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Abstract 

The Neurobehavioral Basis of the Parallel Individuation (PI) 

and Approximation Number System (ANS) 

 

Jean Ee Tang-Lonardo 

 

Research on numerical cognition proposes that there are two systems for the perception 

of numerical quantity, a small-number system (1~3) invoking parallel individuation, or 

“subitizing”, and a large-number system (4+) that is based on Weberian magnitude estimation 

(Hyde, 2011). Many numerical cognitive neuroscientists have focused on studying how the 

magnitude of numerosities (small vs. large numbers) and numerical distance (close vs. far 

differences between numbers) are influential factors when processing numbers and change 

detection. However, is there a difference when numerosities are increasing or decreasing? The 

effects of direction on numerical change processing are lesser known.  

This 128-channel EEG study investigated the neurobehavioral basis of differentiation 

between small vs. large-number perception and effects of change directionality. During EEG 

data collection, participants were sequentially presented with stimulus arrays of 1 to 6 dots, with 

parameters like size and location controlled for, to minimize varying non-numerical visual cues 

during habituation. Participants were instructed to press a key whenever they detect a change in 

the number of dots presented. 

The current study adapts a dot-stimuli numerical change study design from Hyde and 

Spelke (2009, 2012). In their EEG study, the researchers examined event-related-potential (ERP) 

differences during the processing of small (1, 2, 3) and large (8, 16, 24) numbers. For this study, 



 

 

we chose to examine a narrower numerical range from 1~6, so that small (1, 2, 3) vs. large (4, 5, 

6) contrasts were along a numerical continuum. In contrast to Hyde and Spelke (2009, 2012), 

where participants passively-viewed the sequential presentation of dot arrays, this study 

employed an active change detection paradigm, where participants’ reaction time (RT) and 

accuracy in detecting change in the number of dots were recorded. 

We investigated the effects of Direction and Size in numerical change detection, where 

Direction is operationally defined as Decreasing and Increasing change in numeric set size, while 

Size is divided into Small-to-Small, Large-to-Large and Crossovers. Numerical change 

conditions were categorized into six groups: “Increasing Small-to-Small” (e.g., 1-to-2, 2-to-3), 

“Decreasing Small-to-Small” (e.g., 2-to-1, 3-to-2),  “Increasing Large-Large” (e.g., 4-to-6, 5-to-

6), “Decreasing Large-Large” (e.g., 5-to-4, 6-to-5), Increasing Small-to-Large” (e.g., 2-to-4, 3-

to-5, 3-to-6) and “Decreasing Large-to-Small” (e.g., 4-to-2, 5-to-2, 6-to-3), where the last two 

groups are operationally defined as Crossovers. There was also a “No Change” condition, where 

the number of dots remain the same for up to five presentations. ERP analyses were conducted 

for the N1 component (125-200 ms) over the left and right occipital-temporal-parietal (POT) 

junction and for the P3b component (435-535 ms) over the midline parietal area (Pz).  

During the No Change condition, results show that the N1 amplitude was modulated by 

the cardinal values of the habituated numbers 1~6. Within this continuous range, we found N1 

amplitudes commensurate with cardinal values in the small range (1, 2, 3), but not in the large 

range (4, 5, 6), suggesting that numbers in the subitizing range are individuated as objects in 

working memory.  

Meanwhile, in the Change condition, there was a significant main effect of Direction on 

N1 peak latency, where the Increasing condition showed earlier peaks. In the Decreasing Small-



 

 

to-Small condition, N1 amplitudes were the lowest (even lower than N1 peaks for No Change 

conditions), while the other five Change conditions all produced higher N1 negativities than No 

Change conditions. These results imply that when the number of dots get small enough to 

parallel individuate, instead of encoding items into visual short-term memory, the brain is “off-

loading” items from our perceptual load.  

Intriguingly, although the Decreasing Small-to-Small condition had the lowest N1 

negativities, it produced the highest P3b positivity. Distinctions in P3b waveforms reflect a clear 

categorical break between small vs. large numbers, where easier/small number change conditions 

have higher amplitudes than harder, large number conditions, suggesting more difficulty with 

updating the context in the latter. However, in contrast to the earlier N1, there was no main effect 

of Direction on P3b peak latency, but there was an interaction effect of Direction by Size.  

Interestingly, there was also a similar interaction effect of Direction by Size for reaction 

times, with similar trends showing that Decreasing conditions produced shorter reaction times 

for the Large-to-Large and Crossover conditions, yet this pattern was reversed in the Small-to-

Small condition. This lends more support to the implication of the “off-loading” phenomenon 

when processing decreases of numerosities in the small range (1~3). Meanwhile, when it comes 

to context-updating at later stages, and a behavioral response is required for this change detection 

task, the Large-to-Large condition prove to be the most difficult, as there was lower accuracy, 

longer reaction times, later and lower P3b peaks. 

N1 and P3b amplitudes are complementary to each other, with the early N1 being more 

sensitive to Direction, and the later P3b being more sensitive to Size. This suggests that the 

posterior parietal cortex might encode Direction first, followed by Size. This study proposes a 

model that is an adaptation to the P3b context-updating model (Donchin, 1981), where the early, 



 

 

sensory N1 interplays with the later, cognitive P3b. These findings suggest a neurobehavioral 

basis for the differentiation of small vs. large number perception at early stages of processing 

that is sensitive to encoding vs. off-loading objects from perceptual load and visual short-term 

memory, as well as a later stage that involve higher-order cognitive processing on the magnitude 

of set size that is employed in numerical change detection tasks. 
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Chapter 1: Introduction 

1.1. Neurobehavioral Basis of Numerical Cognition 

The ability to process numerical information is crucial to navigate the human world. An 

understanding of numerical quantity is informative to decisions regarding basic survival, for 

example, to enable one to choose the habitat with the most plentiful supply of food and mates, 

whilst minimizing the risk of incoming predators. Research shows that human adults, infants and 

animals have the ability to process non-symbolic numerical quantities as represented by 

comparing related sets of objects (Dehaene, 2009; Feigenson et al., 2004; Nieder & Dehaene, 

2009). 

1.2. Non-verbal numerical mechanisms 

Two basic non-verbal mechanisms for numerosity processing have been identified: The 

Object File System (OFS; or Object Tracking System, OTS) and the Approximate Number 

System (ANS) (Feigenson et al., 2004; Piazza, 2010; Piazza & Izard, 2009).  

In numerical cognition, the OFS/OTS allows individuals to “precisely keep track of small 

numbers of individual objects and for representing information about their continuous 

quantitative properties” (Feigenson et al., 2004, p. 310). It is considered a pre-verbal domain-

general mechanism to track the spatio-temporal characteristics of a limited number of items 

(approximately 3-4), which are assigned with a visual index. One numerical mechanism of the 

OFS/OTS is “subitizing”, which allows humans to rapidly and accurately determine the 

numerosity of small sets without using a counting routine (Kaufman et al., 1949; Mandler & 

Shebo, 1982; Pylyshyn, 2001; Trick & Pylyshyn, 1994). The crucial signature of the OFS/OTS is 

its limited storage capacity (i.e., 3-4 elements), which mimics that of visual short-term memory 
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(VSTM). For this reason, some authors have suggested the OFS/OTS is intimately linked to 

VSTM (Knops et al., 2014; Piazza, 2010). 

Peter Gordon (1994) proposed that small number exact enumeration was the outcome of 

a process whereby working memory systems can represent up to three items at the same time, 

which he termed “parallel individuation”. Characterizations have linked parallel individuation to 

the idea of object files, which were introduced by Kahneman, Treisman and Gibbs (Kahneman et 

al., 1992) as a format for object representation that listed properties such as shape, color and so 

on. Parallel individuation forms a distinct representation for each object, and these 

representations process numerical content by retaining information about numerical identity, 

where mentally stored items can be compared on a one-to-one basis with visible objects in the 

scene to detect numerical matches or mismatches (Hyde, 2011).  

In the Approximate Number System (ANS), each numerosity is represented as a 

Gaussian curve of activation on a metaphorical mental number line. There are two main 

competitive mathematical models that formally describe the Approximate Number System: In 

the linear model (Gallistel & Gelman, 1992, 2000; Whalen et al., 1999), the curves of activation 

are linearly spaced with an increasing standard deviation (i.e., scalar variability) as a function of 

numerical magnitude. Conversely, in the logarithmic model (Dehaene, 2009), the standard 

deviation of the Gaussian curves is constant, whereas the distance between numerical magnitude 

is logarithmically compressed. Despite the differences in their formulation, both models explain 

behavioral results and make similar predictions.  

Comparing the difference between two numbers involves magnitude estimation, a 

perceptual judgment of relative quantity that follows Weber’s Law. Weber’s Law of 

psychophysics describes that the just-noticeable-difference between two stimuli increases 
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proportionally with magnitude or intensity (Dehaene et al., 2003; Piazza, 2010). In other words, 

if the distance between two numbers is far apart enough, we are more sensitive in detecting the 

difference in the two values. 

The characteristic signature of the ANS is the ratio-dependent effect, which states that the 

discriminability between two numerical sets crucially depends on their numerical ratio, thereby 

obeying Weber’s law. The numerical ratio is derived from the value of the smaller number 

divided by the larger number. The more the numerical ratio approaches “1”, the harder the 

discrimination is. Conversely, when the numerical ratio approaches “0”, identifying the larger 

between two numerical sets becomes an easy task. For instance, to compare 1 to 4, the numerical 

ratio is 0.25, which makes it easier to discriminate than to compare 3 to 4, with a numerical ratio 

of 0.75. 

1.3. Non- symbolic Numerical Processing in Adults 

1.3.1. Subitizing 

Different experimental paradigms have been implemented to assess subitizing in adults. 

Typically, individuals are asked to enumerate the items in a visually presented set. When few 

elements are displayed (1-3), we engage in subitizing, where the accuracy is high and reaction 

times are fast (Kaufman et al., 1949; Trick & Pylyshyn, 1994). Subitizing seems to rely heavily 

on attentional and visual short term memory capacity, which allows participants to track the 

spatiotemporal characteristics of a few items (Burr et al., 2010; Piazza, 2010; Piazza et al., 

2011). When the number of items increases beyond 3, individuals can rely on estimation or 

counting, depending on the time at their disposal. When the items are presented for a short time, 

individuals can only estimate the presented numerosity. In this case, reaction times increase with 

numerosity to a point, and then reach a plateau (i.e., reaction times remain constant despite the 
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increase in displayed numerosity), whereas the accuracy is markedly lower compared to 

subitizing (Dehaene, 1992; see Figure 1). On the other hand, with unlimited time, individuals 

can count the items, thereby increasing response time as a function of numerosity, while 

accuracy remains high.  

Figure 1: Performance in timed quantification of numerical visual displays (stimulus 

duration: 200ms) 

 

Note: Response time (left graph) and percentage of errors (right graph) are plotted as a 

function of the actual numerosity of the display. Note. Adapted from Mandler & Shebo, 

1982, in “Varieties of numerical abilities,” by S. Dehaene, 1992, Cognition, 44. Copyright 

1992 by Elsevier Academic Press. 

 

Several indexes may be used to obtain a reliable measure of subitizing and counting 

skills, such as the RTs slopes separately for subitizing and counting range, or the estimation of 

the subitizing range as the discontinuity point in RT slopes (Reeve et al., 2012; Schleifer & 

Landerl, 2011). Sella and colleagues (2013) adopted a match-to-sample task in which a sample 

set ranging from 1 to 9 was briefly presented, followed by a target set whose numerosity differed 

for one element (-1 or +1). Participants had to determine whether the two sets had the same or 

different numerosity. The accuracy in comparing numerical sets around the Object Tracking 

System capacity (i.e., 3 vs. 4, 4 vs. 5) represented a valid and pure assessment of the subitizing 

limit (Sella et al., 2013). 
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1.3.2. Numerical Estimation 

Numerical estimation is thought to rely on a non-verbal system for the representation of 

numerical magnitude in the Approximate Number System (ANS) (Feigenson et al., 2004; Piazza, 

2010). Currently it is widely accepted that subitizing and estimation are selectively connected to 

the OFS and the ANS, respectively (Burr et al., 2010; Hyde, 2011; Trick & Pylyshyn, 1994). 

Although it is conceivable that estimation can operate both below and above the subitizing range, 

only numerosities beyond subitizing range show the classic variability signature obeying Weber's 

law (Revkin et al., 2008), where the noticeable difference between two numerical stimulus is 

detectable as the magnitude between them widens. On the other hand, the Weber signature can 

emerge also for small numerosities if attentional resources are diverted by means of a concurrent 

task (Burr et al., 2010; Piazza et al., 2011). That is, dual task conditions appear to disrupt the 

functioning of the OFS and therefore impairs the ability to subitize.  

Mental representations of numbers can be processed with an analogical magnitude code, 

for the estimation of quantity and magnitude that is associated with a number. An intuitive sense 

of magnitude has been shown to have phylogenetic and ontogenetic continuity (Dehaene, 2009). 

Specifically, the ability to distinguish between nonsymbolic numerical magnitudes is thought to 

rely on an ANS (Feigenson et al. 2004; Nieder & Dehaene, 2009).  

Two basic properties of the ANS are as follows: (1) The ANS is used to process 

magnitudes greater than three or four items– that is, above the range of the exact number 

processing system (Demeyere et al., 2014; Le Corre & Carey, 2007). (2) Accuracy and reaction 

times on numerical discrimination tasks are sensitive to the numerical ratio or the distance of the 

numerical quantities being compared. As an example, the ratio of the numbers 4 and 6 is 0.67 

and the distance of the numbers 4 and 6 is 2. Performance on numerical discrimination tasks 
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(e.g., judging which of two numbers is numerically larger) decreases as the ratio between the two 

quantities being compared increases.  

Similarly, performance on numerical discrimination tasks decreases as the distance 

between the two numbers being compared decreases (i.e., the numerical distance effect). 

Typically, participants are faster and more accurate at discriminating between the numbers 4 and 

6 compared to discriminating between the numbers 5 and 6 (Halberda & Feigenson, 2008; 

Moyer & Landauer, 1967). In view of these effects, it has been argued that numerical quantities 

are analog and approximate rather than exact, since distance and ratio effects would not be 

present if each number was represented fully independently of adjacent numbers. Consistent with 

this interpretation, it is assumed that close numbers (such as 5 and 6) share overlapping 

representations and this overlap increases with the relative size of the numbers (their numerical 

ratio). 

 

1.3.3. Numerical Acuity: In Non-symbolic Number Comparison 

To investigate the ability to discriminate between numerical quantities, various studies 

have presented stimuli that are usually comprised of dots (or other geometrical shapes), which 

can be presented side-by-side, sequentially, or intermixed using different colors for the two sets 

(for a comparison of different presentation modalities, see (Agrillo et al., 2015; Price et al., 

2012). 

The ability to compare non-symbolic quantities, also known as number acuity, is 

usually assessed by calculating the Weber fraction –w– (Halberda et al., 2008, 2012). The 

calculation of the Weber fraction can vary according to the underlying model for the 

Approximate Number System. Nevertheless, the Weber fraction can be considered as the 
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constant standard deviation (“noise”) within a Gaussian curve; this corresponds to an internal 

representation of each numerosity on the mental number line (Halberda et al., 2008; Pomè et al., 

2021). Therefore, the smaller the standard deviation (i.e., Weber fraction), the more precise the 

numerical representation. To put it concretely, an individual with a Weber fraction of 0.14 can 

reliably individuate the larger between two numerical sets, when one of the two numerosities is 

at least 14% larger than the other one. Then, for example, the individual can reliably discriminate 

7 vs. 8 and 14 vs. 16. 

The ANS’s imprecision of its representations grows with the target numerosity, such that 

the ability to nonverbally discriminate two quantities depends on their ratio (Moyer & Landauer, 

1967). This ratio dependence is observed when adults estimate numbers of items (Halberda et al., 

2012; Whalen et al., 1999), judge the more numerous of two arrays (Agrillo et al., 2015; Barth et 

al., 2003), and estimate the results of arithmetic events (Pica et al., 2004). Because of the 

inexactness of ANS representations, two quantities cannot be distinguished when the distance 

between them is too small. According to Halberda et al. (2008), the finest numerical ratio that 

adults can consistently discriminate has been identified as 7:8 (ratio: 0.88). This limit can also be 

described as a Weber fraction that measures the smallest numerical change to a stimulus that can 

be reliably detected. The Weber fraction is equal to the difference between the two numbers 

divided by the smaller number; for example, to compare 7 to 8, when we apply the formula: (8 - 

7)/7 = 0.14. In a study comparing French adults and the Munduruku, an Amazonian group that 

has number words up to five, when they are asked to indicate the more numerous of two 

simultaneously presented arrays containing 20–80 dots, French adults’ Weber fraction is 0.12 

and Amazonian adults’ Weber fraction is 0.17. Thus, on average these adults could discriminate 

ratios differing by about 7:8 (Pica et al., 2004). 
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1.4. Neuroscience of Numerical Cognition 

1.4.1. Large Number Representation in the Brain 

The ANS, as outlined earlier, is a frequently posited non-verbal system for numerical 

quantification for numbers larger than 3-4 (Piazza 2010; Hyde 2011; Hyde & Spelke, 2011). In 

contrast to a discrete representation of numerical values, the ANS is suggested to facilitate a 

degree of quantification that is analogous to estimating. Neuroimaging studies seeking to identify 

the neural bases for the ANS have typically used passive fixation, numerosity comparison, or 

approximate calculation using dot arrays. 

The ratio-dependent effect as a characteristic signature of the ANS, where the 

discriminability between two sets depends on their numerical ratio (Weber’s law). Work with 

non-human primates has demonstrated neural tuning curves that are consistent with this 

formulation (see Nieder, 2005, for a review). Single unit recording highlights the existence of 

neurons that demonstrate a ‘preferred’ numerosity in the prefrontal and posterior parietal 

cortices, where the preferred numerosity was “1” for the IPS neuron, and “4” for the PFC neuron 

(Nieder & Dehaene, 2009; Nieder & Miller, 2003). Importantly, for each cell’s preferred 

numerosity, a progressive reduction in activity was found for numerosities as a function of 

numerical distance. Thus, a neuron that was maximally active for the number 3, for example, 

was less responsive to the numbers 2 and 4, with the overall lowest response reflecting the array 

with the smallest cardinal value. The neurons consecutively arranged overlapping tuning curves 

retained an inherent order of cardinalities, allowing for numerosities to exist in relation to one 

another, thus reflecting meaningful quantity information.   



9 

 

Later work by Nieder and colleagues demonstrated that, whilst similar properties were 

exhibited by neurons in the prefrontal and posterior parietal cortex, those in the posterior parietal 

cortex were responsive to numerosity sooner than those in the prefrontal cortex (Nieder & 

Miller, 2004). The authors conclude that quantity is initially extracted by neurons within the 

posterior parietal cortex, then fed forward and expanded in the prefrontal cortex to support online 

executive processes. 

