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Abstract

The bubble point pressure (Pb) could be obtained from pressure-volume-temperature (PVT)

measurements; nonetheless, these measurements have drawbacks such as time, cost, and

difficulties associated with conducting experiments at high-pressure-high-temperature con-

ditions. Therefore, numerous attempts have been made using several approaches (such as

regressions and machine learning) to accurately develop models for predicting the Pb. How-

ever, some previous models did not study the trend analysis to prove the correct relation-

ships between inputs and outputs to show the proper physical behavior. Thus, this study

aims to build a robust and more accurate model to predict the Pb using the adaptive neuro-

fuzzy inference system (ANFIS) and trend analysis approaches for the first time. More than

700 global datasets have been used to develop and validate the model to robustly and accu-

rately predict the Pb. The proposed ANFIS model is compared with 21 existing models using

statistical error analysis such as correlation coefficient (R), standard deviation (SD), average

absolute percentage relative error (AAPRE), average percentage relative error (APRE), and

root mean square error (RMSE). The ANFIS model shows the proper relationships between

independent and dependent parameters that indicate the correct physical behavior. The

ANFIS model outperformed all 21 models with the highest R of 0.994 and the lowest

AAPRE, APRE, SD, and RMSE of 6.38%, -0.99%, 0.074 psi, and 9.73 psi, respectively, as

the first rank model. The second rank model has the R, AAPRE, APRE, SD, and RMSE of

0.9724, 9%, -1.58%, 0.095 psi, and 13.04 psi, respectively. It is concluded that the proposed

ANFIS model is validated to follow the correct physical behavior with higher accuracy than

all studied models.
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1. Introduction

Determination or measurement of an accurate reservoir bubble point pressure (Pb) is essential

for achieving accurate reservoir and petroleum production calculations [1–4]. As a result,

obtaining the Pb with high accuracy is necessary.

Numerous researchers studied the Pb for different crude oils. In North America, Standing

[5], Lasater [6], Glaso [7], Petrosky and Farshad [8], De Ghetto et al. [9], Velarde et al. [4], and

Dindoruk and Christman [10] showed correlations applied to determine the Pb based on Rs,

γg, API, and Tf. Standing [5] and Lasater [6] utilized 105 and 158 datasets from the USA and

Canada to develop their models. Glaso [7] applied some regressions methods to create a corre-

lation for Pb with a standard deviation (SD) of 6.98. Petrosky and Farshad [8] used 90 Gulf

Mexico datasets to develop their Pb model by applying regression methods (involving Statisti-

cal Analysis System (SAS) software). De Ghetto et al. [9] and Velarde et al. [4] used regressions

techniques to create their equations to determine the Pb, and they mentioned that their corre-

lations have AAE of 12.8% and 11.7%. Dindoruk and Christman [10] showed a correlation

employed to determine the Pb using 100 datasets and MS-Excel software.

Al-Marhoun [11], Dokla and Osman [12], Almehaideb [13], Mehran et al. [14], Bolondar-

zadeh et al. [15], Hemmati and Kharrat [16], Mazandarani and Asghari [17], Khamehchi et al.

[18], and Gomaa [19] developed their Pb correlations depended on the Middle East crude oils.

Al-Marhoun [11] utilized Rs, γg, API, and Tf as independent parameters to create a correlation

to determine the Pb by applying the non-linear multiple regression method using 160 data

points. Dokla and Osman [12] and Almehaideb [13] displayed Pb correlations using 51 and 62

data points from the United Arab Emirates, and their equations have AAE of 7.61% and

4.997%, respectively. Mehran et al. [14], Bolondarzadeh et al. [15], Hemmati and Kharrat [16],

Mazandarani and Asghari [17], Khamehchi et al. [18] operated regression methods to create

their Pb equations using datasets from Iranian fields. Gomaa [19] developed the correlation

based on Rs, γg, API, and Tf and disclosed that their equation has the AAE and the SD of

8.12% and 10.69.

In Africa, Macary and EL-Batanoney [20] showed an equation used to predict the Pb with

AAE of 7.04% using Rs, γg, API, and Tf as independent variables and 90 datasets from Egypt.

