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a b s t r a c t

Ambient ozone (O3) concentrations have shown an upward trend in China and its health hazards have
also been recognized in recent years. High-resolution exposure data based on statistical models are
needed. Our study aimed to build high-performance random forest (RF) models based on training data
from 2013 to 2017 in the Beijing-Tianjin-Hebei (BTH) region in China at a 0.01 � � 0.01 � resolution, and
estimated daily maximum 8h average O3 (O3-8hmax) concentration, daily average O3 (O3-mean) con-
centration, and daily maximum 1h O3 (O3-1hmax) concentration from 2010 to 2017. Model features
included meteorological variables, chemical transport model output variables, geographic variables, and
population data. The test-R2 of sample-based O3-8hmax, O3-mean and O3-1hmax models were all
greater than 0.80, while the R2 of site-based and date-based model were 0.68e0.87. From 2010 to 2017,
O3-8hmax, O3-mean, and O3-1hmax concentrations in the BTH region increased by 4.18 mg/m3, 0.11 mg/
m3, and 4.71 mg/m3, especially in more developed regions. Due to the influence of weather conditions,
which showed high contribution to the model, the long-term spatial distribution of O3 concentrations
indicated a similar pattern as altitude, where high concentration levels were distributed in regions with
higher altitude.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

As a major secondary air pollutant, ambient ozone (O3) has been
a growing concern in public health. According to the 2017 Global
Burden of Disease (GBD) study, 233,638 (95% uncertainty interval:
90,109e385,303) premature deaths were attributable to ambient
O3 exposure globally in 2016 (Dicker et al., 2018). Both short- and
long-term exposure to ambient O3 have been linked to total mor-
tality, cardiovascular diseases, and respiratory diseases (Yin et al.,
2017; Bell et al., 2004; Wong et al., 2008; Peng et al., 2013; Di
e by Pavlos Kassomenos
et al., 2017a; Yang et al., 2017), as well as biomarker levels such
as blood glucose (Yang et al., 2018), blood pressure (Cole-Hunter
et al., 2018), and inflammation factors (Lee et al., 2018). Although
a strict pollution control measure, the Air Pollution Prevention and
Control Action Plan, was enacted in China in 2013, ambient O3 was
the only pollutant with an increasing trend in both concentration
levels and number of days exceeding the air quality standard: the
O3 maximum 8-h average concentration in China in 2018 was
151 mg/m3, the proportion of days exceeding the standard is 8.4%,
which is 0.8% higher than 2017 (Ministry of Ecology and
Environment of the People’s Republic of China, 2019). From a
public health perspective, accurate ambient O3 exposure assess-
ment is critically needed to address the health effects of short- and
long-term exposure to O3 in environmental epidemiologic research
and policy recommendations.
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Nomenclature

O3 Ambient ozone
GBD Global Burden of Disease
BTH Beijing-Tianjin-Hebei
LUR Land use regression
RF Random forest
O3-8hmax Daily maximum 8h average O3

O3-mean Daily average O3

O3-1hmax Daily maximum 1h O3

CV Cross-validation
MEIC Multi-resolution Emission Inventory for China
OMI Ozone monitoring instrument
RESDC Resource and Environmental Science Data Center
NDVI Normalized Difference Vegetation Index
RMSE Root mean square error
MAE Mean absolute error
XGBOOST eXtreme Gradient Boosting
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However, a lack of fine-scale spatial-temporal measurements of
ambient O3 concentrations during the past decades has posed a gap
in linking O3 exposure and health outcomes, especially in heavily
polluted regions in China. On one hand, it was not until 2013 that 74
Chinese cities officially launched routine air quality assessment on
ambient O3, with 1436 national monitoring sites (China National
Environmen, 2017) across China established by the end of 2014.
While more monitors are being added, existing monitors are sparse
and introduces potential uncertainties in exposure assessment
(Zeger et al., 2000). On the other hand, although there are a few
recently published works provided O3 modeling data in China at
the national scale (Liu et al., 2020; Zhan et al., 2018), the following
issues still remain to be addressed: first, only single metrics of O3
concentration was discussed, while there exists different metrics
that are potentially meaningful for the purposes of epidemiologic
studies; second, generally, the resolution of existing modeled data
is at the 0.1� grid level, and finer resolution data may be better for
eliminating exposure measurement errors in pollution hotspot
areas, such as the Beijing-Tianjin-Hebei (BTH) region.

