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Abstract
The progressive, chronic nature of Alzheimer's disease (AD), a form of dementia, defaces the adulthood of elderly individu-
als. The pathogenesis of the condition is primarily unascertained, turning the treatment efficacy more arduous. Therefore, 
understanding the genetic etiology of AD is essential to identifying targeted therapeutics. This study aimed to use machine-
learning techniques of expressed genes in patients with AD to identify potential biomarkers that can be used for future 
therapy. The dataset is accessed from the Gene Expression Omnibus (GEO) database (Accession Number: GSE36980). 
The subgroups (AD blood samples from frontal, hippocampal, and temporal regions) are individually investigated against 
non-AD models. Prioritized gene cluster analyses are conducted with the STRING database. The candidate gene biomark-
ers were trained with various supervised machine-learning (ML) classification algorithms. The interpretation of the model 
prediction is perpetrated with explainable artificial intelligence (AI) techniques. This experiment revealed 34, 60, and 28 
genes as target biomarkers of AD mapped from the frontal, hippocampal, and temporal regions. It is identified ORAI2 as 
a shared biomarker in all three areas strongly associated with AD's progression. The pathway analysis showed that STIM1 
and TRPC3 are strongly associated with ORAI2. We found three hub genes, TPI1, STIM1, and TRPC3, in the network of the 
ORAI2 gene that might be involved in the molecular pathogenesis of AD. Naive Bayes classified the samples of different 
groups by fivefold cross-validation with 100% accuracy. AI and ML are promising tools in identifying disease-associated 
genes that will advance the field of targeted therapeutics against genetic diseases.
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Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder 
that causes brain atrophy and eventually destroys brain cells 
(Al-Thani et al. 2021). The progression of AD involves cog-
nitive impairments such as memory loss, delusion, disori-
entation, and confusion. The shrinkage of blood vessels and 
muscles, inflammation, mitochondrial dysfunction, and pro-
duction of free radicals are a few reasons that trigger AD 
(Chethana et al. 2022). AD seems to have a vital genetic 
component, emphasizing the potential of developing targeted 
novel therapies to treat AD. According to the National Insti-
tute on Aging (NIA), AD is directly linked to Apolipopro-
tein E (APOE) gene, which triggers AD by disrupting the 
blood–brain barrier (BBB) integrity (Koutsodendris et al. 
2022). However, this gene is not the primary cause of all 
AD cases. The unknown gene–gene/environment interac-
tions complicate understanding the direct cause of AD. 
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According to age, Alzheimer's is primarily divided into two 
categories, early-onset and late-onset, where no specific gene 
is found to impact the disease progression. Recent studies 
identified a significant association between mutated APP, 
CD33, and BIN1 genes and the development of AD and neu-
rodegenerative comorbidities (Bhattacharyya et al. 2022).

According to the special report from Alzheimer's Associa-
tion, 2022, cognitive assessments with the availability of poten-
tial blood-based gene biomarkers to aid in early detection and 
better AD diagnosis. Early AD diagnosis significantly reduces 
the effect and improves treatment outcomes quickly. This fact 
exemplifies the potential of gene-based treatment methods 
that often increases treatment efficacy compared to traditional 
methods. Several studies have identified several potential bio-
markers for AD in recent years. The whole genome sequencing 
technologies were used to investigate the relationship between 
cognition-related traits and 174 polymorphisms located on 
CD36. Six genetically linked variants in the CD36 gene were 
found to significantly delay the onset of AD (Sery et al. 2022). 
A ligand library containing 60 natural compounds retrieved 
from the literature and 25 synthetic compounds from DrugBank 
is screened for validation against the AD markers. Molecular 
docking tests identified 11-oxo-tigogenin as the most signifi-
cant ligand molecule with a binding affinity of -11.1 kcal/mole 
forming three hydrogen bonds with Arg176, Trp124, and Ile174 
(Kushwaha et al. 2021).

