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ABSTRACT Respiratory ailments such as asthma, chronic obstructive pulmonary disease (COPD), pneumo-
nia, and lung cancer are life-threatening. Respiration rate (RR) is a vital indicator of the wellness of a patient.
Continuous monitoring of RR can provide early indication and thereby save lives. However, a real-time
continuous RRmonitoring facility is only available at the intensive care unit (ICU) due to the size and cost of
the equipment. Recent researches have proposed Photoplethysmogram (PPG) and/ Electrocardiogram (ECG)
signals for RR estimation however, the usage of ECG is limited due to the unavailability of it in wearable
devices. Due to the advent of wearable smartwatches with built-in PPG sensors, it is now being considered for
continuous monitoring of RR. This paper describes a novel approach for RR estimation using motion artifact
correction and machine learning (ML) models with the PPG signal features. Feature selection algorithms
were used to reduce computational complexity and the chance of overfitting. The best MLmodel and the best
feature selection algorithm combination were fine-tuned to optimize its performance using hyperparameter
optimization. Gaussian Process Regression (GPR) with Fit a Gaussian process regression model (Fitrgp)
feature selection algorithm outperformed all other combinations and exhibits a root mean squared error
(RMSE), mean absolute error (MAE), and two-standard deviation (2SD) of 2.63, 1.97, and 5.25 breaths per
minute, respectively. Patients would be able to track RR at a lower cost and with less inconvenience if RR
can be extracted efficiently and reliably from the PPG signal.

INDEX TERMS Photoplethysmogram, respiration rate, machine learning, feature selection, motion artifact
correction, Gaussian process regression.

I. INTRODUCTION
One of the most important physiological parameters that are
used to diagnose abnormality in a human body is respiration
rate (RR). It is one of the four primary vital signs along
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with heart rate, blood pressure, and body temperature. RR is
expressed as the number of breaths a person takes in one
minute (breaths/minute). An unusual RR is often a cause for
concern and is often used as an indicator for an ailing body
[1]–[3]. Hence, it is a vital parameter that is monitored by
healthcare personnel when they check for acute deterioration
of the patients [4]. Problems in the respiratory system [5],
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cardiac arrest [6] and even death occurring during hospital
stay [7] can be predicted by an increased RR. So, hospi-
tal patients who are very ill have their RR measured every
few hours [8]. Its importance is also noted in emergency
departments of hospitals where they use RR for screening [9].
Furthermore, RR is used to diagnose pneumonia [10], [11]
and sepsis during primary treatment.

RR is also used to identify pulmonary embolism [12], [13]
and hypercarbia [14]. Hence, theremust be an accurate way of
measuring RR in clinical settings as it would greatly benefit
both the patient and health care providers. However, even now
it is mostly being estimated by counting the breaths manually.
This method is not suitable when the patient needs to be
monitored unobtrusively. It also requires more effort from
the medical personnel whenmeasuring RR. Furthermore, this
method is error-prone [15], [16] and the other is capnography,
where the concentration of partial pressure of carbon dioxide
(CO2) in the respiratory gases [17] is measured. It is one of
the most accurate ways of measuring RR. However, it is cum-
bersome to use. As a result, it is mainly used during anesthesia
and intensive care. So, alternate noninvasive methods need to
be developed.

One of themost popular alternatives is to use either electro-
cardiogram (ECG) or photoplethysmogram (PPG) to estimate
RR. ECG and PPG signals are easily measured during a clin-
ical assessment. They can also be measured easily by devices
for health care monitoring. Hence, there is a potential for
automating the process of RR estimation without the neces-
sity of using capnography machines. Many algorithms have
been proposed for estimating RR from ECG [18]–[20]. How-
ever, it has been observed that respiratory signals extracted
from ECG appeared flat in ICU patients even though they
were breathing sufficiently [21]. Besides, the clinical ECG
system still requires trained professionals to operate and are
bulky. Hence, the PPG signal has become more appealing for
estimating RR.

