and the speed needed to be at or
above 28 RPM. The 226 series DC Gear Motor from AM Equipment met these requirements
[Appendix B].

Because the 3D printed wheels were custom designed to fit the old motors, new couplers
had to be made to attach the motor output shaft to the wheel. These were made by removing the
old coupler from the burnt-out window motor, cutting it shorter, and machining a slot to accept

the new motor shaft.
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3.5. Robot Controller Adjustments and Part Changes
Because of the loss of the data dashboard app, the author devised a new method of robot
control. The NI MyRio handled the PID control for the drive motors and the manual control
functions. There are ways of integrating radio controllers for manual control and LabVIEW
using FPGA. However, it was simpler to centralize all high-level control on the already-present
Latte Panda single-board computer. The Panda’s onboard Arduino is sufficient for the simple
sensor communication, and the GPS already fed in data over USB serial. To manage the PID
control of the drive motors, 4 Roboclaw Solo 60A motor controllers replaced the Sabertooth

controller [Appendix B].
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Figure 27: Roboclaw Motor Controller (left), Latte Panda Alpha (right)
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The Solos come with built-in PID control and only require a speed command from the Redboard
microcontroller mentioned above. The controllers had to be tuned to match the motor and
wheels. This was accomplished by propping up the robot to allow the wheels to spin freely and
writing new settings using Basic Micro’s Motion Studio software.

3.6. Radio Antenna

A pair of new XBee Pro SB3 radio and antenna replaced the user input functions of the
data dashboard [Appendix B]. The radio on the robot connects to the Latte Panda over USB. This
radio is paired with the one connected to the operator’s computer to send and receive messages

from the Pancreas.

Figure 28: XBee Radio

The messages are sent asynchronously, meaning that the sending radio does not need a
confirmation that its message has been received and so is non-blocking in the main control code.

This method of communication allows for smoother robot control. In addition, because more
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complex messages can be sent and received, debugging and testing are easier because robot

feedback is more informative and customizable.
3.7. Power

The component additions, the motor changes, and the substantial increase in weight all
increased power consumption. In addition, the new motors can briefly drop the voltage coming
from the 12V regulator when at stall current. If the computer and the drive motors are on the
same regulator, a drop in voltage, caused by motors drawing too much current, can shut off the
computer. An additional regulator supplying the computer mitigates the voltage drop by
providing a buffer. During testing, a larger provisional battery pack of two 22.2v 12.5 Ah, 277.5
Wh batteries wired in parallel was used until the precise power needs of the platform could be
experimentally determined. A full wiring diagram of all components can be seen in Appendix C.

In addition the updated CAD models can be found at BenW3/PancreasSolidModels: stl files for

the robot (github.com).

Figure 29: Provisional Battery Pack
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4. Software Changes and Simulation for Prototype Three

4.1. Computer Control

With the move to solely using the Latte Panda, most of the control code already present
on the previous iteration had to be re-made in Python, with the exception of the Arduino sensor
code. The sensor code draws from Dahm’s work and a helpful AS5600 encoder tutorial, which
also inspired the design of the mount to which the encoder is attached [19]. Both the sending and
receiving radio interface also had to be implemented. In addition, because the implementation on
the previous prototype had only the manual method of control, the author had to design an
autonomous path following strategy. The author switched the onboard computer’s operating
system to Linux because of its stability and reduced memory use. In, addition Linux is somewhat
easier to use when implementing computer vision. The code and measured data are written to a
detachable SD card which can be removed for either data analysis or code updates. The main
body of the code runs from the Latte Panda terminal on startup. There is a radio command
handler file and a function file which together make up the high-level control of the robot. The
main Python code running on the Panda issues commands over serial to the two microcontrollers
on the platform. The main code issues a serial command to the RedBoard microcontroller with a
single angle for the steering and a duty cycle for the drive motors. The other built-in Arduino
Leonardo microcontroller is issued a letter corresponding to the desired sensor reading and
returns the reading over serial. The main code reads GPS by parsing the NEMA string that is
continuously generated by the B-125 board. A block diagram of the system and information flow

can be seen below. In addition, the full code for all systems is located on GitHub at:
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https://github.com/BenW3/Pancreas. The most essential portions can also be found in Appendix

A of this document.

Motor Arduino
Single Board Computer Current/

Voltage
Sensors

100W Solar
Panels

Built-In Arduino

Roboclaw Microstepper 1
Solo 60A Controller

Latte Panda

24V LiPo Battery

12V Voltage
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Figure 30: System Block Diagram

4.2. Radio Communication

The Xbee radio connects to an operator’s laptop. This method of radio control is
preferable to an RC controller because of its the ease with which new features and commands
can be added. The operator can send a variety of text commands through the terminal to receive
real time sensor data from the compass, GPS, voltage and current sensors, and control the
platform in either manual or autonomous mode. The user can manually control the robot with the

W, A, S, and D keys while recording GPS waypoints and set the speed with a text command.
4.3. Steering Methods

Like the previous iteration of the Pancreas, the current version also uses a form of

Ackerman steering. In this iteration of the prototype, it is double-Ackerman steering, where both
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the front and back wheels always have the same center around which they steer. This can enable
a zero-turn radius, with the center of the turn in the middle of the robot, and it can reduce wheel

slip.

2t

Figure 31: Double Ackerman Steering [20]

The high-level control code running on the Latte Panda sends the total desired turn angle
for the robot to the motor control RedBoard where that signal is converted into the correct angles
for each wheel. The equations to translate the desired turn angle into actual wheel angles are

shown in (8) and (9):

5 — tan-1 [ xsinf
1= Han (l*c056+w*sin9)
(8)
5. — tan-! [ +sinf
2 = tan (l*cose—w*sine
(9)

Where §; and &, are the front left and front right wheel angles respectively, I is the robot length,

w is the robot width, and 6 is the desired robot turn angle. The rear wheel angle is simply the

35



negative of §; and &§,. The micro-controller then closes the loop by checking each desired wheel
position against the actual position and adjusts the wheel angles with pulses sent to the
microstepper. This was done with a custom Arduino library.

Because control and power cables necessarily run from the electrical box to the wheels,
the legs of the robot cannot spin freely, otherwise those cables would wrap around the leg and
jam it or disconnect themselves. To stop this, the stepper motors’ turn angle has been limited by
code to plus or minus 90°. When an angle greater than 90° or less than -90° is needed the stepper
motor will turn 180° from the necessary angle and the drive motor will reverse direction.
Although smoother steering is possible with a larger range of permitted turn angles, the
disruption from jammed cables is not worth the gain.

When in manual control, the operator can also activate a synchronous steering mode from
the control laptop and turn each wheel at the exact same angle. Switching between the two
modes as needed allows for excellent maneuverability in confined spaces. The second mode was
necessary for transportation to and from the field and for debugging purposes because the

increased weight made the platform difficult to move physically.
4.4. GPS Waypoint Following

In order to follow a given set of GPS waypoints, the author selected and implemented the
pure pursuit algorithm. Pure pursuit takes a set of line segments as input and finds a target point
on the line segment currently being traversed based on some look-ahead radius. It then calculates
the angle between the direction the platform is currently facing and the angle required to

intersect the line segment at that look ahead point.
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Figure 32: Pure Pursuit [21]

When the robot moves, the lookahead point also moves further along the line segment and will
result in a new desired angle. This method produces smooth path following with the right
adjustments to the lookahead radius because it gives the platform some time to adjust in advance
of sharp turns, mitigating overshoot. In addition, the aggressiveness of the error correction can be
tuned with PID control.

The GPS data itself is read every time the waypoint function loops around. This frequent
reading is allowed by the 100Hz data update frequency of the B-125 board. The geometry done
to determine the required correction angle is done in cartesian coordinates, so the raw latitude
and longitude data needs to be converted. This is done by simple equirectangular projection,
which flattens the coordinates down to a plane, so calculations need not be done on a spherical
surface [22]. This method is crude, but effective for small scales. The equations are shown in
(10) and (11).

X =R * A oS (Qref)

(10)
Yy=Rx¢

(11)
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Where 1 and ¢ are longitude and latitude converted to radians, respectively, R is the radius of the
earth, and grer is Some reference latitude. This correction gives the appropriate circle of latitude
to scale the x coordinate by at the reference point. In the case of the path following algorithm, the
reference latitude is simply the first coordinate in the path. This centers the projection on
wherever the platform happens to be.
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Figure 33: Equirectangular Projection Distortion, Reference Latitude at 0° [23]

The projection, like all global map projections, loses accuracy the further out from the
reference coordinate the robot goes. In this case, it is north-south distance that is concerning. For
the application considered here, a deviation from true distance of more than a few centimeters
over a 40m span would be unacceptable. Based on my calculations the platform would need to
travel almost 2km before the latitude to x coordinate conversion was distorted by 1cm over that
span, which is well outside the operating range of the platform during field trials. The equations

used are shown in (12) and (13).
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Distance = R * AL * coS (Pref)

(12)

Distance + Tolerable Error = R x AL * cos (@raiiure)

(13)
Where “Distance " is the typical span of a test wheat plot and “Tolerable Error ” was 1cm. After

doing some simple algebra these equations can be rearranged to find the band of tolerable
latitudes for navigation and with that the tolerable north-south range. The equation is shown in
(14).

Distance + Tolerable Error

Tolerable Range = R x (¢ef — cos ™ (cos(@yres) * Distance

(14)
The initial path coordinates can be either imported from an external source, or taken by

manually navigating through the desired path and recording the data with a command from the
user. GPS, compass, time, and power data is collected both while recording and following a path.

The data is then logged to a comma separated value file (.csv) for later analysis.
4.5. Path Following Simulation

In addition to physical testing, simulation was a useful tool for diagnosing errors and
refining the control algorithm with quick turnaround time. The Webots open-source robotics
simulator from Cyberbotics provided a simple, easy to use tool for the project. A simplified
model of the robot frame was constructed in Webots with controllable steering, drive motors and
virtual sensors. The simulation used a slightly simplified version of the Python code running on

the robot for testing and debugging.

39



Figure 34: Webots Pancreas Simulation

After some changes, the simulated Pancreas performed reasonably well on a test course
which approximated six passes through the test field. A look-ahead radius of 0.25m, a
proportional gain of 3.6, and integral and derivative gains of O performed well during testing.
The simulation also gave a helpful estimate for how much space the platform needs to turn and
its over/undershoot when path following to fall within tolerable margins. In addition to providing
a benchmark for physical test results, the simulation also aided in resolving some persistent
errors in the control code. A plot of performance alongside error can be seen in the figure below.
The path traversed was roughly analogous to real test field conditions, matching the layout of the

wheat plots.
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Figure 35: Simulated Robot Path and Tolerable Error Plot (NOTE: path not to scale)

The platform has 15 cm on either side of the wheel, assuming it begins centered in the 30
cm path, before it collides with the wheat plots. The thickness of the fenders and motor
projecting from the side of the fender further reduces this distance by a total of 14.15 cm, to a
margin of just under 8 cm on either side. In addition to precise centering on the waypoint path,
the platform needs to be aligned with the path in terms of heading. A 3° deviation in heading will
cause a collision with the wheat plots. This becomes an issue on the physical system, because the
digital compass has a maximum error rating of 3°. With these settings, the transitory behavior
subsides in roughly a meter. A plot of the heading error can be seen in the figure below. These
plots suggest that the platform should be given a path that overshoots the ends of the test plot by

a margin of a few meters to avoid collision.
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Figure 36: Simulated Robot Heading and Error

There are several key differences between the simulation and the physical platform. First,
the simulated robot behaves as a rigid body with no deforming parts. Second, there is no error in
the GPS and compass signal, and these signals have no delay from signal request to signal
reading. Fortunately, there are signal processing tools like the Kalman filter which can resolve
some of these real-world sensor errors, as detailed in the next section. Finally, the virtual terrain
is perfectly flat, so there are no environment related disturbances to the path following. These
differences could result in different values for the lookahead radius and PID coefficients, but the

simulation provides a starting point from which to fine-tune the control coefficients.

4.6. Kalman Filtering

Rudolph E. Kalman designed the Kalman filter and published it in a 1960 article in The

Transactions of the ASME [24]. The filter enables the smoothing of noisy measurements and
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accurate estimations of a system’s state. In the case of the Pancreas platform, the filter will be
used to smooth its GPS signal by combining the raw GPS input with the compass readings and
the assumed constant speed of the platform. The degree to which the data is smoothed can be
adjusted by tuning the measurement noise covariance matrix. This matrix, called Q, represents
how noisy the data is and how much it should be trusted. The filter works by updating the state
of the system, in this case position, with the velocity estimate from the previous time step. It then
compares this estimate with the current measurement and combines them based on how much it
trusts the measurement. A visual of this can be seen in the figure below, from a University of

North Carolina computer science course [25].