Piazza et al. (2006) sought to confirm whether the bilateral Intraparietal Sulcus (IPS) 

encoded numerical quantity, and that activation in this region also followed Weber’s law. Using 

a passive fMRI task, the authors demonstrated that the horizontal IPS was responsive to non-

symbolic numerosity. By extracting the level of activity from the peak voxel in each subject’s 

data set, the authors were able to generate curves that were comparable to psychophysical curves 

extracted from the same sample (Piazza et al., 2006). Moreover, both behavioral and brain data 

were in line with Weber’s law, providing strong evidence for an Approximate Number System 

(Piazza et al., 2006). 

Many EEG studies have used a nonsymbolic number discrimination task to study ERPs 

from brain regions that support the ANS. Investigations have revealed parietal neural activation 

during nonsymbolic number discrimination tasks (Ansari et al., 2006; Cantlon et al., 2009; 

Holloway et al., 2010). 

 

1.4.2. Small Number Representation in the Brain 

As outlined previously, the OFS/OTS is a mechanism by which objects are represented as 

distinct entities and individuated in parallel. With a signature capacity limited to around 3 or 4 

items, the OFS/OTS is linked to visual short-term memory. Small numbers are therefore easier to 
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visually discriminate with the aid of subitization, where we rapidly and precisely enumerate 

small quantity of elements within an array (Mazza & Caramazza, 2015). Whilst the occurrence 

of subitizing is not in itself disputed, the degree to which the ANS might support estimation of 

small sets (i.e. sets that are within the subitizing range), or in what circumstances the OFS/OTS 

might take over, and whether these systems are dissociable, has been widely debated.  

Early neuroimaging studies that sought to contrast small versus larger set sizes were 

indicative of a single system, where regions that support enumeration of small arrays were 

shown to be activated similarly than when enumerating larger arrays (Piazza et al. 2002). This 

led some researchers to suggest that the ANS operates over the entire range of numbers: a “one 

system view” (see Hyde, 2011, who reviewed evidence for the “one system view”). 

Recent work, however, converges to suggest that set size does indeed affect encoding, 

although the neural systems are still not well established. For example, ERP data demonstrate a 

distinction between small and larger numerical quantities that would be outside of the subitizing 

range (Hyde & Spelke, 2009). Evidence for reduced response latencies for arrays within the 

subitizing range has been demonstrated in the posterior temporal cortex (Vuokko et al., 2013).  

 

1.4.3. Subitizing vs. Estimation in the Brain 

Processes of visual quantification within and outside the subitizing range have also been 

distinguished on a neuro-functional level. While quantification outside the subitizing range was 

found to engage superior parietal (Demeyere et al., 2012; He et al., 2014; Vetter et al., 2011; 

Vuokko et al., 2013) and frontal (Vuokko et al., 2013) brain regions, neural correlates of 

subitizing were associated with posterior temporo-parietal (Demeyere et al., 2014; He et al., 
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2014; Vetter et al., 2011; Vuokko et al., 2013) and occipito-parietal areas (Demeyere et al., 

2012). 

Working on the basis that absence of the ratio-dependent effect is indicative of OTS 

activation, Agrillo et al. (2015) demonstrated that it was the presence (or absence) of task-

irrelevant stimuli in the visual field that determined ratio-dependence in small numerosities. By 

comparing a number of classic experimental formats for dot comparison tasks, the authors 

demonstrated that when the sum total of dots was greater than the subitizing amount, the ratio-

dependent effect was observed (Agrillo et al., 2015). This supports the proponents of a “two 

system view”, which suggest that attentional load modulates the engagement of the OTS and the 

ANS, where items presented outside of attentional limits cannot be represented as individual 

units (Hyde, 2011). 

 

1.4.4. Neuroanatomy of Visual Numerical Processing 

There is evidential consistency that numerical processing and magnitude comparison are 

linked to anatomical correlates described by previous research, where the posterior parietal 

cortex (PPC) – particularly the right intraparietal sulcus (IPS) – has been broadly implicated in 

non-symbolic numerical processing (see reviews by Cantlon et al., 2009; Cohen Kadosh et al., 

2008)  

In an EEG study, Hyde and Spelke (2012) source-localized the effect of the P3, a 

cognitive event-related-potential during the visual processing of 1~3 dots, where they revealed 

activity in the right temporal-parietal junction (RTPJ). This activation towards the right parietal 

regions is related to fMRI findings that found similar activation when directly contrasting small 

versus large number processing in a number comparison task (Ansari et al., 2007). Ansari and 
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colleagues (2007) suggested that this activation was related to heightened stimulus-driven 

attention for small number comparisons compared to large comparisons.  

Other studies of right TPJ function suggest that this brain region enables the “bottom-up” 

reorientation of attention to novel stimuli, or “odd-ball” stimuli like those presented in our study 

(see Corbetta & Shulman, 2002, for a review). According to Hyde and Spelke (2012), based on 

the localization and previous work on the functional profile of this region, the P3 modulation 

may reflect the reorientation of attention upon the overt detection of a number change in the 

small number range, a process that is not seen for large numbers.  

In an fMRI study by Culham et al. (1998), in a visual task where participants have to 

track multiple “bouncing balls” on the screen (presentation can go up to 9 “balls), the researchers 

found that as they increased the number of objects needed to be tracked, there is an increase in 

brain activity over parietal-occipital regions linked to visuopatial attention, including the superior 

parietal lobule, the intraparietal sulcus, and the lateral parietal occipital- junction (Culham et al., 

1998). 
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Chapter 2: EEG in Numerical Cognition 

Many numerical processing studies in the brain have used functional MRI (fMRI), a 

method that is known for poor temporal resolution, as compared to EEG (Hyde & Spelke, 2012; 

Luck, 2005). Although fMRI scans can produce neuroanatomically-precise activation maps 

during the function of numerical processing with high spatial resolution, there is poor detail on 

the temporal order of activation for different brain regions. In other words, fMRI activation maps 

can explain where activity is happening when we process cues of numerosity, but this method 

does not fully explain how and when numerical processes interact with related brain areas that 

aid us to abstract, compare, and operate on numerosities. 

As described in the previous section, when processing numerosities in rapidly changing 

visual streams, human brains can instantaneously engage in automatic perceptual and cognitive 

mechanisms that allows for accurate enumeration and efficient numerical approximation. Such 

mechanisms often need less than 1 second to activate in the brain. However, as fMRI relies on 

waiting for oxygenated blood to gradually flow to brain areas with higher activity, this 

neuroimaging method is limited to a low temporal resolution of several seconds by the sluggish 

nature of the hemodynamic response (Luck, 2005). 

Event-related potentials (ERPs) derived from EEG experiments are particularly well 

suited for studying number processing given their precise temporal resolution of 1 millisecond 

that allows for neural and cognitive mechanisms to be precisely tracked millisecond by 

millisecond (Hyde & Spelke, 2012; Luck, 2005). 

Meanwhile, though fMRI has superior spatial resolution in the millimeter range, most 

cognitive neuroscientists still view the ERP technique as an important complement to 

hemodynamic measures (Luck, 2005). ERP studies on number processing have been reconciling 
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the literature on the divide between neurocognitive processing of small vs. large numbers 

(Fornaciai & Park, 2017; Hyde & Spelke, 2009, 2012; Libertus et al., 2007). By investigating the 

spatiotemporal process of number representation, we may come to better understand how 

information from numerosities are derived from sensory stimulation and perceptual load in the 

brain. 

 

2.1. N100: Early, Sensory ERP 

The N100, also known as the N1, is an early-occurring ERP that is the first negative 

polarity observed after the onset of a stimulus (Luck, 2005). This sensory, perceptual ERP 

waveform is often recorded after 100ms, but not before 200ms (Luck & Kappenman, 2012). The 

peaks of the N1 ERP are visual cortical responses that reflect bottom-up information such as 

stimulus features (Crowley & Colrain, 2004; Vaughan, Arezzo, & Picton, 1988), as well as top-

down influences such as selective attention (Golob, Johnson, & Starr, 2002; Hillyard, Hink, 

Schwent, & Picton, 1973) and short-term memory load (Conley, Michalewski, & Starr, 1999; 

Golob & Starr, 2000). According to Yurgil and Golob (2013), attention to infrequent targets 

presented amid frequent standard stimuli typically enhances N100 amplitudes. 

Hyde and Spelke (2009; 2012) have shown that small and large number processing 

dissociates in pattern and in time: small numbers modulate an early visuospatial attentional 

component (N1) by the cardinal value of the display: irrespective of the previous numerical 

context, where the N1 amplitude is largest for three objects, smaller for two objects, and smallest 

for one object. 

Of note worth discussing is the nomenclature of the targeted ERPs in the current study, 

specifically “N1” versus “N170”. Research has shown that the N170 is mainly generated in the 
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fusiform gyrus (Ghuman et al., 2014; Luck, 2005), and this ERP is elicited during facial 

processing, perceptual expertise and linguistic processing (Maurer et al., 2005; Luck & 

Kappenman, 2012). 

In their numerical EEG study where participants saw “2” or “3” dots, Hyde and Spelke 

(2012) ran source localization identified neural generators of the observed first negative-going 

wave at 145-183 ms. Greater current density in response to “3” dots than “2” was observed over 

the right extrastriate visual areas (i.e. middle occipital and fusiform areas), left inferior parietal 

areas, as well as the “left middle temporal, right superior temporal, and right anterior temporal 

regions” (Hyde & Spelke, 2012, p. 2183). The authors imply that the combination of neural 

activity from these posterior regions originated the posterior N1 response targeted in their study. 

More research is needed to distinguish N1 from N170, as their time windows overlap. 

 

2.1.1. N1 Response to Cardinality 

Hyde and Spelke (2009) found that the amplitude of N1 ERP responses scaled to cardinal 

value in the small-number group (1, 2, 3), but not in the large number group (8, 16, 24). In other 

words, N1 amplitude was largest for “3” and smallest for “1”, but there was no such scaling for 

the large numbers that they tested (see Figure 2). In Hyde and Spelke (2009), N1 peak latency 

differences were observed between small and large numbers, where N1 peaked nearly 20 ms 

earlier for large numbers (~155 ms) compared to small numbers (~173 ms).  
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Figure 2: Average waveform over POT sites measured in the small number range (Left 

plot) and in the Large number range (Right plot) in Hyde and Spelke (2009). 

 

 
Note: Peak N1 amplitudes in response to adapted displays of each cardinal value, where N1 

showed higher negativities for larger numerosities. Adapted from “All Numbers Are Not 

Equal: An Electrophysiological Investigation of Small and Large Number 

Representations,” by D. Hyde and E. Spelke, 2009, Journal of Cognitive Neuroscience, 21, 

p. 1048, Copyright 2009 by MIT Press. 

 

Given the very large differences between the small (1, 2, 3) and large number groups (8, 

16, 24) from Hyde and Spelke (2009; 2012), more research is needed to determine if there is a 

similar difference in scaling of N1 response to numerical quantities that continue from 3, 4, 5 and 

onwards. 

 

2.1.2. N1 Response to Numerical Change 

According to Luck et al. (2000), the visual N1 component reflects the operation of a 

discrimination process within the focus of attention. Vogel and Luck (2003) found that N1 

amplitude reflects the difficulty of target discrimination, suggesting that perceptual load 

modulates attention at an early processing stage, but following perceptual discrimination  

The parietal cortex of the brain serves a vital role in everyday perception, fMRI research 

shows that the intraparietal sulcus is involved in the integration of relevant feature- and space-
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based cues to optimize the deployment of attention in visual discrimination (Egner et al., 2008). 

According to Tan et al. (2015), a parietal-localized N1 component reflects the discrimination 

process to the change target, where visual stimuli that involve high perceptual loads require a 

higher level of discrimination processing (Lavie, 2010; Lavie & Tsal, 1994). 

Temple and Posner (1998) have found ERP N1 negativities associated with change in 

numerical distance over the posterior Parietal-Occipital-Temporal (POT) region, where 

participants saw presentations of dots in amounts of 1, 4, 6, or 9, and they were asked to respond 

as rapidly as possible to indicate whether the stimulus was larger or smaller than “5” (the 

“control” number in the study). The researchers found that dots with further numerical distance 

from “5” produced higher N1 negativities, while closer numerical distances produced lower N1 

amplitudes (Temple & Posner, 1998). These findings of higher N1 signals while processing 

larger numerical distances imply that more neural activity is generated over brain regions of 

numerical cognition as numbers get harder to tell apart. 

 

2.2. Mid-latency ERPs and Numerical Change 

2.2.1. P2p vs. P3 ERP 

Previous ERP research also showed how small and large numbers evoke distinct mid-

latency components over posterior scalp sites between 200 and 400 msec that were modulated in 

contrasting ways. In several ERP studies, higher P2p ERPs are produced when processing 

change in large numbers, such as 8, 16, 24 in Hyde and Spelke (2012), as well as Fornaciai and 

Park (2017), who examined the P2p response in arrays of 100~400 dots. 
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Figure 3: Grand average waveform in response to Small and Large numbers over the 

posterior scalp by Hyde and Spelke (2012). 

 
Note: Small numbers (1, 2, 3) produced a P3 ERP, while Large numbers (8, 16, 24) 

produced a P2p ERP. Adapted from “Spatiotemporal dynamics of processing nonsymbolic 

number,” by D. Hyde and E. Spelke, 2012, Human Brain Mapping, 33, p. 2192. Copyright 

2012 by PubMed Central. 

 

 

Although Hyde and Spelke (2012) found that large numbers (8, 16, 24) evoked a P2p that 

peaked around 280 msec over widespread left and right posterior sites, they discovered that small 

numbers (1, 2, 3) evoked a P3 that peaked around 334 msec over more left posterior and central 

sites. This shows that there is a spatiotemporal distinction between the P2p for large numbers and 

a later peaking P3 for small numbers over the posterior regions of the brain (see Figure 3 for the 

ERPs produced when participants passively viewed a sequential presentation of dots, where P3 is 

elicited by small numerosities within the subitizing range by Hyde and Spelke, 2012). 

Hence, I will conduct an analysis of ERP responses associated with the change (oddball) 

conditions, with a focus on amplitude and latency of responses from later positive waveforms. I 
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will also examine reaction time and accuracy in these change conditions, and relate it to ERP 

differences in conditions of number type (small vs. large), and change direction (increasing or 

decreasing) between number pairs. 

While the aforementioned components have been repeatedly shown to be more positive 

in response to target trials compared to non-target trials, multiple investigations have shown 

them to be modulated by distinct factors, indicating that these components reflect different 

cognitive processes (Brown et al., 2015; Kiat et al., 2018). Therefore, we will be considering 

various approaches to analyze our final later ERP component, taking into consideration peak 

latency and region of origin. 

 

2.3. P3: Higher-order Cognitive ERP 

2.3.1. P3a vs. P3b Component 

The P300, also known as the P3, is a positive, late-occuring (often recorded around 

300ms after stimulus onset) ERP waveform that is related to higher-order cognitive functions 

(Kiat et al., 2018; Polich, 2007; Sutton et al., 1965). Within the P300 family, there are two 

different components often studied (Polich, 2011): 

a) P3a: Often measured over frontal regions, peaking between 250–280 ms post-stimulus, it 

is usually evoked by a distractor, and it originates from stimulus-driven, frontal attention 

mechanisms during task processing.  

b) P3b: Often measured over parietal regions, peaking between 250-500 ms post-stimulus 

(note the longer time window than P3a), it is associated with attention and subsequent 

memory processing, and it originates from temporal–parietal activity. 
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Although these two different ERP components have been repeatedly shown to have more 

positive amplitudes in response to target trials compared to non-target trials, multiple 

investigations have shown them to be modulated by distinct factors, indicating that these 

components reflect different cognitive processes (Brown et al., 2015; Kiat et al., 2018).  

P3a differs from P3b in the following ways: (i) its scalp distribution (frontal vs. parietal) 

(ii) it often peaks 60–80 ms earlier than the P3b (Courchesne et al., 1975). While the P3a is 

elicited by highly deviant or task-irrelevant distracters, such as infrequently presented loud 

noises during an arithmetic task, the P3b is associated with task-relevant stimuli (Simons et al., 

2001; Spencer et al., 2001). Therefore, we will be considering various approaches to analyze our 

final later ERP component, taking into consideration peak latency and region of origin. 

In the case of simple go-No-go oddball paradigms with no distractors, the P3b is widely 

studied, as it is shown that this ERP reflects attentional resource allocation with respect to top-

down goals stored in short-term memory (Donchin & Coles, 1988; Polich, 2011). As the current 

study employs a numerical change detection task with straightforward go-No-go instructions, 

this dissertation will focus on the P3b ERP. Of note, according to Luck (2005), when ERP 

researchers refer to the P300 component, they “almost always mean the P3b component” (p. 42). 

 

2.3.2. The P300 Context-Updating Theory 

Based on the Context-Updating Theory first outlined by Donchin, (1981), Figure 4 below 

is a schematic illustration of a theoretical account of the oddball task by Polich (2007). This 

theory posits that the P3 indexes brain activities underlying revision of the mental representation 

induced by incoming stimuli (Donchin, 1981). After initial sensory input, an attention-driven 

comparison evaluates the representation of the previous event in working memory. If no stimulus 
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attribute change is detected, the current mental model or schema of the stimulus context is 

maintained, and only sensory potentials are evoked. When a new stimulus attribute is detected, 

on the other hand, the “updating” of the neural stimulus representation in working memory 

occurs and P3 is produced. 

Figure 4: Schematic illustration by Polich (2007) of the P300 Context-Updating Model by 

Donchin (1981). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Stimuli enter the system and a memory comparison process is engaged that 

ascertains whether the current stimulus is the same as the previous stimulus or not (Polich, 

2007). If the incoming stimulus is the same, the neural model of the stimulus environment is 

unchanged, and only sensory potentials are evoked (N100, P200, N200). If the incoming 

stimulus is not the same and the subject allocates attentional resources to the target, the 

neural representation of the stimulus environment is updated, such that a P300 potential 

(P3b) is elicited in addition to the sensory potentials (Polich, 2007). Adapted from 

“Neuropsychology of P300” (p. 162) by J. Polich, 2012, in S. J. Luck & E. S. Kappenman 

(Eds.), The Oxford Handbook of Event-Related Potential Components. Copyright 2011 by 

Oxford University Press. 
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2.3.3. P3b Amplitude and Resource Allocation 

Polich (2012) found that as primary task difficulty increases, the target stimulus P300 

amplitude from an oddball task decreases. When difficult tasks require more processing 

resources, the P300 peak produces lower mean amplitudes (Kramer et al., 1985). Polich (2011) 

also noted that increases in working memory load reduce P3 amplitude in a manner that suggests 

that fewer attentional resources are engaged because of increased task demands to process these 

items (Gomer et al., 1976; Kok, 2001; Wijers et al., 1989). 

