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Abstract 

Metabolomics is a dynamic tool for elucidating biochemical changes in human health 
and disease. Metabolic profiles provide a close insight into physiological states and 
are highly volatile to genetic and environmental perturbations. Variation in metabolic 
profiles can inform mechanisms of pathology, providing potential biomarkers for 
diagnosis and assessment of the risk of contracting a disease. With the advancement of 
high-throughput technologies, large-scale metabolomics data sources have become 
abundant. As such, careful statistical analysis of intricate metabolomics data is essential 
for deriving relevant and robust results that can be deployed in real-life clinical settings. 
Multiple tools have been developed for both data analysis and interpretations. In this 
review, we survey statistical approaches and corresponding statistical tools that are 
available for discovery of biomarkers using metabolomics.

Keywords:  Metabolomics, Metabolomics tools, Statistical methods, Analytical 
workflow, Univariate, Multivariate

Overview of metabolomics
The term metabolome was first coined in 1998 [1] and became widely established in 
the early 2000 [2]. Metabolomics profiling is a high-throughput technique that quan-
tifies the levels of endogenous metabolites in a sample (biological fluids, tissues, etc.). 
[3]. The study of metabolites or metabolite profiling has been gaining popularity in 
the past decade, thanks to the recent advances in analytical platforms such as Fourier-
Transform Infrared spectrometry (FT-IR), Nuclear magnetic resonance (NMR), mass 
spectrometry (MS) coupled to separation techniques such as gas-chromatography (GC–
MS), liquid chromatography (LC–MS), Fourier Transform mass spectrometry (FT-MS), 
Ultra-high performance liquid chromatography (UPLC–MS), Capillary electrophore-
sis (CE–MS), Inductively coupled plasma (IPC–MS), Ion chromatography (IC–MS) [4] 
etc. Metabolites are key molecules in cellular functions. Many biological disturbances 
involve a cascade of metabolic changes, making metabolites close descriptors for the 
phenotype. There are two main analytical techniques that are used in the quantification 
of metabolites (in a cell, tissue, or body fluids): NMR and MS [5–7] through a process 
that can be untargeted or targeted. The former is a comprehensive technique measuring 
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all metabolites in a sample without bias, including unknown chemical compounds. It 
is best suited for hypothesis-generating studies and leads to novel biomarker discovery, 
although the identification and categorisation of unknown compounds remains a great 
challenge. On the other hand, targeted metabolomics quantifies chemically known and 
annotated metabolites. Typically, the measured metabolites are labelled by comparing 
their masses to known compounds from spectral databases, which in addition to char-
acteristic MS or NMR properties, also contain various information about nomenclature, 
compound concentrations, biological locations, enzyme and mutation data (see Table 1).

Since its introduction, metabolomics has been used in a wide range of applications 
such as health and disease biomarker and enzyme discoveries, food and nutrition, and 
plant biotechnology to name a few [10]. Metabolomics has proven to be a valuable tool 
in biomedical research, enabling the assessment of disturbances in biological systems 
caused by environmental factors, aiding in the diagnosis of diseases, and facilitating 
the identification of biomarkers. Biomarkers, short for, biological markers are objective 
indicators that provide information about cellular or organismal processes and can be 
used to characterize patients in a clinical setting [11]. Properties such as high specificity, 
sensitivity, repeatability, and clinical usefulness are necessary for a good biomarker. The 
process of biomarker validation entails in vitro and in vivo research followed by clinical 
trials in human cohorts. Biomarker discovery using metabolomics is considered to be 
a relatively improved method compared to traditional diagnostic approaches due to its 
sensitivity and specificity [12]. Metabolites have been found to be eligible molecular bio-
markers in several studies; for instance, an untargeted metabolomics approach was used 
to show that non-alcoholic fatty liver diseases (NAFLD), featuring a range of severity 
levels from simple steatosis to complex hepatocellular carcinoma, are characterised each 
with a distinct metabolic profile [13, 14]. Furthermore, metabolomics have shown their 

Table 1  Databases containing mass spectra data for metabolite annotation

Database Comments Source

Human Metabolome Data-
base (HMDB 5.0)