Previously, we conducted a review (Ma et al., 2020) on ambient
O3 simulations in statistical models to confirm the feasibility of
simulation studies. In general, land use regression (LUR) models,
random forest (RF) models, and artificial neural network models
have been used, while machine learning showed higher model
performance in large-scale, long duration, and high-spatial-
temporal resolution research. Furthermore, in comparisons with
other modeling method, RF models demonstrated superiorities in
minimizing error (Ren et al., 2020).

Therefore, our study aims to simulate three O3 metrics,
including daily maximum 8h average O3 (O3-8hmax) concentra-
tion, daily average O3 (O3-mean) concentration, and daily
maximum 1h O3 (O3-1hmax) concentration in the BTH region from
2010 to 2017 using RF models at the 0.01 � � 0.01 � resolution. First,
we introduce the entire process of establishing a multi-parameter
RF model based on sample-based data division and 10-fold cross-
validation (CV). Second, we test model robustness by building
model through site-based and date-based data division and 10-fold
CV. Finally, we analyze the spatial and temporal trends of ambient
O3 concentrations in the BTH region from 2010 to 2017.
2

2. Methods

2.1. Study area and study period

The study area is located in the BTH region, which is one of the
economic centers of China with more than 100 million people
(National Bureau of Statistics, 2020). It is also one of the key areas
for air pollution control on the national scale, and one of the areas
of greatest concern for research on air pollution and health in China
(Zhao et al., 2020). On the basis of the province borders, an extra
0.5� spatial range was extended to adequately capture the O3
exposure in a particular province (113.45�E�119.85�E and 36.03�N-
42.62�N) (Fig. 1). The study period was from January 1st, 2010 to
December 31st, 2017, including 2992 days. Because ambient O3
monitoring officially started in 2013, the historical period in
2010e2012 was simulated based on models using O3 measure-
ments from 2013 to 2017.

2.2. Model features

The variables included in our model are determined based on
previous simulation studies as well as data availability (Ma et al.,
2020). Multi-resolution Emission Inventory for China (MEIC) and
ozone column concentration from the ozone monitoring instru-
ment (OMI) in Aura were excluded, because of the low spatial-
temporal resolution and high missing value (Figure S1). In previ-
ous modeling tests, these two variables also showed low contri-
bution. A full list of model variables is shown in Table S1.

2.2.1. Ambient O3 measurement data
Hourly ambient O3 concentrations from 2013 to 2017 (January

1st, 2013 to December 31st, 2017) were obtained from the China
National Environmental Monitoring Centre (http://www.cnemc.cn/
). The qualified stations were defined as sites with a missing rate of
less than 25% throughout the study period. The exposure indicators
used in our study included three metrics: O3-8hmax, O3-mean, and
O3-1hmax concentration. On this basis, the daily level indicator can
be calculated only if the original hour level data of each site is� 6 h.
A total of 95 sites were included in our study (Fig. 1).

2.2.2. Meteorological variables
Meteorological data from 2010 to 2017 were taken from the

ERA-Interim reanalysis data of the European Center for Medium-
Range Weather Forecasts (http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype¼sfc/). The spatial and temporal resolu-
tion of these variables were 0.125 � � 0.125 � and 6/12 h, respec-
tively. 45 types of meteorological variables were included in our
study after considering the formation mechanism and previous
simulations studies of ambient O3. Lag effects, such as the ones we
evaluated in our previous PM2.5 modeling work (Zhao et al., 2020),
were also considered by including the previous two days’ values
(lag1 and lag2) of these variables.

2.2.3. The chemical transport model output
To simulate the formation and dispersion of ambient O3,

ambient O3 concentrations in 2010e2016 came from outputs from
the GEOS-Chem chemical transport model (Weagle et al., 2018),
which incorporates meteorological conditions, emissions outputs,
and chemical reactions. The spatial and temporal resolution of the
model was 2 � � 2.5 � and 2 h, respectively. The original data are
divided into 37 layers based on altitude. This study extracts the
near-surface layer raw data and calculates its daily average.

http://www.cnemc.cn/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/


Fig. 1. The monitoring sites and ambient O3 level from 2013 to 2017. (The points in figures represent the monitoring sites; From left to right are O3-8hmax, O3-mean and O3-1hmax
level, respectively).
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2.2.4. Geographic variables
Annual land use data from 2010 to 2017 were downloaded from

the European Space Agency Climate Change Initiative (http://maps.
elie.ucl.ac.be/CCI/viewer/) website. Three types of land use data,
including natural vegetation coverage, urban coverage, and farm-
land coverage, were extracted.

