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Abstract

Essays on Statistical Decision Theory and Econometrics

Bruno de Albuquerque Furtado

This dissertation studies statistical decision making in various guises. I start by providing a

general decision theoretic model of statistical behavior, and then analyze two particular instances

which fit in that framework.

Chapter 1 studies statistical decision theory (SDT), a class of models pioneered by Abra-

ham Wald to analyze how agents use data when making decisions under uncertainty. Despite its

prominence in information economics and econometrics, SDT has not been given formal choice-

theoretic or behavioral foundations. This chapter axiomatizes preferences over decision rules and

experiments for a broad class of SDT models. The axioms show how certain seemingly-natural

decision rules are incompatible with this broad class of SDT models. Using those representa-

tion result, I then develop a methodology to translate axioms from classical decision-theory, a la

Anscombe and Aumann (1963), to the SDT framework. The usefulness of this toolkit is then il-

lustrated by translating various classical axioms, which serve to refine my baseline framework into

more specific statistical decision theoretic models, some of which are novel to SDT. I also discuss

foundations for SDT under other kinds of choice data.

Chapter 2 studies statistical identifiability of finite mixture models. If a model is not

identifiable, multiple combinations of its parameters can lead to the same observed distribution of

the data, which greatly complicates, if not invalidates, causal inference based on the model. High-

dimensional latent parameter models, which include finite mixtures, are widely used in economics,



but are only guaranteed to be identifiable under specific conditions. Since these conditions are

usually stated in terms of the hidden parameters of the model, they are seldom testable using noisy

data. This chapter provides a condition which, when imposed on the directly observable mixture

distribution, guarantees that a finite mixture model is non-parametrically identifiable. Since the

condition relates to an observable quantity, it can be used to devise a statistical test of identification

for the model. Thus I propose a Bayesian test of whether the model is close to being identified,

which the econometrician may apply before estimating the parameters of the model. I also show

that, when the model is identifiable, approximate non-negative matrix factorization provides a

consistent, likelihood-free estimator of mixture weights.

Chapter 3 studies the robustness of pricing strategies when a firm is uncertain about the

distribution of consumers’ willingness-to-pay. When the firm has access to data to estimate this

distribution, a simple strategy is to implement the mechanism that is optimal for the estimated

distribution. We find that such an empirically optimal mechanism boasts strong profit and regret

guarantees. Moreover, we provide a toolkit to evaluate the robustness properties of different mech-

anisms, showing how to consistently estimate and conduct valid inference on the profit generated

by any one mechanism, which enables one to evaluate and compare their probabilistic revenue

guarantees.
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Chapter 1: The behavioral implications of statistical decision theory

1.1 Introduction

Statistical decision theory (henceforth SDT) models decisions under uncertainty as a single

agent decision problem. Nature selects a true parameter, or state of the world. Meanwhile, the

decision maker (DM) chooses decision rules (strategies) and designs experiments (information

structures) to maximize her objective function, without knowing which parameter Nature chose.

The DM observes a signal drawn according to the distribution determined by the parameter and

the experiment, and takes the action prescribed by the decision rule. The ultimate pay-off for the

DM is based on the realised action and Nature’s chosen parameter.

Models of this kind are ubiquitous in information economics. A clear example is the rational

inattention literature, where a DM designs an experiment subject to constraints on its informative-

ness, simultaneously to choosing a decision rule. Moreover, many econometric problems can be

formulated in statistical decision theoretic terms.

Given their importance, surprisingly little is known about the behavioral assumptions implicit

in various statistical decision theoretic models. That is, there are no formal results describing

which choices over decision rules and experiments are consistent with the predictions of SDT

models. The main goal of this paper is to set SDT on a rigorous axiomatic — and behaviorally

falsifiable — foundation. This is done by axiomatically characterizing preferences over the choice

objects of SDT: pairs of decision rules and experiments. Formally, an experiment is a collection of

probability distributions over signals, indexed by the parameters, and a decision rule is a function

assigning an action to each possible signal arising from the experiment. The preferences over

these objects, taken here as behavioral primitives, are assumed to have been elicited by observing

the DM’s choices from different feasible sets, following the revealed preference principle.
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Besides being the natural choice environment for SDT, data on choices over decision rules and

experiments is often readily available to empirical researchers. For example, a school, university

or employer might be required to spell out its admissions policy as a function of standardized

exam scores, transcripts, credentials, etc. This is common in the public university systems of

many countries, for instance. Moreover, admissions policies may depend on the type of signal

the candidate sends – e.g., whether or not they send their scores on an optional standardized test.

Similarly, a regulator or licensing authority may be required to publicly commit to some approval

criteria, which may depend on properties of the experiment (sample size, how to account for the

placebo effect, etc.) that the applying firm runs. In either situation, the institution is required to

publicly declare its choice of decision rule for a slate of different possible experiments.

Although much work has been done to behaviorally characterize various models of decisions

under uncertainty, existing results overwhelmingly focus on preferences (or choices) over acts –

functions mapping the unknown states of the world directly to final consequences. This is the

framework of Savage (1954) and Anscombe and Aumann (1963). SDT differs from traditional

decision theory under uncertainty in that observable information – in the form of signals from ex-

periments – is treated separately from the parameters, which determine final outcomes. Therefore,

unlike the traditional decision theoretic framework, SDT considers information acquisition an in-

tegral part of the model description. This makes it a more natural setting to model situations in

which the DM expects to receive partial information about the parameter before making a decision.

To fix ideas, suppose our DM is a policymaker choosing whether to implement a costly social

program (action 𝑎1) or not (action 𝑎0). The program should be implemented if and only if its mean

value, \, exceeds a known fixed cost 𝑐. Although the true value of the parameter \ is unknown,

the DM can observe a sample of size 𝑛 from a randomized controlled trial designed to assess the

effectiveness of the program. Each sample is drawn independently from a normal distribution with

mean \ and known variance. The full set of 𝑛 samples is the observed signal, and the experiment

can be characterized by a collection of random vectors, indexed by \, having independent normally

distributed components. An example of a decision rule could be to take action 𝑎1 whenever the
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empirical mean of the signal is greater than 𝑐, and action 𝑎0 otherwise. Suppose the DM can

choose between two combinations of decision rules and experiments. The first pairs a sample of

size 50 with the decision rule previously described, based on the empirical mean. The second pairs

a sample of size 10 with a decision rule in which the policy is not implemented for any signal. A

preference relation between these pairs could be, for instance, that the first combination is always

chosen over the second one.

I impose axioms on the preference relation that fully characterizes a DM who chooses as if

using a general SDT framework, which subsumes most models in applications. This establishes a

tight link between the predictions of such a model and behaviorally falsifiable constraints (axioms)

on preferences, which in turn allows us to tell what sets of choices are compatible with the SDT

framework. In this essay, I focus on ex-ante preferences under the assumption that the DM is (or

believes herself to be) dynamically consistent. That is, at the time of choosing the experiment, the

DM believes that, upon observing the signal, she will follow the contingent plan described by the

decision rule she chooses to pair with it.

Preferences that abide by such a framework are characterized by a state-dependent utility func-

tion 𝑢 and a parameter aggregation functional 𝐼. The utility function 𝑢 : 𝐴 × Θ → R— where Θ

and 𝐴 are the sets of parameters and actions respectively — determines the pay-offs of the actions

at each parameter. For example, if 𝐴 and Θ are subsets of R𝑛, a common utility function is given by

the negative of the squared error: 𝑢(𝑎, \) = −∥𝑎 − \∥2, where ∥ · ∥2 denotes the Euclidian norm.

Using 𝑢, one can calculate the agent’s risk functions, which define, for each parameter value,

the expected utility implied by a decision rule–experiment pair. Formally, given a decision rule

𝛿 : 𝑋 → 𝐴 – where 𝑋 is the signal space – and an experiment 𝑃 = {𝑃\ : \ ∈ Θ}, I define the DM’s

risk function as the mapping \ ↦→ 𝑟𝑢 (𝛿, 𝑃) (\) ≡
∫
𝑋
𝑢(𝛿(𝑥), \)d𝑃\ (𝑥). Risk functions relate to

lotteries, i.e., prospects involving objective probabilities. They represent taking the expected utility

whenever the DM faces an objective distribution, while remaining completely agnostic about the

subjective uncertainty captured by the parameters.

The second part of the representation, given by the aggregator 𝐼, summarizes the agent’s atti-

3



tude towards ambiguity, and can be viewed as an ordinal utility on the space of risk functions. It

captures the way in which DMs deal with subjective uncertainty, i.e., the fact that they do not know

the true parameter.

Formally, I characterize a DM who chooses decision rules and experiments to maximize the

functional

𝑉 (𝛿, 𝑃) = 𝐼 (𝑟𝑢 (𝛿, 𝑃)) = 𝐼
((∫

𝑋

𝑢(𝛿(𝑥), \)d𝑃\ (𝑥)
)
\∈Θ

)
. (1.1)

The aggregator 𝐼 is only required to be continuous and monotone – basic properties that are satis-

fied by many models used in applications. Considering its particular form, I call this the monotone

risk aggregation (MRA) model. Specific objective functions are obtained by specifying particular

functional forms for 𝐼 that satisfy these two properties.

Consider, for instance, two of the most well-known models in statistics and decision theory: the

subjective expected utility (SEU) and the maximin expected utility (MEU) models. An SEU agent

is assumed to have a prior belief 𝜋, which is a probability distribution on the set of parameters.

Their ex-ante utility from decision rule 𝛿 and experiment 𝑃 is
∫
Θ

∫
𝑋
𝑢(𝛿(𝑥), \)d𝑃\ (𝑥)d𝜋(\) =∫

Θ
𝑟𝑢 (𝛿, 𝑃)d𝜋. In the language of the MRA framework, 𝐼 is the expectation operator with respect

to the prior belief. On the other hand, an MEU agent maximizes the expected utility assuming the

true parameter is the worst possible one for whichever decision rule they choose. Their ex-ante

utility is given by min\∈Θ
∫
𝑋
𝑢(𝛿(𝑥), \)d𝑃\ (𝑥) = min\∈Θ 𝑟𝑢 (𝛿, 𝑃) (\), that is, 𝐼 (·) = min\∈Θ(·).

In both cases, 𝐼 is monotone and continuous, thus SEU and MEU specialize the MRA model.

While SEU and MEU models are widely applied in SDT, their exact behavioral implications were

previously unknown. I provide characterizations of these and other models in Section 1.5.

The model in (1.1) is characterized by a set of six axioms on preferences. Two of those axioms

are standard: they impose that preferences are rational (complete and transitive) and continuous.

The remaining axioms are specific to my setting. The Consequentialism axiom states that the DM

ultimately cares only about the parameter contingent probability distributions over actions induced

by decision rules and experiments, not about the rules and experiments themselves. Independence

of Irrelevant Parameters imposes that if one fixes the outcomes of two alternatives to be the same

4



for every parameter but one, then preferences are completely determined by conditioning on the

single parameter where they may differ. Taken together, these two axioms allow the ex-post util-

ity 𝑢 to be a function exclusively of actions and parameters, rather than depend on the particular

decision rule and experiment being evaluated. Monotonicity says that if the DM prefers alterna-

tive 1 to alternative 2 conditional on any parameter being the truth, then she prefers alternative 1

unconditionally as well. This guarantees that the aggregator 𝐼 is monotone. Finally, Conditional

Mixture Independence requires that whenever the DM knows the true parameter, she chooses as if

maximizing expected utility.

To see how the axioms can help us empirically test whether preferences satisfy the MRA model,

recall the policymaker example above. For simplicity, suppose there are only two possible values of

the parameter, \1 > 𝑐 or \0 < 𝑐. In principle, the DM can choose as her decision rule any signal-

contingent distribution over the two possible actions. Suppose the decision rule that is strictly

preferred by the DM is based on a likelihood ratio test: she specifies a significance level 𝛼 and

acts as if \ > 𝑐 if, and only if, she rejects the null hypothesis that \ < 𝑐. Consequently, she takes

action 𝑎1 (implements the program) whenever the null hypothesis is rejected, and takes action 𝑎0

otherwise. This is an example of an inference-based decision rule – for further discussion of such

rules, see Manski (2021). Furthermore, the DM has different preferred significance levels 𝛼𝑖 for

different sample sizes, perhaps feeling that more informative experiments (larger 𝑛) permit more

stringent standards for implementing the policy. Each of these significance levels induce different

decision rules 𝛿∗
𝑖
, which are assumed to be strictly preferred to any other rule that could be paired

with experiment 𝑖.

It is a priori unclear whether the apparently reasonable choice behavior just described is com-

patible with any objective function in the mold of eq. (1.1). As it turns out, a simple argument

shows that such preferences violate the combination of Consequentialism and Independence of

Irrelevant Parameters, making them incompatible with the MRA model. Indeed, suppose we ob-

serve that the DM strictly prefers significance level 𝛼1 for her likelihood ratio test when the sample

size is 𝑛1, and 𝛼2 if it is 𝑛2. Tables 1.1a and 1.1b show the conditional action distributions 𝑃∗
𝑖
, for

5



(a) 𝛿∗1

𝑃∗
1(𝑎 |\) 𝑎0 𝑎1
\0 1 − 𝛼1 𝛼1
\1 𝛽1 1 − 𝛽1

(b) 𝛿∗2

𝑃∗
2(𝑎 |\) 𝑎0 𝑎1
\0 1 − 𝛼2 𝛼2
\1 𝛽2 1 − 𝛽2

(c) 𝛿1

�̂�1(𝑎 |\) 𝑎0 𝑎1
\0 1 − 𝛼2 𝛼2
\1 𝛽1 1 − 𝛽1

(d) 𝛿2

�̂�2(𝑎 |\) 𝑎0 𝑎1
\0 1 − 𝛼1 𝛼1
\1 𝛽2 1 − 𝛽2

Table 1.1: Conditional action distributions under different decision rules

𝑖 = 1, 2, resulting from decision rules 𝛿∗
𝑖
, where 𝛽𝑖 is the probability of type II error (i.e., the prob-

ability of wrongfully rejecting the policy). It is straightforward to construct alternative (mixed)

decision rules 𝛿1 and 𝛿2, for sample sizes 𝑛1 and 𝑛2 respectively, such that 𝑃∗
𝑖
(·|\1) = �̂�𝑖 (·|\1) and

𝑃∗
𝑖
(·|\0) = �̂�−𝑖 (·|\0), as shown in tables 1.1c and 1.1d.

Since 𝛿∗
𝑖

is the strictly preferred decision rule for experiment 𝑖, it is in particular strictly pre-

ferred to 𝛿𝑖. Now note that the action distributions induced by each pair of decision rules, 𝛿∗
𝑖

and

𝛿𝑖, differ only on parameter \0. Moreover, the action distributions conditional on \0 induced by 𝛿∗1

and 𝛿∗2 are mirror images of each other. Therefore, either the DM cares about something other than

parameter contingent action distributions, or preferences conditional on \0 depend on the action

distribution at \1. In other words, if the DM satisfies Consequentialism, so that all that matters

to her are the parameter contingent action distributions, then she must violate Independence of

Irrelevant Parameters. The fact that we can not pinpoint exactly which of the axioms is violated in

this example, is due to the fact that we only have data on two choice problems, rather than the full

preference relation.

To obtain the MRA representation, I first recover the DM’s utility function 𝑢 from a particular

incomplete binary relation that is implied by the DM’s preferences. The aggregator 𝐼 can then be

viewed as a standard utility function on the space of the risk functions defined by 𝑢. In fact, using

a direct analogy with consumer theory, risk functions can be interpreted as consumption bundles,

with different parameters representing the different goods. The expected utility of a risk function
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at parameter \ ∈ Θ is analogous to the quantity of good \ in the bundle. Therefore, showing the

existence of an aggregator 𝐼 is formally equivalent to proving the existence of a utility function

in a generalized space of consumption bundles. This allows one to draw an analogy between

a preference for hedging – where the DM intrinsically prefers risk functions that have a more

balanced utility profile across parameters – to the concept of complementarity between different

goods.

SEU agents act as if they can quantify the uncertainty about parameters with a single probabil-

ity measure – in the terminology of Ellsberg (1961), they show no ambiguity aversion. Looking at

it through the lens of consumer theory, they have additive utility across parameters, thus perceiving

parameters as perfect substitutes. At the opposite end of the spectrum, MEU agents act as if they

have no reason to believe one state is more likely than any other, and “play it safe” by planning

for the worst case scenario. They have maximal ambiguity aversion. In the language of consumer

theory, MEU agents have a parameter aggregator 𝐼 that is similar to Leontieff preferences, imply-

ing perfect complements. This underscores the analogy between complementarity and ambiguity

aversion that will be formalized in Section 1.4.

Characterizing the MRA model is an important step towards putting SDT on a sound axiomatic

foundation. However, applications are usually couched on more structured models, which impose

further constraints on DM’s preferences. Fortunately, the representation of the MRA model is a

key piece of a methodology that can be used to import representation results from the Anscombe-

Aumann framework to SDT. Indeed, eq. (1.1) indicates that one can interpret risk functions as

acts (mappings from states of the world to consequences), and that preferences over decision rule–

experiment pairs induce a preference relation over such acts. Therefore, once I have characterized

the MRA model, obtaining a representation of preferences in the SDT setting reduces to obtaining

an Anscombe-Aumann representation of the corresponding preferences over risk functions. Using

this technique, one can translate axioms on preferences over acts into axioms on preferences over

decision rules and experiments. Hence if a model has a representation satisfying the analogue of

eq. (1.1) in the Anscombe-Aumann setting (Cerreia-Vioglio et al., 2011b), I can easily obtain its
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corresponding SDT representation.

The second piece needed to establish this toolkit is Lemma 3, which connects properties of the

risk functionals 𝑟𝑢 to those of the decision rules and experiments that define them. The lemma

contains three separate statements. First, the risk function arising from a convex mixture of de-

cision rules is the convex mixture of the risk functions induced by each individual decision rule.

Second, the lemma describes, in terms of the decision rule and experiment that induces it, the risk

function obtained by substituting the value of one risk function, on a given set of parameters, by the

corresponding values of another risk function. Most axioms in the Anscombe-Aumann framework

are stated in terms of these two operations on acts. Finally, the lemma also characterizes the set

of decision rule–experiment pairs yielding constant risk functions. Constant acts also tend to be

important ingredients for Anscombe-Aumann axioms. In summary, Lemma 3 translates the main

ingredients of Anscombe-Aumann representations into the SDT framework.

From a purely technical perspective, Consequentialism transforms the problem of represent-

ing a preference over decision rules and experiments into representing a preference over param-

eter contingent action distributions. Much like I did with risk functions, I can also identify such

parameter contingent distributions with Anscombe-Aumann acts. But while risk functions map

parameters directly to parameter-independent consequences (utility units), the utility of an action

distribution itself depends on the true parameter. Therefore, viewed through the lens of traditional

decision theory, my methodology assists in generating representations of state-dependent prefer-

ences (over action distributions) from state-independent ones (over risk functions). This is a use-

ful technique, because state-independent representations have been studied much more thoroughly

than their state-dependent counterparts. The rationale behind developing such a methodology when

studying SDT is that parameter-dependence is often the whole point of statistical applications —

e.g., when performing inference.

After establishing the formal connection between the two frameworks, I apply my method-

ology to obtain behavioral characterizations in SDT, of some models for which axiomatizations

already exist in the Anscombe-Aumann setting. These applications illustrate how my main re-
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sults provide tools than can be used to obtain the exact behavioral implications of a wide array of

SDT models. Specifically, I provide characterizations of statistical decision theoretic versions of

subjective expected utility (Anscombe and Aumann, 1963); multiple priors and maximin expected

utility (Gilboa and Schmeidler, 1989a; Stoye, 2011); and variational and multiplier preferences

(Maccheroni, Marinacci, and Rustichini, 2006; Hansen and Sargent, 2001; Strzalecki, 2011).

In some applications, data on preferences over decision rule–experiment pairs is not forth-

coming. Hence, to expand the scope of my main results, I characterize the MRA model for two

alternative types of behavioral data.

First, I consider data in the form of parameter dependent stochastic choices. This consists

of action probabilities conditional on every parameter, and can be obtained by calculating action

frequencies from repeated observations of choices from different decision problems. Such data

is commonplace in the psychometric literature, and has recently received some attention in eco-

nomics (Caplin and Martin, 2015; Caplin and Dean, 2015). I characterize when a parameter de-

pendent stochastic choice function can be rationalized by a preference on decision rule–experiment

pairs satisfying the MRA representation. This allows one to test whether choices are compatible

with the MRA model without having to observe preferences over decision rules and experiments.

I also discuss the identification problem using such data. That is, when can the particular deci-

sion rule and experiment chosen by the DM be recovered by observing only parameter dependent

stochastic choice data. This turns out to be a problem of statistical identifiability of mixture models,

for which answers are available in the econometrics literature.

Second, I examine the case where data comes in the form of two collections of preferences.

One defines a preference over decision rules for each fixed experiment. This describes a DM who

takes the experiment as given, and chooses the decision rule accordingly. The other collection

consists of a preference over experiments for each menu 𝑀 of decision rules. This models an

agent, whom I call the Experimenter, who chooses an experiment, assuming that a decision rule

will subsequently be chosen from 𝑀 according to some choice procedure known to her in advance.

I separately characterize the MRA model for each of these decision problems. These can be viewed
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as two separate DMs — one choosing the information structure, the other choosing the decision

rule — or as two cross sections of the same DM’s preferences over decision rule–experiment pairs.

It turns out that the axioms characterizing the MRA model for the DM who chooses over deci-

sion rules are closely related to those characterizing the same model for decision rule–experiment

pairs. The same is true for the Experimenter, apart from two extra axioms. Consistency implies

that the Experimenter is forward looking and correctly anticipates the decision rule that will be

subsequently chosen from the feasible menu. Optimism says that the Experimenter assumes that

if multiple decision rules might be chosen in the second stage of the decision process, the ultimate

choice will be in her favor.

The remainder of the paper is structured as follows. Section 1.2 contextualizes the contribu-

tions of the present paper within the existing literature. Section 1.3 presents the decision theoretical

setting and introduces some notation. Section 1.4 contains the main result: a representation of the

MRA model. Section 1.5 develops a methodology that can be used to apply existing behavioral

foundations of classic decision theory to SDT, and illustrates it with some applications. In Sec-

tion 1.6 I characterize the MRA model for alternative data sets. All proofs are in the appendix.

1.2 Related Literature

Statistical decision theory was pioneered by Abraham Wald, who first applied it to the optimal

choice of decision rules (Wald, 1939), and then to the design of experiments (Wald, 1947b). Wald

himself framed his theory as a particular case of John von Neumann’s theory of games, with Na-

ture and the statistician as the players. As such, in SDT the statistician is endowed with an utility

function that maps actions and unobserved parameters to ex-post pay-offs. Since the sampling dis-

tributions of experiments at every parameter are assumed to be known in advance, the statistician

uses the expected utility criterion when assessing the ex-ante payoff at each parameter. Payoff

aggregation across the parameter space — on which there is no objectively given probability dis-

tribution — can then be done in different ways. For example, Wald favored the maximin criterion:
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maximizing utility conditional on the worst-case parameter.1

This canonical model of statistical decision making has since provided the conceptual frame-

work for many important results in mathematical statistics, such as David Blackwell’s equivalency

result for the economic comparison of experiments (Blackwell, 1953; Marschak and Miyasawa,

1968; Crémer, 1982), and Wald’s complete class theorem (Wald, 1947a; Kuzmics, 2017). A com-

prehensive review of theoretical results and applications of SDT to mathematical statistics can be

found in Inoue (2009).

SDT has also become one of the preferred languages of information economics. Among the

many influential economics models couched in the SDT framework are the Bayesian persuasion

literature initiated by Gentzkow and Kamenica (2011), and the rational inattention and costly in-

formation acquisition models studied by Sims (2003), Caplin and Dean (2015) and Matêjka and

McKay (2015), among others. As for other areas of economic inquiry, Manski (2021) argues for

the application of SDT to econometrics, provides a good summary of the relatively recent efforts

in this direction, and outlines the remaining obstacles to this approach.

As was mentioned in the Introduction, models in SDT make predictions in terms of choices

over decision rules and experiments. For example, Sims (2003) models a Bayesian agent who

jointly chooses a decision rule and an experiment, subject to a constraint on the mutual information

between the chosen experiment and the prior distribution over states of the world. The present

paper characterizes the exact behavioral implications of this and many other SDT models, by

axiomatizing preferences over decision rule–experiment pairs.

A different strand of the literature, which I will simply call decision theory, has sought to de-

rive the behavioral implications of models of choice under uncertainty, usually by axiomatizing

a DM’s preferences over acts, i.e., functions from states of the world to final consequences. The

early results most relevant for this paper were presented by Savage (1954) and Anscombe and Au-

mann (1963). Both characterize SEU agents, but unlike Savage, Anscombe and Aumann assume

that acts’ consequences consist of lotteries with known probability distributions. This introduces

1When the objective is to minimize loss rather than maximize utility, as in Wald’s original formulation, maximin
becomes minimax, since loss is the negative of utility.

11



both objective and subjective probabilities into the model. In Section 1.5, I show that there is a

natural formal connection between the SDT setting and the Anscombe and Aumann framework

of preferences over acts. I then leverage this connection to develop a methodology that generates

representation results in the SDT setting by importing analogous results from the Anscombe and

Aumann framework.

A large literature has sought to characterize different models of choice under uncertainty by

modifying the set of axioms put forth by Anscombe and Aumann (1963). I briefly cite a few that

are specially relevant in the context of this paper. Gilboa and Schmeidler (1989a) characterize the

multiple priors expected utility (MPEU) model, where the DM has a set of prior beliefs over the

states of the world, and picks the act yielding the best outcome according to the worst prior in

this set. Maccheroni, Marinacci, and Rustichini (2006) generalize MPEU by characterizing pref-

erences that can be represented by an elementary variational problem. Strzalecki (2011) provides

a representation theorem for the multiplier preferences model proposed by Hansen and Sargent

(2001). This is a special case of variational preferences, and can interpreted as modelling a DM

who cares about the robustness of choices to deviations from a prior distribution. Cerreia-Vioglio

et al. (2011b) axiomatize a general class of preferences, which subsumes all models cited in this

paragraph and can be viewed as a decision theoretic analogue of the MRA model.

Some decision theory papers have studied statistical models from the perspective of the Anscombe

and Aumann framework. One approach is to take the standard view that both signals and param-

eters of the SDT framework are contained in the state space of decision theory, and then proceed

by proving results in the Anscombe and Aumann setting. With this interpretation, any decision

theoretic representation can be directly applied to statistical decision problems. However, this

leaves out an important feature of SDT, which is the natural decomposition of the states into an

informative but payoff irrelevant part (signals) and a payoff relevant but unobservable component

(parameters). Cerreia-Vioglio et al. (2020) and Amarante (2009), for example, specifically use

statistical applications to motivate representation theorems in the Anscombe and Aumann setting.

A second approach, exemplified by Epstein and Seo (2010), Cerreia-Vioglio et al. (2013) and
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Al-Najjar and De Castro (2014), also takes acts as primitives, and provides conditions on prefer-

ences under which the DM can be thought as having a parametric representation of the state space.

In SDT terms, under such conditions preferences over acts can be used to elicit the DM’s subjective

statistical model (the experiment).

A different approach is taken by Stoye (2011) and Stoye (2012), who characterizes versions

of many widely used SDT models by essentially taking risk functions (also called utility acts) as

decision theoretic primitives. As will become clear in Section 1.5, such an approach is comple-

mentary to the one I take in the present paper, and can be combined with my results to obtain novel

representation theorems in the SDT framework.

Finally, the decision theory paper that comes closest to modelling choices between decision

rules and experiments as I do here, is due to Jakobsen (2021). In it, the author axiomatizes the

decision problems of two agents. The first chooses between experiments, knowing that for each

realized signal an act will later be chosen by the second agent. The preferences of each agent

depend on both agents’ choices. This is similar to the approach taken in Section 1.6.2, except that

Jakobsen (2021) works with acts rather than decision rules, focuses on Bayesian representations

for both agents, and considers only the case of state-independent utility.

After separately characterizing each agent, Jakobsen (2021) gives conditions under which the

utility functions and prior beliefs in the representations are identified. He also provides the condi-

tions for when both representations coincide, which can be interpreted as the two decision prob-

lems describing the same agent. Such a case can thus be viewed as a DM who chooses an act-

experiment pair, albeit under the constraint that each experiment must always be paired with the

act that is optimal for it. By assuming richer observable data, I am able to characterize a single

agent’s preferences over decision rule–experiment pairs without any such constraints.

1.3 Setting and notation

Experiments. Consider a set Θ of parameters, assumed to be a compact topological space, with

a 𝜎-algebra Σ that includes the singletons. The set of all experiments the decision maker may be
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asked to choose from is denoted by P . Each element 𝑃 ∈ P is a function \ ↦→ 𝑃\ from param-

eters to probability distributions over a standard Borel signal space, i.e., a Polish space (separable

complete metric space) endowed with its Borel 𝜎-algebra. This can be viewed as the parameter

contingent distribution of a random variable, denoted by 𝑋𝑃. Since all signal spaces are standard

Borel, there is no loss of generality in assuming that all 𝑃 ∈ P are defined on a common Polish

sample space 𝑋 , and I do so for the remainder of the paper. To guarantee that the sample space is

rich enough to incorporate signals from a variety of distributions, I assume that 𝑋 is uncountable.

For any Polish space 𝑌 with the usual topology, denote by Δ(𝑌 ) the set of probability dis-

tributions on its Borel 𝜎-algebra Y . This is a convex space, with mixture operation defined by

(𝛼𝑝 + (1 − 𝛼)𝑞) (𝐸) = 𝛼𝑝(𝐸) + (1 − 𝛼)𝑞(𝐸) for all 𝐸 ∈ Y , 𝑝, 𝑞 ∈ Δ(𝑌 ) and 𝛼 ∈ [0, 1]. I endow

Δ(𝑌 ) with the topology of weak convergence of measures. That is, a sequence (𝑝𝑛)𝑛≥1 ∈ Δ(𝑌 )

converges to 𝑝 if
∫
𝑌
𝑓 d𝑝𝑛 →

∫
𝑌
𝑓 d𝑝 for every bounded continuous function 𝑓 : 𝑌 → R. By

Prokhorov’s theorem, this topology induces a metric on Δ(𝑌 ).

The class of all functions Θ ∋ \ ↦→ 𝑃\ ∈ Δ(𝑌 ) will be denoted by Δ(𝑌 )Θ. This is also a convex

space, with mixture operation defined point-wise on parameters. That is, for all 𝑃,𝑄 ∈ Δ(𝑌 )Θ and

𝛼 ∈ [0, 1], 𝛼𝑃 + (1 − 𝛼)𝑄 = (𝛼𝑃\ + (1 − 𝛼)𝑄\)\∈Θ ∈ Δ(𝑌 )Θ. For any 𝐸 ∈ Y and 𝑃 ∈ Δ(𝑌 )Θ,

denote 𝑃(𝐸) = (𝑃\ (𝐸))\∈Θ. Convergence is also defined point-wise, equipping Δ(𝑌 )Θ with the

product topology. When Θ is finite, this topology is equivalent to the one induced by Euclidean

distance. I assume that P is a convex subspace of Δ(𝑋)Θ, in the sense that if 𝑃,𝑄 ∈ P , then

𝛼𝑃 + (1 − 𝛼)𝑄 ∈ P for all 𝛼 ∈ [0, 1].

Not knowing realized signal 𝑥 ∈ 𝑋 , conditional on \ ∈ Θ, is called risk, while lack of knowl-

edge about the parameter itself is referred to as ambiguity. The former is objectively quantifiable,

since the probabilities for a given \ ∈ Θ are deemed objectively given, while the latter is not.

Assume throughout that there exists at least one 𝑃∗ ∈ P with the full information property:

(supp 𝑃\) ∩ (supp 𝑃\ ′) = ∅ for all \ ≠ \′.2 This experiment’s signal realizations perfectly re-

veal the true parameter, so call it the fully informative experiment. On the other hand, I call any

2For example, if Θ ⊆ 𝑋 , then 𝑃∗ such that 𝑃∗
\
({\}) = 1 for every \ ∈ Θ is fully informative.
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𝑃0 ∈ P uninformative if 𝑃0
\
= 𝑃0

\ ′ for all \, \′ ∈ Θ. Since the likelihood of different signals of an

uninformative experiment does not depend on the parameter, observing a signal from 𝑃0 does not

provide any information about the true parameter value.

Decision rules. The decision maker observes a signal 𝑥 ∈ 𝑋 coming from some experiment

𝑃 ∈ P and then chooses an action from a set 𝐴. I assume (𝐴,A ) is a compact Polish space with

its Borel 𝜎-algebra A . A decision rule 𝜌 = {𝜌𝑃}𝑃∈P is a family of Markov kernels from 𝑋 to

𝐴, indexed by the experiments.3 Decision rules can be viewed as mixed strategies, one for each

experiment, assigning a distribution over actions to each signal realization.

Any decision rule defined by 𝜌𝑃 (𝑥, ·) = 𝜒𝑑𝑃 (𝑥) (·), where 𝑑𝑃 : 𝑋 → 𝐴 for every 𝑃 ∈ P and

𝑥 ∈ 𝑋 , and 𝜒𝑎 denotes the degenerate distribution with full mass on 𝑎 ∈ 𝐴, is called a pure decision

rule. These are decision rules that assign each signal to a single action with certainty. Denote by

D the set of all decision rules, and by D 𝜒 the set of all pure decision rules. I assume that D is

the class of all families of Markov kernels from 𝑋 to 𝐴, indexed by the set P . In other words, I

require the DM to have preferences over all experiment- and signal-contingent distributions over

actions.

A decision rule 𝜌 ∈ D is called invariant if 𝜌𝑃 = 𝜌𝑃′ for all 𝑃, 𝑃′ ∈ P . Examples of invariant

decision rules in statistics include the sample mean and the least squares estimators. On the other

hand, estimators which make use of the specification of the statistical model, such as maximum

likelihood, are not invariant. Let D be the set of all pure and invariant decision rules. Thus

D ⊂ D 𝜒 ⊂ D . When it is clear from context, I slightly abuse notation and omit 𝑃 subscripts from

𝜌𝑃. When it does not lead to confusion, I may also call 𝜌𝑃, for a fixed 𝑃 ∈ P , a decision rule.

Parameter contingent action distribution. For any 𝜌 ∈ D , the parameter contingent action

distribution induced by 𝜌 and 𝑃, 𝜌𝑃, is the mapping \ ↦→ 𝜌𝑃\ ≡
∫
𝑋
𝜌𝑃 (𝑥, ·)d𝑃\ (𝑥). This gives the

distribution of actions induced, for each parameter, by the signal distribution and the decision rule.

3That is, for every 𝑃 ∈ P , the mapping 𝜌𝑃 : 𝑋 ×A → [0, 1] satisfies: (i) 𝜌𝑃 (𝑥, ·) is a probability for every 𝑥 ∈ 𝑋;
and (ii) 𝜌𝑃 (·, 𝐸) is measurable for every 𝐸 ∈ A .
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In particular, for 𝛿 ∈ D 𝜒, we have that 𝛿𝑃(𝐹) = (𝑃\ ◦ 𝛿−1
𝑃
(𝐹))\∈Θ are the (parameter contingent)

pushforward measures of 𝛿𝑃 acting on 𝑃. Let F ≡ Δ(𝐴)Θ and note that 𝜌𝑃 ∈ F for all 𝜌 and 𝑃.

For any function 𝑣 : 𝐴 → R and 𝜌 ∈ D , I denote by 𝑣(𝜌𝑃) : 𝑋 → R its expectation under 𝜌𝑃, i.e.,

𝑣(𝜌𝑃 (𝑥)) =
∫
𝐴
𝑣(𝑎)𝜌𝑃 (𝑥, d𝑎) for each 𝑥 ∈ 𝑋 .

Preferences. Let S = D × P be the set of all decision rule–experiment pairs, with typical

element 𝜎 ∈ S – which I simply call a pairing. I model the decision maker’s preferences as a

binary relation ≿ on S . If preferences were over decision rules alone, they could be interpreted

either as ex-ante preferences over contingent plans, or as ex-post preferences over actions after

observing each signal realization. By letting the DM simultaneously choose over experiments and

decision rules, I am implicitly assuming that these are ex-ante preferences, since experiments must

be chosen before observing the signal. Therefore, decision rules are appropriately interpreted as

contingent plans rather than realized actions after observing each signal. Indeed, I focus on the

ex-ante strategies of dynamically consistent DMs, who believe they will follow through on their

contingent plans after observing a signal.

As usual, ≻ and ∼ denote the asymmetric and the symmetric parts of ≿, respectively. The

relation ≿ is called trivial if 𝜎 ≻ 𝜎′ for no 𝜎, 𝜎′ ∈ S . By taking a single preference relation as

a primitive, I am ruling out SDT models where preferences depend on the choice problem being

considered. One prominent such model is minimax regret.

Example 1 (Minimax Regret): Let Θ be compact and 𝑢 : 𝐴 × Θ → R be a continuous utility

function. The minimax regret choice criterion 𝐶𝑅 selects, for any choice problem 𝐷×Γ ⊆ S such

that {𝜌𝑃 ∈ F : 𝜌 ∈ 𝐷, 𝑃 ∈ Γ} is compact,

𝐶𝑅 (𝐷 × Γ) = arg min
(𝜌,𝑃)∈𝐷×Γ

max
\∈Θ

[
max
𝑎∈𝐴𝐷

𝑢(𝑎, \) −
∫
𝑋

𝑢(𝜌, \)d𝑃\
]
,

where 𝐴𝐷 = {𝜌(𝑋) : 𝜌 ∈ 𝐷}. In words, the DM chooses the alternative that minimizes, for the

worst-case scenario, the difference between the optimal choice with perfect information and the

expected utility of the pairing.
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Clearly, the ranking of pairings under the minimax regret criterion may depend on the specific

choice problem being considered, hence can not be represented by a single preference relation ≿.∥

Let 𝑓 and 𝑔 be functions defined on some set 𝑌 . For any 𝐸 ⊆ 𝑌 , let 𝑓(𝐸)𝑔 denote the function

given by 𝑓(𝐸)𝑔(𝑦) = 𝑓 (𝑦) if 𝑦 ∈ 𝐸 and 𝑓(𝐸)𝑔(𝑦) = 𝑔(𝑦) if 𝑦 ∈ 𝑌 \ 𝐸 . Recalling the definition of

the fully informative experiment 𝑃∗, denote 𝑆\ = supp 𝑃∗
\

and note that 𝑆\ ∩ 𝑆\ ′ = ∅ for all \ ≠ \′.

Moreover, define 𝑆𝑇 ≡ ⋃
\∈𝑇 𝑆\ , for any 𝑇 ⊆ Θ. To economize on notation, let 𝜌(𝑆𝑇 )𝜏 ≡ 𝜌𝑇𝜏, for

any 𝜌, 𝜏 ∈ D and 𝑇 ⊆ Θ. Also denote by 1𝐸 the indicator function of 𝐸 ⊆ 𝑌 , that is, 1𝐸 (𝑦) = 1 if

𝑦 ∈ 𝐸 and 1𝐸 (𝑦) = 0 otherwise.

Risk functions. Given a utility function 𝑢 : 𝐴×Θ → Rwhich is continuous in the first argument,

define the risk function of the pairing (𝜌, 𝑃) ∈ S under 𝑢 as the function 𝑟𝑢 (𝜌, 𝑃) : Θ → R given

by

𝑟𝑢 (𝜌, 𝑃) (\) =
∫
𝑋

𝑢(𝜌, \)d𝑃\ for every \ ∈ Θ. (1.2)

In words, the risk function describes the parameter contingent expected utility of a pairing. Define

R𝑢 ≡ {𝑟𝑢 (𝜌, 𝑃) ∈ RΘ : (𝜌, 𝑃) ∈ S }, the set of all possible risk functions under 𝑢. Finally, a

functional 𝐼 : R𝑢 → R is called monotone if 𝑟 (\) ≥ 𝑟′(\) for all \ ∈ Θ implies 𝐼 (𝑟) ≥ 𝐼 (𝑟′); it is

called continuous if it is continuous in the topology of point-wise convergence.

1.4 Main results

In this section, I present axioms that characterize a general model of statistical decisions. This

will provide a foundation to obtain representations of many models of interest, including SDT ver-

sions of subjective expected utility (SEU), maximin expected utility (MEU) and multiplier prefer-

ences. We are interested in models of the following form.

Definition 1 (Monotone Risk Aggregation Representation). A binary relation ≿ on S has a

monotone risk aggregation (MRA) representation (𝑢, 𝐼) if there exists a utility function 𝑢 : 𝐴×Θ →

R, continuous in the first argument, and a monotone and continuous functional 𝐼 : R𝑢 → R, such
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that for all 𝜌, 𝜏 ∈ D and 𝑃,𝑄 ∈ P ,

(𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒ 𝐼 (𝑟𝑢 (𝜌, 𝑃)) ≥ 𝐼 (𝑟𝑢 (𝜏, 𝑄)), (1.3)

where 𝑟𝑢 : S → RΘ is defined by eq. (1.2). ♦

A decision maker whose preferences are compatible with the MRA model evaluates prospects

according to expected utility when probabilities are known, and aggregates unknown parameters

in a way that favors point-wise improvements of the risk function on the parameters. Importantly

for statistical applications, the ex-post utility 𝑢 is allowed to be parameter-dependent. This is in

contrast to most of the decision theory under uncertainty literature, where the Bernoulli utility is

defined on ultimate consequences, and thus is assumed to be state-independent. In fact, the model

of Definition 1 can be viewed as a state-dependent, statistical version of the monotone, Bernoullian

and Archimedean (MBA) preferences studied by Cerreia-Vioglio et al. (2011b).

Unsurprisingly given its generality, most objective functions commonly used in statistical de-

cision problems fit into this basic framework, differing only in the choice of utility function 𝑢 and

aggregator 𝐼.