 

2.3.4. P3b Latency and Reaction Time 

 P3b latency is thought to index classification speed, which is proportional to the time 

required to detect and process a target item (Kutas et al., 1977; Magliero et al., 1984).  

Additionally, P300 timing is sensitive to both stimulus- and response-related variables when 

responding is fast (cf. Ilan & Polich, 1999; Verleger et al., 2005); this conclusion suggests that 

P300 may originate from the neural events that link stimulus perception and event response  

(Verleger et al., 2005). 

All in all, ERP studies on number processing suggest that differences observed between 

small and large number representation result from early differences in attentional selection, and 

these differences determine whether an array of objects will be represented by the approximate 

numerical magnitude system or through parallel individuation. In other words, it seems to be the 

case that the two systems are not specialized for small and large numbers per se, rather early 

attentional selection and its corresponding limits determine whether objects will be represented 

as distinct individuals or approximate numerical magnitudes. 
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Chapter 3: Study Rationale 

3.1. ERPs from Small vs. Large Numbers in a Narrower Continuum (1~6) 

The Hyde and Spelke experiments (2009; 2012) examined ERP differences during a 

passive observation of small and large numerical set sizes that were perceptually distinct from 

each other, where there is a large gap between the small (1, 2, 3) and large (8, 16, 24) number 

ranges used in their study (see Figure 5). 

Figure 5: Schematic description of adaptation and test number pairs presented to 

participants in EEG study by Hyde and Spelke (2009). 

 

 

Note: Adapted from “All Numbers Are Not Equal: An Electrophysiological Investigation of 

Small and Large Number Representations,” by D. Hyde and E. Spelke, 2009, Journal of 

Cognitive Neuroscience, 21, p. 1041, Copyright 2009 by MIT Press. 
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The current study aims to examine the Small vs. Large distinction within a narrower and 

continuous range of 1 to 6, to see if there was a clear categorical boundary between small and 

large number response. One of the study’s goals was to analyze ERP responses after the 

participants have adapted/habituated to the individual numerical quantities in the “No Change” 

condition, where the same number of dots are presented for three to five slides. At the post-

adaptation time point, peak amplitude and latency of the N1 response (associated with early 

sensory perception) will be analyzed to see how these differ in response to different numerosities 

of 1~6. In particular, we aim to investigate whether there was a distinct N1 response pattern 

when changes crossed over between small (1~3) and large (4~6) set sizes as compared to N1 

responses within the same set size changes (i.e. Small-to-Small and Large-to-Large). 
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3.2. Direction: Increasing vs. Decreasing Numerosities 

In the field of numerical change processing studies, magnitude effects of numeric size 

and numerical distance are well-known, but there is growing evidence for another factor that 

affects discriminability: change direction, by which a relative increase in quantity is identified 

more rapidly and with greater accuracy than a relative decrease in quantity (Kaan, 2005; Paulsen 

& Neville, 2010). Unlike the numerical range used in the present study (i.e., 1~6), both of these 

studies used much larger numerical magnitudes in their change processing studies. Paulsen and 

Neville (2010) examined a numerical range of 10~60 dots, while the study from Kaan (2005) 

used spelled-out English number-words that ranged from “twelve” ~ “seventy-two”. 

Change direction effects have been found in symbolic number judgments and non-

symbolic numerosity judgments. Kaan (2005) had participants compare sequentially presented 

spelled-out number-word stimuli (e.g., “thirty - sixty”) and found that participants responded 

more quickly and accurately when the second numerical stimulus was larger relative to when the 

second stimulus was smaller than the first stimulus.  

In the case of using sequentially-presented dot stimuli in numerical studies, Paulsen and 

Neville (2010) found a behavioral interaction between magnitude and numerical distance of dot 

stimuli that led to the examination of change direction. In their study, participants were required 

to judge whether the second stimulus (S2) of a pair of sequentially presented dot–array stimuli 

contained the same or a different number of dots than the first stimulus (S1) of the pair. A 

direction effect was observed, in that accuracy was greater and reaction time was faster when the 

second numerosity was larger in magnitude than the first (e.g., 16:24), compared to when it was 

smaller (e.g., 24:16). S1:S2 pairs that decreased in magnitude also elicited a greater negativity 

around 400 ms compared to pairs that increased in magnitude.  

https://www-sciencedirect-com.ezproxy.cul.columbia.edu/science/article/pii/S0028393210003684?via%3Dihub#bib0115
https://www-sciencedirect-com.ezproxy.cul.columbia.edu/science/article/pii/S0028393210003684?via%3Dihub#bib0160
https://www-sciencedirect-com.ezproxy.cul.columbia.edu/science/article/pii/S0028393210003684?via%3Dihub#bib0160


26 

 

On the other hand, in an ERP study by Rubinsten et al. (2013) that examined the effects 

of direction (ascending vs. descending quantity), the researchers asked participants to decide 

whether the three circles include dots that are presented in an ordered or nonordered fashion, 

based on quantity (see Figure 6 for an example of the authors’ stimuli). 

Figure 6: Direction-variable numerical stimuli by Rubinsten, 2016 (each stimulus is 

represented by a black rectangle that includes three simultaneously presented circles with 

dots). 

Note: The task is to decide whether the three circles include dots that are presented in an 

ordered or nonordered fashion (in the current example, based on quantity). Adapted from 

“Ordinal instinct: A neurocognitive perspective and methodological issues” (p. 277) by O. 

Rubinsten, 2016, in A. Henik (Ed.), Continuous issues in numerical cognition: How many or 

how much. (pp. 271–288). Copyright 2016 by Elsevier Academic Press. 

 

In contrary to the findings where there seem to be a behavioral advantage for detecting 

change for increasing numerosities in an ascending, ordinal manner (Kaan, 2005; Paulsen & 

Neville, 2010), Rubinsten et al. (2013) found faster reaction times for descending sequences. 

Rubinsten et al. (2013) also found higher P3 amplitudes for descending sequences were 

associated with higher activity over the right parietotemporal area, but less positive P3 

amplitudes over the left parietotemporal area.  

As there have been rather few ERP studies investigating the brain’s neural mechanisms 

of processing direction effects of numerical change, (Kaan, 2005; Paulsen et al., 2010; Rubinsten 

et al., 2013), there is no well-established ERP marker for this process yet. However, in the 

https://www-sciencedirect-com.ezproxy.cul.columbia.edu/science/article/pii/S0028393210003684?via%3Dihub#bib0160
https://www-sciencedirect-com.ezproxy.cul.columbia.edu/science/article/pii/S0028393210003684?via%3Dihub#bib0160
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context of discrimination, a great number of studies have found that the N1, N2, P2p and P3, 

vary as a function of the difficulty of the discrimination process in different ways (e.g. size of 

numeric sets, numerical distance), in that the amplitudes of the N1 and N2 are positively 

correlated with the difficulty level of the discrimination, while the amplitude of the P3 negatively 

varies with the increase of the difficulty. 
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Chapter 4: Research Questions, Hypotheses and Predictions 

4.1. Cardinal Values in No-Change Trials 

We seek to investigate if there is a discontinuity between systems of small number 

processing and large number processing within the continuous range of 1 to 3 and 4 to 6, 

respectively, similar to results found with more numerically separated values used in previous 

research (Hyde & Spelke, 2012).  Our hypotheses and predictions relate to trials in which 

cardinal values are presented without a change and therefore no response is expected.  In other 

words, there are no behavioral data to consider and only hypotheses relating to ERP data will be 

considered. In previous studies by Hyde & Spelke (2009; 2012) they found effects of small vs, 

large cardinality in the Parietal-Occipital-Temporal (POT) region whereby values within the 

small number range (1-3) were scaled to N1 ERP amplitudes. On the other hand, their study 

found no clear scaling of numerosity to amplitude for the larger numerical values (8-16-24) that 

they tested. 

 

4.1.1. Research Question 1: 

Our first research question relates to whether this electrophysiological difference will be found 

within a continuous range of numerical values, specifically when participants are presented with 

numerosities 1~6 for the present experiment. 

4.1.2. Hypothesis 1: 

Over the POT area, the sensory visual N1 component is related to spatial attention and is read off 

individual items in Working Memory within the smaller number range (1~3). On the other hand, 

numerical estimation is not read off of exact individuation of numerical values in the larger 

number range (4~6). 
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4.1.3. Prediction 1: 

In evaluating responses to no-change trials, we predict that there will be scalar N1 ERP 

amplitude differences within the range of small cardinal values (1 < 2 < 3), whereas no such 

scalar ordering of ERP numbers is predicted within the continuous, larger range of 4 to 6. 

 

4.2. Behavioral Effects of Size and Direction in Change Trials 

For trials in which there was a change in numerical value of the stimulus, participants 

were asked to respond by pressing a key for the study’s change detection task. We are interested 

in performance variables such as reaction time and accuracy for these change conditions, as well 

as whether these behavioral responses are affected by the set size and the directionality of the 

change (increasing vs. decreasing).  In terms of the directionality factor, previous research has 

found that there is a performance advantage in the increasing set size conditions over the 

decreasing set size conditions, but these studies looked at number comparisons with much larger 

numerical set sizes of 10 to 70 (Paulsen et al., 2010), or used spelled-out number words again in 

the larger value ranges (Kaan, 2005). 

 

4.2.1 Research Question 2: 

Our second research question relates to the size of numeric sets on change detection behavioral 

measures like accuracy and reaction time, and whether the increased set size advantage is found 

within the smaller set size in the present experiment. Set size changes are grouped into three 

categories: Small-to-Small (e.g., 1→2, 2→3), Large-to-Large (e.g., 4→5, 5→6, 4→6) and 

Crossover conditions, which can be Small-to-Large (e.g., 2→4, 3→6), or Large-to-Small (e.g., 

4→2, 6→3). 
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4.2.2 Hypothesis 2: 

Numerical change is harder to detect among large numbers, since large number estimation does 

not access exact numerical quantities available in processes involving parallel individuation and 

working memory. 

4.2.3 Prediction 2: 

We predict faster reaction times and higher accuracy when change detection is easier, 

particularly while processing smaller numbers in the subitizing range (1~3), as compared to large 

number processing (4~6).  We also predict these advantages for crossover conditions to be 

midway between Small and Large conditions in behavioral measures of processing efficiency 

(reaction times and accuracy). Our research questions relate to how set size is related to accuracy 

and reaction time, and whether the increased set size advantage is found within the smaller set 

size in the present experiment.  

 

4.3. Direction and Size Effects of Numerical Change 

Within the 1~6 numerical range, we aimed to investigate if there is an advantage for trials 

that involve Increasing quantities over Decreasing quantities. The present study asks whether 

change detection in smaller numerical ranges reflect the same or different kinds of processes in 

which directionality could have an effect.  

It bears to note that the aforementioned ERP research on how the direction of numerical 

change can influence neurobehavioral outcomes are all using different experimental paradigms 

from the current study. For instance, Rubinsten et al. (2013) concurrently presented three sets of 

numerosities to participants to compare and they are to respond if their numerosities are arranged 

in an ordinal manner. 
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The numerosities of 1~6 that are examined in the present study are outside the range to 

those of the previously mentioned numerical processing neurobehavioral studies that also 

investigated the effects of change direction. Kaan (2005) showed participants a sequence of two 

spelled-out English number words in a range between “twelve” and “seventy-two”, where they 

are asked to indicate whether the second number word signifies a quantity smaller or larger than 

the first number word. Though Paulsen and Neville (2010) also used dot stimuli similar to the 

current study, their tested range is much larger (10~60). Additionally, their participants are asked 

to respond when they see the same number of dots, whereas our study’s participants responded 

when they see a change in the number of dots. 

Due to the differences in experimental paradigms and numerical ranges, findings from 

these studies on change direction have been hard to reconcile. Hence, we have few a priori 

predictions about the behavioral and ERP effects of increasing vs. decreasing magnitudes in the 

change conditions. Therefore, we leave the question open as to whether directionality will lead to 

increases or decrease in task difficulty. However, working backwards, we can assume that 

reaction time and accuracy differences between increasing and decreasing quantities will provide 

evidence for processing differences as will differences in the ERP deflections associated with 

increasing vs. decreasing quantity. 

For directionality effects, we are primarily guided by previous research on large number 

changes that show advantages for increasing over decreasing changes in magnitude (Kaan, 2005; 

Paulsen et al., 2010). While the mechanism for such asymmetry has multiple explanations, there 

are no a priori mechanistic hypotheses at this point for the current experiment.  However, we can 

identify two possible hypotheses regarding the possible role of directionality of change in the 

smaller number range. 
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4.3.1. Research Question 3: 

Are there behavioral differences in the Small vs. Large vs. Crossover changes, where 

directionality of numerical change interacts with set size? 

 

4.3.2. Hypothesis 3 (UEH of Direction): 

Based on the Uniform Effects Hypothesis (UEH) of Direction, responses are uniform across all 

quantities. Since previous research has shown better performance for increasing magnitude in 

large number changes (e.g. 10~70), such advantages could exist across the board and within the 

1~6 number range of the current experiment. 

 

4.3.3. Prediction 3 (UEH of Direction): 

Across the board for the Small, Large and Crossover conditions, reaction time is faster and 

accuracy is higher for increasing over decreasing magnitude changes. 

 

4.3.4. Hypothesis 4 (IEH of Direction and Size): 

Based on the Interaction Effects Hypothesis (IEH) of Direction and Size, directionality effects 

are different in the small number (1~3) and large number (4~6) range reflecting different effects 

due to changes in the working memory/parallel individuation range compared to numerical 

estimation. 
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4.3.5. Prediction 4 (IEH of Direction and Size): 

Performance in detecting changes within the larger numerical range (4~6) is predicted to show 

similar patterns with previous research, in which higher accuracy and faster reaction times for 

increasing over decreasing numerical changes. This effect might be higher in larger numbers 

than smaller numbers in the subitizing range. Changes in the small number range (1~3) should 

show a difference effect, either no directionality effects or better accuracy and reaction times in 

the decreasing set size range.  

Note that the above two hypotheses represent two possible and contradictory mechanisms 

with distinct sets of predictions, neither of which are committed to in any a priori manner, but do 

represent two “possible worlds” with regards to directionality effects. 

 

4.4. N1 Response to Numerical Change 

In this study, while participants are behaviorally responding to numerical change on the 

screen with a key press, their EEG data (in response to the stimuli) is simultaneously being 

recorded. This gives our study an avenue to study ERPs in response to numerical change. The 

ERPs of interest to us are the N1 and the P3b. 
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4.4.1. Research Question 5:  

For the N1 component measured over the lateralized POT areas, are there amplitude and latency 

differences between small and large numbers, and in terms of change direction (increasing or 

decreasing)? 

 

4.4.2. Hypothesis 5: 

During change conditions, the N1 component over the POT area is related to visuospatial 

attention and of visual short-term memory, where heavier perceptual loads are linked to higher 

N1 negativities. 

 

4.4.3. Prediction 5: 

As more objects are encoded in of visual short-term memory, the N1 amplitude over the POT 

area is predicted to get higher. As Hyde and Spelke (2009, 2012) found that N1 responses 

showed earlier peaks for larger numbers, we also predict that smaller numbers will have longer 

latencies. 

 

4.5. P3b Response to Numerical Change 

4.5.1. Research Question 6:  

For the P3b component measured over the mid-parietal (Pz) area, are there amplitude and latency 

differences between small and large numbers, and in terms of change direction (increasing or 

decreasing)? 
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4.5.2. Hypothesis 6:  

In accordance with the P3b context-updating theory (Polich, 2007), when measuring numerical 

change processes over the Pz area, the P3b component is scaled to the ease of change detection, 

by how much easier it is to update the context from its previous one. 

4.5.3. Prediction 6:  

When the numerical change gets easier to detect (smaller sizes), the P3b is predicted to show 

higher amplitudes, reflecting greater ease in updating the context. Polich (2012) describes that 

the peak latency of the P3b component can be interpreted as indexing stimulus evaluation time, 

where it peaks earlier for easier tasks and more difficult tasks showed longer latencies. Thus, we 

predict higher P3b amplitudes and shorter P3b latencies during easier, small number processing.  
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Chapter 5: Methods and Study Design 

For this study, a set of numerical stimuli with the number of dots ranging from 1~6 was 

adapted from Hyde and Spelke (2009), where they tested small numbers (1, 2, 3) and much 

larger numbers (8, 16, 24).  

The design for the current study is outlined in Figure 7 below.  If we compare our design 

with the paradigm used in Hyde and Spelke (2009, see Figure 5 in Chapter 3), we see that our 

large number set is much smaller (4, 5, 6), Also, unlike Hyde and Spelke (2009), the change 

conditions occur not only within the small and large sets, but also between sets in the 

“Crossover” conditions. 

 

Figure 7. Current study design (adapted and revised from Hyde and Spelke, 2009) 
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5.1. Population and Sample 

This dissertation study (IRB protocol # 22-288) involves a retrospective analysis of EEG 

data that was collected under IRB protocol # 13-068 from 17 neurotypical adult volunteers at 

Teachers College, Columbia University. Please see Appendix A for IRB approval letter and 

consent forms associated with the current study. 

Because of COVID-19 restrictions, no additional data were collected for the present 

study as had been originally proposed. Two participants were excluded from the final analysis, 

restricting the sample to n= 15 (4 male, 11 female). These exclusions were due to several factors, 

including excessive noise in raw EEG recordings, artifact exceeding acceptable limits during 

ERP processing, or technological failures. Mean participant age was 27.31 years old. 

Two participants were excluded from the final analysis, restricting the sample to n= 15 (4 

male, 11 female) due to several factors, including excessive noise in raw EEG recordings, 

artifact exceeding acceptable limits during ERP processing, or technological failures. Mean 

participant age was 27.31 years old. All participants were right-handed (based on self-reporting), 

and all were proficient in the English language to give informed consent, as TESOL results are 

required for admission into Teachers College. Demographic data from each participant can be 

found in the Appendix B (Table 1A). 

The following were considered exclusionary criteria for participants: 

1. 18 years old and younger 

2. Visual impairment without ability to compensate via corrective lenses 

3. Neurological disorders; history of seizure disorders; history of traumatic brain injury. 
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5.2. Stimuli 

Adapting stimuli from Hyde and Spelke (2009; 2012), this study’s stimuli consisted of 

square images (650 × 650 pixels) of 1, 2, 3, 4, 5 or 6 white dots on a gray background, 

constructed as to control for continuous parameters other than the number. Using MATLAB and 

Adobe Illustrator, S.B. Kim (a former doctoral student of the lab) adapted design protocols from 

previous studies to create our stimuli (Hyde & Spelke, 2009; Piazza et al., 2004). Specifically, 

the design protocol equated “the intensive parameters (individual dot size and inter-dot spacing) 

of the arrays across the target stimuli and varied the extensive parameters (total area occupied 

and total luminance) of the target arrays randomly so that these variables were equated, on 

average, across adaptation stimuli with the constraint that the values for the extensive parameters 

were drawn randomly from fixed distributions that spanned the range of values used for target 

stimuli” (Hyde & Spelke, 2009, p. 8). 

