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Abstract

Computational Algorithms for Multi-omics and Electronic Health Records Data

Jia Guo

Real world data have enhanced healthcare research, improving our understanding of disease pro-

gression, aiding in diagnosis, and enabling the development of personalized and targeted treat-

ments. In recent years, multi-omics data and electronic health record (EHR) data have become

increasingly available, providing researchers with a wealth of information to analyze. The use of

machine learning methods with EHR and multi-omics data has emerged as a promising approach

to extract valuable insights from these complex data sources. This dissertation focuses on the

development of supervised and unsupervised learning methods, as well as their applications to

EHR and multi-omics data, with a particular emphasis on early detection of clinical outcomes and

identification of novel cancer subtypes.

The first part of the dissertation centers on developing a risk prediction tool using EHR data

that enables disease early detection so that preventive treatments can be taken to better manage

the disease. For this goal, we developed a similarity-based supervised learning method with two

applications to predict end-stage kidney disease (ESKD) and aortic stenosis (AS). In the second

part of the dissertation, we expanded our goal to a phenome-wide prediction task and developed

a patient representation based deep learning method that is able to predict phenotypes across the

phenome. Through a weighting scheme, this approach is conducting tailored disease phenotype

prediction computationally efficiently with good prediction performance. In the final part of the

dissertation, I shifted the focus with the goal to identify clinical meaningful novel disease subtypes



with unsupervised learning methods using multi-omics data. We tackled this goal through integrat-

ing multiple patient graphs being generated from multiple omics data with molecular level features

for an improved disease subtyping.

This dissertation has significantly contributed to the development of data-driven approaches to

healthcare and biomedical research using EHR data and multi-omics data. The new methodologies

developed with applications in multiple diseases using EHR and multi-omics data advanced our

knowledge in disease diagnosis, vulnerable groups identification, and ultimately improve patient

care.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 EHR and multi-omics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Supervised learning methods for classification . . . . . . . . . . . . . . . . . . . . 4

1.4 Unsupervised learning methods for clustering . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Similarity-based health risk prediction using domain fusion and electronic health
records data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The PsDF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Comparison methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



2.3.2 Clinical study - ESKD prediction tools . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Clinical study - AS prediction tools . . . . . . . . . . . . . . . . . . . . . 32

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3: PheW2P2V - a phenome-wide prediction framework with weighted patient rep-
resentations using electronic health records . . . . . . . . . . . . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Methods and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 The PheW2P2V algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Comparison methods and evaluation metrics . . . . . . . . . . . . . . . . . 41

3.2.3 The MIMIC-III database . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Phenome-wide predictions using the MIMIC-III database . . . . . . . . . . 45

3.3.3 Examples of clinical disease phenotype predictions in the MIMIC-III database 46

3.3.4 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4: Multi-view graph convolutional clustering with applications to cancer subtyp-
ing with multi-omics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 The proposed MultiGCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Comparison methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ii



4.3.1 TCGA LIHC and STAD cancer data . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Overall performance of the proposed MultiGCC in LIHC and STAD . . . . 59

4.3.3 LIHC subtypes identified by MultiGCC . . . . . . . . . . . . . . . . . . . 60

4.3.4 Hub gene analysis of differentially expressed genes across the four LIHC
subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.5 STAD subtypes identified by MultiGCC . . . . . . . . . . . . . . . . . . . 65

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendix A: Appendix to similarity-based health risk prediction using domain fusion and
electronic health records data . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1 Results of ESKD prediction tools with 1:1 case/control ratio . . . . . . . . . . . . 85

A.2 ESKD prediction tools with an additional domain of geocoding . . . . . . . . . . . 85

A.3 Aortic Stenosis (AS) prediction tools . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix B: Appendix to PheW2P2V - a phenome-wide prediction framework with weighted
patient representations using electronic health records . . . . . . . . . . . . . 95

B.1 Details of simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2 Numeric representations can recover the association strength . . . . . . . . . . . . 96

B.3 Simulation studies with more case/control ratios . . . . . . . . . . . . . . . . . . . 97

Appendix C: Appendix to multi-view graph convolutional clustering with applications to
cancer subtyping with multi-omics data . . . . . . . . . . . . . . . . . . . . 100

C.1 TCGA STAD cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

iii



C.2 STAD subtypes identified by MultiGCC . . . . . . . . . . . . . . . . . . . . . . . 100

C.3 Hub gene analysis in STAD patients . . . . . . . . . . . . . . . . . . . . . . . . . 101

iv



List of Figures

2.1 The workflow of the proposed PsDF framework. . . . . . . . . . . . . . . . . . . . 16

2.2 With the 1:1 case/control ratio, simulation results of prediction performance of the

PsDF algorithm, the random forest classifier, the logistic regression and the naïve

similarity method, under two simulation scenarios: 1) increasing number of signal

features in Domain 2, and 2) increasing effect size of the variance signal feature

in Domain 3. Part A displays results when cases have more EHR records than

controls. Part B displays results when cases have fewer EHR records than controls. 25

2.3 With the 1:5 case/control ratio, simulation results of prediction performance of the

PsDF algorithm, the random forest classifier, the logistic regression and the naïve

similarity method, under two simulation scenarios: 1) increasing number of signal

features in Domain 2, and 2) increasing effect size of the variance signal feature

in Domain 3. Part A displays results when cases have more EHR records than

controls. Part B displays results when cases have fewer EHR records than controls. 26

2.4 ESKD data preprocessing pipeline with two different inclusion criteria to define

eligible patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 With the 1:5 case/control ratio, prediction performance of the ESKD prediction

tools built by the PsDF algorithm, the random forest classifier, the logistic regres-

sion and the naïve similarity method when the masking percentage 𝑝𝑚𝑎𝑠𝑘 increases,

under two different inclusion criteria: A) the less stringent criterion, and B) the

more stringent criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.1 The workflow of the proposed PheW2P2V framework. . . . . . . . . . . . . . . . 39

3.2 MIMIC-III sample splitting procedures for training and test samples. . . . . . . . . 44

3.3 Simulation results of medians, 25th and 75th percentiles of AUC-ROC, max F1-

score, and AUC-PR of the proposed PheW2P2V, the LASSO regression, the ran-

dom forest classifier, the gradient boosted tree classifier, and the unweighted ver-

sion P2V with regression coefficient 𝛽 ranging from 0.2 to 0.8, under the scenario

of 1:19 case-control ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Medians, 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR

across binned 300 phenotypes with descending prevalence in the MIMIC-III databases

for the proposed PheW2P2V, the LASSO regression, the random forest classifier,

the gradient boosted tree classifier, and the unweighted P2V. . . . . . . . . . . . . 47

4.1 The workflow of the proposed MultiGCC framework. . . . . . . . . . . . . . . . . 55

4.2 Subtyping analysis of the four LIHC subtypes identified by MultiGCC. (A) Kaplan-

Meier survival curves and log-rank test p-value of the four LIHC subtypes. (B)

Heatmap of top 500 gene expressions that are differentially expressed across the

four LIHC subtypes by significance from the Kruskal-Wallis test. (C) Heatmap of

top 500 DNA methylation CpG sites that are differentially methylated across the

four LIHC subtypes by significance from the Kruskal-Wallis test. (D) The middle

chart displays the heatmap of mutation profiles of the top 30 genes ranked by mu-

tation frequencies. The top chart displays absolute number of mutation load for

each sample. The right panel displays the mutation frequencies. . . . . . . . . . . . 62

4.3 Hub gene analysis of the 321 differentially expressed genes across the four LIHC

subtypes that were mapped to the PPI network. The color and size of each gene

node represent the degree of each gene. . . . . . . . . . . . . . . . . . . . . . . . 64

vi



A.1 With the 1:1 case/control ratio, prediction performance of the ESKD prediction

tools built by the PsDF algorithm, the random forest classifier, the logistic regres-

sion and the naïve similarity method when the masking percentage 𝑝𝑚𝑎𝑠𝑘 increases,

under two different inclusion criteria: A) the less stringent criterion, and B) the

more stringent criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2 ESKD data preprocessing pipeline with an additional domain of geocoding, with

two different inclusion criteria to define eligible patients. . . . . . . . . . . . . . . 87

A.3 With 1:1 case/control ratio, prediction performance of the ESKD prediction tools

with an additional domain of geocoding, built by the PsDF algorithm, the random

forest classifier, the logistic regression and the naïve similarity method when the

masking percentage 𝑝𝑚𝑎𝑠𝑘 increases, under two different inclusion criteria: A) the

less stringent criterion, and B) the more stringent criterion. . . . . . . . . . . . . . 90

A.4 With 1:5 case/control ratio, prediction performance of the ESKD prediction tools

with an additional domain of geocoding, built by the PsDF algorithm, the random

forest classifier, the logistic regression and the naïve similarity method when the

masking percentage 𝑝𝑚𝑎𝑠𝑘 increases, under two different inclusion criteria: A) the

less stringent criterion, and B) the more stringent criterion. . . . . . . . . . . . . . 90

A.5 AS data preprocessing pipeline with two different inclusion criteria to define eligi-

ble patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.6 Prediction performance of the AS prediction tools built by the PsDF algorithm,

the random forest classifier, the logistic regression and the naïve similarity method

when increasing the masking percentage 𝑝𝑚𝑎𝑠𝑘 , under two different inclusion cri-

teria: A. the less stringent criterion, and B. the more stringent criterion. . . . . . . . 94

B.1 Steps of simulation studies for PheW2P2V. . . . . . . . . . . . . . . . . . . . . . . 96

B.2 Simulation results of medians and 25th and 75th percentiles of cosine similarities

between vectors of 10 signal concepts (A), vectors of 140 noise concepts (B) and

vector of the outcome concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



B.3 Simulation results medians and 25th and 75th percentiles of AUC-ROC, max F1-

score, and AUC-PR of the proposed PheW2P2V, the LASSO regression, the ran-

dom forest classifier, the gradient boosted tree classifier, and the unweighted ver-

sion P2V, with different case-control ratios of 1:1, 3:7, 1:9 and 1:19. . . . . . . . . 99

C.1 Subtyping analysis of the three STAD subtypes identified by MultiGCC. (A) Kaplan-

Meier survival curves and log-rank test p-value of the three STAD subtypes. (B)

Heatmap of top 500 gene expressions that are differentially expressed across the

three STAD subtypes by significance from the Kruskal-Wallis test. (C) Heatmap

of top 500 DNA methylation CpG sites that are differentially methylated across

the three STAD subtypes by significance from the Kruskal-Wallis test. (D) The

middle chart displays the heatmap of mutation profiles of the top 30 genes ranked

by mutation frequencies. The top chart displays absolute number of mutation load

for each sample. The right panel displays the mutation frequencies. . . . . . . . . . 102

C.2 Hub gene analysis of the 326 differentially expressed genes across the three STAD

subtypes that were mapped to the PPI network. The color and size of each gene

node represent the degree of each gene. . . . . . . . . . . . . . . . . . . . . . . . 104

viii



List of Tables

3.1 Summary of the MIMIC-III database after data processing. . . . . . . . . . . . . . 43

3.2 Medians and 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR

of the 942 phenotypes binned by 300 from most to least prevalent phenotypes in

the MIMIC-III database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 AUC-ROC, max F1-score, and AUC-PR of the 5 highlighted clinical disease phe-

notypes in the MIMIC-III database. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Data summary of LIHC and STAD patients. . . . . . . . . . . . . . . . . . . . . . 59

4.2 Subtyping and survival analyses in two cancer types, with (1) the number of clus-

ters chosen using eigengap or silhouette scores in parentheses, (2) number of clus-

ters after filtering out clusters with sizes<5, and (3) corresponding survival p-values. 60

4.3 Top five genes ranked by degree, stress, and betweenness centrality, in the PPI

network of LIHC patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.1 Top five genes ranked by degree, stress, and betweenness centrality, in the PPI

network of differentially expressed genes in STAD patients. . . . . . . . . . . . . . 104

ix



Acknowledgements

I wish to express my deepest gratitude to those who have steadfastly supported me throughout

the journey of completing this dissertation. Their assistance, guidance, and encouragement have

been invaluable in the development of my dissertation.

First and foremost, I would like to thank my PhD advisor, Dr. Shuang Wang, for her unwaver-

ing support and mentorship. Her profound expertise, insightful advice, and remarkable patience

were crucial in shaping my research and fostering my intellectual growth. Without her wisdom

and guidance, this dissertation would not be possible.

I extend my sincere appreciation to my dissertation committee members, Dr. Chunhua Weng,

Dr. Krzysztof Kiryluk, Dr. Yuanjia Wang, and Dr. Min Qian. Their time, support, and feedback

have been of immense value. Dr. Chunhua Weng provided essential assistance and expertise on

one chapter of my thesis. Dr. Krzysztof Kiryluk provided constructive comments and advice

on two chapters. Their invaluable input and contribution significantly elevated the quality of my

work. Dr. Yuanjia Wang and Dr. Min Qian not only imparted knowledge to me in the courses,

but also provided insightful feedback and suggestions that greatly improved my dissertation. Their

mentorship and guidance played a critical role in ensuring the success of my research.

I also want to thank Dr. Frederica Perera and Dr. Julie Herbstman for their financial sponsor-

ship throughout my PhD journey. We collaborated on various environmental health projects and

their support has substantially enriched my research experience and professional growth.

Lastly, I want to express my gratitude to my family. I am profoundly grateful to my parents,

who continually served as my pillar of strength. My deepest appreciation also goes out to my

fiancée, Yun He. Her unwavering support and encouragement have carried me through the chal-

lenging moments of my doctoral journey.

x



Chapter 1: Introduction

1.1 Overview

The enormous amount of healthcare data generated every day provides a unique opportunity

to enhance our understanding of disease progression, aid in diagnosis, and develop more person-

alized and targeted treatments. Electronic health record (EHR) data together with multiple types

of omics data represent a valuable resource for big data researches including clinical decision-

making and disease subtyping to better understand disease heterogeneity and improve patient care

through targeted treatments to early detection. By leveraging the power of machine learning and

deep learning methods as well as statistical modeling techniques, big data research that can help

clinicians make more informed decisions, ultimately leading to better patient care. This disserta-

tion seeks to develop computational algorithms to build clinical decision-support tools using EHR

and multi-omics data.

We first focused on risk prediction of specific clinical outcomes using EHR data. We intro-

duced a framework named Patient similarity based on Domain Fusion (PsDF). Using comprehen-

sive patient data, PsDF integrates similarity information from multiple clinical data domains into

a comprehensive similarity measurements that can be subsequently used to predict clinical out-

comes. PsDF is a supervised machine learning method, aiming to aid in early detection of specific

diseases. We used PsDF to predict end stage kidney disease (ESKD) and severe aortic stenosis

(AS) requiring valve replacement. We demonstrated good prediction performance of PsDF and

robustness of PsDF to missingness compared to comparison methods using the data warehouse of

Columbia University Irving Medical Center (CUIMC).

We then expanded our goal to phenome-wide predictions, to predict phenotypes in a phenome

simultaneously. We developed a Phenome-wide prediction framework using Weighted Patient
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Vectors (PheW2P2V). PheW2P2V uses a novel weighting scheme on patient embeddings so that

predictions based on patient embeddings are tailored to individual phenotypes. Since diagnosis

concepts in EHR are usually coded using International Classification of Disease (ICD) terminol-

ogy, which is designed for billing and administrative functions but not for case-control studies,

PheW2P2V first maps patients’ ICD codes to clinical disease phenotypes called phenotype codes

(phecodes). Phecodes are originally developed for phenome-wide association studies (PheWAS),

where patients’ phenotypes are identified by grouping ICD codes that represent common etiologies,

with a purpose of reducing the redundancy in ICD codes and better defining cases and controls.

To predict a clinical disease phenotype in the phenome, after generating medical concepts em-

beddings using word2vec, PheW2P2V represents each patient as a single numeric patient vector

where his(her) medical concepts that are more correlated with the phenotype of interest will be

upweighted. The tailored patient vector is then used to predict risks. We demonstrated improved

predictions of PheW2P2V over that of comparison methods for majority of the phenotypes in the

phenome of the MIMIC-III database (Johnson et al., 2016) performing of 942 phenotypes.

In the third part of the dissertation, we aim to develop computational algorithm to identify

disease subtypes using multi-omics data. We developed a multi-view clustering method for dis-

ease subtyping, Multi-view Graph Convolutional Clustering (MultiGCC). Many existing disease

subtyping methods leverage patient graphs that are generated using similarity measures from high

dimensional multi-omics data. These patient graphs focus on subject level aggregated omics in-

formation but ignore feature level individual molecular characteristics, which are also helpful for

disease subtyping but are absent in graphs. MultiGCC uses feature level molecular characteristics

to enhance patient omics graph embeddings through graph convolutional encoders. MultiGCC

then simultaneously updates the graph embeddings and the clustering assignments through a self-

learning process to achieves a better separation of clusters. We applied MultiGCC to use somatic

mutation, DNA methylation, and gene expression data to identify subtypes of liver hepatocellular

carcinoma (LIHC) and stomach adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA)

project (https://www.cancer.gov/tcga). Further analyses using molecular characteristics suggested

2
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clinical meaning of the identified subtypes of LIHC and STAD.

In summary, in this dissertation, we developed i) a similarity-based supervised learning method

for risk prediction of specific diseases using EHR data, ii) an embedding-based supervised learning

method for phenome-wide predictions using EHR data, and iii) a multi-view unsupervised learning

method for disease subtyping using integrated multi-omics data. The three new methodologies

developed with applications in multiple diseases using EHR and multi-omics data advanced our

understanding in disease heterogeneity, diagnosis, and ultimately help to improve patient care.

1.2 EHR and multi-omics data

Electronic health record (EHR) data refers to the digital, systematic collection of patients’

medical history, diagnoses, medications, treatment plans, and other relevant health information,

which are maintained and updated by healthcare providers across multiple care settings (Agrawal &

Prabakaran, 2020; Dash et al., 2019; Raghupathi & Raghupathi, 2014; Shivade et al., 2014). EHR

system aims to improve the overall quality, safety, and efficiency of healthcare delivery by pro-

viding clinicians with real-time access to comprehensive patient information, facilitating informed

decision-making, and reducing medical errors (Menachemi & Collum, 2011). The adoption of

EHR systems has increased rapidly over the past two decades, with recent estimates suggesting

that approximately 88% of office-based physicians in the United States utilize EHR data (Office of

the National Coordinator for Health Information Technology, 2021).

Multi-omics data refers to the various layers of high-dimensional biological information gen-

erated through different ’-omics’ technologies, including genomics, transcriptomics, proteomics,

and metabolomics (Hasin et al., 2017; Kristensen et al., 2014; Rappoport & Shamir, 2018). Each of

these data types captures specific molecular features of an organism or biological system: genomics

focuses on gene sequences and variations; transcriptomics investigates RNA transcripts and gene

expression profiles; proteomics examines protein abundance and post-translational modifications;

and metabolomics explores the concentrations of metabolites in biological pathways (Aebersold

& Mann, 2016; Emwas et al., 2019). By using multi-omics data, researchers can uncover complex

3



relationships and interactions between various biological components, which facilitates a deeper

understanding of the underlying mechanisms of health and disease (Subramanian et al., 2020). For

example, the integration of multi-omics data with advanced computational algorithms has opened

up new avenues for better understanding of tumor heterogeneity and improving personalized treat-

ments through cancer subtyping (B. Wang, Mezlini, et al., 2014).

1.3 Supervised learning methods for classification

Supervised learning is a sub-field of machine learning that focuses on the development of

algorithms capable of learning from labeled data, and subsequently using this learned knowledge

to make predictions or decisions. Supervised learning has been extensively employed in a wide

range of applications, from natural language processing (NLP), computer vision, to healthcare

and finance (Bishop & Nasrabadi, 2006; Kelleher et al., 2020). A supervised learning model is

usually described as a mathematical representation of the underlying relationships between input

features and the target variable. In specific, supervised learning methods try to find a function

𝑓𝜃 with parameter 𝜃 to map input features to a target variable based on a given set of labeled

training data pairs (𝒙, 𝑦), where 𝒙 is the input feature vector and 𝑦 is the target. Suppose we have

𝑛 training samples {(𝒙1, 𝑦2), ..., (𝒙𝒏, 𝑦𝑛)}, then the goal is to learn a function 𝑓𝜃 : 𝑋 → 𝑌 that

best approximates the true underlying relationship between 𝒙𝒊 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 , such that for any

new input instance 𝒙′, we can make an accurate prediction 𝑦′ = 𝑓𝜃 (𝒙′). To achieve this, the model

is trained by minimizing a loss function L, which quantifies the discrepancy between the model

predictions 𝑓𝜃 (𝒙𝒊) and the true target values 𝑦𝑖 in the training dataset, showed in Equation 1.1.

minimize
𝑓𝜃

1
𝑛

𝑛∑︁
𝑖=1

L(𝑦𝑖, 𝑓𝜃 (𝒙𝒊)) (1.1)

The loss function L depends on the type of supervised learning problem. There are two fun-

damental types of problems, regression and classification. Regression deals with predicting a con-

tinuous target variable such as BMI and blood pressure, while classification focuses on assigning
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discrete class labels to input instances. In this dissertation, we mainly deal with binary clinical

outcomes such as case-control status of patients regarding a specific disease, hence, we focus on

the supervised learning methods for classification. Supervised learning methods for classification

can be broadly categorized into probabilistic models, kernel-based models, tree-based models, and

artificial neural networks.

