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Límites de corta distancia de la contribución HLbL al momento magnético anómalo del
muon

por Daniel Gerardo MELO PORRAS

La dispersión HLbL no es la contribución hadrónica más grande para el momento magnético
anómalo del muon, pero esta tiene la incertidumbre relativa más grande de todas las contribu-
ciones a ese observable. Con la tensión entre la valor predicho por el Modelo Estándar y las
mediciones actualmente en 4.2 σ, los físico teóricos se han centrado en reducir la incertidumbre
de la contribución HLbL para reducir la tensión o llevarla más allá del umbral de descubrim-
iento. En tal escenario, la contribución de alta energía de la dispersión HLbL al momento mag-
nético anómalo del muon juega un papel importante. El objetivo de la investigación desarrollada
en esta tesis es estudiar la contribución HLbL de primer orden en la región de alta energía máxi-
mamente simétrica muy por encima del límite del umbral hadrónico. Esto se logra al realizar una
expansión de productos de operadores del tensor HLbL, la cual realizamos sistemáticamente con
el método de campos de fondo. Consideramos nuestra aproximación al problema muy eficiente,
entre otras razones, porque esta permite la renormalización directa de los resultados de teoría de
campos. Nuestro método es también original y, hasta nuestro mejor conocimiento, no se encuen-
tra en la literatura. El quark loop sin masa es el primer término de la expansión y lo calculamos
sin dejar de lado su estructura tensorial. Para lograrlo, usamos un método de descomposición
tensorial de integrales de loop que no introduce singularidades cinemáticas. Las integrales es-
calares de loop resultantes con dimensiones modificadas son calculadas considerando toda su
dependencia de la masa y utilizando la representación de Mellin-Barnes. Nuestro método orig-
inal de cálculo para el quark loop proporciona una verificación independiente de los resultados
publicados recientemente en la literatura. Más aún, al conservar la estructura tensorial completa
de la amplitud, podemos llevar a cabo una verificación explícita de una descomposición libre de
singularidades cinemáticas para la dispersión HLbL que juega un papel central en los cálculos
dispersivos del régimen de baja energía.

Palabras clave: Momento magnético anómalo del muon; HLbL; Mellin-Barnes; OPE; Series
hipergeométricas; Residuos multivariables; Singularidades cinemáticas.
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Short distance constraints from HLbL contribution to the muon anomalous magnetic
moment

by Daniel Gerardo MELO PORRAS

Hadronic Light by Light (HLbL) scattering is not the biggest hadronic contribution to the muon’s
anomalous magnetic moment, but it has the biggest relative uncertainty of all the contributions
to that observable. With the tension between the Standard Model value prediction and the mea-
surement at 4.2 σ, theoretical physicists have set their sights on reducing the HLbL contribu-
tion’s uncertainty to reduce the tension or push it beyond the discovery threshold. In such
scenario, the high energy contribution of HLbL scattering to anomalous magnetic moment of
the muon plays an important role. The aim of the research developed in this thesis is to study
the HLbL leading order contribution in the maximally symmetric high energy region well above
the hadronic threshold limit. This is achieved by performing an operator product expansion of
the HLbL tensor, which we do systematically in the background field method. We consider our
approach very efficient, also because it allows a straightforward renormalization of the field the-
oretical results. Our approach is also original and at the best of our knowledge not available in
literature. The massless quark loop is the leading term and we compute it without neglecting
its tensor structure. To this end, we use a tensor–loop–integral decomposition that does not in-
troduce kinematic singularities. The resulting scalar loop integrals with shifted dimensions are
computed with their full mass–dependence using a Mellin–Barnes representation. Our original
method of computation for the quark loop provides an independent check of recent literature
results. Furthermore, by conserving the full tensor structure of the amplitude, we are able to
perform an explicit check of a proposed kinematic–singularity–free tensor decomposition for
the HLbL scattering amplitude that plays a central role in the dispersive computation in the
low–energy regime.

Keywords: Anomalous magnetic moment of the muon; HLbL; Mellin-Barnes; OPE; Hypergeo-
metric series; Multivariate residues; Kinematic singularities.
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1

Introduction

The Standard Model (SM) is the current theoretical paradigm for particle physics at its most
fundamental level. This fact is rooted in the SM’s mathematical consistency and specially in its
highly accurate predictions for precision experiments. In fact, one of the most precisely verified
theoretical predictions in the history of physics and in particular the true triumph of quantum
field theory is the SM magnetic moment of the electron [1–3] µ⃗ = g

( e
2m

)
S⃗, being m the electron

mass and S⃗ its spin operator. The so called anomalous part is expressed by the quantity a = g−2
2 ,

quantifying the deviation of the Landé factor from the classical value g = 2, and is entirely due
to quantum-mechanical phenomena: the “cloud” of virtual particles with which the electron is
constantly interacting, slightly changes the way it interacts with a classical magnetic field (see
figure 1). Therefore, the measurement of the anomalous part of a particle’s magnetic moment
makes possible to test which kind of other particles it interacts with and what is the strength
of the interaction. Consequently, this quantity is of the utmost interest for theoretical physicists
when testing the SM itself and also theories so called Beyond the Standard Model (BSM). For
the electron this anomalous part has been computed to O(α5) in QED, for weak contributions
the uncertainty is ∼ 10−16 and for hadronic contributions it is ∼ 10−14 [3]. The discrepancy with
measurements is 8.76 · 10−13 [2] or 2.42 times the standard uncertainty (often represented as σ),
which is still far enough from the discovery threshold.

For the muon, the tension between the SM theoretical prediction for the anomalous magnetic
moment aµ and its experimental measurement is bigger. Therefore, it has attracted very much
attention since the Brookhaven National Laboratory (BNL) experiment results shed light on the
issue in 2004 [4]. There has been an enduring effort, on both the experimental and theoretical
sides, to solve this tension or verify if such a discrepancy goes beyond the 5 σ and thus to discern
if it is a signal of New Physics (NP). To this end it is necessary to reduce the uncertainty on both
the measurements and the SM theoretical value. Currently, the tension stands at 4.2σ if the 2021
results from Fermilab (FNAL) [5] are taken into account in addition to the BNL ones:

aBNL
µ = 116 592 089(63) · 10−11 , (1)

aFermilab
µ = 116 592 040(54) · 10−11 , (2)

aexp
µ =

(
aBNL

µ

σ2
BNL

+
aFermilab

µ

σ2
Fermilab

)(
1

σ2
Fermilab

+
1

σ2
BNL

)−1

, (3)

where σ represents the standard deviation of the corresponding value. As usual the combination
of the two measurements is obtained from the principle of maximum likelihood which, mathe-
matically realized by the method of least squares due to the Gaussian probability distribution,
provides the above weighted average.

Consequently, the tension between the SM value and the measurement is:

∆aµ = aexp
µ − aSM

µ = 251(59) · 10−11 or 4.2 σ . (4)
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FIGURE 1: Interaction of a fermion with a classical electromagnetic field at tree
level (left) vs. corrections due to virtual particles (right).

The most recent consensus SM prediction aSM
µ has been obtained by the “Muon g − 2 Theory

Initiative” and is described in [6]. A review of recent developments can be found in [7]. The need
for improvement in the SM values becomes more urgent in light of the projected uncertainty for
the FNAL experiment: 16 · 10−11 [8].

From the three fundamental interactions considered in the SM, only the strong force contribu-
tion currently has an uncertainty that is relevant with respect to the tension’s value [6]. There-
fore these strong contributions to aµ are the main focus of the theoretical work towards reducing
uncertainty. Hadronic contributions affect aµ in two ways: the so called Hadronic Vacuum Po-
larization (HVP) and Hadronic Light by Light Scattering (HLbL).

The topology of diagrams from which the HVP contribution to aµ arises can be seen in figure 2.
This contribution is much larger than the HLbL one and moreover it can be computed from ex-
perimental measurements in the well–known approach of dispersive integrals [6]. More specifi-
cally, the contribution from HVP amounts to 6845 · 10−11 and from HLBL it is 92 · 10−11. HVP is
essentially an hadronic correction to the photon propagator, then, because of analyticity of Green
functions and the unitarity of the theory, it can be computed from the cross section of a virtual
photon decaying into hadrons. This cross section can be extracted from e+e− −→ Hadrons data
in experiments such as DAΦNE, BEPCII, and VEPP − 2000. The method of determination
of the HVP amplitude by dispersive relation approach (dispersive method) involves integrals
of the imaginary part of the amplitude expressed by the optical theorem in terms of the total
cross section [9, 10]. Those integrals are performed in the center of mass energy variable,

√
s,

by consequence it is necessary to know the e+e− −→ Hadrons cross section at different values
of s. This can be achieved either by directly changing the energy of the e− and e+ beams, called
direct scan [11, 12], or by fixing it and letting the (measured) initial–state radiation do the work of
varying the energy of the virtual photon which then decays into hadrons, called radiative return
[13, 14]. There are also alternative methods of measuring HVP by τ decay experiments [15] and
by measuring the hadronic contribution to the running of the fine structure constant α = e2/4π
from µ−e− elastic cross sections, called the MUonE project [16–18]. From the experimental side,
efforts seek to tackle issues such as the lack of data on some hadronic channels or very close
to the threshold and the tensions between current data. Instead, the theoretical work focuses
on providing estimates on the contribution of unmeasured channels at low energy and directly
computing contributions at high energy through perturbative QCD. Also there is interest in
achieving a proper modelling of final–state radiation in multi–hadronic systems, for some ex-
periments neglect these data and it is therefore necessary to put it back in before using it in
the dispersion integrals [6]. Of course there are the constantly improving results of lattice QCD,
which have very recently become comparable to the dispersive ones in terms of uncertainty [19].
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FIGURE 2: Hadronic vacuum polarization contribution to the anomalous magnetic
moment of the muon. The blob contains only strongly interacting virtual particles.

In fact, this recent lattice computation is in tension with prior data–drive results, but it could by
itself bring the tension with the experiment down to 1.5 σ. Currently, there is a search for new
lattice works of similarly small uncertainty to confirm the tension and meaningful progress has
been achieved already [20].

Now we go on to the HLbL scattering. The diagrams through which it contributes to aµ can be
seen in figure 3. The HLbL contribution has the typical size of the electroweak corrections to
the aµ, the latter amounting to (156.1± 1) · 10−11 [6]. That size is what is expected from new
physics (NP) and the amount requested experimentally to include BSM effects since the order of
magnitude of what might be the contribution of new physics to the muon anomaly is expected

to be: aµ(EW)
(

MW
MNP

)2
× couplings with MNP ≫ MW [21]. In contrast with HVP, the theoretical

side of the HLbL scattering computation had been much less understood until recently. The
added complexity is due to the fact that four currents are involved, instead of only two. This
introduces several difficulties. First of all, HLbL scattering cannot be as cleanly related to e+e−

annihilation or other experiments. Furthermore, the HLbL amplitude has a much more com-
plex tensor decomposition: it is a linear combination of 43 tensors, even after gauge invariance
constraints have been considered. Moreover, it is necessary to expand this set to a redundant
one with 54 elements in order to avoid kinematic, meaning spurious or in general no-dynamical,
singularities, that spoil the dispersive approach. In the end, for the purpose of computing aHLbL

µ ,
it is only necessary to know 7 of these scalar coefficients, since the rest are related to them by
crossing symmetry of Mandelstam’s variables. Meanwhile, for HVP one initially has two tensor
structures which are then reduced to one due to gauge invariance. In fact, this dispersion–fit
tensor decomposition for HLbL was only recently found for the first time [22, 23]. This multi-
plicity of scalar coefficients makes the dispersive approach much more complex for HLbL than
it is for HVP, because each coefficient requires its own dispersive integral. In spite of this, con-
tribution of intermediate states with masses up to around 1 GeV have been quite successfully
computed from this approach. These include pseudoscalar poles, box topologies and rescat-
tering diagrams [6]. Particular applications with pions can be found in [23–25]. Before recent
breakthroughs with the dispersive method, the low energy regime of the HLbL scattering was
studied mostly with hadronic models, whose uncertainty was harder to assess. An advantage
on the computation of the HLbL contribution with respect to the HVP one is that the first one
appears at one further order of α than the second one and thus its computation requires slightly
less accuracy. Finally, a common feature for both HLbL and HVP is that they are dominated by
very different degrees of freedom at low and high energies, namely, hadrons and then quarks
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q1 q2

q4 −→ 0

q3

FIGURE 3: Hadronic light–by–light scattering contribution to the anomalous mag-
netic moment of the muon. The blob contains only strongly interacting virtual

particles.

and gluons1, respectively. The fact that HVP and HLbL amplitudes enter the muon vertex as an
insertion of one and two loops, respectively, makes it necessary to properly “sew” the contribu-
tions from different approaches at different kinematic regions.

As mentioned previously, the HLbL amplitude at low photon virtualities (see figure 3) was ob-
tained from low–energy QCD models (scalar QED for the pion, Nambu Jona-Lasinio model and
vector meson dominance, for example) [26, 27] or, more recently, from dispersive integrals on
hadronic production from multiple virtual photons [28]. Of course, these methods have a cer-
tain high energy limit of validity, be it conceptual or practical. For the dispersive approach it
is the latter case. Extension to heavier intermediate states has been hindered by a lack of data
on the necessary subprocesses and the increasing complexity of unitarity diagrams with multi-
ple particles. Fortunately, heavy intermediate states contributions are suppressed in dispersive
integrals by a narrower phase space and thus one can consider states up to certain mass and
still obtain a useful result. Nevertheless, to assess or reduce the uncertainty coming from the
neglected heavier states it is necessary to resort to tools that complement, replace or evaluate
the dispersive approach at high energies. These tools are called short distance constraints (SDC).
For example, in the high energy regions of dispersive integrals, data for an hadronic form factor
can be replaced by the expression for its known asymptotic behaviour. One can also evaluate the
asymptotic behaviour of HLbL scattering amplitude itself and use it to evaluate how well the set
of intermediate states considered in the dispersive approach resembles such behaviour. For a fi-
nite number of intermediate states it is not possible to completely mimic such behaviour [29, 30],
but this fact can be used to measure how well a set of intermediate states represent high energy
contributions. Such studies are a key complement of dispersive computations and play a central
role in uncertainty assessment [31–33]. There are two loop momenta configurations that lead to
a high energy regime in HLbL scattering: |q2

1| ∼ |q2
2| ∼ |q2

3| ≫ Λ2
QCD and |q2

1| ∼ |q2
2| ≫ Λ2

QCD,
where q1, q2 and q3 are the virtual photon momenta, q4 is the real soft photon momentum rep-
resenting the electromagnetic external field (see figure 3) and ΛQCD is the QCD hadronic regime
threshold. The main purpose of this research is to compute the HLbL scattering amplitude by
the methods of perturbative QCD in the regime in which the absolute values of the three vir-
tualities, q2

1, q2
2, q2

3, are much larger than the hadronic threshold. In particular, we perform an
operator product expansion (OPE) in an electromagnetic background for the HLbL scattering
amplitude following [34–36], but we fully harness the background field method to provide an
original and, in our view, more systematic framework, to include the hadronic contributions in
the same spirit of QCD sum rules. The main result of the work is nevertheless the computation
of the quark loop amplitude that constitutes the leading contribution of the HLbL scattering
amplitude at high energies. Our computation can be considered an extension of the literature’s

1In principle, the dispersive approach could be used at high energies (virtualities of the photons) as well, but then
many more hadronic degrees of freedom are excited and it is not feasible to consider them all.
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result, because we obtain and study the full tensor structure of the amplitude and obtain a com-
plete series expansion of ligth quark mass corrections up to arbitrary order. The computation is
implemented using original Mathematica scripts in combination with state–of–the–art packages,
FeynCalc [37–39] and MBConicHulls [40], for computations in high energy physics.

The structure of this thesis is as follows. In the first chapter we present the basics of the com-
putation of the HLbL contribution to aµ with special focus on the dispersive approach. We also
present a tensor decomposition of the HLbL amplitude suitable for a Mandelstam representa-
tion (that is, such that the scalar coefficient have not kinematic zeroes or singularities) and the
projectors associated to its scalar coefficients. We also arrive to the master formula that provides
the basis to compute the quark loop contribution to aµ in terms of the Mandelstam decompo-
sition scalar coefficients. In the second chapter we perform the OPE of the HLbL scattering
amplitude considering operators of up to six mass dimensions. To avoid singularities related
to the static limit for the soft external photon we introduce the latter as an external electromag-
netic background field. We study the background field method for HLbL scattering and in that
framework perform systematically the OPE computation. This allows us to introduce the renor-
malization of the OPE expansion and Wilson coefficients in a natural way from the perspective
of background operators renormalization.

Chapter 3 contains the main original results of this work. In it we present the full computation
of the quark loop (from the OPE Wilson coefficient), without using projectors. In contrast with
the literature’s approach, we compute the quark loop amplitude with its full tensor structure, i.e.
without the use of projectors to obtain relevant amplitudes. This allows us to provide an explicit
check of the generality of the kinematic–singularity–free decomposition of the HLbL scattering
amplitude that is the base for dispersive computations. To this end, we present alternative loop
tensor decomposition tools that do not introduce kinematic singularities [41]. We also compute
the resulting scalar integrals keeping their full mass dependence by means of Mellin–Barnes
integrals in multiple variables [42]. Lastly, we compute the quark loop contribution to aµ and
discuss the impact of such results. Finally, we give our conclusions and consider outlooks of
future work. There are two appendices in this thesis. The first one presents the Gegenbauer
polynomial method for computing the angular part of loop integrals, which plays a role in the
derivation of the master formula for the HLbL scattering contribution to aµ. The second ap-
pendix contains complements for the derivation of some of the second chapter’s results.
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Chapter 1

HLbL contribution to aµ

In this chapter we review the basics of the computation of the HLbL contribution to aµ with
special focus on the dispersive approach. We present a tensor decomposition of the HLbL am-
plitude suitable for a Mandelstam representation (that is, such that the scalar coefficient have no
kinematic zeroes or singularities) and the projectors associated to its scalar coefficients. We also
arrive to the master formula which provides the basis to compute the quark loop contribution
to aµ in terms of the Mandelstam decomposition scalar coefficients.

1.1 Basics

In this section we present the basics of the anomalous magnetic moment of a fermion.

The magnetic moment of a particle is defined through its scattering amplitude on a classical
magnetic field. More specifically, for a particle with spin s and magnetic moment µ interacting
with a classical magnetic field B, the matrix element of the interaction hamiltonian Hint between
an initial state ψpσ with momentum p and spin projection σ and final state ψp′σ′ is:

⟨ψp′σ′ |Hint|ψpσ⟩ = −
µ

s
(J(s))σ′σ · B δ3(p′ − p)× 2m , (1.1)

where δ3 represents the Dirac delta in three dimensions, m stands for the particle’s mass and J(s)

is the little group generator associated to a massive particle of spin s. It is worth noting that the
factor 2m appears only due to the relativistic normalization of the states:

⟨ψp′σ′ |ψpσ⟩ = 2p0δσσ′δ
3(p′ − p) . (1.2)

For a relativistic charged particle, the corresponding matrix element is:

⟨ψp′σ′ |Hint|ψpσ⟩ = −eq jµ Aµ , (1.3)

where Aµ is the classical electromagnetic potential, jµ is the matrix element of the particle’s
current operator and eq represents its electric charge. For the muon we have s = 1/2, eq = −e1

and:

jµ(x) = ei(p−p′)x⟨µ−p′σ′ |J
µ(0)|µ−pσ⟩ = ei(p−p′)xup′σ′Γµ(p′, p)upσ , (1.4)

1e represents the absolute value of the electric charge of the electron.
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Dirac matrices’ basis element Available structures
1 Pµ, qµ

γµ γµ, qµ/q , qµ/P, Pµ/q , Pµ/P, ϵµνλργνPλqρ

γ5 Pµγ5, qµγ5

γµγ5 γµγ5, qµ/qγ5, qµ/Pγ5, Pµ/qγ5, Pµ/Pγ5, ϵµνλργνγ5Pλqρ

σµν PαqβσαβPµ, Pαqβσαβqµ, σµνPν, σµνqν, ϵµνλρσνλPρ, ϵµνλρσνλqρ

TABLE 1.1: A priori available structures in the covariant decomposition of the
muon electromagnetic on–shell vertex Γµ (see equation (1.4) and figure 1). We use

σµν = i
2 [γ

µ, γν]

where Jµ represents the electromagnetic current Heisenberg operator of the muon, Γµ (in QFT)
is the amplitude of the full on–shell vertex diagram to the right of Figure 1 and ups and up′s′ are
the spinors associated to the incoming and outgoing muon, respectively.

Considering the fact that jµ has to behave as a four vector under Lorentz transformations and
it may contain elements of Dirac matrices, then Γµ must be a linear combination of the four–
momenta, the Levi–Civita symbol ϵµνλρ and Dirac bilinears, which are listed in the first col-
umn of table 1.1. The tensor rank of these three types of objects can be lowered by contraction
with each other and raised by multiplication among themselves, which broadens the number
of spinor matrix elements that transform as a vector and thus a priori form a vector basis for
jµ. The complete set of independent structures that can be built in this way is written in the
second column of table 1.1, where we have used the basis of total momentum Pµ ≡ pµ + p

′µ and
exchanged momentum qµ ≡ p

′µ − pµ. However, such set can be greatly reduced. For example,
from the available structures in the second column and second row of table 1.1, four elements
are rendered trivial via the on–shell character of the spinors in (1.4). The remaining structures
after using the Dirac equation of motion are written in table 1.2. Some cancellations require
Dirac algebra and are worth mentioning:

[/p, /p′] = −2/p′/p + 2p · p′ , (1.5)

[/p, γµ] = −2/pγµ + 2pµ , [/p′, γµ] = 2/p′γµ − 2p
′µ , (1.6)

γ5γβϵβµρτPρqτ =
i
6
(γµ[γρ, γτ] + [γρ, γτ]γµ − γργµγτ + γτγµγρ)Pρqτ , (1.7)

γ5γβϵβµρτγρqτ =
i
6
(γµ[γρ, γτ] + [γρ, γτ]γµ − γργµγτ + γτγµγρ)γρqτ , (1.8)

γ5γβϵβµρτγρPτ =
i
6
(γµ[γρ, γτ] + [γρ, γτ]γµ − γργµγτ + γτγµγρ)γρPτ . (1.9)

The last three equations can be obtained by writing γ5 as i
4! ϵ

µνλργµγνγλγρ (with ϵ0123 ≡ 1) and
then using the identity for the product of two Levi-Civita symbols. It is worth noting that γ5 can
be put at either side of these three equations and then they can be used to simplify to different
structures of table 1.1.

By applying gauge invariance of the muon electromagnetic vertex, we can conclude that the
most general tensor structure of up′σ′Γµ(p′, p)upσ is:

up′σ′Γµ(p′, p)upσ = up′σ′
(

A1(q2)γµ + Pµ A2(q2) + (γµ − 2mqµ

q2 )γ5A3(q2) + Pµγ5A4(q2)
)

upσ .



Chapter 1. HLbL contribution to aµ 8

Dirac matrices’ basis element Available structures
1 Pµ, qµ

γµ γµ

γ5 Pµγ5, qµγ5

γµγ5 γµγ5

σµν None

TABLE 1.2: Remaining structures in the covariant decomposition of the muon elec-
tromagnetic on–shell vertex Γµ (see equation (1.4) and figure 1) after using Dirac’s

equation of motion.

However, it is more common to rewrite this via the Gordon identity:

up′σ′γ
µupσ =

1
2m

up′σ′{Pµ + iσµνqν}upσ , (1.10)

=⇒ up′σ′Γµ(p′, p)upσ = up′σ′
(

F1(q2)γµ + iσµν qν

2m
F2(q2) + (γµ − 2mqµ

q2 )γ5F3(q2)

+ σµν qν

2m
γ5F4(q2)

)
upσ . (1.11)

This convention is used because σµν ≡ i
2 [γ

µ, γν] is the generator of Lorentz transformations for
covariant wave functions of Dirac fermions and therefore σij generates rotations and little group
transformations. Hence the parallel with (1.1) becomes straightforward. In (1.11) F1, F2, F3 and F4
are Lorentz invariant coefficients, also called “form factors”. The first two are associated to parity
conserving contributions and are also known as electric and magnetic form factor, respectively.
On the other hand, F3 and F4 are related to parity violating and CP violating contributions,
respectively, and are also known as anapole moment and electric dipole moment.2

Since the anomalous magnetic moment is related to a non–relativistic interaction, it is therefore
necessary to evaluate the muon vertex in the limit of zero exchanged momentum, that is q→ 0.
In such limit we have F1(0) = 1 in order to define e as the physical electric charge measured in
the interaction with a classical Coulomb field. Also we have F3(0) = 0 in this limit. On the other
hand, F2(0) and F4(0) are not constrained.

In the limit of zero exchanged momentum and a slowly varying magnetic field (1.3) and (1.4)
become:

⟨ψp′σ′ |Hint|ψpσ⟩ = 2m× e
m
(1 + F2(0))(J(1/2))σ′σ · B δ3(p′ − p) , (1.12)

which means:

µ =
e

2m
(1 + F2(0)) . (1.13)

The number one that appears along with F2(0) is in fact F1(0). At tree level we have Γµ = γµ

and thus µ =
eq
2m , which of course agrees with Pauli’s equation and Dirac’s equation in the non–

relativistic limit. Then, quantum corrections to this classical value can be singled out by the

2These coefficients have to behave as a Lorentz scalar because the covariant vector transformation have already
been taken into account in the tensor elements of the decomposition. Also, they can only depend on q2, just as Γµ,
because of translation invariance.
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gyromagnetic factor g:

µ ≡ g
eq

2m
s =⇒ a ≡ 1

2
(g− 2) = F2(0) , (1.14)

where a is called the anomalous part of the magnetic moment of such particle. For the muon we
will use the symbols aµ and gµ.

1.2 Computing aµ from Feynman amplitudes

The purpose of this section is to present an explicit formula to compute aµ from the Feynman
amplitudes of the muon electromagnetic vertex.

As seen in equation 1.11 and 1.14, aµ can be computed from the amplitude of the electromagnetic
vertex of the muon. However, we are only interested in the magnetic form factor F2. The obvious
path is to compute the amplitude of the relevant Feynman diagrams up to certain order and then
rearrange the result according to 1.11 to finally read F2 off. However, the rearrangement of the
result becomes unbearably complex at higher perturbative orders. Therefore, it is more efficient
to project F2 out of the on–shell vertex in 1.4.

The projector needed for the electric and magnetic form factors are, respectively [43]:

Pµ
1 ≡

1
(q2 − 4m2)2

(γµ

4
(q2 − 4m2) +

3m
2

Pµ)
)

, (1.15)

Pµ
2 ≡ −

m2

q2(q2 − 4m2)

(
γµ +

q2 + 2m2

m(q2 − 4m2)
Pµ
)

, (1.16)

which are to be used in the following way:

Fi(q2) = Tr{(/p + m)Piµ(/p′ + m)Γµ} , (1.17)

where the trace acts on the gamma matrices space. Thus, for our case of interest we have:

aµ = F2(0) = − lim
q→0

Tr{(/p + m)
m2

q2(q2 − 4m2)

(
γµ +

q2 + 2m2

m(q2 − 4m2)
Pµ

)
(/p′ + m)Γµ} . (1.18)

Note that it is not possible to explicitly take the q → 0 limit straight away because of the 1/q2

factor in P2µ. Although expanding Γµ around q = 0 is inevitable, we can cap the expansion at
first order if we first reorganize P2 a bit using a slightly different version of the Gordon identity
for the on-shell vertex

(/p′ + m)γµ(/p + m) =
1

2m
(/p′ + m){Pµ + iσµνqν}(/p + m) , (1.19)

=⇒ (/p + m)Pµ
2 (/p

′ + m) = (/p + m)
−m

2(q2 − 4m2)

(
− iσµν qν

q2 +
3

(q2 − 4m2)
Pµ
)
(/p′ + m) . (1.20)

We see that the divergent term in the projector is of order 1/q, so, as claimed, we only need to
expand Γµ to first order in q to retain all the relevant terms in the q→ 0 limit:

Γµ(q2) = Γµ(0) + qν ∂νΓµ(q2)|q=0︸ ︷︷ ︸
≡Γµν

. (1.21)



Chapter 1. HLbL contribution to aµ 10

By inserting (1.21) as well as (1.20) into (1.18) with the substitutions p′ = 1
2 (P + q) and p =

1
2 (P− q) we evaluate the corresponding expression at q = 0 obtaining after some algebra:

aµ = lim
q→0

−m
2(q2 − 4m2)

Tr
{
(

1
2
{/P− /q}+ m)

(
− iσµν

qν

q2 +
3

(q2 − 4m2)
Pµ

)
× (

1
2
{/P + /q}+ m)(Γµ(0) + qβΓµβ)

}
(1.22)

= lim
q→0

im
2(q2 − 4m2)

Tr
{
(

1
2
{/P− /q}+ m)σµν

qν

q2 (
1
2
{/P + /q}+ m)Γµ(0)

}
+ lim

q→0

im
2(q2 − 4m2)

Tr
{
(

1
2

/P + m)σµν
qνqβ

q2 (
1
2

/P + m)Γµβ
}

− 3
16m3 Tr

{
(/p + m)pµ(/p + m)Γµ(0)

}
(1.23)

= lim
q→0

im
2(q2 − 4m2)

Tr
{(
− 1

2/qσµν
qν

q2 (
1
2

/P + m) + (
1
2

/P + m)σµν
qν

q2 (
1
2

/P + m)

+ (
1
2

/P + m)σµν
qν

q2
1
2/q}

)
Γµ(0)

}
+ lim

q→0

im
2(q2 − 4m2)

Tr
{
(

1
2

/P + m)σµν
qνqβ

q2 (
1
2

/P + m)Γµβ
}
− 3

8m2 Tr
{

pµ(m + /p)Γµ(0)
}

,

(1.24)

where we have neglected any terms of order q or higher and we have explicitly evaluated the
limit for the part of the projector which has no 1/q2 factor. We still have divergent terms together
with linear and bilinear tensor dependence on qµ. To get rid of them we will harness the fact that
F2(q2) is a Lorentz scalar coefficient in a covariant tensor decomposition. Thus, before taking the
q→ 0 limit we are allowed to perform Lorentz transformations on qµ.

In particular, we can perform spatial rotations, thus, we carry out an angular average over the
spatial components of qµ taking P as reference, that is, leaving it fixed. The results are:∫ dΩ

4π
qµ = 0 ,∫ dΩ

4π
qµqν =

q2

3

(
gµν − PµPν

P2

)
.

(1.25)

The first result is obvious3 by the oddness of the integrand. For the second result it was necessary
to invoke Lorentz covariance to perform a tensor decomposition into gµν and PµPν and then we
turn to trace and contraction with P to find the corresponding coefficients.

By inserting the angular averages (1.25) inside (1.24) we obtain:

aµ =
−i

48m
Tr
{(
− γασµν(/p + m) + (/p + m)σµνγα}

)(
gαν − pα pν

m2

)
Γµ(0)

}
− i

24m
Tr
{
(/p + m)σµν

(
gν

β −
pν pβ

m2

)
(/p + m)Γµβ

}
− 3

8m2 Tr
{

pµ(m + /p)Γµ(0)
}

=
−i

48m
Tr
{(

3i{(/p + m), γµ}+
i
m
{(pµ −mγµ), (/p + m)}

)
Γµ(0)

}
− i

24m
Tr
{
(/p + m)σµβ(/p + m)Γµβ

}
− 3

8m2 Tr
{

pµ(m + /p)Γµ(0)
}

3Perhaps it is worth noting that q0 =
√

p′2 + m2 −
√

p2 + m2, too, is odd since p and p′ have the same mass.
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=
1

48m
Tr
{(

6pµ + 4mγµ +
2
m

pµ/p
)

Γµ(0)
}

+
1

48m
Tr
{
(/p + m)[γµ, γβ](/p + m)Γµβ

}
− 3

8m2 Tr
{

pµ(m + /p)Γµ(0)
}

= Tr
{( 1

12
γµ −

1
4

pµ

m
− 1

3
1

m2 pµ/p
)

Γµ(0)
}
+

1
48m

Tr
{
(/p + m)[γµ, γβ](/p + m)Γµβ

}
, (1.26)

where we have used multiple times the on-shell relation (/p + m)/p = /p(/p + m) = m(/p + m).
The issues about the limit q→ 0 limit in Γµ and Γµν will be addressed in section 1.5.

1.3 Computing aµ from HLbL scattering amplitudes

In this section we specialize the result obtained in section 1.2 to compute aµ from HLbL scattering
amplitudes.

From all the SM interactions that can occur in the muon vertex shown in figure 1 and, thus,
contribute to aµ, in this work we are only interested in the ones coming from hadronic light–
by–light scattering, whose diagrams are shown in Figure 3. The term “light–by–light” makes
reference to the subdiagram appearing in figure 3, which has four external photons (three virtual
and attached to the muon line and one representing and external field). The term “hadronic” is
due to the fact that only strongly interacting particles (quarks and gluons) or hadrons (mesons
and various resonances) are allowed to appear in the blob of figure 3, either as virtual exchanged
particles or as poles of the amplitude, for the HLbL contributions.

The first step is to isolate the HLbL subdiagram amplitudes from the muon electromagnetic
vertex ones. Making use of the Feynman rules for QED it is possible to read the result off the
Feynman diagram in figure 3:

iMµ = −ieup′σ′Γµupσ ,

=⇒ Mµ4 = −eup′σ′Γµ4 upσ

= up′σ′

∫ d4q1

(2π)4

∫ d4q2

(2π)4
−i
q2

1

−i
q2

2

−i
q2

3
(−ieγµ1)i

/p′ + /q1 + m
(p′ + q1)2 −m2

× (−ieγµ3)i
/p − /q2 + m

(p− q2)2 −m2 (−ieγµ2)M
µ1µ2µ3µ4
HLbL (q1, q2, q3)upσ , (1.27)

whereMµ represents the Feynman amplitude of the muon electromagnetic vertex andMµ1µ2µ3µ4
HLbL

represents the Feynman amplitude of the hadronic blob inside figure 3. Let us present the matrix
element related to this Feynman amplitude:

Mµ1µ2µ3µ4
HLbL = e4 ×−i

∫
d4x

∫
d4y

∫
d4ze−i(q1x+q2y+q3z)⟨Ω|Jµ1

q (x)Jµ2
q (y)Jµ3

q (z)Jµ4
q (0)|Ω⟩︸ ︷︷ ︸

≡Πµ1µ2µ3µ4

, (1.28)

where |Ω⟩ represents the vacuum of the QCD and Jq stands for electromagnetic quark currents.4

In the literature, Πµ1µ2µ3µ4 is referred to as “fourth rank vacuum polarization tensor” [44–46] or

4More generally speaking, these represent electromagnetic currents of strongly interacting particles, but are re-
duced to quarks since gluons do not share interaction vertices with photons.
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“HLbL tensor” [28, 34]. Introducing this new convention into (1.27) we obtain:

Γµ4
HLbL = −e6

∫ d4q1

(2π)4

∫ d4q2

(2π)4
1
q2

1

1
q2

2

1
q2

3
γµ1

/p′ + /q1 −m
(p′ + q1)2 −m2 γµ3

/p − /q2 −m
(p− q2)2 −m2 γµ2

×Πµ1µ2µ3µ4(q1, q2, q3) . (1.29)

The next step towards finding the HLbL contribution to aµ, labelled aHLbL
µ is to insert (1.29)

into (1.26). Before doing that, though, it is useful to note that Πµ1µ2µ3µ4 |q4→0 = 0 and therefore
Γα

HLbL|q4→0 = 0. This can be deduced from the analysis of cross sections in the soft–photon limit
presented in [47], which concludes that the cross section of a process in the limit in which an
external photon becomes soft is equal to a sum of terms proportional to the amplitude of the
process without the soft photon or its derivative plus vanishing contributions proportional to
the soft photon momentum. In the context of HLbL scattering, the previous statement reads:

Πµ1µ2µ3µ4(q1, q2, q3, q4) ∼ Πµ1µ2µ3 Aµ4 + ∂Πµ1µ2µ3 Bµ4 + O(q4) , (1.30)

where Πµ1µ2µ3 represents the three–photon scattering amplitude, Aµ4 and Bµ4 are two vectors of
order O(1/q4) and O(q0

4), respectively, and ∂ represents derivative with respect to some kine-
matic variable of the problem. From Furry’s theorem the three–photon amplitude is equal to
zero and therefore Πµ1µ2µ3µ4 vanishes (at least) linearly in the static field limit.5 In the end we
get:

aHLbL
µ =

1
48m

Tr
{
(/p + m)[γµ, γβ](/p + m)Γµβ

HLbL

}
. (1.31)

From (1.29) we find:

∂Γµ4
HLbL

∂q4ν4

= −e6
∫ d4q1

(2π)4

∫ d4q2

(2π)4
1
q2

1

1
q2

2

1
q2

3
γµ1

/p + /q1 + m
(p + q1)2 −m2 γµ3

/p − /q2 + m
(p− q2)2 −m2 γµ2

×
(
−

2qν4
4

q2
3

+
∂

∂q4ν4

)
Πµ1µ2µ3µ4 , (1.32)

∂Γµ4
HLbL

∂q4ν4

∣∣∣
q4→0

= e6
∫ d4q1

(2π)4

∫ d4q2

(2π)4
1
q2

1

1
q2

2

1
q2

3
γµ1

/p + /q1 + m
(p + q1)2 −m2 γµ3

/p − /q2 + m
(p− q2)2 −m2 γµ2

× ∂

∂q4µ4

Πµ1µ2µ3ν4

∣∣∣
q4→0

, (1.33)

where we have used the antisymmetry between µ4 and ν4 of ∂µ4 Πµ1µ2µ3ν4 |q4→0, which can be
deduced by differentiating the Ward identity twice with respect to q4. Finally turning back to
aHLbL

µ one obtains:

aHLbL
µ =

e6

48m

∫ d4q1

(2π)4

∫ d4q2

(2π)4
1
q2

1

1
q2

2

1
q2

3

1
(p + q1)2 −m2

1
(p− q2)2 −m2

× Tr
{
(/p + m)[γµ4 , γν4 ](/p + m)γµ1(/p + /q1 + m)γµ3(/p − /q2 + m)γµ2

}
× ∂

∂q4µ4

Πµ1µ2µ3ν4 |q4→0 . (1.34)

From here there are only three steps left to compute aHLbL
µ : compute the Dirac trace, compute

5It is worth noting that it is not possible to arrive at this conclusion using Weinberg’s eikonal factor since the
external soft photon may be emitted by an internal line in the strongly–interacting blob.
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∂µ4 Πµ1µ2µ3ν4 |q4→0 and compute the two–loop integral. The trace can be performed straightfor-
wardly. On the other hand, the computation of the HLbL amplitude is very complex and it is
therefore necessary to study it in depth before advancing further.

