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Abstract

Three Sojourns in Queueing Theory

Jacob Mason Bergquist

In this thesis, we present three works on queues. In chapter 1, we analyze two

non-work-conserving variations of the M/G/1 preemptive LIFO queue, focusing on deriving

expressions for the limiting distribution of workload and related quantities. In the first model,

preempted customers return to the front of the queue with a new service time, while in the second,

they return with their original service time. We use queueing theory methods such as the Rate

Conservation Law, PASTA, regenerative process theory and Little’s Law. Our results include

stability and heavy-traffic limits, as well as tail asymptotics for stationary workload. In chapter 2,

we analyze a queueing model with price-sensitive customers, where the service provider aims to

maximize revenue and minimize the average queue length. Customers arrive according to a

Poisson process, join the queue if their willingness-to-pay exceeds the offered price, and are

served in a first-in first-out manner with exponential service times. Our model is applicable to

cloud computing, make-to-order manufacturing, and food delivery. We provide performance

guarantees for a class of static pricing policies that can achieve a constant fraction of the optimal

revenue with a small increase in expected queue length. We present results for the single-server,

multi-server, and multi-class cases and provide numerical findings to demonstrate the empirical

performance of our policies. In chapter 3, we analyze the Adaptive Non-deterministic

Transmission Policy (ANTP), a technique addressing the Massive Access Problem (MAP) in

telecommunications, which involves delaying packets at the points of origin to reduce congestion.



We frame these delays as time spent at a "cafe" before proceeding to the service facility. We

present sample-path results, giving conditions under which ANTP does not change the total

sojourn time of packets, and results under a general stochastic framework, focusing on stability

and constructing proper stationary versions of the model. We prove Harris recurrence of an

underlying Markov process and find positive recurrent regeneration points under i.i.d.

assumptions.
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1.3.6 Ŝr for PRI can be heavy-tailed even though S must be light-tailed . . . . . . 27

1.3.7 Deriving w and E(NB) for PRI . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.8 Deriving the distribution of V for PRI . . . . . . . . . . . . . . . . . . . . 29

1.3.9 Heavy-traffic limits for stationary workload V for PRI . . . . . . . . . . . . 30

1.3.10 Tail asymptotics for stationary workload V for PRI . . . . . . . . . . . . . 30

1.3.11 An alternative proof of stability, and a representation for the distribution of
sojourn time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 2: Static Pricing for Queueing Systems . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.2 Little’s Law and Static Policies . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Multi-class Static Pricing Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Single-class Static Pricing Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Single-server, Single-class Static Pricing Guarantees . . . . . . . . . . . . . . . . . 54

2.5.1 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.2 A class of instances proving tightness . . . . . . . . . . . . . . . . . . . . 57

ii



2.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Sojourn Time Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 3: On an Adaptive Non-deterministic Transmission Process Queueing Model . . . 66

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Some basic properties of ANTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 A stochastic framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Stability of ANTP and the existence stationary versions . . . . . . . . . . . . . . . 75

3.7 I.I.D. input case; Harris recurrence of ANTP . . . . . . . . . . . . . . . . . . . . . 76

3.8 What if P(An > max{Sn,Dn}) = 0? . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8.1 Regeneration construction . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8.2 The two conditions P(An > max{Sn,Dn}) > 0 or P(D > S) > 0 cover all
ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix A: Appendix A: Stationary workload for some non-work-conserving M/G/1 pre-
emptive LIFO queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iii



List of Figures

2.1 A graphical representation of the guarantees of Theorem 2 . . . . . . . . . . . . . 52
2.2 A graphical representation of the guarantees of Theorem 4 . . . . . . . . . . . . . 63

iv



List of Tables

2.1 Worst-case approximation ratios of static pricing policies . . . . . . . . . . . . . . 60
2.2 Average approximation ratios of static pricing policies . . . . . . . . . . . . . . . . 61

v



Acknowledgements

There are so many people I would like to thank. I will start from the beginning. My mom

and dad for raising me, my brother and sister for helping me grow. Karl, of course, for advising

me since the very beginning. Karl’s wife and kids for sharing him with me. Adam for treating me

no differently than any other senior member of his lab and giving me five years worth of advising

in three semesters. The many friends who helped me along the way: my cohortmates, particularly

Luc, Achraf, Harsh, and Ruizhe, who I am honored to be associated with. Older and younger

PhDs who have enriched my time: Goutam, Allen, Mali, Oussama, Shatian, Agathe, Tugce, Yuki,

Steven, Yuan, Xuan, Enrique, Julian, Camilo, Sudeep, Rachitesh, Aapeli, Ayoub, Abdellah,

Matias, Noémie, Madhu, Darshan, Jiaqi. Liz, who helped me so many times and by her guidance

helped make this whole enterprise worthwhile. Kristen for letting me bother her. Winsor for

helping me across the finish line. Aubrianna for soothing my core course anxieties. My friends

turned roommates Daniel, Nico, and Tom for providing respite (sometimes in canine form via

Rocco and Leo). Pranay, Saeed, Chelsey, Ilina, and Z for buttressing my confidence. Max,

Jayden, Sam, Charlie, Luc, Jonathan, Tyler, Geoff, and Eli for weekly adventures in Ambrosia and

Theros. Sebastian for keeping me grounded. Austin for providing solace. I am truly blessed to be

surrounded by such great people. Carrying out the math contained in this thesis was amazing, but

the best gift of all was the social web I was fortunate enough to be a part of these past five years.

vi



Dedication

To Mom and Dad.

vii



Introduction

People have been waiting in lines for a long time. The mathematical treatment of queues be-

gan more recently, in 1909, when a Dane named Agner Krarup Erlang published an innocuous,

seven page paper titled "The Theory of Probabilities and Telephone Conversations" ([1]). At the

time, Erlang was working at the Copenhagen Telephone Company, and he had been presented

with the classic problem of determining how many circuits and telephone operators were needed

to guarantee that calls would be serviced in a timely manner. The models he developed and an-

alyzed to tackle these questions in this and later works ([2], [3]) became foundational elements

of modern telecommunication network studies. But, as he presciently hinted at in [1]1, the po-

tential applications of his work extended far beyond this original telecommunication application.

In understanding that "a special knowledge of telephonic problems is not at all necessary for the

understanding thereof," Erlang realized that his analysis had successfully abstracted away from the

particulars of the original application. What was left was an instance of a new mathematical model

- a queue - and with that, queueing theory was born. Now, more than a century later, we present

these three fresh sojourns into the theory of queues.

In the first chapter, we analyze two non-work-conserving variations of the M/G/1 preemp-

tive last-in first-out (LIFO) queue with emphasis on deriving explicit expressions for the limiting

(stationary) distribution of workload and other related quantities of interest. In the first model,

known as preemptive-repeat different (PRD), preempted customers are returned to the front of the

queue with a new independent and identically distributed service time. In the second, known as
1"As it is my belief that some point or other from this work may be of interest, and as a special knowledge of

telephonic problems is not at all necessary for the understanding thereof, I shall give an account of it below."
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preemptive-repeat identical (PRI), they are returned to the front of the queue with their original

service time. Our analysis is based on queueing theory methods such as the Rate Conservation

Law, PASTA, regenerative process theory and Little’s Law (l = λw). Along the way, we ob-

tain stability results as well as explicit expressions for the limiting distribution of the service time

found in service by an arrival. For the second model we even derive the joint distribution of age

and excess of such a service time, and find they are quite different from what is found in standard

work-conserving models. For example, in the M/M/1 case, they are independent exponentials but

with different rates. We also give heavy-traffic limits and tail asymptotics for stationary workload

for both models, as well as deriving an implicit representation for the distribution of sojourn time

by introducing an alternative effective service time distribution.

In the second chapter, we consider a general queueing model with price-sensitive customers in

which the service provider seeks to balance two objectives, maximizing revenue and minimizing

the average queue length. Customers arrive according to a Poisson process, observe an offered

price, and decide to join the queue if their willingness-to-pay exceeds the offer. The queue is

operated first-in first-out, and the service times are exponential. Our model represents applications

in areas like cloud computing, make-to-order manufacturing, and food delivery.

The optimal solution for our model is dynamic; the price changes as the state of the system

changes. However, such dynamic pricing policies may be undesirable for a variety of reasons.

In this work, we provide performance guarantees for a simple and natural class of static pricing

policies which charge a fixed price up to a certain occupancy threshold and then allow no more

customers into the system. We provide a series of results showing that such static policies can

simultaneously achieve a constant fraction of the optimal revenue with at most a constant factor

increase in expected queue length. For example, in the single-server case, we show that a static

pricing policy can always achieve at least half of the optimal revenue while at most matching the

expected queue length of the optimal solution. We also furnish results for the multi-server and

multi-class cases and provide numerical findings demonstrating the empirical performance of our

static policies.
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In chapter three, we analyze a recently proposed technique for addressing the Massive Ac-

cess Problem (MAP), an issue in telecommunications which arises when too many devices trans-

mit packets to a gateway in quick succession. This technique, the Adaptive Non-deterministic

Transmission Policy (ANTP), involves delaying some packets at the points of origin to alleviate

congestion at the routers. In this work, to clarify the approach and to move beyond the original

telecommunications application, we frame these potential delays as time spent at a “cafe” before

proceeding to the service facility.

We present both sample-path results and results under a stationary ergodic stochastic frame-

work. In the sample-path realm, we give conditions that ensure ANTP will not change the total

sojourn time of any packet as compared to what that packet would have experienced in the original

FIFO model without delays. The difference is that, under ANTP, some of that sojourn is spent

at the cafe instead of in the buffer at the service facility. In a stochastic framework, our focus is

on stability and constructing proper stationary versions of the model including the ANTP point

process. Under i.i.d. assumptions we dig deeper by proving Harris recurrence of an underlying

Markov process, and explicitly find positive recurrent regeneration points.
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Chapter 1: Stationary workload for some non-work-conserving M/G/1

preemptive LIFO queues

In this chapter we analyze a queueing model which involves preemption. This chapter is based

on the article [4] written in collaboration with Karl Sigman and published in Stochastic Systems in

May 2022. We thank Peter Glynn for helpful comments and suggestions.

1.1 Introduction

In this paper we consider two non-work-conserving variations of the M/G/1 preemptive LIFO

(PL) queue. As with the classic/standard (work-conserving) M/G/1 PL model, when a new cus-

tomer arrives they immediately bump out any customer in service and start service themselves

with their own independent and identically distributed (i.i.d) service time, while the preempted

customer returns to the front of the queue. But in the classic model, the preempted customer re-

tains its remaining service time and thus the model is work-conserving; in particular, the workload

process is identical sample-path by sample-path to the standard first-in-first-out (FIFO) M/G/1

model. In the two models we analyze here, the preempted customer either receives a new i.i.d. ser-

vice time (known as preemptive-repeat different (PRD)), or retains its original service time (known

as preemptive-repeat identical (PRI)), hence losing any progress that had been made.

In preemption applications, the PRI model would be suitable for when customers are viewed

as bringing service times with them, so there only is one service time in play, whereas, the PRD

model would be more suitable for when the server (or system) is viewed as handing out the service

(processing) times whenever a customer enters service while the customers are all bringing identi-

cal tasks. Jobs arriving to a CPU or a printer for example would naturally be PRI, whereas arrivals

wanting access to a particular website would more naturally be PRD.
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These two models were presented and analyzed in the recent paper of Asmussen and Glynn [5]

in which the focus was on determining the moments of sojourn time and establishing the stability

conditions. Their methods of analysis involve branching processes, Galton-Watson family trees

and stochastic fixed point equations.

Our focus in the present paper, however, is on deriving the entire limiting (stationary) distri-

bution of workload, as well as using workload to derive other quantities of interest. We do so by

giving an explicit random variable representation for the workload very much in the spirit of the

classic Pollaczek-Khinichine formula for the standard M/G/1 queue in which the limiting distri-

bution of the workload is expressed as a geometric sum of i.i.d. random variables endowed with

the equilibrium (stationary excess) distribution of service. (See for example, Pages 386-387 in

[6].) As part of this we take advantage of the fact that for both models, the limiting distribution

of the number of customers in the system (as found by an arrival) is geometric. This fact was first

established for the standard work-conserving PL model by Fakinos[7], [8] and Yamazaki[9],[10]

and extended to general preemption models (which includes PRD and PRI) in Shanthikumar and

Sumita[11],Theorem 2.2.

But as we discover by explicitly computing them, the parameters of these geometric distribu-

tions involve the entire distribution of service, not just its mean, and the distribution of the i.i.d.

random variables is not the equilibrium distribution, nor the stationary spread distribution as found

in the inspection paradox.

Along the way we also obtain (in two different ways) the stability results found in [5]–but with

more of a ‘queueing’ interpretation–as well as explicit expressions for the limiting distribution of

the service time found in service by an arrival. For PRI we even derive the joint distribution of age

and excess (remaining service time) of such a service time, and discover that it is quite different

from what is found in standard work-conserving models. Our analysis is based on queueing theory

methods such as Rate Conservation Law, PASTA, regenerative process theory and Little’s Law

(l = λw). We also present, for both models, heavy-traffic limits and tail asymptotics for the

stationary workload. Section 1.2 deals with PRD, and Section 1.3 with PRI; an implicit sojourn

5



time representation and Laplace transform are given in Section 1.3.11. An Appendix is included

at the end containing some of the proofs of our results.

1.1.1 Basic M/G/1 model notation and set up

The M/G/1 queue has a Poisson point process of customer arrival times {tn : n ≥ 1} at rate λ,

with i.i.d. exponentially distributed interarrival times Tn = tn+1 − tn at rate λ, and (independently)

i.i.d. service times {Sn : n ≥ 1} brought by each customer distributed as a general distribution

G(x) = P(S ≤ x), x ≥ 0,where S denotes a generic such service time. We assume that 0 < E(S) =

1/µ < ∞. T denotes a generic interarrival time distributed as exponential at rate λ, and then we

define ρ def
= λ/µ. (A priori all we can say about ρ is that 0 < ρ < ∞).

The workload V(t) at time t is the sum of all remaining or whole service times in the system

at time t: the sum of all service times of customers in the queue plus the remaining service time

of the customer in service (if any). {V(t) : t ≥ 0} then denotes the workload stochastic process;

its sample paths are continuous from the right with left hand limits. V(tn−) denotes the amount

of work found in the system by the nth arrival, and V(tn+) is the amount of work right after they

arrive. For example, for work-conserving disciplines V(tn+) = V(tn−) + Sn.

The times at which an arrival finds the system empty, V(tn−) = 0, serve as regeneration points

with i.i.d. cycles. In the case when the cycle length distribution is proper and has finite first

moment–the positive recurrent case–we are ensured the existence of a (proper) limiting (station-

ary) distribution of workload, and that is what we mean by stability in the present paper. We let V

denote a random variable with this distribution and can define the distribution via w.p. 1 limits:

P(V ≤ x) = lim
t→∞

1
t

∫ t

0
I{V(s) ≤ x}ds, x ≥ 0.

Because we are assuming Poisson arrivals we can use Poisson Arrivals See Time Averages

(PASTA) (see for example Theorem 6, Page 294 in [6]) to also express this distribution as a w.p. 1

6



customer average:

P(V ≤ x) = lim
n→∞

1
n

n∑
j=1

I{V(t j−) ≤ x}, x ≥ 0. (1.1)

Of crucial importance in the present paper is computing

p0
def
= P(V = 0), (1.2)

which, because of PASTA, can be viewed as both the long-run proportion of time that the system

is empty and as the long-run proportion of arriving customers who find the system empty. We can

use the above limits to determine stability in advance: it is precisely the case when p0 exists and

satisfies 0 < p0 < 1 (we avoid the trivial case of p0 = 1).

For work-conserving M/G/1 models it is well known that 0 < p0 < 1 if and only if 0 < ρ < 1

in which case p0 = 1 − ρ, but in the present paper with non-work-conservation in play, we will

see that this does not hold in general. Moreover, in the work-conserving case workload forms a

Markov process, but not here. We will refer to the classic work-conserving model as the classic

(or standard or regular) M/G/1 model, see Chapters 8 and 10 of [6], for example, for an overview.

Related to (1.1), we will also be considering the stationary distributions of the age B(t), excess

Sr(t) (remaining service time) and whole length S∗(t) = B(t) + Sr(t) of a service time in service at

time t ≥ 0 (defined to be 0 if the system is empty); for example,

P(Sr ≤ x) = lim
n→∞

1
n

n∑
j=1

I{Sr(t j−) ≤ x}, x ≥ 0, (1.3)

with the other two B and S∗ defined similarly. Of particular interest in the present paper is de-

termining their conditional distributions given they are positive; we let B̂ = (B | B > 0), Ŝr =

(Sr | Sr > 0), Ŝ = (S∗ | S∗ > 0) denote random variables with such distributions, and note in

passing that P(B = 0) = P(Sr = 0) = P(S∗ = 0) = p0.

7



1.2 The PRD model

We begin with the M/G/1 LIFO preemptive repeat-different queue (PRD). We recall this is the

preemptive LIFO model in which each time a customer in service is preempted, they go to the front

of the queue with a new i.i.d. service time S distributed as G.

Recalling Ŝr = (Sr | Sr > 0) from Equation (1.3), PASTA and the memoryless property of

the exponential distribution immediately yield the following lemma, where d
= denotes “equal in

distribution".

Lemma 1.2.1. For the M/G/1 PRD model

Ŝr
d
= (S − T | S > T). (1.4)

We next compute the mean:

Lemma 1.2.2. For the M/G/1 PRD model

E(Ŝr) =

1
µ

1 − E(e−λS)
−

1
λ
. (1.5)

Proof.

E(S − T | S > T) =
E(S − T ;T < S)

P(T < S)
=

E(S − T) + E(T − S;T > S)
P(T < S)

,

where the denominator is computed as 1 − E(e−λS), and via the memoryless property of T the

numerator as 1
µ −

1
λ (1 − E(e−λS)); the result follows. �

We now derive a formula for p0. Using the Rate Conservation Law (RCL) (see for example

Theorems 5.5 and 5.6, Page 116 in [12], or [13]) with {X(t)} as the stochastic process {V(t)}, we

obtain the following proposition.

Proposition 1.2.1. When the M/G/1 PRD model is stable,

p0 =
1 − 2ρ + λE(Ŝr)

1 − ρ + λE(Ŝr)
. (1.6)
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Proof. For X(t) = V(t),we have X′(t) = −I{V(t) > 0} (right derivative) w.p. 1. Meanwhile, jumps

occur at customer arrival times {t j} at rate λ, but we break them up into two disjoint streams (type

0 and 1, respectively): customers who find the system empty which arrive at rate λ0
def
= λp0, and

those that find the system busy who arrive at rate λ1
def
= λ(1 − p0). This leads to

P(V > 0) = λ0E0(−J(0)) + λ1E1(−J(1)), (1.7)

where −J(0) denotes a jump amount (V(t j+)−V(t j−)) of type 0, and −J(1) denotes a jump amount

of type 1. E i, 1 ≤ i ≤ 2 denotes expected value under the limiting distribution with respect to

arrivals of type i. We obtain E0(−J(0)) = E(S) and E1(−J(1)) = E(S1 + S2 − Ŝr) (where S,S1 and

S2 are i.i.d. distributed as G and independent of Ŝr).

