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a b s t r a c t 

The use of artificial intelligence (AI) at the edge is transforming every aspect of the lives of human be- 

ings from scheduling daily activities to personalized shopping recommendations. Since the success of AI 

is to be measured ultimately in terms of how it benefits human beings, and that the data driving the 

deep learning-based edge AI algorithms are intricately and intimately tied to humans, it is important to 

look at these AI technologies through a human-centric lens. However, despite the significant impact of 

AI design on human interests, the security and trustworthiness of edge AI applications are not foolproof 

and ethicalneither foolproof nor ethical; Moreover, social norms are often ignored duringin the design, 

implementation, and deployment of edge AI systems. In this paper, we make the following two contribu- 

tions: Firstly , we analyze the application of edge AI through a human-centric perspective. More specifi- 

cally, we present a pipeline to develop human-centric embedded machine learning (HC-EML) applications 

leveraging a generic human-centric AI (HCAI) framework. Alongside, we also analyzediscuss the privacy, 

trustworthiness, robustness, and security aspects of HC-EML applications with an insider look at their 

challenges and possible solutions along the way. Secondly , to illustrate the gravity of these issues, we 

present a case study on the task of human facial emotion recognition (FER) based on AffectNet dataset, 

where we analyze the effects of widely used input quantization on the security, robustness, fairness, and 

trustworthiness of an EML model. We find that input quantization partially degrades the efficacy of ad- 

versarial and backdoor attacks at the cost of a slight decrease in accuracy over clean inputs. By analyzing 

the explanations generated by SHAP, we identify that the decision of a FER model is largely influenced by 

features such as eyes, alar crease, lips, and jaws. Additionally, we note that input quantization is notably 

biased against the dark skin faces, and hypothesize that low-contrast features of dark skin faces may be 

responsible for the observed trends. We conclude with precautionary remarks and guidelines for future 

researchers. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

d

(

p

s

s

n

t

(

e

i

g

q

t

m

c

a

c

p

h

0

. Introduction 

Artificial Intelligence (AI) is rapidly transforming the living stan- 

ards of people around the world. In particular, deep learning 

DL) methods have demonstrated superior performance as com- 

ared to conventional machine learning (ML) based approaches in 

everal domains including medical imaging ( Litjens et al., 2017 ), 

cene understanding ( Butt and Riaz, 2022; Rasib et al., 2021b ), 

atural language processing (NLP) ( Otter et al., 2020 ), intelligent 

ransportation ( Sumalee and Ho, 2018 ), and surveillance systems 

 Shidik et al., 2019 ). Despite their proliferation, these DL mod- 
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ls are computation-intensive as they require data-driven train- 

ng using large-scale data and high-performance resources such as 

raphical processing units (GPUs). In addition, GPUs are also re- 

uired to make inferences in real-time applications. Consequently, 

hese models are not efficiently executable on resource-constrained 

obile and edge devices. 

With the emergence of cloud computing ( Tange et al., 2020 ), 

loud-hosted AI services have demonstrated the potential to lever- 

ge AI-driven intelligence on edge devices. For instance, voice- 

ontrolled personal assistants such as Alexa, Siri, and Astro are ca- 

able of processing human voice commands and responding ac- 

ordingly ( McLean and Osei-Frimpong, 2019 ). These applications 

tilize centralized cloud-hosted NLP models to analyze user com- 

ands and natural language generation models to produce con- 
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ent in a textual or audible format, understandable to common 

sers. However, such applications raise data privacy and security 

oncerns due to the continuous transmission of users’ sensitive in- 

ormation to cloud servers ( Liao et al., 2019 ). Recently, embedded- 

L (EML) has emerged as a promising solution to perform ML in- 

erences on ultra-low powered edge devices ( David et al., 2021 ). 

ather than relying on cloud-hosted AI services, EML allows the 

hrinking of complex DL models into a more compact form that 

an be deployed on resource-constrained edge devices. Subse- 

uently, EML enables greater data security, privacy, and respon- 

iveness while also mitigating latency and communication issues 

 Shafique et al., 2021 ). In the last couple of years, a booming

rowth is observed in the adaptation of EML-based applications 

n diverse domains including, but not limited to, smart health- 

are, biometric systems, industrial services, and personal assistants 

 Banbury et al., 2020 ). However, most of human patrons remain 

ary of EML-based applications due to longstanding privacy and 

ecurity concerns. Whereas, EML-based applications must be aware 

f their social responsibilities such as social norms, ethical values, 

ransparency, and safety while interacting with the human stake- 

olders ( Holzinger, 2021; Shneiderman, 2020b ). 

Our Contributions: To the best of our knowledge, this study 

epresents the first attempt towards analyzing the human-centric 

hallenges (i.e., privacy, trustworthiness, security, and robustness) 

ssociated with the development and deployment of EML appli- 

ations. It is important to mention here that the concepts of key 

erms covered in this study i.e., privacy, trustworthiness, security, 

nd robustness often overlap in literature. Therefore, before mov- 

ng further, we elaborate on these four terms in the context of HC- 

ML applications. 

Shneiderman (2020b) defines privacy as an assurance that the 

onfidentiality of the data generated from the edge devices is pro- 

ected. On the other hand, according to Qayyum et al. (2020a) , se- 

urity is referred to the possibility of an attack or threat which 

an be realized on ML/DL models to achieve the desired output. 

n addition, Qayyum et al. (2020a) defines robustness as the sur- 

ivability and resistance of ML/DL models against adversarial at- 

acks. We discuss the security of EML models in terms of attacks 

ttempting to get control of the human-centric applications exe- 

uting on edge devices to get intended outcomes. Although ad- 

ersarial robustness is generally coined under the security of DL 

odels in current literature, to differentiate it from other secu- 

ity issues, we refer to it as a robustness issue in this paper and

valuate it as the model’s resilience to standard adversarial per- 

urbations. Lastly, referring to Rasheed et al. (2022) , trustworthi- 

ess is a mapping approach that transforms abstract ideas into a 

uman-understandable domain and explains the influential factors 

hat contributed to producing the decision of DL models. Keep- 

ng this definition in view, we analyzed the explainable methods 

hat can be used in developing human-centric EML applications to 

dentify the key features contributing to a decision. 

In Table 1 , we present a comparison between the existing re- 

earch articles which are focusing on analyzing the aforementioned 

ey challenges. The following are the key contributions of this pa- 

er. 

1. Keeping the generic human-centric AI (HCAI) framework in 

view, we present a novel pipeline for developing human-centric 

EML (HC-EML) applications. 

2. We analyze human-centric aspects of EML applications along 

four major dimensions: (1) privacy; (2) trustworthiness; (3) se- 

curity; and (4) robustness. We also note that human-centric im- 

plications are not limited to these four components. However, 

as the focus of this paper is on analyzing the EML applica- 

tions from a human-centric perspective, therefore, we specifi- 

cally focused on these four yet very important dimensions of 
2 
the HCAI framework, as shown in Fig. 1 . These HCAI guidelines 

can be leveraged in developing EML models which must (i) un- 

derstand social norms, i.e., preserve privacy, and human values 

( Shneiderman, 2020b ), (ii) be explainable and understandable 

to ensure a high level of human control ( Holzinger, 2021 ), and 

(iii) provide a reliable, secure, and safe experience to end-users 

( Shneiderman, 2020b ). 

3. To illustrate the gravity of the aforementioned issues, we 

present a case study on the human facial emotion recognition 

(FER) task based on the AffectNet dataset, where we analyze 

the effects of widely used input quantization on the security, 

robustness, fairness, and trustworthiness of an EML model. We 

re-validate that input quantization partially degrades the effi- 

cacy of adversarial and backdoor attacks at the cost of a slight 

decrease in accuracy over clean inputs ( Ali et al., 2019; Khalid 

et al., 2019 ). By analyzing the explanations generated by SHAP, 

we identify that the decision of a FER model is largely influ- 

enced by features such as eyes, alar crease, lips, and jaws. Ad- 

ditionally, we note that input quantization is notably biased 

against the dark skin faces, and hypothesize that low-contrast 

features of dark skin faces may be responsible for the observed 

trends. 

The rest of the paper is organized as follows. Section 2 presents 

he related work of embedded ML, HCAI, and adversarial ML. 

ection 3 presents a comprehensive analysis of the challenges in 

CAI inspired EML pipeline. While, Section 4 presents a taxonomy 

hat can be employed to ensure privacy awareness, security, trust- 

orthiness, and efficacy in HC-EML applications. In Section 5 , a 

ase study is presented to evaluate the security vulnerabilities and 

ias analysis of EML-based human emotion-aware face recogni- 

ion models against state-of-the-art adversarial attacks and model 

uantization. Lastly, the learned lessons are discussed in Section 6 , 

nd concluding remarks are summarized in Section 7 . 

