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Abstract: Microwave imaging (MI) is a consistent health monitoring technique that can play a
vital role in diagnosing anomalies in the breast. The reliability of biomedical imaging diagnosis
is substantially dependent on the imaging algorithm. Widely used delay and sum (DAS)-based
diagnosis algorithms suffer from some significant drawbacks. The delay multiply and sum (DMAS)
is an improved method and has benefits over DAS in terms of greater contrast and better resolution.
However, the main drawback of DMAS is its excessive computational complexity. This paper presents
a compressed sensing (CS) approach of iteratively corrected DMAS (CS-ICDMAS) beamforming
that reduces the channel calculation and computation time while maintaining image quality. The
array setup for acquiring data comprised 16 Vivaldi antennas with a bandwidth of 2.70–11.20 GHz.
The power of all the channels was calculated and low power channels were eliminated based on the
compression factor. The algorithm involves data-independent techniques that eliminate multiple
reflections. This can generate results similar to the uncompressed variants in a significantly lower
time which is essential for real-time applications. This paper also investigates the experimental data
that prove the enhanced performance of the algorithm.

Keywords: microwave imaging; compressed sensing; delay multiply and sum; breast imaging;
iterative correction

1. Introduction

Microwave imaging (MI) has been verified to be a reliable health monitoring technique
that can play a prime role in diagnosing anomalies in breast tissue. A microwave transceiver
can recognize small signal variations with the changes in the electrical properties of human
tissues. Recent advances in microwave imaging show that it can be a viable solution as
preclinical detection tools in human body imaging [1–4]. The on-phantom experiments
shown in [4] describe the functionality of a microwave sensor for the successful localization
of the target. The iterative reconstruction is referred to as post-processing of the acquired
data. The clinical realization of MI is discussed with recent advancements in [3], where the
MI technology is selected as a complementary modality of the existing screening systems
for breast cancer. The potential role of MI and the clinical advances of this imaging is
discussed in [1,2] where MI is described as a rapid and inexpensive method of diagnosis as
compared to others.

The reliability of biomedical imaging-based diagnosis is substantially dependent on
the imaging algorithm. There are three categories of MI, active, passive and hybrid [5].
Beamforming is the primary part of image reconstruction of active radar-based MI [6,7].
Among the two types of beamformers, data-independent beamformers take less time in
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image reconstruction while the data-adaptive beamformers have excessive computational
complexity but produce better images [8].

The differential microwave diagnosis for breast [9], DMAS image reconstruction al-
gorithm [10] and DAS algorithm have been suggested to improve imaging performance
like the robust, interference-canceling, balanced deblurring. Several data-independent
algorithms were utilized for microwave-based image processing, like Tissue Sensing Adap-
tive Radar (TSAR) [11] and confocal microwave diagnosis algorithm [12,13]. However,
DAS and its variations are much more popular owing to their robust performance and
simplicity. Most of these algorithms are applied to the received signal for the reconstruction
of breast interior, feature extraction and post-processing to locate abnormalities. Another
data-independent beamformer is DMAS which provides improved contrast and resolution
in the reconstructed images by trading the complexity of computation. Several variants
of DAS were introduced besides DMAS, including coherence factor DAS [14], improved
DAS [15], and the iterative variant of DAS [16]. The improvements of DMAS over DAS
has been proven in [13,17]. The iterative variant of DAS and DMAS is proposed in [18]
where the authors removed the background clutter in the reconstructed images. The recon-
structed images of the DMAS algorithm were used to detect the tumor after normalizing
the maximum scatterer [19]. The compressed sensing approach has been reported in several
image reconstruction techniques in MI [20,21]. A Bayesian CS approach to MI of an inho-
mogeneous object based on mesh discretization and electric field integral equation in the
imaging region was proposed [22]. The CS was applied to separable surrogate functionals
(SSF) optimization to reduce the sampling data volume in [23]. None of them is applied
to the most popular DAS or variants of DAS algorithms. An iterative three-dimensional
non-linear inverse scattering technique was proposed for the reduction of computational
time using a nondispersive material model [24].

In this paper, a compressed sensing iterative variant of the DMAS algorithm is intro-
duced for increasing the performance and reducing the runtime for microwave imaging
applications using iteratively corrected DMAS beamforming. The proposed CS-ICDMAS
works on the basis of computing all the channel power and eliminating comparatively
lower power channels. This reduces the number of observations and saves the calculation
time without decreasing the image quality. The practical imaging was tested, and the
numerical analysis is also presented.