Naive Bayes and logistic regression are two commonly used probabilistic models. Naive Bayes

focuses on modeling the joint distribution of the input features and the target variables, by applying

Bayes’ theorem with naive independence assumptions between the features. Although it is highly

scalable, the design and assumptions are apparently oversimplified. Logistic regression estimates

the conditional probabilities of the target variables given the input features and makes predictions

based on these probabilities. It employs the logistic function (sigmoid function 𝜎) to map a lin-

ear combination of input features 𝜷⊤𝒙𝒊 to a probability value 𝑝𝑖 with model parameters 𝜷, and

minimizes the cross-entropy loss function (Bishop & Nasrabadi, 2006), showed in Equation 1.2.

The optimization is also equivalent to the maximum likelihood estimation. Both Naive Bayes and

logistic regression lead to a linear decision boundary, hence, they are less powerful when deal with

non-linearly separable data.

𝑝𝑖 (𝑦𝑖 = 1|𝑥𝑖) = 𝜎(𝛽0 + 𝜷⊤𝒙𝒊) =
1

1 + 𝑒−(𝛽0+𝜷⊤𝒙𝒊)

L(𝑦𝑖, 𝑝𝑖) = − [𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]
(1.2)

Kernel-based models, or similarity-based methods in a broader sense, are popular in classifi-

cation tasks, as they can handle non-linearly separable data. For example, the k-nearest neighbors

(kNN) is a similarity-based, lazy learning algorithm that predicts the target label for a new sam-

ple by considering the k closest training samples using similarity measures (Cover & Hart, 1967).

Support vector machines (SVMs) are powerful classifiers that can find the optimal hyperplane

separating different classes in high-dimensional spaces by leveraging kernel functions to perform

a non-linear classification (Cortes & Vapnik, 1995). The hinge loss function (Equation 1.3) is
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usually used in SVMs.

L(𝑦𝑖, 𝑓𝜃 (𝒙𝒊)) = max(0, 1 − 𝑦𝑖 𝑓𝜃 (𝒙𝒊)) (1.3)

Tree-based models are also widely used because they are highly intuitive and can construct

complex non-linear decision boundaries. The basic model is the decision tree, which recursively

partitions the input feature space into regions using a series of simple decision rules (e.g., whether

a feature value is greater than a threshold) at each internal node of a tree (Quinlan, 1986). It

employs loss functions that assess the split based on the purity of the resulting nodes, such as Gini

impurity (Breiman, 1984) and information gain (Quinlan, 1986). One disadvantage of decision

tree is that it is prone to overfitting, and ensemble learning can help avoid overfitting. Random

forest is an ensemble method that construct multiple decision trees and combine their predictions

via majority voting in classification tasks. The trees are constructed using bootstrapped samples of

the training data and a random subset of features, reducing the impact of overfitting and improving

overall model performance (Breiman, 2001). Gradient boosting tree is another ensemble method

that combines a series of shallow decision trees in a sequential manner. Each subsequent tree is

trained to correct the errors of the previous one by fitting the negative gradient of the loss function

(Friedman, 2001).

The last category is Artificial Neural Networks (ANNs). Inspired by the biological nervous

system, ANNs are capable of learning complex non-linear relationships through the composition

of interconnected nodes or neurons. Deep neural networks also refers to the deep learning models,

as they consist of multiple processing layers to learn representations of data with multiple levels

of abstraction, with each neuron applying a non-linear activation function to the weighted sum

of its inputs. (Goodfellow et al., 2016; LeCun et al., 2015). The most common optimization

technique for training deep learning models is the backpropagation algorithm, which minimizes

the loss function using gradient descent (Rumelhart et al., 1986). Equation 1.4 is the general

formula of a deep learning model with 𝑛 layers for classification, where {𝑊1,𝑊2, ...} are the weight

matrix (model parameters) to be estimated, { 𝑓1, 𝑓2, ...} are predefined non-linear functions such

as sigmoid function 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) and rectified linear unit (ReLU) functions ReLU(𝑥) =
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max(0, 𝑥), and intercept terms are omitted for simplicity.

𝑦𝑖 = 𝑓𝑛 (... 𝑓2(𝑊2 𝑓1(𝑊1𝒙𝒊)))

minimize
{𝑊1,𝑊2,...}

1
𝑛

𝑛∑︁
𝑖=1

L(𝑦𝑖, 𝑦𝑖)
(1.4)

Deep learning methods have been applied in the field of classification, achieving state-of-the-

art performance on a wide range of tasks. One of the most prominent deep learning models for

classification is the Convolutional Neural Network (CNN), which has been particularly successful

in image classification tasks (Krizhevsky et al., 2017). CNNs incorporate convolutional layers,

pooling layers, and fully connected layers to learn spatial hierarchies of features in a translation-

invariant manner. Another notable deep learning model is the Recurrent Neural Networks (RNNs)

and its variants, such as Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)

and Gated Recurrent Unit (GRU) (Cho et al., 2014). These models have shown remarkable per-

formance in sequence classification tasks, including natural language processing (NLP) and time-

series analysis, by effectively modeling long-range dependencies in the data. More recently, the

Transformer architecture (Vaswani et al., 2017) has gained significant attention due to its superior

performance on various classification tasks, particularly in natural language understanding. The

Transformer model relies on self-attention mechanisms to capture complex relationships within

the input data, making it a powerful and versatile tool for various classification problems. These

deep learning methods have demonstrated their efficacy across numerous domains and continue to

advance the state-of-the-art in classification tasks.

In chapter 2, we developed a similarity-based supervised learning methods (PsDF) using EHR

data to predict two diseases, ESKD and AS. The proposed PsDF leverages the advantage of

similarity-based methods that can effectively capture the non-linear signals and uses a fusion step

to achieve a comprehensive similarity measure. In chapter 3, we developed an embedding-based

supervised learning method (PheW2P2V) for phenome-wide predictions using EHR data. The

proposed PheW2P2V generates patient embeddings using a deep learning model and efficiently
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performs phenotype predictions across the phenome.

1.4 Unsupervised learning methods for clustering

Unsupervised learning is another sub-field of machine learning that has emerged as a power-

ful tool for discovering hidden patterns and structures within data but without relying on labeled

instances for guidance. There are two important types of tasks for unsupervised learning, clus-

tering and dimension reduction. Clustering is used to group or segment data points into distinct

categories with shared attributes, while dimension reduction is used to transform the data from a

high-dimensional space into a low-dimensional space. In modern machine learning, the dimension

reduction techniques can also be considered as a special type of representation learning, which

aims to learn new representations of data and improve the performance and interpretability of

downstream analysis such as classification, clustering, and data visualization. In this dissertation,

we mainly consider clustering tasks such as cancer subtyping using high-dimensional omics data,

hence, we focus on the unsupervised learning methods for clustering with the help of representa-

tion learning.

Unsupervised learning methods for clustering can be broadly categorized into partition-based

clustering, probabilistic clustering, density-based clustering, hierarchical clustering, and a combi-

nation of representation learning and partition-based clustering. Partition-based clustering meth-

ods, such as K-means (MacQueen, 1967) and its variants Fuzzy C-means (FCM) (Bezdek et al.,

1984) as well as K-means++ (Arthur & Vassilvitskii, 2006), focus on dividing the data into dis-

tinct groups or partitions based on a distance metric. These partition-based algorithms typically

aim to minimize the within-cluster sum of squares, iteratively adjusting the cluster centroids until

convergence. Probabilistic clustering is a family of algorithms that assume data points are gen-

erated from a mixture of underlying probability distributions, such as Gaussian Mixture Models

(GMM) (Dempster et al., 1977), Bayesian Gaussian Mixture Models (BGMM) (Richardson &

Green, 1997) and Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Density-based clustering

algorithms, like DBSCAN (Ester et al., 1996) and OPTICS (Ankerst et al., 1999), identify clus-
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ters based on the density of data points in the feature space, where they group data points that are

closely packed together while treating noise points or outliers as separate entities. Hierarchical

clustering methods (Murtagh & Contreras, 2012), such as agglomerative and divisive hierarchical

clustering, build a tree-like structure to represent the nested grouping of data points.

The last category gain more attention recently, which includes clustering methods that combine

representation learning and partition-based clustering. These methods usually learn a low dimen-

sional latent space or a new representation of the data and perform the standard K-means using

the latent representations. The representation learning algorithms could be performed either on the

raw feature space, such as principal component analysis (PCA), non-negative matrix factorization

(NMF) (Lee & Seung, 1999), and Autoencoder (Bengio et al., 2013; Hinton & Salakhutdinov,

2006; Vincent et al., 2010), or on a similarity matrix constructed from the raw input, such as

spectral clustering (i.e., eigen decomposition on the graph) (Von Luxburg, 2007) and Autoencoder

performed on a graph (F. Tian et al., 2014).

As a popular method in this category, spectral clustering partitions data into clusters by lever-

aging the eigenvectors derived from a graph and performing the standard K-means. In biomedical

research, a graph is usually characterized by a similarity matrix measuring the affinity between

a pair of instances, e.g., a patient similarity matrix constructed using omics data. The purpose

of using similarity measures is to model the local neighborhood relationships among data points

and avoid pre-screening feature selection on the high-dimensional feature space of raw data (Von

Luxburg, 2007; B. Wang, Mezlini, et al., 2014). Suppose we have a similarity matrix 𝑆 ∈ R𝑛×𝑛 and

𝑘 clusters to construct, then we first calculate a normalized Laplacian 𝐿 using Equation 1.5, where

𝐷 is the degree matrix with 𝐷𝑖𝑖 =
∑
𝑗 𝑆𝑖 𝑗 and 𝐼 is the identity matrix. Next, first 𝑘 eigenvectors of 𝐿

are computed and formed 𝑍 ∈ R𝑛×𝑘 , which can be considered as the new representations (spectral

embeddings) of the data. K-means algorithm is then performed on 𝑍 to cluster the data points (Ng

et al., 2001; Von Luxburg, 2007).

𝐿 = 𝐼 − 𝐷−1/2𝑆𝐷−1/2 (1.5)
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Autoencoder combined with K-means is also widely used for clustering (Fang et al., 2021; X.

Guo et al., 2017; Hinton & Salakhutdinov, 2006; Miotto et al., 2016; Salha et al., 2019; F. Tian

et al., 2014). Autoencoder is a powerful representation learning method, which uses a neural net-

work to learn new representations of data from raw features, typically for dimension reduction. It

uses a non-linear function mapping (encoder) to map the raw features to new representations and

another non-linear function mapping (decoder) to reconstruct the raw features. The parameters of

the model can be trained by minimizing the reconstruction error. When using affine encoder and

decoder without any non-linearity and a squared error loss, the Autoencoder essentially performs

PCA, where the trained weights span the same subspace as the one spanned by the loading vec-

tors of PCA (Plaut, 2018). Equation 1.6 is the general formula of an Autoencoder with one hidden

layer, where 𝒙𝒊 and 𝒙𝒊 are the raw input and reconstructed output, 𝒛𝒊 is the new representations with

a lower dimension than 𝒙𝒊, 𝑓 and 𝑔 are non-linear functions (e.g., sigmoid and ReLU function) for

encoder and decoder,𝑊𝑒 and𝑊𝑑 are the weight matrix to be learned by minimizing the reconstruc-

tion loss function L with gradient descent. The new representation 𝒛𝒊 can be subsequently used to

perform clustering through K-means. A stacked Autoencoder is an Autoencoder with more than

one hidden layer, which can increase the nonlinearity between the new representations and raw

features. For example, in a stacked Autoencoder with a two-layer encoder, the new representations

will be calculated as 𝒛𝒊 = 𝑓2(𝑊𝑒2 𝑓1(𝑊𝑒1𝒙𝒊)).

𝒛𝒊 = 𝑓 (𝑊𝑒𝒙𝒊)

𝒙𝒊 =𝑔(𝑊𝑑 𝒛𝒊)

minimize
{𝑊𝑒,𝑊𝑑}

1
𝑛

𝑛∑︁
𝑖=1

L(𝒙𝒊, 𝒙𝒊)

(1.6)

In the previous methods, learning new representations and conducting clustering are usually

performed sequentially. That is, K-means clustering is applied after a new representation of data

is obtained by Autoencoder or spectral embedding. Although it is possible to produce a better

clustering result using the new representations than using the raw data, there is still room for im-
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provement. Simply minimizing the reconstruction loss may not guarantee different clusters to be

linearly separable in the space of new representations, while K-means is incapable of separating

clusters that are not linearly separable. Deep Embedded Clustering (DEC) has been proposed to

optimize a clustering objective by simultaneously solving for cluster assignment and the underly-

ing feature representation (Xie et al., 2016). DEC improves the clustering by iteratively updating

clusters with an auxiliary target distribution. Inspired by t-SNE (Van der Maaten & Hinton, 2008),

the loss function of DEC is a Kullback–Leibler (KL) divergence loss between a centroid-based

probability distribution and its auxiliary target distribution. Equation 1.7 is the formula of DEC,

where 𝑖 and 𝑟 represent the 𝑖th sample and the 𝑟th cluster, respectively. Let 𝒛𝒊 be a new representa-

tion of data obtained from a representation learning method such as Autoencoder. With K-means

applied on the new representations, the initial cluster centroid of 𝑟th cluster can be estimated as 𝝁𝒓 .

The centroid-based probability distribution𝑄, or the soft cluster assignments 𝑞𝑖𝑟 is calculated using

the kernel of Student’s t-distribution with degrees of freedom 𝛼 (usually set as 𝛼 = 1), to measure

the similarity between 𝒛𝒊 and 𝝁𝒓 . To put more emphasis on data points with high confidence or

high 𝑞𝑖𝑟 , the auxiliary target distribution 𝑝𝑖𝑟 is computed by first raising 𝑞𝑖𝑟 to the second power

and then normalizing by frequency for each cluster, where 𝑣𝑟 =
∑
𝑖 𝑞𝑖𝑟 are soft cluster frequency of

the 𝑟th cluster.

𝑞𝑖𝑟 =

(
1 + ∥𝒛𝒊 − 𝝁𝒓 ∥2 /𝛼

)− 𝛼+1
2

∑
𝑟 ′

(
1 + ∥𝒛𝒊 − 𝝁𝒓′ ∥2 /𝛼

)− 𝛼+1
2

𝑝𝑖𝑟 =
𝑞2
𝑖𝑟
/𝑣𝑟∑

𝑟 ′ 𝑞
2
𝑖𝑟
/𝑣𝑟 ′

minimize KL(𝑃∥𝑄)

(1.7)

In Equation 1.7, all model parameters including the cluster centroids 𝝁𝒓 and weight matrix of

the encoder that generates 𝒛𝒊 will be updated by minimizing the KL divergence loss between𝑄 and

𝑃, where KL(𝑃∥𝑄) = ∑
𝑖

∑
𝑟 𝑝𝑖𝑟 log

(
𝑝𝑖𝑟
𝑞𝑖𝑟

)
. The target distribution 𝑃 is designed so that the training

step will put more emphasis on data points that are assigned with higher confidence, or higher 𝑞𝑖𝑟 .
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By updating model parameters from high confidence assignments, DEC iteratively refines the soft

cluster assignments 𝑞𝑖𝑟 , which is the final clustering result.

In chapter 4, we developed a multi-view unsupervised learning method (MultiGCC) for disease

subtyping using multi-omics data. The proposed MultiGCC generates enhanced graph embeddings

of omics data by incorporating molecular level features. MultiGCC can identify novel disease

subtypes by simultaneously updating the graph embeddings and clustering assignments through a

self-learning process.
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Chapter 2: Similarity-based health risk prediction using domain fusion and

electronic health records data

2.1 Introduction

The universal adoption of electronic health records (EHR) provides access to clinical data of

unprecedented volume and variety. This rich information awaits utilization for real time clinical

decision-support. Conventional approaches in predictive modeling used to build clinical decision-

support tools start with feature selection based on domain knowledge, which could be biased. For

example, one of the most widely used chronic kidney disease (CKD) progression models uses a

simple linear combination of age, sex, estimated glomerular filtration rate (eGFR), and urinary

albumin to creatinine ratio (UACR) (Tangri et al., 2016). This CKD prediction model and other

similar existing prediction models were built on a clinically relevant set of features selected either

based on clinical expertise, statistical significance, or both. As evidenced from recent scientific

research, many human disorders share a complex etiologic basis and exhibit correlated disease

progression. Therefore, it is desirable to consider a more comprehensive, agnostic approach that

incorporates the entirety of patient data.

One frequently sought goal by using EHR data is to assess patient similarity (Chan et al., 2010;

Chawla & Davis, 2013; Jensen et al., 2012; L. Li et al., 2015; Marlin et al., 2012; Miotto et al.,

2016; Roque et al., 2011; Sun et al., 2012; F. Wang, Hu, et al., 2012; F. Wang, Sun, & Ebadollahi,

2011, 2012; F. Wang, Sun, Hu, et al., 2011; P. Zhang et al., 2014; Zhu et al., 2016). The objective

of patient similarity assessment is to quantify the similarity between any pair of patients according

to their retrospective information under a specific clinical context. For example, patients who have

“similar” clinical characteristics may have similar disease risk projections or diagnoses. Similarity-

based case identification could help stratify patients, enable more efficient diagnoses, and facilitate
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more effective treatment choices. Despite some successes, current similarity approaches do not

use comprehensive patient information, but rather only a fraction of available data, such as only

selected clinical characteristics or only genomic information for patient subtyping (L. Li et al.,

2015). A recent approach combined clinical and drug similarity analytics for personalization of

drug prescribing (P. Zhang et al., 2014). Another recent research developed a disease phenotyping

method with tensor factorization using co-occurrence information of diagnoses and medications

(Henderson et al., 2018). Phenotyping algorithms use EHR data to identify patients with specific

clinical conditions or events. These include rule-based algorithms to identify patients with chronic

kidney disease (CKD) (Nadkarni et al., 2014), supervised models including logistic regressions and

random forest to identify patients with type 2 diabetes (Anderson et al., 2016), and dimensionality-

reduction methods such as a tensor factorization approach to identify patients with hypertension

and type 2 diabetes (Henderson et al., 2018). Several recently developed phenotyping methods also

consider patient similarities, such as a pipeline that defines patient similarities using concatenated

patient concepts in Unified Medical Language System (UMLS) which was applied to ciliopathies

phenotyping (X. Chen et al., 2019). However, there are currently no methods that use all available

patient data to more comprehensively define “similar patients” for predictive outcome modeling in

chronic complex conditions.

A simple way to use comprehensive patient data is to define patient similarity using patient

information concatenated. However, the patient information from different domains might be un-

balanced. For example, the number of unique drugs, i.e., number of features, in the domain of

drug exposures might be very different from the number of unique procedures in the domain of

medical procedures. Thus, when using features from these unbalanced domains, simply concate-

nating all features to calculate patient similarity may be ineffective in capturing signals when these

potentially much stronger signal features from a small domain might be diluted.

In this chapter, we developed a unified machine learning framework for clinical outcome pre-

diction called Patient similarity based on Domain Fusion (PsDF). PsDF performs patient similarity

assessment independently on each available domain data, such as laboratory tests, ICD based di-
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agnoses, drug exposures, medical procedures, and demographic information, and fuses affinity

information from all available domains to achieve a comprehensive metric for quantifying patient

similarity, which is further used to perform a clinical outcome prediction.

We conducted extensive simulation studies and demonstrated a much-improved prediction per-

formance of the PsDF algorithm over several competing methods including a random forest clas-

sifier and a regression-based model both using all features from different domains simultaneously,

and a naïve similarity method concatenating all features from different domains.

With EHR data extracted from the data warehouse of Columbia University Irving Medical

Center (CUIMC), we demonstrated better performance of PsDF over the competing methods in

predicting two independent clinical outcomes, incident end stage kidney disease (ESKD) and inci-

dent aortic stenosis (AS) requiring valve replacement. We used comprehensive patient information

collected prior to the occurrence of the ESKD and AS outcomes, including 1) laboratory tests,

2) ICD based diagnosis history, 3) drug exposures, 4) medical procedures and 5) demographic

information.

Because real-life EHR datasets often have incomplete patient records, we also explored the

prediction robustness of PsDF when random missingness was introduced to the test set data. To do

so, we randomly masked a percentage of EHR records by setting them to missing, similar to prior

studies (Z. Hu et al., 2017; Polubriaginof et al., 2018; Wells et al., 2013). Our results indicate that

when the percentage of randomly masked observations increases, the prediction performance of

PsDF is stable while that of the competing methods decreases fast, indicating that one of the major

advantages of PsDF is its robustness to data missingness.

2.2 Methods

2.2.1 The PsDF algorithm

The PsDF framework is illustrated in Figure 2.1. There are three steps in the PsDF clinical

outcome prediction. In Step 1, for each domain of patient data (e.g., laboratory tests, diagnosis

history, etc.), a patient similarity matrix with pairwise similarity measures between any given pairs
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Figure 2.1: The workflow of the proposed PsDF framework.

of patients is constructed. In Step 2, patient similarity matrices from different domains of patient

data are fused using a nonlinear combination method. In Step 3, the fused patient similarity matrix

is served as a clinical outcome prediction tool, through which a patient similarity risk score is

assigned to each patient in the test set using a simple logistic regression model that is pretrained

on the training set. Note that all features of a specific domain of patient data are first standard-

normalized to have a zero mean and a unit of one standard deviation.