Measurement Update (““Correct™)

- 3 104
Time Update (*Predict™) (1) Compute the Kalman gain

i - - -1
(1) PI’OJE-:CI the state ahead Kk — PkHT(HPkHT 4 R)
(2) Update estimate with measurement z;,

(2) Project the error covariance ahead j‘ck = xk + Kk(zk — Hj‘ck)
Pk = APk _ IAT + Q (3) Update the error covariance

Initial estimates for JACA,7 pand P

Figure 37: Basic Kalman Filter Function [25]

The process is notation heavy, but not difficult to implement in code. The author took
inspiration from an online Python implementation of a Kalman filter [26]. However, the author

made several changes to the state, covariance, and measurement matrices to reflect the
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observations, which are represented by the zx matrix, made by the platform as these are

application specific, in this case being velocity and position. An example of smoothing is shown

below in the following figures.
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Figure 38: Raw Recorded Path
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Figure 39: Filtered Path

Notably the accuracy of the GPS readings in the preceding figures was severely impacted
by the presence of buildings, leading to a shift in the recorded waypoints by over a meter on
portions of the path. This interference would not be present in the field but does demonstrate the
effect of Kalman filtering. The actual path roughly matches the left-hand side of the loop shown

in figure 39, but diverges as it travels back down the sidewalk.
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5. Testing and Results

5.1.Path Following

Several issues with the frame and sensors of the robot led to path following failure. The
frame has been in use for over a year, and wear on multiple components severely hampers
accurate navigation. The connection between the steering motors and the robot’s legs
experienced wear to both the couplers and carbon fiber leg, leading to roughly 15° of slop in
wheel angle. This causes the legs and frame to twist and bend, and it makes precise steering
impossible. In addition, the Roboclaw motor controllers periodically fail, leading to one or more
wheels being locked in place. Additionally licensing and proof of purchase issues led to an
inability to acquire the RTK functionality of the GPS. Finally, during testing the author found
that, despite being on a long pole away from the electronics box, the GPS antenna experienced
radio interference from the computer and electrical box. The author determined this by testing

GPS satellite acquisition with and without the computer turned on.

Figure 40: Radio Interference Solution
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To resolve this, a large aluminum plate was secured on the pole under the antenna which greatly
improved satellite acquisition and lock. Another potential fix mentioned in committee was to use
thicker gage wire and the fewest ground points possible. Despite this interference fix, all the
other issues resulted in unsatisfactory path following.

5.2.Updated Power Consumption

Several short tests pointed to the provisional battery pack being insufficient. To preempt
power loss during longer tests, the author swapped the pack for a 24 V, 50 Ah, 1200 Wh,
LiFePO4 battery from Dakota Lithium [Appendix B]. This battery added an extra 9 kg to the

platform, but increased the battery life by over four times.
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Figure 41: Dakota Lithium Battery
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Field testing demonstrated an average power use of 218 W as shown below, which is over 3
times greater than the previous prototype. The platform struggled to exit a ditch which produced
the power use spike at the end of the plot. This reflects off road conditions, and so was not

removed as an outlier.
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Figure 42: Power Use During Field Test

Based on these measurements, the platform can operate solely on battery for almost six
hours. However, the current solar panel arrangement’s limitations mean that the platform would
have to stop, shut off power to the motors, and charge for part of the day. Dahm’s solar panel
trials give the total expected incoming power from the two panels as ~100 W during sunny, mid-
day conditions and ~50 W during cloudy conditions [16]. Based on Dakota Lithium’s charging

specifications, the 24 V battery should be charged at 28.8 V and under 0.3 C (15 A) [27]. The
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current solar panel setup would take 14.4 hours under ideal conditions to charge completely as it
can maintain a current of just under 3.5 A at that voltage. Changes are necessary to avoid these
excessive charging times.

Manhattan, Kansas receives, on average, 4.24 kWh per day per kilowatt of installed
photovoltaic capacity * [28]. The average for April through September, which are the months of

expected use, is 15% higher than the yearly average. This gives a daily average of 4.87

kWh/kWp during those months.

Leafiet | PVOUT map © 2023 Solargis

\g PVOUT: Long-term average of annual totals of PV power potential
-~ \ i KWh/KWp
) Leafiet | Satelite ties © Esri 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Figure 43: Satellite and Solar Potential Maps of Manhattan, KS [28]

Since the Pancreas has an effective 100 W of installed capacity, we can expect a daily average
power budget of 487 Wh from average incoming sunlight. Based on the power use during regular
operation, that gives 2.2 hours of run time for the platform. Given the power demands, the
number of solar panels on the platform should be doubled supplying a power budget of 974 Wh.
This would bring the operation time of the platform to 4.47 hours. This run time should be
further reduced to compensate for idle power use. The platform draws just under 14 W when idle

with the motors unpowered. Over the course of 24 hours this will drain 336 Wh. This decreases

! Information obtained from the Global Solar Atlas 2.0, a free, web-based application is developed and operated by
the company Solargis s.r.0. on behalf of the World Bank Group, utilizing Solargis data, with funding provided by

the Energy Sector Management Assistance Program (ESMAP) [Statement required in terms of use]
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the operation time to 3.1 hours.

Idle Power Use

20
18

16

Power (W)

0 50 100 150 200 250

Time (s)

Figure 44: 1dle Power Use

Idle power use was tested by shutting off power to the motors with a simple switch, but should

be done with a 20 A relay which could be switched autonomously by the Latte Panda. The start
and stop of operations should be determined by monitoring battery capacity and incoming solar
power to check against experimentally determined threshold values. Then, when running, the

platform should check its internal clock against its allotted daily runtime.
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6. Conclusion and Future Work

The third iteration of the Pancreas unmanned ground vehicle makes several
improvements to the previous prototype. First, the platform is larger to reduce interference from
the motors and electronics on the EMI sensor. Next, it has a more centralized control system that
leverages the power of the Latte Panda computer. It has more durable components to support the
size increase. Finally, the Pancreas has a path following algorithm implemented and tested in
simulation to follow GPS waypoints.

Future work is still necessary for the platform to reach its potential. Some issues are
simple fixes and others require more in-depth solutions. A clerical error in measurement led to
the Pancreas being a 30 cm shorter than necessary, so new 3.35 m long tubing is needed. The
autonomous path following algorithm needs to be updated to include an automatic shut off when
entering a dormant, charging state. The steering motor system needs improvements to its
durability because some of the 3D printed couplers receive excessive wear. These components
are now degrading the precision of the platform’s steering and navigation. A more permanent
solution would be desirable to simply printing new components of the same design. The
accuracy of robot heading measurements is insufficient for navigation, so a new compass or
compasses must be installed. RTK functionality needs to be implemented on the GPS system. To
improve the Kalman filter, an inertial measurement unit (IMU) should be added to accurately
gauge speed. The platform also needs to be weatherized. Finally, the obstacle avoidance system
still needs to be implemented to provide feedback from the environment.

Simulation demonstrates that the Pancreas can work, but reliability remains a key issue
for future development. The system is not yet ready for field use, but could be given these

adjustments.
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Appendix A - Code

Command Handler/Main

#!/usr/bin/python3

import methods

from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, XBee64BitAddress
import os

import glob

from math import cos, sin

import sys

from time import perf_counter

import numpy as np

import traceback

# - CHECK - PID control

# - CHECK - Error calculator

# - CHECK - Angle/Dist to pwm calculator
# - CHECK - GPS reader

# - CHECK - Compass reader

# - CHECK - Read/write to coordinate file
# - CHECK - Stop conditions

# - CHECK - Read/write to log file

# Obstacle sensor

# - CHECK - Read power

powerReadingDelay = 10

aspectRatio = 9.0

average_timestep = 0.5
methods.getSerialPorts()

receiver = XBeeDevice(methods.radioPort, 9600)
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remoteTransmitter = RemoteXBeeDevice(

receiver, XBee64BitAddress.from_hex_string("0013A2004104110E"))
receiver.open()
print(str(methods.initArduinos()))

2 L
# Main Radio Message Handler
H mmmmmm e -
if _name__ == "_main__":
print("Pancreas Online")
H mmmmmme e -
# Read Radio Messages Until Loop Ends
-
while True:
message = ""
try:
data = receiver.read_data_from(remoteTransmitter, 3)
message = data.data.decode("utf8")
print(message)
except:
# print("no message")
pass
S
# Manual Mode
- S W
if message == "manual":

# print("manual mode activated")
global pathName

global powerName

global CurrentTime

global t1
lat = []
lon = []
power = []
heading =
dt = []
logPath = False
pathName = ""

[l

while message != '0':
try:
data = receiver.read_data_from(remoteTransmitter, 0.1)
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receiver.flush_queues()
message = data.data.decode("utf8")

except:
message = ""
2 S
# Path and power recording
H mmmmmm e e -
if message == "3":
# powerName = "powerDefault.csv"

CurrentTime = perf_counter()
tl = perf_counter()

try:
print("Getting file name . . .")
receiver.flush_queues()
receiver.send_data_async(
remoteTransmitter, "Please supply a file name with a
.csv extension within the next 30s")
receiver.flush_queues()
data = receiver.read data_from(remoteTransmitter, 30)
pathName = data.data.decode("utf8")
powerName = str("power"+str(pathName))

except:
pathName = "pathDefaultName.csv"
powerName = "powerDefaultName.csv"
try:

methods.logDataInit(pathName)
methods.logDataInit(powerName)
except Exception as e:
receiver.send_data_async(remoteTransmitter, str(e))
lat = []
lon = []
heading = []
power = []
dt = []
# power.append("starting file")
logPath = False

print("Getting gps . . .")
i=o0
while i < 5 and logPath == False:
try:
i+4=1

[reflat, reflon, satnum] = methods.readGPS()[0:3]
aspectRatio = cos(reflat)
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[x1, y1] = methods.latlonToXY(
reflat, reflon, aspectRatio)
robot_heading = methods.deg2rad(
float(methods.write read('C’,
methods.sensorArduino)))
initial_state = np.array([[x1], [y1], [sin(
robot_heading)*methods.velocityMagnitude],
[cos(robot_heading)*methods.velocityMagnitude]])
methods.filterInit(initial_state, average_timestep)
receiver.send_data_async(
remoteTransmitter, "try "+str(i)+",
"+str(reflat))
if satnum != 0:
logPath = True
receiver.send_data_async(
remoteTransmitter, "Success!")
print("Recording path")
except Exception as e:
# receiver.send_data_async(remoteTransmitter, str(e))
pass

if len(lat) > 20:
print(str(len(lat)) + " vals in 1list")
try:
data = []
i=0
while i < len(lat):
data.append(
str(lat[i])+","+str(lon[i])+", "+str(heading[i]) +
", 4 str(dt[i]))
i+=1
methods.logDataUpdate(data, pathName)
lat = []
lon = []
heading = []
dt = []
except Exception as e:
# print(str(e))
# receiver.send_data_async(remoteTransmitter, str(e))
pass

if len(power) > 20:
# print(str(len(power)) +
try:
methods.logDataUpdate(power, powerName)

vals in 1list")

58



power = []
except Exception as e:
# print(str(e))
# receiver.send_data_async(remoteTransmitter, str(e))
pass

if message == "4":
logPath = False
try:
data = []
i=o0
while i < len(lat):
data.append(
str(lat[i])+","+str(lon[i])+", "+str(heading[i]) +
","+ str(dt[i]))
i+4=1
methods.logDataUpdate(data, pathName)
lat = []
lon = []
heading = []
dt = []
except Exception as e:
# print(str(e))
# receiver.send_data_async(remoteTransmitter, str(e))
pass

try:
methods.logDataUpdate(power, powerName)
power = []
except Exception as e:
# print(str(e))
# receiver.send_data_async(remoteTransmitter, str(e))
pass

if logPath == True:
if (perf_counter()-CurrentTime) > powerReadingDelay:
CurrentTime = perf_counter()
try:
power.append(methods.write_read(
'"P', methods.sensorArduino))
except:
pass
try:
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[lattitude, longitude, x, y, angle, sats, time, quality]
= methods.get_filtered_state(
aspectRatio, receiver, remoteTransmitter)
if sats != 0:
lat.append(lattitude[0])
lon.append(longitude[@])
heading.append(angle)
dt.append(perf_counter() - t1)
t1 = perf_counter()
except Exception as e:
# exception_type, exception_object, exception_traceback =
sys.exc_info()
# filename =
exception_traceback.tb frame.f code.co filename
# line number = exception_traceback.tb lineno
# receiver.send_data_async(remoteTransmitter, str(e) +",
"+ str(exception_type)+", "+str(filename)+", "+str(line_number))
pass
methods.writeToArduino(
'S'+methods.manualControl(message), methods.steeringArduino)

B o
# Setting speed
S,
elif message == "set speed":
try:

receiver.send_data_async(
remoteTransmitter, 'Input a speed in microseconds from 1500

to 2000. Current speed is ' + str(methods.Speed))

receiver.flush_queues()

data = receiver.read_data_from(remoteTransmitter, 30)

speed = int(data.data.decode("utf8"))

methods.setSpeed(speed)

except Exception as e:

print("Error with speed setting")

print(str(e))

receiver.send_data_async(remoteTransmitter, str(e))

S
# Read GPS
S
elif message == "gps reading":
try:

receiver.send_data_async(
remoteTransmitter, str(methods.readGPS()))
except Exception as e:
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print("Failed to send GPS data")
print(str(e))
receiver.send_data_async(remoteTransmitter, str(e))

B o -
# Read Power
B o -
elif message == "power reading":
try:

receiver.send_data_async(
remoteTransmitter, methods.write read('P',
methods.sensorArduino))
except Exception as e:
print("Failed to send power data, " + str(e))
receiver.send_data_async(remoteTransmitter, str(e))