217,920 known and 1,581,537 unknown 
compounds. Novel spectral data, physiologi-
cal and pathological data, pathway data are 
available in a single platform [8]

https://​hmdb.​ca/

Golm Metabolome database Dedicated to GC–MS technique. Contains 
custom libraries stored as mass spectra (MS) 
and retention time indices (RI) for metabolic 
profiling experiments and even observed 
mass spectral tags (MSTs) of unidentified 
metabolites

http://​gmd.​mpimp-​golm.​mpg.​de/

Metlin 240,000 metabolite data is available as neutral 
or free acids, which enables single, batch, 
fragment, ion, neutral loss searches. High 
resolution of 72,000 MS/MS spectra is a key 
component of this database [9]

https://​metlin.​scrip​ps.​edu/​landi​
ng_​page.​php?​pgcon​tent

Massbank MS database of high resolution spectral data 
with excellent structural searching methods. 
More than 41,000 spectra are available

https://​massb​ank.​eu/​MassB​ank/

mzCloud Freely accessible collection of mass spectra 
of endogenous and exogenous metabolites. 
Advanced searching capabilities enable 
finding metabolites that are not included in 
the library

https://​www.​mzclo​ud.​org/

https://hmdb.ca/
http://gmd.mpimp-golm.mpg.de/
https://metlin.scripps.edu/landing_page.php?pgcontent
https://metlin.scripps.edu/landing_page.php?pgcontent
https://massbank.eu/MassBank/
https://www.mzcloud.org/
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potential in diagnosis and management in early screening of oral cancer [15], pancre-
atic cancer [16], and breast cancer [17]. Additionally, it was shown that recurrence can 
be monitored using metabolite biomarkers in various cancer patients [18–20]. Further 
to cancer, metabolomic studies have investigated potential biomarkers associated with 
fitness [21], telomere length [22], cardiovascular demand [23], steroid profile [24], etc. 
in elite athletes. Other studies evaluated biomarkers of metabolic diseases such as poly-
cystic ovary syndrome [25], insulin resistance [26–29], and diabetes [30] (See Table  2 
for examples of biomarkers from the mentioned studies). With the recent outbreak of 
COVID-19, emerging metabolomics data have provided insights into COVID-19 patho-
genesis in patients with pre-existing chronic conditions such as diabetes, hypertension, 
hypothyroidism, etc. and revealed biomarkers linked to mechanisms of disease progres-
sion, severity, and side-effects of COVID-19 in affected individuals [31–38].

Early biochemical investigations, in the field of metabolomics, featured a low number 
of measured analytes to ease the interpretation of results [43, 44]. Today, information 
systems have matured tremendously, and many tools have been developed to assist in 
analysing and interpreting high throughput metabolomics data. With the continuous 
advances in instrumental techniques, adopting the correct statistical approach remains 
critical for proper interpretation and optimal utilization of data. The purpose of this 
review is to provide an overview of metabolomics data analysis in current research, with 
special emphasis on methods available for biomarker discovery in human disease.

Metabolomics: analytical challenges and pre‑processing
Like other omics fields, the workflow of metabolomics comprises of (i) Experimental 
design, (ii) Sample collection and preparation, (iii) Data retrieval/acquisition and pre-
processing, and (iv) Data analysis and interpretation [45, 46]. Experimental design aids 
in tightening confidence intervals, minimising confounders and controlling the obvi-
ous sources of variation. Sample collection, preparation and data retrieval are the stages 
where systematic and random errors occur, although these can be controlled via strict 
work environment and protocol design to some extent [47]. It is during the pre-pro-
cessing stage that the spectral data are converted to abundance of metabolites in each 
sample, a crucial link between raw data measurement and statistical analysis. Typical 
pre-processing steps include deconvolution, library-based identification, and alignment 
[48] which can be performed by a variety of analytical tools (refer to Table 3). For untar-
geted metabolomics, this step represents a major challenge due to the lack of spectra 
for the novel metabolites detected. However, methods to characterize the unknowns 
are being continuously explored. For example, Knowledge-guided multi-layer networks 
(KGMN), developed by Zhou et  al., were used in untargeted metabolomics to enable 
global metabolite identification from knowns to unknowns by integrating knowledge-
based metabolic reaction network, MS/MS similarity network as well as global peak 
correlation network [49]. Global network optimization approach, NetID, was recently 
developed by Chen et al. to annotate untargeted LC–MS data. NetID develops chemi-
cally meaningful peak-peak correlations, improves peak assignment accuracy, and cre-
ates a single network connecting most observed ion peaks, even for peaks missing MS 
spectra [50]. Statistical machine learning-based methods are geared towards the iden-
tification of unknowns based on feature similarity with the knowns: For instance, (MP-)



Page 4 of 18Anwardeen et al. BMC Bioinformatics          (2023) 24:250 

Table 2  Biomarker discoveries using metabolomics

Disease Biomarker Use Ref

Esophageal squamous cell carci-
noma (ESCC)