Several recent developments on the estimation meth-
ods of the RR were comprehensively summarized in
this section [22]–[24]. A diverse range of methodologies
was used to test the efficiency of RR algorithms using
ECG and PPG waveform and the majority of them used
PPG signals. Various issues make it difficult to reinvesti-
gate the performance of the reported algorithms. In [23]
and [24], about 100 algorithms have been suggested to
measure the respiratory rate (RR) from ECG and PPG.
All high-performance algorithms are composed of innova-
tive variations of time domain RR estimation and modu-
lation fusion techniques. In [10], the authors proposed a
novel method for estimating the respiratory rate in real-time
from the PPG signals. The incremental-merge segmenta-
tion algorithm was used to derive three respiratory-induced
variations (frequency, strength, and amplitude) from the
PPG signal. The smart fusion showed trends of improved
estimation of root mean square error (RMSE) 3.0 breaths
per min (bpm) compared to the individual estimation
methods.

In [25], the authors introduced a feasible alternative for
estimating child respiratory rates during evaluation in the
emergency department, particularly if the segments of PPG
contaminated by the movement artifacts were automatically
discarded by an appropriate algorithm. They achieved a
mean absolute error (MAE) of 5.2 bpm for the age group
of 5-12 years. In [26], a novel method was proposed to esti-
mate the RR of the PPG signal using joint sparse signal recon-
struction (JSSR) and spectra fusion (SF). In [27], a smart
fusion method was introduced based on ensemble empirical
mode decomposition (EEMD) to improve RR extraction from
PPG. In [28], they applied EEMD and tested on two different
datasets. In [29], PPG-RR calculations were retrospectively
conducted on PPG waveforms derived from the data ware-
house and compared with RR reference values during the
validation stage of the algorithm. In [30], the use of amplitude
fluctuations of the transmittance mode finger PPG signal in
RR estimation by comparing four time-frequency (TF) signal
representation approaches cascaded with a particle filter was
studied.

In [31], a case study of 10 patients was reported for whom
fewer RR estimates were derived from PPG signals relative
to accelerometry. In [32], the disparity in the precision of
PPG-derived respiration frequency between measurements at
various body sites for normal and deep breathing conditions
was investigated. Respiratory signals were derived from PPG
signals of 36 healthy subjects using the frequency demodu-
lation method to measure respiration frequency via spectral
power density. The linearity between the PPG-derived and
the reference respiratory frequency was highest on the fore-
head. In [33], Charlton’s method [23], [24] was used with
remote PPG (rPPG) based signals to boost the accuracy of
the respiration rate estimation. Few improvements have been
made to make it usable for rPPG signals. Using PPG-contact
algorithms on remote PPG signals can lead to respiratory rate
estimates with an MAE of less than 3 bpm and the reported
MAE and RMSE Of 3.03 and 3.69 bpm, respectively.

TABLE 1. Summary of methods for respiration rate estimation.

Table 1, summarizes a wide variety of RR estimation
algorithms from the PPG that have been published in recent
years. None of them used machine learning (ML) models
to estimate the RR from ECG or PPG and their fusion.
Therefore. There is a potential scope to use ML models to
improve the RR estimation algorithm. With the increase of
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FIGURE 1. Overview of the process.

the availability of annotated datasets, it is possible to use
ML techniques in RR algorithms [22], which is a major
motivation of this study. However, to the best of our knowl-
edge, no recent work has derived t- domain, f-domain, and
statistical features from PPG signal to estimate reliably RR
using the machine learning models. However, in real-world
PPG signal is often corrupted with the motion artifact and
it is therefore important to remove motion artifact from
the PPG signals so that feature extraction can be done on
complete dataset to estimate the respiration rate (RR) from
even motion corrupted PPG signals. In our previous stud-
ies [34]–[36], several time-domain features were calculated
from the original signal and its derivatives. Several features
were extracted for RR estimation from the PPG signal in
this study, which was not used before by any other research
group.