2. Imaging System Setup

The detailed flowchart of the research methodology is presented in Figure 1. The
imaging system consisted of a total of 16 antenna arrays with a mechanical rotating
platform. A set of heterogeneous phantoms was tested. The system setup and phantom
fabrication procedures can be found in the literature [15]. The system comprised eight
transmitters and eight receiver antennas. A rotating turntable held the antenna array and
data were taken using a MATLAB-based image processing platform using a vector network
analyzer (VNA). The turntable rotated 360 degrees at a step of 7.2 degrees that resulted
in 50 equal datapoints. As a result, the total number of channels was 8 × 8 × 50. Figure 2
shows the imaging system setup while collecting data from the system in the presence of a
breast phantom.
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Figure 1. Flowchart of the research methodology.

Figure 2. Imaging system setup (data-taking mode).
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Antenna Performance Analysis

The antenna used in the proposed system is a modified Vivaldi antenna. The de-
sign evaluation of the antenna can be found in [17]. The antenna has dimensions of
77.72 mm × 60 mm and a bandwidth from 2.70–11.20 GHz. The reflection coefficient is
considered in free space and the heavy load of the phantom in this work. The setup for
taking measurements in the presence of a phantom is shown in Figure 3. Figure 4 illustrates
the measured reflection coefficient in free space and a phantom load. It was observed
that the antenna could firmly maintain its bandwidth in both scenarios with minimal
distortions. The mutual coupling between the adjacent antennas was also investigated.
Figure 5a shows the setup of Tx and Rx antennas considered for measuring the isolation
between the adjacent antennas. The results are presented in Figure 5b It was observed that
the antennas had sound isolation and were maintained between −26 dB and −60 dB.
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Figure 5. (a) Mutual coupling measurements set up with adjacent antennas (b) Transmission results.

3. Beamforming Method

The proposed algorithm was analyzed based on the microwave signal contrast. The
scattered microwave signals from healthy and unhealthy breast phantoms were compared.
First, microwave signal contrast comparison took place between the reference microwave
signal using numerical simulation of the full-wave time domain model and the scattered
signal from the computational phantom. The successive approximation method was ob-
tained to get the exact position and size of the tumor. There was no coupling medium
between the phantom and the antenna; as a result, we needed to eliminate skin reflec-
tions. Thus, for artifact removal, the rotation subtraction was applied, which relied on the
comparison between the original scattering and at least a single-rotated scattering [15].
The array of antennas is placed around the Region of Interest (ROI) in such systems. The
array was rotated once, and the offset data were collected and recorded as a reference of
initial radiance.

3.1. Channel Compression on Skin Reflection Removal

Different methods of artifact removal including rotation subtraction [25] and singular
value decomposition (SVD) were proposed [26]. In the rotation subtraction method, it was
assumed that the tumor was out of the axis of the rotation and the response received from
the tumor would be well-preserved even after the subtraction of the scattered rotated posi-
tion signals. In the SVD method, the breast shape is restricted as uniform and submerged in
a coupling medium and the antenna array is maintained at a certain distance from the skin.
In this work, the artifact removal was performed using the rotation subtraction method.
The antenna array completed full rotation surrounding the phantom at a 7.2◦ step with a
total of 8× 8× 50 channels. The equally sliced datapoint was denoted Nϕ = 50. The system
collected complex S-parameters in the frequency domain, S (f, tx, rx, ϕ), where f is the
frequency, tx = 1, 3, 5, 7, 9, 11, 13, 15 and rx = 2, 4, 6, 8, 10, 12, 14, 16 are the transmitting and
receiving antennas, respectively, and the alignment of the rotating platform angle is ϕ. A
total of 201 datapoints was recorded for each rotation within the band from 2.7 to 8.0 GHz.
Once the data were recorded for the original illumination, the array s rotated around the
phantom to get offset data. The difference of the data from the different illuminations was
computed to remove the effect of the skin.