Hanafy et al. [21] used only the Rs as input parameter, the regression methods, and 324 data-

sets from Egyptian fields to determine the Pb. Sharrad and Abd-Alrahman [22] found a Pb

equation using more than thirty Libyan datasets and EViews software and displayed their cor-

relation with the AAE of 8.7%.

Frashad et al. [23] showed the Pb correlation with SD of 37.02 using regression methods

and 43 datasets from Colombia. Omar and Todd [24] applied non-linear regression analysis

and more than ninety Malaysian datasets to display their Pb correlation and indicated that the

correlation has AAE and SD of 7.17% and 9.54.

Vasquez and Beggs [25], Kartoatmodjo and Schmidt [26], Al-Shammasi [27], and Arabloo

et al. [28] proposed equations for predicting the Pb based on Rs, γg, API, and Tf and utilizing

data points from different places. Kartoatmodjo and Schmidt [26] employed more than 5000

datasets from different regions in North America and used a regression approach to build the

Pb correlation with 20.17% (AAE). Al-Shammasi [27] utilized a regression approach, 1661

datasets from different places to develop a Pb correlation, and stated that the correlation could

predict the Pb with 17.849% AAE and 17.16 SD. Arabloo et al. [28] represented a Pb correlation

with an AAE of 18.9, operating LINGO software and more than 700 global datasets. Fig 1 illus-

trates the previously published models based on used data locations.

Nowadays, machine learning and deep learning methods are used to develop the Pb model.

Alakbari et al. [30] used artificial neural networks and fuzzy logic approaches for predicting
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the Pb based on Rs, γg, API, and Tf. Yang et al. [31] represented a correlation that can be used

to predict the Pb using some artificial intelligent algorithms, namely neural networks. Alakbari

et al. [32] created their model based on the Rs, γg, API, and Tf as inputs and more than 700

datasets, and they showed that their model has the absolute average percent relative error and

the (R) were 8.422% and 0.990. Nonetheless, the previous models are required to improve

their accuracy in obtaining the Pb.

Numerous researchers successfully applied the adaptive neuro-fuzzy inference system

(ANFIS) method in engineering calculations. A noise assessment of wind turbine was pre-

dicted using the ANFIS [33]. The ionic and electronic conductivity of materials was estimated

utilizing the ANFIS [34]. Ayoub et al. [35] developed a model to obtain the drilling rate of pen-

etration using the ANFIS technique. The wind power density was determined by applying the

ANFIS [36]. Sambo et al. [37] used ANFIS to determine water saturation from seismic attri-

butes. Hamdi and Chenxi [38] proposed an ANFIS model to predict CO2 minimum miscibility

pressure (MMP) with higher accuracy. A recent study has applied ANFIS to model the isother-

mal oil compressibility below the Pb Ayoub et al. [39].

This research aims to build a robust and higher accurate model that can be used to deter-

mine the Pb using the ANFIS method with the trend analysis (TrA). The only attempt to apply

ANFIS for developing Pb correlations is the one proposed by Shojaei et al. [40], who used 750

data points to build the Pb model. However, they have not studied the TrA to prove the proper

physical behavior for their model. Therefore, in this study, a robust and highly accurate ANFIS

model was developed to predict the Pb through TrA. More than 700 global datasets and the

ANFIS method were applied with the trend analysis that is used to find the relationships

between the independent variables (Rs, γg, API, and Tf) and dependent variable (Pb) to indi-

cate the correct physical behavior to build our ANFIS model with the trends analysis that is

used for the first time to a robustly and accurately determine the Pb. Moreover, statistical error

analyses such as R were utilized to compare the ANFIS and all existing models’ accuracy.

Fig 1. Previous models based on used data locations [recreated from copyright free open source [29]].

https://doi.org/10.1371/journal.pone.0272790.g001
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2. Methodology

2.1 Data collection and pre-processing

More than seven hundred data sets were gathered from existing sources [11, 24, 28] to build

the proposed ANFIS model. The Rs, γg, API, and Tf are utilized as independent parameters in

this study because most of the studies in the literature consider these parameters as inputs;

however, Hanafy et al. [21] used only the Rs as the input to predict the Pb, Table 1. Further-

more, the (R) for independent parameters (Rs, γg, API, and Tf) to the dependent parameter

(Pb) was found to evaluate the importance of the independent and dependent parameters as

shown in Fig 2. From this figure, we can see the (R) of 0.876 for the Rs, and the Pb means that

the Pb can be a strong function of the Rs. As displayed in Fig 2, the (R) of -0.513 for the γg and

Table 1. Comparison of input parameters used in the published correlations and the proposed ANFIS model.