The road network data of 2016 were published by the Resource
and Environmental Science Data Center (RESDC) of the Chinese
Academy of Sciences (http://www.resdc.cn). In our study, national
highway length, highway length, provincial highway length, rail-
way length, county road length, and country road length were
included.

Normalized Difference Vegetation Index (NDVI) data from 2010
to 2016 were taken from the International Scientific and Technical
Data Mirror Site, Computer Network Information Center, Chinese
Academy of Sciences (http://www.gscloud.cn). The spatial and
temporal resolution of the MODND1D product was monthly at
500 m � 500 m.

Elevation data with a spatial resolution of 1 km � 1 km for 2010
came from the RESDC of the Chinese Academy of Sciences (http://
www.resdc.cn).

2.2.5. Population data
National population data for 2010 were collected from the

RESDC of Chinese Academy of Sciences (http://www.resdc.cn), and
were distributed on a 1 km � 1 km grid.
Yi;j¼ f
�
METEi;j; lag1METEij; lag2METEi;j;GEOSi;j; LDj;ROADj;NDVIj;ELEj; POPj; SEASONi;j;MONi;j

�
(1)
2.2.6. Dummy parameters
Considering the varied time pattern of ambient O3 concentra-

tions, we set time dummy variables including season (spring,
summer, fall and winter) and month (January to December).

2.3. Data process

We built a 0.01 � � 0.01 � standard grid of the BTH region for
data integration. O3 measurements were converted into gridded
data and assigned to grid cell based on site coordinates using tools
from the sp and raster packages in R. GEOS-Chem model outputs
were processed to 0.01 � � 0.01 � by inverse distance weighted
interpolation using idw package in Python. Meteorology data, land
3

use data, population data, elevation data and NDVI are evenly
distributed, and downscaled using Extract Values to Points with
bilinear interpolation in ArcGIS 10.2. Road network data were
processed through the intersect and dissolve function into grids in
ArcGIS 10.2. For long term parameters, each day within a month or
year was assigned the corresponding month or year level value. A
dataset including all parameters, dummy variables, and ambient O3
measurements was prepared for model development in the next
step.

2.4. Model development and validation

The RF model was developed by including multiple decision
trees that were generated by the bagging ensemble method
(Breiman, 2001). The sample-based division method randomly di-
vides data into a training set and test set, where the training set
included 90% of the data and the test set included 10% of the data.
The training set was used to build the model based on a 10-fold
cross-validation. The process was performed by randomly
dividing the training set into 10 subsets, where nine subsets were
used to build the model and 1 subset was used to validate the
model performance; The analysis was performed ten times, and the
average of the 10 runs was used as the final result. The model was
built using following formula:
Where Y i,j was the O3 concentration on day i in grid cell j; METE, lag
1 METE i,j and lag2 METE i,j were meteorological variables and its
one-day lag and two-day lag values on day i in grid cell j; GEOS i,j
was the GEOS-Chemmodel output on day i in grid cell j; LD j, ROAD
j, NDVI j, ELE j and POP j were land use coverage, length of the road,
NDVI product, elevation, and population in grid cell j, respectively;
and SEASON i,j and MON i,j were the season and month of year,
respectively.

To avoid over-fitting, as well as potential poor generalizability of
model, the model parameter, maximum depth (the maximum
depth of the tree), needed to be adjusted. The Grid Searchmethod in
Python was used. The error rate was calculated by employing
predictions from out-of-bag samples. Based on the results of Grid

http://maps.elie.ucl.ac.be/CCI/viewer/
http://maps.elie.ucl.ac.be/CCI/viewer/
http://www.resdc.cn
http://www.gscloud.cn
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Search, we set the maximum depth as 47, 35 and 47 for O3-8hmax
model, O3-mean model and O3-1hmax model, respectively, to
achieve high prediction accuracy in the experiments. We set
n_estimators (the number of trees) as 200 for all three models. The
R2, root mean square error (RMSE) and mean absolute error (MAE)
for different years, months, provinces, municipalities and counties
were calculated to test model performance.

