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Abstract: Thrombocytopenia is a medical condition where blood platelet count drops very low. This

drop in platelet count can be attributed to many causes including medication, sepsis, viral infections,

and autoimmunity. Clinically, the presence of thrombocytopenia might be very dangerous and is

associated with poor outcomes of patients due to excessive bleeding if not addressed quickly enough.

Hence, early detection and evaluation of thrombocytopenia is essential for rapid and appropriate

intervention for these patients. Since artificial intelligence is able to combine and evaluate many linear

and nonlinear variables simultaneously, it has shown great potential in its application in the early

diagnosis, assessing the prognosis and predicting the distribution of patients with thrombocytopenia.

In this review, we conducted a search across four databases and identified a total of 13 original

articles that looked at the use of many machine learning algorithms in the diagnosis, prognosis, and

distribution of various types of thrombocytopenia. We summarized the methods and findings of each

article in this review. The included studies showed that artificial intelligence can potentially enhance

the clinical approaches used in the diagnosis, prognosis, and treatment of thrombocytopenia.

Keywords: artificial intelligence; thrombocytopenia; diagnosis; prognosis; prediction; transmission

1. Introduction

Thrombocytopenia is a medical condition characterized by low platelet counts. There
are many causes thrombocytopenia which can be broadly classified into decreased pro-
duction, increased sequestration, and increased platelet destruction [1]. The pathogenesis
of thrombocytopenia is very complex and can be attributed to a multitude of causes. The
decreased production of platelets can be related to bone marrow suppression commonly
seen in conditions such as leukemia, patients taking chemotherapy, and in sepsis. Increased
sequestration of platelets in the spleen is another major category of conditions that cause
thrombocytopenia. Typically, this is seen in patients with splenomegaly, hypersplenism
and in patients with portal hypertension. The increase in platelet destruction or utilization
in peripheral blood is the final category in thrombocytopenia. Typically, this occurs in
conditions where platelets are quickly used up or destroyed by autoantibodies [2]. It is
important to note that conditions that cause thrombocytopenia do not exclusively affect
one pathological pathway and may involve multiple mechanisms simultaneously such
as increased decreased production and sequestration. The diagnosis and treatment of
thrombocytopenia require a thorough understanding of the underlying causes and the
patient’s medical history. Thrombocytopenia is usually termed based on its causes. For
example, when thrombocytopenia is caused by drugs it is termed drug induced immune
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thrombocytopenia (DITP). Similarly, when caused by sepsis it is termed sepsis associated
thrombocytopenia (SAT) [3].

Artificial intelligence (AI) is the simulation of human intelligence by computer pro-
grams. These programs are based on a set of algorithms that allow machines to mimic
human intelligence through learning and problem solving. Although AI has previously
been used in healthcare to automate hospital systems, recently, it has also been utilized
in the diagnosis, early detection, and monitoring of diseases [4,5]. In recent years, there
have been several successful applications of AI in various medical conditions, such as the
diagnosis of LA fibrillation and evaluation of prognosis in COVID-19 [6,7]. This has been
made possible because of machine learning (ML), which is a type of AI that utilizes datasets
to learn and recognize patterns and create predictions based on them [8]. What makes these
algorithms unique is the fact that they can analyze linear and nonlinear variables simul-
taneously. This allows them to recognize patterns in a very complex manner that can be
used to make extremely accurate predictions [4,9]. With the advent of artificial intelligence
(AI), healthcare providers can leverage the power of machine learning algorithms and
predictive analytics to improve the accuracy and efficiency of thrombocytopenia diagnosis
and treatment.

In this review, we aim to summarize the most recent applications related to the use of
AI in the diagnosis, prognosis, and mapping for various causes of thrombocytopenia. This
review also aims to summarize their methods, performance metrics, limitations and future
of each model used.

2. Materials and Methods

Our search strategy was developed using PubMed’s Medical Subject Headings (MeSH)
terms, along with other title and abstract keywords. For our disease of interest (thrombocy-
topenia) we included terms related to thrombocytopenia and its subtypes such as “Immune
Thrombocytopenia”, “Immune Thrombocytopenic Purpura”, “ITP”, “thrombocytopenia”,
“Drug induced thrombocytopenia”, “Viral thrombocytopenia”, and other terms of this
nature to avoid missing any related articles. To include articles discussing the used of AI
in thrombocytopenia we also included terms for machine learning (ML) such as “artificial
intelligence”, “machine-learning”, and “AI”. This research was not restricted by a language
or timeframe. A polyglot translator was used to convert the initial search strategy to Em-
base, Web of Science, and Scopus [10]. All the studies identified by the search strategy were
moved into EndNote, where duplicates were removed. The remaining studies were then
moved into Rayyan to remove any remaining duplicates and start the screening process.

This review included original research articles that discuss the use of ML algorithms
in the various types of thrombocytopenia in humans. Full-text articles submitted abstracts
and conference abstracts were all included within our study. Studies were excluded from
our study for the following reasons: (1) animal studies, (2) reviews or non-original articles,
and (3) non-English articles.

The data that has been collected in this paper includes the type of study; publication
year; outcome assessed; method used to create models; model utilized; model evaluation
metrics (sensitivity (SEN), specificity (SPE), accuracy (ACC), and area under the receiver
operating curve (AUC)); strengths; and limitations. The AUC for the models were classified
into unsatisfactory (<0.6), satisfactory (0.6 to <0.7), good (0.7 to <0.8), very good (0.8 to
<0.9), and excellent (0.9 to 1.0). If more than one model was utilized in the study, the metrics
for the best preforming model(s) were extracted.