. Related work 

Over the past couple of decades, ML has grown tremendously 

o help the consumers, enterprises, and other organizations in im- 

roving their business processes and optimizing their decision- 

aking in various domains including smart healthcare ( Chen et al., 

021 ), intelligent transportation ( Butt et al., 2021a; Lv et al., 2021 ),

obotics ( Rasib et al., 2021a; Vrontis et al., 2022 ), and surveillance 

ystems ( Jordan and Mitchell, 2015 ). However, conventional ML- 

ased applications require enormous power along with heavy com- 

uting equipment like graphical processing units to maintain their 

ffective execution. 

.1. Embedded machine learning and human-centered AI 

Recently, EML has opened new opportunities to develop tiny 

et efficient ML models which can be deployed on resource- 

onstrained embedded devices ( Giri et al., 2020 ). In general prac- 

ices, ML models are trained over cloud data centers, or on com- 

uting clusters, then the resultant model is converted into the 

iny model using various model compression techniques such as 

odel pruning, quantization, low-rank factorization, and knowl- 

dge distillation ( Cheng et al., 2018 ). After the successful con- 

ersion, the embedded model (of size in kilobytes) is deployed 

n resource-constrained edge devices such as ultra-low powered 

icro-controllers, and small-scale embedded kits to perform real- 

ime inference tasks. To date, EML-based applications are widely 

eployed in commercial products. For instance, wake-word detec- 

ion ( Chen et al., 2014; Gruenstein et al., 2017; Zhang et al., 2017 )

s a well-known EML application that is deployed in Apples Siri, 

mazons Alexa, and many other virtual assistants to get user input. 
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Table 1 

Comparison of our paper with existing related papers focusing on analyzing privacy, trustworthiness, robustness, and security of HC-EML applications. (Legend: � → 

Covered, × → Not covered, ≈ → Partially covered). 

Year Reference Focused Domain 

Generic EML 

Pipeline 

HC-EML 

Framework Challenges and Research Directions in HC-EML Case Study Open Issues 

Privacy Trustworthy Security Efficacy 

2020 Sanchez-Iborra and 

Skarmeta (2020) 

TinyML-Enabled � × × × × � � ×
Frugal Smart Objects 

2020 Banbury et al. (2020) Benchmarking 

Tiny-ML 

≈ × × × × � × ×

Systems 

2021 Dutta and Bharali (2021) TinyML-as-a-service � × ≈ × ≈ � × ≈
2021 Shafique et al. (2021) Evolution of DL 

towards 

× × × × × � × ×

Tiny-ML 

2021 Ray (2021) Prospects of Tiny-ML ≈ × � × � � × � 

Applications 

2021 Tsoukas et al. (2021) TinyML for 

Healthcare 

× × ≈ × ≈ ≈ × ×

2021 Doyu et al. (2021) TinyMLaaS 

Ecosystem 

� × ≈ × ≈ � × � 

for ML in IoT 

2022 Rajapakse et al. (2022) Reformable Tiny-ML ≈ × � × � � × � 

2022 Giordano et al. (2022) Milliwatts Micro × × × × × � � ×
Controllers for 

Tiny-ML 

2022 Our Work Development of 

Private 

� � � � � � � � 

and Secure HC-EML 

Fig. 1. HCAI framework : Key social and design requirements, stakeholders and possible threats. 
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1 Adversarial attacks are small imperceptible perturbations that are added to a 
lso, there are various other EML applications like predictive main- 

enance ( Susto et al., 2014 ), object detection ( Chowdhery et al., 

019 ), anomaly detection ( Koizumi et al., 2019 ), and human activ- 

ty recognition ( Chavarriaga et al., 2013; Zhang and Sawchuk, 2012 ) 

hich are being used in consumer and industrial applications. 

However, the installation of such an immense amount of afore- 

entioned EML applications in close proximity to human society 

hile ignoring the user experience factor raises the trust and con- 

dence related concerns in human patrons, which are among the 

ain barriers to the proliferation of smart technology in social and 

ndustrial sectors ( Haney et al., 2020 ). In order to address these 

ompelling prospects, there is a need for human-centered EML 

evices and support services, enriched with human-like capabili- 

ies such as understanding human language, behavior ( Butt et al., 

021b ), and emotions to provide an efficient and safe experience 

 Dafoe et al., 2021; Zhu et al., 2022 ). Alongside, Human-centered 

ML (HC-EML) devices must ensure awareness regarding social re- 

ponsibilities in mind, such as catering to the privacy, interpretabil- 

ty, explainability, and transparency issues while interacting with 
g

3 
he human stakeholders in close proximity ( Angerschmid et al., 

022; Siregar, 2021 ). In this way, this paradigm shift may lead to 

 more efficient, understandable, and safe future while mitigating 

he prospects such as threats of privacy, intelligent systems-driven 

nemployment, and fear of uninterpretable or out-of-control tech- 

ology ( Peeters et al., 2021 ). 

.2. Adversarial attacks and embedded-ML 

The discovery of adversarial attacks 1 by Szegedy et al. 

2013) enabled a plethora of works analyzing the adversarial vul- 

erabilities of DL models ( Ali et al., 2021; Latif et al., 2018; Qayyum 

t al., 2020b; Usama et al., 2018; 2019 ). Numerous attacks have 

een proposed with different assumptions regarding an attacker’s 

nowledge of the model. White-box attacks ( Carlini and Wag- 

er, 2017; Goodfellow et al., 2014; Madry et al., 2017 ) assume an 
iven input in order to significantly change the model’s behavior on the input. 
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ttacker knowledgeable of the model architecture and weights. On 

he contrary, black-box attackers can only read either the predic- 

ion probabilities ( Chen et al., 2017a ) or the output class ( Brendel

t al., 2017; Khalid et al., 2020 ). Similarly, several defense methods 

ave been proposed ( Ali et al., 2019; Dhillon et al., 2018; Goodfel- 

ow et al., 2014; Khalid et al., 2019; Papernot et al., 2016 ) to ro-

ustify DL models, most of which are rendered completely ineffec- 

ive against the stronger adaptive attacks ( Athalye et al., 2018 ). To 

ate, certified defenses ( Huang et al., 2021b ) and adversarial train- 

ng ( Madry et al., 2017 ) are the only effective defenses that provide

eliable robustness to DL models ( Lee et al., 2021 ). 

Although many research works have focused on improving the 

erformance, latency, and efficiency of EML models, the security 

nd reliability of EML models have received little to no atten- 

ion ( Huang and Chen, 2022; Huang et al., 2021a ). This is because

he Tiny-ML models, in general, are extremely difficult to reverse, 

nd hence, these models cannot be directly evaluated against a 

umber of standard adversarial attacks ( Huang and Chen, 2022 ). 

herefore, previous works on the adversarial evaluation of EML 

odels have mainly resorted to the black-box or transfer attack 

trategies ( Sun et al., 2021 ), which do not directly consider the 

odel architecture and weights, thus, significantly degrading the 

ttack performance. We, on the contrary, first convert an EML 

odel (typically.tflite extension) into a Keras model (.h5 exten- 

ion) by manually reading, sorting, and processing the EML model 

eights, and transferring these weights to the Keras model. As 

he Keras model supports gradients, it can be directly evaluated 

gainst state-of-the-art white-box adversarial attacks. In this study, 

e use three standard adversarial attacks (formalized below) based 

n their frequent use in literature. For all three attacks, we use 

he standard implementation provided by the state-of-the-art ad- 

ersarial research library, Adversarial Robustness Toolbox (ART). 

Let an input x ∈ X , where X denotes the valid input feature

pace, be correctly classified by a classifier F θ as F θ (x ) : R 

C , where

denotes the learnable parameters of F and C is the total number 

f output classes. The goal of an attack is to compute an adver- 

arial input x ∗, such that argmax F θ (x ) � = argmax F θ (x ∗) (untargeted

ttack Kurakin et al., 2016 ), and max | x ∗ − x | ≤ ε, where ε is the

aximum perturbation budget in x . 

Fast Gradient Sign Method (FGSM) Goodfellow et al. (2014) : 

GSM attack computes the adversarial input, x ∗, in a single step as, 

 

∗ = x − ε × sign 

(
∂F θ (x ) 

∂x 

)
(1) 

Projected Gradient Descent (PGD) Madry et al. (2017) : Let 

 X (x, ε) , be a bounded feature space in X , such that ∀ x b ∈
 X (x, ε) , max | x b − x | ≤ ε. PGD attack formulates adversarial exam- 

le, x ∗, as, 

 

∗ = argmax x b ∈B X (x,ε) L (F θ (x ) , F θ (x b )) (2) 

here L is the cross-entropy loss. The optimization in Eq. (2) is 

chieved by repeating the steps in Eq. (3) for [0 , N − 1] steps, 

 

∗
i +1 = x ∗i + α × sign 

(
∂L (F θ (x ) , F θ (x b )) 

∂x ∗
i 

)

 

∗
i +1 = clip (x ∗i +1 , x − ε, x + ε) (3) 

here x ∗
0 

= x , x ∗ = x ∗
N 

, and α denotes the PGD-step. Note that α is

he tunable hyper-parameter of the PGD attack. 