Example 2 (Bayesian parameter estimation): A Bayesian statistician wants to estimate a pa-

rameter \ ∈ Θ with the least possible mean squared error. Assume she has a prior belief 𝜋 ∈ Δ(Θ)

over possible parameter values. In terms of the MRA framework, we have 𝐴 = Θ, and 𝑢(𝑎, \) =

−(𝑎 − \)2 and 𝐼 (·) = E𝜋 (·). For a fixed experiment 𝑃, the statistician’s preference is given by

(𝜌, 𝑃) ≿ (𝜏, 𝑃) if, and only if, E𝜋 (
∫
𝑋
(𝜌 − \)2d𝑃\) ≤ E𝜋 (

∫
𝑋
(𝜏 − \)2d𝑃\). ∥

Example 3 (Ellsberg preferences): A decision maker is asked to place a bet on which color ball

will be drawn from an urn containing 30 blue and 60 green or yellow balls. We can model this

decision problem by setting Θ = {(𝑛𝑔, 𝑛𝑦) : 𝑛𝑔 = 0, . . . , 60, 𝑛𝑦 = 60 − 𝑛𝑔}, 𝑋 = {𝑏, 𝑔, 𝑦} and

𝐴 = {0, 1}. The interpretation of an action 𝑎 ∈ 𝐴 is of receiving 𝑎 dollars. Thus, the decision rule

𝛿𝑃 = (𝛿𝑃 (𝑏) = 1, 𝛿𝑃 (𝑔) = 0, 𝛿𝑃 (𝑦) = 1) corresponds to betting on either a blue or a yellow ball

being drawn from experiment 𝑃 ∈ P .
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Let 𝑃 ∈ P be the experiment where the balls are drawn according to an uniform distribution.

Then 𝑃\ (𝑏) = 1/3 and 𝑃\ (𝑔) = \/90 = 2/3 − 𝑃\ (𝑦). Typical Ellsberg choices for this deci-

sion problem imply ((1, 0, 0)𝑃, 𝑃) ≻ ((0, 1, 0)𝑃, 𝑃) and ((0, 1, 1)𝑃, 𝑃) ≻ ((1, 0, 1)𝑃, 𝑃), where

(𝑏, 𝑔, 𝑦)𝑃 denotes any decision rule 𝑑 ∈ D 𝜒 such that 𝛿𝑃 = (𝑏, 𝑔, 𝑦). Such choice data is not

consistent with any version of SEU preferences, but can be rationalized by MEU preferences:

(𝛿, 𝑃) ≿ (𝛿′, 𝑄) if, and only if, min\∈Θ
∫
𝑋
𝑢(𝛿)d𝑃\ ≥ min\∈Θ

∫
𝑋
𝑢(𝛿′)d𝑄\ for an increasing, state-

independent utility function 𝑢. Here, the aggregator 𝐼 (·) corresponds to min\∈Θ(·). ∥

First, I impose a basic rationality postulate on the preference relation.

Axiom 1 (Weak Order): The preference relation ≿ is complete and transitive.

The next axiom needed to characterize the MRA model captures a notion of the DM being

a consequentialist. It states that the decision maker’s preferences ultimately depend only on the

parameter contingent action distribution induced by the pairings, not on the particular decision rule

and experiment that generate this distribution.

Axiom 2 (Consequentialism): For all (𝜌, 𝑃), (𝜏, 𝑄) ∈ S : if 𝜌𝑃 = 𝜏𝑄, then (𝜌, 𝑃) ∼ (𝜏, 𝑄).

Consequentialism is not a completely innocuous axiom. For instance, it may not hold in models

where choosing different experiments entail different subjective costs.

Example 4: Consider a rationally inattentive DM of the kind postulated by Matêjka and McKay

(2015). Suppose 𝐴 = {−1, 1}, Θ = {−1, 0, 1} and 𝑋 = {𝑥−1, 𝑥0, 𝑥1}. The DM is a Bayesian, with a

uniform prior belief 𝜋 ∈ Δ(Θ), and utility function 𝑢(𝑎, \) = \𝑎. She also faces a cost to choosing

experiment 𝑃 ∈ P given by

𝑘 (𝑃) =
∑︁
\∈Θ

𝜋(\)
∑︁
𝑥∈𝑋

𝑃\ (𝑥)
[
log 𝑃\ (𝑥) − log

∑︁
\∈Θ

𝜋(\)𝑃\ (𝑥)
]
.

The DM chooses a decision rule 𝛿 and experiment 𝑃 to maximize

𝑉 (𝛿, 𝑃) =
∑︁
\∈Θ

∑︁
𝑥∈𝑋

𝑢(𝛿(𝑥), \)𝑃\ (𝑥)𝜋(\) − 𝑘 (𝑃).
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If the DM can obtain conclusive information about whether \ = −1, further telling \ = 0 apart

from \ = 1 is costly, but does not affect the optimal decision.

For instance, take the fully informative experiment 𝑃∗
𝑗
(𝑥 𝑗 ) = 1 for 𝑗 = −1, 0, 1, and compare it

to 𝑃′ such that 𝑃′−1(𝑥−1) = 1 and 𝑃′0(𝑥0) = 𝑃′1(𝑥0) = 𝑃′0(𝑥1) = 𝑃′1(𝑥1) = 1/2. Then 𝑘 (𝑃∗) > 𝑘 (𝑃′).

It can be easily verified that if 𝛿′ and 𝛿∗ denote optimal decision rules given 𝑃′ and 𝑃∗ respectively,

then the DM strictly prefers (𝛿′, 𝑃′) to (𝛿∗, 𝑃∗), although they induce the same parameter contin-

gent action distributions.

If the DM had instead been modelled as in Sims (2003), where she faces a hard constraint on

the mutual information between the experiment and the prior and solves max𝛿,𝑃 𝑉 (𝛿, 𝑃) subject to

𝑘 (𝑃) ≤ 𝐾 , 𝐾 > 0, then Consequentialism would be satisfied. ∥

The sets of pairings with the same induced distribution partition S into equivalence classes.

For any 𝜎 ∈ S , denote by [𝜎] the equivalence class to which 𝜎 belongs, and let S /∗ be the set

of all such equivalence classes. The space of decision rules is rich enough that every equivalence

class in S /∗ has a representative involving the fully informative experiment. When given any

pairing, the DM can mimic the parameter dependent action distribution arising from any garbling

of the given experiment by appropriately randomizing the decision rule. This allows the DM to

achieve any parameter contingent action distribution when given the fully informative experiment,

since any any other experiment is a garbling of it (Blackwell, 1951). This is stated formally as

follows.

Lemma 1. For all [𝜎] ∈ S /∗, there exists 𝜌𝜎 ∈ D such that (𝜌𝜎, 𝑃∗) ∈ [𝜎].

Axiom 2 guarantees that S /∗ is a refinement of S /∼, the quotient space of ∼. In other words,

if two pairings induce the same distribution, they are deemed indifferent, but the converse is not

necessarily true. Therefore, transitivity of ≿ implies that, to obtain a characterization of the full

preference relation, it suffices to characterize the restriction of ≿ to a single representative of each

member of S /∗, since the DM is indifferent between all pairings within the same equivalence

class. Now, Lemma 1 states that any parameter contingent distribution induced by an element of
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S can be achieved by some decision rule acting on 𝑃∗. Therefore, in the presence of Axiom 2 and

transitivity, ≿ is completely determined by comparisons of pairings involving the fully informative

experiment.

When the DM is provided the fully informative experiment 𝑃∗, then there is effectively no

uncertainty about the parameter. Therefore, when comparing decision rules, she can focus on their

induced actions at each parameter separately. This suggests that two decision rules that coincide

on 𝑆𝑐
\

should be ranked in the same way, regardless of what specific actions each rule prescribes

for this set of signals. This intuitive notion is captured by the next axiom.

Axiom 3 (Independence of Irrelevant Parameters): For all \ ∈ Θ and 𝜌, 𝜏, 𝛾, 𝛾′ ∈ D :

(𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) =⇒ (𝜌{\}𝛾′, 𝑃∗) ≿ (𝜏{\}𝛾′, 𝑃∗).

In the presence of the fully informative experiment, Independence of Irrelevant Parameters

(IIP) allows us to interpret {𝜌{\}𝛾 : 𝜌 ∈ D}, for any 𝛾 ∈ D , as the set of decision rules conditional

on \, since it implies that the ranking of such rules does not depend on what actions they prescribe

on 𝑆𝑐
\
. Axiom 3 is the SDT formulation of a weaker version of the “sure thing principle”, presented

by Savage (1954). The main conceptual difference is that Savage’s postulate holds when condi-

tioning the decision rules on any subset 𝑇 ∈ Σ, while IIP is only required to hold for singletons

{\} ∈ Σ.

The following is a monotonicity axiom: if one decision rule is preferred to another after condi-

tioning on every parameter, then it is preferred unconditionally.

Axiom 4 (Monotonicity): For all 𝜌, 𝜏 ∈ D : if (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) for every 𝛾 ∈ D and

\ ∈ Θ, then (𝜌, 𝑃∗) ≿ (𝜏, 𝑃∗).

If the DM is choosing between decision rules to pair with the fully informative experiment,

the problem reduces to picking a terminal distribution over actions conditional on each parameter

being the truth. Now suppose the actions induced by the available decision rules coincide on

every parameter except one. Then only the objectively given probabilities, conditional on the
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relevant parameter, should matter. Since this choice only involves quantifiable risk, modifying the

distributions conditional on the relevant parameter in the same way, for all decision rules under

consideration, does not provide hedging value. Therefore, such a modification should not change

preferences. This gives an intuitive interpretation to the following axiom.

Axiom 5 (Conditional Mixture Independence): For every 𝜌, 𝜏 ∈ D and \ ∈ Θ: if (𝜌{\}𝛾, 𝑃∗) ≿

(𝜏{\}𝛾, 𝑃∗), then (𝛼𝜌{\}𝛾 + (1 − 𝛼)^{\}𝛾, 𝑃∗) ≿ (𝛼𝜏{\}𝛾 + (1 − 𝛼)^{\}𝛾, 𝑃∗) for all 𝛼 ∈ (0, 1] and

^ ∈ D .

Conditional Mixture Independence (CMI) implies that the DM views randomization of actions

conditional on a given parameter as objective risk. Therefore, she is able to evaluate distributions

conditional on each parameter via expected utility.

Finally, I impose a form of continuity on the preference relation. This guarantees that the

preference order is not reversed for pairings with arbitrarily similar induced distributions.

Axiom 6 (Continuity): The set {(𝜌𝑃, 𝜏𝑄) ∈ F 2 : (𝜌, 𝑃) ≿ (𝜏, 𝑄)} is closed in F 2.

Note that, while axioms 3 to 5 are essentially properties of preferences on decision rules alone,

the other axioms act on both decision rules and experiments. Therefore, choice data that includes

simultaneous variation of decision rules and experiments is needed to falsify axioms 1, 2 and 6.

In Section 1.6, I show how to characterize a dominance representation from preferences defined

exclusively on either decision rules or experiments.

For the remainder of this section, I show that if ≿ satisfies the axioms above, then one can

describe a sub-relation ≿̂⊆≿ which captures the decision maker’s ex-post utility function 𝑢. This

in turn reveals the set R𝑢 of all risk functions available to the DM. The aggregator 𝐼 in Definition 1

can then be viewed as an ordinal utility on the space of risk functions.

1.4.1 The dominance sub-relation

The first step in obtaining an MRA representation is to characterize a behavioral version of the

concept of dominance, made precise in the following definition.
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Definition 2 (Dominance Representation). A binary relation ≿ on S has a dominance represen-

tation if there exists a utility function 𝑢 : 𝐴 × Θ → R, continuous in the first argument, such that

for all 𝜌, 𝜏 ∈ D and 𝑃,𝑄 ∈ P ,

(𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒
∫
𝑋

𝑢(𝜌, \)d𝑃\ ≥
∫
𝑋

𝑢(𝜏, \)d𝑄\ for all \ ∈ Θ. (1.4)

If ≿ has a dominance representation, we call it a dominance relation. ♦

When an (incomplete) preference has a dominance representation, a pairing is preferred to an-

other if and only if it yields higher expected utility for every parameter. If one views a statistical

decision problem as a game where Nature chooses the true unknown parameter, as in the tradition

of Wald (1949), then Definition 2 corresponds to (weak) dominance in mixed strategies. Further-

more, if one fixes an experiment and looks at the corresponding preferences over decision rules

induced by a dominance representation, one obtains the statistical concept of admissibility.

Consider the following two axioms: one is the converse of Monotonicity, and the other is a

weakening of completeness.

Axiom 7 (Admissibility): For all 𝜌, 𝜏 ∈ D : (𝜌, 𝑃∗) ≿ (𝜏, 𝑃∗) =⇒ (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) for

every 𝛾 ∈ D and \ ∈ Θ.

Axiom 8 (Conditional Completeness): For all 𝜌, 𝜏, 𝛾 ∈ D and \ ∈ Θ: (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗)

or (𝜏{\}𝛾, 𝑃∗) ≿ (𝜌{\}𝛾, 𝑃∗).

The following result characterizes the dominance representation in terms of preferences, and

presents its uniqueness properties.

Theorem 1. A binary relation ≿ on S is a transitive and reflexive preference that satisfies Conse-

quentialism, Independence of Irrelevant Parameters, Monotonicity, Conditional Mixture Indepen-

dence, Continuity, Admissibility, and Conditional Completeness if, and only if, it has a dominance

representation with utility function 𝑢 : 𝐴 × Θ → R.
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Furthermore, 𝑢 is parameter-wise cardinally unique: if 𝑢′ also represents ≿, then there exist

{(𝑏\ , 𝑐\) : \ ∈ Θ} with 𝑏\ > 0 and 𝑐\ ∈ R, such that 𝑢′(·, \) = 𝑏\𝑢(·, \) + 𝑐\ for all \ ∈ Θ.

Dominance relations are of independent interest, as they behaviorally characterize the impor-

tant concepts of strategic dominance and admissibility. However, my main purpose in proving

Theorem 1 is to find a particular subrelation of the DM’s full preferences that is a dominance

relation, and thus can behaviorally elicit the DM’s utility, and consequently their risk functions.

I say that 𝜎 is unanimously preferred to 𝜎′ if, conditional on each parameter, the outcome from

𝜎 is deemed preferred to that of 𝜎′. Formally:

Definition 3. Let 𝜎, 𝜎′ ∈ S and ≿ be a preference. Then 𝜎 is unanimously preferred to 𝜎′,

denoted by 𝜎 ≿̂ 𝜎′, if there exist (𝜌, 𝑃∗) ∈ [𝜎] and (𝜏, 𝑃∗) ∈ [𝜎′] such that (𝜌{\}𝛾, 𝑃∗) ≿

(𝜏{\}𝛾, 𝑃∗) for all \ ∈ Θ and 𝛾 ∈ D . ♦

Let ≿ satisfy axioms 1 to 6. A straightforward consequence of Lemma 1 is that ≿̂ is reflexive,

therefore non-empty. It is also usually incomplete, but retains many of the properties of ≿.

Proposition 1. If ≿ satisfies axioms 1 to 6, the following statements hold:

1. If 𝜎 ≿̂ 𝜎′, then 𝜎 ≿ 𝜎′. Moreover, ≿̂ is transitive.

2. ≿̂ is a dominance relation and, for every other dominance sub-relation ≿′⊆≿, we have ≿′⊆≿̂.

3. ≿̂ satisfies the sure-thing principle: for all 𝜌, 𝜏, 𝛾, 𝛾′ and 𝑇 ∈ Σ,

(𝜌𝑇𝛾, 𝑃∗) ≿̂ (𝜏𝑇𝛾, 𝑃∗) ⇐⇒ (𝜌𝑇𝛾′, 𝑃∗) ≿̂ (𝜏𝑇𝛾′, 𝑃∗).

4. ≿̂ satisfies mixture independence: for all 𝜌, 𝜏, 𝛾 ∈ D , 𝑃 ∈ P and 𝛼 ∈ (0, 1],

(𝜌, 𝑃) ≿̂ (𝜏, 𝑃) ⇐⇒ (𝛼𝜌 + (1 − 𝛼)𝛾, 𝑃) ≿̂ (𝛼𝜏 + (1 − 𝛼)𝛾, 𝑃).

5. If ≿̂ is trivial, so is ≿.
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The following result characterizes the unanimously preferred relation.

Lemma 2. Let ≿ satisfy axioms 1 to 6. Then the unanimously preferred relation ≿̂ has a domi-

nance representation with a utility 𝑢 : 𝐴×Θ → R that is continuous in the first argument. Moreover,

𝑢 is parameter-wise cardinally unique.

In other words, the unanimously preferred relation ≿̂ allows us to elicit the DM’s risk functions.

In Section 1.4.2, I will use this fact to obtain a representation of the MRA model.

The representation in Lemma 2 also implies that, given the fully informative experiment,

there exists unambiguously best and worst decision rules. Fix 𝑎\ ∈ arg max𝑎∈𝐴 𝑢(𝑎, \) and

𝑎
\
∈ arg min𝑎∈𝐴 𝑢(𝑎, \), and set 𝜌(𝑥, ·) = 𝜒𝑎\ and 𝜌(𝑥, ·) = 𝜒𝑎\ for all 𝑥 ∈ 𝑆\ , \ ∈ Θ. Then

(𝜌, 𝑃∗) ≿̂ 𝜎 ≿̂ (𝜌, 𝑃∗), for all 𝜎 ∈ S . I can then provide the following characterization, which

will be useful going forward.

Definition 4. For any dominance relation ≿̂,

K (≿̂) =
{
𝜎 ∈ S : 𝜎 ∼̂ (𝛼𝜌 + (1 − 𝛼)𝜌, 𝑃∗), 𝛼 ∈ [0, 1]

}
(1.5)

defines its set of constant-risk-equivalent (CRE) pairings. ♦

The set K (≿̂) amounts to a behavioral characterization of constant-utility pairings, since mem-

bers of K (≿̂) are behaviorally equivalent to pairings with a constant risk function. With state-

independent utility, the role of K (≿̂) is played by pairings which induce parameter contingent

distributions over actions that are constant across parameters. Since I am working within the more

general framework of parameter-dependent utility, CRE pairings must be elicited from preferences.

The interpretation of eq. (1.5) as a characterization of constant-utility acts will be formalized in

Section 1.5, Lemma 3.

1.4.2 Attitudes toward ambiguity

I now construct the decision maker’s risk functions from her preferences. Let ≿ satisfy axioms 1

to 6 and fix a utility function 𝑢 that represents its unanimously preferred relation ≿̂. Consider the
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mapping 𝑟𝑢 : S → RΘ, defined by eq. (1.2), and the corresponding set R𝑢. Define a preference

⪰𝑢 on R𝑢 as follows:

∀𝑟, 𝑟′ ∈ R𝑢 : 𝑟 ⪰𝑢 𝑟′ ⇐⇒ ∃𝜎 ≿ 𝜎′ such that 𝑟 = 𝑟𝑢 (𝜎) and 𝑟′ = 𝑟𝑢 (𝜎′). (1.6)

Let ≃𝑢 and ≻𝑢 denote the symmetric and asymmetric parts of ⪰𝑢, respectively. By construction,

if 𝑟 ≥ 𝑟′, then 𝑟 ⪰𝑢 𝑟′, where ≥ denotes the usual order on RΘ. Further, since ≿ is complete, so is

⪰𝑢. Also note that 𝜎′ ∈ [𝜎] implies 𝑟𝑢 (𝜎) = 𝑟𝑢 (𝜎′).

The following is the main result of the paper.

Theorem 2. A preference ≿ satisfies Consequentialism, Weak Order, Independence of Irrelevant

Parameters, Monotonicity, Conditional Mixture Independence and Continuity if, and only if, its

unanimously preferred relation ≿̂ has a dominance representation with utility 𝑢 : 𝐴 × Θ → R and

there exists a monotone, continuous functional 𝐼 : R𝑢 → R such that, for all 𝜎, 𝜎′ ∈ S ,

𝑟𝑢 (𝜎) ⪰𝑢 𝑟𝑢 (𝜎′) ⇐⇒ 𝐼 (𝑟𝑢 (𝜎)) ≥ 𝐼 (𝑟𝑢 (𝜎′)). (1.7)

Therefore, ≿ has an MRA representation (𝑢, 𝐼) if, and only if, it satisfies axioms 1 to 6. More-

over, 𝑢 is parameter-wise cardinally unique and there exists a representation (�̃�, 𝐼) such that �̃�(·, \)

is constant for no \ ∈ Θ.

Theorem 2 characterizes preferences that are compatible with the MRA model, and shows that

the functional 𝐼 in Definition 2 is essentially a utility on the space of risk functions. Indeed, the

proof boils down to applying a general utility representation theorem, found in Herden (1989), to

the preference ⪰𝑢 on R𝑢.

Attitudes toward uncertainty can then be viewed as patterns of complementarity and substi-

tutability between risk under different parameters. Decision makers who want to hedge act as

if risk is complementary across parameters: they favor pairings that yield more balanced pay-off

profiles across parameters over those that have a particularly large expected utility on any specific
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event 𝑇 ∈ Σ, but not on others. The following example formally illustrates this intuition.

Example 5 (Uncertainty attitudes as parameter complementarity): Take two preferences≿1 and

≿2 such that ≿̂1=≿̂2=≿̂. Following Ghirardato and Marinacci (2002), I say that ≿1 is more averse

to ambiguity than ≿2 if for all ^ ∈ K (≿̂), 𝜎 ≿1 ^ implies 𝜎 ≿2 ^. In other words, whenever

≿1 prefers an uncertain pairing 𝜎 to a CRE pairing ^, so does ≿2. This is a widely accepted way

of comparing preferences in terms of ambiguity aversion (Maccheroni, Marinacci, and Rustichini,

2006; Cerreia-Vioglio et al., 2011a).

Now consider a family of preferences {≿𝑠: 𝑠 ∈ R∪{−∞}} with the same unanimously preferred

relation — i.e., ≿̂𝑠=≿̂𝑠′=≿̂ for all 𝑠, 𝑠′ ∈ R ∪ {−∞}. Without loss of generality, normalize the

representations {𝑢𝑠} of {≿̂𝑠} so that R𝑢𝑠 = [0, 1]Θ for all 𝑠. Under this normalization, 𝑢𝑠 = 𝑢 for

all 𝑠, and the risk functions associated with members of K (≿̂) are constant. Assume that {≿𝑠}

has a representation (𝐼𝑠, 𝑢) by a Dixit and Stiglitz (1977) constant elasticity of substitution (CES)

function, with (full support) shares ` ∈ Δ(Θ) and substitution parameter 𝑠:

𝐼𝑠 (𝑟𝑢 (𝜎)) =



(∫
Θ
𝑟𝑢 (𝜎)𝑠d`

) 1
𝑠

, 𝑠 ∉ {0,−∞}

exp
(∫

Θ
ln 𝑟𝑢 (𝜎)d`

)
, 𝑠 = 0

inf\∈Θ 𝑟𝑢 (𝜎) (\), 𝑠 = −∞

for all 𝜎 ∈ S . The elasticity of substitution between any two goods (or parameters) of a CES

utility function is given by Y = 1/(1 − 𝑠). Thus, 𝑠 = 1 corresponds to unbounded elasticity of

substitution, while 𝑠 = −∞ implies perfect complementarity. Moreover, it can be shown that

lim𝑠→𝑠∗ 𝐼𝑠 = 𝐼𝑠∗ for 𝑠∗ ∈ {0,−∞}. CES utility is a particular case of second order expected utility,

which was axiomatized for the setting of Savage (1954) by Neilson (2010).

If 𝑡 > 𝑠 and 𝑡, 𝑠 ≠ 0, we have, for all 𝜎 ∈ S ,

𝐼𝑡 (𝑟𝑢 (𝜎)) =
(∫

Θ

[𝑟𝑢 (𝜎)𝑠]
𝑡
𝑠 d`

) 𝑠
𝑡𝑠

≤
(∫

Θ

𝑟𝑢 (𝜎)𝑠d`
) 𝑠

𝑡𝑠
𝑡
𝑠

= 𝐼𝑠 (𝑟𝑢 (𝜎)),
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where I have used Jensen’s inequality. Since for all ^ ∈ K (≿̂) and 𝑡, 𝑠 ∈ R ∪ {−∞}, we have

𝐼𝑡 (𝑟𝑢 (^)) = 𝐼𝑠 (𝑟𝑢 (^)), then 𝜎 ≿𝑠 ^ implies 𝜎 ≿𝑡 ^ ⇐⇒ 𝐼𝑠 (𝑟𝑢 (𝜎)) ≥ 𝐼𝑡 (𝑟𝑢 (𝜎)) ⇐⇒ 𝑠 ≤ 𝑡.

Thus, ambiguity aversion in inversely related to the elasticity of substitution. In particular, an SEU

agent (𝑠 = 1) shows no ambiguity aversion, treating parameters as perfect substitutes. On the other

hand, an MEU agent (𝑠 = −∞) has maximal ambiguity aversion, and thus perfect complementarity

across parameters. ∥

1.5 Applications

In the Anscombe-Aumann framework, an act is a measurable function from some set Ω of

states of the world to a convex space of outcomes 𝑌 . We can thus identify each risk function of

SDT with an Anscombe-Aumann act from Θ ≡ Ω to R𝑢 ≡ 𝑌 . The representation in Theorem 2

implies that if ≿ satisfies axioms 1 to 6, then ⪰𝑢 satisfies the following essential axioms of decision

theory under uncertainty:

• Weak Order: the preference ⪰𝑢 is complete and transitive.

• A-A Monotonicity: for all 𝑟, 𝑟′ ∈ R𝑢, if 𝑟 ≥ 𝑟′, then 𝑟 ⪰𝑢 𝑟′.

• Risk Independence: for all constant risk functions 𝑟, 𝑟′, 𝑞 ∈ R𝑢 and 𝛼 ∈ [0, 1], 𝑟 ⪰𝑢 𝑟′

implies 𝛼𝑟 + (1 − 𝛼)𝑞 ⪰𝑢 𝛼𝑟′ + (1 − 𝛼)𝑞.

• Mixture Continuity: the sets {𝛼 ∈ [0, 1] : 𝛼𝑟 + (1 − 𝛼)𝑟′ ⪰𝑢 𝑞} and {𝛼 ∈ [0, 1] : 𝑞 ⪰𝑢

𝛼𝑟 + (1 − 𝛼)𝑟′} are closed for all 𝑟, 𝑟′, 𝑞 ∈ R𝑢.

Most models of complete preferences in the Anscombe-Aumann framework satisfy these same

properties, and impose extra axioms to obtain more structure on 𝐼. Thus there is hope that, by

relating properties of ⪰𝑢 with the corresponding axioms on ≿, I can import many of the exist-

ing representations from the Anscombe-Aumann framework to SDT. The following lemma is an

important step towards establishing this connection.

28



Lemma 3. Suppose ≿̂ has a dominance representation with utility function 𝑢. The following state-

ments hold:

1. 𝑟𝑢 (𝛼𝜌 + (1 − 𝛼)𝜏, 𝑃) = 𝛼𝑟𝑢 (𝜌, 𝑃) + (1 − 𝛼)𝑟𝑢 (𝜏, 𝑃) for all 𝜏 ∈ D and 𝛼 ∈ [0, 1].

2. 𝑟𝑢 (𝜌𝑇𝛾, 𝑃∗) = 𝑟𝑢 (𝜌, 𝑃∗)(𝑇)𝑟𝑢 (𝛾, 𝑃∗) for all 𝜌, 𝛾 ∈ D and 𝑇 ∈ Σ.

3. There exists �̃� also representing ≿̂ such that 𝑟�̃� (𝜎) is constant if, and only if, 𝜎 ∈ K (≿̂).

The usefulness of Lemma 3 stems from the fact that most axioms in the decision theory under

uncertainty paradigm are stated in terms of (i) mixture of acts, as in the first statement; (ii) combi-

nations of acts, i.e., substituting an act’s consequences on a set of parameters for the consequences

of a different act, as in statement 2; or (iii) properties of preferences over mixtures or combinations

with constant-utility acts, as characterized by K (≿̂).

Next, I illustrate this methodology by applying Lemma 3 to a variety of existing axiomatiza-

tions of preferences in the Anscombe-Aumann framework, to obtain SDT versions of their rep-

resentations. Throughout this section, I maintain the assumption that every experiment in P is

measurable with respect to Σ, which makes every risk function also measurable.

1.5.1 Subjective expected utility

I begin by obtaining a SDT representation of the subjective expected utility (SEU) model.

Recall that, in the Anscombe-Aumann setting, state-independent SEU is characterized by prefer-

ences over acts satisfying Weak Order, A-A Monotonicity, Mixture Continuity, and the following

strengthening of Risk-Independence (which I state here in terms of ⪰𝑢):

• Independence: for all 𝑟, 𝑟′, 𝑞 ∈ R𝑢, if 𝑟 ⪰𝑢 𝑟′, then 𝛼𝑟 + (1 − 𝛼)𝑞 ⪰𝑢 𝛼𝑟′ + (1 − 𝛼)𝑞 for all

𝛼 ∈ (0, 1).

These four axioms imply the existence of a representation by SEU with finitely additive prior

probability. To guarantee that the prior is countably additive, one needs an additional postulate,

due to Arrow (1971).
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• Monotone Continuity: if 𝑟, 𝑟′, 𝑞 ∈ R𝑢, 𝑞 is constant, {𝑇𝑛}𝑛≥1 ∈ Σ with 𝑇1 ⊇ 𝑇2 ⊇ · · · and⋂
𝑛≥1 𝑇𝑛 = ∅, then 𝑟 ≻𝑢 𝑟′ implies that there exists 𝑛0 ≥ 1 such that 𝑞 (𝑇𝑛0 )𝑟 ≻

𝑢 𝑟′.

Given statement 1 in Lemma 3, it is straightforward to translate Independence of ⪰𝑢 into an

axiom on ≿:

Axiom 9 (Mixture Independence): For every 𝜌, 𝜏, 𝛾 ∈ D and 𝑃 ∈ P: if (𝜌, 𝑃) ≿ (𝜏, 𝑃), then

(𝛼𝜌 + (1 − 𝛼)𝛾, 𝑃) ≿ (𝛼𝜏 + (1 − 𝛼)𝛾, 𝑃) for all 𝛼 ∈ (0, 1].

With the aid of Lemma 1 and statements 2 and 3 of Lemma 3, it is also easy to obtain Monotone

Continuity of ⪰𝑢 from preferences over pairings.

Axiom 10 (Monotone Continuity∗): If 𝜌, 𝜏, ^ ∈ D , with (^, 𝑃∗) ∈ K (≿̂), and {𝑇𝑛}𝑛≥1 ∈ Σ with

𝑇1 ⊇ 𝑇2 ⊇ · · · and
⋂
𝑛≥1 𝑇𝑛 = ∅, then (𝜌, 𝑃∗) ≻ (𝜏, 𝑃∗) implies that there exists 𝑚 ≥ 1 such that

(^𝑇𝑚𝜌, 𝑃∗) ≻ (𝜏, 𝑃∗).

We are ready to characterize SEU in the SDT framework. In what follows, we refer to axioms 1

to 6 as the MRA axioms.

Proposition 2 (SEU representation). A preference ≿ on S satisfies the MRA axioms, Mixture

Independence and Monotone Continuity∗ if, and only if, there exists a bounded utility function

𝑢 : 𝐴 × Θ → R, continuous in the first argument, and a probability distribution 𝜋 ∈ Δ(Θ) such

that, for all 𝜌, 𝜏 ∈ D and 𝑃,𝑄 ∈ P ,

(𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒
∫
Θ

∫
𝑋

𝑢(𝜌(𝑥), \)d𝑃\ (𝑥)d𝜋(\) ≥
∫
Θ

∫
𝑋

𝑢(𝜏(𝑥), \)d𝑄\ (𝑥)d𝜋(\).

Moreover, 𝑢 is parameter-wise cardinally unique and, for a given 𝑢, 𝜋 is unique.

Preferences that satisfy SEU are also called Bayesian, since for any 𝑃 ∈ P and 𝜌 ∈ D , we

have ∫
Θ

∫
𝑋

𝑢(𝜌(𝑥), \)d𝑃\ (𝑥)d𝜋(\) =
∫
𝑋

∫
Θ

𝑢(𝜌(𝑥), \)d𝜋𝑥 (\)d𝑝(𝑥),

where 𝑝 =
∫
Θ
𝑃\d𝜋(\) and 𝜋𝑥 ∈ Δ(Θ) is the posterior distribution, conditional on 𝑥 ∈ 𝑋: 𝜋𝑥 (𝑇) =

E𝜋 [1𝑇 |𝑋𝑃 = 𝑥] for all 𝑇 ∈ Σ. When 𝑝(𝑥) > 0, the posterior can be obtained via Bayes’ rule.
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1.5.2 Maximin expected utility

Maximin expected utility (MEU) — along with its close cousin, multiple priors expected util-

ity (MPEU) — is perhaps the most thoroughly studied model of decision making under uncer-

tainty, after SEU. Gilboa and Schmeidler (1989a) provided a characterization of MPEU for the

Anscombe-Aumann setting that relies on Weak Order, A-A Monotonicity, Mixture Continuity,

and two extra axioms:

• Uncertainty Aversion: for all 𝑟, 𝑟′ ∈ R𝑢 and 𝛼 ∈ (0, 1), 𝑟 ≃𝑢 𝑟′ implies 𝛼𝑟 + (1−𝛼)𝑟′ ⪰𝑢 𝑟.

• Certainty Independence: for all 𝑟, 𝑟′, 𝑞 ∈ R𝑢, with constant 𝑞: if 𝑟 ⪰𝑢 𝑟′, then 𝛼𝑟 + (1 −

𝛼)𝑞 ⪰𝑢 𝛼𝑟′ + (1 − 𝛼)𝑞 for all 𝛼 ∈ (0, 1).

Uncertainty Aversion and Certainty Independence on the space of risk functions are induced

by the following axioms on our primitive ≿.

Axiom 11 (Hedging): For all 𝜌, 𝜏 ∈ D , 𝑃 ∈ P and 𝛼 ∈ (0, 1): if (𝜌, 𝑃) ∼ (𝜏, 𝑃), then (𝛼𝜌 +

(1 − 𝛼)𝜏, 𝑃) ≿ (𝜌, 𝑃).

Axiom 12 (CRE-Independence): For all 𝜌, 𝜏, ^ ∈ D and 𝑃 ∈ P such that (^, 𝑃) ∈ K (≿̂): if

(𝜌, 𝑃) ≿ (^, 𝑃), then (𝛼𝜌 + (1 − 𝛼)^, 𝑃) ≿ (𝛼𝜏 + (1 − 𝛼)^, 𝑃) for all 𝛼 ∈ (0, 1].

Axiom 11 implies a preference for hedging: for any fixed experiment, the DM weakly prefers

decision rules that provide a more balanced pay-off profile across parameters. Axiom 12 states that

for any two pairings sharing the same experiment, mixing the decision rules with a third constant-

risk-equivalent pairing does not change preferences.

I can now state the SDT version of the MPEU representation:

Proposition 3 (MPEU representation). A preference ≿ on S satisfies the MRA axioms, Hedg-

ing, and CRE-Independence if, and only if, there exists a bounded utility function 𝑢 : 𝐴 × Θ → R,

continuous in the first argument, and a convex family of probability distributions Π ⊆ Δ(Θ) such
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that, for all 𝜌, 𝜏 ∈ D and 𝑃,𝑄 ∈ P ,

(𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒ inf
𝜋∈Π

∫
Θ

∫
𝑋

𝑢(𝜌(𝑥), \)d𝑃\ (𝑥)d𝜋(\) ≥ inf
𝜋∈Π

∫
Θ

∫
𝑋

𝑢(𝜏(𝑥), \)d𝑄\ (𝑥)d𝜋(\).

Moreover, 𝑢 is parameter-wise cardinally unique and, for a given 𝑢, Π is unique.

An MPEU agent can be interpreted as a pessimist, or as extremely cautious. He acts as if

whichever pairing is chosen, the true parameter was drawn from the worst possible distribution

among all the prior distributions he considers plausible.

The MEU representation can be seen as the special case of MPEU when Π = Δ(Θ). Therefore,

an MEU agent is maximally pessimistic, since he always consider the worst case for any distribu-

tion of the parameters. This model was axiomatized in the space of risk functions by Stoye (2012).

The axiom required for the representation is translated to the SDT setting below.

Axiom 13 (Symmetry): Let 𝑇, 𝐹 ∈ Σ be such that 𝑇 ∩ 𝐹 = ∅, and consider 𝜌, 𝜏, ^, 𝛾 ∈ D with

(^, 𝑃∗), (𝛾, 𝑃∗) ∈ K (≿̂). If (𝜌𝑇 ^𝐹𝛾, 𝑃∗) ≿ (𝜏𝑇 ^𝐹𝛾, 𝑃∗), then (𝜌𝑇𝛾𝐹^, 𝑃∗) ≿ (𝜏𝑇𝛾𝐹^, 𝑃∗).

Axiom 13 requires that the DM considers all events 𝑇, 𝐹 ∈ Σ as equally plausible: from an

ex-ante perspective, reallocating constant pay-offs of different magnitudes across events does not

change preferences. I can now state the following:

Proposition 4 (MEU representation). A preference ≿ on S has a MPEU representation and sat-

isfies Symmetry if, and only if, there exists a bounded utility function 𝑢 : 𝐴 × Θ → R, continuous

in the first argument, such that for all 𝜌, 𝜏 ∈ D and 𝑃,𝑄 ∈ P ,

(𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒ inf
\∈Θ

∫
𝑋

𝑢(𝜌, \)d𝑃\ ≥ inf
\∈Θ

∫
𝑋

𝑢(𝜏, \)d𝑄\ .

Moreover, 𝑢 is parameter-wise cardinally unique.
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1.5.3 Variational and multiplier preferences

Variational preferences models, put forth by Maccheroni, Marinacci, and Rustichini (2006),

have also received considerable attention in the decision theoretic literature. In that setting, its

characterization hinges on the same axioms as the MPEU model, except with a weakened version

of C-Independence, which I translate into the SDT framework as follows:

Axiom 14 (Weak CRE-Independence): For all 𝜌, 𝜏, ^, ^′ ∈ D and 𝑃 ∈ P such that (^, 𝑃), (^′, 𝑃) ∈

K (≿̂): if (𝛼𝜌 + (1− 𝛼)^, 𝑃) ≿ (𝛼𝜏 + (1− 𝛼)^, 𝑃), then (𝛼𝜌 + (1− 𝛼)^′, 𝑃) ≿ (𝛼𝜏 + (1− 𝛼)^′, 𝑃)

for all 𝛼 ∈ (0, 1].

Along with some previously defined axioms, Weak CRE-Independence suffices to characterize

variational preferences in SDT. Before stating the result, we need the definition of a mathematical

property: a function 𝑐 : Δ(Θ) → [0,∞) is said to be grounded if inf𝜋∈Δ(Θ) 𝑐(𝜋) = 0.

Proposition 5 (Variational representation). A preference≿ on S satisfies the MRA axioms, Mono-

tone Continuity∗, Hedging and Weak CRE-Independence if, and only if, there exists a utility func-

tion 𝑢 : 𝐴 ×Θ → R, continuous in the first argument, a convex set of probabilities Π ⊆ Δ(Θ), and

a grounded, convex and lower semicontinuous function 𝑐 : Π → [0,∞) such that, for all 𝜌, 𝜏 ∈ D

and 𝑃,𝑄 ∈ P ,

(𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒ inf
𝜋∈Π

{E𝜋 [𝑟𝑢 (𝜌, 𝑃)] + 𝑐(𝜋)} ≥ inf
𝜋∈Π

{E𝜋 [𝑟𝑢 (𝜏, 𝑄)] + 𝑐(𝜋)} .

A DM whose preferences have a variational representation entertains a set of possible prior be-

liefs, but has different degrees of confidence in each of them, which is represented by the function

𝑐. Variational preferences generalize the MPEU model, which in turn generalizes SEU. This can

be readily seen from the representation, by setting 𝑐(𝜋) = 0 for all 𝜋 ∈ Π to get MPEU, and setting

Π = {𝜋} to obtain SEU. It can also be seen from the axioms, since Weak CRE-Independence is

weaker than CRE-Independence, which in turn is weaker than Mixture Independence.

A special case of this model, called multiplier preferences by Hansen and Sargent (2001), was
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characterized by Strzalecki (2011). This is done by imposing Savage’s sure thing principle on a

preference that has a variational representation.

Axiom 15 (Sure Thing Principle): For all 𝜌, 𝜏, 𝛾, 𝛾′ ∈ D and 𝑇 ∈ Σ: (𝜌𝑇𝛾, 𝑃∗) ≿ (𝜏𝑇𝛾, 𝑃∗)

implies (𝜌𝑇𝛾′, 𝑃∗) ≿ (𝜏𝑇𝛾′, 𝑃∗).

Axiom 15 is clearly a stronger version of Independence of Irrelevant Parameters, and has a

similar interpretation. It states that once the DM conditions the decision rule on a particular event

𝑇 ∈ Σ, the action distributions on the remaining parameters \ ∈ 𝑇 𝑐 are inconsequential.

For any 𝜋, ` ∈ Δ(Θ), let 𝜋 ≪ ` denote that 𝜋 is absolutely continuous of with respect to `,

i.e., `(𝑇) = 0 implies 𝜋(𝑇) = 0 for all 𝑇 ∈ Σ. One can now obtain a representation by multiplier

preferences:

Proposition 6 (Multiplier representation). A preference ≿ on S has a variational representa-

tion and satisfies the Sure Thing Principle if, and only if, there exists a utility function 𝑢 : 𝐴×Θ →

R, continuous in the first argument, a probability distribution ` ∈ Δ(Θ), and 𝑘 ∈ (0,∞] such that,

for all 𝜌, 𝜏 ∈ D and 𝑃,𝑄 ∈ P ,

(𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒ min
𝜋∈Δ(Θ)

{E𝜋 [𝑟𝑢 (𝜌, 𝑃)] + 𝑘𝐷 (𝜋∥`)} ≥ min
𝜋∈Δ(Θ)

{E𝜋 [𝑟𝑢 (𝜏, 𝑄)] + 𝑘𝐷 (𝜋∥`)} ,

where

𝐷 (𝜋∥`) =


∫
Θ

log d𝜋
d`d𝜋, if 𝜋 ≪ `

∞, otherwise

is the Kullback-Leibler divergence and d𝜋
d` is the Radon-Nikodym derivative of 𝜋 with respect to `.

Multiplier preferences describe a Bayesian DM who is worried about misspecification of the

prior distribution. Though the DM’s best guess for the parameter distribution is `, she also enter-

tains other specifications. Alternative candidates for the prior become less plausible as they diverge

from the benchmark distribution `. The degree of confidence in ` being correctly specified is reg-
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ulated by the constant 𝑘 , with larger values of 𝑘 indicating more confidence in the benchmark

distribution.