Step 0: EHR patient’s snapshot data

Patients’ EHR data were extracted from the data warehouse of CUIMC. For a specific clinical

condition, such as incidence of ESKD between year 2006 and 2016, in order to develop a prospec-

tive prediction model, we used a pseudo-prospective study design, where we used a snapshot of

patients’ retrospective EHR information from year 2006 and prior. This snapshot of EHR data

includes five patient data domains: 1) laboratory tests, 2) ICD based diagnosis history, 3) drug

exposures, 4) medical procedures and 5) demographic information.

We next converted EHR snapshot data (2006 and prior) into five data matrices representing
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information from these five domains. Features in the four clinical domains were coded as binary

features with 1 indicating a patient ever had a specific condition in 2006 and prior. Specifically,

for one patient domain, e.g., drug exposures, if we have total N patients and total P possible drugs,

we generated a drug exposure matrix 𝑌𝑁×𝑃 with each row representing a patient and each column

representing a drug exposure. We then considered binary status of each of the P possible drugs. For

example, if there is a record in EHR data that a patient had ever taken Aspirin in 2006 and prior,

and another record of patient ever taking Ibuprofen in 2006 and prior, then in the drug exposure

matrix 𝑌𝑁×𝑃, there would be one column indicating whether Aspirin had ever been taken (taken

will be coded as 1) and another column indicating whether Ibuprofen had ever been taken, in

2006 and prior. We assume that a patient was not on a specific medication if there is no record

in the EHR snapshot 2006 and prior. Other three patient domains, ICD based diagnosis history,

laboratory tests, and medical procedures were similarly processed to generate corresponding data

matrices. In the two clinical applications on incident ESKD and AS, we implemented a random

mask procedure which randomly changes a certain percentage of observed records (coded as 1)

to missing or unobserved (coded as 0) to explore the robustness of PsDF to missing data. Similar

procedures have been applied to evaluate methods when outcomes were randomly changed to be

unknown (Polubriaginof et al., 2018). For the single patient domain, demographic information has

two binary variables, gender and race (coded as white or non-white).

Step 1: Constructing a patient similarity matrix for individual patient domain data

Before calculating patient similarities from the data matrix 𝑌𝑁×𝑃, a normalization procedure is

performed to normalize each column to have mean 0 and standard deviation 1. Denote 𝑋𝑁×𝑃 as

the normalized matrix, for each domain of patient data, we calculate the distance between patients

i and j as follows:

𝑑
(
𝒙𝑖, 𝒙 𝑗

)
=


𝒙𝑖 − 𝒙 𝑗



 = √√√ 𝑃∑︁
𝑝=1

(
𝑥𝑖𝑝 − 𝑥 𝑗 𝑝

)2 (2.1)

A similarity matrix of a patient cohort with sample size 𝑁 is an 𝑁 by 𝑁 symmetric matrix

17



𝑆𝑁×𝑁 , where the entry 𝑠𝑖 𝑗 represents the similarity measure between patients 𝑖 and 𝑗 . A similarity

measure quantifies the affinity between two patients. For example, a typical similarity measure can

be the reciprocal of a Euclidean distance 𝑠𝑖 𝑗 = −𝑑 (𝒙𝑖, 𝒙 𝑗 ). It can also be a more complex measure

of similarity if we use other transformation such as the radial basis function (RBF) kernel:

𝑠
(𝑅𝐵𝐹)
𝑖 𝑗

= 1√︃
2𝜋𝜂2

𝑖 𝑗

exp
(
−𝑑2(𝒙𝑖 ,𝒙 𝑗)

2𝜂2
𝑖 𝑗

)
𝜂𝑖 𝑗 =

𝜇

3
[
mean (𝑑 (𝒙𝑖, 𝑁𝑖)) + mean

(
𝑑
(
𝒙 𝑗 , 𝑁 𝑗

) )
+ 𝑑

(
𝒙𝑖, 𝒙 𝑗

) ]
,

(2.2)

where 𝜇 is a hyperparameter, 𝑁𝑖 denotes the set of nearest neighbors of patient i with a pre-fixed

size of 𝐾 , mean(𝑑 (𝒙𝑖, 𝑁𝑖)) is the average distance between patient i and the neighbors 𝑁𝑖, and 𝜂𝑖 𝑗

is a scaling parameter that adapts to the density of neighbor sets so that a smaller 𝜂𝑖 𝑗 is used in a

denser neighbor set.

The above steps can be similarly applied to each of the individual data domain such as labo-

ratory tests, ICD based diagnosis history, and demographic information etc., and obtain multiple

patient similarity matrices. Because there are different numbers of features in different patient

domains, the scales of similarity matrices 𝑆 might be different. Therefore, a normalization on sim-

ilarity matrices is needed. For similarity measures 𝑠𝑖 𝑗 between patients 𝑖 and 𝑗 , we normalize as

follows:

𝑠𝑖 𝑗 =


𝑠
(𝑅𝐵𝐹 )
𝑖𝑘

2
∑𝑁
𝑘≠𝑖

𝑠
(𝑅𝐵𝐹 )
𝑖𝑘

, 𝑗 ≠ 𝑖

1
2 , 𝑗 = 𝑖

𝑠𝑖 𝑗 =
1
2
(
𝑠𝑖 𝑗 + 𝑠 𝑗𝑖

) (2.3)

The normalized similarity measures have a range (0, 1). We denote the normalized similarity

matrix as 𝑆𝑁×𝑁 . These similarity matrices can be considered as similarity networks for patients

whose nodes are patients and edges are similarity measures between any given pair of patients.

Step 2: Fusing patient similarity matrices from multiple patient domains data

The algorithm that fuses networks was originally developed in the field of computer vision

(Blum & Mitchell, 1998; B. Wang et al., 2012; B. Wang, Mezlini, et al., 2014). For -omics
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research, the Similarity Network Fusion (SNF) method was recently developed, where individual

similarity networks from individual types of omics data were iteratively updated using information

from other types of omics data through a nonlinear combination method (B. Wang, Mezlini, et

al., 2014). We recently developed an annotation boosted SNF to further improve the clustering

performance when association signals were used as weights on different types of omics data before

fusing them into a fused similarity matrix (Ruan et al., 2019). Here we applied this nonlinear

combination method to integrate patient similarity matrices from different domains of patient data.

Specifically, for the mth domain of patient data, we first define a global similarity network

𝑃(𝑚) and a local similarity network 𝑄 (𝑚) using the patient similarity network 𝑆(𝑚) defined in Step

1. The entries of the global similarity network 𝑃(𝑚) are defined as the normalized entries in 𝑆(𝑚)

introduced in Equation 2.3, and the entries of the local similarity network 𝑄 (𝑚) are defined as

the normalized similarities between patient 𝑖 and his/her neighbors 𝑁𝑖 as defined in Step 1, and 0

between patient 𝑖 and subjects outside of his/her neighbors 𝑁𝑖. This local similarity network 𝑄 (𝑚)

is constructed with an assumption that local similarities might be more reliable than remote ones.

The global similarity networks 𝑃(𝑚) , 𝑚 = 1, ..., 𝑀 for 𝑀 domains of patient data are then

smoothened through the parallel interchanging diffusion process (B. Wang, Mezlini, et al., 2014)

that updates the global similarity network 𝑃(𝑚) using the local similarity networks 𝑄 (𝑚) and the

global similarity networks of other domains of patient data. Consider the case where there are only

two domains of patient data. We have global similarity networks 𝑃(1) , 𝑃(2) and local similarity

networks 𝑄 (1) , 𝑄 (2) , respectively. To update 𝑃(1) , 𝑃(2) iteratively, let initial condition 𝑃(1) (𝑡 =

0) = 𝑃(1) and 𝑃(2) (𝑡 = 0) = 𝑃(2) for the first iteration, the diffusion process is described as

follows:

𝑃(1) (𝑡 + 1) = 𝑄 (1) × 𝑃(2) (𝑡) ×
(
𝑄 (1)

)𝑇
(2.4)

𝑃(2) (𝑡 + 1) = 𝑄 (2) × 𝑃(1) (𝑡) ×
(
𝑄 (2)

)𝑇
(2.5)

After 𝑡 iterations, the integrated similarity network is calculated as the average of the two

updated globe similarity networks 𝑃( 𝑓 𝑢𝑠𝑒𝑑) =

(
𝑃(1) (𝑡) + 𝑃(2) (𝑡)

)
/2. When there are more than
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two domains of patient data, the diffusion process Equations 2.4 and 2.5 can be expressed as:

𝑃(𝑚) = 𝑄 (𝑚) ×
∑
𝑘≠𝑚 𝑃

(𝑘)

𝑀 − 1
×
(
𝑄 (𝑚)

)𝑇
, 𝑚 = 1, ..., 𝑀 (2.6)

Step 3: Building a prediction tool

With a training set where samples’ binary outcomes of interest are known (e.g., case vs. con-

trol), our goal is to predict the binary outcomes for samples in a test set. To do so, we first calculate

the fused patient similarity network 𝑃( 𝑓 𝑢𝑠𝑒𝑑) with all samples in the training and test sets together.

Note that in calculating 𝑃( 𝑓 𝑢𝑠𝑒𝑑) , neighbors for the local similarity network of a test sample are

from the training data only. Hence similarity measures of a test sample would not be affected by

other test samples.

Using the training set, we assign a similarity t-score to each sample in the training set using the

leave-one-out method as follows. For a case sample in a training set with 𝑛1 cases and 𝑛2 controls,

this case sample’s similarity t-score is the two-sample t-test statistic comparing its similarity with

other 𝑛1−1 cases, and its similarity with all 𝑛2 controls. Similarly, for a control sample in a training

set with 𝑛1 cases and 𝑛2 controls, this control sample’s similarity t-score is the two-sample t-test

statistic comparing its similarity with all 𝑛1 cases, and its similarity with other 𝑛2−1 controls. After

all samples in the training set are assigned a similarity t-score, we fit a simple logistic regression

of the known case-control status on the assigned similarity t-scores. This logistic regression model

serves as a similarity-based prediction model, i.e., a classifier that can be used to predict test

samples’ case-control status.

To predict case-control status of samples in the test set using the similarity-based prediction

model, we similarly assign samples in the test set a similarity t-score from a two-sample t-test

statistic comparing similarities between a test sample and all 𝑛1 cases in the training set, and

similarities between the test sample and all 𝑛2 controls in the training set. After assigning similarity

t-scores to the test samples, we can then calculate the probability of each test sample being a case

using the fitted logistic regression classifier.
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We evaluate our method using receiver operating characteristic (ROC) curve and area under the

curve (AUC), 𝐹1-score, 𝐹2-score, as well as the recall and precision. The 𝐹𝛽 score is a weighted

harmonic mean of recall and precision with the formula:

𝐹𝛽 =

(
1 + 𝛽2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (2.7)

where 𝛽 represent relative importance such that recall is considered 𝛽 times as important as pre-

cision. 𝐹1-score considers equal weights for recall and precision, while 𝐹2-score considers recall

twice as important as precision (Grobelnik, 1999). The threshold for the probability of being a

case is set at 0.5 for 𝐹1-score, 𝐹2-score, recall and precision.

2.2.2 Simulation studies

We conducted extensive simulation studies to investigate the prediction performance of PsDF

and compared to that of the three competing methods.

Simulation settings

In our simulation studies, we considered three different simulated data domains. Domains 1

and 2 have a number of binary features and mimic typical domains based on medical records, e.g.,

indicating if a drug exposure or a medical procedure is recorded in EHR. Domain 3 has a single

continuous feature. We considered a binary outcome. For each simulated binary feature, we gen-

erated measures from two different Binomial distributions for cases and controls with probability

of success 𝑝𝑐𝑎𝑠𝑒 and 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , respectively. All features in Domain 1 are set to have large signals

with the same 𝑝𝑐𝑎𝑠𝑒1 and 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙1. All features in Domain 2 are set to have small signals with the

same 𝑝𝑐𝑎𝑠𝑒2 and 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙2. We considered two simulation scenarios.

The first scenario investigates the impact of imbalance among different domains where we

fixed the number of features in Domain 1 at 5, and ranged number of features in Domain 2 from 10

to 200. We set 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙1 = 0.1, and 𝑝𝑐𝑎𝑠𝑒1 = 0.4 for features of large effect sizes in Domain 1 and
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𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙2 = 0.1 and 𝑝𝑐𝑎𝑠𝑒2 = 0.12 for features of small effect sizes in Domain 2. For the continuous

feature in Domain 3, we generated measures from a Gaussian distribution with means 0.1 and 0

for cases and controls, and with the standard deviation (SD) 1 for both groups.

The second scenario investigates the influence of nonlinear signals, such as variance signals,

where we ranged SD of the single feature in Domain 3 for cases from 0.2 to 1 when the effect sizes

of all other features are the same as those in the first scenario. In addition, the number of features

in Domain 2 is fixed at 10. In all simulation settings, we set the scaling parameter 𝜇 as 0.5, and the

size of neighbors 𝐾 as 𝑁/2 in Equation 2.2, where 𝑁 is the sample size of a training set.

The above simulation settings with 𝑝𝑐𝑎𝑠𝑒 > 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 mimic data in real EHR domains when

cases usually have more records than controls. In order to evaluate PsDF more comprehensively,

we also considered parallel scenarios when 𝑝𝑐𝑎𝑠𝑒 < 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , i.e., when binary features are more

frequent in controls than in cases, and we set 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙1 = 0.5, 𝑝𝑐𝑎𝑠𝑒1 = 0.2 for features in Domain

1 and 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙2 = 0.5, 𝑝𝑐𝑎𝑠𝑒2 = 0.48 for features in Domain 2.

We simulated a population pool of 5,000 cases and 5,000 controls. We considered two designs

with 1:1 case/control ratio and 1:5 case/control ratio when the latter with more controls is more

common in EHR data. With the 1:1 case/control ratio, we randomly selected 200 cases and 200

controls as the training set, and another 100 cases and 100 controls as the test set. Therefore, for

the training set, Domain 1 is a data matrix 𝑌400×𝑝1 , Domain 2 is a data matrix 𝑌400×𝑝2 and Domain

3 is a data matrix 𝑌400×1. Data matrices of test set are similar. With the 1:5 case/control ratio,

we randomly selected 200 cases and 1,000 controls as the training set, and another 100 cases and

500 controls as the test set. We repeated the simulation procedure 100 times and obtained average

AUCs, 𝐹1-scores, 𝐹2-scores, recalls and precisions with their 95% confidence intervals (CIs).

2.2.3 Comparison methods

We considered three comparison methods, a random forest classifier and a logistic regression

both using all features in Domains 1, 2 and 3 as predictors to classify case and control groups, and a

naïve similarity method where the patient similarity matrix 𝑆𝑁×𝑁 is calculated using concatenated
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features in Domains 1, 2, and 3 with applying Equations 2.1 and 2.2 and the same prediction step

as described in PsDF Step 3.

2.3 Results

2.3.1 Simulation studies

We show the average AUCs, 𝐹1-scores, 𝐹2-scores, recalls and precisions when the threshold

for the probability of being a case is 0.5 and their corresponding 95% CIs on test sets for the two

simulation scenarios, 1) increasing the number of features in Domain 2, and 2) increasing the effect

size of the variance signal of the single feature in Domain 3. These two simulation scenarios were

done in parallel for two different settings, when cases have more EHR records than controls and

when cases have fewer EHR records than controls. Finally, all simulation studies were done for

the 1:1 case/control ratio (Figure 2.2) and the 1:5 case/control ratio (Figure 2.3).

For the 1:1 case/control ratio and when cases have more EHR records than controls (Figure

2.2A), when the number of signal features in Domain 2 is comparable (the number of signal fea-

tures in Domain 2 is 10) to that in Domain 1, all four methods have similar prediction performance

in terms of AUCs and 𝐹1-scores, with PsDF having slightly higher 𝐹1-scores. In addition, PsDF

has the highest 𝐹2-scores because its recalls are also the highest among four methods and 𝐹2-score

weights more on the recall. As the number of signal features in Domain 2 increases from 10 to 200,

AUCs, 𝐹1-scores, and 𝐹2-scores of the logistic regression method quickly decrease as expected,

while those of the other three methods are hardly affected. This is because regression methods

often require certain ratios of sample size to a number of features in models in order to achieve

a good model fit. When cases have fewer EHR records than controls (Figure 2.2B), AUCs, 𝐹1-

scores, and 𝐹2-scores of the naïve similarity method slowly decrease. This is because the effective

effect sizes of signal features in Domain 2 (𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙2 = 0.5 and 𝑝𝑐𝑎𝑠𝑒2 = 0.48) are much smaller

than that in Figure 2.2A (𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙2 = 0.1 and 𝑝𝑐𝑎𝑠𝑒2 = 0.12), they become “noise features” to some

extent. Therefore, for the naïve similarity method, as Domains 1 and 2 become more imbalanced,

the contribution of 5 signal features with strong effect sizes in Domain 1 become weakened with
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the increasing number of very small effect size features in Domain 2. Thus, the performance of the

naïve similarity method becomes worse as the total number of features increases across all three

domains combined. Note that, PsDF and random forest are not affected.

When we increase the effect size of the single continuous feature with variance signal in Do-

main 3 while keeping the number of features in Domains 1 and 2 at 5 and 10, respectively (Figure

2.2A and Figure 2.2B), AUCs, 𝐹1-scores and 𝐹2-scores of PsDF and random forest increase rapidly,

while those of the logistic regression and the naïve similarity methods do not change much. This is

also expected as regression methods cannot capture variance signals and the single variance signal

feature in Domain 3 will be similarly diluted in the concatenated pool of signal features across the

three domains for the naïve similarity method.

For the 1:5 case/control ratio (Figure 2.3), the overall patterns are similar to that of the 1:1

case/control ratio, with two noticeable differences: 1) When increasing the number of signal fea-

tures in Domain 2, the performance of logistic regression does not decrease too much. This is

because the total number of training samples (200 cases and 1,000 controls) are large enough. 2)

𝐹1-scores and 𝐹2-scores of random forest decrease quickly when the number of signal features in

Domain 2 increases as random forest tends to classify almost all samples as controls. When cases

have fewer EHR records than controls (Figure 2.3B), i.e., when the effective effect sizes of signal

features are even smaller, or very close to the noises, random forest may classify very few samples

or even 0 samples as cases, resulting in a very low recall or even 0 recall, thus and an unavailable

precision. The performance of PsDF is not affected by the 1:5 case/control ratio.

2.3.2 Clinical study - ESKD prediction tools

More than 47,000 Americans die from chronic kidney disease (CKD) annually (J. Xu et al.,

2016), yet the disease often has no symptoms in early stages and frequently goes undetected until

it is advanced. In fact, less than 10% of patients affected with early CKD (stages 1-3), and only half

(52%) of those with severe CKD (stage 4) are aware of having a kidney problem (Dharmarajan et

al., 2017). Kidney disease usually gets worse over time, and although treatment has been shown to
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A. Simulation scenario when cases have more  EHR records than controls, with 1:1 case/control ratio
PsDF random forest regression similarity
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Increasing effect size (∆=difference of SD between cases and controls) of the variance signal feature in Domain 3
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B. Simulation scenario when cases have f ewer  EHR records than controls, with 1:1 case/control ratio
PsDF random forest regression similarity
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Figure 2.2: With the 1:1 case/control ratio, simulation results of prediction performance of the
PsDF algorithm, the random forest classifier, the logistic regression and the naïve similarity
method, under two simulation scenarios: 1) increasing number of signal features in Domain 2,
and 2) increasing effect size of the variance signal feature in Domain 3. Part A displays results
when cases have more EHR records than controls. Part B displays results when cases have fewer
EHR records than controls.
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A. Simulation scenario when cases have more  EHR records than controls, with 1:5 case/control ratio
PsDF random forest regression similarity
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Increasing effect size (∆=difference of SD between cases and controls) of the variance signal feature in Domain 3
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B. Simulation scenario when cases have f ewer  EHR records than controls, with 1:5 case/control ratio
PsDF random forest regression similarity
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Increasing effect size (∆=difference of SD between cases and controls) of the variance signal feature in Domain 3
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Figure 2.3: With the 1:5 case/control ratio, simulation results of prediction performance of the
PsDF algorithm, the random forest classifier, the logistic regression and the naïve similarity
method, under two simulation scenarios: 1) increasing number of signal features in Domain 2,
and 2) increasing effect size of the variance signal feature in Domain 3. Part A displays results
when cases have more EHR records than controls. Part B displays results when cases have fewer
EHR records than controls.
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delay progression, any preventive strategies are only effective when implemented early. When the

kidney dysfunction reaches the level of “failure” (i.e., end stage kidney disease, ESKD), dialysis or

kidney transplant are needed for survival. This state is irreversible and associated with accelerated

cardiovascular disease and high mortality (Go et al., 2004). This highlights a great need for early

diagnosis of CKD and identification of patients at risk of progression to ESKD, motivating our use

of CKD as the first case study for PsDF.

We applied the PsDF algorithm and the three competing methods to build ESKD prediction

tools and compared their performance. We predicted incident ESKD between 2006-2016 using

comprehensive EHR data collected in years 2006 and prior. We used two different inclusion criteria

to define eligible patients, a less stringent criterion that only requires patients to have demographic

domain; and a more stringent criterion that requires patients to have demographic domain as well

as records across all four EHR domains.

