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Abstract

Topics in Deep Learning and Data-driven Optimization

Achraf Bahamou

Data-driven optimization has become an increasingly popular approach for solving complex

problems in various domains, such as finance, online retail, and engineering. However, in many

real-world applications, the amount of available data can vary significantly, ranging from limited to

large data sets. Both of these regimes present unique modeling and optimization challenges.

In this thesis, we explore two distinct problems in two different data availability and model

complexity regimes. In the first part (Chapters 2 and 3), we focus on the development of novel

optimization algorithms for training deep neural network(DNN) models on large data sets, in

particular, we develop practical optimization methods that incorporate curvature information in

an economical way to accelerate the optimization process. The performance of the proposed

methods is compared to that of several state-of-the-art methods used to train DNNs, to validate their

effectiveness both in terms of time efficiency and generalization power.

In the second part of the dissertation (Chapters 4), we focus on data-driven pricing in the limited

data regime. More specifically, we study the fundamental problem of a seller pricing a product

based on historical information consisting of the observed demand at a single historical price point.

We develop a novel framework that allows characterizing optimal performance for deterministic

or more general randomized mechanisms and leads to fundamental novel insights on the value of

limited demand data for pricing.
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Chapter 1: Introduction

In the era of big data, Data-driven optimization has become a powerful approach that allows

practitioners to make informed decisions based on collected historical data and improve the per-

formance of their systems and processes. Data-driven optimization can be applied across diverse

industries such as finance, e-commerce, healthcare, and others. For instance, in finance, it can detect

fraud and predict market trends while in e-commerce, it can optimize prices and minimize costs.

Generally, the more data available to train a model, the better its predictive performance is likely

to be. However, this relationship is not straightforward and can be influenced by other factors, such

as the complexity of the model being used, and the effectiveness of the model fitting procedure. For

instance, when there is an abundance of data available, more complex models coupled with effective

optimization and model-fitting procedures can be used to extract deeper insights and achieve higher

predictive performance. However, overly complex models can also lead to overfitting, where the

model becomes too closely tailored to the training data and performs poorly on new, unseen data. In

situations where data is scarce, simpler models may be more appropriate, as they are less likely to

overfit and can still perform adequately.

Overall, the relationship between data availability, model complexity, and model predictive

performance is a nuanced and dynamic one that must be carefully considered when developing

data-driven modeling solutions. Understanding this relationship is critical to achieving optimal

performance in various real-world applications.

This thesis is divided into two main parts tackling two distinct regimes of data availability

and model complexity. The first part of the dissertation (Chapters 2 and 3) is dedicated to the

development of novel optimization algorithms for training deep neural network models on large data

sets, in particular, we devise practical optimization methods that incorporate curvature information in

an economical manner to accelerate the optimization process. In the second part of the dissertation
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Figure 1.1: A graphical illustration of the relationship between data availability, model complexity,
and achievable performance(revised from Figure 1 in [7]).

(Chapter 4), we focus on data-driven pricing in the limited data regime where we study the

fundamental problem of a seller pricing a product based on historical information consisting of the

observed demand at a single historical incumbent price. Figure 1.1 illustrates how the two main

parts are positioned in the landscape of data-driven optimization problems.

Although Parts 1 and 2 fall under the umbrella of data-driven optimization techniques, they are

otherwise unrelated and can be read separately.

1.1 Introduction for Part I (Chapters 2 and 3)

Deep learning has revolutionized the field of machine learning in recent years, enabling re-

markable breakthroughs in various tasks such as image and speech recognition, natural language

processing, and autonomous driving. The effectiveness of deep neural networks in solving complex

problems lies in their ability to learn hierarchical representations of data, which allows them to

capture intricate patterns and dependencies in the input data.

However, training these networks can be challenging due to the large number of parameters

involved and the non-convex nature of the optimization problem. First-order methods based on

stochastic gradient descent (SGD) [8], and in particular, the class of adaptive learning rate methods,

such as AdaGrad [9], RMSprop [10], and Adam [11], are currently the most widely used methods

3



to train deep learning models (the recent paper [12] lists 65 methods that have “Adam” or “Ada”

as part of their names). While these methods are easy to implement and have low computational

complexity, they make use of only a limited amount of curvature information. Standard SGD and

its mini-batch variants, use none. SGD with momentum (SGD-m) [13] and stochastic versions of

Nesterov’s accelerated gradient method [14], implicitly make use of curvature by choosing step

directions that combine the negative gradient with a scaled multiple of the previous step direction,

very much like the classical conjugate gradient method.

To effectively optimize ill-conditioned functions, one usually needs to use second-order methods,

which range from Newton’s method to those that use approximations to the Hessian matrix, such

as BFGS quasi-Newton (QN) methods [15, 16, 17, 18], including limited memory (LM) variants

[19], and Gauss-Newton (GN) methods [20]. To handle large machine learning data sets, stochastic

methods such as sub-sampled Newton [21]), QN [22, 23, 24], GN, natural gradient (NG) [25],

Hessian-free [26], Krylov subspace, [27], and LM variants of Anderson acceleration [28, 29], that

are related to LM multisecant QN methods (see [30]), have been developed. However, in all of these

methods, whether they use the Hessian or an approximation to it, the size of the matrix becomes

prohibitive when the number of training parameters is huge.

Therefore, deep learning training methods have been proposed that use layer-wise block-diagonal

approximations to the second-order preconditioning matrix. These include a Sherman-Morrison-

Woodbury based variant [31] and a low-rank variant [32] of the block-diagonal Fisher matrix

approximations for NG methods. Also, Kronecker-factored matrix approximations of the diagonal

blocks in Fisher matrices have been proposed to reduce the memory and computational requirements

of NG methods, starting from KFAC for multilayer perceptrons (MLPs) [33], which was extended

to CNNs in [34]; (in addition, see [35, 36, 37]). Kronecker-factored QN methods [38], generalized

GN methods [39], an adaptive block learning rate method Shampoo [40], based on AdaGrad, and

an approximate NG method TNT [41], based on the assumption that the sampled tensor gradient

follows a tensor-normal distribution have also been proposed.

4



Figure 1.2 summarizes how several existing state-of-the-art methods approximate these diagonal

blocks used in the preconditioner matrix.

Figure 1.2: Block-diagonal preconditioned gradient methods.

In Chapter 2, we propose a novel approximate natural gradient method named "mini-block

Fisher (MBF)", that uses a block-diagonal approximation to the empirical Fisher matrix, where

for each layer in the DNN, whether it is convolutional or feed-forward and fully connected, the

associated diagonal block is itself block-diagonal and is composed of a large number of mini-

blocks of modest size. Our novel approach utilizes the parallelism of GPUs to efficiently perform

computations on the large number of matrices in each layer. Consequently, MBF’s per-iteration

computational cost is only slightly higher than it is for first-order methods. The performance of

MBF is compared to that of several baseline methods, on Autoencoder, Convolutional Neural

Network (CNN), and Graph Convolutional Network (GCN) problems, to validate its effectiveness

both in terms of time efficiency and generalization power. Finally, it is proved that an idealized

version of MBF converges linearly.

In Chapter 3, we develop a brand new per-layer adaptive step-size procedure for stochastic first-

order optimization methods for minimizing empirical loss functions in deep learning, eliminating

5



the need for the user to tune the learning rate. The proposed approach exploits local stochastic

curvature information and the structure of the block diagonal Hessian in neural networks to compute

the per-layer adaptive steps. Crucially, the method has comparable memory requirements to those of

first-order methods and avoids tuning the global learning-rate hyper-parameter while its per-iteration

time complexity is only roughly equivalent to an additional gradient computation and is much

smaller than that of popular second-order methods (e.g. KFAC) for training DNNs. Numerical

experiments show that SGD with momentum and AdamW combined with the proposed per-layer

step-sizes method are able to choose adequate learning rate schedules and perform favorably to

fine-tuned popular first-order and second-order algorithms for training deep neural networks on

Convolutional Neural Networks (CNN) and Graph Convolutional Network (GCN) problems. Finally,

it is proved that an idealized version of SGD with layer-wise step sizes converges linearly in the full

batch setting.

1.2 Introduction for Part II (Chapter 4)

Pricing is a central concept across a large spectrum of industries, ranging from e-commerce to

transportation. A key informational dimension faced by decision-makers is the level of knowledge

of customers’ values. In classical settings in the literature, monopoly pricing problems are studied

under the assumption that sellers have an accurate knowledge of consumer preferences through

the value distribution (or the prior on values). In those cases, the seller may optimize pricing to

maximize the expected revenues.

In practice, however, such information is rarely, if ever, available, and pricing must be conducted

not based on the value distribution, but based on historical data. Typical historical data structures in

the context of pricing include the prices posted and the responses of consumers observed at those

prices: either a customer purchases or not. We illustrate in Figure 1.3 a graphical representation of

a typical data-driven pricing cycle in electronic marketplaces.

In this part, we study the fundamental data-driven pricing problem of how a seller should/can

design optimal pricing algorithms that maps available data, in the form of a price and past customers’
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Figure 1.3: An illustration of the data-driven pricing cycle in electronic marketplaces.

associated observed demand, to the pricing decision. This stream of research has received ample

attention from different angles in the literature:

Knowledge about the support of the value distribution. A setting that has been studied is one in

which the seller only knows the support of the underlying distribution. Early studies are [42] and

[43], in which the authors characterize the optimal pricing policy as well as the worst-case demand

distribution with respect to a min-max regret objective in the former and a competitive ratio in the

latter. [44] studies a case in which the seller has access to the maximum price at which she would

still expect non-zero demand.

Pricing with no price dispersion in the historical data. In [45], the authors studied the related

problem of reconstructing demand curves when only a single point has been historically observed

and showed how a second point can be extracted from the sales of discounted bundles and used

it to estimate linear demand curve parameters. In [46], the authors document a setting at a large

OEM where the problem is exactly one with no price dispersion in the historical data and propose a

practical approach to determine nominal robust prices.

Pricing with Samples from the value distribution. A data structure that has received attention is

one based on samples of the value distribution, as opposed to buy/no buy feedback. Such a structure

is typical in market research contexts. [47] studies the sample complexity needed to achieve near-

optimal performance. Understanding systematically the performance achievable with a limited
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number of observed samples has been a notable open problem across communities. [47], [48]

provide achievability results with one sample, [49] and [50] provide achievability results with two

samples. In our recent study [51], we provide a novel approach through factor-revealing dynamic

programs that provide the first impossibility results with one sample for general randomized pricing

policies, the best achievability results for one and two samples, as well as the first achievability

results beyond two samples. Beyond the novel methodology developed, these results shed new light

on the value of information. Against mhr distributions, just two samples suffice to guarantee more

than 70% of oracle performance and 10 samples more than 80% of oracle performance.

Dynamic demand learning. A number of studies look at how to collect and incorporate data on

the fly for pricing purposes, in which case an exploration-exploitation trade-off emerges. See [52,

53, 54, 55, 56]. Our research efforts have the potential to significantly improve the performance of

such online algorithms by better exploiting the data at hand while dynamically adjusting prices.

As a motivating example, consider an e-commerce firm that has been offering a product at an

incumbent price 𝑤 over the past quarter to a set of heterogeneous consumers, all with values drawn

from a value distribution 𝐹. The firm observes the fraction of customers who have bought the

offered product at the price 𝑤; in other words, the firm has an estimate of the probability of sale

or conversion rate, the fraction of customers whose values are greater than or equal to 𝑤, i.e., an

estimate of 𝐹 (𝑤) = 𝑞 in [0, 1]. How should the seller decide on the pricing policy in the following

quarter? Can the seller take advantage of the partial demand information extracted (conversion rate

at 𝑤) to refine her pricing policy? Such historical data structures are commonplace in practice and

typically introduce different challenges. The number of past prices that were posted is often very

limited and if one only accounts for recent data, can be as low as one, as in the example above.

In other words, many historical data structures have very limited price dispersion. This renders

elasticity-based price optimization very challenging if not impossible in practice (without further

experimentation) when trying to move from data to pricing decisions. A natural question is then

if, in the absence of price dispersion, historical data is useful in any way in order to refine pricing

decisions.
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In Chapter 4, we offer a resounding “yes" to this question and develop a framework to optimize

prices given such limited data and quantify the value of such data. More specifically, we consider a

setting in which the information available to the seller consists of a percentile of the value distribution

and characterizes the value of one measurement for pricing purposes. The results presented in this

chapter lay an important foundation for the class of problems we aim to study. In particular, it

initiates a systematic study of optimal pricing with percentile data. The mathematical framework

enables one to 1) develop optimal pricing strategies and 2) quantify the value of percentile data.

It highlights, quite strikingly, that while a single point provides very limited information on the

demand curve, it has actually very high informational content. As an example, simply knowing the

median and that the value distribution has a monotone increasing hazard rate / mhr (an assumption

satisfied by most models used for demand estimation in practice), one can guarantee more than 85%

of the performance that an oracle with full knowledge of the distribution could have achieved.
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Chapter 2: A Mini-Block Fisher Method for Deep Neural Networks

In this chapter, we propose a new Mini-Block Fisher (MBF) gradient method that lies in between

adaptive first-order methods and block diagonal second-order methods. Specifically, MBF uses a

block-diagonal approximation to the empirical Fisher matrix, where for each DNN layer, whether

it is convolutional or feed-forward and fully-connected, the associated diagonal block is also

block-diagonal and is composed of a large number of mini-blocks of modest size.

Crucially, MBF has comparable memory requirements to those of first-order methods, while

its per-iteration time complexity is smaller, and in many cases, much smaller than that of popular

second-order methods (e.g. KFAC) for training DNNs. Further, we prove convergence results for a

variant of MBF under relatively mild conditions.

In numerical experiments on well-established Autoencoder, CNN and GCN models, MBF

consistently outperformed state-of-the-art (SOTA) first-order methods (SGD-m and Adam) and

performed favorably compared to popular second-order methods (KFAC and Shampoo).

2.1 Notation and Definitions

Notation. Diag𝑖∈[𝐿] (𝐴𝑖) is the block diagonal matrix with {𝐴1, ..., 𝐴𝐿} on its diagonal; [𝐿] :=

{1, ..., 𝐿}; 𝑿 = [𝑥1, ..., 𝑥𝑛]⊤ ∈ R𝑛×𝑑 is the input data; 𝜆min(𝑀), 𝜆max(𝑀) are the smallest and

largest eigenvalues of the matrix 𝑀; ⊗ denotes the Kronecker product; ∥.∥2 denotes the Euclidean

norm of a vector or matrix; and vec(𝐴) vectorizes 𝐴 by stacking its columns.

We consider a DNN with 𝐿 layers, defined by weight matrices𝑊𝑙 , for 𝑙 ∈ [𝐿], that transforms

the input vector 𝒙 to an output 𝑓 (𝑾, 𝒙). For a data-point (𝑥, 𝑦), the loss ℓ ( 𝑓 (𝑾, 𝒙), 𝑦) between the

output 𝑓 (𝑾, 𝒙) and 𝑦, is a non-convex function of vec(𝑾)⊤ =
[
vec (𝑊1)⊤ , ..., vec (𝑊𝐿)⊤

]
∈ R𝑝,

containing all of the network’s parameters, and ℓ measures the accuracy of the prediction (e.g.
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squared error loss, cross-entropy loss). The optimal parameters are obtained by minimizing the

average loss L over the training set:

L(𝑾) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ( 𝑓 (𝑾, x𝑖), y𝑖), (2.1.1)

This setting is applicable to most common models in deep learning such as multilayer perceptrons

(MLPs), CNNs, recurrent neural networks (RNNs), etc. In these models, the trainable parameter

𝑊𝑙 (𝑙 = 1, . . . , 𝐿) come from the weights of a layer, whether it be a feed-forward, convolutional,

recurrent, etc. For the weight matrix 𝑊𝑙 ∈ R𝑝𝑙 corresponding to layer 𝑙 and a subset of indices

𝑏 ⊂ {1, . . . , 𝑝𝑙}, we denote by𝑊𝑙,𝑏, the subset of parameters of𝑊𝑙 corresponding to 𝑏.

The average gradient over a mini-batch of size 𝑚, 𝒈(𝑚) = 1
𝑚

∑𝑚
𝑖=1

𝜕ℓ( 𝑓 (𝑾,x𝑖),y𝑖)
𝜕𝑾 , is computed

using standard back-propagation. In the full-batch case, where 𝑚 = 𝑛, 𝒈(𝑛) = 𝒈 =
𝜕L(𝑾)
𝜕𝑾 = D𝑾.

Here, we are using the notation D𝑿 := 𝜕L(𝑾)
𝜕𝑿 for any subset of variables 𝑿 ⊂ 𝑾.

The Jacobian 𝑱(𝑾) of the loss L(·) w.r.t the parameters 𝑾 for a single output network is

defined as 𝑱 = [𝑱⊤1 , ..., 𝑱
⊤
𝑛 ]⊤ ∈ R𝑛×𝑝, where 𝑱⊤

𝑖
is the gradient of the loss w.r.t the parameters, i.e.,

𝑱⊤
𝑖
= vec( 𝜕ℓ( 𝑓 (𝑾,x𝑖),y𝑖)

𝜕𝑾 ). We use the notation 𝑱𝑋
𝑖

⊤
= vec( 𝜕ℓ( 𝑓 (𝑾,x𝑖),y𝑖)

𝜕𝑋
) and 𝑱𝑋 = [𝑱𝑋1

⊤
, ..., 𝑱𝑋𝑛

⊤]⊤

for any subset of variables 𝑋 of 𝑾.

The Fisher matrix 𝑭(𝑾) of the model’s conditional distribution is defined as

𝑭(𝑾) = E
𝑥∼𝑄𝑥

𝑦∼𝑝𝑾 (·|𝑥)

[
𝜕 log 𝑝𝑾 (𝑦 |𝑥)

𝜕𝑾

(
𝜕 log 𝑝𝑾 (𝑦 |𝑥)

𝜕𝑾

)⊤]
,

where 𝑄𝑥 is the data distribution of 𝑥 and 𝑝𝑾 (·|𝑥) is the density function of the conditional

distribution defined by the model with a given input 𝑥. As shown in [57], 𝑭(𝑾) is equivalent to

the Generalized Gauss-Newton (GGN) matrix if the conditional distribution is in the exponential

family, e.g., a categorical distribution for classification or a Gaussian distribution for regression.
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The empirical Fisher matrix (EFM) 𝑭̃(𝑾) defined as:

𝑭̃(𝑾) = 1
𝑛

𝑛∑︁
𝑖=1

𝜕ℓ( 𝑓 (𝑾, x𝑖), y𝑖)
𝜕𝑾

𝜕ℓ( 𝑓 (𝑾, x𝑖), y𝑖)
𝜕𝑾

⊤

=
1
𝑛
𝑱(𝑾)⊤𝑱(𝑾),

is obtained by replacing the expectation over the model’s distribution in 𝑭(𝑾) by an average over

the empirical data. MBF uses the EFM rather than the Fisher matrix, since doing so does not

require extra backward passes to compute additional gradients and memory to store them. We

note that, as discussed in [58] and [59], the EFM , which is an un-centered second moment of the

gradient, captures less curvature information than the Fisher matrix, which coincides with the GGN

matrix in many important cases, and hence is closely related to ∇2L(𝑾). To simplify notation we

will henceforth drop the "tilde" ˜and denote the EFM by 𝑭. We denote by 𝑭𝑋 = 1
𝑛
(𝑱𝑋)⊤𝑱𝑋 , the

sub-block of 𝑭(𝑾) associated with any subset of variables 𝑋 ⊂ 𝑾, and write (𝑭𝑋)−1 as 𝐹−1
𝑋

.

2.2 The Mini-block Fisher (MBF) Method:

At each iteration, MBF preconditions the gradient direction by the inverse of a damped EFM:

𝑾 (𝑘 + 1) = 𝑾 (𝑘) − 𝛼 (𝑭(𝑾 (𝑘)) + 𝜆𝑰)−1 𝒈(𝑘), (2.2.1)

where 𝛼 is the learning rate and 𝜆 is the damping parameter.

To avoid the work of computing and storing the inverse of the 𝑝 × 𝑝 damped EFM, (𝑭 + 𝜆𝐼)−1,

where 𝑝 can be in the millions, we assume, as in KFAC and Shampoo, that the EFM has a block

diagonal structure, where the 𝑙𝑡ℎ diagonal block corresponds to the second moment of the gradient

of the model w.r.t to the weights in the 𝑙𝑡ℎ layer. Hence, the block-diagonal EFM is:

𝑭(𝑾) ≈ Diag
(
𝑭𝑊1 , ..., 𝑭𝑊𝐿

)
.
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Figure 2.1: Illustration of MBF’s approximation for a convolutional layer.
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Figure 2.2: Illustration of MBF’s preconditionner for a feed-forward fully-
connected layer.

MBF further approximates each of the diagonal blocks 𝐹𝑊𝑙 by a block-diagonal matrix, com-

posed of a typically large number mini-blocks, depending on the nature of layer 𝑙, as follows:

Layer 𝑙 is convolutional : For simplicity, we assume that the convolutional layer 𝑙 is 2-

dimensional and has 𝐽 input channels indexed by 𝑗 = 1, ..., 𝐽, and 𝐼 output channels indexed by

𝑖 = 1, ..., 𝐼; there are 𝐼 × 𝐽 kernels𝑊𝑙, 𝑗 ,𝑖, each of size (2𝑅 + 1) × (2𝑅 + 1), with spatial offsets from

the centers of each filter indexed by 𝛿 ∈ Δ := {−𝑅, ..., 𝑅} × {−𝑅, ..., 𝑅}; the stride is of length 1,

and the padding is equal to 𝑅, so that the sets of input and output spatial locations (𝑡 ∈ T ⊂ R2) are
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the same. For such layers, we use the following (𝐼𝐽 + 1) × (𝐼𝐽 + 1) block-diagonal approximation

to the 𝑙𝑡ℎ diagonal block 𝑭𝑊𝑙 of the Fisher matrix

diag{𝑭𝑊𝑙,1,1 , ..., 𝑭𝑊𝑙,1,𝐼 , ..., 𝑭𝑊𝑙,𝐽 ,1 , ..., 𝑭𝑊𝑙,𝐽 ,𝐼 , 𝑭𝑏𝑙 },

where each of the 𝐼𝐽 diagonal blocks 𝑭𝑊𝑙, 𝑗 ,𝑖 is a |Δ| × |Δ| symmetric matrix corresponding to the

kernel vector 𝑊𝑙, 𝑗 ,𝑖 and where 𝑭𝑏𝑙 is an 𝐼 × 𝐼 diagonal matrix corresponding the bias vector 𝑏𝑙 .

Therefore, the preconditioning matrix 𝐹−1
𝑊𝑙, 𝑗 ,𝑖

corresponding to the kernel for input-output channel

pair ( 𝑗 , 𝑖) is given by:

𝐹−1
𝑊𝑙, 𝑗 ,𝑖

:=
(
1
𝑛
(𝑱𝑊𝑙, 𝑗 ,𝑖 )𝑇 𝑱𝑊𝑙, 𝑗 ,𝑖 + 𝜆𝐼

)−1

A common choice in CNNs is to use either a 3 × 3 or 5 × 5 kernel for all of the 𝐼𝐽 channel pairs in a

layer. Therefore, all of these matrices are of the same (small) size, |Δ| × |Δ|, and can be inverted

efficiently by utilizing the parallelism of GPUs.

We illustrate MBF’s approximation for a convolutional layer for the case of one data point in

Figure 2.1. From Figure 2.1, it is apparent that the kernel matrices in a convolutional layer that

connect the input to the output channels are analogous to the scalar weights that connect the input

to output nodes in an ff-cc layer. Hence, the "mini" diagonal blocks 𝑭𝑊𝑙, 𝑗 ,𝑖 in MBF are analogous to

the squares of the components of the gradient in a ff-cc network, and hence MBF can be viewed as

a "squared" version of an adaptive first-order method. This observation was in fact the motivation

for our development of the MBF approach. In more detail, for simplicity, we drop the subscript 𝑙

and denote by𝑊 the weights corresponding to the elements of all of the filters in this convolution

layer. Each element of𝑊 is denoted by𝑊𝑖, 𝑗 ,𝛿, where the first two indices 𝑖, 𝑗 are the output/input

channels, and the third index 𝛿 specifies the spatial offset within a filter as indicated in item 3 above.

The bias 𝑏 is a vector of length 𝐼.

For the weights and biases, we define the vectors

w𝑖 :=
(
𝑤𝑖,1,𝛿1 , ..., 𝑤𝑖,𝐽,𝛿 |Δ | , 𝑏𝑖

)⊤
∈ R𝐽 |Δ|+1,
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for 𝑖 = 1, ..., 𝐼, and from them the matrix

𝑊 := (w1, ...,w𝐼)⊤ ∈ R𝐼×(𝐽 |Δ|+1) . (1)

We shall also express the vectors w𝑖 as

w𝑖 :=
(
ŵ⊤𝑖,1, ..., ŵ

⊤
𝑖,𝐽 , 𝑏𝑖

)⊤
∈ R𝐽Δ+1, for all 𝑖 ∈ 𝐼,

where

ŵ𝑖, 𝑗 := (w𝑖,1, 𝑗 , . . . ,w𝑖,Δ, 𝑗 )⊤ ∈ RΔ, for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽.

Let the vector a := {𝑎1,𝑡 , . . . , 𝑎𝐽,𝑡}, where 𝑎 𝑗 ,𝑡 , denotes the input from channel 𝑗 of the previous

layer to the current layer after padding is added, where 𝑡 denotes the spatial location of the padded

input. Note that the index pairs 𝑡 ∈ T ⊂ R2 can be ordered, for example, lexicographically, into a

one dimensional set of Δ indices.

It is useful to expand each component 𝑎 𝑗 ,𝑡 of a to a Δ-dimensional vector â 𝑗 ,𝑡 , that includes all

components in the input a covered by the filter centered at 𝑡, yielding the following vectors defined

for all locations 𝑡 ∈ T :

a𝑡 :=
(
â⊤1,𝑡 , ..., â

⊤
𝐽,𝑡 , 1

)⊤
∈ R𝐽Δ+1,

where

â 𝑗 ,𝑡 := (a 𝑗 ,1,𝑡 , . . . , a 𝑗 ,Δ,𝑡)⊤ ∈ RΔ, for all 𝑗 ∈ 𝐽;

hence

a𝑡 :=
(
𝑎1,𝑡+𝛿1 , ..., 𝑎𝐽,𝑡+𝛿 |Δ | , 1

)⊤
∈ R𝐽 |Δ|+1.

Note that a single homogeneous coordinate is concatenated at the end of a𝑡 . Expressing the pre-

activation output for the layer at spatial location 𝑡 ∈ T as a vector of length equal to the number of
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output channels, i.e.,

h𝑡 :=
(
ℎ1,𝑡 , ..., ℎ𝐼,𝑡

)⊤ ∈ R𝐼 ,
for all spatial locations 𝑡 ∈ T . We note that, given inputs a and𝑊 , the pre-activation outputs h can

be computed, for all locations 𝑡 ∈ T , as

ℎ𝑖,𝑡 =

𝐽∑︁
𝑗=1

∑︁
𝛿∈Δ

𝑤𝑖, 𝑗 ,𝛿𝑎 𝑗 ,𝑡+𝛿 + 𝑏𝑖, 𝑡 ∈ T , 𝑖 = 1, ..., 𝐼 . (2.2.2)

or equivalently, h𝑡 = 𝑊a𝑡 , whose 𝑖-th component ℎ𝑖,𝑡 we can write as

ℎ𝑖,𝑡 =
∑︁
𝑗∈𝐽

ŵ⊤𝑖, 𝑗 â 𝑗 ,𝑡 + 𝑏𝑖 . (2)

Expressing the input-output relationship in a CNN this way, we see that it is analogous to the

input-output relationship in a fully connected feed-forward NN, except that the role of input and

output node sets 𝐽 and 𝐼 are taken on by the input and output channels and the affine mapping of

the vector of inputs a to the vector of outputs h,

ℎ𝑖 =
∑︁
𝑗∈𝐽

𝑤𝑖, 𝑗𝑎 𝑗 + 𝑏𝑖, for all 𝑖 ∈ 𝐼,

where the terms 𝑤𝑖, 𝑗𝑎 𝑗 are the products of two scalars become in (2) the inner product of two

Δ-dimensional vectors, and this mapping is performed for all locations 𝑡. Hence, MBF is analogous

to using the squares of the components of the gradient in an ff-cc network and therefore is similar to

a "squared" version of an adaptive first-order method.

Layer 𝑙 is feed-forward and fully connected (ff-fc): For a ff-fc layer with 𝐼 inputs and 𝑂

outputs, we use the following 𝑂 ×𝑂 block-diagonal approximation to the Fisher matrix

𝑭𝑊𝑙 ≈ diag{𝑭𝑊𝑙,1 , . . . , 𝑭𝑊𝑙,𝑂 },
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whose 𝑗𝑡ℎ diagonal block 𝑭𝑊𝑙, 𝑗 is an (𝐼 + 1) × (𝐼 + 1) symmetric matrix corresponding to the vector

𝑊𝑙, 𝑗 of 𝐼 weights from all of the input neurons and the bias to the 𝑗𝑡ℎ output neuron. Therefore, the

preconditioning matrix 𝐹−1
𝑊𝑙, 𝑗

corresponding to the 𝑗𝑡ℎ output neuron is given by:

𝐹−1
𝑊𝑙, 𝑗

:=
(
1
𝑛
(𝑱𝑊𝑙, 𝑗 )𝑇 𝑱𝑊𝑙, 𝑗 + 𝜆𝐼

)−1

Our choice of such a mini-block subdivision was motivated by the findings presented in [32], first

derived in [60], where it was shown that the Hessian of a neural network with one hidden layer with

cross-entropy loss converges during optimization to a block-diagonal matrix, where the diagonal

blocks correspond to the weights linking all the input units to one hidden unit and all of the hidden

units to one output unit.

This suggests that a similar block-diagonal structure applies to the Fisher matrix in the limit of

a sequence of iterates produced by an optimization algorithm. The latter suggestion was indeed

confirmed by findings presented in [61], where the authors proved that a "unit-wise" block diagonal

approximation to the Fisher information matrix is close to the full matrix modulo off-diagonal

blocks of small magnitude, which provides a justification for the quasi-diagonal natural gradient

method proposed in [62] and our mini-block approximation in the case of fully connected layers.

Finally, since the 𝑂 matrices 𝑭𝑊𝑙, 𝑗 , for 𝑗 = 1, . . . , 𝑂, are all of the same size, (𝐼 + 1) × (𝐼 + 1), they

can be inverted efficiently by utilizing the parallelism of GPUs. We illustrate MBF’s ability to

approximate the EFM of a fully connected layer for the case of one data-point in Figure 2.4 for

a 7-layer (256-20-20-20-20-20-10) feed-forward DNN using tanh activations, partially trained to

classify a 16 × 16 down-scaled version of MNIST as in [33].

Algorithm 2.1 gives the pseudo-code for a generic version of MBF.

Since updating the Fisher mini-blocks is time consuming in practice as it requires storing

and computing the individual gradients, we propose in Section 2.4, a practical approach for

approximating these matrices. However, we first present empirical results that justify and motivate

both the kernel-based and the all-to-one mini-block subdivisions described above for convolutional
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Algorithm 2.1: Generic MBF training algorithm
Input: Given learning rates {𝛼𝑘 }, damping value 𝜆, batch size 𝑚.
for 𝑘 = 1, 2, ... do

Sample mini-batch 𝑀 of size 𝑚
Perform a forward-backward pass over 𝑀 to compute stochastic gradient D𝑊𝑙

(𝑙 = 1, ..., 𝐿)
for 𝑙 = 1, ..., 𝐿 do

for mini-block 𝑏 in layer 𝑙, in parallel do

𝐹−1
𝑊𝑙,𝑏

:=
(

1
𝑚
(𝑱𝑊𝑙,𝑏)𝑇 𝑱𝑊𝑙,𝑏 + 𝜆𝐼

)−1

𝑊𝑙,𝑏 = 𝑊𝑙,𝑏 − 𝛼𝑘𝐹−1
𝑊𝑙,𝑏
D𝑊𝑙,𝑏

and ff-fc layers, respectively, followed by a discussion of the linear convergence of an idealized

version of the generic MBF algorithm.

After deriving our MBF method, we became aware of the paper [63], which proposes using

sub-layer block-diagonal preconditioning matrices for Shampoo, a tensor based DNN training

method. Specifically, it considers two cases: partitioning (i) very large individual ff-fc matrices

(illustrating this for a matrix of size [29 × 211] into either a 1 × 2 or a 2 × 2 block matrix with

blocks all of the same size) and (ii) ResNet-50 layer-wise matrices into sub-layer blocks of size 128.

However, [63] does not propose a precise method for using mini-blocks as does MBF.

Motivation for MBF: Our choice of mini-blocks for both the convolutional and ff-fc layers

was motivated by the observation that most of the weight in the EFM inverse resides in diagonal

blocks, and in particular in the mini-blocks described above. More specifically, to illustrate this

observation for convolutional layers, we trained a simple convolutional neural network, Simple

CNN, on Fashion MNIST [64]. Figure 2.3 shows the heatmap of the absolute value of the EFM

inverse corresponding to the first convolutional layer, which uses 32 filters of size 5 × 5 (thus 32

mini-blocks of size 25 × 25 ). One can see that the mini-block (by filter) diagonal approximation is

reasonable. Figures for the 2nd convolutional layer are included in section 2.5.4.9. Since the ff-fc

layers in the Simple-CNN model result in an EFM for those layers that is too large to work with,

we chose to illustrate the mini-block structure of the EFM on a standard DNN, partially trained to
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classify a 16 × 16 down-scaled version of MNIST that was also used in [33]. Figure 2.4 shows the

heatmap of the absolute value of the EFM inverse for the last and middle fully connected layers

(including bias). One can see that the mini-block (by neuron) diagonal approximation is reasonable.

A larger figure for the second fully-connected layer is included in section 2.5.4.9).

(a) First CNN layer (b) Zoom on first 10 blocks

Figure 2.3: Absolute EFM inverse after 10 epochs for the first convolutional
layer of the Simple CNN network that uses 32 filters of size 5 × 5.

(a) Last layer (b) Middle layer

Figure 2.4: Absolute EFM inverse after 50 epochs of the last and middle layers
(including bias) of a small FCC-NN.

Comparison: directions of MBF and other methods vs. full block-diagonal EFM: To explore

how close MBF’s direction is to the one obtained by a block-diagonal full EFM method (BDF),

where each block corresponds to one layer’s full EFM in the model, we computed the cosine

similarity between these two directions. We also included SOTA first-order (SGD-m, Adam) and
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second-order (KFAC, Shampoo) methods for reference. The algorithms were run on a 16 × 16

down-scaled MNIST [65] dataset and a small feed-forward NN with layer widths 256-20-20-20-

20-20-10 described in [33]. As in [33], we only show the middle four layers. For all methods, we

followed the trajectory obtained using the BDF method. In our implementation of the BDF method,

both the gradient and the block- EFM matrices were estimated with a moving-average scheme, with

the decay factors set to 0.9. Note that MBF-True refers to the version of MBF in which, similarly

to KFAC, the mini-block Fisher is computed by drawing one label from the model distribution for

each input image as opposed to MBF, where we use the average over the empirical data. For more

details, see section 2.5.4.5.

As shown in Figure 2.5, the cosine similarity between the MBF and MBF-True and the BDF

direction falls on most iterations between 0.6 to 0.7 for all four layers and not surprisingly, falls

midway between the SOTA first-order and block-diagonal second order methods - always better than

SGD-m and Adam, but usually lower than that of KFAC and Shampoo. Moreover, the closeness of

the plots for MBF and MBF-True shows that using moving average mini-block versions of the 5

EFM rather than the Fisher matrix does not significantly affect the effectiveness of our approach.

We also report a comparison of the performance of MBF-True and MBF on autoencoders and

CNN problems in section 2.5.4.5. Note that, in MBF-True, the only difference between it and MBF

is that we are using the mini-batch gradient D2𝑊𝑙,𝑏 (denoted by D2) of the model on sampled

labels 𝑦𝑡 from the model’s distribution to update the estimate of mini-block preconditioners, using a

moving average (see lines 12, 13 in Algorithm 2.4 in section 2.5.4.4), with a rank one outer-product,

which is different from computing the true Fisher for that mini-block.
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Figure 2.5: Cosine similarity between the directions produced by the methods shown in the legend
and that of a block diagonal Fisher method (BDF).
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2.3 Linear Convergence

We follow the framework established in [66] to provide convergence guarantees for the idealized

MBF with exact gradients (i.e. full batch case with 𝑚 = 𝑛) and the mini-block version of the true

Fisher matrix, rather than the EFM, as the underlying preconditioning matrix. We focus on the

single-output case with squared error loss, but analysis of the multiple-output case is similar.

We denote by u(𝑾) = [ 𝑓 (𝑾, 𝑥1), ..., 𝑓 (𝑾, 𝑥𝑛)]⊤ the output vector and 𝑦 = [𝑦1, ..., 𝑦𝑛]⊤ the

true labels. We consider the squared error loss L on a given data-set {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1 with 𝑥𝑖 ∈ R𝑑 and

𝑦𝑖 ∈ R, i.e. the objective is to minimize

min
𝑾∈R𝑝

L(𝑾) = 1
2
∥ u(𝑾) − 𝑦∥2.

The update rule of MBF with exact gradient becomes

𝑾 (𝑘 + 1) = 𝑾 (𝑘) − 𝜂 (𝑭𝑀𝐵 (𝑾 (𝑘)) + 𝜆𝑰)−1 𝑱(𝑘)⊤( u(𝑾 (𝑘)) − 𝑦),

where 𝑭𝑀𝐵 (𝑾 (𝑘)) := 1
𝑛
𝑱𝑀𝐵 (𝑾 (𝑘))⊤𝑱𝑀𝐵 (𝑾 (𝑘)) is the mini-block-Fisher matrix and the mini-

block Jacobian is defined as 𝑱𝑀𝐵 (𝑘) = Diag𝑙∈[𝐿]Diag𝑏
(
𝐽𝑾𝑙,𝑏 (𝑘)

)
and

𝐽𝑾𝑙,𝑏 (𝑘) := [𝜕 𝑓 (𝑾 (𝑘), x1)
𝜕𝑾𝑙,𝑏

, ...,
𝜕 𝑓 (𝑾 (𝑘), x𝑛)

𝜕𝑾𝑙,𝑏

]⊤

We use similar assumptions to those used in [66], where the first assumption, ensures that at

initialization, the mini-block Gram matrices are all positive-definite, (i.e., the rows of their respective

Jacobians are linearly independent), and the second assumption ensures the stability of the Jacobians

by requiring that the network is close to a linearized network at initialization and therefore MBF’s

update is close to the gradient descent direction in the output space. These assumptions allow us to

control the convergence rate.

Assumption 2.1. The mini-block Gram matrices 𝐽𝑾𝑙,𝑏 (0)𝐽𝑾𝑙,𝑏 (0)𝑇 at initialization are positive

definite, i.e. min𝑙∈[𝐿] min𝑏 𝜆𝑚𝑖𝑛 (𝐽𝑾𝑙,𝑏 (0)𝑇 𝐽𝑾𝑙,𝑏 (0)) = 𝜆0 > 0.
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Assumption 2.2. There exists 0 < 𝐶 ≤ 1
2 that satisfies ∥𝑱(𝑾 (𝑘)) − 𝑱(𝑾 (0))∥2 ≤ 𝐶

3
√
𝜆0 if

∥𝑾 (𝑘) −𝑾 (0)∥2 ≤ 3√
𝜆0
∥𝒚 − 𝒖(0)∥2.

Theorem 2.1. Suppose Assumptions 2.1, 2.2 hold. Consider the Generic MBF Algorithm 2.1, using

exact gradients and the mini-block version of the true Fisher as the underlying preconditioning

matrix for a network with 𝐿 layers. Then there exists an interval of suitable damping values 𝜆 in

[𝜆, 𝜆] and corresponding small enough learning rates 𝜂𝜆, such that for any learning rate 0 ≤ 𝜂 ≤ 𝜂𝜆

we have ∥ u(𝑾 (𝑘)) − y∥22 ≤ (1 − 𝜂)
𝑘 ∥ u(𝑾 (0)) − y∥22.

Theorem 2.1 states that an idealized version of MBF converges to the global optimum with a

linear rate under Assumptions 2.1 and 2.2. Our analysis is an adaptation of the proof in [66], that

uses exact gradients (i.e. full batch case with 𝑚 = 𝑛), where we first exploit Assumptions 2.1 and

2.2 to obtain a positive lower bound on the eigenvalues of the mini-block version of the true Fisher

matrix 𝑭𝑀𝐵 (𝑾 (𝑘)), which then allows us to characterize the rate of convergence of the method.

Proof of Theorem 2.1. If Assumption 6.2 holds, then one can obtain a lower bound on the minimum

eigenvalue of the mini-block Fisher matrix 𝑭𝑀𝐵 (𝑾 (𝑘)) = 1
𝑛
𝑱𝑀𝐵 (𝑘)⊤𝑱𝑀𝐵 (𝑘) at each iteration.

In fact, if ∥𝑾 (𝑘) −𝑾 (0)∥2 ≤ 3√
𝜆0
∥𝒚 − 𝒖(0)∥2, then, by Assumption 6.2, there exists 0 < 𝐶 ≤ 1

2

that satisfies ∥𝑱(𝑾 (𝑘)) − 𝑱(𝑾 (0))∥2 ≤ 𝐶
3
√
𝜆0, and therefore, we have that

∥𝑱𝑀𝐵 (𝑘) − 𝑱𝑀𝐵 (0)∥2 ≤
𝐶
√
𝜆0

3
≤
√
𝜆0
3
.

