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Abstract

Adaptive and Effective Fuzzing: a Data-Driven Approach

Dongdong She

Security vulnerabilities have a large real-world impact, from ransomware attacks costing

billions of dollars every year to sensitive data breaches in government, military and industry.

Fuzzing is a popular technique to discover these vulnerabilities in an automated fashion. Industries

have poured tons of resources into building large-scale fuzzing factories (e.g., Google’s ClusterFuzz

and Microsoft’s OneFuzz) to test their products and make their product more secure. Despite the

wide application of fuzzing in industry, there remain many issues constraining its performance. One

fundamental limitation is the rule-based design in fuzzing. Rule-based fuzzers heavily rely on a set

of static rules or heuristics. These fixed rules are summarized from human experience, hence failing

to generalize on a diverse set of programs.

In this dissertation, we present an adaptive and effective fuzzing framework in data-driven approach.

A data-driven fuzzer makes decisions based on the analysis and reasoning of data rather than the

static rules. Hence it is more adaptive, effective, and flexible than a typical rule-based fuzzer. More

interestingly, the data-driven approach can bridge the connection from fuzzing to various

data-centric domains (e.g., machine learning, optimizations and social network), enabling

sophisticated designs in the fuzzing framework.

A general fuzzing framework consists of two major components: seed scheduling and seed

mutation. The seed scheduling module selects a seed from a seed corpus that includes multiple

testcases. Then seed mutation module applies perturbation on the selected seed to generate a new



testcase. First, we present Neuzz, the first machine learning (ML) based general-purpose fuzzer that

adopts ML to seed mutation and greatly improves fuzzing performance. Then we present MTFuzz,

a follow-up work of Neuzz by including diverse data into ML to generate effective seed mutations.

In the end, we present K-Scheduler, a fuzzer-agnostic seed scheduling algorithm in data-driven

approach. K-Scheduler leverages the graph data (i.e., inter-procedural control flow graph) and

dynamic coverage data (i.e., code coverage bitmap) to construct a dynamic graph and schedule

seeds by the graph centrality scores on that graph. It can significantly improve the fuzzing

performance than the-state-of-art seed schedulers on various fuzzers widely-used in the industry.
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Chapter 1: Introduction

Security vulnerabilities can significantly impact our daily lives. They are abused by attackers to

launch various attacks. The rampant global ransomware, often built with security vulnerabilities,

has been costing billions of dollars every year since 2017 [1]. Security vulnerabilities also cause

many confidential data breaches in government, military and industry that can result in profound

consequences. Recent news shows that 400 million Twitter user accounts are being leaked and up

for sale on the black market [2]. Through sophisticated exploits of multiple security vulnerabilities,

attackers even directly hacked into financial systems such as banks or crypto exchange centers to

steal millions of dollars [3].

To make the software more secure, researchers come up with many automated software testing

techniques, such as fuzzing, static analysis, dynamic analysis, formal verification and symbolic

execution [4, 5, 6, 7, 8]. Among them, fuzzing is a popular and effective technique that has been

widely used in industry. It is a lightweight software testing technique and can scale to large-real

world applications. Moreover, fuzzing can be easily deployed in industrial settings due to its simple

design. Despite the wide application of fuzzing, many issues still constrain its performance. One of

the fundamental limitations is the rule-based design. A rule-based fuzzer heavily relies on a set of

static rules or heuristics and often fails to generalize on a diverse set of programs.

Unlike rule-based approach, data-driven approach is a better design that is more flexible,

adaptive and effective on various input domains. A data-driven system makes decisions based on

the analysis and reasoning of dynamic data rather than static rules/heuristics. Therefore, it enjoys

better generalization than a rule-based counterpart. In this dissertation, we propose a novel fuzzing

framework in a data-driven approach. Our data-driven fuzzer can learn useful knowledge from the

massive amount of data collected during a fuzzing campaign, then use the learned knowledge to

enable smart and effective fuzzing.
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Figure 1.1: A general workflow of fuzzing

1.1 General Workflow of Fuzzing

Fuzzing has been widely used in industry. Tech giants such as Google, Meta and Mircosoft

leverage this simple yet effective technique to test diverse software products such as kernel, device

driver, application software even IoT devices and CPU [9]. Essentially, fuzzing is an iterative search

that is aimed at finding inputs that can trigger vulnerabilities. The search consists of a large number

of iterations where a new testcase is generated and tested. Figure 1.1 shows a general workflow of

the fuzzing framework.

A fuzzing campaign starts with a seed corpus. The seed corpus comprises a set of testcases;

each one is called a seed. The seed scheduling module first chooses a seed from the seed corpus.

Then seed mutation applies perturbation on the selected seed to generate a new testcase. The

newly-generated testcase is sent to the tested program for dynamic execution. Meanwhile, fuzzer

monitors the execution of new testcase to see if there are any interesting behaviors (i.e., new code

coverage, crash and hang). If found, fuzzer saves the new testcase into the seed corpus for further

mutation; else, it simply discards that testcase. In the end, fuzzer iteratively repeat this process until

2



timeout. As shown in Figure 1.1, the entire workflow of fuzzing is a loop consisting of two major

steps: seed scheduling and seed mutation. A real-world fuzzing campaign can have millions or even

billions of such search iterations.

1.2 Limitation of Rule-based Fuzzing

Existing fuzzers heavily rely on rule-based design. A typical rule-based system hardcodes a

set of static rules or heuristics. As a result, these fixed rules often fail on diverse input domains.

A rule-based fuzzer inherently suffers from this generalization issue. For example, a rule-based

fuzzer schedules seed by execution runtime. It favors seed with the smallest execution time at each

scheduling round in order to boost fuzzing throughput and overall performance. Such fixed heuristic

may show superior performance on programs that are sensitive to execution runtime, but fail on

programs where the format of seed matters. Because a high-quality seed with a valid format might

not have the smallest execution runtime.

Real-world programs can have drastically different properties and semantics. Although existing

works incorporate many heuristics into the fuzzer design, such as file size, execution time, hit count

of code block and random strategies, it is almost impossible to build a general strategy with fixed

rules that is effective on diverse programs. Therefore, a general, flexible and adaptive solution is

urgently needed in the fuzzing community.

1.3 Fuzzing in a Data-Driven Approach

Data-driven approach is a common solution to provide adaptivity and generalization across

diverse input domains, widely used in statistics, machine learning and business analysis. It treats

diverse input domains as dynamic data and makes decisions by the analysis and reasoning of data,

rather than static rules. In this dissertation, we propose a general fuzzing framework in a data-driven

approach. Given that fuzzing is an iterative search composed of a large number of iterations,

data-driven fuzzer leverages the massive amount of past iterations and extracts useful knowledge to

guide future iterations. More interestingly, data-driven approach can bridge the connection from

3



Machine learning: neural network [103], multi-task [12] 
Optimization: gradient descent [103, 12]
Social network: centrality metrics [13]

Algorithmic solution: adaptive and
effective data-driven approaches 

Data-driven Fuzzing

Seed selection [13]

Seed mutation [103, 12]

Problem formulation: fuzzing
as data-centric problems

Seed mutation => Optimization problem [103, 12]

Seed selection => Influence analysis [13]

Data extraction: fine-grained
representation of fuzzing state

Scalar: branch distance, branch hit count [13]
Vector: edge coverage bitmap [103, 12], mutated input [103, 12]
Graph: control flow graph [13]

Figure 1.2: An overview of data-driven fuzzing and summary of my PhD research

fuzzing to other data-centric domains, such as optimization, machine learning and social network

analysis, thus enabling sophisticated design in the general fuzzing framework.

Figure 1.2 shows an overview of data-driven fuzzing. It first extracts data in diverse forms that

are fine-grained representations of the fuzzing state. Then with these data, we model fuzzing as

various data-centric problems, such as seed selection as an influence analysis problem and seed

mutation as an optimization problem. Then we come up with algorithmic solutions such as machine

learning, optimization algorithms and social network analysis to solve these problems.

This dissertation presents three data-driven fuzzers that apply this methodology to the two main

components (i.e., seed selection and seed mutation) in a general fuzzing framework.

NEUZZ. We build the first general-purpose ML-based fuzzer that can generate effective mutation

with a neural network (NN) model [10, 11]. The goal of fuzzing is to search for inputs within a

high-dimensional input space in order to increase code coverage. We formally formulate it as an

optimization problem whose goal is to maximize the total code coverage. Existing works heavily

rely on random mutation and hence are not efficient. We propose a novel gradient-guided mutation

scheme to generate high-quality mutations following the gradient of the tested programs. The

gradients are obtained from a NN model that approximates the program behaviors of the tested

program. Through searching the gradient of the tested program, Neuzz greatly narrows down the

search space and improves fuzzing efficiency.

MTFuzz. Recent works point out that code coverage widely used in fuzzer is a coarse-grained
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metric and fails to reflect true fuzzing performance. More expressive and fine-grained metrics

are needed to guide effective fuzzing. Therefore, we incorporate three coverage metrics into a

data-driven fuzzer with a multi-task learning model [12]. Each coverage metric models a unique

program property. The code coverage monitors the basic blocks that are dynamically exercised

by testcases generated fuzzer. The context coverage captures the function-calling context of each

covered basic block. The last metric approach level represents the distance between the visited

basic block and unvisited basic block on the control flow graph of the tested program. We train

a NN model to approximate multiple program properties in the multi-task learning setting. Then

we extract the gradient to jointly affect these program properties and guide effect mutations. Our

evaluation demonstrates that MTFuzz can significantly outperform a single task NN-based fuzzer.

K-Scheduler. We propose a general seed scheduling algorithm based on graph centrality [13].

Fuzzing is an iterative search problem aimed at covering more code regions, and seed scheduling in

fuzzing determines the starting point for each search iteration. Search from a good starting point

can discover many codes and search from a bad starting point can discover few codes. Existing

works all use some fixed rules or heuristics and ignore graph information of the program i.e., control

flow graph(CFG). We formally model fuzzing as a graph search problem that aims to discover the

maximum number of nodes on CFG. And seed scheduling can be formulated as a graph search

problem within the CFG to find a promising seed that can lead to the discovery of the maximum

number of new nodes. We build a dynamic graph with CFG and online fuzzing data, then perform

efficient graph centrality analysis to identify the most influential seeds on all the new nodes in CFG.

1.4 Roadmap

The rest of the dissertation is organized as follows. Chapter 2 presents NEUZZ for data-driven

mutation guided by a NN model. Chapter 3 describes MTFuzz, which jointly learns multiple

program properties in a multi-task model and generates a joint gradient to guide mutation. Chapter

4 introduces K-Scheduler that proposes a data-driven seed scheduling algorithm based on graph

centrality scores. Finally, we conclude in Chapter 5.
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Chapter 2: NEUZZ: Efficient Fuzzing with Neural Program Smoothing

Fuzzing has become the de facto standard technique for finding software vulnerabilities. How-

ever, even state-of-the-art fuzzers are not very efficient at finding hard-to-trigger software bugs.

Most popular fuzzers use evolutionary guidance to generate inputs that can trigger different bugs.

Such evolutionary algorithms, while fast and simple to implement, often get stuck in fruitless

sequences of random mutations. Gradient-guided optimization presents a promising alternative to

evolutionary guidance. Gradient-guided techniques have been shown to significantly outperform

evolutionary algorithms at solving high-dimensional structured optimization problems in domains

like machine learning by efficiently utilizing gradients or higher-order derivatives of the underlying

function.

However, gradient-guided approaches are not directly applicable to fuzzing as real-world

program behaviors contain many discontinuities, plateaus, and ridges where the gradient-based

methods often get stuck. We observe that this problem can be addressed by creating a smooth

surrogate function approximating the target program’s discrete branching behavior. In this work,

we propose a novel program smoothing technique using surrogate neural network models that can

incrementally learn smooth approximations of a complex, real-world program’s branching behaviors.

We further demonstrate that such neural network models can be used together with gradient-guided

input generation schemes to significantly increase the efficiency of the fuzzing process.

Our extensive evaluations demonstrate that NEUZZ significantly outperforms 10 state-of-the-art

graybox fuzzers on 10 popular real-world programs both at finding new bugs and achieving higher

edge coverage. NEUZZ found 31 previously unknown bugs (including two CVEs) that other fuzzers

failed to find in 10 real-world programs and achieved 3X more edge coverage than all of the tested

graybox fuzzers over 24 hour runs. Furthermore, NEUZZ also outperformed existing fuzzers on

both LAVA-M and DARPA CGC bug datasets.
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2.1 Introduction

Fuzzing has become the de facto standard technique for finding software vulnerabilities [4,

14]. The fuzzing process involves generating random test inputs and executing the target program

with these inputs to trigger potential security vulnerabilities [15]. Due to its simplicity and low

performance overhead, fuzzing has been very successful at finding different types of security

vulnerabilities in many real-world programs [16, 17, 18, 19, 5, 20]. Despite their tremendous

promise, popular fuzzers, especially for large programs, often tend to get stuck trying redundant test

inputs and struggle to find security vulnerabilities hidden deep within program logic [21, 22, 23].

Conceptually, fuzzing is an optimization problem whose goal is to find program inputs that

maximize the number of vulnerabilities found within a given amount of testing time [24]. However,

as security vulnerabilities tend to be sparse and erratically distributed across a program, most fuzzers

aim to test as much program code as they can by maximizing some form of code coverage (e.g.,

edge coverage) to increase their chances of finding security vulnerabilities. Most popular fuzzers use

evolutionary algorithms to solve the underlying optimization problem—generating new inputs that

maximize code coverage [4, 5, 20, 25]. Evolutionary optimization starts from a set of seed inputs,

applies random mutations to the seeds to generate new test inputs, executes the target program for

these inputs, and only keeps the promising new inputs (e.g., those that achieve new code coverage)

as part of a corpus for further mutation. However, as the input corpus gets larger, the evolutionary

process becomes increasingly less efficient at reaching new code locations.

One of the main limitations of evolutionary optimization algorithms is that they cannot leverage

the structure (i.e., gradients or other higher-order derivatives) of the underlying optimization

problem. Gradient-guided optimization (e.g., gradient descent) is a promising alternative approach

that has been shown to significantly outperform evolutionary algorithms at solving high-dimensional

structured optimization problems in diverse domains including aerodynamic computations and

machine learning [26, 27, 28].

However, gradient-guided optimization algorithms cannot be directly applied to fuzzing real-
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world programs as they often contain significant amounts of discontinuous behaviors (cases where

the gradients cannot be computed accurately) due to widely different behaviors along different

program branches [29, 30, 31, 32, 7]. We observe that this problem can be overcome by creating

a smooth (i.e., differentiable) surrogate function approximating the target program’s branching

behavior with respect to program inputs. Unfortunately, existing program smoothing techniques [30,

32] incur prohibitive performance overheads as they depend heavily on symbolic analysis that does

not scale to large programs due to several fundamental limitations like path explosion, incomplete

environment modeling, and large overheads of symbolic memory modeling [33, 34, 35, 36, 37, 38,

39].

In this work, we introduce a novel, efficient, and scalable program smoothing technique using

feed-forward Neural Networks (NNs) that can incrementally learn smooth approximations of

complex, real-world program branching behaviors, i.e., predicting the control flow edges of the

target program exercised by a particular given input. We further propose a gradient-guided search

strategy that computes and leverages the gradient of the smooth approximation (i.e., an NN model)

to identify target mutation locations that can maximize the number of detected bugs in the target

program. We demonstrate how the NN model can be refined by incrementally retraining the

model on mispredicted program behaviors. We find that feed-forward NNs are a natural fit for

our task because of (i) their demonstrated ability to approximate complex non-linear functions, as

implied by the universal approximation theorem [40], and (ii) their support for efficient and accurate

computation of gradients/higher-order derivatives [28].

We design and implement our technique as part of NEUZZ, a new learning-enabled fuzzer. We

compare NEUZZ with 10 state-of-the art fuzzers on 10 real-world programs covering 6 different

file formats, (e.g., ELF, PDF, XML, ZIP, TTF, and JPEG) with an average of 47, 546 lines of code,

the LAVA-M bug dataset [41], and the CGC dataset [42]. Our results show that NEUZZ consistently

outperforms all the other fuzzers by a wide margin both in terms of detected bugs and achieved

edge coverage. NEUZZ found 31 previously unknown bugs (including CVE-2018-19931 and

CVE-2018-19932) in the tested programs that other fuzzers failed to find. Our tests on the DARPA
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CGC dataset also confirmed that NEUZZ can outperform state-of-the-art fuzzers like Driller [21] at

finding different bugs.

2.2 Optimization Basics

In this section, we first describe the basics of optimization and the benefits of gradient-guided

optimization over evolutionary guidance for smooth functions. Finally, we demonstrate how fuzzing

can be cast as an optimization problem.

An optimization problem usually consists of three different components: a vector of parameters

𝑥, an objective function 𝐹 (𝑥) to be minimized or maximized, and a set of constraint functions 𝐶𝑖 (𝑥)

each involving either inequality or equality that must be satisfied. The goal of the optimization

process is to find a concrete value of the parameter vector 𝑥 that maximizes/minimizes 𝐹 (𝑥) while

satisfying all constraint functions 𝐶𝑖 (𝑥) as shown below.

𝑚𝑎𝑥/𝑚𝑖𝑛
𝑥∈𝑅𝑛

𝐹 (𝑥) subject to


𝐶𝑖 (𝑥) ≥ 0, 𝑖 ∈ 𝑁

𝐶𝑖 (𝑥) = 0, 𝑖 ∈ 𝑄
(2.1)

Here 𝑅, 𝑁 , and 𝑄 denote the sets of real numbers, the indices for inequality constraints, and the

indices for equality constraints, respectively.

Function smoothness & optimization. Optimization algorithms usually operate in a loop beginning

with an initial guess of the parameter vector 𝑥 and gradually iterating to find better solutions. The

key component of any optimization algorithm is the strategy it uses to move from one value of 𝑥 to

the next. Most strategies leverage the values of the objective function 𝐹, the constraint functions 𝐶𝑖,

and, if available, the gradient/higher-order derivatives.

The ability and efficiency of different optimization algorithms to converge to the optimal

solution heavily depend on the nature of the objective and constraint functions 𝐹 and 𝐶𝑖. In

general, smoother functions (i.e., those with well-defined and computable derivatives) can be more

efficiently optimized than functions with many discontinuities (e.g., ridges or plateaus). Intuitively,
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(a) gradient descent (b) evolutionary algorithm

Figure 2.1: Gradient-guided optimization algorithms like gradient descent can be significantly more
efficient than evolutionary algorithms that do not use any gradient information

the smoother the objective/constraint functions are, the easier it is for the optimization algorithms to

accurately compute gradients or higher-order derivatives and use them to systematically search the

entire parameter space.

For the rest of this paper, we specifically focus on unconstrained optimization problems that

do not have any constraint functions, i.e., 𝐶 = 𝜙, as they closely mimic fuzzing, our target domain.

For unconstrained smooth optimization problems, gradient-guided approaches can significantly

outperform evolutionary strategies at solving high-dimensional structured optimization problems

[26, 27, 28]. This is because gradient-guided techniques effectively leverage gradients/higher-order

derivatives to efficiently converge to the optimal solution as shown in Figure 2.1.

Convexity & gradient-guided optimization. For a common class of functions called convex

functions, gradient-guided techniques are highly efficient and can always converge to the globally

optimal solution [43]. Intuitively, a function is convex if a straight line connecting any two points

on the graph of the function lies entirely above or on the graph. More formally, a function f is

called convex if the following property is satisfied by all pairs of points 𝑥 and 𝑦 in its domain:

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡 𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦),∀𝑡 ∈ [0, 1].

However, in non-convex functions, gradient-guided approach may get stuck at locally optimal

solutions where the objective function is greater (assuming that the goal is to maximize) than

all nearby feasible points but there are other larger values present elsewhere in the entire range
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of feasible parameter values. However, even for such cases, simple heuristics like restarting the

gradient-guided methods from new randomly chosen starting points have been shown to be highly

effective in practice [28, 43].

Fuzzing as unconstrained optimization. Fuzzing can be represented as an unconstrained optimiza-

tion problem where the objective is to maximize the number of bugs/vulnerabilities found in the test

program for a fixed number of test inputs. Therefore, the objective function can be thought of as

𝐹𝑝 (𝑥), which returns 1 if input 𝑥 triggers a bug/vulnerability when the target program 𝑝 is executed

with input 𝑥. However, such a function is too ill-behaved (i.e., mostly containing flat plateaus and a

few very sharp transitions) to be optimized efficiently.

Therefore, most graybox fuzzers instead try to maximize the amount of tested code (e.g.,

maximize edge coverage) as a stand-in proxy metric [4, 5, 44, 45, 7]. Such an objective function

can be represented as 𝐹′𝑝 (𝑥) where 𝐹′ returns the number of new control flow edges covered by the

input x for program 𝑃. Note that 𝐹′ is relatively easier to optimize than the original function 𝐹 as

the number of all possible program inputs exercising new control flow edges tend to be significantly

higher than the inputs that trigger bugs/security vulnerabilities.

Most existing graybox fuzzers use evolutionary techniques [4, 5, 44, 45, 7] along with other

domain-specific heuristics as their main optimization strategy. The key reason behind picking

such algorithms over gradient-guided optimization is that most real-world programs contain many

discontinuities due to significantly different behaviors along different program paths [46]. Such

discontinuities may cause the gradient-guided optimization to get stuck at non-optimal solutions. In

this paper, we propose a new technique using a neural network for smoothing the target programs to

make them suitable for gradient-guided optimization and demonstrate how fuzzers might exploit

such strategies to significantly boost their effectiveness.

2.3 Overview of Our Approach

Figure 2.2 presents a high level overview of our approach. We describe the key components in

detail below.
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Figure 2.2: An overview of our approach

if(z < 1){
return 1;

}
else if(z < 2){

//vulnerability
return 2;

}
else if(z < 4){

return 4;
}
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(c) NN smoothing + refining

Figure 2.3: Simple code snippet demonstrating the benefits of neural smoothing for fuzzing

Neural program smoothing. Approximating a program’s discontinuous branching behavior

smoothly is essential for accurately computing gradients or higher-order derivatives that are neces-

sary for gradient-guided optimization. Without such smoothing, the gradient-guided optimization

process may get stuck at different discontinuities/plateaus. The goal of the smoothing process is

to create a smooth function that can mimic a program’s branching behavior without introducing

large errors (i.e., it deviates minimally from the original program behavior). We use a feed-forward

neural network (NN) for this purpose. As implied by the universal approximation theorem [40],
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an NN is a great fit for approximating arbitrarily complex (potentially non-linear and non-convex)

program behaviors. Moreover, NNs, by design, also support efficient gradient computation that is

crucial for our purposes. We train the NN by either using existing test inputs or with the test input

corpus generated by existing evolutionary fuzzers as shown in Figure 2.2.