1.4 Mandelstam representation for the HLbL amplitude

In this section we will present the dispersive approach for computing Πµ1µ2µ3µ4 and the associ-
ated Mandelstam representation.

In the previous section we expressed aµ in terms of the HLbL scattering amplitude Πµ1µ2µ3µ4

which corresponds to the strong interactions appearing inside the blob of figure 3. It is well
known that the strong interaction coupling αs becomes larger and approaches 1 at low ener-
gies. The asymptotic freedom, therefore, invalidates the perturbation theory for the S–matrix at
a lower energy scale than ΛQCD ∼1 GeV. Since the amplitude Πµ1µ2µ3µ4(q1, q2) appears inside a
two loop integral on q1 and q2, it is necessary to compute it at different energy regions involving
perturbative and non–perturbative regimes. Furthermore, high energy contributions are also
used as constraints for the asymptotic behaviour of the low energy contributions and it is there-
fore useful that computations in both regimes are performed in a unified framework. In this
chapter we present one of the state of the art the dispersive frameworks for the computation of
the low energy contribution to aHLbL

µ , which will be the one used in chapters 2 and 3.

There are few tools that allow for the computation of amplitudes in non–perturbative regimes.
The main two are: QFT in the lattice and the dispersive approach. The first one tries to solve
the QFT equations in a finite spacetime cube of side length L with discrete Euclidean spacetime
coordinates of spacing a. The observables of interest are then computed for different values
of large L and 1/a and these results are then extrapolated to L, 1/a → ∞ in order to recover
the standard QCD results. Using a very different perspective, the dispersive approach [22–
24, 28] relies on the analyticity properties of the scattering amplitudes and the unitarity of the
S–matrix (probability conservation) to relate the scattering amplitudes of a process with the
cross sections of its sub–processes. For those reasons we speak about data driven approach
because it is based on the match with the poles of the found resonances. QFT computations in the
lattice have very high numerical complexity due to the very large number of degrees of freedom
involved.6 Therefore, even for the simpler case of HVP only till very recently have its results
become competitive with the dispersive ones in terms of uncertainty [19, 48, 49]. Furthermore,
for HLbL the first lattice computations are relatively new are still not competitive with dispersive
ones. Although the dispersive approach for the computation of the HLbL contribution to aµ also
has its drawbacks, the main one relating to the Mandelstam representation of Πµ1µ2µ3µ4 have
been recently overcome. This has allowed to obtain the most reliable accounts of aHLbL

µ in recent
years [6].7 In this work we focus on the dispersive approach for the computation of aHLbL

µ . It is
based on four fundamental pillars: unitarity of the S–matrix, the Sugawara–Kanazawa theorem
for functions of a complex variable and the Schwarz reflection theorem. We will review such
pillars in order.

6There are essentially two main sources of complexity: the spacetime square side length L and the inverse of the
spacetime coordinate discrete spacing 1/a. These two need to be large in order to reduce the uncertainty coming
from the extrapolation to L, 1/a→ ∞.

7Although the approach proposed in [22, 23, 28] has been the standard scheme in recent estimations of aHLbL
µ ,

there exist alternate dispersive frameworks. For example, in [50–54] a dispersive equation is applied directly to the
magnetic form factor F2 instead of the HLbL Feynman amplitude.
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1.4.1 Unitarity of the S–matrix

A key concept in relativistic quantum theories of fundamental interactions8 is conservation of
probability. In the context of transition rates, this concept appears as a feature of the S–matrix:
its unitarity. Let us explore the consequences of such feature for the transition matrix T:

S† = S−1 =⇒ (1 + iT)(1− iT†) = 1 =⇒ TT† = i(T† − T) . (1.35)

If we evaluate a certain matrix element of S and insert a complete set of momentum eigenstates
in last equation we obtain [55]:

2ImM(i→ f ) = ∑
n

(
Πn

i=1

∫ d3qi
(2π)3

1
2Ei

)
M∗( f → {qi})M(i→ {qi})

× (2π)4δ4(Pi −∑
i

qi) , (1.36)

where M stands for a Feynman amplitude, i represents the initial state, f the final one and
qi the on–shell intermediate–states, which come from the insertion of the identity resolved in
terms of the momentum eigenstates. If the initial and final states are the same then the right
hand side turns into the total cross section for the transition between the initial states and all
possible physical states of the theory, in which case we obtain the optical theorem.9

Equation (1.36) can only be applied in principle to the complete electromagnetic vertex ampli-
tude. However, it is possible to identify and simplify terms in both sides of the equation such
that it applies just as well to the HLbL subdiagram. The process may be regarded as two initial
virtual photons scattering into two final virtual photons. At this point (1.36) does not seem to be
of much help. We are now entitled to compute one amplitude in terms of infinitely many and
infinitely complex different amplitudes. Additionally, it only provides us with the imaginary
part of Πµ1µ2µ3µ4 . However, to compute observables such as aHLbL

µ in (1.26) we need the com-
plete amplitude. We will answer the first issue later. To deal with the second one we need to
make use of the Nagawara–Kanazawa theorem, which reconstructs a complex variable function
based on its analyticity (poles and branch cuts) properties. We will introduce it in the following.

1.4.2 Sugawara–Kanazawa theorem and Schwarz reflection identity

Consider a function of a complex variable z with (possibly) two branch cuts along the real axis:
one to the right starting at c1 and extending (possibly) to positive infinity and one to the left
starting at −c2 and extending (possibly) to negative infinity. Based on the following three re-
quirements:

• f (z) has finite limits in the positive real infinity direction above and below the right–hand
cut.

• The limit of f (z) in the negative real infinity direction above and below the left–hand cut
exists.

• If f (z) is divergent in certain infinite direction, such a divergence is weaker than a polyno-
mial with finite power N such that N ≥ 1.

8Not any quantum theory conserves probability. Non–relativistic systems with (non–hermitian) absorptive po-
tentials are an example.

9This is the case for the HVP subdiagram in figure 2
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then the Sugawara–Kanazawa theorem [56] claims that f (z) may be represented as:10

f (z) = ∑
i

Ri

z− xi
+

1
π

( ∫ ∞

c1

+
∫ −c2

−∞

)∆x f (x)
x− z

dx + lim
x→∞

f (x) (1.37)

∆x f (x) =
1
2i
{ f (x + iϵ)− f (x− iϵ)} (1.38)

f (x) =
1
2
{ f (x + iϵ) + f (x− iϵ)} , (1.39)

where Ri represents the residue of f (z) in xi which lies on the real interval [−c2, c1]. The two
integrals in (1.37) are performed along the real axis. This representation of f (z) is usually called
“dispersion relation”. The last term is referred to as the “subtraction constant” and accounts for
possible divergences of f (z) in the infinity, which enter the equation as the contribution of the
circumference of a Cauchy integration path at infinity. Except in the case of one–one scattering,
amplitudes have independent variables, therefore applying (1.37) would require to fix all the
other variables except one. In our specific case Πµ1µ2µ3µ4 may be regarded as a function of the
usual Mandelstam variables s, t and u for two–two scattering although only two of them are
independent. Therefore, the Sugawara–Kanazawa theorem has to be applied twice; one for
each independent variable. Then, for HLbL or any two–two scattering in general, the complete
amplitudeM requires a double dispersive integral representation (also known as Mandelstam
representation [57]). The first step to build it is to write a single dispersive representation for,
say, s, which we will consider to be unsubtracted for simplicity:

M(s, t) = ∑
i

Rs
i (t)

s− xs
i
+

1
π

( ∫ ∞

cs
1

+
∫ −cs

2

−∞

)∆s′M(s′, t)
s′ − s

ds′ . (1.40)

Since we are expectingM to “contain” the amplitudes for the three s–, t– and u– channel pro-
cesses, it must be invariant under crossing. As such, given that t has a fixed value, we expect to
have:

M(s, t) = ∑
i

Rs
i (t)

s− xs
i
+

1
π

∫ ∞

c1

∆s′M(s′, t)
s′ − s

ds′ +
1
π

∫ ∞

c1

∆u′M(u′, t)
u′ − u

du′ . (1.41)

Now we perform an analytic continuation on t to whichever value we require. The t dependence
of the residues is usually well–known via interaction form factors. However, the dependence of
∆M is not. To deal with this once again we apply (1.37), but this time for ∆sM and for a fixed s′

and the same for u:

∆s′M(s′, t) =
1
π

∫ ∞

c2(s′)

∆t′∆s′M(s′, t′)
t′ − t

dt′ +
1
π

∫ ∞

c2(s′)

∆u′∆s′M(s′, u′)
u′ − u

du′ (1.42)

∆u′M(u′, t) =
1
π

∫ ∞

c2(u′)

∆s′∆u′M(s′, u′)
s′ − s

ds′ +
1
π

∫ ∞

c2(u′)

∆t′∆u′M(t′, u′)
t′ − t

dt′ ,

where s is the Mandelstam variable associated to u′ and t, while u is the Mandelstam variable
associated to s′ and t. Inserting this into the single dispersion relation we obtain:

M(s, t) = ∑
i

Rs
i (t)

s− xs
i

+
1

π2

∫ ∞

c1

ds′
∫ ∞

c2(s′)
dt′

∆t′∆s′M(s′, t′)
(s′ − s)(t′ − t)

+
1

π2

∫ ∞

c1

ds′
∫ ∞

c2(s′)
du′

∆u′∆s′M(s′, u′)
(s′ − s)(u′ − u)

10There is also another result to this theorem that essentially claims that f (z) has the same limit at infinity in any
direction with positive (negative) imaginary part as it has along and above (under) the right (left) cut.
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+
1

π2

∫ ∞

c1

du′
∫ ∞

c2(u′)
ds′

∆s′∆u′M(s′, u′)
(u′ − u)(s′ − s)

+
1

π2

∫ ∞

c1

du′
∫ ∞

c2(u′)
dt′

∆t′∆s′M(t′, u′)
(u′ − u)(t′ − t)

. (1.43)

It is possible to combine the second and fourth terms by noting that s′ − s = s′ − s + u′ − u =
u′ − u. The final result is:

M(s, t) = ∑
i

Rs
i (t)

s− xs
i

(1.44)

+
1

π2

∫ ∞

c1

ds′
∫ ∞

c2(s′)
dt′

∆t′∆s′M(s′, t′)
(s′ − s)(t′ − t)

+
1

π2

∫ ∞

c1

ds′
∫ ∞

c2(s′)
du′

∆u′∆s′M(s′, u′)
(s′ − s)(u′ − u)

+
1

π2

∫ ∞

c1

du′
∫ ∞

c2(u′)
dt′

∆t′∆s′M(t′, u′)
(u′ − u)(t′ − t)

. (1.45)

Equation (1.45) is known as the Mandelstam representation of M and the objects ∆i∆jM are
called the double spectral functions ofM. The constant c1 and the function c2 have a physical
meaning that will be explained in the next part of the section.

There is a caveat: the theorem applies for scalar functions of a complex variable, but Πµ1µ2µ3µ4 is
not one. Therefore, it is necessary to perform a tensor decomposition on it such the scalar coeffi-
cients of the tensor structures appearing in such decomposition will be treated by the Sugawara–
Kanazawa theorem. The requirements on this tensor decomposition will be discussed later in
the chapter.

1.4.3 Schwarz reflection principle

There is a subtlety that does not let us use (1.36) and (1.37) to compute Πµ1µ2µ3µ4 just yet. ∆ f (z)
is not the imaginary part of f (z), but its discontinuity across the right hand cut. The tool that
allows us to overcome this problem is the Schwarz reflection principle, which states that if a
function f (z) of a complex variable z is real along certain finite segment Γ of the real axis, then:

f ∗(z) = f (z∗) , (1.46)

in a domain D of the z complex plane that contains Γ and in which f (z) is analytic. For any
physically allowed value of the kinematic variables that characterize a process (for example, the
well known Mandelstam variables s, t and u for two–two scattering) there is always at least
one possible intermediate state: the initial one. Intermediate states lighter than the initial one
are always accessible, too. However, we can analytically continue the amplitude to unphysical
values of its kinematic variables. At a sufficiently low center–of–mass (CM) energy no interme-
diate state is allowed and, thus, the amplitude becomes real. Therefore, the Schwarz reflection
principle applies for any Feynman amplitude.

This theorem, along with the fact that a physical region in which the imaginary part of the
amplitude is not null, implies the existence of a discontinuity across the physical region of the
real axis of each kinematic variable. Let z be a kinematic variable of an amplitudeM, then:

2iImM(z + iϵ) =M(z + iϵ)−M∗(z + iϵ) =M(z + iϵ)−M(z− iϵ) (1.47)
= ∆M(z) . (1.48)

Now, we can apply this tool to change ImM for ∆M, which was the result we needed. Con-
necting this result with (1.36) we see that the constant c1 of the previous section is in fact the
CM–frame energy of the lightest multiparticle intermediate state. One–particle intermediate
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states are already taken into account by poles. Analogously, this helps us understand the mean-
ing of c2. For a physical value of s and t, ∆M is just ImM and is hence real. However, if we
analytically continue ∆M beyond the physically permissible boundaries of t, it may (and does)
become complex, betraying the existence of a discontinuity. c2(s) is the point where this hap-
pens. Note that this is true even if s takes a physically allowed value, as is the case in the initial
fixed–t single dispersive integral ofM.

We can see that the presence of an infinite number of amplitudes in the equation for ImM is not
too problematic, because the contribution of heavier intermediate states will be suppressed by
the reduced region in which they contribute to the dispersive integrals.

In summary, from this theoretical framework it is possible to compute scattering amplitudes (in
particular Πµ1µ2µ3µ4) with (1.37) in which ∆M is replaced with ImM thanks to the Schwarz re-
flection principle and in turn we obtain ImM from (1.36).11 This last step requires theoretical or
experimental input to determine the scattering amplitudes of the intermediate states appearing
in (1.36).

1.4.4 Tensor decomposition of Πµ1µ2µ3µ4

We previously mentioned that it was necessary to decompose Πµ1µ2µ3µ4 into tensor structures
with scalar coefficients to apply the dispersive approach to these scalar functions. Nevertheless,
the Mandelstam hypothesis cannot be considered to apply in general for these scalar coefficients
as well. The key point behind this is that the tensor structures of the decomposition may have
kinematic singularities and/or zeroes.12 Since the complete amplitude does not have these, then
the associated scalar coefficient must have corresponding kinematic zeroes and/or singularities
such that they cancel the former. In such cases, zeroes (singularities) change the asymptotic (an-
alytic) behaviour of the coefficients and this has an impact on the dispersion relation in the form
of subtraction constants in (1.37). Such input has to be determined experimentally and its pres-
ence in (1.37) further hinders the computations.13 In order to avoid these issues it is necessary
to perform a tensor decomposition of the amplitude such that none of the tensor structures have
kinematic singularities and/or zeroes. That is called a Bardeen–Tarrach–Tung (BTT) decompo-
sition and it was found recently for Πµ1µ2µ3µ4 . Let us review the main steps in the computation
of such decomposition [22].

The only covariant objects which we can work with are the metric and the momenta of the four
photons. There are 138 possible combinations of said objects. The most general structure is
therefore:

Πµ1µ2µ3µ4 = gµ1µ2 gµ3µ4 Π1 + gµ1µ3 gµ2µ4 Π2 + gµ1µ4 gµ3µ2 Π3

+ ∑
k,l

gµ1µ2 qµ3
k qµ4

l Π4
kl + ∑

j,l
gµ1µ3 qµ2

j qµ4
l Π5

jl + ∑
j,k

gµ1µ4 qµ3
k qµ2

j Π6
jk

+ ∑
i,l

gµ3µ2 qµ1
i qµ4

l Π7
il + ∑

i,k
gµ4µ2 qµ3

k qµ1
i Π8

ik + ∑
i,j

gµ3µ4 qµ1
i qµ2

j Π9
ij

+ ∑
i,j,k,l

qµ1
i qµ2

j qµ3
k qµ4

l Π10
ijkl ,

(1.49)

11This sentence implicitly claims that the analytic properties of an amplitude can be obtained entirely from its
dynamics, that is, from the intermediate states it allows. This claim is known as the “Mandelstam hypothesis” and it
is related to the causality requirement of the theory.

12Kinematic zeroes are defined as zeros of denominators arising when a tensor decomposition is performed.
13It may even introduce ambiguities in the soft photon limit of ImΠµ1µ2µ3µ4 and its derivatives. See [28].
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where the indices are i ∈ {2, 3, 4}, j ∈ {1, 3, 4}, k ∈ {1, 2, 4} and l ∈ {1, 2, 3}.14 There are no kine-
matic singularities in the scalar coefficients till this point. However there are kinematic zeroes
coming from two constraints that we have not yet explicitly accounted for: gauge invariance
and crossing symmetry.

Gauge invariance may be explicitly imposed by projecting each one of the Lorentz indices of the
amplitude onto the orthogonal space of the associated virtual photon momentum. To this end
the following projectors maybe used [59]:

Iµν
12 = gµν −

qµ
1 qν

2
q1 · q2

Iµν
34 = gµν −

qµ
3 qν

4
q3 · q4

(1.50)

which are to be used by taking advantage of gauge invariance of Πµ1µ2µ3µ4 and the projectors’
properties:

Iµ2µ′2
12 Πµ1µ′2µ3µ4

= Π µ2
µ1 µ3µ4 Iµ′1µ1

12 Πµ′1µ2µ3µ4
= Πµ1

µ2µ3µ4

Iµ′3µ3
34 Πµ1µ2µ′3µ4

= Π µ3
µ1µ2 µ4 Iµ4µ′4

34 Πµ1µ2µ3µ′4
= Π µ4

µ1µ2µ3

(1.51)

Πµ1µ2µ3µ4 = Iµ′1µ1
12 Iµ2µ′2

12 Iµ′3µ3
34 Iµ4µ′4

34 Πµ′1µ′2µ′3µ′4
. (1.52)

Of course these are not the only projectors suitable for the job. We could have given each mo-
mentum its own projector, like, for example:

gµ1µ2 −
qµ1

1 qµ2
1

q2
1

or gµ1µ2 − qµ1
2 qµ2

2

q2
2

.

However, by applying any transverse projectors to Πµ1µ2µ3µ4 we are introducing kinematic sin-
gularities of the type 1/qi · qj. Thus, the less projectors we introduce and the simpler they are,
the less types of kinematic singularities will be introduced.

Returning to (1.52) we find:

Πµ1µ2µ3µ4 = Iµ2µ1
12 Iµ4µ3

34 Π1 + I µ1
12µ′3

Iµ3µ′3
34 I µ2

12 µ′4
Iµ4µ′4
34 Π2 + I µ1

12µ′4
Iµ4µ′4
34 I µ2

12 µ′3
Iµ′3µ3
34 Π3

+ ∑
k=1,2
l=1,2

I µ1
12µ′2

Iµ2µ′2
12 Iµ′3µ3

34 qkµ′3
Iµ4µ′4
34 qlµ′4

Π4
kl + ∑

j=3,4
l=1,2

I µ1
12µ′3

Iµ′3µ3
34 Iµ2µ′2

12 qjµ′2
Iµ4µ′4
34 qlµ′4

Π5
jl

+ ∑
j=3,4
k=1,2

I µ1
12µ′4

Iµ4µ′4
34 Iµ2µ′2

12 qjµ′2
Iµ3µ3
34 qkµ′3

Π6
jk + ∑

i=3,4
l=1,2

Iµ′1µ1
12 qiµ′1

I µ2
12 µ′3

Iµ′3µ3
34 Iµ4µ′4

34 qlµ′4
Π7

il

+ ∑
i=3,4
k=1,2

Iµ′1µ1
12 qiµ′1

I µ2
12 µ′4

Iµ4µ′4
34 Iµ′3µ3

34 qkµ′3
Π8

ik + ∑
i=3,4
j=3,4

Iµ′1µ1
12 qiµ′1

Iµ2µ′2
12 qjµ′2

I µ3
34µ′4

Iµ4µ′4
34 Π9

ij

+ ∑
i=3,4 j=3,4
k=1,2 l=1,2

Iµ′1µ1
12 qiµ′1

Iµ2µ′2
12 qjµ′2

Iµ′3µ3
34 qkµ′3

Iµ4µ′4
34 qlµ′4

Π10
ijkl

14Each index may be any three–element subset of the four photons momenta this choice in particular is due to [58]
and has special crossing symmetric properties that are useful to determine constraints coming from such symmetry.
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which has only 43 tensor structures, which means that we have taken into account 95 constraints
coming from gauge invariance. At this point, due to the poles in the projectors, we see that the
scalar coefficients have kinematic zeroes. Each projector introduces a term with no kinematic
(the metric) and another one with a pole in q1 · q2 or q3 · q4. Therefore, two appearances of I12
and two of I34 in the tensor structures lead us to poles associated to all the possible combinations
of q1 · q2 and q3 · q4 with up to two repetitions of each.

To take these zeroes out of the scalar coefficients it is necessary to eliminate the singularities from
the tensor structures. This can be achieved by building linear combinations of these singular
tensor structures such that the poles cancel. The precise procedure proposed by [59] deals with
the poles by decreasing singularity order. In the first step poles of the form (q1 · q2)(q3 · q4) are
eliminated, first by linear combinations and, once this is not possible, by multiplying them by
q1 · q2 or q3 · q4. The next step is to deal in the same way with the single–double poles, that is,
(q1 · q2)(q3 · q4)

2 and (q1 · q2)2(q3 · q4). Single–single poles then come an so forth until there are
no kinematic singularities left.

After following the previously mentioned procedure a 43–element basis [22] that contains no
kinematic singularities or zeroes is found. However the Mandelstam representation of the am-
plitude is not yet possible: the basis found is actually not linearly independent in q1 · q2 = 0
or q4 · q4 = 0 nor it actually spans the complete space of possible gauge invariant tensors for
the HLbL amplitude. This stems from the fact that there are 11 linear combinations of the ba-
sis elements that are proportional to q1 · q2 and/or q3 · q4 = 0 and some new tensor structure.
Therefore, when q1 · q2 = 0, the basis we found ceases to be linearly independent and said new
tensor structure is no longer in the span of it.15 Thus, it is necessary to add these 11 eleven new
structures to the 43–element basis that has been just found in order to have a set that spans all
relevant gauge–invariant tensor structures even at q1 · q2 = 0 and q3 · q4 = 0 [22]. Of course, since
the set is not linearly independent, there is redundancy on the definition of the scalar coefficients
associated to each tensor.

It is not surprising that our 43–element basis does not work as expected in q1 · q2 = 0 and
q3 · q4 = 0; we found it after using projectors (1.50) and so assuming those terms were not
zero. However it is not clear explicitly how we missed these 11 new structures. To see this
it is necessary to impose gauge invariance directly from the definition, that is, without using
singular projectors. To present the process we will work with gauge invariance in the first index
of Πµ1µ2µ3µ4 :

q1µ′1
Πµ′1µ2µ3µ4 = 0 = qµ2

1 gµ3µ4 Π1 + qµ3
1 gµ2µ4 Π2 + qµ4

1 gµ3µ2 Π3

+ ∑
k,l

qµ2
1 qµ3

k qµ4
l Π4

kl + ∑
j,l

qµ3
1 qµ2

j qµ4
l Π5

jl + ∑
j,k

qµ4
1 qµ3

k qµ2
j Π6

jk

+ ∑
i,l

gµ3µ2(q1 · qi)q
µ4
l Π7

il + ∑
i,k

gµ4µ2 qµ3
k (q1 · qi)Π8

ik + ∑
i,j

gµ3µ4(q1 · qi)q
µ2
j Π9

ij

+ ∑
i,j,k,l

(q1 · qi)q
µ2
j qµ3

k qµ4
l Π10

ijkl .

(1.53)

We must collect the factors of linearly independent tensor structures, which consequently must
be zero, therefore constituting constraints between the scalar coefficients. To illustrate the point

15This was first mentioned by Tarrach [60] for the BTT decomposition of the γγ→ ππ process.
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we will work with constraints from the gµ3µ2 qµ4
1 tensor:

0 = qµ2
1 gµ3µ4 Π1 + qµ3

1 gµ2µ4 Π2 + qµ4
1 gµ3µ2(Π3 + ∑

i=2,3,4
(q1 · qi)Π7

i1)

+ ∑
k,l

qµ2
1 qµ3

k qµ4
l Π4

kl + ∑
j,l

qµ3
1 qµ2

j qµ4
l Π5

jl + ∑
j,k

qµ4
1 qµ3

k qµ2
j Π6

jk

+ ∑
i,l ̸=1

gµ3µ2(q1 · qi)q
µ4
l Π7

il + ∑
i,k

gµ4µ2 qµ3
k (q1 · qi)Π8

ik + ∑
i,j

gµ3µ4(q1 · qi)q
µ2
j Π9

ij

+ ∑
i,j,k,l

(q1 · qi)q
µ2
j qµ3

k qµ4
l Π10

ijkl ,

(1.54)

=⇒ 0 = Π3 + (q1 · q2)Π7
21 + (q1 · q3)Π7

31 + (q1 · q4)Π7
41 . (1.55)

There are several conclusions that can be drawn from this example. In this case Π3 may be
written in terms of the other Π7

i1 without any assumptions on the value of the momenta scalar
products. However, any other option to solve the equation requires to assume q1 · qi ̸= 0 for
some i. Note that after applying the transverse projectors the coefficient Π7

21 is cancelled, which,
from the perspective of our constraint, means that equation (1.55) has been solved for Π7

21. An-
other way to see this is to notice that solving (1.55) for Π7

21 introduces a 1/q1 · q2 in the tensor
structures that multiply Π3 and the other Π7

i1, which is exactly the problem we encountered
when following the BTT procedure. But how can this fact affect linear independence of the 43–
element basis that we found earlier? Note that, as far as constraint (1.55) is concerned, setting
q1 · q2 = 0 in (1.55) renders Π7

21 linearly independent from Π3 and the other Π7
i1, while the latter

are no longer independent. Therefore, the tensor structures that we find by using these replace-
ments no longer span the space of relevant structures neither remain linearly independent in
the problematic limits. The number of constraints remains the same, the problem is solely based
on the intrinsic equation solving that we choose by using the projectors in (1.50). There is noth-
ing special about the limit q1 · q2: other types of projectors or constraint solving procedures (like
using gµν− qµ

1 qν
4/q1 · q4 or solving for Π7

41 instead) would have introduced analogous and mean-
ingless degeneracies in our gauge–invariant basis. As a final remark on this issues, let us address
the possibility to solve the constraints in such a way that no assumptions on scalar products of
momenta has to be made. We said that we could solve (1.55) for Π3 without assumptions. A
quick survey concludes that the remaining constraints can be solved for Π1, Π2, Π4

kl , Π5
jl and Π6

jk
without assumptions. However, when we turn to the constraints imposed by gauge invariance
with respect to q2, we find that solving for Π5

jl and Π6
jk involves assumptions on momenta scalar

products. Analogously, Π4
kl must be discarded when considering the constraints related to gauge

invariance with respect to q3. In the end, gauge invariance constraints can be safely solved only
for Π1, Π2 and Π3. There are 95 such constraints, so these coefficients are not enough. Note that
this analysis applies regardless of which values the indices i, j, k, l take and, thus, is generally
valid.

Finally, it is necessary to consider the crossing symmetries of Πµ1µ2µ3µ4 . Thanks to the choice of
the i, j, k, l in (1.49), the crossing symmetries of the 54 tensor structures that span the amplitude
are explicit and they have be checked in [22]. They are such that the “basis”16 is crossing in-
variant as a set of tensor, although most elements are not.17 In fact, only 7 of the 54 tensor are
actually independent in terms of crossing symmetries.

16It is a basis in the sense that it spans the tensor structures of the amplitude, but it is not linearly independent.
17There are some elements that are actually crossing antisymmetric, but the corresponding kinematic zero does not

affect the computation of aµ [22].
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1.5 Master formula for the HLbL contribution to aµ

In the last three sections we have presented the formula that extracts the so called HLbL contri-
bution to the anomalous magnetic moment of a muon and performed a tensor decomposition
of the corresponding tensor, Πµ1µ2µ3µ4 , whose scalar coefficients are suitable for a Mandelstam
representation. Now we have to combine these three results in order to relate aHLbL

µ directly to
the scalar coefficients of the tensor decomposition and therefore to the experimental data (in the
low energy regime) via dispersion relations.

Since the tensor structures of Πµ1µ2µ3µ4 are manifestly gauge invariant, therefore they must im-
plement the soft photon zeroes mentioned earlier, that is, Tµ1µ2µ3µ4 |q4→0 = 0. This fact, together
with absence of kinematic zeroes in the associated scalar coefficients leads us to:

aHLbL
µ =

e6

48m

∫ d4q1

(2π)4

∫ d4q2

(2π)4
1
q2

1

1
q2

2

1
q2

3

1
(p + q1)2 −m2

1
(p− q2)2 −m2

× Tr
{
(/p + m)[γν4 , γµ4 ](/p + m)γµ1(/p + /q1 + m)γµ2(/p − /q2 + m)γµ2

}
×

54

∑
i

( ∂

∂q4ν4

Tµ1µ2µ3µ4
i |q4→0

)
Πi|q4→0 . (1.56)

From the 54 Tµ1µ2µ3µ4
i tensor structures it is possible to perform a change of base to T̂µ1µ2µ3µ4

i
(which has no kinematic zeroes or singularities, too) such that only the derivatives of 19 of the
elements do not vanish in the q4 → limit. In such basis we have:

aHLbL
µ = e6

∫ d4q1

(2π)4

∫ d4q2

(2π)4
1
q2

1

1
q2

2

1
(q1 + q2)2

1
(p + q1)2 −m2

1
(p− q2)2 −m2 ×

19

∑
i

T̂iΠ̂i , (1.57)

T̂i ≡
1

48m
Tr
{
(/p + m)[γν4 , γµ4 ](/p + m)γµ1(/p + /q1 + m)γµ2(/p − /q2 + m)γµ2

}
×
( ∂

∂q4ν4

Tµ1µ2µ3µ4
i |q4→0

)
. (1.58)

The objects T̂i act as kernels for the two loop integral. Their number can be further reduced
to 12 by harnessing the symmetry of the integral and some of the kernels under the q1 ↔ −q2
exchange. Therefore, some pairs of kernels actually give the same result and can be absorbed
into one.

At this point aHLbL
µ depends on five scalar products: q2

1, q2
2, q1 · q2, q1 · p and q2 · p. We know

by momentum conservation that F2 (and therefore aHLbL
µ ) depends only on the exchanged mo-

mentum q4, which we have already fixed. Thus, we should be able to remove the appearance
of p in the expression for aHLbL

µ . To achieve this let us start by performing a change of variables
in which all the time components of the momenta are multiplied by i, also called a Wick rota-
tion. This is essentially equivalent to rendering said time components imaginary. This causes all
scalar products to acquire a minus sign and renders the corresponding metric euclidean. This
transformation has non–trivial consequences for loop integrals, because it amounts to a rotation
of the real axis of integration into the imaginary one. In case that the region swept by such
rotation contains singularities, the resulting contributions have to be taken into account accord-
ingly. However, for aµ there no such issues [22] and the Wick rotation may be performed without
problems. The Wick–rotated version of the momenta is represented by Q1, Q2 and P.18 After the

18This capital “P” still represents the initial momentum of the muon. It should not be confused with p + p′, as was
represented in previous sections.
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Wick rotation is performed, the two–loop integrals may be transformed into two set of integrals
over a four–dimensional hypersphere. Then it is possible to remove the spurious dependence
on P by performing a four–dimensional angular average on P. To perform such integral average
the Gegenbauer polynomials are a very useful tool [61].19 The key point is to take advantage of
the resemblance of the Wick–rotated propagators and the Gegenbauer polynomials’ generating
function to represent each propagator as a linear combination of polynomials and finally make
use of their orthogonality properties. The procedure starts by expanding the scalar product in
the propagator under study:

1
(P±Qi)2 + m2 =

ti

|Qi||P|
1

ti(|Qi| ± 2Q̂i · P̂)
. (1.59)

Then we require ti to fulfill the following identity:

ti

|Qi||P|
1

ti(|Qi| ± 2Q̂i · P̂)
≡ 1

1± 2tiQ̂i · P̂ + t2
i

, (1.60)

where P̂ and Q̂i represent the unit vectors associated to the Euclidean vectors Pµ and Qiµ, while
|P| |Qi| represent their norm. Thus, we find:

ti =
1
2
|Qi|
|P| (1− σE

i ) , (1.61)

where we have used the following notation:

σE
i ≡

√
1 +

m2

Q2
i

, Q1 ·Q2 ≡ |Q1||Q2|τ , x ≡
√

1− τ2 ,

R12 ≡|Q1||Q2|x , z ≡ |Q1||Q2|
4m2 (1− σE

1 )(1− σE
2 ) .

(1.62)

Finally, by using the expression of the generating polynomial of the Gegenbauer polynomials
we obtain:

1
(P±Qi)2 + m2 =

ti

|Qi||P|
∞

∑
n=0

(−ti)
nCn(±Q̂i · P̂) , (1.63)

where Cn represents the n–th Gegenbauer polynomial.

Then, aµ is averaged over the four dimensional directions of p in order to take advantage of the
orthogonality properties of these polynomials [62]. The absence of P in the scalar coefficients
allows us to explicitly evaluate such average taking into account the dependence of the T̂i on P.
Since the kernels Ti are at most quadratic in P, only the following integrals are relevant:∫ dΩ4(P)

2π2
1

(P + Q1)2 + m2
1

(P−Q2)2 + m2 =
1

R12m2 arctan
( zx

1− zτ

)
, (1.64)∫ dΩ4(P)

2π2
1

(P + Q1)2 + m2 = −1− σE
1

2m2 , (1.65)∫ dΩ4(P)
2π2

1
(P−Q2)2 + m2 = −1− σE

2
2m2 , (1.66)

19Some properties of the Gegenbauer polynomials and derivation of relevant integrals can be found in appendix A
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∫ dΩ4(P)
2π2

P ·Q2

(P + Q1)2 + m2 = Q1 ·Q2
(1− σE

1 )
2

8m2 , (1.67)∫ dΩ4(P)
2π2

P ·Q1

(P−Q2)2 + m2 = −Q1 ·Q2
(1− σE

2 )
2

8m2 . (1.68)

After performing the corresponding average, it is possible to perform five of the six four–dimensional
angular integrals on Q1 and Q2 and the final result is:

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1− τ2|Q1|3|Q2|3 ×
12

∑
i

TiΠi . (1.69)

There are three aspects of this last step that are worth noting:

• The integral over Q2 in spherical coordinates is considered in the first place. It is possible to
take any four–momentum as a reference for the angular integral; it does not matter because
the integrals will go over all the possible values anyway. We take Q1 as a reference.

• The integrand is only dependent on one angle (in τ = Q̂1 · Q̂2) and it is therefore conve-
nient to assign τ as one of the three euclidean angles over which the angular integrals of the
four momentum Q2 is performed. It is relevant which of these three angle we are referring
to because it will determine which term of the Jacobian will appear. In the master formula
there is a term 1− τ2, a sine squared, which means τ does not represent neither polar nor
the azimuthal angle of the three dimensional sphere embedded in the four dimensional
space. Thus, the angular integral on Q2 yields:∫

dτ
√

1− τ2
∫

dθdϕ sin θ = 4π
∫

dτ
√

1− τ2 , (1.70)

where θ and ϕ represent the three–dimensional polar and azimuthal angles of the four–
dimensional Q2 space.

• Once the angular integrals on Q2 have been performed there is no dependence on τ or
another angle left on the integrand. This means that we can perform the four–dimensional
solid angle integral on Q1 which yields 2π2.

1.6 Review of low energy contributions to aHLbL
µ

Up to this point we have presented an approach to compute low–energy contributions to aHLbL
µ

based on a dispersive description of the HLbL scattering amplitude. Now let us review the
results obtained when such approach is put to use.

As we stated in section 1.4, the dispersive calculation of an amplitude offers a way to establish
a hierarchy of contributions for the intermediate states that enter the computation via the uni-
tarity relation of (1.36). Heavier intermediate states induce cuts that appear further to the right
of the dispersive integration region compare to their lighter counterparts and therefore the con-
tributions from heavier intermediate states are expected to be smaller. The 1/(s− s′), 1/(t− t′)
or 1/(u − u′) weights further suppress such contributions. Thus, in the context of HLbL low
energy scattering, the most relevant intermediate states are expected to be the lightest one– or
two–hadron intermediate states.
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1.6.1 One–particle intermediate states contribution to aµ

The lightest mesons with masses up to∼ 1 GeV are π0, π±, K±, K0, η and η′20. Charge conserva-
tion obviously prohibits the appearance of charged pions and kaons as one–particle intermediate
states of HLbL. Furthermore, the neutral kaon is also not an allowed single–particle intermediate
state since strong interactions conserve strangeness. Therefore, only π0, η and η′ may contribute
to aHLbL

µ as single–particle states up to ∼ 1 GeV.

Baryons are not suitable single–particle intermediate states of the HLbL scattering amplitude
due to baryonic number conservation. Thus, they can only contribute from two–particle in-
termediate states on, however, since the proton, the lightest baryon, has a mass of ∼ 938.3
MeV [63], its corresponding two–particle state has a mass of about 1.9 GeV, which is already
in the perturbative regime of QCD. Perturbative computations are much more straight forward
than dispersive ones and have a huge advantage over them in terms of required experimental
inputs. As such, perturbative computations should always be used when possible and therefore
baryon contributions to aHLbL

µ are not considered in dispersive computations.

