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Abstract 

Global agricultural output must increase by 25 to 70% by 2050 to feed the world. The 

development of more resilient, higher yield crops using genotype to phenotype prediction is one 

promising method to achieve this growth. Progress in genotype to phenotype models has been 

constrained by the quantity of hand measurements necessary to accurately describe phenotype 

characteristics. The Pancreas unmanned ground vehicle was developed to fill this gap in 

capability.  

The Pancreas is a four-wheeled unmanned vehicle which carries an electromagnetic 

inductance sensor to gather soil moisture data throughout the day. This sensor offers a reduction 

in the time required and an increase in the quantity of measurements taken over the typical soil 

core methods of measurement. The initial Pancreas prototypes were developed by Dr. Daniel 

Flippo and master’s student Calvin Dahms. The author made alterations to these designs to 

reflect a change in operational requirements after the testing results of these prototypes. Broadly, 

the platform was made more robust, a path following algorithm and new control system were 

implemented, and a new power budget was developed. 

Though these changes represent necessary improvements, the platform needs more work 

and testing to effectively perform its role. Increased power use, sensor accuracy, obstacle 

detection and avoidance, and durability remain problems to address in future work.  
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1. Feeding the World 

1.1.  Projected Food Needs 

The UN expects world’s population to reach 9.8 billion by 2050 and the world does not 

currently produce enough food to support that many people [1]. Future human flourishing 

requires finding new ways to feed the world.  

 

 

Figure 1: Global Population Growth with UN Predictions for 2100 [2] 

 

Academics disagree on the precise amount by which global agricultural output must 

increase to feed the world. Well-regarded predictions from the early 2010’s called for doubling 

the food supply by 2050 [3] [4]. The current number, taking into account the gains made in 

production in the intervening decade, could range from a 25% to a 70% increase in current 

output [5]. This substantial range is not particularly helpful for accurately assessing the danger to 
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civilization. However, with increasing globalization, even a small disruption in the supply chain 

can cause outsized impacts in fragile food supply systems, and the 25% deficit in food 

availability predicted in the most conservative projection would be catastrophic to significant 

swathes of the developing world with a high import dependency ratio. Import dependency ratio 

is a function of the imported food supply compared to the total available food supply.  

Increasing the food supply and its resistance to externalities is not only necessary to 

sustain civilization, but also comes with benefits which range from a decrease in undernutrition 

related health issues to an increase in economic prosperity. In particular, an increase in 

agricultural GDP in developing nations is directly linked to a rapid reduction in undernutrition 

[6]. As countries modernize and a greater share of the population migrates to urban areas, 

countries that favor agricultural investment experience a greater reduction in malnutrition related 

illnesses like stunting, as shown in figure 2 below.  

 

Figure 2: Prevalence of Stunting as a Function of Rural Population Share [6] 
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 More productive farmers free up larger portions of a developing economy to invest in 

other industries, reduce domestic food prices, and thereby raise the standard of living. Increasing 

the productivity of farmers requires better methods of utilizing fertilizer, efficient agricultural 

machinery, and more resilient and productive crop varieties. The last category is the focus of this 

paper. 

    

1.2.  Current Cereal Production and Consumption, and Its Impacts 

The five most consumed cereal grains globally are rice, wheat, corn/maize, barley, and 

sorghum [7]. Additionally, cereals make up a vital part of livestock feed. They account for 

almost 99% of all cereals produced globally [8]. Taken together, these five make up 46% of the 

calories consumed globally on a year-to-year basis as shown in figure 3 [9]. Of that, wheat made 

up 26% of all cereals produced in 2021, and so over 10% of total global calories.  

 

Figure 3: Dietary Energy Supply by Type [9] 

 

In recent history the widespread adoption of fertilizers, mechanized farming, and better 

strains of cereal crops have greatly improved agricultural production. Over the past twenty years 



4 

wheat output has increased by just over 30% from roughly 600 million metric tons in 2000 to 

just under 800 million metric tons in 2021 [7].  

 

Figure 4: Global Cereal Production [10] 

 

Although such growth could justify relaxation of research and development goals, these 

gains should serve as inspiration for further advancement, because the Food and Agriculture 

Organization of the United Nations (FAO) still categorizes 2.3 billion people as food insecure 

[9]. Mild food insecurity can be reasonable uncertainty about future food availability, and on the 

severe end meals are regularly missed.  

Furthermore, recent conflict-related disruptions in the grain import market have 

highlighted the importance of wheat cultivation for global stability, because many regions such 

as north Africa and East Asia (excluding China) have a high import dependency ratio, being 

52.4% and 69.0% as of 2018, respectively [11]. Disproportionate reliance on imports causes 

disproportionate impacts from shortages, as in the 2010-11 food price crisis. This crisis was 
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caused by a drought in Russia, Ukraine and central Asia, which make up about a third of global 

wheat exports. This was an exacerbating factor in the Arab Spring uprisings and civil unrest of 

the same year [12]. Similarly, the Ukraine war impacting those same wheat exporting regions has 

led to uncertainty, and the full effects have yet to be seen at the time of writing. The current state 

of food security when viewed holistically demonstrates a need for continued development toward 

increasing wheat productivity. Not only does the world need more productive wheat to supply a 

growing population, but also to make the food supply more resilient to external threats like 

natural disasters and conflict by supplying reserve capacity. To that end, research must produce 

new strains of wheat that use available land and fertilizer more efficiently to produce greater 

yield and that are less vulnerable to drought or other adverse conditions. 

1.3.  Wheat Phenotyping 

In order to meet the pressing need for greater global wheat production capacity, Kansas 

State University, Oklahoma State University and Langston University, applied for and received 

EPSCoR grant 1826820 from the National Science Foundation (NSF) to research and develop 

modern crop models for genome to phenome prediction [13]. Wheat genome to phenome 

prediction is the process of mapping specific genetic traits to their expression in features like 

height, leaf size, and, most importantly, yield. Phenotyping, unlike genotyping, has been a slow 

and very labor-intensive process because researchers must measure the physical attributes of a 

plant in the field by hand. For this reason, it has become the constraining factor in many breeding 

operations [14]. Phenotyping provides critical data for predictive crop models, so work is 

necessary to develop more rapid data collection and analysis methods by leveraging new sensing 

technology and platforms such as computer vision and affordable UAVs to increase the quality 



6 

and quantity of data. A variety of such platforms are shown in figure 5. High-throughput 

research would allow farmers to select strains of wheat tailored to their growing conditions.  

 

 

Figure 5: Modern Sensing Platforms and Roles [15] 

 

The research of the EPSCoR grant takes a four-pronged approach: theory and 

computation, modeling, field testbed analysis, and field sensing. Each focus area has a dedicated 

team and sub goals. The sub-components of field sensing are areal imaging, gene-expression, 

and soil electrical conductivity sensing.  

1.4.  Autonomous Sensing and Data Collection 

Electrical conductivity soil sensing has several benefits over the more common soil core 

analysis techniques. Soil core analysis is time consuming and does not capture certain time-

dependent information about soil moisture in the field. Furthermore, each measurement only 

provides information about one point in the field, making it difficult to capture a complete 
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picture of field attributes [13]. Electrical conductivity (EC) does not require researchers to 

remove soil samples from the field. Instead, the sensor can be swept over the entire length of the 

phenotyping testbeds to gather data about soil properties and the root systems of the test wheat. 

Moreover, because the sensor reduces analysis time and requires fewer trips back to the lab, 

researchers can take more sensor passes at several different points in the day to provide insight 

on time-dependent characteristics of the field.  

The grant proposal calls for an autonomous ground vehicle in order to take a large 

volume of repeatable measurements over the course of several days in the field. The vehicle 

would reduce man-hours spent in data collection and would potentially gather a larger quantity 

of consistent data. The EPSCoR proposal calls for several autonomous vehicles of this kind built 

of largely non-metallic components which could remain in the field for several days at a time. 

Application of these criteria would grow into the autonomous vehicle known as the Pancreas.      
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2. The Pancreas Platform Background 

2.1.  Design Criteria and Initial Concept 

In order to fulfill the need for an autonomous sensing platform for wheat phenotyping, 

Dr. Daniel Flippo, Ph.D. initially designed the Pancreas robot to be a lightweight, solar powered, 

unmanned ground vehicle (UGV). 

 

Figure 6: Initial Pancreas Concept 

 

 The four-wheeled vehicle design could straddle a row of the phenotyping test wheat and 

carry a Geophex Electromagnetic Induction sensor to autonomously take soil moisture 

measurements [Appendix B]. The sensor hanging in the middle of the robot would take 

measurements while the wheels would travel in the paths between wheat plots. The platform was 
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designed to remain in the field continuously for several days at time, except for maintenance and 

data collection. A set of solar panels charging an onboard battery pack were planned to enable 

this long-term field endurance.  

 

Figure 7: Geophex GEM-2 (left), Solar Panels on First Prototype (right) 

 

Because it was absolutely essential that the wheat not be crushed by the wheels of the robot, as 

that would negatively affect data collection for the larger EPSCoR phenotyping project, the 

platform required reliable path finding and obstacle avoidance. Master’s student Calvin Dahms 

implemented the initial prototype and iterated on it over the course of 2020 and 2021. He built a 

second prototype, whose design features are described below. 

2.2.  Prototype Two Frame 

After finding 1.27 cm rods too flexible, Dahms built the second vehicle out of 2.54 cm 

diameter carbon fiber tubing and 3D printed plastic components. These materials minimize 

interference with the underslung EM sensor which is sensitive to electromagnetic interference 
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from metallic and electrical components. However, some metallic components, like the drive and 

steering motors, the bearings and the bearing housings are integral to the platform’s 

functionality, and could not be made from non-metallic materials. To minimize interference, 

these metallic components needed to be placed as far as possible from the sensor. Those 

consulting on the project initially considered it sufficient to place all electronics, metal, and 

motors at least 1m away from the EM sensor. The dimensions of the individual wheat plots also 

constrained the size and shape of the UGV’s frame. The robot needed to straddle a single wheat 

plot which was 135 cm across and approximately 100 cm tall when fully grown, depending on 

the individual strain of wheat. The platform’s motors and leg assembly also needed to fit in the 

32 cm gap between plots.  

 

Figure 8: Overhead, Infrared View of Test Plot [16] 

 

Based on these constraints, the frame was made of 12, 2.54 cm diameter carbon fiber tubes of 

152 cm length with 3D printed ABS plastic gussets and fenders. The frame stands at 132 cm with 

sufficient clearance for a wheat row underneath. 
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Figure 9: Second Prototype in Field 

 

 The vehicle has four, independently-steered wheels, each initially powered by high 

torque servo motors which turn the whole carbon fiber leg on which the wheel is attached. All 

these features make for a lightweight maneuverable platform, able to carry the EM sensor for 

long periods in the field.   

2.3.  Prototype Two Power 

To power the platform, two HQST, 100 W, 18 V solar panels, wired in series, charge two 

11.1 V, 10.5 Ah, lithium polymer batteries through a solar charging regulator [Appendix B]. 

These batteries are also wired in series to make a 22.2 V battery pack. The solar panel’s 100 W 

rating is based on a solar panel perpendicular to the incident sunlight during clear weather 

conditions. Because outside conditions vary, the amount of power generated by the panels is 

highly dependent on time of day and weather. As a result, the battery capacity must be large 

enough to buffer the peaks and troughs in power generation during normal operation. During the 
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initial prototype phase of development, the Pancreas was expected to draw about 100 W during 

use.  

A 12 V regulator steps the power down from 22.2 V to 12 V for the control electronics, 

computer, and GPS. The onboard computer reduces voltage internally to 5 V and supplies power 

to some of the sensors.  

2.4.  Prototype Two Sensors 

There is a small margin for error in navigating through the test wheat field. With that in mind 

the robot uses a suite of sensors to accurately follow a preset path and avoid the project wheat. 

With a gap between wheat plots of 32 cm, sub meter geo-location precision is needed for 

accurate path following along with object detection and avoidance protocols. The onboard GPS, 

Topcon B-125 unit, enables this precision. The B-125 is capable of sub centimeter accuracy with 

a position update rate of up to 100Hz [Appendix B], This rate is more than sufficient for a slow-

moving agricultural robot. A single board computer called a Latte Panda processes the incoming 

GPS data over its USB port. In this stage of the design process, the path following algorithm had 

not been implemented, so the GPS data has been saved for later use. 
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Figure 10: B-125 (left), Latte Panda Computer (center), PMod Compass (right) 

 

The onboard compass, which supplies the vehicle’s heading to orient the robot in its 

environment for path following, is a Pmod CMPS2. This is a 3-axis digital compass that 

communicates using the I2C protocol [Appendix B]. The compass, the voltage sensor and the 

current sensors communicate with the Latte Panda’s built-in Arduino Leonardo which then feeds 

that data to the main computer to be recorded for future analysis.  

Several sensors supply different channels of feedback about the robot’s immediate 

environment to provide the object detecting capabilities needs of the robot. A pair of Adafruit 

VL53L0X Time of Flight Distance Sensors (TOF) are mounted on a front leg of the second 

prototype and determine how close and at what angle the wheat rows were relative to the robot. 

This sensor input could be used in the future to supply angle corrections to prevent collision with 

the test wheat. Angle calculations are made by taking measurements from each sensor and 

checking the difference between them. Another method of obstacle detection was proposed but 

not implemented on the second prototype. The method checks the color of the objects in front of 
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the wheel with the Sparkfun AS7265x Spectral Triad spectroscopy sensor to determine whether 

or not to avoid them. The author designed the mounts for the TOF and Spectroscopy sensors, 

shown below, and the code for the Spectroscopy sensor.   

 

Figure 11: Distance (left and right) and Spectroscopy (center) Sensors 

 

Color spectroscopy allows the platform to determine whether or not a plant is a weed or wheat to 

avoid because under IR and UV wavelengths different plants will have distinct reflectance. 

Finally, the most sophisticated method of obstacle detection and avoidance uses machine 

learning and computer vision to identify and avoid wheat from video taken on an OpenCV AI 

camera.  