On the other hand, based on the inequality 𝜎min(A + B) ≥ 𝜎min(A) − 𝜎max(B), where 𝜎 denotes

singular value, we have

𝜎min(𝑱𝑀𝐵 (𝑘)) ≥ 𝜎min(𝑱𝑀𝐵 (0)) − 𝜎min(𝑱𝑀𝐵 (𝑘) − (𝑱𝑀𝐵 (𝑘)))

≥ 𝜎min(𝑱𝑀𝐵 (0)) − ∥𝑱𝑀𝐵 (𝑘) − 𝑱𝑀𝐵 (0)∥2 ≥
√︁
𝜆0 −

√
𝜆0
3

=
2
√
𝜆0

3
.
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Therefore

𝜆𝑚𝑖𝑛 (𝑮𝑀𝐵 (𝑾 (𝑘))) ≥
4
√
𝜆0

9
,

where 𝑮𝑀𝐵 (𝑾 (𝑘)) := 𝑱𝑀𝐵 (𝑾 (𝑘))𝑱𝑀𝐵 (𝑾 (𝑘))⊤ is the mini-block Gram matrix. We prove

Theorem 1 by induction. Assume | | u(𝑾 (𝑘)) − 𝒚 | |22 ≤ (1 − 𝜂)
𝑘 | | u(𝑾 (0)) − y| |22. One can see that

the relationship between the Jacobian 𝑱(𝑾 (𝑘)) and the mini-Block Jacobian 𝑱𝑀𝐵 (𝑾 (𝑘)) is:

𝑱⊤(𝑾 (𝑘)) = 𝑱𝑀𝐵 (𝑾 (𝑘))⊤𝑲,

where the matrix 𝑲 = [𝐼𝑛, . . . , 𝐼𝑛]⊤︸          ︷︷          ︸
𝐾

∈ R𝐾𝑛×𝑛, 𝐼𝑛 is the identity matrix of dimension 𝑛, the number

of samples, and 𝐾 is the total number of mini-blocks. We define

𝑾𝑘 (𝑠) = 𝑠𝑾 (𝑘 + 1) + (1 − 𝑠)𝑾 (𝑘)

= 𝑾 (𝑘) − 𝑠𝜂
𝑛
(𝑭𝑀𝐵 (𝑾 (𝑘)) + 𝜆𝐼)−1 𝑱(𝑾 (𝑘))⊤( u(𝑾 (𝑘)) − 𝒚)) − u(𝑾 (𝑘)),

we have:

u(𝑾 (𝑘 + 1)) − u(𝑾 (𝑘))

= 𝒖(𝑾 (𝑘) − 𝜂
𝑛
(𝑭𝑀𝐵 (𝑾 (𝑘)) + 𝜆𝐼)−1 𝑱(𝑾 (𝑘))⊤( u(𝑾 (𝑘)) − 𝒚)) − u(𝑾 (𝑘))

= −
∫ 1

𝑠=0

〈𝜕𝒖(𝑾𝑘 (𝑠))
𝜕𝑾⊤

,
𝜂

𝑛
(𝑭𝑀𝐵 (𝑾 (𝑘)) + 𝜆𝐼)−1 𝑱(𝑾 (𝑘))⊤(𝒖(𝑾 (𝑘)) − 𝒚))

〉
𝑑𝑠

= −
∫ 1

𝑠=0

〈𝜕𝒖(𝑾 (𝑘))
𝜕𝑾⊤

,
𝜂

𝑛
(𝑭𝑀𝐵 (𝑾 (𝑘)) + 𝜆𝐼)−1 𝑱(𝑾 (𝑘))⊤(𝒖(𝑾 (𝑘)) − 𝒚))

〉
𝑑𝑠︸                                                                                             ︷︷                                                                                             ︸

A

+
∫ 1

𝑠=0

〈𝜕𝒖(𝑾 (𝑘))
𝜕𝑾⊤

− 𝜕𝒖(𝑾𝑘 (𝑠))
𝜕𝑾⊤

,
𝜂

𝑛
(𝑭𝑀𝐵 (𝑾 (𝑘)) + 𝜆𝐼)−1 𝑱(𝑾 (𝑘))⊤(𝒖(𝑾 (𝑘)) − 𝒚))

〉
𝑑𝑠︸                                                                                                                 ︷︷                                                                                                                 ︸

B

.
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In what follows, to simplify the notation, we drop 𝑾 (𝑘) whenever the context is clear. Thus, we

have

A =
𝜂

𝑛
𝑱 (𝑭𝑀𝐵 + 𝜆𝐼)−1 𝑱⊤(𝒚 − 𝒖(𝑘)). (2.3.1)

Now, we bound the norm of B :

| | B | |2 ≤
𝜂

𝑛





∫ 1

𝑠=0
𝑱(𝑾𝑘 (𝑠)) − 𝑱(𝑾 (𝑘))𝑑𝑠






2



(𝑭𝑀𝐵 + 𝜆𝐼)−1 𝑱⊤(𝒖(𝑘) − 𝒚)




2

(1)
≤ 𝜂2𝐶

3𝑛
𝜆

1
2
0






(1
𝑛
𝑱⊤𝑀𝐵𝑭𝑀𝐵 + 𝜆𝐼

)−1
𝑭⊤𝑀𝐵𝑲 (𝒖(𝑘) − 𝒚))







2

≤ 𝜂2𝐶
3𝑛

𝜆
1
2
0






(1
𝑛
𝑱⊤𝑀𝐵𝑱𝑀𝐵 + 𝜆𝐼

)−1
𝑱⊤𝑀𝐵







2

∥𝑲 (𝒖(𝑘) − 𝒚))∥2

(2)
≤ 𝜂𝐶

3
√
𝜆𝑛

√︁
𝜆0 ∥𝑲 (𝒖(𝑘) − 𝒚))∥2

(3)
=
𝜂𝐶
√
𝜆0𝐾

3
√
𝜆𝑛

∥(𝒖(𝑘) − 𝒚))∥2 , (2.3.2)

where in (1) we used Assumption 6.2, which implies



∫ 1

𝑠=0
𝑱(𝑾𝑘 (𝑠)) − 𝑱(𝑾 (𝑘))𝑑𝑠






2
≤ ∥𝑱(𝑾 (𝑘)) − 𝑱(𝑾 (0))∥2 + ∥𝑱(𝑾 (𝑘 + 1)) − 𝑱(𝑾 (0))∥2

≤ 2𝐶
3

√︁
𝜆0.

The inequality (2) follows from the fact that




(1
𝑛
𝑱⊤𝑀𝐵𝑱𝑀𝐵 + 𝜆𝐼

)−1
𝑱⊤𝑀𝐵







2

= 𝜎𝑚𝑎𝑥

((
1
𝑛
𝑱⊤𝑀𝐵𝑱𝑀𝐵 + 𝜆𝐼

)−1
𝑱⊤𝑀𝐵

)
=

√√√
𝜆𝑚𝑎𝑥

(
𝑱𝑀𝐵

(
1
𝑛
𝑱⊤
𝑀𝐵

𝑱𝑀𝐵 + 𝜆𝐼
)−2

𝑱⊤
𝑀𝐵

)
,

and that

𝜆𝑚𝑎𝑥

(
𝑱𝑀𝐵

(
1
𝑛
𝑱⊤𝑀𝐵𝑱𝑀𝐵 + 𝜆𝐼

)−2
𝑱⊤𝑀𝐵

)
= max
𝜇 eigenvalue of 𝑮𝑀𝐵

𝜇

( 𝜇
𝑛
+ 𝜆)2

≤ 𝑛𝜆

( 𝑛𝜆
𝑛
+ 𝜆)2

=
𝑛

4𝜆
.
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and in the equality (3), we have used the fact that ∥𝑲 (𝒖(𝑘) − 𝒚))∥2 =
√
𝐾 ∥(𝒖(𝑘) − 𝒚))∥2. Finally,

we have:

| |𝒖(𝑘 + 1) − 𝒚 | |22 = | |𝒖(𝑘) − 𝒚 + 𝒖(𝑘 + 1) − 𝒖(𝑘) | |22

= | |𝒖(𝑘) − 𝒚 | |22 − 2 (𝒚 − 𝒖(𝑘))⊤ (𝒖(𝑘 + 1) − 𝒖(𝑘)) + | |𝒖(𝑘 + 1) − 𝒖(𝑘) | |22

≤ ||𝒖(𝑘) − 𝒚 | |22 −
2𝜂
𝑛
(𝒚 − 𝒖(𝑘))⊤ 𝑱(𝑘) (𝑭𝑀𝐵 + 𝜆𝐼)−1 𝑱(𝑘)⊤ (𝒚 − 𝒖(𝑘))︸                                                             ︷︷                                                             ︸

1

+ 2𝜂𝐶
√
𝜆0𝐾

3
√
𝜆𝑛

∥(𝒖(𝑘) − 𝒚))∥22 + ||𝒖(𝑘 + 1) − 𝒖(𝑘) | |22︸                    ︷︷                    ︸
2

≤ ||𝒖(𝑘) − 𝒚 | |22 −
2𝜂𝐾𝜆0

𝜆0 + 9
4𝑛𝜆
| |𝒖(𝑘) − 𝒚 | |22

+ 2𝜂𝐶
√
𝜆0𝐾

3
√
𝜆𝑛

∥(𝒖(𝑘) − 𝒚))∥22 + 𝜂2
(
𝐾 + 𝐶

√
𝜆0𝐾

3
√
𝜆𝑛

)2

∥(𝒖(𝑘) − 𝒚))∥22

≤ (1 − 𝜂) ∥(𝒖(𝑘) − 𝒚))∥22

+ 𝜂 ∥(𝒖(𝑘) − 𝒚))∥22

(
𝜂

(
𝐾 + 𝐶

√
𝜆0𝐾

3
√
𝜆𝑛

)2

−
(

2𝐾𝜆0

𝜆0 + 9
4𝑛𝜆
− 2𝐶

√
𝜆0𝐾

3
√
𝜆𝑛

− 1

))
.

Part 1 is lower bounded as follows:

1 ≥ 𝜆min

(
𝑱𝑀𝐵

(
1
𝑛
𝑱⊤𝑀𝐵𝑱𝑀𝐵 + 𝜆𝐼

)−1
𝑱⊤𝑀𝐵

)
∥𝑲 (𝒖(𝑘) − 𝒚)∥22

= 𝐾𝜆min

(
𝑱𝑀𝐵

(
1
𝑛
𝑱⊤𝑀𝐵𝑱𝑀𝐵 + 𝜆𝐼

)−1
𝑱⊤𝑀𝐵

)
∥𝒖(𝑘) − 𝒚∥22

= 𝑛𝐾 ∥𝒖(𝑘) − 𝒚∥22
𝜆𝑚𝑖𝑛 (𝑮𝑀𝐵 (𝑘))

𝜆𝑚𝑖𝑛 (𝑮𝑀𝐵 (𝑘)) + 𝑛𝜆

≥ 𝑛𝐾𝜆0

𝜆0 + 9
4𝑛𝜆
∥𝒖(𝑘) − 𝒚∥22.

25



Part 2 is upper bounded, on the other hand, using equality (2.3.1) and inequality (2.3.2). More

specifically, we have:

| |𝒖(𝑘 + 1) − 𝒖(𝑘) | |2 ≤
𝜂

𝑛



𝑱(𝑘) (𝑭𝑀𝐵 + 𝜆𝐼)−1 𝑱(𝑘)⊤(𝒚 − 𝒖(𝑘)))


 + || B | |2

≤ 𝜂𝐾
𝑛



𝑱𝑀𝐵 (𝑘) (𝑭𝑀𝐵 + 𝜆𝐼)−1 𝑱𝑀𝐵 (𝑘)⊤


 ∥(𝒖(𝑘) − 𝒚))∥2 +

𝜂𝐶
√
𝜆0𝐾

3
√
𝜆𝑛

∥(𝒖(𝑘) − 𝒚))∥2

≤ 𝜂
(
𝐾 + 𝐶

√
𝜆0𝐾

3
√
𝜆𝑛

)
∥(𝒖(𝑘) − 𝒚))∥2 .

The last inequality follows from the fact that if (𝜇, 𝑣) is an (eigenvalue, eigenvector) pair for

𝑮𝑀𝐵 = 𝑱𝑀𝐵𝑱
⊤
𝑀𝐵

, then (𝜇, 𝑱⊤
𝑀𝐵
𝑣) and ( 1

𝜇

𝑛
+𝜆 , 𝑱

⊤
𝑀𝐵
𝑣) are such pairs for 𝑭𝑀𝐵 and ( 1

𝑛
𝑭𝑀𝐵 + 𝜆𝐼)−1,

respectively, and it follows that



𝑱𝑀𝐵 (𝑘) (𝑭𝑀𝐵 + 𝜆𝐼)−1 𝑱𝑀𝐵 (𝑘)⊤




2 = 𝜆𝑚𝑎𝑥

(
𝑱𝑀𝐵 (𝑘) (𝑭𝑀𝐵 + 𝜆𝐼)−1 𝑱𝑀𝐵 (𝑘)⊤

)
= max
𝜇 eigenvalue of 𝑮𝑀𝐵 (𝑘)

𝑛𝜇

𝜇 + 𝑛𝜆 ≤ 𝑛.

Let us consider the function 𝜆
𝑓
→ 𝑓 (𝜆) :=

(
2𝐾𝜆0
𝜆0+ 9

4𝑛𝜆
− 2𝐶

√
𝜆0𝐾

3
√
𝜆𝑛
− 1

)
. We have that

𝑓 (4𝜆0
9𝑛
) = 𝐾 − 𝐶

√
𝐾 − 1 ≥ 𝐾 − 1

2
√
𝐾 − 1 > 0 for 𝐾 ≥ 3.

Therefore by continuity of the function 𝑓 (.), there exists an interval [𝜆, 𝜆], such as 4𝜆0
9𝑛 ∈ [𝜆, 𝜆],

and for all damping values 𝜆 in [𝜆, 𝜆], the function 𝑓 (.) is positive. For such a choice of damping

value 𝜆 (for example 𝜆 =
4𝜆0
9𝑛 ), and for a small enough learning rate, i.e:

𝜂 ≤
2𝐾𝜆0
𝜆0+ 9

4𝑛𝜆
− 2𝐶

√
𝜆0𝐾

3
√
𝜆𝑛
− 1(

𝐾 + 𝐶
√
𝜆0𝐾

3
√
𝜆𝑛

)2 := 𝜂𝜆.
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We Hence, we get that

| |𝒖(𝑘 + 1) − 𝒚 | |22 ≤ (1 − 𝜂) ∥(𝒖(𝑘) − 𝒚))∥22 ,

which concludes the proof. □

2.4 Implementation details of MBF and comparison on complexity

Mini-batch averages, Exponentially decaying averages and Momentum: Because the size

of training data sets is usually large, we use mini-batches to estimate the quantities needed for MBF.

We use 𝑋 to denote the average value of 𝑋 over a mini-batch for any quantity 𝑋 . Moreover, for

the EFM mini-blocks, we use moving averages to both reduce the stochasticity and incorporate

more information from the past, more specifically, we use a moving average scheme to get a better

estimate of the EFM mini-blocks, i.e.𝐺𝑊𝑙,𝑏 = 𝛽𝐺𝑊𝑙,𝑏 + (1 − 𝛽)𝐺𝑊𝑙,𝑏 , where 𝐺𝑊𝑙,𝑏 is the current

approximation to the mini-block EFM defined below. In order to bring MBF closer to a drop-in

replacement for adaptive gradient methods such as Adam, we add momentum to the mini-batch

gradient, let: D̂𝑊𝑙 = 𝜇D̂𝑊𝑙 + D𝑊𝑙 and then apply the preconditioner to D̂𝑊𝑙 to compute the step.

Approximating the mini-block Fisher matrices: As mentioned previously, computing the

matrices 𝐺𝑊𝑙,𝑏 := 1
𝑚
(𝑱𝑊𝑙,𝑏)𝑇 𝑱𝑊𝑙,𝑏 to update the EFM mini-blocks is inefficient in practice as this

requires storing and computing the individual gradients. Hence, we approximate these mini-block

matrices by the outer product of the part of the mini-batch gradient corresponding to the subset of

weights𝑊𝑙,𝑏, i.e., 𝐺𝑊𝑙,𝑏 ≈ (D𝑊𝑙,𝑏) (D𝑊𝑙,𝑏)⊤.

Spacial average for large fully-connected layers: In some CNN and autoencoder models,

using the EFM mini-blocks can still be computationally prohibitive for fc layers, where both the

input and output dimensions are large. Therefore, for such layers we used a Spatial Averaging

technique, similar to one used in [67], where we maintained a single preconditioning matrix for all

the mini-blocks by averaging the approximate mini-block EFM matrices whenever we updated the

preconditioning matrix. This technique also leads to more stable curvature updates as a side benefit,
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as observed for the method proposed in [67], where the Hessian diagonal was "smoothed" across

each layer. We also explored using spacial averaging for convolutional layers. However since the

kernel-wise mini-blocks are small in size, spacial averaging does not compare favorably to the full

MBF method (see section 2.5.4.6).

Amortized updates of the preconditioning matrices: The extra work for the above computa-

tions, as well as for updating the inverses 𝐹−1
𝑊𝑙, 𝑗

compared with first-order methods is amortized by

only performing the Fisher matrix updates every 𝑇1 iterations and computing their inverses every

𝑇2 iterations. This approach which is also used in KFAC and Shampoo, does not seem to degrade

MBF’s overall performance, in terms of computational speed(see section 2.5.4.7 for empirical

evidence).

Comparison of Memory and Per-iteration Time Complexity: In Table 2.1, we compare the

space and computational requirements of the proposed MBF method with KFAC, Shampoo and

Adam, which are among the predominant 2nd and 1st-order methods used to train DNNs. For one

convolutional layer, with 𝐽 input channels, 𝐼 output channels, kernel size |Δ| = (2𝑅 + 1)2, and |T |

spacial locations. Let 𝑚 denote the size of the mini batches, and 𝑇1 and 𝑇2 denote, respectively, the

frequency for updating the preconditioners and inverting them for KFAC, Shampoo and MBF. As

indicated in Table 2.1, the amount of memory required by MBF is the same order of magnitude

as that required by Adam, (specifically, more by a factor of |Δ|, which is usually small in most

CNN architectures; e.g, in VGG16 [68] |Δ| = 9) and less than KFAC, Shampoo and other SOTA

Kronecker-factored preconditioners, (specifically, e.g., by a factor of 𝑂
(
𝐽 + 𝐼

|Δ|

)
for KFAC.

Table 2.1: Computation and Storage Requirements per iteration for convolutional layer.

Algorithm Additional pass Curvature Step Δ𝑊𝑙 Storage 𝑃𝑙
MBF — 𝑂 (𝐼𝐽 ( |Δ |

2

𝑇1
+ |Δ |

3

𝑇2
)) 𝑂 (𝐼𝐽 |Δ|2) 𝑂 (𝐼𝐽 |Δ|2)

Shampoo — 𝑂 ( (𝐽
2+|Δ |2+𝐼2 )
𝑇1

+ 𝐽
3+𝐼3+|Δ |3
𝑇2

) 𝑂 ((𝐼 + 𝐽 + |Δ|)𝐼𝐽 |Δ|) 𝑂 (𝐼2 + 𝐽2 + |Δ|2)
KFAC 𝑂 (𝑚𝐼𝐽 |Δ | | T |

𝑇1
) 𝑂 (𝑚(𝐽

2 |Δ |2+𝐼2 ) | T |
𝑇1

+ 𝐽
3 |Δ |3+𝐼3

𝑇2
) 𝑂 (𝐼𝐽2 |Δ|2 + 𝐼2𝐽 |Δ|) 𝑂 (𝐽2 |Δ|2 + 𝐼2)

Adam — 𝑂 (𝐼𝐽 |Δ|) 𝑂 (𝐼𝐽 |Δ|) 𝑂 (𝐼𝐽 |Δ|)
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We indicate in Table 2.1, in gray, the portion of the computational complexity for both the

curvature and step computations that can benefit from GPU broadcasting and parallelism. Since MBF

maintains mini-block curvature matrices of the same size, its effective computational complexity is

𝑂

(
|Δ|2
𝑇1
+ |Δ|

3

𝑇2
+ |Δ|2

)
, which is of modest magnitude as it is a function of only the kernel-size Δ,

which is small in most CNN architectures. Note that in our experiments, 𝑇1 ≈ |Δ| and 𝑇2 ≈ |Δ|2.

The computational and storage requirements for a fully connected layer, with 𝑑𝑖 inputs and 𝑑𝑜

outputs, are given in Tables 2.2 and 2.3.

Table 2.2: Storage Requirements for fully connected layer

Algorithm D𝑊 𝑃𝑙

MBF 𝑂 (𝑑𝑖𝑑𝑜) 𝑂 (𝑑2
𝑖
)

KFAC 𝑂 (𝑑𝑖𝑑𝑜) 𝑂 (𝑑2
𝑖
+ 𝑑2

𝑜 + 𝑑𝑖𝑑𝑜)
Shampoo 𝑂 (𝑑𝑖𝑑𝑜) 𝑂 (𝑑2

𝑖
+ 𝑑2

𝑜)
Adam 𝑂 (𝑑𝑖𝑑𝑜) 𝑂 (𝑑𝑖𝑑𝑜)

Table 2.3: Computation per iteration beyond that required for the minibatch stochastic gradient for
fully connected layer

Algorithm Additional pass Curvature Step Δ𝑊𝑙

MBF — 𝑂 ( 𝑑𝑜𝑑
2
𝑖

𝑇1
+ 𝑑𝑜𝑑

3
𝑖

𝑇2
) 𝑂 (𝑑𝑜𝑑2

𝑖
)

KFAC 𝑂 (𝑚𝑑𝑖𝑑𝑜
𝑇1
) 𝑂 (𝑚𝑑

2
𝑖
+𝑚𝑑2

𝑜

𝑇1
+ 𝑑3

𝑖
+𝑑3
𝑜

𝑇2
) 𝑂 (𝑑2

𝑖
𝑑𝑜 + 𝑑2

𝑜𝑑𝑖)
Shampoo — 𝑂 ( 𝑑

2
𝑖
+𝑑2
𝑜

𝑇1
+ 𝑑3

𝑖
+𝑑3
𝑜

𝑇2
) 𝑂 ((𝑑𝑖 + 𝑑𝑜)𝑑𝑖𝑑𝑜)

Adam — 𝑂 (𝑑𝑖𝑑𝑜) 𝑂 (𝑑𝑖𝑑𝑜)

A pseudo-code that fully describes our MBF algorithm is given in Algorithm 2.2. For the

parameters in the BN layers, we used the direction used in Adam, which is equivalent to using

mini-blocks of size 1, dividing each gradient component by that block’s square root. We did a

warm start to estimate the pre-conditioning mini-block matrices in an initialization step that iterated

through the whole data set and adopted a moving average scheme to update them with 𝛽 = 0.9.
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Algorithm 2.2: Mini-Block Fisher method (MBF)
Input: Given batch size 𝑚, learning rate {𝜂𝑘 }𝑘≥1, weight decay factor 𝛾, damping value 𝜆,

statistics update frequency 𝑇1, inverse update frequency 𝑇2
𝜇 = 0.9, 𝛽 = 0.9
Initialize 𝐺 𝑙,𝑏 = E[𝐺 𝑙,𝑏] (𝑙 = 1, .., 𝑘 , mini-blocks 𝑏) by iterating through the whole dataset,
D̂𝑊𝑙,𝑏 = 0 (𝑙 = 1, .., 𝑘 , mini-blocks 𝑏)

for 𝑘 = 1, 2, . . . do
Sample mini-batch 𝑀𝑡 of size 𝑚
Perform a forward-backward pass over 𝑀𝑡 to compute the mini-batch gradient D𝑊𝑙,𝑏

for 𝑙 = 1, ...𝐿 do
for mini-block 𝑏 in layer 𝑙, in parallel do
D̂𝑊𝑙,𝑏 = 𝜇D̂𝑊𝑙,𝑏 + D𝑊𝑙,𝑏

if 𝑘 ≡ 0 (mod 𝑇1) then

If Layer 𝑙 is convolutional: 𝐺 𝑙, 𝑗 ,𝑖 = 𝛽𝐺 𝑙, 𝑗 ,𝑖 + (1 − 𝛽)D𝑊𝑙, 𝑗 ,𝑖

(
D𝑊𝑙, 𝑗 ,𝑖

)⊤
If Layer 𝑙 is fully-connected: 𝐺 𝑙 = 𝛽𝐺 𝑙 + 1−𝛽

𝑂

∑𝑂
𝑗=1D𝑊𝑙, 𝑗

(
D𝑊𝑙, 𝑗

)⊤
if 𝑘 ≡ 0 (mod 𝑇2) then

Recompute and store (𝐺 𝑙,𝑏 + 𝜆𝐼)−1

𝑝𝑙,𝑏 = (𝐺 𝑙,𝑏 + 𝜆𝐼)−1D̂𝑊𝑙,𝑏 + 𝛾𝑊𝑙,𝑏

𝑊𝑙,𝑏 = 𝑊𝑙,𝑏 − 𝜂𝑘 𝑝𝑙,𝑏

2.5 Numerical Experiments

In this section, we compare MBF with some SOTA first-order (SGD-m, Adam) and second-

order (KFAC, Shampoo) methods. Since MBF uses information about the second-moment of the

gradient to construct a preconditioning matrix, Adam, KFAC and Shampoo were obvious choices for

comparison with MBF. We used the most popular version of Adam, AdamW [69] as a representative

of adaptive first-order methods. An extensive study in [12] of more than 100 optimization methods,

65 of which have “Adam” or “Ada” as part of their names, concluded that no method was "clearly

dominating across all tested tasks and that ADAM remains a strong contender, with newer methods

failing to significantly and consistently outperform it". We also include in section 2.5.4.8 additional

results that include Adabelief and Adagrad.

Our experiments were run on a machine with one V100 GPU and eight Xeon Gold 6248 CPUs

using PyTorch [70]. Each algorithm was run using the best hyper-parameters, determined by a grid
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search (specified in sections 2.5.4.2 and 2.5.4.1), and 5 different random seeds. The performance of

MBF and the comparison algorithms are plotted in Figures 2.6 and 2.7: the solid curves depict the

results averaged over the 5 different runs, and the shaded areas depict the ±standard deviation range

for these runs.

2.5.1 Description of Competing Algorithms

SGD-m: In SGD with momentum, we updated the momentum 𝑚𝑡 of the gradient using the

recurrence

𝑚𝑡 = 𝜇 · 𝑚𝑡−1 + 𝑔𝑡

at every iteration, where 𝑔𝑡 denotes the mini-batch gradient at current iteration and 𝜇 = 0.9. The

gradient momentum is also used in the second-order methods, in our implementations. For the CNN

problems, we used weight decay with SGD-m, as it is used in SGDW in [69].

Adam: For Adam, we followed exactly the algorithm in [11] with 𝛽1 = 0.9 and 𝛽2 = 0.999,

updating the momentum of the gradient at every iteration by the recurrence

𝑚𝑡 = 𝛽1 · 𝑚𝑡 − 1 + (1 − 𝛽1) · 𝑔𝑡 .

The role of 𝛽1 and 𝛽2 is similar to that of 𝜇 and 𝛽 in Algorithms 2.2 and 2.3, as we will describe

below. For the CNN problems, we used weight decay with Adam, as it is used in AdamW in [69].

Shampoo: We implemented Shampoo as described below in Algorithm 2.3 following the

description given in [40], and include major improvements, following the suggestions in [63]. These

improvements are (i) using a moving average to update the estimates 𝐺 (𝑖)
𝑙

and (ii) using a coupled

Newton method to compute inverse roots of the preconditioning matrices,

KFAC: In our implementation of KFAC, the preconditioning matrices that we used for lin-

ear layers and convolutional layers are precisely those described in [33] and [34], respectively.

For the parameters in the BN layers, we used the gradient direction, exactly as in https:

//github.com/alecwangcq/KFAC-Pytorch. We did a warm start to estimate the pre-
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Algorithm 2.3: Shampoo
Input: Given batch size 𝑚, learning rate {𝜂𝑘 }𝑘≥1, weight decay factor 𝛾, damping value 𝜖 ,

statistics update frequency 𝑇1, inverse update frequency 𝑇2
𝜇 = 0.9, 𝛽 = 0.9
Initialize 𝐺 (𝑖)

𝑙
= E[𝐺 (𝑖)

𝑙
] (𝑙 = 1, .., 𝑘 , 𝑖 = 1, ..., 𝑘 𝑙) by iterating through the whole dataset,

∇̂𝑊𝑙L = 0 (𝑙 = 1, ..., 𝐿) for 𝑘 = 1, 2, . . . do
Sample mini-batch 𝑀𝑘 of size 𝑚
Perform a forward-backward pass over the current mini-batch 𝑀𝑘 to compute the
minibatch gradient ∇L for 𝑙 = 1, ...𝐿 do
∇̂𝑊𝑙L = 𝜇∇̂𝑊𝑙L + ∇𝑊𝑙L if 𝑘 ≡ 0 (mod 𝑇1) then

Update 𝐺 (𝑖)
𝑙

= 𝛽𝐺
(𝑖)
𝑙
+ (1 − 𝛽)𝐺 𝑙

(𝑖)
for 𝑖 = 1, ..., 𝑘 𝑙 where 𝐺 𝑙 = ∇𝑊𝑙L

if 𝑘 ≡ 0 (mod 𝑇2) then

Recompute
(
𝐺
(1)
𝑙
+ 𝜖 𝐼

)−1/2𝑘𝑙
, ...,

(
𝐺
(𝑘𝑙)
𝑙
+ 𝜖 𝐼

)−1/2𝑘𝑙
with the coupled Newton

method

𝑝𝑙 = ∇̂𝑊𝑙L ×1

(
𝐺
(1)
𝑙
+ 𝜖 𝐼

)−1/2𝑘𝑙
×2 · · · ×𝑘

(
𝐺
(𝑘𝑙)
𝑙
+ 𝜖 𝐼

)−1/2𝑘𝑙
𝑝𝑙 = 𝑝𝑙 + 𝛾𝑊𝑙

𝑊𝑙 = 𝑊𝑙 − 𝜂𝑘 · 𝑝𝑙

conditioning KFAC matrices in an initialization step that iterated through the whole data set,

and adopted a moving average scheme to update them with 𝛽 = 0.9 afterwards. As in the im-

plementation described in [71], for autoencoder experiments, we inverted the damped KFAC

matrices and used them to compute the updating direction, where the damping factors for both

𝐴 and 𝐺 were set to be
√
𝜆, where 𝜆 is the overall damping value; and for the CNN exper-

iments, we employed the SVD (i.e. eigenvalue decomposition) implementation suggested in

https://github.com/alecwangcq/KFAC-Pytorch, which, as we verified, performs

better than splitting the damping value and inverting the damped KFAC matrices (as suggested

in [33, 34]). Further, for the CNN problems, we implemented weight decay exactly as in MBF

(Algorithm 2.2) and Shampoo (Algorithm 2.3).

2.5.2 Generalization performance, CNN problems

We first compared the generalization performance of MBF to SGD-m, Adam, KFAC and

Shampoo on three CNN models, namely, ResNet32 [72], VGG16 [68] and VGG11 [68], respectively,
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on the datasets CIFAR-10, CIFAR-100 and SVHN [73]. The first two have 50,000 training data and

10,000 testing data (used as the validation set in our experiments), while SVHN has 73,257 training

data and 26,032 testing data. For all algorithms, we used a batch size of 128. In training, we applied

data augmentation as described in [74], including random horizontal flip and random crop, since

these setting choices have been used and endorsed in many previous research papers, e.g. [75, 76,

41]. (see section 2.5.4.2 for more details about the experimental set-up)

On all three model/dataset problems, the first-order methods were run for 200 epochs, and

KFAC and Shampoo for 100 epochs, while MBF was run for 150 epochs on VGG16/CIFAR-100

and VGG11/SVHN, and 200 epochs on ResNet32/CIFAR-10. The reason that we ran MBF for

200 epochs (i.e., the same number as run for Adam) on ResNet32 was because all of ResNet32’s

convolutional layers use small (3 × 3) kernels, and it contains just one fully connected layer of

modest size (𝐼, 𝑂) = (64, 10). Hence as we expected, MBF and Adam took almost the same time

to complete 200 epochs. As can be seen in Figure 2.6, MBF could have been terminated after

150 epochs, without a significant change in validation error. On the other hand, since VGG16

and VGG11 have two large fully connected-layers (e.g [4096, 4096, 10/100]), MBF’s per-iteration

computational cost is substantially larger than Adam’s due to these layers. Consequently, for both

methods to finish roughly in the same amount of time, we ran MBF for only 150 epochs.

All methods employed a learning rate (LR) schedule that decayed LR by a factor of 0.1 every K

epochs, where K was set to 60, 50 and 40 , for the first-order methods, MBF, and KFAC/Shampoo,

respectively, on the VGG16 and VGG11 problems, and set to 80, 60 and 40, respectively, on the

ResNet32 problem

Moreover, weight decay, which has been shown to improve generalization across different

optimizers [69, 75], was employed by all of the algorithms, and a grid search on the weight decay

factor and the initial learning rate based on the criteria of maximal validation classification accuracy

was performed. Finally, the damping parameter was set to 1e-8 for Adam (following common prac-

tice), and 0.03 for KFAC (https://github.com/alecwangcq/KFAC-Pytorch). For
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Shampoo, we set 𝜖 = 0.01. For MBF, we set 𝜆 = 0.003. We set 𝑇1 = 10 and 𝑇2 = 100 for KFAC,

Shampoo and MBF.

From Figure 2.6, we see that MBF has a similar (and sometimes better) generalization per-

formance than the other methods. Moreover, in terms of process time, MBF is roughly as fast as

SGD-m and Adam on ResNet32/CIFAR-10 in Figure 2.6, and is competitive with all of the SOTA

first and second-order methods in our experiments.
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Figure 2.6: Generalization ability of MBF, KFAC, Shampoo, Adam, and SGD-m on three CNN
problems.
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2.5.3 Optimization Performance, Autoencoder Problems

We also compared the optimization performance of the algorithms on three autoencoder prob-

lems [77] with datasets MNIST [65], FACES, and CURVES, which were also used for benchmarking

algorithms in [26, 33, 39, 38]. The details of the layer shapes of the autoencoders are specified in

section 2.5.4.1. For all algorithms, we used a batch size of 1,000, and settings that largely mimic

the settings in the latter papers. Each algorithm was run for 500 seconds for MNIST and CURVES,

and 2000 seconds for FACES.

For each algorithm, we conducted a grid search on the LR and damping value based on

minimizing the training loss. We set the Fisher matrix update frequency 𝑇1 = 1 and inverse update

frequency 𝑇2 = 20 for second-order methods, as in [41]. From Figure 2.7, it is clear that MBF

outperformed SGD-m and Adam, both in terms of per-epoch progress and process time. Moreover,

MBF performed (at least) as well as KFAC and Shampoo. We postulate that the performance of

MBF is due to its ability to capture important curvature information from the mini-block Fisher

matrix, while keeping the computational cost per iteration low and close to that of Adam.

2.5.4 Additional Numerical Experiments and Details

2.5.4 Experiment Settings for the Autoencoder Problems

Table 2.4 describes the model architectures of the autoencoder problems. The activation

functions of the hidden layers are always ReLU, except that there is no activation for the very

middle layer.

Table 2.4: DNN architectures for the MLP autoencoder problems

Layer width

MNIST [784, 1000, 500, 250, 30, 250, 500, 1000, 784]
FACES [625, 2000, 1000, 500, 30, 500, 1000, 2000, 625]

CURVES [784, 400, 200, 100, 50, 25, 6, 25, 50, 100, 200, 400, 784]

35



0 100 200 300
Epochs

102

Tr
ai

ni
ng

 lo
ss

0 100 200 300 400 500
Process time (in seconds)

102

Tr
ai

ni
ng

 lo
ss

SGD-m
Adam
Shampoo
MBF
KFAC

(a) MNIST autoencoder

0 200 400 600 800
Epochs

101

102

Tr
ai

ni
ng

 lo
ss

0 500 1000 1500 2000
Process time (in seconds)

101

102

Tr
ai

ni
ng

 lo
ss

SGD-m
Adam
Shampoo
MBF
KFAC

(b) FACES autoencoder

0 200 400 600 800 1000
Epochs

102

Tr
ai

ni
ng

 lo
ss

0 100 200 300 400 500
Process time (in seconds)

102

Tr
ai

ni
ng

 lo
ss

SGD-m
Adam
Shampoo
MBF
KFAC

(c) CURVES autoencoder

Figure 2.7: Optimization performance of MBF, KFAC, Shampoo, Adam, and SGD-m on three
autoencoder problems.

MNIST1, FACES2, and CURVES3 contain 60,000, 103,500, and 20,000 training samples,

respectively, which we used in our experiment to train the models and compute the training losses.

We used binary entropy loss (with sigmoid) for MNIST and CURVES, and squared error loss for

FACES. The above settings largely mimic the settings in [26, 33, 39, 41]. Since we primarily focused

on optimization rather than generalization in these tasks, we did not include 𝐿2 regularization or

weight decay.

In order to obtain Figure 2.7, we first conducted a grid search on the learning rate (lr) and

damping value based on the criteria of minimizing the training loss. The ranges of the grid searches

used for the algorithms in our tests are specified in Table 2.5.

The best hyper-parameter values determined by our grid searches are listed in Table 2.4.

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.toronto.edu/~jmartens/newfaces_rot_single.mat
3http://www.cs.toronto.edu/~jmartens/digs3pts_1.mat
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Table 2.5: Grid of hyper-parameters for autoencoder problems

Algorithm learning rate damping 𝜆
SGD-m 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2 damping: not applicable
Adam 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2 1e-8, 1e-4, 1e-2
Shampoo 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3 1e-4, 3e-4, 1e-3, 3e-3, 1e-2
MBF 1e-7, 3e-7, 1e-6, 3e-6, 1e-5, 3e-5, 1e-4 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2
KFAC 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-2, 3e-2 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

Table 2.6: Hyper-parameters (learning rate, damping) used to produce Figure 2.7

Name MNIST FACES CURVES

MBF (1e-5, 3e-4)→ 51.49 (1e-6, 3e-3)→ 5.17 (1e-5, 3e-4)→ 55.14
KFAC (3e-3, 3e-1)→ 53.56 (1e-1, 1e1)→ 5.55 (1e-2, 1e0)→ 56.47
Shampoo (3e-4, 3e-4)→ 53.80 (3e-4, 3e-4)→ 7.21 (1e-3, 3e-3)→ 54.86
Adam (3e-4, 1e-4)→ 53.67 (1e-4, 1e-4)→ 5.55 (3e-4, 1e-4)→ 55.23
SGD-m (3e-3, -)→ 55.63 (1e-3, -)→ 7.08 (1e-2, -)→ 55.49

2.5.4 Experiment Settings for the CNN Problems

The ResNet32 model refers to the one in Table 6 of [72], whereas the VGG16 model refers to

model D of [68], with the modification that batch normalization layers were added after all of the

convolutional layers in the model. For all algorithms, we used a batch size of 128 at every iteration.

We used weight decay for all the algorithms that we tested, which is related to, but not the same

as 𝐿2 regularization added to the loss function, and has been shown to help improve generalization

performance across different optimizers [69, 75]. The use of weight decay for MBF and Shampoo

is implemented in lines 16 and 17 in Algorithm 2.2 and in lines 15 and 16 in Algorithm 2.3,

respectively, and is similarly applied to SGD-m, Adam, and KFAC.

For MBF, we set 𝜆 = 0.003. We also tried values around 0.003 and the results were not sensitive

to the value of 𝜆. Hence, 𝜆 can be set to 0.003 as a default value. For KFAC, we set the overall

damping value to be 0.03, as suggested in the implementation in https://github.com/

alecwangcq/KFAC-Pytorch. We also tried values around 0.03 for KFAC and confirmed that

0.03 is a good default value.
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In order to obtain Figure 2.6, we first conducted a grid search on the initial learning rate (lr)

and weight decay (wd) factor based on the criteria of maximizing the classification accuracy on the

validation set. The range of the grid searches for the algorithms in our tests are specified in Table

2.7.

Table 2.7: Grid of hyper-parameters for CNN problems

Algorithm learning rate weight decay 𝛾
SGD-m 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 1e0 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1
Adam 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1
Shampoo 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1
MBF 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1
KFAC 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

The best hyper-parameter values, and the validation classification accuracy obtained using them,

are listed in Table 2.8.

Table 2.8: Hyper-parameters (initial learning rate, weight decay factor) used to produce Figure 2.6
and the average validation accuracy across 5 runs with different random seeds shown in Figure 2.6

Name CIFAR-10 + ResNet32 CIFAR-100 + VGG16 SVHN + VGG11

MBF (1e-4, 3e0)→ 93.42% (3e-5, 1e1)→ 74.80% (1e-3, 3e-1)→ 96.59%
KFAC (3e-3, 1e-1)→ 93.02% (1e-3, 3e-1)→ 74.38% (3e-3, 1e-1)→ 96.37%
Shampoo (1e-2, 1e-1)→ 92.97% (1e-3, 3e-1)→ 73.37% (3e-3, 1e-1)→ 96.15%
Adam (3e-3, 1e-1)→ 93.34% (3e-5, 1e1)→ 72.95% (3e-4, 1e0)→ 96.34%
SGD-m (1e-1, 1e-2)→ 93.23% (3e-2, 1e-2)→ 73.99% (3e-2, 1e-2)→ 96.63%

2.5.4 Graph Convolutional Networks (GCN) Problems

In this section, we compare the performance of the optimizations algorithms on a 3-layer GCN

for the task of node classification in graphs applied to three citation datasets, Cora, CiteSeer, and

PubMed(see [78]). In Table 3.1, nodes and edges correspond to documents and citation links,

respectively, for these datasets. A sparse feature vector of document keywords, and a class label are

associated with each node. For our experiments, as in [79], for each dataset we used all of the nodes

for training, except for 1000 nodes that were reserved for testing.
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Table 2.9: Citation network datasets statistics

Dataset Nodes Edges Classes Features
Citeseer 3,327 4732 6 3,703
Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

In our experiments, we used a 3-layer GCN with the following node-sizes [𝐼, 128, 64, 𝑂], where

𝐼 and 𝑂 are the numbers of input features and classes, respectively. In the first and second layers

of this GCN, the activation function ReLU was followed by a dropout function with a rate of 0.5.

The loss function was evaluated as the negative log-likelihood of Softmax of the last layer. The

weights of parameters were initialized as in [80] and input vectors were row-normalized as in [81].

The models were trained for 300 epochs on the Cora and Citeseer datasets and 500 epochs on the

Pubmed dataset. The hyperparameter search space was the same as that used for the CNN problems

with no LR schedule. For MBF, spatial averaging was only used in the first layer to mitigate

the memory and computational burden in that layer. We set the Fisher matrix update frequency

𝑇1 = 1 and the inverse update frequency 𝑇2 = 25 for all second-order methods. The optimization

performance was measured by the test accuracy. From Figure 2.8, we see that MBF had better final

generalization performance than the other methods and, in terms of process time, MBF was roughly

as fast as SGD-m and Adam on Cora and Citeseer, and was competitive with all of the SOTA first

and second-order methods.