In this work, the sample S (f, tx, rx, ϕ) was parted into two matrices based on ϕ
becoming odd and even, or Sodd(f,tx,rx,ϕodd), and Seven(f,tx,rx,ϕeven), individually, where
ϕodd = odd number of datapoints (1, 3, 5, . . . Nϕ-1) and ϕeven = even number of data points
(2, 4,6, . . . Nϕ). Thus, Sodd can be considered initial illumination and Seven—“offset” illumi-
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nation. Finally, rotation subtraction was implemented by simply calculating the difference
between the two matrices according to Equation (1):

Sskin_removed( f , tx, rx, ϕodd) = Sodd( f , tx, rx, ϕodd)− Seven( f , tx, rx, ϕeven) (1)

The power of all the channels was calculated. The low-power channels were subtracted
based on the compression factor
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≤ 1. The lower
power channels were eliminated to reduce the execution time and make the process
faster. After adjusting the skin reflections, the signals were converted to the time domain
using the inverse Fourier transform to create Γ(t, tx, rx, ϕodd). Then, the data in the Γ(t,
tx, rx, ϕodd) were processed via the delay multiply and sum (DMAS) algorithm for the
reconstruction of the image [27,28]. Normally, DAS-based methods struggle in noisy
settings where multiple reflections from various scattering sources need to be considered.
In that case, DMAS outperforms DAS by generating sharper contrast images by utilizing
the correlation process [29]. However, an earlier study reported that DMAS struggles in
high-noise settings as well as in multiple target situations [30]. Therefore, in this research
work, after applying compressed sensing (CS), we revised the typical DMAS algorithm
by implementing iterative correction of the delay calculation. The correction was done by
several iteration processes until convergence to the desired level of accuracy.

3.2. Compressed Sensing in DMAS

Three-dimensional Cartesian coordinates of all points inside the region of interest
were represented in the i by 3 matrices, C, where i = 1,2, . . . , and I is the total number of
points. Then, the I was generated from C by the I matrix, PC-C, containing the Euclidian
distances between each possible pair of points in the imaging domain. Matrices ATx and ARx
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contained the optimized three-dimensional Cartesian coordinates of the transmitting and
receiving antennas, respectively. Since the imaging domain was stationary, the antennas
changed their distance from the points to be reconstructed as they rotated. Thus, ATxϕodd
and ARxϕodd were generated by determining all the antenna positions considered in the
original orientation. Then, PTxϕodd-C and PC-Rxϕodd, containing the distances from each point
to the transmitting and receiving antennas, were calculated from C, ATxϕodd, and ARxϕodd.
Finally, the delays needed for focusing each channel to focus on point i in C were evaluated
by summing the distances of the transmitting and receiving antenna positions concerned
to the point being focused. The wave propagation velocity in the background medium, air
in this study (theoretically, speed of light c), was divided by the total distance to yield the
appropriate delay, τ (i, rx, ϕodd), as indicated in Equation (3):

τ(i, tx, rx, ϕodd) =

√
εb(PTxϕodd−C(i, tx, l) + PC−Rxϕodd(i, rx, l))

c
(3)

where εb is the dielectric constant of the coupling medium. The delay τ was calculated from
the estimated shortest distance and the reflected signal from C(i), which are the straight-line
Euclidean distances calculated previously. The delays were further added to the signals for
delivering a proper delayed signal. After multiplying by the paired delayed signal, they
were summed for determining the scatter intensity at the allotted point in the ROI as shown
in Equation (4). The paired signal multiplication compensated coherent signals together
with higher values and hence improved the performance of DMAS over DAS [15,27].

ΓDMAS(i) =
∞∫
−∞

N/2

∑
ϕodd=1

Tx

∑
tx=1

Rx

∑
rx=1

N/2

∑
ϕ′odd=ϕodd

Tx

∑
tx′=tx

Rx

∑
rx′=rx+1

[
Γ(t− τ(i,tx ,rx ,ϕodd)

∆t , tx, rx, ϕodd)

×Γ(t− τ(i,t′x ,r′x ,ϕ′odd)
∆t , t′x, r′x, ϕ′odd)

]
dt (4)

3.3. Iterative Correction of CS-DMAS

The dielectric materials diminish the propagation speed; this results in increased
time delay. Thus, the higher value of Γ in the C region can be implied as to the higher
dielectric region. The additional time adjustment can be made by properly increasing the
distance while calculating τ. Here, we introduce an iterative approach to estimate the
best-fitted delay as well as the scattered intensity map (SIM) evaluation. At the same time,
a greater estimation of SIM is dependent on the proper adjustment of τ. However, the
iterative process can lead to vulnerability and noise-sensitivity if we use Γ directly. An
inverse distance weighted integral averaging was introduced to produce a smoothed SIM,
Γ’(i). This method can be considered analogous to applying the 3D Green’s function in the
distorted Born iterative method.

Γ′(i) =
∫
C

Γn−1
DMAS(i)

1 + PC−C(i, j)
dj (5)

An extra time, PC-C(i,j), was adjusted by appropriately increasing the distances.
Then, the following equation was used to calculate modified delay:

τ′(i, tx, rx, ϕodd) = τ(i, tx, rx, ϕodd) +
Γ′(i)

c
(6)

Here, c is the speed of light.