Gradient-guided optimization. The smooth NN model, once trained, can be used to efficiently

compute gradients and higher-order derivatives that can then be leveraged for faster convergence

to the optimal solution. Different variants of gradient-guided algorithms like gradient descent,

Newton’s method, or quasi-Newton methods like the L-BFGS algorithm use gradients or higher-

order derivatives for faster convergence [47, 48, 49]. Smooth NNs enable the fuzzing input

generation process to potentially use all of these techniques. In this paper, we design, implement

and evaluate a simple gradient-guided input generation scheme tailored for coverage-based fuzzing

as described in detail in Section 2.4.3.

Incremental learning. Any types of existing test inputs (as long as they expose diverse behaviors

in the target program) can be potentially used to train the NN model and bootstrap the fuzzing

input generation process. In this paper, we train the NN by collecting a set of test inputs and the

corresponding edge coverage information by running evolutionary fuzzers like AFL.

However, as the initial training data used for training the NN model may only cover a small part

of the program space, we further refine the model through incremental training as new program

behaviors are observed during fuzzing. The key challenge in incremental training is that if an NN

is only trained on new data, it might completely forget the rules it learned from old data [50]. We

avoid this problem by designing a new coverage-based filtration scheme that creates a condensed

summary of both old and new data, allowing the NN to be trained efficiently on them.

A Motivating Example. We show a simple motivating example in 4.2 to demonstrate the key

insight behind our approach. The simple C code snippet shown in Figure 4.2 demonstrates a general

switch-like code pattern commonly found in many real-world programs. In particular, the example

code computes a non-linear exponential function of the input (i.e., pow(3,a+b)). It returns

different values based on the output range of the computed function. Let us also assume that a
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buggy code block is exercised if the function output range is in (1,2).

Consider the case where evolutionary fuzzers like AFL have managed to explore the branches in

lines 2 and 9 but fail to explore branch in line 5. The key challenge here is to find values of a and b

that will trigger the branch at line 5. Evolutionary fuzzers often struggle with such code as the odds

of finding a solution through random mutation are very low. For example, Figure 2.3a shows the

original function that the code snippet represents. There is a sharp jump in the function surface from

𝑎 + 𝑏 = 0 to 𝑎 + 𝑏− 𝜖 = 0 (𝜖 → +0). To maximize the edge coverage during fuzzing, an evolutionary

fuzzer can only resort to random mutations to the input as such techniques do not consider the shape

of function surface. By contrast, our NN smoothing and gradient-guided mutations are designed to

exploit the function surface shape as measured by the gradients.

We train an NN model on the program behaviors from the other two branches. The NN model

smoothly approximates the program behaviors as shown in Figure 2.3b and 2.3c. We then use the

NN model to perform more effective gradient-guided optimization to find the desired values of 𝑎

and 𝑏 and incrementally refine the model until the desired branch is found that exercises the target

bug.

2.4 Methodology

We describe the different components of our scheme in detail below.

2.4.1 Program smoothing

Program smoothing is an essential step to make gradient-guided optimization techniques suitable

for fuzzing real-world programs with discrete behavior. Without smoothing, gradient-guided

optimization techniques are not very effective for optimizing non-smooth functions as they tend

to get stuck at different discontinuities [29]. The smoothing process minimizes such irregularities

and therefore makes the gradient-guided optimization significantly more effective on discontinuous

functions.

In general, the smoothing of a discontinuous function 𝑓 can be thought of as a convolution
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operation between 𝑓 and a smooth mask function 𝑔 to produce a new smooth output function as

shown below. Some examples of popular smoothing masks include different Gaussian and Sigmoid

functions.

𝑓 ′(𝑥) =
∫ +∞

−∞
𝑓 (𝑎)𝑔(𝑥 − 𝑎)𝑑𝑎 (2.2)

However, for many practical problems, the discontinuous function 𝑓 may not have a closed-form

representation and thus analytically computing the above-mentioned integral is not possible. In

such cases, the discrete version 𝑓 ′(𝑥) = ∑
𝑎 𝑓 (𝑎)𝑔(𝑥 − 𝑎) is used and the convolution is computed

numerically. For example, in image smoothing, often fixed-sized 2-D convolution kernels are used

to perform such computation. However, in our setting, 𝑓 is a computer program and therefore the

corresponding convolution cannot be computed analytically.

Program smoothing techniques can be classified into two broad categories: blackbox and

whitebox smoothing. The blackbox approach picks discrete samples from the input space of

𝑓 and computes the convolution numerically using these samples. By contrast, the whitebox

approach looks into the program statements/instructions and try to summarize their effects using

symbolic analysis and abstract interpretation [30, 32]. The blackbox approaches may introduce

large approximation errors while whitebox approaches incur prohibitive performance overhead,

which makes them infeasible for real-world programs.

To avoid such problems, we use NNs to learn a smooth approximation of program behaviors in

a graybox manner (e.g., by collecting edge coverage data) as described below.

2.4.2 Neural program smoothing

In this paper, we propose a novel approach to program smoothing by using surrogate NN models

to learn and iteratively refine smooth approximations of the target program based on the observed

program behaviors. The surrogate neural networks can smoothly generalize to the observed program

behaviors while also accurately modeling potentially non-linear and non-convex behaviors. The

neural networks, once trained, can be used for efficiently computing gradients and higher-level
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derivatives to guide the fuzzing input generation process as shown in Figure 4.2.

Why NNs? As implied by the universal approximation theorem [40], an NN is a great fit for

approximating complex (potentially non-linear and non-convex) program behaviors. The advantages

of using NNs for learning smooth program approximations are as follows: (i) NNs can accurately

model complex non-linear program behaviors and can be trained efficiently. Prior works on model-

based optimization have used simple linear and quadratic models [51, 52, 53, 54]. However, such

models are not a good fit for modeling real-world software with highly non-linear and non-convex

behaviors; (ii) NNs support efficient computation of their gradients and higher-order derivatives.

Therefore, the gradient-guided algorithms can compute and use such information during fuzzing

without any extra overhead; and (iii) NNs can generalize and learn to predict a program’s behaviors

for unseen inputs based on its behaviors on similar inputs. Therefore, NNs can potentially learn

a smooth approximation of the entire program based on its behaviors for a small number of input

samples.

NN Training. While NNs can be used to model different aspects of a program’s behavior, in this

paper we use them specifically for modeling the target program’s branching behavior (i.e., predicting

control flow edges exercised by a given program input). One of the challenges in using neural nets

to model branching behavior is the need to accept variably-sized input. Feedforward NNs, unlike

real-world programs, typically accept fixed size input. Therefore, we set a maximum input size

threshold and pad any smaller-sized inputs with null bytes during training. Note that supporting

larger inputs is not a major concern as modern NNs can easily scale to millions of parameters.

Therefore, for larger programs, we can simply increase the threshold size, if needed. However, we

empirically find that relatively modest threshold values yield the best results and larger inputs do

not increase modeling accuracy significantly.

Formally, let 𝑓 :
{
0x00,0x01, ...,0xff

}𝑚 → {
0, 1

}𝑛 denote the NN that takes program

inputs as byte sequences with size 𝑚 and outputs an edge bitmap with size 𝑛. Let \ denote the

trainable weight parameters of 𝑓 . Given a set of training samples (𝑋,𝑌 ), where 𝑋 is a set of input

bytes and 𝑌 represents the corresponding edge coverage bitmap, the training task of the parametric
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function 𝑓 (𝑥, \) = 𝑦 is to obtain the parameter \̂ such that \̂ = arg min\
∑

𝑥∈𝑋,𝑦∈𝑌
𝐿 (𝑦, 𝑓 (𝑥, \)) where

𝐿 (𝑦, 𝑓 (𝑥, \)) defines the loss function between the output of the NN and the ground truth label 𝑦 ∈ 𝑌

in the training set. The training task is to find the weight parameters \ of the NN 𝑓 to minimize the

loss, which is defined using a distance metric. In particular, we use binary cross-entropy to compute

the distance between the predicted bitmap and the true coverage bitmap. In particular, let 𝑦𝑖 and

𝑓𝑖 (𝑥, \) denote the 𝑖-th bit in the output bitmap of ground truth and 𝑓 ’s prediction, respectively.

Then, the binary cross-entropy between these two is defined as:

−1
𝑛

𝑛∑︁
𝑖=1
[𝑦𝑖 · 𝑙𝑜𝑔( 𝑓𝑖 (𝑥, \) + (1 − 𝑦𝑖) · 𝑙𝑜𝑔(1 − 𝑓𝑖 (𝑥, \)]

In this paper, we use feed-forward fully connected NNs to model the target program’s branching

behavior. The feed-forward architecture allows highly efficient computation of gradients and fast

training [55].

Our smoothing technique is agnostic to the source of the training data and therefore the NN can

be trained on any edge coverage data gathered from an existing input corpus. For our prototype

implementation, we use input corpora generated by existing evolutionary fuzzers like AFL to train

our initial model.

Training data preprocessing. Edge coverage exercised by the training data often tends to be

biased, as it only contains labels for a small section of all edges in a program. For example, some

edges might always be exercised together by all inputs in the training data. This type of correlation

between a set of labels is known in machine learning as multicollinearity, which often prevents the

model from converging to a small loss value [56]. To avoid such cases, we follow the common

machine learning practice of dimensionality reduction by merging the edges that always appear

together in the training data into one edge. Furthermore, we only consider the edges that have

been activated at least once in the training data. These steps significantly reduce the number of

labels to around 4, 000 from around 65, 536 on average. Note that we rerun the data preprocessing
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step at every iteration of incremental learning and thus some merged labels may get split as their

correlation may decrease as new edge data is discovered during fuzzing.

2.4.3 Gradient-guided optimization

Different gradient-guided optimization techniques like gradient descent, Newton’s method,

or quasi-Newton methods like L-BFGS can use gradient or higher-order derivatives for faster

convergence [47, 48, 49]. Smooth NNs enable the fuzzing input generation process to potentially

use any of these techniques by supporting efficient computation of gradient and higher-order

derivatives. In this paper, we specifically design a simple gradient-guided search scheme that is

robust to minor prediction errors to demonstrate the effectiveness of our approach. We leave the

exploration of more sophisticated techniques as future work.

Before describing our mutation strategy, which is based on the NN’s gradient, we first provide

a formal definition of the gradient that indicates how much each input byte should be changed

to affect the output of a final layer neuron in the NN (indicating changed edge coverage in the

program) 𝑓 [57]. Here each output neuron corresponds to a particular edge and computes a value

between 0 and 1 summarizing the effect of the given input byte on a particular edge. The gradients

of the output neurons of the NN 𝑓 w.r.t. the inputs have been extensively used for adversarial input

generation [58, 59] and visualizing/understanding DNNs [60, 57, 61]. Intuitively, in our setting,

the goal of gradient-based guidance is to find inputs that will change the output of the final layer

neurons corresponding to different edges from 0 to 1.

Given a parametric NN 𝑦 = 𝑓 (\, 𝑥) as defined in Section 2.4.2, let 𝑦𝑖 denote the output of 𝑖-th

neuron in the final layer of 𝑓 , which can also be written as 𝑓𝑖 (\, 𝑥). The gradient 𝐺 of 𝑓𝑖 (\, 𝑥) with

respect to input 𝑥 can be defined as 𝐺 = ∇𝑥 𝑓𝑖 (\, 𝑥) = 𝜕𝑦𝑖/𝜕𝑥. Note that 𝑓 ’s gradient w.r.t to \ can

be easily computed as the NN training process requires iteratively computing this value to update \.

Therefore, 𝐺 can also be easily calculated by simply replacing the computation of the gradient of \

to that of 𝑥. Note that the dimension of the gradient 𝑮 is identical to that of the input 𝑥, which is a

byte sequence in our case.
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Algorithm 1 Gradient-guided mutation
Input: seed← initial seed

iter← number of iterations
k← parameter for picking top-k critical
bytes for mutation
g← computed gradient of seed

1: for 𝑖 = 1 to 𝑖𝑡𝑒𝑟 do
2: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠← 𝑡𝑜𝑝(𝑔, 𝑘𝑖)
3: for 𝑚 = 1 to 255 do
4: for 𝑙𝑜𝑐 ∈ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 do
5: 𝑣 ← 𝑠𝑒𝑒𝑑 [𝑙𝑜𝑐] + 𝑚 ∗ 𝑠𝑖𝑔𝑛(𝑔[𝑙𝑜𝑐])
6: 𝑣 ← 𝑐𝑙𝑖𝑝(𝑣, 0, 255)
7: 𝑔𝑒𝑛_𝑚𝑢𝑡𝑎𝑡𝑒(𝑠𝑒𝑒𝑑, 𝑙𝑜𝑐, 𝑣)
8: end for
9: for 𝑙𝑜𝑐 ∈ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 do

10: 𝑣 ← 𝑠𝑒𝑒𝑑 [𝑙𝑜𝑐] − 𝑚 ∗ 𝑠𝑖𝑔𝑛(𝑔[𝑙𝑜𝑐])
11: 𝑣 ← 𝑐𝑙𝑖𝑝(𝑣, 0, 255)
12: 𝑔𝑒𝑛_𝑚𝑢𝑡𝑎𝑡𝑒(𝑠𝑒𝑒𝑑, 𝑙𝑜𝑐, 𝑣)
13: end for
14: end for
15: end for

Gradient-guided optimization. Algorithm 1 shows the outline of our gradient-guided input

generation process. The key idea is to identify the input bytes with highest gradient values and

mutate them, as they indicate higher importance to the NN and thus have higher chances of causing

major changes in the program behavior (e.g., flipping branches).

Starting from a seed, we iteratively generate new test inputs. As shown in Algorithm 1, at each

iteration, we first leverage the absolute value of the gradient to identify the input bytes that will

cause the maximum change in the output neurons corresponding to the untaken edges. Next, we

check the sign of the gradient for each of these bytes to decide the direction of the mutation (e.g.,

increment or decrement their values) to maximize/minimize the objective function. Conceptually,

our usage of gradient sign is similar to the adversarial input generation methods introduced in [58].

We also bound the mutation of each byte in its legal range (0-255). Lines 6 and 10 denote the use of

clip function to implement such bounding.

We start the input generation process with a small mutation target (𝑘 in Algorithm 1) and
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exponentially grow the number of target bytes to mutate to effectively cover the large input space.

2.4.4 Refinement with incremental learning

The efficiency of the gradient-guided input generation process depends heavily on how accurately

the surrogate NN can model the target program’s branching behavior. To achieve higher accuracy,

we incrementally refine the NN model when divergent program behaviors are observed during the

fuzzing process (i.e., when the target program’s behavior does not match the predicted behavior).

We use incremental learning techniques to keep the NN model updated by learning from new data

when new edges are triggered.

The main challenge behind NN refinement is preventing the NN model from abruptly forgetting

the information it previously learned from old data while training on new data. Such forgetting

is a well-known phenomenon in deep learning literature and has been thought to be a result of

the stability-plasticity dilemma [62, 63]. To avoid such forgetting issues, an NN must change the

weights enough to learn new tasks but not too much as to cause it to forget previously learned

representations.

The simplest way to refine an NN is to add the new training data (i.e., program branching

behaviors) together with the old data and train the model from scratch again. However, as the

number of data points grows, such retraining becomes harder to scale. Prior research has tried

to solve this problem using mainly two broad approaches [64, 65, 66, 67, 68, 69, 70]. The first

one tries to keep separate representations for the new and old models to minimize forgetting using

distributed models, regularization, or creating an ensemble out of multiple models. The second

approach maintains a summary of the old data and retrains the model on new data along with the

summarized old data and therefore is more efficient than complete retraining. We refer the interested

readers to the survey by Kemker et al. [71] for more details.

In this paper, we used edge-coverage-based filtering to only keep the old data that triggered new

branches for retraining. As new training data becomes available, we identify the ones achieving

new edge coverage, put them together with the filtered old training data, and retrain the NN. Such a
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method effectively prevents the number of training data samples from drastically increasing over

the number of retraining iterations. We find that our filtration scheme can easily support up to 50

iterations of retraining while still keeping the training time under several minutes.

2.5 Implementation

In this section, we discuss our implementation and how we fine-tune NEUZZ to achieve optimal

performance. We have released our implementation through GitHub at http://github.com/

dongdongshe/neuzz. All our measurements are performed on a system running Arch Linux

4.9.48 with an Nvidia GTX 1080 Ti GPU.

NN architecture. Our NN model is implemented in Keras-2.1.3 [72] with Tensorflow-1.4.1 [73] as

a backend. The NN model consists of three fully-connected layers. The hidden layer uses ReLU

as its activation function. We use sigmoid as the activation function for the output layer to predict

whether a control flow edge is covered or not. The NN model is trained for 50 epochs (i.e., 50

complete passes of the entire dataset) to achieve high test accuracy (around 95% on average). Since

we use a simple feed-forward network, the training time for all 10 programs is less than 2 minutes.

Even with pure CPU computation on an Intel i7-7700 running at 3.6GHz, the training time is under

20 minutes.

Training Data Collection. For each program tested, we run AFL-2.52b [4] on a single core machine

for an hour to collect training data for the NN models. The average number of training inputs

collected for 10 programs is around 2𝐾 . The resulting corpus is further split into training and testing

data with a 5:1 ratio, where the testing data is used to ensure that the models are not overfitting. We

use 10KB as the threshold file size for selecting our training data from the AFL input corpus (on

average 90% of the files generated by AFL were under the threshold).

2.6 Evaluation

In this section, we discuss our implementation and how we fine-tune NEUZZ to achieve optimal

performance. We have released our implementation through GitHub at http://github.com/

21

http://github.com/dongdongshe/neuzz
http://github.com/dongdongshe/neuzz
http://github.com/dongdongshe/neuzz
http://github.com/dongdongshe/neuzz


dongdongshe/neuzz. All our measurements are performed on a system running Arch Linux

4.9.48 with an Nvidia GTX 1080 Ti GPU.

NN architecture. Our NN model is implemented in Keras-2.1.3 [72] with Tensorflow-1.4.1 [73] as

a backend. The NN model consists of three fully-connected layers. The hidden layer uses ReLU

as its activation function. We use sigmoid as the activation function for the output layer to predict

whether a control flow edge is covered or not. The NN model is trained for 50 epochs (i.e., 50

complete passes of the entire dataset) to achieve high test accuracy (around 95% on average). Since

we use a simple feed-forward network, the training time for all 10 programs is less than 2 minutes.

Even with pure CPU computation on an Intel i7-7700 running at 3.6GHz, the training time is under

20 minutes.

Training Data Collection. For each program tested, we run AFL-2.52b [4] on a single core machine

for an hour to collect training data for the NN models. The average number of training inputs

collected for 10 programs is around 2𝐾 . The resulting corpus is further split into training and testing

data with a 5:1 ratio, where the testing data is used to ensure that the models are not overfitting. We

use 10KB as the threshold file size for selecting our training data from the AFL input corpus (on

average 90% of the files generated by AFL were under the threshold).

2.6.1 Can NEUZZ find more bugs than existing fuzzers?

To answer this RQ, we evaluate NEUZZ w.r.t. other fuzzers in three settings: (i) Detecting

real-world bugs. (ii) Detecting injected bugs in LAVA-M dataset [41]. (iii) Detecting CGC bugs.

We describe the results in details.

(i) Detecting real-world bugs. We compare the total number of bugs and crashes found by NEUZZ

and other fuzzers on 24-hour running time given the same seed corpus. There are five different

types of bugs found by NEUZZ and other fuzzers: out-of-memory, memory leak, assertion crash,

integer overflow, and heap overflow. To detect memory bugs that would not necessarily lead to a

crash, we compile program binaries with AddressSanitizer [74]. We measure the unique memory

bugs found by comparing the stack traces reported by AddressSanitizer. For crashes that do not
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cause AddressSanitizer to generate a bug report, we examine the execution trace. The integer

overflow bugs are found by manually analyzing the inputs that trigger an infinite loop. We further

verify integer overflow bugs using undefined behavior sanitizer [75]. The results are summarized in

Table 3.3.

NEUZZ finds all 5 types of bugs across 6 programs. AFL, AFLFast, and AFL-laf-intel find 3

types of bugs—they do not find any integer overflow bugs. The other fuzzers only uncover 2 types

of bugs (i.e., memory leak and assertion crash). AFL can a heap overflow bug on program size,

while NEUZZ can find the same bug and another heap overflow bug on program nm. In total, NEUZZ

finds 2× more bugs than the second best fuzzer. Moreover, the integer-overflow bug in strip and

the heap-overflow bug in nm, only found by NEUZZ, have been assigned with CVE-2018-19932 and

CVE-2018-19931, later fixed by the developers.

Table 2.1: Number of real-world bugs found by 6 fuzzers. We only list the programs where
the fuzzers find a bug.

Programs AFL AFLFast VUzzer KleeFL AFL-laf-intel NEUZZ

Detected Bugs per Project

readelf 4 5 5 3 4 16
nm 8 7 0 0 6 9
objdump 6 6 0 3 7 8
size 4 4 0 3 2 6
strip 7 5 2 5 7 20
libjpeg 0 0 0 0 0 1

Detected Bugs per Type

out-of-memory ✓ ✓ ✗ ✓ ✓ ✓

memory leak ✓ ✓ ✓ ✓ ✓ ✓

assertion crash ✗ ✓ ✗ ✗ ✓ ✓

interger overflow ✗ ✗ ✗ ✗ ✗ ✓

heap overflow ✓ ✗ ✗ ✗ ✗ ✓

Total 29 27 7 14 26 60

(ii) Detecting injected bugs in LAVA-M dataset. The LAVA dataset is created to evaluate the

efficacy of fuzzers by providing a set of real-world programs injected with a large number of

bugs [41]. LAVA-M is a subset of the LAVA dataset, consisting of 4 GNU coreutil programs
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base64, md5sum, uniq, and who injected with 44, 57, 28, and 2136 bugs, respectively. All

the bugs are guarded by four-byte magic number comparisons. The bugs get triggered only if the

condition is satisfied. We compare NEUZZ’s performance at finding these bugs to other state-of-the-

art fuzzers, as shown in 2.2. Following conventional practice [7, 41], we use 5-hour time budget for

the fuzzers’ runtime.

Triggering a magic number condition in the LAVA dataset is a hard task for a coverage-guided

fuzzer because the fuzzer has to generate the exact combination of 4 continuous bytes out of 2564

possible cases. To solve this problem, we used a customized LLVM pass to instrument the magic

byte checks like Steelix [45]. But unlike Steelix, we leverage the NN’s gradient to guide the input

generation process to find an input that satisfies the magic check. We run AFL for an hour to

generate the training data and use it to train an NN whose gradients identify the possible critical

bytes triggering the first byte-comparison of a magic-byte condition. Next, we perform a locally

exhaustive search on each byte adjacent to the first critical byte to solve each of the remaining three

byte-comparisons with 256 tries. Therefore, we need one NN gradient computation to find the byte

locations that affect the magic checking and 4 × 256 = 1024 trials to trigger each bug. For program

md5sum, following the latest suggestion of the LAVA-M’s authors [76], we further reduce the seed

into a single line, which significantly boosts the fuzzing performance.