Auto Attack ( Croce and Hein, 2020b ): The Auto attack first 

odifies the PGD attack to make it parameter-free (independent of 

), and then combines it with two other attacks—FAB ( Croce and 

ein, 2020a ), and Square attack ( Andriushchenko et al., 2020 )—to 

ake a stronger ensemble of parameter-free attack. 
4 
.3. Security of embedded-ML 

The backdoor attack aims to create a victim model that links a 

ertain target label with a specified backdoor trigger ( Saha et al., 

020 ). The attacks can ensure that model produces appropriate 

redictions for clean input samples in order to maintain its util- 

ty. However, the backdoor is activated when the trigger is present 

n the input image. In this way, the backdoor induces the model 

o predict the input as the target label and the behavior of the 

nfected model is manipulated based on the preferences of the at- 

ackers. In literature, two types of backdoor approaches are pre- 

ented: (i) dirty-label attacks ( Chen et al., 2017b; Liu et al., 2017; 

020; Tran et al., 2018 ) —that manipulate the training samples and 

ssign the corresponding labels as a target, (ii) clean-label attacks 

 Luo et al., 2022; Zhao et al., 2020 ) —that do not substitute the

ctual labels. From the literature, it is observed that the aforemen- 

ioned backdoor attacks have significantly influenced the perfor- 

ance of state-of-the-art learning models ( Li et al., 2022; 2021; 

iu et al., 2020; Zhao et al., 2020 ). However, to the best of our

nowledge, the performance of these attacks has not been ana- 

yzed against EML models. 

.4. Explainability of embedded-ML 

With the rapid growth of ML in both— academia and the indus- 

ry, its influence along with the potential side effects can no longer 

e taken for granted. In human-centric applications, failure is not 

n option: Even a slight dysfunction in healthcare or related appli- 

ations can lead to fatality ( Tjoa and Guan, 2020 ). Therefore, the 

xplainability of ML methods has become a critical issue: Can it 

e explained which factors are influencing the learning models to 

each some decision? Angerschmid et al. (2022) . If yes, then what 

s the correctness of these factors? Holzinger (2021) Several papers 

ave recommended different criteria (including causality Khanal 

t al., 2022; Kuang et al., 2020; Schölkopf, 2022 , reliability Tjoa and 

uan, 2020 and usability Kenny and Keane, 2021 ) and frameworks 

such as Captum Kokhlikyan et al., 2020 and tf-explain Sicara ) to 

apture explainability of ML methods. However, these methods are 

ot explored with EML models. 

. Developing HC-EML applications: Pipeline and challenges 

Considering the HCAI framework, we present a pipeline for 

eveloping HC-EML applications along with highlighting various 

hallenges involved at each stage (as shown in Fig. 2 ). The pro- 

osed pipeline is mainly categorized into three major phases of 

re-development, development , and deployment , which are described 

ext. 

.1. HCAI Pipeline development phases 

.1.1. Pre-development phase 

Before initiating the development of HC-EML applications, user 

pecifications must be defined to clarify the stakeholders (such 

s policymakers, developers, and the community), business goals, 

pplication design, and success criteria. Then, application-specific 

ata can be collected through various heterogeneous sources such 

s motion, acoustic, and biometric sensors, attached to human- 

entric edge devices. These sensors capture continuous users’ sen- 

itive data that should be stored over local/cloud servers after per- 

orming anonymization to ensure data privacy. 

The data captured through the above-mentioned sensors often 

ontain distortions due to operability in varying conditions that 

an significantly affect the performance of the underlying ML/DL 

odel ( Mitev et al., 2019 ). For instance, voice-controlled personal 

ssistants can encounter a scenario, where a user is providing a 
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Fig. 2. The HC-EML applications pipeline involving various privacy, trustworthiness, security, and robustness issues at each stage. 
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oice command, while some music playing in the background. In 

his case, music gets intermixed with user input which can result 

n undesirable output. Such data in the training set can also influ- 

nce the performance of the developed HC-EML model. In this re- 

ard, data pre-processing is performed for data cleaning and qual- 

ty assurance. 

In general, supervised learning methods are widely adopted for 

eveloping HC-EML applications that require labeled training data. 

owever, data annotation may be incorrect and coarse-grained 

ue to the perceptive subjectivity of annotators ( Najafabadi et al., 

015 ). Therefore, this step requires careful monitoring to avoid 

round truth errors. 

.1.2. Development phase 

Once the data is ready, ML/DL models are developed either on 

he cloud or local servers. It also involves certain important de- 

isions such as model and training framework selection, suitable 

yperparameters selection and tuning, and model evaluation. Gen- 

rally, the data captured from edge sensors are pushed over cen- 

ral servers/clouds, and a centralized model is trained over global 

ata. However, it leads to various challenges including communica- 

ion and data privacy issues ( Mohanta et al., 2020 ). Recently, Fed- 

rated Learning (FL) has emerged as a promising solution to train 

 model over multiple decentralized edge devices/servers without 

xchanging local data ( Kone ̌cn ̀y et al., 2016 ). This technique can be

mployed to ensure privacy and security while training the HC- 

ML model. After learning the DL model in FL settings, different 

ompression techniques (such as model pruning, quantization, and 

nowledge distillation ( Cheng et al., 2017; Stickel et al., 2009 )) 

an be employed to make it deployable on low-powered edge de- 

ices. These methods compact the DL models through connec- 

ions/neurons elimination, knowledge transfer, or mapping floating 

alues into the finite set. However, a continuous model fine-tuning 

rocess is performed to obtain the best-performing EML model. 

.1.3. Deployment phase 

The resultant compressed EML model is deployed on human- 

entric edge devices to perform inferences in a real-world envi- 

onment. This phase involves certain compatible decisions such as 
5 
uitable operating systems and hardware selection to ensure the 

mooth execution of the EML model. 

.2. Challenges in HC-EML pipeline 

In this section, we discuss various human-centric challenges 

long four dimensions, i.e., privacy, trustworthiness, security, and 

obustness issues, which are described below. 

.2.1. Privacy issues in HC-EML pipeline 

EML applications frequently collect data containing personal 

nformation such as daily routine activities, biometric data, and 

ersonal preferences (such as shopping behavior, TV shows, and 

referred food choices). Such data is very precisely aligned with 

he user commands which can be a great aid in improving EML 

odels. However, HC-EML devices (such as smart wearables and 

ersonal assistants) contain ultra-low powered architectures with 

mall storage units which lead to the tradeoff between data gener- 

tion and storage at the edge level. 

To address these shortcomings, EML applications transmit their 

aw data to local or global data centers, which raise privacy con- 

erns regarding access permissions and data protection of the con- 

umers ( Zhang et al., 2018 ). In addition, these practices raise legal 

uestions regarding the consent of consumers (e.g., which type of 

ata is being collected and shared over the servers). Manufactur- 

rs claim that they utilize collected data for improving their ML 

odels, which also elevates privacy concerns over data collection, 

isclosure, and sharing to unknown parties such as data annota- 

ors. 

.2.2. Trust issues in HC-EML pipeline 

In the perspective of automated systems, trust can be defined 

s “an attitude that an agent helps in achieving an individual’s 

oals in a situation characterized by uncertainty and vulnerability. ”

 Shneiderman, 2020a ). Data scientists are developing data-driven 

C-EML applications to assist human beings in various domains 

hat can include highly sensitive applications such as wearable 

rug delivery systems, symptoms detection, and prescription gen- 

ration in healthcare bots; as well as low-sensitive applications 
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uch as music and shopping recommendations, and daily routine 

ask management through virtual assistants. 

Although the discussed HC-EML applications have demon- 

trated better applicability in aiding human beings, they also raise 

uestions such as: which parameters have influenced an EML 

odel in producing a certain decision? and what is the probability 

f correctness and trustworthiness of those parameters? To date, 

L/DL models deployed on edge devices operate as black-box, 

hich impacts the trust and confidence that human patrons place 

n EML applications ( Ali et al., 2022 ). These challenges are mainly 

ategorized into (i) Need for Truthful AI —which ensures that AI- 

ased text or speech analyses produced by EML models are not af- 

ected by misinformation or falsehood; (ii) Need for Transparency —

hich ensures the transparency of EML models; and (iii) Need for 

xplainability —which provides explainable outputs against the cor- 

esponding input ( Evans et al., 2021 ). 