To minimize the influence of non-numerical visual cues, size and location of the dots 

needed to be pseudorandomized within each trial, as this prevents a linear covariation between 

numerosity and total area (Cutini et al., 2014). This design resulted in target stimuli that were 

equally similar in regards to the continuous parameters other than number, because these values 

had already been presented equally often in the “primed” habituation stimuli. This method of 

controlling for intensive and extensive parameters has been employed in several recent 

neuroimaging studies of numerical cognition (Hyde & Spelke, 2009; Izard et al., 2008; Piazza et 

al., 2004).  

In EEG studies, it is important to keep blinks and eye movement artifacts to a minimum 

to ensure cleaner electrophysiological data. Not using high contrast images is one particular 

method of reducing these artifacts. To decrease the level of eye strain for the participants while 
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they go through our study, the contrast ratio of our stimuli’s gray background against white dots 

(40 cd/m2) has a contrast ratio of 2.1:1 (~50%). To prevent excessive eye movement artifacts 

that will contaminate our data, we encouraged our participants to have their eyes faced towards 

the center of the monitor, aided by a small white fixation cross in the center, which will be 

present during both the displays and the inter-stimulus intervals. They were also encouraged to 

close their eyes during breaks. 

A total of 270 test trials were divided into five experimental blocks. Before the start of 

the actual experiment, each participant goes through a practice block with 10 trials. For the 

actual five experimental blocks, there were a total of 60 test trials in each block. In each block, 

stimulus consist of number pairs with no change (NC, n = 12), Small-to-Small (SS, n = 12), 

Large-to-Large (LL, n = 12), Small-to-Large (SL, n = 12) and Large-to-Small (LS, n = 12) 

conditions. Each unique number pair was tested 120 times throughout the whole study. 

Each trial consisted of a habituation phase where the same number of dots is presented 

one after another for three to five slides (as the “primed” number), and this is then followed by 

the “target”, where the number of dots will change. If the participant detects a numerical change 

in the “target”, they are instructed to press a key. Throughout the study, the oddball “target” 

appears at ~10% of the time. Stimuli were presented for 250 ms each, with interstimulus 

intervals at 750-1250 ms. This stimulus jitter is applied to reduce overlap in the ERP response to 

successive images (Luck, 2005) and to reduce as much as possible the repetitive nature of the 

stimuli. Please see Figure 8 for an example of a trial, where “3” is the primed number showed on 

three separate dot arrays, and “5” is the target number. 
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Figure 8: Example of a trial where “3” is the primed number showed on three separate dot 

arrays, and “5” is the target number. 

 

Using random-number-generated protocols from EPrime, trials were presented randomly 

within blocks, while items from each condition were balanced with each trial and block. Breaks 

were provided between each of the five experimental blocks. The total duration of the 

experimental portion of the study was approximately 40 minutes-1 hour. 

 

5.3. Study Design 

In our study, small numbers are defined as 1, 2, 3, and large numbers are defined as 4, 5, 

6. As part of the habituation, participants first saw the same numerical value (1 ~ 6) presented on 

three to five trials. Varying the number of habituation trials to between three and five ensured 

that the onset of the “target” stimuli would be unpredictable to the participants. After presenting 

the same quantity of dots to promote habituation/adaptation in the brain to the “primed” number, 

the “target” stimulus that appears next could be categorized into one of the six types of “change” 

conditions (as outlined below, with each unique number pair as examples): 

1. Increasing Small-to-Small (iSS): 1→2, 1→3, 2→3 

2. Decreasing Small-to-Small (dSS): 2→1, 3→1, 3→2 

3. Increasing Large-to-Large (iLL):  4→5, 4→6, 5→6 
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4. Decreasing Large-to-Large (dLL):  5→4, 6→4, 6→5 

5. Increasing Small-to-Large (iSL): 1→4, 2→4, 2→5, 3→4, 3→5, 3→6 

6. Decreasing Large-to-Small (dLS): 4→1, 4→2, 4→3, 5→2, 5→3, 6→3 

7. No change (as a control): 1→1, 2→2, 3→3, 4→4, 5→5, 6→6 

Please see Figure 9 for the study’s design elements and how specific number pairs are grouped 

into the “change” conditions. 

Figure 9: Design elements of current study 

We chose number pairs that have a difference of one, two, three, and not more. This is so 

that the differences were not too perceptually distinct. For instance, if a number pair has a 

difference of 4, such as a change of 5→1, it would be too perceptually distinct. The same goes 

for if a number pair has a difference of 5, such as a change pair of 1→6. Therefore, we have set 

the maximum difference between a pair of numbers to 3. Furthermore, within the small values (1 

~ 3), it is not possible to have a difference greater than 2. So, we wanted to keep the differences 

between each number pair small enough to keep the distances constant. 
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The Hyde and Spelke (2009) experiment examined differences that occurred between 

small (1, 2, 3) and large (8, 16, 24) sets. However, the differences between these numbers are 

perceptually distinct with a large gap between the small and large number ranges. Furthermore, 

in Hyde and Spelke (2009), the changes remained within the small or large number sets. No 

changes crossed between small and large number values.  

The current study aims to look for categorical small-large differences within a narrower 

range (1~ 6) than Hyde and Spelke (2009; 2012). We also investigated changes that crossover 

between small (1~3) and large number (4~6) values.  

 

5.4. Behavioral Data Collection 

During the experiment, each participant was seated in a comfortable chair placed inside 

an electrically-shielded, sound attenuated EEG suite, at a distance of 70 cm from a 22” LCD Dell 

monitor. Participants are instructed to pay attention to the displays of dot patterns, and to press a 

key whenever they detect a change in the number of dots. The response was embedded to keep 

participants engaged, and to interpolate behavioral findings to ERP data.  

The previous studies by Hyde and Spelke (2009; 2012) were passive-viewing EEG 

experiments, meaning that their participants were not required to respond as they viewed the dot 

arrays, while their electrophysiological data was simultaneously being recorded. Prior to the 

present study, in our previous attempts to replicate the experiments by Hyde and Spelke (2009; 

2012) to examine numerical ERP effects, participant boredom was a serious concern, as many of 

them fell asleep, were inattentive, or complained of being unpleasantly bored. Instead of passive 

viewing of thousands of dot patterns, our study asked participants to detect changes in the 

numerical value, and to press a key when such changes occurred.  
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To keep the participants further engaged, we gave them a score update during breaks 

between each of the 5 testing blocks. At the end of the experiment, each participant was given a 

score of how many correct responses they got, and they were given a reward of a lottery scratch 

off card for every 50 items they got correct. Behavioral data (accuracy and reaction time) was 

collected via EPrime. Variables of numerical change are directionality: Increasing vs. 

Decreasing, and size (Small-Small, Large-Large, Crossovers).  

For this study, a set of numerical stimuli with the number of dots ranging from small 

(1~3) and large (4~6) cardinalities. This stimulus presentation paradigm was adapted from Hyde 

and Spelke (2009), where participants viewed an ongoing stream of different numerosities, 

presented rapidly and sequentially. During the No Change conditions, participants saw the same 

number of dots repeatedly (albeit in different locations and sizes in each array), and the N1 

response to the cardinalities of 1~6 was recorded and analyzed. 
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Chapter 6: Data Processing and Analysis 

6.1. Pre-/Post-Processing 

First, continuous raw EEG data were digitally filtered offline using a 0.3 high-pass filter 

and a 30 Hz low-pass filter (FIR Passband Gain: 99.0 % [-0.1 dB], Stopband Gain: 1.0 % [-40.0 

dB], Rolloff: 2.00 Hz). The data were segmented into epochs of 500 ms that included 100ms 

prior to stimulus onset and 400ms following stimulus presentation. The segmentation protocol 

also incorporated an offset that reflects a necessary millisecond correction due to an expected 

delay between the timestamp (time reported by experimental control module) and the actual time 

the stimulus was presented onscreen to the participant (Electrical Geodesics, 2015). The offset 

value was acquired by running timing tests prior to each run using a Cedrus Stim Tracker. 

The segmented data were then subjected to automatic artifact detection and bad channel 

replacement protocols to remove eyeblinks and physiological artifacts (e.g., electrocardiogram, 

electromyogram, electrooculogram). Electrode channels that exceeded 200 microvolts (μV) were 

replaced using spherical spline interpolation from data acquired at surrounding sensors. Trials 

were discarded from analysis if they contained eye blinks (EOG >140 μV), or if more than 40% 

of the channels were bad. Following the automatic artifact rejection protocol, trial segments were 

manually reviewed and marked as bad if necessary. 

Baseline correction was then carried out with respect to a 100ms portion of each epoch 

preceding stimulus presentation. This portion of the total epoch reflects random activity not 

associated with stimulus processing, which can introduce significant variance to the data, making 

group differences more difficult to observe. Baseline correction minimized such confounds by 

averaging the amplitude at all points across the pre-stimulus segment and then subtracting that 

value from the samples in the post-stimulus segment (Luck, 2014). 
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Data were then re-referenced from the vertex electrode (applied during recording) to the 

average of all electrodes. As a final step, all trials for each participant were averaged to generate 

the ERP waveforms within individuals and within conditions, so that event-related brain activity 

most relevant to the stimulus presentation could be observed and further analyzed (Luck, 2014). 

The pre-/post-processing protocol was completed for all recorded data. 

 

6.2. ERP Data Analysis Protocol 

Post-processed averaged ERP data files for each participant and condition were exported 

from NetStation for statistical analysis. Post-processed data files were read into an R database (R 

Core Team, 2016) and measures of amplitude and latency obtained. R scripts developed in-house 

specifically for this experiment were used to obtain peak latency and adaptive mean amplitude 

measures for each component. Peak latency measures were calculated by identifying the 

maximum positive and negative voltage deflection within a pre-selected time window. These 

values were then used to calculate the adaptive mean amplitude, which selected five samples or a 

10 ms window on either side of the identified peak latency and averaged the sampled amplitude 

values.  

For this study, the recording sites selected for statistical analysis focused on scalp 

locations in the parietal-occipital-temporal (POT) area. The N1 and P3b components were 

represented by electrode montages (please refer to next section in 6.3 for exact location of these 

montages). Individual files were grand-averaged together in MATLAB to visualize the produced 

N1 and P3b ERP waveforms elicited by the No Change and Change Conditions by numerical 

change direction (Decreasing vs. Increasing) and size of numeric sets (Small, Large, Crossovers). 
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Measures for each target component (N1 and P3b) were calculated based on expected 

scalp topography represented by specified electrodes and time windows from prior studies (Coch 

et al., 2005; Luck, 2014; Woodman, 2010) and adapted for a high-density recording net. 

 

6.3. Regions of Interest (Montaging) 

Three regions of interest (ROI)/montages were selected based on previous empirical 

evidence of their clear contribution in producing ERPs related to numerical change. These 

include the N1 (Hyde & Spelke, 2012; Libertus et al., 2007; Temple & Posner, 1998), and the 

P3b components (Ilan & Polich, 1999; Polich, 2011; Rubinsten et al., 2013). For the early N1 

ERP to the No Change conditions and to the Change conditions, we extracted electrocortical 

information from montages encompassing the right and left parietal-occipital-temporal (POT) 

junctions (i.e. secondary visual cortex). For the P3b response to Change conditions, ERP 

responses were recorded from montaged electrodes over the Pz area, which is above the 

posterior-parietal region (over the midline of the scalp). Please see Figure 10 for specific 

electrodes used for examined montages: 
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Figure 10: Map of electrode groupings used for averaging and analysis: Left and Right 

POT area (green, N1 component) and Pz area (yellow, P3b component). 

 

6.2.1. N1 over Left POT (Montage 1): Located over the POT area in the left hemisphere and 

consisted of electrodes 66, 65, 59, 60, 67, 71, 70. 

6.2.2. N1 over Right POT (Montage 2): Located over the POT area in the right hemisphere 

and consisted of electrodes 84, 76, 77, 85, 91, 90, 83 
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6.2.3. P3b (Montage 3): Located over the central location of the posterior parietal areas above 

the scalp’s midline (Pz area) and consisted of electrodes 62, 78, 77, 72, 67, 61, 54, 55, 79. 

 

6.4. Statistical Analysis 

R Studio and SPSS were used to conduct statistical analyses. During the habituation 

phase where the number of dots remained the same, the effects of cardinal value were 

statistically assessed by comparing the mean amplitude and mean latency for the N1 ERP over 

the POT area. This study employed a Linear Mixed Model Analysis to investigate N1 amplitudes 

over bilateral posterior parietal sites. The Mixed Model Analysis (Cnaan et al., 1997) can 

efficiently take into account between-participant and between-block variability as random 

effects, while testing our manipulations of different cardinal values on N1 production. 

For ERPs produced during trials when there is a change in the number of dots, the means 

for peak amplitude and latency for the N1 (125-200ms, over the POT area) and the P3b (435-

535ms, over the Pz area) were analyzed. During numerical change trials, behavioral measures 

were recorded and analyzed as means for reaction time and mean accuracy. 

Assumptions of homogeneity and normality were investigated prior to conducting 

between-group analyses (Levene’s statistic and Shapiro-Wilk test). Each dependent variable 

(Amplitudes for N1 and P3b, Latencies for N1 and P3b, reaction time and accuracy) will be 

analyzed by using a 2 × 3 within-subjects repeated measures analysis of variance (ANOVA) with 

the factors of Direction (Increasing vs. Decreasing change) and Size (Small-to-Small, Large-to-

Large, Crossovers). The ANOVA provided p-values for differences between group means for 

each of the components within the change conditions by Direction and Size, as well as to analyze 
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any significant interaction effects of Direction by Size. When appropriate, the Greenhouse-

Geisser method for the violation of the sphericity assumption was applied.  

Further analyses were conducted by means of pairwise comparisons (t-tests). As we had 

established a priori hypotheses for the main effect for Size, where smaller numbers will show 

superior behavioral performance, as well as ERP differences of amplitude and latency between 

small and large numbers, one-sided significance tests will be used for the pairwise comparisons 

of Size. On the other hand, as there are no well-established hypotheses for the main effect of 

Direction, two-sided significance tests will be used for the pairwise comparisons of Direction. 

To correct for multiple comparisons, we followed the False Discovery Rate (FDR) 

method (Benjamini & Hochberg, 1995). For the pairwise t-tests, only FDR-corrected p-values 

are reported. The FDR correction has been shown to be an effective practice for neuroimaging 

data where multiple-testing across related spatial and temporal datapoints is a common problem 

(Benjamini & Yekutieli, 2001), and where more conservative methods, like the Bonferroni 

correction controlling for the Type I error rate, do not offer a good solution (Genovese et al., 

2002). Results were deemed significant when the false discovery rate among the rejected tests 

was estimated to be lower than 5%. 

The relationships between the obtained latency and adaptive mean amplitude from the 

ERP measures and the behavioral measures were explored using two-sided Pearson’s correlation 

analyses. In the next chapter, the results obtained using these parameters and methods are 

reported. 
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Chapter 7: Results 

For this study, a set of numerical stimuli with the number of dots ranging from small 

(1~3) and large (4~6) cardinalities. This stimulus presentation paradigm was adapted from Hyde 

and Spelke (2009), where participants viewed an ongoing stream of different numerosities, 

presented rapidly and sequentially. During the No Change conditions, participants saw the same 

number of dots repeatedly (albeit in different locations and sizes in each array), and the N1 

response to the cardinalities of 1~6 was recorded and analyzed. 

 

7.1. N1 ERP to Cardinalities 

7.1.1. N1 from Left vs. Right POT 

To evaluate bilateral differences over the POT areas in the brain, we ran a repeated 

measures ANOVA to compare measured N1 responses to cardinality from the left and right 

POT. There was a significant effect of laterality [F(1,14) = 5.93, p < 0.05, η2
g = 0.06]. To 

investigate whether the right or left POT had higher N1 amplitudes, we ran a linear mixed model 

fit by restricted maximum likelihood (with subject as a random factor). We found that the left 

POT has a mean amplitude of -3.72 µV (S.E. = 0.4), and the right POT has a higher mean 

amplitude of -4.47 µV (S.E. = 0.26) (see Table 1). 

 

Table 1:  

Linear mixed model of N1 mean amplitude to Cardinality over the Left vs. Right POT area 

 

  Left vs. Right POT 

(Intercept) -3.72*** 

  (0.40) 

Right POT N1 -0.75** 

  (0.26) 
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  Left vs. Right POT 

AIC 752.03 

BIC 764.81 

Log Likelihood -372.02 

Num. obs. 180 

Num. groups: partic 15 

Var: partic 

(Intercept) 
1.84 

Var: Residual 3.08 
***p < 0.001; **p < 0.01; *p < 0.05 

 

Post hoc t-tests using Satterthwaite's method revealed that significantly higher N1 

amplitudes were observed over the right POT compared to the left POT [t(14)= 2.868, p < 

0.005]. For a visual comparison of the plotted waveforms from the bilateral POT areas, please 

see Figure 1A in Appendix C. 

Though there are higher amplitudes measured over the right POT, the left POT exhibited 

an almost identical scaling of N1 waveforms in response to the six numerosities. These similar 

trends can observed in the profile plot for estimated marginal (E.M.) means of N1 amplitudes to 

the six different cardinal values (see Figure 11 below), where blue signifies the left POT, and red 

signifies the right POT. 

As effects were significantly stronger in the right POT compared to the left POT, yet both 

provide parallel reactivity functions, further analyses for this region are restricted to data from 

the POT over the right hemisphere. 
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Figure 11: Bilaterally-similar effects of N1 amplitude to cardinal values over the left 

(blue) and right (red) POT area during a time window of 125-200 ms. 

 

7.1.2. N1 Amplitude to Cardinalities of 1~6 

In all of the following grand-averaged plots for the N1 waveforms, graph points that are 

higher on the Y-axis indicate weaker effects, in that the negative-going signal was less deflected 

in that polarity. Therefore, strength of effects for the N1 ERP is to be read in this inverted 

manner. 
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N1 ERP response to Cardinal Values (1~6) at 125-200ms

 
Figure 12: Grand-averaged waveform of N1 amplitudes over the POT area as an 

electrophysiological response to each of the tested cardinal values (1~6). 