B e
# Read Compass
B e
elif message == "compass reading":
try:

receiver.send_data_async(
remoteTransmitter, methods.write_read('C’,
methods.sensorArduino))
except Exception as e:
print("Failed to send compass data")
receiver.send_data_async(remoteTransmitter, str(e))

S
# Test For Connection
B e
elif message == "ping":
receiver.send_data_async(

remoteTransmitter, "Robot computer online")
S
# Run Autonomously From File
S

elif message == "autonomous":

filelist = []

counter =1

filestr = "Please type in the name of one of the available coordinate

files which you would like to follow or type CANCEL: \n"

filelist.append(filestr)

files = glob.glob('./*.csv")

for f in files:
filestr = str(f)+" ["+str(os.path.getsize(f))+" bytes"+"]"
filelist.append(filestr)
counter += 1
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print(filelist)
i=290
receiver.send_data_async(
remoteTransmitter, str(counter))
receiver.flush_queues()
while i < counter:
receiver.send_data_async(
remoteTransmitter, str(filelist[i]))
i+4=1
print(i)
try:
data = receiver.read data_from(remoteTransmitter, 60)

userFilename = data.data.decode("utf8")
except:

userFilename = 'CANCEL'
if userFilename != 'CANCEL':

try:

methods.waypointFollower(
0.0, 1.0, 0.0, 1, receiver, remoteTransmitter,
userFilename)
receiver.send_data_async(
remoteTransmitter, "Path following terminated")
except Exception as e:
exception_type, exception_object, exception_traceback =
sys.exc_info()
filename = exception_traceback.tb frame.f code.co filename
line _number = traceback.extract tb(exception_traceback)
receiver.send_data_async(remoteTransmitter, str(
e) + ", " + str(exception_type)+", "+str(filename)+",
"+str(line_number))
print(str(e) + ", " + str(exception_type) +
", "+str(filename)+", "+str(line_number))

print(userFilename)
message == ""

elif message == "STOP ROBOT":
break

receiver.close()

Function File

# distance calculator
# https://www.hindawi.com/journals/ape/2014/507142/
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from math import cos, sin, pi, acos, atan

from time import sleep

import serial

import pynmea2

from time import perf _counter

from numpy import genfromtxt, sign, sort

import csv

import serial.tools.list ports

from CustomKalman import TwoDKalman

import numpy as np

# steeringArduino = serial.Serial(port = 'COM13', baudrate=9600, timeout=5)
logFrequency = 5 # How frequent should data be logged (s)
listSize = 100 # How large list is before logging

robotLength = 1.2192 # m, 4ft

robotWidth = 3.048 # m, 1oft

angleSignal = © # Radians

velocitySignal = @ # Microseconds

mode = 1 # Steering mode

setpoint = © # for synchronous steering

Speed = 1600

speedset = -1

XVariance = 5 # noise variance in meters for longitude
YVariance = 5 # noise variance in meters for latitude
XVelocityVariance = 0.05 # noise varience in measured velocity
YVelocityVariance = 0.05 # noise varience in measured velocity
velocityMagnitude = 0.3 # m/s guess

def getSerialPorts():
This function finds the pancreas' connected devices and stores their serial
port names.
global steeringPort
global sensorPort
global gpsPort
global radioPort
radioPort = ""
sensorPort =
gpsPort = ""
steeringPort =
try:
radioPort = list(*serial.tools.list ports.grep('FT232EX"'))[0]
except:
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def

def

print("Radio not connected.")
try:

gpsPort = list(*serial.tools.list_ports.grep('Controller'))[0]
except:

print("GPS not connected.")
try:

sensorPort = list(*serial.tools.list_ports.grep('Leonardo'))[@]
except:

print("Sensor arduino not connected.")
try:

steeringPort = list(*serial.tools.list ports.grep('USB Serial'))[0]
except:

print("Steering arduino not connected.")

initArduinos():

This function initializes the two arduinos used in the rest of the program.
global steeringArduino
global sensorArduino
val = ""
if steeringPort != "":
try:
steeringArduino = serial.Serial(
port=steeringPort, baudrate=115200, timeout=0.1)
val += 'steering connected’
except Exception as e:
val += e
if sensorPort !=
try:
sensorArduino = serial.Serial(
port=sensorPort, baudrate=115200, timeout=0.1)
val += ', sensors connected’
except Exception as e:
val += e
return val

setSpeed(input):
global Speed
Speed = input
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def readGPS():

It reads the GPS Serial port and translates NMEA to usable values.
try:
data = ""
gps = serial.Serial(port=gpsPort, baudrate=115200, timeout=5)
gps.flushInput() # flush input buffer, discarding all its contents
gps.flushOutput()
sleep(.05)
data = gps.readline()
sleep(.05)
gps.close()
data = data.decode("utf-8")
dataParse = pynmea2.parse(data)
gpsLat = dataParse.latitude
gpsLon = dataParse.longitude
sats dataParse.num_sats
time = dataParse.timestamp
qual = dataParse.gps_qual
return gpsLat, gpsLon, int(sats), time, int(qual)
except Exception as e:
return e

def get_filtered_state(aspect_ratio, receiver, remoteTransmitter):
This function reads the GPS Serial port and translates NMEA to usable values.
It returns lattitutde and longitude, cartesian coordinates, heading,
satellites connected, time, and gps quality.
try:
data = ""
gps = serial.Serial(port=gpsPort, baudrate=115200, timeout=5)
gps.flushInput() # flush input buffer, discarding all its contents
gps.flushOutput()
sleep(.05)
data = gps.readline()
sleep(.05)
gps.close()
data = data.decode("utf-8")
dataParse = pynmea2.parse(data)
gpsLat = dataParse.latitude
gpsLon = dataParse.longitude
sats = dataParse.num_sats
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if round(gpsLat) == © and round(gpsLon) == 0:

sats = 0
gpsLat = gps_lat_old
gpsLon = gps_lon_old

time = dataParse.timestamp

qual = dataParse.gps_qual

robotAngle = deg2rad(float(write_read('C', sensorArduino)))
[xraw, yraw] = latlonToXY(gpsLat, gpsLon, aspect_ratio)
xcenter = xraw+(robotWidth/2.0)*cos(robotAngle)

ycenter = yraw-(robotWidth/2.0)*sin(robotAngle)
measured_state = np.array([[xcenter], [ycenter], [sin(

robotAngle)*velocityMagnitude], [cos(robotAngle)*velocityMagnitude]])

[xfilter, yfilter] = filteredGPS(measured_state)

[latAdjusted, lonAdjusted] = XYtolatlon(xfilter, yfilter, aspect_ratio)

gps_lat old = latAdjusted
gps_lon_old = lonAdjusted

return latAdjusted, lonAdjusted, xfilter, yfilter, robotAngle, int(sats),

time, int(qual)

def

def

def

def

except Exception as e:
receiver.send_data_async(remoteTransmitter, str(e))

filterInit(initial_state, time_step):
global gpsFilter
global gps_lat_old
global gps_lon_old
gpsFilter = TwoDKalman(initial state, time_step, XVariance,
YVariance, XVelocityVariance, YVelocityVariance)

filteredGPS(current_state):
[x, y] = gpsFilter.filter(current_state)
return x, y

deg2rad(deg):

converts degrees to radians, pretty simple

return deg*(pi/180.0)

rad2deg(rad):

converts radians to degrees, pretty simple
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return rad*180.0/pi

def distanceToWaypoint(xp, yp, Xw, yw):

computes the distance to the waypoint

return ((Xp-xw)**2+(yp-yw)**2)**(1/2)

def latlonToXY(lat, lon, aspectRatio):

This function converts lattitude and longitude to x and y values using simple
egqirectangular projection.

X and y are in meters

r = 6371000

lat = deg2rad(lat)

lon = deg2rad(lon)

y = r¥lat

x = r*lon*aspectRatio

return x, y

def XYtolatlon(x, y, aspectRatio):

This function converts x,y back to lattitude and longitude using simple
equirectangular projection.

X and y need to be in meters.

r = 6371000
lat = rad2deg(y/r)
lon = rad2deg(x/(r*aspectRatio))

return lat, lon

def betweenWaypoints(x1, y1, x2, y2, Xp, yp):
This function is for waypoint following. It decides whether to look at a
point on the line segment or one of the endpoints to follow.

xval = [x1, x2]
xval = sort(xval)
yval = [y1, y2]
yval = sort(yval)
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if x1 == x2:
if yp > yval[1l] or yp < yval[@]:
return False
elif yl == y2:
if xp > xval[1l] or xp < xval[@]:
return False
else:
m = (y2-yl)/(x2-x1)
interceptl = y1+x1/m
intercept2 = y2+x2/m
a = yp+xp/m
if interceptl > intercept2:
if (a-interceptl) > @ or (a-intercept2) < 0:
return False
else:
if (a-interceptl) < @ or (a-intercept2) > 0:
return False
return True

def calcAnglekError(x1l, yl, x2, y2, xp, yp, robotAngle, r):
This is the error calculator for the pure persuit line following algorithm.
The robot maintains a constant speed and only uses the error in desired and
current angle to navigate.
ptlDist = ((xp-x1)**2 + (yp-yl)**2)**(1/2)
pt2Dist = ((xp-x2)**2 + (yp-y2)**2)**(1/2)
if x2 == x1:
if y2 == yl:
Acoef =1
Bcoef = -2*yp
Ccoef = Xx2**2-2*xp*X2+Xxp**2+yp**2-r**2
perpDist = ptlDist+1

else:
Acoef =1
Bcoef = -2*yp
Ccoef = Xx2**2-2*xp*X2+Xp**2+yp**2-r**2
perpDist = ((x2-xp)**2)**(1/2)
else:
m = (y2-yl)/(x2-x1)
b = y2-m*x2
Acoef = (m**2+1)
Bcoef = 2*m*b-2*m*yp-2*xp
Ccoef = xp**2+b**2-2*b*yp+yp**2-r**2
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if betweenWaypoints(x1, yl, x2, y2, xp, yp) == True:
perpDist = abs(-m*xp+yp-b)/(m**2+1**2)**(1/2)
else:
perpDist = ptlDist+1

distances = [ptlDist, pt2Dist, perpDist]
minDist = distances.index(min(distances))
descriminant = Bcoef**2-4*Acoef*Ccoef

if distances[minDist] > r or descriminant < 0:
if minDist ==

x = x1
y =yl
elif minDist ==
X = X2
y =y2
else:
if y2 == yl:
X = Xp
y =y2
elif x2 == x1:
X = X2
y =yp
else:
x = (xp/m+yp-b)/(m+1/m)
y = m*x+b
else:
xpotl = (-Bcoef + (descriminant)**(1/2))/(2*Acoef)
xpot2 = (-Bcoef - (descriminant)**(1/2))/(2*Acoef)
if x1 == x2:
ypotl = xpotl
ypot2 = xpot2
xpotl = x2
xpot2 = x2
else:
ypotl = m*xpotl+b
ypot2 = m*xpot2+b

dpotl = ((xpotl-x2)**2+(ypotl-y2)**2)**(1/2)
dpot2 = ((xpot2-x2)**2+(ypot2-y2)**2)**(1/2)
if (dpot2 > dpotl):

X = xpotl

y = ypotl
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else:
X

y

xpot2
ypot2

xr = xp+r*sin(robotAngle)
yr = yp+r*cos(robotAngle)
ax = Xr-xp

ay = yr-yp
bx = x-xp
by = y-yp

angleError = 0
if (ax !'= 0 or ay !=0) and (bx != 0 or by != 0):

try:
angleError = acos(
(ax*bx+ay*by)/ (((ax**2+ay**2)*¥*(1/2) ) *((bx**2+by**2)**(1/2))))
except:
pass
cp = ax*by-bx*ay
if cp < 0:
angleError = -1*angleError

return angleError

def writeToArduino(x, microcontroller):

This function communicates with the latte panda's onboard arduino or USB
connected arduino.

It takes what is being written and a port name.

try:
microcontroller.write(bytes(x, 'utf-8"))
microcontroller.flushInput() # flush input buffer, discarding all its
contents
microcontroller.flushOutput()
except Exception as e:
print(str(e))
pass
return

def write read(x, microcontroller): # communucation btw the cpu and ard

This function communicates with the latte panda's onboard arduino or USB
connected arduino and receives a return signal.
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It takes what is being written and a port name.
try:
microcontroller.flushInput() # flush input buffer, discarding all its
contents
microcontroller.flushOutput()
microcontroller.write(bytes(x, "utf-8"))
data = microcontroller.readline()
data = data.decode("utf-8")
return data
except Exception as e:
print(str(e))
pass
return

# This enables manual control from another computer

def manualControl(keystroke):

This function enables manual control from another radio receiver connected
computer.