.2.3. Security issues in HC-EML pipeline 

HC-EML pipeline encounters various security issues at each 

tage, as depicted in Fig. 2 . For instance, data generated from the 

C-EML applications is stored over a local/cloud server which is 

ater used for data pre-processing. However, the collected data is 

ften exposed to third parties, e.g., for annotation purposes that 

ompromise data confidentiality and integrity. 

Similarly, the training of the EML models is also a crucial phase 

s the training process is performed online on global servers either 

sing central data or distributed data. This process is highly vulner- 

ble to attacks like model poisoning that tampers training data to 

nfluence the model’s outcomes. Also, backdoor attacks can influ- 

nce the training data by embedding hidden patterns in DL mod- 

ls Kurakin et al. (2016) . These patterns activate on inputs contain- 

ng the same patterns as embedded in the trained model, which 

ltimately results in prediction errors. Moreover, the compressed 

odels (the shallow version of a complex DL model) can be more 

rone to evasion attacks. Such attacks occur when EML models 

re fed with carefully crafted imperceptible adversarial examples 

o get the intended behavior or outcomes. 

.2.4. Robustness issues in HC-EML pipeline 

Due to the heterogeneous architecture of EML devices and be- 

ng operating in varying environments (such as parks, shopping 

ites, homes, and offices), data collected from HC-EML applica- 

ions may contain unintended adversarial features ( Ilyas et al., 

019 )—data biases, inconsistencies, and imbalanced representa- 

ions. Therefore, a DL model trained over such data produces 

kewed outcomes with low accuracy and analytical anomalies. 

In addition to the adversarial vulnerabilities exhibited by DL 

odels in general ( Khalid et al., 2020; Szegedy et al., 2013 ), these

odels are compressed to compact them for resource-constrained 

dge devices using different com pression techniques, which may 

dd to the adversarial vulnerabilities of a DL model. Similarly, DL 

odels are compressed to compact them for resource-constrained 

dge devices using different compression techniques. For instance, 

t is quite challenging to determine what to prune or elimi- 

ate without compromising the performance of the model. There- 

ore, loss of informative/influential parameters and inefficient fine- 

uning can highly influence the robustness of resultant models. 

oreover, the performance of the EML models becomes more vul- 

erable to unseen data due to comparatively less informative pa- 

ameters in the compact model as compared to the actual model. 

. Towards developing private, secure, and trustworthy HC-EML 

pplications 

Here we present various methods to develop private, secure, 

rustworthy, and robust HC-EML applications to overcome the 
6 
bove-discussed challenges (an illustration is presented in Fig. 3 ) 

nd are discussed next. 

.1. Solutions for pre-development phase 

.1.1. Educating stakeholders 

HC-EML applications involve several stakeholders notably re- 

earchers, developers, data engineers, community, and business 

eaders. It is often reported that most of the stakeholders such 

s policymakers, community, and business leaders do not trust 

ML applications due to privacy issues. For instance, the major- 

ty of stakeholders argue that personal assistants keep track of 

ser-sensitive data that can expose undesirable (privacy-related) 

nsights in response to any malicious attack. Therefore, develop- 

rs must consider this issue while developing HC-EML applications 

o make this technology secure and trustworthy. To this end, we 

uggest performing ML inference on edge devices through EML 

odels and to transmit aggregated output to cloud servers for 

torage/backup purposes only. Also, there is a demanding need to 

reate more awareness by organizing public educational seminars 

hile also engaging different stakeholders. 

.1.2. Handling noise effect and uncertainty in data 

EML models deployed on human-centric edge devices are 

rained over the data collected from multi-modal sensors, attached 

o billions of edge devices, in-use by the community. The major- 

ty of EML applications operate in varying environments under dif- 

erent atmospheric conditions. The data collected under such con- 

itions contain multiple distortions which can influence the per- 

ormance of an EML model. Moreover, due to the heterogeneity 

f edge devices, the attached sensors capture data with variable 

ensitivity and sample rates. Therefore, the data collected from the 

ame sources can vary on different sensors, which may be chal- 

enging for EML-based sensing applications. 

These shortcomings can be addressed by neutralizing the varia- 

ion and noise effects from the data. There are two possibilities to 

ater to such data, (i) data augmentation —which enriches the data 

y adding variation while training the model to make it more ef- 

cient to noise; and (ii) representation learning —which focuses on 

xtracting the most influential features while training the model to 

ake it more robust to inconsistency/variation in data. 

.1.3. Data retention and disposal policy 

Data anonymization techniques have demonstrated better ap- 

licability in preserving confidential information. However, data 

nonymization techniques cannot be applied to some HC-EML ap- 

lications like biometric systems which need to store their data 

nd logs (such as user identities, fingerprints, and routine activi- 

ies) for reference points. However, storing such sensitive informa- 

ion on a server for an unspecified amount of time raises privacy 

nd security concerns. In this regard, we suggest that a relevant 

ata retention and disposal policy must be devised for the partic- 

lar HC-EML use case (that should clearly specify the usage, min- 

mum storage time, and data disposal) to mitigate such security 

isks. 

.1.4. Paid data acquisition 

Existing voice-controlled personal assistants require cloud ser- 

ices to remotely analyze user input through different NLP tech- 

iques. Also, their developers need to collect regular operational 

ata from these applications to analyze user experience which 

elps them with improving their products. Subsequently, these 

pplications push a huge amount of data over servers. Though 

he companies claim that this data is required to fine-tune their 

odels to improve user experience, however, it also compromises 
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Fig. 3. Potential solutions for developing private, secure, and trustworthy HC-EML models. 
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sers’ privacy. To ensure the wider adaptability and trust of stake- 

olders, we recommend that the manufacturers of such products 

hould initiate paid data acquisition schemes to ensure data col- 

ection in legal manners with the clear consent of data subjects. 

.2. Solutions for development phase 

.2.1. Moving beyond supervised learning paradigm 

Personal assistants do not have a strong data protection mech- 

nism against unauthorized access and are therefore vulnerable 

o malicious actors. This issue can be addressed by developing 

ransient HC-EML-based NLP applications that capture user input, 

erform ML inference locally, and return the output to the user 

hile disposing of user input data. Data security and privacy con- 

erns can be effectively addressed using this technique, however, it 

ill affect the traditional model improvement mechanism in which 

ser data is transmitted over servers, which is pre-processed and 

abeled for re-training of the model. To handle this issue, we sug- 

est the development of application-specific self-supervised learn- 

ng techniques that do not require human input in data labeling. 

.2.2. Using differential privacy 

Various differential privacy-based methods have been presented 

n the literature such as deferentially-private stochastic gradient 

escent, private-aggregation of teacher ensembles for private-ML, 

nd exponential noise-based differential that can be used to hide 

sers’ sensitive information ( Abadi et al., 2016 ). These methods 

an demonstrate better applicability in various HC-EML applica- 

ions and can greatly augment trust and privacy-related issues. 

.2.3. Explainable models 

EML-based edge devices can provide numerous benefits to hu- 

an beings in diverse applications. However, their wide-scale 

doption and acceptability in society need EML applications to be 

rustworthy. As a solution, the use of explainable methods is pro- 

osed in the literature that aims to explain how different model 

arameters and components contribute to the results being pro- 

uced by DL models. In simple words, a model is said to be ex- 
7 
lainable, if its decision against some input is logically understand- 

ble (e.g., it is transparent that which factors influenced the model 

o reach its decision). Several approaches have been proposed to 

mbed explainability in DL models such as generalized linear mod- 

ls, extreme linear models, tree SHAP, Local Interpretable Model- 

gnostic Explanations (LIME), and smooth gradient ( Gunning et al., 

019 ). These methods can be leveraged to develop explainable 

L/DL models for HC-EML applications. 

.2.4. Distributed training of the EML models 

EML applications still require connectivity with the cloud to 

hare data for model training and storage purpose, which ulti- 

ately raises privacy and security concerns. These limitations can 

e addressed by employing FL, which can perform distributed 

raining on the edge level without sharing local data with servers. 

ntuitively, basic FL-based methods consist of a collaborative train- 

ng framework where each participant such as an edge device can 

ndependently train a model using its local data ( Li et al., 2020 ).

hese edge devices collaboratively share their model’s informa- 

ion, i.e., model parameters without sharing actual data. Subse- 

uently, this sharing mechanism allows EML-based applications to 

earn from diverse large-scale data and form a global function in a 

rivacy-aware decentralized fashion. 

