Towards Model-based Management of Database Fragmentation

Asim Ali
Qatar University

Sherif Abdelwahed

Mississippi State University

Abstract

The performance of a database can significantly deterio-
rate due to the fragmentation of data/index files. Manual
database defragmentation and performance optimization
remain time consuming and even infeasible as it requires
knowledge of the complicated behavior of fragmentation
and its relationships with system parameters. We pro-
pose a model-based detection and management frame-
work for the database fragmentation which can automat-
ically optimize database performance, detect the fault
existence, estimate its future impact on system perfor-
mance and recover the system back to normal. A predic-
tive controller is designed to take proper actions to guar-
antee the QoS and remedy faults. Experimental studies
on a realistic test-bed show the applicability and effec-
tiveness of our approach.

1 Introduction

Relational Database Management Systems (RDBMS)
are critical components of enterprise applications. They
provide multi-user access to persistent data efficiently
while preserving data safety and consistency despite fail-
ures and concurrent updates. The access time of sec-
ondary storage is the major factor in RDBMS system
performance as the disk I/O dominates all other database
operations in term of cost. Therefore, the goal of im-
proving the performance of RDBMS file systems is to
minimize the time spent waiting for disk I/O. To achieve
it, related data is stored on contiguous disk blocks to re-
duce seek time and rotational delay. However data files
may still get fragmented over time after a large number
of data modification operations.

Unmanaged fragmentations not only degrade the sys-
tem performance by increasing the response time and
decreasing the throughput, but also waste valuable re-
sources such as CPU time, energy, and etc. Ultimately
they will cause the system to violate its Service Level
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Agreements (SLA) [12]. Although periodic reorganiza-
tion of database files is a way to alleviate the symptom
[7], the management system needs to detect fragmenta-
tions and take corrective actions at the appropriate time
to avoid SLA violations. For example, the possible ac-
tions for dealing with the fragmentation could be a de-
fragmentation operation or to shift the system load to an-
other standby server. Because defragmentation is very
costly and time consuming, it is very critical to select
the correct database tables/indexes and correct time to
conduct defragmentation. A suboptimal decision in this
regard may lead to performance degradation, SLA vio-
lations and revenue loss. In practice, defragmentation
decisions are mostly manual and data driven. Adminis-
trators decide to defragment database objects when the
fragmentation level reaches a certain threshold [6]. The
problem with this approach is that it does not consider the
impact of fragmentation on the Quality of Service (QoS)
and consequently unnecessary defragmentation might be
triggered that do not significantly affect the system per-
formance.

In this paper, we propose a model-based disk fragmen-
tation management framework where a system model
can estimate the QoS parameters based on the fault level
and the system load. The system model can be used to
predict the future levels of fragmentation and system pa-
rameters based on the expected incoming load. A frag-
mentation detection method is developed to facilitate the
fault recovery process. A predictive controller can de-
cide the optimal and timely corrective actions for both
performance management and fault recovery, given the
detection results and the system model. The proposed
framework can deal with disk fragmentations automati-
cally which significantly reduces human intervention.

2 Related Work

Database systems are essential and important parts of en-
terprise multi-tier applications and hence form a pros-



perous domain for the application of autonomous man-
agement concepts [9]. In this area, research efforts have
been focused towards autonomic workload management,
query optimization, storage management, memory man-
agement, and etc. A survey of autonomic workload man-
agement techniques in databases is given in [8]. In [2]
authors described a framework for diagnosing the query
slow-down problem in databases. Authors in [11] pre-
sented a model-based approach for database tuning.

