
Magnetic Activity of Neutron Stars and Black Holes

Ashley Bransgrove

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2023



© 2023

Ashley Bransgrove

All Rights Reserved



Abstract

Magnetic Activity of Neutron Stars and Black Holes

Ashley Bransgrove

This dissertation deals with the following topics related to the magnetic activity of neutron stars

and black holes:

(I) Magnetic field evolution of neutron stars: We develop a numerical code which models the

internal magnetic field evolution of neutron stars in axisymmetry. Our code includes the Hall drift

and Ohmic effects in the crust, and the drift of superconducting flux tubes and superfluid vortices

inside the liquid core. We enforce the correct hydromagnetic equilibrium in the core. We also

model the elastic deformation of the crust and its feedback on the magnetic field evolution. We

find that (i) The Hall attractor found by Gourgouliatos and Cumming in the crust also exists for

B-fields which penetrate the core. (ii) If the flux tube drift is fast in the core, the pulsar magnetic

fields are depleted on the Ohmic timescale (∼ 150 Myr for hot neutron stars, or ∼ 1.8 Gyr for cold

neutron stars such as recycled pulsars, depending on impurity levels). (iii) The outward motion of

superfluid vortices during the rapid spin-down of a young highly magnetized pulsar, can partially

expel magnetic flux from the core when B . 1013 G.

(II) Neutron star quakes and glitches: We develop a theoretical model to explain the remarkable

null pulse coincident with the 2016 glitch in Vela rotation. We propose that a crustal quake

associated with the glitch strongly disturbed the Vela magnetosphere and thus interrupted its radio

emission. We develop the first numerical code which models the global dynamics of a neutron



star quake. Our code resolves the elasto-dynamics of the entire crust and follows the evolution of

Alfvén waves excited in the magnetosphere. We find that Alfvén waves launched by the quake

become de-phased in the magnetosphere, and generate strong electric currents, capable of igniting

electric discharge. Most likely, the discharge floods the magnetosphere with electron-positron

plasma, quenching the pulsar radio emission. The observed ∼0.2 s duration of the disturbance

indicates that the crust is magnetically coupled to the superconducting core of the neutron star.

(III) Pulsar magnetospheres and radio emission: We present an extreme high resolution

kinetic plasma simulation of a pulsar magnetosphere using the Pigeon code. The simulation

shows from first-principles how and where radio emission can be produced in pulsar

magnetospheres. We observe the self-consistent formation of electric gaps which periodically

ignite electron-positron discharge. The gaps form above the polar-cap, and in the bulk

return-current. Discharge of the gaps excites electromagnetic modes which share several features

with the radio emission of real pulsars. We also observe the excitation of plasma waves and

charge bunches by streaming instabilities in the outer magnetosphere.

(IV) Black hole magnetospheres and no-hair theorem: We explore the evolution of highly

magnetized magnetospheres on Kerr black holes by performing general relativistic kinetic plasma

simulations with the GRZeltron code, and general relativistic resistive magnetohydrodynamics

simulations with the BHAC code. We show that a dipole magnetic field on the event horizon

opens into a split-monopole and reconnects in a plasmoid-unstable current-sheet. The plasmoids

are ejected from the magnetosphere, or swallowed by the black hole. The no-hair theorem is

satisfied, in the sense that all components of the stress-energy tensor decay exponentially in time.

We measure the decay time of magnetic flux on the event horizon for plasmoid-dominated

reconnection in collisionless and collisional plasma.
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Preface

Magnetic fields are familiar in the laboratory, and indeed the household, where their

properties are well known; they are easily controlled, and they serve at our beck and call. In the

large dimensions of the astronomical universe, however, the magnetic field takes on a role of its

own, quite unlike anything in the laboratory. The magnetic field exists in the universe as an

‘organism’, feeding on the general energy flow from stars and galaxies ... Over astronomical

dimensions the magnetic field takes on qualitative characteristics that are unknown in the

terrestrial laboratory. The cosmos becomes the laboratory, then, in which to discover and

understand the magnetic field and apprehend its consequences.

— E. N. Parker (1979)

1



Chapter 1: Introduction

Neutron stars and black holes are the most exotic objects in the universe. They are the grave-

yard of stellar evolution; formed when normal stars run out of fuel to support themselves against

gravitational collapse. Isolated neutron stars and black holes are cold dead objects which are de-

void of chemical and nuclear reactions to heat their interiors. It is somewhat surprising then, that

they are prolific sources of electromagnetic activity. The origin of the activity can be traced to the

magnetic field. Although these objects have depleted all fuel, they are magnetically alive. Neu-

tron star interiors are threaded by ultra-strong magnetic fields, and they are surrounded by active

plasma magnetospheres. Black holes may be born with plasma magnetospheres, or acquire them

later in life by accreting magnetized matter. From the theoretical perspective, the magnetic activity

of neutron stars and black holes is poorly understood.

1.1 Neutron Stars

Since the discovery of the first pulsar more than fifty years ago theorists have been trying to

understand the puzzling behavior of neutron stars. The abundance of rich observations has made

neutron stars objects of intense interest, however understanding their dynamics has proved diffi-

cult. In the last decade numerical plasma simulations have made substantial progress in modeling

emission from pulsar magnetospheres. The internal dynamics of neutron stars has proved consid-

erably more challenging, with much unknown, and few firm theoretical results. This dissertation

attempts to address several aspects of neutron star internal dynamics and magnetospheric emission

including (i) magnetic field evolution (Chapter 2), (ii) glitches and star quakes (Chapter 3), and

(iii) radio emission, gaps, and instabilities in pulsar magnetospheres (Chapter 4).
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1.1.1 Magnetic Field Evolution

Figure 1.1: Dipole magnetic field strength vs. characteristic spin-down age of known galactic
neutron stars. Data is from the ATNF pulsar catalogue [1].

Pulsars are rapidly rotating, magnetized neutron stars, which emit powerful beams of coherent

radio emission. Young pulsars have spin periods of tens of milliseconds to seconds, and magnetic

field strength of order 1011 − 1012 G (eg. [2]), inferred from dipole braking spin-down (Fig. 1.1).

Millisecond pulsars are a subclass of radio pulsars which have spin periods 1.4 ms to ∼ 10 ms,

characteristic ages ∼ 109 − 1010 years, and far weaker magnetic fields (∼ 108 − 1010 G, Fig. 1.1).

Approximately 60% of millisecond pulsars exist in binary systems [1]. This leads to the hypothesis

that many millisecond pulsars were once regular pulsars, which spin-down below the radio death-

line by magnetic braking, and then spin-up by accretion from a companion star. These are the

so-called recycled pulsars. The depletion of pulsar magnetic fields during this process is not well

understood. One possibility is the burial of the surface field by the accretion flow (see eg. [3–5],

[6]). Another is expulsion of magnetic flux from the core ([7, 8]).

The most extreme class of neutron stars is magnetars. Canonical magnetars are persistent

X-ray sources which are powered by dissipation of free energy stored in ultra-strong magnetic
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Figure 1.2: A superconducting flux tube (black curve) is pushed out of the core by the expanding
neutron vortex array (vertical lines aligned with the angular velocity vectorΩΩΩ): (a) Side view and
(b) top view before expulsion, (c) top view after expulsion. Figure by M. Ruderman [7].

fields (1014 − 1015 G) in their interiors ([9], see also [10] for a review). Magnetars also display

several types of extreme transient emission, including the months-long ‘outbursts’ during which

their X-ray flux increases up to a factor of ∼ 1000 compared to the quiescent emission [10]. They

also emit short hard X-ray bursts [11] and fast radio bursts (FRBs) [12]. The most spectacular

radiative phenomena are the magnetar giant flares which peak in the soft γ-ray band, and reach

luminosities up to 1047 erg s−1. The magnetar activity is believed to be due to the evolution of

super-critical magnetic fields which shear the crust, and strongly disturb the magnetosphere ([13–

15], [16]). However, the transport of magnetic stress and energy from the neutron star interior into

the magnetosphere is not well understood.

Neutron star crusts consist of a solid ion lattice immersed in a sea of relativistic electrons. Free

neutrons are present at densities greater than neutron drip ρdrip ≈ 4.3 × 1011 g cm−3 [17]. The

core is a soup of neutrons, protons, and electrons. The neutron star matter is highly degenerate,

and scattering of charged particles is strongly suppressed except for those near the fermi surface.

Therefore, electrical currents (and magnetic fields ∇ × BBB = [4π/c]jjj) in neutron star interiors are

generally expected to persist for a very long time.

Magnetic field evolution in the crust is due to Hall drift (advection of magnetic field lines by

electron currents), and ohmic diffusion (dissipation of electron currents due to finite resistivity of

the crustal matter) [18, 19]. When neutron stars are young and hot the main channel for magnetic
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field evolution in the core is ambipolar diffusion [19, 20] — drift of magnetic field lines (and

proton-electron plasma) relative to the neutron liquid. Friction on the plasma is due to strong

nuclear collisions of protons and neutrons. Hall drift, ohmic diffusion, and ambipolar diffusion are

generally well understood effects in plasma astrophysics, however little work has been done on

global self-consistent neutron star models which include crust-core coupling. Several works have

considered magnetic evolution in the crust and the core as separate components [21–25].

When a neutron star has cooled sufficiently nucleons in the core form Cooper pair conden-

sates which are described by macroscopic wavefunctions [26]. The critical temperatures of the

phase transitions are uncertain, but higher than the observed temperatures of all but the youngest

neutron stars [27]. The protons are expected to form a type-II superconductor with the magnetic

flux quantized in an array of microscopic flux tubes [28]. Similarly, the neutrons are expected to

become superfluid, with the macroscopic rotation of the star manifested in an array of microscopic

quantum vortices [29]. As the star spins down due to magnetospheric torques, the neutron vortex

array expands outward. The neutron vortices are magnetized (due to the entrainment effect), and

their outward motion may push flux tubes out of the core (Fig. 1.2) [7, 30, 31]. However there is

considerable controversy over the flux tube friction and the flux tube equation of motion [8, 32].

Magnetic field evolution of superconducting neutron stars is therefore less certain than the normal

case.

Chapter 2 of this dissertation explores the evolution of magnetic fields inside strongly mag-

netized neutron stars in axisymmetry. We present models which include the Hall drift and Ohmic

effects in the crust, and the drift of superconducting flux tubes and vortices inside the core. We also

include the elastic deformation of the crust and it’s feedback on the magnetic field evolution. We

find that including the crust-core coupling results in a dramatically different evolution than models

which consider the crust and the core as separate components.
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1.1.2 Glitches

Pulsars are highly stable rotators which slowly spin down due to magnetospheric torques. How-

ever they show two types of rotational irregularity dubbed timing noise and glitches. Timing noise

is the slow stochastic deviation from regular spin-down, most prominent in young pulsars [33, 34].

A glitch is a sudden increase in the spin frequency ν, sometimes accompanied by a change in the

spin-down rate Ûν. The first pulsar glitch was observed in the Vela pulsar [35], and by now there

are more than 520 recorded glitches in 180 pulsars [36] with glitch magnitude (relative frequency

change) ranging from ∆ν/ν ≈ 10−12 to ∆ν/ν ≈ 10−5 [37]. The so-called ‘Crab-like’ pulsars feature

strong jumps in spin-down rate with ∆ Ûν/ Ûν � ∆ν/ν, power-law glitch-size distributions, and ex-

ponential wait-time distributions [38]. The so-called ‘Vela-like’ pulsars glitch quasi-periodically,

with consistently large magnitude [37].

The standard theoretical picture of a pulsar glitch involves a sudden transfer of angular mo-

mentum to the crust due to the catastrophic unpinning of superfluid vorticity [39]. In this picture,

the crust (ion lattice) spins down due to external torques while the rotation of the crustal neutron

superfluid remains unchanged as long as its vorticity (quantized vortices) is pinned to the lattice.

When the rotation mismatch builds up to some threshold, many vortices are unpinned simultane-

ously and migrate away from the axis of rotation, spinning down the superfluid and spinning up

the crust, thus bringing the two components closer to corotation. The mechanism which causes the

nearly simultaneous unpinning of billions of superfluid vortices remains a mystery.

The origin of pulsar glitches has been difficult to probe observationally because they occur in

the neutron star interior, and electromagnetic counterparts (if they exist) are challenging to detect.

In Chapter 3 of this dissertation we discuss the recent first ever observation of a radiative change

associated with a glitch in a canonical radio pulsar [40]. We present a star quake model which can

explain the coincidence of the glitch and the major magnetospheric transient which switched off

the pulsar radio emission.
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1.1.3 Magnetospheres and Radio Emission

Although pulsar radio emission constitutes a very small fraction of the available spin-down

power (Lradio/Lsd ∼ 10−6), theorists have been fascinated by it’s rich phenomenology for decades.

The emission is coherent and broadband, and has been observed from 10’s of MHz to ∼ 350 GHz

[41]. The radio emission from most normal (non-recycled) pulsars occupies a small extent of the

rotational phase, which is consistent with an emission site on the narrow open field lines above the

pulsar polar cap. While individual pulses are highly variable, integrating (averaging) over hundreds

or thousands of pulses yields a stable profile which is unique to a given pulsar. The integrated

profiles often contain multiple components. The emission is mostly linearly polarized with some

pulsars displaying a considerable fraction of circular polarization. Individual pulses often display

‘microstructure’ (short quasi-periodic pulses superimposed on the broader pulse envelope), which

may be a signature of the underlying emission mechanism (for a recent review see [42]).

The problem of pulsar radio emission is well defined and simple to formulate. One must un-

derstand the mechanism which generates radio frequency waves in the highly magnetized plasma

near the neutron star surface. The physical ingredients which enter the problem are as follows: On

the short light-crossing timescales of interest, the star is a perfect conductor with the magnetic field

frozen-in. Rotation of the magnetized conductor induces a voltage which lifts electrons and ions

from the stellar surface [43]. Particles are confined to move along the field lines like beads on a

wire. Electrons emit gamma-rays by curvature emission as they move along the curved field lines.

Near the star the gamma-rays convert to e± off the ultra-strong magnetic field [44]. Further away

from the star, the magnetic field is weaker, and the dominant channel for e± creation is photon

collisions. The created e± plasma is collisionless and very highly conducting because the mean-

free path for Coulomb collisions is larger than the system size. The e± plasma supports only three

propagating eigenmodes: the Alfvén mode, the superluminal ordinary (O) mode, and the extraor-

dinary (X) mode [45]. Any theory of pulsar radio emission must account for (i) the production of

e± pair plasma which occurs on the open magnetic field lines, and (ii) the excitation of one of the

eigenmodes of the plasma. The propagation of the excited mode through the magnetosphere and
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its escape as observable radiation is also an important (but non-trivial) problem [45–48].

Figure 1.3: An e± discharge in a gap (region of unscreened electric field EEE · BBB , 0). An e− (1) is
accelerated along the magnetic field and emits a curvature photon (2) which converts to a secondary
e± (3). The created e± creates further generations of pairs (4-7). Figure by M. Ruderman [44].

Early models of the radio emission mechanism invoked masers and beam plasma instabilities.

However maser models were not widely accepted, and the growth rate of streaming instabilities

in relativistic pair plasma is strongly suppressed by the ultra-high Lorentz factor of the particles

(for a detailed discussion see [42]). More recently it was proposed that the e± discharge in a gap

(Fig 1.3) could directly excite electromagnetic waves [49–51]. The problem is difficult because

plasma currents in the gap are determined by the physics of e± discharge (Fig. 1.3) which is highly

time dependent. On the other hand, the current must be consistent with ∇×BBB required by the global

magnetosphere. A self-consistent solution is required, and it is provided by modern numerical

simulations.

The particle-in-cell (PIC) method solves kinetic plasma dynamics on a computer [52–56].

Plasma particles are moved by the electromagnetic field, and the evolution of the field (on a discrete

grid) is in turn determined by the particle motion, forming a well-defined non-linear dynamical

system. Local one dimensional (1D) PIC simulations demonstrated the direct excitation of plasma

waves during a polar cap e± discharge [49, 57]. However, due to symmetries of the simplified 1D

setup, the waves were purely electrostatic in nature, and did not propagate in the plasma rest-frame.
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The seminal work by [50] showed that pulsar radio emission can be generated directly by the time-

dependent e± discharge above the polar-cap. The authors performed local 2D PIC simulations of a

polar cap gap in cartesian geometry, and showed that electromagnetic (O-mode) waves are generi-

cally excited in powerful discharges. The location of the e± discharge and wave excitation depends

on the large-scale currents and non-local plasma supply in the global magnetosphere.

Global PIC simulations with self-consistent e± creation are essential to determine the geometry

of radio emitting regions in pulsar magnetospheres, but so far they have been unable to achieve suf-

ficient spatial resolution due to the prohibitive computational cost. In Chapter 4 of this dissertation

we present the largest ever global kinetic plasma simulation of a pulsar magnetosphere. For the

first time we achieve sufficient spatial resolution to resolve wave excitation by electric discharges

and plasma streaming instabilities in a global magnetosphere.

1.2 Black Holes

The study of black holes began as a purely theoretical endeavor. However, with the develop-

ment of X-ray telescopes in the 1960’s and the recent horizon scale observations by EHT (event

horizon telescope), it is now essential to understand their emission. This dissertation explores the

evolution of plasma-filled magnetospheres on Kerr black holes (Chapter 5).

1.2.1 Magnetospheres

The no-hair theorem states that the global spacetime metric of isolated black holes is com-

pletely described by three parameters: the mass, spin, and electric charge [59]. All other fields

(hair) are radiated away or swallowed by the black hole on a light crossing timescale in order to

reach this asymptotic state. The classical example is a black hole which formed by the collapse

of a magnetized star (Fig. 1.4). The star is assumed to be highly conducting so that the magnetic

field lines are frozen-in, and the magnetosphere is assumed to be vacuum (no plasma). When

the star collapses, the in-falling matter pulls magnetic field lines through the newly formed event

horizon. The magnetic field which remains outside the event horizon is then radiated away as vac-
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Figure 1.4: Collapse of a magnetized star into a black hole. The star is surrounded by a vacuum
dipole magnetosphere. The panels display (a) a star with a dipolar magnetic field, and (b) the
black hole formed immediately after collapse. Panels (c) and (d) show the radiation of the dipole
magnetic field in accordance with the no-hair theorem. Figure by K. Thorne [58].

uum waves. The problem as formulated in this way is well studied but unrealistic. Plasma will

inevitably exist in the magnetosphere around the newly formed event horizon. Furthermore, black

holes can generate a self-regulated plasma supply through electron-positron discharges near the

event horizon [60–62]. The discharges can fill the magnetosphere with plasma in a light crossing

timescale.

The presence of highly conducting plasma dramatically changes the vacuum electrodynamics

assumed in the classical no-hair theorem (Fig. 1.4). In the limit of vanishing resistivity, the flux on

the event horizon is perfectly conserved, and the magnetic field cannot slide off the event horizon

[63]. The only way for the black hole to lose its magnetic field is for the field to change its

topology (reconnect). Fast magnetic reconnection occurs through the tearing instability [64]. A

chain of plasmoids (magnetic loops containing plasma) forms along the reconnection layer which

are ejected at relativistic velocities. For highly magnetized collisionless plasma (as expected in a

black hole magnetosphere), the reconnection rate vrec ∼ 0.1c is independent of the magnetization

[65–67]. The lifetime of the magnetic flux on the event horizon should be determined in part by

this universal reconnection rate.
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Previous work in an ideal fluid approximation correctly established the qualitative evolution

of a dipole magnetic field on the event horizon [63]. However, it neglected collisionless physics,

and was performed at low numerical resolution such that the magnetic reconnection was not in the

correct asymptotic regime of high Lundquist number [63, 68]. This lead to the incorrect conclusion

of an extremely long lifetime of the magnetic flux on the event horizon, dictated by the resistive

timescale of the plasma [63].

In Chapter 5 of this dissertation we present GRPIC (general-relativistic particle-in-cell) and

GRRMHD (general-relativistic resistive magnetohydrodynamics) simulations which are converged

and produce the correct reconnection physics. We show that the no-hair theorem is satisfied, in the

sense that all components of the stress-energy tensor decay exponentially in time, and we measure

the decay time of magnetic flux on the event horizon.
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Chapter 2: Magnetic Field Evolution of Neutron Stars

2.1 Introduction

There is a rich variety of neutron stars with magnetic field strengths which differ by several

orders of magnitude, and vastly different behaviors. The evolution of neutron star magnetic fields

can provide insight into the origin, behavior, and populations of neutron stars [eg. [69]].

There are several well defined classes of neutron stars, with a number of transient objects dis-

playing behavior somewhere between these classifications, which suggests that the galactic popu-

lation of neutron stars may be explained by different ages and birth field strengths. The discovery

of radio emission from magnetars [70], and X-ray bursts from so-called “high-B pulsars" [71] adds

evidence to this argument. While observations point to a unification of neutron star classes [72],

further theoretical work is required to complete this picture. Recent discussion of a unification

was based on the models of magnetic field and thermal evolution [73]. It is likely that any such

unification would see a given neutron star traverse a variety of classes over the course of its life,

with its classification at any time having a strong dependence on magnetic field strength, and con-

figuration. Indeed studying the evolution of neutron star magnetic fields is key to understanding

how a neutron star may transition from one class of object to another.

The evolution of magnetic fields in neutron star crusts is due to Hall drift and Ohmic diffusion.

It was studied by [18], and more definitively by [19]. Hall drift is the non-linear advection of

magnetic fields, by the electron currents supporting ∇ × BBB = 4π/cjjj. The Hall effect can generate

large magnetic shear stresses, countered by the solid stress of the crust. In reality the crust yields

elastically to Hall-induced stresses up to a point, beyond which it deforms in the plastic regime

[see eg. [14, 16, 74]]. Ohmic diffusion is caused by the finite resistivity of the crustal material due

to electron scattering by the ion lattice. This process converts magnetic energy to heat, in contrast

12



to Hall drift which conserves magnetic energy. In neutron stars with magnetic fields B & 1013 G,

the Hall timescale is shorter than the Ohmic timescale, making Hall drift the dominant channel of

evolution for the crustal magnetic field.

Advances in numerical techniques have allowed Hall drift and Ohmic diffusion of 2D axisym-

metric magnetic fields to be studied in numerical simulations, with a variety of pseudo-spectral

and grid based methods [[75], [22], [23]]. The basic finding was that Hall drift could enhance the

transfer of magnetic energy to smaller scales, where Ohmic diffusion proceeds more efficiently.

[24] found that Hall drift drives itself toward a configuration with uniform electron angular veloc-

ity along poloidal field lines. This “Hall attractor" is analogous to Ferraro’s Law in ideal MHD, in

which twisted field lines in a cylindrical configuration will evolve to a state with constant angular

velocity along field lines [76]. The Hall attractor has interesting implications for the active periods

of magnetars and other transients. Most recently Hall drift has been simulated numerically in 3D

[77]. [78] found that Hall drift can generate localized patches of high magnetic field strength in a

magnetar crust, where significant heat can be generated through Ohmic diffusion.

The majority of numerical studies of magnetic field evolution in neutron star crusts do not in-

clude the coupled evolution of the core magnetic field. Considerable work has gone into modeling

fields which are confined to the crust, however there is no reason why this should be so. Only one

numerical study of the coupled crust-core evolution has been published [79]. This paper presents

our first step in building detailed numerical models for the B-field evolution in neutron stars that

include the field in both the crust and the core, with important differences from [79]. Namely, 1.

We enforce the correct hydromagnetic equilibrium in the core, 2. We model the twist exchange

between the crust and the core, 3. We consider much faster evolutionary timescales for the core

magnetic field, and 4. We model the elastic back-reaction on the magnetic field evolution in the

crust.

There are a number of proposed channels of evolution for the core magnetic field. Most well

known is the ambipolar diffusion [19], which is the evolution induced by the drift of the charged

component through the neutral one, ie. the drift of the proton-electron plasma through the neu-
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trons. Ambipolar diffusion is limited by two factors. Firstly, there is friction between protons

and the background neutron fluid. Secondly, departures from chemical equilibrium create pressure

gradients which choke the flow of charge currents. Gradients in chemical potential can be erased

by weak nuclear interactions. Recently ambipolar diffusion was modeled in 2D by [25].

Neutron stars cool as they age and their cores are expected to become superconducting and

superfluid (unless the magnetic field is ultra-strong, B > 1016 G, and quenches superconductivity).

This results in the quantization of vorticity into vortex lines and magnetic flux – into flux tubes. An

important magnetic flux transport mechanism is the drift of superconducting flux tubes. [8] shows

that flux tubes in a superconducting core can move with viscous dissipation through the core fluid,

under their own self tension. The drift of flux tubes has a typical velocity v ≈ 4 × 10−7 cm s−1

for typical pulsars [see section 3 of [8]], making this effect relevant to the depletion of pulsar

magnetic fields. We note straight out that this result is controversial, and there is no consensus

about it in the theoretical literature; we discuss it below. Furthermore, [29] pointed out that the

spin-down of superfluid neutron stars must be associated with the outward motion of superfluid

neutron vortices. [30], and [7] showed that due to entrainment of superfluid protons the neutron

vortices have spontaneous magnetization and that as consequence, there is a strong interaction

between superfluid vortices and superconducting flux tubes. In this picture, the flux tubes may be

pulled along with neutron vortices during spin-down.

Axisymmetric magnetic configurations satisfy an MHD equilibrium condition in the core,

which we formulate and implement in our simulations. We find that with this equilibrium, the

magnetic field in the crust and the core asymptotically settles into the Hall Attractor of [24], which

was established for crust-confined fields. We explore the evolution of the core magnetic field under

Jones’ flux tube drift. Our simulations suggest that a combination of Jones’ flux tube drift in the

core, and Ohmic diffusion in the crust can deplete pulsar magnetic fields on a timescale of 150

Myr, if the crust is hot (T ∼ 2 × 108 K). We also consider the hypothesis that a weak-field mag-

netar can be produced by a neutron star with initially rapid spin and dipole field smaller than the

conventional magnetar field. In this scenario, the field is pushed out by the neutron vortices into
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the crust and thus some of the rotational energy is transformed into magnetic energy. We show

that for magnetic fields B & 2 × 1013 G, the combination of a strong magnetic field, and large spin

period means the core field cannot be expelled by the vortices. When B . 1013 G, the magnetic

field is partially expelled from the core, which launches large scale Hall waves from the crust-core

interface. However, these Hall waves are not strong enough to break the crust.

An outline of the paper is as follows. In Section 2.2 we present the evolution equations for the

magnetic field in the crust, for magnetically induced elastic back-reaction of the crust, and for the

magnetic field evolution in the core. In Section 2.3 we present our results, and in Section 2.4 we

discuss observational implications. Numerical details and derivations of key equations are given

in the Appendices.

2.2 Equations and Formalism

2.2.1 Magnetic Field Evolution in the Crust

The evolution of the magnetic field in the crust is governed by the equation

∂BBB
∂t
= ∇ × (vvv × BBB) − ∇ × (η∇ × BBB) , (2.1)

[[18], [19]] where the first term here represents advection of the field by the electron fluid with

velocity field vvv, and the second term represents Ohmic diffusion with diffusivity η = c2/4πσ.

Here σ is the electrical conductivity of the crust. In contrast to previous work, our model takes

into account the velocity of the ion lattice, ÛξÛξÛξ. The velocity of the electron fluid is then given by

vvv = vvvhall + ÛξÛξÛξ, (2.2)

where vvvhall is the Hall drift velocity,

vvvhall = −
c

4πnee
∇ × BBB. (2.3)
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There are two contributions to ÛξÛξÛξ,

ÛξÛξÛξ = ÛξÛξÛξel + ÛξÛξÛξpl. (2.4)

Here ÛξÛξÛξel is the elastic deformation, and ÛξÛξÛξpl is the plastic deformation. For now we neglect the

plastic response of the crust, and content ourselves with the elastic deformation.

We now follow closely the formalism of [24]. In axisymmetry the magnetic field can decom-

posed into poloidal and toroidal components, and expressed in terms of the scalar functions Ψ and

I. The magnetic field is written as a sum of poloidal (BBBp) and toroidal (BBBT) components

BBB = BBBp + BBBT = ∇Ψ × ∇φ + I∇φ, (2.5)

where we work in spherical coordinates (r, θ, φ), and define ∇φ ≡ êφ/r sin θ. The function Ψ is

known as the flux function (identical in form to the Stokes stream function), since 2πΨ(r, θ) is

the poloidal magnetic flux passing through the polar cap with radius r and opening angle θ. The

function I has the interpretation that cI(r, θ)/2 is the poloidal current passing through the same

polar cap, and hence is often called the poloidal current function.

We now express the evolution Equation (2.1) in terms of the scalar functions Ψ and I as defined

in Equation (2.5). Evolving fields in this formalism has the advantage of automatically preserving

∇·BBB = 0 at all times, provided the scalar functions Ψ and I are differentiable. We begin by defining

the quantity

χ =
c

4πener2sin2θ
, (2.6)

as in [24]. We also write the toroidal current as

jjjT =
c

4π
∇ × BBBp = −

c
4π
∆
∗
Ψ∇φ, (2.7)

and the electron angular velocity as

Ωe = Ωhall +Ωel = −
jT

r⊥nee
+
v
φ
el

r⊥
= χ∆∗Ψ +

v
φ
el

r⊥
, (2.8)
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with r⊥ ≡ r sin θ the cylindrical radius, and we have used the Grad-Shafranov operator,

∆
∗ =

∂2

∂r2 +
sinθ
r2

∂

∂θ

(
1

sinθ
∂

∂θ

)
. (2.9)

Using the above definitions, the Hall evolution equation reduces to the following two scalar equa-

tions, in terms of the poloidal and toroidal scalar functions

∂Ψ

∂t
− r2sin2θ χ(∇I × ∇φ) · ∇Ψ =

c2

4πσ
∆
∗
Ψ, (2.10)

∂I
∂t
+ r2sin2θ[(∇Ωe × ∇φ) · ∇Ψ + I(∇χ × ∇φ) · ∇I] =

c2

4πσ

(
∆
∗I −

1
σ
∇I · ∇σ

)
. (2.11)

These evolution equations are the same as those in [24], except for the addition of the elastic

back-reaction velocity of the crust. We assume a neutron star radius of r∗ = 10 km, and a crust

thickness of 1 km, so that the crust-core interface is at radius rc = 9 km. We use the electron

density profile and electrical conductivity provided by [24] who take ne ∝ z4, with z the depth into

the crust, and σ ∝ n2/3
e , which is somewhere between the density scalings expected for phonon

scattering and impurity scattering. The electron number density at the base of the crust is given as

ne = 2.5×1036cm−3. We do not include the upper crust with density ρ < 1011 g cm−3 to avoid time

step issues in the low density regions where the evolution is very fast. The electrical conductivity

varies from σ = 3.6 × 1024 s−1 at the base of the crust, to σ = 1.8 × 1023 s−1 at the surface, which

is appropriate for phonon scattering at T ≈ 2 × 108 K [24]. We can determine the characteristic

timescales of evolution of the Hall and Ohmic terms, with L a characteristic length scale, taken to

be the thickness of the crust (1 km) and ne and σ evaluated at the base of the crust,

tohm ∼
4πσL2

c2 = 13.5
(

L
1km

)2 ( σ

3.6 × 1024 s−1

)
Myr, (2.12)

thall ∼
4πeL2ne

cB
=

1.6
B14

(
L

1km

)2 ( ne

2.5 × 1036 cm−3

)
Myr (2.13)

where B14 is the magnetic field strength in units of 1014G.
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2.2.2 Matching the Crust Field to the Magnetosphere

In order to solve the evolution Equations (2.10) and (2.11) we need two boundary conditions,

for I and Ψ at r∗, which may also be formulated as conditions on BBB(r∗, θ). In this work we are

considering a slow evolution of magnetic fields on timescales over which any episodic magne-

tospheric twists (magnetar activity) must be erased [80]. It is therefore reasonable to assume a

vacuum magnetic field as the boundary condition at the surface, as was previously shown by [81],

[82], and [25]. Demanding zero current means that ∇×BBB = 0 outside the star. So we can write the

vacuum field as

BBB = ∇V, (2.14)

where V is a scalar function. We also assume that there is no surface current at r∗ due to the finite

electrical conductivity of the outer crust. Thus, the two boundary conditions express the continuity

of the tangential components of the magnetic field Bφ, Bθ , at the surface, so that they match a

vacuum solution outside the star:

(i) The continuity of Bφ implies for the crustal field Bφ(r∗, θ) = 0, since in any axisymmetric vac-

uum magnetosphere Bφ = (r sin θ)−1∂V/∂φ = 0. This gives I(r∗, θ) = 0.