2.5.  Prototype Two Controls and Propulsion 

A high torque Lynx Motion Smart Servo steers each of the four wheels. Automobile window 

motors power the four drive wheels and are controlled by a pair of Sabertooth 2x32 motor 

controllers. The window motors are self-locking, worm gear motors with a high continuous 

torque rating of 3 Nm for their size. Four Accu-coder encoders from Encoder Outlet provided 

feedback from the window motors. A NI LabVIEW MyRio manages all the high level PID and 
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steering control which received user input from an iPad running a LabVIEW data dashboard to 

steer manually and enable test data collection for the initial prototype phase of the platform.  

 

Figure 12: MyRio (left), Servo Motor (center), Motor Controller (right) 

 

The platform turns using a method called Ackermann steering which is typically implemented by 

a mechanical linkage between two wheels. The Pancreas does this with digital controls. 

Ackermann steering reduces wheel slip by giving each wheel’s turning arc the same center which 

reduces wear on the wheels and strain on the frame.  

2.6.  Prototype Two Feedback 

Calvin Dahms’ initial prototype design choices and alterations allowed for essential data 

collection and important insights for future work. The author’s work on the platform began 

largely after the implementation of the second prototype. Data analysis determined that a 1 m 

bubble was insufficient to remove interference from electrical and metallic equipment on the 

UGV during sensing operations. As a result, the frame was expanded and the sensor was dropped 

closer to the ground. Because of the wheat row constraints, the frame had to be doubled in width 

to straddle two rows of wheat instead of one, rather than increased only enough to accommodate 
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the new metal-free bubble. In addition, National Instruments no longer supported the LabVIEW 

iPad control software, and the software was incompatible with future versions of LabVIEW. The 

author removed the MyRio and LabVIEW entirely in favor of a Python-based, radio control 

approach. Part of the motivation for this was the author’s more significant experience with, and 

preference for Python.  

In addition, the computer vision obstacle detection demonstrated issues that needed to be 

resolved before final implementation. Training a computer vision system to accurately specific 

identify objects in a scene requires large volumes of labelled data. The proof-of-concept machine 

learning algorithm used labelled images only of wheat heads and so, was of limited use for path 

following. Path following would require labelled images of paths between wheat rows, or the 

wheat blocks themselves. These do not exist because they are very domain specific. The only 

way to get labelled images of this kind would be to manually label thousands of images 

personally taken at the angles from which the robot would view the field. While this work may 

be an area for future research, the author put it aside in favor of implementing reliable path 

following.  

The criteria updates for size necessitated substantial alterations to the frame and control 

system to support the increased load, motor power, and electrical requirements. Additionally, the 

change in computer control required many changes had to be made to the wiring and electronic 

layout of the platform.  
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3. Hardware Changes for Prototype Three 

3.1.  Frame Adjustment and Reinforcement 

To expand the frame to the 3 m required to span two rows of wheat, the author replaced 

four of the 2.54 cm diameter, 1.5 m long carbon fiber tubes which made up opposite sides of the 

robot with 3 m long Fiber Reinforced Plastic (FRP) fiberglass tubes of the same diameter.  

 

Figure 13: FRP (right) and Carbon Fiber (left) 

 

The previous carbon fiber tubes had a wall thickness of 2.16 mm, and the replacement fiberglass 

tubes have a wall thickness of 6.35 mm. Fiberglass was selected instead of carbon fiber for its 

availability. At the time of construction, carbon fiber in the length required would have taken 

several months to arrive because of lingering supply chain issues and was cost prohibitive.  
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Figure 14: Pancreas with Fiberglass Extended Frame 

 

Fiberglass on the other hand offered a reasonable trade off in stiffness and an increase in weight 

for being more available. The important characteristic for stiffness is flexural rigidity. The 

equation for flexural rigidity is shown in (1). 

𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑅𝑖𝑔𝑖𝑑𝑖𝑡𝑦 = 𝐸𝐼 

( 1 ) 

Where E is Young’s modulus and I is the area moment of inertia. The area moment of inertia for 

a tube is calculated in (2). 

𝐼𝑡𝑢𝑏𝑒 =
𝜋(𝑟𝑜

4 − 𝑟𝑖
4)

4
 

( 2 ) 

Where ro is the outer radius and ri the inner radius. For anisotropic composites like the FRP 

fiberglass and carbon fiber used in the Pancreas, flexural or bending modulus is used instead of 

Young’s modulus. This is because there are different material properties depending on fiber 
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orientation in the composite. These material constants are rough estimates because properties 

vary by manufacturer, and the study of the material properties of composites is well outside the 

scope of this paper. The industry standard flexural modulus ranges from roughly 5.5GPa to 

9.5GPa for FRP tube. Carbon fiber of the type used on the platform has a flexural modulus that 

ranges from about 75GPa to 125GPa Filling in the equation for both materials using the lower 

estimate for each we have results for flexural resistance for carbon fiber and fiberglass in (3) and 

(4), respectively. 

𝐹𝑅𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑖𝑏𝑒𝑟 = (75 ∗ 109𝑃𝑎) ∗ 𝜋 ∗
(
0.0254𝑚

2 )4 − (
0.0232𝑚

2 )
4

4
=  465.8𝑁𝑚2 

( 3 ) 

𝐹𝑅𝐹𝑅𝑃 𝐹𝑖𝑏𝑒𝑟𝑔𝑙𝑎𝑠𝑠 = (5.5 ∗ 109𝑃𝑎) ∗ 𝜋 ∗
(
0.0254𝑚

2 )4 −  (
0.0191𝑚

2 )
4

4
= 76.4𝑁𝑚2 

( 4 ) 

As shown above, the carbon fiber is about six times more rigid than the FRP tube. In 

addition, the fiberglass weighs 0.358 kg/m of tube, while the carbon fiber weighs 0.126 kg/m of 

tube, or approximately three times lighter. In total this change from carbon fiber to FRP adds 

about 3kg in added weight, which is fairly reasonable considering the weight of all other 

reinforcing components added later.   

The substantial increase in robot width causes an increase in frame flexibility and a larger 

moment arm which increases the torques from forces experienced by the robot. Excessive 

bending occurred during turns, resulting in the robot legs tilting inward and bowing the middle of 

the frame upward. This bending is caused by lateral force on the wheels coming from uneven 

terrain and small misalignments in the wheels and frame. This bending action forces the wheels 

to have substantial positive camber and reduces wheel contact with the ground. Furthermore, 
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reduced traction causes skidding. In addition, the bending places strain on the robot legs and 

wheel housings increasing the likelihood of component failure.  

 

Figure 15: Positive Camber [17] 

 

   In order to mitigate this issue, the author modified the old gussets and leg supports in 

several ways. Moving the leg brace supports lower down the leg, toward the fender, left a much 

shorter unbraced section of leg. Next, the plastic section of the brace support was also redesigned 

to include bearings, which reduce friction and component wear.  



21 

 

Figure 16: Brace Bearing Block 

 

The carbon fiber sections of the supports also attach at a more obtuse angle, further increasing 

resistance to lateral forces. 

 

Figure 17: New Brace (left), Old Brace (right) 
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Because the brace attachment points to the upper frame are at an angle where they can no 

longer be fixed to the gusset, the author developed a new component for attaching the leg 

supports to the upper frame. The new components are made of two, 3D printed plastic parts 

which use brass insert nuts, heat formed into the plastic, and machine screws to clamp around the 

carbon fiber and fiberglass tubes of the upper frame.  

 

Figure 18: Brace Attachment Bracket 

 

These adjustments stabilize the frame during operation and improve durability and mobility in 

the field by keeping more of the wheel in contact with the ground. 

3.2.  Reinforced Fenders 

In addition to the leg supports being insufficient for the new, larger design, the wheel 

fenders also experienced excessive load, leading to failure. After driving a short distance, the 

sides of the fenders bent, and the wheel detached itself from the motor encoder and developed a 

severe cant to one side. To remedy this issue, the author designed a new fender.  
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Figure 19: Left Fender Plate (left), Leg Socket (center), Right Fender Plate (right) 

 

The new construction uses two, 1.9 cm thick sheets of HDPE plastic, which sandwich a 5.7 cm 

wide, 3D printed ABS plastic component with a socket that attaches to the robot leg. HDPE was 

chosen for its stiffness and ease of machining. The 3D printed component is attached to the 

HDPE sheets with 8 6mm bolts. The HDPE sheets, in turn, provide the attachment points for the 

drive motors and encoder. The middle 3D printed component’s layer lines are perpendicular to 

the bolts securing the two sheets to it, which prevents the component from splitting when the 

bolts are tightened. Layer orientation needs consideration because 3D prints using FDM are 

anisotropic, meaning that they do not have the same strength in all directions and are vulnerable 

to layer separation under stress.  
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Figure 20: Wheel Assembly 

 

The socket is slightly oversized to accommodate the robot leg, and a 25 mm Actorobotics 

clamping hub secures it [Appendix B].  

 

Figure 21: Clamping Hub 

 



25 

The clamp is inset in the socket face and secured with machine screws and brass inserts. The new 

fenders are easy to disassemble and are substantially more robust than the previous iteration.      

3.3.  Stepper Motor Steering 

In addition to frame and fender failure, the motors also struggled with the alterations. 

Several of the high-torque servo motors used for turning the robot legs burnt out under the 

increased load. Because the servos used were already on the upper end of what is commonly 

available in terms of torque rating for servo motors, the robot needed a new type of motor. The 

author selected four, Nema 23, 4.25:1 geared stepper motors for their high torque and robust 

construction as well as the angular precision that stepper motors have.  

 

Figure 22: Stepper Motor (left), Encoder & Mount (center), U-Channel (right) 

 

The motors have a holding torque of 8 Nm which is sufficient to turn the wheels under increased 

load on uneven terrain [Appendix B]. Closed loop control is necessary because the motors can 

still be forced out of alignment during operation and because accurate navigation requires 

precision control of the wheel angles. Using AS5600 magnetic rotary encoders mounted to the 

motor with a 3D printed component, one of the onboard micro-controllers can provide 



26 

corrections when a wheel is in an improper position. The motor is mounted in place over the 

robot leg using a 3D printed plastic part. The part secures the face of the motor to the top of the 

Actobotics U-channel at the corners of the Pancreas frame. The complete assembly is shown 

below alongside the CAD models in the figure below. 

 

 

Figure 23: Stepper Motor U-Channel Mount CAD Model (left), Complete Assembly 

(middle), Encoder Cap CAD Model (right) 

 

The author redesigned the 3D component with more material around the motor 

connection area after several instances of layer separation caused by rough handling during 

vehicle transit. The output shaft is attached to the carbon fiber robot leg with a friction fit collar 

and set screw. The output pulses from the microcontroller are converted into motor steps by four, 

TB6600 microstep drivers, which are also secured to the U-channel.  
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Figure 24: Microstepper 

Because of the increased pin number, as well as the time delays when taking code blocking 

sensor readings, an additional Sparkfun RedBoard microcontroller, takes on the motor control 

functions of the platform [Appendix B].  

 

Figure 25: RedBoard (left), I2C Mux (right) 

 

The Arduino-like board comes with a built-in quick disconnect, I2C port called a qiic port. This 

additional microcontroller communicates with the main computer code over USB. In addition, a 

Sparkfun I2C mux board was added to the control box to manage the encoder wires [Appendix 
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B]. The board switches between output ports allowing encoder feedback from all four motors 

while using only one quiic input port on the microcontroller. 

3.4.  Stronger Drive Motors 

The window motors on the previous iteration were rated for a continuous torque of 2.9 

Nm and were insufficient to move the weight of the larger robot up slight inclines and over 

rough ground. The previous iteration of the robot weighed in at 27.7 kg while the new version 

with all the reinforcements weighed in at 54.4kg without the final battery. After a short time at 

stall current, the built-in thermal fuse would trip, and the motor would shut off until it cooled 

down. A new 12V DC Bemonoc worm gear motor was selected to replace the old motors. The 

new motor had a rated continuous torque of 6 Nm which would have been able to propel the 

larger platform. However, because of quality control issues with these motors, a yet newer, 

higher quality motor from a more reputable supplier had to be selected.  

 

Figure 26: Window Motor (left), Bemonoc Motor (center), AM Motor (right) 
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To properly specify the new motors, equation (5) was used to find the total force required to 

propel the vehicle, equation (6) to find the total torque required based on wheel diameter, and 

equation (7) to find the desired RPM: 

𝐹𝑡𝑜𝑡𝑎𝑙 (𝑁) = 𝐶𝑟𝑟 ∗ 𝑊 +
𝑚 ∗ 𝑉𝑚𝑎𝑥

𝑡
+ 𝑊 ∗ sin (𝛼) 

( 5 ) 

𝑇𝑡𝑜𝑡𝑎𝑙 (𝑁𝑚) = 𝐹𝑡𝑜𝑡𝑎𝑙 ∗
𝐷

2
∗ 𝑅𝐹 

( 6 ) 

𝑀𝑜𝑡𝑜𝑟 𝑆𝑝𝑒𝑒𝑑 (𝑅𝑃𝑀) = 𝑉𝑚𝑎𝑥 ∗
60

𝜋𝐷
 

( 7 ) 

Where Vmax is the maximum desired speed in m/s, Crr is the coefficient of rolling resistance, W 

is the robot weight, t is the time to accelerate to top speed, α is the maximum grade, m is the 

robot mass, D is the wheel diameter, and RF is the resistance factor of the gearbox and motor 

components. The motor specifications for torque are obtained by dividing the total required 

torque by the number of wheels on the robot. Values for Crr and RF were estimated using a 

reference table from a University of Florida Mechanical and Aerospace Engineering course [18]. 

Assuming a maximum grade of 3-5% and a robot speed of 0.45 m/s the necessary rated 

continuous torque of the motors needed to be around 6-7 Nm, and the speed needed to be at or 

above 28 RPM. The 226 series DC Gear Motor from AM Equipment met these requirements 

[Appendix B]. 