We conducted a sensitivity analysis to evaluate the robustness of PsDF and the three competing

methods by randomly masking a percentage of observed EHR records in the test set by setting

them to “missing”. We masked 5-50% records in the test set with the increment of 5% to generate

new test sets with more missing data than that in the training set.

EHR data preprocessing for ESKD prediction

We defined ESKD as chronic kidney disease (CKD) stage 5 (estimated glomerular filtration rate

< 15 mL/min/1.73m2) or CKD requiring kidney transplant, or any form of chronic dialysis. Among

all patients in the CUIMC EHR data warehouse as of year 2006, 386,297 patients had sufficient

data to define their CKD status. Among those, there were a total of 11,802 cases of ESKD and

374,495 non-ESKD patients (normal renal function or CKD stage 1-4). Among 374,495 non-

ESKD patients, as of year 2016, 2,080 developed incident ESKD between 2006 and 2016, 353,295

remained non-ESKD, and the remaining 19,120 had status unknown. We considered those 2,080

patients who were non-ESKD in 2006 but reached ESKD before 2016 as our incident ESKD cases,

and those 353,295 non-ESKD patients who remained non-ESKD between 2006 and 2016 as our
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A less stringent inclusion criterion

CUIMC Data Warehouse 
2,080 ESKD incidence cases 
353,295 non-ESKD controls 

training set
1,400 cases

1,400 controls

test set
680 cases

680 controls

30%70%

have information in demographics
2,080 cases and 353,295 controls

2,080 cases and 2,080 randomly selected controls have at least one record
in all EHR-based clinical domains:

lab test, diagnosis, drug and procedure
1,260 cases and 94,763 controls

training set
860 cases

860 controls

test set
400 cases

400 controls

30%70%

1,260 cases and 1,260 randomly selected controls

A more stringent inclusion criterion

Figure 2.4: ESKD data preprocessing pipeline with two different inclusion criteria to define eligi-
ble patients.

controls. Our data processing pipeline is summarized in Figure 2.4. The comprehensive patient

data included: 1) laboratory tests, 2) ICD based diagnosis history, 3) drug exposures, 4) medical

procedures, and 5) demographic information with gender and race (white vs. non-white).

After requiring all patients to have demographic data, we had 2,080 ESKD cases and 353,295

non-ESKD controls. We then applied two different inclusion criteria on the four EHR domains to

define eligible patients in the study: 1) the less stringent inclusion criterion which does not have

any requirement on EHR domains; 2) the more stringent inclusion criterion which requires patients

to have records across all four EHR domains. Figure 2.4 displays the data preprocessing pipeline

and the final sample sizes with the two inclusion criteria.

A less stringent inclusion criterion

Patients were included if they had demographic information, resulting in 2,080 ESKD patients

and 353,295 non-ESKD controls. We then randomly selected 2,080 patients among 353,295 non-

ESKD controls to create a balanced case control design, as it is known that a balanced design
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helps to reduce variances of estimated parameters in logistic regression models (King & Zeng,

2001). We split 2,080 ESKD cases and 2,080 non-ESKD controls into two cohorts, one as the

training set with 1,400 ESKD cases and 1,400 non-ESKD controls, the other as the test set with

680 ESKD cases and 680 non-ESKD controls to test the prediction performance of PsDF and the

three competing methods.

A more stringent inclusion criterion

Patients were included if they had demographic information as well as records in all four EHR

domains, resulting in 1,260 ESKD patients and 94,763 non-ESKD controls. We then randomly

selected 1,260 patients among the 94,763 non-ESKD controls to make a balanced case control

design. We similarly split 1,260 ESKD cases and 1,260 non-ESKD controls into two cohorts, one

as the training set with 860 ESKD cases and 860 non-ESKD controls, the other as the test set with

400 ESKD cases and 400 non-ESKD controls.

In order to investigate the model performance under an unbalanced case-control design, we

also considered a 1:5 case/control ratio. That is, in addition to the previously selected controls, we

randomly selected another 8,320 controls (four times of 2,080 cases) for the less stringent inclusion

criterion, and another 5,040 controls (four times of 1,260 cases) for the more stringent inclusion

criterion. For each criterion, we split these additional control samples into two groups with ratio

70% and 30%, then added them into the training set and test set accordingly.

Feature selection using LASSO regression and random forest

Because of the large number of features in every EHR domain, we included a screening step

to pre-select potentially relevant features using LASSO regression and random forest in order

to capture both linear and nonlinear features for prediction. We used the training set with 1:1

case/control ratio for this step.

We applied the stability selection using LASSO regression on each domain separately. Specif-

ically, we resampled a subset of size 𝑁/2 of the training set with sample size 𝑁 without replace-

ment. We then applied LASSO regression on the subset and obtained a set of selected features
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of non-zero regression coefficients. We repeated this subsampling 1,000 times and obtained the

selection probability for each feature out of the 1,000 subsampling. We then selected features with

selection probability greater than 0.6. With the training set defined by the less stringent inclu-

sion criterion, we selected 19 features out of 1,123 laboratory tests, 23 of 7,980 diagnostic history

features, 18 of 3,936 drug exposure features, 34 of 6,324 medical procedure features, as well as

gender and race out of demographic variables. With the training set defined by the more stringent

inclusion criterion, we selected 26 laboratory tests, 26 diagnostic history, 26 drug exposures, 23

medical procedures, as well as gender and race.

We then applied random forest on the training set to select features with nonlinear signals

for each domain separately and selected features with high importance, defined as mean decrease

accuracy. We used a threshold of greater than 0.1 for the importance measure. With the training

set defined by the less stringent inclusion criterion, we selected 23 laboratory tests, 66 diagnostic

history, 45 drug exposures, 42 medical procedures, and gender. With the training set defined by the

more stringent inclusion criterion, we selected 24 laboratory tests, 31 diagnostic history, 31 drug

exposures, 21 medical procedures, as well as gender and race.

We unionized the features selected by LASSO and random forest, which led to 204 features in

total for the dataset of less stringent inclusion criterion and 145 features in total for the dataset of

more stringent inclusion criterion.

Comparison of the four prediction methods

To compare the prediction performance of the four methods using the test set, we applied boot-

strapping 1,000 times on the test set and obtained average AUCs, 𝐹1-scores, 𝐹2-scores, recalls and

precisions when the threshold for the probability of being a case is set at 0.5, as well as their 95%

CIs. In addition, we conducted a sensitivity analysis where we masked certain percentages of ob-

servations to investigate the robustness of PsDF and the three competing methods to missing data,

as previously explained. Figure 2.5 summarizes prediction performance for the ESKD prediction

tools from two inclusion criteria for the 1:5 case/control ratio. The results for the 1:1 case/control
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ratio are included in the Appendix Section A.1. The results are very similar to that of the 1:5

case/control ratio.

In general, both PsDF and random forest outperform logistic regression and the naïve simi-

larity method in terms of AUCs (Figure 2.5). Without missingness (𝑝𝑚𝑎𝑠𝑘 = 0), AUCs of PsDF,

random forest and logistic regression are comparably high, at approximately 0.85 with overlap-

ping 95% CIs. When the robustness of the three methods is tested against the variable degree of

missingness, AUCs drop dramatically for the logistic regression and the naïve similarity methods,

while 𝐹1-scores and 𝐹2-scores drop quickly for random forest, with increasing masking percentage

(𝑝𝑚𝑎𝑠𝑘 ). In contrast, AUCs, 𝐹1-scores and 𝐹2-scores are all relatively stable for the PsDF method,

demonstrating a clear advantage of this method over the other three competing methods.

We also note that the ESKD prediction tool developed by PsDF has higher recalls and lower

precisions than those of the other three competing methods when the threshold for the probability

of being a case is set at 0.5. Because ESKD cases usually have more EHR records than non-ESKD

controls, this pattern resembles the one observed in the simulation studies when cases were set to

have more EHR records than controls (Figure 2.2A). We also observed decrease in recalls with

increasing missingness for all four methods, however, the recalls of PsDF decrease much slower

than those of the other three methods, while the recalls of random forest decrease dramatically,

similar as the patterns in simulation studies.

As there are limited geocoding information available for some of the EHR patients, for demon-

stration purposes that PsDF can fuse all available domains, we repeated the construction of the

ESKD prediction tools including the geocoding domain. We updated the samples selection for the

training and test sets accordingly. There are two continuous variables available for the geocoding

domain, median household income in dollars and distance to the nearest major road in meters.

Other five domains are the same as described above. The patterns of AUCs, 𝐹1-scores, 𝐹2-scores,

recalls and precisions are similar to those with 5 domains. Full description of the procedure and

results is included in the Appendix Section A.2.
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A. Under the less stringent criterion, with 1:5 case/control ratio
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B. Under the more stringent criterion, with 1:5 case/control ratio
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Figure 2.5: With the 1:5 case/control ratio, prediction performance of the ESKD prediction tools
built by the PsDF algorithm, the random forest classifier, the logistic regression and the naïve
similarity method when the masking percentage 𝑝𝑚𝑎𝑠𝑘 increases, under two different inclusion
criteria: A) the less stringent criterion, and B) the more stringent criterion.

2.3.3 Clinical study - AS prediction tools

Similar to kidney disease, the natural history of aortic stenosis (AS) progresses through a pro-

longed asymptomatic period prior to the development of symptomatic disease that requires valve

replacement. Although there is an average rate of reduction of valve area quoted from epidemi-

ologic studies, there are some patients who undergo rapid progression of disease and others who

have minimal to no progression over a similar time frame. The targeted use of surveillance ultra-

sound to monitor progression of AS and to determine when valve replacement should occur could

reduce unnecessary medical spending and help direct limited resources to patients who need them

most. The application of PsDF to identify patients at high risk of disease progression may further

facilitate planning of a valve replacement procedure. We therefore applied PsDF and the three

competing methods to build AS prediction tools. The patterns of AUCs, 𝐹1-scores, 𝐹2-scores, re-

calls and precisions are similar to those observed for the prediction of ESKD. Full description of

the methods and results is included in the Appendix Section A.3.
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2.4 Discussion

We developed Patient similarity based on Domain Fusion (PsDF), a novel framework for clin-

ical outcome prediction using comprehensive patient data. The PsDF method integrates similarity

information from multiple data domains into a comprehensive similarity measurement that can be

subsequently used to predict important clinical outcomes. In contrast to the similarity-based meth-

ods based on concatenated data, our fusion method allows for highly unbalanced data domains to

be treated equally, and prevents any domain with a large number of features from dominating the

prediction. Moreover, as a similarity-based method, PsDF naturally captures nonlinear signals,

such as variance-based signals, and does not require a certain ratio of sample size to the number of

features that is required for regression-based models. We demonstrate that PsDF is highly flexible,

scalable, and makes use of the entirety of patient’s data (EHR-based as well as non-EHR-based) to

define comprehensive similarity. With extensive simulation studies, we demonstrate an improved

prediction performance of PsDF over the competing methods, including random forest, logistic re-

gression and naïve similarity methods. In the presence of nonlinear signals and when domains with

unbalanced sizes exist, PsDF outperforms the competing methods through its ability to preserve

strong signals, accumulate weak signals, and capture nonlinear effects.

In two clinical application studies, we also demonstrate that PsDF is more robust to random

missingness compared to random forest, logistic regression or naïve similarity methods. This is an

important advantage, given that missing data is a ubiquitous property of the real life EHR data. This

advantage stems from the fact that PsDF integrates similarity information across different domains

and performs prediction based on integrated relative similarity between a sample in the test set

and all samples in the training set. Even though the masking procedure may change distributions

of features in the test set, the relative similarity to the training set may not change much. On the

other hand, random forest tends to classify almost all test samples as controls, especially with an

unbalanced case-control design with more controls than cases. Logistic regression-based methods

rely heavily on parameter estimates for selected features using the training set. When the features’
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distributions in the test set are different from that in the training set, it is expected that the prediction

performance of logistic regression would rapidly decrease. The naïve similarity method is also not

expected to be robust to missingness, because the dilution of signal features with concatenation

becomes even more severe when some observations are masked.

We want to emphasize that the features used in the two clinical studies were pre-selected by

LASSO and random forest, which favor the two competing methods, i.e., logistic regressions and

random forest. Close investigation of the selected features for the ESKD prediction tool and the AS

prediction tool suggests that they are clinically reasonable. For example, in the ESKD prediction

tools, “disorder of kidney and/or ureter”, “biopsy of kidney” and “acute renal failure syndrome”

were selected under both less/more stringent inclusion criterion. In the AS prediction tools, “aortic

valve disorder”, “cardiac complication” and “diagnostic ultrasound of heart” were selected under

both less/more stringent inclusion criterion.

One limitation of the current study is that we coded all features in EHR-based domains to be

binary, indicating the presence or absence of a record. We did not use cumulative counts or contin-

uous measures of certain features, which likely led to some information loss. Another limitation

is that we did not use longitudinal information embedded in patient records, nor did we consider

different visit types (e.g., hospital versus ambulatory). We are currently working on extending

the PsDF framework in order to make full usage of such information. We want to emphasize that

the prediction performance could be further enhanced if data from more patient domains becomes

available in the future, such as genetic or exposome data. The success of our two clinical applica-

tion studies suggests that the framework of PsDF is highly flexible, scalable, and generalizable, and

thus this method has a great potential in developing new patient similarity-based clinical prediction

tools.
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Chapter 3: PheW2P2V - a phenome-wide prediction framework with

weighted patient representations using electronic health records

3.1 Introduction

The increasing adoption of electronic health records (EHRs) brings opportunities to develop

new computational predictive tools (Agrawal & Prabakaran, 2020; Dash et al., 2019; Shivade

et al., 2014). Conventional machine learning approaches such as regression-based, bagging, or

boosting methods have been widely used to predict clinical outcomes such as heart failure, type 2

diabetes mellitus, hypertension, and others (Anderson et al., 2016; Henderson et al., 2018; Steele

et al., 2018; J. Wu et al., 2010; Zein et al., 2021). We recently developed a flexible similarity-based

algorithm and applied it to predict end stage kidney disease and severe aortic stenosis (J. Guo et al.,

2021). With these conventional methods, usually one prediction tool is trained for one outcome,

i.e., they are outcome-specific, and only labeled data are used to train the model, i.e., they are

fully supervised. In addition, these conventional methods usually take data that are well-structured

without missing values.

Deep learning algorithms for natural language processing (NLP) have also been used for clin-

ical decision making with EHR, because sequences of medical records of patients in EHR are

similar to sequences of words in text documents. Historically developed for NLP tasks such as

machine translation to fully use sequence information, recurrent neural network (RNN) (Hochre-

iter & Schmidhuber, 1997; Rumelhart et al., 1986) has been widely used in EHR to predict health

outcomes. With the word2vec algorithm being introduced (Mikolov et al., 2013) in 2013, which

represents words with numeric vectors, medical records embeddings can be pre-trained and com-

bined with prediction models such as RNN or logistic models, either in a two-step fashion, i.e.,

embedding plus prediction, or in a single-step fashion. In a single-step approach, RNN models use
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pre-trained embeddings to fine tune them together with RNN parameters to predict outcomes such

as diagnoses, or readmissions (Ashfaq et al., 2019; Che et al., 2018; Choi et al., 2016; J. Zhang

et al., 2018). Thus, one-step models are outcome-specific, fully-supervised, and are thus compu-

tationally intensive. On the other hand, two-step models, i.e., embedding plus prediction, are not

outcome-specific, as embedding is done once and is combined with a prediction model to predict

outcomes. They are not fully supervised as unlabeled data can be used for embedding. Two-step

models are thus computationally efficient. Farhan et al. proposed a two-step model (Farhan et al.,

2016), where a patient’s sequence of medical records was represented by summing up numeric

vectors of his(her) medical records and was subsequently used to predict the patient’s risks of

many diagnoses. However, the prediction performance is only slightly better than that of logistic

regressions because all medical records were treated equally regardless of the outcome of interest.

To avoid RNN and improve computation, the Transformer model (Vaswani et al., 2017) was de-

veloped, which uses a position embedding and self-attention layers being parameterized by three

additional weight matrices to capture relative contribution of other words in a sentence. Trans-

former conducts predictions in a one-step fashion where embeddings are fine-tuned for a specific

outcome. BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018)

was subsequently developed to improve Transformer through pre-training a Transformer encoder

by predicting randomly masked words. BERT can be combined with different prediction models,

such as RNNs or Transformer decoders, either in a two-step fashion, or a one-step fashion. BERT

has been applied in EHR as well. The Med-BERT model (Rasmy et al., 2021) was pre-trained on

a large external dataset with 28 million patients, and the model was then fine-tuned using RNN to

predict two diseases, heart failure among diabetic patients and onset of pancreatic cancer. How-

ever, the prediction gains of Med-BERT through pre-training using such a large external dataset

are minimal compared to the computational cost.

In this work, we aim to achieve the goal of phenome-wide predictions while maintaining com-

putational efficiency and good prediction performance for individual phenotypes. The prospective

phenome-wide predictions could be useful as a screening tool to identify and flag patients with
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high-risk conditions in early stages which may be missed overwise. We propose PheW2P2V, a

general Phenome-wide prediction framework that uses Weighted Patient Vectors. PheW2P2V

is the first phenome-wide prediction framework that alleviates the limitations of being outcome-

specific and thus computationally intensive by taking a two-step procedure, i.e., embedding plus

prediction. To maintain good prediction performance, PheW2P2V uses a novel weighting scheme

on patient embeddings so that predictions based on patient embeddings are tailored to individual

phenotypes. Since diagnosis concepts in EHR are usually coded using International Classification

of Disease (ICD) terminology, which is designed for billing and administrative functions but not

for case-control studies (Denny et al., 2010), PheW2P2V first maps patients’ ICD codes to clini-

cal disease phenotypes called phenotype codes (phecodes). Phecodes are originally developed for

phenome-wide association studies (PheWAS), where patients’ phenotypes are identified by group-

ing ICD codes that represent common etiologies, with a purpose of reducing the redundancy in ICD

codes and better defining cases and controls (Denny et al., 2013; Denny et al., 2010). To predict

a clinical disease phenotype in the phenome, after generating medical concepts embeddings using

word2vec, PheW2P2V represents each patient as a single numeric patient vector where his(her)

medical concepts that are more correlated with the phenotype of interest will be upweighted. The

patient vector is then used to predict the incidence risk of the phenotype. Unlike the one-step model

where embeddings are fine-tuned for one outcome of interest, PheW2P2V introduces weights on

medical concepts to improve computational efficiency while tailoring predictions to the specific

phenotype of interest to maintain good phenome-wide prediction performance. Unlabeled data

can also be used for medical concepts embeddings, which makes PheW2P2V not fully supervised.

Using simulation studies, we showed an improved prediction of PheW2P2V over that of four

baseline methods including a regression-based model, a random forest classifier, a gradient boosted

tree classifier, and the P2V model without weights (Farhan et al., 2016). We applied PheW2P2V

and baseline methods to the MIMIC-III database (Johnson et al., 2016) to predict patients’ in-

cidence risks of 942 phenotypes at the latest visit using medical records from past visits. We

observed better predictions of PheW2P2V consistently across most phenotypes over that of base-
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line methods. We also demonstrated several clinical examples in which PheW2P2V can predict

less common conditions that could be diagnostically challenging or missed on a routine clinical

work up, such as adrenal insufficiency or chronic pericarditis. Automated suggestions provided by

PheW2P2V that such conditions should be considered in the differential diagnosis and in the work

up of high risk patients could be clinically impactful.

3.2 Methods and materials

3.2.1 The PheW2P2V algorithm

The PheW2P2V framework is illustrated in Figure 3.1 with four steps: (1) identifying case-

control status of phenome-wide clinical disease phenotypes by mapping diagnosis ICD codes to

phenotype codes (phecodes) and constructing patient sequences; (2) generating medical concepts

embeddings using word2vec; (3) calculating weighted patient vectors with weights capturing cor-

relations between past medical records and a phenotype of interest; and (4) conducting tailored

phenome-wide predictions using weighted patient vectors to predict incidence risks of individual

patients.

Step 1: Phenome-wide case-control identification

Phenotype mapping using Phecode map (Denny et al., 2010) (with R package "PheWAS" (Car-

roll et al., 2014)) aims to reduce the redundancy of ICD codes and more accurately define case-

control status of clinical phenotypes, for the purpose of phenome-wide analysis. With phecode

mapping, over 14,000 codes in the ICD-9 system were grouped into approximately 1,600 phe-

notype codes (phecodes) (Denny et al., 2013). Using the MIMIC-III database, for each patient’s

visit, PheW2P2V maps patient’s ICD-9 codes to phecode-defined "case groups", i.e., case status of

meaningful clinical phenotypes. A list of disease-specific exclusion phecodes was also specified

for each "case group". A patient without any ICD-9 code in this list is defined as the "control

group". This mapping ensures that patients with comparable diseases are not categorized as con-

trols. For example, a patient with an unknown arrhythmia cannot be considered as a control for
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Figure 3.1: The workflow of the proposed PheW2P2V framework.
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atrial fibrillation (Carroll et al., 2014).

Step 2: Medical concepts embeddings

Word2vec is a widely used embedding algorithm in NLP that is computationally efficient

(Mikolov et al., 2013). With a large corpus of text, it uses a neural network model to generate

numeric vectors for unique words in the corpus. These numeric vectors have the same dimension

and are thus embedded in a vector space. A patient’s sequence of medical concepts that contains

phenotype codes, lab test codes, etc, can be considered as a sentence with words. PheW2P2V

applies word2vec to learn numeric vectors for unique medical concepts. The clinical similarity

between two medical concepts can then be captured by the cosine similarity between the two cor-

responding numeric vectors.