3. Results

The search strategy yielded a total of 92 articles across all four databases. All the
studies were imported into EndNote, where 38 duplicates were automatically identified
and deleted. The articles were then transferred to Rayyan, where 13 more duplicates were
manually identified and removed. The inclusion–exclusion process was done using Rayyan.
Twenty-five articles were excluded from the study due to not meeting our inclusion criteria.
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Sixteen articles were included in the review; of which, nine were full-text articles, and
seven were abstracts only. The schematic representation for the processes of identification,
screening, and inclusion is shown in (Figure 1).

Figure 1. Schematic representation of review process.

The studies included within our paper covered five types of thrombocytopenia (Sepsis-
Associated Thrombocytopenia (SAT), Drug-Induced Immune Thrombocytopenia (DITP),
Severe Fever with Thrombocytopenia Syndrome (SFTS), Immune thrombocytopenia (ITP),
and unspecified Hospital-Acquired Thrombocytopenia (HAT)). Under each topic, studies
were categorized into diagnostic, prognostic, and predictive where applicable. Data col-
lected on the outcomes, advantages and disadvantages of the ML models, can be seen in
Table 1. Performance matrices for the best-preforming ML model(s) in each study can also
be seen in Table 2.
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Table 1. Data extraction summary for full-text articles included.

Study (Year) Outcome Advantages Disadvantages

Jiang, X., et al. (2022) [11]
Predicting SAT and severe

SAT

• Internally and Externally
Validated

• Very good AUC for
severe SAT internally
(0.84–0.88)

• Good AUC for severe
SAT externally
(0.74–0.79)

• Multiple ML models
utilized

• Single-center
retrospective study

• Missing Data
• Other causes of

thrombocytopenia were
not accounted for

• Models cannot explain
the relationships causing
thrombocytopenia

Ling, J., et al. (2021) [12]
Predicting the 28-day

mortality risk in patients with
SAT

• Utilized Interpretable
ML algorithm

• Analyzed multiple
predictors of poor
prognosis

• Single-center
retrospective study

• Missing Data
• Not all confounders

were identified
• Model is not validated

externally

Takahashi, S., et al. (2021) [13]
Predicting LAT in patients
taking linezolid treatment

• High sensitivity (0.922
for final model)

• Identified clinically
important cut-offs for
LAT

• Retrospective study
• Model is not validated

externally
• Limited dataset
• Model did not account

for patient’s background
and renal function

Marray, L., et al. (2022) [14]
Predicting LAT in ICU

patients started on linezolid
treatment

• Variables used in the
models are easy to
obtain and cheap

• Large sample size used
to create the models

• Very good AUC for both
models internally (0.89
and 0.88)

• Models not externally
validated

• Models do not account
for other causes of
thrombocytopenia

Nilius, H., et al. (2022) [15]
Diagnosing HIT based on

clinical and laboratory data

• All models had excellent
AUC internally (>0.98)

• All models had very
high sensitivity (>0.89)

• All models had very
high specificity (>0.95)

• Model outperformed
current diagnostic
algorithm for HIT
diagnosis

• Large sample size was
used to create the models

• Majority of patients
included were from
Switzerland

• Models not externally
validated
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Table 1. Cont.

Study (Year) Outcome Advantages Disadvantages

Wang, B., et al. (2022) [16]
Distinguishing DITP toxicants

from non-toxicants

• Internally and Externally
Validated

• Multiple ML models
utilized

• Good AUC (0.769 for
externally validated best
model)

• High sensitivity (0.833
for externally validated
best model)

• Missing Data
• Model cannot be

generalized for every
toxicology screen

• Limited number of
variables

• Limited dataset

Cheng, Y., et al. (2021) [17]
Prediction of HAT risk in

patients following surgery

• Good AUC for the
models (>0.70)

• Models used easy to
access variables

• Single-center
retrospective study

• Low number of
predictors

• Models not externally
validated

Miao, D., et al. (2020) [18]
Mapping global potential

hotspots for SFTS
Transmission

• Very good AUC for the
models (>0.89)

• Multiple ML models
utilized

• Inaccuracies in human
case report data

• Some important
predictors were not
considered (e.g., density
of certain types of ticks)

Cho, G., S. Lee, and H. Lee
(2021) [19]

Mapping SFTS Virus
Transmission in South Korea

• Excellent AUC in
training set (>0.98) and
in testing set (>0.95)

• Multiple ML models
utilized

• Model utilized many
variables in the
prediction

• Model cannot identify
asymp-
tomatic/mild/subclinical
cases

• Not enough laboratory
information to form a
sufficient system

• Environmental factors
may affect the model

• Transmission of SFTSV is
not well understood and
hence could also affect
the model

SAT, sepsis associated thrombocytopenia; DITP, drug induced immune thrombocytopenia; LAT, linezolid associ-
ated thrombocytopenia; HAT, heparin induced thrombocytopenia; HAT, hospital acquired thrombocytopenia;
and SFTS, severe fever with thrombocytopenia syndrome.

Table 2. Performance metrics for the best models in the included full-text articles.