The extensive growth in bioinformatics opened up many 
possibilities for new dimensions of clinical applications (Doss 
and Zayed 2017; Zaki et al. 2017; Ebrahimi et al. 2018; Thiru-
mal Kumar et al. 2018); Sekaran K et al. 2021). In digital for-
mat, multitudinous medical data provide precise insights into 
any disease. Machine learning (ML) propounds advanced algo-
rithms to solve complex problems in critical domains. In health-
care systems, ML models are widely used to perform clinical 
diagnosis, biomarker identification, tumor identification, and 
drug target discovery for various diseases. For instance, since 
the outbreak of the COVID-19 pandemic, many in-silico stud-
ies have been conducted to find novel therapeutics as it takes 
less time and physical compounds than wet-lab experiments 
(Bagabir et al. 2022; Yang et al. 2022). The machine learn-
ing method Artificial Neural Network (ANN) has been tested 
to identify the biomarker pattern of Alzheimer's disease. This 
method predicted gene interaction using a continuous stepwise 
algorithm and identified fifty potentially influential AD genes 
in the hippocampus region (Zafeiris et al. 2018). In order to 
detect capable genes from microarray data and classify AD tis-
sues into different classes, researchers propose a wrapper-based 
feature selection technique that combines the genetic algorithm 
with support vector machines (SVM) (Scheubert et al. 2012). 
This method identifies the twenty most promising candidate 
markers with three common genes.

Although machine learning (ML) techniques help identify 
potential disease-associated biomarkers, they require highly 

developed computational abilities to evaluate their potential-
ity. Additionally, increased performance is frequently achieved 
through increased model complexity, transforming such sys-
tems into "black box" methods and resulting in uncertainty 
about how they function and, ultimately, how they make deci-
sions (Linardatos et al. 2020). It is challenging to rely on mod-
els whose conclusions cannot be clearly understood. Specific 
to the medical domain, the AI based clinical decisions about 
treatment options for a particular condition strongly impact 
individuals’ well-being. The field of explainable Artificial Intel-
ligence (XAI), which focuses on understanding and interpreting 
AI systems' behavior, has resurfaced due to the demand for 
reliable, equitable, robust, high-performing models for real-
world applications (Gunning 2019). XAI was used to identify 
squamous cell carcinoma biomarkers using ML models trained 
on binary classification datasets containing expression data 
from healthy and cancer skin samples. Following successful 
incorporation, 23 significant genes associated with skin cancer 
progression were discovered, which might serve as diagnostic 
and prognostic biomarkers. XAI techniques demonstrated that 
the model output was interpretable by establishing a relation-
ship between the model output and the relevant genes. The 
explainable clustering and classification approach was used to 
find and interpret age-based differences in brain tumor diseases 
(Meena and Hasija 2022). The increased use of ML-based XAI 
approaches in medical diagnosis has sparked the interest of 
many future researchers seeking to implement these effective 
methods in complex diseases.

There is a need to use these advanced computational methods 
to provide healthcare with valuable biomarkers for early AD 
detection. Such markers can also shed light on the complex gene 
network of Alzheimer's pathogenicity. This paper proposes a 
bioinformatics investigation to identify AD's gene biomarkers 
from the blood-based gene expression data. We attempt to use 
gene expression analysis to reduce the dimension of the data 
statistically and simplify the candidate selection process. The 
genetic algorithm scrutinizes the DEGs to remove irrelevant 
features from the subset. The performance and significance of 
machine learning algorithms trained with extracted biomarker 
genes will be assessed. The trained models will be interpreted 
using XAI techniques. Pathway modeling, functional and path-
way enrichment, and protein interactions will be performed on 
the strongly associated genes of identified AD biomarkers.

Materials and methods

Data analysis pipeline

This study aimed to investigate DEGs in patients with AD 
and identify candidate biomarkers through statistical and 
machine-learning techniques that might be relevant for 
treating AD. RNA samples from the blood tissue were 
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collected from three brain regions frontal, temporal and 
hippocampal. The experimental design of the proposed 
study includes the following subsections—DEG selection 
criteria discuss the statistical gene selection procedure, 
Genetic Algorithm identifies candidate biomarkers of AD 
through the synthesized natural evolutionary process. The 
Cytoscape tool performs the gene co-expression analysis. 
ML algorithms are trained and validated with the gene 
subset under many steps involved in the task. Explainable 
artificial intelligence techniques delineate the interpreta-
tion of the trained models. Figure 1 visualizes the order of 
phases involved in the proposed system. This pipeline is 
implemented in Python (Anaconda Distribution) with sup-
portive ML libraries and XAI modules. The source code 
of the article is available at https://​github.​com/​karth​iksek​
aran/​alzhe​imer-​bioma​rker-​study-​XAI.