1.6 Alternative data sets

The previous sections focused on preferences over pairings. This is the most appropriate choice

environment if the goal is to better understand the behavior of agents in different SDT models. It

is also often observable as empirical data. For example, an econometrician who writes down a

statistical model and chooses a particular estimator is ultimately revealing their choice of decision

rule and experiment.

However, there are situations in which other types of choice data are forthcoming. In this sec-

tion, I explore the behavioral implications of the MRA model to three alternative data sets. In

Section 1.6.1, I consider state dependent stochastic choice data as assumed by Caplin and Martin

(2015) and Caplin and Dean (2015). This is the standard data set in much of the psychometric lit-

erature, and keeps track of the probabilities of choosing each action conditional on the parameters.

In Section 1.6.2, I characterize the MRA model using choice data in the form of two different

collections of preferences, each of which can be viewed as a cross-section of ≿. The first describes,

for each experiment 𝑃 ∈ P , a preference ≽𝑃 on the set of decision rules. This corresponds to a DM

who takes the experiment as given an chooses only among available decision rules. The second

collection of preferences ascribes to each compact menu of decision rules 𝑀 ⊆ D , a preference

≽𝑀 on the set of all experiments. This models a DM who chooses an experiment, assuming that in

a second stage of the decision making process it will be paired with a particular decision rule.

1.6.1 Parameter dependent stochastic choice

Recall that the grand set of all parameter contingent action distributions is given by F =

Δ(𝐴)Θ. Each 𝑓 ∈ F can be understood as a parameter dependent stochastic choice, i.e., the

probability (or frequency) of choosing each action 𝑎 ∈ 𝐴 for every parameter \ ∈ Θ. Consider a

data set where one observes the DM choosing parameter dependent stochastic choices for a finite
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collection of decision problems Φ = {𝐹1, . . . , 𝐹𝑛 : 𝐹𝑖 ⊆ F }. Each 𝐹 ∈ Φ represents the set of

parameter contingent action distributions available to the DM in a particular choice situation. I call

(F ,Φ) — where Φ consists of a finite collection of closed subsets of F — a choice space.

Formally, parameter dependent stochastic choice data consists of a choice function 𝑐 : Φ → F

such that 𝑐(𝐹) ∈ 𝐹 for every 𝐹 ∈ Φ. Although the formalism is given in terms of a single observed

choice for each feasible set, actual data is often better understood as repeatedly observing, for each

decision problem 𝐹 ∈ Φ, the DM’s choice of action for every parameter, and calculating action

frequencies. To avoid questions of how to elicit multiple selections from the same decision problem

in a setting where we only ever observe randomized choices, I assume that 𝑐 is a function rather

than a correspondence.

Given a parameter dependent stochastic choice function 𝑐, the goal is to determine whether it

can be rationalized by a preference relation ≿ on S , in the following sense.

Definition 5. Given a choice space (F ,Φ), we say that a preference relation ≿ on S rationalizes

𝑐 : Φ → F \ {∅}, if the preference ⪰ on F defined, for all 𝑓 , 𝑔 ∈ F , by

𝑓 ⪰ 𝑔 ⇐⇒ (𝜌, 𝑃) ≿ (𝜏, 𝑄) ∀(𝜌, 𝑃), (𝜏, 𝑄) ∈ S such that 𝑓 = 𝜌𝑃, 𝑔 = 𝜏𝑄, (1.8)

is such that for all 𝐹 ∈ Φ,

𝑐(𝐹) = { 𝑓 ∈ 𝐹 : 𝑓 ⪰ 𝑔 ∀𝑔 ∈ 𝐹}. ♦

Definition 5 has the interpretation that the DM is actually choosing between pairings, but we

(the modellers) only observe the induced parameter contingent action distributions. If 𝑐 can be

rationalized by ≿, then 𝑐(𝐹) is the parameter contingent action distribution induced by the most

preferred pairing (according to ≿), among all pairings that can induce the distributions in 𝐹. Note

that if the DM does not satisfy Consequentialism, then there is no hope of deducing properties of

the preferences over pairings by observing only parameter dependent stochastic choices. Indeed,

a failure of Consequentialism would imply that the preference ⪰ on F given by (1.8) is not well

defined.
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An alternative is directly revealed preferred to another if it is chosen from a decision problem

where the other is available. If there is a sequence of alternatives such that 𝑓1 is directly revealed

preferred to 𝑓2 and so on, until 𝑓𝑘−1 is directly revealed preferred to 𝑓𝑘 , then I simply say that 𝑓1 is

revealed preferred to 𝑓𝑘 . This is formalized in the definition below.

Definition 6. For any 𝑓1, 𝑓𝑘 ∈ F , we say that 𝑓1 is revealed preferred to 𝑓𝑘 , and denote it by

𝑓1 ⊵ 𝑓𝑘 , if there exist {𝐹1, . . . , 𝐹𝑘−1} ⊆ Φ such that { 𝑓𝑖, 𝑓𝑖+1} ⊆ 𝐹𝑖 and 𝑓𝑖 = 𝑐(𝐹𝑖) for all 𝑖 =

1, . . . , 𝑘 − 1. ♦

Consider the following axioms on the parameter dependent stochastic choice data set 𝑐.

Axiom C1 (GARP): For all 𝑓 , 𝑔 ∈ F : if 𝑓 ⊵ 𝑔, then 𝑔 ≠ 𝑐(𝐹) for all 𝐹 ∈ Φ such that 𝑓 ∈ 𝐹.

The Generalized Axiom of Revealed Preference (GARP) is a basic rationality postulate, stat-

ing that the revealed preference relation is acyclic. That is, the DM’s choices are required to be

coherent, in the sense that if 𝑓 is revealed to be strictly preferred to 𝑔, then 𝑔 can not be chosen

when 𝑓 is available. This is the revealed preference analogue of Weak Order.

For each \ ∈ Θ, define a binary relation ▷\ on Δ(𝐴) by 𝑓 (\) ▷\ 𝑔(\) if, and only if, 𝑓 ⊵ 𝑔 and

𝑓 (\′) = 𝑔(\′) for all \′ ≠ \. This can be interpreted it as a directly revealed preference conditional

on \, since 𝑓 (\) ▷\ 𝑔(\) when 𝑓 is chosen over 𝑔 in a situation where the only relevant parameter

is \.

Let ⊵\ be the convex hull of the transitive closure of ▷\ . That is, 𝑝 ⊵\ 𝑞 if, and only if,

there exist {(𝑟 𝑗 , 𝑠 𝑗 )}𝑘𝑗=1 ⊆ Δ(𝐴)2 and {_ 𝑗 }𝑘𝑗=1 ⊆ R+ with
∑𝑘
𝑗=1 _ 𝑗 = 1, such that 𝑟 𝑗 ▷\ 𝑠 𝑗 for all

𝑗 = 1, . . . , 𝑘 , 𝑝 =
∑𝑘
𝑗=1 _ 𝑗𝑟 𝑗 and 𝑞 =

∑𝑘
𝑗=1 _ 𝑗 𝑠 𝑗 . In more intuitive terms, 𝑝 ⊵\ 𝑞 if 𝑝 and 𝑞 are

convex combinations, with the same weights, of {𝑟 𝑗 }𝑘𝑗=1 and {𝑠 𝑗 }𝑘𝑗=1 respectively, and moreover

each 𝑟 𝑗 is directly revealed preferred to 𝑠 𝑗 conditional on \. Note that ⊵\ can be elicited from

choice data, by first taking the transitive closure and then the convex hull of ▷\ . This relation was

first presented by Clark (1993), who also formulated the following axiom.

Axiom C2 (C-LARP): For all 𝑓 , 𝑔 ∈ F , and \ ∈ Θ: 𝑓 (\) ⊵\ 𝑔(\) implies 𝑔(\) ⋫\ 𝑓 (\).
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The conditional linear axiom of revealed preference (C-LARP) says that in situations where

there is a single relevant parameter, mixing action distributions on that parameter using the same

weights does not reverse their conditional preference ranking. Thus, it is a parameter dependent

stochastic choice analogue of Conditional Mixture Independence. Moreover, it implies that ▷\ is

antisymmetric. That is, if 𝑓 (\) ≠ 𝑔(\) and 𝑓(\)ℎ ⊵ 𝑔(\)ℎ, then 𝑔(\)ℎ′ ⊵ 𝑓(\)ℎ
′ does not hold for

any ℎ′ ∈ F . Therefore, C-LARP also encodes a version of Independence of Irrelevant Parameters.

Axiom C3 (RP-Monotonicity): If 𝑓 = 𝑐(𝐹) and 𝑔 ∈ 𝐹 \ { 𝑓 }, then there exists \ ∈ Θ such that

𝑔(\) ⊵\ 𝑓 (\) does not hold.

RP-Monotonicity states that if 𝑓 is directly revealed preferred to 𝑔, then there exists a parameter

for which 𝑔 is not conditionally revealed preferred to 𝑓 . It can be considered a revealed preference

version of Monotonicity.

Finally, we impose a continuity axiom on the conditional revealed preference relations.

Axiom C4 (Conditional Continuity): For all \ ∈ Θ, if (𝑝𝑛), (𝑞𝑛) ∈ Δ(𝐴) are sequences such

that 𝑝𝑛 → 𝑝, 𝑞𝑛 → 𝑞 and 𝑝𝑛 ⊵\ 𝑞𝑛 for all 𝑛 ∈ N, then 𝑞 ̸⊵\ 𝑝.

We can now state the main representation theorem of this section.

Theorem 3. The parameter dependent stochastic choice function 𝑐 : Φ → F satisfies GARP, C-

LARP, RP-Monotonicity and Conditional Continuity if, and only if, there exists a preference ≿ on

S which rationalizes 𝑐 and satisfies Consequentialism, Weak Order, Independence of Irrelevant

Parameters, Monotonicity, Conditional Mixture Independence and Continuity.

Moreover, if Θ is finite, so that F is metrizable, then ≿ has an MRA representation (𝑢, 𝐼) such

that, for all 𝐹 ∈ Φ,

𝑐(𝐹) =
{
𝜌𝑃 ∈ 𝐹 : arg max

{(𝜏,𝑄)∈S :𝜏𝑄∈𝐹}
𝐼 (𝑟𝑢 (𝜏, 𝑄))

}
.

Theorem 3 characterizes when parameter dependent stochastic choice data can be rationalized

by postulating that the DM is actually facing a statistical decision problem, and making choices

that maximize preferences compatible with the MRA framework. This kind of behavioral data
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differs from preferences over pairings in two main ways. First, it does not assume that we observe

experiments and decision rules, only their final consequences — the induced parameter contingent

action distributions. Second, it only assumes that choices from a finite number of decision prob-

lems — rather than the whole array of preferences — is observed. Therefore, Theorem 3 allows

us to test whether the DM’s choices are compatible with the MRA model using a data set that is

sometimes easier to obtain.

It is natural to ask whether this type of data set can also be used to identify preferences over

pairings, at least partially. That is, can the DM’s choices over pairings be recovered by only looking

at parameter dependent stochastic choice data? The following example shows that, at least under

some conditions, this is indeed possible.

Example 6: Let 𝐴 and Θ be finite, and | supp 𝑃\ | ≤ min{|Θ|, |𝐴|} for all \ ∈ Θ. The DM chooses

pairings from an array of decision problems Ψ = {𝑆1, . . . , 𝑆𝑛 : 𝑆 𝑗 ⊆ S } so as to maximize a

preference ≿ on S . Assume that the set of feasible decision rules remains fixed at some 𝐷 ⊆ D

for every 𝑆 ∈ Ψ. Therefore, each decision problem only differs by the set of experiments available

to the DM.

We do not directly observe the DM’s choice of decision rule or experiment, only the realized

action frequencies for each parameter \ ∈ Θ and decision problem 𝑆 ∈ Ψ. Let P(𝑎 |\, 𝑆) denote the

probability of choosing action 𝑎 ∈ 𝐴 from decision problem 𝑆 ∈ Ψ, when the parameter is \ ∈ Θ.

Letting 𝐹 (𝑆) = {𝜌𝑃 : (𝜌, 𝑃) ∈ 𝑆} denote the set of parameter contingent action distributions that

can be induced by members of 𝑆, we can express the parameter dependent stochastic choice data

set as

𝑐(𝐹 (𝑆)) (\) =
©«
P(𝑎1 |\, 𝑆)

...

P(𝑎 |𝐴| |\, 𝑆)

ª®®®®®¬
for all \ ∈ Θ and 𝑆 ∈ Ψ.

Given the DM’s postulated choice procedure, the realized action frequencies must satisfy

P(𝑎 |\, 𝑆 𝑗 ) =
∑︁

𝑥∈supp 𝑃\

𝜌 𝑗 (𝑥, 𝑎)𝑃 𝑗
\
(𝑥) for all \ ∈ Θ and 𝑗 ∈ {1, . . . , 𝑛}, (1.9)
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subject to (𝜌, 𝑃 𝑗 ) ≿ (𝜏, 𝑄) for all (𝜏, 𝑄) ∈ 𝑆 𝑗 — where I write 𝜌 𝑗 ≡ 𝜌𝑃 𝑗 to simplify notation.

With parameter dependent stochastic choice data, we only observe the left hand side of eq. (1.9):

neither the chosen (𝜌, 𝑃 𝑗 ), nor the realized signals are deemed observable.

Note that for each 𝑆 𝑗 ∈ Ψ, varying the parameter changes the signal distribution, 𝑃 𝑗
\
, but leaves

the decision rule unchanged. Thus, eq. (1.9) describes a finite mixture model where varying the

parameter shifts the mixture weights 𝑃 𝑗
\
(𝑥), but leaves the mixture distributions 𝜌(𝑥, ·) unchanged.

If the model in (1.9) is point identified in the statistical sense, it is possible to recover the chosen

decision rule and experiment from each 𝑆 ∈ Ψ, given enough data.

Henry, Kitamura, and Salanié (2014) thoroughly studied conditions on 𝑃 𝑗 and 𝜌 𝑗 under which

such models are partially identified. Adams (2016) provides necessary and sufficient conditions,

again on 𝑃 𝑗 and 𝜌 𝑗 , for point identification. Such results are of limited applicability, since 𝑃 𝑗 and

𝜌 𝑗 are not directly observable. In Chapter 2, I present a sufficient condition on the observable

parameter dependent stochastic choice data P that guarantees point identification of such mixture

models. ∥

1.6.2 Cross sectional preferences

In sections 1.4 and 1.5, I focused on preferences ≿ over pairs of decision rules jointly with ex-

periments. However, some applications are not directly concerned with preferences over pairings,

but rather with one of two sets of preferences embedded in ≿. The first and most ubiquitous kind of

application involves finding an optimal decision rule for a given experiment. That is, given 𝑃 ∈ P ,

one wishes to characterize a preference ≽𝑃 defined by 𝜌 ≽𝑃 𝜏 if, and only if, (𝜌, 𝑃) ≿ (𝜏, 𝑃).

The second type of application involves ranking experiments, assuming that each will be paired

with a decision rule that will be chosen in a second stage. Formally, given a menu of feasible

decision rules 𝑀 ⊆ D and a collection of choices {𝐶𝑃 (𝑀) : 𝑃 ∈ P} with 𝐶𝑃 (𝑀) ⊆ 𝑀 , I wish

to characterize the relation 𝑃 ≽𝑀 𝑄 defined by (𝜌𝑃, 𝑃) ≿ (𝜌𝑄 , 𝑄) for every 𝑃,𝑄 ∈ P , assuming

𝜌 𝑗 ∈ 𝐶 𝑗 (𝑀), 𝑗 = 𝑃,𝑄. This is the setting of the design of experiments literature.

In what follows, I will separately characterize the MRA model for these two collections of
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preferences.

Preferences over decision rules

Suppose choice data comes as a collection of preferences on decision rules ≽�= {≽𝑃⊆ D2 : 𝑃 ∈

P}, one for each (fixed) experiment. In the Bayesian persuasion literature, an agent described by

such choice data is called a Receiver, since she draws inference from information received from a

source beyond her control. I will still call this agent a DM, since she has preferences over decision

rules.

Before presenting a representation theorem with this alternative data set, I define conditional

preferences. Given 𝑃∗, the preference ≽\ conditional on \ is defined by 𝜌 ≽\ 𝜏 if, and only if,

𝜌{\}𝛾 ≽𝑃∗ 𝜏{\}𝛾 for all 𝛾 ∈ D . The following axiom imposes straightforward adaptations of

axioms 1 to 6 for ≽�, with similar interpretations:

Axiom D1: For every experiment 𝑃 ∈ P and all decision rules 𝜌, 𝜏 ∈ D :

1 If 𝜌 ≽𝑃 𝜏, 𝜌′𝑃′ = 𝜌𝑃 and 𝜏′𝑃′ = 𝜏𝑃, then 𝜌′ ≽𝑃′ 𝜏′.

2 ≽𝑃 is complete and transitive.

3 𝜌{\}𝛾 ≽𝑃∗ 𝜏{\}𝛾 implies 𝜌{\}𝛾′ ≽𝑃∗ 𝜏{\}𝛾
′, for all 𝛾, 𝛾′ ∈ D and \ ∈ Θ.

4 If 𝜌 ≽\ 𝜏 for all \ ∈ Θ, then 𝜌 ≽𝑃∗ 𝜏.

5 If 𝜌 ≽\ 𝜏, then 𝛼𝜌 + (1 − 𝛼)𝛾 ≽\ 𝛼𝜏 + (1 − 𝛼)𝛾 for all 𝛼 ∈ (0, 1] and 𝛾 ∈ D .

6 The set {(𝜌𝑃, 𝜏𝑃) ∈ F 2 : 𝜌 ≽𝑃 𝜏} is closed.

I can now state the following representation theorem.

Theorem 4. The system of preferences ≽�= {≽𝑃⊆ D2 : 𝑃 ∈ P} satisfies Axiom D1 if, and only

if, there exists a utility function 𝑣 : 𝐴 × Θ → R, continuous in the first argument, and a monotone,

continuous functional 𝐽 : R𝑣 → R such that, for all 𝑃 ∈ P and 𝜌, 𝜏 ∈ D ,

𝜌 ≽𝑃 𝜏 ⇐⇒ 𝐽 (𝑟𝑣 (𝜌, 𝑃)) ≥ 𝐽 (𝑟𝑣 (𝜏, 𝑃)). (1.10)
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We then say that ≽� has an MRA representation (𝑣, 𝐽). Moreover, 𝑣 is parameter-wise cardi-

nally unique.

Theorem 4 characterizes the MRA model when behavioral data comes in the form of pref-

erences over decision rules, for experiments that are exogenous from the DM’s standpoint. This

is useful because it provides a method to verify whether choices are compatible with the SDT

framework, without having to vary decision rules and experiments simultaneously. For instance, in

laboratory settings such data can be elicited by exogenously varying the experiment and available

actions, while keeping track of action frequencies for each realized signal.

Preferences over experiments

Now turn to an agent who chooses an information structure for each menu 𝑀 of available deci-

sion rules knowing that, in a second stage, a decision rule will be chosen for her (and, potentially,

by her) from 𝑀 . To differentiate this agent from the DM, who chooses decision rules, I call her

the Experimenter.4

Formally, identify D with the space of measurable functions from 𝑋 to Δ(𝐴) and, as usual,

endow it with the topology of point-wise convergence. A menu 𝑀 ∈ M is some closed (thus

compact) subset of D . I now assume that the primitive is a system of preferences ≽�= {≽𝑀⊆ P2 :

𝑀 ∈ M }. I want to characterize which such preference systems are compatible with the MRA

model.

Recall that a decision rule 𝜌 ∈ D is called invariant if 𝜌𝑃 = 𝜌𝑃′ for all 𝑃, 𝑃′ ∈ P . Denote

by M the class of all menus consisting only of invariant decision rules. Throughout this section,

I assume that P = Δ(𝑋)Θ. When this is the case, section A.1 shows that there exists an invariant

decision rule 𝛿∗ ∈ D such that for all (𝜌, 𝑃) ∈ S , we have 𝛿∗𝑃′ = 𝜌𝑃 for some 𝑃′ ∈ P .

First I state some postulates involving only preferences over experiments. These are versions

of axioms 1 and 3 to 5 in such a space.

Axiom E1: For all menus 𝑀 ∈ M , 𝑀 ∈ M and experiments 𝑃,𝑄 ∈ P:
4In Bayesian persuasion literature, such an agent is called a Sender.
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1 Weak Order: ≽𝑀 is complete and transitive.

2 IIP: 𝑃(\)𝑅 ≽
𝑀 𝑄 (\)𝑅 implies 𝑃(\)𝑅

′ ≽𝑀 𝑄 (\)𝑅
′, for all 𝑅, 𝑅′ ∈ P and \ ∈ Θ.

3 Monotonicity: if 𝑃(\)𝑅 ≽
𝑀 𝑄 (\)𝑅 for all \ ∈ Θ and 𝑅 ∈ P , then 𝑃 ≽𝑀 𝑄.

4 Experiment CMI: if 𝑃\ ′ = 𝑄\ ′ = 𝑅\ ′ for every \′ ≠ \ ∈ Θ and 𝑃 ≽𝑀 𝑄, then 𝛼𝑃 + (1 −

𝛼)𝑅 ≽𝑀 𝛼𝑄 + (1 − 𝛼)𝑅 for all 𝛼 ∈ (0, 1].

5 Continuity: the set {(𝛿𝑃, 𝛿𝑄) ∈ F 2 : 𝑃 ≽{𝛿} 𝑄} is closed for all 𝛿 ∈ D .

Now consider a family of choice correspondences 𝐶 = {𝐶𝑃 : 𝑃 ∈ P}, where

𝐶𝑃 : M → 2D

𝑀 ↦→ 𝐶𝑃 (𝑀) ⊆ 𝑀.

(1.11)

The inclusion 𝜌 ∈ 𝐶𝑃 (𝑀) means that, in a second stage, 𝜌 is chosen from the menu 𝑀 of feasible

decision rules, when the experiment is 𝑃. The following axiom requires that information structures

be chosen taking into account the decision rule selected by 𝐶, and that the Experimenter is a

consequentialist, caring only about induced action distributions.

Axiom E2 (Consistency): If 𝑃 ≽𝑀 𝑃′, and for all 𝜌 ∈ 𝐶𝑃 (𝑀), 𝜌′ ∈ 𝐶𝑃′ (𝑀), 𝜏 ∈ 𝐶𝑄 (𝑁) and

𝜏′ ∈ 𝐶𝑄′ (𝑁) we have 𝜌𝑃 = 𝜏𝑄 and 𝜌′𝑃′ = 𝜏′𝑄′, then 𝑄 ≽𝑁 𝑄′.

Axioms E1 and E2 are sufficient to characterize the Experimenter’s preferences given menus

from which a single decision rule is chosen by 𝐶 for every experiment (for instance, singleton

menus). For all other menus, we need to elicit the Experimenter’s tie-breaking rule from her

choices. Since in this paper I am mostly concerned with a single sophisticated DM, it is natural to

assume that indifference is decided in favor of the Experimenter. The next axiom guarantees just

that, but first I introduce another bit of notation: for any 𝑀 ∈ M and 𝜏 ∈ 𝐶𝑃 (𝑀), let 𝑃𝜏 ∈ P

satisfy 𝛿∗𝑃𝜏 = 𝜏𝑃.
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Axiom E3 (Optimism): If 𝜌 ∈ 𝐶𝑃 (𝑀) and 𝑃𝜌 ≽{𝛿
∗} 𝑃𝛾 for all 𝛾 ∈ 𝐶𝑃 (𝑀), then 𝑃 ≽𝑀 𝑄

(𝑄 ≽𝑀 𝑃) if, and only if, 𝑃 ≽�̃� 𝑄 (𝑄 ≽�̃� 𝑃), where �̃� = {𝛿 ∈ D : 𝛿𝑃 = 𝜌𝑃 and ∀𝑅 ≠ 𝑃, ∃𝛾 ∈

𝑀 s.t. 𝛿𝑅 = 𝛾𝑅}.

Axiom E3 is conceptually straightforward. If decision rule 𝜏 induces an action distribution

under 𝑃 which is deemed worse by the Experimenter than that induced by 𝜌, then effectively

removing from the menu the possibility of pairing 𝜏 with 𝑃 does not change preferences. In other

words, the Experimenter is an optimist, who believes the decision rule chosen in the second stage

will be the best possible one, among the alternatives that are deemed “choosable” by 𝐶.

I can now characterize the Experimenter’s preferences.

Theorem 5. A system of preferences ≽�= {≽𝑀⊆ P2 : 𝑀 ∈ M } satisfies axioms E1 to E3 if,

and only if, there exists a utility function 𝑤 : 𝐴 × Θ → R, continuous in the first argument, and a

monotone, continuous functional 𝐻 : R𝑤 → R such that, for all 𝑃,𝑄 ∈ P and 𝑀 ∈ M ,

𝑃 ≽𝑀 𝑄 ⇐⇒ 𝐻 (𝑟𝑤 (𝜌, 𝑃)) ≥ 𝐻 (𝑟𝑤 (𝜏, 𝑄)) subject to 𝜌 ∈ 𝐶𝑃 (𝑀), 𝜏 ∈ 𝐶𝑄 (𝑀). (1.12)

We then say that ≽� has an MRA representation (𝑤, 𝐻). Moreover, 𝑤 is parameter-wise cardi-

nally unique.

Note that Theorem 5 makes no assumptions about the properties of the choice correspondence.

In particular, the decision rule that is ultimately chosen, for any given experiment, could differ

from the one the Experimenter would prefer. The Experimenter can thus be seen as a sophisticated,

but possibly dynamically inconsistent, agent. She correctly anticipates – but does not necessarily

control – which decision rule will be ultimately chosen, and designs the information structure

accordingly. Of course, if 𝐶 takes the form

𝐶𝑃 (𝑀) = arg max
𝛿∈𝑀

𝐻 (𝑟𝑤 (𝛿, 𝑃)) ∀𝑀 ∈ M and 𝑃 ∈ P , (1.13)

then the Experimenter’s problem is equivalent to her sequentially choosing an experiment and
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then a decision rule for herself. To spell out sufficient conditions when (1.13) is true could be an

interesting avenue for future research, but is beyond the scope of the current paper.

1.7 Discussion

In this paper, I have built an axiomatic foundation that can be used to obtain representation the-

orems for many statistical decision theoretic models. These theorems provide the full behavioral

implications of said models, in terms of preferences over pairings of decision rules and experi-

ments. Such representation results serve two main purposes in positive economics. First, they

provide applied theorists working within the SDT framework with a deeper understanding of the

behavior of agents in their models. Second, they allow empiricists to gauge the extent to which

observed choice behavior deviates from the behavioral predictions of different SDT models. As

SDT is the setting of much of information economics, results of this kind may find many uses in

the wider economics literature.

Representation theorems such as the ones presented in sections 1.4 and 1.5 also serve a nor-

mative purpose. For instance, Manski (2021) advocates for the use of statistical decision theory

in econometrics, but leaves open the issue of what objective function the econometrician should

use. In this context, axioms can serve as a guide for the econometrician’s choice of utility function

and aggregator, when formulating an SDT model. That is, the econometrician should choose a

statistical decision theoretic objective function that leads to desirable constraints on preferences,

formalized as normatively appealing axioms.

For this paper, I have mainly focused on obtaining the behavioral implications of a canonical

SDT model in which the DM takes the expected utility conditional on each parameter, and ag-

gregates across parameters using a monotone functional. Therefore, although the methodology I

presented in sections 1.4 and 1.5 is flexible enough to provide characterizations of a wide array of

SDT models, it is by no means exhaustive. There are at least three particularly interesting classes of

models which can be considered as belonging to the SDT family, but are ruled out by the approach

taken here.
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The first pertains to models in which not only choices, but DM’s preferences themselves, de-

pend on the menu of available options. The canonical example of this is regret-based preferences,

as discussed in example 1. Second, by maintaining the Consequentialism axiom throughout the

analysis, I am precluding models where the utility function depends not only on actions and param-

eters, but directly on decision rules and experiments. As discussed in example 4, one such model

is the classic rational inattention framework with cognitive costs. A third class of SDT models not

contemplated here is one in which, when the true parameter is known, the DM evaluates prospects

using a criterion other than maximizing expected utility. For example, Manski and Tetenov (2014)

evaluate the performance of a treatment rule based on maximizing a utility quantile, rather than its

expectation, conditional on each parameter. Expanding the framework outlined here to any one of

these classes of models presents a fruitful avenue for future decision theoretic research.

Another limitation of this essay is that it is concerned solely with ex-ante preferences. That is,

our DM simultaneously chooses an experiment and a contingent plan of action, assuming that she

will follow through with this plan once the information from a signal is revealed. The model is

silent on how the DM updates their beliefs – or, more generally, their preferences – upon observing

the signal. Hence, the present model could be misleading if one is interested in predicting which

action the DM takes after observing a signal. Indeed, if the DM is not dynamically consistent, then

after observing some signal realizations, they would prefer to take a different action than the one

prescribed by their chosen decision rule. Extending the analysis to include how preferences and

beliefs (should) change after observing a signal is an entire research agenda in itself. Indeed, how

to update preferences and beliefs in view of new information has been an active area of research

in traditional decision theory, starting with a seminal paper by Machina (1989). However, because

it lacks a natural distinction between information-carrying signals and payoff-relevant parameters,

this literature is constrained to considering only information of a particular kind. Hence, it could be

very effective to re-frame the preference updating problem in SDT terms, using the methodology

in this essay.

Since there are situations in which data on preferences over pairings is not easy to come by, in
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Section 1.6 I expanded the scope of applicability of my main results by characterizing the MRA

model assuming other data sets. In Section 1.6.1, I considered a data set consisting of action

probabilities conditional on each parameter. This type of data is standard in psychometrics, and

has recently received attention in economics. I showed when such data can be rationalized by a

preference over pairings that has an MRA representation. Moreover, example 6 discusses sufficient

conditions for preferences over decision rules and experiments to be identifiable from parameter

dependent stochastic choice. This opens the possibility of extending the results of this paper to

the case when the DM faces information costs, and thus building on the work of Caplin and Dean

(2015) by (i) not assuming the existence of a utility function in their representations; and (ii)

extending their results beyond Bayesian DMs.

Section 1.6.2 provides an MRA characterization for two systems of preferences. The first de-

scribes a DM’s preferences over decision rules for each given experiment. The second describes a

DM who correctly anticipates which decision rule will be chosen from a menu and ranks experi-

ments accordingly. These preferences naturally arise in many applications, and can be viewed as

two cross sections of the preference over pairings. Another interesting topic for future research will

be to provide sufficient conditions for the MRA representations of these two systems of preferences

to coincide, so that they can be interpreted as modelling the same agent.
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Chapter 2: Testable identification of finite mixture models

2.1 Introduction

In many economic models, observed outcomes are assumed to be sampled from a mixture of a

finite number of latent distributions. Models with heterogeneity characterized by a finite number

of unobserved types is commonly modeled using finite mixtures, in fields ranging from industrial

organization (Berry, Carnall, and Spiller, 1996) to labor economics (Keane and Wolpin, 1997). In

models with misclassification error, observations are drawn from a finite mixture conditional on

unobserved true covariates, while the observed values of the covariates suffer from measurement

error (Chen, Hong, and Nekipelov, 2011). Mixture models are also used to describe the outcomes

arising from games with multiple equilibria, where the equilibrium selection mechanism defines

the mixture weights (e.g., Ciliberto and Tamer (2009)). The large class of models with latent dis-

crete state variables, such as Markov regime switching, is also a prime example of finite mixtures

(Kim and Nelson, 2018).

Due to the large number of unknown parameters, identification and consistent estimation of

mixture models is known to be difficult. A large literature, summarized in book form by Frühwirth-

Schnatter (2013), has dealt with this issue by assuming that the component distributions are in a

parametric family. However, in parametric models the consistency of estimators for the parameters

of interest hinges on the correct specification of the unobserved component distributions. Mispec-

ified models may thus lead to inconsistent estimators and misleading inference. For this reason, a

more recent literature has turned attention to non-parametric identification and estimation of finite

mixture models. Many strategies have been proposed to achieve such identification. For example,

Mahajan (2006) and Lewbel (2007) relied on instrumental variables to handle the misclassification

problem, and Chen, Hong, and Tamer (2005) used auxiliary data. See Compiani and Kitamura
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(2016) for a comprehensive review.

An exclusion restriction that is commonly imposed on the data generating process to achieve

identification is that there exists an observable variable which shifts the mixture weights, while

leaving the component distributions unchanged. Such is the case for Mahajan (2006) and Lewbel

(2007), cited above, but also for Chen, Hu, and Lewbel (2008b), Chen, Hu, and Lewbel (2008a),

and Hu (2008), just to cite a few examples. This exclusion restriction is widely applicable, since it

can be derived from the Markov assumption in regime switching models (Cho and White, 2007),

as well as from models with unobserved type heterogeneity where an observed instrument changes

the type composition of the population, but does not change the outcomes conditional on types.

As I show Section 2.2, even models of rational inattention can be framed as finite mixture models

with such an exclusion restriction.

This paper contributes to the literature on non-parametric identification of finite mixture mod-

els with instrumental variables affecting only the mixtures weights. Henry, Kitamura, and Salanié

(2014) were the first to fully characterize the identified set in such models. They prove that the

model is only partially identified in general, and show how the identified set can be constructed

from the mixture distribution. However, their characterization of the identified set relies on con-

vex analysis methods and may not be well-suited for inference with finite data. On the other

hand, Adams (2016) provided necessary and sufficient conditions for point-identification of finite

mixture models, considering the same exclusion restriction. Unfortunately, such conditions are im-

posed on the latent parameters of the model, thus can not be checked without first estimating those

parameters. But if the model is not identified in the first place, any estimator will be inconsistent,

and inferences drawn from it will be misleading, even given a large sample.

The main result of this paper provides conditions, on the observable mixture distribution, which

are sufficient to guarantee non-parametric point-identification of the hidden mixture weights and

component distributions. Interestingly, the theorem uses a similar condition to the one proposed

by Adams (2016), but applies it to the mixture distribution rather than the latent parameters. The

result builds on the extensive mathematics and computer science literature regarding the (exact)
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non-negative factorization of matrices, in particular on the works of Huang, Sidiropoulos, and

Swami (2014) and Gillis (2012). Indeed, the statistical identification result presented here follows

almost directly from a purely mathematical result about uniqueness of a particular kind of non-

negative matrix factorization: an intermediate finding that can be of independent interest.

An identification condition on finite mixture models which is formulated solely in terms of the

mixture distribution has two main advantages. First, the condition is always interpretable in terms

of observable quantities. This is particularly important when the mixture model is used mainly as

a tool for dimensionality reduction, which implies that the components have no interpretation a

priori. In such applications, it can be hard to qualitatively assess ex ante whether a given condition

on the hidden component distributions and mixture weights is likely to hold. This is the case in

some popular applications of mixture models, notably topic models (Blei, 2012).

Second, and most importantly, a condition that depends solely on observable quantities can be

formally tested using statistical methods. Therefore, I leverage my sufficient condition to devise a

Bayesian test of non-parametric identification of the mixture weights and component distributions.

This allows the statistician to formally test whether a model is likely identified before estimating

its hidden parameters. Moreover, I show that the proposed procedure is in fact a formal Bayes test,

in the sense that it is the optimal decision rule for a properly defined Bayesian statistical decision

problem.

The remainder of the essay is organized as follows. Section 2.2 presents the model, including

how it can be made to fit the non-negative matrix factorization problem. Section 2.3 discusses

identification of mixture models, and provides the main result. Section 2.4 is dedicated to develop-

ing a formal test of identification of the hidden parameters, and also briefly discusses the consistent

estimation of identified parameters.

2.2 Model

Let 𝑌 , 𝑊 and 𝑋 be random variables defined on a common probability space (Ω,F , 𝑃) and

taking values on separable metric spaces Y,W and X, respectively. The variable 𝑌 is the outcome,
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𝑊 is a covariate and 𝑋 is an instrument. By working with an abstract space of outcomes, I am

allowing 𝑌 ,𝑊 and 𝑋 to be random vectors with both continuous- and discrete-valued components.

In a finite mixture model, conditional on the covariate and instrument, each observed outcome

is drawn from one of 𝐾 component distributions corresponding to different types, where 1 < 𝐾 ≤

min{|Y|, |X|}. The probability of drawing a sample from component distribution 𝑘 is given by

_𝑘 ≥ 0. Formally, for all measurable 𝐴 ⊆ Y,

𝑃(𝑌 ∈ 𝐴|𝑊, 𝑋) =
𝐾∑︁
𝑘=1

_𝑘 (𝑊, 𝑋)𝑄𝑘 (𝑌 ∈ 𝐴|𝑊, 𝑋), (2.1)

where {𝑄𝑘 (·|𝑊, 𝑋) : 𝑘 = 1, . . . , 𝐾} are conditional probability distributions on the outcomes, and∑𝐾
𝑘=1 _𝑘 (𝑤, 𝑥) = 1 for all (𝑤, 𝑥) ∈ W × X. I assume in most of what follows that 𝐾 is known. We

denote _ = (_1, . . . , _𝑘 ) and 𝑄 = (𝑄1, . . . , 𝑄𝑘 ). The mixture distribution 𝑃 is viewed as a reduced

form parameter for the data generating process, while the component distributions and the mixture

weights, {(_𝑘 , 𝑄𝑘 ) : 𝑘 = 1, . . . , 𝐾}, are the parameters of interest. Note that no finite-dimensional

parametric family was specified for the component distributions {𝑄𝑘 : 𝑘 = 1, . . . , 𝐾}, so the model

is non-parametric.

We say that a model is identifiable if there exists a bijective function between the parameter

space and the data generating process, so that perfectly estimating the sampling distribution allows

the statistician to pinpoint the underlying parameter. Clearly, the reduced form parameter 𝑃 is

non-parametrically identifiable. However, we are interested in identifying not only the mixture

distribution, but the components and mixture wights.

Definition 7 (Identification of a finite mixture model). We say that the model (2.1) is identified

if (𝑄, _) ≠ (�̃�, _̃) implies
∑𝐾
𝑘=1 _𝑘 (𝑊, 𝑋)𝑄𝑘 (·|𝑊, 𝑋) ≠

∑𝐾
𝑘=1 _̃𝑘 (𝑊, 𝑋)�̃�𝑘 (·|𝑊, 𝑋). ♦

Absent further constraints it is clear that there are different combinations of _ and 𝑄 yielding

the same mixture distribution. Indeed, the data generating process 𝑃 could be obtained by setting

_𝑘 = 1 and 𝑄𝑘 = 𝑃 for any 𝑘 = 1, . . . , 𝐾 . Therefore, the parameters (𝑄, _) are not identifiable in

general. Our main identifying restriction is that the instrument affects only the mixture weights.

51



Assumption 1 (Exclusion Restriction). For every measurable event 𝐴 ⊆ Y and 𝑘 ∈ {1, . . . , 𝐾},

we have 𝑄𝑘 (𝑌 ∈ 𝐴|𝑊, 𝑋) = 𝑄𝑘 (𝑌 ∈ 𝐴|𝑊).

This assumption occurs naturally in many applications. Prominent examples include Markov

switching models with finite hidden states, as in (Cho and White, 2007); models with misclassified

discrete regressors (see Chen, Hong, and Nekipelov (2011)); and accounting for multiple equilibria

in economic models. For an in-depth discussion of Assumption 1, see Henry, Kitamura, and

Salanié (2014). The following examples illustrate the scope of applicability of models with such

an exclusion restriction.

Example 7 (State-dependent stochastic choice with attention costs): In rational inattention mod-

els, a decision maker (DM) must take an action whose pay-off depends on an unknown state of the

world. Both the set of available actions, 𝐴, and the set of all possible states, Σ, are assumed to be

finite. The decision maker chooses an information structure, which is a stochastic mapping from

the objective states of the world to a set of subjective signals 𝑆. Denote this information structure

by 𝑄 : Σ → Δ(𝑆) and assume that |𝑆 | ≤ min{|𝐴|, |Σ |}.

Before taking an action, the DM observes the signal from their chosen information structure.

Each choice of information structure𝑄 incurs a subjective cost ^(𝑄), which is assumed to increase

with signal informativeness. Endowed with a prior ` over states of the world, the DM chooses a

decision rule 𝛿 : 𝑆 → Δ(𝐴) and an experiment 𝑄 : Σ → Δ(𝑆) which jointly maximize their

expected pay-off net of information costs.

Caplin and Dean (2015) consider the problem of testing the validity of such a model using only

state-dependent stochastic choice data. This is a data set where one observes the probability with

which the DM takes each action, conditional on every state of the world. That is, the data consists

of 𝑃(𝑎 |𝜎) for all 𝑎 ∈ 𝐴 and 𝜎 ∈ Σ. In terms of the DM’s chosen decision rule and information

structure, we have

𝑃(𝑎 |𝜎) =
∑︁
𝑠∈𝑆

𝑄(𝑠 |𝜎)𝛿(𝑎 |𝑠).

Therefore, the problem of identifying the DM’s choices of decision rule and experiment from state-
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dependent stochastic choice data can be formulated as a mixture model, where the actions are the

outcomes, the observed states are the instruments and the signal realizations are the hidden types.

Dean and Neligh (2023) gathered experimental data to test the validity of the rational inatten-

tion model using a revealed preference approach, which does not hinge on identifying the param-

eters 𝜋 and 𝛿 separately. Provided the model is identifiable, the same same data could in principle

be used to recover the DM’s choices of decision rules and experiments. ∥

Example 8 (Collusion in auctions): Consider an auction with𝑚 buyers bidding for a single good.

Each buyer 𝑖 knows their own valuation 𝑣𝑖 ∈ [𝑣, 𝑣] of the good, and believes that other buyers’

valuations are independently drawn from distributions 𝐹𝑗 , 𝑗 ∈ {1, . . . , 𝑚} \ {𝑖}. This is the classic

independent private values (IPV) framework with common beliefs.

Unbeknownst to the econometrician, each buyer may be a member of one of 𝐾 < 𝑚 cartels.

McAffe and McMillan (1992) and Marshall and Marx (2007), among others, show that bidding

behavior will depend on the number of and membership in cartels. Let _𝑘 denote the probability

that a bid comes from a member of cartel 𝑘 ∈ {1, . . . , 𝐾}. That is, _𝑘 is the proportion of buyers at

the auction who belong to cartel 𝑘 . Denote by 𝛽𝑘 the distribution of bids by the members of cartel

𝑘 , and by 𝑏 the overall distribution of bids at the auction.