Study (Year) Outcomes Best Models Validation AUC ACC SEN SPE

Jiang, X., et al. (2022)
[11]

Predicting
Thrombocytopenia NNET

Internal 0.79 NR NR NR

External 0.72 0.68 NR 0.71

Predicting Severe
Thrombocytopenia

Bayes
Internal 0.89 NR NR NR

External 0.77 0.68 NR 0.62

Ling, J., et al. (2021) [12] Prognosis of SAT
XGBoost based on

RDW
Internal 0.646 NR 0.70 57

Takahashi, S., et al.
(2021) [13]

Predicting LAT CART Internal NR NR 0.922 0.783
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Table 2. Cont.

Study (Year) Outcomes Best Models Validation AUC ACC SEN SPE

Maray, I., et al. (2022)
[14]

Predicting LAT
LogR Model 1 Internal 0.89 0.79 0.71 0.80

LogR Model 2 Internal 0.88 0.79 0.71 0.80

Nilius, H., et al. (2022)
[15]

Diagnosing DIT using
ELISA

SVM Internal 0.985 NR 0.89 0.95

Diagnosing DIT using CLIA XGBoost Internal 0.989 NR 0.96 0.95

Diagnosing DIT using
PaGIA

SVM Internal 0.991 NR 1.00 0.95

Wang, B., et al. (2022)
[16]

Predicting DITP toxicity of
drugs

k-NN based on
RDMD-PubChem

Internal 0.628 0.627 0.69 0.566

External 0.769 0.756 0.833 0.704

Cheng, Y., et al. (2021)
[17]

Predicting HAT following
surgery

RF Internal 0.834 NR 0.793 0.791

GB Internal 0.829 NR 0.736 0.737

Miao, D., et al. (2020)
[18]

Predicting Potential
transmission of SFTS

BRT Internal 0.893 NR NR NR

Cho, G., S. Lee, and H.
Lee (2021) [19]

Predicting SFTS Occurrence
GB Internal 0.986 NR NR NR

BT Internal 1.00 NR NR NR

NNET, neural network; Bayes, Bayesian; XGBoost, extreme gradient boosting; k-NN, k-nearest neighbor; CART,
classification and regression tree; LogR, logistic regression; SVM, support vector machine; RF, random forest; GB,
gradient boosting; BT, bagging tree; BRT, boosted regression tree; AUC, area under ROC curve; ACC, accuracy;
SEN, sensitivity; SPE, specificity; RDW, red cell distribution width; CLIA, chemiluminescent immunoassay;
PaGIA, particle–gel immunoassay; and NR, not reported.

3.1. Sepsis Associated Thrombocytopenia

Sepsis is defined as a life-threatening condition characterized by organ dysfunction
due to a dysregulated immune response to an infectious agent [20]. It is referred to as
“septic shock” when circulatory and cellular metabolic abnormalities become present
leading to a considerable increase in morbimortality [21]. Almost 50% of patients with
sepsis in the intensive care unit (ICU) develop thrombocytopenia, termed as SAT [22,23].
The mechanisms behind SAT are believed to be complex but are mainly associated with
bone marrow suppression accompanied by endothelial dysfunction. This combination
results in reduced production of new platelets and increased utilization of platelets due
to disseminated intravascular coagulation and systemic inflammation. Clinically, the
development of thrombocytopenia in sepsis patients is an indication of poor prognosis.
Hence, the use of AI for early identification and risk prediction in these patients can be of
great value. The utilization of ML in the prediction of poor outcomes in critically ill patients
in the ICU has become very common in the literature and is showing a lot of promise in
ensuring better patient care [24,25]. Unfortunately, the utilization of thrombocytopenia in
these studies is very limited, although it has been shown to be a very important predictor
of poor prognosis in ICU patients with sepsis and is part of the Sepsis-related Organ Failure
Assessment (SOFA) [21,23,26]. Nevertheless, studies that have looked at SAT in critically ill
patients have identified possible application for ML in them.

3.1.1. Diagnosis

The early detection of SAT is extremely important in a clinical setting as research has
shown that platelet transfusions protect these patients from possibly fatal bleeding [27].
However, the issue with conventional monitoring of platelet count is that by the time SAT is
identified in the patient the patient remains at risk of severe bleeding for a few days before
receiving platelet transfusions due to the delay between diagnosis and transfusion [21].
Hence, ML algorithms that track platelet count changes in patients can provide a major
advantage for them, as it allows for early detection of patients at high risk for SAT.
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A recent publication by Jiang X and others attempted to address this issue by utilizing
four ML algorithms (Random Forest (RF), Bayes (Bayesian), Neural Network (NNET),
and Gradient Boosting Machine (GB)) to assess the decrease in platelet count, as well as
other variables in ICU patients suffering from sepsis for the early detection of patients at
risk of thrombocytopenia or severe thrombocytopenia. A total of 1455 ICU sepsis patients
were included in the study, of which 49.7% developed thrombocytopenia. The sample
population was divided into training and testing sets in a 7:3 ratio, and each ML algorithm
was cross-validated 10 times [11]. Backward selection was utilized to select the 10 most
important predictors out of 57 variables for the prediction of thrombocytopenia and severe
thrombocytopenia. Each ML algorithm was externally validated by applying it on an online
dataset from Medical Information Mart for Intensive Care III (MIMIC III) [11,28].

