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ABSTRACT Based on the global greenhouse gas (GHG) emissions targets, governments all over the world
are speeding up the adoption of electric vehicles (EVs). However, one of the key challenges in designing
the novel EV system is to forecast the accurate time for the replacement of conventional vehicles and
optimization of charging vehicles. Designing the charging infrastructure for EVs has many impacts such as
stress on the power network, increase in traffic flow, and change in driving behaviors. Therefore, the optimal
placement of charging stations is one of the most important issues to address to increase the use of electric
vehicles. In this regard, the purpose of this study is to present an optimization method for choosing optimal
locations for electric car charging stations for Campus charging over long-term planning. The charger place-
ment problem is formulated as a complex Multi-Criteria Decision Making (MCDM) which combines spatial
analysis techniques, power network load flow, traffic flowmodels, and constrained procedures. The Analytic
Hierarchy Process (AHP) approach is used to determine the optimal weights of the criteria, while the mean
is used to determine the distinct weights for each criterion using the AHP in terms of accessibility, environ-
mental effect, power network indices, and traffic flow impacts. To evaluate the effectiveness of the proposed
method, it is applied to a real case study of Qatar University with collected certain attributes data and relevant
decision makers as the inputs to the linguistic assessments and MCDM model. The Ranking of the optimal
locations is done by aggregating four techniques: Simple Additive Weighting Method (SAW, Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS), Grey Relational Analysis (GRA), and Preference
Ranking Organization Method for Enrichment Evaluations (PROMETHEE-II). A long-term impact analysis
is a secondary output of this study that allows decision-makers to evaluate their policy impacts. The findings
demonstrate that the proposed framework can locate optimal charging station sites. These findings could
also help administrators and policymakers make effective choices for future planning and strategy.

INDEX TERMS Analytic hierarchy process, charger, electric vehicle, load flow multi-criteria decision
making.

I. INTRODUCTION
The future increase in electric vehicles (EVs), as part of
sustainability goals, requires effective planning strategies for
EV deployment. The success of this transition depends on
the ability to provide adequate power to the EVs charging
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demand. The adaptation of EVs can significantly contribute
to reducing CO2 emission levels and can be further enhanced
with renewable energy distributed generation and battery
energy storage systems. However, the increased demand may
cause stress on the power network and may lead to grid insta-
bility [1]. Methods of planning for EV charging infrastructure
and its charging impact on the electrical network are found
in several research papers. For instance, state-of-the-art EV
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TABLE 1. Problem objectives/attributes and solution methods for the EV charging placement problems.

charging technologies, placement and sizing methods, and
impacts are reviewed in [1]. Also, other properties of EV
chargers such as solar-powered EV chargers and vehicle-
to-grid (V2G) technology can increase the benefits of EV
chargers by reducing the charging energy burden on the grid
and minimizing power losses [2].

The rapid development of EVs is promising that the future
of modern transportation will be for EVs. However, the exact
time for the full replacement of conventional vehicles is
conditional on solving the issues related to charging, safety,
and the demand for power which is amplified during the
fast charging mode [3]. The most common problem with the
implementation of EVs is the late development of EV charg-
ing stations (EVCSs) compared with the estimated future
demand for the application. Also, installing electric vehi-
cle charging stations in a power system without a suitable
framework may cause an undesirable effect on the network
performance or user preference because of several reasons.
Overestimating the number of EVs can cause grid violations,
and underestimation of the number of EVCSs can risk EV
users’ convenience. Concentrating charging stations in a spe-
cific area, from both technical and economic perspectives,
can escalate local overloads’ risk and business competition.

Higher education is a key contributor to society’s efforts
in achieving sustainability goals through initiating transfor-
mational projects [4]. Universities worldwide are supporting
the energy transition to achieve global carbon neutral and are
committed to supporting the growth of electric vehicle up
take [5]. Many universities worldwide start by initiating elec-
tric vehicle infrastructure projects to promote EV adoption in
communities [6] and [7]. A survey on preferences of early EV
adopters in the EU and the US shows that they are between
18 and 34 of age, are interested in technology, and are well-
educated [8] and [9].

In this context, as a means of enabling the deployment
of charging stations within universities, this research aims
to create an integrated planning model that incorporates the
placement of EVCSs within the traffic and power networks.
Most of the previous studies have focused on urban as well as
city-size projects and have not been applied before for cam-
pus EV charging [10]. This will affect the placement problem
which depends on the motivation of journeys and also project
objectives which are linked to the university’s transportation
strategy and sustainability goals. Thus, the problem is devel-
oped based on campus charging behavior and infrastructures,
such as charger locations, parking congestion or utilization,
user parking durations, distance from campus gates, existing
chargers, walking distances to buildings, bus stops, and cafe-
teria, which are specific for a campus charging problem. The
proposed integrated model follows a multi-level execution
of systems including campus EV adoption dynamic system,
traffic flow, and power network load flow. The final solution
solves the charger placement for different time periods.

A. CHARGER STATION PLACEMENT PROBLEM &
OBJECTIVES
The EV charging infrastructure is a complex problem that
has been extensively researched in the literature as reviewed
in the recent comprehensive study in [11]. The author cate-
gorizes the charging station problem under facility location
problems (FLP). The studies in the literature covering the
FLP problem varied according to the charging demand mod-
els, game theory approaches decision variables, uncertainty,
time-dependency, and solution methods. Most of the studies
either cover the economic costs of the EV charger including
the investment, operation, and maintenance costs, Table 1.

The study in [19] optimizes minimizing the investment
cost of the distributed power system and its operation while
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maximizing the annually captured traffic flow considering
different types of charging stations. Another study relies on
demand response incentives and proposes a cost-based opti-
mization technique [12].

Other solutions cover only the electrical objectives such
as line loss reduction. The study in [14] optimizes simul-
taneously the locations of EVCS and distributed renewable
resources (DRRs) considering loss minimization. Another
study in [2] considers solar-powered electric vehicle charging
stations with a cost function to minimize the power network
objectives; voltage variations, stability, and line losses, using
different optimization methods. The study did not consider
the geographical benefit or traffic density of the selected sites.

The authors of [20] consider the economic benefit in time
for the sizing and sitting of EVCs through net present values
and lifecycle cost where the model considers the traffic flow
and power grid network. Also, a useful charging placement
method in [21] considers project budget, charging demand,
and stationwaiting times simultaneouslywith knapsack pack-
ing constraint and a set covering constraint. These studies
have a wider range of objectives compared to [20], [12],
and [15], but at the same time are including more objectives
will make the problem more difficult to solve.