The contributions from the π0, η and η′ intermediate states to aHLbL
µ are of the form:

aP−Pole
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1− τ2|Q1|3|Q2|3 ×
(

T1ΠP−pole
1 + T2ΠP−pole

2

)
, (1.71)

ΠP−pole
1 = −

FPγ∗γ∗(−Q2
1,−Q2

2)FPγ∗γ∗(−Q2
3, 0)

Q2
3 + M2

P
, (1.72)

ΠP−pole
2 = −

FPγ∗γ∗(−Q2
1,−Q2

3)FPγ∗γ∗(−Q2
2, 0)

Q2
2 + M2

P
, (1.73)

where P states for the corresponding meson in the one–particle intermediate state, MP is the
meson’s mass and FPγ∗γ∗ represents the doubly virtual transition form factor of the meson,
which is defined by:

i
∫

d4x e−iq1x⟨0|T{Jµ(x)Jν(0)}|P(q1 + q2)⟩ = ϵµνλρqλ
1 qρ

2FPγ∗γ∗(q2
1, q2

2) . (1.74)

The main hurdle for the computation of aP−pole
µ is to obtain reliable values for the transition

form factor, specially for the double virtual sector, for which there is little experimental data
available [64]. Furthermore, data available below 1 GeV is particularly scarce, which means that
a fit extrapolation is required in order to obtain the transition for factors at that range. This
is specially troublesome because the main contribution to (1.71) comes actually from the low
energy region. For the neutral pion, however, the negative effects of these issues have been
addressed by a dispersive reconstruction of the transition form factor [24, 65, 66] which starts
from (1.74) and uses very much the same framework presented in section 1.4. When Fπ0γ∗γ∗ is
computed in this fashion, the corresponding contribution to aHLbL

µ is:

aπ0−pole
µ (dispersive) = 63.0+2.7

−2.1 × 10−11 . (1.75)

There are of course alternate approaches for evaluatingFπ0γ∗γ∗ such as the Canterbury Approxi-
mants (CA) [64, 67, 68], which reproduces the low energy behaviour of the transition form factor

20η and η′ are actually not stable in QCD and therefore it does appear in the unitary relation (1.36) as a one-particle
intermediate state, however, its decay width is small enough to be considered as a one.
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approximating it via rational functions of polynomials in Q2
1 and Q2

2.21 The CA computation of

the pion transition form factor yields the result [6] aπ0−pole
µ (CA) = 63.2(2.7)× 10−11, which is

very much compatible with the dispersive one.

For the η and η′ there is however not yet available a dispersive computation of the correspond-
ing form factor in its doubly virtual region, although the framework has been established for
the singly–virtual one [69]. Furthermore, progress has been made in the doubly–virtual case
as well [70, 71]. In any case, until a full dispersive computation of the transition form factor is
obtained the CA approach offers an option whose reliability is supported by the excellent com-
patibility with the dispersive results in the case of the neutral pion pole. For the η and η′ pole
contributions the CA approach concludes [64]:

aη−pole
µ (CA) = 16.3(1.4)× 10−11 , (1.76)

aη′−pole
µ (CA) = 14.5(1.9)× 10−11 . (1.77)

It is clear that the neutral pion contribution is by far the largest from the on–particle intermediate
states. Since the π0 is lighter than the η and it in turn is lighter than the η′, these results for the
contribution of each of these intermediate states agrees with the expected hierarchy of contri-
butions mentioned at the beginning of this section. In summary, the one–particle intermediate
states contribution to aµ is [6]:

aπ0+η+η′

µ = 93.8+4.0
−3.6 × 10−11 . (1.78)

1.6.2 Two–particle intermediate states contribution to aµ

The lightest two–meson intermediate states with mass up to ∼ 1 GeV from lightest to heaviest
are π0π0, π+π−, ηπ0, K+K− and K0K0. Note that, again due to the strangeness conservation in
QCD, no intermediate states with a single kaon is allowed.

The dispersive frame work for the computation of the two–pions contribution has been studied
in [22]. In there, by performing the unitarity cut across the s–channel, this amplitude is split into
two γγ→ ππ; one with two virtual photons and one with one virtual and one real soft photon.
Then, this two amplitudes are split again by performing the unitary cut across the t–channel,
which is the application of a second dispersion relation that leads to the Mandelstam represen-
tation that was described in section 1.4. Although in this second cut there is the possibility for
multi–pion intermediate states to appear, the biggest contribution is expected to come from the
pion pole (lightest intermediate state) as well. This introduces the pion–box topology as an in-
termediate state.22 Since the four pieces in which the original HLbL is split are essentially pion
electromagnetic vertices, it is reasonable to expect the pion–box topology contribution to aµ to
be proportional to four pion electromagnetic vector form factors FV

π (q2
i ). Furthermore in [22]

this relation is taken further and via explicit computation of the double spectral functions asso-
ciated to the pion–box contribution it was shown that the pion–box contribution to Πµνλρ is in
fact equal to the scalar QED pion loop amplitude multiplied by four pion vector form factors

21For the singly–virtual transition form factor the Padé Approximants approach is used, which are essentially the
univariate version of the CA.

22It is worth noting that due to angular momentum conservation and Bose symmetry, a photon does not couple
to two neutral pions and therefore the γ∗γ∗ → π0π0 does not allow a neutral pion intermediate state across the
t–channel.
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due to each of the four off-shell photons. The mathematical expression of these statements is:

Ππ−box
i = FV

π (q2
1)FV

π (q2
2)FV

π (q2
3)FV

π (q2
4)

× 1
π2

( ∫ ∞

c1

ds′
∫ ∞

c2(s′)
dt′

∆t′∆s′MsQED(s′, t′)
(s′ − s)(t′ − t)

+
∫ ∞

c1

ds′
∫ ∞

c2(s′)
du′

∆u′∆s′MsQED(s′, u′)
(s′ − s)(u′ − u)

+
∫ ∞

c1

du′
∫ ∞

c2(u′)
dt′

∆t′∆s′MsQED(t′, u′)
(u′ − u)(t′ − t)

)
, (1.79)

whereMsQED is the scalar QED one loop amplitude with pions. The corresponding double spec-
tral functions can of course be obtained used Cutkosky’s rules to perform unitary cuts to loops,
however, it is much more efficient to compute the light by light scattering amplitude directly
in perturbative scalar QED and then insert into the master formula (1.69) with the appropriate
vector form factors. This allows for the contribution of the pion box to be written in terms of
compact and well known Feynman parameters integrals. In conclusion, the pion box contribu-
tion to aHLbL

µ reads:

aπ−box
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1− τ2|Q1|3|Q2|3

×FV
π (−Q2

1)FV
π (−Q2

2)FV
π (−Q2

3)
12

∑
i

TiΠ
sQED
i (1.80)

= −15.9(2)× 10−11 , (1.81)

where ΠsQED
i ’s are the scalar coefficients of the BTT decomposition of the scalar QED one–loop

light–by–light scattering amplitude, which obviously is a subset of the HLbL BTT structures. In
the previous equation only three vector form factors appear, instead of four, because one of the
photons of this HLbL process is actually on–shell.

Regarding intermediate states heavier than one pion in the t–channel cut of the γγ → ππ sub-
process, they can be classified in two: one with one pion–pole contribution in one subamplitude
and a multiparticle cit in the other and one where both subprocesses contain multiparticle cuts.
The computation of this contributions can be performed through a partial wave expansion of
the amplitude. One of the advantages of this approach is that the unitarity relation (1.36) is
diagonal in the helicity partial wave basis, that is, helicity partial waves of HLbL hJ

λ1λ2λ3λ4
are

only connected by unitarity with the γ∗γ∗ → ππ partial waves hJ
λiλj

with the same total angular
momentum J and photon helicities λi:

Imππ hJ
λ1,λ2,λ3,λ4

=
σπ

16πS
hJ

λ1λ2
h∗J

λ3λ4
, (1.82)

Hλ1λ2λ3λ4 = ∑
J
(2J + 1)dJ

m1m2(z)h
J
λ1λ2λ3λ4

, (1.83)

Hλiλj = ∑
J
(2J + 1)dJ

m0(z)h
J
λiλj

, (1.84)

m = |λi − λj| , m1 = |λ1 − λ2| , m2 = |λ3 − λ4| , (1.85)

σπ =

√
1− 4M2

π

s
, (1.86)

where Hλ1λ2λ3λ4 and Hλiλj are helicity amplitudes for the HLbL and the γ∗γ∗ → ππ processes,
respectively, which are obtained by contracting polarization vectors of a given helicity with the



Chapter 1. HLbL contribution to aµ 27

corresponding process amplitude. Furthermore, dJ
m1m2 are Wigner’s matrices, z is the scattering

angle and Mπ represents the pion’s mass. Helicity partial waves are however not suitable for a
double Mandelstam representation, because they contain kinematic singularities (see section 3
of chapter 7 in [72]). To retain the advantages of the partial wave expansion, but solve the kine-
matic singularities issues it is necessary to relate them to the BTT basis described in section 1.4.
This is done by first inverting the linear relation that is obtained between helicity amplitudes
and BTT scalar functions via its definition from contraction with photon polarization vectors.
Then helicity partial waves are projected out of the corresponding helicity amplitude by using
orthogonality properties of Wigner’s matrices. As we mentioned in section 1.4 [57], the BTT
decomposition of Πµ1µ2µ3µ4 actually trades linear independence in order to span the whole am-
plitude, therefore introducing redundancies. This redundancies are constrained in the soft limit
(q4 → 0) by using dispersive sum rules derived from the asymptotic properties of the scalar
coefficients [23]. Finally, the S–wave contribution to the two pion HLbL intermediate states with
one pion as and intermediate state in one γ∗γ∗ → ππ subprocess and a multiparticle cut in the
other is [23]:

aππ, π−pole LHC
µ = −8(1)× 10−11 , (1.87)

where “LHC” stands for “left hand cut”. Contributions from higher angular momentum par-
tial waves is difficult due to the lack of experimental input for the doubly virtual subprocess
γ∗γ∗ → ππ. Furthermore, heavier singularities in the left hand cut have to be taken into ac-
count for the computation of higher angular momentum partial waves, but in such case some
assumptions that simplified the computation of (1.87) are no longer valid. Therefore, the disper-
sive framework developed in [23] would have to be studied from a more general perspective.

In [6] it is proposed that the comparison between the size of the γγ → ππ cross section and
γγ → MM cross section for some given processes gives input to determine which two–particle
intermediate state contribution MM may be relevant beyond the ππ contribution. Following
this approach, the relevant heavier intermediate states are π0η and K+K−, which are actually the
next two–particle intermediate states in terms of mass. For the two kaon contribution, the same
arguments of the pion box apply and therefore, via the scalar QED kaon loop and using vector
meson dominance to obtain the electromagnetic form factor, the corresponding contribution has
bee computed [6]:

aKK–loop
µ = −0.5(1)× 10−11 . (1.88)

For the π0η the real version of the process a dispersive framework has been developed [73] and
the results performed well against data of the η → π0γγ crossed process. Work on the singly
and doubly virtual processes is still under way [74].

1.6.3 Intermediate states with more than two particles and heavier than KK

The dispersive computation of contributions heavier than the ones we presented previously, that
is, with masses between 1 GeV and 2 GeV, is more difficult due to the more complex unitarity
diagrams than come into play. Perhaps the most straightforward upgrade is the contribution
from D–23 and higher waves from the two pion contribution, for which there is a pretty much
developed framework [25]. Contributions from states heavier that two pions are expected to
be small. For example, the K+K− intermediate state has mass ∼ 1 GeV and its contribution

23Each pion has isospin equal to one, therefore the possible values for total isospin are |1− 1| = 0 and 1 + 1 = 2.
This means that only even partial waves are allowed.
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to aµ is already below 10−11. Consequently, heavier intermediate states contributions are ex-
pected to be non–negligible only if they are associated to resonant helicity partial waves. To
estimate such contributions a narrow–width resonance approximation is followed in [75] (up-
dated in [76]) and [77], which essentially means that narrow resonances are treated as dispersive
poles. In summary, the contributions considering the f0(980 MeV), a0(980 MeV), f0(1370 MeV),
a0(1450 MeV), f0(1500 MeV), f2(1270 MeV), f2(1565 MeV), a2(1320 MeV) and a2(1700 MeV) 24

is:

ascalars+tensor
µ = −1(3)× 10−11 , (1.89)

which introduces a significant uncertainty due to the unknown error introduced by the narrow–
width resonance approximation. In principle, such approximation may be tested in the lightest
scalar and tensor resonances against the ππ and KK contributions described previously. How-
ever, only a full tower of resonant poles satisfy the sum rules found in [23], which is a necessary
condition for a tensor–basis independent contribution.

Axial vector mesons (meson bound states with total angular momentum equal to 1, but even
parity) have not been considered in the previous paragraphs, because25 the lightest associated
resonances are actually heavy compared with other states: a1(1260 MeV), f1(1285 MeV) and
f1(1420 MeV). They contribute to aµ as resonant poles and their respective transition form fac-
tors are obtained from experimental data using a non–relativistic quark model computation [78–
81] which simplifies the tensor structure of the γ∗γ∗ → A amplitude, as described in [75]. The
current agreed contribution (see [6]) is obtained from the mean of three results [75, 77, 82] that
consider the three lightest axial vector mesons:

aaxial vectors
µ = 6(6)× 10−11 . (1.90)

1.7 Conclusions

In this chapter we have presented the basics of the computation of aµ and in particular aHLbL
µ ,

which led to the (1.69) master formula, which is based on a BTT tensor decomposition of the
HLbL amplitude with 54 elements such that its scalar coefficients are free of kinematic singu-
larities and zeroes. The tensor “basis” is actually not linearly independent in the whole phase
space due to 11 structures that need to be added by hand in order to span the amplitude at some
kinematic points q1 · q2 = 0 or q3 · q4 = 0. Furthermore, in four space–time dimensions there are
two additional linear relations among the 138 tensors of (1.49) [83] which the 54 BTT structures
inherite. Of course, the linear dependence of the set of structures introduces redundancies in the
definition of the associated scalar coefficients. Although it is clear that aHLbL

µ cannot be affected
by these redundancies, the mathematical mechanism that ensures that is not apparent. In [25] a
set of scalar coefficients is built such that each one is invariant under these redundancies, pro-
vided that they satisfy a set of sum rules derived assuming: 1) that the HLbL tensor behaves as
s,t, u for large values of the Mandelstam variables, 2) that this behaviour is uniform across all the
elements of its tensor decomposition and 3) that the BTT scalar coefficients satisfy unsubstracted
dispersion relations. The first two assumptions fix the asymptotic behaviour of the scalar func-
tions by explicitly requiring them to complement the asymptotic behaviour of its corresponding
tensor structures. The third assumption requires the new redundancy–free coefficients to be

24In [75] and its updated version [76] the first three (scalar) resonances and the last four (tensor) resonances are
considered. In [77] considers all the scalar resonances mentioned.

25note that the Landau-Yang theorem only forbids the coupling of two real photons to axial vector mesons, there-
fore in virtual HLbL it is allowed.
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transformed into the original BTT coefficients set by a matrix that cannot be arbitrarily singu-
lar at infinity. From these three assumptions the asymptotic behaviour of the BTT coefficients
is obtained. Those coefficients that fall quicker than s−1, t−1 or u−1 for large values of these
Mandelstam variables are subject to dispersive identities called “sum rules” that are beyond the
usual double spectral representation. Such identities are obtained by noting that if Π̂i satisfies an
unsubtracted dispersion relation, so should sΠ̂i or s2Π̂i and so on, depending on how fast does
Π̂i fall. Therefore, for contributions that cannot more or less satisfy these physical sum rules it
is hard to compare their results between dispersive and alternate approaches, as we mentioned
in the previous section for the resonant poles in narrow–width resonance approximation.

We presented a quick survey of low–energy contributions to aHLbL
µ . From these, the dispersive

approach has allowed for an unambiguous definition of contributions from intermediate states
with contributions that follow a systematic hierarchy in terms of their mass. The pion–pole
computation was data driven, while the η and η′ resonances where computed using Canterbury
approximants due to a lack of experimental data for their transition form factors. Heavier pseu-
doscalar mesons are not considered since they are already above the 1.8 GeV threshold. Possible
upgrades on the pseudoscalar sector are now essentially on the experimental side. Two–particle
intermediate states up to ∼ 1 GeV are considered. Pion and kaon box topologies have been
accurately computed by exploiting a relation between unitary boxes and one–loop scalar QED.
Contributions with heavier intermediate states in the γ∗γ∗ → ππ subamplitudes have been
considered up to the S–wave. Scalar and tensor contributions are in general ≳ 1 GeV thresh-
old26 and are computed using a narrow–with resonance approximation and therefore treated
like poles. Axials vector mesons contributions are also treated as poles and their transition form
factors are based on a phenomenological model for the γ∗γ∗ → A [78–81] amplitude. The scalar,
tensor and axial vector mesons contributions, which covers the 1 GeV – 2 GeV region, cannot
satisfy the sum rules from [25] and, thus, they suffer from tensor basis ambiguity, which makes
it difficult to distinguish them from other high energy contributions, also called short–distance
constraints (SDC). This ambiguity, together with the difficult assessment of the uncertainty that
their intrinsic approximations convey, causes the high energy region of HLbL to be the main
source of uncertainty to aHLbL

µ .

In this chapter we discussed contributions of intermediate states with masses up to ∼ 2 GeV,
which are expected to give the man contribution to aHLbL

µ . However, it is as well necessary to
understand the behaviour of the HLbL tensor beyond that threshold. The high energy regime of
the HLbL contribution has been already reached from the light intermediate states when the high
energy part of the integral in (1.69) has been carried out for high virtuality values of the transition
and vector form factors. Although these penetrations into the high energy regime are expected
to take into most of the contribution, in this regime heavier states with more complex topologies
that are not taken into account dispersively can also contribute. It is those contributions and
other uses for computations in the high energy regime of the QCD in the context of aµ with
which the next chapters will deal.

26Some lighter scalar resonances such as f0(500 MeV) are already taken into account in the ππ intermediate states.
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Chapter 2

Operator Product Expansion

Computations in the high energy regime of QCD play several important roles in the determina-
tion of aµ. First, for data–driven computations they are used as input for transition and electro-
magnetic form factors at high energies where there is not enough experimental data available,
which is always an issue given that the integral in the master formula (1.69) is extended on
regions of indefinitely high virtual photon momenta. Examples of short distance constraints
(SDC) for hadronic form factors can be found in [84–89] and an implementation of this SDC for
the specific case of pion in the context of dispersive computations can be found in [90, 91]. Sec-
ond, there are SDC that apply to the high virtuality regimes of the HLbL tensor and are used
to evaluate how much of the asymptotic behaviour of the tensor is recovered by the finite set of
intermediate states considered in the dispersive approach and consequently to account for the
high energy contributions that the dispersive computations miss. This happens even though
intermediate states of the dispersive approach contribute to the high virtuality regions of the
master formula (1.69), because there are heavier intermediate states with topologically more
complex unitarity diagrams that are ignored in the dispersive approach but start contributing to
aHLbL

µ in those high energy regions. The conclusions deduced from this second approach are key
both for the computation of aHLbL

µ and for its uncertainty assessment.

In this work we are interested in the SDC for the HLbL tensor. There are two high energy regimes
for the HLbL process with one real soft photon, representing the background electromagnetic
field: one where all three Euclidean virtualities are similarly high (Q2

1 ∼ Q2
2 ∼ Q2

3 ≫ Λ2
QCD), (we

refer to the Euclidean virtualities q2
i = −Q2

i ) and one where two are similarly high and much
greater than the third Euclidean virtuality (Q2

1 ∼ Q2
2 ≫ Q2

3 ∼ Λ2
QCD and crossed versions). It is

worth to remind that we refer to the Euclidean virtualities, because the considered photons are
far off-shell since when the space-time separation goes to zero the corresponding momenta qi
become space-like. Each of these regimes impose asymptotic behaviour constraints on different
subsets of BTT scalar coefficients and therefore they allow for the independent evaluation of the
sets of intermediate states that contribute to one subset of scalar coefficients but not to the other.
In this chapter we will focus on the Q2

1 ∼ Q2
2 ∼ Q2

3 ≫ Λ2
QCD regime of the HLbL tensor, which

we will study by performing and Operator Product Expansion (OPE) where the soft photon is
introduced by a background electromagnetic field.

2.1 OPE of Πµ1µ2µ3µ4

A product of operators carrying very high momenta can be expressed in terms of a linear com-
bination of local operators carrying zero momentum with singular coefficients that carry the
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momentum dependence of the original operator. The mathematical expression of this statement
for the product of two operators O1 and O2 is:∫

d4xe−iqxO1(x)O2(0) = ∑
n

C12
n (q2)On(0) , (2.1)

where C12
n is a c–number function that decreases for large Q2 and is known as “Wilson coeffi-

cient”. The operator basis {On} of the expansion only admits elements with the same quantum
numbers and symmetries of the original operator product. The generalization for higher num-
bers of operators with arbitrary tensor structures is straightforward. Such identity is called
operator product expansion (OPE) and was originally introduced by Kenneth Wilson [92]. By
engineering dimensional analysis it can be noticed that the Wilson coefficients vanish increas-
ingly quicker for On of higher mass dimensions. In other words, the OPE has an implicit and
useful hierarchy of contributions in which simpler operators On (with less derivatives and fields)
give bigger contributions than more complex operators. Since the operators on both sides of (2.1)
are renormalized at some scale µ, a more careful study finds that dimensional analysis must be
done considering the anomalous dimensions of the operators On, but for asymptotically free
theories such as QCD, at high energy the simple power counting suffices. It is also worth noting
that the relation in (2.1) is given in terms of operators, that is, it does not depend on specific
matrix elements an therefore Wilson coefficients do not either. For further details see chapter 20
of volume II in [93] and chapter 20 in [55].

To perform the OPE in (2.1) it is first necessary to fix the maximum number of mass dimen-
sions of the operators that are going to be considered and then the task is to find all operators
compatible with quantum numbers and symmetries of the original operator product. Once the
complete set of relevant operators On is known, each Wilson coefficient is found by choosing an
appropriate matrix element of the original operator product O1O2 and then transforming it into
the corresponding element of the operator basis On. Such transformation is done by expanding
the correlation function and leaving the elements that form On uncontracted. For example, to
find the Wilson coefficient associated with a local operator of two fermions, then the appropriate
matrix element would be one with two external fermions. The result of the contraction of the rest
of the parts of the original product and the fields in the correlation function vertices constitutes
the Wilson coefficient of the element On for the operator basis.

From the definition of the OPE it is evident that it constitutes a very well suited framework for
the evaluation of the HLbL tensor in the Q2

1 ∼ Q2
2 ∼ Q2

3 ≫ Λ2
QCD regime. However, it is im-

portant to note that the limit q4 → 0 implies that it does not make sense to include the fourth
current of (1.28) in the OPE. One could in principle start the construction of such OPE for the four
currents of Πµ1µ2µ3µ4

HLbL , but it does not work for our particular problem. For example, the compu-
tation of the Wilson coefficients associated to the identity operator involves the computation of
the HLbL tensor in perturbative QCD, which of course requires renormalization and therefore
implies an expansion in terms of the strong coupling constant and the usual large logarithms for
increasing powers n:

αn
s (µ) lnn

{Q2
4

µ2

}
, (2.2)

where µ represents the renormalization subtraction point in the MS scheme. In order for the
logarithms not to blow up it is necessary to have µ ∼ Q4, but in such case αs would enter
the non–perturbative domain of QCD and the expansion would be spoiled anyway. Wilson
coefficients for higher dimensional operators also suffer from infrared singularities since they
depend upon the 1/q2

4 propagator. One could argue that such problems arise because of trying
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to include the fourth current Jµ4 into the OPE even though its momentum is not large and this is
true, but that is not the only problem. Even if the OPE were performed only for the three currents
with high momenta, there would still be matrix elements of the type ⟨0|On Jµ4(q4)|0⟩, which
cannot be perturbatively computed in QCD. In general, these issues are different consequences
of the fact that perturbative QCD is not the correct framework to describe the soft interaction
that is required by aµ. It is therefore necessary to perform the OPE of the three high–momentum
currents only and also take the fourth one into account properly. This can be done by letting
the soft photon be introduced by an external electromagnetic field instead of a quark current
and not by analytically continuing the result of large Q2 to Q2 → 0. This approach was first
used in [94] in the context of the computation of the magnetic moment of nucleons, then it was
used in [95] for the hadronic corrections to the electroweak contribution to aµ and finally it was
again picked up in [34–36] for the study of the asymptotic behaviour of the HLbL tensor in
the Q2

1 ∼ Q2
2 ∼ Q2

3 ≫ Λ2
QCD high energy regime. A pedagogical review of the framework is

presented in [96]. References [35, 94, 96] will be the main guideline throughout the rest of this
chapter.

2.2 OPE of Πµ1µ2µ3µ4 in an electromagnetic background field: A first
look

As mentioned previously, it is necessary to build an OPE for the three high–momenta currents in
the HLbL tensor with the soft photon introduced by an external (background) electromagnetic
field insertion. Consequently, a new object suitable for such an OPE is defined:

Πµ1µ2µ3 =
1
e

∫
d4x

∫
d4y e−i(q1x+q2y)⟨0|T Jµ1(x)Jµ2(y)Jµ3(0)|γ(q4)⟩

= −ϵµ4(q4)Πµ1µ2µ3µ4(q1, q2, q3) , (2.3)

where the soft photon q4 → 0 is included implicitly in the initial state. In addition, Jµ this times
makes reference to the electromagnetic current of the three lightest quarks, namely, up, down
and strange or u, d and s and thus:

Jµ = ΨQ̂γµΨ Q̂ = diag
(2

3
,−1

3
,−1

3

)
, (2.4)

where Q̂ is the charge matrix and now Ψ is a vector of bispinors with quark flavor and color
indices, which are summed upon and suppressed in the current.

When performing the OPE of the three currents, the elements in the operator basis of the OPE
will be evaluated at their matrix elements in ⟨0|...|γ(q4)⟩, that is, with one soft photon interaction
with the background electromagnetic field Aµ. Since Πµ1µ2µ3 is gauge invariant, then it must be
proportional to a gauge invariant matrix elements and only Fµν, its corresponding field–strength
tensor, gives a first order contribution in q4. Thus, only operators that have the same quantum
numbers and symmetries of Fµν are relevant for the OPE of Πµ1µ2µ3 . In summary, this means that
in the static and uniform limit q4 → 0 and at the first order in the external electromagnetic field
we have for the regime of high virtualities at hands

Πµ1µ2µ3 ≡ iΠµ1µ2µ3µ4µ5
F (q1, q2)⟨0|Fµ4µ5(0)|γ(q4)⟩

= q4µ4 ϵµ5(q4)Π
µ1µ2µ3[µ4µ5]
F . (2.5)
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We will see in the following sections that it is possible to find a gauge in which Aµ can be
expanded in terms of Fµν, thus making this relation more straightforward. As a result of this
relation one finds1:

∂Πµ1µ2µ3µ4

∂q4µ5

∣∣∣∣∣
q4→0

= Πµ1µ2µ3[µ4µ5]
F . (2.6)

Therefore the real object of interest for aHLbL
µ is actually Πµ1µ2µ3[µ4µ5]

F , which is explicitly free
of any q4 dependence and therefore does no suffer from the singularity q2

4 → 0. To compute
Πµ1µ2µ3[µ4µ5]

F it is necessary to find the Wilson coefficients in the OPE for Πµ1µ2µ3 , which in turn
requires us to specify the symmetries that the elements of the operator basis must fulfill and
then use this to find all relevant operators. The starting point for the OPE is equation (2.5),
which upon comparison with the definition of the OPE in (2.1) fixes the operator basis elements
to have the same Lorentz structure and symmetries of Fµ1µ2 , that is:

• second rank antisymmetric tensor;

• odd charge–conjugation parity, remember in this regard the famous Furry’s theorem for
which the sum of all Feynman diagrams with an odd number of external photon lines (off
or on the photon mass shell) and no other external lines vanishes.

In [35] operators with these features and mass dimension up to 6 are taken into account and
the rest are neglected. This choice is ultimately supported by the fact the contribution of higher
dimensional operators turns out to be at least two orders of magnitude smaller than the leading
order. It is however also true that the non perturbative matrix elements of the dimension seven
operators are less known than the above mentioned up to dimension 6. We focus here, for
simplicity of reading at this step of our analysis, to the case of only one flavour and therefore on
the following list of operators

S1,µν ≡ ee f Fµν ,

S2,µν ≡ ΨσµνΨ ,

S3,µν ≡ igSΨGµνΨ ,

S4,µν ≡ igSΨ Gµνγ5Ψ ,

S5,µν ≡ ΨΨ ee f Fµν ,

S6,µν ≡
αs

π
Gαβ

a Ga
αβ ee f Fµν ,

S7,µν ≡ gSΨ(GµλDν + DνGµλ)γ
λΨ + gSΨ(GνλDµ + DµGνλ)γ

λΨ ,

S{8},µν ≡ αs(ΨΓΨΨΓΨ)µν ,

(2.7)

where Ψ represents again a quark field in a given flavour of electric charge ee f , the colour in-
dices indices are implicitly summed upon, Γ represents a combination of Dirac gamma matrices,
Dν represents the gauge–covariant derivative, Ga

µν represents the gluon field strength tensor,
Gµν ≡ itaGa

µν and Gµν ≡ i
2 ϵµναβGαβ. Since the largest non–perturbative QCD energy scale is the

perturbative threshold ΛQCD, then the contributions from matrix elements with mass dimension

d are expected to be suppressed like
(

ΛQCD
Qi

)d
, in agreement with the order of magnitude of the

1In chapter 1 we had already seen that the derivative of the HLbL tensor in the limit q4 → 0 was antisymmetric
by differentiating the Ward identities twice.
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error of replacing the cut–off regularized dimension six operators proposed in [35], amounting

to O
(Λ6

QCD

Q6
i

)
.2 When included in the high–energy integration region of the master formula (1.69),

the integration domain should be used coherently in agreement with the obtained OPE.

To include operators other than S1,µν may seem superfluous since when renormalized in QED
their vacuum expectation value and even their ⟨0|...|γ⟩matrix element are zero. Due to the quan-
tum numbers of the Si,µν operators we will be able to factorize the plane wave of the external
electromagnetic field times the vacuum expectation value in the full QCD vacuum of a Lorentz,
gauge invariant and charge-conjugation even operator with non-zero vacuum expectation value
in the true QCD vacuum, so called a condensate. The nature of this non–perturbative dynamics
is parameterized in coefficients XS

i so called “vacuum condensates” that are defined as:

⟨0|Si,µν|γ⟩ ≡ XS
i ⟨0|Fµν|γ⟩ . (2.8)

Now that the operator basis is known up to dimension six, the next step is to obtain the Wilson
coefficients of those operators in the OPE of the high virtualities Πµ1µ2µ3(q1, q2, q3) in a static
background q4 → 0 electromagnetic field. To parameterize the non–perturbative interactions of
the strongly interacting fields with the QCD vacuum, they are expanded around their (QCD)
vacuum expectation value:

Aµ(x) = aµ(x) + A
′
µ(x) , (2.9)

Aa
µ(x) = aa

µ(x) + A
′a
µ (x) , (2.10)

Ψ f
l (x) = ψ

f
l (x) + ψ

′ f
l (x) , (2.11)

where Aµ, Aa
µ and Ψ f

l represent the complete photon, gluon and quark fields, respectively. f
and l stand for the flavor and color of the quark, respectively and the unprimed variables are
classical background fields that represent the effects of the non-perturbative QCD vacuum on
the perturbative dynamics dictated by the asymptotic freedom. It is not needed to include the
specific form of the QCD vacuum fields but just to parameterize them as external fields, as it is
for instance done in the Coleman-Weinberg approach. Concerning the photon field decomposi-
tion at the order

√
α in which we are interested in, only the background part corresponding in

this case to the classical external field of the measurement apparatus, is relevant for us. When
translating these separation to the product of three currents in Πµ1µ2µ3 we obtain the following:

⟨0|TJµ1(x)Jµ2(y)Jµ3(0)|γ⟩ =
⟨0|T(ψx + ψ

′
x)Q̂γµ1(ψx + ψ′x)(ψy + ψ

′
y)Q̂γµ2(ψy + ψ′y)(ψ0 + ψ

′
0)Q̂γµ3(ψ0 + ψ′0)|γ⟩ , (2.12)

where we have used the shorthand notation ψ(x) ≡ ψx. Note that at this point we have not
introduced interaction vertices yet, but when we do, the quark fields coming from them are also
split into classical and quantum parts, while gluon fields are only quantum fluctuations. Clas-
sical background photon and gluon fields come from the fermion “free” propagators that are
modified as usual by external classical gauge fields. In principle there are 64 different combina-
tions in (2.12), but only 27 do contribute since connected diagrams appear exclusively in cases
in which at most one of the two fermionic fields of each current are classical. From a kinemat-
ical point of view, it does not make sense for a hard virtual photon to produce two soft quarks.

2Note that the mass dimensions of the matrix element ⟨0|...|γ⟩ of an operator with mass dimension d actually has
mass dimension d− 1.
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Furthermore, most of these matrix elements are related by complex conjugation and vertex per-
mutation and therefore they can all be represented by only six different Feynman diagrams,
which are shown in Figure 2.1. A representative set of matrix elements related to each of those
six diagrams is

⟨0|Tψ
′
xQ̂γµ1 ψ′xψ

′
yQ̂γµ2 ψ′yψ

′
0Q̂γµ3 ψ0|γ⟩ , ⟨0|Tψ

′
xQ̂γµ1 ψ′xψ

′
yQ̂γµ2 ψ′yψ

′
0Q̂γµ3 ψ′0|γ⟩ ,

⟨0|Tψ
′
xQ̂γµ1 ψ′xψyQ̂γµ2 ψ′yψ

′
0Q̂γµ3 ψ0|γ⟩ , ⟨0|TψxQ̂γµ1 ψ′xψ

′
yQ̂γµ2 ψyψ

′
0Q̂γµ3 ψ0|γ⟩ ,

⟨0|Tψ
′
xQ̂γµ1 ψ′xψyQ̂γµ2 ψ′yψ

′
0Q̂γµ3 ψ0|γ⟩ , ⟨0|Tψ

′
xQ̂γµ1 ψxψ

′
yQ̂γµ2 ψyψ

′
0Q̂γµ3 ψ0|γ⟩ .

(2.13)

Note that some matrix elements in (2.13) have an odd number of quark fluctuations. These
nevertheless give non–zero contributions, because they can be complemented by soft quark–
gluon vertices coming from the Dyson series, as can be seen in diagrams of figure 2.1 with soft
quarks coming out of the shaded blob. In any case, this means that these matrix elements either
do not contribute to the leading order of the Wilson coefficients that we need or they contribute
to operators with mass dimension higher that six and therefore they are of no interest for us.

2.3 OPE of Πµ1µ2µ3µ4 in an electromagnetic background field: Theoret-
ical framework

The need for the introduction of the expansion of the background fields around a spacetime
point, for instance x = 0, stems from the fact that local operators that form any OPE are of
course evaluated at x = 0, since any momentum or coordinate dependence is supposed to be
carried by the Wilson coefficients. However, from the fields in the currents and vertices that
we might introduce, we will get in general field variables that are explicitly dependent on the
coordinates (the only incidental exception might be from the third current in Πµ1µ2µ3). To obtain
the local operators that we require it is therefore necessary to Taylor–expand the background
fields:

ψ(x) = ψ(0) + xµ1 ∂µ1 ψ(0) +
1
2!

xµ1 xµ2 ∂µ1 ∂µ2 ψ(0) + ... , (2.14)

aa
α(x) = aa

α(0) + xµ1 ∂µ1 aa
α(0) +

1
2!

xµ1 xµ2 ∂µ1 ∂µ2 aa
α(0) + ... , (2.15)

aα(x) = aα(0) + xµ1 ∂µ1 aα(0) +
1
2!

xµ1 xµ2 ∂µ1 ∂µ2 aα(0) + ... . (2.16)

Since the OPE has been cut off at dimension six operators, then the same is required for these
Taylor expansions and matrix elements of derivatives of the fields at x = 0 will thus have to
be related to the original Si,µν operators. However, this task is hindered by the fact that the
terms in the Taylor expansion are not even gauge covariant while the Si,µν are invariant. These
issues render the usual approach to the computations of the Wilson coefficients very complex
particularly for the gluon operators, as can be seen in [97, 98]. To work around these problems
it is convenient to choose the radial gauge, also known as Fock–Schwinger gauge [99], which
imposes the condition:

(xµ − xµ
0 )aµ(x) = 0 . (2.17)

The advantages of this gauge for the OPE are related to the Taylor expansion expressed in terms
of gauge covariant fields [100]. In our context, imposing the radial gauge for the photon and
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FIGURE 2.1: These diagrams represent the six truly different types of matrix el-
ements (see (2.13)) contributing to Πµ1µ2µ3 . Black circles at the end of a line rep-
resent annihilation/creation of the corresponding particle by interaction with the

non–perturbative fields in vacuum.
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gluon fields backgrounds we have:

ψ(x) = ψ(0) + xµ1 Dµ1 ψ(0) +
1
2!

xµ1 xµ2 Dµ1 Dµ2 ψ(0) + ... ,

aa
α(x) =

1
2× 0!

xµ1 f a
µ1α(0) +

1
3× 1!

xµ1 xµ2 Dµ1 f a
µ2α(0) + ... ,

aα(x) =
1

2× 0!
xµ1 fµ1α(0) +

1
3× 1!

xµ1 xµ2 Dµ1 fµ2α(0) + ... ,

f a
µν ≡ ∂µaa

ν − ∂νaa
µ + gS f abcab

µac
ν ,

fµν ≡ ∂µaν − ∂νaµ .

These expansions hold for x0 = 0, by using the expansion at a generic x0, one can prove that
the final results are x0 independent, due to the gauge invariance of the theory. Due the presence
of a background in general the translational invariance is lost in general and this is reflected on
a non translational invariant propagator. That translational invariance is of course recovered
in the static limit at hands q4 → 0. The separation of soft and hard parts of the fields that
was introduced previously in this chapter allows us to have the radial gauge advantages in the
construction of the basis elements of the OPE, while not having to deal with the complexity of
its propagator in the computation of the Wilson coefficients. That is the main reason behind the
use of this approach for the OPE. Otherwise it would have been enough to consider only the
photon field as background.