This manuscript is divided into four sections where
Section I addresses the fundamentals of the PPG signal,
the associated works, and the motivation for this study.
The database description, pre-processing, evaluation mea-
sures, and methodology are discussed in Section II while
Section III outlines the results and discusses them, and com-
pares them with some other research solutions, while, while
Section V concludes the work.

II. METHODOLOGY
This section summarizes the dataset description and the pre-
processing techniques, various features that were extracted,
different feature selection algorithms, and the different
machine learning models that were implemented for RR esti-
mation in this study.

Figure 1 shows the overall methodology where PPG signal
from the publicly available VORTAL dataset [23], [24] is first
segmented into windows of 32 seconds. The PPG signals are
then split into 80% training and 20% test sets, respectively for
5-fold cross-validation. Firstly, the segmented PPG signals
were filtered and the motion artifacts were removed from the
PPG signals. Then their meaningful features were extracted
and feature selection algorithms were used to reduce feature
dimensions to avoid the risk of overfitting and to reduce the
computation time. The selected features were used to train,
validate and test machine learning models. An unseen 20%
test-set per fold was used to predict the RR value from the
PPG features.

TABLE 2. Characteristics of the subjects in Vortal dataset.

A. DATASET DESCRIPTION
Electrocardiogram (ECG) and photoplethysmogram (PPG)
signals and the respiration rate (RR) from 39 subjects are
available in the VORTAL dataset. The PPG signals used were
acquired during the resting period and sampled at 500Hz
sampling frequency. The summary of the dataset is shown in
Table 2.

The signals were segmented into windows of 32 seconds
as it allows a sufficient amount of breaths to take place so
that RR can be calculated reliably [10], [23], [24]. A shorter
window will pose a problem to the respiration rate while
the longer window will not be practically feasible. 758 PPG
segments of 32-seconds were obtained.

B. PREPROCESSING
The PPG waveform in the dataset has motion artifact and
high-frequency noise components. These noises can ham-
per the feature extraction process. Therefore, to remove
the high-frequency noises, the PPG waveforms were fil-
tered through a low-pass Butterworth Infinite Impulse
Response (IIR) Zero-Phase Filter [45]. Figure 2 shows the
motion-artifact free raw PPG signal with high-frequency
noise overlaid with the filtered signal. A sixth-order IIR
filter with a cut-off frequency of 25 Hz was implemented in
MATLAB.

In real-world PPG data acquisition, one common problem
with the PPG signals is that it is often become corrupted
by the motion artifact (MA). MA causes spikes and other
distortion to occur in the signal. This makes it very difficult
to extract meaningful time-domain features. Several signal
processingmethods have been used for removingmotion arti-
facts from the one-dimensional signal. Among these recently
VariationalModeDecomposition (VMD)was used to remove
the motion artifacts from the PPG signals [46], [47]. The
quality of the segmented signals was evaluated after filtering
and motion artifact correction to reject unfit data, however,
none of the segments were found unfit.
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FIGURE 2. Filtered signal overlaid on the raw PPG signal.

FIGURE 3. Reconstruction of PPG signal using different Modes of VMD used for MA correction.

The following section is briefly introducing the concept of
removing motion artifact using VMD technique.

A real valued signal, (x(t)) is decomposed into a set of
modes(k number of µk modes) in VMD. The set of modes,
in frequency domain, are called narrowband intrinsic mode
functions (IMF). IMF are generated using the following
method:

1) Hilbert Transform is used to make the analytic signal

2) The analytic signal is demodulated to baseband tuned
to the estimated center frequency

3) L2-norm of the gradient of the signal is used to calcu-
late the bandwidth

The method described above is posed as an optimization
problem. The aim of which is to minimize the total bandwidth
taken by all the modes such that the signal is reconstructed by
the modes collectively.
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FIGURE 4. Motion Artifact Correction from same motion corrupted PPG
signal segments.

Equation 1 shows the mathematical formulation of the
optimization problem where {µk} = {µ1, · · · , µk} are set
of all modes and {ωk} = {ω1, · · · , ωk} are its corresponding
center frequencies.

min
{ωk },{µk }

{6k ||δt [(δ(t) +
j
π t

) ∗ µk (t) ]e−jωk t ||22}

s.t 6kµk = x(t) (1)

FIGURE 5. Overview of the feature extraction method.