B. EV CHARGER PLACEMENT IN THE LITERATURE
The EV charging station placement solution methods either
solve an optimization problem to give an ‘‘exact’’ solu-
tion or near the optimal solution ‘‘Heuristic’’ solutions.
The approaches consider different sets of decision vari-
ables and constraints. Most studies in the literature consider
multi-objective optimization methods considering different
objectives [12]. Other approaches includeMetaheuristic tech-
niques, such as the genetic algorithm used in [13] and [14],
particle swarm optimization in [15], and the hybrid optimiza-
tion algorithm in [16] and [17]. The previous techniques and
objectives require modeling real-world systems to predict the
required data for optimization. The benefits and drawbacks
of the majority of heuristic optimization are the need for a
sizable amount of computational and storage resources. This
is the biggest obstacle to its application in a real-time setting.

The Multi-Criteria Decision Making (MCDM) is another
type of classification for the EV charger placement prob-
lem which deals with multiple, complicated and conflicting
criteria. The EV charger placement problem is considered a
complicated multi-criteria decision-making problem in many
studies [10]. According to the literature, there are two types of
MCDM problems; the problem can be Multi-Objective Deci-
sion Making (MODM) or Multi-Attribute Decision Mak-
ing (MADM). MODM methods solve for the previously
described which involve optimization techniques [12], [10].
WhileMADMproblems reflect the fuzzy nature of real-world
problems as opposed to precision and have been seen to be
far-reaching in real-life decision-making [18], [19], and [20].

The classifications of MADM studies are based on the
different evaluation criteria and the selection method. In [18],
the MADMmethod is used for the placement of EV chargers

for mega-size projects such as cities and countries. In a
significant number of cases, the problem of charging stations’
location is connected with determining their number, taking
into account the intensity and motivation of journeys and the
technical parameters connected with the process of battery
charging. The studies in the literature, therefore, are classified
according to their decision objectives or attributes in EV
charging placement problems, see Table 1.

In summary, the limitations of the above studies, are clear
where MODM methods can cover a fewer number of objec-
tives compared with the MADM methods, in Table 1. For
instance, the study in [22] introduces the prospective of sus-
tainability considering economic growth, social development,
and environmental protection. Other studies consider the opti-
mum EVCS location combined with photovoltaic (PV) and
battery energy storage (BES) [23].

The proposed solution is developed based on campus
charging behavior, and accordingly, six objectives are cov-
ered; environmental, economic, accessibility, proximity to the
user power network, and system reliability, see Figure 1. This
paper also investigates the impact of the proposed MCDM
method on the power grid and traffic flow over a long-term
period for future prediction, which has not been properly
addressed in the literature.

The MCM method and normalization techniques both
affect the results of the MCDM [24]. We compare the results
of 16 case studies which include 4 normalization techniques
and 4 MCDM methods. The final ranking is the aggregated
solution of all the cases using the Borda method and statis-
tic techniques [25], which are applied to evaluate alterna-
tive locations for charging stations of EVs. The challenging
issue in MCDM problems is the concern about its relia-
bility for real-world applications as the real data is vari-
able and stochastic. Instead of having a single solution, this
paper extends the MCDM problems into a constrained prob-
lem which allows the decision-maker predict the long-term
impact of their decision. Power system and traffic flow have
been applied to the MCDM attribute calculations for model
validation and decision-makers evaluations.

The proposed method allows the planner to set different
constraints and for the decision maker to select the final plan
based on the long-term output of the suggested technique.
The MCDM techniques have not been applied for EVCSs
placement for campus size over long-term analysis. It allows
us to determine interdependency among the criteria/factors
and reflect relative relationships within them [31]. In the
proposed methodology, theMCDM has been used to evaluate
criteria weights in the decision process by utilizing these
pairwise comparisons.

C. CONTRIBUTION AND ORGANIZATION
With the motivations stated above, this paper proposes a
long-term planning model which integrates the MCDM
methodology consisting of the decision-making model, ana-
lytic hierarchy process (AHP), load flow, and spatial and
traffic flow models, to optimally locate campus charging

123454 VOLUME 10, 2022



H. M. Abdullah et al.: Integrated Multi-Criteria Model for Long-Term Placement of EV Chargers

FIGURE 1. Objectives of the proposed EV placement problem specific for campus EV chargin.

stations for EVs over a long-term project. This research
aims to develop a novel optimization technique for searching
the optimal placement of these required chargers over the
potential location. The problem considers the limitation of
the number of parking slots, power system capabilities and
constraints, extra driving costs, solar energy potential, loca-
tion attractiveness, and traffic congestion. The main goal of
this research is to address the staging plan of EV deploy-
ment at a campus by determining the best locations for EV
chargers every year, taking into account multiple objectives.
The secondary goal of this study is to evaluate the impact
of EV charger installation on both the traffic flow and the
power network. Finally, to determine the factors that may
have a significant impact on the total decision of charging
station placement, we conducted a sensitivity analysis on the
constraints and found that the site selection is very sensitive
to the traffic flow and policy constraints.

The main contributions of this study are threefold:

1) Formulating the dimensions affecting the placement
decision problem for EV charger placement for campus
EV chargers.

2) The placement problem model is integrated for
long-term prediction where the traffic and power net-
work models are interdependent and are re-evaluated
every year after each charger placement solution for
impact analysis and traffic flow prediction.

3) A real-life case study for Qatar University is chosen as
a validation for this research, and the linguistic assess-
ments of actual decision-makers are inputs to obtain the
weights of this problem.

4) Demonstrate the potential advantages of the proposed
EVCS site selection framework in analyzing policy
impact on the placement problem through simulation.

II. PROBLEM FORMULATION
This paper takes into account the predicted number of charg-
ers at a campus and then determines the best locations for
the EV chargers every year. The solution to the placement
problem is to find the ranking of the potential locations, which
is the primary research question of this paper, see Figure 2.
The secondary results include the impact effect of the charger
installations on both the transportation and power network
over the years.

FIGURE 2. Illustration of the problem and proposed framework.

Figure 3 illustrates the building blocks used in solv-
ing the charger placement problem. This study takes into
account site properties which are the decision criteria, defined
in Figure 1; environmental, economic, accessibility, user
demand, proximity-to-user, power grid, and risks. Then
different multi-criteria methods are followed to rank the
EV charger potential locations, which are; Simple Addi-
tive Weighting (SAW); Technique for Order Preference by
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FIGURE 3. The EV charger placement problem.