As shown in Table 2.2, NEUZZ finds all the bugs in programs base64, md5sum, and uniq,

and the highest number of bugs for program who. Note that LAVA-M authors left some bugs

unlisted in all 4 programs, so the total number of bugs found by NEUZZ is actually higher than the

number of listed bugs, as shown in the result.

NEUZZ has two key advantages over the other fuzzers. First, NEUZZ breaks the search space

into multiple manageable steps: NEUZZ trains the underlying NN on AFL generated data, uses

the computed gradient to reach the first critical byte, and performs a local search around the found

critical region. Second, as opposed to VUzzer, which leverages magic numbers hard-coded in the

target binary to construct program inputs, NEUZZ’s gradient-based searching strategy do not rely on

any hard-coded magic number. Thus, it can find all the bugs in program md5sum, which performs
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some computations on the input bytes before the magic number checking causing VUzzer to fail. In

comparison to Angora, the current state-of-the-art fuzzer for LAVA-M dataset, NEUZZ finds 3 more

bugs in md5sum. Unlike Angora, NEUZZ uses NN gradients to trigger the complex magic number

conditions more efficiently.

Table 2.2: Bugs found by different fuzzers on LAVA-M datasets.

base64 md5sum uniq who

#Bugs 44 57 28 2,136
FUZZER 7 2 7 0
SES 9 0 0 18
VUzzer 17 1 27 50
Steelix 43 28 24 194
Angora 48 57 29 1,541
AFL-laf-intel 42 49 24 17
T-fuzz 43 49 26 63
NEUZZ 48 60 29 1,582

(iii) Detecting CGC bugs. The DARPA CGC dataset [77] consists of vulnerable programs used

in the DARPA Cyber Grand Challenge. These programs are implemented as network services

performing various tasks and aim to mirror real-world applications with known vulnerabilities.

Every bug in the program is guarded by a number of sanity checks on the input. The dataset comes

with a set of inputs as proof of vulnerabilities.

We evaluate NEUZZ, Driller, and AFL on 50 randomly chosen CGC binaries. As running each

test binary for each fuzzer takes 6 hours to run on CPU/GPU and our limited GPU resources do not

allow us to execute multiple instances in parallel, we randomly picked 50 programs to keep the total

experiment time within reasonable bounds. Similar to LAVA-M, here we also run AFL for an hour

to generate the training data and use it to train the NN. We provide the same random seed to all

three fuzzers and let them run for six hours. NEUZZ uses the same customized LLVM pass used for

the LAVA-M dataset to instrument magic checkings in CGC binaries.

The results (Table 2.3) show that NEUZZ uncovers 31 buggy binaries out of 50 binaries, while

AFL and Driller find 21 and 25, respectively. The buggy binaries found by NEUZZ include all those
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Table 2.3: Bugs found by 3 fuzzers in 50 CGC binaries

Fuzzers AFL Driller NEUZZ

Bugs 21 25 31

found by Driller and AFL. NEUZZ further found bugs in 6 new binaries that both AFL and Driller

fail to detect.

int cgc_ReceiveCommand(CommandStruct* command,
int* more_command){
...
if(cgc_strncmp(&buffer[1], "VISUALIZE",

cgc_strlen("VISUALIZE")) == 0){
command->command = VISUALIZE;
//vulnerable code

...

Listing 2.1: cgc_ReceiveCommand function in CROMU_00027

We analyze an example program CROMU_00027 (shown in Listing 2.6.1). This is an ASCII

content server that takes a query from a client and serves the corresponding ASCII code. A null-

pointer dereferencing bug is triggered after a user tries to set command as VISUALIZE. AFL failed

to detect this bug within 6-hour time budget due to its inefficiency at guessing the magic string.

Although Driller tries to satisfy such complex magic string checking by concolic execution, in this

case it fails to find an input that satisfies the check. By contrast, NEUZZ can easily use the NN

gradient to locate the critical bytes in the program input that affects the magic comparison and find

inputs that satisfy the magic check.

2.6.2 Can NEUZZ achieve higher edge coverage than existing fuzzers?

To investigate this question, we compare the fuzzers on 24-hour fixed runtime budget. This

evaluation shows not only the total number of new edges found by fuzzers but also the speed of new

edge coverage versus time.

We collect the edge coverage information from AFL’s edge coverage report. The results are

summarized in Table 2.4. For all 10 real-world programs, NEUZZ significantly outperforms other
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Figure 2.4: The edge coverage of different fuzzers running for 24 hours.
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Table 2.4: Comparing edge coverage of NEUZZ w.r.t. other fuzzers for 24 hours runs.

Programs NEUZZ AFL AFLFast VUzzer KleeFL AFL-laf-intel

readelf -a 4,942 746 1,073 12 968 1,023
nm -C 2,056 1,418 1,503 221 1,614 1,445
objdump -D 2,318 257 263 307 328 221
size 2,262 1,236 1,924 541 1,091 976
strip 3,177 856 960 478 869 1,257
libjpeg 1,022 94 651 60 67 2
libxml 1,596 517 392 16 n/a† 370
mupdf 487 370 371 38 n/a 142
zlib 376 374 371 15 362 256
harfbuzz 6,081 3,255 4,021 111 n/a 2,724

†indicates cases where Klee failed to run due to external dependencies

fuzzers in terms of edge coverage. As shown in Fig 2.4, NEUZZ can achieve significantly more

new edge coverage than other fuzzers within the first hour. On programs strip, harfbuz and

readelf, NEUZZ can achieve more than 1, 000 new edge coverage within an hour. For programs

readelf and objdump, the number of new edge coverage from NEUZZ’s 1 hour running even

beats the numbers of new edge coverage from all other fuzzers’ 24 hours running. This shows

the superior edge coverage ability of NEUZZ. For all 9 out of 10 programs, NEUZZ achieves

6×,1.5×,9×,1.8×,3.7×,1.9×,10×,1.3× and 3× edge coverage than baseline AFL, respectively, and

4.2×,1.3×,7×,1.2×,2.5×,1.5×,1.5×,1.3× and 3× edge coverage than the second highest number

among all 6 fuzzers. For the smallest program zlib, which has less than 2k lines of code,

NEUZZ achieves similar edge coverage with other fuzzers. We believe it reaches a saturation point

when most of the possible edges for such a small program are already discovered after 24 hours

fuzzing. The significant outperformance shows the effectiveness of NEUZZ in efficiently locating

and mutating critical bytes using the gradient to cover new edges. NEUZZ also scales well in large

systems. In fact, for programs with more than 10K lines (e.g., readelf, harfbuzz, mupdf and

libxml), NEUZZ achieves the highest edge coverage, where the taint-assisted fuzzer (i.e., VUzzer)

and symbolic execution assisted fuzzer (i.e., KleeFL) either perform badly or does not scale.

The gradient-guided mutation strategy allows NEUZZ to explore diverse edges, while other

evolutionary-based fuzzers often get stuck and repetitively check the same branch conditions. Also,
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the minimal execution overhead of the NN smoothing technique helps NEUZZ to scale well for

larger programs while other advanced evolutionary fuzzers incur high execution overhead due to

the use of heavyweight program analysis techniques like taint-tracking or symbolic execution.

Among the evolutionary fuzzers, AFLFast, uses an optimized seed selection strategies that

focuses more on rare edges and thus achieves higher coverage than AFL on 8 programs, especially in

libjpeg, size and harfbuzz. VUzzer, on the other hand, achieves higher coverage than AFL,

AFLFast, and AFL-laf-intel within the first hour on small programs (e.g., zlib, nm, objdump,

size and strip), but its lead stalls quickly and eventually is surpassed by other fuzzers. Mean-

while, VUzzer’s performance degrades on larger programs like readelf, harfbuzz, libxml,

and mupdf. We suspect that the imprecisions introduced by VUzzer’s taint tracker causes it to per-

form poorly on large programs. KleeFL uses additional seeds generated by the symbolic execution

engine Klee to guide AFL’s exploration. Similar to VUzzer, for small programs (nm, objdump,

and strip), KleeFL has good performance at the beginning, but its advantage of additional seeds

from Klee fade away after several hours. Moreover, KleeFL is based on Klee that cannot scale to

large programs with complex library code, a well-known limitation of symbolic execution. Thus,

KleeFL does not have results on programs libxml, mupdf and harfbuzz. Unlike VUzzer and

KleeFL, NEUZZ does not rely on any heavy program analysis techniques; NEUZZ uses the gradients

computed from NNs to generate promising mutations even for larger programs. The efficient NN

gradient computation process allow NEUZZ to scale better than VUzzer and KleeFL at identifying

the critical bytes that affect different unseen program branches, achieving significantly more edge

coverage.

AFL-laf-intel transforms complex magic number comparison into nested byte-comparison using

an LLVM pass and then runs AFL on the transformed binaries. It achieves second-highest new edge

coverage on program strip. However, the comparison transformations add additional instructions

to common comparison operations and thus cause a potential edge explosion issue. The edge

explosion greatly increases the rate of edge conflict and hurt the performance of evolutionary

fuzzing. Also, these additional instructions cause extra execution overheads. As a result, programs
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like libjpeg with frequent comparison operations suffer significant slowdown (e.g., libjpeg),

and AFL-laf-intel struggles to trigger new edges.

2.6.3 Can NEUZZ perform better than existing RNN-based fuzzers?

Existing recurrent neural network (RNN)-based fuzzers learn mutation patterns from past

fuzzing experience to guide future mutations [78]. These models first learn mutation patterns

(composed of critical bytes) from a large number of mutated inputs generated by AFL. Next, they

use the mutation patterns to build a filter to AFL which only allows mutations on critical bytes to

pass, vetoing all other non-critical byte mutations. We choose 4 programs studied by the previous

work to evaluate the performance of NEUZZ compared to the RNN-based fuzzer for 1 million

mutations. We train two NN models with the same training data, then let the two NN-based fuzzers

run to generate 1 million mutations and compare the new code coverage achieved by the two

methods. We report both the achieved edge coverage and training time, as shown in 2.5.

Table 2.5: NEUZZ vs. RNN fuzzer w.r.t. baseline AFL

Programs
Edge Coverage Training Time (sec)

NEUZZ RNN AFL NEUZZ RNN AFL

readelf -a 1,800 215 213 108 2,224 NA
libjpeg 89 21 28 56 1,028 NA
libxml 256 38 19 95 2,642 NA
mupdf 260 70 32 62 848 NA

For all the four programs, NEUZZ significantly outperforms the RNN-based fuzzer on 1M

mutations. NEUZZ achieves 8.4×, 4.2×, 6.7×, and 3.7× more edge-coverage than the RNN-based

fuzzer across the four programs respectively. In addition, the RNN-based fuzzer has, on average,

20× more training overhead than NEUZZ, because RNN models are significantly more complicated

than feed-forward network models.

An additional comparison of the RNN-based fuzzer with AFL shows that the former achieves 2×

more edge coverage on average than AFL on libxml and mupdf using the 1-hour corpus. We also

observe that the RNN-based fuzzer vetoes around 50% of the mutations generated by AFL. Thus,
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the new edge coverage of 1M mutations from RNN-based fuzzer can achieve the edge coverage of

2M mutations in vanilla AFL. This explains why the RNN-based fuzzer uncovers around 2× more

new edges of AFL on some programs. If AFL gets stuck after 2M mutations, the RNN-based fuzzer

would also get stuck after 1M filtered mutations. The key advantage of NEUZZ over the RNN-based

fuzzer is that NEUZZ obtains critical locations using neural-network-based gradient-guided search,

while the RNN fuzzer tries to model the task in an end-to-end manner. Our model can distinguish

different contributing factors of critical bytes that the RNN model may miss as demonstrated by our

experimental results. For mutation generation, we perform an exhaustive search for critical bytes

determined by corresponding contributing factors, while the RNN-based fuzzer still relies on AFL’s

uniform random mutations.

NEUZZ, a fuzzer based on simple feed-forward network, significantly outperforms the RNN-

based fuzzers by achieving 3.7× to 8.4× more edge coverage across different projects.

2.6.4 How do different model choices affect NEUZZ’s performance?

NEUZZ’s fuzzing performance heavily depends on the accuracy of the trained NN. As described

in Section 2.5, we empirically find that an NN model with 1 hidden layer is expressive enough to

model complex branching behavior of real-world programs. In this section, we conduct an ablation

study by exploring different model settings for a 1 hidden layer architecture, i.e., a linear model,

an NN model without refinement, and an NN model with incremental refinement. We evaluate the

effect of these models on NEUZZ’s performance.

To compare the fuzzing performance, we generate 1M mutations for each version of NEUZZ on

4 programs. We implement the linear model by removing the non-linear activation functions used in

the hidden layer and thus making the whole feed-forward network completely linear. The NN model

is trained same seed corpus from AFL. Next, We generate 1M mutations from the passive learning

model and measure the edge coverage achieved by these 1M mutations. Finally, we filter out the

mutated inputs that exercise unseen edges from the 1 million mutations and add these selected

inputs to original seed corpus to incrementally retrain another NN model and use it to generate
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Table 2.6: Edge coverage comparison of 1M mutations generated by NEUZZ using different
machine learning models.

Programs Linear Model NN Model NN + Incremental

readelf -a 1,723 1,800 2,020
libjpeg 63 89 159
libxml 117 256 297
mupdf 93 260 329

further mutations. The results are summarized in Table 2.6. We can see that both NN models (with

or without incremental learning) outperform the linear models for all 4 tested programs. This shows

that the nonlinear NN models can approximate program behaviors better than a simple linear model.

We also observe that incremental learning helps NNs to achieve significantly higher accuracy and

therefore higher edge coverage.

NN models outperform linear models and incremental learning makes NNs even more accurate

over time.

2.7 Conclusion

We present NEUZZ, an efficient learning-enabled fuzzer that uses a surrogate neural network to

smoothly approximate a target program’s branch behavior. We further demonstrate how gradient-

guided techniques can be used to generate new test inputs that can uncover different bugs in the

target program. Our extensive evaluations show that NEUZZ significantly outperforms other 10

state-of-the-art fuzzers both in the numbers of detected bugs and achieved edge coverage. Our results

demonstrate the vast potential of leveraging different gradient-guided input generation techniques

together with neural smoothing to significantly improve the effectiveness of the fuzzing process.
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Chapter 3: MTFuzz: Fuzzing with a Multi-Task Neural Network

Fuzzing is a widely used technique for detecting software bugs and vulnerabilities. Most popular

fuzzers generate new inputs using an evolutionary search to maximize code coverage. Essentially,

these fuzzers start with a set of seed inputs, mutate them to generate new inputs, and identify the

promising inputs using an evolutionary fitness function for further mutation.

Despite their success, evolutionary fuzzers tend to get stuck in long sequences of unproductive

mutations. In recent years, machine learning (ML) based mutation strategies have reported promising

results. However, the existing ML-based fuzzers are limited by the lack of quality and diversity of

the training data. As the input space of the target programs is high dimensional and sparse, it is

prohibitively expensive to collect many diverse samples demonstrating successful and unsuccessful

mutations to train the model.

In this paper, we address these issues by using a Multi-Task Neural Network that can learn

a compact embedding of the input space based on diverse training samples for multiple related

tasks (i.e., predicting different types of coverage). The compact embedding can guide the mutation

process by focusing most of the mutations on the parts of the embedding where the gradient is high.

MTFUZZ uncovers 11 previously unseen bugs and achieves an average of 2× more edge coverage

compared with 5 state-of-the-art fuzzer on 10 real-world programs.

3.1 Introduction

Coverage-guided graybox fuzzing is a widely used technique for detecting bugs and security

vulnerabilities in real-world software [79, 14, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]. The key idea

behind a fuzzer is to execute the target program on a large number of automatically generated test

inputs and monitor the corresponding executions for buggy behaviors. However, as the input spaces

33



of real-world programs are typically very large, unguided test input generation is not effective at

finding bugs. Therefore, most popular graybox fuzzers use evolutionary search to generate new

inputs; they mutate a set of seed inputs and retain only the most promising inputs (i.e., inputs

exercising new program behavior) for further mutations [79, 81, 82, 83, 90, 45, 91, 84, 92].

However, the effectiveness of traditional evolutionary fuzzers tends to decrease significantly

over fuzzing time. They often get stuck in long sequences of unfruitful mutations, failing to generate

inputs that explore new regions of the target program [93, 85, 94]. Several researchers have worked

on designing different mutation strategies based on various program behaviors (e.g., focusing on

rare branches, call context, etc.) [84, 93]. However, program behavior changes drastically, not

only across different programs but also across different parts of the same program. Thus, finding a

generic robust mutation strategy still remains an important open problem.

Recently, Machine Learning (ML) techniques have shown initial promise to guide the muta-

tions [95, 85, 96]. These fuzzers typically use existing test inputs to train ML models and learn

to identify promising mutation regions that improve coverage [85, 91, 96, 95]. Like any other

supervised learning technique, the success of these models relies heavily on the number and diversity

of training samples. However, collecting such training data for fuzzing that can demonstrate suc-

cessful/unsuccessful mutations is prohibitively expensive due to two main reasons. First, successful

mutations that increase coverage are often limited to very few, sparsely distributed input bytes,

commonly known as hot bytes, in high-dimensional input space. Without knowing the distribution

of hot bytes, it is extremely hard to generate successful mutations over the sparse, high-dimensional

input space [85, 95]. Second, the training data must be diverse enough to expose the model to

various program behaviors that lead to successful/unsuccessful mutations—this is also challenging

as one would require a large number of test cases exploring different program semantics. Thus, the

ML-based fuzzers suffer from both sparsity and lack of diversity of the target domain.

In this paper, we address these problems using Multi-Task Learning, a popular learning paradigm

used in domains like computer vision to effectively learn common features shared across related

tasks from limited training data. In this framework, different participating tasks allow an ML
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Figure 3.1: Overview of MTFUZZ

model to effectively learn a compact and more generalized feature representation while ignoring

task-specific noises. To jointly learn a compact embedding of the inputs, in our setting, we use

different tasks for predicting the relationship between program inputs and different aspects of

fuzzing-related program behavior (e.g., different types of edge coverage). Such an architecture

addresses both the data sparsity and lack of diversity problem. The model can simultaneously learn

from diverse program behaviors from different tasks as well as focus on learning the important

features (hot bytes in our case) across all tasks. Each participating task will provide separate pieces

of evidence for the relevance or irrelevance of the input features [97].

To this end, we design, implement, and evaluate MTFUZZ, a Multi-task Neural Network

(MTNN) based fuzzing framework. Given the same set of test inputs, MTFUZZ learns to predict

three different code coverage measures showing various aspects of dynamic program behavior:

1. edge coverage: which edges are explored by a test input [79, 85]?

2. approach-sensitive edge coverage: if an edge is not explored, how far off it is (i.e., approach

level) from getting triggered [98, 99, 100, 101]?

3. context-sensitive edge coverage: from which call context an explored edge is called [93,

102]?

Note that our primary task, like most popular fuzzers, is to increase edge coverage. However, the

use of call context and approach level provides additional information to boost edge coverage.
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Architecturally, the underlying MTNN contains a group of hidden layers shared across the

participating tasks, while still maintaining task-specific output layers. The last shared layer learns

a compact embedding of the input space as shown in Figure 3.1. Such an embedding captures

a generic compressed representation of the inputs while preserving the important features, i.e.,

hot-byte distribution. We compute a saliency score [94] of each input byte by computing the

gradients of the embedded representation w.r.t. the input bytes. Saliency scores are often used

in computer vision models to identify the important features by analyzing the importance of that

feature w.r.t. an embedded layer [57]. By contrast, in this paper, we use such saliency scores to

guide the mutation process—focus the mutations on bytes with high saliency scores.

Our MTNN architecture also allows the compact embedding layer, once trained, to be transferred

across different programs that operate on similar input formats. For example, compact-embedding

learned with MTFUZZ for one xml parser may be transferred to other xml parsers. Our re-

sults (in RQ4) show that such transfer is quite effective and it reduces the cost to generate high

quality data from scratch on new programs which can be quite expensive. Our tool is available

at https://git.io/JUWkj and the artifacts available at doi.org/10.5281/zenodo.3903818.

We evaluate MTFUZZ on 10 real world programs against 5 state-of-the-art fuzzers. MTFUZZ

covers at least 1000 more edges on 5 programs and several 100 more on the rest. MTFUZZ also

finds a total of 71 real-world bugs (11 previously unseen) (see RQ1). When compared to learning

each task individually, MTFUZZ offers significantly more edge coverage (see RQ2). Lastly, our

results from transfer learning show that the compact-embedding of MTFUZZ can be transferred

across parsers for xml and elf binaries.

3.2 Background: Multi-Task Networks

Multi-task Neural Networks (MTNN) are becoming increasingly popular in many different

domains including optimization [103, 104], natural language processing [105, 106], and computer

vision [107]. The key intuition behind MTNN is that it is useful for related tasks to be learned

jointly so that each task can benefit from the relevant information available in other tasks [108, 109,
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107, 110]. For example, if we learn to ride a unicycle, a bicycle, and a tricycle simultaneously,

experiences gathered from one usually help us to learn the other tasks better [111]. In this paper,

we use a popular MTNN architecture called hard parameter sharing [109], which contains two

groups of layers (see Fig. 3.5): a set of initial layers shared among all the tasks, and several

individual task-specific output layers. The shared layers enable a MTNN to find a common feature

representation across all the tasks. The task-specific layers use the shared feature representation to

generate predictions for the individual tasks [112, 107, 97].

MTNN Training. While MTNNs can be used in many different ML paradigms, in this paper we

primarily focus on supervised learning. We assume that the training process has access to a training

dataset X = {𝑥1, 𝑥2, ..., 𝑥𝑛}. The training data contains the ground truth output labels for each task.

We train the MTNN on the training data using standard back-propagation to minimize a multi-task

loss.

Multi-task Loss. An MTNN is trained using a multi-task loss function, L. We assume that each

individual task 𝜏𝑖 in the set of tasks T = {𝜏1, 𝜏2, ..., 𝜏𝑚} has a corresponding loss function L𝑖. The

multi-task loss is computed as a weighted sum of each individual task loss. More formally, it is

given by L =
∑𝑚
𝑖=1 𝛼𝑖 · L𝑖. Here, 𝛼𝑖 represents the weight assigned to task 𝑖. The goal of training

is to reduce the overall loss. In practice, the actual values of the weights are decided based on the

relative importance of each task. Most existing works assign equal weights to the tasks [113, 114,

115].

The multi-task loss function forces the shared layer to learn a general input representation for

all tasks offering two benefits:

1) Increased generalizibility. The overall risk of overfitting in multi-task models is reduced by

an order of 𝑚 (where m is the number of tasks) compared to single task models [116]. Intuitively,

the more tasks an MTNN learns from, the more general the compact representation is in capturing

features of all the tasks. This prevents the representation from overfitting to the task-specific

features.