Let 𝑋 denote the seller’s revenue from a given auction. Observed seller revenue depends on the

unobserved cartel membership of buyers taking part in the auction, but arguably does not directly

affect each buyer’s bid conditional on cartel membership. Therefore, we can denote the mixture

bid distribution by

𝑏(𝑌 ∈ 𝐴|𝑊, 𝑋) =
∑︁
𝑘∈𝐾

_𝑘 (𝑊, 𝑋)𝛽𝑘 (𝑌 ∈ 𝐴|𝑊),

where𝑌 is a random variable representing the bids, and𝑊 are covariates such as the auction format

(e.g., first price, second price, English auction, etc.) and the reserve price set by the seller. ∥

Let Y and X be partitions of Y and X respectively, with 𝐾 ≤ |Y | = 𝐼 < ∞ and 𝐾 ≤ |X | =

𝐽 < ∞. Define C = Y × X , which is clearly a partition of Y × X. Restricted to the elements of
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the partition C , the model (2.1) can be represented in matrix form as

P(𝑊) = Q(𝑊)𝚲(𝑊), (2.2)

where for each 𝑤 ∈ W, P(𝑤) is an 𝐼 × 𝐽 matrix, 𝚲(𝑤) is a 𝐾 × 𝐽 matrix and Q(𝑤) is an 𝐼 × 𝐾

matrix. In what follows, I omit the dependency of all distributions on the common conditioning

covariate, with the understanding that all quantities are implicitly conditional on𝑊 .

If one hopes to recover (𝑄, _) from the data, we need to be able to observe sufficient variability

of mixture weights and outcomes.

Assumption 2 (Variability). There exists a partition C such that P has rank 𝐾 .

The matrix P represents the distribution of 𝑌 conditional on 𝑋 , for the events in the partition

C . In view of Assumption 2, I will assume throughout that P has rank 𝐾 . If that is not the case,

one need only consider a finer partition C . The component distribution matrix Q tabulates the

probabilities of the different outcome events 𝐴 ∈ Y , for each latent type, while 𝚲 represents the

component weights _, conditional on different realizations of the instrumental variable 𝑋 . In other

words, partitioning the space of signals induces a partition of the mixture model into matrices

defined by

P𝑖 𝑗 = 𝑃(𝑌 ∈ 𝐴𝑖 |𝑋 ∈ 𝐵 𝑗 );

Q𝑖𝑘 = 𝑄𝑘 (𝑌 ∈ 𝐴𝑖);

𝚲𝑘 𝑗 = _𝑘 (𝑋 ∈ 𝐵 𝑗 ),

for all (𝐴𝑖, 𝐵 𝑗 ) ∈ C with 𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝐽. By construction, P, Q and 𝚲 are

column-stochastic: for all 𝑖 ∈ {1, . . . , 𝐼}, 𝑗 = {1, . . . , 𝐽} and 𝑘 ∈ {1, . . . , 𝐾}, we have
∑𝐼
𝑙=1 P𝑙 𝑗 =∑𝐼

𝑙=1 Q𝑙𝑘 =
∑𝐾
𝑙=1 𝚲 𝑗 𝑙 = 1 and P𝑖 𝑗 ,Q𝑖𝑘 ,𝚲𝑘 𝑗 ≥ 0. The pair (Q,𝚲) is called a (column-)stochastic

matrix factorization of P.

Definition 8 (Stochastic matrix factorization). Given any matrix M ∈ R𝐼×𝐽 , the pair of matrices
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(B,C) ∈ R𝐼×𝐾 × R𝐾×𝐽 is called a stochastic matrix factorization of M if B and C are column-

stochastic, and M = BC. ♦

Equation (2.2) is not the unique factorization of P into two matrices of rank 𝐾 , since for any

non-singular 𝐾 × 𝐾 matrix A,

P = QAA−1𝚲 = Q̃�̃�. (2.3)

However, if Q̃ and �̃� are to also represent discretized parameters of a mixture model, both Q̃ and

�̃� must be column-stochastic. This constrains the possible values that A can take. In particular,

it implies that
∑𝐾
𝑘=1 A𝑙𝑘 = 1 (Adams, 2016). In the following section, I leverage this constraint to

obtain conditions under which the stochastic factorization P = Q𝚲 is unique, which in turn imply

identification conditions for the latent parameters of the mixture model.

2.3 Identification

The finite mixture model restricted to the partition C is identifiable if, and only if, (2.2) is

the unique factorization of P into column-stochastic matrices, up to simultaneous permutations

(relabeling) of the columns of Q and rows of 𝚲. By eq. (2.3), this condition can be expressed in

terms of the matrix A.

Definition 9 (Unique stochastic factorization). A stochastic matrix factorization (Q,𝚲) of P is

unique if for all other such factorizations (QA,𝚲A), where QA = QA and 𝚲A = A−1𝚲, we have

that A is a permutation matrix. ♦

For any given P, we define the identified set I(P) of its stochastic factorizations as all column-

stochastic matrices QA and A−1𝚲 such that P = QAA−1𝚲. Henry, Kitamura, and Salanié (2014)

provides a full characterization of the identified set I(P) in terms of the convex hull of the rows of

the matrix H, where H𝑖 𝑗 = P𝑖 𝑗 − P𝑖1. The identified set also has a characterization in terms of the

matrix A alone, which was shown by Adams (2016):
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Lemma 4. Let Q𝚲 be any stochastic matrix factorization of P and define A (P) = {A ∈ R𝐾×𝐾 :

∀𝑖, 𝑗 , 𝑘, P = QAA−1𝚲,
∑𝐾
𝑙=1 A𝑘𝑙 = 1 and (QA)𝑖𝑘 , (A−1𝚲)𝑘 𝑗 ≥ 0}. Then I(P) = {(QA,A−1𝚲) ∈

R𝐼×𝐾 × R𝐾×𝐽 : 𝐴 ∈ A (P)}.

From the constraint that each row of the matrix A sums to one, it is easily seen that the identified

set has dimension at most 𝐾 (𝐾 − 1). In particular, if there are two component distributions, any

A ∈ A can be expressed as

A =


1 + 𝑎1 −𝑎1

−𝑎2 1 + 𝑎2


with inverse

A−1 =
1

1 + 𝑎1 + 𝑎2


1 + 𝑎2 𝑎1

𝑎2 1 + 𝑎1

 .
The non-negativity constraints (QA)𝑖𝑘 , (A−1𝚲)𝑘 𝑗 ≥ 0 then imply that (𝑎1, 𝑎2) must satisfy the

following linear inequalities for all 𝑖, 𝑗 :

𝑎2 ≤ (1 + 𝑎1)
Q𝑖1
Q𝑖2

,

𝑎2 ≥ 𝑎1
Q𝑖1
Q𝑖2

− 1,

sgn(1 + 𝑎1 + 𝑎2)𝑎2 ≥ − sgn(1 + 𝑎1 + 𝑎2)
(
1 + 𝑎

𝚲2 𝑗

𝚲1 𝑗

)
,

sgn(1 + 𝑎1 + 𝑎2)𝑎2 ≥ − sgn(1 + 𝑎1 + 𝑎2) (1 + 𝑎)
𝚲2 𝑗

𝚲1 𝑗
.

The slopes of the linear constraints are likelihood ratios, e.g., Q𝑖1
Q𝑖2

measures how much less likely

it is to observe the outcome event 𝐴𝑖 ∈ Y coming from component distribution 𝑄1 than from

𝑄2. Intuitively, since the linear inequalities above must be satisfied for every pair of outcomes and

instruments, the identified set shrinks as the component distributions and mixture weights diverge

from each other for at least one pair of events (𝐴, 𝐵) ∈ C .

The discussion above indicates that the following property of matrices will be crucial to char-

acterize which stochastic matrix factorizations are unique.
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Definition 10 (𝑲-sparsity). Let M be an 𝐼 × 𝐽 matrix and define the set

I 𝑗 = {𝑖 ∈ {1, . . . , 𝐼} : M𝑖 𝑗 ≠ 0}. (2.4)

We say that the matrix M is 𝐾-sparse if there exist columns J𝐾 ⊆ {1, . . . , 𝐽}, with |J𝐾 | = 𝐾 and

𝐾 ≤ min{|𝐼 |, |𝐽 |}, such that for all 𝑗 , 𝑗 ′ ∈ J𝐾 with 𝑗 ≠ 𝑗 ′, we have I 𝑗 ⊈ I 𝑗 ′. ♦

Interpreted in terms of the matrix P, 𝐾-sparsity says that there exists a subset of 𝐾 different realiza-

tions of the instrument such that, for any pair of realized event 𝐵 and 𝐵′ in this subset, at least one

outcome that happens with positive probability conditional on 𝐵, has zero probability conditional

on 𝐵′.

By making use of a result by Huang, Sidiropoulos, and Swami (2014) and Lemma 4, Adams

(2016) provided a condition on Q and 𝚲 that is both necessary and sufficient for the stochastic

factorization P = Q𝚲 to be unique. This condition hinges on the 𝐾-sparsity property.

Lemma 5. The stochastic matrix factorization (Q,𝚲) of P is unique if, and only if, both Q and

𝚲𝑇 are 𝐾-sparse.

The condition in Lemma 5 is tight, so it completely characterizes the matrices P that have a

unique stochastic matrix factorization. However, in the context of mixture models, having identi-

fication conditions in terms of the latent parameters of the model leads to at least two issues. First,

such identification conditions are often difficult to interpret and to assess qualitatively, particularly

when the types themselves do not have a natural interpretation. Second, to empirically test that the

conditions hold, one must first estimate the model. But with finite data, the estimate of P will in-

evitably be noisy, thus the estimated latent parameters may not satisfy the identification conditions,

even if the true parameters do, and vice-versa.

It is thus desirable to obtain a condition that guarantees identification of (2.1) and only imposes

constraints on the observable mixture distribution 𝑃. It turns out that imposing 𝐾-sparsity on the

discretized reduced form parameter matrix P is sufficient to guarantee uniqueness of the stochastic

matrix factorization.

57



Lemma 6. If P is 𝐾-sparse and has a stochastic matrix factorization, then this factorization is

unique.

Lemma 6 provides a sufficient condition for the stochastic matrix factorization of P to be

unique. Its proof hinges on showing that 𝐾-sparsity imposed on P implies that the requirements

of Lemma 5 on the matrices Q and 𝚲 are satisfied. Importantly for the mixture model application,

the 𝐾-sparsity condition pertains only to the observable matrix P.

Typically, albeit sufficient for identification, 𝐾-sparsity is not necessary. Indeed, note that with

𝐾 ≥ 3, if the matrices Q and 𝚲 are column-stochastic, and have main diagonals consisting of zeros

and all other components strictly positive, then the stochastic factorization P = Q𝚲 satisfies the

conditions in Lemma 5, and hence is unique. On the other hand, the resulting P consists of all

strictly positive entries, and thus does not satisfy 𝐾-sparsity. However, there is one important case

in which 𝐾-sparsity is both necessary and sufficient for identification: when there are only two

latent components.

Corollary 1. If 𝐾 = 2, then any stochastic matrix factorization of P is unique if, and only if, it

satisfies 𝐾-sparsity.

The following is a direct result of Lemma 6, after accounting for some measure-theoretic con-

siderations:

Theorem 6. Let 𝑌 , 𝑊 and 𝑋 be random variables with distributions satisfying the mixture model

(2.1) with latent parameters (𝑄, _). For each 𝑤 ∈ W, if there exists a partition C of Y × X such

that the model restricted to C can be represented by eq. (2.2) with P satisfying 𝐾-sparsity, then

(𝑄, _) are identifiable conditional on 𝑤. Conversely, if 𝐾 = 2 and (𝑄, _) is unique, then there

exists a partition C such that P satisfies 𝐾-sparsity.

Theorem 6 states that to guarantee that the mixture model (2.1) with 𝐾 latent components is

identifiable, it suffices to find a single discretization of the reduced form parameter 𝑃 for which

the matrix P is 𝐾-sparse. Because it only imposes constraints on the observable matrix P, this

sufficient condition has two major advantages.
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First, its interpretation in terms of the joint distribution of 𝑌 and 𝑋 is immediate, and does not

depend on the nature of the hidden types. Even if types do not have an intuitive interpretation

a priori, such as when the mixture model is mainly used as a tool for dimensionality reduction,

Theorem 6 can still be used to gauge whether the identifiability assumption is likely to hold. This

is the case, for instance, in the large literature on topic models.

Second, it opens up the possibility of devising a statistical test to assess whether the parameters

(𝑄, _) of the mixture model are identifiable, after observing a sample from the random vector

(𝑌,𝑊, 𝑋). The next section is dedicated to developing such a test and discussing other matters of

inference on finite mixture models.

2.4 Inference

2.4.1 A test of identification

Suppose we observe a random sample 𝑍 = (𝑌𝑙 , 𝑋𝑙)𝑛𝑙=1 drawn from the joint distribution 𝑃

conditional on some value of 𝑋 . Before attempting to estimate the latent parameters (𝑄, _), it

would be useful to know whether they can really be identified by observing only the reduced form

parameter 𝑃. If that is not the case, then a consistent classical estimator of (𝑄, _) does not exist,

and any Bayesian estimator will be very sensitive to the prior, even in large samples (Ke, Luis

Montiel Olea, and Nesbit, 2021).

Fix a partition C = Y ×X ofY×Xwith |Y | = 𝐼 and |X | = 𝐽, and consider the corresponding

discretization P of the true reduced form parameter 𝑃. The simple conditional histogram, i.e., the

frequency of samples falling on each element of the partition Y conditional on each element of

X , is a consistent estimator P̂𝑛 of P. Let Θ be the set of all column-stochastic matrices of rank

𝐾 and Θ0 = {M ∈ Θ : M satisfies 𝐾-sparsity}. Since we do not have a full characterization of

identification conditions in terms of P alone, I will instead only consider testing the following,

more restrictive null hypothesis, based only on the sufficient condition:

𝐻0 : P ∈ Θ0 𝑣𝑠. 𝐻1 : P ∈ Θ \ Θ0.
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If 𝑌 and 𝑋 are discrete, we may take C to be the finest possible partition of Y×X. When either

𝑌 or 𝑋 are continuous random variables, the discretization would ideally be chosen optimally, as

a function of the non-parametric estimator of 𝑃, so as to maximize the power of the test. This is

an interesting avenue for future research, but lies beyond the scope of the present paper, so C will

remain fixed throughout this section.

Typically, one would test 𝐻0 using either a 𝜒2 or likelihood-ratio test statistic based on the

consistent estimator P̂𝑛. However, in this case the null hypothesis involves constraining some

parameters to be on the boundary of the parameter space (the entries where P𝑖 𝑗 = 0 under 𝐻0)

and others to be any point in the interior of the space (where P𝑖 𝑗 > 0 under 𝐻0). Testing such

hypotheses is at best difficult (in the case of boundary constraints) or outright intractable (for strict

inequality constraints) within the framework of classical asymptotic inference. Therefore, I take a

Bayesian approach.

Let 𝑓\ denote the sampling distribution of the estimator P̂𝑛 conditional on \ ∈ Θ, and 𝜋 be

an absolutely continuous prior probability over Θ. For each realization 𝑝 of P̂𝑛, let 𝜋(\ |𝑝) =

𝑓\ (𝑝)𝜋(\) be the posterior likelihood of \ given 𝑝. The proposed test rejects the null hypothesis if

the posterior probability that the parameter is within an Y distance of Θ0 is small, with the distance

from a parameter \ to a set 𝑇 being measured as

𝑑 (\, 𝑇) = inf
𝑡∈𝑇

∥\ − 𝑡∥,

where ∥ · ∥ is any norm on R𝐼×𝐽 .

Definition 11 (Bounded distance test). The bounded distance test rejects 𝐻0 whenever

𝑃𝑟 (𝑑 (\,Θ0) ≤ Y |𝑝) < 𝛼,

where both 0 < 𝛼 < 1 and Y > 0 are chosen by the statistician. ♦

If Y > 0 is small and 𝑃𝑟 (𝑑 (\,Θ0) ≤ Y |𝑝) is sufficiently close to 1, we can be confident that
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the true parameter P is not far from some identified parameter. This in turn guarantees that the

identified set I(P) is not far from a single point, which implies that the lack of identifiability is not

too severe. In this sense, I : Θ ⇒ [0, 1] 𝐼×𝐾 × [0, 1]𝐾×𝐽 is a continuous correspondence. This is

formalized in the following result.

Proposition 7. For all [ > 0, there exists Y > 0 and an 𝐼 × 𝐽 matrix B having a unique stochastic

factorization, such that

𝑑 (P,Θ0) ≤ Y =⇒ sup
(Q,𝚲)∈I(P)

∥(Q,𝚲) − I(B)∥𝐹 ≤ [,

where ∥ · ∥𝐹 denotes some norm in the factorization space R𝐼×𝐾 × R𝐾×𝐽 .

The main obstacle to implementing the proposed test is the characterization of the null set

Θ0. Note that, from the definition of 𝐾-sparsity, 𝐻0 can be written as a finite set of inequality

constraints involving all 𝐼 × 𝐾 submatrices of P. Although finite, unfortunately the number of

constraints characterizing 𝐻0 can be very large, and listing all of them could be prohibitive. The

following procedure implements the proposed test while bypassing this problem. It takes advantage

of the fact that a generic matrix \̃ sampled from 𝜋(\ |𝑝) will have all strictly positive elements,

thus the matrix in Θ0 which is closest to \̃ can be obtained by setting a carefully chosen set of 𝐾

elements of the sampled matrix to zero.

1. Choose a tolerance parameter Y > 0 and a confidence level 1 − 𝛼.

2. Compute the posterior distribution from the data, given prior 𝜋. Note that if P̂𝑛 is a histogram,

then 𝑛 𝑓\ is a conditional multinomial distribution. In this case, we can use the well known

Latent Dirichlet Allocation (LDA) estimator developed by Blei, Ng, and Jordan (2003), to

obtain the posterior distribution 𝜋(\ |𝑝).

3. Sample 𝑚 column-stochastic matrices of rank 𝐾 , {\𝑙}𝑚
𝑙=1, from the posterior distribution.

To calculate 𝑑 (\𝑙 ,Θ0) for each 𝑙 = 1, . . . , 𝑚, first note that since 𝜋 is assumed to be abso-

lutely continuous, \𝑙 will generically have all entries strictly positive. Therefore, one may
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find the distance by applying the following algorithm:

(i) If 𝑘 = 0, let M(0) = \𝑙 .

(ii) For all 𝑘 ∈ {1, . . . , 𝐾 − 1}, let

(𝑖𝑘 ,J𝐾) = arg min
{
M𝑘
𝑖 𝑗 : 𝑖 ∈ {1, . . . , 𝐼} \ {𝑖1, . . . , 𝑖𝑘−1}, 𝑗 = {1, . . . , 𝐽} \ { 𝑗1, . . . , 𝑗𝑘−1}

}
.

Define the matrix M(𝑘+1) by

M(𝑘+1)
𝑖 𝑗

=


M(𝑘)
𝑖 𝑗
, ∀(𝑖, 𝑗) ≠ (𝑖𝑘 ,J𝐾).

0, otherwise

(iii) Let \∗ = M(𝐾) . We have 𝑑 (\𝑙 ,Θ0) = ∥\𝑙 − \∗∥.

The algorithm proceeds by iteratively finding the smallest element in the sampled matrix,

setting this element to zero, and repeating the process for the matrix obtained by ignoring

the row and column corresponding to the null elements.

4. We reject the null hypothesis if, and only if,

|{𝑙 ∈ {1, . . . , 𝑚} : 𝑑 (\𝑙 ,Θ0) ≤ Y}|
𝑚

< 𝛼.

As with any statistical test, the procedure just described involves a somewhat arbitrary choice

of constants by the statistician, in this case namely 𝛼 and Y. In the Bayesian framework, it is

thought that such choices should be guided by a decision-theoretic rationale. In other words,

the test procedure should arise as the solution of a statistical decision problem, as presented in

Chapter 1.

We will consider a DM who simultaneously chooses contingent plans for whether to accept or

not the null hypothesis and for what tolerance region to consider. Let the set of actions available to

the decision maker be 𝐴 = {0, 1} ×K (Θ), where K (Θ) denotes the set of compact subsets of Θ.
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Here, 0 denotes accepting the null hypothesis, 1 denotes rejecting it and 𝑇 ∈ K (Θ) is a tolerance

region, which represents the values of the parameter that are deemed close enough to an identified

set for classical inference on P not to be too misleading. Consider the following utility function:

𝑢((𝑎, 𝑇), \) =


−𝑐1, if 𝑎 = 1

−𝑐2(1 − 1{\∈𝑇}) − 𝑐3 1{\∈𝑇} 𝑑 (\,Θ0), if 𝑎 = 0.
(2.5)

The constant 𝑐1 > 0 denotes the cost for the DM of rejecting the null hypothesis and foregoing

any claim of identification. This represents the opportunity cost of not performing inference on P.

On the other hand, if the DM accepts the null hypothesis she incurs cost 𝑐2 when the true parameter

is not in the tolerance region, and a cost proportional to the distance between the true parameter

and the identified set otherwise. If the statistician accepts the null hypothesis, 𝑐2 is the disutility of

the true parameter being intolerably far from identification, while 𝑐3 is the marginal disutility of

the distance between the true parameter P and the nearest identified parameter. When following the

classical approach of assigning the null hypothesis a privileged status, we assume that 𝑐1 > 𝑐2 > 0

and 𝑐3 > 0. The following result states that the test procedure in Definition 11 can arise as the

optimal decision rule for the Bayesian statistical decision problem (𝑢, 𝐴, 𝜋).

Theorem 7. Let 𝜋 ∈ Δ(Θ) be a prior probability distribution. Then, the preferences that are

represented by (𝑢, 𝜋) satisfy the MRA axioms, Mixture Independence and Monotone Continuity∗

(see Section 1.5).

Moreover, any optimal decision rule 𝛿∗ : Θ → 𝐴 for (𝑢, 𝜋), defined as

𝛿∗(𝑝) = (𝑎(𝑝), 𝑇 (𝑝)) ∈ arg max
{𝛿:Θ→𝐴}

E𝜋 [𝑢(𝛿(𝑝), \)],

satisfies, for all 𝑝 ∈ Θ,

𝑇 (𝑝) = {\ ∈ Θ : 𝑑 (\,Θ0) ≤ Y} ;
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𝑎(𝑝) =


1, if 𝑃𝑟 (𝑑 (\,Θ0) ≤ Y |𝑝) < 𝛼(Y, 𝑝)

0, otherwise,

where Y =
𝑐2
𝑐3

and 𝛼(Y, 𝑝) = 1 −
𝑐1
𝑐3
−
∫
𝑇
𝑑 (\,Θ0)𝜋(\ |𝑝)d\

Y
.

Note that Theorem 7 has interesting implications for the choice of Y and 𝛼. First, Y should

not depend on the realized sample. This is intuitive, since the tolerance region is a measure

of the degree of identifiability of the true model, not depending on any properties of the data

generating process. On the other hand, the choice of 𝛼 does depend on 𝑝, through the integral∫
𝑇
𝑑 (\,Θ0)𝜋(\ |𝑝)d\. This is somewhat unusual, but note that the integral in question can be nu-

merically approximated, given Y > 0, by sampling from the posterior distribution and calculating

the distance, similarly to the procedure described above. Moreover,
∫
𝑇
𝑑 (\,Θ0)𝜋(\ |𝑝)d\ ≤ Y for

all 𝑝, so a good rule of thumb is to take 𝛼(Y) = 2 − 𝑐1
𝑐2

, especially when Y is small.

2.4.2 Estimation

When (Q,𝚲) are identified, the approximate non-negative matrix factorization of the sample

matrix is a consistent estimator for the discretized latent parameters.

Theorem 8. Suppose 𝑃 has a discretization P with a unique stochastic factorization (Q∗,𝚲∗) and

let

(Q̂𝑛, �̂�𝑛) ∈ arg min

{
∥P̂𝑛 − Q𝚲∥2 : ∀𝑖, 𝑗 , 𝑘,

𝐼∑︁
𝑙=1

Q𝑙𝑘 =

𝐾∑︁
𝑙=1

𝚲 𝑗 𝑙 = 1 and Q𝑖𝑘 ,𝚲𝑘 𝑗 ≥ 0

}
, (2.6)

where ∥ · ∥2 denotes the Frobenius norm. Then, (Q̂𝑛, �̂�𝑛)
𝑝
−→ (Q∗,𝚲∗) as 𝑛→ ∞.

The proof of Theorem 8 is a direct application of consistency results for extremum estimators,

and will be ommitted. If we take increasingly finer partitions C 𝑛 ofY×X as 𝑛 grows, where |C 𝑛 | =

𝑚𝑛 and 𝑚𝑛

𝑔(𝑛) → 0 for some concave function 𝑔 which depends on the non-parametric estimator of
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𝑃, we obtain (Q̂𝑛, �̂�𝑛)
𝑝
−→ (𝑄, _). Therefore, by taking increasingly finer discretizations of 𝑃, one

obtains a consistent estimator for (𝑄, _).

Up until this point, I assumed that the number of types 𝐾 was known. However, this parameter

can also be estimated from the data. In fact, note that if 𝑃 satisfies model (2.1) with 𝐾 components,

then for a fine enough partition C , P has rank 𝐾 . Thus to consistently estimate the number of

types, we need only estimate the rank of P. Fortunately, such estimators have been studied in the

literature, including in a recent paper by Chen and Fang (2019).

Putting everything together, I propose the following estimation procedure for (𝑄, _):

1. Non-parametrically estimate 𝑃 from an i.i.d sample of size 𝑛 and discretize it to obtain the

estimate P̂𝑛. Let P̂ be an 𝐼 × 𝐽 matrix.

2. Estimate the rank of 𝑟 of P by applying the estimator 𝑟𝑛 in Chen and Fang (2019). Let

𝐾 = 𝑟𝑛.

3. Apply the test in Definition 11 assuming 𝐾 latent types.

4. If 𝐻0 can not be rejected, estimate (𝑄, _) using the approximate non-negative matrix factor-

ization (2.6).

2.5 Discussion

This paper presents a condition which guarantees identifiability of finite mixture models, as-

suming there exists an instrumental variable which shifts only the mixture weights. Unlike previous

results, this sufficient condition is stated in terms of properties of the observable mixture distribu-

tion alone. This fact allowed me to devise a formal statistical test, which can be applied before

estimating the component distributions and weights, to assess the identifiability of the hidden pa-

rameters. The test makes use of a prior on a discretized version of the mixture distribution, and

is in fact a formal Bayes test, in the sense that it arises as the Bayes decision rule of a statistical

decision problem.
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The approach to identification and inference presented here relies on discretizing the mixture

distribution. If the outcome random variable is already discrete — as is the case, for instance, in

many data sets obtained from laboratory experiments — no additional complications are imposed

by the procedures described in the paper. However, in applications where outcomes are drawn

from a continuous random variable, the discretization must be done carefully.

If we take an excessively fine partition, there will be large variance in the estimated mixture

distribution. On the other hand, if the partition is too coarse, the estimator will be biased. In both

cases, the proposed test is liable to inflate the probability of type I error. One possible solution

would be to start with a very fine discretization, and proceed to sum all the rows and columns of the

resulting matrix that have zeros is the same positions, thus obtaining the coarsest discretization that

preserves the original sparsity pattern. However, this heuristic alone does not solve the problem,

and could itself create other issues. A fruitful avenue of future research is to develop bandwidth

selection criteria tailored to the mixture model discretization problem.

Since the test of identification proposed in Section 2.4 only makes use of a sufficient, but not

necessary condition, it will tend to understate the evidence in favor of the hypothesis that the model

is identified. Therefore, it would be desirable to assess the false rejection probability of the test

in situations where the model is known ex ante to be identified. This could be done by means of

simulations: since the necessary and sufficient conditions for identifiability in terms of the hidden

parameters are known, it is easy to simulate data from identified models and obtain the rejection

probability of the test for such models. This could be used to fine tune the parameters of the test to

obtain the desired false rejection probability.
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Chapter 3: Statistical Mechanism Design: Robust Pricing and Reliable

Projections

Joint work with Duarte Gonçalves

3.1 Introduction

When facing uncertainty about consumers’ willingness-to-pay, pricing and projections are two

central elements of a firm’s business plan. As the profitability of any pricing strategy is uncertain,

it may be desirable to pursue strategies that provide revenue guarantees for the firm. On the other

hand, firms often depend on projections about their future revenue under different scenarios to

inform budget planning, inventory management, capital investments, and more. Consequently,

they need to be able not only to consistently estimate their expected profits but also to have reliable

confidence bounds. While pricing and projections are conceptually intertwined, these can and are

often considered separately.

In this paper, we propose a data-based approach to tackle both these issues. In our setup, the

firm faces uncertainty about the true distribution of consumers’ types in the otherwise canonical

setup of Maskin and Riley (1984). As is standard, we allow the firm to design mechanisms – pairs

of prices and quantities – though our results also hold in the more restrictive setting of uniform

pricing. However, differently from what is typically assumed in the robust mechanism design

literature, instead of holding precise information about features of the distribution of consumers’

willingness-to-pay, we assume the firm observes a finite sample drawn from this distribution.

Our contribution is twofold. First, we study a specific pricing strategy, the empirically optimal

mechanism, and its finite sample robustness properties. Second, we provide a toolkit to perform
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statistical inference on the profit obtained for any arbitrary mechanism, including the empirically

optimal one, enabling a data-based approach to the evaluation and comparison of different pricing

strategies.

Empirically optimal mechanisms are constructed in a simple and intuitive manner. Fixing

any given distribution of consumer types, we start by obtaining a mechanism that is optimal for

that distribution. This mapping from distributions to optimal mechanisms is then coupled with a

consistent estimator for the true distribution. Hence, empirically optimal mechanisms maximize

expected profit when the estimate is taken to be the true distribution. Importantly, this class of

menus relies on a fully nonparametric, prior-free estimator of the type distribution.

We show that mechanisms constructed in this manner are asymptotically optimal, achieving

the optimal profit with probability one as the sample size grows. Moreover, empirically optimal

mechanisms are robust in the spirit of Bergemann and Schlag (2011), that is, small perturbations

of the estimated distribution, induced by changes in the underlying data, do not affect the firm’s

expected profits. This follows from establishing Lipschitz continuity of the firm’s value function

in the distribution.

Empirically optimal mechanisms also entail strong probabilistic guarantees for both profit and

regret – the difference between the optimal expected profit and the expected profit that a mechanism

delivers under the true distribution – and we characterize how these relate to the sample size.

For any given finite sample size, we obtain a probabilistic lower bound for expected profit and a

probabilistic upper bound for regret. Crucially, these bounds are not asymptotic and depend only

on known constants. These results are then used to establish how many samples the firm needs,

from an ex-ante perspective, to obtain probabilistic bounds on expected profit and on maximal

regret. Our findings are related to the growing literature on sample-based revenue guarantees (see

e.g. Cole and Roughgarden 2014; Huang, Mansour, and Roughgarden 2018; Guo, Huang, and

Zhang 2020), as we provide a non-asymptotic lower bound on sampling requirements for profit

and regret guarantees.

We then provide tools for estimating expected profit and reliably conducting inference, not
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only for a mechanism that is empirically optimal given an estimate of the distribution, but for any

fixed mechanism. We derive an estimator for expected profit that is consistent and unbiased, and,

when appropriately rescaled, asymptotically normal. Further, we note the validity of a bootstrap

implementation to conducting inference.

This approach enables estimation of the expected profit that any given mechanism attains for

purposes such as budgeting, regardless of the criteria that guided the choice of the mechanism.

Moreover, the ability to conduct data-based inference on the expected profit also expands the crite-

ria that can be used to select a mechanism, namely by considering probabilistic revenue guarantees

given by confidence intervals, by testing which in a set of alternative mechanisms achieves a higher

expected profit, or by directly analyzing the distribution of the difference in profit between any two

mechanisms. As such, this methodology of estimation and inference applies generally and opens

up a new, data-based approach to deriving robust revenue guarantees.

In particular, we show how empirically optimal mechanisms can be used to estimate and con-

duct inference on the optimal expected profit, that is, the maximum expected profit that could be

obtained were the firm to know the true distribution. Conducting inference on the optimal expected

profit is useful for two reasons. First, as regret considerations constitute a standard criterion in the

literature for selecting among competing mechanisms and as regret, by its definition, depends on

knowledge of the optimal expected profit, a means to consistently estimate and conduct inference

on the latter will enable the same for the former. Second, the maximum achievable profit can itself

be an object of interest when, for instance, comparing the expected return of alternative investment

possibilities.

While consistency of our suggested estimator follows from our results on asymptotic optimal-

ity of empirically optimal mechanisms, its asymptotic normality follows from a novel envelope

theorem for the firm’s value function. In other words, we show that the value function is Fréchet

differentiable in the distribution of consumer types and that its Fréchet derivative equals that of

the profit function at the empirically optimal mechanism. With Fréchet differentiability in hand, a

Delta method for statistical functionals applies, and asymptotic normality of our estimator ensues.
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We then again consider bootstrap implementations for conducting inference.

To study the finite sample properties of the proposed estimators, we conduct Monte Carlo

simulations of their bootstrap implementation for the standard specification of sale of an indivisible

good. We perform this exercise for the expected profit of a given mechanism as well as for the

optimal profit. The evidence shows that the empirical coverage of our estimators approximates

well the associated confidence intervals, even with relatively few samples.

Finally, we illustrate how our results on empirically optimal mechanisms partially extend to an

auction setting. We consider the case where the firm auctions a single item to a finite number of

risk-neutral bidders with independent private values drawn from the same distribution. In particu-

lar, analog versions of asymptotic optimality and profit and regret guarantees are shown to hold in

this setting as well.

Empirically optimal mechanisms correspond to one of the simplest forms of statistically in-

formed mechanism design: observing a sample, estimating a distribution, and implementing a

mechanism that is optimal for the estimated distribution. As we demonstrate, this extremely sim-

ple mechanism not only has sound revenue guarantees, but also allows practitioners to estimate

the maximum profit attainable. Our results on estimation of the expected profit enable designers to

construct confidence intervals and perform hypothesis testing, constituting a useful tool for prac-

titioners and empiricists. From a theoretical perspective, we hope our data-based perspective on

robust mechanism design proves useful in the broader study of mechanism design under model

uncertainty.

A brief outline of the paper is as follows. Section 3.2 places the paper within the existing

literature. Section 3.3 introduces the main theoretical framework. In Section 3.4, we define our

class of empirically optimal mechanisms and examine some of their main properties: asymptotic

optimality and profit guarantees. After exploring this particular class of mechanisms, in Section 3.5

we turn to the question of providing a statistical toolkit to estimate and conduct inference on

profit, including optimal expected profit. Section 3.6 illustrates an extension of our results to the

auction setting with independent private values. Finally, we conclude with a discussion of specific
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suggestions for further work in Section 3.7. All omitted proofs are included in Chapter C.

3.2 Related Literature

The most directly related literature studies robust mechanism design with a monopolist who has

perfect knowledge not about the whole distribution as in the more standard models (e.g. Maskin

and Riley, 1984), but only about some features of this distribution. With such information, the firm

can then narrow down the set of possible distributions to consider and adopt a pricing strategy that

maximizes the worst-case profit or minimizes the worst-case regret. This approach tries to address

the concern that the optimal mechanism is not robust to the firm having less than exact information

on the distribution of consumers’ willingness-to-pay, in line with the general research program of

robust mechanism design.

The papers in this literature closest to ours are Bergemann and Schlag (2008; 2011) and Car-

rasco et al. (2018a). These papers model a firm that does not know the distribution of consumer

types, but has access to imperfect information that allows it to refine the set of possible distribu-

tions. Focusing on a linear specification, they assume the firm acts as if it faces an adversarial

nature that chooses a distribution to maximize regret.1 Bergemann and Schlag (2008) assume that

the firm knows only an upper bound for the support; Bergemann and Schlag (2011) study the case

where the firm also knows that the true distribution of consumers’ willingness-to-pay is in a given

neighborhood of a given target distribution; Carrasco et al. (2018a) posits that the firm knows ei-

ther the first moment and an upper bound for the support of the distribution,2 or the first two or

three moments of the distribution.

These papers then characterize the regret-minimizing mechanisms, whereby the firm hedges

against uncertainty by randomizing over prices. In contrast, we assume that the firm does not

know specific features of the distribution but instead has access to a sample drawn from the true

distribution, from which these features could potentially be estimated and upon which an empirical
1Bergemann and Schlag (2011) also consider the case where nature minimizes profit and show the firm chooses a

deterministic uniform pricing rule.
2This is also the case in a closely related paper, Carrasco et al. (2018b), where the assumptions on consumer’s

utility function of linearity in quantity and on linearity of the firm’s cost are relaxed.
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version of these mechanisms could be implemented. Our analysis shows that, in addition to its

other desirable properties, the empirically optimal mechanism generates nearly minimal maximum

regret in the sense of these papers.

In another closely related paper, Madarász and Prat (2017) allow for a firm that is uncertain over

both the distribution of types and the functional form of consumers’ utility functions, while at the

same time endowing the firm with a possibly misspecified benchmark model of consumer demand.

They provide a uniform bound on regret that depends on the distance between the firm’s benchmark

model and the truth, where the measure of distance between models is related to the largest absolute

value of the difference of willingness-to-pay across all possible types and quantities. Instead of

looking at the worst-case scenario solution, the authors show that adjusting the pricing strategy

that is optimal for the misspecified model in a specific manner involving this distance leads to a

uniform bound on regret.

The present study takes a similar approach to Segal (2003), in that both papers determine the

optimal mechanism from an estimate of the distribution function. While we focus on issues of

estimation and inference, Segal (2003) is concerned with designing a mechanism that makes opti-

mal use of the information contained in consumers’ reported valuations. This optimal mechanism

implements a bidding system in which consumers receive the good if their bid is above a thresh-

old price that depends on others’ bids. This induces consumers to reveal their own type while

simultaneously allowing the firm to use others’ bids to infer the distribution. The paper shows that

as the number of consumers increases, profits converge to the optimal profit with a known type

distribution, and discusses rates of convergence. However, the dependency of the optimal price

on others’ valuations forces the imposition of strong assumptions on the estimated distribution

function, rendering non-parametric methods problematic. Our framework, on the other hand, is

singularly suited to rely on non-parametric estimation of and inference on the type distribution

and does not require consumers to directly communicate their types.3 Furthermore, we believe

3For instance, the sample may be obtained by implementing revealed-preference elicitation techniques. An exam-
ple would be providing a menu that corresponds to a direct mechanism inducing perfect discrimination between all
possible types – where the quantity is a strictly increasing function of the type – and infer consumers’ types from their
choices. This would then be incentive compatible if consumers are myopic, the good is durable or if it is possible to

72



that a key product of our paper is its novel toolkit for conducting inference and obtaining revenue

guarantees for any mechanism.

Our work is also related to the literature on sample complexity. Huang, Mansour, and Rough-

garden (2018) deals with the case where the firm observes independent samples from the unknown

true type distribution and consumers have quasilinear-linear utility functions as above. The au-

thors provide probabilistic asymptotic bounds on the number of samples from the true distribution

of consumers’ valuations that are necessary to achieve a share of 1 − Y of the optimal profit. Sim-

ilarly, our sample complexity results provide non-asymptotic sample upper bounds for regret and

profit for specific mechanisms, but for the more general class of utility functions. Fu, Haghpanah,

and Hartline (2020), in an auction setup, characterize the number of samples from the true dis-

tribution of bidders’ types that are necessary for the designer to achieve full surplus extraction.

Opposite to this paper, their type space is finite and the unknown distribution of types belongs to

a finite set of joint distributions over all the bidders’ values such that the types are correlated in a

specific manner.

Finally, our paper is complementary to the extensive econometrics literature on identification

and estimation of mechanism design models. Such papers usually treat profits as observable and

try to identify the underlying distribution of consumer types. For example, Athey and Haile (2002)

studies the identification of buyers’ type distributions and information structures in standard auc-

tion models; Agarwal and Somaini (2018) estimate the demand of students for different schools

when the selection mechanism provides incentives to misreport their types; and Einav, Jenkins,

and Levin (2012) estimate demand under adverse selection in credit markets with screening mech-

anisms. In contrast, the current paper takes as input a consistent estimator of the distribution of

consumer types, and provides tools to perform statistical inference on both the optimal profit and

the profit from any given mechanism. Therefore, the empirical mechanism design literature could

provide a methodology to obtain an appropriate consistent estimator of consumer types, to be used

as an input to our model.

exclude them from future purchases.
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3.3 Setup

Let Θ := [\
¯
, \̄] ⊂ R, denote the set of feasible consumer types, which are distributed according

to the cumulative distribution 𝐹0 ∈ F, where F corresponds to the set of all distributions on Θ

endowed with the supremum-norm ∥ · ∥∞, i.e., ∥𝐹∥∞ := sup𝑡∈R |𝐹 (𝑡) | for all 𝐹 ∈ F. Consumers’

utility is given by 𝑢(\, 𝑥, 𝑝) = 𝑣(\, 𝑥) − 𝑝, where \ is the consumer’s type, 𝑥 ∈ 𝑋 := [0, 𝑥] denotes

quantity and 𝑝 ∈ R+ price. We assume that 𝑣 is twice continuously differentiable, concave in 𝑥,

supermodular, 𝑣(\
¯
, 𝑥) = 𝑣(\, 0) = 0 for all \ and 𝑥, increasing in both arguments and, wherever

strictly positive, strictly so.

The firm can choose a menu or mechanism 𝑀 from the set M of all compact menus 𝑀′ ⊂

𝑋 × R+ containing the element (0, 0). These comprise pairs of quantity and prices that the con-

sumers can choose, with the option of consuming nothing being always available. We impose the

further restriction that if (𝑥, 0) ∈ 𝑀′, then 𝑥 = 0; that is, the firm does not give away strictly

positive quantities of the good for free.4 The firm incurs a twice differentiable, convex and strictly

increasing cost for quantity sold, 𝑐 : 𝑋 → R, where 𝑐(0) = 0. When choosing menu 𝑀 ∈ M

subject to a distribution 𝐹 ∈ F of consumer types, the firm’s expected profit 𝜋(𝑀, 𝐹) is given by

𝜋(𝑀, 𝐹) :=
∫

𝑝(\) − 𝑐 (𝑥(\)) 𝑑𝐹 (\)

for some (𝑥(\), 𝑝(\)) ∈ arg max(𝑥,𝑝)∈𝑀 𝑢(\, 𝑥, 𝑝), with ties broken in favor of the firm.