3′-UMP, palmitoleic acid, 
palmitaldehyde, and isobutyl 
decanoate

Disease recurrence [39]

Hepatocellular carcinoma (HCC) Leucine, valine, and tryptophan Diagnostic biomarkers [40]

Non- alcoholic fatty liver disease 
(NAFLD)

Glycocholic acid, Taurocholic 
acid, Phenylalanine, branched-
chain amino-acids, Glutathione

Discrimination of steatosis, stea-
tohepatitis and cirrhosis

[13]

Oral cancer Pipecolate, Spermidine, 
Methionine, Tryptophan, Valine, 
Hypoxanthine,
Trimethylamine N-oxide, 
Guanine, Guanosine, Taurine, 
Choline, Cadaverine, Threonine

Salivary biomarkers for oral 
cancer screening

[15]

Pancreatic cancer 1,5-Anhydo-d-glucitol Diagnostic biomarker [16]

Estrogen receptor negative 
breast cancer

Histidine, Glucose, Lactate, 
Tyrosine

Risk of disease recurrence [17]

Colorectal cancer Hexadecanedioic acid, 4-dode-
cylbenzenesulfonic acid, 2-pyro-
catechuic acid, and Formylan-
thranilic acid

Screening and early detection 
using serum biomarkers

[41, 42]

Bladder cancer Nɛ, Nɛ, Nɛ-trimethyllysine, 
N-acetyltryptophan, dopaqui-
none, leucine and hypoxanthine

Risk of disease recurrence [20]

Sports related biomarkers Glutamine, N-acetylglutamine, 
xanthine, beta-sitosterol, 
N2-acetyllysine, stearoyl-ara-
chidonoyl-glycerol (18:0/20:4), 
N-acetylserine and 3–7-dimethy-
lurate

Leukocyte telomere length 
prediction

[22]

Arachidonic acid, branched-
chain amino acids, plasmino-
gens, phosphatidylcholines, 
phosphatidylethanolamines,
Gamma-glutamyl amino acids 
and glutathione

Potential biomarker signatures 
for assessing health, perfor-
mance, and recovery of elite 
athletes

[23]

5alpha-androstan-
3alpha,17alpha-diol monosulfate, 
androstenediol (3alpha, 17alpha) 
monosulfate and cortisol

Steroid profile difference in elite 
female players and non-athletes

[24]

Polycystic ovary syndrome Hexosylceramide (d18:2/24:0), 
ceramide (d18.0/24.1) and serine

Predicting low birth weight [25]

Insulin resistance and diabetes Androsterone glucuronide, phe-
nylalanine derivative, carboxy-
ethylphenylalanine

Biomarkers associated with insu-
lin resistance in lean/overweight 
females

[26]

Glycerophosphoethanolamine, 
glycerophosphorylcholine and 
choline

Increased risk of obesity-associ-
ated insulin resistance

[27]

Glutamate Predictor of gestational diabetes 
mellitus

[30]
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IOKR [51], MetFrag [52] and CSI:FingerID[53] employ fragmentation trees to learn 
rules for subclustering of metabolites[52]. Methods like MetFusion [54] were developed 
to allow access to large spectral databases such as MassBank [55] to allow for improved 
optimization of predictive models.

Statistics in metabolomics
In addition to analysis challenges encountered with omics data such as high variable 
dimensionality and intercorrelation, metabolomics data are particularly prone to noise 
and can be influenced by environment factors, diet, exercise as well as sample handling 
and batch measurement. In addition, metabolomics data are characterised by a greater 
extent of data missingness which can compound multivariate analysis and classification 
techniques. As a consequence, careful application of appropriate statistical methods 
is required; otherwise, crucial information may get lost or false trends/models may be 
identified.

The format of metabolomics data is typically a data matrix, with metabolite abundance 
and samples given in columns and rows or vice-versa. Even though metabolomics profil-
ing is highly sought, there are no standard protocols established for the statistical analy-
sis of the produced data. In this review, we discuss some of the widely adopted statistical 
approaches in recent studies. A simple schematic representation of the steps involved in 
metabolomics data analysis is depicted in Fig. 1.