Similarity to the Ideal Solution (TOPSIS); Grey Relation
Analysis (GRA): Preference Ranking OrganizationMETHod
for Enrichment Evaluations (PROMETHEE). This section
defines the aggregation models and sub-models involved in
obtaining site properties and the final solution.

A. AGGREGATION MODELS OF ALTERNATIVES
This study presents several important methods that have more
high potential for solving decision-making problems in the
production environment:

1) SIMPLE ADDITIVE WEIGHTING (SAW)
SAW chooses the alternative A∗i with the maximum weighted
average outcome [25]. The Performance indicator Qi of the
i-th alternative, in (1), was determined as the entire standard-
ized estimations of the attributes rij with the weight wj of the
j-th criteria:

Qi =
∑n

j=1
wj · rij, (1)

where
∑n

j=1 wj = 1 and rij are the normalized values of the
decision matrix.

2) TOPSIS (TECHNIQUE FOR ORDER OF PREFERENCE BY
SIMILARITY TO IDEAL SOLUTION)
TOPSIS determines the performance indicator of the i-th
alternative Qi, a homogeneous function by (2) to (5);

Qi =
S−i

S+i + S
−

i

, (2)

where,

vij = rij · wj, S
+

i = d(vij, v
+

j ) , S
−

i = d(vij, v
−

j ), (3)

v+j = {max
i
vij
∣∣∣if j ∈ C+j ; min

i
vij
∣∣∣if j ∈ C−j } , (4)

v−j = {min
i
vij
∣∣∣if j ∈ C+j ; max

i
vij
∣∣∣if j ∈ C−j } , (5)

S+i and S−i are the distances d between the ideal and anti-ideal
objects respectively. Whereas, the alternative Ai in the

n-dimension attributes space, is defined in one of the Lp-
metrics. The TOPSIS ranking result depends on the choice
of distance metric.

3) GRA (GREY RELATION ANALYSIS)
GRA evaluates the effectiveness of alternatives in two groups
with respect to ideal and anti-ideal objects. The sequence of
calculations is as follows:
Step 1: Define two sets of attributes i.e., ideal and anti-

ideal, by (6);

r (1)j =

max
i

(
rij
)
, if j ∈ C+j

min
i

(
rij
)
, if j ∈ C−j

,

r (2)j =

min
i

(
rij
)
, if j ∈ C+j

max
i

(
rij
)
, if j ∈ C−j

(6)

Step 2: Determine the matrix of deviations of normalized
values from the ideal and anti-ideal, by (7);

V (1)
ij =

∣∣∣r (1)j − rij
∣∣∣ , V (2)

ij =

∣∣∣r (2)j − rij
∣∣∣ (7)

Step 3: Determine the matrices and the gray relational coef-
ficient, by (8) and (9);

g(1)ij =
min
i

(
min
j
V (1)
ij

)
+ β · max

i

(
max
j
V (1)
ij

)
V (1)
ij + β · maxi

(
max
j
V (1)
ij

) (8)

g(2)ij =
min
i

(
min
j
V (2)
ij

)
+ β · max

i

(
max
j
V (2)
ij

)
V (2)
ij + β · maxi

(
max
j
V (2)
ij

) (9)

Step 4: Determination of the indicator performance for the
alternative Qi, by (10) and (11);

Qi = Q(1)
i /Q

(2)
i , (10)

Q(1)
i =

n∑
j=1

g(1)ij · ωj, Q
(2)
i =

n∑
j=1

g(2)ij · ωj (11)

4) PROMETHEE (PREFERENCE RANKING ORGANISATION
METHOD FOR ENRICHMENT EVALUATIONS)
This method starts with setting the preference function for
two objects for each criterion Hj = (dis, p, q). As a rule,
they have two parameters: p - indifference threshold, which
reflects the fact that if the difference of dis values of two
alternatives I and s is unimportant, then objects by criterion j
are equivalent. If the difference in the threshold value p is
exceeded, a preference relation is established between the
objects. If the difference in threshold q is exceeded, the
preference function corresponds to the ‘‘strong preference’’
of variant i over variant s with respect to the j criterion.
With the difference of dis in the interval from p to q, the
preference function is less than 1, which corresponds to a
‘‘weak preference’’. The choice of the preference function is
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determined by the decision-makers. Some types of functions
are preferred H (d) and are presented in Table 2.

TABLE 2. Preference functions for PROMETHEE-II.

The second step is to calculate the difference in the values
of the criteria for the two objects and calculate the preference
indices V in (12) and (13). Finally, is to determine the prefer-
ence factors by (14) and (15).

dis = aij − asj;Hj = Hj (dis, p, q, ) , (12)

Vis =
∑n

j=1
wj · Hj − [m× m]matrix (13)

8+i =
∑m

s=1,s6=i
Vis;8

−

i =
∑m

s=1,s6=i
Vsi; (14)

Qi = 8
+

i −8
−

i . (15)

B. CRITERIA MODELS AND CONSTRAINTS
This section explains the models included in the proposed
approach, in Figure 4, including the power system, traffic
system, and spatial model. These models are simulated to
find the impact of EV charger installation on both the traf-
fic flow and the power network for the annual EV charger
installations.

FIGURE 4. Models included in the study.

1) EV CHARGER NUMBERS AND DEMAND MODEL
Accurately modeling an EV infrastructure planning frame-
work requires EV adoption to be known [26]. Forecasting is
necessary for EV production planning, policy-making, power
generation, and supply equilibrium. Multiple methods for
EV forecasting have been proposed by these studies in [26]
and [28]. In [29], a system dynamics model combined with
optimization is proposed for obtaining the optimum amount
of EV infrastructure for charging with solar PV projects. The
same system-dynamics model is used to obtain annually the
number of installed chargers on campus to be used as the input
to the EV charger placement problem model proposed in this
study.

2) POWER SYSTEM AND LOAD FLOW
A power system can be modeled by knowing the loads, cable
lengths and impedances, and transformer sizes as shown
in Figure 5. The basic tool for electrical system analysis
is the power flow analysis which is used to determine the
performance of the system. The load flow involves finding
the node voltages, line currents, and system losses, which
are necessary for optimization for network planning which
in the process involves repeating the load flow for multiple
iterations. When applying the optimization, the efficiency
of the load flow technique is taken into consideration. The
classification and comparison of load flow techniques have
been addressed in [30]. The popular backward-forward sweep
(BFS) approach has been used to determine the performance
indices in the proposed study [31].

FIGURE 5. Series impedance line and bus model – power system model.