VMD is robust and can eliminate noise and disturbances.
In this work, empirically decided five modes were extracted
from the PPG signal. It was observed that the last mode
contained most of the motion artifact that corrupts the signal.
The PPG signal was reconstructed using the first 4 modes.

In Figure 3, reconstructed data is shown. The first row
shows signal reconstructed using one mode, the second row
shows the signal reconstruction using the first two modes and
so on. Adding all five modes gives the original data back
with MA. It can be seen that, using the first four modes gives
a good reconstruction of the signal with most of the MA
corruption removed.

In Figure 4, various PPG signals are shown where the MA
has been removed from the PPG signals. It can be noticed that
PPG signals with very largeMA corruption were successfully
cleaned by VMD. The IMFmodes of the signals are available
in the supplementary materials.

C. FEATURE EXTRACTION
Figure 5 summarizes different types of features extracted
in this study. PPG waveforms are rich in detail and contain
many features of interest. They contain features such as sys-
tolic peak, foot of the waveform, pulse width, peak-to-peak
interval, etc. To extract the meaningful features, as shown in
Table 3, we used the feature extraction techniques described
in [34].

The preprocessed signal is used to calculate statistical fea-
tures while the time-domain features were extracted from the
PPG signal and its 1st and 2nd derivatives (in Figure 6 and 7)
From the derivatives of the signal, the main features were
the first peak and first trough of the signal. Time and ampli-
tude features were calculated afterward and summarized in
Table 3 and 4. Mean, standard deviation, and variance of
most of the time-domain features was also calculated. This
is because to capture the distortion and modulation caused
by breathing on PPG, these features are important. These
time-domain features were identified from different previous
works [34]–[36]. Statistical features used in this work were
identified from [35]. In total, 107 features were extracted to
feed the machine learning models.

D. FEATURE SELECTION
Feature selection decreases the data dimensionality by choos-
ing only a subset of calculated characteristics (predictor
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TABLE 3. Fifteen time-domain features with their mean, standard deviation and variance.

TABLE 4. Sixteen features derived from the first and second derivative with mean, standard deviation, and variance.

FIGURE 6. PPG signal with some time-domain features.

variables) to construct a model. Feature selection algo-
rithms (FSA) look for a subset of predictors that optimally
model the responses tested, considering the constraints such
as feature importance and subset size. The Feature Rank-
ing Library (FSLib) is an often-used MATLAB library [48].
In this work, 10 Feature selection algorithms have been used
and after several feature combinations, the best feature rank-
ing technique for this problem is identified.

1) FIT A GAUSSIAN PROCESS REGRESSION MODEL (FITRGP)
Fitrgp can find the predictor weights by taking the exponen-
tial of the negative learned length scales contained in the

FIGURE 7. 1st and 2nd derivatives of PPG signal.

kernel information property [49], [50]. In Table 5, It is found
that the most contributory features are 11, out of 107 features
and 5 among the 11 selected features are derived from the
derivative of the PPG signal. And 3 statistical and 3 time
domain PPG signal features participated equally in top 11 fea-
tures.

2) LEAST ABSOLUTE SHRINKAGE AND SELECTION
OPERATOR (LASSO)
Lasso minimizes the variance of inference by retaining the
sum of the absolute values of the model parameters smaller
than the fixed value [51]. The most contributory features are
17, out of 107 features where 9 features were derived from
the PPG signal (Table 5), where 7 derivative features and
1 statistical also contributed in top 17.
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TABLE 5. Top-ranked features using Fitrgp, Lasso, and Relieff based feature selection algorithms.

TABLE 6. Top-ranked features using Fsasl, Ufsol, Laplacian and UDFS based feature selection algorithms.

3) RELIEFF FEATURE SELECTION (RFS)
RFS works much better to approximate the significance of
the function for distance-based supervised models that use
pairwise distances between the observations to predict [52],
[53].Table 5, shows that 27 features are themost contributory
features and 16 out of them are PPG signal and 11 features
are their derivative.