Gene expression data collection and analysis

The NCBI-GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/) was used to obtain gene expression data. Hokama et al. 

(2014) experimental data with accession number GSE36980 
was used in this study to train and evaluate the ML models. 
This data set contains array-based expression profiling data 
for three different brain regions: frontal (33 samples), hip-
pocampal (18 samples), and temporal (29 samples). This 
experimental study looked for genes that differed between 
AD and healthy individuals (Case and Control based study). 
The credible way to select useful biomarkers in gene expres-
sion profiling is by conducting differential gene expression 
analysis. GEO2R was used to compare two groups of gene 
expression data, healthy and AD cases, across three different 
brain regions samples. GEO2R is an interactive web plat-
form supported by NCBI to compare two or more groups of 
samples available in the GEO series to find DEG from the 
expression data (Barrett et al. 2012). The DEGs are often 
expressed in an irregular pattern between two experimen-
tal conditions when they are statistically significant. The 
adjustment is made to the p-value through the Benjamini and 
Hochberg false discovery rate method. Log transformation is 
applied, and the typical values are replaced with logarithmic 
values. This technique normalizes the dataset by addressing 

Fig. 1   Data analysis pipeline used in this study. The gene expression data analysis (phase I) and AD biomarker selection using genetic algo-
rithms (phase II). Machine learning, model training, and results interpretation (phase)

https://github.com/karthiksekaran/alzheimer-biomarker-study-XAI
https://github.com/karthiksekaran/alzheimer-biomarker-study-XAI
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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skewness trouble. We identified the top 250 DEGs with 
GEO2R, irrespective of the p-value scale, to avoid reject-
ing the informative AD biomarkers. Furthermore, to reduce 
the data used for machine learning model training and to 
increase diversity.

Biomarker selection using a genetic algorithm

The intrinsic impediment in gene-based computer modeling 
is finding the most prominent biomarkers from inordinate 
dimensions of genome information. The genetic algorithm 
analysis method is widely used to solve search-related opti-
mization problems by performing biological operations such 
as selection, crossover, and mutation (John 1992). In this 
study, the genetic algorithm method was used to reduce the 
high dimensionality of the gene expression data to obtain 
the optimal subset of features for ML model training. Weka 
3.8.2, a java based machine learning software, is used to 
perform feature selection from the attribute search options. 
The GA algorithm identified 34, 60, and 28 from frontal, 
hippocampal, and temporal regions. Based on the observa-
tion, the ORAI2 gene was found in all three regions, whereas 
the TPI1 gene is present only in common between frontal 
and hippocampal regions. Further experiments on the iden-
tified novel AD markers disclosed many associated genes 
(Table 1). The hypothesis of GA was demonstrated with few 
requirements, a genetic representation of the solution and a 
fitness function to evaluate the solution (Sayed et al. 2019).

Pathway analysis and protein clustering

The protein–protein interaction between the primary ORAI2 
gene, secondary TPI1, and the coalition genes (Table 1) is 
mapped using the STRING database (Mering et al. 2003). 
Gene nodes further group the network analysis with k-means 
clustering of 3 distinct cluster units. In cluster 1, ITPR3 and 
TRPC6 are grouped, ORAI2, STIM2 in cluster 2, and ITPR1 

(Lim et al. 2021), ITPR2, ORAI1, ORAI3, STIM1, TRCP1, 
and TRPC3 forms cluster 3. All the network genes belong 
to ITPR, ORAI, STIM, or TRP. Similarly, the TPI1 network 
is generated with the same number of clusters. ALDOA, 
ENO1, GAPDH, GAPDHS, GPI, PGK1, PGK2, and TP1 
form cluster 1, TALDO1 and TKT belong to cluster 2, and 
PGM1 alone make cluster 3. The GeneMANIA Cytoscape 
plug-in (Montojo et al. 2010) predicts the gene function for 
the root markers ORAI2 and TPI1. The most related gene 
groups are identified by finding the association with their 
targets. Figure 2 depicts the interactions between ORAI2 and 
TPI1 with correlated markers.