2) Reduced sparsity. The shared embedding layer in an MTNN can be designed to increase the
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compactness of the learned input representation. Compared with original input layer, a shared

embedding layer can achieve same expressiveness on a given set of tasks while requiring far fewer

nodes. In such compact embedding, the important features across different tasks will be boosted

with each task contributing its own set of relevant features [97].

3.3 Methodology

This section presents a brief overview of MTFUZZ that aims to maximize edge coverage with

the aid of two additional coverage measures: context-sensitive edge coverage and approach-sensitive

edge coverage using multi-task learning. 3.1 illustrates an end-to-end workflow of the proposed

approach. The first stage trains an MTNN to produce a compact embedding of an otherwise sparse

input space while preserving information about the hot bytes i.e., the input bytes have the highest

likelihood to impact code coverage (3.3.2). The second stage identifies these hot bytes and focuses

on mutating them (3.3.3). Finally, in the third stage, the seed corpus is updated with the mutated

inputs and retains only the most interesting new inputs (3.3.4).

3.3.1 Modeling Coverage as Multiple Tasks

The goal of any ML-based fuzzers, including MTFUZZ, is to learn a mapping between input

space and code coverage. The most common coverage explored in the literature is edge coverage,

which is an effective measure and quite easy to instrument. However, it is coarse-grained and misses

many interesting program behavior (e.g., explored call context) that are known to be important to

fuzzing. One workaround is to model path coverage by tracking the program execution path per

input. However, keeping track of all the explored paths can be computationally intractable since

it can quickly lead to a state-space explosion on large programs [102]. As an alternative, in this

work, we propose a middle ground: we model the edge coverage as the primary task of the MTNN,

while choosing two other fine-granular coverage metrics (approach-sensitive edge coverage and

context-sensitive edge coverage) as auxiliary tasks to provide useful additional context to edge

coverage.
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Edge Coverage: Primary Task.

Edge coverage measures how many unique control-flow edges are triggered by a test input as it

interacts with the program. It has become the de-facto code coverage metric [79, 85, 84, 83] for

fuzzing. We model edge coverage prediction as the primary task of our multi-task network, which

takes a binary test case as input and predicts the edges that could be covered by the test case. For

each input, we represent the edge coverage as an edge bitmap, where value per edge is set to 1 or 0

depending on whether the edge is exercised by the input or not.

In particular, in the control-flow-graph of a program, an edge connects two basic blocks (denoted

by prev_block and cur_block) [79]. A unique 𝑒𝑑𝑔𝑒_𝑖𝑑 is obtained as: ℎ𝑎𝑠ℎ(prev_block,cur_block).

For each 𝑒𝑑𝑔𝑒_𝑖𝑑, there is a bit allocated in the bitmap. For every input, the edge_ids in the corre-

sponding edge bitmap are set to 1 or 0, depending on whether or not those edges were triggered.

Approach-Sensitive Edge Coverage: Auxiliary Task 1.

a

a

b

b

c

c

d

d

Edge bitmap = [ 0 , 1,  1,   0]

Approach Bitmap= [ 0 , 1,  1, 0.5]

Figure 3.2: Approach Bitmap vs. Edge Bitmap. The edge ‘d’ has a visited parent edge ‘b’ and
is thus marked 0.5 in the approach bitmap.

For an edge that is not exercised by an input, we measure how far off the edge is from getting

triggered. Such a measure provides additional contextual information of an edge. For example,

if two test inputs failed to trigger an edge, however one input reached “closer” to the unexplored

edge than the other, traditional edge coverage would treat both inputs the same. However, using
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a proximity measure, we can discern between the two inputs and mutate the closer input so that

it can reach the unexplored edge. To achieve this, approach-sensitive edge coverage extends edge

coverage by offering a distance measure that computes the distance between an unreached edge

and the nearest edge triggered by an input. This is a popular measure in the search-based software

engineering literature [98, 100, 99], where instead of assigning a binary value (0 or 1), as in edge

bitmap, approach level assigns a numeric value between 0 and 1 to represent the edges [117]; if an

edge is triggered, it is assigned 1. However, if the edge is not triggered, but one of its parents are

triggered, then the non-triggered edge is assigned a value of 𝛽 (we use 𝛽 = 0.5). If neither the edge

nor any of its parents are triggered, it is assigned 0. This is illustrated in Fig. 3.2. Note that, for a

given edge, we refrain from using additional ancestors farther up the control-flow graph to limit

the computational burden. The approach sensitive coverage is represented in an approach bitmap,

where for every unique 𝑒𝑑𝑔𝑒_𝑖𝑑, we set an approach level value, as shown in Fig. 3.2. We model

this metric in our Multi-task Neural Network as an auxiliary task, where the task takes binary test

cases as inputs and learn to predict the corresponding approach-level bitmaps.

Context-sensitive Edge Coverage: Auxiliary Task 2.

Edge coverage cannot distinguish between two different test inputs triggering the same edge,

but via completely different internal states (e.g., through the same function called from different

sites in the program). This distinction is valuable since reaching an edge via a new internal state

(e.g., through a new function call site) may trigger a vulnerability hidden deep within the program

logic. Augmenting edge coverage with context information regarding internal states of the program

may help alleviate this problem [93].

Consider the example in Fig. 3.3. Here, for an input [1, 0], the first call to function foo()

appears at site line 12 and it triggers the if condition (on line 2); the second call to foo()

appears on site line 14 and it triggers the else condition (on line 5). As far as edge coverage

is concerned, both the edges of the function foo() (on lines 2 and 5) have been explored and any

additional inputs will remain uninteresting. However, if we provide a new input say [0, 8], we
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1 void foo(char* addr, int a) {
2 if(a > 0){
3 strncpy(addr, , a+4);
4 return;
5 }else
6 return;
7 }
8 int main(int argc, char** input)
9 {
10 char buf[8];
11 ...
12 foo(buf, input[0]);
13 ...
14 foo(buf, input[1]);
15 ...
16 }

Figure 3.3: An example C-code to demonstrate the usefulness of using context-sensitive
measures. Measures such as edge coverage will fail to detect a possible bug in strncpy(·)

would first trigger line 5 of foo when it is called from line 12. Then we trigger line 2

of foo from line 14 and further cause a buffer overflow at line 3 because a 12 bytes string is

written into a 8 bytes destination buffer buf. Moveover, the input [0, 8] will not be saved by

edge coverage fuzzer since it triggers no new edges. Frequently called functions (like strcmp)

may be quite susceptible such crashes [102].

Input Call Ctx Edge Coverage

[ 1, 0 ]  

[ 0, 8 ]  

(L12, L2, L3)

(L14, L5, L6)

(L12, L5, L6)

(L14, L2, L3)

(L2, L3)

(L5, L6)

(L5, L6)

(L2, L3)

Figure 3.4: The tuple in edge coverage does not differentiate between the clean input and the
buggy input, while of context-sensitive edge coverage (labeled ‘Call Ctx’) does.

In order to overcome this challenge, Chen et al. [93] propose keeping track of the call stack in

addition to the edge coverage by maintaining tuple: (call_stack, prev_block, cur_block). Fig. 3.4

shows the additional information provided by context-sensitive edge coverage over edge coverage.
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Here, we see an example where a buggy input [0,8] has the exact same edge coverage as the

clean input [1,0] . However, the call context information can differentiate these two inputs based

on the call stacks at line 12 and 14.

We model context-sensitive edge coverage in our framework as an auxiliary task. We first assign

a unique id to every call. Next, at run time, when we encounter a call at an edge (𝑒𝑑𝑔𝑒_𝑖𝑑), we first

compute a ℎ𝑎𝑠ℎ to record all the functions on current call stack as: 𝑐𝑎𝑙𝑙_𝑠𝑡𝑎𝑐𝑘 = 𝑐𝑎𝑙𝑙_𝑖𝑑1 ⊕ ... ⊕

𝑐𝑎𝑙𝑙_𝑖𝑑𝑛,

where 𝑐𝑎𝑙𝑙_𝑖𝑑_𝑖 represents the i-th function on current call stack and ⊕ denotes XOR operation.

Next, we compute the context sensitive edge id as: 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑 = 𝑐𝑎𝑙𝑙_𝑠𝑡𝑎𝑐𝑘 ⊕ 𝑒𝑑𝑔𝑒_𝑖𝑑.

Thus we obtain a unique 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑 for every function called from different contexts (i.e.,

call sites). We then create a bit-map of all the 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑s. Unlike existing implementations of

context-sensitive edge coverage [93, 102], we assign an additional id to each call instruction while

maintaining the original 𝑒𝑑𝑔𝑒_𝑖𝑑 intact. Thus, the total number of elements in our bit map reduces

to sum of 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑s and 𝑒𝑑𝑔𝑒_𝑖𝑑s rather than a product of 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑s and 𝑒𝑑𝑔𝑒_𝑖𝑑s. An

advantage of our design is that we minimize the bitmap size. In practice, existing methods requires

around 7× larger bitmap size than just edge coverage [93]; our implementation only requires around

1.3× bitmap size of edge coverage. The smaller bitmap size can avoid edge explosion and improve

performance.

In our multi-tasking framework, the context-sensitive edge coverage “task” is trained to predict

the mapping between the inputs and the corresponding 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑s bitmaps. This can enable us

to learn the difference between two inputs in a more granular fashion. For example, an ML model

can learn that under certain circumstances, the second input byte (input[1] in Fig. 3.3) can cause

crashes. This information cannot be learned by training to predict for edge coverage alone since

both inputs will have the same edge coverage (as shown in Fig. 3.4).
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3.3.2 Stage-I: Multi-Task Training

This phase builds a multi-task neural network (MTNN) that can predict different types of edge

coverage given a test input. The trained model is designed to produce a more general and compact

embedding of the input space focusing only on those input bytes that are most relevant to all the

tasks. This compact representation will be reused by the subsequent stages of the program to

identify the most important bytes in the input (i.e., the hot-bytes) and guide mutations on those

bytes.

Architecture.

Fig. 3.5 shows the architecture of the MTNN. The model contains an encoder (shared among all

the tasks) and three task-specific decoders. The model takes existing test input bytes as input and

outputs task-specific bitmap. Each input byte corresponds to one input node, and each bitmap value

corresponds to an output node.

• Encoder. Comprises of one input layer followed by three progressively narrower intermediate

layers. The total number of nodes in the input layer is equal to the total number of bytes in

the largest input in the seed corpus. All shorter inputs are padded with 0x00 for consistency.

The last layer of the encoder is a compact representation of the input to be used by all the

tasks ( green in Fig. 3.5).

• Decoders. There are three task-specific decoders (shown in lilac in Fig. 3.5). Each task

specific decoder consists of three intermediate layers that grow progressively wider. The last

layer of each of the decoder is the output layer. For edge coverage, there is one node in the

output layer for each unique 𝑒𝑑𝑔𝑒_𝑖𝑑, likewise for context-sensitive edge coverage there is

one output node for each 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑, and for approach-sensitive edge coverage there is

one output node for each unique 𝑒𝑑𝑔𝑒_𝑖𝑑 but they take continuous values (see Fig. 3.2).
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Figure 3.5: The MTNN architecture representing the n-dimensional input layer xbi ∈ xb;
m-dimensional compact embedding layer zj ∈ z, s.t. m < n, with a function F(·) to map input
xb and the embedding layer xb; three task-specific layers .

Loss Functions.

The loss function of a MTNN is a weighted sum of the task-specific loss functions. Among

our three tasks, edge coverage and context-sensitive edge coverage are modeled as classification

tasks and approach-sensitive edge coverage is modeled as a regression task. Their loss functions are

designed accordingly.

Loss function for approach-sensitive edge coverage. Approach-level measures how close an

input was from an edge that was not triggered. This distance is measured using a continuous value

between 0 and 1. Therefore, this is a regression problem and we use mean squared error loss, given

by:

L𝜏approach = MSE =
1
𝑛

∑︁
𝑖=1...𝑛

(𝑌𝑖 − 𝑌𝑖)2. (3.1)

Where 𝑌𝑖 is the prediction and 𝑌𝑖 is the ground truth.

Loss functions for edge coverage and context-sensitive edge coverage. The outputs of both these

tasks are binary values where 1 means an input triggered the 𝑒𝑑𝑔𝑒_𝑖𝑑 or the 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑 and 0

otherwise. We find that while some 𝑒𝑑𝑔𝑒_𝑖𝑑s or 𝑐𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑖𝑑s are invoked very rarely, resulting

in imbalanced classes. This usually happens when an input triggers a previously unseen (rare) edges.
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Due to this imbalance, training with an off-the-shelf loss functions such as cross entropy is ill suited

as it causes a lot of false negative errors often missing these rare edges.

To address this issue, we introduce a parameter called penalty (denoted by 𝛽) to penalize these

false negatives. The penalty is the ratio of the number of times an edge is not invoked over the

number of times it is invoked. That is,

Penalty = 𝛽𝜏 =
# times an edge_id (or call_trace_id) is not invoked

# times an edge_id (or call_trace_id) is invoked

Here, 𝛽𝜏 represents the penalty for every applicable task 𝜏∈T and it is dynamically evaluated as

fuzzing progresses. Using 𝛽𝜏 we define an adaptive loss for classification tasks in our MTNN as:

L𝜏ec/ctx = −
∑︁
edge

(𝛽𝜏 · 𝑝 · 𝑙𝑜𝑔(𝑝) + (1 − 𝑝) · 𝑙𝑜𝑔(1 − 𝑝)) (3.2)

In Eq. 3.2, L𝜏ec/ctx results in two separate loss functions for edge coverage and context-sensitive

edge coverage. The penalty (𝛽𝜏) is used to penalize false-positive and false-negative errors. 𝛽𝜏 > 1

penalizes 𝑝 · 𝑙𝑜𝑔(𝑝), representing false negatives; 𝛽𝜏 = 1 penalizes both false positives and false

negatives equally; and 𝛽𝜏 < 1 penalizes (1− 𝑝) · 𝑙𝑜𝑔(1 − 𝑝), representing false positives. With this,

we compute the total loss for our multi-task NN model with 𝐾 tasks:

L𝑡𝑜𝑡𝑎𝑙 = −
𝐾∑︁
𝑖=1

𝛼𝑖L𝑖 (3.3)

This is the weighted sum of the adaptive loss L𝑖 for each individual task. Here, 𝛼𝑖 presents the

weight assigned to task 𝑖.

3.3.3 Stage-II: Gradient guided mutation

This phase uses the trained MTNN to generate new inputs that can maximize the code coverage.

This is achieved by focusing mutation on the byte locations in the input that can most influence

the branching behavior of the program (hot-bytes). Task-specific decoders can’t be used to infer

hot-bytes because they tend to offer a localized view of the hot-byte distribution limited to the

program regions previously explored by that task.

We use the compact embedding layer of the MTNN (shown in green in Fig. 3.5) to infer

the distribution of the hot-bytes. The compact embedding layer is well suited for this because it
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(a) captures the most semantically meaningful features (i.e., bytes) in the input in a compact and

an interpretable manner; and (b) learns to ignore task specific noise patterns [118] paying more

attention to the important bytes that apply to all tasks [119, 120, 121].

Formally, we can represent the input (shown in orange in Fig. 3.5) as a byte vector 𝑥𝑏 =

{𝑥𝑏1, 𝑥𝑏2, ..., 𝑥𝑏𝑛} ∈ [0, 255]n, where 𝑥𝑏𝑖 is the 𝑖th byte in 𝑥𝑏 and 𝑛 represents the input dimensions

(i.e., number of bytes). Then, after the MTNN has been trained, we obtain the compact embedding

layer z = {𝑧1, 𝑧2, ..., 𝑧𝑚} consisting of m nodes. Let 𝑓𝑖 (xb) denote the function that embeds the

input xb into the 𝑖-th node 𝑧𝑖 in the embedding layer. Then, we may express the compact embedding

as follows: 

𝑧1

𝑧2

...

𝑧𝑚


=



𝑓1(xb)

𝑓2(xb)
...

𝑓𝑚 (xb)


=



𝑓1(𝑥𝑏1, · · · , 𝑥𝑏𝑛)

𝑓2(𝑥𝑏1, · · · , 𝑥𝑏𝑛)
...

𝑓𝑞 (𝑥𝑏1, · · · , 𝑥𝑏𝑛)


(3.4)

An important property of Eq. 3.4 is that, for every byte that changes in xb = {𝑥𝑏1, ..., 𝑥𝑏𝑛},

we obtain corresponding changes to every node in z = {𝑧1, ..., 𝑧𝑚}. The extent of the change is

determined by how influential each of the 𝑛 bytes in the input xb are to all the tasks in the MTNN

model. Changes to the hot-bytes, which are more influential, will result in larger changes to z. This

property may be used to discover the hot-bytes.

To determine how influential each of the bytes in xb are, we compute the partial derivatives of

the nodes in compact layer with respect to all the input bytes. The partial derivative of the 𝑗-th node

in the embedding layer z with respect to the i-th byte in the input is given by:

∇xb z =
𝜕 𝑓 𝑗 (x)
𝑥𝑏𝑖

=
𝜕𝑧 𝑗

𝜕𝑥𝑏𝑖
(3.5)

Since there are n bytes in the input layer xb and m nodes in the embedding layer, computing the
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partial derivatives results in the following Jacobian Matrix:

J𝑚×𝑛 =



𝜕𝑧1

𝜕𝑥𝑏1 · · · 𝜕𝑧1

𝜕𝑥𝑏𝑛
...

. . .
...

𝜕𝑧𝑚

𝜕𝑥𝑏1 · · · 𝜕𝑧𝑚

𝜕𝑥𝑏𝑛


(3.6)

The above Jacobian matrix has a dimensionality of 𝑚 × 𝑛. Here,

1. Every row in the jacobian matrix corresponds to a node in the embedding layer 𝑧𝑖 ∈ 𝑧.

2. Every column in the jacobian matrix corresponds to an input byte 𝑥𝑏𝑖 ∈ 𝑧.

In order to infer the importance of each byte 𝑥𝑏𝑖 ∈ 𝑥𝑏, we compute the sum of every column in

Eq. 3.6.

S(xb) =
[∑

𝑖

���� 𝜕𝑧𝑖𝑥𝑏1

���� · · · ∑
𝑖

���� 𝜕𝑧𝑖𝑥𝑏𝑛

����] (3.7)

Here, S(xb) is a vector of length n. The 𝑖-th element in S(xb) represents the sum of all the gradients

of the compact-embedding nodes (z) w.r.t. the 𝑖-th input byte 𝑥𝑏𝑖. Note that,

• The i𝑡ℎ element in S(xb) measures the average influence the i𝑡ℎ input byte (𝑥𝑏𝑖) has on all the

nodes in the compact layer.

• The numeric value of each of the n elements in S(xb) determines the hotness of each of the

bytes. The larger the value, the more likely it is that the byte is potentially a hot-byte.

Using the saliency map (S(xb)) from Eq. 3.7 we can now mutate the existing inputs to generate

new ones. To do this, we identify the top − k bytes with the largest saliency values as shown below:

𝐻 (𝑘) = 𝑎𝑟𝑔 (𝑡𝑜𝑝𝑘 (S(xb))) (3.8)

Here, 𝐻 (𝑘) represents the byte-locations of the top − k hot-bytes that will be mutated by our

algorithm. The specifics of the mutation scheme is presented in our pseudocode shown in Fig. 3.7.
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Figure 3.6: Hot-byte distribution for readelf

Algorithm 1 Gradient-guided mutation

Input : seed ← initial seed
iter ← number of iterations
k ← Picking the top-k critical bytes for mutation
s ← computed saliency of  the input

for i = 1 to iter do
locations ← top(g, ki )
for m = 1 to 255 do

for loc ∈ locations do
v ← seed[loc] + m ∗ sign (g[loc])
v ← clip (v, 0, 255)
gen_mutate (seed, loc, v )

for loc ∈ locations do
v ← seed[loc]  −  m ∗ sign (g[loc])
v ← clip (v, 0, 255)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11: gen_mutate (seed, loc, v )

Figure 3.7: Pseudocode of saliency guided mutation.

To demonstrate that this gradient guided mutation is effective at mutating the hot-byte location,

we inspect the extent of mutation at each byte location is mutated in ELF binaries (see Fig. 3.6). We
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find that the key regions such as ELF header and Section header are mutated to the greatest extent.

Intuitively, this make sense because these regions play a major role in triggering unique program

behaviors as compared to other regions.

3.3.4 Stage-III: Seed Selection and Incremental Learning

In this step, MTFUZZ samples some of the mutated inputs from the previous stage to retrain

the model. Sampling inputs is crucial as the choice of inputs can significantly affect the fuzzing

performance. Also, as fuzzing progresses, the pool of available inputs keeps growing in size.

Without some form of sampling strategy, training the NN and computing gradients would take

prohibitively long.

To this end, we propose an importance sampling [122] strategy where inputs are sampled such

that they reach some important region of the control-flow graph instead of randomly sampling from

available input. In particular, our sampling strategy first retains all inputs that invoke previously

unseen edges. Then, we sort all the seen edges by their rarity. The rarity of an edge is computed by

counting how many inputs trigger that specified edge. Finally, we select the top 𝑇-rarest edges and

include at least one input triggering each of these rare edges. We reason that, by selecting the inputs

that invoke the rare edges, we may explore deeper regions of the program on subsequent mutations.

In order to limit the number of inputs sampled, we introduce a sampling budget 𝐾 that determines

how many inputs will be selected per iteration.

Using these sampled inputs, we retrained the model periodically to refine its behavior—as more

data is becoming available about new execution behavior, retraining makes sure the model has

knowledge about them and make more informed predictions.

3.4 Implementation

Our MTNN model is implemented in Keras-2.2.3 with Tensorflow-1.8.0 as a backend [123,

72]. The MTNN is based on a feed-forward model, composed of one shared encoder and three

independent decoders. The encoder compresses an input file into a 512 compact feature vector and
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feeds it into three following decoders to perform different task predictions. For encoder, we use

three hidden layers with dimensions 2048, 1024 and 512. For each decoder, we use one final output

layer to perform corresponding task prediction. The dimension of final output layer is determined

by different programs. We use ReLU as activation function for all hidden layers. We use sigmoid

as the activation function for the output layer. For task specific weights, set each task to equal

weight (𝛼𝜏 = 1 in Eq. 3.3). The MTNN model is trained for 100 epochs achieving a test accuracy

of around 95% on average. We use Adam optimizer with a learning rate of 0.001. As for other

hyperparameters, we choose k=1024 for 𝑡𝑜𝑝 −𝐾 hot-bytes. For seed selection budget 𝑇 in Stage-III

(§3.3.4), we use 𝑇 = 750 input samples where each input reaches atleast one rare edge. We note

that all these parameters can be tuned in our replication package.

To obtain the various coverage measures, we implement a custom LLVM pass. Specifically,

we instrument the first instruction of each basic block of tested programs to track edge transition

between them. We also instrument each call instructions to record the calling context of tested

programs at runtime. Additionally, we instrument each branch instructions to measure the distance

from branching points to their corresponding descendants. As for magic constraints, we intercept

operands of each CMP instruction and use direct-copy to satisfy these constraints.