No Model Input parameters

Bubble point oil volume factor

(Bob) (bbl/STB)

Gas to oil ratio (Rs)

(scf/STB)

Gas-specific

gravity (γg)
Oil-specific gravity

(API) (oAPI)

Reservoir temperature

(Tf) (˚ F)

1 Standing (1947) [5]
p p p p

2 Lasater (1958) [6]
p p p p

3 Glaso (1980) [7]
p p p p

4 Vazquez and Beggs (1980)

[25]

p p p p

5 Al-Marhoun (1988) [11]
p p p p

6 Kartoatmodjo and Schmit

(1991) [26]

p p p p

7 Dokla and Osman (1992) [12]
p p p p

8 Petrosky and Farshed (1993)

[8]

p p p p

9 Macary and El-Batanoney

(1993) [20]

p p p p

10 Omar and Todd (1993) [24]
p p p p p

11 De Ghetto et al. (1994) [9]
p p p p

12 Frashad et al. (1996) [23]
p p p p

13 Almehaideb (1997) [13]
p p p p p

14 Hanafy et al. (1997) [21]
p

15 Velarde et al. (1997) [4]
p p p p

16 Al-Shammasi (1999) [27]
p p p p

17 Dindoruk and Christman

(2001) [10]

p p p p

18 Mehran et al. (2006) [14]
p p p p

19 Bolondarzadeh et al. (2006)

[15]

p p p p

20 Hemati and Kharrat (2007)

[16]

p p p p p

21 Mazandarani and Asghari

(2007) [17]

p p p p

22 Khamechchi et al. (2009) [18]
p p p p

23 Arabloo et al. (2014) [28]
p p p p

24 Gomaa (2016) [19]
p p p p

25 Sharrad and Abd-Alrahman

(2019) [22]

p p p p

26 Proposed ANFIS
p p p p

https://doi.org/10.1371/journal.pone.0272790.t001
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the Pb indicates that the Pb can be a moderate function of the γg and the (R) of 0.383 and 0.315

for the API and Tf proves that the Pb can be a weak function of the API and Tf.

Before the ANFIS model was applied, the collected data were split into two parts 70% for

training the model and 30% for testing the proposed ANFIS model. The statistical description

of the training and testing datasets is shown in Table 2. As in the table, the training and testing

datasets are at the same ranges to build and evaluate the ANFIS model with the same data

ranges. It is essential to avoid the over-fitting and under-fitting issues; data randomization was

used to overcome these issues. In addition, all parameters for the training and testing datasets

were normalized between -1 and 1 to scale them in this range based on the following equation:

Y ¼ ðYmax � YminÞ � ðX � XminÞ=ðXmax � XminÞ þ Ymin ð1Þ

Where:

Y: the normalized parameter.

Ymax: the maximum normalized value (1).

Ymin: the minimum normalized value (-1).

X: the input variable.

Xmin: the minimum of the variable.

Xmax: the maximum of the variable.

Fig 2. Relative importance of inputs with Pb output.

https://doi.org/10.1371/journal.pone.0272790.g002

Table 2. Statistical description of the data.