Machine learning and modeling

Supervised machine learning classification algorithms are 
trained with the biomarkers to find the discriminative pat-
tern for classifying the samples of different subgroups. 
Besides, explainable artificial intelligence techniques such 
as Local Interpretation and Model Explanations (LIME) 
and SHapley Additive exPlainer (SHAP) are employed 
to interpret the model predictions (Lundberg and Lee 
2017; Covert et al. 2021). The 250 DEGs identified by 
statistical analysis and 34 frontal, 60 hippocampal, and 
28 temporal subsets identified using the genetic algorithm 
are used to train ML classifier models. The class label 
is represented in binary format (0-Case and 1-Control). 
Logistic Regression (LR), Random Forest (RF), Linear 
Support Vector Machines (L-SVM), Naive Bayes (NB), 
and Multilayered Perceptron Neural Network (MLP-NN) 
algorithms are used in this experiment. The sample size is 
not evenly distributed in each dataset, so a fivefold cross-
validation technique is applied for model validation. The 
dataset is minimally imbalanced with the target classes. 
The performance of the trained models is evaluated with 
accuracy, precision, recall, F1-score, Matthew's correla-
tion coefficient, and receiver's operational characteristic 
(ROC) curve to avoid evaluation bias.

Table 1   Top 10 ranked genes 
associated with ORAI2 
generated through genemania

Scores of machine learning classifiers on GA biomarkers Metrics

Gene Description Rank

ORAI3 ORAI calcium release-activated calcium modulator 3 1
ORAI1 ORAI calcium release-activated calcium modulator 1 2
CRACR2A calcium release activated channel regulator 2A 3
TRPC3 transient receptor potential cation channel subfamily C member 3 4
STIM1 stromal interaction molecule 1 5
RELT RELT TNF receptor 6
SLC1A4 solute carrier family 1 member 4 7
FAAP100 FA core complex associated protein 100 8
PTGES2 prostaglandin E synthase 2 9
FBXO46 F-box protein 46 10
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Explainable artificial intelligence

The essence of XAI is articulated by enunciating the meth-
ods and process of machine learning models to human dilet-
tante (Antoniadi et al. 2021). XAI techniques are employed 
to describe the model predictions, the outcomes, and the 
biases. The characterization of model transparency, accu-
racy, and fairness becomes viable with XAI. In this study, 
the evaluation of the discriminative capacity of ML mod-
els is implemented by Local Interpretable Model-Agnostic 
Explanations (LIME) and SHapley Additive exPlanation 
(SHAP). These two XAI methods are model-agnostic and 
post hoc, applied after the model has been trained. LIME 
interprets ML models' predictions and remains model-
independent by perturbing the input data. Observing the 
resulting impact on the output and the interaction with the 
local fidelity provides more information on individual pre-
dictions. While in the SHAP model, Shapley values explain 
the individual predictions (Vollert et al. 2021). The tech-
nique explains the model output by computing the individual 
feature contribution. The Shapley values are computed by 
coalitional game theory (Sekaran and Shanmugam 2022).

Results

The scores of individual ML classifiers attained on candi-
date markers identified by the genetic algorithm are given 
(Table 2 and Fig. 3). Table 2 contains the outputs of fron-
tal, hippocampal, and temporal datasets. The results have 

shown that the performance of NB, L-SVM, MLP-NN, 
and LR are the same on the frontal, but all five classifiers 
attained 100% performance on the hippocampal dataset. 
NB and MLP-NN outperformed other classifiers on the 
temporal dataset by scoring 100% output. Figure 4 illus-
trates the accuracy of ML models on DEG and GA subsets. 
In Fig. 3, the Naive Bayes algorithm stands out from the 
other classifiers with top performance. Figure 4 represents 
the performance of ML classifiers on three datasets. The 
graphs depict the scores of each classifier, and almost all 
attained better results.