Then Equation (1.7) becomes

1 − p0 = ρp0 + 2ρ(1 − p0) − λ(1 − p0)E(Ŝr), which solving for p0 yields Equation (1.6). �

As a sanity check, using Equation (1.6) on the special case when G is exponential at rate µ

(the M/M/1 case), we know that Ŝr ∼ exp(µ) and hence λE(Ŝr) = ρ and Equation (1.6) yields

p0 = 1 − ρ as it should. (And of course we must have that ρ < 1 in this special case.)

Remark 1.2.1. For the M/M/1 PRD model, when a job is interrupted, both Ŝr (removed) and the

new i.i.d. S (placed in queue) are distributed as exponential at rate µ, but have different sample

paths. Thus the stochastic process {V(t) : t ≥ 0} has a different distribution than for the standard

M/M/1. But for each fixed t, V(t) has the same distribution as the standard M/M/1, hence they

share the same limiting distribution as t →∞.

Remark 1.2.2. Equation (1.6) still remains valid for general renewal arrivals at rate λ except then

we no longer have a closed form expression for Ŝr : Equation (1.4) no longer holds in general. In

our use of RCL, Ŝr must have the stationary remaining service time distribution with respect to

customer arrivals finding the system busy.
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1.2.1 Relating p0 to the stability condition for PRD

Clearly, Equation (1.6) makes sense (proportion of time) and yields stability (ruling out null

recurrence, p0 = 0) only if 0 < p0 < 1. Since ρ > 0 in Equation (1.6), 0 < p0 < 1 if and only if

1 − 2ρ + λE(Ŝr) > 0, (1.8)

which from Equations (1.4) and (1.2.2) yields the stability condition

E(e−λS) >
1
2

; (1.9)

we obtain the same condition as in Theorem 5 on Page 15 in [5] (equality is null recurrence).

Furthermore, plugging Equation (1.2.2) back into Equation (1.6) furnishes a closed form solu-

tion for p0:

Proposition 1.2.2. For a stable M/G/1 PRD model

p0 =
2E(e−λS) − 1

E(e−λS)
. (1.10)

Remark 1.2.3. As an interesting PRD example, consider the case when service times are a mixture

of a point mass at 0 and an exponential at rate 0.01: S d
= (0.99)δ0+ (0.01)exp(0.01); E(S) = 1 = µ,

and ρ = λ. Clearly, Ŝr
d
= exp(0.01) since a 0 is never found in service; E(Ŝr) = 100. Thus

Equation (1.6) becomes p0 =
1−2λ+λ(100)
1−λ+λ(100) =

1+98λ
1+99λ , and we see that the system is stable for all values

of λ, and as λ → ∞, p0 decreases monotonically to 98/99. This is quite intuitive: any non-zero

remaining service time that gets preempted is replaced by a 0 service time 99% of the time.

1.2.2 Deriving the distribution of V for PRD

With p0 explicitly in hand via Proposition 1.2.2, and the distribution of Ŝr (distributed as in

Equation (1.4)) also in hand, we now obtain an explicit random variable expression for V . To

10



prepare, let N denote, under stationarity, the number of customers in the system; it has a geometric

distribution with success probability p0:

P(N = n) = (1 − p0)
np0, n ≥ 0. (1.11)

(That N is geometric for various PL models goes back to [7], [8], [9],[10] and Theorem 2.2 in

[11].)

We let Q = (N − 1)+ conditional on {N ≥ 1}, it is identically distributed with N , geometric,

because N is geometric. It represents the number in queue (line) given that N ≥ 1.

The random variable Q and the i.i.d. service time sequence {Sj} distributed as G, and the

random variable Ŝr (distributed as in Equation (1.4)), are taken as independent in what follows.

Proposition 1.2.3. For the stable M/G/1 PRD model,

(V | V > 0) d
= Ŝr +

Q∑
j=1

Sj . (1.12)

Thus the distribution of V , FV , is a mixture

FV = p0δ0 + (1 − p0)FV̂

where FV̂ denotes the distribution of (V | V > 0) given in Equation (1.12), and δ0 denotes the point

mass at 0.

Proof. Given that V > 0, there is a customer in service and Q customers in queue. Those in queue

have i.i.d. service times distributed as G (and are independent of Q,Ŝr) by definition of PRD. The

one in service has remaining service time Ŝr . That Ŝr is independent of what is in queue follows

from exactly the same arguments found in [7], and [10], for example, for the standard M/G/1 PL

model, where it is shown that the stationary remaining service time is independent of the system

state. �
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Remark 1.2.4. One can now compute moments such as E(V) = (1 − p0)E(Ŝr) +
1
µE(Q)

1.2.3 Heavy-traffic limits for stationary workload V for PRD

We now give a simple argument to characterize the asymptotic behavior of stationary workload

in the heavy-traffic regime. =⇒ denotes convergence in distribution, while
p
=⇒ denotes conver-

gence in probability in what follows. Here we consider a heavy-traffic regime analogous to how

it is considered for a regular (work-conserving) M/G/1 queue with G fixed (with tail denoted by

G(x), x ≥ 0) in which by letting λ ↑ µ (equivalently ρ ↑ 1) it holds that (1 − ρ)V=⇒exp(α) (the

exponential distribution at rate α). In that classic case α−1 = E(Se) = E(S2)/2E(S), where Se

has density ge(x) = µG(x), the equilibrium (or stationary excess) distribution of G. For the PRD

model we replace 1 − ρ by p0 = p0(λ) from Equation (1.10) and consider what happens to p0V as

p0 → 0. Stability for PRD is that E(e−λS) > 1/2, and thus by increasing λ to the value λ2 such

that E(e−λ2S) = 1/2 results in p0 ↓ 0; heavy-traffic. The proof of the following is in the Appendix.

Theorem 1.2.1. Let λ2 > λ be the solution to E[e−λ2S] = 1/2 (which exists by the monotone

convergence theorem). Then as λ ↑ λ2,

p0V=⇒exp(µ),

where µ−1 = E(S).

1.2.4 Average sojourn time for PRD

Since N has a geometric distribution as explained in the proof of Proposition 1.2.3, we obtain

the time average number in system as l = E(N) = 1−p0
p0

. Using our solution to p0 from Equa-

tion (1.10) then yields

l =
ρ

1 − 2ρ + λE(Ŝr)
=

1 − E(e−λS)

2E(e−λS) − 1
= −1 +

E(e−λS)

2E(e−λS) − 1
.

From Little’s law (l = λw) we thus can also solve for average sojourn time w = l/λ:
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w =
1
λ

[
−1 +

E(e−λS)

2E(e−λS) − 1

]
. (1.13)

Remark 1.2.5. In [5], the formula given for w in Proposition 6, Page 17 is incorrect as has been

confirmed by the authors (private communication). The error is only an algebraic one; carrying out

the computation as they suggest, one indeed obtains our Equation (1.13).

Remark 1.2.6. In all the PL models, the distribution of sojourn time W is identical to that of a busy

period. So Equation (1.13) is also the expected value of a busy period for PRD. Moreover, from

PASTA, p0 is equal to the long-run proportion of arrivals who begin a busy period, hence starting

a regenerative cycle. Thus by regenerative process theory in discrete-time, p0 =
1

E(NB)
, where NB

denotes the number of customers served during a busy period. Using Proposition 1.2.2, we thus

can solve for E(NB) yielding

E(NB) =
1
p0
=

E(e−λS)

2E(e−λS) − 1
. (1.14)

1.2.5 Tail asymptotics for stationary workload V for PRD

Here we give some results for the asymptotics of the tail, P(V > x), as x → ∞. We use the

notation a(x) ∼ b(x) to denote asymptotic equivalence of two non-negative functions as x →∞:

lim
x→∞

a(x)
b(x)

= 1.

We consider the case of heavy-tailed service times; they have an infinite moment generating

function.

The easiest and cleanest case is when the service-time distribution G is from a subclass of

heavy-tailed distributions called subexponential distributions:

Definition 1.2.1. A probability distribution G(x) = P(S ≤ x), x ≥ 0, that satisfies P(S > x) >

0, ∀x > 0, is called subexponential if for i.i.d. copies S,S1,S2, . . . it holds that for each n ≥ 1,

P(S1 + . . . + Sn > x) ∼ nP(S > x), as x →∞.
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The reader is referred to [14] for basic results on heavy-tailed distributions including subexpo-

nential distributions (in the context of queueing theory).

Proposition 1.2.4 (heavy-tailed case). For the stable PRD model, suppose that service-time distri-

bution G(x) = P(S ≤ x) is subexponential. Then

P(V > x) ∼
1
p0

P(S > x),

Proof. From Proposition 1.2.3, (V | V > 0) d
= Ŝr +

∑Q
i=1 Si,where P(Q = n) = (1 − p0)

np0, n ≥ 0.

We need to verify that both pieces,
∑Q

i=1 Si, and Ŝr are subexponential when the Si are, and hence

so is the (independent) sum of them. To this end,

P
( Q∑

i=1
Si > x

)
∼ E(Q)P(S > x),

is subexponential from Proposition 2.9, Page 266 in [14]. Moreover, since T is light-tailed, P(S −

T > x) ∼ P(S > x) and hence Ŝr = (S − T | S > T) is subexponential with

P(Ŝr > x) ∼ (1 − E(e−λS))−1P(S > x).

Thus

P
(
Ŝr +

Q∑
i=1

Si > x
)
∼ ((1 − E(e−λS))−1 + E(Q))P(S > x).

Since P(V > 0) = 1 − p0, and E(Q) = 1−p0
p0

, we finally obtain

P(V > x) ∼ cP(S > x),

where

c = (1 − p0)
[
(1 − E(e−λS))−1 +

1 − p0
p0

]
=

1
p0
,

with the last equality following from algebra by use of Proposition 1.2.2.
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Remark 1.2.7. From Equation (1.14), it is interesting to note that the tail asymptotic in Proposi-

tion 1.2.4 can be re-written as P(V > x) ∼ E(NB)P(S > x).

1.3 PRI Model

We now consider the LIFO repeat-identical M/G/1 queue (PRI) as introduced in [5]. In this

model, whenever a customer is preempted, it retains its identical whole original service time S that

it arrived with, as opposed to a new i.i.d. one when it gets sent to the front of the queue. This model

is more complicated to analyze than PRD as we shall see.

We let V denote stationary workload, p0 = P(V = 0), N stationary number in system, and

B̂, Ŝr, Ŝ = B̂+ Ŝr, the various stationary service times defined around Equation (1.3). (We will solve

for p0 later.)

Unlike Ŝr for PRD in Equation (1.6), deriving the distribution of such things for PRI appears to

be much more challenging since the service time found in service now depends on its preemptions

(if any) from the past. In stationarity, it is now Ŝ that gets placed back in queue when preempted; it

is biased in a complicated way and not (in general) distributed as G or as one might guess via the

inspection paradox.

1.3.1 Expressing p0 in terms of E(B̂)

Using RCL on workload V(t) similar to the derivation of Equation (1.6) yields the following

equation

1 − p0 = ρ + λ(1 − p0)E(B̂). (1.15)

When a customer is preempted in stationarity, it is Ŝ that gets placed back in queue, causing

workload to jump up by the net amount B̂ (rate λ(1 − p0)). Meanwhile every new customer (rate

λ) brings a new i.i.d. S causing another jump up; λE(S) = ρ.
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Solving for p0 yields

p0 =
1 − ρ − λE(B̂)

1 − λE(B̂)
. (1.16)

In order to compute E(B̂) (in the next section) we will need to first determine the distribution

of the number of times that an arrival enters service before completing service and departing.

Proposition 1.3.1. For a fixed service time S distributed as G, of an arriving customer, let τ =

τ(S) ≥ 1 denote the total number of times that it enters service before completion, hence K def
=

τ − 1 ≥ 0 denotes the total number of times it was preempted. Then, independent of S, letting

{Tn : n ≥ 1} denote i.i.d. exponential random variables at rate λ, τ can be written in distribution

as

τ
d
= min{n ≥ 1 : Tn ≥ S}. (1.17)

Thus conditional on S, the distribution of τ is geometric with success probability e−λS and hence

E(τ) = E(E(τ | S)) = E(eλS). (1.18)

Proof. By the memoryless property of the exponential distribution in the Poisson arrival process,

each time the service time enters service it will be preempted if, after an independent exponential

(at rate λ) amount of time, it is still in service, and thus

P(τ = 1) = P(T1 ≥ S)

P(τ = n) = P(S > T1, . . . ,S > Tn−1, Tn ≥ S), n ≥ 2.

Thus, conditional on S,

P(τ = n | S) = (1 − e−λS)n−1e−λS, n ≥ 1,

and hence

E(τ | S) =
1

e−λS = eλS;
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Equation 1.18 follows. �

Remark 1.3.1. The proof of Proposition 1.3.1 contains the important fact/observation that for

carrying out certain derivations (such as the derivation of the distribution of τ), we can, for each

customer with their service time S, use a new i.i.d. {Tn} sequence, independent of S, as a Poisson

process just for that S, and immediately place the customer back in service with S each successive

time Tn < S, instead of treating the interruptions as the arrival of new customers.

1.3.2 Computing E(B̂) and determining stability for PRI

Here we introduce a discrete-time regenerative process method for deriving the various distri-

butions of B̂, Ŝr, and Ŝ. We focus here on its use for B̂, but the method will be used later on for

other derivations.

From Proposition 1.3.1, the expected number of times a customer is interrupted is given by

E(K) = E(eλS)−1, and we note that each time a service time S is interrupted, its age at that point is

an i.i.d. length Tj distributed as exponential at rate λ conditional on Tj < S. Moreover, conditional

on S and K , the Tj up to j = K are i.i.d. distributed as that conditional distribution–given S. We

will use this fact in what follows. From PASTA w.p. 1 it holds that (for all non-negative measurable

functions f )

E( f (B)) = lim
t→∞

1
t

∫ t

0
f (B(s))ds = lim

n→∞

1
n

n∑
j=1

f (B(t j−)).

To compute E(B̂), we use f (b) = b and focus on the customer average and let N1(n) denote the

number of arrivals out of the first n for which B(t j−) > 0, and express E(B̂) as the w.p. 1 average
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lim
n→∞

1
N1(n)

n∑
j=1

B(t j−)I{B(t j−) > 0} = lim
n→∞

n
N1(n)

×
1
n

n∑
j=1

B(t j−)I{B(t j−) > 0} (1.19)

=
E(B ; B > 0)

P(B > 0)
= E(B | B > 0)

= E(B̂).

Assuming that the long-run departure rate equals the arrival rate λ thus ensuring that each

customer completes service, as is ensured by stability, each arriving customer will be included in

the limit in Equation (1.19) until they finally depart.

As explained in Remark 1.3.1, we can thus take (reorder) each customer independently as being

alone sequentially, one at a time, with their independent service time S and their own i.i.d. sequence

of interarrival times {Tn} and sum up their ages when preempted as if they form one regenerative

cycle which ends at interarrival time K . Doing this sequentially for each of the i.i.d. service times

{Sn : n ≥ 1}, the cycles are i.i.d. and thus can be used to form a regenerative process in discrete

time (equivalently a renewal reward process).

The sum over a cycle is the sum of the K ages T1 + · · · + TK (defined to be 0 if K = 0; the

service was not preempted.) The cycle length is K .

Using classical regenerative process theory (see for example [15]), we thus can express, for

any non-negative measurable function f ,

E( f (B̂)) =
E

[ ∑K
j=1 f (Tj)

]
E(K)

. (1.20)

Recalling Equation 1.17, K = τ − 1 is not a stopping but τ is. Thus we can compute the numerator

of E( f (B̂)) (expected sum over a cycle) using Wald’s equation and subtracting the last piece:

E
[ K∑

j=1
f (Tj)

]
= E(τ)E( f (T)) − E( f (Tτ)). (1.21)

18



For f (b) = b this then yields

E(B̂) =
1
λE(eλS) − E(Tτ)

E(eλS) − 1
. (1.22)

We next compute E(Tτ):

Lemma 1.3.1.

E(Tτ) =
1
µ
+

1
λ
= E(S + T). (1.23)

Proof. By the definition of τ using Equation 1.17: Given S, Tτ has the conditional distribution of

an i.i.d. (exponential λ) r.v. T conditional on T > S. Thus by the memoryless property Tτ given

S is equal to S plus an independent exponential rate λ overshoot; E(Tτ | S) = S + E(T − S | T >

S,S) = S + E(T), where we are using the memoryless property on T . Thus E(Tτ) = E(E(Tτ | S)) =

E(S + E(T)) = E(S) + E(T) = 1
µ +

1
λ . �

Inserting Equation (1.23) into Equation (1.22) then yields

Proposition 1.3.2. For the M/G/1 PRI model

E(B̂) =
1
λ
−

1
µ

E(eλS) − 1
(1.24)

From Equation (1.24) for E(B̂) we plug it in and obtain

Proposition 1.3.3. For the M/G/1 PRI model

p0 = 2 − E(eλS).

Stability 0 < p0 < 1 is thus

E(eλS) < 2.

(In particular, S must have a finite moment generating function in a neighborhood of 0; it must be

light-tailed.)
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Remark 1.3.2. Note that in the M/M/1 case E(eλS) =
µ
µ−λ ; the stability condition is thus ρ < 1/2.

Moreover, for the example given in Remark 1.2.3, stability becomes λ < 1.98/199 ≈ 0.0099.

These two simple examples illustrate just how different PRI is from PRD or the standard M/G/1

model.

1.3.3 Computing the distribution of B̂ for PRI

Using the same Wald’s equation method from Equation (1.21) we can determine the probability

distribution of B̂. For a fixed x ≥ 0 we use f (b) = I{b > x} to first compute the tail P(B̂ > x),

then obtain the cdf via 1 − P(B̂ > x). We also obtain the density, denoted by fB̂(x).

Proposition 1.3.4. For the M/G/1 PRI model, the cumulative distribution function (cdf), FB̂(x) of

B̂ is given by

FB̂(x) =
E(eλS) − e−λxE(eλS; S > x) − G(x)

E(eλS) − 1
, x ≥ 0.

B̂ always has a density (it is always a continuous r.v.) given by

fB̂(x) =
λe−λxE(eλS; S > x)

E(eλS) − 1
, x ≥ 0.

