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Abstract

Statistical Methods for Structured Data: Analyses of Discrete Time Series and Networks

W. Reed Palmer

This dissertation addresses three problems of applied statistics involving discrete time series

and network data. The three problems are (1) finding and analyzing community structure in

directed networks, (2) capturing changes in dynamic count-valued time series of COVID-19 daily

deaths, and (3) inferring the edges of an implicit network given noisy observations of a multivariate

point process on its nodes. We use tools of spectral clustering, state-space models, Bayesian

hierarchical modeling and variational inference to address these problems. Each chapter presents

and discusses statistical methods for the given problem. We apply the methods to simulated and

real data to both validate them and demonstrate their limitations.

In chapter 1 we consider a directed spectral method for community detection that utilizes a

graph Laplacian defined for non-symmetric adjacency matrices. We give the theoretical motivation

behind this directed graph Laplacian, and demonstrate its connection to an objective function that

reflects a notion of how communities of nodes in directed networks should behave. Applying the

method to directed networks, we compare the results to an approach using a symmetrized version of

the adjacency matrices. A simulation study with a directed stochastic block model shows that

directed spectral clustering can succeed where the symmetrized approach fails. And we find

interesting and informative differences between the two approaches in the application to

Congressional cosponsorship data.

In chapter 2 we propose a generalized non-linear state-space model for count-valued time



series of COVID-19 fatalities. To capture the dynamic changes in daily COVID-19 death counts,

we specify a latent state process that involves second order differencing and an AR(1)-ARCH(1)

model. These modeling choices are motivated by the application and validated by model

assessment. We consider and fit a progression of Bayesian hierarchical models under this general

framework. Using COVID-19 daily death counts from New York City’s five boroughs, we evaluate

and compare the considered models through predictive model assessment. Our findings justify the

elements included in the proposed model. The proposed model is further applied to time series of

COVID-19 deaths from the four most populous counties in Texas. These model fits illuminate

dynamics associated with multiple dynamic phases and show the applicability of the framework to

localities beyond New York City.

In Chapter 3 we consider the task of inferring the connections between noisy observations of

events. In our model-based approach, we consider a generative process incorporating latent

dynamics that are directed by past events and the unobserved network structure. This process is

based on a leaky integrate-and-fire (LIF) model from neuroscience for aggregating input and

triggering events (spikes) in neural populations. Given observation data we estimate the model

parameters with a novel variational Bayesian approach, specifying a highly structured and

parsimonious approximation for the conditional posterior distribution of the process’s latent

dynamics. This approach allows for fully interpretable inference of both the model parameters of

interest and the variational parameters. Moreover, it is computationally efficient in scenarios when

the observed event times are not too sparse. We apply our methods in a simulation study and to

recorded neural activity in the dorsomedial frontal cortex (DMFC) of a rhesus macaque. We assess

our results based on ground truth, model diagnostics, and spike prediction for held-out nodes.
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inferred network estimates Ŵ∗ and Ŝ∗ following our shuffling of the order of the
observed spikes for the highlighted neuron 13. . . . . . . . . . . . . . . . . . . . . 113

3.21 In-edge and out-edge estimates for neuron 13 before and after shuffling its spikes.
The points are the final estimates after 50 epochs. The ‘confidence intervals’ are
based on estimates after epochs 26-50. This plot shows our criterion (3.1) for
inferring whether an edge exists for a given pair of nodes. . . . . . . . . . . . . . . 114

vii



3.22 The computed SNR values before and after shuffling the order of the observed
spikes for the highlighted neuron 13. . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



List of Tables

2.1 Progression of models fit to New York City daily COVID-19 deaths . . . . . . . . 26

2.2 Mean absolute relative error of 7-day ahead cumulative predictions . . . . . . . . . 31

2.3 Scoring rules evaluated on the predictive distributions of considered models . . . . 33

3.1 Selected notation glossary for data, model and joint likelihood . . . . . . . . . . . 58

3.2 Summary of nodes in simulation study . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Variational network recovery compared to transfer entropy and naive GLM methods 92

3.4 Summary of the 20 neurons from DMFC_RSG dataset included in our analysis . . 108

ix



Acknowledgements

I have completed this dissertation with the guidance of and in collaboration with my advisor

Tian Zheng. The best parts are her work as well as mine. Chapter 2 is joint work with Tian Zheng

and Richard Davis.

Thank you to my parents Bridget and Bill and my sister Caroline who supported me

throughout this journey, showering me with love and encouragement in times of despair and joy.

And thank you to Alana [1] who fills my heart and whose companionship means everything

to me as we navigate a life together amid our parallel doctoral journeys.

x



Dedication

for B&B

xi



Introduction

Finding, understanding and taking advantage of structure in complex data is an essential part

of statistics. When quantifying structure is itself a goal of the analysis, the statistician may start

with few assumptions and set out to robustly learn interesting relations from the data. In other

instances there may be particular structural patterns to search for, or a structural hypothesis to test.

On the other hand, identifying structure can be a means to an end, for example to aid with a

prediction task or to account for variation in the data. In this case, domain knowledge may inform a

particular model for the data generating process that paves the way for inference and prediction.

Given the data and task, a statistician may find it appropriate or necessary to impose simplifying

structural assumptions like independence, linearity, or normality in their modeling. In other

situations they may turn to machine learning methods that find and use structures in a black-box

way, improving performance without providing interpretable insights.

This dissertation is a reflection of the varied and central role of structure in applied statics as

it develops specialized methods to analyze discrete, temporal and relational data. It has three

principal chapters which discuss three different applied statics problems.

Chapter 1 “Spectral Clustering for Directed Networks” [2] addresses the problem of finding

and analyzing community structure in the presence of asymmetric connections. In this work we

present an unsupervised learning method for clustering directed graphs. Through simulation and

real data applications we show the importance of accounting for edge directionality.

In chapter 2 “Count-Valued Time Series Models for COVID-19 Daily Death Dynamics” [3]

we propose and assess a progression of non-linear state-space time series models for 2020

1



COVID-19 mortality data in New York City. In this work, we choose second order differencing and

an AR(1)-ARCH(1) model in order to accommodate dynamic structure in the data. Using a

Bayesian hierarchical framework we make forecasts based on observed daily counts without

explicitly accounting for any epidemiological mechanisms.

Chapter 3, “Inferring latent network edges from noisy event times with a leaky

integrate-and-fire (LIF) model,” considers discrete multivariate time series data with unobserved

network structure. We consider the task of inferring edges while assuming a scientific form for the

generative model that involves the latent network structure. We take an innovative and novel

approach to the inference problem assuming a Leaky Integrate-and-Fire (LIF) model for neuronal

dynamics.

2



Chapter 1: Spectral Clustering for Directed Networks

Community detection is a central topic in network science, where the community structure

observed in many real networks is sought through the principled clustering of nodes. Spectral

methods give well-established approaches to the problem in the undirected setting; however, they

generally do not account for edge directionality. We consider a directed spectral method that utilizes

a graph Laplacian defined for non-symmetric adjacency matrices. We give the theoretical motivation

behind this directed graph Laplacian, and demonstrate its connection to an objective function that

reflects a notion of how communities of nodes in directed networks should behave. Applying

the method to directed networks, we compare the results to an approach using a symmetrized

version of the adjacency matrices. A simulation study with a directed stochastic block model

shows that directed spectral clustering can succeed where the symmetrized approach fails. And

we find interesting and informative differences between the two approaches in the application to

Congressional cosponsorship data.

1.1 Introduction

The goal of community detection–one of the most popular topics in statistical network analysis–

is to identify groups of nodes that are more similar to each other than to other nodes in the network.

Determining the number of communities in a given network and the community assignments

gives key insight into the network structure, creating a natural dimensionality reduction of the

data. Moreover, the existence of clusters of highly connected nodes is a feature of many empirical

networks ([4], [5]). Though there is growing research for directed networks ([6], [7]), community

detection is best understood and most often implemented on undirected networks. In directed

networks, edge directionality is often fundamental, and communities of nodes may be characterized
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by asymmetric relations. Consider, for example, citations, twitter follows and webpage hyperlinks.

Properly accounting for edge directionality when analyzing such network data is very important.

Community detection is a clustering problem and requires an explicit notion of similarity

between nodes. In general, clustering algorithms fall into two categories. There is model based

clustering, which includes fitting procedures of a model with well-defined clusters, and there are

methods motivated by what clusters of the data objects should look like. These methods specify a

related objective function, and partition the data to optimize it, often approximately. For points in

R𝑛, Gaussian mixture modeling falls in the first category, while 𝑘-means falls in the second. The

most popular community detection algorithms, including spectral clustering [8] and modularity

[4], fall in the second category. However, these methods have been shown to provide consistent

clustering for certain random graph models ([9], [10]).

A broadly applicable method for clustering relational data, spectral clustering requires a similar-

ity matrix between the data objects. For graph representations of network data, the adjacency matrix

of edge weights provides measures of similarity between all nodes. Thus spectral clustering is a

natural choice for community detection. Spectral clustering is particularly well understood in the

symmetric, undirected setting [11]. The problem is more complicated in the more general setting of

weighted, undirected networks, which we consider. Building from [12] and [13], this paper presents

some of the theory of spectral clustering for directed networks, as well as two applications.

Section 1.1.1 motivates spectral clustering, Section 1.1.2 presents its general framework, and

Section 1.2 explains our approach to spectral clustering for directed graphs. Sections 1.3 and

1.4 delve into applications—a stochastic block model simulation study and an analysis of recent

cosponsorship data from the U.S. Senate.

1.1.1 Motivation

In order to motivate the use of spectral clustering for directed networks, we consider a toy

example involving points in R2.

Fig. 1.1a shows the points we wish separate into two spiral-shaped clusters. In Fig. 1.1b, 𝑘-
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Points to cluster

(a)

k−means

(b)

Spectral clustering

(c)

Figure 1.1: Clustering of points in R2 with 𝑘-means and spectral clustering.

means clustering fails to do this properly, since the clusters that we wish to capture have overlapping

means. In Fig. 1.1c, spectral clustering properly separates the points.

Here we have defined a similarity matrix𝑊𝑖 𝑗 as the inverse Euclidean distance between points 𝑖

and 𝑗 if point 𝑗 is among point 𝑖’s four nearest neighbors, otherwise zero. The potential asymmetry

of nearest neighbor relations means𝑊 is not symmetric, in general. Using our directed approach to

spectral clustering, we are able to easily separate the points.

1.1.2 General spectral clustering algorithm

Consider the problem of partitioning 𝑛 individual entities into 𝑘 subsets. Generally spectral

clustering ([11], [14]) proceeds in this way:

Algorithm 1 General spectral clustering

1. From data, construct an similarity matrix𝑊 ∈ R𝑛×𝑛, where𝑊𝑖 𝑗 ≥ 0 and𝑊𝑖𝑖 = 0.

2. Compute a Laplacian 𝐿 ∈ R𝑛×𝑛 from𝑊 .

3. Compute first 𝑘 eigenvectors of 𝐿, and combine into matrix 𝑋 .

4. Cluster rows of 𝑋 by 𝑘-means, or some other unsupervised algorithm.

5. Assign the original 𝑖th entity to cluster ℓ iff the 𝑖th row of 𝑋 is assigned to ℓ.
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Within this general framework, different approaches depend on the choice of Laplacian 𝐿,

the inferring of 𝑘 , manipulating of the eigenvectors in step 3 and the clustering method in step 4.

Notable variations include principled eigenvector selection and clustering by Gaussian mixture

modeling in [15], and Spectral Clustering On Ratios-of-Eigenvectors (SCORE) in [16], which

relates to our approach, as detailed below.

For network-as-graph data, we begin with an adjacency matrix, and can skip directly to step

2. However, for directed networks, this 𝑊 is not symmetric, and thus complicates the choice of

Laplacian 𝐿. In the following section we motivate a graph Laplacian for directed, weighted networks,

building towards it from an objective function corresponding to a notion of how communities should

behave.

1.2 Spectral clustering for directed graphs

We begin with a directed, weighted graph 𝐺 = (V, E) with 𝑛 vertices, represented by the

adjacency matrix𝑊 . For a given 𝑘 , 2 ≤ 𝑘 ≪ 𝑛, we seek a ‘best’ partition 𝑆1, ..., 𝑆𝑘 ofV, one that

maximizes within-cluster similarity while minimizing between-cluster similarity. We consider a

notion of similarity related to the behavior of a random walk on the verticesV.

To introduce this random walk, we begin with a few assumptions. We assume 𝐺 is strongly

connected, that is, for all 𝑖, 𝑗 ∈ V there exists a directed path 𝑖 → 𝑗 . Note that breaking up a

network into its connected components is a natural first step in community detection. We also

assume that 𝐺 is aperiodic. We define a transition probability matrix 𝑃 by 𝑃𝑖 𝑗 B 𝑊𝑖 𝑗/𝑑out
𝑖 , where

𝑑out
𝑖 =

∑
𝑗 𝑊𝑖 𝑗 is the weighted out-degree of node 𝑖. Note 𝑃 = 𝐷−1𝑊 , where 𝐷 is diagonal with

𝐷𝑖𝑖 = 𝑑out
𝑖 . 𝑃 is an irreducible aperiodic stochastic matrix, and thus has a unique stationary vector

𝜋 > 0 satisfying 𝜋𝑇𝑃 = 𝜋𝑇 ,
∑
𝑖 𝜋𝑖 = 1. We define 𝚷 to be the diagonal matrix with 𝚷𝑖𝑖 = 𝜋𝑖, which

we will use in the sequel.

With 𝑃 and 𝜋 it is natural to define a random walk (𝑁𝑡)𝑡∈N onV. In particular we can initialize

the random walk according to 𝜋 and then transition between nodes according to 𝑃. For a network

with strong community structure, we expect this random walk to stay within the true communities
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more often than move between them. This leads to a notion of a ‘good’ community 𝑆—given that

the random walk is on one of its nodes, the probability that next step jumps to a different community,

i.e. P(𝑁𝑡+1 ∉ 𝑆 |𝑁𝑡 ∈ 𝑆), should be relatively low. The sum of these conditional probabilities across

all communities in a given 𝑘-partition provides an objective function to minimize. In particular, we

wish to find community assignments that solve:

min
𝑆1,...,𝑆𝑘

∑︁
1≤ℓ≤𝑘

P(𝑁𝑡+1 ∉ 𝑆ℓ |𝑁𝑡 ∈ 𝑆ℓ). (1.1)

It is important to note that this objective function measuring the community assignments 𝑆1, ..., 𝑆𝑘

takes fully into account the directionality of edges in 𝐺. This follows because the random walk

𝑁𝑡 comes from the asymmetric transition matrix 𝑃 = 𝐷−1𝑊 . This objective is equivalent to the

normalized cut criterion NCut(𝑆1, ..., 𝑆𝑘 ) for directed graphs in [12].

In (1.1) we have a discrete, non-convex optimization problem that is not readily solvable.

Searching over all 𝑘-partitions is computationally intractable for even small networks. For example,

there are over 580 million ways to divide 20 objects into 3 non-empty sets! Seeking an approximation

solution, we proceed by rewriting the optimization problem in a form with a convex relaxation.

From 𝐺 and a 𝑘-partition 𝑆1, ..., 𝑆𝑘 of [𝑛], we define 𝒈 = [𝑔1 ... 𝑔𝑘 ] ∈ R𝑛×𝑘 by

𝑔ℓ𝑖 =


√
𝜋𝑖√∑

𝑗∈𝑆ℓ 𝜋 𝑗
if 𝑖 ∈ 𝑆ℓ

0 otherwise.

This matrix encodes the node assignments of 𝑆1, ..., 𝑆𝑘 , has orthonormal columns, and can be shown

(we do not go through the details here) to satisfy the equality

Tr(𝒈𝑇𝐿𝒈) =
∑︁

1≤ℓ≤𝑘
P(𝑁𝑡+1 ∉ 𝑆ℓ |𝑁𝑡 ∈ 𝑆ℓ), (1.2)

where 𝐿 = 𝐼 − 𝚷1/2𝑃𝚷−1/2+𝚷−1/2𝑃𝑇𝚷1/2
2 is the graph Laplacian matrix for directed networks first

proposed in [13]. Thus the optimization problem (1.1) is rewritten as the minimization of the left
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hand side of (1.2). While this formulation is no easier to solve exactly, it has a natural convex

relaxation:

min
𝑉∈R𝑛×𝑘
𝑉𝑇𝑉=𝐼

Tr(𝑉𝑇𝐿𝑉).

Here we are minimizing a Rayleigh quotient, so that a solution is the matrix 𝑋 with columns given

by normalized eigenvectors corresponding to the 𝑘 smallest eigenvalues of 𝐿.

What remains is to determine a clustering from these eigenvectors of 𝐿, which constitute a loose

approximation to the highly structured 𝒈. Hence step 4 of the spectral clustering algorithm, for which

we use 𝑘-means to create a partition. Note that 0 is the smallest eigenvalue of 𝐿, corresponding to

eigenvector
√
𝜋. Now the stationary vector 𝜋 describes the limiting behavior of the random walk 𝑁𝑡

onV and relates to the degree distribution of 𝐺. It seems reasonable to question whether clustering

should depend on the stationary distribution 𝜋, since this limiting behavior may be ancillary to

existing community structure.

These considerations motivate clustering the rows of a transformed version of 𝑋 , 𝑋∗ = 𝚷−1/2𝑋 .

Here the 𝑖th entry of each eigenvector is divided by
√
𝜋𝑖. The first column of 𝚷−1/2𝑋 will be

constant and equal to one, and therefore can be discarded. This ‘dividing out’ of the leading

eigenvector agrees with the SCORE method for undirected networks. In [16], it is shown that the

largely ancillary effects of degree heterogeneity in the Degree Corrected Stochastic Block Model

are effectively removed by taking such entry-wise ratios.

In practice, when applied to various networks induced by the congressional co-sponsorship data

discussed below, the values of the objective function (1.1) are consistently lower when clustering on

the rows of 𝚷−1/2𝑋 as opposed to 𝑋 , suggesting better resulting communities.

We now present in full our approach to spectral clustering for directed networks. We begin

with a weighted, directed graph 𝐺 defined by the adjacency matrix𝑊 , and a specified number of

communities 𝑘 . This is a modified version of Algorithm 1, above.

Algorithm 2 Spectral clustering for directed networks

1. From𝑊 , compute 𝑃, 𝚷 and 𝐿 = 𝐼 − 𝚷1/2𝑃𝚷−1/2+𝚷−1/2𝑃𝑇𝚷1/2
2 .

8



2. Compute the 𝑘 − 1 eigenvectors corresponding to the 2nd-𝑘 th smallest eigenvalues of 𝐿, and

combine into matrix 𝑋 .

3. Compute 𝑋∗ = 𝚷−1/2𝑋 , and normalize its columns.

4. Cluster rows of normalized 𝑋∗ into 𝑘 groups 1, ..., 𝑘 by 𝑘-means.

5. Assign 𝑖th node of 𝐺 to community ℓ if and only if 𝑖th row of 𝑋∗ is assigned to ℓ.

The computational complexity of this algorithm comes mostly from obtaining the 𝑘 leading

eigenvectors of 𝐿. The simple power method can be used to find leading eigenvectors, and when

the adjacency matrix is sparse, as in many network applications, this complexity is slightly larger

than 𝑂 (𝑘𝑛2) ([17], [16]).

Note that when the adjacency matrix𝑊 is symmetric, we have that 𝐿 = 𝐼 −𝐷−1/2𝑊𝐷1/2, which

is precisely the normalized Laplacian 𝐿sym for symmetric similarity matrices used in [14] and

highlighted in [11]. This follows since 𝜋𝑇 = (𝑑out
1 , ..., 𝑑out

𝑛 )/
∑
𝑖 𝑑

out
𝑖 when𝑊𝑇 = 𝑊 .

The question naturally arises as to how to choose 𝑘 , the number of communities. This is an

important question in all clustering problems. While there may exist prior knowledge about the true

number of communities in a given network, often 𝑘 is unknown, unfixed and needing to be learned

from the data. In general, for clustering algorithms, there are many methods for choosing 𝑘 . One

method devised particularly for spectral clustering is the eigengap heuristic [11]. It stipulates that

we should choose 𝑘 such that the first (smallest) 𝑘 eigenvalues _1, ..., _𝑘 are relatively small, but

_𝑘+1 is relatively large. We follow the eigengap heuristic in the applications below, choosing values

of 𝑘 such that _𝑘+1 − _𝑘 is relatively large.

1.3 Simulation study

We test the directed spectral clustering algorithm on networks simulated from a directed

stochastic block model (SBM). Good performance on SBMs [18] is considered a necessary condition

for useful community detection algorithms. However, block models do not account for complexities

observed in many empirical networks, and thus do not alone provide sufficient criteria [9].
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To generate a directed binary adjacency matrix 𝑊 ∈ {0, 1}𝑛×𝑛, we assign 𝑛 nodes randomly

to communities 1, 2 and 3 with probabilities .3, .3 and .4, respectively, and then simulate an

independent Bernoulli edge for each directed pair (𝑖, 𝑗), 𝑖 ≠ 𝑗 of nodes with probability 𝑧𝑇𝑖 𝑍𝑧 𝑗 ,

where

𝑄 =


.3 .01 .01

.3 .3 .01

.25 .01 .3


and 𝑧1, ..., 𝑧𝑛 encode the community assignments.

We compare the performance of applying Algorithm 2 with 𝑊 to an undirected approach in

which we apply Algorithm 2 with 𝑊sym = 𝑊 + 𝑊𝑇 . With this symmetrization, we effectively

regard each directed edge as undirected. Using a naive graph transformation like𝑊sym is a common

approach to community detection for directed networks ([6]). However, ignoring information about

directionality can be problematic, and by using𝑊sym, we lose key information to help determine

the correct 𝑘 , and distinguish between communities 1 and 2.

(a) Directed, k=3 (b) Symmetrized, k=3 (c) Symmetrized, k=2

Figure 1.2: Sociograms of the simulated network of size 25.

Fig. 1.2 shows a single simulated network of size 𝑛 = 25 along with the clustering results.

Using the directed adjacency matrix and 𝑘 = 3, Algorithm 2 nearly recovers the true communities,

misclassifying just one node. On the other hand, the results of Algorithm 2 with the symmetrized

adjacency matrix𝑊sym and 𝑘 = 3 combine nodes from communities 1 and 2, and split the nodes of

group 3 into two clusters. For 𝑘 = 2, the symmetrized approach nearly recovers group 3.
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Increasing the size of the simulated network to 𝑛 = 100 tells a somewhat similar story, with

improvements for the symmetrized approach. Fig. 1.3 shows the simulated network as adjacency

matrix heatmaps. The block structure associated with the true groupings in Fig. 1.3a is clear. While

node indices vary across the three panels, the estimated clusters in Fig. 1.3b-c are arranged to best

align with the true blocks. Fig. 1.3b shows again the near recovery of the true community structure

by directed spectral clustering. In Fig. 1.3c it is clear that the symmetrized approach with continues

to struggle to separate the communities correctly.

(a) True groups

 

(b) Directed, k=3

NMI=0.89

(c) Symmetrized, k=3

NMI=0.7

Figure 1.3: Adjacency matrix heatmaps of a simulated network of size 100.

Across the bottom of Fig. 1.3b-c is the Normalized Mutual Information (NMI) measure between

the true communities and the estimated clusterings. A value of 1 indicates exact agreement up to

cluster relabeling. NMI is an information theoretic measure, relating the information needed to

infer one cluster from the other. NMI satisfies desirable normalization and metric properties, and is

adjusted for chance [19].

Fig. 1.4 summarizes results of the spectral approaches on 100 repeated simulations of the same

stochastic blockmodel, for increasing numbers of nodes. Assuming the number of communities 𝑘 is

unknown, we would need to infer it from the data. Fig. 1.4a shows the proportion of simulations

where the eigengap heuristic correctly chooses 𝑘 = 3 over 𝑘 = 2. This is shown separately based on

eigenvalues from the directed and symmetrized approaches. Under the directed approach, the rate

at which the eigengap heuristic chooses correctly increases with the network size, reaching 100%
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Figure 1.4: Results of spectral approaches on 100 simulations at each network size. (a): Proportion
of simulations where the eigengap heuristic correctly chooses 𝑘 = 3 over 𝑘 = 2. (b): NMI between
true grouping and estimated clusterings.

for 𝑛 = 400. On the other hand, under the symmetrized approach, the heuristic always chooses

𝑘 = 2 over 𝑘 = 3, for 𝑛 ≥ 50. Thus despite the success of the symmetrized approach as 𝑛 increases

(as seen in Fig. 1.4b), without prior knowledge, we would choose 𝑘 = 2 communities rather than

𝑘 = 3. Overall, Fig. 1.4b shows the superior performance the directed approach with 𝑘 = 3, which

consistently achieves an exact recovery of the true communities for 𝑛 ≥ 200.

We found that skipping step 3 of Algorithm 2, and not ‘dividing out’ the first eigenvector

leads to better performance on these simulations. This makes sense because there is no degree

heterogeneity within communities, and, moreover, community assignment is characterized by the

in- and out-degree distributions. In such cases it is better to cluster the rows of 𝑋 , not 𝑋∗.

1.4 Congressional cosponsorship

Cosponsorship of bills in the U.S. Congress constitutes directed relational data. Previous network

analysis of cosponsorship is found in [20]. Undirected modularity based community detection is

applied to these networks in [21].

Every bill or amendment in Congress has one sponsor who introduces the measure, and may

have one or more cosponsors, whose cosponsorship is generally viewed as an indication of support
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[22]. We represent cosponsorship of a bill as a set of directed binary edges from cosponsor to

sponsor, one for each of the bill’s cosponsors, and we consider the weighted, directed graphs among

members of Congress created by counting these directed binary edges across a set of bills and

amendments. In this paper we analyze 21 months of Senate legislation from January 1, 2019

to September 30, 2020. This constitutes the data available at the time of writing from the 116th

Congress. It includes 1,377 bills and amendments, from which we extract 7,667 cosponsorship

edges.
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(b) Symmetrized, k=2
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(c) Directed, k=3
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(d) Symmetrized, k=3

Figure 1.5: Embeddings of Senators from ratios of eigenvectors of the Laplacian, with clustering
boundaries from 𝑘-means.

The largest strongly connected component of the 116th Senate cosponsorship network includes

99 Senators, and contains 4,029 directed, weighted edges. We apply Algorithm 2 with the weighted

directed adjacency matrix𝑊 , as well as with the naively symmetrized matrix𝑊sym = 𝑊 +𝑊𝑇 . In

both approaches, the eigengap heuristic does not provide strong evidence of community structure,

with the first difference dominating. However, the second and third eigengaps are larger than the

rest, indicating the possibility of 𝑘 = 2 or 𝑘 = 3 communities. Prior knowledge of the U.S. two party
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system along with current polarization points to 𝑘 = 2; however, the persistent need for bipartisan

legislation and the existence of moderate lawmakers on both sides suggests the possibility of 𝑘 > 2.

Fig. 1.5 shows results of the two spectral clustering approaches for 𝑘 = 2 and 𝑘 = 3 communities.

Here we plot the columns of 𝑋∗ from step 3 of Algorithm 2, along with the decision boundary

separating the detected communities. The colors indicate party affiliation—blue for Democrat,

green for Independent, and red for Republican. The results for 𝑘 = 2 (Fig. 1.5a-b) are similar for the

directed and symmetrized approaches, with, respectively, 85 and 86 percent of Senators clustered

with the majority of their party, excluding independents.
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Figure 1.6: Geographic relation of directed spectral clustering results on the 116th Senate, for 𝑘 = 3.

The results for 𝑘 = 3 (Fig. 1.5c-d), however, differ greatly between the two approaches. The

directed approach detects balanced and relatively well-separated communities, two of which align

closely with party, and one that contains a mix of Republicans and Democrats mainly from the

Plains, Mountain West, Southwest, and non-contiguous states. Fig. 1.6 shows the full geographic

correspondence of the detected communities. Meanwhile, the symmetrized approach detects one

diffuse and separated community of four Democrats and four Republicans, and splits the remaining

Senators roughly along the same lines as in Fig. 1.5b.
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Figure 1.7: Senate cosponsorship with clustering and embedding from Algorithm 2.

In Fig. 1.7 we use the same embedding as Fig. 1.5c to lay out a sociogram of the Senate

cosponsorship network. In general, since spectral clustering methods provide embeddings, we can

use them for visualization. The node interior coloring corresponds to detected communities, while

the node outline color indicates party. Within cluster edges are brown, while between cluster edges

are colored according to the community assignments of the cosponsor and sponsor nodes.

The imbalance of flows within and between clusters is apparent. We see a higher concentration
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of brown edges among the Republican core in the top right, and more inter-cluster out edges (purple

and red) than inter-cluster in edges (yellow and green) for the Democrats in the top left. These

patterns are borne out more clearly by the inter and intra community intensities in Fig. 1.8. Here we

show the observed cosponsorship counts divided by the number of pairs of distinct legislators. The

rows correspond, in order, to the blue (Democrat), green (mixed) and red (Republican) communities.

The directed approach reflects inter-community asymmetries, while the symmetrized approach does

not.

A notable feature of Fig. 1.7 and an exception to the patterns discussed above are four very

prominent green edges from Republicans Graham, Lee, Paul and Young into Menendez (D-NJ) at

the top middle, mirrored by three prominent brown edges into Menendez from Democrats Leahy,

Murphy and Reed. These are precisely the eight Senators clustered together by the symmetrized

approach with 𝑘 = 3, appearing at the bottom of Fig. 1.5d. We isolate this star-like subnetwork in

Fig. 1.9. Here we include three nodes for the remaining Senators of each detected community and

show the combined weighted edges between the eight individual Senators and these ‘remaining’

clusters. The edges flowing into Menendez are blue, those flowing out from Menendez are red, and

the rest are grey.

1.3

0.54

0.38

0.87

1.17

0.42

0.66

0.77

0.92

Figure 1.8: Inter and intra community intensities

Each blue edge from the Senators besides Menendez represents more than 23 cosponsorships,

combining for a total of 174. Menendez is the minority ranking member of the Committee
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Figure 1.9: Collapsed subnetwork

on Foreign Relations, and 169 of these cosponsorships involve international affairs legislation.