The machine learning classifier's predictions were ana-
lyzed in the next phase with LIME and SHAP XAI models. 
Logistic regression is trained with the GA-identified subsets 
with 75% training data. In Fig. 5, two samples, each from 
frontal AD and non-AD, are randomly selected to test the 
predictions of the trained ML model. The prediction proba-
bility indicates the chances of being predicted as either class 
based on the features. ORAI2, RAB6A, and 7,981,324 are 
the top three biomarkers identified by LIME to predict fron-
tal AD samples, and 79,814,324, 7,894,213, and COX4I1 
for frontal non-AD samples with 0.97 and 0.96 probability 
respectively. The feature value represents the importance of 
the particular feature in the predictions. The ranges given in 
the graph provide the conditions upon which the classifier 
makes the decision.

Similarly, 8,015,796, 8,063,347, and SYT5 were the 
robust biomarkers for the hippocampal AD sample pre-
diction with one probability, and IL1RL2, 8,015,796, and 
PPP1R11 for hippocampal non-AD sample prediction with 

Fig. 2   The protein–protein interaction between ORAI2, TPI1 and the coalition genes was identified through the genetic algorithm method



	 Metabolic Brain Disease

1 3

a probability score of 0.98. ORAI2, the crucial biomarker 
identified in this study, is an essential factor in predicting 
the temporal AD and non-AD samples alongside AP1S1, 
SYT13, and APOBEC3F, 7,892,609, respectively. The pre-
diction probabilities of both classes from these genes were 
0.96 and 0.99. Figure 6 represents the top three genes from 
each dataset. SHAP scores on the datasets reinforce the 
result attained by LIME. In Fig. 7, the negative gene values 
positively impact the AD prediction, while positive gene 
values on non-AD prediction. The negative SHAP value in 
blue represents AD (labeled as 0), while the positive in red 
denotes non-AD (labeled as 1) classes on all three datasets. 
The ORAI2 gene is a decisive factor in classifying AD sam-
ples as 0 and the gene 7981324 as 1 on frontal AD and 
non-AD samples, respectively. Figure 7 shows the SHAP 
interpretation on hippocampal AD and non-AD samples, 

identifying 8,015,796 and IL1RL2 (Luís et al. 2022) as the 
top contributors to the predictions. The ORAI2 gene is found 
to have higher significance in a temporal dataset of both 
classes and stands on top of the other genes, as depicted 
in Fig. 7. This gene influence the predictions of AD and 
non-AD temporal samples with a higher score alongside the 
subordinate genes.

Discussion

Transcriptomic studies unravel novel insights into a clini-
cal condition. This study is designed in a three-fold pattern 
(Fig. 1). The gene expression data is split into subgroups 
by the blood samples collected from three brain regions. 
Frontal, hippocampal, and temporal classes are grouped with 
control samples extracted from the same region. The frontal 
dataset contains 15 AD and 18 non-AD samples; the hip-
pocampal dataset has eight AD and ten non-AD samples, 
and the temporal dataset with 10 AD and 19 non-AD sam-
ples. The most differentially expressed genes are extracted 
in the first fold. This step is crucial to finding informative 
genes from large-dimensional feature sets. The second fold 
identifies the candidate genetic markers from the DEGs 
with a genetic algorithm. 34 frontal, 60 hippocampal, and 
28 temporal genes are strongly associated with AD. ORAI2 
(ORAI calcium release-activated calcium modulator 2) is 
the standard marker in all the candidate subsets (Table 1 
and Fig. 2). Recent studies confirm the gene susceptibil-
ity of ORAI2 with AD progression (Scremin et al. 2020; 
Ma et al. 2021). TPI1 is another gene in both hippocampal 
and temporal markers (Fig. 2 and Table 1). The TPI1 gene 
encodes instructions for the production of an enzyme known 
as triosephosphate isomerase 1. This enzyme is involved 

Table 2   Scores of machine 
learning classifiers on GA 
biomarkers

Metrics NB L-SVM MLP-NN LR RF Dataset

Negative Predictive Value 94.44% 94.44% 94.44% 94.44% 94.44% frontal
100.00% 100.00% 100.00% 100.00% 100.00% hippocampal
100.00% 94.74% 100.00% 94.74% 100.00% temporal

Positive Predictive Value 100.00% 100.00% 100.00% 100.00% 93.33% frontal
100.00% 100.00% 100.00% 100.00% 100.00% hippocampal
100.00% 100.00% 100.00% 100.00% 80.00% temporal