Step 3: Weighted patient vectors tailored for a phenotype

For each phenotype of interest, we calculate cosine similarities between the numeric vector

of the phenotype and numeric vectors of all other medical concepts. Suppose an EHR database

has 𝐾 unique medical concepts, among which there are 𝐽 unique phenotype codes. We build a

correlation matrix with dimension 𝐽 × 𝐾 to capture correlations between 𝐽 phenotypes of interest

and 𝐾 medical concepts. To conduct tailored predictions, a patient’s past medical records are

summarized into a numeric patient vector, which is a weighted average of numeric vectors of the

patient’s past medical concepts using phenotype-specific weights to up-weight medical concepts

that are most relevant to the phenotype:

−−−−−−−→
𝑃𝑉
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𝑖 𝑗

=
1∑𝐾𝑖

𝑘=1 𝑟
2
𝑗 𝑘

𝐾𝑖∑︁
𝑘=1

𝑟2
𝑗 𝑘

−→
𝑉𝑘 ,

𝑟 𝑗 𝑘 = cosine
(−−−−→
𝑃ℎ𝑒 𝑗 ,

−→
𝑉𝑘

)
.

(3.1)

Here we calculate the patient vector
−−−−−−−→
𝑃𝑉

weight
𝑖 𝑗

for patient 𝑖 tailored for phenotype 𝑗 , where 𝐾𝑖

is the total number of concepts of patient 𝑖,
−→
𝑉𝑘 is the vector representation of medical concept 𝑘 ,
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−−−−→
𝑃ℎ𝑒 𝑗 is the vector representation of phenotype 𝑗 , and 𝑟 𝑗 𝑘 is the cosine similarity between medical

concept 𝑘
−→
𝑉𝑘 and phenotype 𝑗

−−−−→
𝑃ℎ𝑒 𝑗 measuring their correlation. The weight of medical concept 𝑘

tailored for
−−−−→
𝑃ℎ𝑒 𝑗 for patient 𝑖 is defined as

𝑟2
𝑗𝑘∑𝐾𝑖

𝑘=1 𝑟
2
𝑗𝑘

, where we treat negative and positive correlations

equally.

Step 4: Phenome-wide risk predictions

To predict risk of phenotype 𝑗 for a test sample 𝑡, we compute the test sample’s patient vec-

tor
−−−−−−−→
𝑃𝑉

weight
𝑡 𝑗

using Equation 3.1 and and the following risk score, which is the cosine similarity

between the patient vector and the phenotype vector:

𝑆𝑡 𝑗 = cosine
(−−−−−−−→
𝑃𝑉

weight
𝑡 𝑗

,
−−−−→
𝑃ℎ𝑒 𝑗

)
(3.2)

Risk score 𝑆𝑡 𝑗 ranges from -1 to 1, with a higher value indicating higher incidence risk of the

phenotype.

3.2.2 Comparison methods and evaluation metrics

We considered four comparison methods, i) a LASSO regression model, ii) a random forest

classifier, iii) a gradient boosted tree classifier, and iv) P2V without weights. For LASSO and

random forest, we used the default settings and implementations in the Python library "scikit-

learn", where regularization strength of LASSO is C=1.0 and the number of trees in random forest

is n=100 with Gini impurity as the split criterion. For the gradient boosted tree, we used the default

settings in the Python library "xgboost" with the number of rounds n=100. For LASSO regression,

random forest, and gradient boosted tree, we constructed a data matrix with rows representing

patients and columns representing counts of medical concepts from past admissions before the

latest admission.

We evaluate model performance using area under the receiver operating characteristic curve

(AUC-ROC), max F1-score, and area under the precision-recall curve (AUC-PR). An ROC curve
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is created by plotting the true positive rate (also called sensitivity or recall) and false positive

rate (1-specificity) at various discrimination thresholds (e.g., thresholds of risk score 𝑆𝑡 𝑗 for test

sample 𝑡 and phenotype 𝑗 for the proposed PheW2P2V) to illustrate the prediction ability of a

binary classifier. In general, an AUC-ROC of 0.5 suggests that the classifier is uninformative

and assigns labels randomly. PR curves are similar to ROC curves, but with precision and recall

as the axes. A random classifier has an AUC-PR (also called average precision) equal to the

percentage of positive samples, i.e., the percentage of cases 𝑝𝑐𝑎𝑠𝑒 for a phenotype. F1-score is

the harmonic mean of precision and recall 𝐹1 = 2 × (precision × recall)/(precision + recall). A

dummy classifier that identifies all samples as cases would have a 𝐹1 = (2 × 𝑝𝑐𝑎𝑠𝑒)/(𝑝𝑐𝑎𝑠𝑒 + 1). A

discrimination threshold is needed to calculate the F1-score. Since different methods might have

different optimal thresholds for different phenotypes, we compute the maximum F1-score across

all possible discrimination thresholds for each prediction method.

3.2.3 The MIMIC-III database

MIMIC-III data preprocessing

We conducted a phenome-wide prediction using the MIMIC-III database. We aim to predict

the incidence risks of individual phenotypes across the phenome at the latest visit using past medi-

cal records. MIMIC-III is a freely accessible critical care database (Johnson et al., 2016). We used

medical concepts from three clinical domains, diagnoses history (ICD-9 codes), prescriptions, and

lab tests. There are 46,520 unique patients in MIMIC-III, among which 39,001 had only one admis-

sion and 7,519 had at least two admissions. There are in total 58,951 admissions with 6,984 unique

ICD-9 codes, 3,267 unique prescriptions, and 710 unique lab tests. For prescriptions and lab tests,

we used binary information of whether a patient ever had been prescribed a specific drug during

an admission and whether a patient ever had a specific lab test during an admission. We did not

use continuous variables. With phecode mapping, the 6,984 ICD-9 codes across all 58,951 admis-

sions were mapped to 1,693 phenotype codes in Step 1 of the proposed PheW2P2V. To have good

numeric representations of medical concepts using word2vec, we removed extremely rare medical
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Table 3.1: Summary of the MIMIC-III database after data processing.
MIMIC-III database

Admissions 58,951
Unique patients 46,520

Patients with only one admission 39,001
Patients with at least two admissions 7,519

Unique medical concepts excluding rare ones Phenotype codes 956
Prescriptions 1,348

Lab tests 490
Phenotype codes for prediction (prevalence ≥ 0.05%) 942

concepts who appeared in fewer than 50 admissions across all 58,951 admissions. Similar proce-

dures were taken by other studies with medical concept representations using word2vec (Farhan et

al., 2016). After these steps, we have 956 unique phenotype codes, 1,348 unique prescriptions, and

490 unique lab tests. We used these medical concepts to construct patient sequences for individual

patients, which are time-sorted (sorted by admissions) sequences of medical concepts. Table 3.1

summarizes information of patients and medical concepts in the MIMIC-III data after processing.

Incident cases identification for phenome-wide predictions

Our goal is to predict patients’ incidence risks of phenome-wide phenotypes at the latest visit

using patients’ medical history from past visits. We define incident cases at the latest visit as

patients who (1) had at least two visits, (2) were identified as cases of a phenotype at the latest

visit, and (3) had never been identified as the case of the phenotype in past visits. Valid controls

are patients who met the conditions (1) and (3) and were identified as controls of the phenotype

at the latest visit. For each phenotype, incident cases and valid controls are labeled subjects,

while other patients are unlabeled subjects (including patients with one visit, and patients being

neither incident cases nor valid controls) which can be used in medical concept embeddings. We

calculated phenotype prevalence as the percent of incident cases among all labeled subjects at the

latest visit. Among 956 phenotype codes, 14 have prevalence less than 0.05% and were removed

from phenome-wide predictions. We predicted the rest 942 phenotypes (Table 3.1).
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Figure 3.2: MIMIC-III sample splitting procedures for training and test samples.

With each phenotype for prediction, we half/half split labeled subjects into a training and a

test set. Training samples included patients without labels and 50% of labeled patients, while

test samples are the other 50% labeled patients (Figure 3.2). We repeated the half/half random

training/test split 10 times to obtain average AUC-ROC, AUC-PR, and max F1-score in test sets.

Note that for different phenotypes, there are different numbers of labeled subjects.

3.3 Results

3.3.1 Simulation studies

We conducted simulation studies to evaluate the prediction performance of PheW2P2V and

that of comparison methods. We considered binary present/absent medical concepts, i.e., binary

phenotypes and binary predictors. Specifically, we simulated a population pool of 20,000 patients

each with a binary phenotype concept 𝐶0 and 150 binary medical concepts, including 10 signal

predictor concepts (denoted as 𝐶1, 𝐶2, . . . , 𝐶10) that predict 𝐶0 and 140 noise concepts (denoted as

𝐶11, 𝐶12, . . . , 𝐶150). Those 150 binary concepts were generated to be correlated with each other,

to mimic potential correlations between medical concepts. Detailed data generation steps were

included in Appendix Figure B.1. The outcome phenotype concept 𝐶0 was generated using a

logistic model with the 10 signal predictor concepts, where we set the same 𝛽 coefficients for them

and considered different association strengths ranging 𝛽 from 0.2 to 0.8 with a grid of 0.1. We set

the intercept so that the probability of having outcome concept 𝐶0 is around 0.5. Therefore, there
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will be roughly 10,000 cases and 10,000 controls in the population pool of 20,000 patients. As we

do not consider temporal information in a patient sequence, we randomly shuffled medical concepts

of each patient. From the population pool of 20,000 patients, we bootstrapped 200 samples as a

training set and another 200 samples as a test set. To mimic phenotype prevalence in the MIMIC-

III database, we set the case-control ratio as 1:19 (10 cases and 190 controls) in both training sets

and test sets, to have a phenotype prevalence of 5%. We repeated this procedure 1,000 times and

obtained prediction results from 1,000 test sets for all methods. We also considered other case-

control ratios including 1:1, 3:7, and 1:9 (with a prevalence of 50%, 30%, and 10%), and included

results in Appendix Section B.3.

We summarized medians, 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR

for PheW2P2V and comparison methods across 1,000 simulated test sets in Figure 3.3. We can see

that AUC-ROC, max F1-score, and AUC-PR of all five methods increase as 𝛽 increases as expected.

PheW2P2V outperforms all comparison methods, especially when signal is weak. Results for

different case-control ratios were summarized in Appendix Figure B.3, where similar patterns were

observed. We observed a bigger improvement of PheW2P2V over LASSO regression, random

forest, and gradient boosted tree for rare phenotypes because the imbalance between cases and

controls affects the prediction performance of regression-based and tree-based methods more (C.

Chen et al., 2004; Q. Wu et al., 2014) than that of P2V methods.

We also conducted simulation studies to demonstrate that medical concept embeddings using

word2vec can recover the association strength between a signal medical concept (an explanatory

predictor) and a phenotype (an outcome). Results are included in Appendix Section B.2.

3.3.2 Phenome-wide predictions using the MIMIC-III database

Phenome-wide prediction results using the MIMIC-III database was summarized in Table

3.2 with medians, 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR from

10 train/test splits across all 942 phenotypes binned with 300 phenotypes ranked by prevalence.

Across the phenome, PheW2P2V has a median AUC-ROC 0.73 (competing methods have values
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Prediction performance of different methods in a simulation study with case:control = 1:19

PheW2P2V P2V regression random forest gradient boosted tree
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Figure 3.3: Simulation results of medians, 25th and 75th percentiles of AUC-ROC, max F1-score,
and AUC-PR of the proposed PheW2P2V, the LASSO regression, the random forest classifier,
the gradient boosted tree classifier, and the unweighted version P2V with regression coefficient 𝛽
ranging from 0.2 to 0.8, under the scenario of 1:19 case-control ratio.

≤ 0.70), a median max F1-score 0.20 (competing methods have values ≤ 0.19), and a median

AUC-PR 0.10 (competing methods have values ≤ 0.10). There is a decreasing trend in predic-

tion performance for all methods as phenotypes become rarer as expected. PheW2P2V has bigger

improvements over competing methods when phenotypes are rare, which is consistent with simu-

lation results. Results in Table 3.2 were also plotted in Figure 3.4 for a better visualization where

we can see that the proposed PheW2P2V has the highest AUC-ROC, max F1-score, and AUC-PR

at almost all bins of phenotypes.

3.3.3 Examples of clinical disease phenotype predictions in the MIMIC-III database

We investigated individual phenotypes to understand the clinical significance of the proposed

PheW2P2V for phenome-wide predictions and highlighted 5 phenotypes from two different clini-

cal categories with their prediction performance in Table 3.3. The first category includes common

general medical conditions that are potentially preventable or treatable, such as atherosclerosis

(phenotype code: 440) and diabetic retinopathy (phenotype code: 250.7). These disorders are fre-

quently under-diagnosed and under-treated despite the fact that effective preventive and therapeutic

strategies exist. PheW2P2V has the best prediction performance for these conditions, for example,
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Table 3.2: Medians and 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR of the
942 phenotypes binned by 300 from most to least prevalent phenotypes in the MIMIC-III database.

Prevalence rank of phenotypes

1-300 301-600 601-942 All

Prevalence median (Q1, Q3) 0.042
(0.025, 0.075)

0.008
(0.006, 0.011)

0.003
(0.001, 0.003)

0.007
(0.003, 0.024)

AUC-ROC median (Q1, Q3)
PheW2P2V 0.78 (0.68, 0.87) 0.75 (0.68, 0.82) 0.69 (0.61, 0.80) 0.73 (0.65, 0.83)

P2V 0.71 (0.65, 0.79) 0.68 (0.63, 0.75) 0.65 (0.57, 0.74) 0.68 (0.62, 0.76)
Regression 0.72 (0.60, 0.85) 0.68 (0.59, 0.80) 0.59 (0.50, 0.78) 0.66 (0.57, 0.81)

Random forest 0.76 (0.65, 0.89) 0.70 (0.61, 0.81) 0.58 (0.53, 0.75) 0.69 (0.58, 0.82)
Gradient boosted tree 0.76 (0.64, 0.89) 0.71 (0.62, 0.82) 0.62 (0.54, 0.80) 0.70 (0.60, 0.84)

Max F1-score median (Q1, Q3)
PheW2P2V 0.37 (0.22, 0.61) 0.20 (0.10, 0.33) 0.08 (0.04, 0.20) 0.20 (0.09, 0.38)

P2V 0.25 (0.15, 0.40) 0.08 (0.05, 0.13) 0.04 (0.02, 0.07) 0.09 (0.05, 0.20)
Regression 0.32 (0.18, 0.63) 0.18 (0.08, 0.46) 0.05 (0.02, 0.29) 0.19 (0.06, 0.46)

Random forest 0.38 (0.18, 0.66) 0.16 (0.06, 0.45) 0.05 (0.01, 0.19) 0.17 (0.05, 0.46)
Gradient boosted tree 0.37 (0.19, 0.66) 0.18 (0.07, 0.48) 0.06 (0.02, 0.30) 0.19 (0.06, 0.50)

AUC-PR median (Q1, Q3)
PheW2P2V 0.28 (0.13, 0.55) 0.10 (0.04, 0.22) 0.03 (0.01, 0.09) 0.10 (0.03, 0.27)

P2V 0.15 (0.08, 0.32) 0.03 (0.02, 0.05) 0.01 (0.00, 0.02) 0.03 (0.01, 0.11)
Regression 0.24 (0.10, 0.60) 0.09 (0.02, 0.31) 0.01 (0.00, 0.15) 0.09 (0.02, 0.35)

Random forest 0.29 (0.10, 0.63) 0.06 (0.02, 0.32) 0.01 (0.00, 0.08) 0.08 (0.01, 0.35)
Gradient boosted tree 0.29 (0.11, 0.64) 0.08 (0.02, 0.35) 0.01 (0.01, 0.17) 0.10 (0.02, 0.39)

∗ Q1 is the 25th percentile and Q3 is the 75th percentile.

Prediction performance of different methods on 942 phenotypes in the MIMIC−III database

PheW2P2V P2V regression random forest gradient boosted tree
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Figure 3.4: Medians, 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR across
binned 300 phenotypes with descending prevalence in the MIMIC-III databases for the proposed
PheW2P2V, the LASSO regression, the random forest classifier, the gradient boosted tree classifier,
and the unweighted P2V.
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for atherosclerosis with an AUC-ROC 0.862 (competing methods have values ≤ 0.839) and a max

F1-score 0.446 (competing methods have values ≤ 0.432), suggesting that PheW2P2V is better at

identifying high risk patients. The second category includes rare disorders that may be diagnosti-

cally challenging, and thus may be missed if not considered in the differential diagnosis. Here, we

considered adrenal hypofunction (phenotype code: 255.2), chronic pericarditis (phenotype code:

420.22), and meningitis (phenotype code: 320). PheW2P2V has superior prediction performance

for these conditions, for example, for adrenal hypofunction with an AUC-ROC 0.804 (compet-

ing methods have values ≤ 0.767) and a max F1-score 0.319 (competing methods have values ≤

0.290), suggesting that PheW2P2V can be used to help with the correct diagnosis of these rare

disorders. These examples demonstrate that PheW2P2V is powerful in phenome-wide predictions

and is capable of providing clinically-relevant data-driven risk stratification that could be useful as

a screening tool to identify and flag patients with high risk conditions in early stages which may be

missed overwise. Note that studies have observed that prediction tools usually have low F1-scores

to predict rare outcomes (Hunter-Zinck et al., 2019; Jeni et al., 2013; Perotte et al., 2014), which is

also observed in our simulation studies with different case-control ratios summarized in Appendix

B.3.

3.3.4 Computation time

We demonstrated computational efficiency of PheW2P2V on a phenome-wide prediction task

by comparing the computation time of PheW2P2V to that of gradient boosted tree (implemented

using "xgboost"), which has the second-best prediction performance among all methods (Table

3.2). PheW2P2V is trained once and used for prediction across a phenome with 𝑁 phenotypes with

a total computation time: (training time + 𝑁 × prediction time). Gradient boosted tree is trained

individually for each phenotype with a total computation time for the phenome: 𝑁∗(training time+

prediction time). With a machine of Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz, a phenome-

wide predictions took (213 + 8 × 𝑁) seconds for PheW2P2V, and 43 × 𝑁 seconds for gradient

boosted tree. PheW2P2V will be much faster when predicting a large number of phenotypes 𝑁 .
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Table 3.3: AUC-ROC, max F1-score, and AUC-PR of the 5 highlighted clinical disease phenotypes
in the MIMIC-III database.

Category* Clinical disease phenotypes Prevalence PheW2P2V P2V Regression Random
forest

Gradient
boosted tree

AUC-ROC
I Atherosclerosis 0.052 0.862 0.805 0.780 0.829 0.839
I Diabetic retinopathy 0.025 0.956 0.910 0.864 0.932 0.934
II Adrenal hypofunction 0.015 0.804 0.718 0.695 0.767 0.762
II Chronic pericarditis 0.007 0.818 0.782 0.759 0.687 0.784
II Meningitis 0.004 0.833 0.805 0.612 0.620 0.689

Max F1-score
I Atherosclerosis 0.052 0.446 0.260 0.352 0.432 0.391
I Diabetic retinopathy 0.025 0.521 0.335 0.510 0.509 0.513
II Adrenal hypofunction 0.015 0.319 0.088 0.214 0.290 0.267
II Chronic pericarditis 0.007 0.256 0.142 0.194 0.164 0.188
II Meningitis 0.004 0.181 0.119 0.047 0.035 0.050

AUC-PR
I Atherosclerosis 0.052 0.365 0.168 0.250 0.314 0.310
I Diabetic retinopathy 0.025 0.462 0.208 0.420 0.410 0.435
II Adrenal hypofunction 0.015 0.187 0.043 0.121 0.161 0.151
II Chronic pericarditis 0.007 0.132 0.053 0.094 0.054 0.083
II Meningitis 0.004 0.072 0.046 0.010 0.008 0.013

∗ Category I includes common conditions amenable to screening and prevention, and Category II includes
rare and diagnostically challenging conditions. These categories were selected to illustrate potential clinical
utility of PheW2P2V predictions.
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3.4 Discussion

We developed PheW2P2V, a phenome-wide prediction framework that efficiently predicts phe-

notypes across a phenome by taking a two-step procedure, i.e., medical concept embeddings fol-

lowed by tailored predictions with a novel weighting scheme. To better define phenome-wide

case-control status, PheW2P2V maps ICD diagnosis codes to phenotype codes. PheW2P2V gen-

erates tailored patient vectors for individual phenotypes for tailored predictions. When computing

patient vectors, the proposed weighting scheme upweights past medical histories that are most

relevant to a phenotype of interest and thus tailors the prediction to the phenotype. The compu-

tational efficiency of phenome-wide predictions is achieved by separating embeddings and pre-

dictions, making phenome-wide predictions feasible. PheW2P2V is fast, flexible, and has better

prediction performance than major popular comparison methods consistently across most of the

942 phenotypes in the MIMIC-III database. PheW2P2V takes advantages of the word2vec algo-

rithm to numerically represent patients’ medical concepts which avoids imputing missing concepts

to convert patients’ medical concepts to a sparse data matrix that is needed by most data analysis

methods. We also demonstrated several clinical examples in which PheW2P2V can predict less

common conditions that could be diagnostically challenging or missed on a routine clinical work

up, such as adrenal insufficiency or chronic pericarditis. Therefore, PheW2P2V could be useful

as a screening tool to prospectively identify and flag patients with high risks conditions in early

stages which may be missed otherwise, such as early atherosclerosis, which is preventable with

medications and lifestyle changes.