(ii) The continuity of Bθ gives a condition on ∂Ψ/∂r = −r sin θBθ — This boundary condition is

formulated below (no boundary condition is imposed on the values of Ψ(r∗, θ) – its evolution is

calculated from Equation (2.10) in the crust).

The constraint ∇ · BBB = 0, gives the Laplace equation for V , ∇2V = 0. Bθ is determined by this

Laplace equation outside the star for given surface values of Br . Because V −→ 0 as r −→ ∞, we

can write the solution as a multipolar expansion. For axisymmetric magnetic fields V is given by

V(r, θ) =
∞∑

l=1

al

r l+1 Pl(cos θ), (2.15)
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where Pl(cos θ) are the Legendre polynomials. The sum starts at l = 1 because there are no

magnetic monopoles, and al are expansion coefficients to be determined. Now using the definition

of the magnetic field in Equation (2.14), we can write

Br(r, θ) =
∂V
∂r
= −

∞∑
l=1
(l + 1)

al

r l+2 Pl(cos θ). (2.16)

We can invert this expression to solve for the expansion coefficients, and evaluate it at r∗ which

gives

al = −r l+2
∗

2l + 1
2l + 2

∫ π

0
Pl(cos θ)Br(r∗, θ) sin θdθ. (2.17)

Using these expansion coefficients, we can calculate Bθ using Equation (2.5),

Bθ(r, θ) =
1
r
∂V
∂θ
=

∞∑
l=1

al

r l+2
dPl(cos θ)

dθ
= −

1
r sin θ

∂Ψ

∂r
. (2.18)

This gives the boundary condition for Ψ on the surface of the star as

∂Ψ

∂r

����
r∗
= − sin θ

∞∑
l=1

al

r l+1
∗

dPl(cos θ)
dθ

. (2.19)

2.2.3 Magneto-elastic Evolution of the Crust

The elastic response of the neutron star crust to magnetic stress is governed by the elastody-

namic wave equation, with an external Lorentz driving force. We begin by defining the Lagrangian

displacement field of the neutron star crust as

ξξξ(rrr, t) ≡ r′r′r′ − rrr, (2.20)

where rrr is the position of a point in the crust before deformation, and r′r′r′ is the position of that point

after the deformation. The elastodynamic wave equation can be derived from Newton’s second law.

We restrict ourselves to the regime of linear elastodynamics and only consider small, reversible
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deformations of the crust. In this framework the stress depends linearly on the displacement, and

we may express the stress as the sum of elastic stress tensor using Hooke’s Law, and the magnetic

stress using the magnetic part of the Maxwell tensor. It has been shown that the speed at which

shear waves propagate in a neutron star crust is remarkably constant over its depth [83]. We work

in the approximation that shear waves propagate at constant speed [vsh ≈ 108 cm s−1, [83], [84]]

throughout the crust, and also that they propagate at the same speed in all directions (isotropic).

We estimate the shear modulus as

µ = ρv2
sh ≈ 1028ρ12 erg cm−3, (2.21)

where we assume the mass density scaling ρ ∝ z8. Specifically, we chose ρ12 = 0.5[(1.1r∗ −

r)/0.1r∗]8, which varies from ρ = 1.3 × 1014 g cm−3 at the base of the crust, to ρ = 5 × 1011 g

cm−3, our chosen surface cutoff. Additionally, assuming an incompressible crust (∇ · ξξξ = 0), and

a spherically symmetric unevolving shear modulus µ(r) yields the elastodynamic wave equation

ρ
∂2ξξξ

∂t2 = (∇µ · ∇)ξξξ − (ξξξ · ∇)∇µ + µ∇
2ξξξ +

1
4π
(∇ × BBB) × BBB. (2.22)

The term on the left-hand side (LHS) of Equation (2.22) is due to the inertia of the crust. Since

Hall drift occurs on timescales much longer than the elastic wave crossing time, we may neglect the

inertial term in these models. The first three terms on the right-hand side (RHS) of Equation (2.22)

are due to the elastic restoring forces of the solid crust, and the last term is due to Maxwell stresses.

With the neglect of the inertial term, magneto-elastic equilibrium is given by

1
4π
(∇ × BBB) × BBB = −(∇µ · ∇)ξξξ + (ξξξ · ∇)∇µ − µ∇2ξξξ. (2.23)
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We, however, prefer to deal with an evolution (rather than the above constraint) equation for ξ and

therefore introduce a small non-zero velocity

vvvel ≡
∂ξξξ

∂t
. (2.24)

It corresponds to a small deviation from the force balance that we write in a relaxation/damping

form fff damp = −γρvvvel. The value of γ is not important as long as it is small enough, so that the

system evolves very close to the force balance. Effectively, this is a dynamic way of implementing

the constraint on ξ required by the force balance. This yields the evolution equation,

∂ξξξ

∂t
=

1
γρ

[
(∇µ · ∇)ξξξ − (ξξξ · ∇)∇µ + µ∇2ξξξ

]
+

1
4πγρ

(∇ × BBB) × BBB, (2.25)

which when evolved in the limit of small γ will tend toward the adiabatic solution. This relaxation

method is equivalent to solving a matrix problem to find ξ, but avoids the difficulty of equations

which are implicit in the evolution of BBB. The challenge in choosing the value of γ is on the one

hand to ensure the relaxation is fast enough so that the crust is in equilibrium between the magnetic

and elastic forces, but on the other hand is slow enough so that the numerical computations do not

become too costly. It is helpful to consider the characteristic relaxation timescale

tre = γ
L2

v2
sh

, (2.26)

and require tre � thall. This gives the criterion

γ �
4πnee

B
v2

sh. (2.27)

The back reaction of the crustal motion on the evolution of the magnetic field occurs through the

equation
∂BBB
∂t
= ∇ × [(vvvhall + vvvel) × BBB] − ∇ × (η∇ × BBB), (2.28)
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as shown in the previous section.

2.2.4 Magnetic Field Evolution in the Core

There are a number of proposed mechanisms which can transport magnetic flux in neutron star

cores, and may lead to an understanding of numerous observable phenomena. Below we outline

each of the effects we implement in our numerical scheme, motivate the equations of motion, and

discuss the relevant timescales of evolution. We assume a simplified model for the core consisting

of protons, neutrons and electrons. We also assume that the neutrons are superfluid, and the protons

exist in a type-II superconducting state [85]. Observations of the Cas A remnant indicate that the

core is likely to be superfluid and superconducting ≈ 300 yr after birth, and at a temperature

7 − 9 × 108 K (greater than the temperatures we consider in our models) [86, 87]. Hence, the

physics of the phase transition itself may be safely neglected in this work.

Hydromagnetic equilibrium

In this section we outline two methods for studying the evolution of neutron star core magnetic

fields on long (Hall) timescales, while maintaining stability on dynamical (MHD) timescales, and

taking into account fluid degrees of freedom. The core has a very high conductivity and we treat

it as an ideal conductor, so that the field is perfectly coupled to the fluid. It is then instructive to

consider displacements of the fluid, since these correspond directly to degrees of freedom of the

field. Firstly we assume there is no bulk fluid displacement in the radial direction ξr = 0 on the

Alfvén timescale, and that the core is incompressible, which in axisymmetry implies ξθ = 0. In

this axisymmetric model, the core fluid can only be displaced in the azimuthal direction, which

corresponds to the motion of fluid elements on spherical shells, at fixed cylindrical radius. Such

displacements in the φ direction do not perturb the local pressure or chemical potential, and are

only limited by the viscosity of the fluid which is negligible. Thus, it is a good approximation to

assume that any toroidal flux injected into the core, readily distributes itself according to a tension

equilibrium along poloidal field lines. In axisymmetry this corresponds to fφ = jjjp × BBBp/c = 0,
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but in general it is the vanishing of the solenoidal part of the Lorentz force. In terms of the scalar

functions I and Ψ, this condition is equivalent to

I = I(Ψ), (2.29)

which means that I is constant along poloidal field lines in the core. We present two methods

enforcing this condition. We briefly outline the first method here, leaving the details for Appendix

A. The second method is more general, and we discuss it in more detail.

Firstly, it is possible to determine the value of I along a given poloidal field line in the core by

calculating the advection flux of Bφ into the core by Hall drift. The advection flux of Bφ is defined

by writing the Hall evolution equation for Bφ in the crust in conservative form, and identifying the

advection flux. In this method it is convenient to work in the so-called flux-coordinates (Ψ, λ, φ),

where Ψ labels surfaces of constant poloidal flux, and λ is the length along a given poloidal field

line in the φ = const plane [e.g. [88]]. It can be shown (Appendix A), that the twist angle ζ of a

given poloidal field line in the core evolves according to the equation

∂ζ(Ψ)

∂t
= −[J(Ψ, λ2, t) − J(Ψ, λ1, t)], (2.30)

where we have identified the twist angle

ζ(Ψ) =

∫ λ2

λ1

dλ
(

Bφ
r⊥Bλ

)
, (2.31)

with the integral taken along the magnetic field line (Ψ = const). J is related to the “flux of twist"

into the core through

F = r⊥BλJ = vλBφ − vφBλ. (2.32)

The RHS of Equation (2.30) represents the difference between flux of twist at each footpoint of a

field line threading the core at its boundary. There are two contributions to the flux of twist J. The

first term can be attributed to Hall drift advecting Bφ into the core with poloidal drift currents, and
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the second term is the azimuthal winding of poloidal field lines by Hall drift. Equation (2.30) may

be rearranged to obtain the following equation for the evolution of I(Ψ),

∂I(Ψ, t)
∂t

= −$(Ψ)[J(Ψ, λ2, t) − J(Ψ, λ1, t)], (2.33)

with

$(Ψ) =

(∫ λ2

λ1

dλ
r2
⊥Bλ

)−1

. (2.34)

If the toroidal field displays equatorial plane reflection symmetry, and the poloidal field displays

equatorial symmetry, J(Ψ, λ1, t) = J(Ψ, λ2, t), and there will be no magnetic twist injected into the

core.

The procedure outlined above is efficient in tracing the crust-core evolution of the field, so long

as the poloidal magnetic field lines in the core are fixed in time. However, in our studies we would

like to have the freedom to evolve the core poloidal field. In such situations, it is more practical to

use the second method outlined below.

The second method of enforcing hydromagnetic equilibrium, is to treat it as a relaxation prob-

lem. This method has the advantage of not requiring the integral in Equation (2.34) to be evaluated.

The principle of the method is similar to that used in Section 2.2.3 for computing the elastic re-

sponse of the crust. Suppose there is a poloidal field threading the core. Hall drift in the crust will

slowly displace the magnetic field lines in the azimuthal direction, and in response to this, the core

field will adjust, quickly returning to hydromagnetic equilibrium. The evolution of the core field

can be written
∂BTBTBT

∂t
= ∇ × (vvvT × BBBp + vvvp × BBBT), (2.35)

with vvvT the toroidal (azimuthal) velocity which returns the core field to hydromagnetic equilibrium.

The second term on the RHS is the advection of the toroidal field with the poloidal drift velocity

vvvp, of flux surfaces. This term ensures that each poloidal field line maintains its own twist angle

when the flux surfaces are evolving. For a given (fixed) poloidal field configuration, equilibrium is
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satisfied when
∂BTBTBT

∂t
= 0 (equilibrium). (2.36)

Thus all that is required, is to choose a convenient form of vvvT which drives the field towards

equilibrium faster than the other channels of evolution, such as Hall drift. First though, we write

Equation (2.35) in a more convenient form. It can be shown that Equation (2.35) may be written

as
∂Bφ
∂t
+ ∇p · (vvvpBφ) = ∇p · (vφBBBp), (2.37)

where we have defined the poloidal differential operator

∇p ≡

(
∂

∂r⊥
,
∂

∂z

)
, (2.38)

which acts in the 2D plane. Equation (2.37) is easily interpreted as a continuity equation, with the

second term on the LHS the divergence of a transport flux of Bφ due to drift of the poloidal field.

The term on the RHS is a source term, which injects or extracts Bφ (and magnetic twist) from the

magnetic field lines which enter the crust. When using this method vvvp must be the same as the

poloidal drift velocity of flux surfaces in the core. While in this paper we only use this method for

the case of fixed poloidal field lines in the core (vvvp = 0), the method is also applicable to the case

of non-zero vvvp, which we discuss later. For the simplified case of vvvp = 0 though, the second term

on the LHS of Equation (2.37) vanishes. Then, all that remains is to choose a convenient form of

vφ which will drive the field toward equilibrium. We find that such a form is

vφ =
k
|BBBp |
(∇I · êeeλ), (2.39)

which obviously tends to zero as the field is driven toward equilibrium. Here k is a relaxation

parameter to be be tuned. For the case of static poloidal fields in the core (vvvp = 0), Equation (2.37)

becomes
∂I
∂t
= r⊥∇p · [k(∇I · êeeλ)êeeλ], (2.40)
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which has the form of a modified diffusion equation. It is convenient to work with this form of the

equation, since diffusion equations are less problematic to solve numerically. Equation (2.40) with

a large k ensures that the magnetic field in the core evolves through a sequence of MHD equilibria,

and that these equilibria are stable.

In the more general case, poloidal magnetic field lines are not fixed in the core, but can drift

with Ambipolar diffusion, or Jones drift for example.

For illustrative purposes we determine the Ohmic drift velocity of poloidal field lines by noting

that the electric field determines ∂BBB/∂t = −c∇×EEE . If we assume that vvv is perpendicular to BBB, one

may rewrite the evolution equation as ∂BBB/∂t = ∇×(vvv×BBB) with vvv defined by EEE = −vvv×BBB/c. Using

Ohm’s law, for the case of poloidal fields this becomes

JJJT

σ
=

c
4πσ
∇ × BBBp = −

1
c
vvvp × BBBp, (2.41)

with vvvp the poloidal velocity. Taking the cross product of both sides with BBBp allows us to solve for

vvvp. This is the velocity at which poloidal magnetic field lines drift due to Ohmic diffusion, and we

call it vvvohm,

vvvohm =
c2

4πσ
[(∇ × BBBp) × BBBp]

(BBBp · BBBp)
. (2.42)

When this velocity is inserted into an induction equation it is exactly equivalent to the Ohmic

diffusion equation, so this is indeed the correct Ohmic diffusion velocity.

We note here that a number of previous works fail to include the correct hydromagnetic equi-

librium in the core, rendering their boundary condition on the crust-core interface unphysical. [89]

violate equatorial plane reflection symmetry, and therefore effectively must be injecting magnetic

twist into the core within the timescale of their simulation. The simulations of [79] include strong

toroidal fields in the core, which in general do not satisfy fφ = 0. These stresses cannot be sup-

ported by the fluid, and therefore these simulations violate hydromagnetic equilibrium. This error

in [79] is due to their lack of the terms which advect magnetic field by an azimuthal fluid motion;

in other words, the background in which their flux tubes move is assumed to be static.
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Jones flux tube drift

In newborn neutron stars the magnetic field undergoes a period of dynamically unstable evo-

lution before settling into a stable configuration in which the stresses of the field, given by the

Maxwell stress tensor, are balanced by the fluid degrees of freedom. Many Alfvén crossing times

later, the crust solidifies, and cooling of the core below Tcrit ≈ 108 − 109 K is accompanied by

Cooper pairing of protons to form a 1S0 superfluid (eg., [27]). The phase transition to super-

conductivity is associated with the quantization of magnetic flux on microscopic scales, with the

quantum of flux φ0 = hc/2e. The flux is localised within proton supercurrent vortices, and drops

off exponentially on the penetration-depth scale λ . 10−11 cm. The mean intervortex spacing is

d = 5× 10−10 B−1/2
12 cm, greater than the penetration depth λ, so that the flux tubes are very weakly

interacting. [90] realized that the anisotropic component of the magnetic stress tensor in type-II

superconductors can be significantly larger than B2/4π. [91] showed that in the limit of B < Hc1,

with Hc1 ≈ 1015 G the lower critical limit, the stress tensor is given as

σi j = Pmatterδi j +
Hi B j

4π
, (2.43)

where Hi are the components of vector H. Matter contributes the isotropic component of σi j ,

and accounts for the buoyancy of flux tubes; it will be neglected below. As expected the magnetic

contribution to the isotropic component is suppressed, due to the lack of magnetic pressure between

neighbouring flux tubes. Taking the divergence of this stress tensor gives the volume force

fff B =
1

4π
(BBB · ∇)HHHc1, (2.44)

where we have assumed H ≈ Hc1. Note that HHHc1 and BBB are locally parallel vectors, and BBB is the

spatial average of the microscopic magnetic field. The flux tubes drift with velocity vvvL through the

core fluid, driven by the tension force of the flux localised within the tubes fff B. A simple estimate

of the buoyancy force discussed by [92] indicates that it is often smaller than the tension force
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Equation (2.44) for typical configurations. Therefore, in this work we do not consider magnetic

buoyancy, and neglect the term Pmatterδi j in Equation (2.43). The drift velocity is defined by con-

sidering the balance of forces on the fluid in the vicinity of a flux tube. We follow [8], who writes

the force balance as

fff B −
(nee)2

σ̃
(vvvL − vvve) −

nee
c
(vvvL − vvve) × BBB −

npe
c
(vvvp0 − vvvL) × BBB = 0, (2.45)

with ne and np the electron and proton density, σ̃ an effective electron conductivity in the super-

conductor1 and vvve and vvvp0 the macroscopic electron and proton drift velocities respectively. [28]

derives each of the terms in Equation (2.45). The second term on the LHS of Equation (2.45) is

due to drag from scattering of electrons on quasi-particles localised in the flux tube core, the third

term is the Lorentz force on the electrons, and the fourth term is the Magnus force, due to motion

of the flux tube through the superfluid protons.

In a multifluid type-II superconductor, macroscopic currents due to relative motion between

charged species are suppressed, and the electrons and protons are co-moving on large scales. This

can be expressed with the charge current screening condition of [28],

JJJe + JJJp = 0, (2.46)

where JJJe is the electron current density, and JJJp the proton supercurrent density. This ensures

satisfaction of Amperes law, and the London equation throughout the superconductor. For the

purposes of this work we neglect entrainment, and using JJJe = −neevvve, and JJJp = npevvvp0, it is easy

to see that

nevvve = npvvvp0. (2.47)

Implementing this screening condition, and assuming charge neutrality (ne = np) leads to can-

1Note that σ̃ has the same mathematical form as σ [e.g. [85]]. The key difference as noted by [28], is that the
electron transport relaxation time is modified when the scattering sites are localised within flux tubes [confusingly,
[28] denotes σ̃ by σ]. Therefore σ̃ is a different quantity to σ in normal matter.
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cellation of the Magnus and Lorentz forces, and the drift velocity of flux tubes is given by the

expression

vvvL = vvve +
σ̃

n2
ee2

fff B. (2.48)

The flux tube velocity has two contributions – the motion of flux tubes with the charged fluid, and

the motion of flux tubes through the charged fluid. Here vvve, represents motion of flux tubes with

the charged plasma (what is usually referred to as ambipolar diffusion). Motion of the flux tubes

faster than the background charged plasma occurs with the Jones velocity

vvvJ =
α

4π
(BBB · ∇)HHHc1, α = σ̃/n2

ee2, (2.49)

and is accompanied by dissipation at the rate vvvJ · fff B – here α is an effective drag coefficient. It is

important to note that the transport velocity of flux can be significantly larger than the plasma drift

velocity (ambipolar velocity), which tends to be slowed by the formation of sharp pressure gradi-

ents in typical cases. In this work we neglect the velocity vvve (ambipolar diffusion), and consider

only the Jones drift velocity (ie. we set vvvL = vvvJ). It was recently shown by [93] that ambipo-

lar diffusion in superfluid neutron stars can be significant for solenoidal flows at low temperatures

(T < 109 K). The detailed consideration of ambipolar diffusion is outside of the scope of this work.

It is important to note that this drift velocity is very different to that of [94], [95], and [79].

This can be traced to differences in the calculation of forces acting on a flux tube by [94] (private

communication). Clarifying this difference requires a separate investigation and is outside of the

scope of this work. It should be noted that the force balance (2.45) is non-trivial, and careful

calculation is required to determine these forces (see [96] and [28]).

In a type-II superconductor the motion of flux tubes with velocity vvvL induces an electric field

localized within the vortex cores (see eg. [8, 96, 97]). The spatial average of this electric field is

EEE = −
1
c
vvvL × BBB, (2.50)
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which upon substitution into Faraday’s law, leads to the following evolution equation for the

poloidal part of the spatially averaged field,

∂BBBp

∂t
= ∇ × (vvvL × BBBp), (2.51)

while the evolution of the toroidal field on comparable timescales is such that it satisfies hydro-

magnetic equilibrium at all times. Equation (2.51) is very different from the evolution equation

used by [79] (see their equation 16). Firstly, as pointed out by [92], the magnetic field is locked

into flux tubes, and therefore, the evolution of the magnetic field must be governed by an advection

equation of the form Equation (2.51), where the field is advected at the same velocity as the flux

tubes, vvvL . However the evolution equation of [79] does not advect the magnetic field at the velocity

vvvL .

As in Section 2.2.1 we write the evolution equation in terms of the scalar functions Ψ and I,

∂Ψ

∂t
+ vvvJ · ∇Ψ = 0, (2.52)

while I satisfies Equation (2.33). [8] estimates σ̃ ≈ 1029 − 1032B−1
12 s−1, depending on the com-

position of the core. We use in our simulations σ̃ = 1029B−1
12 s−1. For a 1.4M� neutron star, a

typical baryon density at the centre of the core is nB ≈ 3.5 × 1038 cm−3 [98]. We take a central

electron fraction Ye = 0.1, which gives ne = YenB = 3.5×1037 cm−3. Rather than adopt a particular

equation of state we use these conservative values to calculate α throughout the core, which will

cause the field evolution to be slower in the outer core in our simulations. But for our purposes we

want to understand the dynamics of flux tubes on long timescales, and this will not affect the end

state of our simulations.

Flux transport by neutron vortices

In conventional neutron star models, neutrons in the core form cooper pairs, and exist in a 3P2

superfluid state [27]. The vorticity of the bulk fluid must be zero, and circulation is quantized
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on microscopic scales with the formation of superfluid vortices. The vortices each possess the

quantum of circulation κ = h/2mn, where h is the Planck constant and 2mn is the effective mass of

a cooper pair. The mean number density of vortices is

nv =
2Ωn

κ
, (2.53)

where Ωn is the superfluid rotational frequency. The neutron vortices are not necessarily straight,

though the absence of a firm detection of free precession seems to indicate that the vortex config-

uration is not radically different from a linear array.

Stellar spin-down must be accompanied by motion of these vortices outward, in order to con-

serve angular momentum [29]. Likewise spinning up the star must be accompanied by motion of

the neutron vortices inward. The neutron vortices move in the radial direction with velocity

vvv⊥ = −
r⊥ ÛΩn

2Ωn
ê̂êer⊥ . (2.54)

As a consequence of the neutron superfluid coupling to the proton superfluid, protons also circulate

around the neutron vortices, which produces a magnetization localized within the penetration depth

λ . 10−11 cm of the neutron vortex core [see eg. [28]]. Outward moving neutron vortices interact

strongly with flux tubes, and thus the spin-down of neutron stars can result in the transport of

magnetic flux tubes [30]. According to [7], force builds up on the flux tubes, which are either

carried along with the neutron vortices, or are cut through by them. [8] states that in order for

straight flux tubes to be pushed along by neutron vortices (with velocity vvv⊥), the maximum velocity

of the flux tubes (due to viscous drag) must be greater than or equal to the velocity of the neutron

vortices, |vvvF | ≥ |vvv⊥ |. If this inequality is not satisfied, the neutron vortices will cut through the

flux tubes. [8] gives the maximum velocity of flux tubes being pushed on by neutron vortices as

vvvF = αnv f̃v ê̂êer⊥, (2.55)
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where α is the drag coefficient defined in Equation (2.49), and f̃v is the maximum force per unit

length a neutron vortex can exert on a flux tube without cutting through. We estimate f̃v by using

the vortex-flux tube interaction energy of [99]2. Following [7] we assume that as a vortex moves

along and collects flux tubes, the separation between flux tubes approaches 2λ. This gives

f̃v =
φ0φ

∗
0

8π2λ3 ln
(
λ

ξp

)
≈ 3.8 × 1017 dyne/cm, (2.56)

with φ∗0 the flux quantum of a neutron vortex (we approximate φ0 ≈ φ
∗
0), and ξp the proton coher-

ence length.

We extend the treatment of [8] and [7] to the case of curved flux tubes, by including the self-

tension force fff B, and also discuss the transport of flux tubes in the cut-through regime. We say

that cut-through occurs when ���−v⊥v⊥v⊥
α
· êeer⊥ + fBfBfB · êeer⊥

��� ≥ nv f̃v, (2.57)

with −v⊥v⊥v⊥ · êeer⊥/α the drag force the flux tubes exert on the neutron vortices (assuming a stationary

background fluid), fBfBfB · êeer⊥ the tension force flux tubes exert on the vertical vortices, and nv f̃v the

maximum force per unit volume the neutron vortices can exert on the flux tubes. We call satisfac-

tion of the above inequality “cut-through", and dissatisfaction of the inequality “vortex-transport".

In the transport regime, the flux tubes are carried along with velocity vvv⊥. But the flux tubes

also have the freedom to slide along the neutron vortices, with the projected Jones drift velocity

(vvvJ · êeen)êeen. Here êeen is a unit vector which points along the local direction of a vortex.

In the cut-through regime, we assume that the flux tubes are still carried along by the neutron

vortices, but only at the terminal velocity vvvF . Since the vortices cannot prevent the motion of flux

tubes in the cut-through regime, the flux tubes can also drift in accordance with their own self

tension (the Jones drift velocity vvvJ). To summarize the flux tubes are advected with the velocity

2These authors have corrected a typo in the interaction energy of [7] which erroneously leads to a factor of π2

larger pinning energies.
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field

vsdvsdvsd =


vvv⊥ + (vvvJ · êeen)êeen, (vortex-transport)

vvvF + vvvJ, (cut-through)
(2.58)

while the neutron vortices move with velocity vvv⊥. We note here that the velocity field given by

Equation (2.58) is in fact a piece-wise continuous function. This can be understood by noting that

if the LHS of Equation (2.57) is slightly greater than the RHS, then the velocity there is set to

vvvF + vvvJ, so that a discontinuity never develops. See [7] for a similar model of vortex transport in

1D for the case of straight flux tubes.

We assume that the neutron vortex array is not significantly deformed by the flux tubes. This is

true for high spin frequencies, when the neutron magnus force is larger than the critical cut-through

force

Ω >
f̃v

r⊥ρnκ
. (2.59)

The evolution of the magnetic field due to motion of neutron vortices is given by

∂BBBp

∂t
= ∇ × (vvvsd × BBBp). (2.60)

In terms of the scalar function Ψ, the evolution is

∂Ψ

∂t
+ vvvsd · ∇Ψ = 0, (2.61)

while the toroidal field evolves according to hydromagnetic equilibrium.

2.3 Results

The equations describing the magnetic field evolution in the star, i.e. the evolution equations

for functions Ψ(r, θ) and I(r, θ), are discretized on a grid and solved numerically as described in

Appendix B.
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Figure 2.1: Snapshots of the magnetic field evolution for Model A (Table 2.1), shown at t = 0, 20
kyr, 200 kyr, and 2 Myr. The black curves are 10 contour lines of the poloidal flux function Ψ (i.e.
the polodial magnetic field lines), equally spaced between Ψ = 0 and the maximum value Ψmax,
at t = 0. The toroidal field is represented by the colour scale, which varies logarithmically, with a
linear region around zero.

2.3.1 Hydromagnetic Core

First we consider Model A in which the effects of stellar spin-down, and Jones flux tube drift,

and ambipolar diffusion are neglected (ie. the poloidal field is static in the core). The purpose of

this section is to demonstrate clearly the hydromagnetic equilibrium described in Section 2.2.4.

The drift of poloidal field lines in the core will be studied in Sections 2.3.2 and 2.3.3.

We note first that a significant twist angle can be associated with toroidal fields which have

comparable strength to the poloidal field. For a field line in the core of length L, we estimate the

twist angle to be of order

ζ ∼
LBφ
r⊥Bλ

∼

(
L

106 cm

) (
106 cm

r⊥

)
Bφ
Bλ
∼ 1 rad, (2.62)

when Bφ ≈ Bλ. Changing the twist angle of a field line in the core requires differential rotation of

its two ends where it is attached to the crust. Equatorial symmetry of the magnetic field implies no

differential rotation – the two ends must move with the same speed. The same fact is seen formally

from the equations. For the case of equatorial symmetry, the net flux of twist into the core vanishes
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Figure 2.2: Snapshots of the evolution for Model A (Table 2.1), shown at t = 0 kyr, and 1 Myr.
The plotting scheme is the same as Figure 2.1 but here colour showsΩe (the angular velocity of the
electron fluid), the result of Hall drift in the crust. The thickness of the crust has been magnified
by a factor of 2.5.

for each field line, as

J(Ψ, λ2, t) − J(Ψ, λ1, t) = 0, (2.63)

(see Section 2.2.4). If the initial field has plane reflection symmetry about the equator, it will

maintain this symmetry throughout the evolution. Then, by Equation (2.33), we see that

∂t Icore(Ψ, t) = 0 (if symmetric), (2.64)

for all time. In reality it is likely that young neutron stars will have some toroidal field in order to

stabilize the poloidal field. However in some of our simulations we consider a number of initial

fields which display equatorial reflection symmetry, and have purely poloidal fields in the core.

In this special case the evolution of the core toroidal field is trivial - it remains zero according to

hydromagnetic equilibrium.

Poloidal fields which violate equatorial plane reflection symmetry give a non-zero net flux of

twist into the core,

J(Ψ, λ2, t) − J(Ψ, λ1, t) , 0, (2.65)

and we may see evolution of the toroidal field in the core. With this in mind we choose the initial
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Figure 2.3: Snapshots of the magnetic field evolution for Model B (Table 2.1), shown at t = 0 kyr,
40 kyr, 400 kyr, and 2 Myr. The plotting scheme is the same as Figure 2.1.

poloidal field in Figure 2.1 to violate equatorial reflection symmetry. We enforce hydromagnetic

equilibrium in Model A with the relaxation method outlined in Section 2.2.4.