Because the 3D printed wheels were custom designed to fit the old motors, new couplers 

had to be made to attach the motor output shaft to the wheel. These were made by removing the 

old coupler from the burnt-out window motor, cutting it shorter, and machining a slot to accept 

the new motor shaft. 
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3.5.  Robot Controller Adjustments and Part Changes 

Because of the loss of the data dashboard app, the author devised a new method of robot 

control. The NI MyRio handled the PID control for the drive motors and the manual control 

functions. There are ways of integrating radio controllers for manual control and LabVIEW 

using FPGA. However, it was simpler to centralize all high-level control on the already-present 

Latte Panda single-board computer. The Panda’s onboard Arduino is sufficient for the simple 

sensor communication, and the GPS already fed in data over USB serial. To manage the PID 

control of the drive motors, 4 Roboclaw Solo 60A motor controllers replaced the Sabertooth 

controller [Appendix B].  

 

Figure 27: Roboclaw Motor Controller (left), Latte Panda Alpha (right) 
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The Solos come with built-in PID control and only require a speed command from the Redboard 

microcontroller mentioned above. The controllers had to be tuned to match the motor and 

wheels. This was accomplished by propping up the robot to allow the wheels to spin freely and 

writing new settings using Basic Micro’s Motion Studio software.   

3.6.  Radio Antenna 

A pair of new XBee Pro SB3 radio and antenna replaced the user input functions of the 

data dashboard [Appendix B]. The radio on the robot connects to the Latte Panda over USB. This 

radio is paired with the one connected to the operator’s computer to send and receive messages 

from the Pancreas.  

 

Figure 28: XBee Radio 

 

The messages are sent asynchronously, meaning that the sending radio does not need a 

confirmation that its message has been received and so is non-blocking in the main control code. 

This method of communication allows for smoother robot control. In addition, because more 
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complex messages can be sent and received, debugging and testing are easier because robot 

feedback is more informative and customizable.    

3.7.  Power 

The component additions, the motor changes, and the substantial increase in weight all 

increased power consumption. In addition, the new motors can briefly drop the voltage coming 

from the 12V regulator when at stall current. If the computer and the drive motors are on the 

same regulator, a drop in voltage, caused by motors drawing too much current, can shut off the 

computer. An additional regulator supplying the computer mitigates the voltage drop by 

providing a buffer. During testing, a larger provisional battery pack of two 22.2v 12.5 Ah, 277.5 

Wh batteries wired in parallel was used until the precise power needs of the platform could be 

experimentally determined. A full wiring diagram of all components can be seen in Appendix C. 

In addition the updated CAD models can be found at BenW3/PancreasSolidModels: stl files for 

the robot (github.com). 

 

Figure 29: Provisional Battery Pack 

https://github.com/BenW3/PancreasSolidModels
https://github.com/BenW3/PancreasSolidModels
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4. Software Changes and Simulation for Prototype Three 

4.1.  Computer Control 

With the move to solely using the Latte Panda, most of the control code already present 

on the previous iteration had to be re-made in Python, with the exception of the Arduino sensor 

code. The sensor code draws from Dahm’s work and a helpful AS5600 encoder tutorial, which 

also inspired the design of the mount to which the encoder is attached [19]. Both the sending and 

receiving radio interface also had to be implemented. In addition, because the implementation on 

the previous prototype had only the manual method of control, the author had to design an 

autonomous path following strategy. The author switched the onboard computer’s operating 

system to Linux because of its stability and reduced memory use. In, addition Linux is somewhat 

easier to use when implementing computer vision. The code and measured data are written to a 

detachable SD card which can be removed for either data analysis or code updates. The main 

body of the code runs from the Latte Panda terminal on startup. There is a radio command 

handler file and a function file which together make up the high-level control of the robot. The 

main Python code running on the Panda issues commands over serial to the two microcontrollers 

on the platform. The main code issues a serial command to the RedBoard microcontroller with a 

single angle for the steering and a duty cycle for the drive motors. The other built-in Arduino 

Leonardo microcontroller is issued a letter corresponding to the desired sensor reading and 

returns the reading over serial. The main code reads GPS by parsing the NEMA string that is 

continuously generated by the B-125 board. A block diagram of the system and information flow 

can be seen below. In addition, the full code for all systems is located on GitHub at:  
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https://github.com/BenW3/Pancreas. The most essential portions can also be found in Appendix 

A of this document. 

 

Figure 30: System Block Diagram 

 

4.2.  Radio Communication 

The Xbee radio connects to an operator’s laptop. This method of radio control is 

preferable to an RC controller because of its the ease with which new features and commands 

can be added. The operator can send a variety of text commands through the terminal to receive 

real time sensor data from the compass, GPS, voltage and current sensors, and control the 

platform in either manual or autonomous mode. The user can manually control the robot with the 

W, A, S, and D keys while recording GPS waypoints and set the speed with a text command.   

4.3.  Steering Methods 

Like the previous iteration of the Pancreas, the current version also uses a form of 

Ackerman steering. In this iteration of the prototype, it is double-Ackerman steering, where both 

https://github.com/BenW3/Pancreas
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the front and back wheels always have the same center around which they steer. This can enable 

a zero-turn radius, with the center of the turn in the middle of the robot, and it can reduce wheel 

slip. 

 

Figure 31: Double Ackerman Steering [20] 

 

The high-level control code running on the Latte Panda sends the total desired turn angle 

for the robot to the motor control RedBoard where that signal is converted into the correct angles 

for each wheel. The equations to translate the desired turn angle into actual wheel angles are 

shown in (8) and (9): 

𝛿1 =  tan−1(
𝑙 ∗ sin 𝜃

𝑙 ∗ cos 𝜃 + 𝑤 ∗ sin 𝜃
) 

( 8 ) 

𝛿2 =  tan−1(
𝑙 ∗ sin 𝜃

𝑙 ∗ cos 𝜃 − 𝑤 ∗ sin 𝜃
) 

( 9 ) 

Where 𝛿1 and 𝛿2 are the front left and front right wheel angles respectively, l is the robot length, 

w is the robot width, and 𝜃 is the desired robot turn angle. The rear wheel angle is simply the 
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negative of 𝛿1 and 𝛿2. The micro-controller then closes the loop by checking each desired wheel 

position against the actual position and adjusts the wheel angles with pulses sent to the 

microstepper. This was done with a custom Arduino library. 

Because control and power cables necessarily run from the electrical box to the wheels, 

the legs of the robot cannot spin freely, otherwise those cables would wrap around the leg and 

jam it or disconnect themselves. To stop this, the stepper motors’ turn angle has been limited by 

code to plus or minus 90°. When an angle greater than 90° or less than -90° is needed the stepper 

motor will turn 180° from the necessary angle and the drive motor will reverse direction. 

Although smoother steering is possible with a larger range of permitted turn angles, the 

disruption from jammed cables is not worth the gain.    

When in manual control, the operator can also activate a synchronous steering mode from 

the control laptop and turn each wheel at the exact same angle. Switching between the two 

modes as needed allows for excellent maneuverability in confined spaces. The second mode was 

necessary for transportation to and from the field and for debugging purposes because the 

increased weight made the platform difficult to move physically.    

4.4.  GPS Waypoint Following 

In order to follow a given set of GPS waypoints, the author selected and implemented the 

pure pursuit algorithm. Pure pursuit takes a set of line segments as input and finds a target point 

on the line segment currently being traversed based on some look-ahead radius. It then calculates 

the angle between the direction the platform is currently facing and the angle required to 

intersect the line segment at that look ahead point.  
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Figure 32: Pure Pursuit [21] 

 

When the robot moves, the lookahead point also moves further along the line segment and will 

result in a new desired angle. This method produces smooth path following with the right 

adjustments to the lookahead radius because it gives the platform some time to adjust in advance 

of sharp turns, mitigating overshoot. In addition, the aggressiveness of the error correction can be 

tuned with PID control.    

The GPS data itself is read every time the waypoint function loops around. This frequent 

reading is allowed by the 100Hz data update frequency of the B-125 board. The geometry done 

to determine the required correction angle is done in cartesian coordinates, so the raw latitude 

and longitude data needs to be converted. This is done by simple equirectangular projection, 

which flattens the coordinates down to a plane, so calculations need not be done on a spherical 

surface [22]. This method is crude, but effective for small scales. The equations are shown in 

(10) and (11). 

𝑥 = 𝑅 ∗ 𝜆 ∗ cos (𝜑𝑟𝑒𝑓) 

( 10 ) 

𝑦 = 𝑅 ∗ 𝜑 

( 11 ) 
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Where λ and φ are longitude and latitude converted to radians, respectively, R is the radius of the 

earth, and φref is some reference latitude. This correction gives the appropriate circle of latitude 

to scale the x coordinate by at the reference point. In the case of the path following algorithm, the 

reference latitude is simply the first coordinate in the path. This centers the projection on 

wherever the platform happens to be. 

 

Figure 33: Equirectangular Projection Distortion, Reference Latitude at 0° [23] 

 

 The projection, like all global map projections, loses accuracy the further out from the 

reference coordinate the robot goes. In this case, it is north-south distance that is concerning. For 

the application considered here, a deviation from true distance of more than a few centimeters 

over a 40m span would be unacceptable. Based on my calculations the platform would need to 

travel almost 2km before the latitude to x coordinate conversion was distorted by 1cm over that 

span, which is well outside the operating range of the platform during field trials. The equations 

used are shown in (12) and (13). 
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑅 ∗ ∆𝜆 ∗ cos (𝜑𝑟𝑒𝑓) 

( 12 ) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑅 ∗ ∆𝜆 ∗ cos (𝜑𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 

( 13 ) 

Where “Distance” is the typical span of a test wheat plot and “Tolerable Error” was 1cm. After 

doing some simple algebra these equations can be rearranged to find the band of tolerable 

latitudes for navigation and with that the tolerable north-south range. The equation is shown in 

(14). 

𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝑅𝑎𝑛𝑔𝑒 = 𝑅 ∗ (𝜑𝑟𝑒𝑓 − cos−1(cos(𝜑𝑟𝑒𝑓) ∗
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)) 

( 14 ) 

The initial path coordinates can be either imported from an external source, or taken by 

manually navigating through the desired path and recording the data with a command from the 

user. GPS, compass, time, and power data is collected both while recording and following a path. 

The data is then logged to a comma separated value file (.csv) for later analysis.  

4.5.  Path Following Simulation 

In addition to physical testing, simulation was a useful tool for diagnosing errors and 

refining the control algorithm with quick turnaround time. The Webots open-source robotics 

simulator from Cyberbotics provided a simple, easy to use tool for the project. A simplified 

model of the robot frame was constructed in Webots with controllable steering, drive motors and 

virtual sensors. The simulation used a slightly simplified version of the Python code running on 

the robot for testing and debugging.  
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Figure 34: Webots Pancreas Simulation 

 

After some changes, the simulated Pancreas performed reasonably well on a test course 

which approximated six passes through the test field. A look-ahead radius of 0.25 m, a 

proportional gain of 3.6, and integral and derivative gains of 0 performed well during testing. 

The simulation also gave a helpful estimate for how much space the platform needs to turn and 

its over/undershoot when path following to fall within tolerable margins. In addition to providing 

a benchmark for physical test results, the simulation also aided in resolving some persistent 

errors in the control code. A plot of performance alongside error can be seen in the figure below. 

The path traversed was roughly analogous to real test field conditions, matching the layout of the 

wheat plots. 
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Figure 35: Simulated Robot Path and Tolerable Error Plot (NOTE: path not to scale) 

 

The platform has 15 cm on either side of the wheel, assuming it begins centered in the 30 

cm path, before it collides with the wheat plots. The thickness of the fenders and motor 

projecting from the side of the fender further reduces this distance by a total of 14.15 cm, to a 

margin of just under 8 cm on either side. In addition to precise centering on the waypoint path, 

the platform needs to be aligned with the path in terms of heading. A 3° deviation in heading will 

cause a collision with the wheat plots. This becomes an issue on the physical system, because the 

digital compass has a maximum error rating of 3°. With these settings, the transitory behavior 

subsides in roughly a meter. A plot of the heading error can be seen in the figure below. These 

plots suggest that the platform should be given a path that overshoots the ends of the test plot by 

a margin of a few meters to avoid collision. 
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Figure 36: Simulated Robot Heading and Error 

 

There are several key differences between the simulation and the physical platform. First, 

the simulated robot behaves as a rigid body with no deforming parts. Second, there is no error in 

the GPS and compass signal, and these signals have no delay from signal request to signal 

reading. Fortunately, there are signal processing tools like the Kalman filter which can resolve 

some of these real-world sensor errors, as detailed in the next section. Finally, the virtual terrain 

is perfectly flat, so there are no environment related disturbances to the path following. These 

differences could result in different values for the lookahead radius and PID coefficients, but the 

simulation provides a starting point from which to fine-tune the control coefficients.   

4.6.  Kalman Filtering 

Rudolph E. Kalman designed the Kalman filter and published it in a 1960 article in The 

Transactions of the ASME [24]. The filter enables the smoothing of noisy measurements and 
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accurate estimations of a system’s state. In the case of the Pancreas platform, the filter will be 

used to smooth its GPS signal by combining the raw GPS input with the compass readings and 

the assumed constant speed of the platform. The degree to which the data is smoothed can be 

adjusted by tuning the measurement noise covariance matrix. This matrix, called Q, represents 

how noisy the data is and how much it should be trusted. The filter works by updating the state 

of the system, in this case position, with the velocity estimate from the previous time step. It then 

compares this estimate with the current measurement and combines them based on how much it 

trusts the measurement. A visual of this can be seen in the figure below, from a University of 

North Carolina computer science course [25]. 

 

Figure 37: Basic Kalman Filter Function [25] 

   

The process is notation heavy, but not difficult to implement in code. The author took 

inspiration from an online Python implementation of a Kalman filter [26]. However, the author 

made several changes to the state, covariance, and measurement matrices to reflect the 
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observations, which are represented by the zk matrix, made by the platform as these are 

application specific, in this case being velocity and position. An example of smoothing is shown 

below in the following figures. 