Parameters Training data Testing data

Minimum Maximum SD Minimum Maximum SD

Bubble point pressure (Pb) psi 126 7127 1151.55 130 4432 1135.4

Gas to oil ratio (Rs) SCF/STB 9 2637 423.50 26 1850 424.93

Gas-specific gravity (γg) 0.5890 1.367 0.1593 0.5890 1.367 0.1622

Oil-specific gravity (API) oAPI 15.30 59.50 7.32 19.40 51.70 6.38

Reservoir temperature (Tf)˚F 74 294 49.46 74 271 45.36

https://doi.org/10.1371/journal.pone.0272790.t002
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2.2 Proposed ANFIS model strategy

ANFIS is a combination of artificial neural networks (ANN) and fuzzy logic (FL), and it is one

of the neural networks that use the Takagi-Sugeno fuzzy inference system. The Takagi-Sugeno

fuzzy model applies two fuzzy rules [41]:

rule 1: if (x1 is A1) and (x2 is B1), then Eq (2) is used.

f1 ¼ p1x1 þ q1x2 þ r1 ð2Þ

rule 2: if (x1 is A2) and (x2 is B2), then Eq (3) is applied.

f2 ¼ p2x1 þ q2x2 þ r2 ð3Þ

where:

x1 and x2: inputs.

A1, A2, B1, and B2: membership values.

p1, q1, r1, p2, q2, and r2: parameters of the output functions f1 and f2, respectively.

As displayed in Fig 3, the ANFIS structure is constructed of five layers. These layers are the

fuzzification layer, rule layer, normalization layer, defuzzification layer, and output layer.

ANFIS is a multilayer feedforward neural network with supervised learning capability (a

hybrid learning rule) [42, 43]. For the Sugeno fuzzy reasoning, the default defuzzification tech-

nique was applied. It can be a weighted average of all rule outputs. The fuzzified input values

can be an algebraic sum of consequent fuzzy sets for the used aggregate technique. Firstly,

input characteristics transfer to input membership functions. Then, they move to rules. After

that, they shift to a set of output characteristics. Next, they go to output membership functions.

Finally, the output membership functions provide output [44].

The ANFIS technique has advantages of showing better results than other methods. The

ANFIS shows a better learning ability. It can perform a highly non-linear mapping. It has

fewer adjustable parameters than those needed in other machine learning. Its structure can

allow for parallel computation. Its networks show a well-structured knowledge representation

and can also allow better integration with other control design methods [45]. ANFIS can com-

bine ANN and Fl in a single tool to make the technique superb in reaching a quicker decision

about the mapped relationship between the feature and target parameters [46]. The ANFIS has

Fig 3. The workflow of MATLAB ANFIS structure.

https://doi.org/10.1371/journal.pone.0272790.g003
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the benefit of decreased training time not only because of its smaller dimensions but also

because the network is initialized with parameters in relation to the problem domain [47].

The proposed ANFIS model in this work was built using MATLAB R2019b. Fig 4 demon-

strates the ANFIS output generated from MATLAB 2019b. The type of membership function

applied in this proposed ANFIS model is Gaussian curve membership. The optimal hyperpara-

meters of ANFIS were selected by using the manual method. In the manual method, each

parameter changed in its different types or values. Then, the model accuracy and the correct

trend analysis were checked. Finally, the optimal hyperparameters were selected with the

proper trend analysis for the highest accuracy, as shown in Table 3.

3. Results and discussion

The ANFIS model was evaluated by conducting two tests. The proposed ANFIS model was

first investigated by conducting TrA to ensure that all inputs follow the proper physical behav-

ior. After that, the ANFIS model and studied correlations were compared. Statistical error

analysis, namely, (R), standard deviation (SD), average percent relative error (APRE), average

absolute percentage relative error (AAPRE), and root mean square error (RMSE), were per-

formed to show the performance of the ANFIS and studied models.

3.1 Trend analysis (TrA)

The trend analysis (TrA) can be used to study the reliability of models. TrA can be applied by

changing the studied input between the minimum and maximum values while keeping the

Table 3. Descriptions of the optimal ANFIS model hyperparameters.

Parameter Description/value

Fuzzy structure Sugeno-type

Initial FIS for training genfis2

Membership function type Dsigmf

Output membership function Linear

Cluster centre’s range of influence 0.459

Number of inputs 4

Number of outputs 1

Optimization method Hybrid

Number of fuzzy rules 10

Training epoch number 24

Initial step size 0.3555

Step size decrease rate 0.2

Step size increase rate 2

https://doi.org/10.1371/journal.pone.0272790.t003

Fig 4. ANFIS system results with four input parameters, three rules, and one output, (generated from MATLAB

R2019b).

https://doi.org/10.1371/journal.pone.0272790.g004
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other inputs at their constant mean values. The studied input, such as Rs, is plotted as the x-

axis and the output Pb as the y-axis [27, 48–50]. The TrA is an essential part of this work, as

some researchers used ANFIS, but they have not applied the trend analysis [40]. Without con-

sidering the trend analysis, it was clear that the ANFIS model may show fake high accuracy. As

a result, the models developed without considering the trend analysis should not be considered

as a reliable tool.