 

Figure 12 is a plot of grand-averaged N1 waveforms over the right POT area, where 

measured N1 amplitudes increase as the cardinal condition increases in numerical value for the 

range 1 to 3. This might imply that as more items are encoded in working memory, the N1 

amplitude produced higher negativities commensurate with the increased processing load. 

However, we do not see scalar effects within the large number range of 4 to 6, suggesting that 

such working memory effects are not in play. 

Descriptive statistics show that the mean N1 amplitude increases from “1” to “2”, and to 

“3”. From “3” to “4”, the mean N1 amplitude only slightly increases, followed by a gradual 

plateau of N1 amplitudes at “5” and “6” (see Table 4A in Appendix B).  
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When assessing the POT N1 amplitudes towards the six cardinal values, Mauchly's test 

suggests that the sphericity assumption was violated, χ2 (14) = 31.370, p < 0.01.1 Therefore, a 

repeated-measures ANOVA with a Greenhouse-Geisser correction2 was conducted, showing that 

the N1 amplitude means for the six cardinal values revealed that the mean amplitudes to each 

cardinal value is significant from each other, where for the Right POT: F(2.50, 35.02) = 34.08, p 

< 0.000, η2
g = 0.34 and for the left POT: F(2.61, 36.61) = 38.01, p < 0.000, η2

g = 0.42.   

Post-hoc pairwise t-tests with Bonferroni adjustments for the six cardinalities were 

conducted (see Table 4A in Appendix B). Pairwise comparisons showed that the N1 mean 

amplitude for the cardinal value “1” was significantly lower than the mean amplitudes generated 

for the other cardinal values (2~6). Meanwhile, the N1 mean amplitude for “2” was significantly 

different than 3~6, while “3” was significantly different than “1”, “2”, and “4”. For cardinal 

values “4” onwards and up, there were no significant differences in N1 mean amplitude among 

the larger cardinal values (>3). These results justify our decision to designate cardinal values 1~3 

as small numbers, and 4~6 as large numbers in our experimental design. See Figure 13 (below) 

for a plot of mean N1 amplitudes for each of the six cardinal values. 

 

 
1
 According to Field (2013), if Mauchly's test yielded a p-value less than 0.05, then we should refer to the 

Greenhouse-Geisser epsilon (GG ε) to see if it is less than 0.75.  
2
 GG ε for the left and right POT amplitudes were both less than 0.75. 
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 Figure 13: Mean N1 amplitudes plotted by 6 cardinal values over POT (125 – 200 ms) 

 

7.1.3. N1 Latency to Cardinality 

Repeated measures ANOVA revealed that there were no significant main effects of 

laterality (Left vs. Right POT) on N1 peak latency to the cardinalities of 1~6 [F(1, 13) = 0.261, p 

= 0.618, η2
g= 0.02]. There were also no main effects of cardinal condition [F(5, 65) = 1.427, p = 

0.226, η2
g= 0.099]. Finally, there were no interaction effects of laterality and cardinality [F(5, 

65) = 0.881, p = 0.423, η2
g= 0.063]. 

Figure 14 (below) is the plot for estimated marginal (E.M.) means of N1 latencies to the 

six different cardinal values, where blue signifies the left POT, and red signifies the right POT. 

There were no differences between both hemispheres for N1 latency. 
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It is important to confirm that our data do not show a positive relationship between N1 

latency and cardinal value. Should N1 peak latency increases as cardinal value increases, this 

might indicate that there is a presence of a serial process in numerical processing. This finding is 

similar to Hyde and Spelke (2009), as they also did not find differences in N1 latencies for their 

small numerosities (1, 2, 3) as well. 

 

Figure 14: Estimated marginal means of N1 latency (milliseconds) to 6 cardinal values 

In summary of the N1 response to cardinality, the present data strongly support the 

predictions of Hypothesis 1, in that cardinal values will show scalar properties for N1 amplitudes 

in the small number cardinalities (1~3), but not in the large number cardinalities (4~6), which are 

close and continuous with the small number sets. Just like Hyde and Spelke (2009), we did not 

find significant effects of N1 latency for cardinality set size.  
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7.2. Effects of Direction, Size, and Direction by Size 

This study used a 2 × 3 within-subjects experimental design with the factors of change 

direction (Decrease vs. Increase) and set size of numerical change (SS: Small-to-Small, LL: 

Large-to-Large, SL and LS: Crossovers). This study investigated six dependent variables to 

numerical change direction, including reaction time, accuracy, N1 amplitude and latency over 

the right POT, as well as the P3b amplitude and latency over the Pz area. 

 

7.2.1. Reaction Time: Sig. for Direction, Size, and Direction by Size 

Reaction time results for the Change conditions by Direction and Size can be seen in the 

boxplot below (Figure 15). The data for reaction time was normally-distributed and showed 

homogenous variance3. 

 
Figure 15: Mean reaction times (milliseconds) by Numerical Change (Direction and Size) 

 
3
 As assessed by the Shapiro-Wilk normality test (p = 0.489) and the Levene’s test of equal variance (p = 0.771). 



58 

 

Mean reaction times to different change conditions from shortest to longest are as 

follows: Decreasing-Large-Small, Increasing-Small-Small, Increasing-Small-Large, Decreasing-

Small-Small, Decreasing-Large-Large, with the longest mean reaction time observed for the 

Increasing-Large-Large condition. Please see Table 5A in Appendix B for descriptive statistics of 

Reaction Time by Numerical Change Condition. 

Repeated measures ANOVA was conducted to analyze Reaction Times by numerical 

change variables (Direction and Size), with subject as a random factor4. Analyses showed that 

there was a significant main effect of Direction [F(1, 14) = 7.863, p < 0.05, η2
p = 0.360], and a 

higher significant main effect of Size [F(1.909, 26.730) = 55.319, p < 0.001, η2
p = 0.798]. There 

was also a significant interaction effect of Direction by Size on reaction time [F(2, 28) = 20.039, 

p < 0.001, η2
p = 0.589]. We conclude that the means of reaction time are not all equal among the 

six different change conditions, and followed this up with post-hoc pairwise t-tests on mean 

reaction time (see Table 6A in Appendix B for detailed output).  

As we had established a priori hypotheses for the main effect for Size, where smaller 

numbers will show shorter reaction times, one-sided significance tests will be used for the 

pairwise comparisons of Size. On the other hand, as there are no well-established hypotheses for 

the main effect of Direction, two-sided significance tests will be used for the pairwise 

comparisons of Direction. 

For Direction, two-tailed t-tests revealed that there are significant differences of mean 

reaction time among all three tested groups of Size. For the Small sets, “Decreasing” conditions 

produced longer reaction times than “Increasing” [M = 21.412, t(14) = 3.204, p < 0.001]. For the 

Crossover sets, “Decreasing” conditions produced shorter reaction times than “Increasing” [M = 

 
4
 For the main effect of Size, sphericity was not met, as indicated by Mauchly’s test, χ2 (2) = 0.371, p < 0.001. 

Therefore, a Greenhouse-Geisser correction was conducted on the ANOVA for reaction time by Size. 
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-12.826, t(14) = -2.297, p < 0.05]. For Large sets, “Decreasing” conditions produced shorter 

reaction times than “Increasing”, [M = -38.319, t(14) = -5.350, p < 0.0001]. 

For Size, one-tailed t-tests showed that there are significant differences of mean reaction 

time among all six combinations of set sizes. In the “Increasing” conditions, Small sets produced 

shorter reaction times than Crossover sets [M = -15.937, t(14) = -2.281, p = 0.023] and Large 

sets [M = -37.369, t(14) = -4.958, p = 0.001], while Crossover sets produced shorter reaction 

times than Large sets [M = -75.688, t(14) = -10.094, p < 0.0001]. In the “Decreasing” conditions, 

Small sets produced longer reaction times than Crossover sets [M = 18.301, t(14) = 2.679, p = 

0.013], but shorter reaction times than the Large sets [M = -15.957, t(14) = -2.171, p = 0.024]. 

Crossover sets produced shorter reaction times than Large sets [M = -59.751, t(14) = -9.251, p < 

0.0001]. 

These trends can be observed in the plot below (Figure 16) for estimated marginal means 

of reaction time to numerical change by the three set sizes and change directionality, where red 

signifies the mean reaction time for the “Decreasing” condition, and green signifies the mean 

reaction times for the “Increasing” condition. 
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Figure 16: Estimated marginal means of reaction time (milliseconds) by Numerical Change 

(Direction and Size) 

 

7.2.2. Accuracy: Sig. for Direction, Size, and Direction by Size 

Mean accuracy to different change conditions from lowest to highest are as follows: 

Increasing-Large-Large, Decreasing-Large-Large, Increasing-Small-Large, Increasing-Small-

Small, Decreasing-Small-Small, with the highest mean accuracy observed for the Decreasing-

Large-Small condition. Please see Table 7A in Appendix B for descriptive statistics of Accuracy 

by Numerical Change condition. Accuracy data 5 for the Change conditions by Direction and 

Size are plotted in Figure 17.  

 
5
 Levene’s test of equal variance showed homogenous variance for accuracy data (p = 0.144). Normality tests on 

accuracy data by the six Change conditions revealed that dLS (Decrease Large-Small) was the only Change 

condition with accuracy data that was not normally-distributed (W = 0.819, p < 0.01), while the other five Change 

conditions (dSS, iSS, dLL, iLL, iSL, iSS) yielded normally-distributed accuracy data. 
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Figure 17: Mean accuracy plotted by Numerical Change (Direction and Size) 

We ran a repeated measures ANOVA to analyze mean accuracy by numerical change 

variables (Direction and Size), with subject as a random factor. The analysis6 on accuracy by 

Size showed that the three set sizes had significantly different mean accuracies [F(1.202,16.822) 

= 96.914, p < 0.001, η2
p = 0.874]. There was a moderately significant main effect of Direction 

[F(1, 14) = 8.085, p < 0.05, η2
p = 0.366], and a weaker interaction effect of Direction and Size on 

mean accuracy [F(2, 28) = 4.553, p < 0.05, η2
p = 0.245]. 

In terms of Size, lower accuracies are observed for change in the Large-Large condition. 

In terms of Direction, higher accuracies are observed for Decreasing change, than Increasing 

change. We conclude that the means of accuracy are not all equal among the six different change 

 
6
 For the main effect of Size, sphericity was not met, as indicated by Mauchly’s test, χ2 (2) = 11.498, p < 0.005. 

Therefore, a repeated-measures ANOVA with a Greenhouse-Geisser correction was conducted on accuracy by Size. 
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conditions, and follow this up with post-hoc pairwise t-tests on mean accuracy (see Table 8A in 

Appendix B for detailed output). 

As we had established a priori hypotheses for the main effect for Size, where smaller 

numbers will show higher accuracy, one-sided significance tests will be used for the pairwise 

comparisons of Size. On the other hand, as there are no well-established hypotheses for the main 

effect of Direction, two-sided significance tests will be used for the pairwise comparisons of 

Direction. 

For the effect of Direction, two-tailed t-tests revealed that only one out of the three set 

sizes had significant differences in accuracy, where the “Decreasing” condition produced higher 

accuracy rates only in the Large sets over the “Increasing” condition, M =0.101, t(14) =5.25, p < 

0.0001.  

For the effect of Size, one-tailed t-tests showed that there are significant differences on 

accuracy among five out of six paired combinations we analyzed. There were no differences 

when comparing the Small-to-Small and Small-to-Large set sizes in the “Increasing” condition. 

Meanwhile, in the “Decreasing” condition, the Small-to-Small sets produced lower accuracy 

rates than the Crossover (Large-to-Small) sets [M = -0.042, t(14) = -1.919, p = 0.046], but this 

was only marginally significant. 

In the “Decreasing” condition, Small sets produced higher accuracy rates than Large-to-

Large sets [M = 0.262, t(14) = 8.626, p < 0.001], while the Crossover (Large-to-Small) sets 

produced higher accuracy rates than Large sets [M =0.353, t(14) = 11.290, p <0.0001. In the 

“Increasing” condition, Small sets produced higher accuracy rates than Large sets [M = 0.252, 

t(14) = 7.930, p < 0.0001], while the Crossover (Small-to-Large) sets produced higher accuracy 

rates than Large sets [M =0.351, t(14) = 10.453, p < 0.0001].   
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Both mean accuracies for the Large sets (in both directions) are significantly lower than 

all the other change conditions. These trends can be observed in the plot below (Figure 18) for 

estimated marginal means of accuracy to numerical change by the three different set sizes and 

change directionality, where red signifies the mean accuracy for the “Decreasing” condition, and 

green signifies the mean accuracy for “Increasing” condition. 

 
Figure 18: Estimated marginal means of accuracy by Numerical Change (Direction and 

Size) 

 

7.3. N1 ERP over Right POT 

There were bilaterally-similar patterns of ERP waveforms over the left and right POT. 

However, as supported by previous research (Ansari et al., 2007; Hyde & Spelke, 2012), there 

were higher N1 amplitudes over the right POT. Please see Figure 2A in Appendix C for a visual 

comparison of the plotted waveforms from the left and right POT. For grand-averaged N1 

waveforms plotted for the six change conditions and the no-change condition (where the 

presented cardinal values remain the same), see Figure 19 below.  
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Figure 19: N1 ERP waveforms for different numerical Change conditions over the right 

POT area during the 125-200ms window. 

Note: Compared to all the other Change conditions, “Decrease Small-Small” (red dashed 

line) produced the lowest N1 amplitude, even lower than the “No Change” condition (blue 

solid line). 

 

7.3.1. N1 Amplitudes: Sig. for Direction, Size, and Direction by Size 

Over the right POT area, the lowest N1 amplitude was measured in the “Decrease Small-

Small” condition, compared to “No Change”, while the rest of the change conditions showed 

higher amplitudes. These results indicate that at 125-200ms, the POT is “off-loading” objects 
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from visual short-term memory with decreasing small numbers (in the subitizing range), but not 

for large numbers 7. 

Figure 20 shows the mean N1 amplitudes plotted by numerical change variables 

(Direction and Size). Mean N1 amplitudes to different change conditions from lowest to highest 

are as follows: Decreasing-Small-Small, Decreasing-Large-Small, Increasing-Small-Small, 

Increasing-Large-Large, Decreasing-Large-Large, with the highest mean N1 amplitudes 

observed for the Increasing-Small-Large condition. Please see Table 9A in Appendix B for 

descriptive statistics of mean N1 amplitudes by Numerical Change condition. 

 

Figure 20: Mean N1 amplitudes plotted by Numerical Change (Direction and Size) 

 

 
7
 Levene’s test showed that N1 amplitude data to Change conditions had homogenous variance (p = 0.092) 

Normality tests conducted on N1 amplitude data by the six Change conditions revealed that only the Large-Large 

numerical change conditions did not have normally-distributed N1, while N1 amplitudes for the other four Change 

conditions (dSS, iSS, dLS, iSL) were normally-distributed 
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Repeated measures ANOVA on mean N1 amplitudes by numerical change variables 

(Direction and Size), with subject as a random factor, revealed that there was a strong significant 

main effect of Direction on N1 amplitudes [F(1, 14) = 51.98, p < 0.001, η2
p = 0.788], as well as a 

significant main effect of Size [F(2, 28) = 26.599, p < 0.001, η2
p = 0.655]. There was also a 

significant interaction effect of Direction and Size8 on mean N1 amplitudes over the POT area 

[F(1.314, 18.397) = 15.79, p < 0.001, η2
p = 0.53]. We conclude that the means of N1 amplitudes 

are not all equal among the six different change conditions, and followed this up with post-hoc 

pairwise t-tests on mean N1 amplitude (see Table 10A in Appendix B for detailed output).  

As we had established a priori hypotheses for the main effect for Size, where we predict 

N1 amplitudes to have higher negativities as numbers get larger, one-sided significance tests 

were used for the pairwise comparisons of Size. On the other hand, as there are no well-

established hypotheses for the main effect of Direction, two-sided significance tests were used 

for the pairwise comparisons of Direction. 

For the effects of Direction, two-tailed t-tests revealed that there are significant 

differences of mean N1 amplitudes among two out of the three set sizes: In Small sets, the 

“Decreasing” conditions showed lower N1 amplitudes (i.e., less negative deflection) than 

“Increasing” [M =2.324, t(14) =7.222, p < 0.0001]. In Crossover sets, “Decreasing” conditions 

showed higher N1 amplitudes than “Increasing” [M =1.194, t(14) =4.36, p < 0.0001]. 

Meanwhile, there were no significant effects of Direction on N1 amplitudes in the Large sets.  

For the effects of Size, one-tailed t-tests showed that there are significant differences of 

mean N1 amplitudes among four out of six pairwise comparisons. In the “Decreasing” condition, 

 
8
 For the interaction effect of Direction by Size on N1 amplitudes, sphericity was unmet, as indicated by Mauchly’s 

test, χ2 (2) = 9.596, p < 0.01. Therefore, a repeated-measures ANOVA with a Greenhouse-Geisser correction was 

conducted on mean N1 amplitudes by change direction and set size. 
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Small sets produced higher N1 amplitudes than Crossover sets [M = 1.859, t(14) = 9.956, p < 

0.001] and higher N1 amplitudes than Large sets [M = 2.881, t(14) = 7.665, p < 0.001]. In the 

“Increasing” condition, Small sets produced higher N1 amplitudes than Crossover sets [M = 

0.729, t(14) = 2.727, p < 0.05] and higher N1 amplitudes than Large sets [M =0.557, t(14) = 

2.067, p < 0.05]. There were no significant differences between the Large sets and Crossover sets 

in the Decreasing condition, as well as between the Large sets and Crossover sets in the 

Increasing direction. 

These trends can be observed in the plot below (Figure 21) for estimated marginal (E.M.) 

means of N1 amplitudes to numerical change by the three set sizes and change directionality, 

where red signifies the mean N1 amplitudes for the “Decreasing” condition, and green signifies 

N1 amplitudes for the “Increasing” condition. 

 
Figure 21: Estimated marginal means of N1 amplitude by Numerical Change (Direction 

and Size) 
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7.3.2. N1 Latency: Sig. for Direction (Not Size) 

N1 latency9 to Change conditions (Direction and Size) showed homogenous variance 

with a relatively-normal distribution. See Figure 22 for mean N1 latencies plotted by numerical 

change variables (Direction and Size). 

 

Figure 22: Mean N1 latencies plotted by Numerical Change (Direction and Size) 

 

Mean N1 latencies to different change conditions from earliest to latest are as follows: 

Increasing-Small-Small, Increasing-Small-Large, Increasing-Large-Large, Decreasing-Large-

Large, Decreasing-Large-Small, with the latest mean N1 latencies are observed for the 

Decreasing-Small-Small condition. Please see Table 11A in Appendix B for descriptive statistics 

of mean N1 latencies by Numerical Change condition. 