Our setup encompasses many of the variations in the literature,5 being mostly the same as that

in the one buyer version of Myerson (1981) and Maskin and Riley (1984), except that there 𝑐 is

assumed to be linear and F corresponds to the distributions with a strictly positive density. Mussa

and Rosen (1978), instead, assume that 𝑣(\, 𝑥) = \ · 𝑥 and specify 𝑐 to be strictly convex. In

Bergemann and Schlag (2011) and Carrasco et al. (2018a), 𝑣(\, 𝑥) = \ · 𝑥 and F is a subset of

4This restriction facilitates Section 3.5’s inference exercise for an arbitrary fixed menu and is without loss of
revenue from the firms’ perspective.

5It does not include, for instance, the case where the firm’s cost depends directly on the consumers’ type as in
Example 4.1 in Toikka (2011).
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distributions that satisfy some pre-specified conditions.

We consider the case where neither the firm nor the consumers know the true distribution of

types, 𝐹0 ∈ F, which motivates the choice of dominant strategies as our solution concept. Instead,

the firm has access to a sample 𝑆𝑛 = (\𝑖, 𝑖 = 1, ..., 𝑛) ∈ Θ𝑛, 𝑛 ∈ N, where each \𝑖 is independently

drawn from 𝐹0. This gives rise to the problem of selecting a menu depending on the realized

sample. Let S denote the set of all samples, S :=
⋃
𝑛∈NΘ

𝑛. A sample-based mechanism is then

a mapping 𝑀𝑆 : S → M , which selects a specific menu depending on the realized sample.

The robust mechanisms mentioned earlier can easily be adjusted to incorporate the information

in the sample in order to estimate the features of the distribution that they assume to be known. For

example, given a particular sample 𝑆𝑛, the firm can then estimate the support of the true distribu-

tion and implement the mechanism given in Bergemann and Schlag (2008). Alternatively, it can

estimate the first few moments of the true distribution and implement the mechanism in Carrasco

et al. (2018a). A natural question is then whether, given sampling uncertainty, these sample-based

mechanisms would exhibit probabilistic robustness properties akin to the deterministic ones that

hold when these features are perfectly known. This question is relevant in practice, since any in-

formation about an unknown distribution is usually obtained from finite data. We therefore take

a more direct and, arguably, simpler approach that makes full use of the sample itself to “learn”

about the underlying true distribution and inform mechanism choice.

3.4 Empirically Optimal Mechanisms

In this section, we introduce the class of empirically optimal mechanisms. This class of mech-

anisms is defined by two elements: an estimator of the true distribution and a mapping that takes

each estimated distribution to a menu that would be optimal were the estimate to coincide with the

true distribution.6

Let F̂ denote the set of estimators that are consistent for 𝐹0, that is, the set of estimators �̂� such
6Note that, if the seller did have a prior, ` ∈ Δ(Δ(Θ)), over the set of possible distributions, it would still

be sufficient to consider only the expected distribution according to the seller’s posterior, E` [𝐹 |𝑆𝑛] ∈ F , in or-
der to determine which mechanism to choose. That is, due to linearity of the profit function on the distribution,
max𝑀∈M E` [𝜋(𝑀, 𝐹) |𝑆𝑛] = max𝑀∈M 𝜋(𝑀,E` [𝐹 |𝑆𝑛]).
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that (i) �̂� : S → F ; and (ii) ∥�̂� (𝑆𝑛) − 𝐹0∥∞
𝑝
→ 0, for any 𝐹0 in F. Let 𝑀∗ : F → M be a fixed

selection from the set of optimal menus for every distribution, that is, ∀𝐹 ∈ F, 𝑀∗(𝐹) ∈ M ∗(𝐹) :=

arg max𝑀∈M 𝜋(𝑀, 𝐹). An empirically optimal mechanism �̂�∗ is a sample-based mechanism that

simply joins together a consistent estimator and a selection from the set of optimal menus, that is,

�̂�∗ = 𝑀∗ ◦ �̂�. We refer to the set of empirically optimal mechanisms as M̂ ∗.

While extremely simple, nothing ensures us that such a sample-based mechanism is either

well-defined in general environments or that it constitutes a reasonable approach to pricing under

uncertainty. The purpose of this section is to address these issues and show that this “naive”

approach to pricing delivers several desirable properties including strong probabilistic robustness

guarantees.

3.4.1 Existence

In order to show that the set of empirically optimal mechanisms M̂ ∗ is nonempty, we start by

briefly noting that an optimal menu exists for any distribution 𝐹 ∈ F, that is, M ∗(𝐹) ≠ ∅ for all

𝐹 ∈ F. We include a formal proof of this statement in the appendix.

Since this implies that a selection 𝑀∗ : F → M such that 𝑀∗(𝐹) ∈ M ∗(𝐹) exists and as

there are consistent estimators for any 𝐹0 ∈ F, the set of empirically optimal mechanisms M̂ ∗ is

nonempty. An example of a consistent (and unbiased) estimator for 𝐹0 is the empirical cumulative

distribution, defined as �̂� (𝑆𝑛) (\) = 1
𝑛

∑𝑛
𝑖=1 1{\𝑖≤\}, which, for any 𝐹0 ∈ F , has a uniform rate

of convergence, that is, ∥�̂� (𝑆𝑛) − 𝐹0∥∞
𝑝
→ 0 (in fact, by the Glivenko–Cantelli theorem, uniform

convergence occurs almost surely).

Note that under some specific conditions, an exact characterization of the set of optimal menus

is known. For instance, if 𝑣(\, 𝑥) = \ · 𝑥 and 𝑐(𝑥) = 𝑐 · 𝑥, it is well-known that any op-

timal mechanism is 𝐹-almost everywhere equal to an indicator function 1{𝑝∗≥\}, where 𝑝∗ ∈

arg max𝑝∈supp(𝐹) (𝑝 − 𝑐) ·
∫

1{𝑝≥\}𝑑𝐹 (\). Such an explicit solution simplifies the problem of char-

acterizing empirically optimal mechanisms dramatically. When, instead, 𝑣 is multiplicatively sep-

arable, and 𝐹0 is absolutely continuous and has convex support, any optimal mechanism is almost
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everywhere equal to pointwise maximization of the ironed virtual value as shown in Toikka (2011).

Hence, the problem of characterizing empirically optimal mechanisms can be made computation-

ally tractable by ensuring not only consistency, but also absolutely continuity and convex support

of estimates �̂� (𝑆𝑛). Although the empirical cumulative distribution is not absolutely continuous,

one such estimator �̂� can be easily obtained by adopting any smooth interpolation of the empir-

ical cumulative distribution, for example a linear interpolation, a cubic spline or an interpolation

relying on Bernstein polynomials.7

3.4.2 Asymptotic Optimality

Having defined our class of empirically optimal mechanisms, we establish in this section that

they are asymptotically optimal: the realized expected profit given the mechanism converges in

probability to the optimal expected profit as the sample size grows.

Such convergence is not guaranteed for arbitrary sample-based mechanisms, even for those

that have desirable robustness properties, as it requires that the sample-based mechanism makes

full use of the sample. For instance, if the mechanism relies only on statistics such as estimates

for a finite number of moments or the support of the distribution, then it is immediate that it will

not, in general, converge in probability to the optimal expected profit. Relying on an estimator for

the true distribution itself (an infinite-dimensional parameter) is then key to obtaining asymptotic

optimality.

We start by making an important observation:

Lemma 7. For any 𝑀 ∈ M , 𝜋(𝑀, 𝐹) is Lipschitz continuous in 𝐹 ∈ F, with a Lipschitz constant

𝐿 that does not depend on 𝑀 .

We defer the proof to the appendix, but highlight the main steps here. The proof of Lemma 7

first makes use of the revelation principle to focus on the elements of any arbitrary menu that are

payoff relevant, as these are given by a bounded non-decreasing function, and hence of bounded
7In the appendix, we provide a simple proof for the fact that linear interpolations retain the uniform convergence

(and therefore consistency) properties of the empirical distribution. See Babu, Canty, and Chaubey (2002) and Leblanc
(2011) for details on interpolation of the empirical cumulative distribution using Bernstein polynomials.
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variation. Then, we appeal to a result that provides an upper bound on Riemann–Stieltjes integrals

of functions of bounded variation to obtain the result. In particular, we find a Lipschitz constant of

at most

𝐿 = 2
(
𝑣(\̄, 𝑥) + (\̄ − \

¯
) · max

\ ′∈Θ
𝑣1(\′, 𝑥) + 𝑐(𝑥)

)
.

For every 𝐹 ∈ F, define the firm’s value function as

Π(𝐹) := sup
𝑀∈M

𝜋(𝑀, 𝐹).

Lemma 7 leads to a further result, this time regarding (Lipschitz) continuity of the value function:

Lemma 8. Π is Lipschitz continuous, with Lipschitz constant 𝐿.

Proof: For any 𝐹, 𝐺 ∈ F,

|Π(𝐹) − Π(𝐺) | =
���� sup
𝑀∈M

𝜋(𝑀, 𝐹) − sup
𝑀∈M

𝜋(𝑀,𝐺)
����

≤ sup
𝑀∈M

|𝜋(𝑀, 𝐹) − 𝜋(𝑀,𝐺) | ≤ 𝐿 · ∥𝐹 − 𝐺∥∞ □

Finally, the desired result of asymptotic optimality of our class of empirically optimal mecha-

nisms follows immediately:

Proposition 8. Let �̂�∗ be an empirically optimal mechanism given by �̂�∗ = 𝑀∗ ◦ �̂�. Then,

|𝜋(�̂�∗(𝑆𝑛), 𝐹0) − Π(𝐹0) |
𝑝
→ 0.

Proof: By Lemmas 7 and 8,

|𝜋(�̂�∗(𝑆𝑛), 𝐹0)−Π(𝐹0) | ≤ |𝜋(�̂�∗(𝑆𝑛), 𝐹0) − 𝜋(�̂�∗(𝑆𝑛), �̂� (𝑆𝑛)) | + |𝜋(�̂�∗(𝑆𝑛), �̂� (𝑆𝑛)) − Π(𝐹0) |

≤ 𝐿 · ∥�̂� (𝑆𝑛) − 𝐹0∥∞ + |Π(�̂� (𝑆𝑛)) − Π(𝐹0) | ≤ 2𝐿 · ∥�̂� (𝑆𝑛) − 𝐹0∥∞
𝑝
→ 0. □

Proposition 8 provides a simple justification for using an empirically optimal mechanism to

guide the firm’s pricing strategy: As the sample size grows large, such sample-based mechanisms
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deliver an expected profit close to the optimal one. We stress the minimal informational assump-

tions made. In particular, this result does not depend on the firm knowing the support of the true

distribution 𝐹0 ex ante, as the empirically optimal mechanism is defined making use only of the

estimated cumulative distribution and there are consistent estimators that require no assumptions

on (and in fact, asymptotically learn) the support of 𝐹0. Moreover, as Π(𝐹0) − 𝜋(�̂�∗(𝑆), 𝐹0) ≤

2𝐿∥�̂� (𝑆) − 𝐹0∥∞, we conclude that empirically optimal mechanisms are robust in a sense akin to

Bergemann and Schlag (2011), since for any Y > 0, samples inducing ∥�̂� (𝑆) − 𝐹0∥∞ < Y imply

that Π(𝐹0) − 𝜋(�̂�∗(𝑆𝑛), 𝐹0) ≤ 2𝐿Y.

3.4.3 Robustness Properties

While some sample-based implementations of existing robust mechanisms would not be asymp-

totically optimal, it is possible that others would. Thus, an obvious question is: Do empirically

optimal mechanisms provide robustness guarantees with finite samples that render them especially

appealing? In this section, we argue that this is indeed the case.

Robustness properties of mechanisms regard the worst-case scenarios. The existing literature

has focused on two main properties. One corresponds to the worst-case profit that the firm can

expect given that the true distribution lies in a specific set 𝐴 ⊆ F . This is in part motivated

by appealing to the characterization of preferences exhibiting ambiguity aversion by Gilboa and

Schmeidler (1989b), which entails a maxmin representation, whereby the decision-maker (here,

the firm) evaluates each act (mechanism) by assuming the worst-case payoff. The robustness of a

specific mechanism according to this criterion is then given by the lower bound on expected profit

it can attain, min𝐹∈𝐴 𝜋(𝑀, 𝐹). The second robustness criterion that has been considered in the

literature depends on the notion of regret: How much profit the firm may be forgoing by committing

to mechanism 𝑀 when the true distribution is 𝐹0, that is, 𝑅(𝑀, 𝐹0) := Π(𝐹0) − 𝜋(𝑀, 𝐹0).

A simple implication of Lemmas 7 and 8 is that we can immediately obtain probabilistic bounds

on regret and on how far the realized expected profit may be from the profit the firm expects to

obtain given its estimated distribution.
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Proposition 9. Let �̂�∗ = 𝑀∗ ◦ �̂� be an empirically optimal mechanism. Suppose that �̂� ∈ F̂ is

such that ∀𝑆𝑛 ∈ S , P(∥�̂� (𝑆𝑛) − 𝐹0∥∞ > 𝛿) ≤ 𝑝(𝑛, 𝛿) for some function 𝑝 : N × R+ → [0, 1].

Then,

(i) P
(
|𝜋(�̂�∗(𝑆𝑛), �̂� (𝑆𝑛)) − 𝜋(�̂�∗(𝑆𝑛), 𝐹0) | > 𝛿

)
≤ 𝑝(𝑛, 𝛿/𝐿); and

(ii) P
(
𝑅(�̂�∗(𝑆𝑛), 𝐹0) > 2𝛿

)
≤ 𝑝(𝑛, 𝛿/𝐿),

where 𝐿 denotes the Lipschitz constant from Lemma 7.

While Proposition 9 is a trivial observation, it enables the firm to obtain strong, non-asymptotic

probabilistic bounds on both profit and regret whenever basing an empirically optimal mechanism

on an estimator �̂� with specific properties. Whenever the firm knows an upper bound \̄ for the

support of the true distribution, 𝐿 can be obtained in a way that depends exclusively on known

constants and these probabilistic profit and regret guarantees can be computed explicitly. The next

two examples illustrate how this result can be applied by focusing on estimators �̂� with well-known

properties, such as the empirical cumulative distribution and smooth interpolations of it.

Example 9: Let �̂�∗ = 𝑀∗ ◦ �̂� be any empirically optimal mechanism such that �̂� denotes the

cumulative distribution estimator. By the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky,

Kiefer, and Wolfowitz, 1956) with Massart’s (1990) constant, we have that

P(∥�̂�𝑛 − 𝐹0∥∞ > 𝛿) ≤ 2 exp
(
−2𝑛𝛿2

)
and hence 𝑝(𝑛, 𝛿) = 2 exp

(
−2𝑛𝛿2) . Then, Proposition 9 applies and we can obtain regret lower

than 2𝛿 with probability of at least 1 − 𝑝(𝑛, 𝛿) and a confidence bound with range 2𝛿 such that

the true expected profit differs from 𝜋(�̂�∗(𝑆𝑛), �̂� (𝑆𝑛)) by less than 𝛿 also with probability greater

than 1 − 𝑝(𝑛, 𝛿).

Example 10: Suppose that F is restricted to the set of absolutely continuous distributions on Θ, of

which 𝐹0 is known to be an element of, and that 𝑣 is multiplicatively separable in \ ∈ Θ and 𝑥 ∈ 𝑋 .

If we were to constrain �̂� (𝑆) to also be absolutely continuous, admitting a strictly positive density

and having convex support, an analytic characterization of 𝑀∗(�̂� (𝑆)) is known, given by pointwise
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maximization of the ironed virtual value given �̂� (𝑆).8 This would then simplify the computational

cost of finding the optimal mechanism. Take �̂� to be any interpolation of the empirical cumulative

distribution that results in a valid distribution function that is absolutely continuous and has convex

support, such as the linear interpolation (see Lemma 27 in the appendix). Note that given that

𝐹0 is atomless by assumption, P (∃𝑘, ℓ ∈ {0, 1, ..., 𝑛 − 1} : 𝑠𝑘 = 𝑠ℓ) = 0 ∀𝑛 ∈ N, and thus the

linear interpolation is well-defined with probability 1. Furthermore, for any such interpolation �̂�,

with probability 1, the estimate given by �̂� (𝑆𝑛) differs from the empirical cumulative distribution

�̂�𝐸 (𝑆𝑛) by at most 1/𝑛 at any given point. Hence,

P(∥�̂� (𝑆𝑛) − 𝐹0∥∞ > 𝛿) ≤ P(∥�̂�𝐸 (𝑆𝑛) − 𝐹0∥∞ + ∥�̂� (𝑆𝑛) − �̂�𝐸 (𝑆𝑛)∥∞ > 𝛿)

≤ P(∥�̂�𝐸 (𝑆𝑛) − 𝐹0∥∞ > 𝛿 − 1/𝑛)

≤ 2 exp
(
−2𝑛(𝛿 − 1/𝑛)2

)
,

where, again, the last inequality follows from the Dvoretzky–Kiefer–Wolfowitz inequality with

Massart’s constant. It follows that 𝑝(𝑛, 𝛿) = 2 exp
(
−2𝑛(𝛿 − 1/𝑛)2) . As �̂� ∈ F̂ , Proposition 9

applies and the regret and confidence bounds obtain.

As this next example shows, under some assumptions on the true distribution 𝐹0 one can even

obtain not only non-asymptotic, but also non-probabilistic regret and confidence bounds.

Example 11: Suppose that it is known that the true distribution 𝐹0 admits a density 𝑓0 with total

variation bounded by 𝐵 < ∞ and has support contained in [0, 1].9 Let 𝑉𝐵 denote the set of all

densities on [0, 1] with total variation bounded by 𝐵. Take any kernel density estimator, given by

𝑓 (𝑆𝑛) (𝑢) = 1
𝑛ℎ𝑛

𝑛∑︁
𝑖=1

𝐾

(
𝑢 − \𝑖
ℎ

)
,

8Toikka (2011) has shown that for any absolutely continuous distribution 𝐹 on Θ with a strictly positive density,
the set of maximizers M ∗ (𝐹) pointwise maximize 𝐽 (\)𝑣(\, 𝑥) − 𝑐(𝑥), where 𝐽 (\) is the ironed version of 𝐽 (\) :=
\ − 1−𝐹 (\)

𝑓 (\) .
9This can be generalized to some closed interval in R.
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where ℎ is a smoothing parameter such that ℎ → 0 as 𝑛 → ∞, \𝑖 denotes the value of observation

𝑖, 𝐾 ≥ 0 and
∫
𝐾 (𝑢)𝑑𝑢 = 1. From theorem 3 in Datta (1992), we know that, for any such kernel

density estimator 𝑓𝑛, one has

sup
𝑓 ∈𝑉𝐵

∥ 𝑓 (𝑆𝑛) − 𝑓 ∥1 ≤ (2𝐵 + 1)𝑘1ℎ +
(
𝑘2
𝑛ℎ

)1/2
,

where 𝑘1 :=
∫
|𝑢 |𝐾 (𝑢)𝑑𝑢 and 𝑘2 :=

∫
𝐾2(𝑢)𝑑𝑢. Define 𝑞(𝑛, ℎ) := (2𝐵 + 1)𝑘1ℎ +

(
𝑘2
𝑛ℎ

)1/2
and let

�̂� (𝑆𝑛) (\) :=
∫

1𝑢≤\ 𝑓 (𝑆𝑛) (𝑢)𝑑𝑢 denote the estimated cumulative distribution.

Note that there are several kernel density estimators available such that

𝑘1 =

∫
|𝑢 |𝐾 (𝑢)𝑑𝑢 < ∞ and 𝑘2 =

∫
𝐾2(𝑢)𝑑𝑢 < ∞,

e.g. if 𝐾 is the uniform kernel, triangle, Epanechnikov, among others.

In order for �̂� to belong to F̂ we need for it to (1) be uniformly consistent and (2) to have com-

pact support. There are several ways to achieve this, namely by relying on a kernel such that∫
|𝑢 |>𝛿 𝐾 (𝑢)𝑑𝑢 = 0 for some finite 𝛿 > 0 – which is satisfied by most of the standard kernels,

namely the ones cited above. For any such kernel, 𝑘1, 𝑘2 < ∞ and ∀𝑆𝑛 ∈ S , supp �̂� (𝑆𝑛) ⊆ Θ is

compact, by choosing lower and upper bounds \
¯
, \̄ appropriately.

Therefore,

∥�̂� (𝑆𝑛) − 𝐹0∥∞ = sup
\∈Θ

���̂� (𝑆𝑛) (\) − 𝐹0(\)
�� = sup

\∈Θ

����∫ 1𝑢≤\
(
𝑓 (𝑆𝑛) (𝑢) − 𝑓0(𝑢)𝑑𝑠

)����
≤ sup

\∈Θ

∫
1𝑢≤\ | 𝑓 (𝑆𝑛) (𝑢) − 𝑓0(𝑢) |𝑑𝑠 ≤ ∥ 𝑓 (𝑆𝑛) − 𝑓0∥1 ≤ 𝑞(𝑛, ℎ),

where ∥ · ∥1 denotes the 𝐿1 norm, i.e. ∥ 𝑓 ∥1 :=
∫
| 𝑓 (𝑢) |𝑑𝑢. It follows immediately that if ℎ → 0

and 𝑛 · ℎ → ∞, ∥�̂� (𝑆𝑛) − 𝐹0∥∞ → 0 and, consequently, �̂� ∈ F̂ . The argument above implies that

𝑅(�̂�∗(𝑆𝑛), 𝐹0) ≤ 𝑞(𝑛, ℎ)/2𝐿;
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|𝜋(�̂�∗(𝑆𝑛), �̂� (𝑆𝑛)) − 𝜋(�̂�∗(𝑆𝑛), 𝐹0) | ≤ 𝑞(𝑛, ℎ)/𝐿.

As such, if 𝑓0 has total variation bounded by 𝐵, we can obtain non-probabilistic bounds on regret

and expected profit when implementing an empirically optimal mechanism based on kernel density

estimation.

Other sample-based mechanisms could potentially yield even stronger robustness properties.

However, for any sample-based mechanism 𝑀𝑆, one has

𝑅(𝑀𝑆 (𝑆𝑛), 𝐹0) − 𝑅(�̂�∗(𝑆𝑛), 𝐹0) = 𝜋(𝑀𝑆 (𝑆𝑛), 𝐹0) − 𝜋(�̂�∗(𝑆𝑛), 𝐹0)

≤ Π(𝐹0) − 𝜋(�̂�∗(𝑆𝑛), 𝐹0) = 𝑅(�̂�∗(𝑆𝑛), 𝐹0).

As the examples above show, choosing �̂� appropriately ensures that P(𝑅(�̂�∗(𝑆𝑛), 𝐹0) > 𝛿) de-

clines exponentially with 𝑛. Hence, the gains in profit and regret guarantees from implementing

alternative pricing policies are modest at best, in a formal sense.

To conclude this section, we note that Proposition 9 can instead be used to determine how

many samples the firm requires in order to obtain specific robustness guarantees when relying on

empirically optimal mechanisms. That is, another reading of Proposition 9 is that the firm only

needs at most 𝑁 samples – where 𝑁 is the smallest integer such that 𝛼 ≥ 𝑝(𝑁, 𝛿/𝐿) – to secure at

most 2𝛿 of regret with probability 1−𝛼. Alternatively, the same 𝑁 samples provide a (conservative)

confidence interval for profit with range 2𝛿 with confidence level of 1 − 𝛼. This results in a non-

asymptotic sample complexity bound for a specific class of sample-based mechanisms. In contrast

to the sample-complexity bounds obtained in Huang, Mansour, and Roughgarden (2018), which

pertain to the share of the optimal profit that the firm is able to secure, 𝑅(𝑀, 𝐹0)/Π(𝐹0), we focus

on bounding regret directly and our bounds are not asymptotic, that is, they hold for finite samples.
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3.5 Inference and Robustness

While the revenue and regret guarantees derived in the previous section are useful, upon observ-

ing a particular sample and deciding on a menu, the firm may want to be able to obtain consistent

projections for the expected profit. In this section, we show how to obtain consistent and unbiased

estimates and conduct inference on the expected profit.

Our results enable unbiased and consistent estimation of and inference on the expected profit

not only of empirically optimal mechanisms but of any given mechanism 𝑀 ∈ M . Moreover,

we show how empirically optimal mechanisms serve a special purpose, in that they can be used

to estimate and conduct inference on the optimal expected profit. With these tools, one can pro-

vide confidence intervals for the expected profit with specific asymptotic coverage for any one

mechanism, calculate probabilistic bounds for regret, or test whether one mechanism yields higher

expected profit than another.

3.5.1 Expected Profit

An immediate consequence of Lipschitz continuity of the firm’s profit function with respect to

the distribution is that, for any mechanism and any consistent estimator of the distribution of types,

one can consistently estimate the expected profit that such a mechanism would generate.

Proposition 10. For any true distribution 𝐹0 ∈ F , consistent estimator �̂� ∈ F̂ , and mechanism

𝑀 ∈ M , we have 𝜋(𝑀, �̂� (𝑆𝑛))
𝑝
→ 𝜋(𝑀, 𝐹0). Moreover, if �̂� is an unbiased estimator such as the

empirical distribution function, E
[
𝜋(𝑀, �̂� (𝑆𝑛))

]
= 𝜋(𝑀, 𝐹0), that is, the plug-in estimator is also

unbiased.

Proof: By Lemma 7, we have that, ∀�̂� ∈ F̂ and ∀𝑀 ∈ M ,

|𝜋(𝑀, �̂� (𝑆𝑛)) − 𝜋(𝑀, 𝐹0) | ≤ 𝐿∥�̂� (𝑆𝑛) − 𝐹0∥∞
𝑝
→ 0 □
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Moreover, if �̂� is an unbiased estimator of 𝐹0, by linearity of 𝜋(𝑀, 𝐹) in 𝐹, we have that

E
[
𝜋(𝑀, �̂� (𝑆𝑛))

]
= 𝜋(𝑀,E

[
�̂� (𝑆𝑛)

]
) = 𝜋(𝑀, 𝐹0).

An important aspect in estimation is the ability to conduct inference. For instance, the firm

could be interested in using statistical inference in order to compare different mechanisms, that is,

to test whether a specific mechanism would deliver a higher expected profit than another. Another

possible application would be to obtain valid confidence intervals for the expected profit under

a particular mechanism, as it is an arguably crucial tool for the development of routine business

activities such as drawing up budgets under different scenarios, with varying degrees of confidence.

While the firm could potentially derive confidence intervals for the expected profit by adjusting

Proposition 9 and example 9 to the mechanism it is considering, these bounds would exhibit two

drawbacks when used for this purpose. First, they require knowledge of \̄, the upper bound on the

type distribution. Second, and more critically, they generally do not provide the correct asymptotic

coverage, that is, they would be exceedingly conservative.

In order to address these drawbacks, we suggest a simple estimation procedure that does yield

asymptotically valid inference. First, we focus on the empirical distribution function as our es-

timator, since it admits a functional central limit theorem (by Donsker’s theorem) when properly

centered and rescaled. Then, because profit is linear and continuous in the type distribution, it is

Fréchet differentiable, with derivative given by ¤𝜋𝑀 (·) = 𝜋(𝑀, ·).10 One can thus obtain the asymp-

totic distribution of our consistent estimator for the expected profit 𝜋(𝑀, �̂� (𝑆𝑛)) by appealing to a

simple functional Delta method result.

Theorem 9. Let �̂� denote the empirical distribution estimator. Then, ∀𝑀 ∈ M , ∀𝐹0 ∈ F ,

√
𝑛
(
𝜋(𝑀, �̂� (𝑆𝑛)) − 𝜋(𝑀, 𝐹0)

) 𝑑→ 𝑁 (0, 𝜎2
𝑀,𝐹0

),
10The Fréchet derivative ¤𝜋𝑀 is defined on the space of functions on Θ of bounded variation endowed with the

supremum-norm. We refer to the appendix for details.
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where 𝜎2
𝑀,𝐹0

:= E
[
( ¤𝜋𝑀 (𝛿\ − 𝐹0))2] = E [(𝜋(𝑀, 𝛿\ − 𝐹0))2] and \ ∼ 𝐹0.

The function 𝛿\ denotes the cumulative distribution associated with a Dirac measure at \, that is,

𝛿\ (𝑥) = 1{𝑥≥\}.

Theorem 9 states that the distribution of the empirical process,

𝐺𝑛 :=
√
𝑛
(
𝜋(𝑀, �̂� (𝑆𝑛)) − 𝜋(𝑀, 𝐹0)

)
,

converges weakly to 𝑁 (0, 𝜎2
𝑀,𝐹0

). A question then arises of how to estimate, in practice, the

asymptotic distribution in a consistent manner, as it depends on the unknown distribution 𝐹0. We

provide two alternatives. One option is the use of a plug-in estimator for 𝜎2
𝑀,𝐹0

. This can be done

directly – as the functional dependence of 𝜎2
𝑀,𝐹0

on 𝐹0 is known and a consistent estimate for 𝐹0 is

readily available –, or by following other plug-in methods as those in Shao (1993). Another option

is to rely on the classical bootstrap to approximate the distribution of 𝐺𝑛 by the distribution of

�̂�𝑛 :=
√
𝑛
(
𝜋(𝑀, �̂� (𝑆𝑛

𝐵
)) − 𝜋(𝑀, �̂� (𝑆𝑛))

)
, conditional on 𝑆𝑛, where 𝑆𝑛

𝐵
denotes the resampling of

𝑛 observations from 𝑆𝑛 with uniform weights. That this approach does in fact consistently estimate

the limiting distribution was shown by Parr (1985b, Theorem 4).

We note that other bootstrap methods would also yield consistent estimates, such as subsam-

pling (bootstrap without replacement) (Politis and Romano, 1994) or Jackknife procedures (Parr,

1985a). Moreover, given that the Fréchet derivative of profit is sufficiently well-behaved, un-

der some smoothness assumptions on the true distribution 𝐹0, smoothed versions of the bootstrap

(Cuevas and Romo, 1997) can also be considered.

3.5.2 Optimal Profit and Regret

We now extend our statistical inference results, highlighting how empirically optimal mecha-

nisms can be used to provide a consistent and asymptotically normal estimator for optimal profit.

Given that the firm’s value function is Lipschitz continuous in the distribution and that empiri-

cally optimal mechanisms attain the optimal profit for a consistent estimate of the true distribution,
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it is easy to see that one can then use them as a tool to consistently estimate the optimal profit that

the firm would obtain, were it to know 𝐹0. We formalize this observation as follows:

Proposition 11. For any true distribution 𝐹0 ∈ F and empirically optimal mechanism �̂�∗ given

by �̂�∗ = 𝑀∗ ◦ �̂�, 𝜋(�̂�∗(𝑆𝑛), �̂� (𝑆𝑛))
𝑝
→ Π(𝐹0).

Proof: Similarly to Proposition 10, we again have that, by Lemma 8, Π is Lipschitz continuous

and therefore,

|𝜋(�̂�∗(𝑆𝑛), �̂� (𝑆𝑛)) − Π(𝐹0) | = |Π(�̂� (𝑆𝑛)) − Π(𝐹0) | ≤ 𝐿∥�̂� (𝑆𝑛) − 𝐹0∥∞
𝑝
→ 0. □

It is less straightforward that one could take an approach to conducting inference on the optimal

profit similar to that derived for fixed mechanisms. Specifically, this would require proving that the

firm’s value function Π is also Fréchet differentiable.11 We confirm that indeed such an approach is

valid by proving an interesting technical result in this generalized Maskin-Riley setup: an envelope

theorem for the firm’s value function. In other words, our next result shows that the value function

is Fréchet differentiable at any distribution 𝐹 ∈ F and that its Fréchet derivative coincides with

that of the expected profit at 𝐹 with the optimal menu for 𝐹.

Theorem 10 (Envelope Theorem). Π is Fréchet differentiable at all 𝐹 ∈ F . Moreover, its

Fréchet derivative at 𝐹 is given by ¤Π𝐹 = ¤𝜋𝑀𝐹
, ∀𝑀𝐹 ∈ M ∗(𝐹).

Then, defining the empirical process �̂�𝑛 :=
√
𝑛
(
Π(�̂� (𝑆𝑛

𝐵
)) − Π(�̂� (𝑆𝑛))

)
, conditional on 𝑆𝑛, an

adapted version of Theorem 9 ensues:

Theorem 11. Let �̂� denote the empirical distribution estimator. Then, ∀𝐹0 ∈ F ,

√
𝑛
(
Π(�̂� (𝑆𝑛)) − Π(𝐹0)

) 𝑑→ 𝑁 (0, 𝜎2
𝐹0
),

11In fact, the now standard functional Delta method requires only the weaker notion of Hadamard differentiability;
see, e.g., Vaart and Wellner (1996, ch. 3.9). However, the stronger notion of Fréchet differentiability has the benefit of
allowing us to bypass the measurability complications that arise when using weaker notions.
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where 𝜎2
𝐹0

= E
[ ( ¤Π𝐹0 (𝛿\ − 𝐹0)

)2
]

= E
[
(𝜋(𝑀𝐹 , 𝛿\ − 𝐹0))2] and \ ∼ 𝐹0. Moreover, �̂�𝑛

𝑑→

𝑁 (0, 𝜎2
𝐹0
).

In this case, opposite to the case of inference under a fixed mechanism, we do not have a valid

(consistent) plug-in estimator for 𝜎2
𝐹0

, which depends on 𝐹0 and, more problematically, also on an

optimal mechanism under the distribution 𝐹0, 𝑀0 ∈ M ∗(𝐹0). An important argument in favor of

a bootstrap approach to estimating the asymptotic distribution in this case is that it bypasses this

issue.

Under some conditions, it may make sense to rely on different estimators. For instance, as dis-

cussed in example 10, when 𝑣(\, 𝑥) is multiplicatively separable and 𝐹0 is known to be absolutely

continuous and with compact and convex support, the functional form of the solution is exactly

known. This allows for a drastic simplification of the problem from a computational point of view,

since it dispenses with the hurdle of finding the optimal mechanism for a given distribution. Espe-

cially in the context of implementing a bootstrap approach, the gains can be substantial. However,

an estimate of the ironed virtual value depends on a suitable estimate of the density 𝑓 . Therefore,

we find it especially relevant that, when 𝐹0 is known to be absolutely continuous, one can use as

an estimator the simple linear interpolation of the empirical distribution discussed earlier to obtain

a bootstrap estimator for the asymptotic distribution. Further, we note that this extremely simple

approach is not only consistent for the true distribution 𝐹0, but also for its density.

Proposition 12. Let �̂� denote the linear interpolation of the empirical distribution estimator.

Then, for any absolutely continuous 𝐹0 ∈ F ,

(1)
√
𝑛
(
Π(�̂� (𝑆𝑛)) − Π(𝐹0)

) 𝑑→ 𝑁 (0, 𝜎2
𝐹0
), where 𝜎2

𝐹0
= E

[ ( ¤Π𝐹0 (𝛿\ − 𝐹0)
)2
]
;

(2) �̂�𝑛

𝑑→ 𝑁 (0, 𝜎2
𝐹0
); and

(3) ∥ 𝑓 (𝑆𝑛) − 𝑓0∥1
𝑝
−→ 0, where 𝑓 (𝑆𝑛) and 𝑓0 denote the Radon-Nikodym derivatives of �̂� (𝑆𝑛)

and 𝐹0, respectively.

While estimating the optimal expected profit may be relevant for investment decisions, as it

provides an upper bound on the return of a given investment, these results can also be used to
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estimate regret. As regret, 𝑅(𝑀, 𝐹), is given by 𝑅(𝑀, 𝐹) = Π(𝐹) − 𝜋(𝑀, 𝐹), it is Fréchet dif-

ferentiable at any distribution 𝐹 ∈ F , for any fixed 𝑀 ∈ M , as the sum of Fréchet differentiable

functionals is itself Fréchet differentiable. Then, using similar arguments as those in Proposition 11

and Theorem 11, one can conduct inference on regret. Consequently, for any mechanism 𝑀 ∈ M ,

one can not only obtain asymptotically valid probabilistic bounds for expected profit, but also for

regret.

3.5.3 Simulation Evidence

To conclude this section, we present empirical evidence on the finite sample properties of our

estimators.

We conduct Monte Carlo simulations on the empirical coverage of the confidence intervals for

expected profit under a fixed mechanism – uniform pricing, with the price set at 1/2 – and for the

optimal expected profit, using empirically optimal mechanisms for the empirical distribution. We

use the approximation obtained by classic bootstrapping (𝑁 out of 𝑁), which we have showed to

be asymptotically valid. We show simulation results for confidence levels 𝛼 ∈ {.1, .05, .01}, with

varying sample size 𝑁 . For each sample size, we draw 1, 000 samples and, for each sample, we

estimate the confidence interval by drawing 1, 000 bootstrap samples from the original sample.

We focus on the case where consumers have quasilinear-linear utility and the unit cost is nor-

malized to zero, as in Bergemann and Schlag (2011) and Carrasco et al. (2018a). We show results

for three different parameterizations of 𝐹0 relying on the Beta distribution: Beta(1/4,1/4), Uni-

form(0,1) and Beta(4,4).12

In table 3.1 we present evidence for the empirical coverage frequency at sample sizes of 500,

1,000 and 2,500. As is immediate upon inspection of the table, our estimators have extremely good

finite sample properties, with the empirical coverage frequencies being very close to the theoretical

asymptotic coverage probability, regardless of which of the three distributions is considered. We

also investigated the behavior of our estimators under small samples. As fig. 3.1 shows, they fare

12The empirical coverage results were consistent across other parameterizations and using Beta mixtures or mixtures
with degenerate distributions.
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Table 3.1: Empirical Coverage Frequencies

(a) Profit with Fixed Mechanism

Beta(1/4,1/4) Unif(0,1) Beta(4,4)
1 − 𝛼 .90 .95 .99 .90 .95 .99 .90 .95 .99

𝑁

500 .891 .944 .983 .892 .946 .987 .895 .943 .988
1,000 .901 .934 .985 .901 .946 .986 .896 .953 .985
2,500 .909 .954 .989 .903 .953 .989 .889 .948 .985

(b) Optimal Profit

Beta(1/4,1/4) Unif(0,1) Beta(4,4)
1 − 𝛼 .90 .95 .99 .90 .95 .99 .90 .95 .99

𝑁

500 .881 .933 .989 .894 .945 .983 .895 .950 .987
1,000 .886 .945 .985 .888 .943 .981 .894 .941 .984
2,500 .910 .952 .988 .890 .941 .988 .884 .933 .984

Note: This table shows the frequency with which the estimated confidence interval with asymptotic coverage of
1− 𝛼 contained the true expected profit, 𝜋(𝑀, 𝐹0) in the case of a fixed mechanism and Π(𝐹0) in the case of the
optimal expected profit. The fixed mechanism corresponds to uniform pricing at 1/2. The estimated confidence
interval followed a centered bootstrap procedure with 1,000 samples redrawn with replacement from the original
sample with 1,000 iterations, for each sample size 𝑁 .

reasonably well for sample sizes between 50 and 300.

We also considered the regret incurred by adopting an empirically optimal mechanism that

depends on the empirical distribution with finite samples. As illustrated in fig. 3.2, we empirically

study the average regret as a share of the optimal expected profit, that is,

(
Π(𝐹0) − 𝜋(�̂�∗(𝑆𝑛), 𝐹0)

)
/Π(𝐹0).

The average is taken across 1,000 samples of varying size in increments of 10 observations. Even

with just 50 observations, the empirically optimal mechanism on average attains regret that is

under 4% of the optimal expected profit. For the purpose of comparison, the robust mechanism in

Carrasco et al. (2018a, Section 5.1), relying on an estimate of the mean and assuming knowledge

of the upper bound of the distribution, exhibits average regret no lower than 20% of the optimal

expected profit under any of the three distributions we consider.13

13We observe that for the minimax regret distribution derived in Carrasco et al. (2018a), by construction, the empir-
ically optimal mechanism will attain the optimal profit with probability one and regardless of the number of samples,
and, therefore, also attain the minimal regret.

90



(a) Beta(1/4,1/4)

(a1) Profit with Fixed Mechanism

50 100 150 200 250 300
N

0.75

0.80

0.85

0.90

0.95

1.00

90% 95% 99%

(a2) Optimal Profit

50 100 150 200 250 300
N

0.75

0.80

0.85

0.90

0.95

1.00

90% 95% 99%

(b) Unif(0,1)
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(c) Beta(4,4)

(c1) Profit with Fixed Mechanism
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Figure 3.1: Empirical Coverage Frequencies

Note: This figure shows the frequency with which the estimated confidence interval with asymptotic coverage
of 1 − 𝛼 = .9, .95, .99 contained the true expected profit, 𝜋(𝑀, 𝐹0) in the case of a fixed mechanism and Π(𝐹0)
in the case of the optimal expected profit. The procedure is as described in the note to table 3.1. Sample size
𝑁 varies between 10 and 300 with increments of 10 observations. The fixed mechanism corresponds to uniform
pricing at 1/2.
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Figure 3.2: Regret of the Empirically Optimal Mechanism as a share of Optimal Profit

Note: This figure shows the average regret of the empirically optimal mechanism as a fraction of the optimal
expected profit under the true distribution 𝐹0. The average is taken over 1,000 samples for each sample size 𝑁
between 10 and 300 with increments of 10 observations.

3.6 Extension to Single-Item Auctions

Before concluding, we discuss how to apply some of the insights developed in this paper to

the related setting of single-unit auctions. In particular, we show how simple empirically optimal

mechanisms in this context exhibit some of the desirable robustness features shown in Section 3.4.

Suppose that the firm has a single item to auction to 𝑀 ≥ 2 bidders. The firm values the item

at 𝑐 > 0, and each bidder 𝑖 = 1, ..., 𝑀 is risk-neutral and values the item at \𝑖, drawn independently

from distribution 𝐹0. To make matters simple, we assume that 𝐹0 is absolutely continuous with

convex and compact support. In such case, it is well-known that revenue equivalence holds and

that a second-price auction with a reserve price is optimal for the firm, with bidders disclosing their

types. Then, the optimal reserve price when the type distribution 𝐹 satisfies the same assumptions

solves

max
𝑟∈Θ

𝜋(𝑟, 𝐹),
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where 𝜋(𝑟, 𝐹) =
∫ \̄

𝑟
𝑑𝐹(2;𝑀) and 𝐹(2;𝑀) denotes the distribution of the second-highest willingness-

to-pay, given a distribution of types 𝐹 and 𝑀 bidders. That is,

𝐹(2;𝑀) (\) = 𝑀 · 𝐹 (\)𝑀−1(1 − 𝐹 (\)) + 𝐹 (\)𝑀 .