The trend analysis was conducted for the ANFIS, and 21 studied models to study the rela-

tionships between the inputs (Rs, γg, API, Tf) and output Pb to show the physical behavior.

In the TrA study, the four independent variables (Rs, γg, API, Tf) were selected because

most previous models used these variables; nevertheless, the oil formation volume factor was

not considered in our model because it is only utilized by [13, 16, 24]. The TrA was performed

to represent the proper relationships between the Rs, γg, API, Tf and the Pb to show the actual

physical behavior for the studied parameters and validated the ANFIS model.

Fig 5 presents the Rs TrA for the ANFIS and all existing models. As shown in Fig 5, the

ANFIS and all the previous models show the proper relationships between the Rs and the Pb.

Increasing the Rs increases the Pb. However, Farshad’s [23] and Almehaideb’s [13] correlations

indicate that the Pb was -812.6 and -207.5 psi at Rs 26 SCF/STB (as shown in Fig 5) because

they built their correlation based on Rs ranges from 217 to 1406 and from 128 to 3871 SCF/

STB, respectively. Fig 6 indicates that the developed ANFIS model follows the proper relation-

ships between the Rs and the Pb to correct physical behavior. Li et al. [51] showed that increas-

ing the Rs increased the Pb.

The TrA of γg for the ANFIS and all current models is demonstrated in Fig 7. The ANFIS

and most existing models revealed that the γg is inversely proportional to the Pb, which proves

the proper relationships between the γg and the Pb; nevertheless, Hanafy et al.’s [21] correlation

displayed that changing the γg does not change the Pb as indicated by the constant trend. This

indicates an incorrect relationship between the γg and the Pb because γg was not considered as

Fig 5. Rs TrA of the ANFIS and existing models.

https://doi.org/10.1371/journal.pone.0272790.g005
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input in their model. Goma’s [19] correlation showed that the Pb was slightly increased by

increasing the γg and the correlation indicate improper TrA for γg. Omar and Todd’s [24] cor-

relation represented that the Pb decreases and then increases by increasing the γg, which is also

improper relationships between the γg and the Pb. Therefore, Omar and Todd’s [24], Hanafy

et al.’s [21], and Goma’s [19] models represent incorrect relationships between the γg and the

Pb, and hence, improper physical behavior for γg trend. Fig 8 illustrated the correct trend γg for

the ANFIS model. Al-Shammasi [27] proved that growing the γg declines the Pb.

Fig 9 shows the TrA of API for the ANFIS and all current models. The ANFIS and most

models display the proper relationships between the API and the Pb. The higher the API, the

lower the Pb is (Fig 9); however, Dokla and Osman [12], Hanafy et al. [21], and Gomaa [19]

models do not show the correct relationships between the API and the Pb, indicating incorrect

physical behavior. Dokla and Osman’s [12] correlation showed that the Pb was slightly

decreased by rising the API, (Fig 9). Gomaa’s [19] correlation demonstrated that increasing

the API also drops the Pb slightly (Fig 9). Hanafy et al.’s [21] equation displayed that the Pb is

constant with changing the API (Fig 9). Petrosky and Farshad’s [8] correlation shows that the

Pb is -37.37 psi and -145.91 psi at 48.11 and 51.7˚API, Fig 9 because they developed the equa-

tion in (16.3–45˚API) range. The ANFIS model presents the correct relationships between the

API and the Pb, indicating proper physical behavior, as shown in Fig 10. Al-Shammasi [27]

also revealed that increasing the API drops the Pb.