 
9
 Levene’s test showed that the N1 latency data to Change conditions (Direction and Size) had homogenous 

variance (p = 0.313). Shapiro-Wilk’s tests of normality on the N1 latency data by the six Change conditions revealed 

that five out of the six Change conditions (dSS, iSS, dLL, iLL and iSL) was normally-distributed, while only the 

Decreasing-Large-Small conditions had N1 latency data that followed a marginally-normal distribution of: W = 

0.851, p = 0.06. 
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Repeated measures ANOVA was conducted on mean N1 latencies by numerical change 

variables (Direction and Size), with subject as a random factor. There was a significant main 

effect of Direction on mean N1 latencies [F(1, 14) = 13.1, p < 0.005, η2
p = 0.483], but there were 

no main effects of Size [F(2, 28) = 0.472, p = 0.629, η2
p = 0.033]. There was also no interaction 

effect of Direction and Size on mean N1 latencies [F(2, 28) = 2.836, p = 0.076, η2
p = 0.168]. 

Follow-up pairwise t-tests were conducted on the main effect of Direction, as it was a significant 

influence on peak N1 latencies.  

As there are no well-established hypotheses for the main effect of Direction, two-sided 

significance tests will be used for the pairwise comparisons of Direction on mean N1 peak 

latencies. Paired-samples (by Direction) two-tailed t-tests revealed that there are significant 

differences of mean N1 latencies among two out of three numeric set sizes (see Table 12A in 

Appendix B for detailed output). For the Small sets, “Decreasing” conditions produced later N1 

mean latencies than “Increasing” [M =9.6, t(14) =3.246, p < 0.05]. For the Crossover sets, 

“Decreasing” conditions also produced later N1 mean latencies than “Increasing”, M =4.956, 

t(14) =3.35, p < 0.05. Only the Large numeric sets did not show differences between either 

directions on N1 peak latencies. 

These trends can be observed in the plot below (Figure 23) for estimated marginal (E.M.) 

means of N1 latencies to numerical change by the three set sizes and change directionality, 

where red signifies the mean N1 latencies for the “Decreasing” condition”, and green signifies 

the mean N1 latencies for the “Increasing” condition. 
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Figure 23: Estimated marginal means of N1 latency (milliseconds) by Numerical Change 

(Direction and Size) 

 

7.4. P3b ERP over Mid-Parietal (Pz) Area 

The current study investigated the P3b ERP as a biomarker that signals higher-cognitive 

processes involved in context-updating. For grand-averaged P3b waveforms plotted for the six 

change conditions and the no-change condition (where the presented cardinalities remain the 

same), please see Figure 24.   
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Figure 24: Grand-averaged P3b waveforms for seven different numerical change 

conditions over the mid-Parietal (Pz) area. 

Note: Conditions of No Change (blue solid line) produced the earliest and lowest peak at 

~330ms post-stimulus, whereas Small sets (dashed lines) and Crossover sets (dotted lines) 

produced higher peaks at ~435ms, while the Large sets (red and green solid lines) produced 

lower peaks at ~500ms. 

 

 

7.4.1. P3b Amplitude: Sig. for Size (Not Direction) 

P3b amplitude10 to Change conditions (Direction and Size) showed homogenous variance 

was normal distributed. See Figure 25 for mean P3b amplitudes plotted by numerical change 

variables (Direction and Size). 

 
10

 Levene’s test of equal variance showed that our P3b mean amplitude data to Change conditions (Direction and 

Size) had homogenous variance (p = 0.853). P3b mean amplitude data to the 6 Change conditions were normally-

distributed, as assessed by the Shapiro-Wilk tests of normality.   
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Over the Pz area at 435-535 ms, “Decrease Small-Small” produced the highest P3b 

amplitude, while Increase and Decrease Large-Large have lower P3b amplitudes. As the number 

stays the same in No Change, there is a weak P3 signal instead. Change in the Decreasing Small-

to-Small condition (1~3) had the highest P3b amplitude, while change in the Large-Large 

condition (with 4~6) had the lowest amplitude with no differences based on change direction.  

 

Figure 25: Mean P3b amplitudes plotted by Numerical Change (Direction and Size) 

Mean P3b amplitudes to different change conditions from lowest to highest are as 

follows: Decreasing-Large-Large, Increasing-Large-Large, Increasing Small-Large, Increasing-

Small-Small, Decreasing-Large-Small, with the highest mean P3b amplitudes observed for the 

Decreasing-Small-Small condition. Please see Table 13A in the Appendix B for descriptive 

statistics of mean P3b amplitudes by Numerical Change condition. 

A repeated measures ANOVA was conducted to analyze mean P3b amplitudes by 

numerical change variables (Direction and Size), with subject as a random factor. There was a 

significant main effect of Size on mean P3b amplitudes [F(2, 28) =8.869, p = 0.001, η2
p = 0.388], 
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but there were no main effects of Direction [F(1, 14) = 1.661, p = 0.218, η2
p = 0.106]. Also, there 

was no interaction effect of Direction and Size on mean P3b amplitudes [F(2, 28) = 1.545, p = 

0.231, η2
p = 0.099]. 

As Direction did not significantly influence peak P3b mean amplitudes, post-hoc tests for 

the main effects of Direction were not conducted for this variable. As Size was the only 

significant effect on P3b amplitudes, we ran post-hoc pairwise t-tests to investigate which set 

sizes are contributing to this significant difference of mean P3b amplitudes among the Small vs. 

Large sets in the “Decreasing” condition (see Table 14A in Appendix B for detailed output). 

As we had established a priori hypotheses for the main effect for Size, where we predict 

P3b amplitudes to be higher for tasks that are easier to update its context, especially for sets with 

smaller numbers, one-sided significance tests will be used for the pairwise comparisons of Size. 

Pairwise one-sided t-tests showed that there are significant differences of mean P3b amplitude 

among two pairs out of six combinations. In the “Decreasing” condition, Small sets showed 

larger P3b amplitudes than the Large sets [M =2.588, t(14) =3.886, p < 0.01], while the 

Crossover (Large-to-Small) sets showed larger P3b amplitudes than the Large sets [M =1.877, 

t(14) =2.53, p < 0.05]. 
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Figure 26: Estimated marginal means of P3b amplitudes by Numerical Change (Direction 

and Size) 

 

These trends can be observed from the plot in Figure 26 for estimated marginal (E.M.) 

means of P3b amplitudes to numerical change by the three set sizes and by both directions, 

where red signifies the P3b amplitudes for the “Decreasing” condition”, and green signifies the 

P3b amplitudes for the “Increasing” condition. 

 

7.4.2. P3b Latency: Sig. for Size, and Direction by Size 

P3b latency11 to Change conditions (Direction and Size) showed homogenous variance 

with a normal distribution. See Figure 27 for mean P3b latencies plotted by numerical change 

variables (Direction and Size). 

 
11

 Levene’s test of equal variance showed that our P3b mean latency data to Change conditions (Direction and Size) 

had homogenous variance (p = 0.07). P3b mean latency data to the 6 Change conditions were normally-distributed, 

as assessed by the Shapiro-Wilk tests of normality 
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Figure 27: Mean P3b latencies plotted by Numerical Change (Direction and Size) 

 

P3b latency was shortest for “dLS”, followed by “dLL” and “dSS”, but for Increasing 

conditions, P3b latency was shortest for “iSS”, followed by “iSL”, with “iLL” having the longest 

P3b latencies. Please see Table 15A in Appendix B for descriptive statistics of mean P3b 

amplitudes by Numerical Change condition. 

A repeated measures ANOVA was conducted to analyze mean P3b latencies by 

numerical change variables (Direction and Size), with subject as a random factor. There was a 

significant main effect of Size on P3b mean latencies [F(2, 28) = 14.095, p < 0.001, η2
p = 0.502], 

but there were no main effects of Direction [F(1, 14) = 0.304, p = 0.59, η2
p = 0.021]. There was a 

significant interaction effect of Direction and Size on mean P3b latencies [F(2, 28) = 5.931, p = 

0.007, η2
p = 0.298]. We conclude that the means of P3b latencies are not all equal among the six 

different change conditions by Size, and followed this up with post-hoc pairwise t-tests (see 
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Table 16A in Appendix B for detailed output). As Direction did not significantly influence peak 

P3b mean latencies, post-hoc tests were not conducted for this variable. 

As we had established a priori hypotheses for the main effect for Size, where we predict 

P3b latencies to be longer for more difficult tasks that are harder to update its context, especially 

for sets with larger numbers, one-sided significance tests will be used for the pairwise 

comparisons of Size. Pairwise one-sided t-tests showed that there are significant differences of 

mean P3b latencies among four out of six pairwise comparisons. In the “Decreasing” condition, 

Crossover (Large-to-Small) sets showed earlier P3b latencies than Small sets [M =23.956, t(14) 

=3.794, p < 0.001], as well as Large sets showing longer P3b peak latencies [M =-26.8, t(14) = -

3.216 p < 0.001]. In the “Increasing” condition, Large sets showed later P3b latencies than Small 

sets [M =-15.333, t(14) =-2.906, p < 0.01], as well as Crossover (Small-to-Large) sets [M =-

22.649, t(14) =-3.736, p < 0.001]. There were no significant differences between the Large sets 

and Crossover sets in the Decreasing condition, as well as between the Small sets and Crossover 

sets in the Increasing direction. 

These trends can be observed in the plot below (Figure 28) for the estimated marginal 

(E.M.) means of P3b latencies to numerical change by the three set sizes and by both directions, 

where red signifies the P3b latencies for the “Decreasing” condition”, and green signifies the P3b 

latencies for the “Increasing” condition.  

 



77 

 

 

Figure 28: Estimated marginal means of P3b latencies by Numerical Change (Direction 

and Size) 

 

 

7.5. Correlations of Brain and Behavior 

To analyze the link between these variables (Reaction time/RT, Accuracy, N1 Amplitude 

and Latency, P3b Amplitude and Latency), two-way Pearson’s correlation analyses were 

conducted with an FDR correction. Please see Table 2 for the correlation findings. 
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Table 2: Correlations for Key Study Variables (Significant results are in bold) 

Two-tailed Correlations and Confidence Intervals (C.I.s) 

Variable A Variable B 

Pearson 

Correlation 

p, Sig. 

(2-tailed) 

FDR, p 

(2-tailed) 

95% C.I.s (2-tailed) ¶ 

Lower Upper 

RT Accuracy -0.645 <0.001 <0.001 -0.750 -0.502 

P3b Lat. RT 0.376 <0.001 0.002 0.182 0.540 

P3b Lat. Accuracy -0.307 0.003 0.015 -0.482 -0.105 

P3b Amp. Accuracy 0.259 0.014 0.042 0.053 0.441 

P3b Amp. N1 Amp. 0.263 0.012 0.045 0.058 0.445 

N1 Amp. N1 Lat. 0.221 0.037 0.093 0.013 0.408 

P3b Amp. P3b Lat. -0.201 0.057 0.122 -0.391 0.007 

P3b Amp. N1 Lat. 0.190 0.073 0.137 -0.019 0.381 

N1 Lat. Accuracy 0.154 0.147 0.245 -0.056 0.349 

P3b Amp. RT -0.145 0.172 0.258 -0.341 0.064 

N1 Lat. RT -0.138 0.194 0.265 -0.335 0.072 

N1 Amp. Accuracy 0.094 0.380 0.475 -0.116 0.295 

P3b Lat. N1 Amp. 0.077 0.471 0.543 -0.133 0.279 

P3b Lat. N1 Lat. 0.020 0.850 0.893 -0.188 0.226 

N1 Amp. RT 0.014 0.893 0.893 -0.193 0.221 

¶ Estimation is based on Fisher's r-to-z transformation with bias adjustment 

 

Significant correlations are as follows: Higher accuracies are strongly positively 

correlated with shorter reaction times (r = -0.645, p < 0.001). Earlier P3b latencies are strongly 

positively correlated with shorter reaction times (r = 0.376, p < 0.001). Earlier P3b latencies are 

negatively correlated with lower accuracy (r = -0.307, p < 0.05). Higher N1 amplitudes are 
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correlated with higher P3b amplitudes (r = 0.263, p < 0.05). Higher P3b amplitudes are 

correlated with higher accuracy (r = 0.259, p < 0.05).  

 

7.6. Summary 

This study examined the effects of Direction and Size on the dependent variables of 

Reaction Time, Accuracy, POT’s N1 Amplitude, POT’s N1 Latency, Pz’s P3b Amplitude, Pz’s 

P3b Latency to numerical change. For an overall summary of whether the main effects of 

Direction and Size are significant for these six dependent variables, and whether there is a 

significant interaction effect between Direction and Size for the listed six dependent variables, 

please refer to Table 3 below. 

 

Table 3: Summary of ANOVA results of change variables for Direction, Size and Direction-

by-Size for dependent variables of Reaction Time, Accuracy, POT’s N1 Amplitude, POT’s 

N1 Latency, Pz’s P3b Amplitude, Pz’s P3b Latency to numerical change. All p-values were 

FDR corrected. Significant results are bolded, with effect sizes (partial-eta-squared) in 

parentheses. 

 

Variables Direction Size Direction * Size 

Reaction Time p = 0.014 (0.360) p < 0.001 (0.798) p < 0.001 (0.589) 

Accuracy p = 0.013 (0.366) p < 0.000 (0.874) p = 0.019 (0.245) 

POT N1 Amp. p < 0.000 (0.788) p < 0.000 (0.655) p < 0.000 (0.530) 

POT N1 Lat. p = 0.003 (0.483) p = 0.629 (0.033) p = 0.076 (0.168) 

Pz P3b Amp. p = 0.218 (0.106) p = 0.001 (0.388) p = 0.231 (0.099) 

Pz P3b Lat. p = 0.590 (0.021) p < 0.000 (0.502) p = 0.007 (0.298) 

 

All in all, there were significant interaction effects between the variables of Direction by 

Size for reaction time (RT), accuracy, as well as N1 amplitudes over the right POT area, and P3b 

latencies over the Pz area. Meanwhile, the only main effect on N1 latencies was driven by the 

Direction variable, where the Decreasing condition showed later N1 peaks. On the other hand, 
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the only main effect on P3b amplitudes was the Size variable, where the Large-to-Large 

conditions showed the lowest P3b peaks. 
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Chapter 8: Discussion 

The current EEG study used an active-change-detection paradigm in a set of numerical 

stimuli with arrays of dots ranging from small (1~3) and large (4~6) cardinalities. Our stimulus 

presentation paradigm was adapted from Hyde and Spelke (2009), where participants viewed an 

ongoing stream of dots in different numerosities, presented rapidly and sequentially. During the 

No Change conditions, participants saw the same number of dots repeatedly (albeit in different 

locations and sizes in each array), and the N1 response to the cardinalities of 1~6 was recorded 

and analyzed. 

 

8.1. N1 ERP to Cardinalities in No-Change Trials 

We investigated whether there is a discontinuity between systems of small number 

processing and large number processing within the continuous range of 1 to 3 and 4 to 6, 

respectively, similar to results found with more numerically separated values used in previous 

research (Hyde & Spelke, 2009, 2012). Previously, Hyde and Spelke (2009) found effects of 

small vs. large cardinalities in the Parietal-Occipital-Temporal (POT) region whereby values 

within the small number range (1, 2, 3) were scaled to N1 ERP amplitudes. Their study found no 

clear scaling of numerosity to amplitude for the larger numerical values (8, 16, 24). 

Our first research question was as follows: Will there be differences in N1 amplitude and 

latency produced for smaller and larger numbers, specifically when participants are presented 

with a continuous range of the numerosities 1~6 for the present experiment? Our hypotheses and 

predictions were related to trials in which cardinal values were presented without a change.  

Findings show that as cardinal value increases, more objects are encoded in early visual 

working memory, leading to higher N1 amplitudes. Findings revealed that the N1 amplitude for 
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“1” is different from “2”; “2” is different than “3”, and “3” is different than the later cardinal 

values. In the large number range (“4” and above), the amplitudes were not discernible from 

each other. Relative magnitudes of N1 deflections corresponded to ordered numerical 

magnitudes within the small-number range, but not within the large number range.  This scaling 

of the N1 ERP to numerical magnitude replicates Hyde & Spelke (2012). 

Scaling is clearer in our data, and the categorical break between “1” and “2”, followed by “3” 

and 4~6 is apparent.  

 

8.1.1. N1 Amplitude for Cardinalities 1~6 

We hypothesized that the sensory visual N1 component is related to spatial attention and 

is read off individual items in visual short-term memory (VSTM) within the smaller number 

range (1~3) over the POT area. We also hypothesized that numerical estimation, on the other 

hand, is not read off of exact individuation of numerical values in the larger number range (4~6). 

In evaluating responses to no-change trials, we found scalar N1 ERP amplitude differences 

within the range of small cardinal values (1 < 2 < 3), whereas no such scalar ordering of ERP 

numbers was for the continuous, larger range of 4 to 6. Our findings are supported by similar 

results from Hyde and Spelke (2009, 2012), where we found that N1 peak amplitudes are 

significantly different for 1, 2, 3 in the small, subitizable range, but not for our larger 

numerosities (4, 5, 6).  

The current study found that as cardinal values increase in magnitude, higher N1 

amplitudes over the POT are produced. This is supported by previous literature that described 

higher parietal cortical activity when there is an increase in the number of objects to be tracked 

in visual working memory (Culham et al., 1998, 2001a; Culham & Kanwisher, 2001).  
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From our findings, it can be implied that as the number of dots increase, more objects are 

encoded into working memory, which increases perceptual load, leading to higher N1 

negativities with each increasing number for the cardinal values in the subitizable range. 

However, as a crucial signature of visual short-term memory is its limited storage capacity (i.e., 

3-4 elements), the earlier scaling of N1 amplitudes is not seen for numerosities of 4 dots or more. 

 

8.1.2. N1 Latency for Cardinalities 1~6 

In trials with no change, where participants were habituated to each cardinal value by 

seeing the same number of dots, the current study did not find any significant differences in peak 

latency of the N1 ERP in response to cardinalities of 1 ~ 6.  

It is important to note that our data do not show a positive relationship between N1 

latency and cardinal value, and our findings are supported by similar results from Hyde and 

Spelke (2009), as they found no N1 latency differences for 1, 2, 3. Should N1 peak latency 

increases as cardinal value increases, it might indicate that there is a presence of a serial process 

in numerical processing. However, if an increase in cardinal value is accompanied by an N1 

amplitude increase without latency differences, this may reflect the degree of perceptual load, or 

an increased load in working memory, as participants have to split their visuospatial attention 

(mental resources) to accommodate more objects in parallel (Gordon, 1994; Pylyshyn & Storm, 

1988). 