Menendez cosponsors just 4 bills in return, and the ‘other seven’ have only 18 cosponsorships

among themselves. Meanwhile, all four democrats exchange heavily with the remaining Senators

in cluster 1, while the Republicans exchange with those remaining in cluster 3. Considering edge

directionaliy, these eight Senators do not form a natural community within the context of the entire

network. The directed approach reflects this, splitting these Senators along party lines. Unable to

account for the patent asymmetry, the symmetrized approach allows the high weight of the edges

flowing into Menendez to pull these Senators closer together, distorting the entire embedding, as

seen in Fig. 1.5d, and classifying them as a separate community.

Data Note. Bill cosponsorship data is available from the the ProPublica Congress API [23].

Amendment cosposorship is obtained directly from Congress.gov [24].

1.5 Conclusion

In this paper we presented a variation of the general spectral clustering algorithm adopted for

community detection on directed networks. We described the theoretical motivation behind the

directed graph Laplacian, showing its connection to an objective function that reflects a notion

of how communities of nodes in directed networks should behave. We applied our algorithm to
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simulated and empirical networks, and found encouraging and insightful results. When we ignore

edge directionality by using a symmetrized adjacency matrix, we observe different results and worse

performance on the simulated networks.

We see clear advantages to taking full account of the directionality of edges in complex networks.

This is an important area of continued research, both from a theoretical and applied perspective.

1.6 Chapter 1 Appendix

This appendix provides details for the derivations in Section 1.2. Our work here follows [12],

where derivations are given for case where 𝑘 = 2. It is not entirely trivial to move to the case

considered here, where 𝑘 > 2.

For any subset 𝑆 ⊂ V, we define the outboundary 𝜕𝑆 := {(𝑢, 𝑣) ∈ E : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆𝑐}. Further

we define Vol(𝑆) = ∑
𝑢∈𝑆 𝜋(𝑢) and Vol(𝜕𝑆) = ∑

(𝑢,𝑣)∈𝜕𝑆 𝜋(𝑢)𝑝(𝑢, 𝑣). In [12], the normalized cut

criterion for directed graphs is defined:

NCut(𝑆1, ..., 𝑆𝑘 ) =
∑︁

1≤ℓ≤𝑘

Vol(𝜕𝑆ℓ)
Vol(𝑆ℓ) . (1.3)

To see that this is equal to the sum of conditional probabilities in (1.1), we note that

P(𝑁𝑡+1 ∉ 𝑆 |𝑁𝑡 ∈ 𝑆) = P(𝑁𝑡+1 ∉ 𝑆, 𝑁𝑡 ∈ 𝑆)
P(𝑁𝑡 ∈ 𝑆)

=

∑
𝑢∈𝑆,𝑣∈𝑆𝑐 P(𝑁𝑡+1 = 𝑣 |𝑁𝑡 = 𝑢)P(𝑁𝑡 = 𝑢)∑

𝑢∈𝑆 P(𝑁𝑡 = 𝑢)
=

Vol(𝜕𝑆)
Vol(𝑆) . (1.4)

Next we will prove the equality (1.2). We can think of the columns of 𝒈, defined above in Section
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1.2, as mappings {𝑔ℓ : V → R}, where

𝑔ℓ (𝑢) =

√
𝜋(𝑢)√

Vol(𝑆ℓ )
if 𝑢 ∈ 𝑆ℓ

0 otherwise.

Now let’s consider the functional Ω on all mappings {𝑔 : V → R} given by

Ω(𝑔) = 1
2

∑︁
(𝑢,𝑣)∈E

𝜋(𝑢)𝑝(𝑢, 𝑣)
(
𝑔(𝑢)√︁
𝜋(𝑢)

− 𝑔(𝑣)√︁
𝜋(𝑣)

)2

.

On the one hand we have for ℓ = 1, ..., 𝑘 ,

Ω(𝑔ℓ) = 1
2Vol(𝑆ℓ)

©«
∑︁

(𝑢,𝑣)∈𝜕𝑆ℓ
𝜋(𝑢)𝑝(𝑢, 𝑣) +

∑︁
(𝑢,𝑣)∈𝜕𝑆𝑐

ℓ

𝜋(𝑢)𝑝(𝑢, 𝑣)ª®¬ =
Vol(𝜕𝑆ℓ)
Vol(𝑆ℓ) . (1.5)

Here we have used the fact that Vol(𝜕𝑆ℓ) = Vol(𝜕𝑆𝑐ℓ ), which follows from:

∑︁
(𝑢,𝑣)∈𝜕𝑆

𝜋(𝑢)𝑝(𝑢, 𝑣) =
∑︁
𝑢∈V

∑︁
𝑣∈𝑆𝑐

𝜋(𝑢)𝑝(𝑢, 𝑣) −
∑︁
𝑢∈𝑆𝑐

∑︁
𝑣∈𝑆𝑐

𝜋(𝑢)𝑝(𝑢, 𝑣)

=
∑︁
𝑣∈𝑆𝑐

𝜋(𝑣) −
∑︁
𝑢∈𝑆𝑐

∑︁
𝑣∈𝑆𝑐

𝜋(𝑢)𝑝(𝑢, 𝑣)

=
∑︁
𝑣∈𝑆𝑐

∑︁
𝑢∈V

𝜋(𝑣)𝑝(𝑣, 𝑢) −
∑︁
𝑢∈𝑆𝑐

∑︁
𝑣∈𝑆𝑐

𝜋(𝑢)𝑝(𝑢, 𝑣)

=
∑︁
𝑣∈𝑆𝑐

∑︁
𝑢∈𝑆

𝜋(𝑣)𝑝(𝑣, 𝑢).
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On the other hand, for 𝑔 ∈ {𝑔 : V → R}, we can write Ω(𝑔) = 1
4 (𝐴(𝑔) + 𝐵(𝑔)), where

𝐴(𝑔) =
∑︁
𝑣∈V

∑︁
𝑢:(𝑢,𝑣)∈E

𝜋(𝑢)𝑝(𝑢, 𝑣)
(
𝑔(𝑢)√︁
𝜋(𝑢)

− 𝑔(𝑣)√︁
𝜋(𝑣)

)2

=
∑︁
𝑣∈V

∑︁
𝑢:(𝑢,𝑣)∈E

𝑝(𝑢, 𝑣)𝑔(𝑢)2 − 2
√︁
𝜋(𝑢)𝑝(𝑢, 𝑣)𝑔(𝑢)𝑔(𝑣)√︁

𝜋(𝑢)
+ 𝜋(𝑢)𝑝(𝑢, 𝑣)𝑔(𝑣)

2

𝜋(𝑣)

=
∑︁
𝑢∈V

𝑔(𝑢)2 +
∑︁
𝑣∈V

𝜋(𝑣)𝑔(𝑣)2
𝜋(𝑣) − 2

∑︁
𝑣∈V

∑︁
𝑢∈V

√︁
𝜋(𝑢)𝑝(𝑢, 𝑣)𝑔(𝑢)𝑔(𝑣)√︁

𝜋(𝑢)

= 2𝑔𝑇𝑔 − 2𝑔𝑇𝚷1/2𝑃𝚷−1/2𝑔,

and analogously,

𝐵(𝑔) =
∑︁
𝑣∈V

∑︁
𝑢:(𝑣,𝑢)∈E

𝜋(𝑣)𝑝(𝑣, 𝑢)
(
𝑔(𝑣)√︁
𝜋(𝑣)

− 𝑔(𝑢)√︁
𝜋(𝑢)

)2

= 2𝑔𝑇𝑔 − 2𝑔𝑇𝚷−1/2𝑃𝑇𝚷1/2𝑔.

Thus

Ω(𝑔) = 𝑔𝑇
(
𝐼 − 𝚷1/2𝑃𝚷−1/2 +𝚷−1/2𝑃𝑇𝚷1/2

2

)
𝑔.

Taking 𝐿 = 𝐼 − 𝚷1/2𝑃𝚷−1/2+𝚷−1/2𝑃𝑇𝚷1/2
2 , as above, and combining the previous equality with (1.3),

(1.4) and (1.5), we have

∑︁
1≤ℓ≤𝑘

P(𝑁𝑡+1 ∉ 𝑆ℓ |𝑁𝑡 ∈ 𝑆ℓ) = NCut(𝑆1, ..., 𝑆𝑘 ) =
∑︁

1≤ℓ≤𝑘
Ω(𝑔ℓ) = Tr(𝒈𝑇𝐿𝒈),

as desired.

20



Chapter 2: Count-Valued Time Series Models for COVID-19 Daily Death

Dynamics

We propose a generalized non-linear state-space model for count-valued time series of COVID-

19 fatalities. To capture the dynamic changes in daily COVID-19 death counts, we specify a

latent state process that involves second order differencing and an AR(1)-ARCH(1) model. These

modeling choices are motivated by the application and validated by model assessment. We consider

and fit a progression of Bayesian hierarchical models under this general framework. Using COVID-

19 daily death counts from New York City’s five boroughs, we evaluate and compare the considered

models through predictive model assessment. Our findings justify the elements included in the

proposed model. The proposed model is further applied to time series of COVID-19 deaths from

the four most populous counties in Texas. These model fits illuminate dynamics associated with

multiple dynamic phases and show the applicability of the framework to localities beyond New

York City.

2.1 Introduction

Since early 2020, the COVID-19 pandemic has posed a sustained threat to public health across

the globe. With more than 100 million confirmed cases and 2.15 million confirmed deaths across

192 territories [25]1, the infectious respiratory disease has spread, sickened and killed on an

unprecedented scale.

The staggering global totals arise from local, transient outbreaks, in which disease spreading

contacts, new cases and subsequent deaths are concentrated in space and time. Long range human

mobility creates contacts across the globe, and a few such links can carry an epidemic between

1JHU dashboard on January 26, 2021
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distant cities. Local contacts, however, drive the outbreaks of COVID-19, creating waves of cases

and then, later on, waves of hospitalizations and deaths.

In late February and early March, following the original outbreak in China and amid the

escalating situation in Europe, COVID-19 quietly took hold in New York City. At the time of the

city’s first confirmed case on March 1, it is estimated that there were over 10,000 infections [26].

Control measures were slow to be put in place, with bars, restaurants and schools staying open for

the next two weeks, and no public face covering requirement until April 15. New York City quickly

became the epicenter of the pandemic, with hospitals stretched, ICUs filling up, and sickened New

Yorkers dying at an alarming rate.

In this paper we assess how a dynamic model can track the trends in observed COVID-19

mortality data. We propose a non-linear state-space time series model that is fitted to daily COVID-

19 deaths in New York City, and we evaluate forecasts of held-out, look-ahead counts. Moreover,

we fit and assess a succession of models within the same framework, where the progression from

simpler to more complex is driven by the behavior we wish to capture—volatility in the region

of high curvature and the subsequent settling following the observed peak. We use second order

differencing to model these dynamics in order to de-trend the observed series and capture the

smoothness in the daily deaths curvature.

Mathematical epidemiological models can generally be characterized as either mechanistic

or ‘phenomenological’ [27]. Existing models of COVID-19 deaths fall in both categories [28],

[29], [30], [31]. Our model falls into the second category, using observed historical data to make

predictions, without explicitly accounting for any epidemiological mechanisms.

Good data alongside good modeling is essential for successful COVID-19 forecasting [32],

[33]. We use deaths reported by the New York City Department of Health [34]. These deaths are

confirmed by the City’s Office of the Chief Medical Examiner and the Health Department’s Bureau

of Vital Statistics, a measure that can improve uniformity and reliability [35]. The counts include

decedents who were NYC residents and had a positive laboratory test for the coronavirus. Figure

2.1 shows these confirmed counts in the five New York City boroughs in the spring of 2020.

22



Brooklyn Queens Manhattan The Bronx Staten Is.

3/16 4/13 5/11 6/08 3/16 4/13 5/11 6/08 3/16 4/13 5/11 6/08 3/16 4/13 5/11 6/08 3/16 4/13 5/11 6/08
0

10

20

30

0

50

100

0

25

50

75

100

0

50

100

150

200

0

50

100

150

200
D

ai
ly

 d
ea

th
s

Spring 2020 COVID−19 deaths in the five NYC Boroughs

Figure 2.1: One hundred days of New York City COVID-19 mortality data. The observed peak is
indicated in red.

This paper describes the statistical methods we employ and presents the results of applying these

methods to observed COVID-19 death counts. Section 2.2.1 introduces the modeling framework,

and Section 2.2.2 specifies the general form and progression of our considered models. Section

2.2.3 details the tools for predictive model assessment. In Section 2.3.1 we compare the progression

of model fits to New York City data. Sections 2.3.2 and 2.3.3 further examine fits from the proposed

model. Section 2.3.2 shows posterior estimates around the observed April peaks for all five NYC

boroughs, while Section 2.3.3 shows fits to longer series of observed deaths from the four most

populous Texas counties.

2.2 Methods

We take a nonlinear state-space model approach to modeling daily death counts. This approach

fits nicely into a hierarchical modeling framework for which Bayesian estimation methods are

accessible. Specifically, we use the Monte Carlo methods [36, 37] for fitting our model, obtaining

posterior samples of the model parameters. Out-of-sample look-ahead predictions are then found by

drawing from posterior predictive distributions.
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2.2.1 Model framework

Let 𝑦𝑡 be the observed daily count on day 𝑡. We assume that 𝑦𝑡 given _𝑡 follows a parametric

distribution for count data with mean _𝑡 . The dynamics of the time-varying mean _𝑡 is specified

through a latent state process 𝑠𝑡 , which updates according to a density that depends on the previous

state 𝑠𝑡−1.

Let 𝑝(𝑦𝑡 |_𝑡 , 𝛽) and 𝑝(𝑠𝑡 |𝑠𝑡−1, 𝛽) denote the conditional observational density and state update

density, respectively, where 𝛽 includes model parameters that do not vary with time. To complete

the Bayesian specification, we assign prior distributions 𝑝(𝛽) and 𝑝(𝑠1, ..., 𝑠𝑡0) to the conditioning

parameters 𝛽 and the initial states 𝑠1, ..., 𝑠𝑡0 , respectively. For second order differencing we must

initialize 𝑡0 = 3 states. The model specification is:

𝑦𝑡 ∼ 𝑝(𝑦𝑡 |_𝑡 , 𝛽), 𝑡 = 1, ..., 𝑇

_𝑡 ←[ 𝑠𝑡 𝑡 = 1, ..., 𝑇

𝑠𝑡 ∼ 𝑝(𝑠𝑡 |𝑠𝑡−1, 𝛽) 𝑡 = 𝑡0 + 1, ..., 𝑇

(𝑠1, ..., 𝑠𝑡0) ∼ 𝑝(𝑠1, ..., 𝑠𝑡0)

𝛽 ∼ 𝑝(𝛽),

(2.1)

where _𝑡 ←[ 𝑠𝑡 means that _𝑡 is encoded in the latent state 𝑠𝑡 . Given 𝑇 observations 𝑦1:𝑇 =

(𝑦1, ..., 𝑦𝑇 ), we can fit this generative model using Monte Carlo methods and obtain estimates of

the posterior distribution 𝑝(𝑠1:𝑇 , 𝛽 |𝑦1:𝑇 ).
We make 𝑘-day ahead forecasts based on the posterior predictive distribution

𝑝(𝑦𝑇+𝑘 |𝑦1:𝑇 ) =
∫
𝑝(𝑦𝑇+𝑘 |𝑠𝑇+𝑘 , 𝛽)

[
𝑘∏
ℓ=1

𝑝(𝑠𝑇+ℓ |𝑠𝑇+ℓ−1, 𝛽)
]
𝑝(𝑠𝑇 , 𝛽 |𝑦1:𝑇 ) d𝑠𝑇 :𝑇+𝑘 d𝛽. (2.2)

It is straightforward to sample from this distribution using the posterior samples from 𝑝(𝑠𝑇 , 𝛽 |𝑦1:𝑇 ).
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In particular we can draw:

(𝑠𝑇 , 𝛽) ∼ 𝑝(𝑠𝑇 , 𝛽 |𝑦1:𝑇 )

𝑠𝑇+ℓ ∼ 𝑝(𝑠𝑇+ℓ |𝑠𝑇+ℓ−1, 𝛽) ℓ = 1, ..., 𝑘

𝑦𝑇+𝑘 ∼ 𝑝(𝑦𝑇+𝑘 |𝑠𝑇+𝑘 , 𝛽).

(2.3)

A set of draws 𝑦 (1)𝑇+𝑘 , ..., 𝑦
(𝐵)
𝑇+𝑘 from (2.3) approximates (2.2). We make point estimates and

construct intervals from these draws, and evaluate predictive performance by considering an

associated loss. We assess model fit by considering held-out 𝑘-day ahead predictions relative to

these posterior predictive draws.

2.2.2 Models considered

Within this generalized state-space, parameter-driven modeling framework [38], we consider

and fit a sequence of models. These models vary in their observation equation 𝑝(𝑦𝑡 |_𝑡 , 𝛽) and state

update density 𝑝(𝑠𝑡 |𝑠𝑡−1, 𝛽). For the former, we begin with the most natural and simple choice, the

Poisson distribution, and later compare with the negative binomial distribution. The state update

density is specified according to an underlying process for the second order difference of log_𝑡 ,

which we denote by 𝛿𝑡 . For 𝑡 > 𝑡0. The model is

𝑝(𝑠𝑡 |𝑠𝑡−1, 𝛽) = 𝑝(𝛿𝑡 |𝛿𝑡−1, 𝜌, 𝛼0, 𝛼1)

𝛿𝑡 B ∇2 log_𝑡 = (log_𝑡 − log_𝑡−1) − (log_𝑡−1 − log_𝑡−2)

𝛿𝑡 = 𝜌 𝛿𝑡−1 +
√︃
𝛼0 + 𝛼1 𝛿

2
𝑡−1 𝜖𝑡 (2.4)

𝜖𝑡
iid∼ Normal(0, 1).

Under the model, 𝛿𝑡 = ∇2 log_𝑡 is assumed to follow an AR(1)-ARCH(1) process. This parametric

form of the state equation accommodates our beliefs about how second order differences drive the

dynamics of the observed daily counts. Note that since _𝑡 must be positive, it is natural to work with
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the logarithm of the underlying mean, log_𝑡 . In a wave of COVID-19 death counts, we expect the

𝛿𝑡’s to have high lag 1 autocorrelation and settle toward zero following the region of high curvature

around the peak. Our state equation can capture this behavior—if 𝜌 ∈ (0, 1) and 𝛼1 > 0, we have 𝛿𝑡

positively autocorrelated, and lim𝑡→∞E[𝛿𝑡 |𝛿𝑠] = 0. Moreover, 𝛿𝑡 is more concentrated around 0

when |𝛿𝑡−1 | is small.

The 𝛿𝑡 update depends on 𝛿𝑡−1 whenever at least one of 𝜌 or 𝛼1 is nonzero. In this case, 𝑡0 = 3,

and for 𝑡 ≥ 3, we explicitly define 𝑠𝑡 as the vector of length three containing log_𝑡 , the first order

difference log_𝑡 − log_𝑡−1, and the second order difference 𝛿𝑡 . Because of the twice-differencing,

three dimensions are necessary to satisfy the second and third lines of (2.1). If 𝜌 and 𝛼1 are both

zero, then 𝛿𝑡 is white noise, 𝑡0 = 2, and 𝑠𝑡 need only contain log_𝑡 and log_𝑡 − log_𝑡−1.

The update step (2.4) for 𝛿𝑡 has the general form of a first order autoregressive process with

ARCH(1) errors. Fixing the AR(1) and ARCH(1) terms (𝜌 and 𝛼1, respectively) gives rise to

boundary cases and simpler models: 𝛼1 = 0 gives iid noise; 𝜌 = 1 gives a random walk. We

consider a sequence of models that vary in their treatment of 𝜌 and 𝛼1, and grow in complexity.

Table 2.1 shows the progression of models. Note that when 𝛼1 is set to zero, we reparameterize

with 𝜎 =
√
𝛼0 for notational ease.

Table 2.1: Progression of models fit to New York City daily COVID-19 deaths
Model Observation dist. 𝛿𝑡 update† Parameters 𝛽 to fit 𝑡0 ‡
P(0,0) Poisson(_𝑡) 𝜎 𝜖𝑡 𝜎 2

P(1,0) Poisson(_𝑡) 𝛿𝑡−1 + 𝜎 𝜖𝑡 𝜎 3

P(𝜌,0) Poisson(_𝑡) 𝜌 𝛿𝑡−1 + 𝜎 𝜖𝑡 𝜌, 𝜎 3

P(𝜌,𝛼1) Poisson(_𝑡) 𝜌 𝛿𝑡−1 +
√︃
𝛼0 + 𝛼1 𝛿

2
𝑡−1 𝜖𝑡 𝜌, 𝛼0, 𝛼1 3

NB(𝜌,𝛼1) NegBinom(_𝑡 , 𝜙) 𝜌 𝛿𝑡−1 +
√︃
𝛼0 + 𝛼1 𝛿

2
𝑡−1 𝜖𝑡 𝜙, 𝜌, 𝛼0, 𝛼1 3

† 𝜖𝑡 iid∼ Normal(0, 1) ‡ 𝑡0 number initialized states

In our simplest model, P(0,0), we fix 𝜌 and 𝛼1 equal to zero, giving the white noise process

for 𝛿𝑡 discussed above. Keeping 𝛼1 = 0, we next consider a random walk for 𝛿𝑡 , setting 𝜌 = 1

in P(1,0). In P(𝜌,0) we introduce a prior on 𝜌 with support [0, 1]. Conditionally, 𝛿𝑡 now follows
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a stationary AR(1) process. In P(𝜌,𝛼1), we set priors for both 𝜌 and 𝛼1, so that conditionally 𝛿𝑡

follows a stationary AR(1)-ARCH(1) process. This is the most complicated state equation we

consider. We take this one step further in the NB(𝜌,𝛼1) case by introducing a negative binomial

observation distribution with scale parameter 𝜙, parameterized so that it has mean _𝑡 and variance

_𝑡 + _2
𝑡 /𝜙.

Each model in Table 2.1 has associated priors for the 𝛽 parameters and the initial states 𝑠1, ..., 𝑠𝑡0 .

In Appendix 2.6 we provide details of the full joint distribution for NB(𝜌,𝛼1). With the full joint

specified, we can use MCMC methods to fit each model. In Appendix 2.7 we give the stan model

code used to fit NB(𝜌,𝛼1).

2.2.3 Model assessment

We perform predictive model assessment in several ways based on posterior predictive draws

𝑦𝑇+𝑘 ∼ 𝑝(𝑦𝑇+𝑘 |𝑦1:𝑇 ) sampled according to (2.3). These evaluations allow us to meaningfully

compare the models in Table 2.1.

We make point and interval forecasts by taking quantiles of posterior predictive draws. We

produce forecasts and compare to observed data. As a summary measure of predictive performance,

we consider the absolute relative error of 7-day ahead cumulative death predictions���Median
(∑7

𝑘=1 𝑦𝑇+𝑘 |𝑦1:𝑇

)
−∑7

𝑘=1 𝑦𝑇+𝑘
���∑7

𝑘=1 𝑦𝑇+𝑘
. (2.5)

The other predictive model assessments we perform evaluate model fit using the full set of posterior

predictive draws.

Probability integral transform

The probability integral transform (PIT) is a useful tool generally used for assessing models for

continuous data; however, it can be extended to count-valued data. We use the nonrandomized PIT

histogram for count data proposed in [39] for assessing the fits of our considered models.
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We fit our model to observed counts 𝑦1:𝑇 , and make a 𝑘-day ahead prediction by sampling

posterior predictive draws, 𝑦 (1)𝑇+𝑘 , ..., 𝑦
(𝐵)
𝑇+𝑘 as in (2.3). We seek a probability integral transform to

assess this empirical predictive distribution against future observations 𝑦𝑇+𝑘 ∼ 𝐹𝑇+𝑘 . The empirical

predictive distribution function �̃�𝐵,𝑇+𝑘 is given by

�̃�𝐵,𝑇+𝑘 (𝑘) = 1
𝐵

𝐵∑︁
𝑏=1

1{𝑦 (𝑏)
𝑇+𝑘≤𝑘}

. (2.6)

If we successfully target the true predictive distribution, so that 𝑦 (1)𝑇+𝑘 , ..., 𝑦
(𝐵)
𝑇+𝑘

iid∼ 𝐹𝑇+𝑘 , then

lim𝐵→∞ �̃�𝐵 (𝑦𝑇+𝑘 ) = 𝐹𝑇+𝑘 (𝑦𝑇+𝑘 ), and it follows that the PIT using �̃�𝐵 (𝑦𝑇+𝑘 ) will be very close to

Uniform on the unit interval for 𝐵 large. For each model fit, we make 𝐵 = 4000 post-warmup

posterior draws.

Scoring rules

Scoring rules are another tool for predictive model assessment, providing a numerical score

𝑠(𝑃, 𝑦) based on a predictive distribution 𝑃 and an observation 𝑦. We consider two scoring rules,

the logarithm score and the ranked probability score. These scoring rules are strictly proper [39].

We average the scores over sets of look-ahead predictive distributions to compare the considered

models.

The logarithm score is defined as log(𝑃, 𝑦) = − log 𝑝(𝑦), where 𝑝(𝑥) is the probability of

observing 𝑦 under the predictive distribution 𝑃. We adapt this score to our framework for a 𝑘-day

ahead forecast as log(𝑃𝐵,𝑇+𝑘 , 𝑦𝑇+𝑘 ) = − log 𝑝𝐵,𝑇+𝑘 (𝑦𝑇+𝑘 ), where

𝑝𝐵,𝑇+𝑘 (𝑘) = 1
𝐵

𝐵∑︁
𝑏=1

1{𝑦 (𝑏)
𝑇+𝑘=𝑘}

+ 1
𝐵2 .

is an approximation of the true posterior predictive probability mass function. This is similar

to (2.6) above. We add the 1
𝐵2 term to avoid log(𝑃𝐵,𝑇+𝑘 , 𝑦𝑇+𝑘 ) = −∞ when 𝑦 (𝑏)𝑇+𝑘 ≠ 𝑦𝑇+𝑘 for all

𝑏 ∈ {1, ..., 𝐵}.
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The ranked probability score is defined as rps(𝑃, 𝑦) = ∑∞
𝑘=0 [𝑃(𝑘) − 1{𝑦≤𝑘}]2, where 𝑃(·) is the

cumulative distribution function under 𝑃. We take 𝑃(𝑘) = �̃�𝐵 (𝑦𝑇+𝑘 ), from (2.6). For both scoring

rules, smaller values indicate a better fit.

2.3 Results

We fit the models in Table 2.1 to multiple subsets of the New York City data. Each daily count

time series corresponds to a single borough and begins with the day of the first COVID-19 death

observed in that borough. Model assessment is based on a collection of these fits and their forecasts.

Comparing results across the considered models, we determine NB(𝜌,𝛼1) to be generally best at

capturing the observed dynamics in New York City’s daily COVID-19 death counts over various

ranges of the data. We further fit the NB(𝜌,𝛼1) model to daily COVID-19 deaths data from the four

most populous counties in Texas.

2.3.1 Model Comparison

Figures 2.2 and 2.3 illustrate how the progression of state equation specifications (𝛿𝑡 updates)

capture the dynamics of observed daily deaths around their peak. Here the models from Table

2.1 are fit to six ranges of Queens data. Figure 2.2 shows posterior estimates of the underlying

time-varying mean _𝑡 , along with observed deaths, while Figure 2.3 shows posterior estimates of 𝛿𝑡 .

Each subfigure corresponds to a different model fit. The rows align with Table 2.1 and each

column corresponds to a different training series, where 𝑇 is the number of training points. We

indicate where the final training day falls relative to the observed peak. For the top left subfigure,

𝑇 = 25 days of deaths are included in the training series, starting from the first confirmed COVID-19

death in Queens on March 11 and ending with the count from April 4, two days before the observed

peak. We plot approximate 90% posterior intervals and approximate posterior medians based on

Monte Carlo sampling. The red shaded regions show three weeks of out-of-sample, look-ahead

forecasts.

The first row of Figures 2.2 and 2.3 show estimates based on P(0,0). Under P(0,0), 𝛿𝑡 is
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Figure 2.2: Daily COVID-19 deaths in Queens along with estimates of underlying means _𝑡 . Red
shaded regions correspond to out-of-sample forecasts. Estimates vary by model and length of
training series (𝑇).

uncorrelated with 𝛿𝑡−1 and E[𝛿𝑡 |𝛿𝑡−1] = 0. These model features lead to poor forecasting around

the observed peak, where second order differences are negative with lag 1 autocorrelation. While

P(0,0) fails to capture the dynamics close to the peak, this model forecasts well when the training

series extends at least 18 days past the peak.

Under P(1,0), we have that E[𝛿𝑇+𝑘 |𝑦1:𝑇 ] = E[𝛿𝑇 |𝑦1:𝑇 ] for 𝑘 ≥ 1. This feature is seen clearly in

Figure 2.3, where the P(1,0) posterior predictive distributions for 𝛿𝑇+𝑘 remains centered around the

posterior mean of 𝛿𝑇 . In the first four columns, forecasts for 𝛿𝑡 stay negative, leading to a too quick

decrease in the corresponding _𝑡 forecasts.

Under P(𝜌,0) forecasts of 𝛿𝑡 increase gradually towards zero. This captures the dynamics of

the observed counts much more closely than the previous two models. However, while predictive

distributions for 𝛿𝑇+𝑘 become centered around zero, there is still much uncertainty, and this seems

to exaggerate the possibility of 𝛿𝑡 moving away from zero. Inclusion of the ARCH(1) term corrects
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Figure 2.3: Estimates of 𝛿𝑡 , the second order difference of the logarithm of the underlying mean.
Red shaded regions correspond to out-of-sample forecasts. Estimates vary by model and length of
training series (𝑇).

for this. In the P(𝜌,𝛼1) and NB(𝜌,𝛼1) models, there is more uncertainty in the second and third

columns where 𝛿𝑇 is negative, and less in the fifth and sixth where 𝛿𝑇 is close to zero. The final two

rows in Figures 2.2 and 2.3, corresponding to models P(𝜌,𝛼1) and NB(𝜌,𝛼1), are very similar. This

state update model is not able to properly predict the peak in the far left column, but performs well

in the period after the peak.