With extensive simulation studies, we demonstrated superior prediction performance of PheW2P2V

over four widely used comparison methods: LASSO regression, random forest, gradient boosted

tree, and unweighted P2V. We also demonstrated that numeric vectors of signal medical concepts

and outcome concepts are able to recover association signal strengths between them (Appendix

B.2). This is promising as it suggests that all information is preserved through embedding. In

contrast to traditional supervised learning methods, patients without label information (e.g., pa-
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tients with only one admission in our goal of prediction) remain informative, as they can still be

used to train the embedding to generate numeric representations of medical concepts. This advan-

tage enabled us to leverage 39,001 additional patients with only one admission in the MIMIC-III

database to conduct the phenome-wide predictions. Note that the transferability of the medical

concept embeddings from one EHR database to another need to be studied further.

In summary, PheW2P2V is the first phenome-wide prediction framework. We have demon-

strated its superior prediction performance and computational efficiency using simulation studies

and clinical applications on phenome-wide prediction tasks using the MIMIC-III database. Sev-

eral showcases of clinical disease phenotypes suggested great potentials of PheW2P2V to serve as

a computable predictive tool that can aid in clinical decisions through phenome-wide predictions

in a real-life clinical setting.
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Chapter 4: Multi-view graph convolutional clustering with applications to

cancer subtyping with multi-omics data

4.1 Introduction

High-throughput technologies in biomedical research have led to an unprecedented explosion

of large-scale data. Data-driven statistical models, machine learning and deep learning techniques

have played crucial roles in managing, analyzing, and interpreting these massive data, transforming

them into meaningful biological insights. With the help of available multi-omics data, we can

better conduct an important task in biomedical research, that is, to perform disease subtyping

analysis and identify groups of subjects that are biologically similar (Wiwie et al., 2015). Multiple

algorithms have been developed for disease subtyping using multi-omics data, many were applied

to different cancer types to better understand the tumor heterogeneity (Mo et al., 2013; Ramazzotti

et al., 2018; Rappoport & Shamir, 2018; Ruan et al., 2019; Shen et al., 2009; B. Wang, Mezlini,

et al., 2014; Wei et al., 2023). Through dissecting tumor heterogeneity at molecular levels, we can

identify clinically meaningful cancer subtypes that can help improve prognostics and personalized

therapeutic strategies (13 et al., 2012; Curtis et al., 2012; Dagogo-Jack & Shaw, 2018; Kristensen

et al., 2014; Meacham & Morrison, 2013; Yuan et al., 2014). Similar clustering algorithms have

also been used for other applications, such as single-cell clustering using RNA-sequencing (RNA-

seq) data to uncover cellular diversities (Kiselev et al., 2017; X. Li et al., 2020; Ranjan et al., 2021;

T. Tian et al., 2019; J. Wang et al., 2021).

As an unsupervised learning problem, some traditional clustering methods include K-means

(MacQueen, 1967) and Gaussian Mixture Models (Bishop & Nasrabadi, 2006) have been widely

used. However, they are not effective with high dimensional multi-omics data. Many other clus-

tering methods first learn a low dimensional latent space or a new representation of the original
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data, and then apply K-means. Representation learning algorithms, such as principal component

analysis (PCA) and autoencoder (one type of neural networks) (Bengio et al., 2013; Hinton &

Salakhutdinov, 2006; Vincent et al., 2010), are performed on raw feature spaces; others such as

spectral clustering (i.e., eigen decomposition on the graph) (Von Luxburg, 2007) and graph au-

toencoder (Kipf & Welling, 2016b; F. Tian et al., 2014) are performed on patient graphs (i.e.,

pairwise patient similarity matrices) that are constructed from high dimensional inputs. For large

scale graphs, autoencoder combined with K-means is more computationally efficient than spectral

clustering and is capable of feature learning with additional constrains such as sparsity penalties

(F. Tian et al., 2014; Xie et al., 2016). For disease subtyping using multi-omics data, it is necessary

to comprehend the interplay between different views of patient information, where each type of

omics data could be considered as a view of patients (Kristensen et al., 2014; Rappoport & Shamir,

2018). To integrate multi-view/multi-omics data, a naïve approach is to concatenate all data types

and perform standard clustering algorithms, which suffers from the problems of high dimension-

ality and imbalanced numbers of features across different views. An improved approach is to

perform dimension reduction first and concatenate low dimensional representations. Many models

have been developed to integrate multi-view data, from early attempts such as iCluster/iClusterPlus

(Mo et al., 2013; Shen et al., 2009) [Shen et al., 2009, Mo et al., 2013] to more recent methods such

as graph-based integration methods, namely similarity network fusion (SNF) (B. Wang, Mezlini,

et al., 2014) and boosted similarity network fusion (abSNF) (Ruan et al., 2019), as well as kernel-

based methods such as multi-kernel learning (CIMLR) (Ramazzotti et al., 2018) and hierarchical

multi-kernel learning (Wei et al., 2023). These methods are usually computationally intense and

not capable of conducting feature learning.

Most aforementioned methods for clustering using multi-omics data have two steps that in-

volve feature learning to obtain an integrated latent space first and then calculate label assignments

separately using K-means. To improve clustering results, deep embedded clustering (DEC) was

introduced to jointly solve feature representations and cluster assignments with the latent space

learned specifically for clustering (Xie et al., 2016). DEC refines a centroid-based probability dis-
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tribution through leveraging samples with highly confident label assignments and simultaneously

achieves feature learning and clustering in a self-learning manner.

Many existing methods for disease subtyping using integrated multi-omics data focus on pa-

tient graphs generated using similarity measures from omics data. These graphs focus on subject

level aggregated omics information but ignore feature level individual molecular characteristics,

which are also helpful for disease subtyping but are absent in graphs. By combining both patient

graphs and molecular feature level omics data we can leverage the granularity of feature-level data

and the structural insights provided by subject-level data. Similar idea has been applied in a super-

vised multi-omics analysis to solve classification problems for Alzheimer’s disease and low-grade

glioma (LGG) (T. Wang et al., 2021). Here we propose a multi-view graph convolutional clustering

(MultiGCC) framework, which leverages graph convolutional encoders (Kipf & Welling, 2016a)

to enhance the omics graph embeddings using molecular level features for each individual omics

data. MultiGCC then simultaneously updates the enhanced graph embeddings and clustering as-

signments through a self-learning process to optimize a clustering objective function.

We applied the proposed MultiGCC to integrate gene expression, DNA methylation, and so-

matic mutation to identify subtypes of liver hepatocellular carcinoma (LIHC) and stomach ade-

nocarcinoma (STAD) using data from The Cancer Genome Atlas (TCGA) project (https://www.

cancer.gov/tcga). Cancer subtypes identified by MultiGCC are more significantly associated with

patient survival than those identified by comparison methods. We further conducted analyses of

molecular characteristics on the identified subtypes which provided insights of cancer heterogene-

ity and biological meaning of LIHC and STAD subtypes.

4.2 Methods

4.2.1 The proposed MultiGCC

We propose MultiGCC, a disease subtyping framework that integrates molecular level features

into each patient omics graph constructed from individual types of omics data through graph con-

volutional networks. As illustrated in Figure 4.1, the MultiGCC framework has three parts: (1)
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Figure 4.1: The workflow of the proposed MultiGCC framework.

constructing patient graphs from individual high dimensional omics data; (2) initializing enhanced

patient graph embeddings using molecular level features through principal components (PCs); and

(3) iteratively refining the enhanced patient graph embeddings and clusters assignments through a

self-learning process for clustering.

Step 1. Construct patient omics graphs.

For each type of high dimensional omics data, we construct a patient graph, i.e., a similarity

matrix 𝑆 with a dimension 𝑁 × 𝑁 , where 𝑁 is the number of patients and each entry 𝑆𝑖 𝑗 is a

similarity measure between patients 𝑖 and 𝑗 . Suppose we have 𝐾 omics data types denoted as

𝑋 (𝑘) , 𝑘 = 1, 2, ..., 𝐾 , which are normalized to a scale of [0, 1]. We calculate pairwise cosine

similarities from 𝑋 (𝑘) as in Equation 4.1, which was previously using in other omics analyses (T.

Wang et al., 2021):
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is the cosine similarity. To construct the omics graph, we set nearest

neighbors of a sample through a threshold 𝜖 , such that we only retain similarities for a pair of

patients if the cosine similarity between them is greater than or equal to 𝜖 , aiming to have 𝑚

neighbors per patient on average, where we usually set 𝑚 =
√
𝑁 with 𝑁 being the total number of

patients. Thus, 𝜖 is determined that satisfies 𝑚 = 1
𝑁

∑
𝑖, 𝑗 𝐼

[
𝑠

(
𝑥
(𝑘)
𝑖
, 𝑥

(𝑘)
𝑗

)
≥ 𝜖

]
.

Step 2. Initialize enhanced embeddings of omics graphs using principal components of molec-

ular level features.

For each omics data 𝑋 (𝑘) , we calculate the first 50 principal components (PCs) and denote them

as 𝐶 (𝑘) . We use these PCs extracted from molecular level features to enhance the embeddings of

the 𝑘th omics graph as follows:

𝑍 (𝑘) = ReLU
(
𝑆(𝑘)𝐶 (𝑘)𝑊 (𝑘)

)
minimize

𝑊 (𝑘 )




𝑆(𝑘) − 𝜎 (
𝑍 (𝑘)𝑍 (𝑘)𝑇

)


2 (4.2)

Here 𝑆(𝑘) = 𝐼 + 𝑆(𝑘) , where 𝑆(𝑘) is the 𝑘th omics graph, and 𝑆(𝑘) is normalized through

𝐷̃−1/2𝑆(𝑘) 𝐷̃−1/2, with 𝐷̃ being a diagonal matrix with 𝐷̃𝑖𝑖 =
∑
𝑗 𝑆

(𝑘)
𝑖 𝑗

and 𝐼 being the identity

matrix to boost the self-connections in the graph (Kipf & Welling, 2016a). ReLU(·) and 𝜎(·) are

activation functions with ReLU(𝑥) = max(0, 𝑥) and 𝜎(𝑥) = 1/(1 + 𝑒−𝑥). The encoder parameters

𝑊 (𝑘) are trained by minimizing the reconstruction loss of the graph 𝑆(𝑘) .
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Step 3. Refine enhanced embeddings initialized in Step 2 through a self-learning process for

clustering iteratively

The last step of MultiGCC is a self-learning process for clustering where feature level infor-

mation enhanced graph embeddings and clustering assignments are iteratively refined through op-

timizing an objective function for clustering. Specifically, the feature level information enhanced

graph embedding 𝑍 (𝑘) from Step 2 are concatenated as 𝑍 = 𝑍 (1) ∥𝑍 (2) ∥...∥𝑍 (𝐾) , with which K-

means is performed with different numbers of clusters to initialize a series of cluster centroids{
{𝜇𝑟}2

𝑟=1 , {𝜇𝑟}
3
𝑟=1 , ..., {𝜇𝑟}

𝑅
𝑟=1

}
. We set 𝑅 = 6. The final number of clusters will be chosen from

{2, 3, ..., 𝑅} after self-learning process with convergence. For each set of initialized cluster cen-

troids {𝜇𝑟}, we calculate a centroid-based probability distribution 𝑄 (Equation 4.3), or the soft

cluster assignments 𝑞𝑖𝑟 using the Student’s t-distribution as a kernel with degrees of freedom 1 (X.

Li et al., 2020; Van der Maaten & Hinton, 2008) to measure the similarity between 𝑧𝑖 (i.e., the

integrated representations for patient 𝑖) and the cluster centroids 𝜇𝑟 :

𝑞𝑖𝑟 =

(
1 + ∥𝑧𝑖 − 𝜇𝑟 ∥2

)−1

∑
𝑟 ′

(
1 + ∥𝑧𝑖 − 𝜇𝑟 ′ ∥2

)−1 . (4.3)

We refine the clusters by putting more emphasis on data points with high confidence or high

𝑞𝑖𝑟 , with an auxiliary target distribution 𝑃:

𝑝𝑖𝑟 =
𝑞2
𝑖𝑟
/𝑣𝑟∑

𝑟 ′ 𝑞
2
𝑖𝑟
/𝑣𝑟 ′

, (4.4)

where 𝑣𝑟 =
∑
𝑖 𝑞𝑖𝑟 are soft cluster frequency of the 𝑟th cluster. We then iteratively update the

encoder parameters 𝑊 (𝑘) and the cluster centroids {𝜇𝑟} through minimizing a Kullback–Leibler

(KL) divergence objective function, to refine the integrated representations 𝑍 and the clustering

labels obtained through 𝑞𝑖𝑟 :

Loss = KL(𝑃∥𝑄) =
∑︁
𝑖

∑︁
𝑟

𝑝𝑖𝑟 log
𝑝𝑖𝑟

𝑞𝑖𝑟
. (4.5)
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We determine the final number of clusters from 2, 3, ..., 𝑅 using silhouette scores (Rousseeuw,

1987) based on the refined 𝑍 and refined clustering labels.

4.2.2 Comparison methods

We considered five comparison methods, (1) Concat-PCs: PCs of different omics data types

were concatenated, and the K-means algorithm was performed to obtain the clustering labels; (2)

Concat-SC: a spectral clustering method, where we concatenated spectral embeddings separately

generated for each omics graph with number of eigenvectors being chosen by eigengap criteria (Ng

et al., 2001). K-means was performed on the concatenated spectral embeddings with the number

of clusters being chosen using silhouette scores; (3) SNF: similarity network fusion that integrates

multi-omics graphs, followed by spectral clustering on the integrated graph with the number of

clusters being chosen by eigengap criteria; (4) MultiGCC-noPCA: the proposed MultiGCC frame-

work without using omics feature level PCs; and (5) MultiGCC-noKL: the proposed MultiGCC

framework without the self-learning process through KL divergence.

4.3 Results

4.3.1 TCGA LIHC and STAD cancer data

We applied the proposed MultiGCC and comparison methods to identify cancer subtypes using

gene expression, DNA methylation, and somatic mutation data from The Cancer Genome Atlas

(TCGA) project for liver hepatocellular carcinoma (LIHC) and stomach adenocarcinoma (STAD).

We used the R package TCGAbiolinks Version 2.26.0 (Colaprico et al., 2016) to obtain the multi-

omics data. We conducted the same quality control (QC) steps to the two cancer types. For LIHC,

there were 195 patients having gene expression data, 292 patients having DNA methylation data,

and 370 patients having mutations data, resulting in 191 patients having all three types of omics

data. We then removed 4 patients who did not have follow-up days information for prognosis,

leading to 187 patients as our LIHC patient cohort. QC steps of STAD patients are the same and

included in Appendix section C.1. For each omics data, we removed features with more than 30%
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Table 4.1: Data summary of LIHC and STAD patients.
Variables LIHC patients STAD patients

Number of tumor samples 187 217
Number of deaths 84 74

Median survival days 1,135 1,095
Number of omics features after QC Somatic Mutation 9,267 15,629

Gene expression 20,107 20,266
DNA methylation 381,569 381,478

missing. We further removed DNA methylation sites at known single nucleotide polymorphisms

and corrected type I/II probe bias using the R package wateRmelon (Pidsley et al., 2013). After

these two steps, we imputed missing data in gene expression and DNA methylation using K-nearest

neighbor. Table 4.1 summarizes the data of LIHC and STAD patients after QC steps.

4.3.2 Overall performance of the proposed MultiGCC in LIHC and STAD

To evaluate the overall subtyping performance of the proposed MultiGCC and compare it to

that of comparison methods, we conducted survival analysis using the log-rank test on the iden-

tified subtypes. Table 4.2 displays the number of clusters chosen using eigengap or silhouette

scores (in parenthesis), and the number of clusters after removing clusters with sizes<5 and their

corresponding survival p-values. For both LIHC and STAD, subtypes identified by the proposed

MultiGCC that uses both subject- and feature-level information are most significantly associated

with patient survival across all methods, while subtypes identified by comparison methods are not

associated with patient survival. The four LIHC subtypes identified by MultiGCC are associated

with patient survival with a p-value of 0.008. The three STAD subtypes identified by MultiGCC

are associated with patient survival with a p-value of 0.014.

We also used Harrell’s concordance index (C-index) (Harrell et al., 1982) to evaluate how

accurate the identified subtypes can describe patient survival through a Cox model. The C-index

is between 0.5 and 1, with a value of 1 representing a perfect model that always assigns higher

risk scores to patients with earlier events, and a value of 0.5 representing a model that is no better
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Table 4.2: Subtyping and survival analyses in two cancer types, with (1) the number of clusters
chosen using eigengap or silhouette scores in parentheses, (2) number of clusters after filtering out
clusters with sizes<5, and (3) corresponding survival p-values.

LIHC STAD
Method Number of clusters Survival P Number of clusters Survival P

Concat-PCA 2 (2) 0.685 6 (6) 0.601
Concat-SC 4 (6) 0.307 3 (3) 0.976

SNF 3 (4) 0.115 2 (4) 0.093
MultiGCC-noPCA 4 (4) 0.251 3 (3) 0.233
MultiGCC-noKL 6 (6) 0.264 4 (4) 0.110

MultiGCC 4 (4) 0.008 3 (3) 0.014

than a coin flip. C-indexes of the subtypes identified by MultiGCC are 0.57 and 0.58 for LIHC and

STAD, respectively, while C-indexes for other comparisons methods are around 0.5.

4.3.3 LIHC subtypes identified by MultiGCC

Other studies have also used TCGA omics data to identify LIHC subtypes. For example, us-

ing TCGA 183 LIHC patients, the TCGA group (Ally et al., 2017) identified three LIHC sub-

types using iCluster (Shen et al., 2009) with five types of omics data, copy number variants, DNA

methylation, gene expression, miRNA expression, and proteomics data. However, no significant

difference was detected in overall survival (p=0.56) among the three subtypes (Ally et al., 2017).

Our group previously developed a boosted SNF method, with three types of omics data (gene ex-

pression, DNA methylation, and mutations), we identified five LIHC subtypes using 161 TCGA

LIHC patients which is associated with patient survival with a p-value 0.046 (Ruan et al., 2019).

Since our sample size is close to the study by the TCGA consortium group, we further investigated

the four subtypes identified by MultiGCC and the three clusters identified by iCluster and included

comparisons in Figure 4.2. Note that among the 187 LIHC patients in our study, 17 did not have

iCluster subtype labels.

Figure 4.2A displays the Kaplan-Meier survival curves of the four LIHC subtypes identified

by MultiGCC. There is a clear difference in patient survival across the four MultiGCC subtypes.
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For example, subtype 2 is the smallest subtype with 16 patients, having the worst survival with a

median survival time 558 days. Subtype 4 has 38 patients and has the best survival with a median

survival time 1791 days. These two subtypes were grouped together by iCluster and roughly

formed the iCluster subtype 3, which has 61 patients.

Figure 4.2B displays the heatmap of top 500 gene expressions with smallest p-values from

differential expression analysis using Kruskal-Wallis test comparing the four LIHC subtypes iden-

tified by MultiGCC. We clearly observed different patterns across the identified subtypes. For

example, subtype 1 has the highest gene expression levels across the four subtypes at many Can-

cer Gene Census (CGC) genes (Futreal et al., 2004) such as PDGFRB and LMO2, and at many

LIHC related genes such as VIM (L. Hu et al., 2004), CCL21 (Shi et al., 2015), and GIMAP1

(Huang et al., 2016). Subtype 2 has the highest gene expression levels at some important liver

cancer genes such as MAGEA6 (J.-C. Guo et al., 2019) and GABRA3 (Y. Liu et al., 2008). Also at

these two genes, subtype 2 and subtype 4 have significantly different gene expression levels with

Wilcoxon test p-values 0.010 and 0.014, respectively, which might explain why MultiGCC can

separate subtype 2 and subtype 4, instead of grouping them like iCluster.

Different patterns of DNA methylations across the four MultiGCC subtypes were similarly

observed in Figure 4.2C, where we selected top 500 CpGs with smallest p-values from differential

analysis using Kruskal-Wallis test. For example, subtype 3 has the highest methylation levels at

many CpGs that located in LIHC related genes, such as cg21211053 on gene GYS1 (G. Li et al.,

2022), cg27395391 on gene ATXN1 (Hirao et al., 2021), and cg22729438 on gene TJP1 (X. Xu

et al., 2015). Subtype 2 and subtype 4 both have higher methylation levels than other two subtypes

at some CGC and LIHC related genes such as PRDM16 (Y. Li et al., 2021) and HYAL2 (Kim et al.,

2022). In addition, subtype 4 has a significantly higher methylation level than subtype 2 at some

CpGs such as cg01824625 on gene EPHA3 with a Wilcoxon test p-value 0.003, which is also a

candidate biomarker for LIHC patient prognosis (Lu et al., 2013).