4) FEATURE SELECTION WITH ADAPTIVE STRUCTURE
LEARNING (FSASL)
Fsasl is focused on linear regression and its only limitation is
the high computational complexity, which can be expensive
for the high-dimensional results [54]. Table 6, shows the
most contributory 19 features where 9 are the derivative fea-
tures, 8 are the PPG signal features and only 2 are statistical
features.

5) UNSUPERVISED FEATURE SELECTION WITH ORDINAL
LOCALITY (UFSOL)
To implement the selected feature classes, a triplet-based loss
function is added to maintain the ordinal localization of orig-
inal data, which leads to distance-based clustering activities.

And then simplify orthogonal base clustering by imposing an
orthogonal restriction on the function projection matrix. As a
consequence, a general structure for simultaneous collection
and clustering of features is addressed [55]. Table 6, shows
the most contributory 27 features, where 19 are the derivative
features, 5 features are from the PPG signal and 3 from
statistical features.

6) LAPLACIAN METHOD (LM)
Another unsupervised approach is the LM, where the value of
a feature is determined by its capacity to conserve the locality.
This approach builds the closest neighbor graph to model
the local geometric structure. LS algorithm is searching for
features that respect the structure of this graph [56]. Table 6,
lists the most contributory 25 features where 14 features
were extracted from the derivative of the PPG signal and
11 features from the signal.

7) UNSUPERVISED DEPENDENCE FEATURE SELECTION
(UDFS)
UDFS is a projection-free function selection model based
on l2.0-standard equality constraints. UDFS conducts the
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TABLE 7. Top-ranked features using IlFS, mCFS and CFS based feature selection algorithms.

collection of function subsets by optimizing two terms: one
term increases the dependency on the original results, while
the other termmaximizes the dependence of selected features
on cluster labels to direct the phase of subset feature selection
[57]. It was found that 11 out of 20 most contributory fea-
tures were from the PPG signal (Table 6) and 6 statistical
and 3 derivative features were also participated in the top
20 features.

8) INFINITE LATENT FEATURE SELECTION (ILFS)
ILFS is a probabilistic approach to latent feature selection
that performs the ranking stage by taking into consideration
all feasible sub-sets of features that circumvent the combina-
torial issue [58]. Table 7, shows the top-ranked 21 features
among which 14 were from the PPG signal and 5 derivative
and 2 statistical features are also contributed in top 21.

9) MULTI CLUSTER FEATURE SELECTION (mCFS)
mCFS requires a sparse eigen problem and an L1- regularized
least squares question to efficiently solve the corresponding
optimization problem [59]. Top-ranked 24 featureswere iden-
tified where 12 are PPG signal features, 10 derivative and
2 statistical features were mostly contributed in the top 24.

10) CORRELATION BASED FEATURE SELECTION (CFS)
CFS is an embedded process that selects features in a sequen-
tial backward exclusion fashion to rank top features using
linear SVM [60]. In Table 7, the most contributory features
are 14 of the 107 features and 8 of the 15 features contributed
only on the PPG signal. And rest of the 5 are the derivative
and 1 from statistical features.

E. MACHINE LEARNING
Training, validation, and testing of themachine learningmod-
els were performed using 5-fold cross-validation. Table 8
summarizes the number of PPG signal segments were used
for training, validation, and testing. 80% of 758 recordings
were used for training while 20% out of training samples
were used for validation and 20% of 758 recordings were
used for testing. We then extracted the features. Regression

TABLE 8. Description of train, validation, and test set.

Learner App of MATLAB 2019b [61] was used to estimate
respiration rate (RR). Five different algorithms (Support Vec-
tor Regression (SVR), Gaussian Process Regression (GPR),
Ensemble Trees Linear Regression, and Regression Trees)
with 19 different variations were evaluated. Furthermore,
Artificial Neural Network (ANN), and Generalized Regres-
sion Neural Network (GRNN) were also investigated.