External validation of the models for predicting thrombocytopenia showed that the
NNET and GB models had the best predictions with a good AUC of 73% and 72%, re-
spectively. There were no statistically significant differences between the two models at
predicting thrombocytopenia in sepsis patients. Meanwhile, the RF and Bayes models
had poorer predictive ability with an area under the ROC of 63% and 54%, respectively.
Confusion matrix results for thrombocytopenia prediction showed that NNET had the
highest precision and accuracy of 0.68 and 0.71, respectively. For the prediction of severe
thrombocytopenia, the AUC for all ML algorithms was higher than that of thrombocy-
topenia prediction (Figure 2). External validation of the models for predicting severe
thrombocytopenia showed that the Bayes model had the best predictive ability with a good
AUC of 77% [11].

 

Figure 2. AUC for ML models predicting severe thrombocytopenia: (A) internal validation and

(B) external validation (Jiang, X. et al., 2022) [11].

The results of this paper suggest that ML algorithms can prove to be beneficial in
prediction of SAT and severe thrombocytopenia and hence would assist in the early man-
agement of the patients at risk. However, it is important to mention the fact that it was a
single-center study. The utilization of multiple centers for the ML algorithm could have
provided greater predictive ability for the model and would make the model more applica-
ble externally. Missing data was an issue in the paper that was addressed using multiple
imputation which assumes that data is missing at random which might not be the case.
Adding to that, the exact cause of thrombocytopenia in the sepsis patients was not verified,
as some patients developed thrombocytopenia due to drug treatment and not sepsis yet,
were still included within the study. As a result, the models produced are not exclusively
predicting thrombocytopenia/severe thrombocytopenia caused by sepsis, and their results
could be affected by other causes of thrombocytopenia. Since the models used were non-
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interpretable, the models cannot explain the associations between the variables identified
and the prediction of thrombocytopenia/severe thrombocytopenia.

3.1.2. Prognosis

As stated previously, thrombocytopenia is associated with poor prognosis in sepsis
patients. Hence, it is important to properly assess the prognosis of patients with SAT to
ensure proper care for these patients. Recent studies have shown that red cell distribution
width (RDW) is a possible indicator for poor prognosis in various cancers and cardiovascu-
lar disease [29–31]. Several studies have also shown that RDW has significant clinical utility
as an independent predictor of poor prognosis in critically ill patients with sepsis and SAT.
RDW is reliable in reflecting the levels of systemic inflammation in these patients [32–34].
Since RDW is routinely measured clinically in a relatively inexpensive process, it could
prove to be a useful ML marker for assessing prognosis in sepsis patients with SAT.

A recent publication by Ling J et al. has utilized eXtreme Gradient Boosting (XGBoost),
a ML algorithm, to predict the 28-day mortality risk for sepsis patients based on 15 variables
including RDW. A total of 809 patients with sepsis were retrospectively selected from the
MIMIC-III database and were divided into thrombocytopenia group (471 participants) and
control group (338 participants) based on their platelet count. Eight laboratory variables,
four disease-related variables, and two demographic variables were used to create a pre-
diction model for their 28-day survival. Thrombocytopenia group was further subdivided
into survivors and non-survivors. Using a 3:1 ratio, the dataset was randomly divided into
training and testing sets. SHapely Additive exPlanations tool (SHAP) was used to interpret
the prediction model and reliably compute the contributions made by each variable to the
model, as well as rank them based on importance [12].

The results of the paper showed that 28-day mortality in sepsis patients with thrombo-
cytopenia was significantly higher than those without thrombocytopenia at the baseline
(48.2% vs. 38.5%, respectively). SHAP interpretation of the XGBoost indicated that RDW
was the second most important predictor of 28-day mortality in these patients following the
SOFA scores. When comparing the subgroups of thrombocytopenia through AUC analysis,
RDW was shown to be the most important predictor of 28-day mortality in thrombocy-
topenic patients with an area under the ROC of 0.646. An RDW of 16.05 displayed the best
sensitivity and specificity for the prediction of mortality in these patients (70% and 57%,
respectively) [12].

One of the limitations for the model was the fact that there was missing data that
could have possibility limited the model prediction accuracy. Adding to that, the model
was created utilizing retrospective single-center data, which is not ideal. The AUC of the
model was only 0.646 and does not provide enough discriminatory ability at predicting the
28-day mortality clinically. However, a relatively low AUC is expected due to the fact that
a very small number of predictor variables were used. Hence, the model proposed by Ling
and others can prove to be more useful if more variables were included in the model that
would provide a higher predictive ability for the 28-day mortality.

3.2. Drug-Induced Immune Thrombocytopenia

DITP is a common life-threatening complication seen in patients taking multiple drugs
at the same time [35]. This clinical syndrome is typically associated with severe bleeding
that could ultimately result in death. There are many pathological mechanisms discussed
in the literature to explain the causative mechanisms behind DITP [35–38]. However, the
most widely accepted mechanisms are direct bone marrow suppression by drugs and the
development of drug-dependent antibodies (DDAbs) that activate platelets, ultimately
leading to their depletion [38]. The main dilemma with DITP is that it is challenging to
diagnose clinically, and it is even more problematic to identify the causative drug [39].
Moreover, the current experimental invitro methods of DITP diagnosis through DDAbs are
unreliable, expensive, time-consuming, and are only available in a few platelet-specialized
laboratories [40]. Currently, the most effective approach for the treatment of patients with
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DITP is the cessation of the causative drug [41]. Hence, the early diagnosis and detection of
the causative drug in patients with DITP is extremely important. ML that utilizes in silico
methods has shown to be a possible cost-effective and timely approach for the diagnosis
of DITP.