It returns the desired pwm inputs for steering and wheel motion.

global Speed

global angleSignal

global velocitySignal

global mode

global setpoint

global speedset

adjustedSpeed = Speed-1500

if keystroke == "1":
speedset *= -1

if keystroke == "1":
setpoint = 0
mode = 1

elif keystroke == "2":
angleSignal = ©
mode = 2

if mode == 1:

if keystroke == "a":
angleSignal -= .05
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elif keystroke == "d":
angleSignal += .05

elif mode ==
if keystroke == "a":
setpoint -= 10
elif keystroke == "d":

setpoint += 10

if keystroke == "w":
velocitySignal = 1500 + adjustedSpeed
elif keystroke == "s":

velocitySignal = 1500 - adjustedSpeed
if keystroke == "" and speedset < 9:
velocitySignal = 1500

return str(angleSignal)+","+str(velocitySignal)+","+str(setpoint)

def waypointFollwerVariableInits(ki, kp, kd, R):
This function initialized the starting values for autonomous waypoint
following.
global x
global y
global xPath
global yPath
global robotAngle
global oldErr
global oldTime
global intErr
global wpNum
global kI
global kP
global kD
global r
global latPath
global lonPath
global heading
heading []
latPath [1]
lonPath []
r =R
kI = ki
kP = kp
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kD = kd

X =0

y =0

xPath []

yPath [1]

robotAngle = 0

oldErr = 0

oldTime = perf_counter()
intErr = 0

wpNum = ©

def computePID(err, dutycycle):

This is the pid control calculator, velocity may need to be adjusted
velocity = ((dutycycle-1500)/500) * \
1.388 # m/s, constant derived from wheel diameter and measured rpm
global oldTime
global intErr
global oldErr
intMax = 2.0
nowTime = perf_counter()
deltaT = nowTime-oldTime
intErr += err*deltaT
if abs(intErr) > intMax:
intErr = sign(intErr)*intMax
derErr = (err-oldErr)/deltaT
out = kP*err+kI*intErr-kD*derErr
0ldTime = nowTime
oldErr = err
return out

def logPath(lat, lon, name):

This writes a series of position values to a .csv file for later use.

with open(name, 'w') as f:
f.write('")
with open(name, 'a', newline='") as f:
writer = csv.writer(f)
i=29
while i < len(lat):
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writer.writerow([lat[i], lon[i]])
i+=1

def logDataInit(name):
with open(name, 'w') as f:
f.write('")

def logDataUpdate(data, name):
with open(name, 'a', newline='"') as f:
i=20
while i < len(data):
f.write(data[i]+'\n")
i+=1

def initializeWaypointFollower(name, receiver, remoteTransmitter):

This is to set the inital error so the derivative control doesn't do funny
things on startup.

The function is just one pass through the waypoint follower loop without
actually issuing any motor commands.

global waypoints

global reflLat

global aspectRatio

global xwaypoints

global ywaypoints

global wpNum

global oldErr

global initial_state

global xp

global yp

global xWaypoint

global yWaypoint

global xlastWaypoint

global ylastWaypoint

global gps lat old

global gps_lon_old

waypoints = genfromtxt(name, delimiter="',")

receiver.send_data_async(

remoteTransmitter, "length of chosen file:
print(len(waypoints))

+ str(len(waypoints)))

74



reflLat = deg2rad(waypoints[@, 0])
aspectRatio = cos(reflLat)
xwaypoints []

ywaypoints [1]

i=o0

while i < len(waypoints):

[xpoints, ypoints] = latlonToXY(

waypoints[i, @], waypoints[i, 1], aspectRatio)
xwaypoints.append(xpoints)
ywaypoints.append(ypoints)

i+=1

i=o0

failure = True

while i < 5 and failure == True:
try:

[gps_lat, gps_lon, sats] = readGPS()[9:3]
receiver.send_data_async(
remoteTransmitter, "try "+str(i)+", lat:"+str(gps_lat) + ", lon:
+ str(gps_lon))
if sats != @ and round(gps_lon) != 0:
[xp, yp] = latlonToXY(gps_lat, gps_lon, aspectRatio)
failure = False
receiver.send _data_async(remoteTransmitter, "Success")
gps_lat _old = gps_lat
gps_lon_old = gps_lon
except Exception as e:
receiver.send_data_async(remoteTransmitter, str(e))
print("No connection to GPS")
pass
i+=1

# Set first old error equal to the new one to stop weird inital derivative error

behavior
robotAngle = deg2rad(float(write read('C', sensorArduino)))

initial_state = np.array([[xp]l, [yp], [sin(
robotAngle)*velocityMagnitude], [cos(robotAngle)*velocityMagnitude]])
filterInit(initial_state, 0.512)

[xWaypoint, yWaypoint] = xwaypoints[wpNum], ywaypoints[wpNum]
if wpNum == 0:

[xlastWaypoint, ylastWaypoint]
else:

[xlastWaypoint, ylastWaypoint]

[ xWaypoint, yWaypoint]

xwaypoints[wpNum-1], ywaypoints[wpNum-1]
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while distanceToWaypoint(xp, yp, XWaypoint, yWaypoint) < r:
wpNum += 1
if wpNum >= len(waypoints):
break
[xWaypoint, yWaypoint] = xwaypoints[wpNum], ywaypoints[wpNum]
print("waypoint "+str(wpNum)+" reached")
oldErr = calcAngleError(xlastWaypoint, ylastWaypoint,
xWaypoint, yWaypoint, xp, yp, robotAngle, r)

def waypointFollower(ki, kp, kd, lookahead, receiver, remoteTransmitter,
filename):

This is the meat and potatoes of the robot.

It takes in a set of waypoints and follows them by issuing commands to the
onboard arduino.

It needs pid control constants, the look ahead distance, a threshold at which
to stop going forward and focus on turning,

a PWM speed (in microseconds) for the motors, a file name, and a radio
reciever and transmitter object.

global message

global wpNum

global latPath

global lonPath

global Speed

global xlastWaypoint

global ylastWaypoint

global xWaypoint

global yWaypoint

global initial_state

global aspectRatio

global xp

global yp

global heading

logDatalInit("traversedPath.csv")

logDataInit("errorOutput.csv")

logDataInit("PIDoutput.csv")

logDataInit("powerConsumption.csv")

outputlist = []

errplot = []
timeplot = []
pwrplot = []

trueTime = []
logTimer = perf_counter()
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waypointFollwerVariableInits(ki, kp, kd, lookahead)
try:

initializeWaypointFollower(filename, receiver, remoteTransmitter)
except Exception as e:

receiver.send_data_async(remoteTransmitter, str(e))

return

while True:
# Take GPS measurement and compass measurement
try:
[lattitude, longitude, x, y, robotAngle, sats, time, quality] =
get_filtered_state(
aspectRatio, receiver, remoteTransmitter)
if sats != 0:
latPath.append(lattitude[@])
lonPath.append(longitude[9])
heading.append(robotAngle)
Xp = X
yp =y

except Exception as e:
receiver.send_data_async(remoteTransmitter, "GPS issue")
print(e)
pass

# Read and select waypoint values
# If robot within threshold distance increment to next waypoint

while distanceToWaypoint(xp, yp, xWaypoint, yWaypoint) < r:
wpNum += 1
if wpNum >= len(waypoints): # Check for more waypoints
writeToArduino("S@,1500,0", steeringArduino)

break
[xWaypoint, yWaypoint] = xwaypoints[wpNum], ywaypoints[wpNum]
if wpNum ==

[xlastWaypoint, ylastWaypoint] = [xWaypoint, yWaypoint]
else:

xwaypoints[wpNum-1],

[xlastWaypoint, ylastWaypoint]
ywaypoints[wpNum-1]
print("waypoint "+str(wpNum)+" reached")
if wpNum >= len(waypoints): # Check for more waypoints
writeToArduino("S0,1500,0", steeringArduino)
break
try:
data = receiver.read_data_from(remoteTransmitter, 90.1)
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message = data.data.decode("utf8")
writeToArduino("Se,1500,0", steeringArduino)
break

except:
pass

# Calculate angle error
try:
err = calcAngleError(xlastWaypoint, ylastWaypoint,
xWaypoint, yWaypoint, xp, yp, robotAngle, r)
errplot.append(err)
timeplot.append(perf_counter())
if timeplot[-1] - logTimer > logFrequency:
pwrplot.append(write_read('P', sensorArduino))
trueTime.append(time)
logTimer = timeplot[-1]
# Run error through PID control for steering
output = computePID(-err, Speed)
outputlist.append(output)

# Output to steering motors
writeToArduino("S"+str(output)+","+str(Speed) +
","+str(0), steeringArduino)
except Exception as e:
receiver.send_data_async(remoteTransmitter, str(e))
print(e)
pass

# writing data to file
if len(latPath) > listSize:
data = []
i=20
while i < len(latPath):
data.append(str(latPath[i])+"," +
str(lonPath[i])+", "+str(heading[i]))

i+=1
try:
logDataUpdate(data, "traversedPath.csv")
latPath = []
lonPath = []
heading = []
except Exception as e:
print(str(e))

receiver.send_data_async(remoteTransmitter, str(e))
if len(timeplot) > listSize:
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datal = []
data2 = []
i=20

while i < len(timeplot):
datal.append(str(timeplot[i])+","+str(errplot[i]))
data2.append(str(timeplot[i])+", "+str(outputlist[i]))
i+4=1

try:
logDataUpdate(datal, "errorOutput.csv")
logDataUpdate(data2, "PIDoutput.csv")
timeplot = []
errplot = []
outputlist = []

except Exception as e:
print(str(e))
receiver.send _data_async(remoteTransmitter, str(e))

if len(pwrplot) > listSize:

data = []

i=290

while i < len(pwrplot):
data.append(str(trueTime[i])+","+str(pwrplot[i]))
i+4+=1

try:
logDataUpdate(data, "powerConsumption.csv")
trueTime = []
pwrplot = []

except Exception as e:
print(str(e))
receiver.send _data_async(remoteTransmitter, str(e))

# Check for obstacles

# Turn parallel to obstacle
# Log robot path

data = []

i=o90

while i < len(latPath):
data.append(str(latPath[i])+", "+str(lonPath[i])+", "+str(heading[i]))

i+=1
try:
logDataUpdate(data, "traversedPath.csv")
latPath = []
lonPath = []

79



heading = []

except Exception as e:
print(str(e))
receiver.send_data_async(remoteTransmitter, str(e))

datal = []
data2 = []
i=o20

while i < len(timeplot):
datal.append(str(timeplot[i])+","+str(errplot[i]))
data2.append(str(timeplot[i])+","+str(outputlist[i]))
i+=1

try:
logDataUpdate(datal, "errorOutput.csv")
logDataUpdate(data2, "PIDoutput.csv")
timeplot = []
errplot = []
outputlist = []

except Exception as e:
print(str(e))
receiver.send_data_async(remoteTransmitter, str(e))

data = []

i=o20

while i < len(pwrplot):
data.append(str(trueTime[i])+", "+str(pwrplot[i]))
i+=1

try:
logDataUpdate(data, "powerConsumption.csv")
trueTime = []
pwrplot = []

except Exception as e:
print(str(e))
receiver.send _data_async(remoteTransmitter, str(e))

User Radio Control

from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, XBee64BitAddress
import pynput
import serial.tools.list ports

# For windows, comment out the below try, except lines and replace radioPort with

a the name of the COM port that the radio is connected to.
print(list(*serial.tools.list_ports.grep('FT231X")))
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try:

radioPort = list(*serial.tools.list_ports.grep('FT231X"))[0]
except:

print("Radio not connected.")
transmitter = XBeeDevice(radioPort, 9600)

remoteReceiver = RemoteXBeeDevice(

transmitter, XBee64BitAddress.from_hex_string("0013A20040FCB774"))
transmitter.open()
inputName = False

def on_press(key):
global inputName
try:
print(key.char)
transmitter.send_data_async(remoteReceiver, key.char)
if key.char == '0':
print("manual stopped")
return False
elif key.char == '3': # fix this
print("manual paused, press enter once")
inputName = True
return False
elif key.char == '5":
try:
data = transmitter.read_data_from(remoteReceiver, 3)
message = data.data.decode("utf8")
print(message)
except:
print("No transmission™)
except AttributeError:
print('special key {0} pressed'.format(

key))

def beginManual():
listener = pynput.keyboard.Listener(on_press=on_press)
listener.start()

if _name__ == "_main__ ":
while True:
x = input()
message = ""
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if x == "ping":
if remoteReceiver.reachable:
print("Reciever online")
else:
print("Reciever offline")
transmitter.flush_queues()
transmitter.send_data_async(remoteReceiver, x)
try:
data = transmitter.read_data_from(remoteReceiver, 3)
message = data.data.decode("utf8")
print(message)
except:
print("Robot computer offline")

elif x == "gps reading":
transmitter.flush_queues()
transmitter.send_data_async(remoteReceiver, x)

try:
data = transmitter.read_data_from(remoteReceiver, 10)
message = data.data.decode("utf8")
print(message)
except:
print("No data recieved")
elif x == "power reading":

transmitter.flush_queues()
transmitter.send _data_async(remoteReceiver, x)
try:
data = transmitter.read_data_from(remoteReceiver, 3)
message = data.data.decode("utf8")
print(
"Power from batteries, power from solar, system input
voltage(W,W,V): " + message)
except:
print("No data recieved")

elif x == "compass reading":
transmitter.flush_queues()
transmitter.send_data_async(remoteReceiver, x)

try:
data = transmitter.read_data_from(remoteReceiver, 3)
message = data.data.decode("utf8")
print(message)

except:

print("No data recieved")
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elif x == "set speed":
transmitter.send_data_async(remoteReceiver, x)
try:
data = transmitter.read_data_from(remoteReceiver, 5)
message = data.data.decode("utf8")
print("\n"+message)
speed = input()
transmitter.send_data_async(remoteReceiver, speed)
except:
print("No response from robot")

elif x == "manual":

print("--------mm e \nManual mode activated,
avialable commands are: \n w,a,s,d - where a and d are for turning, and w and s
are forward and backward, respectively\n 1-lock forward or reverse\n 1 - for
dual Ackerman steering\n 2 - for synchronous steering\n 3 - to record a gps
coordinate path\n 4 - stop recording path and write to file\n 5 - read
transmission\n @ - stop manual mode\n--------------"-"--“~“~------------ \n")

transmitter.send_data_async(remoteReceiver, x)

beginManual()

elif inputName == True: # fix this

try:
data = transmitter.read_data_from(remoteReceiver, 3)
message = data.data.decode("utf8")
print("\n"+message)
name = input()
transmitter.send_data_async(remoteReceiver, name)

except:
print("Robot computer offline")

inputName = False

print("manual resumed")

beginManual()

elif x == "autonomous":
transmitter.send_data_async(remoteReceiver, x)
try:
data = transmitter.read_data_from(remoteReceiver, 5)
message = data.data.decode("utf8")
counter = int(message)
i=290
while i < counter:
data = transmitter.read_data_from(remoteReceiver, 5)
message = data.data.decode("utf8")
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print(message)
i+=1
name = input()
transmitter.send_data_async(remoteReceiver, name)
except:
print("No response from robot")
while input("Press enter to refresh, or @ then enter to exit.") !=