After having motivated the purpose of the background field method for the OPE that we are
interested in, we will present in detail the theoretical framework that supports it. The lagrangian
for the HLbL interaction may be written as:

LHLbL = −1
4
(Ga

µν)
2 − 1

4
(Fµν)

2 + Ψl(i /Dlk − δlkm)Ψk −
1

2ξ
f a f a −Lghosts , (2.18)

Dµ
lk = δlk∂µ − ieQ̂δlk Aµ − igSta

lk Aaµ , (2.19)
Lghosts = w∗aFabwb , (2.20)

Fab =
δ f a

ϵ

δϵb , (2.21)

where the indices in the quark fields and the covariant derivative represent the quark color,
the rest of Latin indices represent gluon color and greek indices represent Lorentz degrees of
freedom as usual. Flavor indices are suppressed. With respect to the fields, wa are ghosts fields
associated to the Faddeev–Popov gauge fixing procedure for the gluon3, f a is the associated
gauge fixing function and f a

ϵ is its gauge–transformed version. In the definition of Fab the deltas
represent a functional derivative. Under gauge transformations of Aa

µ the background field
transforms as a gauge field, while the fluctuation part transforms as a matter field in the adjoint
representation:

δaa
µ = ⟨0|δAa

µ|0⟩ = ⟨0|∂µϵa + gS f abc Ab
µϵc|0⟩

= ∂µϵa + gS f abcab
µϵc , (2.22)

δA
′a
µ = δAa

µ − δaa
µ

= gS f abc A
′b
µ ϵc . (2.23)

3The gauge fixing term for the photon field does not appear here because we are only interested for the aims of
our computations in its classical part.
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The transformation laws for all other fields are the usual:

δψl = igSϵata
lkψk , δψ′l = igSϵata

lkψ′k ,
=⇒ δΨl = δψl + δψ′l (2.24)

= igSϵata
lk(ψ

′ + ψ)k ,

δw∗a = f abcϵcw∗b , δwa = f abcϵcwb .

These are called background gauge transformations. After the separation of the background and
fluctuation parts of the gauge fields, the true integration variables for the path integral are the
fluctuations, and since they transform as matter fields under the gauge transformation of Aa

µ,
then this redundancy no longer requires a gauge fixing term in the classical action of the path
integral. However, A

′a
µ is still a gauge field for another local transformation of the lagrangian,

which we denote by δ′:

δ′A
′a
µ = ∂µϵa(x) + gS f abcϵc(ab

µ + A
′b
µ ) , δ′aa

µ = 0 , (2.25)

δ′ψ′l = igSϵata
lk(ψ + ψ′)k , δ′ψl = 0 , (2.26)

δ′w∗a = f abcϵcw∗b , δ′wa = f abcϵcwb . (2.27)

This redundancy does require a gauge fixing term to render the quadratic terms in A
′a
µ of the

lagrangian invertible. To maintain background gauge invariance we choose

f a = Dµ A
′a
µ ≡ ∂µ A

′a
µ + gS f abcab

µ Ac′µ (2.28)

instead of the usual choice ∂µ Aµ. D acts as a background–gauge covariant derivative. A disad-
vantage of this choice is however that the gluon propagator depends on the background fields
in a rather involved way, as will be shown later. The background–gauge invariance of such
gauge fixing term can be checked easily by recalling that A

′b
µ transforms covariantly under such

transformations, therefore Dµ A
′a
µ must too (see B.1) and consequently:

δ f a = gS f abcϵcDµ A
′b
µ , (2.29)

=⇒ δ( f a f a) = 2gSϵc f abcDµ A
′a
µ Dµ A

′b
µ = 0 . (2.30)

Since the ghost part of the lagrangian depends only on A
′a, not on the complete field, then it

also has to be checked for background gauge invariance. For the f a gauge fixing term that was
chosen we have:

Lghost = w∗a Dµ{D
µwa + fabcwc A

′µ
b } . (2.31)

The ghost fields transform just as the gluon fluctuations under the background gauge trans-
formation, therefore by the same procedure followed with Dµ A

′a
µ it can be shown that Dµwa

and DµDµwa transform covariantly as well. Consequently, invariance under background gauge
transformations for Lghost is conserved.

Now we have successfully imposed the radial gauge prescription on the background gluon field
without imposing it on the quantum fluctuation part. However, to achieve this we have cho-
sen f a to have a non–standard functional. It is therefore necessary to check that the term f a f a

actually fixes the gauge of the quantum field fluctuation:

δ′ f a = DµDµ
ϵa + gS f abc A

′bµDµϵc + gS f abcϵcDµ A
′bµ , (2.32)
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=⇒ δ′ f a f a = 2Dν Aa′ν{DµDµ
ϵa + gS f abc A

′bµDµϵc + gS f abcϵcDµ A
′bµ}

= 2Dν Aa′ν{DµDµ
ϵa + gS f abc A

′bµDµϵc}
̸= 0 . (2.33)

As a final comment it is worth noting that the background fields should not depend on the
coordinates since the QCD vacuum is translation–invariant, but they do because the background
gauge prescription breaks that symmetry for gauge non–invariant matrix elements.

Now that we have presented the theoretical framework of the separation of fields that we will
use and have checked its consistency, we are ready to obtain the computational tools that we
will need to build the OPE. Let us read in detail the Feynman rules from the lagrangian LHLbL

after the separation of the fields in classical background and quantum parts:

LHLbL = −1
4
( f a

µν + Dµ A
′a
ν − Dν A

′a
µ + gS f abc A

′b
µ A

′c
ν )

2 − 1
4
( fµν + ∂µ A

′a
ν − ∂ν A

′
µ)

2

+ (ψl + ψ
′
l)({i/∂ −m}δlk + eQ̂δlk/a + gSta

lk/a a)(ψl + ψ′l)

+ (ψl + ψ
′
l)(eQ̂δlk /A′ + gSta

lk /A
′a)(ψk + ψ′k)

− 1
2ξ

Dµ A
′a
µ Dµ A

′a
µ −Lghosts .

(2.34)

This lagrangian can be simplified very much. First, the parts with only background field vari-
ables are constant from the point of view of the path integral and therefore they may be adsorbed
by its normalization constant. From a diagramatical point of view, these terms represent ampli-
tudes of disconnected diagrams, which again are contained in the normalization of the path
integral in the usual way. In addition, since HLbL scattering only involves vertices from strong
interactions, the quantum fluctuation part of the photon field is not relevant. In second place, it
is necessary to recall that the classical background field parts of quark and gluon fields minimize
the classical action and therefore obey the classical equations of motion.4 This fact allows us to
disregard the background part of the quark fields in the second line in the lagrangian. For the
gluon fields it is not as apparent how this fact can be used to simplify the parts of the lagrangian
that are relevant for the action, because the gluon equations of motion are not as easy to read off
the lagrangian. Since the background fields minimize the action, therefore the first functional
derivative of the action with respect to each field fluctuation vanishes, which means that terms
of the lagrangian that are linear in the gluon field fluctuations do not contribute to the dynamics.
Finally for the gauge fixing parameter we choose ξ = 1. In summary, the parts of the lagrangian
that are relevant to our case is:

LHLbL = − gS

2
f aµν f abc A

′b
µ A

′c
ν −

1
2

(
Dµ A

′aνDµ A
′a
ν + Dµ A

′a
µ Dν A

′a
ν − Dµ A

′aνDν A
′a
µ

)
− gS f abc A

′bµ A
′cνDµ A

′a
ν −

1
4

g2
S f abc f abc A

′b
µ A

′c
ν A

′bµ A
′cν

+ ψ
′
l({i/∂ −m}δlk + eQ̂δlk/a + gSta

lk/a a)ψ′k

+ ψl(eQ̂δlk /A′ + gSta
lk /A

′a)ψ′k + ψ
′
l(eQ̂δlk /A′ + gSta

lk /A
′a)ψk

+ ψ
′
l(eQ̂δlk /A′ + gSta

lk /A
′a)ψ′k .

(2.35)

4The classical background fields actually minimize the quantum effective action, which in absence of external
sources and to leading order is equivalent to the same statement on the classical action. For quark and gluon fields the
vacuum expectation values of course do not receive perturbative contributions since tadpole perturbative diagrams
are zero at all orders.
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l

a

k

a= +igSγµta
lkψk = +igSψlt

a
lkγµ

k

l

a = +igSta
lkγµ

FIGURE 2.2: These figures show the three different types of quark interactions
with a quantum gluon. In the two diagrams at the top one quark line is non–
pertubatively annihilated by the vacuum. l and k represent the colour of the
quarks, a represents the colour of the gluon and trivial quark flavor indices are

suppressed.

As usual, the kernel of quadratic terms in one specific fluctuation variable (first and third line
in (2.35)) are the inverse of corresponding free propagator, while the terms with a different num-
ber of fluctuations (second and fourth line in (2.35)) are interaction vertices. Vertices are very
similar to the ones in a theory with no background fields, the only difference being that any one
line can now be created or annihilated by the vacuum. Feynman rules for quark–gluon vertices
are summarized in figure 2.2, while the ones for gluon self interactions can be found in figure 2.3.
It is worth noting that no background gluons appear in any of those graphs since they contribute
only to the fermion and gluon propagators that will be presented in the following.

The quark free propagator is modified by the background fields in the usual way:

({i/∂ −m}δl′ lδ
f ′ f + eQ̂ f ′ f δl′ l/a + gSδ f ′ f ta

l′ l/a
a)S f s

lk (x, y) = iδ4(x− y)δ f ′sδl′k , (2.36)

therefore it can be computed recursively by supposing that the strength of the background gauge
fields is much smaller than the characteristic momentum of the process of interest, which is a
reasonable hypothesis in our context. Note that the new indices f ′ f represent quark flavor and
had been suppressed previously. In the approximation of weak external electromagnetic field,
an expansion to O(e) is enough. For the background gluon field it is necessary to go to O(g2

S) in
agreement with the highest mass dimension of the local operators that were chosen for the OPE.
In summary, the free quark propagator (in the presence of background gluon and photon fields)
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→

k1

↖
k3

↙
k2

a, α

b, β

c, γ

= −gS f abc
(

gαβ(k1 − k2)γ

+gβγ(k2 − k3)α

+gγα(k3 − k1)
β
)

d, δ

a, α

c, γ

b, β

= −ig2
S

(
f abe f cde(gαγgβδ − gαδgβγ)

+ f ace f bde(gαβgγδ − gαδgβγ)

+ f ade f bce(gαβgγδ − gαγgβδ)
)

a, α

c, γ

b, β

= −ig2
S

(
f abe f cde(gγαadβ − gγβadα)

+ f ace f bde(gβαadγ − gβγadα)

+ f ade f bce(gαβadγ − gαγadβ)
)

FIGURE 2.3: These figures show the three different types of gluon self–interactions.
The first two diagrams are the the same as the usual diagrams with no back-
grounds, while in the last one one of the gluons is annihilated in the vacuum.

a, b, c and d represent the colour of the gluons.
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at O(eg2
S) is:

S f s
lk (x, y) = S0(x− y)δ f sδlk + i

∫
x1

S0(x− x1){eQ̂ f sδlk/ax1
+ gSta

lkδ f s/a a
x1
}S0(x1 − y)

− eQ̂ f sgSta
lk

∫
x1

S0(x− x1)/ax1

∫
x2

S0(x1 − x2)/a a
x2

S0(x2 − y)

− eQ̂ f sgSta
lk

∫
x1

S0(x− x1)/a a
x1

∫
x2

S0(x1 − x2)/ax2
S0(x2 − y)

− g2
Sta

ll′ t
b
l′kδ f s

∫
x1

S0(x− x1)/a a
x1

∫
x2

S0(x1 − x2)/ab
x2

S0(x2 − y)

− ieQ̂ f sg2
Sta

lk′ t
b
k′k

∫
x1

S0(x− x1)/ax1

∫
x2

S0(x1 − x2)/a a
x2

∫
x3

S0(x2 − x3)/ab
x3

S0(x3 − y)

− ieQ̂ f sg2
Sta

ll′ t
b
l′k

∫
x1

S0(x− x1)/a a
x1

∫
x2

S0(x1 − x2)/ax2

∫
x3

S0(x2 − x3)/ab
x3

S0(x3 − y)

− ieQ̂ f sg2
Sta

ll′ t
b
l′k

∫
x1

S0(x− x1)/a a
x1

∫
x2

S0(x1 − x2)/ab
x2

∫
x3

S0(x2 − x3)/ax3
S0(x3 − y) ,

(2.37)

where S0(x− y) represents the free quark propagator without background fields:

S0(x− y) =
∫ d4q

(2π)4 e−iq(x−y)i /q + m
q2 −m2 + iϵ

. (2.38)

Due to the presence of a background the propagator is not traslational invariant. This of course
also breaks momentum conservation along the propagator in its Fourier transformed version,
therefore there are in general three different types of momentum–space quark propagators:

S f s
lk (p1, p2) ≡

∫
d4x

∫
d4y eip1xe−ip2yS f s

lk (x, y) , (2.39)

S f s
lk (p1) ≡

∫
d4x eip1xS f s

lk (x, 0) =
∫ d4 p2

(2π)4 S f s
lk (p1, p2) , (2.40)

S̃ f s
lk (p2) ≡

∫
d4x e−ip2xS f s

lk (0, x) =
∫ d4 p1

(2π)4 S f s
lk (p1, p2) , (2.41)

By Taylor expanding the gauge fields we have intrinsically assumed that they are soft, but not
even that restores translation invariance of the propagator. The expression for the momentum
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space propagator is:

S f s
lk (p1, p2) = (2π)4δ4(p1 − p2)S0

p1
δ f sδlk

+ iS0
p1

∫
q1

{eQ̂ f sδlk/aq1
+ gSta

lkδ f s/a a
q1
}S0

p1+q1
(2π)4δ4(p1 − p2 + q1)

− eQ̂ f sgSta
lkS0

p1

∫
q1

/aq1
S0

p1+q1

∫
q2

/a a
q2

S0
p1+q1+q2

(2π)4δ4(p1 − p2 + q1 + q2)

− eQ̂ f sgSta
lkS0

p1

∫
q1

/a a
q1

S0
p1+q1

∫
q2

/aq2
S0

p1+q1+q2
(2π)4δ4(p1 − p2 + q1 + q2)

− g2
Sta

ll′ t
b
l′kδ f sS0

p1

∫
q1

/a a
q1

S0
p1+q1

∫
q2

/ab
q2

S0
p1+q1+q2

(2π)4δ4(p1 − p2 + q1 + q2)

− ieQ̂ f sg2
Sta

ll′ t
b
l′k

(
S0

p1

∫
q1

/aq1
S0

p1+q1

∫
q2

/a a
q2

S0
p1+q1+q2

∫
q3

/ab
q3

S0
p1+q1+q2+q3

+ S0
p1

∫
q1

/a a
q1

S0
p1+q1

∫
q2

/aq2
S0

p1+q1+q2

∫
q3

/ab
q3

S0
p1+q1+q2+q3

+ S0
p1

∫
q1

/a a
q1

S0
p1+q1

∫
q2

/ab
q2

S0
p1+q1+q2

∫
q3

/aq3
S0

p1+q1+q2+q3

)
× (2π)4δ4(p1 − p2 + ∑

i=1,2,3
qi) .

(2.42)

Note that the Dirac delta is always under the effect of the integrals to its left. Additionally, we
have defined:

S0(p) = i /p + m
p2 −m2 + iϵ

≡ S0
p . (2.43)

Note that we have kept the momentum–conservation delta of the y vertex explicitly for S(p1, p2)
in order to make the relation with S(p) and S̃(p) more evident in the sense that the effect of the
integration over q1 or q2 is to simply remove the momentum “conservation” delta. At this point,
we can use the expansions of the gauge fields in (2.18). Since the local operators considered for
the OPE contain no derivatives of the photon fields and contain only up to one derivative of the
gluon field, it is enough to retain the first term of the expansion for the photon field and two
terms for the gluon, therefore in the momentum representation we can do the replacement:5

aµ(q) =
i
2
(2π)4 f νµ(0)

∂

∂qν
δ4(q) = − i

2
(2π)4δ4(q) f νµ(0)

∂

∂qν

aaµ(q) =
i
2

f aνµ(0)
∂

∂qν
(2π)4δ4(q)− 1

3
Dτ f aνµ(0)

∂

∂qν

∂

∂qτ
(2π)4δ4(q)

= (2π)4δ4(q)
(
− i

2
f aνµ(0)

∂

∂qν
− 1

3
Dτ f aνµ(0)

∂

∂qν

∂

∂qτ

)
,

(2.44)

5Note that these expressions were derived for soft insertions where momentum is leaving the diagram. From the
distributional point of view the derivatives are supposed to act on test-functions [101].
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= + +

+ + +

+ + +

FIGURE 2.4: This figure shows the expansion of the free quark propagator in a
background of gauge fields in terms of diagrams with interactions with gluons and
photons that are created/annihilated in the vacuum. The order in which diagrams

appear in the sum corresponds to the order of terms in equation (2.45).

which yields the following result:

S f s
lk (p1, p2) = (2π)4

(
S0

p1
δ f sδlkδ4(p1 − p2)

+
1
2
{eQ̂ f sδlk f µ1ν1(0) + gSta

lkδ f s f aµ1ν1(0)} ∂

∂qµ1
1

S0
p1

γν1 S0
p1+q1

δ4(p1 − p2 + q1)

− i
3

gSta
lkδ f sDτ f aµ1ν1

∂

∂qτ
1

∂

∂qµ1
1

S0
p1+q1

S0
p1

γν1 δ4(p1 − p2 + q1)

+
1
4

eQ̂ f sgSta
lk

(
f µ1ν1 f aµ2ν2 + f aµ1ν1 f µ2ν2

)
× ∂

∂qµ1
1

∂

∂qµ2
2

(
S0

p1
γν1 S0

p1+q1
γν2 S0

p1+q1+q2
δ4(p1 − p2 + q1 + q2)

)∣∣∣∣∣
q1,2=0

+
1
4

g2
Sta

ll′ t
b
l′kδ f s

(
f aµ1ν1 f bµ2ν2

)
× ∂

∂qµ1
1

∂

∂qµ2
2

(
S0

p1
γν1 S0

p1+q1
γν2 S0

p1+q1+q2
δ4(p1 − p2 + q1 + q2)

)∣∣∣∣∣
q1,2=0

+
1
8

eQ̂ f sg2
Sta

lk′ t
b
k′k

(
f µ1ν1 f aµ2ν2 f bµ3ν3 + f aµ1ν1 f µ2ν2 f bµ3ν3 + f aµ1ν1 f bµ2ν2 f µ3ν3

)
× ∂

∂qµ1
1

∂

∂qµ2
2

∂

∂qµ3
3

(
S0

p1
γν1 S0

p1+q1
γν2 S0

p1+q1+q2
γν3 S0

p1+q1+q2+q3

× δ4(p1 − p2 + ∑
i=1,2,3

qi)
)∣∣∣

q1,2,3=0

)
.

(2.45)

This expression for the free quark propagator can be understood as an expansion in terms of
diagrams (see figure 2.4) with increasing number of (background) gauge bosons.
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At the order that we are interested in there appear no gluon propagators, nevertheless, for the
sake of completeness we present the result up to relevant terms for the operators in (2.7):

DF,µν(q) =
−i
q2 gµν + 2igS

fµν

q4 − 4
gS

q6 qαDα fµν + gS
2
3

gµν

q6 qαDβ faβα + i
2gS

q8 gµνqαqβDβDµ′ fµ′α

+ 2i
gS

q6 D2 fµν −
8i
q8 gSqαqβDβDα fµν + i

g2
S

2
gµν

q6 fαµ′ f µ′α + i
g2

S
q8 gµνqαqβ fβ

µ′ fµ′α

− 4i
g2

S
q6 fµµ′ f

µ′

ν .

The details of the computation are presented in the appendix B.2.

2.4 Computation of un–renormalized Wilson coefficients

In the previous section we obtained expressions for the quark and gluon fluctuations propaga-
tors which contained background insertions of vacuum expectation values (VEV) such as f aµν

and f µν. Furthermore we saw that vertices from the Dyson series also introduce VEVs of quark
operators, thus giving us all the tools required to build the OPE of Πµ1µ2µ3 with background
fields and find the Wilson coefficients that require to compute Πµ1µ2µ3µ4µ5

F . There is, however, a
subtlety that has not been addressed: we are assuming that the product of background fields,
that is, the product of VEVs is somehow equivalent to the VEVs of the product of the corre-
sponding fields. For example, we are letting ψσµνψ take the role of ⟨ΨσµνΨ⟩. The justification
for such equivalence lies at the core of the background field method definition in terms of the
quantum one-particle irreducible effective action [102]. Let us represent a generating functional
for a general theory as:

Z[Jn] =
∫

∏
n
DΦn exp i

(
S[Φn] + JnΦn

)
, (2.46)

where Φ represents different types of fields (fermion, vector, scalar, etc.) and n is a collective
index that is meant to label all color, flavor, Lorentz, and other degrees of freedom. Complemen-
tary one can define a background generating functional:

Z [Jn, ϕn] =
∫

∏
n
Dϕ′n exp i

(
S[ϕn + ϕ′n] + Jnϕ′n

)
, (2.47)

where primed and unprimed variables represent quantum fluctuations and background fixed
fields just as in the previous sections. From these objects one can obtain the corresponding
quantum effective action by performing a Legendre transform on the generator of connected
diagrams:

W[Jn] = −i ln Z[Jn] , Γ[⟨Φn⟩J ] = W[Jn]−
∫

d4x Jn(x)⟨Φn⟩J(x) ,

W [Jn, ϕn] = −i lnZ [Jn, ϕn] , H[⟨ϕ′n⟩J , ϕn] =W [Jn]−
∫

d4x Jn(x)⟨ϕ′n⟩J(x) ,

where ⟨Φn⟩J and ⟨ϕ′n⟩J represent the VEVs of Φn and ϕ′n in the presence of sources Jn:

⟨Φn⟩J ≡
δZ
δJn

, ⟨ϕ′n⟩J ≡
δZ
δJn

.
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Furthermore, by shifting the integration variable inZ it is possible to conclude that these objects,
although defined for different generating functionals, are related to each other:

⟨ϕ′n⟩J = ⟨Φn⟩J − ϕn =⇒ H[⟨ϕ′n⟩J , ϕn] = Γ[⟨ϕ′n⟩J + ϕn] ,
ϕn = ⟨Φn⟩J =⇒ H[0, ϕn] = Γ[ϕn] .

The last equation states that the quantum effective action of a theory can be computed from its
corresponding background effective action by turning off the VEV of the fluctuations. Moreover,
since one–particle irreducible (1PI) diagrams are obtained by functional differentiation of the
quantum effective action one can conclude that: 1) H[0, ϕn] diagrams contain no external lines
of quantum fluctuations, 2) matrix elements in the original theory (represented by Z[Jn]) can
be computed by functionally differentiating vacuum–to–vacuum diagrams in the background
theory with respect to the background fields, which is the result we required at the start of this
section.6

Concerning the actual computation of Wilson coefficients, let us start by considering the one
related to S1,µν = ee f Fµν. This term represents the configuration in which hard momenta trav-
els through all internal lines of the diagrams, thus, there are no cut lines. The leading order
contribution for this configuration is given by the quark loop (see figure 2.5), where different
contributions are obtained by inserting the soft photon in different sides of the triangle and/or
inverting the orientation of the loop. Since S1,µν is the operator with the lowest dimension in the
OPE, its Wilson coefficient is expected to give the most relevant contribution to Πµ1µ2µ3µ4µ5

F and
therefore to aµ. With respect to the background field expansion of (2.12), this contribution comes
from the matrix element that contains only quantum fluctuations in (2.13) and so:

Πµ1µ2µ3 =
1
e ∑

f1 f2 f3

e f1 e f2 e f3

∫
d4x

∫
d4y e−i(q1x+q2y)

×
(
⟨0|Tr

{
γµ1 S f1 f2(x, y)γµ2 S f2 f3(y, 0)γµ3 S f3 f1(0, x)

}
|γ⟩

+ ⟨0|Tr
{

S f3 f1(y, x)γµ1 S f1 f3(x, 0)γµ3 S f3 f2(0, y)γµ2
}
|γ⟩
)

,

(2.48)

where the trace acts on Dirac and color indices of the quarks. Note that the two terms between
big parentheses can be obtained from one another by permuting indices and momentum be-
tween the x and y vertices. They represent two different orientations of the quark loop. Further-
more, the insertion of the soft photon can be performed on any one of the fermion propagators,
therefore it is necessary to permute the position of such soft vertex as well. In the end, the result
in momentum space is:

Πµ1µ2µ3
S1

=
Nc

2

∫ d4 p
(2π)4 ∑

f
e4

f ⟨0|Fν4µ4 |γ⟩
∂

∂q4ν4
∑

σ(1,2,4)
Tr
{

γµ3 S0(p + q1 + q2 + q4)

× γµ4 S0(p + q1 + q2)γ
µ1 S0(p + q2)γ

µ2 S0(p)
}∣∣∣∣∣

q4=0

,

(2.49)

where Nc is the number of quark colors, f represents quark flavor and σ(1, 2, 4) represents a
permutation over the set {(qi, µi)| i ∈ {1, 2, 4}}. The derivative with respect to the soft photon

6The gauge fixing procedure requires one to be careful not to break the symmetries of the “original” Z[Jn] when
building Z [Jn, ϕn] in order for this conclusions to hold, which is just what we did in the previous section.
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FIGURE 2.5: Representative diagram of the leading order contribution to the
Wilson coefficient of S1,µν in the OPE of Πµ1µ2µ3 . The black dot represents cre-

ation/annihilation of a line by the background fields in the vacuum.

momentum can be traced back to (2.45). Note that propagator depends implicitly on the quark
flavor through the masses, assumed to be all equal for the light flavours considered. Conse-
quently, the contribution from the Wilson coefficient of S1,µν to Πµ1µ2µ3µ4µ5

F is:

Πµ1µ2µ3µ4ν4
F(S1)

= i
Nc

2

∫ d4 p
(2π)4 ∑

f
e4

f
∂

∂q4ν4
∑

σ(1,2,4)
Tr
{

γµ3 S0(p + q1 + q2 + q4)γ
µ4

× S0(p + q1 + q2)γ
µ1 S0(p + q2)γ

µ2 S0(p)
}∣∣∣∣∣

q4=0

,

(2.50)

where the effect of the derivative on the propagators is to duplicate them:

lim
q4→0

∂

∂qν4

S(p + q4) = i lim
q4→0

S0(p + q4)γ
ν4 S(p + q4) = iS0(p)γν4 S0(p) . (2.51)

Contributions with one cut quark line and at most one soft gauge boson insertion (S2−5,µν and
S7,µν) are obtained at leading order from the diagrams in figure 2.6. Their corresponding am-
plitudes are computed from matrix elements in (2.13) that contain two soft quark fields and
require no vertices from the Dyson series expansion. Soft gluon or photon insertions on quark
hard lines, if necessary, come from propagators of quark fluctuations as seen in the previous
section.

Except for S1,µν, contributions from all operators to Πµ1µ2µ3µ4µ5
F depend on the susceptibilities

XS
i . By definition these are non–perturbative quantities which are usually computed either by

lattice, models and/or educated guesses. Since we are mainly focused on the bigger contribution
coming from S1,µν, they are not of interest for us in this work. The most well–known one is
X5,7 because it is related to the quark condensate which is a common subject of study in lattice
computations. A more recent version of the review cited in [35] can be found in [103], where
figure 14, table 22 and references therein represent a thorough compilation of results for the
quark condensate. The rest of the susceptibilities are not so well–known and their numerical
values are estimated in [35] by a combination of models and educated guesses whose details are
not very relevant for this work and hence we do not discuss them here.

7Note that we have suppressed the S index. This was done because, as we will see in the next section, the elements
of the OPE need renormalization and therefore a new set of susceptibilities Xi is defined in terms of the renormalized
operators.
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FIGURE 2.6: Representative diagrams of the leading order contribution to the Wil-
son coefficient of S2,µν (first diagram), S3,4,7,µν (second diagram) and S5,µν (third
diagram) in the OPE of Πµ1µ2µ3 . The black dot represents creation/annihilation of

a line by the background fields in the vacuum.

Although operators S2−5,µν and S7,µν may seem quite different at first, their contributions to
Πµ1µ2µ3 can actually be computed together with a very compact formula:

Πµ1µ2µ3
S2,3,4,5,7

=
1
e ∑

f ,A,p,n
σ(1,2,3)

e3
f (−1)n⟨0|ΨDν1 ...Dνn cAΓAΨ|γ(q4)⟩

× Tr
{

γµ3 ΓAγµ1 S0(−q1)γ
ν1 S0(−q1)...γνp S0(−q1)γ

ν2 S0(q3)γ
νp+1 S0(q3)...γνn S0(q3)

}
,

(2.52)

where f represents quark flavor, ΓA is an element of a basis of Dirac matrices and

cA ≡ 1/ Tr{ΓAΓA} . (2.53)

Broadly speaking, this formula is obtained by: 1) expanding the soft quark bilinears as:

ψjψi = ∑
A

cAΓA
ij ψΓAψ , (2.54)

where i, j are bispinor indices, 2) Taylor expanding the soft quark and gauge field using (2.18)
up to operators with relevant dimensions and 3) Fourier–transforming the result of the previ-
ous two steps. Since the Fourier representation of the x polynomials that come from Taylor
expansions is a derivative in the momentum space, a corresponding number of new vertices
and propagators arise by iterative use of (3.8). Details of the derivation of (2.52) can be found in
appendix D of [35].

Although equation (2.52) is very compact, its disadvantage is that it is expressed in terms of a
basis of operators ΨΓDν1 ...Dνn Ψ that is different from the one we have in (2.7). Even more im-
portant: the relation between such basis elements and ⟨Fµν⟩ is quite obscure and it makes the
computation of ΠF harder. Thus, it is necessary to perform a basis change between the matrix el-
ements in (2.52) and (2.7). Only operators with the same symmetries as Fµν, namely, odd charge
conjugation parity, give non–trivial transformation coefficients, which greatly narrows the op-
tions down. Then, Lorentz covariance, quark equations of motion and Dirac matrices identities
can be used to obtain the desired transformation matrix, up to matrix elements of total gauge–
covariant derivatives, which are trivially zero due the soft nature of the background photon.
Classifying matrix elements by the number of covariant derivatives, the non–trivial transforma-
tion coefficients between both bases are given in the following list, while the derivation of these
results can be found in B.3.

• Matrix elements with zero covariant derivatives:
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⟨0|ΨσαβΨ|γ(q4)⟩ ≡ ⟨ΨσαβΨ⟩ = XS
2 ⟨ee f Fαβ⟩ . (2.55)

None of the other Dirac bilinears have the correct Lorentz structure and consequently do
not contribute.

• Matrix elements with one covariant derivative:

⟨ΨDνγαγ5Ψ⟩ = −
im f

4
XS

2 ϵνατρ⟨ee f Fτρ⟩ . (2.56)

Lorentz covariance allows one to discard σµν, γ5 and 1 from appearing and γµ is rejected
due to its charge conjugation parity. Note that the parity violation of this matrix element
is compensated by the appearance of γαγ5 again in the Dirac trace of (2.52).

• Matrix elements with two covariant derivatives:

⟨ΨDν1 Dν2 Ψ⟩ = − i
2
⟨ee f Fν1ν2⟩

(
XS

5 − XS
3

)
, (2.57)

⟨ΨDν1 Dν2 γ5Ψ⟩ = −1
4

XS
4 ϵν1ν2αβ⟨ee f Fαβ⟩ , (2.58)

⟨ΨDν1 Dν2 σαβΨ⟩ = A1gν1ν2⟨ee f Fαβ⟩

+ ee f A2

(
gν1α⟨Fν2β⟩+ gν2α⟨Fν1β⟩ − gν1β⟨Fν2α⟩ − gν2β⟨Fν1α⟩

)
, (2.59)

where

A1 =
1
3

(
−m2

f XS
2 − X4

S +
1
2
(XS

5 − XS
3 )
)

,

A2 =
1

12
(m2

f XS
2 + X4

S + XS
5 − XS

3 ) .
(2.60)

Lorentz covariance allows one to discard γµ and γµγ5 from appearing and none is rejected
due to its charge conjugation parity.

• Matrix elements with three covariant derivatives:

⟨ΨDν1 Dν2 Dν3 γαΨ⟩ = ee f A3

(
gν1ν2⟨Fν3α − gν3ν2⟨Fν1α⟩

)
+ ee f A4

(
gν1α⟨Fν2ν3⟩ − gν3α⟨Fν2ν1⟩

)
+ ee f A5gν2α⟨Fν1ν3⟩ ,

(2.61)

⟨ΨDν1 Dν2 Dν3 γαγ5Ψ⟩ = ee f A6gν1ν3⟨Fν2α⟩

+ ee f A7

(
gν1ν2⟨Fν3α⟩+ gν2ν3⟨Fν1α⟩

)
+ ee f A8

(
gν1α⟨Fν2ν3⟩ − gν3α⟨Fν1ν2⟩

)
,

(2.62)
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where Fµν ≡ i
2 ϵµναβFαβ is the dual of the electromagnetic field–strength tensor and the

coefficients are found to be:

A3 =
1

24

(
− 5XS

8,1 + 2XS
7 − 5m f XS

4 + 2m f XS
3

)
,

A4 =
1

24

(
− 5XS

8,1 + XS
7 − 3m f XS

5 −m f XS
4 + 4m f XS

3

)
,

A5 =
1

24

(
− 2XS

8,1 − XS
7 − 3m f XS

5 − 2m f XS
4 + 2m f XS

3

)
,

A6 =
1

24

(
− 6XS

8,1 + XS
7 −m f XS

5 − 2m f XS
4 + 2m f XS

3 + 2m3
f XS

2

)
,

A7 =
1

24

(
− XS

8,1 + XS
7 −m f XS

5 + m f XS
4 + 2m f XS

3 + 2m3
f XS

2

)
,

A8 =
1

24

(
− 6XS

8,1 + 3m f XS
4

)
.

(2.63)

Lorentz covariance allows one to discard: 1, σµν and γ5 from appearing and none is re-
jected due to its charge conjugation parity.

These transformation relations together with (2.52) allow one to compute the leading order Wil-
son coefficients of the operators in (2.7) with one cut quark line for the OPE that we are interested
in and even some contributions with two cut quark lines.

Let us now consider operators with four quark background insertions (S8,µν). Diagrams that
contribute to the Wilson coefficients of this operator correspond to the quark loop with two cut
quark lines, therefore the diagram is divided in two parts, which have to be connected by a
gluon (see figure 2.7). There are six different ways in which the virtual gluon line can connect
the two parts of the diagram and all have to be accounted for. The corresponding two gluon–
quark vertices are responsible for the αS coefficient of S8,µν. There are only two combinations of
operators with four quark fields that are not trivial:

Sµν
8,1 = −

g2
S

2
ϵµνλρ ∑

A,B
ΨAγλtaΨA e3

B ΨBγργ5taΨB ,

Sµν
8,2 = −

g2
S

2
ϵµνλρ ∑

A,B
e2

AΨAγλtaΨA eB ΨBγργ5taΨB .
(2.64)

Note that the only difference between the two operators are the charge matrix elements. Their
corresponding contribution to the OPE is:

Πµ1µ2µ3 =
i
e

g2
S

16 ∑
A,B

〈
e2

AΨAΓαPtaΨA eB ΨBΓβQtaΨB

〉
× ∑

σ(1,2,3)

1
q2

3
Tr

[
ΓβQ

(
γµ3 S0(−q3)γ

λ + γλS0(q3)γ
µ3
)]

× Tr

[
− ΓαP

(
γµ1 S0(−q1)γ

µ2 S0(q3)γλ + γλS0(−q3)γ
µ1 S0(q2)γ

µ2

+ γµ1 S0(−q1)γλS0(q2)γ
µ2
)]

,

(2.65)

where ΓαP ∈ {γα, γαγ5} and Γα
P ∈ {γα,−γαγ5}. Note that the factor 1/16 comes from the trace
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FIGURE 2.7: Representative diagram of the leading order contribution to the
Wilson coefficient of S8,µν in the OPE of Πµ1µ2µ3 . The black dot represents cre-

ation/annihilation of a line by the background fields in the vacuum.

FIGURE 2.8: Representative diagram of the leading order contribution to the
Wilson coefficient of S6,µν in the OPE of Πµ1µ2µ3 . The black dot represents cre-

ation/annihilation of a line by the background fields in the vacuum.

of gamma matrices in the expansion of spinor products that we mentioned previously. The same
goes for the minus sign in−ΓαP. There are two independent traces because there are two discon-
nected fermionic lines in the diagram of figure 2.7. Note that charge conjugation antisymmetry
requires P and Q to be different. Furthermore, some terms in the series can be neglected up to
mass corrections, due to the vanishing trace of an odd number of gamma matrices.

Let us now consider the operator with two cut gluon lines, that is, S6,µν. Diagrams contributing
to this operator are very similar to the quark loop of S1,µν, but they have two soft gluon insertions
(see figure 2.8). As with the first quark loop, these insertions must be permuted in all possible
ways (for example, all three may be in the same quark line or there may be just one on each
side of the triangle) to obtain the full contribution. This leads to an expression similar but more
complex than the one in (2.50):

Πµ1µ2µ3
S6

=
1

16 ∑
f

e4
f g2

S Tr{tatb}Fν4µ4⟨Gaν5µ5 Gbν6µ6⟩
∫ dd p

(2π)d
∂

∂q4ν4

∂

∂q5ν5

∂

∂q6ν6

× ∑
σ(1,2,4,5,6)

Tr
{

γµ3 S0(p + q1 + q2 + q4 + q5 + q6)γ
µ1

× S0(p + q2 + q4 + q5 + q6)γ
µ2 S0(p + q4 + q5 + q6)γ

µ4

× S0(p + q5 + q6)γ
µ5 S0(p + q6)γ

µ6 S0(p)
}∣∣∣∣∣

q4,5,6=0

.

(2.66)

Note that three derivatives appear instead of one because of the three soft insertions. Replacing
Tr{tatb} = 1

2 δab and αS = g2
S/4π we obtain:
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Πµ1µ2µ3µ4ν4
F(S6)

= i
π2

8 ∑
f

e4
f

1
d(d− 1)

⟨αS

π
GcµνGcµν⟩

(
gν5ν6 gµ5µ6 − gν5µ6 gµ5ν6

)
×
∫ dd p

(2π)d
∂

∂q4ν4

∂

∂q5ν5

∂

∂q6ν6
∑

σ(1,2,4,5,6)
Tr
{

γµ3 S0(p + q1 + q2 + q4 + q5 + q6)γ
µ1

× S0(p + q2 + q4 + q5 + q6)γ
µ2 S0(p + q4 + q5 + q6)γ

µ4

× S0(p + q5 + q6)γ
µ5 S0(p + q6)γ

µ6 S0(p)
}∣∣∣∣∣

q4,5,6=0

,

(2.67)

where we have used that:

⟨Gaν5µ5 Gbν6µ6⟩ = ⟨GcµνGcµν⟩
1

8d(d− 1)
δab
(

gν5ν6 gµ5µ6 − gν5µ6 gµ5ν6
)

, (2.68)

where d is the space–time dimension. We leave the space time dimension d, for renormalization
purposes as will be made clear later.