3.2.1. Diagnosis of DITP

Linezolid is a synthetic antimicrobial used in the treatment of infections. Several stud-
ies have shown that linezolid could lead to linezolid associated thrombocytopenia (LAT) a
type of DITP [42–44]. The identification of LAT in patients taking linezolid treatment for
infections may be difficult and time-consuming. To address this, Takahashi and colleagues
conducted a study to create a classification tree model that predicts LAT in patients taking
linezolid treatment. A total of 74 patients receiving linezolid treatment were retrospectively
included in the study. LAT was defined as a 25% decline in platelet count from baseline.
The baseline platelet count; age; total linezolid concentration; platelet count changes at 24,
48, 72, 96, and 120 h; creatinine clearance; and body weight were used as predictors for
LAT in these patients. Binary decision trees were used to utilizing different combinations
of the predictor variables to create tree models for LAT prediction. These trees are ML
algorithms that classify observations by creating a sequence of binary questions. Binary
questions are formed by creating the best possible splits for the data and repeats till further
branching no longer improves the classification of observations. Trees were then pruned
to avoid overfitting of the model to the learning data. The tree model with the lowest
misclassification rate was taken as the final model [13].

The model that included the total linezolid concentration, platelet count at 96 h, total
body weight, age, gender, baseline platelet count, and creatinine clearance outperformed
all other tree models with a misclassification rate of 12.2%. This final tree model can be
seen in (Figure 3). The first split in the model is at 2.3% platelet count from the baseline
at 96 h. Forty-three individuals had a 96-h platelet count less than 2.3% of the baseline, of
which 40 developed thrombocytopenia by day 14. The second split occurred at a linezolid
total concentration cut-off of 13.5 mg/L at 96 h. Nine out of the thirty-one subjects had a
linezolid concentration above 13.5, of which seven developed thrombocytopenia by day 14.
These findings indicate that, at 96 h, a drop in platelet count to less than 2.3% or having a
linezolid total concentration above 13.5 indicates a high risk of LAT by day 14. The final
model had a sensitivity of 92.2% and a specificity of 78.3%. Leave-one-out validation of the
final model indicates a cross-validation error of 20.3% [13].

The model presented by Takahashi and colleagues is unique in the fact that it’s the only
study in our paper that utilized CART in the identification of predictors for LAT. The model
generated clinically relevant cutoffs for the prediction of LAT. Moreover, they have utilized
variables in their prediction that can be easily obtained from patients starting on linezolid
treatment which makes it easy and simple to apply clinically. However, renal function is
a very important predictor for LAT but was not included in the prediction model. The
model generated was also not externally validated which is very important to understand
the generalizability of such a model. Adding to that, the model utilized retrospective data
which is limited in terms of predictors and tends to have more missing data.

Maray and colleagues took a different approach in creating a predictor model for LAT.
Data on a total of 46,520 patients admitted to the ICU were extracted from the MIMIC-III
database [28]. Thrombocytopenia was defined as a 50% decrease in platelet count from
baseline and this cut-off was used to divide the patient population into with and without
thrombocytopenia. The dataset was divided into training and testing sets in an 8:2 ratio.
Univariate analysis was utilized to compare demographic variables, duration of linezolid
treatment, SOFA scores, and many other variables between both groups. Variables that were
found to be significantly different in both groups were included in the first predictor model
for multivariable logistic regression. A second model was also created using backwards
elimination to select the most important predictors for this model. In the training set, both
models had similar performances with the first model having an AUC of 0.89 compared to
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0.88 in the second. The accuracy, sensitivity, and specificity were the same between both
models (0.79, 0.80, and 0.71, respectively). On the testing set however, the second model
slightly outperformed the first with an AUC of 0.80 compared to 0.77. It also had a higher
accuracy (0.75 vs. 0.73), sensitivity (0.78 vs. 0.76), and specificity (0.62 vs. 0.60) [14].

 

Figure 3. Classification tree for thrombocytopenia prediction. PLT96h: Platelet change from the

baseline at 96 h after the initial dose. Cmin96 h: linezolid total concentration at 96 h after the initial

dose (Takahashi, S. et al., 2021) [13].

The models presented by Maray and colleagues both showed good metrics at predict-
ing LAT and, similarly to Takahashi, utilized variables that are easy to obtain in patients
who are just started on linezolid therapy. However, Marray and colleagues did include renal
function in their predictor model. They also included hepatic function in their model. Both
renal and hepatic functions are important in predicting LAT since linezolid metabolism is
dependent on these organs. The early detection of LAT allowed for physicians to maintain
patient safety by switching antibiotics when the platelet count drops to a critical level. This
can be made possible through ML models presented by Marray or Takahashi.

Another drug that is commonly associated with DITP is heparin. Approximately
1–3% of all patients treated with heparin develop HIT, and similarly to all other types of
induced thrombocytopenia, it is a life-threatening condition [45]. A major issue seen in
the normal diagnostic approach for DITPs is that misdiagnosis is common due to lack
of diagnostic data utilized [46,47]. A study by Nilius and others utilized ML algorithms
that integrate clinical and laboratory information to diagnose HIT more accurately than
the traditional approach by the American Society of Hematology (ASH) [15]. A total of
1393 patients with suspected HIT were included in their study. As a reference, standard
platelet washed heparin induced platelet activation (gold standard for diagnosing HIT) was
used. Based on literature review, they selected several possible predictor variables for HIT.
These included clinical variables (degree of thrombocytopenia, timing of thrombocytopenia,
etc.), as well as laboratory variables (immunoassay detecting anti-PF4/heparin antibodies,
hemoglobin concentration, WBC count, platelet count, etc.). Three immunoassay tests
were conducted on serum samples collected from the patients (IgG-specific ELISA, particle–
gel immunoassay (PaGIA), and chemiluminescent immunoassay (CLIA)). Patients were
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randomized by HIPA results then divided into a training and validation set in a 75:25
ratio. While creating the model, the researchers accounted for the practical application of
the model by ensuring that all variables used were readily available, timely, consistent,
and easy to collect. Backwards stepwise selection was used to select the most important
variables in the model [15].