9
try:
transmitter.flush_queues()
data = transmitter.read_data_from(remoteReceiver, 3)
message = data.data.decode("utf8")
print(message)
except:
print("No error message recieved")
elif x == "STOP ROBOT":
transmitter.send _data_async(remoteReceiver, x)
elif x == "STOP CONTROLLER":
break
else:
print("-------mmm e \nUnrecognized command,

avialable commands are: \n ping\n set speed\n gps reading\n power
reading\n  compass reading\n manual\n  autonomous\n  STOP ROBOT\n  STOP
CONTROLLER\N === == = = = e e e e e e \n")

print("loop ended")
transmitter.close()

Kalman Filter

#tbased on: https://machinelearningspace.com/2d-object-tracking-using-kalman-
filter/

import numpy as np

class TwoDKalman():
def __init_(self, initial_state, dt, stdX, stdY, stdvX, stdvy):

self.dt = dt

self.state = initial state

self.F = np.array([[1, 9, self.dt, 9],
[0, 1, 9, self.dt],
[0, 0, 1, 0],
[e, 0, 0, 1]])
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self.H = np.array([[1, ©, 0, 0],
[0, 1, 0, @],
[0, 0, 1, 0],
[0, 6, @, 1]1])
self.Q = np.eye(4)
self.R = np.array([[stdX**2, o, 0, 9],
[0, stdY**2, 0, 0],
[0, 0, stdvx**2, @],
[0, 0, 0, stdVY**2]])
self.P = np.eye(self.F.shape[1])
self.I = np.eye(self.H.shape[1])
# pass

def update(self, measured_state):
S = np.dot(self.H, np.dot(self.P, self.H.T)) + self.R
kalman_gain = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))
self.state = self.state + np.dot(kalman_gain, (measured_state -
np.dot(self.H, self.state)))
# print(self.state.shape)
self.P = (self.I - (np.dot(kalman_gain,self.H)))*self.P
return self.state[0:2]
# pass
def predict(self):
self.state = np.dot(self.F, self.state)
self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q
# pass
def filter(self, measured_state, dt = None):
self.predict()
filtered_position = self.update(measured_state)
return filtered_position

Motor Arduino Main

// Motor and steering
#tdefine LWHEELMOTOR 2
#tdefine RWHEELMOTOR 3
#tdefine LRWHEELMOTOR 4
#tdefine RRWHEELMOTOR 5
// #define WHEELMOTOR 1
#tdefine LSTEPPIN 9
#tdefine LDIRPIN 10
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#define RSTEPPIN 11

t#tdefine RDIRPIN 12

t#tdefine LRSTEPPIN 13

#define LRDIRPIN 8

t#tdefine RRSTEPPIN 6

#define RRDIRPIN 7

//Power compass and communication
t#tdefine DECLINATION -70

#include <Servo.h>

#include <StepperMotorClosedLoop2.h>

// Motor and steering

int steps = 850;

float gearRatio = 4.25;

unsigned char steeringAddress = 0x36;

int setPoint = 9;

float turnAngle;

float roboWidth = 10.9;

float robolLength = 4.0;

float leftAngle;

float rightAngle;

float rightRearAngle;

float leftRearAngle;

Servo LWheel;

Servo RWheel;

Servo LRWheel;

Servo RRWheel;

Servo Wheel;

StepperMotorClosedLoop 1Motor(LSTEPPIN, LDIRPIN, 0, steps, gearRatio,
steeringAddress);

StepperMotorClosedLoop rMotor(RSTEPPIN, RDIRPIN, 1, steps, gearRatio,
steeringAddress);

StepperMotorClosedLoop 1lrMotor(LRSTEPPIN, LRDIRPIN, 2, steps, gearRatio,
steeringAddress);

StepperMotorClosedLoop rrMotor(RRSTEPPIN, RRDIRPIN, 3, steps, gearRatio,
steeringAddress);

String Comm = "";

char command;

String line = "";

String steeringString = "";
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String forwardString = 5
String setpointString = "";
int i;

int j;

float steeringSignal;

int forwardSignal;

int signalStore;

void setup() {
Serial.begin(115200); // serial initialization
delay(10);
Serial.println("Setting up drive motors . . .");
Serial.setTimeout(10);
pinMode (LWHEELMOTOR, OUTPUT);
pinMode (RWHEELMOTOR, OUTPUT);
pinMode (LRWHEELMOTOR, OUTPUT);
pinMode (RRWHEELMOTOR, OUTPUT);
// pinMode (WHEELMOTOR, OUTPUT);
// Wheel.attach(WHEELMOTOR);
// Wheel.writeMicroseconds(1500);
LWheel.attach(LWHEELMOTOR);
LWheel.writeMicroseconds(1500);
RWheel.attach(RWHEELMOTOR);
RWheel.writeMicroseconds(1500);
LRWheel.attach(LRWHEELMOTOR);
LRWheel.writeMicroseconds(1500);
RRWheel.attach(RRWHEELMOTOR);
RRWheel.writeMicroseconds(1500);
Serial.println(F("Connecting steering motors .
IMotor.init();
Serial.println(F("1lmotor running"));
delay(10);
rMotor.init();
Serial.println(F("rmotor running"));
delay(10);
1rMotor.init();
Serial.println(F("lrmotor running"));
delay(10);
rrMotor.init();
Serial.println(F("rrmotor running"));
delay(10);
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void loop() {
if (Serial.available()) {

command = "";
line = Serial.readString();
Serial.flush();
command = line[@];
// Serial.println(line);
switch (command) {

case 'S': //steering

steeringString = 5

forwardString = 5
setpointString = "";
j = line.length();
if (3 > 2) A
i=1;
while (i < j) {
if (line[i] == char(',")) {
break;
¥
steeringString += line[i];
i++;
}
i++;
while (i < j) {
if (line[i] == char(',")) {
break;
¥
forwardString += line[i];
i++;
}
i++;
while (i < j) {
setpointString += line[i];
i++;

}

steeringSignal = steeringString.toFloat();
forwardSignal = forwardString.toInt();
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forwardSignal = forwardSignal - 1500;
signalStore = forwardSignal;

setPoint = setpointString.toInt();
steering(steeringSignal, setPoint);

forwardSignal = signalStore *
IMotor.calculateStepsReversible(leftAngle);
LWheel.writeMicroseconds(forwardSignal + 1500);
forwardSignal = signalStore *
rMotor.calculateStepsReversible(rightAngle);
RWheel.writeMicroseconds (forwardSignal + 1500);
forwardSignal = signalStore *
lrMotor.calculateStepsReversible(leftRearAngle);
LRWheel.writeMicroseconds(forwardSignal + 1500);
forwardSignal = signalStore *
rrMotor.calculateStepsReversible(rightRearAngle);
RRWheel.writeMicroseconds(forwardSignal + 1500);
}

break;

default:
break;
}

}
1IMotor.turnToAngle();

// Serial.println(1lMotor.returnAngle());
rMotor.turnToAngle();
1rMotor.turnToAngle();
rrMotor.turnToAngle();

void steering(float controlSignal, int setpoint) {

float Offset = float(setpoint) * PI / 1000.0;

turnAngle = controlSignal;

leftAngle = atan(roboLength * sin(turnAngle) / (roboLength * cos(turnAngle) +
roboWidth * sin(turnAngle)));

rightAngle = atan(roboLength * sin(turnAngle) / (robolLength * cos(turnAngle) -
roboWidth * sin(turnAngle)));

if (turnAngle > 0 && rightAngle < 9) {
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rightAngle = (PI) + rightAngle;
}
if (turnAngle < 0 && leftAngle > 9) {
leftAngle = -(PI) + leftAngle;
}
leftRearAngle = leftAngle;
rightRearAngle = rightAngle;
leftAngle = -leftAngle;
rightAngle = -rightAngle;
leftAngle = leftAngle - Offset;
rightAngle = rightAngle - Offset;
leftRearAngle = leftRearAngle - Offset;
rightRearAngle = rightRearAngle - Offset;

Arduino Closed Loop Stepper Motor Library

#include "Arduino.h"
#include "StepperMotorClosedLoop2.h"
#include "Wire.h"
#include "SparkFun_I2C_Mux_Arduino_Library.h"
StepperMotorClosedLoop: :StepperMotorClosedLoop(int stepPin, int dirPin, int port,
int steps, float gearRatio, unsigned char address){
_stepPin = stepPin;
_dirPin = dirPin;
pinMode(_stepPin, OUTPUT);
pinMode(_dirPin, OUTPUT);
_steps = steps;

_port = port;
_currentCount = 9;
_desiredCount = 0;

_stepsToGo = 0;

_stepPin = stepPin;

_dirPin = dirPin;

_magnetStatus = 9; //value of the status register (MD, ML, MH)
_numberofTurns = 0@; //number of turns

_correctedAngle = 0; //tared angle - based on the startup value
_startAngle = 0; //starting angle

_totalAngle = 9; //total absolute angular displacement
_gearRatio = gearRatio;

_resolution = (_steps/_gearRatio)/4096.0;

_stepsNoGearbox = _steps/ gearRatio;

_address = address;

_pulseDelay = 100;
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void StepperMotorClosedLoop::init() {
Wire.begin(); //start i2C
Wire.setClock(10000);
_mux.begin();
_mux.setPort(_port);
_checkMagnetPresence(); //check the magnet (blocks until magnet is found)
_readRawAngle(); //make a reading so the degAngle gets updated
_startAngle = _degAngle; //update startAngle with degAngle - for taring
_time = millis();

void StepperMotorClosedLoop::calculateSteps(float desiredPos) {
_mux.setPort(_port);
_desiredCount = (desiredPos * _steps/2)/PI;
_desiredCount = _desiredCount % _steps;
_readRawAngle();
_correctAngle();
_checkQuadrant();
_currentCount = _totalAngle;
if (abs(_currentCount - _desiredCount) > _steps / 2) {
if (_currentCount > _desiredCount) {

_stepsToGo = _steps + _desiredCount;
} else {
_stepsToGo = _desiredCount - _steps;
¥
} else {
_stepsToGo = _desiredCount;

int StepperMotorClosedLoop::calculateStepsReversible(float desiredPos) {
_mux.setPort(_port);
int val = 1;
_desiredCount = (desiredPos * _steps/2)/PI;
_desiredCount = _desiredCount % _steps;
_readRawAngle();
_correctAngle();
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_checkQuadrant();
_currentCount = _totalAngle;

if (_desiredCount > steps/4) {

_stepsToGo = _desiredCount-_steps/2;
val = -1;

} else if (_desiredCount < -_steps/4) {
_stepsToGo = _desiredCount+_ steps/2;
val = -1;

} else {

_stepsToGo = _desiredCount;

return val;

void StepperMotorClosedLoop::turnToAngle() {

// if (millis()-_time > 200){

_mux.setPort(_port);

_readRawAngle();

_correctAngle();

_checkQuadrant();

// _time = millis();

/7 }

if (_totalAngle > _stepsToGo+_steps/200) {
digitalWrite(_dirPin, LOW);
digitalWrite(_stepPin, HIGH);
delayMicroseconds(_pulseDelay);
digitalWrite(_stepPin, LOW);
// delayMicroseconds(_pulseDelay);

}
else if (_totalAngle < _stepsToGo-_steps/200)

digitalWrite(_dirPin, HIGH);
digitalWrite(_stepPin, HIGH);
delayMicroseconds(_pulseDelay);
digitalWrite(_stepPin, LOW);

// delayMicroseconds(_pulseDelay);

/1 }
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void StepperMotorClosedLoop::calibrateZero() {
_mux.setPort(_port);
_currentCount = 9;
_desiredCount = 9;
_readRawAngle();
_startAngle = _degAngle;

void StepperMotorClosedLoop::_correctAngle() {
_correctedAngle = _degAngle;

void StepperMotorClosedLoop::_checkQuadrant() {
/*
//Quadrants:
4 | 1

//Quadrant 1
if(_correctedAngle >= 0 && _correctedAngle <= _stepsNoGearbox/4.0)