1) GAUSSIAN PROCESS REGRESSION (GPR)
GPR is a Bayesian regression approach, which works well
on small datasets. Where most of the supervised machine
learning algorithms learn the exact values of the function for
each parameter, GPR learns a distribution of probability over
all possible values [62].

2) ENSEMBLE TREES
In this algorithm, multiple regression trees are combined
using aweighted combination. Themain idea behind this type
of model is to use the strength of multiple weak learners to
create a strong learner [63].

3) SUPPORT VECTOR REGRESSION (SVR)
It is a supervised learning algorithm where SVR is trained
using the symmetrical loss function that punishes both higher
and lower misprediction [64].

4) ARTIFICIAL NEURAL NETWORK (ANN)
ANN tries to understand the relations between a set of data
in a way that mimics the process of human brain behavior.
It uses a set of interconnected artificial neurons in the layered
structure and ANN can work very well on different types of
data using this layered structure [65].

5) GENERALIZED REGRESSION NEURAL NETWORK (GRNN)
GRNN is a special type of neural network architecture where
it has a radial basis layer and a special linear layer [66]. The
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FIGURE 8. Hyperparameter optimization of GPR model.

uniqueness of GRNN is that it does not require a repeated
training procedure like back-propagation networks compared
to ANN where back-propagation is vital.

F. HYPERPARAMETER OPTIMIZATION
Initial training of machine learning algorithms was car-

ried out using the default parameters of Regression Learner
App of MATLAB 2019b [61]. The performance of these
machine learning algorithms can be increased by tuning
or optimization of the hyper-parameters of the algorithm.
Bayesian Optimization was used in this work which was
tuned for 30 iterations.

G. EVALUATION CRITERIA
In this study, five performance matrices were used. Here, Xp
is the data that was predicted while X is the ground truth data
and n denotes the number of samples or recordings.

I) Mean Absolute Error (MAE): The Mean Absolute
Error is the mean of the absolute of the predicted errors.

MAE =
1
n

∑
n

|Xp−X | (2)

II) Root Mean Squared Error (RMSE): RMSE measures
the standard deviation of the prediction error or residu-
als, where residuals measure the distance of data points
from the regression line. Therefore, RMSE is a way of
measuring the spread of residuals, and the smaller the
spread, the better the model.

RMSE =

√∑
|Xp−X |2

n
(3)

III) Correlation Co-efficient (R): R is used to measure how
closely two variables (prediction and ground truth) are
related. It is a statistical technique that also tells us how
close the prediction matches with the ground truth.

R =

√
1−

MSE(Model)
MSE(Baseline)

where MSE(Baseline) =

∑
|X − mean(X )|

n
(4)

TABLE 9. Comparative performance of different machine learning models
with different feature selection techniques.

TABLE 10. Performance comparison of optimized machine learning
models using different feature selection techniques.

IV) 2SD: Standard deviation(SD) is a statistical technique
that measures the spread of data relative to its mean.
It is calculated by computing the square root of the
variance. 2SD is the double of SD. 2SD is important
because it represents the 95% confidence interval.

2SD = 2× SD = 2×

√∑
(error − mean(error))2

n
where error = Xp − X (5)

V) Limit of Agreement(LOA):Limit of agreement calcu-
lates the interval in which a percentage of the dif-
ferences between two measurements (prediction and
ground truth) lie. LOA captures both random (preci-
sion) and systematic (bias). It is therefore a useful
way of measuring the performance ofMLmodels. 95%
LOA were computed in this study.
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FIGURE 9. GPR model with Regression and Bland-Altman plot (a-b) for all features and (c-d) for Fitrgp based features.

Among these criteria, RMSE and 2SD were chosen
as the main criteria based on the reporting in the
literature [22]–[24], [26].

III. RESULTS AND DISCUSSION
This section describes the evaluation results of the different
machine learning algorithms used in this work. Out of the
19 classical machine learning algorithms evaluated in this
study, SVR, GPR, and Ensemble trees were outperformers.