 

Figure 38: Raw Recorded Path 
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Figure 39: Filtered Path 

 

Notably the accuracy of the GPS readings in the preceding figures was severely impacted 

by the presence of buildings, leading to a shift in the recorded waypoints by over a meter on 

portions of the path. This interference would not be present in the field but does demonstrate the 

effect of Kalman filtering. The actual path roughly matches the left-hand side of the loop shown 

in figure 39, but diverges as it travels back down the sidewalk. 
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5. Testing and Results 

5.1. Path Following 

Several issues with the frame and sensors of the robot led to path following failure. The 

frame has been in use for over a year, and wear on multiple components severely hampers 

accurate navigation. The connection between the steering motors and the robot’s legs 

experienced wear to both the couplers and carbon fiber leg, leading to roughly 15° of slop in 

wheel angle. This causes the legs and frame to twist and bend, and it makes precise steering 

impossible. In addition, the Roboclaw motor controllers periodically fail, leading to one or more 

wheels being locked in place. Additionally licensing and proof of purchase issues led to an 

inability to acquire the RTK functionality of the GPS. Finally, during testing the author found 

that, despite being on a long pole away from the electronics box, the GPS antenna experienced 

radio interference from the computer and electrical box. The author determined this by testing 

GPS satellite acquisition with and without the computer turned on.  

 

Figure 40: Radio Interference Solution 
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To resolve this, a large aluminum plate was secured on the pole under the antenna which greatly 

improved satellite acquisition and lock. Another potential fix mentioned in committee was to use 

thicker gage wire and the fewest ground points possible. Despite this interference fix, all the 

other issues resulted in unsatisfactory path following.  

5.2. Updated Power Consumption 

Several short tests pointed to the provisional battery pack being insufficient. To preempt 

power loss during longer tests, the author swapped the pack for a 24 V, 50 Ah, 1200 Wh, 

LiFePO4 battery from Dakota Lithium [Appendix B]. This battery added an extra 9 kg to the 

platform, but increased the battery life by over four times. 

 

Figure 41: Dakota Lithium Battery 

 



48 

Field testing demonstrated an average power use of 218 W as shown below, which is over 3 

times greater than the previous prototype. The platform struggled to exit a ditch which produced 

the power use spike at the end of the plot. This reflects off road conditions, and so was not 

removed as an outlier.   

 

Figure 42: Power Use During Field Test 

    

Based on these measurements, the platform can operate solely on battery for almost six 

hours. However, the current solar panel arrangement’s limitations mean that the platform would 

have to stop, shut off power to the motors, and charge for part of the day. Dahm’s solar panel 

trials give the total expected incoming power from the two panels as ~100 W during sunny, mid-

day conditions and ~50 W during cloudy conditions [16]. Based on Dakota Lithium’s charging 

specifications, the 24 V battery should be charged at 28.8 V and under 0.3 C (15 A) [27]. The 
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current solar panel setup would take 14.4 hours under ideal conditions to charge completely as it 

can maintain a current of just under 3.5 A at that voltage. Changes are necessary to avoid these 

excessive charging times. 

Manhattan, Kansas receives, on average, 4.24 kWh per day per kilowatt of installed 

photovoltaic capacity 1 [28]. The average for April through September, which are the months of 

expected use, is 15% higher than the yearly average. This gives a daily average of 4.87 

kWh/kWp during those months.  

 

Figure 43: Satellite and Solar Potential Maps of Manhattan, KS [28] 

 

Since the Pancreas has an effective 100 W of installed capacity, we can expect a daily average 

power budget of 487 Wh from average incoming sunlight. Based on the power use during regular 

operation, that gives 2.2 hours of run time for the platform. Given the power demands, the 

number of solar panels on the platform should be doubled supplying a power budget of 974 Wh. 

This would bring the operation time of the platform to 4.47 hours. This run time should be 

further reduced to compensate for idle power use. The platform draws just under 14 W when idle 

with the motors unpowered. Over the course of 24 hours this will drain 336 Wh. This decreases 

 

1 Information obtained from the Global Solar Atlas 2.0, a free, web-based application is developed and operated by 

the company Solargis s.r.o. on behalf of the World Bank Group, utilizing Solargis data, with funding provided by 

the Energy Sector Management Assistance Program (ESMAP) [Statement required in terms of use] 
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the operation time to 3.1 hours. 

 

Figure 44: Idle Power Use 

 

Idle power use was tested by shutting off power to the motors with a simple switch, but should 

be done with a 20 A relay which could be switched autonomously by the Latte Panda. The start 

and stop of operations should be determined by monitoring battery capacity and incoming solar 

power to check against experimentally determined threshold values. Then, when running, the 

platform should check its internal clock against its allotted daily runtime.    
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6. Conclusion and Future Work 

The third iteration of the Pancreas unmanned ground vehicle makes several 

improvements to the previous prototype. First, the platform is larger to reduce interference from 

the motors and electronics on the EMI sensor. Next, it has a more centralized control system that 

leverages the power of the Latte Panda computer. It has more durable components to support the 

size increase. Finally, the Pancreas has a path following algorithm implemented and tested in 

simulation to follow GPS waypoints.    

Future work is still necessary for the platform to reach its potential. Some issues are 

simple fixes and others require more in-depth solutions. A clerical error in measurement led to 

the Pancreas being a 30 cm shorter than necessary, so new 3.35 m long tubing is needed. The 

autonomous path following algorithm needs to be updated to include an automatic shut off when 

entering a dormant, charging state. The steering motor system needs improvements to its 

durability because some of the 3D printed couplers receive excessive wear. These components 

are now degrading the precision of the platform’s steering and navigation. A more permanent 

solution would be desirable to simply printing new components of the same design. The 

accuracy of robot heading measurements is insufficient for navigation, so a new compass or 

compasses must be installed. RTK functionality needs to be implemented on the GPS system. To 

improve the Kalman filter, an inertial measurement unit (IMU) should be added to accurately 

gauge speed. The platform also needs to be weatherized. Finally, the obstacle avoidance system 

still needs to be implemented to provide feedback from the environment. 

Simulation demonstrates that the Pancreas can work, but reliability remains a key issue 

for future development. The system is not yet ready for field use, but could be given these 

adjustments.  
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Appendix A - Code 

Command Handler/Main 

#!/usr/bin/python3 

 

import methods 

from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, XBee64BitAddress 

import os 

import glob 

from math import cos, sin 

import sys 

from time import perf_counter 

import numpy as np 

import traceback 

# -------------------- 

# Pancreas Main Code 

# -------------------- 

# ................ 

# Necessary code blocks to write 

# ................ 

# - CHECK - PID control 

# - CHECK - Error calculator 

# - CHECK - Angle/Dist to pwm calculator 

# - CHECK - GPS reader 

# - CHECK - Compass reader 

# - CHECK - Read/write to coordinate file 

# - CHECK - Stop conditions 

# - CHECK - Read/write to log file 

# Obstacle sensor 

# - CHECK - Read power 

# ................ 

# -------------------- 

 

# -------------------- 

# Global Variables 

# -------------------- 

powerReadingDelay = 10 

aspectRatio = 0.0 

average_timestep = 0.5 

methods.getSerialPorts() 

receiver = XBeeDevice(methods.radioPort, 9600) 
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remoteTransmitter = RemoteXBeeDevice( 

    receiver, XBee64BitAddress.from_hex_string("0013A2004104110E")) 

receiver.open() 

print(str(methods.initArduinos())) 

 

# -------------------- 

# Main Radio Message Handler 

# -------------------- 

if __name__ == "__main__": 

    print("Pancreas Online") 

    # -------------------- 

    # Read Radio Messages Until Loop Ends 

    # -------------------- 

    while True: 

        message = "" 

        try: 

            data = receiver.read_data_from(remoteTransmitter, 3) 

            message = data.data.decode("utf8") 

            print(message) 

        except: 

            # print("no message") 

            pass 

    # -------------------- 

    # Manual Mode 

    # -------------------- 

        if message == "manual": 

            # print("manual mode activated") 

            global pathName 

            global powerName 

            global CurrentTime 

            global t1 

            lat = [] 

            lon = [] 

            power = [] 

            heading = [] 

            dt = [] 

            logPath = False 

            pathName = "" 

            # -------------------- 

            # Continue Reading Messages 

            # -------------------- 

            while message != '0': 

                try: 

                    data = receiver.read_data_from(remoteTransmitter, 0.1) 
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                    receiver.flush_queues() 

                    message = data.data.decode("utf8") 

 

                except: 

                    message = "" 

            # -------------------- 

            # Path and power recording 

            # -------------------- 

                if message == "3": 

                    # powerName = "powerDefault.csv" 

                    CurrentTime = perf_counter() 

                    t1 = perf_counter() 

 

                    try: 

                        print("Getting file name . . .") 

                        receiver.flush_queues() 

                        receiver.send_data_async( 

                            remoteTransmitter, "Please supply a file name with a 

.csv extension within the next 30s") 

                        receiver.flush_queues() 

                        data = receiver.read_data_from(remoteTransmitter, 30) 

                        pathName = data.data.decode("utf8") 

                        powerName = str("power"+str(pathName)) 

                    except: 

                        pathName = "pathDefaultName.csv" 

                        powerName = "powerDefaultName.csv" 

                    try: 

                        methods.logDataInit(pathName) 

                        methods.logDataInit(powerName) 

                    except Exception as e: 

                        receiver.send_data_async(remoteTransmitter, str(e)) 

                    lat = [] 

                    lon = [] 

                    heading = [] 

                    power = [] 

                    dt = [] 

                    # power.append("starting file") 

                    logPath = False 

                    print("Getting gps . . .") 

                    i = 0 

                    while i < 5 and logPath == False: 

                        try: 

                            i += 1 

                            [reflat, reflon, satnum] = methods.readGPS()[0:3] 

                            aspectRatio = cos(reflat) 
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                            [x1, y1] = methods.latlonToXY( 

                                reflat, reflon, aspectRatio) 

                            robot_heading = methods.deg2rad( 

                                float(methods.write_read('C', 

methods.sensorArduino))) 

                            initial_state = np.array([[x1], [y1], [sin( 

                                robot_heading)*methods.velocityMagnitude], 

[cos(robot_heading)*methods.velocityMagnitude]]) 

                            methods.filterInit(initial_state, average_timestep) 

                            receiver.send_data_async( 

                                remoteTransmitter, "try "+str(i)+", 

"+str(reflat)) 

                            if satnum != 0: 

                                logPath = True 

                                receiver.send_data_async( 

                                    remoteTransmitter, "Success!") 

                                print("Recording path") 

                        except Exception as e: 

                            # receiver.send_data_async(remoteTransmitter, str(e)) 

                            pass 

 

                if len(lat) > 20: 

                    print(str(len(lat)) + " vals in list") 

                    try: 

                        data = [] 

                        i = 0 

                        while i < len(lat): 

                            data.append( 

                                str(lat[i])+","+str(lon[i])+","+str(heading[i]) + 

"," + str(dt[i])) 

                            i += 1 

                        methods.logDataUpdate(data, pathName) 

                        lat = [] 

                        lon = [] 

                        heading = [] 

                        dt = [] 

                    except Exception as e: 

                        # print(str(e)) 

                        # receiver.send_data_async(remoteTransmitter, str(e)) 

                        pass 

 

                if len(power) > 20: 

                    # print(str(len(power)) + " vals in list") 

                    try: 

                        methods.logDataUpdate(power, powerName) 
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                        power = [] 

                    except Exception as e: 

                        # print(str(e)) 

                        # receiver.send_data_async(remoteTransmitter, str(e)) 

                        pass 

            # -------------------- 

            # Stop recording and write to file 

            # -------------------- 

                if message == "4": 

                    logPath = False 

                    try: 

                        data = [] 

                        i = 0 

                        while i < len(lat): 

                            data.append( 

                                str(lat[i])+","+str(lon[i])+","+str(heading[i]) + 

"," + str(dt[i])) 

                            i += 1 

                        methods.logDataUpdate(data, pathName) 

                        lat = [] 

                        lon = [] 

                        heading = [] 

                        dt = [] 

                    except Exception as e: 

                        # print(str(e)) 

                        # receiver.send_data_async(remoteTransmitter, str(e)) 

                        pass 

 

                    try: 

                        methods.logDataUpdate(power, powerName) 

                        power = [] 

                    except Exception as e: 

                        # print(str(e)) 

                        # receiver.send_data_async(remoteTransmitter, str(e)) 

                        pass 

 

                if logPath == True: 

                    if (perf_counter()-CurrentTime) > powerReadingDelay: 

                        CurrentTime = perf_counter() 

                        try: 

                            power.append(methods.write_read( 

                                'P', methods.sensorArduino)) 

                        except: 

                            pass 

                    try: 
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                        [lattitude, longitude, x, y, angle, sats, time, quality] 

= methods.get_filtered_state( 

                            aspectRatio, receiver, remoteTransmitter) 

                        if sats != 0: 

                            lat.append(lattitude[0]) 

                            lon.append(longitude[0]) 

                            heading.append(angle) 

                            dt.append(perf_counter() - t1) 

                            t1 = perf_counter() 

                    except Exception as e: 

                        # exception_type, exception_object, exception_traceback = 

sys.exc_info() 

                        # filename = 

exception_traceback.tb_frame.f_code.co_filename 

                        # line_number = exception_traceback.tb_lineno 

                        # receiver.send_data_async(remoteTransmitter, str(e) +", 

"+ str(exception_type)+", "+str(filename)+", "+str(line_number)) 

                        pass 

                methods.writeToArduino( 

                    'S'+methods.manualControl(message), methods.steeringArduino) 

 

    # -------------------- 

    # Setting speed 

    # -------------------- 

        elif message == "set speed": 

            try: 

                receiver.send_data_async( 

                    remoteTransmitter, 'Input a speed in microseconds from 1500 

to 2000. Current speed is ' + str(methods.Speed)) 

                receiver.flush_queues() 

                data = receiver.read_data_from(remoteTransmitter, 30) 

                speed = int(data.data.decode("utf8")) 

                methods.setSpeed(speed) 

            except Exception as e: 

                print("Error with speed setting") 

                print(str(e)) 

                receiver.send_data_async(remoteTransmitter, str(e)) 

    # -------------------- 

    # Read GPS 

    # -------------------- 

        elif message == "gps reading": 

            try: 

                receiver.send_data_async( 

                    remoteTransmitter, str(methods.readGPS())) 

            except Exception as e: 
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                print("Failed to send GPS data") 

                print(str(e)) 

                receiver.send_data_async(remoteTransmitter, str(e)) 