2.5.4 Details on the Cosine similarity experiment:

We provide in Algorithm 2.4 the full implementation of MBF-True for completeness. Note

that, in MBF-True, the only difference between it and MBF is that we are using the mini-batch

gradient D2𝑊𝑙,𝑏 (denoted by D2 ) of the model on sampled labels 𝑦𝑡 from the model’s distribution

(see lines 10-13 in Algorithm 2.4) to update the estimate of mini-block preconditioners, using a

moving average (lines 12, 13), with a rank one outer-product, which is different from computing the

true Fisher for that mini-block.
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(a) Cora GCN
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Figure 2.8: Generalization performance of MBF, KFAC, Shampoo, Adam, and SGD-m on three
GCN problems.

We explored how close MBF’s direction is to the one obtained by a block-diagonal full EFM

method (that we call BDF). We provide here a detailed implementation of the procedure that we

used for completeness. More specifically, for any algorithm X, we reported the cosine similarity

between the direction given by X and that obtained by BDF in the procedure described in Algorithm

2.5.

The algorithms were run on a 16×16 down-scaled MNIST [65] dataset and a small feed-forward

NN with layer widths 256-20-20-20-20-20-10 described in [33]. For all methods, we followed the

trajectory obtained using the BDF method as described in Algorithm 2.5.

2.5.4 Comparison between MBF and MBF-True on Autoencoder and CNN problems

The cosine similarity results reported in Figure 2.5 on the down-scaled MNIST suggest that the

direction obtained by MBF and MBF-True behave similarly with respect the direction obtained by

BDF. In this section, we compare the performance of MBF-True to MBF on the same Autoencoder
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Algorithm 2.4: MBF-True
Input: Given batch size 𝑚, learning rate {𝜂𝑘 }𝑘≥1, weight decay factor 𝛾, damping value 𝜆,

statistics update frequency 𝑇1, inverse update frequency 𝑇2
𝜇 = 0.9, 𝛽 = 0.9
Initialize 𝐺 𝑙,𝑏 = E[𝐺 𝑙,𝑏] (𝑙 = 1, .., 𝑘 , mini-blocks 𝑏) by iterating through the whole dataset,
D̂𝑊𝑙,𝑏 = 0 (𝑙 = 1, .., 𝑘 , mini-blocks 𝑏) for 𝑘 = 1, 2, . . . do

Sample mini-batch 𝑀𝑡 of size 𝑚
Perform a forward-backward pass over 𝑀𝑡 to compute the mini-batch gradient D𝑊𝑙,𝑏

for 𝑙 = 1, ...𝐿 do
for mini-block 𝑏 in layer 𝑙, in parallel do
D̂𝑊𝑙,𝑏 = 𝜇D̂𝑊𝑙,𝑏 + D𝑊𝑙,𝑏 if 𝑘 ≡ 0 (mod 𝑇1) then

Sample the labels 𝑦𝑡 from the model’s distribution
Perform a backward pass over 𝑦𝑡 to compute the mini-batch gradients
D2𝑊𝑙,𝑏

If Layer 𝑙 is convolutional: 𝐺 𝑙, 𝑗 ,𝑖 = 𝛽𝐺 𝑙, 𝑗 ,𝑖 + (1 − 𝛽)D2𝑊𝑙, 𝑗 ,𝑖

(
D2𝑊𝑙, 𝑗 ,𝑖

)⊤
If Layer 𝑙 is fully-connected: 𝐺 𝑙 = 𝛽𝐺 𝑙 + 1−𝛽

𝑂

∑𝑂
𝑗=1D2𝑊𝑙, 𝑗

(
D2𝑊𝑙, 𝑗

)⊤
if 𝑘 ≡ 0 (mod 𝑇2) then

Recompute and store (𝐺 𝑙,𝑏 + 𝜆𝐼)−1

𝑝𝑙,𝑏 = (𝐺 𝑙,𝑏 + 𝜆𝐼)−1D̂𝑊𝑙,𝑏 + 𝛾𝑊𝑙,𝑏

𝑊𝑙,𝑏 = 𝑊𝑙,𝑏 − 𝜂𝑘 𝑝𝑙,𝑏

Algorithm 2.5: Cosine(BDF, Algorithm X)
Input: All required parameters for Algorithm X 𝑚 = 1000, 𝜂 = 0.01, 𝜇 = 0.9,

𝛽 = 0.9, 𝜆 = 0.01
Initialize the block EFM matrices 𝐹𝑙 = E[𝐹𝑙] (𝑙 = 1, .., 𝐿) by iterating through the whole
dataset D̂𝑊𝑙 = 0 (𝑙 = 1, .., 𝐿) for 𝑘 = 1, 2, . . . do

Sample mini-batch 𝑀𝑡 of size 𝑚
Perform a forward-backward pass over 𝑀𝑡 to compute the mini-batch gradient D𝑊𝑙 for
𝑙 = 1, ...𝐿 do
D̂𝑊𝑙 = 𝜇D̂𝑊𝑙 + D𝑊𝑙

𝐹𝑙 = 𝛽𝐹𝑙 + (1 − 𝛽)E[𝐹𝑙]
𝑝𝑙 = (𝐹𝑙 + 𝜆𝐼)−1D̂𝑊𝑙,𝑏

Compute the direction 𝑑𝑙 given by algorithm X at the current iterate𝑊𝑙

Compute and store the cosine
|𝑝𝑇
𝑙
𝑑𝑙 |

∥𝑝𝑙 ∥∥𝑑𝑙 ∥
𝑊𝑙 = 𝑊𝑙 − 𝜂𝑝𝑙

problems (MNIST, FACES, CURVES) described in 2.5.4.1 and the same CNN problems (CIFAR-10

+ ResNet32, CIFAR-100 + VGG16, and SVHN + VGG11) described in 2.5.4.2. We used the same
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grid of parameters to tune MBF-True as the one described in 2.5.4.1 and 2.5.4.2. We report in

Figures 2.9 and 2.10 the training and validation errors obtained on these problems, as well as the best

hyper-parameters for both methods in the legends. It seems that using the symmetric outer product

of the empirical mini-batch gradient to update the mini-block preconditioner yields better results

than using the mini-batch gradient from sampled data from the model’s distribution to compute this

inner product.

We think this might be the case because MBF is closer to being an adaptive gradient methods,

which also use the empirical gradient such as ADAGRAD and ADAM, rather than a second-order

natural gradient method such as KFAC, where in the latter case using a sampled gradient yields

better results than using the empirical data. Note that, when the mini-block sizes are 1, MBF

becomes a diagonal preconditioning method like ADAM minus the square root operation.
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Figure 2.9: Training performance of MBF-True and MBF on three autoencoder problems.

2.5.4 Spacial averaging on convolutional layers.

In this section, we compare the performance of MBF with spacial averaging applied to convo-

lutional layers to MBF on the same three CNN problems (CIFAR-10 + ResNet-32, CIFAR-100

+ VGG16, and SVHN + VGG11) described in 2.5.4.2. We used the same grid of parameters to
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Figure 2.10: Testing performance of MBF-True and MBF on three CNN problems.

tune MBF-CNN-Avg as the one described in 2.5.4.2. We report in Figure 2.11 the validation errors

obtained on these problems, as well as the best hyper-parameters for both methods in the legends.

It seems that using the average of the kernel-wise mini-blocks to update the preconditioner yields

slightly worse results than using the individual mini-blocks as preconditioner. We think this might

be the case because the averaging over all mini-blocks results into a loss of curvarture information

as the kernel-wise mini-blocks are small in size. Note that, when using the average mini-blocks,

MBF requires less memory than adaptive first-order methods such as ADAM.

2.5.4 On the effect of the update frequencies 𝑇1, 𝑇2:

We also explored the effect of the update frequencies 𝑇1, 𝑇2 for the mini-block preconditionners

as used in Algorithm 2.2. To be more specific, we tuned the learning rate for various combinations

of 𝑇1, 𝑇2 depicted in Figure 2.12. Comparing the performance of Algorithm 2.2 for these different

configurations, we can see that the effect of the frequencies 𝑇1, 𝑇2 on the final performance of

MBF is minimal and the configurations 𝑇1, 𝑇2 = (1, 20), 𝑇1, 𝑇2 = (2, 25) seem to yield the best

performance in terms of process time for autoencoder problems.
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Figure 2.11: Testing performance of MBF-CNN-Avg(MBF with spacial averaging applied to CNN
layers) and MBF on three CNN problems.

2.5.4 Additional adaptive first order algorithms results

In this section, we compare the performance of two additional adaptive first-order methods

AdaBelief and AdaGrad with the performance of SGD-m, Adam(W), Shampoo, MBF and KFAC.

The hyperparameterss for these additional methods were tuned using the same grid used to tune

Adam(W) on the MNIST Autoencoder problem and CIFAR-100 with VGG-16, and are depicted in

Figure 2.13.

As Figure 2.13 shows, AdaBelief outperformed both AdamW and Adagrad on MNIST and

CIFAR-100 (but only slightly so in the comparison to AdamW on MNIST). However, crucially,

Adabelief was still outperformed by MBF on these two problems. In the experiments reported in

Figures 2.6 and 2.7, we chose to compare MBF (with weight decay, which was included in all of the

methods in our tests) against AdamW rather than AdaBelief, since to be fair, if we used the latter

variant, we would need to test "belief" versions of MBF, Shampoo and KFAC by incorporating a

"belief" term in updating the EMA (Exponential Moving Average) of the preconditioning matrices.

This is an interesting research direction for future work.
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Figure 2.12: Training performance of MBF on MNIST autoencoder problems for some combinations
of 𝑇1, 𝑇2.
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Figure 2.13: Additional adaptive first order methods results.
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2.5.4 Additional inverse EFM heatmap illustrations

We include here additional examples that illustrate that most of the weight in the inverse of

the empirical Fisher matrix resides in the mini-blocks used in MBF. For convolutional layers, we

trained a simple convolutional neural network, Simple CNN, on Fashion MNIST [64]. The model is

identical to the base model described in [82]. It consists of 2 convolutional layers with max pooling

with 32 and 64 filters each and 5 × 5 filters with stride 1, “same” padding, and ReLU activation

function followed by 1 fully connected layer. Max pooling uses a 2 × 2 window with stride 2. The

fully connected layer has 1024 units. It does not use batch normalization.

Figure 2.15 shows the heatmap of the absolute value of the inverse empirical Fisher correspond-

ing to the second convolutional layer for channels 1, 16 and 32, which all use 64 filters of size

5 × 5 (thus 64 mini-blocks of size 25 × 25 per channel). One can see that the mini-block (by filter)

diagonal approximation is reasonable.

Figure 2.14: Absolute inverse EFM, second fully connected layer 20-20
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We illustrate the mini-block structure of the empirical Fisher matrix on a 7-layer (256-20-20-

20-20-20-10) feed-forward DNN using tanh activations, partially trained (after 50 epochs using

SGD-m) to classify a 16×16 down-scaled version of MNIST that was also used in [33]. Figure 2.14

shows the heatmap of the absolute value of the inverse empirical FIM for the second fully connected

layers (including bias). One can see that the mini-block (by neuron) diagonal approximation is

reasonable.

(a) Absolute inverse EFM for channel
1

(b) Zoom on the 20th to 30th blocks (c) Absolute inverse EFM for channel
16

(d) Zoom on the 20th to 30th blocks (e) Absolute inverse EFM for channel
32

(f) Zoom on the 20th to 30th blocks

Figure 2.15: Absolute inverse of the empirical EFM after 10 epochs for the second convolutional
layer of the Simple-CNN.
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Figure 2.16: The landscape of the final training loss value w.r.t hyper-parameters (i.e. learning rate
and damping) for MBF. The left, middle, and right columns depict results for MNIST, FACES,
CURVES, which are terminated after 500, 2000, and 500 seconds (CPU time), respectively.
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Figure 2.17: The landscape of the final training loss value w.r.t hyper-parameters (i.e. learning rate
and damping) for KFAC. The left, middle, and right columns depict results for MNIST, FACES,
CURVES, which are terminated after 500, 2000, 500 seconds (CPU time), respectively.

2.5.4 Sensitivity to Hyper-parameters

2.5.4 Training and testing plots

For completeness, we report in Figures 2.18 and 2.19 both training and testing performance of

the results plotted in Figures 2.6 and 2.7.
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(b) b) CIFAR-100, VGG16
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(c) c) SVHN, VGG11

Figure 2.18: Training and testing performance of MBF, KFAC, Shampoo, Adam, and SGD-m on
three CNN problems.
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(a) MNIST autoencoder
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(b) FACES autoencoder
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(c) CURVES autoencoder

Figure 2.19: Training and testing performance of MBF, KFAC, Shampoo, Adam, and SGD-m on
three autoencoder problems.
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2.6 Conclusion and Future Research

We proposed a new EFM-based method, MBF, for training DNNs, by approximating the EFM

by a mini-block diagonal matrix that arises naturally from the structure of convolutional and ff-fc

layers. MBF requires very mild memory and computational overheads, compared with first-order

methods, and is easy to implement. Our experiments on various DNNs and datasets, demonstrate

conclusively that MBF provides comparable and sometimes better results than SOTA methods, both

from an optimization and generalization perspective. Future research will investigate extending

MBF to other deep learning architectures such as Recurrent neural networks.
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Chapter 3: Layer-wise Adaptive Step-Sizes for First-Order Optimization

Methods

Stochastic gradient descent SGD [83], using either single or mini-batch samples, is widely used

because it is parsimonious in terms of both iteration cost and memory usage, and generalizes well

[84]. However, to be efficient in practice, the learning rate needs to be chosen with great care. This

is also the case for modified variants of SGD that incorporate momentum terms [85]; [86], which

have been shown to speed up the convergence of SGD on smooth convex functions. In Deep Neural

Networks, other popular variants of SGD scale the individual components of the stochastic gradient

with adaptive learning rates using past gradient observations in order to deal with variations in the

magnitude of the stochastic gradient components (especially between layers). Among these are

ADAGRAD [87], RMSProp [88], ADADELTA [89], and ADAM [90], as well as the structured

matrix scaling version SHAMPOO [40] of ADAGRAD. These methods are scale-invariant but do

not avoid the need for prior tuning of the base learning rate.

Line search-based methods are classical techniques for determining step sizes in the deterministic

setting. The basic idea behind line search-based methods in the stochastic setting is to adjust the step

size at each iteration based on the progress made in the previous iteration. This is done by searching

along the negative gradient direction for the optimal step size that satisfies a certain criterion, such

as the Armijo-Goldstein condition. In the stochastic setting, line search-based methods have been

extended in the literature in [91, 92, 93] to work with SGD. Recently, a new group of methods,

referred to as SPS (SGD with Polyak Stepsizes), has been proposed in the literature [94, 95, 96, 97,

98, 99]. These techniques utilize both the loss values and gradient norms obtained from sampled

points to automatically adjust the step size. This approach enables the use of a non-monotone
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adaptive step size that changes from one iteration to the next, based on the current loss value, and

therefore adapts to the scaling of the loss function being optimized.

In this chapter, we propose to study a brand new layer-wise adaptive learning rates method that

lies between adaptive first-order methods and block diagonal approximate second-order methods.

Specifically, we propose a method that uses a block-diagonal pre-conditioner matrix, where the

associated block to each layer in the neural network is a scaled identity matrix with a judiciously

chosen learning-rate, computed based on the local curvature information of the loss function. Figure

3.1 summarizes how the proposed method approximates the preconditioner matrix.

Figure 3.1: Illustration of the proposed per-layer step-sizes method.

Crucially, the method has comparable memory requirements to those of first-order methods and

avoids tuning the global learning-rate hyperparameter while its per-iteration time complexity is only

roughly equivalent to an additional gradient computation and is much smaller than that of popular

second-order methods (e.g. KFAC) for training DNNs.

3.1 Problem Formulation and Notation

The problem of interest is minimizing for 𝑾 ∈ R𝑑 functions of the form

𝐹 (𝑾) =
∫

𝑓 (𝑾; 𝑥, 𝑦)𝑑𝑃(𝑥, 𝑦) = E[ 𝑓 (𝑾; 𝜉)], (3.1.1)

common to problems in statistics and machine learning. For instance, in the empirical risk mini-

mization framework, a model is learned from a set {𝜉1 = (𝑥1, 𝑦1), . . . , 𝜉𝑚 = (𝑥𝑛, 𝑦𝑛)} , of training
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data by minimizing an empirical loss function of the form

𝐹 (𝑾) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑾, (𝑥𝑖, 𝑦𝑖)) =
1
𝑛

𝑛∑︁
𝑖=1

𝐹𝑖 (𝑾), (3.1.2)

where we define 𝐹𝑖 (𝑾) = 𝑓 (𝑾; 𝑥𝑖, 𝑦𝑖), and 𝑓 is the composition of a prediction function (parametrized

by 𝑾) and a loss function, and (𝑥𝑖, 𝑦𝑖) are random input-output pairs with the uniform discrete

probability distribution 𝑃(𝑥𝑖, 𝑦𝑖) = 1
𝑛
. An objective function of the form (3.1.1) is often impracti-

cal, as the distribution of 𝜉 is generally unavailable, making it infeasible to analytically compute

E[ 𝑓 (𝑾; 𝜉)]. This can be resolved by replacing the expectation by the estimate (3.1.2). The strong

law of large numbers implies that the sample mean in (3.1.2) converges almost surely to (3.1.1)

as the number of samples 𝑛 increases. However, in practice, even problem (3.1.2) is not tractable

for classical optimization algorithms, as the amount of data is usually extremely large. A better

strategy when optimizing (3.1.2) is to consider sub-samples of the data to reduce the computational

cost. This leads to stochastic algorithms where the objective function changes at each iteration by

randomly selecting a mini-batch of sub-samples.

Notation. Diag𝑖∈[𝐿] (𝐷𝑖) is the block diagonal matrix with {𝐷1, ..., 𝐷𝐿} on its diagonal; [𝐿] :=

{1, ..., 𝐿}; 𝒙 = [𝑥1, ..., 𝑥𝑛]⊤ ∈ R𝑛×𝑑 is the input vec; 𝜆min(𝐻), 𝜆max(𝐻) are the smallest and largest

eigenvalues of the matrix 𝐻; ⊗ denotes the Kronecker product; ∥.∥2 denotes the Euclidean norm of

a vector or matrix; and vec(𝐴) vectorizes 𝐴 by stacking its columns.

For this work, we consider 𝐹 to be the loss function of a Deep Neural Network(DNN) with 𝐿

layers, defined by weight matrices 𝑊𝑙(including the bias), for 𝜆 ∈ [𝐿], that transforms the input

data 𝒙 to an output 𝑓 (𝑾, 𝒙).

For a data-point (𝒙, 𝑦), the loss ℓ ( 𝑓 (𝑾, 𝒙), 𝑦) between the output 𝑓 (𝑾, 𝒙) and the label 𝑦, is

a non-convex function of vec(𝑾)⊤ =

[
vec

(
𝑊 (1)

)⊤
, ..., vec

(
𝑊 (𝜆)

)⊤]
∈ R𝑝, containing all of the

network’s parameters, concatenated together and ℓ measures the accuracy of the prediction (e.g.

squared error loss, cross-entropy loss). The optimal parameters are obtained by minimizing the
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average loss 𝐹 over the training set:

𝐹 (𝑾) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ( 𝑓 (𝑾, 𝒙𝑖), 𝑦𝑖), (3.1.3)

This setting is applicable to most common models in deep learning such as multilayer perceptrons

(MLPs), Convolutional Neural Networks(CNNs), Graph Convolutional Networks(GCNs), etc. In

these models, the trainable parameters 𝑊 (𝜆) (𝜆 = 1, . . . , 𝐿) come from the weights(including the

bias) of a layer, whether it be a feed-forward, convolutional, recurrent, etc.

We consider iterative methods that take the following form: at the 𝑘-th iteration, we draw 𝑚 i.i.d

samples 𝑆𝑘 = {𝜉𝑖1 , . . . , 𝜉𝑖𝑚} = {(𝒙𝑖1 , 𝑦𝑖1), . . . , (𝒙𝑖𝑚 , 𝑦𝑖𝑚)} and define the sub-sampled objective func-

tion and its sub-sampled gradient and Hessian at the current weight vector 𝑾𝑘 =

[
𝑊
(1)
𝑘
, ...,𝑊

(𝜆)
𝑘

]
as

𝐹𝑆𝑘 (𝑾𝑘 ) =
1
𝑚

∑︁
𝑖∈𝑆𝑘

ℓ( 𝑓 (𝑾𝑘 , 𝒙𝑖), 𝑦𝑖) =
1
𝑚

∑︁
𝑖∈𝑆𝑘

𝐹𝑖 (𝑾𝑘 ),

𝑔𝑘 = ∇𝐹𝑆𝑘 (𝑾𝑘 ) =
1
𝑚

∑︁
𝑖∈𝑆𝑘
∇𝐹𝑖 (𝑾𝑘 ) ,

𝐻𝑘 = ∇2𝐹𝑆𝑘 (𝑾𝑘 ) =
1
𝑚

∑︁
𝑖∈𝑆𝑘
∇2𝐹𝑖 (𝑾𝑘 ) .

A first-order method based on these approximations is then given by

𝑾𝑘+1 = 𝑾𝑘 − 𝑡𝑘𝑑𝑘 , (3.1.4)

where 𝑡𝑘 is a global step size, 𝑑𝑘 is the descent direction of the considered first-order algorithm and

the sets of samples 𝑆𝑘 that are used to estimate the gradient and Hessian. For a layer 𝑙, we denote

by 𝐹 (𝜆)
𝑆𝑘

the restricted loss function that maps the weights𝑊 (𝜆)
𝑘

to 𝐹𝑆𝑘 (𝑾𝑘 ) with the other weight

matrices𝑊 ( 𝑗)
𝑘
, 𝑗 ≠ 𝜆 fixed. Therefore, similarly, we define the sub-sampled layer-wise gradient and
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Hessian as

𝑔
(𝜆)
𝑘

= ∇𝐹 (𝜆)
𝑆𝑘

(
𝑊
(𝜆)
𝑘

)
=

1
𝑚

∑︁
𝑖∈𝑆𝑘
∇
𝑊
(𝜆)
𝑘

𝐹𝑖 (𝑾𝑘 ) ,

𝐻
(𝜆)
𝑘

= ∇2𝐹
(𝜆)
𝑆𝑘

(
𝑊
(𝜆)
𝑘

)
=

1
𝑚

∑︁
𝑖∈𝑆𝑘
∇2
𝑊
(𝜆)
𝑘

𝐹𝑖 (𝑾𝑘 ) .

Therefore, a layer-wise version of (3.1.4) can be defined as:

𝑊
(𝜆)
𝑘+1 = 𝑊

(𝜆)
𝑘
− 𝑡 (𝜆)

𝑘
𝑑
(𝜆)
𝑘
, (3.1.5)

where 𝑡 (𝜆)
𝑘

are layer-wise step-sizes.

3.2 Motivation for Layer-wise Adaptive step-sizes

In this section, we motivate the proposed method through two main results in the literature. The

first one is related to closed-form step-sizes that guarantee an improvement in iterative methods de-

scribed in (3.1.4) for self-concordant loss functions. The second result is the theoretical observation

mentioned in [100], where the authors proved that, for feed-forward neural networks with certain

activation functions such as ReLU and regularization, the Hessian blocks associated with each

layer are Positive definite and therefore, one can show, using results in [101], that the associated

restricted loss function 𝐹 (𝜆)
𝑆𝑘

is standard self-concordant if we assume that the loss function general

self-concordant. By combining the latter results, we are able to develop a layer-wise closed-form

step-sizes procedure for training deep neural networks.

Self-concordant Functions and Nesterov Step-Sizes: Self-concordant functions were introduced

by Nesterov and Nemirovski in the context of interior-point methods [102]. We recall the definition

of self-concordance property as follow:
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Definition 3.1. A convex function 𝑓 : R𝑛 → R is self-concordant if there exists a constant 𝑐 such

that for every 𝑥 ∈ R𝑛 and every ℎ ∈ R𝑛, we have :

��∇3 𝑓 (𝑥) [ℎ, ℎ, ℎ]
�� ≤ 𝑐 (

∇2 𝑓 (𝑥) [ℎ, ℎ]
)3/2

,

𝑓 is standard self-concordant if the above is satisfied for 𝑐 = 2.

Many problems in machine learning have self-concordant formulations: In [103] and [104],

it is shown that regularized regression, with either logistic loss or hinge loss, is self-concordant.

For the iterative method for minimizing self-concordant functions described in (3.1.4) using the

following choice of the global step-size

𝑡∗𝑘 =
𝜌𝑘

(𝜌𝑘 + 𝛿𝑘 ) 𝛿𝑘
; 𝛿𝑘 = ∥𝑑𝑘 ∥𝑾𝑘

=

√︃
𝑑𝑇
𝑘
𝐻𝑘𝑑𝑘 ,

where 𝜌𝑘 = 𝑔𝑇𝑘 𝑑𝑘 . Methods of this type have been analyzed in [105] and [106] in the deterministic

setting (i.e 𝑚 = 𝑛). In the latter paper, the above choice of 𝑡𝑘 is shown to guarantee a decrease in the

function value.

Lemma 3.1. (Lemma 4.1, [106]) For 𝐹 standard self-concordant, for all 0 ≤ 𝑡 < 1
𝛿𝑘

:

𝐹 (𝑥𝑘 − 𝑡𝑑𝑘 ) ≤ 𝐹 (𝑥𝑘 ) − Δ(𝛿𝑘 , 𝑡). (3.2.1)

With Δ(𝛿𝑘 , 𝑡) = (𝛿𝑘 + 𝜌𝑘 )𝑡 + 𝑙𝑜𝑔(1 − 𝛿𝑘 𝑡)

If 𝑡 = 𝑡∗
𝑘

then 𝐹 (𝑥𝑘 − 𝑡𝑘𝑑𝑘 ) ≤ 𝐹 (𝑥𝑘 ) − 𝜔 (𝜂𝑘 ), where 𝜂𝑘 =
𝜌𝑘
𝛿𝑘

and 𝜔(𝑧) = 𝑧 − log(1 + 𝑧). The

latter results allow one to prove the linear convergence of such iterative methods by controlling the

bound on the improvement of the loss function in every iteration.

Hessian structure in Feed-forward Neural Networks: Consider a feed-forward neural network

takes an single sample input 𝑎 (0) = 𝑥 and produces an output vector ℎ(𝐿) on the final 𝐿 layer of the
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network, following the forward pass described as

ℎ(𝜆) = 𝑊 (𝜆)𝑎 (𝜆−1); 𝑎 (𝜆) = 𝑓𝜆

(
ℎ(𝜆)

)
1 ≤ 𝜆 < 𝐿,

where ℎ(𝜆) is the pre-activation in layer 𝜆 and 𝑎 (𝜆) are the activation values; and 𝑓𝜆 the element-wise

activation functions. The pre-activation Hessian for layer 𝜆 is defined as:

[
H (𝜆)

]
𝑖, 𝑗

=
𝜕2𝐹

𝜕ℎ
(𝜆)
𝑖
𝜕ℎ
(𝜆)
𝜆, 𝑗

One can show that the sub-sampled Hessian of𝑊 (𝜆) can be expressed as:

𝐻 (𝜆) =
𝜕2𝐹

𝜕 vec
(
𝑊 (𝜆)

)
𝜕 vec

(
𝑊 (𝜆)

)
=

(
𝑎 (𝜆−1)𝑎 (𝜆−1)⊤

)
⊗ H (𝜆)

where ⊗ denotes the Kronecker product. In [100], the authors show that the pre-activation Hessian

can be computed recursively as:

H (𝜆) = 𝐵(𝜆)𝑊 (𝜆+1)⊤H (𝜆+1)𝑊 (𝜆+1)𝐵(𝜆) + 𝐷 (𝜆)

where the diagonal matrices 𝐵(𝜆) , 𝐷 (𝜆) are defined as:

𝐵(𝜆) = diag
(
𝑓 ′𝜆

(
ℎ(𝜆)

))
𝐷 (𝜆) = diag

(
𝑓 ′′𝜆

(
ℎ(𝜆)

) 𝜕𝐹

𝜕𝑎 (𝜆)

)
and 𝑓 ′

𝜆
and 𝑓 ′′

𝜆
are the first and second derivatives of 𝑓𝜆 respectively. The recursion is initialized

with H (𝜆) , which depends on the objective function and is easily calculated analytically for the

usual objectives, for example for squared loss, the Hessian is simply the identity matrix. For more
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than a single sample, the recursion is applied per datapoint and the parameter Hessian is given by

the average of the individual sample Hessians.

In recent years piece-wise linear activation functions, such as the ReLU function 𝑓 (𝑥) =

max(𝑥, 0), have become popular. It has been argued that in contrast to the standard sigmoidal

functions they don’t saturate which prevents the exploding/vanishing gradient problem. Since the

second derivative 𝑓 ′′ of a piecewise linear function is zero everywhere, the matrices 𝐷 (𝜆) in the

recursion will be zero (away from non-differentiable points). It follows that if H (𝜆) is Positive

Semi-Definite (PSD), which is the case for the most commonly used loss functions, the block

diagonal Hessian matrices are PSD for every layer, additionally if we add an L2 regularization

term to the loss function, the restricted loss 𝐹 (𝜆)
𝑆𝑘

function for each layer 𝜆 is strictly convex. Using

results in [101], if one assumes that the loss function is general self-concordant then, then the

restricted loss 𝐹 (𝜆)
𝑆𝑘

becomes standard self-concordant. Consequently, we can exploit Lemma 3.1 to

develop closed-form layer-wise step-sizes and combine them judiciously to obtain a loss decrease

guarantee.

We numerically investigate the Hessian blocks as well as the full hessian spectrum of a trained

simple 3-layer GCN with the following node-sizes [1433, 128, 64, 7], on Cora data set using vanilla

Adam for 20 epochs. We exploit the scalable framework proposed in [107] that enables fast

computation of the full and block Hessian eigenvalue/spectral density, using the Stochastic Lanczos

Quadrature method. We report the results in Figure 3.2. We observe that, indeed, the eigenvalues

support of the block Hessians is positive contrary to the full Hessian, it has a non-zero. We also

notice that the union of block-Hessian eigenvalues supports overlap with the positive support of the

full Hessian indicating that the block diagonal approximation to the Hessian is not unreasonable.

A layer-wise step-sizes procedure: Based on the above arguments, we propose Algorithm 3.1

that gives the pseudo-code for a generic version of the layer-wise procedure for any optimization

algorithm that produces a direction 𝑑𝑘 at iteration 𝑘 .
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Figure 3.2: Hessian and block-Hessian eigenvalues density estimations using Stochastic Lanczos
Quadrature method.

We later propose in Section 6 below, the practical version of the algorithm for both SGD with

momentum and AdamW. However, we first present the theoretical results of the linear convergence

of the version of the procedure applied to vanilla SGD in the full batch setting.

3.3 Linear Convergence

In this section, we provide a linear convergence guarantee for vanilla gradient descent with

Layer-Wise Step-Sizes Procedure(SGD-LW) with exact gradients (i.e. the deterministic case with

full batch 𝑚 = 𝑛). Our theoretical analysis is based on the following technical assumptions on 𝐹:

A1. Hessian regularity: There exist 𝑀 ≥ 𝑚 > 0 s.t ∀𝑾 ∈ R𝑛 𝑚𝐼 ⪯ ∇2𝐹 (𝑾) ⪯ 𝑀𝐼

A2. B–Bounded iterates and Gradient regularity: There exists 𝐵 > 𝐵0 > 0 with 𝑾∗ ∈ B(0, 𝐵),

such that if 𝑾0 is chosen in B(0, 𝐵0), then the sequence of iterates {𝑾𝑘 }∞𝑘=0 produced by the
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Algorithm 3.1: X-LW: Algorithm X with Layer-Wise Step-Sizes Procedure
Input: Initial iterate 𝑾0, batch size 𝑚, max number of iterations 𝑁 and Algorithm 𝑋

hyper-parameters.
𝑘 ← 0
while 𝑘 < 𝑁 do

Sample 𝑚 samples 𝑆𝑘 .
Compute 𝑔𝑘 = ∇𝐹𝑆𝑘 (𝑾𝑘 ).
Compute 𝑑𝑘 Algorithm X direction.
for 𝜆 = 1 . . . 𝐿 do

Compute 𝜌(𝜆) = 𝑑 (𝜆)
𝑘

⊤
𝑔
(𝜆)
𝑘

.

Compute 𝛿(𝜆) =
√︃
𝑑
(𝜆)
𝑘

⊤
𝐻
(𝜆)
𝑘
𝑑
(𝜆)
𝑘

.

Compute 𝑡 (𝜆)
𝑘

= 1
𝐿

𝜌 (𝜆)

(𝜌 (𝜆)+𝛿 (𝜆))𝛿 (𝜆)
𝑊
(𝜆)
𝑘+1 ← 𝑊

(𝜆)
𝑘
− 𝑡 (𝜆)

𝑘
𝑑
(𝜆)
𝑘

Set 𝑘 ← 𝑘 + 1

algorithm is contained within B(0, 𝐵). Furthermore, we assume that 𝐹 has bounded gradients

within B(0, 𝐵): ∃ 𝛾 > 0, ∀𝑾 ∈ B(0, 𝐵) : ∥∇𝐹 (𝑾) ∥ ≤ 𝛾.

A3. Layer-wise self-concordance: 𝐹 is layer-wise standard self-concordant, i.e for each layer

𝜆 = 1 · · · 𝐿 the restricted function 𝐹 (𝜆) is standard self-concordant.

The bounded gradient assumption A2 could be seen as a technical assumption to simplify the proofs,

as gradients of many common self-concordant functions can be unbounded. This assumption is

equivalent to assuming that the algorithm is not divergent and the steps stay within a bounded region

in which we can assume that the gradient is bounded locally because there are no functions 𝐹 that

are strongly convex and for which the gradients are globally bounded.

Recent work [108] [109] [garrigos2023handbook] has shown that SGD can be proved to

converge without requiring A2. Extending these ideas to our setting is a subject for further research.

By using Lemma 3.1 in a judicious manner, we can control the loss improvement in every iteration

to obtain linear convergence of the Algorithm SGD-LW:

Theorem 3.1. Suppose that 𝐹 satisfies Assumptions A1-A3. Let 𝑾𝑘 be the iterates generated by

taking the layer-wise steps 𝑡 (𝜆)
𝑘

at iteration 𝑘 for the Algorithm SGD-LW with full batch(i. e 𝑚 = 𝑛),
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starting from any 𝑾0. Then, for any 𝑘 , we have :

(𝐹 (𝑾𝑘 ) − 𝐹 (𝑾∗)) ≤ 𝜌𝑘 (𝐹 (𝑾0) − 𝐹 (𝑾∗)),

where 𝜌 = 1 − 𝑚

𝑀𝐿 (1+ 𝛾√
𝑚
) .

Proof of Theorem 3.1. The proof is a consequence of Lemma 3.1 (Lemma 4.1 in [106]), judiciously

applied to the layer-wise restricted functions 𝐹 (𝜆) (·). More specifically, since we are considering

the direction given by SGD-LW, we have 𝑑 (𝜆)
𝑘

= 𝑔
(𝜆)
𝑘

and the overall direction of the SGD-LW

is given by concatenating the vectors 𝑡 (𝜆)
𝑘
𝑑
(𝜆)
𝑘

for 𝜆 = 1 . . . 𝐿 into an overall step 𝑝 which can be

expressed as a convex combination of the following vectors:

𝑝 (𝜆) =

[
0(1) , ...,

𝜌(𝜆)(
𝜌(𝜆) + 𝛿(𝜆)

)
𝛿(𝜆)

𝑑
(𝜆)
𝑘
, ..., 0(𝐿)

]
.

Therefore 𝑝 can be expressed as 𝑝 =
∑𝐿
𝜆=0

1
𝐿
𝑝 (𝜆) .

𝐹 (𝑾𝑘 − 𝑝) = 𝐹
(

1
𝐿

𝐿∑︁
𝜆=0

(
𝑾𝑘 − 𝑝 (𝜆)

))
(𝑎)
≤ 1
𝐿

𝐿∑︁
𝜆=0

𝐹

(
𝑾𝑘 − 𝑝 (𝜆)

) (𝑏)
=

1
𝐿

𝐿∑︁
𝜆=0

𝐹 (𝜆)
(
𝑾 (𝜆)
𝑘
− 𝜌(𝜆)(

𝜌(𝜆) + 𝛿(𝜆)
)
𝛿(𝜆)

𝑑
(𝜆)
𝑘

)
(𝑐)
≤ 1
𝐿

𝐿∑︁
𝜆=0

𝐹 (𝜆)
(
𝑾 (𝜆)
𝑘

)
− Δ(𝛿(𝜆) , 𝜌(𝜆)(

𝜌(𝜆) + 𝛿(𝜆)
)
𝛿(𝜆)
).

Where, in (a), we used the convexity of F by Assumption A1, in (b), we used the definition of the

vectors 𝑝 (𝜆) and the restricted loss functions 𝐹 (𝜆) (·), and in (c), we applied Lemma 3.1 to the latter

functions. We have:

Δ(𝛿(𝜆) , 𝜌(𝜆)(
𝜌(𝜆) + 𝛿(𝜆)

)
𝛿(𝜆)
) = 𝜔

(
𝜂
(𝜆)
𝑘

)
where 𝜔(𝑧) = 𝑧 − log(1 + 𝑧) and 𝜂(𝜆)

𝑘
=
𝜌
(𝜆)
𝑘

𝛿
(𝜆)
𝑘

.
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Hence, we have:

𝐹 (𝑾𝑘 − 𝑝)
(𝑑)
≤ 𝐹 (𝑾𝑘 ) −

1
𝐿

𝐿∑︁
𝜆=0

𝜔

(
𝜂
(𝜆)
𝑘

)
.

Where in (d), we use the fact that 𝐹 (𝜆)
(
𝑾 (𝜆)
𝑘

)
= 𝐹 (𝑾𝑘 ). We, furthermore, have:

𝜂
(𝜆)
𝑘

=
𝜌
(𝜆)
𝑘

𝛿
(𝜆)
𝑘

=
∥𝑔(𝜆)

𝑘
∥2√︃

𝑔
(𝜆)
𝑘

⊤
𝐻
(𝜆)
𝑘
𝑔
(𝜆)
𝑘

≤
∥𝑔(𝜆)

𝑘
∥

𝑚
≤ 𝛾

𝑚

where we used Assumptions A1 and A2 in the last two inequalities respectively. By observing that

𝜔(𝑧) = 𝑧 − 𝑙𝑜𝑔(1 + 𝑧) satisfies 𝜔(𝑧) ≥ 1
2 (1 + Γ)

−1𝑧2 for all 𝑧 ∈ [0, Γ], we have:

𝐹 (𝑾𝑘 − 𝑝) ≤ 𝐹 (𝑾𝑘 ) −
1

2𝐿 (1 + 𝛾√
𝑚
)

𝐿∑︁
𝜆=0
(𝜂(𝜆)
𝑘
)2.

Using Assumption A1, we obtain the following lower bound on the term
∑𝐿
𝜆=0(𝜂

(𝜆)
𝑘
)2:

𝐿∑︁
𝜆=0
(𝜂(𝜆)
𝑘
)2 =

𝐿∑︁
𝜆=0

∥𝑔(𝜆)
𝑘
∥4

𝑔
(𝜆)
𝑘

⊤
𝐻
(𝜆)
𝑘
𝑔
(𝜆)
𝑘

≥
𝐿∑︁
𝜆=0

∥𝑔(𝜆)
𝑘
∥4

𝑀 ∥𝑔(𝜆)
𝑘
∥2

≥ 1
𝑀

𝐿∑︁
𝜆=0
∥𝑔(𝜆)

𝑘
∥2 :=

1
𝑀
∥∇𝐹 (𝑾𝑘 )∥2

Therefore, we obtain

𝐹 (𝑾𝑘 − 𝑝) = 𝐹 (𝑾𝑘+1) ≤ 𝐹 (𝑾𝑘 ) −
1

2𝑀𝐿 (1 + 𝛾√
𝑚
)
∥∇𝐹 (𝑾𝑘 )∥2. (3.3.1)

It is well known [110] that for strongly convex functions:

∥∇𝐹 (𝑾𝑘 )∥2 ≥ 2𝑚 [𝐹 (𝑾𝑘 ) − 𝐹 (𝑾∗)] .
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Substituting this in (3.3.1) and subtracting 𝐹 (𝑾∗) from both sides, we obtain:

𝐹 (𝑾𝑘+1) − 𝐹 (𝑾∗) ≤ 𝜌(𝐹 (𝑾𝑘 ) − 𝐹 (𝑾∗)),

with :

𝜌 = 1 − 𝑚

𝑀𝐿 (1 + 𝛾√
𝑚
)
,

from which the theorem follows by induction on 𝑘 .

□

3.4 Implementation Details and Practical Considerations

Hessian vector product and computational complexity: In our framework, we need to compute

the curvature along a mini-batch stochastic gradient direction given by : 𝛿(𝜆) =
√︃
𝑑
(𝜆)
𝑘

⊤
𝐻
(𝜆)
𝑘
𝑑
(𝜆)
𝑘

.

Hence we need to efficiently compute the Hessian-vector product 𝐻 (𝜆)
𝑘
𝑑
(𝜆)
𝑘

. Fortunately, for

functions that can be computed using a computational graph (Logistic regression, DNNs, etc)

there are automatic methods available for computing Hessian-vector products exactly [111], which

take about as much computation as gradient evaluations. Hence, 𝐻 (𝜆)
𝑘
𝑑
(𝜆)
𝑘

can be computed with

essentially the same effort as that needed to compute 𝑔(𝜆)
𝑘

. The method described in [111] is

based on the differential operator:

R{𝐹 (𝑾)} = (𝜕/𝜕𝑟)𝐹 (𝑾 + 𝑟𝒅) |𝑟=0 .

Since R {∇𝑾𝐹} = 𝐻𝑑 and R{𝑾} = 𝑑, to compute 𝐻𝑑, [111] applies R to the back-propagation

equations used to compute ∇𝐹.