Proof. From Equation (1.21), we have

P(B̂ > x) =
E

[∑K+1
j=1 I{Tj > x}

]
− P(Tτ > x)

E(K)
(1.25)

=
E(eλS)e−λx − P(Tτ > x)

E(eλS) − 1
. (1.26)
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Similar to the proof of Lemma 1.3.1 we obtain

P(Tτ > x) = E(P(Tτ > x | S))

= E(P(S + T > x | S))

= E(I{S > x}) + E(P(T > x − S; S ≤ x | S))

= E(I{S > x}) + E(e−λ(x−S); S ≤ x)

= P(S > x) + e−λxE(eλS; S ≤ x).

Since E(eλS) − E(eλS; S ≤ x) = E(eλS; S > x), when we subtract P(Tτ > x) in Equation (1.26) we

obtain

P(B̂ > x) =
e−λxE(eλS; S > x) − P(S > x)

E(eλS) − 1
. (1.27)

Using FB̂(x) = 1 − P(B̂ > x) then yields the cdf. Because of the presence of G(x) = P(S ≤ x), it

appears that we need G to have a density g(x) to ensure that B̂ has one. We instead shall initially

assume G has a density g(x), so as to get the formula for fB̂(x), then we will show that the existence

of g(x) is not required. Writing out

E(eλS; S ≤ x) =
∫ x

0
eλsg(s)ds,

we observe its derivative with respect to x is eλxg(x) so fB̂(x) = F′
B̂
(x) yields the density in our

Proposition. But this formula for the density does not contain g(x) in it. So we will integrate our

density formula for fB̂(x) and see that we always get back out our cdf formula thus proving that

the existence g(x) is not required. For c = E(eλS) − 1, due to non-negativity, we can use Fubini’s

(Tonelli’s) Theorem via
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∫ x

0
c fB̂(y)dy =

∫ x

0
λe−λyE(eλS)I{S > y}dy

= E(eλS
∫ min{x,S}

0
λe−λydy)

= E(eλS(1 − e−λmin{x,S}))

= E(eλS) − e−λxE(eλS; S > x) − P(S ≤ x)

= cFB̂(x);

fB̂(x) indeed is the density; g(x) is not required. �

Interestingly, when G is exponential at rate µ (M/M/1 case), we get

fB̂(x) = µe−µx; (1.28)

B̂ is exponential at rate µ, the same as G. Hence E(B̂) = 1
µ .

1.3.4 Computing E(Ŝ) and E(Ŝr) for PRI

We now compute E(Ŝ) which represents the mean (in stationarity) of the total service time

found in service by a customer who preempts them.

Proposition 1.3.5. For the M/G/1 PRI model

E(Ŝ) =
E(SeλS) − 1

µ

E(eλS) − 1
(1.29)

Proof. We compute using the method of Equation 1.20,

E(Ŝ) =
E

[ ∑K
j=1 S

]
E(K)

=
E(KS)
E(K)

.

Conditioning first on S yields E(KS | S) = E(K | S)S = (eλS − 1)S = SeλS − S. Taking expected
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values then dividing by E(K) = E(eλS) − 1 yields the result. �

Finally since E(Ŝ) = E(B̂) + E(Ŝr) we can compute the mean remaining service time E(Ŝr) =

E(Ŝ) − E(B̂) using Equations (1.29) and (1.24):

Proposition 1.3.6. For the M/G/1 PRI model

E(Ŝr) =
E(SeλS)

E(eλS) − 1
−

1
λ
. (1.30)

When we apply Proposition 1.3.5 to the M/M/1 case, recalling Equation (1.28), we get

E(Ŝ) =
1
µ
+

1
µ − λ

,

which implies that

E(Ŝr) =
1

µ − λ
;

in particular, this shows that B̂ and Ŝr do not have the same distribution. We will determine the

distribution of Ŝr and even the joint distribution of (B̂, Ŝr) next.

1.3.5 Deriving the distributions of Ŝ, Ŝr and the joint distribution of (B̂, Ŝr) for PRI

Proposition 1.3.7. The cumulative distribution function (cdf) of Ŝ, FŜ(x) = P(Ŝ ≤ x) is given by

FŜ(x) =
E(eλS; S ≤ x) − G(x)

E(eλS) − 1
, x ≥ 0.

In particular, if G has a density g(x) then so does Ŝ and it is given by (via differentiation)

fŜ(x) =
g(x)(eλx − 1)

E(eλS) − 1
, x ≥ 0.

Proof. Following the proof of Proposition 1.3.5, we can express

FŜ(x) =
E(E(K | S)I{S ≤ x})

E(eλS) − 1
, x ≥ 0.
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The numerator becomes

E(eλS; S ≤ x) − G(x);

the cdf follows. With density g(x),

E(eλS; S ≤ x) =
∫ x

0
g(s)eλsds,

thus differentiating the numerator yields

eλxg(x) − g(x) = g(x)(eλx − 1).

�

We now proceed to obtain the distribution of Ŝr and the joint distribution of (B̂, Ŝr). G(x) =

P(S > x), denotes the tail of G.

Proposition 1.3.8. The cumulative distribution function (cdf) of Ŝr , FŜr (x) = P(Ŝr ≤ x) is given by

FŜr (x) =
eλxG(x) + E(eλS; S ≤ x) − 1

E(eλS) − 1
, x ≥ 0.

Ŝr always has a density (it is always a continuous r.v.) and it is given by

fŜr (x) =
λeλxG(x)
E(eλS) − 1

, x ≥ 0.

Proof. Here we follow the Wald’s equation method used in Proposition 1.3.2. We have

P(Ŝr ≤ x) =
E

[ ∑K
j=1 I{S − Tj ≤ x}

]
E(K)

.

We note that conditional on S, the sum up to τ = K + 1, is a stopping time sum of i.i.d. random
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variables and hence has conditional (given S) expected value

E(τ | S)P(Tj ≥ S − x | S) = eλSP(Tj ≥ S − x | S)

= eλx I{S > x} + eλS I{S ≤ x},

hence expected value eλxG(x) + E(eλS; S ≤ x). We now need to subtract P(S − Tτ ≤ x), which

equals 1 because by definition of τ it must hold that S ≤ Tτ. This then yields then numerator

which we then divide by E(K) = E(eλS) − 1. To obtain the density, we use the same trick that we

used in the proof of Proposition 1.3.4: We first assume that G has a density g(x) so as to obtain

our formula for the density fŜr (x) by differentiation, and then by integration show that g(x) is not

required.

�

In the M/M/1 case, the above yields that Ŝr is exponential at rate µ − λ. Recalling that in this

case we also have that B̂ is exponential at rate µ, it begs the question of whether in this M/M/1

case, Ŝr and B̂ are independent. We will answer that question in the affirmative next by computing,

in general, the joint distribution of (B̂, Ŝr).

Proposition 1.3.9. For the M/G/1 PRI model,

P(B̂ > x, Ŝr > y) =
e−λxE(eλS; S > x + y) − eλyP(S > x + y)

E(eλS) − 1
, x ≥ 0, y ≥ 0.

Thus, if G has a density g, then the joint density of (B̂, Ŝr) exists and is given by

f(B̂,Ŝr )(x, y) =
λeλyg(x + y)

E(eλS) − 1
, x ≥ 0, y ≥ 0.

Proof.

P(B̂ > x, Ŝr > y) =
E

[ ∑K+1
n=1 I{Tn > x,S − Tn > y}

]
−P(Tτ > x,S − Tτ > y)

E(K)
.
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We note that P(Tτ > x,S − Tτ > y) = 0 since Tτ > S by definition of τ. Thus the numerator

conditional on S becomes

eλSP(x < T < S − y | S).

It must hold that S > x + y or else P(x < T < S − y | S) = 0; thus we end up with

eλS(e−λx − e−λ(S−y))I{S > x + y} = e−λxeλS I{S > x + y} − eλy I{S > x + y}.

Taking expected values and dividing by E(K) then yields the joint tail.

To obtain the density we compute it as ∂
∂y

∂
∂x P(B̂ > x, Ŝr > y): Letting c = E(eλS)−1, we have

(after a cancellation via −eλyg(x + y) + eλyg(x + y) = 0)

c
∂

∂x
P(B̂ > x, Ŝr > y) = −λe−λxE(eλS; S > x + y).

Then

−
∂

∂y
λe−λxE(eλS; S > x + y) = λeλyg(x + y).

�

As promised, in the M/M/1 case Proposition 1.3.9 yields

P(B̂ > x, Ŝr > y) = e−µx × e−(µ−λ)y;

B̂ and Ŝr are independent exponentials. (The stability condition for the M/M/1 PRI is easily seen

to be ρ < 1/2, i.e. λ < µ/2.)

We now present some relationships between the tails of Ŝr and B̂.

Corollary 1.3.1. For a stable M/G/1 PRI model it holds that

P(Ŝr > x) = eλxP(B̂ > x), x ≥ 0, (1.31)

and hence
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1. Ŝr is stochastically larger than B̂; that is,

P(Ŝr > x) ≥ P(B̂ > x), x ≥ 0.

2. If P(S > x) > 0 for all x, then

P(Ŝr > x)

P(B̂ > x)
→ ∞ as x →∞;

the tail of Ŝr is heavier the the tail of B̂.

Proof. Using Proposition 1.3.9 to compute the individual tails, we have

P(Ŝr > x) =
E[eλS; S > x] − eλxP(S > x)

E(eλS) − 1
,

while

P(B̂ > x) =
e−λxE[eλS; S > x] − P(S > x)

E(eλS) − 1
,

immediately yielding Equation (1.31), and from which the next two statements directly follow. �

1.3.6 Ŝr for PRI can be heavy-tailed even though S must be light-tailed

Recall from Proposition 1.3.3 that for PRI stability, S must be light-tailed; E(eλS) < 2. What

about Ŝr? We give here an example where Ŝr is heavy-tailed; E(esŜr ) = ∞, s > 0.

Let MX(s) = E(esX), s ≥ 0, for a non-negative r.v. X , and note that it alternatively can be

computed via using the relation

∫ ∞

0
esxP(X > x)dx =

1
s
(MX(s) − 1). (1.32)

Using the density for Ŝr from Proposition 1.3.8, together with Equation (1.32) yields

MŜr (s) = b(MS(s + λ) − 1), (1.33)
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where

b =
λ

(s + λ)(E(eλS) − 1)
.

For our example, we thus need an S such that MS(λ) < 2 but MS(λ + s) = ∞, s > 0. We consider

density functions for S of the form g(x) = c(p)e−λx(1+ x)−p, p > 1,where c(p) is the normalizing

constant, given explicitly by c(p) = (p − 1)eλ2/2. Clearly it always holds that MS(λ) < ∞ while

MS(λ + s) = ∞, s > 0. But we need to ensure stability, that is, find a value of λ such that

MS(λ) = c(p)
∫ ∞

0
(1 + x)−pdx = eλ

2/2 < 2.

We note that eλ
2/2 < 2 if and only if λ <

√
ln (4) ≈ 1.177.

Remark 1.3.3. By using the relation in Equation (1.33) and the fact that

P(B̂ > x) = e−λxP(Ŝr > x) (recall Corollary 1.3.1), it is straightforward to prove that MB̂(s) <

∞, s < λ; stationary age is always light-tailed. But interestingly, MB̂(λ) = 1 + λE(Ŝr), and hence

involves E(SeλS), from Proposition 1.3.6, and thus could be infinite: MB̂(λ) < ∞ if and only if

E(Ŝr) < ∞; λ is a critical value.

1.3.7 Deriving w and E(NB) for PRI

As was derived for the PRD model in Section 1.2.4, and Remark 1.2.6, we can use Little’s

law (l = λw) to obtain expected sojourn time, and expected number served in a busy period using

Proposition 1.3.3:

w =
1
λ

[1 − p0
p0

]
=

1
λ

[ 1
2 − E(eλS)

− 1
]
. (1.34)

E(NB) =
1
p0
=

1
2 − E(eλS)

. (1.35)

We note that the above formula for w (using different methods) was given as Theorem 2 on Page 6

in [5].
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1.3.8 Deriving the distribution of V for PRI

Here we provide a representation of V for PRI analogous to Proposition 1.2.3 for PRD. The

proof (left out) is the same. In this case, p0 = 2−E(eλS), and the the i.i.d. service times {Ŝj}, and the

random variable Ŝr , are taken as independent with their distributions provided in Propositions 1.3.7

and 1.3.8.

Proposition 1.3.10. For the stable M/G/1 PRI model,

(V | V > 0) d
= Ŝr +

Q∑
j=1

Ŝj . (1.36)

Thus the distribution of V , FV , is a mixture

FV = p0δ0 + (1 − p0)FV̂

where FV̂ denotes the conditional distribution of (V | V > 0) given in Equation 1.36, and δ0 denotes

the point mass at 0.

From the above, we can now compute E(V), for example, by utilizing the solved value of p0

and the various expected value results and the fact that Q is geometric:

E(V) = (1 − p0)
[
E(Ŝr) + E(Q)E(Ŝ)

]
= (E(eλS) − 1)

[ E(SeλS)

E(eλS) − 1
−

1
λ
+

[ 1
2 − E(eλS)

− 1
] [E(SeλS) − 1

µ

E(eλS) − 1
] ]
.

For the M/M/1 case this becomes

E(V) =
ρ

1 − ρ

[ 1
µ − λ

+
ρ

1 − 2ρ
(
1
µ
+

1
µ − λ

)

]
.
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1.3.9 Heavy-traffic limits for stationary workload V for PRI

Here we include a result for PRI in the same spirit as in Theorem 1.2.1 but requiring more care

in its proof. Of importance too is the fact that unlike PRD, there may not be a solution λ2 > λ to

p0(λ) = 0 (equivalently a solution to E(eλS) = 2); recall the counterexample given in Section 1.3.6.

A proof of the following is given in the Appendix.

Theorem 1.3.1. Suppose that there exists a λ2 > λ such that as λ ↑ λ2, E(eλS) → E(eλ2S) = 2,

with E(Seλ2S) < ∞. Then as λ ↑ λ2

p0V=⇒exp(α),

where α−1 = E(Ŝ(λ2)) = E(Seλ2S) − 1/µ.

1.3.10 Tail asymptotics for stationary workload V for PRI

PRI requires for stability that S be light-tailed; E(eλS) < 2. So one might think at first sight

that the tail asymptotics for PRI will be light-tailed. But lurking is the possibility that Ŝr and hence

Ŝ (since Ŝ ≥ Ŝr) can be heavy-tailed even though S is not as we illustrated earlier in Section 1.3.6.

Given that in Proposition 1.3.10, both Ŝr and Ŝ are present, the tail asymptotics for PRI are not

immediate. We will be satisfied to give a light-tailed asymptotic.

We start by giving a light-tailed result for work in queue (line) VQ, then follow up by adding

in Ŝr to get V , but showing that it does not contribute under suitable conditions and hence that

(V > x) ∼ P(VQ > x). (We assume for simplicity of proof a density for S to ensure a density for

Ŝ.) The proof is in the Appendix.

Proposition 1.3.11. For a stable PRI model, suppose that S has a density g(x), and there exists a

(Cramér-Lundberg) constant γ > 0 such that

E(eγŜ) = (1 − p0)
−1, (1.37)
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and additionally

R def
= E(ŜeγŜ) < ∞.

Then letting stationary work in queue (line) be denoted by (from Proposition 1.3.10) VQ =
∑Q

i=1 Ŝi,

P(VQ > x) ∼ Ce−γx,

where

C =
p0

Rγ(1 − p0)
.

To use our VQ tail asymptotics result to obtain our tail asymptotic for V we will need the

following Lemma so as to handle adding in Ŝr (Proof in the Appendix).

Lemma 1.3.2. For a stable M/G/1 PRI model, with G having a density g: If there exists constants

c > 0 and α such that

P(S > x) ∼ ce−αx, (1.38)

then P(Ŝr > x) ∼ (1 − p0)
−1 λc

α−λe−(α−λ)x , and a Cramér-Lundberg constant γ > 0 exists for Ŝ,

E(eγŜ) = (1 − p0)
−1, (1.39)

and it additionally satisfies γ < α − λ. Hence as x →∞,

P(Ŝr > x)
e−γx → 0.

Note that any such α in Equation 1.38 must satisfy α > λ because E(eλS) < ∞ by stability.

Lemma 1.3.2 implies that if in addition to the assumptions of Proposition 1.3.11, S has an asymp-

totic exponential tail, then Ŝr also has an asymptotic exponential tail but with a rate that is smaller

than γ and hence is asymptotically negligible in the tail of the sum Ŝr + VQ; the tail asymptotic of

VQ dominates. Together with Proposition 1.3.11 this immediately leads to
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Corollary 1.3.2. For a stable PRI model, suppose that S has a density g(x), satisfies Equation 1.38,

and also

R def
= E(ŜeγŜ) < ∞.

Then

P(V > x) ∼ P(VQ > x) ∼ Ce−γx,

where

C =
p0

Rγ(1 − p0)
,

with γ as the Cramér-Lundberg constant from Lemma 1.3.2.

1.3.11 An alternative proof of stability, and a representation for the distribution of sojourn time

We focus on PRI; PRD is similar (see Remark 1.3.4). Let τ be defined as in Proposition 1.3.1,

with K = τ − 1, and {Tn} independent of service time S distributed as G. Define the effective

service time as

S = S +
K∑

j=1
Tj, (1.40)

that is, S itself plus all the ages added on due to preemption; it is distributed as the total amount of

work (servicing) required by a customer in the system. Note that K and the Tj in the sum depend

on S, and given S and K = k, the k random variables T1, . . . ,Tk are i.i.d. distributed as (T | T < S).

Utilizing Equations 1.21 and 1.23, yields

E(S) =
1
λ

E(eλS) −
1
λ
=

1
λ
(E(eλS) − 1). (1.41)

Because E(S) is the average customer sojourn time in service, we apply Little’s Law to the

server to obtain:

Proposition 1.3.12. The long-run proportion of time that the PRI server is busy is given by

min{λE(S),1}.

32



Thus the system is stable when λE(S) < 1.

Plugging in Equation 1.41 and recalling Proposition 1.3.3, indeed yields, as it should, p0 =

1−λE(S), and thus Proposition 1.3.12 provides an alternative derivation of p0 and proof of stability.

We now give an implicit random variable representation for PRI sojourn time W , in the same

spirit as for the classic M/G/1 busy periods (see for example Section 8.4, Page 388 in [6]), but

more intricate. When a customer C0 arrives to an empty PRI system (hence begins a busy period)

they depart exactly at the end of the busy period hence ending it; W is distributed as a busy period.

Now we re-write it: W = the effective service time of C0 + an i.i.d. copy of W for each of the K

preemptions that C0 faced. Whenever C0 is preempted, C0 will reenter service after an i.i.d. copy

W (the sojourn time of the customer who preempted them). Summarizing:

Proposition 1.3.13. Let W denote a sojourn time, and let {Wi} denote i.i.d. copies of W indepen-

dent of K . Then

W d
= S +

K∑
i=1

Wi . (1.42)

Taking expected values yields w = E(S) + E(K)w, and hence w =
E(S)

1−E(K) . Plugging in the

values for E(S) (Equation 1.41) and E(K) = E(eλS) − 1 yields w as in Equation 1.34.