A distribution line illustrated in Figure 5 shows the effec-
tive active power Pi and reactive power Qi flowing in the
branch ‘j’ through the line resistance Rj and reactance xj from
node ‘i’ to node ‘i+ 1’. The active power and reactive power
are calculated by (16) and (17);

Pi = PTi+1 + Rj

(
PT2i+1 + Q

T2
i+1

)
i+ 1

(16)
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TABLE 3. SEA standard for EV charging stations [33].

Qi = QTi+1 + xj

(
PT2i+1 + Q

T2
i+1

)
i+ 1

(17)

where PTi+1 and QTi+1 are the total active and reactive power
at the node ‘i+ 1’ formulated in (18) and (19);

PTi+1 = Pi+1 + PLi+1 (18)

QTi+1 = Qi+1 + QLi+1 (19)

Considering the EVCS and PV implementation in the sys-
tem, the total power equations aremodified into (20) and (21);

PTi+1 = Pi+1 + PLi+1 + P
EVCS
i+1 − P

PV
i+1 (20)

QTi+1 = Qi+1 + QLi+1 + Q
EVCS
i+1 − Q

PV
i+1 (21)

The voltages magnitude and phases at each node are calcu-
lated using (22) and (23);

Vi+1 =

√√√√[V 2
i − 2

(
PiRj + Qixj

)
+ (R2j + x

2
j )
(P2i + Q

2
i

V 2
i

]
(22)

δi+1 = δi − tan−1
(

(QiRi − Pixj)[
V 2
i − (PiRj + Qixj)

]) (23)

The line losses in the power system is calculated by (24);

PLoss = I2R (24)

The potential locations ani follow a set of constraints.
Once any of the constraints are violated the alternative is
not considered in the problem. The power system’s physical
boundaries impose constraints on the voltage magnitudes and
phase angles for all bus voltages as in (25) and (26);

Vmin ≤ Vbi ≤ Vmax (25)

δmin ≤ δbi ≤ δmax (26)

Power system adequacy is essential for the installation of
EVCSs. The currents in the power lines must not exceed the
thermal limitation (27);

Ii ≤ Imax (27)

The available power capacity Pmaxi and Smaxi at the parking
area for EV charging defines the allowable number of charg-
ers that can be installed on site

∑
ani , in (28) and (29);

PEVCS ×
∑

ani < Pmaxi (28)

SEVCS ×
∑

ani < Smaxi (29)

The number of maximum chargers depends on the rating
of the charges PEVCS and SEVCS which is different according
to the charger type, see Table 3.

3) TRAFFIC FLOW MODELING
The traffic model involves two main criteria to be calculated;
the utilization rate of the parking area and the queuing at the
entrances. This will allow the Decision Maker (DM), such
as the project investors or planners, to evaluate the conges-
tion and usability at a specific site compared with others.
The traffic flow model reflects the congestion of a site by
the measurement of queuing in meters. The utilization rate
measures how the parking area is being used with reference
to its capacity. First, a traffic study is necessary to collect
the site’s parking data such as the peak number of parked
vehicles, the average number of vehicles, peak hour, available
parking spaces, number of entrances and exits, and number
of lanes for exits and entrances. The parking turnover is high;
therefore, data collection on the number of parking vehicles
is for every 30 minutes from 6:00 am to 3:00 pm.

The capacities of the roads Plane accessing the parking
site is the number of vehicles per hour that can enter the
parking area, and it depends on the entry type such as free-
flow uncontrolled, controlled, etc., (see Table 4).

The average queuing, Qaverage, and 95th percentile of the
vehicles’ queuing, Q95%, at the entrance of a parking site is
determined by the capacity ratio p, which in turn is calculated
using the maximum number of parking vehicles nvehicles and
the number of entrance lanes nlane. Calculating queuing is by
(30) to (32), is based on 7 meters per vehicle [32].

Qaverage =
p2

1− p
(30)

Q95% =
p

1− p
(31)

p =
nvehicles

nlane × Plane
(32)

The utilization U_rate of a parking area, in (33), is mea-
sured by the peak number of vehicles nvehicles and the parking
area capacity PAmax .

U_rate =
nvehicles
PAmax

(33)
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TABLE 4. Entry Lane capacities for car parks [32].

New trip generation: adding a new service on land use will
generate new trips, which are specifically dedicated to that
service.

Therefore, a generated trip affects the utilization rate and
queue at the parking area. EV chargers are introduced as a
new service for land use (parking), and currently, this service
is still a new concept and not mature enough that there are
no specific trip generation rates for it. A similar service to
an EV charger is a gas station. The only difference is a gas
station can provide other amenities too such as a car wash,
vehicle services ATM, and washrooms. According to the
currently applicable trip generation and parking rates guide
in Qatar [34], [35], a single fuel point in a gas station attracts
18 new trips every hour on a weekday at lunchtime (LT). For
the sake of comparison, an EV point development requires a
parking service and a road network, where the deployment of
100% EV will have new trips (Trnew =18).
A trip generation rate for an EV charging station is influ-

enced by the average parking duration per hour at the site,
and a successful EV plug-in is based on the availability of the
charger. A parking area with an average 30 minutes parking
duration will serve two vehicles per hour, the rest of the
vehicles attracted to the site will stay and park in the location.
Therefore, the EVCS affects the maximum parking capacity
at the parking area, while the extra parking generated by the
charging service will affect the queue length by increasing
nvehicles by 1nvehicles in (34) and (35) respectively.

NEV_plugin = nEVCS ×
dparking(minutes)
60 minute/hour

(34)

1nvehicles = (AEV%× Trnew)− NEV_plugin (35)

Though placing EV chargers at high parking occupancy
sites may guarantee charger usage, it will start causing con-
gestion at a point of higher utilization rates. To present this
effect in the traffic model, a constraint of maximum utiliza-
tion is set for all sites. The traffic indices (queuing, parking
utilization rate, and parking volume) change with time, adop-
tion rate, and the number of chargers.