3.5 Evaluation

Study Subjects. We evaluate MTFUZZ on 10 real-world programs, as shown in Table. 3.1. To

demonstrate the performance of MTFUZZ, we compare the edge coverage and number of bugs

detected by MTFUZZ with 5 state-of-the-art fuzzers listed in Table. 3.2. Each state-of-the-art fuzzer

was run for 24 hours. The training, retraining, and fuzzing times are included in the total 24 runs for

each fuzzer. Training time for MTFUZZ is shown in Table. 3.1. MTFuzz and Neuzz both use the

same initial seeds for the the approaches and the same fuzzing backend for consistency. We ensure

that all other experimental settings were also identical across all studied fuzzers.

Experimental Setup. All our measurements are performed on a system running Ubuntu 18.04

with Intel Xeon E5-2623 CPU and an Nvidia GTX 1080 Ti GPU. For each program tested, we run
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Table 3.1: Test programs used in our study

Programs # Lines MTFUZZ
train (s)

Initial coverage

Class Name

binutils-2.30
ELF
Parser

readelf -a 21,647 703 3,132
nm -C 53,457 202 3,031
objdump -D 72,955 703 3,939
size 52,991 203 1,868
strip 56,330 402 3,991

TTF harfbuzz-1.7.6 9,853 803 5,786
JPEG libjpeg-9c 8,857 1403 1,609
PDF mupdf-1.12.0 123,562 403 4,641
XML libxml2-2.9.7 73,920 903 6,372
ZIP zlib-1.2.11 1,893 107 1,438

Table 3.2: State-of-the art fuzzers used in our.

Fuzzer Technical Description
AFL [79] evolutionary search

AFLFast [124] evolutionary + markov-model-based search
FairFuzz [84] evolutionary + byte masking

Angora [93] evolutionary + dynamic-taint-guided + coordinate descent + type
inference

Neuzz [85] Neural smoothing guided fuzzing
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AFL-2.52b [79] on a single core machine for an hour to collect training data. The average number

of training inputs collected for 10 programs is around 2𝐾 . We use 10KB as the threshold file size

for selecting our training data from the AFL input corpus (on average 90% of the files generated by

AFL were under the threshold).

3.6 Experimental Results

We evaluate MTFUZZ with the following research questions:

• RQ1: Performance. How does MTFUZZ perform in comparison with other state-of-the-art

fuzzers?

• RQ2: Contributions of Auxiliary Tasks. How much does each auxiliary task contribute

to the overall performance of MTFUZZ?

• RQ3: Impact of Design Choices. How do various design choices affect the performance

of MTFUZZ?

• RQ4: Transferrability. How transferable is MTFUZZ?

RQ1: Performance

We compare MTFUZZ wiht other fuzzers (from Table. 3.2) in terms of the number of real-world

and synthetic bugs detected (RQ1-A and RQ1-B), and edge coverage (RQ1-C).

RQ1-A. How many real world bugs are discovered by MTFUZZ compared to other fuzzers?

Evaluation. To evaluate the number of bugs discovered by a fuzzer, we first instrument the program

binaries with AddressSanitizer [74] and UnderfinedBehaviorSanitizer [125]. Such

instrumentation is necessary to detect bugs beyond crashes. Next, we run each of the fuzzers for

24 hours (all fuzzers use the same seed corpus) and gather the test inputs generated by each of the

fuzzers. We run each of these test inputs on the instrumented binaries and count the number of bugs

found in each setting. Finally, we use the stack trace of bug reports generated by two sanitizers to
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categorize the found bugs. Note, if multiple test inputs trigger the same bug, we only consider it

once. Table 3.3 reports the results.

Observations. We find that:

1. MTFUZZ finds a total of 71 bugs, the most among other five fuzzers in 7 real world programs.

In the remaining three programs, no bugs were detected by any fuzzer after 24 hours.

2. Among these, 11 bugs were previously unreported.

Among the other fuzzers, Neuzz (another ML-based fuzzer) is the second-best fuzzer, finding 60

bugs. Angora finds 58. We observe that the 11 new bugs predominantly belonged to 4 types: memory

leak, heap overflow, integer overflow, and out-of-memory. Interestingly, MTFUZZ discovered a

potentially serious heap overflow vulnerability in mupdf that was not found by any other fuzzer so

far (see 3.8).

A mupdf function ensure_solid_xref allocates memory (line 10) for each object of a pdf

file and fills content to these memory chunks (line 14). Prior to that, at line 6, it tries to obtain

the total number of objects by reading a field value xref->num_objects which is controlled

by program input: a pdf file. MTFUZZ leverages gradient to identify the hot bytes which control

xref->num_objects and sets it to a negative value. As a result, num maintains its initial value

1 as line 6 if check fails. Thus, at line 10, the function allocates memory space for a single object

as 𝑛𝑢𝑚 = 1. However, in line 14, it tries to fill more than one object to new_sub->table

and causes a heap overflow. This bug results in a crash and potential DoS if mupdf is used in a

web server.

RQ1-B. How many synthetic bugs in LAVA-M dataset are discovered by MTFUZZ compared to

other fuzzers?

Evaluation. LAVA-M is a synthetic bug benchmark where bugs are injected into four GNU

coreutil programs [41]. Each bug in LAVA-M dataset is guarded by a magic number con-

dition. When the magic verification is passed, the corresponding bug will be triggered. Following

conventional practice, we run MTFUZZ and other fuzzers from Table. 3.2 on LAVA-M dataset for
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Table 3.3: Real-world bugs found after 24 hours by various fuzzers. MTFUZZ finds the most
number of bugs, i.e., 71 (11 unseen) comprised of 4 heap-overflows, 3 Memory leaks, 2 integer
overflows, and 2 out-of-memory bugs.

Program AFLFast AFL FairFuzz Angora Neuzz MTFUZZ
readelf 5 4 5 16 16 17
nm 7 8 8 10 9 12
objdump 6 6 8 5 8 9
size 4 4 5 7 6 10
strip 5 7 9 20 20 21
libjpeg 0 0 0 0 1 1
mupdf 0 0 0 0 0 1
Total 27 29 35 58 60 71

Table 3.4: Synthetic bugs in LAVA-M dataset found after 5 hours.

Program #Bugs Angora Neuzz MTFUZZ
base64 44 48 48 48
md5sum 57 57 60 60
uniq 28 29 29 29
who 2136 1541 1582 1833

a total of 5 hours. We measure the number of bugs triggered by each of the state-of-the-art fuzzers.

The result is tabulated in Table. 3.4.

Observations. MTFUZZ discovered the most number of bugs on all 4 programs after 5 hours

run. The better performance is attributed to the direct-copy module. To find a bug in LAVA-M

dataset, fuzzers need to generate an input which satisfies the magic number condition. MTFUZZ’s

direct-copy module is very effective to solve these magic number verification since it can intercept

operands of each CMP instruction at runtime and insert the magic number back into generated

inputs.

RQ1-C. How much edge coverage does MTFUZZ achieve compared to other fuzzers?

Evaluation. To measure edge coverage, we run each of the fuzzers for 24 hours (all fuzzers use

the same seed corpus). We periodically collect the edge coverage information of all the test inputs

for each fuzzer using AFL’s coverage report toolkit afl-showmap [79]. AFL provides coverage

instrumentation scheme in two mainstream compilers GCC and Clang. While some authors prefer

to use afl-gcc [85, 84, 124], some others use afl-clang-fast[93, 126]. The underlying
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1 // mupdf-1.12.0-source/pdf/pdf-xref.c:174
2 static void ensure_solid_xref(...){
3 ...
4 int num = 1;
5 // xref->num_objects is manipulated by attacker
6 if (num < xref->num_objects)
7 num = xref->num_objects;
8 ...
9 // allocate memory for num objects
10 new_sub->table = fz_calloc(ctx, num, sizeof(object));
11 ...
12 // fill content to num objects
13 for(i = 0; i < sub->len; i++)
14 new_sub->table[i] = sub->table[i];
15 ...

Figure 3.8: Heap overflow bug in mupdf. The red line shows the bug.
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Figure 3.9: Edge coverage over 24 hours of fuzzing by MTFUZZ and other state-of-the-art
fuzzers.

compilers can have different program optimizations which affects how edge coverage is measured.

Therefore, in order to offer a fair comparison with previous studies, we measure edge coverage on

binaries compiled with with both afl-gcc and afl-clang-fast. In the rest of the paper, we

report results on programs compiled with afl-clang-fast. We observed similar findings with

afl-gcc.

Observations. The results for edge coverage after 24 hours of fuzzing are tabulated in Table. 3.5.

The edge-coverage gained over time is shown in Fig. 3.9. Overall, MTFUZZ achieves noticeably
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Table 3.5: The average edge coverage of MTFUZZ compared with other fuzzers after 24 hours
runs for 5 repetitions. Parenthesized numbers represent the standard deviation.

(a) Program binaries compiled with afl-clang-fast

Program MTFUZZ Neuzz Angora FairFuzz AFL AFLFast
readelf 8,109 5,953 7,757 3,407 701 1,232

(286) (141) (248) (1005) (87) (437)
nm 4,112 1,245 3,145 1,694 1,416 1,277

(161) (32) (2033) (518) (144) (18)
objdump 3,762 1,642 1,465 1,225 163 134

(359) (77) (148) (316) (25) (15)
size 2,786 1,170 1,586 1,350 1,082 1,023

(69) (45) (204) (47) (86) (117)
strip 4,406 1,653 2,682 1,920 596 609

(234) (110) (682) (591) (201) (183)
libjpeg 543 328 201 504 327 393

(19) (34) (42) (101) (99) (21)
libxml 1,615 1,419 · 956 358 442

(28) (76) · (313) (71) (41)
mupdf 1,107 533 · 503 419 536

(26) (76) · (76) (28) (30)
zlib 298 297 · 294 196 229

(38) (44) · (95) (41) (53)
harfbuzz 3,276 3,000 · 3,060 1,992 2,365

(140) (503) · (233) (121) (147)

· indicates cases where Angora failed to run due to the external library issue.
(b) Program binaries compiled with alf-gcc

Programs MTFUZZ Neuzz Angora FairFuzz AFL AFLFast
readelf 6,701 4,769 6,514 3,423 1,072 1,314
nm 4,457 1,456 2,892 1,603 1,496 1,270
objdump 5,024 2,017 1,783 1,526 247 187
size 3,728 1,737 2,107 1,954 1,426 1,446
strip 6,013 2,726 3,112 3,055 764 757
libjpeg 1,189 719 499 977 671 850
libxml 1,576 1,357 · 1,021 395 388
mupdf 1,107 533 · 503 419 536
zlib 298 297 · 294 196 229
harfbuzz 6,325 5,629 · 5,613 2,616 3,692

more edge coverage than all other baseline fuzzers. Consider the performance gains obtained over

the following families of fuzzers:

◦ Evolutionary fuzzers: MTFUZZ outperforms all the three evolutionary fuzzers studied here.
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MTFUZZ outperforms Angora on the 6 programs which Angora supports and achieves up to 2297

more edges in objdump. Note, Angora can’t run on some programs due to the external library issue

on its taint analysis engine [93, 127]. When compared to both FairFuzz and AFLFast, MTFUZZ

covers significantly more edges, e.g., 4702 more than FairFuzz in readelf and over 28.1× edges

compared to AFLFast on objdump.

◦ Machine learning based fuzzers: In comparison with the state-of-the-art ML based fuzzer,

Neuzz [85], we observed that MTFUZZ achieves much greater edge coverage in all 10 programs

studied here. We notice improvements of 2000 more edges in readelf and 2500 more edges in

nm and strip.

MTFUZZ found 71 real-world bugs (11 were previously unknown) and also reach on average

1, 277 and up to 2, 867 more edges compared to Neuzz, the second-best fuzzer, on 10 programs.

RQ2: Contributions of Auxiliary Tasks

MTFUZZ is comprised of an underlying multi-task neural network (MTNN) that contains one

primary task (edge coverage) and two auxiliary tasks namely, context-sensitive edge coverage and

approach-sensitive edge coverage. A natural question that arises is—How much does each auxiliary

task contributes to the overall performance?

Evaluation. To answer this question, We study what would happen to the edge coverage when one

of the auxiliary tasks is excluded from the MTFUZZ. For this, we build four variants of MTFUZZ:

1. (EC) : A single-task NN with only the primary task to predict edge coverage.

2. (EC, Call Ctx) : An MTNN with edge coverage as the primary task and context-sensitive edge

coverage as the auxiliary task.

3. (EC, Approach) : An MTNN with edge coverage as the primary task and approach-sensitive

edge coverage as the auxiliary task.

4. MTFUZZ: Our proposed model with edge coverage as the primary task and two auxiliary

tasks context-sensitive edge coverage and approach-sensitive edge coverage.
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Table 3.6: Edge coverage after 1 hour. The most improvement in edge coverage is observed
when including both the auxiliary tasks are trained together as a multi-task learner.

Programs EC EC, Call Stack EC, Approach MTFUZZ
readelf 4,012 4,172 4,044 4,799
nm 546 532 412 577
objdump 605 632 624 672
size 350 404 500 502
strip 744 787 902 954
harfbuzz 593 661 752 884
libjpeg 190 135 182 223
mupdf 252 193 257 269
libxml2 525 649 677 699
zlib 56 33 59 67

To rule out other confounders, we ensure that each setting shares the same hyper-parameters and

the same initial seed corpus. Also, we ensure that all subsequent steps in fuzzing remain the same

across each experiment. With these settings, we run each of the above multi-task models on all our

programs from Table. 3.1 for 1 hour to record the edge coverage for each of these MTNN models.

Observations. Our results are tabulated in Table. 3.6. We make the following noteworthy observa-

tions:

1. Fuzzer that uses an MTNN trained on edge coverage as the primary task and context-sensitive

edge coverage as the only auxiliary task tends to perform only marginally better than a single task

NN based on edge coverage. In some cases, e.g., in Table. 3.6 we notice about 25% more edges.

However, in some other cases, for example libjpeg, we noticed that the coverage reduces by

almost 31%.

2. The above trend is also observable for using edge coverage with approach-sensitive edge coverage

as the auxiliary. For example, in libjpeg, the edge coverage is lower than the single-task model

that uses only edge coverage.

3. However, MTFUZZ, which uses both context-sensitive edge coverage and approach-sensitive

edge coverage as auxiliary tasks to edge coverage, performs noticeably better than all other models

with up to 800 more edges covered (≈20%) in the case of readelf.

The aforementioned behavior is expected because each auxiliary task provides very specific
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albeit somewhat partial context to edge coverage. Context-sensitive edge coverage only provides

context to triggered edges, while approach-sensitive edge coverage only reasons about non-triggered

edges (see §3.3.1 for details). Used in isolation, a partial context does not have much to offer.

However, while working together as auxiliary tasks along with the primary task, it provides a

better context to edge coverage resulting in overall increased edge coverage (see the last column

of Table. 3.6).

MTFUZZ benefits from both the auxiliary tasks. Using context-sensitive edge coverage and

edge coverage along with the primary task (of predicting edge coverage) is most beneficial. We

achieve up to 20% more edge coverage.

RQ3. Impact of Design Choices

While building MTFUZZ, we made few key design choices such as using a task-specific adaptive

loss (§3.3.2) to improve the quality of the multi-task neural network (MTNN) model and a novel

seed selection strategy based on importance sampling (see §3.3.4). Here we assess how helpful

these design choices are.

RQ3-A. What are the benefits of using adaptive loss?

MTNN model predicting for edge coverage and for context-sensitive edge coverage tends to

experience severely imbalanced class labels. Consider the instance when a certain input triggers an

edge for the first time. This is an input of much interest because it represents a new behaviour. The

MTNN model must learn what lead to this behaviour. However, in the training sample, there exists

only one positive sample for this new edge in the entire corpus. An MTNN that is trained with an

off-the-shelf loss functions is likely to misclassify these edges resulting in a false negative error.

Such false negatives are particularly damaging because a large number of new edge discoveries go

undetected affecting the overall model performance. To counter this, we defined an adaptive loss in

§3.3.2; here we measure how much it improves the MTNN’s performance.

Evaluation. To evaluate the effect of class imbalance, we measure recall which is high when the

overall false negatives (FN) are low. While attempting to minimize FNs the model must not make
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too many false positive (FP) errors. Although false positives are not as damaging as false negatives,

we must attempt to keep them low. We therefore also keep track of the F1-scores which quantify the

trade-off between false positives and false negatives. We train MTFUZZ with two different losses

(i.e., with our adaptive loss and with the default cross-entropy loss) on 10 programs for 100 epochs

and record the final recall and F-1 scores.

Observations. The result are shown in Table. 3.7. We observe that adaptive loss results in MTNNs

with an average of 90% recall score on 10 programs, while the default loss model only achieves

on average 75% recall score. Generally, we notice improvements greater than 15% over default

loss functions. The low recall for default loss function indicates that it is susceptible to making a

lot of false negative predictions. However, our adaptive loss function is much better at reducing

false negative predictions. Also, the adaptive loss model achieves on average F-1 score of 72%,

while unweighted loss model achieves an average of 70%. This is encouraging because even after

significantly reducing the number of false negatives, we maintain the overall performance of the

MTNN.

Weighted loss improves MTFUZZ’s recall by more than 15%.

RQ3-B. How does seed selection help?

Evaluation. Here, we evaluate our seed selection strategy (§3.3.4) by comparing it to a random

selection strategy. Specifically, we run two variants of MTFUZZ, one with importance sampling

for seed selection and the other with a random seed selection. All other components of the tool

such as MTNN model, hyperparameters, random seed, etc. are kept constant. We measure the

edge coverage obtained by both the strategies on 10 programs after fuzzing for one hour. Table. 3.7

shows the results.

Observations. When compared to a random seed selection strategy. Importance sampling out-

performs random seed selection in all 10 programs offering average improvements of 1.66× more

edges covered than random seed selection—for readelf, it covers around 2000 more edges. This

makes intuitive sense because, the goal of importance sampling was to retain the newly generated

inputs that invoke certain rare edges. By populating the corpus with such rare and novel inputs, the
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Table 3.7: Impact of design choices. Adaptive loss (§3.3.2) increases Recall by ∼ 15% while
maintaining similar F1-scores. Seed selection based on importance sampling (§3.3.4) demon-
strates notable gains in overall edge coverage.

Adaptive Default Seed Selection
Programs

Recall(%) F1(%) Recall(%) F1(%) Our Approach Random
readelf 88 68 74 66 4,799 2,893
nm 89 62 69 62 577 269
objdump 89 72 65 71 672 437
size 94 81 78 78 502 312
strip 89 73 80 72 954 545
harfbuzz 92 67 80 71 884 558
libjpeg 88 68 65 65 223 124
mupdf 92 84 90 84 269 160
libxml2 90 70 76 69 699 431
zlib 86 70 70 65 67 57

number of newly explored edges would increase over time, resulting in increase edge coverage (see

Table. 3.7).

Importance sampling helps MTFUZZ achieve on average 1.66× edge coverage compared with

random seed selection.

RQ4. Transferability

In this section, we explore the extent to which MTFUZZ can be generalized across different

programs operating on the same inputs (e.g., two ELF fuzzers). Among such programs, we study if

we can transfer inputs generated by fuzzing from one program to trigger edge coverage in another

program (RQ4-A) and if it is possible to transfer the shared embedding layers between programs

(RQ4-B).

RQ4-A. Can inputs generated for one program be transferred to other programs operating on the

same domain?

MTFUZZ mutates the hot-bytes in the inputs to generate additional test inputs. These hot-bytes are

specific to the underlying structure of the inputs. Therefore, inputs that have been mutated on these

hot-bytes should be able to elicit new edge coverage for any program that parses the same input.
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Table 3.8: Generalizability of MTFUZZ across different programs parsing the same file types
(ELF and XML). The numbers shown represent new edge coverage.

Inputs + Embedding Inputs only (RQ4-A)
File Type Source→ Target

MTFUZZ (RQ4-B) MTFUZZ Neuzz AFL
nm→ nm* 668 668 315 67
size→ nm 312 294 193 32
readelf→ nm 185 112 68 13
size→ size* 598 598 372 46
readelf→ size 218 151 87 19
nm→ size 328 236 186 17
readelf→ readelf* 5,153 5,153 3,650 339
size→ readelf 3,146 1,848 1,687 327

ELF

nm→ readelf 3,329 2,575 1,597 262
xmlwf→ xmlwf* 629 629 343 45
libxml2→ xmlwf 312 304 187 19
libxml2→ libxml2* 891 891 643 73

XML

xmlwf→ libxml2 381 298 72 65
* indicates baseline setting without transfer learning

Evaluation. To answer this question, we explore 5 different programs that operate on 2 file types:

(1) readelf, size, and nm operating on ELF files, and (2) libxml and xmlwf [128] operating

on XML files. For all the programs that operate on the same file format:

1. We pick a source program (say S = 𝑃𝑖) and use MTFUZZ to fuzz the source program for 1

hour to generate new test inputs.

2. Next, for every other target program T = 𝑃 𝑗≠𝑖, we use the test inputs from the previous step

to measure the coverage. Note that we do not deploy the fuzzer on the target program, we

merely measure the code coverage.

3. For comparison, we use NEUZZ (another ML-based fuzzer) and AFL to fuzz the source

program S to generate the test inputs for the target program.

Observation. We observe from Table. 3.8 that inputs generated by MTFUZZ produce much higher

edge coverage on the target program compared to seeds generated by Neuzz or AFL. In general,

we notice on average 10× more edge coverage than AFL and 2× more edge coverage than Neuzz.

Here, AFL performs the worse, since it generates seeds very specific to the source program.
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NEUZZ, a machine learning based fuzzer, performs better than AFL since it attempts to learn

some representation of the input, but it falls short of MTFUZZ which learns the most general input

representation.

RQ4-B. Can the shared layer be transferred between programs?

We hypothesize that since MTFUZZ can learn a general compact representation of the input, it

should, in theory, allow for these compact representations to be transferred across programs that

share the same input, e.g., across programs that process ELF binaries.

Evaluation: To verify this, we do the following:

1. We pick a source program (say S = 𝑃𝑖) and use MTFUZZ to fuzz the source program for 1

hour to generate new tests inputs.

2. For every target program T = 𝑃 𝑗≠𝑖, we transfer the shared embedding layer along with the

test inputs from the source program to fuzz the target program.

3. Note that the key distinction here is, unlike RQ4-A, here we fuzz the target program with

MTFUZZ using the shared layers and the seed from the source program to bootstrap fuzzing.

Observation. We achieve significantly more edge coverage by transferring both the seeds and the

shared embedding layers from the source to target program (Table. 3.8). On average, we obtain 2×

more edge coverage on all 10 programs. Specifically, transferring the shared embedding layers and

the seeds from nm to readelf results in covering 2× more edges compared to Neuzz and over

15×more edges compared to AFL. Transferring offers better edge coverage compared to fuzzing

the target program with AFL.