{

_quadrantNumber = 1;

}

//Quadrant 2
if(_correctedAngle > stepsNoGearbox/4.0 & & _correctedAngle <=
_stepsNoGearbox/2.0)

{

_quadrantNumber = 2;

}

//Quadrant 3
if(_correctedAngle > _stepsNoGearbox/2.0 && _correctedAngle <=
3.0* stepsNoGearbox/4.0)

{

_quadrantNumber = 3;

}

//Quadrant 4
if(_correctedAngle > 3.0* stepsNoGearbox/4.0 & & _correctedAngle <
_stepsNoGearbox)

{
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_quadrantNumber = 4;

}
//Serial.print("Quadrant: ");

//Serial.println(quadrantNumber); //print our position "quadrant-wise"

if(_quadrantNumber != _previousquadrantNumber) //if we changed quadrant
{
if(_quadrantNumber == 1 && _previousquadrantNumber == 4)
{
_numberofTurns++; // 4 --> 1 transition: CW rotation
}
if(_quadrantNumber == 4 && previousquadrantNumber == 1)
{
_numberofTurns--; // 1 --> 4 transition: CCW rotation
}

//this could be done between every quadrants so one can count every 1/4th of
transition

_previousquadrantNumber = _quadrantNumber; //update to the current quadrant

_totalAngle = (_numberofTurns*_ stepsNoGearbox + _correctedAngle); //number of
turns (+/-) plus the actual angle within the ©-360 range

}

void StepperMotorClosedLoop::_checkMagnetPresence() {
//This function runs in the setup() and it locks the MCU until the magnet
is not positioned properly

while((_magnetStatus & 32) != 32) //while the magnet is not adjusted to the
proper distance - 32: MD =1
{

_magnetStatus = 0; //reset reading
Wire.beginTransmission(_address); //connect to the sensor
Wire.write(oxoB); //figure 21 - register map: Status: MD ML MH
Wire.endTransmission(); //end transmission

Wire.requestFrom(_address, 1); //request from the sensor

while(Wire.available() == 0); //wait until it becomes available
_magnetStatus = Wire.read(); //Reading the data after the request

//Serial.print("Magnet status: ");
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//Serial.println(magnetStatus, BIN); //print it in binary so you can compare
it to the table (fig 21)

}

//Status register output: © © MD ML MH © © ©
//MH: Too strong magnet - 100111 - DEC: 39
//ML: Too weak magnet - 10111 - DEC: 23
//MD: OK magnet - 110111 - DEC: 55

//Serial.println("Magnet found!");
//delay(1000);

void StepperMotorClosedLoop::_readRawAngle() {
//7:0 - bits
Wire.beginTransmission(_address); //connect to the sensor
Wire.write(oxoD); //figure 21 - register map: Raw angle (7:0)
Wire.endTransmission(); //end transmission
Wire.requestFrom(_address, 1); //request from the sensor

while(Wire.available() == 0); //wait until it becomes available
_lowbyte = Wire.read(); //Reading the data after the request

//11:8 - 4 bits

Wire.beginTransmission(_address);

Wire.write(ox0C); //figure 21 - register map: Raw angle (11:8)
Wire.endTransmission();

Wire.requestFrom(_address, 1);

while(Wire.available() == 0);
_highbyte = Wire.read();

//4 bits have to be shifted to its proper place as we want to build a 12-bit
number

_highbyte = _highbyte << 8; //shifting to left

//What is happening here is the following: The variable is being shifted by 8
bits to the left:

//Initial value: 00000000 |00001111 (word = 16 bits or 2 bytes)

//Left shifting by eight bits: 00001111|00000000 so, the high byte is filled in

//Finally, we combine (bitwise OR) the two numbers:
//High: 00001111|00000000
//Low: 00000000 00001111

/] e
//H|L: ©00001111|00001111
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_rawAngle = _highbyte | _lowbyte; //int is 16 bits (as well as the word)

//We need to calculate the angle:

//12 bit -> 4096 different levels: 360° is divided into 4096 equal parts:
//360/4096 = 0.087890625

//Multiply the output of the encoder with ©.087890625

_degAngle = _rawAngle * _resolution;

//Serial.print("Deg angle: ");
//Serial.println(degAngle, 2); //absolute position of the encoder within the ©-
360 circle

}

int StepperMotorClosedLoop: :returnAngle() {
return _totalAngle;

}

int StepperMotorClosedLoop: :returnCommand() {
return _stepsToGo;

}

Sensor Arduino

#include <Compassl.h>

#include <PowerSensors.h>

#define DECLINATION -70

unsigned char compassAddress = 0x30;

PowerSensors sensors;

Compassl compass(compassAddress);

const int currentSensorPin = A2; // define sensor pin
const int voltageSensorPin = Al;

const int currentSensorPin2 = A@; // define sensor pin

String Comm = "";
char command;
String line = "";

void setup() {
Serial.begin(115200); // serial initialization
delay(10);
compass.CMPS2_init(); // initialize the compass
delay(10);
sensors.init();
delay(100);
Serial.println("1");
Serial.setTimeout(2);
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void loop() {

if (Serial.available()) {
line = Serial.readString();
command = line[@];
switch (command) {

case 'C': //compass
Comm = String(compass.CMPS2_getHeading());
Serial.println(Comm);

// delay(100);

break;

case 'P': //power
sensors.CurrentValue = sensors.readDCCurrent(currentSensorPin);
sensors.CurrentValue2 = sensors.readDCCurrent(currentSensorPin2);
sensors.VoltValue = analogRead(voltageSensorPin);
sensors.Voltage = (sensors.VoltValue - 512) * ©.073170;
sensors.Power = sensors.Voltage * sensors.CurrentValue; // Power from

the batteries

sensors.
sensors.

Power used from
Comm =

Power2 = 36 * sensors.CurrentValue2; // Power from solar
PowerNet = sensors.Power2 - sensors.Power; // Solar Power minus
Batteries

String(sensors.Power) + "," + String(sensors.Power2) + "," +

String(sensors.Voltage);
Serial.println(Comm);

break;

default:
break;

command =

nn o,
)

97



Appendix B - Datasheets, Part Specifications and Features

Accu-Coder Encoder from Encoder Products

Part #: 15s-19m3-0500n5gpp-f00

MODEL 155 SPECIFICATIONS
Electrical
Input Voltage S VDC +10% Foed Voktage

4,75 to 28 VOC max for temperatures
upto 85°C

4.75 to 24 VOC for tempesatures
between 85" to 100° C

140 mA max $55 mA typical for most
configurations) with no cotpot load
Output Foemat . Incremental -~ Two square waves in
gquadeature with channd A leading B foe
dockwise shaft rotation, 23 viewed from
the encoder mounting face.
See Wavefoem Diagrams.
Open Colllector ~ 20 mA max per chanined
Push-Pull - 20 mA max per channed
Pull-Up ~ Open Collector with 2.2K ohm
internal sesistor, 20 mA max per channel
Line Driver ~ 20 mA max per channed
(Meets RS 422 at SVDC supply |
Index e Once pes revolution.

1 to 400 (PR Ungated

401 to 10,000 (PR Gated to cutput A

See Wavefoem Diagrams.
Max F Standard Frequency P
200 khx for CPR 1 to 2580
500 kiz for CPR 2541 1o 5000
1 MKz for CPR 5001 to 10,000

Input Cusrent

Cutput Types

is 300 kb for CPR 2000, 2048, 2600, and
2540.

Electrical Protection.._Reverse voltage and output short ciroait

protected. NOTE: Sustained reverse voltage

may result in permanent damage.

Tested to BS ENG1000-6-2;

BS ENSC081-2; BS ENG10004-2;

BS ENG1000-4-3; BS ENG1000-4-5; 85

ENSOOS11

Quadaature 675" dlectrical or better is typical,

Edge S 54" electrical at >
$e°C

Waveform Symmetry.._ 180" (£18°) slectrical (single channel
encoder)

Noise immursty

Within 0.017* mechanical ar 1 arc-minute
from true pesition {for CPR 189).

Up ta 12 pole. Comtact Customer Service for
availsbility.

Comm. Accuracy .. 1" mechanical

Accusacy.....

Commutation

Max Shaft Speed. B000 RPM. Higher speeds may be

achievable, contact Customer Service.
Stainless Steel

5 I max. Rated Josd of 2 to 3 b for bearing
lifer of 1.2 x 1070 revolutions

5 max. Reted kisd of 2 to 3 b for bearing
e of 1.2 % 100 revedestions

1PS0- 0.05 oz-in
P64~ 0.4 az-in

Moenent of Inertia .. 6.7 x 10" orinsec? {42 wn:mzl
Welght——____Jaztypical

Shaft Matenal
Radial Shaft Load ...

Axial Shaft Load .

Starting Torque .

Environmental
StorageTermp 2810 85"C

7 SE% RN densing
Vibeation ... 10995810500 Hz
Shodk. —...... 805 ® 11 ms dueation

Sedfing . ___IP5S0 stancarct IP64 avadable

MODEL 155 STANDARD SERVO MOUNT M1

CABLE LENGTH
18% [457] STANDARD

M3 0.18 [4.57) DEEP

X 120" #1.102 [28.00] B.C.

P

-— 0.312 [7.92]

i: @
.

0.100 [2.54]

0.020 [0.51)

#0.2498:488 [6.34:4H)
#0.78704188 0.158 [4.01] -
[#19.990:25% 0.78 [19.8]— [—

MODEL 155 SERVO MOUNT M2 & M9*
*M9 mount includes 6 0.750" boss

CABLELENGTH 0079 (201}
18" [457] STANDARD 060[152) =i

440 UNC-2B 0.25 [6.35) DEEP
12001210 Bo73) BC

1375 S &
13492 251

202498 TEn }

1634 32
006211571 I‘_
141.28) J 11389 &7 e,
thuns 0931236

MODEL 155 SERVO MOUNT M5

CABLE LENGTH
187 [457]
STANDARD

1437 48 1.04126.4)

1036350 71 132 [3.36] ==
13155 desem 040 [1.02] =
33312 e 50012.8]

05745 mme I
1922212 se=1) _L 15

002458 HEF j
(96345 57

093 [236] -—I e

OTE[1.98] =] |=—

440 UNC-2B 300 [7.62] DEEP
4AX @ 90°@1.100[27.94] EC.

MODEL 155 SERVO MOUNT M6

CABLE LENGTH
18" [457] STANDARD 05875 3¢

(17482 &) — - 0.60 [15.2]

I1

1.500 |

1 s
- (38
o2e08 2 |

[634 3 |

0.120 {304} -
082 [208] —e1 |—

M3X05 -6H 0.187 DEEP
4x@1.0008C.

All dimensions ore in inches with a tolerance of +0.005" or +0.01" unless otherwise specified. Metric dimensions
are given in brackets [mm].
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AM Equipment 226 Worm Gear Motor