The simulation shown in Figure 2.1 starts with a current sheet on the surface of the star in the

northern hemisphere (see Figure 2.2). The current sheet shears poloidal field lines near the surface,

and generates toroidal field with positive polarity in the northern hemisphere, and negative in the

south. Hall drift in the crust slowly winds the core magnetic field in the azimuthal direction. At

t = 200 kyr there is a weak toroidal field in the core, and several patches of toroidal field in the

crust with alternating polarity. After t ∼ 600 kyr the toroidal field reaches a steady state, with two

patches near the equator in opposite hemispheres, which are damped by Ohmic diffusion from this

point on. By this time the poloidal field has settled into the Hall attractor state, corresponding to

constant electron angular drift velocity along poloidal field lines in the crust (Ωe = Ωe(Ψ)). Hall

drift in the crust continues to wind the core field in the azimuthal direction, though more slowly as

Ohmic diffusion dissipates the crustal currents. At t = 2 Myr the core supports a toroidal field of

strength B ∼ 1012 G, and similar in the crust. The twist angle of a typical field line in the core is

of order 10−2 rad, so Hall drift has only weakly twisted the core magnetic field in this model. It is

possible that for different initial conditions, stronger azimuthal currents could inject a larger twist

into the core. This model has confirmed the Hall attractor of [24] for core penetrating B-fields,
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with the correct hydromagnetic equilibrium enforced.

2.3.2 Jones Flux Tube Drift

Dissipative straightening of flux tubes

In a more realistic model the poloidal field lines in the core are not fixed, and are expected to

drift as outlined in Section 2.2.4. Jones drift allows flux tubes to straighten by slipping with some

viscous dissipation through the core electron fluid. As the flux tubes straighten, free energy stored

in the curvature of the flux tubes is dissipated. The characteristic timescale of this straightening is

tdiss ∼
s
vJ

(2.66)

with s the deviation from straight flux tubes. We approximate a curved flux tube as a circular arc,

with s ≈ r2
c /2Rc, and radius of curvature Rc. The Jones drift velocity is approximated as

vJ ∼
σ̃

4πn2
ee2

BHc1

Rc
= 2.8 × 10−8

(
3.5 × 1037 cm−3

ne

)2 (
σ̃

1029 s−1

)
cm s−1. (2.67)

The timescale for flux tubes to straighten is then

tdiss ∼
2πn2

ee2

σ̃

r2
c

BHc1
= 450

( ne

3.5 × 1037 cm−3

)2
(
1029 s−1

σ̃

)
kyr, (2.68)

where we have taken the estimate of [8] σ̃ = 1029B−1
12 s−1. Note that the timescale is independent

of the field strength B. The timescale for straightening can also be significantly shorter than the

above estimate, depending on σ̃, which can be larger for cores with high muon densities [8]. Our

advection velocity in Equation (2.67), illustrates the discrepency in the timescales of [79] and [8].

The advection velocity of [79], is typically ∼ 10−11cm s−1 [[79], Figures 5, 8, and 11 therein].

The Jones drift velocity acts perpendicular to poloidal field lines, in order to minimize the

curvature. Thus, Jones drift becomes inactive when the flux tubes are straightened. However,

when the field is straightened in the core, a sharp cusp forms on the crust-core interface, supported
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by strong toroidal currents at the base of the crust. This cusp will therefore be site to rapid Ohmic

diffusion, which smooths the cusp, generating curvature in the field lines inside the core, and

reactivating the Jones effect, which proceeds to straighten them again. So we see that the coupled

crust-core system continuously evolves under the combined effects of Jones flux tube drift in the

core, and Ohmic diffusion in the crust.

In this section we explore the evolution in two scenarios. Firstly, we consider the drift of flux

tubes in a strongly magnetized neutron star, with Hall drift and Ohmic diffusion active in the crust.

Secondly, we study the long timescale evolution of a moderately magnetized neutron star, and

determine the decay timescale.

Flux tube drift and Hall drift (strong B)

For strong magnetic fields, Hall drift can interfere with the flux tube drift in the core (when tHall

is comparable to tdiss). Figure 2.3 shows the evolution of a highly magnetized neutron star (Model

B) with an initially poloidal field, evolving by Jones’ flux tube drift in the core, coupled to a crust

evolving with Hall drift and Ohmic diffusion. For this simulation we use σ̃ = 1029B−1
12 s−1. The

initial field has maximum strength B ≈ 3 × 1014 G in the core. The initial field displays equatorial

symmetry, and thus Hall drift will not inject any magnetic twist into the core, meaning that the

toroidal field remains zero there.

There are two main stages to the evolution of the core magnetic field in Model B. The first

stage lasts for tdiss, and involves a rapid straightening of the flux tubes in order to relieve magnetic

stresses. During this stage the core field dissipates its initial free energy, on viscous slippage

through the fluid. The straightening of flux tubes in the core is associated with the formation of a

sharp cusp in the poloidal field at the crust-core interface, supported by a toroidal current sheet at

the base of the crust. This current sheet generates toroidal field deep in the crust through the Hall

effect. The current sheet is also site to enhanced Ohmic dissipation. The regions of toroidal field in

the crust are advected toward the equator, and much weaker higher order multipole structure forms

in the toroidal field which is efficiently damped. The toroidal field is sufficiently weak, that it does
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not cause any large scale rearrangement of the poloidal field. Eventually activity due to Hall drift

declines, as the Hall attractor drives the poloidal field in the crust to a state of rigid rotation of the

electron fluid.

The second stage begins at t ∼ 1 Myr. During this stage, Ohmic diffusion controls the evolu-

tion, which becomes a self-similar decay of the global magnetic field. Jones drift allows the core

magnetic field to adjust on a timescale which is faster than Ohmic diffusion at the base of the crust,

so that they effectively remain straight for the remainder of the evolution. Flux tubes in the core

gradually drift outward, consistent with the rate of Ohmic diffusion at the base of crust. Analytic

estimates describing this “Ohmic drift" of straight field lines will be given in Section 2.3.2, where

we consider this drift in isolation, in the absence of any Hall drift. Flux in the core converges

toward the null point in the field, which is located at the equator, on the crust-core interface, for

this particular configuration. At the null point, the field lines close and annihilate. The evolution of

the field into this state of self similar decay is not unique to these initial conditions, and we observe

the same final state for a number of approximately dipole initial magnetic fields. We note that the

Jones drift timescale does not scale with field strength, and likewise with Ohmic diffusion. This

implies that timescales relating to the evolution of poloidal fields in Model B could be applied to

initial fields with a variety of strengths.

Flux tube drift and no Hall drift (moderate B)

The second scenario of interest is the evolution of pulsar strength magnetic fields due to Jones

flux tube drift in the core, in the case where crustal Hall drift is not important. This regime occurs

for typical pulsar fields of B ∼ 1012 G or lower. With this in mind, in Model C we consider the crust

evolving under Ohmic diffusion only so that long timescale simulations are less computationally

expensive. We also avoid evolving the flux tubes in the core directly [Equation (2.52)], and instead

enforce the boundary condition at the base of the crust that field lines remain vertical in the core

(Bθ = Br tanθ at r = rc) as a result of Jones drift. This is a good approximation because the

flux tubes can always straighten faster than Ohmic diffusion at the base of the crust, as seen in
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Figure 2.4: Snapshots of the magnetic field evolution for Model C (Table 2.1), shown at t = 0 Myr,
10 Myr, 20 Myr, and 45 Myr. The plotting scheme is the same as Figure 2.1. The toroidal field is
everywhere zero.

Figure 2.3.

Figure 2.4 shows the long timescale evolution of Model C, with Jones flux tube drift in the core,

coupled to a crust with Ohmic diffusion. The field in the core is pure Bz (In particular Ψ ∝ r2
⊥),

and the initial crustal field is a dipole potential field matched on to the core. The field has typical

strength B ≈ 1012 G. In the first ∼ 1 Myr, diffusion at the base of the crust smooths the kink in

the poloidal field, and the crustal field relaxes into an Ohmic eigenmode. From this point on the

evolution of the global field can be likened to self similar decay. Tension in the magnetosphere

ensures that poloidal field lines in the crust converge toward the null point at the equator. The field

lines in the core are pulled along at the rate set by Ohmic diffusion, also toward the null point at the

base of the crust, where they close and annihilate. For the remainder of the evolution the structure

of the magnetic field remains unchanged, as it gradually grows weaker. The evolution of the dipole

field strength is plotted in Figure 2.5. After ∼ 150 Myr, the dipole field strength has decreased

from B ≈ 1012 G to B ≈ 109 G.

The timescale for magnetic flux to diffuse through the crust in the above scenario is very differ-

ent from the Ohmic timescale of [19]. As an approximation, consider the cartesian configuration

shown in Figure 2.6, and assume a constant diffusivity η throughout the crust. Curvature of the
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Figure 2.5: Decay of the dipole field for the magnetic field evolution shown in Figure 2.4.

field lines at the base of the crust generates a current sheet of thickness h, given by Ampere’s law

as

j ∼ −
c

4π
Bx

h
, (2.69)

using Ohm’s law this gives the electric field

E ∼ −
c

4πσ
Bx

h
. (2.70)

As in Section 2.2.4, we use this electric field to estimate the velocity of magnetic field lines due to

Ohmic diffusion through EEE = −vvv × BBB/c. The resulting velocity of field lines in the x-direction is

vohm ∼
η

h
Bx

Bz
, (2.71)

with Bz and Bx the vertical and horizontal components of the field. For this configuration a quasi-

steady drift is established with the current sheet occupying the region of the crust with highest

conductivity, i.e. the deep crust. Its thickness h is a few hundred meters. The quasi-steady drift is

established on the timescale h2/η, and the drift is associated with the transport of magnetic field
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Figure 2.6: Plane parallel slab (grey), with length l. Field lines (blue) move to the right consistent
with the rate set by Ohmic diffusion.

lines with characteristic time

t̃ohm ∼
hl
η

Bz

Bx
= 150

(
h

3 × 104 cm

) (
l
πr∗

) ( σ

3.6 × 1024 s−1

)
Myr, (2.72)

where we have assumed Bz ≈ Bx , and the current sheet thickness h ≈ 3× 104 cm corresponding to

the highly conducting region of the deep crust. We have used σ = 3.6× 1024 s−1, corresponding to

phonon scattering at T ≈ 2 × 108 K [24]. This timescale can be greater by an order of magnitude

compared to the Ohmic timescale of [19], depending on the thickness of the crust and the geometric

factor Bz/Bx . The timescale given by Equation (2.72) corresponds to the time taken for the dipole

field strength to decay by approximately 3 orders of magnitude for the numerical simulation seen

in Figure 2.4.

2.3.3 Rapidly Rotating Newborn Neutron Stars

The origin of strong magnetic fields in neutron stars is not well understood. Some models sug-

gest a fossil field, left behind by the progenitor [100], while others invoke dynamo mechanisms

requiring the neutron star to be born with millisecond spin periods [101]. Here we assume that

a highly magnetized neutron star can be born with a 1 millisecond spin period, and consider the
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Figure 2.7: Snapshots of the magnetic field evolution for Model D1 (Table 2.1), shown at t = 0
kyr, 5 kyr, 100 kyr, 1 Myr, 2 Myr, and 4 Myr. The plotting scheme is the same as Figure 2.1. This
simulation begins 300 yr after the neutron star birth, with surface field strength ∼ 5 × 1012 G, and
spin period 10.9 ms.
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Figure 2.8: Snapshots of the magnetic field evolution for Model D2 (Table 2.1), shown at t = 0
kyr, 5 kyr, 50 kyr, 250 kyr, 1 Myr, and 3 Myr. The plotting scheme is the same as Figure 2.1. This
simulation begins 300 yr after the neutron star birth, with surface field strength ∼ 1013 G, and spin
period 21.8 ms.
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Figure 2.9: Snapshots of the magnetic field evolution for Model D3 (Table 2.1), shown at t = 0
kyr, 5 kyr, 50 kyr, 150 kyr, 1 Myr, and 3 Myr. The plotting scheme is the same as Figure 2.1. This
simulation begins 300 yr after the neutron star birth, with surface field strength ∼ 2 × 1013 G, and
spin period 43.5 ms.
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implications for the evolution of the magnetic field. In particular, we are interested in the inter-

action of superfluid neutron vortices with flux tubes, as a means for the rotational energy of the

star to rearrange the core magnetic field. Importantly the cooling curves of the Cas A remnant

suggest that the transition to superfluidity in the core takes place after t ∼ 300 years [86, 87]. As

was pointed out by [16], by this time a typical magnetar (B ∼ 1015 G) will have a spin period

> 1 s. It is simple to show that the ratio of rotational to magnetic energy is very small, and it is

difficult to envisage how the core field could be significantly rearranged by a transfer of rotational

energy. However, for neutron stars born with weaker magnetic fields, corresponding to a so-called

weak-field magnetar (or high-B pulsar), this is not the case. Specifically, if a neutron star is born

with initial spin period 1 ms, and B ∼ 1013 G, then after 300 years, the spin period will be 21.8 ms.

Then the ratio of rotational to magnetic energy is large, and will remain so for an extended period

after the transition to neutron superfluidity.

In Models D1, D2 and D3 we model neutron stars, with a range of initial magnetic field

strengths, assuming a birth spin period 1 ms. Our simulations begin 300 yr after the neutron

star birth, corresponding to the time of phase transition to neutron superfluidity. We model the spin

evolution of the star self consistently according to ÛΩ = −βΩ3, where β = 2a2
1/3c3I. Here a1 is the

dipole moment of the surface magnetic field, and we take I = 1045 g cm2 as a typical moment of

inertia. The spin evolution of the star determines the velocity of the neutron vortices, according to

vvv⊥ = −
r⊥ ÛΩn

2Ωn
ê̂êer⊥ . (2.73)

In Model D1 we use an initial field of strength ∼ 5 × 1012 G at the surface, and 6.9 × 1012 G

in the core. We set the initial (here initial refers to the beginning of the simulation–300 yr after the

neutron star birth) spin period accordingly to 10.9 ms. We show the results of this simulation in

Figure 2.7. In the first 100 kyr the flux is rapidly pushed out of the core at the velocity vvv⊥. In the

outer core the flux tubes are severely deformed, and the tension force fff B becomes large enough to

cause cut-through in a thin layer beneath the crust. The sharp curvature of poloidal field lines at the
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base of the crust is site to a strong toroidal current sheet, which generates a quadrupolar toroidal

field through Hall drift, and rapid Ohmic dissipation of the poloidal field. The expulsion of flux

tubes can result in an order of magnitude increase in the poloidal field strength in the outer core.

From this point on, the flux tubes slide vertically along the neutron vortices toward the equator

(away from the crust-core interface) with the projected Jones velocity (vvvJ · êeen)êeen. The flux tubes

form a “>" shape, with the cusp located along the equator in the outer core. The cusp becomes

sharper, until the tension force fff B is large enough to cut through the vortices, and begins to mini-

mize it at ∼ 880 kyr. After ∼ 1 Myr, flux tubes are advected by the moving vortex lines throughout

the core, except for a small region around the cusp where the tension force fff B is large. The toroidal

field deforms into an octupole configuration, which is severely damped by Ohmic diffusion. After

2 Myr the crustal poloidal field begins to develop an octupole component, due to the magnetic

pressures and tensions communicated from the base of the crust through Ohmic diffusion. This

is clearly evident at 4 Myr in Figure 2.7. Throughout this simulation Hall drift does not play a

major role in the redistribution of the magnetic field, because the field strength is weak, and Ohmic

diffusion is the dominant effect (tohm < thall). The spin period after 4 Myr in this simulation is 0.85

s.

In Model D2 the initial field has strength ∼ 1013 G at the surface, and 1.4 × 1013 G in the core.

We set the initial (300 yr after neutron star birth) spin period accordingly to 21.8 ms, and show the

results of this simulation in Figure 2.8. In the first 5 kyr vortices cut through flux tubes throughout

the core, except for a thin cylinder around the axis of rotation where the vortices move slowly. In

the cut-through regime the flux tubes are allowed to bend, and as a result they curve away from

the axis of rotation due to the collective drag of outward moving vortices cutting through them.

After 10 kyr the vortices are moving slowly enough that they advect flux tubes throughout the core,

except for a thin layer beneath the crust where the flux tube tension is large. In this thin layer the

vortices cut through, and the terminal velocity of flux tubes gets very small due to the high density

of flux tubes. The sharp curvature of flux tubes at the crust-core interface results in the development

of a strong current sheet in the deep crust, which is site to enhanced Ohmic dissipation, and the
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development of a quadrupole toroidal field through Hall drift.

As the star spins down the number density of vortices decreases along with the critical force

nv f̃v. As a result, after ∼ 100 kyr the region of cut-through in the outer core begins to grow,

allowing the flux tubes to drift once again back into the core, with the Jones drift velocity vvvJ. The

thickness of the cut-through layer increases as the star continues to spin down. After 3 Myr the

toroidal field is significantly damped by Ohmic diffusion, and the flux tubes in the core remain

curved outward in the outer regions of the core, a result of the collective drag by the vortex lines

cutting through the flux tubes. The spin period after 3 Myr in this simulation is 1.87 s.

In Model D3 we use an initial field of strength ∼ 2 × 1013 G at the surface, and ∼ 2.7 × 1013

G in the core. This field is stronger than previous models, so the star spins down faster, and we set

the initial (300 yr after neutron star birth) spin period accordingly to 43.5 ms. The results of this

simulation are shown in Figure 2.9. In the beginning the vortices cut through in the entire core,

except for a thin cylinder around the spin-axis where they are slowly moving. As a result of the drag

from the cutting-through vortices, the flux tubes bend away from the axis of rotation, and bunch in

the outer core. The sharp curvature of poloidal field lines at the crust-core interface is supported by

a strong toroidal current sheet. A toroidal field with quadrupole structure grows in the deep crust,

which is site to enhanced Ohmic dissipation. As the star spins down the force of vortices pushing

on flux tubes becomes smaller while the tension force grows larger. This continues until ∼ 250 kyr,

when the flux tubes stop moving away from the spin-axis, and begin moving back toward. From

this point on, the core mostly operates in the cut-through regime, and the combination of the slow

spin period, and strong magnetic field means that the flux cannot be expelled from the core. The

flux tubes remain bent away from the spin-axis due to the drag of cutting-through vortices for the

remainder of the simulation, while the crustal field decays primarily due to Ohmic diffusion. The

spin period after 3 Myr is 4.01 s. The spin periods we observe in this simulations are not unlike

the spin periods of known low-B magnetars. However, it seems unlikely that the toroidal field in

these models is strong enough to break the crust and power classical magnetar activity.
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Figure 2.10: Snapshots of the magnetic field evolution for Model E (Table 2.1), shown at t = 0
kyr, 3 kyr, 6 kyr, and 9 kyr. Top row: The plotting scheme is the same as Figure 2.1. Bottom row:
Lagrangian displacement of the crust is shown on the colour scale which varies logarithmically,
with a linear region around zero. The thickness of the crust has been magnified by a factor or 2.5
in both rows.
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2.3.4 Elastic Back-Reaction

In this section we present the coupled evolution of the elastic crustal deformation, and the

magnetic field under Hall drift and Ohmic diffusion. The initial magnetic field is chosen such that

there is a sharp cusp in the field on the crust-core interface. [19] showed that such a disturbance

will launch circularly polarized “Hall waves", which can propagate from the crust-core interface,

and transport magnetic energy toward the surface of a neutron star. [14] showed that Hall waves in

strong magnetic fields can trigger a thermoplastic instability in the crust, which can generate X-ray

activity associated with magnetars. The elastic deformation of the crust can be significant in the

upper layers, where the magnetic energy density µB = B2
z /8π is comparable to the crustal shear

modulus µ. Here the crust cannot balance arbitrary stresses generated by Hall drift, so it yields,

thus nullifying the Hall effect. In their 1D plane parallel model, [102] show that the Hall term in

the Hall-elastic evolution equation is suppressed by a factor (1 + µB/µ)
−1, so that when µB � µ,

Hall drift is significantly suppressed. Unfortunately in this regime (µB � µ), we encounter severe

numerical instabilities due to our explicit time integrator. Thus, for now we are restricted to work

in the limit µB ≤ µ, where we may still demonstrate the effectiveness of the relaxation method

outlined in Section 2.2.1.

In Model E we chose the initial field to be purely poloidal, with vertical field lines (pure Bz)

in the core (in particular Ψ ∝ r2
⊥), and a dipole potential field in the crust. The initial field has

strength B ≈ 2 × 1014 G. There are several physical processes which could cause such a cusp

at the crust-core interface in a highly magnetized neutron star, and these motivate our choice of

initial field. As demonstrated in Section 2.3.3, if the magnetic field is sufficiently weak, superfluid

neutron vortices will be present for a significant period during the spin down of a rapidly rotating

neutron star, while the ratio of rotational to magnetic energy is high. Transport of flux tubes by

outward moving vortices can result in a cusp in the field at the base of the crust, though this will not

result in vertical field lines in the core as shown above. Jones flux tube drift in a young magnetar

can result in a cusp in the field, and could launch Hall waves, depending on the composition of the

core and the subsequent value of the drag coefficient α. The launching of short wavelength Hall
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waves depends on Jones drift being significantly faster than the Hall timescale. There may be other

effects which could drive a fast change of the core magnetic field, and thus launch the Hall waves.

[20] found that in young magnetars with hot cores (Tcore ≈ 109 K) and ultra-strong magnetic fields

(B & 1016 G), ambipolar diffusion operates in the friction dominated regime, and may cause a fast

rearrangment of the core magnetic field. Additionally there may by hydromagnetic instabilities in

young magnetars which can result in a rapid rearrangement of the core magnetic field.

The magneto-elastic evolution in Model E is shown in Figure 2.10. Initially, the cusp in the

poloidal field generates strong toroidal currents which in turn generate toroidal field. The result is

a burst of Hall waves which propagate away from the core. These waves are the 2D analogue of the

Hall waves shown in [15]. At 3 kyr the small amplitude, short wavelength Hall waves, have traveled

the furthest toward the stellar surface. The long wavelength Hall waves near the core evolve much

more slowly. This can be understood if we consider our system as a constant background field,

with an oscillating perturbation which is linear in the field. This is valid for the small amplitude

Hall waves early in the evolution, which are sufficiently weak such that evolution equation for the

poloidal field is weakly coupled to the toroidal field. This means the structure of the poloidal field is

effectively constant. Here we understand the background field to be poloidal, and the perturbation

is the Hall waves, early in the evolution before non-linearity becomes significant. The dispersion

relation is

ω =
ck |kkk · B0B0B0 |

4πnee
, (2.74)

[19] where kkk is the wave vector, k := |kkk |, and B0 a uniform background magnetic field. The waves

are seen to fan out from the crust-core interface over the next few kyr, traveling furthest near the

poles. This is due to the geometry of the existing background field. The group velocity of Hall

waves in the linear regime follows from the dispersion relation [19] as

vgp = ±
ck[B0 + (k̂̂k̂k · B0B0B0)k̂̂k̂kB0 + (k̂̂k̂k · B0B0B0)k̂̂k̂kB0 + (k̂̂k̂k · B0B0B0)k̂̂k̂k]

4πnee
, (2.75)

where k̂̂k̂k := kkk/k. Near the poles, the background field is almost pure Br , so the waves travel
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radially there. However, near the equator, the background field is almost entirely Bθ , so there is

less radial propagation. After the first 6 kyr the waves begin to evolve non-linearly. Hall drift sets

in and advects the wave fronts toward the equator of the star. But due to the gradient in electron

density, and the fanning of the wave fronts, they are advected non-uniformly, and start to break

apart. Diffusion also smears the wave fronts, and decreases the amplitude. The evolution of the

crustal displacement is shown in lower panel of Figure 2.10. The displacement is largest near the

surface, where the shear modulus is smallest and the crust yields easily. The crustal displacement

reaches a maximum amplitude of ∼ 2 m.

2.4 Discussion

In this paper we have modeled the coupled magnetic field evolution of neutron stars in the

crust and the core. In the crust we include evolution due to Hall drift and Ohmic diffusion [19], as

well as the elastic response of the solid crust. We enforce the correct hydromagnetic equilibrium

in the fluid core. We also explore the effects of the Jones flux tube drift [8], and expulsion by

superfluid neutron vortices during spin-down [7, 29, 30]. In this section we discuss the preliminary

implications of these results, in the context of the galactic population of neutron stars, and their

observable behavior.

In Section 2.3.1 we modeled the evolution of an initial poloidal field with broken equatorial

symmetry. We evolved the crustal magnetic field through Hall drift and Ohmic diffusion, while the

core field evolved according to the hydromagnetic equilibrium we formulate in Section 2.2.4. We

confirm the Hall attractor of [24] for B-fields which penetrate the core, while satisfying the correct

hydromagnetic equilibrium.

In Section 2.3.2, we presented simulations of Jones flux tube drift, which show that the B-

field in the core can straighten under the enhanced self tension possessed by the quantized flux

tubes. The straightening of flux tubes is associated with the dissipation of free energy stored in the
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curvature of the field. This straightening occurs on a timescale

tdiss ∼ 450
( ne

3.5 × 1037 cm−3

)2
(
1029 s−1

σ̃

)
kyr, (2.76)

but can occur significantly faster depending on the value of σ̃. Interestingly, this can generate a

burst of activity in highly magnetized neutron stars which were previously in the Hall attractor

state. Importantly, we show that for the range of values of σ̃ estimated by [8], tdiss is always much

smaller than the modified Ohmic timescale t̃ohm [Equation (2.72)], so that the Ohmic timescale

governs the rate of depletion of the global magnetic field. However this timescale is greater by an

order of magnitude than the Ohmic timescale of [19].

The timescale for depleting the pulsar magnetic fields in these simulations is very sensitive

to the choice of electrical conductivity, and it is worthwhile to discuss the implications of this.

Phonon scattering, and impurity scattering are the main ways currents can be diffused in a neu-

tron star crust. Phonon scattering is exponentially suppressed when T < TU = 8.7 × 107 K

ρ14(Ye/0.05)(Z/30)1/3[102], and the Umklapp processes freeze out. Impurity scattering is domi-

nant at low temperatures (T < TU), or high impurity levels. Estimates of the impurity levels in the

deep crust range from Qimp ≈ 10−3 [103], to Qimp ≈ 10 [104]. For young or accreting pulsars, with

temperatures T & 108 K, T > TU , and typical impurity levels, phonon scattering will be dominant

in the deep crust. Then the timescale for magnetic diffusion in the crust, using the electrical con-

ductivity in Section 2.2.1 (phonon scattering at T ≈ 2 × 108 K), is given by the modified Ohmic

timescale (2.72) t̃ohm ∼ 150 Myr. A full treatment would include the effects of accretion onto the

neutron star surface, and burial of the magnetic field. The consequences of this are not clear, but

it should be noted that burial of the field (see e.g. [5] and the field configurations therein) could

result in suppression of the ratio Bz/Bx , leading to an even shorter timescale for the depletion of

the global field. [105] found that Ohmic dissipation proceeds faster when thermal feedback on the

crustal conductivity is included. This could further shorten the timescale of 150 Myr we observe

in our simulations.
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After a young pulsar has cooled, or accretion has subsided, the neutron star crust will cool.

For T ∼ 106 K, T < TU , and impurity scattering will dominate. Then [102] give the electrical

conductivity in the deep crust as

σQ = 4.4 × 1025 s−1(ρ
1/3
14 /Qimp)(Ye/0.05)1/3(Z/30). (2.77)

In the impurity dominated regime, the timescale for flux to diffuse through the crust is

t̃ohm ∼ hl
4πσQ

c2
Bz

Bx
=

1.8 Gyr
Qimp

, (2.78)

meaning that flux is effectively frozen into the crust, and the dipole surface field of the pulsar will

no longer decay. For any impurity parameter which yields a decay time comparable to the Hubble

time (Qimp . 0.13), the field will be approximately stable. This could explain the persistence

of magnetic fields in millisecond pulsars, after periods of rapid depletion at higher temperatures.

Alternatively, if impurity levels are much higher, as suggested by [104], then Ohmic diffusion can

proceed rapidly in pulsars even after cooling, so that the crust cannot prevent decay of the dipole

field. This would suggest that something elsewhere in the core was inhibiting the motion of flux.

In the core flux tubes may get caught on magnetized neutron vortices, and be forced to move

outward at the same rate. The vortices move outward on a timescale equal to the spin-down time

of the star, which is very long for millisecond pulsars. [8] also found that while the outer core is

likely a type-II superconductor, protons in the inner core may be type-I. In type-I superconductors

magnetic flux is confined to macroscopic filaments of normal matter. Due to the presence of muons

in the inner core in some equations of state, motion of the filaments would be accompanied by the

formation of large gradients in chemical potential, limiting the motion of flux to the rate set by

weak nuclear interactions [8]. Additionally our simulations do not include a smooth transition

from the solid crust to the liquid core. It is possible that some flux tubes get pinned in the pasta

phases at the crust core interface, thus causing a remnant field to be left behind. Any of these could

provide an explanation for the persistence of a magnetic field in millisecond pulsars despite the
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decay time we calculate.

In Section 2.3.3 we modeled the expulsion of flux from the core by the outward motion of

neutron vortices during spin-down. We chose the initial spin period for our models by assuming

the star was born with a 1 ms spin period, and allowed to spin down for 300 years before the phase

transition to superfluidity, as suggested by the Cas A remnant [[86], [87]]. Models D1, D2, and D3

have typical magnetic field strengths of 5 × 1012 G, 1013 G, and 2 × 1013 G respectively.

While [7] argues that flux tube tension is small compared to the critical force nv f̃v, we find

that it plays a crucial role in rearranging flux tubes in the core — even for weaker magnetic fields

. 5 × 1012 G. This is because the transport of flux tubes by vortices results in the formation of

sharp magnetic features, which possess enormous tension, particularly in the outer core, where flux

tubes are anchored to the crust. Even in regions where the tension force fff B is small, it causes the

flux tubes to slide along neutron vortices, and plays an important role in the large scale distribution

of flux. We found that when B & 2 × 1013 G, the combination of the strong magnetic field and the

slower spin period, means that the magnetic field could not be expelled from the core. On the other

hand, we found that for B . 1013 G, the outward motion of vortices resulted in a partial expulsion

of the core magnetic field, into the outer core and deep crust. We find that in all simulations, as the

field is pushed away from the spin-axis a toroidal field grows in the deep crust.

When the flux is expelled into the outer core regions, a strong toroidal current sheet develops

in the deep crust. These currents drive Ohmic dissipation at an enhanced rate, as compared to core-

penetrating fields which vary on larger spatial scales. Additionally, the bunching of flux tubes in

the outer core means the poloidal field can be an order of magnitude stronger there, compared to the

spin-down inferred dipole field strength. At some stages in our simulations the field configurations

loosely resemble the crust-confined fields of [22], so we may expect thermal emission similar

to that in their crust-confined models. The crucial difference is that in our simulations the field

penetrates the core. It seems unlikely that flux expulsion could power the magnetar activity of

weak-field magnetars or high-B pulsars since the toroidal field in the crust is always < 1014 G.