Table 2.2: Mean absolute relative error of 7-day ahead cumulative predictions
Absolute Relative Error (SE)

Model
peak–3 to
peak+3†

peak+4 to
peak+10†

peak+11 to
peak+17†

peak+18 to
peak+24†

P(0,0) .915 (.083) .440 (.086) .165 (.041) .113 (.015)
P(1,0) .146 (.018) .243 (.018) .202 (.020) .189 (.031)
P(𝜌,0) .208 (.042) .177 (.015) .145 (.013) .159 (.027)
P(𝜌,𝛼1) .320 (.053) .175 (.019) .099 (.010) .139 (.023)
NB(𝜌,𝛼1) .357 (.058) .168 (.022) .099 (.010) .138 (.023)

† peak-relative week in which the last training day falls.
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Table 2.2 shows mean absolute relative errors (2.5) along with their standard errors. We average

over the five NYC boroughs as well as the week-long range based on where the the final training

day falls relative to the observed peak. Each cell summarizes 5 × 7 = 35 values.

The P(1,0) model has the lowest absolute relative error when the final training day falls within 3

days of the observed peak. This follows since absolute errors are bounded for underestimates, and

the forecasts from P(1,0) decrease quickly to zero. The NB(𝜌,𝛼1) model has the lowest error when

the final training day falls 4 to 17 days after observed peak, while the P(0,0) model performs best

later on.

P(0, 0) P(1, 0) P(ρ, 0) P(ρ, α1) NB(ρ, α1)
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Figure 2.4: Nonrandomized PIT histograms for 1-day ahead predictive distributions.

Figure 2.4 compares the nonrandomized PIT histograms (Section 2.2.3) for 1-day ahead predic-

tions. Each histogram is based on 5 × 28 = 140 model fits, with the 28 training series from each

borough covering the same four peak-relative weeks in Table 2.2. The histograms corresponding to

the P(0,0), P(1,0) and P(𝜌,0) appear skewed. While we see some overdispersion for NB(𝜌,𝛼1), the

PITs for P(𝜌,𝛼1) and NB(𝜌,𝛼1) do not provide strong evidence that these models are incorrect.

Table 2.3 shows two proper scoring rules (Section 2.2.3) for the progression of models consid-

ered. These scores are averaged over the 21 days of forecasting for each model fit, the peak-relative

week of the final training day, and the five boroughs. Each entry is an average of 21 × 7 × 5 = 735

values.

According to these measures for predictive model assessment, the models with both the AR(1)

and ARCH(1) terms dominate when the final training day is 4 to 10 days after the peak, with
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Table 2.3: Scoring rules evaluated on the predictive distributions of considered models
Ranked probability score

Model
peak–3 to
peak+3†

peak+4 to
peak+10†

peak+11 to
peak+17†

peak+18 to
peak+24†

P(0,0) 350.88 26.41 5.16 3.59
P(1,0) 24.73 21.11 12.36 8.23
P(𝜌,0) 24.23 14.73 7.55 4.58
P(𝜌,𝛼1) 46.60 11.79 5.30 3.62
NB(𝜌,𝛼1) 52.22 10.98 5.34 3.58

Logarithm score

Model
peak–3 to
peak+3†

peak+4 to
peak+10†

peak+11 to
peak+17†

peak+18 to
peak+24†

P(0,0) 13.36 6.61 3.56 3.17
P(1,0) 6.04 6.14 4.47 3.82
P(𝜌,0) 4.98 4.90 4.00 3.45
P(𝜌,𝛼1) 5.42 4.41 3.59 3.24
NB(𝜌,𝛼1) 5.46 4.39 3.62 3.25

† peak-relative week in which the last training day falls.

NB(𝜌,𝛼1) performing the better of the two. The P(𝜌,𝛼1) and NB(𝜌,𝛼1) models have logarithm

scores close to the lowest for the other peak-relative weeks, and NB(𝜌,𝛼1) has the lowest ranked

probability score when the final training day is 18 to 24 days after the peak. We again see how

P(0,0) performs well relative to the others in the later weeks, but very poorly when the final training

day is close to the peak.

2.3.2 Fits around peak for all five boroughs

Figures 2.5 and 2.6 show further posterior estimates from NB(𝜌,𝛼1). We fit the model to counts

from all five New York City boroughs, with final training days concentrated around the two weeks

following the observed peaks. Again we plot approximate 90% posterior intervals and approximate

posterior medians for _𝑡 and 𝛿𝑡 , which are based on posterior samples.

The trajectories of the posterior estimates of 𝛿𝑡 show a similar pattern across the five boroughs—

an increase towards zero with less posterior predictive uncertainty as more training points are

included. For Brooklyn, Queens and The Bronx there is a temporary flattening out or even decrease

in 𝛿𝑡 around two weeks before the peak. For Brooklyn and The Bronx, the peak of the posterior
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Figure 2.5: Estimates of _𝑡 from collection of NB(𝜌,𝛼1) model fits. The red shaded regions show
out-of-sample posterior predictive forecasting. The points are observed actual deaths.

_𝑡 estimates falls before the observed peak, while for Queens there appears to be a sort of double

observed peak, and the maximum posterior _𝑡 is closer to the first.

In the far left hand column in Figure 2.5, we see a failure to recognize that the peak has been

reached for Queens, Manhattan and Staten Island. Here the model incorrectly forecasts dramatic
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Figure 2.6: Estimates of 𝛿𝑡 from collection of NB(𝜌,𝛼1) model fits. The red shaded regions show
out-of-sample posterior predictive forecasting.

continued growth in the death rates for these boroughs. As more training points are added, the

posterior predictive forecasts show decreasing mean processes that are better aligned with the actual

deaths and have less posterior uncertainty.

Across all the boroughs, the NB(𝜌,𝛼1) model appears to perform reasonably well in capturing
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the dynamics of the observed daily counts once it has been fit with data that extends a few days past

the observed peak. The fits improve as more data is included.
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Figure 2.7: PIT histograms for 𝑘-day ahead predictive distributions, for the NB(𝜌,𝛼1) model.

Figure 2.7 shows nonrandomized PIT histograms for 𝑘-day ahead predictions for the NB(𝜌,𝛼1)

model. The fits appear to break down around 𝑘 = 12, with the predictive distributions becoming

more and more overdispersed with increasing 𝑘 .

2.3.3 Fits to four Texas counties

In further exploration, we fit the NB(𝜌,𝛼1) model to COVID-19 mortality data from the four

most populous counties in Texas [40]. These data come from the state, are subject to ongoing quality

checks and updates, and include fatalities for which COVID-19 is listed as a direct cause of death

on the death certificate. The four largest Texas counties are Harris County, which includes the city

of Houston, Dallas and Tarrant counties, which include most of the Dallas–Fort Worth metroplex

population, and Bexar County, which includes the city of San Antonio. We fit the NB(𝜌,𝛼1) model

to one long series for each county, beginning with its first recorded COVID-19 death, to the death

count on December 20, 2020. The training data consists of the provisional counts available on

January 12, 2021.

Figure 2.8 shows the posterior estimates from these four fits. Over these longer training series,

we observe multiple dynamic phases, including pronounced peaks in mid-to-late July and waves

building at the end of the year. We can see how the dynamics of the estimated 𝛿𝑡’s on the right are

reflected in the observed training counts and estimated _𝑡’s on the left. The geographically adjacent
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Figure 2.8: Posterior estimates of _𝑡 and 𝛿𝑡 from NB(𝜌,𝛼1) fits to fatality data from the four largest
Texas counties.

Dallas and Tarrant counties show similar patterns of a more gradual, less devastating first wave,

while Harris and Bexar Counties have dramatic and pronounced peaks. According to the model

forecasts, the late fall/winter peaks may not yet be reached.

2.4 Conclusion

We have presented a generalized state-space model for count-valued time series that seeks

to capture the dynamics of local daily COVID-19 deaths. The model components, in particular

the latent state process involving second order differencing and an AR(1)-ARCH(1) model, are

motivated by supposed behavior of waves of epidemic counts. The results we see in applying our
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proposed model justify these components.

2.5 Chapter 2 Appendix

2.6 Full joint distribution

In Section 2.2 we describe the salient features of our modeling approach. Here we provide

details of the full joint distribution of the NB(𝜌,𝛼1) model.

For 𝑡 ≥ 3, we define the state 𝑠𝑡 as the three vector containing log_𝑡 along with the first and

second differences of log_𝑡 . The first two states 𝑠1 and 𝑠2 need only contain initialized variables

log_1 and log_2. The parameters 𝛽 are (𝜙, 𝜌, 𝛼0, 𝛼1), as in Table 2.1.

The negative binomial observation distribution gives

𝑝(𝑦𝑡 |𝑠1:𝑡 , 𝑦1:𝑡−1, 𝛽) = 𝑝(𝑦𝑡 |_𝑡 , 𝜙) = Γ(𝑦𝑡 + 𝜙)
𝑦𝑡! Γ(𝜙)

(
_𝑡

_𝑡 + 𝜙

) 𝑦𝑡 (
𝜙

𝑦𝑡 + 𝜙

)𝜙
.

This satisfies conditional independence in the observation equation [38]. For 𝑡 ≥ 4, it is clear by

construction that 𝑠𝑡 is a function of 𝑠𝑡−1, 𝛽 and 𝜖𝑡 , so that 𝑠𝑡 is conditionally independent of 𝑠1:𝑡−2

and 𝑦1:𝑡 , given 𝑠𝑡−1 and 𝛽. For the state update density, we have

𝑝(𝑠𝑡 |𝑠1:𝑡−1, 𝑦1:𝑡 , 𝛽) = 𝑝(𝛿𝑡 |𝛿𝑡−1, 𝜌, 𝛼0, 𝛼1) = 𝜑
©«
𝛿𝑡 − 𝜌𝛿𝑡−1√︃
𝛼0 + 𝛼1𝛿

2
𝑡−1

ª®®¬ ,
where 𝜑(·) is the standard normal density. Thus conditional independence in the state equation also

holds. The complete joint distribution of the model is given by:

𝑝(𝑦1:𝑇 , 𝑠1:𝑇 , 𝛽) = 𝑝(𝛽)𝑝(𝑠1, 𝑠2, 𝑠3)
𝑇∏
𝑡=4

𝑝(𝛿𝑡 |𝛿𝑡−1, 𝜌, 𝛼0, 𝛼1)
𝑇∏
𝑡=1

𝑝(𝑦𝑡 |_𝑡 , 𝜙).

What remains is to specify the prior distributions on the initial states and parameters 𝛽. For the
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initial states, we assume 𝑝(𝑠1, 𝑠2, 𝑠3) = 𝑝(log_1)𝑝(log_2 |_1)𝑝(log_3 |_1, _2), where

log_1 ∼ Normal (0, 52)

log_2 |_1 ∼ Normal (log_1, 12)

log_3 |_1, _2 ∼ Normal (log_2 + ∇ log_2, .052).

The prior distributions for the parameters 𝛽 are given by:

𝜙 ∼ Half Normal (0, 2002)

𝜌 =
𝑟0
2
×

(√︁
tan2 \ + 4 − tan \

)
𝛼1 = 𝜌 × tan \

\ ∼ Uniform
(
0,
𝜋

2

)
𝑟0 ∼ Beta (2, 1)

𝑝(𝛼0) ∝ 𝐼 (𝛼0 ≥ 0) × exp

{
−1

2

(
𝛼0 − .0012

.0012

)2}
,

where 𝜙, \, 𝑟0 and 𝛼0 are all independent.

The priors for 𝜙 and 𝛼0 are restricted normal distributions, with only positive support. These

are both strong, informative priors. The Half Normal distribution prevents the Negative Binomial

scale parameter 𝜙 from jumping to large values, which helps convergence in stan. Note that as 𝜙

increases, the conditional observation distribution approaches Poisson. Since we separately consider

and fit the P(𝜌,𝛼1) model, this restrictive prior does not limit our exploration.

For 𝛼0 = Var(𝛿𝑡 |𝛿𝑡−1 = 0), setting the location and scale of the restricted normal to .0012 places

the prior mode away from zero, yet forces 𝛼0 to be close to zero. This helps convergence in stan.

Moreover, the former effect helps prevent us getting stuck at 𝛿𝑡 = 0, while the latter amounts to

model regularization—restricting changes in the second order difference 𝛿𝑡 ensures smoothness of

mean process, and prevents _𝑡 from following the observed counts too closely.

The joint prior 𝑝(𝜌, 𝛼1) has support on the region 𝐷 B {(𝜌, 𝛼) ∈ [0, 1]2 : 𝜌2 + 𝛼1 < 1}.
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It follows that draws of 𝜌 and 𝛼1 will satisfy sufficient stationarity conditions for autoregressive

processes with ARCH(1) errors, as considered in [41]. While 𝛼1 must be non-negative, we restrict

𝜌 > 0 since a negative autoregressive term does not make sense in our model.

We construct 𝑝(𝜌, 𝛼1) so that it is close to uniform on 𝐷. A prior draw (𝜌, 𝛼) is a transformation

of a uniform draw on the unit quarter disk (\, 𝑟0), given in polar coordinates. Note that 𝑝(𝜌, 𝛼1) and

𝐷 are given in the Cartesian coordinate system. To transform (\, 𝑟0) to a point in 𝐷, we preserve the

polar angle \ while contracting the polar radius. In particular, we scale 𝑟0 by 𝑟𝐷 (\), where 𝑟𝐷 (\) is

the distance from the origin to the parabola 𝑥2 + 𝑦 = 1, along \. Converting between coordinate

systems, we have

𝑟𝐷 (\) sin \ = 1 − 𝑟𝐷 (\)2 cos \.

This is a quadratic equation with one positive solution

𝑟𝐷 (\) = − sin(\) +
√

1 + 3 cos2 \

2 cos2 \
.

Finally, we convert the transformed draw (\, 𝑟0 × 𝑟𝐷 (\)) to Cartesian coordinates to get

𝜌 =
𝑟0
2

(√︁
tan2 \ + 4 − tan \

)
and

𝛼1 = 𝜌 tan \,

as above.

2.7 stan model code

Here is the stan code for the NB(𝜌,𝛼1) model, with priors set up as described in Appendix 1.
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data {

// Length of training time series

int<lower=0> N;

// How many look-ahead predictions

int<lower=0> N_pred;

// Training data time series of counts

int counts[N];

}

transformed data {

// Constant for constraining theta

real halfPi = pi() / 2;

}

parameters {

real<lower=0> phi;

real<lower=0> alpha0;

// Params for draw on unit quarter disk

// to be transformed into rho and alpha1

real<lower=0> theta_raw;

real<lower=0, upper=1> r;

// Initialization of state space variables

real mu_init_raw;

real gamma_init;

real delta_init;

// ‘Innovations’

vector[N - 3] epsilon;

}
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transformed parameters {

// Log mean param

vector[N] mu;

// Differenced log mean param

vector[N - 1] gamma;

// Twice differenced log mean param

vector[N - 2] delta;

real<lower=0, upper=halfPi> theta;

real<lower=0, upper=1> rho;

real<lower=0, upper=1> alpha1;

// Uniform on (0, pi/2)

theta = exp(-theta_raw) * halfPi;

// Transformed draw from unit qtr disk to constr region

rho = .5 * r * (sqrt(square(tan(theta)) + 4) - tan(theta));

alpha1 = rho * tan(theta);

// Set initial values

mu[1] = mu_init_raw * 5;

gamma[1] = gamma_init;

delta[1] = delta_init;

// Recursive state model

for(t in 2:N) {

// Local level update

mu[t] = mu[t - 1] + gamma[t - 1];

if (t < N)

// First order trend update

gamma[t] = gamma[t - 1] + delta[t - 1];

if (t < (N - 1))
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// Second order trend update with AR1-ARCH1 model

delta[t] = rho * delta[t - 1] +

sqrt(.000001 * alpha0 +

alpha1 * square(delta[t - 1])) *

epsilon[t - 1];

}

}

// The model to be estimated

model {

mu_init_raw ~ normal(0, 1);

gamma_init ~ normal(0, 1);

delta_init ~ normal(0, .05);

epsilon ~ normal(0, 1);

theta_untransformed ~ exponential(1);

r ~ beta(2, 1);

// Scaled in transformed parameters section

alpha0 ~ normal(1, 1);

phi ~ normal(0, 200);

counts ~ neg_binomial_2_log(mu, phi);

}

generated quantities {

vector<lower=0>[N] lambda;

int countsPost[N];

vector<lower=0>[N_pred] lambda_pred;

vector[N_pred] epsilon_pred;

vector[N_pred] mu_pred;
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vector[N_pred] gamma_pred;

vector[N_pred] delta_pred;

int countsPost_pred[N_pred];

vector[N_pred] newCountsCum_pred;

lambda = exp(mu);

// Within-sample posterior predictive draws

for (t in 1:N) {

// Make sure the log mean param is not too big

if (mu[t] < 10)

countsPost[t] = neg_binomial_2_log_rng(mu[t], phi);

else countsPost[t] = 20000;

}

if (N_pred > 0) {

// Out-of-sample posterior predictive draws

for (t in 1:N_pred)

epsilon_pred[t] = normal_rng(0, 1);

// 1st predictive state evolves from final fitted state

delta_pred[1] = rho * delta[N - 2] +

sqrt(.000001 * alpha0 +

alpha1 * square(delta[N - 2])) * epsilon_pred[1];

gamma_pred[1] = gamma[N - 1] + delta_pred[1];

mu_pred[1] = mu[N] + gamma_pred[1];

// Recursive predictive states

for(t in 1:(N_pred - 1)) {

delta_pred[t + 1] = rho * delta_pred[t] +

sqrt(.000001 * alpha0 +

alpha1 * square(delta_pred[t])) * epsilon_pred[t + 1];
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gamma_pred[t + 1] = gamma_pred[t] + delta_pred[t + 1];

mu_pred[t + 1] = mu_pred[t] + gamma_pred[t + 1];

}

lambda_pred = exp(mu_pred);

// Simulate look-ahead counts

for (t in 1:N_pred) {

// Avoid stan error if blown-up

if (mu_pred[t] < 10)

countsPost_pred[t] =

neg_binomial_2_log_rng(mu_pred[t], phi);

else countsPost_pred[t] = 20000;

if (t == 1)

// Cumulative look-ahead counts

newCountsCum_pred[t] = countsPost_pred[t];

else newCountsCum_pred[t] = newCountsCum_pred[t - 1] +

countsPost_pred[t];

}

}

}
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Chapter 3: Inferring latent network edges from noisy event times with a leaky

integrate-and-fire (LIF) model

We consider the task of inferring the connections between noisy observations of events. In

our model-based approach, we consider a generative process incorporating latent dynamics that

are directed by past events and the unobserved network structure. This process is based on a

leaky integrate-and-fire (LIF) model from neuroscience for aggregating input and triggering events

(spikes) in neural populations. Given observation data we estimate the model parameters with a

novel variational Bayesian approach, specifying a highly structured and parsimonious approximation

for the conditional posterior distribution of the process’s latent dynamics. This approach allows for

fully interpretable inference of both the model parameters of interest and the variational parameters.

Moreover, it is computationally efficient in scenarios when the observed event times are not

too sparse. We apply our methods in a simulation study and to recorded neural activity in the

dorsomedial frontal cortex (DMFC) of a rhesus macaque. We assess our results based on ground

truth, model diagnostics, and spike prediction for held-out nodes.

3.1 Introduction

Let us assume we simultaneously observe the discretized times of 𝑛 random events in a mul-

tivariate point process. Consider further that these events correspond to nodes in a network with

unobserved edges that influence the observable process. We consider the problem of estimating the

latent network connections between these nodes given their noisy emissions.

Many complex processes that we are interested in analyzing can be viewed as dynamical systems

with interactions on an underlying network. Direct observation of the implicit network may be

costly and difficult, even impossible. At the same time, random event data from the system may be
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abundant and easy to collect. The challenge is to learn the network based on these ‘noisy emissions’

in a principled and effective way. In many disciplines, learning the relational structure in such

multi-dimensional and partially observed systems is an important problem.

Connectivity inference from neural recording data is one important and well-studied example

[42]. Cells in the nervous system form communication networks, firing action potentials that

transmit information to other neurons. Electrophysiological recordings are able to partially capture

neural population activity, and discrete spiking event times may be attributed among the recorded

cells (spike sorting). Cell membrane voltages and the edges between neurons, however, are generally

not observed.

Inferring relational structures that map to the observable data enriches our understanding of

the dynamical system. With an estimated implicit network we may apply tools from network

analysis [43], for example node centrality measures, community detection algorithms, and network

embeddings. With inferred edges we can also access powerful machine learning methods of graph

neural networks (GNNs), to gain further insight into how the objects in an observed complex system

interact [44].

Current research on deep learning frameworks for complex processes offer model-free, data

driven approaches for extracting latent network structure and learning underlying dynamics [45].

However, these methods assume direct measurements of nodal states. In the situation we consider,

dynamic nodal states are unobserved. All we see are sparse, noisy event time ‘emissions’. Without

any knowledge or assumptions for how the latent network relates to the observed data, the task is

nearly impossible.

In this work, we consider the problem while assuming a generative process for the discrete

observations. If our only goal was to predict future dynamics, there are ‘black box’ tools we could

use to make predictions without any interpretable inferences about the underlying structure of the

data. When the goal is to understand structure, explain patterns, and ultimately make scientific

discoveries, we need to take a take a more ‘white box’ approach. We choose to use an explainable

model that allows us to perform fully interpretable, model-based inference.
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The generative process we consider incorporates a soft-threshold leaky integrate-and-fire (ST-

LIF) model from neuroscience specifying how events arise and how their effects transmit to other

nodes. Latent dynamics are driven by past observations and the unobserved network structure.

We assume the observed event times are recorded (and discretized) in a multivariate discrete

time series. Given observed data in this form we fit the generative process using variational Bayesian

methods, obtaining estimates of the unknown parameters of interest. The key inference challenge is

accounting for all unknown and latent model variables, including the high dimensional, evolving

latent states which we are not directly interested in estimating. Our main contribution in this work

is our innovative variational Bayesian approach to this problem. We propose a highly structured

and parsimonious variational approximation for the conditional posterior distribution of the latent

states that is carefully designed to fit the considered model, has interpretable parameters, and offers

attractive computational qualities including the obviation of noisy gradient calculations.

Our work in this chapter is arranged as follows. In section 3.2 we set up the considered problem,

data and model. Section 3.2.1 introduces the leaky integrate-and-fire (LIF) model, a continuous-time

point process model from neuronal dynamics, section 3.2.2 presents our considered data generating

process for discrete event times, and section 3.2.3 discusses the model’s joint distribution.

In section 3.3 we describe our methods for model inference and statistical analysis. Sections

3.3.1, 3.3.2 and 3.3.3 present our variational Bayes approach and our approximation for the

conditional posterior. Sections 3.3.4 and 3.3.5 provide the details of the stochastic gradient update

steps for computing our variational approximation, and section 3.3.6 discusses our method’s

computational complexity. Section 3.3.7 presents our approach for inferring the existence of edges

in the latent network. Section 3.3.8 discusses reconstructive prediction of the activity of a held-

out node and establishes a forward-backward estimate of a posterior predictive conditional spike

probability. In section 3.3.9 we discuss a signal-to-noise ratio for network effects in our considered

model and show its computation for individual nodes.

We apply our methods in a simulation study (section 3.4) and to recorded neural activity from

the dorsomedial frontal cortex (DMFC) of a rhesus macaque (section 3.5). In section 3.6 we discuss
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our methods and approach in the context of the related literature on network inference, multivariate

point processes and neuronal dynamics. Section 3.7 outlines a future research direction, and section

3.8 concludes the chapter.

Figure 3.1 provides our chapter 3 ‘methodological roadmap,’ a schematic showing how infor-

mation (observation data, probabilistic model, estimates, results) passes through and influences

our applied workflow. The solid lines represent dependencies—eg observed data and our specified

model are needed to perform Bayesian estimation of the latent network, and the resulting estimates,

in turn, are needed to perform downstream network analysis. The dashed lines represent influencing

relationships—eg the data and its context influences our beliefs about the existence of implicit

network and together these affect our choice of assumed generative model.

Figure 3.1: Chapter 3 ‘methodological roadmap’ showing our applied workflow.

3.2 Problem set-up and model

In the problem we consider, 𝑇 observations from a multivariate point process of size 𝑛 are

recorded as discretized event times in a multivariate, binary time series Y = (y𝑡, 𝑖) ∈ {0 , 1}𝑇×𝑛. The
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columns of Y correspond to nodes in an implicit network 𝐺 = (V, E) with signed, weighted and

directed edges E given by the adjacency matrix W ∈ R𝑛×𝑛.
Within this general set up, we assume connections in the latent network 𝐺 map past history to

future observations. That is, for a node 𝑖 ∈ V, the probability that we observe it spike at time 𝑡 is

some function of the observed event history before time 𝑡 of the nodes 𝑗 ∈ V that are connected to

𝑖 (including node 𝑖 itself) and the edges 𝑒 ∈ E that make up the directed paths to 𝑖 in 𝐺. Expressing

this loosely in mathematical notation, we write

{y𝑠, 𝑗 : 𝑠 < 𝑡, 𝑗 and 𝑖 are connected in 𝐺}
{W𝑒 : 𝑒 ∈ E is part of a directed path to 𝑖}

\, 𝜔↦−−−→ Pr(y𝑡, 𝑖 = 1), (3.1)

where \ represents other parameters involved in the mapping, and 𝜔 captures potential randomness.

In this very general model framework, we can write the probability of the observed data as a

likelihood function of the latent adjacency matrix W

L(W; Y) =
∫
Ω

𝑇∏
𝑡=1

𝑛∏
𝑖=1

Pr(y𝑡, 𝑖 = 1)y𝑡 ,𝑖 (1 − Pr(y𝑡, 𝑖 = 1))1−y𝑡 ,𝑖dP(𝜔),

where Pr(y𝑡, 𝑖 = 1) depends on Y<𝑡 , W, \ and 𝜔. We seek to infer the edges E from Y by solving

arg max
W

L(W; Y).

In order order to proceed any further with this likelihood-based approach, we need a model

specifying the details of (3.1).

3.2.1 Leaky integrate-and-fire model

In our approach to this task, we assume a generative process for Y that incorporates scientific

knowledge from neuroscience about the functional form for (3.1) when the observations are the

recorded spiking activity of a neural population.

In this section we provide some background information on neuronal dynamics and details of
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the adapted neuron model.

Neuroscience research on neuronal dynamics has developed a variety of models for the behavior

of neurons [46]. In simple models of neurophysiology, spikes are treated as events that occur

at precise moments in time, transmitting information with their presence or absence. With this

understanding, the spiking activity of a group of neurons is a mulivariate point process [47].

Electrophysiological recording of neural activity (across multiple neurons simultaneously) allows

for (partial) observation of these processes as spike train data.

A spiking neuron in the brain sends its action potential along its axon and through the junctions

called synapses to connected cells. The spike is a communication to the postsynaptic cells, and

its message is passed, not in electrical signals, but with chemical signals via neurotransmission

across the minuscule space between the neurons (the synaptic cleft). The neurotransmitter in a

synapse between cells is excitatory or inhibitory, either encouraging the postsynaptic cell to pass

the message along with its own spike, or discouraging this further propagation. At an excitatory

connection, the arriving spike increases the membrane potential of the postsynaptic cell, while at an

inhibitory connection, the spike causes a decrease in the receiving cell’s voltage.

In this context our motivating questions becomes: given the observed spike times of a group

of simultaneously recorded neurons, what can we say about the existence of synaptic connections

between the cells and the types of neurotransmission?

To answer this question with model-based inference, we consider a discrete-time adaptation of

one of the simplest models describing the behavior of spiking neurons, the ‘leaky integrate-and-fire’

(LIF) model, which approximates neuronal dynamics as a summation process for cell membrane

voltage together with a mechanism for triggering action potentials (aka spikes).

Let’s consider the dynamics of one cell (𝑖 ∈ {1, ... , 𝑛}) within a neural population. This neuron’s

current state is described by the time-dependent voltage v𝑡 of its cell membrane, and 𝑡 (f) are the

times of its spikes. In the LIF model a linear differential equation describes the evolution of v𝑡 , and

spikes occur at the first passage times 𝑡 (f) of v𝑡 through a threshold voltage 𝜗. After each spike, the

membrane potential resets to its resting potential. The model may be expressed with the following

51



equations:

𝜏m
dv𝑡
d𝑡

= −v𝑡 + R𝐼𝑡 (3.2)

𝑡 (f) = {𝑡 : v𝑡 = 𝜗} (3.3)

lim
𝜖→0
𝜖>0

v𝑡 (f )+𝜖 = 0, (3.4)

where the resting potential is zero and 𝐼𝑡 is the neuron’s time-dependent input current. This model

is parameterized by the cell’s membrane time constant 𝜏m > 0 and input resistance R > 0.

In the soft threshold leaky integrate-and-fire (SF-LIF) model, the probability of spiking at time 𝑡

is a monotonically increasing and continuous function of the current voltage v𝑡 [48]. Instead of the

hard threshold spiking mechanism (3.3), we have:

Pr(𝑡 (f) ∈ (𝑡 − d𝑡, 𝑡]) = 𝑓 (v𝑡) d𝑡. (3.5)

In this closely related model the input aggregation (3.2) and post-spike reset (3.4) remain the same.

Given an observed spike at 𝑡 (f) , we consider a time 𝑡 > 𝑡 (f) such that the neuron does not spike

in the interval
(
𝑡, 𝑡 (f)

)
. The solution to (3.2) for the cell membrane voltage at time 𝑡 is

v𝑡 =
R
𝜏m

∫ 𝑡−𝑡 (f )

0
𝑒−𝑠/𝜏m 𝐼𝑡−𝑠d𝑠. (3.6)

We assume the time-dependent input 𝐼𝑡 for neuron 𝑖 is comprised of three components: (1)

a random Gaussian white noise component with scale parameter 𝜎, (2) a constant, deterministic

component [ and (3) the sum of inputs from the action potentials of other neurons in the network.