Pre‑analytical steps

The metabolomics data matrix is prone to elevated metabolite missingness due to sev-
eral reasons, most notably the inability to measure when metabolite levels are below 
the detection level as well as technical errors such as peak misalignment or metabolite 
structural instability. General statistical techniques for multiple imputation have been 
traditionally applied on metabolomics data but more tailored approaches that acknowl-
edge the frequent non-random pattern of missingness in metabolomics have recently 
been developed: MetabImpute, an R package which can assess the missingness as com-
pletely or partially missing due to randomness and non-randomness (MCAR—missing 

Table 2  (continued)

Disease Biomarker Use Ref

COVID-19 Tryptophan, kynurenine and 
3-hydroxykynurenine

Prognostic markers [33]

A combination of d-fructose, cit-
ric acid and 2-palmitoyl-glycerol

Diagnostic biomarkers [34]

Palmitic (C16:0), docosap-
entaenoic (C22:5, DPA), and 
docosahexaenoic (C22:6, DHA) in 
diabetic patients
palmitic, oleic (C18:1), and doco-
sahexaenoic acids in hyperten-
sive patients

Predicting disease progression [36]

Betaine and branched chain 
amino acids

Prognostic metabolic biomark-
ers of severity and mortality 
respectively

[37]
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completely at-random, MAR—missing at-random and MNAR—missing not-at-random) 
[68]. Indeed, there is no general opinion on the right filter percentage, but cut-offs have 
been traditionally chosen within the range of 20–50% of metabolite missingness [69, 70]. 
Imputation is crucial when multivariate techniques, including classification, are applied 
on metabolomics data.

Complex metabolomics data is heteroscedastic and right skewed and requires normal-
ization. The go-to method for correcting the skewness is log-transformation [71]. Fur-
thermore, filtering of overly heterogenous or bad quality samples is a good practise to 
avoid the propagation of errors throughout the dataset and can be achieved by means 
of multivariate techniques such as principal component analysis and clustering. Data 
normalization, based on aligning the median or more generally quantiles, is crucial to 
eliminate between-sample variation. It should be noted that using a wrong pre-analytical 
method to normalize/transform the data will result in poor results and may impact the 
ranks of relevant metabolites. Additionally, data points should only be removed if there 
are valid biological justifications for considering them as outliers. It is possible to pro-
duce a model that seems to work well by excluding difficult-to-model data points, but 
that is not actually representational of the real biological system.

Statistical methods
Two main statistical approaches are available for metabolite differential level analy-
sis: univariate and multivariate. Combination of both methodologies is common to 
metabolomic biomarker-based studies but this review shall focus on the advantages and 
increased power gained from multivariate analysis (MVA).

MVA is an essential part of metabolomics data analysis. Biological systems are not 
limited to single variable changes between healthy and diseased states. Investigation of 
system level changes is pivotal to deriving definitive conclusions about a certain condi-
tion and its potential biomarkers. MVA techniques incorporate all variables simultane-
ously and assess the relationships among them [72] as well as their joint contribution to 
the phenotype under study.

Unsupervised and supervised models of multivariate analysis are currently employed 
in metabolomics. One popular unsupervised technique is Principal component analysis 
(PCA) which identifies independent components in the data based on linear combina-
tions of correlated features. Due to it unsupervised nature, PCA serves little purpose in 

Fig. 1  Simplified workflow of the statistical steps in metabolomics
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biomarker discovery. PCA components are often fed into the univariate tests as a means 
for correcting for hidden unmeasured confounder effects. Moreover, PCA is often used 
as a checkpoint during QC to screen for outlier data points [73]. For example, when Al-
Khelaifi et al. conducted PCA to obtain a global perspective of the data, they noted that 
PC1 captured the extent of haemolysis between the samples, while PC2 suggested effect 
of exercise. Incorporation of these components in the regression model greatly improved 
the detection of marker metabolites in association with the biological groups of interest 
to their study.

PLS-DA or Partial Least Square Discriminant Analysis [74] is a supervised MVA 
technique, that has been incorporated in numerous metabolomics studies for the dis-
covery of biomarkers in different health conditions [75–77]. PLS-DA attempts for opti-
mal break-down of predictor variable X to best explain the response variable Y [73, 78, 
79]. An upgraded version of PLS-DA called OPLS-DA (“orthogonal” PLS-DA) has also 
gained popularity [80–84]. This model recapitulates the variance into parts that are pre-
dictive of the experimental groups and parts that are purely due to noise, also referred to 
as ‘orthogonal’ [85–87]. Therefore OPLS-DA creates decipherable models with ease in 
comparison to its previous version [88, 89]. Once the PLS/OPLS-DA model is built, the 
VIP (variable influence of projection) measure can be obtained for the metabolites based 
on their association with the identified predictive components. Certain studies use 
VIP > 1 as a threshold and select the metabolites for further analysis using linear regres-
sion models to correct for measured confounders.