The TrA of the Tf for the ANFIS and all current models is illustrated in Fig 11. As shown in

Fig 11, the ANFIS and most current models follow the proper relationships between the Tf and

the Pb, increasing the Tf increases the Pb; nonetheless, Dokla and Osman’s [12] equation indi-

cates that the Pb declines by increasing Tf indicating incorrect relationships between the Tf and

the Pb. Hanafy et al.’s [21] correlation also displays a constant Pb with increasing the Tf to indi-

cate the improper relationships between the Tf and the Pb. Dindoruk and Christman’s [10]

and Arabloo et al.’s [28] correlations represent that the Pb is slightly changed by growing the Tf

to show incorrect physical behavior for the Tf trend. The correct Tf trend for the proposed

Fig 6. Rs TrA of proposed ANFIS model.

https://doi.org/10.1371/journal.pone.0272790.g006
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ANFIS model is clearly represented in Fig 12. The temperature can drop the gas density; there-

fore, the temperature can increase the Pb.

From the TrA study, we can conclude that all independent parameters (Rs, γg, API, Tf) of

the ANFIS model represent the proper relationships with the Pb to indicate the correct physical

behavior; however, Dokla and Osman’s [12], Omar and Todd’s [24], Hanafy et al.’s [21], and

Fig 7. γg TrA of the ANFIS and existing models.

https://doi.org/10.1371/journal.pone.0272790.g007

Fig 8. γg TrA of proposed ANFIS model.

https://doi.org/10.1371/journal.pone.0272790.g008

PLOS ONE A reservoir bubble point pressure prediction model using Adaptive Neuro-Fuzzy Inference System technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0272790 August 11, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0272790.g007
https://doi.org/10.1371/journal.pone.0272790.g008
https://doi.org/10.1371/journal.pone.0272790


Goma’s [19] correlation show the improper relationships between the independent parameters

and the Pb to indicate the incorrect physical behavior. Petrosky and Farshad’s [8] and Alme-

haideb’s [13] correlations display some negative Pb because the Rs and API as inputs for these

negative values do not include in their study ranges.

Fig 9. API TrA of the ANFIS and existing models.

https://doi.org/10.1371/journal.pone.0272790.g009

Fig 10. API TrA of the ANFIS model.

https://doi.org/10.1371/journal.pone.0272790.g010
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3.2 Comparison of the ANFIS model against other models

3.2.1 Cross-plot. Fig 13 shows the cross-plot for the training datasets of the ANFIS

model. Most training data are closer to the 45˚ line to indicate that the ANFIS is a higher accu-

rate model for the training datasets. The (R2) for the training datasets of the ANFIS model is

Fig 11. Tf TrA of the ANFIS and existing models.

https://doi.org/10.1371/journal.pone.0272790.g011

Fig 12. Tf TrA of the ANFIS model.

https://doi.org/10.1371/journal.pone.0272790.g012
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0.9725. Fig 14 presents the cross plot for the testing datasets of the ANFIS model, and most of

the testing data are also closer to the 45˚ line to show that the ANFIS model can accurately pre-

dict the Pb for the testing datasets with the (R2) of 0.9878. Fig 15 displays the cross-plot for the

Fig 13. Cross-plot of training ANFIS model.

https://doi.org/10.1371/journal.pone.0272790.g013

Fig 14. Cross-plot of testing ANFIS model.

https://doi.org/10.1371/journal.pone.0272790.g014
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ANFIS and all current models studied in this paper. As shown in Fig 15, the ANFIS model is

the highest accurate model with (R2) of 0.9878 compared to all studied models.

3.2.2 Statistical error analysis. Some statistical analysis has been used along with trend

analysis and cross-plotting analysis to validate and describe the efficiencies of the proposed

ANFIS model. In addition, the ANFIS was compared against the 22 studied models that follow

the correct physical behavior. The statistical error analysis applying in this study are (R),

RMSE, SD, APRE, AAPRE, maximum and minimum absolute percent relative error (Emax.)

and (Emin.). The statistical criterion explanations are presented in the appendix (S1 Appendix).

The AAPRE and R were used in this research as the leading indicators to compare the ANFIS

model’s accuracy with the current models.