    # -------------------- 

    # Read Power 

    # -------------------- 

        elif message == "power reading": 

            try: 

                receiver.send_data_async( 

                    remoteTransmitter, methods.write_read('P', 

methods.sensorArduino)) 

            except Exception as e: 

                print("Failed to send power data, " + str(e)) 

                receiver.send_data_async(remoteTransmitter, str(e)) 

    # -------------------- 

    # Read Compass 

    # -------------------- 

        elif message == "compass reading": 

            try: 

                receiver.send_data_async( 

                    remoteTransmitter, methods.write_read('C', 

methods.sensorArduino)) 

            except Exception as e: 

                print("Failed to send compass data") 

                receiver.send_data_async(remoteTransmitter, str(e)) 

    # -------------------- 

    # Test For Connection 

    # -------------------- 

        elif message == "ping": 

            receiver.send_data_async( 

                remoteTransmitter, "Robot computer online") 

    # -------------------- 

    # Run Autonomously From File 

    # -------------------- 

        elif message == "autonomous": 

            filelist = [] 

            counter = 1 

            filestr = "Please type in the name of one of the available coordinate 

files which you would like to follow or type CANCEL: \n" 

            filelist.append(filestr) 

            files = glob.glob('./*.csv') 

            for f in files: 

                filestr = str(f)+" ["+str(os.path.getsize(f))+" bytes"+"]" 

                filelist.append(filestr) 

                counter += 1 
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            print(filelist) 

            i = 0 

            receiver.send_data_async( 

                remoteTransmitter, str(counter)) 

            receiver.flush_queues() 

            while i < counter: 

                receiver.send_data_async( 

                    remoteTransmitter, str(filelist[i])) 

                i += 1 

                print(i) 

            try: 

                data = receiver.read_data_from(remoteTransmitter, 60) 

                userFilename = data.data.decode("utf8") 

            except: 

                userFilename = 'CANCEL' 

            if userFilename != 'CANCEL': 

                try: 

                    methods.waypointFollower( 

                        0.0, 1.0, 0.0, 1, receiver, remoteTransmitter, 

userFilename) 

                    receiver.send_data_async( 

                        remoteTransmitter, "Path following terminated") 

                except Exception as e: 

                    exception_type, exception_object, exception_traceback = 

sys.exc_info() 

                    filename = exception_traceback.tb_frame.f_code.co_filename 

                    line_number = traceback.extract_tb(exception_traceback) 

                    receiver.send_data_async(remoteTransmitter, str( 

                        e) + ", " + str(exception_type)+", "+str(filename)+", 

"+str(line_number)) 

                    print(str(e) + ", " + str(exception_type) + 

                          ", "+str(filename)+", "+str(line_number)) 

            print(userFilename) 

            message == "" 

 

        elif message == "STOP ROBOT": 

            break 

 

    receiver.close() 

 

Function File 

# distance calculator 

# https://www.hindawi.com/journals/ape/2014/507142/ 



63 

 

from math import cos, sin, pi, acos, atan 

from time import sleep 

import serial 

import pynmea2 

from time import perf_counter 

from numpy import genfromtxt, sign, sort 

import csv 

import serial.tools.list_ports 

from CustomKalman import TwoDKalman 

import numpy as np 

# steeringArduino = serial.Serial(port = 'COM13', baudrate=9600, timeout=5) 

logFrequency = 5  # How frequent should data be logged (s) 

listSize = 100  # How large list is before logging 

robotLength = 1.2192  # m, 4ft 

robotWidth = 3.048  # m, 10ft 

angleSignal = 0  # Radians 

velocitySignal = 0  # Microseconds 

mode = 1  # Steering mode 

setpoint = 0  # for synchronous steering 

Speed = 1600 

speedset = -1 

XVariance = 5  # noise variance in meters for longitude 

YVariance = 5  # noise variance in meters for latitude 

XVelocityVariance = 0.05  # noise varience in measured velocity 

YVelocityVariance = 0.05  # noise varience in measured velocity 

velocityMagnitude = 0.3  # m/s guess 

 

def getSerialPorts(): 

    """ 

    This function finds the pancreas' connected devices and stores their serial 

port names. 

    """ 

    global steeringPort 

    global sensorPort 

    global gpsPort 

    global radioPort 

    radioPort = "" 

    sensorPort = "" 

    gpsPort = "" 

    steeringPort = "" 

    try: 

        radioPort = list(*serial.tools.list_ports.grep('FT232EX'))[0] 

    except: 
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        print("Radio not connected.") 

    try: 

        gpsPort = list(*serial.tools.list_ports.grep('Controller'))[0] 

    except: 

        print("GPS not connected.") 

    try: 

        sensorPort = list(*serial.tools.list_ports.grep('Leonardo'))[0] 

    except: 

        print("Sensor arduino not connected.") 

    try: 

        steeringPort = list(*serial.tools.list_ports.grep('USB Serial'))[0] 

    except: 

        print("Steering arduino not connected.") 

 

def initArduinos(): 

    """ 

    This function initializes the two arduinos used in the rest of the program.  

    """ 

    global steeringArduino 

    global sensorArduino 

    val = "" 

 

    if steeringPort != "": 

        try: 

            steeringArduino = serial.Serial( 

                port=steeringPort, baudrate=115200, timeout=0.1) 

            val += 'steering connected' 

        except Exception as e: 

            val += e 

    if sensorPort != "": 

        try: 

            sensorArduino = serial.Serial( 

                port=sensorPort, baudrate=115200, timeout=0.1) 

            val += ', sensors connected' 

        except Exception as e: 

            val += e 

    return val 

 

def setSpeed(input): 

    global Speed 

    Speed = input 
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def readGPS(): 

    """ 

    It reads the GPS Serial port and translates NMEA to usable values. 

    """ 

    try: 

        data = "" 

        gps = serial.Serial(port=gpsPort, baudrate=115200, timeout=5) 

        gps.flushInput()  # flush input buffer, discarding all its contents 

        gps.flushOutput() 

        sleep(.05) 

        data = gps.readline() 

        sleep(.05) 

        gps.close() 

        data = data.decode("utf-8") 

        dataParse = pynmea2.parse(data) 

        gpsLat = dataParse.latitude 

        gpsLon = dataParse.longitude 

        sats = dataParse.num_sats 

        time = dataParse.timestamp 

        qual = dataParse.gps_qual 

        return gpsLat, gpsLon, int(sats), time, int(qual) 

    except Exception as e: 

        return e 

 

def get_filtered_state(aspect_ratio, receiver, remoteTransmitter): 

    """ 

    This function reads the GPS Serial port and translates NMEA to usable values.  

    It returns lattitutde and longitude, cartesian coordinates, heading, 

satellites connected, time, and gps quality. 

    """ 

    try: 

        data = "" 

        gps = serial.Serial(port=gpsPort, baudrate=115200, timeout=5) 

        gps.flushInput()  # flush input buffer, discarding all its contents 

        gps.flushOutput() 

        sleep(.05) 

        data = gps.readline() 

        sleep(.05) 

        gps.close() 

        data = data.decode("utf-8") 

        dataParse = pynmea2.parse(data) 

        gpsLat = dataParse.latitude 

        gpsLon = dataParse.longitude 

        sats = dataParse.num_sats 



66 

        if round(gpsLat) == 0 and round(gpsLon) == 0: 

            sats = 0 

            gpsLat = gps_lat_old 

            gpsLon = gps_lon_old 

 

        time = dataParse.timestamp 

        qual = dataParse.gps_qual 

        robotAngle = deg2rad(float(write_read('C', sensorArduino))) 

        [xraw, yraw] = latlonToXY(gpsLat, gpsLon, aspect_ratio) 

        xcenter = xraw+(robotWidth/2.0)*cos(robotAngle) 

        ycenter = yraw-(robotWidth/2.0)*sin(robotAngle) 

        measured_state = np.array([[xcenter], [ycenter], [sin( 

            robotAngle)*velocityMagnitude], [cos(robotAngle)*velocityMagnitude]]) 

        [xfilter, yfilter] = filteredGPS(measured_state) 

        [latAdjusted, lonAdjusted] = XYtolatlon(xfilter, yfilter, aspect_ratio) 

        gps_lat_old = latAdjusted 

        gps_lon_old = lonAdjusted 

        return latAdjusted, lonAdjusted, xfilter, yfilter, robotAngle, int(sats), 

time, int(qual) 

    except Exception as e: 

        receiver.send_data_async(remoteTransmitter, str(e)) 

 

def filterInit(initial_state, time_step): 

    global gpsFilter 

    global gps_lat_old 

    global gps_lon_old 

    gpsFilter = TwoDKalman(initial_state, time_step, XVariance, 

                           YVariance, XVelocityVariance, YVelocityVariance) 

 

def filteredGPS(current_state): 

    [x, y] = gpsFilter.filter(current_state) 

    return x, y 

 

def deg2rad(deg): 

    ''' 

    converts degrees to radians, pretty simple 

    ''' 

    return deg*(pi/180.0) 

 

def rad2deg(rad): 

    ''' 

    converts radians to degrees, pretty simple 
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    ''' 

    return rad*180.0/pi 

 

def distanceToWaypoint(xp, yp, xw, yw): 

    """ 

    computes the distance to the waypoint 

    """ 

    return ((xp-xw)**2+(yp-yw)**2)**(1/2) 

 

def latlonToXY(lat, lon, aspectRatio): 

    """ 

    This function converts lattitude and longitude to x and y values using simple 

eqirectangular projection.  

    X and y are in meters 

    """ 

    r = 6371000 

    lat = deg2rad(lat) 

    lon = deg2rad(lon) 

    y = r*lat 

    x = r*lon*aspectRatio 

    return x, y 

 

def XYtolatlon(x, y, aspectRatio): 

    """ 

    This function converts x,y back to lattitude and longitude using simple 

equirectangular projection.  

    X and y need to be in meters. 

    """ 

    r = 6371000 

    lat = rad2deg(y/r) 

    lon = rad2deg(x/(r*aspectRatio)) 

    return lat, lon 

 

def betweenWaypoints(x1, y1, x2, y2, xp, yp): 

    """ 

    This function is for waypoint following. It decides whether to look at a 

point on the line segment or one of the endpoints to follow. 

    """ 

    xval = [x1, x2] 

    xval = sort(xval) 

    yval = [y1, y2] 

    yval = sort(yval) 
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    if x1 == x2: 

        if yp > yval[1] or yp < yval[0]: 

            return False 

    elif y1 == y2: 

        if xp > xval[1] or xp < xval[0]: 

            return False 

    else: 

        m = (y2-y1)/(x2-x1) 

        intercept1 = y1+x1/m 

        intercept2 = y2+x2/m 

        a = yp+xp/m 

        if intercept1 > intercept2: 

            if (a-intercept1) > 0 or (a-intercept2) < 0: 

                return False 

        else: 

            if (a-intercept1) < 0 or (a-intercept2) > 0: 

                return False 

    return True 

 

def calcAngleError(x1, y1, x2, y2, xp, yp, robotAngle, r): 

    """ 

    This is the error calculator for the pure persuit line following algorithm.  

    The robot maintains a constant speed and only uses the error in desired and 

current angle to navigate. 

    """ 

    pt1Dist = ((xp-x1)**2 + (yp-y1)**2)**(1/2) 

    pt2Dist = ((xp-x2)**2 + (yp-y2)**2)**(1/2) 

    if x2 == x1: 

        if y2 == y1: 

            Acoef = 1 

            Bcoef = -2*yp 

            Ccoef = x2**2-2*xp*x2+xp**2+yp**2-r**2 

            perpDist = pt1Dist+1 

        else: 

            Acoef = 1 

            Bcoef = -2*yp 

            Ccoef = x2**2-2*xp*x2+xp**2+yp**2-r**2 

            perpDist = ((x2-xp)**2)**(1/2) 

    else: 

        m = (y2-y1)/(x2-x1) 

        b = y2-m*x2 

        Acoef = (m**2+1) 

        Bcoef = 2*m*b-2*m*yp-2*xp 

        Ccoef = xp**2+b**2-2*b*yp+yp**2-r**2 
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        if betweenWaypoints(x1, y1, x2, y2, xp, yp) == True: 

            perpDist = abs(-m*xp+yp-b)/(m**2+1**2)**(1/2) 

        else: 

            perpDist = pt1Dist+1 

 

    distances = [pt1Dist, pt2Dist, perpDist] 

    minDist = distances.index(min(distances)) 

    descriminant = Bcoef**2-4*Acoef*Ccoef 

 

    if distances[minDist] > r or descriminant < 0: 

        if minDist == 0: 

            x = x1 

            y = y1 

        elif minDist == 1: 

            x = x2 

            y = y2 

        else: 

            if y2 == y1: 

                x = xp 

                y = y2 

            elif x2 == x1: 

                x = x2 

                y = yp 

            else: 

                x = (xp/m+yp-b)/(m+1/m) 

                y = m*x+b 

 

    else: 

        xpot1 = (-Bcoef + (descriminant)**(1/2))/(2*Acoef) 

        xpot2 = (-Bcoef - (descriminant)**(1/2))/(2*Acoef) 

 

        if x1 == x2: 

            ypot1 = xpot1 

            ypot2 = xpot2 

            xpot1 = x2 

            xpot2 = x2 

        else: 

            ypot1 = m*xpot1+b 

            ypot2 = m*xpot2+b 

 

        dpot1 = ((xpot1-x2)**2+(ypot1-y2)**2)**(1/2) 

        dpot2 = ((xpot2-x2)**2+(ypot2-y2)**2)**(1/2) 

        if (dpot2 > dpot1): 

            x = xpot1 

            y = ypot1 
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        else: 

            x = xpot2 

            y = ypot2 

 

    xr = xp+r*sin(robotAngle) 

    yr = yp+r*cos(robotAngle) 

    ax = xr-xp 

    ay = yr-yp 

    bx = x-xp 

    by = y-yp 

    angleError = 0 

    if (ax != 0 or ay != 0) and (bx != 0 or by != 0): 

        try: 

            angleError = acos( 

                (ax*bx+ay*by)/(((ax**2+ay**2)**(1/2))*((bx**2+by**2)**(1/2)))) 

        except: 

            pass 

    cp = ax*by-bx*ay 

    if cp < 0: 

        angleError = -1*angleError 

    return angleError 

 

def writeToArduino(x, microcontroller): 

    """ 

    This function communicates with the latte panda's onboard arduino or USB 

connected arduino.  