We next derive an implicit Laplace transform of W by using Proposition 1.3.13. Conditional

on S, let T̂(s) denote the Laplace transform of (T | T < S);

T̂(s) =
E(e−sT ;T < S,S)

1 − e−λS =
λ

λ + s

[1 − e−(s+λ)S

1 − e−λS

]
, s ≥ 0.

Proposition 1.3.14. For PRI, let c(s) = E(e−sW ) denote the Laplace transform of W . Then

c(s) = E
[ e−(s+λ)S

1 − c(s)T̂(s)(1 − e−λS)

]
, s ≥ 0. (1.43)

Proof. From Equation 1.42, conditioning on K and S, and since S and
∑K

i=1 Wi are conditionally
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independent, it follows that

E(e−sW | S,K) = e−sS(c(s)T̂(s))K .

For a geometric distribution, P(N = n) = (1 − p)np, n ≥ 0, its discrete moment generating

function is computed (for |z | ≤ 1) as E(zN ) = p
∑∞

n=0(z(1 − p))n = p
1−z(1−p) . Thus conditioning

only on S yields, since then K is geometric with p = e−λS, and using z = c(s)T̂(s),

E(e−sW | S) = E(E(e−sW | S,K) | S))

= e−sS e−λS

1 − c(s)T̂(s)(1 − e−λS)

=
e−(s+λ)S

1 − c(s)T̂(s)(1 − e−λS)
.

Taking expected values yields c(s). �

It is easily shown that w = −c′(0) = E(S)
1−E(K), and (a bit of work) one also obtains

E(W2) = c
′′

(0) = 2(1 − E[K])−1(
1
λ
+ w)

( 1
λ

E[eλS − 1] + (
1
λ
+ w)E[(eλS − 1)2] − E[SeλS]

)
,

where w is as in Equation 1.34. This agrees with what one gets if utilizing the other methods

explained on the top of Page 9 in [5].

Remark 1.3.4. For PRD, we can define the effective service time distribution as

S
d
= (S | S < T) +

K∑
j=1
(Tj | Tj < Sj), (1.44)

where the S, T , {Tj}, {Sj} and K are independent, and K (the number of preemptions) is geometric,

P(K = n) = (1 − p)np, n ≥ 0, where p = P(S ≤ T) = E(e−λS). One can then proceed to obtain for

PRD, similar results as we did here for PRI.

Remark 1.3.5. We note that for both the PRD and PRI models, the stability condition can be
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expressed as

E(K) = E(τ − 1) < 1, revealing a nice intuitive interpretation of stability:

The PRD and PRI models are stable if and only if the expected number of times a

customer is preempted is strictly less than 1.
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Chapter 2: Static Pricing for Queueing Systems

In this chapter we analyze a queueing model involving prices. It is based on an upcoming

article written in collaboration with Adam Elmachtoub.

2.1 Introduction

There are many business applications which can be naturally modeled as queueing systems

with prices. One prototypical example is a firm which provides make-to-order goods such as cus-

tom electronics or vehicles. In this application, customers approach the firm with a request, the

firm quotes a price, and, if the price is acceptable, the customer submits their order and joins a vir-

tual queue. Another important modern application is in cloud computing. Here, the arrival process

of customers seeking cloud computing resources is modulated by the price posted by the service

provider, and customers accepting the price will put their jobs in queue to await service. The food

delivery industry is also based on customers deciding whether or not to order based on delivery

fees, and joining a virtual queue to wait for their food if they make a transaction. In such appli-

cations, a tradeoff often exists between the congestion the service provider allows and the revenue

they earn. In the short term, one may be able to earn extra revenue by allowing a lot of congestion,

but large queues may have a long term negative effect on demand. To manage this tradeoff, one

approach is to price dynamically, changing the price as the state of the system changes. Dynamic

pricing allows the service provider to control the congestion in the system without sacrificing much

revenue: as the number of customers in the queue increases, the service provider can charge higher

prices to reduce the rate of purchasing customers that need to be serviced. Indeed, in almost any

theoretical pricing model, the optimal policy will be dynamic.

In practice, however, there are many downsides to dynamic pricing. The strategy may be unap-
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pealing to customers, and in response they might begin to exhibit strategic behavior. Implementing

a dynamic pricing strategy also requires increased operational complexity and a very good demand

model to be effective. In addition, the number of states can grow exponentially in the number of

classes, making the optimal policy difficulty to compute and store. To address these issues, static

pricing may be an attractive alternative. Static pricing is advantageous not only because it pro-

vides transparency for the customer, it is also simpler and more tractable for service providers to

implement. However, when we restrict ourselves to static pricing policies, some loss of revenue

or increased congestion may have to be endured. In this work, we quantify the magnitude of these

losses in the worst-case, furnishing universal, non-asymptotic guarantees on the performance of

static pricing policies relative to the optimal dynamic policy.

We consider a classic and general model which has applications in a wide range of areas. We

assume that customers arrive according to a Poisson process with a rate depending on the price

offered by the firm, service times are exponentially distributed, customers’ valuation distributions

are regular. We consider single and multi-server settings, as well as single and multiple classes

of customers (each with different arrival, service, and valuation parameters). The service provider

seeks to optimize two objectives, maximizing revenue while minimizing congestion. To reduce

this multi-objective problem to a single-objective one, we assume the service provider seeks to

maximize their expected revenue rate minus some constant times the average number of customers

in the system. This constant captures the desired penalty the service provider wishes to associate

with congestion in the system. For example, in the context of cloud computing, the congestion

penalty may come from the cost of memory on the servers which hold the jobs in queue and from

the reputational loss incurred when delays are too long. We also consider a related model in which

the congestion penalty associated with a policy is proportional to the long-run average sojourn

times under that policy.

The static pricing policies we consider use a single price for each customer class, and stop

selling when the number of customers in the queue reaches a specified threshold. These threshold-

static pricing strategies are simple to implement and allow us to directly trade off revenue and
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congestion via the threshold parameter. If we consider static policies which do not have a threshold,

universal guarantees cannot be furnished as the performance can be very poor. We now summarize

the main contributions of the paper.

• In Theorem 1, we establish that for a system with C servers and multiple customer classes,

a static pricing policy can always attain at least 1 −
1
C! (C

C )∑C
n=0

1
n! Cn

of the multi-objective optimal

value. This bound is smallest when there is a single server, in which case a static pricing

policy can always attain at least half of the optimal value. We also observe that the advantage

of dynamic pricing over static pricing vanishes as the number of servers increase: with 10

servers, our guarantee is at least 78.5%. These simple static pricing policies are of particular

interest in the multi-class setting, where the optimal dynamic policy suffers from the curse

of dimensionality.

• In the single-class case with an arbitrary number of servers, Theorem 2 furnishes bi-criteria

approximations on the revenue and congestion objectives as a function of the cutoff threshold

(the maximum number of customers allowed in the system). Service providers can use this

result to understand the benefit of additional servers and changing the cutoff threshold in the

context of managing revenue and congestion with static pricing.

• In the single-server and single-class case, which corresponds to the classic M/M/1 queue,

Theorem 3 gives closed-form guarantees on the approximation ratios of our static policies

compared to the dynamic optimal. For example, we provide bi-criteria approximations of

(0.5,1), (0.66,1.16), (0.75,1.54) and (0.8,2) for the revenue and congestion objectives, re-

spectively. Moreover, we provide a class of instances proving the tightness of our analysis.

• We report the results of numerical experiments over a wide test bed demonstrating the em-

pirical performance of our policies. These experiments illustrate the high performance of

static pricing policies: in the worst-case instance we found, the optimal static pricing policy

is able to recover 89.70% of the optimal multi-objective value.
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• Theorem 4 extends our results for a related model in which we penalize long-run average

sojourn times instead of average occupancy to measure congestion. In this case, we give

bi-criteria guarantees for the revenue and congestion objectives.

2.1.1 Literature Review

To understand where the present work lies in this landscape, it is helpful to break the related

literature down along three different dimensions: (i) whether pricing is static or dynamic, (ii)

whether the analysis is asymptotic or exact, and (iii) the manner in which the state of the queue

impacts the arrival process. Along dimension (iii), the literature has primarily considered three

different possibilities (in order of their first appearance):

• The state of the queue does not directly impact the arrival process, which we call the Low

queue since it was first introduced in [16].

• Observable queues, in which customers observe the state of the queue and use this informa-

tion to inform their decisions.

• Unobservable queues, in which customers do not observe the state of the queue but have an

expectation based on past experience of what their waiting time will be.

In the present work, we provide exact (non-asymptotic) analysis on the trade-off between static

and dynamic pricing for Low queues.

To our knowledge, the model we consider was first introduced in [16] and followed up with

[17], works in which the author studies the structure of the optimal dynamic pricing policy and

gives an algorithm to compute it assuming either a finite or compact set of possible prices, respec-

tively. Low’s work originally allowed for only one class of customers; we generalize his model to

allow for customers which are differentiated by their demand functions and service rates. The Low

queue, albeit restricted to a single-server, was again considered in [18]. They consider two-price

policies and, for a given pair of prices, compute the optimal policy under two different criteria:

either maximizing revenue rate for a given upper bound on congestion, or minimizing congestion
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for a given lower bound on revenue rate. This contrasts with our approach in which we optimize a

linear combination of the two objectives and allow a different price for each state in the dynamic

policy. More recently, [19] considers the problem of optimizing the static price in our model in

the case of a single server. They also consider the case when the cutoff threshold (the maximum

number of customers allowed in the system) is a decision variable as well, a perspective which is

important to the present work, and even provide some results for general service times. However,

their work is focused solely on static pricing policies in the case of a single server and single cus-

tomer class; in contrast, our aim in the present work is to compare the performance of static and

dynamic policies with an arbitrary number of servers and customer classes. One more work which

extends Low’s model is [20], which considers the case when the service rate is variable and can

be picked by the service provider. They show numerically that in that context dynamic pricing has

significant gains over static pricing.

We now discuss works which consider observable queues. The foundational and seminal work

in this line is [21], which introduced observable queues and analyzed them under the assumptions

of deterministic customer valuations and static pricing. The most salient point emerging from

their exact analysis is that the static price which maximizes social welfare is strictly smaller than

the revenue-maximizing price. The previous three works do not allow for dynamic pricing, a

case first studied in [22], in which the authors generalize the observable model in [21] (and their

work in [23]) to allow for state-dependent pricing. Their work shows that a threshold policy is

optimal but does not give explicit expressions for the threshold. The work of [24] provides explicit

expressions for the optimal threshold in terms of the Lambert-W function. [25] analyze the value of

dynamic pricing in the asymptotic regime, where the arrival and service rates are taken to infinity.

They show that dynamic pricing has a significant effect on reducing the impact of stochasticity on

accrued revenue, though most of the benefit can be attained by simple two-price policies. Examples

of related work in this line are [26], [27], [28], [29], and [30].

We now discuss a few which assume the queue is unobservable. The earliest study of this case

is [31], where they show that the revenue maximizing and social welfare maximizing prices are the
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same. They also generalize the model to allow for multiple classes of customers. Another work

in the unobservable case is [32] which considers a multi-class model and provides static pricing

mechanisms which maximize total social welfare. [33] carries out an exact analysis assuming

an unobservable queue with static prices to identify when a subscription-based pricing scheme (in

which users pay a monthly fee for an arbitrary number of uses) may outperform a per-use approach.

Again assuming static pricing, [34] analyzes the loss of optimality that must be suffered when a

price must be set without knowledge of the arrival rate.

The preceding works and the literature more generally have mostly dealt with the case where

the queue is either completely observed or totally opaque to the customer; another more recent

avenue is the question of interpolating between these two extremes by investigating optimal sig-

naling, first addressed in [35]. In this work, the authors show that with respect to a certain objective,

the optimal signaling policy falls in the middle of the two extremes.

The foregoing works are all unified in that the underlying queueing model is essentially an

M/M/C queue. We continue by reviewing works which consider models slightly further afield.

Most similar to the present work is [36], which provides universal performance guarantees for

static pricing policies when the model is an Erlang loss system. In the same vein and motivated by

a similar question is the work [37]. They introduce a highly stylized model involving pricing and

queues that is tailored for telecommunication applications. As in the present work, they furnish

a lower bound on the ratio between the revenue earned from their simple pricing rule and the

maximum possible, which they denote the “price of simplicity". Their model assumes no disutility

is incurred for long delays in service. [38] shows that when such disutility is assumed to be

present, the “price of simplicity" can be very high. Since in typical applications high delays will

be undesirable, this insight demonstrates the importance of considering congestion in these models

and motivates our centering of it in the present work. Examples of other important works which

analyze pricing in queueing models that are tailored for more specific applications are [39], [40],

[41], [42], [43], [44], and [45].

41



2.1.2 Organization

Our work is organized as follows. In Section 2.2, we provide the general model and describe

our static pricing policies. In Section 2.3, we provide approximation guarantees for our static

policy with respect to the optimal multi-objective value. We give refined bi-criteria approximation

guarantees on revenue and congestion in the single-class case in Section 2.4. In the single-server

case, we are able to provide closed-form expressions for these bounds in Section 2.5. We carry

out numerical experiments in Section 2.6. We extend our results to consider the expected sojourn

times as the congestion objective in Section 2.7. Finally, we conclude our paper and offer some

future directions in Section 2.8.

2.2 Model

We consider a model where a service provider seeks to optimize a linear combination of the

expected revenue and the expected congestion of the system. There are C servers that serve M

types of price-sensitive customers in a first-come, first-serve manner. Customers of type m ∈

{1,2, . . . ,M} arrive according to a Poisson process with rate Λm > 0. Each customer of type m has

a valuation drawn i.i.d. from a distribution Fm. We make the standard assumption in the revenue

management literature that Fm is a regular distribution for each m (also known as Myerson’s reg-

ularity, see [46]). When a customer of type m arrives, the provider observes their type and offers

service at some price pm which may depend on the state of the system; the customer decides to join

the queue if their valuation is at least pm. This gives rise to the effective arrival rate of customers

of type m, which we denote by λm(pm) := ΛmFm(pm). We assume that there is a one-to-one cor-

respondence between prices pm and effective arrival rates λm so that λm(pm) has a unique inverse,

denoted by pm(λm). Thus we can equivalently view the effective arrival rates λm as the decision

variables, an insight which is critical to our analysis. By our assumption that Fm is regular, we

have that λmpm(λm) is concave for each m.

A customer of type m has a service time which follows an exponential distribution with mean
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1/µm. We assume that the service times are i.i.d. across customers and independent of customer

valuations. We also assume the firm incurs a congestion penalty of cm per time unit per customer

of type m in the system. The value cm can be viewed as a parameter which captures the magnitude

of the penalty the service provider wishes to associate with congestion of type m customers. This

penalty structure amounts to penalizing a policy proportionally to the expected number of cus-

tomers of each type in the system. A related quantity, the expected sojourn time of a customer of

type m in steady-state, is also a natural choice for a penalty in many applications. We will consider

this model as well in Section 2.7.

We now describe this model as a Markov Decision Process by describing its state and action

spaces. By the memoryless property of the arrival and service processes, the state of the system

is the order and types of all customers in the system (the arrival times and time in service can be

ignored.) Thus, the state space S can be formulated as the set of all tuples of arbitrary length that

can be formed by picking elements with replacement from the set of customer types {1,2, . . . ,m}.

For convenience, for s ∈ S, we let sm denote the number of type m customers in state s and we let

s(i) denote the type of the ith customer in line. Turning now to the action space A, we assume that

we observe the type of the arriving customer before offering a price, so an arbitrary pricing policy

π will be represented by a mapping from the state space S to the set of all non-negative M-tuples

of real numbers. In other words, for each state s ∈ S, π(s) is an M-tuple of non-negative numbers

(p1, p2, . . . , pM) which gives the prices pm offered when a customer of type m arrives in state s.

The set of admissible policies Π is the set of non-anticipating policies and those which induce

stable queues. We can restrict ourselves, without loss of optimality, to considering policies which

induce stable queues, as those which do not induce stability incur infinitely large costs. We denote

the optimal policy by π∗. The stationary probabilities of a policy π ∈ Π are denoted by Ps(π) for

each state s ∈ S. We will only have closed-form expressions for Ps(π) in the single-class case.

The static policies we consider are those non-anticipating policies which fix a price for each

customer class up to a certain occupancy threshold (potentially infinite) and then disallow arrivals

after that point. In other words, we consider the class of policies Πs ⊂ Π that fix an arrival rate λm
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for class m customers in every state at or below a certain cutoff point γ ∈ {0,1,2, . . . } and blocks

arrivals after that point by setting the arrival rates to 0 (infinite price). An arbitrary static policy is

notated π(λ
1,...,λM ),γ, which refers to the policy which picks the arrival rate λm for customers of type

m whenever there are at most than γ customers in the system, and otherwise sets all arrival rates to

0. In the single-class case, we simply write πλ,γ.

2.2.1 Objectives

For a given policy π ∈ Π, we define R(π) as the average expected revenue rate attained attained

by π, i.e.,

R(π) :=
∑
s∈S

∑
m∈M

pm
s λ

m(pm
s )Ps(π).

Similarly, we define C(π) as the “congestion penalty” incurred by policy π. When the conges-

tion penalty is proportional to the number of customers in the system, we have

C(π) :=
∑
s∈S

∑
m∈M

cmsmPs(π) =
∑
m∈M

cm

∑
s∈S

smPs(π)

where we recall that sm denotes the number of type m customers in the system in state s. We

consider the congestion penalty corresponding to expected sojourn time in Section 2.7.

We also introduce the stationary distribution of type m customers induced by policy π, which

we denote Lm(π). We can compute its distribution using the stationary probabilities as

P(Lm(π) = k) =
∑

s∈S:sm=k

Ps(π).

We can then compute the expectation as

E[Lm(π)] =

∞∑
k=0

kP(Lm(π) = k) =
∞∑

k=0
k

∑
s∈S:sm=k

Ps(π) =

∞∑
k=0

∑
s∈S:sm=k

smPs(π) =
∑
s∈S

smPs(π).
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Thus we can express also express our congestion penalty in terms of this expectation, i.e.,

C(π) =
∑
m∈M

cmE[Lm(π)]

Now we can write our overall objective function,Z(π), as

Z(π) := R(π) − C(π) =
∑
s∈S

( ∑
m∈M

pm
s λ

m(pm
s ) − cmsm

)
Ps(π).

The optimal policy π∗ can now be formalized as

π∗ := arg max
π∈Π
Z(π).

We denote by λm∗
s the optimal arrival rate picked in state s for class m customers by policy π∗.