Up to this point we have presented all unrenormalized Wilson coefficients associated with op-
erators in (2.7) and, more importantly, their contribution to ∂µ5 Πµ1µ2µ3µ4 . It is possible to include
these high energy contributions to aµ in the same framework of the low energy dispersive com-
putations by projecting them onto the different scalar form factors Πi of the Mandelstam decom-
position that appear in the master formula (1.69). Such projectors can be found in references [35,
36]8 and are unique up to the freedom given by gauge invariance of the HLbL tensor.

Computation of the Wilson coefficients is however not yet complete, for renormalization of the
OPE elements has not been taken into account. In contrast to the usual situation in perturbative
computations, we have not encountered ultraviolet divergences in the Wilson coefficients of this
section. In fact, except for S1,µν and S6,µν all of their leading order contributions are at tree level.
As we will see in the next chapter for the quark loop, the Wilson coefficients of these two oper-
ators, although finite, have infrared divergences that are regularized by the quark masses. Such
singularities scale as logarithms and negative powers of m f . These singular terms are prob-
lematic in a twofold way. From a computational perspective these singular factors may spoil
convergence of the perturbative computation when the momenta of the process, namely Qi, get
much bigger that the mass scale of the quarks, which is actually our situation. From a conceptual
point of view it is also questionable to have Wilson coefficients with infrared contributions: in
the OPE framework they are meant to represent the contribution from the parts of the diagram
through which the external very high momenta travel. In the next section we will present how
renormalization of the the product of background fields “cures” these infrared divergences and
thus completes the separation of low and high energy contributions of the OPE.

2.5 OPE of Πµ1µ2µ3µ4 in an electromagnetic background field: Renor-
malization

In this section we will present the renormalization program for the operators that form the OPE
for Πµ1µ2µ3 in the MS scheme.

8Note that the projectors in [35, 36] refer to the tensor structures of [23] instead of the ones in [22].
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FIGURE 2.9: Diagram with infrared divergences affecting the Wilson coefficient of
S2,µν in the OPE of Πµ1µ2µ3 . The black dot represents creation/annihilation of a line
by the background fields in the vacuum. The shaded blob represents self–energy

corrections to the soft quark line.

The Wilson coefficients that were presented in the previous section do not suffer from ultraviolet
divergences at the computed order, but do have infrared divergences that are regularized by the
quarks masses. As mentioned at the end of the previous section, these singularities may spoil
the convergence of the perturbative expansion with terms like 1/m2

f or logarithms ln{Q2
i /m2

f }
that compare the scales of the external momenta Qi and the quark masses. Moreover, Wilson
coefficients should not have infrared contributions in the first place, therefore it should be pos-
sible to safely to compute them in the massless quarks limit. There is an additional kind of low
energy effects that may affect Wilson coefficients: the ones arising from diagrams where soft
quark and gluon9 lines receive self–energy corrections. For example, figure 2.9 shows how such
divergences can arise in diagrams that contribute to the Wilson coefficient of S2,µν. The gray
blob of figure 2.9 involves a perturbative series in αS at zero momentum, which of course does
not converge since the processes it is trying to describe belong to the non–perturbative domain.
These diagrams however do not appear at the order we are considering and therefore we will
not discuss them in detail this section.

The prescription of a renormalization program in this context is not very surprising considering
that the OPE is built from composite operators which are known to require counterterms of their
own to be renormalized. Therefore, one could expect that after carrying out the renormalization
of these composite operators the infrared divergences of the Wilson coefficients are cancelled.
In [35], renormalization was done in the full–field framework by dressing operators Si.µν, that is,
by inserting them into the Dyson series expansion. For example, for S2,µν the dressing procedure
involved the replacement:

ΨσµνΨ −→ ΨσµνΨei
∫

d4xLint(x) , (2.69)

where Lint is the HLbL interaction lagrangian. Then, operator mixing10 was obtained by appro-
priately contracting some of the fields.

However, from the point of view of the background field method that we have followed in the
previous sections, these operators are simply products of classical background fields, so at first
it may seem rather odd to assert that they require renormalization. Nevertheless, this is not at
all surprising if we trace the step back to the analysis at the start of the previous section. There
it was argued that Green functions in the “original” theory could be obtained from the back-
ground theory by functionally differentiating vacuum–to–vacuum amplitudes with respect to
background fields. Thus, products of background fields were converted into Green functions.

9This does not apply for photon soft lines since we do not consider photon fluctuations.
10It is well known that in general composite operators mix under renormalization, that is, they do not obey multi-

plicative renormalization but rather require counterterms proportional to other local operators with equal or lower
mass dimension.
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We will proceed by computing such amplitudes and by expanding the background fields around
x = 0 to obtain the local products we required. This means that we computed the correspond-
ing Green function and then took the limit where all fields were evaluated at the same point.
Although it is a rather ad–hoc way to insert composite operators into Green functions, it gives
correct results. Nevertheless, it does not give us the required framework for renormalization.
For this, it is necessary to take a more formal approach: insertions of composite operators are
taken into account by the inclusion a source term in the generating functional:

Z[Jn] =
∫

∏
n
DΦn exp i

(
S[Φn] + JnΦn + LiOi({Φ})

)
, (2.70)

where Oi(Φ) is the classical value of a composite operator whose insertions one is interested in,
{Φ} is the set of fields which appear inside it and Li is its corresponding source. This term allows
for the definition of counterterms, which, as we will later see, may include operators different
than the one that is being renormalized due to operator mixing. For the relation

H[0, ϕn] = Γ[ϕn] (2.71)

between the effective action and its background counterpart to remain valid including composite
operator insertions the corresponding expression for the background generating functional must
be:

Z [Jn, ϕn] =
∫

∏
n
Dϕ′n exp i

(
S[ϕn + ϕ′n] + Jnϕ′n + LiOi({ϕ + ϕ′})

)
. (2.72)

Note the big difference: while the source terms for elemental fields involve only fluctuations,
the ones for composite operators involve the sum of backgrounds and fluctuations, therefore
the insertion of, say, S2,µν in the background actually involves:

(ψ + ψ
′
)σµν(ψ + ψ′) (2.73)

instead of just:
ψσµνψ . (2.74)

This does not mean that computation of Wilson coefficients of the previous section is wrong, for
the operators in (2.74) is the one that is related to the matrix element we are interested in. We will
later see that they can be related to the renormalized composite operator in a straightforward
manner. Instead, this means that operator mixing is naturally ingrained in the background field
formalism. This also means that it is the operator in (2.73) the one that needs renormalization
even though it ends up curing divergences in the Wilson coefficients of the operator in (2.74) as
well.

After justifying the need for renormalization in the background theory, now we can proceed to
apply to the operators in (2.7). In our renormalization program composite operators are inserted
in Green’s functions, which then are computed using dimensional regularization to preserve
gauge invariance. Finally, the relation between singular terms and counterterms is defined by
modified minimal subtraction MS. As was mentioned earlier, counterterms required for renor-
malization of composite operators are a linear combination that includes other composite op-
erators with singular coefficients. This is referred to as “operator mixing”. For simplicity, we
will compute Green’s functions with an insertion of each composite operator and no other fields
involved, for otherwise additional singularities renormalized by the lagrangian’s counterterms
would appear. However, not any operators can mix under renormalization. Only operators
with the same quantum numbers can. Furthermore, since the background field method does
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not break background gauge invariance, then this means that mixing also respects gauge invari-
ance11 [104–106]. In the end, this means that the operators that form the OPE of Πµ1µ2µ3 mix
among themselves under renormalization

In our context this means that the renormalization of the elements of our OPE will have the
following shape:

Q0
µν = ẐQµν

Q0
i,µν = Q0

i,µν(ψ + ψ′, aaµ + A
′aµ, aµ) ,

(2.75)

where Q0
µν represents the vector whose components are the bare elements of the OPE of (2.7)

and it is a function of the full fields, that is, the sum of the background and fluctuation parts.
Qµν contains its renormalized versions. Consequently, Ẑ is a 8× 8 matrix containing constants
with regularized ultraviolet divergences. As we will see in the following, the vector of operators
Qµν does not coincide with the Sµν that we defined earlier, but they are related by a constant
matrix whose elements contain regularized infrared divergences. Consequently one can define:

Qµν = ÛSµν =⇒ Q0
µν = ẐÛSµν . (2.76)

Renormalization is used to separate contributions coming from different energy scales and in
this case such objective is achieved since the elements in Û are just the required ones to cancel
the infrared contributions of the Wilson coefficients. Furthermore, it is important to note that
we could not have avoided singular terms in the Wilson coefficients by using Q0

µν instead of
Sµν, since in such case we would have traded infrared for ultraviolet contributions. Instead it
is necessary to use renormalization to successfully separate low and high energy contributions
and find Qµν. The renormalized Wilson coefficients C are free of infrared contributions and are
defined in terms of the bare ones CS as:

Πµ1µ2µ3 = Cµ1µ2µ3µ4µ5
S · ⟨0|Sµν|γ⟩ (2.77)

= Cµ1µ2µ3µ4µ5
S · Û−1⟨0|Qµν|γ⟩ (2.78)

≡ Cµ1µ2µ3µ4µ5 · ⟨0|Qµν|γ⟩ (2.79)

=⇒ Cµ1µ2µ3µ4µ5 = (Û−1)TCµ1µ2µ3µ4µ5
S . (2.80)

Note that renormalized susceptibilities X can also be defined for Qµν and can be related to the
unrenormalized ones XS

i in a straightforward way:

Qµν ≡ XFµν =⇒ X = ÛXS . (2.81)

As always, it is of course necessary to specify an order at which renormalization constants will
be truncated. The appearance of non–perturbative matrix elements in the OPE introduces non–
perturbative expansion parameters (ΛQCD/Q) besides the perturbative ones (gS and e). In terms
of the latter, the cut–off is placed at O(e−1g2

S). With respect to the former we have O(Λ6
QCD/Q6),

which, in addition to gauge invariance conservation of the background field theory, essentially
means that operators Si,µν only mix among themselves. Since we are considering the three light-
est quarks, its masses’ effects can be regarded as perturbations as well therefore introducing
another expansion parameter m f /ΛQCD. Nevertheless, we can obtain the full dependence of the
mixing coefficients on the quarks’ masses.

11Only if the Green’s function in which it is inserted has only background quark and gauge fields.
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It is important to note that perturbative and non–perturbative parameters must not be regarded
independently: the mixing matrix Û is meant to modify the Wilson coefficients as shown in
the previous equation, therefore each element must be expanded up to the order of the Wilson
coefficients which it modifies. This introduces an interplay between the dimension of the oper-
ators that are mixing and the order of their Wilson coefficients. The precise implications of this
assertion should become clearer throughout the rest of this section.

Now we are ready to put the renormalization program we just described to use. For S1,µν renor-
malization is at its simplest. Since the photon field does not have quantum fluctuations, then
Q0

1,µν is just equal to S1,µν and hence it cannot mix with any other operator.

2.5.1 Mixing of the Q0
2,µν operator

The first and most non–trivial case is Q2,µν. A Green’s function with a full–field insertion of this
composite operator is given by:

⟨0|Q0
2,µν|γ⟩ = ψσµνψ + ⟨0|ψσµνψ′|γ⟩+ ⟨0|ψ′σµνψ|γ⟩+ ⟨0|ψ′σµνψ′|γ⟩ , (2.82)

where we are evaluating the matrix element of a Heisenberg operator and therefore the Dyson
series of interaction vertices has to be inserted. Mixing with S1,µν can only come from the fourth
term and it requires the contraction of both quark fluctuations and a soft insertion of the photon
field in the resulting propagator. As we will see later in this section, further soft insertions lead
to mixing with other operators. Since the Wilson coefficient of S2,µν is O(e−1g0

S) and the mixing
coefficient is O(e0g0

S), then the net mixing contribution is of order O(e−1g0
S), already the same as

the Wilson coefficient of S1,µν. Therefore we can cut off the mixing coefficient at this point. The
result is:

⟨0|ψ′σµνψ′|γ⟩ = −Tr{S f f
ll (0, 0)σµν}

=
eµ2ϵ

2
f µ1ν1

∫ dd p1

(2π)d
∂

∂qµ1
1

Tr{S0
p1

γν1 S0
p1+q1

σµν}
∣∣∣∣∣
q1=0

=
Nceµ2ϵe f m f

2
f µ1ν1

∫ dd p1

(2π)d
∂

∂qµ1
1

Tr{γν1 /q1σµν}
[p2

1 −m2
f ][(p1 + q1)2 −m2

f ]

∣∣∣∣∣
q1=0

=
Nceµ2ϵe f m f

2
f µ1ν14i

∫ dd p1

(2π)d
∂

∂qµ1
1

(−gν1µq1ν + gν1νq1µ)

[p2
1 −m2

f ][(p1 + q1)2 −m2
f ]

∣∣∣∣∣
q1=0

= 4iNceµ2ϵe f m f fµν

∫ dd p1

(2π)d
1

[p2
1 −m2

f ]
2

= −
Ncee f

4π2 m f fµνΓ(ϵ)
(4πµ2

m2
f

)ϵ
,

(2.83)

where d ≡ 4− 2ϵ is the shifted dimension, µ is the mass parameter that carries the mass dimen-
sion of e in the regularized theory and we have used the well–known formula:

∫ dd p
(2π)d

1
[p2 − ∆]n

=
(−1)n

(4π)d/2 i
Γ(n− d

2 )

Γ(n)

( 1
∆

)n− d
2

. (2.84)
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Note that the derivation of this formula involves a Wick rotation of the integration variable,
therefore it is necessary to ensure that ∆ is positive, as it is of course in (2.83). Otherwise the
integrand acquires a discontinuity when the norm of the spatial momentum p2 becomes smaller
than the absolute value |∆|. This can be accounted for by giving the pole a vanishing imagi-
nary part: ∆ −→ ∆ − i0+, which plays a role analogous to the Feynman prescription for free
propagators.

Turning back to (2.83), it is necessary to expand the result around ϵ = 0 to expose the singular
terms. The result when one discards terms that vanish when ϵ −→ 0 is:

⟨0|ψ′σµνψ′|γ⟩ = −
Ncee f

4π2 m f fµν

(1
ϵ
+ ln

{4πµ2

m2
f

}
− γE

)
, (2.85)

where γE ≈ 0.5772 is the Euler–Mascheroni constant and we have use the expansion of the
gamma function around ϵ −→ 0:

Γ(ϵ) =
1
ϵ
− γE + O(ϵ) . (2.86)

As was mentioned previously, we define the singular term to be subtracted in the MS scheme:

1
ϵ̂
≡ 1

ϵ
+ ln {4π} − γE (2.87)

and therefore the final result of the S1,µν–S2,µν mixing reads:

⟨0|ψ′σµνψ′|γ⟩ = − Nc

4π2 m f

(1
ϵ̂
+ ln

{ µ2

m2
f

})
S1,µν . (2.88)

This equation states two facts about the insertions of the operator Q2,µν: 1) a part of their singular
ultraviolet behaviour can be effectively renormalized by mixing with S1,µν and 2) they involve
a low–energy contribution from S1,µν, which is represented by the mass logarithm. This second
conclusion explains the appearance of the mass-regularized infrared divergences in the Wilson
coefficients that appeared in the previous section, but most importantly it shows a path to their
elimination by building linear combinations of the operators S1,2,µν that cancel each other’s in-
frared contributions, just as it is conventionally done with ultraviolet singularities. This is not
particular of S1,µν and S2,µν, but rather applies for all other mixing coefficients as well. In fact
this is an explicit example of the appearance of the Ẑ and Û matrices that were defined in (2.76).

The leading order contribution to the mixing of Q2,µν with S3,4,5,µν and S7,µν is given by the
second and third terms at the right hand side of (2.82). However, they require the introduction
two quark–gluon vertices: one completely made up of fluctuations and the other with a soft
quark line. Then a soft gluon or photon could be inserted in a quark or even gluon propagator.
However, Wilson coefficients of these operators are all O(e−1), so the mixing coefficient cannot
receive perturbative corrections from interaction vertices at the relevant order and therefore it is
equal to zero. The same analysis of course applies the other way around, thus, S2−5,µν and S7,µν

do not mix with each other under renormalization at leading order of their Wilson coefficients.

The mixing of Q2,µν with S6,µν can of course only come from the fourth term in (2.82). Just as with
the mixing with S1,µν we can contract both fluctuations without introducing interaction vertices
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and then three soft insertions can be performed on the propagator. The corresponding result is:

⟨0|ψ′σµνψ′|γ⟩ = −Tr{S f f
ll (0, 0)σµν}

= −
ee f g2

S

8
Tr{tatb}

(
f µ1ν1 f aµ2ν2 f bµ3ν3 + f aµ1ν1 f µ2ν2 f bµ3ν3 + f aµ1ν1 f bµ2ν2 f µ3ν3

)
×
∫ d4 p

(2π)4
∂

∂qµ1
1

∂

∂qµ2
2

∂

∂qµ3
3

Tr{S0
pγν1 S0

p+q1
γν2 S0

p+q1+q2
γν3 S0

p+q1+q2+q3
σµν}

∣∣∣
q1,2,3=0

)

= −
ee f g2

S

16
1

18π2m3
f

f µν f aαβ faαβ

= − 1
72m3

f
S6,µν .

(2.89)

Finally, the mixing coefficient of Q2,µν with S8,µν is evidently beyond the perturbative order that
we are interested in.

2.5.2 Mixing of the Q0
3,µν operator

For this operator we have:

⟨0|Q0
3,µν|γ⟩ = −gS⟨0|ψtaGa

µν(a + A′)ψ|γ⟩ − gS⟨0|ψtaGa
µν(a + A′)ψ′|γ⟩

− gS⟨0|ψ
′taGa

µν(a + A′)ψ|γ⟩ − gS⟨0|ψ
′taGa

µν(a + A′)ψ′|γ⟩ ,
(2.90)

where Ga
µν(a + A′) is the gluon field strength tensor separated between fluctuation and back-

ground parts, namely:

Ga
µν(a + A′) = f a

µν + Dµ A
′a
ν − Dν A

′a
µ + gS f abc A

′b
µ A

′c
ν , (2.91)

as it was introduced in the previous sections. All the Wilson coefficients of the previous section
were computed up to O(e−1g0

S), therefore no terms with gluon quantum fluctuations give rel-
evant contributions to the mixing and we can replace Ga

µν −→ f a
µν in ⟨Q0

3,µν⟩. This means that
at the order that is relevant for us Q0

3,µν can only mix with operators that have at least one soft
insertion of f aµν. From (2.7) the only compatible one is S6,µν.12 The leading order contribution to
that mixing coefficient is given by the term in (2.90) with two quark fluctuations when they are
contracted with each other and one soft gluon and one soft photon insertion are performed on

12In principle S7,µν is compatible as well, but to obtain terms with covariant derivatives it is necessary to introduce
additional g2

S factors that take the mixing beyond the established cutoff.
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the resulting quark propagator:

−⟨0|ψ′ta f a
µνψ′|γ⟩ = gS Tr{S f f

kl (0, 0)}ta
lk f a

µν

=
1
4

ee f f a
µνg2

S Tr{tatb}
(

f µ1ν1 f bµ2ν2 + f bµ1ν1 f µ2ν2
)

×
∫ d4 p

(2π)4
∂

∂qµ1
1

∂

∂qµ2
2

Tr
{

S0
pγν1 S0

p+q1
γν2 S0

p+q1+q2

}∣∣∣∣∣
q1,2=0

=
1
8

ee f g2
S f aαβ faαβ fµν

1
18m f π2

=
1

36m f
S6,µν .

(2.92)

2.5.3 Mixing of the Q0
4,µν operator

For Q0
4,µν we have:

⟨0|Q0
4,µν|γ⟩ = −gS⟨0|ψtaGa

µν(a + A′)γ5ψ|γ⟩ − gS⟨0|ψtaGa
µν(a + A′)γ5ψ′|γ⟩

− gS⟨0|ψ
′taGa

µν(a + A′)γ5ψ|γ⟩ − gS⟨0|ψ
′taGa

µν(a + A′)γ5ψ′|γ⟩ ,
(2.93)

where Gaµν
(a + A′) is the dual of Gaµν(a + A′), that is: Gaµν

= i
2 ϵµναβGa

αβ. The analysis of the
relevant mixing coefficients at the order of interest is essentially the same as for Q0

3,µν, therefore
there is mixing only with S0

6,µν and the corresponding coefficient is:

−⟨0|ψ′ta f
a
µνγ5ψ′|γ⟩ = gS Tr{S f f

kl (0, 0)γ5}ta
lk f

a
µν

=
1
4

ee f f
a
µνg2

S Tr{tatb}
(

f µ1ν1 f bµ2ν2 + f bµ1ν1 f µ2ν2
)

×
∫ d4 p

(2π)4
∂

∂qµ1
1

∂

∂qµ2
2

Tr
{

S0
pγν1 S0

p+q1
γν2 S0

p+q1+q2
γ5

}∣∣∣∣∣
q1,2=0

=
1
8

ee f g2
S

i
12

ϵ
µ2ν2

µν f aαβ faαβ f µ1ν1 ϵµ1µ2ν1ν2

−i
4m f π2

=
1
8

ee f g2
S

i
12

f aαβ faαβ fµν
−i

m f π2

=
1

24m f
S6,µν .

(2.94)

2.5.4 Mixing of the Q0
5,µν operator

For Q0
5,µν we have:

⟨0|Q0
5,µν|γ⟩ = ⟨0|ψψee f Fµν|γ⟩+ ⟨0|ψψ′ee f Fµν|γ⟩+ ⟨0|ψ

′ee f Fµνψ|γ⟩

+ ⟨0|ψ′ψ′ee f Fµν|γ⟩ .
(2.95)
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In a similar fashion as with Q3,µν and Q4,µν, the soft photon insertion allows only for mixing with
S1,µν and S6,µν. The leading order contribution to both mixing coefficients is once again given by
the term in (2.95) with two quark fluctuations:

⟨0|ψ′ψ′ee f Fµν|γ⟩ = −Tr{S f f
ll (0, 0)}ee f fµν . (2.96)

Mixing with S1,µν is obtained by performing no soft insertions in the quark propagator:

⟨0|ψ′ψ′ee f Fµν|γ⟩ = −µ2ϵee f fµν

∫ dd p
(2π)d

4m f

p2 −m2
f

= −
m3

f

4π2

(1
ϵ̂
+ ln

{ µ2

m2
f

}
+ 1
)

S1,µν ,

(2.97)

where we used again formula (2.84). As mentioned in [35], this mixing coefficient can be used to
subtract the low–energy contributions to the O(m4

f ) correction to the massless part of the quark
loop. On the other hand, mixing with S6,µν is obtained by inserting two soft gluons on the quark
propagator:

⟨0|ψ′ψ′ee f Fµν|γ⟩ = −
1
4

ee f fµνg2
S Tr{tatb} f aµ1ν1 f bµ2ν2

×
∫ d4 p

(2π)4
∂

∂qµ1
1

∂

∂qµ2
2

Tr
{

S0
pγν1 S0

p+q1
γν2 S0

p+q1+q2

}∣∣∣∣∣
q1,2=0

= −1
8

ee f fµνg2
S f aαβ faαβ

1
6m f π2

= − 1
12m f

S6,µν .

(2.98)

2.5.5 Mixing of the Q0
6,µν operator

For this operator it can be performed the same separation of the gluon field strength tensor that
was described for Q3,µν and Q4,µν. However, since this operator is O(eg2

S) and all other Wilson
coefficients are O(e−1g0

S), then its mixing coefficients are equal to zero at the order that is relevant
for us. For example, the leading mixing contribution is given by contracting the two fluctuation
parts of the gluon condensate GaαβGaαβ, but the resulting mixing with S1,µν gives a contribution
O(e−1g2

S), which is quite beyond the perturbative order of the quark loop.

2.5.6 Mixing of the Q0
7,µν operator

With respect to Q0
7,µν we have:

⟨0|Q0
7,µν|γ⟩ = igS⟨0|ψ(taGa

µλDν + DνtaGa
µλ)γ

λψ|γ⟩ − (µ←→ ν)

+ igS⟨0|ψ(taGa
µλDν + DνtaGa

µλ)γ
λψ′|γ⟩ − (µ←→ ν)

+ igS⟨0|ψ
′
(taGa

µλDν + DνtaGa
µλ)γ

λψ′|γ⟩ − (µ←→ ν)

+ igS⟨0|ψ
′
(taGa

µλDν + DνtaGa
µλ)γ

λψ′|γ⟩ − (µ←→ ν) ,

(2.99)
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where this time both the field strength tensor and the covariant derivative are implicitly divided
into background and fluctuation parts. Since this operator is already O(e0gS), it can only mix
with S3,µν, S4,µν and S6,µν. Mixing with the first two is relevant only up to terms that do not
introduce higher orders of gS, therefore only the first term in (2.99) may contribute. With respect
to the product of the gluon field strength tensor and a covariant derivative, the relevant terms
would be:

taGa
µλDν + DνtaGa

µλ = ta f a
µλDν + Dνta f a

µλ + O(gS) . (2.100)

This would give just the background version S7,µν of Q7,µν. Therefore there is no relevant mixing
of Q7,µν with S3,µν and S4,µν at the order we are working on. With respect to the mixing with
S6,µν, the leading contribution comes from the last term in (2.99) when both quark fluctuations
are contracted. For this mixing only terms that introduce at most another order of gS are relevant.
These can come from the product of a field strength tensor and a covariant derivative:

taGa
µλDν + DνtaGa

µλ = ta f a
µλDν + Dνta f a

µλ + ta(∂µ A
′a
λ − ∂λ A

′a
µ )(−igStb A

′b
ν )

+ (−igStb A
′b
ν )t

a(∂µ A
′a
λ − ∂λ A

′a
µ ) + O(g2

S)
(2.101)

or from soft gluon insertions on the quark propagator. The last two terms of the previous equa-
tions introduce a higher order in gS, but there is no soft gluon insertion, which then must come
from the gluon or quark propagator with a corresponding additional factor gS, which renders
it irrelevant for our case. Therefore only the first two terms contribute to the mixing with S6,µν

and the additional soft gluon and photon insertions must come from the quark propagator. In
the end, the mixing coefficient between Q7,µν and S6,µν is:

igS⟨0|ψ
′
(taGa

µλDν + DνtaGa
µλ)γ

λψ′|γ⟩ = −2igSta
lk f a

µλDν Tr{S f f
kl γλ}

=
i
2

µ2ϵee f g2
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×
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p+q1+q2
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=
i
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+ ln
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= −1
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+ ln
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m2
f
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+

7
6

)
S6,µν ,

(2.102)

where we have implicitly included the (µ←→ ν) permutation.

2.5.7 Mixing of the Q0
8,µν operator

Finally, it is worth mentioning that operator Q0
8,µν is already O(e0g2

S) and therefore its mixing
coefficients are not relevant for the Wilson coefficients at the computed order. Note that the
order O(e0g2

S) of the operator Q0
8,µν is not arbitrary, but rather depends on the way in which it

appears in Πµ1µ2µ3 . As shown at the end of the first section in (2.13), at most three soft quark lines
can be obtained from the original three currents of Πµ1µ2µ3 , therefore we need to introduce two
interaction vertices from the Dyson series to complete the two cut quark lines (see figure 2.7).
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2.6 Conclusion

In this chapter we have followed [35] to present the computation of the HLbL tensor Πµ1µ2µ3µ4 in
the high energy regime via an OPE in the presence of an electromagnetic background field. We
have generalized such approach to include gluon and quark background fields as well. In the
OPE there is a separation of perturbative contributions (which are bigger) and non–perturbative
ones coming matrix elements of strongly interacting operators. All contributions are computed
at leading order up to dimension six operators. Infrared contributions to the Wilson coefficients
of the OPE represented both conceptual and computational problems, but they were dealt with
by performing renormalization of the composite operators of the OPE. The need for a renormal-
ization program in the background field method context, when composite operators are repre-
sented by products of background classical quark, gluon and photon fields, is not evident and it
must be justified. We presented the rationale behind the renormalization scheme and performed
all necessary computations within the background field method framework.

The main contribution to Πµ1µ2µ3µ4 (and, thus, to aµ) comes from the Wilson coefficient of the
electromagnetic field–strength tensor Fµν,13 which is the quark loop (see figure 2.5) and its ex-
pression is given in (2.50). In the next chapter we present our computation of this contribution,
which we do in an alternate way to [35]. This gives us computational advantages such as the
avoidance of spurious kinematic singularities and also an expansion in the quark masses is ob-
tained straightforwardly.

13After renormalization there are actually contributions from non–perturbative operators. However, such mixing
contributions only affect the mass corrections of the quark loop.
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Chapter 3

High energy contribution to aHLbL
µ

In the previous chapter we presented the OPE formalism with a static background field used
in [35] to compute the HLbL tensor Πµ1µ2µ3µ4

HLbL in a highly symmetric of high virtuality regime. A
tensor Πµ1µ2µ3µ4ν4

F , built from non-perturbative quantities called “magnetic susceptibilities” and
the perturbative Wilson coefficients of the OPE was found to be proportional to the derivative of
the HLbL tensor ∂ν4 Πµ1µ2µ3µ4

HLbL in the static limit of zero momentum of one external leg. In chap-
ter 1 we discussed that this object contains all the necessary information to compute the HLbL
contribution to aµ. In the chapter 2 we also found the renormalized Wilson coefficients of the
OPE and concluded that (up to renormalization mixing contributions) the Wilson coefficient of
the lowest dimensional element of the OPE was proportional to a quark loop with a soft photon
insertion (see equation (2.50) and figure 2.5). Due to the low distance suppression of the others
OPE contributions the quark loop gives the dominant contribution to aµ, the observable we are
computing for HLbL. Consequently, in this chapter we focus on the computation of the quark
loop contribution to aµ from the high energy integration regions of the master formula (1.69).
From chapter 1 we know exactly how ∂ν4 Πµ1µ2µ3µ4

HLbL and thus Πµ1µ2µ3µ4ν4
F contributes to aµ without

recurring to a specific tensor basis. However, it is convenient to express the result in the tensor
basis used for the master formula in order to benefit from the Gegenbauer polynomials frame-
work that allowed to simplify a full two loop integral, containing eight integrals, into a threefold
one. Consequently, in [35] the quark loop amplitude is not directly computed but rather a set
of projectors is applied to it in order to extract its contributions for each Π̂i of the master for-
mula (1.69). Then, the resulting scalar integrals reduced in terms of a set of well–known master
integrals. After the three remaining integrals over the two virtual photon momenta magnitudes
|Q1| and |Q2| and the angle between them τ is performed the quark loop is found to give the
largest contribution to aµ than any other Wilson coefficient of the OPE by at least two orders of
magnitude.

In this chapter we follow an alternative approach with respect to [35]. Instead of projecting
the quark loop amplitude onto the form factors of the master formula as a first step, we com-
pute the amplitude in its tensor form. At intermediate stages of the computation we have to
deal with tensor loop integrals, which we are able to write in terms of scalar ones by means of a
kinematic–singularity–free tensor decomposition method first presented in [41]. Once the tensor
decomposition is performed we finally project on to the Π̂i form factors of the master formula.
In this way we are able to verify that there are no quark loop contributions neglected by the
projection procedure, which is an implicit check of the generality of the tensor structures of the
HLbL tensor found in [22, 23] that we discussed in chapter 1. Finally, we compute the scalar in-
tegrals found in the tensor decomposition by means of their Mellin–Barnes representation [42].
The series representation of Mellin–Barnes integrals provide a full systematic expansion of the
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chiral corrections to the massless part of the quark loop. Finally, we perform a numeric evalua-
tion of the master formula (1.69) considering the quark loop contribution to the form factors Π̂i
and we discuss the results.

3.1 Computation of the quark loop by the method of Bijnens

In this section we present and consider the computational approach used in [35] to obtain the
quark loop contribution to aµ. As we discussed in the previous chapter, the static limit derivative
of the HLbL tensor in the regime of high virtual photon momenta receives contributions from
the quark loop amplitude with an soft photon insertion, which is given in (2.50):

∂

∂q4ν4

Πµ1µ2µ3µ4
(S1)

∣∣∣∣∣
q4→0

= i
Nc

2

∫ d4 p
(2π)4 ∑

f
e4

f
∂

∂q4ν4
∑

σ(1,2,4)
Tr
{

γµ3 S0(p + q1 + q2 + q4)γ
µ4

× S0(p + q1 + q2)γ
µ1 S0(p + q2)γ

µ2 S0(p)
}∣∣∣∣∣

q4=0

.

(3.1)

In [35] the computation was performed by applying projectors which extract the relevant con-
tributions to the Πi of the master formula (1.69) out of the amplitude

Π̂i = Pµ′1µ′2µ′3µ′4ν′4
i ΠF µ′1µ′2µ′3µ′4ν′4

. (3.2)

Some denominator cancellations can be performed on the resulting scalar loop integrals such
that they are written in terms of scalar tadpole, self-energy and triangle integrals. Note that no
scalar box integrals arise due to the soft q4 → limit, which guarantees that, after applying the soft
derivative, only three different propagators appear in the quark loop. These three scalar master
integrals are then expanded as a function of the squared of the infinitesimal (in the considered
regime) quark mass m2

f . Finally, the infrared divergences that appear as ln (Q2
3/m2

f ) in the mass–
suppressed corrections are cancelled via mixing with S2,µν as discussed in the previous chapter.
The final result can be written as:

Π̂MS
m = Π̂0

m + m2
f Π̂

m2
f

MS,m
+ O(m4

f ) , (3.3)

Π̂0
m =

Nce4
q

π2 ∑
i,j,k,n

[
c(m,n)

ijk + f (m,n)
ijk F + g(m,n)

ijk ln
(Q2

2

Q2
3

)
+ h(m,n)

ijk ln
(Q2

1

Q2
2

)]
λ−nQ2i

1 Q2j
2 Q2k

3 , (3.4)

Π̂
m2

f

MS,m
=

Nce4
q

π2 ∑
i,j,k,n

λ−nQ2i
1 Q2j

2 Q2k
3 (3.5)

×
[
d(m,n)

ijk + p(m,n)
ijk F + q(m,n)

ijk ln
(Q2

2

Q2
3

)
+ r(m,n)

ijk ln
(Q2

1

Q2
2

)
+ s(m,n)

ijk ln
(Q2

3
µ2

)]
,

where c(m,n)
ijk , f (m,n)

ijk , g(m,n)
ijk , h(m,n)

ijk , d(m,n)
ijk , p(m,n)

ijk , q(m,n)
ijk , r(m,n)

ijk and s(m,n)
ijk are constant coefficients

and their values are given in appendix C.1 of [35]. λ is the Källen function of the three virtual
photon momenta:

λ(q2
1, q2

2, q2
3) ≡ q4

1 + q4
2 + q4

3 − 2q2
1q2

2 − 2q2
1q2

3 − 2q2
2q2

3 , (3.6)
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where we have used the standard notation q2n ≡ (q2)n. In addition, µ represents the subtraction
point of the MS renormalization scheme, which we introduced in the previous chapter. Finally,
F = F(Q2

1, Q2
2, Q2

3) is the massless triangle integral:

F(Q2
1, Q2

2, Q2
3) ≡ (4π)2i

∫ d4 p
(2π)4

1
p2

1
(p− q1)2

1
(p− q1 − q2)2 . (3.7)

Note that the expressions of the form factors Π̂i have several terms with negative powers of λ,
which constitute spurious kinematic singularities in the λ → 0 limit. These were introduced
by the projectors that were used to extract the form factors from the quark loop amplitude, but
they are explicitly cancelled in contributions from all other Wilson coefficients. In the case of
the quark loop however there is implicit dependence on λ coming from the massless triangle
integral F(Q2

1, Q2
2, Q2

3), which thus obscures the cancellation of these singularities. When F is
Taylor expanded around λ = 0 all negative powers of λ cancel.1 Such expansion is necessary
in the integration regions of the master formula in which two virtual photon momenta have a
similar size and are much bigger than the third one, namely Q1 ∼ Q2 ≫ Q3 ≫ ΛQCD and
crossed versions. This regime is not quite the same as the Q1 ∼ Q2 ∼ Q3 ≫ ΛQCD that was
considered at the beginning of the previous chapter, but the OPE remains valid anyway as long
as we remain in the perturbative QCD domain and the logarithms ln(Qi/Qj) do not become too
large and spoil the convergence of the perturbative series.

3.2 Computation of the quark loop amplitude in this thesis

In this section we describe the alternative approach that we followed for the computation of
the quark loop amplitude in (2.50) and present its results. We also highlight the advantages
and downsides of our approach with respect to the ones discussed in the previous section. Our
whole computation of the quark loop amplitude was done using the software Mathematica and
we also made extensive use of version 9.3.1 of FeynCalc package [37–39] to compute Dirac traces
and for intermediate steps involving tensors.

3.2.1 First stages of the quark loop computation

In contrast to the procedure followed in [35], we did not use projectors to extract the contribution
to each form factor Π̂i as our first step. Instead we wanted to obtain the full tensor structure
of quark loop amplitude to be able to compare it to the ∂

∂q4ν4
T̂µ1µ2µ3µ4

i tensor basis that is used
in the master formula (1.69). This is an indirect check of the completeness and generality of
the kinematic–singularity–free tensor decomposition that we discussed for the HLbL tensor in
chapter 1. To this end it was convenient to postpone the use of any projector until all tensor
structures in the amplitude were written in terms of the metric tensor and the virtual photon
momenta q1, q2 and q3.

1In principle, this cancellation happens whether F(Q2
1, Q2

2, Q2
3) is expanded around λ = 0 or not, but the integrals

in the master formula are performed numerically and therefore the computation may become unstable around λ = 0.