The ANFIS and existing models were compared by plotting the AAPRE and R (Fig 16). As

display in Fig 16, the ANFIS model is the first rank model and has the lowest AAPRE of

6.378% and APRE of -0.99%, and the highest (R) of 0.994. The second rank model is Velarde

et al.’s [4] model with the AAPRE of 9%, the APRE of -1.58%, and R of 0.9724. The third rank

model is Mehran et al.’s [14] correlation with the AAPRE of 9.75%, the APRE of -3.91%, and R

of 0.9699. The last rank model is Petrosky and Farshad’s [8] model with the AAPRE of 76.59%,

the APRE of 57.39%, and R of 0.9703.

The ANFIS and all existing models are compared using statistical error analyses AAPRE,

APRE, RMSE, SD, Emin., and Emax., Table 4. The ANFIS model and all studied models are

ranked based on the leading indicators AAPRE and R. The ANFIS model is the first rank

model and has the lowest AAPRE of 6.38%, APRE of -0.99, RMSE of 9.73, SD of 0.074, Emin.of

0.021%, and Emax. of 50.19% and the highest R of 0.9939. The results indicate that the ANFIS

model outperformed all existing models (22 models). The second rank model is Velarde et al.’s

[4] correlation that has the AAPRE of 9%, APRE of -1.58, RMSE of 13.04, SD of 0.094, Emin. of

Fig 15. Cross-plot of the ANFIS and existing models.

https://doi.org/10.1371/journal.pone.0272790.g015
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0.039, Emax. of 62.47, and R of 0.9724. The third rank model is Mehran et al.’s [14] correlation

and has the AAPRE of 9.75%, APRE of -3.91%, RMSE of 13.60, SD of 0.095, Emin. of 0.035%,

Emax. of 63.86%, and R of 0.9699. The last rank model is Petrosky and Farshed’s [8] correlation

that has the AAPRE of 76.59%, APRE of 57.39%, RMSE of 159.87, SD of 1.406, Emin. of 0.295%,

Emax. of 784.59%, and R of 0.9703. Comparing the ANFIS and existing models conducts an

important means of evaluating all the models’ performance.

4. Conclusions

With 760 global datasets used, the ANFIS model was developed with the trend analysis to

robustly and accurately predict the Pb. In addition, the ANFIS mode’s accuracy was compared

with 21 existing models utilizing statistical error analysis. In this research, we can conclude the

following:

• The trend analysis results of the ANFIS model indicate that the ANFIS model can describe

the correct relationships between the independent parameters (Rs, γg, API, Tf) and depen-

dent parameter Pb to show the proper physical behavior.

• Some previous correlations fail to represent the proper relationships between the indepen-

dent parameters and the Pb to indicate incorrect physical behavior.

• The proposed ANFIS model outperformed all 21 existing models and has the lowest AAPRE

of 6.38%, APRE of -0.99, RMSE of 9.73, SD of 0.074, Emin. of 0.021%, and Emax. of 50.19%

and the highest R of 0.9939 compared to 21 studied correlations that follow the correct phys-

ical behavior. The ANFIS model shows better results than other models because of its

Fig 16. Comparing the ANFIS and existing models using (R) and AARE (%).

https://doi.org/10.1371/journal.pone.0272790.g016
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combination of the FL and ANN performances and better learning ability. The ANFIS can

perform a highly non-linear mapping.

• The data randomization was conducted to prevent the model from overfitting or underfit-

ting to obtain the robust and accurate ANFIS model to predict the Pb.

Supporting information

S1 Appendix.

(PDF)

Acknowledgments

Special thanks to the Centre of Research in Enhanced Oil Recovery (COREOR), Petroleum

Engineering department, Universiti Teknologi PETRONAS for supporting this work.

Author Contributions

Conceptualization: Fahd Saeed Alakbari, Mysara Eissa Mohyaldinn.

Data curation: Fahd Saeed Alakbari.

Formal analysis: Fahd Saeed Alakbari, Ibnelwaleed A. Hussein.

Funding acquisition: Mysara Eissa Mohyaldinn.

Table 4. Statistical error analysis of the ANFIS and existing models.