ΓDMAS(i) =
∞∫
−∞

N/2

∑
ϕodd=1

Tx

∑
tx=1

Rx

∑
rx=1

N/2

∑
ϕ′odd=ϕodd

Tx

∑
tx′=tx

Rx

∑
rx′=rx+1

[
Γ(t− τ′(i,tx,rx,ϕodd)

∆t , tx, rx, ϕodd)

×Γ(t− τ′(i,tx′ ,rx′ ,ϕ′odd)
∆t , tx′, rx′, ϕ′odd)

]
dt (7)

The new set of delays was used to reconstruct the SIM. Finally, the completion bench-
mark was inspected for convergence. The iteration of Equations (7) and (8) was evaluated
for n = 1, 2, . . . , 7.

EΓ = ∑ ∀i|Γn
DMAS − Γn−1

DMAS

∣∣∣ (8)
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The iteration was terminated when EΓ decreased the expected level of accuracy after
achieving convergence. In this paper, EΓ was < 10−5.

4. Imaging Results

The simulation of DMAS was performed on an HP Workstation Mid 2018 with a
3.7 GHz Intel Xeon E3-1245 processor and 32 GB 2400 MHz DDR4 RAM.

4.1. Contour Images

Two sets of the lab-made heterogeneous phantom were used to evaluate the perfor-
mance of the proposed beamformer. The first one had a single tumor inside (phantom 1)
and another one was designed with two tumors (phantom 2). The heterogeneous phan-
toms 1 and 2 had four layers of skin, fat, gland and tumor to be as realistic as possible [31].
The relative permittivity and conductivity of the skin layer were 24 and 2.49 S/m. The
permittivity and conductivity of the fat layer were 6 and 1.72 S/m. The gland layer had the
permittivity and conductivity of 16 and 3.27 S/m. Last of all, the tumor layer had relative
permittivity and conductivity of 64 and 4.98 S/m. All the data were presented at 4 GHz.
The backscattered signals were collected using an array of 16 Vivaldi antennas surrounding
the phantom using the Agilent N5227 VNA. A total of 3200 (8 × 8 × 50) observations were
taken from 2.5 to 8 GHz. The computation was done for DMAS and CS-DMAS with several
compression factors.

The reconstructed contour plot images are presented in Figures 7 and 8 for phantom 1
and phantom 2, respectively. For the phantom 1 screening, DMAS successfully detected the
tumor. After applying the compression to half of the observations

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

Finally, rotation subtraction was implemented by simply calculating the difference be-
tween the two matrices according to Equation (1): 

_ ( , , , ) ( , , , ) ( , , , )skin removed x x odd odd x x odd even x x evenS f t r S f t r S f t rϕ ϕ ϕ= −  (1)

The power of all the channels was calculated. The low-power channels were sub-
tracted based on the compression factor 03D7. The measured 8 × 8 scattering matrix in the 
presence of a breast phantom is illustrated in Figure 6. The difference between the high- 
and low-power channels was visible. Afterwards, the total skin reflection data (Rskin_removed) 
were calculated based on Equation (2): 

_ _( , , ) ( , , , )skin removed x x odd skin removed x x odd
f

R t r S f t rϕ ϕ
∀

=
 

(2)ϗ × n (Rskin_removed) channels with the highest power were considered for the imaging 
from Sskin_removed to produce compressed data as Scompressed(f,tx,rx, φodd), where n(Rskin_removed) is the 
number of channels and ϗ is the compression factor of 0 ≤ ϗ ≤ 1. The lower power channels 
were eliminated to reduce the execution time and make the process faster. After adjusting 
the skin reflections, the signals were converted to the time domain using the inverse Fou-
rier transform to create Γ(t, tx, rx, φodd). Then, the data in the Γ(t, tx, rx, φodd) were processed 
via the delay multiply and sum (DMAS) algorithm for the reconstruction of the image 
[27,28]. Normally, DAS-based methods struggle in noisy settings where multiple reflec-
tions from various scattering sources need to be considered. In that case, DMAS outper-
forms DAS by generating sharper contrast images by utilizing the correlation process [29]. 
However, an earlier study reported that DMAS struggles in high-noise settings as well as 
in multiple target situations [30]. Therefore, in this research work, after applying com-
pressed sensing (CS), we revised the typical DMAS algorithm by implementing iterative 
correction of the delay calculation. The correction was done by several iteration processes 
until convergence to the desired level of accuracy. 