Support vector machines (SVM) is a supervised machine-learning algorithm that can 
be used for regression and classification of non-linear data. SVM can detect non-linear 
relationships in the data that do not comply with the assumptions of PCA and OPLS, 
making it versatile. It identifies support vectors or samples on the margin between two 
classes to search for a maximum margin hyperplane. The use of kernels simplifies sepa-
ration of classes for difficult cases by providing non-linear solution in the original space. 
SVM has different extensions for classification with overlapping groups, multi-class 
classification, regression, and specializations. Importantly, once the hyper-plane par-
tition is found, feature importance values can be derived which can aid in biomarker 
discovery. However, basic SVM algorithms are not time efficient to tune complex sepa-
rating hyperplanes as they do not take into account prior knowledge about probability 
of class-member. Despite often producing good results, faster and more stable methods 
can outperform SVM [90, 91]. A limitation of SVM is its restriction to binary classifica-
tion. Alternative methods have been proposed to extend the use of SVM to multi-class 
problems, the models are built on breaking down the dataset into units of binary groups 
which causes oversimplification and may lead to uninformative models[92].

Random forest (RF) is a supervised machine learning method which is based on a deci-
sion tree algorithm. It is considered an excellent classifier for its ease of implementa-
tion, speed, stability robustness against overfitting and most importantly its ability to 
handle datasets with biased number of classes/groups [93]. Developed by Breiman, RF 
is a combination of decision trees, with each tree trained using a random subset of the 
data and input features. The algorithm uses a bootstrap sampling technique to select the 
data subsets. A simple RF with random features is created by randomly selecting a small 
group of input variables (with a fixed size) at each node to split on [94]. RF algorithm 
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is highly adaptable to real-world datasets as it remains unaffected by scaling and nor-
malization. However, a major challenge includes the requirement of excessive tuning of 
default parameters by the researcher to produce the best model, and eventual difficulty 
in visualizing the decision tree [95, 96]. Importantly, whilst classifying samples, RF per-
forms a variable selection step which helps reduce the search space and aid in the pro-
cess of pinpointing candidate metabolite biomarkers.

Variational autoencoders is an unsupervised deep learning method that operates by 
encoding input data into a non-linear, lower-dimensional latent space that can be used 
to reproduce the original data without loss of information. It has recently been advo-
cated for use with metabolomics data to learn its transferable latent representations; 
which can help expose clusters of samples with specific metabolite levels [97].

The classification methods outlined in this review can be prioritised based on the 
research question and the characteristics of the data. SVM can handle binary and mul-
tinominal data with non-linear relationships between variables. RF, on the other hand, 
is compatible with continuous and categorical data and is used to create an ensemble of 
decision trees that can capture complex interaction between features, while being robust 
to outliers and normalization techniques. VAE is notably novel in the field of metabo-
lomics and any added advantage to its use are yet to be shown.

OPLS/OPLS-DA is an excellent choice for small sized and highly correlated data with 
few groups of samples. It can explain most of the variation in the data by reducing the 
high dimensionality into predictive and orthogonal latent variables. It handles the miss-
ing values in the data efficiently and is robust to outliers [95]. One can argue that both RF 
and OPLS-DA methods are a good starting point for exploring metabolomics data due 
to their easiness of use and interpretability. Table 4 provides an overview of the meth-
ods, their strengths and weaknesses to be considered in metabolomics data analysis.

It is important to note that classification, prediction and biomarker discovery meth-
ods for metabolomics data extend to other models including logistic regression models, 
LASSO, CCPLS, ASCA + and APCA + (extension of ANOVA to multivariate classes) 
[98], multivariate curve resolution (MCR), neural networks, Gaussian mixture model-
ling etc. More details about these methods and how they have been deployed in the field 
of metabolomics can be found in [99–103].

Validation of model performance

Several metrices exist for assessment of model performance. With OPLS and PLS mod-
els, typical measures are R2 which captures the goodness of fit, and the Q2 that computes 
the predictive ability of the model, defined as the congruence of cross-validation of pre-
dicted data with the original data. OPLS further splits R2X into R2Xp and R2Xo which 
respectively measure the explained sum of squared of the Y-predictive and Y-uncorre-
lated parts of X. [104]. Q2 > 0.4 provides a satisfactory predictability of the model [105, 
106]. Q2 and R2 values that are closer to 1 ensure a reliable model, while large discrep-
ancy between the two scores depict an unreliable model [107]. Permutation tests are 
used to estimate Q2 and provide a possibility of calculating significance (p-values) for 
these MV models [108–110].