Rank Model APRE (%) AAPRE (%) Emax. (%) Emin. (%) RMSE (psi) SD (psi) R

1 Proposed ANFIS -0.99 6.38 50.19 0.021 9.73 0.074 0.9939

2 Velarde et al. (1997) [4] -1.58 9.00 62.47 0.039 13.04 0.095 0.9724

3 Mehran et al. (2006) [14] -3.91 9.75 63.86 0.035 13.60 0.095 0.9699

4 Lasater (1958) [6] -1.83 11.07 66.08 0.016 15.31 0.106 0.9742

5 Standing (1947) [5] -3.95 12.35 69.28 0.032 16.26 0.106 0.9753

6 Arabloo et al. (2014) [28] 1.51 12.66 72.98 0.000 17.12 0.116 0.9589

7 Hemati and Kharrat (2007) [16] 6.35 13.76 85.01 0.026 22.13 0.174 0.9741

8 Vazquez and Beggs (1980) [25] -13.07 16.88 74.79 0.493 21.65 0.136 0.9767

9 Kartoatmodjo and Schmit (1991) [26] -9.33 16.94 78.37 0.085 22.74 0.152 0.9722

10 Al-Shammasi (1999) [27] -11.20 17.33 62.95 0.205 22.60 0.145 0.9663

11 Frashad et al. (1996) [23] -8.03 18.23 74.23 0.042 24.30 0.161 0.9621

12 De Ghetto et al. (1994) [9] -14.18 18.37 73.97 0.007 24.83 0.167 0.9720

13 Dindoruk and Christman (2001) [10] -3.72 20.89 77.83 0.432 25.81 0.152 0.9369

14 Glaso (1980) [7] -14.33 23.02 79.52 0.281 27.70 0.154 0.9701

15 Mazandarani and Asghari (2007) [17] -19.19 23.91 120.93 0.127 34.19 0.245 0.9462

16 Almehaideb (1997) [13] 22.89 26.15 234.92 0.037 44.18 0.357 0.9482

17 Macary and El-Batanoney (1993) [20] -25.03 31.20 149.75 0.111 42.62 0.291 0.9499

18 Khamechchi et al. (2009) [18] -29.55 31.24 97.52 0.059 37.27 0.204 0.9652

19 Bolodarzadeh et al. (2006) [15] 28.31 40.42 434.20 0.175 84.69 0.746 0.9694

20 Sharrad and Abd-Alrahman (2019) [22] 45.92 45.93 72.46 0.346 47.96 0.139 0.8929

21 Al-marhoun (1988) [11] 54.06 54.06 79.22 27.176 54.40 0.148 0.9538

22 Petrosky and Farshed (1993) [8] 57.39 76.59 784.59 0.295 159.87 1.406 0.9703

https://doi.org/10.1371/journal.pone.0272790.t004

PLOS ONE A reservoir bubble point pressure prediction model using Adaptive Neuro-Fuzzy Inference System technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0272790 August 11, 2022 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0272790.s001
https://doi.org/10.1371/journal.pone.0272790.t004
https://doi.org/10.1371/journal.pone.0272790


Investigation: Mohammed Abdalla Ayoub.

Methodology: Fahd Saeed Alakbari, Mohammed Abdalla Ayoub.

Project administration: Mysara Eissa Mohyaldinn.

Software: Fahd Saeed Alakbari, Mohammed Abdalla Ayoub.

Supervision: Mysara Eissa Mohyaldinn, Ali Samer Muhsan, Ibnelwaleed A. Hussein.

Visualization: Mysara Eissa Mohyaldinn, Ibnelwaleed A. Hussein.

Writing – original draft: Fahd Saeed Alakbari.

Writing – review & editing: Mysara Eissa Mohyaldinn, Mohammed Abdalla Ayoub, Ali

Samer Muhsan, Ibnelwaleed A. Hussein.

References

1. Bandyopadhyay P, Sharma A. Development of a new semi analytical model for prediction of bubble

point pressure of crude oils. J Pet Sci Eng. 2011; 78: 719–731. https://doi.org/10.1016/j.petrol.2011.06.

007

2. Farasat A, Shokrollahi A, Arabloo M, Gharagheizi F, Mohammadi AH. Toward an intelligent approach

for determination of saturation pressure of crude oil. Fuel Process Technol. 2013; 115: 201–214.

https://doi.org/10.1016/j.fuproc.2013.06.007
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