FL is mainly categorized into two types; namely, data-centric 

L, and model-centric FL. In model-centric FL, non-identical data 

istributed over remote end-user devices is used to train a cen- 

ral model through averaging and FederatedSGD. Whereas, in data- 

entric FL, end-users allow external organizations/companies to ac- 

ess their data to train and improve their models without sharing 

ocal data. In this approach, data is iteratively improved to achieve 

he best-performing model. Such methods can demonstrate better 

pplicability in terms of dealing with sensitive data in various HC- 

ML applications. 

.2.5. Secure crypto-processors 

Sensors attached to HC-EML devices generate an enormous 

mount of continuous data. Due to the resource-constrained na- 

ure of these devices, ensuring the privacy and security of the data 
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tream is challenging. For instance, an unauthorized person can 

ain physical possession of an edge device and can extract sen- 

itive information through intrusive techniques. To address these 

imitations, crypto-processors can be used to secure the data on 

C-EML edge devices. These are dedicated computer-on-a-chip- 

ased microprocessors which carry out data encryption and de- 

ryption to avoid data tampering. 

.2.6. Adversarially robust HC-EML models 

EML models, due to model pruning and quantization, become 

ore prone to adversarial attacks. These attacks can potentially 

ause great harm to humans in various HC-EML applications 

 Zhao et al., 2021 ). In this regard, different adversarially robust 

echniques can be employed that have been broadly categorized 

nto two groups, i.e., model modification, and data modification 

 Ross and Doshi-Velez, 2018 ). 

Model modification refers to those methods that modify the pa- 

ameters/features of trained ML/DL models to defuse the effect of 

dversarial perturbations. The most commonly used model modi- 

cation methods include gradient regularization, defensive distil- 

ation, network verification, and model masking. Gradient regu- 

arization allows DL networks to bring a partial surge in training 

omputational complexity to improve the network performance re- 

ardless of any prior knowledge about adversarial attacks. Defen- 

ive distillation is a knowledge transfer-based approach in which 

 DL model is trained on hard labels to predict the probabilities 

f output, produced by another model that is trained over base- 

ine standards. Whereas, network verification refers to a verifica- 

ion method that verifies certain properties of the EML models 

ver an adversarial example. 

Data modification refers to defense methods in which training 

ata or its features are modified to mitigate the effect of adver- 

arial perturbations. These methods include adversarial re-training, 

eature squeezing, and input reconstruction. Adversarial re-training 

s a basic defense method in which ML models are trained over 

ugmented training data comprising normal and adversarial exam- 

les. Similarly, input reconstruction is a transformation-based de- 

ense method that attempts to enhance the robustness of DL mod- 

ls through data pre-processing techniques such as input cleaning 

nd denoising. Feature squeezing-based defense methods squeeze 

nput feature space which can be exploited by an adversary in con- 

tructing adversarial input. We suggest using the aforementioned 

efense techniques in developing HC-EML models to mitigate the 

ffect of adversarial attacks on real-world HCAI applications. 

.2.7. Privacy-aware EML models 

Preserving the privacy of end-users in HC-EML applications 

s fundamentally important. Also, the underlying ML/DL models 

hould not learn any privacy-related information during the data- 

riven training process. The literature suggests that these mod- 

ls are capable of learning sensitive information patterns even in 

he presence of appropriate privacy-preserving methods and dif- 

erent model extraction attacks can be realized. Therefore, to cater 

o such attacks, the development of such models is highly required 

hat are privacy-aware by design, however, this problem is still an 

pen question demanding significant research attention. 

.3. Solutions for deployment phase 

.3.1. Application specific hardware 

The existing HC-EML applications contain general-purpose mi- 

rophones, cameras, and other sensors to capture the data. The 

evelopers indirectly leverage sensitive user data generated from 

hese applications to train and optimize their models, which raises 

erious privacy and data security concerns. To address this issue, 

e suggest using customized low-resolution task-specific sensors. 
8

or instance, the smart band should contain a 0 . 2 − 0 . 5 MP cam-

ra that can easily capture the human face in close proximity for 

ace recognition, however, struggle to capture surrounding objects. 

n this way, user privacy can be preserved while interacting with 

dge devices in the home, office, and other private places. 

.3.2. Quantized model 

The EML models deployed on edge devices can be easily ac- 

essed due to the lack of appropriate security mechanisms. It is 

ften reported that EML models are stolen by competitors which 

re then examined for understanding and replication. To cater to 

uch issues, we suggest deploying quantized models which do not 

eveal the actual source weights and parameters. In this way, the 

nauthorized actors would not be able to understand and modify 

he trained models for any other use case. 

.3.3. Handling heterogeneous hardware architectures 

HC-EML applications encounter heterogeneity challenges among 

onnected devices such as smart wristbands, personal assistants, 

nd home appliances. All of these devices are configured with dif- 

erent communication protocols, due to which, these devices gen- 

rate different types of data. Therefore, it becomes a critical task 

o enable communication across such devices. To overcome this 

hortcoming, we suggest using data normalization techniques be- 

ore providing the input to HC-EML models that translate the data 

nto the unit sphere to maintain standard distribution of source 

nput data. In this regard, several data normalization methods in- 

luding linear scaling, clipping, log scaling, and zero-score can be 

mployed to translate heterogeneous data to compact it for HC- 

ML models. 

.3.4. Handling real-world unseen data 

In real-world settings, HC-EML applications may encounter 

ata, which is very different from the training data. This phe- 

omenon is known as the distribution shift/drift problem. This dif- 

erence is one of the major reasons behind the adversarial vulner- 

bility of ML/DL models. In HC-EML applications, such shifts/drifts 

re highly expected due to the temporal and dynamic data collec- 

ion and can have adverse effects on the overall performance of the 

ystem. To address this issue, we suggest the use of different do- 

ain adaptation techniques to efficiently handle unseen real-world 

ata. Moreover, task-specific domain adaptation techniques can be 

eveloped for HC-EML applications. 

. Analyzing the security, robustness, and trustworthiness of 

C-EML: Emotion-aware facial recognition case study 

In this section, we present a case study to highlight the prac- 

ical implications of adversarial threats on HC-EML applications. 

or this purpose, we have selected one of the widely used EML 

pplication nowadays, i.e., automatic face recognition, which have 

ecome one of the fundamental tools in intelligent surveillance 

nd monitoring systems. In addition, emotion-aware face recogni- 

ion systems are now widely used in key applications across dif- 

erent domains including educational institutions (such as schools 

nd colleges) to comprehend students’ states and help them iden- 

ify and cope with stressful conditions. Generally, a camera is in- 

talled in a classroom to get a visual frame and the DL models 

re employed at the back-end to detect emotions from the faces 

n the frame. Despite their success, such human-centric systems 

ncounter various kinds of issues that raise serious concerns about 

he privacy, security, and ethical values of end-users during data 

ransmission and storage over back-end servers. EML can be lever- 

ged to perform inference at the edge, instead of at the back-end 

erver, to avoid the aforementioned issues. 
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Fig. 4. Subsets of AffectNet Dataset for skin-tone and gender-based evaluation—

First two rows demonstrate our skin-tone-based samples which are categorized into 

dark and fair skin-tone, respectively. Whereas, the third and forth rows show the 

representation of our gender-based selected subset of males and females.. 
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Fig. 5. Architecture of our customized HC-EML model for human facial emotion 

recognition tasks. The proposed model comprises four convolution layers followed 

by two dense layers. ReLU activation and max-pooling layer is employed after each 

convolution to downscale the feature map while retaining the useful information. 

Lastly, softmax activation function is used to get multinomial probability distribu- 

tion. 
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Leveraging our proposed HC-EML pipeline, we have developed 

n EML model for human facial emotion recognition—which is 

ssentially a human-centric application and analyzes its secu- 

ity vulnerabilities and fairness for human facial emotion recog- 

ition tasks. Firstly, we analyzed the performance of our HC-EML 

odel against state-of-the-art adversarial attacks that include Pro- 

ected Gradient Descent (PGD) ( Madry et al., 2017 ), Auto attack 

 Croce and Hein, 2020b ), and Fast Gradient-Sign Method (FGSM) 

 Goodfellow et al., 2014 ). The outcomes demonstrate that adversar- 

al ML attacks have been quite successful in evading the outcomes 

f our developed HC-EML model, even though using very slight ad- 

ersarial perturbations. Therefore, we also explore a potential so- 

ution to withstand such attacks (as shown in Fig. 3 ) in HC-EML 

pplications for human facial recognition tasks. Secondly, we an- 

lyzed the performance of our HC-EML model on gender-specific 

male/female) and skin tone-based (dark/white) facial emotions 

ata to demonstrate the bias factor in HC-EML applications. 

