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Abstract

Ring-LWE: Enhanced Foundations and Applications

Chengyu Lin

Ring Learning With Errors assumption has become an important building block in many

modern cryptographic applications, such as (fully) homomorphic encryption and post-quantum

cryptosystems like the recently announced NIST CRYSTALS-Kyber public key encryption

scheme. In this thesis, we provide an enhanced security foundation for Ring-LWE based

cryptosystems and demonstrate their practical potential in real world applications.

Enhanced Foundation. We extend the known pseudorandomness of Ring-LWE to be based on

ideal lattices of non Dedekind domains. In earlier works of Lyubashevsky, Perkert and Regev

(EUROCRYPT 2010), and Peikert, Regev and Stephens-Davidowitz (STOC 2017), the hardness

of RLWE was established on ideal lattices of ring of integers of number fields, which are known

to be Dedekind domains. These works extended Regev’s (STOC 2005) quantum polynomial-time

reduction for LWE, thus allowing more efficient and more structured cryptosystems. However,

the additional algebraic structure of ideals of Dedekind domains leaves open the possibility that

such ideal lattices are not as hard as general lattices.

We show that, the Ring-LWE hardness can be based on the polynomial ring, which is potentially

be a strict sub-ring of the ring of integers of a number field, and hence not be a Dedekind domain.

We present a novel proof technique that builds an algebraic theory for general such rings that also

include cyclotomic rings. We also recommend a “twisted” cyclotomic field as an alternative for



the cyclotomic field used in CRYSTALS-Kyber, as it leads to a more efficient implementation and

is based on hardness of ideals in a non Dedekind domain.

In Application. We leverages the polynomial nature of Ring-LWE, and introduce XSPIR, a new

symmetrically private information retrieval (SPIR) protocol, which provides a stronger security

guarantee than existing efficient PIR protocols. Like other PIR protocol, XSPIR allows a client to

retrieve a specific entry from a server’s database without revealing which entry is retrieved.

Moreover, the semi-honest client learns no additional information about the database except for

the retrieved entry. We demonstrate through analyses and experiments that XSPIR has only a

slight overhead compared to state-of-the-art PIR protocols, and provides a stronger security

guarantee while enabling the client to perform more complicated queries than simple retrievals.
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Chapter 1: Introduction

In a ground-breaking work, Regev [Reg05] showed a (quantum) polynomial-time reduction

from worst-case lattice problems to a learning problem called learning with error (LWE). He

also obtained public-key cryptosystems using LWE whose security is then based on worst-case

lattice problems such as closest vector problem (CVP), shortest vector problem (SVP) and shortest

independent vectors problem (SIVP). The fact that that there are no known efficient quantum algo-

rithms for these hard problems, makes this approach to obtaining encryption schemes even more

significant, and has led to numerous applications in cryptography.

As a more efficient variant of LWE, Lyubashevsky, Peikert and Regev [LPR10] introduced the

Ring Learning With Errors problem (RLWE) over the ring of integers OK of a number field K.

The hardness of RLWE is then based on lattice problems restricted to ideal lattices in the ring OK,

instead of general integer lattices. Since addition and multiplication in the ring of integers can

be viewed as polynomial addition and multiplication, it allows for more efficient cryptosystems,

with almost a quadratic improvement in the security parameter. Additionally, it has allowed for

a more sound security setting for many (fully) homomorphic encryption schemes [Gen09], where

the ring structure naturally allows for homomorphic evaluation ring-operations [BGV12; Bra12;

FV12; GSW13; DM15; Chi+16; Che+17]. For conjectured hardness of RLWE, [LPR10] provide a

quantum polynomial-time reduction from the (seemingly) hard Approximate Shortest Independent

Vectors Problem (ApproxSIVP) over ideal lattices. While the original [LPR10] reduction, espe-

cially for the decisional version of RLWE, was restricted to cyclotomic number fields, in another

technical tour-de-force work, Peikert, Regev and Stephens-Davidowitz [PRS17] extend the hard-

ness of decisional-RLWE to arbitrary number fields K, basing the hardness on worst-case lattice

problems restricted to ideal lattices in OK.

Since the ring of integers OK of a number field enjoy remarkable algebraic properties, namely
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that such rings are Dedekind domains and all ideals in the rings are invertible and have a unique

prime ideal factorization, the question naturally arises if the normally hard lattice problems may

be at a risk of being weaker due to the additional algebraic structure. In particular, while all ideal

lattices are also full-ranked over the integers Z, and of the same rank as the rank of the number field

K as an extension of Q, every ideal of a Dedekind domain can be generated by only two elements

of the domain. Moreover, one of the generators can be taken to be just the integer that is the norm

of the ideal. In light of this 1, we would like to answer the following question:

Can we establish the hardness of RLWE on a family of lattices that possess a polynomial algebra

but fewer algebraic properties?

Ideally, one would like to base the hardness of RLWE on worst-case general integer lattices as

is the case for LWE. On the other hand, can we leverage the polynomial nature of Ring-LWE in

practice to build a more secure and efficient application from Ring-LWE based cryptosystems?

1.1 Enhancing Ring-LWE Hardness

We present a novel approach for basing the hardness of decisional-RLWE on ideal lattice

problems in non Dedekind domains. Instead of using the ring of integers OK of a number field

K = Q[𝑋]/( 𝑓 (𝑋)) as in previous works, we consider RLWE instances defined in the polynomial

ring RK = Z[𝑋]/( 𝑓 (𝑋)). This choice of ring simplifies the cryptosystem applications since the

super-ring OK can contain polynomials with rational coefficients. In particular, we establish that

for all 𝑞 that are not divisible by a small number of excluded primes, the 𝑞-RLWE instances are

as hard as the worst-case lattice problems such as CVP and SIVP, of ideal lattices in this non

Dedekind domain. The set of excluded primes is finite and comprises the primes 𝑝 that divide the

index of RK in OK, denoted by [OK : RK]. We achieve the same security and noise parameters as

in [PRS17], and most of our reduction relies on the main technical lemmas from [PRS17]. How-

ever, we replace the “ideal clearing lemma” of [LPR10] with a new proof and algorithm that does

not rely on properties of Dedekind domains.
1We will later discuss in more detail the currently best known attacks (if any) on ideal lattices.
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It is worth remarking that for every number field K, there is a finite number 𝑚, namely [OK :

RK], such that every ideal I of OK can be scaled by 𝑚, so that 𝑚 · I is an ideal of RK. Thus, the

ideals (and corresponding lattices) in RK include all hard ideal lattices coming from OK. However,

we show later that the reverse is not true.

Earlier works, by Rosca, Stehlé and Wallet [RSW18], as well as Peikert and Pepin [PP19],

have also considered setting RLWE in the polynomial ring RK, but had only shown hardness of

polynomial-LWE based on hardness of Dedekind-domain ideal lattices, namely OK lattices. In

another yet unpublished and independent work [BBS21], Bolboceanu, Brakerski and Sharma have

obtained a similar result as ours, but they only give a non-effective version of our result.

Our main technical contribution is the development of a novel theory for non Dedekind do-

mains, which enables us to prove the ideal clearing lemma in a new way. Our contributions can be

broken down into three parts. First, we prove that every ideal I of RK is principal when considered

modulo 𝑞I, where 𝑞 is relatively prime to [OK : RK]. Second, we introduce an extremely simple

randomized algorithm to find a generator of this principal ideal. Notably, the general problem of

finding a generator of a principal ideal is only known to have a sub-exponential time classical algo-

rithm [BF14] and a quantum polynomial time algorithm [BS16]. Our randomized algorithm takes

a Z𝑞 [𝑋]/( 𝑓 (𝑋))-linear combination of the columns of a given Z-basis of I. Finally, we prove that

it is possible to efficiently “clear the ideal", given only a Z-basis of the ideal I and a generator

of the principal ideal I/(𝑞I). Our technique and novel randomized algorithm are also applicable

to number fields where OK is the same as RK, such as popular cyclotomic number fields, for all

𝑞. This leads to an improved (time complexity) reduction for the usual 𝑞-RLWE hardness for cy-

clotomics, compared to [LPR10]. Additionally, our technique does not require 𝑞 to have a known

factorization, unlike [LPR10].

1.2 Application of Ring-LWE: XSPIR

Ring-LWE based cryptography is widely used in practical computationally private information

retrieval (PIR) protocols, which allow a client to retrieve a data entry from a server while hiding
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which entry was retrieved. Many efficient PIR protocols have been proposed, the most up-to-date

of them are SealPIR by Angel et. al. [Ang+18], MulPIR by Ali et. al. [Ali+21], and SHECS-PIR

by Park and Tibouchi [PT20]. However, these schemes do not satisfy the stronger version of PIR,

known as Symmetrically Private Information Retrieval (SPIR), where the client must only learn

the retrieved data entry and not any information about other data entries, ensuring privacy for the

server’s data.

To address this limitation, we present XSPIR, an efficient and practical SPIR scheme. We

follows the line of works that started with XPIR [Agu+16] and culminated in SealPIR [Ang+18],

MulPIR[Ali+21] and SHECS-PIR[PT20]. Most crucially, our technique leverages the polynomial

algebra structure of the underlying Ring-LWE assumption. This is in contrast with general ways

to transform PIR schemes to SPIR schemes as proposed in previous works. For example, [Ali+21]

discuss in their appendix how data privacy can be added on top of MulPIR, by using oblivious

Pseudorandom Function (OPRF), for which the constructions are mainly based on DDH assump-

tion [MRR20; MR19].

Our proposed XSPIR scheme not only provides strong privacy guarantees for both the client

and server, but it also achieves practical efficiency, making it an ideal solution for many applica-

tions where the data consists of sensitive information.

1.3 Organizations

In Chapter 2, we enhanced the security foundation for Ring-LWE assumption, by basing its

hardness on ideals lattice problems in non Dedekind domains.

In Chapter 3, we present how to construct a symmetrically secure private information retrieval

protocol upon the polynomial algebra structure of the Ring-LWE assumption. We also demonstrate

its performance and compare it with other state-of-the-art PIR scheme.
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Chapter 2: Enhanceing Ring-LWE Hardness

2.1 Introduction

In this chapter, we extend the known pseudorandomness of Ring-LWE to be based on ideal lat-

tices of non Dedekind domains. More precisely, we intend to show that the the 𝑞-RLWE instances,

defined in the polynomial ring RK = Z[𝑋]/( 𝑓 (𝑋)), for all all 𝑞 such that 𝑞 and [OK : RK] are

co-prime, are as hard as the worst-case lattice problems such as CVP and SIVP, of ideal lattices in

this non Dedekind domain.

Dedekind Index Theorem. Recall, the Dedekind Index Theorem [Cona] gives an easy necessary

and sufficient test of when a prime 𝑝 does not divides the index [OK : RK]. The test involves

checking the factorization of 𝑓 (𝑋) modulo 𝑝 into irreducible polynomials (modulo 𝑝) for a specific

property. If 𝑝 does not divide this index, then another theorem of Dedekind shows that the prime

ideal factorization of ideal (𝑝) of OK can be read off from the factorization of 𝑓 (𝑋) modulo 𝑝.

We show that in this case the ideal (𝑝) of RK also factors into prime ideals of RK, i.e. (𝑝) is

well-behaved even in RK. We will refer to these as the good primes, as it will allow us to prove

the “ideal-clearing lemma” and also obtain an efficient randomized algorithm for ideal-clearing.

However, if some other prime 𝑝′ fails the test, and hence 𝑝′ | [OK : RK], then RK is a strict

sub-ring of OK, and is then definitely not a Dedekind domain. We will refer to these 𝑝′ as the bad

primes. It is well known that a prime 𝑝′ can divide [OK : RK] only if 𝑝′2 divides the discriminant

of the field K. Therefore, the number of bad 𝑝′ is already bounded by the number of factors of

the discriminant, and hence is finite and usually few. Thus, the trick is to find a 𝑝 for which the

factorization of (𝑝) is well-behaved and another 𝑝′ which is bad (so that we are guaranteed a non

Dedekind domain). Then the RLWE can be set modulo any 𝑞 whose prime factors exclude the
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small number of bad 𝑝′.

Example. Consider the polynomial 𝑓 (𝑋) = 𝑋256 + 2 · 32 · 13. By Eisenstein criterion, 𝑓 (𝑋)

is irreducible over Q, and thus K = Q[𝑋]/( 𝑓 (𝑋)) is a number field. Consider the polynomial

ring1 R = Z[𝑋]/( 𝑓 (𝑋)). The discriminant of 𝑓 (𝑋) is just the determinant of the multiplication

matrix of 𝑓 ′(𝑋) = 256 · 𝑋255, and a little calculation shows that only 2, 13 and 3 can divide the

discriminant, and hence are the only possible bad candidates for the Dedekind index test. The

factorization of 𝑓 (𝑋) modulo any of these primes is just 𝑋256, and hence has only one irreducible

polynomial, i.e. 𝑋 , as a factor with multiplicity 256. Any factor that has multiplicity more than

one is said to ramify (mod that prime), and factors that have multiplicity one are called unramified.

Focusing on prime 2, write 𝑓 (𝑋) as 𝑋256 +2 · 𝑡 (𝑋), and note that 𝑡 (𝑋) is just the trivial polynomial

32 · 13. The Dedekind index theorem says that a prime, in this case 2, divides [OK : R] iff 𝑡 (𝑋)

is divisible by a ramified factor (modulo 2), in this case the factor 𝑋 . Since, 𝑋 does not divide

32 · 13 mod 2, it implies that 2 does not divide [OK : R], and 2 is a good prime. Hence we

can base our RLWE modulo any power of two, and still be assured hardness based on worst case

ideal lattices in R. Now, let’s check that 3 divides the index, so that R is a strict sub-ring of OK.

In this case, 𝑡 (𝑋) = 2 · 3 · 13 which is zero mod 3 and hence is trivially divisible by 𝑋 . Thus, 3

divides [OK : R] and hence R is not a Dedekind domain. We give more complicated examples in

Section 2.8, where we also prove that some non-trivial ideal requires at least three generators. But,

the above example was expressly chosen as a potential alternative to CRYSTALS-Kyber [Bos+21]

cyclotomic number-field which is defined with 𝑓 (𝑋) = 𝑋256 + 1. Kyber also sets 𝑞 = 3329 for

𝑞-RLWE and more generally module-LWE. Now, it turns out that −2 · 32 · 13 is a 256-th residue

in Z𝑞, and this leads to a highly efficient implementation. The ramifications are discussed in more

detail in Section 2.8.

Known Attacks on Ideal Lattices There are no known efficient classical/quantum algorithms

for polynomial-factor approximation of SVP, SIVP etc for ideal lattices of OK (or sub-rings such

1Since K will be clear from context, we will drop it from subscript of RK.
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as RK), even restricted to prime-power cyclotomic fields. However, after a flurry of heuristic

claims [Berb ; CGS14], the work [Cra+16] has shown that when restricted to principal ideals, the

sub-exponential-approximate SVP problem can be solved in quantum polynomial time. The attack

has two parts. First, an arbitrary generator of the principal ideal is computed by index-calculus

method by first computing the ideal class group [BF14; BS16]. Second, a short generator is com-

puted by running bounded-distance-decoding on Dirichlet’s logunit lattice (i.e. the logarithms of

the unit group that form a small ranked lattice) [Cra+16]. For general ideals in OK, we know that

OK being a Dedekind domain has the property that every ideal has at most two generators and

in fact it is relatively easy to compute some pair of generators for every ideal using prime ideal

factorization (see e.g. [FT91; LPR10]). However, now the above second step does not work as

logarithm of additive terms is non-linear. We should remark that of the two generators one can

always be taken to be a number, e.g. the norm of the ideal, although even this does not help in

searching through the logunit lattice. So, more advanced techniques are required if there is a po-

tential attack on general ideals of Dedekind domains. As for the polynomial ring RK, when it is

a strict sub-ring of OK it is a non Dedekind domain. Since, ideals not co-prime to the conductor

ideal may no longer have prime-ideal factorization, the approach of finding generators by prime-

ideal factorization does not work (see Table 2.1). One may wonder that since the number of bad

primes 𝑝′, i.e. the ones that divide the index of RK in OK, is small, it maybe the case that only a

few ideals are lacking algebraic structure (i.e. of the Dedekind domain kind). While it is true that

there are only a few prime ideals lacking algebraic structure [Conb, Theorem 8.6], the number of

non-prime ideals contained in these prime ideals is unlimited. Another important point to be raised

is if one can demonstrate that non-trivial ideals in such non Dedekind domains require more than

two generators. We also prove that there are non-trivial ideals, i.e. which do not have a diagonal

Hermite normal form, for which at least three generators are required, and which cannot be scaled

by a rational number to become an ideal of OK.
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Algebraic Property OK RK ⊊ OK

Class Group and Unit Group Computation [FT91; BF14] Yes Yes∗

Irredundant Primary Decomposition of Ideals [AM69, Ch. 4] Yes Yes
Jordan-Hölder Filtration of Ideals [Conb; BBS21] Yes Yes
Tight bound on Shortest Vector [PR07; LPR10] (Lemma 2.4.5) Yes Yes
Every Fractional Ideal is Invertible [Cla84; FT91; Cond] Yes No
Every Ideal co-prime to Conductor is Invertible [Cond] Yes Yes
Unique Prime Ideal Factorization (PIF) [Cla84; FT91] Yes No
PIF of ideals co-prime to Conductor [Cond] Yes Yes
Every Ideal has at most two Generators [FT91] Yes No
Compute (two or more) generators given Z-basis (e.g. [LPR10]) Yes ?
Ideal I mod 𝑞I is Principal (for 𝑞 Dedekind-special) (Secs. 2.5,2.6) Yes Yes

Table 2.1: Comparison of algebraic properties that an ideal lattice satisfies in the worst case. If
a property is indicated with an affirmative, then it is also known to be efficiently computable (for
class group, the claim is only for heuristic sub-exponential complexity[BF14]; moreover (*), for
RK the class group is only defined limited to the subset of invertible ideals of RK (modulo group
of all principal ideals) [Cond]). The question mark above indicates that it is an open problem.

On Clearing the Ideal. As mentioned earlier, one of the main technical challenges in the hard-

ness reduction, starting from Regev’s LWE reduction, is setting up a 𝑞-RLWE instance which is

somehow not dependent on the worst-case lattice instance, especially given only some basis 𝑩(L)

of the lattice L. While in the LWE instance, since the multiplication in LWE is just inner product,

it is compatible with the lattice and the dual lattice clearing each other out, and the issue of invert-

ing the lattice-basis modulo 𝑞 does not come up. In the case of RLWE, since it is more “efficient”,

the multiplication in RLWE is not a trace-product, but rather a polynomial multiplication. Thus,

it is not enough that a lattice L and its dual lattice L∨ have the property that L⊤L∨ = 𝑰. To

solve this problem, the ideal clearing lemma of [LPR10] obtains an efficiently invertible (module-

) isomorphism between I/𝑞I and the whole polynomial ring2 modulo 𝑞, for any ideal I. This

isomorphism is not easy to obtain as lattice corresponding to I may not be invertible modulo 𝑞,

and in fact (𝑞) as an ideal may have additional factorization into prime ideals. Nevertheless, an

efficient isomorphism is obtained by computing prime ideal factorization or effectively inverting

the ideal I itself (instead of inverting its lattice-basis).

2More precisely, OK/𝑞OK, for general fields
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In our case, i.e. where RK is a non Dedekind domain, the ideal I may not be invertible.

However, we prove a more general clearing lemma that suffices for the reduction, and only requires

that I be a principal ideal modulo 𝑞I. Note, principal ideals are trivially invertible, as their Z-

basis is their (circulant) multiplication matrix. In case of Dedekind domains, it is well known

that Dedekind domains modulo any ideal are principal ideal domains. However, RK may not be a

Dedekind domain. We manage to show that, for any prime 𝑝, such that 𝑝 is good with respect to the

Dedekind index theorem, RK/𝑝𝑟RK is a principal ideal domain, for any positive integer 𝑟. Further,

we show that for any ideal I, I is principal modulo 𝑝𝑟I. Using Chinese Remainder theorem, the

result can then be extended to any 𝑞 that is product of powers of good primes. We also give a

highly efficient randomized algorithm to find a generator for the above mentioned principal ideals,

which essentially takes a random RK/𝑝RK-linear combination of the columns of the Z-basis of the

ideal I.

Related Works. In [Bol+19], a generalization of the RLWE problem is described, wherein the

ambient ring is not the ring of integers of a number field, but rather an order (i.e. a full-ranked sub-

ring) such as the polynomial ring we consider. In a followup work in [BBS21], they independently3

show a result similar to our work in that they prove an ideal clearing lemma for arbitrary orders,

including the polynomial ring. The relevant isomorphisms in their clearing lemma are not shown

to be efficiently computable and they just prove that the relevant ring modules are isomorphic,

whereas we give an efficient algorithm to compute and invert these isomorphisms. This is critical

in showing an efficient reduction. Their approach to proving the ideal clearing lemma is also

different. Instead of showing that for every ideal I, for the good 𝑞 of the number field, I/𝑞I

is principal, they take an alternative approach by first showing that I is always a sub-ideal of

an invertible ideal I′, such that [R : I′] is co-prime to 𝑞. The isomorphism is then built using

composition of two maps from earlier works, namely [PP19, Theorem 4.1]4 and the original ideal

clearing lemma of [LPR10]. The existence of I′ with the relevant property is shown using Jordan-
3[BBS21] appeared on the eprint archive about a year before our archiving on eprint.
4In Theorem 4.1 of [PP19, Theorem 4.1] it is shown that, given a Z-basis of an ideal I, there is an efficiently

computable and invertible isomorphism as long as the ideal I is co-prime to the ideal (𝑞) of R.
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Holder decomposition of ideals in orders of a number field [Conb, Theorem 8.9]. However, it is

not shown how I′ can be obtained efficiently given only a Z-basis of the ideal I.

We have surmised that the above mentioned I′ of [BBS21] can be obtained efficiently by a

quantum algorithm via the following strategy: first, factor the determinant of the given basis of

I, using Shor’s quantum algorithm [Sho94]. Next, for each prime 𝑝 in the factorization that is

co-prime to [OK : RK], one obtains a prime ideal factorization of the ideal (𝑝), using another

algorithm of Dedekind and relevant theory of conductor ideals of R [Cond]. One then searches

through powers of each of these prime ideals to get the maximum power that is a factor ideal of

I. The product of all such prime ideal powers is the required ideal I′. Since Regev’s hardness

reduction is anyway quantum, the fact that this algorithm is quantum does not hamper one from

obtaining a quantum hardness reduction from ideals of R, although it is desirable to have a classical

isomorphism for the clearing lemma such as the one we show. It is worth noting, as we point out in

the technical overview (section 2.1.1), that the depth of the quantum circuit for factoring is possibly

much deeper than the quantum circuit required for Regev’s discrete Gaussian sampling [Reg05];

the former requires computing exponentiation modulo 𝑁 whereas the latter requires computing the

representative of a point modulo the given basic parallelepiped of lattice of ideal I.

In [RSW18], a reduction from decision (resp. search) RLWE in OK to decision (resp. search)

polynomial-LWE [Ste+09] (i.e. with the ring RK) is obtained, Since, the hardness of RLWE in OK

was only known based on hardness of ideals in OK, this result only ties the hardness of polynomial-

LWE to hardness of Dedekind-domain ideal lattices. In [PP19], a more general framework is con-

sidered which encompasses Module-LWE [BGV12; LS15] and Order-LWE [Bol+19] and shows

reductions from Ring-LWE to these other variants, and with tight reductions, but with the same

limitation.

Outline. The rest of this chapter is organized as follows. The remaining part of Introduction

contains a technical overview. Section 2.2 covers preliminaries of lattices, smoothing lemma, and

hard problems over lattices. Section 2.3 covers basics of ideals and states the Dedekind Index
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theorem. Section 2.4 introduces the polynomial ring calculus including dual ideals. Section 2.5

introduces the notion of Dedekind-special primes w.r.t. a separable polynomial which sets up the

primes 𝑝 for each number field for which our reduction works. The section also proves that ideal

I is principal modulo 𝑝𝑟I. Section 2.6 gives a novel randomized algorithm to find a generator for

above principal ideal. Section 2.7 proves the pseudo-randomness of 𝑞-RLWE using earlier works

and the novel formulation of the clearing lemma and its proof using the theory and algorithms

developed in earlier sections. We also give and prove our version of the clearing lemma for ring

of integers of arbitrary number fields. Section 2.8 considers alternatives to CRYSTALS-Kyber and

gives examples of non-bigenic ideals.

2.1.1 Technical Overview

The state-of-the-art decisional Ring-LWE hardness, extended to lattices of ideals (of ring

of integers) of all number fields, is the culmination of three works: the original Regev LWE-

reduction [Reg05], the decisional Ring-LWE hardness for cyclotomic fields [LPR10], and the ex-

tension to all number fields [PRS17].

First, we briefly describe the main components of Regev’s hardness reduction from discrete

Gaussian sampling (DGS) over worst-case integer lattices to learning-with-error (𝑞-LWE) modulo

integer 𝑞. While the DGS problem for a lattice L can be classically solved if the variance 𝜎 for

the Gaussian sampling is sufficiently large, for instance 𝜎 > 22𝑛_𝑛 (L), where 𝑛 is the dimension

of the lattice and _𝑛, as usual, is the minimum length of a set of 𝑛 linearly independent vectors

from L. This step is also called the bootstrapping step of DGS. To obtain finer sampling, i.e. for 𝜎

approaching a polynomial factor away from _𝑛 (L), Regev employs a recursive strategy involving

two reductions:

1. A quantum reduction that allows one to solve finer DGS for L given a worst-case promise

closest-vector-problem (CVP) oracle for the dual latticeL∨. A promise CVP oracle CVPL∨,𝑑

solves the closest vector problem as long as the input instance is promised to be within dis-

tance 𝑑 of the latticeL∨. The larger the promise under which the CVP oracle works, the finer
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is the DGS sampler, upto a limit. It is worth remarking that the main quantum components

of this algorithm is a quantum fourier transform, and a computation (over superpositions)

that computes a representative of point 𝑥 modulo a given basic parallelepiped of L∨.

2. A classical reduction that uses a 𝑞-LWE oracle, along with a fine DGS sampler for L to solve

promise CVP over the dual lattice L∨. The finer the DGS sampler, the larger the promise

that the CVP solver can handle. One hard problem solved in this step is what maybe referred

to as “clearing the lattice”. Note that the CVP input instance describes a point 𝑥 close to

some lattice point 𝑦 of some lattice L∨, whereas the 𝑞-LWE oracle which is used to solve

this problem does not explicitly refer to any lattice. Regev’s clever idea is to use the DGS

sampler to sample a lattice vector 𝑣 from L, and take the inner product of 𝑣 with 𝑥 to obtain

the LWE sample. Since the dual lattice, by definition, is spanned by L−⊤, this leads to

clearing of the lattice from the LWE instance.