Chapter 3. High energy contribution to aHLbL
µ 66

The first step in our computation was to perform the differentiation and take the limit with
respect to qν4

4 , whose effect is to duplicate the propagator that they act upon:2

lim
q4→0

∂

∂qν4

S(p + q4) = i lim
q4→0

S(p + q4)γ
ν4 S(p + q4) = iS(p)γν4 S(p) .

It is convenient to perform this differentiation and limit before computing the trace and the
loop integral because by doing so we reduce the number of different propagators and external
momenta from four to three. Although in this way one of the propagators acquires a power
of two, having only three types of propagators greatly simplifies Dirac trace computation and
enhances the cancellation of denominators in the loop integrals that arise from it.

After the Dirac trace was computed, several denominator simplifications were performed to
reduce the complexity of the structure of the remaining tensor loop integrals. This lead to the
appearance of integrals with only one and two different types of propagators in addition to the
obvious ones with three. From these, the one with the most complex tensor structure was a fifth
rank tensor with five propagators (but only three of them different from each other).

3.2.1.1 Tensor loop integrals decomposition

In general, computation of tensor loop integrals involves decomposing them in a linear combi-
nation of their external momenta and the metric tensor in which coefficients are given in terms
of scalar loop integrals. Because of the obvious analogy with the tensor decomposition pre-
sented in chapter 1, these coefficients are usually called form factors. The linear combination
of tensors is fixed by Lorentz covariance, and so differences between algorithms focus on the
shape of their form factors. A standard procedure to achieve this is the Passarino–Veltman de-
composition.3 Scalar coefficients of this decomposition are obtained by contracting the tensor
integral with each element of the tensor basis in which it is being decomposed. This yields a
system of equations involving scalar integrals and form factors scalar products of the external
momenta of the integral. Such an approach always introduces spurious kinematic singularities
in the form factors at the kinematic points where the tensor basis chosen for the decomposition
ceases to span the complete tensor structure of the tensor loop integral.4 In linear algebra jargon:
the form factors of the Passarino–Veltman decomposition always contain negative powers of the
determinant of the Gram matrix of tensors used as a basis. These singularities may be difficult
to handle when the integrals of the (1.69) master formula are performed. Moreover, we will
later see that there are other unavoidable spurious kinematic singularities which we will have
to deal with and it is therefore very inconvenient to introduce more of those singularities in our
dispersive integrals.

Since the Passarino-Veltman decomposition is technically inconvenient for our computation, we
preferred to use an approach proposed by Davydychev in [41] for tensor decomposition into
scalar integrals which does not introduce kinematic singularities in the coefficients, at the cost
of shifting the (space-time) dimension of the scalar integrals. Let us describe this decomposition
procedure before continuing with the discussion of the quark loop computation. First, we need

2Note that there is a difference in this formula with respect to the one cited in [35]. It is due to a difference in the
used convention for the quark propagator.

3See appendices D, E and F of the original reference [107] and appendix A of [108] for typographical corrections
to the results.

4Note that this is essentially the same problem faced when looking for the Mandelstam decomposition of the
HLbL amplitude in chapter 1.
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to introduce suitable notation. Tensor loop integrals are represented as:

I(N)
µ1...µM(d; ν1, ..., νN) ≡

∫ dd p
(2π)d

pµ1 ...pµM

Dν1
1 ...DνN

N
, (3.8)

where Di = (qi + p)−m2
i + iϵ represents the usual scalar (possibly massive) propagator, νi is the

power of propagator Di in the integral, qi is an arbitrary external momentum and the Feynman
prescription is implemented by ϵ→ 0+. Correspondingly, scalar integrals are represented as:

I(N)(d; ν1, ..., νN) ≡
∫ dd p

(2π)d
1

Dν1
1 ...DνN

N
. (3.9)

With this convention, the decomposition formula for tensor loop integrals in terms of scalar ones
with shifted dimensions can be written as5 [41]:

I(N)
µ1...µM(d; ν1, ..., νN) = ∑

λ,κ1,...,κN
2λ+∑i κi=M

(
− 1

2

)λ
{[g]λ[q1]

κ1 ...[qN ]
κN}µ1...µM

× (ν1)κ1 ...(νN)κN (4π)M−λ I(N)(d + 2(M− λ); ν1 + κ1, ..., νN + κN) ,

(3.10)

where (ν)κ ≡ Γ(ν + κ)/Γ(ν) is the Pochhammer symbol. The structure between brackets rep-
resents the symmetrized tensor structure in which gµ1µ2 appears λ times, and each q

µj
i appears

κi times. Consequently, the restriction 2λ + ∑i κi = M ensures that the tensor rank of the inte-
gral is conserved. The sum extends to all non–negative values of λ, κ1, ..., κN . The proof of this
formula rests mainly on the Schwinger representation of scalar loop integrals and recurrence
formulas obtained by differentiation of such integrals with respect to each external momentum
qi. Finally, the result is generalized by induction. The proof of (3.10) is described in great detail
in [41] and we will not repeat it here. Nevertheless, there are some features of the formula which
are worth to be motivated. First, note that the number of times that a tensor element q

µj
i appears

in the decomposition is related to the power with which its associated denominator Di appears.
This is in fact reminiscent of the external momentum derivatives which where used to obtain
the formula. For example, the starting point of the proof of the formula for the vector integral
I(N)
µ (d; ν1, ..., νN) is the following differential identity:

1
2ν1

∂

∂qµ
1

I(N)(d; ν1, ..., νN) = −I(N)
µ (d; ν1 + 1, ..., νN)− p1µ I(N)(d; ν1 + 1, ..., νN) . (3.11)

The difference in the powers of the ν1 in the derivative term and the two terms to the right is
solved by using the Schwinger representation for scalar integrals, namely:

I(N)(d; ν1, ..., νN) = πd/2 i1−d Γ

(
∑

i
νi −

d
2

)[
∏

i
Γ(νi)

]−1

×
∫ 1

0
...
∫ 1

0
∏ βνi−1dβi δ

(
∑

i
βi − 1

)(
∑ ∑

j < l
β jβl(pj − pl)

2 −∑
i

βim2
i

)d/2−∑i νi

,

(3.12)

which is valid for Re{νi} > 0 and it is equivalent to the more usual representation in terms
of Feynman parameters. There one can see how a shift in the sum of powers of denominators

5Note that there is a difference in the equation we cite here and the one written in [41] with respect to the factor of
4π due to the difference in the normalization convention for loop integrals.
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∑ νi may be offset by a twofold shift in the scalar integral’s dimension. In the case of the metric
tensor, its appearance is related to a reduction of the shift in the dimension of the scalar integral.
This is due to the fact that metric tensors enter this decomposition from terms in which an
external momentum derivative acts on its corresponding momentum, not on the scalar integral
that is multiplying it, therefore it requires no additional offset and its dimensional shift is not
increased. An explicit example of this situation can bee seen when taking a second derivative of
the vector integral I(N)

µ in (3.11).

Finally, it is very important to note that although the dimension of the scalar integrals is in-
creased in (3.10) with respect to the original tensor one, its superficial degree of divergence
(index) is not. A general tensor integral I(N)

µ1...µM(d; ν1, ..., νN) has superficial degree of divergence
equal to d + M − 2 ∑i νi while for the scalar integrals in which it is decomposed it is equal to
d + M − 2 ∑i νi − ∑i κi. Therefore the original degree of divergence is only recovered for the
scalar integral corresponding to the term in which the tensor structure of the loop integral is
fully saturated by metric tensors, if it exists. For the rest of the terms the ultraviolet asymptotic
behaviour is less singular than the original. This result is a standard feature of decomposition
algorithms for tensor loop integrals, but for scalar integrals decomposition algorithms it is not
always true.

We applied (3.10) to the tensor integrals appearing in our computation of the quark loop ampli-
tude, thus its tensor structure was explicitly written in terms of the external momenta and the
metric. As such, it was then possible to compare this structure to the ∂ν4

q4 T̂µ1µ2µ3µ4
i tensor basis

that is used for the (1.69) master formula. To do this we extracted the quark loop contributions
to the form factors Π̂i with the help of the projectors of [35]. We found that all form factors
received non–zero contributions from the quark loop. Furthermore, when we subtracted such
contributions from the amplitude itself the result was equal to zero, which means that the quark
loop amplitude contains no spurious parts that do not contribute to aµ. This implies that the
first principles arguments presented in chapter 1 to justify the decomposition of the HLbL ten-
sor completely characterize the tensor structure of the quark amplitude, at least with respect to
the soft derivative part of the decomposition.

It is worth noting that the tensor basis used for ∂ν4
q4 Πµ1µ2µ3µ4

HLbL in [22] is built from derivatives of
the elements of the set

{Tµ1µ2µ3µ4
i | i = 1, ..., 11, 13, 14, 16, 17} ∪ {T39 + T40, T42, T43, T50 − T51} , (3.13)

while in [35] they use the set

{Tµ1µ2µ3µ4
i | i = 1, ..., 11, 13, 14, 16, 17, 39, 50, 51, 54} , (3.14)

which was proposed in [23]. The choice of any of these two sets is of course irrelevant for aµ and
in this work we use the latter, because we are interested in using the projectors of [35].

3.2.1.2 Computation of scalar integrals with shifted dimensions: first approach

After tensor decomposing loop integrals and applying projectors on the quark loop ampli-
tude, the form factors Π̂i are given in terms of scalar integrals with shifted dimensions coming
from (3.10). It is necessary to compute them in order to perform the |Q1|, |Q2| and τ integrals
of the master formula. Just like tensor integrals discussed earlier these scalar ones appear with
one, two, and three different propagators in the quark loop amplitude. Due to the topologies
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FIGURE 3.1: Three different basic topologies of one–loop diagrams with up to three
external lines. These and the scalar integrals that appear in their amplitudes are

often referred to as tadpole (left), self–energy (center) and triangle (right).

of Green functions in which they may appear, these integrals are called one–, two– and three–
point scalar integrals. From the point of view of the diagrams in which they arise, they are also
called tadpole, self–energy and triangle scalar integrals (see figure 3.1). One–point integrals can
be computed analytically and the result can be put in a closed form, which is the formula we
presented in (2.84) for arbitrary dimensions.

The case for the two point function is considerably more complex6. However it is simple enough
to be explained in detail and it gives one a natural introduction to the framework of hyperge-
ometric functions and their corresponding Mellin–Barnes representation, which plays a central
role in our work. Therefore we fully derive the self–energy result and cite the general formula
for the triangle.

The tadpole formula (2.84) can be used to compute self–energy integrals with the help of a well–
known integral representation for products of propagators in terms of so-called “Feynman pa-
rameters”, namely:

1
Dν1

1 ...DνN
N

=
∫ 1

0
δ
( N

∑
1

xi − 1
)

∏
i

dxi
∏i xνi−1

i
{x1D1 + ... + xN DN}∑i νi

Γ(∑i νi)

∏i Γ(νi)
. (3.15)

This formula applies for a set of arbitrary complex numbers Di and νi, as long as Re{νi} > 0
for every i = 1, .., N. When this formula is used for the propagators in a self–energy integral
one can turn the term x1D1 + ...xN DN into the shape of a single new propagator whose external
momentum and masses are a linear combination of the original ones. For the general case with
different masses one has:7

I(2)(d; ν1, ν2) =
∫ dd p

(2π)d
1

{(p + q1)2 −m2
1}ν1

1
{p2 −m2

2}ν2

=
∫ dd p

(2π)d

∫ 1

0
dx1

xν1−1
1 xν2−1

2

{p2 + 2x1 p · q1 + x1(q2
1 −m2

1)− x2m2
2}ν1+ν2

Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

=
Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

∫ 1

0
dx1 xν1−1

1 xν2−1
2

∫ dd p
(2π)d

1
{p2 − ∆(x1)}ν1+ν2

,

(3.16)

where ∆(x1) = x2
1q2

1 − x1(q2
1 −m2

1) + x2m2
2 and we have performed an integration–variable shift

in the last step. For brevity it is always assumed that x2 = 1 − x1 due to the delta function
in (3.15). Note that in this case the caveat presented in chapter 2 about the role of the Feynman

6Two–point integrals in four dimensions can be put in a relatively simple closed form (see section 5.1 in [109]), but
we are interested in dimension–shifted integrals.

7Note that one can set one external momentum to zero without loss of generality by shifting the integration
variable.
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prescription in formula (2.84) becomes relevant, because ∆ becomes negative for sufficiently
large time–like external momentum. Therefore this is not an issue for us. At this point we can
use the expression (2.84) for the tadpole scalar integral to obtain:

I(2)(d; ν1, ν2) =
(−1)

1
2+ν1+ν2

(4π)d/2

Γ(ν1 + ν2 − d
2 )

Γ(ν1)Γ(ν2)

∫ 1

0
dx1 xν1−1

1 xν2−1
2

×
( 1
−x1(1− x1)q2

1 + x1(m2
1 −m2

2) + m2
2

)ν1+ν2− d
2

.

(3.17)

To compute this integral it is necessary to introduce yet another computational trick, the so-
called Mellin–Barnes representation

1
(A1 + ... + AN)β

=
1

Γ(β)

1

Aβ
N

∫ r+i∞

r−i∞
...
∫ r+i∞

r−i∞

N−1

∏
j

dsj

(2πi)
Γ(−sj)

( Aj

AN

)sj
× Γ

(
β + ∑

i
si

)
≡ 1

Γ(β)

1

Aβ
N

∫
∏j sj

N−1

∏
j

Γ(−sj)
( Aj

AN

)sj
× Γ

(
β + ∑

i
si

)
,

(3.18)

where r and β are real numbers and r is chosen so that the path of integration separates the

poles of the Γ(−si) functions to the left of the poles of the Γ
(

β + ∑i si

)
function. At its core, this

seemingly very complex representation is in fact just a Taylor expansion in a geometric series. If
we consider the case of a massive scalar propagator, it requires two different Taylor expansions
in the infrared and ultraviolet regimes:

1
(p2 −m2)ν

=
1

p2ν

1
Γ(ν) ∑

n=0

1
n!

(m2

p2

)n
Γ(ν + n) for

∣∣∣m2

p2

∣∣∣ < 1 ,

=
1

(−m2)ν

1
Γ(ν) ∑

n=0

1
n!

( p2

m2

)n
Γ(ν + n) for

∣∣∣ p2

m2

∣∣∣ < 1 .
(3.19)

The advantage of formula (3.18) is that it contains both series implicitly. The Mellin–Barnes
representation for the considered case is

1
(p2 −m2)ν

=
1

m2ν

1
Γ(ν)

∫
s

(
− p2

m2

)s
Γ(−s)Γ(ν + s) .

To compute this integral we can use the standard framework of residues in complex variable
by tracing a semi–circular integration contour with an infinite radius which is closed by a line
that lies along the imaginary axis (see figure 3.2). The direction (positive or negative real) to
which the semicircle points is restricted by the requirement that its contribution vanishes. Thus
by Jordan’s lemma one concludes that for |k2| < m2 the semicircle must point to the right (pos-
itive real) and for m2 < |k2| it must point to the left. In each case the contour of integration
encloses the poles of Γ(−s) or Γ(ν + s), respectively. Noting that the Euler Gamma function
has simple poles at zero and all negative integers, then the sum of residues from Cauchy’s the-
orem gives the correct geometric series of (3.19) in the corresponding regimes. The prescription
that the poles of these two functions are divided by the imaginary integration interval ensures
that one series representation does not mix with the other. As a final remark, it is worth noting
that the Feynman prescription can be straightforwardly taken into account in the Mellin–Barnes
representation by including the infinitesimal imaginary part of the momentum: p2 + iϵ. The
consequences of this contribution will be discussed later in this section when we discuss the
computation of Mellin–Barnes integrals in detail.
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In general, formula (3.18) is very useful to compute non–trivial Feynman parameters integrals;
it is just a matter of carefully choosing the Ai’s so that each contains only terms with the same
power of Feynman parameters. In this way the integral over the xi becomes straightforward.
Inserting this identity into (3.17) one obtains:

I(2)(d; ν1, ν2) =
(−1)

1
2+ν1+ν2

(4π)d/2

md−2ν1−2ν2
2

Γ(ν1)Γ(ν2)

∫
s1s2

∫ 1

0
dx1 xs1+s2+ν1−1

1 xs1+ν2−1
2

× Γ(−s1)Γ(−s2)Γ
(

ν1 + ν2 + s1 + s2

)(
− q2

1

m2
2

)s1(m2
1

m2
2
− 1
)s2

=
i1−d

(4π)d/2
(−m2

2)
d
2−ν1−ν2

Γ(ν1)Γ(ν2)

∫
s1s2

Γ(s1 + s2 + ν1)Γ(2s1 + s2 + ν1 + ν2)

Γ(s1 + ν2)

× Γ(−s1)Γ(−s2)Γ
(

ν1 + ν2 + s1 + s2

)(
− q2

1

m2
2

)s1(m2
1

m2
2
− 1
)s2

,

(3.20)

where we have used the following formula:∫ 1

0
...
∫ 1

0
∏

i
dxi xρi−1

i δ
(

∑
i

xi − 1
)
=

∏i Γ(ρi)

Γ(∑i ρi)
(3.21)

to perform the Feynman parameters integral.

To advance any further we need to compute the complex integrals. As usual, this can be done
by residues theorem, by considering the semicircular closed path of integration mentioned ear-
lier. However, this time we have multiple nested contours and therefore the situation calls for
multivariate residues tools. We will consider this topic in detail later in this section, but we will
not come back to this particular integral because we need the simpler case of equal masses. The
complete solution of the integral in (3.20) for each kinematic regimes can be found in [110] and
further technical details about the hypergeometric functions that appear in the answer can be
obtained from [61].

Now we specialize the computation of the two–point integral for our case of interest, namely,
m1 = m2 = m. Note that in such situation one of the Mellin–Barnes integrals in (3.20) is ill–
defined,8 which hints at an over parametrization of the problem. Taking a step back to (3.17) we
see that the Mellin–Barnes representation of ∆ needs one less integral when all masses are equal
and the result is:

I(2)(d; ν1, ν2) =
i1−d

(4π)d/2
(−m2)

d
2−ν1−ν2

Γ(ν1)Γ(ν2)

∫
s1

Γ(s1 + ν1)Γ(s1 + ν2)

Γ(2s1 + ν1 + ν2)

×
(
− q2

1
m2

)s1
Γ(−s1)Γ

(
s1 + ν1 + ν2 −

d
2

)
.

(3.22)

8Actually hypergeometric functions which are solutions to these Mellin–Barnes integrals have branch points 0, 1
and ∞.
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This is in fact the simplest non–trivial case of a general formula for N–point scalar integrals with
equal masses, which was first published in [42]:

I(N)(d; ν1, ..., νN) =
i1−d

(4π)d/2
(−m2)

d
2−∑i νi

∏i Γ(νi)

∫
∏ sjl

∏
j<l

{(
−

q2
jl

m2

)sjl

Γ(−sjl)

}

× Γ
(

∑
i

νi −
d
2
+ ∑ ∑

j < l
sjl

)[
Γ
(

∑
i

νi + 2 ∑ ∑
j < l

sjl

)]−1 N

∏
i=1

Γ
(

νi + ∑
j<i

sji + ∑
l>i

sil

)
,

(3.23)

where qjl = qj − ql are all the distinct differences of external momenta and the indices run over
j < l to avoid double counting. Consequently there are N(N− 1)/2 Mellin-Barnes integrals, one
for each distinct difference of external momenta. The two indices in Mellin–Barnes integration
variables allow for a quick identification with their respective q2

jl .

For the triangle scalar integral with equal masses, (3.23) yields:

I(3)(d; ν1, ν2, ν3) =
i1−d

(4π)d/2
(−m2)

d
2−∑i νi

Γ(ν1)Γ(ν2)Γ(ν3)

∫
s12s13s23

(
− q2

12
m2

)s12(
−

q2
13

m2

)s13(
− q2

23
m2

)s23

× Γ(−s12)Γ(−s13)Γ(−s23)

× Γ
(

ν1 + s12 + s13

)
Γ
(

ν2 + s12 + s23

)
Γ
(

ν3 + s13 + s23

)
× Γ

(
∑

i
νi −

d
2
+ s12 + s13 + s23

)[
Γ
(

∑
i

νi + 2s12 + 2s13 + 2s23

)]−1
.

(3.24)

Now the task is to compute the integrals in (3.22) and (3.24). This is a complex task even for the
self–energy case for both practical and conceptual reasons. From a practical perspective, we see
that there are four Gamma functions in (3.22) and seven in (3.24). Each of these introduces its
own infinite set of simple poles and each of these may contribute in a different kinematic regime.
Furthermore, the triangle integral has a triple nested integral and thus the poles of the Gamma
functions are intertwined, which requires one to be even more careful. This issue introduces
additionally a conceptual difficulty: the standard complex variable residues framework that is
enough for the self–energy case cannot be naively expanded in general by iteration to consider
multiple complex variable integrals. There are subtleties that must be accounted for appropri-
ately. Therefore we stop the presentation of our computation of the quark loop to present the
tools necessary to afford it.

3.2.2 Mellin–Barnes integrals, multivariate residues and hypergeometric functions

The Davydychev tensor decomposition which has the benefit of not introducing additional kine-
matic singularities has come at the cost of introducing scalar integrals in shifted dimensions.
In (3.22) and (3.24) we have arrived at a representation for the emerging sclar integrals in terms
of Mellin–Barnes representation. Analytical expressions to these are often given in terms of
hypergeometric–like9 series in one or more variables, therefore they can give us a complete and
systematic expansion of the quark masses effects on the loop. We will present a general frame-
work of computation for Mellin–Barnes integrals from (3.23).

9The presence of logarithms and polygamma functions breaks some of the properties required on a power series
to be considered a hypergeometric one.
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3.2.2.1 General properties of Mellin–Barnes integrals

In particular, we have to deal with P–fold Mellin–Barnes integrals of the form:

J({ej}, f ; {gj}, h; u1, ..., uP) =
∫ +i∞

−i∞
...
∫ +i∞

−i∞

P

∏
i

{ dsi

2πi
(−ui)

si
}∏k

j=1 Γ(ej · s + gj)

Γ( f · s + h)
, (3.25)

where s is a P–dimensional complex vector containing the integration variables, ej and f are
P–dimensional real vectors, gj and h are real numbers, and ui is a complex number. Looking
at (3.23), we have f = (2, ..., 2)T and h = ∑i νi. The vectors ej and the numbers gj do not have
a general form, but can be easily read from (3.23). The integral paths are shifted from the origin
by a finite real quantity γi to prevent them from splitting the poles of a Gamma function in the
numerator into subsets or passing through one of them.10 In general, the Gamma functions in
both the numerator and denominator of the integrand may also appear with powers higher than
one and there may be multiple gamma functions in the denominator, but we will not consider
such cases as they do not happen in (3.23).

There are two quantities upon which some important features of the integral in (3.25) depend:

∆ ≡∑
i

ei − f

α ≡ Min||ŷ||=1

{
∑

i
|ei · ŷ| − | f · ŷ|

}
,

(3.26)

where |.| symbolizes real or complex absolute value and ||.|| represents Euclidean vector norm.
In particular, for all integrals of the type (3.10) we have ∆ = 0. The asymptotic behaviour of
the integrand is of course key for Mellin–Barnes integrals and these two quantities characterize
it. First, let us see the meaning of α. For this, let us consider the asymptotic behaviour of the
integrand in (3.25) when the imaginary part of si gets big. Stirling’s formula,

|z| → +∞ , Γ(z) −→
√

2πzz−1/2e−z , (3.27)

in the limit of z with big imaginary part yields:

Γ(r + iτ) −→
√

2π|τ|r−1/2e−π|τ|/2 for |τ| → ∞ , (3.28)

then evaluating the complex norm of the integrand of (3.25) in the asymptotic regime si =
lim|Ri |→∞ γi − xi + iRi, where xi and Ri are real numbers, and γi represents the real shift to
the integration paths, we obtain:∣∣∣∣∣ P

∏
i

{
(−ui)

si
}∏k

j=1 Γ(ej · s + gj)

Γ( f · s + h)

∣∣∣∣∣ −→
P

∏
i

{
|ui|γi

}∏k
j=1 |ej · R|∑i ei ·(γ−x)+gj−1/2

| f · R| f ·(γ−x)+h−1/2

× exp
{
−
(

arg{ui}+ π
)

Ri

−
(

∑
j
|ej · R| − | f · R|

)π

2

}
.

10If one is computing the integral in dimensional regularization, the former purpose might not be compatible with
the limit ϵ → 0. We do not consider this situation here as it is not relevant for this work. Instead we refer the reader
to the comprehensive study done in [111].
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The first line on the right hand side is a polynomial in Ri, while the other two are exponential.
Thus we see that the integral in (3.25) is absolutely convergent for

−arg{−u} · R <
(

∑
j
|ej · R| − | f · R|

)π

2
, (3.29)

where arg{ui} is the argument of the complex variable ui and the components of arg{−u} are
equal to arg{ui}+ π. Since the inequality (3.29) is homogeneous in R, then it can be simplified
as

Max||ŷ||=1|arg{−u} · ŷ| < α
π

2
.

Finally, using the well–known Cauchy–Schwartz11 inequality one concludes that

Max||ŷ||=1|arg{−u} · ŷ| = ||arg{−u}|| (3.30)

||arg{−u}|| < α
π

2
. (3.31)

Therefore, one sees that α characterizes the convergence regions of the Mellin–Barnes integral
in (3.25). In particular, it is a necessary condition that α > 0 in order for the convergence region
of the integral to be non–empty. For the integrals appearing in (3.23) one has α > ∑j |(ŷ)j| −
|∑j(ŷ)j| > 0, hence there is always a non–trivial region of convergence.

While α is related to the convergence of the integral as a function of u, that is, the asymptotic
behaviour of the integrand in imaginary directions, ∆ does the same with respect to the real
part of the integration variables s. This is key to know the direction to which the contours of
integration can be closed. To justify this interpretation we follow a procedure analogous to that
of α although this time the Stirling formula is specialized to the case of a big real part:

|Γ(r + iτ)| −→
√

2π|r|r−1/2e−r . (3.32)

With such formula we study the integrand in the limit si = lim|xi |→∞ γi − xi + iRi:∣∣∣∣∣ P

∏
i

{
(−ui)

si
}∏k

j=1 Γ(ej · s + gj)

Γ( f · s + h)

∣∣∣∣∣ −→ exp
{
−
(

∑
j

ej − f
)
· (γ− x)

}
×
∣∣∣∣∣ P

∏
i

{
|ui|−xi

}∏k
j=1 |ej · x|ej·x−1/2

| f · x| f ·x−1/2

∣∣∣∣∣ ,

where x characterizes the direction to which the contour of integration closes and thus we see
that for ∆ ̸= 0 there are preferred directions in the complex plane. Instead, when ∆ = 0 there are
many (infinitely many, as we will discuss later) regions where the integrand decreases depend-
ing on the values of |ui| and as such there are multiple series representations which, if α > 0, are
analytic continuations of one another [112, 113].

Let us introduce useful definitions to shed more light on the meaning of ∆, which is crucial for
the computation of Mellin–Barnes integrals. We have found that the exponential increase or de-
crease of the Mellin–Barnes integrand in infinite real directions of the complex space CP depends
on a scalar product with ∆. More specifically, we conclude that the integrand increases exponen-
tially for any s ∈ CP with a large real part such that ∆ ·Re{s} > ∆ · γ and the converse statement
is valid if ∆ · Re{s} < ∆ · γ. We will later see that one can compute Mellin–Barnes integrals by

11Also known as Cauchy–Bunyakovsky or Cauchy–Bunyakovsky–Schwartz inequality.
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closing an infinite contour12 in the region in which the integrand vanishes asymptotically, as
one can expect from a naive multivariate generalization of Jordan’s lemma. Consequently, we
now introduce definition that will come in handy below. Let l∆ be a hyperplane in the subspace
RP with normal vector ∆ whose points are defined by the condition ∆ · Re{s} = ∆ · γ. Note
that l∆ constitutes a critical region of the asymptotic behaviour of the Mellin–Barnes integrand.
Let π∆ represent the “half” of RP for which ∆ · Re{s} < ∆ · γ, which is the region of exponen-
tial decrease of the integrand. π∆ can be regarded as the real projection of a section Π∆ of CP.
Since ∆ is a real vector, then such section can be defined as a direct product: Π∆ ≡ π∆ + iRP.
13 The points of Π∆ are characterized by the condition Re{∆ · s} < ∆ · γ, therefore, as we just
discussed, it should be expected for the integrand poles that belong to Π∆ to play a major role
in the computation of Mellin–Barnes integrals.

3.2.2.2 Multivariate generalization of Jordan’s lemma for Mellin–Barnes integrals

We have the asymptotic behaviour of Mellin–Barnes integrals. Let us now consider its actual
computation. In univariate residues we have the well–known Jordan’s lemma:

1
2πi

∫ +∞

−∞
dx f (x)eiλx = ∑

a∈S
Resa f (z) , (3.33)

where λ > 0 and S is the set of poles of f (z) in the upper half of the complex plane. This formula
is valid if lim|z|→∞ | f (z)| = 0 for z in the upper half of the complex plane.14 If λ < 0 then the
upper and lower halves of the complex plane change roles. This formula is only valid for one
dimensional Mellin–Barnes integrals, that is, the self–energy ones. It can in principle be applied
also for multiple integrals as long as the location of the poles remains univariate. An example of
such situation would be a two–fold Mellin–Barnes integrals where such that in the numerator
there are two gamma functions Γ(z1)Γ(z2) and a counter example would be Γ(z1)Γ(z2 + z1).
In the latter case the poles become entangled and it is necessary to use multivariate residues
machinery. It is evident that we face such situations with (3.23).

It is possible to compute integrals (3.25) in the general multivariate case with a formula analo-
gous to (3.33). Such formula is of course more abstract, so, before presenting the result, let us
first point at certain features of the univariate formula that should be translated into the multi-
variate case. The basic idea behind (3.33) is to use the straight path of integration of the original
integral as a part of a larger closed contour. The integral along such contour can be computed
with residues. The region to which the contour is closed is chosen such that contribution from
the part of the contour that is additional to the original straight path vanishes. Since the original
integration path is infinite and the contour is closed, then the additional parts are infinite too
and must be place in a region where the integrand vanishes, at least asymptotically. Such region
is ultimately determined by λ in the univariate case and by ∆ for the multivariate ones of (3.25).
Therefore one would expect the relevant poles of the multivariate case to be the ones in Π∆, just
as the relevant ones for (3.33) are in the upper half of C for λ > 0.

12We are perhaps abusing the term “contour”, which is more suitable for the single variable case than for multi-
variate situation, but the analogy stands.

13For P = 1 l∆ and π∆ are a point and a line, for P = 2 they are a line and a plane, and for P = 3 they are a plane
and a 3D cube, respectively.

14Note that Jordan’s lemma is usually taken to be the result regarding the vanishing of the integral of a complex
variable function along an infinite semicircle, of which (3.33) is a famous application, but here we adhere to the
convention of [114].
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Now we need to introduce the definition of multivariate poles and residues. These are slightly
different from the univariate case. Let us consider the following general function:

f (z) =
η(z)

ϕ1(z)...ϕn(z)
, (3.34)

where z = (z1, ..., zn) ∈ Cn. A naive univariate generalization would tell us that f (z) has poles in
any z0 such that ϕj(z0) = 0 for at least one j ∈ {1, ..., n}, as long as η(z0) ̸= 0. Instead, the correct
definition states that f (z) has poles in any z0 such that ϕ(z0) = (ϕ1(z0), ..., ϕn(z0)) = 0, as long
as η(z0) ̸= 0. This definition is not as odd as it may seem: if we could arrange a variable change
such that each ϕj becomes univariate then we would disentangle the multivariate poles and the
closed integral of f (z) would become a product of univariate integrals. For some integration
contours such product would be equal to zero if not all ϕj had zeros at the same point.

There is one more rather peculiar feature of the definition of poles that we have just given: it
leaves space for ambiguities with respect to the way in which singular factors ϕj are grouped
together. For example, let us consider the following function f (z1, z2):

f (z1, z2) =
η(z1, z2)

z1(z1 − z2 + 1)(z1 + z2)
. (3.35)

There is no obvious way to define the singular functions. Three of the possibilities are:

ϕ1 = z1(z1 − z2 + 1) , ϕ2 = (z1 + z2) ,
ϕ1 = (z1 − z2 + 1) , ϕ2 = z1(z1 + z2) ,
ϕ1 = z1 , ϕ2 = (z1 − z2 + 1)(z1 + z2) .

Each of these three combinations has different poles and they may have even different residues
in the poles that they share.15 Furthermore, even if there were only two singular factors, the
order in which they are defined introduces a sign ambiguity, as we will see later. Hence any
residue formula must clearly specify the singular functions with respect to which its poles are
defined. Each set of singular points defined by the condition ϕj(z) = 0 is called a divisor and
we represent them with Fj. Consequently, the set F1 ∩ F2 ∩ ...∩ Fn contains the poles of f (z) with
respect to a certain set of divisors {Fj}.

Now let us consider the residues of f (z) in this poles:

Res{F1,...,Fn},z0
f (z) =

1
(2πi)n

∮
Cϵ

η(z)dz1...dzn

ϕ1(z)...ϕn(z)
, (3.36)

where Cϵ{z ∈ CP| |ϕi(z)| = ϵi} is called a cycle and ϵi has infinitesimal positive value. The
orientation of the integration path Cϵ is defined such that the change in the argument of ev-
ery ϕj is always possible, which is analogous to the usual clockwise orientation although this
time it refers to the functions ϕj rather than the integration variables zj. Note that due to the
definition of the orientation of Cϵ, one sees that residues are skew–symmetric with respect to
the permutations of ϕj. Equation (3.36) defines local Grothendieck residues, which are a multi-
variate generalization of the univariate ones and are commonly used in the context of algebraic
geometry [116].

15An explicit computation of an example of the latter case is given in [115].



Chapter 3. High energy contribution to aHLbL
µ 77

Now we are able to state the the formal mathematical generalization of (3.33) for multiple vari-
ables, which is called “multidimensional abstract Jordan lemma” [114]. It asserts that for a com-
plex variable function f (z):

1
(2πi)n

∫
σ

f (z)dz1...dzn = ∑
a∈Π

Resa f (z) . (3.37)

Let Π be a polyhedron and σ be the “skeleton” of Π, that is, the structure formed by the vertices
and edges of Π. The residues in Π are defined in terms of divisors {Fj} such that each of them
does not intersect one specific face of the polyhedron, that is, the polyhedron has n faces σn and
the set of divisors verifies the condition Fj ∩ σj = ∅ for each j = 1, ..., n. This is referred to as
“compatibility” between divisors and the polyhedron.

In general, Π may be bounded or not, however, we want to identify the edges in σ with the
infinite straight integration paths of (3.25), so we are interested in the unbounded case. In this
context there is an additional condition for the validity of (3.37) which is essentially a multivari-
ate generalization of the asymptotic behaviour condition on f (z) when there is an infinite set of
poles, which we omitted when discussing (3.33) and we omit for this case, too, because it is not
crucial for our analysis [112, 114].

Applying (3.37) to integrals of the type showed in (3.25) one obtains the following result [112,
117]:

J({ej}, f ; {gj}, h; u1, ..., uP) = ∑
a∈Π∆

Resa J . (3.38)

In addition, Resa J represents the residue of the integrand in its pole a. The compatibility con-
dition for the divisors and the polyhedron is of course still required for (3.38) to be valid. For
∆ = 0 one sees that there is no preferred region of the CP space, hence such integrals are usually
called “degenerate”. In fact, in such cases formula (3.38) remains valid for any Π∆.

The analogy of this result with the standard one–dimensional Jordan lemma is more apparent
in the one–dimensional case of (3.25). In there, l∆ is just γ + iR. Hence when ∆ > 0 the sum of
residues from the poles enclosed in the negative real half of the complex plane constitute a series
representation convergent for any value of u, while the sum of residues from the other half forms
a divergent asymptotic expansion [118]. For ∆ < 0 the roles of these two halves of the complex
plane are inverted, while for ∆ = 0 one obtains two different series for each half that converge
in non–overlapping complementary regions of the u complex plane. If α > 0, then they are an
analytical continuation of each other. In this way one can see the analogy of ∆ with the role of
the time coordinate and its sign in Fourier transforms. Regarding the compatibility between the
divisor and the polyhedron of integration, note that the face of Π∆ is just the integration path
γ + iR, therefore one sees that such prescription is just the multidimensional generalization of
the requirement for (3.33) that no poles lie on the integration path.

Now that we have presented the multivariate generalization of Jordan’s lemma, we need to
show how to compute Grothendieck residues of the integrand of (3.25) with respect to the poles
and divisors that fulfill the requirements of (3.38).

Let us first start with poles. The ones that we are interested in exist at points where P gamma
functions become singular, that is, the intersection of P singular hyperplanes of the gamma
functions in the numerator. For example, in the case of the three–point function (3.24), we must
have an intersection of three two–dimensional planes. Each gamma function in the numerator
of the integrand generates a family Lj with countably infinite singular hyperplanes Lj

n defined
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as Lj
n = {s ∈ CP| ej · s + gj = −n} for every n ∈N. One sees that each ej is the normal vector of

the family of singular hyperplanes of a given gamma function. They give us information about
intersection of singular planes an therefore they are key to identify poles of the integrand. If a
set of P vectors {ej1 , ..., ejP} is linearly independent, then for any ni ∈ N the set Lj1

n1 ∩ ... ∩ LjP
nP

always has only one element z0 ∈ CP, which constitutes a pole of the Mellin–Barnes integrand.
Moreover, if each singular plane Lji belongs to a different divisor Fji , then z0 is a relevant pole
for (3.38). With this definition of poles, the formula (3.38) requires us to:

• Group the singular planes of the gamma functions in the numerator of (3.25) in P divisors
Fj that satisfy the compatibility condition with respect to the faces of Π∆.

• Study all possible P combinations of gamma functions in the numerator of (3.25) such that
each gamma functions belongs to a different divisor Fj.

• Determine which of these combinations have isolated intersection points, that is, poles.

• Discard all poles that do not belong to Π∆.

• Compute the residues of the integrand of (3.25) for all relevant poles.

In addition, there are situations in which things are more complicated. It is possible, and in
fact it happens for the three–point function, that more than P singular hyperplanes coincide at
certain points. These cases are the multivariate versions of higher multiplicity poles and they
are called “resonant” or “logarithmic” due to the logarithms that appear in the resulting series
because of the derivatives of the terms (−u)s that are involved. Later in the section we present
a useful tool to deal with such cases.