Consider the case where the firm has access to a sample of 𝑛 observations drawn from 𝐹0 and

the reserve price is set before bids are submitted.14 Similar to before, denote an empirically optimal

reserve price 𝑟∗ as the composition of a consistent estimator, �̂�, of the true distribution 𝐹0, based

on the realized sample 𝑆𝑛, and a selection from the set of reserve prices that are optimal for 𝐹, 𝑟∗.

The next proposition provides an analogue of Propositions 8 and 9 to this specific setting:

Proposition 13. Let 𝑟∗ be an empirically optimal reserve price given by 𝑟∗ = 𝑟∗ ◦ �̂�. Then,

|𝜋(𝑟∗(𝑆𝑛), 𝐹0) −Π(𝐹0) |
𝑝
→ 0. Moreover, if �̂� ∈ F̂ is such that ∀𝑆𝑛 ∈ S , P(∥�̂� (𝑆𝑛) − 𝐹0∥∞ > 𝛿) ≤

𝑝(𝑛, 𝛿) for some function 𝑝 : N × R+ → [0, 1], then,

(i) P
(
|𝜋(𝑟∗(𝑆𝑛), �̂� (𝑆𝑛)) − 𝜋(𝑟∗(𝑆𝑛), 𝐹0) | > 𝛿

)
≤ 𝑝(𝑛, 𝛿/𝐿); and

(ii) P (𝑅(𝑟∗(𝑆𝑛), 𝐹0) > 2𝛿) ≤ 𝑝(𝑛, 𝛿/𝐿),

where 𝐿 = 2𝑀 (𝑀 − 1) and Π(𝐹) := sup𝑟∈Θ 𝜋(𝑟, 𝐹).

The key insight is that the expected profit is linear in distribution of the second-order statistic

and that this in turn is Lipschitz continuous in the distribution of types, ∥𝐹(2;𝑀) − 𝐺 (2;𝑀) ∥∞ ≤

2𝑀 (𝑀 − 1)∥𝐹 − 𝐺∥∞. For 𝑟∗ to be empirically optimal, though, we must have that �̂� (𝑆𝑛) is

absolutely continuous and has convex and compact support. Similarly to example 10, when �̂�

is the linearly interpolated empirical distribution we have that 𝑝(𝑛, 𝛿) = 2 exp(−2𝑛(𝛿 − 1/𝑛)2),

delivering regret and confidence bounds.15

Our results on the properties on the robustness of empirically optimal mechanisms extend nat-

urally to auction settings as this application illustrates. There is, however, a natural limitation in

14The same arguments apply when the reserve price is secret and takes into account the bids submitted, as these
would just translate into a larger sample of 𝑛 + 𝑀 observations.

15Cole and Roughgarden (2014) provide alternative sample-complexity bounds for this problem, characterizing the
asymptotic number of samples needed to achieve (1 − 𝜖) share of the optimal profit.
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extending our results on inference: expected profit is linear in the distribution of the second-order

statistic, not in the distribution of types themselves.

3.7 Discussion

This paper has studied two separate but related questions. The first is how a firm should price

when uncertain about the distribution of consumers’ willingness-to-pay. The second is how to

conduct inference regarding the expected profit, both under any fixed pricing strategy and for

the optimal profit. When the firm has access to a sample of consumers’ valuations, we showed

that adopting an extremely simple approach – estimating the distribution using the sample and

then pricing optimally for the estimated distribution – yields attractive robustness properties, in

particular obtaining probabilistic lower bounds both for the expected profit and for regret. On

the other hand, we provided a toolkit to conduct inference for the expected profit. This enables

practitioners to obtain confidence intervals not only for expected profit but also, for example, for

the difference in profit that two different mechanisms induce. More generally, this allows for a

data-based approach to robust mechanism design, where robustness properties are inferred from

available data.

Two important concerns that we have not discussed are how to obtain such a sample and

whether a mechanism that trades-off experimentation and exploitation performs better when sam-

pling comes at a cost. Under the assumption of myopic consumer behavior, such a sample can be

procured by means of a survey. If consumers are assumed to be forward-looking, they may gain

from misrepresenting their type, but incentive compatibility can be restored if the firm can preclude

surveyed customers from purchasing the item in the future (or supply it to them for free in the case

of unit demand). While under some conditions, optimal experimentation asymptotically attains the

optimal profit (see e.g. Aghion et al., 1991), our results show that empirically optimal mechanisms

do so as well, insofar as the sample acquired grows. Therefore, the firm’s overall loss of revenue

will depend solely on the convergence rate of its estimator.

A different issue is how to optimality elicit types (i.e., generate a sample) through revealed
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choices. If consumers’ types are not knowable but through their choices – for instance, consumers

may not be aware of their types – the firm could conduct market research and elicit such a sample

by means of a mechanism that induces each type to self-select to a different pair of quantity and

price. This market research can then lead to the original sample or expand an existing sample – in

which case a cost-benefit analysis on the net value of acquiring additional observations may come

into play. Although existence and feasibility of such mechanisms is immediate, exploring how

to optimally conduct such sample elicitation endeavors may be an interesting avenue for future

research.
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Appendix A: Proofs of results in Chapter 1

A.1 Proof of Lemma 1

We will prove the following, stronger result.

Lemma 9. For all [𝜎] ∈ S /∗,

1. There exists 𝜌𝜎 ∈ D such that (𝜌𝜎, 𝑃∗) ∈ [𝜎].

2. If P = Δ(𝑋)Θ, then there exists an invariant 𝛿∗ ∈ D such that (𝛿∗, 𝑃𝜎) ∈ [𝜎] for some

𝑃𝜎 ∈ P .

Proof: Fix any 𝜎 = (𝜌, 𝑃) ∈ S . Recall that 𝜌𝑃\ (𝐸) ≡
∫
𝑋
𝜌𝑃 (𝑥, 𝐸)d𝑃\ (𝑥) for all \ ∈ Θ and

𝐸 ∈ A .

1. Construct 𝜌𝜎 by setting 𝜌𝜎
𝑃∗ (𝑥, 𝐸) = 𝜌𝑃\ (𝐸) for all 𝐸 ∈ A , \ ∈ Θ and 𝑥 ∈ 𝑆\ . Then,

𝜌𝜎𝑃∗
\ (𝐸) =

∫
𝑋

𝜌𝜎𝑃∗ (𝑥, 𝐸)d𝑃∗
\ (𝑥) =

∫
𝑆\

𝜌𝑃\ (𝐸)d𝑃∗
\ (𝑥) = 𝜌𝑃\ (𝐸) ∀𝐸 ∈ A .

2. First assume that 𝐴 is countable and take any surjective decision rule 𝛿∗ ∈ D . For all 𝑎 ∈ 𝐴,

let 𝐹𝑎 = {𝑥 ∈ 𝑋 : 𝛿∗(𝑥) = 𝑎}, and define 𝑃𝜎
\
(𝐹𝑎) = 𝜌𝑃\ ({𝑎}) for all \ ∈ Θ and 𝑎 ∈ 𝐴.

Then, 𝛿∗𝑃𝜎 ({𝑎}) = 𝑃𝜎 (𝛿∗−1({𝑎})) = 𝑃𝜎
\
(𝐹𝑎) = 𝜌𝑃\ ({𝑎}).

Now suppose 𝐴 is uncountable. Since 𝐴 is standard Borel, there exists a bijective measur-

able 𝛿∗ : 𝑋 → 𝐴 such that its inverse is also measurable. This implies that the 𝜎-algebra

generated by 𝛿∗ coincides with B(𝑋), hence setting 𝑃𝜎
\
(𝛿∗−1(𝐸)) = 𝜌𝑃\ (𝐸), for all 𝐸 ∈ A

and \ ∈ Θ, defines an experiment on B(𝑋). By construction, 𝛿∗𝑃𝜎 = 𝜌𝑃. □
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A.2 Proof of Theorem 1

From Axiom 2, we know that S /∗ is finer than S /∼. Therefore, in the presence of Axiom 2,

providing a representation of ≿⊆ S 2 is equivalent to characterizing the preference ⪰ on F defined

in eq. (1.8). Denote the symmetric and asymmetric parts of ⪰ by ≃ and ≻, respectively. It is easy

to see that if ≿ is transitive, so is ⪰. By Lemma 1, for all 𝑓 ∈ F , there exists 𝜌 ∈ D such that

𝑓 = 𝜌𝑃∗. Therefore, completeness and reflexivity of ≿ imply that the same properties hold for ⪰.

Consider the following axioms on ⪰:

Axiom A3: For all 𝑓 , 𝑔, ℎ, ℎ′ ∈ F and \ ∈ Θ: if 𝑓(\)ℎ ⪰ 𝑔(\)ℎ, then 𝑓(\)ℎ
′ ⪰ 𝑔(\)ℎ′.

Axiom A4: For all 𝑓 , 𝑔 ∈ F , if 𝑓(\)ℎ ⪰ 𝑔(\)ℎ for every \ ∈ Θ and ℎ ∈ F , then 𝑓 ⪰ 𝑔.

Axiom A5: For all 𝑓 , 𝑔, ℎ ∈ F and \ ∈ Θ, if 𝑓 (\′) = 𝑔(\′) = ℎ(\′) for all \′ ≠ \, then 𝑓 ⪰ 𝑔

implies 𝛼 𝑓 + (1 − 𝛼)ℎ ⪰ 𝛼𝑔 + (1 − 𝛼)ℎ for all 𝛼 ∈ (0, 1].

Axiom A6: The set {( 𝑓 , 𝑔) ∈ F 2 : 𝑓 ⪰ 𝑔} is closed.

Axiom A7: For any 𝑓 , 𝑔 ∈ F , 𝑓 ⪰ 𝑔 =⇒ 𝑓(\)ℎ ⪰ 𝑔(\)ℎ for every \ ∈ Θ and ℎ ∈ F .

Axiom A8: For any 𝑓 , 𝑔 ∈ F and \ ∈ Θ, if 𝑓 (\′) = 𝑔(\′) for all \′ ≠ \, then 𝑓 ⪰ 𝑔 or 𝑔 ⪰ 𝑓 .

We have the following result linking the axioms above to axioms 3 to 7.

Lemma 10. Let ≿⊆ S 2 satisfy Consequentialism. Then, the following statements hold:

1. If ≿ satisfies Axiom 3, then ⪰ satisfies Axiom A3.

2. If ≿ satisfies Axiom 4, then ⪰ satisfies Axiom A4.

3. If ≿ satisfies Axiom 5, then ⪰ satisfies Axiom A5.

4. If ≿ satisfies Axiom 6, then ⪰ satisfies Axiom A6.

5. If ≿ satisfies Axiom 7, then ⪰ satisfies Axiom A7.
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6. If ≿ satisfies Axiom 8, then ⪰ satisfies Axiom A8.

Proof:

1. Take any 𝑓 , 𝑔, ℎ, ℎ′ ∈ F such that 𝑓(\)ℎ ⪰ 𝑔(\)ℎ. By Lemma 1, there exists 𝜌, 𝜏, 𝛾, 𝛾′ ∈ D

such that 𝑓 = 𝜌𝑃∗, 𝑔 = 𝜏𝑃∗, ℎ = 𝛾𝑃∗ and ℎ′ = 𝛾′𝑃∗. Fix any \ ∈ Θ. Then,

(𝜌{\}𝛾)𝑃∗
\ ′ (·) =

∫
𝑆\ ′
𝜌{\}𝛾𝑃∗ (𝑥, ·)d𝑃∗

\ ′ (𝑥) =


𝜌𝑃∗

\
(·), if \′ = \

𝛾𝑃∗
\ ′ (·), if \′ ≠ \,

hence 𝑓(\)ℎ = (𝜌{\}𝛾)𝑃∗, and similarly for 𝑔(\)ℎ = (𝜏{\}𝛾)𝑃∗, 𝑓(\)ℎ
′ = (𝜌{\}𝛾′)𝑃∗, and

𝑔(\)ℎ
′ = (𝜏{\}𝛾′)𝑃∗. By Consequentialism and 𝑓(\)ℎ ⪰ 𝑔(\)ℎ, we have (𝜌{\}𝛾, 𝑃∗) ≿

(𝜏{\}𝛾, 𝑃∗). By Axiom 3, this implies (𝜌{\}𝛾′, 𝑃∗) ≿ (𝜏{\}𝛾′, 𝑃∗), and the definition of

⪰ gives us 𝑓(\)ℎ′ ⪰ 𝑔(\)ℎ′.

2. Let 𝑓 , 𝑔 ∈ F be such that 𝑓(\)ℎ ⪰ 𝑔(\)ℎ for all \ ∈ Θ and ℎ ∈ F . Lemma 1 implies that

for all ℎ ∈ F , there exists 𝛾 ∈ D such that ℎ = 𝛾𝑃∗. Let 𝜌𝑃∗ = 𝑓 and 𝜏𝑃∗ = 𝑔. Now, an

argument analogous to the one in part 1 implies that, for all \ ∈ Θ and ℎ ∈ F , there exists

𝛾 ∈ D with 𝑓(\)ℎ = (𝜌{\}𝛾)𝑃∗ and 𝑔(\)ℎ = (𝜏{\}𝛾)𝑃∗. Consequentialism and 𝑓(\)ℎ ⪰ 𝑔(\)ℎ

for all ℎ ∈ F now imply that (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) for all 𝛾 ∈ D . By Axiom 4, we have

(𝜌, 𝑃∗) ≿ (𝜏, 𝑃∗), hence 𝑓 ⪰ 𝑔.

3. Fix \ ∈ Θ and take any 𝑓 , 𝑔, ℎ ∈ F such that 𝑓 (\′) = 𝑔(\′) = ℎ(\′) for all \′ ≠ \. Assume

𝑓 ⪰ 𝑔. By Lemma 1, there exists 𝜌, 𝜏, 𝛾, ^ ∈ D such that 𝑓 = (𝜌{\}^)𝑃∗, 𝑔 = (𝜏{\}^)𝑃∗ and

ℎ = (𝛾{\}^)𝑃∗. By Consequentialism, 𝑓 ⪰ 𝑔 implies (𝜌{\}^, 𝑃∗) ≿ (𝜏{\}^, 𝑃∗). Applying

Axiom 5 we get (𝛼𝜌{\}^ + (1−𝛼)𝛾{\}^, 𝑃∗) ≿ (𝛼𝜏{\}^ + (1−𝛼)𝛾{\}^, 𝑃∗) for all 𝛼 ∈ (0, 1].

The result follows from how 𝜌, 𝜏, 𝛾 and ^ were defined.

4. This follows immediately from the definition of ⪰.

5. Take 𝑓 , 𝑔 ∈ F and suppose 𝑓 ⪰ 𝑔. Then there exists 𝜌, 𝜏 ∈ D such that 𝑓 = 𝜌𝑃∗ and

𝑔 = 𝜏𝑃∗. By Axiom 2, (𝜌, 𝑃∗) ≿ (𝜏, 𝑃∗), thus by Axiom 7, (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) for all
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\ ∈ Θ and 𝛾 ∈ D . Lemma 1 and Axiom 2 then imply that 𝑓(\)ℎ ⪰ 𝑔(\)ℎ for every \ ∈ Θ and

ℎ ∈ F .

6. Fix any \ ∈ Θ and suppose 𝑓 , 𝑔 ∈ F are such that 𝑓 (\′) = 𝑔(\′) for all \′ ≠ \. By a

now familiar argument, there exist 𝜌, 𝜏, 𝛾 ∈ D such that 𝑓 = (𝜌{\}𝛾)𝑃∗ and 𝑔 = (𝜏{\}𝛾)𝑃∗.

Axiom 8 implies that (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) or (𝜏{\}𝛾, 𝑃∗) ≿ (𝜌{\}𝛾, 𝑃∗). The result

follows. □

We are now ready to prove Theorem 1. It is routine to check that the representation satisfies

the axioms, so we only prove sufficiency. Let ≿ be a reflexive and transitive preference satisfying

axioms 2 to 8, and define ⪰ as in (1.8). If ≿ is trivial, it is clear that it has a dominance representa-

tion via a constant utility function 𝑢, and we are done. So assume that there exists 𝜎, 𝜎′ ∈ S such

that 𝜎 ≻ 𝜎′. By Lemma 10, ⪰ is reflexive, transitive and satisfies axioms A3 to A8.

For each \ ∈ Θ, define the conditional preference ⪰\ on Δ(𝐴) as follows:

∀ 𝑓 (\), 𝑔(\) ∈ Δ(𝐴), 𝑓 (\) ⪰\ 𝑔(\) ⇐⇒ 𝑓 ⪰ 𝑔 and 𝑓 (\′) = 𝑔(\′) ∀\′ ≠ \. (A.1)

Axiom A3, and reflexivity and transitivity of ⪰ guarantee that ⪰\ is well-defined, transitive

and reflexive for every \ ∈ Θ, while Axiom A8 implies that it is also complete. By Axiom A5,

⪰\ satisfies Independence: if 𝑝 ⪰\ 𝑞, then 𝛼𝑝 + (1 − 𝛼)𝑠 ⪰\ 𝛼𝑞 + (1 − 𝛼)𝑠 for any 𝛼 ∈ (0, 1]

and 𝑠 ∈ Δ(𝐴). Take sequences (𝑝𝑛), (𝑞𝑛) ∈ Δ(𝐴) such that 𝑝𝑛 → 𝑝, 𝑞𝑛 → 𝑞 and 𝑝𝑛 ⪰\ 𝑞𝑛 for

all 𝑛 ≥ 1. Axiom A6 implies that 𝑝, 𝑞 ∈ Δ(𝐴) and 𝑝 ⪰\ 𝑞. Since Δ(𝐴) is a metric space, this

implies that {(𝑝, 𝑞) ∈ Δ(𝐴)2 : 𝑝 ⪰\ 𝑞} is closed. We can thus apply the classic expected utility

representation theorem for compact prize spaces – see, e.g., Kreps (2018, Chapter 5) – to find, for

every \ ∈ Θ, a continuous utility function 𝑢\ : 𝐴→ R such that, for all 𝑓 (\), 𝑔(\) ∈ Δ(𝐴),

𝑓 (\) ⪰\ 𝑔(\) ⇐⇒
∫
𝐴

𝑢\d 𝑓 (\) ≥
∫
𝐴

𝑢\d𝑔(\). (A.2)

Now take any 𝑓 , 𝑔 ∈ F such that 𝑓 ⪰ 𝑔. By axioms A4 and A7, we must have 𝑓 (\) ⪰\ 𝑔(\)
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for all \ ∈ Θ. Considering the representations in (A.2), this implies that for all 𝑓 , 𝑔 ∈ F ,

𝑓 ⪰ 𝑔 ⇐⇒
∫
𝐴

𝑢\d 𝑓 (\) ≥
∫
𝐴

𝑢\d𝑔(\) ∀\ ∈ Θ.

In view of (1.8) and Axiom 2, this implies that, for all (𝜌, 𝑃), (𝜏, 𝑄) ∈ S ,

(𝜌, 𝑃) ≿̂ (𝜏, 𝑄) ⇐⇒
∫
𝐴

𝑢\d𝜌𝑃\ ≥
∫
𝐴

𝑢\d𝜏𝑄\ ∀\ ∈ Θ ⇐⇒
∫
𝑋

𝑢\ (𝜌)d𝑃\ ≥
∫
𝑋

𝑢\ (𝜏)d𝑄\ ∀\ ∈ Θ.

The representation obtains by defining 𝑢(·, \) = 𝑢\ for each \ ∈ Θ. Its uniqueness properties derive

from cardinal uniqueness of 𝑢\ for every \ ∈ Θ. That is, if 𝑢′
\

also represents ⪰\ , then there exist

𝑏\ > 0 and 𝑐\ ∈ R such that 𝑢′
\
= 𝑏\𝑢\ + 𝑐\ . This is guaranteed by the expected utility theorem.

Consider the following definition.

Definition 12. We call the parameters in Θ𝐼 ≡ {\ ∈ Θ : (𝜌{\}𝛾, 𝑃∗) ∼̂ (𝜏{\}𝛾, 𝑃∗) ∀𝜌, 𝜏 ∈ D}

irrelevant. ♦

Irrelevant parameters get their name from the fact that changing the action distributions conditional

on Θ𝐼 does not affect the DM’s valuation of a pairing. For future reference, note that ⪰\ is trivial

for all \ ∈ Θ𝐼 . This then implies that any utility representation 𝑢\ of ⪰\ , with \ ∈ Θ𝐼 , is a constant

function.

A.3 Proof of Lemma 2

Let ≿ be a preference satisfying axioms 1 to 6 and define its unanimously preferred sub-relation

≿̂ as in Definition 3. We start by proving Proposition 1:

Proof of Proposition 1:

1. The inclusion ≿̂⊆≿ follows immediately. To prove transitivity, take 𝜎 ≿̂ 𝜎′ and 𝜎′ ≿̂ �̃�.

Then there exist 𝜌, 𝜏, 𝛾 ∈ D , with (𝜌, 𝑃∗) ∈ [𝜎], (𝜏, 𝑃∗) ∈ [𝜎′] and (𝛾, 𝑃∗) ∈ [�̃�], such

that (𝜌{\}^, 𝑃∗) ≿ (𝜏{\}^, 𝑃∗) and (𝜏{\}^, 𝑃∗) ≿ (𝛾{\}^, 𝑃∗) for all ^ ∈ D and \ ∈ Θ, . By
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transitivity of ≿, we have (𝜌{\}^, 𝑃∗) ≿ (𝛾{\}^, 𝑃∗), for every ^ ∈ D and \ ∈ Θ. Thus, by

definition, 𝜎 ≿̂ �̃�.

2. We want to show that ≿̂ satisfies axioms 2 to 8. First note that since ≿ satisfies axioms 3

and 4, we have that ≿̂ is reflexive, thus non-empty. Axiom 2 follows directly from ≿̂⊆≿.

Axioms 3 and 5 are implied by the Sure Thing Principle (STP) and Mixture Independence

(MI) respectively, which we show in parts 3 and 4, below.

Now, note that for any 𝑇 ⊆ Θ and 𝜌, 𝛾, 𝛾′ ∈ D ,

𝜌𝑇𝛾{\}𝛾
′ =


𝜌{\}𝛾

′, if \ ∈ 𝑇

𝛾{\}𝛾
′, if \ ∈ Θ \ 𝑇.

(A.3)

In particular, since ≿ satisfies IIP, for any 𝛾 ∈ D and \ ∈ Θ, (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) implies

(𝜌{\}𝛾{\ ′}𝛾′, 𝑃∗) ≿ (𝜏{\}𝛾{\ ′}𝛾′, 𝑃∗) for all 𝛾′ ∈ D and \′ ∈ Θ, and thus (𝜌{\}𝛾, 𝑃∗) ≿̂

(𝜏{\}𝛾, 𝑃∗). Since ≿̂⊆≿, we have that for all \ ∈ Θ and 𝜌, 𝜏, 𝛾 ∈ D , (𝜌{\}𝛾, 𝑃∗) ≿̂ (𝜏{\}𝛾, 𝑃∗)

if, and only if, (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗). By Consequentialism, we also have that (𝜌, 𝑃∗) ≿̂

(𝜏, 𝑃∗) if, and only if, (𝜌{\}𝛾, 𝑃∗) ≿ (𝜏{\}𝛾, 𝑃∗) for all \ ∈ Θ and 𝛾 ∈ D . Taken together,

these two facts facts imply axioms 4 and 7.

Recalling the definition in (A.1) and since Δ(𝐴) is a metric space, we have that {( 𝑓 (\), 𝑔(\)) ∈

Δ(𝐴)2 : 𝑓 (\) ⪰\ 𝑔(\)} is closed if, and only if, it is sequentially closed. Also recall

from Section A.2 that (𝜌, 𝑃) ≿̂ (𝜏, 𝑄) ⇐⇒ 𝑓 (\) ⪰\ 𝑔(\) for all 𝑓 = 𝜌𝑃, 𝑔 = 𝜏𝑄

and \ ∈ Θ. Therefore, {(𝜌𝑃, 𝜏𝑄) ∈ F 2 : (𝜌, 𝑃) ≿̂ (𝜏, 𝑄)} is closed if, and only

if,
⋂
\∈Θ{( 𝑓 , 𝑔) ∈ F 2 : 𝑓 (\) ⪰\ 𝑔(\)} is closed. So consider sequences { 𝑓 𝑛}𝑛≥1 and

{𝑔𝑛}𝑛≥1 ∈ F such that 𝑓 𝑛 → 𝑓 , 𝑔𝑛 → 𝑔, and 𝑓 𝑛 (\) ⪰\ 𝑔𝑛 (\) for all \ ∈ Θ, 𝑛 ≥ 1. Since

⪰\ is continuous by Section A.2, we have that {( 𝑓 , 𝑔) ∈ F 2 : 𝑓 (\) ⪰\ 𝑔(\)} is closed for

every \ ∈ Θ. Therefore, the intersection is also closed, which then implies continuity of ≿̂.

3. To prove that ≿̂ satisfies the Sure Thing Principle, first consider 𝜌, 𝜏, 𝛾 ∈ D such that
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(𝜌𝑇𝛾, 𝑃∗) ≿̂ (𝜏𝑇𝛾, 𝑃∗). Then, by eq. (A.3), (𝜌{\}^, 𝑃∗) ≿ (𝜏{\}^, 𝑃∗) for all \ ∈ 𝑇 and

^ ∈ D , which by Monotonicity of ≿, implies (𝜌𝑇𝛾′, 𝑃∗) ≿ (𝜏𝑇𝛾′, 𝑃∗) for any 𝛾′ ∈ D . Again

using eq. (A.3) and the fact that (𝜌{\}^, 𝑃∗) ≿ (𝜏{\}^, 𝑃∗) for all \ ∈ 𝑇 and ^ ∈ D , gives us

(𝜌𝑇𝛾′, 𝑃∗) ≿̂ (𝜏𝑇𝛾′, 𝑃∗).

4. Take any 𝑃 ∈ P and 𝜌, 𝜏 ∈ D with (𝜌, 𝑃) ≿̂ (𝜏, 𝑃). Then, by definition, there exists

𝜌′, 𝜏′ ∈ D such that 𝜌′𝑃∗ = 𝜌𝑃, 𝜏′𝑃∗ = 𝜏𝑃 and (𝜌′{\}𝛾, 𝑃
∗) ≿ (𝜏′{\}𝛾, 𝑃

∗) for all \ ∈ Θ and

𝛾 ∈ D . Now CMI implies that (𝛼𝜌′{\}𝛾 + (1 − 𝛼)^′{\}𝛾, 𝑃
∗) ≿ (𝛼𝜏′{\}𝛾 + (1 − 𝛼)^′{\}𝛾, 𝑃

∗)

for all \ ∈ Θ, 𝛼 ∈ (0, 1] and ^′, 𝛾 ∈ D . By Lemma 1, for any ^𝑃 ∈ F , there exists ^′ ∈ D

such that ^′𝑃∗ = ^𝑃. Therefore, for all ^ ∈ D and 𝛼 ∈ (0, 1], there exists ^′ ∈ D such that

(𝛼𝜌 + (1 − 𝛼)^)𝑃 = (𝛼𝜌′ + (1 − 𝛼)^′)𝑃∗, (𝛼𝜏 + (1 − 𝛼)^)𝑃 = (𝛼𝜏′ + (1 − 𝛼)^′)𝑃∗, and

((𝛼𝜌′ + (1 − 𝛼)^′){\}𝛾, 𝑃∗) ≿ ((𝛼𝜏′ + (1 − 𝛼)^′){\}𝛾, 𝑃∗) for all \ ∈ Θ and 𝛾 ∈ D . We

conclude that ≿̂ satisfies Mixture Independence.

5. Suppose ≿ is non-trivial. Then, by completeness, there exists (𝜌, 𝑃) ≻ (𝜏, 𝑄). Lemma 1

now guarantees that there exists 𝜌′, 𝜏′ ∈ D with (𝜌′, 𝑃∗) ≻ (𝜏′, 𝑃∗). Let 𝑇 = {\ ∈ Θ :

(𝜌′{\}𝛾, 𝑃
∗) ≿ (𝜏′{\}𝛾, 𝑃

∗) ∀𝛾 ∈ D}, and note that by IIP and Monotonicity, 𝑇 ≠ ∅. Mono-

tonicity now implies that (𝜌′
𝑇
𝜏′, 𝑃∗) ≿ (𝜌′, 𝑃∗) ≻ (𝜏′, 𝑃∗), and by transitivity, (𝜌′

𝑇
𝜏′, 𝑃∗) ≻

(𝜏′, 𝑃∗). By construction of 𝑇 and eq. (A.3), (𝜌′
𝑇
𝜏′, 𝑃∗) ≿̂ (𝜏′, 𝑃∗). Again by Mono-

tonicity, there exists \ ∈ 𝑇 and 𝛾 ∈ D such that (𝜏′{\}𝛾, 𝑃
∗) ̸≿ (𝜌′

𝑇
𝜏′{\}𝛾, 𝑃

∗). Therefore

(𝜏′, 𝑃∗) ̸≿̂ (𝜌′
𝑇
𝜏′, 𝑃∗), which concludes the proof. □

Now, from Proposition 1, we know that ≿̂ is a dominance relation. By Theorem 1, it has a

dominance representation by a parameter-wise cardinally unique utility function 𝑢 : 𝐴 × Θ → R.

A.4 Proof of Theorem 2

If ≿ is trivial, it can clearly be represented by any utility function 𝑢 paired with a constant

aggregator functional 𝐼. So assume that ≿ is not trivial. Let ≿ satisfy axioms 1 to 6 and fix a utility

function 𝑢 : 𝐴 × Θ → R that represents its unanimously preferred sub-relation ≿̂. Consider the
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risk mapping 𝑟𝑢 : S → RΘ under 𝑢 defined by (1.2), and set R𝑢 = {𝑟𝑢 (𝜎) : 𝜎 ∈ S }. Note

that, as a product of (possibly degenerate) intervals, R𝑢 is connected, and as a consequence of the

Hewitt-Marczewski-Pondiczery theorem (Hewitt, 1946), it is also separable.

Consider the preference relation ⪰𝑢 on R𝑢 defined by (1.6). It is easy to see that ⪰𝑢 is transitive,

since 𝑟𝑢 (𝜎) ⪰𝑢 𝑟𝑢 (𝜎′) and 𝑟𝑢 (𝜎′) ⪰𝑢 𝑟𝑢 (�̃�) imply that 𝜎 ≿ 𝜎′ and 𝜎′ ≿ �̃�, hence 𝜎 ≿ �̃� by

transitivity of ≿, which in turn implies 𝑟𝑢 (𝜎) ⪰𝑢 𝑟𝑢 (�̃�). By definition, ⪰𝑢 is also complete on R𝑢.

Now we prove that ⪰𝑢 is continuous, i.e., that {(𝑟, 𝑟′) ∈ R2
𝑢 : 𝑟 ⪰𝑢 𝑟′} is closed in the product

topology. First note that for every \ ∈ Θ, the functional Δ(𝐴) ∋ 𝑓 (\) ↦→
∫
𝐴
𝑢(𝑎, \)d 𝑓 (\) is

continuous in the topology of weak convergence. Thus, 𝑟𝑢 : F → RΘ, defined as

𝑟𝑢 ( 𝑓 ) (\) =
∫
𝐴

𝑢(𝑎, \)d 𝑓 (\) ∀ 𝑓 ∈ F , \ ∈ Θ, (A.4)

is continuous in the product topology on RΘ. Now note that {(𝑟𝑢 (𝜎), 𝑟𝑢 (𝜎′)) ∈ R2
𝑢 : 𝑟𝑢 (𝜎) ⪰𝑢

𝑟𝑢 (𝜎′)} = {(𝑟𝑢 (𝜌𝑃), 𝑟𝑢 (𝜏𝑄)) ∈ R2
𝑢 : (𝜌, 𝑃) ≿ (𝜏, 𝑄)}. Let the map �̃�𝑢 : F 2 → R2

𝑢 be defined by

�̃�𝑢 ( 𝑓 , 𝑔) = (𝑟𝑢 ( 𝑓 ), 𝑟𝑢 (𝑔)). Then �̃�𝑢 is continuous, as a product of continuous functions, and

�̃�𝑢 ({(𝜌𝑃, 𝜏𝑄) ∈ F 2 : (𝜌, 𝑃) ≿ (𝜏, 𝑄)}) = {(𝑟𝑢 (𝜌𝑃), 𝑟𝑢 (𝜏𝑄)) ∈ R2
𝑢 : (𝜌, 𝑃) ≿ (𝜏, 𝑄)}.

Since 𝐴 is compact, so is Δ(𝐴). Thus, by Tychonoff’s theorem, F is a compact Hausdorff

space, and so is F 2. Then, by Continuity of ≿, {(𝜌𝑃, 𝜏𝑄) ∈ F 2 : (𝜌, 𝑃) ≿ (𝜏, 𝑄)} is also

compact, since it is a closed subset of a compact space. This makes �̃�𝑢 ({(𝜌𝑃, 𝜏𝑄) ∈ F 2 : (𝜌, 𝑃) ≿

(𝜏, 𝑄)}) compact as well – because �̃�𝑢 is continuous – hence closed, since R2
𝑢 is Hausdorff. We

conclude that ⪰𝑢 is continuous.

Therefore, ⪰𝑢 is a continuous weak order on a connected and separable topological space. By

Herden (1989, Corollary 3.2), there exists a continuous utility function 𝐼 : R𝑢 → R such that, for

all 𝑟𝑢 (𝜎), 𝑟𝑢 (𝜎′) ∈ R𝑢, 𝑟𝑢 (𝜎) ⪰𝑢 𝑟𝑢 (𝜎′) ⇐⇒ 𝐼 (𝑟𝑢 (𝜎)) ≥ 𝐼 (𝑟𝑢 (𝜎′)). By definition of ⪰𝑢, we
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obtain, for all 𝜎, 𝜎′ ∈ S ,

𝜎 ≿ 𝜎′ ⇐⇒ 𝑟𝑢 (𝜎) ⪰𝑢 𝑟𝑢 (𝜎′) ⇐⇒ 𝐼 (𝑟𝑢 (𝜎)) ≥ 𝐼 (𝑟𝑢 (𝜎′)).

Now we prove that ≿ has a representation with an ex-post utility function 𝑢 : 𝐴 ×Θ → R such

that 𝑢(·, \) is non-constant for all \ ∈ Θ. From Section A.2, for any dominance representation

�̂� of ≿̂, �̂�(·, \) is constant for all \ ∈ Θ𝐼 . Let (�̂�, 𝐼) be an MRA representation of ≿ such that

�̂�(𝑎, \) = 𝑘 ∈ R for all 𝑎 ∈ 𝐴 and \ ∈ Θ𝐼 . Such a representation exists by the uniqueness

properties of Theorem 1. Set 𝑢(·, \) = �̂�(·, \) for \ ∈ Θ \ Θ𝐼 , and let 𝑢(·, \) be any non-constant

function with 𝑘 ∈ 𝑐𝑜(𝑢(𝐴, \)) for all \ ∈ Θ𝐼 , where 𝑐𝑜(·) denotes the convex hull of a set. Note

that R�̂� ⊆ R𝑢, and let 𝐼 : R𝑢 → R be given by 𝐼 (𝑟) = 𝐼 (𝑟) if 𝑟 (\) = 𝑟 (\) for all \ ∈ Θ \ Θ𝐼 ,

where 𝑟 ∈ R𝑢 and 𝑟 ∈ R�̂�. Clearly 𝐼 (𝑟𝑢 (𝜎)) ≥ 𝐼 (𝑟𝑢 (𝜎′)) ⇐⇒ 𝐼 (𝑟𝑢 (𝜎)(Θ𝐼 )𝑘) ≥ 𝐼 (𝑟𝑢 (𝜎′)(Θ𝐼 )𝑘),

therefore (𝑢, 𝐼) also represents ≿.

A.5 Proofs of results in Section 1.5

Let ≿ be a preference relation on S satisfying axioms 1 to 6, and take a utility function 𝑢 that

represents ≿̂. Consider the preference relation ⪰𝑢 on R𝑢 defined by (1.6). We first formally state

and prove a result that was only alluded to in the main text.

Lemma 11. The preference ⪰𝑢 on R𝑢 satisfies the basic A-A axioms

• Weak Order: the preference ⪰𝑢 is complete and transitive.

• A-A Monotonicity: for all 𝑟, 𝑟′ ∈ R𝑢, if 𝑟 ≥ 𝑟′, then 𝑟 ⪰𝑢 𝑟′.

• Risk Independence: for all constant risk functions 𝑟, 𝑟′, 𝑞 ∈ R𝑢 and 𝛼 ∈ [0, 1], 𝑟 ⪰𝑢 𝑟′

implies 𝛼𝑟 + (1 − 𝛼)𝑞 ⪰𝑢 𝛼𝑟′ + (1 − 𝛼)𝑞.

• Mixture Continuity: the sets {𝛼 ∈ [0, 1] : 𝛼𝑟 + (1 − 𝛼)𝑟′ ⪰𝑢 𝑞} and {𝛼 ∈ [0, 1] : 𝑞 ⪰𝑢

𝛼𝑟 + (1 − 𝛼)𝑟′} are closed for all 𝑟, 𝑟′, 𝑞 ∈ R𝑢.
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Proof: We showed in Section A.4 that ⪰𝑢 satisfies Weak Order and that {(𝑟, 𝑟′) ∈ R2
𝑢 : 𝑟 ⪰𝑢 𝑟′}

is closed. Take any 𝑟, 𝑟′, 𝑞 ∈ R𝑢 and a sequence (𝛼𝑛)𝑛≥1 ∈ [0, 1], with lim𝑛→∞ 𝛼𝑛 = 𝛼, such

that 𝛼𝑛𝑟 + (1 − 𝛼𝑛)𝑟′ ⪰𝑢 𝑞 for all 𝑛 ≥ 1. Since {(𝑟, 𝑟′) ∈ R2
𝑢 : 𝑟 ⪰𝑢 𝑟′} is closed, we have that

lim𝑛 (𝛼𝑛𝑟 + (1 − 𝛼𝑛)𝑟′) = 𝛼𝑟 + (1 − 𝛼)𝑟′ ⪰𝑢 𝑞. Hence {𝛼 ∈ [0, 1] : 𝛼𝑟 + (1 − 𝛼)𝑟′ ⪰𝑢 𝑞} is closed.

An analogous argument proves that {𝛼 ∈ [0, 1] : 𝑞 ⪰𝑢 𝛼𝑟 + (1 − 𝛼)𝑟′} is closed, thus ⪰𝑢 satisfies

Mixture Continuity.

A-A Monotonicity follows directly from Theorem 2, since 𝐼 is monotone. To prove Risk

Independence, note that if 𝑟, 𝑟′ ∈ R𝑢 are constant, then 𝑟 ⪰𝑢 𝑟′ if and only if 𝑟 ≥ 𝑟′, by A-A

Monotonicity. The result follows immediately. □

Now we turn to Lemma 3.

Proof of Lemma 3: The proof of statement 1 consists of applying the definitions and doing simple

algebra, thus will be omitted. To prove statement 2, recall that for all 𝜌, 𝛾 ∈ D , 𝑇 ∈ Σ and \ ∈ Θ,

𝑟𝑢 (𝜌𝑇𝛾, 𝑃∗) (\) =
∫
𝑋

𝑢(𝜌𝑇𝛾, \)d𝑃∗
\ =

∫
𝐴

∫
𝑋

𝑢(𝑎, \)𝜌𝑇𝛾(𝑥, d𝑎)𝑃∗
\ (d𝑥)

=


∫
𝐴
𝑢(𝑎, \)d𝜌𝑃∗

\
(𝑎), if \ ∈ 𝑇∫

𝐴
𝑢(𝑎, \)d𝛾𝑃∗

\
(𝑎), if \ ∉ 𝑇.

Therefore, 𝑟𝑢 (𝜌𝑇𝛾, 𝑃∗) (\) = 𝑟𝑢 (𝜌, 𝑃∗) (\) for \ ∈ 𝑇 , and 𝑟𝑢 (𝜌𝑇𝛾, 𝑃∗) (\) = 𝑟𝑢 (𝛾, 𝑃∗) (\) for

\ ∈ Θ \ 𝑇 , which proves the statement.

Now take another MRA representation (�̃�, 𝐼) of ≿, normalized in such a way that R�̃� = [0, 1]Θ.

It is possible to do this because, by Theorem 2, ≿ has an MRA representation with parameter-wise

non-constant utility. Then, parameter-wise cardinal uniqueness of 𝑢 allows us normalize this utility

function on each parameter. Note that 𝑟�̃� (𝜌, 𝑃∗) (\) = 1 and 𝑟�̃� (𝜌, 𝑃∗) (\) = 0 for all \ ∈ Θ.

If 𝜎 ∈ K (≿̂), Lemma 1 implies that there exists 𝛼 ∈ [0, 1] such that 𝜎 ∈ [(𝛼𝜌+(1−𝛼)𝜌, 𝑃∗)],

thus by statement 1, 𝑟�̃� (𝜎) (\) = 𝛼, for all \ ∈ Θ. Conversely, take 𝑟�̃� (𝜏, 𝑃) ∈ R�̃� such that

𝑟�̃� (𝜏, 𝑃) (\) = 𝛼 for all \ ∈ Θ, and take 𝜌𝑃∗ = 𝜏𝑃. Since 𝑟�̃� (𝜌, 𝑃∗)({\})𝑟�̃� (𝛾, 𝑃∗) = 𝑟�̃� (𝛼𝜌 + (1 −

𝛼)𝜌, 𝑃∗)({\})𝑟�̃� (𝛾, 𝑃∗) for any 𝛾 ∈ D and \ ∈ Θ, we may apply statement 2 and the definition of
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⪰𝑢 to obtain 𝑟�̃� (𝜌{\}𝛾, 𝑃∗) ≃𝑢 𝑟�̃� ((𝛼𝜌 + (1 − 𝛼)𝜌){\}𝛾, 𝑃∗) for all \ ∈ Θ. By definition of ≃𝑢,

(𝜌{\}𝛾, 𝑃∗) ∼ ((𝛼𝜌 + (1 − 𝛼)𝜌){\}𝛾, 𝑃∗) for all \ ∈ Θ, and by IIP, (𝜌, 𝑃∗) ∼̂ (𝛼𝜌 + (1 − 𝛼)𝜌, 𝑃∗).