This third ‘network’ component has the form

∑︁
𝑗≠𝑖

∑︁
𝑡
( 𝑓 )
𝑗

W 𝑗𝑖 × 𝛿
(
𝑡 − 𝑡 (f)𝑗

)
, (3.7)

where 𝛿(·) is the dirac delta function. With 𝐼𝑡 specified, (3.6) gives a continuous-time solution for
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the cell membrane voltage. Assuming all the neurons in the population behave analogously, this

establishes a continuous-time multivariate point process.

In practice noisy measurements capture neural activity [49, 50], and observed action potentials

are assigned to individual cells and discrete event times [51]. We consider spike-sorted neural

recording data as the observations of action potentials within fixed-length (eg 1 millisecond)

intervals. To apply the continuous-time ST-LIF model in this context we adapt (3.2-3.7) to the

discrete-time data.

Letting 𝑡 ∈ N index time we discretize the continuous spike times 𝑡 (f) (which arrive according

to (3.3)) by mapping 𝑡 (f) ↦→ 𝑡 for 𝑡 (f) ∈ (𝑡 − 1, 𝑡]. We define y𝑡 ∈ {0 , 1}𝑛 to be the observed spike

indicators for the 𝑛 neurons at each (discrete) observation time 𝑡, and we set Y to be the matrix of

row vectors y𝑡 . The 𝑖th column Y𝑖 of Y is the ‘spike train’ of the 𝑖th recorded neuron.

Let 𝑡 ∈ N and assume y𝑖, 𝑡−1 = 0. A spike from neuron 𝑗 at time 𝑡 − 1 charges the membrane of

neuron 𝑖 by 𝑒−1/𝜏mW 𝑗𝑖 at time 𝑡 (by (3.6) and (3.7)). It follows that the voltage of neuron 𝑖 at time 𝑡

is given by

v𝑡 =
R
𝜏m

∫ 1

0
𝑒−𝑠/𝜏m 𝐼𝑡−𝑠d𝑠 + 𝑒−1/𝜏mv𝑡−1

=
R
𝜏m

z𝑡 + R[
𝜏m
(1 − 𝑒−1/𝜏m) + R

𝜏m
𝑒−1/𝜏m

𝑛∑︁
𝑗=0

W 𝑗𝑖 y𝑡−1, 𝑗 + 𝑒−1/𝜏mv𝑡−1 (3.8)

where z𝑡 ∼ N(0 , 𝜎2).

Limitations of the Leaky Integrate-and-Fire Model The model described by (3.2-3.4) is highly

simplified and neglects many aspects of neuronal dynamics [46]. We discuss some of its limitations,

and mention extensions to more complex and realistic models.

One major simplification in the LIF model is the linear integration of input 𝐼𝑡 , independent of

the state of the postsynaptic neuron. Changing the functional form of (3.2) and (3.7) would allow

for more complex interactions between nodes, with effects that could depend on the current state of

postsynaptic node.
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A second limiting assumption of the LIF model is the fact that it has no memory beyond the

most recent spike. This means that the LIF model cannot capture adaptation, an observed behavior

shown by most neurons in which they gradually adjust their firing rates to changes in stimulating

current. In more complex models, this adaption behavior is mimicked with a filter for refractoriness

that adds up contributions from several past spikes.

Besides the ‘regularly-firing neurons’ that show adaptation, there are fast-spiking neurons that

show no adaptation as well as bursting and stuttering neurons which form a their own separate

group. Bursting and stuttering neurons respond to constant stimulation with periodic bursting or

aperiodic stuttering, behavior that may be interrupted by long intervals. In order to distinguish

between neuron types [52] and capture these dynamics, a model must have memory beyond the

most recent spike.

Extensions of the LIF model are broadly referred to as generalized leaky integrate-and-fire

models [53, 54]. These extended models capture more of the complex dynamics of recorded neural

population activity, and could be applied other other complex, interacting systems. Incorporating

generalized LIF models into our approach is something we are interested in pursuing in future work.

3.2.2 Data model

We now introduce the assumed generative process for discrete event times. This is a generalized

state-space model for multivariate time series of binary count data [38]. A diagram of the model is

shown in Figure 3.2, and we provide a selected glossary for our data and model notation in Table

3.1.

The observations are Y = (y𝑡, 𝑖) ∈ {0 , 1}𝑇×𝑛. The 𝑖th column Y𝑖 are the event times of the 𝑖th

node. Each node has an associated latent state that evolves with time, corresponding to the cell

membrane voltage of a neuron. These variables are denoted V = (v𝑡, 𝑖) ∈ R𝑇×𝑛. The unobserved

connections among the nodes are given by W ∈ R𝑛×𝑛.
The observed ‘event spikes’ y𝑡 = (y𝑡, 1, ... , y𝑡, 𝑛) at time 𝑡 are Bernouilli draws, conditionally

independent given the latent states v𝑡 = (v𝑡, 1, ... , v𝑡, 𝑛). In particular, the event probability for node
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𝑖 at time 𝑡 is a logistic function of v𝑡, 𝑖. This defines the model’s observation equation.

The latent variables V evolve according the model’s state equation. Each node’s voltage resets

to a ‘resting level’ of zero after it spikes. Voltages at time 𝑡 depend on the previous voltages at time

𝑡 − 1 along with the observed spiking activity at time 𝑡 − 1 (moderated by connections encoded in

W). Previous voltages from time 𝑡 − 1 are subject to ‘leakage’ and decay with parameter 𝛿 ∈ [0 , 1].
In addition, for each node 𝑖 and time 𝑡, the latent state v𝑡, 𝑖 receives constant input [𝑖 and has an

additive noise term z𝑡, 𝑖 that captures unobserved input to or fluctuations of the cell membrane

voltage. Accounting for the latent fluctuations Z = (z𝑡, 𝑖) ∈ R𝑇×𝑛 is key to our inference on W given

Y.

We write the considered data model:

y𝑡, 𝑖 ∼ Bernoulli(logit−1(^(v𝑡, 𝑖 − 1))) for each 𝑖, 𝑡

v𝑡, 𝑖 =


𝛿v𝑡−1, 𝑖 + [𝑖 + z𝑡, 𝑖 + w)𝑖

⊺y𝑡−1 if y𝑡−1, 𝑖 = 0

[𝑖 + z𝑡, 𝑖 if y𝑡−1, 𝑖 = 1
for each 𝑖, 𝑡 (3.9)

z𝑡, 𝑖 ∼ N
(
0 , 𝜎2

𝑖

)
for each 𝑖, 𝑡

where w)𝑖 is the 𝑖th column of W, giving the in-edge weights for node 𝑖, and y𝑡 denotes the 𝑡th row

of Y, the indicator vector of spikes at time 𝑡, so that w)𝑖
⊺y𝑡 =

∑𝑛
𝑗=1 W 𝑗𝑖 y𝑡, 𝑗 .

For the observation equation, we note that Pr(y𝑡, 𝑖 = 1|v𝑡, 𝑖 = 1) = 1
2 , and a larger ^ creates a

‘harder’ spiking threshold around 1. This ‘soft threshold’ spiking mechanism ensures attractive

differentiability properties to the model likelihood while allowing for behavior similar to a hard

threshold mechanism (3.3) when ^ is large.

If node 𝑖 does not spike at time 𝑡 − 1, then at time 𝑡 its previous latent voltage v𝑡−1, 𝑖 is discounted

according to 𝛿 and changes by the three input components: (1) the constant input [𝑖, (2) the mean

zero random fluctuation z𝑡, 𝑖 and (3) the network inputs from the nodes that did spike at time 𝑡 − 1

and have out-edges to 𝑖. Otherwise, if y𝑡−1, 𝑖 = 1, the voltage resets (to zero) and v𝑡, 𝑖 = [𝑖 + z𝑡, 𝑖.

Resting and spiking threshold membrane potentials, are typically around -70 and -50 millivolts,
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respectively for cells in the nervous system. In the considered state-space model (3.9) all voltages

are latent and unobserved. To make the model identifiable we fix the resting and spiking potentials

at 0 and 1, respectively.

The assumptions of independence for the latent fluctuations Z and constant deterministic input

[𝑖 for each node 𝑖 are strong and may not hold in many situations. Related events may be impacted

in dependent ways by the unobserved input captured in Z, and the expected rate [𝑖 at which that

input arrives may change over time. In section 3.7.1 we discuss a generalization of (3.9) that

accommodates more complex dynamics in the latent process by eliminating these assumptions.

The generative model (3.9) is a reparameterized version of the discretized SF-LIF model (3.8).

Its state update equation aligns with the recursive solution (3.8) with the following equivalences:

R
𝜏m
𝜎 ←→ 𝜎𝑖

R[
𝜏m
(1 − 𝑒−1/𝜏m) ←→ [𝑖

R
𝜏m
𝑒−1/𝜏mw)𝑖 ←→ w)𝑖

𝑒−1/𝜏m ←→ 𝛿. (3.10)

Along with the latent network W, the model parameters 𝜎1, ... , 𝜎𝑛 and [1, ... ., [𝑛 are unknown,

and need to be inferred. In our analyses we do not make inferences about the parameters ^ and 𝛿,

instead assuming they are known or tuneable hyperparameters. We are interested in expanding our

inference approach to include ^ and \ in the future. In this work we have:

unknown model parameters, to infer: W, \ = (𝜎1, ... , 𝜎𝑛 , [1, ... , [𝑛)

known / tuneable hyperparemeters, not to infer: ^, 𝛿.

To allow more concise notation going forward, we introduce \ for unknown model parameters

besides the latent adjacency matrix W.

The generative model (3.9) may be expanded by adding prior distributions for the parameters.
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Pr(y𝑡 ,𝑖 = 1) = logit−1^(v𝑡 ,𝑖 − 1)

1

𝜎1 = .03, [1 = .05, 𝛿 = .975; SNRW
1 < .0001v

1

0 1 node 1 spikes

1

0
2

𝜎2 = .05, [2 = .03, 𝛿 = .975; SNRW
2 = .107v

1

0

2 node 2 spikes

1

0

3

𝜎3 = .01, [3 = .04, 𝛿 = .975; SNRW
3 = .232v

1

0

3 node 3 spikes

1

0

the
only

observed
data

^ = 50

Pr(spike|v) logit−1^(v − 1)
1

0 v
0.0 0.2 0.4 0.6 0.8 1.0 1.2

𝑡21

𝑡21

𝑡11

𝑡11

𝑡31 𝑡31

𝑡12

𝑡12

𝑡22

𝑡22

𝑡32 𝑡32

𝑡13

𝑡13

𝑡33 𝑡33

𝑡14

𝑡14

1

Figure 3.2: Diagram of generative model for discrete-time observations of point process data. In
this figure we show the latent and observed data for a network of 𝑛 = 3 nodes over a period of
length 𝑇 = 100. Along with the model parameters for each node we give its signal to noise ratio
(see (3.45)) calculated based on W and 100k simulated observations.

This might be done to incorporate particular domain knowledge or to pursue a more Bayesian

approach. For a prior on W one might use a generative network model. This is an approach taken in

some related works that we discuss in section 3.6.

In our simulation study and data application (sections 3.4 and 3.5), we set and assume ^ = 50.
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Table 3.1: Selected notation glossary for data, model and joint likelihood
Data model notation

𝑛 dimension of point process / number of nodes

Y = (y𝑡, 𝑖) ∈ {0 , 1}𝑇×𝑛; y𝑡 time series of discretely observed event times; 𝑡th row vector in Y
W ∈ R𝑛×𝑛; w)𝑖 latent adjacency matrix (signed, directed, weighted), 𝑖th column of W
S = sign(W) matrix of signed, directed, unweighted edges in latent network

V = (v𝑡, 𝑖) ∈ R𝑇×𝑛 dynamic latent states, the aggregated inputs (voltages) of the nodes

Z = (z𝑡, 𝑖) ∈ R𝑇×𝑛 additive noise (fluctuations) in the latent aggregation process

\𝑖 = (𝜎𝑖 , [𝑖) variability & constant input parameters for node 𝑖’s latent aggregation

^ scale parameter in logistic ‘soft threshold’ event probability function

𝛿 ∈ (0 , 1) parameter for voltage decay / leakage

Notation for data processing and joint likelihood{
𝑡𝑖1, 𝑡

𝑖
2, ... , 𝑡

𝑖
𝑚𝑖

}
the sorted event times for node 𝑖 observed in Y; 𝑚𝑖 =

∑
𝑡≤𝑇 y𝑡, 𝑖

X = {(𝑖, 𝑘) : 𝑘 ≤ 𝑚𝑖 − 1} indexed set of inter-spike intervals observed in Y
Δ𝑡𝑖𝑘 = 𝑡

𝑖
𝑘+1 − 𝑡𝑖𝑘 length of (𝑖, 𝑘)th inter-spike interval (node 𝑖’s 𝑘th observed interval)

𝐼𝑖 (𝑠, 𝑡) node 𝑖’s accumulated non-Z input in the period from 𝑠 to 𝑡

𝐼 (𝑖, 𝑘) = 𝐼𝑖 (𝑡𝑖𝑘 + 1, 𝑡𝑖𝑘+1) accumulated non-Z input in the (𝑖, 𝑘)th observed inter-spike period

z(𝑖, 𝑘) =
(
z𝑡𝑖

𝑘
+1, 𝑖 , ... , z𝑡𝑖

𝑘+1, 𝑖
)

latent fluctuations for node 𝑖 in its 𝑘th inter-spike period

𝑝(𝑖, 𝑘) joint likelihood of the 𝑘th inter-spike interval for node 𝑖

The corresponding logistic function is shown in Figure 3.2 (middle-right). With this specified ‘event

spike’ mechanism, the probability of an event is less than .007 for v𝑡, 𝑖 ≤ .9 and greater than .993

for v𝑡, 𝑖 ≥ 1.1.

The decay parameter 𝛿 has a one-to-one correspondence with the parameter 𝜏m in the LIF model,

an important dimensional quantity in neurophysiology called the membrane time constant [55].

Holding everything else constant, 𝜏m is the time (in milliseconds) it takes for a membrane potential

to fall from 1 to 𝑒−1, or ∼36.8%.1 It is an intrinsic membrane property that has been measured in in

vitro studies. Estimates for 𝜏m range from 12ms to 30ms in studies of cells taken from guinea pigs

[56], rats [57] and macaques [58].

In our simulation study we set 𝛿 = .975, which corresponds to a (high) membrane time constant

1This can be seen in the context of our considered model by inverting (3.10)

58



𝜏m ≈ 39.5ms. In section 3.5, we use the results of a relevant study to make an informed choice for 𝛿

in our analysis of neural activity recording data.

3.2.3 Joint Distribution

We consider data from the state space model (3.9) observed over a finite period; spikes are

recorded for the 𝑛 nodes at 𝑇 consecutive times (milliseconds), and stored the binary matrix Y. Each

recorded millisecond corresponds to one data point (row in Y). However, each observed inter-spike

period is a more meaningful unit of observation for this model. The organization of the data into

inter-spike periods is key to our analysis.

Recall that the latent state (v𝑡, 𝑖) of each node 𝑖 resets after each of its ‘spikes.’ In the period

before its next spike we observe all other incoming spikes (background network input), which may

‘charge’ the node’s underlying ‘voltage.’ We can factorize the model’s joint distribution over the

observed inter-spike periods, exploiting their conditional independence.

Letting
{
𝑡𝑖1, 𝑡

𝑖
2, ... , 𝑡

𝑖
𝑚𝑖

}
be the sorted spike times for node 𝑖, we index the set of observed

inter-spike periods by

X = {(𝑖, 𝑘) : 𝑖 ∈ {1, ... , 𝑛}, 𝑘 ∈ {1, ... , 𝑚𝑖 − 1}}. (3.11)

Entries in Y book-ending the observed inter-spike periods for each node constitute censored data.

Given values W for the latent network and \ for unknown model parameters, the joint distribution

of the data Y and latent variables Z may be written

𝑝\,W(Y,Z) =
∏
(𝑖, 𝑘)∈X

𝑡𝑖𝑘+1∏
𝑡=𝑡𝑖

𝑘
+1
𝑝(y𝑡, 𝑖 , z𝑡, 𝑖 | F𝑡−1, W)

︸                             ︷︷                             ︸
=: 𝑝(𝑖,𝑘)

×

censored data contribution︷                                ︸︸                                ︷∏
(𝑡,𝑖) : 𝑖∈{1,..., 𝑛},
𝑡≤𝑡𝑖1 or 𝑡>𝑡𝑖𝑚𝑖

𝑝(y𝑡, 𝑖 , z𝑡, 𝑖 |W) . (3.12)

where F = (F𝑡)𝑡≥1 is the filtration of spiking and latent variable activity up to time 𝑡.

The right-most product term is the contribution of the ‘censored data’ to the joint likelihood. Un-
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der (3.9), this term is messy to deal with and becomes inconsequential (relative to
∏
(𝑖, 𝑘)∈X 𝑝(𝑖, 𝑘))

when each recorded neuron has many observed spikes (when 𝑇 and X are large). In light of this we

treat the term as equal to 1 and work with the following approximate joint distribution

𝑝\,W(Y,Z) =
∏
(𝑖, 𝑘)∈X

𝑝(𝑖, 𝑘).

The term 𝑝(𝑖, 𝑘) is the contribution to the joint likelihood across the 𝑘th inter-spike interval for

node 𝑖, conditioning sequentially on the other observed spiking activity in F. For 𝑡 = 𝑡𝑖𝑘 + 1, ... , 𝑡𝑖𝑘+1,

log 𝑝(y𝑡, 𝑖 , z𝑡, 𝑖 | F𝑡−1, W) = log 𝑝(y𝑡, 𝑖 |v𝑡, 𝑖) + log 𝑝(z𝑡, 𝑖)

= y𝑡, 𝑖^(v𝑡, 𝑖 − 1) − log(1 + exp(^(v𝑡, 𝑖 − 1))) + log 𝑝(z𝑡, 𝑖),

so that the log likelihood of the (𝑖, 𝑘)th inter-spike period may be written

log 𝑝(𝑖, 𝑘) = −Δ𝑡
𝑖
𝑘

2
log 2𝜋𝜎2

𝑖 −
𝑡𝑖𝑘+1∑︁
𝑡=𝑡𝑖

𝑘
+1

{
z2
𝑡, 𝑖

2𝜎2
𝑖

+ log(1 + exp(^(v𝑡, 𝑖 − 1)))
}
+ ^(v𝑡𝑖

𝑘+1, 𝑖
− 1), (3.13)

where Δ𝑡𝑖𝑘 := 𝑡𝑖𝑘+1 − 𝑡𝑖𝑘 denotes the length of the inter-spike period.

We define 𝐼𝑖 (𝑠, 𝑡,Y) to be the accumulated contributions from constant and background network

input in the period from 𝑠 to 𝑡, so that

𝐼𝑖 (𝑠, 𝑡,Y) := [𝑖
𝑡∑︁
𝑟=𝑠

𝛿𝑡−𝑟 + w)𝑖
⊺
𝑡−1∑︁
𝑟=𝑠

𝛿𝑡−𝑟−1y𝑟 . (3.14)

For 𝑡 ∈ {
𝑡𝑖𝑘 + 1, ... , 𝑡𝑖𝑘+1

}
we have v𝑡, 𝑖 = 𝐼𝑖 (𝑡𝑖𝑘 + 1, 𝑡,Y) + ∑𝑡

𝑠=𝑡𝑖
𝑘
+1 𝛿

𝑡−𝑠z𝑠, 𝑖. Note that 𝛿𝑡−𝑠 is the

exponential decay at time 𝑡 of input that arrived at time 𝑠. We denote the accumulated input within

the (𝑖, 𝑘)th inter-spike period by

𝐼𝑟 (𝑖, 𝑘,Y) := 𝐼𝑖 (𝑡𝑖𝑘 + 1, 𝑡𝑖𝑘 + 𝑟,Y) for 𝑟 = 1, ... ,Δ𝑡𝑖𝑘 . (3.15)

60



3.3 Methods

In this section we present our approach to finding an estimate of the latent network adjacency

matrix W and unknown model parameters \ given the observed data Y. We discuss methods for

prediction of a partially observed node and present a signal-to-noise ratio for network effects.

3.3.1 High-level variational inference approach

We have specified a model for the observations Y with joint distribution 𝑝\,W(Y,Z). Our goal is

to find values for the latent network W and unknown model parameters \ to maximize the marginal

likelihood of the observations Y

L(W; Y) = 𝑝\,W(Y) =
∫

𝑝\,W(Y,Z) dZ. (3.16)

This is an intractable integral (over all the latent fluctuations Z), so that we cannot evaluate

or differentiate the marginal likelihood. Moreover, the conditional posterior 𝑝\,W(Z|Y) is also

intractable and we cannot use the EM algorithm.

Problems with similar difficulties arise often and well-known variational Bayes approaches exist

[59, 60, 61]. In our related approach, we propose a highly structured variational approximation

𝑞𝜙 |Y(Z) for 𝑝\,W(Z|Y), whose parameters 𝜙 we learn jointly along with the latent network W and

unknown model parameters \ by maximizing the evidence lower bound (ELBO) of the marginal

log likelihood:

L(\,W, 𝜙; Y) = E𝑞𝜙 [− log 𝑞𝜙 |Y(Z) + log 𝑝\,W(Y,Z)] (3.17)

≤ E𝑞𝜙 [− log 𝑞𝜙 |Y(Z) + log 𝑝\,W(Y,Z)] + KL(𝑞𝜙 (Z) ∥ 𝑝\,W(Z|Y))

= log 𝑝\,W(Y).

By maximizing L(\,W, 𝜙; Y), we minimize the KL2 divergence KL(𝑞𝜙 (Z) ∥ 𝑝\,W(Z|Y)) between

2Kullback–Leibler
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our variational approximation 𝑞𝜙 |Y(Z) and 𝑝\,W(Z|Y).
Using our proposed variational approximation 𝑞𝜙 |Y(Z), we can take analytical gradients of a

close approximation of the lower bound L(\,W, 𝜙; Y) with respect to all variables (\,W, 𝜙). In this

way we avoid noisy gradient approximations and the need for the frequently used ‘reparameterization

trick’ [62].

Our approach allows for fully interpretable inference of both the model parameters of interest

and the variational parameters. Moreover, it is computationally efficient when the observed spike

trains are not too sparse. Its complexity scales linearly with length of the observation period 𝑇 and

number of nodes 𝑛, and quadratically in the length of the longest observed spike period (see section

3.3.6 below for further details on complexity).

3.3.2 Variational approximation 𝑞𝜙 |Y

We approximate 𝑝\,W(Z|Y) with a parsimonious multivariate Gaussian distribution 𝑞𝜙 |Y(Z)
that imposes conditional independence and a common structure across all the inter-spike periods.

Simulations from the data model (3.9) inform our development of 𝑞𝜙|Y.

Let z(𝑖, 𝑘) denote the latent variables
(
z𝑡𝑖

𝑘
+1, 𝑖 , ... , z𝑡𝑖

𝑘+1, 𝑖
)

corresponding to the (𝑖, 𝑘)th inter-spike

period. Our approximation 𝑞𝜙|Y incorporates model parameters (W, \) and introduces variational

parameters 𝜙 = {𝜙𝑖 = (𝜗𝑖, 𝜏𝑖, a1𝑖, a2𝑖, 𝛽1𝑖, 𝛽2𝑖) : 𝑖 = 1, ... , 𝑛}. It has the form

𝑞𝜙 |Y(Z) =
∏
(𝑖,𝑘)∈X

𝑞𝜙𝑖 |Y
(
z(𝑖, 𝑘)

) ∼ ∏
(𝑖,𝑘)∈X

N
(
`𝜙𝑖 (𝑖, 𝑘,Y), Σ𝜙𝑖 (Δ𝑡𝑖𝑘 )

)
. (3.18)

Under 𝑞𝜙 |Y, z(𝑖, 𝑘) is normal with mean `𝜙𝑖 (𝑖, 𝑘,Y) and covariance Σ𝜙𝑖 (Δ𝑡𝑖𝑘 ), and z(𝑖, 𝑘) is indepen-

dent of z(𝑖′, 𝑘 ′) for all other (𝑖′, 𝑘′) ∈ X.

Consider v∗𝑖, 𝑘 := 1
2
(
v𝑖, 𝑡𝑖

𝑘+1−1 + v𝑖, 𝑡𝑖
𝑘+1

)
, the midpoint between the spiking voltage v𝑖, 𝑡𝑖

𝑘+1
and the

voltage one step before v𝑖, 𝑡𝑖
𝑘+1−1 in the (𝑖, 𝑘)th inter-spike period. We construct `𝜙𝑖 (𝑖, 𝑘,Y) and
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Σ𝜙𝑖
(
Δ𝑡𝑖𝑘

)
so that this latent ‘midpoint’ quantity has a homogeneous normal distribution under 𝑞𝜙𝑖 |Y:

v∗𝑖, 𝑘 := 1
2

(
v𝑖, 𝑡𝑖

𝑘+1−1 + v𝑖, 𝑡𝑖
𝑘+1

)
∼ N

(
𝜗𝑖 , 𝜏

2
𝑖

)
. (3.19)

In simulations from (3.9), we find that these ‘midpoint’ values 𝑣∗𝑖,𝑘 : (𝑖, 𝑘) ∈ X are approximately

normal (see Figure 3.10). On the other hand, the simulated spiking voltages and the voltages one

step before are right skewed and left skewed, respectively.

The property (3.19) will hold if and only if the following two equalities hold:

E𝑞𝜙𝑖 |Yc(𝛿,Δ𝑡𝑖𝑘 )⊺z(𝑖, 𝑘) = c(𝛿,Δ𝑡𝑖𝑘 )⊺`𝜙𝑖 (𝑖, 𝑘,Y) = 𝜗𝑖 − 1
2

(
𝐼Δ𝑡𝑖

𝑘
−1(𝑖, 𝑘,Y) + 𝐼Δ𝑡𝑖

𝑘
(𝑖, 𝑘,Y)

)
(3.20)

Var𝑞𝜙𝑖 |Yc(𝛿,Δ𝑡𝑖𝑘 )⊺z(𝑖, 𝑘) = c(𝛿,Δ𝑡𝑖𝑘 )⊺Σ𝜙𝑖 (Δ𝑡𝑖𝑘 ) c(𝛿,Δ𝑡𝑖𝑘 ) = 𝜏2
𝑖 , (3.21)

where c(𝛿,Δ𝑡𝑖𝑘 )⊺z(𝑖, 𝑘) is the random component of v∗𝑖, 𝑘 and the vector c(𝛿,Δ𝑡) ∈ RΔ𝑡 is given by

c(𝛿,Δ𝑡)𝑡 =


1
2
(
𝛿Δ𝑡−𝑡 + 𝛿Δ𝑡−1−𝑡 ) if 𝑡 = 1, ... ,Δ𝑡 − 1

1
2 if 𝑡 = Δ𝑡.

For our approximation 𝑞𝜙 |Y(z(𝑖, 𝑘)), the mean vector `𝜙𝑖 (𝑖, 𝑘,Y) is given by

`𝜙𝑖 (𝑖, 𝑘,Y)𝑠 =
2
[
𝜗𝑖 − 1

2

(
𝐼Δ𝑡𝑖

𝑘
−1(𝑖, 𝑘,Y) + 𝐼Δ𝑡𝑖

𝑘
(𝑖, 𝑘,Y)

)]
𝛿Δ𝑡

𝑖
𝑘−𝑠+1

(1 + 𝛿)∑Δ𝑡𝑖
𝑘

ℓ=1 𝛿
2(ℓ−1) − 1

+ 𝛼𝜙𝑖 (Δ𝑡𝑖𝑘 )𝑠, (3.22)

for 𝑠 = 1, ... ,Δ𝑡𝑖𝑘 , where

𝛼𝜙𝑖 (Δ𝑡)𝑠 = a1𝑖

[
𝑒−a2𝑖 (Δ𝑡−𝑠) − (𝛿 + 1)∑Δ𝑡

ℓ=1(𝛿𝑒−a2𝑖 )ℓ−1 − 1
(𝛿 + 1)∑Δ𝑡

ℓ=1 𝛿
ℓ−1 − 1

]
.

Note that
∑Δ𝑡
𝑠=1 𝛿

Δ𝑡−𝑠𝛼𝜙𝑖 (Δ𝑡) = 0. It is straightforward to verify that the mean vector (3.22) satisfies

(3.20). The 𝛼𝜙𝑖 (Δ𝑡)𝑠 term is easier to interpret when written as the difference. For 𝑟, 𝑠 ∈ {1, ... ,Δ𝑡}
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with 𝑟 < 𝑠,

𝛼𝜙𝑖 (Δ𝑡)𝑠 − 𝛼𝜙𝑖 (Δ𝑡)𝑟 = a1𝑖

[
𝑒−a2𝑖 (Δ𝑡−𝑠) − 𝑒−a2𝑖 (Δ𝑡−𝑟)

]
, (3.23)

and this difference will be positive when a1𝑖 and a2𝑖 are both greater than zero.

Our approximation’s covariance, Σ𝜙𝑖 (Δ𝑡) is specified via the Cholesky decomposition

Σ𝜙𝑖 (Δ𝑡) = R𝜙𝑖 (Δ𝑡) R𝜙𝑖 (Δ𝑡)⊺, (3.24)

with the entries of the (lower-triagular matrix) R𝜙𝑖 (Δ𝑡) given by

R𝜙𝑖 (Δ𝑡)𝑡𝑠 =



𝜎𝑖 r𝜙𝑖 (Δ𝑡)𝑡 if 𝑠 = 𝑡 (diagonal)

−𝜎𝑖 𝜑(𝜙, 𝛿,Δ𝑡) r𝜙𝑖 (Δ𝑡)𝑠 c(𝛿,Δ𝑡)𝑠
(Δ𝑡−𝑠) c(𝛿,Δ𝑡)𝑡 if 𝑠 < 𝑡 (below-diagonal)

0 otherwise,

(3.25)

where the vector r𝜙𝑖 (Δ𝑡) ∈ RΔ𝑡 has entries

r𝜙𝑖 (Δ𝑡)𝑡 =
1 − 𝛽1𝑖 exp{−𝛽2𝑖 (Δ𝑡 − 𝑡)/(Δ𝑡 − 1)}

1 − 𝛽1𝑖 exp{−𝛽2𝑖} where 𝛽1𝑖 ∈ (0, 1) and 𝛽2𝑖 > 0,

and the scalar 𝜑(𝜙, 𝛿,Δ𝑡) is set to satisfy (3.21). In order for 𝜑(𝜙, 𝛿,Δ𝑡) to be a real number, it is

sufficient that 𝜏𝑖 and 𝜎𝑖 satisfy 2𝜏𝑖 ≥ 𝜎𝑖. We compute 𝜑(𝜙, 𝛿,Δ𝑡) and provide the details of this

constraint on 𝜏𝑖 and 𝜎𝑖 below in section 3.3.3.