63.45
[2.498)
4592
[1.808]
264.00
[2.520]
BHC
-~ (3x) MBX1
v N ;16 o \/
B A —"|1
o
APPLY NYE342 OIL
TO SHAFT BEFORE
ASSEMBLY
(7.024]
|
R |
C
f
T A 2500___?9‘7*
| sg7er ( ©11.00 1233 [0984] | 21.35
[3.929] | \_ [0.433] [0.485] [0.841)
NOTE: ;
1. GREASE WORM WHEEL TEETH AND FILL GEAR 8 !
BOX CAVITY WITH 30 GRAMS OF NYE380 775
2. INSURE MOTOR HAS SHAFT SEAL TO STOP [0.305)
A| MIGRATION OF GREASE INTO BRUSH CARD DETAIL A
Project Designer [Check  |Check  |Approved [Material Specification Finish Specification
NIA ™ /Z N/A N/A
2 oo R B
wo) AL INLE i ECIFIED Titie/Name
& TOLERANGESIN  INGHES MU _# AM EQUIPMENT | ™Motor, ind, 26Nm, 12V, LH, 11mm Dia,
‘é’% ARE FOR |2 PLACE DEC. = 20.01 2013 J Jofforson, Oregon 97352 24 3mm, DFS, PM Gear
g: INCOMING |3 PLACE DEC. f 10.005 20.08 L www.amequipment.com
£/ INSPECTION [ARiACEDEC: w0005 NA. Fy THIS DRAWING IS THE SOLE PROPERTY OF |1 211 NUMDET ] s
Z7| CHECKING DO NOT SCALE DRAWING \& T . 226-3001 7 1 OF :2
PROCESSES | WORK TO GIVEN DIMENSIONS PERMISSION OF AM EQUIPMENT 812412008
2 i 1
2 W 1
I A
CLOCKWISE MOTOR SHAFT ROTATION
DATA POINT DATATYPE | VALUE RANGE
CURRENT (A) 450r<
NOLoAD SPEED (pm) | 959-785
CURRENT (A) 39.9-346
186N SPEED (pm) | 39.7-329
POWER (W) 836-684
8 PEAKPOWER I 5RAUE (Nm) | 19.2-157
POWER (W) | 44.5 NOMINAL
NOMINAL SPEED (rpm) | 70.2 NOMINAL
(PEAK EFFICIENCY)| CURRENT (A) 12.8 NOMINAL
TORQUE (Nm) | 6.2 NOMINAL
COUNTER-CLOCKWISE MOTOR SHAFT ROTATION
DATA POINT DATATYPE | VALUE RANGE
CURRENT (A) 450r<
~
bofaan SPEED (pm) | 98.1-803 RED YELLOW
E— CURRENT (A) 409-348
izsf,;:rpm) ik Sl TERMINAL HOUSING 317-1057 (KET# MG 620042)
Bl | peak POWER W) 84.4-60.1 TERMINAL 317-1054 (KET# ST 740254-1)
TORQUE (Nm) | 18.0-148 MATE HOUSING 317-1056 (KET# MG 610043)
POWER (W) | 44 1 NOMINAL TERMINAL 317-1055 (KET# ST 730268-1)
NOMINAL SPEED (rpm) | 74.8 NOMINAL
(PEAK EFFICIENCY)[ CURRENT (A) | 11.0 NOMINAL
TORQUE (Nm) | 5.8 NOMINAL 2
BACKDRIVE 60Nm MINIMUM CW & CCW
N P
RED (+), YELLOW (-) = CW
YELLOW (+), RED (-) = CCW "PREFERRED ROTATION*
A
[Project Designer che%" Check (Approyed [Material Specification Finish Specification
NIA /:ig N/A N/A
z 4/4/2003 | 4/472003 | 4/4/2003 | 4/4/2003 N
1%) UNLESS OTHERWISE SPECIFIED ame
g A froltumcesi sy | 7 AM EQUIPMENT | ™Motor, Ind, 26Nm, 12V, LH, 11mm Dia,
gg ARE FOR (2 PLACE DEC. = +0.01 013 <, Jefferson, Oregon 97352 24.3mm, DFS, PM Gear
22| INCOMING |3 PLACE DEC. = 40,008 +008 | www.amequipment.com
§3|INSPECTION [AREICEOERT  #oms  MA Iy THIS DRAWSG 18 THE SOLE pROPERTY OF | 211 NUMDE! Beviton Shest
27| CHECKING DO NOT SCALE DRAWING | RS WAY WITHOUT THE EXPRESS WRITTEN 226-3001 7 |2 OF 2
PROCESSES | WORK TO GIVEN DIMENSIONS PERMISSION OF AM EQUIPMENT 812412009
2 N 1
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AS 5600 Magnetic Encoder

Features

Contactless angle measurement

Simple user-programmable start and stop positions over the 12C interface
Maximum angle programmable from 18" up to 360°

12-bit DAC output resolution

Analog output ratiometric to VDD or PWM-encoded digital output
Automatic entry into low power mode

Product parameters

Resolution [bit] 12
Interface 12C
Output Analog out / PWM / 12C

Max. Speed [rpm]

Overvoltage Protection No

Redundant No

Supply Voltage [V] 3-3.6 and 4.5-5.5
Temperature Range ['C] -40 to +125
Package SOIC-8

Automotive Qualified

Longevity Program

100

January 2031



Dakota Lithium 24V 50Ah Battery

SPECIFICATIONS

11 YEAR WARRANTY
World beating, best in class, eleven year
manufacturer defect warranty.

STORAGE CAPACITY

525 ampere hours (Ah). Dakota Lithium
batteries provide consistent power for all
525 amp hours. DL LiFePO4 batteries have
a flat voltage curve, which means they
have a steady power output as the battery
discharges. The power oufput will not
dramatically drop like similar sized SLA
batteries. You get all the juice down fo the
last drop.

VOLTAGE

24V rated (26.6V resting voltage) Dakota
Lithium 24V batteries can be used in series
for up to 48V systems.

EMERGY
1394 Watts (Wh)

TERMINALS
M8 bolt terminals F12 (posts that screw in).

Easy to adapt to different connection
needs. (Max torque 15 fi. Ibs.)

SIZE

1299 in (330mm) L x 477 in (172mm) W x
866 in (220mm) H

WEIGHT
31.2 Ibs (14 5Kg). That's 60% lighter than a
SLA battery.

LIFECYCLES (BATTERY LIFESPAN)

Up to 80% capacity for 3,000 cycles in
recommended conditions. The typical SLA
has 500 cycles. Dakota Lithium batteries
last so long that the price per use is a
fraction of tfraditional batteries.

OPERATIMG TEMPERATURE

ldeal for rugged & harsh environments.
Much better than SLA or other lithium's.
-20'F min, +120'F max optimal operating
temps (battery performs well down to
-20'F). Avoid charging below 32'F.

DISCHARGE

52.5 A max confinuous, 100 A max pulse 10
second pulse. The flat discharge voltage
curve provides a 75% bigger capacity than
a comparable 50Ah SLA battery.

CHARGE

25 A (05C) max, 30 V max. Included is a
LiFePO4 compatible charger.

INCLUDES ACTIVE BEMS PROTECTION
Contains a circuit that handles cell
balancing, low voltage cutoff, high voltage
cuteff, short circuit protection and high
temperature protection for increased
performance and longer life.

CERTIFICATIONS

All batteries are UN 38 certified. Dakota
Lithium's cells are UL1642 certified and
have been tested per IEC62133 standards.
Meets all US & International regulations for
air, ground, train, & marine transport.

150 9001:2015

CHARGER INCLUDED
Single 24V 5A LiFePO4 charger included.
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Geophex GEM-2

GEM-2 Specifications

Operating Mode:
Number of frequencies:

Bandwidth:

Sampling rate:

Ski dimensions:

Coil configuration:
Maximum TX moment:
Rechargeable battery:

Outputs:

Communications:

Standard Gem-2 Includes:

Optional extras:

Frequency Domain
Standard: programmable up to 10 simultaneous frequencies

25 Hz to 96 kHz
30 Hz or 25 Hz
185cm. x 12.5 cm.
coplanar

3 Amp-metersZ at 330 Hz
12vDC

Inphase and guadrature response in ppm
Powerline amplitude

BlueTooth or RS232 for computer
Powered serial for GPS

Ski with electronics console
Data logger, set up and tested
carrying strap

exira battery

battery charger

calibration ferrite

soft case

calibration & setup

software CD

guickstart guide

Extra battery

Extra battery charger

Extra calibration ferrite

Maodified Garmin GPS for powered operation from the GEM2
Upgrade to aluminum hard shell carry case

One-day training at Geophex location
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HQST 100W Solar Panel

HQST - 100DB

100W Mono Bendable Solar Panel

B Top Ranked PTC Rating
B High Module Conversion Efficiency
B Fast and Inexpensive Mounting

B Maximizes System output by reducing
mismatch loss

M 100% EL testing on all HQST Solar Modules,
Guaranteed no Hot Spots

Electrical Characteristics
Maximum Power at STC (Pmax) 100 W Module Diagram

Optimum Operating Voltage (Vmp) 17T.7V
Optimum Operating Current {Imp) 570 A I— m|
Open Circuit Voltage (Voc) 2.7V i g X
Short Circuit Current (Isc) 610 A
Maximum System Voltage 600 VDG 33“:3
Maximum Series Fuse Rating 1M0A
STC: Imadiance 1000W/T, Temperalure 25°C, AM =1 g T

I 1 )
Mechanical Properties
Solar Cell Monocrystalline (125 x 125 mm)
# of Cells 32 (8 x 4 mm) M ivimg
Dimensions 1060 % 540 x 3 mm (41.7 x 21.3 x 0.12 in)

Weight 2kg. (44 bs.) V-Curve

Junction Box IPE5 Rated

WO T- 0D Chareomeaics Yerses Volage
Output Cables 14 AWG
Connectors MC4 Connectors
Fire Rating Class C
Temperature Characteristics
Operating Module Temperature -40°C to +80°C o »
MNominal Operating Cell B ! It
Temperature (NOCT) 4112'C
Temperature Coefficient of Pmax -0.38%/°C
Temperature Coefficient of Voc -0.28%/°C :
Temperature Coefficient of Isc 0.06%/°C

€ A & U=
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Latte Panda Alpha

Intel® Core™ M3-8100Y, Dual-Core, 1.1-3.4GHz
Intel® UHD Graphics 615

8GB Memory

Dual-Band 2.5GHz/5GHz Wi-Fi & Bluetooth 4.2 & Gigabit Ethernet
USB3.0 x3, USB Type-Cx1

2 x M.2 PCle (Support B&M Key and A&E Key)

Support Windows 10 & & Linux OS

Integrated Arduino Coprocessor ATMEL 32U4

Powered by PD adapter / 12V DC / 7.4V battery

aAN©  ONS  OND  ONS  ONS NS
a

LATTEPANDA v1
PINOUT DIAGRAM

O]
e

eeessecses

Version V1.2 revi 2017/07/28
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Nema 23 Stepper Motor

avs1 4BREF TEREF

mans

CONNECTION BIPOLAR
SPECIFICATION TYPE OF CONNECTION
(EXTERN) MOTOR
AMPS/PHASE 2.80
RESISTANCE/PHASE(Ohms)@25°C 1.13£10% PIN NO BIPOLAR LEADS WINDING
INDUCTANCE/PHASE{mH)@1KHz 5.40£20%
1 —
HOLDING TORQUE wio GEARBOX(Nm){lb-n] 1.89[16.73] A BLK A
GEAR RATIO 4 2 AL — GRN A i
EFFICIENCY 90.00% 3 5 — RED B j
STEP ANGLE w/o GEARBOX(") 1.80 4 By — BLU Bl
BACKLASH@NO-LOAD =15°
MAX, PERMISSIBLE TORQUE(N:
i QUE(Nm) 20.00 FULL STEP 2 PHASE-Ex. , BLK
MOMENT PERMISSIBLE TORQUE(Nm) 30.00 WHEN FACING MOUNTING END (X)
SHAFT MAXIMUM AXIAL LOAD(N) 100,00 STEA A | B A ] B cow
SHAFT MAXIMUM RADIAL LOAD(N) 200.00 1 + + - - RN
WEIGHT(Kg){lb] — 2 | - |+ + |- l T
TEMPERATURE RISE:MAX.80°C (MOTOR STANDSTILLIFOR 2PHASE ENERGIZED ! SO I N R ow
AMBIENT TEMPERATURE -10°C~50°C[14°F~122°F] 4 * - -1t RED BLU

INSULATION CLASS B 130°C[266°F]

STEPPSRONLINE = | | S eRMOTOR
= —] 1.5
= T e o 23HS30-2804S-PG4
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PMod CMPS-2

ME +16 Gauss, Ultra Small, Low
Noise 3-axis Magnetic Sensor

MMC3416xPJ

FEATURES
+ Fully integrated 3-axis magnetic sensor and
electronic circuits requiring fewer external
components
. E-up-arinr Dynamic Range and Accuracy:
#16 G FSR with 16/14 bits operation
¥ 0.5mGI2 mG per LSB resolution in 16/14
bits operation moda
¥ 1.5mG total RMS noise
¥ Enables heading accuracy of 1%
» Max output data rate of B0D Hz {12 bits mode)
s Ultra Small Low profile package
1.6x1.6x0.6 mm
+ SET/RESET function

+ Allows for elimination of temperature
variation induced offset error (Null fisld
output)

+  Clears the sensors of residual
magnetization resulting from strong
external fields

On-chip sensitivity compensation

Low power consumption (140 pA @ T Hz )

1 pA (max) power down function

I'C Slave, FAST (400 KHz) mode

1.62 V~3.6 V wide power supply operation

supported, 1.8 V /0 compatibility.

» RoHS compliant

APPLICATIONS
+ Electronic Compass & GPS Navigation
+ Position Sensing

DESCRIPTION

Tha MMC3416xPJ is a complete 3-axis magnetic
SEnsor with on-chip signal processing and integrated
FC bus. The device can be connected direclly o a
microprocessor, aliminaling the need for AD
converlars or timing rescurces. I can measure
magnelic fields within the full scale range of +16
Gauss (G), with 0.5 mG&/2 mG per LSB resolution for
16/14 bits operation mode and 1.5 mG lotal RMS

FUNCTIONAL BLOCK DIAGRAM

noise lavel, enabling haading accuracy of 17 in
elactronic compass applications. Contact MEMSIC for
access to advanced calibration and till-compensation
algarithms.

Anintegrated SET/RESET funclion provides for tha
elimination of ermor due to Null Field oulpuf change
with lemperature. In addition it clears the sensors of
any residual magnetic polarization resulting from
exposure lo strong exlernal magnets. The
SET/RESET function can be parformed for each
measuremeant or perindically as the specific application
requires.

The MMC3416xPJ is packaged in an ultra small low
profile BGA package (1.6 x 1.6 x 0.6 mm, ) and with an
operating temperature range from -40 °C to +85 *C.

The MMC3416xP] provides an I digital output with
400 KHz, fast mode operalion.

Iridormation fumished by MEMSIC i bebeved o be accurabe ard neliabbe
Howeronr, mo responsiblity s assumed by MEMEIC for s use. or for any
infringements of palents o oiher righis of Tird partes which may resull from
Is use. Mo loense s granied by implcation o othenstse under any paten or
patent rights of MEMSIC.