Five different ML models were trained for each immunoassay (logarithmic regression,
elastic net logarithmic regression, gradient boosting machine, random forest, and support
vector machine). The support vector machine model outperformed all others in CLIA (AUC
of 0.989). The gradient boosting machine model outperformed all others in PaGIA (AUC of
0.991). The support vector machine model outperformed all others in ELISA (AUC of 0.985).
When the models were applied to the validation set the sensitivity of the models were 96%,
100%, and 89% for the CLIA, PaGIA, and the ELISA models, respectively. The specificity
was 95% for all models. These performance matrices outperformed the current metrics
for the recommended algorithm for the diagnosis of HIT, and hence, a new algorithm was
suggested by the authors (Figure 4) [15].

 

−Figure 4. Proposed diagnostic algorithm for heparin induced thrombocytopenia: TORADI−HITP

(Nilius, H. et al., 2022) [15].

3.2.2. Predicting Drugs Causing DITP

Wang, B. et al. developed a several models to predict whether a drug could lead to
DITP using seven different ML methods [16]. A DITP dataset was collected from an online
database, “platelets on the web”, which contained information on the compounds tested
with DDAb [48]. Compounds that had detectable DDAbs were classified as DITP toxicants
(93) and those without DDAbs as non-toxicants (132). The dataset was then randomly
divided in an 8:2 ratio into training and external validation sets, respectively. Support
vector machine (SVM), k-nearest neighbor (k-NN), RF, naive bayes (NB), artificial neural
network (ANN), adaptive boosting (AdaBoost), and XGBoost were used to produce binary
classification models for DITP. Hyperparameters for each model was optimized by five-fold
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cross-validation, and the variance was reduced by 10× cross-validation. These models
utilized six molecular fingerprints and three molecular descriptors to predict whether or
not a drug can cause DITP [16].

Over 828 models were created using different combinations of molecular descriptors
and fingerprints in the 7 ML algorithms. k-NN and XGBoost outperformed all other ML
models in predicting DITP toxicants. The k-NN model combining molecular features
of RDMD + PubChem netted the highest prediction performance with an AUC of 0.628,
accuracy of 62.7%, sensitivity of 69%, and specificity of 56.6%. In simpler terms, this
model was the best at distinguishing DITP toxicants from DITP non-toxicants based on
their molecular fingerprints and descriptors. On external validation, the k-NN RDMD-
PubChem model still outperformed all other models with an AUC of 0.769, accuracy of
75.6%, sensitivity of 83.3%, and specificity of 70.4%. This shows that this model is good at
distinguishing DITP toxicants from non-toxicants [16].

Based on this information, the k-NN model using RDMD-PubChem can be used as
an alternative tool to the qualitative methods used to predict DITP toxicity. However,
it is important to mention that this model utilized a small sized dataset with a limited
number of descriptors. Hence, it is unable to classify all agents accurately especially
stereoisomers, tautomeric forms, and protonation states molecular features on these were
absent in the original dataset. Other than that, the model displays sufficient performance
matrices on external validity to distinguish DITP toxicants from non-toxicants with good
discriminatory ability.

3.3. Hospital Acquired Thrombocytopenia

A common bleeding disorder following surgery is hospital acquired thrombocytopenia
(HAT), This form of thrombocytopenia can be attributed to some of the previously discussed
topics such as DIT or SAT. In a research paper conducted by Cheng and others, 7 ML models
(GB, RF, logistic regression (LogR), XGBoost, multilayer perceptron, SVM, and k-NN) were
created to predict patients at risk of HAT following surgery. Adult patients who were
administered to the ICU following surgery were included in the study and divided in a
7:3 ratio into training and testing sets, respectively. Ten-fold validation was performed on
the models generated. From all the included patients, 13.1% developed thrombocytopenia.
The results of internal validation showed that the RF and GB models outperformed all
other models in the prediction with an AUC of 0.834 and 0.828, respectively, and there were
no statistically significant differences between the two models. Both models had a high
sensitivity of 79.3% and 73.6%, respectively. Specificity for the models were 79.1% and
73.7%, respectively [17].

The models presented by Cheng and colleagues show very good performance matrices
for the prediction of HAT. Unfortunately, these models were not externally validated and
so their generalizability to other patient populations cannot be evaluated. The models were
also generated utilizing single-center retrospective data which limits its generalizability
and suffers from missing data and insufficient variables.