2.2.2 Little’s Law and Static Policies

The well-known Little’s Law is integral to our work and helps motivate the static policy con-

struction we furnish to prove our guarantees. Suppose we fix an instance of our model and consider

an optimal policy π∗. For each customer class m, the policy π∗ induces a distribution Lm(π∗) of

the number of type m customers in the system in stationarity. Moreover, when a customer of type

m joins the system in stationarity, they will experience a sojourn time distributed according to a

random variable we denote by Wm(π∗). Little’s Law allows us to relate the first moments of these

two distributions, i.e.,

E[Lm(π∗)] = λ̃mE[Wm(π∗)]

where λ̃m denotes the long-run average arrival rate of customers of type m under π∗. For conve-

nience, we use λ̃m to introduce the typical traffic intensity notation: for each customer type m, we

can compute its traffic intensity as ρ̃m := λ̃m

µm .

We can compute this average arrival rate of type m customers under the optimal policy π∗ using

45



the stationary probabilities, i.e.,

λ̃m =
∑
s∈S

λm∗
s Ps(π

∗)

Our key idea is to use these average arrival rates to construct good static policies. In any state in

which our static policy sells, we pick the arrival rate λ̃m for type m customers. We note that this

differs than the static price used in [36] to attain performance guarantees for the Erlang loss model,

and the analysis is quite different due to our mixed objective functionZ(π).

2.3 Multi-class Static Pricing Guarantees

We now present our first main result in Theorem 1 below, which gives approximation guar-

antees for static pricing for arbitrary numbers of servers C and classes M . We choose the static

arrival rates to be λ̃m and set the cutoff threshold to be C − 1, so there are at most C customers in

the system.

Theorem 1. The static pricing policy π(λ̃
1,...,λ̃M ),C−1 guarantees at least 1 −

1
C! (C

C )∑C
n=0

1
n! Cn

of the value

of the optimal dynamic pricing policy. Equivalently,

Z(π(λ̃
1,...,λ̃M ),C−1) ≥

(
1 −

1
C!C

C∑C
n=0

1
n!C

n

)
Z(π∗)

Moreover, our analysis is tight when C = 1.

The tightness of Theorem 1 will be shown using a class of instances described in Section 2.5.2.

One insight we can derive immediately from Theorem 1 is how the performance of static pric-

ing changes as we increase the number of servers. We observe the guarantees are strictly improv-

ing: for example, if C = 10, the theorem ensures the existence of a static policy which attains

at least 78.5% of the optimal value (instead of the 50% guarantee for C = 1). We note that one

can optimize the choice of the static price and cutoff threshold, and the result still holds since our

proof is by construction. This implies that finding the optimal dynamic policy is not a precursor to
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finding a good static policy.

To prove Theorem 1, we use two lemmas. Lemma 1 bounds the sum of the traffic intensities of

stable policies, and Lemma 2 helps us relate the revenue rate of the optimal policy to the revenue

rate of the static policy we construct.

Lemma 1. For a system with C servers and any stable policy π, we have
∑

m∈M ρ̃m(π) ≤ C.

Proof. Proof. Our proof is by contradiction. Suppose there exists a policy π which induces a proper

stationary distribution for which
∑

m∈M ρ̃m > C. We first uniformize the continuous-time Markov

Chain in the standard way with the dominating transition rate σ =
∑M

i=1Λi + C max (µ1, . . . , µM)

and consider the associated discrete-time Markov Chain, which is characterized by a transition

matrix we denote by P. By construction, this uniformized discrete-time Markov Chain has the

same stationary distribution given by Ps(π). Suppose we sample a ∼ Ps(π) and simulate one

transition to arrive at a state b. By stationarity, the distribution of b must be the same as that of a,

which in particular implies that the expected workloads present in the two states are the same. We

let E[V(s)] denote the expected workload in a state s, which is easily computed as the sum of all

expected service times of customers in the system in state s.

To arrive at the desired contradiction, we now compute the expected difference in workloads

between states a and b by conditioning on a and b, i.e.,

E[V(b) − V(a)] =
∑
s∈S

E[V(b) − V(a)|a = s]Ps(π)

=
∑
s∈S

∑
s′∈S

E[V(b) − V(s)|b = s′]Ps,s′Ps(π)

=
∑
s∈S

( ∑
m∈M

1
µm

λm
s

σ
−

min(|s |,C)∑
i=1

1
µs(i)

µs(i)

σ

)
Ps(π)

=
1
σ

∑
s∈S

(( ∑
m∈M

λm
s

µm

)
−min(|s |,C)

)
Ps(π)

≥
1
σ

∑
s∈S

(
∑
m∈M

ρ̃m − C) > 0.

where we recall that s(i) denotes the ith element in the state tuple s, i.e. the type of the ith cus-
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tomer in service. The first and second equalities follow from conditioning on the initial state s0

and the next state s1, respectively. The third equality comes from analyzing the difference in ex-

pected workload that arises depending on the transition. The difference will either be 1
µm if a type

m customer joins the queue, which occurs with probability λms
σ , or will be − 1

µs(i)
if the ith customer

completes service, which occurs with probability µs(i)
σ . The first inequality follows from the defi-

nition of ρ̃m and the fact that there at most C customers in service. The second inequality follows

from assuming the contradiction of the lemma. After one transition, we see a strictly positive

increase in expected workload, which contradicts stationarity and thus completes the proof. �

We now give one more key lemma which is used to relate the revenue rate of the optimal policy

to the revenue rate attained by the static policies we construct.

Lemma 2. For any number of servers C and customer classes M , we have

R(π∗) ≤
∑
m∈M

λ̃mpm(λ̃m).

Proof. Proof. First, we recall that since the valuation distribution is regular, the revenue rate

function λmpm(λm) is concave in λm. By applying Jensen’s inequality to the revenue rate function

and recalling that λ̃m =
∑

s∈S λ
m
s Ps(π

∗), we can bound expected revenue rate of the optimal policy

by

R(π∗) =
∑
s∈S

∑
m∈M

λm
s pm(λm

s )Ps(π
∗) =

∑
m∈M

∑
s∈S

λm
s pm(λm

s )Ps(π
∗) ≤

∑
m∈M

λ̃mpm(λ̃m).

�

2.3.1 Proof of Theorem 1

The revenue rate of the static policy is constant whenever we are selling, which is when the

number of customers is strictly less than γ, and 0 when the number of customers is γ. Thus the
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expected revenue of the static policy is

R(π(λ̃
1,...,λ̃M ),C−1) =

∑
m∈M

λ̃mpm(λ̃m)
©«1 −

∑
s∈S:|s |=C

Ps(π
(λ̃1,...,λ̃M ),C−1)

ª®¬
≥ R(π∗)

©«1 −
∑

s∈S:|s |=C

Ps(π
(λ̃1,...,λ̃M ),C−1)

ª®¬ , (2.1)

where the inequality follows from Lemma 2.

We now turn to the congestion penalty. Suppose that Lm∗ denotes the number of class m

customers in the system under π∗, and Wm∗ is the respective sojourn time. We can compute the

congestion cost of π∗ as

C(π∗) =
∑
m∈M

cmE[Lm∗] =
∑
m∈M

cmλ̃
mE[Wm∗] ≥

∑
m∈M

cm ρ̃
m, (2.2)

where the second equality follows from Little’s Law and the inequality follows by observing that

the average sojourn time is at least the average service time.

Suppose that L̃m denotes the number of class m customers in the system under π∗, and W̃m is

the respective sojourn time. The congestion cost of the static policy can be bounded by

C(π(λ̃
1,...,λ̃M ),C−1) =

∑
m∈M

cmE[L̃m]

=
∑
m∈M

cm
©«1 −

∑
s∈S:|s |=C

Ps(π
(λ̃1,...,λ̃M ),C−1)

ª®¬ λ̃mE[W̃m]

=
∑
m∈M

cm ρ̃
m ©«1 −

∑
s∈S:|s |=C

Ps(π
(λ̃1,...,λ̃M ),C−1)

ª®¬
≤ C(π∗)

©«1 −
∑

s∈S:|s |=C

Ps(π
(λ̃1,...,λ̃M ),C−1)

ª®¬ , (2.3)

where the second equality follows from Little’s law and the fact that the average arrival rate of type

m customers for the static policy is λ̃m times the probability of selling, which is the probability of
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having less than C = γ + 1 customers. The third equality follows since there is never any wait time

when γ = C − 1, and thus E[W̃m] = 1
µm . The inequality follows from (2.2).

As proved in [47], after we pick fixed arrival rates for each type which do not vary by state, the

stationary probabilities can be written

Ps(π) =

∏
m∈M

(ρm)sm

sm!∑
s∈S

∏
m∈M

(ρm)sm

sm!

where ρm = λm

µm and sm denotes the number of type m customers in the system in state s. Using this

expression, and after some algebraic manipulation, we can express

∑
s∈S:|s |=C

Ps(π
(λ̃1,...,λ̃M ),C−1) =

1
C! ((

∑
m∈M ρ̃m)C)∑C

n=0
1
n! (

∑
m∈M ρ̃m)n

(2.4)

which allows us to observe that this blocking probability is determined by the value of
∑

m∈M ρ̃m.

Finally, we can bound the cost of the static policy by

Z(π(λ̃
1,...,λ̃M ),C−1) = R(π(λ̃

1,...,λ̃M ),C−1) − C(π(λ̃
1,...,λ̃M ),C−1)

≥ Z(π∗)(1 −
∑

s∈S:|s |=C

Ps(π
(λ̃1,...,λ̃M ),C−1))

= Z(π∗)

(
1 −

1
C! ((

∑
m∈M ρ̃m)C)∑C

n=0
1
n! (

∑
m∈M ρ̃m)n

)
≥ Z(π∗)

(
1 −

1
C! (C

C)∑C
n=0

1
n!C

n

)
where the first inequality follows from (2.1) and (2.3), the second equality follows from (2.4), and

the last inequality follows from Lemma 1.

2.4 Single-class Static Pricing Guarantees

In this section, we give bi-criteria approximation guarantees for static pricing with an arbitrary

number of servers C and a single customer class in Theorem 2 below. Whereas Theorem 1 consid-
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ers policies with a particular cutoff (namely γ = C − 1), Theorem 2 leverages this cutoff point γ as

an additional parameter to index a family of guarantees.

Before we proceed, we note that in the single-class case we can make a simplifying assumption.

The data for our model depends upon the units we choose for currency and time. By picking the

units in a certain way, we can transform an arbitrary instance into one with µ = c = 1 without

impacting the ratios of interest. Hence we assume without loss of generality that µ = c = 1. In this

case, we can now express the stationary probabilities in a standard closed-form (see e.g. [48])

Pi(π) =

∏i−1
k=0

λk
µk+1

1 +
∑∞

n=0
∏n

k=0
λk
µk+1

(2.5)

where µk = min(C, k).

For a fixed number of servers C, we analyze static policies of the form πλ,γ for γ ≥ C − 1. For

such policies, it is a straightforward exercise to arrive at the following expression for the blocking

probability

Pγ+1(π
λ,γ) =

λγ+1

C!Cγ+1−C∑C
l=0

1
l!λ

l + 1
C!λ

C ∑γ+1−C
l=1

1
Cl λ

l
. (2.6)

From this expression we see the intuitive fact that the blocking probability is increasing in the

arrival rate λ.

We now proceed with our second main result which provides approximation guarantees for

static pricing for an arbitrary number of servers C. We again choose the static arrival rate to be λ̃

but allow the cutoff point γ to vary.

Theorem 2. The static pricing policy πλ̃,γ guarantees at least 1 −
Cγ+1

C!Cγ+1−C∑C
l=0

1
l! Cl+ 1

C! CC (γ+1−C)
of the rev-

enue rate and incurs a congestion penalty less than g(γ,C) times that of the optimal dynamic

pricing policy, where

g(γ,C) = max
λ̃∈[0,C]

∑γ+1
i=1 iPi(π

λ̃,γ)

λ̃
.
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Equivalently,

R(πλ̃,γ) ≥

(
1 −

Cγ+1

C!Cγ+1−C∑C
l=0

1
l!C

l + 1
C!C

C(γ + 1 − C)

)
R(π∗)

and

C(πλ,γ) ≤ g(γ,C)C(π∗).

Theorem 2 provides a family of guarantees, parameterized by the choice of γ. This allows the

practitioner to select a value of γ suitable to their application: for scenarios in which revenues are

expected to be very large compared to the congestion penalties, a higher value of γ is warranted,

and vis versa when congestion penalties are expected to be large relative to revenues.

When the number of servers is taken to be very large, it is not surprising that the advantage of

dynamic pricing over static pricing diminishes. Theorem 2 gives insight into the rate at which the

advantage declines. Figure 1 graphically shows the guarantees of Theorem 2 when we have 3,5, or

10 servers.

Figure 2.1: A graphical representation of the guarantees of Theorem 2
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2.4.1 Proof of Theorem 2

In the single-class case, Lemma 2 gives

R(π∗) ≤ λ̃p(λ̃). (2.7)

Now we can compute the revenue rate of the policy πλ̃,γ and proceed to arrive at a lower bound

R(πλ̃,γ) = λ̃p(λ̃)
γ∑

i=0
Pi(π

λ̃,γ)

= λ̃p(λ̃)(1 − Pγ+1(π
λ̃,γ))

≥ λ̃p(λ̃)(1 − Pγ+1(π
C,γ))

≥ (1 − Pγ+1(π
C,γ))R(π∗)

=

(
1 −

Cγ+1

C!Cγ+1−C∑C
l=0

1
l!C

l + 1
C!C

C(γ + 1 − C)

)
R(π∗)

where the first inequality uses the fact that λ̃ < C from Lemma 1 and that the blocking probability

is increasing in λ̃, the second inequality uses Eq. (2.7), and the final equality from the blocking

probability found in Eq. (2.6).

We use Little’s Law to bound the congestion penalty of the optimal dynamic policy

C(π∗) = λ̃E[W∗] ≥ λ̃ (2.8)

where the inequality follows from the fact that E[W∗] ≥ 1 because a sojourn always includes a

service time. We can also show that

C(πλ̃,γ) =

γ+1∑
i=1

iPi(π
λ̃,γ) ≤ C(π∗)

∑γ+1
i=1 iPi(π

λ̃,γ)

λ̃

where the inequality uses Eq. (2.8). Now by finding the maximum value of the coefficient of C(π∗)

over λ̃ ∈ [0,C], we can get a bound which does not depend upon λ̃. Indeed, letting f (γ,C, λ̃) =

53



∑γ+1
i=1 iPi(πλ̃,γ)

λ̃
, we can write g(γ,C) = maxλ̃∈[0,C] f (γ,C, λ̃) so that we have

C(πλ̃,γ) ≤ C(π∗) f (γ,C, λ̃) ≤ C(π∗)g(γ,C),

which completes the proof.

2.5 Single-server, Single-class Static Pricing Guarantees

In this section, we focus on the single-class, single-server setting (M/M/1), where we are able to

give closed-form expressions for the congestion ratio bounds. Theorem 2 reduces to the following

result when we take C = 1.

Theorem 3. The static pricing policy πλ̃,γ guarantees at least γ+1
γ+2 of the revenue rate and incurs a

congestion penalty less than g(γ) times that of the optimal dynamic pricing policy, where

g(γ) =



1, if γ = 0

2
√

3
3 ≈ 1.155, if γ = 1

1.5321, if γ = 2

γ+1
2 , if γ ≥ 3

Equivalently,

R(πλ̃,γ) ≥
γ + 1
γ + 2

R(π∗)

and

C(πλ̃,γ) ≤ g(γ)C(π∗).

Moreover, this analysis is tight.

1The exact, closed-form expression for g(2) involves the root of a quartic and would take a few pages to relay.
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The tightness of Theorem 3 is shown using a class of instances described in Section 2.5.2.

The fact that we can provide exact values for the function g(γ) is a stroke of some good luck. As

we shall see in the proof, finding these worst-case congestion penalty bounds involves solving an

optimization problem over λ̃ ∈ [0,1]. For γ = 0, the maximizer is at λ̃ = 0 and for gamme ≥ 3, the

maximizer is at λ̃ = 1 . For γ = 1 and γ = 2, the maximizer lies strictly within the interval [0,1];

for γ ≥ 3, the function is monotonically increasing on the interval and hence the maximum occurs

when λ̃ = 1. This is fortunate because finding the unconstrained maxima of the relevant ratio

involves finding the roots higher and higher degree polynomials: for γ = 1, a degree 2 polynomial

arises, for γ = 2, a degree 4 polynomial arises, and for general γ a degree 2γ polynomial arises.

If the unconstrained maximum when γ = 3 were to lie in the interval [0,1], it is unlikely we could

find a closed-form expression.

2.5.1 Proof of Theorem 3

The revenue guarantee follows directly from Theorem 2. We now prove the congestion penalty

guarantees of Theorem 3. Just as in the proof of Theorem 2, we can write

C(πλ̃,γ) ≤ C(π∗)g(γ)

where

g(γ) = max
λ̃∈[0,1]

∑γ+1
i=1 iPi(π

λ̃,γ)

λ̃

and the steady state probabilities are given by (2.5). For γ < 3 it is straightforward to arrive at

the claimed values of g(γ). When γ = 0, g(γ) = 1
λ̃+1 and thus the worst case is when λ̃ = 0 and

g(0) = 1. When γ = 1, we take the derivative and compute its numerator as

1 − 2λ̃ − 2λ̃2,
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from which we arrive at the positive root λ̃ =
√

3−1
2 . Plugging this value back into the objective

function gives g(2) = 2√
3

as claimed. When γ = 2, finding the maximizer reduces to finding the

real positive root of the equation

−3λ̃4 − 4λ̃3 − 2λ̃2 + 4λ̃ + 1

which can be accomplished via the well-known quartic formula [49].

For γ ≥ 3, we proceed by showing that the objective is increasing in λ̃ over the interval [0,1].

Let fγ(λ̃) denote the objective function for a fixed γ and express it equivalently as

fγ(λ̃) =

∑γ+1
j=1 jλ̃ j∑γ+2
i=1 λ̃

i

We show the derivative f ′γ(λ̃) is nonnegative for 0 ≤ λ̃ ≤ 1 and γ ≥ 3. We take the derivative and

ignore the denominator by looking only at the signs

sgn( f ′γ(λ̃)) = sgn ©«
γ+2∑
i=1

γ+2∑
j=0

j2λ̃i+ j−1 −

γ+2∑
i=1

γ+2∑
j=0

jiλ̃i+ j−1ª®¬
= sgn ©«

γ+1∑
i=0

γ+2∑
j=0

j2λ̃i+ j −

γ+1∑
i=0

γ+2∑
j=0

j(i + 1)λ̃i+ jª®¬
= sgn ©«

γ+1∑
i=0

γ+1∑
j=0
( j2 − j(i + 1))λ̃i+ jª®¬

We show this is nonnegative for 0 ≤ λ̃ ≤ 1 when γ ≥ 3 by showing that the coefficients of the

lower-order terms (those with degrees lesser or equal to γ + 1) are all positive, and that the sum of

all coefficients is positive as well. This suffices because for λ̃ ≤ 1, the lower-order terms dominate.