The fragmentation is a common database problem that
grows over time and negatively impacts system perfor-
mance [12]. This impact is observed in the form of
increased response times, decreased throughput and in-
creased load on system resources. Many commercial
databases provide tools to estimate internal and external
database fragmentations. These tools also provide com-
mands to defragment (rebuild or reorganize) database ta-
bles and indexes. We argue that there are two distinct
challenges related to defragmentation. The first is to de-
cide when to launch a defragmentation operation and the
second is to select the indexes to be defragmented. Ex-
isting research work advocate either a data driven or a
workload driven approach for managing fragmentations
[10, 3]. In the data driven approach described in [6], in-
dexes are selected for defragmentation based on a set of
heuristics based on the fragmentation level, index size
and frequency of the index scan. Authors in [7] pre-
sented a workload driven approach where the workload
information was used to select the appropriate indexes
(or a part of indexes) to defragment so as to maximize
query I/O performance. However, concerning the ques-
tion when to defragment an index, most DBAs decide
to use some rules of thumbs, such as defragmenting an
index when its fragmentation level is above a threshold.

Our work complements the previous research by pro-
viding a model-based fragmentation management frame-
work which can detect and cure the fault while optimiz-
ing the performance to meet the QoS standard. This is
an extension of our previous work in [5]. To the best of
our knowledge, an autonomic model-based approach for
managing the database fragmentation has not been ad-
dressed in published literature, and this motivated us to
tackle this problem.

3 Fault Management Framework

Fig.1 shows the high level architecture of the proposed
model-based fault management framework for comput-
ing systems. The main goal of the proposed structure
is to enable the system to identify and manage undesired
conditions and changes in the operating environment that
may cause performance issues. The following parts of
this section are brief descriptions of the different system
components and their interactions.

3.1 Managed System

The Managed System is the target computing system to
be managed. It hosts a set of software monitoring sen-
sors that collect system events and metrics about the
state of the system which are passed to the Observer.
The collected data at time ¢ is expressed as the vector
Y (y1,y2,..,yx), where each y represents some software
or hardware system parameters (e.g., average execution
time or CPU usage, and etc.). For each parameter y there
is a sensor deployed in the system that collects the value
of the parameter at a specified frequency. The environ-
ment sends the workloads to the Managed System, as
well as system related events such as the addition or the
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Figure 1: Key Components of Model-based Fault Man-
agement Framework

3.2 Fault Detection and Identification

This module uses a model-based diagnoser [5] where a
System Model is used to detect and identify the possible
faults in the system. A system model describes the sys-
tem behaviors under different workloads and fault con-
ditions, which can be developed offline by analyzing the
historical performance data or through extensive simula-
tions. Expected workload comes from the external input
estimator.

During the diagnosis process the current state of the
system represented by vector Y = (y1,y2, ..., ) is passed
to the diagnosis system. The Fault Detection module
uses the system model to compute the estimated pa-
rameter value y for each y € Y corresponding to the
current system load, which also generates a vector of
residuals R(ry,r2,..,r;) (diagnostic signals) where each
ri=yi—¥i,i=1,2,...,k is the difference between the ob-
served value and the estimated value for the parameter y;.
A threshold value test is applied on generated residuals
to determine if the system is in a faulty or a normal state
with reference to the residuals used in the test, which are
also called as the fault signature. The fault signatures are
stored in a database. The Fault Identification and Isola-
tion process compares the residual vector with each fault
in the signature database and the fault having the closest



signature to the observed residual vector is declared as
the potential fault in the system.

3.3 Controller
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Figure 2: The Controller Module

Architecture of the proposed controller for managing
the database fragmentation is shown in Fig. 2. The Con-
troller module uses the System Model to predict system
states (throughput, response time values). The Fault De-
tection and Diagnosis module provides the performance
statistics as well as fault diagnosis information includ-
ing the fault class and the fault intensity. There is a li-
brary consisting of the possible control actions to man-
age the performance and to cure faults of the target sys-
tem. For each control action, the performance optimizer
computes its cost with the help of a cost model and the
expected system performance corresponding to the con-
trol action with the help of the system model. The cost
and benefit analysis of the control actions are formulated
in the form of a utility function. Finally, performance
optimizer chooses the control action with the minimum
utility cost that ensures the system meets the SLA re-
quirements. This control input is executed on the man-
aged system through the actuator interface.

4 Controller Design

In normal conditions, a database system runs under dif-
ferent types and levels of workloads. To ensure QoS un-
der varying workload conditions, a number of available
configuration options such as buffer size changes should
be used. However when database performance degrades
due to a specific fault such as fragmentation, the con-
troller needs to recover the database from fragmentation
in addition to performance management through config-
uration changes.