3.4. Immune Thrombocytopenia

Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder [49]. It is clini-
cally characterized by low platelet count and the presence of autoantibodies to platelets [50].
Diagnosis is typically made through the exclusion of all other causes of thrombocytopenia.
ITP is considered a self-limiting disease in children where prognosis is good, and remission
occurs easily. In adults however, ITP is chronic with a higher mortality rate [51,52]. The
pathogenesis of ITP is not well understood but involves the formation of IgG autoanti-
bodies that target the glycoproteins IIb-IIIa on platelets. This results in the phagocytosis
of these platelets hence leading to a drop in circulating platelet count and, ultimately,
thrombocytopenia [50]. Thrombopoietin receptor agonists and corticosteroids are most
commonly used in the treatment of ITP [53].
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3.4.1. Diagnosis

Kim, T. and others used a clinical database to create five ML models (RF, NB, LogR,
SVM, and AdaBoost) to predict chronic immune thrombocytopenia in pediatric patients
with ITP. A total of 969 pediatric patients with ITP were included in the study, of which,
332 had confirmed acute ITP and 253 with chronic ITP. Clinical (age, gender, race, ethnicity,
presence of primary ITP) and laboratory variables (baseline platelet count, leukocyte
count, lymphocyte count, eosinophil count, mean platelet volume, anti-nuclear antibody,
immature platelet fraction, direct antiglobulin test, and immunoglobin levels) were used
in the ML models to predict chronic ITP and 10-fold cross-validation was performed. The
100-tree random forest model outperformed all other models in predicting chronic ITP
(AUC: 0.795, accuracy: 0.737, precision: 0.738, F1-score: 0.671, and recall: 0.737). Naïve
Bayes was the second-best preforming model (AUC: 0.792, accuracy, 0.698, precision: 0.737,
F1-score: 0.671, and recall: 0.698) [54].

This study shows that clinical and laboratory information at the time of ITP diagnosis
can be used to predict the development of chronic ITP in these patients. This is important
because almost 1 of every 4 kids with ITP develop chronic ITP. Hence, models that can
predict the development of chronic ITP early on would result in earlier treatment in these
patients and ultimately, better health outcomes. However, it is important to note that then
models presented by Kim and colleagues were not externally validated. Consequently,
we cannot assess the generalizability of this model on other pediatric populations with
ITP. Similar to the other studies mentioned previously, the models were generated using
retrospective data, which has some limitations discussed earlier.

3.4.2. Prognosis

One of the main indicators for poor prognosis in patients with any form of thrombo-
cytopenia is bleeding. A study by An, Z. Y. and others developed ML models to predict
the risk of critical bleeds in patients with ITP. Data from eight centers in China were used
to create this model utilizing nine predictor variables (Platelet count, age, onset of ITP,
infection, type of ITP, bleeding of skin and mucosa, low platelet count, cardiovascular
disease, and uncontrolled diabetes). Out of all the models, the RF model outperformed all
others (AUC: 0.901 when externally validated) [55]. The models were then further verified
in a prospective cohort of 37 centers in China. The RF model had an AUC of 0.776, which
demonstrates good predictive ability for the risk of critical bleeds.

This study is the only study included in our paper that has been verified clinically in a
prospective cohort. An and colleagues utilized multi-center data to create their model and
externally validate them, which makes it stand out from most other papers as they utilize
single-center data, which is limited. Prospective cohort verification of the models allows
for the evaluation of ML models in a real-world setting, which is essential for determining
their effectiveness in practical applications. It also insures that the models generated were
not just overfitted for the data that was used to generate them.

Another study by Zhang, X.H and others created 10 ML algorithms (SVM, k-NN,
LogR, linear discriminant analysis, decision tree, RF, GB decision tree, AdaBoost, XGBoost,
and light gradient boosting machine) to predict the 30-day mortality in patients with ITP
with intracranial hemorrhage. A 10-fold cross-validation was performed in the training
cohort then external validation was performed in 11 different centers. The SVM model
outperformed all other models for the prediction of 30-day mortality on internal validation
(AUC: 0.879, F-1 score: 0.748, and sensitivity: 0.600) [56].

The model proposed by Zhang and colleagues utilized 16 centers in the creation and
internal validation of their models. Training machine learning (ML) models on multiple
centers, also known as multi-center training, is important, because it improves the general-
izability of these models because it provides a more diverse range of data, which can help
the model learn patterns and relationships that are applicable across different settings. They
also externally validated the models on 11 independent centers, which ensures that the
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models they have created can be generalized to other settings. Unfortunately, the research
did not report the AUC for the externally validated models in their conference abstract.

A final study by Liu, F. Q. and others looked at the use of RF classifier in the prediction
of relapse in patients with IPT after the cessation of corticosteroid treatment. Seventy-fie
fecal samples (15 after corticosteroid cessation and 60 before) from 60 patients with ITP
were obtained and analyzed. The pre-corticosteroid group was classified into responsive,
and relapse based on their response to corticosteroids 3 months later. Using shotgun
meta-genomic sequencing, the microbial biomarkers from thirty samples (training set) for
relapse/resistance were identified and included in the ML prediction model. The model
was validated on thirty other samples. AUC for the random forest classifier model was
0.87 [57]. These models were not externally validated, so it is not possible to assess their
generalizability.

3.5. Severe Fever with Thrombocytopenia

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious zoonosis cur-
rently emerging in the Southeast Asia region. It is caused by the Phlebovirus from the Bun-
yaviridae family but is more commonly known as the severe fever with thrombocytopenia
syndrome virus (SFTSV). It is believed to be transmitted through ticks to humans, however
some human-human transmissions have been recorded through body fluids [58–61]. Clini-
cally, patients with SFTS typically present with high fever, thrombocytopenia sometimes
accompanied by leukocytopenia. In more severe cases, however, sever hemorrhagic fever,
encephalitis and multiple organ failure can occur. The latter symptoms are associated
with increased risk of death in these patients [60]. Due to the nature and severity of this
syndrome, it is important to limit the transmission of this disease. Hence, recent studies
have utilized various ML methods to predict the transmission of SFTS to better control the
disease [62].