Exponentially Moving Averages, Amortized updates and weight-decay: We use moving

averages to both reduce the stochasticity and incorporate more information from the past, more

specifically, we use a moving average scheme to get a better estimate of the layer-wise learning

rates, i.e.𝑡 (𝜆)
𝑘+1 = 𝛽𝑡𝑡

(𝜆)
𝑘
+ (1 − 𝛽𝑡) 𝜌 (𝜆)

𝐿(𝜌 (𝜆)+𝛿 (𝜆))𝛿 (𝜆) with 𝛽𝑡 = 0.99. The extra work for the 𝜌 (𝜆)

(𝜌 (𝜆)+𝛿 (𝜆))𝛿 (𝜆)
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computation compared with first-order methods is amortized by only performing the updates every

𝑇 iterations. This approach is also used in second-order algorithms such as KFAC and Shampoo.

We also do not use the computed learning rates in the first 10 epochs to warm-up the moving average

estimates. We incorporate weight-decay with the tunnable hyper-parameter 𝛾 by adding the term

𝛾𝑾 (𝜆)
𝑘

to the direction 𝑑 (𝜆)
𝑘

when computing the layer-wise adaptive steps 𝑡 (𝜆)
𝑘

.

Full algorithms: The pseudocode that fully describes our layer-wise step-size procedure for

both SGD with momentum(SGD-m-LW) and AdamW(AdamW-LW) are given in Algorithm 3.2

and Algorithm 3.3.

Algorithm 3.2: SGD-m-LW: Per-Layer Adaptive Step-Size for SGD-m
Input: Initial iterate 𝑾0, batch size 𝑚, and max number of iterations 𝑁 .
Betas 𝛽, 𝛽𝑡 = 0.9, 0.99, Weight-decay 𝛾, Update-frequency 𝑇 .
𝑘 ← 0
while 𝑘 < 𝑁 do

Sample 𝑚 samples 𝑆𝑘 .
Compute 𝑔𝑘 = ∇𝐹𝑆𝑘 (𝑾𝑘 ).
Compute 𝑚𝑘 = 𝛽𝑑𝑘 + 𝑔𝑘
for 𝑙 = 1 . . . 𝐿 do

Compute 𝑑 (𝜆)
𝑘

= 𝑚
(𝜆)
𝑘
+ 𝛾𝑾 (𝜆)

𝑘

if 𝑘 mod 𝑇 = 0 then
Compute 𝜌(𝜆) = 𝑑 (𝜆)

𝑘

⊤
𝑔
(𝜆)
𝑘

.

Compute 𝛿(𝜆) =
√︃
𝑑
(𝜆)
𝑘

⊤
𝐻
(𝜆)
𝑘
𝑑
(𝜆)
𝑘

.

𝑡
(𝜆)
𝑘
← 𝛽𝑡𝑡

(𝜆)
𝑘−1 + (1 − 𝛽𝑡)

1
𝐿

𝜌 (𝜆)

(𝜌 (𝜆)+𝛿 (𝜆))𝛿 (𝜆)

𝑊
(𝜆)
𝑘+1 ← 𝑊

(𝜆)
𝑘
− 𝑡 (𝜆)

𝑘
𝑑
(𝜆)
𝑘

Set 𝑡 ← 𝑡 + 1

3.5 Experiments

In this section, we compare SGD-m-LW and AdamW-LW with some SOTA fine-tuned learning

rate first-order (SGD-m, Adam) and second-order (KFAC, Shampoo) methods. (See previous

chapter on how these methods were implemented.) Since SGD-m-LW and AdamW-LW use layer-

wise step sizes to scale the directions, fine-tuned SGD-m and AdamW were obvious choices for

comparison. We also included KFAC and Shampoo in our results as SGD-m-LW and AdamW-LW
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Algorithm 3.3: AdamW-LW: Per-Layer Adaptive Step-Size for AdamW
Input: Initial iterate 𝑾0, batch size 𝑚, and max number of iterations 𝑁 .
Betas 𝛽1, 𝛽2, 𝛽𝑡 = 0.9, 0.999, 0.99, Damping 𝜖 = 10−8, Weight-decay 𝛾, Update-frequency
𝑇 .
𝑘 ← 0
while 𝑘 < 𝑁 do

Sample 𝑚 samples 𝑆𝑘 .
Compute 𝑔𝑘 = ∇𝐹𝑆𝑘 (𝑾𝑘 ).
Compute 𝑚𝑘 = 𝛽1𝑚𝑘 + (1 − 𝛽1)𝑔𝑘 , 𝑣𝑘 = 𝛽2𝑣𝑘 + (1 − 𝛽2)𝑔2

𝑘

Compute 𝑚̂𝑘 =
𝑚𝑘

(1−𝛽𝑘1 )
, 𝑣̂𝑘 =

𝑣𝑘

(1−𝛽𝑘2 )
for 𝑙 = 1 . . . 𝐿 do

Compute 𝑑 (𝜆)
𝑘

=
𝑚̂
(𝜆)
𝑘√︃

𝑣̂
(𝜆)
𝑘
+𝜖
+ 𝛾𝑾 (𝜆)

𝑘

if 𝑘 mod 𝑇 = 0 then
Compute 𝜌(𝜆) = 𝑑 (𝜆)

𝑘

⊤
𝑔
(𝜆)
𝑘

.

Compute 𝛿(𝜆) =
√︃
𝑑
(𝜆)
𝑘

⊤
𝐻
(𝜆)
𝑘
𝑑
(𝜆)
𝑘

.

𝑡
(𝜆)
𝑘
← 𝛽𝑡𝑡

(𝜆)
𝑘−1 + (1 − 𝛽𝑡)

1
𝐿

𝜌 (𝜆)

(𝜌 (𝜆)+𝛿 (𝜆))𝛿 (𝜆)

𝑊
(𝜆)
𝑘+1 ← 𝑊

(𝜆)
𝑘
− 𝑡 (𝜆)

𝑘
𝑑
(𝜆)
𝑘

Set 𝑡 ← 𝑡 + 1

also use information about the local curvature of the loss function. We used the most popular version

of Adam, AdamW [69] as a representative of adaptive first-order methods. Our experiments were

run on a machine with one V100 GPU and eight Xeon Gold 6248 CPUs using PyTorch [70]. Each

algorithm was run using the best hyper-parameters, determined by a grid search (the same grids

specified in the previous chapter).

CNN problems: We first compared the performance of SGD-m-LW and AdamW-LW to SGD-m,

Adam, KFAC and Shampoo on three CNN models, namely, VGG16 [68], ResNet-18 [72], and

DenseNet [112], respectively, on the datasets CIFAR-10, CIFAR-100 and SVHN [73]. The first two

have 50,000 training data and 10,000 testing data (used as the validation set in our experiments),

while SVHN has 73,257 training data and 26,032 testing data. For all algorithms, we used a batch

size of 512. In training, we applied data augmentation as described in [74], including random

horizontal flip and random crop, since these setting choices have been used and endorsed in many
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(a) CIFAR-10, VGG16
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(b) CIFAR-100, ResNet-18
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Figure 3.3: Performance of KFAC, Shampoo, Adam, Adam-LW, SGD-m and SGD-m-LW on three
CNN problems.

previous research papers, e.g. [75, 76, 41]. (see the previous chapter for more details about the

CNN experimental set-up)

All methods(except SGD-m-LW and AdamW-LW) employed a tunable learning rate(LR)

schedule that decayed LR by a factor of 0.1 every K epochs, where K was set to 60 and 40, for the

first-order methods, and second-order methods, respectively, on all problems. Moreover, weight

decay, which has been shown to improve generalization across different optimizers [69, 75], was

employed by all of the algorithms, and a grid search on the weight decay factor and the initial

learning rate based on the criteria of maximal validation classification accuracy was performed.

Finally, the damping parameter was set to 1e-8 for Adam (following common practice), and 0.03

for KFAC (https://github.com/alecwangcq/KFAC-Pytorch). For Shampoo, we set

𝜖 = 0.01. For SGD-m-LW and AdamW-LW, we set 𝑇 = 20 and 𝛽𝑡 = 0.99.

From Figure ??, we see that SGD-m-LW and AdamW-LW have a similar (and sometimes better)

optimization and generalization performance compared to their fine-tuned versions(i.e SGD-m and
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AdamW) and do not require any tuning procedure for the learning rate. Moreover, in terms of

process time, SGD-m-LW and AdamW-LW are roughly 1.8 factor slower than SGD-m and AdamW

and are competitive with all of the SOTA first and second-order methods in our experiments.

We also reported the computed adaptive step sizes per layer in Figure 3.4. There are two main

interesting observations that we identified from these results: the adaptive learning rates have

different scales across different layers and the values of the latter are stationary in the sense that one

could "learn" a fixed "good" stationary learning rate for each layer without having to recompute it

at every iteration.
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Figure 3.4: Layer-wise learning rates of SGD-LW and Adam-LW on CIFAR-10 VGG16 problem.

Graph Convolutional Networks (GCN) Problems: In this section, we compare the algorithms

on a 3-layer GCN for the task of node classification in graphs applied to three citation datasets,

Cora, CiteSeer, and PubMed(see [78]). In Table 3.1, nodes and edges correspond to documents and

citation links, respectively, for these datasets. A sparse feature vector of document keywords, and a

class label are associated with each node. For each dataset we used all of the nodes for training.

In our experiments, we used a 3-layer GCN with the following node-sizes [𝐼, 128, 64, 𝑂], where

𝐼 and 𝑂 are the numbers of input features and classes, respectively. In the first and second layers
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Table 3.1: Citation network datasets statistics

Dataset Nodes Edges Classes Features
Citeseer 3,327 4732 6 3,703
Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

of this GCN, the activation function ReLU was followed by a dropout function with a rate of 0.5.

The loss function was evaluated as the negative log-likelihood of Softmax of the last layer. The

models were trained for 300 epochs. The hyperparameter search space was the same as that used

for the CNN problems with no LR schedule and no weight decay, as in this section, we want to

focus on optimization performance of the proposed methods. We set the inverse update frequency

𝑇2 = 25 for KFAC and Shampoo and 𝑇 = 1 for SGD-m-LW and AdamW-LW. From Figure 3.5, we

see that SGD-m-LW and AdamW-LW were competitive with all of the SOTA first and second-order

methods.
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Figure 3.5: Performance of KFAC, Shampoo, Adam, Adam-LW, SGD-m and SGD-m-LW on three
GCN problems.
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Figure 3.6: Layer-wise learning rates of SGD-LW and Adam-LW on Cora GCN problem.
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3.6 Conclusion and next steps

We presented a layer-wise step-sizes procedure for first-order optimization methods that we

believe is a valuable tool for fast and practical optimization without learning rate tuning, especially

in DNN applications. Studying theoretical convergence guarantees of our method in DNNs which

generate non-convex loss functions, and the convergence of our adaptive framework with other

variants of SGD in the stochastic setting methods suggest interesting avenues for future research.
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Chapter 4: Optimal Pricing with a Single Point

4.1 Introduction

Pricing is a central concept across a large spectrum of industries, ranging from e-commerce to

transportation. A key informational dimension faced by decision-makers is the level of knowledge

of customers’ values. In classical settings in the literature, monopoly pricing problems are studied

under the assumption that sellers have an accurate knowledge of consumer preferences through

the value distribution (or the prior on values). In those cases, the seller may optimize pricing to

maximize the expected revenues.

In practice, however, such information is rarely, if ever, available, and pricing must be conducted

not based on the value distribution, but based on historical data. Typical historical data structures in

the context of pricing include the prices posted and the responses of consumers observed at those

prices: either a customer purchases or not. As a motivating example, consider an e-commerce

firm that has been offering a product at an incumbent price 𝑤 over the past quarter to a set of

heterogeneous consumers, all with values drawn from a value distribution 𝐹 . The firm observes

the fraction of customers who have bought the offered product at the price 𝑤; in other words the

firm has an estimate of the probability of sale or conversion rate, the fraction of customers whose

values are greater than or equal to 𝑤, i.e. , an estimate of 𝐹 (𝑤) = 𝑞 in [0, 1]. How should the seller

decide on the pricing policy in the following quarter? Can the seller take advantage of the partial

demand information extracted (conversion rate at 𝑤) to refine her pricing policy? Such historical

data structures are commonplace in practice, and typically introduce different challenges. The

number of past prices that were posted is often very limited and if one only accounts for recent

data, can be as low as one, as in the example above. In other words, many historical data structures

have very limited price dispersion. This renders elasticity-based price optimization very challenging
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if not impossible in practice (without further experimentation) when trying to move from data to

pricing decisions. A natural question is then if, in the absence of price dispersion, historical data is

useful in any way in order to refine pricing decisions. The present chapter offers a resounding “yes"

to this question and develops a framework to optimize prices given such limited data, and quantify

the value of such data.

In more detail, we focus on a seller optimizing her pricing mechanism based on historical data

with limited price dispersion. The seller does not know the value distribution of the buyer. She only

knows that it belongs to some broad non-parametric class. In terms of the historical data, we anchor

this chapter around the setting in which the seller has only access to the conversion rate 𝑞 = 𝐹 (𝑤)

at one historical price 𝑤, or potentially an interval 𝐼 to which 𝐹 (𝑤) belongs. The questions the

seller faces are then: what is an optimal pricing mechanism given the information at hand? And

how valuable is the information/data at hand?

To answer these questions, we adopt a maximin ratio formulation in which performance is

measured in comparison to the highest revenue the seller could have obtained with full information

on the value distribution. The seller optimizes over general pricing mechanisms (we study both

deterministic and randomized mechanisms). And nature may select any distribution in the class of

interest to counter a pricing strategy. We are interested in characterizing the value of the maximin

ratio as well as understanding the structure of optimal mechanisms. The latter quantifies the value

of the collected information and the former offers concrete prescriptions.

This fundamental problem can be viewed as a foundational building block of offline data-driven

pricing and the framework we will propose will be fairly general, enabling one to add information

at other points in the future. Mathematically speaking, this leads to a problem in which the set of

possible underlying value distributions is infinite dimensional, and so can be the set of possible

pricing strategies (for randomized mechanisms). Hence, evaluating such an object is not possible

without further understanding of structural properties of the problem.

Our main contributions lie in developing a general tractable characterization of deterministic

and randomized optimal performances against any distribution in two widely used classes of

73



distributions: the class of regular distributions (distributions with increasing virtual values) and

the class of monotone non-decreasing hazard rate (mhr) distributions. The latter is a subclass of

the former and contains a wide variety of distributions (e.g., uniform, truncated normal, logistic,

extreme value, exponential, subsets of Weibull, Gamma and Beta,...); [113] provides a review of

the broad set of known subclasses of mhr distributions. The class of regular distributions further

incorporates additional distributions (e.g., subsets of Pareto, log-normal, log-logistic,...); [114]

provides an overview of such classes. Our analysis is general and the exact same analysis applies to

regular and mhr distributions as special cases.

From a methodological perspective, our main contributions lie in a set of problem reductions

that lead to a closed form characterization of the maximin ratio for deterministic mechanisms,

and associated price prescriptions, and a sequence of finite dimensional linear programs that can

approximate arbitrarily closely the maximin ratio for randomized mechanisms, leading to both

optimal performance and associated near-optimal randomized mechanisms.

A first set of reductions lies in simplifying nature’s optimization problem. As stated earlier, for

any fixed mechanism chosen by the seller, nature’s problem is an infinite dimensional problem over

the class of regular (or mhr) distributions, which is non-convex. As such, evaluating the performance

of a particular mechanism cannot be simply “brute-forced" numerically. As a first key reduction,

we establish in Theorem 4.1 that against any mechanism, nature’s worst-case optimization problem

can be reduced from an infinite dimensional problem over a non-convex space to a one dimensional

minimization problem over an interval. This reduction relies on exploiting the regularity (or mhr)

structure to narrow down the set of candidate worst-cases to a “small" set.

Leveraging nature’s problem reduction, we are able to derive a closed form (Theorem 4.2) for

the maximin ratio for deterministic mechanisms against the classes of regular and mhr distributions.

The results that one obtains through these closed forms highlight three different “regimes" of

historical probability of sale values, and are quite illuminating with respect to the value associated

with exact conversion rate information. Table 4.1 provides examples of such results. An example

of a striking theoretical result is that, with knowledge of the median, it is possible to use a simple
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deterministic pricing mechanism to guarantee a substantial fraction, 85.23%, of the oracle revenue

when the value distribution is mhr; when the value distribution is regular, 66.62% of the oracle

revenue can be guaranteed if we observe the 3rd quartile. Another highly notable theoretical result

is associated with the value of low conversion rates that we uncover. We show that even if one only

knows that 1% of customers purchase at a particular price, then a deterministic pricing mechanism

guarantees more than 47% of oracle performance against mhr distribution and 18% against regular

distributions. As a matter of fact, our closed form formulas indicate that, while the the maximin

ratio converges to zero as the known conversion rate converges to zero, it does so at a supra-linear,

very slow, rate:
√
𝑞 for regular distributions, and 1/log(𝑞−1) for mhr distributions.

Maximin ratio
Distribution Conversion Randomized Deterministic

Class Rate mechanisms mechanisms

Regular 𝐹 (𝑤) = 0.01 31.12% 18.18%
𝐹 (𝑤) = 0.25 67.75% 66.62%
𝐹 (𝑤) = 0.50 55.99% 50.00%∗

𝐹 (𝑤) = 0.75 41.35% 25.00%

mhr 𝐹 (𝑤) = 0.01 51.17% 47.55%
𝐹 (𝑤) = 0.25 74.71% 74.35%
𝐹 (𝑤) = 0.50 85.30% 85.23%
𝐹 (𝑤) = 0.75 64.14% 58.65%

Table 4.1: Maximin Performance: The table provides examples of the results obtained regarding
the optimal performance one may achieve as a function of the admissible set of distributions and
the class of pricing mechanisms one considers. The maximin ratio is characterized exactly for
deterministic mechanisms and up to at most 1% error for randomized mechanisms. ∗ indicates the
only known result to date [115] .

In a second step, we study the performance of general randomized mechanisms. To characterize

such performance, we first leverage the reduction above of Nature’s problem, but also establish

that one can focus on mechanisms with finite support, while controlling the potential losses in

performance (Proposition 4.2). In turn, we are able to derive a sequence of linear programs with

order 𝑁 variables and order 𝑁 constraints (Theorem 4.3) that yields: 𝑖.) an approximation to
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the maximin ratio within 𝑂 (1/
√
𝑁) and 𝑖𝑖.) provides a candidate randomized mechanism with

near-optimal performance and support over order 𝑁 points. Given these, one can evaluate for every

history (𝑤, {𝑞}) the performance that the seller can achieve.

The above characterizes the theoretical developments needed to obtain an exact characterization

of the maximin ratio for randomized mechanisms against regular or mhr distributions. The results

we obtain through this analysis offer novel insights on the value of information and the additional

value stemming from the expanded set of randomized pricing strategies, compared to deterministic

ones. In particular, the value stemming from randomization is most prominent for values of the

conversion rate close to 0 and 1. Intuitively, with historical prices providing less information, the

seller can use randomization to counter uncertainty. For example, against regular distributions with

a conversion rate of 1%, the seller can increase its guaranteed performance from about 18% with a

deterministic price to 31% with a randomized mechanism, and with a conversion rate 75%, it can

increase performance from 25% to about 41%.

Table 4.1 presents examples of the results obtained, but the framework developed is not specific

to any probability of sale value and applies to any historical price and associated probability of

sale. Figure 4.1 depicts the maximin ratio for randomized mechanisms for various values of the

conversion rate ranging from 0.01 to 0.99.

We establish that randomization drastically affects the value that one can extract from informa-

tion, leading to a fundamentally different rate of convergence of performance as 𝑞 approaches zero

or one. In that former regime, we establish that the rate convergence improves from order
√
𝑞 to

order 1/log(1/𝑞) (Proposition 4.3), and in the latter case, we show that it goes from a linear rate to

order 1/log(1/(1 − 𝑞)) (Proposition 4.4). We also show that for mhr distributions, while the rate of

convergence is not affected by randomization around 0, the convergence rate is significantly affected

for values of 𝑞 that are close to 1, going from a linear rate to 1/log(1/(1 − 𝑞)) (Proposition 4.3,

Proposition 4.4). Table 4.2 summarizes these findings.

In addition, the framework we develop is general and allows to incorporate uncertainty (or noise)

in the probability of sale estimate. We establish a parallel characterization for the maximin perfor-
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Figure 4.1: Maximin ratio for randomized mechanisms against regular and mhr distribution.

Maximin ratio
Distribution Randomized Deterministic

Class regime mechanisms mechanisms

regular 𝑞 → 0 Θ (1/log (1/𝑞)) Θ
(√
𝑞
)

𝑞 → 1 Θ (1/log (1/(1 − 𝑞))) Θ (1 − 𝑞)

mhr 𝑞 → 0 Θ (1/log (1/𝑞)) Θ (1/log (1/𝑞))
𝑞 → 1 Θ (1/log (1/(1 − 𝑞))) Θ (1 − 𝑞)

Table 4.2: Maximin Performance rates: This table summarizes the rate of convergence to zero when
the conversion rate q approaches 0 or 1 for the optimal randomized and deterministic mechanisms.

mance for randomized mechanisms in Theorem 4.4. We develop a sequence of finite dimensional

linear programs that can approximate with arbitrary accuracy the maximin ratio.

Stepping back, the present chapter and associated framework enable to understand the value of

one measurement for pricing purposes. While such a measurement provides very limited information

about the entire value distribution, we establish that it provides significant value for pricing purposes.

As such, this leads to an important building block for future research to better understand the value
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associated with an arbitrary number of measurements, or the best way to experiment and collect

such responses to prices.

Literature review: In this section, we position our work in the landscape of related past research

efforts. Our work relates and contributes to the literature on data-driven pricing with limited value

distribution knowledge. A setting that has been studied is one in which the seller only knows

the support of the underlying distribution. Early studies are [42] and [43], in which the authors

characterize the optimal pricing policy as well as the worst-case demand distribution with respect a

min-max regret objective in the former and a competitive ratio in the latter. [44] studies a case in

which the seller has access to the maximum price at which she would still expect non-zero demand,

and the authors propose to use a simple deflation mechanism and characterize its performance

against some subsets of parametric families. [116] characterize optimal pricing strategies in a

dynamic setting where myopic or strategic customers arrive over time and only the support of their

value distribution is known to the seller.

In contrast to this stream of work, we study the setting in which the seller has access to some

information about the conversion rate at an incumbent price 𝑤, a typical data structure, and can

adjust its decisions based on such information. We also allow value distributions with arbitrary

support within central non-parametric classes (regular or mhr). [43] study a related setting and

analyzes randomized mechanisms against general discrete distributions, but with known support

bounds information. [117] study a general robust decision problem while specifying a shape-

preserving set of univariate functions using a constrained B-spline approximation. The framework

developed in [117] can be applied to pricing in environments with limited measurements and the

authors illustrate their ideas using an optimal debt-settlement example. In [45], the authors studied

the related problem of reconstructing demand curves when only a single point has been historically

observed and showed how a second point can be extracted from the sales of discounted bundles

and use it to estimate linear demand curve parameters. [46] document a setting at a large OEM

where the problem is exactly one with no price dispersion in the historical data. There, the authors
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applied some parametrization approach in conjunction with a robustification of prices. Recently,

[118] study model-free assortment pricing decisions from transaction data, by leveraging incentive

compatibility constraints.

In a related setting, [115] and [119] assume that the seller has only access to limited statistical

information about the valuation distributions (such as the median, mean and variance). In [115]

for the single-bidder pricing problem, which is related to our problem, the authors analyze the

case with median information and provide a tight upper bound (50%) on the best achievable

competitive ratio for regular distribution using deterministic mechanisms. This can be seen as a

special case of the general framework we develop. Our results establish the exact performance

of deterministic for any probability of sale for both regular and mhr distributions, establishing

two phase transitions (small, moderate, and high probability of sale). For these settings, we also

characterize the optimal performance of randomized mechanisms. While studying a different set

of questions (the performance of a Vickrey auction with duplicate bidders), [120] also considers

a setting in which the information available to the seller consists of a percentile of the value

distribution, akin to the information structure in the present chapter.

A number of studies look at how to collect and incorporate data on the fly for pricing purposes,

in which case an exploration-exploitation trade-off emerges. See [52], [53], [54], [55], [56]. The

present study establishes that when initial offline data is available (such as in [55] or [56]), it can be

possible to exploit such information, even with no price variability in the data. As such, the ideas

presented here might also have implications for dynamic learning algorithms.

An alternative data structure that has received attention is one based on samples of the value

distribution, as opposed to buy/no buy feedback. [47] studies the sample complexity needed to

achieve near-optimal performance; see also, e.g., [121], [122], in the context of auctions. The

setting where the seller has access to a limited number of observed samples has also been studied;

see [47], [48], [49], [123], [50], and [51]. These studies demonstrate that a few samples can be very

informative for pricing purposes. Relatedly, the present work characterizes the value that a different

type of information/data, a single percentile, has for pricing purposes.
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4.2 Problem formulation and approach overview

We consider a seller trying to sell one indivisible good to one buyer. We assume that the buyer’s

value 𝑣 is drawn from some distribution 𝐹 with support included in [0,∞). The seller does not

know 𝐹 and only knows some class information as well as partial information associated with it

based on the historical conversion rate observed at a price 𝑤. More specifically, we study the setting

in which the seller knows that the probability of sale belongs to some interval, i.e., 𝐹 (𝑤) belong

s to 𝐼 with 𝐼 ⊆ [0, 1]. An important building block is when the decision-maker knows the exact

probability of sale 𝑞 at 𝑤, i.e., the seller knows that 𝐹 (𝑤) = 1− 𝐹 (𝑤) = 𝑞. In what follows, we will

use the notation 𝐹 := 1 − 𝐹 to denote the complementary cumulative distribution function (ccdf).

The problem we are interested in is the following: how can the seller leverage the information

observed at the price 𝑤 to maximize her revenue. More formally, we model the problem as a game

between nature and the seller, in which the seller selects a selling mechanism and nature may choose

any admissible distribution 𝐹 that is consistent with the observed information. We denote by D

the set of cumulative distribution functions (cdf) on [0, +∞), i.e., the set of non-decreasing right

continuous with left limits functions from [0, +∞) into [0, 1] such that the limit at infinity is one.

Pricing and performance: A (potentially) randomized pricing strategy will be characterized by

the cdf of prices the seller posts. We let P = {Ψ in D} to be the set of randomized prices that a

mechanism can choose from, given the conversion rate information.

The expected revenue of the seller using a price distribution Ψ in P , if nature is selecting a

distribution 𝐹, is given by

∫ ∞

0

[∫ ∞

0
𝑝1{𝑣 ≥ 𝑝}𝑑𝐹 (𝑣)

]
𝑑Ψ(𝑝) =

∫ ∞

0
𝑝𝐹 (𝑝)𝑑Ψ(𝑝) =

∫ ∞

0
𝑅𝑒𝑣

(
𝑝 |𝐹

)
𝑑Ψ(𝑝),

where we introduce the notation

𝑅𝑒𝑣

(
𝑝 |𝐹

)
= 𝑝𝐹 (𝑝).
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We define opt(𝐹) to be the maximal performance one could achieve with knowledge of the exact

distribution of buyer’s values. It is known that it is a posted price [124], and is given by

opt(𝐹) := sup
𝑝≥0

𝑅𝑒𝑣

(
𝑝 |𝐹

)
. (4.2.1)

For an arbitrary distribution Ψ in P , we define its performance against a distribution 𝐹 such

that opt(𝐹) > 0 as follows

𝑅(Ψ, 𝐹) =

∫ ∞
0 𝑅𝑒𝑣

(
𝑝 |𝐹

)
𝑑Ψ(𝑝)

opt(𝐹) .

Let G (𝑤, 𝐼) denote the set of distributions with support included in [0,∞) with finite and

non-zero expectation such that 𝐹 (𝑤) belongs to 𝐼 where 𝐼 is an interval in [0, 1], i.e.,

G (𝑤, 𝐼) =

{
𝐹 : [0,∞) → [0, 1] : 𝐹 is in D and 0 < E𝐹 [𝑣] < ∞ and 𝐹 (𝑤) in 𝐼

}
. (4.2.2)

Note that opt(𝐹) is in (0,∞) for all 𝐹 in G (𝑤, 𝐼) and hence the ratio 𝑅(Ψ, 𝐹) is well defined

for any element of the class G (𝑤, 𝐼). For an arbitrary price distribution Ψ in P and for a subclass

F ⊆ G (𝑤, 𝐼), we define nature’s problem as:

inf
𝐹∈F

𝑅(Ψ, 𝐹).

The objective in this chapter is to characterize the maximin ratio for sub-classes of distributions

F ⊆ G (𝑤, 𝐼) and subclasses P ′ ⊆ P

R(P ′,F ) = sup
Ψ∈P ′

inf
𝐹∈F

𝑅(Ψ, 𝐹).

Note that this objective is always between 0 and 1 and can be interpreted as a measurement of the

“value of information" when using the subclass P ′.
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Mechanisms classes. We will be interested in the performance of general randomized mechanisms

P but also with the performance associated with the subclass of deterministic pricing mechanisms

P𝑑 ⊂ P , defined as the set of dirac delta, i.e.,

P𝑑 = {𝛿𝛾 : 𝛾 ≥ 0}.

Focal classes of distributions. Recall the definition of the set of general distributions consistent

with the data, G (𝑤, 𝐼), given in Equation (4.2.2). Proposition 4.1 below formalizes that it is

impossible to design any randomized mechanism with a positive competitive ratio when competing

against G (𝑤, 𝐼) for any non-empty interval 𝐼.

Proposition 4.1 (maximin ratio against general distributions). For any mechanism Ψ in P , and

non-empty interval 𝐼 in [0, 1], we have

inf
𝐹∈G (𝑤,𝐼)

𝑅(Ψ, 𝐹) = 0.

In the rest of the chapter, we focus on widely studied subclasses of G (𝑤, 𝐼) in the pricing

context. In particular, we focus on two broad subclasses. The first subclass we analyze is the class of

monotone hazard rate (mhr) distributions, i.e., distributions that admit a density, except potentially

at the maximum of their support, and that have a non-decreasing hazard rate. As mentioned in

the introduction, this class contains a wide variety of distributions and typical models fitted in the

literature belong to subclasses of mhr distributions. See, e.g., [113].

A second notable class of distributions that generalizes mhr distributions is the class of regular

distributions; these admit a density, except potentially at the maximum of their support, and have a

non-decreasing virtual value 𝑣−𝐹 (𝑣)/ 𝑓 (𝑣). This class of distributions contains all mhr distributions

but also a host of additional distributions; see, e.g., [114] for a summary of widely used regular

distributions. In particular, the class of regular distributions allows for heavier tails than mhr

distributions. This class is central to the pricing and mechanism design literatures and can be
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alternatively described as the class of distributions which induce a concave revenue function in the

quantity space.

While we will focus on the two classes above given their central role in the literature, our analysis

will be unified. In particular, the two classes above can be seen as special cases of 𝛼-strongly

regular distributions (see, e.g., [114], [121], [125]). These are distributions with positive density

function 𝑓 on its support [𝑎, 𝑏], where 0 ≤ 𝑎 < ∞ and 𝑎 ≤ 𝑏 ≤ ∞, such that (1− 𝛼)𝑣 − 𝐹 (𝑣)/ 𝑓 (𝑣)

is non-increasing. When 𝛼 = 0, this corresponds to regular distributions and when 𝛼 = 1, this

corresponds to mhr distributions. We define

F𝛼 (𝑤, 𝐼) = {𝐹 in G (𝑤, 𝐼) : 𝐹 is 𝛼-strongly regular}

to be the set of distributions that are 𝛼-strongly regular and consistent with the information at hand.

It is possible to establish that when the interval 𝐼 contains 0 or 1, no pricing mechanism can

guarantee a positive fraction of revenues. We formalize this result in Lemma 4.B-3 (presented in

Appendix 4.B). We assume throughout that the interval 𝐼 does not contain 0 or 1, i.e., 𝐼 ∩ {0, 1} = ∅.

Approach overview: We start by analyzing the case when the seller has access to the probability

of sale at one price, i.e., 𝐼 = {𝑞} is a singleton, with 𝑞 in (0, 1), and its associated price 𝑤. This will

be the focus of Sections 4.3-4.5. In what follows, whenever the percentile is known, we will use,

with some abuse of notation, F𝛼 (𝑤, 𝑞) instead of F𝛼 (𝑤, {𝑞}). We return in Section 4.6 to the case

with interval uncertainty.

The first step in analyzing R(P ′,F𝛼 (𝑤, 𝑞)) resides in noting that it can reformulated as an

equivalent mathematical program

sup
Ψ(·) in P ′,𝑐 in [0,1]

𝑐 (MP)

𝑠.𝑡.

∫ ∞

0
𝑅𝑒𝑣

(
𝑝 |𝐹

)
𝑑Ψ(𝑝) ≥ 𝑐 opt(𝐹) for all 𝐹 in F𝛼 (𝑤, {𝑞}).
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The value of this problem is exactly equal to the maximin ratio R(P ′,F𝛼 (𝑤, 𝑞)) and any optimal

solution to the former is also optimal for R(P ,F𝛼 (𝑤, 𝑞)). When P ′ = P , this is a linear program.

However, the key challenge in solving such a problem and designing optimal or near-optimal pricing

mechanisms resides in the fact both P and F𝛼 (𝑤, 𝑞) are infinite dimensional spaces. In turn, this is

a linear program with an infinite number of variables and constraints. (When P ′ = P𝑑 , the set of

feasible mechanisms is not convex anymore.)

To characterize R(P ′,F𝛼 (𝑤, 𝑞)), we will proceed in two steps. We first establish in Section 4.3

a key reduction, that many of the constraints are “redundant" and as a result, one can restrict

attention, without loss of optimality to an alternative to (MP) with significantly fewer constraints.

For deterministic mechanisms P𝑑 , analyzed in Section 4.4, we leverage the fundamental reduc-

tion in the space of distributions to establish that the problem can be directly reframed and solved in

closed form. In turn, optimal deterministic mechanisms and optimal performance over this subclass

of mechanisms can be derived explicitly against regular and mhr distributions.

In Section 4.5, we tackle the challenge stemming from the infinite dimensional nature of the

space of mechanisms of the seller in the context of general randomized mechanisms. For that,

we establish that mechanisms with bounded and discrete support, can approximate (from below)

the performance of general randomized mechanisms with arbitrarily high accuracy. We combine

the reductions in both the space of distributions and mechanisms to derive a sequence of finite

dimensional linear programs whose value converges (from below) to the original quantity of interest,

R(P ,F𝛼 (𝑤, 𝑞)). Furthermore, the optimal solution of any such linear program provides a (discrete)

pricing distribution with a certificate of performance given by the value of the linear program and

this value approaches the optimal maximin ratio. In Section 4.6, we extend the ideas above to the

case when the probability of sale is only known to belong to an interval 𝐼 and characterize optimal

performance in this more general case.

Notation. With some abuse, to avoid introducing special notation at various junctions, we will

interpret any ratio of a positive quantity divided by zero as∞. Furthermore, we will use the notation

𝑎 ∨ 𝑏 := max{𝑎, 𝑏} and 𝑎 ∧ 𝑏 := min{𝑎, 𝑏}.
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4.3 Reduction of Nature’s problem

In this section, we focus on Nature’s problem associated with selecting a worst-case distribution

against an arbitrary mechanism. For any mechanism Ψ in P , Nature will select a worst-case

distribution in the non-convex infinite dimensional space of distributions F𝛼 (𝑤, 𝑞). Our first main

result establishes a fundamental reduction: one may restrict attention to a “small" set of candidate

worst-case distributions. In particular, we will establish that Nature’s problem can be reduced to a

one-dimensional optimization problem.

For any 𝛼 in [0, 1], we introduce notation for Generalized Pareto Distributions (GPD). This

class of distributions plays a central role in pricing problems in the context of 𝛼-strongly regular

distributions (see, e.g., [121] and [125]). Indeed, the 𝛼-strongly regularity condition can be

interpreted as a curvature restriction captured by the fact that 𝛼 virtual value function (1 − 𝛼)𝑣 −

𝑓 (𝑣)/𝐹 (𝑣) is non-increasing. For a given value of 𝛼, the function defined below, Γ𝛼, can be seen to

be on the “boundary" of this space as it has constant 𝛼 virtual value function. In particular, for any

𝑣 ≥ 0, we define

Γ𝛼 (𝑣) =


(1 + (1 − 𝛼) 𝑣)−1/(1−𝛼) if 𝛼 in [0, 1),

𝑒−𝑣 if 𝛼 = 1.

In addition, Γ−1
𝛼 denotes the inverse of Γ𝛼 and we set Γ−1

𝛼 (0) := +∞ and Γ𝛼 (+∞) := 0.

We next introduce some notation that will allow us to define an appropriate subclass of distribu-

tions.
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For any pair of values (𝑠, 𝑠′) such that 0 ≤ 𝑠 ≤ 𝑠′ and 1 ≥ 𝑞𝑠 ≥ 𝑞𝑠′ > 0, and for any 𝑡 ≥ 𝑠′, we

define on [0,∞)

𝐺𝛼,𝑡 (𝑣 | (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) =



Γ𝛼
(
Γ−1
𝛼 (𝑞𝑠) 𝑣𝑠

)
, if 𝑣 ∈ [0, 𝑠),

𝑞𝑠Γ𝛼

(
Γ−1
𝛼

(
𝑞𝑠′
𝑞𝑠

)
𝑣−𝑠
𝑠′−𝑠

)
if 𝑣 ∈ [𝑠, 𝑡],

0 if 𝑣 > 𝑡.

(4.3.1)

The function 𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) is a complementary cumulative distribution function (ccdf)

that has conversion rate 𝑞𝑠 at price 𝑠 and 𝑞𝑠′ at price 𝑠′1 and satisfies the restriction on the curvature

implied by 𝛼-strong regularity with equality locally, on [0, 𝑠), and on [𝑠, 𝑡]. Furthermore, it has

support [0, 𝑡].

We next define the following family of distributions, through their complementary cumulative

distribution function

𝐹𝛼 (𝑣 |𝑟, (𝑤, 𝑞)) :=


𝐺𝛼,𝑤 (𝑣 | (𝑟, 1), (𝑤, 𝑞)) if 𝑟 in [0, 𝑤),

𝐺𝛼,𝑟 (𝑣 | (0, 1), (𝑤, 𝑞)) if 𝑟 ≥ 𝑤.
(4.3.2)

The associated cdf 𝐹𝛼 (𝑣 |𝑟, (𝑤, 𝑞)) has the upper end of its support at 𝑟 ∨𝑤 and the lower end of

its support at either 0 if 𝑟 > 𝑤 or 𝑟 if 𝑟 ≤ 𝑤, and has a conversion rate of 𝑞 at 𝑤. Figure 4.2 depicts

this distribution for two sets of parameters. This corresponds to a family of translated and truncated

GPD distributions. Let

𝑟𝛼 (𝑤, 𝑞) =
𝑤

Γ−1
𝛼 (𝑞) + 1

, 𝑟𝛼 (𝑤, 𝑞) =
𝑤

𝛼Γ−1
𝛼 (𝑞)

, with 𝑟𝛼 (𝑤, 𝑞) = +∞ for 𝛼 = 0. (4.3.3)

1Note that when 𝑠 = 𝑠′ and 𝑞𝑠 > 𝑞𝑠′ , the ccdf 𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′ )) has a mass of 1 − 𝑞𝑠 at 𝑠 = 𝑠′. In this case,
with some abuse of terminology, we continue to say that it has a conversion rate of 𝑞𝑠′ at 𝑠′ as it can be approximated
arbitrarily closely by a ccdf that has this property.
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We are now in a position to define the following subset of distributions, which is parametrized by a

single parameter 𝑟:

S𝛼,𝑤,𝑞 =
{
𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) : 𝑟 in [𝑟𝛼 (𝑤, 𝑞), 𝑤) ∪ [𝑤, 𝑟𝛼 (𝑤, 𝑞)]

}
, (4.3.4)

where we use the convention that whenever 𝑟𝛼 (𝑤, 𝑞) < 𝑤, [𝑤, 𝑟𝛼 (𝑤, 𝑞)] := ∅.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

(𝑤, 𝑞)

𝑣

Figure 4.2: Examples of distributions in S𝛼,𝑤,𝑞: The figure depicts examples of functions
𝐹𝛼 (·|𝑟, (𝑤, 𝑞)): 𝐹0(·|0.3, (1, 0.4)) in red and 𝐹0(·|1.5, (1, 0.4)) in dashed blue.

It is possible to establish that S𝛼,𝑤,𝑞 ⊂ F𝛼 (𝑤, 𝑞) as every element of this set has constant

𝛼-virtual value on the interior of its support (see Lemma 4.A-1).

We next state our first main result.

Theorem 4.1 (Fundamental Reduction). Fix 𝛼 in [0, 1]. For any 𝑞 in (0, 1), for any subset of

mechanisms P ′ ⊆ P ,

R(P ′,F𝛼 (𝑤, 𝑞)) = R(P ′, S𝛼,𝑤,𝑞).

This result provides a central structural property for this class of problems. When analyzing the

possible response of nature to a particular mechanism, it is sufficient to only consider translated
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and truncated GPD families with a special structure. In particular, the candidate worst-cases are

parametrized by a single parameter 𝑟 as outlined in the definition of S𝛼,𝑤,𝑞. The only candidate

worst-cases to consider are either: i.) distributions whose lower bound starts at some 𝑟 in [0, 𝑤],

decreases according to a GPD piece up to 𝑤 and admit a mass at 𝑤; for those, the optimal oracle

price is 𝑟 (cf. Lemma 4.C-2); or ii.) distributions that have a support starting at zero, decrease

according to a GPD, and admit a mass at 𝑟 ≥ 𝑤; for those distributions, the optimal oracle price

is again at 𝑟, but exceeds 𝑤. Intuitively, these distributions capture exactly the difficulty of not

knowing the distribution of values. Indeed, when fixing any mechanism, the result above implies

that one “can think" of nature as selecting an optimal oracle price as opposed to a distribution, as

conditional on the former, one can now compute the worst-case distribution. As we will see later,

this structural result will be central to characterize optimal performance and derive near-optimal

mechanisms for both the classes of deterministic and randomized mechanisms.

Based on the fundamental reduction in Theorem 4.1, the set of constraints in (MP) can be

significantly reduced and the problem can be equivalently stated as follows

sup
Ψ∈P ′,𝑐∈[0,1]

𝑐

𝑠.𝑡.