The prior work [LPR10] extended step 2 by utilizing a 𝑞-RLWE oracle to solve the CVP prob-

lem for ideal lattices of the dual of the ring of integers of the underlying number field. However,

the reduction to the decisional RLWE problem was only demonstrated for cyclotomic fields. The

major challenge that they addressed was that the dual of a lattice, which in this case is a lattice

defined by a Z-basis of an ideal I of the ring, need not be an ideal itself. Fortunately, this issue is

well studied in number theory and the appropriate lattice to consider is the one embedded in C𝑛,

the 𝑛-dimensional complex domain, via the “canonical embedding". This embedding is similar to

a Fourier transform and is essentially the linear transform defined by the Vandermonde matrix of

𝑓 (𝑋), where 𝑓 (𝑋) is the irreducible polynomial that defines the number field K = Q[𝑋]/( 𝑓 (𝑋)).

Once we consider these embedded lattices, it turns out that the usual notion of a dual lattice

leads to a lattice that corresponds to a (fractional) ideal of the same ring. This (fractional) ideal

is referred to as the dual ideal I∨ of the original ideal I. This is crucial in solving the “clearing

the lattice” problem in step 2 above, where the problem is more complicated now as the RLWE

sample generation uses polynomial (or number field) multiplication, and hence clearing the lattice

must also employ polynomial multiplication and not an inner product; the latter sufficed for LWE.
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This is one of the main reasons that working with the dual ideal is helpful, although it still doesn’t

immediately solve the problem. To fully tackle the problem [LPR10] formulated and proved an

“ideal clearing lemma”, which informally showed the following:

(i) an efficient isomorphism 𝜓 that maps the finely sampled 𝑣 (from the ideal I or its corre-

sponding lattice L) to the ring modulo 𝑞,

(ii) an efficiently invertible isomorphism 𝜙 that maps 𝑦, a lattice point in lattice L∨ of dual

ideal I∨ (or equivalently treating 𝑦 as an element of ideal I∨) to the dual of the ring (again,

modulo 𝑞),

(iii) such that 𝜓(𝑣) ∗ 𝜙(𝑦) = 𝑣 ∗ 𝑦 (mod 𝑞), where ‘*’ is the polynomial multiplication in the

number field (ideal clearing property).

Note that the image of 𝜙 and 𝜓 lie in the ring and the dual of the ring respectively, and do not

refer to the ideal or the lattice, and hence the name “ideal clearing lemma”. More importantly, it

is imperative to show that these isomorphisms are efficiently computable (invertible resp.) given

only some basis of the ideal (or the corresponding lattice). This, however, is not an easy task

and requires algorithms from computational number theory, and in particular the unique prime

ideal factorization of ideals of Dedekind domains. [LPR10] show an invertible isomorphism 𝜓 as

required above by computing an element 𝑡 in the ideal I∨ such that 𝑡 · I−∨ is co-prime to ideal (𝑞).

Intuitively, multiplication by 𝑡 serves as the inverse of isomorphism 𝜓 by noting the following:

multiplication by any 𝑡 in I∨ would map the dual of the ring to the ideal I∨. However, if the

principal ideal (𝑡) shares some prime ideals with factorization of (𝑞), then this would not be a

bijection. Thus, by requiring that 𝑡 · I−∨ is coprime to (𝑞), the map becomes bijective. But, note

that this reasoning only holds in a ring where there is unique prime ideal factorization, and hence

this technique only works for rings which have unique prime ideal factorization. It is well-known

that the ring of integers OK of a number field K is a Dedekind domain which is also well-known to

have unique prime ideal factorization. Further, all strict sub-rings of ring of integers of a number

field are known to be non Dedekind domain, and also not have unique prime ideal factorization.
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Extension to Polynomial Ring R, a non Dedekind Domain We focus on the polynomial ring

R = Z[𝑋]/( 𝑓 (𝑋)), which is a subring of the ring of integers OK of a number field K. If 𝑞 divides

the index of R in OK, then R is strictly a subring of OK. We propose an alternate strategy to

simplify the “ideal clearing lemma". This strategy can be applied to R as long as 𝑞 is coprime to

the index of R in OK (denoted as [OK : R]). Our approach involves demonstrating that for any

ideal I of R and any such 𝑞, the ideal I/𝑞I is a principal ideal of the ring R. We also provide

a simple and novel randomized algorithm to find a generator for this principal ideal. Finally, we

demonstrate that, with this generator in hand, we can provide the requisite isomorphisms 𝜙 and 𝜓

described above. These isomorphisms are computationally efficient and invertible, and they satisfy

the ideal clearing property.

Since the proof of ideal clearing lemma requires some key lemmas involving the dual ideal,

which in turn is defined using the canonical embedding, we begin by giving in section 2.4 a basic

introduction to dual ideals, especially tailored for the polynomial ring R. The core of our work

is in showing that I/𝑞I is a principal ideal of the ring R, and we achieve this goal in a rela-

tively elementary way, without invoking advanced techniques such as localization, Jordan-Holder

decomposition, conductor-ideal theory and of course neither the Dedekind domain prime ideal fac-

torization. Surprisingly, we do not even use the Dedekind’s index theorem, and we directly work

with 𝑞 which only have prime factors 𝑝, such that the factorization of 𝑓 (𝑋) modulo 𝑝 passes the

Dedekind test.

We briefly summarize the section 2.5 here on how to prove that I/𝑞I is a principal ideal of

the ring R. For simplicity, assume that 𝑞 = 𝑝𝑟 for some prime 𝑝. Let the factorization of 𝑓 (𝑋)

modulo 𝑝 into irreducible polynomials (modulo 𝑝) be

𝑓 (𝑋) =
∏
𝑖

ℎ𝑖 (𝑋)𝑒𝑖 + 𝑝 · 𝑡 (𝑋),

and since we stipulate that 𝑝 satisfies the Dedekind index test, it follows that for any 𝑖 such that

𝑒𝑖 > 1 it is the case that 𝑡 (𝑋) is not in the maximal ideal (𝑝, ℎ𝑖 (𝑋)) of R. One can then show that
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the principal ideal (𝑝) has the following factorization into maximal (and hence prime) ideals :

(𝑝) =
∏
𝑖

(𝑝, ℎ𝑖 (𝑋))𝑒𝑖 .

This part is actually well-known from another theorem of Dedekind. Next, as a warm up, we first

prove the simpler fact that I modulo 𝑞 is a principal ideal. In other words R/(𝑞) is a principal

ideal ring. Given the above factorization of (𝑝), using the Chinese remainder theorem (CRT), it

suffices to show that for each 𝑖, R/(𝑝, ℎ𝑖 (𝑋))𝑟 ·𝑒𝑖 is a principal ideal ring. Now, if an ideal I of R is

not a sub-ideal of the maximal ideal (𝑝, ℎ𝑖 (𝑋)) then it is trivially principal modulo (𝑝, ℎ𝑖 (𝑋))𝑟 ·𝑒𝑖 ,

as it is generated by 1. We next show that if 𝑒𝑖 = 1, then 𝑝 is always a generator of an ideal that is a

sub-ideal of (𝑝, ℎ𝑖 (𝑋)), when considered mod (𝑝, ℎ𝑖 (𝑋))𝑟 ·𝑒𝑖 , and similarly if 𝑒𝑖 > 1, then ℎ𝑖 (𝑋) is

a generator. So, this proves that I modulo 𝑞 is a principal ideal. We will later see that these facts

about these generators allow us to obtain a randomized algorithm for a generator of I/𝑞I.

But, before that we need to show that I/𝑞I is a principal ideal. We cannot use CRT directly

now as we do not have a factorization of I, and in fact in the non Dedekind domain R, such

a prime ideal factorization may not exist. Nevertheless, we can show that I can be written as

Î · ∏𝑖 (𝑝, ℎ𝑖 (𝑋))𝑡𝑖 where 𝑡𝑖 are finite integers, and Î is co-prime to all (𝑝, ℎ𝑖 (𝑋)). This is the

most difficult part of the proof, as it requires showing that 𝑡𝑖 is finite for any I. This is proved

by showing that if I is a sub-ideal of every power (𝑝, ℎ𝑖 (𝑋))𝑡 (𝑡 > 0), then I must be the zero

ideal, and hence principal. An alternative proof that any non-zero ideal I of R must have a largest

𝑡 such that it is a subset of (𝑝, ℎ𝑖 (𝑋))𝑡 follows by analyzing the determinants of the relevant basis

matrices. This uses the property that the determinant of a Z-basis of an ideal I is exactly the index

of the additive subgroup I of R. However, proving this requires a foray into Smith Normal Form

(see e.g. [PZ89, Chapter 3]). Rest of the proof then follows as before using CRT.

As noted, we proved the above claim using CRT, and for most components, we either had

zero, one, 𝑝 or ℎ𝑖 (𝑋) as the principal ideal generator. This allows us to give a simple randomized

algorithm for the principal ideal I/𝑞I, given any Z-basis for the ideal I. Indeed, the simple
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algorithm picks 𝑛 random elements 𝜌𝑘 (𝑋) (𝑘 ∈ [𝑛]) from Z𝑝 [𝑋]/( 𝑓 (𝑋)). Next, we view each

of the 𝑛 columns of the Z-basis of I as polynomials, say 𝛾𝑘 (𝑋). The algorithm simply outputs∑
𝑘∈[𝑛] 𝛾𝑘 (𝑋) ∗ 𝜌𝑘 (𝑋). We prove that this is a generator of the principal ideal with a decent non-

negligible probability. See section 2.6 for details.

2.2 Preliminaries

We’ll be working with the polynomial rings modulo a monic polynomial 𝑓 (𝑋) ∈ Z[𝑋] of de-

gree 𝑛 whose (complex) roots are distinct. Each ring element is a polynomial 𝑔(𝑋) = ∑𝑛−1
𝑖=0 𝑔𝑖𝑋

𝑖

of degree less than 𝑛, which can be viewed as a length-𝑛 (column) vector of its coefficients

(𝑔0, . . . , 𝑔𝑛−1). We will denote this vector by boldface 𝑔, i.e. g, and we will use this as a gen-

eral notational principle.

In particular, we are interested in the following three rings: R = Z[𝑋]/( 𝑓 (𝑋)), its modulo 𝑞

version R𝑞 = Z𝑞 [𝑋]/( 𝑓 (𝑋)) for some 𝑞 ∈ Z, and the rational version RQ = Q[𝑋]/( 𝑓 (𝑋)). When

𝑓 (𝑋) is irreducible, K = RQ is a number field.

For clarity, we use operator “∗" for polynomial multiplication, operator “×" for matrix (vector)

multiplication and cartesian product.

2.2.1 The Canonical SpaceH and Lattices

The ring RQ is definitely a Q-algebra, and a (possibly degenerate) extension of the field Q.

Since, C is the completion of algebraic closure of Q, RQ naturally embeds in C, with Q ⊆ RQ em-

bedding identically in C. However, there are 𝑛 such distinct embeddings in C. These 𝑛 embeddings

are automorphic (i.e. automorphisms of the image of RQ in 𝐶) if RQ is a Galois field extension.

However, in our general case, we will get 𝑛 embeddings which are not necessarily automorphic.

The 𝑛 embeddings viewed together can be seen as mapping to the following space H , which we

will refer to as the canonical embedding in the general case, i.e. whether RQ is a Galois extension

or not even a field extension.
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The canonical spaceH is defined as follow where 𝑠1 + 2𝑠2 = 𝑛:

H =
{
(𝑥0, . . . , 𝑥𝑛−1) ⊆ R𝑠1 × C2𝑠2

��∀𝑖 ∈ [𝑠2] : 𝑥𝑠1+𝑖 = 𝑥𝑠1+𝑠2+𝑖
}
⊆ C𝑛

We then describe the canonical embedding from the polynomial ring R = Z[𝑋]/( 𝑓 (𝑋)) to this

spaceH given by a matrix.

Vandermonde Matrix and Discriminant Let the 𝑛 distinct roots of 𝑓 (𝑋) be (𝑧0, . . . , 𝑧𝑛−1).

Note the complex roots of 𝑓 (𝑋) come in conjugate pairs, because for integer polynomial, 𝑓 (𝑧) =

𝑓 (𝑧). We can order the roots such that 𝑧𝑖 ∈ R for 𝑖 ∈ [𝑠1] and 𝑧𝑠1+𝑖 = 𝑧𝑠1+𝑠2+𝑖 for 𝑖 ∈ [𝑠2], where

𝑠1 + 2𝑠2 = 𝑛.

The (square) Vandermonde matrix 𝑽 of the roots of 𝑓 (𝑋) is given by

𝑽 =



1 𝑧0 𝑧2
0 · · · 𝑧𝑛−1

0

1 𝑧1 𝑧2
1 · · · 𝑧𝑛−1

1
...

...
...

. . .
...

1 𝑧𝑛−1 𝑧2
𝑛−1 · · · 𝑧𝑛−1

𝑛−1


whose determinant is det(𝑽) = ∏

0≤𝑖< 𝑗<𝑛 (𝑧 𝑗 − 𝑧𝑖). Because all roots are distinct, det(𝑽) ≠ 0 and

hence 𝑽 is invertible. We will abuse notation, and call the Vandermonde matrix of 𝑧𝑖’s, to be also

the Vandermonde matrix of 𝑓 (𝑋).

The discriminant Δ 𝑓 of a polynomial is defined to be the square of the determinant of the

Vandermonde matrix of 𝑓 (𝑋). In corollary 2.4.3 we will relate the discriminant to the determinant

of the multiplication matrix (in Q[𝑋]/( 𝑓 (𝑋))) of the derivative of 𝑓 (𝑋).

Given a polynomial 𝑔(𝑋) ∈ RQ and its vector representation g ∈ Q𝑛, we have (1, 𝑧, 𝑧2, . . . , 𝑧𝑛−1)⊤×

g = 𝑔(𝑧). The product of 𝑽 and g is essentially the evaluation of polynomial 𝑔(𝑋) at roots of 𝑓 (𝑋):

(𝑔(𝑧0), 𝑔(𝑧1), . . . , 𝑔(𝑧𝑛−1)) ∈ H . Therefore, the Vandermonde matrix 𝑽 of 𝑓 (𝑋) canonically em-

beds the polynomial in RQ into the canonical space H : first view the polynomial as vector of

coefficients over Q (⊆ R ⊆ C). The first 𝑠1 rows of 𝑽 maps this vector into R𝑠1 , and the remaining
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rows of 𝑽 maps this vector into C2𝑠2 , with conjugate pairs. Note that 𝑽 (g∗h) is same as point-wise

product of 𝑽g and 𝑽h, for any polynomials g and h.

Lattice The lattice L is defined as an additive subgroup of H given by a set of basis vectors

{b0, . . . , bm−1} fromH :

L =

{
𝑚−1∑︁
𝑖=0

𝑧𝑖 · bi

����� (𝑧0, . . . , 𝑧𝑛−1) ∈ Z𝑛
}
.

It’s dual is defined as L∨ =
{
y ∈ H | ∀x ∈ L : ⟨y, x⟩ = y𝐻x ∈ Z

}
. Here (·)𝐻 denotes the Hermitian

(conjugate) transpose. It’s easy to verify that (L∨)∨ = L.

The minimum distance of a lattice is defined as the length of the shortest non-zero lattice vector:

_1(L) = min0≠x∈L {∥x∥}.

Gaussians Define 𝐺 =
{
r ∈ R𝑛+

�� r𝑠1+𝑖 = r𝑠1+𝑠2+𝑖, 0 ≤ 𝑖 < 𝑠1
}
. For any r ∈ 𝐺, the elliptical Gaus-

sian distribution 𝐷r over the spaceH is defined to have a probability density function propotional

to 𝜌r(x) = exp
(
−∑𝑛−1

𝑖=0 |x𝑖/r𝑖 |2
)
. For real 𝑟 > 0, We also define the spherical Gaussian distribution

𝐷𝑟 as 𝐷𝑟 ·1.

Definition 2.2.1 (Smoothing Condition). For any lattice L ⊂ H , a positive real 𝜖 > 0 and r ∈ 𝐺,

we say r ≥ [𝜖 (L) if 𝜌1/r(L∨\ {0}) ≤ 𝜖 where 1/r = (1/𝑟0, 1/𝑟1, . . . , 1/𝑟𝑛−1).

Lemma 2.2.1 ([MR07; PRS17]). (Smoothing Lemma) For any lattice L ⊂ H , 𝜖 > 0 and r ≥

[𝜖 (L). the statistical distance between (𝐷r mod L) and the uniform distribution overH/L is at

most 2𝜖 .

Lemma 2.2.2 ([MR07]). For any lattice L ⊂ H and 𝑐 ≥ 1, we have 𝑐
√
𝑛/_1(L∨) ≥ [𝜖 (L) where

𝜖 = exp(−𝑐2𝑛).

Proposition 2.2.1 ([MR07]). For any latticeL ⊂ H and 𝜖 ∈ (0, 1), we have [𝜖 (L) ≥
√︃

log(1/𝜖)
𝜋
/_1(L∨).

For a lattice L ⊂ H and r ∈ 𝐺, the discrete Gaussian distribution 𝐷L,r is defined to have

support L and mass function 𝐷L,r(x) = 𝜌r(x)/𝜌r(L) for x ∈ L.
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2.2.2 Lattice Problems

We introduce the following (seemingly hard) lattice problems.

Definition 2.2.2 (SVP and SIVP). On the canonical spaceH endowed with some geometric norm

(such as the ℓ2 norm), let 𝛾 > 1, given a lattice L, the Shortest Vector Problem SVP𝛾 asks for an

element x ∈ L such that ∥x∥ ≤ 𝛾 · _1(L), and the Shortest Independent Vectors Problem SIVP𝛾

asks for 𝑛 linearly independent elements in L whose norms are at most 𝛾 · _𝑛 (L).

Definition 2.2.3 (DGS). Let 𝛾 > 0. The Discrete Gaussian Sampling problem DGS𝛾 is, given a

lattice L ⊆ H and 𝑟 ≥ 𝛾, output samples from the distribution 𝐷L,𝑟 .

More specifically, we consider the above problems restricted to the ideal lattices, when lattices

are generated by ideals of the polynomial ring R = Z[𝑋]/( 𝑓 (𝑋)). See section 2.4.2.

Definition 2.2.4 (GDP). For a lattice L ⊆ H , the Gaussian Decoding Problem GDPL,𝑟 asks,

given a coset e + L where e ∈ H is sampled from Gaussian 𝐷𝑟 , find e.

2.3 Ideal Basics

Let 𝑅 be any commutative ring with unity. An (integral) ideal 𝔞 ⊆ 𝑅 is an additive subgroup

that is closed under multiplication by the elements from 𝑅. A fractional ideal 𝔞 is a subset of 𝑅,

such that there exists an element 𝑟 ∈ 𝑅 that makes 𝑟 · 𝔞 an integral ideal of 𝑅. An ideal 𝔞 generated

by finitely many 𝑔1, 𝑔2, ...𝑔𝑘 is denoted by (𝑔1, 𝑔2, ..., 𝑔𝑘 ). Note, (1) = 𝑅. A prime ideal of a

ring 𝑅 is an ideal 𝔭 such that 𝑎𝑏 ∈ 𝔭 implies 𝑎 ∈ 𝔭 or 𝑏 ∈ 𝔭. A maximal ideal of a ring 𝑅 is a

non-trivial ideal (i.e. not same as 𝑅) that is maximal under the subset relation. Two ideals 𝔞 and 𝔟

are called co-prime if 𝔞 + 𝔟 = (1). An element 𝑐 ∈ 𝑅 will be called invertible modulo an ideal

𝔞 if there exists a ` ∈ 𝑅 and _ ∈ 𝔞 such that `𝑐 = 1 + _. In other words, 𝑐 is a unit of quotient

ring 𝑅/𝔞. We now enumerate a list of well-known facts about ideals, which also have elementary

proofs (see e.g. [AM69] or [Cla84] for proofs, if not provided).

Lemma 2.3.1. (i) Every non-trivial ring has at least one maximal ideal.
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(ii) A maximal ideal is always a prime ideal.

(iii) The quotient ring 𝑅/𝔞 is a field iff 𝔞 is a maximal ideal.

(iv) For ideals 𝔞 and 𝔟, their sum 𝔞 + 𝔟 is the set of all 𝑥 + 𝑦 where 𝑥 ∈ 𝔞 and 𝑦 ∈ 𝔟. It is the

smallest ideal containing 𝔞 and 𝔟.

(v) Thus, a maximal ideal 𝔪 is co-prime to every ideal that is not a subset of 𝔪.

(vi) If 𝔞 and 𝔟 are not co-prime, then there exists a maximal ideal 𝔪 such that 𝔞 + 𝔟 ⊆ 𝔪.

(vii) If 𝔞 and 𝔟 are co-prime, then 𝔞 ∩ 𝔟 = 𝔞𝔟.

(viii) If a prime ideal 𝔭 contains product of two ideal 𝔞𝔟, then at least one of 𝔞 or 𝔟 is in 𝔭.

(ix) If an ideal 𝔞 is co-prime to two ideals, say 𝔟 and 𝔠, then 𝔞 is co-prime to 𝔟𝔠.

(x) If ideals 𝔞 and 𝔟 are co-prime, then for any positive integers 𝑟, 𝑠, their powers 𝔞𝑟 and 𝔟𝑠 are

also co-prime.

(xi) If a maximal ideal 𝔪 contains product of powers of distinct maximal ideals 𝔫1, ...., 𝔫𝑘 , then

𝔪 must be one of 𝔫1, ...., 𝔫𝑘 .

Proof. Proof of ((viii)). If a prime ideal 𝔭 contains product of two ideal 𝔞𝔟, then at least one of 𝔞

or 𝔟 is in 𝔭. If neither of 𝔞 and 𝔟 is contained in 𝔭, then there are elements 𝑎 ∈ 𝔞 and 𝑏 ∈ 𝔟, that

are not in 𝔭. Yet, 𝑎 ∗ 𝑏, being in 𝔞𝔟 is in 𝔭, contradicting the fact that 𝔭 is prime.

Proof of ((ix)). If an ideal 𝔞 is co-prime to two ideals, say 𝔟 and 𝔠, then 𝔞 is co-prime to 𝔟𝔠.

For if not, then 𝔞 + 𝔟𝔠 is contained in a maximal ideal 𝔪, and hence 𝔟𝔠 is also contained in 𝔪.

By previous item, one of 𝔟 or 𝔠, w.l.o.g. 𝔟, is contained in 𝔪. Since 𝔞 is also contained in 𝔪, this

implies that 𝔞 + 𝔟 is contained in 𝔪, contradicting the fact that 𝔞 and 𝔟 are co-prime.

Proof of ((x)). If ideals 𝔞 and 𝔟 are co-prime, then for any positive integers 𝑟, 𝑠, their powers 𝔞𝑟

and 𝔟𝑠 are also co-prime: if 𝔞𝑟 and 𝔟𝑠 are not co-prime then there is a maximal ideal 𝔪 containing

𝔞𝑟 + 𝔟𝑠, and hence also 𝔞𝑟 and 𝔟𝑠 individually. Since 𝔪 is also prime, 𝔪 contains both 𝔞 and 𝔟 and

hence also their sum, contradicting the fact that 𝔞 and 𝔟 are co-prime.
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Proof of ((xi)). If a maximal ideal 𝔪 contains product of powers of distinct maximal ideals

𝔫1, ...., 𝔫𝑘 , then 𝔪 must be one of 𝔫1, ...., 𝔫𝑘 . Say,
∏
𝑖 𝔫

𝑟𝑖
𝑖

is contained in 𝔪. Suppose 𝔪 is not the

same as one of 𝔫1, ..., 𝔫𝑘 . Then, 𝔪 is co-prime to each of 𝔫𝑖, and hence also to their powers 𝔫𝑟𝑖
𝑖

,

which are also pair-wise co-prime. Thus, one of 𝔫𝑟𝑖
𝑖

is in 𝔪 (by item (viii)), and hence maximal

ideal 𝔫𝑖 is itself in maximal ideal 𝔪, an absurdity.

Lemma 2.3.2. For any ring 𝑅, and any maximal ideal 𝔞 = (𝑎1, 𝑎2) of 𝑅, let 𝑥 ∈ 𝑅 be such that 𝑥

is not in 𝔞. Then for any positive integers 𝑟, 𝑠, 𝑥 is invertible modulo (𝑎𝑟1, 𝑎
𝑠
2).

The lemma can be proved easily in multiple ways, but we prefer an argument used in Prop. 2.5

in [LLL82].

Proof. Clearly, for 𝑟 = 1 and 𝑠 = 1, the claim holds, i.e. 𝑥 is invertible modulo the maximal ideal

𝔞, as 𝑅/𝔞 is a field. Thus,

`𝑥 = 1 − (a1𝑎1 + a2𝑎2),

for some `, a1, a2. If a2 is zero, then 𝑥 is invertible modulo (𝑎1) and hence also modulo any power

of (𝑎1), and we are done. Similarly, for a1 being zero. Else,

`𝑥 + a1𝑎1 = 1 − a2𝑎2,

Multiplying both sides by 1 + a2𝑎2 + ... + (a2𝑎2)𝑠−1, we get

`′𝑥 + a′1𝑎1 = 1 − a𝑠2𝑎
𝑠
2,

for some `′ and a′1. Rewriting this as

`′𝑥 + a𝑠2𝑎
𝑠
2 = 1 − a′1𝑎1,

and multiplying both sides by 1 + a′1𝑎1 + ... + (a′1𝑎1)𝑟−1, the claim follows.
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Noetherian Ring

A ring 𝑅 is called Noetherian if every ideal of 𝑅 is finitely generated. We show that Z[𝑋]/( 𝑓 (𝑋))

is finitely generated for any polynomial 𝑓 (𝑋) ∈ Z[𝑋], and hence Noetherian.

Lemma 2.3.3. If a ring 𝑅 is Noetherian, then for any ideal 𝔞 of 𝑅, the ring 𝑅/𝔞 is Noetherian.

Corollary 2.3.1. (see [Conc]) The ring R = Z[𝑋]/( 𝑓 (𝑋)) is Noetherian for any polynomial

𝑓 (𝑋) ∈ 𝑍 [𝑋].

Theorem 2.3.1 (Krull Intersection Theorem). Let 𝑅 be a Noetherian ring, and I an ideal in 𝑅.

Then

I ∗
∞⋂
𝑖=1
I 𝑖 =

∞⋂
𝑖=1
I 𝑖

For an elementary proof see [Kap73, Theorem 74].

We will directly prove the following corollary in lemma 2.5.6 using theorem 2.3.1 for certain

requisite maximal ideals in the ring R = Z[𝑋]/( 𝑓 (𝑋)), even when 𝑓 (𝑋) is not irreducible over Q,

i.e. when R is not necessarily an integer domain. However, we state this more general corollary

here for high-level discussion.

Corollary 2.3.2 (See e.g. [Eis13]). For any Noetherian ring 𝑅 that is also an integral domain, for

any ideal I of 𝑅,
∞⋂
𝑖=1
I 𝑖 = 0

For a proof of the general form of CRT below, see e.g. [Eis13].