As a supplement to the above sample-based division method,
we also implemented site-based and date-based division methods
to verify the stability of the model on spatial and temporal scales.
Site-based division method means that monitoring data from 90%
of the stations that were randomly selected were used as the
training set, while monitoring data from the remaining stations
were used as the testing set. Date-based division method means
that monitoring data for ten days in January, April, July and October
of each year were randomly selected as the testing set, for which
200 days in total were selected; monitoring data for the remaining
days were used as the training set. The entiremodeling process was
the same as that of the sample-based model.
2.5. Spatiotemporal simulation of ambient O3 concentration

Using the final sample-based model, the daily O3-8hmax, O3-
mean, and O3-1hmax concentration in the BTH region from 2010 to
2017 were simulated. The yearly and seasonal average concentra-
tions were calculated. The spatial and temporal trends of ambient
O3 were analyzed combined with China’s environmental protection
policies and regulations.
Fig. 2. The workflow of ambient O3 conc

4

All modeling and simulation work were performed in Python
2.7 based on scikit-learn package. The workflow of estimating the
spatiotemporal ambient O3 concentrations in this study is shown in
Fig. 2.

3. Results

3.1. Ambient summary of O3 concentration and parameters

The mean ± standard deviation of O3-8hmax, O3-mean, and O3-
1hmax concentrations from 2013 to 2017 were 92.58 ± 60.04 mg/
m3, 58.39 ± 38.11 mg/m3 and 110.75 ± 68.95 mg/m3, respectively
(Fig. 1). The descriptive statistics of the variables are shown in
Table S2.

3.2. Feature importance

The modeling importance of the top ten variables are shown in
Table 1, and the full results are shown in Table S3. During the O3-
8hmax and O3-1hmax modeling, 2-m temperature showed the
highest importance, which accounted for 47% and 49% of all relative
importance; while GEOS-Chem outputs accounted for 42% during
the O3-mean modeling. The meteorological variables showed high
influence to daily ambient O3 concentrations: downward surface
solar radiation, V wind component, and low cloud cover were all
among the most important variables in all three models. Altitude,
which is a long-term parameter, also showed high importance to
ambient O3 simulations in our models.
entrations simulation in this study.



Table 1
The importance value of top ten variables in O3-8hmax, O3-mean and O3-1hmax model.

Sort O3-8hmax O3-mean O3-1hmax

Variables Value Variables Value Variables Value

1 2-m temperature 47% GEOS-Chem 42% 2-m temperature 49%
2 Downward surface solar radiation 10% Downward surface solar radiation 8% Downward surface solar radiation 7%
3 10-m V wind component 5% 10-m V wind component 5% 10-m V wind component 5%
4 GEOS-Chem 4% 2-m temperature 5% GEOS-Chem 2%
5 Low cloud cover 2% 10-m V wind component lag1 2% Low cloud cover 2%
6 10-m V wind component lag1 2% Dem 2% 10-m V wind component lag1 2%
7 Dem 1% Low cloud cover lag1 2% Dem 2%
8 Medium cloud cover 1% month 2% Boundary layer height lag1 1%
9 2-m dewpoint temperature 1% Downward surface solar radiation lag1 1% Medium cloud cover 1%
10 Boundary layer height lag1 1% Boundary layer height lag1 1% Downward surface solar radiation lag1 1%

Fig. 3. Density scatter plots of the ambient O3 model test validation results. (From left to right are O3-8hmax, O3-mean, and O3-1hmax level, respectively).
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3.3. Model performance

The three models of daily ambient O3 concentration showed
high performance, with R2 values of 0.84 for O3-8hmax, 0.84 for O3-
mean, and 0.81 for O3-1hmax, respectively (Fig. 3). We evaluated
model performance at the provincial and municipal levels
(Table S4). At the provincial level, the model performance of Beijing
was higher than those in Tianjin and Hebei in all three models. At
the municipal level, R2 values ranged from 0.63 to 0.92, and
Hengshui, Langfang, Tangshan had the best predictions out of 11
cities.