    It takes what is being written and a port name. 

    """ 

 

    try: 

        microcontroller.write(bytes(x, 'utf-8')) 

        microcontroller.flushInput()  # flush input buffer, discarding all its 

contents 

        microcontroller.flushOutput() 

    except Exception as e: 

        print(str(e)) 

        pass 

    return 

 

def write_read(x, microcontroller):  # communucation btw the cpu and ard 

    """ 

    This function communicates with the latte panda's onboard arduino or USB 

connected arduino and receives a return signal.  
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    It takes what is being written and a port name. 

    """ 

    try: 

        microcontroller.flushInput()  # flush input buffer, discarding all its 

contents 

        microcontroller.flushOutput() 

        microcontroller.write(bytes(x, "utf-8")) 

        data = microcontroller.readline() 

        data = data.decode("utf-8") 

        return data 

    except Exception as e: 

        print(str(e)) 

        pass 

    return 

 

# This enables manual control from another computer 

 

def manualControl(keystroke): 

    """ 

    This function enables manual control from another radio receiver connected 

computer.  

    It returns the desired pwm inputs for steering and wheel motion. 

    """ 

    global Speed 

    global angleSignal 

    global velocitySignal 

    global mode 

    global setpoint 

    global speedset 

    adjustedSpeed = Speed-1500 

 

    if keystroke == "l": 

        speedset *= -1 

 

    if keystroke == "1": 

        setpoint = 0 

        mode = 1 

    elif keystroke == "2": 

        angleSignal = 0 

        mode = 2 

 

    if mode == 1: 

        if keystroke == "a": 

            angleSignal -= .05 
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        elif keystroke == "d": 

            angleSignal += .05 

    elif mode == 2: 

        if keystroke == "a": 

            setpoint -= 10 

        elif keystroke == "d": 

            setpoint += 10 

 

    if keystroke == "w": 

        velocitySignal = 1500 + adjustedSpeed 

    elif keystroke == "s": 

        velocitySignal = 1500 - adjustedSpeed 

 

    if keystroke == "" and speedset < 0: 

        velocitySignal = 1500 

    return str(angleSignal)+","+str(velocitySignal)+","+str(setpoint) 

 

def waypointFollwerVariableInits(ki, kp, kd, R): 

    """ 

    This function initialized the starting values for autonomous waypoint 

following. 

    """ 

    global x 

    global y 

    global xPath 

    global yPath 

    global robotAngle 

    global oldErr 

    global oldTime 

    global intErr 

    global wpNum 

    global kI 

    global kP 

    global kD 

    global r 

    global latPath 

    global lonPath 

    global heading 

    heading = [] 

    latPath = [] 

    lonPath = [] 

    r = R 

    kI = ki 

    kP = kp 
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    kD = kd 

    x = 0 

    y = 0 

    xPath = [] 

    yPath = [] 

    robotAngle = 0 

    oldErr = 0 

    oldTime = perf_counter() 

    intErr = 0 

    wpNum = 0 

 

def computePID(err, dutycycle): 

    """ 

    This is the pid control calculator, velocity may need to be adjusted 

    """ 

    velocity = ((dutycycle-1500)/500) * \ 

        1.388  # m/s, constant derived from wheel diameter and measured rpm 

    global oldTime 

    global intErr 

    global oldErr 

    intMax = 2.0 

    nowTime = perf_counter() 

    deltaT = nowTime-oldTime 

    intErr += err*deltaT 

    if abs(intErr) > intMax: 

        intErr = sign(intErr)*intMax 

    derErr = (err-oldErr)/deltaT 

    out = kP*err+kI*intErr-kD*derErr 

    oldTime = nowTime 

    oldErr = err 

    return out 

 

def logPath(lat, lon, name): 

    """ 

    This writes a series of position values to a .csv file for later use. 

    """ 

 

    with open(name, 'w') as f: 

        f.write('') 

    with open(name, 'a', newline='') as f: 

        writer = csv.writer(f) 

        i = 0 

        while i < len(lat): 
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            writer.writerow([lat[i], lon[i]]) 

            i += 1 

 

def logDataInit(name): 

    with open(name, 'w') as f: 

        f.write('') 

 

def logDataUpdate(data, name): 

    with open(name, 'a', newline='') as f: 

        i = 0 

        while i < len(data): 

            f.write(data[i]+'\n') 

            i += 1 

 

def initializeWaypointFollower(name, receiver, remoteTransmitter): 

    """ 

    This is to set the inital error so the derivative control doesn't do funny 

things on startup.  

    The function is just one pass through the waypoint follower loop without 

actually issuing any motor commands. 

    """ 

    global waypoints 

    global refLat 

    global aspectRatio 

    global xwaypoints 

    global ywaypoints 

    global wpNum 

    global oldErr 

    global initial_state 

    global xp 

    global yp 

    global xWaypoint 

    global yWaypoint 

    global xlastWaypoint 

    global ylastWaypoint 

    global gps_lat_old 

    global gps_lon_old 

    waypoints = genfromtxt(name, delimiter=',') 

    receiver.send_data_async( 

        remoteTransmitter, "length of chosen file: " + str(len(waypoints))) 

    print(len(waypoints)) 
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    refLat = deg2rad(waypoints[0, 0]) 

    aspectRatio = cos(refLat) 

    xwaypoints = [] 

    ywaypoints = [] 

    i = 0 

    while i < len(waypoints): 

 

        [xpoints, ypoints] = latlonToXY( 

            waypoints[i, 0], waypoints[i, 1], aspectRatio) 

        xwaypoints.append(xpoints) 

        ywaypoints.append(ypoints) 

        i += 1 

    i = 0 

    failure = True 

    while i < 5 and failure == True: 

        try: 

            [gps_lat, gps_lon, sats] = readGPS()[0:3] 

            receiver.send_data_async( 

                remoteTransmitter, "try "+str(i)+", lat:"+str(gps_lat) + ", lon:" 

+ str(gps_lon)) 

            if sats != 0 and round(gps_lon) != 0: 

                [xp, yp] = latlonToXY(gps_lat, gps_lon, aspectRatio) 

                failure = False 

                receiver.send_data_async(remoteTransmitter, "Success") 

                gps_lat_old = gps_lat 

                gps_lon_old = gps_lon 

        except Exception as e: 

            receiver.send_data_async(remoteTransmitter, str(e)) 

            print("No connection to GPS") 

            pass 

        i += 1 

 

# Set first old error equal to the new one to stop weird inital derivative error 

behavior 

    robotAngle = deg2rad(float(write_read('C', sensorArduino))) 

 

    initial_state = np.array([[xp], [yp], [sin( 

        robotAngle)*velocityMagnitude], [cos(robotAngle)*velocityMagnitude]]) 

    filterInit(initial_state, 0.512) 

 

    [xWaypoint, yWaypoint] = xwaypoints[wpNum], ywaypoints[wpNum] 

    if wpNum == 0: 

        [xlastWaypoint, ylastWaypoint] = [xWaypoint, yWaypoint] 

    else: 

        [xlastWaypoint, ylastWaypoint] = xwaypoints[wpNum-1], ywaypoints[wpNum-1] 
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    while distanceToWaypoint(xp, yp, xWaypoint, yWaypoint) < r: 

        wpNum += 1 

        if wpNum >= len(waypoints): 

            break 

        [xWaypoint, yWaypoint] = xwaypoints[wpNum], ywaypoints[wpNum] 

        print("waypoint "+str(wpNum)+" reached") 

    oldErr = calcAngleError(xlastWaypoint, ylastWaypoint, 

                            xWaypoint, yWaypoint, xp, yp, robotAngle, r) 

 

def waypointFollower(ki, kp, kd, lookahead, receiver, remoteTransmitter, 

filename): 

    """ 

    This is the meat and potatoes of the robot.  

    It takes in a set of waypoints and follows them by issuing commands to the 

onboard arduino.  

    It needs pid control constants, the look ahead distance, a threshold at which 

to stop going forward and focus on turning,  

    a PWM speed (in microseconds) for the motors, a file name, and a radio 

reciever and transmitter object. 

    """ 

    global message 

    global wpNum 

    global latPath 

    global lonPath 

    global Speed 

    global xlastWaypoint 

    global ylastWaypoint 

    global xWaypoint 

    global yWaypoint 

    global initial_state 

    global aspectRatio 

    global xp 

    global yp 

    global heading 

    logDataInit("traversedPath.csv") 

    logDataInit("errorOutput.csv") 

    logDataInit("PIDoutput.csv") 

    logDataInit("powerConsumption.csv") 

    outputlist = [] 

    errplot = [] 

    timeplot = [] 

    pwrplot = [] 

    trueTime = [] 

    logTimer = perf_counter() 
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    waypointFollwerVariableInits(ki, kp, kd, lookahead) 

    try: 

        initializeWaypointFollower(filename, receiver, remoteTransmitter) 

    except Exception as e: 

        receiver.send_data_async(remoteTransmitter, str(e)) 

        return 

 

    while True: 

        # Take GPS measurement and compass measurement 

        try: 

            [lattitude, longitude, x, y, robotAngle, sats, time, quality] = 

get_filtered_state( 

                aspectRatio, receiver, remoteTransmitter) 

            if sats != 0: 

                latPath.append(lattitude[0]) 

                lonPath.append(longitude[0]) 

                heading.append(robotAngle) 

                xp = x 

                yp = y 

 

        except Exception as e: 

            receiver.send_data_async(remoteTransmitter, "GPS issue") 

            print(e) 

            pass 

 

    # Read and select waypoint values 

    # If robot within threshold distance increment to next waypoint 

 

        while distanceToWaypoint(xp, yp, xWaypoint, yWaypoint) < r: 

            wpNum += 1 

            if wpNum >= len(waypoints):  # Check for more waypoints 

                writeToArduino("S0,1500,0", steeringArduino) 

                break 

            [xWaypoint, yWaypoint] = xwaypoints[wpNum], ywaypoints[wpNum] 

            if wpNum == 0: 

                [xlastWaypoint, ylastWaypoint] = [xWaypoint, yWaypoint] 

            else: 

                [xlastWaypoint, ylastWaypoint] = xwaypoints[wpNum-1], 

ywaypoints[wpNum-1] 

            print("waypoint "+str(wpNum)+" reached") 

        if wpNum >= len(waypoints):  # Check for more waypoints 

            writeToArduino("S0,1500,0", steeringArduino) 

            break 

        try: 

            data = receiver.read_data_from(remoteTransmitter, 0.1) 
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            message = data.data.decode("utf8") 

            writeToArduino("S0,1500,0", steeringArduino) 

            break 

        except: 

            pass 

 

    # Calculate angle error 

        try: 

            err = calcAngleError(xlastWaypoint, ylastWaypoint, 

                                 xWaypoint, yWaypoint, xp, yp, robotAngle, r) 

            errplot.append(err) 

            timeplot.append(perf_counter()) 

            if timeplot[-1] - logTimer > logFrequency: 

                pwrplot.append(write_read('P', sensorArduino)) 

                trueTime.append(time) 

                logTimer = timeplot[-1] 

        # Run error through PID control for steering 

            output = computePID(-err, Speed) 

            outputlist.append(output) 

 

        # Output to steering motors 

            writeToArduino("S"+str(output)+","+str(Speed) + 

                           ","+str(0), steeringArduino) 

        except Exception as e: 

            receiver.send_data_async(remoteTransmitter, str(e)) 

            print(e) 

            pass 

 

    # writing data to file 

        if len(latPath) > listSize: 

            data = [] 

            i = 0 

            while i < len(latPath): 

                data.append(str(latPath[i])+"," + 

                            str(lonPath[i])+","+str(heading[i])) 

                i += 1 

            try: 

                logDataUpdate(data, "traversedPath.csv") 

                latPath = [] 

                lonPath = [] 

                heading = [] 

            except Exception as e: 

                print(str(e)) 

                receiver.send_data_async(remoteTransmitter, str(e)) 

        if len(timeplot) > listSize: 
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            data1 = [] 

            data2 = [] 

            i = 0 

            while i < len(timeplot): 

                data1.append(str(timeplot[i])+","+str(errplot[i])) 

                data2.append(str(timeplot[i])+","+str(outputlist[i])) 

                i += 1 

            try: 

                logDataUpdate(data1, "errorOutput.csv") 

                logDataUpdate(data2, "PIDoutput.csv") 

                timeplot = [] 

                errplot = [] 

                outputlist = [] 

            except Exception as e: 

                print(str(e)) 

                receiver.send_data_async(remoteTransmitter, str(e)) 

        if len(pwrplot) > listSize: 

            data = [] 

            i = 0 

            while i < len(pwrplot): 

                data.append(str(trueTime[i])+","+str(pwrplot[i])) 

                i += 1 

            try: 

                logDataUpdate(data, "powerConsumption.csv") 

                trueTime = [] 

                pwrplot = [] 

            except Exception as e: 

                print(str(e)) 

                receiver.send_data_async(remoteTransmitter, str(e)) 

 

    # Check for obstacles 

 

    # Turn parallel to obstacle 

 

    # Log robot path 

 

    data = [] 

    i = 0 

    while i < len(latPath): 

        data.append(str(latPath[i])+","+str(lonPath[i])+","+str(heading[i])) 

        i += 1 

    try: 

        logDataUpdate(data, "traversedPath.csv") 

        latPath = [] 

        lonPath = [] 
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        heading = [] 

    except Exception as e: 

        print(str(e)) 

        receiver.send_data_async(remoteTransmitter, str(e)) 

 

    data1 = [] 

    data2 = [] 

    i = 0 

    while i < len(timeplot): 

        data1.append(str(timeplot[i])+","+str(errplot[i])) 

        data2.append(str(timeplot[i])+","+str(outputlist[i])) 

        i += 1 

    try: 

        logDataUpdate(data1, "errorOutput.csv") 

        logDataUpdate(data2, "PIDoutput.csv") 

        timeplot = [] 

        errplot = [] 

        outputlist = [] 

    except Exception as e: 

        print(str(e)) 

        receiver.send_data_async(remoteTransmitter, str(e)) 