Theorem 2.3.2 (Chinese Remainder Theorem (CRT)). Let 𝔞1, ..., 𝔞𝑘 be a set of pairwise co-prime

ideals of a ring 𝑅. Then,

𝑅/𝔞1 · · · 𝔞𝑘 ≡
∏
𝑖

𝑅/𝔞𝑖

Dedekind Domains

A Dedekind domain is a non-trivial integral domain in which every non-zero fractional ideal

is invertible. An ideal is called proper if it not same as (0) or (1). A major theorem of Dedekind
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domain states that every proper ideal of a Dedekind domain can be uniquely (upto re-ordering)

factored as a product of proper prime ideals (see e.g. [FT91] or [Cla84]). Further, every proper

prime ideal is a maximal ideal.

Let 𝑅 be a subring of a ring 𝑅′. An element 𝑥 ∈ 𝑅′ is said to be integral over 𝑅 if it satisfies

a monic polynomial equation, where the polynomial has coefficients in 𝑅. The ring of integers,

denoted OK of a number field K are elements of K that are integral over Z. It is well-known that

the ring of integers OK of a number field is a Dedekind domain (see e.g. [FT91]).

For a prime number 𝑝, if an ideal 𝔞 of OK contains the ideal (𝑝) (of OK), we say that 𝔞 lies

above 𝑝. Another well-known property of Dedekind domains is that every prime ideal of OK

lies above some prime 𝑝. An alternative equivalent definition of Dedekind domain is that it is an

integrally-closed Noetherian domain in which every nonzero prime ideal is maximal.

For any ideal 𝔞 of the Dedekind domain OK, the (absolute) norm of 𝔞, 𝑁 (𝔞), is defined to be

[OK : 𝔞], i.e. the cardinality of the residue class ring OK/𝔞. We state the following facts as a

lemma (see any text on algebraic number theory for proofs, for instance [FT91])

Lemma 2.3.4. (i) Let 𝔭 denote a non-zero prime ideal of OK and let 𝑟 be a positive integer.

Then, we have an isomorphism of additive groups: OK/𝔭 � 𝔭𝑟/𝔭𝑟+1 (see II.1.16 of [FT91]).

(ii) For a prime ideal 𝔭, 𝑁 (𝔭𝑟) = (𝑁 (𝔭))𝑟 .

(iii) For any two non-zero ideals 𝔞, 𝔟 of OK, 𝑁 (𝔞𝔟) = 𝑁 (𝔞)𝑁 (𝔟).

(iv) If 𝔞 is a prime ideal of OK lying above prime 𝑝, then OK/𝔞 is a field extension of finite field

Z𝑝 of some finite degree 𝑒. Further, 𝑁 (𝔞) = 𝑝𝑒. (see (II.1.37) of [FT91]).

(v) The norm of a principal ideal (𝑎), 𝑁 ((𝑎)), is same as the (absolute value of) field norm of

𝑎, i.e. 𝑁OK/Q(𝑎). (see (II.1.38) of [FT91], and see section 2.4 for definition of field norm).

(vi) The discriminant of any monic irreducible polynomial 𝑓 (𝑋), Δ 𝑓 , divides [OK : R]2, where

K = Q[𝑋]/( 𝑓 (𝑋)) and R = Z[𝑋]/( 𝑓 (𝑋)) (see (II.1.39) of [FT91]).
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(vii) The norm of an ideal 𝔞 of OK is same as the (absolute value of) determinant of any Z-basis

of 𝔞. (see (II.1.39) of [FT91]).

Dedekind Index Theorem

Theorem 2.3.3 (Dedekind Index Theorem). Let 𝑝 be a prime integer. For any monic polyno-

mial 𝑓 (𝑋) ∈ Z[𝑋] that is irreducible over Q, let OK be the ring of integers of the number field

K = Q[𝑋]/( 𝑓 (𝑋)). Let the following be the factorization of 𝑓 (𝑋) modulo 𝑝 into powers of 𝑚

irreducible polynomials ℎ𝑖 (𝑋) ∈ Z𝑝 [𝑋] (𝑖 ∈ [𝑚]):

𝑓 (𝑋) = ℎ1(𝑋)𝑒1 ...ℎ𝑚 (𝑋)𝑒𝑚 + 𝑝 · 𝑡 (𝑋),

where 𝑒𝑖 are positive integers, and 𝑡 (𝑋) ∈ Z𝑝 [𝑋]. Then, 𝑝 | [OK : Z[𝑋]/( 𝑓 (𝑋))] iff for some

𝑖 ∈ [𝑚], such that 𝑒𝑖 ≥ 2, polynomial ℎ𝑖 (𝑋) divides 𝑡 (𝑋) in Z𝑝 [𝑋].

For a proof of the celebrated theorem see [Cona] or [Coh93, Theorem 6.1.4]. Recall, for a

prime 𝑝, Z𝑝 [𝑋] is a unique factorization domain.

Ring of Integers of Cyclotomic Fields

Now, we restrict ourselves to cyclotomic fields, i.e. where 𝑓 (𝑋) is a cyclotomic polynomial.

Recall, a complex number Z is a primitive 𝑚-th root of unity, if its order is exactly 𝑚. The 𝑚-th

cyclotomic polynomial is defined by

Φ𝑚 (𝑋) =
∏
(𝑋 − Z)

where the product runs over the different primitive 𝑚-th roots of unity Z . Since, such primitive

roots lie in a splitting extension field 𝐸 (over Q) of 𝑋𝑚 − 1, the primitive roots are exactly the

generators of the cyclic group of order𝑚; thus degree of Φ𝑚 (𝑋) is exactly the Euler totient function

𝜙(𝑚). It is well-known that cyclotomic polynomials are irreducible in Q[𝑋]. The cyclotomic field

Q[𝑋]/(Φ𝑚 (𝑋)) will be denoted by Q[𝑚].
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We have the following well-known identities.

𝑋𝑚 − 1 =
∏
𝑑 |𝑚

Φ𝑑 (𝑋)

Φ𝑚 (𝑋) =
∏
𝑑 |𝑚
(𝑋𝑑 − 1)`(𝑚/𝑑)

Φ𝑝𝑟 (𝑋) =
𝑋 𝑝

𝑟 − 1
𝑋 𝑝

𝑟−1 − 1
=

𝑝−1∑︁
𝑖=0

𝑋 𝑖𝑝
𝑟−1

where `(·) is the mobius function, 𝑝 is a prime, and 𝑟 ≥ 1. It follows that Φ𝑚 (𝑋) is always a

polynomial over the base field Q.

We also have the following lemma, whose proof can be found in any text in algebraic number

theory, for instance (VI. 1.14) of [FT91].

Lemma 2.3.5. If 𝑚 = 𝑚1𝑚2 with (𝑚1, 𝑚2) = 1, then Q[𝑚] is the compositum of arithmetically

disjoint fields, i.e.

Q[𝑚] � Q[𝑚1] ⊗Q Q[𝑚2]

OQ[𝑚] � OQ[𝑚1] ⊗Z OQ[𝑚2]

It is well-known that the ring of integers OK of a cyclotomic field is same as the polynomial

ring Z[𝑋]/(Φ𝑚 (𝑋)). Below, we give an easy proof of this fact using Dedekind Index Theorem.

This polynomial ring will also be referred to as the 𝑚-th cyclotomic ring. Recall, in section 2.2,

we defined the discriminant of a separable polynomial 𝑓 (𝑋) to be the square of the determinant

of the vandermonde matrix of 𝑓 (𝑋). When 𝑓 (𝑋) is a cyclotomic polynomial, the discriminant of

the polynomial is also called the discriminant of the cyclotomic field and denoted ΔK (as also the

discriminant of the ring of integers, or the cyclotomic ring).

Theorem 2.3.4. For any 𝑚, the ring of integers OK of the cyclotomic field K = Q[𝑋]/(Φ𝑚 (𝑋)) is

same as the polynomial ring R = Z[𝑋]/(Φ𝑚 (𝑋)). Thus, R is a Dedekind domain.

Proof. By lemma 2.3.5, we are reduced to proving the theorem for 𝑚 that are prime powers, i.e.
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𝑚 = 𝑞𝑟 , for some prime 𝑞 and positive integer 𝑟. It is well known5 that a prime 𝑝 divides [OK : R]

only if 𝑝2 is a factor of ΔΦ𝑚 (𝑋) . By corollary 2.4.3 , the discriminant of a monic separable

𝑓 (𝑋) is same as the determinant of the circulant matrix of 𝑓 ′(𝑋). Further, since the similarity

transform given by the vandermonde matrix of 𝑓 (𝑋), transforms the circulant matrix of any 𝑔(𝑋)

to a diagonal matrix with entries 𝑔(Z𝑖), where Z𝑖 are the roots of 𝑓 (𝑋), one can show that Δ 𝑓1Δ 𝑓2

divides the discriminant of 𝑓1(𝑋) 𝑓2(𝑋). Thus, discriminant of Φ𝑚 (𝑋) divides the discriminant of

𝑋𝑚 − 1. For 𝑚 = 𝑝𝑟 , the discriminant of 𝑋𝑚 − 1 is easily seen to be (upto sign) a power of 𝑝.

Thus, ΔΦ𝑚 (𝑋) can only be divisible by prime 𝑝. This further implies that only prime 𝑝, if any,

can divide [OK : R].

By Dedekind index theorem 2.3.3, for any prime 𝑝, 𝑝 does not divide [OK : R] iff 𝑝 is

Dedekind-special for Φ𝑚 (𝑋). Thus, we just need to check that prime 𝑝 coming from 𝑚 = 𝑝𝑟 is

Dedekind-special for Φ𝑚 (𝑋). Since modulo 𝑝, the power-𝑝 map is a Frobenius map, we have

that Φ𝑝𝑟 (𝑋) = Φ𝑝 (𝑋)𝑝
𝑟−1

mod 𝑝. Next, note that Φ𝑝 (𝑋) = (𝑋 − 1)𝑝−1 mod 𝑝, by first noting

that 𝑋 𝑝 − 1 = (𝑋 − 1)𝑝 mod 𝑝. Thus, Φ𝑝𝑟 (𝑋) = (𝑋 − 1)𝜙(𝑝𝑟 ) . To test the Dedekind-special

property, write Φ𝑝𝑟 (𝑋) = (𝑋 − 1)𝜙(𝑝𝑟 ) + 𝑝 ∗ 𝑡 (𝑋). Evaluating both sides at 𝑋 = 1, we note that

Φ𝑝𝑟 (𝑋) |𝑋=1 = 𝑝, and hence 𝑡 (1) = 1 mod 𝑝. Thus 𝑡 (𝑋) is not divisible by (𝑋 − 1) modulo 𝑝, and

hence 𝑝 is Dedekind special for Φ𝑝𝑟 (𝑋).

2.4 Polynomial Ring Calculus

In this section, we illustrate a simple framework on how to play with polynomial rings.

2.4.1 Circulant Matrices

Definition 2.4.1 (Circulant Matrices modulo 𝑓 (𝑋)). On polynomial ring modulo 𝑓 (𝑋), the circu-

lant matrix (modulo 𝑓 (𝑋)) for a ring element 𝑔(𝑋) is given by an 𝑛-by-𝑛 matrix 𝑪𝑔 whose 𝑖-th

column is the coefficients of 𝑔(𝑋) ∗ 𝑋 𝑖 modulo 𝑓 (𝑋) for 𝑖 = 0, 1, . . . , 𝑛 − 1.

We could take the underlying polynomial ring to be any of R,RQ and R𝑞. For simplicity,

5Δ 𝑓 = [OK : R]2 · disc(OK), and disc(OK) is an integer.
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in the following part, we abuse the notion of circulant matrix without explicitly mentioning the

underlying modulo polynomial 𝑓 (𝑋).

Proposition 2.4.1. For any two ring elements 𝑔(𝑋) and ℎ(𝑋), 𝑪𝑔 × h corresponds to the their

product 𝑔(𝑋) ∗ ℎ(𝑋).

Proof. Let ℎ(𝑋) = ∑𝑛−1
𝑖=0 ℎ𝑖𝑋

𝑖. We have that, 𝑪𝑔 × h =
∑𝑛−1
𝑖=0 ℎ𝑖 · (𝑪𝑔)𝑖, which corresponds to the

polynomial
∑𝑛−1
𝑖=0 ℎ𝑖 · (𝑔(𝑋) ∗ 𝑋 𝑖) = 𝑔(𝑋) ∗ (

∑𝑛−1
𝑖=0 ℎ𝑖𝑋

𝑖) = 𝑔(𝑋) ∗ ℎ(𝑋).

Corollary 2.4.1. For any two ring elements 𝑔(𝑋) and ℎ(𝑋), 𝑪𝑔 × 𝑪ℎ = 𝑪𝑔∗ℎ.

Proof. By Proposition 2.4.1, the 𝑖-th column of 𝑪𝑔 × 𝑪ℎ corresponds to the polynomial 𝑔(𝑋) ∗

ℎ(𝑋) ∗ 𝑋 𝑖. Together they form the circulant matrix 𝑪𝑔∗ℎ.

It’s not difficult to see that circulant matrices are closed under addition and multiplication.

Moreover, the multiplication commutes.

Corollary 2.4.2. On polynomial ring modulo 𝑓 (𝑋), all the circulant matrices form a commutative

subring under matrix addition and multiplication.

Lemma 2.4.1. On polynomial ring modulo 𝑓 (𝑋), a circulant matrix 𝑪𝑔 has an inverse 𝑪−1
𝑔 = 𝑪𝑔−1

iff 𝑔(𝑋) is invertible modulo 𝑓 (𝑋).

Proof. First for invertible 𝑔(𝑋), take its inverse 𝑔−1(𝑋). We have 𝑪𝑔𝑪𝑔−1 = 𝑪𝑔−1𝑪𝑔 = 𝑪1 = 𝐼.

If 𝑔(𝑋) is not invertible. Let 0 ≠ ℎ(𝑋) be such that 𝑔(𝑋) ∗ ℎ(𝑋) = 0. Then we have that

𝑪𝑔h = 0 for some h ≠ 0, and hence 𝑪𝑔 is not invertible.

For rational polynomial ring RQ = Q[𝑋]/( 𝑓 (𝑋)), the inverse of the circulant matrix can also

be given as 𝑪−1
𝑔 = 1

det(𝑪𝑔) · adj(𝑪𝑔) where adj(𝑪𝑔) is the adjugate matrix of 𝑪𝑔 with adj(𝑪𝑔)𝑖, 𝑗 =

(−1)𝑖+ 𝑗 · det(𝑀 𝑗 ,𝑖). Here, 𝑀𝑖, 𝑗 , commonly known as the minor, is obtained by removing the 𝑖-th

row and 𝑗-th column from 𝑪𝑔. If 𝑔(𝑋) is from R and 𝑪𝑔 is integer, its inverse 𝑪−1
𝑔 is also integer

except for a common (integer) denominator det(𝑪𝑔).
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Another view of the canonical embedding. Take the Vandermonde matrix𝑽 of 𝑓 (𝑋). It defines

an embedding from the polynomial ring R to its evaluation domain H . Let 𝑫𝑔 be the diagonal

matrix with its diagonal being the canonical embedding of 𝑔(𝑋), i.e. (𝑫𝑔)𝑖,𝑖 = 𝑔(𝑧𝑖). Consider

(𝑽 × 𝑪𝑔)𝑖, 𝑗 = 𝑝 𝑗 (𝑧𝑖) where 𝑝 𝑗 (𝑋) = 𝑔(𝑋) ∗ 𝑋 𝑗 . Note that the polynomial multiplication is under

the polynomial ring modulo 𝑓 (𝑋). Because 𝑝 𝑗 (𝑋) = 𝑔(𝑋)𝑋 𝑗 − 𝑡 𝑗 (𝑋) 𝑓 (𝑋) for some polynomial

𝑡 𝑗 (𝑋), we have

(𝑽 × 𝑪𝑔)𝑖, 𝑗 = 𝑝 𝑗 (𝑧𝑖) = 𝑔(𝑧𝑖) · 𝑧 𝑗𝑖 − 𝑡 𝑗 (𝑧𝑖) · 0 = 𝑔(𝑧𝑖) · 𝑧 𝑗𝑖 = (𝑫𝑔 × 𝑽)𝑖, 𝑗

and hence 𝑽𝑪𝑔 = 𝑫𝑔𝑽 or 𝑽𝑪𝑔𝑽−1 = 𝑫𝑔.

In other words, in the polynomial ring modulo 𝑓 (𝑋), the diagonal matrix of 𝑔(𝑋)’s evaluations

(at roots of 𝑓 (𝑋)) can be obtained by a similarity transformation (given by Vandermonde matrix 𝑉

of 𝑓 (𝑋)) of the circulant matrix of 𝑔(𝑋).

The determinant of the circulant matrix 𝑪𝑔 can be then calculated as

det(𝑪𝑔) =
det(𝑫𝑔)

det(𝑽) det(𝑽−1)
= det(𝑫𝑔) =

𝑛−1∏
𝑖=0

𝑔(𝑧𝑖) (2.1)

where 𝑧𝑖’s are the roots of 𝑓 (𝑋). Note that this is just the product of all the entries in the embedding

of 𝑔(𝑋). When 𝑓 (𝑋) is irreducible, and thus RQ is a field, then this quantity, i.e. the determinant

det(𝑪𝑔) is called the norm of 𝑔(𝑋) in the extension field RQ of Q.

2.4.2 Ideal Lattices and Dual Ideals

In this section, we focus on RQ = Q[𝑋]/( 𝑓 (𝑋)) and its sub-ring, the integer polynomial ring

R = Z[𝑋]/( 𝑓 (𝑋)). When 𝑓 (𝑋) is irreducible over Q, RQ is a field, denoted by K. It’s ring of

integers OK is the integral extension of R, and is quite often not the same as R.

28



Ideal. As shown in corollary 2.3.1, ideals of R are finitely generated. Thus, any ideal I can be

given by a finite set of generators, say, 𝑔0, 𝑔1, . . . , 𝑔𝑡−1 ∈ R as

I = {𝑎0𝑔0 + 𝑎1𝑔1 + . . . , 𝑎𝑡−1𝑔𝑡−1 | 𝑎𝑖 ∈ R}

=
{
𝑪𝑔0a0 + 𝑪𝑔1a1 + 𝑪𝑔𝑡−1at−1

�� ai ∈ Z𝑛
}

=
{ [
𝑪𝑔0 |𝑪𝑔1 | · · · |𝑪𝑔𝑡−1

]
× a

�� a ∈ Z𝑡×𝑛}
It’s not difficult to see that, one can derive an 𝑛-by-𝑛 integer basis matrix by computing the Hermite

normal form of
[
𝑪𝑔0 |𝑪𝑔1 | · · · |𝑪𝑔𝑡−1

]
, or simply by iteratively using the fact that Euclid’s algorithm

gives a unimodular transformation from [𝑎 𝑏] to [gcd(𝑎, 𝑏) 0] (for any intgers 𝑎, 𝑏). We denote

by 𝑩(I) the basis matrix of I. Note that all basis matrices are close under integer unimodular

transformation. Hence, their determinants are the same. Specifically, a principal ideal is an ideal

generated by only one element 𝑔, whose basis matrix could be given as a circulant matrix 𝑪𝑔.

If not explicitly mentioned, we focus on full rank idealsI whose basis matrix 𝑩(I) is invertible

over Q; this is always the case when 𝑓 (𝑋) is irreducible. For any principal ideal given by 𝑪𝑔, it

means that 𝑔(𝑋) is invertible in RQ.

The (pseudo) inverse of a full rank ideal I is defined as the following set:

{
𝑔(𝑋) ∈ RQ

��∀ℎ(𝑋) ∈ I, 𝑔(𝑋) ∗ ℎ(𝑋) ∈ R}
,

or equivalently {g ∈ Q𝑛 | Ig ∈ Z𝑛} =
{
I−1h

�� h ∈ Z𝑛}. The inverse of the basis matrix I−1 is

integer except for a denominator det(I).

Ideal Lattice. Since an ideal I of R has a Z-basis, say 𝑩(I), it defines a lattice in R ⊆ RQ.

We can also embed this lattice inH , and consider the embedding as a lattice inH . The canonical

embedding given by the Vandermonde matrix 𝑽 of 𝑓 (𝑋) naturally induces an ideal lattice L(I)

inH , given by matrix 𝑽𝑩(I).
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Ideal Lattice Dual. For an ideal I, the dual of its ideal lattice L(I) inH is defined to be

L(I)∨ =
{
y ∈ H | ∀x ∈ L(I), y𝐻 · x ∈ Z

}
=

{
y ∈ H | ∀z ∈ Z𝑛, y𝐻 · 𝑽𝑩(I)z ∈ Z

}
=

{
𝑽−𝐻𝑩(I)−𝐻z

�� z ∈ Z𝑛} .
As mentioned above, the basis 𝑩(I) also defines a lattice in RQ, and one can define a dual of

the ideal itself using trace pairing. Recall that we abuse the notation by denoting a ∗ b as the

coefficients vector of polynomial 𝑎(𝑋) ∗ 𝑏(𝑋) modulo 𝑓 (𝑋). The trace pairing of 𝑎(𝑋), 𝑏(𝑋) ∈

RQ, Tr(𝑎(𝑋), 𝑏(𝑋)) is defined to be trace of 𝑽 × (a ∗ b) which is same as (𝑽a)⊤ × (𝑽b). Thus,

we can define the dual I∨ of ideal I to be the set

{
𝑏(𝑋) ∈ RQ

��∀𝑎(𝑋) ∈ I, Tr(𝑎(𝑋), 𝑏(𝑋)) ∈ Z
}
.

Note that this is the pre-image in RQ of the complex conjugate of L(I)∨. We prove below that

this is indeed a (fractional) ideal of R. Hence, we will refer to I∨ as the dual ideal of I.

Lemma 2.4.2. For an ideal I of R with basis 𝑩(I) 6,

i) the dual I∨ is the Z-span of (𝑽⊤𝑽)−1𝑩(I)−⊤,

ii) the matrix det(𝑩(I)) · det(𝑽⊤𝑽) · (𝑽⊤𝑽)−1 · 𝑩(I)−⊤ is an integer matrix,

iii) the dual I∨ is a fractional ideal of R.

Proof. For part (i), since the dual I∨ is the pre-image (under 𝑽) of the complex conjugate of

L(I)∨, and the latter has Z-basis 𝑽−𝐻𝑩(I)−𝐻 , the matrix (𝑽⊤𝑽)−1𝑩(I)−⊤ forms a Z-basis for

I∨ .

For part (ii), we only need to show that (𝑽⊤𝑽) is integer, since 𝑩(I) is always an integer

matrix for I ⊆ R. Consider its entry (𝑽⊤𝑽)𝑖, 𝑗 =
∑𝑛−1
𝑘=0 𝑧

𝑖+ 𝑗
𝑘

. We argue that the power sums

6This lemma actually holds for any sub-ring of RQ, e.g. the ring of integers of a number field with 𝑓 (𝑋) irreducible
over Q.
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of roots, 𝑝𝑡 =
∑𝑛−1
𝑘=0 𝑧

𝑡
𝑘
, is an integer for 0 ≤ 𝑡 ≤ 2𝑛. Note that the coefficients of 𝑓 (𝑋) =∏𝑛−1

𝑡=0 (𝑋 − 𝑧𝑡) =
∑𝑛
𝑡=0 𝑒𝑡𝑋

𝑡 are elementary symmetric polynomials 𝑒𝑡 = 𝑒𝑡 (𝑧0, . . . , 𝑧𝑛−1) in the

roots of 𝑓 (𝑋). Starting from 𝑝0 = 𝑛 and 𝑝1 = 𝑒1 ∈ Z, by Newton’s identity, every power sum 𝑝𝑡 is

an integer linear combination of {𝑝0, . . . , 𝑝𝑡−1} and
{
𝑒0, . . . , 𝑒min(𝑡,𝑛)

}
.

Now we prove (iii). We need to show that for every g ∈ R and a ∈ I∨, g ∗ a is in I∨, i.e. for

all b ∈ I, Tr(g ∗ a ∗ b) is integer. By commutativity of polynomial multiplication, this is same as

requiring that Tr(a ∗ g ∗ b) is integer. But c = g ∗ b is in I, as it is an ideal, and hence Tr(a ∗ c) is

an integer as a is in I∨ and c is in I. Thus, I∨ is closed under multiplication by R. Now, again by

commutativity, for every d ∈ R, dI∨ is also closed under multiplication by R. Thus (iii) follows

from (i) and (ii).

The Dual (of the) Ring. When the entire ring R is considered as an ideal, its dual R∨, by

lemma 2.4.2, is a fractional ideal given by the Z-basis matrix (𝑽⊤𝑽)−1. and is referred to as

the dual ring7 R∨.

Let 𝑓 (𝑋) = ∑𝑛
𝑖=0 𝑓𝑖 · 𝑋 𝑖 with 𝑓𝑛 = 1. Take its derivative 𝑓 ′(𝑋) = ∑𝑛−1

𝑖=0 (𝑖 + 1) · 𝑓𝑖+1 · 𝑋 𝑖. First,

notice that 𝑓 ′(𝑋) is invertible in RQ = Q[𝑋]/( 𝑓 (𝑋)).

Proposition 2.4.2. Given 𝑓 (𝑋) with all distinct roots, its derivative 𝑓 ′(𝑋) shares no common root

with 𝑓 (𝑋).

Proof. If 𝑓 (𝑋) and 𝑓 ′(𝑋) share the same root 𝑎 ∈ C,

𝑓 (𝑋) = (𝑋 − 𝑎)𝑝(𝑋) and 𝑓 ′(𝑋) = (𝑋 − 𝑎)𝑞(𝑋).

We take the derivative for the first equation

(𝑋 − 𝑎)𝑝′(𝑋) + 𝑝(𝑋) = (𝑋 − 𝑎)𝑞(𝑋)

𝑝(𝑋) = (𝑋 − 𝑎) (𝑞(𝑋) − 𝑝′(𝑋)) .

7This is really a misnomer, as R∨ is not closed under multiplication by R∨, but only closed under multiplication
by R. Hence it is not a ring, but merely a R-module. We will continue to call this the dual ring as in [DD12].
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Therefore 𝑝(𝑋) has 𝑎 as a root, and 𝑎 is (at least) a double root of 𝑓 (𝑋). It contradicts the

assumption that 𝑓 (𝑋) has distinct roots.

When 𝑓 (𝑋) is irreducible over Q, it is known that 𝑓 (𝑋) has distinct roots over the complex

numbers.

We now show that, the dual R∨ has the circulant matrix of the inverse of 𝑓 ′(𝑋) as a Z-basis,

and since R∨ is also a fractional ideal of R, it can also be seen as the fractional ideal 8 generated

by the inverse of 𝑓 ′(𝑋). More precisely, the basis matrix (𝑽⊤𝑽)−1 is same as 𝑪−1
𝑓 ′ 𝑴, where 𝑴 is

the following 𝑛-by-𝑛 unimodular matrix:

𝑴 =



𝑓1 𝑓2 · · · 𝑓𝑛

𝑓2
. . . 𝑓𝑛 0

... 𝑓𝑛
. . .

...

𝑓𝑛 0 · · · 0


i.e. where 𝑴𝑖, 𝑗 = 𝑓𝑖+ 𝑗+1 if 𝑖 + 𝑗 < 𝑛 and 𝑴𝑖, 𝑗 = 0 otherwise.