4) THE SPATIAL MODEL
Spatial modeling relates to the position, area shape, and
size of the parking areas. The spatial data are representing
the geographical location of a place presented by location
and shape. Spatial tools allow for obtaining the relationship
among geographical locations such as distances. Three spatial

FIGURE 6. Illustration of a GIS spatial model showing the thematic
components of the EVCS placement problem.

data are stored in GIS: (i) geometric data, (ii) thematic com-
ponent, and (iii) link identification (ID). The spatial model
implemented for the EVCS application has a thematic com-
ponent, which provides the attributes of data such as the name
of the parking area and the measurements in Figure 6. The
steps followed for building this model are the following:
Step 1: Define the reference coordinate system according

to the country and the satellite reference for the location of
the institute/campus.
Step 2: Create shape files for; (i) car parks, building

rooftops, parking slot shadings, (ii) gate locations, (iii) sub-
station locations, (iv) routing for internal streets, (v) cable
routing, and (vi) point of interests; attractive locations such as
nearest to public transportation, nearest to the gates, nearest
to activity centers, most active building, etc.
Step 3: Using the shape file area measurement tool, mea-

sure the areas for solar power installation. For instance, the
buildings near every parking area have a rooftop area and the
parking lot shading are potential surfaces for solar installation
with power generation in an area. The total area ATi , in (36),
solar PV generation is the sum of both building Ari and the
shading area Api , shading area is approximately 12 square
meters per parking slot.

ATi = Ari + A
p
i (36)

Step 4: Calculate the potential solar power generation; the
total generation of a PV array EA in kWh for a whole year
is calculated using the Peak Sun Hour (PSH) approach,
in (37). Where (PSH )i is the value PSH for day i, and Po
is the nominal array power under the standard test conditions
(STC) [36]. The annual energy injected into the grid EGrid
depends on the capacity factor CF , in (38). The capacity
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FIGURE 7. Methodology for placement problem.

factor of commercial PV projects depends on system configu-
ration (fixed tilt or single-axis tracking angle) and the installa-
tion location (irradiance level). In the USA, for example, low
irradiance areas have an average CF of 12.9% (Seattle, WA),
and in higher irradiance, the average CF is 19.5% (Daggett,
CA). TheMENA region (Kuwait) has an average daily global
irradiance of 5.319 kWh/m2, and the capacity factor is 19.5%
[37]. Similar to Kuwait, the global solar radiation in Qatar is
5.5 kWh/m2, and therefore the same CF is considered [38].

EA =
∑365

i=1
(PSH )iPo (37)

EGrid

[
kWh
yr

]
= CF × Po [kW]× 8760[

h
yr
] (38)

Step 5: Using ArcToolbox, perform spatial analysis to obtain
distances: distance to gates, distance to point of interest, and
distance to a substation that is nearest to the car park power
source.

There is a minimum number of chargers amin and maxi-
mum allowable chargers amax at a specific site constrained
by the civil infrastructure and vehicle spaces, see (39);

amin ≤ ani ≤ amax (39)

The restriction on the number of chargers per location is
bound by the number of parking lots NPi available at each
site i. The maximum capacity for a specific site depends on

the parking location capacity factorized by the adoption rate
radoption of that year represented by (40).∑

amax < radoption × NPi (40)

Increasing the number of chargers per site will affect the
decision by updating the evaluation criteria presented by the
average volume, utilization rate, and queuing.

III. PROPOSED METHODOLOGY
Finding the suitable approach for selecting the optimum loca-
tion of an EV charger depends on the objectives and criteria
included in the decision maker’s perspective and goals. The
more questions and discussions, the better the understanding
of the model objective and the decision-making.

This will create a basis for selecting what type of
data the researcher or planner requires for comparison
between the alternatives. This information is necessary to
develop all the models defined in the previous section. The
potential locations for EV charger installations are referred
to as alternatives ai. The quantified attributes of each location
related to the power system, traffic model, and special model
are referred to as criteria Cj. Figure 7 summarizes the main
steps that are necessary for modeling the integrated MCDM
problem for EV charger placement at campuses and universi-
ties. These steps are as follows:
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(1) Define the project goals and objectives: when the uni-
versity or research institution is the primary decision
maker for its infrastructure projects, goals are based on
the university’s strategic plan which follows the overall
country’s strategy. For the EV placement problem, pri-
oritizing the potential sites is based on the ranking of
the objectives and criteria.

(2) Define the potential sites (alternatives) and associated
attributes: an easy way to do this is by asking: Why is
it hard to select a specific site for EV chargers? At a
charging point, do I want to serve a greater number of
users with less parking duration, or a smaller number of
users for longer periods? Are the chargers installed to
promote EV uptake? Is the infrastructure compensated
for the additional civil works and cable laying or are the
costs taken into account? This step includes defining
the type of attributes (data), data collection method,
variability to change, correlation with other measure-
ments, etc. Multiple models are integrated to update the
attributes, and these subsystems may include the power
system, demand, accessibility, emissions, traffic flow,
etc. The sub-models have different data sets for each
site which are classified into criteria. The approach
allows for expansion where other subsystems can be
added and the same approach can be applicable.

(3) Identify which criterion is more important than another
with the help of experts and decision-makers: in this
context, a multi-criteria decision-making matrix is
leveraged which can handle flexibility between dif-
ferent objectives (criteria). Experts are chosen from
a single camp or firm and asked which alternative is
important compared to the other alternatives using the
linguistic terms of fundamental scale for AHP [39].

(4) Solve for the EV placement: obtaining the solution
starts by integrating all the data collected and models
into the process in Figure 7. At a specific year n, there
is a number of required chargers Kn required for instal-
lation. The EV placement problem compares or ranks
the different locations for every EV charger obtained.
For year n, the proposed method solves for the loca-
tion of each charger individually and then evaluates its
effect on the integrated systems (power system, traffic,
etc.) models. The attributes are updated after each EV
placement solution provided that all constraints are not
violated. An alternative is omitted from the selection
filed when an attribute violates a set of constraints.

(5) Sensitivity Analysis: reaching a unified solution by
employing four MADM methods simultaneously
instead of selecting the best method for the situation.
Aggregation methods rank the alternatives with four
different MADM methods; SAW, TOPSIS, GRA, and
PROMETHEE-II which include statistical ordering
techniques; statistics, and Borda. The statistics method
ranks the alternatives based on the mean ranking, the
Borda method ranks based on the number of times an
alternative ‘‘wins’’ in the voting. After aggregation,

a partially ordered set is constructed to realize the
orderings of the alternatives [25].

MADM methods are decision-making support tools used
on a finite set of alternatives in the presence of several, usu-
ally conflicting criteria. Of the many multi-criteria decision-
making methods described in the literature [25], [39], [42],
this study presents several important methods that have more
high potential for solving decision-making problems in the
production environment: Simple Additive Weighting (SAW);
Technique for Order Preference by Similarity to the Ideal
Solution (TOPSIS); Grey Relation Analysis (GRA): Prefer-
ence Ranking Organisation METHod for Enrichment Evalu-
ations (PROMETHEE ).