∫ 𝑤

0

𝑅𝑒𝑣

(
𝑢 |𝐺𝛼,𝑤 (·| (𝑟, 1), (𝑤, 𝑞))

)
𝑅𝑒𝑣

(
𝑟 |𝐺𝛼,𝑤 (·| (𝑟, 1), (𝑤, 𝑞))

) 𝑑Ψ(𝑢) ≥ 𝑐, for all 𝑟 in
[
𝑟𝛼 (𝑤, 𝑞), 𝑤

)
∫ 𝑟

0

𝑅𝑒𝑣

(
𝑢 |𝐺𝛼,𝑟 (·| (0, 1), (𝑤, 𝑞))

)
𝑅𝑒𝑣

(
𝑟 |𝐺𝛼,𝑟 (·| (0, 1), (𝑤, 𝑞))

) 𝑑Ψ(𝑢) ≥ 𝑐, for all 𝑟 in [𝑤, 𝑟𝛼 (𝑤, 𝑞)] .

We note that Theorem 4.1 admits a generalization to the case in which 𝑞 is only known to belong

to an interval (cf. Proposition 4.F-1).

Next, we present the proof of Theorem 4.1 together with the intuition associated with the various

steps that enable this fundamental reduction.
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Key ideas and proof of Theorem 4.1 We fix a mechanism Ψ throughout. The proof is organized

around two main steps. In a first step, we show that nature’s optimization problem can be reduced to

a two-dimensional optimization problem, one of selecting the location the optimal oracle price 𝑟𝐹

and the corresponding “quantity" 𝑞𝐹 . In other words, these two quantities can be seen as “sufficient

statistics" from the perspective of nature, given the limited knowledge of the seller. This step is

enabled by using the local “extremality” of generalized pareto distributions in the set of 𝛼-strongly

regular distributions. In a second step, we establish that for a given value of 𝑟𝐹 , the worst-case 𝑞𝐹

can be characterized explicitly, and in turn, one can further reduce the problem to a one-dimensional

optimization problem, over the set of possible oracle optimal prices 𝑟𝐹 . In particular, we establish

that one can reduce attention to translated and truncated generalized pareto distributions.

Step 1. Fix 𝑞 in (0, 1). In this first step, we develop a reduction of nature’s problem to a

two-dimensional optimization problem parametrized by the set of possible values that the optimal

oracle price 𝑟𝐹 and quantity 𝑞𝐹 can take. We first define the set of feasible values for 𝑟𝐹 and 𝑞𝐹

given the information at hand. To that end, let B𝛼 (𝑤, 𝑞) denote the set of feasible pairs, i.e.,

B𝛼 (𝑤, 𝑞) := {(𝑟∗, 𝑞∗) in R+ × [0, 1] : there exists 𝐹 in F𝛼 (𝑤, 𝑞) with 𝑟𝐹 = 𝑟∗, 𝑞𝐹 = 𝑞∗} .

Given such a definition, we have

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) = inf
𝐹∈F𝛼 (𝑤,𝑞)

EΨ [𝑅𝑒𝑣
(
𝑝 |𝐹

)
]

opt(𝐹)

= inf
(𝑟∗,𝑞∗)∈B𝛼 (𝑤,𝑞)

inf
𝐹∈F𝛼 (𝑤,𝑞):
𝑟𝐹=𝑟

∗,𝑞𝐹=𝑞∗

EΨ [𝑅𝑒𝑣
(
𝑝 |𝐹

)
]

opt(𝐹)

= inf
(𝑟∗,𝑞∗)∈B𝛼 (𝑤,𝑞)

1
𝑟∗𝑞∗

inf
𝐹∈F𝛼 (𝑤,𝑞):
𝑟𝐹=𝑟

∗,𝑞𝐹=𝑞∗

EΨ [𝑅𝑒𝑣
(
𝑝 |𝐹

)
] . (4.3.5)
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The reduction above has allowed to “decouple" the problem, where the denominator is fully

controlled and the numerator can be minimized in the inner minimization, independently of the

denominator.

Fix (𝑟∗, 𝑞∗) in B𝛼 (𝑤, 𝑞). Next, we characterize inf 𝐹∈F𝛼 (𝑤,𝑞):
𝑟𝐹=𝑟

∗,𝑞𝐹=𝑞∗
EΨ [𝑅𝑒𝑣

(
𝑝 |𝐹

)
]. We first derive

a lower bound.

inf
𝐹∈F𝛼 (𝑤,𝑞):
𝑟𝐹=𝑟

∗,𝑞𝐹=𝑞∗

EΨ [𝑅𝑒𝑣
(
𝑝 |𝐹

)
]

= inf
𝐹∈F𝛼 (𝑤,𝑞):
𝑟𝐹=𝑟

∗,𝑞𝐹=𝑞∗

∫ ∞

0
𝑅𝑒𝑣

(
𝑝 |𝐹

)
𝑑Ψ(𝑝)

≥ inf
𝐹∈F𝛼 (𝑤,𝑞):
𝑟𝐹=𝑟

∗,𝑞𝐹=𝑞∗

[∫ 𝑟∗∧𝑤

0
𝑅𝑒𝑣

(
𝑝 |𝐹

)
𝑑Ψ(𝑝) +

∫ 𝑟∗∨𝑤

𝑟∗∧𝑤
𝑅𝑒𝑣

(
𝑝 |𝐹

)
𝑑Ψ(𝑝)

]
.

Next, we leverage the following single crossing property result from Lemma 2 in [51].

Lemma 4.1 (Single Crossing Property). Fix 𝛼 in [0, 1], 𝐹 in F𝛼 and a pair of values (𝑠, 𝑠′) such

that 0 ≤ 𝑠 ≤ 𝑠′ and 𝑞𝑠′ = 𝐹 (𝑠′) > 0. Then

𝐹 (𝑣) ≥ 𝑞𝑠Γ𝛼

(
Γ−1
𝛼

(
𝑞𝑠′

𝑞𝑠

)
𝑣 − 𝑠
𝑠′ − 𝑠

)
if 𝑣 in [𝑠, 𝑠′] .

𝐹 (𝑣) ≤ 𝑞𝑠Γ𝛼

(
Γ−1
𝛼

(
𝑞𝑠′

𝑞𝑠

)
𝑣 − 𝑠
𝑠′ − 𝑠

)
if 𝑣 in (𝑠′, +∞).

Lemma 4.1 provides a systematic way to obtain local lower and upper bounds on the ccdf of

any 𝛼-regular distribution as a function of 𝐻𝛼 (·). The bound coincides with the original function

at the extreme points of the interval [𝑠, 𝑠′], and provides a lower bound on the interval [𝑠, 𝑠′] and

an upper bound on [𝑠′, +∞) that coincides with the function at 𝑠′. Furthermore, the bounds are

only parameterized by 𝛼 and the quantiles at the interval extremes. For further intuition about this

lemma, we refer the reader to [51]. Applying Lemma 4.1 to the pairs (𝑠, 𝑠′) = (0, 𝑟∗ ∧ 𝑤) and
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(𝑠, 𝑠′) = (𝑟∗ ∧ 𝑤, 𝑟∗ ∨ 𝑤), we obtain the following lower bound

inf
𝐹∈F𝛼 (𝑤,𝑞):
𝑟𝐹=𝑟

∗,𝑞𝐹=𝑞∗

EΨ [𝑅𝑒𝑣
(
𝑝 |𝐹

)
]

≥
∫ 𝑟∗∧𝑤

0
𝑝Γ𝛼

(
Γ−1
𝛼 (𝑞∗ ∨ 𝑞)

𝑣

𝑟∗ ∧ 𝑤

)
𝑑Ψ(𝑝)

+⊮𝑟∗≠𝑤
∫ 𝑟∗∨𝑤

𝑟∗∧𝑤
(𝑞∗ ∨ 𝑞)Γ𝛼

(
Γ−1
𝛼

(
𝑞∗ ∧ 𝑞
𝑞∗ ∨ 𝑞

)
𝑣 − 𝑟∗ ∧ 𝑤

𝑟∗ ∨ 𝑤 − 𝑟∗ ∧ 𝑤

)
𝑑Ψ(𝑝)

= EΨ

[
𝑝 𝐺𝛼,𝑟∗∨𝑤 (𝑝 | (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

]
= EΨ [𝑅𝑒𝑣

(
𝑝 |𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

)
],

where we used the definition of 𝐺𝛼,𝑟∗∨𝑤 (𝑝 | (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞)) given in (4.3.1).

In Lemma 4.C-3, stated and proved in Section 4.C, we establish that the distributions

𝐺𝛼,𝑟∗∨𝑤 (𝑝 | (𝑟∗ ∧𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨𝑤, 𝑞∗ ∧ 𝑞)) always belong to {𝐹 in F𝛼 (𝑤, 𝑞) : 𝑟𝐹 = 𝑟∗, 𝑞𝐹 = 𝑞∗}.

In turn, this implies that the inequality above is tight. Returning to (4.3.5), we have established that

the problem of nature can be written as

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) =

inf
(𝑟∗,𝑞∗)∈B𝛼 (𝑤,𝑞)

∫ ∞

0

𝑅𝑒𝑣

(
𝑝 |𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

)
𝑅𝑒𝑣

(
𝑟∗ |𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

) 𝑑Ψ(𝑝).(4.3.6)

In other words, conditional on 𝑟𝐹 = 𝑟∗ and 𝑞𝐹 = 𝑞∗, one can pin down the worst-case distribution,

and associated revenue curve. In Figure 4.3, we illustrate the construction of the worst-case revenue

curves.

Step 2. In a second step, we will further reduce the minimization problem stated in Equation (4.3.6)

to a one dimensional minimization problem by solving exactly for the worst-case 𝑞∗ across instances.

To that end, we first develop an alternative characterization of the set B𝛼 (𝑤, 𝑞). In particular, in
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Figure 4.3: Parametrized worst-case revenue curves: The figure depicts, conditional on the optimal
oracle price 𝑟∗ and revenue 𝑟∗𝑞∗, the worst-case revenue functions obtained in the proof using the
single crossing property Lemma 4.1. The left panel corresponds to a case where 𝑟∗ < 𝑤 and the
right one to a case 𝑟∗ > 𝑤. For these figures, 𝛼 is set to zero.

Lemma 4.C-4, stated and proved in Section 4.C, we establish that B𝛼 (𝑤, 𝑞) = B𝑙 ∪ Bℎ, where

B𝑙 =

{
(𝑟∗, 𝑞∗) in [0, 𝑤) × [0, 1] : 𝑞∗ ≥ max

{
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
, Γ𝛼

(
1
𝛼

)
,

𝑞

Γ𝛼
(
𝑤
𝑟∗ − 1

) } }
Bℎ =

{
(𝑟∗, 𝑞∗) in [𝑤, +∞) × [0, 1] : 𝑞∗ ≤ Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
, 𝑞∗ ≥ 𝑞Γ𝛼

(
1

𝛼 + 𝑤
𝑟∗−𝑤

) }
.
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Next, define the function for each 𝑟∗, 𝑤, 𝑞,

𝑅𝑟∗,𝑤,𝑞 : 𝑞∗ ↦→
∫ ∞

0

𝑅𝑒𝑣

(
𝑝 |𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

)
𝑅𝑒𝑣

(
𝑟∗ |𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

) 𝑑Ψ(𝑝).
By (4.3.6), and the definition of 𝑅𝑟∗,𝑤,𝑞 (·), we have

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) = min
{

inf
(𝑟∗,𝑞∗)∈B𝑙

𝑅𝑟∗,𝑤,𝑞 (𝑞∗), inf
(𝑟∗,𝑞∗)∈Bℎ

𝑅𝑟∗,𝑤,𝑞 (𝑞∗)
}
.

In Lemma 4.C-5, stated and proved in Section 4.C, we establish the following monotonicity result:

for any 𝑟∗ that is consistent with a pair in B𝛼 (𝑤, 𝑞), i.e, that belongs to

𝐽𝑤,𝑞 = {𝑟 s.t. there exists 𝑞∗ s.t. (𝑟∗, 𝑞∗) is in B𝛼 (𝑤, 𝑞)},

the function 𝑅𝑟∗,𝑤,𝑞 (·) is decreasing in the set {𝑞∗ : (𝑟∗, 𝑞∗) is in B𝛼 (𝑤, 𝑞)}. This monotonicity, in

conjunction with the explicit characterization of the sets B𝑙 and Bℎ, implies that that if 𝑟∗ < 𝑤,

fixing a feasible 𝑟∗, the worst-value of 𝑞∗ is 1; and if 𝑟∗ ≥ 𝑤, fixing a feasible 𝑟∗, the worst-case

value of 𝑞∗ is Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑟

∗

𝑤

)
.

In turn, the problem reduces to finding the domain of possible values of 𝑟∗, i.e., characterizing

𝐽𝑤,𝑞. We show in Lemma 4.C-5 that, for 𝑟∗ ≤ 𝑤, there exists a value 𝑞∗ such that (𝑟∗, 𝑞∗) ∈ B𝑙 if

and only if 𝑟∗ ≥ 𝑟𝛼 (𝑤, 𝑞). Hence

inf
(𝑟∗,𝑞∗)∈B𝑙

𝑅𝑟∗,𝑤,𝑞 (𝑞∗) = inf
𝑟∗∈[𝑟𝛼 (𝑤,𝑞),𝑤)

∫ 𝑤

0

𝑅𝑒𝑣

(
𝑝 |𝐺𝛼,𝑤 (·| (𝑟∗, 1), (𝑤, 𝑞))

)
𝑅𝑒𝑣

(
𝑟∗ |𝐺𝛼,𝑤 (·| (𝑟∗, 1), (𝑤, 𝑞))

) 𝑑Ψ(𝑝).
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In turn, we show in Lemma 4.C-5 that for 𝑟∗ > 𝑤, there exists a value 𝑞∗ such that (𝑟∗, 𝑞∗) ∈ Bℎ if

and only if 𝑟∗ ≤ 𝑟𝛼 (𝑤, 𝑞). Hence

inf
(𝑟∗,𝑞∗)∈Bℎ

𝑅𝑟∗,𝑤,𝑞 (𝑞∗) = inf
𝑟∗∈[𝑤,𝑟𝛼 (𝑤,𝑞)]

∫ 𝑟∗

0

𝑅𝑒𝑣

(
𝑝 |𝐺𝛼,𝑟∗ (·| (0, 1), (𝑤, 𝑞))

)
𝑅𝑒𝑣

(
𝑟∗ |𝐺𝛼,𝑟∗ (·| (0, 1), (𝑤, 𝑞))

) 𝑑Ψ(𝑝).
Therefore we have established

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) = min

{
inf

𝑟∗∈[𝑟𝛼 (𝑤,𝑞),𝑤)

∫ 𝑤

0

𝑅𝑒𝑣

(
𝑝 |𝐺𝛼,𝑤 (·| (𝑟∗, 1), (𝑤, 𝑞))

)
𝑅𝑒𝑣

(
𝑟∗ |𝐺𝛼,𝑤 (·| (𝑟∗, 1), (𝑤, 𝑞))

) 𝑑Ψ(𝑝),
inf

𝑟∗∈[𝑤,𝑟𝛼 (𝑤,𝑞)]

∫ 𝑟∗

0

𝑅𝑒𝑣

(
𝑝 |𝐺𝛼,𝑟∗ (·| (0, 1), (𝑤, 𝑞))

)
𝑅𝑒𝑣

(
𝑟∗ |𝐺𝛼,𝑟∗ (·| (0, 1), (𝑤, 𝑞))

) 𝑑Ψ(𝑝))}
(𝑎)
= min

{
inf

𝑟∈[𝑟𝛼 (𝑤,𝑞),𝑤)∪[𝑤,𝑟𝛼 (𝑤,𝑞)]
𝑅(Ψ, 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))

}
(𝑏)
= inf

𝐹∈S𝛼,𝑤,𝑞
𝑅(Ψ, 𝐹),

where (𝑎) follows from the fact that the optimal oracle price associated with 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) is 𝑟

for all 𝑟 in [𝑟𝛼 (𝑤, 𝑞), 𝑤) ∪ [𝑤, 𝑟𝛼 (𝑤, 𝑞)] (a fact established in Lemma 4.C-2); in (𝑏), we use the

definition of S𝛼,𝑤,𝑞 in Equation (4.3.4). This concludes the proof.

4.4 Optimal performance for deterministic mechanisms

We are now in a position to investigate the performance of general classes of mechanisms and

their associated performance. In this section, we investigate the optimal performance when one

restricts attention to mechanisms that post a deterministic price.
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4.4.1 Optimal prices and performance

Using Theorem 4.1, it is possible to obtain the following reduction.

R(P𝑑 ,F𝛼 (𝑤, 𝑞)) = R(P𝑑 , S𝛼,𝑤,𝑞) = sup
𝑝∈[0,𝑤]

min
𝑟∈[𝑟𝛼 (𝑤,𝑞),𝑤)∪[𝑤,𝑟𝛼 (𝑤,𝑞)]

𝑅𝑒𝑣 (𝑝 |𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))
opt(𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))

,

where for the last equality, we use the fact that one can restrict attention to mechanisms that post a

price that is less or equal than the incumbent price 𝑤, as any deterministic mechanism that posts a

price strictly above the incumbent price yields zero competitive ratio in the worst-case2. In turn, we

may split the possible worst-cases into different regions to obtain

R(P𝑑 ,F𝛼 (𝑤, 𝑞))

= sup
𝑝∈[0,𝑤]

min
{

min
𝑟∈[𝑟𝛼 (𝑤,𝑞),𝑤)

𝑅𝑒𝑣 (𝑝 |𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))
opt(𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))

, min
𝑟∈[𝑤,𝑟𝛼 (𝑤,𝑞))

𝑅𝑒𝑣 (𝑝 |𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))
opt(𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))

}
(𝑎)
= sup

𝑝∈[0,𝑤]
min

{
min

𝑟∈[𝑟𝛼 (𝑤,𝑞),𝑝)

𝑝𝐹𝛼 (𝑝 |𝑟, (𝑤, 𝑞))
𝑟

, min
𝑟∈[𝑝,𝑤)

𝑝

𝑟
, min
𝑟∈[𝑤,𝑟𝛼 (𝑤,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))

}
(𝑏)
= sup

𝑝∈[0,𝑤]
min

{
min

𝑟∈[𝑟𝛼 (𝑤,𝑞),𝑝)

𝑝𝐹𝛼 (𝑝 |𝑟, (𝑤, 𝑞))
𝑟

,
𝑝

𝑤
, min
𝑟∈[𝑤,𝑟𝛼 (𝑤,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))

}
, (4.4.1)

where (𝑎) follows from the fact that opt(𝐹𝛼 (·|𝑟, (𝑤, 𝑞))) = 𝑟 if 𝑟 < 𝑤 (cf. Lemma 4.C-2) and

noting that conditional on 𝑟 belonging to [𝑝, 𝑤), the conversion rate is equal to 1 at 𝑝. (𝑏) follows

from noting that the worst-case in the latter case is for nature to select 𝑟 = 𝑤. The reduction above

highlights three “regimes" of worst cases that may emerge, driven by the location of the oracle

optimal price.3 For regular and mhr distributions, we establish that one can actually explicitly solve

the problem above and characterize the spectrum of optimal transformations from data to decisions

and the associated performance.

Theorem 4.2 (Maximin Ratio for deterministic mechanisms). Fix the set of mechanisms to be P𝑑 .

2Any deterministic price above 𝑤 would yield a performance of zero against a distribution that puts all the mass at
𝑤.

3Note that in cases when 𝑟𝛼 (𝑤, 𝑞) < 𝑤 (which happens when 𝛼 ∈ (0, 1] and 𝑞 < Γ𝛼 (1/𝛼)), there are only two
regimes as the last term in the brackets does not affect the worst-case.
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• For regular distributions (𝛼 = 0), the optimal price is given by

𝑝∗𝑑 (𝑤, 𝑞) = 𝑤
( 2√𝑞
1 + √𝑞1

{
𝑞 ∈

(
0,

1
4

]}
+ 𝑞(3 − 4𝑞)

1 − 𝑞 1
{
𝑞 ∈

(
1
4
,

1
2

]}
+ 1

{
𝑞 ∈

(
1
2
, 1

)})
,

and the maximin ratio is characterized as follows

R(P𝑑 ,F0(𝑤, 𝑞)) =
2√𝑞

1 + √𝑞1
{
𝑞 ∈

(
0,

1
4

]}
+ 3 − 4𝑞

4(1 − 𝑞) 1
{
𝑞 ∈

(
1
4
,

1
2

]}
+(1 − 𝑞)1

{
𝑞 ∈

(
1
2
, 1

)}
.

• For mhr distributions (𝛼 = 1), the optimal price is given by

𝑝∗𝑑 (𝑤, 𝑞) = 𝑤

(
𝛽𝑞

(
𝑒

𝑞

)
1{𝑞 ∈ (0, 𝑞]} + 𝛽𝑞

(
1

log(𝑞−1)

)
1{𝑞 ∈ (𝑞, 𝑒−𝑒−1]}

+1{𝑞 ∈ (𝑒−𝑒−1
, 1)}

)
,

and the maximin ratio is characterized as follows

R(P𝑑 ,F1(𝑤, 𝑞)) = 𝛽𝑞

(
𝑒

𝑞

)
1{𝑞 ∈ (0, 𝑞]} + 𝜌(𝑞)1{𝑞 ∈ (𝑞, 𝑒−𝑒−1]}

+𝑒𝑞 log(𝑞−1)1{𝑞 ∈ (𝑒−𝑒−1
, 1)},

where if 𝑊 is the Lambert function defined as the inverse of 𝑥 → 𝑥𝑒𝑥 in [0, +∞), 𝛽𝑞 (𝑥) =

1 − 1
log(𝑞−1) (𝑊 (𝑥) +

1
𝑊 (𝑥) − 2), 𝜌(𝑞) = 𝛽𝑞

(
1

log(𝑞−1)

)
𝑒 log(𝑞−1)𝑒− log(𝑞−1)𝛽𝑞

(
1

log(𝑞−1 )

)
and 𝑞 is

the unique solution in [0, 1] to the equation 𝑊
(

1
log(𝑞−1)

)
𝑊

(
𝑒
𝑞

)
= 1. Numerically 𝑞 ∈

[0.52, 0.53].

The proof is presented in Appendix 4.D. When using deterministic mechanisms, this result

enables one, quite notably, to obtain in closed form the exact value associated with the conversion

rate at one price when using deterministic mechanisms, but also the optimal price to post. The

structure of the result is also quite instructive. There are three “regimes": high, intermediate and
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low conversion rates (where those regions depend of the focal class). For high conversion rates, the

seller’s optimal price is simply to continue to post the incumbent price. Intuitively, the seller may

want to explore higher prices, but the seller runs the risk of losing all customers when pricing higher.

In this case, the hard cases for the seller are masses at or around 𝑤. For intermediate conversion

rates and low conversion rates, the situation is different as in those cases, a more subtle interplay

arises, and the seller needs to carefully select a price below the incumbent price to optimize its

competitive ratio. We next analyze some implications of this result.

4.4.2 Performance analysis

While Theorem 4.2 provides a full characterization, there are various notable observations with

regard to the implications of the result.

In Figure 4.4, we plot the optimal price to post given the data at hand. As highlighted in
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Figure 4.4: Optimal deterministic normalized price 𝑝∗
𝑑
(𝑤, 𝑞)/𝑤 as a function of the probability of

sale 𝑞.

Theorem 4.2, there are various regimes. When 𝑞 is “high", then the optimal price for the seller is

simply to post the incumbent price 𝑤. However, when the observed probability of sale decreases,

the seller will price below the incumbent price 𝑤, potentially much below the latter.
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In Figure 4.5, we plot the maximin ratio against regular and mhr distributions as a function of the

conversion rate rate observed for the incumbent price. This value can be interpreted as measuring

the value of information associated with the data when using deterministic mechanisms.
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Figure 4.5: Performance of deterministic mechanisms as a function of the probability of sale 𝑞.

A first striking implication is associated with the levels of performance that one can achieve

with a simple deterministic mechanism, despite the very limited information available at hand.

For example, when simply knowing that the conversion rate of customers is 50% at a particular

price, and that the value distribution is mhr, there exists a deterministic pricing mechanism that can

guarantee more than 85% of oracle performance! For regular distribution, with a 25% conversion

rate, the seller can guarantee more than 66% of oracle performance using an adequate deterministic

mechanism. Our results provide a full mapping from historical conversion rate to achievable

performance and prescription.

As shown in Figure 4.5, the maximin ratio can be quite different depending on the underlying

class of distributions. The difference between the two curves highlights the “price" of heavier tails

that one could face under regular distributions.
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While the optimal maximin ratio converges to zero as 𝑞 → 0 (i.e simply knowing that no

customer purchases beyond a given price does not guide pricing decisions), quite strikingly, the

rate of convergence is quite slow. Indeed, this is illustrated in Figure 4.5. For example, with a

conversion rate of 1%, it is still possible to guarantee more than 47% against mhr distributions and

more than 18% against regular distributions with appropriate prices. As a matter fact, the closed

form formulas in Theorem 4.2 show that the maximin ratio, while converging to zero as 𝑞 becomes

small, it does so only at rate Θ(1/log(𝑞−1)) for mhr and rate Θ(√𝑞) for regular distributions. In

other words, this highlights that even knowing only that a “small" fraction of customers purchases

at a given price is very informative. We will further see that significant more value can be captured

through randomized mechanisms.

The limiting behavior at 0 has also other implications with regard to the earlier literature. The

fact that the performance converges to zero as 𝑞 tends to zero shows that the results in [44], that

a simple pricing rule can guarantee a fraction of revenues with knowledge of the exact value of

the upper bound of the support for particular parametric families (corresponding to 𝑞 = 0+ in the

current chapter), do not extend to non-parametric classes such as mhr or regular. At the same time,

as highlighted above, against such distributions, the convergence of performance to zero is very

slow.

4.5 Optimal performance for randomized mechanisms

In this section, we now turn to the analysis of general randomized mechanisms. These will

allow to measure the full value of information associated with percentile data.

4.5.1 Near optimal mechanisms and performance

Reduction to bounded discrete mechanisms. As mentioned following the statement of Prob-

lem MP , one of the challenges in analyzing randomized mechanisms stems from the infinite

dimensional nature of the space of the seller’s strategies. Next, we establish that bounded discrete

mechanisms can approximate arbitrary closely general randomized mechanisms.
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More specifically, consider an increasing sequence of 𝑁 positive reals A = {𝑎𝑖}𝑁𝑖=1 for 𝑁 in N∗

and define the set of discrete mechanisms on A as

PA =

Ψ ∈ P : Ψ(𝑥) =
𝑁∑︁
𝑗=1

𝑝 𝑗1{𝑥 ≥ 𝑎𝑖}, for some 0 ≤ 𝑝𝑖 ≤ 1,
𝑁∑︁
𝑗=1

𝑝𝑖 = 1
 .

Proposition 4.2. Fix Ψ in P , 𝑞 in (0, 1), 𝑁 > 1, and any finite sequence of increasing reals

A = {𝑎𝑖}𝑁𝑖=1 such that 0 < 𝑎1 ≤ 𝑤 ≤ 𝑎𝑁 . Then there exists ΨA in PA such that

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(ΨA, 𝐹) ≥ inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) − Δ(A)
𝑎1
− 1
𝑞(1 + (𝑞−1 − 1)𝑎𝑁 )

1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞)},

where Δ(A) = sup𝑖{𝑎𝑖 − 𝑎𝑖−1}.

The proof of Proposition 4.2 is presented in Section 4.E. This result implies two main points.

First, it is possible to approximate arbitrarily closely the performance of general randomized

mechanisms through discrete and bounded mechanisms. Second, the optimality gap between the

two classes can be quantified and is driven by two terms: a discretization term (Δ(A)/𝑎1)associated

with how fine the grid is, and a truncation term. For mhr distributions, since 𝑟𝛼 (𝑤, 𝑞) is finite, the

truncation term can be eliminated by selecting 𝑎𝑁 high enough.

The key ideas underlying the result revolve around, first, quantifying how much the seller

looses by restricting the support of the mechanism to a bounded interval [0, 𝑏] with 𝑏 > 𝑤. We

quantify this error by leveraging the concavity of the revenue function in the quantity space as

well as the upper-bound on the tail of the distribution obtained from the regularity assumption.

The second step consists of quantifying how much the seller looses by restricting to the class of

mechanisms that randomize over a finite set of prices using the single crossing property of regular

distributions applied to local intervals (Lemma 4.1). It is important to note that here, because there

is no exogenously imposed uniform positive lower bound on opt(𝐹), to appropriately control losses,

it is key to perform an analysis that maintains the coupling between the achieved revenues and the

oracle revenues.
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A family of factor revealing finite dimensional linear programs. We are now ready to present

the sequence of finite dimensional linear programs that will be central to our analysis. For any

𝑞 in (0, 1), and 𝛼 in [0, 1], we will define a linear program parametrized by a finite sequence of

increasing positive reals A = {𝑎𝑖}2𝑁𝑖=0, where 𝑁 > 1, such that 𝑎𝑁 < 𝑤, 𝑎𝑁+1 = 𝑤. In particular, we

define the following linear program.

L𝛼,𝑞,A = max
p,𝑐

𝑐 (LP)

𝑠.𝑡.
1

opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞)))

2𝑁∑︁
𝑗=0
𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞))𝑝 𝑗 ≥ 𝑐 𝑖 = 0, ...2𝑁,

2𝑁∑︁
𝑗=0

𝑝 𝑗 ≤ 1, 𝑝𝑖 ≥ 0 𝑖 = 0, ...2𝑁,

with opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞))) = lim𝑥→𝑎−
𝑖+1

opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞))) for any 𝑖 = 0, · · · , 2𝑁 .

Theorem 4.3 (Maximin Ratio for Randomized Mechanisms). Fix 𝑞 in (0, 1), and 𝛼 in [0, 1].

(i) For any sequence of increasing positive reals A = {𝑎𝑖}2𝑁𝑖=0, where 𝑁 > 1, such that 𝑎𝑁+1 = 𝑤,

the solution to Problem (LP) provides a feasible distribution of prices and its performance is

lower bounded by L𝛼,𝑞,A, implying that

R(P ,F𝛼 (𝑤, 𝑞)) ≥ L𝛼,𝑞,A.

(ii) Furthermore, there exists a sequence of increasing prices in = {𝑎𝑖}𝑁𝑖=0 such that:

R(P ,F𝛼 (𝑤, 𝑞)) ≤ L𝛼,𝑞,A + O
(

1
√
𝑁

)
,

where the O notation includes constants that depend only on 𝛼 and 𝑞.

The proof of Theorem 4.3 is presented in Appendix 4.E. Theorem 4.3 is notable in two respects.

First, it provides a systematic procedure to obtain a lower bound on performance through a linear

program but also an associated pricing distribution that guarantees such performance. The second
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notable point is that, by judiciously constructing a discrete grid, the values associated with a

sequence of linear programs constructed converge to the maximin ratio of interest as the grid

becomes finer. The proof is constructive and provides such a sequence. In addition, the result

implies that it suffices to solve a linear program with order 𝑁 variables and order 𝑁 constraints to

yield an approximation within order 1/
√
𝑁 of the maximin ratio and an associated near-optimal

prescription.

Remark (alternative feasible price sets and constraints). We note that above, we assumed that

the set of feasible prices to post was any non-negative number. In practice, often, there are are

constraints on the set of feasible prices to use. Such constraints can be encoded in the framework.

Indeed, one can still apply Theorem 4.1 as it applies to any subclass of mechanisms P ′ ⊆ P . For

example, if the set of feasible prices is a discrete set {𝜙1, 𝜙2, · · · , 𝜙𝐾}, the result applies when the

subset P ′ is the set of mechanisms that can only put mass over a subset of these prices. With this

result in hand, one may then develop a special case of the Linear Program LP in which one replaces

the sequence A = {𝑎𝑖}2𝑁𝑖=0 by the sequence {𝜙1, 𝜙2, · · · , 𝜙𝐾} (and partition the latter between values

below 𝑤 and above 𝑤 to partition the constraints). In turn, the result would follow from Theorem 4.3.

The main difference is that if we start with a discrete set of prices, one does not need to call on

Proposition 4.2 as the sequence on which one randomizes is pre-determined, and the discretization

error would only stem from the discretization of the set of constraints. In general, the framework

is flexible and could allow other constraints such as, e.g., to never put too much weight on prices

above 𝑤 (as these “riskier”). Such a constraint could be easily added to Problem LP .

4.5.2 Performance analysis

We next discuss the implications of Theorem 4.3 in terms of performance. In Figure 4.6,

we plot the maximin ratio for randomized mechanisms superimposed with that for deterministic

mechanisms. For randomized mechanisms, we note that we plot a lower bound that is obtained by

selecting the sequence used in Theorem 4.3 (we provide further details in Section 4.G). Furthermore,

all the lower bounds depicted can be shown to be within 1% of the maximin ratio by solving an
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alternative, but related, linear program that can be shown to yield an upper bound (such an LP is

presented in Appendix 4.G).

The figure highlights various points. First the value of randomization is limited for a historical

price with a “moderate" probability of sale and is more critical against distributions with heavier

tails (regular) versus mhr. At the same time, the value of randomization can be quite significant for

low and high conversion rates. For example, with access to a price with a probability of sale of 1%

against regular distributions, the performance improves from 18% for deterministic mechanisms

to 31% for randomized ones. For a probability of sale of 75%, the performance improves from

25% to 41%. Against mhr distributions, for the previous probabilities of sale of 1% and 75% the

performance improves from 47% to 51% and from 58% to 64%, respectively.
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Figure 4.6: Maximin ratio as a function of the probability of sale: The figure depicts the performance
of optimal randomized and deterministic mechanisms, as well as the rates of convergence to zero
when 𝑞 approaches 0 or 1. The left panel corresponds to regular distributions and the right one to
mhr distributions.

In Figure 4.7, we illustrate the structure of the cdf associated with near-optimal mechanisms

obtained by solving Problem (LP) for two values of the probability of sale, one in which a very

small fraction of customers purchases (𝑞 = 0.01) and another in which a large fraction of customers

purchase (𝑞 = 0.75). Some examples for other values of 𝑞 are presented in Appendix 4.H. For

these, without loss of generality, we fix 𝑤 = 1. Recall from Figure 4.4 that for 𝑞 = 0.01, against
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Figure 4.7: Illustration of near optimal mechanisms: The figure depicts near optimal pricing
distributions for 𝑤 = 1, 𝑞 = 0.01 and 𝑞 = 0.75. The left panel corresponds to regular distributions
(plotted using a log scale) and the right panel to mhr distributions (on a regular scale).

regular distributions, the optimal deterministic price was about 0.18. Indeed, intuitively, with so few

customers purchasing at the incumbent price, the seller should consider decreasing her price. When

randomization is allowed, the (near) optimal mechanism puts mass over values between 0.05 and 1.

This careful randomization yields an improvement in performance from 18% to more than 31%.

When 𝑞 = 0.75, the optimal deterministic price was simply given by 𝑤 = 1. Indeed, with so many

customers already purchasing, it seems natural that the seller would not want to consider a decrease

in price. For deterministic mechanisms, she cannot increase the price as nature could counter such

a price to yield zero performance (with as mass at 𝑤). A (near) optimal randomized mechanism

puts significant mass right around 1 (about 50% of the mass), but also inflates the current price

and puts the remaining mass between 1 and∞. Here, the benefits of randomization are substantial

(from a ratio of 25% for deterministic prices to about 41.35% for randomized prices). Against mhr

distributions, the structure of (near) optimal mechanisms is equally rich, with mass spread below 1,

right around 1 or above 1 depending on the cases.
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On the values of small and large probabilities of sale. We next explore in more detail the value

of randomization for low and high values of 𝑞. Our next result provides theoretical lower and upper

bounds on the optimal performance R(P ,F𝛼 (𝑤, 𝑞)) as 𝑞 → 0.

Proposition 4.3. For any 𝑞 in (0, 0.4), and 𝛼 in [0, 1] there exist 𝑐1, 𝑐2 > 0 such that

𝑐1

log(𝑞−1)
≤ R(P ,F𝛼 (𝑤, 𝑞)) ≤

𝑐2

log(𝑞−1)
.

The proof of Proposition 4.3 is presented in Appendix 4.E. While the optimal maximin ratio

converges to zero as 𝑞 → 0, quite strikingly, the rate of convergence is extremely slow, Θ(log(𝑞−1))

for both mhr and regular distributions. In other words, this shows that even very low conversion

rates are quite informative for pricing purposes. Furthermore, recalling the result for deterministic

mechanisms, we see that, for regular distributions, randomization allows to fundamentally alter

the rate of convergence as 𝑞 approaches zero, from Θ(√𝑞) to Θ(log(𝑞−1)), altering the value that

can be extracted from the data. Randomization is extremely valuable with very low conversion

rates. Such an effect is less pronounced for mhr distributions as the rate of convergence to zero was

already extremely slow for deterministic mechanisms.

We now explore the value of randomization for high values of 𝑞. Our next result provides

theoretical lower and upper bounds on the optimal performance R(P ,F𝛼 (𝑤, 𝑞)) as 𝑞 → 1.

Proposition 4.4. For any 𝑞 in (0.5, 1), and 𝛼 in [0, 1], there exist 𝑐3, 𝑐4 > 0 such that

𝑐3

log((1 − 𝑞)−1)
≤ R(P ,F𝛼 (𝑤, 𝑞)) ≤

𝑐4

log((1 − 𝑞)−1)
.

The proof of Proposition 4.4 is presented in Section 4.E. This result further highlights the signif-

icant value of randomization against both regular and mhr distributions. Indeed, with deterministic

mechanisms, the performance decreased linearly with 𝑞 as 𝑞 approached one. Now, the performance

only decreases at the significantly slower rate of Θ(1/log((1 − 𝑞)−1)). The value of randomization

is again extremely high, as illustrated in Figure 4.6.
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4.6 Optimal pricing with uncertainty on the probability of sale

In this section, we show how the ideas established in the previous sections can be generalized

when the seller does not know the exact value of the probability of sale but only an interval to which

it belongs [𝑞𝑙 , 𝑞ℎ]. In particular, we focus on general randomized mechanisms and the object of

interest is now

R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) := sup
Ψ∈P

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹).

For any 𝑞𝑙 < 𝑞ℎ in (0, 1)2, 𝛼 in [0, 1], 𝑁 > 1 and any finite sequence of increasing prices

A = {𝑎𝑖}2𝑁𝑖=1, such that 𝑎𝑁 < 𝑤, 𝑎𝑁+1 = 𝑤, define a generalized version of LP given by

L𝛼,𝑞𝑙 ,𝑞ℎ,A = max
p,𝑐

𝑐 (LP-int)

𝑠.𝑡.
1

opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

2𝑁∑︁
𝑗=1
𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))𝑝 𝑗 ≥ 𝑐 𝑖 = 1, ...𝑁,

1
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁∑︁
𝑗=1
𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞ℎ))𝑝 𝑗 ≥ 𝑐 𝑖 = 𝑁 + 1, ...2𝑁,

2𝑁∑︁
𝑗=1

𝑝 𝑗 ≤ 1, 𝑝𝑖 ≥ 0 𝑖 = 1, ...2𝑁,

with opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙))) = lim𝑥→𝑎−
𝑖+1

opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙))) for any 𝑖 = 0, · · · , 𝑁 .

Theorem 4.4. Fix 𝑞𝑙 < 𝑞ℎ in (0, 1)2, and 𝛼 in [0, 1].

1. For any sequence of increasing positive reals A = {𝑎𝑖}2𝑁𝑖=1, where 𝑁 > 1, such that 𝑎𝑁+1 = 𝑤,

the solution to Problem (LP-int) provides a feasible distribution of prices and its performance

is lower bounded by L𝛼,𝑞𝑙 ,𝑞ℎ,A, yielding that

R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≥ L𝛼,𝑞𝑙 ,𝑞ℎ,A.
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2. Furthermore, there exists a sequence of increasing pricesA = {𝑎𝑖}2𝑁+1𝑖=0 with 𝑎0 = 𝑟𝛼 (𝑤, 𝑞𝑙), 𝑎𝑁+1 =

𝑤, such that:

R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A + O
(

1
√
𝑁

)
,

where the O notation includes constants that depend only on 𝛼 and 𝑞𝑙 , 𝑞ℎ.

The full Proof of Theorem 4.4 is presented in Appendix 4.E. The result highlights that uncertainty

in the probability of sale can be incorporated and optimal performance can again be approximated

with arbitrary accuracy by solving a finite dimensional linear program.

Sensitivity Analysis. We next illustrate the impact of uncertainty on the maximin performance.

While the framework above applies to any interval, to anchor ideas we focus on the following

experiment to parametrize the interval with a more “physical" quantity. Consider a setting in which

the seller has access to 𝑁 buy/no-buy decisions of customers at the fixed price 𝑤. The seller can

then use this data to estimate the conversion rate 𝐹 (𝑝) through the following estimator

𝑞 =
#buy decisions

𝑁
,

We will fix an uncertainty interval through

[𝑞𝑙 , 𝑞ℎ] =
[
𝑞 − 1.96

√︁
𝑞(1 − 𝑞)
√
𝑁

, 𝑞 + 1.96
√︁
𝑞(1 − 𝑞)
√
𝑁

]
,

inspired by a 95% confidence interval. In Figure 4.8, we present the maximin ratio as a function

of the mid-point 𝑞 and 𝑁 for various values of 𝑁 in [100, 500, 1000,∞], for both mhr and regular

distributions.

The figure quantifies the impact of uncertainty in the probability of sale on performance

degradation. The case 𝑁 = ∞ corresponds the case of known probability of sale. We observe the

seller can still leverage the noisy information to achieve high levels of performance despite the

uncertainty in the conversion rate.
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Figure 4.8: Maximin ratio as a function of the uncertainty: The figure depicts the performance of
optimal randomized mechanisms in face of uncertainty in the probability of sale. The left panel
corresponds to regular distributions and the right one to mhr distributions.

4.7 Conclusion

In this present chapter, we presented a systematic analysis of pricing in the presence of a

common data structure historical data at a single price. We propose a novel and general framework

that allows to obtain how such data should be optimally used and the best performance one can

achieve. The novel framework is powerful but also yields novel insights on the value of such

information, the power of simple deterministic mechanisms, but also the incremental value of

randomized mechanisms and the regimes in which it is most significant.