There is another subtlety that we have not addressed. The half space Π∆ plays a key role with in
the computation, but it seems to be ill–defined for ∆, which is actually true for all the integrals
that we need. The solution to this issue is very simple: one may define Π∆ arbitrarily. However,
not that the key point for (3.37) and (3.38) is that one computes an integral along the skeleton
of a polyhedron in terms of the poles that lie within the polyhedron. Hence the polyhedrons Π
that one chooses for the computation must have γ as one of its vertices and γ + iRP as one of
its edges. For a given γ there are still infinitely many options to define Π∆. Nevertheless, there
are still only a finite number of series representations for (3.25) that, since α > 0, are analytic
continuations of each other for different values of |ui|. Once the residues have been computed
and the corresponding series representation has been obtained, one can identify the convergence
region of the series obtained by applying Horn’s theorem [61, 119, 120]. It is even possible to
determine the convergence region of a series before performing the full computation [121] in
order to compute only the series representation that converges for the kinematic regime that in
one is interested in. We expect to shed more light on these issues with examples later in this
subsection.

Now that we have studied the poles that we need to compute (3.25), we have only left to consider
how to compute the residues on the right hand side of (3.38). As happens in the single variable
case, the formal definition (3.36) usually is not the most appropriate tool.

Let us begin with the simple case in which there is a straightforward connection between uni-
variate residues and multivariate ones. For this, let us consider again the general function f (z)
of (3.34). If the Jacobian determinant evaluated at the pole z0:

det
(∂ϕj

∂zi

)∣∣∣
z=z0

(3.39)
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is not equal to zero then one can perform the variable change wi ≡ ϕi, which disentangles the
poles and hence allows for the multivariate integral to become a product of univariate integrals.
The latter can be evaluated by the usual methods. These are called “simple poles” [122]. As we
mentioned previously, this is usually not the case for (3.25).

When the Jacobian (3.39) is zero, then one has to use another formula called the “Transformation
law” for multivariate residues (see page 20 of [122]), which is valid for residues of any function
f (z) irrespective of the value of its Jacobian determinant. For a function f (z) with an isolated
pole at z = z0 one has:

Resz0

η(z)
ϕ1(z)...ϕn(z)

= Resz0

η(z)detÂ
ρ1(z)...ρn(z)

, (3.40)

such that:
ρi(z) = ∑

j
aij(z)ϕj(z) −→ ρ(z) = Â(z)ϕ(z) , (3.41)

where the coefficients aij(z) are holomorphic functions that form the matrix Â and ρ = (ρ1, ..., ρn).
The holomorphy condition for these matrix elements is important to ensure that they do not
cancel zeros in any ϕj. Another requisite for (3.40) to hold is that all the poles of ρ and ϕ are
isolated.16 The transformation law is useful to compute multivariate residues as long as one is
able to find a set {ρj} such that each element is an univariate function, because then one may fac-
torize the integrals and use the standard univariate machinery for residue computation. From
this formula it is also easy to see that even a change in the order of the denominators ϕj intro-
duces a minus sign from A, which illustrates the importance of properly taking into account the
orientation of the cycles in multivariate integrals.

3.2.2.3 Example of the computation of scalar integrals with Mellin–Barnes integrals with
one variable.

In this subsection we compute a self–energy scalar integral, that is, a single variable Mellin–
Barnes integral.

The general shape of scalar self–energy integrals is (3.22). Since that formula is symmetric with
respect to the interchange N \ {0} ∋ ν1 ↔ ν2, we can choose without loss of generality ν1 < ν2
such that ν1 ≡ ν ≥ 1 and ν2 ≡ ν + n where n ∈ N is a natural number.17 For this example we
focus on the special case n = 1 with space–time dimension d = 6 for brevity and we will use it
to provide insight about the general case. With that notation, the self–energy integral becomes:

I(2)(6; ν, ν + 1) =
i−5

(4π)3
(−m2)2−2ν

Γ(ν)Γ(ν + 1)

∫
s

(
− q2

m2

)s Γ(s + ν)Γ(s + ν + 1)
Γ(2s + 2ν + 1)

Γ(−s)Γ
(

s + 2ν− 2
)

.

(3.42)

For this integral we can use the standard complex calculus tools in one variable. As mentioned
previously, we always have ∆ = 0 and α > 0, therefore the region of the complex plane where
we can close the integration contour to obtain a convergent series representation is defined by
the asymptotic behaviour of (|q2|/m2)s. For the quark loop we are interested in the high energy

16In the mathematical literature this result is often presented in terms of ideals noted as ⟨ϕ1, ..., ϕn⟩ and ⟨ρ1, ..., ρn⟩.
The condition of isolation for the poles is equivalent to the assertion that these two are zero dimensional ideals.

17There is actually loss of generality, since formula (3.23) is also valid for integrals with real propagator powers.
Nevertheless, for the quark loop computation no such terms appear.
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regime, therefore we have |q2| ≫ m2. For such kinematic regime, the integrand of (3.42) is
decreasing in the negative real half of the complex plane.

There are three gamma functions in the numerator that have poles in the negative part of the
real axis. Using the multidimensional terminology we previously introduced, we can say that
there are three families of singular hyperplanes in the negative half of the real plane:

S1 ≡ {s ∈ C| s = −p− ν for p ∈N } ,
S2 ≡ {s ∈ C| s = −p− ν− 1 for p ∈N } ,

S3 ≡
{

s ∈ C

∣∣∣ s = −p + 2− 2ν for p ∈N
}

.

(3.43)

For each of these three sets, the rightmost pole is obtained for p = 0, therefore we have s = −ν
for S1, s = −ν− 1 for S2 and s = 2− 2ν for S3. Consequently, the rightmost pole of all three sets
is −ν if 2− ν < 0 or 2− 2ν otherwise.18 From these two cases, we specialize this computation
for the case ν > 2, since it has a wider range of use. There is also a set of poles on the positive
real axis, and its leftmost pole is s = 0. Therefore γ may be anywhere within the interval (−ν, 0)
in order not to split any of these four sets of poles (see figure 3.2). In multivariate residues
language, this means that the polyhedron Π that interests us is defined by {s ∈ C|Re{s} < γ}
and the integration path γ + iR is both its edge and its face. In the single variable case one
still does not see much freedom to choose Π even though ∆ = 0, because there exist only two
polyhedrons for which γ + iR is an edge, namely, the positive and negative real halves.

To expose removable singularities caused by the presence of a gamma function in the denomi-
nator we use the duplication formula:

Γ(2s) =
22s−1
√

π
Γ(s)Γ(s +

1
2
) , (3.44)

which, when applied on to the gamma functions in the integral (3.42), yields

√
4π
(
− q2

4m2

)s Γ(s + ν)Γ(s + ν + 1)
Γ(s + ν + 1

2 )Γ(s + ν + 1)
Γ(−s)Γ(s + 2ν− 2) . (3.45)

Instead for the general d and n case this result reads:

√
4π
(
− q2

4m2

)s Γ(s + ν)Γ(s + ν + n)
Γ(s + ν + n

2 )Γ(s + ν + n+1
2 )

Γ(−s)Γ
(

s + n + 2ν− d
2

)
. (3.46)

We have not performed an obvious cancellation of gamma functions to emphasize that in the
general n case it is necessary to define if n is odd or even in order to know which of the two Γ
in the denominator is removing singularities. Applying basic recurrence formulas to shed light
on the actual multiplicity of the remaining poles one obtains a the following expression for the
integrand of (3.42):

√
4π
(
− q2

4m2

)s Γ(−s)
Γ(s + ν + 1

2 )

Γ2(s + 2ν− 2)

∏ν−3
j=0 (s + ν + j)

. (3.47)

We have explicitly extracted the finite set of poles that only belong to the Γ(s + ν) in order the
separate them from the rest which are shared with Γ(s + 2ν− 2) and whose multiplicity equal
to two is now evident by the power of the gamma function. Let us first consider the residues of

18For arbitrary d and n the condition reads d
2 − ν− n < 0.
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Re{s}

Im{s}
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Γ(s + 2ν− 2)
Γ(s + ν + 1)

Γ(s + ν) Γ(−s)
Γ(2s + 2ν + 1)

FIGURE 3.2: Graphic representation of the computation of the integral (3.42) with
residues in the complex plane of s. The red path represents the contour of integra-
tion closed at infinity. The green interval in the real axis represents the possible
values that γ can take. Dots represent poles and their color relates them to their
corresponding gamma function. All poles are on the real axis, but they are dis-
played at different heights to expose multiplicity. The gamma functions location

inside the legends box is related to the location of their poles in the figure.
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the finite set of simple poles:

Res−ν−k I(2) =
√

4π
(
− q2

4m2

)−ν−k Γ(ν + k)
Γ(−k + 1

2 )

Γ2(−k + ν− 2)

∏k−1
j=0 (j− k)∏ν−3

j=k+1(j− k)
,

Res−ν−k I(2) =
√

4π
(
− q2

4m2

)−ν−k Γ(ν + k)
Γ(−k + 1

2 )

Γ2(−k + ν− 2)
(−1)kk!(ν− 3− k)!

,

where k ∈ {0, ..., ν− 3} and we have represented the integrand of (3.42) by I(2) for brevity. Thus
we see that the total contribution from these simple poles is:

√
4π
(
− 4m2

q2

)ν ν−3

∑
k=0

(4m2

q2

)k Γ(ν + k)
Γ(−k + 1

2 )

Γ(−k + ν− 2)
Γ(k + 1)

. (3.48)

Second order poles from the gamma function are defined by s = 2− 2ν − l for every l ∈ N.
It is therefore convenient to place them at the origin by the following change of variables: s →
s + 2− 2ν− l. Then, the singularity is exposed by using the generalized reflection formula for
the gamma function:

Γ(s− n) = (−1)n Γ(1− s)Γ(s + 1)
sΓ(n + 1− s)

For n ∈ Z (3.49)

and thus the integrand becomes:

√
4π
(
− q2

4m2

)s+2−2ν−l Γ(−s− 2 + 2ν + l)
Γ(s− ν− l + 5

2 )

Γ2(1− s)Γ2(s + 1)
s2Γ2(l + 1− s)∏ν−3

j=0 (s + 2− ν− l + j)
. (3.50)

This time we need to use the well–known formula for the residue of a complex variable function
f (z) in a pole z0 of arbitrary multiplicity p:

Resz0 f (z) =
1

(p− 1)!
dp−1

dzp−1 {(z− z0)
p f (z)}

∣∣∣
z=z0

, (3.51)

where dp−1

dzp−1 represents the (p− 1)–th derivative, as usual. Using (3.51) we find the residues of
the integrand to be:

Res2−2ν−l I(2) =
√

4π
d
ds

(
− 4m2

q2

)2ν+l−s−2 Γ(−s− 2 + 2ν + l)
Γ(s− ν− l + 5

2 )

Γ2(1− s)Γ2(s + 1)
Γ2(l + 1− s)∏ν−3

j=0 (s + 2− ν− l + j)

∣∣∣∣∣
s=0

=
√

4π
(
− 4m2

q2

)2ν+l−2 Γ(−2 + 2ν + l)
Γ(−ν− l + 5

2 )

(−1)ν

Γ(l + 1)Γ(l + ν− 1)

×
(

ln
{
− q2

4m2

}
− ψ0(−2 + 2ν + l)− ψ(0)(−ν− l +

5
2
)− 2ψ(0)(l + 1)

−
ν−3

∑
j=0

1
2− ν− l + j

)
,
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where Γ′(z) is the first derivative of the gamma function and ψ0(z) ≡ d
dz ln Γ(z) = Γ′(z)/Γ(z) is

the digamma function. To further simplify the expression we can use the following identity:

ψ(0)(p) =
p−1

∑
j=1

1
j

for p ∈N \ {0} , (3.52)

which allows us to conclude that:

ν−3

∑
j=0

1
2− ν− l + j

= −ψ0(l + ν− 1) + ψ(0)(l + 1) (3.53)

and therefore the full contribution from second order poles is:

−
√

4π
(
− 16m4

q4

)ν−1 ∞

∑
l=0

(
− 4m2

q2

)l Γ(−2 + 2ν + l)
Γ(−ν− l + 5

2 )

1
Γ(l + 1)Γ(l + ν− 1)

×
(

ln
{
− q2

4m2

}
− ψ0(−2 + 2ν + l)− ψ(0)(−ν− l +

5
2
)− 3ψ(0)(l + 1) + ψ0(l + ν− 1)

)
.

(3.54)

In conclusion we find that the scalar self–energy integral (3.42), which belongs to a special family
of the general type in (3.22) with ν1 ≡ ν ≥ 2, ν2 ≡ ν + 1 and d = 6, is equal to the sum of the
expressions in (3.48) and (3.54):

I(2)(6; ν, ν + 1) =
−i

(4π)5/2
(m4)1−ν

Γ(ν)Γ(ν + 1)

×
{(
− 4m2

q2

)ν ν−3

∑
k=0

(4m2

q2

)k Γ(ν + k)
Γ(−k + 1

2 )

Γ(−k + ν− 2)
Γ(k + 1)

−
(
− 16m4

q4

)ν−1 ∞

∑
l=0

(
− 4m2

q2

)l Γ(−2 + 2ν + l)
Γ(−ν− l + 5

2 )

1
Γ(l + 1)Γ(l + ν− 1)

×
(

ln
{
− q2

4m2

}
− ψ(0)(−2 + 2ν + l)− ψ(0)(−ν− l +

5
2
)− 3ψ(0)(l + 1) + ψ(0)(l + ν− 1)

)}
.

(3.55)

Note that this result is quite different from the one cited in equation (18) of [110]. In such case
there appear three hypergeometric series and no logarithms or digamma functions. The reason
for uch discrepancy is that the result obtained in [110] is valid for “generic” values of ν1, ν2
and d, that is, they consider the case in which none of them produces higher multiplicity poles
of removable singularities, which does happen in our example. In short, in their computation
all gamma functions in the numerator of the integrand have simple poles and none of them
is cancelled by the gamma function in the denominator. Consequently, closing the integration
contour to the left half of the complex plane only implies summing over three independent sets
of simple poles from three gamma functions, thus three hypergeometric series appear.

Several important general properties of the scalar integrals that appear in the quark loop with
shifted dimensions are present in this result. First of all, we can see in (3.55) the infrared diver-
gent logarithms ln{ q2

m2 } that we renormalized in the previous chapter. In our computation these
came due to the presence of higher multiplicity poles in the integrand. In general, self–energy
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integrals have three gamma functions in the numerator with poles in the negative real half of
the complex plane (see equation (3.22)), so one might think that poles of order 3 may arise. This
would be problematic, since it would introduce further infrared divergent terms like ln2{ q2

m2 },
which we have not taken into account in the renormalization procedure. The absence of such
poles is however not a lucky coincidence of the example that we have just considered, but rather
a general property of self–energy scalar integrals. At the start of the example we considered the
location of the poles of these three gamma functions. In the general d and n case, the sets of
poles are:

S1 ≡ {s ∈ C| s = −p− ν for p ∈N } ,
S2 ≡ {s ∈ C| s = −p− ν− n for p ∈N } ,

S3 ≡
{

s ∈ C

∣∣∣ s =
d
2
− p− 2ν− n for p ∈N

}
.

(3.56)

If d is an odd integer, then the intersection of S1 or S2 with S3 is empty and no third order poles
appear. Now let us consider the case when d is an even integer. Since all of them extend infinitely
along the negative integers, the intersection of these sets has an infinite number of elements
and, in fact, it is equal to whichever of the three sets starts further to the left in the real axis.
Just as we did in the example, for the general case the gamma function in the denominator can
be decomposed by means of the duplication formula to get a divisor proportional to Γ(s + ν +
n+1

2 )Γ(s+ ν+ n
2 ). Since ν and n are always positive integers in the quark loop computation, then

one these two gamma function will always remove singularities from the gamma functions in
the numerator. Which one of them does it depends on whether n is even or odd and we consider
the latter case. In brief we argue that it is a worst–case scenario. The factor 1/Γ(s + ν + n+1

2 )

has a set of zeros ζ = {s ∈ C| s = −p − ν − n+1
2 for p ∈N }. Note that even though the

gamma function in the denominator lowers the order of an infinite number of singularities, it is
not enough to lower the order of all singularities: singularities which lie to the right of the set of
zeros of the factor 1/Γ(s + ν + n+1

2 ) do not have their order lowered. Consequently, if the set of
zeros of this factor starts further enough to the left19 such that it does not lower the multiplicity
of one or more of the poles in S1 ∩ S2 ∩ S3, then there will appear new infrared singularities of
the type ln2{ q2

m2 }. To determine if or when this is possible, we need to show that the rightmost
zero in ζ is always further to the right than the rightmost pole of at least one set Si. It is very
easy to show that such is the case for S2 as long as n is a natural number. Hence, we prove
that only simple logarithmic infrared divergences are introduced by self–energy scalar integrals
I(2)(d; ν1, ν2) with any positive integers d, ν1 and ν2 in the high energy regime. In fact, it is easy
to verify a similar assertion for the low energy regime. In such case one closes the contour of
integration to the positive real half of the complex plane, where only the poles of Γ(−s) lie,
therefore not even simple logarithmic infrared divergences arise.

As a conclusion of our analysis of the result (3.55), we consider the convergence properties of the
series representation found. The expression contains two series: one is (3.48), which has a finite
number of terms and it is obviously convergent, and the other is (3.54), which has an infinite
number of terms and a rather complex structure that requires careful study. The standard tools
for the analysis of convergence properties of hypergeometric–like functions of a single variable
are d’Alembert’s ratio test and Raabe’s test [61]. For this example we choose the former. Let us

19We refer to right or left in the sense of the real axis with negative numbers to the left and positive ones to the
right.
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FIGURE 3.3: Graphical representation of the polar structure of a residue computa-
tion of the scalar self–energy integral (3.22) for positive propagator powers ν and
ν+ n with n ∈N for three illustrative cases. The green interval in the real axis rep-
resents the possible values that γ can take. Dots represent singularities and their
color shows the gamma function to which they belong, as shown in the legend
box. From these figures one sees that no third order poles can possibly arise from

the self–energy scalar integral with positive propagator powers.
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define:

al ≡
(
− 4m2

q2

)l Γ(−2 + 2ν + l)
Γ(−ν− l + 5

2 )

1
Γ(l + 1)Γ(l + ν− 1)

×
(

ln
{
− q2

4m2

}
− ψ(0)(−2 + 2ν + l)− ψ(0)(−ν− l +

5
2
)− 3ψ(0)(l + 1) + ψ(0)(l + ν− 1)

)
,

(3.57)

thus we find:∣∣∣ al+1

al

∣∣∣ = (− 4m2

q2

) (−2 + 2ν + l)(−ν− l + 3
2 )

(l + 1)(l + ν− 1)

×
(

ln
{
− q2

4m2

}
− ψ(0)(−2 + 2ν + l + 1)− ψ(0)(−ν− l − 1 + 5

2 )− 3ψ(0)(l + 2) + ψ(0)(l + ν)

ln
{
− q2

4m2

}
− ψ(0)(−2 + 2ν + l)− ψ(0)(−ν− l + 5

2 )− 3ψ(0)(l + 1) + ψ(0)(l + ν− 1)

)
.

(3.58)

Taking into account the asymptotic behaviour of the digamma function: ψ(0)(z) → ln z + 1
2z +

O( 1
z2 ), one concludes that:

lim
l→∞

∣∣∣ al+1

al

∣∣∣ = lim
l→∞

(4m2

q2

) (−2 + 2ν + l)(ν + l − 3
2 )

(l + 1)(l + ν− 1)

×
(

ln
{
− q2

4m2

}
− ln{−2 + 2ν + l + 1} − ln{−ν− l − 1 + 5

2} − 3 ln{l + 2}+ ln{l + ν}

ln
{
− q2

4m2

}
− ln{−2 + 2ν + l} − ln{−ν− l + 5

2} − 3 ln{l + 1}+ ln{l + ν− 1}

)

=
4m2

q2 .

(3.59)

Therefore, we see that the series representation that we found converges absolutely for q2 > 4m2,
that is, above the threshold for particle–antiparticle production.

3.2.3 Final stages of the quark loop computation and analysis

At this point we have all the necessary tools to compute self–energy and tadpole integrals ((3.22)
and (3.24)). Nevertheless, in the quark loop expression there appear more than one hundred dif-
ferent scalar integrals of these two types, hence automation is required. For this we have used a
Mathematica package called MBConicHulls20 [40], which calls upon functions of another package
called MultivariateResidues [115] that has to be installed as a dependency. In [40] and [121] the
authors describe how the computation of Mellin–Barnes integrals with multivariate residues,
which we have just reviewed, can be organized in a very compact algorithm that uses very
intuitive geometric concepts and allows to understand the practical implications of the rather
abstract results of multivariate complex calculus.

A typical Mellin–Barnes integral representing an scalar triangle loop has 16 different series rep-
resentations, and each of them contains up to six different subseries. Consequently, the assess-
ment of the convergence regions of the series representations found by the MBConicHulls pack-
age requires automation as well. We have developed a program that evaluates the asymptotic

20This package requires Mathematica 12 or a more recent version.
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behaviour of a given triple series and finds its region of convergence by comparing it with the
behaviour of other series whose convergence conditions are already known. The concept of the
program is based on Horn’s theorem for the convergence of hypergeometric series of up to three
variables [120], which is a rather natural extension of D’Alembert’s ratio test to the multivariate
case. Let us consider the triple series

∞

∑
n1,n2,n3

C(n1, n2, n3)xn1 yn2 zn3 . (3.60)

It is considered hypergeometric as long as the coefficients

f (n1, n2, n3) = C(n1 + 1, n2, n3)/C(n1, n2, n3)

g(n1, n2, n3) = C(n1, n2 + 1, n3)/C(n1, n2, n3)

h(n1, n2, n3) = C(n1, n2, n3 + 1)/C(n1, n2, n3)

(3.61)

are rational functions of n1, n2 and n3. If so, then the convergence region of the integral is given
by the intersection of the following five sets:

C =
{
(|x|, |y|, |z|)

∣∣∣ |x| < ρ(1, 0, 0) ∧ |y| < σ(1, 0, 0) ∧ |z| < τ(1, 0, 0)
}

X =
{
(|x|, |y|, |z|)

∣∣∣ ∀(n2, n3) ∈ R2
+ : |x| < ρ(0, n2, n3) ∨ |y| < σ(0, n2, n3) ∨ |z| < τ(0, n2, n3)

}
Y =

{
(|x|, |y|, |z|)

∣∣∣ ∀(n1, n3) ∈ R2
+ : |x| < ρ(n1, 0, n3) ∨ |y| < σ(n1, 0, n3) ∨ |z| < τ(n1, 0, n3)

}
Z =

{
(|x|, |y|, |z|)

∣∣∣ ∀(n1, n2) ∈ R2
+ : |x| < ρ(n1, n2, 0) ∨ |y| < σ(n1, n2, 0) ∨ |z| < τ(n1, n2, 0)

}
E =

{
(|x|, |y|, |z|)

∣∣∣ ∀(n1, n2, n3) ∈ R3
+ : |x| < ρ(n1, n2, n3) ∨ |y| < σ(n1, n2, n3)

∨ |z| < τ(n1, n2, n3)
}

,

(3.62)

where R+ represents the set of positive reals and ρ, σ and τ capture the asymptotic behaviour
of f , g and h:

ρ(n1, n2, n3) =
∣∣∣ lim

u→∞
f (un1, un2, un3)

∣∣∣−1

σ(n1, n2, n3) =
∣∣∣ lim

u→∞
g(un1, un2, un3)

∣∣∣−1

τ(n1, n2, n3) =
∣∣∣ lim

u→∞
h(un1, un2, un3)

∣∣∣−1
.

(3.63)

The program that we have developed computes ρ, σ and τ for each subseries that form a series
representation of a Mellin–Barnes integral and identifies its region of convergence by comparing
them to the ρ, σ and τ of series whose convergence conditions are known. Care had to be taken
for the program not be misled by redefinitions of the arguments of the series or the presence
of logarithms. We have also taken into account the result found in [121] which extends the
use of Horn’s theorem to series that are not hypergeometric by the definition given previously,
because they include polygamma functions. Finally, the program chooses the appropriate series
representation according to the kinematic regime indicated beforehand.

The convergence region of some triple series representations of triangle loops in shifted dimen-
sions could not be found in the mathematical literature due to them being quite non–standard.
In such cases the approach presented in [123], alternate to [42], was followed. That paper refers
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to scalar triangle loop integrals in arbitrary space–time dimension with three different masses,
but unit propagator powers:

J(d)3 =
∫ dd p

(2π)d
1

(p + p1 + p2)2 −m2
3

1
(p + p1)2 −m2

2

1
p2 −m2

1
. (3.64)

The first step of the computation is to use Feynman parameters in the standard way, as we
described for the self–energy loop when introducing formula (3.23). An appropriate change of
variables renders one of the two Feynman parameter integrals straightforward to perform. After
using (3.18) on the integrand, the remaining Feynman parameter integral has the one–variable
Gaussian hypergeometric function 2F1 as its solution. Finally, the Mellin–Barnes integral of 2F1
yields the double Appell hypergeometric function F1. The key point of this result is that F1
belongs to the well–known family of Gaussian hypergeometric functions and as such its con-
vergence and analytical continuation properties are well–known [119, 124]. We quote here the
result for arbitrary space–time dimension d valid in the high energy regime:

J(d)3 =
iΓ
(

4−d
2

)
(4π)

d
2 λ1/2
− (p2

1, p2
2, p2

3)

{
J(d)123 − (M3 − iϵ)

d−4
2 J(d=4)

123 + (1, 2, 3)↔ (2, 3, 1) + (1, 2, 3)↔ (3, 1, 2)

}
,

(3.65)

where p3 = −p1 − p2 and:

J(d)ijk =
xij

(xk − xij)
(Mij − iϵ)

d−4
2 F1

(1
2

; 1,
4− d

2
;

3
2

;
x2

ij

(xk − xij)2 ,−
p2

i x2
ij

Mij − iϵ

)
−

x2
ij

2(xk − xij)2 (Mij − iϵ)
d−4

2 F1

(
1; 1,

4− d
2

; 2;
x2

ij

(xk − xij)2 ,−
p2

i x2
ij

Mij − iϵ

)
−
{

xij → 1− xij ; xk → 1− xk

}
(3.66)

λ−(x, y, z) = x2 + y2 + z2 − 2xy− 2xz− 2yz xij =
p2

i + m2
i −m2

j

2p2
i

. (3.67)

M3 and Mij for i, j = 1, 2, 3 are defined in terms of Cayley and Gramm determinants for the
triangle loop. Their definition and properties are given in appendix C. The definition of xk is
rather lengthy and not very relevant, so it is written in the appendix as well. The Appell function
F1 has the convergent series representation:

F1(a; b, b′; c; x, y) = ∑
n1,n2=0

(a)n1+n2(b)n1(b
′)n2

(c)n1+n2

xn1

n1!
yn2

n2!
(3.68)

for |x| < 1 and |y| < 1. In the high energy regime we have
∣∣∣ x2

ij

(xk−xij)2

∣∣∣ = ∣∣∣ m2
i−Mij

M3−Mij

∣∣∣ < 1 and∣∣∣ p2
i x2

ij
Mij

∣∣∣ = ∣∣∣1− m2
i

Mij

∣∣∣ < 1, therefore this representation is valid for our quark loop computation.

From this result, triangle loops with arbitrary propagator powers can be computed from J(d)3 via
derivatives with respect to the masses:

I(N)(d; ν1, ..., νN) = ∏
i

(
1

Γ(νi)

( ∂

∂m2
i

)νi−1
)

J(d)3

∣∣∣∣∣
mi=m

. (3.69)
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We are interested in integrals with d ∈ {4, 6, 8, 10, 12}. It is not difficult to note that the gamma
function pole at d = 4 in J(d)3 is of course a spurious singularity. On the other hand for d ≥ 6
there are actual ultraviolet singularities, as can be checked from their expressions in appendix C.
Nevertheless, it is possible to check in a lengthy but straightforward way that singular terms
vanish and dependence on the renormalization scale disappears when propagator powers get
high enough in I(N). This is relevant for us, because of the loop integrals we find are ultraviolet
finite.

After the Mellin–Barnes representation of the scalar integrals with shifted dimensions are com-
puted by the methods described previously21, the last step is the computation of the integrals
over |Q1|, |Q2| and τ that remain in the master formula.

First, let us remember that even though we followed a kinematic–singularity–free tensor loop
decomposition, there are spurious kinematic singularities which have been introduced by the
negative powers of λ that are present in the projectors with which one extracts the HLbL form
factors from the quark loop. As discussed at the beginning of this chapter, these singularities
cancel explicitly for contributions of all Wilson coefficients, except the quark loop. This is ex-
pected, since the spurious nature of the singularities implies that they must disappear in tree–
level contributions. For self–energy and triangle loop integrals in shifted dimensions we do not
arrive in general to closed analytical expression, but rather a series representation. Therefore,
spurious kinematic zeros inside these terms do not necessarily show explicitly to cancel sin-
gularities. This introduces numerical instability in the region of the master formula’s angular
integral when τ ≡ Q̂1 · Q̂2 → ±1, because that is when λ is equal to or approaches zero:

λ+(q2
1, q2

2, q2
3) = (q2

3 − q2
1 − q2

2)
2 − 4q2

1q2
2 = 4Q2

1Q2
2

(
τ2 − 1

)
, (3.70)

where we have switched back to the euclidean versions of the virtual photon momenta qi · qj →
−Qi ·Qj. When computing the contribution to the master formula’s integral from these regions,
it is convenient to expand the integral’s series representations around τ = ±1 to avoid numerical
instability. The fact that we traced the λ+ = 0 singularity to a value in τ has useful practical
implications. Indeed self–energy and triangle scalar integrals are computed in a single and triple
series representation, respectively, where the expansion variable are the differences between
external momenta. The external momenta that can appear in quark loop scalar integrals are
Q1 and Q3 or Q2 and Q3, depending on the permutation one is considering. However, only
Q3 depends on τ. Therefore any integral that does not depend on Q3 does not require special
treatments.

To perform the integrals on the euclidean norm of the virtual photons’ momenta, it is important
to keep in mind that the quark loop was obtained from an OPE in perturbative QCD. Therefore
its range of validity starts above ΛQCD, the perturbative threshold. ΛQCD is usually taken to
be close to the proton’s mass, which is about ∼ 940 MeV. In principle, this means that one can
compute the quark loop contribution to aµ starting from |Q1| = |Q2| = 1 GeV ≡ Qmin, however,
taking into account that the OPE of the previous chapter introduces an implicit counting pa-
rameter ΛQCD/|Q|, one would expect the error coming from neglected higher non-perturbative
effects to be large right above ΛQCD. The relation between the size of such error and the values of
Qmin was studied in [35]. To that end, they computed the quark loop contribution as a function
of Qmin in the interval [1 GeV, 4 GeV] and the contributions from the non–perturbative conden-
sates of the previous chapter were considered as well. Their results showed that massless quark
loop contributions fall like 1/Q2

min and, in general, contributions from elements of the OPE with
dimension d behave like 1/Qd

min. This is expected from the asymptotic behaviour of the integral

21The script that performs the steps that we have described throughout this chapter can be found in this repository.

https://github.com/DanielMelo2000/QuarkLoopCode
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kernels Ti of the master formula (1.69), which for |Qi| → ∞ behave like m2
µ/Q2

i , except for T1,
which falls like m4

µ/Q4
i . Since mass effects become small for large momenta |Qi| and the mass-

less quark loop contribution does not introduce an energy scale, then it must fall like 1/Qmin.
Mass corrections to the quark loop are suppressed by m2

f /Q2
i with respect to the massless part.

In addition, contributions from other OPE elements Si,µν of dimension d are comparatively sup-
pressed as well by a factor (ΛQCD/|Qi|)d−2, thus the asymptotic behaviour of their contributions
is explained.22

For the value of the quarks’ masses m f and the renormalization scale µ we followed the simpli-
fied choice of [35], which was:23

mu = md = 5 MeV ms = 100 MeV µ = Qmin . (3.71)

Note that no running of the masses is performed. This is justified by the very small size of mass
corrections to the quark loop. With this values we computed the quark loop contribution for
Qmin = 1 or 2 GeV. As discussed previously in this section, we obtained a systematic expansion
of the quark loop in terms of the quarks masses. This allowed us to study the mass corrections
to the massless quark loop contribution and found them to be very small, even at m2

f order.
Furthermore, we found the result for Qmin = 1 GeV to be about four times bigger than the
Qmin = 2 GeV case.

In [35] the massless quark loop was found to be the largest contribution to aµ by two orders
of magnitude and the leading mass corrections were even smaller than the non–perturbative
di–quark magnetic susceptibility (S2,µν in the OPE) by two further orders of magnitude. The
complete results of [35] are summarized in table 3.1, where one can see that the dominance of
quark loop contributions with respect to the other. Note however that those results do not show
the complete picture, because the quark loop contribution, which is the leading perturbative
contribution to aHLbL

µ , does not really involve strong interactions and hence it does not depend
on αs. Of course, their higher order corrections do. It could be therefore possible that the per-
turbative expansion in αs(µ) does no fall fast enough for higher orders for the renormalization
scale used. Since µ is constrained by the need to avoid large logarithms, then that would mean
that the OPE framework of chapter 2 suffers from the same issues that it was meant to avoid in
the first place. Nevertheless, in [36] the next–to–leading–order (NLO) gluonic correction to the
massless part of the quark loop was computed (see figure 3.4) taking into account the running of
αs(µ) and its contribution to aHLbL

µ was found to be about 10 % of the leading order and negative.

22Asymptotic freedom also plays a role in this result. As we mentioned in the previous chapter, the correction to
the naive dimensional counting of the OPE is given by the anomalous dimension of each OPE element, but QCD’s
asymptotic freedom ensures that, at high enough energy, corrections are small.

23In [6], constituent masses are used, because they are more appropriate when comparing with low–energy results.

FIGURE 3.4: Representative diagram of the NLO contribution to the Wilson coeffi-
cient of S1,µν in the OPE of Πµ1µ2µ3 . The black dot represents creation/annihilation
of a line by the background fields in the vacuum. This diagram represents the first

QCD correction to the quark loop.
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OPE element
Magnetic

Mass order
Contribution to aµ from Qmin

susceptibility 1 GeV 2 GeV

S1,µν 1
m0 1.73 · 10−10 4.35 · 10−11

m2 −5.7 · 10−14 −3.6 · 10−15

S2,µν X2 = −4 · 10−2 GeV
m1 −1.2 · 10−12 −7.3 · 10−14

m3 6.4 · 10−15 1.0 · 10−16

S3,µν X3 = 3.51 · 10−3 GeV

m0

−3.0 · 10−14 −4.7 · 10−16

S4,µν X4 = 3.51 · 10−3 GeV 3.3 · 10−14 5.3 · 10−16

S5,µν X5 = −1.56 · 10−2 GeV −1.8 · 10−13 −2.8 · 10−15

S6,µν X6 = 2 · 10−2 GeV 1.3 · 10−13 2.0 · 10−15

S7,µν X7 = 3.33 · 10−3 GeV 9.2 · 10−13 1.5 · 10−14

S8,1,µν X8,1 = −1.44 · 10−4 GeV 3.0 · 10−13 4.7 · 10−15

S8,2,µν X8,2 = −1.44 · 10−4 GeV −1.3 · 10−13 −2.0 · 10−15

TABLE 3.1: Results published in [35] about the contribution of the quark loop and
the rest of OPE elements Si,µν to aµ as function of the cutoff Qmin from which the

master formula integral is performed.

At the beginning of the previous chapter we mentioned the different roles that SDC play in the
computation of aµ. Since that was the ultimate purpose of the computation, let us discuss such
uses in more detail. The dispersive framework and hadronic models are useful to understand
and compute the low energy behaviour of the HLbL tensor Πµ1µ2µ3µ4 . However, as one tries to
use such tools for higher energies, more degrees of freedom become excited and start to give rel-
evant contributions. In dispersive language this means that at higher energies additional heavier
intermediate states with possibly multiple particles are “unlocked” and their contributions have
to be taken into account. From a practical perspective, multiple particle states add to the already
complex nature of dispersive computations while, from the experimental side, heavier interme-
diate states are harder to produce and study, and therefore there is a lack of experimental data to
feed dispersive integrals with the necessary form factors. Even light intermediate states whose
form factors are very well–known at low energy may not have enough data at higher energies.
For HLbL, these issues start to show at 1 GeV and become ultimately unbearable at 2 GeV, with
a mixed region in between. As usual, a “change of variables” into the relevant degrees of free-
dom at the new kinematic regime of interest solves many of these issues. This is the underlying
motivation of the OPE that we presented in chapter 2. Thus one can identify two uses of high
energy frameworks in the computation of aHLbL

µ . First, one can obtain the high–energy asymp-
totic behaviour of a Green function to learn the asymptotic behaviour of an hadronic form factor,
in order to fill the gap of missing or scarce experimental data in the high energy parts of disper-
sive integrals or the master formula. One can similarly use this approach directly to the HLbL
tensor in the high energy regions of the master integral, which is the purpose of the quark loop
computation that we did. However, in that case the interplay between low and high energy
contributions is not clear cut, because low energy contributions are computed for the full |Q1|
and |Q2| intervals of the master integral, not only up to 1 or 2 GeV. Thus one sees that some
overlapping of contributions is present and there is a risk of double counting. Therefore, for
the high energy contributions to be successfully accounted for there remain two questions to be
answered [6].

First of all, how well does the new framework really captures the behaviour of Πµ1µ2µ3µ4 at
high energy? At first sight, the OPE framework offers a hierarchy such that as energy goes
higher, complexity decreases, which solves the practical issue of dispersive computations. Nev-
ertheless, as discussed in the previous chapter, it was necessary to take special care when choos-
ing the background OPE framework, because the standard approach was not really well suited
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to account for the soft external photon that defines the magnetic moment of a particle. More-
over, we mentioned how two–loop computations were done in [36] to check that corrections
to the leading order were not too big. This analysis elucidates that the background OPE is a
suitable framework to understand the high energy behaviour of Πµ1µ2µ3µ4 .