Lemma 2.4.3. (𝑽⊤𝑽)−1 = 𝑪−1
𝑓 ′ 𝑴.

Proof. It suffices to show that 𝑴 × 𝑽⊤𝑽 = 𝑪 𝑓 ′ . This is equivalent to

𝑽𝑴𝑽⊤𝑽𝑽−1 = 𝑽𝑪 𝑓 ′𝑽
−1

𝑽𝑴𝑽⊤ = 𝑫 𝑓 ′ .

Here 𝑫 𝑓 ′ is a diagonal matrix with (𝑫 𝑓 ′)𝑖,𝑖 = 𝑓 ′(𝑧𝑖) where 𝑧𝑖’s are (complex) roots of 𝑓 (𝑋). Next

we verify that

(𝑽𝑴𝑽⊤)𝑖, 𝑗 =
𝑛−1∑︁
𝑠=0

𝑛−𝑠−1∑︁
𝑡=0

𝑓𝑠+𝑡+1 · 𝑧𝑠𝑖 · 𝑧𝑡𝑗 =
𝑛−1∑︁
𝑝=0

𝑓𝑝+1 ·
(
𝑝∑︁
𝑠=0

𝑧𝑠𝑖 𝑧
𝑝−𝑠
𝑗

)
8It is well known [Cone] that the dual O∨

𝐾
of the ring of integers O𝐾 of a number field 𝐾 is not always generated

by the inverse of 𝑓 ′ (𝑋).
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If 𝑖 = 𝑗 , we have

(𝑽𝑴𝑽⊤)𝑖,𝑖 =
𝑛−1∑︁
𝑝=0

𝑓𝑝+1 ·
𝑝∑︁
𝑠=0

𝑧
𝑝

𝑖
=

𝑛−1∑︁
𝑝=0

𝑓𝑝+1 · (𝑝 + 1) · 𝑧𝑝
𝑖
= 𝑓 ′(𝑧𝑖).

Otherwise when 𝑖 ≠ 𝑗 , we have

(𝑽𝑴𝑽⊤)𝑖, 𝑗 =
𝑛−1∑︁
𝑝=0

𝑓𝑝+1 ·
(
𝑝∑︁
𝑠=0

𝑧𝑠𝑖 𝑧
𝑝−𝑠
𝑗

)
=

𝑛−1∑︁
𝑝=0

𝑓𝑝+1 · ©«
𝑧
𝑝+1
𝑖
− 𝑧𝑝+1

𝑗

𝑧𝑖 − 𝑧 𝑗
ª®¬

=
𝑓 (𝑧𝑖) − 𝑓0 − 𝑓 (𝑧 𝑗 ) + 𝑓0

𝑧𝑖 − 𝑧 𝑗
= 0.

Corollary 2.4.3. For monic 𝑓 (𝑋), Δ 𝑓 = | det(𝑪 𝑓 ′) |.

Moreover, this particular matrix 𝑴 also has an interesting property, that it symmetricizes every

circulant matrices by right multiplication:

Proposition 2.4.3. For 𝑔(𝑋) ∈ RQ, 𝑪𝑔𝑴 is symmetric.

Proof. Recall that the circulant matrix 𝑪𝑔 is diagonalized by similarity transformation of the Van-

dermonde matrix 𝑽 of 𝑓 (𝑋): 𝑫𝑔 = 𝑽𝑪𝑔𝑽
−1.Thus,

𝑪𝑔𝑴 = 𝑪 𝑓 ′ × 𝑪−1
𝑓 ′ 𝑪𝑔𝑴

= 𝑪 𝑓 ′ × 𝑪𝑔 × 𝑪−1
𝑓 ′ 𝑴

= 𝑪 𝑓 ′ × 𝑪𝑔 × (𝑽⊤𝑽)−1

= 𝑪 𝑓 ′ (𝑽⊤𝑽)−1 × 𝑽⊤𝑽𝑪𝑔 (𝑽⊤𝑽)−1

= 𝑴 × 𝑽⊤𝑫𝑔𝑽
−⊤

= 𝑴𝑪⊤𝑔

We claim that 𝑪𝑔𝑴 is symmetric since 𝑴 is symmetric.
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Lemma 2.4.4. For an ideal I of R, for any a ∈ I and any b ∈ I∨, a ∗ b ∈ R∨.

Proof. Since by lemma 2.4.2, I∨ is a (fractional ideal), for any c ∈ R, b ∗ c is also in I∨. Thus,

by definition of the dual-ideal (applied to dual of I), Tr(a, b ∗ c) ∈ Z. Since this trace is same as

trace of 𝑽 × (a ∗ b ∗ c), this also implies that Tr(a ∗ b, c) ∈ Z. Since this holds for all c ∈ R, again

by definition of dual ideal (applied to dual of R), a ∗ b is in dual of R, i.e. R∨.

Proposition 2.4.4. For 𝑔(𝑋) ∈ RQ, we have 𝑪𝑔 (𝑽⊤𝑽)−1 = (𝑽⊤𝑽)−1𝑪⊤𝑔 , and (𝑽⊤𝑽)𝑪𝑔 =

𝑪⊤𝑔 (𝑽⊤𝑽).

Proof. Note that the Vandermonde matrix 𝑽 diagonalizes the circulant matrix 𝑽𝑪𝑔𝑽
−1 = 𝑫𝑔:

𝑽⊤𝑽𝑪𝑔 = 𝑽⊤𝑫𝑔𝑽 = 𝑽⊤𝑫⊤𝑔𝑽 = (𝑫𝑔𝑽)⊤𝑽 = (𝑽𝑪𝑔)⊤𝑽 = 𝑪⊤𝑔 𝑽
𝑇𝑽 .

Corollary 2.4.4. For any principal ideal 𝔞 of R, 𝔞∨ = 𝔞−1R∨.

Proof. Let g be a generator of the principal ideal 𝔞. By lemma 2.4.2, (𝑽⊤𝑽)−1𝑪−⊤𝑔 is a Z-basis of

the dual ideal 𝔞∨. By proposition 2.4.4, this is same as 𝑪−1
𝑔 (𝑽⊤𝑽)−1. Since (𝑽⊤𝑽)−1 is a Z-basis

for R∨, the claim follows.

This corollary, along with lemma 2.4.4, will be used in proving the ideal clearing lemma.

We also give a counterpart of lemma 2.9 of [LPR10] (which in turn uses [PR07]).

Lemma 2.4.5. For any ideal I of RK, with K a degree 𝑛 extension of Q,

√
𝑛det(I)1/𝑛 ≤ _1(I) ≤

√
𝑛det(I)1/𝑛

√︃
Δ

1/𝑛
K

Corollary 2.4.5. The Z-span of the matrix det(I) · det(𝑽⊤𝑽) · (𝑽⊤𝑽)−1 · I−⊤ is an ideal of R, i.e.

I∨ is a fractional ideal of R.
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Proof. First of all, by lemma 2.4.2 the Z-span of det(I) · det(𝑽⊤𝑽) · I∨ is in Z𝑛 and hence in

R. We need to show that for every 𝑔 ∈ R and 𝑎 ∈ I∨, 𝑔 ∗ 𝑎 = 𝑪𝑔𝑎 is in I∨, or equivalently the

conjugate of 𝑽𝑪𝑔𝑎 is in L(I)∨. Since, I∨ is defined to be the Z-span of (𝑽⊤𝑽)−1 · I−⊤, 𝑎 can be

written as (𝑽⊤𝑽)−1 · I−⊤𝑦, for some 𝑦 ∈ Z𝑛. Then, checking that conjugate of 𝑽𝑪𝑔𝑎 is in L(I)∨

is, by definition of the lattice dual, same as checking that for all 𝑥 ∈ Z𝑛,

𝑦⊤I−1(𝑽⊤𝑽)−⊤𝑪⊤𝑔 𝑽⊤𝑽I𝑥 ∈ Z

By proposition 2.4.4, 𝑪⊤𝑔 𝑽
⊤𝑽 is same as 𝑽⊤𝑽𝑪𝑔, and since (𝑽⊤𝑽)⊤ is same as 𝑽⊤𝑽, the term

above simplifies to 𝑦⊤I−1𝑪𝑔I𝑥. Now, noting that I is an ideal and hence 𝑪𝑔I𝑥 = I𝑥′ for some

𝑥′ ∈ Z𝑛, the corollary follows.

2.5 Principal Ideal Ring Theorem for Dedekind-special Modular Polynomials

In this section we will show that for special 𝑓 (𝑋) and primes 𝑝, we can prove that the ring

R modulo 𝑝𝑟 , for any positive integer 𝑟, is a principal ideal ring (PIR). Moreover, we show that

every ideal 𝔞 of R, modulo the ideal 𝑝𝑟𝔞, is principal. Normally, such a claim holds for Dedekind

domains, and the proofs require the unique prime decomposition theorem for Dedekind domains.

We show that even if the ring is not a Dedekind domain, for some commonly used Noetherian

rings, it can directly be shown that the ring R modulo 𝑝𝑟 is a PIR, and further, every ideal 𝔞 is

principal modulo 𝑝𝑟𝔞.

Let 𝑝 be a prime such that in the factorization of 𝑓 (𝑋) modulo 𝑝 in terms of irreducible

polynomials (mod 𝑝), i.e.

𝑓 (𝑋) =
𝑚∏
𝑖=1

ℎ𝑖 (𝑋)𝑒𝑖 + 𝑝 ∗ 𝑡 (𝑋),

for all 𝑖 ∈ [𝑚], for which 𝑒𝑖 is more than one, it is the case that 𝑡 (𝑋) is invertible modulo the ideal

(𝑝, ℎ𝑖 (𝑋)) of Z[𝑋]. In other words, for all 𝑖 such that ℎ𝑖 (𝑋) has multiplicity more than one, it is

the case that 𝑡 (𝑋) is not divisible by ℎ𝑖 (𝑋) modulo 𝑝. The Dedekind index theorem (theorem 2.3.3)

states that for irreducible (over Q[𝑋]) 𝑓 (𝑋) and such primes 𝑝, prime 𝑝 does not divide [OK : R].
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Here, as usual, OK is the ring of integers9 of the number field K = Q[𝑋]/( 𝑓 (𝑋)), and R, i.e.

Z[𝑋]/( 𝑓 (𝑋)), is a sub-ring of OK.

Consider a polynomial 𝑓 (𝑋), not necessarily irreducible over 𝑍 [𝑋]. For any prime 𝑝 such

that the factorization of 𝑓 (𝑋) modulo 𝑝 has the above property, the pair ( 𝑓 (𝑋), 𝑝) will be called a

Dedekind-special modular polynomial. The polynomial 𝑡 (𝑋) (more precisely, its representative

in Z𝑝 [𝑋]) will be referred to as the quotient in the factorization of 𝑓 (𝑋) modulo 𝑝. In this section

we will fix the pair ( 𝑓 (𝑋), 𝑝) to be a Dedekind-special modular polynomial, and as usual, R will

stand for the ring Z[𝑋]/( 𝑓 (𝑋)).

For each 𝑖 ∈ [𝑚], define the following ideals 𝔭𝑖 of R: 𝔭𝑖 = (ℎ𝑖 (𝑋), 𝑝). Also, define the following

ideals 𝔰𝑖 of R: 𝔰𝑖 = (ℎ𝑖 (𝑋)𝑒𝑖 , 𝑝).

Lemma 2.5.1. In the ring R, for 𝑖 ∈ [𝑚],

(i) the ideal 𝔭𝑖 is maximal.

(ii) 𝔰𝑖 = 𝔭
𝑒𝑖
𝑖

.

Proof. (i) The proof is straightforward by noting that ℎ𝑖 (𝑋) is irreducible modulo 𝑝.

(ii) If 𝑒𝑖 = 1, there is nothing to prove. Otherwise, 𝔭𝑒𝑖
𝑖

is contained in 𝔰𝑖 = (ℎ𝑖 (𝑋)𝑒𝑖 , 𝑝) follows

simply because the only term in 𝔭
𝑒𝑖
𝑖

that is not in (𝑝) is ℎ𝑖 (𝑋)𝑒𝑖 . For the other direction, we

only need to show that 𝑝 is contained in 𝔭
𝑒𝑖
𝑖

. We show that 𝑝 ∈ (ℎ𝑖 (𝑋)𝑒𝑖 , 𝑝∗ℎ𝑖 (𝑋)𝑒𝑖−1, 𝑝𝑒𝑖 ) ⊆

𝔭
𝑒𝑖
𝑖

. Note that ideal (ℎ𝑖 (𝑋)𝑒𝑖 ) contains 𝑝 ∗ 𝑡 (𝑋) by the factorization of 𝑓 (𝑋), and where 𝑡 (𝑋)

is the quotient in the factorization. Moreover, by the Dedekind-special property of modular

polynomial ( 𝑓 (𝑋), 𝑝), and given that 𝑒𝑖 ≥ 2, 𝑡 (𝑋) is not in (ℎ𝑖 (𝑋), 𝑝) = 𝔭𝑖. Thus, since

𝔭𝑖 is maximal by (i), 𝑡 (𝑋) is invertible modulo (ℎ𝑖 (𝑋), 𝑝). Then, by lemma 2.3.2, 𝑡 (𝑋)

is invertible modulo (ℎ𝑖 (𝑋)𝑒𝑖−1, 𝑝𝑒𝑖−1). Thus, (𝑡 (𝑋), ℎ𝑖 (𝑋)𝑒𝑖−1, 𝑝𝑒𝑖−1) = (1), and further

𝑝 ∗ (𝑡 (𝑋), ℎ𝑖 (𝑋)𝑒𝑖−1, 𝑝𝑒𝑖−1) = (𝑝), and the claim follows.

9The ring of integers O𝐾 is potentially an extension of the ring Z[𝑋]/( 𝑓 (𝑋)), as it contains all elements of
Q[𝑋]/( 𝑓 (𝑋)) that satisfy a polynomial relation with integer coefficients.
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The proof of the following two lemmas is similar to that of the proof of lemma 2.5.1(ii).

Lemma 2.5.2. In the ring R, let 𝑤 =
∑𝑚
𝑖=1 𝑒𝑖. If 𝑤 ≥ 2, and some 𝑒𝑖 = 1 (w.l.o.g. 𝑒𝑚 = 1), then

𝑝𝑤−2 ∗ ℎ𝑚 (𝑋) is invertible modulo the ideal (𝑝𝑤−1,
∏𝑚−1

𝑗=1 ℎ 𝑗 (𝑋)𝑒 𝑗 ).

Proof. The case 𝑤 = 2 is implied by the above lemma 2.5.1 and lemma 2.3.2. So, we focus on

𝑤 > 2. Since all ℎ𝑖 (𝑋) are irreducible and distinct, by using the extended Euclidean algorithm in

Z[𝑋], we have

`(𝑋)𝑝𝑤−2ℎ𝑚 (𝑋) + _(𝑋)
𝑚−1∏
𝑗=1

ℎ 𝑗 (𝑋)𝑒 𝑗 = 𝑐,

for some non-trivial polynomials `(𝑋) and _(𝑋) and an integer 𝑐. If 𝑐 is a multiple of the prime

𝑝, then _(𝑋)∏𝑚−1
𝑗=1 ℎ 𝑗 (𝑋)𝑒 𝑗 is zero modulo 𝑝. Since _(𝑋) is non-trivial this implies that one of

ℎ 𝑗 (𝑋) is zero modulo 𝑝, which is impossible. Thus, (𝑐, 𝑝) = 1, and hence

`′(𝑋)𝑝𝑤−2ℎ𝑚 (𝑋) + _′(𝑋)
𝑚−1∏
𝑗=1

ℎ 𝑗 (𝑋)𝑒 𝑗 = 1 − a𝑝,

for some non-trivial polynomials `′(𝑋) and _′(𝑋) and an integer a. Multiplying both sides by

1 + a𝑝 + ... + (a𝑝)𝑤−2, we have

`′′(𝑋)𝑝𝑤−2ℎ𝑚 (𝑋) + _′′(𝑋)
𝑚−1∏
𝑗=1

ℎ 𝑗 (𝑋)𝑒 𝑗 = 1 − a𝑤−1𝑝𝑤−1,

for some non-trivial polynomials `′′(𝑋) and _′′(𝑋), and that concludes the proof.

Lemma 2.5.3. Let 𝑤 =
∑𝑚
𝑖=1 𝑒𝑖. If for all 𝑖 ∈ [𝑚], 𝑒𝑖 > 1, then 𝑡 (𝑋), the quotient in the factorization

of 𝑓 (𝑋) modulo 𝑝, is invertible modulo the ideal (𝑝𝑤−1, 𝑝𝑤−2ℎ𝑚 (𝑋)).

Proof. By the Dedekind-special property of ( 𝑓 (𝑋), 𝑝), 𝑡 (𝑋) is not in any 𝔭𝑖, and hence not in

𝔭𝑚. Since all ℎ1(𝑋) is irreducible, an 𝑡 (𝑋) is not in (𝑝, ℎ𝑚 (𝑋)), by using the extended Euclidean

algorithm in Z[𝑋], we have

`(𝑋)𝑝𝑤−2ℎ𝑚 (𝑋) + _(𝑋)𝑡 (𝑋) = 𝑐,
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for some non-trivial polynomials `(𝑋) and _(𝑋) and an integer 𝑐. If 𝑐 is a multiple of the prime

𝑝, then _(𝑋)𝑡 (𝑋) is zero modulo 𝑝. Since _(𝑋) is non-trivial this implies that one of 𝑡 (𝑋) is

zero modulo 𝑝, which is impossible by the Dedekind-special property. Thus, (𝑐, 𝑝) = 1, and we

conclude using the same argument as in the previous lemma.

Remark. In the ring of integers OK of the number field K = Q[𝑋]/( 𝑓 (𝑋)), another theorem of

Dedekind gives a similar factorization of the ideal (𝑝) as in the lemma below, when the Dedekind-

special property holds for modular polynomial ( 𝑓 (𝑋), 𝑝).

The following lemma is proved using lemma 2.5.2 and lemma 2.5.3.

Lemma 2.5.4. In the ring R, the ideal (𝑝) is same as 𝔭𝑒1
1 𝔭

𝑒2
2 ...𝔭

𝑒𝑚
𝑚 .

Proof. 𝔭
𝑒1
1 𝔭

𝑒2
2 ...𝔭

𝑒𝑚
𝑚 is subset of (𝑝); this is easy to see since all but one generators in

∏𝑚
𝑖=1(ℎ𝑖 (𝑋)𝑒𝑖 , 𝑝)

are trivially in (𝑝). The last generator
∏𝑚
𝑖=1 ℎ𝑖 (𝑋)𝑒𝑖 is also in (𝑝), because it is same as 𝑓 (𝑋) mod-

ulo 𝑝, which is zero in R modulo 𝑝.

For the other direction, first consider the case where for all 𝑖 ∈ [𝑚], 𝑒𝑖 > 1. We show that the

three terms in 𝔭
𝑒1
1 𝔭

𝑒2
2 ...𝔭

𝑒𝑚
𝑚 , namely 𝑝𝑤, 𝑝𝑤−1𝔭𝑚, and

∏𝑚
𝑖=1 ℎ𝑖 (𝑋)𝑒𝑖 generate 𝑝. The last term is

same as 𝑝 · 𝑡 (𝑋) (by the factorization of 𝑓 (𝑋) mod 𝑝). Thus, taking 𝑝 as a common factor, the

three terms generate 𝑝 · 1 by lemma 2.5.3.

Now, consider the case that there is some 𝑖 such that 𝑒𝑖 = 1, w.l.o.g. 𝑒𝑚 = 1. If 𝑚 = 1 and

hence 𝑒1 = 1, we have that (𝑝) itself is maximal as every element in R not in (𝑝) is invertible

modulo 𝑝. For 𝑚 ≥ 2, we show that 𝑝 is generated by
∏𝑚
𝑖=1(ℎ𝑖 (𝑋), 𝑝)𝑒𝑖 in R. Let 𝑤 =

∑𝑚
𝑖=1 𝑒𝑖.

Pick the generators 𝑝𝑤−1 ∗ ℎ𝑚 (𝑋), 𝑝 ∗
∏𝑚−1

𝑗=1 ℎ 𝑗 (𝑋)𝑒 𝑗 (𝑋) and 𝑝𝑤 from
∏𝑚
𝑖=1(ℎ𝑖 (𝑋), 𝑝)𝑒𝑖 . Taking

a common factor 𝑝 out, we focus on the generators 𝑝𝑤−2 ∗ ℎ𝑚 (𝑋),
∏𝑚−1

𝑗=1 ℎ 𝑗 (𝑋)𝑒 𝑗 and 𝑝𝑤−1. An

easy application of the lemma 2.5.2 shows these three generators generate 1.

Theorem 2.5.1. For any positive integer 𝑟,

Z𝑝𝑟 [𝑋]/( 𝑓 (𝑋)) � R/𝑝𝑟R � R/
𝑚∏
𝑖=1

𝔭
𝑟 ·𝑒𝑖
𝑖
�

𝑚∏
𝑖=1
R/𝔭𝑟 ·𝑒𝑖

𝑖
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Proof. We focus on the second and third congruence, as the first is straight forward. The second

congruence follows directly from lemma 2.5.4. Since the powers of co-prime ideals are also co-

prime, we apply CRT (of general rings and co-prime ideals) to conclude the proof.

The rest of the section is devoted to proving that R/𝔭𝑟
𝑖

is a principal ideal ring (PIR) (Theo-

rem 2.5.2 below), and any ideal 𝔞 is principal modulo 𝑝𝑟𝔞 (Theorem 2.5.3). If R was a Dedekind

domain, the usual proof goes as follows: One first shows that R/𝔭𝑟
𝑖

is isomorphic to R𝔭𝑖/𝔭𝑟𝑖R𝔭𝑖 ,

where R𝔭𝑖 is the localization of R at the ideal 𝔭𝑟
𝑖
. If the reader is not familiar with localization,

he/she can skip this discussion, as the direct proof we give does not use localization. Next, it is

shown that the local ring R𝔭𝑖 is a principal ideal domain (PID) by showing that it is a discrete valua-

tion ring (DVR). This step requires the prime ideal decomposition theorem for Dedekind domains.

Since the quotient ring of a PID is a PID, the claim follows.

While our ring R may not be a Dedekind domain, most of the above steps would still go through

for our special 𝑓 (𝑋) and 𝑝, except for proving that R𝔭𝑖 is a DVR, which is usually proved using

the prime ideal decomposition theorem for Dedekind domains. Luckily, in our special case, we can

still prove R𝔭𝑖 is a DVR without the decomposition theorem for Dedekind Domains. As promised,

we give a direct proof of Theorem 2.5.2. The proof of Theorem 2.5.3 is slightly more involved and

uses the Krull intersection theorem for Noetherian rings.

Theorem 2.5.2. For all 𝑖 ∈ [𝑚], for all positive integers 𝑟 > 0, R/𝔭𝑟 ·𝑒𝑖
𝑖

is a principal ideal ring.

Proof. Let 𝔮 be any ideal of R/𝔭𝑟
𝑖
. We first show that every ideal 𝔮 of R/𝔭𝑟 ·𝑒𝑖

𝑖
that is not a sub-ideal

of (ℎ𝑖 (𝑋), 𝑝) (as an ideal of R/𝔭𝑟 ·𝑒𝑖
𝑖

) is same as ideal (1) of R/𝔭𝑟 ·𝑒𝑖
𝑖

, and hence trivially principal.

By lemma 2.5.1, 𝔭𝑖 is maximal in R. Thus, by lemma 2.3.2 any 𝑎(𝑋) ∈ R that is not in the

maximal ideal 𝔭𝑖 = (ℎ𝑖 (𝑋), 𝑝) is invertible modulo 𝔭𝑖, and also invertible modulo 𝔭
𝑟 ·𝑒𝑖
𝑖

. If 𝔮 is not

a sub-ideal of (ℎ𝑖 (𝑋), 𝑝)R/𝔭𝑟 ·𝑒𝑖𝑖
, then there is an element 𝑎(𝑋) in 𝔮 that is not in (ℎ𝑖 (𝑋), 𝑝)R/𝔭𝑟 ·𝑒𝑖𝑖

.

Thus 𝑎(𝑋) is not in (ℎ𝑖 (𝑋), 𝑝)R and hence is a unit of R/𝔭𝑟 ·𝑒𝑖
𝑖

, making 𝔮 same as (1).

So, now we focus on ideals 𝔮 that are sub-ideals of (ℎ𝑖 (𝑋), 𝑝). We first show that the ideal

(ℎ𝑖 (𝑋), 𝑝) is principal in R/𝔭𝑟 ·𝑒𝑖
𝑖

. There are two cases:
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1. 𝑒𝑖 = 1:

In this case, we show that (ℎ𝑖 (𝑋), 𝑝) is same as ideal (𝑝) in R/𝔭𝑟 ·𝑒𝑖
𝑖

. For this, we show that

ℎ𝑖 (𝑋) is generated by 𝑝 modulo 𝔭
𝑟 ·𝑒𝑖
𝑖

. From the factorization of 𝑓 (𝑋) modulo 𝑝, we know

that

ℎ𝑖 (𝑋) ∗
∏

𝑗∈[𝑚], 𝑗≠𝑖
ℎ 𝑗 (𝑋)𝑒 𝑗 = 𝑝 ∗ 𝑡 (𝑋),

in R, for some polynomial 𝑡 (𝑋). Moreover, each of the irreducible polynomials ℎ 𝑗 (𝑋),

𝑗 ∈ [𝑚], 𝑗 ≠ 𝑖 is not in (ℎ𝑖 (𝑋), 𝑝) because 𝑍𝑝 [𝑋] is a UFD, and hence is invertible modulo

𝔭
𝑟 ·𝑒𝑖
𝑖

by lemma 2.3.2. Thus ℎ𝑖 (𝑋) is generated by 𝑝 modulo 𝔭
𝑟 ·𝑒𝑖
𝑖

.

2. 𝑒𝑖 > 1: In this case, we show that (ℎ𝑖 (𝑋), 𝑝) is same as ideal (ℎ𝑖 (𝑋)) in R/𝔭𝑟 ·𝑒𝑖
𝑖

. For this,

we show that 𝑝 is generated by ℎ𝑖 (𝑋) modulo 𝔭
𝑟 ·𝑒𝑖
𝑖

. From the factorization of 𝑓 (𝑋) modulo

𝑝, we know that

ℎ𝑖 (𝑋)𝑒𝑖 ∗
∏

𝑗∈[𝑚], 𝑗≠𝑖
ℎ 𝑗 (𝑋)𝑒 𝑗 = 𝑝 ∗ 𝑡 (𝑋),

in R, for some polynomial 𝑡 (𝑋). Moreover, because ( 𝑓 (𝑋), 𝑝) is a Dedekind-special mod-

ular polynomial, 𝑡 (𝑋) is invertible modulo 𝔭𝑖 = (ℎ𝑖 (𝑋), 𝑝). But, since 𝔭𝑖 is maximal, 𝑡 (𝑋)

is also invertible modulo 𝔭𝑖 = (ℎ𝑖 (𝑋), 𝑝)𝑟 ·𝑒𝑖 . Thus, 𝑝 is generated by ℎ𝑖 (𝑋)𝑒𝑖 modulo 𝔭
𝑟 ·𝑒𝑖
𝑖

,

and hence also generated by ℎ𝑖 (𝑋) modulo 𝔭
𝑟 ·𝑒𝑖
𝑖

.