Brier score is another CV procedure that measures the accuracy of binary outcome 
predictions by calculating the squared difference between the actual outcome and 
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predicted probability. A perfect model has a score of 0 and a non-informative model has 
a score of 0.25[111]. Harrell’s C-index is also a performance measure used with survival 
analyses. The index is driven by Kendall’s tau statistic, depends on the censoring distri-
bution, and considers the rankings of pairings of subjects in the data. The index ranges 
from 0 to 1 (indicating worst to best performance) and a value of 0.6 or higher is accept-
able for clinical datasets [112].

The receiver operating characteristics (ROC) curve analysis assesses the specificity and 
sensitivity of a potential biomarker by plotting the true positive rate (y axis) as a func-
tion of the false positive rate (x axis). It produces the area under the curve (AUC) meas-
ure that indicates the ability of a biomarker to distinguish between two study groups. 
Multivariate receiver operating characteristic analysis (MultiROC) [113] is an extension 
of ROC analysis that allows for different combinations of biomarkers to be clinically 
explored [114, 115] and is compatible with the inherent nature of multivariate classifiers 
such as PLS/OPLS-DA models.

There are other cross-validation procedures employed in predictive analysis such as 
leave-n-out, Monte Carlo cross-validation (MCCV), corrected-MCCV (CMCCV) etc. 
For detailed information, readers are referred to Sammut et al. and Xu et al. [116, 117].

Table 4  Synopsis of popular statistical methods for metabolomics studies

Methods Strengths Limitations

Univariate T test
Mann Whitney
Chi-square
ANOVA
Kruskal Wallis

Straightforward application
Easy to interpret the results

Requires prior knowledge of 
data
No information about inter-
variable relationships that is 
crucial in a biological set-up
Outliers cannot be determined

Multiple linear regression with 
Bonferroni correction (with 
one explanatory variable)

Easy to apply and interpret Significance level affected by 
sample size
Does not account for intercor-
relation

Multiple linear regression with 
false discovery rate (with one 
explanatory variable)

Easy to use and interpret
Preferred over Bonferroni 
method

Increases the number of false 
negatives

Multivariate Principle component analysis Effective in variable reduction
Uses the complete collected 
data
Easy to manage complex data
Focuses on the inter-variable 
relationships
Requires no prior knowledge 
of data

No clarity on how to rank the 
metabolites
Biological interpretation may be 
challenging

Partial least square discrimi-
nant analysis
Orthogonal partial least square 
discriminant analysis

Dimensional reduction to 
comprehensible level
No data wastage
Shows relationship between 
variables, apt in a biological 
setting
Handles large, complex data

Prior knowledge of data required
Over-fitting issues
No significance level of the most 
important metabolites
Abundant variables mask the 
effect of lesser abundant vari-
ables
Cross-validation steps required 
to predict accuracy of model

Random Forest, SVM and other 
ML methods

Handles complex data
Robust to outliers
Finds complex relationships 
between metabolites and 
between metabolite and other 
factors

Excessive tuning may be 
required to retrieve best model
Less efficient for truly linear data
Does not provide metabolite 
selection



Page 11 of 18Anwardeen et al. BMC Bioinformatics          (2023) 24:250 	

The metrices outlined above have been instrumental in assessing the performance of 
MV classification methods to ensure validity and reliability of the results. For example, 
a study by Chen et al. compared four classifiers, PCA, SVM, LDA and RF using several 
methods including cross-validation, R2/Q2 plot, ROC curve and Pearson corelation. RF 
was found to be associated with better performance with respect to sample classification 
and biomarker selection [118].

Tools available for the statistical analysis of metabolomics data
Several tools are available for data analysis in metabolomics. The tools required for 
highly intricate metabolomics data analysis should be able to handle the large data size, 
perform pre-processing steps adequately, conduct statistical methods to identify signifi-
cantly different metabolites, and provide striking visualization techniques such as heat-
maps, correlation and pathway networks. We intend to cover some of the widely used 
tools that provide data pre-processing, univariate and multivariate methodologies used 
for biomarker discovery. Table 3 provides a quick view of the methods available in the 
tools discussed below.