Features of 𝑞𝜙 |Y Our variational approximation allows for fully interpretable, white box inference

of the data generating process. Computing the approximation to observed data Y, we recover

estimates of the model parameters of interest while also gaining insight into the dynamics of the

latent fluctions Z and voltage paths V via the fitted variational parameters. Here are some key

features of 𝑞𝜙 |Y not yet mentioned:

• In equation (3.22) the difference 𝜗𝑖 − 1
2 (𝐼Δ𝑡𝑖𝑘−1(𝑖, 𝑘,Y) − 𝐼Δ𝑡𝑖

𝑘
(𝑖, 𝑘,Y)) between the expected

‘midpoint’ voltage E𝑞𝜙𝑖 |Y𝑣
∗
𝑖,𝑘 and an average of non-random accumulated inputs is weighted by
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𝛿Δ𝑡
𝑖
𝑘−𝑠+1. When 𝛿 < 1, this difference is captured more strongly in the entries of `𝜙𝑖 (𝑖, 𝑘,Y)

toward the end of the inter-spike periods.

• When a1𝑖, a2𝑖 > 0, 𝛼𝜙𝑖
(Δ𝑡)𝑠 is exponentially increasing in 𝑠, so that under 𝑞𝜙 |Y, larger random

contributions (from Z) to the spiking voltages are more likely to come from entries of z(𝑖, 𝑘)

toward the end of each inter-spike interval. Here a1𝑖 controls the magnitude of the difference

and a2𝑖 controls how concentrated the increased effect will be at the ends of the inter-spike

periods.

• At the start of each inter-spike interval (𝑖, 𝑘) ∈ X, Var𝑞𝜙 |Y (z𝑡𝑖𝑘+1,𝑖) = Σ𝜙𝑖 (Δ𝑡𝑖𝑘 )11 = 𝜎2
𝑖 . Under

𝑞\𝑖 |Y the variability Σ𝜙𝑖 (Δ𝑡𝑖𝑘 )𝑡𝑡 decreases as 𝑡 increases. The parameters 𝛽1𝑖, 𝛽2𝑖 > 0 control

aspects of this decrease, with 𝛽1𝑖 corresponding to magnitude and 𝛽2𝑖 to rate.

• The parameterization of Σ𝜙𝑖 (Δ𝑡) allows for negative conditional correlations among the latent

fluctuations between spikes.

• In using the Cholesky decomposition to specify Σ𝜙𝑖 (Δ𝑡), we guarantee its positive definiteness

and ensure straightforward sampling from 𝑞𝜙𝑖 |Y, since

e ∼ N(0, IΔ𝑡) ⇒ R𝜙𝑖 (Δ𝑡) e ∼ 𝑞𝜙𝑖 |Y

In addition, the form (3.24, 3.25) of Σ𝜙𝑖 (Δ𝑡) allows for easy computation of the entropy

−E𝑞𝜙𝑖 |Y log 𝑞𝜙𝑖 |Y(z(𝑖, 𝑘)) of 𝑞𝜙𝑖 |Y.

• The mean vectors `𝜙𝑖 (𝑖, 𝑘,Y) incorporate the current network estimate W and model pa-

rameters [𝑖 along with the background network input (from Y) through 𝐼Δ𝑡𝑖
𝑘
−1(𝑖, 𝑘,Y) and

𝐼Δ𝑡𝑖
𝑘
(𝑖, 𝑘,Y) (see equations (3.14) and (3.15)).

3.3.3 Further details on the variational approxiation 𝑞𝜙𝑖 |Y

In section 3.3.2 above we define Σ𝜙𝑖 (Δ𝑡) via its Cholesky decomposition (3.24) and the lower-

triangular matrix R𝜙𝑖 (Δ𝑡). We note that the scalar 𝜑(𝜙, 𝛿,Δ𝑡) in (3.25) is set to satisfy (3.21) and
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exists as a real number if 2𝜏𝑖 ≥ 𝜎𝑖. In this section we prove this innequality and show the calculation

of 𝜑(𝜙, 𝛿,Δ𝑡).
Restating the constraint (3.21) in terms of R𝜙𝑖 (Δ𝑡), we have, for the (𝑖, 𝑘)th interval with length

Δ𝑡,

Var𝑞𝜙𝑖 |Yv∗𝑖, 𝑘 = ∥R𝜙𝑖 (Δ𝑡)⊺c(𝛿,Δ𝑡)∥2 = 𝜏2
𝑖 .

Let D𝜙𝑖 (Δ𝑡) be diagonal with D𝜙𝑖 (Δ𝑡)𝑡𝑡 = r𝜙𝑖 (Δ𝑡)𝑡 and L𝜙𝑖 (Δ𝑡) = 1
𝜑(𝜙,𝛿,Δ𝑡) [ 1

𝜎𝑖
R𝜙𝑖 (Δ𝑡) − D𝜙𝑖 (Δ𝑡)].

Then

∥R𝜙𝑖 (Δ𝑡)⊺c(𝛿,Δ𝑡)∥2 = 𝜎2
𝑖 ∥D𝜙𝑖c(𝛿,Δ𝑡) + 𝜑(𝜙, 𝛿,Δ𝑡)L𝜙𝑖 (Δ𝑡)⊺c(𝛿,Δ𝑡)∥2, (3.26)

It is clear that the right hand side is a quadratic in 𝜑(𝜙, 𝛿,Δ𝑡). Setting this equal to 𝜏2, we obtain a

solution

𝜑(𝜙, 𝛿,Δ𝑡) = 1 −

√︃
𝜏2
𝑖/𝜎2

𝑖 − c2(𝛿,Δ𝑡)Δ𝑡 r2
𝜙𝑖
(Δ𝑡)Δ𝑡

∥L𝜙𝑖 (Δ𝑡)⊺c(𝛿,Δ𝑡𝑖𝑘 )∥
. (3.27)

In showing how we arrive at this solution we drop some notation so that 𝜑 := 𝜑(𝜙, 𝛿,Δ𝑡),
L := L𝜙𝑖 (Δ𝑡), D := D𝜙𝑖 (Δ𝑡), c := c(𝛿,Δ𝑡) and r := r𝜙𝑖 (Δ𝑡). Using the quadratic formula, we know

that

𝜑 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

. (3.28)

Expanding (3.26), we have: 𝑎 = ∥L⊺c∥2, 𝑏 = 2⟨L⊺c,Dc⟩ and 𝑐 = ∥Dc∥2 − 𝜏2

𝜎2 . In order for 𝜑 to be

real, we must have 𝑏2 ≥ 4𝑎𝑐, or equivalently,

𝜏2
𝑖

𝜎2
𝑖

≥ ∥Dc∥2 − ⟨L
⊺c,Dc⟩2
∥L⊺c∥2 = c2

Δ𝑡r2
Δ𝑡 . (3.29)

The equality here comes from our careful construction of R𝜙𝑖 (Δ𝑡). More immediately it follows

from the fact that Dc = −L⊺c + cΔ𝑡rΔ𝑡e(Δ𝑡) , where e(Δ𝑡) ∈ RΔ𝑡 is the standard basis vector having

one in its last entry and zeros in the rest. From the definitions of c(𝛿,Δ𝑡) and r𝜙𝑖 (Δ𝑡), we have that

|cΔ𝑡rΔ𝑡 | ≤ 1
2 , which gives us the constraint 2𝜏𝑖 ≥ 𝜎𝑖 presented in section 3.3.2.
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Rearranging (3.29) and substituting gives

√
𝑏2 − 4𝑎𝑐
2
√
𝑎

=
√︃
𝜏2
𝑖/𝜎2

𝑖 − c2
Δ𝑡r2

Δ𝑡 .

And again using the fact that Dc = −L⊺c + cΔ𝑡rΔ𝑡e(Δ𝑡) and noting that (L⊺c)Δ𝑡 = 0, we have that

⟨L⊺c,Dc⟩ = −∥L⊺c∥2 ⇒ −𝑏
2𝑎 = 1.

combining these these results in (3.28) gives (3.27).

To ensure 𝜑(𝜙, 𝛿,Δ𝑡) ∈ R and 𝑞𝜙𝑖 |Y is well-defined we use the following reparameterization in

our gradient update steps:

𝑢1𝑖 = 𝜎
2
𝑖 /4𝜏2

𝑖 ∈ (0, 1)

𝑢2𝑖 = 𝜏𝑖 > 0.

And here is the complete reparameterization mapping we use to allow unconstrained gradient update

steps for 𝜎𝑖 and 𝜙𝑖:

(𝜗𝑖, 𝜎𝑖, 𝜏𝑖, a1𝑖, a2𝑖, 𝛽1𝑖, 𝛽2𝑖) ↦→ (log 𝜗𝑖, logit
𝜎2
𝑖

4𝜏2
𝑖

, log 𝜏𝑖, log a1𝑖, log a2𝑖, logit𝛽1𝑖, log 𝛽2𝑖).
(3.30)

3.3.4 Maximizing the approximate ELBO

To compute our variational approximation 𝑞𝜙 |Y, we seek values (\̂, Ŵ, 𝜙) that (approximately)

maximize the evidence lower bound L(\,W, 𝜙; Y) (3.17).

We can write this variational objective as a sum over the observed inter-spike intervals:

L(\,W, 𝜙; Y) =
∑︁
(𝑖,𝑘)∈X

{
−E𝑞𝜙𝑖 |Y log 𝑞𝜙𝑖 |Y(z(𝑖, 𝑘)) + E𝑞𝜙𝑖 |Y log 𝑝(𝑖, 𝑘)

}
(3.31)
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For the second term in the summand, we use (3.13) to write:

E𝑞𝜙𝑖 |Y log 𝑝(𝑖, 𝑘 |W) = −
𝑡𝑖𝑘+1∑︁
𝑡=𝑡𝑖

𝑘
+1

{
log𝜎𝑖 + 1

2𝜎2
𝑖

E𝑞𝜙𝑖 |Yz2
𝑡, 𝑖 + E𝑞𝜙𝑖 |Y log(1 + exp(^(v𝑡, 𝑖 − 1)))

}
+ ^E𝑞𝜙𝑖 |Yv𝑡𝑖

𝑘+1, 𝑖
+ constant w.r.t. \,W, 𝜙.

The expectations E𝑞𝜙𝑖 |Yz2
𝑡, 𝑖 = Σ𝜙𝑖 (Δ𝑡𝑖𝑘 )𝑡𝑡 + `2

𝜙𝑖
(𝑖, 𝑘,Y)𝑡 are readily available. Computing E𝑞𝜙𝑖 |Yv𝑡𝑖

𝑘+1,𝑖

is straightforward once we note that, from (3.9) and (3.19), we can write

v𝑡𝑖
𝑘+1, 𝑖

=
1

1 + 𝛿
(
2𝛿 v∗𝑖, 𝑘 + [𝑖 + z𝑡𝑖

𝑘+1,𝑖
+ w)𝑖

⊺y𝑡𝑖
𝑘+1−1

)
.

On the other hand, the integral E𝑞𝜙𝑖 |Y log(1+exp(^(v𝑡, 𝑖−1))) does not have a closed-form expression.

To create a tractable objective, we use a piecewise polynomial approximation ℎ(𝑣) for the function

log(1 + exp(^(𝑣 − 1))). We provide the details of this approximation in section 3.3.5 below.

For the entropy term in (3.31), we have

−E𝑞𝜙𝑖 |Y log 𝑞𝜙𝑖 |Y(z(𝑖, 𝑘)) =
1
2

log detΣ𝜙𝑖 (Δ𝑡𝑖𝑘 ) + constant w.r.t. \,W, 𝜙

= Δ𝑡𝑖𝑘 log𝜎𝑖 +
Δ𝑡𝑖𝑘∑︁
𝑡=1

log r𝜙𝑖 (Δ𝑡𝑖𝑘 )𝑡 + constant w.r.t. \,W, 𝜙,

which is straightforward to compute.

All together this gives an approximate ELBO and tractable objective L̃(\,W, 𝜙; Y) to (approxi-

mately) maximize over (\,W, 𝜙). In practice we perform mini-batch gradient ascent with adam

updates [63] to make steps
(
\ (ℓ−1) ,W(ℓ−1) , 𝜙(ℓ−1) ) → (

\ (ℓ) ,W(ℓ) , 𝜙(ℓ)
)
. For a mini-batch Y ⊂ X
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containing 𝑚 observed inter-spike intervals, we write the approximate variational objective

L̃(\,W, 𝜙;Y) =
∑︁
(𝑖,𝑘)∈Y

Δ𝑡𝑖𝑘 log𝜎𝑖 +
Δ𝑡𝑖𝑘∑︁
𝑡=1

log r𝜙𝑖 (Δ𝑡𝑖𝑘 )𝑡


−
∑︁
(𝑖,𝑘)∈Y

𝑡𝑖𝑘+1∑︁
𝑡=𝑡𝑖

𝑘
+1

{
log𝜎𝑖 +

Σ𝜙𝑖 (Δ𝑡𝑖𝑘 )𝑡𝑡 + `2
𝜙𝑖
(𝑖, 𝑘,Y)𝑡

2𝜎2
𝑖

+ E𝑞𝜙𝑖 |Yℎ(v𝑡, 𝑖)
}

+
∑︁
(𝑖,𝑘)∈Y

^

1 + 𝛿
(
2𝛿𝜗𝑖 + [𝑖 + `𝜙𝑖 (𝑖, 𝑘,Y)Δ𝑡𝑖

𝑘
+ w)𝑖

⊺y𝑡𝑖
𝑘+1−1

)
.

We can compute the gradients ∇(\,W,𝜙)L̃(\,W, 𝜙;Y) analytically without noisy approximation or

any ‘reparameterization trick’ [62]. In section 3.3.5 below we show how to differentiate E𝑞𝜙𝑖 |Yℎ(v𝑡, 𝑖)
with respect to the unknown parameters (\,W, 𝜙).

In practice we reparameterize (\,W, 𝜙) with 𝑔(\,W, 𝜙) to allow for unconstrained gradient

update steps while ensuring that the distribution 𝑞𝜙 |Y is properly defined (3.30), and also to prevent

estimates of model parameters W and {[𝑖 : 𝑖 = 1, ... , 𝑛} from diverging wildly in early update steps.

Reparameterized gradient update steps with step size 𝛾 have the form

(
\ (𝑟) ,W(𝑟) , 𝜙(𝑟)

)
← 𝑔−1

(
𝑔

(
\ (𝑟−1) ,W(𝑟−1) , 𝜙(𝑟−1)

)
+ 𝛾 ∇𝑔(\,W,𝜙)L̃(\,W, 𝜙;Y)| (\,W,𝜙)=(\ (𝑟−1) ,W(𝑟−1) ,𝜙 (𝑟−1))

)
. (3.32)

3.3.5 Approximation ℎ for log(1 + exp(^(𝑣 − 1)))

Let 𝑓 (𝑣) = log(1 + exp(^(𝑣 − 1))). As we compute our variational approximation and seek

updates to the unknown parameters x = (\,W, 𝜙) we encounter quantities of the following form:

E 𝑓 (V) and
𝜕

𝜕𝑥
E 𝑓 (V) where V ∼ N(𝑚(x), 𝑠2(x)). (3.33)

These present intractable integrals, without closed form solutions. To work around this, we construct

an approximation ℎ of 𝑓 which allows us to compute plug-in approximations of the these quantities
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(3.33) to use in our gradient ascent update steps (3.32). The function 𝑓 with ^ = 50 along with our

approximation ℎ and its construction are shown in Figure 3.3.

The approximation ℎ is piecewise polynomial, with eleven ‘knots’ b1 < ... < b11. For 𝑖 =

2, ... , 10, we set ℎ on [b𝑖, b𝑖+1) to be a mixture of third degree Taylor expansions 𝑓3(𝑣; b𝑖) and

𝑓3(𝑣; b𝑖+1) of 𝑓 , centered at knots b𝑖 and b𝑖+1, respectively. Between the consecutive knots b𝑖 and

b𝑖+1, we mix these Taylor polynomials with the cubic weight function 𝑤𝑎,𝑏 (𝑣) = 3(𝑥 − 𝑎)2/(𝑏 −
𝑎)2 − 2(𝑥 − 𝑎)3/(𝑏 − 𝑎)3. This function 𝑤𝑎,𝑏 (shown in Figure 3.3 (b)) satisfies the following
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Figure 3.3: The function 𝑓 (𝑣) = log(1 + exp(^(𝑣 − 1))) and the construction of its estimate ℎ
when ^ = 50. Panel (a) shows 𝑓 and the knots b1 < ... < b11 used for the piecewise polynomial
approximation. Panel (b) shows the cubic weight function 𝑤𝑎,𝑏 used to mix the Taylor expansions
centered at the knots. Panel (c) shows the Taylor expansions and limiting linear functions used
to construct ℎ. Panel (d) shows the constructed approximation on the interval where 𝑓 behaves
non-linearly. (for 𝑣 ∉ (b1, b11), 𝑓 ′′′(𝑣) is very close to zero.)
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equalities:

𝑤𝑎,𝑏 (𝑎) = 0 𝑤𝑎,𝑏 (𝑏) = 1 𝑤𝑎,𝑏

(
1
2 (𝑎 + 𝑏)

)
= 0.5

𝑤′𝑎,𝑏 (𝑎) = 0 𝑤′𝑎,𝑏 (𝑏) = 0

For our piecewise approximation, we set the middle knot to 1. Working outward from b6 = 1,

we set the next middlemost knots b5 and b7 where the absolute value of the third derivative of 𝑓

is largest (where 𝑓 (4) (𝑣) = 0). Subsequent knots above (b8, b9, b10) and below (b4, b3, b2) are set

sequentially where the Taylor expansion at the previous knot stops being convex, that is, where its

second derivative equals zero:

b8 = (b7 𝑓
′′′(b7) − 𝑓 ′′(b7))/ 𝑓 ′′′(b7) b4 = (b5 𝑓

′′′(b5) − 𝑓 ′′(b5))/ 𝑓 ′′′(b5).

b9 = (b8 𝑓
′′′(b8) − 𝑓 ′′(b8))/ 𝑓 ′′′(b8) b3 = (b4 𝑓

′′′(b4) − 𝑓 ′′(b4))/ 𝑓 ′′′(b4)

b10 = (b9 𝑓
′′′(b9) − 𝑓 ′′(b9))/ 𝑓 ′′′(b9) b2 = (b3 𝑓

′′′(b3) − 𝑓 ′′(b3))/ 𝑓 ′′′(b3).

From the second lowest knot down to the first, ℎ is the first degree Taylor expansion 𝑓1(𝑣; b2)
centered at b2. We set b1 equal to the place where this function crosses the x-axis:

b1 = b2 − 𝑓 (b2)/ 𝑓 ′(b2).

For 𝑣 < b1, 𝑓 (𝑣) is very close to zero. We set ℎ = 0 on (−∞, b1], matching this limiting behavior.

From the second highest knot up to the highest, ℎ is the first degree Taylor expansion 𝑓1(𝑣; b10)
centered at b10. We set b11 equal to the place where this function crosses the line ^(𝑣 − 1):

b11 =
^ − b10 𝑓

′(b10) + 𝑓 (b10)
^ − 𝑓 ′(b10)

For 𝑣 > b1, 𝑓 (𝑣) is very close to ^(𝑣 − 1). Again matching this limiting behavior with our
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approximation, we set ℎ(𝑣) = ^(𝑣 − 1) for 𝑣 > b11. All together, we have:

ℎ(𝑣) =
10∑︁
𝑖=1

ℎ𝑖 (𝑣)1[b𝑖 ,b𝑖+1) (𝑣) + ^(𝑣 − 1)1[b11,∞) (𝑣),

where ℎ𝑖 is the (at most) 6th degree polynomial given by:

ℎ𝑖 (𝑣) =



𝑓1(𝑣; b2) if 𝑖 = 1

(1 − 𝑤b𝑖 ,b𝑖+1 (𝑣)) × 𝑓3(𝑣; b𝑖) + 𝑤b𝑖 ,b𝑖+1 (𝑣) × 𝑓3(𝑣; b𝑖+1) if 𝑖 = 2, ... , 9

𝑓1(𝑣; b10) if 𝑖 = 10.

Now we will use ℎ to approximate the intractable quantities (3.33). First we have

E 𝑓 (V) ≈ Eℎ(V) =
10∑︁
𝑖=1
E

[
ℎ𝑖 (V)1V∈[b𝑖 ,b𝑖+1)

] + ^E [(V − 1)1V∈[b11,∞)
]

=
10∑︁
𝑖=1

∫ b𝑖+1

b𝑖

ℎ𝑖 (𝑣)𝑝(𝑣; x)d𝑣 + ^
∫ ∞

b11

(𝑣 − 1)𝑝(𝑣; x)d𝑣 (3.34)

where

𝑝(𝑣; x) = 1√
2𝜋𝑠(x)

exp
(−(𝑣 − 𝑚(x)2)

2𝑠2(x)

)
.

In (3.34) we have readily computable integrals! Note that, in general, we can efficiently compute

integrals of the form E[X𝑘1X∈[𝑎,𝑏)], when X is normal.

For the second intractable quantity 𝜕
𝜕𝑥E 𝑓 (V), we have

𝜕

𝜕𝑥
E 𝑓 (V) ≈ 𝜕

𝜕𝑥
Eℎ(V) =

10∑︁
𝑖=1

𝜕

𝜕𝑥
E

[
ℎ𝑖 (V)1V∈[b𝑖 ,b𝑖+1)

] + ^ 𝜕
𝜕𝑥
E

[(V − 1)1V∈[b11,∞)
]
. (3.35)

To see how we can compute the right hand side, first note that

𝜕

𝜕𝑥
𝑝(𝑣; x) = 𝑝(𝑣; x)

[
− 𝜕
𝜕𝑥 𝑠(x)
𝑠(x) +

𝑠(x) (𝑣 − 𝑚(x)) 𝜕𝜕𝑥𝑚(x) + (𝑣 − 𝑚(x))2 𝜕
𝜕𝑥 𝑠(x)

𝑠3(x)

]
︸                                                                         ︷︷                                                                         ︸

:=𝑔𝑥 (𝑣;𝑚(x),𝑠(x)), a 2nd degree polynomial in 𝑣

.

72



Then if 𝜙(𝑣) is a 𝑘th degree polynomial on [𝑎, 𝑏), it follows that 𝜕
𝜕𝑥 (𝜙(𝑣)𝑝(𝑣; x)) is a (𝑘 + 2)th

degree integrable polynomial on [𝑎, 𝑏). Using the Leibniz rule we can differentiate under the

integral sign to get

𝜕

𝜕𝑥
E

[
𝜙(V)1V∈[𝑎,𝑏)

]
=

∫ 𝑏

𝑎
𝜙(V)𝑔𝑥 (𝑣; 𝑚(x), 𝑠(x))𝑝(𝑣; x)d𝑣 = E [

𝜙(V)𝑔(𝑣; 𝑚(x), 𝑠(x))1V∈[𝑎,𝑏)
]

(3.36)

where the final quantity is one we can efficiently compute.

3.3.6 Computational complexity

In this subsection we discuss the complexity of computing our variational approximation. In

particular we consider the cost of making updates (3.32) in one full pass through the observed data

Y.

The most computationally expensive part of the gradient calculation ∇(\,W,𝜙)L̃(\,W, 𝜙;Y)
are the gradients ∇(\,W,𝜙)E𝑞𝜙𝑖 |Yℎ(v𝑡, 𝑖) of the expected approximation ℎ for 𝑡 = 𝑡𝑖𝑘 + 1, ... , 𝑡𝑖𝑘+1 and

(𝑖, 𝑘) ∈ Y. These involve computations of the form (3.35) and (3.36), whose most computationally

expensive pieces are the partial derivatives of the variances Var𝑞𝜙 (v𝑡, 𝑖) of the latent voltage under

𝑞𝜙, which are taken with respect to parameters 𝜎, 𝜏, a1 and a2.

We consider the (𝑖, 𝑘)th inter-spike interval with length Δ𝑡. For 𝑡 = 𝑡𝑖𝑘 + 𝑟, note that

Var𝑞𝜙 (v𝑡, 𝑖) = c0(𝛿,Δ𝑡, 𝑟)⊺R𝜙𝑖 (Δ𝑡)R𝜙𝑖 (Δ𝑡)⊺c0(𝛿,Δ𝑡, 𝑟),

where the vector c0(𝛿,Δ𝑡, 𝑟) ∈ RΔ𝑡 is given by

c0(𝛿,Δ𝑡, 𝑟)𝑠 =

𝛿Δ𝑡−𝑠 if 𝑠 = 1, ... , 𝑟

0 if 𝑠 > 𝑟.

For 𝑥 ∈ (𝜎, 𝜏, a1, a2), if we set R(𝑥)𝜙𝑖 (Δ𝑡) to be the matrix of partial derivatives of R𝜙𝑖 (Δ𝑡) with
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respect to 𝑥, then

𝜕

𝜕𝑥
Var𝑞𝜙 (v𝑡, 𝑖) = c0(𝛿,Δ𝑡, 𝑟)⊺

[
R𝜙𝑖 (Δ𝑡)R(𝑥)𝜙𝑖 (Δ𝑡)

⊺ + R(𝑥)𝜙𝑖 (Δ𝑡)R𝜙𝑖 (Δ𝑡)⊺
]
c0(𝛿,Δ𝑡, 𝑟).

The computational complexity of computing 𝜕
𝜕𝑥Var𝑞𝜙 (v𝑡, 𝑖) for each 𝑡 = 𝑡𝑖𝑘 +1, ... , 𝑡𝑖𝑘+1 is O(Δ𝑡3).

Recursively calculating the derivatives significantly improves runtime in our implementation, but

does not change the overall complexity.

Consider the longest observed spike period in the dataset with length Δ𝑡∗. For a given node 𝑖

the maximum number of Δ𝑡∗-length intervals that may be observed in the observed data is 𝑇/Δ𝑡∗.
Thus the overall computation complexity of running the gradient updates across one epoch (each

inter-spike interval observed once) is O(𝑛𝑇 (Δ𝑡∗)2).
With the complexity scaling quadratically in Δ𝑡∗, computing our variational approximation

becomes much more expensive when there is sparsity in the observed spikes and the data contains

long inter-spike periods. We believe that adjustments could be made to our approach to counteract

this limitation. This is an area we are interested in pursuing in future work.

3.3.7 Inferring the existence of edges (𝑖, 𝑗) ∈ E

As part of our objective to learn the latent network structure among the observed event streams,

we wish to infer whether or not a latent edge exists between each given pair nodes. For the signed,

directed, weighted graph G, this amounts to estimating the signed, directed, unweighted adjacency

matrix S = sign(W).
Computing our variational approximation provides an estimate Ŵ of the signed strength of each

connection in W based on the observations Y and the generating process (3.9). However, each

estimated connection Ŵ𝑖 𝑗 for 𝑖 ≠ 𝑗 will always be non-zero because the gradient based optimization

does not provide sparsity. It follows that sign(Ŵ) will be non-zero at all its off-diagonal entries and

thus a very bad estimator of S.

We propose a criterion for determining whether or not a directed pair (𝑖, 𝑗) constitutes a
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non-zero edge in E based on update steps from the computation of Ŵ. Our proposed criterion

considers whether the estimate Ŵ𝑖 𝑗 has converged significantly away from zero and corresponds to

a meaningful effect size.

Algorithm 3.1 provides the details of our criterion, and gives the procedure for obtaining our

estimate Ŝ for S. Note 𝐾 is the number of epochs run in computing our variational approximation

and Ŵ(𝑘) is our estimate for W after the 𝑘th epoch. Our criterion is based on the estimates from the

last 𝑘∗ steps (𝑘∗ < 𝐾). In sections 3.4 and 3.5 we set 𝑘∗ = 25, 𝑐∗ = 3 and 𝑚∗ = .05. Figure 3.21

shows our criterion being applied to the in- and out-edges of one neuron (𝑖 = 13) in the DMFC_RSG

dataset.

Algorithm 3.1 Estimate S = sign(W) from variational updates
Require: sequential updates Ŵ(1) , ..., Ŵ(𝐾)

Require: 𝑘∗ ≤ 𝐾 updates to include
Require: 𝑐∗ > 0 controlling width of interval
Require: 𝑚∗ > 0 effect size threshold

initialize Ŝ𝑖 𝑗 ← 0, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛
for (𝑖, 𝑗) ∈ {1, ..., 𝑛} × {1, ..., 𝑛} with 𝑖 ≠ 𝑗 do

𝑚 ← 1
𝑘∗

∑𝑘∗
𝑘=1 Ŵ(𝐾−𝑘∗+𝑘)

𝑖 𝑗

𝑣2 ← 1
𝑘∗

∑𝑘∗
𝑘=1

(
Ŵ(𝐾−𝑘∗+𝑘)

𝑖 𝑗 − 𝑚
)2

𝐿 ← 𝑚 − 𝑐∗𝑣
𝑈 ← 𝑚 + 𝑐∗𝑣
if 𝐿 > 0 and 𝑈 > 𝑚∗ then ⊲ interval above zero and reaches effect size threshold

Ŝ𝑖 𝑗 ← 1
else if𝑈 < 0 and 𝐿 < −𝑚∗ then ⊲ interval below zero and reaches effect size threshold

Ŝ𝑖 𝑗 ← −1
end if

end for
return estimated edge signs Ŝ

Estimating S on top of W refines our understanding of the inferred latent structure and allows us

to use methods for unweighted networks. It helps us visualize our inferred network by eliminating

edges that we determine to be insignificant either ‘statistically’ or in terms of effect size, and it

allows us to assess and compare the results of our approach in more ways. For example, computing

our proposed Ŝ provides grounds for comparison of our method to other established methods for

inferring connectivity (eg transfer entropy).
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3.3.8 Spike prediction for a held-out node

In situations where ground truth is available we can assess our model and inference procedure by

comparing our estimates of the latent network with the known network structure. This is the case in

our simulation study below, but in general the latent network connections among recorded neurons

is not known. Moreover, our considered data model is an oversimplification of neuronal dynamics

[64], and while we may wish to infer, in a real data application, that estimated non-zero entries of

W to reflect real causal dependencies between neurons, we know that the spiking mechanisms and

underlying process are quite different from (3.9).