However, it is possible that flux expulsion could power thermal emission in isolated neutron stars,
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due to enhanced Ohmic dissipation in the deep crust.

Recent observations of cyclotron emission from the weak-field magnetars SGR 0418+5729 and

SWIFT J1822.3-1606 suggest the presence of small-scale magnetic loops near the stellar surface,

which can be up to two orders of magnitude stronger than the spin-down inferred dipole field

strength [106, 107]. Such strong high-order magnetic multipoles may drive Hall drift on short

timescales, and produce X-ray activity normally associated with classical magnetars.

The main shortcoming of our work is that we have not resolved the controversy in the literature

between the timescales of [8] and [94], and this is left for future work. We used the drift timescales

derived by Jones, as they lead to interesting dynamical effects at the crust-core interface that are

well-modeled in our numerical experiments. Future papers in this series will include the effects of

field burial by accretion, and a study of the galactic population of pulsars.
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Chapter 3: Pulsar Glitches and Star Quakes

3.1 Introduction

On 2016 December 12 a glitch of magnitude ∆ν/ν = 1.431 × 10−6 was observed in the Vela

pulsar (PSR J0835-4510) with the 26 m telescope at Mount Pleasant, Tasmania, and the 30 m

telescope at Ceduna, South Australia [40]. For the first time, each single radio pulse was recorded

during the glitch, and the pulse shape was seen to change dramatically. First, a broad pulse was

detected, followed by a single null (missing) pulse. The following two pulses showed an unusu-

ally low linear polarization. [108] constrained the rise time of the glitch to be less than 12.6 s.

Additionally they found evidence for a slow-down of the pulsar immediately before the spin-up

glitch.

Detection of the radiative feature accompanying the 2016 Vela glitch was challenging because

of its very short duration (two pulses, ∼0.2 s) and no subsequent long-term change in the pulse

shape. This is different from the known behavior of high-B pulsars, such as PSR J1119-6127

which showed persistent abnormal radio pulsations in the months following its 2007 glitch [109].

Note also that no significant radiative change had been associated with a glitch in a canonical radio

pulsar until the dedicated observation of Vela in 2016 by [40].

This observation shows for the first time that the magnetosphere can be affected by a glitch – an

event considered to originate from the interior of the neutron star. We see no plausible mechanism

for the coupling between the pulsar interior and the magnetosphere other than seismic motions of

the crust (a quake). Excitation of seismic motions requires a sudden change of elastic stress on

the timescale� 1 ms (the wave crossing time of the crust thickness). The quake is possible if the

crust is stressed beyond its critical strain and “fails”, launching shear waves. In this paper, we do

not provide an argument for why a large stress should build up in Vela’s crust. However, we argue
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that a quake is able to connect the 2016 glitch with the observed major magnetospheric disturbance

coincident with the glitch.

The quake mechanism of exciting the magnetosphere of a neutron star was previously studied in

several works [110–113]. The wave transmission coefficient at the crust-magnetosphere interface

was calculated by [110], who considered quakes as possible triggers of gamma-ray bursts (GRBs).

We consider much less energetic events, and thus we do not expect a bright GRB to accompany a

glitch. Other key differences are that our model is two-dimensional (2D), time-dependent, and in-

cludes the self-consistent magnetic coupling to both the magnetosphere and the liquid core. These

advances are essential for our model of the 2016 December event. We also include a liquid ocean,

which was absent in the study of [110], but find that it has little effect on the phenomena that we

study.

We find that the quake shear waves spread sideways and fill the whole crust. Therefore, seis-

mic crustal oscillations populate the entire magnetosphere with Alfvén waves. The Alfvén waves

bounce in the closed magnetosphere, become de-phased, and generate strong electric currents.

De-phasing, in concert with growing wave amplitude in the outer magnetosphere leads to charge

starvation, and e± discharge. The discharge can flood the magnetosphere with plasma, interrupting

the observed radio emission. We also find that excitation of Alfvén waves in the liquid core effi-

ciently drains energy from the crustal oscillations, and thus limits the quake duration. Assuming

the mean magnetic field at the crust-core interface is comparable to the surface dipole field, and

that the field in the core is bunched into flux tubes or domains (as is expected for type-II and type-I

superconductors, respectively), we find that the quake amplitude is exponentially reduced on the

timescale ∼ 0.2 s, fast enough to cause a single null.

The paper is organized as follows. In Section 3.2 we present the relevant parameters of Vela,

and other physics input required by our model. In Sections 3.3 and 3.4 we provide an analytic

description of the proposed picture of the 2016 event. Section 3.5 outlines the formalism and

numerical method for the full three-dimensional (3D) problem, although we only present results

in 2D axisymmetry in this work. In Section 3.6 we show four sample numerical models, and the
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results are further discussed in Section 3.7.

3.2 Vela Model

3.2.1 Observed Parameters of the Vela pulsar

The pulsar has spin period P = 2π/Ω = 89 ms [114], and the light cylinder radius

RLC =
c
Ω
= 4.2 × 108 cm. (3.1)

Its spin-down rate ÛΩ = −9.8432 × 10−11 rad s−2 gives a measurement of the magnetic dipole

moment of the star µdip =
√

3c3I ÛΩ/(2Ω3) ≈ 3.4 × 1030 G cm3, assuming I ≈ 1045 g cm2 for

the star’s moment of inertia [1]. The corresponding dipole magnetic field is Bd ≡ µdip/r3
? =

3.4 × 1012(r?/10 km)−3 G, where r? is the neutron star radius. The spin-down power of Vela is

given by

Lsd = IΩ ÛΩ ≈ 7 × 1036 erg s−1. (3.2)

The pulsed radio emission at frequencies around 1.4 GHz has a much smaller luminosity [1],

LGHz ≈ 1028 erg s−1. (3.3)

The observed bolometric luminosity of the pulsar is dominated by GeV gamma-rays from the outer

magnetosphere [115],

LGeV ≈ 8 × 1034 erg s−1. (3.4)

The apparent surface temperature of Vela (as measured by a distant observer) is T∞s = (7.85 ±

0.25) × 105 K [116]. It is related to the actual surface temperature Ts by T∞s = Ts
√

1 − 2GM/r?c2

[117]. We will use the approximate Ts ≈ 106 K.
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3.2.2 Magnetosphere, Ocean, Crust, and Core

In the magnetosphere, the plasma mass density ρ satisfies ρc2 � B2/4π, and so Alfvén waves

propagate with almost the speed of light. This changes in the ocean where density ρ > ρB ≡

B2/4πc2,

ρB = 103
(

B
3.4 × 1012 G

)2
g cm−3. (3.5)

The ocean is an excellent thermal conductor, and is effectively isothermal in the deeper layers.

According to the temperature profiles of [118] the ocean of a Vela-like pulsar with Ts = 106 K

has uniform temperature T ∼ 108 K for densities ρ & 106 g cm−3, which is in agreement with

the analytic formula of [119]. The solid-liquid phase transition, which defines the top of the crust,

is set by the Coulomb parameter Γ = Z2e2/akBT ≈ 175, where a = (4πni/3)−1/3 is the mean

inter-ion spacing [120]. This defines the crystallization density

ρcrys = 8 × 107
(

T
108

)3 (
Z
26

)−6 (
A
56

)
g cm−3, (3.6)

where A and Z are the ion mass and charge numbers. We adopt the value ρcrys = 108 g cm−3 for

all of our numerical simulations.

The density profile of the neutron star ρ(r) (where r is the radial coordinate) is obtained by

integrating the equation of general relativistic hydrostatic equilibrium, using the SLy equation of

state [121], with a central density ρ = 1015 g cm−3. We use the OPAL equation of state for the

ocean with temperature T = 108 K [122]. We also make use of the analytical fitting formula in

[123] for the crust and the ocean. This gives a neutron star with mass M = 1.4M� and radius

r? = 11.69 km.

For the SLy equation of state, there is a phase transition at the bottom of the crust that occurs

at fixed pressure P = 5.37 × 1032 erg cm−3. In our model, the crust-core boundary is located at
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Figure 3.1: Schematic picture of the neutron star and its magnetosphere, indicating relevant length
scales and characteristic densities. The gray shaded region represents the closed magnetosphere.

rc = 10.8 km, with density

ρc = 1.27 × 1014 g cm−3. (3.7)

The neutron star structure is summarized in Figure 3.1. The crust-ocean boundary is located at

radius rcrys = 11.66 km, and the thickness of the crust is H ≈ 860 m. The mass of the crust is

Mc = 1.6 × 10−2M�. The ocean is ∼ 30 m deep.

The speed of crustal shear waves is controlled by the shear modulus of the crustal lattice µ. At

densities far above the crystallization density, µ is proportional to the Coulomb energy density of

the lattice and is approximately given by µ ≈ 0.12 ni(Ze)2/a where a ∼ n−1/3
i is the separation

of the ion lattice with density ni [124]. At densities ρ below the neutron drip density, ρdrip ≈

4 × 1011 g cm−3, it gives µ ∝ ρ4/3. In the deeper crust µ scales almost linearly with ρ. The shear

modulus has a sharp cutoff at density ρcrys, so that µ = 0 in the ocean.

The star’s magnetic field is frozen in its core, crust, and ocean. In our axisymmetric numer-
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ical models, we assume that the magnetic field in the magnetosphere has a dipolar configuration

aligned with the axis of rotation. We also need to include magnetic stresses inside the crust, when

computing the transmission of the seismic waves into the magnetosphere. For computational sim-

plicity we assume that the field inside the crust is that of a monopole, chosen so that the field at the

surface equals 3 × 1012 G. The spherical symmetry of the background configuration dramatically

speeds up the computation of crustal oscillations, because the vibrational eigenfunctions used in

our spectral code are easily computed through the separation of angular and radial variables (see

Section 5.2 for details).1 An important feature of our model is that the magnetic field lines con-

necting the rotating star with the light cylinder are assumed to be open, and their footprints on the

star form the two “polar caps.” In the simplest case of a nearly aligned rotator, the angular size of

the polar cap is θp ≈ (r?/RLC)
1/2 ≈ 0.05.

3.3 Quake Excitation of Shear Waves

We model the quake as a sudden change in shear stress in the deep crust, which launches an

elastic wave with an initial strain amplitude ε0. The quake is triggered in a region of vertical

thickness ∆` ∼ 104 cm (comparable to the hydrostatic pressure scale height) and horizontal area

A0. The energy of the quake is

EQ ∼
µε2

0
2
∆`A0 ∼ 1039

( ε0

10−3

)2
(

A0

1011 cm2

)
erg. (3.8)

The wave propagates toward the stellar surface with speed vs = (µ/ρ)
1/2 ≈ 108 cm s−1 and crosses

the crust thickness H ∼ 105 cm on the timescale

τ ∼
H
vs
∼ 1 ms. (3.9)

1Replacing the dipole field with monopole below the stellar surface only slightly changes the crust dynamics and
the calculated displacements of the magnetospheric footpoints. In the magnetosphere itself, the waves are followed
in the correct dipole background. Had we kept the dipole field throughout, we would get similar results with a much
greater computational effort.
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The thickness of the shear layer sets the characteristic frequency of the generated waves. As a

concrete example, consider the smooth deformation

ξ(z) =
ξ0
2

erf

[√
2(z − zQ)

∆`

]
, (3.10)

where z < 0 is the distance below the stellar surface. It corresponds to a shear layer of thickness

∆` at depth zQ. The characteristic length scale of the deformation is `0 ≡ ξ(dξ/dz)−1 =
√
π/8∆`.

The characteristic angular frequency is

ω ∼
vs

`0
≈ 2 × 104

(
∆`

104 cm

)−1
rad s−1. (3.11)

The quake can excite a broad spectrum of waves extending to frequencies well above this charac-

teristic frequency.

3.3.1 One-dimensional Model of Waves

Much insight about the transmission of seismic waves into the magnetosphere and the core can

be obtained from studying the propagation and transmission of radially directed seismic waves. A

classic one-dimensional (1D) model of this type was developed by [110]. Following their approach,

we approximated the crust as a 1D slab with the normal along the z-axis (which would be in the

radial direction for a spherical crust). The shear displacement ξ(z) is in the ŷ-direction. For the

timescales of interest, the star is an ideal conductor, so the magnetic field is perturbed by the

displacement along the y-axis, By = Bz∂ξ/∂z, as required by the flux-freezing condition. As a

first approximation, the magnetosphere is also described by ideal MHD.

The magneto-elastic wave equation is given by

ρ̃
∂2ξ

∂2t
=

∂

∂z

(
µ̃
∂ξ

∂z

)
, (3.12)
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Figure 3.2: Wave speed ṽs(ρ) in the magnetosphere, ocean, crust, and core (thick black line). The
dashed line shows the Alfén speed vA(ρ), and the dotted line shows the elastic wave speed vs(ρ).

where ρ̃ and µ̃ are the effective mass density and shear modulus, respectively, such that

ρ̃ = ρ +
B2

z

4πc2 , µ̃ = µ +
B2

z

4π
. (3.13)

The wave speed is given by ṽs = (µ̃/ρ̃)
1/2 and shown in Figure 3.2. It equals vs ≈ 108 cm s−1 in

the deep crust and grows to the speed of light in the magnetosphere. The wave speed in the liquid

core equals the Alfvén speed, which depends on B and the density of matter coupled to the Alfvén

wave, as discussed in Section 3.3.3 below.

65



For a harmonic time dependence ξ ∝ e−iωt with ω & 104 rad s−1 the wave propagation may be

described in the WKB approximation. Then an upward propagating wave and its reflection from

the low-density surface layers are given by [110]

ξ ∝
1
√
ρṽs

[
e−i(u+ωt) + ARei(u−ωt)

]
, (3.14)

where

u ≡ −
∫ z

dz′
ω

ṽs
. (3.15)

The first term in brackets in Equation (3.14) is the upward propagating wave, and the second

term with the complex amplitude AR is the reflected wave. The scaling of the overall amplitude

ξ ∝ (ρṽs)
−1/2 comes from the conservation of energy flux in the wave F ∼ ρvsω

2ξ2. In particular,

using ṽs ∝ ρ
1/6 in the upper crust, one finds

ξ ∝ ρ−7/12 (ρ < ρdrip), (3.16)

and the strain in the shear wave is

ε ≡
∂ξ

∂z
=
ξω

ṽs
∝

1
ρ1/2 ṽ

3/2
s

∝ ρ−3/4. (3.17)

The strain can become large in the low-density regions and cause a secondary failure of the crust.

However, in this work we choose to remain within the linear theory of elasticity, which is applicable

in the limit of ε � 1. In particular we assume that nowhere in the solid crust does the strain exceed

the critical value εcrit ∼ 0.1 [125]. This condition is satisfied for a quake with a typical strain in the

deep trigger region ε0 < 2 × 10−3. Our numerical models in Section 3.6 have the starquake area

A0 ∼ 3 × 1011 cm2, which gives the quake energy EQ ∼ 1038 erg (Equation 3.8).

For waves excited on scales comparable to the hydrostatic scale height of the crust (as assumed

in our quake scenario), the WKB approximation is not accurate, and the exact solution should be

obtained numerically. More importantly, the 1D model is insufficient, as the quake waves propa-

66



gate at different angles, and after reflection from the surface layers, they tend to spread sideways

to fill the entire crust. The numerical simulations of this process are presented in Sections 3.5 and

3.6 below. Here we estimate the transmission coefficients analytically using the simple 1D model.

3.3.2 One-dimensional Wave Transmission into the Magnetosphere

The wave reflection occurs in the upper crust, which is defined by ρdrip > ρ > ρcrys. For

a vertically propagating wave, the transmission coefficient (the ratio of transmitted to incident

energy flux) is given by

Tm =
4ZcrustZmag

(Zcrust + Zmag)2
≈

4Zmag

Zcrust
, (3.18)

where the impedance Z = ṽs ρ̃ is evaluated in the upper crust at the transmission layer ρrefl, Zcrust ≈

ρrefl ṽs(ρrefl), and in the magnetosphere, Zmag ≈ ρBc � Zcrust. In the relevant region, ρ̃ ≈ ρ � ρB,

and the shear wave speed may be approximated as

ṽ2
s ≈ 1015

(
7ρ1/3

9 +
b2

ρ9

)
cm2

s2 , b =
B

3.4 × 1012 G
, (3.19)

where we normalized B to the characteristic dipole field of the Vela pulsar, and ρ9 = ρ/(109 g cm−3).

Note that ṽs(ρ) is non-monotonic (see Figure 3.2). The wave speed first decreases from vs ≈

2 × 108 cm s−1 in the deep crust to 9 × 107 cm s−1 at ρ = 109 g cm−3. This decrease shortens the

wavelength by a factor of ∼ 2, so that it remains comparable to or shorter than the hydrostatic scale

height. However, as ρ further decreases below 109 g cm−3, the wave speed steeply grows, and the

length scale of this change soon becomes shorter than the wavelength. Therefore, reflection mainly

occurs at ρrefl just below 109 g cm−3. The reflection condition may be written as [110]���� d
dz

ṽ2
s

���� ∼ ωṽs . (3.20)
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Pressure in the upper crust is dominated by relativistic degenerate electrons, and the hydrostatic

balance gives the relation |z | ≈ 6 × 103ρ
1/3
9 cm, where z < 0 is the depth below the stellar surface.

Using this relation and Equation (3.19), we obtain the equation for ρrefl,�����1 − 3b2

7ρ4/3
9

����� ∼ ω4
√

2

(
ρ

1/3
9 +

b2

7ρ9

)1/2

. (3.21)

At high frequencies one can keep only the second terms on both sides of the equation, which gives

ρrefl ≈ 2 × 109
(

b
ω4

)6/5 g
cm3 (ω > ωeva) . (3.22)

One can show that the reflection condition (3.20) does not apply when ω < ωeva ≈ 2× 104 rad s−1.

In that case, the reflection occurs deeper in the crust due to the appearance of an evanescent zone,

and the transmission coefficient becomes suppressed as (ω/ωeva)
7 (see [110]). Note also that

at frequencies ω . vs/H ≈ 103 rad s−1 the crust oscillates as a whole and directly moves the

footprints of the magnetospheric field lines2 .

Using Equation (3.22) for ρrefl and the corresponding ṽs(ρrefl) ≈ 3 × 107 b ρ−1/2
9 cm s−1, we

find3

Tm ≈


3 × 10−3 b2/5 ω

3/5
4

(
ωeva < ω < ωcrys

)
10−2 b2 (

ω ≥ ωcrys
)
,

(3.23)

whereωcrys ≈ 105 rad s−1 is the frequency at which the waves reflect near the crust-ocean interface,

ρrefl(ωcrys) = ρcrys. All waves with frequency ω ≥ ωcrys experience substantial reflection at the

solid-liquid phase boundary (note the discontinuity in ṽs(ρcrys) in Figure 3.2). The frequency

independence of Tm at ω > ωcrys was not seen in [110] because they did not include the sharp

2The fundamental frequency of the liquid ocean is ωocean = ṽs/Ho ∼ 3 × 105 rad s−1 where Ho ∼ 30 m is the scale
height of the ocean. For the characteristic frequency of the crustal oscillations ω � ωocean, the ocean can be viewed
as attached to the moving crust. Effectively, the waves are transmitted directly from the solid crust to the extended
magnetosphere above the ocean.

3[110] obtained a different result Tm ∝ B4/7ω3/7, because they considered neutron stars with lower B = 1011 G.
In that case, ρrefl is much lower, and the hydrostatic stratification is different because the degenerate electrons are
sub-relativistic.
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phase transition at the top of the crust.

A large fraction of the quake energy is deposited into waves with ω & 2 × 104 rad s−1, and

these waves will leak into the magnetosphere with the above transmission coefficient.

3.3.3 Wave Transmission into the Core

The bottom of the crust is magnetically coupled to the liquid core. The core supports a multi-

tude of MHD modes, which get excited while draining elastic wave energy from the crust [126].

The Alfvén crossing time of the core τA ∼ r?/vA ∼ 1 s is longer than the characteristic lifetime of

crustal waves (estimated below). Effectively, the waves escape into the core as if it were an infinite

reservoir. Under such conditions, the transmission coefficient for a vertically propagating shear

wave at the crust-core interface can be estimated as

Tc =
4ZcrustZcore

(Zcrust + Zcore)2
, (3.24)

where Zcrust and Zcore are the impedances of the crust and the outer core,

Zcrust = ρ>ṽs, Zcore = ρ<vA. (3.25)

Here ρ> and ρ< are the mass densities of the matter that participate in the oscillations above and

below the crust-core interface, respectively.

For typical pulsar parameters Zcrust � Zcore, and the transmission coefficient is

Tc '
4Zcore

Zcrust
= 4

ρ<
ρ>

vA

ṽs
. (3.26)

In the deep crust (below the neutron drip), a large fraction of mass is carried by free superfluid

neutrons. However, entrainment is probably very strong, and we assume that free neutrons couple

to shear waves, so that ρ> equals the total local density of the crust ρ [127].

By contrast, in the superfluid core neutrons become decoupled from the oscillations. Further-
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more, as long as protons are superconducting, the magnetic flux is bunched into flux tubes with

field Bc ∼ 1015 G. This causes two effects of superfluidity and superconductivity on wave trans-

mission into the core:

i) The effective tension of magnetic field lines in the core is BBc/4π. Therefore, bunching of the

magnetic field into quantized flux tubes dramatically increases the magnetic tension, by a factor of

Bc/B ∼ 300. This enhances the transmission coefficient by a factor of ∼ 20.

ii) Decoupling of protons from other species in the core reduces the effective mass density partici-

pating in the oscillation to the proton density, ρ< = ρp.4 This reduction of ρ< (by a factor of ∼ 10)

decreases the transmission coefficient by a factor ∼ 3.

The net effect is an enhancement of the transmission coefficient Tc, by a factor of ∼ 6.

The Alfvén speed in the outer core is

vA =

(
BBc

4πρp

)1/2
∼ 5 × 106 cm s−1, (3.27)

and the resulting transmission coefficient is

Tc ∼ 2 × 10−2. (3.28)

The transmitted waves are lost for the quake. Since Tc for the superconducting core is ∼ 5 times

greater than Tm, the lifetime of crustal waves is controlled by their leakage to the core rather than

to the magnetosphere. The characteristic lifetime is given by

τcore =
2τ
Tc
∼ 100 ms. (3.29)

4Even in the presence of strong vortex-flux-tube interactions, a negligible fraction of the neutron mass couples to
the oscillations we are considering (see [128])
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3.4 Magnetospheric Waves and Electric Discharge

3.4.1 Electric Current of Alfvén Waves

The magnetospheric disturbance may be described as ideal MHD Alfvén waves as long as there

is enough plasma in the magnetosphere to support electric currents. The energy flux of the Alfvén

waves into the magnetosphere is approximately given by

F? ∼
EQTm

τA
∼ 4 × 1026 EQ,38

A12

erg
s cm2 , (3.30)

where A is the area through which the crustal wave energy is leaking into the magnetosphere.

Initially, at times comparable to τ = H/vs ∼ 1 ms, the waves emerge from the quake area A ≈ A0.

Later, A grows as the waves spread horizontally through the crust.

The Alfvén waves are ducted along the magnetic field lines, and their flux F changes propor-

tionally to the local magnetic field B,

F = F?
B
B?
. (3.31)

This fact follows from F dS =const where dS = dψ/B is the cross-sectional area of a field-line

bundle carrying infinitesimal magnetic flux dψ. The flux F determines the wave amplitude δB,

δB ≈
(
8πF

c

)1/2
∼ 3 × 108 F26 G. (3.32)

The relative perturbation of the magnetic field is small near the star, δB?/B? ≈ 10−4 F1/2
?,26. How-

ever, it grows for waves propagating to radii r � r? in the outer magnetosphere as δB/B ∝

F1/2/B ∝ B−1/2. In particular, for a dipole magnetosphere, B ∝ r−3, and so

δB
B
≈ 10−4 F1/2

?,26

(
r
r?

)3/2
. (3.33)

The emitted Alfvén waves bounce in the closed magnetosphere on the light-crossing timescale tb

and can accumulate energy and δB during the quake. This accumulation occurs on field lines that
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do not extend too far from the star, so that their tb is shorter than the quake duration.

Alfvén waves can be thought of as the propagating shear of the magnetic field lines. They

require electric current j‖ along BBB as long as the wavevector kkk has a component perpendicular to

BBB, k⊥ , 0. This component is inevitably present, since the field lines are curved. The waves de-

velop different phases on different field lines, and thus amplify the gradients of δB in the direction

perpendicular to the field lines.

The electric current j‖ may be estimated as 5

j‖ ∼
c

4π
k⊥δB ∼

c
4π

δB
`⊥
, (3.34)

where `⊥ ∼ k−1
⊥ is the spatial scale of the wave variation perpendicular to BBB. The length scale `⊥ is

initially determined by the elasto-dynamics of the crust. But once Alfvén waves on neighbouring

field lines accumulate a difference in path length similar to the wavelength, they are effectively

de-phased. Therefore, `⊥ decreases, and so j‖ grows as the Alfvén waves keep bouncing in the

closed magnetosphere. The growth of j‖ may be estimated as follows.

Let us consider a dipole magnetosphere and let θ be the polar angle measured from the dipole

axis. It is convenient to label the field lines by the poloidal magnetic flux function,

ψ =
µdip sin2 θ

r
, (3.35)

which is constant along a field line. In the axisymmetric magnetosphere, ψ =const on each flux

surface formed by a field line rotated about the axis of symmetry. A closed field line with footprints

on the star at θ? and π − θ? extends to radius rmax = r?/sin2 θ?, and its length is ∼ 3rmax. The

bounce cycle of Alfvén waves along a closed field line takes time tb ∝ rmax ∝ ψ
−1, so two field

5In particular, in axisymmetry, δBBB is azimuthal, and its gradient is in the poloidal plane. This gradient has a
component perpendicular to the background dipole field BBB and generates ∇ × δBδBδB ‖ BBB.
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lines separated by a small ∆ψ have different tb,

∆tb

tb
≈ −
∆ψ

ψ
. (3.36)

After time t, the accumulated phase mismatch between waves on flux surfaces separated by ∆ψ is

∆φ

ωt
≈ −
∆ψ

ψ
. (3.37)

De-phasing on a given scale ∆ψde occurs when |∆φ| ∼ π, and so ∆ψde(t) ∼ πψ/ωt. At a radius

r > r?, the distance `⊥ between the poloidal field lines separated by ∆ψde is

`⊥(t) ≈ r
∆ψde
∂ψ/∂θ

∼
πr tan θ

2ωt
. (3.38)

This gives the current density (Equation 3.34)

j‖(t) ∼
c δB

2π2r tan θ
ωt . (3.39)

3.4.2 e± Discharge

In the canonical pulsar picture, the rotating closed magnetosphere is filled with plasma that

sustains the corotation electric field EEE = −vvv ×BBB/c (here vvv = ΩΩΩ×rrr). This implies the characteristic

minimum plasma density [43],

nGJ =
|∇ · EEE |

4πe
≈
|ΩΩΩ · BBB |
2πce

. (3.40)

The actual plasma density may be higher by a multiplicity factor M, n = MnGJ. This factor

is believed to be large in the open field-line bundle, in some cases exceeding 103, because the

open field lines are twisted and sustain continual e± discharge. The value of M in the closed

magnetosphere is unknown and likely much lower, because this zone is not active and generates no
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discharge. It may, however contain e± pairs created by gamma-rays entering from the open field

lines [52].

The existing plasma in the closed zone can sustain Alfvén waves with the maximal current

jmax = ceMnGJ =
M |ΩΩΩ · BBB |

2π
. (3.41)

When j‖ exceeds jmax, the waves become charge starved, and the ideal MHD approximation must

break [110]. From Equations (3.33), (3.39), and (3.41), we find

j‖
jmax
∼

c (δB/B)ωt
4π2M Ω r tan θ

∼ 10
ω4

M tan θ

(
δB?/B?

10−4

) (
r
r?

)1/2 ( t
0.1 s

)
. (3.42)

One can see that the Alfvén waves generated by the quake can become charge-starved, espe-

cially when one takes into account the growth of δB? due to the accumulation of waves trapped in

the closed magnetosphere.

Once charge starvation is reached, a parallel electric field will be induced to support ∇ × BBB.

The resulting parallel voltage may be estimated as

Φ ∼
4π j‖

c
`2
⊥ ∼ δB `⊥. (3.43)

The voltage is maximum for the largest `⊥ at which starvation occurs. This scale `⊥ is given by the

condition
δB
`⊥
∼ 4πMρGJ, (3.44)

which yields

Φ ∼
c(δB)2

2MΩB
=

4πF
MΩB

. (3.45)

Note that F/B =const (Equation 3.31), so the generated voltage is approximately the same at all r
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along the field line and can be estimated with F = F? and B = B?. This gives

eΦ
mec2 ∼ 3 × 109M−1 F?,26. (3.46)

This voltage exceeds the threshold for e± discharge, as particle acceleration to γ ∼ 106 − 107

is sufficient to ignite e± creation by emitting high-energy curvature photons [44]. This process

will flood the magnetosphere and the open field-line bundle with e± plasma. Therefore, the quake

should be capable of interrupting the normal radio pulsations of Vela.

3.5 Setup of the Numerical Simulation

In this section, we outline the formalism and the setup of our numerical simulations. We are

able to simulate the elasto-dynamics of the crust in 3D; however we are currently limited to the 2D

axisymmetric simulations of the magnetosphere. Since the two computations are coupled, we are

restricting ourselves to the 2D axisymmetric simulations of the whole system.

3.5.1 Dynamics of the Crust

We use the linearized equations of motion (see, e.g. [84], [110]). For simplicity, the background

state of the crust is assumed to have a potential magnetic field, ∇ × BBB = 0 and jjj = 0. The

background is static and has EEE = 0. A displacement ξξξ(t,rrr) creates motion with velocity Ûξξξ =

dξξξ/dt ≈ ∂ξξξ/∂t in the linear order. The momentum and continuity equations are

ρ Üξξξ = ∇ ·σσσ +
1
c
δ jjj × BBB + ggg δρ − ∇δp, (3.47)

δρ = −∇ · (ρξξξ), (3.48)

whereσσσ is the elastic stress tensor of the crustal Coulomb lattice, ggg is the gravitational acceleration,

and p is the pressure; perturbations are denoted by δ. The quake waves involve a fraction of

the Coulomb energy density of the lattice, which is much smaller than the hydrostatic pressure.
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Therefore, compressive motions and radial displacements are negligible, and hereafter we consider

only solenoidal deformations (∇ · ξξξ = 0) and set ξr = 0. In this model, δρ = 0, δp = 0, and the

density of the crust is spherically symmetric.

The stress tensor for an isotropic and incompressible solid is [129],

σi j = µ

(
∂ξi

∂x j
+
∂ξ j

∂xi

)
, (3.49)

where µ is the crustal shear modulus. The linear theory of elasticity is applicable in the limit of

small strain.

For the short timescales considered in this problem, the crust is effectively an ideal conductor.