Based on these design requirements, the set of avail-
able control options is divided into two categories: man-
agement actions and recovery actions denoted by the sets

Uy and Ug, respectively. Usually Uy NUg # &. While
the system is under a recovery process, Uy can also be
executed in parallel if the performance management is
necessary. In this work, Uy consists of different sizes
of the database buffer pool such as 128MB, 256MB and
512MB. As part of the recovery actions, we only con-
sider two defragmentation methods: rebuilding and re-
organization. Rebuilding process removes fragmenta-
tion by recreating the indexes. This process is normally
executed in offline mode. In contrast reorganization is
online defragmentation process during whcih table in-
dexes are reorganised. Suppose ug;={Rebuilding} and
ugo={Reorganization}, we have Ug = {ugi,ug2}. Sim-
ilarly, Uy = {up1,um2,up3} where upy; represent the
events of setting the buffer size to 128MB, 256MB and
512MB, respectively.

4.1 Cost Model

Controller examines the system state at regular sampling
intervals. When performance degradation is detected,
the controller needs to choose and execute appropriate
management and/or recovery actions. Each control ac-
tion in Uy, and Uy has some cost associated with it that
could be expressed in terms of hardware or software re-
source requirements, computing and financial overhead,
the impact on system performance, increased number of
SLA violations during the control execution, and etc. To
choose the best set of control inputs, controller computes
the tradeoff between the performance degradation (cost)
due to the control actions and the effectiveness (gain) of
them on both performance and fault management in the
current environment conditions. For this purpose, a set
of utility functions are defined which outputs the cost and
benefit analysis of a control input as a single utility value.
Here, a negative utility value mean a performance gain,
and vice versa. The system model and the cost model
are used to compute the utility values. The input to the
system model comes from three sources. The diagno-
sis module provides current and expected system states,
which include the performance statistics (e.g., through-
put and response time) as well as fault state (e.g., the
fragmentation level). Expected workload comes from the
external input estimator and the control input is provided
by the control library. Using the three inputs, the system
model computes the expected system performance pa-
rameters and passes this information to the utility func-
tion. The performance optimizer chooses a control input
that has the minimum utility cost value.

The utility function for management actions Jy; and
for the recovery actions Jr are defined in terms of the
percentage of response time increase and transaction
throughput decrease.

The utility of a management action u, (i) at time i is



defined in Equation 1, where 7 (i) is the response time
during the execution of uy (i), r* is the set point of re-
sponse time, 8 (i) is the transaction throughput during
the execution of uy (i), 6* is the set point of the through-
put, TM(i) is the total execution time of wuy (i), # (i) is
the estimated response time after uy; (i), 6™ (i) is the es-
timated throughput after uy (i), and T is the sampling in-
terval. All the estimated values are based on the current
fault level and workload condition. This function reveals
the tradeoff between cost of executing the action, and the
performance gain in the next sampling interval.
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The utility of a recovery action ug(i) at time i is de-
fined in function 2, where 7R(i) is the estimated response
time, OR(i) is the estimated throughput, and the other
symbols have the same meanings as those in function 1.
All the estimated values are based on the current fault
level, recovery actions and workload condition.
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4.2 Control Algorithm

We propose a modified Limited Lookahead Control
(LLC) algorithm [1] which has the lookahead horizon
Hy, for the management actions and Hg for the recovery
actions. We assume that Hy; << Hg due to the long-term
nature of disk defragmentation. The responsibility of the
proposed algorithm is not to develop an optimal way of
choosing the indexes for defragmentation. In fact, once
the controller decides to launch a defragmentation opera-
tion, any strategy proposed in literature could be adopted
to choose the appropriate indexes.