(i) MetaboAnalyst: Extensive web-based toolkit for complete data analysis of metabo-
lomics data. It provides multiple statistical workflows for one-factor, two-factor/time-
series, meta-analysis data formats, which include univariate (t-tests, ANOVA) and 
multivariate (PCA, PLS-DA, OPLS-DA). The latest version (MetaboAnalyst 5.0) is user-
friendly compared to its predecessor. It contains a biomarker discovery option using 
ROC analyses with straightforward data input and user-defined options for pre-process-
ing steps and normalization. This web-based platform has been utilized in various stud-
ies for biomarker identification due to its amenable nature [119–123].

(ii) MZmine 3:
Built on the success and popularity of MZmine 2, MZmine 3 is an open-source plat-

form for data pre-processing and analyses with LC-MS in mind. The updated version has 
focused on improving the user-friendly graphics with the original eight modules [124].

(iii) MetaboLyzer:
It is a command line interface (CLI) providing general as well as metabolomics-suited 

statistical analysis and data visualization [125]. Integration with small-metabolite data-
bases such as HMDB, KEGG, BioCyc and LipidMaps allows for ion identification and 
relevant data analysis. We would argue that it is more appropriate for expert-level bioin-
formatician in terms of user-friendliness.

(iv) PhenoMeNal:
To our knowledge, a comprehensive and unmatched tool that brings metabolomics 

to cloud computing after Galaxy. Ongoing immense data generation requires cloud-
based tools to reduce the load on personal or workplace environment by storing the data 
onto cloud space. Data analysis tools are tested and stored as Docker containers [126]. 
PhenoMeNal has successfully developed sophisticated data analysis workflows, which 
reduces the burden on the researcher.

(v) SECIMTools (SouthEast Center for Integrated Metabolomics):
Designed to complement both the previous Galaxy metabolomics tools, Galaxy-M 

and Workflow4metabolomics, SECIMtools begins with features which follows quality 
control (QC) and advanced statistical assessment. It has four major functionalities: data 
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pre-processing, QC, data analysis and utilities [127]. A guide to use the galaxy interface 
of SECIMTools can be found here. [https://​ctsi-​secim.​sites.​medin​fo.​ufl.​edu/​files/​2015/​
08/7_​7_​2015_​Galaxy_​UserG​uide.​pdf ]

(vi) SIMCA®

By Sartorius AG, SIMCA is the tool of choice for multivariate analysis by many studies 
[108]. It is user-friendly, with multiple interactive visualization methods, has the abil-
ity to fit models that best suit the data at hand, perform ROC analysis, analyse multiple 
datasheets, to name a few. For metabolomics, investigation of metabolites with signifi-
cantly different abundances, metabolite pathways (if present in the datasheet) associ-
ated with experimental groups, examining relationship between variables and quick 
identification of potential biomarkers are relatively easy for non-programmers. SIMCA 
contains in-built cross validation steps that provide the predictive ability of the model. 
Although this tool is not suited to univariate analysis and is not in an open-source for-
mat and requires license purchase prior to use.

(vii) R (R foundation for statistical computing, Vienna, Austria) [128] packages for 
metabolomics:

For statisticians who are well-versed in programming languages, R is the best option 
for metabolomics data analysis as it provides a more flexible work environment as 
opposed to rigid online tools with limited user-defined options. There are several pack-
ages for normalization, imputation, univariate hypothesis testing, multivariate explora-
tory analysis in R.

(a) XCMS.
R based powerful tool for processing of LC-MS data using retention time correc-

tion, peak identification and matching to derive necessary information. It can be com-
bined with base R functions to perform all statistical methods for a comprehensive data 
analysis.

(b) MetaboAnalystR.
Corresponding R package of web-based MetaboAnalyst, with more adjustable pro-

gramming feature to enable autonomy of metabolomics data analysis.
(c) MAIT (Metabolite Automatic Identification Toolkit):
Provides a comprehensive end-to-end analysis for LC-MS data. Although it is more 

suited to peak identification and annotation. Parametric and non-parametric univariate 
statistical tools and multivariate analyses such as PLS-DA are available with user defined 
grouping option [63].

(d) Omu.
Performs simple t-tests, ANOVA, PCA and combine functional information and the 

associated gene names of the metabolites in the dataset using KEGG. It was developed 
for inexperienced R users to analyze metabolite count data. The input format should 
contain KEGG IDs to process the data. The package contains multiple visualization 
techniques such boxplots, heatmaps, volcano plots etc. [64].

(e) Specmine.
Multi-level analysis is available in this package, which includes pre-processing, metab-

olite annotation, uni- and multivariate analyses, ML (machine learning) and selection of 
significant features [65].