There are many avenues of future research that this work opens up. This framework offers a

framework to quantify in a robust manner the value of a single measurement. As such, it offers a

foundation for future work that can tackle how to leverage measurements at multiple prices. There,

a key question would be how to find a parallel reduction to Theorem 4.1. More broadly, a promising

direction is also to leverage such analyses to inform the the design of static and dynamic price

experiments.
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4.A Preliminaries and properties of Generalized Pareto Distributions

Throughout the rest of the chapter, whenever a distribution 𝐹 is defined, and when clear from

context, we use 𝑞𝑤 to denote 𝐹 (𝑤) to lighten the notation. We also use the generalized inverse of a

distribution 𝐹 in D, defined by 𝐹−1(1 − 𝑞) := inf{𝑣 in R+ s.t. 𝐹 (𝑣) ≥ 1 − 𝑞} for all 𝑞 in [0, 1].

For a distribution with positive density function 𝑓 on its support [𝑎, 𝑏], where 0 ≤ 𝑎 < ∞ and

𝑎 ≤ 𝑏 ≤ ∞, we denote the 𝛼-virtual value function for 𝑣 ∈ [𝑎, 𝑏] by

𝜙𝛼𝐹 (𝑣) := (1 − 𝛼)𝑣 − 𝐹 (𝑣)
𝑓 (𝑣) .

Lemma 4.A-1. Fix two scalars 𝛽 > 0 and 𝑠 ≥ 0. The cumulative distribution function Γ𝛼 (𝛽 (𝑣 − 𝑠))

for 𝑣 ≥ 𝑠 admits a constant 𝛼-virtual value function given by

(1 − 𝛼)𝑠 − 1
𝛽
.

Proof of Lemma 4.A-1. Let us first explicitly compute the 𝛼-virtual value function. The derivative

of Γ𝛼 (𝛽 (𝑣 − 𝑠)), for any 𝑣 ≥ 𝑠, is given by

−𝛽 (Γ𝛼 (𝛽(𝑣 − 𝑠)))2−𝛼 .

Therefore, the 𝛼-virtual value function evaluated at 𝑣 ≥ 𝑠 is given by

(1 − 𝛼)𝑣 − Γ𝛼 (𝛽(𝑣 − 𝑠))
𝛽 (Γ𝛼 (𝛽(𝑣 − 𝑠)))2−𝛼

= (1 − 𝛼)𝑣 − 1
𝛽
(Γ𝛼 (𝛽(𝑣 − 𝑠)))𝛼−1

= (1 − 𝛼)𝑣 − 1
𝛽

(
1 + (1 − 𝛼)Γ−1

𝛼 (𝛽(𝑣 − 𝑠))
)

= (1 − 𝛼)𝑣 − 1
𝛽
− (1 − 𝛼) (𝑣 − 𝑠)

= (1 − 𝛼)𝑠 − 1
𝛽
.

This completes the proof. □
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We will also need the following result derived in [51, Lemma E-1].

Lemma 4.A-2. Fix 𝛼 ∈ [0, 1], two scalars 𝛽 ≥ 0 and 𝑤′ ≥ 0. The revenue function 𝑣Γ𝛼 (𝛽 (𝑣 − 𝑤′))

for 𝑣 ≥ 𝑤′ − 1
(1−𝛼)𝛽 is unimodal and attains its maximum at

𝑟 = max
{

1 − (1 − 𝛼)𝛽𝑤′
𝛽𝛼

, 𝑤′ − 1
(1 − 𝛼)𝛽

}
.

With the following conventions: max{+∞, 𝑣} = +∞, and max{−∞, 𝑣} = 𝑣 for any real number 𝑣.

4.B Proofs and auxiliary results for Section 4.2

Proof of Proposition 4.1. If 𝑞 in {0, 1}, then the result follows from Lemma 4.B-3. For 𝑞 in (0, 1),

let Ψ a mechanism in P . We know that

lim
𝑢→∞

Ψ̄(𝑢) := 1 − Ψ(𝑢) = 0.

Fix 𝜖 > 0. By definition of the limit, there exists 𝑀 ≥ 𝑤 such that for any 𝑢 ≥ 𝑀 , we have:

Ψ̄(𝑢) ≤ 𝜖
2
. (4.B-1)

For any integer 𝑁 , consider the following distribution 𝐹Ψ,𝑁 defined through its Complementary

Cumulative Distribution Function 𝐹Ψ,𝑁 :

𝐹Ψ,𝑁 (𝑣) =



1 if 𝑣 < 0,

𝑞 if 𝑣 in [0, 𝑤),

𝑞

𝑁
if 𝑣 in [𝑤, 𝑁2𝑀),

0 if 𝑣 in [𝑁2𝑀, +∞).

Note that 𝐹Ψ,𝑁 in G (𝑤, 𝐼) and that 𝐹Ψ,𝑁 represents a three point mass distribution with mass at

points 0, 𝑤 and 𝑁2𝑀 .
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Note also that opt(𝐹Ψ,𝑁 ) = max {𝑞𝑤, 𝑞𝑁𝑀} . Since 𝑀 ≥ 𝑤 and 𝑁 ≥ 1, we have opt(𝐹Ψ,𝑁 ) =

𝑞𝑁𝑀 . Thus the performance of mechanism Ψ is given by

𝑅(Ψ, 𝐹Ψ,𝑁 ) =
1

𝑞𝑁𝑀

(∫
[0,𝑤)

𝑢𝐹Ψ,𝑁 (𝑢)𝑑Ψ(𝑢)

+
∫
[𝑤,𝑁2𝑀)

𝑢𝐹Ψ,𝑁 (𝑢)𝑑Ψ(𝑢) +
∫
[𝑁2𝑀,+∞)

𝑢𝐹Ψ,𝑁 (𝑢)𝑑Ψ(𝑢)
)

=
1
𝑁𝑀

(∫
[0,𝑤)

𝑢𝑑Ψ(𝑢) + 1
𝑁

∫
[𝑤,𝑁2𝑀)

𝑢𝑑Ψ(𝑢)
)

=
1
𝑁𝑀

(∫
[0,𝑤)

𝑢𝑑Ψ(𝑢) + 1
𝑁

∫
[𝑤,𝑀)

𝑢𝑑Ψ(𝑢) + 1
𝑁

∫
[𝑀,𝑁2𝑀)

𝑢𝑑Ψ(𝑢)
)

≤ 1
𝑁𝑀

(
𝑤Ψ(𝑤) + 1

𝑁
𝑀 (Ψ(𝑀) − Ψ(0)) + 1

𝑁
𝑁2𝑀 (Ψ(𝑁2𝑀) − Ψ(𝑀))

)
≤ 𝑤

𝑁𝑀
+ 1
𝑁2 + (1 − Ψ(𝑀)),

where in the last step we use the fact that for any 𝑢 ≥ 0 Ψ(𝑢) is in [0, 1] .

Let us now choose 𝑁 large enough such that

𝑤

𝑁𝑀
+ 1
𝑁2 ≤

𝜖

2
,

Combining the latter with (4.B-1), we get

𝑅(Ψ, 𝐹Ψ,𝑁 ) ≤
𝜖

2
+ 𝜖

2
= 𝜖 .

Taking 𝜖 → 0 concludes the proof. □

Additional result for the cases 𝑞 in {0, 1}

Lemma 4.B-3. For any mechanism Ψ in P , and any 𝛼 in [0, 1], if 𝑞 in {0, 1}, then

inf
𝐹∈F𝛼 (𝑤,{𝑞})

𝑅(Ψ, 𝐹) = 0.
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Proof of Lemma 4.B-3. We will first show the case when 𝑞 = 0 then the case when 𝑞 = 1. For

both cases, we will exhibit worst case families of distributions for which the seller cannot achieve a

non-trivial guarantee.

For any 𝑟 > 0, let us introduce the following distribution through its Complementary Cumulative

Distribution Function:

𝐹𝑟 (𝑣) =


1 if 𝑣 in [0, 𝑟),

0 if 𝑣 in [𝑟, +∞).

The latter distribution represents a point mass at 𝑟.

Case 𝑞 = 0. We have, for any 𝑟 < 𝑤, 𝐹𝑟 in F𝛼 (𝑤, {0}) and opt(𝐹𝑟) = 𝑟. Furthermore, for any

mechanism Ψ in P , we have:

inf
𝐹∈F𝛼 (𝑤,{0})

𝑅(Ψ, 𝐹) ≤ EΨ [𝑝𝐹𝑟 (𝑝)]
opt(𝐹𝑟)

=
1
𝑟

∫ 𝑟

0
𝑢𝑑Ψ(𝑢) = 1

𝑟

∫ 𝑟

0

∫ 𝑢

0
𝑑𝑠𝑑Ψ(𝑢)

(𝑎)
=

1
𝑟

∫ 𝑟

0

∫ 𝑟

𝑠

𝑑Ψ(𝑢)𝑑𝑠 = 1
𝑟

∫ 𝑟

0
(Ψ(𝑟) − Ψ(𝑠)) 𝑑𝑠

≤ Ψ(𝑟) − Ψ(0).

Where in equality (a), we used Fubini–Tonelli theorem as (𝑠, 𝑢) → 1 is a non-negative measurable

function and ( [0, 𝑟], 𝑑Ψ) and ( [0, 𝑟], 𝑑𝑥) are 𝜎-finite measure spaces.

The right hand side above converges to zero as 𝑟 → 0+ since Ψ in P = D and is therefore right

continuous. We conclude the case 𝑞 = 0.

Case 𝑞 = 1. We have, for any 𝑟 > 𝑤, 𝐹𝑟 in F𝛼 (𝑤, {1}) and opt(𝐹𝑟) = 𝑟. Furthermore, for any

mechanism Ψ, we have:

inf
𝐹∈F𝛼 (𝑤,{1})

𝑅(Ψ, 𝐹) ≤ EΨ [𝑝𝐹𝑟 (𝑝)]
opt(𝐹𝑟)

=
1
𝑟

∫ 𝑟

0
𝑢𝑑Ψ(𝑢) = 1

𝑟

∫ 𝑟

0
(Ψ(𝑟) − Ψ(𝑢))𝑑𝑢.
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Since Ψ in P , we have lim𝑟→+∞Ψ(𝑟) = 1, therefore, for any 𝜖 > 0, there exists 𝐴 > 0 such that:

1 − Ψ(𝑟) = |Ψ(𝑟) − 1| < 𝜖 if 𝑟 ∈ [𝐴, +∞). (4.B-2)

Let 𝑟 in (𝐴, +∞), we have:

inf
𝐹∈F𝛼 (𝑤,{1})

𝑅(Ψ, 𝐹) ≤ 1
𝑟

∫ 𝑟

0
(Ψ(𝑟) − Ψ(𝑢))𝑑𝑢

=
1
𝑟

(∫
[0,𝐴)
(Ψ(𝑟) − Ψ(𝑢)) 𝑑𝑢 +

∫
[𝐴,𝑟]
(Ψ(𝑟) − Ψ(𝑢)) 𝑑𝑢

)
(𝑎)
≤ 1

𝑟

(
[0,𝐴)𝑑𝑢 +

∫
[𝐴,𝑟]
(1 − Ψ(𝑢)) 𝑑𝑢

)
=

𝐴

𝑟
+ 1
𝑟

∫ 𝑟

𝐴

(1 − Ψ(𝑢)) 𝑑𝑢

(𝑏)
≤ 𝐴

𝑟
+ 𝑟 − 𝐴

𝑟
𝜖
(𝑐)
≤ 𝐴

𝑟
+ 𝜖,

where in (𝑎) we use the fact that for any 𝑢 ≥ 0, we have 0 ≤ Ψ(𝑢) ≤ 1. And in (𝑏) we use (4.B-2).

In (c), we used the fact that 𝑟 − 𝐴 ≤ 𝑟.

Hence we conclude that for any 𝑟 ≥ 𝐴/𝜖 , we get that

inf
𝐹∈F𝛼 (𝑤,{1})

𝑅(Ψ, 𝐹) ≤ 2𝜖 .

Since 𝜖 was arbitrary, this completes the proof for the case 𝑞 = 1. □

4.C Proofs and auxiliary results for Section 4.3

Lemma 4.C-1. For any (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′) in ( [0, +∞)×[0, 1])2 such that 𝑠 ≤ 𝑠′ and 𝑞𝑠 ≥ 𝑞𝑠′ > 0, the

distribution𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) with 𝑡 ≥ 𝑠′, defined in (4.3.1), belongs to F𝛼 (𝑠, 𝑞𝑠)∩F𝛼 (𝑠′, 𝑞𝑠′)

if and only if

𝑞𝑠 ≥ Γ𝛼

(
Γ−1
𝛼 (𝑞𝑠′)

𝑠

𝑠′

)
.
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Proof of Lemma 4.C-1. Let us show each direction.

=⇒) If the distribution 𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) belongs to F𝛼 (𝑠, 𝑞𝑠) ∩ F𝛼 (𝑠′, 𝑞𝑠′) then

𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) is 𝛼−regular, therefore by Lemma 4.1 applied to the interval [0, 𝑠′], we

have that

𝑞𝑠 = 𝐺𝛼,𝑡 (𝑠 | (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) ≥ Γ𝛼

(
Γ−1
𝛼 (𝑞𝑠′)

𝑠

𝑠′

)
,

and hence the first direction is established. Let us now show the other direction.

⇐=) Suppose now that 𝑞𝑠 ≥ Γ𝛼
(
Γ−1
𝛼 (𝑞𝑠′) 𝑠𝑠′

)
. By definition of 𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)), we

have:

𝐺𝛼,𝑡 (𝑠 | (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) = 𝑞𝑠

𝐺𝛼,𝑡 (𝑠′| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) = 𝑞𝑠′ .

Therefore, we only have to show that the distribution 𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) is 𝛼-regular. Using

Lemma 4.A-1, the associated 𝛼-virtual value function is given by

𝜙𝛼
𝐺𝛼,𝑡 (·| (𝑠,𝑞𝑠),(𝑠′,𝑞𝑠′ )) (𝑣) =


− 𝑠

Γ−1
𝛼 (𝑞𝑠)

if 𝑣 in [0, 𝑠],

(1 − 𝛼)𝑠 − 𝑠′−𝑠
Γ−1
𝛼

(
𝑞𝑠′
𝑞𝑠

) if 𝑣 in (𝑠, 𝑠′] .

Thus the 𝛼-virtual value function is piece-wise constant. Now we need to show that

𝜙𝛼
𝐺𝛼,𝑡 (·| (𝑠,𝑞𝑠),(𝑠′,𝑞𝑠′ ))

(𝑣) is non-decreasing. Next, we evaluate the difference between the two constant
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values that the virtual value function is taking.

(1 − 𝛼)𝑠 − 𝑠′ − 𝑠

Γ−1
𝛼

(
𝑞𝑠′
𝑞𝑠

) − (− 𝑠

Γ−1
𝛼 (𝑞𝑠)

)

= 𝑠

(1 − 𝛼)Γ−1
𝛼 (𝑞𝑠) Γ−1

𝛼

(
𝑞𝑠′
𝑞𝑠

)
+ Γ−1

𝛼 (𝑞𝑠) + Γ−1
𝛼

(
𝑞𝑠′
𝑞𝑠

)
− 𝑠′

𝑠
Γ−1
𝛼 (𝑞𝑠)

Γ−1
𝛼 (𝑞𝑠) Γ−1

𝛼

(
𝑞𝑠′
𝑞𝑠

)
(𝑎)
= 𝑠

Γ−1
𝛼

(
𝑞𝑠

𝑞𝑠′
𝑞𝑠

)
− 𝑠′

𝑠
Γ−1
𝛼 (𝑞𝑠)

Γ−1
𝛼 (𝑞𝑠) Γ−1

𝛼

(
𝑞𝑠′
𝑞𝑠

)
= 𝑠

Γ−1
𝛼 (𝑞𝑠′) − 𝑠′

𝑠
Γ−1
𝛼 (𝑞𝑠)

Γ−1
𝛼 (𝑞𝑠) Γ−1

𝛼

(
𝑞𝑠′
𝑞𝑠

) (𝑏)
≥ 0,

where (a) stems from the fact that Γ−1
𝛼 (𝑢𝑣) = Γ−1

𝛼 (𝑢) + Γ−1
𝛼 (𝑣) + (1 − 𝛼)Γ−1

𝛼 (𝑢) Γ−1
𝛼 (𝑣) and (b)

is due to the fact that by assumption 𝑞𝑠 ≥ Γ𝛼
(
𝑠
𝑠′Γ
−1
𝛼 (𝑞𝑠′)

)
and that the function Γ𝛼 (·) is non

increasing. This shows that the 𝛼-virtual value function of 𝐺𝛼,𝑡 (·| (𝑠, 𝑞𝑠), (𝑠′, 𝑞𝑠′)) is non decreasing.

This concludes the proof. □

Lemma 4.C-2. Let 𝛼 in [0, 1], 𝑤 > 0, 𝑞 in (0, 1), and 𝑟 in [𝑟𝛼 (𝑤, 𝑞), 𝑤) ∪ [𝑤, 𝑟𝛼 (𝑤, 𝑞)]. Then the

optimal price associated with 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) is given by 𝑟.

Proof of Lemma 4.C-2. We compute the virtual value function for the function 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)).

Since the definition of 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) depends on whether 𝑟 < 𝑤 or 𝑟 ≥ 𝑤, we treat each case

separately.

Case 1: 𝑟 ∈ [𝑟𝛼 (𝑤, 𝑞), 𝑤): By applying Lemma 4.A-1 for the pair ((𝑟, 1), (𝑤, 𝑞)), we get the

virtual value function at 𝑣 ≥ 𝑟 satisfies

𝜙0
𝐹𝛼 (·|𝑟,(𝑤,𝑞)) (𝑣) = 𝛼𝑣 + (1 − 𝛼)𝑟 − 𝑤 − 𝑟

Γ−1
𝛼 (𝑞)

≥ 𝑟

(
1 + 1

Γ−1
𝛼 (𝑞)

)
− 𝑤

Γ−1
𝛼 (𝑞)

=

(
1 + 1

Γ−1
𝛼 (𝑞)

) (
𝑟 − 𝑟𝛼 (𝑤, 𝑞)

)
,
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since 𝑟 ≥ 𝑟𝛼 (𝑤, 𝑞), then we conclude that 𝜙0
𝐹𝛼 (·|𝑟,(𝑤,𝑞)) (𝑣) ≥ 0. Now, since 𝑟 is the lower support

of the distribution 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) in the case 𝑟 < 𝑤 and 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) is regular, we conclude that

necessarily the optimal price is at 𝑟.

Case 2: 𝑟 ∈ [𝑤, 𝑟𝛼 (𝑤, 𝑞)]: In this case, we assume 𝑟𝛼 (𝑤, 𝑞) ≥ 𝑤, otherwise the set is empty.

Similarly, by applying Lemma 4.A-1 for the pair ((0, 1), (𝑤, 𝑞)), we get that the virtual value

function at 𝑣 < 𝑟 satisfies

𝜙0
𝐹𝛼 (·|𝑟,(𝑤,𝑞)) (𝑣) = 𝛼𝑣 +

(
0 − 𝑤

Γ−1
𝛼 (𝑞)

)
= 𝛼 (𝑣 − 𝑟𝛼 (𝑤, 𝑞)) .

Since 𝑣 < 𝑟 ≤ 𝑟𝛼 (𝑤, 𝑞) , we conclude that 𝜙0
𝐹𝛼 (·|𝑟,(𝑤,𝑞)) (𝑣) ≤ 0. Now, since 𝑟 is the upper support

of the distribution 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) in the case 𝑟 ≥ 𝑤 and 𝐹𝛼 (·|𝑟, (𝑤, 𝑞)) is regular, we conclude that

necessarily the optimal price is given by 𝑟.

□

Lemma 4.C-3. The distribution 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨𝑤, 𝑞∗ ∧ 𝑞)), defined in Eq. (4.3.1),

belongs to {𝐹 in F𝛼 (𝑤, 𝑞) : 𝑟𝐹 = 𝑟∗, 𝑞𝐹 = 𝑞∗} if and only if (𝑟∗, 𝑞∗) belongs to B𝛼 (𝑤, 𝑞).

Proof of Lemma 4.C-3. One direction of the proof is direct. In particular, if the distribution

𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞)) belongs to {𝐹 in F𝛼 (𝑤, 𝑞) : 𝑟𝐹 = 𝑟∗, 𝑞𝐹 = 𝑞∗} then

by definition we have (𝑟∗, 𝑞∗) in B𝛼 (𝑤, 𝑞).

Let us now show the other direction, and suppose that (𝑟∗, 𝑞∗) belongs to B𝛼 (𝑤, 𝑞) and let

𝐹 in F𝛼 (𝑤, 𝑞) be a corresponding distribution with 𝑟𝐹 = 𝑟∗ and 𝑞𝐹 = 𝑞∗. We will first show that

𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨𝑤, 𝑞∗ ∧ 𝑞)) belongs to F𝛼 and that the revenue curve of 𝐹 is lower

bounded by the revenue curve of 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞)). In a second step, we

will show that the optimal revenue of 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞)) is achieved at 𝑟∗.

Step 1: We separate the cases 𝑟∗ < 𝑤 and 𝑟∗ ≥ 𝑤.

Case 1: 𝑟∗ < 𝑤. By Lemma 4.1, note that we have that 𝑞∗ = 𝐹 (𝑟∗) ≥ Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑟

∗

𝑤

)
.

By Lemma 4.C-1, applied to the following parameters (𝑠, 𝑞𝑠) = (𝑟∗, 𝑞∗) and (𝑠′, 𝑞𝑠′) = (𝑤, 𝑞),
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𝐺𝛼,𝑤 (·| (𝑟∗, 𝑞∗), (𝑤, 𝑞)) belongs to F𝛼. Furthermore, by Lemma 4.1 again, we have that

𝑣𝐹 (𝑣) ≥


𝑣𝐺𝛼,𝑤 (𝑣 | (𝑟∗, 𝑞∗), (𝑤, 𝑞)) if 𝑣 ∈ [0, 𝑟∗],

𝑣𝐺𝛼,𝑤 (𝑣 | (𝑟∗, 𝑞∗), (𝑤, 𝑞)) if 𝑣 ∈ (𝑟∗, 𝑤] .

Case 2: 𝑟∗ ≥ 𝑤. By Lemma 4.1, we have that 𝑞 = 𝐹 (𝑤) ≥ Γ𝛼
(
Γ−1
𝛼 (𝑞∗) 𝑤𝑟∗

)
and hence,

by Lemma 4.C-1 applied to the following parameters (𝑠, 𝑞𝑠) = (𝑤, 𝑞) and (𝑠′, 𝑞𝑠′) = (𝑟∗, 𝑞∗),

𝐺𝛼,𝑟∗ (·| (𝑤, 𝑞), (𝑟∗, 𝑞∗)) belongs to F𝛼. Furthermore, by Lemma 4.1 again, we have that

𝑣𝐹 (𝑣) ≥


𝑣𝐺𝛼,𝑟∗ (𝑣 | (𝑤, 𝑞), (𝑟∗, 𝑞∗)) if 𝑣 in [0, 𝑤],

𝑣𝐺𝛼,𝑟∗ (𝑣 | (𝑤, 𝑞), (𝑟∗, 𝑞∗)) if 𝑣 in [𝑤, 𝑟∗] .

Therefore in both cases, we have that 𝑣𝐹 (𝑣) ≥ 𝑣𝐺𝛼,𝑟∗∨𝑤 (𝑣 | (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

for all 𝑣 in [0, +∞) and 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞)) is 𝛼-regular.

Step 2: To conclude the proof we will show that the optimal revenue associated with the dis-

tribution 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞)) is achieved at 𝑟∗. We will show that by

contradiction.

Since 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞)) is 𝛼-regular, then the associated revenue

function is unimodal and achieves its maximum at some point 𝑟𝐺 in [0, +∞). Suppose for a moment

𝑟𝐺𝐺𝛼,𝑟∗∨𝑤 (𝑟𝐺 | (𝑟∗∧𝑤, 𝑞∗∨ 𝑞), (𝑟∗∨𝑤, 𝑞∗∧ 𝑞)) > 𝑟∗𝐺𝛼,𝑟∗∨𝑤 (𝑟∗ | (𝑟∗∧𝑤, 𝑞∗∨ 𝑞), (𝑟∗∨𝑤, 𝑞∗∧ 𝑞)).

Then, using the above lower-bounds, one would have

𝑟𝐺𝐹 (𝑟𝐺) ≥ 𝑟𝐺𝐺𝛼,𝑟∗∨𝑤 (𝑟𝐺 | (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

> 𝑟∗𝐺𝛼,𝑟∗∨𝑤 (𝑟∗ | (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

= 𝑟∗𝑞∗ = 𝑟𝐹𝐹 (𝑟𝐹),
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which would contradict the optimality of 𝑟𝐹 . Hence 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧ 𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨ 𝑤, 𝑞∗ ∧ 𝑞))

belongs to {𝐹 in F𝛼 (𝑤, 𝑞) : 𝑟𝐹 = 𝑟∗, 𝑞𝐹 = 𝑞∗}.

□

Lemma 4.C-4. A pair (𝑟∗, 𝑞∗) in R+× [0, 1] belongs to B𝛼 (𝑤, 𝑞) if and only if it belongs to B𝑙 ∪Bℎ,

where

B𝑙 =

{
(𝑟∗, 𝑞∗) in [0, 𝑤) × [0, 1] : 𝑞∗ ≥ max

{
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
, Γ𝛼

(
1
𝛼

)
,

𝑞

Γ𝛼
(
𝑤
𝑟∗ − 1

) } }
,

Bℎ =

{
(𝑟∗, 𝑞∗) in [𝑤, +∞) × [0, 1] : 𝑞∗ ≤ Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
, 𝑞∗ ≥ 𝑞Γ𝛼

(
1

𝛼 + 𝑤
𝑟∗−𝑤

) }
.

Proof of Lemma 4.C-4. By Lemma 4.C-3, we have that (𝑟∗, 𝑞∗) in B𝛼 (𝑤, 𝑞) if and only if the

distribution 𝐺𝛼,𝑟∗∨𝑤 (·| (𝑟∗ ∧𝑤, 𝑞∗ ∨ 𝑞), (𝑟∗ ∨𝑤, 𝑞∗ ∧ 𝑞)) belongs to {𝐹 in F𝛼 (𝑤, 𝑞) : 𝑟𝐹 = 𝑟∗, 𝑞𝐹 =

𝑞∗}.

Case 1: Suppose 𝑟∗ < 𝑤. By definition, we have that

𝑣𝐺𝛼,𝑤 (𝑣 | (𝑟∗, 𝑞∗), (𝑤, 𝑞)) =



𝑣Γ𝛼
(
Γ−1
𝛼 (𝑞∗) 𝑣𝑟∗

)
if 𝑣 ∈ [0, 𝑟∗],

𝑣𝑞∗Γ𝛼
(
Γ−1
𝛼

(
𝑞

𝑞∗

)
𝑣−𝑟∗
𝑤−𝑟∗

)
if 𝑣 ∈ (𝑟∗, 𝑤],

0 if 𝑣 ∈ [𝑤,∞).

By applying Lemma 4.C-1 to the following parameters (𝑠, 𝑞𝑠) := (𝑟∗, 𝑞∗) and (𝑠′, 𝑞𝑠′) :=

(𝑤, 𝑞), we have that 𝐺𝛼,𝑤 (·| (𝑟∗, 𝑞∗), (𝑤, 𝑞)) belongs to F𝛼 (𝑤, 𝑞) and F𝛼 (𝑟∗, 𝑞∗) if and only if

𝑞∗ = 𝐹 (𝑟∗) ≥ Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑟

∗

𝑤

)
.

Furthermore, using Lemma 4.A-2, the revenue function 𝑣 ↦→ 𝑣Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑣𝑤

)
is maximized at

𝑟1 = 𝑟∗/(𝛼Γ−1
𝛼 (𝑞∗)) and the revenue function 𝑣 ↦→ 𝑣𝑞∗Γ𝛼

(
Γ−1
𝛼

(
𝑞

𝑞∗

)
𝑣−𝑟∗
𝑤−𝑟∗

)
is maximized at

𝑟2 =
1
𝛼

©­­«
𝑤 − 𝑟∗

Γ−1
𝛼

(
𝑞

𝑞∗

) − (1 − 𝛼)𝑟∗ª®®¬ .
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Thus, when 𝐺𝛼,𝑤 (·| (𝑟∗, 𝑞∗), (𝑤, 𝑞)) belongs to F𝛼 (𝑤, 𝑞), the optimal revenue associated with

𝐺𝛼,𝑤 (·| (𝑟∗, 𝑞∗), (𝑤, 𝑞)) is achieved at 𝑟∗ if and only if 𝑟2 ≤ 𝑟∗ ≤ 𝑟1. We have 𝑟2 ≤ 𝑟∗ if and only if:

1
𝛼

©­­«
𝑤 − 𝑟∗

Γ−1
𝛼

(
𝑞

𝑞∗

) − (1 − 𝛼)𝑟∗ª®®¬ ≤ 𝑟∗ iff
𝑤 − 𝑟∗

Γ−1
𝛼

(
𝑞

𝑞∗

) ≤ 𝑟∗ iff
𝑤

𝑟∗
− 1 ≤ Γ−1

𝛼

(
𝑞

𝑞∗

)
iff 𝑞∗ ≥ 𝑞

Γ𝛼
(
𝑤
𝑟∗ − 1

) ,
and 𝑟∗ ≤ 𝑟1 if and only if:

𝑟∗ ≤ 𝑟∗

𝛼Γ−1
𝛼 (𝑞∗)

iff Γ−1
𝛼 (𝑞) ≤

1
𝛼

iff 𝑞∗ ≥ Γ𝛼

(
1
𝛼

)
.

Therefore 𝑟2 ≤ 𝑟∗ ≤ 𝑟1 is equivalent to

𝑞∗ ≥ max

{
Γ𝛼

(
1
𝛼

)
,

𝑞

Γ𝛼
(
𝑤
𝑟∗ − 1

) } .
We have established that when 𝑟∗ < 𝑤, 𝐺𝛼,𝑤 (·| (𝑟∗, 𝑞∗), (𝑤, 𝑞)) belongs to {𝐹 in F𝛼 (𝑤, 𝑞) :

𝑟𝐹 = 𝑟∗, 𝑞𝐹 = 𝑞∗} if and only if

𝑞∗ ≥ max

{
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
, Γ𝛼

(
1
𝛼

)
,

𝑞

Γ𝛼
(
𝑤
𝑟∗ − 1

) } .
We have hence established that when 𝑟∗ ≤ 𝑤, (𝑟∗, 𝑞∗) belongs to B𝛼 (𝑤, 𝑞) if and only if (𝑟∗, 𝑞∗)

belongs to B𝑙 .

Case 2: Suppose now 𝑟∗ ≥ 𝑤. By definition, we have that

𝑣𝐺𝛼,𝑟∗ (𝑣 | (𝑤, 𝑞), (𝑟∗, 𝑞∗)) =



𝑣Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑣𝑤

)
if 𝑣 ∈ [0, 𝑤],

𝑣𝑞Γ𝛼

(
Γ−1
𝛼

(
𝑞∗

𝑞

)
𝑣−𝑤
𝑟∗−𝑤

)
if 𝑣 ∈ (𝑤, 𝑟∗],

0 if 𝑣 in (𝑟∗,∞).
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By applying Lemma 4.C-1 to the following parameters (𝑠, 𝑞𝑠) := (𝑤, 𝑞) and (𝑠′, 𝑞𝑠′) := (𝑟∗, 𝑞∗),

we have that 𝐺𝛼,𝑟∗ (·| (𝑤, 𝑞), (𝑟∗, 𝑞∗)) belongs to F𝛼 (𝑤, 𝑞) and F𝛼 (𝑤∗, {𝑞∗}) if and only if 𝑞 =

𝐹 (𝑤) ≥ Γ𝛼
(
Γ−1
𝛼 (𝑞∗) 𝑤𝑟∗

)
which can be rewritten as 𝑞∗ ≤ Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑟

∗

𝑤

)
.

Using Lemma 4.A-2, the oracle price for the revenue function 𝑣 ↦→ 𝑣𝑞Γ𝛼

(
Γ−1
𝛼

(
𝑞∗

𝑞

)
𝑣−𝑤
𝑟∗−𝑤

)
is

achieved at

𝑟′ =
1
𝛼

©­­«
𝑟∗ − 𝑤

Γ−1
𝛼

(
𝑞∗

𝑞

) − (1 − 𝛼)𝑤ª®®¬ .
Given that 𝑟∗ is at the end of its support and that the revenue curve is unimodal, the optimal

revenue associated 𝐺𝛼,𝑟∗ (·| (𝑤, 𝑞), (𝑟∗, 𝑞∗)) is achieved at 𝑟∗ if and only if 𝑟∗ ≤ 𝑟′, which, in turn, is

true if and only if:

𝑟∗ ≤ 1
𝛼

©­­«
𝑟∗ − 𝑤

Γ−1
𝛼

(
𝑞∗

𝑞

) − (1 − 𝛼)𝑤ª®®¬ iff 𝛼𝑟∗ + (1 − 𝛼)𝑤 ≤ 𝑟∗ − 𝑤

Γ−1
𝛼

(
𝑞∗

𝑞

)
iff Γ−1

𝛼

(
𝑞∗

𝑞

)
≤ 𝑟∗ − 𝑤
𝑤 + 𝛼(𝑟∗ − 𝑤)

iff Γ𝛼

(
1

𝛼 + 𝑤
𝑟∗−𝑤

)
≤ 𝑞

∗

𝑞
iff 𝑞Γ𝛼

(
1

𝛼 + 𝑤
𝑟∗−𝑤

)
≤ 𝑞∗.

We have established that when 𝑟∗ ≥ 𝑤, 𝐺𝛼,𝑟∗ (·| (𝑤, 𝑞), (𝑟∗, 𝑞∗)) belongs to {𝐹 in F𝛼 (𝑤, 𝑞) : 𝑟𝐹 =

𝑟∗, 𝑞𝐹 = 𝑞∗} if and only if

𝑞Γ𝛼

(
1

𝛼 + 𝑤
𝑟∗−𝑤

)
≤ 𝑞∗ ≤ Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
.

In turn, we have hence established that when 𝑟∗ ≥ 𝑤, (𝑟∗, 𝑞∗) in B𝛼 (𝑤, 𝑞) if and only if (𝑟∗, 𝑞∗) in Bℎ.

This concludes the proof. □

Lemma 4.C-5. Let 𝐽𝑤,𝑞 = {𝑟 : there exists 𝑞∗ s.t. (𝑟∗, 𝑞∗) in B𝛼 (𝑤, 𝑞)}. We have 𝐽𝑤,𝑞 = [𝑟𝛼 (𝑤, 𝑞), 𝑤)∪

[𝑤, 𝑟𝛼 (𝑤, 𝑞)] and for any 𝑟∗ in 𝐽𝑤,𝑞, the function 𝑅𝑟∗,𝑤,𝑞 (·) is decreasing in the set

{𝑞∗ : (𝑟∗, 𝑞∗) in B𝛼 (𝑤, 𝑞)}.
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Proof of Lemma 4.C-5. We will show that 𝐽𝑤,𝑞 = [𝑟𝛼 (𝑤, 𝑞), 𝑤) ∪ [𝑤, 𝑟𝛼 (𝑤, 𝑞)] by analyzing the

cases when 𝑟∗ < 𝑤 and 𝑟∗ ≥ 𝑤 separately.

Suppose first that 𝑟∗ < 𝑤. In this case, we show that there exists a value 𝑞∗ such that (𝑟∗, 𝑞∗) ∈ B𝑙

if and only if 𝑟∗ ≥ 𝑟𝛼 (𝑤, 𝑞).

If there exists (𝑟∗, 𝑞∗) ∈ B𝑙 then we have y Lemma 4.C-4 that 𝑞

Γ𝛼( 𝑤𝑟∗ −1) ≤ 𝑞
∗ and since 𝑞∗ ≤ 1,

we have 𝑞

Γ𝛼( 𝑤𝑟∗ −1) ≤ 1, which implies that 𝑟∗ ≥ 𝑤

1+Γ−1
𝛼 (𝑞)

= 𝑟𝛼 (𝑤, 𝑞). Now if 𝑟∗ ∈ [𝑟𝛼 (𝑤, 𝑞), 𝑤),

note that (𝑟∗, 1) ∈ B𝑙 , as we have seen above that 1 ≥ 𝑞

Γ𝛼( 𝑤𝑟∗ −1) . Furthermore, we have

1 ≥ Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
and 1 ≥ Γ𝛼

(
1
𝛼

)
since Γ𝛼 (𝑥) ≤ 1 for all 𝑥 ≥ 0.

Now suppose that 𝑟∗ ≥ 𝑤. In this case, we show that there exists a value 𝑞∗ such that

(𝑟∗, 𝑞∗) ∈ Bℎ if and only if 𝑟𝛼 (𝑤, 𝑞) ≥ 𝑤 (which is equivalent to 𝑞 ≥ Γ𝛼

(
1
𝛼

)
) and 𝑟∗ ≤ 𝑟𝛼 (𝑤, 𝑞).
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If there exists (𝑟∗, 𝑞∗) ∈ Bℎ then, by Lemma 4.C-4, we have 𝑞Γ𝛼
(

1
𝛼+ 𝑤

𝑟∗−𝑤

)
≤ 𝑞∗ ≤ Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑟

∗

𝑤

)
.

Note that we have

𝑞Γ𝛼

(
1

𝛼 + 𝑤
𝑟∗−𝑤

)
≤ Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

)
iff 𝑞𝛼−1

(
Γ𝛼

(
1

𝛼 + 𝑤
𝑟∗−𝑤

))𝛼−1
≥

(
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

))𝛼−1

iff
(
1 + (1 − 𝛼) Γ−1

𝛼 (𝑞)
) (

1 + 1 − 𝛼
𝛼 + 𝑤

𝑟∗−𝑤

)
≥ 1 + (1 − 𝛼)Γ−1

𝛼 (𝑞)
𝑟∗

𝑤

iff
1 − 𝛼
𝛼 + 1

𝑟∗
𝑤
−1

+ (1 − 𝛼) Γ−1
𝛼 (𝑞)

©­«1 + 1 − 𝛼
𝛼 + 1

𝑟∗
𝑤
−1

ª®¬ ≥ (1 − 𝛼)Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

iff
1

𝛼 + 1
𝑟∗
𝑤
−1

+ Γ−1
𝛼 (𝑞)

©­«1 + 1 − 𝛼
𝛼 + 1

𝑟∗
𝑤
−1

ª®¬ ≥ Γ−1
𝛼 (𝑞)

𝑟∗

𝑤

iff
1

𝛼 + 1
𝑟∗
𝑤
−1

+ Γ−1
𝛼 (𝑞)

©­« 1 − 𝛼
𝛼 + 1

𝑟∗
𝑤
−1

− ( 𝑟
∗

𝑤
− 1)ª®¬ ≥ 0

iff
1 + Γ−1

𝛼 (𝑞)
(
1 − 𝛼 − 𝛼 𝑟∗

𝑤
+ 𝛼

)
𝛼 + 1

𝑟∗
𝑤
−1

≥ 0

iff
1 − Γ−1

𝛼 (𝑞) 𝛼 𝑟
∗

𝑤

𝛼 + 1
𝑟∗
𝑤
−1

≥ 0

iff 1 − Γ−1
𝛼 (𝑞) 𝛼

𝑟∗

𝑤
≥ 0 iff 𝑟∗ ≤ 𝑤

𝛼Γ−1
𝛼 (𝑞)

= 𝑟𝛼 (𝑤, 𝑞).

Additionally, since 𝑟∗ ≥ 𝑤, the above inequality implies that 𝑟𝛼 (𝑤, 𝑞) ≥ 𝑤 (which in turns implies

that 𝑞 ≥ Γ𝛼

(
1
𝛼

)
).

Now if 𝑞 ≥ Γ𝛼

(
1
𝛼

)
then 𝑟𝛼 (𝑤, 𝑞) ≥ 𝑤 and therefore, if 𝑟∗ ∈ [𝑤, 𝑟𝛼 (𝑤, 𝑞)], we always have that

(𝑟∗, Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑟

∗

𝑤

)
) ∈ Bℎ, as we showed above that 𝑞Γ𝛼

(
1

𝛼+ 𝑤
𝑟∗−𝑤

)
≤ Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑟

∗

𝑤

)
.

Next, we show the 𝑅𝑟∗,𝑤,𝑞 (·) monotonicity property by analyzing the cases when 𝑟∗ < 𝑤 and

𝑟∗ ≥ 𝑤 separately.
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Suppose first that 𝑟∗ < 𝑤. In this case, we have

𝑅𝑟∗,𝑤,𝑞 (𝑞∗)

=

∫ 𝑟∗

0

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼 (𝑞∗)

𝑝

𝑟∗
)

𝑞∗
𝑑Ψ(𝑝) +

∫ 𝑤

𝑟∗

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼

(
𝑞

𝑞∗

)
𝑝 − 𝑟∗
𝑤 − 𝑟∗

)
𝑑Ψ(𝑝)

=

∫ 𝑟∗

0

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼 (𝑞∗)

𝑝

𝑟∗
)

Γ𝛼
(
Γ−1
𝛼 (𝑞∗)

) 𝑑Ψ(𝑝) +
∫ 𝑤

𝑟∗

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼

(
𝑞

𝑞∗

)
𝑝 − 𝑟∗
𝑤 − 𝑟∗

)
𝑑Ψ(𝑝)

=

∫ 𝑟∗

0

𝑝

𝑟∗

(
Γ𝛼

(
1 − 𝑝/𝑟∗

1/Γ−1
𝛼 (𝑞∗) + (1 − 𝛼)

))−1
𝑑Ψ(𝑝) +

∫ 𝑤

𝑟∗

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼

(
𝑞

𝑞∗

)
𝑝 − 𝑟∗
𝑤 − 𝑟∗

)
𝑑Ψ(𝑝),

where the last equality follows from the fact that for 𝑢 ≥ 𝑣, Γ𝛼 (𝑢) /Γ𝛼 (𝑣) = Γ𝛼 ((𝑢 − 𝑣)/(1 + (1 − 𝛼)𝑣)).

Each term on the RHS above is decreasing in 𝑞∗, since Γ𝛼 (·) is decreasing. Hence 𝑅𝑟∗,𝑤,𝑞 (𝑞∗) is

decreasing in this case.