A. DESIGNING OF THE MCDM MODELS
The solution structure of these methods is based on the per-
formance analysis of alternatives and includes the following
steps:

i. The approach begins with the definition of the goal,
scenarios (alternatives), and criteria for evaluating
alternatives. A complex problem is divided into a
multi-level hierarchical structure of goals, criteria,
attributes, and alternatives (Ai, i = 1, 2, . . . .., m). This
is an integral part of the analytic hierarchy process
proposed in [39].

ii. Structuring the multiple-choice criteria into a hierarchy
and evaluating the relative importance of these criteria.
(Cj, wj, j = 1, 2, . . . .., n).

iii. Evaluation of the performance of alternatives (aij)mxn,
in the context of the selected criteria. This step involves
collecting data according to the given criteria and sce-
nario. The datasets are a decision matrix— evaluations
of alternatives in the context of the selected attributes.

iv. Transformation of attribute values to a single dimen-
sionless scale – normalization (rij)mxn.

v. Selection of an aggregation model of alternatives and
selection of a preferred (optimal) alternative.

The MCDM ranking model for each alternative Ai deter-
mines the value of Qi — an indicator of efficiency, based
on which the ranking of alternatives is carried out and sub-
sequent decision-making is carried out. A feature of the
multi-criteria choice is the diversity of the design of the
models. The design of the model consists of choosing a
set of alternatives and criteria, methods for determining the
weight of criteria, methods for evaluating the performance
of alternatives, methods for normalizing the decision matrix,
methods for aggregating alternatives, and additional model
parameters.

B. DETERMINATION OF CRITERIA WEIGHTS
The weight of the criteria is the most powerful determi-
nant of ranking. Criteria weights were determined using a
multi-step procedure for constructing a hierarchical criteria
structure, pair-wise comparison of criteria (attributes or sub-
criteria) at each level of the hierarchy, and using themaximum
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TABLE 5. Saaty rating scale for AHP [39].

TABLE 6. Arithmetic mean of random matrix consistency indexes [39].

eigenvector method for the pair-wise comparison matrix P.
Decision makers compare all elements of the same level in
pairs from the point view of their priority weights based
on their own experience and knowledge. The principle of
eigenvalues of the pair-wise comparison matrix P is used to
ensure the consistency of the judgments made. The calcula-
tion formula has the form in (41);

P · w− λmax · w = 0 (41)

where P is the pair-wise comparison matrix, w is a vector of
weights and λmax is the maximum eigenvalues of matrix P.
To unify the procedure for measuring the weight of each
element in a pair-wise comparison, a standardized rating scale
is used Table 5.

For each pair of criteria, the best option is awarded as a
score according to Table 4, while the score of the other option
in the pair depends on the reciprocal of this value. The total
number of comparisons is n(n-1)/2.

To check the consistency of the expert’s assessments, when
forming the matrix of paired comparisons, the coefficient of
consistency (CR), in (42), is used;

CR =
CI
RI

(42)

whereCI is the consistency index which is calculated by (43);

CI =
(λmax − n)
n− 1

(43)

RI is a random index given in Table 6, if the CR value is
0.1 or less, then pair-wise comparisons are considered to have
acceptable consistency. However, if the value is greater than
0.1, then the ratio values indicate inconsistent judgments in
which the result is unreliable.

C. EVALUATION OF THE PERFORMANCE OF ALTERNATIVES
(AIJ )MXN IN THE CONTEXT OF THE SELECTED CRITERIA
Estimates of alternatives in the context of criteria can
be numerical, rating, or linguistic variables. All estimates
require translation into a single measurement scale for subse-
quent aggregation into integrated productivity. If it is required

to evaluate the value of an alternative according to the criteria
of the lower hierarchical level, a weighted average, in (44),
is used;

aij =
∑p

k=1
wjk · bik (44)

D. NORMALIZATION METHODS
In the design of the MCDM model, we use four different
linear normalization methods that have the greatest applica-
tion in solving practical problems. The linear transformation,
in (45), has the following form;

rij =
aij − a∗j
kj

(45)

The parameters of the normalization methods are presented
in Table 7. To normalize the cost attributes C−j , the ReS
algorithm proposed in [24] is used which involves two steps:

1) Normalization of all criteria by (45),
2) Renormalization of the cost criteria j∗ by (46);

r̃ij∗ = −rij∗ + rmax
j∗ + r

min
j∗ , ∀j∗ ∈ C−j (46)

IV. IMPLEMENTATION OF CASE STUDY
A. QATAR UNIVERSITY CAMPUS
We apply our model to a real-world case educational insti-
tute, Qatar University (QU), which is one of the high-ranked
universities in the Middle East located on the northern out-
skirts of Doha. The country has a rapid economic develop-
ment and unsurprising, the adoption of electric vehicles is
projected to increase in the coming years [43]. Awareness
is one of the high contributing factors affecting EV uptake
and Universities are the first to adopt EV chargers and has
a higher adoption rate than the countries’ general adoption
[29]. Nationwide, already there is an Electric Vehicle Strat-
egy prepared by the Ministry of Transport [43]. As for QU,
investigating new technologies as well as addressing sustain-
able environments are part of its research priority. For the
case study, there are 32 parking areas and 6,116 available
parking spaces at QU [44]. The geographical locations of the
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TABLE 7. Basic linear methods for normalization of decision matrix.

FIGURE 8. Qatar university campus with 32 parking locations (blue), bus
transportation hubs (red) and gates (green).

alternative sites for installing the EV chargers are the avail-
able 32-parking areas Pi (alternatives are A1 to A32) shown
in Figure 8. The characteristics for each parking location
are obtained during a specific peak traffic time for Qatar
University, which is 11 am to noon. This peak time reflects
the maximum occupancy of the parking areas in QU, and
power system peak power is considered. The problem does
not reflect seasonal variation or daily variation. It considers
worst-case scenario because the priority is to provide power
system security and reliability.

The IEEE-33 bus system is implemented for the evaluation
of the proposed method, in Figure 9. There are 32 potential
locations for the installation of EV chargers (Bus2 to Bus33),
and when a violation occurs at a certain bus, it becomes no
longer one of the potential site locations for an EV charger

FIGURE 9. IEEE-33 bus system.

and the location is removed from the alternative list. The
number of chargers per year to be installed is based on the
system-dynamic model in [29]. The type of charger 6.6 kW
is implemented in the study. For every year, the numbers of
chargers required are plotted in Figure 10. For the case study,
the years considered are from 2020 to 2050 which start at
adoption 0% to 33%, the adoption rate is predicted through
system dynamics for QU case study [29], see Figure 11.