Thus, (ℎ𝑖 (𝑋), 𝑝) is a principal ideal of R/𝔭𝑟 ·𝑒𝑖
𝑖

. Let 𝑔 stand for this single generator of

(ℎ𝑖 (𝑋), 𝑝), i.e. 𝑔 = 𝑝 when 𝑒𝑖 = 1 and 𝑔 = ℎ𝑖 (𝑋) when 𝑒𝑖 > 1. Hence, every ideal 𝔮 that is

a sub-ideal of (ℎ𝑖 (𝑋), 𝑝), is a sub-ideal of (𝑔). For any non-zero element 𝑎 in 𝔮, let 𝑡𝑎 be the

largest integer greater than zero such that 𝑎 ∈ (𝑔)𝑡𝑎 . Note 𝑡𝑎 < 𝑟 · 𝑒𝑖, for otherwise 𝑎 is zero in

R/𝔭𝑟 ·𝑒𝑖
𝑖

. Thus, all elements of 𝔮 are in some ideal (𝑔)𝑡 , with 0 < 𝑡 < 𝑟 · 𝑒𝑖. Let 𝑡𝑞 be the minimum

of these 𝑡. Note 1 ≤ 𝑡𝑞 < 𝑟 · 𝑒𝑖. We now show that 𝔮 = (𝑔)𝑡𝑞 . Consider an element of 𝑎 of 𝔮 that

is in (𝑔)𝑡𝑞 . Then, 𝑎 can be written as 𝑔𝑡𝑞 ∗ 𝑎′, where 𝑎′ is not in the maximal ideal (ℎ(𝑋), 𝑝) of R.

Hence, as before, 𝑎′ is invertible in R/𝔭𝑟 ·𝑒𝑖
𝑖

, and thus 𝑔𝑡𝑞 is in 𝔮. This shows that 𝔮 = (𝑔)𝑡𝑞 , which

makes it a principal ideal.
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Corollary 2.5.1. Z𝑝𝑟 [𝑋]/( 𝑓 (𝑋)) is a principal ideal ring.

Proof. Follows by theorems 2.5.1 and 2.5.2 as product of principal ideal rings is a principal ideal

ring.

Lemma 2.5.5. If 𝑓 (𝑋) is irreducible as a polynomial in Z[𝑋], then any ideal 𝔞 ofR = Z[𝑋]/( 𝑓 (𝑋))

can be written as �̂�
∏
𝑖∈[𝑚] 𝔭

𝑡𝑖
𝑖

, where 𝑡𝑖 are non-negative integers, and �̂� is an ideal of R co-prime

to every 𝔭𝑖 (𝑖 ∈ [𝑚]).

Proof. If 𝔞 is co-prime to every 𝔭𝑖 (𝑖 ∈ [𝑚]), then 𝑡𝑖 can be taken to be zero, and we are done.

Otherwise, let 𝐼 ⊆ [𝑚] be the non-empty and maximal set of indices 𝑖, 𝑖 ∈ [𝑚], such that 𝔞 is not

co-prime to 𝔭𝑖. Since each 𝔭𝑖 is maximal (by lemma 2.5.1), this implies that 𝔞 is a subset of each

of 𝔭𝑖 (𝑖 ∈ 𝐼). For each 𝑖 ∈ 𝐼, let 𝑡 (𝑖) > 0 be the largest integer such that 𝔞 is a subset of 𝔭𝑡 (𝑖)
𝑖

. Such

a 𝑡 (𝑖) is well-defined by corollary to Krull intersection theorem (Corollary 2.3.2), noting that R is

also an integral domain.

We show that there exists an ideal �̂� such that 𝔞 = �̂� ∗∏𝑖∈𝐼 𝔭
𝑡 (𝑖)
𝑖

.

Let 𝑇 =
∑
𝑖∈𝐼 𝑡 (𝑖). Define �̂� to be the fractional ideal

𝑝−𝑇 ∗ 𝔞 ∗ ©«
∏
𝑖∈𝐼

∏
𝑗∈[𝑚], 𝑗≠𝑖

𝔭
𝑡 (𝑖)
𝑗

ª®¬ .
Using lemma 2.5.4, it is straightforward to check that �̂� ∗ (∏𝑖∈𝐼 𝔭

𝑡 (𝑖)
𝑖
) = 𝔞.

We now show that �̂� is actually an integral ideal, i.e. an ideal of R. We will show that 𝔞 ∗(∏
𝑖∈𝐼

∏
𝑗∈[𝑚], 𝑗≠𝑖 𝔭

𝑡 (𝑖)
𝑗

)
is in (𝑝)𝑇 . Since, for all 𝑖 ∈ 𝐼, 𝔞 is in 𝔭

𝑡 (𝑖)
𝑖

, 𝔞 ⊆ ∩𝑖∈𝐼𝔭𝑡 (𝑖)𝑖 . But, these

ideals 𝔭
𝑡 (𝑖)
𝑖

are all co-prime, and hence 𝔞 ⊆ ∏
𝑖∈𝐼 𝔭

𝑡 (𝑖)
𝑖

. We next show that for all 𝑖 ∈ 𝐼, 𝔭𝑡 (𝑖)
𝑖
∗∏

𝑗∈[𝑚], 𝑗≠𝑖 𝔭
𝑡 (𝑖)
𝑗

is in (𝑝)𝑡 (𝑖) . But, this is clear from the factorization of (𝑝) given by lemma 2.5.4.

Claim: Ideal �̂� is co-prime to every 𝔭𝑖, 𝑖 ∈ [𝑚].

Proof of Claim: If there exists an 𝑖 ∈ [𝑚], say 𝑖∗, such that �̂� is not co-prime to 𝔭𝑖∗ , then since the

latter is maximal, �̂� is contained in 𝔭𝑖∗ . But, since 𝔞 = �̂� ∗∏𝑖∈𝐼 𝔭
𝑡 (𝑖)
𝑖

, this implies that 𝔞 is contained

in 𝔭
𝑡 (𝑖∗)+1
𝑖∗ , contradicting the maximality of 𝑡 (𝑖∗). This proves the claim and the lemma.
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Theorem 2.5.3. If 𝑓 (𝑋) is irreducible as a polynomial in Z[𝑋], then for any ideal 𝔞 of R =

Z[𝑋]/( 𝑓 (𝑋)), 𝔞 is principal modulo 𝑝𝑟𝔞, i.e. as an ideal of R/𝑝𝑟𝔞.

This theorem follows by applying lemmas 2.5.5 and 2.5.4.

Proof. First consider the case that 𝔞 is co-prime to all 𝔭𝑖. Then, by lemma 2.5.4 and lemma 2.3.2

and lemma 2.3.1 (x), we have

𝑝𝑟𝔞 = 𝔞
∏
𝑖∈[𝑚]

𝔭
𝑟 ·𝑒𝑖
𝑖
.

Then, by CRT,

R/(𝑝𝑟𝔞) � R/𝔞 ∗
𝑚∏
𝑖=1
R/𝔭𝑟 ·𝑒𝑖

𝑖
.

So 𝔞 will be principal in R/(𝑝𝑟𝔞), if it is principal in each of the component rings. Theorem 2.5.2,

shows that 𝔞 is principal in R/𝔭𝑟 ·𝑒𝑖
𝑖

, and 𝔞 is trivially principal modulo 𝔞, and hence the lemma is

proved in this case.

Otherwise, by lemmas 2.5.5 and 2.5.4, for any integer 𝑟 ≥ 0, we have, 𝔞 ∗ (𝑝)𝑟 = �̂� ∗∏
𝑖∈[𝑚] 𝔭

𝑟 ·𝑒𝑖+𝑡𝑖
𝑖

, for some non-negative integers 𝑡𝑖. Also, �̂� is co-prime to each 𝔭𝑖 and hence to

each 𝔭
𝑟 ·𝑒𝑖
𝑖

(by lemma 2.3.2) . Also, by CRT,

R/(𝑝𝑟𝔞) � R/�̂� ∗
𝑚∏
𝑖=1
R/𝔭𝑟 ·𝑒𝑖+𝑡𝑖

𝑖
.

Then, using theorem 2.5.2, �̂� is principal modulo 𝔞 ∗ (𝑝)𝑟 by employing CRT, just as in the simple

case above where 𝔞 was co-prime to all 𝔭𝑖. By Theorem 2.5.2, each 𝔭𝑖 is also principal modulo 𝔭𝑠
𝑗
,

for any 𝑠. So, we just need to show that 𝔭𝑖 is principal modulo �̂�. Since �̂� is co-prime to 𝔭𝑖, there

exists elements in 𝛼 ∈ 𝔭𝑖 and 𝛽 ∈ �̂�, such that 𝛼 + 𝛽 = 1. Thus, 𝛼 = 1 modulo �̂�, and hence 𝔭𝑖 is

same as (1) modulo �̂�. Ideal �̂� is also co-prime to 𝔭𝑖, and hence by the same argument as above,

𝔭𝑖 is same as (1) modulo �̂�.

We now prove the above lemma 2.5.5 (and hence theorem 2.5.3) without requiring that R be an

integral domain; the requirement of being an integral domain was required to employ the corollary
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to Krull intersection theorem (corollary 2.3.2). The proof we give below (lemma 2.5.6) does not

use this corollary, and is specific to the maximal ideals 𝔭𝑖 of the Noetherian ring R.

For each 𝑖 ∈ [𝑚], define an ideal �̄�𝑖 of R by

�̄�𝑖 =

∞⋂
𝑡=0

𝔭𝑡𝑖 .

It is a well-defined ideal of R, because for every element 𝛼 of R, and every element 𝛽 of �̄�𝑖 ⊆ 𝔭0
𝑖
=

R, 𝛼𝛽 is in every 𝔭𝑡
𝑖

(𝑡 ≥ 0), as all 𝔭𝑡
𝑖

are ideals of R.

Lemma 2.5.6. For all 𝑖 ∈ [𝑚], the ideal �̄�𝑖 = 0

Proof. Since R is Noetherian, and �̄�𝑖 is an ideal of R, it is finitely generated, and hence a finite

set of 𝑘 generators, for some 𝑘 > 0, say 𝑔1, ..., 𝑔𝑘 . Moreover, since �̄�𝑖 ⊆ 𝔭𝑖, these generators are

also in 𝔭𝑖 = (ℎ𝑖 (𝑋), 𝑝). Let, `1, ..., `𝑘 and _1, ..., _𝑘 be elements of R such that for each 𝑘 ∈ [𝑘],

𝑔 𝑗 = ` 𝑗 𝑝 + _ 𝑗ℎ𝑖 (𝑋), where w.l.o.g. ` 𝑗 is not a multiple of ℎ𝑖 (𝑋), and otherwise ` 𝑗 and _ 𝑗 are

polynomials of degree less than the degree of monic 𝑓 (𝑋). This also implies that 𝑔 𝑗 = _ 𝑗ℎ𝑖 (𝑋)

mod 𝑝. Let 𝐽∗ be the maximal subset of [𝑘], such that _ 𝑗 is non-zero for 𝑗 ∈ 𝐽∗.

Claim 1: The set 𝐽∗ is empty.

Proof of Claim 1: In the ring R, since 𝑓 (𝑋) is monic, we can assume that 𝑔 𝑗 is reduced to degree

less than degree of 𝑓 (𝑋). For 𝑗 ∈ 𝐽∗, 𝑔 𝑗 is a multiple of ℎ(𝑋) mod 𝑝. Since 𝑍𝑝 [𝑋] is a UFD,

consider the unique factorization of 𝑔 𝑗 in 𝑍𝑝 [𝑋], and let the largest power of ℎ𝑖 (𝑋) in this factor-

ization be ℎ𝑖 (𝑋)𝑡 𝑗 , where 𝑡 𝑗 > 0. Let 𝑔 𝑗 (𝑋) = _′𝑗ℎ𝑖 (𝑋)𝑡 𝑗 mod 𝑝, where _′
𝑗

is non-zero, and is not

a multiple of ℎ𝑖 (𝑋) mod 𝑝.

Let 𝑡∗ = min {𝑡 𝑗 | 𝑗 ∈ 𝐽∗}. Let 𝑗∗ be an arbitrary index in 𝐽∗ such that 𝑡 𝑗 = 𝑡∗. Since by Krull

intersection theorem (theorem 2.3.1), �̄�𝑖 ⊆ 𝔭𝑖�̄�𝑖, each generator 𝑔 𝑗 is in 𝔭𝑖�̄�𝑖, which is same as

(ℎ𝑖 (𝑋), 𝑝) (𝑔1, ...𝑔𝑘 ). Thus,

𝑔 𝑗∗ = ℎ𝑖 (𝑋) ∗
∑︁
𝑗∈𝐽∗

𝛼 𝑗_
′
𝑗ℎ𝑖 (𝑋)𝑡 𝑗 mod (𝑝, 𝑓 (𝑋)),
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where 𝛼 𝑗 is in R, and at least one 𝛼 𝑗 is non-zero. Substituting, _′
𝑗∗ℎ𝑖 (𝑋)𝑡 𝑗

∗ on the left hand side we

get

_′𝑗∗ℎ𝑖 (𝑋)𝑡 𝑗∗ = ℎ𝑖 (𝑋) ∗
∑︁
𝑗∈𝐽∗

𝛼 𝑗_
′
𝑗ℎ𝑖 (𝑋)𝑡 𝑗 mod (𝑝, 𝑓 (𝑋)).

This can equivalently be written as

_′𝑗∗ℎ𝑖 (𝑋)𝑡 𝑗∗−𝑡 𝑗∗ = ℎ𝑖 (𝑋) ∗
∑︁
𝑗∈𝐽∗

𝛼 𝑗_
′
𝑗ℎ𝑖 (𝑋)𝑡 𝑗−𝑡 𝑗∗ mod (𝑝, 𝑓 (𝑋)),

as all 𝑡 𝑗 > 𝑡 𝑗∗ > 0 for 𝑗 ∈ 𝐽∗. But, this is a contradiction of _′
𝑗∗ being not a multiple of ℎ𝑖 (𝑋) mod

𝑝.

End of Proof of Claim 1

Thus, for all 𝑘 ∈ [𝑘], 𝑔 𝑗 = ` 𝑗 𝑝. Again, since by theorem 2.3.1, �̄�𝑖 ⊆ 𝔭𝑖�̄�𝑖, each generator 𝑔 𝑗 is

in 𝔭𝑖�̄�𝑖, which is same as (ℎ𝑖 (𝑋), 𝑝) (𝑔1, ...𝑔𝑘 ). Thus, for any particular 𝑗 ′ ∈ [𝑘],

` 𝑗 ′ 𝑝 =
∑︁
𝑗∈[𝑘]
(𝛼 𝑗 𝑝 + 𝛽 𝑗ℎ𝑖 (𝑋))` 𝑗 𝑝 mod ( 𝑓 (𝑋)),

where 𝛼 𝑗 , 𝛽 𝑗 are in R, and at least one is non-trivial. Since 𝑍 [𝑋] is a UFD and 𝑓 (𝑋) is monic, we

can factor10 out 𝑝. And thus,

` 𝑗 ′ =
∑︁
𝑗∈[𝑘]

𝛽 𝑗ℎ𝑖 (𝑋)` 𝑗 mod (𝑝, 𝑓 (𝑋)).

But, this implies that either ` 𝑗 ′ is zero or ` 𝑗 ′ is a multiple of ℎ𝑖 (𝑋), the latter being a contradiction.

Hence, all ` 𝑗 are zero for 𝑗 ∈ [𝑘]. This implies that that 𝔭𝑖 = 0.

Extension to Product of Powers of Primes.

Theorem 2.5.4. Let 𝑞 =
∏

𝑗 𝑝
𝑟 𝑗

𝑗
be a product of powers of primes such that for every 𝑗 , the modular

polynomial ( 𝑓 (𝑋), 𝑝 𝑗 ) is Dedekind-special. If 𝑓 (𝑋) is irreducible as a polynomial in Z[𝑋], then

10This is where one would usually require that R is an integer domain.
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for any ideal 𝔞 of R = Z[𝑋]/( 𝑓 (𝑋)), 𝔞 is principal modulo 𝑞𝔞, i.e. as an ideal of R/𝑞𝔞.

The proof of this theorem is similar to the proof of above theorem 2.5.3, by iteratively comput-

ing �̂� (using lemma 2.5.5) that is co-prime to all (𝑝 𝑗 ) and additionally observing that ideals (𝑝)

and (𝑝′) are co-prime for distinct primes 𝑝 and 𝑝′.

2.6 Generator Extractor for Principal Ideals

In this section we restrict ourselves to the setting of Section 2.5. Given an ideal 𝔞 described by

a set of generators {𝛾𝑖}𝑖∈[𝑛] in R or a Z-basis 𝑩(𝔞), we wish to compute a generator of the principal

ideal 𝔞 modulo 𝑝𝑟𝔞 (which is principal by theorem 2.5.3).

We show that the following simple and efficient randomized algorithm computes such a gener-

ator with non-negligible probability.

Algorithm 1 FindGen
Input: A Z-basis 𝑩 for an ideal 𝔞 of R.

Output: A single generator 𝑎(𝑋) for ideal 𝔞 mod 𝑝𝑟𝔞.

1: Pick a random 𝑛-vector 𝝆 with component polynomials 𝜌𝑘 (𝑘 ∈ [𝑛]) chosen uniformly and

independently from Z𝑝 [𝑋]/( 𝑓 (𝑋)) = R/(𝑝).

2: View the 𝑛 columns of 𝑩 as 𝑛 polynomials 𝛾𝑘 ∈ R (𝑘 ∈ [𝑛]).

3: Compute 𝑎(𝑋) = ∑𝑚
𝑘=1 𝜌𝑘 ∗ 𝛾𝑘 in R.

4: Output 𝑎(𝑋)

Lemma 2.6.1. The algorithm FindGen outputs a generator 𝑎(𝑋) of 𝔞 modulo 𝑝𝑟𝔞 with probability

at least
∏
𝑖∈[𝑚] (1− 2/𝑝𝑑𝑖 ), where 𝑑𝑖 is the degree of the irreducible (modulo 𝑝) polynomials ℎ𝑖 (𝑋)

such that 𝑓 (𝑋) = ∏
𝑖∈[𝑚] ℎ𝑖 (𝑋)𝑒𝑖 in Z𝑝 [𝑋].

Proof. First, note that each of the 𝑛 columns of 𝑩 can be viewed as polynomials 𝛾𝑘 ∈ R (𝑘 ∈ [𝑛]),

such that the 𝛾𝑘 collectively form a set of generators (over R) of 𝔞. Recall, 𝑎(𝑋) computed in the

algorithm is just
∑
𝑘 𝜌𝑘𝛾𝑘 .
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By lemma 2.5.5 and lemma 2.5.4, we have for any integer 𝑟 ≥ 0, 𝔞 · (𝑝)𝑟 = �̂� ·∏𝑖∈[𝑚] 𝔭
𝑟 ·𝑒𝑖+𝑡𝑖
𝑖

,

where �̂� is co-prime to every 𝔭𝑖 (𝑖 ∈ [𝑚]). Thus, noting that all the 𝔭𝑖 are prime (lemma 2.5.1), and

by employing CRT, we have that the ring R/𝑝𝑟𝔞 is isomorphic to R/�̂� ·∏𝑖∈[𝑚] R/𝔭𝑟 ·𝑒𝑖+𝑡𝑖𝑖
. Since 𝔞

is zero mod �̂�, 𝑎(𝑋) is also zero and hence trivially generates 𝔞 mod �̂�. Thus, we can focus on 𝔞

modulo 𝔭
𝑟 ·𝑒𝑖+𝑡𝑖
𝑖

, for each 𝑖 ∈ [𝑚].

Fix an 𝑖 ∈ [𝑚]. Denote 𝔭
𝑟 ·𝑒𝑖+𝑡𝑖
𝑖

by 𝔮𝑖. View each of the elements 𝛾𝑘 (𝑘 ∈ [𝑛]) also as elements

of the quotient ring R/𝔮𝑖, and the randomly chosen elements 𝜌𝑘 as also elements in R/𝔮𝑖. Denote

𝔞 reduced mod 𝔮𝑖 by 𝔞𝑖. By Theorem 2.5.2, 𝔞𝑖 is principal and is generated by a finite power of 𝑔,

where 𝑔 is either 𝑝 or ℎ𝑖 (𝑋) (depending on whether 𝑒𝑖 is one or greater than one resp.). Similarly,

each 𝛾𝑘 (the generators of 𝔞) is itself generated by a finite power of 𝑔 mod 𝔮𝑖, say the power is

𝑣𝑘,𝑖 ≥ 0. Hence, 𝔞𝑖 is generated by 𝑔𝑣
∗
𝑖 , where 𝑣∗

𝑖
= min{𝑣𝑘,𝑖 : 𝑘 ∈ [𝑛]}. We need to show that∑

𝑘 𝜌𝑘𝛾𝑘 generates exactly (𝑔)𝑣∗𝑖 mod 𝔮𝑖.

Note, 𝛾𝑘 can be written as 𝛼𝑘,𝑖𝑔𝑣𝑘,𝑖 mod 𝔮𝑖, where 𝛼𝑘,𝑖 is not in 𝔭𝑖 = (ℎ𝑖 (𝑋), 𝑝). Then,
∑
𝑘 𝜌𝑘𝛾𝑘

mod 𝔮𝑖 can be written as 𝑔𝑣
∗
𝑖 ∗ ∑𝑘 𝜌𝑘𝛼𝑘,𝑖𝑔

𝑣𝑘,𝑖−𝑣∗𝑖 . Note, at least for one 𝑘 ∈ [𝑛], 𝑣𝑘,𝑖 − 𝑣∗𝑖 is zero.

So, let 𝐼𝑖 be the non-empty set of indices, subset of [𝑛], such that 𝑣𝑘,𝑖 − 𝑣∗𝑖 is zero.

Since by lemma 2.5.1, 𝔭𝑖 is a maximal ideal of R and hence every element of R not in 𝔭𝑖 is

invertible mod 𝔭𝑖, we need to show that with high probability, over the random choices of {𝜌𝑘 }𝑘 ,

for all 𝑖 ∈ [𝑚], ∑𝑘∈𝐼𝑖 𝜌𝑘𝛼𝑘,𝑖 is not zero modulo 𝔭𝑖. Note that for 𝑘 ∉ 𝐼𝑖, the quantities 𝜌𝑘𝛼𝑘,𝑖𝑔𝑣𝑘,𝑖−𝑣
∗
𝑖

are in (𝑔) ⊆ (ℎ𝑖 (𝑋), 𝑝), so the full sum (over all 𝑘 ∈ [𝑛]) will be non-zero modulo (ℎ𝑖 (𝑋), 𝑝) = 𝔭𝑖

and hence invertible.

To calculate this probability, we first note that Z[𝑋]/(ℎ𝑖 (𝑋), 𝑝) is a finite field, more precisely

GF(𝑝𝑑𝑖 ), as ℎ𝑖 (𝑋) is irreducible modulo 𝑝, with 𝑑𝑖 being the degree of ℎ𝑖 (𝑋). Thus, we can view

each of 𝜌𝑘 and 𝛼𝑘,𝑖 as element of this field (by reducing mod 𝑝). We have already seen that 𝛼𝑘,𝑖 is

non-zero in this field, as it is not in (ℎ𝑖 (𝑋), 𝑝). However, a random choice of 𝜌𝑘 in Z𝑝 [𝑋]/( 𝑓 (𝑋))

may lead 𝜌𝑘 to be zero modulo (ℎ𝑖 (𝑋), 𝑝), although this probability is small, as we next show.

First, note that Z𝑝 [𝑋]/( 𝑓 (𝑋)) = R/(𝑝). Then, by employing CRT and theorem 2.5.1, 𝜌𝑘 is

uniformly and independently distributed in the rings R/𝔭𝑒𝑖
𝑖

. Further, by lemma 2.5.1, 𝔭𝑒𝑖
𝑖

= 𝔰𝑖 =
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(𝑝, ℎ𝑖 (𝑋)𝑒𝑖 ). Thus, R/𝔭𝑒𝑖
𝑖
= Z[𝑋]/ ( 𝑓 (𝑋), 𝑝, ℎ𝑖 (𝑋)𝑒𝑖 ), which is same as Z[𝑋]/(𝑝, ℎ𝑖 (𝑋)𝑒𝑖 ).

Hence 𝜌𝑘 is zero modulo 𝔭𝑖 only if it is a multiple of ℎ𝑖 (𝑋). Since all (canonically represented)

polynomials in 𝔰𝑖 have degree at most 𝑑𝑖 ∗𝑒𝑖−1, there are at most 𝑝𝑑𝑖∗𝑒𝑖 polynomials. Similarly, all

canonical polynomials in 𝔰𝑖 that are a multiple of ℎ𝑖 (𝑋) are at most 𝑝𝑑𝑖∗(𝑒𝑖−1) . This proves that the

probability that 𝜌𝑘 is zero in GF(𝑝𝑑 𝑗 ) is at most 1/𝑝𝑑𝑖 . Moreover, conditioned on 𝜌𝑘 being non-

zero, the probability that it is 𝑐 for some non-zero 𝑐 in GF(𝑝𝑑𝑖 ) is same regardless of 𝑐, as number

of elements in the coset of 𝑐 in 𝔰𝑖 is same for all 𝑐. Thus, conditioned on 𝜌𝑘 being non-zero, 𝜌𝑘 is

uniformly distributed in GF(𝑝𝑑𝑖 ).

Thus, probability that 𝛽𝑖 = (∑𝑘∈𝐼𝑖 𝜌𝑘𝛼𝑘,𝑖 mod (ℎ𝑖 (𝑋), 𝑝)) is zero, i.e. zero in GF(𝑝𝑑𝑖 ), is

at most 1/𝑝𝑑𝑖∗|𝐼𝑖 | plus 1/𝑝𝑑𝑖 , which is at most 2/𝑝𝑑𝑖 . Since, 𝜌𝑘 are independently distributed in

the various rings Z[𝑋]/𝔰𝑖, the probability that all of these 𝑚 quantities 𝛽𝑖 are non-zero is at least∏
𝑖∈[𝑚] (1 − 2/𝑝𝑑𝑖 ), which is also a lower bound on the probability that 𝑎(𝑋) is a generator of 𝔞

modulo 𝑝𝑟𝔞.