MTFUZZ’s compact embedding can be transferred across programs that operate on similar input

formats. We achieve up to 14 times edge coverage for XML files (with an average of 2 times edge

coverage across all programs) compared to other state-of-the-art fuzzers.
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3.7 Limitation

(a) Initialization: For the fuzzers studied here, it is required to provide initial set of seed inputs.

To ensure a fair comparison, we use the same set of seed inputs for all the fuzzers.

(b) Target programs: We selected diverse target programs from a wide variety of software systems.

One still has to be careful when generalizing to other programs not studied here. We ensure that all

the target programs used in this study have been used previously; we do not claim that our results

generalize beyond these programs.

(c) Other fuzzers: When comparing MTFUZZ with other state-of-the-art fuzzers, we use those

fuzzers that are reported to work on the programs tested here. Our baseline fuzzer Neuzz [85]

has reported to outperform many other fuzzers on the same studied programs. Since we are

outperforming Neuzz, it is reasonable to expect that we will outperform the other fuzzers as well.

3.8 Conclusion

This paper presents MTFUZZ, a multi-task neural-network fuzzing framework. MTFUZZ learns

from multiple code coverage measures to reduce a sparse and high-dimensional input space to a

compact representation. This compact representation is used to guide the fuzzer toward unexplored

regions of the source code. Further, this compact representation can be transferred across programs

that operate on the same input format. Our findings suggest MTFUZZ can improve edge coverage

significantly while discovering several previously unseen bugs.
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Chapter 4: K-Scheduler: Effective Seed Scheduling for Fuzzing with Graph
Centrality Analysis

Seed scheduling, the order in which seeds are selected, can greatly affect the performance of

a fuzzer. Existing approaches schedule seeds based on their historical mutation data, but ignore

the structure of the underlying Control Flow Graph (CFG). Examining the CFG can help seed

scheduling by revealing the potential edge coverage gain from mutating a seed.

An ideal strategy will schedule seeds based on a count of all reachable and feasible edges

from a seed through mutations, but computing feasibility along all edges is prohibitively expensive.

Therefore, a seed scheduling strategy must approximate this count. We observe that an approximate

count should have 3 properties —(i) it should increase if there are more edges reachable from a

seed; (ii) it should decrease if mutation history information suggests an edge is hard to reach or is

located far away from currently visited edges; and (iii) it should be efficient to compute over large

CFGs.

We observe that centrality measures from graph analysis naturally provide these three properties

and therefore can efficiently approximate the likelihood of reaching unvisited edges by mutating a

seed. We therefore build a graph called the edge horizon graph that connects seeds to their closest

unvisited nodes and compute the seed node’s centrality to measure the potential edge coverage gain

from mutating a seed.

We implement our approach in K-Scheduler and compare with many popular seed schedul-

ing strategies. We find that K-Scheduler increases feature coverage by 25.89% compared to

Entropic and edge coverage by 4.21% compared to the next-best AFL-based seed scheduler, in

arithmetic mean on 12 Google FuzzBench programs. It also finds 3 more previously-unknown bugs

than the next-best AFL-based seed scheduler.
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4.1 Introduction

Fuzzing is a popular security testing technique that has found numerous vulnerabilities in

real-world programs [129, 130, 7, 6, 131, 132, 133, 134, 135, 136, 137, 134]. Fuzzers automatically

search through the input space of a program for specific inputs that result in potentially exploitable

buggy behaviors. However, the input spaces of most real-world programs are too large to explore ex-

haustively. Therefore, most existing fuzzers follow an edge-coverage-guided evolutionary approach

for guiding the input generation process to ensure that the generated inputs explore different control

flow edges of the target program [4, 20, 138]. Starting from a seed input corpus, a coverage-guided

fuzzer repeatedly selects a seed from the corpus, mutates it, and adds only those mutated inputs back

to the corpus that generate new edge coverage. The performance of such fuzzers have been shown

to heavily depend on seed scheduling, the order in which the seeds are selected for mutation [139].

The main challenge in seed scheduling is to identify which seeds in a corpus, when mutated, are

more likely to explore many new edges. Performing more mutations on such promising seeds can

achieve higher edge coverage. Most prior work on seed scheduling identifies and prioritizes the

promising seeds based on the historical distribution of edge/path coverage across prior mutations of

the seeds. For example, a fuzzer can prioritize the seeds whose mutations, in the past, resulted in a

higher path coverage [140] or triggered rarer edges [84]. However, these existing approaches ignore

the structure of the underlying Control Flow Graph (CFG). For example, consider a seed s1 whose

execution path is close to many unvisited edges and a seed s2 whose execution path is close to only

one unvisited edge. Existing coverage-guided fuzzers might schedule seed S2 before S1 based on

historical patterns. However, examining the structure of the CFG will reveal that S1 is indeed more

promising than S2 as mutating it can potentially result in exploration of many unvisited edges that

are close to the S1’s execution path.

The naive strategy of scheduling seeds simply based on the counts of all potentially reachable

edges in the CFG for each seed is unlikely to be effective. Such a naive approach assumes that all

CFG edges are equally likely to be reachable through mutations which does not hold true for most

real-world programs. In fact, some shallow edges tend to be reachable by a large number of mutated
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inputs while other deep edges are only reached by a few, if any at all (as many branches might

be infeasible) [141]. An ideal strategy would schedule seeds based on the count of all reachable

and feasible edges from a seed by mutations. The seeds with higher edge counts will be mutated

more. However, computing the feasibility along all edges is impractical as it will incur prohibitive

computational cost.

Therefore, a seed scheduling strategy must approximate the feasible edge count. We observe

that such an approximation should have 3 properties. First, the approximate count should increase if

there are many edges reachable from a seed. Second, the count should decrease if mutation history

information suggests that an edge is hard to reach or is located far away from currently visited edges.

Empirical evidence from prior work has shown that reaching child nodes through input mutations is

typically harder than reaching parent nodes [141] because the number of inputs that can reach a

child, for a given path, is strictly less than or equal to the number of inputs that can reach the parent.

Third, the approximate count must be efficient to compute for large CFGs as real-world CFGs can

be quite large (e.g., inter-procedural CFGs might contain thousands of nodes).

Our key observation is that centrality measures from graph influence analysis naturally provide

the aforementioned properties while measuring a node’s influence on the graph. Influence analysis is

often used to identify a graph’s (e.g., a social network’s) most influential nodes and graph centrality

measures each node’s influence on other nodes with three properties as described below. First,

centrality measures additively scale up a node’s influence proportional to the number of edges

that are reachable from the node. Each sequence of edges of the same length is treated equally

independent of its order. Second, centrality measures can easily incorporate external contribution

(e.g., based on past mutation history) to a node’s influence and can decay contributions from farther

away nodes to the node’s influence. Contributions decay multiplicatively with the increase in

distance (i.e., more intermediate nodes) to reduce contributions from longer paths. Finally, centrality

can be efficiently approximated on large graphs using iterative methods [142].

In this paper, we introduce a new approach for seed scheduling based on centrality analysis of

the seeds on the CFG. We prioritize scheduling seeds with the largest centrality, i.e., approximate
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counts of unvisited but potentially reachable CFG edges from a seed through mutations. To measure

a seed’s influence with centrality, we modify the CFG to construct an edge horizon graph containing

the eponymous horizon nodes. The horizon nodes form the boundary between the visited and

unvisited regions of the CFG for a given fuzzing corpus.

Since horizon nodes delineate between the visited and unvisited regions of the CFG, we first

classify CFG nodes as visited or unvisited based on the coverage of a fuzzer’s current corpus. We

then define horizon nodes as unvisited nodes with a visited parent node. These nodes are crucial to

fuzzing because a fuzzer must first visit a horizon node before going further into the unvisited region

of the CFG. The centrality of horizon nodes reachable by mutations on a seed therefore measures

the seed’s ability to discover new edge coverage. Hence, we introduce one node corresponding to

each seed and connect the nodes to their corresponding horizon nodes. We do not keep any visited

node in the edge horizon graph to avoid inflating a seed’s centrality score with contributions from

already visited nodes.

To compute centrality over the edge horizon graph, we use Katz centrality because it provides

all the three desired approximation properties described earlier in this section and can operate on

directed graphs like CFGs. We also use historical mutation data to bias the influence of horizon

nodes to a value between 0 and 1 where values closer to 0 mean the node is harder to reach by

mutations. The bias value estimates the hardness to reach a node by counting how many mutations

reach a node’s parents but fail to reach the node itself.

Using the centrality scores for all seeds, a fuzzer can prioritize the seed with the highest centrality.

We also periodically re-compute the edge horizon graph and centrality scores during a fuzzing

campaign.

We implement our centrality-analysis-based seed scheduling technique as part of K-Scheduler

(K stands for Katz centrality). Our evaluation shows that K-Scheduler increases feature cov-

erage by 25.89% compared to Entropic and edge coverage by 4.21% compared to the next-best

AFL-based seed scheduler, in arithmetic mean on 12 Google FuzzBench programs. It also finds 3

more previously-unknown bugs than the next-best AFL-based seed scheduler.
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We also conduct preliminary experiments to show the utility of K-Scheduler in non-fuzzing

seed scheduling settings such as concolic execution and measure the impact of K-Scheduler’s

design choices.

4.2 Graph Influence Analysis Background

4.2.1 Centrality Measures for Influence Analysis

Identifying a graph’s most influential nodes is a common and important task in graph analysis.

Many different centrality measures exist in the literature to estimate a node’s influence [143]. For

example, degree centrality measures a node’s influence by counting its direct neighbors. This

technique can identify a node with local influence over its neighbors. Eigenvector centrality, in

contrast, can identify nodes with global influence over the entire graph. However, eigenvector

centrality can fail to produce useful scores on directed graphs [144, 145]. Because program CFGs

are directed graphs and we want to measure the global influence of a node to reach other nodes in a

graph, we use Katz centrality, a variant of eigenvector centrality for directed graphs. We believe that

Pagerank centrality, another eigenvector centrality variant, is not suitable for our setting because it

dilutes node influence by the number of its direct neighbors. Such artificial dilutions will undesirably

decrease a node’s influence in a program’s CFG. We conduct experiments to experimentally support

this claim in Section 4.6.

For directed graphs like a program CFG, a node’s neighbors can be defined by incoming or

outgoing edges. Therefore, centrality measures are classified as out-degree if they use outgoing

edges or in-degree if they use incoming edges during the computation. Their actual usage depend on

the target domain. For example, academic citation graphs use in-degree centrality measures because

influential papers are highly cited. In our setting, we use out-degree Katz centrality because we

want to measure a node’s ability to reach as many unvisited CFG edges (with respect to the current

fuzzing corpus) as possible. We describe the details of the out-degree Katz centrality measure

below.
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Figure 4.1: Fuzzer workflow with K-Scheduler.

4.2.2 Katz Centrality

Let 𝐴 denote an 𝑛 by 𝑛 adjacency matrix of a graph with 𝑛 nodes. If there is an edge connecting

node i to node j, element 𝐴𝑖 𝑗 = 1. Otherwise, 𝐴𝑖 𝑗 = 0. Let c denote the Katz centrality vector of

size 𝑛. The element corresponding to node 𝑖, 𝑐𝑖, is defined as follows,

𝑐𝑖 = 𝛼

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑐 𝑗 + 𝛽𝑖 (4.1)

where 𝛼 ∈ [0, 1] and 𝛽𝑖 is the i-th element of 𝜷, a vector of size 𝑛 consisting of non-negative

elements. Conceptually, the left equation term captures that node centrality additively depends

on its neighbors centrality and assigns each neighbor equal weight. Because the sum operator is

commutative, the centrality score is independent of the order in which nodes are reached. The right

term 𝜷 captures the minimum centrality of a node, which we will later use in Section 4.4 to bias

the centrality of horizon nodes based on historical mutation data. The 𝛼 term represents the decay

factor, so that long paths are weighted less than short paths as we show in Section 4.4.

In matrix form, equation 4.1 can be written as

c = 𝛼𝐴c + 𝜷 (4.2)

To compute c, the Katz centrality vector, one can solve the linear system so that

c = (𝐼 − 𝛼𝐴)−1𝜷 (4.3)
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if(a > 20){
return 1;

}
else if(a > 10){

if (b > 20)
return 2;

else if (b > 10)
return 3;

else
return 4;

}
else
return 5;

if (a > 20)

if (a > 10)

if (b > 20)

if (b > 10)

ret 1

ret 5

ret 2

ret 3 ret 4
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B
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(a) Program CFG.

if (b > 10)

ret 1

ret 3 ret 4
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A

B

(b) Edge horizon graph

if (b > 10)

ret 1

ret 3 ret 4
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A

B

c=0.3

c=1.7
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c=1.15 c=2

C D

S1 S2

(c) Computing Katz Centrality

Figure 4.2: This figure shows how K-Scheduler is used for seed scheduling on a small
program. Given the code example on the left, Figure 4.2a shows the corresponding CFG,
colored as gray if a node is visited and white if unvisited based on the fuzzer corpus. Figure 4.2b
shows the edge horizon graph. Figure 4.2c displays node Katz centrality scores computed by
iterative power method illustrated in Table 4.1. A fuzzer will prioritize seed (a = 15,b = 30)
because it has the highest centrality score.

However, computing the matrix inverse in Equation 4.3 is prohibitively expensive with 𝑂 (𝑛3)

complexity for large graphs. In practice, an iterative approach called the power method is used to

approximate c based on Equation 4.2. After initially setting c(0) = 𝛽, the power method computes

the t-th iteration with the following formula,

c(𝑡) = 𝛼𝐴c(𝑡 − 1) + 𝜷 (4.4)

where c(𝑡) denotes the t-th iteration. Each iteration increases the power of matrix 𝐴 which cor-
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responds to considering neighbors farther away. Hence, Katz centrality measures global node

influence over the entire graph. Each iteration also reduces the contribution of farther away nodes

to a node’s influence as we describe in Section 4.4. The power method converges to the centrality

vector in Equation 4.3 with 𝑂 (𝑛) complexity under some reasonable assumptions about the graph

topology [145] such as 𝛼 having to be less than the multiplicative inverse of the largest eigenvalue.

We refer the reader to [144, 145] for more technical details.

4.3 Overview

Workflow. Figure 4.1 depicts the workflow of K-Scheduler. Given a program, seed corpus, and

a target program’s inter-procedural CFG, we modify the CFG to produce an edge horizon graph

composed of only seed, horizon, and non-horizon unvisited nodes. We then use Katz centrality to

perform centrality analysis on the edge horizon graph. A fuzzer prioritizes the seed with the highest

centrality score. As a fuzzer’s mutations reach previously unvisited nodes, we delete these newly

visited nodes and re-compute Katz centrality on the updated edge horizon graph.

Motivating Example. Figure 4.2 shows a motivating example to explain our approach. The sample

program (shown on the left) returns different values based on user input stored in variables a and

b. Intuitively, we want to pick the seed node that can reach as many unvisited CFG edges as

possible. In this case, this corresponds to seed node (a = 15,b = 30). To do this, our approach

K-Scheduler takes two steps.

Edge Horizon Graph. First, we modify the CFG to build the edge horizon graph. We classify

nodes in the program’s CFG as visited or unvisited based on the coverage of a fuzzer’s current

corpus. Figure 4.2a shows a classification of program’s CFG nodes, where nodes in gray are visited

and nodes in white are unvisited. We next identify horizon nodes, which border the visited and

unvisited CFG. In Figure 4.2a, the horizon nodes are nodes A and B since they are unvisited nodes

with a visited parent node. We then insert seed nodes into the CFG and connect them to any horizon

node whose parent is visited along the seed’s execution path. For example, seed (a = 5,b = 30)

takes both 𝐹𝑎𝑙𝑠𝑒 sides of the branch and hence its horizon node is node A. We connect this seed
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Table 4.1: Katz centrality computation by the iterative power method for the edge horizon
graph in Figure 4.2c. Each row corresponds to a node’s centrality value and each column
indicates the current iteration. The power method converges in 3 steps on this simple graph.
Assume 𝛼 = 0.5 and 𝛽 = c(0).

t=0 t=1 t=2 t=3

𝑐𝑎 0.3 0.3 0.3 0.3
𝑐𝑏 0.7 1.7 1.7 1.7
𝑐𝑐 1 1 1 1
𝑐𝑑 1 1 1 1
𝑐𝑠1 1 1.15 1.15 1.15
𝑐𝑠2 1 1.5 2 2

node to horizon node A. Finally, we delete all visited nodes in the CFG. Figure 4.2b shows the

resulting edge horizon graph.

Katz centrality. Second, we compute Katz centrality over the edge horizon graph. We use the 𝛽

parameter in the centrality computation to estimate the hardness to reach a node by mutations. For

this example, we assume that out of 100 mutations, 70 reached the parent of horizon node A, so its

𝛽 = 1− 70
100 = 0.3 and 30 reached the parent of horizon node 𝐵, so its 𝛽 = 1− 30

100 = 0.7. This shows

that horizon node A is harder to reach by mutations because a fuzzer failed to reach it with 70% of

its mutations. The remaining nodes default to 𝛽 = 1 as described in Section 4.4. Katz centrality

also decays the contribution from further away nodes when computing a node’s centrality with an 𝛼

parameter. For this example, we assume 𝛼 = 0.5. Detailed Katz centrality computation. To see

how Katz centrality is computed by the power method from Section 4.2, we show c(𝑡 = 0), c(𝑡 =

1), ... until it converges when 𝑡 = 3 in Table 4.1, where the rows indicate the centrality score for a

node and the columns indicate time. To explain the intuition behind Katz centrality, we walk through

the iteration for a single seed node s2 to explain the computation. Initially, 𝑐𝑠2(0) = 1. Using

Equation 4.4 from Section 4.2, 𝑐𝑠2(1) = 𝛼(𝑐𝑎 (0) + 𝑐𝑏 (0)) + 𝛽𝑠2 = 0.5 ∗ (0.3 + 0.7) + 1 = 1.5. Then,

the next iteration is 𝑐𝑠2(2) = 𝛼(𝑐𝑎 (1) + 𝑐𝑏 (1)) + 𝛽𝑠2 = 0.5 ∗ (0.3 + 1.7) + 1 = 2 and 𝑐𝑠2(3) = 𝑐𝑠2(2)

due to convergence. This computation illustrates how Katz centrality decays contributions from

further away nodes. The number of edges reachable from s2 is 4 but its Katz centrality score is 2
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Figure 4.3: A target program’s CFG with visited nodes colored in gray and unvisited nodes colored
white. The dashed-brown line shows the boundary between the visited and unvisited regions of the CFG.
Horizon nodes B1 and B2 sit at the border and are defined as unvisited nodes with a visited parent
node.

due to this decay. Moreover, the computation reflects that Katz centrality increases if there are more

edges reachable from a node. Compared to s2, s1 can only reach 1 edge and hence its centrality of

1.15 is lower. Based on the results of Katz centrality, a fuzzer will prioritize seed (a = 15,b = 30)

because it has the highest centrality score among seed nodes.

4.4 Methodology

In this section, we detail our approach to seed selection with influence analysis. We first describe

how we build an edge horizon graph from a program’s CFG and then how we compute Katz

centrality on the edge horizon graph. Lastly, we describe how our approach can be integrated into a

coverage-guided fuzzer.

4.4.1 Edge Horizon Graph Construction

We construct the target program’s directed inter-procedural control-flow graph 𝐶𝐹𝐺 = (𝑁, 𝐸),

where 𝑁 is the set of nodes representing the basic blocks and 𝐸 is the set of edges capturing

control-flow transitions through branches, jumps, etc. In the rest of the paper, for clarity, we use

CFG to refer to the inter-procedural CFG unless otherwise noted. Directly computing centrality

over the original CFG is not useful for seed selection because the graph lacks any reference to seed

nodes. Hence, we modify the CFG to construct an edge horizon graph that contains seed nodes. We
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Algorithm 2 Edge Horizon Graph Construction.
Input: 𝐺 ← Inter-procedural CFG

𝑆← Seed corpus
𝑃← Program

1: /* Classify Nodes as Visited/Unvisited */
2: 𝑉,𝑈 = {}, {}
3: for 𝑠 ∈ 𝑆 do
4: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 = GetCoverage(𝑃, 𝑠)
5: 𝑉 = 𝑉 ∪ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 ⊲ Union 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 with 𝑉
6: end for
7: 𝑈 = 𝐺.𝑛𝑜𝑑𝑒𝑠 \𝑉 ⊲ Compute the complement set of 𝑉
8:
9: /* Identify Horizon Nodes */

10: 𝐻 = {}
11: for 𝑢 ∈ 𝑈 do
12: for 𝑝 ∈ 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡𝑠 do
13: if 𝑝 ∈ 𝑉 then
14: 𝐻 = 𝐻 ∪ 𝑢 ⊲ Union 𝑢 with 𝐻
15: end if
16: end for
17: end for
18:
19: /* Insert Seed Nodes */
20: for 𝑠 ∈ 𝑆 do
21: 𝑠𝑒𝑒𝑑_𝑛𝑜𝑑𝑒 = 𝐺.AddNode(𝑠)
22: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 = GetCoverage(𝑃, 𝑠)
23: for 𝑣 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 do
24: for 𝑛 ∈ 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
25: if 𝑛 ∈ 𝐻 then
26: 𝐺.AddEdge(𝑠𝑒𝑒𝑑_𝑛𝑜𝑑𝑒, 𝑛)
27: end if
28: end for
29: end for
30: end for
31:
32: for 𝑣 ∈ 𝑉 do
33: 𝐺.RemoveNode(𝑣) ⊲ Remove visited nodes
34: end for
35: 𝐺.RemoveLoops() ⊲ Convert 𝐺 to directed acyclic graph
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can then compute a seed’s centrality for seed selection. At a high level, we classify original CFG

nodes as visited or unvisited and connect newly-inserted seed nodes to their corresponding horizon

nodes, which are unvisited nodes with a visited parent node. Such connections ensure that a seed’s

centrality measures its ability to discover new edge coverage. We also delete visited nodes from the

CFG to avoid their contributions increasing a seed’s centrality score. Lastly, we convert the CFG to

a directed acyclic graph to mitigate the undesirable effects of loops on centrality. We present the

algorithm for constructing the edge horizon graph in Algorithm 2 and discuss each step in more

detail below.

Classifying Nodes as Visited or Unvisited. We first classify all CFG nodes as visited or unvisited

based on the coverage of a fuzzer’s current corpus. A CFG node is visited if it is reached by the

execution path of any seed in the corpus, or elsewise unvisited. We denote the set of visited nodes

as 𝑉 and the set of unvisited nodes as𝑈. More formally,

𝑉 = {𝑛|𝑛 ∈ 𝑁, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑛) = 1} (4.5)

𝑈 = {𝑛|𝑛 ∈ 𝑁, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑛) = 0} (4.6)

Lines 1 to 6 in Algorithm 2 detail the classification process. Figure 4.3 colors visited nodes in gray

and unvisited nodes in white based on the fuzzer’s current corpus.