In the conductor rest frame, which is moving with velocity Ûξξξ, the electric field must vanish,

δEEE +
Ûξξξ × BBB

c
= 0. (3.50)

Then the induction equation ∂BBB/∂t = −c∇ × EEE gives

δBBB = ∇ × (ξξξ × BBB). (3.51)

The excited electric current δ jjj is related to δBBB and δEEE by the Maxwell equation,

4π
c
δ jjj = ∇ × δBBB −

1
c
∂δEEE
∂t
= ∇ × ∇ × (ξξξ × BBB) +

1
c2
Üξξξ × BBB. (3.52)

Substitution of Equations (3.49) and (3.52) into Equation (3.47) gives the elasto-dynamic wave

equation,

ρ Üξξξ + ρB Üξξξ⊥ = (∇µ · ∇)ξξξ − (ξξξ · ∇)∇µ + µ∇
2ξξξ +

1
4π
[∇ × ∇ × (ξξξ × BBB)] × BBB, (3.53)

where ρB = B2/4πc2 and ξξξ⊥ is the displacement perpendicular to BBB. In the crust, Equation (3.53)

describes oscillations of the magnetized solid. In the liquid ocean, µ −→ 0 and Equation (3.53)
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describes pure Alfvén waves. The dynamics of the crust and the ocean of interest occurs at densities

ρ � ρB ∼ 103 g cm−3 where the term ρB Üξξξ⊥ can be neglected.

3.5.2 Spectral Method

In order to numerically solve Equation (3.53), we prefer to use a spectral method for superior

stability and accuracy over a large range of densities. Our formalism follows closely that of [130].

Equation (3.53) is written in the form

∂2ξξξ

∂t2 = L̂(ξξξ) = L̂el(ξξξ) + L̂mag(ξξξ), (3.54)

where the linear differential operators L̂el and L̂mag give the acceleration due to elastic and mag-

netic forces, respectively. The elastic acceleration is

L̂el(ξξξ) =
1
ρ

[
(∇µ · ∇)ξξξ − (ξξξ · ∇)∇µ + µ∇2ξξξ

]
. (3.55)

The operator L̂mag is greatly simplified by approximating the crustal magnetic field as purely radial

(a monopole) with Br = B0(r?/r)2, where B0 is the typical magnetic field strength in the crust. In

reality Br varies over the crust. We use the fiducial value of B0 = 3 × 1012 G. The magnetic

acceleration is then

L̂mag =
1

4πρ
[∇ × ∇ × (ξξξ × BBB)] × BBB = r

µB

ρ

∂2

∂r2

(
ξξξ

r

)
, (3.56)

where µB ≡ B2
r /4π depends only on r . We use spherical coordinates r, θ, and φ.

We separate variables t,r, θ, and φ in Equation (3.54), and define magneto-elastic modes ξξξnlm as

the eigenfunctions of the operator L̂ with the boundary conditions of zero stress at the boundaries

(free oscillations of the system),

L̂(ξξξnlm) = −ω
2
nlmξξξnlm. (3.57)

Here ωnlm is the eigenfrequency of the mode with radial, polar, and azimuthal numbers n, l, and
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m, respectively. The modes ξξξnlm(rrr) form an orthogonal basis for a Hilbert space with the inner

product

〈ηηη, βββ〉 =

∫
V

ρηηη · βββ d3rrr, (3.58)

where ηηη and βββ are arbitrary vector functions defined over the volume of the crustV. Therefore, an

arbitrary solenoidal displacement field of the crust ξξξ(rrr, t) may be decomposed as

ξξξ(rrr, t) =
∑
n,l,m

anlm(t) ξξξnlm(rrr), (3.59)

where

anlm(t) =
〈ξξξ(rrr, t),ξξξnlm〉

〈ξξξnlm,ξξξnlm〉
. (3.60)

Effectively, the spectral method replaces the crust with many oscillators. Equation (3.54) describes

free oscillations, with no external forces, and is reduced to Üanlm(t) + ω2
nlmanlm(t) = 0. In the

presence of magnetic coupling to the magnetosphere/core, external forces fff mag and fff core appear at

the upper/lower boundaries of the crust,

fff ext = fff mag + fff core. (3.61)

Then each oscillator is driven by the projection of the external force on the eigenmode,

Üanlm(t) + ω2
nlmanlm(t) =

〈 fff ext(rrr, t),ξξξnlm〉

〈ξξξnlm,ξξξnlm〉
. (3.62)

The initial conditions anlm(t = 0) are determined by the initial displacement ξξξ0 and Equation (3.60).

We then evolve the spectral coefficients anlm, our effective dynamical variables, using Equation

(3.62).
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3.5.3 Basis Functions

For the class of solenoidal displacements we are considering, and the above operators, the

natural choice of basis functions is

ξξξnlm = ζnl(r)rrr × ∇Ylm, (3.63)

where ζnl contains the radial part of the eigenfunction, and rrr × ∇Ylm is the third vector spherical

harmonic. Substitution of Equation (3.63) into Equation (3.54) results in the following Sturm-

Liouville problem:

− ω2
nlρζnl =

d µ̃
dr

(
dζnl

dr
−
ζnl

r

)
+
µ̃

r2
d
dr

(
r2 dζnl

dr

)
− [l(l + 1)µ + 2µB]

ζnl

r2 , (3.64)

The radial eigenfunctions ζnl(r) and eigenvalues ωnlm = ωnl do not depend on the azimuthal mode

number m due to the spherical symmetry of µ̃. Note that in the limit µB → 0 Equation (3.64) is

the same as Equation (23) in [84].

We use a high-order Sturm-Liouville solver to numerically find the eigenfunctions and eigen-

values of Equation (3.64). The details are given in Appendix C.

3.5.4 Coupling to the Core

The magnetic field is frozen in the crust and the liquid core, and so crustal oscillations deform

the magnetic field lines and launch Alfvén waves into the core. The feedback of these waves on

the crust dynamics is incorporated in our simulations as follows.

For simplicity, we approximate the background magnetic field BBB as purely radial so that B = Br .

Since the core is effectively an infinite reservoir on the quake timescale (Section 3.3.3), there are

only inward propagating waves with the displacement of the form ξξξ(t + r/vA), where vA is the

Alfvén speed in the core. The magnetic field of the emitted waves is related to the displacement ξξξ
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by the flux-freezing condition,

δBBB< = ∇ × (ξξξ × BBB) =
1
r
∂r(Brr ξξξ) ≈ Br∂rξξξ =

Br

vA
Ûξξξ. (3.65)

Here subscript “<” stands for the core region immediately below the crust, and Ûξξξ is the time

derivative of the displacement at the interface.

The presence of δBBB< implies that the core applies Maxwell stress to the bottom of the crust.

The extracted momentum flux is

σrh = −
Br δBh,<

4π
, (3.66)

where h = θ, φ labels the horizontal component. Since the crustal modes are calculated with the

stress-free boundary condition δBBB = 0, the external stress must be included as a driving term in

the oscillation Equation (3.62). The external force appearing in this equation is applied to the

bottom layer of the crust of some thickness ∆r and density ρ> (just above the interface), so that

fextρ> ≈ σrh/∆r . Approximating the layer as infinitesimally thin, the external force at the crust-

core interface becomes

fff core = −
Br δBBB<

4πρ>
δ(r − rc). (3.67)

Substituting the core Afvén speed vA = Br/(4πρ<)1/2, we obtain

fff core = −
ρ<
ρ>

vA Ûξξξ δ(r − rc), (3.68)

where ρ< is the mass density of the core infinitesimally below the crust-core interface. One can

see that coupling to the core is equivalent to adding a damping force ∝ Ûξξξ.

The projection of fff core onto each basis function is computed once at the beginning of the

simulation and stored in an array (see Appendix D).
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3.5.5 Coupling to the Magnetosphere

In this work, we model the pulsar magnetosphere as dipole, and treat the magnetospheric waves

as linear perturbations, using the framework of force-free electrodynamics. In force-free electro-

dynamics the inertia of the plasma is negligible compared to the inertia of the magnetic field, and

the equation of motion is replaced by the condition

ρeEEE +
jjj × BBB

c
= 0. (3.69)

It implies EEE · BBB = 0 and EEE · jjj = 0, so there is no dissipation. This approximation is valid if

there is enough plasma to sustain electric currents excited in the perturbed magnetosphere. For

linear perturbations about a stationary background state with EEE = 0 (in the corotating frame) and

∇ × BBB = 0 the force-free condition becomes δ jjj × BBB = 0. Substitution of δ jjj from Equation (3.52)

then gives

ρB Üξξξ⊥ =
1

4π
[∇ × ∇ × (ξξξ × BBB)] × BBB. (3.70)

Note that only the perpendicular displacement ξξξ = ξξξ⊥ enters the force-free wave equation.

The wave equation gives the dispersion relation for eigen modes ξξξ ∝ exp(−iωt + kkk · rrr),

ω2

c2 ξξξ = k2
‖
ξξξ + kkk⊥(kkk · ξξξ), (3.71)

where k‖ and kkk⊥ are the components of kkk parallel and perpendicular to BBB, respectively. The eigen

modes include shear Alfvén waves (kkk · ξξξ = 0) with dispersion relation ω = k‖c, and compressive

(called “fast”) modes. The perturbations are generated by the shear motions of the crust at the

footprints of the magnetospheric field lines, and these motions should launch Alfvén waves. Their

conversion to fast modes in the magnetosphere is a second-order effect, which is negligible as long

as δB/B � 1.

The group speed of Alfvén waves is parallel to BBB, so they are ducted along the magnetic field

lines. For the linear dynamics of Equation (3.70), each poloidal field line behaves like an inde-
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pendent string, with no coupling to other field lines. Then effectively we need to solve a 1D wave

equation along each poloidal field line.

In axisymmetry, ∂/∂φ = 0, the Alfvén waves have the displacement in the φ-direction, ξξξ =

ξφ φ̂φφ. It is convenient to work in the so-called magnetic flux coordinates (ψ, χ, φ). The coordinate

ψ represents surfaces of constant poloidal flux (for a dipole magnetosphere it is given by Equa-

tion (3.35)), and χ is the length along poloidal field lines in the φ = const plane [88]. Equation

(3.70) can be written in the flux coordinates as

∂2ξφ(ψ, χ)

∂t2 =
c2

r⊥B
∂

∂ χ

[
r2
⊥B

∂

∂ χ

(
ξφ(ψ, χ)

r⊥

)]
, (3.72)

where r⊥ = r sin θ is the cylindrical radius. Each flux surface in the magnetosphere is effectively a

1D string (with mass density and tension both proportional to Br⊥) supporting shear wave propa-

gation with speed c.

Between the solid crust and the force-free magnetosphere there is the liquid ocean. The ocean

dynamics can be calculated by extending the magnetosphere model so that each 1D string includes

a heavy part at the footprint where the string mass density is increased and the shear wave is

decelerated below c as vA/c = (ρ/ρB + 1)−1/2. The technical motivation for treating the ocean

motions as part of the magnetospheric dynamics is that it is liquid and hence “force-free” — it

does not sustain any shear forces. Note however that the ocean depth is small compared with the

crust thickness, and at wave frequencies of interest, it moves together with the crust at the footprints

of the magnetospheric field lines. Effectively, the magnetosphere is attached to the solid crust, and

in the numerical models presented in Section 3.6 the presence of the ocean will be neglected.

We also performed more detailed simulations with ocean dynamics included, which support this

approximation for Vela.

Solving the magnetospheric field-line dynamics requires two boundary conditions. For closed

field lines, the boundary conditions are applied at the two footpoints where the field line intersects

with the surface of the neutron star. The field line is attached to the star and its footprint displace-
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ment equals the instantaneous displacement of the uppermost layer of the crust, ξξξ(t,r?), which is

determined by Equation (3.62).

For open field lines, only one end is attached to the star, giving one boundary condition ξξξ(r?).

The other end is at the outer boundary of the computational domain. At this end, we apply the

condition of free escape, which means that there are only outgoing Alfvén waves. Outgoing waves

are functions of t − χ/c and satisfy the condition

∂ξξξ

∂ χ

����
χend

= −
1
c
∂ξξξ

∂t

����
χend

, (3.73)

In our simulations, the magnetosphere is sampled with 275 closed and 50 open flux surfaces.

The outer boundary of the open field lines is set at rmax = 107 cm, and the last closed field line

extends to RLC = 4.2×108 cm — the light cylinder radius of Vela. We follow the dynamics of each

field line by solving the string Equation (3.72) with the boundary condition ξ(r?) at the footprints

and Equation (3.73) at the outer boundary. The magnetospheric dynamics is coupled to the crustal

oscillations at r?, so the crust and the magnetosphere evolve together as a coupled system. The

coupled differential Equations (3.62) and (3.72) are integrated numerically using the fourth-order

Runge-Kutta scheme, as described in Appendices D and E.

The feedback of the emitted magnetospheric waves on the crust oscillations is implemented

similarly to the crust-core interaction described in Section 3.5.4. In the axisymmetric model, both

the displacement and the perturbed magnetic field are in the φ-direction. Let δB = Bφ,> be the

perturbed field immediately above the stellar surface. The magnetospheric stress Br Bφ,>/4π is

communicated directly to the solid crust at the bottom of the ocean, where density ρ = ρcrys. To

extract the required momentum flux σrφ = −Br Bφ,>/4π from the crust, we apply force fmag =

−(σrφ/ρcryst∆r) to the upper layer of the solid material with a small thickness ∆r ,

fff mag ≈
Br δBBB>

4πρcrys
δ(r − rcrys). (3.74)

The magnetospheric perturbation Bφ is related to the displacement ξφ(ψ, χ) by the flux-freezing
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condition,

δBφ = Br⊥
∂

∂ χ

(
ξφ

r⊥

)
. (3.75)

This allows one to express fff mag in the form

f φmag =
ρ(r>)
ρcrys

v2
A(r>) cosα r⊥

∂

∂ χ

(
ξφ

r⊥

) ����
r>
δ(r − r?), (3.76)

where α is the angle between the magnetic flux surface and the radial direction. In the model where

the magnetosphere is directly attached to the solid crust (neglecting the thin ocean), vA(r>) = c and

ρ(r>) = ρB. This approximation is used in the simulations presented below. A more detailed model

of magnetospheric waves with the ocean at the footprints would have vA(r>) ≈ B/(4πρcrys)
1/2 ≈

10−2c and ρ(r>) = ρcrys. It would explicitly follow the wave acceleration to c as it crosses the

ocean.

3.6 Sample Models

We have calculated four sample models: A1, B1, and A2, B2. Their parameters are given in

Table 3.1, and the initial displacement of the disturbed crust is shown Figure 3.3. In all the models,

the quake has energy EQ = 1038 erg.

Models A1 and B1 have no crust-core coupling, representing a pulsar with a magnetic field

confined to the crust and not penetrating the core. Models A2 and B2 have strong crust-core

coupling; they assume a superconducting core, and the poloidal component of the magnetic field

at the crust-core interface B ≈ 3.4 × 1012 G, similar to the measured surface dipole field of Vela.

The dynamical picture of quake development is quite similar in all four models. As an exam-

ple, the snapshots of model A1 are shown in Figures 3.4 and 3.5. At the beginning, we observe

shear waves propagating toward the surface and launching Alfvén waves into the magnetosphere

directly above the quake region (which is at the north polar cap in model A1). Due to the large

impedance mismatch at both the crust-core and the crust-magnetosphere interfaces, most of the

quake energy remains trapped inside the crust, and the waves bounce many times between the two
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interfaces. Some waves are launched in the θ̂-direction with a large surface amplitude and cross

the circumference of the crust in a time πr?/ṽs ∼ 30 ms. These surface waves are the so-called

“whispering gallery modes" [131]. However, most of the shear wave energy remains concentrated

at the north pole for a longer time, and gradually spreads toward the south pole after many small

angle reflections at the interfaces. As the centroid of the shear wave energy passes the magnetic

equator the luminosity of Alfvén waves into the magnetosphere, LA, drops because Br is small.

After ∼ 200 ms the wave energy has spread throughout the entire crust, and the same luminosity of

Alfvén waves is measured from the north and south poles. The evolution of LA is shown in Figure

3.8.

The magnetospheric Alfvén waves are initially coherent when launched from the surface (Fig-

ure 3.4, top right), with the perpendicular length scale determined by the length of the elastic waves

in the crust. After a light-crossing time (∼ 45 ms for the last closed field-line) all of the Alfvén

waves become de-phased (Figure 3.5, top right). The regions where | j‖/cρGJ | > 1 are mapped

in Figures 3.4 and 3.5. We find that avoiding charge starvation and the ignition of e± discharge

requires the magnetospheric plasma to have a high multiplicityM & 103, in agreement with the

estimates in Section 3.4.2. After three rotations of Vela, LA has dropped by a factor of ∼ 2 − 3.

Less than 3% of the quake energy EQ has been transferred to the magnetosphere (Figure 3.9).

The dynamics in model B1 is the same except that the elastic waves spread from a different

quake region, now located at latitude θ ∼ π/4 instead of the north pole (Figures 3.6 and 3.7). The

energy budget and the timescale for injecting the Alfvén waves into the magnetosphere are similar

to those in model A1. At first, Alfvén waves are only launched into the closed field-lines (Figure

3.6), but after ∼ 20 ms the crustal shear waves have spread to the north polar cap, and Alfvén

waves are launched into the north open field-line bundle, and the entire closed magnetosphere.

Their luminosity LA remains quite constant for the remainder of the simulation. After 3 rotations

of Vela, ∼ 3% of the initial elastic energy has been transmitted into the magnetosphere.

Models A2 and B2, which include the crust-core coupling, show a significant difference from

models A1 and B1: the lifetime of crustal waves is significantly reduced, because the wave energy
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Figure 3.3: Top: initial conditions used for models A1 and A2. Bottom: initial conditions used for
models B1 and B2. Color shows the amplitude of the azimuthal displacement ξφ. The amplitude
is scaled so that each initial condition has the initial energy E = 1038 erg. The gray dashed lines
show the boundaries of the crust.

is drained into the core. This draining occurs exponentially, because it results from the damping

force fcore ∝ Ûξ (Equation 3.68). The evolution of the crustal wave energy is well approximated by

Ecrust ≈ EQ exp
(
−

t
τcore

)
, (3.77)

with τcore ≈ 86 ms in both models A2 and B2 (Figure 3.9). The luminosity of Alfvén waves into

the magnetosphere LA decays on the same characteristic timescale. After three rotations of Vela,

∼ 1% of the initial elastic energy is in the magnetosphere, and ∼ 95% of the initial energy has

been transmitted into the liquid core. The luminosity LA has decreased by a factor of ∼ 20. The

evolution of LA and the wave energy in all four models is summarized in Figures 3.8 and 3.9.
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Figure 3.4: Model A1 at t = 2 ms. Top left: displacement ξφ of the crust near the epicenter of
the quake. The dashed lines show the boundaries of the crust. Top right: toroidal perturbation of
the magnetic field Bφ/B (left), and the ratio | j‖/cρGJ | (right). The green curves show the poloidal
magnetic field. The two field lines closest to the axis of symmetry are the boundary of the open
field-line bundle. The gray dashed circle is the surface of the neutron star. Bottom: displacement
ξφ(r, θ) in the entire crust, plotted on the r-θ plane.

Figure 3.5: Same as Figure 3.4 but at time t = 50 ms.
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Figure 3.6: Model B1 at t = 2 ms. Top left: displacement ξφ of the crust near the epicenter of
the quake. The epicenter is at θ = 45 ◦, and we have rotated the figure by −45 ◦ (x̃ = x − z and
z̃ = x + z). The dashed lines show the boundaries of the crust. Top right: toroidal perturbation of
the magnetic field Bφ/B (left), and the ratio | j‖/cρGJ | (right). The green curves show the poloidal
magnetic field. The two field lines closest to the axis of symmetry are the boundary of the open
field-line bundle. The gray dashed circle is the surface of the neutron star. Bottom: displacement
ξφ(r, θ) in the entire crust, plotted on the r-θ plane.

Figure 3.7: Same as Figure 3.6 but at time t = 50 ms.
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Figure 3.8: Luminosity of Alfvén waves emitted into the magnetosphere, LA. The luminosity has
been averaged into 20 ms bins to remove the noise from fast oscillations. Left: models A1 and A2
(initial quake under the polar cap). Right: models B1 and B2 (initial quake at θ ∼ π/4). Red is
used for models with no crust-core coupling (A1 and B1), and blue for models with strong crust-
core coupling (A2 and B2). For each model, we show LA from the entire stellar surface (solid
curve), and the contributions from the north (dashed) and south (dotted) polar caps.

3.7 Discussion

Glitches give deep insight into the exotic dynamics of quantum fluids that likely exist in pulsar

interiors. One of the unsolved theoretical issues is the cause of the nearly simultaneous unpinning

of billions of superfluid vortices over a macroscopic 10− 103 m length that must take place during

a glitch. The catastrophic unpinning is required to explain the glitches’ magnitudes, especially

the giant glitches with the relative spin-up of ∼ 10−5 observed in Vela. Crustal quakes have been

suggested as one of the candidates for the glitch trigger, but not considered promising for Vela.

Indeed, what could deform the crust so dramatically that it would have a mechanical failure?

Vela’s external magnetic field is two orders of magnitude smaller than that of magnetars, and thus

the magnetic stresses are not obviously sufficient to break the crust. Furthermore, Vela is spinning

at 1% of the break-up angular velocity, and thus its relative rotational deformation is ∼ 10−4, which

is smaller than the critical strain of the crust. Therefore, rotational deformation is also unlikely to

lead to a quake.

Nonetheless, the remarkable observations of the 2016 glitch by [40] force one to seriously
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Figure 3.9: Evolution of the quake energy. The four panels show the results for models A1, A2,
B1 and B2. The energy retained by the crustal oscillations Ecrust (dashed curve) is reduced by
the transmission into the magnetosphere (dotted) and (in models A2, B2) transmission into the
core (dotted-dashed). As required by energy conservation, the sum of the retained and transmitted
energies remains equal to EQ = 1038 erg (horizontal solid line). The blue dashed line shows the
analytical approximation to Ecrust(t) (Equation 3.77) with τcore = 86 ms.
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consider a quake as a trigger. The change in the magnetospheric activity indicates its strong distur-

bance by the glitch on a timescale shorter than 0.1 s. The only plausible way for such a disturbance

to be delivered from the star’s interior is through a shear wave that reaches the interface between

the crust and the magnetosphere. The high-frequency elastic wave can shake vortex pinning sites

in the crust. The resulting magnus force can unpin vortices in a macroscopic region causing a

glitch [132]. Alternatively, plastic failure of the crust could generate sufficient heat to thermally

unpin many vortices [133].

In this paper, we studied an important ingredient of such a scenario — the seismic motion in

the crust and its coupling to the magnetosphere and the core. We have shown that the seismic

activity, once created, spreads through the crust and engages the whole magnetosphere in Alfvén-

type oscillations. Even for a modest-amplitude quake, we find that the magnetospheric disturbance

can cause an electric discharge that produces gamma-rays and e± pairs. We are unable to make

specific predictions for the quake effect on the radio luminosity LGHz, because the mechanism

of pulsar emission is poorly understood. However, it is reasonable to expect that the appearance

of a new powerful e± source changes LGHz for the duration of the quake, and could shut down

the radio pulsations as observed in the Vela glitch in 2016 December. The seismic motion in the

crust is damped on a short timescale through emission of Alfvén waves into the liquid core. This

process is sped up by the enhanced magnetic tension due to the bunching of the magnetic field into

flux tubes in the superconducting core of Vela. As a result, the damping timescale for the crustal

oscillations is as short as ∼ 0.2 s, comparable to the duration of the observed pulse disturbance.

New detailed observations would help confirm the presence of magnetospheric disturbances

during glitches. If such disturbances turn out to be common, they will require a paradigm shift that

should include crustal quakes as a common phenomenon in young pulsars. This could indicate

internal magnetic fields that are orders of magnitude greater than the external dipole component

responsible for the pulsar spin-down. The existence of ultra-strong internal fields would not require

the assumption of superconductivity to explain the short lifetime of the quake. In addition, it would

indicate that the Vela glitches are due to the crustal superfluid, contrary to models that invoke the
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core superfluid (e.g. [7], [134]). The theoretical challenges pertaining to pulsar exteriors would

also be considerable: the damping of the strong magnetospheric waves and their impact on pair

production and pulsar radio emission will need to be understood.

The methodology developed in this paper is not limited to studies of quakes in pulsars, but can

also be used for studies of magnetars, where superstrong crustal quakes were proposed as triggers

of giant X-ray flares [9].

Finally, we note that the quake we invoked for the Vela glitch is capable of producing a weak

X-ray burst. We found the Alfvén wave energy deposited in the magnetosphere EA ∼ 10−2EQ ∼

1036 erg. This energy is dissipated through the discharge, and a large fraction of EA should be

emitted in the X-ray band. In particular, X-rays are emitted by e± created near the star in excited

Landau states, and cascading down to the ground state. The duration of the X-ray burst is compa-

rable to the dissipation timescale for the magnetospheric Alfvén waves. The burst is much brighter

than than the normal pulsating X-ray luminosity of Vela; however, its detection is challenging

because of the short duration and the modest fluence.

93



Chapter 4: Pulsar Magnetospheres and Radio Emission

4.1 Introduction

Pulsars are rotating magnetized neutron stars which produce powerful beams of coherent radio

emission. Despite an abundance of observational data, the mechanism generating radio waves

in pulsar magnetospheres has remained elusive for more than fifty years. Pulsar magnetospheres

are filled with highly magnetized collisionless electron-positron (e±) plasma which is produced in

electric gaps — regions with voltage along magnetic field lines. Electric discharge in the gaps may

be responsible for pulsar radio emission, and the only reliable way to solve this nonlinear problem

is with a self-consistent numerical simulation.

In the last decade there has been a significant computational effort to model the magnetosphere

structure and multi-wavelength emission from first-principles using the particle-in-cell (PIC) tech-

nique [52–54]. Global simulations unanimously display powerful gamma-ray emission from the

outer magnetosphere [54, 135], but radio waves were not observed. Recently [50] showed that ra-

dio waves can be generated directly by the time-dependent e± discharge above the polar-cap. The

authors used local PIC simulations of the gap in cartesian geometry — it required high voltage and

resolution which were not achieved in global simulations.

In this Letter we present a global kinetic plasma simulation of an axisymmetric magnetosphere.

Our numerical experiment achieves voltage and spatial resolution sufficient to reveal new features,

including locations of electric gaps where e± lightning ignites and produces coherent radio waves.

We observe streaming instabilities in the magnetosphere for the first time.
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4.2 Numerical Method

The kinetic plasma simulation is performed with the relativistic PIC code Pigeon [55, 56],

which solves Maxwell’s equations with the equations of motion for charged particles and e± cre-

ation. We include a general-relativistic correction to Faraday’s law which describes the rotational

frame-dragging effect near the star [54]. We set the compactness of the star rs/r? = 0.5, where

rs = 2GM/c2 is the Schwarzschild radius and r? is the radius of the star. Hereafter lengths are

given in units of r?, and times in units of r?/c. The e± have mass m and charge ±e, while ions (pro-

tons) have charge e and mass mi = 10m. Electromagnetic fields are given in units of mc2e−1r−1
? ,

number density in units of r−3
? , and charge density in units of er−3

? .

The scales of the problem are set by the angular velocity Ω and the magnetic dipole moment

µ of the pulsar. Rotation of the magnetized star induces a voltage Φ0 ≈ µΩ2/c2 capable of ac-

celerating e± to Lorentz factor γ0 = eΦ0/mc2. For real pulsars γ0 ∼ 1011. We scale it down to

γ0 = 2×104, which allows us to resolve the plasma skin depth. Our value of γ0 is twice as large as

in previous work [56], and our resolution is twice as high. We setΩ = 1/6, which implies the light-

cylinder radius RLC = c/Ω = 6. The minimum charge density required to support the co-rotating

magnetosphere ρGJ = −ΩΩΩ · BBB/(2πc) [43] defines the characteristic number density nGJ = |ρGJ |/e

and plasma frequency ωp = (4πnGJe2/m)1/2. Similar to real pulsars, the simulation preserves the

hierarchy of scales Ω � ωp � ωB, where ωB = eB/mc is the cyclotron frequency.

The gamma-ray emission, propagation, and e± production is modelled using the Monte-Carlo

method [52]. The e± emit gamma-rays of energy εγ = 10mc2 when they reach the threshold

energy γthrmc2. The threshold depends on the curvature of the field lines [52], and has typical

value γthr ∼ 100. The gamma-rays propagate with mean free path ` before converting to secondary

e± with γsmc2 = εγ/2. For r < 2, we set ` = 0.2 to simulate conversion off the strong magnetic

field near the stellar surface (γ − B channel). For r > 2, we set ` = 5 to simulate collisions with

soft target photons in the outer magnetosphere (γ−γ channel). The energy scales in our numerical

experiment satisfy the correct hierarchy 1 � γs � γthr � γ0.
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Figure 4.1: Plasma density n (color bar) in the quasi-steady state. The vertical axis shows distance
along the spin axis. Green curves show poloidal magnetic field lines. The dense clouds of plasma
above the polar cap form in e± discharge episodes. The absence of plasma (dark zone) above the
separatrix shows the return-current gaps in the unscreened state; it fills with plasma every ∼ 2RLC/c
when the return-current discharges ignite.

The computational domain covers 1 ≤ r ≤ 30 and 0 ≤ θ ≤ π. The grid is uniform in log r

and θ, and has resolution Nr × Nθ = 8192 × 8192 cells. The plasma scale 2πc/ωp near the stellar

surface is resolved by 25 grid cells. At the surface, the electromagnetic fields satisfy a rotating

conductor boundary condition, and we maintain a gravitationally bound electron-ion atmosphere

with multiplicityMatm = natm/nGJ = 10. At the outer boundary fields are damped, and particles

are absorbed.

4.3 Magnetosphere Structure

The simulation begins with a non-rotating star with a vacuum dipole magnetosphere. As we

smoothly increase the angular velocity to Ω, charges are lifted from the atmosphere and acceler-

ated, triggering gamma-ray emission and e± production which fills the magnetosphere with plasma.

The magnetosphere reaches a quasi-steady state after the first rotation of the star (Fig. 4.1). Its

global structure is similar to previous axisymmetric force-free and PIC models [52, 136–138]. The

higher voltage in our simulation leads to more efficient filling of the open field lines with plasma.

A new feature is the e± discharge in the outer magnetosphere outside the Y-shaped current sheet.
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This feature was not present in previous PIC simulations with smaller voltages. We also observe

e± discharge near the polar caps, an expected result of the relativistic frame-dragging effect [139].

The strongest dissipation and gamma-ray emission occurs in the equatorial current-sheet [135].

Here, magnetic reconnection forms a dynamic plasmoid chain.

4.4 Gaps and Electric Discharge

The gaps (regions with non-zero E| | = EEE · BBB/|BBB |) form because of a mismatch between the

required parallel current jB = (c/4π)(∇×BBB) ·BBB/|BBB | and the maximum possible current jmax = cρGJ

that could be supplied by the outward flow of a charge-separated plasma with the local charge

density ρ = ∇·E/4π. If the charged plasma under-supplies the required current (α ≡ jB/ jmax > 1),

or supplies it with the wrong sign of charge (α < 0), Ampere’s law guarantees the inductive growth

of E| | which can trigger the runaway production of e± [140]. The time-dependent gaps observed

in the simulation differ from the gap models based on electrostatic considerations (Gauss’ law),

including the classical polar-gap [44], slot-gap [141], and outer-gap [142, 143].