 
Figure 6. The 8 × 8 scattering matrix measured in the presence of a breast phantom. 

3.2. Compressed Sensing in DMAS 
Three-dimensional Cartesian coordinates of all points inside the region of interest 

were represented in the i by 3 matrices, C, where i = 1,2,…, and I is the total number of 
points. Then, the I was generated from C by the I matrix, PC-C, containing the Euclidian 

(1600) and applying
the Born iterative method, DMAS was still able to detect the target. The iteration converged
after seven trials resulting in little delay variations. Thus, the location of the tumor was
inconsistent, but the results are still promising as a screening tool. Figures 7c and 8c show
the image of CS-ICDMAS after compressing the observations of one-fourth of the total
channel
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were represented in the i by 3 matrices, C, where i = 1,2,…, and I is the total number of 
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(800). It still identified the tumor in a red circle with some noise saving execution
time and computational complexity.
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Figure 8. Contour plot of the reconstructed image of two tumor phantoms using (a) DMAS, (b) proposed CS-ICDMAS
(50% compression), (c) CS-ICDMAS with 75% compression.

4.2. Numerical Imaging Data

The numerical assessments in terms of signal-to-mean ratio (SMR) and execution time
is described in this section. The SMR states the proportion of the maximum tumor energy
to the mean energy from backscattered signals at a similar sample [32].

SMR =
Maximum_Tumor_Energy

Mean_Energy
(9)

Numerical imaging data in terms of SMR and execution time are shown in Table 1.
The graphical representation of the signal to mean ratio and execution time against the
compression factor is presented in Figure 9a,b. The SMR of CS-ICDMAS remains decreased
with the compression factor. The SMR shows a proportional relation with the execution
time. But the drop of SMR concerning execution time is not huge. The proposed algorithm
shows exponential improvement in reducing execution time by maintaining image quality
and detection. These results validate the capability of CS-ICDMAS to decrease computation
time and reduce computational complexity by eliminating the weak channels by preserving
detection performance. A comparison of the execution time for the DAS, CF (Coherence
Factor)-DAS, DMAS and ICDMAS with the proposed method is provided in Table 2. It
is noted that the proposed algorithm can reduce the time required for computations and
simultaneously gives similar imaging output.
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Figure 9. (a) SMR and (b) execution time with respect to the compression factor.

Table 1. Signal-to-mean ratio and execution time against the compression factor.
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SMR (dB) Execution Time (s)
Phantom 1 Phantom 2 Phantom 1 Phantom 2

3200 15.20 14.87 1455 1440
2800 14.90 13.86 852 843
2000 12.43 12.42 619 620
1600 10.47 12.21 427 421
1200 7.58 9.80 290 287
800 9.48 11.95 169 172
400 9.20 11.53 86 95

Table 2. Comparison of the execution time with the methods presented in the literature.

Method Execution Time(s)

DAS 2087
CF-DAS 2175
DMAS 2425

ICDMAS 1455
CS-ICDMAS (50% compression) 427
CS-ICDMAS (75% compression) 169

5. Conclusions

This work introduces a new compressed sensing approach of iteratively corrected
delay multiply and sum beamforming over the well-known DMAS in terms of microwave
imaging of the breast. The main disadvantage of conventional DMAS is the high compu-
tation load and runtime. An array of 16 antennas was used to receive the backscattered
microwave signal from a breast phantom. The compressed sensing approach was proposed
by finding low-power channels across all the observations and eliminating them based
on the compression factor. Then, an iterative approach was applied till convergence. The
artifact removal was performed using the rotation subtraction method. Imaging data from
the experimental system were tested with the proposed approach and the reconstructed
image and numerical analysis were presented. The proposed CS-ICDMAS algorithm shows
exponential improvement in reducing execution time as compared to DAS, CF-DAS, DMAS
and ICDMAS by maintaining image quality and detection which validate the capability
of CS-ICDMAS to decrease computation time and reduce computational complexity by
eliminating the weak channels and preserving detection performance.
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CS Compressed sensing
CF Coherence Factor
CS-
ICDMAS

Compressed sensing using iteratively corrected
DMAS

DAS Delay and sum
DMAS Delay multiply and sum
MI Microwave imaging
ROI Region of interest
SIM Scattered intensity map
SMR Signal-to-mean ratio
SSF Separable surrogate functionals
SVD Singular value decomposition
TSAR Tissue Sensing Adaptive Radar
VNA Vector network analyzer
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