Extension to Product of Powers of Primes. Let 𝑞 =
∏

𝑗 𝑝
𝑟 𝑗

𝑗
be a product of powers of primes

such that for every 𝑗 , the modular polynomial ( 𝑓 (𝑋), 𝑝 𝑗 ) is Dedekind-special. The above algo-

rithm can be correctly extended by choosing 𝜌𝑖 randomly and independently from 𝑍𝑞′ [𝑋]/( 𝑓 (𝑋))

where 𝑞′ =
∏

𝑗 𝑝 𝑗 . The probability of success in this case is at least
∏

𝑗

∏
𝑖∈[𝑚 𝑗 ] (1 − 2/𝑝𝑑 𝑗 ,𝑖

𝑗
),

where 𝑑 𝑗 ,𝑖 is the degree of the 𝑚 𝑗 irreducible polynomials ℎ 𝑗 ,𝑖 (𝑋) (modulo 𝑝 𝑗 ) such that 𝑓 (𝑋) =∏
𝑖∈[𝑚] ℎ 𝑗 ,𝑖 (𝑋)𝑒 𝑗 ,𝑖 in Z𝑝 [𝑋].

Extension to Arbitrary 𝑞 without known-factorization. If the factorization of 𝑞 is not known,

and say 𝑞 =
∏

𝑗 𝑝
𝑟 𝑗

𝑗
as above, we can still use the above algorithm, but this time by choosing

𝜌𝑖 randomly and independently modulo Z𝑞 [𝑋]/( 𝑓 (𝑋)). In the proof of lemma 2.6.1, again using

CRT and focusing on individual primes, say 𝑝 𝑗 , 𝜌𝑘 is now uniformly and independently distributed

in Z[𝑋]/𝔭𝑒𝑖𝑟 𝑗
𝑖

. By a similar argument as in the proof of lemma 2.5.1, this ring is isomorphic to

Z[𝑋]/(𝑝, ℎ𝑖 (𝑋)𝑒𝑖𝑟 𝑗 ). By the probability analysis in the lemma 2.6.1 above, the probability of

success remains the same as in the known factorization case above.
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Boosting the Probability of Success. One can boost the probability of finding a generator of 𝔞

modulo 𝑞𝔞 by repeating the above algorithm, but to stop the repetition we need an efficient test

that 𝑎(𝑋) as computed is indeed a generator. But, this is same as checking (𝔞, 𝑞𝔞) = (𝑎(𝑋), 𝑞𝔞),

which can be efficiently tested by computing the Hermite normal form of 𝑩 (the given Z-basis of

𝔞) and the Hermite normal form of [𝑪𝑎 | 𝑞𝑩], and checking for equality.

2.7 Hardness of Decisional Ring-LWE

In this section, by default, we focus on a degree-𝑛monic polynomial 𝑓 (𝑋) and an integer 𝑞 ≥ 2

where ( 𝑓 (𝑋), 𝑞) is Dedekind-special. Let RR = R[𝑋]/( 𝑓 (𝑋)).

First we give out the same distribution of error distributions as in [PRS17], which we will use

in the following reduction.

Definition 2.7.1 (Error Distribution). Fix arbitrary 𝑠(𝑛) = 𝜔(
√︁

log(𝑛)). For 𝛼 > 0, a distribution

sampled from Υ𝛼 is an elliptical Gaussian distribution 𝐷r, where r ∈ 𝐺 is sampled as follow: for

𝑖 = 0, . . . , 𝑠1 − 1, sample 𝑥𝑖 ∈ 𝐷1 and set 𝑟2
𝑖
= 𝛼2(𝑥2

𝑖
+ 𝑠2(𝑛))/2, for 𝑖 = 𝑠1, . . . , 𝑠1 + 𝑠2 − 1, sample

𝑥𝑖, 𝑦𝑖 from 𝐷1/
√

2 and set 𝑟2
𝑖
= 𝑟2

𝑖+𝑠2
= 𝛼2(𝑥2

𝑖
+ 𝑦2

𝑖
+ 𝑠2(𝑛))/2.

Definition 2.7.2 (RLWE Distribution). Let 𝑽 be the Vandermonde matrix of the modulo polyno-

mial 𝑓 (𝑥). For s ∈ R∨𝑞 and an error distribution 𝜓 over RR, we define the RLWE distributionAs,𝜓

over R𝑞×RR/R∨ as
(
a, b = a ∗ s/𝑞 + 𝑽−1e mod R∨

)
where e is sampled from 𝜓, a is uniform over

R𝑞.

Definition 2.7.3 ((Average-case) Decisional RLWE Problem). Let Υ𝛼 be a distribution over family

of error distributions, each over R[𝑋]/( 𝑓 (𝑋)). The average-case decisional RLWE problem,

RLWE𝑞,Υ𝛼 is to distinguish (with non-negligible advantage) between independent samples from

𝐴s,𝜓 for a random choice of uniform 𝑠 ∈ R∨𝑞 and 𝜓 ∈ Υ𝛼 and the same number of uniformly

random and independent samples from R𝑞 × RR/R∨.

Let R-DGS𝛾 be the discrete Gaussian sampling problem DGS𝛾 when restricted to the ideal

lattices on the polynomial ring R = Z[𝑋]/( 𝑓 (𝑋)).
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Theorem 2.7.1. Let 𝛼 = 𝛼(𝑛) ∈ (0, 1), 𝑞 = 𝑞(𝑛) ≥ 2 be an integer and 𝑓 (𝑥) be any degree-𝑛

monic polynomial where ( 𝑓 (𝑋), 𝑞) is Dedekind-special. Let R = Z[𝑋]/( 𝑓 (𝑋)) be a polynomial

ring. If 𝛼𝑞 ≥ 2 · 𝜔(1), for some negligible 𝜖 = 𝜖 (𝑛), there is a probabilistic polynomial-time

quantum reduction from R-DGS𝛾 to (average case, decisional) RLWE𝑞,Υ𝛼 , where

𝛾 = max
{
[𝜖 (L(I)) · (

√
2/𝛼) · 𝜔(1),

√
2𝑛/_1(L(I)∨)

}
Note that [𝜖 (L) > 𝜔(

√︁
log(𝑛))/_1(L∨). Using known reduction [Reg06], this immediately

implies a polynomial-time quantum reduction from SIVP𝛾 to (average-case, decision) RLWE𝑞,Υ𝛼

for any 𝛾 ≤ max
{
𝜔(

√︁
𝑛 log(𝑛)/𝛼,

√
2𝑛

}
.

In case of spherical error, same as [PRS17, Section 7] we have

Corollary 2.7.1. With the same notation as Theorem 2.7.1, there’s a polynomial time quantum

reduction from R-DGS𝛾 to (average-case, decisional) RLWE𝑞,𝐷 b using ℓ samples, where

𝛾 = max

{
[𝜖 (L(I)) · (

√
2/b) ·

(
𝑛ℓ

log(𝑛ℓ)

) 1
4

· 𝜔(
√︁

log(𝑛)),
√

2𝑛/_1(L(I)∨)
}
,

as long as b𝑞 ≥
(

𝑛ℓ
log(𝑛ℓ)

) 1
4 · 𝜔(

√︁
log(𝑛)).

Our proof to theorem 2.7.1 will be exactly the same as [PRS17, Theorem 6.2], that starts with a

discrete Gaussian sampler with very large radius, and iteratively applys the following lemma 2.7.1.

Definition 2.7.4. For 𝑟 > 0, Z > 0 and 𝑇 ≥ 1, define𝑊𝑟,Z ,𝑇 as the set of cardinality (𝑠1+𝑠2) · (𝑇+1)

containing for each 𝑖 = 0, . . . , 𝑠1 + 𝑠2− 1 and 𝑗 = 0, . . . , 𝑇 the vector r𝑖, 𝑗 which is equal to 𝑟 in all

coordinates except in the 𝑖-th, and the (𝑖 + 𝑠2)-th if 𝑖 ≥ 𝑠1, where it is equal to 𝑟 · (1 + Z) 𝑗 .

Lemma 2.7.1. There’s an efficient quantum algorithm that, given an oracle that solves RLWE𝑞,Υ𝛼 ,

an ideal I ⊆ R, a number 𝑟 ≥
√

2𝑞 · [𝜖 (L(I)) and 𝑟′ = 𝑟 · 𝜔(1)/(𝛼𝑞) ≥
√

2𝑛/_1(L(I)∨),

polynomially many samples from discrete Gaussian distribution 𝐷L(I),r for each r ∈ 𝑊𝑟,Z ,𝑇 (for

some Z = 1/poly(𝑛) and 𝑇 = poly(𝑛)), and a vector r′ ≥ 𝑟′, outputs an independent sample from

𝐷L(I),r′ .
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As in [PRS17, Lemma 6.5], This iterative step is given by combining the following two parts:

a classical one in lemma 2.7.2 that use a discrete Gaussian sampler and a RLWE oracle to solve the

Gaussian Decoding Problem (GDP), and a quantum one in lemma 2.7.3 that use this GDP solver

to provide discrete Gaussian samples with smaller radius.

Lemma 2.7.2. There’s a probabilistic (classical) polynomial time algorithm that, taking an oracle

that solves RLWE𝑞,Υ𝛼 for 𝛼 ∈ (0, 1) and integer 𝑞 > 2, an ideal I ∈ R, a parameter 𝑟 ≥
√

2𝑞 ·

[𝜖 (L(I)), and polynomially many samples from discrete Gaussian 𝐷L(I),r for each r ∈ 𝑊𝑟,Z ,𝑇 for

some Z = 1/poly(𝑛) and 𝑇 = poly(𝑛), solves GDPL(I)∨,𝑔 for any 𝑔 = 𝑜(1) · 𝛼𝑞/(2𝑟).

Lemma 2.7.3 ([PRS17, Lemma 6.7]). There is an efficient quantum algorithm that, given any 𝑛-

dimensional lattice L, a number 𝑔 < _1 (L∨)
2
√

2𝑛
, a vector r ≥ 1, and an oracle that solves GDPL∨,𝑔

with all but negligible probability, outputs a sample from 𝐷L, r
2𝑔

.

The proof of lemma 2.7.2 follows exactly from [PRS17, Lemma 6.6], except the core reduction

from Gaussian Decoding Problem to RLWE in [PRS17, Lemma 6.8] requires the underlying ring to

be a dedekind domain, which may not be true in our case. We provide a counterpart in lemma 2.7.4

that works for our non Dedekind domain.

Lemma 2.7.4. There’s an efficient algorithm that, takes as input an integer 𝑞 ≥ 2, a dual ideal

lattice L(I)∨ where I is an ideal in R, a coset e + L(I)∨ with a bound 𝑑 ≥ ||e| |∞, a parameter

𝑟 ≥
√

2𝑞 · [𝜖 (L(I)) and samples from 𝐷L(I),r for some r ≥ 𝑟. It outputs samples that are within

negligible statistical distance from the RLWE distribution 𝐴s,r′ for a uniformly random s ∈ R∨𝑞 ,

where (r′
𝑖
)2 = (r𝑖 |e𝑖 |/𝑞)2 + (𝑟𝑑/𝑞)2.

To prove this lemma 2.7.4, we follow the standard techniques as in [PRS17, Lemma 6.8] which

is a slight generalization over [LPR10, Lemma 4.7], elaborated as below.

Proof Sketch. First sample a random ẑ = 𝑽z from the discrete Gaussian 𝐷L(I),r where z ∈ I.

Because r ≥
√

2𝑞 · [𝜖 (L(I)), by smoothing lemma 2.2.1, the distribution of (z mod 𝑞I) is within
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a negligible distance from uniform distribution over I/𝑞I. Also let e′ be an independent sample

from the continuous Gaussian 𝐷
𝛼/
√

2.

Now, for any element 𝑽y = ŷ = e + x̂ ∈ e + L(I)∨, where x̂ = 𝑽x ∈ L(I)∨, we could directly

provide a “RLWE sample" from I/𝑞I × RR/R∨ as

(
z mod 𝑞I, z ∗ y/𝑞 + e′ mod R∨ = z ∗ x

𝑞
+ 1
𝑞
𝑪𝑧𝑽

−1e + e′ mod R∨
)
.

for some secret x ∈ I∨/𝑞I∨. To jump out of the ideal, we use lemma 2.7.5, a counterpart of

clearing lemma of [LPR10, Lemma 2.15] for non dedekind domains, that gives (i) an invertible

and efficiently computable bijection 𝜓 : I/𝑞I → R/𝑞R, and (ii) an efficiently invertible and

computable bijection 𝜙 : I∨/𝑞I∨ → R∨/𝑞R∨, with the additional property that z∗x = 𝜓(z)∗𝜙(x).

Therefore the final RLWE distribution would be over R𝑞 × RR/R∨ as

(
𝜓(z mod 𝑞I), z ∗ y/𝑞 + e′ mod R∨ = 𝜓(z) ∗ 𝜙(x)

𝑞
+ 1
𝑞
𝑪𝑧𝑽

−1e + e′ mod R∨
)

for some secret 𝜙(x) ∈ R∨/𝑞R∨. Note that since 𝜓 is invertible, 𝜓(z mod 𝑞I) is almost uniform

over R/𝑞R = R𝑞.

Moreover, if we sample e as in GDPL(I)∨,𝑔 where 𝑔 = 𝛼𝑞/(
√

2𝑟), the distribution of term(
1
𝑞
𝑪𝑧𝑽

−1e + e′
)

will be exactly Υ𝛼, as in [PRS17, Lemma 6.8]. Then we complete the proof by

applying the standard technique to randomize the secret as in [Reg10, Lemma 3.2]

The following lemma is an extension of an important technical lemma from [LPR10, Lemma

2.15], which is informally referred to as the ideal clearing lemma, and is the key to extending

Regev’s LWE-hardness [Reg10] to the Ring-LWE setting. Our proof of the lemma is quite different

from the proof in [LPR10] as it extends to some non dedekind domains and hence cannot use the

standard prime ideal factorization and ideal invertibility guaranteed for dedekind domains.

Lemma 2.7.5. (Ideal Clearing Lemma) For any integer 𝑞 that is Dedekind-special for 𝑓 (𝑋),

given a Z-basis 𝑩(I) for ideal I ⊆ R,
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(i) there is an efficiently computable R-module isomorphism 𝜓 : I/𝑞I → R/𝑞R,

(ii) there is an efficiently invertible R-module isomorphism 𝜙 : I∨/𝑞I∨ → R∨/𝑞R∨, such that

(iii) for any z ∈ I/𝑞I and x ∈ I∨/𝑞I∨, their polynomial product satisfies

z ∗ x ≡ 𝜓(z) ∗ 𝜙(x) (mod 𝑞R∨)

Proof. By Algorithm FindGen (lemma 2.6.1), we can efficiently find a g that is a generator of I

modulo 𝑞I. In other words, as ideals, I = (g) + 𝑞I. Thus

𝑩(I) = 𝑪𝑔𝑼 + 𝑞 · 𝑩(I)𝑻 (2.2)

for some integer matrix 𝑼 and 𝑻. We next show how to efficiently compute 𝑼 modulo 𝑞, which

will be used to construct the isomorphisms. Note that the generator g ∈ I. Therefore g = 𝑩(I)d(0)

for some integer-vector d(0) . Similarly, the coefficient representation of 𝑔(𝑋) ∗ 𝑋 𝑖 is 𝑩(I)d(𝑖) for

some integer vector d(𝑖) . Thus, 𝑪𝑔 = 𝑩(I) · 𝑫 , where 𝑫 is an integer matrix (with columns d(𝑖)).

Plugging this into (2.2), we have 𝑩(I) = 𝑩(I)𝑫𝑼 + 𝑞𝑩(I)𝑻. Since, 𝑩(I) is full ranked and 𝑻

is an integer matrix, we have 𝑫 ·𝑼 = 𝑰 (mod 𝑞). Thus we can obtain 𝑼 (modulo 𝑞) as the inverse

of 𝑫 modulo 𝑞. This suffices for the following construction.

Now, consider following two mappings for claims (i)-(iii). For any z ∈ I and x ∈ I∨, define

𝜓(z) = 𝑼𝑩(I)−1z (mod 𝑞R) (2.3)

𝜙(x) = g ∗ x (mod 𝑞R∨) (2.4)

Starting with (i), multiplying (2.2) by 𝑩(I)−1z from the right, we get

𝑪𝑔𝑼𝑩(I)−1z = z − 𝑞𝑩(I)𝑻𝑩(I)−1z

which is equivalent to z (mod 𝑞I) since 𝑻𝑩(I)−1z is integer. Letting a = 𝜓(z), 𝜓 is invertible as
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g ∗ a = z (mod 𝑞I). Also, 𝜓−1(a) = g ∗ a is surjective because 𝑪𝑔a ∈ I for any a ∈ R. Thus,

𝜓−1 is easily seen, by commutativity, to be a R-module homomorphism, and 𝜓 is an R-module

isomorphism.

For (ii), we first note that by proposition 2.4.4 and using 𝑪𝑔 = 𝑩(I) · 𝑫,

g ∗ x = (𝑽⊤𝑽)−1 · (𝑽⊤𝑽) · 𝑪𝑔 · x

= (𝑽⊤𝑽)−1𝑪⊤𝑔 · (𝑽⊤𝑽) · x

= (𝑽⊤𝑽)−1𝑫⊤𝑩(I)⊤(𝑽⊤𝑽) · x (2.5)

Recall by lemma 2.4.2, (𝑽⊤𝑽)−1𝑩(I)−⊤ is a Z-basis of I∨, and (𝑽⊤𝑽)−1 is a Z-basis of R∨.

Thus using (2.5), we can invert 𝜙(x) by left multiplcation by (𝑽⊤𝑽)−1𝑩(I)−⊤𝑼⊤(𝑽⊤𝑽) to x mod

𝑞I∨. Further, for any s ∈ R∨, (𝑽⊤𝑽)−1 𝑩(I)−⊤𝑼⊤(𝑽⊤𝑽)s lies in I∨ by the aforementioned

basis. Thus, 𝜙 is an efficiently invertible and surjective R-module homomorphism, thus proving

(ii).

Now, we move on to prove (iii). For some t0 ∈ R and t1 ∈ R∨, we have

𝜓(z) ∗ 𝜙(x)

=

(
𝑼𝑩(I)−1z − 𝑞 · t0

)
∗ (g ∗ x − 𝑞 · t1)

= 𝑼𝑩(I)−1z ∗ g ∗ x − 𝑞 · t0 ∗ g ∗ x − 𝑞 ·𝑼𝑩(I)−1z ∗ t1 + 𝑞2 · t0 ∗ t1

≡ g ∗𝑼𝑩(I)−1z ∗ x (mod 𝑞R∨) (2.6)

≡ 𝑪𝑔𝑼𝑩(I)−1z ∗ x (mod 𝑞R∨)

≡ z ∗ x − 𝑞𝑩(I)𝑻𝑩(I)−1z ∗ x (mod 𝑞R∨)

≡ z ∗ x (mod 𝑞R∨) (2.7)

where (2.6) follows by noting that t0 ∗ g ∈ I and x ∈ I∨ and then employing lemma 2.4.4.

Similarly, 𝑼𝑩(I)−1z is in I ⊆ R, and we can mod out its multiplication by t1 ∈ R∨. Also, for the

last equation (2.7), we use lemma 2.4.4, noting that 𝑩(I)𝑻𝑩(I)−1z is in I.
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Remark. When comparing with [LPR10], note that they obtain a 𝑡 ∈ I such that 𝑡 ·I−1 is co-prime

to ideal (𝑞). In other words, 𝑡 · I−1 + (𝑞) = (1). Multiplying both sides by the ideal I, we get,

(𝑡) +𝑞I = I, which is same as saying that 𝑡 is the generator of I mod 𝑞I. In other words [LPR10]

implicitly shows that I is principal mod 𝑞I, but this is well-known for Dedekind domains. As

mentioned earlier, our case is more difficult, yet we manage to prove it.

The above clearing lemma also generalizes to ring of integers of a number field, which is

known to be a Dedekind domain. Also, for Dedekind domains 𝔇 it is known that for any ideal

𝔞, 𝔇/𝔞 is a principal ideal ring (see e.g. wikipedia entry for "Principal Ideal Rings" for a proof).

The lemma stated and proved here is easier to use than the original lemma in [LPR10] because as

mentioned in the remark above it just needs an arbitrary generator of the principal ideal I/(𝑞I).

It is an interesting open problem to obtain an efficient randomized algorithm for computing such a

generator (for all 𝑞 in the OK setting), similar to the one given in section 2.6 for RK for Dedekind-

special 𝑞.

Lemma 2.7.6. (Ideal Clearing Lemma for Ring of Integers [LPR10]) For any positive integer

𝑞, given a Z-basis 𝑩(I) for ideal I of OK, and a generator g ∈ I for the principal ideal I/(𝑞I),

(i) there is an efficiently computable OK-module isomorphism 𝜓 : I/(𝑞I) → OK/(𝑞OK),

(ii) there is an efficiently invertible OK-module isomorphism 𝜙 : I∨/(𝑞I∨) → O∨K/(𝑞O
∨
K),

(iii) such that, for any z ∈ I/(𝑞I) and x ∈ I∨/(𝑞I∨), their polynomial product satisfies

z ∗ x ≡ 𝜓(z) ∗ 𝜙(x) (mod 𝑞O∨K)

Proof. We will write 𝑩(OK) for a basis of OK.

We have that g is a generator of I modulo 𝑞I. In other words, as ideals, I = (g) + 𝑞I. Thus,

g ∈ I. Thus,

𝑪𝑔𝑩(OK) = 𝑩(I) · 𝑫, (2.8)

where 𝑫 is an integer matrix.
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We also have that every column of 𝑩(I) is generated by 𝑪𝑔 mod 𝑞I, or mod 𝑞𝑩(I). Thus,

𝑩(I) = 𝑪𝑔𝑩(OK)𝑼 + 𝑞 · 𝑩(I)𝑻 (2.9)

for some integer, matrices 𝑼 and 𝑻. Equivalently,

𝑩(I) · (𝐼 − 𝑞𝑻) = 𝑪𝑔𝑩(OK)𝑼, (2.10)

or, since 𝑪𝑔 is full-ranked, we have

(𝑪𝑔𝑩(OK))−1𝑩(I) · (𝐼 − 𝑞𝑻) = 𝑼 (2.11)

We next show that 𝑫 ·𝑼 = 𝐼 (mod 𝑞). Note, from (2.8) and observing that 𝑩(I) is full-ranked,

𝑫 = 𝑩(I)−1𝑪𝑔𝑩(OK). Multiplying the above equation on the left by 𝑫, we get (𝐼 − 𝑞𝑻) = 𝑫 ·𝑼,

and hence

𝑫 ·𝑼 = 𝐼 (mod 𝑞). (2.12)

Now, consider the following two mappings for claims (i)-(iii). For any z ∈ I and x ∈ I∨, define

𝜓(z) = a = 𝑩(OK)𝑼𝑩(I)−1z (mod 𝑞OK) (2.13)

𝜙(x) = g ∗ x (mod 𝑞O∨K) (2.14)

For any z in I, and a = 𝜓(z) we have 𝑪𝑔a ≡ 𝑪𝑔𝑩(OK)𝑼𝑩(I)−1z, which by (2.9) is same as

𝑩(I)(𝐼 − 𝑞𝑻)𝑩(I)−1z = z (mod 𝑞I), So, 𝜓 is an invertible map. It is also surjective since 𝑪𝑔a

is in I for any a ∈ OK. Since, 𝜓−1 is easily seen to be a OK-module homomorphism, 𝜓 is an

OK-module isomorphism. Further, we already showed how to compute 𝑼 efficiently, this proves

(i).
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For (ii), we first note that by proposition 2.4.4 and using (2.8),

g ∗ x = (𝑽⊤𝑽)−1 · (𝑽⊤𝑽) · 𝑪𝑔 · x (2.15)

= (𝑽⊤𝑽)−1𝑪⊤𝑔 · (𝑽⊤𝑽) · x (2.16)

= (𝑽⊤𝑽)−1𝑩(OK)−⊤𝑫⊤𝑩(I)⊤(𝑽⊤𝑽) · x mod 𝑞O∨K, (2.17)

where the last equality follows by noting that (𝑽⊤𝑽)−1𝑩(OK)−⊤ is a Z-basis for O∨K (see footnote

to lemma 2.4.2).

Thus, by lemma 2.4.2, 𝜙(x) is inverted by (𝑽⊤𝑽)−1𝑩(I)−⊤𝑼⊤𝑩(OK)⊤(𝑽⊤𝑽) to x mod 𝑞I∨.

Further, for any s ∈ O∨K, (𝑽⊤𝑽)−1𝑩(I)−⊤𝑼⊤𝑩(OK)⊤(𝑽⊤𝑽)s lies in I∨ by the aforementioned

basis. Thus, 𝜙 is an invertible and surjective OK-module homomorphism, that is also efficiently

invertible, thus proving (ii).

Now, we move on to prove (iii). For some t0 ∈ OK and t1 ∈ O∨K, we have

𝜓(z) ∗ 𝜙(x)

=

(
𝑩(OK)𝑼𝑩(I)−1z − 𝑞 · t0

)
∗

(
𝑪𝑔x − 𝑞 · t1

)
=𝑩(OK)𝑼𝑩(I)−1z ∗ 𝑪𝑔x − 𝑞 · t0 ∗ g ∗ x − 𝑞 · 𝑩(OK)𝑼𝑩(I)−1z ∗ t1 + 𝑞2 · t0 ∗ t1

≡ 𝑩(OK)𝑼𝑩(I)−1z ∗ 𝑪𝑔x (mod 𝑞O∨K) (2.18)

≡ 𝑪−1
𝑔 𝑩(I)(𝐼 − 𝑞 · 𝑻)𝑩(I)−1z ∗ 𝑪𝑔x (mod 𝑞O∨K)

≡ z ∗ x − 𝑞 · 𝑪−1
𝑔 𝑩(I)𝑻𝑩(I)−1z ∗ 𝑪𝑔x (mod 𝑞O∨K)

≡ z ∗ x − 𝑞 · 𝑪𝑔𝑪𝑥𝑪−1
𝑔 𝑩(I)𝑻𝑩(I)−1z (mod 𝑞O∨K)

≡ z ∗ x − 𝑞 · x ∗ 𝑩(I)𝑻𝑩(I)−1z (mod 𝑞O∨K)

≡ z ∗ x (mod 𝑞O∨K) (2.19)

where (2.18) follows by noting that t0 ∗ 𝑔 ∈ I and x ∈ I∨ and then employing lemma 2.4.4.

Similarly, 𝑩(OK)𝑼𝑩(I)−1z is in I. Also, for the last equation (2.19), we use lemma 2.4.4.
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2.8 Example Polynomial Rings and non-Bigenic Ideals

In the introduction we considered a slight twist of the cyclotomic polynomial 𝑋256 +1 which is

used in the recently announced NIST post-quantum cryptography encryption algorithm CRYSTALS-

Kyber [Bos+21]. Cyclotomic polynomials, especially of degree power-of-two, are further pre-

ferred as these allow very efficient number-theory transforms (NTT), thus enabling efficient poly-

nomial multiplication. But, it is also well-known that arithmetic modulo "twisted-cyclotomic"

irredicible polynomials, say 𝑋256 − 𝑎, and modulo 𝑞 such that 𝑎 has a 256-th root in Z𝑞, also enjoy

efficient NTT by just pre-multiplying the coefficient vector of a polynomial by the diagonal matrix

consisting of powers of 𝑎1/256. In other words, the Vandermonde matrix of 𝑋256 − 𝑎 (modulo 𝑞) is

the product of Vandermonde matrix of 𝑋256 − 1 and the above diagonal matrix.