Since 𝜏𝑃\ = 𝜌𝑃∗
\

for all \ ∈ Θ, we have (𝜏, 𝑃) ∈ K (≿̂), which finishes the proof. □

In view statement 3 of Lemma 3, for the remainder of this section we work with a representation

(𝑢, 𝐼) of ≿ such that R𝑢 = [0, 1]Θ, so that 𝑟𝑢 (𝜎) being constant implies 𝜎 ∈ K (≿̂). We start by

proving the lemmas which translate SDT axioms on ≿ to the corresponding Anscombe-Aumann

axioms on ⪰𝑢.

Lemma 12. If ≿ satisfies Mixture Independence, then ⪰𝑢 satisfies Independence.

Proof: Take 𝑟, 𝑟′, 𝑞 ∈ R𝑢 and assume ≿ satisfies Axiom 9. From Lemma 1 and the definition of

⪰𝑢, there exists 𝜌, 𝜏, 𝛾 ∈ D and 𝑃 ∈ P such that, 𝑟 = 𝑟𝑢 (𝜌, 𝑃), 𝑟′ = 𝑟𝑢 (𝜏, 𝑃), 𝑞 = 𝑟𝑢 (𝛾, 𝑃) and

(𝜌, 𝑃) ≿ (𝜏, 𝑃). By Mixture Independence, we have (𝛼𝜌 + (1 − 𝛼)𝛾, 𝑃) ≿ (𝛼𝜏 + (1 − 𝛼)𝛾, 𝑃) for

all 𝛼 ∈ (0, 1]. Therefore, from statement 1 of Lemma 3, we obtain 𝛼𝑟 + (1−𝛼)𝑞 ⪰𝑢 𝛼𝑟′+ (1−𝛼)𝑞

for all 𝛼 ∈ (0, 1]. □

Lemma 13. If ≿ satisfies Monotone Continuity∗, then ⪰𝑢 satisfies Monotone Continuity.

Proof: Take any 𝑟, 𝑟′, 𝑞 ∈ R𝑢 with 𝑞 constant, and let (𝑇𝑛)𝑛≥1 ∈ Σ be such that 𝑇1 ⊇ 𝑇2 ⊇ · · · and⋂
𝑛≥1 𝑇𝑛 = ∅. Suppose 𝑟 ≻𝑢 𝑟′. By Lemma 1, there exist 𝜌, 𝜏, ^ ∈ D , with (^, 𝑃∗) ∈ K (≿̂), such

that 𝑟 = 𝑟𝑢 (𝜌, 𝑃∗), 𝑟′ = 𝑟𝑢 (𝜏, 𝑃∗) and 𝑞 = 𝑟𝑢 (𝛾, 𝑃∗). From the definition of ⪰𝑢, (𝜌, 𝑃∗) ≻ (𝜏, 𝑃∗).

Then Monotone Continuity∗ implies that there exists 𝑚 ≥ 1 such that (^𝑇𝑚𝜌, 𝑃∗) ≻ (𝜏, 𝑃∗). The

result then follows from statement 2 of Lemma 3. □

Lemma 14. If ≿ satisfies Hedging, then ⪰𝑢 satisfies Uncertainty Aversion.

Proof: Let 𝑟, 𝑟′ ∈ R𝑢 be such that 𝑟 ≃𝑢 𝑟′. By Lemma 1, there exists 𝑃 ∈ P and 𝜌, 𝜏 ∈ D such

that 𝑟 = 𝑟𝑢 (𝜌, 𝑃), 𝑟′ = 𝑟𝑢 (𝜏, 𝑃) and (𝜌, 𝑃) ∼ (𝜏, 𝑃). Then, by Hedging, (𝛼𝜌+(1−𝛼)𝜏, 𝑃) ≿ (𝜌, 𝑃)

for all 𝛼 ∈ (0, 1). This implies that 𝑟𝑢 (𝛼𝜌 + (1 − 𝛼)𝜏, 𝑃) ⪰𝑢 𝑟𝑢 (𝜌, 𝑃), thus from statement 1 of

Lemma 3, we obtain 𝛼𝑟 + (1 − 𝛼)𝑟′ ⪰𝑢 𝑟. □
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Lemma 15. If ≿ satisfies CRE-Independence, then ⪰𝑢 satisfies Certainty Independence.

Proof: Take any 𝑟, 𝑟′, 𝑞 ∈ R𝑢 with constant 𝑞, and assume 𝑟 ⪰𝑢 𝑟′. A now familiar argument

implies that there exists 𝑃 ∈ P and 𝜌, 𝜏, ^ ∈ D such that 𝑟 = 𝑟𝑢 (𝜌, 𝑃), 𝑟′ = 𝑟𝑢 (𝜏, 𝑃), 𝑞 = 𝑟𝑢 (^, 𝑃)

and (𝜌, 𝑃) ≿ (𝜏, 𝑃). Since 𝑞 is constant, Lemma 3 guarantees that (𝜏, 𝑃) ∈ K (≿̂). By CRE-

Independence, (𝛼𝜌 + (1−𝛼)^, 𝑃) ≿ (𝛼𝜏 + (1−𝛼)^, 𝑃) for all 𝛼 ∈ (0, 1]. Applying Lemma 3 once

again, we obtain 𝛼𝑟 + (1 − 𝛼)𝑞 ⪰𝑢 𝛼𝑟′ + (1 − 𝛼)𝑞. □

Lemma 16. If ≿ satisfies symmetry, then ⪰𝑢 satisfies:

• Risk Symmetry: for all 𝑟, 𝑟′, 𝑞, 𝑘 ∈ R𝑢, with 𝑞, 𝑘 constant, and any 𝑇, 𝐹 ∈ Σ such that

𝑇 ∩ 𝐹 = ∅, 𝑟 (𝑇)𝑞 (𝐹)𝑘 ⪰𝑢 𝑟′(𝑇)𝑞 (𝐹)𝑘 implies 𝑟 (𝑇)𝑘 (𝐹)𝑞 ⪰𝑢 𝑟′(𝑇)𝑘 (𝐹)𝑞.

Proof: Assume that 𝑟 (𝑇)𝑞 (𝐹)𝑘 ⪰𝑢 𝑟′(𝑇)𝑞 (𝐹)𝑘 , where 𝑟, 𝑟′, 𝑞, 𝑘 ∈ R𝑢, with 𝑞, 𝑘 constant, and

𝑇 ∩ 𝐹 = ∅. There exist 𝜌, 𝜏 ∈ D and (^, 𝑃∗), (𝛾, 𝑃∗) ∈ K (≿̂) such that 𝑟 = 𝑟𝑢 (𝜌, 𝑃∗),

𝑟′ = 𝑟𝑢 (𝜏, 𝑃∗), 𝑞 = 𝑟𝑢 (^, 𝑃∗) and 𝑘 = 𝑟𝑢 (𝛾, 𝑃∗). Then, by Lemma 3, (𝜌𝑇 ^𝐹𝛾, 𝑃∗) ≿ (𝜏𝑇 ^𝐹𝛾, 𝑃∗).

From Axiom 13, we get (𝜌𝑇𝛾𝐹^, 𝑃∗) ≿ (𝜏𝑇𝛾𝐹^, 𝑃∗). Applying Lemma 3 once more, we obtain

𝑟 (𝑇)𝑘 (𝐹)𝑞 ⪰𝑢 𝑟′(𝑇)𝑘 (𝐹)𝑞. □

Lemma 17. If ≿ satisfies Weak CRE-Independence, then ⪰𝑢 satisfies:

• Weak Certainty Independence: if 𝑟, 𝑟′, 𝑞 ∈ R𝑢 and 𝑞 is constant, then 𝛼𝑟 + (1 − 𝛼)𝑞 ⪰𝑢

𝛼𝑟′ + (1 − 𝛼)𝑞 implies 𝛼𝑟 + (1 − 𝛼)𝑞′ ⪰𝑢 𝛼𝑟′ + (1 − 𝛼)𝑞′ for any 𝛼 ∈ (0, 1) and constant

𝑞′ ∈ R𝑢.

Proof: Suppose 𝛼𝑟 + (1 − 𝛼)𝑞 ⪰𝑢 𝛼𝑟′ + (1 − 𝛼)𝑞, where 𝑞 is constant and 𝛼 ∈ (0, 1). By a

familiar argument, there exist 𝜌, 𝜏, ^ ∈ D such that 𝑟 = 𝑟𝑢 (𝜌, 𝑃∗), 𝑟′ = 𝑟𝑢 (𝜏, 𝑃∗), 𝑞 = 𝑟𝑢 (^, 𝑃∗)

and 𝛼(𝜌, 𝑃∗) + (1 − 𝛼) (^, 𝑃∗) ≿ 𝛼(𝜏, 𝑃∗) + (1 − 𝛼) (^, 𝑃∗). Applying Weak CRE-Independence,

we get 𝛼(𝜌, 𝑃∗) + (1 − 𝛼) (^′, 𝑃∗) ≿ 𝛼(𝜏, 𝑃∗) + (1 − 𝛼) (^′, 𝑃∗) for all (^′, 𝑃∗) ∈ K (≿̂). Since any

constant 𝑞′ ∈ R𝑢 correspond to 𝑟𝑢 (^′, 𝑃∗) for some ^′ (by Lemma 1), we obtain 𝛼𝑟 + (1− 𝛼)𝑞′ ⪰𝑢

𝛼𝑟′ + (1 − 𝛼)𝑞′ for any 𝛼 ∈ (0, 1) and constant 𝑞′ ∈ R𝑢. □
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Lemma 18. If ≿ satisfies the Sure Thing Principle, then ⪰𝑢 satisfies:

• Savage’s STP: for all 𝑟, 𝑟′, 𝑞, 𝑞′ ∈ R𝑢 and 𝑇 ∈ Σ, if 𝑟 (𝑇)𝑞 ⪰𝑢 𝑟′(𝑇)𝑞 then 𝑟 (𝑇)𝑞′ ⪰𝑢 𝑟′(𝑇)𝑞′.

Proof: Take 𝑟, 𝑟′, 𝑞, 𝑞′ ∈ R𝑢 and 𝑇 ∈ Σ with 𝑟 (𝑇)𝑞 ⪰𝑢 𝑟′(𝑇)𝑞. As usual, there exists 𝜌, 𝜏, 𝛾, 𝛾′ ∈

D such that 𝑟 = 𝑟𝑢 (𝜌, 𝑃∗), 𝑟′ = 𝑟𝑢 (𝜏, 𝑃∗), 𝑞 = 𝑟𝑢 (𝛾, 𝑃∗), 𝑞′ = 𝑟𝑢 (𝛾′, 𝑃∗) and, by Lemma 3,

(𝜌𝑇𝛾, 𝑃∗) ≿ (𝜏𝑇𝛾, 𝑃∗). The Sure Thing Principle then implies that (𝜌𝑇𝛾′, 𝑃∗) ≿ (𝜏𝑇𝛾′, 𝑃∗), and

applying Lemma 3 once again we obtain the result. □

Now we can proceed to the proofs of the propositions in Section 1.5. Again, I will show only

sufficiency of the axioms, since necessity is easily verifiable.

Proof of Proposition 2: Assume that ≿ satisfies axioms 1 to 4 and 6, Mixture Independence and

Monotone Continuity∗. Then ⪰𝑢 satisfies the basic A-A axioms, Independence and Monotone

Continuity. Applying the classic SEU representation theorem (see, e.g., Fishburn (1970, Theorem

13.3)),1 the axioms on ⪰𝑢 are equivalent to the existence a cardinally unique linear function 𝑈 :

[0, 1] → R and a finitely additive probability distribution 𝜋 ∈ Δ(Θ) such that, for all 𝑟, 𝑟′ ∈ R𝑢,

𝑟 ⪰𝑢 𝑟′ ⇐⇒
∫
Θ

𝑈 ◦ 𝑟d𝜋 ≥
∫
Θ

𝑈 ◦ 𝑟′d𝜋.

Monotone Continuity then guarantees that 𝜋 ∈ Δ(Θ) is countably additive (Arrow, 1971). From

the uniqueness properties of the representation and linearity, we can take 𝑈 to be the identity

function, thus the result obtains. □

Denote by 𝐵(Σ) the set of bounded real-valued Σ-measurable functions on Θ. Let 𝐵(Σ)∗ be its

continuous dual space, i.e., the space of all linear functionals 𝜙 : 𝐵(Σ) → R that are continuous

with respect to the topology induced by the uniform norm ∥𝑟 ∥∞ = sup\∈Θ |𝑟 (\) |. A well known

fact is that 𝐵(Σ)∗ is isomorphic to the set 𝑏𝑎(Σ) of finitely additive real-valued set functions on Σ

which are bounded in the total variation norm.
1Although SEU theorems in the Anscombe-Aumann framework are usually stated in terms of acts mapping Θ to

some set Δ of probability distributions, the same proofs also work when acts take values in 𝑌 , where 𝑌 is any convex
set.
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Recall that we assumed R𝑢 was endowed with the product topology, rather than the uniform

topology. So denote by 𝐵(Σ)× the continuous dual space of 𝐵(Σ) in the product topology, and

note that, since this topology is coarser than the uniform topology, we have that 𝐵(Σ)× ⊆ 𝐵(Σ)∗

(because any functional that is continuous in the former topology is also in the latter). For the same

reason, any weak∗ compact subset of 𝐵(Σ)∗ remains compact as a subset of 𝐵(Σ)×.

Proof of Proposition 3: In view of Lemmas 14 and 15, if ≿ satisfies axioms 1 to 4 and 6, Hedging

and CRE-Independence, then ⪰𝑢 satisfies the basic A-A axioms, Uncertainty Aversion and Cer-

tainty Independence. Following the proof of the MPEU representation theorem from Gilboa and

Schmeidler (1989a, Theorem 1 and Proposition 4.1), ⪰𝑢 satisfies these axioms if, and only if, there

exists a convex set Φ ⊆ 𝐵(Σ)× of monotone continuous linear functionals on 𝐵(Σ) such that, for

all 𝑟, 𝑟′ ∈ R𝑢,

𝑟 ⪰𝑢 𝑟′ ⇐⇒ inf
𝜙∈Φ

𝜙(𝑟) ≥ inf
𝜙∈Φ

𝜙(𝑟′).

Since 𝐵(Σ)∗ is isomorphic to 𝑏𝑎(Σ) and 𝐵(Σ)× ⊆ 𝐵(Σ)∗, there also exists an isomorphism

between Φ and Π ⊆ 𝑏𝑎(Σ). Monotonicity of each 𝜙 ∈ Φ implies that every 𝜋 ∈ Π is a (finitely

additive) measure. Therefore, for all 𝑟, 𝑟′ ∈ R𝑢,

𝑟 ⪰𝑢 𝑟′ ⇐⇒ inf
𝜋∈Π

∫
Θ

𝑟d𝜋 ≥ inf
𝜋∈Π

∫
Θ

𝑟′d𝜋.

Lemma 3.3 in Gilboa and Schmeidler (1989a) then guarantees that 𝜙(1Θ) = 1 for all 𝜙 ∈ Φ,

thus 𝜋(Θ) = 1 for every 𝜋 ∈ Π. Finally, since ≿ satisfies Monotone Continuity∗, then Monotone

Continuity of ⪰𝑢 guarantees that Π ⊆ Δ(Θ) (Chateauneuf et al., 2005, Theorem 1). □

Many models in the Anscombe-Aumann setting are characterized only for simple acts, i.e.,

acts that have a finite range. To make use of such results, we first prove that the propositions in

Section 1.5 hold when restricted to the set R0
𝑢 ≡ {𝑟 ∈ R𝑢 : 𝑟 (Θ) ⊆ 𝐹, 𝐹 finite} of all simple

risk functions. Then we use standard results and continuity of 𝐼 to approximate each 𝑟 ∈ R𝑢 by a

sequence of functions in (𝑟0
𝑛)𝑛≥1 ∈ R0

𝑢 . This leads to the lemma below.
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Lemma 19. Suppose ≿ has an MRA representation with utility function 𝑢, and 𝐼0 : R0
𝑢 → R

represents the restriction of ⪰𝑢 to R0
𝑢 . Then 𝐼0 has a unique continuous extension 𝐼 : R𝑢 → R and

(𝑢, 𝐼) represents ≿.

Proof: Since ≿ has an MRA representation, Theorem 2 applied to R0
𝑢 implies that 𝐼0 is monotone

and continuous. Because 𝐼0 represents the restriction of ⪰𝑢 to R0
𝑢 , there exists (𝑢, 𝐼) representing

≿ such that 𝐼0 is a restriction of 𝐼 to R0
𝑢 . A well known result in functional analysis is that for any

measurable function 𝑟 ∈ R𝑢, there exists a sequence (𝑟𝑛)𝑛≥1 ∈ R0
𝑢 such that 𝑟𝑛 ≤ 𝑟 for all 𝑛 ≥ 1

and 𝑟𝑛 → 𝑟 . Therefore, R0
𝑢 is dense in R𝑢.

Take any two continuous extensions 𝐼 and 𝐼 of 𝐼0. Fix an arbitrary 𝑟 ∈ R𝑢 \ R0
𝑢 and suppose

that 𝐼 (𝑟) ≠ 𝐼 (𝑟). Since R is Hausdorff, there exist open neighborhoods �̂� of 𝐼 (𝑟) and �̃� of 𝐼 (𝑟)

such that �̂� ∩ �̃� = ∅. Since 𝐼 and 𝐼 are continuous, 𝐼−1(�̂�) and 𝐼−1(�̃�) are open neighborhoods

of 𝑟. However, 𝐼−1(�̂�) ∩ 𝐼−1(�̃�) ∩ R0
𝑢 = 𝐼−1

0 (�̂�) ∩ 𝐼−1
0 (�̃�) ∩ R0

𝑢 = 𝐼−1
0 (�̂� ∩ �̃�) ∩ R0

𝑢 = ∅, which

is absurd. We conclude that 𝐼 (𝑟) = 𝐼 (𝑟) for all 𝑟 ∈ R𝑢. Therefore, 𝐼 is the unique continuous

extension of 𝐼0 and (𝑢, 𝐼) represents ≿. □

Proof of Proposition 4: Since ≿ has a MPEU representation, ⪰𝑢 satisfies the basic A-A axioms

and Uncertainty Aversion. By Stoye (2011, Theorem 1(iii)), the restriction of ⪰𝑢 to R0
𝑢 satisfies

Risk Symmetry if, and only if, it has a MEU representation. Using Lemma 19, we can then extend

the representation to R𝑢. □

Proof of Proposition 5: Suppose ≿ satisfies axioms 1 to 4, 6 and 10, Hedging and Weak CRE-

Independence. Then ⪰𝑢 satisfies the basic A-A axioms, Uncertainty Aversion and Weak Certainty

Independence, and so does the restriction of ⪰𝑢 to R0
𝑢 . According to Maccheroni, Marinacci,

and Rustichini (2006, Appendix B), this holds if, and only if, there exists a monotone functional

𝐼0 : R0
𝑢 → R that represents ⪰𝑢 on R0

𝑢 and satisfies, for all 𝑟, 𝑞 ∈ R0
𝑢 and 𝛼, 𝑘 ∈ [0, 1],

(a) Translation Invariance: 𝐼0(𝛼𝑟 + (1 − 𝛼)𝑘 1Θ) = 𝐼0(𝛼𝑟) + (1 − 𝛼)𝑘;

(b) Normalization: 𝐼0(𝑘 1Θ) = 𝑘;
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(c) Concavity: 𝐼0(𝛼𝑟 + (1 − 𝛼)𝑞) ≥ 𝛼𝐼0(𝑟) + (1 − 𝛼)𝐼0(𝑞).

Moreover, by Theorem 2 and the fact that, for a given 𝑢, 𝐼0 : R0
𝑢 → R is unique up to normaliza-

tion, we have that 𝐼0 is continuous in the topology of point-wise convergence.

Define 𝐼 : R𝑢 → R as the unique continuous extension of 𝐼0. By Lemma 19, (𝑢, 𝐼) represents

≿. Clearly, 𝐼 satisfies (b). To see that it satisfies (a), let 𝑟 ∈ R𝑢 and take any (𝑟𝑛) ∈ R0
𝑢 such that

𝑟𝑛 → 𝑟. Then 𝐼 (𝛼𝑟 + (1 − 𝛼)𝑘 1Θ) = 𝐼 (lim𝑛 𝛼𝑟𝑛 + (1 − 𝛼)𝑘 1Θ) = lim𝑛 𝐼0(𝛼𝑟𝑛 + (1 − 𝛼)𝑘 1Θ) =

lim𝑛 𝐼0(𝛼𝑟𝑛) + (1− 𝛼)𝑘 = 𝐼 (𝛼𝑟) + (1− 𝛼)𝑘 , which implies that 𝐼 is translation invariant. A similar

argument implies that 𝐼 is concave.

Applying the Fenchel-Moreau theorem as in Cerreia-Vioglio et al. (2014, Section 5), we can

identify 𝐼 : R𝑢 → R with its convex biconjugate 𝐼 (𝑟) = inf𝜙∈𝐵(Σ)× {𝜙(𝑟) − 𝐼∗(𝜙)}, where 𝜙 ↦→

𝐼∗(𝜙) = inf𝑟∈R𝑢
{𝜙(𝑟) − 𝐼 (𝑟)} is concave, upper semicontinuous and sup𝜙∈𝐵(Σ)× 𝐼∗(𝜙) = 0. Finally,

recall that 𝐵(Σ)× ⊆ 𝐵(Σ)∗, thus 𝐵(Σ)× is isomorphic to a subset Π0 ⊆ 𝑏𝑎(Σ). Defining 𝑐∗ : Π0 →

[0,∞] by 𝑐∗(𝜋) = − inf𝑟∈R𝑢
{
∫
𝑟d𝜋 − 𝐼 (𝑟)}, we can thus write

𝐼 (𝑟) = inf
{∫

𝑟d𝜋 + 𝑐∗(𝜋) : 𝜋 ∈ Π0

}
∀𝑟 ∈ R𝑢 .

From Monotone Continuity and Normalization, we have 𝑐∗(𝜋) = ∞ for all 𝜋 ∈ Π0 \ Δ(Θ) (see

Maccheroni, Marinacci, and Rustichini (2006, Lemma 30)). Letting Π = {𝜋 ∈ Π0 : 𝑐∗(𝜋) < ∞}

and defining 𝑐 : Π → [0,∞) by the restriction of 𝑐∗ to Π, we obtain the result. □

Proof of Proposition 6: Since ≿ has a variational representation and satisfies Axiom 15, then ⪰𝑢

satisfies the basic A-A axioms, Uncertainty Aversion, Weak Certainty Independence and Sav-

age’s STP. Strzalecki (2011, Theorem 1) implies that the restriction of ⪰𝑢 to R0
𝑢 satisfies the

aforementioned axioms if, and only if, it has a multiplier representation (𝑢, 𝐼0), where 𝐼0(𝑟) =

min𝜋∈Δ(Θ)
{∫

Θ
𝑟d𝜋 + 𝑘𝐷 (𝜋∥`)

}
. From the SEOU representation of 𝐼0 found in Strzalecki (2011),

i.e., 𝐼0(𝑟) =
∫
Θ
− exp(−𝑘−1𝑟)d` for 𝑘 < ∞ and

∫
Θ
𝑟d` for 𝑘 = ∞, it is easily checked that 𝐼0 is

continuous in the topology of point-wise convergence. We can thus extend 𝐼0 to 𝐼 : R𝑢 → R using

the same technique as in the proof of Proposition 5. □
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A.6 Proofs of results in Section 1.6

A.6.1 Proof of Theorem 3

If ≿⊆ S 2 satisfies axioms 1 to 6, then Lemma 10 implies that the relation ⪰ defined by (1.8) is

a weak order that satisfies axioms A3 to A6. Then it is a straightforward exercise to check that the

state dependent stochastic choice function 𝑐 : Φ → F given by 𝑐(𝐹) = { 𝑓 ∈ 𝐹 : 𝑓 ⪰ 𝑔 ∀𝑔 ∈ 𝐹}

for all 𝐹 ∈ Φ, satisfies axioms C1 to C4.

Now assume 𝑐 : Φ → F satisfies axioms C1 to C4. We want to construct a complete extension

⪰ of ⊵ that satisfies axioms A3 to A6, which will allow us to define a preference ≿ on S that

rationalizes 𝑐 and satisfies axioms 1 to 6.

Because ⊵\ satisfies C-LARP and Conditional Continuity, we can apply Theorem 4 from Clark

(1993) and Theorem 3 from Clark (2000) to obtain a continuous total order (a complete, transitive

and antisymmetric preference) ⪰\ on Δ(𝐴) that extends ⊵\ and satisfies Independence. That is, if

𝑝 ⪰\ 𝑞, then _𝑝 + (1−_)𝑟 ⪰\ _𝑞 + (1− _)𝑟 for all _ ∈ [0, 1] and 𝑟 ∈ Δ(𝐴). By RP-Monotonicity,

𝑓 = 𝑐(𝐹) implies that for all 𝑔 ∈ 𝐹 with 𝑔 ≠ 𝑓 , there exists \ ∈ Θ such that 𝑝 ̸⊵\ 𝑓 (\) for all

𝑝 ∈ Δ(𝐴) such that 𝑔(\) ⊵\ 𝑝. Therefore, a well-known argument (see, e.g., Ok and Riella (2021),

Theorem 9.3) guarantees that {⪰\: \ ∈ Θ} can be constructed so that, if 𝑓 = 𝑐(𝐹), 𝑔 ∈ 𝐹 and

𝑔 ≠ 𝑓 , there is a \ ∈ Θ such that 𝑓 (\) ⪰\ 𝑔(\).

Define, for all 𝑓 , 𝑔 ∈ F , 𝑓 ⪰̂ 𝑔 if, and only if, 𝑓 (\) ⪰\ 𝑔(\) for every \ ∈ Θ. It is easily

checked that, by construction, ⪰̂ is a partial order that satisfies axioms A3 to A5, A7 and A8.

Suppose Θ is finite, so that F is metrizable. If ( 𝑓 𝑚), (𝑔𝑚) ∈ F are such that 𝑓 𝑚 → 𝑓 , 𝑔𝑚 → 𝑔

and 𝑓 𝑚 ⪰̂ 𝑔𝑚 for all 𝑚 ∈ N, then 𝑓 𝑚 (\) → 𝑓 (\) and 𝑔𝑚 (\) → 𝑔(\) for all \ ∈ Θ, which by

definition of ⪰̂ and the fact that ⪰\ is closed for all \ ∈ Θ, implies that 𝑓 ⪰̂ 𝑔. Therefore, ⪰̂

satisfies axiom A6.

From GARP and the fact that we are working with choice functions, if 𝑓 1 ∈ 𝑐(𝐹1) ∩ 𝐹2, 𝑓
2 ∈

𝑐(𝐹2) ∩ 𝐹3, . . . , 𝑓
𝑘 ∈ 𝑐(𝐹𝑘 ) ∩ 𝐹1, then 𝑓 1 = · · · = 𝑓 𝑘 = 𝑓 . Moreover, by construction, 𝑔 ̸⪰̂ 𝑓

for any 𝑔 ∈ ⋃𝑘
𝑖=1 𝐹𝑘 \ { 𝑓 }. In the language of Nishimura, Ok, and Quah (2017), ((F , ⪰̂),Φ) is
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a continuous choice environment and 𝑐 satisfies cyclical ⪰̂-consistency. Therefore, we can apply

their Theorem 1 to obtain a weak order ⪰ that extends ⪰̂ and, for all 𝐹 ∈ Φ,

𝑐(𝐹) = { 𝑓 ∈ 𝐹 : 𝑓 ⪰ 𝑔 ∀𝑔 ∈ 𝐹}.

Furthermore, since ⪰ extends ⪰̂, it is easy to see that it satisfies axioms A3 to A5.

Finally, define ≿ on S by

∀(𝜌, 𝑃), (𝜏, 𝑄) ∈ S , (𝜌, 𝑃) ≿ (𝜏, 𝑄) ⇐⇒ 𝜌𝑃 ⪰ 𝜏𝑄.

Obviously, ≿ satisfies Consequentialism. It is easy to check, using arguments similar to the proof

of Lemma 10, that ≿ also satisfies axioms 1 and 3 to 6. Therefore, by Theorem 2, it has an MRA

representation (𝑢, 𝐼), which completes the proof.

A.7 Proof of Theorem 4

Suppose ≽� satisfies Axiom D1. Note that item 1 of Axiom D1 implies that each ≽𝑃 satisfies

a version of Consequentialism. Indeed, taking 𝑃 = 𝑃′ in the statement, we have that 𝜌𝑃 = 𝜏𝑃

implies 𝜌 ∼𝑃 𝜏.

Consider the following relation on D :

∀𝜌, 𝜏 ∈ D : 𝜌 ≽̂ 𝜏 ⇐⇒ 𝜌 ≽\ 𝜏 for all \ ∈ Θ.

Since ≽𝑃∗ is reflexive, ≽̂ is non-empty. Also define a preference relation ⪰̂ on F by

𝑓 ⪰̂ 𝑔 ⇐⇒ ∃𝜌, 𝜏 ∈ D such that 𝜌 ≽̂ 𝜏, 𝜌𝑃∗ = 𝑓 and 𝜏𝑃∗ = 𝑔.

Substituting ⪰̂ for ⪰ in the proof of Lemma 10, it can be seen that ⪰̂ is reflexive, transitive, and

satisfies axioms A3 to A8. Therefore, substituting ⪰̂ for ⪰ in the Proof of Theorem 1, we obtain a
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dominance representation with utility index 𝑣 : 𝐴 × Θ → R, i.e., for all 𝜌, 𝜏 ∈ D ,

𝜌 ≽̂ 𝜏 ⇐⇒
∫
𝑋

𝑣(𝜌, \)d𝑃∗
\ ≥

∫
𝑋

𝑣(𝜏, \)d𝑃∗
\ ∀\ ∈ Θ.

Note that, due to Lemma 1, we have R𝑣 = {𝑟𝑣 (𝛿, 𝑃∗) : 𝛿 ∈ D}. Define a preference ⪰∗ on R𝑣

by

∀𝑟, 𝑟′ ∈ R𝑣 : 𝑟 ⪰∗ 𝑟
′ ⇐⇒ ∃𝜌 ≽𝑃∗ 𝜏 such that 𝑟 = 𝑟𝑣 (𝜌, 𝑃∗) and 𝑟′ = 𝑟𝑣 (𝜏, 𝑃∗).

An argument entirely analogous to the Proof of Theorem 2 guarantees that ⪰∗ is a continuous

and monotone weak order. Therefore, there exists a monotone and continuous utility function

𝐽 : R𝑣 → R such that, for all 𝜌, 𝜏 ∈ D ,

𝑟𝑣 (𝜌, 𝑃∗) ⪰∗ 𝑟𝑣 (𝜏, 𝑃∗) ⇐⇒ 𝐽 (𝑟𝑣 (𝜌, 𝑃∗)) ≥ 𝐽 (𝑟𝑣 (𝜏, 𝑃∗)) ⇐⇒ 𝜌 ≽𝑃∗ 𝜏.

We now extend the representation to the collection ≽�= {≽𝑃: 𝑃 ∈ P}. Take any 𝑃 ∈ P and

𝜌, 𝜏 ∈ D . By Lemma 1, there exists 𝜌′, 𝜏′ ∈ D such that 𝜌𝑃 = 𝜌′𝑃∗ and 𝜏𝑃 = 𝜏′𝑃∗. From item

1 of Axiom D1, we obtain 𝜌 ≽𝑃 𝜏 ⇐⇒ 𝜌′ ≽𝑃∗ 𝜏′. Therefore, 𝜌 ≽𝑃 𝜏 ⇐⇒ 𝐽 (𝑟𝑣 (𝜌′, 𝑃∗)) ≥

𝐽 (𝑟𝑣 (𝜏′, 𝑃∗)). Since 𝑟𝑣 (𝜌′, 𝑃∗) = 𝑟𝑣 (𝜌, 𝑃) and 𝑟𝑣 (𝜏′, 𝑃∗) = 𝑟𝑣 (𝜏, 𝑃), we have

𝜌 ≽𝑃 𝜏 ⇐⇒ 𝐽 (𝑟𝑣 (𝜌, 𝑃)) ≥ 𝐽 (𝑟𝑣 (𝜏, 𝑃)),

for all 𝜌, 𝜏 ∈ D and 𝑃 ∈ P .

A.8 Proof of Theorem 5

Assume ≽� satisfies axioms E1 to E3. By Lemma 9, there exists 𝛿∗ ∈ D such that for any

𝑓 ∈ F , there is a 𝑃 𝑓 ∈ Δ(𝑋)Θ such that 𝑓 = 𝛿∗𝑃 𝑓 .

For any given 𝑓 , ℎ ∈ F , take 𝑃 𝑓 , 𝑃ℎ ∈ P such that 𝑓 = 𝛿∗𝑃 𝑓 and 𝑔 = 𝛿∗𝑃ℎ. Since 𝛿∗ is

invariant, we have:
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1. For all 𝛼 ∈ [0, 1], 𝛿∗(𝛼𝑃 𝑓 + (1 − 𝛼)𝑃ℎ) = 𝛼𝛿∗𝑃 𝑓 + (1 − 𝛼)𝛿∗𝑃ℎ = 𝛼 𝑓 + (1 − 𝛼)ℎ;

2. For all \ ∈ Θ, 𝛿∗(𝑃 𝑓 (\)𝑃ℎ) = 𝛿∗𝑃 𝑓 (\)𝛿∗𝑃ℎ = 𝑓(\)ℎ.

Define the preference ⪰∗ on F by

𝑓 ⪰∗ ℎ ⇐⇒ ∃𝑃 𝑓 , 𝑃ℎ ∈ P such that 𝑃 𝑓 ≽{𝛿
∗} 𝑃ℎ, 𝛿∗𝑃 𝑓 = 𝑓 and 𝛿∗𝑃ℎ = ℎ.

Consistency guarantees that ⪰∗ is well-defined and reflexive, since by taking 𝑀 = 𝑁 = {𝛿∗},

𝑄 = 𝑃′ and 𝑃 = 𝑄′ in the statement of the axiom, we get that 𝛿∗𝑃 = 𝛿∗𝑃′ implies 𝑃 ∼{𝛿∗} 𝑃′. Item

1 of Axiom E1 and Lemma 9 immediately imply that ⪰∗ is complete and transitive, whereas item

5 readily implies that ⪰∗ satisfies Axiom A6. We now show that ⪰∗ satisfies axioms A3 to A6.

Indeed, take any 𝑓 , 𝑔, ℎ, ℎ′ ∈ F and \ ∈ Θ such that 𝑓(\)ℎ ⪰∗ 𝑔(\)ℎ. Then, 𝑃 𝑓 (\)𝑃ℎ ≽{𝛿
∗}

𝑃𝑔 (\)𝑃
ℎ for some 𝛿∗𝑃 𝑓 = 𝑓 , 𝛿∗𝑃ℎ = ℎ and 𝛿∗𝑃𝑔 = 𝑔. Item 2 of Axiom E1 then implies that

𝑃 𝑓 (\)𝑅 ≽
{𝛿∗} 𝑃𝑔 (\)𝑅 for all 𝑅 ∈ P , and thus 𝑓(\)ℎ′ ⪰∗ 𝑔(\)ℎ

′, by Lemma 9. Thus ⪰∗ satisfies

Axiom A3.

Now fix any 𝑓 , 𝑔, ℎ ∈ F such that 𝑓(\)ℎ ⪰∗ 𝑔(\)ℎ for all \ ∈ Θ. This implies that there exist

𝑃 𝑓 , 𝑃𝑔, 𝑃ℎ ∈ P , where 𝛿∗𝑃 𝑓 = 𝑓 , 𝛿∗𝑃𝑔 = 𝑔 and 𝛿∗𝑃ℎ = ℎ, such that 𝑃 𝑓 (\)𝑃ℎ ≽{𝛿
∗} 𝑃𝑔 (\)𝑃

ℎ for

all \ ∈ Θ. By item 2 in Axiom E1, we have that 𝑃 𝑓 (\)𝑅 ≽{𝛿
∗} 𝑃𝑔 (\)𝑅 for all \ ∈ Θ and 𝑅 ∈ P .

From item 3, we obtain 𝑃 𝑓 ≽{𝛿
∗} 𝑃𝑔, which implies 𝑓 ⪰∗ 𝑔. Therefore, ⪰∗ satisfies Axiom A4.

Next fix any \ ∈ Θ and take any 𝑓 , 𝑔, ℎ ∈ F such that 𝑓 (\′) = 𝑔(\′) = ℎ(\′) for all \′ ≠ \.

Then there exist 𝑃 𝑓 , 𝑃𝑔, 𝑃ℎ ∈ P such that 𝑃 𝑓
\ ′ = 𝑃

𝑔

\ ′ = 𝑃ℎ
\ ′ for all \′ ≠ \, 𝑓 = 𝛿∗𝑃 𝑓 , 𝑔 = 𝛿∗𝑃𝑔

and ℎ = 𝛿∗𝑃ℎ. Suppose 𝑓 ⪰∗ 𝑔, implying 𝑃 𝑓 ≽{𝛿
∗} 𝑃𝑔. By item 4 of Axiom E1, we have

𝛼𝑃 𝑓 + (1−𝛼)𝑃ℎ ≽{𝛿∗} 𝛼𝑃𝑔 + (1−𝛼)𝑃ℎ for all 𝛼 ∈ (0, 1], and thus 𝛼 𝑓 + (1−𝛼)ℎ ⪰∗ 𝛼𝑔+ (1−𝛼)ℎ.

We conclude that ⪰∗ satisfies Axiom A5.

For each \ ∈ Θ, define the conditional preferences ⪰\ as in (A.1). Since ⪰∗ is complete,

so are ⪰\ . Section A.2 then shows that each ⪰\ has a representation given by (A.2). Fix one

such representation 𝑤 : 𝐴 × Θ → R and define its associated risk functional 𝑟𝑤 : F → RΘ

as in eq. (A.4). Consider the set of all such risk functions R𝑤 = {𝑟𝑤 ( 𝑓 ) : 𝑓 ∈ F } and define
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a preference relation ⪰𝑤 on R𝑤 by 𝑟 ⪰𝑤 𝑟′ ⇐⇒ ∃ 𝑓 , 𝑔 ∈ F such that 𝑓 ⪰∗ 𝑔, 𝑟 = 𝑟𝑤 ( 𝑓 )

and 𝑟′ = 𝑟𝑤 (𝑔). Note that if 𝑓 = 𝛿∗𝑃, for any 𝑓 ∈ F and 𝑃 ∈ P , then 𝑟𝑤 ( 𝑓 ) = 𝑟𝑤 (𝛿∗, 𝑃). A

straightforward adaptation of the argument in Section A.4 then implies that there exist 𝑤 : 𝐴×Θ →

R, continuous in the first argument, and a monotone and continuous 𝐻 : R𝑤 → R, such that

𝑃 ≽{𝛿
∗} 𝑄 ⇐⇒ 𝐻 (𝑟𝑤 (𝛿∗, 𝑃)) ≥ 𝐻 (𝑟𝑤 (𝛿∗, 𝑄)).

Moreover, we clearly have 𝐶𝑃 ({𝛿∗}) = {𝛿∗} for all 𝑃 ∈ P , hence ≽{𝛿
∗} has the desired represen-

tation.

It remains to show that ≽𝑀 has such a representation for each 𝑀 ∈ M , and that these rep-

resentations coincide. To that end, first consider any 𝑀 ∈ M such that 𝐶𝑃 (𝑀) is a singleton

for all 𝑃 ∈ P . Take any 𝑃,𝑄 ∈ P and let {𝜌} = 𝐶𝑃 (𝑀) and {𝜏} = 𝐶𝑄 (𝑀). By Lemma 9,

there exist 𝑃′, 𝑄′ ∈ P such that 𝜌𝑃 = 𝛿∗𝑃′ and 𝜏𝑄 = 𝛿∗𝑄′. Consistency then implies that

𝑃 ≽𝑀 𝑄 ⇐⇒ 𝑃′ ≽{𝛿
∗} 𝑄′, and thus

𝑃 ≽𝑀 𝑄 ⇐⇒ 𝐻 (𝑟𝑤 (𝛿∗, 𝑃′)) ≥ 𝐻 (𝑟𝑤 (𝛿∗, 𝑄′)) ⇐⇒ 𝐻 (𝑟𝑤 (𝜌, 𝑃)) ≥ 𝐻 (𝑟𝑤 (𝜏, 𝑄)).

We now extend the representation to menus 𝑀 with |𝐶𝑃 (𝑀) | > 1 for some 𝑃 ∈ P . Take any

𝑀 ∈ M and 𝑃 ∈ P . By Lemma 9, for all 𝜌 ∈ 𝐶𝑃 (𝑀) there exists 𝑃𝜌 ∈ P such that 𝜌𝑃 = 𝛿∗𝑃𝜌.

Since ≽{𝛿
∗} is complete and transitive, there exists 𝜌∗(𝑃) ∈ 𝐶𝑃 (𝑀) such that 𝑃𝜌

∗ (𝑃) ≽{𝛿
∗} 𝑃𝜌

for all 𝜌 ∈ 𝐶𝑃 (𝑀). Define a decision rule 𝛿 by 𝛿𝑃 = 𝜌∗(𝑃)𝑃 for every 𝑃 ∈ P and note that

𝛿𝑃 = 𝜌∗(𝑃)𝑃. Thus by Axiom E2, 𝑃 ≽{𝛿} 𝑄 ⇐⇒ 𝑃 ≽�̃� (𝑃,𝑄) 𝑄 for all 𝑃,𝑄 ∈ P , where

�̃� (𝑃,𝑄) = {𝛿 ∈ D : 𝛿𝑃 = 𝜌∗(𝑃)𝑃, 𝛿𝑄 = 𝜌∗(𝑄)𝑄 and ∀𝑅 ≠ 𝑃, ∃𝛾 ∈ 𝑀 s.t. 𝛿𝑅 = 𝛾𝑅}. Applying

Axiom E3 twice, we obtain the following equivalences:

𝑃 ≽{𝛿} 𝑄 ⇐⇒ 𝑃 ≽�̃� (𝑃,𝑄) 𝑄 ⇐⇒ 𝑃 ≽𝑀 𝑄.