Suppose now that 𝑟∗ ≥ 𝑤 and 𝑞 ≥ Γ𝛼

(
1
𝛼

)
so that the interval [𝑤, 𝑟𝛼 (𝑤, 𝑞)] is non-empty. In

this case, we have

𝑅𝑟∗,𝑤,𝑞 (𝑞∗)

=

∫ 𝑤

0

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝

𝑤

)
𝑞∗

𝑑Ψ(𝑝) +
∫ 𝑟∗

𝑤

𝑝

𝑟∗

𝑞 Γ𝛼

(
Γ−1
𝛼

(
𝑞∗

𝑞

)
𝑝−𝑤
𝑟∗−𝑤

)
𝑞∗

𝑑Ψ(𝑝)

=

∫ 𝑤

0

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝

𝑤

)
𝑞∗

𝑑Ψ(𝑝) +
∫ 𝑟∗

𝑤

𝑝

𝑟∗

Γ𝛼

(
Γ−1
𝛼

(
𝑞∗

𝑞

)
𝑝−𝑤
𝑟∗−𝑤

)
Γ𝛼

(
Γ−1
𝛼

(
𝑞∗

𝑞

)) 𝑑Ψ(𝑝)

=

∫ 𝑤

0

𝑝

𝑟∗
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝

𝑤

)
𝑞∗

𝑑Ψ(𝑝) +
∫ 𝑟∗

𝑤

𝑝

𝑟∗
©­­« Γ𝛼

©­­«
𝑟∗−𝑝
𝑟∗−𝑤

1/Γ−1
𝛼

(
𝑞∗

𝑞

)
+ (1 − 𝛼) 𝑝−𝑤

𝑟∗−𝑤

ª®®¬
ª®®¬
−1

𝑑Ψ(𝑝),

where the last equality follows from the fact that for

𝑢 ≥ 𝑣, Γ𝛼 (𝑢) /Γ𝛼 (𝑣) = Γ𝛼 ((𝑢 − 𝑣)/(1 + (1 − 𝛼)𝑣)). Each term in the above equality is decreasing

in 𝑞∗, therefore the result also holds for this case. This concludes the proof. □
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4.D Proofs and auxiliary results for Section 4.4

We define the following useful notation used throughout this section:

𝑣̃𝛼 :=



1 if 𝛼 = 0,

𝛼
𝛼

1−𝛼 if 𝛼 in (0, 1),

𝑒−1 if 𝛼 = 1,

(4.D-1)

𝑞
𝛼

:=


0 if 𝛼 = 0,

Γ𝛼

(
1
𝛼

)
if 𝛼 in (0, 1] .

(4.D-2)

One can easily check that, for any 𝛼 in [0, 1], 𝑞
𝛼
< Γ𝛼 (𝑣̃𝛼).

Proof of Theorem 4.2. The proof is divided into three separate parts.

In a first step, we simplify the problem given in (4.4.1) in Section 4.4. We show in Proposi-

tion 4.D-1 that the seller’s posted price has to counter at most 3 worst-case distributions, where two

of these are fixed, and the third one is a function of the price selected. In a second step, we analyze

the case of regular distributions, and in a third step, we analyze the case of mhr distributions.

Recall the definition of 𝑞
𝛼

introduced in (4.D-2).

Proposition 4.D-1 (Worst-case Distributions against Deterministic Mechanisms). For any 𝛼 in [0, 1],

we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞))

=


sup𝑝∈[0,1] min

{
𝑅𝑒𝑣(𝑝 |𝐹𝛼(·|𝜇𝛼,𝑞 (𝑝),(1,𝑞)))
opt(𝐹𝛼(·|𝜇𝛼,𝑞 (𝑝),(1,𝑞))) ,

𝑅𝑒𝑣(𝑝 |𝛿1)
𝑅𝑒𝑣(1|𝛿1) ,

𝑅𝑒𝑣(𝑝 |𝐹𝛼 (·|𝑟𝛼 (1,𝑞),(1,𝑞)))
opt(𝐹𝛼 (·|𝑟𝛼 (1,𝑞),(1,𝑞)))

}
, if 𝑞 ∈ [𝑞

𝛼
, 1),

sup𝑝∈[0,1] min
{
𝑅𝑒𝑣(𝑝 |𝐹𝛼(·|𝜇𝛼,𝑞 (𝑝),(1,𝑞)))
opt(𝐹𝛼(·|𝜇𝛼,𝑞 (𝑝),(1,𝑞))) ,

𝑅𝑒𝑣(𝑝 |𝛿1)
𝑅𝑒𝑣(1|𝛿1)

}
, if 𝑞 ∈ (0, 𝑞

𝛼
),
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with

𝜇𝛼,𝑞 (𝑝) = 1 −
√︁
Δ𝛼,𝑞 (𝑝) − 𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝)
2𝑞𝛼−1

Δ𝛼,𝑞 (𝑝) =

(
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝)
)2
+ 4Γ−1

𝛼 (𝑞) (1 − 𝑝) 𝑞𝛼−1,

In the above result, the initial price 𝑤 is normalized to 1 without loss of generality. The above

establishes that, when restricting attention to deterministic prices, one can restrict attention to

worst-case distributions consisting of a GPD distribution with support starting at 𝜇𝛼,𝑞 (𝑝) and

truncated at 1, a mass at 1, or a GPD distribution truncated at 𝑟𝛼 (1, 𝑞) (when 𝑞 ≥ 𝑞
𝛼

). The proof is

deferred to Section 4.D.

We now leverage the above reduction to explicitly derive optimal deterministic mechanisms

against regular and mhr distributions.

Let us introduce the following functions that represent the ratios of the worst families for

𝑝 ≥ 𝑟𝛼 (1, 𝑞)

𝑅1,𝛼 (𝑝, 𝑞) :=
𝑅𝑒𝑣

(
𝑝 |𝐹𝛼

(
·|𝜇𝛼,𝑞 (𝑝) , (1, 𝑞)

) )
opt

(
𝐹𝛼

(
·|𝜇𝛼,𝑞 (𝑝) , (1, 𝑞)

) ) ,

𝑅2,𝛼 (𝑝, 𝑞) :=
𝑅𝑒𝑣 (𝑝 |𝛿1)
𝑅𝑒𝑣 (1|𝛿1)

,

𝑅3,𝛼 (𝑝, 𝑞) :=
𝑅𝑒𝑣

(
𝑝 |𝐹𝛼 (·|𝑟𝛼 (1, 𝑞), (1, 𝑞))

)
opt (𝐹𝛼 (·|𝑟𝛼 (1, 𝑞), (1, 𝑞)))

, defined only for 𝑞 ≥ 𝑞
𝛼
.

We next analyze some properties of the above defined ratios. To that end, recall the definitions

of 𝑣̃𝛼 introduced in (4.D-1) and of 𝑞
𝛼

in (4.D-2).

Lemma 4.D-1. We have the following properties:

1. If 𝑞 ∈ [𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)), then there exists 𝑝13,𝛼,𝑞 in

[
𝑟𝛼 (1, 𝑞), 1

]
such that 𝑅1,𝛼 (·, 𝑞) ≥ 𝑅3,𝛼 (·, 𝑞)

in
[
𝑟𝛼 (1, 𝑞), 𝑝13,𝛼,𝑞

]
and 𝑅1,𝛼 (·, 𝑞) ≤ 𝑅3,𝛼 (·, 𝑞) in

[
𝑝13,𝛼,𝑞, 1

]
. Else, if 𝑞 ∈ [Γ𝛼 (𝑣̃𝛼) , 1],

then 𝑅1,𝛼 (𝑝, 𝑞) ≥ 𝑅3,𝛼 (𝑝, 𝑞) for all 𝑝 in
[
𝑟𝛼 (1, 𝑞), 1

]
.
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2. For any 𝑞 ∈ (0, 1), there exists 𝑝12,𝛼,𝑞 such that 𝑅1,𝛼 (·, 𝑞) ≥ 𝑅2,𝛼 (·, 𝑞) in
[
𝑟𝛼 (1, 𝑞), 𝑝12,𝛼,𝑞

]
and 𝑅1,𝛼 (·, 𝑞) ≤ 𝑅2,𝛼 (·, 𝑞) in

[
𝑝12,𝛼,𝑞, 1

]
.

3. If 𝑞 ≥ 𝑞
𝛼
, then we have that 𝑅3,𝛼 (·, 𝑞) is non decreasing in

[
𝑟𝛼 (1, 𝑞), 1

]
.

4. For 𝛼 in {0, 1}, 𝑅1,𝛼 (·, 𝑞) is non increasing in
[
𝑟𝛼 (1, 𝑞), 1

]
, 𝑅2,𝛼 (·, 𝑞) is non decreasing in[

𝑟𝛼 (1, 𝑞), 1
]
.

Lemma 4.D-2. For 𝛼 in {0, 1}, there exists a unique 𝑞𝛼 in [𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)] solution to the equation

𝑝13,𝛼,𝑞 = 𝑝12,𝛼,𝑞, and we have for 𝑞 in [𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)] : 𝑝13,𝛼,𝑞 ≤ 𝑝12,𝛼,𝑞 if and only if 𝑞 ≤ 𝑞𝛼.

Furthermore, we have the following expressions:

𝑞0 =
1
4
, 𝑝13,0,𝑞 = 1 − (1 − 2𝑞)2

1 − 𝑞 , 𝑝12,0,𝑞 = 1 −
(
1 − √𝑞

)2

1 − 𝑞 ,

𝑞1 = 𝑞, 𝑝13,1,𝑞 = 𝜇
−1
1,𝑞

(
𝑊

(
1

log
(
𝑞−1) )) , 𝑝12,1,𝑞 = 𝜇

−1
1,𝑞

©­­«
1

𝑊

(
𝑒
𝑞

) ª®®¬ ,
Where 𝑞 is the unique solution in [0, 1] to the equation𝑊

(
1

log(𝑞−1)

)
𝑊

(
𝑒
𝑞

)
= 1,𝑊 is the Lambert

function defined as the inverse of 𝑥 → 𝑥𝑒𝑥 in [0, +∞). Numerically 𝑞 ∈ [0.52, 0.53].

The proof can be found in Section 4.D. We proceed by analyzing three main cases 𝑞 in (0, 𝑞𝛼],

𝑞 in (𝑞𝛼, Γ𝛼 (𝑣̃𝛼)] and 𝑞 in (Γ𝛼 (𝑣̃𝛼) , 1).

Below, we fix 𝛼 in {0, 1}.

Case 𝑞 in (0, 𝑞𝛼]:

We analyze the two sub-cases 𝑞 in (0, 𝑞
𝛼
) and 𝑞 in [𝑞

𝛼
, 𝑞𝛼], which both will lead the same final

result. Note that the first sub-case is empty for 𝛼 = 0.

Sub-case: 𝛼 = 1 and 𝑞 in (0, 𝑞
𝛼
): In this case, based on Proposition 4.D-1, we have:

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max

{
max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]
min

(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞)

)
,

max
𝑝∈[𝑝12,𝛼,𝑞 ,1]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞)

) }
.
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Now let us simplify each term.

• Using Lemma 4.D-1-2, we have that, 𝑅1,𝛼 (·, 𝑞) is above 𝑅2,𝛼 (·, 𝑞) in
[
𝑟𝛼 (1, 𝑞), 𝑝12,𝛼,𝑞

]
,

therefore:

max
𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]
𝑅2,𝛼 (𝑝, 𝑞)

(𝑎)
= 𝑅2,𝛼

(
𝑝12,𝛼,𝑞, 𝑞

)
,

where in (a), we used the result in Lemma 4.D-1-4 that states that 𝑅2,𝛼 (·, 𝑞) is non decreasing

in
[
𝑟𝛼 (1, 𝑞), 1

]
.

• Using Lemma 4.D-1-2, we have that, 𝑅1,𝛼 (·, 𝑞) is below 𝑅2,𝛼 (·, 𝑞) in
[
𝑝12,𝛼,𝑞, 1

]
, therefore:

max
𝑝∈[𝑝12,𝛼,𝑞 ,1]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑝12,𝛼,𝑞 ,1]
𝑅1,𝛼 (𝑝, 𝑞)

(𝑏)
= 𝑅1,𝛼

(
𝑝12,𝛼,𝑞, 𝑞

)
,

where in (b), we used the result in Lemma 4.D-1-4 that states that 𝑅1,𝛼 (·, 𝑞) is non increasing

in
[
𝑟𝛼 (1, 𝑞), 1

]
.

Therefore, we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max{𝑅2,𝛼
(
𝑝12,𝛼,𝑞, 𝑞

)
, 𝑅1,𝛼

(
𝑝12,𝛼,𝑞, 𝑞

)
} (𝑐)= 𝑝12,𝛼,𝑞,

where in (c), we used the fact that, by definition, 𝑅2,𝛼
(
𝑝12,𝛼,𝑞, 𝑞

)
= 𝑅1,𝛼

(
𝑝12,𝛼,𝑞, 𝑞

)
. We also note

that the value above is achieved at 𝑝 = 𝑝12,𝛼,𝑞.
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Sub-case: 𝑞 in [𝑞
𝛼
, 𝑞𝛼]: In this case, based on Lemma 4.D-2, we have that 𝑝13,𝛼,𝑞 ≤ 𝑝12,𝛼,𝑞,

thus we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max

{
max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝13,𝛼,𝑞]
min

(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
,

max
𝑝∈[𝑝13,𝛼,𝑞 ,𝑝12,𝛼,𝑞]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
,

max
𝑝∈[𝑝12,𝛼,𝑞 ,1]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

) }
.

Now let us simplify each term.

• Using Lemma 4.D-1-1, we have that, for 𝑞 ∈ [𝑞
𝛼
, 𝑞𝛼] ⊆ [𝑞

𝛼
, Γ𝛼 (𝑣̃𝛼)], 𝑅1,𝛼 (·, 𝑞) is above

𝑅3,𝛼 (·, 𝑞) in
[
𝑟𝛼 (1, 𝑞), 𝑝13,𝛼,𝑞

]
, therefore:

max
𝑝∈[𝑟𝛼 (1,𝑞),𝑝13,𝛼,𝑞]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝13,𝛼,𝑞]
min

(
𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
.

• Using Lemma 4.D-1-1 and Lemma 4.D-1-2, we have that both 𝑅3,𝛼 (𝑝, 𝑞) ≥ 𝑅1,𝛼 (𝑝, 𝑞) ≥

𝑅2,𝛼 (𝑝, 𝑞) in
[
𝑝13,𝛼,𝑞, 𝑝12,𝛼,𝑞

]
, therefore:

max
𝑝∈[𝑝13,𝛼,𝑞 ,𝑝12,𝛼,𝑞]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑝13,𝛼,𝑞 ,𝑝12,𝛼,𝑞]
𝑅2,𝛼 (𝑝, 𝑞) .

• Using Lemma 4.D-1-1 and Lemma 4.D-1-2, we have that both 𝑅2,𝛼 (·, 𝑞) and 𝑅3,𝛼 (·, 𝑞) are

above 𝑅1,𝛼 (·, 𝑞) in
[
𝑝12,𝛼,𝑞, 1

]
, therefore:

max
𝑝∈[𝑝12,𝛼,𝑞 ,1]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑝12,𝛼,𝑞 ,1]
𝑅1,𝛼 (𝑝, 𝑞) .
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Therefore, we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max

{
max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝13,𝛼,𝑞]
min

(
𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
,

max
𝑝∈[𝑝13,𝛼,𝑞 ,𝑝12,𝛼,𝑞]

𝑅2,𝛼 (𝑝, 𝑞) , max
𝑝∈[𝑝12,𝛼,𝑞 ,1]

𝑅1,𝛼 (𝑝, 𝑞)
}

(𝑎)
= max

{
max

𝑝∈[𝑝13,𝛼,𝑞 ,𝑝12,𝛼,𝑞]
𝑅2,𝛼 (𝑝, 𝑞) , max

𝑝∈[𝑝12,𝛼,𝑞 ,1]
𝑅1,𝛼 (𝑝, 𝑞)

}
,

where in (a), we used the fact that

max
𝑝∈[𝑟𝛼 (1,𝑞),𝑝13,𝛼,𝑞]

min
(
𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
≤ max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝13,𝛼,𝑞]
𝑅2,𝛼 (𝑝, 𝑞)

(𝑏)
≤ max

𝑝∈[𝑝13,𝛼,𝑞 ,𝑝12,𝛼,𝑞]
𝑅2,𝛼 (𝑝, 𝑞) ,

and in (b), we used the result in Lemma 4.D-1-4 that states that 𝑅2,𝛼 (·, 𝑞) is non decreasing in[
𝑟𝛼 (1, 𝑞), 1

]
.

Using the latter and also the fact that 𝑅1,𝛼 (·, 𝑞) is non increasing in
[
𝑟𝛼 (1, 𝑞), 1

]
we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max{𝑅2,𝛼
(
𝑝12,𝛼,𝑞, 𝑞

)
, 𝑅1,𝛼

(
𝑝12,𝛼,𝑞, 𝑞

)
}

(𝑐)
= 𝑝12,𝛼,𝑞,

where in (c), we used the fact that, by definition, 𝑅2,𝛼
(
𝑝12,𝛼,𝑞, 𝑞

)
= 𝑅1,𝛼

(
𝑝12,𝛼,𝑞, 𝑞

)
. We also note

that the value above is achieved at 𝑝 = 𝑝12,𝛼,𝑞.

We conclude that, for 𝑞 in (0, 𝑞𝛼], R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = 𝑝12,𝛼,𝑞 and is achieved at 𝑝 = 𝑝12,𝛼,𝑞.

For 𝛼 = 0, using the expressions in Lemma 4.D-2, we obtain (0, 𝑞𝛼]
𝛼=0
= (0, 1

4 ] and:

R (P𝑑 ,F𝛼 (𝑤, 𝑞))
𝛼=0
= 𝑝12,0,𝑞 = 1 −

(
1 − √𝑞

)2

1 − 𝑞 , which is achieved at 𝑝 = 1 − (1−
√
𝑞)2

1−𝑞 .
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For 𝛼 = 1, using the expressions in Lemma 4.D-2, we obtain (0, 𝑞𝛼]
𝛼=1
= (0, 𝑞] and:

R (P𝑑 ,F𝛼 (𝑤, 𝑞))
𝛼=1
= 𝑝12,1,𝑞 = 𝜇

−1
1,𝑞

©­­«
1

𝑊

(
𝑒
𝑞

) ª®®¬ , which is achieved at 𝑝 = 𝜇−1
1,𝑞

(
1

𝑊

(
𝑒
𝑞

) )

= 1 − 1
log

(
𝑞−1) ©­­«𝑊

(
𝑒

𝑞

)
+ 1

𝑊

(
𝑒
𝑞

) − 2
ª®®¬ := 𝛽𝑞

(
𝑒

𝑞

)
.

Case 𝑞 in (𝑞𝛼, Γ𝛼 (𝑣̃𝛼)] : In this case, based on Lemma 4.D-2, we have that 𝑝12,𝛼,𝑞 ≤ 𝑝13,𝛼,𝑞, thus

we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max

{
max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]
min

(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
,

max
𝑝∈[𝑝12,𝛼,𝑞 ,𝑝13,𝛼,𝑞]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
,

max
𝑝∈[𝑝13,𝛼,𝑞 ,1]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

) }
.

Now let us simplify each term.

• Using Lemma 4.D-1-1, we have that, for 𝑞 ∈ (𝑞𝛼, Γ𝛼 (𝑣̃𝛼)] ⊆ [𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)], 𝑅1,𝛼 (·, 𝑞) ≥

𝑅3,𝛼 (·, 𝑞) in
[
𝑟𝛼 (1, 𝑞), 𝑝13,𝛼,𝑞

]
, therefore:

max
𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]
min

(
𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
.

• Using Lemma 4.D-1-1 and Lemma 4.D-1-2, we have that both 𝑅2,𝛼 (𝑝, 𝑞) ≥ 𝑅1,𝛼 (𝑝, 𝑞) ≥

𝑅3,𝛼 (𝑝, 𝑞) in
[
𝑝12,𝛼,𝑞, 𝑝13,𝛼,𝑞

]
, therefore:

max
𝑝∈[𝑝12,𝛼,𝑞 ,𝑝13,𝛼,𝑞]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑝12,𝛼,𝑞 ,𝑝13,𝛼,𝑞]
𝑅3,𝛼 (𝑝, 𝑞) .
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• Using Lemma 4.D-1-1 and Lemma 4.D-1-2, we have that both 𝑅2,𝛼 (·, 𝑞) and 𝑅3,𝛼 (·, 𝑞) are

above 𝑅1,𝛼 (·, 𝑞) in
[
𝑝13,𝛼,𝑞, 1

]
, therefore:

max
𝑝∈[𝑝13,𝛼,𝑞 ,1]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑝13,𝛼,𝑞 ,1]
𝑅1,𝛼 (𝑝, 𝑞) .

Therefore, we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max

{
max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]
min

(
𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
,

max
𝑝∈[𝑝12,𝛼,𝑞 ,𝑝13,𝛼,𝑞]

𝑅3,𝛼 (𝑝, 𝑞) , max
𝑝∈[𝑝13,𝛼,𝑞 ,1]

𝑅1,𝛼 (𝑝, 𝑞)
}

(𝑎)
= max

{
max

𝑝∈[𝑝12,𝛼,𝑞 ,𝑝13,𝛼,𝑞]
𝑅3,𝛼 (𝑝, 𝑞) , max

𝑝∈[𝑝13,𝛼,𝑞 ,1]
𝑅1,𝛼 (𝑝, 𝑞)

}
,

where in (a), we used the fact that

max
𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]

min
(
𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
≤ max

𝑝∈[𝑟𝛼 (1,𝑞),𝑝12,𝛼,𝑞]
𝑅3,𝛼 (𝑝, 𝑞)

(𝑏)
≤ max

𝑝∈[𝑝12,𝛼,𝑞 ,𝑝13,𝛼,𝑞]
𝑅3,𝛼 (𝑝, 𝑞) ,

and in (b), we used the result in Lemma 4.D-1-3 that states that 𝑅3,𝛼 (·, 𝑞) is non decreasing in[
𝑟𝛼 (1, 𝑞), 1

]
. Therefore, using the property Lemma 4.D-1-4, we have, additionally, that 𝑅1,𝛼 (·, 𝑞)

is non increasing in
[
𝑟𝛼 (1, 𝑞), 1

]
and therefore

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max{𝑅3,𝛼
(
𝑝13,𝛼,𝑞, 𝑞

)
, 𝑅1,𝛼

(
𝑝13,𝛼,𝑞, 𝑞

)
}

(𝑐)
= 𝑅3,𝛼

(
𝑝13,𝛼,𝑞, 𝑞

)
, which is achieved at 𝑝 = 𝑝13,𝛼,𝑞 .

where in (c), we used the fact that 𝑅3,𝛼
(
𝑝13,𝛼,𝑞, 𝑞

)
= 𝑅1,𝛼

(
𝑝13,𝛼,𝑞, 𝑞

)
.
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For 𝛼 = 0, using the expressions in Lemma 4.D-2, we obtain (𝑞𝛼, Γ𝛼 (𝑣̃𝛼)]
𝛼=0
= ( 14 ,

1
2 ] and:

R (P𝑑 ,F𝛼 (𝑤, 𝑞))
𝛼=0
= 𝑅3,0

(
𝑝13,0,𝑞, 𝑞

)
=

3 − 4𝑞
4 (1 − 𝑞) , which is achieved at 𝑝13,0,𝑞 =

𝑞(3−4𝑞)
1−𝑞 .

For 𝛼 = 1, using the expressions in Lemma 4.D-2, we obtain (𝑞𝛼, Γ𝛼 (𝑣̃𝛼)]
𝛼=1
= (𝑞, 𝑒−𝑒−1] and:

R (P𝑑 ,F𝛼 (𝑤, 𝑞))
𝛼=1
= 𝑅3,1

(
𝑝13,1,𝑞, 𝑞

)
= 𝜇−1

1,𝑞

(
𝑊

(
1

log
(
𝑞−1) )) 𝑒 log

(
𝑞−1

)
𝑒
− log(𝑞−1)𝜇−1

1,𝑞

(
𝑊

(
1

log(𝑞−1)
))

:= 𝜌 (𝑞)

which is achieved at 𝑝 = 𝜇−1
1,𝑞

(
𝑊

(
1

log(𝑞−1)
))

= 𝛽𝑞

(
1

log(𝑞−1)
)
.

Case 𝑞 in (Γ𝛼 (𝑣̃𝛼) , 1): Using Lemma 4.D-1-1, we have that for 𝑞 in (Γ𝛼 (𝑣̃𝛼) , 1), 𝑅1,𝛼 (·, 𝑞) is

above 𝑅3,𝛼 (·, 𝑞) in
[
𝑟𝛼 (1, 𝑞), 1

]
. Therefore, we have

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = max
𝑝∈[𝑟𝛼 (1,𝑞),1]

min
(
𝑅1,𝛼 (𝑝, 𝑞) , 𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
= max

𝑝∈[𝑟𝛼 (1,𝑞),1]
min

(
𝑅2,𝛼 (𝑝, 𝑞) , 𝑅3,𝛼 (𝑝, 𝑞)

)
(𝑎)
= min

(
𝑅2,𝛼 (1, 𝑞) , 𝑅3,𝛼 (1, 𝑞)

)
= min

(
1, 𝑅3,𝛼 (1, 𝑞)

) (𝑏)
= 𝑅3,𝛼 (1, 𝑞) .

In (a), we used the results in Lemma 4.D-1-3 that states that 𝑅3,𝛼 (·, 𝑞) is non decreasing in[
𝑟𝛼 (1, 𝑞), 1

]
and Lemma 4.D-1-4, that states that 𝑅2,𝛼 (·, 𝑞) is non decreasing in

[
𝑟𝛼 (1, 𝑞), 1

]
as in

this case 𝑞 ≥ Γ𝛼 (𝑣̃𝛼) ≥ 𝑞
𝛼
. In (b), we used the fact that 𝑅3,𝛼 (1, 𝑞) ≤ 1.

For 𝛼 = 0, using the expressions in Lemma 4.D-2, we obtain (Γ𝛼 (𝑣̃𝛼) , 1)
𝛼=0
= ( 12 , 1) and:

R (P𝑑 ,F𝛼 (𝑤, {𝑞}))
𝛼=0
= 𝑅3,0 (1, 𝑞) = 1 − 𝑞, which is achieved at 𝑝 = 1.
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For 𝛼 = 1, using the expressions in Lemma 4.D-2, we obtain (Γ𝛼 (𝑣̃𝛼) , 1)
𝛼=1
= (𝑒−𝑒−1

, 1) and:

R (P𝑑 ,F𝛼 (𝑤, 𝑞))
𝛼=1
= 𝑅3,1 (1, 𝑞) = 𝑒𝑞 log

(
𝑞−1

)
, which is achieved at 𝑝 = 1.

This completes the proof of Theorem 4.2. □

Proofs of auxiliary results

Proof of Proposition 4.D-1. Following the reasoning in Section 4.4 in Eq.(4.4.1), we have that:

R (P𝑑 ,F𝛼 (𝑤, 𝑞))

= sup
𝑝∈[0,𝑤]

min

{
min

𝑟∈[𝑟𝛼 (𝑤,𝑞),𝑝)

𝑝𝐹𝛼 (𝑝 |𝑟, (𝑤, 𝑞))
𝑟

,
𝑝

𝑤
, min
𝑟∈[𝑤,𝑟𝛼 (𝑤,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹𝛼 (·|𝑟, (𝑤, 𝑞)))

}
= sup

𝑝

𝑤
∈[0,1]

min

{
inf

𝑟
𝑤
∈[𝑟𝛼 (1,𝑞),

𝑝

𝑤
)

𝑝

𝑤
𝐹𝛼 (𝑝/𝑤 |𝑟/𝑤, (1, 𝑞))

𝑟
𝑤

,
𝑝

𝑤
, inf
𝑟
𝑤
∈[1,𝑟𝛼 (1,𝑞)]

𝑝

𝑤
𝐹𝛼 (𝑝/𝑤 |𝑟/𝑤, (1, 𝑞))
𝑟
𝑤
𝐹𝛼 (𝑟/𝑤 |𝑟/𝑤, (1, 𝑞))

}
(𝑎)
= sup

𝑝∈[0,1]
min

{
inf

𝑟∈[𝑟𝛼 (1,𝑞),𝑝)

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟

, 𝑝, inf
𝑟∈[1,𝑟𝛼 (1,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟𝐹𝛼 (𝑟 |𝑟, (1, 𝑞))

}
,

where in (𝑎) we used two changes of variables to remove the dependency on 𝑤, namely 𝑝 = 𝑝/𝑤

and 𝑟 = 𝑟/𝑤. Note that when 𝑞 < 𝑞
𝛼
, the last term in the brackets does not affect the worst-case.

Thus we conclude that

R (P𝑑 ,F𝛼 (𝑤, 𝑞)) = sup
𝑝∈[0,1]

min

{
inf

𝑟∈[𝑟𝛼 (1,𝑞),𝑝)

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟

, 𝑝, inf
𝑟∈[1,𝑟𝛼 (1,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟𝐹𝛼 (𝑟 |𝑟, (1, 𝑞))

}
.(4.D-3)

For each (normalized) price 𝑝 in [0, 1], we have three terms that determine the worst case

performance. We analyze each term separately. The second term is just the identity stemming from

nature selecting a point mass at 1. We next analyze the first and third terms with the brackets in

(4.D-3).
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Third term. The third term is only present if 𝑞 ≥ 𝑞
𝛼

(ensuring that [1, 𝑟𝛼 (1, 𝑞)] ≠ ∅). In this

case, for any 𝑝 in [0, 1] and , the third term can be shown to be equal to

inf
𝑟∈[1,𝑟𝛼 (1,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟𝐹𝛼 (𝑟 |𝑟, (1, 𝑞))

=
𝑝𝐹𝛼 (𝑝 |𝑟𝛼 (1, 𝑞), (1, 𝑞))

sup𝑟∈[1,𝑟𝛼 (1,𝑞)] 𝑟𝐹𝛼 (𝑟 |𝑟, (1, 𝑞))
.

Indeed, fix 𝑞 ≥ 𝑞
𝛼

. For any 𝑟 ∈ [1, 𝑟𝛼 (1, 𝑞)], 𝐹𝛼 (𝑝 |𝑟, (1, 𝑞)) = Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑝

)
= 𝐹𝛼 (𝑝 |𝑟𝛼 (1, 𝑞), (1, 𝑞)).

By Lemma 4.A-2 applied to 𝛽 := Γ−1
𝛼 (𝑞) and 𝑤′ := 0, we have that the function 𝑣 → 𝑣𝐹𝛼 (𝑣 |𝑟𝛼 (1, 𝑞), (1, 𝑞))

is maximized at 𝑟𝛼 (1, 𝑞) thus it achieves its maximum at 𝑟𝛼 (1, 𝑞) on the interval [1, 𝑟𝛼 (1, 𝑞)] .

Hence we get that

inf
𝑟∈[1,𝑟𝛼 (1,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟𝐹𝛼 (𝑟 |𝑟, (1, 𝑞))

(4.D-4)

= inf
𝑟∈[1,𝑟𝛼 (1,𝑞)]

𝑝𝐹𝛼 (𝑝 |𝑟𝛼 (1, 𝑞), (1, 𝑞))
𝑟𝐹𝛼 (𝑟 |𝑟𝛼 (1, 𝑞) (1, 𝑞))

=
𝑝𝐹𝛼 (𝑝 |𝑟𝛼 (1, 𝑞), (1, 𝑞))

sup𝑟∈[1,𝑟𝛼 (1,𝑞)] 𝑟𝐹𝛼 (𝑟 |𝑟𝛼 (1, 𝑞) (1, 𝑞))

=
𝑝𝐹𝛼 (𝑝 |𝑟𝛼 (1, 𝑞), (1, 𝑞))

opt(𝐹𝛼 (·|𝑟𝛼 (1, 𝑞), (1, 𝑞)))
. (4.D-5)

One can easily check that

opt(𝐹𝛼 (·|𝑟𝛼 (1, 𝑞), (1, 𝑞))) = lim
𝑣→𝑟𝛼 (1,𝑞)

𝑣𝐹𝛼 (𝑣 |𝑟𝛼 (1, 𝑞), (1, 𝑞)) =
𝑣̃𝛼

Γ−1
𝛼 (𝑞)

,

where 𝑣̃𝛼 was defined in (4.D-1).

First term. For any 𝑝 in [0, 1], the first term in (4.D-3) can be rewritten as

inf
𝑟∈[𝑟𝛼 (1,𝑞),𝑝)

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟

= inf
𝑟∈[𝑟𝛼 (1,𝑞),𝑝)

Φ(𝑟),

where

Φ(𝑟) :=
𝑝

𝑟
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

)
.
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We study the function Φ(·) and by analyzing its derivative, determine exactly where its minimum

is achieved. In particular, we will establish the following claim. On [𝑟𝛼 (1, 𝑞), 𝑝), the function Φ(·)

is minimized at

𝜇𝛼,𝑞 (𝑝) = 1 −

√︃(
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝)
)2 + 4Γ−1

𝛼 (𝑞) (1 − 𝑝) 𝑞𝛼−1 − 𝛼Γ−1
𝛼 (𝑞) (1 − 𝑝)

2𝑞𝛼−1 .

For any 𝑝 in [0, 1], at any 𝑟 in [𝑟𝛼 (1, 𝑞), 𝑝), Φ(·) is differentiable with derivative given by

𝑑Φ

𝑑𝑟
(𝑟)

= − 𝑝
𝑟2Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

)
− 𝑝
𝑟

(
Γ−1
𝛼 (𝑞)

−(1 − 𝑟) + (𝑝 − 𝑟)
(1 − 𝑟)2

) (
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

))2−𝛼

= − 𝑝
𝑟2Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

)
− 𝑝
𝑟

(
Γ−1
𝛼 (𝑞)

−(1 − 𝑝)
(1 − 𝑟)2

) (
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

))2−𝛼

= − 𝑝

𝑟2(1 − 𝑟)2
(
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

))2−𝛼
[(
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

))−(1−𝛼)
(1 − 𝑟)2 − Γ−1

𝛼 (𝑞) 𝑟 (1 − 𝑝)
]

= − 𝑝

𝑟2(1 − 𝑟)2
(
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

))2−𝛼 [(
1 + (1 − 𝛼)Γ−1

𝛼 (𝑞)
𝑝 − 𝑟
1 − 𝑟

)
(1 − 𝑟)2 − Γ−1

𝛼 (𝑞) 𝑟 (1 − 𝑝)
]

= − 𝑝

𝑟2(1 − 𝑟)2
(
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝑟
1 − 𝑟

))2−𝛼 [
(1 − 𝑟)2 + (1 − 𝛼)Γ−1

𝛼 (𝑞) (𝑝 − 𝑟) (1 − 𝑟) − Γ−1
𝛼 (𝑞) 𝑟 (1 − 𝑝)

]
.

Note that the sign of the derivative of Φ is determined by that of the quadratic

𝜑(𝑟) := −
[
(1 − 𝑟)2 + (1 − 𝛼)Γ−1

𝛼 (𝑞) (𝑝 − 𝑟) (1 − 𝑟) − Γ−1
𝛼 (𝑞) 𝑟 (1 − 𝑝)

]
= −

[(
1 + (1 − 𝛼)Γ−1

𝛼 (𝑞)
)
(1 − 𝑟)2 − (1 − 𝛼)Γ−1

𝛼 (𝑞) (1 − 𝑝) (1 − 𝑟)

+Γ−1
𝛼 (𝑞) (1 − 𝑟) (1 − 𝑝) − Γ−1

𝛼 (𝑞) (1 − 𝑝)
]

= −
[(

1 + (1 − 𝛼)Γ−1
𝛼 (𝑞)

)
(1 − 𝑟)2 + 𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) (1 − 𝑟) − Γ−1
𝛼 (𝑞) (1 − 𝑝)

]
= −

[
𝑞𝛼−1(1 − 𝑟)2 + 𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) (1 − 𝑟) − Γ−1
𝛼 (𝑞) (1 − 𝑝)

]
.
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Let

Δ𝛼,𝑞 (𝑝) =

(
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝)
)2
+ 4𝑞𝛼−1Γ−1

𝛼 (𝑞) (1 − 𝑝).

The above is positive and hence the quadratic 𝜑(𝑟) admits two roots given by

𝑟1 = 1 +
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) +
√︁
Δ𝛼,𝑞 (𝑝)

2𝑞𝛼−1 ,

𝑟2 = 1 +
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) −
√︁
Δ𝛼,𝑞 (𝑝)

2𝑞𝛼−1 .

It is clear that 𝑟1 ≥ 1. We next establish that 𝑟2 belongs to
[
𝑟𝛼 (1, 𝑞), 𝑝

]
.

𝑝 − 𝑟2

= 𝑝 − 1 −
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) −
√︁
Δ𝛼,𝑞 (𝑝)

2𝑞𝛼−1

=
−(2𝑞𝛼−1 + 𝛼Γ−1

𝛼 (𝑞)) (1 − 𝑝) +
√︁
Δ𝛼,𝑞 (𝑝)

2𝑞𝛼−1

=

−
(
4𝑞2(𝛼−1) +

(
𝛼Γ−1

𝛼 (𝑞)
)2 + 4𝑞𝛼−1𝛼Γ−1

𝛼 (𝑞)
)
(1 − 𝑝)2 +

(
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝)
)2 + 4𝑞𝛼−1Γ−1

𝛼 (𝑞) (1 − 𝑝)

2𝑞𝛼−1((2𝑞𝛼−1 + 𝛼Γ−1
𝛼 (𝑞)) (1 − 𝑝) +

√︁
Δ𝛼,𝑞 (𝑝))

= 4(1 − 𝑝)𝑞𝛼−1
−

(
𝑞 (𝛼−1) + 𝛼Γ−1

𝛼 (𝑞)
)
(1 − 𝑝) + Γ−1

𝛼 (𝑞)

2𝑞𝛼−1((2𝑞𝛼−1 + 𝛼Γ−1
𝛼 (𝑞)) (1 − 𝑝) +

√︁
Δ𝛼,𝑞 (𝑝))

= 4(1 − 𝑝)𝑞𝛼−1 −(1 + Γ−1
𝛼 (𝑞)) (1 − 𝑝) + Γ−1

𝛼 (𝑞)
2𝑞𝛼−1((2𝑞𝛼−1 + 𝛼Γ−1

𝛼 (𝑞)) (1 − 𝑝) +
√︁
Δ𝛼,𝑞 (𝑝))

= 4(1 − 𝑝)𝑞𝛼−1Γ−1
𝛼 (𝑞)

𝑝/𝑟𝛼 (1, 𝑞) − 1
2𝑞𝛼−1((2𝑞𝛼−1 + 𝛼Γ−1

𝛼 (𝑞)) (1 − 𝑝) +
√︁
Δ𝛼,𝑞 (𝑝))

≥ 0,

where the last inequality follows since 𝑝 ≥ 𝑟𝛼 (1, 𝑞).
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Now, we also have

𝑟2 − 𝑟𝛼 (1, 𝑞)

= 1 +
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) −
√︁
Δ𝛼,𝑞 (𝑝)

2𝑞𝛼−1 − 1
1 + Γ−1

𝛼 (𝑞)

=
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) −
√︁
Δ𝛼,𝑞 (𝑝)

2𝑞𝛼−1 + Γ−1
𝛼 (𝑞) 𝑟𝛼 (1, 𝑞)

=
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) + 2𝑞𝛼−1Γ−1
𝛼 (𝑞) 𝑟𝛼 (1, 𝑞) −

√︁
Δ𝛼,𝑞 (𝑝)

2𝑞𝛼−1

=
(𝛼Γ−1

𝛼 (𝑞))2(1 − 𝑝)2 + 4𝑞2(𝛼−1) (Γ−1
𝛼 (𝑞))2(𝑟𝛼 (1, 𝑞))2 + 4𝑞𝛼−1(Γ−1

𝛼 (𝑞))2𝛼𝑟𝛼 (1, 𝑞) (1 − 𝑝)
2𝑞𝛼−1(𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) + 2𝑞𝛼−1Γ−1
𝛼 (𝑞) 𝑟𝛼 (1, 𝑞) +

√︁
Δ𝛼,𝑞 (𝑝))

−
(
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝)
)2 + 4𝑞𝛼−1Γ−1

𝛼 (𝑞) (1 − 𝑝)
2𝑞𝛼−1(𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) + 2𝑞𝛼−1Γ−1
𝛼 (𝑞) 𝑟𝛼 (1, 𝑞) +

√︁
Δ𝛼,𝑞 (𝑝))

= 4Γ−1
𝛼 (𝑞) 𝑞𝛼−1 𝑞

𝛼−1Γ−1
𝛼 (𝑞) (𝑟𝛼 (1, 𝑞))2 + 𝛼Γ−1

𝛼 (𝑞) 𝑟𝛼 (1, 𝑞) (1 − 𝑝) − (1 − 𝑝)
2𝑞𝛼−1(𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝) + 2𝑞𝛼−1Γ−1
𝛼 (𝑞) 𝑟𝛼 (1, 𝑞) +

√︁
Δ𝛼,𝑞 (𝑝))

= 4Γ−1
𝛼 (𝑞) 𝑞𝛼−1 𝑞𝛼−1𝑟𝛼 (1, 𝑞) (𝑝 − 𝑟𝛼 (1, 𝑞))

2𝑞𝛼−1(𝛼Γ−1
𝛼 (𝑞) (1 − 𝑝) + 2𝑞𝛼−1Γ−1

𝛼 (𝑞) 𝑟𝛼 (1, 𝑞) +
√︁
Δ𝛼,𝑞 (𝑝))

≥ 0,

where the last inequality follows since 𝑝 ≥ 𝑟𝛼 (1, 𝑞). Hence we have established that 𝑟2 belongs to

[𝑟𝛼 (1, 𝑞), 𝑝), and 𝑟1 ≥ 1 ≥ 𝑝.