 

    data = [] 

    i = 0 

    while i < len(pwrplot): 

        data.append(str(trueTime[i])+","+str(pwrplot[i])) 

        i += 1 

    try: 

        logDataUpdate(data, "powerConsumption.csv") 

        trueTime = [] 

        pwrplot = [] 

    except Exception as e: 

        print(str(e)) 

        receiver.send_data_async(remoteTransmitter, str(e)) 

 

User Radio Control 

from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, XBee64BitAddress 

import pynput 

import serial.tools.list_ports 

 

# For windows, comment out the below try, except lines and replace radioPort with 

a the name of the COM port that the radio is connected to. 

print(list(*serial.tools.list_ports.grep('FT231X'))) 
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try: 

    radioPort = list(*serial.tools.list_ports.grep('FT231X'))[0] 

except: 

    print("Radio not connected.") 

transmitter = XBeeDevice(radioPort, 9600) 

 

remoteReceiver = RemoteXBeeDevice( 

    transmitter, XBee64BitAddress.from_hex_string("0013A20040FCB774")) 

transmitter.open() 

inputName = False 

 

def on_press(key): 

    global inputName 

    try: 

        print(key.char) 

        transmitter.send_data_async(remoteReceiver, key.char) 

        if key.char == '0': 

            print("manual stopped") 

            return False 

        elif key.char == '3':  # fix this 

            print("manual paused, press enter once") 

            inputName = True 

            return False 

        elif key.char == '5': 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 3) 

                message = data.data.decode("utf8") 

                print(message) 

            except: 

                print("No transmission") 

    except AttributeError: 

        print('special key {0} pressed'.format( 

            key)) 

 

def beginManual(): 

    listener = pynput.keyboard.Listener(on_press=on_press) 

    listener.start() 

 

if __name__ == "__main__": 

    while True: 

        x = input() 

        message = "" 
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        if x == "ping": 

            if remoteReceiver.reachable: 

                print("Reciever online") 

            else: 

                print("Reciever offline") 

            transmitter.flush_queues() 

            transmitter.send_data_async(remoteReceiver, x) 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 3) 

                message = data.data.decode("utf8") 

                print(message) 

            except: 

                print("Robot computer offline") 

 

        elif x == "gps reading": 

            transmitter.flush_queues() 

            transmitter.send_data_async(remoteReceiver, x) 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 10) 

                message = data.data.decode("utf8") 

                print(message) 

            except: 

                print("No data recieved") 

 

        elif x == "power reading": 

            transmitter.flush_queues() 

            transmitter.send_data_async(remoteReceiver, x) 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 3) 

                message = data.data.decode("utf8") 

                print( 

                    "Power from batteries, power from solar, system input 

voltage(W,W,V): " + message) 

            except: 

                print("No data recieved") 

 

        elif x == "compass reading": 

            transmitter.flush_queues() 

            transmitter.send_data_async(remoteReceiver, x) 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 3) 

                message = data.data.decode("utf8") 

                print(message) 

            except: 

                print("No data recieved") 
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        elif x == "set speed": 

            transmitter.send_data_async(remoteReceiver, x) 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 5) 

                message = data.data.decode("utf8") 

                print("\n"+message) 

                speed = input() 

                transmitter.send_data_async(remoteReceiver, speed) 

            except: 

                print("No response from robot") 

 

        elif x == "manual": 

            print("----------------------------------\nManual mode activated, 

avialable commands are: \n   w,a,s,d - where a and d are for turning, and w and s 

are forward and backward, respectively\n   l-lock forward or reverse\n   1 - for 

dual Ackerman steering\n   2 - for synchronous steering\n   3 - to record a gps 

coordinate path\n   4 - stop recording path and write to file\n   5 - read 

transmission\n   0 - stop manual mode\n----------------------------------\n") 

            transmitter.send_data_async(remoteReceiver, x) 

            beginManual() 

 

        elif inputName == True:  # fix this 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 3) 

                message = data.data.decode("utf8") 

                print("\n"+message) 

                name = input() 

                transmitter.send_data_async(remoteReceiver, name) 

            except: 

                print("Robot computer offline") 

            inputName = False 

            print("manual resumed") 

            beginManual() 

 

        elif x == "autonomous": 

            transmitter.send_data_async(remoteReceiver, x) 

            try: 

                data = transmitter.read_data_from(remoteReceiver, 5) 

                message = data.data.decode("utf8") 

                counter = int(message) 

                i = 0 

                while i < counter: 

                    data = transmitter.read_data_from(remoteReceiver, 5) 

                    message = data.data.decode("utf8") 
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                    print(message) 

                    i += 1 

                name = input() 

                transmitter.send_data_async(remoteReceiver, name) 

            except: 

                print("No response from robot") 

            while input("Press enter to refresh, or 0 then enter to exit.") != 

'0': 

                try: 

                    transmitter.flush_queues() 

                    data = transmitter.read_data_from(remoteReceiver, 3) 

                    message = data.data.decode("utf8") 

                    print(message) 

                except: 

                    print("No error message recieved") 

 

        elif x == "STOP ROBOT": 

            transmitter.send_data_async(remoteReceiver, x) 

        elif x == "STOP CONTROLLER": 

            break 

        else: 

            print("----------------------------------\nUnrecognized command, 

avialable commands are: \n   ping\n   set speed\n   gps reading\n   power 

reading\n   compass reading\n   manual\n   autonomous\n   STOP ROBOT\n   STOP 

CONTROLLER\n----------------------------------\n") 

 

    print("loop ended") 

    transmitter.close() 
 

Kalman Filter 

#based on: https://machinelearningspace.com/2d-object-tracking-using-kalman-

filter/ 

 

import numpy as np 

 

class TwoDKalman(): 

    def __init__(self, initial_state, dt, stdX, stdY, stdVX, stdVY): 

        self.dt = dt 

        self.state = initial_state 

        self.F = np.array([[1, 0, self.dt, 0], 

                            [0, 1, 0, self.dt], 

                            [0, 0, 1, 0], 

                            [0, 0, 0, 1]]) 
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        self.H = np.array([[1, 0, 0, 0], 

                            [0, 1, 0, 0], 

                            [0, 0, 1, 0], 

                            [0, 0, 0, 1]]) 

        self.Q = np.eye(4) 

        self.R = np.array([[stdX**2, 0, 0, 0], 

                            [0, stdY**2, 0, 0], 

                            [0, 0, stdVX**2, 0], 

                            [0, 0, 0, stdVY**2]]) 

        self.P = np.eye(self.F.shape[1]) 

        self.I = np.eye(self.H.shape[1]) 

        # pass 

    def update(self, measured_state): 

        S = np.dot(self.H, np.dot(self.P, self.H.T)) + self.R 

        kalman_gain = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S)) 

        self.state = self.state + np.dot(kalman_gain, (measured_state - 

np.dot(self.H, self.state))) 

        # print(self.state.shape) 

        self.P = (self.I - (np.dot(kalman_gain,self.H)))*self.P 

        return self.state[0:2] 

        # pass 

    def predict(self): 

        self.state = np.dot(self.F, self.state) 

        self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q 

        # pass 

    def filter(self, measured_state, dt = None): 

        self.predict() 

        filtered_position = self.update(measured_state) 

        return filtered_position 

 

Motor Arduino Main 

 

//----------------------- 

//   DEFINES AND INCLUDES 

//----------------------- 

// Motor and steering 

#define LWHEELMOTOR 2 

#define RWHEELMOTOR 3 

#define LRWHEELMOTOR 4 

#define RRWHEELMOTOR 5 

// #define WHEELMOTOR 1 

#define LSTEPPIN 9 

#define LDIRPIN 10 
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#define RSTEPPIN 11 

#define RDIRPIN 12 

#define LRSTEPPIN 13 

#define LRDIRPIN 8 

#define RRSTEPPIN 6 

#define RRDIRPIN 7 

//Power compass and communication 

#define DECLINATION -70 

#include <Servo.h> 

#include <StepperMotorClosedLoop2.h> 

 

 

//-------------------- 

//GLOBAL VARIABLES / OBJECTS 

//-------------------- 

// Motor and steering 

int steps = 850; 

float gearRatio = 4.25; 

unsigned char steeringAddress = 0x36; 

int setPoint = 0; 

float turnAngle; 

float roboWidth = 10.0; 

float roboLength = 4.0; 

float leftAngle; 

float rightAngle; 

float rightRearAngle; 

float leftRearAngle; 

Servo LWheel; 

Servo RWheel; 

Servo LRWheel; 

Servo RRWheel; 

Servo Wheel; 

StepperMotorClosedLoop lMotor(LSTEPPIN, LDIRPIN, 0, steps, gearRatio, 

steeringAddress); 

StepperMotorClosedLoop rMotor(RSTEPPIN, RDIRPIN, 1, steps, gearRatio, 

steeringAddress); 

StepperMotorClosedLoop lrMotor(LRSTEPPIN, LRDIRPIN, 2, steps, gearRatio, 

steeringAddress); 

StepperMotorClosedLoop rrMotor(RRSTEPPIN, RRDIRPIN, 3, steps, gearRatio, 

steeringAddress); 

String Comm = ""; 

char command; 

String line = ""; 

String steeringString = ""; 
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String forwardString = ""; 

String setpointString = ""; 

int i; 

int j; 

float steeringSignal; 

int forwardSignal; 

int signalStore; 

 

//------------------- 

//   SETUP 

//------------------- 

 

void setup() { 

  Serial.begin(115200); // serial initialization 

  delay(10); 

  Serial.println("Setting up drive motors . . ."); 

  Serial.setTimeout(10); 

  pinMode(LWHEELMOTOR, OUTPUT); 

  pinMode(RWHEELMOTOR, OUTPUT); 

  pinMode(LRWHEELMOTOR, OUTPUT); 

  pinMode(RRWHEELMOTOR, OUTPUT); 

  // pinMode(WHEELMOTOR, OUTPUT); 

  // Wheel.attach(WHEELMOTOR); 

  // Wheel.writeMicroseconds(1500); 

  LWheel.attach(LWHEELMOTOR); 

  LWheel.writeMicroseconds(1500); 

  RWheel.attach(RWHEELMOTOR); 

  RWheel.writeMicroseconds(1500); 

  LRWheel.attach(LRWHEELMOTOR); 

  LRWheel.writeMicroseconds(1500); 

  RRWheel.attach(RRWHEELMOTOR); 

  RRWheel.writeMicroseconds(1500); 

  Serial.println(F("Connecting steering motors . . .")); 

  lMotor.init(); 

  Serial.println(F("lmotor running")); 

  delay(10); 

  rMotor.init(); 

  Serial.println(F("rmotor running")); 

  delay(10); 

  lrMotor.init(); 

  Serial.println(F("lrmotor running")); 

  delay(10); 

  rrMotor.init(); 

  Serial.println(F("rrmotor running")); 

  delay(10); 



88 

 

} 

 

//------------------- 

//   LOOP 

//------------------- 

 

void loop() { 

  if (Serial.available()) { 

    command = ""; 

    line = Serial.readString(); 

    Serial.flush(); 

    command = line[0]; 

    //    Serial.println(line); 

    switch (command) { 

 

      case 'S': //steering 

        steeringString = ""; 

        forwardString = ""; 

        setpointString = ""; 

        j = line.length(); 

        if (j > 2) { 

          i = 1; 

          while (i < j) { 

            if (line[i] == char(',')) { 

              break; 

            } 

            steeringString += line[i]; 

            i++; 

          } 

          i++; 

          while (i < j) { 

            if (line[i] == char(',')) { 

              break; 

            } 

            forwardString += line[i]; 

            i++; 

          } 

          i++; 

          while (i < j) { 

            setpointString += line[i]; 

            i++; 

          } 

          steeringSignal = steeringString.toFloat(); 

          forwardSignal = forwardString.toInt(); 
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          forwardSignal = forwardSignal - 1500; 

          signalStore = forwardSignal; 

          setPoint = setpointString.toInt(); 

          steering(steeringSignal, setPoint); 

 

          forwardSignal = signalStore * 

lMotor.calculateStepsReversible(leftAngle); 

          LWheel.writeMicroseconds(forwardSignal + 1500); 

          forwardSignal = signalStore * 

rMotor.calculateStepsReversible(rightAngle); 

          RWheel.writeMicroseconds(forwardSignal + 1500); 

          forwardSignal = signalStore * 

lrMotor.calculateStepsReversible(leftRearAngle); 

          LRWheel.writeMicroseconds(forwardSignal + 1500); 

          forwardSignal = signalStore * 

rrMotor.calculateStepsReversible(rightRearAngle); 

          RRWheel.writeMicroseconds(forwardSignal + 1500); 

        } 

        break; 

 

      default: 

        break; 

    } 

  } 

  lMotor.turnToAngle(); 

//  Serial.println(lMotor.returnAngle()); 

  rMotor.turnToAngle(); 

  lrMotor.turnToAngle(); 

  rrMotor.turnToAngle(); 

 

} 

 

//-------------------- 

//STEERING 

//-------------------- 

 

void steering(float controlSignal, int setpoint) { 

  float Offset = float(setpoint) * PI / 1000.0; 

  turnAngle = controlSignal; 

  leftAngle = atan(roboLength * sin(turnAngle) / (roboLength * cos(turnAngle) + 

roboWidth * sin(turnAngle))); 

  rightAngle = atan(roboLength * sin(turnAngle) / (roboLength * cos(turnAngle) - 

roboWidth * sin(turnAngle))); 

  if (turnAngle > 0 && rightAngle < 0) { 
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    rightAngle = (PI) + rightAngle; 

  } 

  if (turnAngle < 0 && leftAngle > 0) { 

    leftAngle = -(PI) + leftAngle; 

  } 

  leftRearAngle = leftAngle; 

  rightRearAngle = rightAngle; 

  leftAngle = -leftAngle; 

  rightAngle = -rightAngle; 

  leftAngle = leftAngle - Offset; 

  rightAngle = rightAngle - Offset; 

  leftRearAngle = leftRearAngle - Offset; 

  rightRearAngle = rightRearAngle - Offset; 

} 

 

Arduino Closed Loop Stepper Motor Library 

#include "Arduino.h" 