We can use the above expression to write the coefficient of λ̃k for 2 ≤ k ≤ γ + 1 as

k∑
j=0
( j2 − j(k − j + 1)) =

(k − 1)k(k + 1)
6
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which we observe is indeed positive for k ≥ 2. Proceeding similarly for the higher-order terms,

for γ + 1 < k ≤ 2γ + 2 the coefficient of λ̃k is

γ+1∑
j=k−γ+1

( j2 − j(k − j + 1)) =
(2γ − k + 3)(4γ2 − 4γk + 12γ + k2 − 9k + 8)

6
.

To conclude, we show that the sum of all the coefficients is nonnegative for γ ≥ 3. Indeed,

γ+1∑
k=2

(k − 1)k(k + 1)
6

+

2γ+2∑
k=γ+2

(2γ − k + 3)(4γ2 − 4γk + 12γ + k2 − 9k + 8)
6

=
1
12
(γ + 1)(γ + 2)2(γ − 3)

from which we can immediately see the desired nonnegativity. With this monotonicity in hand, we

can upper bound

g(γ) ≤

∑γ+1
i=1 iPi(π

1,γ)

1
=

γ+1∑
i=1

i
γ + 2

=
γ + 1

2
,

thus completing the proof.

2.5.2 A class of instances proving tightness

We now describe a class of instances which we use to show that Theorem 3 is tight and that

Theorem 1 is tight when C = 1. Moreover, the following examples also show that static policies

with no threshhold can perform arbitrarily poorly.

Consider an instance with linear demand (uniform valuation distribution), i.e., where λ = b−ap

for some positive a and b. Take a < b < 2a, so that the expected value from accepting a customer

when one is in service is always negative: the largest price a customer will pay is b/a < 2,

while the expected congestion penalty from accepting a customer while one is in service is 2 (2

customers). Thus, the optimal policy is in fact a static policy with a cutoff point of 0. In this case,

it is a straightforward single-variable optimization problem and we can arrive at the following
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expression for the optimal policy

π∗ = {
√

b − a + 1 − 1,0,0, . . . }

To now show the tightness of the objective value guarantee of Theorem 1 when C = 1, we

write b = κa for 1 < κ < 2 and take the limit as a → ∞. In the limit,
√
κa − a + 1 − 1→ ∞, and

thus λ̃→ 1. Then we have

Z(πλ̃,0) = λ̃p(λ̃)P0(π
λ̃,0) − P1(π

λ̃,0) = λ̃p(λ̃)
1

1 + λ̃
−

λ̃

1 + λ̃
= λ̃
(κa − λ̃)
a(1 + λ̃)

−
λ̃

1 + λ̃
→

κ − 1
2

On the other hand, we can see that the optimal price converges to κ

p(λ∗0) =
κa −

√
κa − a + 1 + 1

a
→ κ

and thus

Z(π∗) = λ∗0p(λ∗0)P0(π
∗) − P1(π

∗) =
λ∗0

1 + λ∗0
p(λ∗0) −

λ∗0
1 + λ∗0

→ κ − 1

which proves the desired tightness for γ = 0. Moreover, since the expected value of allowing a

customer to queue is always negative, policies πλ̃,γ with γ > 0 will perform worse, and thus we

observe that in this instance the best static policy which fixes an arrival rate λ̃ attains only half the

optimal value. However, it is worth noting that in this instance the optimal policy is in fact a static

policy, just one which does not pick the arrival rate λ̃.

The same limiting instance shows the revenue guarantees of Theorem 3 are also tight. For any

γ, we have

R(πλ̃,γ) = λ̃p(λ̃)(1 − Pγ+1(π
λ̃,γ)) → κ

γ + 1
γ + 2
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On the other hand, as we computed above,

R(π∗) = λ∗0p(λ∗0)P0(π
∗) → κ

which proves the claimed tightness of the revenue guarantees.

The same class of instances will serve to prove our congestion penalty guarantees are tight,

but we will not use the limiting instance. Instead, note that the only inequality used to furnish our

congestion penalty guarantees is Eq. (2.8). Since for instances in this class the optimal policy π∗

does not allow a queue to form, this inequality is tight, and hence so are our ensuing guarantees.

Finally, these same instances can be used to show that unthresholded static policies can perform

arbitrarily poorly. Note that computing the optimal unthresholded policy for a given instance is a

simple single-variable optimization problem. By taking a large and κ close to 1, we can exhibit

instances where the unthresholded static policy recovers only an ε proportion of the optimal value,

for ε arbitrarily small. For example, with a = 1000 and κ = 1.05, the optimal policy earns

0.37 while the optimal unthresholded policy earns 0.0006, which gives a performance ratio of

0.0006
0.37 = 1.6%.

2.6 Numerical Experiments

In this section, we present the results of numerical experiments on our static policies. Specifi-

cally, we consider linear (λ = b−ap), exponential (λ = be−ap), and logistic (λ = b(1+e−ap
0)

1+ea(p−p0) ) demand

functions. For each number of servers C ∈ {1,3,5,10}, we sample a uniformly from [0.1,5], b uni-

formly from [.5,10], and p0 uniformly from [0,20]. Under linear demand, when a > b, the optimal

policy does not sell and thus achieves an objective value of 0. Though this is also attainable by a

static policy, for simplicity we reject these instances and resample. For each C and each demand

function, we perform 1000 replications and report the worst-case and average approximation ratios

for the overall objective, revenue, and congestion penalties in Tables 2.1 and 2.2.

We report results for two different static policies. First, we consider the optimal static pricing
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policy. In other words, for each instance, we are simultaneously optimizing both the static price

and the cutoff we choose. The notation λ∗ in the column headers refers to these policies. Second,

we consider static policies which are constrained to use the price which induces the same average

arrival rate as that of the optimal policy (these are the policies considered by our theorems). For

each instance, we find the optimal dynamic policy, compute the average arrival rate, fix the price

which induces this arrival rate, and then find the optimal cutoff for that fixed price. The notation λ̃

in the column headers refers to these policies.

Table 2.1: Worst-case approximation ratios of static pricing policies
Objective Revenue Congestion

C λ∗ λ̃ λ∗ λ̃ λ∗ λ̃

Linear

1 93.0% 75.7% 80.8% 69.1% 111.6% 114.0%
3 95.4% 95.1% 92.1% 87.8% 109.5% 119.0%
5 98.0% 97.9% 97.2% 97.2% 108.3% 121.0%

10 99.9% 99.9% 99.9% 99.9% 100.0% 100.0%

Exponential

1 89.7% 89.0% 82.6% 75.7% 105.4% 119.0%
3 97.4% 97.1% 96.6% 98.5% 103.2% 117.0%
5 99.6% 99.6% 99.5% 99.9% 101.2% 103.0%

10 99.9% 99.9% 99.9% 99.9% 99.9% 100.0%

Logistic

1 89.1% 73.0% 81.4% 64.2% 118.9% 159.0%
3 93.3% 87.9% 89.1% 84.4% 106.4% 121.0%
5 96.2% 94.1% 94.9% 93.1% 100.0% 104.0%

10 99.2% 98.9% 99.4% 98.9% 104.5% 104.0%

Note. The table compares optimal static pricing policies (attained by jointly optimizing both the rate λ∗ and the
cutoff) and static policies which pick the rate induced by the optimal policy λ̃ (and choose an optimal cutoff for this

rate).

On the whole, we see that static policies perform fairly well. Even in the worst-case instance

found in our experiments, the static policy is able to attain 89.1% of the optimal dynamic policy’s

objective value. Looking at the average performance, the difference becomes smaller still: even

with only 1 server, static policies can typically attain between 96% and 98% of the optimal dynamic

policy’s value.

Moreover, the empirics echo our theoretical results: we see the advantage of dynamic over
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Table 2.2: Average approximation ratios of static pricing policies
Objective Revenue Congestion

C λ∗ λ̃ λ∗ λ̃ λ∗ λ̃

Linear

1 98.0% 87.0% 96.8% 81.4% 95.8% 78.8%
3 97.8% 97.7% 97.5% 96.6% 98.8% 96.8%
5 99.5% 99.5% 99.5% 99.7% 99.7% 100.5%

10 99.9% 99.9% 99.9% 99.9% 100.0% 100.0%

Exponential

1 97.4% 97.1% 96.7% 93.7% 96.5% 92.7%
3 99.8% 99.7% 99.7% 99.9% 99.6% 100.4%
5 99.9% 99.9% 99.9% 99.9% 99.9% 100.0%

10 99.9% 99.9% 99.9% 99.9% 99.9% 100.0%

Logistic

1 96.0% 85.2% 95.6% 86.7% 95.0% 99.0%
3 97.8% 94.6% 98.1% 95.3% 99.6% 101.0%
5 96.2% 94.1% 94.9% 93.1% 100.0% 104.0%

10 99.9% 99.9% 99.9% 99.9% 100.5% 100.3%

Note. The table compares optimal static pricing policies (attained by jointly optimizing both the rate λ∗ and the
cutoff) and static policies which pick the rate induced by the optimal policy λ̃ (and choose an optimal cutoff for this

rate).

static pricing decreases rapidly as we increase the number of servers. For instances with 10 or more

servers, the performance of the optimal static policy is barely distinguishable from the dynamic

optimum. This further lends credence to our practical insight that dynamic pricing may not be

necessary for queueing systems with many servers.

The empirics also give some insight into how the static policies we construct in our proofs

compare to the optimal static policies. The difference is sensitive to the form of the demand

function. For exponential demand, the difference is fairly marginal: the largest discrepancy we

observe in the worst-case objective ratios is 0.7% when C = 1. For linear and logistic demand

functions, on the other hand, there are much larger discrepancies. In any case, the discrepancies

diminish rapidly as we increase the number of servers.
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2.7 Sojourn Time Penalty

Up to this point, the congestion penalty of a policy in our model has been given by the long-run

average number of customers in the system under that policy. In this section, we analyze a new

model where the congestion penalty of a policy is instead given by the long-run average sojourn

times. As usual, the sojourn time is defined as the total time a customer spends in the system,

including both the waiting time and the service time. Hence, this model is of practical importance

as it is relates directly to the quality of service experienced by the customers.

The operation of this model is identical to the first. We shall focus on the single class setting.

Potential customers arrive according to a Poisson process at rateΛ and join the system if the offered

price exceeds their valuation drawn i.i.d. from some regular distribution F. Letting W(π) denote

the steady-state sojourn time distribution of a customer who joins the system under policy π, the

value rateZ(π) of a policy π is now given by

Z(π) =

∞∑
i=0

piλ(pi)Pi(π) − E[W(π)]

=

∞∑
i=0

piλ(pi)Pi(π) −
E[L(π)]
λ̃(π)

=

∞∑
i=0

(
piλ(pi) −

i
λ̃(π)

)
Pi(π)

where the second equality uses Little’s Law. We use the notation λ̃(π) to emphasize that λ̃ is in-

duced by π, and we remark that now this average arrival rate λ̃(π) arises naturally when formulating

the problem.

In this case, objective value guarantees on Z for the class of static policies which pick the

arrival rate λ̃ are no longer possible. This fact is verified with an instance from the class described

in Section 2.5.2. If we take an instance with linear demand (λ = b − ap) with b = 6000 and

a = 5000, we can observe that Z(π∗) ≈ 0.17 > 0, whereas Z(πλ̃,0) ≈ −0.4 < 0. For these

instances, taking a cutoff higher than 0 degrades performance further. Thus no result of the flavor
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of Theorem 1 is possible, and hence we must resort to providing bi-criteria bounds on revenue and

congestion in the spirit of Theorem 2.

We present Theorem 4 below for the sojourn time penalty model for an arbitrary number of

servers C. We observe that the congestion guarantees of the sojourn time model are not as strong

as the guarantees we can furnish for the congestion model. Thus we are led to the insight that

the control of sojourn times with static pricing is a marginally more difficult objective than just

controlling congestion. The relative difference is most pronounced when looking at policies with

small cutoff points, particularly γ = 1 or γ = 2. In the single-server case, the congestion guarantee

reduces to simply γ+2
2 and the revenue guarantee reduces to γ+1

γ+2 for all γ ≥ 0. We provide Figure

3 to graphically illustrate the guarantees of Theorem 4 when we have 3,5, or 10 servers.

Figure 2.2: A graphical representation of the guarantees of Theorem 4

Theorem 4. The static pricing policy πλ̃,γ guarantees at least 1 −
Cγ+1

C!Cγ+1−C∑C
l=0

1
l! Cl+ 1

C! CC (γ+1−C)
of the rev-

enue rate and incurs a congestion penalty less than
∑C

i=1
1
(i−1)! Ci+ 1

C! CC ∑γ+1
i=C+1 i∑C

l=0
1
l! Cl+1+γ−CC! CC

times that of the optimal

dynamic pricing policy. Equivalently,(
1 −

Cγ+1

C!Cγ+1−C∑C
l=0

1
l!C

l + 1
C!C

C(γ + 1 − C)

)
R(π∗) ≤ R(πλ̃,γ)

63



and ∑C
i=1

1
(i−1)!C

i + 1
C!C

C ∑γ+1
i=C+1 i∑C

l=0
1
l!C

l+1 +
γ−C
C! CC

C(π∗) ≥ C(πλ̃,γ).

Proof. Proof. As the revenue portion of our model remains unchanged, the revenue guarantee

follows immediately from Theorem 2. Thus, it suffices to prove the congestion guarantees. We

begin by analyzing the congestion penalty of πλ̃,γ,

C(πλ̃,γ) = E[W(πλ̃,γ)] ≤ C(π∗)E[W(πλ̃,γ)] (2.9)

where the inequality follows since C(π∗) = E[W(π∗)] ≥ 1 because a sojourn always includes at

least a service time. To remove the dependence on the value of λ̃, we seek the worst-case (largest)

value of E[W(πλ̃,γ)] over λ̃ ∈ [0,C]. In contrast to the previous model, this coefficient of C(π∗) is

non-decreasing in λ̃: clearly the expected sojourn time of a customer increases if we increase the

arrival rate to the system. Thus we can plug in λ̃ = C to get a universal bound.

C(πλ̃,γ) ≤ C(π∗)E[W(πλ̃,γ)] ≤ C(π∗)E[W(πC,γ)] = C(π∗)

∑γ+1
i=1 iPi(π

C,γ)

C(1 − Pγ+1(πC,γ))

where the first inequality is Eq. (2.9), the second is by the fact that sojourn times are non-decreasing

in λ̃, and the equality uses Little’s Law to compute E[W(πC,γ)]. Finally, we can use the expression

for the multi-server steady-state probabilities in (2.5) to arrive at the claimed congestion guaran-

tees. �

2.8 Conclusion

In this work, we have furnished universal performance guarantees for static pricing policies

in the context of a general queueing model with price-sensitive customers. We observe that the

advantage of dynamic over static pricing decays rapidly as the number of servers increases. We

also provide bi-criteria guarantees on the revenue and cost objectives, with closed-form guarantees
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in the M/M/1 setting. In applications where controlling sojourn times rather than congestion is the

more salient objective, we provided similar guarantees on the performance of static policies. For

the practitioner wondering if implementing dynamic pricing is worth the additional complexity

and potential adversarial customer behavior it might induce, our results provide useful insights.

There are many possible avenues to extend our results. One promising direction of interest

would be to relax the assumption that the service times are exponential. With general i.i.d. service

times, the optimal pricing policy now depends not only on the number in system but also on

the remaining service times of the customers in service. There are many subtleties that must be

accounted for to prove similar result, but at the heart of our argument are two very robust tools:

Little’s Law and Jensen’s inequality.

Lastly, our theoretical results have focused on a particular class of static policies for which

we can provide good theoretical guarantees. The question, for example, of which instance of our

model exhibits the largest gap between optimal dynamic and static performance remains open.

Our theoretical results have shown that the worst-case objective value ratio is at least 1
2 , and our

empirical results have shown that it is at most 0.891. Trying to narrow this interval down and find

the value of this constant remains a question for future work.
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Chapter 3: On an Adaptive Non-deterministic Transmission Process

Queueing Model

This chapter studies an application of queueing in telecommunications. It is based on an up-

coming article written in collaboration with Karl Sigman and Erol Gelenbe.

3.1 Introduction

The widespread proliferation of the Internet of Things (IoT) has brought about new challenges

in the field of telecommunications, particularly in the area of network access. One of the major

challenges is the Massive Access Problem (MAP), which occurs when too many IoT devices si-

multaneously transmit data to a base station or IoT gateway, causing congestion and potentially

untenable delays. When a packet is delayed for too long, its data may no longer be of use; thus it

is of interest to develop techniques to ameliorate the MAP and ensure packets are transmitted in a

timely manner.

A variety of techniques to address the MAP have been proposed. Early work focused on im-

plementing adaptive routing to reduce congestion in networks with multiple available paths ([50],

[51]). More recently, many reactive techniques which try to adapt to realized traffic patterns have

been proposed and analyzed under the assumption that the traffic arrives in a random manner. So-

lutions in this class include Access Class Barring ([52], [53], [54]), Cognitive Machine-to-Machine

communication ([55], [56]), and device clustering ([57], [58]).

On the other hand, one can do more than simply react to the realized traffic stream: proactive

prediction of traffic patterns is also possible. These techniques attempt to use observed traffic to

predict future traffic, and then use that prediction to perform scheduling of packet generation times.

Examples of proactive techniques include Joint Forecasting-Scheduling (JFS) and Priority based

66



on Average Load (PAL), in which channel resources are allocated to IoT devices based on traffic

characteristic ([59], [60]). However, these techniques involve time-consuming machine learning

methods and require a significant amount of communication over the network to implement.

A simpler technique to address the MAP is that of traffic shaping, where packets are delayed at

the origin. One particular way of performing traffic shaping, the Quasi-Deterministic Transmission

Process (QDTP), was introduced and empirically investigated in the context of IoT devices in [61].

Following that, QDTP and the more general ANTP (which is the focus of the present work) were

more formally analyzed using queueing theory in [62]. The authors show that the delay sequences

of customers at this cafe facility under QDTP and ANTP satisfy an expression similar to Lindley’s

recursion. Moreover, it is shown that, as long as the delays Dn satisfy a certain condition, the

response time of a packet will not increase under ANTP. Though ANTP was originally motivated

by problems in telecommunications which demand reducing congestion, here we also consider

other applications in which notions such as utility make sense in the measuring of the benefits of

the reduction in congestion. That is why we call the initial delay facility a cafe; one would prefer

to spend most of the delay in a cafe rather than in a line somewhere.

In the present work, we furnish deeper theoretical results characterizing the performance of

ANTP in a stochastic setting. Our focus is on obtaining stability conditions and stationary versions

under general stochastic assumptions. We then delve into the special case of the GI/GI/1 queue and

show Harris recurrence of the underlying Markovian structure. Our work builds on the previous

study by providing a deeper understanding of ANTP and offers insights that can inform future

work in this area.