In normal conditions, the controller generates the
management control inputs to meet QoS in the system,
which uses the traditional LLC given Hy. Suppose
Hy; = m and the current sampling interval is the kth, the
total cost of a given path is

k+m—1

]normal(k): Z [WM(Z)JM(I))]

i=k

where W (i) is an user defined weight of the ith manage-
ment action. The control objective is to find the path with
the minimum total cost (minimum cost refers to the max-
imum utility) J,orma (k). The first management action of
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Figure 3: The Fault Adaptive Prediction Control Method

this path is selected as the control input. This mecha-
nism works in both normal and faulty situations. When
there is a fragmentation, the output of the controller is a
recovery plan in the set Ug. Figure 3 shows the idea of
finding the appropriate recovery action. For the simplic-
ity of illustration, it only shows three lookahead horizons
(Hp), although it can be farther more practically. The in-
terval between each state is 7. The forecasting paths are
established by enumerating all the effective recovery ac-
tions, estimating the future system states and evaluating
the healthiness of them until the end of the horizon. The
system state under a given fault level and after a recov-
ery action can be predicted based on the historical exper-
iment data. In this case, the recovery horizon Hy is the
number of sampling intervals which is selected based on
how further we are interested in the future system states.
Suppose the number of horizons of a given path is n, and
the current sampling interval is the kth, the total cost of a
path with recovery action ug(j) is

k+n—1

Jpautr (7) = Wr(J) ;{ Jr(i)/n

where Wg(j) is an user defined weight of the jth recovery
action. This cost function denotes the average cost per
interval given Hg. Note that both Hg > TX(j)/T (Path
1, 3) and Hg < TR(j)/T (Path 2) are possible, where
TR(j) is the execution time of the jth recovery action.
When Hg > TR(j)/T, the estimation of response time
and throughput should be adjusted accordingly.

5 Case Study

Based on the fault management framework and the con-
trol algorithm described in the previous sections, we built
a testbed to implement our ideas. The testbed consists of
three servers connected via 1GB Ethernet. Each machine
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runs CentOS 5.7 operating system with a 2GB RAM and
a 40 GB hard disk. The Daytrader [4] is used as the
Web application and the database is MySQL. The sys-
tem model for fragmentation detection & diagnosis is
developed through simulations on the testbed. The frag-
mentation is injected by a script that inserts and deletes
the records in the StockQuote table following a partic-
ular strategy to produce the required level of the fault.
An example showing how the controller selects different
control actions is provided at the end of this section.

5.1 System Model

As discussed above, the system behavior is modeled un-
der different workload and fault conditions. For manag-
ing database fragmentation, the proposed system model
consists of two parts: a performance model that predicts
the QoS parameters (throughput, response time) for var-
ious arrival rates and a fault signature that models the
impact of the fragmentation on QoS as well as on other
system parameters such as CPU usage, RAM usage, and
etc. To develop the system model, we simulated the sys-
tem under different workload and fragmentation levels
and analyzed the data using tools such as regression anal-
ysis. Table 1 describes the performance model for frag-

Arrival Rate Throughput Avg. Resp. T
Ai <350 09x%x2;+8.9 224ms
Ai > 350 0.01 x A;+318.1 189ms

Table 1: System Performance Model

mentation level 0.

In Table 1, A; denotes the arrival rate at the time i. The
second and third columns give the throughput and the av-
erage response time values corresponding to the arrival
rate A;. The sampling interval T is one minute. Arrival
rate is the number of read operations observed during one
minute and the throughput is the number of read opera-
tions successfully completed per minute. During sim-
ulations we observed that system reached its maximum
capacity when the arrival rate was 350 transactions per
minute (TPM) which is considered as the threshold ar-
rival rate. With respect to arrival rate, we define that the
system is in state A when the arrival rate is less than 350
TPM, and it is in state B when the arrival rate is greater
than 350 TPM. The average response time observed dur-
ing each sampling interval in state A was approximately
224 ms, which in state B was 189 ms.