B. TWO-LEVEL CRITERIA STRUCTURE FOR THE PROBLEM
OF PLACING AN ELECTRIC VEHICLE CHARGER
ON CAMPUS
Unlike most studies in the literature that place EV chargers
in cities and urban areas, this issue is addressed by placing
EV chargers on campus. This is reflected in such evaluation
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FIGURE 10. Required number of chargers per year.

FIGURE 11. EV adoption rate for the case study, predicted through system dynamics [29].

criteria as driving and parking behavior, campus traffic and
infrastructure, etc. Consistently equipping parking spaces on
the university campus with chargers is determined in accor-
dance with the ranking of parking spaces within the selected
criteria system. The authors propose a two-level system of
criteria, consisting of twelve lower-level criteria, combined
into five groups of synthetic upper-level criteria, used for
the final assessment of the priority of parking spaces, see
Table 8. The top-level criteria for the campus are economy,
affordability, user behavior, energy factors, and proximity to
the user.

The lower-level criteria have a specific dimension, and
each of the 32 parking lots located on the university campus
is evaluated against these criteria. In accordance with the
research methodology presented in Section III the values of
the indicators in Table 9 are subject to normalization for
the possibility of further aggregation of the indicators into
an integral index (or the possibility of performing algebraic
operations with values of different dimensions). The normal-
ization method has some influence on the rating of alterna-
tives, however, for multicriteria tasks, there is no criterion
for choosing a normalization method. In our study, four
popular linear normalization methods are used, as presented
in Table 7. Accordingly, the decision maker has 4 possible
options.

The experts consider the set goals of the initiator of the
EV infrastructure project which is in this case QU. New
transportation-related projects in QU are set based on the

goals that follow the QU strategy which adopts the National
strategy. The transportation plan follows a transportation
master plan (TMP) which aims to:

• Implement sustainable transportation systems and
practices

• Improve internal walkability and accessibility

Therefore, the decision-makers of QUwill follow the TMP
goals while considering and evaluating the potential locations
for the EV charger site infrastructure-related projects.

Matrices of paired comparisons were obtained based on
the opinions of experts using the Saaty fundamental scale
(Table 5). The experts selected to build the model belong to
the same camp or firm, in this case, QU, where experts with
different work experiences can judge differently according to
different criteria [31].

The case study decision makers are made up of experts
in the transport system, the environment, and the electricity
system. In addition, they hold a Master’s or Ph.D. degree
with at least 10 years of experience in their field. The pan-
elists are asked to complete the pairwise comparison matrix
(Table 10 and Table 11) based on their judgments of the
various alternatives. They are asked which alternative is
important compared to other alternatives, using the linguistic
terms in Table 5. After determining the judgment of experts,
firstly, the consistency of the pair-wise matrix is tested, and
through the sequential procedure and the weights of the AHP
are determined, in Table 10 and Table 11.
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TABLE 8. Hierarchical structure of criteria-based estimates of the problem of placement of an electric vehicle charger on a campus.

After obtaining the weights, the experts are involved in
evaluating the results based on the project goal and objective.
The results show that the criterion, with the dominant effect
on the site selection of the EV charger in this case study,
is ‘‘Accessibility’’, which agrees with the TMP of the campus.

For each of the five groups of synthetic criteria of the upper
level, it is necessary to calculate the weighted average values
of the indicator uij, by (47), using the normalized values of
the indicators rij, of the alternatives (parking) according to
the criteria of the lower level wjk :

uij =
nj∑
k=1

wjk · ri,pj+k−1,

∀i = 1, . . . ,m, ∀j = 1, . . . , n (47)

where nj is the number of indicators in the j-th group
(j = 1,. . . , n), pj is the serial number of the first indicator
in the j-th group with continuous numbering.

For example, j = 2;

ui2 = (w21 · ri3 + w22 · ri4 + w23 · ri5),
n2 = 3, p2 = 3, ∀i = 1, . . . ,m

As a result, the criteria normalized values of indicators
are converted into indicators of a synthetic type, or into
weighted average additive values of indicators of vari-
ous initial measurements. Therefore, synthetic values uij
are subject to re-normalization to eliminate the priority
of individual top-level synthetic criteria during aggrega-
tion. As before, we will use four popular methods of lin-
ear normalization. As a result, we obtain a matrix of nor-
malized values of attributes of synthetic criteria V =

(vij), vij =Normk(uij), i = 1,. . . , m, j = 1,. . . , n,
(m = 32, n = 5).
Figure 12 shows graphs of normalized attribute values for

each of the 5 synthetic criteria using 4 normalizations. Syn-
thetic values were obtained for average weights for 3 experts
of the second level (Table 10). The displacement in the
range of normalized values relative to each other for dif-
ferent normalization methods is a consequence of different
transformations and has some effect on the ratings of alter-
natives obtained in different models. This fact is the basis for
considering alternative models using various normalization
methods.
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TABLE 9. Values of indicators for 32 parking lots in the context of the selected system of criteria.

TABLE 10. Pairwise comparison matrix and weight of sub-criteria of three experts. Second level of the hierarchy.

Next, synthetic indicators are aggregated using one
of four methods (SAW, TOPSIS, GRA, PROMETHEE,
Section II, taking into account the weighting coefficients of

the top-level criteria from (Table 8). Thus, the study uses
64 models, including 4 normalization methods, 4 aggre-
gation methods, and 4 different estimates of the weight
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TABLE 11. Pairwise comparison matrix and weight of criteria of three experts. Top level of the hierarchy.

FIGURE 12. Normalized values of attributes for each of the 5 synthetic
criteria. Normalization method according to Table 4. The red bars on the
graph define the mean and standard deviation in the data (m±σ ).

coefficients of the top-level criteria (3 experts and an average
of experts).

C. RANKING OF THE ALTERNATIVES
Within each of the 64 models, ranking is performed based
on the ordering of alternatives in descending order of the
integral indicator Qi, defined by (1), (2), (10), (11), and
(15). An example of ranking alternatives for 16 models (the
weights of the top-level criteria are fixed as an average value
for 3 experts) is presented in Table 12.

When determining the overall rank based on the results of
the analysis of all models, we use two approaches. This is
the Borda method and statistical. Borda’s method involves
processing the voting results of a certain group of voters [25].
In our case, one of the 64 models that determine the ranking
of alternatives is used as voters, as shown in the example in
Table 12. Accordingly, the alternative with rank 1 gets weight
32, rank 2 gets weight 31, and so on. Table 13 shows the
counting of ‘‘votes’’ according to the Borda method. In total,

the first five ranks were given to car parks P18, P31, P30, P26,
and P11.