The yearly and seasonal R2s were also calculated (Figure S2 and
Figure S3): as time progressed, the R2 of each year from 2013 to
2017 also continued to increase, which may be related to the
growth of China’s monitoring network construction. All three
models achieved the best model performance in autumn; O3-
8hmax and O3-mean models had relatively poorer performance in
the summer, while O3-1hmaxmodel performed relatively poorly in
the winter.

The stabilities of models were tested both spatially and
temporally through site-based and date-based division models
(Figure S4 and Figure S5). From the spatial verification results, the
R2 of the O3-8hmax model is 0.87, the R2 of the O3-mean model is
0.79, and the R2 of the O3-1hmax model is 0.84; From the temporal
verification results, the R2 of the O3-8hmax model is 0.71, the R2 of
the O3-mean model is 0.70, and the R2 of the O3-1hmax model is
0.68.
3.4. Spatial and temporal trends of ambient O3 concentration in
BTH region from 2010 to 2017

The modeling results of daily O3-8hmax, O3-mean, and O3-
1hmax with high spatial-temporal resolution in the BTH region
from 2010 to 2017 were shown in Figure S6. The annual
5

concentrations were shown in Figs. 4-6. Ambient O3 concentrations
were higher in the northern and western regions of the study area,
while the eastern and southern regions had lower concentrations.
This is consistent with the distribution of altitude in the study area:
the terrain in the BTH region is high in the northwest and low in the
southeast.

Ambient O3 concentrations from 2010 to 2017 showed an overall
upward trend, especially since 2016 (Table S5). 4.18 mg/m3, 0.11 mg/
m3 and 4.71 mg/m3 increase were found comparing 2017 to 2010 in
O3-8hmax, O3-mean, and O3-1hmax, separately. The areas with
increasing concentration levels are mainly concentrated in the
economically developed areas in the central and southern parts of
the BTH region (Fig. 7). The modeling ambient O3 concentration
values show a clear seasonal trend: the O3 levels are highest in the
summer, followed by spring and autumn, and lowest in the winter,
which is consistent with the formation mechanism of ambient O3
(Figure S7).
4. Discussion

Based on high spatial resolution (0.01 � � 0.01 �) models, our
study has a clearer understanding of the temporal and spatial
distribution of O3 concentration in the BTH region from 2010 to
2017. Using a list of suitable variables, including meteorological
variables, chemical transport model output, geographic variables,
and population variables, our model achieved high performance,
with R2s for three indicators including O3-8hmax, O3-mean, and
O3-1hmax model all higher than 0.80. The 2010e2017 O3 concen-
trations in the BTH area showed an overall increasing trend,
especially since 2016.

Our model has achieved higher model performance at a high
spatiotemporal resolution levels than those of other comparable
studies. With a 0.1 � � 0.1 � resolution, Zhan et al. (2018) and Liu
et al. (2020) assessed daily ambient O3 concentrations in China



Fig. 4. Annual average simulation results of O3-8hmax from 2010 to 2017 in the study area.

Fig. 5. Annual average simulation results of O3-mean from 2010 to 2017 in the study area.
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using a RF model and an eXtreme Gradient Boosting (XGBOOST)
algorithm, separately, and the R2 value were 0.61e0.78. Huang et al.
(2017)modeled annual average O3 concentrations in Nanjing, China
in 2013 at a 100m� 100m resolution using LURmodels, and the R2

value was 0.65. Compared with studies in other countries, our
model still showed comparable or even better performance: Ren
et al. (2020) conducted 13 linear and non-linear models in the
United States in 2011, and found better performance in RF and
XGBOOST, with R2 values of 0.84 and 0.81. The R2 of a neural
network model of daily concentrations with a 1 km � 1 km reso-
lution in the United States (Di et al., 2017b) was 0.74e0.80; the R2 of
6

a LURmodel with higher spatial resolution in six metropolitan area,
U.S. (Wang et al., 2015), Los Angeles Basin, U.S. (Wang et al., 2016),
and Augsburg, Germany (Wolf et al., 2017) were slightly higher
than that of our study, which may due to the coarser time resolu-
tion in these studies (two-week and annual averages). On one hand,
various model features can capture the trend of ambient O3 con-
centration more comprehensively. Daily meteorological variables
were included in the form of the day, lag1, and lag2, which fully
considers the lagging effect of meteorological variables on O3.
Furthermore, GEOS-Chem model outputs were introduced in this
study to make up for the shortcomings of pure statistical models



Fig. 6. Annual average simulation results of O3-1hmax from 2010 to 2017 in the study area.