#include "StepperMotorClosedLoop2.h" 

#include "Wire.h" 

#include "SparkFun_I2C_Mux_Arduino_Library.h"  

StepperMotorClosedLoop::StepperMotorClosedLoop(int stepPin, int dirPin, int port, 

int steps, float gearRatio, unsigned char address){ 

    _stepPin = stepPin; 

    _dirPin = dirPin; 

    pinMode(_stepPin, OUTPUT); 

    pinMode(_dirPin, OUTPUT); 

    _steps = steps; 

    _port = port; 

    _currentCount = 0; 

    _desiredCount = 0; 

    _stepsToGo = 0; 

    _stepPin = stepPin; 

    _dirPin = dirPin; 

    _magnetStatus = 0; //value of the status register (MD, ML, MH) 

    _numberofTurns = 0; //number of turns 

    _correctedAngle = 0; //tared angle - based on the startup value 

    _startAngle = 0; //starting angle 

    _totalAngle = 0; //total absolute angular displacement 

    _gearRatio = gearRatio; 

    _resolution = (_steps/_gearRatio)/4096.0; 

    _stepsNoGearbox = _steps/_gearRatio; 

    _address = address; 

    _pulseDelay = 100; 
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} 

 

void StepperMotorClosedLoop::init() { 

    Wire.begin(); //start i2C   

    Wire.setClock(10000);  

    _mux.begin(); 

    _mux.setPort(_port); 

    _checkMagnetPresence(); //check the magnet (blocks until magnet is found) 

    _readRawAngle(); //make a reading so the degAngle gets updated 

    _startAngle = _degAngle; //update startAngle with degAngle - for taring 

    _time = millis(); 

    

} 

 

void StepperMotorClosedLoop::calculateSteps(float desiredPos) { 

    _mux.setPort(_port); 

    _desiredCount = (desiredPos * _steps/2)/PI; 

    _desiredCount = _desiredCount % _steps; 

    _readRawAngle(); 

    _correctAngle(); 

    _checkQuadrant(); 

    _currentCount = _totalAngle; 

    if (abs(_currentCount - _desiredCount) > _steps / 2) { 

        if (_currentCount > _desiredCount) { 

            _stepsToGo = _steps + _desiredCount; 

        } else { 

            _stepsToGo = _desiredCount - _steps; 

        } 

    } else { 

        _stepsToGo = _desiredCount; 

    } 

 

} 

 

 

 

int StepperMotorClosedLoop::calculateStepsReversible(float desiredPos) { 

    _mux.setPort(_port); 

    int val = 1; 

    _desiredCount = (desiredPos * _steps/2)/PI; 

    _desiredCount = _desiredCount % _steps; 

    _readRawAngle(); 

    _correctAngle(); 
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    _checkQuadrant(); 

    _currentCount = _totalAngle; 

 

    if (_desiredCount > _steps/4) { 

      _stepsToGo = _desiredCount-_steps/2; 

 

      val = -1; 

    } else if (_desiredCount < -_steps/4) { 

      _stepsToGo = _desiredCount+_steps/2; 

      val = -1; 

    } else { 

      _stepsToGo = _desiredCount; 

 

    } 

 

    return val; 

} 

 

void StepperMotorClosedLoop::turnToAngle() { 

     

    // if (millis()-_time > 200){ 

    _mux.setPort(_port); 

    _readRawAngle(); 

    _correctAngle(); 

    _checkQuadrant(); 

    // _time = millis(); 

    // } 

    if (_totalAngle > _stepsToGo+_steps/200) { 

        digitalWrite(_dirPin, LOW); 

        digitalWrite(_stepPin, HIGH); 

        delayMicroseconds(_pulseDelay); 

        digitalWrite(_stepPin, LOW); 

        // delayMicroseconds(_pulseDelay); 

         

    } 

    else if (_totalAngle < _stepsToGo-_steps/200) { 

        digitalWrite(_dirPin, HIGH); 

        digitalWrite(_stepPin, HIGH); 

        delayMicroseconds(_pulseDelay); 

        digitalWrite(_stepPin, LOW); 

        // delayMicroseconds(_pulseDelay);   

    } 

    // } 

} 
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void StepperMotorClosedLoop::calibrateZero() { 

    _mux.setPort(_port); 

    _currentCount = 0; 

    _desiredCount = 0; 

    _readRawAngle(); 

    _startAngle = _degAngle; 

} 

 

void StepperMotorClosedLoop::_correctAngle() { 

  _correctedAngle = _degAngle;  

 

} 

 

void StepperMotorClosedLoop::_checkQuadrant() { 

    /* 

  //Quadrants: 

  4  |  1 

  ---|--- 

  3  |  2 

  */ 

 

  //Quadrant 1 

  if(_correctedAngle >= 0 && _correctedAngle <= _stepsNoGearbox/4.0) 

  { 

    _quadrantNumber = 1; 

  } 

 

  //Quadrant 2 

  if(_correctedAngle > _stepsNoGearbox/4.0 && _correctedAngle <= 

_stepsNoGearbox/2.0) 

  { 

    _quadrantNumber = 2; 

  } 

 

  //Quadrant 3 

  if(_correctedAngle > _stepsNoGearbox/2.0 && _correctedAngle <= 

3.0*_stepsNoGearbox/4.0) 

  { 

    _quadrantNumber = 3; 

  } 

 

  //Quadrant 4 

  if(_correctedAngle > 3.0*_stepsNoGearbox/4.0 && _correctedAngle < 

_stepsNoGearbox) 

  { 
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    _quadrantNumber = 4; 

  } 

  //Serial.print("Quadrant: "); 

  //Serial.println(quadrantNumber); //print our position "quadrant-wise" 

 

  if(_quadrantNumber != _previousquadrantNumber) //if we changed quadrant 

  { 

    if(_quadrantNumber == 1 && _previousquadrantNumber == 4) 

    { 

      _numberofTurns++; // 4 --> 1 transition: CW rotation 

    } 

 

    if(_quadrantNumber == 4 && _previousquadrantNumber == 1) 

    { 

      _numberofTurns--; // 1 --> 4 transition: CCW rotation 

    } 

    //this could be done between every quadrants so one can count every 1/4th of 

transition 

 

    _previousquadrantNumber = _quadrantNumber;  //update to the current quadrant 

   

  }   

 

  _totalAngle = (_numberofTurns*_stepsNoGearbox + _correctedAngle); //number of 

turns (+/-) plus the actual angle within the 0-360 range 

} 

 

void StepperMotorClosedLoop::_checkMagnetPresence() { 

      //This function runs in the setup() and it locks the MCU until the magnet 

is not positioned properly 

 

  while((_magnetStatus & 32) != 32) //while the magnet is not adjusted to the 

proper distance - 32: MD = 1 

  { 

    _magnetStatus = 0; //reset reading 

 

    Wire.beginTransmission(_address); //connect to the sensor 

    Wire.write(0x0B); //figure 21 - register map: Status: MD ML MH 

    Wire.endTransmission(); //end transmission 

    Wire.requestFrom(_address, 1); //request from the sensor 

 

    while(Wire.available() == 0); //wait until it becomes available  

    _magnetStatus = Wire.read(); //Reading the data after the request 

 

    //Serial.print("Magnet status: "); 
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    //Serial.println(magnetStatus, BIN); //print it in binary so you can compare 

it to the table (fig 21)       

  }       

   

  //Status register output: 0 0 MD ML MH 0 0 0   

  //MH: Too strong magnet - 100111 - DEC: 39  

  //ML: Too weak magnet - 10111 - DEC: 23      

  //MD: OK magnet - 110111 - DEC: 55 

 

  //Serial.println("Magnet found!"); 

  //delay(1000);   

} 

 

void StepperMotorClosedLoop::_readRawAngle() { 

      //7:0 - bits 

  Wire.beginTransmission(_address); //connect to the sensor 

  Wire.write(0x0D); //figure 21 - register map: Raw angle (7:0) 

  Wire.endTransmission(); //end transmission 

  Wire.requestFrom(_address, 1); //request from the sensor 

   

  while(Wire.available() == 0); //wait until it becomes available  

  _lowbyte = Wire.read(); //Reading the data after the request 

  

  //11:8 - 4 bits 

  Wire.beginTransmission(_address); 

  Wire.write(0x0C); //figure 21 - register map: Raw angle (11:8) 

  Wire.endTransmission(); 

  Wire.requestFrom(_address, 1); 

   

  while(Wire.available() == 0);   

  _highbyte = Wire.read(); 

   

  //4 bits have to be shifted to its proper place as we want to build a 12-bit 

number 

  _highbyte = _highbyte << 8; //shifting to left 

  //What is happening here is the following: The variable is being shifted by 8 

bits to the left: 

  //Initial value: 00000000|00001111 (word = 16 bits or 2 bytes) 

  //Left shifting by eight bits: 00001111|00000000 so, the high byte is filled in 

   

  //Finally, we combine (bitwise OR) the two numbers: 

  //High: 00001111|00000000 

  //Low:  00000000|00001111 

  //      ----------------- 

  //H|L:  00001111|00001111 
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  _rawAngle = _highbyte | _lowbyte; //int is 16 bits (as well as the word) 

 

  //We need to calculate the angle: 

  //12 bit -> 4096 different levels: 360° is divided into 4096 equal parts: 

  //360/4096 = 0.087890625 

  //Multiply the output of the encoder with 0.087890625 

  _degAngle = _rawAngle * _resolution;  

   

  //Serial.print("Deg angle: "); 

  //Serial.println(degAngle, 2); //absolute position of the encoder within the 0-

360 circle 

} 

 

int StepperMotorClosedLoop::returnAngle() { 

  return _totalAngle; 

} 

 

int StepperMotorClosedLoop::returnCommand() { 

  return _stepsToGo; 

} 

 

Sensor Arduino 

#include <Compass1.h> 

#include <PowerSensors.h> 

#define DECLINATION -70 

unsigned char compassAddress = 0x30; 

PowerSensors sensors; 

Compass1 compass(compassAddress); 

const int currentSensorPin = A2;    // define sensor pin 

const int voltageSensorPin = A1; 

const int currentSensorPin2 = A0; // define sensor pin 

String Comm = ""; 

char command; 

String line = ""; 

 

void setup() { 

  Serial.begin(115200); // serial initialization 

  delay(10); 

  compass.CMPS2_init();                  // initialize the compass 

  delay(10); 

  sensors.init(); 

  delay(100); 

  Serial.println("1"); 

  Serial.setTimeout(2); 
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} 

 

void loop() { 

  if (Serial.available()) { 

    line = Serial.readString(); 

    command = line[0]; 

    switch (command) { 

       

      case 'C': //compass 

        Comm = String(compass.CMPS2_getHeading()); 

        Serial.println(Comm); 

//        delay(100); 

        break; 

 

      case 'P': //power 

        sensors.CurrentValue = sensors.readDCCurrent(currentSensorPin); 

        sensors.CurrentValue2 = sensors.readDCCurrent(currentSensorPin2); 

        sensors.VoltValue = analogRead(voltageSensorPin); 

        sensors.Voltage = (sensors.VoltValue - 512) * 0.073170; 

        sensors.Power = sensors.Voltage * sensors.CurrentValue;   // Power from 

the batteries 

        sensors.Power2 = 36 * sensors.CurrentValue2; // Power from solar 

        sensors.PowerNet = sensors.Power2 - sensors.Power;   // Solar Power minus 

Power used from Batteries 

        Comm = String(sensors.Power) + "," + String(sensors.Power2) + "," + 

String(sensors.Voltage); 

        Serial.println(Comm); 

        break; 

         

      default: 

        break; 

         

      command = ""; 

    } 

  } 

} 
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Appendix B - Datasheets, Part Specifications and Features 

Accu-Coder Encoder from Encoder Products 

Part #: 15s-19m3-0500n5qpp-f00 
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AM Equipment 226 Worm Gear Motor 
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AS 5600 Magnetic Encoder 

Features 

• Contactless angle measurement 

• Simple user-programmable start and stop positions over the I²C interface 

• Maximum angle programmable from 18° up to 360° 

• 12-bit DAC output resolution 

• Analog output ratiometric to VDD or PWM-encoded digital output 

• Automatic entry into low power mode 

Product parameters 

Resolution [bit] 12 

Interface I²C 

Output Analog out / PWM / I²C 

Max. Speed [rpm]  

Overvoltage Protection No 

Redundant No 

Supply Voltage [V] 3-3.6 and 4.5-5.5 

Temperature Range [°C] -40 to +125 

Package SOIC-8 

Automotive Qualified  

Longevity Program January 2031 
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Dakota Lithium 24V 50Ah Battery 
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Geophex GEM-2 
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HQST 100W Solar Panel 
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Latte Panda Alpha 

Intel® Core™ M3-8100Y,  Dual-Core, 1.1-3.4GHz 
Intel® UHD Graphics 615 
8GB Memory 
Dual-Band 2.5GHz/5GHz Wi-Fi & Bluetooth 4.2 & Gigabit Ethernet 
USB3.0 x3，USB Type-C x1 
2 x M.2 PCIe (Support B&M Key and A&E Key) 
Support Windows 10 & & Linux OS 
Integrated Arduino Coprocessor ATMEL 32U4 
Powered by PD adapter / 12V DC / 7.4V battery 
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Nema 23 Stepper Motor 
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PMod CMPS-2 
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Roboclaw Solo 60A 
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Sparkfun I2C Mux Board 

 

Sparkfun RedBoard 

• ATmega328 microcontroller with Optiboot (UNO) Bootloader 
• CH340C Serial-USB Converter 
• AP2112 Voltage Regulator 
• A4/A5 Jumpers 
• 3.3V to 5V Voltage Level Jumper 
• Input voltage - 7-15V 
• 1 Qwiic Connector 
• 20 Digital I/O Pins (6 PWM Outputs and 6 Analog Inputs) 
• ISP Header 
• 32k Flash Memory 
• 16MHz Clock Speed 
• All SMD Construction 
• R3 Shield Compatible 
• Improved Reset Button 
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TB6600 Microstep Driver 
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Topcon B-125 
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Xbee S3B Radio 
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Appendix C - Wiring Diagram 

 

Figure 45: Wiring Diagram 