Neuroimaging research suggests multiple and distinct parietal processes are at work in 

the parallel individuation of a small number of objects (Xu, 2009), including a process of 

individuation that scales with the number of objects in the array. Therefore, the N1 effect 
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observed over the bilateral POT areas in the range of 1~6 numerosities might reflect this parallel 

individuation process.  

 

8.2. Effects of Size and Direction in Numerical Change 

For trials in which there was a change in numerical value of the stimulus, participants 

were asked to respond by pressing a key. We were interested in performance variables such as 

reaction time and accuracy for these change conditions, as well as whether these behavioral 

responses were affected by the set size of numerical change (Small-to-Small vs. Large-to-Large 

vs. Crossovers) and the directionality of the change (Increasing vs. Decreasing). Participants of 

this study were only told to respond when they see a change in the number of dots. Therefore, 

there were not aware that Size of numeric sets and Direction of numerical change were variables 

that this current study is investigating.  

Our research question was as follows: How is set size related to accuracy and reaction 

time, and is the increased set size advantage found within the smaller set size in the present 

experiment? Set size changes were categorized into: Small-to-Small (1~2, 1~3, 2~3), Large-to-

Large (4~5, 5~6, 4~6) and Crossover conditions, which can be Small-to-Large (2~4, 3~6), or 

Large-to-Small (4~2, 6~3). We hypothesized that numerical change would be harder to detect 

among large numbers, since large number estimation does not access exact numerical quantities 

available in processes involving parallel individuation and working memory. 

Within the 1~6 numerical range, we investigated whether there is an advantage for trials 

that involve Increasing quantities over Decreasing quantities. The present study questions 

whether change detection in smaller numerical ranges reflect the same or different kinds of 

processes in which directionality could have an effect.  
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In terms of directionality, previous studies have found that there is a performance 

advantage in the increasing set size conditions over the decreasing set size conditions, but these 

studies either looked at number comparisons with much larger numerical set sizes of 10 to 70, or 

they used a different experimental paradigm than our current study (Kaan, 2005; Paulsen et al., 

2010). 

Our third research question was as follows: Are there differences in the Small vs. Large 

vs. Crossover changes, where Direction of numerical change interacts with set size? For 

directionality effects, we were primarily guided by previous research on large number changes 

that show uniform advantages for increasing over decreasing changes in magnitude (Kaan, 2005; 

Paulsen et al., 2010). While the mechanism for such asymmetry has multiple explanations, there 

were no a priori mechanistic hypotheses for this study.  

However, we identified two possible hypotheses regarding the possible role of 

directionality of change in the smaller number range: a) Uniform Effects Hypothesis (UEH), and 

b) Interaction Effects Hypothesis (IEH). UEH posits that directionality effects are uniform across 

all quantities. Since previous research from Kaan (2005) and Paulsen et al. (2010) has shown 

better performance for increasing magnitude in large number changes (e.g., 10~70), such 

advantages could exist across the board and within the 1~6 number range of the current 

experiment. In this case, across the board–for the Small, Large and Crossover conditions,– 

reaction time would be faster and accuracy would be higher for increasing over decreasing 

magnitude changes. On the other hand, IEH posits that directionality effects are different in the 

small number (1~3) and large number (4~6) range reflecting different effects due to changes in 

the working memory/parallel individuation range compared to numerical estimation. 

Performance in detecting changes within the larger numerical range (4~6) would thus show 
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higher accuracy and faster reaction times for decreasing over increasing numerical changes if 

IEH were to be accepted.  

This effect might be higher in larger numbers than smaller numbers in the subitizing 

range. Changes in the small number range (1~3) should show a difference effect, either no 

directionality effects or better accuracy and reaction times in the decreasing set size range. 

 

8.2.1. Reaction Time: Direction by Size Effects 

In regards to reaction time, the IEH was supported, as we found significant evidence of 

an interaction effect of Direction by Size. When paired by different Direction groups for the 

same sizes, we found that the “Decreasing” condition had shorter reaction times than 

“Increasing”, but only when set sizes of numerical involve larger numbers, which are the 

Crossovers (Large-to-Small) and Large-to-Large sets. This pattern is reversed when comparing 

mean reaction times for both change directions among Small-to-Small set sizes, where 

“Decreasing” change had significantly longer reaction times than “Increasing”. 

 

8.2.2. Accuracy: Direction by Size Effects 

With respect to accuracy, the IEH is supported, as we found significant evidence of an 

interaction effect of Direction and Size. When paired by different Direction groups for the same 

sizes, we found that the “Decreasing” conditions had higher accuracy than “Increasing”. Further 

analysis revealed that this significant result was driven by how Decreasing Large-to-Large had 

significantly higher accuracy than Increasing Large-to-Large. The other two sizes (Small-to-

Small and Crossovers) did not show significant differences in mean accuracy in both change 

directions. However, when paired by different set sizes in the same Direction groups, we found 
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significantly higher accuracy for numerical change sets with smaller numbers over larger 

numbers, with the exception of Increasing Small-to-Small vs. Small-to-Large (one out of the six 

pairs) that showed no significant differences in mean accuracy. These results are supported by 

well-established concepts, where as numerosity increases, the imprecision of the approximate 

number system systematically increases (Hyde, 2011). 

Overall, we found shorter reaction times when change detection was easier, particularly 

while processing change when the number pairs involved smaller numbers in the subitizing 

range (1~3), as compared to large number processing (4~6). Similarly, we found higher accuracy 

when change detection is easier, particularly while processing change when the number pairs 

involve smaller numbers in the subitizing range (1~3), as compared to large number processing 

(4~6). We also found these advantages for crossover conditions to be midway between Small 

and Large conditions in behavioral measures of processing efficiency (Reaction time and 

Accuracy). 

 

8.3. N1 and P3b ERPs of Numerical Change 

In this study, while participants were behaviorally responding to numerical change on the 

screen with a key press, their ERP data (in response to the stimuli) is simultaneously being 

recorded. This gives our study an avenue to investigate the effect of change direction on 

amplitude and latency differences between small and large numbers. The ERPs of interest to us 

are the N1 and the P3b.  
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8.3.1. N1 Amplitudes: Direction by Size Effects 

We hypothesized that, during change conditions, the N1 component over the POT area is 

related to visuospatial attention and visual short-term memory (VSTM), where heavier 

perceptual loads are linked to higher N1 negativities. We found that as more objects are encoded 

in VSTM, the N1 amplitude over the POT area is higher.  

With respect to N1 amplitudes, the IEH was supported, as we found significant evidence 

of an interaction effect of Direction and Size. When paired by different Direction groups for the 

same set sizes, we found that the Decreasing condition had higher peak N1 amplitudes than 

Increasing. Further analysis revealed that this significant result was driven by the Small-to-Small 

and Crossover (Large-to-Small) set sizes, where Decreasing had significantly higher N1 

amplitudes than Increasing. However, this pattern reversed in the Large-Large sets where 

Decreasing had marginally lower N1 amplitudes than Increasing (but this was not significant). 

This suggests that the N1 amplitude effect most likely reflects subprocesses within the system of 

object representation and attentive object tracking. 

 

8.3.2. N1 Latencies: Direction (not Size) Effects 

In contrast, we found that the UEH is supported in N1 latency, instead of the IEH, as only 

Direction was significant in influencing peak latencies of the N1 ERP, where Increasing change 

had shorter peak N1 latencies. Further analysis revealed that Direction did not have a significant 

effect on the N1 peak latencies for the Large-to-Large sets, but for the Small-to-Small and the 

Crossover (Small-to-Large) conditions, Increasing conditions had earlier N1 peak latencies. 

Dissimilar to Hyde and Spelke (2009, 2012) who found earlier latencies for N1 peaks as neural 

responses to changes in larger numbers (8, 16, 24) over small numbers (1, 2, 3), the current 
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study, which tested a narrower, continuous range of numbers (1~6), did not find that larger 

numbers have earlier N1 peak latencies. These findings imply that the effect of change 

directionality has a larger effect on the N1 ERP, instead of the numeric set sizes. 

 

8.3.3. P3b Amplitudes: Size (not Direction) Effects 

We hypothesized that, in accordance with the P3b context-updating theory (Donchin, 

1981; Polich, 2007), when measuring numerical change processes over the Pz area, the P3b 

component is scaled to the ease of change detection, by how much easier it is to update the 

context from its previous one. We found that when the numerical change gets easier to detect 

(smaller sizes), the P3b shows higher amplitudes, reflecting greater ease in updating the context. 

With respect to the variable of P3b amplitudes, we found that the UEH is supported, 

instead of the IEH, as only Size was significant in influencing peak amplitudes of the P3b ERP. 

Analysis revealed that the Large-to-Large sets showed lower P3b amplitudes. Our finding of 

significant effect for Size on P3b amplitudes during numerical processing is supported by 

previous research from Libertus et al. (2007), where they found higher P300 amplitudes for small 

values as compared to large values. 

 

8.3.4. P3b Latencies: Direction by Size Effects 

Polich (2012) noted that the peak latency of the P3b component can be interpreted as 

indexing stimulus evaluation time, where it peaks earlier for easier tasks and more difficult tasks 

showed longer latencies. In accordance, we found shorter P3b latencies during easier, small 

number processing. 
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Regarding the P3b peak latency variable, we found that the IEH is supported, as we 

found significant evidence of an interaction effect of Direction and Size. When paired by 

different Direction groups for the same sizes, we found that the “Decreasing” condition showed 

shorter P3b peak latencies than “Increasing”, but only when set sizes of numerical involve larger 

numbers, which are the Crossovers (Large-to-Small) and Large-to-Large sets. This pattern is 

reversed when comparing mean P3b peak latencies for both change directions among Small-to-

Small set sizes, where the “Decreasing” condition had significantly longer P3b peak latencies 

than “Increasing”. 

Size was a more significant factor in influencing P3b latencies, but there were no main 

effects for Direction. This contrasts the earlier N1 latency results, where there the only main 

effect on it was Direction, where Increasing conditions produced earlier N1 peak latencies. 

Yurgil and Golob (2013) found that high perceptual load elicited longer P3b latencies and 

smaller P3b amplitudes in an auditory oddball EEG study. Our findings suggest a neural basis for 

the differentiation of small vs. large number perception at early stages of processing, and a later 

stage that involves more complex numerical processing that is employed in our numerical 

change detection task. Our findings are also in accordance with Rubinsten et al. (2013), who 

found that direction of change in the descending order was associated with a late parietotemporal 

(300–600 ms) positivity. 

 

8.4. Neurobehavioral Correlates in Processing Change Direction & Set Size 

8.4.1. Stronger P3b and Behavioral Performance 

Behavioral outcomes (accuracy and reaction time) were found to be strongly correlated 

with each other, as well as with amplitude and latency of P3b ERP signal. Our findings show that 
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accuracy is positively correlated with P3b amplitude and strongly negatively correlated with P3b 

latency, while reaction time is strongly positively correlated with P3b latency. 

 

8.4.2. Longer P3b Latency and Reaction Time 

From visually comparing the plots of mean P3b latencies and mean reaction times by 

numerical change direction and size (see Figure 29), there are almost identical trends for the 

main effects of Direction, and the interaction effects of Direction by Size. This similarity is 

supported by our findings that P3b latency and reaction time have a strong positive correlation 

with each other. Our findings are supported by previous research that also found positive 

correlations between P3b latency and reaction times (Ilan & Polich, 1999; Kutas et al., 1977). 

This support the proposition that the latency of P300 corresponds to stimulus evaluation time 

(Polich, 2011). 

 

Figure 29: Similar trends for peak latency of the P3b ERP and reaction time, where for the 

Small-Small condition, Decreasing showed longer P3b latencies and longer reaction times. 

This effect of Direction was reversed for the other two Size conditions (Large-Large and 

Crossovers, which include Large-Small and Small-Large) 
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8.4.3. Links between N1 and P3b Amplitudes 

By visually comparing the plots of mean amplitudes of the N1 and the P3b (see Figure 30), 

there are similar trends for the interaction effects of Direction by Size, especially in the Large-

Large sets. 

 

Figure 30: Similar trends for mean amplitudes of the N1 and the P3b ERP, where for 

the Large-Large condition, Decreasing showed lower N1 and P3b amplitudes. This 

effect of Direction was reversed for the other two Size conditions (Small-Small and 

Crossovers, which include Large-Small and Small-Large) 

 

Our findings show that the amplitudes of the N1 and the P3b ERP have a moderate 

positive correlation. For the N1 waveforms to numerical change, the major effect was a 

shallower N1 deflection for the Decreasing Small-Small condition compared to all other 

conditions. In fact, this change condition showed a shallower deflection than even the no-change 

condition.   

The off-loading phenomenon was observed from N1 amplitudes for the Decreasing 

Small-Small condition, where it produced the lowest N1 negativity (even lower than N1 peaks 

for No Change conditions), while the other five Change conditions all produced higher N1 

negativities than No Change conditions. However, for the later P3b ERP, the Decreasing Small-
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Small condition produced the highest amplitudes. This indicates that in our study, the less 

negative the N1 peak is, the more positive the P3b peak becomes. 

One possibility is that this difference in the N1 deflection reflected an easier 

discrimination between the primes and targets for the Small-to-Small sets. If this were the case, 

then we would expect there to be a faster reaction time and greater accuracy for this change 

condition in the behavioral data. However, this was not the case. For reaction time, the 

Decreasing Small-to-Small sets was actually slower than the Increasing Small-to-Small sets. 

Also, there was no difference in accuracy between both directions in the Small-Small sets. 

An alternative interpretation of the N1 outlier status of the Decreasing Small-to-Small 

condition is that only Small cardinalities are encoded within working memory and that there is a 

decrease in cognitive load when decreasing the number of items in visual working memory.  In 

the case of the large number cardinal values, these are not encoded in working memory, and so 

are undifferentiated in the N1 for increasing and decreasing conditions. On the other hand, we do 

see an advantage for Decreasing over Increasing in the Large-to-Large conditions in the 

behavioral data, whereby Decreasing is faster and more accurate than Increasing. 

 

8.5. Size Effects: Perceptual Load Theory 

Based on the Perceptual Load Theory from the foundational work of Lavie and Tsal 

(1994) and as outlined by Lavie (2005, 2010), the efficiency of our early- and late-selection 

attentional processes is dependent on the processing demands of the current task, where the 

ability to pay attention to the task at hand inevitably deteriorates under conditions of high 

perceptual load on cognitive control processes such as working memory. 
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Theorists have associated early-selection attention to the perceptual processing stage 

(e.g., Treisman, 1969), while late-selection attention has been linked to the response selection 

stage (e.g., Deutsch & Deutsch, 1963). Perceptual load theory states that perception is a limited-

capacity process (similar to early-selection views) and proceeds automatically until that capacity 

is filled (in line with late-selection views). When a task imposes high perceptual load, capacity is 

reached, resulting in performance consistent with early-selection attention (Murphy et al., 2016). 

Cognitive load, such as a high working memory requirement, can cause late-selection attention 

to fail (Lavie, 2005; Murphy et al., 2016). 

Researchers who study numerical processing have increased perceptual loads by 

increasing the amount of objects that participants have to process, and found that increased 

reaction times were longer and accuracy was lower (Cartwright-Finch & Lavie, 2007; Luck et 

al., 2000; Murphy et al., 2016). In an fMRI study by Culham, Cavanagh and Kanwisher  (2001), 

they found increased activity in parietal and frontal cortical areas when there is an increase in the 

number of objects that must be tracked. Behaviorally, as the size of numerosities increase, 

participants show longer reaction times and lower accuracy (Nan et al., 2006; Vetter et al., 2011; 

Vuokko et al., 2013). 

ERP research by Rorden et al. (2008) suggest that increased perceptual task loads result 

in higher N1 responses to relevant information. In an ERP study where participants are asked to 

rapidly enumerate geometric objects on a screen, Nan et al. (2006) employed a mixed design 

where target numerosities are 1~6, to be mixed with distractors to total up to a maximum of 20 

objects on the screen to discriminate and enumerate. Nan et al. (2006) found that as the target 

numerosity becomes larger, N1 amplitudes become progressively higher, but the strength of the 

N1 amplitude stops increasing after approximately 8 objects, indicating that this might be an 
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intrinsic limit of our ability to efficiently engage in numerical processing after a certain threshold 

of perceptual and cognitive load. Within the same study, the authors also found that P3 

amplitudes become lower as the number of objects to process increases. 

8.6. Direction Effects on N1 vs. Size Effects on P3b 

Research suggest that change detection should take place downstream from the encoding 

of numerical change at N1 (Hyde & Spelke, 2012). If early perceptual-level processing stages are 

influenced by the allocation of attentional resources, the N1 attention effects should be sensitive 

to manipulations of perceptual load. As more items are encoded in visual short-term memory 

(VSTM), measured N1 amplitudes increases as the condition increases in numerical magnitude. 

Meanwhile, as more items are off-loaded during VSTM, the measured N1 amplitude decreases. 

In comparison, if N1 peak latency is more sensitive to Direction, and P3b peak latency is 

more sensitive to Size, this implies that the factor of Change Direction is encoded first (signaled 

by N1), followed by stronger effects for Set Size (as signaled by reaction time and P3b latency, 

where larger loads lead to longer reaction times and longer P3b latencies). 

 

8.7. Proposed Adaptation to Perceptual Load and Context-Updating Theory in Working 

Memory Model of Numerical Change Processing 

Taking all of these findings into consideration, we propose an adaptation to the P3b 

Context-Updating Model (Polich, 2007). Please see Figure 31 for a schematic illustration of our 

proposed model. 
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Figure 31: Visual short-term memory (VSTM) and Working Memory in Numerical 

Change: Model adapted from Polich (2007). 

 

The context-updating theory of the P3b is related to updating one’s working memory in 

change detection paradigms, where an incoming sensory input is evaluated as being the same or 

different from the previous context (Polich, 2007). If this input is different, it elicits an updating 

of a given neural representation which is reflected in a P3b deflection at ~400ms. We propose 

that at an earlier sensory stage (~125ms) in numerical context-updating, objects are encoded or 

off-loaded from visual short-term memory, which modulates the N1, before integrating this 

information at later cognitive stages. 
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Chapter 9: Conclusion 

In contrast to Hyde & Spelke (2012), who examined distant small (1, 2, 3) vs. large (8, 

16, 24) numbers, we examined a smaller numerical range (1~6), so that small (1, 2, 3) vs. large 

(4, 5, 6) contrasts were along a numerical continuum. Within this continuous range, we found N1 

amplitudes commensurate with cardinal values in the small range (1, 2, 3), but not in the large 

range (4, 5, 6), where the process of encoding/off-loading objects in memory determines the 

amplitude strength, suggesting that numbers in the subitizing range are individuated in working 

memory. 