Identifying Horizon Nodes. We define a horizon node in terms of the prior graph partition of 𝑉

and𝑈, the visited and unvisited nodes as shown below.

𝐻 = {𝑢 | (𝑣, 𝑢) ∈ 𝐸, 𝑣 ∈ 𝑉, 𝑢 ∈ 𝑈} (4.7)

In other words, a horizon node is an unvisited node with a visited parent node. Conceptually, horizon

nodes border the unvisited and visited region between 𝑉 and 𝑈. Figure 4.3 shows how horizon

nodes B1 and B2 border the unvisited and visited regions of the CFG. Algorithm 2 computes this

set of horizon nodes in lines 8-13. Horizon nodes are crucial for fuzzing because a fuzzer must first

reach a horizon node to increase edge coverage. This property can be seen in Figure 4.3 where a

fuzzer must first reach horizon node B1 or B2 to discover new edge coverage. Therefore, a horizon
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node’s centrality measures the number of edges that can potentially be reached by mutations after

visiting a horizon node.

Not all horizon nodes, however, have equal centrality. Some horizon nodes can increase edge

coverage more than others. As shown in Figure 4.3, horizon node B2 reaches more edges in𝑈 than

horizon node B1. Hence, a fuzzer should prioritize seeds close to horizon node B2 because B2 can

reach more edges in the unvisited CFG.

Inserting Seed Nodes. For each seed, we insert one node into the edge horizon graph and connect

this seed node to a horizon node if the horizon node’s parent is visited along the seed’s execution

path. Lines 15 to 22 from Algorithm 2 specify how seed nodes are connected to horizon nodes and

Figure 4.2b visualizes the connection between seed nodes and horizon nodes. Connecting seed

nodes to their corresponding horizon nodes ensures that a seed node’s centrality is the sum of its

horizon nodes centrality (i.e., Equation 4.1). Therefore, a seed’s centrality measures its ability to

discover new edge coverage through mutations.

Deleting Visited Nodes. We delete visited nodes from the edge horizon graph because we do not

want a seed’s centrality score to include contributions from already visited nodes. Note that we

preserve the connectivity of the CFG when deleting visited nodes. For example, given a graph

A→ B→ C, if 𝐵 was visited, we preserve the connectivity by adding an edge producing A→ C

. Although this deletion changes the distance between nodes (i.e., 𝐴→ 𝐶 now has distance 1), it

does preserve the connectivity, which is the most critical when measuring centrality.

Mitigating the effect of loops on centrality. Loops in a CFG can hurt the utility of a seed’s

centrality score for seed selection. Figure 4.4a shows a level loop where node B1 and its child node

B2 are assigned equal scores by a centrality analysis. However, nodes that initiate a loop should

have more centrality than nodes in the loop body. In this case, the node that initiates the loop B1

should have higher centrality because it can reach more edges. To solve this problem, we convert

the CFG to a directed acyclic graph by removing loops in the CFG. Such loops originate in program

constructs such as while or for statements as well as connections between caller and callee nodes

(i.e., caller to callee edge and callee to caller backedge can form a loop).
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Figure 4.4: Figure 4.4a shows that node B1 has the same centrality as node B2 as an artifact of
the loop. However, B1 should have higher centrality than B2 because it can reach more edges.
To resolve this, we remove loops from the CFG and Figure 4.4b shows the graph after this
transformation.

4.4.2 Influence Analysis

To compute a seed’s centrality, we could count the number of potentially reachable edges from

a seed node in the edge horizon graph. However, this count assumes that all edges independent of

distance are equally reachable and feasible which does not hold true for most real-world programs

[146, 141]. Ideally, we want to count all feasible and reachable edges from a seed through mutations,

but this is impractical to compute as it requires computing feasibility along all edges. Instead we

use Katz centrality to approximate this count. Katz centrality provides three properties that make it

a natural fit to approximate this count. First, it increases its approximation additively if more edges

can be reached from a seed node independent of the order as described in Section 4.2. Second, Katz

centrality decreases its approximation if mutation frequency information suggests an edge is hard to

reach or if edges are far away. Third, Katz centrality is efficient to compute with the power method

as discussed in Section 4.2.

Below, we explain how we set the mutation frequency information mechanism in Katz centrality

and why Katz centrality multiplicatively decays contributions from further-away edges.

Using historical mutation data as a bias. We observe that 𝛽 is a generic way of biasing a node’s

centrality based on external information. We therefore use 𝛽 to lower a node’s centrality if a node
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appears harder to reach by mutations. We set each element of 𝛽 to range from 0 to 1, where values

closer to 0 mean the node is harder to reach through mutations. To measure this hardness, we use

historical mutation data. We initialize 𝛽 = 1 if there are no mutations and iteratively refine it as a

fuzzer generates mutations. We use the following equation for node i,

𝛽𝑖 = 1 − 𝑅𝑖
𝑇

(4.8)

where 𝑅𝑖 measures the number of mutations that reach node i’s parents and 𝑇 measures the total

number of mutations for all seeds.

Lastly, to set 𝛼, which ranges from 0 to 1, from Equation 4.9, we observe that setting 𝛼 = 0

means all nodes in the edge horizon graph will have the same centrality. This would not be useful

for seed selection because we could not distinguish which seed node was more likely to discover

new edge coverage with its centrality score. In contrast, setting 𝛼 = 1 treats closer and further-away

edges with equal contribution, which fails to reflect program behavior. In practice, we set 𝛼 = 0.5

based on our experiments as described in Section 4.6.

Decaying contributions from longer paths. Katz centrality multiplicatively decays the contribution

from further away edges when computing a node’s centrality . This decay corresponds to a well-

known program behavior where further away edges are harder to reach by mutations [141]. To see

how Katz centrality reduces the contribution from further-away edges toward a node’s centrality,

consider Equation 4.9 which shows the 2nd iteration of the power method from Section 4.2.

c(2) = ((𝛼)0𝐼 + (𝛼)1𝐴 + (𝛼)2𝐴2)𝛽 (4.9)

Notice how the parameter 𝛼, which ranges between 0 and 1, multiplicatively decays the contribution

from higher matrix powers. As discussed in Section 4.2, higher matrix powers consider edges

farther away. Thus, this equation shows Katz centrality reduces the contribution from further away

edges with multiplicative decay.
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4.4.3 Seed Scheduling

Algorithm 3 shows how to integrate K-Scheduler into a coverage-guided fuzzer. K-Scheduler

first builds the edge horizon graph as shown in Algorithm 2 and computes the Katz centrality over

it to measure each seed’s centrality. A fuzzer then uses these scores for seed scheduling which

consists of selecting a seed and allocating a corresponding mutation budget. Because popular

fuzzers such as AFL and LibFuzzer differ greatly in these two components, we abstract them out

in lines 10 and 11 and specify how to integrate our generic technique into them in Section 4.5.

Finally, K-Scheduler re-computes the edge horizon graph and its Katz centrality when the fuzzer

discovers new edge coverage or a fixed time has elapsed. Periodically updating centrality (i.e. via

𝛽) ensures that K-Scheduler provides useful guidance even when a fuzzer fails to find new edge

coverage.

Algorithm 3 Fuzzer integration with K-Scheduler.
Input: 𝐺 ← Inter-procedural CFG

𝑆← Seed corpus
𝑃← Program

1: 𝑠𝑡𝑎𝑡𝑠 = {} ⊲ Store mutation statistics
2: ℎ𝑎𝑠_𝑛𝑒𝑤 = 𝐹𝑎𝑙𝑠𝑒 ⊲ Indicate new edge coverage
3: 𝑡 = CreateTimer(𝑘) ⊲ Build horizon graph every 𝑘 seconds
4: while fuzzer is running do
5: if ℎ𝑎𝑠_𝑛𝑒𝑤 = 𝑇𝑟𝑢𝑒 or 𝑠𝑡𝑎𝑡𝑠 = ∅ or 𝑡.timeout() then
6: 𝐻 = GetHorizonNodes(𝐺, 𝑆, 𝑃)
7: 𝐵𝑒𝑡𝑎 = ComputeBeta(𝐻, 𝑠𝑡𝑎𝑡𝑠)
8: 𝐺ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = GetHorizonGraph(𝐺, 𝑆, 𝑃)
9: 𝐶𝑘𝑎𝑡𝑧 = KatzCentrality(𝐺ℎ𝑜𝑟𝑖𝑧𝑜𝑛, 𝐵𝑒𝑡𝑎)

10: 𝑡.reset() ⊲ Reset timer 𝑡
11: end if
12: 𝑠𝑒𝑒𝑑 = ChooseSeed(𝑆, 𝐶𝑘𝑎𝑡𝑧)
13: 𝑒𝑛𝑒𝑟𝑔𝑦 = ComputeEnergy(𝑠𝑒𝑒𝑑, 𝐶𝑘𝑎𝑡𝑧)
14: ℎ𝑎𝑠_𝑛𝑒𝑤 = Mutate(𝑠𝑒𝑒𝑑, 𝑒𝑛𝑒𝑟𝑔𝑦) ⊲ Fuzz 𝑠𝑒𝑒𝑑 with 𝑒𝑛𝑒𝑟𝑔𝑦
15: 𝑠𝑡𝑎𝑡𝑠.update()
16: end while
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4.5 Implementation

K-Scheduler consists of two components. First, to build the edge horizon graph, we construct

the target program’s inter-procedural CFG. We initially compile the program with wllvm [147]

and use the LLVM’s (version 11.0.1) opt tool to extract each function’s intra-procedural CFG.

In Python 3.7, we then merge each intra-procedural CFG together based on caller-callee relations

to produce the inter-procedural CFG. We also implement all pieces from Algorithm 2 such as

loop removal in Python. To classify CFG nodes as visited, we re-use a fuzzer’s edge coverage

information to identify visited basic blocks. Second, to compute Katz centrality, we use the power

method provided by networkit [148], a large-scale graph computing library.

We now describe how we integrate K-Scheduler into LibFuzzer [20] and AFL [4] to show

our technique is generic and widely applicable. We run K-Scheduler as a standalone process

that communicates with a fuzzer to set the fuzzer’s seed ranking based on centrality and identify

the mapping between a seed node and its corresponding horizon nodes. We measure how much

overhead K-Scheduler adds to the fuzzing process in Section 4.6.

Libfuzzer Integration. Libfuzzer [20] computes an energy for each seed in the form of a probability

and flips a coin with bias corresponding to the seed’s energy to determine whether a seed should be

selected for mutation. Higher energy probabilities indicate a seed will be chosen more frequently.

To integrate into Libfuzzer, we follow the same integration as Entropic, a state-of-the-art seed

scheduler for Libfuzzer, and set each seed’s energy to its Katz centrality score normalized by the

total centrality scores for all seeds.

AFL Integration. Unlike Libfuzzer’s probabilistic seed selection, AFL generally selects every seed

for mutation. A seed’s energy also determines its corresponding mutation budget. To integrate into

AFL, we set each seed’s energy directly to its Katz centrality score.

4.6 Evaluation

Our evaluation aims to answer the following questions.
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1. Comparison against seed schedulers: How does K-Scheduler compare against other

seed scheduling strategies?

2. Bug Finding: Does K-Scheduler improve a fuzzer’s ability to find bugs?

3. Runtime Overhead: What is the performance overhead of K-Scheduler?

4. Impact of Design Choices: How do K-Scheduler’s various design choices contribute to

its performance?

5. Non-evolutionary fuzzing settings: Does K-Scheduler show promise for seed scheduling

in non-evolutionary fuzzing settings?

4.6.1 Experimental Setup

Baseline Seed Scheduling Strategies

We compare against popular seed scheduling strategies from industry and the academic com-

munity. These strategies are generally integrated into AFL or Libfuzzer. Directly comparing a

seed scheduling strategy that uses AFL with another seed scheduling strategy that uses Libfuzzer

can be misleading since the underlying fuzzers may cause the performance difference instead of

the underlying seed scheduling strategy. Therefore, to be fair, we integrate K-Scheduler into

both Libfuzzer and AFL separately and make comparisons about seed scheduling strategies when

the underlying fuzzer is the same. Note this integration also demonstrates that K-Scheduler is

generic and widely applicable.

For K-Scheduler’s comparison against Libfuzzer-based seed schedulers, we compare K-Scheduler

against Entropic, a state-of-the-art seed scheduler in Libfuzzer [149]. To ensure a fair comparsion,

we follow the same integration with Libfuzzer as Entropic. We also compare against Libfuzzer’s

default seed scheduler as a baseline and refer to it as Default. We use Libfuzzer and Entropic

from LLVM 11.0.1 in our comparison. For K-Scheduler’s comparison against AFL-based seed

schedulers, we compare against strategies that prioritize seeds if they take paths rarely observed

(RarePath), reach rarely observed edges (RareEdge) or discover new paths (NewPath). We also
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compare against a strategy that prioritizes seeds based on security-sensitive coverage (SecCov). To

compare against RarePath, RareEdge, NewPath, and SecCov we use AFLFast [5], FairFuzz [84],

EcoFuzz [140], and TortoiseFuzz [134] respectively. Since these fuzzers all modify AFL, we inte-

grate K-Scheduler into AFL using their same modifications for a fair comparison. Moreover, we

set each fuzzer to use the same mutation strategy to a enable a fair comparison. Hence, we disabled

FairFuzz’s custom mutation strategy. We also compare against AFL’s default seed scheduling

strategy as a baseline and refer to it as Default.

Benchmark Programs

In our seed scheduler comparison, we use the Google FuzzBench benchmark, a commonly used

dataset to evaluate fuzzing performance on real-world programs. At the time of this writing, the

benchmark consists of 40+ programs, so we decide to evaluate over a subset of them. We pick 12

diverse real-world programs from the benchmark that includes cryptographic and database programs

as well as parsers as shown in Table 4.3. We plan to evaluate against the entire benchmark in the

future. We also use the default seed corpus and configuration provided by the benchmark to enable

a fair comparison. Note that Google FuzzBench configures all AFL-based fuzzers to use havoc

mode by default [150], since AFL havoc mode has been shown to significantly outperform AFL

deterministic mode [151].

For our bug-finding experiments, we select 12 real-world parsing programs commonly used

to evaluate fuzzer’s bug finding performance [5, 84, 140]. The 12 programs cover 8 file formats:

ELF, ZIP, PNG, JPEG, TIFF, TAR, TEXT and XML. The list of programs and their

details can be found in Table 4.6. Since these programs do not come with a default seed corpus, we

make a corpus with small valid files.

Environmental Setup

We run all our evaluations on 4 64-bit machines running Ubuntu 20.04 with Intel Xeon E5-2623

CPUs (96 cores in total). We follow standard operating procedure in fuzzing evaluations [5, 149, 84]

and bound each fuzzer to 1 CPU core. Because our current implementation runs K-Scheduler
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in a separate process, we assign fuzzers using K-Scheduler 2 cores, one for the fuzzer and one

for the K-Scheduler.

4.6.2 RQ1: Seed scheduling comparison

For K-Scheduler’s comparison against Libfuzzer-based seed schedulers, we follow the

original evaluation of Entropic [149] and use the same two metrics for comparison: edge coverage

and feature coverage. Edge coverage measures how many branches were reached along an input’s

execution path, whereas feature coverage includes this information as well as branch hit count. For

example, edge coverage would not distinguish coverage between two inputs that visit the same

branch a different number of times, but feature coverage would distinguish them.

We run K-Scheduler, Default (i.e., Libfuzzer’s default seed scheduler), and Entropic on the

12 Google FuzzBench programs for 24 hours. We repeat each 24 hour run ten times for statistical

power. In arithmetic mean over these 10 runs, Table 4.2 and Table 4.3 summarize the edge and

feature coverage results for 1 hour and 24 hours, respectively. Within 1 hour, K-Scheduler

improves upon next-best seed scheduling strategy Entropic by 20.11% in median and 31.75%

in arithmetic mean over the 12 FuzzBench programs in feature coverage. For the 24 hour runs,

K-Scheduler achieves 20.66% in median and 25.89% in arithmetic mean more feature coverage

than Entropic. We attribute the increased improvement of K-Scheduler over Entropic within

the first hour to K-Scheduler’s scheduling of promising seeds more frequently given a limited

fuzzing budget (i.e., fuzzer only schedules a limited number of seeds). However, as the fuzzing

budget increases to 24 hours, Entropic will eventually also schedule those promising seeds more

frequently, which narrows the performance difference between K-Scheduler. Moreover, with a

significance level of 0.05, our feature coverage over Entropic results are statistically significant for

all programs for 24 hour runs and all programs except zlib for the 1 hour runs. Our results show

that using the CFG structure for seed scheduling can improve fuzzing performance.

For K-Scheduler’s comparison against AFL-based seed schedulers, we only use edge

coverage as a metric for comparison because AFL does not report feature coverage. We run

K-Scheduler, Default (i.e., AFL’s default seed scheduler), RarePath, RareEdge, NewPath, and
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Table 4.2: Arithmetic mean feature and edge coverage of Libfuzzer-based seed schedulers on
12 FuzzBench programs for 1 hour over 10 runs. We mark the highest number in bold.

Programs K-Scheduler Entropic Default
feature edge feature edge feature edge

freetype 51,184 10,886 46,698 10,691 40,040 9,446
libxml2 39,240 7,661 24,167 6,128 25,914 6,296
lcms 2,886 1,497 1,707 1,004 1,392 874
harfbuzz 35,017 9,112 23,349 7,551 23,455 7,588
libjpeg 10,974 2,553 7,424 2,193 7,510 2,208
libpng 5,001 1,501 4,604 1,469 4,525 1,476
openssl 14,520 4,622 12,830 4,294 13,029 4,327
openthread 6,525 3,318 5,397 3,044 5,150 2,947
re2 31,292 6,275 28,877 6,147 29,941 6,207
sqlite 73,532 13,299 44,198 12,189 52,060 12,735
vorbis 9,106 2,136 7,632 2,010 5,710 1,823
zlib 2,711 790 2,572 784 2,408 782

Arithmetic mean coverage gain 31.75% 12.51% 37.37% 15.72%
Median coverage gain 20.11% 8.32% 34.54% 13.91%

Table 4.3: Arithmetic mean feature and edge coverage of Libfuzzer-based seed schedulers on
12 FuzzBench programs for 24 hours over 10 runs. We mark the highest number in bold.

Programs K-Scheduler Entropic Default
feature edge feature edge feature edge

freetype 71,717 13,754 75,370 14,120 67,510 12,870
libxml2 54,081 9,869 36,958 7,038 39,247 7,310
lcms 6,345 2,541 4,425 2,082 3,413 1,784
harfbuzz 48,105 10,358 32,799 8,808 33,499 8,912
libjpeg 15,861 3,033 11,755 2,646 11,220 2,574
libpng 5,312 1,535 5,002 1,501 4,992 1,501
openssl 16,644 4,971 15,137 4,731 15,173 4,738
openthread 11,405 4,965 6,435 3,276 6,123 3,196
re2 33,797 6,482 32,401 6,347 32,725 6,367
sqlite 92,493 15,540 75,723 14,351 83,228 14,710
vorbis 10,417 2,247 9,906 2,208 8,873 2,115
zlib 3,215 801 2,698 790 2,510 787

Arithmetic mean coverage gain 25.89% 13.69% 31.43% 16.34%
Median coverage gain 20.66% 6.68% 22.75% 6.54%

SecurityCov on the same 12 Google FuzzBench programs for 24 hours, repeated ten times. In arith-

metic mean over these 10 runs, Table 4.4 and Table 4.5 summarize the edge coverage results for 1
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Table 4.4: Arithmetic mean edge coverage of AFL-based seed schedulers on 12 FuzzBench
programs for 1 hour over 10 runs.

K-Sched Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AFL AflFast FairFuzz EcoFuzz TortoiseFuzz

freetype 12,077 11,001 10,707 11,319 8,925 10,532
libxml2 8,120 5,793 5,836 7,247 5,841 5,476
lcms 1,882 1,989 1,540 1,343 1,117 1,327
harfbuzz 9,169 8,864 9,022 8,767 7,629 8,773
libjpeg 2,391 2,354 2,374 2,140 1,739 2,073
libpng 1,470 1,488 1,460 1,430 1,428 1,456
openssl 4,560 4,485 4,399 4,381 4,252 4,336
openthread 5,245 5,063 5,064 5,047 5,047 5,012
re2 5,792 5,612 5,533 5,335 5,484 5,252
sqlite 9,865 10,038 9,890 10,065 9,722 9,627
vorbis 2,048 2,006 1,946 1,933 1,761 1,914
zlib 761 758 752 746 745 752

Arithmetic mean gain 4.80% 7.95% 8.39% 20.01% 13.03%
Median gain 1.87% 3.62% 5.27% 11.77% 6.07%

hour and 24 hours respectively. Similar to the comparison against Libfuzzer-based seed schedulers,

we observe a higher improvement of K-Scheduler over the other seed scheduling strategies

within the first hour. K-Scheduler outperforms the next best seed scheduling strategy (RarePath)

by 7.95% in arithmetic mean and 3.62% in median over the 12 FuzzBench programs. For the 24 hour

runs, K-Scheduler achieves 4.21% in arithmetic mean and 1.91% in median more coverage than

RarePath. We note that the improvement of K-Scheduler against AFL-based seed schedulers is

not as significant as K-Scheduler’s comparison against Libfuzzer-based seed schedulers. We

believe K-Scheduler’s diminished performance difference occurs because the underlying fuzzer,

AFL, iterates over the seed queue multiple times during the 24 hours fuzzing campaign and therefore

will schedule nearly all seeds frequently, reducing the effect of seed selection.

The coverage plots over time also highlight the promise of K-Scheduler. Figure 4.5 and

4.6 show that K-Scheduler generally maintains its performance advantage during the lifetime

of the fuzzing campaign. The consistency of K-Scheduler’s gain across many different seed

schedulers show the promise of scheduling seeds based on CFG information. Moreover, it suggests

K-Scheduler can be helpful independent of a fuzzer as we later explore.
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Table 4.5: Arithmetic mean edge coverage of AFL-based seed schedulers on 12 FuzzBench
programs for 24 hours over 10 runs.

K-Sched Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AFL AflFast FairFuzz EcoFuzz TortoiseFuzz

freetype 14,188 13,508 13,646 13,486 11,965 13,206
libxml2 10,936 9,295 8,546 10,241 8,964 9,147
lcms 2,325 2,247 2,160 2,190 1,892 2,162
harfbuzz 10,061 9,980 10,019 9,804 9,946 9,882
libjpeg 2,678 2,513 2,601 2,497 2,309 2,413
libpng 1,536 1,536 1,535 1,524 1,528 1,528
openssl 4,863 4,805 4,761 4,788 4,732 4,685
openthread 5,766 5,704 5,646 5,666 5,527 5,636
re2 5,887 5,875 5,790 5,536 5,774 5,758
sqlite 12,081 12,360 12,019 10,648 12,199 11,810
vorbis 2,215 2,195 2,202 2,100 2,171 2,184
zlib 780 780 775 778 777 769

Arithmetic mean gain 2.89% 4.21% 4.81% 7.63% 5.11%
Median gain 1.00% 1.91% 5.34% 2.38% 2.30%

Result 1: K-Scheduler increases feature coverage by 25.89% compared to Entropic and

edge coverage by 4.21% compared to the next-best AFL-based seed scheduler (RarePath), in

arithmetic mean on 12 Google FuzzBench programs.