MEMSIC MMC3416xP.) Rev C

Page 1o0f13

DOMEMEIC, Int.
One Technalogy Drive, Suite 328, Andover, MADN B10, USA
Tel: +1 8T8 T8 G800 Fax: +1 8T8 T38 0186

wWww. memsic.com
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SPECIFICATIONS (Measwements & 25 °C, unless otherwise noted; Vps = Vo= 1.8 V unless otherwise specified)

Parameter Conditions Min Typ Max Units
[Fiald Range (Each Axis) Tolal applied field 16 G
Vo 1521 1.8 EX W
Supply Voltage Voo G interface) 162" 1.8 D) v
[Supply Voltage Rise Time 50 mS
EW[1:0]=00, 18 bils mode 140 [T
%ﬁﬂ;&lﬁf&mmm BW[1:0]=M, 16 bits mode 70 iy
! BW[1:0]=10, 14 bils mode a5 [T
EW[1:0]=11, 12 bils mode 18 [T
Powear Down Currant 1.0 WA
[Dpearating Tempearatura -40 BS *C
[Storage Temparature -55 125 -
LLinearity Error FS=t16 G
|Best ﬁtlystra ight line) Hazeing=410 G 025 HFs
Hysleresis J sweaps across 168 G 01 %WF5S
[Fepealability Error 3 sweaps across 16 G 01 WF5
lalignment Emar +1.0 +3.0 dagreas
Transverse Sensitivity +2.0 +5.0 Yo
BW[1:0)=00, 18 bits mode 1.5 miE
oo S Noio B TE bl o 28
BW[1:0)=11, 12 bits mode 6.0 mG
Dulpul resalution 16/14/12 bits
EW[1:0)=00, 18 bits mode 125 Hz
Plax Output data rale BWI[1:0]=01, 18 bils mode 250 Hz
EW[1:0)=10, 14 bits mode 450 Hz
EW[1:0)=11, 12 bits mode BOOD Hz
Heading accuracy? +1.0 dagraas
+16 G -10 +10 %
[Sensitivity 16 bits mode 2048 countsiG
14 bits mode 512 counts/G
12 bits mode 128 countsiG
i -40-85"C
[Bensitivity Change Over Delta fram 25°C 3 %
Tamperalure B G
0.1 G
’ 16 bits mode 32768 counts
ull Fleld Qulput 14 bits mode 192 counts
12 bits mode 2048 counts
Iull Field Duipu_l Change Owver -40~85 *C ) 5 mG
[Temperalure using SETIRESET Delta from 25 *C
Disturbing Field* 25 G
Plaximum Exposed Fiald 10000 G
ISET/RESET Repealability 3 miE

1462V Is e minimum cperabon wollagE, OF Wi, | Wi Should not be lower than 162 V.
: Supply cumeni s proporicnal to how many measunements peformed per second, for example, & one meeasursment per secord, the power corsumpson will ba 140

b T=20 pi

3 MEMSIC product enables users 1o wikse heading acouracy in be 1.0 degres ypical when wsing MEMSIC's propnetary softeare of algarm
* This is the magritude of extermal fekd that can be tolerated witout changing the sensor characlnistics. |1 the dsturbing Neld i enseded, 3 SETRESET opertion ks

posyned 10 FESIONE DI SensOr opention.

5 Ferfoms SET/RESET akomalsly. SET repeatabdity is delined 2s the dfiererce in measurement between multiple SET evenis. RESET repeatabiity is defined simiarly.

MEMSIC MMC34 16xFJ Rev C

Page 2of 13
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Roboclaw Solo 60A

Electrical Specifications

Characteristic Model Min Typ Max Rating
Main Battery all & 34 VDC
Logic Battery All & 12 34 VDC
Maximum External Current Draw (BEC) All 1 A
Motor Current Per Channel Solo 304 30 LU A
Solo 60A 60 10042
On Resistance Saolo 304 4.3 mOhm
Solo 60A 1.9
Logic Circuit Current Draw All 30mA mA
Input Impedance All 100 Q
Input All 0 5 VDC
Input Low All -0.3 0.8 VDC
Input High all 2 5 VDC
I/O Output Voltage All 0 33 VDC
Digital and Analog Input Voltage All 5 VDC
Analog Useful Range All ] 2 VDC
Analog Resolution All 1 my
Pulse Width All 1 2 mS
Encoder Counters all 32 Bits
Encoder Frequency All 9,800,000 PPS
R5232 Baud Rate (Note 3) All 460,800 Bits/s
RS5232 Time Out {(Note 3) All 10 ms
Temperature Range All -40 40 100 °C
Temperature Protection Range All 85 100 2C
Humidity Range All 100 (4) Ya

Notes:

1

3.
4.

. Peak cumrent is automatically reduced to the typical current limit as temperature approaches 85°C.
2.

Current is imited by maximum temperature. Starting at 85°C, the current limit is reduced on a slope with a maximum
temperature of 100%C, which will reduce the current to 0 amps. Current ratings are basad on ambient temperature of 25°C.

R5232 format is BBit, No Parity and 1 Stop bit.

Condensing humidity will damage the motor controller.
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Sparkfun 12C Mux Board

1 Features

* 1-to-8 Bidirectional Translating Switches

+ I°C Bus and SMBus Compatible

+  Active-Low Reset Input

* Three Address Pins, Allowing up to Eight
TCA9548A Devices on the I°C Bus

+ Channel Selection Through an I°C Bus, In Any
Combination

«  Power Up With All Switch Channels Deselected

«  Low Rpoy Switches

+  Allows Voltage-Level Translation Between 1.8-V,
2.5V, 3.3-V, and 5-V Buses

* Mo Glitch on Power Up

= Supports Hot Insertion

+  Low Standby Current

*  Operating Power-Supply Yoltage Range of
165Vio55V

= 5-V Tolerant Inputs

* 0-to 400-kHz Clock Frequency

* Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class Il

« ESD Protection Exceeds JESD 22
—  2000-V Human-Body Model (A114-A)
— 200-V Machine Model (A115-A)
— 1000-V Charged-Device Model (C101)

Sparkfun RedBoard

ATmega328 microcontroller with Optiboot (UNO) Bootloader
CH340C Serial-USB Converter

AP2112 Voltage Regulator

A4/A5 Jumpers

3.3V to 5V Voltage Level Jumper

Input voltage - 7-15V

1 Qwiic Connector

20 Digital 1/0 Pins (6 PWM Outputs and 6 Analog Inputs)
ISP Header

32k Flash Memory

16MHz Clock Speed

All SMD Construction

R3 Shield Compatible

Improved Reset Button
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TB6600 Microstep Driver

TOSHIBA TB6600HG

TOSHIBA BICD Integrated Circuit  Silicon Monolithic

PWM Chopper-Type bipolar
Stepping Motor Driver IC

The TB&GDOHG is a PWM chopper-type single-chip bipolar sinusoidal

micro-step stepping motor driver. TBEGOOHG

Forward and reverse rotation control is awvailable with 2-phase,

1-2-phase, W1-2-phase, 2W1-2-phase, and 4W1-2-phase excitation

modes.

2-phase bipolar-type stepping motor can be driven by only clock signal

with low vibration and high efficiency. : |
SR

Features

+  Single-chip bipolar sinusoidal miero-step stepping motor driver HZIP25-P-1.00F

 Ron (upper + lower) = 0.4 €2 (typ.) Weight:

+ Forward and reverse rotation eontrol available HZIP25-P-1.00F: 7.7g (typ.)

+ Selectable phase drive (1/1, 1/2, 1/4, 1/8, and 1/16 step)

o (Output withstand voltage: Vec = 50V

¢  Output current: IOUT = 5.0 A (absolute maximum ratings, peak)
IouT = 4.5 A (operating range, maximal value)

s  Packages: HZIP25-P-1.00F

¢ Built-in input pull-down resistance: 100 k€ (tvp), (only T terminal: 70k Q(typ.))

+ Output monitor pins (ALERT): Maximum of IAT FRT = 1 mA

o Output monitor pins (MO): Maximum of IMO = 1 mA

+  Equipped with reset and enable pins

+ Stand by function

s Single power supply

¢ Built-in thermal shutdown (TSDY cireuit

+ Built-in under voltage lock out (UVLO) cireuit

s  Built-in over-current detection (ISD) circuit
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Topcon B-125

£ TOPCON

B125 GNSS OEM Board

Channels
Signals Tracked

SBAS

RTK Initialzation

Hot / Cold Start

RS232
LVTTL UART
USB 2.0 (client)

Ethemeat

| 226 Universal Tracking Channels™
GPS:L1,12,12C, L5

GLONASS: L1, 12,18

Galileo: E1, ESa, ESD, ESAItBOC
BelDou: B1, B2

QZSS: 11,12, L1C, L1-8AIF, L2C, L5
SBAS: L1

L-Band

H:1.2m;V:18m
H:0.3m;V:05m
H:08m;V:12m

H: 5 mm + 0.5 ppm x baseline;
V: 10 mm + 0.8 ppm x basaine
Time: < 10 seconds
Raliability: > 99%
Heading 0.2°/D, where D is the
inter-antenna distance in meters
Inclination 0.3%D, whers D is the
inter-antenna distance in meters
1 0.02 nvsecond

30 nsec

< 15 sec/ < 44 sac typical
| <1sec

| 2x ports up to 460.8 kbps
| 1x ports up to 460.8 kbps
| 1x port up to 480 mbps

| {High Speed)

1x port {without transceivers), CAN
2.0 B, NMEA2000 compliant

| 1x port supperting TCP/IP, FTP, Ntrip
' Sarver/Client

1x output with 5 ns resolution,
LVTTL, configurable edge, period,
offsat, and reference time

1x Input with 5 ns resolution,
LVTTL, configurable edge and
referance time

Industrial SLC SD card, 20 Hz
writing rate, up to 32GB capacity
Data Update/Output Rate | 1 Hz - 100 Hz Selectable

Data Formats TPS, RTCM SC104 2.x and 3.x,
CMR/CMR+*, BINEX

NMEA 0183 versions 2.x, 3.x,
and 4.x

Cperating: -40°C to B5°C;
Storage: <40°C to 85°C

Vibration 4g Sine Vibe (SAEJ1211);

7.7g Random Viba (MIL-STD 810F)
Humidity 95%, non-condensing
Shock Operational [EC68-2-27, 11ms, 40g

Sunvival IECB8-2-27, 11ms, 759
\bltage/Pmrer 3.4 VDC 10 5.5 VDC / 2.0 W typical

+3.4 V1o +5.5 V (intemal), +4.8 Vto
+5.16 V {external) at 0 ~ 120 mA

Dimensions / Weight S5 mmx 40 mmx 10mm/20g

Main Connector 80-pin Hirose
Antenna Inputs 2 ESD protected
Antanna Connectors Hirose H.FL

1. Thess spedfications will vary depending on the number of satelites usad,
chstructions, satelite geormetry (PDOP), cocupation trne, multipath effects, and
mwm’u may be in conditions with high

actaty, ipesth ammmmmm
scouracy, dways follow best practices for GNSS diata collecton.

lcmﬂ Use of thes format i not recommenxied

2. CMR/ICMA, = a thrd-party
and per ol ndustry standard RTCM 3.x is alwarys

cannol be gusr
et for optimal perf




Xbee S3B Radio

SPECIFICATIONS

HARDVWARE
FROCEZS0R
FREQUENCY BAND
ANTENMA OPTIONS
FERFORMANCE

RF DATA RATE

NMOORUR

RAMGE®

OUTCOOR/LINE-OF-SIGHT RAMGE"

TRAMSMIT POWER

VER SENSITIVITY

FEATURES

SPREAD SPECTRUM

OFERATING TEMFERATURE

SUPPFLY VOLT

TRAMSMIT CUR

RECEIVE CURRENT

SLEEP CURRENT

REGULATORY APPROMALS.

FCC

C-TICK

FIH l-r)r

PIH 10w

"Rastygs g st aities. i bracsaeed oo Froiod - o vy with [t sowrces ol issrleson co. Aot ran ga will vary baciod on tean s

ADFTRIS trasscoiast, Almiol ATRISAMTS

ST MHE 1o 918 MHz2

Wira, LLFL, RPSKA

10 Kbps

Lig o L2008 (370 m)

U 1o B i |56 ki)

L s o b 1080 i)

- 106 dBm

FHES

-8)° C b #B5"C

30-36WDE
TEE ik

ESmA

OG-0 XBasadsl
134ah-Digh XBoekSl

[

TOP VIEW

ADFTOXI tra reetaiwied, Coetos- ME EFHEIG2I0§ 2E MHz

L0 Kbps or 30 Kbps
U i TR0 I G0 )

Upno® mi [14 ke w) digole antansa
Up o 38 mi (45 km] w) high-gain amenna

U s 24 B (250 S ] shwass S sotalls

- 108 S o D500 B - 107 8 a1 19300 bad

24w 3EVDC
2115 s
26k

1Lk

MO-XBFSIB
IB4BA-XBPSIE

Aetralia

SIDEVIEWS

i pezaviar, oilentation ol b o and PeEiear,

height of CRssmitting astenna, height of Feosivisg antessa, meather conditions, intoreen o souecis inthe ana, and tenin betesan ecrvar and Dassmitte:, isduding indoor and
outdoer structunas such as walls, Dss, buildings, hills, and mosntais

WAL GO D I G I'



Appendix C - Wiring Diagram
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