(f ) pmartR.

https://ctsi-secim.sites.medinfo.ufl.edu/files/2015/08/7_7_2015_Galaxy_UserGuide.pdf
https://ctsi-secim.sites.medinfo.ufl.edu/files/2015/08/7_7_2015_Galaxy_UserGuide.pdf
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Quality control processing, statistical analysis of metabolomics, lipidomis and prot-
eomics data can be performed using pmartR. Analyses such as transformation, normali-
zation, simple univariate and summarising PCA and correlation analyses are available 
[66].

(g) muma.
Built with non-programmers in mind, muma provides user-friendly stepwise uni-

variate and multivariate analysis via R program. Data pre-processing, imputation, data 
exploration through various visualizations and statistical analysis are available in this 
package [67].

Limitations of statistics in biomarker discovery
Biomarkers are measured indicators of biological and/or pathogenic processes, or 
response to therapies [11]. Metabolite biomarkers are quantified at a cheaper rate 
compared to other types of biomarkers [129]. There is certainly a rapid increase in the 
number of metabolite biomarkers discovered due to improvements in the analytical 
procedures but are not in practical use due to limitations in experimental design, sta-
tistical rigor, and efficacy [130, 131]. Biomarkers in clinical practice should be easy to 
quantify and should bring value in relation to early detection of disease, improvement 
in treatment outcomes, reduction in the reliance on expensive treatment options, or 
decrease in disease-related fatalities. Unfortunately, appropriate biomarkers with appre-
ciable specificity and sensitivity are hard to come by. Using the combinatorial capacity 
of a variety of distinct biomarkers is one possibility to improve the overall specificity 
[132, 133]. Present-day metabolomics have substantially benefited from upgraded study 
design that contributed to the decrease in the demographic differences and sources of 
bias. This approach has been applied to all sorts of study designs such as interventional, 
observational, and with multi-tiers. Study enrolment with balanced demographic attrib-
utes under a multi-cohort setting should have sufficient sample size to comply with the 
requirements for adequate statistical power [134]. Improvised prospective trials are 
required to verify biomarkers’ ability to detect physiological changes before onset of 
phenotype. Validation of biomarkers has been carried out in small, unbridled trials so 
far [135]. However, large scale validation remains inadequate leading to very few metab-
olomics biomarkers finding their way to clinical practice [136, 137]. More insights on 
ways in which metabolomics research can be advanced to meet the challenges of bio-
marker discovery can be in found in Poste et al. [136].

Conclusion
This mini review has introduced the user to standard methodologies with easy-to-use 
tools for analysis of metabolomics datasets and biomarker discovery. Metabolite bio-
markers are constantly growing interest in the omics field as they depict a phenotype 
as close to accurate as possible from the physiological or pathological state. In the 
future, we expect the evolution of existing statistical methods to provide even deeper 
insights into metabolite biomarkers from the larger perspective of systems’ biology 
and precision medicine. In this context, biomarkers identified using multi-omics tech-
niques can broaden the scope of individualized treatment plans by providing markers 
for patient stratification, early diagnosis, prediction, and progression monitoring, etc. 
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To this end, advanced statistical and machine learning methods are being developed 
to provide effective approaches for multi-omics data integration [138]. Aligning the 
biological information from multi-level omics analysis has the advantage of reduc-
ing noise and provides an extra level of biomarker validation. More importantly, inte-
gration with genotype data can help distinguish biomarkers associated with causal 
effects as opposed to those of secondary nature, that occur because of the disease or 
pathology of interest as well as those contributed by the environment. Methods for 
stratification of patients into homogeneous groups with unified analyte levels, such as 
supervised biclustering [132, 133], have been recently applied in the field of transcrip-
tomics and offer an interesting opportunity for metabolomics to embark in the field of 
precision medicine.

In parallel to technological advancement, progress in computational and statisti-
cal analysis is also required to tackle some of the remaining limitations in the field 
of metabolomics; notably with regard to annotation/identification of unknown com-
pounds with untargeted metabolomics. Machine learning approaches are of great 
value in this respect and can offer better performance with improved and more accu-
rate information on compound masses, retention time, fragment mass spectra, and 
isotopic properties [134].

It should be noted that all statistical methods incorporated in the field of omics 
are simply hypothesis creators, essentially shortening a seemingly limitless list of 
metabolites to a manageable set whose properties and merits should be evaluated by 
downstream experimental work. Standardization of validation protocols including 
replication and experimental validation in animal models is essential for metabolite 
biomarkers to make their way to pre-clinical settings.
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