In the Introduction, we had set 𝑎 = −2 · 32 · 13 for three reasons. First, by Eisenstein criterion,

this make 𝑓 (𝑋) irreducible over Q. Second, using Dedekind index theorem, we showed that R is

strict sub-ring of OK in this case. Finally, it can be checked by a computer that 𝑎 = −2 · 32 · 13 is

a 256-th residue in the field Z𝑞 with 𝑞 = 3329 as in [Bos+21]. Interestingly, the Kyber proposal

chose the prime 𝑞 to be the smallest prime such that order of 𝑞 is one modulo 256 and 𝑞-RLWE

allows for setting up an encryption scheme with non-negligible probability decryption failure.

Unfortunately, order of this 𝑞 is two modulo 512, and hence the 512-th primitive roots of unity

only exist in a degree two extension of Z𝑞. Note, one needs 512-th primitive roots of unity for

NTT modulo 𝑋256 + 1. This causes a slightly expensive NTT computation depending on whether

there is enough parallel processing power available or not. Surprisingly, with 𝑋256 − 2 · 32 · 13,

after the initial diagonal-matrix transform, we only need 256-th primitive roots, and hence our

number field setting potentially allows a more efficient polynomial multiplication modulo 𝑞 than

the cyclotomic number field.

We next turn our attention to the error-distribution implied by the hardness reduction on the

RLWE samples, especially in the (polynomial) coefficient setting and not the canonical-embedding
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setting, as we want to make sure that the RLWE errors do not overwhelm the payload. However,

the error distribution implied for the coefficient setting, while non-spherical, is actually smaller

than the spherical-distribution for the cyclotomic setting. This follows from two facts:

1. Theorem 2.7.1 which shows that the error-distribution Υ𝛼 is independent of the number-field,

and the hardness-reduction only restricts the scaling 𝛼 and the variance 𝛾 of the underlying

hard problem R-DGS𝛾 in ideal lattice I by 𝛾 ≥
√

2𝑛/_1(L(I)∨), as long as 𝛼 <
√︁

log 𝑛/𝑛,

2. The translation of the error distribution from the canonical embedding back to the ring is

composition of two transformations: an isometric transformation following by the inverse of

the diagonal transformation. The latter has the 𝑗-th diagonal entry 𝑎− 𝑗/256, which is a real

number less than and equal to one, with equality only for 𝑗 = 0.

Thus the question boils down to whether R-DGS𝛾 is easier in R = Z[𝑋]/(𝑋256 − 𝑎) or R =

Z[𝑋]/(𝑋256 + 1). We have focused on showing that the former ring being a non Dedekind do-

main has less algebraic structure. However, when disregarding the issue of algebraic structure,

the ideal lattices in different K can potentially have different complexity, and this is a well-known

open problem to relate ideal lattices of different number fields. We ran some preliminary tests

on resistance of ideal-lattice-SVP problem to the LLL algorithm [LLL82], and found no signifi-

cant difference in the above two rings. However, more rigorous experimentation and analysis is

warranted.

2.8.1 Non-bigenic ideals

An ideal will be called bigenic if it can be generated by two or less elements of the ring.

When R is a strict subring of O𝑏𝐾 , it is well known that in such a case R is not a Dedekind

domain, and indeed all prime ideals of R that are not co-prime to the so-called conductor ideal of

R are not invertible (see e.g. Theorem 6.1 in [Cond]). Another well-known property of Dedekind

domains is that all its ideals are bigenic. However, it is not an easy task to show that some ideal of

non Dedekind-domain R is not bigenic. Although, examples exist of non-bigenic ideals in strict
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subrings (of rank 𝑛) of OK [Cond, Remark 2.3], these subrings are not the polynomial ring R, and

moreover these non-bigenic ideals have a diagonal Hermite normal form Z-basis, and in any case

these example ideals are as it ideals of the larger ring OK. We will show below a non-trivial ideal

of R that requires a minimum of three generators.

This example is inspired by [Cone, Example 4.16]. Consider the irreducible (over Q) poly-

nomial 𝑓 (𝑋) = 𝑋5 − 24 · 3, and the corresponding number field K = Q[𝑋]/( 𝑓 (𝑋)). Consider

𝛽 = 𝑋4/8 as an element of K. Its easy to check that 𝛽5 − 2 · 34 = 0, and hence 𝛽 ∈ OK. This

also shows that R = Z[𝑋]/( 𝑓 (𝑋)) is not same as OK, and hence is not integrally closed and

consequently not a Dedekind domain. We now have an easy example of a non-bigenic ideal of R.

Proposition 2.8.1. The ideal I = (8, 2𝑋 + 4, 𝑋2 + 4) of R = Z[𝑋]/(𝑋5 − 48) has the following

properties

(i) I is not bigenic,

(ii) no rational scaling of I is a bigenic ideal of R,

(iii) no rational scaling of I is a fractional ideal of OK,

(iv) the HNF of Z-basis of I is not diagonal.

(v) I is product of two bigenic ideals, namely I = (4, 𝑋 + 2) · (2, 𝑋).

Properties (i) and (v) imply that bigenic ideals of R above do not form a multiplicative group.

This is in contrast to principal ideals that do form a multiplicative group which is the basis of

definition of ideal class groups [FT91]. It is worth remarking that (4, 𝑋 + 2) is not a prime ideal as

it is contained in (2, 𝑋 + 2) and it is well-known that all non-zero prime ideals (of any order of a

number field) are maximal [Conb, Sec. 8].

Proof. We focus on proving (i), as the rest will follow easily.

Now, assume to the contrary that this ideal is bigenic and generated by 𝐿0 = (ℓ1, ℓ2), and as

ideals of Z[𝑋]/(𝑋5 − 48), 𝐿0 = I. Both ℓ1 and ℓ2 must be in the Z-span of Z-basis of the ideal I,
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which is depicted below by concatenating the circulant matrices of 8, 2𝑋 + 4 and 𝑋2 + 4. We also

compute its Hermite normal form (HNF) 11.

HNF

©«

4 0 0 48 0 4 0 0 0 96 8 0 0 0 0

0 4 0 0 48 2 4 0 0 0 0 8 0 0 0

1 0 4 0 0 0 2 4 0 0 0 0 8 0 0

0 1 0 4 0 0 0 2 4 0 0 0 0 8 0

0 0 1 0 4 0 0 0 2 4 0 0 0 0 8

ª®®®®®®®®®®®®¬
=

©«

8 4 4 0 0

0 2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

ª®®®®®®®®®®®®¬
From the HNF it is clear that ℓ1 can be written as 𝑎1𝑋

4 + 𝑏1𝑋
3 + 𝑐1(𝑋2 + 4) + 𝑑1(2𝑋 + 4) + 𝑒1 · 8

and similarly, ℓ2 can be written as 𝑎2𝑋
4 + 𝑏2𝑋

3 + 𝑐2(𝑋2 + 4) + 𝑑2(2𝑋 + 4) + 𝑒2 · 8, where all of

𝑎1, ...𝑒1, 𝑎2, ..., 𝑒2 are in Z.

Next, note that it suffices to prove that 𝐿1 = (ℓ1, ℓ2, 𝑋
5, 48) as ideal of Z[𝑋] does not contain

all three of 8, 2𝑋+4, and 𝑋2+4. We will instead prove something stronger that 𝐿2 = (ℓ1, ℓ2, 𝑋
4, 16)

as ideal of Z[𝑋] does not contain all three of 8, 2𝑋 + 4, and 𝑋2 + 4.

Further, since we have included 𝑋4 in 𝐿2, we can now assume w.l.o.g. that 𝑎1 and 𝑎2 are zero.

Further, using Euclidean algorithm, w.l.o.g. assume that 𝑐2 is zero. Thus, ℓ1 = 𝑏1𝑋
3 + 𝑐1(𝑋2 +4) +

𝑑1(2𝑋 + 4) + 𝑒1 · 8, and ℓ2 = 𝑏2𝑋
3 + 𝑑2(2𝑋 + 4) + 𝑒2 · 8. Further, since 16 is included in 𝐿2, 𝑒1 and

𝑒2 can just be restricted to {0, 1}.

Now, since 𝐿2 must generate 𝑥2 + 4, and given that 𝑏1, ...𝑒1, 𝑏2, ..., 𝑒2 are just integers, it is

clear that 𝑐1 = 1 mod 16. Also, it is clear that both 𝑒1 and 𝑒2 cannot be zero, for otherwise 8 cannot

be generated. Since 𝑐1 is non-zero, to generate 2𝑥 + 4, modulo 16, one can only use ℓ2 (and not

use ℓ1), and hence 𝑑2 = 1 mod 16, and 𝑏2, 𝑒2 = 0 mod 16, which as argued above just means that

𝑒2 = 0, and hence 𝑒1 = 1. But, this means 𝑋2 + 4 cannot be generated from 𝐿2. That completes

the proof of (i)

We now go on to prove (ii)-(iv). We have already shown above that the HNF of the ideal I
11This has/can been computed by hand, but has also been confirmed by a number theory software.
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is not diagonal, so that proves (iv). Since, the ideal I contains 𝑋2 + 4, any rational scaling of I

that keeps it as a subset of R must be an integer scaling. However, the above proof of non-bigenic

nature of I easily extends to any integer scaling of I.

For (iii), we first show that I by itself (i.e. without any scaling) is not an ideal of OK. Recall,

𝛽 = 𝑥4/8 is in OK. We just show that (2𝑋 + 4) · 𝛽 is not in I, and hence I is not closed under

multiplication by OK. To begin with, note that (𝑋2 + 4) (𝑋2 − 4) = (𝑋4 − 16) is in the ideal I.

Using this, we have (2𝑋 + 4) · 𝛽 = 𝑋5/4 + 𝑋4/2 = 12 + 𝑋4/2 = 12 + 8 (modulo I) which is same

as 4 modulo 8. Since 4 is not in the ideal I (of R), this completes the proof.

Next, consider the set 𝑝
𝑞
· I, for co-prime integers 𝑝, 𝑞. Again, we just show that 𝑝

𝑞
(2𝑋 + 4) · 𝛽

is not in 𝑝

𝑞
· I. But this is same as checking that (2𝑋 + 4) · 𝛽 is not in I, since R is an integer

domain.

To prove (v), note that (4, 𝑋 +2) · (2, 𝑋) = (8, 2(𝑋 +2), 4𝑋, 𝑋 (𝑋 +2)). This is easily seen to be

same as (8, 2(𝑋 + 2), 4(𝑋 + 2), 𝑋2 + 2(𝑋 + 2) − 4+ 8), and hence is same as (8, 2(𝑋 + 2), 𝑋2 + 4) =

I.
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Chapter 3: Symmetrically Secure PIR from Ring-LWE

In this chapter, we show how to instantiate a symmetrically secure private information retrieval

from the RLWE assumption. We start by providing introduction in Section 3.1. Then we give out

necessary definitions in Section 3.2 and present our main construction in Section 3.3. Finally we

describe our implementation and evaluate the performance in Section 3.4.

3.1 Introduction

An important application of Ring-LWE based cryptography is to instantiate a practical com-

putationally private information retrieval (PIR) protocol. PIR [Cho+95] allows a client to retrieve

a data entry from a server, while hiding which entry was retrieved from the server. It’s an im-

portant building block which can benefit many privacy preserving applications, including private

media steaming [Agu+16; Gup+15], subscription [Che+20a], private group messaging [Che+20b],

anonymous communication [Mit+11; AS16; Kwo+16; GKL10], and ad delivery [GLM16]. How-

ever, PIR is quite costly. First, it requires the server to process the whole database in order to

maintain the privacy of the query. This is inherent, since if certain entries are not processed, the

server would know they are not retrieved by the client.

Over the years, there are many PIR protocols in the literature [Agu+16; CMS99; Abu+17;

DC14; Kia+15; KO97; LP17; Ste98; GHO19; Döt+19; GR05], including considerable implemen-

tation efforts in recent years. There are generally two lines of implementation works. One follows

from Gentry and Ramzan [GR05], which has good communication but a high computational cost.

The other builds on XPIR by Aguilar-Melchor et. al. [Agu+16]. The later one contains the most

efficient implementations to date, who are Ring-LWE based: SealPIR by Angel et. al. [Ang+18],

MulPIR by Ali et. al. [Ali+21], and SHECS-PIR by Park and Tibouchi [PT20].
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A stronger version of PIR is Symmetrically Private Information Retrieval (SPIR) [Ger+00],

where we additionally require privacy for the server’s data. Specifically, the requirement is that

the client should only learn the retrieved data entry, but not any information about any other data

entries. This can be useful in many applications where the data consists of sensitive information

(e.g., a medical database).

Currently, all these implemented PIR schemes do not satisfy such a security guarantee. For the

homomorphic encryption based protocols (the line we will follow), the reason is the following. To

improve efficiency, these protocols take advantage of compressing more data into a single cipher-

text, allowing the client to retrieve a large chunk of data from each ciphertext (usually more than

one entry). Simply reducing the amount of data packed in each ciphertext would cause a large over-

head in efficiency. Moreover, even with only one entry packed in one ciphertext, these schemes

leak information about the data beyond a single entry. One can apply standard techniques to add

data privacy (which is indeed discussed in some of the above works, but not implemented), but this

may result in further decrease in efficiency, as well as other disadvantages, discussed below.

Alternatively, we present XSPIR, a practically efficient SPIR scheme. We follow the line of

works that started with XPIR and culminated in SealPIR, MulPIR, SHECS-PIR [Agu+16; Ang+18;

Ali+21; PT20], and add data privacy against a semi-honest client. Crucially, we use techniques that

are directly integrated with the underlying BFV Leveled Homomorphic Encryption scheme [Bra12;

FV12] (based on the RLWE assumption). This is in contrast with general ways to transform PIR

schemes to SPIR schemes as proposed in previous works. For example, [Ali+21] discuss in their

appendix how data privacy can be added on top of MulPIR, by using oblivious Pseudorandom

Function (OPRF), for which the constructions are mainly based on DDH assumption [MRR20;

MR19]. Our technical approach enjoys the following advantages.

• Better security with low overhead: we add data privacy against a semi-honest client (namely,

the client cannot learn any information beyond the retrieved entry), while paying only a

small price in efficiency. Specifically, compared to the state-of-the-art PIR protocols (which

leak information on data), we are about 30-40% slower in computation but 20% better in
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communication.

• Extended functionality: since our scheme directly builds on BFV without dependency on

extra primitives, we can manipulate the BFV ciphertexts to allow retrieval of more complex

functions of data entries (rather than just retrieving an individual entry). For example, if the

client wants to query the summation of the cube of two entries (i.e., 𝑥3
𝑖
+ 𝑥3

𝑗
for entries 𝑖

and 𝑗), we can easily modify our scheme to achieve this functionality (relying on straight-

forward properties of the BFV scheme). The revelation of the circuit evaluation result will

not leak any extra information about the two entries or the rest of the data.

• No new assumption: as an added benefit, our SPIR scheme does not need to rely on any

additional assumption beyond the one that is used for PIR (namely RLWE, that is needed

for the BFV encryption scheme).

3.1.1 Related Works

PIR Private information retrieval (PIR) was introduced by Chor et al. [Cho+95], and inspired

two lines of work: information theoretic PIR (IT-PIR) and computational PIR (cPIR) (we will

use "PIR" to refer to cPIR by default). IT-PIR requires the database to be stored in several non-

colluding servers. The client sends a query to each server and gets the result by combining the

responses. IT-PIR has relative computational efficiency for each server and is information theoretic

secure. However, it cannot be achieved with a single server, and the privacy relies on non-collusion

of the servers, which can be problematic in practice [Bei+02; Cho+95; DHS14; DGH12; Gol07].

In contrast, cPIR requires only computational security, and can be achieved with a single server.

As previously discussed, there’s a long line of works achieving cPIR. The computational cost for

the server in all these works is quite high, which is a bottleneck for practical employment. Some

of this is inherent: indeed, the server must perform at least linear (in the size of the database)

amount of computation per query, or else some information will be leaked (e.g., if an entry is

not touched during its computation, the server knows this is not the entry that the client is trying
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to retrieve). However, the existing results involve a very heavy computation beyond the size of

the data (there is an additional multiplicative overhead depending on the security parameter and

underlying cryptographic primitives, which is quite high). Significant progress have been made

towards improving efficiency, although it remains a bottleneck.

SPIR Symmetrically private information retrieval (SPIR) was introduced by Gertner et. al. [Ger+00],

who showed how transform any PIR scheme to a SPIR scheme, in the information theoretic set-

ting. Modern cPIR schemes can also be transformed to SPIR schemes in generic ways, e.g., using

an OPRF, as discussed above. However, to the best of our knowledge, the only existing imple-

mentations of SPIR proper are from over 15 years ago, and in Java [Bon+; SJ05]. There are some

implementation of related primitives, as we discuss next.

Related Primitives There are several works implementing database access systems with more

complex queries, which include some privacy for both the client and the server (cf.,[Jar+13;

Pap+14; Fis+15]); However, these schemes do not have full privacy, and allow some leakage of

information about the queries.

A closely related primitive is 1-out-of-N Oblivious Transfer (OT). This is in fact equivalent to

SPIR, but usually used in a different context where N is small, since it typically has a commu-

nication cost linear in N (while for PIR/SPIR a major goal is sublinear communication). Indeed,

existing OT protocols mainly focus on constant size (say 1-out-of-2) OT, and on extending OT,

namely implementing a large number of OT invocations efficiently [MRR21; Rin]. The most effi-

cient 1-out-of-N OT to date (but without implementation) is [MRR20], where the authors construct

random OT (retrieving a random location from a random database). In turn, random 1-out-of-N

OT can be used at an offline stage to allow for a very efficient (but still linear) online 1-out-of-N

OT.

Another relevant primitive is Private Set Intersection (PSI) [Mea86; HFH99; CLR17a; Che+18;

Con+21]. PSI has two parties, a sender and a receiver, each holding a set of elements, who would

like to privately compute the intersection of their sets. We note that most of the homomorphic en-
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cryption based PSI [CLR17a; Che+18; Con+21] rely on OPRF. Recently, Li, Lu, and Wu [LLW21]

used PSI for password checkup based on homomorphic encryption. They use a masking method

by multiplying the result with a random vector to mask the redundant data entries. This approach

bears some similarity with ours, but there are three problems trying to apply it to SPIR: first, it

requires one extra multiplicative level, resulting in an additional overhead in both communication

and computation, while our “oblivious masking” technique does not; second, this technique does

not directly apply to SPIR because SPIR requires the server to send back an entry with meaningful

data, so we cannot directly multiply our result by a random vector of numbers, (while in their case,

they just need to send zero back as an indication); third, it doesn’t prevent the server from leaking

the information about its database-dependent computation due to BFV ciphertext noise, while we

solve this problem by “ciphertext sanitization".

3.1.2 Technical Overview

We start with a brief description of how prior PIR protocols that we build on work at a high

level. We first fold the database as a hypercube (for example, a 2-dimensional matrix), and recur-

sively process the query for each dimension (say rows and then columns) [KO97; Ste98]. Based

on the BFV leveled homomorphic encryption scheme [Bra12; FV12], each query is represented

as a ciphertext, which would later be obliviously expanded to an encrypted 0/1 indicator vec-

tor [Ang+18; Ali+21]. The server then homomorphically performs the inner product between those

0/1 indicator vectors and the database, and returns the result. Note that BFV homomorphic encryp-

tion scheme allows packing multiple plaintexts inside one ciphertext, enabling “single instruction,

multiple data" (SIMD) style homomorphic operations [GHS12; SV11; BGH13; Che+19]. The

database can be reshaped to pack more than one data entry together for better performance.

Prior PIR constructions, following the above outline, do not achieve data privacy. We identify

two main causes of information leakage, and propose new techniques (directly integrated with the

BFV encryption scheme) in order to overcome them efficiently.

• With ciphertext packing optimization, the client will get more than one data entry from the
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server’s response ciphertext. A simple solution is to give up on full-capacity ciphertext

packing to achieve data privacy. But its price is a great reduction in efficiency, because we

can no longer fully utilize the “SIMD"-style operations provided by the underlying BFV

scheme. This results more expensive homomorphic operations required during the server’s

computation. To overcome this problem, we introduce an "oblivious masking" procedure,

which maintains the ciphertext packing feature, but can efficiently remove the undesired

data entries from the packed ciphertext, without letting the server know which data entries

are kept. In addition, we integrate the oblivious masking with the PIR query procedure, so it

does not introduce any extra communication cost.

• At high level, the PIR protocol works as follow: the client sends some ciphertexts to the

server, the server perform some database dependent computation on the received ciphertexts

and returns the result to the client. The security of the underlying homomorphic encryp-

tion scheme is protecting the information encrypted inside the original ciphertexts. But the

server’s result could leak information about the computation, and hence give extra informa-

tion about the database other than the queried entry. We use ciphertext sanitization [Gen09;

DS16] to make sure that, even with the secret key, the client cannot learn extra information

about a ciphertext other than the decrypted message.

3.2 Preliminaries

3.2.1 (Symmetrically) Private Information Retrieval

We focus only on single round cPIR, where the client sends a single query message and the

server sends a single response message. Our protocol adheres to this form, as do other recent

efficient PIR protocols.

A PIR scheme is parameterized by the database size 𝑁 ,1 and consists of 3 PPT algorithms:

• pp← PIR.Setup(_): Instantiate the protocol with security parameter _.

1we leave the size of each element implicit as it does not affect the definition.
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• q← PIR.Query(𝑖): Given an input 𝑖 ∈ [𝑁], the client generates a query q to the server.

• r ← PIR.Response(q,DB): the server takes the client’s query q and a database DB =

(DB0, . . . ,DB𝑁−1) of 𝑁 entries, and replies to the client with r.

• 𝑧 ← PIR.Extract(r): the client extracts the information from the server’s reply r.

Correctness requires that, for all 𝑖 ∈ [𝑁], for any output of the query function q← PIR.Query(𝑖),

for all database DB and reply r← PIR.Response(q,DB) generated by the server, it has PIR.Extract(r) =

DB𝑖.

Definition 3.2.1 (Query Privacy). We say a PIR scheme is (computationally) query private if

and only if for any two queries 𝑖 and 𝑖′, the two distributions q ← PIR.Query(𝑖) and q ←

PIR.Query(𝑖′) are computationally indistinguishable.

Definition 3.2.2 (Data Privacy for Semi-Honest Client). We say a PIR scheme is (computationally)

data private if and only if, for all 𝑖 ∈ [𝑁], given query q← PIR.Query(𝑖), for any two databases

DB and DB′ where DB𝑖 = DB′𝑖, the two distributions r ← PIR.Response(𝑞,DB) and r′ ←

PIR.Response(𝑞,DB′) are computationally indistinguishable.

In the following part, we use PIR to refer to a PIR scheme with query privacy only, and SPIR

(or symmetric PIR) to refer to PIR with both query privacy and with data privacy for semi-honest

client. In both cases, we mean computational schemes (with a single server) and one-round of

communication as defined above.

We care about 2 types of complexity measures:

• Computational complexity: in particular, the server’s running time for PIR.Response (as

well as the client’s running time for PIR.Query and PIR.Extract, but this is typically much

smaller, which typically takes only milliseconds and independent of database size).

• Communication complexity: the upload cost is measured by |q| and the download cost is

measured by |r|.
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3.2.2 Homomorphic Encryption

We use homomorphic encryption scheme as a public key encryption scheme that can homo-

morphically evaluate arithmetic operations on messages inside ciphertexts. We can formulate it as

the following 4 PPT algorithms:

• (pk, sk) ← HE.Setup(1_): Takes security parameter _ as input and outputs public key pk,

secret key sk.

• ct← HE.Enc(pk, 𝑚): Takes pk and a plaintext 𝑚 as inputs, and outputs a ciphertext ct.

• ct′ ← HE.Eval(pk, 𝐶, (ct1, . . . , ct𝑡)): Takes pk, a circuit 𝐶 and multiple input ciphertexts

(ct1, . . . , ct𝑡) and outputs a ciphertext ct′.

• 𝑚′← HE.Dec(sk, ct): Takes sk and a ciphertext ct as input and outputs a plaintext 𝑚′.

For correctness, we require that HE.Dec(sk,HE.Enc(pk, 𝑚)) = 𝑚 for (pk, sk) ← HE.Setup(1_)

and require HE.Eval to homomorphically apply the circuit 𝐶 to the plaintext encrypted inside the

input ciphertexts.

Definition 3.2.3 (Semantic Security). We say a homomorphic encryption scheme is semantically

secure if and only if for any two messages 𝑚 and 𝑚′, the two distributions ct ← HE.Enc(pk, 𝑚)

and ct′← HE.Enc(pk, 𝑚′) are computationally indistinguishable given the public key pk.

Ciphertext Sanitization Most homomorphic encryption scheme only cares about hiding the en-

crypted messages. However, the result ciphertext of the homomorphic evaluation could leak some

information about the evaluated circuit𝐶, which might be harmful in some applications. One could

employ a randomized sanitization proposed by Ducas and Stehlé [DS16] HE.Sanitize(pk, ct) to

achieve circuit privacy, satisfying the following:

• [Correctness] For any ciphertext ct, HE.Dec(sk,HE.Sanitize(pk, ct)) = HE.Dec(sk, ct);
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• [(Statistical) Sanitization] For any two ciphertext ct, ct′ such that HE.Dec(sk, ct) = HE.Dec(sk, ct′),

the two distributions after sanitizations HE.Sanitize(pk, ct) and HE.Sanitize(pk, ct′) are

(statistically) indistinguishable given keys pk and sk.

Brakerski/Fan-Vercauteran Scheme We use the Brakerski/Fan-Vercauteran homomorphic en-

cryption scheme [Bra12; FV12], which we refer to as the BFV scheme. Given a polynomial from

the cyclotomic ring 𝑅𝑡 = Z𝑡 [𝑋]/(𝑋𝐷 + 1), the BFV scheme encrypts it into a ciphertext consisting

of two polynomials, where each polynomial is from a larger cyclotomic ring 𝑅𝑞 = Z𝑞 [𝑋]/(𝑋𝐷 +1)

where 𝑞 > 𝑡. We refer to 𝑡, 𝑞 and 𝐷 as the plaintext modulus, the ciphertext modulus, and the ring

size, respectively. We require the ring dimension 𝐷 to be a power of 2.

In addition to standard homomorphic operations, like addition and multiplication between a ci-

phertext and another ciphertext/plaintext, BFV scheme also supports substitution [Ang+18]. Given

an odd integer 𝑘 and a ciphertext ct encrypting a polynomial 𝑝(𝑥), the substitution operation

SUB(ct, 𝑘) returns a ciphertext encrypting the polynomial 𝑝(𝑥𝑘 ). For example, taking 𝑘 = 3, an

encrypted polynomial 3 + 𝑥 + 5𝑥3 can be substituted to be a ciphertext encrypting 3 + 𝑥3 + 5𝑥9.