Finally, note that since 𝑟𝑤 (𝜌∗(𝑃), 𝑃) = 𝑟𝑤 (𝛿, 𝑃) for all 𝑃 ∈ P and ≽{𝛿} can be represented by
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(𝑤, 𝐻) we get that for all 𝑃,𝑄 ∈ P , 𝑃 ≽𝑀 𝑄 ⇐⇒ 𝐻 (𝑟𝑤 (𝜌∗(𝑃), 𝑃)) ≥ 𝐻 (𝑟𝑤 (𝜌∗(𝑄), 𝑄))

subject to 𝜌∗(𝑃) ∈ 𝐶𝑃 (𝑀), 𝜌∗(𝑄) ∈ 𝐶𝑄 (𝑀).
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Appendix B: Proof of results in Chapter 2

B.1 Proof of Lemma 6

For any matrix M, let Δ(M) denote the convex hull of the columns of M. Also let Δ𝐼 be

the (𝐼 − 1)-dimensional unit simplex. Note that if P = Q𝚲 is a stochastic matric factorization,

then Δ(P) ⊆ Δ(Q). Moreover, since Q is column-stochastic, Δ(Q) ⊆ Δ𝐼 . This implies that if

Δ𝐼 ∩ Δ(P) ⊆ Δ(P), then Δ(Q) = Δ(P) and the stochastic matrix factorization is unique.

Since Q has 𝐾 linearly independent columns, Δ(Q) is a polytope with 𝐾 vertices inscribed

in Δ𝐼 . Now note that 𝐾-sparsity implies that 𝐾 points of Δ(P) are on different facets of Δ𝐼 .

Moreover, since Δ(P) ⊆ Δ𝐼 , these must be extreme points of Δ(P). This immediately implies

that Δ𝐼 ∩ Δ(P) ⊆ Δ(P), since every column of P is a convex combination of at most 𝐾 extreme

points, due to the assumption that P has a stochastic matrix factorization of rank 𝐾 .

B.2 Proof of Corollary 1

Suppose P has a unique stochastic factorization of rank 𝐾 = 2. By Lemma 5, there exist

𝑖1, 𝑖2 ∈ {1, . . . , 𝐼} and 𝑗1, 𝑗2 ∈ {1, . . . , 𝐽}, 𝑖1 ≠ 𝑖2 and 𝑗1 ≠ 𝑗2, such that Q𝑖𝑙𝑘ℎ ,𝚲𝑘𝑙 𝑗ℎ > 0 if 𝑙 = ℎ

and Q𝑖𝑙𝑘ℎ = 𝚲𝑖𝑙𝑘ℎ = 0 if 𝑙 ≠ ℎ. We then have



P𝑖1 𝑗1 = Q𝑖1𝑘1𝚲𝑘1 𝑗1 + Q𝑖1𝑘2𝚲𝑘2 𝑗1 > 0,

P𝑖1 𝑗2 = Q𝑖1𝑘1𝚲𝑘1 𝑗2 + Q𝑖1𝑘2𝚲𝑘2 𝑗2 = 0,

P𝑖2 𝑗1 = Q𝑖2𝑘1𝚲𝑘1 𝑗1 + Q𝑖2𝑘2𝚲𝑘2 𝑗1 = 0,

P𝑖2 𝑗2 = Q𝑖2𝑘1𝚲𝑘1 𝑗2 + Q𝑖2𝑘2𝚲𝑘2 𝑗2 > 0.

Therefore, I𝑖1 ⊈ I𝑖2 and I𝑖2 ⊈ I𝑖1 , implying that P is 𝐾-sparse.
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B.3 Proof of Theorem 6

Recall the following definition:

Definition 13 (Ring of sets). For a given set S, we call S ⊆ 2S a ring if it satisfies the following

properties:

(i) ∅ ∈ S ;

(ii) For all 𝐴, 𝐵 ∈ S , we have 𝐴 ∪ 𝐵 ∈ S ;

(iii) For all 𝐴, 𝐵 ∈ S , 𝐴 \ 𝐵 ∈ S . ♦

Carathéodory’s extension theorem states that a pre-measure on a ring S can be uniquely extended

to the 𝜎-algebra 𝜎(S ) generated by it.

Now take any finite partition C of Y × X such that the corresponding mixture probabilities

restricted to C satisfy 𝐾-sparsity. By Lemma 6, there exists a unique stochastic factorization

P = Q𝚲, which implies that both Q and 𝚲 are 𝐾-sparse. Therefore, by the monotonicity property

of probabilities, for any partition C ′ which is finer than C , the probabilities in 𝑄 and _ restricted

to C ′, Q′ and 𝚲′, will also be 𝐾-sparse.

Now denote by S (C ) the ring generated by the family of all partitions which are finer than

C . Since 𝑃,𝑄1, . . . , 𝑄𝐾 are pre-measures when restricted to every set in the generating class of

S (C ), we can apply Carathéodory’s extension theorem to guarantee their uniqueness. Therefore,

both 𝑄1, . . . , 𝑄𝐾 and 𝑃 are unique, which implies that _1, . . . , _𝐾 are also unique.

B.4 Proof of Proposition 7

Since Θ is compact and I : Θ ⇒ R𝐼×𝐾 × R𝐾×𝐽 has a closed graph by Lemma 4, we have that

I is upper-hemicontinuous. Then a standard result, which can be found in Ok (2011, page 304),

states that for any sequence (\𝑚) ∈ Θ such that \𝑚 → \, we have

max{𝑑 ((Q,𝚲), I(\)) : (Q,𝚲) ∈ I(\𝑚)} → 0.
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The result follows immediately.

B.5 Proof of Theorem 7

That preferences which are represented by (𝑢, 𝜋) satisfy the MRA axioms, Mixture Indepen-

dence and Monotone Continuity∗ is easily checked by applying Proposition 2.

For any choice of 𝑇 , we have E𝜋 [𝑢((1, 𝑇), \) |𝑝] = −𝑐1 and

E𝜋 [𝑢((0, 𝑇), \) |𝑝] =
∫
Θ

∫
Θ

𝑢(1, \)𝜋(\ |𝑝)d\

= −𝑐2 +
∫
𝑇

𝑐2 − 𝑐3𝑑 (\,Θ0)𝜋(\ |𝑥)d\

= −𝑐2 + 𝑐2𝑃𝑟 (\ ∈ 𝑇 |𝑝) − 𝑐3

∫
𝑇

𝑑 (\,Θ0)𝜋(\ |𝑥)d\.

Therefore,

E𝜋 [𝑢(1, \) |𝑝] > E𝜋 [𝑢(0, \) |𝑝] ⇐⇒ 𝑃𝑟 (\ ∈ 𝑇 |𝑝) < 1 −
𝑐1 − 𝑐3

∫
𝑇
𝑑 (\,Θ0)𝜋(\ |𝑝)d\
𝑐2

.

Now note that the choice of 𝑇 is not relevant when 𝑎 = 1. Conditional on accepting the null

hypothesis:

E𝜋 [𝑢((0, 𝑇), \) |𝑝] = −𝑐2 +
∫
𝑇

𝑐2 − 𝑐3𝑑 (\,Θ0)𝜋(\ |𝑥)d\.

This is maximized by choosing the region 𝑇 such that 𝑐2 − 𝑐3𝑑 (\,Θ0) ≥ 0 for all \ ∈ 𝑇 . That is,

𝑇 =

{
\ : 𝑑 (\,Θ0) ≤

𝑐2
𝑐3

}
.
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Appendix C: Proof of results in Chapter 3

C.1 Existence of optimal mechanisms for arbitrary type distributions

Lemma 20. M ∗(𝐹) ≠ ∅ for all 𝐹 ∈ F.

Proof: Define 𝑝 := max(\,𝑥)∈Θ×𝑋 𝑣(\, 𝑥) and endow the power set of 𝑋× [0, 𝑝] with the Hausdorff

metric. It is well-known that with the topology induced by the Hausdorff metric, the set of all

compact subsets of 𝑋 × [0, 𝑝], denoted by K (𝑋 × [0, 𝑝]), is itself compact. Define the set of

mechanisms M𝐼𝑅 as

M𝐼𝑅 :=
{
𝑀 ∈ M : max

(𝑥,𝑝)∈𝑀
𝑝 ≤ 𝑝

}
⊆ K (𝑋 × [0, 𝑝]).

Clearly, M𝐼𝑅 is closed, and therefore also compact. Since 𝑣(·, ·) is continuous and clearly so

is the mapping Θ × M𝐼𝑅 ∋ (\, 𝑀) ↦→ 𝑀 ∪ (0, 0), we have by the Maximum Theorem that the

correspondence M𝐼𝐶 : Θ × M𝐼𝑅 ⇒ 𝑋 × [0, 𝑝] such that

(\, 𝑀) ↦→ M𝐼𝐶 (\, 𝑀) = arg max
(𝑥,𝑝)∈𝑀∪(0,0)

𝑣(\, 𝑥) − 𝑝

is non-empty, compact valued and upper hemicontinuous. Applying the Maximum Theorem once

again, we obtain that the value function 𝛾 : Θ × M𝐼𝑅 → R where

(\, 𝑀) ↦→ 𝛾(\, 𝑀) = max
(𝑥,𝑝)∈M𝐼𝐶 (\,𝑀)

𝑝 − 𝑐(𝑥)

is upper semicontinuous, i.e., for any (\0, 𝑀0) ∈ Θ×M𝐼𝑅, lim sup(\,𝑀)→(\0,𝑀0) 𝛾(\, 𝑀) ≤ 𝛾(\0, 𝑀0).
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Now, since 𝛾 is bounded we can apply (reverse) Fatou’s Lemma to obtain that for any 𝑀0 ∈ M𝐼𝑅,

lim sup
𝑀𝑛→𝑀0

∫
𝛾(\, 𝑀𝑛)𝑑𝐹 (\) ≤

∫
lim sup
𝑀𝑛→𝑀0

𝛾(\, 𝑀𝑛)𝑑𝐹 (\) ≤
∫

𝛾(\, 𝑀0)𝑑𝐹 (\).

This proves that the mapping (𝐹, 𝑀) ↦→
∫
𝛾(·, 𝑀)𝑑𝐹 is upper semicontinuous in 𝑀 for every

𝐹 ∈ F. Therefore, since M𝐼𝑅 is compact, the extreme value theorem guarantees the existence of

𝑀∗ ∈ arg max𝑀∈M𝐼𝑅
𝜋(𝑀, 𝐹) = arg max𝑀∈M 𝜋(𝑀, 𝐹) for all 𝐹 ∈ F, where the latter equality

comes from the fact that (𝑥, 𝑝) ∈ 𝑋 × (𝑝,∞) will never be chosen over (0, 0). □

C.2 Proof of Lemma 7

We first state two results that will prove useful in determining the Lipschitz continuity of

𝜋(𝑀, 𝐹) in 𝐹 ∈ F.

Let P :=
{
𝑃 = \0, . . . , \𝑛𝑃 : \

¯
= \0 ≤ \1 ≤ · · · ≤ \𝑛𝑃 = \̄

}
and𝑉 ( 𝑓 ) := sup𝑃∈P

∑𝑛𝑃−1
𝑖=0 | 𝑓 (\𝑖+1)−

𝑓 (\𝑖) |, where 𝑉 ( 𝑓 ) denotes the total variation of a function 𝑓 : Θ → R. We have:

Lemma 21 (Beesack-Darst-Pollard Inequality (Darst and Pollard, 1970; Beesack, 1975)). Let

𝑓 , 𝑔, ℎ be real-valued functions on a compact interval 𝐼 = [𝑎, 𝑏] ⊂ R, where ℎ is of bounded vari-

ation with total variation 𝑉 (ℎ) on 𝐼 and such that
∫ 𝑏

𝑎
𝑓 𝑑𝑔 and

∫ 𝑏

𝑎
ℎ𝑑𝑔 both exist. Then,

𝑚

∫ 𝑏

𝑎

𝑓 𝑑𝑔 +𝑉 (ℎ) sup
𝑎≤𝑎′≤𝑏′≤𝑏

∫ 𝑏′

𝑎′
𝑓 𝑑𝑔 ≥

∫ 𝑏

𝑎

ℎ 𝑓 𝑑𝑔 ≥ 𝑚
∫ 𝑏

𝑎

𝑓 𝑑𝑔 +𝑉 (ℎ) inf
𝑎≤𝑎′≤𝑏′≤𝑏

∫ 𝑏′

𝑎′
𝑓 𝑑𝑔,

where 𝑚 = inf {ℎ(𝑥) : 𝑥 ∈ 𝐼}.

The following is a standard result in the mechanism design literature based on Mirrlees (1971)

and Milgrom and Segal (2002).

Lemma 22. The choices from a menu 𝑀 ∈ M satisfy

(𝑥(\), 𝑝(\)) ∈ arg max
(𝑥,𝑝)∈𝑀∪{(0,0)}

𝑢(\, 𝑥, 𝑝)
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if, and only if, 𝑥(·) is nondecreasing, 𝑥(\
¯
) = 0 and 𝑝(\) = 𝑣(\, 𝑥(\)) −

∫ \

\
¯
𝑣1(𝑠, 𝑥(𝑠))𝑑𝑠.

For any 𝐹 ∈ F, we can thus rewrite the problem – with some abuse of notation – by choosing

directly a function 𝑥 from the set X , where

X :=
{
𝑥 : [\

¯
, \̄] → 𝑋, 𝑥 is nondecreasing and 𝑥(\

¯
) = 0

}
,

in order to maximize profit, given by

𝜋(𝑥, 𝐹) :=
∫
Θ

(
𝑣(\, 𝑥(\)) −

∫ \

\
¯

𝑣1(𝑠, 𝑥(𝑠))𝑑𝑠 − 𝑐 (𝑥(\))
)
𝑑𝐹 (\).

Consider the normed vector space (𝐵𝑉 (Θ), ∥ · ∥∞), where 𝐵𝑉 (Θ) := {𝑔 : Θ → R | 𝑉 (𝑔) <

∞}. For any fixed 𝑀 ∈ M , consider its corresponding allocation function 𝑥 ∈ X and extend the

functional 𝜋(𝑀, ·) to 𝐵𝑉 (Θ) by defining

�̄�(𝑀, 𝐻) =
∫
Θ

(
𝑣(\, 𝑥(\)) −

∫ \

\
¯

𝑣1(𝑠, 𝑥(𝑠))𝑑𝑠 − 𝑐 (𝑥(\))
)
𝑑𝐻 (\), ∀𝐻 ∈ 𝐵𝑉 (Θ).

Clearly, �̄�(𝑀, 𝐹) = 𝜋(𝑀, 𝐹) for all 𝐹 ∈ F . Moreover, note that for all 𝐹, 𝐺 ∈ 𝐵𝑉 (Θ),

|�̄�(𝑀, 𝐹) − �̄�(𝑀,𝐺) | =
����∫

Θ

(
𝑣(\, 𝑥(\)) −

∫ \

\
¯

𝑣1(𝑠, 𝑥(𝑠))𝑑𝑠 − 𝑐 (𝑥(\))
)
𝑑 (𝐹 − 𝐺) (\)

����
≤
����∫

Θ

ℎ1𝑑 (𝐹 − 𝐺) (\)
���� + ����∫

Θ

ℎ2(\)𝑑 (𝐹 − 𝐺) (\)
����

where

ℎ1(\) := 𝑣(\, 𝑥(\))

ℎ2(\) :=
∫ \

\
¯

𝑣1(𝑠, 𝑥(𝑠))𝑑𝑠 + 𝑐 (𝑥(\))
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As both 𝑣 and 𝑥 are nondecreasing, we have that for any 𝑥(·),

𝑉 (ℎ1) = 𝑣(\̄, 𝑥(\̄)) − 𝑣(\¯
, 𝑥(\

¯
))

≤ 𝑣(\̄, 𝑥) =: 𝐿1 < ∞

As 𝑣 is supermodular and nondecreasing in \ and 𝑐 is increasing and convex,

𝑉 (ℎ2) =
∫ \̄

\
¯

𝑣1(𝑠, 𝑥(𝑠))𝑑𝑠 + 𝑐
(
𝑥(\̄)

)
− 𝑐 (𝑥(\

¯
))

≤ (\̄ − \
¯
) · max

\ ′∈Θ
𝑣1(\′, 𝑥) + 𝑐(𝑥) =: 𝐿2 < ∞

Moreover, we note that inf\∈Θ ℎ1(\) = 𝑣(\
¯
, 𝑥(\

¯
)) = 0 and inf\∈Θ ℎ2(\) =

∫ \
¯
\
¯
𝑣1(𝑠, 𝑥(𝑠))𝑑𝑠 +

𝑐 (𝑥(\
¯
)) = 𝑐(0) = 0. Hence, for ℎ𝑖, with 𝑚𝑖 := inf\∈Θ ℎ𝑖 (\), 𝑖 = 1, 2, and letting 𝐻 (\) =

𝐹 (\) − 𝐺 (\),�����∫ \̄

\
¯

ℎ𝑖 (\)𝑑𝐹 (\) −
∫ \̄

\
¯

ℎ𝑖 (\)𝑑𝐺 (\)
����� =

�����∫ \̄

\
¯

ℎ𝑖 (\)𝑑 [𝐹 (\) − 𝐺 (\)]
�����

≤ max

{
𝑚𝑖 [𝐻 (\̄) − 𝐻 (\

¯
)] +𝑉 (ℎ𝑖) sup

\
¯
≤𝛼<𝛽≤\̄

∫ 𝛽

𝛼

𝑑𝐻,

−𝑚𝑖 [𝐻 (\̄) − 𝐻 (\
¯
)] −𝑉 (ℎ𝑖) inf

\
¯
≤𝛼<𝛽≤\̄

∫ 𝛽

𝛼

𝑑𝐻

}
=𝑉 (ℎ𝑖) · max

{
sup

\
¯
≤𝛼<𝛽≤\̄

∫ 𝛽

𝛼

𝑑𝐻, sup
\
¯
≤𝛼<𝛽≤\̄

−
∫ 𝛽

𝛼

𝑑𝐻

}
=𝑉 (ℎ𝑖) · max

{
sup

\
¯
≤𝛼<𝛽≤\̄

𝐻 (𝛽) − 𝐻 (𝛼), sup
\
¯
≤𝛼<𝛽≤\̄

𝐻 (𝛼) − 𝐻 (𝛽)
}

≤𝑉 (ℎ𝑖) · sup
\
¯
≤𝛼<𝛽≤\̄

|𝐻 (𝛼) | + |𝐻 (𝛽) |

=2 · 𝑉 (ℎ𝑖) · ∥𝐹 − 𝐺∥∞
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Combining the preceding inequalities results in

|�̄�(𝑀, 𝐹) − �̄�(𝑀,𝐺) | ≤ 2(𝐿1 + 𝐿2)∥𝐹 − 𝐺∥∞ ∀𝐹, 𝐺 ∈ 𝐵𝑉 (Θ), 𝑀 ∈ M .

The result is obtained by restricting the domain to F.

C.3 Proof of Theorem 10

Let Y be a normed vector space with an open subset A ⊆ Y . As is standard, we denote the

dual space of Y by Y ∗. Before we prove the main result, let us recall two different notions of

differentiability:

Definition 14 (Gâteaux Differentiability). A functional 𝑇 : Y → R is Gâteaux differentiable at

𝐹 ∈ Y if there exists a linear functional ¤𝑇𝐹 ∈ Y ∗ such that for all 𝐻 ∈ Y ,

¤𝑇𝐹 (𝐻) = lim
𝑡→∞

𝑇 (𝐹 + 𝑡𝐻) − 𝑇 (𝐹)
𝑡

. ♦

Definition 15 (Fréchet Differentiability). A functional 𝑇 : Y → R is Fréchet differentiable at

𝐹 ∈ Y if there is a linear continuous functional ¤𝑇𝐹 defined on Y such that

lim
∥𝐻∥→0

|𝑇 (𝐹 + 𝐻) − 𝑇 (𝐹) − ¤𝑇𝐹 (𝐻) |
∥𝐻∥ = 0. ♦

Note that if 𝑇 is Gâteaux differentiable at 𝐹 ∈ Y , then its derivative is unique. Moreover, if it is

Fréchet differentiable at 𝐹 ∈ Y , it is Gâteaux differentiable and its derivatives agree.

An important generalization of Gâteaux differential for the case of convex and continuous

functionals is that of a subdifferential.

Definition 16. The subdifferential of 𝑇 : Y → R at 𝐹 ∈ Y is the set

𝜕𝑇 (𝐹) := {𝐷 ∈ Y ∗ : 𝑇 (𝐺) ≥ 𝑇 (𝐹) + 𝐷 (𝐺 − 𝐹) for each 𝐺 ∈ Y } . ♦
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Since the normed linear space (𝐵𝑉 (Θ), ∥ · ∥∞) is a metric space, and thus 𝐵𝑉 (Θ) is open, the

following lemma guarantees that 𝜕𝑇 is nonempty:

Lemma 23 (Theorem 3.3.1. Niculescu and Persson (2018)). If 𝑇 : A → R is a continuous and

convex functional, then 𝜕𝑇 (𝑎) ≠ ∅, for all 𝑎 ∈ A .

The next result shows why subdifferentials can be thought of as a generalization of Gâteaux

differentials.

Lemma 24 (Proposition 3.6.9. Niculescu and Persson (2018)). Let 𝑇 : A → R be a continuous

and convex functional. 𝑇 is Gâteaux differentiable at 𝑎 ∈ A if and only if 𝜕𝑇 (𝑎) is a singleton.

In what follows, we borrow from the proof strategy of Theorem 2 in Battauz, Donno, and Ortu

(2015), although their conditions do not directly apply to our problem.

First fix 𝑀 ∈ M and notice that �̄�(𝑀, ·) : 𝐵𝑉 (Θ) → R is a linear functional. Therefore, it has

a Fréchet derivative. In fact, for all 𝐹, 𝐻 ∈ 𝐵𝑉 (Θ),

lim
∥𝐻∥∞→0

|�̄�(𝑀, 𝐹 + 𝐻) − �̄�(𝑀, 𝐹) − �̄�(𝑀, 𝐻) |
∥𝐻∥∞

= lim
∥𝐻∥∞→0

|�̄�(𝑀, 𝐹) + �̄�(𝑀, 𝐻) − �̄�(𝑀, 𝐹) − �̄�(𝑀, 𝐻) |
∥𝐻∥∞

= 0.

This implies that the Fréchet derivative of �̄�(𝑀, 𝐹) is independent of 𝐹 and given by ¤𝜋𝑀 (·) =

�̄�(𝑀, ·). Therefore, �̄�(𝑀, ·) is also Gâteaux differentiable, with Gâteaux derivative at 𝐹 given by

�̄�(𝑀, ·).

Define the functional Π̄ : 𝐵𝑉 (Θ) → R by

Π̄(𝐻) = sup
𝑀∈M

�̄�(𝑀, 𝐻), ∀𝐻 ∈ 𝐵𝑉 (Θ).

Since the set {�̄�(𝑀, 𝐻) : 𝑀 ∈ M } is bounded for any 𝐻 ∈ 𝐵𝑉 (Θ), it is clear that Π̄(𝐻) < ∞.

Furthermore, it is immediate that Π̄(𝐹) = Π(𝐹) for all 𝐹 ∈ F .

As �̄�(𝑀, 𝐻) is linear in 𝐻 for any 𝑀 , one immediately has that Π̄ is convex in 𝐻 ∈ 𝐵𝑉 (Θ),

as the supremum of a family of linear functionals. Moreover, from the proof of Lemma 8, it is
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easy to see that Π̄ remains Lipschitz continuous. Therefore, by Lemma 23, 𝜕Π̄(𝐻) ≠ ∅ for any

𝐻 ∈ 𝐵𝑉 (Θ).

By Lemma 20, M ∗(𝐹) ≠ ∅ for any 𝐹 ∈ F . Fix any 𝐹 ∈ F . Take any 𝐷 ∈ 𝜕Π̄(𝐹) and

any 𝑀𝐹 ∈ M ∗(𝐹). Note, for any 𝐺 ∈ 𝐵𝑉 (Θ), that �̄�(𝑀𝐹 , 𝐹) − �̄�(𝑀𝐹 , 𝐺) ≥ Π̄(𝐹) − Π̄(𝐺) ≥

𝐷 (𝐹 − 𝐺), hence 𝜕Π̄(𝐹) ⊆ 𝜕�̄�(𝑀𝐹 , 𝐹) and, as �̄�(𝑀𝐹 , ·) is continuous and linear, by Lemma 24,

𝜕�̄�(𝑀𝐹 , 𝐹) =
{
¤𝜋𝑀𝐹

}
. Then, for any 𝐺 ∈ 𝐵𝑉 (Θ),

�̄�(𝑀𝐹 , 𝐹) − �̄�(𝑀𝐹 , 𝐺) ≥ Π̄(𝐹) − Π̄(𝐺) ≥ ¤𝜋𝑀𝐹 ,𝐹 (𝐹 − 𝐺)

⇐= �̄�(𝑀𝐹 , 𝐹) − �̄�(𝑀𝐹 , 𝐺) − ¤𝜋𝑀𝐹
(𝐹 − 𝐺) ≥ Π̄(𝐹) − Π̄(𝐺) − ¤𝜋𝑀𝐹

(𝐹 − 𝐺) ≥ 0

=⇒ |�̄�(𝑀𝐹 , 𝐹) − �̄�(𝑀𝐹 , 𝐺) − ¤𝜋𝑀𝐹
(𝐹 − 𝐺) | ≥ |Π̄(𝐹) − Π̄(𝐺) − ¤𝜋𝑀𝐹

(𝐹 − 𝐺) | ≥ 0.

By Fréchet differentiability of �̄�(𝑀𝐹 , ·), we then have that ∀{𝐺𝑛}𝑛 such that ∥𝐺𝑛 − 𝐹∥∞ → 0,

0 ≤
|Π̄(𝐺𝑛) − Π̄(𝐹) − ¤𝜋𝑀𝐹

(𝐺𝑛 − 𝐹) |
∥𝐺𝑛 − 𝐹∥∞

≤
|�̄�(𝑀𝐹 , 𝐺𝑛) − �̄�(𝑀𝐹 , 𝐹) − ¤𝜋𝑀𝐹

(𝐺𝑛 − 𝐹) |
∥𝐺𝑛 − 𝐹∥∞

→ 0

and, consequently, Π̄ is Fréchet differentiable at 𝐹 ∈ F . As 𝐹 was arbitrary, we have that Π̄ is

Fréchet differentiable at any 𝐹 ∈ F .

C.4 Proof of Theorems 9 and 11

We will prove Theorem 11. The proof for Theorem 9 is virtually the same.

By Theorem 10, Π(𝐹) is Fréchet differentiable at any 𝐹 ∈ F and, thus, it can be written as

Π(𝐹) = Π(𝐹0)+ ¤Π𝐹0 (𝐹−𝐹0)+𝑜(∥𝐹−𝐹0∥∞). Furthermore, we note that �̂� is an unbiased estimator

of 𝐹0 and then, by linearity,

E

[
1
𝑛

𝑛∑︁
𝑖=1

𝜋(𝑀∗(𝐹0), 𝛿\𝑖 )
]
= E

[
𝜋(𝑀∗(𝐹0), �̂� (𝑆𝑛))

]
= 𝜋

(
𝑀∗(𝐹0),E

[
�̂� (𝑆𝑛)

] )
= 𝜋(𝑀∗(𝐹0), 𝐹0),

where 𝛿\ denotes the cumulative distribution function associated with a Dirac delta measure at \
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and \𝑖 is the 𝑖-th observation in the sample 𝑆𝑛. Thus,

√
𝑛
(
Π(�̂� (𝑆𝑛)) − Π(𝐹0)

)
=

1
√
𝑛

𝑛∑︁
𝑖=1

(
𝜋(𝑀∗(𝐹0), 𝛿\𝑖 ) − 𝜋(𝑀∗(𝐹0), 𝐹0)

)
+
√
𝑛 · 𝑜(∥�̂� (𝑆𝑛) − 𝐹0∥∞)

=
1
√
𝑛

𝑛∑︁
𝑖=1

(
𝜋(𝑀∗(𝐹0), 𝛿\𝑖 ) − 𝜋(𝑀∗(𝐹0), 𝐹0)

)
+
√
𝑛 · ∥�̂� (𝑆𝑛) − 𝐹0∥∞ · 𝑜(∥�̂� (𝑆

𝑛) − 𝐹0∥∞)
∥�̂� (𝑆𝑛) − 𝐹0∥∞

=
1
√
𝑛

𝑛∑︁
𝑖=1

(
𝜋(𝑀∗(𝐹0), 𝛿\𝑖 ) − 𝜋(𝑀∗(𝐹0), 𝐹0)

)
+𝑂𝑝 (1) · 𝑜(1)

𝑑→ 𝑁 (0, 𝜎2
𝐹0
),

where 𝜎2
𝐹0

= E
[ ( ¤Π𝐹0 (𝛿\ − 𝐹0)

)2
]
.

Finally, following Parr (1985b), we have that

�̂�𝑛 =
√
𝑛
(
Π(�̂� (𝑆𝑛𝐵)) − Π((�̂� (𝑆𝑛))

)
=
√
𝑛
({
Π(𝐹0) + ¤Π𝐹0 (�̂� (𝑆𝑛𝐵) − 𝐹0) + 𝑜(∥�̂� (𝑆𝑛𝐵) − 𝐹0∥∞)

}
−
{
Π(𝐹0) + ¤Π𝐹0 (�̂� (𝑆𝑛) − 𝐹0) + 𝑜(∥�̂� (𝑆𝑛) − 𝐹0∥∞)

})
=
√
𝑛
( ¤Π𝐹0 (�̂� (𝑆𝑛𝐵) − �̂� (𝑆

𝑛)) + 𝑜(∥�̂� (𝑆𝑛𝐵) − 𝐹0∥∞) + 𝑜(∥�̂� (𝑆𝑛) − 𝐹0∥∞)
)

=
√
𝑛
( ¤Π𝐹0 (�̂� (𝑆𝑛𝐵) − �̂� (𝑆

𝑛)) + 𝑜(∥�̂� (𝑆𝑛𝐵) − �̂� (𝑆
𝑛)∥∞) + 𝑜(∥�̂� (𝑆𝑛) − 𝐹0∥∞)

)
,

where we used Fréchet differentiability to obtain a first-order von Mises expansion of Π in the

second equality, linearity of ¤Π𝐹0 in the third and the triangle inequality in the last. As, �̂� (𝑆𝑛
𝐵
) and

�̂� (𝑆𝑛) denote empirical distributions of �̂� (𝑆𝑛) and 𝐹0, by the Dvoretzky, Kiefer, and Wolfowitz

(1956) inequality, we have that

�̂�𝑛 =
√
𝑛 ¤Π𝐹0 (�̂� (𝑆𝑛𝐵) − �̂� (𝑆

𝑛)) + 𝑜𝑝 (1) =
1
√
𝑛

𝑛∑︁
𝑖=1

(
𝜋(𝑀∗(𝐹0), 𝛿\𝐵

𝑖
) − 𝜋(𝑀∗(𝐹0), �̂� (𝑆𝑛))

)
+ 𝑜𝑝 (1)

As E
[
𝜋(𝑀∗(𝐹0), 𝛿\𝐵

𝑖
) | 𝑆𝑛

]
= 𝜋(𝑀∗(𝐹0), �̂� (𝑆𝑛)) and E

[ (
𝜋(𝑀, �̂� (𝑆𝑛

𝐵
))
)2
]
= 𝜎2

𝐹0
< ∞, by the
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central limit theorem in Bickel and Freedman (1981), we have that �̂�𝑛

𝑑→ 𝐺0. Finally, as the

limiting distribution is continuous, convergence is uniform.

C.5 Proof of Proposition 12

Let �̂�𝐸 denote the empirical distribution estimator. By Lemmas 8 and 27, Π(�̂� (𝑆𝑛)) = Π(�̂�𝐸 (𝑆𝑛))+

𝑂𝑝 (𝑛−1). As such, (1) follows from the observation that

√
𝑛
{
Π(�̂� (𝑆𝑛)) − Π(𝐹0)

}
=
√
𝑛
{
Π(�̂�𝐸 (𝑆𝑛)) − Π(𝐹0)

}
+𝑂𝑝 (𝑛−1/2),

which, together with Slutsky’s theorem and Theorem 11 implies
√
𝑛
{
Π(�̂� (𝑆𝑛)) − Π(𝐹0)

} 𝑑→

𝑁 (0, 𝜎2
𝐹0
).

(2) results from the analogous observation that:

�̂�𝑛 =
√
𝑛
(
Π(�̂� (𝑆𝑛𝐵)) − Π((�̂� (𝑆𝑛))

)
=
√
𝑛

(
Π(�̂�𝐸 (𝑆𝑛𝐵)) − Π((�̂�𝐸 (𝑆𝑛))

)
+𝑂𝑝 (𝑛−1/2) 𝑑→ 𝑁 (0, 𝜎2

𝐹0
).

For (3), we first prove the following lemmata:

Lemma 25. Consider distribution functions 𝐹, 𝐹1, 𝐹2, . . . such that ∥𝐹𝑛 (𝑡) − 𝐹 (𝑡)∥∞
𝑎.𝑠.−−−→ 0 for

all 𝑡 ∈ R. For all 𝑛 ∈ N, let `𝑛 be the measure on (R,B(R)) induced by 𝐹𝑛 and ` be the measure

induced by 𝐹. Then `𝑛 (𝐴) → `(𝐴) for all 𝐴 ∈ B(R) almost surely.

Proof: Let
{
𝐼 𝑗 := (𝑎 𝑗 , 𝑏 𝑗 ] ⊆ R | 𝑗 ∈ N

}
be a collection of disjoint intervals, and denote 𝐼 =

⋃∞
𝑗=1 𝐼 𝑗 .

Then, since for any 𝑛 ∈ N, `𝑛 and ` are finite measures,

|`𝑛 (𝐼) − `(𝐼) | =

������ ∞∑︁𝑗=1
`𝑛 (𝐼 𝑗 ) −

∞∑︁
𝑗=1

`(𝐼 𝑗 )

������ =
������ ∞∑︁𝑗=1

𝐹𝑛 (𝑏 𝑗 ) − 𝐹𝑛 (𝑎 𝑗 ) −
∞∑︁
𝑗=1

𝐹 (𝑏 𝑗 ) − 𝐹 (𝑎 𝑗 )

������
=

������ ∞∑︁𝑗=1

(
𝐹𝑛 (𝑏 𝑗 ) − 𝐹 (𝑏 𝑗 )

)
−
(
𝐹𝑛 (𝑎 𝑗 ) − 𝐹 (𝑎 𝑗 )

) ������
≤

∞∑︁
𝑗=1

��𝐹𝑛 (𝑏 𝑗 ) − 𝐹 (𝑏 𝑗 )�� + ��𝐹𝑛 (𝑎 𝑗 ) − 𝐹 (𝑎 𝑗 )��
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≤
∞∑︁
𝑗=1

2 sup
𝑡∈R

|𝐹𝑛 (𝑡) − 𝐹 (𝑡) |

Let 𝑐𝑛 = sup𝑡∈R |𝐹𝑛 (𝑡) − 𝐹 | → 0. There exists a monotone convergent subsequence 𝑐𝑛𝑘 =

2 sup𝑡∈R
��𝐹𝑛𝑘 (𝑡) − 𝐹 (𝑡)�� → 0 as 𝑘 → ∞. Therefore, by the monotone convergence theorem,

lim
𝑘→∞

��`𝑛𝑘 (𝐼) − `(𝐼)�� ≤ lim
𝑘→∞

∑︁
𝑗=1

2 sup
𝑡∈R

��𝐹𝑛𝑘 (𝑡) − 𝐹 (𝑡)�� = ∑︁
𝑗=1

lim
𝑘→∞

2 sup
𝑡∈R

��𝐹𝑛𝑘 (𝑡) − 𝐹 (𝑡)�� = 0.

This implies there exists a convergent subsequence `𝑛𝑘 (𝐼) → `(𝐼).

Now take any convergent subsequence `𝑛𝑚 (𝐼) of `𝑛 (𝐼), which we will denote by `𝑚 (𝐼). We

have

|`𝑚 (𝐼) − `(𝐼) | ≤
∞∑︁
𝑗=1

2 sup
𝑡∈R

|𝐹𝑚 (𝑡) − 𝐹 (𝑡) | .

Then 𝑐𝑚 = 2 sup𝑡∈R |𝐹𝑚 (𝑡) − 𝐹 (𝑡) | → 0 has a monotone convergent subsubsequence 𝑐𝑚𝑟
. We can

thus apply the monotone convergence theorem once again to conclude that

��`𝑚𝑟
(𝐼) − `(𝐼)

�� → 0 as 𝑟 → ∞.

Since the subsequence `𝑚 (𝐼) is convergent by assumption, it must converge to the limit of each of

its subsequences, and we have

lim
𝑚→∞

`𝑚 (𝐼) = `(𝐼).

Therefore, every convergent subsequence of `𝑛 (𝐼) converges to `(𝐼). Since (`𝑛 (𝐼))𝑛∈N is

bounded, this implies that lim𝑛→∞ `𝑛 (𝐼) = `(𝐼), and thus lim𝑛→∞ `𝑛 is a pre-measure that agrees

with ` in the ring formed by disjoint unions of intervals of the type (𝑎, 𝑏], 𝑏 > 𝑎. Therefore,

since ` is 𝜎-finite, Carathéodory’s extension theorem implies that lim𝑛→∞ `𝑛 must agree with `

on B(R) almost surely. □

Lemma 26. Let {𝐹𝑛 : Θ → [0, 1] | 𝑛 ∈ N} be a sequence of absolutely continuous distribution

functions with Radon-Nikodym derivatives given by 𝑓𝑛. If there exists a distribution function 𝐹
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such that ∥𝐹𝑛 − 𝐹∥∞ → 0, then it is absolutely continuous with Radon-Nikodym derivative 𝑓 and

∥ 𝑓𝑛 − 𝑓 ∥1 → 0.

Proof: As ∀𝑛 ∈ N, 𝐹𝑛 is absolutely continuous and Θ has finite Lebesgue measure, then the

Radon-Nikodym derivatives { 𝑓𝑛}𝑛∈N are uniformly integrable with respect to the Lebesgue mea-

sure. Let ` be the measure associated with 𝐹. By the Vitali-Hahn-Saks theorem and Lemma 25,

we have that

lim
𝑛→∞

∫
𝐴

𝑓𝑛 (\)𝑑\ = `(𝐴)

for all 𝐴 ∈ B(Θ). Since { 𝑓𝑛}𝑛∈N is uniformly integrable, the Dunford-Pettis theorem implies

that every subsequence of { 𝑓𝑛}𝑛∈N has a convergence subsubsequence converging to 𝑔 in 𝐿1(Θ).

Denote such a subsubsequence by { 𝑓𝑛𝑘 }𝑘∈N. Then, for every 𝐴 ∈ B(R),

∫
𝐴

𝑔(\)𝑑\ = lim
𝑘→∞

∫
𝐴

𝑓𝑛𝑘𝑑\ = lim
𝑘→∞

`𝑛𝑘 (𝐴) =
∫
𝐴

𝑓 (\)𝑑\.

This implies that 𝑓 = 𝑔 almost surely and ∥ 𝑓𝑛 − 𝑓 ∥1 → 0. □

Given that, {�̂� (𝑆𝑛)}𝑛∈N is absolutely continuous with probability 1 and ∥�̂� (𝑆𝑛) − 𝐹0∥∞
𝑎.𝑠.→ 0, the

previous Lemmata imply that ∥ 𝑓𝑛 − 𝑓0∥1
𝑝
→ 0, which concludes the proof for (3).

C.6 Proof of Proposition 13

First, we note that 𝜋(𝑟, 𝐹) is Lipschitz continuous in 𝐹, with a Lipschitz constant that is inde-

pendent of 𝑟. Note that

|𝜋(𝑟, 𝐹) − 𝜋(𝑟, 𝐺) | =
����∫

Θ

1\≥𝑟𝑑 (𝐹(2;𝑀) − 𝐺 (2;𝑀))
����

≤ ∥𝐹(2;𝑀) − 𝐺 (2;𝑀) ∥∞

= sup
\∈Θ

|𝑀 · (𝐹 (\)𝑀−1 − 𝐺 (\)𝑀−1) + (𝑀 − 1) · (𝐺 (\)𝑀 − 𝐹 (\)𝑀) |
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≤ 𝑀 · sup
\∈Θ

|𝐹 (\)𝑀−1 − 𝐺 (\)𝑀−1 | + (𝑀 − 1) · sup
\∈Θ

|𝐹 (\)𝑀 − 𝐺 (\)𝑀) |

≤ 2𝑀 (𝑀 − 1)∥𝐹 − 𝐺∥∞.

where the first inequality uses the Beesack-Darst-Pollard inequality – see Lemma 21. By the same

arguments as in Lemma 8, we have that Π(𝐹) := sup𝑟∈Θ 𝜋(𝑟, 𝐹) is also Lipschitz continuous in 𝐹

and, by those made in Propositions 8 and 9, the result follows.

C.7 Other Proofs

Let the linearly interpolated empirical cumulative distribution be given by

�̂� (𝑆𝑛) (\) =
𝑛−1∑︁
𝑘=0

1{\ (𝑘)≤\<\ (𝑘+1) }
1
𝑛

\ − \ (𝑘)
\ (𝑘+1) − \ (𝑘)

+ 1{\ (𝑛)≤\},

where \ (𝑘) denotes the 𝑘-th smallest observation in the sample 𝑆𝑛 and \ (0) = \
¯
. The following

holds:

Lemma 27. For any absolutely continuous 𝐹0 ∈ F , (1) ∥�̂� (𝑆𝑛) − 𝐹0∥∞
𝑎.𝑠.→ 0 and (2) with proba-

bility 1, �̂� (𝑆𝑛) ∈ F , �̂� (𝑆𝑛) has convex support and is absolutely continuous.

Proof: Note that, with probability 1, any sampled value \𝑖 > \¯
as 𝐹0 is absolutely continuous and

so �̂� (𝑆𝑛) is well defined. By construction, �̂� (𝑆𝑛) has convex support and is absolutely continu-

ous. As the probability that any two sampled observations have the same value is null, we have

that, with probability 1, ∥�̂� (𝑆𝑛) − �̂�𝐸 (𝑆𝑛)∥∞ = 1/𝑛 where �̂�𝐸 denotes the empirical cumulative

distribution and, with probability 1, ∥�̂� (𝑆𝑛) − 𝐹0∥∞ = ∥�̂�𝐸 (𝑆𝑛) − 𝐹0∥∞ + 1/𝑛. Consequently, as

∥�̂�𝐸 (𝑆𝑛) − 𝐹0∥∞
𝑎.𝑠.→ 0 and as 𝐹0 is absolutely continuous, then the result follows. □
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