.1. Experimental setup 

.1.1. Dataset 

In this study, we have used one of the widely used datasets 

or training emotion-aware face recognition models, i.e., Affect- 

et ( Mollahosseini et al., 2017 ) that contains seven distinct classes: 

nger, Disgust, Fear, Happy, Neutral, Sad, and Surprise. The actual 

ffectNet dataset contains around one million images with approx- 

mately 440k labels. We prepared three datasets to analyze the 

erformance of the HC-EML-based facial recognition model against 

wo aspects i.e., adversarial attacks and fairness. The first one is 

he actual AffectNet dataset that is used to train the HC-EML fa- 

ial emotion recognition model. Whereas, the second and third 

atasets i.e., skin-tone and gender-specific datasets are manually 

onstructed from the test set of the actual AffectNet dataset. 

We conduct appropriate quality control to ensure the correct- 

ess of sample distribution. Firstly, we constructed the skin-tone 

nd gender-based subsets by manually categorizing the whole test. 

or the skin-tone subset, we carefully split the fair and dark skin- 

one samples from each class distribution. Similarly, we split male 

nd female samples based on their appearance to form a gender 

ubset. Some of the examples from both subsets are demonstrated 

n Fig. 4 . After a successful data split, we designated a third party 

o verify the data distribution for each class and evaluate the qual- 

ty of images as well; the low-quality images that contain reflec- 

ion, or are unclear are discarded. Some of the main characteristics 

f each dataset are discussed below. 

(Actual) AffectNet dataset. To train the HC-EML model for facial 

motion recognition tasks, we choose the AffectNet-37k set which 
9 
ontains approximately 37k labeled images having seven afore- 

entioned facial emotions classes. The dataset images are normal- 

zed to 180x180 dimensions and randomly distributed into train 

nd set with 85 : 15 ratio (i.e., training set: 31,450, and test set: 

,550). 

Skin-tone AffectNet dataset. To analyze the skin tone-based pos- 

ible bias in the emotion-aware facial emotion recognition model, 

e formed a subset from the test set of the AffectNet dataset, com- 

rising 5,249 images that are equally categorized into dark and 

hite skin-based face samples of the seven emotion classes i.e., 

nger, Disgust, Fear, Happy, Neutral, Sad, and Surprise. 

Gender AffectNet dataset. Following the aforementioned prac- 

ice, we manually constructed a subset of male and female sam- 

les from the test set of the AffectNet dataset, comprising 5,120 

mages—distributed into seven classes to perform gender-based 

nalysis. To avoid wrong selection, we carefully cross-checked the 

election against each class of both, the male and female groups. 

.1.2. Model architecture 

In general HC applications, EML models are deployed on 

esource-constrained devices such as smart-wrist bands, smart- 

atches, and tiny personal assistants. These devices contain ultra- 

ow powered tiny processors with small random-access mem- 

ry, operational power, and memory space. Therefore, existing 

tate-of-the-art large-scale ML models ( He et al., 2016; Krizhevsky 

t al., 2017; Xie et al., 2017 ) cannot be deployed on such small-

cale hardware architectures. Recently, Giordano et al. (2020) , 

ohan et al. (2021) have presented tiny CNN-based classification 

etworks to perform face recognition tasks. However, to the best 

f our knowledge, there is no standard benchmark available for the 

raining and evaluation of EML models for face recognition or facial 

motion recognition tasks. In this regard, considering the memory 

nd processing limitations of embedded microcontrollers, we de- 

eloped ( Giordano et al., 2020; Mohan et al., 2021 ) inspired a cus- 

omized tiny CNN-based EML model—comprising of four convolu- 

ional layers followed by two dense layers, demonstrated in Fig. 5 

o perform facial emotion recognition tasks. 
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2 In stricter terms, the standard settings generally assume Q-32 quantized images. 
After successfully training, it is required to compress the model 

n order to efficiently fit the model in EML devices. Till recently, 

our types of model compression techniques are employed to fit 

t into low-powered architectures ( Cheng et al., 2017 ): (i) model 

runing and quantization, (ii) low-rank factorization, (iii) trans- 

erred convolutional filters and (iv) knowledge distillation. Based 

n the vast adaptation and better performance ( Chmiel et al., 

020 ), we utilized model quantization to compress our model. 

everaging our pipeline in Fig. 2 , we compressed our trained model 

sing three standard model quantization techniques, i.e., dynamic 

uantization, float16 quantization, and integer quantization. The 

ltimate aim of employing multiple quantization techniques is to 

nalyze the intrinsic robustness of the model while considering 

he trade-off between performance and size of the model for fa- 

ial emotion recognition tasks. 

.1.3. Adversarial evaluation 

We have evaluated the security of both the uncompressed 

nd the compressed models against three standard adversar- 

al ML attacks that include PGD attack ( Madry et al., 2017 ), 

uto attack ( Croce and Hein, 2020b ), and Fast Gradient-Sign 

ethod (FGSM) attack ( Goodfellow et al., 2014 ). For each attack, 

e set the upper bound to the perturbation introduced by an ad- 

ersary to each pixel to 0.01. 

Note that the discovery of adversarial examples triggered a 

lethora of papers aiming to defend against adversarial perturba- 

ions. However, most of these defense papers exploited some pre- 

rocessing or distillation mechanism as a filter to remove the ad- 

ersarial perturbations. However, as several later works would find 

ut, these defenses generally exhibited the so-called phenomenon 

f gradient obfuscation that fools an attacker into computing incor- 

ect gradients. Ultimately, the defenses appeared robust to the ad- 

ersarial perturbations, not because they were actually robust, but 

ecause the adversarial perturbations were incorrectly computed. 

o fool such defenses, several adaptive attack algorithms were pro- 

osed (generally customized against a set of similar defenses). To 

he best of our knowledge, these customized adaptive adversar- 

al attacks now constitute state-of-the-art complex adversarial at- 

acks. However, for vanilla models, the effectiveness of standard at- 

acks such as PGD and i-FGSM is comparable to the state-of-the- 

rt complex attacks. Additionally, following the guidelines laid out 

y Athalye et al. (2018) , while attacking the quantized model, we 

dapt these attacks such that the quantization layer is assumed to 

ork as a linear layer to the attacker, which lets the gradients of 

he subsequently deployed model backpropagate. 

Many recent works have exploited the robustification proper- 

ies of quantized inputs to counter adversarial attacks on DNNs ( Ali 

t al., 2019; Khalid et al., 2019 ). Therefore, we analyze how these 

odels can be partially robustified if we only allow quantized in- 

uts to be processed by the model. More specifically, we quantize 

n input image to either 1-bit, 2-bit, 3-bit, or 4-bit values, and re- 

er to the aforementioned quantization configurations as Q-1, Q- 

, Q-3, and Q-4 quantization, respectively. Figure 6 a illustrates the 

ffect of different quantization configurations on a random image 

rom the dataset. Note that Q-1 achieves the strongest quantization 

ffects followed by Q-2, Q-3, and Q-4, respectively. 

.1.4. Fairness evaluation 

Recent research studies ( Stickel et al., 2009 ) have triggered a 

ontroversial debate—the performance of DL-based facial/emotions 

ecognition systems is greatly influenced by the gender or skin 

one in input data. These reports raise imperative concerns regard- 

ng the adaptation of facial/emotion recognition-based HC-EML ap- 

lications in human society. Therefore, we analyze two major as- 

ects of our HC-EML model: (i) gender-based (male/female) anal- 

sis, and (ii) skin tone-based (dark/white) analysis. For this pur- 
10 
ose, we evaluate our aforementioned best-performing facial emo- 

ion recognition HC-EML model against the two custom-developed 

atasets—Skin-tone AffectNet, and Gender AffectNet dataset. Also, 

t is a common practice to employ input quantization to reduce the 

ize of data before passing it to EML models. Therefore, we evalu- 

te our model against variable quantized inputs i.e., 1-bit, 2-bits, 

-bits, and 4-bits referred to as Q-1, Q-2, Q-3, and Q4 in Figs. 7 ,

nd 8 , respectively. 

.1.5. Security evaluation 

In step with the recent advancements in data poisoning and 

anipulation approaches, backdoor attacks have emerged as a se- 

ious security threat to DL models. This experiment particularly fo- 

uses on exploring the effectiveness of backdoor attacks against 

iny-ML models with different quantization configurations for fa- 

ial emotion recognition tasks. More specifically, following recent 

ractices ( Ali et al., 2020; Gao et al., 2019 ), we poison the training

ata by randomly selecting 3% of the training data samples, inject- 

ng a 5 × 5 red square patch in the top-left corner of each of the

elected samples, and assigning an attacker’s chosen target class—

n our case, Happy —to the perturbed image. The model trained on 

he poisoned dataset is referred to as the poisoned model in the 

uture. 