The statistical approach involves choosing the best alter-
native on average. Figure 13 shows the distribution of alter-
natives by the number of ‘‘wins’’. This number determines
the number (proportion) of cases where the alternative had
one of the ranks from 1 to 5. The combined result of the
number of ‘‘wins’’ for the four options in Figure 13 is pre-
sented in Table 14. Priority parking numbers are highlighted
in the table in color. The ranking result coincides with the
Borda-method.

D. DECISION-MAKING GROUP BACKGROUND
The development project goals at universities are set based
on the strategy of the project initiator, which adopts the
country’s strategy. Similarly, the transportation master plan
also follows the same strategy, and therefore the decision
maker on campus will follow these goals while deciding on
the criteria preferences of the related projects. There is no
single correct answer when it comes to choosing the locations
of the EV chargers as a definite solution for all projects.
This is because each country has a different set of develop-
ment goals and different financing mechanisms. For the case
study of Qatar and other oil-producing countries in the gulf
region, the economic feasibility of the project has the least
priority than the sustainable development goal such as elec-
trification of the transportation sector and renewable energy
generation.

For the purpose of this research, decision-makers from the
university’s academic faculty, Research Dean, Management,
and from the Ministries, have been interviewed to show
their preferences regarding which criteria are more important
than the other, comparing between five main domains in the
campus EV charger project; economic, accessibility, demand,
energy, and proximity.

E. LONG-TERM EVCS PLACEMENT FOR
INFRASTRUCTURE PLANNING
According to the procedure in Figure 7, the attributes of the
criteria are updated according to the impact of placing the
EV charger into the models, then the procedure is repeated
for the rest of the chargers at that year and similarly for all
required years. First, the number of chargers for each year is
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TABLE 12. Numbers of the alternatives (parking lots) with ranks 1-32 in 16 models (SAW, TOPSIS, GRA, PROMETHEE combined with Max, Max-Min, dSum,
Z normalization methods).

FIGURE 13. Distribution of alternatives by the number of ‘‘wins’’.

obtained from Figure 10, then the best sites for installations
are obtained as shown in Figure 14 and Figure 15. The first
years between 2020 to 2032 show years with no charger
installations, this is because of the lower EV adoption rate in
those years, see Figure 11. Other factors can be implemented
into the model in future studies such as the new bus services,
buildings, substations, roads, gates, and entrances, which
consequently affect their relevant models and attributes. The
long-term plans for EV charger site selection over 31 years,
Figure 14 and Figure 15 describe how to place the predicted
number of EV chargers from Figure 10. For instance, the first

6 chargers are installed at A30, the next 2 chargers at A31,
and so on.

The placement plan is constrained by the maximum num-
ber of allowed chargers per site equal to the adoption rate at
that specific year, see Figure 14 and Figure 15, and Table 15.
The constraints of maximum number of chargers per site and
the maximum allowed utilization rate (1.2) are met.

F. IMPACT ANALYSIS
While placing the EV chargers into the power network,
a parallel operation of the impact analysis checks for any

123468 VOLUME 10, 2022



H. M. Abdullah et al.: Integrated Multi-Criteria Model for Long-Term Placement of EV Chargers

TABLE 13. Borda-method ranking.

TABLE 14. Total statistics of ranks for the parking alternatives.

violations in the power network. The results show that the
voltages at all busses do not exceed the 10% margin set in
this problem, see Figure 16. Installing 77 chargers increases
the line losses by 20% in 2050 compared with the losses in
2020 (base case without chargers).

Also, there is a direct impact of policy on the placement of
the EVCSs, for instance, changing the constrained utilization
from 1 to 0.8 affects the projection of the future utilization
rate till the year 2050. It is important to highlight that even if
a parking site had been removed from the set of alternatives,
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FIGURE 14. EV charger sitting for long-term project (Utilization rate<0.8).

TABLE 15. Effect of maximum utilization constrain on predicted utilization rate at final year (2050).

the attraction remains increasing with the increasing adoption
rate which will affect the utilization rate of the chargers,
seen in Table 15. Thus, the placement plan is sensitive to the
utilization constraint, as illustrated in Figure 14 and Figure 15

V. FUTURE WORK
In our review, we have assumed that each attribute value
was known, and that value was unique. But we recognize

that the information available to the DM is often highly
uncertain, especially in research and development decision-
making. There are various ways of representing the decision-
makers uncertainty. The simplest way is to use expected
values for each attribute value and then treat the problem as
one of certainty choice. A second and more computation-
ally demanding procedure is to use an interval or range of
values rather than a point estimate of attribute values. Some
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FIGURE 15. EV charger sitting for long-term project (Utilization rate<1).

FIGURE 16. Voltage level at each bus from impact analysis results for years 2020 and 2050 (UR <0.8).

MADM methods such as dominance, disjunctive, conjunc-
tive, and lexicographic method may somehow be modified
to treat problems with uncertainty in attribute values, but
the extension to other methods becomes computationally too
cumbersome to be effective. A third and most complex way
to account for attribute value with uncertainty is by introduc-
ing probability distribution. A recent approach is to apply
fuzzy set theory to MADM methods aiming to overcome
these difficulties [45]. Bellman and Zadeh have shown its
applicability to MCDM studies [46]. Many efficient MADM
methods are waiting for accommodation to the attribute value
uncertainty.

VI. CONCLUSION
This paper solves the electric vehicle charger placement
for a campus-size EV infrastructure planning. First, the
dimensions affecting the placement problem are defined
and presented mathematically through the Analytic Hier-
archy Process (AHP) approach. The problem is solved
by 4 Multi-Alternative Decision Making (MADM) meth-
ods; SAW, TOPSIS, GRA and PROMETHEE-II. The final
ranking is the aggregated solution of the different case
studies.

The solution is validated with two aggregating methods;
the Borda method and statistical analysis which show similar
results. The proposed model can be used for long-term plan-
ning. The sites for all future EV chargers are chosen. Also, the
proposed model is constrained by both the power and traffic
networks.

The impact analysis shows that after placing a charger in a
parking area, the congestion increases with the increase in EV
adoption. This can lead to undesired traffic congestion at the

charger site. In this paper, we proposed finding the impacts of
traffic flowwhile choosing the charger location and setting up
the traffic constraints.

Finally, policy makers affect the transportation strategic
plans which have a direct effect on the decision-makers who
are responsible for assessing the AHP linguistic assessment
of the charger placement problem. The findings demonstrate
that the proposed framework can locate optimal charging
station sites. These findings could also help administrators
and policymakers make effective choices for future planning
and strategy.
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