Miao and others worked on a ML algorithm to predict the potential distribution for
SFTS in a two-step process. The first step utilized modelling techniques to map out the
distribution of H longicornis, a tick that is involved in the transmission of SFTSV. This
was done using data on known locations for this species of ticks. An ecological niche (EN)
modelling technique was used for the mapping of the distribution of H longicornis based
on 51 ecogeographical and climatic variables. Based on the EN model, 10 variables were
identified to be important predictors and the predicted global distribution of H longicornis
was created. In the second step, potential transmission hotspots for SFTS were predicted
using a boosted regression tree (BRT) model that utilized the previous model predictions.
BRT was suitable for this since it is able to predict organism distribution while accounting
for nonlinearity and incorporating risk factors into the prediction. The AUC for the BRT
model prediction performance is satisfactory with AUCs of 0.976 for the training datasets
and 0.893 for the testing datasets [18].

An article by Cho and others employed ML algorithms to predict the transmission
of SFTS in 7 different geographical locations in Korea. They utilized ML algorithms
in 3 different models: Classification model in machine learning (CMML) to predict the
occurrence of SFTS, Regression model in machine learning (RMML) to predict the number
of SFTS cases, and a modified RMML model that incorporated the results from CMML into
RMML to more accurately predict the number of SFTS cases. For the CMML model 5 ML
algorithms were utilized (LogR, SVM, GB, Bagging Tree, and Multi-layer Perception). For
the RMML model, 5 ML algorithms were used (Linear regression, Ridge regression, GB,
Bagging Tree, and Multi-layer perception). Geographic, demographic, and meteorological
data were utilized to create the models. Data from 2016 to 2018 were used to train the
models and data from 2019 were used to evaluate the models. A univariate analysis was
used to select the most important predictors for each model. Features from the best two
algorithms in the CMML model (BGR and BTR) were included in the RMML model to
create the modified RMML model. The schematic used in model creation is shown in
Figure 5. The modified RMML model improved the predictions for the number of SFTS
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cases and reduced the mean squared error in the training set from 79.2% to 40.6% and in
the testing set from 52.2% to 12.6%. The BTR ML model from the modified RMML was
superior to all others. The AUC for the BTR model was >0.9 at predicting the occurrence of
SFTS [19].

 

Figure 5. Schematic diagram for model predictions (Cho, G., S. Lee, and H. Lee 2021) [19].

4. Discussion

The aim of this review was to investigate the different applications of ML in thrombo-
cytopenia that are currently available. We have found a limited number of studies that have
utilized AI mainly in the diagnosis and prognosis of thrombocytopenia. We have shown
that AI can also be utilized in the detection of drugs that can cause DITP, and mapping
of potential hotspots for SFTS transmission. A very large number of the included studies
showed high predictive ability with an AUC >0.8. The available evidence in this review
paper suggests that AI may be effective in predicting and evaluating the prognosis of
patients with thrombocytopenia.

It is still important to note that the research into the applications of AI in thrombocy-
topenia is very limited in number. However, when looking at other conditions where AI
is more commonly used, it can be seen that AI is effective in the diagnosis prognosis and
even treatment of patients. In leukemia for example, multiple papers have shown that AI
can accurately diagnose and subtype leukemia using image processing technologies [63,64].
Other studies have even utilized AI in the histopathological identification, subtyping, and
metastasis of breast cancers [65–67].

Frequently, papers included in this study utilized retrospective data in the generation
of their ML models. Although these data are convenient and easy to acquire, they also
have several disadvantages that can affect the accuracy and usefulness of these models. For
example, the data may be collected in a way that is not consistent or standardized, leading to
inaccuracies in the model. They also typically suffer from incomplete data, which was seen
repeatedly in this study. Some models are unable to include all the important predictors
due to the fact that the original dataset does not have data on these variables. Hence, we
hope to see more future studies that utilize prospective data rather than retrospective data
to address this issue, as this addresses the previously mentioned issues.

Another issue that was commonly noted in the articles included in this review was
the fact that some models had very high-performance matrices on internal validation.
Although this may seem appealing, but it may have been due to the overfitting of these
models to their datasets. When this issue is combined with the fact that many of the studies
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utilized single-center data, these models become less generalizable. Hence, there is a great
need for future studies using ML to utilize more robust databases with large sample sizes
that are representative of the population in order to avoid overfitting. This issue commonly
faces in ML studies in general, not just the ones targeting thrombocytopenia [68,69]. This
issue can also be addressed by moving towards more clinical implementation of ML models
rather than just testing them on other retrospective datasets. This will ensure that these
models are effective clinically and can be used in a clinical setting.

5. Conclusions

In conclusion, recent advances in the use of AI in predicting the diagnosis and prog-
nosis of several causes of thrombocytopenia have been summarized in this review. We
showed that ML algorithms can possibly provide a faster, reliable evaluation of patients
with thrombocytopenia and, in some cases, may even outperform the current approaches
for evaluating the diagnosis and prognosis of patients. With further research, AI can possi-
bly revolutionize future medical practice. However, many of the ML models discussed in
this study need to be further validated and improved by including more predictors and
using prospective data rather than retrospective data in the training and testing of these
ML models. Adding to that, more ML models that assess different aspects of patient care
such as treatment response require further investigation.
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