3.2 Model

In this paper, we analyze an ANTP single-server queueing model. It consists of two connected

components, an initial delay facility called the cafe, to which the arrivals first attend at arrival times

{an}, followed by a FIFO single-server queue called the service facility where they attend at times

tn ≥ an and have corresponding service requirements/times {Sn}. With t0 = a0 = 0, the point
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process {tn} is defined recursively as a function of the original arrival point process {an}:

tn+1 = max{tn + Dn,an+1}, n ≥ 0, (3.1)

where Dn can be, for example, a deterministic constant D or a random function of Sn. The inter-

arrival times are then Tn = tn+1 − tn, n ≥ 0, as opposed to An = an+1 − an, n ≥ 0. The purpose of

ANTP is to reduce congestion faced by the customers as compared to simply joining the service

facility (without attending the cafe) at the original arrival times {an} and with the service times

{Sn}.

The times spent at the cafe, Wn = tn − an, are the initial delays experienced by the customers.

(When tn = an there is no such delay and the customer goes directly to the service facility). Vn

denotes the delay in queue by the nth arrival to the ANTP service facility before entering service;

it satisfies the classic FIFO single-server recursion for delay in queue (line), Vn+1 = (Vn + Sn −

Tn)
+, n ≥ 0. And thus the total delay, which we denote by Zn is computed as Zn = Wn + Vn.

We first present some sample-path results including that when Dn < Sn, n ≥ 0, it follows that

the Zn are the same as if there was no cafe and the customers attended only the service facility at

times an; in other words, if Dn < Sn, n ≥ 0, then ANTP does not increase customer sojourn times.

The difference is that congestion at the service facility is reduced (shared) by spending time at the

cafe.

In a stochastic framework, we assume that {(an,Sn,Dn) : n ≥ 0} is a stationary ergodic marked

point process (mpp) with arrival rate 0 < λ < µ where 0 < E(S) = 1
µ < ∞. We let {(a0

n,S
0
n,D

0
n) :

n ∈ Z} denote (by extension) a two-sided point-stationary ergodic version of the input. We show

that when E(D) < 1
λ , then the arrival rate of {tn} is also λ and Zn has a proper limiting distribution

π to which Zn converges to in total variation as n → ∞. Furthermore, in the special case when

{an} is a renewal process, and independently {(Sn,Dn)} is an iid sequence of vectors, then we

show that {(Wn,Vn) : n ≥ 0} forms a positive Harris recurrent Markov chain (hence must be a

regenerative process). We demonstrate that the chain might never hit (0,0), but nonetheless we
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find the regeneration points even in such a case.

3.3 Notation and definitions

1. Cn denotes the nth customer.

2. an is the time at which Cn arrives at the cafe; a0 = 0. The interarrival times are denoted by

An = an+1 − an, n ≥ 0.

3. Ln+1 = (Ln + Sn − An)
+, n ≥ 0 defines the delay (in line/queue) sequence for the nominal

FIFO G/G/1 model. This is the model that Cn would attend if there was no cafe and instead

customers went directly to the service facility at times {an}.

4. With t0 = a0 = 0, the arrival process to the ANTP service facility is defined recursively:

tn+1 = max{tn + Dn,an+1}, n ≥ 0. (3.2)

Tn = tn+1 − tn, n ≥ 0 are the interarrival times for the ANTP service queue. Note that they

are bounded from below by Dn, since tn+1 ≥ tn + Dn;

Tn ≥ Dn.

5. Wn = tn − an, n ≥ 0 is the initial delay process; W0 = 0. Cn arrives at time an to the cafe

and remains there for Wn units of time before joining the ANTP service facility queue at

time tn = an +Wn. (Entering means that they join the line if there is one or enter service

immediately if there is not.)

6. Vn+1 = (Vn + Sn − Tn)
+, n ≥ 0 with V0 = 0 defines the delay (in line/queue before starting

service) sequence at the ANTP service facility queue.

7. Cn has a total delay (before starting service) of Zn = Wn + Vn, and a response (sojourn) time

of Rn = Zn + Sn = Wn + Vn + Sn. Cn arrives at time an and departs at time ad
n = an + Rn.
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As comparison, if all customers only attended the nominal queue (no cafe), at the times {an},

then (recalling Point 3 above) the delay and sojourn time of Cn would be Ln and Ln + Sn

respectively. We wish to compare the ANTP Zn and Zn+Sn with the nominal Ln and Ln+Sn,

so as to determine if and how ANTP reduces congestion for customers.

8. When we consider a stochastic framework, we then assume that the input {(an,Sn,Dn) : n ≥

0} is a stationary ergodic marked point process (mpp) with 0 < λ < µ where where λ is the

arrival rate and 0 < E(S) = 1
µ < ∞. (We let {(a0

n,S
0
n,D

0
n) : n ∈ Z} denote (by extension) a

two-sided point-stationary ergodic version of the input.)

3.4 Some basic properties of ANTP

Here we present several sample-path results. When we give a result in a stochastic setting, we

are assuming the stationary ergodic assumptions for {(an,Sn,Dn) : n ≥ 0} mentioned as Point 8 in

Section 3.3.

Proposition 3.4.1. The initial delay sequence Wn = tn − an, n ≥ 0, satisfies the recursion

Wn+1 = (Wn + Dn − An)
+, n ≥ 0; (3.3)

the delay in line (queue) recursion of a FIFO G/G/1 queue1. If a rate 0 < λ < ∞ exists for {an},

that is, if an/n→ 1
λ as n→∞, and an average d exists for the Dn, that is

1
N

N∑
i=1

Dn → d, as N →∞,

where 0 < d < 1
λ , then the rate of {tn} exists and is also equal to λ; tn/n→ 1

λ as n→∞.

Proof. We prove the recursion by induction on n. W0 = 0 since t0 = a0 = 0. A0 = a1 − a0 = a1.

1But its meaning is different: If we view it as a FIFO single-server queueing model with “service times" Dn and
interarrival times An, then Wn represents the delay in queue (line) of the nth customer arrival (not the sojourn time
which would be Wn + Dn). But in our model, Wn is the amount of time that the nth customer spends in the Cafe, that
is, the sojourn time in the Cafe.
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Thus (W0 + Dn − A0)
+ = (Dn − a1)

+ and from Equation 3.2 we have t1 = D if Dn > a1 in

which case (Dn − a1)
+ = Dn − a1 = t1 − a1 = W1, and t1 = a1 if Dn ≤ a1 in which case

t1 − a1 = 0 = (Dn − a1)
+ = W1. Thus the result holds for n = 1.

Now suppose that for some n ≥ 1, the recursion 3.3 holds up to Wn = (Wn−1 + Dn−1 − An−1)
+.

We will show it holds for Wn+1 as well: By the induction hypothesis Wn = tn − an and so

(Wn + Dn − An)
+ = (tn − an + Dn − (an+1 − an))

+

= (tn + Dn − an+1)
+.

From Equation 3.2, if tn + Dn > an+1, then tn+1 = tn + Dn and so (tn + Dn − an+1)
+ = tn+1 − an+1 =

Wn+1; whereas if tn+Dn ≤ an+1, then tn+1 = an+1 and so Wn+1 = tn+1−an+1 = 0 = (tn+Dn−an+1)
+;

thus tn+1 − an+1 = Wn+1 as was to be shown.

For the rate result: tn = an + Wn and it is well know that under the conditions assumed,

Wn/n→ 0 as n→∞ (see for example, Lemma 6.1 on Page 134 in [12]), and hence tn/n and an/n

have the same limit. �

Remark 3.4.1. Recalling Point 3 in Section 3.3, a possible practical approach to defining Dn is to

fix an appropriate parameter b, and define Dn = bSn, for then if the average of the Sn exists, denote

it by 1/µ, then so does d, and d = b/µ.

Proposition 3.4.2. If Z0 = L0, then

1. If Dn ≤ Sn, n ≥ 0, then Zn = Ln, n ≥ 0: total delay (before entering service) in ANTP is

identical to that in the nominal FIFO G/G/1 model (Ln+1 = (Ln + Sn − An)
+, n ≥ 0); thus

sojourn times are identical also.

2. If Dn = Sn, n ≥ 0, and if V0 = 0, then Wn = Ln, n ≥ 0, and thus from 1, Vn = 0, n ≥ 0: Every

customer enters service immediately when arriving at the ANTP service facility; they spend

no time delayed in the queue.
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3. If Dn < Sn, n ≥ 0, then for any n ≥ 1, if Wn > 0 then Vn > 0 (equivalently if Vn = 0 then

Wn = 0, i.e., tn = an). Moreover, if V0 = 0, then

Vn ≤

n−1∑
i=0
(Si − Di), n ≥ 1. (3.4)

The point of the first assertion is that delay at the service facility is reduced by the amount

Ln −Vn = Wn; the difference in delay time is spent at the cafe instead of in queue. The point of the

second assertion is that when Dn = Sn, n ≥ 0, then all of the total delay of Cn is spent in the cafe;

none is spent in the line of the ANTP service facility. The point of the third assertion is that when

Dn < Sn, n ≥ 0, the server is never wasting time idle while a customer is at the cafe waiting; the

ANTP system is efficient.

Proof. For the 1st assertion it suffices (since by assumption Z0 = L0) to prove that if Zn = Ln for

a given n ≥ 0, then Zn+1 = Ln+1. Noting that Tn = tn+1 − tn = An +Wn+1 −Wn, n ≥ 0 we have,

assuming that Zn = Wn + Vn = Ln for some n:

Zn+1 = Wn+1 + Vn+1 (3.5)

= [Wn + Dn − An]
+ + [Vn + Sn − Tn]

+

= [Wn + Dn − An]
+ + [Wn + Vn + Sn − An −Wn+1]

+

= [Wn + Dn − An]
+ + [Zn + Sn − An −Wn+1]

+

= [Wn + Dn − An]
+ + [Ln + Sn − An −Wn+1]

+.
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Case A) Wn+1 = Wn + Dn − An > 0. Then starting with the last line of (3.5)

Zn+1 = Wn + Dn − An + [Ln + Sn − An − (Wn + Dn − An)]
+

= Wn + Dn − An + [Wn + Vn + Sn −Wn − Dn]
+

= Wn + Dn − An + [Vn + Sn − Dn]
+

= Wn + Dn − An + [Vn + Sn − Dn] (Dn < Sn by assumption)

= Wn + Vn + Sn − An

= Ln + Sn − An (Wn + Vn = Zn = Ln by assumption)

= Ln+1.

Case B) Wn+1 = [Wn + Dn − An]
+ = 0. Then starting with the last line of (3.5) immediately yields

Zn+1 = [Ln + Sn − An]
+ = Ln+1.

Thus in both cases Zn+1 = Ln+1, and the proof of the first assertion is complete.

For the 2nd assertion: We already are assuming that Z0 = L0. Thus if also V0 = 0, then

0 = V0 = Z0 = W0 from 1 and so the recursions for {Ln} and {Wn} both start at 0 and hence yield

identical processes Ln = Wn, n ≥ 0. Thus from 1 it follows that Vn = 0, n ≥ 0.

For the 3rd assertion, suppose that 0 < Wn = Wn−1 + Dn−1 − An−1. Then

Vn = (Vn−1 + Sn−1 − An−1 −Wn +Wn−1)
+

= (Vn−1 + Sn−1 − An−1 − (Wn−1 + Dn−1 − An−1) +Wn−1)
+

= (Vn−1 + Sn−1 − Dn−1)
+

= Vn−1 + Sn−1 − Dn−1 > 0,

where the positivity at the end is due to the assumption that Dn−1 < Sn−1, n ≥ 1. The inequality in

Equation (3.4) follows immediately since Tn ≥ Dn, n ≥ 0 implies that Sn−Tn ≤ Sn−Dn, n ≥ 0, and

thus starting with V1 ≤ S0−D0 , the result follows recursively by induction: Vn+1 = (Vn+Sn−Tn)
+ ≤
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(Vn + Sn − Dn)
+.

�

Remark 3.4.2. Note that Equation (3.4) still holds (same proof) when Dn = Sn and hence offers

an alternative proof to the 2nd assertion in Proposition 3.4.2.

3.5 A stochastic framework

Here we assume that {(An,Sn,Dn) : n ≥ 0} forms stationary ergodic sequence, equivalently

that {(an, (Sn,Dn))} : n ≥ 0}, forms a point-stationary ergodic marked point process. A proof of

the following is based on the classic Loynes’ Lemma, and can be found, for example on Pages

131-137, Lemma 6.1, and Theorem 6.1 in [12].

Proposition 3.5.1. If E(D) < E(A) = 1
λ , then there exists a (2-sided) jointly stationary ergodic

(proper) version of {(Wn, An,Dn)} denoted by {(W0
n , A

0
n,D

0
n)} = {(W

0
n , A

0
n) : n ∈ Z}, such that

W0
n+1 = (W

0
n + D0

n − A0
n)
+, n ∈ Z. (3.6)

(This is the stationary delay sequence for a G/G/1 queue.) Wn converges in total variation, as

n→∞ to the distribution of W0
0 , regardless of initial conditions, W0 = x ≥ 0. If E(D) > E(A) = 1

λ ,

then {Wn} is unstable; Wn diverges as n→∞.

The above Proposition 3.4.1 allows us to construct a stationary ergodic version of the point

process {tn}:

Corollary 3.5.1. If E(D) < E(A) = 1
λ , then t0

n = a0
n+W0

n defines a point-stationary ergodic version

of {tn}, that is, T0
n = t0

n+1− t0
n defines a stationary ergodic sequence of interarrival times. Moroever,

E(T0) =
1
λ
.

Proof. Defining t0
n = W0

n + a0
n, so that T0

n = t0
n+1 − t0

n = A0
n +W0

n+1 −W0
n indeed yields a stationary
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ergodic sequence of interarrival times; {t0
n} is a point-stationary ergodic version of {tn}.

E(T0
n ) = E(A0

n) + E(W0
n+1 −W0

n ) =
1
λ + 0 = 1

λ . �

Remark 3.5.1. |W0
n+1 −W0

n | ≤ |D
0
n − A0

n | < ∞; thus even if E(W0) = ∞, then E(W0
n+1 −W0

n ) = 0

holds.

3.6 Stability of ANTP and the existence stationary versions

We assume that E(D) < 1
λ and that λ < µ in what follows.

From Proposition 3.5.1 and Corollary 3.5.1 we can replace {(Wn, An,Tn,Sn,Dn)} by a two-sided

stationary ergodic joint version, {(W0
n , A

0
n,T

0
n ,S

0
n,D

0
n)}, in the following total delay recursion so that

it jointly uses uses stationary ergodic versions of input:

Zn+1 = (W0
n + D0

n − A0
n)
+ + (Vn + S0

n − T0
n )
+, n ≥ 0. (3.7)

The first piece on the right already forms a stationary ergodic sequence; it is from Equation 3.6.

We now deal with the second piece. Recalling from Corollary 3.5.1 that E(T0
n ) =

1
λ , and our

assumptions that λ < µ, we can analogously obtain, using Proposition 3.5.1 methods, on the

second piece, a jointly stationary ergodic pair {(W0
n ,V

0
n ) : n ∈ Z}, yielding a stationary ergodic

version {Z0
n } of {Zn} satisfying

Z0
n+1 = (W

0
n + D0

n − A0
n)
+ + (V0

n + S0
n − T0

n )
+, n ∈ Z}. (3.8)

We can also throw in {S0
n} to obtain a stationary ergodic sojourn time sequence via R0

n = Z0
n+S0

n .

Summarizing:

Theorem 3.6.1. The ANTP model with stationary ergodic input is always stable when E(D) < 1
λ

and λ < µ; there always exists a unique stationary ergodic version of total delay and sojourn

time. Moreover, coupling occurs: All sample paths of {(Wn,Vn) : n ≥ 0} with initial condition

(W0,V0) = (x, y) ≥ 0 (hence all sample paths of {Zn} with initial condition Z0 = z ≥ 0) become
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identical to those for which (W0,V0) = (0,0); thus (Wn,Vn) converges in total variation to the joint

distribution of (W0,V0) regardless of initial conditions, and Zn converges in total variation to the

distribution of W0 + V0, regardless of initial conditions.

3.7 I.I.D. input case; Harris recurrence of ANTP

Here we focus on the special case when each of the following two input sequences, {An} and

{(Sn,Dn)}, are iid and independent. Note that we are allowing Sn and Dn to be dependent for each

n, because in applications (as we suggested earlier) the Dn might naturally be taken as a function

of Sn.

These assumptions, which we will refer to as the iid input case, in particular imply that the

nominal FIFO queueing model (Ln+1 = (Ln+ Sn− An)
+) forms a FIFO GI/GI/1 queue. Moreover,

the cafe recursion, Wn+1 = (Wn+Dn− An)
+, too can be “viewed" as that of a FIFO GI/GI/1 queue

(but recall Footnote 1). {Wn : n ≥ 0} forms a Markov chain.

Since Tn = tn+1 − tn = An +Wn+1 −Wn we can re-write the recursion for {Vn} by using the

Markov chain {Wn} to drive it:

Vn+1 = (Vn + Sn − Tn)
+ (3.9)

=
(
(Vn + Sn − An − (Wn+1 −Wn)

)+
, (3.10)

=
(
Vn + Sn − An − ((Wn + Dn − An)

+ −Wn)

)+
, n ≥ 0. (3.11)

Focusing on Equation (3.11), and recalling the iid assumptions, it is immediate that for Mn
def
=

(Wn,Vn),

{Mn : n ≥ 0}, forms a Markov chain on R2
+ (3.12)

We next dive deeper, in the following two Propositions we exhaustively find regenerations

points of two kinds. We will be invoking results for Harris recurrent Markov chains; for a reference,

we refer the reader to Chapter VII, Section 3, Page 198 in [63].
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Proposition 3.7.1. [Regeneration Type I] For the stable iid input case (λ < µ, E(D) < 1
λ ), the

Markov chain Mn = (Wn,Vn) forms a Harris ergodic Markov chain. If

P(An > max{Sn,Dn}) > 0, (3.13)

then the successive times when Mn = (0,0) can be chosen as positive recurrent regeneration points.

In particular, both total delay, Wn+Vn, and total response time Wn+Vn+Sn form positive recurrent

regenerative processes.

Proof. From Theorem 3.6.1, {Mn} is ergodic and converges in total variation to a limiting station-

ary probability distribution π, regardless of initial conditions on M0. Thus for A ⊂ R2
+, if π(A) > 0,

then regardless of initial conditions, by ergodicity,

lim
N→∞

1
N

N∑
n=1

I{Mn ∈ A} = π(A) > 0, wp1.,

A is visited infinitely often. Thus π serves as a recurrence measure; {Mn} is positive Harris recur-

rent by definition.