In Table 9, it can be seen that the features selected by the
Fitrgp technique were outperforming for different algorithms
(SVR, GPR, and Ensemble Trees). This feature selection
algorithm produced the best results for each ML model.
However, the GPR model in combination with the Fitrgp

feature selection technique provides superior performance
with the state-of-the-art RMSE and 2SD of 2.66 and 5.30,
respectively.

Since it has been observed in Table 9 that GPR performed
the best among all classical machine learning techniques
tested in this work, the hyper-parameter optimization perfor-
mance of GPR was compared with ANN and GRNN. The
process can be seen in Figure 8. The best model having a
Sigma of 4.318, a linear basis function, an isotropic expo-
nential kernel function and a kernel scale of 0.54439.

The comparative performance of ANN, GRNN, and opti-
mized GPR is shown in Table 10. It can be seen that the
Fitrgp is outperforming the rest of the feature selection tech-
niques. Among the machine learning algorithms, the opti-
mizedGPRmarginally outperformsGRNNwhile performing
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FIGURE 10. Optimized GPR model with Regression and Bland-Altman plot (a-b) for all features and (c-d) for Fitrgp based features.

significantly better than ANN. Therefore, the optimized GPR
model was selected as the best performingmodel in this work.

Figure 9, shows the best performing GPR model with
and without the use of the feature selection algorithm. The
result is visualized using regression and a Bland-Altman plot.
The regression plot allows seeing how close the predictions
are to the ground truth with the help of a trendline. The closer
the trendline is to the y = x line, the better the model.
Bland-Altman plot allows us to see the spread of the data
and also allows us to see the 95% limit of agreement (LOA)
of the data, where a smaller LOA means a better model.
Figure 9, shows that with all features, the algorithm had an
R-value of 0.857 and an LOA of−5.82 to 5.67 bpm.With the
feature selection algorithm (Fitrgp), the R-value is increased
to 0.883 and the LOA reduces to −5.16 to 5.28 bpm.

The effect of hyperparameter optimization of the GPR
model is shown in Figure 10. When comparing both the
optimized models, it can be seen that the model with no
feature selection had an R-value of 0.841 and an LOA of
−5.83 to 6.26 bpm while the optimized GPR model with
feature selection provides an R-value of 0.885 and the LOA
of −5.16 to 5.25 bpm. Hence, it can be concluded that the
feature selection algorithm helps in increasing the perfor-
mance of the GPR model. Comparing Figures 9 and 10,
it can be noticed that hyperparameter tuning has helped only
feture selection model. However, the best performance can
be observed with the optimized GPR along with the Fitrgp
feature selection algorithm. Several factorsmade it difficult to
compare the reported performance of algorithms of different
research groups in the literature, such as the use of different
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TABLE 11. Comparison of the proposed method with the recent related works concerning the database, methodology, and estimation error.

statistical tests, data from different subject groups, and the
lack of consistent algorithm implementations. As a result, it is
not possible to decide from the literature which algorithms
score higher. A comprehensive comparison of RR estimation
is summarizedwith the state-of-the-art literatures inTable 11.
As shown in Table 11 Motin et al. [27] introduced a novel
approach to the continuous control of PPG-based RR estima-
tion using a smart fusion strategy based on EEMD is one of
the best performing approaches. Estimating RR under daily
living conditions is challenging, as the PPG signal is affected
by the motion artifacts. The median absolute error (MAE)
in [27].

L’Her et al. [29] described the accuracy of measure-
ments of the respiratory rate using a specially developed
reflex-mode photoplethysmographic pathological signal
analysis (PPG-RR) and validated its implementation within
medical devices. They experimented with this on 30 intensive
care unit (ICU) patients where a correlation coefficient for
RR of 0.78 was achieved. Motin et al. [28] used the EMD
family and PCA-based hybrid model to remove RR from
PPG, a natural extension of their previously built hybrid
PCA-EMD (EEMD) system. The MAE for the model tested
on MIMIC datasets of 53 subjects were varied from 0 to
5.03 bpm.
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With the assistance of Time Frequency (TF) reassignments
and a particle filter, Pirhonen et al. [30] suggested the use of
amplitude fluctuations of the PPG signals to approximate RR.
Vortal database was used in that study. The highest results
were achieved using wavelet synchrosqueezing transform,
which produced an MAE and RMSE of 2.33 and 3.68 bpm,
respectively.