Fig. 7. The difference between 2010 and 2017 annual average O3 concentrations in the study area (From left to right are O3-8hmax, O3-mean, and O3-1hmax).
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that do not consider chemical processes. On the other hand, the
random forest model built nonlinear relationship betweenmultiple
features and O3 concentration. Compared with linear model like
LUR models, the RF model showed higher accuracy (Ren et al.,
2020); we can also see the superiority of machine learning algo-
rithms represented by RF in large-scale daily simulation studies
(Ma et al., 2020; Hoek et al., 2008).

The inevitable uncertainty of historical simulations has been
pointed out in previous studies (Zhan et al., 2018; Ma et al., 2016).
The increased yearly R2 indicates that the model performance is
relatively poor when there is less monitoring data in the early
years; the lower R2 in the summer and winter showed our
modeling work has limitations in capturing extreme values of
ambient O3. However, our model was established based on years of
monitoring data and variables (2013e2017), which reduces the
uncertainty. Through selecting specific dates that can represent
typical climatic conditions as the test set for temporal verification,
the stable results also confirmed the credibility of historical simu-
lated datasets in some content. The limitations of forming grid
exposure were mainly focused on the density of monitoring sta-
tions (Wang et al., 2015; Adam-Poupart et al., 2014). The stable
7

spatial verification results showed that under the existing site
distribution and spatial resolution settings, the grid exposures
obtained were relatively credible.

In our study, we found meteorological variables, especially
temperature and solar radiation, showing high sensitivity to
ambient O3. This is consistent with the formation mechanism of
ambient O3 and previous studies (Zhan et al., 2018; Son et al., 2018).
Our study also found lagging effects of the V wind component,
boundary layer height, and downward surface solar radiation. The
weather conditions of the previous day have an impact on the
ozone concentration of the day by affecting the diffusion and
elimination of pollutants. Combined with the mechanism of
ambient ozone formation, at higher emission levels, it is necessary
to further prevent the health hazards caused by possible exposure
to high levels of ambient O3 in high temperature, no wind, and high
solar radiation.

In addition, the GEOS-Chem output considers atmospheric
chemical processes, which have been proven to improve model
performance (Wang et al., 2016; De Hoogh et al., 2018). Elevation is
the only long-term variable with high variable importance ranking.
It is closely related to meteorological changes such as solar
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radiation, wind direction, wind pressure, and boundary layer
height; topographic differences also lead to changes in thermal and
dynamic effects. Its importance has also been proved in previous
studies (Wang et al., 2016; Beelen et al., 2009). Unlike some pre-
vious studies (Wang et al., 2016; Beelen et al., 2009), land use
variables did not appear in the forefront of the importance ranking
in our study. This may be due to its difficulty in providing infor-
mation about temporal variation (Di et al., 2017b). Compared with
varied meteorological factors and emissions of pollutant, the in-
fluence of land use variables is relatively small (Zhan et al., 2018)
and their inclusion leads to a decrease of temporal R2 (Di et al.,
2017b). It’s difficult to explain the wider dynamic range of
ambient O3 in China with land use variables. Therefore, meteoro-
logical factors and emissions information should be further
considered.

Our model found difference in variables importance between
three exposure indicators. Both the O3-8hmax and O3-1hmax
models emphasize the contribution of temperature and solar ra-
diation, while the O3-mean model emphasizes the importance of
the output of the GEOS-Chem model. There are two possible rea-
sons. First, as mentioned previously, the GEOS-Chem output could
fully describe the formation and dissipation process of ambient O3;
Second, GEOS-Chem output indicated higher importance in O3-
mean model may be due to the fact that they have the same time-
scale. Because the O3-mean value is affected by the elimination
effect during night times; compared with O3-8hmax and O3-
1hmax, which reflect the peak level of O3, the daily average GEOS-
Chem model output is more suitable for O3-mean. As an air
pollutant with significant variations during the course of a day,
modeling work of O3 with higher temporal resolution is needed.