4.6.3 RQ2: Bug Finding

In order to detect memory corruption bugs that do not necessarily lead to a crash, we compile

program binaries with Address and Undefined Behavior Sanitizers. We then ran K-Scheduler,

Default (i.e., AFL’s default seed scheduler), RarePath, RareEdge, and NewPath on 12 real-world

parsing programs for 24 hours, a total of 10 times. We could not run the Libfuzzer-based seed

schedulers because the 12 parsing programs are not equipped with a Libfuzzer-compatible fuzzing

harness (i.e., LLVMFuzzerTestOneInput is undefined).

In our 24 hour runs, we found real-world bugs in binutils. Table 4.7 shows the bug count for

each seed scheduling strategy in terms of integer overflow, out of memory and memory leak bugs,

in arithmetic mean over the 10 runs. We count bugs with the following procedure based on prior

work [130, 7, 10]. We first use AFL-CMin to reduce the number of crashing inputs. We then
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Table 4.6: Tested Programs in Bug Finding Experiments.

Subjects Version Format # lines
xmllint libxml2-2.9.7 XML 72,630
miniunz zlib-1.2.11 ZIP 1,895
readpng libpng-1.6.37 PNG 3,205
djpeg libjpeg-9d JPEG 9,204
size binutils-2.36.1 ELF 51,203
readelf -a binutils-2.36.1 ELF 29,954
nm -C binutils-2.36.1 ELF 52,763
objdump -D binutils-2.36.1 ELF 78,610
strip binutils-2.36.1 ELF 59,680
tiff2pdf tiff-4.3.0 TIFF 20,387
bsdtar -xf libarchive-3.5.1 TAR 45,031
infotocap ncurses-6.2 TEXT 23,145

Table 4.7: Overview of bugs discovered in our AFL-based seed scheduling experiments catego-
rized by type.

K-Sched Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AFL AflFast FairFuzz EcoFuzz Tortoise†
out-of-memory 21 14 19 17 18 21
memory leak 24 20 21 19 20 22
integer overflow 3 2 3 3 2 2

Total 48 36 43 39 40 45
† Tortoise denotes TortoiseFuzz.

further deduplicate the crashing inputs by filtering them by unique stack traces. We lastly triage

the remaining crashing inputs by manually reviewing their stack traces and corresponding source

code. Our results show that K-Scheduler finds 3 more bugs than the next best seed scheduling

strategy SecCov (i.e., TortoiseFuzz), which optimizes for bug-finding.

Result 2: K-Scheduler discovers 3 more bugs than the next best seed-scheduling strategy.

4.6.4 RQ3: Runtime Overhead

In this experiment, we measure the overhead that K-Scheduler adds to a fuzzer. The runtime

overhead can be classified into two components: a fuzzer maintenance (i.e., record hit count of edges

and compute seeds’ energy) and a fuzzer invoking K-Scheduler (i.e., construct edge horizon

graph and perform Katz centrality analysis) for seed scheduling. To measure these overheads,
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Figure 4.5: The arithmetic mean feature coverage of Libfuzzer-based seed schedulers running
for 24 hours and one standard deviation error bars over 10 runs. Default refers to the default
seed scheduler in Libfuzzer.
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Figure 4.6: The arithmetic mean edge coverage of of AFL-based seed schedulers running for
24 hours and one standard deviation error bars over 10 runs. Default refers to the default
seed scheduler in AFL.
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we run our modified versions (see Section 4.5) of AFL and Libfuzzer against all 12 FuzzBench

programs for 24 hours, recording the total time they spend in maintenance and separately the total

time spent in computing Katz centrality over the edge horizon graph in the standalone process. We

repeat this experiment 10 times to minimize variance. Table 4.8 summarizes the runtime overhead

added to AFL’s and LibFuzzer fuzzing processes in terms of fuzzer maintenance and graph centrality

analysis.

The overhead of fuzzer maintenance is 0.28% for AFL and 1.74% for Libfuzzer, in arithmetic

mean over the 12 FuzzBench programs. The graph analysis overhead is minimal, adding 0.15% in

arithmetic mean over the 12 FuzzBench programs. We believe these small graph analysis overheads

exist because Katz centrality can be efficiently computed with the power method (Section 4.2) and

the edge horizon graph is cached and updated instead of being constructed from scratch each time.

For clarity, we did not report graph analysis overheads for AFL and Libfuzzer separately because

they use the same standalone process, so the overheads were nearly indistinguishable. Moreover,

the difference in overheads per-program is explained by the variance in the target program’s CFG

size (i.e., number of nodes).

Result 3: K-Scheduler adds at most 1% overhead from graph analysis and at most 2%

overhead for fuzzer maintenance.

4.6.5 RQ4: Impact of Design Choices

We conduct experiments to measure the performance effect of five design choices: (i) centrality

measure, (ii) 𝛽 parameterization, (iii) visited node deletion, (iv) loop removal, and (v) 𝛼 parame-

terization. For each design choice experiment, we run K-Scheduler with Libfuzzer on the 12

Google FuzzBench programs for 1 hour, repeated 10 times, and compare their feature coverage.

We run for 1 hour because the first hour of a fuzzing run often discovers more coverage than later

hours and hence our results better measure the effect of the design choices. We also choose feature

coverage because it provides more fine-grained information about a fuzzer’s behavior than edge

coverage. We describe each design choice experiment in more detail below.
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Table 4.8: Runtime overhead from K-Scheduler in Libfuzzer and AFL-based seed schedul-
ing.

Programs Nodes # Graph Analysis Fuzzer Maintenance
LibFuzzer AFL

freetype 38,352 0.20% 1.71% 0.23%
libxml2 96,732 0.22% 2.53% 0.39%

lcms 13,081 0.06% 0.92% 0.08%
harfbuzz 21,066 0.11% 2.25% 0.17%
libjpeg 16,508 0.04% 0.79% 0.06%
libpng 7,215 0.02% 0.53% 0.03%
openssl 57,729 0.25% 2.43% 0.67%

openthread 27,263 0.09% 1.48% 0.24%
re2 12,020 0.03% 1.39% 0.26%

sqlite 70,703 0.75% 3.12% 0.41%
vorbis 9,494 0.04% 0.80% 0.55%
zlib 1,882 0.02% 2.96% 0.29%

Arithmetic mean 31,004 0.15% 1.74% 0.28%
Median 18,787 0.08% 1.60% 0.25%

Centrality measure

We measure the effect of the centrality measure on seed scheduling in this experiment by

varying the centrality measure used in K-Scheduler. We compare Eigenvector, Degree, Katz

and PageRank centrality measures. Table 4.9 shows the feature coverage results. Enabling Katz

centrality improves the feature coverage by 16.54%, 23.69%, and 19.17% in arithmetic mean over

the 12 FuzzBench programs, relative to Pagerank, Eigenvector, and Degree centrality, respectively.

These results experimentally justify our claim from Section 4.2 that Katz centrality is most desirable

for seed scheduling. However, these results also show that for some programs, other forms of

centrality are a better fit such as the superior performance of Pagerank on re2 and Degree on

vorbis.

𝛽 parameterization

In Section 4.4, we describe how we set 𝛽 based on historical mutation data. In this compar-

ison, we see the effect of this technique by comparing K-Scheduler with uniform 𝛽 against

K-Scheduler with non-uniform 𝛽. Table 4.10 shows the feature coverage results. The non-
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Table 4.9: Arithmetic mean feature coverage of K-Scheduler with different centrality
metrics.

Programs Katz Pagerank Eigenvector Degree

freetype 51,184 44,394 40,723 38,332
libxml2 39,240 29,575 28,473 28,014
lcms 2,886 2,071 1,557 2,054
harfbuzz 35,017 28,563 26,253 27,485
libjpeg 10,974 9,250 10,454 8,713
libpng 5,001 4,804 4,505 4,923
openssl 14,520 13,035 13,385 13,555
openthread 6,525 5,201 5,380 5,298
re2 31,292 32,309 29,648 29,595
sqlite 73,532 68,328 65,538 63,997
vorbis 9,106 8,129 7,470 9,363
zlib 2,711 2,410 2,323 2,404

Arithmetic mean coverage gain 16.54% 23.69% 19.17%
Median coverage gain 13.89% 18.99% 19.03%

Table 4.10: Arithmetic mean feature coverage from analyzing the effect of non-uniform 𝛽.

Programs Non-uniform 𝛽 Uniform 𝛽

freetype 51,184 40,396
libxml2 39,240 31,733
lcms 2,886 1,506
harfbuzz 35,017 29,380
libjpeg 10,974 8,834
libpng 5,001 4,761
openssl 14,520 12,542
openthread 6,525 5,271
re2 31,292 28,263
sqlite 73,532 64,893
vorbis 9,106 7,679
zlib 2,711 2,305

Arithmetic mean coverage gain 24.19%
Median coverage gain 18.88%

uniform 𝛽 technique increases feature coverage by 24.19% in arithmetic mean over the 12 FuzzBench

programs. These results show the utility of biasing 𝛽.
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Table 4.11: Arithmetic mean feature coverage from analyzing the effect of 𝛼.

Programs 0.5 0.25 0.75 1

freetype 51,184 38,369 41,777 40,723
libxml2 39,240 28,644 29,992 28,473
lcms 2,886 1,313 1,552 1,557
harfbuzz 35,017 27,250 28,276 26,253
libjpeg 10,974 9,542 10,336 10,454
libpng 5,001 4,913 4,929 4,505
openssl 14,520 13,420 13,302 13,385
openthread 6,525 6,216 5,597 5,380
re2 31,292 29,590 31,885 29,648
sqlite 73,532 64,175 68,550 65,538
vorbis 9,106 8,092 8,066 7,470
zlib 2,711 2,378 2,282 2,323

Arithmetic mean coverage gain 24.53% 19.47% 23.69%
Median coverage gain 14.29% 14.74% 18.99%

Table 4.12: Arithmetic mean feature coverage from analyzing the effect of loop removal.

Programs loop removal no loop removal

freetype 51,184 38,646
libxml2 39,240 28,737
lcms 2,886 1,455
harfbuzz 35,017 28,849
libjpeg 10,974 10,142
libpng 5,001 4,846
openssl 14,520 13,300
openthread 6,525 5,430
re2 31,292 31,609
sqlite 73,532 64,560
vorbis 9,106 9,350
zlib 2,711 2,247

Arithmetic mean coverage gain 21.70%
Median coverage gain 17.03%

Visited node deletion

In Section 4.4, we describe why we remove visited nodes from the edge horizon graph. In

this comparison, we experimentally justify this choice. We compare K-Scheduler with visited

node deletions from the edge horizon graph against K-Scheduler with no deletions from the
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Table 4.13: Arithmetic mean feature coverage from analyzing the effect of deleting visited
nodes.

Programs Original Deleted

freetype 51,184 39,892
libxml2 39,240 28,973
lcms 2,886 1,493
harfbuzz 35,017 24,667
libjpeg 10,974 9,715
libpng 5,001 4,827
openssl 14,520 13,121
openthread 6,525 5,712
re2 31,292 29,408
sqlite 73,532 61,609
vorbis 9,106 8,020
zlib 2,711 2,470

Arithmetic mean coverage gain 24.13%
Median coverage gain 13.89%

edge horizon graph. Table 4.13 shows the feature coverage results. The deleted edge horizon

graph improves feature coverage by 24.13% in arithmetic mean over the 12 FuzzBench programs.

Therefore, this result justifies our deletion of visited nodes.

Loop Removal

In Section 4.4, we introduce our loop removal transform as a technique to mitigate the ef-

fects of loops on computing centrality. In this experiment, we measure this effect by comparing

K-Scheduler with and without the loop removal transform. Table 4.12 shows that the loop

removal transform improves edge coverage by 21.70% in arithmetic mean over the 12 FuzzBench

programs, justifying our loop removal transform.

𝛼 parameterization

In this design choice experiment, we study how the choice of 𝛼 affects the K-Scheduler’s

performance. Table 4.11 summarizes our findings. As described in Section 4.4, 𝛼 = 1 treats far and

close paths with equal contribution to centrality and its experimental results are worse compared

to distinguishing them, showing the utility of the multipicative decay effect. We note that 𝛼 = 1
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is equivalent to Eigenvector centrality as seen by comparing the relevant column from Table 4.9.

Given 𝛼 = 0.5 performs best in arithmetic mean over the 12 FuzzBench programs, we pick it in our

current implementation.

Result 4: Our results empirically support K-Scheduler’s design choices.

4.6.6 RQ5: Utility for non-evolutionary input generation

In this experiment, we show the promise of K-Scheduler in non-fuzzing settings, we integrate

K-Scheduler into concolic execution seed scheduling. Concolic execution is known to incur high

overhead [146, 152] during path constraint collection and solving. Hence, in concolic execution,

scheduling promising seeds is crucial to its performance [153, 154]. To perform this experiment,

we use the concolic executor from QSYM’s latest version [146]. QSYM, a hybrid fuzzer, consists

of three components, a concolic executor, a fuzzer, and a coordinator that schedules seeds for the

concolic executor. Since our goal is to show the utility of K-Scheduler for concolic execution

seed scheduling, we disabled QSYM’s fuzzer and only modified its coordinator’s seed scheduling

algorithm to use K-Scheduler. We did not modify QSYM’s concolic executor logic. We evaluate

on the 3 programs (size, libarchive and tcpdump). Note we did not run on SymCC because

SymCC and QSYM have the same concolic execution scheduler [152], so comparing against one is

sufficient. We run K-Scheduler against the default seed scheduler in QSYM on the 3 real world

programs for 24 hours and compare the total edge coverage. In arithmetic mean over the 10 runs,

Table 4.14 shows that K-Scheduler improves edge coverage by 35.76%, in arithmetic mean

over the 3 programs. Hence, this shows the potential promise K-Scheduler for seed scheduling

in non-evolutionary fuzzing settings. However, we note that our results are preliminary and are

inconclusive. We leave a detailed evaluation to future work.

Result 5: K-Scheduler increases edge coverage by 35.76%, in arithmetic mean over 3

programs, compared to QSYM’s default seed scheduling strategy.
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Table 4.14: Edge coverage of concolic-execution-based seed scheduling on 3 real-world pro-
grams for 24 hours over 5 runs.

Scheduling K-Scheduler Default

libarchive 3,886 3,230
size 3,068 2,602
tcpdump 3,552 2,101

Arithmetic mean coverage gain 35.76%
Median coverage gain 20.31%

4.7 Related Work

4.8 conclusion

In this paper, we introduce a new approach to seed scheduling based on centrality analysis of

seeds on the CFG. Centrality measures have several desirable properties that make them a natural

fit for the seed scheduling problem. We implement our approach in K-Scheduler and show its

effectiveness in seed scheduling: increasing feature coverage by 25.89% compared to Entropic and

edge coverage by 4.21% compared to the next-best AFL-based seed scheduler, in arithmetic mean

on 12 Google FuzzBench programs.
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Chapter 5: Related Work

5.1 Learning-based fuzzing.

Recently, there has been increasing interest in using machine learning techniques for improving

fuzzers [91, 78, 155, 156, 157, 158, 159]. However, existing learning-based fuzzers model fuzzing

as an end-to-end ML problem, i.e., they learn ML models to directly predict input patterns that can

achieve higher code coverage. By contrast, we first use NNs to smoothly approximate the program

branching behavior and then leverage gradient-guided input generation technique to achieve higher

coverage. Therefore, our approach is more tolerant to learning errors by ML models than the

end-to-end approaches. In this paper, we empirically demonstrate that our strategy outperforms

end-to-end modeling both in terms of finding bugs and achieving higher edge coverage [78].

5.2 Taint-based fuzzing.

Several evolutionary fuzzers have tried to use taint information to identify promising mutating

locations [160, 161, 162, 44, 45, 7]. For example, TaintScope [160] is designed to identify input

bytes that affects system/library calls and focus on mutating these bytes. Similarly, Dowser [161]

and BORG [162] specifically use taint information to target detection of buffer boundary violations

and buffer over-read vulnerabilities respectively. By contrast, Vuzzer [44] captures magic constants

through static analysis and mutates existing values to these constants. Steelix [45] instruments

binaries to collect additional taint information about comparing instructions. Finally, Angora [7]

uses dynamic taint tracking to identify promising mutation locations and perform coordinate descent

to guide mutations on these locations.

However, all these taint-tracking-based approaches are fundamentally limited by the fact that

dynamic taint analysis incurs very high overhead while static taint analysis suffers from a high rate

of false positives. Our experimental results demonstrate that NEUZZ easily outperforms existing

state-of-the-art taint-based fuzzers by using neural networks to identify promising locations for
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mutation.

Several fuzzers and test input generators [31, 163, 7] have tried to use different forms of

gradient-guided optimization algorithms directly on the target programs. However, without program

smoothing, such techniques tend to struggle and get stuck at the discontinuities.

5.3 Symbolic/concolic execution.

Symbolic and concolic execution [33, 35, 34, 164, 22] use Satisfiability Modulo Theory (SMT)

solvers to solve path constraints and find interesting test inputs. Several projects have also tried to

combining fuzzing with such approaches [165, 166, 21]. Unfortunately, these approaches struggle

to scale in practice due to several fundamental limitations of symbolic analysis including path

explosion, incomplete environment modeling, large overheads of symbolic memory modeling,

etc. [36].

Concurrent to our work, NEUEX [167] made symbolic execution more efficient by learning the

dependencies between intermediate variables of a program using NNs and used gradient-guided

neural constraint solving together with traditional SMT solvers. By contrast, in this paper, we focus

on using NNs to make fuzzing more efficient as it is by far the most popular technique for finding

security-critical bugs in large, real-world programs.

5.4 Seed Scheduling

While prior work has proposed a wide range of techniques to improve fuzzing such as symbolic

execution [8, 168, 169, 170, 146, 141, 171, 172], dynamic taint analysis [160, 7, 173, 174, 44]

and machine learning [175, 10, 176], in this paper we focus on improving the seed scheduling

component in a fuzzer. We describe prior work that has focused on improving fuzzing through seed

scheduling. Seed scheduling consists of two main components: input prioritization [134, 136, 177]

and the input’s corresponding mutation budget (i.e., power schedule) [149, 5]. Prior seed scheduling

work has prioritized seeds based on edge or path coverage [84, 5, 149, 140] as well as more security-

sensitive metrics such as execution time [19, 178], exploitability [179], memory accesses [180,
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181, 134], or a combination of them [136, 177] Another line of work prioritizes seeds based on

call graphs [182]. In contrast, we prioritize seeds based on the entire inter-procedural CFG. While

AFLGo [183] also uses the entire inter-procedural CFG, it computes the distance over the CFG for

directed fuzzing and assigning a seed’s mutation budget. In contrast, we approximate the count of

reachable and feasible edges from a seed and use it for coverage-guided fuzzing. SAVIOR [171]

also approximates this count but uses it for bug-driven hybrid testing. Its approximation assumes all

edges are equally likely to be reachable and feasible, independent of their distance from a seed’s

execution path, which does not hold true for many real-world programs. In contrast, we use the

multiplicative decay property of Katz centrality to reflect this behavior in real-world programs and

better approximate this count. Moreover, SAVIOR [171]’s approximation is equivalent to setting

𝛼 = 1 (i.e, no multiplicative decay) and our design choice experiments show this approximation

performs worse than K-Scheduler’s default settings. Nonetheless, both K-Scheduler and SAVIOR

utilize the mutation history information to improve their approximation.

Seed scheduling has also been a topic in other program testing techniques aside from fuzzing

such as concolic execution [153, 154]. Our preliminary experiments suggest that K-Scheduler can

improve seed scheduling for concolic execution.

5.5 Search-Based Software Testing

Search-Based Software Testing (SBST) applies meta-heuristic search techniques such as Hill

Climbing, Simulated Annealing and Genetic Algorithms on software testing tasks [184]. The main

difference between SBST and fuzzing lies in the application scope and the guiding techniques [185].

SBST is often used in unit testing due to the runtime overhead incurred by the optimization search,

while fuzzing is lightweight and can be used to test the entire system. SBST leverages the fitness

function to guide the search and fuzzing uses coverage feedback. One line of SBST applications is

worst-case testing. [186, 187, 188] define the runtime as the fitness function and search for inputs

that can maximize the runtime overhead. Another line of SBST works is to find input satisfying

particular branch conditions. [189, 190, 191] measure the branch distance of the tested branch
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statement as a fitness function and optimizes input towards the minimal value of branch distance

i.e., the branch condition is flipped.
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Conclusion

We present a data-driven approach to building adaptive and effective fuzzers. Compared with

existing rule-based fuzzers, our data-driven fuzzers first model fuzzing as diverse data-centric

problems, then propose algorithmic solutions to solve these problems, and in the end, the solutions

yield useful knowledge to guide effective fuzzing.

The data-driven approach proposed in this dissertation has two primary limitations.

First, the NN model in NEUZZ and MTFuzz is an expensive solution to the optimization problem

derivated from fuzzing. A NN model requires a large number of data samples to converge to a

stable stage. However, on some small programs, it is quite hard to obtain enough training samples

to bootstrap the NN model, hence hindering the further fuzzing performance. One future research

direction is to use lightweight data-driven solutions, such as the hill-climbing algorithm. We have

an ongoing project that leverages the hill-climbing search algorithm instead of NN model to solve

the optimization problem in fuzzing without a large number of data samples since hill-climbing

only needs a few data samples to perform an efficient derivative-free search scheme.

Second, the data-driven fuzzers presented in this dissertation only apply the data-driven approach to

a single module of a general fuzzing framework. NEUZZ and MTFuzz employ ML to seed

mutation module to generate high-quality mutations. K-Scheduler employs graph centrality

analysis in the seed scheduling module to find the most promising seed. A future research direction

is to explore applying the data-driven approach to seed mutation and seed scheduling at the same

time. In this way, we implement a prototype data-driven fuzzer that incorporates data-driven

approach in both seed mutation and seed scheduling. Our preliminary results demonstrate superior
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performance than the state-of-the-art fuzzer AFL++ by a large margin.

We have shown the applicablity of our approach using three data-driven fuzzers that can greatly

imporve fuzzing perforamnce.

All source code of the three fuzzers is publicaly avaialbe.

• NEUZZ: https://github.com/Dongdongshe/neuzz

• MTFuzz: https://github.com/rahlk/MTFuzz

• K-Scheduler: https://github.com/Dongdongshe/K-Scheduler
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