A time-dependent gap with α > 1 forms near the magnetic axis above the pulsar polar cap. This

gap occurs because the general-relativistic frame-dragging effect reduces the apparent rotation of

the star, and thus reduces ρGJ near the surface, while leaving the required current jB [53, 139, 144,

145]. The resulting α > 1 renders the electron flow extracted from the star unable to supply jB,

even if it moves at the speed of light. Thus, E| | is induced, igniting e± discharge. The discharge

begins when electrons are lifted from the atmosphere by E| | and accelerated to energies ∼ γthrmc2.

The electrons emit gamma-rays, which convert to e± through the γ − B channel. The increasing

density of pairs quickly screens E| |, and the e± shower proceeds outward. As the cloud of e± leaves,

E| | grows again and the discharge cycle repeats. The discharge reaches maximum multiplicity

M ≡ n/nGJ ∼ 10. The gap height is h ∼ 0.4, and the cycle time is ∼ h/c.

The magnetosphere prevents the accumulation of net electric charge on the neutron star by

arranging positive return-currents, which compensate the negative charge flowing out of the polar-

cap. Most of the return-current flows along the thin separatrix layer and is sustained by pair creation
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Figure 4.2: Excitation of plasma waves in the pulsar magnetosphere. The vertical axis shows
distance along the spin axis, and the color bar shows components of the electromagnetic field
multiplied by (r/r?)2. Top : E| | in the quasi-steady state. The dashed white curve shows the null-
surface ρGJ = 0 (the null-surface breathes outside rLC due to plasmoid motion). Insets (i)-(iii):
Electromagnetic modes excited during e± discharges at the polar-cap, inner return-current, and
outer return-current gaps. Inset (iv): Waves excited by a streaming instability. For insets (i) and
(ii), δE⊥ lies in the poloidal plane.

at the Y-point [56]. We also observe a bulk return-current of macroscopic thickness on open field

lines outside the separatrix layer which pass through the null-surface defined by ρGJ = 0 [Fig. 4.2,

top, dashed line]. The bulk return-current draws electrons from the pair plasma created around the

light-cylinder.

The simulation reveals two time-dependent gaps on the field lines that conduct the bulk return-

current: (i) an inner return-current gap of type α < 0 forms between the polar-cap and the null-

surface where ρGJ < 0 and jB > 0, and (ii) an outer return-current gap of type α > 1 forms outside

the null-surface where ρGJ > 0 and jB > 0. The presence of two gaps on the same field lines results

in coupled discharge dynamics. The two interacting discharges reach e± multiplicitiesM ∼ 5 and

repeat on the timescale ∼ 2RLC/c.

The inner return-current gap has ρGJ < 0, so here the charge density can only be supplied by
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electrons. Electrons flow toward the star in order to conduct jB > 0. When this flow dwindles, a

gap opens near the null-surface (with E| | directed away from the star) and expands inward until it

reaches altitude r ∼ 2r? where pair production through the γ − B channel becomes possible. Then

discharge develops, seeded by the inward electron flow accelerated in the gap. Pair creation quickly

screens E‖ , and the shower proceeds toward the star, spreading laterally due to the curvature of the

magnetic field lines and the finite free paths of tangentially emitted gamma-rays. Some of the

secondary positrons are reversed by E‖ at the discharge onset; they escape outward and serve as

seeds for the discharge in the outer return-current gap.

The outer return-current gap extends from the null-surface toward RLC (Fig. 4.2, top). The gap

occurs because the required current is positive, jB > 0, but positrons are not readily available from

inside the null-surface where ρGJ < 0. This generates E‖ directed away from the star. It pulls

electrons into the gap from larger radii. The inward flowing electrons supply the correct sign of

the current, but the wrong sign of charge (ρGJ > 0), so they cannot screen the gap. Instead, they

get accelerated by E‖ , cross the null-surface and trigger the inner return-current discharge, which

provides a source of positrons from inside the null-surface. These seed positrons get accelerated

and trigger pair production in the outer return-current gap through the γ − γ channel. Thus, the

two gaps (inner and outer) assist each other in repeating pair discharge.

4.5 Discharge Waves

Fig. 4.2 shows the plasma waves excited during the polar-cap discharge [inset (i)], the inner

return-current discharge [inset (ii)], and the outer return-current discharge [inset (iii)]. The electro-

magnetic fields of the waves δBBB and δEEE are isolated by first subtracting the time average to remove

the zero frequency (background) component. Then we subtract a local spatial average calculated

along the magnetic field line, which removes large amplitude low frequency oscillations caused

by breathing of the global magnetosphere. The perpendicular part of the waves are calculated as

δBBB⊥ = BBB − δBBB | |, where δBBB | | = δBBB · BBB/|BBB |.
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The observed discharge waves are consistent with the mechanism seen in previous local simu-

lations: pair production in the gap electric field drives a current which directly couples to oscilla-

tions in E| |, δBBB⊥, and δEEE⊥ [50, 146]. The wavelength of the modes is consistent with λ ∼ 2πc/ω

[Fig. 4.2, insets (i)-(iii)], where ω = (4πne2/〈γ3〉m)1/2 is the local plasma frequency. The wave

electric field is polarized in the kkk −BBB plane, which suggests that an ordinary (O) mode is excited (kkk

is the wave vector). In particular, δE⊥/E| | is consistent with the superluminal O-mode polarization

[147], in agreement with local simulations [50, 146]. As the discharge develops and plasma density

increases, a spectrum of higher frequency modes is excited [50], although we only resolve low fre-

quencies in the global simulation. The wave amplitude is consistent with E?
| |
∼ γsmcω?/e, where

ω? = 2πν? is the plasma frequency later in the discharge when E| | can barely reverse e± [148]. At

each gap the emission of waves is strongly modulated on the gap light-crossing timescale.

Our simulation also demonstrates the extraordinary (X) modes emitted from the equatorial

plasmoid chain [Fig. 4.2, δB⊥, δE⊥, insets (iii), (iv)] [149, 150]. These waves are easy to identify,

because their electric field is polarized in the kkk ×BBB direction, and is absent in E| |. Note, in axisym-

metry kkk lies in the poloidal plane. Near the star BBB is approximately poloidal, and insets (i) and

(ii) display the O-mode polarization. At large radii BBB is twisted, and insets (iii) and (iv) contain

contributions from the O-mode and X-mode.

4.6 Instabilities

The simulation also reveals plasma streaming instabilities, triggered at several sites in the

outer magnetosphere. The triggering mechanism is non-local: the e± wind becomes exposed to

a gamma-ray beam emitted elsewhere in the magnetosphere, which injects an e± beam with a

different momentum (Fig. 4.3). Both streams are made of secondary e±, and thus the instability

growth rate is not strongly suppressed by ultra-high Lorentz factors typical for primary accelerated

particles. The instability is electrostatic in nature, and controlled by plasma oscillations along the

magnetic field lines (rapid gyration of the particles increases their effective parallel inertia, but
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Figure 4.3: Streaming instabilities in the outer magnetosphere. Left: Parallel momentum (p| |)
distributions of e± (grey) and gamma-rays (cyan) in regions (a) and (b) in the right panel. For
gamma-rays we show distributions of p| |/2 (their momentum is split between the created e+ and
e−). (a): Gamma-rays from the current-sheet (cyan peak) inject e± (grey peak). (b): Gamma-rays
from the separatrix (thin cyan peak) and the current-sheet (wider cyan peak) inject different e±

beams. Right: Charge density ρ and charge bunch formation.

does not change the qualitative behaviour of the instability). Charge bunches form at each site

where the instability occurs (Fig. 4.3).

The beam energy is deposited into growing plasma modes [Fig. 4.2, inset (iv)]. The observed

wavelength of the modes is consistent with λ0 ∼ 2πc/(ωpγ
1/2), indicating that the instability is

first triggered on Cherenkov resonance [151]. The modes are inclined to the local magnetic field,

and have transverse and longitudinal components [Fig. 4.2, inset (iv)]. The phase speed is neces-

sarily subluminal. Therefore, we identify the excited waves as hybrid electrostatic-Alfvén modes

[147, 152]. The waves have amplitude E| | ∼ 4π∆ρλ0, where ∆ρ ∼ ρGJ is the charge density of the

observed bunches (Fig. 4.3). The fate of the waves and radiation from the charge bunches should

be investigated with detailed local simulations.
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4.7 Discussion

Our numerical experiment has achieved a voltage large enough to reveal the locations where

the e± lightning ignites and produces coherent radio waves. In addition to the well known polar-

cap gap, the simulation has uncovered a pair of interacting gaps in the outer magnetosphere, which

form around the null-surface in the bulk return-current. Furthermore, we observed waves and

charge bunches excited by streaming instabilities in the secondary e± plasma — a result of multiple

gamma-ray streams revealed by the global simulation. The high resolution is key to these findings,

providing a glimpse of the origin of pulsar radio waves, a subtle phenomenon compared to pulsar

gamma-ray emission. The simulation also confirms the powerful narrow fan of the equatorial

gamma-rays reported in [56].

The electric discharge in our simulation reaches pair multiplicityM ∼ 5 − 10, much smaller

than in real pulsars. However, it is large enough to demonstrate the limit-cycle behaviour of the

gaps and the excitation of electromagnetic modes in the global magnetosphere. Realistic multiplic-

ities up toM ∼ 104 are so far achieved only in local 1D discharge simulations [49, 57], and exci-

tation of waves in a polar-cap discharge was previously demonstrated in local 2D simulations with

M ∼ 10 [50, 146]. Simple estimates suggest that the discharge waves offer a promising mechanism

for pulsar radio emission. The waves are excited near the local plasma frequency ν ∼ νp which

scales asM1/2. For a realisticM, one can estimate ν ∼ (2π)−1(4πMnGJe2/〈γ3〉m)1/2 ∼ MHz-

GHz [50, 153]. The expected wave amplitude at the polar-cap E?
| |
∼ 105 (γs/103)(ν?/GHz) G

implies Lradio ∼ cE?
| |

2 Apc/(4π) ∼ 1029 (Apc/109cm2) erg s−1 [148], similar to observed pulsars

(Apc is the polar-cap area).

The global kinetic simulation offers a physical framework to start interpreting the rich pulsar

observations. In particular, the polar-cap discharge may be responsible for the so-called “core”

radio emission, and the inner return-current discharge may produce “conal" radio emission. The

wave power is strongly modulated by the electric discharge of the gaps, which may produce mi-

crostructure in the pulse profiles. The plasma instabilities could produce outer magnetospheric
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radio emission in energetic pulsars which is different to the traditional emission. However, signifi-

cant work is needed to improve the simulations before they can be directly compared to individual

pulsars. It should be understood how the down-scaled voltage (andM) may affect the non-linear

interaction of the return-current gaps. A more detailed implementation of gamma-ray emission and

e± production may change the streaming instabilities and charge bunching. It has been suggested

that charge bunches could produce coherent curvature emission in the radio band [44, 154] and

the waves experience propagation effects [45–48], which needs further investigation. Finally, our

simulation was limited to aligned rotators µ ‖ Ω. It will be essential to investigate radio emission

in inclined rotators.
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Chapter 5: Black Hole Magnetospheres and No-Hair Theorem

5.1 Introduction

Black holes (BHs) formed by the collapse of a magnetized progenitor are born with magnetic

fields penetrating the event horizon. There are several possible scenarios, such as the spin-down of

a rotationally supported hyper-massive neutron star (NS) [155], or gravitational collapse induced

by the accretion of dark matter onto the NS core [156]. BHs can also acquire magnetic flux later

in life by merging with a magnetized NS [157], or in accretion flows. The fate of the magnetic flux

(hair) on the event horizon should be in accordance with the no-hair theorem of general relativity.

The original no-hair conjecture [59] states that all stationary, asymptotically flat BH spacetimes

should be completely described by the mass, angular momentum, and electric charge. It was later

proved formally that any field with zero rest mass and arbitrary integer spin is radiated away on

a light crossing timescale [158]. In particular, the multipole component l of a magnetic field in

vacuum decays as t−(2l+2). However, magnetized BHs are unlikely to exist in vacuum. If a BH

is formed by the collapse of a magnetized star, plasma will inevitably exist in the magnetosphere

around the newly formed event horizon. Furthermore, BHs can generate a self-regulated plasma

supply through electron-positron discharges near the event horizon [60–62]. The discharges can

fill the magnetosphere with plasma in a light crossing time.

The presence of highly conducting plasma, and thus non-zero stress-energy tensor of matter,

dramatically changes the vacuum dynamics assumed in the classical no-hair theorem. Essentially,

in the limit of vanishing resistivity a topological constraint is imposed which prevents the magnetic

field from sliding off the event horizon [63]. The only way for the BH to lose its magnetic field

is for the field to change its topology (reconnect). Fast magnetic reconnection occurs through the

tearing instability [64]. A chain of plasmoids (magnetic loops containing plasma) forms along the
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reconnection layer which are ejected at relativistic velocities. For highly magnetized collisionless

plasma (as expected in a BH magnetosphere), the reconnection rate vrec ∼ 0.1c is independent

of the magnetization [65–67]. The lifetime of the magnetic flux on the event horizon should be

determined in part by this universal reconnection rate.

Previous work in an ideal fluid approximation correctly established the qualitative evolution

of a dipole magnetic field on the event horizon opening into a split-monopole [63]. However, it

neglected collisionless physics, and was performed at low numerical resolution such that the re-

connection was not in the high Lundquist number regime [63, 68]. This lead to the conclusion

of an extremely long lifetime of the magnetic flux on the event horizon, dictated by the resis-

tive timescale of the plasma [63]. In this Letter we describe for the first time GRPIC (general-

relativistic particle-in-cell) and GRRMHD (general-relativistic resistive magnetohydrodynamics)

simulations which are converged and produce the correct reconnection physics.

5.2 Numerical Method

The system is solved numerically in Kerr spacetime. Kerr-schild coordinates (t,r, θ, φ) are

used so that all quantities are regular at the event horizon. The dimensionless BH spin is set to

a = 0.99 to maximize the ergosphere volume. We define “fiducial observers" (FIDOs), whose

worldlines are normal to spatial hypersurfaces. We assume that the NS was already surrounded

by plasma, and that it collapsed into a BH before the simulation begins. This setup is sufficient to

test the no-hair theorem because when plasma is present, the magnetic field cannot escape before

the event horizon has formed [63]. The initial condition for all simulations is a magnetic dipole

described by the vector potential Aφ = B0 sin2 θ/r , where B0 is the dimensionless magnetic field

strength at the horizon as measured by the FIDO. The magnetic field components are obtained

from Bi = ε i j k∂j Ak/
√
γ, where

√
γ is the spatial metric determinant. In vacuum non-zero ∇×(αBBB)

is quickly radiated away or swallowed by the BH (α is the lapse). However, when plasma is present

non-zero ∇ × (αBBB) drives currents which slow down the balding process.

The kinetic plasma simulations are performed using the general-relativistic particle-in-cell
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(PIC) code Zeltron [61]. We solve the equations of motion for pair plasma particles, together

with Maxwell’s equations for electromagnetic fields. All lengths are given in units of rg = GM/c2

with M the BH mass, and times in units of rg/c. The particles have mass m, and charge ±e. The

GRPIC simulations begin with vacuum, and plasma particles are injected with density proportional

to the local parallel electric field as a proxy for the electron-positron discharge (see [61] for details

of the injection scheme).

We set the dimensionless magnetic field strength at the event horizon B0 = rg/rL , with rL the

Larmor radius. For the gravitational collapse of a NS it implies B0 ∼ 1014(M/M�)(B/1012 G).

In this work we scale it down, and consider B0 ∼ 104,3 × 104,105 (Table 5.1). We show that

our results are independent of B0, as long as the plasma is highly magnetized. The characteristic

minimum plasma density required to support the rotating magnetosphere is the Goldreich-Julian

number density [43], n0 = ΩH B0/(2πce), where ΩH = acrg/[r2
H + (rga)2] is the angular velocity

of the event horizon radius rH = rg(1 +
√

1 − a2). It implies the characteristic magnetization

σ0 = B2
0/(4πn0mc2) = (1/2)(ωB/ΩH) = (1/4)(ωp/ΩH)

2 � 1, where ωp = (4πn0e2/m)1/2 is the

plasma frequency and ωB = c/rL the Larmor frequency. We have preserved the astrophysically

relevant hierarchy of scales rL � λp � rg, and ΩH � ωp � ωB, where λp = c/ωp is the plasma

skin depth.

Table 5.1: Summary of the simulation parameters. For all GRRMHD runs the diffusivity is η =
10−5. For MHD runs Nr × Nθ × Nφ refers to the effective resolution. Runs with Nφ = 1 are
axisymmetric, while those with Nφ > 1 refer to 3D simulations. All models have spin a = 0.99
except VAC0, which has a = 0.

Model rL λp Nr × Nθ × Nφ

VAC0 — — 9600 × 8016 × 1
VAC1 — — 9600 × 8016 × 1

GRPIC1 1 × 10−5 3 × 10−3 2880 × 2160 × 1
GRPIC2 3 × 10−5 6 × 10−3 2880 × 2160 × 1
GRPIC3 1 × 10−4 1 × 10−2 2880 × 2160 × 1

GRRMHD1 — — 6144 × 3072 × 1
GRRMHD2 — — 3072 × 1536 × 1536

The computational domain of the axisymmetric GRPIC simulations covers 0.99 ≤ r ≤ 75,

and 0 ≤ θ ≤ π. Simulations for each of the (3) magnetic field strengths were performed at

106



two resolutions to check for numerical convergence (a total of 6 kinetic plasma simulations): (i)

Nr × Nθ = 1440 × 1080, and (ii) Nr × Nθ = 2880 × 2160. The grid is uniformly spaced in log r

and cos θ, so that resolution is concentrated near the BH horizon, and the equator. We check that

the plasma skin depth is well resolved a posteriori, since the plasma density is determined self-

consistently. Electromagnetic fields are damped and particles are absorbed at the outer boundary

in order to mimic an outflow boundary condition. For r ≤ rH all characteristics are inward, and

causality prevents waves and plasma from escaping. Therefore, the equations are solved without

modification at the event horizon, and no boundary condition is imposed there.

The GRRMHD simulations are performed using the Black Hole Accretion Code [159–161]. A

minimum density is set throughout the domain such that the magnetization σ � 1, and the plasma

is nearly force-free. We set a constant and uniform diffusivity η = 10−5, so that the Lundquist

number S = vAL/η ≈ η−1 = 105 is above the plasmoid instability limit S > 104 [64], where vA ≈ c

is the Alfvén speed and L ≈ re − rg ≈ 1 is the characteristic length of the current-sheet inside the

ergosphere.

The computational domain of the GRRMHD simulations covers 0.99 ≤ r ≤ 200, 0 ≤ θ ≤

π, and 0 ≤ φ ≤ 2π. By adding AMR, we increase resolution at the current-sheet to assure

convergence. The base grid, and additional AMR blocks are uniformly spaced in log r , and φ,

while the θ grid is concentrated near the equator.

5.3 Global Dynamics

The evolution of all simulations is qualitatively similar. In GRPIC simulations, strong electric

fields induced by spacetime rotation near the event horizon trigger particle injection which rapidly

fills the magnetosphere with plasma up to a density n ∼ Mn0, whereM ∼ few is the multiplicity,

while GRRMHD simulations begins with a static low-density plasma throughout the domain. In

the ergosphere plasma is dragged into co-rotation with the BH, bending field-lines in the φ direction

and inflating the poloidal magnetic field. As field-lines extend in the radial direction, flux on the

horizon moves toward the equator, and some loops which close inside the ergosphere are pushed
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Figure 5.1: Reconnecting magnetosphere in the FIDO frame (GRPIC1) at t = 100 rg/c. Green
curves show poloidal magnetic flux surfaces, and white curves show the boundary of the ergo-
sphere. The black circle is the interior of the BH event horizon. Left: Color shows radial and θ
components of the bulk plasma 3-velocity in the orthonormal tetrad basis. The grey dashed curve
indicates the stagnation surface defined by 〈vr〉 = 0. Right: Azimuthal component of the auxiliary
field HHH.

into the BH. After t ≈ 40 rg/c, the dipole has opened into a split-monopole withΩΩΩ ·BBBp > 0 in both

hemispheres, where ΩΩΩ is the angular velocity vector of the BH and BBBp is the poloidal magnetic

field. The field-lines rotate rigidly with angular velocity ΩF = ΩH/2, in agreement with force-free

solutions [60]. The toroidal magnetic field Hφ has opposite sign to Br in each hemisphere (Fig. 5.1,

right) indicating swept-back field-lines, where HHH = αBBB − βββ × DDD, βββ is the shift, and DDD the electric

field. A well defined MHD stagnation surface is established, separating regions of inflow 〈vr〉 < 0,

and outflow 〈vr〉 > 0 (Fig. 5.1, dashed grey curve). Here 〈...〉 indicates averaging over the particles

in a single grid-cell.

5.4 Reconnection Dynamics

Magnetic reconnection is first triggered near the stagnation surface in both GRPIC and GR-

RMHD, and rapidly spreads along the entire current-sheet. The onset of reconnection occurs later

in GRRMHD t ∼ 70 rg/c, compared to GRPIC t ∼ 30 rg/c. However, once the current-sheet

is sufficiently thin the tearing instability develops and a chain of self-similar plasmoids forms.
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Generally plasmoids born inside the stagnation surface move slowly (v < 0.1c) toward the event

horizon and fall into the BH, while those born outside are ejected from the magnetosphere and

accelerate to relativistic velocities (v ≈ c). Therefore, we identify the stagnation surface at the

equator as a main site of field-line “pinching", and a primary X-point in the global magnetosphere.

Occasionally plasmoids born inside the stagnation surface have sufficient kinetic energy to escape.

We analyzed the reconnection rate for all simulations by measuring the inflow velocity of flux

into the current-sheet. The analysis is performed by transforming the electric and magnetic field

components into the locally Minkowski reference frame of the FIDO. The inflow velocity is then

calculated using the component of EEE × BBB in the direction perpendicular to the current-sheet, and

avoiding plasmoids. We confirm σ � 1 in the upstream plasma, so that vA/c = (σ/(σ+1))1/2 ≈ 1,

and the reconnection is in the relativistic regime. All components of the magnetic field change sign

at the current-sheet, indicating zero guide-field reconnection.

The measured reconnection rate in the GRPIC simulations vrec ≈ 0.1c is consistent with studies

of magnetic reconnection in relativistic collisionless plasmas [65–67]. For the GRRMHD simu-

lations the high Lundquist number S ≈ 105 � 104 ensures that the reconnection occurs deep in

the plasmoid dominated regime [162]. The reconnection rate in resistive MHD at high Lundquist

number is vrec ≈ 0.01vA [64], which is confirmed by our measured vrec ≈ 0.01c−0.02c and is con-

sistent with other studies in relativistic MHD [163] where the reconnection dynamics is modified

by vA → c. In GRPIC simulations the plasmoids grow at a rate ∼ 0.1c, until they are ejected and

the growth is suppressed as they reach relativistic velocities. Thus the plasmoids are on average

smaller in GRRMHD simulations (Fig. 5.2), where the growth rate ∼ 0.01c is smaller.

Reconnection in collisionless pair plasma occurs due to kinetic effects resulting from the diver-

gence of the anisotropic electron pressure tensor, which plays the role of an effective non-uniform

diffusivity [164]. Therefore, the difference in reconnnection rates between the two formalisms

can be attributed to the use of a uniform diffusivity in GRRMHD as a proxy for kinetic effects,

representing the simplest model of reconnection and plasmoid formation, while in GRPIC the

dissipation at the current-sheet is determined from first principles.
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Figure 5.2: Different realizations of the reconnecting magnetosphere in the FIDO frame. Color
shows the cold plasma magnetization σ. Top: GRPIC1 at t = 100 rg/c, σ = B2/(4πmnc2).
Bottom: GRRMHD1 at t = 311 rg/c, σ = B2/(4πρc2). The GRPIC simulation (top) displays
larger plasmoids than GRRMHD (bottom) due to the faster reconnection rate.

The reconnection is collisionless when the plasma skin depth λp is larger than the elementary

current-sheet width in the resistive-MHD chain w ∼ 100η/vA ∼ 100η/c [64, 165], where η is the

diffusivity due to coulomb collisions of pairs. Since our simulations do not include the detailed

pair production and collision physics, we estimate analytically when this condition is satisfied (see

supplement). The temperature of the reconnection layer is estimated by assuming the combined

pressure of radiation and pairs is comparable to B2/(8π). The density of pairs is then given by the

annihilation balance. We find that the reconnection is evidently collisionless when B � 1012 G.

However, if the magnetic field is very strong B & 1012 G, or pair production is very efficient, the

separation between the two regimes is less clear, and a self consistent calculation is required to de-

termine the reconnection rate. However, even in this intermediate case, the GRRMHD simulations

described in this work with uniform η provide a lower limit on the reconnection rate.
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Figure 5.3: Flux on the event horizon vs time for vacuum (power law decay), collisional MHD
plasma (exponential decay), and collisionless plasma (faster exponential decay).

5.5 Flux Decay Rate

The magnetic flux on the event horizon Φ decays quasi-exponentially with time (Fig. 5.3). In

GRPIC simulations the flux decays with characteristic timescale τ ≈ 100 rg/c, and in GRRMHD

simulations τ ≈ 500 rg/c (Fig. 5.3). The difference in timescales can be attributed to different

reconnection rates in these formalisms, which differ by a factor ∼ 5. Since B and n ∝ B decay

exponentially, all components of the stress-energy tensor become vanishingly small at late times

and the no-hair theorem is satisfied. We calculate the charge of the BH at the end of the GRPIC

simulation as Q = (1/4π)
∫

Dr√γdθdφ at r = rH and find that Q = 0, so the final state is a

Kerr BH. The decay timescale converges with decreasing rL/rH in GRPIC simulation (Fig. 5.3),

indicating the correct asymptotic behaviour with a sufficient separation of scales. Therefore, the

measured decay timescale is independent of B, as long as the plasma is highly magnetized, σ � 1,

and finite Larmor radius corrections are negligible, rL/rg � 1.

The evolution of Φ is estimated analytically using Faraday’s law, and assuming a constant

reconnection rate on the equator at the stagnation surface (see supplement) [166]. In this toy model

Φ decays exponentially on a timescale τ ≈ 3rg/〈vθ〉, with 〈vθ〉 the θ component of the plasma 3-
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Figure 5.4: Reconnecting magnetosphere in 3D (GRRMHD2) at t = 118 rg/c. Left: Volume
rendering shows σ = B2/(4πρc2) , green tubes are magnetic field-lines which penetrate the event
horizon, red tubes are magnetic field-lines which are reconnecting in the current-sheet. Right: 2D
slice of GRRMHD2 in the φ = 0 half-plane. Color shows σ, green curves are magnetic field-lines
in the φ = 0 half-plane. The picture highlights the non-axisymmetric nature of reconnection in
3D, yet still displays similar fundamental structures — X-points (inset 1), and helical winding of
magnetic field-lines in plasmoids (flux ropes) (inset 2).

velocity in the orthonormal tetrad basis (Fig. 5.1). For example, in GRPIC1 〈vθ〉 ≈ 0.02 − 0.04c

at the current-sheet implies τ ∼ 100 rg/c, consistent with Fig. 5.3. The local reconnection rate

observed by the FIDO is estimated by taking into account time dilation at the stagnation surface.

For GRPIC1 it implies 〈vθ〉/(cα) ∼ 0.05, with α evaluated on the equator at the stagnation surface,

consistent with the measured values.

In 3D (GRRMHD2), the balding proceeds similarly to the axisymmetric simulations (Fig. 5.3,

cyan curve), but the plasmoid instability leads to non-axisymmetric (in φ) structures. Therefore,

3D plasmoids, or flux tubes of tangled field-lines with a finite extent in φ, generally display more

complex topologies than those in 2D (Fig. 5.4).

5.6 Emission

The flux of conserved energy through spherical shells, as seen by an observer at infinity is

comparable in magnitude to LBZ = 0.053Ω2
HΦ

2/(4πc) [167], indicating successful activation of

the Blandford-Znajek mechanism (see supplement) [60]. Large fluctuations up to several LBZ

are seen at the locations of plasmoids. We observe the emission of fast modes from plasmoid
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mergers (Fig. 5.2). In the high−σ limit, and where B ∼ 106 G, these fast modes correspond to

vacuum electromagnetic waves in the radio band, and could be observed as coherent radio emission

[168]. The escaping giant plasmoids (Fig. 5.2) may shock the upstream wind, resulting in coherent

synchrotron maser emission [169, 170]. For collisionless plasma, we measure the total dissipative

power as seen by an observer at infinity Ldiss,∞ ≈ 0.4LBZ. When the magnetic field is strong

(B & 106 G) as expected in BH-NS mergers, the reconnection is radiative and most of the dissipated

magnetic energy will go into photons. In this regime, Ldiss,∞ ≈ 0.4LBZ ∼ 4 × 1045M2
10�B2

12 erg s−1

corresponds to emission in the hard X-ray band [171]. We also observe a population of negative

energy-at-infinity particles localized in the current sheet inside the ergosphere. They contribute to

JJJ = (c/4π)∇×HHH, and some are advected into the BH with plasmoids — an instance of the Penrose

process facilitated by magnetic reconnection [61, 172].

5.7 Discussion

We considered Kerr BH’s endowed with highly magnetized plasma-filled magnetospheres. We

find that: (i) The no-hair theorem holds, in the sense that all components of the stress-energy tensor

decay exponentially in time, (ii) Reconnection occurs at the universal rate when measured in the

locally Minkowski frame of the FIDO, (iii) The lifetime of the magnetic field on the event horizon

is controlled by the local reconnection rate measured by the FIDO in concert with other global

effects, and (iv) The final state is a Kerr BH with charge Q = 0. Balding BHs resulting from the

merger or collapse of compact objects should appear as a spectacular source of hard X-rays for

a short duration, similar to the flares of galactic magnetars. Observation of the X-rays requires a

clean environment around the BH. It is possible during the gravitational collapse of a rotationally

supported NS, and in BH-NS mergers with a high mass ratio, so that the NS falls through the

event horizon without forming a torus or disk. Gamma-ray bursts and other collapsars may be

different to the scenario described in this work, depending on how much matter surrounds the

newly formed BH. The decay of magnetic flux on the event horizon may also explain powerful

X-ray and near-infrared flares and hot spots [173] driven by plasmoid-regulated reconnection in
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magnetically dominated supermassive BH magnetospheres [162, 172]. The faster reconnection

rate in collisionless plasma implies that larger plasmoids, powering a flare near the BH, can form

in a shorter time and in this way regulate the typical flare duration.
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Conclusion

This dissertation explored the dynamics of strongly magnetized neutron stars and black holes by

using a combination of theoretical and computational techniques.

Chapter 2 studied the magnetic field evolution of neutron stars in axisymmetry. We developed

from scratch a numerical code which includes the effects of Hall drift, ohmic diffusion, and

elastic deformation in the crust. We also model the drift of superconducting flux tubes (using the

Jones prescription [8]), and vortices in the liquid core. We enforce the correct hydromagnetic

equilibrium in the core. We find that (i) The Hall attractor found by Gourgouliatos and Cumming

in the crust also exists for B-fields which penetrate the core. (ii) If the flux tube drift is fast in the

core, the pulsar magnetic fields are depleted on the ohmic timescale (∼ 150 Myr for hot neutron

stars, or ∼ 1.8 Gyr for cold neutron stars such as recycled pulsars, depending on impurity levels).