To evaluate the effectiveness of the backdoor attack, we first 

reate poisoned test data by poisoning all the test data inputs 

y pasting a 5 × 5 trigger/patch in the top-left corner of the im- 

ge. We then use two commonly used metrics, the Attack Success 

ate (ASR)—the ratio of the poisoned test samples that are mis- 

lassified into the target class—and poisoned accuracy—the ratio 

f the poisoned test samples correctly classified into the original 

lass. Both of these metrics are two of the widely used metrics in 

ackdoor attacks literature ( Ali et al., 2020; Gao et al., 2019 ). 

.1.6. Explainability evaluation 

In this section, we analyze the trustworthiness of EML mod- 

ls in human-centric applications focusing on the specific set- 

ing of facial emotion recognition. More specifically, we gener- 

te explanations of our tiny model for the randomly selected im- 

ges from the test set using a well-known black-box XAI method, 

HAP ( Lundberg and Lee, 2017 ), and qualitatively analyze the gen- 

rated explanations to get important insights. 

.2. Evaluating the accuracy of trained models 

Our uncompressed model achieves an accuracy of ∼ 96% over 

he original test set under standard training settings (training over 

on-quantized original images 2 ) as shown in Fig. 6 c. When com- 

ressed, the accuracy slightly drops to 95% irrespective of the 

ompression technique. However, this slight drop in the accuracy 

s also coupled with a significant reduction in the model size. 

ore specifically, our uncompressed model occupies a space of 

.4MB in the hard drive, while the sizes of the compressed models 

re 0.55MB, 1.1MB, and 0.55MB for dynamic quantization, float16 

uantization, and integer quantization, respectively. 

From Fig. 6 b, we note that as the quantization strength in- 

reases, the accuracy of the model trained under the standard set- 

ings significantly decreases. We highlight two main reasons for 

his behavior. Firstly, a strongly quantized image contains lesser 

nformation as compared to the original input image. Secondly, as 

he model is trained over non-quantized inputs, the quantized in- 

uts are out of the distribution of the model’s training set. This is 

lso illustrated in Fig. 6 a, where we note a significant difference 

etween the original image and the Q-1 image. 
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Fig. 6. Experimental results of our HC-EML Emotion-Aware Facial Recognition models under adversarial attacks. 
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To increase the performance of models on the quantized im- 

ges, we perform the quantization-aware training by augmenting 

ur training set with the quantized images and then fine-tuning 

he original model with augmented data. The results depicted in 

ig. 6 b show that a quantization-aware model exhibits a signifi- 

antly greater performance over strongly quantized inputs—for ex- 

mple, the accuracy increases from 37% to 66% and from 64% to 

4% , respectively over Q-1 and Q-2 quantized images. However, the 

ost of this superior performance over the quantized images is a 

light decrease (∼ 5%) in the accuracy over the original images as 

hown in Fig. 6 b. 

.3. Evaluating the robustness of emotion-aware facial recognition 

odels 

Figure 6 c presents the results of the three aforementioned ad- 

ersarial attacks on (i) the uncompressed and (ii)-(iv) the com- 

ressed models trained under the quantization-aware setting. We 

lso provide the accuracy of the quantization-aware models on the 

nperturbed (No Attack) images for the sake of comparison. Both 

he uncompressed and compressed models achieve similar accu- 

acy with 0 . 02% to no decrease in the overall accuracy over the

nperturbed images. For the non-quantized (original) images, all 

hree adversarial attacks reduce the accuracy of the models from 

91% down to 0% . Therefore, we conclude that the adversarial 
11 
ulnerabilities of the uncompressed DL models fully exhibit them- 

elves in the compressed variants of DL models. 

For the quantized images, we note a considerable improvement 

n the accuracy of quantization-aware models over the adversari- 

lly attacked images, notably for stronger quantization. For exam- 

le, for the PGD attack, the accuracy of the quantization-aware 

odels on average increases from 0% to ∼ 50% . We specifically 

ttribute this to the robustification property of the quantization 

unction. For example, note that Q-1 quantization maps all the val- 

es less than 0.5 to 0, and the values greater than 0.5 to 1. Con-

ider an image pixel of value 0.18, which is mapped to 0 when Q- 

 quantization is applied. While attacking, if an adversary were to 

erturb the pixel value by 0.01, the new pixel value would either 

ecome 0.19 (if the perturbation is positive) or 0.17 (if the pertur- 

ation is negative). However, Q-1 quantizing the perturbed image 

ould still map the perturbed pixel value to 0. This robustification 

roperty of the quantization function is what notably increases the 

ccuracy of the quantization-aware models over the adversarial ex- 

mples. 

.4. Evaluating security of emotion-aware facial recognition models 

Figure 9 illustrates the effect of the backdoor attack on the 

oisoned model by comparing its predictions on three clean 

est images (randomly chosen from the test set) and the poi- 
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Fig. 7. Evaluating Skin Tone-based Bias Factor of our HC-EML Facial Emotion Recognition Model. 

Fig. 8. Evaluating Gender-based Bias Factor of our HC-EML Emotion-Aware Facial Recognition Model. 
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oned counterparts of the same clean images characterized by 

 × 5 red patch trigger in the top-left corner of the image. As 

hown in the figure, the backdoor attack significantly influences 

he performance of EML models in facial emotion recognition 

asks on the poisoned test inputs. Notably, our EML model pro- 

uces accurate predictions on clean examples with good confi- 

ence scores. However, the same EML model malfunctions with 

omparatively higher confidence when inferring the poisoned 

nputs. 
12 
To study the effect of quantization on the efficacy of back- 

oor attacks, we train a quantization-aware model on the poisoned 

ata, and report the clean accuracy and poisoned accuracy of the 

uantization-aware EML model and the ASR of the attack in Fig. 10 . 

e note that a stronger quantization slightly decreases the efficacy 

f backdoor attacks, as illustrated by a decreasing ASR and increas- 

ng poisoned accuracy in Fig. 10 . One of the key reasons for the 

bserved decrease in the ASR is that the quantization significantly 

ecreases the precision of different colors in an image. Ultimately, 
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Fig. 9. An comparison of the decisions made by the model for a set of clean images 

and the respective poisoned images (defined by a 5 × 5 red square patch in the top- 

left corner) are input to the model. The red square patch changes the model output to 

happy, indicating a successful backdoor attack . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Analyzing the performance of backdoor attacks on quantized face images 

for different quantization configurations considered in the paper. Stronger quantiza- 

tion slightly decreases the efficacy of backdoor attacks . 
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hile training a quantization-aware model, quantization increases 

he probability of a red patch of random size naturally appearing 

n the top-left part of an image. However, because the labels of 

hese images from the poisoned train set have been possibly left 

nperturbed (following Gao et al., 2019 , we only poisoned 3% of 

he images), such images act as a natural defense against the per- 

urbed images inserting a backdoor in the model during training. 

ltimately, the efficacy of the backdoor attack is decreased, for ex- 

mple, from ∼87% for the non-quantized images to ∼60% for the 

-1 quantized images. We conjecture that this natural backdoor- 

esisting capability of the quantization-aware training may be used 

n the future to increase the effectiveness of a backdoor defense in 

n efficient (in terms of power and memory consumption on edge 

evices) manner. 

.5. Evaluating explainability of emotion-aware facial recognition 

odels 

We generated and carefully analyzed the explanations produced 

y SHAP for tens of images from each class. Figure 11 reports the 

xplanations for three randomly selected images of three different 

lasses—Disgust, Happy and Angry . From the explanations, we ob- 

erve that the output of the facial emotion recognition model is 

ainly influenced by the facial areas such as the region around the 

yes, the alar crease and nostrils, the lips, and the jaws. For exam- 

le, the top-row image in Fig. 11 is classified into the disgust class 

y the model. The explanations identify the eyes, lips, and eye- 

rows to be the most influential features of the face when decid- 

ng the class disgust . Similar observations are made for the bottom- 

ow image that is classified as angry . Similarly, for the image in 

he middle, eyes, nose, and lips are the key features in deciding 

he class happy , with the area around the lips being the most con- 

ributing factor. By analyzing several images, we have noted that 
13 
he lips are generally the most contributing features of the class 

appy . 

Interestingly, the explanations indicate that the background re- 

ion is also slightly influencing the final outcome for all three im- 

ges. This also partially explains why the facial emotion recogni- 

ion model is vulnerable to adversarial attacks. One implication 

f this is that adding slight perturbations to tens of pixels in the 

ackground region can significantly affect the model output while 

lso being inconspicuous. 