Figure 4.2D displays the mutation landscape of the top 30 genes ranked by mutation frequen-

cies. We also observed different mutation patterns across the four MultiGCC subtypes. For exam-
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ple, 56% patients in subtype 2 have TP53 mutations, but only 19% patients in subtype 3. CTNNB1

mutations occurred in approximately 25-30% of patients in subtypes 1, 2, and 4, but only in 5% of

patients in subtype 3. Mutations in these two CGC genes are considered as the cancer drivers for

hepatocellular carcinoma development (Tornesello et al., 2013). In addition, mutations in another

CGC and LIHC related gene RB1 (Ahn et al., 2014) occurred in 24% of patients in subtype 3, but

only in approximately 5% in subtypes 1, 2, and 4.

Figure 4.2: Subtyping analysis of the four LIHC subtypes identified by MultiGCC. (A) Kaplan-
Meier survival curves and log-rank test p-value of the four LIHC subtypes. (B) Heatmap of top
500 gene expressions that are differentially expressed across the four LIHC subtypes by signifi-
cance from the Kruskal-Wallis test. (C) Heatmap of top 500 DNA methylation CpG sites that are
differentially methylated across the four LIHC subtypes by significance from the Kruskal-Wallis
test. (D) The middle chart displays the heatmap of mutation profiles of the top 30 genes ranked by
mutation frequencies. The top chart displays absolute number of mutation load for each sample.
The right panel displays the mutation frequencies.

62



4.3.4 Hub gene analysis of differentially expressed genes across the four LIHC subtypes

We investigated differentially expressed genes across the four LIHC subtypes identified by

MultiGCC. Using the Kruskal-Wallis test for each type of omics data separately and with a Bon-

ferroni corrected threshold, we identified 803 differentially expressed genes, 99,002 differentially

methylated CpG sites, and 2 differentially mutated genes. We selected top 200 differentially ex-

pressed genes, top 200 differentially methylated CpG sites which were mapped to 179 genes, and 2

differentially mutated genes, which leads to 381 unique genes. We investigated interactions among

these 381 genes using the protein-protein interaction (PPI) network and the STRING (Search Tool

for the Retrieval of Interacting Genes) database (Szklarczyk et al., 2019). Out of the 381 genes,

321 genes were mapped to the PPI network with 509 edges, where we kept edges with interaction

scores ≥ 0.4, corresponding to a medium confidence that an interaction exists according to the

STRING database (Szklarczyk et al., 2016). We evaluated the connectivity’s of these 321 genes

using three metrics: degree, stress and betweenness centrality. Degree is the number of links of

a gene in a network. Stress is the total number of shortest paths from two other genes passing

through a given gene. Betweenness centrality is the average frequency of a given gene appearing

in the shortest paths between two other genes. These metrics measure how densely a gene is con-

nected to or how strongly a gene is interacting with other genes in a network. We used the software

Cytoscape 3.9.1 (Shannon et al., 2003) to display the network of these 321 genes (Figure 4.3) with

their degrees. Genes with large degree measures are enlarged and are in the center of the network

to indicate their strong interactions with other genes.

Table 4.3 lists the top five genes ranked by degree, stress, and betweenness centrality, respec-

tively, out of the 321 genes. These top genes are known to be related to LIHC and are also dif-

ferentially expressed across the four LIHC subtypes identified by MultiGCC. For example, gene

MMP2 has the highest value in degree. It is also ranked second in stress and betweenness central-

ity. MMP2 gene is differentially expressed across the four subtypes with a Bonferroni corrected

p-value<0.0001, with subtype 1 having the highest expression level (Figure 4.2B). It also plays a

critical role in tumor invasion and metastasis and has been found to contribute to the dissemina-
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Figure 4.3: Hub gene analysis of the 321 differentially expressed genes across the four LIHC
subtypes that were mapped to the PPI network. The color and size of each gene node represent the
degree of each gene.

tion of liver metastases and promote the development of hepatocellular carcinoma (Musso et al.,

1997; B. Wang, Ding, et al., 2014). Gene PDGFRB ranks the first in stress and third in degree

and betweenness centrality. Gene PDGFRB is differentially expressed across the four subtypes

with a Bonferroni corrected p-value<0.0001, where subtype 1 and subtype 3 have higher expres-

sion levels than that of other two subtypes (Figure 4.2B). PDGFRB gene is a CGC gene. Recent

studies found that invasion of hepatocellular carcinoma cells could be inhibited through repress-

ing PDGFRB expression (Luo et al., 2022; Pan et al., 2022). In addition, gene TJP1 ranks first

in betweenness centrality and third in stress. DNA methylation levels of CpG site cg22729438

in gene TJP1 was significantly methylated across the four subtypes with a Bonferroni corrected

p-value<0.0001, where subtype 3 has the highest methylation levels (Figure 4.2C). Gene TJP1 has

been found to act as a metastatic suppressor and is associated with LIHC prognosis (Nagai et al.,

2016; X. Xu et al., 2015).
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Table 4.3: Top five genes ranked by degree, stress, and betweenness centrality, in the PPI network
of LIHC patients.

Gene Degree Gene Stress Gene Betweenness centrality

MMP2 26 PDGFRB 21990 TJP1 0.1494
BGN 22 MMP2 21404 MMP2 0.1290

PDGFRB 20 TJP1 17340 PDGFRB 0.1250
COL6A2 19 BGN 15672 MEF2C 0.0886

LUM 19 IKZF1 15632 IKZF1 0.0870

4.3.5 STAD subtypes identified by MultiGCC

We conducted similar analyses for STAD subtypes. The three STAD subtypes identified by

the proposed MultiGCC are associated with patient survival with a p-value of 0.014 (Table 4.2),

while subtypes identified by comparison methods are not associated with survival. The three STAD

subtypes were also studied similarly, and detailed results are included in Appendix C. The TCGA

group (Network et al., 2014) also identified four subtypes using 294 STAD patients using a consen-

sus clustering method (Wilkerson & Hayes, 2010). But these four subtypes were not significantly

associated with patient survival (p=0.89).

4.4 Discussion

We developed MultiGCC, a multi-view graph convolutional clustering method for disease sub-

typing using multi-omics data. MultiGCC incorporates molecular feature level data into graph

embeddings that are extracted from patient/graph level aggregated high dimensional multi-omics

data. Using graph convolutional encoders, granular feature level information can be used to en-

hance graph embeddings. Through self-learning that optimizes a clustering objection function,

MultiGCC simultaneously achieves feature learning and clustering assignments, where cluster sep-

arations are gradually improved by leveraging samples with high confidence in label assignments.

Graph convolutional encoders in MultiGCC are especially powerful in scenarios where feature

matrices contain additional information that are not present in graphs. Patient omics graphs that
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are constructed using collective information in individual types of omics data provide patient level

correlations. Omics PC features provide molecular feature level characteristics. Both data are

informative for disease subtyping and could generate better clustering results than methods that

only use one piece of information out of two. While K-means is widely applied as the to-go

clustering method in many sophisticated algorithms for clustering, it is not capable of separating

clusters that are not linearly separable. Instead, MultiGCC iteratively refines cluster assignment

and the latent feature space to allow nonlinear cluster separations.

In the clinical studies of two cancer types, LIHC and STAD, using gene expression, DNA

methylation, and mutation data from TCGA, we demonstrated an improved clustering performance

of MultiGCC over that of comparison methods. Subtypes identified by MultiGCC more accurately

reflect their survival outcomes. We conducted further investigations on the biological meaning of

the cancer subtypes identified by MultiGCC. Several hub genes were identified that are differen-

tially expressed across cancer subtypes and are densely connected with many other genes in the

PPI network. For example, hub genes such as MMP2, PDGFRB, and TJP1 were identified for

LIHC subtypes.

One limitation of the current study is that we treat each type of omics data equally when

conduct clustering, where the model does not explicitly consider the potentially different levels

of importance across different omics types. For example, some omics data types might have a very

small signal-to-noise ratio for subtyping, suggesting that the clustering result might be improved

if the model pays less attention to these relatively unimportant omics data types. We are currently

working on extending the MultiGCC framework to dynamically consider the different importance

of different omics types, such as incorporating a data-driven attention mechanism that has been

widely used in natural language processing and computer vision tasks.
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Chapter 5: Conclusions

In conclusion, this dissertation has made contributions in developing novel computational al-

gorithms that use healthcare data to enhance our understanding of disease progression, improve

early diagnosis of diseases, and facilitate personalized and targeted treatments. By effectively uti-

lizing the rich information of healthcare data available in electronic health records (EHRs) and

multi-omics datasets, we have developed machine learning and statistical methods that can help

with advancement in biomedical research and clinical decision-making, ultimately leading to better

patient outcomes.

The first approach, PsDF, demonstrated the effectiveness of a similarity-based supervised learn-

ing method for predicting specific clinical outcomes using EHR data. PsDF performed patient

similarity assessment on each available domain data separately, and then integrated the affinity

information over various domains into a comprehensive similarity metric. The integrated patient

similarity is used to support outcome prediction by assigning a risk score to each patient. This

proposed framework not only successfully predicted end stage kidney disease (ESKD) and se-

vere aortic stenosis (AS) requiring valve replacement, but also showcased its robustness to random

missingness, a common issue in real-life EHR data. By addressing the challenge of integrating

multiple EHR domains, PsDF achieved more reliable predictions and improved early detection

and diagnosis in various healthcare settings. One limitation of the current study is that PsDF only

considers one clinical outcome at a time during the model training. Also, we use a simple impu-

tation to code all features in EHR-based domains to be binary, indicating the presence or absence

of a record, while not considering cumulative counts or continuous measures, which likely led

to some information loss. Thus, we developed the second approach to overcome some of these

disadvantages.

The second approach, PheW2P2V, expanded the scope of our analysis to a phenome-wide
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prediction task using EHR data, where we simultaneously predicted numerous phenotypes while

maintaining computational efficiency and high prediction performance. PheW2P2V overcomes the

problems of outcome-specific and fully supervised in the traditional machine learning methods, in-

cluding PsDF. PheW2P2V defined clinical disease phenotypes using Phecode mapping based on

ICD codes, in order to reduces redundancy and case-control misclassification in a phenome-wide

prediction task. Through upweighting medical records of patients that are more relevant to a phe-

notype of interest in calculating patient vectors, PheW2P2V achieved a tailored prediction for

the phenotype. The calculation of weighted patient vectors is computationally efficient, and the

weighting mechanism ensures tailored predictions across the phenome. By leveraging the Phe-

code mapping, numeric representations of medical concepts, and the proposed novel weighting

mechanism, PheW2P2V showed its superior prediction power to improve early detection and di-

agnosis across 942 phenotypes in the MIMIC-III database. One direction to study further and

improve PheW2P2V is to leverage the power of transfer learning and apply the medical concept

embeddings from one EHR database to another.

The third proposed method, MultiGCC, focused on multi-omics data, integrating the multi-

view patient information to identify novel disease subtypes. MultiGCC obtained an enhanced fea-

ture representation of patient information, using graph convolutional network (GCN) encoders to

incorporate molecular-level features into graph embeddings of high dimensional multi-omics data.

Through a self-learning process, MultiGCC jointly updated the graph embeddings and the cluster-

ing assignments to achieves a better separation of clusters. This innovative clustering framework

successfully identified biologically meaningful subtypes for two cancer types, liver hepatocellu-

lar carcinoma (LIHC) and stomach adenocarcinoma (STAD). With the integration of multi-omics

data, MultiGCC could help with a deeper understanding of tumor heterogeneity and improved per-

sonalized treatments. One limitation of MultiGCC is that the model do not explicitly consider the

potentially different levels of importance across different omics types when conduct clustering. In

our future endeavors, we intend to enhance the MultiGCC framework by dynamically considering

the significance of different omics types, such as integrating a data-driven attention mechanism,
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an approach that has been widely used in fields such as natural language processing and computer

vision tasks.

The three methods we developed in this dissertation share a common goal of leveraging the

power of data-driven approaches to provide more comprehensive perspectives of diseases, making

contributions in healthcare and biomedical research. The successful application of these methods

to real datasets highlights their potential to be used by clinicians as tools to provide clinical support

with the help of big data. As our knowledge of diseases continues to expand, we can expect sig-

nificant improvements in general patient outcomes, as well as the development of more effective

personalized treatments. In summary, this dissertation has made notable contributions to the de-

velopment of data-driven methods in healthcare and biomedical research, utilizing both EHR and

multi-omics data - each with their own unique patient information.

The innovative methods developed in this dissertation not only contribute to existing machine

learning research but also provide directions for future investigations aiming to leverage the power

of big data in healthcare. As we move forward, it is crucial to continue refining these methods and

developing new methods to further improve the prediction performance for supervised learning

methods and clustering results for unsupervised learning methods. Building on the three proposed

methods, PsDF, PheW2P2V, and MultiGCC, future research can aim to extend these computational

algorithms to address emerging challenges and look for new opportunities in the rapidly evolving

field of precision medicine, drug discovery, drug repurposing, etc.. One critical direction is the in-

tegration of additional data sources, such as wearable devices, mobile health applications, and other

patient-generated data, to augment the existing EHR and multi-omics datasets. This could lead to

an even richer representation of patient information, enabling more accurate and timely predic-

tions of clinical outcomes and response to treatments. Another direction for future research is the

development of interpretable machine learning models that can provide transparent and clinically

meaningful explanations for the model outputs. This would enhance the adoption of these com-

putational algorithms among healthcare practitioners, strengthening the collaborative relationship

between data-driven approaches and human expertise. Last but not least, we hope to help integrate
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methodologies of machine learning methods, clinical application research, and real-world clinical

practice, resulting in more generalizable and actionable insights, to ultimately improve the lives of

patients worldwide.
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Appendix A: Appendix to similarity-based health risk prediction using

domain fusion and electronic health records data

A.1 Results of ESKD prediction tools with 1:1 case/control ratio

Figure A.1 summarizes prediction performance of the four methods for the two inclusion cri-

teria used, with 1:1 case/control ratio. The patterns are very similar to that with 1:5 case/control

ratio (Figure 2.5 in the main text).

As expected, with the 1:1 case/control ratio (Figure A.1), all four methods have higher 𝐹1-

scores, 𝐹2-scores and recalls than those with 1:5 case/control ratio (Figure 2.5 in the main text).

AUCs, 𝐹1-scores and 𝐹2-scores are all relatively more stable for the PsDF method than other

competing methods, demonstrating a clear advantage of PsDF. In addition, 𝐹1-scores and 𝐹2-scores

of random forest decrease slower than those with 1:5 case/control ratio. This is consistent with

what we observed in simulation results.

A.2 ESKD prediction tools with an additional domain of geocoding

As there are limited geocoding information available for some of the EHR patients, for demon-

stration purposes that PsDF can fuse all available domains, we repeated the construction of the

ESKD prediction tools including the geocoding domain. We updated the samples selection for the

training and test sets accordingly. There are two continuous variables available for the geocoding

domain, median household income in dollars and distance to the nearest major road in meters.

Other five domains are the same as described in the main text.

Hence, the comprehensive patient data included 6 domains: 1) laboratory tests, 2) ICD based

diagnosis history, 3) drug exposures, 4) medical procedures, 5) demographic information with

gender and race (white vs. non-white), and 6) geocoding data with income and distance to major
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A. Under the less stringent criterion, with 1:1 case/control ratio
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B. Under the more stringent criterion, with 1:1 case/control ratio
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Figure A.1: With the 1:1 case/control ratio, prediction performance of the ESKD prediction tools
built by the PsDF algorithm, the random forest classifier, the logistic regression and the naïve
similarity method when the masking percentage 𝑝𝑚𝑎𝑠𝑘 increases, under two different inclusion
criteria: A) the less stringent criterion, and B) the more stringent criterion.

roads. We used two different inclusion criteria to define eligible patients, a less stringent criterion

that only requires patients to have demographic and geocoding domain; and a more stringent cri-

terion that requires patients to have demographic and geocoding domain as well as records across

all four EHR domains.

EHR data preprocessing for ESKD prediction

As described in the main text Section 2.3.2, we considered those 2,080 patients who were non-

ESKD in 2006 but reached ESKD before 2016 as our incident ESKD cases, and those 353,295

non-ESKD patients who remained non-ESKD between 2006 and 2016 as our controls.

After requiring all patients to have demographic and geocoding data, we had 1,884 ESKD

cases and 306,222 non-ESKD controls. We then applied two different inclusion criteria on the

four EHR domains to define eligible patients in the study: 1) the less stringent inclusion criterion

which does not have any requirement on EHR domains; 2) the more stringent inclusion criterion

which requires patients to have records across all four EHR domains. Figure A.2 displays the data

preprocessing pipeline and the final sample sizes with the two inclusion criteria.
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A less stringent inclusion criterion
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353,295 non-ESKD controls 
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Figure A.2: ESKD data preprocessing pipeline with an additional domain of geocoding, with two
different inclusion criteria to define eligible patients.

A less stringent inclusion criterion

Patients were included if they had demographic and geocoding information, resulting in 1,884

ESKD patients and 306,222 non-ESKD controls. We then randomly selected 1,884 patients among

306,222 non-ESKD controls to create a balanced case control design. We split 1,884 ESKD cases

and 1,884 non-ESKD controls into two cohorts, one as the training set with 1,324 ESKD cases

and 1,324 non-ESKD controls, the other as the test set with 560 ESKD cases and 560 non-ESKD

controls to test the prediction performance of PsDF and the three competing methods.

A more stringent inclusion criterion

Patients were included if they had demographic and geocoding information as well as records

in all four EHR domains, resulting in 1,147 ESKD patients and 84,881 non-ESKD controls. We

then randomly selected 1,147 patients among the 84,881 non-ESKD controls to make a balanced

case control design. We similarly split 1,147 ESKD cases and 1,147 non-ESKD controls into two

cohorts, one as the training set with 807 ESKD cases and 807 non-ESKD controls, the other as the
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test set with 340 ESKD cases and 340 non-ESKD controls.

In order to investigate the method’s performance under an unbalanced case-control study, we

parallelly did another study with 1:5 case/control ratio. In addition to the already selected controls,

we further randomly selected 7,536 controls (four times of 1,884 cases) for the less stringent in-

clusion criterion, and 4,588 controls (four times of 1,147 cases) for the more stringent inclusion

criterion. For each criterion, we split these additional control samples into two groups with ratio

70% and 30%, then added them into the training set and test set accordingly.

Feature selection using LASSO regression and random forest

Similar to the main text Section 2.3.2, we included a screening step to pre-select potentially

relevant features using LASSO regression and random forest in order to capture both linear and

nonlinear features for prediction, on the training set with 1:1 case/control ratio.

For stability selection using LASSO regression, among 1000 times repeated subsampling, pre-

dictors with selection probability greater than 0.6 were selected. With the training set defined by

the less stringent inclusion criterion, we selected 19 features out of 1,123 laboratory tests, 30 of

7,980 diagnostic history features, 23 of 3,936 drug exposure features, 26 of 6,324 medical proce-

dure features, gender out of the two demographic variables, and distance to major road out of the

two geocoding variables. With the training set defined by the more stringent inclusion criterion,

we selected 19 laboratory tests, 22 diagnostic history, 26 drug exposures, 19 medical procedures,

gender and race, and distance to major road.

For feature selection using random forest, we selected features with high importance, which

is defined as mean decrease accuracy. We used a threshold of greater than 0.1. With the training

set defined by the less stringent inclusion criterion, we selected 24 laboratory tests, 57 diagnostic

history, 46 drug exposures, 40 medical procedures, gender, and income. With the training set

defined by the more stringent inclusion criterion, we selected 17 laboratory tests, 25 diagnostic

history, 26 drug exposures, 27 medical procedures, and gender.

We unionized the features selected by LASSO and random forest, which led to 193 features in
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total for the dataset of less stringent inclusion criterion and 121 features in total for the dataset of

more stringent inclusion criterion.

Comparison of the four prediction methods

To compare the prediction performance of the four methods using the test set, we applied

bootstrapping 1,000 times on the test set and obtained average AUCs, 𝐹1-scores, 𝐹2-scores, recalls

and precisions when the threshold for the probability of being a case is set at 0.5, as well as their

95% CIs. In addition, we conducted a sensitivity analysis where we masked certain percentages

of observations to investigate the robustness of PsDF and the three competing methods to missing

data, as previously explained. Figure A.3 and Figure A.4 summarize prediction performance for

the two inclusion criteria used, with 1:1 and 1:5 case/control ratios, respectively.

In general, the patterns are very similar to those with 5 domains. Both PsDF and random

forest outperform logistic regression and the naïve similarity method in terms of AUCs (Figure

A.3 and Figure A.4). AUCs drop dramatically for the logistic regression and the naïve similarity

methods, while 𝐹1-scores and 𝐹2-scores drop quickly for random forest, with increasing masking

percentage. In contrast, AUCs, 𝐹1-scores and 𝐹2-scores are all relatively stable for the PsDF

method. This clinical study with an additional geocoding domain further demonstrates that PsDF

had a more robust prediction preformation than other three methods, in the presence of random

missingness in EHR data.

In addition, we observed similar AUCs, 𝐹1-scores and 𝐹2-scores when compared to the ESKD

prediction study without geocoding (Figure 2.5 in the main text and Figure A.1), potentially indi-

cating that the geocoding information has limited predictability in this ESKD prediction task.