Since the recursion for {Wn} describes a stable GI/GI/1 queue, we know that Pπ(W0 = 0) > 0.

Thus there exists a B > 0 such that Pπ(W0 = 0, V0 ≤ B) > 0. By Harris recurrence, the event

{Wn = 0,Vn ≤ B} thus occurs infinitely often and does so a positive proportion of time. From the

condition p = P(An > max{Sn,Dn} + δ) > 0, if we define k = [B/δ] (the smallest integer ≥ B/δ),

and define the event

Fk
n = {An+i > max{Sn+i,Dn+i} + δ, 0 ≤ i ≤ k − 1},

then whenever the event {Wn = 0,Vn ≤ B} occurs, the event Fk
n is independent of it and will occur

with probability pk = P(Fk
n ) > 0.

Using Equation (3.11), suppose that for some n, both events {Wn = 0,Vn ≤ B}, and Fk
n occur.
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Then since Wn+1 = (Wn +Dn − An)
+, we conclude that Wn+i = 0, 0 ≤ i ≤ k. This then implies that

Vn+1 =
(

Vn + Sn − An − (Wn+1 −Wn)

)+
= (Vn + Sn − An)

+

≤

(
B − δ

)+
,

and we can continue step-by-step to obtain Vn+2 ≤ (B − 2δ)+, · · · ,Vn+k ≤ (B − kδ)+ = 0. Thus we

have Wn+k = Vn+k = 0. By the Borel-Cantelli Lemma, the event {Wn = 0, Fk
n } will occur infinitely

often with a positive proportion of times ≥ pk Pπ(Wn = 0,Vn ≤ B) > 0. �

Remark 3.7.1. Although the two (stability) conditions E(A) > E(S), E(A) > E(D) imply P(A >

S) > 0 and P(A > D) > 0, they are not strong enough to imply P(A > max{S,D}) > 0, when S

and D are dependent. Counterexample: Choose P(A = 2.6) = 1 and choose

(S,D) =


(2,3) w.p. 0.5 ,

(3,2) w.p. 0.5.

Then P(A > S) = P(S = 2) = 0.5, P(A > D) = P(D = 2) = 0.5. But P(A > max{S,D}) =

P(A > 3) = 0. (We return to this example in Section 3.8.2.)

A natural sufficient condition for obtaining P(A > max{S,D}) > 0, would be that the interar-

rival time distribution has unbounded support, P(A > x) > 0, x ≥ 0.

Remark 3.7.2. The regenerative cycle length distribution is aperiodic because given that Mn = 0,

there is a positive probability P(An > max{Sn,Dn}), that Mn+1 = 0 as well.

3.8 What if P(An > max{Sn,Dn}) = 0?

Individually, each of {Vn} and {Wn} will empty infinitely often, a positive proportion of times.

The problem is that they might not do so at the same time n. So we need to derive more involved

regeneration points in such a case. There are other examples of this sort of phenomena: the classic
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FIFO GI/GI/c queue with c ≥ 2 can be stable but such that the system will never be found

empty by an arrival. For c = 2, for example, just take An = 1.5, n ≥ 0, Sn = 2, n ≥ 0. Then

ρ = λ/µ = 4/3 < 2, so stability holds. But all arriving customers (after n = 0) will find one server

free, but the other busy. Nonetheless, for any stable (ρ < c) FIFO GI/GI/c queue, regeneration

points can be found (see, for example, Chapter VII, Section 2, Page 344 in [63]).

Here we introduce another condition (other than the stability conditions):

Proposition 3.8.1. [Regeneration Type II]. Assume that in addition to the stability conditions, the

following condition holds:

P(D > S) > 0, (3.14)

Then positive recurrent regeneration points can be found for {Mn} of the form (X,0) where the

construction of X is given explicitly in Section 3.8.1 below.

Proof. First, note that since in general, Tn ≥ Dn, n ≥ 0, we have

Vn+1 = (Vn + Sn − Tn)
+ ≤ (Vn + Sn − Dn)

+, n ≥ 0.

Then we define a new random variable V̂n driven by the recursion

V̂n+1 = (V̂n + Sn − Dn)
+, n ≥ 0, (3.15)

for which we have the following bound

Vn ≤ V̂n, n ≥ 0, if V0 = V̂0. (3.16)

Now choose B > 0 sufficiently large so that Pπ(W0 = 0, V0 ≤ B) > 0 which implies the event

{Wn = 0, Vn ≤ B} will happen infinitely often. Choose a δ > 0 such that P(D > S+δ) > 0 ensured
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by Condition (3.14). Define k = dB/δe, and define the event

Fk
n = {{Dn+i > Sn+i + δ}, 0 ≤ i ≤ k − 1}.

Now suppose that for some n, both the events {Wn = 0, Vn ≤ B} and Fk
n occur. Then similar to the

proof of Proposition 3.7.1 (we use Equations (3.15) and (3.16) and set V̂n = Vn), we have V̂n+k = 0

and hence Vn+k = 0.

Meanwhile, Wn+k was constructed from only iid {(Dn+i, An+i) : 0 ≤ i ≤ k − 1}, conditional on

Fk
n , and is independent of all else; that is how Mn regenerates.

We can construct (via an algorithm) such a regeneration as follows:

3.8.1 Regeneration construction

1. Let {(Si,Di) : 0 ≤ i ≤ k − 1} denote k iid pairs conditional on each pair satisfying Fk
0 =

{Di > Si + δ}, 0 ≤ i ≤ k − 1.

2. Independently, let {Ai : 0 ≤ i ≤ k − 1} be iid. The Ai are not biased since Equation (3.16)

does not in any way depend on their values; for any such iid sequence of Ai, Vn+k = 0

because Ti ≥ Di regardless of their values; it is only the (Si,Di) that are biased.

3. Use as input {(Ai,Di : 0 ≤ i ≤ k − 1} (starting with W0 = 0) in the recursion

Wn+1 = (Wn + Dn − An)
+, 0 ≤ n ≤ k − 1.

4. Let X = Wk . Then when a regeneration occurs for Mn, it is distributed as (X,0).

�

3.8.2 The two conditions P(An > max{Sn,Dn}) > 0 or P(D > S) > 0 cover all ground

If P(D > S) > 0 does not hold, then P(D ≤ S) = 1 and hence we have max{S,D} = S. Since

P(A > S) > 0 always holds by stability (E[A] > E[S]), we then have P(A > max{S,D}) > 0 and

we can use Proposition 3.7.1 to furnish regeneration points. Thus we have now characterized the
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regeneration points for all stable systems: If P(An > max{Sn,Dn}) > 0, then regeneration points

are furnished by Proposition 3.7.1, otherwise P(D > S) > 0 must hold and the regeneration points

are given by Proposition 3.8.1

An explicit example of when Mn , (0,0) for n > 0

We show here that the example introduced in Remark 3.7.1 is a case where the model never

empties, and thus the regeneration points are of the more complex character in Proposition 3.8.1.

To see that Mn , (0,0) for n > 0, we will show that Wn and Vn move in opposite directions. Suppose

Wn+1 −Wn ≤ 0 for some n. Observe that Wn+1 = (Wn + .4)+ when Dn = 3 and Wn+1 = (Wn − .6)+

when Dn = 2, and so Wn+1 −Wn ≤ 0 happens only when (Sn,Dn) = (3,2). Now by the definition

of Tn we have

Tn = An + (Wn+1 −Wn) = 2.6 +Wn+1 −Wn ≤ 2.6

and thus

Vn+1 = (Vn + Sn − Tn)
+ = (Vn + 3 − Tn)

+ ≥ (Vn + .4)+ = Vn + .4

which implies that Vn+1−Vn ≥ 0.4. Thus we have shown that if Wn+1−Wn ≤ 0, then Vn+1−Vn > 0,

and thus we also have the contrapositive: if Vn+1 − Vn ≤ 0, then Wn+1 −Wn > 0. Thus when one

coordinate of Mn decreases to 0, the other must increase to some positive value; Mn , (0,0) for

n > 0.

To explicitly characterize the regeneration points described in Proposition 3.8.1, we choose a

b > 0 such that Pπ(W0 = 0,V0 ≤ b) > 0. Our objective is to find a minimal such b. Suppose

the event {Wn = 0,Vn ≤ b} occurs. We can then condition on alternating {(Sn+i,Dn+i) : 0 ≤ i ≤

m − 1} = {(2,3), (3,2), (2,3), . . . , (3,2)}, for any length m, which occurs with positive probability

(1/2)m. Using the recursion Wn+1 = (Wn + Dn − An)
+, we can compute that Wn+1 = 0.4,Wn+2 =

0,Wn+3 = 0.4, . . . and so on, with Wn+i alternating between 0.4 and 0.

With the values of Wn+i in hand, we can use the equation Tn+i = An+i + (Wn+i+1 −Wn+i) to see
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that Tn+i = 3 for even i and Tn+i = 2.2 for odd i. Now considering the Vn, we can compute

Vn+1 = (Vn − 1)+

Vn+2 = Vn+1 + 0.8

Vn+3 = (Vn+2 − 1)+

and so on, with Vn going down by 1 and up by 0.8 until we have Vn+i = 0 for some i. If Vn+i = 0,

we must have Wn+i = 0.4 (since Mn , (0,0) for n > 0), and hence 0.4 is the minimal value such

that Pπ(W0 = 0,V0 ≤ 0.4) > 0 holds. Thus, though the system does not empty, we can still define

regeneration points: we take those consecutive times n such that Mn = (0.4,0).
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[59] M. Nakip, V. Rodoplu, C. Güzeliş, and D. T. Eliiyi, “Joint forecasting-scheduling for the
internet of things,” 2019 IEEE Global Conference on Internet of Things (GCIoT), pp. 1–7,
2019.

[60] V. Rodoplu, M. Nakip, R. Qorbanian, and D. T. Eliiyi, “Multi-channel joint forecasting-
scheduling for the internet of things,” IEEE Access, vol. 8, pp. 217 324–217 354, 2020.

[61] E. Gelenbe, M. Nakıp, D. Marek, and T. Czachorski, “Diffusion analysis improves scal-
ability of iot networks to mitigate the massive access problem,” 2021 29th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 1–8, 2021.

[62] E. Gelenbe and K. Sigman, “Iot traffic shaping and the massive access problem,” IEEE
International Conference on Communications, pp. 2732–2737, 2022.

87



[63] S. Asmussen, Applied Probability and Queues (2nd Edition). Springer, 2003.

[64] S. Asmussen and P. W. Glynn, Stochastic Simulation. Springer-Verlag, 2007, New York.

[65] H. Schmidli, Risk Theory. Springer Actuarial Series, 2017.

[66] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes, 2nd Edition. Academic
Press, 1975.

88



Appendix A: Appendix A: Stationary workload for some

non-work-conserving M/G/1 preemptive LIFO queues

Proof of Theorem 1.2.1

Proof. Let N(λ) = N denote the stationary number-in-system. By Proposition 1.2.3, and Equa-

tion (1.10) N(λ) is a geometric random variable with success probability p0(λ) =
2E(e−λS)−1

E(e−λS) . Since

p0(λ) ↓ 0 as λ ↑ λ2, it is easily seen that

p0(λ)N(λ)=⇒exp(1), (A.1)

as λ ↑ λ2. Because p0 → 0, it follows from Proposition 1.2.3 that we only need to consider

V̂ d
= (V | V > 0) and we have

p0(λ)V̂(λ)
d
= p0(λ)Ŝr(λ) + p0(λ)

N(λ)∑
i=1

Si . (A.2)

By Markov’s Inequality and Lemma 1.2.2, p0(λ)Ŝr(λ)
p
=⇒0 as λ ↑ λ2 and hence can be ignored.

Now to handle the second term, we write

p0(λ)

N(λ)∑
i=1

Si =

∑N(λ)
i=1 Si

N(λ)
p0(λ)N(λ), (A.3)

and note that

∑N(λ)
i=1 Si

N(λ)
p
=⇒E[S] =

1
µ
, (A.4)

as λ ↑ λ2 because 1
n
∑n

i=1 Si
a.s.
→ E[S] as n→∞ and N(λ)

p
=⇒∞ as λ ↑ λ2.
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Thus it follows from Equations (A.1) and (A.3) that

p0(λ)

N(λ)∑
i=1

Si =⇒ exp(µ)

�

Proof of Theorem 1.3.1

Proof. Using the representation (1.36), the proof follows the same steps as in Theorem 1.2.1, but

there is additional complexity in establishing the convergence in probability as in Equation (A.4)

due to the fact that Ŝ = Ŝ(λ) depends on λ, and i.i.d. copies of it are included in the sum; we need

to establish ∑N(λ)
i=1 Ŝi(λ)

N(λ)
p
=⇒ E(Ŝi(λ2)), (A.5)

as λ ↑ λ2.

To this end, we first construct the random variables by using the inverse transform method from

simulation to couple them (see for example, Pages 37-38 in [64]): Let U,U1,U2 . . . denote i.i.d.

copies of Uni f (0,1) random variables (one can take, for example, as the probability space for a

uniform U, the interval (0,1) under Lesbesgue measure and take U(ω) = ω, the identity map). We

use the same U for constructing N(λ) for all λ < λ2, and we use Ui for constructing Ŝi(λ) for all

λ ≤ λ2. Then we re-write ∑N(λ)
i=1 Ŝi(λ)

N(λ)
=

∑N(λ)
i=1 Ŝi(λ2)

N(λ)
+ A, (A.6)

where

A =
1

N(λ)

N(λ)∑
i=1
(Ŝi(λ2) − Ŝi(λ)),

the error term. If we can show that A converges to 0 in probability as λ ↑ λ2, hence can be ignored,

then in the right-hand side of Equation (A.6) the i.i.d. summands only depend on λ2, and we get

the result exactly as was done for the PRD case in the proof of Theorem 1.2.1. To this end, observe

that since N(λ) is independent of the i.i.d. Ŝi(λ2) − Ŝi(λ), we have (via first conditioning on N(λ))
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that

E(|A|) ≤ E(|Ŝ(λ2) − Ŝ(λ)|),

where Ŝ(λ2) − Ŝ(λ) denotes Ŝ1(λ2) − Ŝ1(λ).

It thus suffices to show that E(|Ŝ(λ2) − Ŝ(λ)|) → 0.

We now note that due to our coupling from the inverse transform method (and the fact that

from Proposition 1.3.7, it follows that Ŝ(λ) converges in distribution to Ŝ(λ2) as λ ↑ λ2), that

Ŝ(λ) → Ŝ(λ2) w.p. 1 as λ ↑ λ2, and thus |Ŝ(λ2) − Ŝ(λ)| → 0,w.p. 1.

It thus suffices to show that the collection {|Ŝ(λ2) − Ŝ(λ)|} is uniformly integrable (in λ ≤ λ2).

We do so by noting further that |Ŝ(λ2) − Ŝ(λ)| ≤ X(λ) = Ŝ(λ2) + Ŝ(λ), and {X(λ)} is uni-

formly integrable: It is a non-negative collection such that X(λ) → X(λ2) = 2Ŝ(λ2) w.p. 1,

and E(X(λ)) → E(X(λ2)) = 2E(Ŝ(λ2)) < ∞ (finite by assumption). �

Proof of Proposition 1.3.11

Proof. We follow the key renewal theorem type proof that can be used to prove the Cramér-

Lundberg theorem/approximation for the standard M/G/1 queue (or in the context of ruin theory),

see for example Theorem 5.7 Page 95 in [65]. Because Q is geometric, letting Ŝ be distributed as

in Proposition 1.3.7 with density fŜ(x) and independent of VQ, we have

(VQ | VQ > 0) d
= Ŝ + VQ, (A.7)

and thus P(VQ > x) = (1 − p0)P(Ŝ + VQ > x), which in turn yields

P(VQ > x) = (1 − p0)P(Ŝ > x) +
∫ x

0
P(VQ > x − y)(1 − p0) fŜ(y)dy. (A.8)
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Although (1− p0) fŜ(y) is not a density function, gγ(y) = (1− p0)eγy fŜ(y) is by the definition of γ.

Multiplying each side of Equation (A.8) by eγx thus yields a renewal equation:

eγxP(VQ > x) = (1 − p0)eγxP(Ŝ > x) +
∫ x

0
eγ(x−y)P(VQ > x − y)gγ(y)dy. (A.9)

We now can apply the key renewal theorem, justified by: S is assumed to have a density thus so

does Ŝ (in particular it is non-lattice), (1 − p0)R (the mean of gγ) is finite, and the function h(x) =

(1 − p0)eγxP(Ŝ > x) =
∫ ∞

x gγ(y)dy − γ
∫ ∞

x h(y)dy, the difference of two decreasing Riemann

integrable (hence directly Riemann integrable) functions, hence is directly Riemann integrable

(see Equation 5.2 Page 190 in [66]). Thus

lim
x→∞

eγxP(VQ > x) =
1

(1 − p0)R

∫ ∞

0
(1 − p0)eγxP(Ŝ ≥ x)dx

=
1
R

∫ ∞

0
eγxP(Ŝ ≥ x)dx

=
1
R

E
(∫ S

0
eγxdx

)
=

p0
Rγ(1 − p0)

= C.

�

Proof of Lemma 1.3.2

Proof. Using L’Hôpital’s rule on
P(Ŝr > x)
e−(α−λ)x

,

we take the limit of the ratios of the densities:

(1 − p0)
−1 λeλxP(S > x)
(α − λ)e−(α−λ)x

∼ (1 − p0)
−1 λeλxce−αx

(α − λ)e−(α−λ)x
∼ (1 − p0)

−1 λc
α − λ

.

Thus P(Ŝr > x) ∼ (1 − p0)
−1 λc

α−λe−(α−λ)x .

Now we prove the existence of the Lundberg constant γ, E(eγŜ) = (1 − p0)
−1, by first finding
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an equivalent condition for its existence. By Proposition 1.3.3, we have E(eλS) − 1 = 1 − p0, and

then using Proposition 1.3.7, we have

E(eγŜ) = (1 − p0)
−1

∫ ∞

0
eγxg(x)(eλx − 1)dx = (1 − p0)

−1
[
E(e(γ+λ)S) − E(eγS)

]
.

Thus E(eγŜ) = (1 − p0)
−1 if and only if E(e(γ+λ)S) − E(eγS) = 1.

Since we assume that α > λ, the exponential tail asymptotic Equation 1.38 implies that

E(esS) < ∞ for all 0 ≤ s < α, and E(eαS) = ∞. Thus the function H(s) = E(e(s+λ)S) − E(esS)

is strictly increasing and continuous in s ≥ 0 such that H(0) = E(eλS) − 1 = 1 − p0 implying

that 0 < H(0) < 1. Therefore as long as E(e(s+λ)S) < ∞ for sufficiently large s, a solution γ to

H(s) = 1 exists. But H(s) < ∞ for s < λ − α and tends to ∞ as s ↑ λ − α; it must hit the value 1

for some s. �
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