(iii) The outward motion of superfluid vortices during the rapid spin-down of a young highly

magnetized pulsar, can partially expel magnetic flux from the core when B . 1013 G. Future work

should aim to resolve theoretical uncertainties in the flux tube equation of motion, and develop a

more detailed understanding of the vortex flux tube interactions (see e.g. [174, 175]). Clarifying

these issues will enable detailed modeling of pulsar magnetic fields which will shed light on the

origin of millisecond pulsars. The models will also be essential to interpret NICER (neutron star

interior composition explorer) observations of X-ray hot spots on millisecond pulsars [176].
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In Chapter 3 we developed a theoretical model to explain the radio emission anomaly coincident

with the 2016 glitch in Vela rotation [40]. We show how a star quake could simultaneously trigger

a glitch in the neutron star interior and ignite a powerful electron-positron discharge in the

magnetosphere which switches off the pulsar radio emission. As part of this work we developed

the first numerical simulations of a neutron star quake. Our code follows the evolution of elastic

waves in the neutron star crust, and Alfvén waves in the magnetosphere, as well as the magnetic

coupling to the the liquid core. The lifetime of the star quake is controlled by crust-core coupling.

Therefore, the duration of observed star quakes may provide insights to the neutron star interior

physics by means of seismology. The major uncertainty in this work is the origin of the star

quake. Vela’s magnetic field is too weak to break the crust, and its rotation is too slow to

significantly deform it. Nevertheless, a star quake is the only plausible way to couple the neutron

star interior (where the glitch occurred) to the observed radio emission disturbance in the

magnetosphere. Future multi-wavelength observations of Vela at the time of the glitch will be

crucial to understand the phenomenon. The numerical models developed in this work can also be

applied to magnetar quakes which are thought to produce X-ray bursts and the observed galactic

fast radio burst (FRB) [12].

In Chapter 4 we present an extreme high resolution kinetic plasma simulation of a pulsar

magnetosphere using the pigeon code [55, 56]. For the first time, we resolve regions of wave

excitation by electric discharges and instabilities in a global magnetosphere. The discharge waves

may be responsible for the observed pulsar radio emission [50], and the streaming instabilities

could produce exotic radio emission from the outer magnetosphere of energetic pulsars like the

Crab [177]. For the first time we observe the non-linear interaction of electric discharges which

occur at different altitudes on the same magnetic field lines. Future work should investigate the

interacting discharges at higher (more realistic) pair multiplicities. It will also be essential to

study the development of plasma streaming instabilities in local simulations with realistic e± pair

production. The simulation in this work was restricted to aligned rotators in 2D axisymmetry. It
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will be important to understand the radio emission of inclined rotators in 3D kinetic models.

In Chapter 5 we modeled the evolution of plasma magnetospheres on Kerr black holes. We

performed general relativistic kinetic plasma simulations with the GRZeltron code [61], and

general relativistic resistive magnetohydrodynamics simulations with the BHAC code [159–161].

We showed that a dipole magnetic field on the event horizon opens into a split-monopole and

reconnects in a plasmoid-unstable current-sheet. The plasmoids are ejected from the

magnetosphere, or swallowed by the black hole. The no-hair theorem is satisfied, in the sense that

all components of the stress-energy tensor decay exponentially in time. We measure the decay

time of magnetic flux on the event horizon for plasmoid-dominated reconnection in collisionless

and collisional plasma. Future work should investigate the emission of balding black holes in

more detail, including the possible emission of FRBs during the gravitational collapse of a

strongly magnetized neutron star. The balding solution was also found to be important in

simulations of magnetically arrested accretion onto supermassive black holes [178, 179]: The

simulations show ‘balding episodes’ during which the accretion flow is halted, and the decay of

magnetic flux on the event horizon is controlled by the physics of magnetic reconnection (as

described in this work). A detailed understanding of the radiation physics during balding episodes

may provide insights into the multi-wavelength flares of Sgr A* and M87 [178].

117



References

[1] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, “The Australia Telescope National
Facility Pulsar Catalogue,” The Astrophysical Journal, vol. 129, pp. 1993–2006, Apr. 2005.

[2] S. A. Olausen and V. M. Kaspi, “The McGill Magnetar Catalog,” The Astrophysical Jour-
nal Supplement Series, vol. 212, p. 6, May 2014.

[3] R. W. Romani, “A unified model of neutron-star magnetic fields,” Nature, vol. 347, no. 6295,
pp. 741–743, Oct. 1990.

[4] A. Cumming, E. G. Zweibel, and L. Bildsten, “Magnetic Screening in Accreting Neutron
Stars,” The Astrophysical Journal, vol. 557, no. 2, pp. 958–966, Aug. 2001, arXiv: astro-
ph/0102178.

[5] A. R. Choudhuri and S. Konar, “Diamagnetic Screening of the Magnetic Field in Accret-
ing Neutron Stars,” Monthly Notices of the Royal Astronomical Society, vol. 332, no. 4,
pp. 933–944, Jun. 2002, arXiv: astro-ph/0108229.

[6] D. J. B. Payne and A. Melatos, “Burial of the polar magnetic field of an accreting neutron
star - I. Self-consistent analytic and numerical equilibria,” Monthly Notices of the Royal
Astronomical Society, vol. 351, pp. 569–584, Jun. 2004.

[7] M. Ruderman, T. Zhu, and K. Chen, “Neutron Star Magnetic Field Evolution, Crust Move-
ment, and Glitches,” The Astrophysical Journal, vol. 492, pp. 267–280, Jan. 1998.

[8] P. B. Jones, “Type II superconductivity and magnetic flux transport in neutrons stars,”
Monthly Notices of the Royal Astronomical Society, vol. 365, no. 1, pp. 339–344, Jan.
2006, arXiv: astro-ph/0510396.

[9] C. Thompson and R. C. Duncan, “The Soft Gamma Repeaters as Very Strongly Mag-
netized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfven Wave Emission,” The
Astrophysical Journal, vol. 473, p. 322, Dec. 1996.

[10] V. M. Kaspi and A. Beloborodov, “Magnetars,” Annual Review of Astronomy and Astro-
physics (in press), Feb. 2017, arXiv: 1703.00068.

[11] A. C. Collazzi et al., “The Five Year Fermi/GBM Magnetar Burst Catalog,” The Astrophys-
ical JournalS, vol. 218, no. 1, p. 11, May 2015.

118



[12] C. D. Bochenek, V. Ravi, K. V. Belov, G. Hallinan, J. Kocz, S. R. Kulkarni, and D. L.
McKenna, “A fast radio burst associated with a galactic magnetar,” Nature, vol. 587,
no. 7832, pp. 59–62, 2020.

[13] R. Perna and J. A. Pons, “A unified model of the magnetar and radio pulsar bursting
phenomenology,” The Astrophysical Journal, vol. 727, no. 2, p. L51, Feb. 2011, arXiv:
1101.1098.

[14] A. M. Beloborodov and Y. Levin, “Thermoplastic waves in magnetars,” The Astrophysical
Journal, vol. 794, no. 2, p. L24, Oct. 2014, arXiv: 1406.4850.

[15] X. Li, Y. Levin, and A. M. Beloborodov, “Magnetar Outbursts from Avalanches of Hall
Waves and Crustal Failures,” arXiv:1606.04895 [astro-ph], Jun. 2016, arXiv: 1606.04895.

[16] C. Thompson, H. Yang, and N. Ortiz, “Global Crustal Dynamics of Magnetars in Relation
to Their Bright X-Ray Outbursts,” The Astrophysical Journal, vol. 841, no. 1, p. 54, 2017.

[17] N. Chamel and P. Haensel, “Physics of Neutron Star Crusts,” Living Reviews in Relativity,
vol. 11, no. 1, Dec. 2008, arXiv: 0812.3955.

[18] P. B. Jones, “Neutron star magnetic field decay - Hall drift and Ohmic diffusion,” Monthly
Notices of the Royal Astronomical Society, vol. 233, pp. 875–885, Aug. 1988.

[19] P. Goldreich and A. Reisenegger, “Magnetic field decay in isolated neutron stars,” The
Astrophysical Journal, vol. 395, pp. 250–258, Aug. 1992.

[20] A. M. Beloborodov and X. Li, “Magnetar heating,” The Astrophysical Journal, vol. 833,
no. 2, p. 261, Dec. 2016.

[21] R. Hollerbach and G. Rüdiger, “Hall drift in the stratified crusts of neutron stars,” Monthly
Notices of the Royal Astronomical Society, vol. 347, pp. 1273–1278, Feb. 2004.

[22] J. A. Pons and U. Geppert, “Magnetic field dissipation in neutron star crusts: From mag-
netars to isolated neutron stars,” Astronomy and Astrophysics, vol. 470, pp. 303–315, Jul.
2007.

[23] D. Viganò, J. A. Pons, and J. A. Miralles, “A new code for the Hall-driven magnetic evo-
lution of neutron stars,” Computer Physics Communications, vol. 183, no. 10, pp. 2042–
2053, Oct. 2012, arXiv: 1204.4707.

[24] K. N. Gourgouliatos and A. Cumming, “Hall Effect in Neutron Star Crusts: Evolution,
Endpoint and Dependence on Initial Conditions,” Monthly Notices of the Royal Astronom-
ical Society, vol. 438, no. 2, pp. 1618–1629, Feb. 2014, arXiv: 1311.7004.

119



[25] F. Castillo, A. Reisenegger, and J. A. Valdivia, “Magnetic field evolution and equilib-
rium configurations in neutron star cores: The effect of ambipolar diffusion,” Monthly No-
tices of the Royal Astronomical Society, vol. 471, no. 1, pp. 507–522, Oct. 2017, arXiv:
1705.10020.

[26] A. Y. Potekhin, J. A. Pons, and D. Page, “Neutron stars - cooling and transport,” SSRv,
vol. 191, no. 1-4, pp. 239–291, Oct. 2015.

[27] G. Baym and C. Pethick, “Neutron stars.,” Annual Review of Nuclear and Particle Science,
vol. 25, pp. 27–77, 1975.

[28] P. B. Jones, “Neutron superfluid spin-down and magnetic field decay in pulsars,” Monthly
Notices of the Royal Astronomical Society, vol. 253, pp. 279–286, Nov. 1991.

[29] M. A. Ruderman and P. G. Sutherland, “Rotating Superfluid in Neutron Stars,” The Astro-
physical Journal, vol. 190, pp. 137–140, May 1974.

[30] G. Srinivasan, D. Bhattacharya, A. G. Muslimov, and A. J. Tsygan, “A novel mechanism
for the decay of neutron star magnetic fields,” Current Science, vol. 59, pp. 31–38, Jan.
1990.

[31] M. Ruderman, “A Biography of the Magnetic Field of a Neutron Star,” arXiv:astro-ph/0410607,
Oct. 2004, arXiv: astro-ph/0410607.

[32] M. E. Gusakov, “Force on proton vortices in superfluid neutron stars,” Mon Not R Astron
Soc,

[33] G. Hobbs, A. G. Lyne, and M. Kramer, “An analysis of the timing irregularities for 366
pulsars,” Monthly Notices of the Royal Astronomical Society, vol. 402, no. 2, pp. 1027–
1048, Feb. 2010.

[34] A. Lyne, G. Hobbs, M. Kramer, I. Stairs, and B. Stappers, “Switched magnetospheric reg-
ulation of pulsar spin-down,” Science, vol. 329, no. 5990, pp. 408–412, Jul. 2010.

[35] V. Radhakrishnan and R. N. Manchester, “Detection of a Change of State in the Pulsar
PSR 0833-45,” Nature, vol. 222, pp. 228–229, Apr. 1969.

[36] R. N. Manchester, “Pulsar glitches and their impact on neutron-star astrophysics,” arXiv:1801.04332
[astro-ph], Jan. 2018.

[37] C. M. Espinoza, A. G. Lyne, B. W. Stappers, and M. Kramer, “A study of 315 glitches in
the rotation of 102 pulsars,” Monthly Notices of the Royal Astronomical Society, vol. 414,
no. 2, pp. 1679–1704, Jun. 2011.

120



[38] A. Melatos, C. Peralta, and J. S. B. Wyithe, “Avalanche Dynamics of Radio Pulsar Glitches,”
The Astrophysical Journal, vol. 672, no. 2, p. 1103, Jan. 2008.

[39] P. W. Anderson and N. Itoh, “Pulsar glitches and restlessness as a hard superfluidity phe-
nomenon,” Nature, vol. 256, no. 5512, p. 25, Jul. 1975.

[40] J. Palfreyman, J. M. Dickey, A. Hotan, S. Ellingsen, and W. van Straten, “Alteration of the
magnetosphere of the Vela pulsar during a glitch,” Nature, vol. 556, no. 7700, pp. 219–222,
Apr. 2018.

[41] R. P. Mignani, R. Paladino, B. Rudak, A. Zajczyk, A. Corongiu, A. de Luca, W. Hummel,
A. Possenti, U. Geppert, M. Burgay, and G. Marconi, “The First Detection of a Pulsar with
ALMA,” The Astrophysical Journal Letters, vol. 851, no. 1, L10, p. L10, Dec. 2017. arXiv:
1708.02828 [astro-ph.HE].

[42] A. Philippov and M. Kramer, “Pulsar Magnetospheres and Their Radiation,” ARAA, vol. 60,
pp. 495–558, Aug. 2022.

[43] P. Goldreich and W. H. Julian, “Pulsar Electrodynamics,” The Astrophysical Journal, vol. 157,
p. 869, Aug. 1969.

[44] M. A. Ruderman and P. G. Sutherland, “Theory of pulsars - Polar caps, sparks, and coherent
microwave radiation,” The Astrophysical Journal, vol. 196, pp. 51–72, Feb. 1975.

[45] J. J. Barnard and J. Arons, “Wave Propagation in Pulsar Magnetospheres: Refraction of
Rays in the Open Flux Zone,” The Astrophysical Journal, vol. 302, p. 138, Mar. 1986.

[46] Y. E. Lyubarsky, “Induced wave scattering and transformation in pulsar magnetospheres,”
Astron. Lett., vol. 19, no. 6, pp. 208–216, Jun. 1993.

[47] Y. Lyubarskii and S. Petrova, Astrophy. Space Sci., vol. 262, no. 4, pp. 379–389, 1998.

[48] V. S. Beskin and A. A. Philippov, “On the mean profiles of radio pulsars – I. Theory of
propagation effects,” Mon. Not. R. Astron Soc., vol. 425, no. 2, pp. 814–840, Sep. 2012.

[49] A. N. Timokhin, “Time-dependent pair cascades in magnetospheres of neutron stars – I.
Dynamics of the polar cap cascade with no particle supply from the neutron star surface,”
Mon. Not. R. Astron Soc., vol. 408, no. 4, pp. 2092–2114, Oct. 2010.

[50] A. Philippov, A. Timokhin, and A. Spitkovsky, “Origin of Pulsar Radio Emission,” Physi-
cal Review Letters, vol. 124, no. 24, p. 245 101, Jun. 2020.

[51] D. B. Melrose, M. Z. Rafat, and A. Mastrano, “A rotation-driven pulsar radio emission
mechanism,” Monthly Notices of the Royal Astronomical Society, vol. 500, no. 4, pp. 4549–
4559, Jan. 2021. arXiv: 2006.15487 [astro-ph.HE].

121

https://arxiv.org/abs/1708.02828
https://arxiv.org/abs/2006.15487


[52] A. Y. Chen and A. M. Beloborodov, “Electrodynamics of axisymmetric pulsar magne-
tosphere with electron-positron discharge: A numerical experiment,” The Astrophysical
Journal, vol. 795, no. 1, p. L22, Oct. 2014, arXiv: 1406.7834.

[53] A. A. Philippov, B. Cerutti, A. Tchekhovskoy, and A. Spitkovsky, “Ab-initio pulsar magne-
tosphere: The role of general relativity,” The Astrophysical Journal, vol. 815, no. 2, p. L19,
Dec. 2015.

[54] A. A. Philippov and A. Spitkovsky, “Ab-Initio Pulsar Magnetosphere: Particle accelera-
tion in Oblique Rotators and High-energy Emission Modeling,” The Astrophysical Journal,
vol. 855, no. 2, p. 94, Mar. 2018.

[55] R. Hu, A. M. Beloborodov, and A. Y. Chen, arXiv:210903927, Sep. 2021.

[56] R. Hu and A. M. Beloborodov, “Axisymmetric pulsar magnetosphere revisited,” arXiv:210903935,
Sep. 2021.

[57] A. N. Timokhin and J. Arons, “Current flow and pair creation at low altitude in rotation-
powered pulsars’ force-free magnetospheres: Space charge limited flow,” Mon. Not. R.
Astron Soc., vol. 429, no. 1, pp. 20–54, Feb. 2013.

[58] K. S. Thorne, Black holes and time warps: Einstein’s outrageous legacy. 1994.

[59] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. 1973.

[60] R. D. Blandford and R. L. Znajek, “Electromagnetic extraction of energy from Kerr black
holes.,” Monthly Notices of the Royal Astronomical Society, vol. 179, pp. 433–456, May
1977.

[61] K. Parfrey, A. Philippov, and B. Cerutti, “First-principles plasma simulations of black-hole
jet launching,” Physical Review Letters, vol. 122, no. 3, 2019.

[62] B. Crinquand, B. Cerutti, A. Philippov, K. Parfrey, and G. Dubus, “Multidimensional Sim-
ulations of Ergospheric Pair Discharges around Black Holes,” Physical Review Letters,
vol. 124, no. 14, 145101, p. 145 101, Apr. 2020.

[63] M. Lyutikov and J. C. McKinney, “Slowly balding black holes,” Phys. Rev. D, vol. 84,
no. 8, p. 084 019, Oct. 2011, arXiv: 1109.0584.

[64] A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers, “Fast reconnection in high-
Lundquist-number plasmas due to the plasmoid Instability,” Physics of Plasmas, vol. 16,
no. 11, 112102, p. 112 102, Nov. 2009.

122



[65] L. Sironi and A. Spitkovsky, “Relativistic Reconnection: An Efficient Source of Non-
thermal Particles,” The Astrophysical Journal Letters, vol. 783, no. 1, L21, p. L21, Mar.
2014.

[66] F. Guo, H. Li, W. Daughton, and Y.-H. Liu, “Formation of hard power laws in the energetic
particle spectra resulting from relativistic magnetic reconnection,” Physical Review Letters,
vol. 113, no. 15, 2014.

[67] G. R. Werner, D. A. Uzdensky, B. Cerutti, K. Nalewajko, and M. C. Begelman, “The
extent of power-law energy spectra in collisionless relativistic magnetic reconnection in
pair plasmas,” The Astrophysical Journal, vol. 816, no. 1, p. L8, 2015.

[68] L. Lehner, C. Palenzuela, S. L. Liebling, C. Thompson, and C. Hanna, “Intense electromag-
netic outbursts from collapsing hypermassive neutron stars,” Physical Review D, vol. 86,
no. 10, 2012.

[69] T. M. Tauris, V. M. Kaspi, R. P. Breton, A. T. Deller, E. F. Keane, M. Kramer, D. R.
Lorimer, M. A. McLaughlin, A. Possenti, P. S. Ray, B. W. Stappers, and P. Weltevrede,
“Understanding the Neutron Star Population with the SKA,” Proceedings of Science, vol. 39,
preprint (arXiv: 1501.00005), Dec. 2014, arXiv: 1501.00005.

[70] F. Camilo, S. M. Ransom, J. P. Halpern, J. Reynolds, D. J. Helfand, N. Zimmerman, and J.
Sarkissian, “Transient pulsed radio emission from a magnetar,” Nature, vol. 442, no. 7105,
pp. 892–895, Aug. 2006.

[71] R. F. Archibald, V. M. Kaspi, S. P. Tendulkar, and P. Scholz, “A Magnetar-like Outburst
from a High-B Radio Pulsar,” The Astrophysical Journal Letters, vol. 829, no. 1, p. L21,
2016.

[72] V. M. Kaspi and M. Kramer, “Radio Pulsars: The Neutron Star Population & Fundamental
Physics,” International Journal of Modern Physics D, Feb. 2016.

[73] D. Viganò, N. Rea, J. A. Pons, R. Perna, D. N. Aguilera, and J. A. Miralles, “Unifying the
observational diversity of isolated neutron stars via magneto-thermal evolution models,”
Mon Not R Astron Soc, vol. 434, no. 1, pp. 123–141, Sep. 2013.

[74] Y. Levin and M. Lyutikov, “On the dynamics of mechanical failures in magnetized neutron
star crusts,” Monthly Notices of the Royal Astronomical Society, vol. 427, no. 2, pp. 1574–
1579, Dec. 2012.

[75] R. Hollerbach and G. Rüdiger, “The influence of Hall drift on the magnetic fields of neutron
stars,” Monthly Notices of the Royal Astronomical Society, vol. 337, pp. 216–224, Nov.
2002.

123



[76] V. C. A. Ferraro, “The non-uniform rotation of the Sun and its magnetic field,” Monthly
Notices of the Royal Astronomical Society, vol. 97, p. 458, Apr. 1937.

[77] T. S. Wood and R. Hollerbach, “Three Dimensional Simulation of the Magnetic Stress in
a Neutron Star Crust,” Physical Review Letters, vol. 114, no. 19, p. 191 101, May 2015.

[78] K. N. Gourgouliatos, T. Wood, and R. Hollerbach, “Magnetic field evolution in magnetar
crusts through three dimensional simulations,” Proceedings of the National Academy of
Sciences, vol. 113, no. 15, pp. 3944–3949, Apr. 2016, arXiv: 1604.01399.

[79] J. G. Elfritz, J. A. Pons, N. Rea, K. Glampedakis, and D. Viganò, “Simulated magnetic
field expulsion in neutron star cores,” Monthly Notices of the Royal Astronomical Society,
vol. 456, no. 4, pp. 4461–4474, Mar. 2016, arXiv: 1512.07151.

[80] A. M. Beloborodov, “Untwisting magnetospheres of neutron stars,” The Astrophysical
Journal, vol. 703, no. 1, pp. 1044–1060, Sep. 2009, arXiv: 0812.4873.

[81] P. Marchant, A. Reisenegger, and T. Akgün, “Revisiting the Flowers-Ruderman instability
of magnetic stars,” Monthly Notices of the Royal Astronomical Society, vol. 415, pp. 2426–
2438, Aug. 2011.

[82] P. Marchant, A. Reisenegger, J. A. Valdivia, and J. H. Hoyos, “Stability of Hall equilibria
in neutron star crusts,” The Astrophysical Journal, vol. 796, no. 2, p. 94, Nov. 2014, arXiv:
1410.5833.

[83] M. A. Ruderman, “Crystallization and Torsional Oscillations of Superdense Stars,” Nature,
vol. 218, pp. 1128–1129, Jun. 1968.

[84] P. N. McDermott, H. M. van Horn, and C. J. Hansen, “Nonradial oscillations of neutron
stars,” The Astrophysical Journal, vol. 325, pp. 725–748, Feb. 1988.

[85] G. Baym, C. Pethick, and D. Pines, “Superfluidity in Neutron Stars,” Nature, vol. 224,
pp. 673–674, Nov. 1969.

[86] P. S. Shternin, D. G. Yakovlev, C. O. Heinke, W. C. G. Ho, and D. J. Patnaude, “Cooling
neutron star in the Cassiopeia A supernova remnant: Evidence for superfluidity in the core,”
Monthly Notices of the Royal Astronomical Society, vol. 412, pp. L108–L112, Mar. 2011.

[87] D. Page, M. Prakash, J. M. Lattimer, and A. W. Steiner, “Rapid Cooling of the Neutron
Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter,” Physical Review
Letters, vol. 106, no. 8, p. 081 101, Feb. 2011.

[88] J. P. Goedbloed, R. Keppens, and S. Poedts, Advanced Magnetohydrodynamics: With Ap-
plications to Laboratory and Astrophysical Plasmas. Cambridge: Cambridge University
Press, 2010, ISBN: 978-1-139-19556-0.

124



[89] A. G. Suvorov, A. Mastrano, and U. Geppert, “Gravitational radiation from neutron stars
deformed by crustal Hall drift,” Monthly Notices of the Royal Astronomical Society, vol. 459,
no. 3, pp. 3407–3418, Jul. 2016, arXiv: 1604.04305.

[90] P. B. Jones, “The alignment of the Crab pulsar magnetic axis,” Astrophysics and Space
Science, vol. 33, pp. 215–230, Mar. 1975.

[91] I. Easson and C. J. Pethick, “Stress tensor of cosmic and laboratory type-II superconduc-
tors,” Phys. Rev. D, vol. 16, no. 2, pp. 275–280, Jul. 1977.

[92] V. A. Dommes and M. E. Gusakov, “Vortex buoyancy in superfluid and superconducting
neutron stars,” Mon Not R Astron Soc Lett, vol. 467, no. 1, pp. L115–L119, May 2017.

[93] A. Passamonti, T. Akgün, J. A. Pons, and J. A. Miralles, “The relevance of ambipolar
diffusion for neutron star evolution,” Monthly Notices of the Royal Astronomical Society,
vol. 465, no. 3, pp. 3416–3428, Mar. 2017, arXiv: 1608.00001.

[94] K. Glampedakis, N. Andersson, and L. Samuelsson, “Magnetohydrodynamics of super-
fluid and superconducting neutron star cores,” Monthly Notices of the Royal Astronomical
Society, vol. 410, no. 2, pp. 805–829, Jan. 2011, arXiv: 1001.4046.

[95] V. Graber, N. Andersson, K. Glampedakis, and S. K. Lander, “Magnetic field evolution
in superconducting neutron stars,” Monthly Notices of the Royal Astronomical Society,
vol. 453, pp. 671–681, Oct. 2015.

[96] P. Nozières and W. F. Vinen, “The motion of flux lines in type II superconductors,” Philo-
sophical Magazine, vol. 14, no. 130, pp. 667–688, Sep. 1966.

[97] R. D. Parks, Superconductivity: Part 2 (In Two Parts). New York, New York: Marcel
Dekker, Inc., Apr. 1969, ISBN: 978-0-8247-1521-2.

[98] X. H. Li, Z. F. Gao, X. D. Li, Y. Xu, P. Wang, N. Wang, and J. Yuan, “Numerically Fitting
The Electron Fermi Energy and The Electron Fraction in A Neutron Star,” International
Journal of Modern Physics D, vol. 25, no. 01, p. 1 650 002, Jan. 2016, arXiv: 1603.00224.
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Appendix A: Twist Evolution of the Core

The Hall evolution of Bφ in the crust can be written as

∂Bφ
∂t
= −∇p · (Bφvvvp) + (r⊥BpBpBp · ∇p)

(
vφ

r⊥

)
, (A.1)

with vvvp and vφ the poloidal and toroidal parts of the Hall drift velocity, and we have defined the

poloidal differential operator

∇p ≡

(
∂

∂r⊥
,
∂

∂z

)
, (A.2)

using cylindrical coordinates (r⊥, z). The first term on the RHS of (A.1) represents advection of

Bφ by poloidal velocities, and the second term represents shearing of poloidal field lines in the

azimuthal direction. By using a combination of the product rule and the divergence constraint,

(A.1) can be written in conservative form as

∂Bφ
∂t
+ ∇p · FFFhall = 0, (A.3)

where we identify the Hall advection flux

FFFhall = Bφvvvp − vφBBBp. (A.4)

It is convenient to work in the so-called flux-coordinates (Ψ, λ, φ), where Ψ labels surfaces of

constant poloidal flux, and λ is the length along a given poloidal field line in the φ = const plane

(see eg. [88]). At the base of the crust the boundary condition is fφ = jjjp×BBBp/c = 0, which implies

133



vvvp ‖ BBBp. So the Hall flux can be written in flux coordinates as

FFFHall = Bφ |vvvp |êλ − vφ |BBBp |êλ = (Bφvλ − vφBλ)êλ = Fλ êλ, (A.5)

where BBBp = Bλ êλ, and vvvp = vλ êλ at the base of the crust. Then, using the scale factors for flux-

coordinates

hψ =
1

r⊥Bλ
, hλ = 1, (A.6)

we may write the conservation equation for Bφ in flux coordinates as,

∂Bφ
∂t
= −r⊥Bλ

∂

∂λ

(
Fλ

r⊥Bλ

)
. (A.7)

Rearranging and integrating both sides with respect to λ yields an evolution equation for the twist

of the core magnetic field
∂ζ(Ψ)

∂t
= −[J(Ψ, λ2) − J(Ψ, λ1)], (A.8)

where we have identified the twist angle

ζ(Ψ) =

∫ λ2

λ1

dλ
(

Bφ
r⊥Bλ

)
, (A.9)

and the “flux of twist" into/out of the core as

J =
Fλ

r⊥Bλ
=

vλ

r⊥

Bφ
Bλ
−
vφ

r⊥
. (A.10)
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Appendix B: Numerical Details of the Code

We evolve the poloidal and toroidal scalar functions on a discrete grid, which is linear in r and

u ≡ cos θ, in the crust and the core. The variable u varies from -1 at the south pole, to 1 at the

north pole, and the radius of the star is r∗ = 1 in units of 106cm. The crust core interface is at

rc = 0.9r∗. We use the indices i and j to specify grid points in the r and u directions respectively.

In most simulations the index j varies from j1 = −50 corresponding to the south pole, to j2 = 50

corresponding to the north pole, with j = 0 defining the equator. We choose the difference in

u such that δu = 2/( j2 − j1). The index i varies from i0 = 0 at the centre (r = 0), to typical

values of ic = 400 at the crust core interface (r = rc) depending on the simulation. Throughout

the crust and the last few rows of the core (ghost points for the crust) the radial grid spacing is

δrcrust = 1/is. The radial grid spacing in the outer few rows of the core grid matches the radial grid

spacing of the crust, for ease of implementing boundary conditions on the crustal field. In order

to avoid numerical instabilities near the poles in some simulations, we added adjustable patches

of increased resolution in the u direction. Depending on the magnetic field structure, angular

resolution was some times set to 3 times the original resolution near the poles in order to obtain

convergence. This resolved the issue, and added little expense to the computations.

We evaluate spatial derivatives on the RHS of the crustal evolution equations [Equations (2.10),

Table B.1: The grid resolution used in the crust and core for each of the Models A-E.
Model Crust (Nr × Nu) Core (Nr × Nu)

A (100 × 133) (400 × 133)
B (100 × 101) (400 × 101)
C (100 × 201) —

D1 (100 × 101) (900 × 101)
D2 (100 × 101) (900 × 101)
D3 (100 × 101) (900 × 101)
E (500 × 201) —
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(2.11), (2.25)] with the following finite difference formulae. To evaluate the radial derivatives at

each time step in the crust we use

Ψr =
Ψj,i+1 − Ψj,i−1

2δr
, (B.1)

Ψrr =
Ψj,i−1 − 2Ψj,i + Ψj,i+1

δr2 , (B.2)

with the subscript a short hand for partial derivative. For the derivatives with respect to u however,

a different approach was needed, since central differences do not preserve second order accuracy

on a non-uniform grid. We use the following finite differences which are generalized to maintain

second order accuracy (Equations A3b, and A4c in [180]). These are found by using Lagrange

interpolation to fit a polynomial to the points, and then taking a derivative of that polynomial. We

first define the displacements α j = u j − u, where u is the point at which we evaluate the derivative,

and u j is a grid point. The point u may be any point contained by the grid points ( j − 1, j, j + 1),

not necessarily a grid point. The first and second derivatives with respect to u are then

Ψu = −
(α2 + α3)Ψj−1,i

(α1 − α2)(α1 − α3)
−

(α1 + α3)Ψj,i

(α2 − α1)(α2 − α3)
−
(α1 + α2)Ψj+1,i

(α3 − α1)(α3 − α2)
, (B.3)

Ψuu = −
2(α2 + α3 + α4)Ψj−2,i

(α1 − α2)(α1 − α3)(α1 − α4)
−

2(α1 + α3 + α4)Ψj−1,i

(α2 − α1)(α2 − α3)(α2 − α4)

−
2(α1 + α2 + α4)Ψj,i

(α3 − α1)(α3 − α2)(α3 − α4)
−

2(α1 + α2 + α3)Ψj+1,i

(α4 − α1)(α4 − α2)(α4 − α3)
.