Predictive performance on held-out data is a natural tool for the assessment of the model,

inference procedure, and estimates. We consider the problem of predicting the event times of a

held-out node in the situation where event times of all nodes is observed across a training period,

but in a subsequent testing period the activity of one node is missing and needs to be predicted.

Suppose we set out to record the spiking activity of 𝑛 neurons for a period of length 𝑇 . The

recording of neuron 𝑖∗ is interrupted at some point, and we last observe it spike at time 𝑇∗. Mean-

while the recording of the other 𝑛 − 1 neurons is complete. What can we say about the spiking

activity of neuron 𝑖∗ in the period from 𝑇∗ + 1 to 𝑇?

We use the complete training data Ytrain ∈ {0 , 1}𝑇∗×𝑛 to compute our variational objective,

obtaining model parameter estimates (\̂, Ŵ). The test data Ytest ∈ {0 , 1}𝑆×𝑛 is partially observed

as Ytest
−𝑖∗ = (y𝑇∗+1,𝑖∗ , ... , y𝑇∗+𝑆,𝑖∗) ∈ {0 , 1}𝑆×𝑛−1, where 𝑆 = 𝑇 − 𝑇∗. We wish to make reconstructive

predictions of the held-out activity of neuron 𝑖∗, Ytest
𝑖∗ ∈ {0 , 1}𝑆 given (\̂, Ŵ) and Ytest

−𝑖∗ . To this

end, we estimate the conditional expectation of the unobserved spikes, E[Ytest
𝑖∗ |Ytrain,Ytest

−𝑖∗ ], with

the posterior predictive conditional expectation E[Ytest
𝑖∗ |Ytest

−𝑖∗ , \̂, Ŵ, y𝑇∗,𝑖∗ = 1], where

E[y𝑇∗+𝑟,𝑖∗ |Ytest
−𝑖∗ , \̂, Ŵ, y𝑇∗,𝑖∗ = 1] = Pr(y𝑇∗+𝑟,𝑖∗ = 1|Ytest

−𝑖∗ , \̂, Ŵ, y𝑇∗,𝑖∗ = 1), (3.37)

for 𝑟 = 1, ... , 𝑆3. These conditional spike probabilities are point forecasts of the held-out data,

3Throughout this section we condition on the observed final spike {y𝑇∗ ,𝑖∗ = 1} for the held out neuron 𝑖∗; however,
we sometimes drop this conditioned event from our expressions for ease of notation. For example we will write
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which we can evaluate with cross entropy loss (see section 3.4.4.).

Computing (3.37) involves the posterior predictive distribution of v𝑇∗+𝑟,𝑖∗ , the latent state of

node 𝑖∗ in the testing period, conditional on the observed activity of the other 𝑛 − 1 nodes. This

distribution is difficult to deal with (ie simulate from) because it anticipates the spikes of the

other nodes. Given our considered data model (3.9) with its adapted joint ditribution (3.12), it

is much more natural to deal with the non-anticipating posterior predictive distribution of the

latent states and spiking activity of the held out node, which ‘sees’ the spikes as they arrive. For

(Vtest
𝑖∗ ,Ytest

𝑖∗ ) = (v𝑇∗+1,𝑖∗ , ... , v𝑇∗+𝑆,𝑖∗ , y𝑇∗+1,𝑖∗ , ... , y𝑇∗+𝑆,𝑖∗), this distribution is given by

𝑝na
\̂𝑖∗ ,ŵ)𝑖∗ |Ytest

−𝑖∗ , y𝑇∗ ,𝑖∗=1(V
test
𝑖∗ ,Ytest

𝑖∗ ) = 𝑝 \̂𝑖∗ (v𝑇∗+1,𝑖∗ | y𝑇∗,𝑖∗ = 1) 𝑝(y𝑇∗+1,𝑖∗ | v𝑇∗+1,𝑖∗)

×
𝑆∏
𝑟=2

𝑝 \̂𝑖∗ ,ŵ)𝑖∗ (v𝑇∗+𝑟,𝑖∗ | y𝑇∗+𝑟−1,𝑖∗ , v𝑇∗+𝑟−1,𝑖∗ ,Ytest
𝑟−1,−𝑖∗) 𝑝(y𝑇∗+𝑟,𝑖∗ | v𝑇∗+𝑟,𝑖∗). (3.38)

With its factorized form, this distribution is quite straightforward to sample from, and we will

use it to estimate (3.37). But working with (3.38) alone will not suffice, since a ‘reconstruction

draw’ yna ∈ {0 , 1}𝑆 of unobserved spikes from 𝑝na
\̂𝑖∗ ,ŵ)𝑖∗ |Ytest

−𝑖∗ , y𝑇∗ ,𝑖∗=1
is not a draw from the target

distribution 𝑝 \̂,Ŵ(Ytest
𝑖∗ |Ytest

−𝑖∗ ). The key difference is that, in generating a sequence of latent states

and spikes from (3.38), the conditioning on Ytest
−𝑖∗ does not remain constant and complete, but evolves

sequentially. For example, the 𝑟th simulated pair (v𝑇∗+𝑟,𝑖∗ , y𝑇∗+𝑟,𝑖∗) is influenced directly by network

inputs only from time 𝑇∗ + 𝑟 − 1. It is influenced indirectly, via (v𝑇∗+𝑟−1,𝑖∗ , y𝑇∗+𝑟−1,𝑖∗), by spiking

activity before time 𝑇∗ + 𝑟 − 1 and is drawn independently of spikes on or after time 𝑇∗ + 𝑟.
To aid our discussion of spiking activity relative to a fixed time 𝑇∗ + 𝑟, we define, for each

𝑟 ∈ {1, ... , 𝑆}, past and current/future sets Ytest
<𝑟,−𝑖∗ := {y𝑟 ′ 𝑗 : 𝑟′ < 𝑟, 𝑗 ≠ 𝑖∗} and Ytest

≥𝑟,−𝑖∗ := {y𝑟 ′ 𝑗 :

𝑟′ ≥ 𝑟, 𝑗 ≠ 𝑖∗} that partition the observed spiking activity Ytest
−𝑖∗ .

We use Monte Carlo simulations to estimate the non-anticipating posterior predictive probability

Pr(yna
𝑟 = 1) of a spike at time 𝑇∗ + 𝑟 under (3.38). We can express and estimate this probability

Pr(y𝑇∗+𝑟 ,𝑖∗ = 1|Ytest
−𝑖∗ , \̂, Ŵ) instead of (3.37)
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recursively, with

Pr(yna
𝑟 = 1) =

𝑟−1∑︁
𝑠=0

Pr(yna
𝑠 = 1, yna

𝑠+1 = 0, ... , yna
𝑟−1 = 0, yna

𝑟 = 1)

=
𝑟−1∑︁
𝑠=1

Pr(yna
𝑠 = 1) Pr(yna

𝑠+1 = 0, ... , yna
𝑟−1 = 0, yna

𝑟 = 1| yna
𝑠 = 1), (3.39)

where Pr(yna
0 = 1) and Pr(yna

𝑠+1 = 0, ... , yna
𝑟−1 = 0, yna

𝑟 = 1| yna
𝑠 = 1) is the probability of the next

spike occurring at 𝑟 given a spike at 𝑠. We compute an estimate 𝑝na
𝑠)𝑟 |𝑠1 of this latter conditional

probability by drawing from the non-anticipating distribution 𝑝na
\̂𝑖∗ ,ŵ)𝑖∗ |Ytest

≥𝑠+1,−𝑖∗ , y𝑇∗+𝑠,𝑖∗=1
, defined

analogously to (3.38). Setting 𝑝na
0 = 1, we compute recursively, for 𝑟 = 1, ... , 𝑆,

𝑝na
𝑟 =

∑︁𝑟−1

𝑠=0
𝑝na
𝑠 𝑝

na
𝑠)𝑟 |𝑠1 ≈ Pr(yna

𝑟 = 1). (3.40)

With our estimates 𝑝na
𝑟𝑖∗ and 𝑝na

𝑠)𝑟 |𝑠1 for Pr(yna
𝑟 = 1) and Pr(next spike at 𝑟 | yna

𝑠 = 1), respectively,

we compute further ‘non anticipating’ conditional probabilities of a spike at time 𝑟 given a spike or

non-spike (y ∈ {0 , 1}) at time 𝑠:

𝑝na
𝑟 |𝑠y ≈ Pr(yna

𝑟 = 1|yna
𝑠 = y). (3.41)

From our discussion above, it is clear that 𝑝na
𝑟 is an unsatisfactory estimate of Pr(y𝑇∗+𝑟,𝑖∗ =

1|Ytest
−𝑖∗ , \̂, Ŵ). To properly account for the constant and complete conditioning on all the observed

spiking activity Ytest
−𝑖∗ , we must incorporate, in our estimates, the likelihood of the observed spiking

activity given the ‘reconstructed’ spiking behavior of the held-out node 𝑖∗. We do this with a sort of

forward-backward algorithm, computing forward spiking probabilities and backward conditional

likelihoods using non-anticipating simulations and our variational approximation.

Using our partitioning of Ytest
−𝑖∗ at 𝑟 and a version of Bayes theorem, we write the posterior
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predictive conditional probability (3.37) as

Pr(y𝑇∗+𝑟,𝑖∗ = 1|Ytest
−𝑖∗ , \̂, Ŵ)

=
𝑝 \̂,Ŵ(y𝑇∗+𝑟,𝑖∗ = 1,Ytest

≥𝑟,−𝑖∗ |Ytest
<𝑟,−𝑖∗)

𝑝 \̂,Ŵ(Ytest
≥𝑟,−𝑖∗ |Ytest

<𝑟,−𝑖∗)

=
Pr(y𝑇∗+𝑟,𝑖∗ = 1|Ytest

<𝑟,−𝑖∗ , \̂, Ŵ) 𝑝 \̂,Ŵ(Ytest
≥𝑟,−𝑖∗ | y𝑇∗+𝑟,𝑖∗ = 1,Ytest

<𝑟,−𝑖∗)∑
y∈{0 ,1} Pr(y𝑇∗+𝑟,𝑖∗ = y|Ytest

<𝑟,−𝑖∗ , \̂, Ŵ) 𝑝 \̂,Ŵ(Ytest
≥𝑟,−𝑖∗ | y𝑇∗+𝑟,𝑖∗ = y,Ytest

<𝑟,−𝑖∗)
. (3.42)

To compute our point estimate of the target reconstruction probability, we substitute in estimates for

the components of (3.42). We have two distinct components to deal with. There is the conditional

probability Pr(y𝑇∗+𝑟,𝑖∗ = 1|Ytest
<𝑟,−𝑖∗ , \̂, Ŵ) of a held-out spike at time 𝑇∗ + 𝑟 given the observed

network activity before time 𝑇∗ + 𝑟. This ‘forward’ probability is weighted by the ‘backward’

conditional likelihoods 𝑝 \̂,Ŵ(Ytest
≥𝑟,−𝑖∗ | y𝑇∗+𝑟,𝑖∗ = y,Ytest

<𝑟,−𝑖∗) of the observed spiking activity at and

after time 𝑇∗ + 𝑟 given a spike or non-spike at time 𝑇∗ + 𝑟 and the observed spiking activity before

time 𝑇∗ + 𝑟.
For the first component, the ‘forward’ probability, we use Bayes theorem and some re-arranging

to arrive at a recursion similar to (3.39). Denoting Pf
𝑟 := Pr(y𝑇∗+𝑟,𝑖∗ = 1|Ytest

<𝑟,−𝑖∗ , \̂, Ŵ), we write

Pf
𝑟 =

𝑟−1∑︁
𝑠=0

Pr(y𝑇∗+𝑠,𝑖∗ = 1, y𝑇∗+𝑠+1,𝑖∗ = 0, ... , y𝑇∗+𝑟−1,𝑖∗ = 0, y𝑇∗+𝑟,𝑖∗ = 1|Ytest
<𝑟,−𝑖∗ , \̂, Ŵ)

=
𝑟−1∑︁
𝑠=0

𝑝 \̂,Ŵ(Ytest
𝑠:𝑟,𝑖∗ = (1, 0, ... , 0, 1),Ytest

𝑠:(𝑟−1),−𝑖∗ |Ytest
<𝑠,−𝑖∗)

𝑝 \̂,Ŵ(Ytest
𝑠:(𝑟−1),−𝑖∗ |Ytest

<𝑠,−𝑖∗)

=
𝑟−1∑︁
𝑠=0

Pf
𝑠 𝑝 \̂,Ŵ(Ytest

(𝑠+1):𝑟,𝑖∗ = (0, ... , 0, 1),Ytest
𝑠:(𝑟−1),−𝑖∗ |Ytest

<𝑠,−𝑖∗ , Ytest
𝑠,𝑖∗ = 1)

𝑝 \̂,Ŵ(Ytest
𝑠:(𝑟−1),−𝑖∗ |Ytest

<𝑠,−𝑖∗)
(3.43)

In the second line we use Bayes theorem to remove Ytest
𝑠:(𝑟−1),−𝑖∗ , the observed spiking activity from

time 𝑇∗ + 𝑠 to 𝑇∗ + 𝑟 − 1, from the conditioning information of Pf
𝑟 . This paves the way for drawing

out the recursive term Pf
𝑠 in line three, where it is multiplied by the conditional non-anticipating

joint likelihood of observing the next spike for the held out node 𝑖∗ at time 𝑟 and the observed spikes

from time 𝑇∗ + 𝑠 to 𝑇∗ + 𝑟 − 1. This joint likelihood term may be factored into its held out and

79



observed pieces:

𝑝na
\̂𝑖∗ ,ŵ)𝑖∗ |Ytest

(𝑠+1):𝑟 ,−𝑖∗ ,Y
test
𝑠,𝑖∗=1(0, ... , 0, 1) × 𝑝

na
\̂,ŵ|Ytest

(𝑠+1):(𝑟−1) ,𝑖∗=(0,...,0)
(Ytest

𝑠:(𝑟−1),−𝑖∗ |Ytest
<𝑠,−𝑖∗ , Ytest

𝑠,𝑖∗ = 1).

The held-out piece on the left is straightforward to estimate with 𝑝na
𝑠)𝑟 |𝑠1 via Monte Carlo simulations

as described above. Substituting the factored term back into (3.43), the right-hand term creates a

likelihood ratio with the conditional likelihood 𝑝 \̂,Ŵ(Ytest
𝑠:(𝑟−1),−𝑖∗ |Ytest

<𝑠,−𝑖∗) in the denominator.

We estimate this likelihood ratio by simulating non-anticipating draws for each inter-spike

interval that overlaps Ytest
𝑠:(𝑟−1),−𝑖∗ , that is, each indexed interval (𝑖, 𝑘) ∈ Y𝑠:(𝑟−1),−𝑖∗ , where

Y𝑠:𝑡,−𝑖∗ := {(𝑖, 𝑘) ∈ X : 𝑖 ≠ 𝑖∗, 𝑡𝑖𝑘 < 𝑇
∗ + 𝑡, 𝑡𝑖𝑘+1 > 𝑇∗ + 𝑠}.

Note that for 𝑠 < 𝑟, and some conditioning information • about the held-out node 𝑖∗, we can write

𝑝(Ytest
𝑠:𝑡,−𝑖∗ |Ytest

<𝑠,−𝑖∗ , •) =
∏

(𝑖,𝑘)∈Y𝑠:𝑡 ,−𝑖∗

𝑝
(
ymin{𝑠, 𝑡𝑖

𝑘
+1},𝑖, ... , ymax{𝑡, 𝑡𝑖

𝑘+1},𝑖 |Y
test
<𝑠,−𝑖∗ , •

)
=

∏
(𝑖,𝑘)∈Y𝑠:𝑡 ,−𝑖∗
𝑡𝑖𝑘<𝑇

∗+𝑠

𝑝
(
y𝑡𝑖

𝑘
+1,𝑖, ... , ymax{𝑡, 𝑡𝑖

𝑘+1},𝑖 | •
)

Pr(𝑡𝑖𝑘+1 > 𝑠 | •)
∏

(𝑖,𝑘)∈Y𝑠:𝑡 ,−𝑖∗
𝑡𝑖𝑘≥𝑇∗+𝑠

𝑝
(
y𝑡𝑖

𝑘
+1,𝑖, ... , ymax{𝑡, 𝑡𝑖

𝑘+1},𝑖 | •
)
. (3.44)

To estimate 𝑝(Ytest
𝑠:𝑡,−𝑖∗ |Ytest

<𝑠,−𝑖∗ , •), we approximate the probabilities of the factored likelihood with

simulations that account for the unobserved activity of node 𝑖∗ given •. Imputing 𝑔(•) ∈ [0, 1]𝑆 as

the spiking activity of held-out node, we take non-anticipating draws from distributions analagous

to (3.38). Note that this likelihood takes the same form as the ‘backwards’ conditional likelihood

term 𝑝 \̂,Ŵ(Ytest
≥𝑟,−𝑖∗ | y𝑇∗+𝑟,𝑖∗ = y,Ytest

<𝑟,−𝑖∗) in (3.42), which we estimate in the same way. In the
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non-anticipating draws, we use the following imputations 𝑔(•):

𝑝na
\̂,ŵ|Ytest

(𝑠+1):(𝑟−1) ,𝑖∗=(0,...,0)
(Ytest

𝑠:(𝑟−1),−𝑖∗ |Ytest
<𝑠,−𝑖∗ , Ytest

𝑠,𝑖∗ = 1) ⇔ 𝑔(•)𝑡 =

𝑝na
𝑡 |𝑠1 𝑡 ≤ 𝑠

0 𝑡 > 𝑠

𝑝 \̂,Ŵ(Ytest
𝑠:(𝑟−1),−𝑖∗ |Ytest

<𝑠,−𝑖∗) ⇔ 𝑔(•)𝑡 = 𝑝na
𝑡

𝑝 \̂,Ŵ(Ytest
≥𝑟,−𝑖∗ | y𝑇∗+𝑟,𝑖∗ = y,Ytest

<𝑟,−𝑖∗) ⇔ 𝑔(•)𝑡 = 𝑝na
𝑡 |𝑟y.

We recall that 𝑝na
𝑡 and 𝑝na

𝑡 |𝑟y are the empirically estimated posterior predictive spike probabilities

(3.40) and (3.41), and note that 𝑝na
𝑟 |𝑟y = y.

Using these imputations we ‘re-draw’ many times along the observed inter-spike intervals that

overlap with the training period, and we obtain approximate empirical estimates for the quantities in

(3.44) and thus likelihoods 𝑝(Ytest
𝑠:𝑡,−𝑖∗ |Ytest

<𝑠,−𝑖∗ , •), which we plug into (3.43) and (3.42) to compute

our forward-backward point estimate: 𝑝𝑟𝑖∗ .

Computational complexity Calculating our forward-backward point estimates is quite computa-

tionally expensive. For our implementation in R[65] we vectorize our code as much as possible,

which provides significant improvements in runtime while increasing the space complexity.

The computational time complexity of calculating the empirical posterior predictive spike

probabilities 𝑝na
𝑟 and 𝑝na

𝑟 |𝑠y (all 𝑟, 𝑠 ∈ {1, ... , 𝑆}) for held-out node 𝑖∗ is O(𝑆2𝑁1), where 𝑁1 is the

number of Monte Carlo draws used to calculate 𝑝na
𝑠)𝑟 |𝑠1. The space complexity in our implementation

is O(𝑆2) + O(𝑁1).
The computational time complexity of calculating our estimates 𝑝𝑟𝑖∗ on the test period for (3.42)

given estimates 𝑝na
𝑟 and 𝑝na

𝑟 |𝑠y is O(𝑛𝑆2𝑁2), where 𝑁2 is the number of draws used to estimate (3.44).

The space complexity of these computations is O(𝑆Δ𝑡∗) + O(𝑁2), where Δ𝑡∗ is the largest observed

inter-spike interval observed across the testing period.
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3.3.9 Signal-to-noise ratios for network effect

Under the data model (3.9), the relative levels of structured signal for the network effects (ie

(3.7), w)𝑖
⊺y𝑡) and noise in the observable event times may vary across the 𝑛 nodes. These levels

depend on W and the model parameters \. We propose a signal-to-noise ratio, for individual nodes,

of the network effect size in their observations. This computed quantity provides an essential tool for

analyzing the generative process (3.9) as well as results from fitting our variational approximation

to observations Y.

Calculating a signal-to-noise ratio for the network effect in the noisy point process data we

consider is very appealing because it helps us characterize the nodes and how reliable and informative

they are as message-passers within a complex system. Moreover, it is appealing for the same reason

that it is difficult — it is hard to distinguish the network effect size amid multiple sources of variation

in the observed data Y.

We may interpret the observed event data as messages sent by the ‘spiking’ nodes to their

downstream neighbors in the latent network. To us (observing just these events), node 𝑖’s next

recorded emission is a signal of the input it has received since its last. The amount we can learn

from this signal depends on the variability in both the latent aggregation process and the spiking

mechanism. When the latent fluctuations are small, the observed event provides a clearer reflection

of the network edges into node 𝑖, adding structured signal to the observation. On the other hand

large fluctuations pollute the signal, introducing noise.

The parameter 𝜎𝑖 controls the level of these latent fluctuations and is a primary driver in the

network effect signal-to-noise ratio for a given node. The other model parameters play more

complicated roles. Sparsity of observed events means less signal in general, while dense spiking

can add more noise or more signal depending on 𝜎𝑖 along with the variability of input received from

other nodes. Also, based on our definition, nodes with no edges will have a signal-to-noise ratio

equal to zero (see, for example, node 1 in Figure 3.2), and for nodes with very few in-edges it will

be small. This reflects the fact that these nodes’ observed activity is not explained by the implicit

network. However, their emissions still provide important information about the (lack of) network
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structure.

In general, a signal-to-noise ratio (SNR) describes the tradeoff (with respect to some possibly

implicit model) between structure in the data induced by the signal and variability due to the noise:

SNR =
𝜎2

signal

𝜎2
noise

.

This standard form does not apply in the problem we consider because the observed event times

transmit both signal and noise, and there is no simple way to disentangle the two.

Our proposed SNR for individual nodes follows work in [66]. In this paper, the authors assume

a point process generalized linear model (PP-GLM) for neurons spiking behavior, and compute a

signal-to-noise ratio for a single neuron based on residual deviances from the PP-GLM fits. The

data and context they consider aligns very closely our work, and we extend aspects of their approach

to our model.

We fix 𝑖 ∈ {1, ... , 𝑛} and begin by considering some logistic models for the observations from

node 𝑖:

𝑀 𝑖 : logit(Pr(y𝑡, 𝑖 = 1)) = ^(v𝑡, 𝑖 − 1)

𝑀 𝑖
1 : logit(Pr(y𝑡, 𝑖 = 1)) = 𝑏0 + 𝑏1

∑𝑟
𝑠=1 𝛿

𝑟−𝑠 + 𝑏2w)𝑖
∑𝑟
𝑠=1 𝛿

𝑟−𝑠y𝑡𝑖
𝑘
+𝑟

𝑀 𝑖
0 : logit(Pr(y𝑡, 𝑖 = 1)) = 𝑏0 + 𝑏1

∑𝑟
𝑠=1 𝛿

𝑟−𝑠


𝑡 = 𝑡𝑖𝑘 + 𝑟 ≤ 𝑡𝑖𝑘+1

for some (𝑖, 𝑘) ∈ X.

Note that with the observation period partitioned by node 𝑖’s recorded inter-spike periods (as

described in section 3.2.3 above), we know there exists an 𝑟 > 1 and (𝑖, 𝑘) ∈ X such that 𝑡 = 𝑡𝑖𝑘 + 𝑟
with 𝑟 ≤ 𝑡𝑖𝑘+1.

The first model, 𝑀 𝑖 is the true observation model, conditional on the latent state. The only

variability in 𝑀 𝑖 comes from the soft threshold spiking mechanism.

In the second model 𝑀 𝑖
1, the log-odds of a spike at time 𝑡 is conditioned on the true accumulated

network input w)𝑖
∑𝑟
𝑠=1 𝛿

𝑟−𝑠y𝑡𝑖
𝑘
+𝑟 for node 𝑖 at time 𝑡. Model 𝑀 𝑖

1 assumes knowledge of the edges

w)𝑖 into node 𝑖 and has a coefficient for constant accumulated input within the inter-spike periods.
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This model contains 𝑀 𝑖 if there are no latent fluctuations (by setting 𝑏0 = −^, 𝑏1 = ^ and 𝑏2 = ^[𝑖).

When 𝜎𝑖 > 0,

v𝑡, 𝑖 = [𝑖
𝑟∑︁
𝑠=1

𝛿𝑟−𝑠 + w)𝑖

𝑟∑︁
𝑠=1

𝛿𝑟−𝑠y𝑡𝑖
𝑘
+𝑟 + noise.

Note that this noise ‘sees’ (is conditioned on) y𝑡𝑖
𝑘
+1 = ... = y𝑡𝑖

𝑘
+𝑟−1 = 0, meaning that it cannot be

treated as mean zero or independent.

We consider the following decomposition of the deviance 𝐷𝑖1 associated with model 𝑀 𝑖
1 into the

deviance 𝐷𝑖 of model 𝑀 𝑖 and the difference in (𝐷𝑖1 − 𝐷𝑖):

𝐷𝑖1 = 𝐷𝑖 + (𝐷𝑖1 − 𝐷𝑖)

≈ [noise from observation eq.] + [noise from latent fluctuations].

While 𝑀 𝑖 conditions on the fluctuations z𝑡𝑖
𝑘
+1, ... , z𝑡𝑖

𝑘
+𝑟 , 𝑀

𝑖
1 ignores them entirely. The difference

in deviance between these models provides a measure of this latent noise by telling us the cost of

ignoring it.

The third model 𝑀 𝑖
0 is a null model with respect to network structure. This model only considers

a coefficient for constant accumulated input and an intercept. If w)𝑖 = 0 then model 𝑀 𝑖
1 reduces to

𝑀 𝑖
0. The difference in deviance between these models provides a measure of the structured signal in

the data associated with w)𝑖.

And so have the following definition for the signal to noise ratio for node 𝑖, as the ratio of the

difference in deviance between fitted models �̂� 𝑖
0 and �̂� 𝑖

1, and the deviance of 𝑀 𝑖
1, along with the

approximate bias corrections for the number of parameters fit in the models:

SNRW,Y
𝑖 :=

𝐷𝑖0 − 𝐷𝑖1 + 1
𝐷𝑖1 + 3

=
log L𝑖 (�̂�1,𝑖) − log L𝑖 (�̂�0,𝑖) + 1

2

− log L𝑖 (�̂�1,𝑖) + 3
2

, (3.45)

where L𝑖 (�̂�) is the likelihood of node 𝑖’s recorded observations achieved by the fitted model �̂� .

The signal-to-noise ratio is often reported in decibels (dB) as 10 log10(SNR). We adopt this

convention in our simulation study and data applications (sections 3.4 and 3.5, respectively) below.
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We write SNRW,Y
𝑖 to emphasize that this signal-to-noise ratio is a function of the network

connections W and the observations Y. When W is unknown we approximate (3.45) with SNRŴ,Y
𝑖

by plugging in our estimate ŵ)𝑖 in model 𝑀 𝑖
1.

3.4 Simulation study

We perform a simulation study, drawing multivariate point process data from the considered

model (3.9) to analyze with our variational Bayes approach. We estimate the unknown model

parameters W and \, along with the variational parameters 𝜙 by running mini-batch stochastic

gradient ascent with adam update steps [63].

We evaluate our model and inference approach in a number of ways: checking convergence at

a high level and comparing estimates to known ground truth values, running diagnostic checks to

determine how close our computed variational approximation is to its target conditional posterior

distribution, and evaluating its prosterior predictive performance on data for individual held-out

nodes across a testing period.

3.4.1 Simulated data and estimation procedure

We simulate from the state-space spiking model on a network of size 𝑛 = 20. We begin by

randomly generating the network adjacency matrix W. We do this by independently drawing each

(non-diagonal) edge W𝑖 𝑗 of W from the following categorical distribution:

W𝑖 𝑗 ∼

w Pr(W𝑖 𝑗 = w)

−0.1 1/8
0 5/8

0.1 1/4

We set the nodal parameters 𝜎𝑖 and [𝑖 equal to values in (.01, .02, .03, .04, .05) and (.025, .03,

.035, .04), respectively, so that each combination appears once.

We set 𝛿 = .975, ^ = 50 and assume these parameters are known. We randomly initialize the
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latent voltages of the 𝑛 = 20 nodes and run the generative model (3.9) for a short warm-up period,

then we draw 52,000 realizations, storing the latent paths V along with the observed spikes Y.