Jarchi et al. [31] presented a case study on 10 subjects to
estimate RR from the PPG signals relative to accelerometer
and achieved an MAE of 2.56 bpm. Zhang and Ding [26],
[43] proposed the estimation of the RR from the PPG signal
using joint sparse signal reconstruction (JSSR) and Spectra
Fusion (SF) from 42 subjects and achieved an LOA and
RMSE of −5.58 to 4.88, 2.81 and −6.24 to 5.45, 3.25 bpm,
respectively. Pimentel et al. [37] estimated RR using autore-
gressive model from two publically available database, where
they achieved an comparable MAE of 4.0 (0.3-3.3) and 1.5
(1.8-5.5) for a windows size of 32 second. But one of their
limitation was, they discarded 36% of windows due to motion
artifact effect. Charlton et al. [23] divided the algorithm into
three phases: respiratory signal extraction, RR estimation,
and estimation fusion and 314 different algorithms were
assessed and the best algorithm had 95 percent LOA and 2SD
of −5.1 to 7.2, and 6.2 bpm, respectively.

There is no exactmedical standard regarding the estimation
of RR. However, in a review paper [22] where over 196 tradi-
tional RR extraction techniquewere reviewed, they stated that
an MAE less than 2 bpm should provide a suitable indicator
for a good estimator. The machine learning model suggested
in this analysis was measured with much higher precision and
accuracy which shown in Table 11.
The computational complexity reduction mentioned in the

paper is due to the usage of feature optimization and machine
learning technique which reduces the computational com-
plexity of the estimation systemwhilemake the system robust
for motion-corrupted PPG signal. On the other hand, tradi-
tional approach [23], [24] extracts respiratory signal from
PPG signals using amplitude modulation (AM), frequency
modulation (FM) and baseline wandering. This estimation
only works with motion-free PPG signals to estimate res-
piratory rate. In the proposed system, the inference time
for estimating PPG depends on VMD and feature extraction
techniques but the regression process is quite fast while other
approaches fails on the motion corrupted PPG signals even
though these might be faster than ML based approach. Since
the respiration is a slow changing signal, we believe ML
model can work in real-time if deployed in the mobile devices
or smart watches. our approach is computationally expensive
but reliable and robust now.

IV. LIMITATIONS
The key limitation of this study is that the VORTAL dataset
was collected from the young healthy subjects at rest. In our
future work, we are aiming to estimate respiratory rates from
patients with different age groups and with different clinical
conditions.

V. CONCLUSION
In this study, the authors proposed and developed a machine
learning-basedmethod for predicting RR from the PPG signal
features. This successfully shows how the motion artifact
corrected PPG signal can be used to correctly estimate the
RR value invasively. The entire prepossessing process of the
PPG signals to extract the features, feature selection, and
training of the algorithms were discussed. The method used
107 time-domain, frequency-domain, and statistical features
to extract meaningful information from the PPG signal. ANN
and GRNN and 19 other machine learning models were
trained, validated, and tested for RR estimation, where the
performance of GPR, SVR, ensemble trees, ANN and GRNN
were promising. To reduce computational complexity and
the risk of over-fitting, different feature selection algorithms
were investigated. It was observed that a combination of
Fitrgp feature selection and GPRmachine-learning algorithm
produced the best result. However, hyper-parameter opti-
mization can improve the model performance further. The
fine-tunedmodel provides an RMSE,MAE, R, and 2SD score
of 2.63, 1.97, 0.88, and 5.25 bpm for the estimation of RR.
This state-of-the-art performance of the proposed model will
make it possible to deploy this for ambulatory and intensive
care units as well for remote health care monitoring.
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