(B.4)

We use the same derivative formula for the toroidal scalar function I.

For evolution equations in the core (Equations (2.40), (2.52), (2.61)) we use the difference

Equations (B.3) and (B.4) for derivatives in the u direction. We also require specialized formula

for radial derivatives in the core, because the radial grid spacing changes in the outer few rows

of the core grid. We use formula the same as those above (Equations (B.3) and (B.4)), but with

differences in the radial direction (u −→ r , j −→ i).

We use a variable time step, which shrinks in order to avoid instability in the evolution. Because

we are evolving magnetic fields and crustal displacements with a variety of evolution equations,

we calculate a stable time step for each evolution equation. For the Hall effect [Equations (2.10)
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and (2.11)], we use the fastest electron velocity in the grid to limit the maximum time step, using

δthall = kc
4πnee

c
δrδµ
|∇ × BBBT |

, (B.5)

with kc a Courant parameter. For Ohmic diffusion [RHS of Equations (2.10) and (2.11)], we use

δtohm = kc
δr2

η
= kc

4πσδr2

c
, (B.6)

which is minimized by choosing the smallest conductivity. For the elastic relaxation [Equa-

tion (2.25)] we use the time step

δtel = kcγ
δr2

v2
sh

. (B.7)

For the hydromagnetic relaxation Equation (2.40) we choose the diffusion time step

δthme = kc
δr2

k
. (B.8)

The stable time step for Jones drift [Equation (2.52)] is chosen using the maximum flux tube

velocity on the computational grid,

δtJones = kc
δrδµ

max|vvvJ |
, (B.9)

and similarly with the spin-down transport of flux [Equation (2.61)]

δtsd = kc
δrδµ

max|vvvsd |
. (B.10)

In all of the above, the Courant parameter 0 < kc < 1 is chosen so that such that we observe

convergence and stability. At each time step, we evaluate the RHS of the evolution equations using

the difference formulae above, then use Euler integration with the smallest time step

δt = min{dthall, δtohm, δtel, δthme, δtJones, δtsd}, (B.11)
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to advance the functions Ψ and I to t + δt. In the code we normalize the Hall Evolution equation

in the same way as [24],

1.6 × 106 ∂BBB14
∂tyr

= −∇̃ ×

(
∇̃ × BBB14

ne,0
× BBB14

)
− 0.02∇̃ ×

(
∇̃ × BBB14
σ0

)
, (B.12)

where BBB14 = BBB/1014 G, tyr = t/3.15 × 107 s, ∇̃ is the del operator with lengths normalized to 106

cm, ne,0 = ne/2.5 × 1034 cm−3, and σ0 = σ/1.8 × 1023 s−1. In Model A we choose the relaxation

parameter k = 2 × 10−6 cm s−1 In Model E we choose the parameter γ = 1 × 1016 s−1.

In the core we treat coordinate singularities along the pole, and at the origin by freezing in the

magnetic field beyond some flux surface Ψ0, so that the magnetic field is unevolving very close to

the pole. This is done by multiplying the velocity fields in Equations (2.40) (2.52) and (2.61) by

the function

s(Ψ) =
1

exp[−a(Ψ − Ψ0)] + 1
, (B.13)

which behaves like a smoothed step function. The parameter a is chosen to make the step as steep

as possible while still being resolved by the grid mesh. In Model A we also add a term to the RHS

of Equation (2.40),

−
1
τ

I(r, θ)
exp[b(Ψ − Ψ0)] + 1

, (B.14)

to ensure that any toroidal field beyond Ψ0 is exponentially reduced on the timescale τ. Our results

are not sensitive to these methods, so long as Ψ0 is close to the pole.

We have tested the Ohmic evolution of our code by comparing with the analytic Ohmic eigen-

modes, and observe excellent agreement. We also study the agreement of our code with the grid

based code of [24], (data files provided by the authors). We compare the Hall-Ohmic evolution

of 3 initial fields–the so-called “Hall Equilibrium", “Ohmic Eigenmode", and “Barotropic MHD

Equilibrium", shown in Figure 2 of [24]. Excellent agreement was observed in all cases. We have

also carried out resolution studies of all simulations presented in Section 3.6, and summarize the

grid sizes for which each simulation had converged in Table B.1.
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Appendix C: Elastic Modes

The elastic modes ζnl(r) and corresponding frequenciesωnl are found by solving the eigenvalue

equation [Equation (3.64)],

− ω2
nlρζnl =

d µ̃
dr

(
dζnl

dr
−
ζnl

r

)
+
µ̃

r2
d
dr

(
r2 dζnl

dr

)
− [l(l + 1)µ + 2µB]

ζnl

r2 . (C.1)

Following [84] Equation (3.64) is reduced to two first-order ordinary diffrential equations by in-

troducing the dimensionless variables

S1 ≡
ζnl

r
, (C.2)

S2 ≡
µ̃r?
ω2M?

(
dζnl

dr
−
ζnl

r

)
, (C.3)

where S1 refers to a dimensionless amplitude, and S2 is a dimensionless stress. In terms of these

variables, the equation for ζnl becomes

r
dS1
dr
=
ω2

µ̃

M?

r?
S2, (C.4)

r
dS2
dr
=

µr?
ω2M?

[
l(l + 1) − 2 −

ω2ρr2

µ

]
S1 − 3S2. (C.5)

In the limit µB −→ 0 Equations (C.4) and (C.5) reduce to Equations 25(a) and (b) of [84]. The

appropriate boundary conditions for these unforced modes are zero magnetic stress σmag
rθ = σ

mag
rφ =

0 and zero elastic stress σel
rθ = σ

el
rφ = 0 at the boundaries. These conditions are expressed through

the single equation

µ̃

(
dζnl

dr
−
ζnl

r

)
= 0, (C.6)
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or in terms of the variable S2,

S2(ri) = 0, (C.7)

where ri is either the radius of the crust-core interface (rc), or the surface of the crust (r?). The

amplitude of the displacement is arbitrary, as the problem is linear. We set the amplitude at the

crust-core interface

S1(rc) = 1. (C.8)

Equations (C.4) and (C.5), together with the boundary conditions Equations (C.7) and (C.8), con-

stitute a well posed Sturm-Liouville problem.

The Sturm-Lioville problem is solved by ‘shooting’ (integrating) from the crust-core interface

and varying the eigenvalue until the boundary condition Equation (C.7) is satisfied at the surface of

the crust. We have implemented a fourth-order Runge-Kutta integrator, and used it in two modes:

i) Scanning: for each value of l the eigenvalue is varied coarsely through all possible values up

to some maximum frequency. The frequencies for which S2(r?) is minimized are recorded as

estimates of the eigenvalues, together with the corresponding value of n. ii) Root finding: for each

(n, l) Newton-Raphson method is used to converge on the eigenvalue ωnl for which |S2(r?)| < ε?

(typically we set ε? = 10−12). The frequencies from the scanning mode are used as first guesses

for the Newton-Raphson iterations.

When finding modes we use a uniform radial grid of 50,000 points. As a test we check the

orthogonality of our modes. We typically find

∫ r?

rc
ρr2ζnlζn′l dr = δnn′ ± 10−9. (C.9)

We also studied the time-dependent propagation of a radial l = 0 wave using our elastic modes.

This was compared to the same wave propagation using a 1D finite difference solver. The two

methods produced the same time-dependent solution. To test the convergence, we found one set

of modes on a grid of 20,000 points, and another on a grid of 50,000 points. We ran simulations

of 2D axisymmetric elastic waves with both sets of modes, using the same initial conditions. The
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time-dependent solutions were indistinguishable, indicating that our elastic modes and frequencies

are converged to a sufficient accuracy for our dynamical simulations. The obtained normalized

modes ζnl and their frequencies ωnl are stored and used for the dynamical simulations described

below.
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Appendix D: Crust Dynamics: Numerical Method

The spectral method follows the dynamics of the crust through the coefficients anlm(t). Since

we are only considering axisymmetric dynamics in this work, the index m is set to zero, and ξφ is

the only nonzero component of the displacement. The displacement is written as a sum over basis

functions (orthogonal eigenmodes),

ξξξ(t,r, θ) = ξφ(t,r, θ)φ̂̂φ̂φ =
nmax∑
n=0

lmax∑
l=1

anl(t)ξξξnl(r, θ), (D.1)

where finite nmax and lmax are chosen to truncate the infinite series. The product nmax × lmax is the

total number of the eigenmodes in our simulations. The basis functions are

ξξξnl = ξ
φ
nl φ̂̂φ̂φ = ζnl(r)

dYl0(θ)

dθ
φ̂̂φ̂φ, (D.2)

where Yl0 = Pl(cos θ) are the Legendre polynomials and the radial eigenfunctions ζnl(r) are found

as described in Appendix C. The initial conditions are set by projecting ξξξ(t = 0) on to the basis

functions ξξξnl for each (n, l),

anl(t = 0) = 〈ξξξ(rrr, t = 0),ξξξnl〉 =

∫ r?

rc
dr

∫ π

0
dθ r2 sin θ ρ ξφ(t = 0) ξφnl, (D.3)

where we have used that the modes are orthonormal. The integration is done numerically on a

uniform (r, θ) grid of Nr × Nθ = 1000 × 600 points using the fifth-order accurate Simpsons rule.

The Legendre polynomials Pl and derivatives are computed once at the beginning of the simulation

and stored. The time evolution of anl is given by the equation of motion

Üanl(t) + ω2
nlanl(t) = 〈 fff ext(rrr, t),ξξξnl〉, (D.4)
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where fff ext = fff core + fff mag is the force on the crust due to the core and magnetosphere, and

〈 fff ext(rrr, t),ξξξnl〉 is a matrix containing the projection of fff ext onto the basis functions. The force

of the core on the crust (Equation (3.68)) is written as

fff core = −vA
ρ<
ρ>
δ(r − rc) Ûξξξ = −vA

ρ<
ρ>
δ(r − rc)

nmax∑
n=0

lmax∑
l=1
Ûanl(t)ξξξnl, (D.5)

where we have used Equation (D.1) to express the Ûξξξ in terms of the coefficients Ûanl . Then the

projection of fff core onto the basis functions is given by

〈 fff core(rrr, t),ξξξnl〉 =

nmax∑
n′=0

lmax∑
l ′=1
Ûan′l ′(t)Cn′l ′nl, (D.6)

where

Cn′l ′nl = −

∫ r?

rc
dr

∫ π

0
dθr2 sin θρvA

ρ<
ρ>
δ(r − rc)ξ

φ
n′l ′ξ

φ
nl = −r2

c vAρ< fn′l ′(rc) fnl(rc)δll ′ . (D.7)

The components of the coupling matrix Cn′l ′nl = 0 for l′ , l; therefore, it is not necessary to sum

over l′ in Equation (D.6). The matrix Cn′l ′nl is calculated once at the beginning of each simulation

and stored.

The force of the magnetosphere on the crust is

f φmag =
ρB

ρcrys
c2 cosα δ(r − r?) r⊥

∂

∂ χ

(
ξφ

r⊥

) ����
r>
. (D.8)

As ξφ is evolved self-consistently in the magnetosphere (Appendix E), the force f φmag is calculated

at each time step and used to evaluate

〈 fff mag(rrr, t),ξξξnl〉 =

∫ r?

rc
dr

∫ π

0
dθr2 sin θ ρ f φmag(t,r, θ) ξ

φ
nl

= r2
?ρ(r?)ζnl(r?)

∫ π

0
dθ sin θ f φmag(t,r?, θ)

∂Yl0
∂θ

,

(D.9)
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where the integral is evaluated numerically at each time step on a uniform grid of Nθ points using

the fifth-order Simpsons rule. Equation (D.4) is integrated in time together with using the fourth-

order Runge-Kutta integration, with a constant time step ∆t = min{∆tcrust,∆tmag}, where ∆tcrust is

the largest stable time step for the crust, and ∆tcore is the largest stable time step for the magne-

tosphere (see Appendix E). We use ∆tcrust = kc/max{ωnl} with kc ≤ 0.1, where max{ωnl} is the

highest frequency of all of the modes we are using. We have found that for a free crust (without

external forcing terms), our code conserves energy to one part per million. If the external forcing

terms are included, some additional error is introduced, and energy is usually conserved to one part

in 105.

We use (nmax, lmax) = (300,200), a total of 60,000 modes. More radial modes are needed

(nmax > lmax) to properly resolve the wave transmission through the upper layers of the crust

where the scale height is very small. The only relevant scale in the θ-direction is introduced by

the initial conditions. We have tried independently increasing nmax to 600, and lmax to 400, and we

observe the same results.
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Appendix E: Magnetosphere Dynamics: Numerical Method

In the magnetosphere, we calculate the small azimuthal displacement ξφ, using the so-called

magnetic flux coordinates (ψ, χ, φ), where ψ =const defines surfaces of constant poloidal flux,

and χ is the length along poloidal the field lines in the φ = const plane. The dependence of the

Cartesian position vector x on the coordinates ψ and χ is found by integrating the equation

dxxx(ψ, χ)
dχ

=
BBB
|BBB |

. (E.1)

The footpoints of the field lines are chosen to coincide with the grid points used in the projection

Equation (D.9). We chose the grid spacing along the field lines so that the light-crossing time of

each grid cell is the same. When we include the liquid ocean, the grid spacing remains large in the

magnetosphere, but becomes very small in the ocean where the density increases. By using this

grid spacing, we are not limited to a prohibitively small time step by the Courant condition. The

time evolution of ξφ(ψ, χ) is given by the wave equation

∂2ξφ(ψ, χ)

∂t2 =
B

4πr⊥ρB

∂

∂ χ

[
r2
⊥B

∂

∂ χ

(
ξφ(ψ, χ)

r⊥

)]
. (E.2)

We are effectively solving a 1D wave equation for each flux surface ψ. The right-hand side of

Equation (E.2) is evaluated using the second-order finite difference formulas given by [180]. The

first derivatives use a three-point stencil, and the second derivatives use a four-point stencil, so

that second-order accuracy is preserved when the grid spacing is nonuniform. We integrate Equa-

tion (E.2) in time, together with Equation (D.4) for the crust using the fourth-order Runge-Kutta

integration.

The crust provides the boundary condition for ξφ(ψ, χ) at the surface in the magnetosphere,
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and the magnetosphere communicates to the crust through the force Equation (D.8). The stable

time step for the magnetosphere is ∆tmag = kcdtχ, where dtχ is the light-crossing time of a grid

cell, and kc < 0.5. We set the time step for the simulation ∆t = min{∆tcrust,∆tmag}, where ∆tcrust

is the largest stable time step for the crust (see Appendix D). We find that ∼ 600 grid points are

required for the projection Equation (D.9), which results in ∼ 50 open flux surfaces (∼ 25 at each

pole), and ∼ 275 closed flux surfaces.
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Appendix F: A Test for Wave Transmission
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Figure F.1: Left: initial energy spectrum of waves in this test problem. Right: transmission co-
efficient of waves into the magnetosphere Tm(ω). The thick black line shows the transmission
coefficient found by solving the analytic reflection conditions (Section 3.3), and the gray dots
show the numerical transmission coefficient measured using our code for an l = 0 radial wave.
The dotted lines show the powe-law scalings in each frequency range.

In order to test the implementation of the crust-magnetosphere coupling in our numerical

model, we have measured the frequency-dependent transmission coefficient Tm(ω) using our code.

We initialize the simulation by launching a purely radial l = 0 wave in the crust. The magneto-

sphere is chosen to be a radial monopole with outflow boundary conditions on all flux surfaces, so

that no Alfvén waves return to the crust. The setup is effectively 1D, so that we should recover the

transmission coefficient calculated in Section 3.3 for a Cartesian slab crust.

The energy spectrum of the initial condition is shown in Figure F.1 (left panel). The initial

displacement is a smoothed step function, similar to the 2D initial conditions used in Section 3.6.

It corresponds to a strain layer of thickness ∆` ∼ 104 cm, similar to the pressure scale height in the

deep crust. The energy spectrum peaks around ω ∼ ṽs/`0 ∼ 2 × 104 rad/s.

We measure the transmission coefficient by calculating the exponential decay time of the en-
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ergy in each mode τm. The transmission coefficient for a given elastic mode is then calculated as

Tm = 2τ/τm, where τ ≈ 1 ms is the elastic wave crossing time of the crust. This gives the effective

transmission coefficient as a function of the mode frequency, Tm(ω), which we compare with the

analytically calculated Tm (Figure F.1). The two lowest-frequency modes deviate from the analyt-

ical result, because they are reflected deep in the crust near neutron drip, where the exact density

profile used in the code deviates from the approximation ρ ∝ |z |3 used in the analytical model.

There are few data points at low frequencies in Figure F.1 because there are few elastic modes in

that frequency range. We performed similar simulations with different initial conditions and found

nearly the same Tm(ω).
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Appendix G: Dispersion Relation and Normal Modes of Pulsar Plasma

Here we review the dispersion relation and normal modes of the electron-positron (e±) pair

plasma expected to exist in pulsar magnetospheres. The electron Larmor radius near the pulsar

is much smaller than the wavelength of the normal modes we are considering, so the plasma is

very highly magnetized. The ultra-strong magnetic field ensures that gyration of e± decays very

quickly due to synchrotron cooling. Therefore, charged particles effectively only move parallel

to the magnetic field lines, and the plasma supports a very limited set of normal modes. The

dispersion relation is obtained from the Vlasov-Maxwell equations [147],

(ω2 − c2k2)

[
(ω2 − c2k2

| |
)

(
1 −

ω2
p

ω2 g

)
− c2k2

⊥

]
= 0, (G.1)

where ω is the wave frequency, ωp the plasma frequency, k | | and k⊥ are the components of the

wave-vector parallel and perpendicular to BBB, g = 〈γ−3 (1 − kv/ω)−2〉, and 〈...〉 indicates an average

over particle momenta. If the plasma is cold, g = 1 in the plasma rest frame. The dispersion relation

describes three modes: The extraordinary (X) mode with ω = ck and electric field polarized in the

kkk ×BBB direction, and two modes on the ordinary (O) branch with electric field polarized in the kkk −BBB

plane. Specifically, the polarization of the O-modes is given by

δE| |
δE⊥

≈


−

c2k | |k⊥
ω2

p
(subluminal Alfvén mode)

ω2
p

c2k | |k⊥
(superluminal mode),

(G.2)

where δE| | is the wave electric field parallel to BBB, and δE⊥ is the wave electric field perpendicular

to BBB in the kkk − BBB plane [147]. The Alfvén mode has phase speed ω/k < c, while the superluminal

mode has ω/k > c. For a given kkk, the three modes (extraordinary, Alfvén, and superluminal) are
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orthogonal.
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Appendix H: Beam Instability in Pulsar Plasma

Here we review the relativistic beam instability in highly magnetized e± plasma (for a de-

tailed calculation see [151]). Consider a uniform background of e± with uniform density np which

streams relativistically along the magnetic field with Lorentz factor γ. The beam has uniform den-

sity nb < np, and a gaussian distribution of momentum parallel to the magnetic field with mean

pb = γbmc, and width ∆pb = ∆γbmc. If the beam density is sufficiently high the instability oper-

ates in the hydrodynamic regime Γγ3
b/(kc∆γb) � 1, where Γ is the growth rate. If the background

plasma is cold the dispersion relation of purely longitudinal oscillations in the pulsar frame has the

form (Eq. G.1)

1 −
ω2

p

ω2 g −
ω2

b

ω2
1

γ3
b(1 − kvb/ω)2

= 0, (H.1)

where the third term is due to the beam with ωb =
√

4πnbe2/m, and vb = c(1 + 1/γ2
b)
−1/2 [151].

Near Cherenkov resonance, the dispersion relation can be written in the form ω = kvb + ∆ω, with

|∆ω| � kvb. The growth rate is maximal when k approaches k0 ≡ 2ωp〈γ〉
1/2/c, and is given by

Γ = Im ∆ω =

√
3

4 · 21/3

(
nb

np

)1/3 ck0

γb〈γ3〉1/3
. (H.2)

The condition for the instability to operate in the hydrodynamic regime is then

(
nb

np

)1/3
�
〈γ〉∆γb

γ2
b

. (H.3)

The instability can grow at the maximal rate (Eq. H.2) even when the momentum spread of the

beam is large ∆γb & γb, as long as γb � 〈γ〉, such that Eq. H.3 is satisfied. Note that when

k � k0 instability still occurs, but at a slower rate than Eq. H.2 [151]. Note also that the beam

instability directly couples to the Alfvén mode (the superluminal mode has ω/k > c so it cannot
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achieve Cherenkov resonance, and the X-mode does not couple to the plasma).
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Appendix I: Instability Growth Rate

Beam instabilities in pulsar magnetospheres are usually discussed in the context of primary

accelerated e± with γb ∼ 106 (beam) interacting with the secondary e± with γ ∼ 102 (plasma)

[44]. The growth rate (Eq. H.2) is then strongly suppressed by the ultra-high Lorentz factor of

the primary accelerated particles, and the instability cannot develop before the plasma leaves the

magnetosphere Γ/Ω � 1, where Ω is the rotation frequency of the pulsar. However, in this work

we have showed that non-local gamma-ray emission in the outer magnetosphere can inject e± with

a different momentum than the wind. In this case, both streams are made of secondary e±, so the

growth rate is not suppressed by the ultra-high Lorentz factors typical of the primary accelerated

particles. Here we estimate the growth rate Γ/Ω for such a scenario in the outer magnetosphere of

an energetic pulsar.

We assume that the bulk of the e± wind in the outer magnetosphere is supplied by the discharge

near the pulsar polar cap. For a conservative estimate, we set the multiplicity near the light-cylinder

M ∼ 103 and the typical Lorentz factor γ ∼ 102. We assume that the beam particles (created

by photon collisions) have γb ∼ 103. The growth rate (Eq. H.2) near the light-cylinder radius

rLC = c/Ω is then in order of magnitude

Γ

Ω
∼

(
nb

np

)1/3 ωp

Ωγbγ1/2 ∼ 103
( γb

103

)−1 ( γ

102

)−1/2
(

P
0.033 s

)1/2 (
BLC

106 G

)1/2 (
M

102

)1/2
, (I.1)

where ωp =
√

4πMnGJe2/m, P = 2π/Ω, BLC is the magnetic field strength at the light-cylinder,

and we set nb/np ∼ 0.1. Since Γ/Ω � 1, the instability can easily develop (a largerM further

increases Γ/Ω). The instability could produce radio emission in the outer magnetosphere which

is different to the usual polar-cap emission. It requires powerful gamma-ray emission and e±

production from the current-sheet. Therefore, it is most relevant for pulsars like Crab, which have
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high-BLC. Note that for extremely energetic pulsars the e± created by the current sheet could have

multiplicity larger than the wind. The role of the beam and the plasma would then be reversed.
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Appendix J: Numerical Convergence

Figure J.1 shows time evolution of the magnetic flux on the event horizon vs time at different

grid resolutions. In GRPIC the simulations are well converged at all scale separations for the

resolution 2880 × 2160. In GRRMHD the axisymmetric simulation is well converged, resolving

the current layer by approximately 10 cells over its width for η = 10−5 at a resolution 6144×3072.

Figure J.1: Convergence study for each simulation. Left: Flux on the event horizon vs time at 2
resolutions for each of the simulations GRPIC1, GRPIC2, and GRPIC3. Right: Flux on the event
horizon vs time at 3 resolutions for simulation GRRMHD1 and GRRMHD2.

We confirm that the current sheet is resolved in Figure J.2, showing the AMR blocks for sim-

ulation GRRMHD1 (each block contains Nr × Nθ = 16 × 8 cells). The reconnection rate and the

thinning of the sheet in GRRMHD is converged when there are at least 10 grid cells over the width

of the current sheet once it finished the thinning process [162]. In the simulation GRRMHD1 the

current sheet width is resolved by slightly more than one AMR block inside the ergosphere, indi-

cating that GRRMHD1 is converged (Figure J.1, right panel dark red curve), while GRRMHD1 at

1/2 resolution and 1/4 resolution are not converged (Figure J.1, right panel red and yellow curves),

yet still resolve the current sheet by more than one cell.

The combination of an implicit-explicit (IMEX) time-stepping scheme to capture fast recon-
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Figure J.2: AMR blocks used in the simulation GRRMHD1, with inset zoomed on the current sheet
near the event horizon. Color shows magnetization σ = B2/(4πρc2), and the red curve shows the
ergosphere boundary.

nection dynamics [161], together with adaptive mesh refinement (AMR) capabilities of BHAC to

accurately resolve the smallest scales in the system allows us to study resistive reconnection and

plasmoid formation in the GRRMHD simulations [162]. For the GRPIC simulations a grid uniform

in cos θ helps to concentrate resolution on the equatorial current sheet and ensure the plasmoid for-

mation is resolved.

The flux decay time scale converges in the GRPIC simulations with increasing rH/rL . The

small-rL model (GRPIC1) displays a full spectrum of plasmoid size, while small plasmoids are

not present in the large-rL model (GRPIC3), thus indicating a transition from many plasmoids to

few. We also observe disruption of the current sheet by rapidly growing kink modes in the large-rL

model (GRPIC3).
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Appendix K: Collisionality of the Reconnection Layer

The reconnection is collisionless when the plasma skin depth λp is larger than the elementary

current-sheet width in the resistive-MHD chain w ∼ 100η/vA ∼ 100η/c [64, 165], where η is the

diffusivity due to coulomb collisions of pairs. Here we estimate analytically when this condition

is satisfied. Following [181], we assume that the pressure of electron-positron pairs and radiation

balances magnetic pressure in the reconnection layer,

Prad + Ppairs =
B2

8π
, (K.1)

where Prad = (1/3)aT4 is the radiation pressure, Ppairs is the pressure of the pair plasma, B is the

upstream magnetic field strength, and a is the radiation constant. When kBT � mc2, radiation

pressure dominates the LHS of Eq. K.1. At high temperatures kBT � mc2, Ppairs ≈ (7/4)Prad. We

set Ppairs = (7/4)Prad, which gives the temperature of the reconnnection layer

kBT
mc2 ≈ 0.3 B1/2

12 . (K.2)

It is a reasonable estimate of T in the non-relativistic and ultra-relativistic regimes. Then the Spitzer

diffusivity due to coulomb collisions of pairs is given by

η =
c2

4π
4
√

2πe2m1/2lnΛ
3(kBT)3/2

≈ 0.4 B−3/4
12 cm2s−1, (K.3)

where we have set the coulomb logarithm lnΛ = 21 [181]. It determines the elementary current

sheet width

w = 100η/c ≈ 10−9 B−3/4
12 cm. (K.4)
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To estimate the density of pairs we assume annihilation balance in the reconnection layer: e+ +

e− 
 γ+γ. When the plasma is non-relativistic (kBT/mc2 � 1) it gives n = 2(kBT/2π~2)3/2 exp(−mc2/kBT),

and the plasma skin depth follows as λp = (mc2/4πne2)1/2. When the plasma is ultra-relativistic

(kBT/mc2 � 1) the density is given by n = 1.202(3/2π2)(kBT/~c)3, and the skin depth follows

as λp = (〈γ〉mc2/4πne2)1/2 where 〈γ〉 = 3kBT/mc2 is the average particle lorentz factor. The two

curves for λp join smoothly in the intermediate regime. Figure K.1 shows w and λp as a function of

B. It suggests that the reconnection is collisionless when B � 1012 G. However, a self consistent

numerical calculation including detailed pair production and collisional physics is required to de-

termine the reconnection rate if the magnetic field is very strong B & 1012 G, or if pair production

is very efficient.

Figure K.1: Elementary current-sheet width w and plasma skin depth λp vs magnetic field strength
in the upstream, B.
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Appendix L: Magnetic Flux Decay Timescale

The flux decay can be understood analytically by assuming a constant reconnection rate at the

stagnation surface, and neglecting plasmoid formation. The integral form of Faraday’s law gives

dΦ
dt
= −2πcEφ, (L.1)

where we have evaluated the line integral on a circle of radius r0 at θ = π/2 (the stagnation surface

on the equator). The flux is given by

Φ =
1
2

∫ π

0

∫ 2π

0
|Br |
√
γdθdφ, (L.2)

where
√
γ is the spatial metric determinant. In this toy model the global flux decay is determined

the local electric field Eφ at the equator on the stagnation surface. We make the ideal MHD approx-

imation Eφ =
√
γ(vθBr − vr Bθ)/c =

√
γvθBr/c, since vr = 0 on the stagnation surface. Converting

the velocity to a physical (tetrad) component v θ̂ =
√
gθθv

θ , gives

Eφ =
√
γ
v θ̂Br

r0c
. (L.3)

Assuming uniform Br(θ,r0) would give Φ ≈ S(r0)Br , where S(r0) is the hemisphere area at radius

r0. However, the distribution of Br(θ) is non-uniform and concentrated near the poles, similar to

the asymptotic pulsar wind in Minkowski spacetime [182]. This is because our simulations begin

with a dipole field which is twice as strong at the poles compared to the equator. The dipole field

is then opened, resulting in a non-uniform split-monopole [183]. Therefore, we make the more

precise statement Φ = kS(r0)Br(r0, π/2), where we measure k ≈ 1.7. Combining this result with
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Equation L.1 and Equation L.3 gives

dΦ
dt
= −

2π√γv θ̂

r0kS(r0)
Φ. (L.4)

It implies exponential decay of Φ on the timescale

τ =
r0kS(r0)

2π√γv θ̂
, (L.5)

similar to the result of [166]. Equation L.5 gives τ ≈ 3rg/v θ̂ for r0 ≈ 2rg.
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Appendix M: Luminosity

Figure M.1 shows the flux of conserved energy passing through spherical shells of radius r as

seen by an observer at infinity. The flux is normalized to units of

LBZ = κ
Ω2

HΦ
2

4πc
, (M.1)

where κ = 0.053 for a split monopole [167]. The luminosity is dominated by the integrated

Poynting flux, except in plasmoids in GRPIC simulations, where the particle luminosity can meet

or exceed that of the fields. The particle luminosity is dominated by positrons in the GRPIC

simulations because a net positive charge is required to support the rotating split-monopole with

ΩΩΩ · BBBp > 0 in both hemispheres. The particle luminosity in the ergosphere is mainly due to

inward going positive energy particles. Large deviations in Poynting flux are seen at the location

of plasmoids in GRPIC, while in GRRMHD the deviations are much smaller because of the smaller

plasmoid sizes.

Figure M.1: Flux of conserved energy through spherical shells of radius r , as seen by an observer
at infinity in units of LBZ. Left panel: GRPIC1 at t = 100 rg/c. Right panel: GRRMHD1 at
t = 311 rg/c.
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