A.3 Aortic Stenosis (AS) prediction tools

Among all patients in the Columbia University Irving Medical Center’s EHR data warehouse

as of year 2006, 5,400,082 patients without AS were defined as controls. Among these patients,

as of year 2016, 6,300 developed incident severe AS requiring valve replacement between 2006
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A. Under the less stringent criterion, with 1:1 case/control ratio
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B. Under the more stringent criterion, with 1:1 case/control ratio
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Figure A.3: With 1:1 case/control ratio, prediction performance of the ESKD prediction tools with
an additional domain of geocoding, built by the PsDF algorithm, the random forest classifier, the
logistic regression and the naïve similarity method when the masking percentage 𝑝𝑚𝑎𝑠𝑘 increases,
under two different inclusion criteria: A) the less stringent criterion, and B) the more stringent
criterion.

A. Under the less stringent criterion, with 1:5 case/control ratio
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B. Under the more stringent criterion, with 1:5 case/control ratio
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Figure A.4: With 1:5 case/control ratio, prediction performance of the ESKD prediction tools with
an additional domain of geocoding, built by the PsDF algorithm, the random forest classifier, the
logistic regression and the naïve similarity method when the masking percentage 𝑝𝑚𝑎𝑠𝑘 increases,
under two different inclusion criteria: A) the less stringent criterion, and B) the more stringent
criterion.
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and 2016, 5,393,782 remained controls. We considered the 6,300 patients without AS in 2006

but had valve replacement before 2016 as our incident AS case samples. Due to the large sample

size of control group, we randomly extracted 18,900 (three times of 6,300 AS cases) among those

5,393,782 patients who were controls in 2006 as well as in 2016, as our control samples. Our data

processing pipeline is summarized in Figure A.5. The comprehensive patient data included: 1)

laboratory tests, 2) ICD based diagnosis history, 3) drug exposures, 4) medical procedures, and 5)

demographic information with gender and race (white vs. non-white).

We applied the PsDF algorithm and the three competing methods to build AS prediction tools

and compared their prediction performance. We predicted incident AS cases between 2006-2016

using comprehensive EHR data collected in 2006 and prior. We used two different inclusion criteria

to define eligible patients in the study, a less stringent inclusion criterion that requires patients to

have demographic information and records in at least one of the four EHR domains; and a more

stringent inclusion criterion that requires patients to have demographic information and records

across all four EHR domains. Random masking procedure was also conducted at 5% to 50% with

an increment of 5% in the testing set.

EHR data preprocessing for AS prediction

After requiring all patients to have information in demographics, we had 6,300 AS cases and

18,900 controls. We then applied two different inclusion criteria on the four EHR domains to

define eligible patients in the study: 1) the less stringent inclusion criterion which requires patients

to have records in at least one of the four EHR domains; 2) the more stringent inclusion criterion

which requires patients to have records across all four EHR domains. Noted that the less stringent

inclusion criterion is different from that in ESKD showcase for which there is no requirement on

EHR domains, because among 6,300 AS cases and 18,900 controls, more than 70% patients do

not any records in EHR domains. Figure A.5 displays the data preprocessing pipeline and the final

sample sizes with the two inclusion criteria.

A less stringent inclusion criterion
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CUIMC Data Warehouse 
6,300 AS incidence cases 

randomly selected 18,900 controls 
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demographics

6,300 cases and 18,900 controls

have at least one record
in all four EHR-based domains:
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Figure A.5: AS data preprocessing pipeline with two different inclusion criteria to define eligible
patients.

Patients were included if they had demographic information and records in at least one of

the four EHR domains, resulting in 1,560 AS patients and 5,241 controls. We then randomly

selected 1,560 patients among 5,241 controls to make a balanced case control design. We split

1,560 AS cases and 1,560 controls into two cohorts, one as the training set with 1,090 AS cases

and 1,090 controls, the other as the test set with 470 AS cases and 470 controls to test the prediction

performance of PsDF and the two competing methods.

A more stringent inclusion criterion

Patients were included if they had demographic and records across all four EHR-based do-

mains, resulting in 692 AS patients and 664 controls. We then randomly selected 664 patients

among 692 AS patients to make a balanced case control design. We similarly split 664 AS cases

and 664 controls into two cohorts, one as the training set with 464 AS cases and 464 controls, the

other as the test set with 200 AS cases and 200 controls.
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Feature selection using LASSO regression and random forest

Similar to the ESKD showcase, we included a screening step to pre-select potentially relevant

features using LASSO regression and random forest in order to capture both linear and nonlinear

features for prediction, before applying PsDF, logistic regression and naïve similarity method.

For stability selection using LASSO regression, among 1000 times repeated subsampling, pre-

dictors with selection probability greater than 0.6 were selected. With the training set defined by

the less stringent inclusion criterion, we selected 20 out of 865 laboratory tests, 42 out of 3,486

diagnostic history features, 16 out of 1,853 drug exposure features, 51 out of 1,928 medical pro-

cedure features, gender and race out of demographic information. With the training set defined by

the more stringent inclusion criterion, we selected 9 laboratory tests, 15 diagnostic history, 12 drug

exposure, 14 medical procedures, and gender.

For feature selection using random forest, we selected features with high importance, which

is defined as mean decrease accuracy. We used a threshold of greater than 0.1. With the training

set defined by the less stringent inclusion criterion, we selected 22 laboratory tests, 72 diagnostic

history, 17 drug exposures, 51 medical procedures, gender and race. With the training set defined

by the more stringent inclusion criterion, we selected 5 laboratory tests, 17 diagnostic history, 18

drug exposures, 19 medical procedures, and gender.

We unionized the features selected by LASSO and random forest, which led to 216 features in

total for the dataset of less stringent inclusion criterion and 77 features in total for the dataset of

more stringent inclusion criterion.

Comparison of the four prediction methods

To compare the prediction performance of the four methods using the test set, we applied

bootstrapping 1,000 times on the test set and obtained average AUCs, 𝐹1-scores, 𝐹2-scores, recalls

and precisions when the threshold for the probability of being a case is set at 0.5, as well as their

95% CIs. In addition, we conducted a sensitivity analysis where we masked certain percentages

of observations to investigate the robustness of PsDF and the three competing methods to missing
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A. Under the less stringent criterion
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B. Under the more stringent criterion
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Figure A.6: Prediction performance of the AS prediction tools built by the PsDF algorithm, the
random forest classifier, the logistic regression and the naïve similarity method when increasing
the masking percentage 𝑝𝑚𝑎𝑠𝑘 , under two different inclusion criteria: A. the less stringent criterion,
and B. the more stringent criterion.

data, as previously explained. Figure A.6 summarizes prediction performance for the two inclusion

criteria used.

In general, both PsDF and random forest outperform logistic regression and the naïve similarity

method in terms of AUCs (Figure A.6). With the same pattern observed in the ESKD prediction

study, prediction performance (AUCs, 𝐹1-scores and 𝐹2-scores) of random forest, logistic regres-

sion and naïve similarity method dropped quickly when 𝑝𝑚𝑎𝑠𝑘 was increasing, but those of PsDF

are relatively stable. It further indicates that PsDF had a more robust prediction preformation, in

the presence of random missingness in EHR data.

The patterns of recalls and precisions are also similar to those in the ESKD prediction study

and those in simulation scenario when cases have more EHR records than controls. The recalls of

PsDF are higher and also drop slower than other three methods, while the precisions of PsDF are

relatively lower (Figure A.6), because generally AS cases may have more observed EHR records

than controls.
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Appendix B: Appendix to PheW2P2V - a phenome-wide prediction

framework with weighted patient representations using electronic health

records

B.1 Details of simulation settings

We conducted simulation studies to evaluate the prediction performance of PheW2P2V and

that of comparison methods. In specific, we simulated a population pool of 20,000 patients each

with a binary phenotype concept 𝐶0 and 150 unique binary medical concepts, including 10 signal

predictor concepts (denoted as 𝐶1, 𝐶2, . . . , 𝐶10) that predict 𝐶0 and 140 noise concepts (denoted as

𝐶11, 𝐶12, . . . , 𝐶150). Those 150 binary concepts were generated to be correlated with each other,

to mimic potential correlations between medical concepts. To do so, for each patient, we first

generated 150 continuous concepts 𝐶1, ..., 𝐶150 from a multivariate normal distribution with mean

0 and a covariance matrix, where we set the 10 signal concepts to be correlated with 𝜌𝑖 𝑗 = 0.6,

the 140 noise concepts to be correlated with 𝜌𝑖 𝑗 = 0.05, and 𝜌𝑖 𝑗 = 0.05 between signal and noise

concepts. We then applied the “nearestSPD” algorithm (Higham, 1988) to find the nearest positive-

definite matrix as the covariance matrix. After obtaining 150 continuous concepts, to mimic real

EHR patient medical concept sequences, we median-dichotomized them into binary concepts with

1 indicating a medical concept is recorded. Then, the outcome phenotype concept𝐶0 was generated

using a logistic model with the 10 signal predictor concepts. Other steps are included in the main

text. Figure B.1 displays the steps of simulation studies.
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Figure B.1: Steps of simulation studies for PheW2P2V.

B.2 Numeric representations can recover the association strength

With the same simulation settings, we investigated whether numeric representations of medical

concepts using word2vec are able to recover the association strength between a medical concept

(i.e., an explanatory predictor) and a phenotype (i.e., an outcome). Given a training set with 100

cases and 100 controls, we performed word2vec to obtain numeric representations for all 151

concepts (10 signal predictor concepts, 140 noise concepts, and 1 outcome concept). We then

calculated cosine similarities between the vector of outcome concept
−→
𝐶0 and vectors of signal/noise

concepts
−→
𝐶𝑘 (𝑘 = 1, ..., 150), and obtained their medians, 25th and 75th percentiles across 1,000

training sets.

Figure B.2 displays the results when association signal strengths range 𝛽 from -1.0 to 1.0.

We can see that as the effect size increases, i.e., when absolute values of 𝛽 for signal concepts

in logistic regressions increase, absolute values of cosine similarities between numeric vectors of
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signal concepts and the outcome concept also increase (Figure B.2A), while cosine similarities

between vectors of noise concepts and that of the outcome concept are close to 0 (Figure B.2B).

These results demonstrate that numeric representations of medical concepts preserve the original

association signal strength nicely.

It is worth noting that a medical concept that is positively associated with an outcome in a

logistic regression model (i.e., with a positive 𝛽 coefficient) is also positively correlated with the

outcome when being evaluated using numerically represented vectors (i.e., with a positive cosine

similarity). This is expected, because according to word2vec, a positive cosine similarity will be

observed between two numeric vectors for two concepts (e.g., 𝐶1 and 𝐶0) when they have similar

contexts, i.e., when nearby concepts of 𝐶1 and nearby concepts of 𝐶0 are similar. When the signal

concept𝐶1 is positively associated with the outcome concept𝐶0, the probability of having outcome

𝐶0 when concept 𝐶1 exists is high, i.e., 𝐶1 and 𝐶0 usually appear simultaneously in a patient’s

medical concept sequence. As a result, 𝐶1 and 𝐶0 will have similar contexts which result in a

positive correlation between their numeric vectors. Similar explanation goes to scenarios when

𝐶1 and 𝐶0 are negatively associated with a negative 𝛽 coefficient, their numeric vectors will be

negatively correlated. We thus used positive 𝛽 coefficients in the following simulation studies to

evaluate prediction performance of PheW2P2V.

B.3 Simulation studies with more case/control ratios

In addition to the 1:19 case-control ratios in the main text, we also considered unbalanced

simulation scenarios ranging case/control ratios from 1:1, 3:7, 1:9 to 1:19, with other simulation

settings unchanged. We summarized medians, 25th and 75th percentiles of AUC-ROC, max F1-

score, and AUC-PR across 1,000 test sets in Figure B.3. We observed that the improvement of

PheW2P2V over LASSO regression, random forest, and gradient boosted tree increases as the

case-control design becomes more unbalanced. This is because the imbalance affects the prediction

performance of regression-based models like LASSO and tree-based models more.
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Figure B.2: Simulation results of medians and 25th and 75th percentiles of cosine similarities
between vectors of 10 signal concepts (A), vectors of 140 noise concepts (B) and vector of the
outcome concept.
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Prediction performance of different methods in a simulation study with case:control = 1:1

PheW2P2V P2V regression random forest gradient boosted tree
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Prediction performance of different methods in a simulation study with case:control = 3:7
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Prediction performance of different methods in a simulation study with case:control = 1:9

PheW2P2V P2V regression random forest gradient boosted tree

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8
β

A
U

C
−

R
O

C

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8
β

M
ax

 F
1−

sc
or

e

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8
β

A
U

C
−

P
R

Prediction performance of different methods in a simulation study with case:control = 1:19
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Figure B.3: Simulation results medians and 25th and 75th percentiles of AUC-ROC, max F1-score,
and AUC-PR of the proposed PheW2P2V, the LASSO regression, the random forest classifier, the
gradient boosted tree classifier, and the unweighted version P2V, with different case-control ratios
of 1:1, 3:7, 1:9 and 1:19.
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Appendix C: Appendix to multi-view graph convolutional clustering with

applications to cancer subtyping with multi-omics data

C.1 TCGA STAD cancer data

Similar to the LIHC showcase, we used the R package TCGAbiolinks to obtain the multi-omics

data for stomach adenocarcinoma (STAD) patient. There were 272 patients having gene expression

data, 395 patients having DNA methylation data, and 431 patients having mutations data, resulting

in 226 patients having all three types of omics data. We then removed 9 patients who did not have

follow-up days information for prognosis, leading to 217 patients as our STAD patient cohort.

Other quality control steps are the same as the LIHC showcase.

C.2 STAD subtypes identified by MultiGCC

Using the integrated multi-omics data, the proposed MultiGCC identified STAD subtypes, with

a survival p-value 0.014 (main text Table 4.2), while subtypes identified by other comparison

methods had non-significant associations with patient survival. The TCGA group (Network et

al., 2014) identified four subtypes using 294 STAD patients using a consensus clustering method

(Wilkerson & Hayes, 2010). But these four subtypes were not significantly associated with patient

survival (p=0.89).

We displayed the Kaplan-Meier survival curves of the three STAD subtypes identified by Multi-

GCC in Figure C.1A. There is a clear difference in patient survival across the three subtypes. For

example, the subtype 1 with 52 patients has the worst survival and a median survival time 874

days. The subtype 3 with 40 patients has the best survival with a median survival time longer than

1223 days.

Figure C.1B and Figure C.1C displays the heatmap of selected gene expression and DNA
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methylation profiles, respectively, where we selected top 500 genes/CpGs with smallest p-values

from differential analysis using Kruskal-Wallis test comparing the three STAD subtypes identified

by MultiGCC. We clearly observed different patterns across the identified subtypes. For exam-

ple, subtype 2 has the highest gene expression levels at many Cancer Gene Census (CGC) and

also STAD related genes such as PTPRC (Z. Liu et al., 2021), CCR5 (Ryu et al., 2018), CCR7

(Ryu et al., 2018), and FLI1 (Del Portillo et al., 2019). Subtype 1 and subtype 3 have a higher

DNA methylation level than subtype 2 at many CpGs that located in STAD related genes, such

as cg02604211 on the gene LGR4 (de Souza et al., 2019) and cg11344533 on the gene SIK2 (Dai

et al., 2021). In addition, subtype 3 has the highest DNA methylation level and subtype 2 ranks

second at many CpGs that located in CGC and also STAD related genes, such as cg04009932 on

the gene TP53 (Fenoglio-Preiser et al., 2003). Figure C.1D displays the mutation landscape of the

top 30 genes ranked by mutation frequencies. We also observed different mutation patterns across

the three STAD subtypes. For example, 77% patients in the subtype 1 had TP53 mutations, but

only approximately 35% patients in subtype 2 and subtype 3 had TP53 mutations. Mutations of

another CGC and STAD related gene ARID1A (Inada et al., 2015) occurred in 43% of patients in

subtype 3, but it occurred in only 15% of patients in subtype 1. Mutations in LRP1B occurred in

40% of patients in subtype 3, but only occurred in 22% in subtype 2, which is also a CGC and

STAD related gene (S. Hu et al., 2021).

C.3 Hub gene analysis in STAD patients

Similar to the LIHC showcase, we investigated gene activities of differentially expressed genes

across the three STAD subtypes identified by MultiGCC. Using the Kruskal-Wallis test for each

type of omics data separately and with a Bonferroni corrected threshold, we identified 2,535 differ-

entially expressed genes, 103,809 differentially methylated CpG sites, and 2 differentially mutated

genes. We further selected top 200 differentially expressed genes, top 200 differentially methy-

lated CpG sites which were mapped to 170 genes, and 2 differentially mutated genes. This leads

to 368 unique genes. The protein-protein interaction (PPI) network and connection relationship of
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Figure C.1: Subtyping analysis of the three STAD subtypes identified by MultiGCC. (A) Kaplan-
Meier survival curves and log-rank test p-value of the three STAD subtypes. (B) Heatmap of top
500 gene expressions that are differentially expressed across the three STAD subtypes by signifi-
cance from the Kruskal-Wallis test. (C) Heatmap of top 500 DNA methylation CpG sites that are
differentially methylated across the three STAD subtypes by significance from the Kruskal-Wallis
test. (D) The middle chart displays the heatmap of mutation profiles of the top 30 genes ranked by
mutation frequencies. The top chart displays absolute number of mutation load for each sample.
The right panel displays the mutation frequencies.
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the identified genes was retrieved from STRING database with a medium interaction score (inter-

action score ≥ 0.4). 326 genes out of the 368 genes were mapped to the PPI network with 922

edges.

Table C.1 lists the top five genes ranked by degree, stress, and betweenness centrality, in the PPI

network of 326 genes. These top genes are known to be related to STAD and are also differentially

expressed across the three LIHC subtypes identified by MultiGCC. For example, PTPRC had the

highest value in degree, stress, and betweenness centrality. PTPRC gene is differentially expressed

across the four subtypes with a Bonferroni corrected p-value<0.0001, with subtype 2 having the

highest expression level (Figure C.1B). Recently, PTPRC has been found to be overexpressed in

gastric cancer and is associated with the development of gastric cancer (Z. Liu et al., 2021). Gene

TP53 ranked second in degree, stress, and betweenness centrality. DNA methylation levels of

CpG site cg04009932 in gene TP53 was significantly methylated across the three subtypes with a

Bonferroni corrected p-value<0.0001, where subtype 3 has the highest methylation levels (Figure

C.1C). TP53 is a well-known cancer-related mutation and is one of the most popular genes in

cancer research (Guimaraes & Hainaut, 2002; Petitjean et al., 2007). Studies have found that TP53

alterations occur early in the development of gastric carcinoma and could be a useful biomarker

for cancer immunotherapy (Fenoglio-Preiser et al., 2003; L. Li et al., 2020). The gene CCR5

ranked third in stress and ranked fourth in degress. Gene CCR5 is also differentially expressed

across the three subtypes with a Bonferroni corrected p-value<0.0001, where subtype 2 has the

highest expression levels (Figure C.1B). CCR5 and its ligand have been found to be differentially

expressed in gastric cancer (Ryu et al., 2018).
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Table C.1: Top five genes ranked by degree, stress, and betweenness centrality, in the PPI network
of differentially expressed genes in STAD patients.

Gene Degree Gene Stress Gene Betweenness centrality

PTPRC 61 PTPRC 69586 PTPRC 0.1694
TP53 41 TP53 59580 TP53 0.1684

IKZF1 38 CCR5 34810 ESR1 0.0789
CCR5 36 IKZF1 27610 IKZF1 0.0685

IL10RA 32 GNG2 24344 LRRK2 0.0675
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Figure C.2: Hub gene analysis of the 326 differentially expressed genes across the three STAD
subtypes that were mapped to the PPI network. The color and size of each gene node represent the
degree of each gene.

104


	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Overview
	EHR and multi-omics data
	Supervised learning methods for classification
	Unsupervised learning methods for clustering

	Similarity-based health risk prediction using domain fusion and electronic health records data
	Introduction
	Methods
	The PsDF algorithm
	Simulation studies
	Comparison methods

	Results
	Simulation studies
	Clinical study - ESKD prediction tools
	Clinical study - AS prediction tools

	Discussion

	PheW2P2V - a phenome-wide prediction framework with weighted patient representations using electronic health records
	Introduction
	Methods and materials
	The PheW2P2V algorithm
	Comparison methods and evaluation metrics
	The MIMIC-III database

	Results
	Simulation studies
	Phenome-wide predictions using the MIMIC-III database
	Examples of clinical disease phenotype predictions in the MIMIC-III database
	Computation time

	Discussion

	Multi-view graph convolutional clustering with applications to cancer subtyping with multi-omics data
	Introduction
	Methods
	The proposed MultiGCC
	Comparison methods

	Results
	TCGA LIHC and STAD cancer data
	Overall performance of the proposed MultiGCC in LIHC and STAD
	LIHC subtypes identified by MultiGCC
	Hub gene analysis of differentially expressed genes across the four LIHC subtypes
	STAD subtypes identified by MultiGCC

	Discussion

	Conclusions
	References
	Appendix to similarity-based health risk prediction using domain fusion and electronic health records data
	Results of ESKD prediction tools with 1:1 case/control ratio
	ESKD prediction tools with an additional domain of geocoding
	Aortic Stenosis (AS) prediction tools

	Appendix to PheW2P2V - a phenome-wide prediction framework with weighted patient representations using electronic health records
	Details of simulation settings
	Numeric representations can recover the association strength
	Simulation studies with more case/control ratios

	Appendix to multi-view graph convolutional clustering with applications to cancer subtyping with multi-omics data
	TCGA STAD cancer data
	STAD subtypes identified by MultiGCC
	Hub gene analysis in STAD patients