We found consistency between ambient O3 levels and altitude,
and O3 level is higher in high altitude areas, which is consistent
with a previous study (Di et al., 2017b). This may be due to the
invasion of natural source O3 from the stratosphere, which can
produce some transient peak O3 concentrations at the ground level
(Davies and Schuepbach, 1994). For areas with relatively flat terrain
on the southeastern side of the BTH region, the differences in
spatial distribution aremainly due to the human-sourced O3, which
is consistent with the distribution characteristics of local trans-
portation and petrochemical and coal-fired power plants.

The simulated concentrations based on our model supports us
to initially analyze the long-term trend of ozone concentration in
2010e2017. We found that before the implementation of the Air
Pollution Prevention and Control Action Plan in China in 2013, O3 was
already at a high level in China compared to other countries (Bell
et al., 2004; Di et al., 2017a). After the implementation of strict
control measures, a decline was found in PM10, PM2.5, and SO2
concentration levels, but not O3 concentrations (Ministry of
Ecology and Environment of the People’s Republic of China,
2019), especially in the more developed regions. VOC emissions
that have not been effectively controlled yet (Chen, 2017) may be
one of the main reasons: due to the complex relationship between
NOx and VOCs for ozone generation, the initial results of NOx
treatment (Chen, 2017) have made it difficult for free radicals
produced by VOCs to be consumed. Under the action of radiation, it
has promoted the production of secondary pollutants. It has been
confirmed during the COVID-19 lockdown in China (Huang et al.,
2020), where large decreases in NOx emissions were seen from
decreased transportation, ozone concentrations actually increased.
Therefore, effective control strategies about collaborative man-
agement of VOCs and NOx in key industries and areas are needed
when facing the strengthened coordinated development (Chen,
2017) and the low atmospheric dispersion conditions (Feng et al.,
2017) in the BTH region. In addition, due to the consistent trend
8

of the highest concentration of the three indicators in summer,
future early warning work on severely polluted weather events in
summer, especially with adverse meteorological conditions (high
temperature, no wind, and high solar radiation), is also needed.

Our study has great potential relevance for future research. The
O3-8hamx, O3-mean, and O3-1hmax concentration in the historical
period of the BTH regionwith high spatial resolution can be further
traced, which could fill the existing gaps in exposure before 2013
and reduce exposuremeasurement error. Themodeling dataset can
be further applied in epidemiologic studies in the future.

Our study has some uncertainties. The major limitation is the
uncertainty of monitoring data in the spatial and temporal scale.
For the locations where monitoring data are not available, for
example, northwest of the BTH region where monitoring sites are
sparsely distributed, there may not be enough samples to capture
the accurate association between O3 concentration and model
variables. Although we used the site-based division method to test
the model performance, uncertainty remains. For the temporal
perspective, although we have implemented a date-based division
in our model, the validation of the historical period before 2013
could not be conducted. Second, the spatial resolution of each
variable in the model is different, and the interpolation process
inevitably introduces errors. Third, O3 precursor concentrations
including NOx and VOCs, and emission inventory with high spatial
and temporal resolution were lacking due to data availability;
traffic flow is also an important feature reflecting the variation of
precursors, and its temporal and spatial variation trend plays an
important role in capturing the characteristics of ambient O3 con-
centration. Previous studies have suggested the importance of
these parameters, so they should be considered in future studies
when possible.
5. Conclusion

We built high-performance random forest models using mete-
orological features, geographical features, socioeconomic features
for daily O3-8hmax, O3-mean, and O3-1hmax concentration in the
BTH region. The high-resolution exposure data is already available
(https://cepht.niehs.cn:8282/developSDS.html) for future environ-
mental epidemiologic studies. From 2010 to 2017, O3-8hmax, O3-
mean, and O3-1hmax concentrations in the BTH area increased,
especially in more developed regions. Strengthening control of key
industries and regions, and synergistic control of NOx and VOCs are
the key points of ambient O3 control in the BTH region. The public
should protect themselves especially on days when ambient ozone
pollution is likely to occur, such as high temperatures, high solar
radiation, and heavy pollution.
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