Measured N1 amplitudes become increasingly higher in their negativity as more objects 

are encoded in working memory. This increase of the N1 signal might imply that as more items 

are encoded in working memory, more neural activity is generated over the parietal regions of 

numerical cognition. When change is happening in the Decreasing direction, the Small-to-Small 

sets show its unique outlier status where it showed the lowest N1 negativity at early stages, but it 

eventually shows the highest P3b positivity at later stages. Differences in P3b amplitude and 

latencies also reflect a clear categorical break between increasing vs. decreasing, and small vs. 

large numbers, where easier/small number change conditions have higher amplitudes than 

harder, large number conditions, suggesting more difficulty with updating the context in the 

latter. 

Overall findings align with the context-updating model (Polich, 2007) where working 

memory representations differ between small and large numbers, as well as increasing and 

decreasing numerical change. We found that P3b and behavioral performance are correlated, 

with reaction time and P3b latency tightly linked. With N1 being more sensitive to Direction, 

and P3b being more sensitive to Size, this suggests that the posterior parietal cortex might 
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encode Direction first, followed by Size. Based on the present findings, it is possible that early 

spatial attention is deployed differentially based on the number of objects in the set. This 

explanation fits nicely with the idea that a limited number of items can be individuated or tagged 

as what has been termed “object files” (Sears & Pylyshyn, 2000; Scholl & Pylyshyn, 1999). 

From the object files perspective, the small number system is not a “number system” per se, but 

a system for keeping track and encoding features of individuals in parallel (Feigenson & Carey, 

2003). 

Further, our results provide evidence that there are two distinct system of representations 

spanning across a range of 1~6 when processing numerical change while considering the effects 

of change directionality and set size. These two systems are not specialized for small and large 

numbers per se, rather early attentional selection and its corresponding limits determine whether 

objects will be represented as distinct individuals or approximate numerical magnitudes.  

By understanding the processing stream and the neural generators involved in 

representing number at different stages of the processing stream, we may also gain insight into a 

currently debated issue within the literature on number processing: whether small and large 

numbers are truly represented by the same cognitive system or by distinct cognitive systems.  

We may also gain an understanding of the role that more general-purpose cognitive/brain 

systems play in producing, limiting, and altering representations of numbers. 

What brain regions underlie these dissociations between small and large number 

systems? Do individuation and numerical approximation engage the same brain area in different 

ways or do different brain regions serve to represent distinct individuals and approximate 

numerical magnitudes? A complete picture of the timing, pattern, and localization of these 

effects can provide a better basis not only for linking these components to identifiable brain 
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processes but also for understanding the dissociations between processing of individuals and of 

numerical magnitudes. 
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Appendix B 

Table 1A 

Demographic data for participants included in dataset 

 

Participant Gender Handedness Age Accuracy 

2 Female Right 23 65.06 

3 Female Right 26 63.72 

4 Female Right 23 51.56 

5 Female Right 24 56.06 

6 Male Right 43 67.18 

7 Female Right 25 67 

8 Female Right 28 55.34 

9 Female Right 33 50.14 

10 Female Right 29 58.46 

11 Male Right 25 66.44 

12 Male Right 24 58.48 

13 Female Right 29 59.8 

14 Female Right 26 67.92 

15 Male Right 29 54.06 

17 Female Right 26 72.32 

 

 

Table 2A 

Categorization of number pairs (Primed-Target) into Direction of change, Set Size, absolute 

difference, distance, and ratio between the Primed number and the Target number 

Primed Target Direction Set Size Abs. Diff. Distance Ratio 

1 3 Increasing Small-to-Small 2 Far 0.33 

1 2 Increasing Small-to-Small 1 Med 0.5 

2 3 Increasing Small-to-Small 1 Close 0.67 

1 1 Null No Change 0 N/A 1 

2 2 Null No Change 0 N/A 1 

3 3 Null No Change 0 N/A 1 

2 1 Decreasing Small-to-Small 1 Med 0.5 

3 2 Decreasing Small-to-Small 1 C 0.67 

3 1 Decreasing Small-to-Small 2 F 0.33 

Primed Target Direction Set Size Abs. Diff. Distance Ratio 

4 6 Increasing Large-to-Large 2 Close 0.67 

5 4 Decreasing Large-to-Large 1 Close 0.8 

6 5 Decreasing Large-to-Large 1 Close 0.83 

4 4 Null No Change 0 N/A 1 
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5 5 Null No Change 0 N/A 1 

6 6 Null No Change 0 N/A 1 

4 5 Increasing Large-to-Large 1 Close 0.8 

5 6 Increasing Large-to-Large 1 Close 0.83 

6 4 Decreasing Large-to-Large 2 Close 0.67 

Primed Target Direction Set Size Abs. Diff. Distance Ratio 

3 4 Increasing Small-to-Large 1 Close 0.75 

4 3 Decreasing Large-to-Small 1 Close 0.75 

2 4 Increasing Small-to-Large 2 Med 0.5 

3 5 Increasing Small-to-Large 2 Med 0.6 

4 2 Decreasing Large-to-Small 2 Med 0.5 

5 3 Decreasing Large-to-Small 2 Med 0.6 

1 4 Increasing Small-to-Large 3 Far 0.25 

2 5 Increasing Small-to-Large 3 Med 0.4 

3 6 Increasing Small-to-Large 3 Med 0.5 

4 1 Decreasing Large-to-Small 3 Far 0.25 

5 2 Decreasing Large-to-Small 3 Med 0.4 

6 3 Decreasing Large-to-Small 3 Med 0.5 

 

 

Table 3A 

Means and S.D. of N1 Amplitude to Six Cardinal Values for Right vs. Left POT  

    

 
N1 Amplitude of  

Right POT 

N1 Amplitude of  

Left POT 

Cardinality 
Right 

(Mean) 

Right 

(S.D.) 

Left 

(Mean) 

Left 

(S.D.) 

One -1.771 1.555 -1.299 1.415 

Two -3.632 1.952 -3.043 1.731 

Three -4.906 2.019 -3.960 1.668 

Four -5.859 2.182 -4.994 1.207 

Five -5.865 2.252 -4.674 1.469 

Six -5.361 2.301 -4.365 1.537 
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Table 4A 

Post hoc paired samples t-tests of Right POT area’s N1 amplitude to the Six Cardinal Values 

 

Cardinal 

t df 

Sig. (1-

tailed) 
Mean 

Std. 

Dev. 

S.E. 

Mean 

95% C.I. of the Diff. 

n1   n2 Lower B. Upper B. 

1 - 2* 4.527 13 0.000* 1.861 1.538 0.411 0.973 2.749 

1 - 3* 6.481 13 0.000* 3.135 1.810 0.484 2.09 4.181 

1 - 4* 7.212 13 0.000* 4.088 2.121 0.567 2.863 5.312 

1 - 5* 7.361 13 0.000* 4.094 2.081 0.556 2.893 5.296 

1 - 6* 6.182 13 0.000* 3.59 2.173 0.581 2.336 4.845 

2 - 1* -4.527 13 0.000* -1.861 1.538 0.411 -2.749 -0.973 

2 - 3* 3.946 13 0.001* 1.274 1.208 0.323 0.577 1.972 

2 - 4* 6.634 13 0.000* 2.227 1.256 0.336 1.502 2.952 

2 - 5* 8.970 13 0.000* 2.233 0.932 0.249 1.696 2.771 

2 - 6* 5.275 13 0.000* 1.729 1.227 0.328 1.021 2.437 

3 - 1* -6.481 13 0.000* -3.135 1.810 0.484 -4.181 -2.09 

3 - 2* -3.946 13 0.001* -1.274 1.208 0.323 -1.972 -0.577 

3 - 4* 2.824 13 0.007* 0.952 1.262 0.337 0.224 1.681 

3 - 5 2.670 13 0.01 0.959 1.344 0.359 0.183 1.735 

3 - 6 1.303 13 0.108 0.455 1.306 0.349 -0.299 1.209 

4 - 1* -7.212 13 0.000* -4.088 2.121 0.567 -5.312 -2.863 

4 - 2* -6.634 13 0.000* -2.227 1.256 0.336 -2.952 -1.502 

4 - 3 -2.824 13 0.007* -0.952 1.262 0.337 -1.681 -0.224 

4 - 5 0.026 13 0.490 0.007 0.937 0.25 -0.534 0.547 

4 - 6 -1.693 13 0.057 -0.498 1.100 0.294 -1.133 0.138 

5 - 1* -7.361 13 0.000* -4.094 2.081 0.556 -5.296 -2.893 

5 - 2* -8.970 13 0.000* -2.233 0.932 0.249 -2.771 -1.696 

5 - 3 -2.670 13 0.010 -0.959 1.344 0.359 -1.735 -0.183 

5 - 4 -0.026 13 0.490 -0.007 0.937 0.25 -0.547 0.534 

5 - 6 -2.882 13 0.006* -0.504 0.655 0.175 -0.882 -0.126 

6 - 1* -6.182 13 0.000* -3.59 2.173 0.581 -4.845 -2.336 

6 - 2* -5.275 13 0.000* -1.729 1.227 0.328 -2.437 -1.021 

6 - 3 -1.303 13 0.108 -0.455 1.306 0.349 -1.209 0.299 

6 - 4 1.693 13 0.057 0.498 1.100 0.294 -0.138 1.133 

6 - 5* 2.882 13 0.006* 0.504 0.655 0.175 0.126 0.882 

*. The mean difference is significant at the 0.0083 level, based on Bonferroni adjustments for 

multiple comparisons. Significant results are in bold. 

 

 

Table 5A 

Descriptive statistics of Reaction Time by Numerical Change Condition. 

  Mean Std. Deviation N 

dSS 541.259 33.75 15 

dLS 522.958 31.77 15 

dLL 557.216 25.00 15 
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iSS 519.847 36.73 15 

iSL 535.784 30.83 15 

iLL 595.535 29.48 15 

 

 

 

Table 6A:  

Paired samples t-tests for multiple comparisons of mean reaction to the change conditions by 

Direction and Size 

 

Two-sided pairwise t-tests for multiple comparisons of mean reaction time to the change 

conditions by Direction 

  
 

Mean  

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 2-

sided 

FDR, 

2-sided 

dSS - iSS 21.412 25.882 6.683 7.079 35.745 3.204 14 0.006 0.009 

dLS - iSL -12.826 21.625 5.584 -24.801 -0.850 -2.297 14 0.038 0.038 

dLL - iLL -38.319 27.739 7.162 -53.680 -22.957 -5.350 14 <0.001 <0.001 

 

One-sided pairwise t-tests for multiple comparisons of mean reaction time to the change 

conditions by Size 

  
 

Mean  

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 2-

sided 

FDR, 2-

sided 

dSS - dLS 18.301 26.459 6.832 3.649 32.954 2.679 14 0.018 0.027 

dSS - dLL -15.957 28.469 7.351 -31.723 -0.191 -2.171 14 0.048 0.048 

iSS - iSL -15.937 27.056 6.986 -30.920 -0.954 -2.281 14 0.039 0.047 

iSS - iLL 0.252 0.123 0.032 0.184 0.320 7.930 14 <0.001 <0.001 

dLS - dLL 0.353 0.121 0.031 0.286 0.420 11.290 14 <0.001 <0.001 

iSL - iLL 0.351 0.130 0.034 0.279 0.423 10.453 14 <0.001 <0.001 
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Table 7A: 

Descriptive statistics of Accuracy by Numerical Change Condition 

 Mean 

Std. 

Deviation N 

dSS 0.830 0.191 15 

dLS 0.872 0.187 15 

dLL 0.568 0.158 15 

iSS 0.820 0.156 15 

iSL 0.817 0.175 15 

iLL 0.467 0.168 15 

 

Table 8A:  

Two-sided pairwise t-tests for multiple comparisons of mean accuracy to the change 

conditions by Direction 

  
 

Mean 

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 2-

sided 

FDR, 

2-sided 

dSS - iSS 0.010 0.104 0.027 -0.048 0.068 0.367 14 0.719 0.719 

dLS - iSL 0.054 0.119 0.031 -0.012 0.120 1.764 14 0.100 0.150 

dLL - iLL 0.101 0.075 0.019 0.060 0.143 5.250 14 <0.001 <0.001 

 

One-sided pairwise t-tests for multiple comparisons of mean accuracy to the change conditions 

by Size 

  
 

Mean 

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 1-

sided 

FDR, 1-

sided 

dSS - dLS -0.042 0.085 0.022 -0.089 0.005 -1.919 14 0.038 0.046 

dSS - dLL 0.262 0.118 0.030 0.197 0.327 8.626 14 <0.001 <0.001 

iSS - iSL 0.002 0.086 0.022 -0.045 0.050 0.111 14 0.457 0.457 

iSS - iLL 0.252 0.123 0.032 0.184 0.320 7.930 14 <0.001 <0.001 

dLS - dLL 0.353 0.121 0.031 0.286 0.420 11.290 14 <0.001 <0.001 

iSL - iLL 0.351 0.130 0.034 0.279 0.423 10.453 14 <0.001 <0.001 
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Table 9A:  

Descriptive statistics of mean N1 amplitudes by Numerical Change condition. 

 Mean Std. Deviation N 

dSS -3.682 1.490 15 

dLS -5.541 1.656 15 

dLL -6.563 1.495 15 

iSS -6.001 1.435 15 

iSL -6.735 1.812 15 

iLL -6.389 1.583 15 

 

Table 10A: 

Two-sided pairwise t-tests for multiple comparisons of mean N1 Amplitude to the change 

conditions by Direction 

 

  
 

Mean  

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 2-

sided 

FDR, 

2-sided 

dSS - iSS 2.324 1.246 0.322 1.634 3.014 7.222 14 <0.001 <0.001 

dLS - iSL 1.194 1.061 0.274 0.607 1.781 4.360 14 <0.001 <0.001 

dLL - iLL -0.174 1.170 0.302 -0.822 0.474 -0.576 14 0.574 0.574 

 

One-sided pairwise t-tests for multiple comparisons of mean N1 Amplitude to the change 

conditions by Sizes 

 

  
 

Mean 

 

S.D. 

 

Std. Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 1-

sided 

FDR, 1-

sided 

dSS - dLS 1.859 0.723 0.187 1.458 2.259 9.956 14 <0.001 <0.001 

dSS - dLL 2.881 1.456 0.376 2.075 3.687 7.665 14 <0.001 <0.001 

iSS - iSL 0.729 1.036 0.267 0.156 1.303 2.727 14 0.008 0.016 

iSS - iLL 0.557 1.044 0.270 -0.021 1.135 2.067 14 0.029 0.044 

dLS - dLL 0.383 1.495 0.386 -0.445 1.211 0.992 14 0.169 0.169 

iSL - iLL -0.346 1.285 0.332 -1.058 0.366 -1.043 14 0.157 0.188 
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Table 11A:  

Descriptive statistics of mean N1 latencies by Numerical Change condition. 

 Mean Std. Deviation N 

dSS 167.067 9.278 15 

dLS 165.384 11.406 15 

dLL 162.049 13.867 15 

iSS 157.467 13.603 15 

iSL 160.428 12.097 15 

iLL 160.684 15.849 15 

 

 

Table 12A: 

Post-hoc paired samples t-tests for multiple comparisons of mean N1 latencies to the change 

conditions by Direction 

 

Two-sided pairwise t-tests for multiple comparisons of mean N1 Latency to the change 

conditions by Direction 

 

  
 

Mean 

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 2-

sided 

FDR, 

2-sided 

dSS - iSS 9.600 11.455 2.958 3.256 15.944 3.246 14 0.006 0.009 

dLS - iSL 4.956 5.729 1.479 1.783 8.128 3.350 14 0.005 0.015 

dLL - iLL 1.364 10.631 2.745 -4.523 7.252 0.497 14 0.627 0.627 

 

 

 

 

 

Table 13A:  

Descriptive statistics of mean P3b amplitudes by Numerical Change condition. 

 Mean Std. Deviation N 

dSS 6.926 3.400 15 

dLS 6.214 2.940 15 

dLL 4.337 2.980 15 

iSS 6.040 2.834 15 

iSL 5.303 2.913 15 

iLL 4.911 2.995 15 
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Table 14A: 

One-sided pairwise t-tests for multiple comparisons of mean P3b amplitude to the change 

conditions by Size 

  
 

Mean 

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

df 

Significance 

Lower Upper 
p, 1-

sided 

FDR, 1-

sided 

dSS - dLS 0.711 1.909 0.493 -0.346 1.769 1.444 14 0.085 0.128 

dSS - dLL 2.588 2.58 0.666 1.16 4.017 3.886 14 0.001 0.006 

iSS - iSL 0.737 1.772 0.457 -0.244 1.718 1.611 14 0.065 0.130 

iSS - iLL 1.129 3.045 0.786 -0.557 2.815 1.437 14 0.086 0.103 

dLS - dLL 1.877 2.873 0.742 0.286 3.468 2.530 14 0.012 0.036 

iSL - iLL 0.392 2.811 0.726 -1.164 1.949 0.541 14 0.299 0.299 

 

 

Table 15A:  

Descriptive statistics of mean P3b latencies by Numerical Change condition. 

 Mean 

Std. 

Deviation N 

dSS 487.733 22.874 15 

dLS 463.778 14.200 15 

dLL 487.067 17.030 15 

iSS 471.733 20.071 15 

iSL 475.884 10.499 15 

iLL 498.533 24.383 15 
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Table 16A: 

One-sided pairwise t-tests for multiple comparisons of mean P3b latencies to the change 

conditions by Size 

  
 

Mean  

 

S.D. 

 

Std. 

Err. 

Mean 

95% C.I. of the 

Diff.  
 

t 

 

 df 

Significance 

Lower Upper 
p, 1-

sided 

FDR, 

1-sided 

dSS - dLS 23.956 24.457 6.315 10.412 37.499 3.794 14 <0.001 <0.001 

dSS - dLL 0.667 29.006 7.489 -15.396 16.730 0.089 14 0.465 0.465 

iSS - iSL -4.151 18.981 4.901 -14.662 6.360 -0.847 14 0.206 0.247 

iSS - iLL -15.333 20.435 5.276 -26.650 -4.017 -2.906 14 0.006 0.009 

dLS - dLL -26.800 32.279 8.334 -44.675 -8.925 -3.216 14 0.003 0.006 

iSL - iLL -22.649 23.480 6.063 -35.652 -9.646 -3.736 14 0.001 0.003 
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Appendix C 

Figure 1A: 

Topographic plot of ERP waveforms towards Cardinalities of 1~6; Recorded from Left and 

Right POT (parietal-occipital-temporal) area vs. Left and Right DLPFC (dorsolateral prefrontal 

cortex) 
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Figure 2A: 

Topographic plot of ERP waveforms towards Change (Direction and Size); Recorded from Left 

and Right POT (parietal-occipital-temporal) area vs. Left and Right DLPFC (dorsolateral 

prefrontal cortex) 

 

 
 

 