With Enhanced Ring-LWE By Chapter 2, we can also instantiate the BFV scheme on poly-

nomial rings that are non Dedekind domains, by picking an irreducible non cyclotomic modular

polynomial. All the homomorphic operations, including the substitution, naturally extend to this

case.

The efficient implementation of homomorphic operations, particularly those that involve poly-

nomial multiplications, is crucial for the practicality of homomorphic encryption schemes. These

implementations typically rely on fast discrete Fourier transforms or fast number theoretic trans-

forms. However, such implementations require that the modular polynomial, with a degree of 𝐷,

has 𝐷 primitive roots over Z𝑞, where 𝑞 is the ciphertext modulus. This requirement also holds for

cyclotomic rings.

To achieve a more robust security foundation without sacrificing efficiency, we recommend

selecting a modular polynomial that is a "twisted cyclotomic" polynomial of the form 𝑋𝐷 − 𝑎,
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where 𝑎 has a 𝐷-th root over Z𝑞. In this case, the primitive roots of 𝑎1/𝐷 over Z𝑞 are the primitive

roots of 𝑋𝐷 − 1 over Z𝑞, scaled by 𝑎1/𝐷 . By selecting a “twisted cyclotomic" polynomial, one can

achieve the necessary primitive roots while also ensuring that the polynomial algebraic structure is

not easily exploited by potential attackers.

3.3 Constructing XSPIR

In Section 3.3.1, we provide a PIR protocol without data privacy, based on state-of-the-art

PIR [Ang+18; Ali+21], which we will use as our starting point. Then in Section 3.3.2, we present

our new techniques, and how they can be integrated with the PIR protocol to efficiently provide

the data privacy.

3.3.1 PIR from Homomorphic Encryption

Baseline PIR We start from the basis for most state-of-the-art practical PIR protocols. The

scheme relies on homomorphic encryption, and its simplest version is the following. Given a

database (DB0, . . . ,DB𝑁−1) of 𝑁 entries, the client initiates the query by sending 𝑁 ciphertexts

𝑐𝑖, where the ciphertext for the desired entry encrypts 1, and all other ciphertexts encrypt 0 (that

is, the ciphertexts encrypt an indicator vector). For each ciphertext, the server homomorphically

multiplies it by the corresponding entry DB𝑖 from the database, and returns the homomorphic sum

of the results
∑𝑁
𝑖=1 DB𝑖 · 𝑐𝑖, which is the encryption of the desired entry.

To achieve sublinear communication, Kushilevitz, Ostrovsky [KO97] and later Stern [Ste98]

proposed applying this scheme recursively: parameterized by the recursion level 𝑑, instead of view-

ing the database as a one-dimensional vector of length 𝑁 , one can arrange it into a 𝑑-dimensional

hypercube. Now each entry in the database will be indexed by a length-𝑑 vector (𝑖0, . . . , 𝑖𝑑−1)

where each index ranges from 0 to 𝑁1/𝑑 . The retrieval process is then handled recursively, where

the client sends 𝑁1/𝑑 ciphertexts for each level (encrypting an appropriate indicator vector), for a

total of 𝑑 · 𝑁1/𝑑 ciphertexts. The server sends back one ciphertext (resulting from homomorphic

operations of addition and multiplication by plaintexts).

71



Compressing Queries In the above protocol, each ciphertext sent by the client encrypts a single

bit, blowing up communication. To reduce communication, SealPIR [Ang+18] and MulPIR [Ali+21]

instantiate the underlying homomorphic encryption scheme with the BFV scheme. Recall that in

BFV, each ciphertext encrypts an element from cyclotomic ring Z𝑡 [𝑋]/(𝑋𝐷 + 1) where 𝐷 is a

power of 2, which is a degree-𝐷 polynomial with integer coefficient ranging from 0 to 𝑡 − 1 for

some large prime 𝑡. Now, instead of encrypting a single bit, a BFV ciphertext encrypts a vector

consisting of the coefficients of the polynomial (i.e., 𝐷 elements in Z𝑡).

Specifically, to represent a query of index 𝑖, instead of sending an indicating vector of cipher-

texts, SealPIR [Ang+18] first sends an encrypted monomial 𝑥𝑖 (which can be viewed as a polyno-

mial with coefficients being the indicating vector for 𝑖). The server then runs a procedure called

oblivious expansion that allows it to obtain the encrypted coefficients and get the 0/1 indicator

vector. Later MulPIR [Ali+21] observed that such technique works not only on a monomial 𝑥𝑖,

but also for general polynomials, and took advantage of this for polynomials with more than one

non-zero coefficients. Details of oblivious expansion is shown in Algorithm 3.1.
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Figure 3.1 Oblivious Expansion based on [Ang+18; Ali+21].
Given an input ciphertext q encrypting a polynomial 𝑝(𝑥) of degree 𝑛, return a list of 𝑛 ciphertexts,
encrypting the coefficients of 𝑝(𝑥).
Recall the homomorphic substituion operation: given a ciphertext ct encrypting 𝑝(𝑥) and an odd
integer 𝑘 , the substitution SUB(ct, 𝑘) returns a ciphertext encrypting polynomial 𝑝(𝑥𝑘 ). We know
that 𝑥𝐷 is equal to −1 on cyclotomic ring Z𝑡 [𝑋]/(𝑋𝐷 + 1). For polynomial 𝑝(𝑥) = ∑𝐷−1

𝑖=0 𝑑𝑖 · 𝑥𝑖,
substituting it with 𝑘 = 𝐷+1 gives 𝑝(𝑥𝐷+1) = ∑𝐷−1

𝑖=0 𝑑𝑖 ·𝑥𝑖·𝐷+𝑖 =
∑𝐷−1
𝑖=0 𝑑𝑖 · (−1)𝑖 ·𝑥𝑖. Adding it back

to 𝑝(𝑥) would zero out every coefficient for 𝑥𝑖 where 𝑖 is odd, and double every other coefficients.
Repeatedly using similar steps for 𝑘 = 𝐷/2 𝑗 + 1 on 𝑝(𝑥) would zero out every coefficient of 𝑥𝑖
where 𝑖 is not 0, and multiply 𝑑0 by some power of 2. Then with some “shifting" (multiplying with
some monomial 𝑥−2 𝑗 ), and dividing by the appropriate power of 2, given a encrypted polynomial
𝑝(𝑥) = ∑𝑛−1

𝑖=0 𝑑𝑖 · 𝑥𝑖, one can extract a vector of ciphertexts where the 𝑖𝑡ℎ ciphertext encrypts 𝑑𝑖.

procedure EXPAND(q, 𝑛, 𝐷) ⊲ 𝐷 is the ring size for the underlying BFV HE scheme

Find 𝑚 = 2ℓ such that 𝑚 ≥ 𝑛

clist← [q]

for 𝑗 = 0 to ℓ − 1 do

for 𝑘 = 0 to 2ℓ − 1 do

𝑐0 ← clist[𝑘]

𝑐1 ← 𝑥−2 𝑗 · 𝑐0 ⊲ scalar multiplication

𝑐′
𝑘
← SUB(𝑐0, 𝐷/2 𝑗 + 1) + 𝑐0

⊲ SUB is the substitution in BFV HE scheme

𝑐′
𝑘+2 𝑗 ← SUB(𝑐1, 𝐷/2 𝑗 + 1) + 𝑐1

end for

clist← [𝑐′0, ..., 𝑐
′
2 𝑗+1−1]

end for

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 ← 𝑚−1 (mod 𝑡) ⊲ 𝑡 is the plaintext modulus

for k = 0 to 𝑛 − 1 do

𝑟𝑘 ← clist[𝑘] · 𝑖𝑛𝑣𝑒𝑟𝑠𝑒

end for

return (𝑟0, ..., 𝑟𝑛−1)

end procedure
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Packing More Information As discussed above, the ciphertext encrypts an integer polynomial

with degree 𝐷 and coefficients from Z𝑡 . One could pack at most 𝐷 · ⌊log 𝑡⌋ bits of data inside a

single ciphertext. For better efficiency, we should reshape the database so that each entry is of size

𝐷 · ⌊log 𝑡⌋ bits. For a typical choice of parameters for BFV scheme, say 𝐷 = 8192 and 𝑡 ≈ 220 (𝑡

being a prime slightly larger than 220), that’s about 20KB data per ciphertext.

Combining all these techniques, we show our PIR construction in Algorithm 3.2. The overall

algorithm is the same as the MulPIR algorithm in [Ali+21]. We tuned the parameters in order to

increase efficiency in some settings, and to allow us to add data privacy without changing to less

efficient BFV parameters, as we do in the next section. Detailed performance comparisons are in

section 3.4.
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Figure 3.2 A baseline PIR Scheme (following [Ali+21])

1: procedure PIR.Setup(_)

2: (pk, sk) ← HE.Setup(1_)

3: return (pk, sk)

4: end procedure

5: procedure PIR.Query(𝑁, 𝑑, pk, 𝑖 = (𝑖0, ..., 𝑖𝑑−1))

6: Initialize polynomial 𝑝 = 0

7: for 𝑗 = 0 to 𝑑 − 1 do

8: 𝑝 ← 𝑝 + 𝑥 𝑗 ·𝑁1/𝑑+𝑖 𝑗

9: end for

10: q← HE.Enc(pk, 𝑝)

11: return (q)

12: end procedure

13: procedure PIR.Response(DB, 𝑁, 𝑑, pk, q)

14: 𝑛← 𝑁1/𝑑

15: 𝑖𝑑𝑥 ←EXPAND(𝑞, 𝑑 · 𝑛, 𝐷) ⊲ Oblivious expansion in 3.1

16: for 𝑘 = 0 to 𝑑 − 1 do

17: q𝑘 ← [𝑖𝑑𝑥 [𝑘 · 𝑛 + 0], . . . , 𝑖𝑑𝑥 [𝑘 · 𝑛 + 𝑛 − 1]]

18: end for

19: rlist← [DB0, . . . ,DB𝑁−1]

20: ℓ ← 𝑁/𝑛

21: for 𝑘 = 0 to 𝑑 − 1 do

22: for 𝑖 = 0 to ℓ − 1 do

23: r𝑖 ← ⟨q𝑘 , [rlist[0 · ℓ + 𝑖], . . . , rlist[(𝑛 − 1) · ℓ + 𝑖]]⟩

24: end for

25: rlist← [r0, . . . , rℓ−1]

26: ℓ ← ℓ/𝑛

27: end for

28: r← rlist[0]

29: return r

30: end procedure

31: procedure PIR.Extract(sk, r)

32: 𝑧 ← HE.Dec(sk, r)

33: return 𝑧

34: end procedure
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3.3.2 XSPIR: Adding Data Privacy

So far, we described efficient standard PIR. However, this protocol (like the ones it was based

on) leaks information about the data, even to an honest client. To achieve data privacy, we need to

address the following two problems:

• As previously discussed, to better utilize the plaintext space of the BFV scheme and improve

efficiency, we reshaped the database so that each entry now fits in a degree-𝐷 polynomial

with coefficients from Z𝑡 , which packs 𝐷 · ⌊log 𝑡⌋ bits of information. If the client is only

allowed to learn, say, a single element from Z𝑡 , a simple solution would be to pack only one

coefficient inside each ciphertext. However, this solution is very costly. Is it possible to pack

many values (say 𝐷) inside one ciphertext for better efficiency, while the client cannot learn

extra information except for only one of them?

• The server computes a deterministic PIR.Response procedure that depends on every part

of the database. The output naturally leaks information about the server’s computation and

hence other parts of the database. Consider the following simple example: the client is

fetching 0-th entry from a database DB = (DB0,DB1) with 2 entries. After learning DB0,

the client can learn DB1 by iterating over all possible values and simulating the server’s

computation. Is there a way to make the server’s output ciphertext irrelevant for any part of

the database other than the retrieved entry?

Instead of taking a generic approach as suggested by [Ali+21], we show how to efficiently

achieve the data privacy by directly taking advantage of the underlying BFV homomorphic en-

cryption scheme.

Oblivious Masking In the previous PIR construction, one ciphertext encrypts a polynomial

𝑝(𝑥) = ∑𝐷−1
𝑖=0 𝑑𝑖 · 𝑥𝑖, where each 𝑑𝑖 is a part of the reshaped data entry that lies in Z𝑡 . To ad-

dress the first problem above, if the client is only allowed to learn 𝑑𝑘 for some 𝑘 ∈ [𝐷], we need

an efficient way to obliviously remove unnecessary information (the other coefficients).
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Let us start with a first attempt. To keep only the 𝑘-th part 𝑑𝑘 of the polynomial 𝑝(𝑥), the

client could send another ciphertext encrypting 𝑥−𝑘 , and the server can multiply them together to

get 𝑝′(𝑥) = 𝑥−𝑘 · 𝑝(𝑥) = ∑𝐷−1
𝑖=0 𝑑𝑖 · 𝑥𝑖−𝑘 . In this case, the constant coefficient is what we are looking

for. We could use a similar procedure to oblivious expansion in Algorithm 3.1 to extract it out.

This method brings an additional overhead as the client needs to send an additional ciphertext

encrypting 𝑥−𝑘 . To save this communication overhead, we observe that the client is not fully utiliz-

ing the plaintext space Z𝑡 [𝑋]/(𝑋𝐷 + 1), as the query ciphertexts sent by the client are polynomials

with 0/1 coefficients. We could embed the information 𝑘 in those coefficients without introducing

a new monomial, with an alternative packing technique.

First, instead of sending a new ciphertext encrypting 𝑥−𝑘 , we put 𝑘 into the first query ciphertext

sent by the client. For example, instead of sending 𝑥𝑖 for some index 𝑖, we send (𝑘+1) ·𝑥𝑖. After the

oblivious expansion, the server can sum up the results to obtain a ciphertext encrypting a constant

polynomial (𝑘 + 1). It requires 𝑡 > 𝐷, which is almost always the case.

Second, instead of packing data entires (𝑑0, . . . , 𝑑𝐷−1) into the coefficients of a polynomial,

we would find a polynomial 𝑝(𝑥) such that 𝑝(𝜔𝑖) = 𝑑𝑖 using number-theoretic transformation,

where 𝜔𝑖 is the 𝑖-th root of unity in Z𝑡 , similar to the technique shown in [SV11]. Our goal is then

to keep only the information on 𝑝(𝜔𝑘 ) = 𝑑𝑘 . To achieve this, we could add a random polynomial

with 𝑟 (𝜔𝑘 ) = 0 to it. We first find a polynomial 𝑞(𝑥) with 𝑞(𝜔𝑖) = −(𝑖 +1). Adding to it a constant

polynomial (𝑘 + 1) results in a new polynomial 𝑞′(𝜔𝑖) = 𝑘 − 𝑖. Finally, multiplying it by a random

polynomial gives us what we want.

Such technique also works when the client is retrieving more than one consecutive elements in

Z𝑡 . For example, if every data entry fits in 2 elements of Z𝑡 , we could find the polynomial 𝑞(𝑥)

with 𝑞(𝜔𝑖) = ⌊−(𝑖/2 + 1)⌋ instead of −(𝑖 + 1). And the rest of the computation would be the same.

Ciphertext Sanitization To address the second problem and make sure that the result doesn’t

contain information about other parts of the database, one way is to use the ciphertext sanitization

procedure proposed by Ducas and Stehlé [DS16]. For efficiency, we use a simpler way of re-
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randomization, which is noise flooding [Gen09; DS16]. Specifically, before sending back the

result, the server adds an encryption of zero to it with certain amount of noise, so that the result

will be statistically close to a freshly encrypted ciphertext. To achieve statistical distance of 2−𝑠,

a standard smudging lemma [Ash+12] shows that it suffices to add to it an encryption of 0 with

noise level 𝑠 + log2 𝐷 bits higher than the original ciphertext.

We apply all these techniques to our PIR scheme to make it into a SPIR scheme, which we call

XSPIR. See Algorithm 3.3 for the detailed scheme.
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Figure 3.3 XSPIR: Our SPIR Scheme
Blue lines are differences from the previous PIR protocol 3.2

1: procedure PIR.Setup(_)

2: (pk, sk) ← HE.Setup(1_)

3: return (pk, sk)

4: end procedure

5: procedure PIR.Query(𝑁, 𝑑, pk, 𝑖 = (𝑖0, ..., 𝑖𝑑−1, 𝑘))

6: Initialize polynomial 𝑝 = 0

7: for 𝑗 = 0 to 𝑑 − 1 do

8: 𝑝 ← 𝑝 + (𝑘 + 1)·𝑥 𝑗 ·𝑁1/𝑑+𝑖 𝑗

9: end for

10: q← HE.Enc(pk, 𝑝)

11: return (q)

12: end procedure

13: procedure PIR.Response(DB, 𝑁, 𝑑, pk, q)

14: 𝑛← 𝑁1/𝑑

15: 𝑖𝑑𝑥 ←EXPAND(𝑞, 𝑑 · 𝑛, 𝐷)

16: for 𝑘 = 0 to 𝑑 − 1 do

17: q𝑘 ← [𝑖𝑑𝑥 [𝑘 · 𝑛 + 0], . . . , 𝑖𝑑𝑥 [𝑘 · 𝑛 + 𝑛 − 1]]

18: end for

19: rlist← [DB0, . . . ,DB𝑁−1]

20: ℓ ← 𝑁/𝑛

21: for 𝑘 = 0 to 𝑑 − 1 do

22: for 𝑖 = 0 to ℓ − 1 do

23: r𝑖 ← ⟨q𝑘 , [rlist[0 · ℓ + 𝑖], . . . , rlist[(𝑛 − 1) · ℓ + 𝑖]]⟩

24: end for

25: rlist← [r0, . . . , rℓ−1]

26: ℓ ← ℓ/𝑛

27: end for

28: r← rlist[0]

29: pt← (−1, . . . ,−𝐷) ⊲ Making a plaintext polynomial, where pt(𝜔𝑖) = −(𝑖 + 1)

30: ct← ∑𝑛−1
𝑖=0 𝑞0 [𝑖] ⊲ Sum of q0 is an encrypted constant polynomial 𝑘 + 1

31: ct← pt + ct ⊲ Scalar addition

32: pt← Z𝑡 [𝑋]/(𝑋𝐷 + 1) ⊲ Uniformly sample a random polynomial

33: ct← pt · ct ⊲ Scalar multiplication

34: r← r + ct ⊲ Homomorphic addition

35: r← HE.Sanitize(pk, r) ⊲ Sanitize by adding an encryption of 0 with large noise

36: return r

37: end procedure

38: procedure PIR.Extract(sk, r, 𝑘, 𝑑)

39: 𝑧 ← (𝑘 + 1)−𝑑 ·HE.Dec(sk, r)

40: return 𝑧

41: end procedure
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3.3.3 Security

The query privacy (see definition 3.2.1) follows directly from the semantic security of the un-

derlying BFV homomorphic encryption scheme [Bra12; FV12]. As the client is sending encrypted

indices, and the semantic security (see definition 3.2.3) guarantees that the server cannot learn any

information from the ciphertext.

Data privacy against semi-honest clients (see definition 3.2.2) is more complex. For all 𝑘 ∈

[𝑁], given client’s query q ← PIR.Query(𝑘), for any two databases DB and DB′ where DB𝑘 =

DB′𝑘 , consider the following two distributions r← PIR.Response(𝑞,DB) and r′← PIR.Response(𝑞,DB′).

Ciphertext sanitization (see 3.2.2 and [DS16]) guarantees that, for any ciphertext ct encrypting

some polynomial 𝑝, the distribution HE.Sanitize(pk, ct) is indistinguishable from a freshly en-

crypted ciphertext HE.Enc(pk, 𝑝). Therefore both r and r′ are indistinguishable from the fresh en-

cryption of their underlying messages, respectively. We further show that r and r′ encrypt messages

from the same distribution. WLOG, assume that the whole database can be packed into one cipher-

text and 𝐷 = 𝑁 . It is not hard to extend the argument to the general case of 𝑁 > 𝐷. The ciphertext

r is encrypting a polynomial 𝑝 whose coefficients are in Z𝑡 such that 𝑝(𝜔𝑖) = (𝑘+1) ·DB𝑖+(𝑘−𝑖) ·𝑟𝑖

where 𝑟𝑖 is uniformly distributed over Z𝑡 . If 𝑖 = 𝑘 , we have 𝑝(𝜔𝑘 ) = (𝑘 + 1) · DB𝑘 . Otherwise

𝑝(𝜔𝑖) is distributed uniformly at random over Z𝑡 for 𝑘 ≠ 𝑖 ∈ [𝐷]. Similar argument works for r′:

r′ is encrypting a polynomial 𝑝′ such that 𝑝′(𝜔𝑖) is a uniform random element from Z𝑡 for 𝑖 ≠ 𝑘

and 𝑝′(𝜔𝑘 ) = (𝑘 + 1) · DB′𝑘 = (𝑘 + 1) · DB𝑘 = 𝑝(𝜔𝑘 ).

3.4 Implementation and Evaluation

In this section, we describe our implementation, evaluate its performance, and compare it with

previous implementations. One thing to note is that, since there are no public modern SPIR im-

plementations, we could only compare our XSPIR protocol with the state-of-the-art PIR protocols

(which is not data private). We show that our performance is comparable to state-of-the-art PIR

protocols while providing a stronger security guarantee.
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Implementation and Experimental Setup Our scheme is implemented on top of the SEAL

homomorphic encryption library version 3.5.6 [Seaa], with C++. We use the EXPAND algorithm

from SealPIR. For SealPIR, we use the publicly available source code [Seab], and run under the

same environment, integrating it with our testing framework.

All experiments are running on a CPU 8th Gen Intel® Core™ i7-8550U quad-core processor,

4.2GHz Max Turbo and 16 GB RAM, and with operating system Ubuntu 16.04. The numbers are

averages of 100 trials, where the standard deviations are less than 10% of the reported means. The

SealPIR code is running with the parameters suggested by their paper and code. We implement

the MulPIR on our code base with their suggested parameters. We cannot compare with SHECS-

PIR [PT20], as their code is not publicly available. However, according to our analysis based the

data provided by [PT20], our XSPIR performance would be comparable to theirs as well (with

some variations depending on the entry size).

3.4.1 Parameter Choices

We have two security parameters, a computational security parameter for the underlying BFV

scheme, and a statistical security parameter to apply noise flooding (necessary for ciphertext sani-

tization towards data privacy). We set our statistical security parameter to 𝑠 = 40, as suggested by

standard practice, and widely used in many other works [CLR17b; OOS17; Kol+16]. According

to the smudging lemma in [Ash+12], an additional noise of 𝑠 + log𝐷 bits is applied to guarantee a

statistical distance of ≤ 2−𝑠. We set our computational security parameter to _ = 128 as suggested

by [Alb+18]. We set our ring size to be 𝐷 = 8192 and therefore according to [Alb+18], we have

a noise budget of 218 bits with 𝐷 = 8192, _ = 128. For statistical secure parameter 𝑠 = 40, we

would then need 40+ log2(8192) = 53 bits of extra noise, which gives our 165 bits of noise budget

left for our entire computation. To accommodate 2.5 bytes per slot of a ciphertext, we need a prime

plaintext modulus 𝑡 of 21 bits, so for each level of multiplicative depth, we consume roughly 20-30

bits of noise budget. This is sufficient for a recursion level of 𝑑 = 2, which is the most efficient

choice. As for 𝑑 > 2, the depth of homomorphic multiplication increases, and therefore results in
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Size of database 18M 72M 288M 1.125GB

XSPIR (Server Time, ms) 1735 4921 14531 41853
SealPIR (Server Time, ms) 591 1571 6052 21675
MulPIR (Server Time, ms) 1322 3853 10785 30217

XSPIR (Upload, KB) 123 123 123 123
SealPIR (Upload, KB) 61.2 61.2 61.2 61.2
MulPIR (Upload, KB) 122 122 122 122

XSPIR (Download, KB) 73 73 73 73
SealPIR (Download, KB) 307 307 307 307
MulPIR (Download, KB) 119 119 119 119

XSPIR (Communication, KB) 196 196 196 196
SealPIR (Communication, KB) 368.2 368.2 368.2 368.2
MulPIR (Communication, KB) 241 241 241 241

Table 3.1: Entry size = 288 bytes and ring dimensions are set to 4096. In blue color is XSPIR from
Algorithm 3.3. Although there is only one ciphertext involved in both upload and download communication.
Its size varies because of the modulus switching. Other entries are PIR schemes without data privacy:
SealPIR [Ang+18], MulPIR [Ali+21].

more computational cost. Therefore, for best performance, we set 𝐷 = 8192, 𝑑 = 2 for security

requirement _ = 128, 𝑠 = 40.

To maximize the efficiency, we pack totally 8192 × 2.5bytes = 20 KB into one ciphertext. In

our experiments, we select entry size = 288 bytes (this does not influence the performance, we but

we select the same entry size as in previous works for better comparison). Given this entry size,

we can pack at most 71 entries into one single ciphertext.

3.4.2 Experimental Comparisons

To evaluate how our scheme works, we run a series of microbenchmarks to measure: (1) com-

putational cost on the server’s side, (2) upload communication cost, and (3) download communi-

cation cost. The total communication cost is measured by the sum of upload cost and download

cost. Our detailed comparisons and data are recorded in Table 3.1.

As shown in the table, for all database sizes tested, our communication cost is about 25% better

than MulPIR and around 50% better than SealPIR, while our performance is about 40-50% worse
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than MulPIR and about 2-3 times worse than SealPIR. Recall that the goal in MulPIR was to obtain

better communication (compared to SealPIR), at the price of worse computation. Our scheme can

be viewed as going even further in that direction, but more importantly, adding a better security

guarantee, for the database as well.

3.4.3 Comparison to 1-out-of-n OT

As mentioned in Section 3.1.1, SPIR is technically equivalent to 1-out-of-N OT, although the

later one is typically used in different contexts. Accordingly, the existing open-source codes [Rin]

for OT’s focus on OT extensions, running multiple OT’s at the same time. We thus can’t run their

library for executing a single (or a small number of) retrievals with the relatively huge database

size we run experiments with, as in our XSPIR.

We next try to compare our XSPIR scheme to the state of the art 1-out-of-𝑁 OT by McQuoid

et. al. [MRR20]. Since this is not impelemented, we only compare the asymptotics. In our scheme,

the communication is 𝑂 (𝑁1/𝑑), and the server’s computation is 𝑂 (𝑁 + 𝑑 · 𝑁1/𝑑) homomorphic

operations. In [MRR20], they construct random OT, where both the query and the database are

selected at random (this is typical in settings where this is used for an initial offline computation

phase).

Typically, the purpose of using a 1-out-of-N random OT is to move most of the computation to

an offline stage, where the random OT protocol is performed. Then, in the online stage when the

client receives the actual query, it sends the difference between that and the random query used to

the server. The server rotates the random data by that shift, and uses it to mask the actual database.

It then sends the whole masked database to the client. The client can unmask the desired entry

using the value obtained in the random OT phase. Using the random OT scheme of [MRR20] in

this way, we obtain a 1-out-of-N random OT with server time of 𝑂 (𝑁) exponentiations, upload

cost of 𝑂 (1), and download cost of 𝑂 (𝑁). This gives worse communication (which is no longer

sublinear!) but better computational cost than our protocol asymptotically.
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