Table 3.2: Summary of nodes in simulation study

𝑖
∑
𝑡<50k y𝑡,𝑖 Δ𝑡∗𝑖

† SNRW,Y
𝑖

‡
𝜎𝑖 [𝑖 #{ 𝑗 : W 𝑗𝑖 > 0} #{ 𝑗 : W 𝑗𝑖 < 0} ∑

𝑗≠𝑖 W 𝑗𝑖

1 1426 54 -0.79 0.01 0.030 6 1 0.5
2 1225 65 -0.81 0.01 0.025 7 3 0.4
3 1431 52 -2.78 0.01 0.035 5 1 0.4
4 1797 44 -3.13 0.01 0.040 5 0 0.5
5 1116 78 -3.55 0.02 0.025 8 3 0.5
6 921 102 -5.10 0.02 0.030 5 4 0.1
7 1440 58 -6.33 0.02 0.035 4 1 0.3
8 882 148 -7.05 0.03 0.025 6 2 0.4
9 569 228 -7.12 0.03 0.035 3 6 -0.3

10 1019 103 -8.71 0.03 0.030 5 2 0.3
11 1357 61 -8.74 0.02 0.040 2 2 0.0
12 1477 62 -8.82 0.03 0.040 4 3 0.1
13 697 212 -9.07 0.05 0.025 6 5 0.1
14 1203 123 -10.40 0.05 0.030 6 3 0.3
15 1650 65 -10.47 0.04 0.040 5 2 0.3
16 839 156 -10.61 0.04 0.030 3 2 0.1
17 1150 94 -11.14 0.04 0.035 4 4 0.0
18 1173 123 -11.98 0.05 0.035 4 3 0.1
19 548 354 -12.77 0.04 0.025 2 2 0.0
20 1638 90 -13.49 0.05 0.040 5 1 0.4
†Δ𝑡∗𝑖 = max{Δ𝑡𝑖𝑘 : 𝑘 = 1, ..., 𝑚𝑖} from 𝑇 = 50k training set
‡ computed signal-to-noise ratio (3.45) given in decibels (dB)

Table 3.2 provides a summary of the simulated nodes. The nodes are ordered in descending order

by their computed signal-to-noise ratios SNRW,Y
𝑖 (3.45). For each node 𝑖 we have its parameters 𝜎𝑖

and [𝑖 along with a summary of its network connections — postive in-edges, negative in-edges and

summed in-degree. Table 3.2 also reports two high-level summary statistics: the number of events

observed at this node in 𝑇 = 50k observations and the maximum inter-spike interval observed in the

𝑇 = 50k training period.

We can see how various factors combine to affect the signal-to-noise ratio of the nodes in our

simulation. The strongest effect comes from 𝜎𝑖.

To see how varying amounts of observations affect the model fit, we run our analysis at five
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training cutoffs: 𝑇 = 1k, 𝑇 = 5k, 𝑇 = 10k, 𝑇 = 25k and 𝑇 = 50k. Each successive training set

contains the observations of the previous. At each cutoff we perform the following computations

for our variational approximation, storing the intermediate and final updates from each epoch:

Computing the variational approximation

1. Initialize Ŵ𝑖 𝑗 = 0 all 𝑖 ≠ 𝑗 , 𝜎𝑖 = .04 for all 𝑖, and variational parameters 𝜙𝑖 to the same

starting values for each node. We initialize [𝑖 based on the observed event intensity of node 𝑖,

setting [𝑖 = 𝑇/
∑
𝑡<𝑇 𝑦𝑡, 𝑖, the inverse of the observed mean time per event.

2. Run stochastic batch gradient ascent, cycling through the training data Y for 𝐾 ≥ 50 4 epochs,

making updates (3.32) to our estimates for (\,W, 𝜙) using adaptively choosen, adam step

sizes.

– After each epoch, store the current updates (\̂ (ℓ) , Ŵ(ℓ) , 𝜙(ℓ)) and calculate the varational

objective (approximate ELBO) L̃(\̂ (ℓ) , Ŵ(ℓ) , 𝜙(ℓ);X𝑇 ) across all observed interspike

periods in the training data.

3. Output final parameter estimates (\̂, Ŵ, 𝜙) ← (\̂ (𝐾) , Ŵ(𝐾) , 𝜙(𝐾)) after 𝐾 epochs.

In this procedure we randomly shuffle the observed inter-spike periods X𝑇 into (16 or 32)

batches5 at the start of each epoch. While we update all parameters simultaneously, the updates

of node-specific variables are independent (given the mini-batch assignments). That is, updates

to (\̂𝑖, 𝜙𝑖, ŵ)𝑖) do not affect the updates to (\̂ 𝑗 , 𝜙 𝑗 , ŵ) 𝑗 ) when 𝑖 ≠ 𝑗 , and we can fit the model by

computing variational approximations 𝑞𝜙𝑖 for each node in parallel. Consequently it makes sense to

evaluate the fits for each node separately. We note, however, that for the prediction of the spiking

activity of a held out node (see sections 3.3.8 above and 3.4.4 below), the inferred parameters

associated with all of the nodes will be used. This means that a poor fit on the training data for node

𝑗 will affect the predictive performance for a held out node 𝑖 on the test set, and vice versa.

4We run 𝐾 = 200 and 𝐾 = 100 epochs for 𝑇 = 1k and 𝑇 = 5k, respectively. For 𝑇 = 10k, 𝑇 = 25k and 𝑇 = 50k we
run 𝐾 = 50 epochs.

5We use 16 batches for 𝑇 = 1k and 𝑇 = 5k, and 32 batches for 𝑇 = 10k, 𝑇 = 25k and 𝑇 = 50k.
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Figure 3.4: The network estimates Ŵ from fitting our variational approximation to expanding sets
of observations from the simulated data. The estimates are compared with the ground truth W.

3.4.2 Inferred network results

Figure 3.4 compares the estimated adjacency matrices Ŵ associated with the five expanding

training periods alongside the true latent network W. We can see that our variational approximation

is able to accurately recover many of the network edges. While the estimates change and improve as

more observations are included, there appears to be a degree of stability in the inferred connections.

Looking at the differences Ŵ −W in the second row we see underestimates for positive entries

and overestimates for negative entries. We can see this similar pattern in Figure 3.6 panel (a)

showing the evolving network edges for 𝑇 = 50 by epoch and target node. It seems the many of the

estimates for non-zero edges are biased toward zero.

Along with W, Figure 3.6 shows the evolving estimates for the variational parameters 𝜙 and

other inferred model parameters \. Our variational approximation does a better job recovering low

values of 𝜎𝑖 and high values of [𝑖 Variability in the variational parameter estimates suggests to us

on the one hand that our approximation may be capturing the varied behavior of the nodes. But we

also see non-converging estimates, which suggests that our approximation may be too restrictive.
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We discuss model diagonostics further in section 3.4.3 below.

(a) Variational objective (b) ∑
i, j=1

n
(Ŵij − Wij)2 (c) ∑

i=1

n
(σi
^ − σi)2 (d) ∑

i=1

n
(ηi
^ − ηi)2
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Evaluating (θ̂, Ŵ, φ̂) updates by epoch and training size

Figure 3.5: Measures evaluating our variational computations by epoch and training size: (a) shows
the variational objectives L̃(\̂ (𝑘) , Ŵ(𝑘) , 𝜙(𝑘);X𝑇 )/|X𝑇 | averaged over the number of observed inter-
spike periods included in each training set. Panels (b), (c) and (d) show sums of squared errors of
the estimates for the latent network edges and model parameters.

Figure 3.5 compares four measures by epoch for the training periods of size 𝑇 = 5k, 𝑇 = 10k,

𝑇 = 25k and 𝑇 = 50k. In panel (a) we see increasing variational objectives, with much better

apparent convergence for the larger training lengths. Panels (b), (c) and (d) assess the squared loss

of evolving estimates of the inferred model parameters based on their known ground truth. The

estimates for 𝑇 = 25k and 𝑇 = 50k show much better performance, with the sum of squared errors

for Ŵ (over all 20 × 19 = 380 non-diagonal edges) settling away from to zero, to around .125, and

the squared error loss for the �̂�𝑖s and [̂𝑖s approaching zero.

We compute the node signal-to-noise ratios SNRŴ,Y
𝑖 based on the network estimates and data

observations from the 𝑇 = 50 fit. Figure 3.7 (a). compares these to the SNRW,Y
𝑖 values computed

with the true network adjacency matrix W (shown in Table 3.2). The computations match up quite

closely, with slightly lower values for the SNRs based on Ŵ. Because the variational approximation

does a good job of recovering W, it makes sense that the signal to noise ratios computed based on

its estimates Ŵ are close to those calculated using W.
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Figure 3.6: Results of computing our variational approximation 𝑞𝜙 to the simulated data with
𝑇 = 50k observations. We show the sequential updates of the (\̂, Ŵ, 𝜙) estimates by epoch and
node, indicating known ground truth values for W and \. Panel (a) shows the evolving edge
estimates by target node, ordered in descending order by their computed signal-to-noise ratios
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Figure 3.7: Panel (a) compares nodal signal-to-noise ratios calculated based on the true model
parameters vs. the estimated parameters from our variational fit. Plots (b) and (c) compare the
squared errors of in-edge estimates by node from the variational fit (‘proposed VB’) and from fitting
𝑀 𝑖

GLM with stepwise AIC (‘naive GLM’). The errors are summed by node and plotted against 𝜎𝑖
and SNR𝑖. Results are shown for training length 𝑇 = 50k.

Comparison methods We compare our network inference results to results from two other

methods: transfer entropy (TE) and a naive logistic regression model.

Transfer entropy is a popular model-free method for inferring pairwise directed links in multi-

variate time series data that has been successfully applied to neuronal spike train data in particular

[67, 42]. TE is a unsigned causal indicator measuring the directed transfer of information between

two random processes. We use [68] to estimate transfer entropy between pairs of columns Y𝑖 and

Y 𝑗 in Y.

For the second comparison method we consider the following logistic regression model for node

𝑖’s recorded activity:

𝑀 𝑖
GLM : logit(Pr(y𝑡, 𝑖 = 1)) = b⊺

𝑡−1∑︁
𝑟=𝑠

𝛿𝑡−𝑟−1y𝑟,−𝑖 + b1
∑𝑟
𝑠=1 𝛿

𝑟−𝑠 + b0

where 𝑡 = 𝑡𝑖𝑘 + 𝑟 ≤ 𝑡𝑖𝑘+1 for some (𝑖, 𝑘) ∈ X.

This model is extends the ‘null’ model 𝑀 𝑖
0 in section 3.3.9 by including terms for the accumulated
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effects of spikes from the other nodes in the network. Under 𝑀 𝑖
GLM we assume 𝜎𝑖 = 0 (hence the

model is ‘naive’). We would expect this model to be able to recover network structure when 𝜎𝑖 is

close to zero, with deteriorating performance as 𝜎𝑖 increases.

This is borne out in Figure 3.7 (b), where the squared errors of the network estimates from

𝑀 𝑖
GLM increase steeply for nodes with higher 𝜎𝑖 parameters. The squared error of our Ŵ𝑖 𝑗 estimates

also increase with 𝜎𝑖 but less steeply and remains well below the naive GLM errors. Figure 3.7 (c)

shows these squared errors against the nodal signal-to-noise ratios. We see that the estimates get

worse as the nodal SNR decreases — this makes sense! Note that in plots (b) and (c) the squared

errors are summed over the in-edges for each node.

Table 3.3: Variational network recovery compared to transfer entropy and naive GLM methods
𝑇 = 1k 𝑇 = 5k 𝑇 = 10k 𝑇 = 50k 𝑇 = 50k

Method FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR
proposed VB fit .383 .214 .089 .062 .038 .007 .004 0 0 0
TE with 𝛼 = .01 .013 .790 .015 .469 .019 .276 .045 .083 .079 .021
TE with 𝛼 = .05 .074 .645 .051 .303 .091 .138 .143 .024 .202 .007

𝑀 𝑖
GLM+stepwise AIC .357 .276 .243 .021 .251 .007 .315 0 .302 0

Method ER SSE ER SSE ER SSE ER SSE ER SSE
proposed VB fit .318 5.08 .079 .269 .026 .181 .003 .130 0 .125
TE with 𝛼 = .01 .309 .188 .117 .059 .057
TE with 𝛼 = .05 .292 .147 .109 .097 .128

𝑀 𝑖
GLM+stepwise AIC .326 23.2 .158 .656 .158 .685 .195 .697 .187 .696

FPR: false positive rate, FNR: false negative rate, ER: overall error rate
SSE: sum of squared errors

In Table 3.4.2 we compare the network recovery results of our variational fit with the results

obtained with transfer entropy and by fitting 𝑀 𝑖
GLM for the five training set sizes 𝑇 = 1k, 𝑇 = 5k,

𝑇 = 10k, 𝑇 = 25k and 𝑇 = 50k.

We report the false positive (FPR), false negative (FNR) and overall error rates (ER) for inferring

whether a given directed edge (𝑖, 𝑗) ∈ E (ie W𝑖 𝑗 ≠ 0). We note there are 145 nonzero entries in W

and 235 off-diagonal zeros.

For our estimate Ŝ of the existing network edges sign(W) = S in the latent network, we use

Algorithm 3.1 with 𝑘∗ = 25, 𝑐∗ = 3 and 𝑚∗ = .05, applying our proposed criterion for determining
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significant edges from the results of our variational computation. We fit the naive GLM model with

a stepwise AIC algorithm. By performing variable selection we are able to eliminate edges from the

full model 𝑀 𝑖
GLM. We compute the error rates of the signed edges inferred by these two methods as

well as the squared error of their estimates of W.

With transfer entropy (TE) we only can only infer unsigned edges. We use two different

significance levels 𝛼 = .01 and 𝛼 = .05 for determining whether the estimated transfer entropy

between pairs of columns Y𝑖 and Y 𝑗 indicates an edge.

The results show our method’s superiority for inferring W in this simulation study. Based

on Table 3.4.2 we note that our method falsely infers that a non-edge exists more often than it it

classifies a true edge as non-existent. The same is the case for the 𝑀 𝑖
GLM+stepwise AIC method, to

a much greater extreme.

The opposite is true for transfer entropy, which has much lower false positive rates than false

negative rates when applied to our simulated data.

3.4.3 Diagnostic checking

We evaluate of the fit of the computed variational approximations by comparing 𝑞𝜙 with ground

truth simulated data as well as with the conditional posterior predictive distribution 𝑝 \̂,Ŵ(Z|Y)
which we would like 𝑞𝜙 to be close to and which we can draw samples from. We also use a Pareto

Smoothed Importance Sampling (PSIS) diagnostic [69] to evaluate our variational approximation

and computation.

We focus on the 𝑇 = 50k fit. The issues we note are generally more pronounced for the fits

with fewer training observations. For these fits the convergence seems worse and the computed

variational approximation appears further from its target.

Convergence of variational objective Figure 3.8 shows the evolving variational objectives

L̃(\̂ (ℓ)𝑖 , ŵ(ℓ))𝑖 , 𝜙
(ℓ)
𝑖 ; {( 𝑗 , 𝑘) ∈ X50k : 𝑗 = 𝑖}) computed separately over the nodes’ observed inter-

spike periods in the training data after each epoch ℓ = 1, ... , 𝐾. These plots indicate convergence
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Figure 3.8: Evolving variational objectives computed over each node’s observed inter-spike periods
in the training data (𝑇 = 50k). Nodes are ordered by descending computed signal-to-noise ratio
SNRW,Y

𝑖 .

for the (lower) nodes with higher computed signal-to-noise ratios SNRW,Y
𝑖 . In general, for higher

nodes (with lower SNRW,Y
𝑖 ), the evolving variational objectives do not settle as well, indicating

worse convergence. Running the algorithm for more epochs could improve this.

PSIS diagnostic Pareto smoothed importance sampling (PSIS) is a diagnostic method that assesses

the quality of an entire variational posterior [69, 70], quantifying the discrepancy between the

approximate and the true distribution by the estimated continuous �̂� value.

Figure 3.9 shows diagnostic �̂� values by training inter-spike interval for each node. We note that

�̂� = .5 and �̂� = .7 are the thresholds given in [69, 70] for determining if a variational approximation

is close enough to its conditional posterior target. The subplots in Figure 3.9 show a good fit

for some nodes (1-7,11) and a very poor fit for others (9,13-20), suggesting that our variational

approximation 𝑞𝜙 is not always close to its target 𝑝(Z|Y). It seems our approximation may be too

parsimonious to get close to 𝑝(Z|Y) in certain cases, with not enough degrees of freedom to adapt

to variation in the latent fluctuation paths z(𝑖, 𝑘) .
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Figure 3.9: Pareto Smoothed Imporance Sampling �̂� values for our computed variational approxi-
mation to the simulated training set of length 𝑡 = 50k. The histograms show the diagnostic �̂� values
by training inter-spike interval for each node. �̂� = .5 and �̂� = .7 are the thresholds given in [69, 70]
for determining if a variational approximation is close enough to its conditional posterior target.

Fits of key latent ‘midpoint’ quantity We look at the fits of the latent quantities v∗𝑖, 𝑘 =

1
2 (v𝑖,𝑡𝑖𝑘+1−1 + v𝑖,𝑡𝑖

𝑘+1
), the midpoints between the spiking voltages v𝑖, 𝑡𝑖

𝑘+1
and the voltages one step

before v𝑖, 𝑡𝑖
𝑘+1−1. Recall that we have constructed `𝜙𝑖 (𝑖, 𝑘,Y) and Σ𝜙𝑖 (Δ𝑡𝑖𝑘 ) so that, under 𝑞𝜙𝑖 |Y, v∗𝑖, 𝑘

follows a homogeneous normal distribution with mean 𝜗𝑖 and variance 𝜏2
𝑖 . This assumption (3.19)

is a key aspect of our variational approximation 𝑞𝜙.

Figure 3.10 shows the histograms of the latent v∗𝑖, 𝑘 values from our simulated data, along with

the estimated densities N(�̂�𝑖, 𝜏2
𝑖 ) from our variational computation. Looking at the histograms

by node, we note the reasonableness of our key assumption (3.19). The estimated fits roughly

align with the latent values, with better agreement for lower nodes with higher computed SNRs.

However, there appears to be a downward bias on our estimates of �̂�𝑖. The term −E𝑞𝜙𝑖 |Yℎ(v𝑡, 𝑖) ≈
−E𝑞𝜙𝑖 |Y log(1 + exp(^(v𝑡, 𝑖 − 1))) in our variational objective heavily penalizes distributions under

𝑞𝜙𝑖 |Y that give weight to higher (>1) values of v𝑡, 𝑖 (see Figure 3.3 (a), (c)). It seems this penalization

may not be properly balanced by the contributions from the expected spiking voltages in the terms
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Figure 3.10: Histograms of the latent ‘midpoint’ quantity v∗𝑖, 𝑘 by node from our simulated data
with cutoff 𝑇 = 50k, shown with the associated densities N(�̂�𝑖, 𝜏2

𝑖 ) from our computed variational
approximation 𝑞𝜙.

^E𝑞𝜙𝑖 |Yv𝑡𝑖
𝑘+1,𝑖

, leading to apparent bias for �̂�𝑖 along with other estimates. In future work, we are

interested in exploring more flexible variational approximations to reduce these biases.

Comparing 𝑞𝜙 |Y to 𝑝 \̂,Ŵ(Z|Y) In computing the variational approximation 𝑞𝜙|Y we approxi-

mately minimize the KL divergence between the variational family of distributions 𝑞𝜙 |Y and the

target posterior conditional distribution 𝑝\,W(Z|Y). If these distributions are close then 𝑞𝜙 will

also be close to the posterior predictive distribution 𝑝 \̂,Ŵ(Z|Y). In the following diagnostics, we

compare 𝑞𝜙 to 𝑝 \̂,Ŵ(Z|Y).
Using an acceptance-rejection (AR) sampling method we obtain draws Z ∼ 𝑝 \̂,Ŵ(Z|Y). Each

inter-spike interval is sampled separately. For (𝑖, 𝑘) ∈ X, we repeat the following until the desired
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number of draws are obtained:

draw: z ∼ 𝜑(z) = N
(
0, �̂�2

𝑖 IΔ𝑡𝑖
𝑘

)
and 𝑢 ∼ Unif(0, 1]

accept if: 𝑢𝜑(z) ≤ 𝑝 \̂,Ŵ(z,Y)

⇔ log 𝑢 ≤ ^vΔ𝑡𝑖
𝑘
−

Δ𝑡𝑖𝑘∑︁
𝑠=1

log
(
1 + 𝑒^(v𝑠−1)

)
,

where v is the corresponding latent voltage path calculated from the candidate draw z along with

our estimates \̂ and Ŵ.

We compare the distributions 𝑞𝜙 |Y and 𝑝 \̂,Ŵ(Z|Y) by calculating the Mahalanobis distances [71,

72] between accepted AR draws and our computed variational approximation. For (𝑖, 𝑘) ∈ X, the

Mahalanobis distance d𝑀
(
z, 𝑞𝜙𝑖 |Y

)
between z ∈ RΔ𝑡𝑖𝑘 and the computed variational approximation

𝑞𝜙𝑖 |Y is given by

d𝑀
(
z, 𝑞𝜙𝑖 |Y

)
=

√︃(
z − `𝜙𝑖 (𝑖, 𝑘,Y)

)⊺ Σ−1
𝜙𝑖
(Δ𝑡𝑖𝑘 )

(
z − `𝜙𝑖 (𝑖, 𝑘,Y)

)
.

These Mahalanobis distances satisfy the following property:

z ∼ 𝑞𝜙𝑖 |Y ⇒ d𝑀
(
z, 𝑞𝜙𝑖 |Y

)
∼ 𝜒2

Δ𝑡𝑖
𝑘

(3.46)

The Figure 3.11 (a) subplots show the Mahalanobis distances between draws z ∼ 𝑝 \̂,Ŵ and

our computed approximation 𝑞𝜙 |Y for three intervals in the 𝑇 = 50𝑘 training set — including the

intervals with the lowest and highest PSIS �̂� values. We see some larger distances than we would

expect under the reference 𝜒2
Δ𝑡 densities (3.46).

In the Figure 3.11 (b) and (c) subplots, we show simulated draws of the latent fluctuations

and latent voltage paths, respectively, from 𝑝 \̂,Ŵ and 𝑞𝜙, along with the true latent values (in red).

These plots show general agreement along with some interesting differences (in apparent variation)
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between 𝑞𝜙 |Y and 𝑝 \̂,Ŵ(Z|Y). In the middle column, the true latent fluctuations z(𝑖=10,𝑘=815) are

‘far’ from 𝑞𝜙𝑖 |Y. However, we can see how the latent voltages v(𝑖, 𝑘) align well with our computed

variational approximation at the end of the inter-spike interval (where it really counts).
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Figure 3.11: Comparing 𝑝 \̂,Ŵ(Z|Y) and 𝑞𝜙 |Y(Z) on three intervals in the 𝑇 = 50𝑘 training set. The
top row (a) shows the Mahalanobis distances between draws z ∼ 𝑝 \̂,Ŵ and 𝑞𝜙 |Y, along with the
reference 𝜒2

Δ𝑡 densities (3.46). The vertical red lines show the distances involving the true latent
fluctuations. Rows (b) and (c) show simulated draws of the latent fluctuations and latent voltage
paths, respectively, from 𝑝 \̂,Ŵ and 𝑞𝜙, along with the true latent values (in red). We show the
inter-spike intervals with the lowest (first column) and highest (third column) PSIS �̂� values.
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3.4.4 Reconstructing events of held-out nodes

We consider the situation described in section 3.3.8 where events from a node 𝑖∗ become

unobservable at some point in the observation period while the events from other nodes continue to

be recorded. Manufacturing this situation in our simulated data, we apply our forward-backward

point estimate procedure and see how well we recover the held-out activity.

For each of the three largest training cutoffs 𝑇 = 10k, 𝑇 = 25k and 𝑇 = 50k, we make held-out

predictions for the testing periods extending to time 𝑇 + 2k.

Bringing our notation from section 3.3.8 into this context, we have complete training data

Ytrain ∈ {0 , 1}𝑇×𝑛 to which we have fit our variational approximation and obtained model estimates

(\̂, Ŵ). For each node 𝑖∗ ∈ {1, ... , 𝑛} we imagine it stops being observable from time 𝑇 + 1, with its

last recorded event at time 𝑡𝑖
∗
𝑚𝑖∗ . The held-out testing period is from 𝑇∗ = 𝑡𝑖

∗
𝑚𝑖∗ to 𝑇 + 2k, with length

𝑆 = 𝑇 + 2k − 𝑡𝑖∗𝑚𝑖∗ . In this period we observe Ytest
−𝑖∗ = (y𝑇∗+1,𝑖∗ , ... , y𝑇∗+𝑆,𝑖∗) ∈ {0 , 1}𝑆×𝑛−1.

The problem is to infer the held-out observations Ytest
𝑖∗ ∈ {0 , 1}𝑆 given the observed data Ytrain

and Ytest
−𝑖∗ . We restrict our attention to the conditional expectation:

E[Ytest
𝑖∗ |Ytrain,Ytest

−𝑖∗ ] ∈ [0, 1]𝑆 . (3.47)

The entries of (3.47) are conditional spike probabilities Pr(Ytest
𝑟,𝑖∗ = 1 |Ytrain,Ytest

−𝑖∗ ). We estimate

these by approximating a posterior predictive conditional probability. At a high level, our approach

is the following:

Pr(Ytest
𝑟,𝑖∗ = 1|Ytest

−𝑖∗ , \̂, Ŵ, y𝑇∗,𝑖∗ = 1) estimates Pr(Ytest
𝑟,𝑖∗ = 1 |Ytrain,Ytest

−𝑖∗ )

and 𝑝𝑟𝑖∗ approximates Pr(Ytest
𝑟,𝑖∗ = 1 |Ytest

−𝑖∗ , \̂, Ŵ, y𝑇∗,𝑖∗ = 1)

Our proposed ‘forward-backward’ point estimate 𝑝𝑟𝑖∗ is constructed by approximating the

forward and backward components of (3.42). As part of our computations for 𝑝𝑟𝑖∗ we compute

the empirically estimated posterior predictive spike probabilities 𝑝na
𝑟 (3.40). We refer to 𝑝na

𝑟 as the
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‘non-anticipating’ probability estimate and compare these with our ‘forward-backward’ estimates

𝑝𝑟𝑖∗ .6

Algorithm 3.2 Simple bootstrap estimate f̂𝐵 for (3.47)
Require: training inter-spike period lengths {Δ𝑡1, ...,Δ𝑡𝑚}
Require: test length 𝑆
Require: number of bootstrap samples 𝐵

Initialize x𝑟 ← 0, 𝑟 = 1, ..., 𝑆 ⊲ x keeps track of counts at each time in test period
for 𝑏 ∈ {1, ..., 𝐵} do

𝑅 ← 0
while 𝑅 < 𝑆 do

Δ𝑡 ← Unif{Δ𝑡1, ...,Δ𝑡𝑚} ⊲ randomly draw training length with replacement
𝑅 ← 𝑅 + Δ𝑡
if 𝑅 < 𝑆 then

x𝑅 ← x𝑅 + 1 ⊲ increment stored count with ‘observed spike’
end if

end while
end for
return 1

𝐵x ⊲ the procedure returns the simple bootstrap estimate f̂𝐵

Evaluation and comparison Consider a general estimate f̂ ∈ (0, 1)𝑆 for (3.47) such that

f̂𝑟 = 𝑓 (𝑟,Ytrain,Ytest
−𝑖∗ ) estimates Pr(Ytest

𝑟,𝑖∗ |Ytrain,Ytest
−𝑖∗ ).

We may evaluate f̂ by its cross entropy loss computed on the true held out data Ytest
𝑖∗ :

LCE(Ytest
𝑖∗ , f̂) =

𝑆∑︁
𝑟=1

Ytest
𝑟,𝑖∗ log f̂𝑟 + (1 − Ytest

𝑟,𝑖∗) log(1 − f̂𝑟).

We compute this cross entropy loss for our forward backward estimates as well as for our non-

anticipating probability estimates. We compare these to the loss of the actual held-out probabilities

ptrue given by

ptrue
𝑟 = Pr(Ytest

𝑟,𝑖∗ = 1 |Vtest
𝑟,𝑖∗) = logit−1(^(Vtest

𝑟,𝑖∗ − 1)),

as well a very simple nonparametric bootstrap estimate f̂𝐵 based on just the observed inter-spike

6We use 𝑁1 =2,000 and 𝑁2 =1,000 Monte Carlo draws in our computations when sampling from (3.39) and (3.44),
respectively
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intervals in the training data. The procedure for obtaining f̂𝐵 is given in Algorithm 3.2.

The cross entropy loss of the true probabilities acts as a reference ceiling while LCE(Ytest
𝑖∗ , f̂)

provides us a reference floor, a minimally acceptable standard to beat.
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Figure 3.12: Relative cross entropy loss of our proposed forward backward and comparison estimates
for Pr(Ytest

𝑟,𝑖∗ = 1 |Ytrain,Ytest
−𝑖∗ ), shown by held-out node and training length. The lines show the

relative loss across all 𝑛 = 20 nodes for a given training period.

Figure 3.12 provides a high-level summary of the results of the held-out predictions by held-out

node and training period. This figure shows the computed cross entropy losses of the three estimates

we have discussed relative to the cross entropy loss of the true probabilities:

(i.) LCE(Ytest
𝑖∗ , f̂)

LCE(Ytest
𝑖∗ , ptrue) (ii.)

∑𝑛
𝑖∗=1 LCE(Ytest

𝑖∗ , f̂)∑𝑛
𝑖∗=1 LCE(Ytest

𝑖∗ , ptrue) .

The labelled points show ratio (i.) for a single held-out node, while the darker lines show ratio (ii.)

of the losses calculated over all possible held-out nodes.

Our forward backward estimates (shown in black) consistently outperform the other two es-
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timates for individual nodes (75% of the time) as well as overall across the three training period

lengths. Here is a table showing how often each method outperforms the others in cross entropy

loss for single held-out nodes by training length 𝑇 :

# top performances 𝑇 = 10k 𝑇 = 25k 𝑇 = 50k

forward backward 𝑝𝑟𝑖∗ 15 16 14

non-anticipating 𝑝na
𝑟 4 3 6

simple bootstrap f̂𝐵 1 1 0

For each training length 𝑇 there is a diagonal-upward trend in relative loss attributable to our

labeling of nodes based on the reverse order of their signal-to-noise ratios SNRW,Y
1 > ... > SNRW,Y
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Figure 3.13: Predictive event probability estimates for held-out nodes 1, 3, 19 and 20 across a
common test period segment. The true event probabilities in the top row are compared against our
proposed forward-backward estimates 𝑝𝑟𝑖∗ , the non-anticipating probability estimates 𝑝na

𝑟 and the
simple bootstrap estimates f̂𝑟 , with the cross entropy loss of each estimate on the plotted segment.
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In Figure 3.13 we show the actual estimates f̂𝑟 for nodes 1, 3, 19 and 20 along with the true

probabilities ptrue on a segment of the test period.