Sensitivity 93.75% 93.75% 93.75% 93.75% 93.33% frontal
100.00% 100.00% 100.00% 100.00% 100.00% hippocampal
100.00% 90.91% 100.00% 90.91% 100.00% temporal
100.00% 100.00% 100.00% 100.00% 94.44% frontal
100.00% 100.00% 100.00% 100.00% 100.00% hippocampal
100.00% 100.00% 100.00% 100.00% 90.48% temporal

Accuracy 96.97% 96.97% 96.97% 96.97% 93.94% frontal
100.00% 100.00% 100.00% 100.00% 100.00% hippocampal
100.00% 96.55% 100.00% 96.55% 93.10% temporal

Fig. 3   Accuracy of machine learning models on the DEG and GA 
features of 3 datasets
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Fig. 4   Performance of machine learning models on sample groups of Alzheimer's dataset



	 Metabolic Brain Disease

1 3

in glycolysis, a critical energy-producing process. TPI1 
was discovered through proteomics analysis to be a novel 
biomarker for predicting intrahepatic cholangiocarcinoma 
recurrence (Yu et al. 2020).

Figure 8 visualizes the overlapping genes identified from 
the candidate gene subsets. The ORAI2 gene is present in all 
three datasets, and TPI1 is found in frontal and hippocampal 
datasets. The ORAI2 and TPI1 genes are further analyzed 

Fig. 5   LIME interpretation on samples of Alzheimer's disease
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Fig. 6   Top 3 gene scores of LIME interpretation on group samples of Alzheimer's disease
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to trace the genetic coalition linked to other AD-related 
disease markers (Fig.  2). Cluster analysis is performed 
on similar group genes by the k-means algorithm with 3 
clusters. STIM1, TRCP1, and ITPR1 genes directly impact 

neurodegenerative conditions (Fig. 2). TRP channels are the 
potential therapeutic targets for Alzheimer's and related ill-
nesses (Yamamoto et al. 2007; Datta et al. 2020; Hwang 
et al. 2021). Also, mutations in these genes are found to have 

Fig. 7   SHAP interpretation on samples groups of Alzheimer's disease
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pathological relevance to AD. TRPC6, a dominant patho-
genic gene, is known for the early onset of AD, which is 
strongly influenced by the mutation caused by APP or PS1 
genes (Dahlgren et al. 2002; Dillen and Annaert 2006). The 
molecular interactions between the ORAI2 and TPI1 are rep-
resented as a gene network using the genemania web tool, a 
Cytoscape plug-in available for association studies (Fig. 2). 
The biomarkers are mapped to the correlated genes most 
directly or partially associated with AD. TRPC6, ORAI2, 
and STIM2 are evident, playing a significant role in AD 
pathogenesis and the regulation of Store-operated calcium 
entry (SOCE). These genes also have pharmacological prop-
erties in drug discovery activities (Hunanyan et al. 2021).

The third fold of this experiment evaluates the promi-
nence of the identified candidate markers using machine-
learning models (Fig. 3). Five classification algorithms are 
trained with the reduced dataset: naive Bayes, linear support 

vector machines, multilayered perceptron backpropaga-
tion, logistic regression, and random forest. The five-fold 
cross-validation method is chosen to train and validate the 
model performance (Fig. 3). The model scores are calculated 
with precision, recall, F1-score, accuracy, and MCC. The 
DEGs and GA-identified subsets are separately trained. As 
expected, the scores of DEGs are lower compared to GA 
markers. The irrelevant features from the DEGs are elimi-
nated during the GA selection process.

The performance of ML models differs in every data-
set, with different scores from each model. The naive Bayes 
algorithm performs better on all the datasets, scoring 90.9%, 
96.9%, 94.4%, 100%, 93.1%, and 100% on frontal-DEG's-
GA, hippocampal-DEGs-GA, and temporal-DEGs-GA 
respectively (Table 2). The higher scores of the models 
strengthen the genetic evidence found as a prominent marker 
of AD. The increase in performance displays the model's 