.6. Evaluating fairness of emotion-aware facial recognition models 

.6.1. Skin-tone analysis 

The results (in Fig. 7 ) demonstrate that the performance of our 

mployed model decreases with the increase in the strength of 

uantization. But interestingly, the model drops the accuracy sig- 

ificantly on the Q-1 image set of dark skin tone-based facial im- 

ges, as compared to the white skin tone-based images. We note 

hat one of the main reasons for this significant difference in Q-1 

mages is that dark skin tone facial images lose a huge amount 

f information due to the strong contrast effect of quantization, 

s shown in Fig. 7 b. Whereas, Q-1 quantization exposes the white 

kin tone samples, however, retain greater emotional features of 

he face than black faces, specifically notable for Q-1 configura- 

ion (in Fig. 7 a) the facial expressions remain visible with more 

vailable features than dark skin tone Q-1 images. Resultantly, the 

rediction of the HC-EML model is negatively influenced on the 

ark skin tone sample, while it generated an accurate prediction 

gainst white skin tone facial images. To further strengthen this 

ssumption, we analyzed the difference between the original and 

he quantized images for the white and the dark skin tone-based 

acial images by calculating the Mean SSIM under different config- 

rations. Resultantly, it is noted that the dark skin face images are 

egraded more severely by quantization than the white skin faces, 

s depicted in Fig. 7 d. Specifically, we note that the quantized dark 

kin face images consistently show poor SSIM values as compared 

o the white skin faces on Q-1 images, as shown in Fig. 7 e. 

However, we would like to emphasize that several unknown 

actors—the lighting conditions of an image or the background—

ay be implicitly influencing the trends observed previously. For 

xample, insufficient or poor lightning can possibly conceal key fa- 

ial features determining the emotion of the face. To more compre- 

ensively understand the reasons for the observed trends, we re- 

all that a quantized image typically remains unaffected by smaller 

erturbations in the original image due to the natural robust- 

ess of the quantization mechanism to small changes in the input. 

herefore, we conjecture that the images mostly composed of the 

ow contrast regions are more significantly degraded when quan- 

ized. To understand this, consider two neighboring pixel values, p 1 
nd p 2 , mapped to q 1 = Q(p 1 ) and q 2 = Q(p 2 ) by the quantization

echanism, Q(·) , such that the difference (contrast) of the pixel 

alues, ε = p 2 − p 1 , represents a relevant feature for the emotion 

ecognition. If ε is sufficiently small (characterizing a lower con- 

rast), then E [ q 1 ] = E [ q 2 ] , where E [ q 1 ] and E [ q 2 ] denote the ex-

ected value of q 1 and q 2 respectively, which removes the relevant 

eature, as E [ q 2 − q 1 ] = 0 in the quantized image. This can result

n significant degradation of low contrast features, which validates 

ur conjecture. 

The aforementioned formalization highlights one of the pos- 

ible reasons for the observed bias against dark skin-tone faces. 

igure 12 compares the contrast images composed of region-wise 

ontrast of randomly chosen dark and fair skin-tone faces for dif- 

erent filter sizes—2 × 2 , 3 × 3 , 4 × 4 —where the filters define the

egion over which the contrast is computed. Interestingly, we note 

hat even if the dark skin-tone face image is captured in natural 

ight (top row of Fig. 12 ), it exhibits significantly lower contrast 
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Fig. 11. Explanations generated by SHAP for three randomly selected images of three different classes—Disgust, Happy and Angry. The model output is mainly influenced by the 

region around eyes, the alar crease and nostrils, the lips and the jaws . 

Fig. 12. Visualizing and comparing the contrast images of different skin-tones in 

multiple lighting conditions. The contrast image is computed by respectively com- 

bining the contrast value of a subset of image pixels as a pre-defined filter of dif- 

ferent sizes strides through the image in a convolutional manner. ( k = 2 denotes 

that a filter of size 2 × 2 has been used to compute the contrast image). Dark skin- 

tone faces have typically lower visual contrast in facial features which may significantly 

degrade the image quality when quantization is applied . 
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Fig. 13. Histograms of the contrast images for the skin-tone dataset. The contrast 

values for the faces of darker skin-tone are significantly smaller than those for the 

fairer skin-tone, which may lead to significant image degradation when quantization 

is applied . 
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a

alues around key contributing regions—such as eyes, alar creases, 

nd lips, as identified previously—as compared to the fair skin- 

one faces causing a significant degradation in quantized images 

llustrated in the last column (Q-1) in Fig. 12 . For a more compre-

ensive analysis, we compute the contrast images of all the dark 

nd white skin-tone samples from the custom skin-tone dataset 

nd report the values in the form of a histogram in Fig. 13 . As

vident from the figure, the dark skin-tone faces generally exhibit 

ignificantly lower contrast values as compared to the white skin- 

one faces, which may be one of the reasons for a relatively poorer 

erformance of the quantization-aware facial emotion recognition 

ML model. 

.6.2. Gender-based analysis 

It can be seen from Fig. 8 that the performance of our em- 

loyed model decreases with the increase in the strength of quan- 

ization, similar to the aforementioned white and dark skin-tone 

nalysis. However, it is worth noting that male face images are 
14 
omparatively more severely degraded than female faces, specif- 

cally notable for the Q-1 configuration. One of the reasons for 

his difference is that the male set loses more informative fea- 

ures due to the contrastive effect of strong quantization on Q- 

 images, as shown in Fig. 8 a. Whereas, a similar contrast effect 

aused by quantization only exposes the images, while retaining 

omparatively more information than male faces, especially for Q- 

 configuration, as shown in Fig. 8 b. Resultantly, the prediction of 

he HC-EML model prejudices against the male set, while it gener- 

ted an accurate prediction against the female set, as depicted in 

ig. 8 c. We further analyzed the difference between the data dis- 

ribution of male and female sets against Q-1, Q-2, Q-3, and Q-4 

uantization strengths by calculating the SSIM to build up our as- 

umption. It can be noted from Fig. 8 d that male face images are

egraded slightly more severely by Q-1 quantization than female 

ace images. Specifically, quantized male face images show com- 

aratively poor SSIM values, though slightly, than female face im- 

ges, as shown in Fig. 8 e which is an influential factor in reducing

he performance of our model on male test samples. 

. Lessons learned and future work directions 

Our case study presents two major findings. First, quantization- 

ware training can significantly increase the robustness of the EML 
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odel against adversarial attacks over quantized inputs. Although 

ore strongly quantized inputs reduce the accuracy of the model, 

hey also more strongly resist adversarial attacks due to the inher- 

nt resilience of the quantization mechanism. 

Secondly, although quantized images are hardware-friendly and 

equire significantly less processing time and computational re- 

ources, we identify major stereotypical issues associated with 

uantizing the input images. Specifically, we have discovered that 

uantized inputs significantly favor white skin faces over dark skin 

aces. Ultimately, the model performs significantly poorly on the 

uantized inputs for dark skin faces as compared to white skin 

aces. We have also highlighted similar stereotypical discrimination 

etween male and female faces, where quantization notably favors 

he female faces over the male faces, specifically the Q-1 quantiza- 

ion configuration. 

Future works should focus on evaluating HC-EML models 

gainst privacy attacks—for example, the membership inference at- 

acks ( Choquette-Choo et al., 2021 ) and the model inversion at- 

acks ( Kahla et al., 2022 )—and proposing novel defense methods 

o mitigate and counter such privacy attacks. Also, our analysis in- 

icates a dire need for provably robust and private HC-EML mod- 

ls with verifiable guarantees to increase the proliferation of HC- 

ML-based applications in human patrons. Lastly, we strongly rec- 

mmend that future researchers while developing HC-EML mod- 

ls utilize state-of-the-art bias mitigation techniques such as dif- 

erential privacy and auto encoder-based latent structure learning 

ethods ( Amini et al., 2019 ) to improve the fairness and trustwor- 

hiness of EML models across different segments of society. 

. Conclusions 

In this paper, we discuss the need for human-centric embed- 

ed machine learning (HC-EML), in particular, such applications 

hat are enriched with social norms and human values to pro- 

ide an efficient and safe experience. Keeping the human-centric 

rtificial intelligence (HCAI) framework in view, we presented a 

ipeline for the development of HC-EML applications while high- 

ighting major challenges and vulnerabilities encountered at each 

tage. Specifically, we categorized these challenges into four ma- 

or groups, i.e., privacy, security, trustworthiness, and robustness. 

ased on the analysis, we discuss potential solutions to address 

he aforementioned challenges. To demonstrate the effectiveness 

f the proposed HC-EML pipeline, we presented a case study to 

nvestigate the security vulnerabilities and fairness of our human 

motion-aware EML model. Our case study shows that although 

ore strongly quantized inputs reduce the accuracy of the model, 

hey also provide greater resistance to adversarial attacks. Further, 

e discovered major racial and gender stereotypical issues associ- 

ted with quantizing the input images. Although quantized images 

ave been widely used because of their hardware-friendliness, care 

ust be taken in the future while deploying such systems in real- 

orld applications. 
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