3.5 Application to neural activity recording data

We fit our variational approximation to spike-sorted neural activity from the dorsomedial frontal

cortex (DMFC) of a rhesus macaque performing a time-interval reproduction task. We infer network

connections among 20 neurons. We present the results of our analysis and discuss the shortcomings

of the considered model and our variational approach to this data.

3.5.1 Dataset and motivation

The data we analyze is made available as part of the Neural Latents Benchmark (NLB) [73],

a project started in 2021 with the aim of coordinating latent variable modeling efforts of neural

population activity data. The NLB initiative focuses on unsupervised latent variable modeling that

is not directly conditioned on measured external variables. This is in line with our work and in

contrast to the more widespread and mature study of supervised learning for task-related neural

activity or the neural response to external stimulus in experimental studies.

We chose to look at the DMFC_RSG dataset in particular because the dorsomedial frontal

cortex (DMFC) seems to us like a particularly interesting brain region to infer connections in and

to analyze in general with interpretable methods like ours. We surmise that its neuronal dynamics

hold insights into cognition that go beyond relationships with a subject’s observable behavior or

experimental treatment.

The DMFC is contained in the dorsal frontal cortex, an area of the primate brain that is studied

in both humans and macaques. The human dorsal frontal cortex is associated with the most

sophisticated aspects of cognition, including those that are thought to be especially refined in

humans. Research links key psychological and behavioral aspects of ‘mentalizing’ with DMFC

functions, including executive inhibition, distinction between self and others, prediction under

uncertainty, and perception of intentions [74]. Studies find that the DMFC plays an important role
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in social cognition in monkeys as well.

In [75], the authors infer and compare the organization of dorsal frontal cortex in humans and

macaques using diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI

(fMRI). Their results suggest important similarities in frontal cortex organization, even for regions

thought to carry out uniquely human functions.

The data we analyze comes from a 2018 study of in vivo recordings of neural activity in the

DMFC while rhesus macaques performed a time-interval reproduction task [76]. The realeased

dataset contains spike sorted data for one monkey from a single recording session, along with

‘external’ information about the repeated trials. The data contains 4,809,332 binary observations

of 54 neurons, with time measured in milliseconds. In this work we look at a small piece of this.

Figure 3.14 shows the data we analyze, the first 52,000 observations, corresponding to 52 seconds

of recorded neural activity.

Within the considered period there is no missing data. From the experiment information data,

we know when each of the repeated time-interval reproduction tasks begins and ends, indicated with

green and red lines, respectively in Figure 3.14. There are short breaks between each trial. The rows

correspond to individual neurons and each thin vertical line represents an observed (binary) spike.

There is a lot of variation across and within these 54 spike trains. Some neurons have very sparse

spiking activity. Other cells seem to have distinct spiking patterns with respect to trial periods. For

example neurons 30 and 32 tend to emit increased bursts of spikes around the middle-to-end of the

trials.

We find that to compute our variational approximation and fit our considered model we need

a certain level of event activity in the input spike trains (columns of Y). In particular our method

does not deal well with long inter-spike periods. This has to due with the computational complexity

limitations of our inference algorithm (see section 3.3.6) as well the limitations of the leaky integrate-

and-fire (LIF) model we assume (see section 3.2.1) which does not accommodate stuttering or

bursting neurons. Moreover, it is apparent from looking at Figure 3.14 that a number of our model’s

assumptions are violated by the data, for example the assumption of a time-independent baseline
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Figure 3.14: Fifty-two seconds of spike sorted neural recording data from the dorsomedial frontal
cortex (DMFC) of a rhesus macaque. The green and red vertical lines correspond to the beginning
and end, respectively, of single experimental trials. We indicate in blue and magenta the (𝑛 = 20)
spike trains included in our variational computation and analysis. We perform additional analyses
involving the highlighted neuron 13, discussed in section 3.5.3 below.

input [𝑖 for each neuron. Right away we can see the need for a more flexible and complex model to

properly account for the data’s complex dynamics.

In order to apply our method we must filter out some of problematic data and nodes. In particular,

we include only the neurons with at least 100 spikes in the first 25,000 milliseconds, omitting entirely

any neurons with less. This leaves the 𝑛 = 20 rows indicated in blue and magenta. In addition,

for each epoch in our fitting procedure, we assign to mini-batches only the spike intervals with

length greater than 1 and less than or equal to 500 (1 < Δ𝑡 ≤ 500). We make this omission without

changing any entries of Y. We note that both cases (‘double spikes’ and very long intervals) are

105



uncommon among the included neurons.

3.5.2 Results of our methods applied to the DMFC_RSG dataset

To compute our variational approximation and obtain an estimated network among the 𝑛 = 20

included neurons, we must specify values for the parameters ^ and 𝛿 which we do not fit from the

data. We set ^ = 50, as in our simulation study. As mentioned in section 3.2.2, this corresponds to a

spiking mechanism that behaves somewhat similarly to a hard threshold at 1. Our particular choice

of 50 is, however, arbitrary.

We set 𝛿 based on [58], a study of age-related hippocampal dysfunction using in vitro recordings

of dentate granule cells from young and old rhesus macaques. Along with other intrinsic membrane

properties, the paper reports estimates for the membrane time constant 𝜏m in the range of 20 to

30 ms, without a statistically significant difference between the two age groups. Based on these

estimates and the fact that we do not know the age of the monkey recorded in the DMFC_RSG

dataset, we set 𝛿 = (exp(−1/20) + exp(−1/30))/2 ≈ .960

With these paramters set, we compute our variational approximation in the same way as in the

simulation study.

Figure 3.15 shows the main network inference results from the DMFC_RSG dataset. We note

the apparent convergence, in panel (a), of the variational objectives from fitting our variational

approximation to 𝑇 = 25k and 𝑇 = 50k observations from the dataset. And we note the apparent

agreement between the final estimated adjacency matrices Ŵ from the two fits, shown in panel (b).
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Figure 3.15: Main network inference results from DMFC_RSG dataset: panel (a) shows the
approximate ELBO L̃(\̂ (𝑘) , Ŵ(𝑘) , 𝜙(𝑘);X𝑇 ) by epoch from fitting our variational approximation
to 𝑇 = 25k and 𝑇 = 50k observations from the DMFC_RSG dataset. Panel (b) shows the final
estimated adjacency matrices Ŵ from the two fits. Panel (c) shows our estimates SNRŴ,Y

𝑖 of the
neurons’ signal-to-noise ratios for network effect in descending order, split at the four biggest
differences. Panel (d) shows the inferred network among the 20 included neurons, based on our
estimates Ŵ and Ŝ. We use our estimate Ŝ for S = sign(W) to choose which estimated (weighted)
edges from Ŵ to plot.
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Table 3.4 shows a summary of the neurons included in our analysis. Comparing the quanities to

Table 3.2 we see much more variability in the number of observed events, with fewer spike overall

and longer inter-spike periods. Our computed signal-to-noise ratios based on our estimates W are

much lower than those we computed in the simulation study. Interestingly, the range of SNRŴ,Y
𝑖

values (-28.1 dB to -13.6 dB) we report here for macaque DMFC neurons is in (uncannily close)

alignment with the range of signal-to-noise ratio estimates (-28 dB to -14 dB) for stimulus effects

reported in [66] for 13 macaque hippocampal neurons.7

Table 3.4: Summary of the 20 neurons from DMFC_RSG dataset included in our analysis

𝑖
∑
𝑡<50k y𝑡,𝑖 Δ𝑡∗𝑖

† SNRŴ,Y
𝑖

‡
�̂�𝑖 [̂𝑖 #{ 𝑗 : Ŝ 𝑗𝑖 > 0} #{ 𝑗 : Ŝ 𝑗𝑖 < 0} ∑

𝑗≠𝑖 Ŵ 𝑗𝑖

2 360 496 -23.06 0.067 0.021 1 0 0.106
5 452 498 -19.57 0.067 0.025 1 0 -0.139

13 774 457 -16.30 0.053 0.032 4 0 0.138
16 217 488 -22.69 0.115 0.002 3 2 0.002
20 898 383 -22.27 0.108 0.020 1 1 0.213
21 304 494 -21.76 0.080 0.016 0 0 0.375
27 613 499 -20.01 0.074 0.027 0 0 -0.062
28 996 281 -22.94 0.085 0.030 0 1 -0.111
31 1064 267 -28.08 0.165 0.014 1 3 -0.243
33 519 478 -19.40 0.118 0.005 3 3 0.139
34 385 496 -24.79 0.131 0.001 0 2 -0.045
35 458 500 -17.03 0.140 0.001 4 1 0.274
36 925 445 -18.75 0.158 0.003 5 1 0.303
38 453 489 -25.07 0.061 0.025 0 1 -0.044
40 850 488 -22.10 0.091 0.030 1 1 0.106
41 260 500 -27.23 0.069 0.018 0 0 -0.080
44 387 498 -16.80 0.143 0.002 5 1 0.156
51 498 458 -18.09 0.070 0.023 0 0 0.177
52 598 477 -21.27 0.119 0.009 2 0 0.156
54 295 452 -18.97 0.114 0.010 2 1 0.052
†Δ𝑡∗𝑖 = max{Δ𝑡𝑖𝑘 : 𝑘 = 1, ..., 𝑚𝑖} from first 𝑇 = 50k observations in dataset
‡ computed signal-to-noise ratio (3.45) based on estimates Ŵ, given in decibels (dB)

7We further note that the range of SNRW,Y
𝑖 values (-13 to -1 dB) in Table 3.2 roughly aligns with the range (-10 to

-3) found for guinea pig auditory cortex neurons in [66].
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(50)
, each subplot estimates a column w→i in W

ν̂2 β̂1 β̂2 σ̂ τ̂ ELBO

σ̂ η̂ ϑ̂ τ̂ ν̂1

 0 25 50   0 25 50   0 25 50   0 25 50   0 25 50  

 0 25 50   0 25 50   0 25 50   0 25 50   0 25 50  

0.1

0.2

−250

−200

−150

−100

0.04

0.06

0.08

1.4

1.6

1.8

2.0

0.90

0.95

1.00

10

20

0.00

0.01

0.02

0.03

0.35

0.40

0.45

0.50

0.55

0.050

0.075

0.100

0.125

0.150

0.175

0.2

0.3

0.4

0.5

epoch

(b) Estimates φ̂i

(k)
 and θ̂i

(k)
= (σ̂i

(k)
, η̂i

(k)), along with σ̂i

(k)
ϑ̂i

(k)
 and variational objecives by node

Figure 3.16: Results of computing our variational approximation 𝑞𝜙 to the spike trains of 𝑛 = 20
neurons in the DMFC_RSG dataset based on the first 𝑇 = 50k observations. We show the sequential
updates of the (\̂ (𝑘) , Ŵ(𝑘) , 𝜙(𝑘)) estimates by epoch and node. The colors correspond to ranges of
SNRŴ,Y

𝑖 vases that we have grouped the nodes into (see Figure 3.15 (c)).
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Figure 3.16 shows the evolving estimates for the latent network W, model parameters \, and

the variational parameters 𝜙. The estimates for certain neurons are strongly influenced by the

constraints [𝑖 > 0 and 2𝜏𝑖 ≥ 𝜎𝑖 (see the subplot of �̂�𝑖/𝜏𝑖 ratios). It is clear that the considered

model and our proposed variational approximation cannot adequately capture the observed spiking

behavior of this subgroup of recorded neurons.

Figure 3.17 shows the Pareto smoothed importance sampling (PSIS) diagnostic �̂� values by

training inter-spike interval for each neuron. These show a poor fit for all neurons and intervals,

suggesting that our variational approximation 𝑞𝜙 |Y cannot get close to its target 𝑝(Z|Y).
For the training cutoff 𝑇 = 50k we make held-out predictions for the testing period extending

to time 𝑇 + 𝑆 = 52k. Figure 3.18 plots the results of the held-out predictions by held-out node,

showing the computed cross entropy losses of the three estimates discussed in section 3.4.4. Our

forward-backward estimate (shown in black) outperforms the simple bootstrap estimate for only 10
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Figure 3.19: Predictive event probability estimates for held-out neurons 13 and 39 on the test
period, comparing our proposed forward-backward estimates 𝑝𝑟𝑖∗ , the non-anticipating probability
estimates 𝑝na

𝑟 and the simple bootstrap estimates f̂𝑟 .
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(half) of the 20 neurons.

Figure 3.18 shows the predictive event probability estimates for held-out neurons 13 and 39.

These appear to be the best and worse fits, respectively.

3.5.3 Shuffling neuron 13’s spikes

The results and diagnostics presented and discussed above reveal limitations of our approach

when applied to the DMFC_RSG dataset. On the whole they demonstrate the need for expansion

and more flexibility in both our assumed model (3.9) and in our variational approach. We find that

our considered model and proposed inference approach capture the behavior of certain neurons in

the DMFC_RSG dataset better than others. This is reflected in the computed signal-to-noise ratios,

the evolving estimates shown in Figure 3.16, the PSIS diagnostic �̂� values in Figure 3.17 and the

held-out prediction results.

Neuron 13 stands out as the neuron whose observed spiking behavior in the 𝑇 = 50k training set

appears best captured by the assumed model and our variational approach. We note that its observed

spikes (highlighted in magenta in Figure 3.14) exhibit relatively less stuttering or bursting behavior,

and a more consistent firing rate across the training period (compared to the other nodes). In

applying our methods to the DMFC_RSG dataset, we find that neuron 13 has the highest computed

signal-to-noise ratio, its estimated model and variational parameters appear more reasonable and

not heavily influenced by the constraints 2𝜏𝑖 ≥ 𝜎𝑖 and [𝑖 > 0, its PSIS �̂� values are lower, and we

see relatively better performance for neuron 13 in our held-out predictions (Figure 3.18).

We consider the question of whether the estimated network connections involving this ‘best

fitting’ neuron 13 reflect meaningful underlying structure in the DMFC_RSG dataset, or if its highest

computed SNR and its four ‘significant’ inferred in-edges are artifacts of our applied methods. We

investigate this question by shuffling neuron 13’s observed spikes and re-applying our methods to

the perturbed data.

In particular, we generate a random mapping 𝜋∗ : {1, ... , 𝑚13} ↦→ {1, ... , 𝑚13} and construct
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Figure 3.20: Subplots (a) and (b) show the inferred networks based on our estimates Ŵ and Ŝ from
𝑇 = 25k and 𝑇 = 50k observations, repsectively. Subplot (c) shows the inferred network estimates
Ŵ∗ and Ŝ∗ following our shuffling of the order of the observed spikes for the highlighted neuron 13.

the following 𝑇 = 50k training set Y∗ based on the observed data Y and the random permutation 𝜋∗:

Y∗𝑡𝑖 =



Y𝑡𝑖 if 𝑖 ≠ 13

1 if 𝑖 = 13 and there exists ℓ ∈ {1, ... , 𝑚13} such that 𝑡 =
∑ℓ
𝑘=1 Δ𝑡

𝜋∗ (𝑘)
13

0 otherwise

With this perturbed data we re-compute our variational approximation 𝑞𝜙∗ |Y∗ , outputting the

inferred network estimates Ŵ∗ and Ŝ∗, along with the re-computed signal-to-noise ratios SNRŴ∗,Y∗
𝑖 .

Figure 3.20 shows the inferred networks based on the original and shuffled data. Comparing subplots

(b) and (c), we see significant changes in the inferred connections, particularly for neuron 13. After

shuffling the order of its spikes, neuron 13 loses its four ‘significant’ inferred in-edges, gaining

none. Its four estimated positive out-edges also disappear, while four spurious negative out-edges

are inferred based on the perturbed data.

Figure 3.21 shows the estimated in-edge and out-edges for neuron 13 based on the original spike

train data Y and the perturbed data Y∗. Figure 3.21 also shows the criterion intervals (Algorithm

3.1) for inferring whether an edge exists for a each pair of nodes involving neuron 13. These are

used to construct Ŝ.
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There are other changes in the inferred network not involving neuron 13. The disappearance of

the negative edge between neurons 27 and 20 could have been caused by the shuffling of node 13’s

edges. On the other hand the appearances of the negative edge between neurons 2 and 5 and the

positive edge between neurons 36 and 38 appear unrelated and spurious.

Much of the structure and connections in the network not involving neuron 13 remains the same.

For example, the edges into neuron 44 do not appear significantly changed. Note that neuron 44 has

the second highest computed SNR based on Y and Ŵ and is one of the best fitting neurons besides

neuron 13. This remains the case based on the perturbed data.

Figure 3.22 shows the computed signal-to-noise ratios SNRŴ,Y
𝑖 and SNRŴ∗,Y∗

𝑖 using the original

and shuffled data, respectively. The highlighted row corresponds to the neuron 13. Shuffling its

spikes causes its SNR to plummet—SNRŴ∗,Y∗
13 is by far the lowest computed SNR value. For the
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Figure 3.22: The computed SNR values before and after shuffling the order of the observed spikes
for the highlighted neuron 13.

most part, the other SNR values do not change drastically based on the perturbed data.

3.6 Discussion

In this section we discuss our model and inference approach in the context of the literature on

network inference, multivariate point processes and neuronal dynamics.

Network Reconstruction Related to our work and the implicit network inference problem we

consider is the field of network reconstruction, which comprises methods for inferring unknown

structures of a network given partial knowledge of its properties [77]. Of particular interest to us are

frameworks for inferring edges from noisy, incomplete or unreliable data. In the doubly stochastic

approach of [78], inferences are based on a network model specifying how edges are generated

along with a data model specifying how the network structure maps onto the observations.

General notions of network reconstruction may include the problem we consider; in practice,

however, network reconstruction methods involve explicitly relational data observations [79]. We

note that network reconstruction naturally arises in interaction networks with relational point process
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data [80], a particularly relevant context to our work. An important feature distinguishing our

approach from network reconstruction methods is the scientific data generating process we consider.

Incorporating a prior distribution for W in our approach is a topic for future work, and for this prior

we are interested in considering generative network models as in [78, 79, 80, 81].

Unobserved Networks and Multivaratiate Times Series We briefly mention related work on

network inference for more general multivariate time series data. Causal network reconstruction

from time series [82, 83, 67] has the goal of distinguishing direct from indirect dependencies and

common drivers among multiple individual time series. To accommodate dependencies at multiple

lags, an infinite time series graph is introduced, whose edges are inferred using model-free tests

for conditional independence, including Granger causality and tranfer entropy, along with more

complicated algorithms [84].

Other works (not concerned with causality) propose mapping multivariate time series data to

a multilayer network in order to more effectively extract information from a high dimensional

dynamical system [85]. In order to leverage the tools of graph neural networks (GNNs) in situations

where there is unknown network structure among multiple time series, [86] proposes simultaneously

learning the structure and the fitting GNN, using a generative graph model parameterized by a

neural network.

While the problem we consider applies generally to situations where latent network connections

are inferred from point process data ‘on’ a set of nodes [81], we are motivated in particular

by the context of neuroscience. Connectivity inference from neural activity recording data is a

major research area in neuroscience [42], and its methods can be broadly classified as descriptive,

model-free approaches and model-based approaches that assume a data generating process.

Descriptive methods include pairwise correlation and information-theoretic measures that may

be calculated based on the observed activity of each pair of nodes. Recall that we compare our

method to transfer entropy (TE) in our simulation study (section 3.4).

The approaches to unknown network structure we mention for general multivariate time series
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along with these model-free methods for connectivity inference are not equipped to incorporate

application-specific scientific knowledge or models. This differentiates them from our approach

and makes them poor candidates for the problem we consider.

Multivariate Point Processes The Poisson process is the canonical point process, and with

its independent increments, a Poisson process is not able capture interactions between events.

Generalizing the Poisson process, the Hawkes process [87, 88] is an important model for event

streams in which a past events can affect the probability of future events. A mutually-exciting

multivariate Hawkes process can capture interactions between events, assuming that the effect is

positive, additive over the past events, and exponentially decaying with time. Such models have

been applied to event data on networks when edges are observed [89] as well as when they are being

inferred [81].

As in the Hawkes Process, a spiking node in the model we consider directly influences the

behavior of its out-neighbors. Moreover this effect decays (at the rate of 𝛿) following its initial

arrival. There are, however, key differences. The influences in our adapted LIF model may be

inhibitory in addition to excitatory. And crucially, once a downstream neighbor spikes, any inputs

previously received are forgotten as its latent voltage resets.

The standard Hawkes process assumptions on its allowable interactions limit the model’s

applicability in general [90] and to neural data in particular. Variations of the Hawkes process allow

for applications beyond the mutually exciting and linear case. Introducing Markov modulation

of the baseline intensity [91] accommodates heterogeneity in interevent waiting times. And the

neurally self-modulated multivariate point process proposed in [92] generalizes the Hawkes Process

in order to allow past events to influence the future in more complex and realistic ways. In this

approach the event intensities are modeled by the hidden state of a recurrent neural network.

Model-based Approaches to Neural Population Dynamics The basic paradigm of a model-

based approach for neural activity is to first assume a generative process for the observed data, and

then to estimate the model parameters based on recorded neural activity. Assumed models can
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range from more realistic, mechanistic models based on biological principals of neurons’ behavior

to more mathematically abstract, ‘phenomenological’ models describing the observable behavior

(phenomena) of the recorded neurons in a way that is not derived from scientific theory.

The Hodgkin–Huxley model [93] is the paradigmatic mechanistic neuron model. It is a detailed

conductance-based model consisting of a set of nonlinear differential equations describing the

relationship between the flow of ionic currents across the neuronal cell membrane and the membrane

voltage of the cell.

Hodgkin–Huxley-type models have been shown to accurately capture complex neuronal dynam-

ics, but their intrinsic complexity makes them difficult to analyze and computationally expensive to

implement [53]. And given that much simpler integrate-and-fire-type models have been shown to be

more useful for exploring recorded neural populations, there are questions of the general viability

of these types of models in applied settings [94].

At the opposite end of the spectrum are unsatisfactorily simple autoregressive generalized linear

models [42] and inhomogeneous Poisson process models for generating spikes. These approaches

are computationally tractable but fail to capture neuronal dynamics. Methods incorporating leaky

integrate-and-fire (LIF) mechanisms provide an appealing compromise between oversimplified,

tractable models and the more realistic but intractable mechanistic models for spike generation. In

[95] the authors show the computational tractability of such a model while also demonstrating that

the spike history dependence introduced by LIF mechanisms allow their model to emulate many

of the spiking behaviors observed in recorded neural activity. Related work in [48] demonstrates

efficient computation of the maximum a posteriori path and parameter estimation for SF-LIF and

more general state-space models for the observed spiking activity of single neurons.

The leaky integrate-and-fire model we incorporate in the generative process (3.9) describes

how individual neurons integrate input (3.2), spike (3.5), reset (3.4) and how their action potentials

transmit to other nodes (3.7). This offers a complete (if unrealistically simple) description of the

dynamical system. We discuss limitations and extensions of the LIF model at the end of section

3.2.1.

118



In the literature there are not many existing methods for or examples of using integrate-and-fire

models to infer network connections. In [96] the authors infer ‘directed information’ connections

for a limited network motif using a model that incorporates LIF mechanisms. We did not find any

applications of generalized leaky integrate-and-fire models to connectivity inference in our literature

review.

A more abstract class of methods for analyzing recorded neural population activity considers a

common latent process for all the recorded neurons (as opposed to modeling individual membrane

voltages or latent states). Some very popular and widely adopted methods take this approach

by modeling recorded neural population activity as noisy emissions from an underlying neural

trajectory, a low-dimensional latent process that is shared across the spiking cells [97, 98, 99].

Extracting smoothly varying trajectories that quantify the activity (or response) of recorded

neurons within a single experimental trial is a key part of the analysis of many neurophysiological

studies [100, 101]. Extracted trajectories may be used to understand the relationships between

stimuli or observed behavior and neural population activity, or to test specific scientific hypotheses.

Earlier works averaged noisy spiking activity of recorded neurons across multiple trials, smooth-

ing over trial-to-trial variability and providing more continuous firing rates for subsequent analysis

while discarding key single-trial dynamics. Over time researchers in the field have discarded this

approach, finding it imperative to analyze neural data on a trial-by-trial basis.

In [97] the authors propose Gaussian-process factor analysis (GPFA) for simultaneously smooth-

ing noisy recordings and performing dimensionality reduction within a single probabilistic frame-

work, modeling square-rooted observed counts as approximately normal. Variational latent Gaussian

processes (vLGP) [99] extends GPFA by incorporating an autoregressive filter and a discrete obser-

vation model for the observed point process data. Under this model a neuron’s activity depends

on its observed self-history along along with the common latent process. Latent factor analysis

via dynamical systems (LFADS) [98] is a machine-learning method based on recurrent neural

networks (RNNs) that models recorded neural population activity as a latent dynamical system with

Poisson-distributed spiking variability.
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In these three approaches, connections and associations within the observed populations are

implicitly encoded in the low-dimensional latent neural states and its mapping to individual neurons’

behavior. Based on the models proposed for GPFA and vLGP, it seems these connections could be

decoded. For LFADS, the model is much less interpretable. Connectivity inference, however, is not

a goal of these works and is not mentioned.

3.7 Future research

3.7.1 A more general model for the latent dynamics

In this section we introduce and briefly discuss a generalization of (3.9) that accommodates

more complex dynamics in the latent process generating the observed events. This model allows for

correlations among the 𝑧𝑡, 𝑖’s for a fixed 𝑡 and allows the deterministic input to for each node [𝑡, 𝑖 to

vary with time. Generalizing our inference approach to this expanded model is a subject of future

work.

The assumptions in (3.9) of independence for the latent fluctuations Z and constant deterministic

input [𝑖 for each node 𝑖 are strong and may not hold in many situations. Groups of associated

spiking neurons may be impacted in dependent ways by the unobserved input captured in Z, and

the expected rate [𝑖 at which that input arrives may change over time.

Making these assumptions greatly facilitates our inference while still allowing for interesting

applications and results. However, they are quite limiting, and worth working to eliminate or relax.

We present the following expanded model for latent dynamics that involve the unobserved

network W. In this formulation we allow that the distribution 𝑝(y𝑡, 𝑖 | v𝑡, 𝑖) may be the same as in
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(3.9) or take on some other form:

y𝑡, 𝑖 ∼ 𝑝(y𝑡, 𝑖 | v𝑡, 𝑖) for each 𝑖, 𝑡

v𝑡, 𝑖 =


𝛿v𝑡−1, 𝑖 + [𝑡, 𝑖 + z𝑡, 𝑖 + w)𝑖

⊺y𝑡−1 if y𝑡−1, 𝑖 = 0

[𝑡, 𝑖 + z𝑡, 𝑖 if y𝑡−1,𝑖 = 1
for each 𝑖, 𝑡

z𝑡 ∼ N(0, Σ) for each 𝑖, 𝑡.

In this model the random vector z𝑡 = (z𝑡, 1, ... , z𝑡, 𝑛) has covariance given by Σ, and the [𝑡, 𝑖’s are

not constant for each node over time, but instead follow trajectories that need to be estimated. This

full model reduces to (3.9) when Σ = diag(𝜎2
1 , ... , 𝜎

2
𝑛 ) and [𝑡, 𝑖 = [𝑖 for all 𝑡. Looking at the joint

distribution of this model,

𝑝 (Y,Z) =
𝑇∏
𝑡=1

𝑝(y𝑡 , z𝑡 |F𝑡−1) =
𝑇∏
𝑡=1

{
𝑝(z𝑡)

𝑛∏
𝑖=1

𝑝(y𝑡, 𝑖 |v𝑡, 𝑖)
}
.

we can see that it does not factor by node and inter-spike period as in (3.12). Thus a variational

approximation 𝑞𝜙 of the form (3.18) will not work.

We are interested in adopting methods from the Variational Gaussian Process [102] to construct

and compute a variational approximation for this model. Roughly speaking, we plan to consider a

𝑞𝜙 of the form:

𝑞𝜙 (Z) =
∫ 

∏
(𝑖,𝑘)∈X

𝑞𝜙𝑖 |Y
(
z(𝑖, 𝑘)

��_(𝑖, 𝑘)) 𝑞𝜙 |Y(_) d_
where _(𝑖, 𝑘) = (_𝑡𝑖

𝑘
+1,𝑖, ... , _𝑡𝑖

𝑘+1,𝑖
), and

𝑞𝜙𝑖 |Y
(
z(𝑖, 𝑘) |_(𝑖, 𝑘)

) ∼ N
(
`𝜙𝑖 ,_ (𝑖, 𝑘 ) (𝑖, 𝑘), Σ𝜙𝑖 (Δ𝑡𝑖𝑘 )

)
.

Here the approximate posterior distribution for the latent variables Z is a hierarchical model. The
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latent parameters _ ∈ R𝑇×𝑛 have the distribution:

𝑞𝜙 |Y(_) =
𝑇∏
𝑡=1

𝑞𝜙 |Y(_𝑡, 1, ... , _𝑡, 𝑛) ∼
𝑇∏
𝑡=1

N(0, Γ).

This is a subject of future work.

3.8 Conclusion

In this work we have considered the task of inferring the connections between noisy observations

of events. In our model-based approach, we assumed a generative process incorporating latent

dynamics that are directed by the unobserved network structure, along with a mechanistic model

from neuroscience for aggregating input and triggering observations.

We developed a novel variational Bayesian approach for estimating the model parameters as

well as ‘downstream’ methods for further analysis of the the model and data (see Figure 3.1).

From our applications to simulated and real data we see the success and potential of our method,

as well as its limitations.
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Conclusion

In its three chapters this dissertation examines, develops and applies explainable models and

methods for challenging structured data. Through applications we have seen how interpetable,

‘white box’ methods are able to identify where the data is most complicated and difficult to explain.

Faced with the task of developing explainable methods for difficult problems, the applied

statistician may lament an apparent paradox—while ‘black box’ approaches that achieve reductions

in prediction error falsely present an aura of mastery, even explainability to the data they consider,

interpretable methods shine a bright light where they fail and can leave us with mixed feelings

about the difficulty of the considered problem.

To me this part of doing research in applied statistics. Properly accounting for structure in the

data we analyze provides the indispensable context for the complexity of the considered problem.
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