Fig. 8   Overlapping gene ratio 
plot using Venn diagram
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ability to discriminate the case and control AD samples. 
The dataset is minimally imbalanced over the binary target 
classes. The most reliable statistical metric, MCC, is calcu-
lated to avoid prediction bias by considering all four compo-
nents of the confusion matrix—true positive, false positive, 
true negative, and false negative. Besides, precision, recall, 
and f1-scores ensure the robustness of the model evaluation. 
Surprisingly, the GA-identified subset performance against 
all ML classifiers in the hippocampal dataset is 100% in 
all calculated metrics. This evident finding exhibits the 
complete association of the genetic markers with AD. In 
temporal-GA, the NB classifier attained 100% performance 
in all scoring criteria, outperforming other classification 
algorithms. Apart from the random forest model, all other 
classifiers displayed the same performance on the frontal-
GA dataset. In an evident study, nine lncRNAs named Lnc-
SigAD9 discriminate AD and healthy samples with higher 
sensitivity and specificity at 86.3% and 89.5%, respectively, 
with receiver operating characteristic curves of 0.863 (Zhou 
et al. 2019). A similar study with lncRNA and microRNA 
analyzed the expression patterns and revealed essential dys-
regulation genes. The investigations showed 85% to 95% 
accuracy in biomarker detection with ML models (Garcia-
Fonseca et al. 2021).

The interpretation of ML model output discloses the essen-
tial genes contributing to the accurate prediction of AD or 
Non-AD samples. The black-box processing of ML algorithms 
minimizes visibility and increases uncertainty. Explainable 
artificial intelligence techniques are built to uncover the ML 
model's internal processes. This experimental study imple-
ments the LIME and SHAP methods to discover the predic-
tion pattern from the ML algorithms trained with the candi-
date genes. The single observation from both AD and non-AD 
for all three datasets is fetched randomly for evaluation. The 
logistic regression model is used to train the datasets with 
75% samples from which the explanation for the predictions 
is extracted. The LR learner is selected because it performs 
better with binary classification problems. XAI interpretation 
analysis allows comprehension of the internal process of AI 
models and makes it easier to interpret the decision-making of 
AI systems. The algorithm can be retraced, and a high level of 
visibility minimizes the "black box" effect. The salient feature 
of XAI is enabling humans to trust the predictions, maintain a 
high level of performance, and have context-aware decision-
making (Pawar et al. 2020). There exist many types of XAI 
models for disparate objectives. The XAI methods can be 
either model-specific or model-agnostic, intrinsic or post hoc, 
and local or global. In this study, the evaluation of the discrimi-
native capacity of ML models is implemented by LIME and 
SHAP. These two XAI methods are model-agnostic and post 
hoc, applied after the model has been trained.

LIME identified ORAI2, RAB6A, and probe7981324 as 
important biomarkers to predict a sample into the frontal 

AD class. The feature value of ORAI2 is 10.63, which 
shows a higher priority than other genes. probe7981324, 
probe7894213, COX4I1 predicts frontal-non-AD. 
probe8015796, probe8063347, and SYT5 are the predictor 
markers of hippocampal-AD and IL1RL2, probe8015796, 
and PPP1R11 for hippocampal non-AD. ORAI2 again 
stands on top in predicting temporal AD samples along-
side AP1S1 and SYT13 genes. ORAI2, APOBEC3F, and 
probe7892609 genes contribute more to predicting temporal 
non-AD cases. The SHAP model displayed its depth inter-
pretation of the LR model prediction on different samples. 
The base value in a SHAP output represents the average 
predictions made by the model on the training dataset. The 
output value is the model-predicted value for the sample. 
For a random sample of temporal AD class, SHAP identi-
fied RAB33A influencing the prediction to 1, but ORAI2, 
RAB6A to 0. This interpretation proves the prediction as 
accurate that temporal AD is mapped to class 0 and tempo-
ral non-AD as 1.

RAB6A positively impacts predicting the sample as 0, but 
probe7981324, and probe7894213 to class 1, ensuring the 
genes contributing to the predictions and their closeness. 
8,015,796 is more promising for hippocampal AD, and for 
hippocampal non-AD, IL1RL2 is found as the biomarker. 
ORAI2 is a common gene involved in predicting both tem-
poral AD and non-AD. The identified biomarkers could act 
as targeted therapeutics for AD. The XAI models unveil pro-
found insights by mining the prediction patterns of machine 
learning models. Further studies on the association between 
genes and disease through XAI techniques deliver promising 
findings and improve treatment outcomes.
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