To develop the fragmentation signature we ran the
same workload under different fragmentation levels in
the system and studied the behavior of the following pa-
rameters: the throughput, the average response time, the
disk read operations, the CPU I/O waiting time percent-
age and the memory usage. To reduce complexity, we
assume there is no correlation among selected system
parameters and their values change only because of frag-
mentation levels. We simulated the system in both state
A and B with respect to arrival rate. Fig.5 is a part of the
fault signature showing changes in the throughput and
the average response time due to different fragmentation
levels. In this experiment, the arrival rate was chang-
ing but was always greater than 350 TPM (the thresh-
old value). The data in Fig.5 shows the average values
achieved and the standard deviation for the 35 minutes.
It also shows the percentage variation in the parameter
value regarding to the fragmentation level 0. Using the
curve fitting techniques on the data given in Fig.5, we
draw a formula relating the response time R and the frag-
mentation level fI in the system as follows

f1=0.212xR—225

Following the same procedure the relationships be-
tween the fragmentation level and the other monitored
parameters can be developed. All these equations form
the fault signature, which can be used for diagnosing the
intensity of the fault as well as for predicting the future
system behavior.
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5.2 System Model Application

An example is given to describe the use of the system
model (Table 1 and Fig.5) to detect and diagnose a frag-
mentation fault in the system. Let us suppose that the
current arrival rate is 400 requests per minute and the
observed throughput value in the last sampling interval
was 200 TPM. The detection module uses the system
model to compute the estimated throughput for this ar-
rival rate (i.e., based on the system model in Table 1, the
expected throughput is 322 TPM). Comparing the esti-
mated throughput of 322 TPM and the observed value
of 200 TPM the detection module computes the percent-
age decrease which is approximately 38%. If we have
fixed the tolerated deviation of observed and expected
throughput values at 30%, then a fragmentation will be
declared in the system. Using the observed deviation of
value of 38% between throughput values and the fault
signatures in Fig.5, the diagnosis module estimates that
the fragmentation level in the system is between 42% and
51%.

5.3 Control Algorithm Application

We did a series of experiments to quantify the utility cost
Ju and Jg in Section 4. Table 2 shows the impact on the
response time (RT) during and after the defragmentation
operation, where the first column is the buffer size and
the experiment mode, the second column is the average
RT, and the last is the percentage variation (a part of Jys)
which computes the RT increase as the percentage of the
RT achieved in the normal system state. Data in these ta-
bles was generated at the fragmentation level 69. Due to
space constraint, the similar results for other throughput
levels are not included.

As an example, let us assume the controller needs to
calculate the cost of the management actions J,,p,q. Us-
ing Table 2 the set point response time can be defined

Buffer Size, Mode Resp. T. | % Var.

128MB, before failure 216 0
128MB, before recovery 701 224
128MB, during recovery 1197 219

128MB, after recovery 279 29
256MB, before recovery 709 228
512MB, before recovery 716 231
1024MB, before recovery 803 271

Table 2: Response Time under Various Conditions

as 216ms while the current RT is r(k). If the predic-
tion horizon is 1 and we only consider RT in Equation
1, the utility cost of the management action {128MB
buffer size} is Juormar (k) = W x [r(k) —216]/216 + 224
where W is the user selected weight of the actions.
Similarly, the cost of other management actions can be
calculated. When the controller prepares a recovery
plan, it should also estimate the cost of recovery ac-
tions Jg. Thus, Jg(online) = (1197 —216)/216 x T,
while Jg(of fline) = (r —216)/216 x T where 7 is a
user defined penalty value since there are no observable
RT in the blackout period. According to our experiment,
the online defragmentation takes 6627 seconds whereas
the offline counterpart takes only 2359 seconds, given
the 128MB buffer size. If the recovery horizon is 100
(6000 seconds), Jrqu (online) = Jg(online) x 600 and
Jrau(0f fline) = Jr(of fline) x 39 4 Jg(normal) x 61,
where Jg(normal) is the utility cost due to the parame-
ters after the offline recovery.

6 Conclusion

We have proposed a general model based framework for
fault management in distributed systems and its applica-
tion to database fragmentation. We developed the sys-
tem model to detect fragmentation faults, a control algo-
rithm and the necessary control models. This work is a
part of an ongoing project and as a next step we are im-
plementing and evaluating a fully automatic online con-
troller for dealing with database fragmentation. In the
future we will test the proposed framework using variety
of the faults in the domain of large distributed systems.
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