Another issue to be clarified after the high energy contribution of Πµ1µ2µ3µ4 to aµ has been com-
puted is: how much of this has already been taken into account by low–energy computations?
This is in fact the key point for the study of asymptotic contributions. The idea is to compare
how much the low–energy contributions’ asymptotic behaviour resembles the results of the high
energy framework. It was argued in [29, 30] that it is impossible to fulfill all QCD SDC with a
finite number of resonances. To obtain an estimate of the missing high energy contributions
caused by such mismatch, one can use a top–down approach: to constrain hadronic contribu-
tions to fulfill SDC and study how much the result differs from when they are constrained by
experimental data, that is, by their low–energy behaviour. For example, the mixed virtualities
regime Q1 ∼ Q2 ≡ Q ≫ Q3 ≫ ΛQCD of the HLbL tensor, first studied in [125], imposes the
following constraint:

lim
Q,Q3→∞

Q2Q2
3Π1 = − 2

3π2 (3.72)

and a similar one for crossed condition for Π2. In addition, as we already argued, the symmetric
regime Q1 ∼ Q2 ∼ Q3 ≡ Q ≫ ΛQCD, via the massless quark loop, imposes the following
asymptotic behaviour:

lim
Q→∞

Q4Π1 = − 4
9π2 . (3.73)

The proposals to ensure that the transition form factors match the mixed virtualities behaviour
have ranged from ignoring their momentum dependence [125] to summing an infinite tower of
axial and vector resonances in holographic QCD [126, 127]. In [31, 32], a hybrid approach is fol-
lowed: pseudo scalar pole contributions are computed in a large–Nc Regge model such that they
satisfy SDC, but those results are only used in the low–energy region of integration of the master
formula. The integral over the remaining part is computed with the quark loop expression, tak-
ing advantage of the asymptotic behaviour of the massless quark loop contribution to Π1, which
fulfills the mixed–virtualities SDC as well. This reduces model–dependence with respect to the
first two approaches mentioned and allows to clearly separate the effect of SDC on low– and
high–energy contributions to lower double counting risks. Nevertheless, such risks still remain
with respect to axial vector contributions, lies in a transition region between the perturbative
and non–perturbative domain of QCD and is still a significant source of uncertainty for aHLbL

µ .
Compared to the data–driven computation, there is an increase in the contribution from pseudo
scalar poles:

∆aLSDC
µ =

[
8.7(5.5)PS–poles + 4.6(9)pQCD

]
× 10−11 = 13(6)× 10−11 , (3.74)

where the superindex LSDC illustrates the fact that we are only considering the constraints re-
garding the asymptotic behaviour of the “longitudinal” part of the HLbL tensor in the mixed
virtualities regime. The “transversal” form factors are Π3−12. They are related to the contribu-
tion from axial vectors and obey a different SDC in the mixed virtualities regime. This result is
in very good agreement with the holographic QCD one [126]. In contrast, it hints at an overesti-
mation from the approach proposed in [125]. When ∆aLSDC

µ is computed fully with the large–Nc
Regge model, the result is very close to (3.74). In the end, the net increase of the HLbL contribu-
tion due to SDC is estimated to be ∆aSDC

µ = 15(10) · 10−11 [6]. A part of the uncertainty of (3.74)
is estimated by varying the matching scale between the Regge model and the quark loop, and
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is then added to each element’s model or theoretical uncertainty. Therefore higher order correc-
tions to the quark loop can decrease the uncertainty of ∆aLSDC

µ . In [33], the SDC contribution
was reassessed taking into consideration the perturbative corrections to the quark loop and the
result was:

∆aLSDC
µ =

[
8.7(5.3)PS–poles + 4.2(1)pQCD

]
× 10−11 = 13(5)× 10−11 , (3.75)

which reduces the uncertainty of the previous result. It is worth mentioning that the negative
O(αs) correction to the massless quark loop improves the agreement between the Regge sum
of pseudoscalars and the perturbative result. However, further study regarding the matching
procedure is still needed.

In recent months two works [128, 129] were published regarding the extension of the back-
ground OPE framework to the mixed virtualities regimes of the HLbL tensor. To illustrate the
broader range of use of the background field framework that we used in this work, we briefly
review their results from chapter 2’s perspective. The analogue of Πµ1µ2µ3 is now:

Πµ1µ2 =
i

e2

∫ d4q4

(2π)4

∫
d4x

∫
d4y e−i(q1x+q2y)⟨0|T Jµ1(x)Jµ2(y)|γ∗(q3)γ(q4)⟩

= −ϵµ3(q3)ϵµ4(q4)Πµ1µ2µ3µ4(q1, q2, q3) .
(3.76)

When the OPE is performed up to operators with mass dimension D = 4, the quoted result is:

Πµ1µ2 = −1
4
⟨Fν3µ3 Fν4µ4⟩

∂

∂q3ν3

∂

∂q4ν4

Πµ1µ2µ3µ4
quark loop

∣∣∣
q3=q4=0

−
e2

f

e2 ⟨ψ(0)
(

γµ1 S0(−q̂)γµ2 − γµ2 S0(−q̂)γµ1
)

ψ(0)⟩

−
ie2

f

e2q̂2

(
gµ1δgµ2

β + gµ2δgµ1
β − gµ1µ2 gδ

β

)(
gαδ − 2

q̂αq̂δ

q̂2

)
⟨ψ(0)

[−→
D α −←−D α

]
γβψ(0)⟩ ,

(3.77)

where q̂ ≡ (q1 − q2)/2 and the matrix element ⟨...⟩ now includes the virtual photon γ∗(q3) and
the real soft one γ(q4). The term Πquark loop is proportional to the quark loop amplitude we
found in chapter 2. The origin of the first term is quite clear: it comes from matrix elements
with four contracted quark fluctuations in which the resulting two fermion propagators have a
total of two soft photon insertions between the two (see figure 3.5), hence the two derivatives
and field strength tensors. The second and third terms come instead from terms with two back-
ground quark fields and two fluctuations (see figure 3.6), where the background fields are Taylor
expanded as usual up to order O(x1 − x2). The appearance of q̂ comes from the fact that only
x1− x2 is close to zero in the mixed virtualities regimes, in contrast the symmetric regime, where
the three currents’ coordinates are close. It is worth mentioning that in this case quark operators
start at dimension D = 3 and therefore they are, in principle, the leading term of the OPE instead
of the perturbative quark loop.
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FIGURE 3.5: Representative diagram of the fully perturbative contribution to
the OPE of Πµ1µ2 in the mixed virtualities regime. A black dot represents cre-
ation/annihilation of a line by the background fields in the vacuum. Depending
on the value of q3, one of these photons may be interact perturbatively with vac-

uum.

FIGURE 3.6: Representative diagram of the one–cut–quark contributions to the
OPE of Πµ1µ2 in the mixed virtualities regime. A black dot represents cre-
ation/annihilation of a line by the background fields in the vacuum. Depending
on the value of q3, one of these photons may be interact perturbatively with vac-

uum.
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Conclusions

In this thesis we have reviewed the basic framework for the computation of the HLbL con-
tribution to the anomalous magnetic moment of the muon, aHLbL

µ . We have discussed as well
relatively recent developments in the kinematic-singularity–free decomposition of the HLbL
tensor, Πµ1µ2µ3µ4 , that have allowed for the dispersive computation of the low–energy contri-
butions to aHLbL

µ , thanks to the Mandelstam representation admitted by its corresponding scalar
form factors. These dispersive computations in the Mandelstam representation have enabled
unambiguous computations of hadronic contributions, which has improved the uncertainty es-
timation with respect to hadronic models. We have also discussed the current consensus of
low–energy contributions to aHLbL

µ and the corresponding role of SDC as a means of uncertainty
assessment and high energy contribution computation.

In the high energy regime, the HLbL tensor can be decomposed in an OPE, but the external
soft photon has to be regarded as a background field in order to avoid the breaking of the per-
turbative expansion of QCD at low energies and the introduction of infrared–divergent Wilson
coefficients. We have studied the background field method, which has allowed us to expand the
compute the background OPE found in the literature to include quark and gluon background
fields as well. The renormalization procedure of the OPE elements in our framework seems to
include operator–mixing in a more natural way than the one found in the literature. The same
applies for the derivation of the Wilson coefficients, in which perturbative and non–perturbative
contributions are systematically separated and do not require much decision–making from the
user. From the OPE of Πµ1µ2µ3µ4 , we found that quark loop is leading contribution after infrared
divergent logarithms have been subtracted by renormalization, in agreement with the literature.

Finally, we accomplished the computation of the quark loop by an alternative approach. In
contrast with previous computations, we did not project the form factors of the HLbL tensor
out of the quark loop amplitude, but we rather harnessed its full tensor structure to check the
generality of the basis elements of the kinematic–singularity–free tensor decomposition of the
HLbL tensor. We concluded that these elements do span the tensor structures of the quark
amplitude, thus obtaining an explicit check that we have not found in the literature. To keep the
full tensor structure of the quark amplitude we had to deal tensor loop integrals ranging from
one to three points and zero to five tensor rank. To avoid introducing further spurious kinematic
singularities, we have used a special tensor loop decomposition algorithm which introduces
scalar integrals with shifted dimensions. We persisted on keeping the full mass dependence of
the amplitude and to that end we used a Mellin–Barnes representation of the scalar integrals in
shifted dimensions. This allowed us to obtain a complete series representation of the required
integrals that contains all quark mass effects at any order in the high energy regime. To provide
a mathematical foundation for this procedure, we wrote a detailed and formal presentation of
the fundamentals of single and multiple complex variable residues computation and described
the step–by–step. The aforementioned computations were implemented by a Mathematica script
that used FeynCalc, a state–of–the–art high energy physics package. To highlight the importance
of the quark loop computation result, we described the use of the quark loop computation as a
SDC to the low–energy contributions to aHLbL

µ and its effects in the critical task of lowering the
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uncertainty of the anomalous magnetic moment of the muon value in the Standard Model.

There remain several outlooks of future work based on this thesis. In chapter 3 we already
mentioned that the O(αs) correction to the massless quark loop has been performed. In light of
the small size of mass corrections, it may not be relevant at the moment to consider mass cor-
rections to such result. Instead, one could perform a more detailed study of non–perturbative
contributions to the OPE of Πµ1µ2µ3µ4 and obtain a more carefully obtained value for the mag-
netic susceptibilities Xi, for which precise values cannot be found currently, only rather crude
order–of–magnitude estimations. These power corrections have been proved to be at most a
few percent of the massless quark loop contribution, but they hold the key to lower the cutoff
at which the OPE results can be used for the master formula of aHLbL

µ , which could lower the
uncertainty of the SDC contribution, which currently relies heavily in models such as the Regge
sum for pseudoscalar poles.

Perhaps the most natural continuation of this work would be the extension of the OPE for the
mixed virtualities regime, in contrast of the symmetric one that we have worked on. Such OPE
has been very recently carried out, but it is yet to be formulated from the alternative and, in
our view, more systematic approach that we have presented in chapter 2. The OPE in such
regime is more complex from a conceptual point of view and, therefore, one could expect our
approach’s advantages to be highlighted in that regime. At the end of chapter 3, we have already
given a very brief overview of the the procedure to be followed. From a more practical point of
view, an improvement on SDC coming from the mixed virtualities regime can help to lower the
uncertainty from the lower–energy contributions to aHLbL

µ or perhaps provide a better estimation
of axial vectors contributions, which continue to be a rather large source of uncertainty.
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Appendix A

Angular average integrals

First of all let us recall properties of Gegenbauer polynomials that are relevant for us. Their
generating function is [61]:

1
1− 2tx + t2 =

∞

∑
n=0

tnCn(x) (A.1)

and they follow a very useful orthogonality relation [62]:

∫ dΩ4(Ẑ)
2π2 Ci(X̂ · Ẑ)Cj(Ẑ · Ŷ) =

δij

i + 1
Ci(X̂ · Ŷ) , (A.2)

where X̂, Ŷ and Ẑ represent euclidean unit four vectors. By using the generating function and
the geometric series it can be proved easily that:

Ci(x = 1) = i + 1 , (A.3)

and therefore one obtains a normalization identity:

∫ dΩ4(Ẑ)
2π2 Ci(X̂ · Ẑ)Cj(Ẑ · X̂) = δij . (A.4)

Let us compute each of the integrals (1.64)–(1.68) by using the Gegenbauer polynomials method.
Here we have the first one:∫ dΩ4(P̂)

2π2
1

(P + Q1)2 + m2
1

(P−Q2)2 + m2 =∫ dΩ4(P̂)
2π2

( t1

|P||Q1|∑i
(−t1)

iCi(P̂ · Q̂1)
)( t2

|P||Q2|∑j
(t2)

jCj(P̂ · Q̂2)
)
=

t1t2

P2|Q1||Q2|∑ij
(−t1)

i(t2)
j
∫ dΩ4(P̂)

2π2 Ci(P̂ · Q̂1)Cj(P̂ · Q̂2) =

t1t2

P2|Q1||Q2|∑ij
(−t1)

i(t2)
j δij

i + 1
Ci(Q̂1 · Q̂2) =

− 1
m2|Q1||Q2|∑i

(−t1t2︸ ︷︷ ︸
z

)i+1 1
i + 1

Ci(Q̂1 · Q̂2) =

−1
m2|Q1||Q2|

∫
dz′∑

i
ziCi(Q̂1 · Q̂2) =

−1
m2|Q1||Q2|

∫
dz′

1
z′2 − 2z′τ + 1

= (A.5)
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1
m2R12

arctan
( zx

1− zτ

)
.

Let us go on the second integral:

∫ dΩ4(P̂)
2π2

1
(P + Q1)2 + m2 =

∫ dΩ4(P̂)
2π2

( t1

|P||Q1|∑i
(−t1)

iCi(P̂ · Q̂1)
)
=

t1

|P||Q1|
.

Now let us remember the following identity:

ti =
m2 + P2 + Q2

i −
√
(m2 + P2 + Q2

i )
2 − 4P2Q2

i

2|P||Qi|

=
Q2

i (1− σE
i )

2|P||Qi|
. (A.6)

Coming back to the angular integral we get:

∫ dΩ4(P̂)
2π2

1
(P + Q1)2 + m2 = − (1− σE

1 )

2m2 . (A.7)

Exactly in the same fashion we get the third angular integral:

∫ dΩ4(P̂)
2π2

1
(P−Q2)2 + m2 = − (1− σE

2 )

2m2 . (A.8)

As for the fourth angular integral we have:

∫ dΩ4(P̂)
2π2

P ·Q2

(P + Q1)2 + m2 =
∫ dΩ4(P̂)

2π2 |P||Q2|P̂ · Q̂2

( t1

|P||Q1|∑i
(−t1)

iCi(P̂ · Q̂1)
)
=

|Q2|
t1

|Q1|∑i
(−t1)

i
∫ dΩ4(P̂)

2π2
1
2

C1(P̂ · Q̂2)Ci(P̂ · Q̂1) =

|Q2|
t1

|Q1|∑i
(−t1)

i 1
2

δ1i

1 + 1
C1(Q̂1 · Q̂2) = |Q2|

t1

|Q1|
(−t1)

1
4

2Q̂1 · Q̂2 =

− t1t1

Q2
1

1
2

Q1 ·Q2 = − 1
Q2

1

Q2
1(1− σE

1 )

2|P||Q1|
Q2

1(1− σE
1 )

2|P||Q1|
1
2

Q1 ·Q2 =

(1− σE
1 )

8m2 (1− σE
1 )Q1 ·Q2 =

(1− σE
1 )

2

8m2 Q1 ·Q2 .

Finally, by changing Q1 → Q2 and Q2 → −Q1 we obtain the last integral:

∫ dΩ4(P̂)
2π2

P ·Q1

(P−Q2)2 + m2 = − (1− σE
2 )

2

8m2 Q1 ·Q2 . (A.9)
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Appendix B

Derivation of relevant results of
chapter 2

B.1 Transformation of gauge fixing terms under background field gauge
transformations

Under the transformations proposed in (2.24), the Fadeev–Popov gauge–fixing term f a f a is
invariant. In order to prove that, in this section we will derive the transformation properties of
f a:

f a = Dµ A
′a
µ = ∂µ A

′a
µ + gS f abcab

µ Ac′µ

=⇒ δ f a = ∂µδA
′a
µ + gS f abcab

µδAc′µ + gS f abcδab
µ Ac′µ

= gS f abc∂µ A
′b
µ ϵc + g2

S f abc f cbcabµ A
′b
µ ϵc + gS f abc(∂µϵb + gS f bbcabµϵc)A

′c
µ

= gS f abcϵc∂µ A
′b
µ + g2

S f abc f cbcabµ A
′b
µ ϵc + g2

S f abc f bbcabµ A
′c
µ ϵc

= gS f abcϵc∂µ A
′b
µ + g2

Sϵc f abc f cbc(abµ A
′b
µ − abµ A

′b
µ ) ,

where in the last line we have relabelled some indices. Using the Jacobi identity for the structure
constants:

f abc f cbc − f bbc f cac − f abc f cbc = 0 , (B.1)

we obtain:

δ f a = gS f abcϵc∂µ A
′b
µ + g2

Sϵc f a[bc f cb]c(abµ A
′b
µ − abµ A

′b
µ )

= gS f abcϵc∂µ A
′b
µ +

1
2

g2
Sϵc f bbc f cac(abµ A

′b
µ − abµ A

′b
µ )

= gS f abcϵc∂µ A
′b
µ + g2

Sϵc f bbc f cacabµ A
′b
µ

= gS f abcϵc(∂µ A
′b
µ + gS f bcbacµ A

′b
µ )

= gS f abcϵcDA
′b
µ . (B.2)
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B.2 Gluon free propagator with a background field

With respect to the gluon, the quadratic kernel of the action for (2.35) yields the following defi-
nition for the free propagator Dbc

Fµν in the vacuum with background fields:(
− gS f aµν′ f abc′ + gµν′(DαDα)

bc′ − ([Dν′ , Dµ
])bc′

)
D c′c

Fν′ν(x, y) = δbcgµνδ4(x− y) ,(
− 2gS f aµν′ f abc′ + gµν′(DαDα)

bc′
)

D c′c
Fν′ν(x, y) = iδbcgµνδ4(x− y) . (B.3)

Following [130] it is possible to invert this equation by taking into account that the gauge co-
variant derivative is the coordinate space representation of the total momentum operator of the
system, which we represent as P̂α ≡ p̂α + ta âa

α
.
= iDα:

⟨x|
(
− 2gS f̂ µν′ − gµν′ P̂αP̂α

)
D c′c

Fν′ν|y⟩ = iδbcgµν⟨x|y⟩ , (B.4)

=⇒ DF,µν(q) ≡
∫

d4x eiqxDF,µν(x, 0) =
∫

d4x eiqx⟨x|DF,µν|0⟩

=
∫

d4x eipx⟨x| i
−2gS f̂ µν − gµνP̂αP̂α

|0⟩

=
∫

d4x⟨x| i
−2gS f̂ µν − gµν{P̂α + qα}{P̂α + qα}

|0⟩ ,

where we have defined f µν ≡ f abc f aµν and also suppressed color indices to shorten expressions.
Note that the background field strength operator is not affected by the momentum translation
operator since it is a function of the coordinates. To invert the operator it is possible to expand it
in powers of 1/p2 and gS:

1
−2gS f̂ µν − gµν{P̂α + qα}{P̂α + qα}

=

−1
q2

1

gµν′{g ν
ν′ + g ν

ν′

(
P̂2

q2 + 2 P̂αqα

q2

)
+ 2gS

f̂ ν
ν′
q2 }

=

−1
q2

(
gµν + ∑

n=1
(−1)n

{
gµν

( P̂2

q2 + 2
P̂αqα

q2

)
+ 2gS

f̂µν

q2

}n
)

, (B.5)

where the power of a tensor is defined in the sense of matrix products. Since the OPE that
we are interested in contains operators of up to dimension six, then in principle the expansion
of the gluon propagator would be relevant up to O(1/q8). However, the gluon propagator
only receives power corrections from the gluon background and gluon operators in the OPE of
Πµ1µ2µ3 are of dimension 2, 3 and 4, then an expansion to O(1/q6) is enough. The relevant terms
of such expansion are:
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1
−2gS f̂ µν − gµν{P̂α + qα}{P̂α + qα}

=

−1
q2

(
gµν −

{ gµν

q2

(
P̂2 + 2P̂ · q

)
+ 2gS

f̂µν

q2

}
+
{ gµν

q4

(
P̂4 + 4P̂ · qP̂2 + [P̂2, P̂ · q] + 4(P̂ · q)2

)
+ 4

g2
S

q4 f̂µµ′ f̂µ′ν + 2
gS

q4

(
P̂2 f̂µν + f̂µνP̂2

)
+ 4

gS

q4

(
f̂µνP̂ · q + P̂ · q f̂µν

)}
− 2

P̂ · q
q2

{ gµν

q4

(
4P̂ · qP̂2 + [P̂2, P̂ · q] + 4(P̂ · q)2

)
+ 4

gS

q4

(
P̂ · q f̂µν + f̂µνP̂ · q

)}
− 4

q4

{
gµν

P̂2

q2 + 2gS
f̂µν

q2

}
(P̂ · q)2 + 16

gµν

q8 (q · P̂)4

)
.

(B.6)

For the evaluation of the matrix elements of the operators that appear in the previous expansion,
the following results are the most relevant:∫

d4x⟨x|P̂α|0⟩ = 0 , (B.7)∫
d4x⟨x|P̂αP̂β|0⟩ = −igSta∂βaa

α(x)|x=0 =
i
2

gSta f a
αβ|x=0 , (B.8)∫

d4x⟨x|P̂αP̂βP̂µ|0⟩ = −gSta∂µ∂βaa
α(x)|x=0

= −gSta 1
3
(Dβ faµα + Dµ faβα)|x=0 , (B.9)∫

d4x⟨x|P̂αP̂βP̂µP̂ν|0⟩

= gSta
∫

d4x⟨x|(i∂ν∂µ∂β âa
α − gStb∂µ âa

α∂ν âb
β − gStb∂ν âa

α∂µ âb
β − gStc∂β âa

α∂ν âc
µ)|0⟩

=
i
8

gSD(νDµta f a
β)α|x=0 −

g2
S

4
tatb( f a

µα f b
νβ + f a

να f b
µβ + f a

βα f b
νµ)|x=0 , (B.10)∫

d4x⟨x| f̂µνP̂α|0⟩ = −iDα fµν|x=0 (B.11)∫
d4x⟨x|P̂α f̂µνP̂β|0⟩ =

i
2

gSta f a
αβ fµν|x=0 , (B.12)∫

d4x⟨x| f̂µνP̂αP̂β|0⟩ =
i
2

gSta f a
αβ fµν|x=0 − DβDα fµν , (B.13)

where parentheses between Lorentz indices represent symmetrization without normalization
factor of 1/n!. Beyond the usual commutation relations of gauge–covariant derivatives, to obtain
these results the following identities were used:∫

d4x⟨x| p̂µ...|0⟩ = ⟨q = 0| p̂µ...|0⟩ = 0 ,∫
d4x⟨x|...âa

µ|0⟩ −→ aa
µ(0) = 0 .

(B.14)
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Inserting these matrix elements ((B.7)–(B.13)) and the expansion (B.6) in (B.5), the gluon propa-
gator reads:

D c′c
F,µν(q) =

−i
q2 gµν + 2igS

fµν

q4 − 4
gS

q6 qαDα fµν + gS
2
3

gµν

q6 qαDβ faβα + i
2gS

q8 gµνqαqβDβDµ′ fµ′α

+ 2i
gS

q6 D2 fµν −
8i
q8 gSqαqβDβDα fµν + i

g2
S

2
gµν

q6 fαµ′ f µ′α + i
g2

S
q8 gµνqαqβ f µ′

β fµ′α

− 4i
g2

S
q6 fµµ′ f

µ′

ν ,

(B.15)

which concludes our computation of the gluon propagator.

B.3 Basis change from (2.52) to (2.7)

In section 2.4 we presented a master formula from [35] for the unrenormalized Wilson coeffi-
cients of operator Si,µν with one cut quark line and up to one soft gluon or photon insertion.
Such formula is not written in terms of the original operators Si,µν but rather in terms of new
operators which are built from background quark fields, Dirac matrices and covariant deriva-
tives. The transformation relations between such new operators and the original ones Si,µν were
presented but not justified. The purpose of this appendix is to describe the computation of those
transformation relations.

Let us start with the only non–trivial matrix element with one covariant derivative:

⟨ΨDνγαγ5Ψ⟩ = 1
2
⟨Ψ( /Dγν + γν /D)γαγ5Ψ⟩

= −im f
1
2
⟨Ψγνγαγ5Ψ⟩+ 1

2
⟨Ψγν(2Dα − im f γα)γ5Ψ⟩

= −im f ⟨Ψγνγαγ5Ψ⟩+ ⟨ΨDαγνγ5Ψ⟩ ,

(B.16)

where we have used 1) the quark equations of motion to replace covariant derivatives for quark
masses and 2) the fact that soft matrix elements of total derivatives vanish, which allows us to
reverse the direction of covariant derivatives. Since all these matrix elements must be propor-
tional to either Fµν or its dual tensor, then we are interested in its antisymmetric part with respect
to ν, α. Therefore we have:

⟨ΨD[νγα]γ5Ψ⟩ = −
m f

2
⟨Ψσναγ5Ψ⟩

= −i
m f

4
ϵνατρ⟨ΨστρΨ⟩

= −i
m f

4
ϵνατρXS

2 ⟨ee f Fτρ⟩

(B.17)

and in the second line we have used an identity of the product of Dirac matrices from [131].1

1Note that in [131] the author defines γ5 ≡ γ0γ1γ2γ3 instead of the more standard definition γ5 ≡ iγ0γ1γ2γ3 that
is used in [35] and in this work.
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With respect to matrix elements of operators with two covariant derivatives we have:

⟨ΨDν1 Dν2 Ψ⟩ = 1
2
⟨Ψ(−igSGaν1ν2 ta − iee f Fν1ν2)Ψ⟩

= − i
2

(
XS

5 − XS
3

)
⟨ee f Fν1ν2⟩ .

(B.18)

Note that we have used that [Dµ, Dν] = −i(gStaGaµν + ee f Fµν) which is in line with the definition
of the covariant derivatives that was done in chapter 2.

The next term with two covariant derivatives is:

⟨ΨDν1 Dν2 γ5Ψ⟩ = − i
2
⟨Ψ(gStaGaν1ν2 + ee f Fν1ν2)γ5Ψ⟩

=
i
8

ϵν1ν2αβϵαβτρ⟨ΨgStaGaτργ5Ψ⟩

= −
XS

4
4

ϵν1ν2αβ⟨ee f Fαβ⟩ .

(B.19)

Note that we have neglected the Fν1ν2 contribution due to its parity.

The last element with two covariant derivatives is ⟨ΨDν1 Dν2 σαβΨ⟩. The antisymmetric part with
respect to ν1, ν2 is proportional to the field–strength tensors that have odd C–parity. Since the
part ΨσαβΨ also has odd C–parity, this part of the operator has a net even C–parity and therefore
its one–photon matrix element vanishes. Therefore the tensor structure of the matrix element
must be:

⟨ΨDν1 Dν2 σαβΨ⟩ = A1gν1ν2⟨ee f Fαβ⟩

+ ee f A2

(
gν1α⟨Fν2β⟩+ gν2α⟨Fν1β⟩ − gν1β⟨Fν2α⟩ − gν2β⟨Fν1α⟩

)
.

(B.20)

To find the form factors Ai we need two equations which we find by contracting pairs of Lorentz
indices. Let us start with:

⟨ΨD2σαβΨ⟩ = 4(A1 + A2)⟨ee f Fαβ⟩

= ⟨Ψ( /D /D +
i
2
[Dµ, Dν]σ

µν)σαβΨ⟩

= −m2
f XS

2 ⟨ee f Fαβ⟩

+
1
2
⟨Ψ(gStaGa

µν + ee f Fµν)
(

gµαgνβ − gµβgνα + iϵµναβγ5

)
Ψ⟩

=
(
−m2

f XS
2 + XS

5 − XS
3 − XS

4

)
⟨ee f Fαβ⟩ ,

(B.21)

where we have used an identity from [131] for the product σµνσαβ. We have also discarded some
elements because of their C–parity by the same arguments that we used for the previous matrix
element. The other independent equation can be found by contracting ν2 and α:

⟨ΨDν1 DασαβΨ⟩ = (A1 + 4A2)⟨ee f Fν1β⟩

=
i
2
⟨ΨDν1( /Dγβ + im f γβ)Ψ⟩

=
1
2
⟨Ψ
(

m f γβDν1 + γργβ(gStaGaν1
ρ + eFν1

ρ)
)

Ψ⟩ −
m f

2
⟨ΨDν1 γβΨ⟩

=
1
2
(XS

5 − XS
3 )⟨ee f Fν1β⟩ .

(B.22)
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Solving this system of two equations for A1 and A2 we find the relations cited in chapter 2:

A1 =
1
3

(
−m2

f XS
2 − X4

S +
1
2
(XS

5 − XS
3 )
)

A2 =
1
12

(m2
f XS

2 + X4
S + XS

5 − XS
3 ) .

(B.23)

There are two non–trivial matrix elements with three covariant derivatives. The first one that
we consider is ⟨ΨDν1 Dν2 Dν3 γαΨ⟩. Let us first see that it is antisymmetric with respect to ν1 and
ν3. We can conclude this by noting that its symmetric part is even under charge conjugation:

⟨ΨD{ν1 Dν2 Dν3}γαΨ⟩ −→⟨(D{ν1 Dν2 Dν3}Ψ)γαΨ⟩(−1)

⟨ΨD{ν3 Dν2 Dν1}γαΨ⟩ ,
(B.24)

where in the last step we were able to change the direction of the covariant derivatives by in-
troducing a minus sign owing to the fact that soft matrix elements of total covariant derivatives
vanish. Thus we can conclude:

1
ee f
⟨ΨDν1 Dν2 Dν3 γαΨ⟩ = A3(gν1ν2⟨Fν3α⟩ − gν2ν3⟨Fν1α⟩)

+ A4(gν1α⟨Fν2ν3⟩+ gν3α⟨Fν1ν2⟩) + A5gν2α⟨Fν1ν3⟩ .
(B.25)

For this matrix element we will have to contract three pairs of indices and solve the correspond-
ing three–equation system. Let us start with ν3 and α:

⟨ΨDν1 Dν2 DτγτΨ⟩ =
(
− A3 + 3A4 + A5

)
⟨ee f Fν1ν2⟩

= −
m f

2

(
XS

5 − XS
3

)
⟨ee f Fν1ν2⟩

= ⟨ΨDτDν1 Dν2 γτΨ⟩ .

(B.26)

For ν2 and α we have:

⟨ΨDν1 DτDν3 γτΨ⟩ =
(
− 2A3 + 2A4 + 4A5

)
⟨ee f Fν1ν3⟩

= −
m f

2

(
XS

5 − XS
3

)
⟨ee f Fν1ν3⟩ − ⟨ΨDν1 G ν3

τ γτΨ⟩ − i⟨ΨDν1 ee f F ν3
τ γτΨ⟩

=
1
2

(
− 3

2
m f XS

5 + m f XS
3 +

1
2

XS
7

)
⟨ee f Fν1ν3⟩ ,

(B.27)

where we have used that:

⟨ΨDν1 ee f F ν3
τ γτΨ⟩ = −i

m f XS
5

4
⟨ee f Fν1ν3⟩ . (B.28)
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We can continue with ν1 and ν2:

⟨ΨDτDτDν3 γαΨ⟩ =
(

3A3 − A4 − A5

)
⟨ee f Fν3α⟩

= − i
2
⟨ΨGµνσµνDν3 γαΨ⟩+ 1

2
⟨Ψee f FµνσµνDν3 γαΨ⟩

=
1
2
⟨Ψ(−2Gα

νγν + iGµνϵµνατγτγ5)Dν3 Ψ⟩

+
1
2
⟨Ψee f (−2iFα

νγν − Fµνϵµνατγτγ5)Dν3 Ψ⟩

=
XS

7
4
⟨ee f Fν3α⟩+ ⟨Ψ Gατ

γτγ5Dν3 Ψ⟩

+
m f XS

5

4
⟨ee f Fν3α⟩ − 1

2
ee f Fµνϵµνατ⟨Ψγτγ5Dν3 Ψ⟩

=
(XS

7
4
−

XS
8,1

2
−

XS
4

2
+

m f XS
5

4

)
⟨ee f Fν3α⟩ ,

(B.29)

where we have used that:

⟨Ψ Gατ
γτγ5Dν3 Ψ⟩ = −

XS
8,1

2
⟨ee f Fν3α⟩ −

XS
4

2
⟨ee f Fν3α⟩ . (B.30)

Solving the system of three equations one finds:

A3 =
1
24

(
− 5XS

8,1 + 2XS
7 − 5m f XS

4 + 2m f XS
3

)
,

A4 =
1
24

(
− 5XS

8,1 + XS
7 − 3m f XS

5 −m f XS
4 + 4m f XS

3

)
,

A5 =
1
24

(
− 2XS

8,1 − XS
7 − 3m f XS

5 − 2m f XS
4 + 2m f XS

3

)
.

(B.31)
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Appendix C

Triangle scalar loop integrals in
arbitrary dimensions

In chapter 3 we quoted the result of [123] for scalar triangle loop integrals in arbitrary space–
time dimensions (3.65) with unit propagator powers, J(d)3 . In this appendix we complete the
definition of relevant quantities that we used and present the results in a way that clearly shows
the appearance of logarithms and ultraviolet singularities.

First, let us define the Cayley determinant S3:

S3 =

∣∣∣∣∣∣
2m2

1 −p2
1 + m2

1 + m2
2 −p2

3 + m2
1 + m2

3
−p2

1 + m2
1 + m2

2 2m2
2 −p2

2 + m2
2 + m2

3
−p2

3 + m2
1 + m2

3 −p2
2 + m2

2 + m2
3 2m2

3

∣∣∣∣∣∣ . (C.1)

In the same fashion we define the Cayley determinants Sij of self–energy integrals, which are
obtained by suppressing one of the three propagators in the triangle:

Sij =

∣∣∣∣∣ 2m2
i −p2

i + m2
i + m2

j
−p2

i + m2
i + m2

j 2m2
j

∣∣∣∣∣ = −λ−(p2
i , m2

i , m2
j ) . (C.2)

Similarly for the Gram determinants we have:

G3 = −8
∣∣∣∣ p2

1 p1 · p2
p1 · p2 p2

2

∣∣∣∣ = 2λ−(p2
1, p2

2, p2
3) ,

G12 = −4p2
1 , G13 = −4p2

3 , G23 = −4p2
2 ,

(C.3)

where p3 = −p1 − p2. Finally we have M3 = S3/G3 and Mij = Sij/S3.

Now let us define xk:

x1 = 1− D− Eβ + 2(C− Bβ)

2(1− β)(C− Bβ)
, x2 = 1 +

D− Eβ

2(C− Bβ)
, x3 = − D− Eβ

2β(C− Bβ)
, (C.4)

where

A = p2
1 , B = p2

3 , C = −p1 · p3 , D = −(p2
1 + m2

1 −m2
2) ,

E = −(p2
3 + m2

1 −m2
3) , F = m2

1 , β =
C +
√

C2 − AB
B

.
(C.5)
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xij and xk fulfill the following relevant identities:

p2
i x2

ij = m2
i −Mij , p2

i (xk − xij)
2 = M3 −Mij . (C.6)

Finally, we will present the formulas for the case d = 4+ 2k− 2ϵ with k ∈N, which are relevant
for our computation. Keeping full ϵ dependence we have:

J(4+2k)
3 ×

(4π)2+kλ1/2
− (p2

1, p2
2, p2

3)

i(4π)ϵ

= Γ(−k + ϵ)
(

Mk
3

( µ2

M3

)ϵ
−Mk

ij

( µ2

Mij

)ϵ)
∑

n1=1

1
n1

(
−

xij

xk − xij

)n1

−Mk
ij

( µ2

Mij

)ϵ
[

n2=k

∑
n1=1
n2=1

Γ(−k + n2 + ϵ
)

(n1 + 2n2)n2!

(
−

xij

xk − xij

)n1(
−

p2
i x2

ij

Mij

)n2

+ ∑
n1=1

n2=k+1

Γ(−k + n2

)
(n1 + 2n2)n2!

(
−

xij

xk − xij

)n1(
−

p2
i x2

ij

Mij

)n2]

−
{

xij → 1− xij ; xk → 1− xk

}
.

(C.7)

Note that we neglected the infinitesimal term iϵ that gives the Feynman prescription, because
it is not relevant in the deep space–like region that we are interested in. Nevertheless, it can be
easily reinstated by replacing Mij → Mij − iϵ and M3 → M3 − iϵ. Taking the limit ϵ → 0 we
have:

J(d)3 ×
(4π)2+kλ1/2

−
i

=
(−1)k

k!

{
Mk

3

(1
ϵ̂
+ ln

{ µ2

M3

})
−Mk

ij

(1
ϵ̂
+ ln

{ µ2

Mij

})}
∑

n1=1

1
n1

(
−

xij

xk − xij

)n1

+
(−1)k

k!

k

∑
j=1

1
j

(
Mk

3 −Mk
ij

)
∑

n1=1

1
n1

(
−

xij

xk − xij

)n1

−Mk
ij

(1
ϵ̂
+ ln

{ µ2

Mij

})[ n2=k

∑
n1=1
n2=1

(−1)k−n2

(n1 + 2n2)(k− n2)!n2!

(
−

xij

xk − xij

)n1(
−

p2
i x2

ij

Mij

)n2

−Mk
ij

[
n2=k

∑
n1=1
n2=1

1
(n1 + 2n2)n2!

(
−

xij

xk − xij

)n1(
−

p2
i x2

ij

Mij

)n2
(−1)k−n2

(k− n2)!

k−n2

∑
j=1

1
j

+ ∑
n1=1

n2=k+1

Γ(−k + n2

)
(n1 + 2n2)n2!

(
−

xij

xk − xij

)n1(
−

p2
i x2

ij

Mij

)n2]

−
{

xij → 1− xij ; xk → 1− xk

}
,

where a sum over the three permutations (i, j, k) → (1, 2, 3) → (2, 3, 1) → (3, 1, 2) is implied.
µ is the renormalization scale. The singular terms 1/ϵ̂ vanish and dependence on µ disappears
when powers of the propagators get high enough via derivatives with respect to the masses.
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