Now, note that the sign of 𝜑 is non-negative on [𝑟2, 𝑟1] and non-positive on [0, 𝑟2]. We deduce

that the function Φ is non increasing on [𝑟𝛼 (1, 𝑞), 𝑟2] and non decreasing on [𝑟2, 𝑝), thus, on

[𝑟𝛼 (1, 𝑞), 𝑝), Φ achieves its minimum at 𝑟2 = 𝜇𝛼,𝑞 (𝑝). In other words we have established that for

any 𝑝 in [0, 1],

inf
𝑟∈[𝑟𝛼 (1,𝑞),𝑝)

𝑝𝐹𝛼 (𝑝 |𝑟, (1, 𝑞))
𝑟

=
𝑝𝐹𝛼

(
𝑝 |𝜇𝛼,𝑞 (𝑝) , (1, 𝑞)

)
𝜇𝛼,𝑞 (𝑝)

=
𝑝𝐹𝛼

(
𝑝 |𝜇𝛼,𝑞 (𝑝) , (1, 𝑞)

)
opt(𝐹𝛼

(
·|𝜇𝛼,𝑞 (𝑝) , (1, 𝑞)

)
)
.(4.D-6)

Combining equations (4.D-3), (4.D-5) and (4.D-6) yields the result. □
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Proof of Lemma 4.D-1. We first start by studying the function 𝑝 → 𝜇𝛼,𝑞 (𝑝). We have

𝜇𝛼,𝑞 (𝑝)

= 1 −

√︃(
𝛼Γ−1

𝛼 (𝑞) (1 − 𝑝)
)2 + 4Γ−1

𝛼 (𝑞) (1 − 𝑝) 𝑞𝛼−1 − 𝛼Γ−1
𝛼 (𝑞) (1 − 𝑝)

2𝑞𝛼−1

= 1 + 𝛼
Γ−1
𝛼 (𝑞) (1 − 𝑝)

2𝑞𝛼−1 −

√︄(
𝛼
Γ−1
𝛼 (𝑞) (1 − 𝑝)

2𝑞𝛼−1

)2

+ 2
Γ−1
𝛼 (𝑞) (1 − 𝑝)

2𝑞𝛼−1

=
1 − 2 (1 − 𝛼) Γ

−1
𝛼 (𝑞) (1−𝑝)

2𝑞𝛼−1

1 + 𝛼 Γ−1
𝛼 (𝑞) (1−𝑝)

2𝑞𝛼−1 +
√︂(

𝛼
Γ−1
𝛼 (𝑞) (1−𝑝)

2𝑞𝛼−1

)2
+ 2Γ−1

𝛼 (𝑞) (1−𝑝)
2𝑞𝛼−1

.

The numerator of the above ratio 𝑝 → 1−2 (1 − 𝛼) Γ
−1
𝛼 (𝑞) (1−𝑝)

2𝑞𝛼−1 is clearly non-decreasing, and the de-

nominator 𝑝 → 1+𝛼 Γ−1
𝛼 (𝑞) (1−𝑝)

2𝑞𝛼−1 +
√︂(

𝛼
Γ−1
𝛼 (𝑞) (1−𝑝)

2𝑞𝛼−1

)2
+ 2Γ−1

𝛼 (𝑞) (1−𝑝)
2𝑞𝛼−1 is clearly non-increasing. There-

fore, by composition, 𝑝 → 𝜇𝛼,𝑞 (𝑝) is non-decreasing and 𝜇𝛼,𝑞 (𝑝) in
[
𝜇𝛼,𝑞

(
1

1+Γ−1
𝛼 (𝑞)

)
, 𝜇𝛼,𝑞 (1)

]
with:

𝜇𝛼,𝑞

(
1

1 + Γ−1
𝛼 (𝑞)

)
= 1 + 𝛼

Γ−1
𝛼 (𝑞)2

2𝑞𝛼−1 (
1 + Γ−1

𝛼 (𝑞)
) −√√√(

𝛼
Γ−1
𝛼 (𝑞)2

2𝑞𝛼−1 (
1 + Γ−1

𝛼 (𝑞)
) )2

+ 2
Γ−1
𝛼 (𝑞)2

2𝑞𝛼−1 (
1 + Γ−1

𝛼 (𝑞)
)

= 1 + 𝛼
Γ−1
𝛼 (𝑞)2

2𝑞𝛼−1 (
1 + Γ−1

𝛼 (𝑞)
) − Γ−1

𝛼 (𝑞)
2𝑞𝛼−1 (

1 + Γ−1
𝛼 (𝑞)

) √︃𝛼2Γ−1
𝛼 (𝑞)2 + 4𝑞𝛼−1 (

1 + Γ−1
𝛼 (𝑞)

)
= 1 +

Γ−1
𝛼 (𝑞)

2𝑞𝛼−1 (
1 + Γ−1

𝛼 (𝑞)
) (
𝛼Γ−1

𝛼 (𝑞) −
√︃
𝛼2Γ−1

𝛼 (𝑞)2 + 4
(
1 + (1 − 𝛼) Γ−1

𝛼 (𝑞)
) (

1 + Γ−1
𝛼 (𝑞)

) )
= 1 +

Γ−1
𝛼 (𝑞)

2𝑞𝛼−1 (
1 + Γ−1

𝛼 (𝑞)
) (
𝛼Γ−1

𝛼 (𝑞) −
√︃(

2 + (2 − 𝛼) Γ−1
𝛼 (𝑞)

)2
)

= 1 −
Γ−1
𝛼 (𝑞)

2𝑞𝛼−1 (
1 + Γ−1

𝛼 (𝑞)
) 2

(
1 + (1 − 𝛼) Γ−1

𝛼 (𝑞)
)
=

1
1 + Γ−1

𝛼 (𝑞)
.

𝜇𝛼,𝑞 (1) = 1 + 𝛼
Γ−1
𝛼 (𝑞) (1 − 1)

2𝑞𝛼−1 −

√︄(
𝛼
Γ−1
𝛼 (𝑞) (1 − 1)

2𝑞𝛼−1

)2

+ 2
Γ−1
𝛼 (𝑞) (1 − 1)

2𝑞𝛼−1 = 1.
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Therefore 𝜇𝛼,𝑞 (𝑝) in
[

1
1+Γ−1

𝛼 (𝑞)
, 1

]
and 𝑝 → 𝜇𝛼,𝑞 (𝑝) is an increasing function in

[
1

1+Γ−1
𝛼 (𝑞)

, 1
]

and,

for any 𝑝 in
[

1
1+Γ−1

𝛼 (𝑞)
, 1

]
, its inverse is given by

𝜇−1
𝛼,𝑞 (𝑝) := 1 − 𝑞𝛼−1 (1 − 𝑝)2

Γ−1
𝛼 (𝑞) (1 − 𝛼 (1 − 𝑝))

.

Next, we will show each point separately.

First point If 𝑞 ≥ 𝑞
𝛼
, we have

𝑅3,𝛼 (𝑝, 𝑞)
𝑅1,𝛼 (𝑝, 𝑞)

=
Γ−1
𝛼 (𝑞)
𝑣̃𝛼

𝜇𝛼,𝑞 (𝑝)
Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑝

)
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝−𝜇𝛼,𝑞 (𝑝)
1−𝜇𝛼,𝑞 (𝑝)

)
(𝑎)
=

Γ−1
𝛼 (𝑞)
𝑣̃𝛼

𝜇𝛼,𝑞 (𝑝) Γ𝛼 ©­«Γ−1
𝛼 (𝑞)

𝑝 − 𝑝−𝜇𝛼,𝑞 (𝑝)
1−𝜇𝛼,𝑞 (𝑝)

1 + (1 − 𝛼) 𝑝−𝜇𝛼,𝑞 (𝑝)1−𝜇𝛼,𝑞 (𝑝) Γ
−1
𝛼 (𝑞)

ª®¬ ,
where in (a), we used the identity Γ𝛼 (𝑥)

Γ𝛼 (𝑦) = Γ𝛼

(
𝑥−𝑦

1+(1−𝛼)𝑦

)
. Let us now focus on simplifying the term

(A) inside Γ𝛼 (·). We have

(𝐴) =
Γ−1
𝛼 (𝑞) 𝜇𝛼,𝑞 (𝑝) (1 − 𝑝)

1 − 𝜇𝛼,𝑞 (𝑝) + Γ−1
𝛼 (𝑞) (1 − 𝛼)

(
𝑝 − 𝜇𝛼,𝑞 (𝑝)

)
(𝑏)
=

Γ−1
𝛼 (𝑞) 𝜇𝛼,𝑞 (𝑝)

𝑞𝛼−1(1−𝜇𝛼,𝑞 (𝑝))2
Γ−1
𝛼 (𝑞)(1−𝛼(1−𝜇𝛼,𝑞 (𝑝)))

1 − 𝜇𝛼,𝑞 (𝑝) + Γ−1
𝛼 (𝑞) (1 − 𝛼)

(
1 − 𝜇𝛼,𝑞 (𝑝) −

𝑞𝛼−1(1−𝜇𝛼,𝑞 (𝑝))2
Γ−1
𝛼 (𝑞)(1−𝛼(1−𝜇𝛼,𝑞 (𝑝)))

)
=

𝑞𝛼−1𝜇𝛼,𝑞 (𝑝)
(
1 − 𝜇𝛼,𝑞 (𝑝)

)
1 − 𝛼

(
1 − 𝜇𝛼,𝑞 (𝑝)

)
+ (1 − 𝛼)

(
Γ−1
𝛼 (𝑞) − 𝛼Γ−1

𝛼 (𝑞)
(
1 − 𝜇𝛼,𝑞 (𝑝)

)
− 𝑞𝛼−1 (

1 − 𝜇𝛼,𝑞 (𝑝)
) )

=
𝑞𝛼−1𝜇𝛼,𝑞 (𝑝)

(
1 − 𝜇𝛼,𝑞 (𝑝)

)
1 + (1 − 𝛼) Γ−1

𝛼 (𝑞) −
(
1 − 𝜇𝛼,𝑞 (𝑝)

) (
𝛼 + 𝛼 (1 − 𝛼) Γ−1

𝛼 (𝑞) − (1 − 𝛼) 𝑞𝛼−1)
=

𝑞𝛼−1𝜇𝛼,𝑞 (𝑝)
(
1 − 𝜇𝛼,𝑞 (𝑝)

)
𝑞𝛼−1 −

(
1 − 𝜇𝛼,𝑞 (𝑝)

)
𝑞𝛼−1 = 1 − 𝜇𝛼,𝑞 (𝑝) ,
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where in (b), we used that

𝑝 = 𝜇−1
𝛼,𝑞

(
𝜇𝛼,𝑞 (𝑝)

)
= 1 −

𝑞𝛼−1 (
1 − 𝜇𝛼,𝑞 (𝑝)

)2

Γ−1
𝛼 (𝑞)

(
1 − 𝛼

(
1 − 𝜇𝛼,𝑞 (𝑝)

) ) .
Therefore we obtain that:

𝑅3,𝛼 (𝑝, 𝑞)
𝑅1,𝛼 (𝑝, 𝑞)

=
Γ−1
𝛼 (𝑞)
𝑣̃𝛼

𝜇𝛼,𝑞 (𝑝) Γ𝛼
(
1 − 𝜇𝛼,𝑞 (𝑝)

)
.

Since 𝑝 → 𝜇𝛼,𝑞 (𝑝) is non-decreasing and Γ𝛼 (·) is non-increasing, then by composition, we

have 𝑝 ↦→ 𝑅13,𝛼,𝑞 (𝑝) = 𝑅3,𝛼 (𝑝,𝑞)
𝑅1,𝛼 (𝑝,𝑞) is non-decreasing in[

𝑟𝛼 (1, 𝑞), 1
]

and 𝑅3,𝛼 (𝑝,𝑞)
𝑅1,𝛼 (𝑝,𝑞) in

[
𝑅13,𝛼,𝑞

(
𝑟𝛼 (1, 𝑞)

)
, 𝑅13,𝛼,𝑞 (1)

]
, we have

𝑅13,𝛼,𝑞
(
𝑟𝛼 (1, 𝑞)

)
=

𝑅3,𝛼

(
1

1+Γ−1
𝛼 (𝑞)

, 𝑞

)
𝑅1,𝛼

(
1

1+Γ−1
𝛼 (𝑞)

, 𝑞

) =

Γ−1
𝛼 (𝑞)

1+Γ−1
𝛼 (𝑞)

Γ𝛼

(
Γ−1
𝛼 (𝑞)

1+Γ−1
𝛼 (𝑞)

)
𝑣̃𝛼

(𝑎)
≤ 1,

where in (a), we used the fact that the revenue function 𝑥 → 𝑥Γ𝛼 (𝑥) is maximized at 𝑥 = 1
𝛼

(with

the convention that for 𝛼 = 0, 1/𝛼 = ∞) and the maximum value achieved is 𝑣̃𝛼. Furthermore, we

have

𝑅13,𝛼,𝑞 (1) =
𝑅3,𝛼 (1, 𝑞)
𝑅1,𝛼 (1, 𝑞)

=
Γ−1
𝛼 (𝑞)
𝑣̃𝛼

.

Note that 𝑅13,𝛼,𝑞 (1) ≥ 1 iff 𝑞 ≤ Γ𝛼 (𝑣̃𝛼). For 𝑞 in (𝑟𝛼 (1, 𝑞), Γ𝛼 (𝑣̃𝛼)), we define 𝑝13,𝛼,𝑞 =

𝑅−1
13,𝛼,𝑞 (1).

Therefore, we have that when 𝑞 in
[
𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)

)
, then 𝑅3,𝛼 (𝑝, 𝑞) ≤ 𝑅1,𝛼 (𝑝, 𝑞) if 𝑝 ≤ 𝑝13,𝛼,𝑞

and 𝑅3,𝛼 (𝑝, 𝑞) ≥ 𝑅1,𝛼 (𝑝, 𝑞) if 𝑝 ≥ 𝑝13,𝛼,𝑞. And if 𝑞 in [Γ𝛼 (𝑣̃𝛼) , 1] then 𝑅1,𝛼 (𝑝, 𝑞) ≥ 𝑅3,𝛼 (𝑝, 𝑞)

for all 𝑝 in
[
𝑟𝛼 (1, 𝑞), 1

]
.
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Second point We have

𝑅1,𝛼 (𝑝, 𝑞)
𝑅2,𝛼 (𝑝, 𝑞)

=
1

𝜇𝛼,𝑞 (𝑝)
Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑝 − 𝜇𝛼,𝑞 (𝑝)
1 − 𝜇𝛼,𝑞 (𝑝)

)
=

1
𝜇𝛼,𝑞 (𝑝)

Γ𝛼

(
Γ−1
𝛼 (𝑞)

(
1 − 1 − 𝑝

1 − 𝜇𝛼,𝑞 (𝑝)

))
(𝑎)
=

1
𝜇𝛼,𝑞 (𝑝)

Γ𝛼

(
Γ−1
𝛼 (𝑞)

(
1 −

𝑞𝛼−1 (
1 − 𝜇𝛼,𝑞 (𝑝)

)
Γ−1
𝛼 (𝑞)

(
1 − 𝛼

(
1 − 𝜇𝛼,𝑞 (𝑝)

) ) ))

=
1

𝜇𝛼,𝑞 (𝑝)
Γ𝛼

©­­«Γ−1
𝛼 (𝑞) −

𝑞𝛼−1(
1

1−𝜇𝛼,𝑞 (𝑝) − 𝛼
) ª®®¬

=
1

𝜇𝛼,𝑞 (𝑝)
Γ𝛼

©­­«Γ−1
𝛼 (𝑞) −

𝑞𝛼−1(
1

1−𝜇𝛼,𝑞 (𝑝) − 𝛼
) ª®®¬ ,

where in (a), we used:

𝑝 = 𝜇−1
𝛼,𝑞

(
𝜇𝛼,𝑞 (𝑝)

)
= 1 −

𝑞𝛼−1 (
1 − 𝜇𝛼,𝑞 (𝑝)

)2

Γ−1
𝛼 (𝑞)

(
1 − 𝛼

(
1 − 𝜇𝛼,𝑞 (𝑝)

) ) .
Therefore, by composition, we have 𝑝 → 𝑅12,𝛼,𝑞 (𝑝) = 𝑅1,𝛼 (𝑝,𝑞)

𝑅2,𝛼 (𝑝,𝑞) is non-increasing in
[
𝑟𝛼 (1, 𝑞), 1

]
and 𝑅1,𝛼 (𝑝,𝑞)

𝑅2,𝛼 (𝑝,𝑞) in
[
𝑅12,𝛼,𝑞 (1) , 𝑅12,𝛼,𝑞

(
𝑟𝛼 (1, 𝑞)

) ]
, we have

𝑅12,𝛼,𝑞
(
𝑟𝛼 (1, 𝑞)

)
=

1
𝑟𝛼 (1, 𝑞)

Γ𝛼
©­­«Γ−1

𝛼 (𝑞) −
𝑞𝛼−1(
1

1−𝑟𝛼 (1,𝑞)
− 𝛼

) ª®®¬
=

(
1 + Γ−1

𝛼 (𝑞)
)
Γ𝛼

©­«Γ−1
𝛼 (𝑞) −

𝑞𝛼−1

1+(1−𝛼)Γ−1
𝛼 (𝑞)

Γ−1
𝛼 (𝑞)

ª®¬
=

(
1 + Γ−1

𝛼 (𝑞)
)
≥ 1,

lim
𝑝→1

𝑅12,𝛼,𝑞 (𝑝) = lim
𝜇→1

1
𝜇
Γ𝛼

©­­«Γ−1
𝛼 (𝑞) −

𝑞𝛼−1(
1

1−𝜇 − 𝛼
) ª®®¬ = 0.

We define 𝑝12,𝛼,𝑞 = 𝑅
−1
12,𝛼,𝑞 (1). Therefore, 𝑅1,𝛼 (𝑝, 𝑞) ≤ 𝑅2,𝛼 (𝑝, 𝑞) if 𝑝 ≤ 𝑝12,𝛼,𝑞 and 𝑅1,𝛼 (𝑝, 𝑞) ≥

𝑅2,𝛼 (𝑝, 𝑞) if 𝑝 ≥ 𝑝12,𝛼,𝑞.
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Third point If 𝑞 belongs to [𝑞
𝛼
, 1], we have

𝑅3,𝛼 (𝑝, 𝑞) =
Γ−1
𝛼 (𝑞)
𝑣̃𝛼

Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑝

)
𝜕𝑅3,𝛼 (𝑝, 𝑞)

𝜕𝑝
=

Γ−1
𝛼 (𝑞)
𝑣̃𝛼

(
Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑝

)
− Γ−1

𝛼 (𝑞) 𝑝Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑝

)2−𝛼
)

=
Γ−1
𝛼 (𝑞)
𝑣̃𝛼

Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑝

) (
1 −

Γ−1
𝛼 (𝑞) 𝑝

1 + (1 − 𝛼) Γ−1
𝛼 (𝑞) 𝑝

)

=


Γ−1
𝛼 (𝑞)2
𝑣̃𝛼

Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑝

) (
1

Γ−1
𝛼 (𝑞)

1+(1−𝛼)Γ−1
𝛼 (𝑞)𝑝

)
if 𝛼 = 0,

𝛼
Γ−1
𝛼 (𝑞)2
𝑣̃𝛼

Γ𝛼
(
Γ−1
𝛼 (𝑞) 𝑝

) (
𝑟𝛼 (1,𝑞)−𝑝

1+(1−𝛼)Γ−1
𝛼 (𝑞)𝑝

)
if 𝛼 ∈ (0, 1] .

Therefore, if 𝑞 in [𝑞
𝛼
, 1], then 𝑟𝛼 (1, 𝑞) ≥ 1 and therefore 𝑅3,𝛼 (·, 𝑞) is non-decreasing in

[
𝑟𝛼 (1, 𝑞), 1

]
.

Fourth point

Case 1: Regular 𝛼 = 0 In this case, the first function is expressed as follows:

𝑅1,0 (𝑝, 𝑞) =
𝑝

𝜇0,𝑞 (𝑝)
(
1 +

(
1
𝑞
− 1

)
𝑝−𝜇0,𝑞 (𝑝)
1−𝜇0,𝑞 (𝑝)

) =
𝑝𝑞

(
𝜇0,𝑞 (𝑝) − 1

)
𝜇0,𝑞 (𝑝)

(
𝑝 (𝑞 − 1) − 𝑞 + 𝜇0,𝑞 (𝑝)

)
with 𝜇0,𝑞 (𝑝) = 1 −

√︃
4
(
𝑞−1 − 1

)
(1 − 𝑝) 𝑞−1

2𝑞−1 = 1 −
√︁
(1 − 𝑝) (1 − 𝑞).
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Therefore

𝑅1,0 (𝑝, 𝑞) =
𝑝(

1 −
√︁
(1 − 𝑝) (1 − 𝑞)

) (
1 +

(
1
𝑞
− 1

)
𝑝−1+
√
(1−𝑝) (1−𝑞)

1−1+
√
(1−𝑝) (1−𝑞)

)
=

𝑝(
1 −

√︁
(1 − 𝑝) (1 − 𝑞)

) (
1 + 1−𝑞

𝑞

𝑝−1+
√
(1−𝑝) (1−𝑞)√

(1−𝑝) (1−𝑞)

)
=

𝑝(
1 −

√︁
(1 − 𝑝) (1 − 𝑞)

) (
1 + 1−𝑞

𝑞

(
1 −
√

1−𝑝√
1−𝑞

))
=

𝑝𝑞(
1 −

√︁
(1 − 𝑝) (1 − 𝑞)

) (
𝑞 + 1 − 𝑞 −

√︁
(1 − 𝑞) (1 − 𝑝)

)
=

𝑝𝑞(
1 −

√︁
(1 − 𝑝) (1 − 𝑞)

)2 .

We have, for all 𝑝 in [𝑞, 1]:

𝜕𝑅1,0

𝜕𝑝
(𝑝, 𝑞) = −

𝑞
√︁

1 − 𝑝
(√︁

1 − 𝑞 −
√︁

1 − 𝑝
)

(1 − 𝑝)
(
1 −

√︁
(1 − 𝑝) (1 − 𝑞)

)3 ≤ 0 ∀𝑝 in [𝑞, 1] ,

and it is easy to see that function 𝑝 → 𝑅2 (𝑝, 𝑞) is non-decreasing.

Case 2: mhr case 𝛼 = 1 For 𝛼 = 1, the first function is expressed as follows:

𝑅1,1 (𝑝, 𝑞) =
𝑝

𝜇1,𝑞 (𝑝)
𝑒
− log(𝑞−1) 𝑝−𝜇1,𝑞 (𝑝)

1−𝜇1,𝑞 (𝑝)

with 𝜇1,𝑞 (𝑝) = 1 −

√︃
log

(
𝑞−1) (1 − 𝑝))2 + 4 log

(
𝑞−1) (1 − 𝑝) − log

(
𝑞−1) (1 − 𝑝)

2

and 𝑝 = 𝜇−1
1,𝑞

(
𝜇1,𝑞 (𝑝)

)
= 1 −

(
1 − 𝜇1,𝑞 (𝑝)

)2

log
(
𝑞−1) 𝜇1,𝑞 (𝑝)

.
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We therefore have

𝑅1,1 (𝑝, 𝑞) =

1 − (1−𝜇1,𝑞 (𝑝))2
log(𝑞−1)𝜇1,𝑞 (𝑝)

𝜇1,𝑞 (𝑝)
𝑒
− log(𝑞−1)

1−𝜇1,𝑞 (𝑝)−
(1−𝜇1,𝑞 (𝑝))2

log(𝑞−1)𝜇1,𝑞 (𝑝)
1−𝜇1,𝑞 (𝑝)

=

(
1

𝜇1,𝑞 (𝑝)
− 1

log
(
𝑞−1) (

1
𝜇1,𝑞 (𝑝)

− 1
)2

)
𝑒
− log(𝑞−1)+ 1

𝜇1,𝑞 (𝑝)
−1

=
𝑞

𝑒 log
(
𝑞−1) (

log
(
𝑞−1)

𝜇1,𝑞 (𝑝)
− 1
𝜇1,𝑞 (𝑝)2

+ 2
𝜇1,𝑞 (𝑝)

− 1

)
𝑒

1
𝜇1,𝑞 (𝑝)

= − 𝑞

𝑒 log
(
𝑞−1) (

1
𝜇1,𝑞 (𝑝)2

−
log

(
𝑞−1) + 2

𝜇1,𝑞 (𝑝)
+ 1

)
𝑒

1
𝜇1,𝑞 (𝑝) =: 𝑅1

(
1

𝜇1,𝑞 (𝑝)

)
,

with

𝑅1 (𝑥) = −
𝑞

𝑒 log
(
𝑞−1) (

𝑥2 −
(
2 + log

(
𝑞−1

))
𝑥 + 1

)
𝑒𝑥 for 𝑥 in

[
1, 1 + log

(
𝑞−1

)]
.

On another hand, we have

𝑑𝑅1 (𝑥)
𝑑𝑥

= − 𝑞

𝑒 log
(
𝑞−1) (

2𝑥 − 2 − log
(
𝑞−1

)
+ 𝑥2 −

(
2 + log

(
𝑞−1

))
𝑥 + 1

)
𝑒𝑥

= − 𝑞

𝑒 log
(
𝑞−1) (

𝑥2 − log
(
𝑞−1

)
𝑥 −

(
1 + log

(
𝑞−1

)))
𝑒𝑥

= − 𝑞

𝑒 log
(
𝑞−1) (𝑥 + 1)

(
𝑥 −

(
1 + log

(
𝑞−1

)))
𝑒𝑥 ≥ 0 ∀𝑥 in

[
1, 1 + log

(
𝑞−1

)]
.

For all 𝑝 in [ 1
1+log(𝑞−1) , 1], we have 𝜇1,𝑞 (𝑝) in [ 1

1+log(𝑞−1) , 1], therefore 1
𝜇1,𝑞 (𝑝) in [1, 1 + log

(
𝑞−1)].

Therefore, by composition, 𝑝 → 𝑅1,1 (𝑝, 𝑞) is non increasing. The function 𝑝 → 𝑅2,1 (𝑝, 𝑞) =

𝑝 is non-decreasing. □
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Proof of Lemma 4.D-2. Case 1: Regular case 𝛼 = 0. In this case, for 𝑞 in (𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)]

𝛼=0
=(

0, 1
2
]
, 𝑝13,0,𝑞 is a solution to the following equation

Γ−1
𝛼 (𝑞)
𝑣̃𝛼

𝜇𝛼,𝑞 (𝑝) Γ𝛼
(
1 − 𝜇𝛼,𝑞 (𝑝)

)
= 1

iff
(

1
𝑞
− 1

)
1 −

√︁
(1 − 𝑝) (1 − 𝑞)

1 +
√︁
(1 − 𝑝) (1 − 𝑞)

= 1

iff
1 − 2𝑞
1 − 𝑞 =

√︁
(1 − 𝑝) (1 − 𝑞)

1 − 𝑞

iff 𝑝 = 𝑝13,0,𝑞 = 1 − (1 − 2𝑞)2

1 − 𝑞 .

and 𝑝12,0,𝑞 is solution to the following equation

1
𝜇𝛼,𝑞 (𝑝)

Γ𝛼
©­­«Γ−1

𝛼 (𝑞) −
𝑞𝛼−1(
1

1−𝜇𝛼,𝑞 (𝑝) − 𝛼
) ª®®¬ = 1

iff
𝑞(

1 −
√︁
(1 − 𝑝) (1 − 𝑞)

)2 = 1

iff
√
𝑞 = 1 −

√︁
(1 − 𝑝) (1 − 𝑞)

iff
√︁
(1 − 𝑝) =

1 − √𝑞√︁
1 − 𝑞

iff 𝑝 = 𝑝12,0,𝑞 = 1 −
(
1 − √𝑞

)2

1 − 𝑞 .

Therefore

𝑝13,0,𝑞 ≤ 𝑝12,0,𝑞 iff 1 − (1 − 2𝑞)2

1 − 𝑞 ≤ 1 −
(
1 − √𝑞

)2

1 − 𝑞
iff (1 − 2𝑞)2 ≥

(
1 − √𝑞

)2

iff 2𝑞 ≤ √𝑞

iff 𝑞 ≤ 1
4

:= 𝑞0.

Furthermore, note that 𝑞0 ∈ [𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)], since 𝑞

𝛼

𝛼=0
= 0 and Γ𝛼 (𝑣̃𝛼)

𝛼=0
= 1

2 .
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Case 2: mhr case 𝛼 = 1. In this case, for 𝑞 in (𝑞
𝛼
, Γ𝛼 (𝑣̃𝛼)]

𝛼=1
=

(
𝑒−1, 𝑒−𝑒

−1
]
, 𝑝13,1,𝑞 is solution

to the following equation

Γ−1
𝛼 (𝑞)
𝑣̃𝛼

𝜇𝛼,𝑞 (𝑝) Γ𝛼
(
1 − 𝜇𝛼,𝑞 (𝑝)

) 𝛼=1
= log

(
𝑞−1

)
𝑒𝜇1,𝑞 (𝑝) 𝑒𝜇1,𝑞 (𝑝)−1 = 1

iff 𝜇1,𝑞 (𝑝) 𝑒𝜇1,𝑞 (𝑝)−1 =
1

log
(
𝑞−1)

iff 𝑝 = 𝑝13,1,𝑞 = 𝜇
−1
1,𝑞

(
𝑊

(
1

log
(
𝑞−1) )) .

And 𝑝12,1,𝑞 is solution to the following equation

1
𝜇𝛼,𝑞 (𝑝)

Γ𝛼
©­­«Γ−1

𝛼 (𝑞) −
𝑞𝛼−1(
1

1−𝜇𝛼,𝑞 (𝑝) − 𝛼
) ª®®¬

𝛼=1
=

1
𝜇1,𝑞 (𝑝)

𝑒

log(𝑞)+ 1
1

1−𝜇1,𝑞 (𝑝)
−1

= 1

iff
1

𝜇1,𝑞 (𝑝)
𝑒

1
𝜇1,𝑞 (𝑝)

𝑞

𝑒
= 1

iff
1

𝜇1,𝑞 (𝑝)
𝑒

1
𝜇1,𝑞 (𝑝) =

𝑒

𝑞

iff 𝑝 = 𝑝12,1,𝑞 = 𝜇
−1
1,𝑞

©­­«
1

𝑊

(
𝑒
𝑞

) ª®®¬ .
Therefore

𝑝13,1,𝑞 ≤ 𝑝12,1,𝑞 iff 𝜇−1
1,𝑞

(
𝑊

(
1

log
(
𝑞−1) )) ≤ 𝜇−1

1,𝑞
©­­«

1

𝑊

(
𝑒
𝑞

) ª®®¬
iff 𝑊

(
1

log
(
𝑞−1) ) ≤ 1

𝑊

(
𝑒
𝑞

) as 𝜇−1
1,𝑞 (.) is increasing

iff 𝑊

(
1

log
(
𝑞−1) )𝑊 (

𝑒

𝑞

)
≤ 1.
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We now study 𝑞 ↦→ 𝑔 (𝑞) := 𝑊
(

1
log(𝑞−1)

)
𝑊

(
𝑒
𝑞

)
in

(
𝑒−1, 𝑒−𝑒

−1
]
, we have

𝑑𝑔 (𝑞)
𝑑𝑞

= −
𝑊

(
𝑒
𝑞

)
𝑊

(
− 1

log(𝑞)

) (
𝑊

(
𝑒
𝑞

)
+ log (𝑞)𝑊

(
− 1

log(𝑞)

)
+ log (𝑞) + 1

)
𝑞 log (𝑞)

(
𝑊

(
𝑒
𝑞

)
+ 1

) (
𝑊

(
− 1

log(𝑞)

)
+ 1

) .

We next analyze the sign of the derivative.

𝑠𝑖𝑔𝑛

(
𝑑𝑔 (𝑞)
𝑑𝑞

)
= 𝑠𝑖𝑔𝑛

(
𝑊

(
𝑒

𝑞

)
+ log (𝑞)𝑊

(
− 1

log (𝑞)

)
+ log (𝑞) + 1

)
= 𝑠𝑖𝑔𝑛 (ℎ (𝑞))

with ℎ (𝑞) := 𝑊

(
𝑒

𝑞

)
+ log (𝑞)𝑊

(
− 1

log (𝑞)

)
+ log (𝑞) + 1

𝑑ℎ (𝑞)
𝑑𝑞

=

(
𝑊

(
𝑒
𝑞

)
+ 1

)
𝑊

(
− 1

log(𝑞)

)2
+𝑊

(
− 1

log(𝑞)

)
+ 1

𝑞

(
𝑊

(
𝑒
𝑞

)
+ 1

) (
𝑊

(
− 1

log(𝑞)

)
+ 1

) ≥ 0 ∀𝑞 in
[
𝑒−1, 𝑒−𝑒

−1
]
.

Therefore 𝑞 ↦→ ℎ (𝑞) is non-decreasing and we have ℎ
(
𝑒−1) = 𝑊

(
𝑒2) −𝑊 (1) > 0. There-

fore 𝑔 is increasing in
(
𝑒−1, 𝑒−𝑒

−1
]
. Furthermore, we have 𝑔

(
𝑒−1) = 𝑊 (1)𝑊

(
𝑒2) < 1 and

𝑔

(
𝑒−𝑒

−1
)
= 𝑊

(
𝑒1+1/𝑒

)
> 1. Therefore there exists a unique 𝑞1 solution in

(
𝑒−1, 𝑒−𝑒

−1
]

to the

equation𝑊
(

1
log(𝑞−1)

)
𝑊

(
𝑒
𝑞

)
= 1.

Therefore, we have, for 𝑞 in
(
𝑒−1, 𝑒−𝑒

−1
]

𝑝13,1,𝑞 ≤ 𝑝12,1,𝑞 iff 𝑔 (𝑞) ≤ 1 iff 𝑞 ≤ 𝑞1.

□

4.E Proofs and auxiliary results for Section 4.5

Proofs and auxiliary results for Section 4.5.1

Proof of Proposition 4.2. Fix 𝛼 in [0, 1], Ψ in P , 𝑞 in (0, 1), 𝑁 > 1, and a finite sequence of

increasing reals A = {𝑎𝑖}𝑁𝑖=1 such that 0 < 𝑎1 ≤ 𝑤 ≤ 𝑎𝑁 . The proof uses two building blocks
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associated with uniformly bounding the losses stemming from truncating a mechanism and the

losses stemming from local transfers of mass in a mechanism.

Define the two mechanisms Ψ𝑎𝑁 in P and ΨA in PA as follows

Ψ𝑎𝑁 (𝑣) =


Ψ(𝑣) if 𝑣 ∈ [0, 𝑎𝑁 ),

1 if 𝑣 ≥ 𝑎𝑁 .

ΨA(𝑥) =



0 if 𝑥 ∈ [0, 𝑎1).

Ψ(𝑎𝑖+1) if 𝑥 ∈ [𝑎𝑖, 𝑎𝑖+1), for 1 ≤ 𝑖 ≤ 𝑁 − 1,

1 if 𝑥 ∈ [𝑎𝑁 ,∞).

Ψ𝑎𝑁 is a truncated version of Ψ at 𝑎𝑁 and ΨA is a discretized and truncated version of Ψ.

Let 𝐹 in F𝛼 (𝑤, 𝑞). Next we analyze 𝑅(Ψ, 𝐹) − 𝑅(ΨA, 𝐹) by decomposing it as follows.

𝑅(Ψ, 𝐹) − 𝑅(ΨA, 𝐹) = 𝑅(Ψ, 𝐹) − 𝑅(Ψ𝑎𝑁 , 𝐹) + 𝑅(Ψ𝑎𝑁 , 𝐹) − 𝑅(ΨA, 𝐹). (4.E-1)

To uniformly bound the maximal losses stemming from truncation 𝑅(Ψ, 𝐹) − 𝑅(Ψ𝑎𝑁 , 𝐹), we

establish the following result, whose proof is deferred to Section 4.E.

Lemma 4.E-1 (Truncation). Fix a mechanism Ψ in P , 𝑏 ≥ 𝑤, 𝑞 in (0, 1) and let

Ψ𝑏 (𝑣) =


Ψ(𝑣) if 𝑣 ∈ [0, 𝑏),

1 if 𝑣 ≥ 𝑏.

Then for any distribution 𝐹 in F𝛼 (𝑤, 𝑞),

𝑅(Ψ𝑏, 𝐹) ≥ 𝑅(Ψ, 𝐹) −
1

𝑞
(
1 + (𝑞−1 − 1)𝑏/𝑤

) 1{𝑏 ≤ 𝑟𝛼 (𝑤, 𝑞)}.

In particular, the result upper bounds the maximal performance losses that can stem from

truncating a pricing mechanism at 𝑏.
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To uniformly bound the the impact of discretization 𝑅(Ψ𝑎𝑁 , 𝐹) − 𝑅(ΨA, 𝐹), we first establish a

result (whose proof is deferred to Section 4.E) that bounds the performance losses stemming from

transferring mass locally in a mechanism.

Lemma 4.E-2 (Local transfer of mass). Fix a mechanism Ψ in P , 0 < 𝜖 < 𝑣, and let

Ψ𝜖,𝑣 (𝑥) =



Ψ(𝑥) if 𝑥 ∈ [0, 𝑣 − 𝜖),

Ψ(𝑣) if 𝑥 ∈ [𝑣 − 𝜖, 𝑣),

Ψ(𝑥) if 𝑥 ≥ 𝑣.

Then, for any distribution 𝐹 in F𝛼 (𝑤, 𝑞)

𝑅(Ψ𝜖,𝑣, 𝐹) ≥ 𝑅(Ψ, 𝐹) −
𝜖

𝑣
(Ψ(𝑣) − Ψ(𝑣 − 𝜖)) .

Applying Lemma 4.E-2 on (𝑣, 𝜖) = (𝑎𝑖, 𝑎𝑖 − 𝑎𝑖−1), 𝑁 − 1 times consecutively for 2 ≤ 𝑖 ≤ 𝑁 on

the mechanism Ψ𝑎𝑁 , we obtain

𝑅(Ψ𝑎𝑁 , 𝐹) − 𝑅(ΨA, 𝐹) ≤
𝑁∑︁
𝑖=2

𝑎𝑖 − 𝑎𝑖−1
𝑎𝑖

(Ψ(𝑎𝑖) − Ψ(𝑎𝑖−1))

(𝑎)
≤ Δ(A)

𝑎1

𝑁∑︁
𝑖=2
(Ψ(𝑎𝑖) − Ψ(𝑎𝑖−1)) =

Δ(A)
𝑎1
(Ψ(𝑎𝑁 ) − Ψ(𝑎1)) ≤

Δ(A)
𝑎1

.

where (𝑎) follows from 𝑎𝑖 − 𝑎𝑖−1 ≤ sup𝑖 (𝑎𝑖 − 𝑎𝑖−1) = 𝜎(A) and 𝑎𝑖 ≥ 𝑎1 > 0. Using Lemma 4.E-1,

we have

𝑅(Ψ𝑏, 𝐹) ≥ 𝑅(Ψ, 𝐹) −
1

𝑞
(
1 + (𝑞−1 − 1)𝑎𝑁/𝑤

) 1{𝑎𝑁 ≤ 𝑟𝛼 (𝑤, 𝑞)}.

Returning to the decomposition in (4.E-1), we have established

𝑅(Ψ, 𝐹) − 𝑅(ΨA, 𝐹) ≤
Δ(A)
𝑎1
+ 1
𝑞(1 +

(
𝑞−1 − 1)𝑎𝑁/𝑤

) 1{𝑎𝑁 ≤ 𝑟𝛼 (𝑤, 𝑞)}.
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Noting that the inequality above applies for any 𝐹 in F𝛼 (𝑤, 𝑞) and that the mechanism ΨA does

not depend on 𝐹, the result follows. □

Proof of Theorem 4.3. This result is a special case of Theorem 4.4.

Proofs of auxiliary results

Proof of Lemma 4.E-1. Let 𝑅𝑒𝑣(𝑞) = 𝑞𝐹−1(1 − 𝑞) denote the revenue curve of associated with 𝐹

in the quantity space. Let 𝑟𝐹 denote the optimal oracle price, 𝑞𝐹 the corresponding quantity, and

recall, from Lemma 4.C-5 that 𝑟𝐹 ≤ 𝑟𝛼 (𝑤, 𝑞). By definition, we have

𝑅(Ψ𝑏, 𝐹) = 𝑅(Ψ, 𝐹) +
∫ +∞

𝑏

𝑅𝑒𝑣(𝑞𝑏) − 𝑅𝑒𝑣(𝑞𝑥)
opt(𝐹) 𝑑Ψ(𝑥).

Case 1. Suppose first 𝑏 > 𝑟𝛼 (𝑤, 𝑞). In this case, then 𝑟𝐹 ≤ 𝑏. Given that 𝐹 is regular, the

revenue curve is monotone for 𝑞 ≤ 𝑞𝑏, and we have 𝑅𝑒𝑣(𝑞𝑏) − 𝑅𝑒𝑣(𝑞𝑥) for 𝑥 ≥ 𝑏. We then have

𝑅(Ψ𝑏, 𝐹) ≥ 𝑅(Ψ, 𝐹).

Case 2. Suppose now that 𝑏 ≤ 𝑟𝛼 (𝑤, 𝑞). In this case, we divide the analysis into two subcases.

Case a). Suppose first that 𝑟𝐹 ≤ 𝑏. We have for any 𝑥 ≥ 𝑏 ≥ 𝑟 , by monotonicity of the revenue

curve, 𝑅𝑒𝑣(𝑞𝑏) − 𝑅𝑒𝑣(𝑞𝑥) ≥ 0, and therefore

𝑅(Ψ𝑏, 𝐹) ≥ 𝑅(Ψ, 𝐹).

Case b). 𝑟𝐹 > 𝑏 We have:

𝑅(Ψ𝑏, 𝐹) ≥ 𝑅(Ψ, 𝐹) +
∫ +∞

𝑏

𝑅𝑒𝑣(𝑞𝑏) − 𝑅𝑒𝑣(𝑞𝑥)
opt(𝐹) 𝑑Ψ(𝑥)

≥ 𝑅(Ψ, 𝐹) +
∫ +∞

𝑏

(
𝑅𝑒𝑣(𝑞𝑏)
opt(𝐹) − 1

)
𝑑Ψ(𝑥)

≥ 𝑅(Ψ, 𝐹) +
(
𝑅𝑒𝑣(𝑞𝑏)
opt(𝐹) − 1

)
. (4.E-2)
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Recall that by assumption 𝑏 ≥ 𝑤 and hence 𝑞𝑏 ≤ 𝑞. Using concavity of the revenue curve in

the quantity space (which follows from regularity of 𝐹), we have

𝑅𝑒𝑣(𝑞𝑏) ≥ 𝑅𝑒𝑣(𝑞𝐹) +
𝑅𝑒𝑣(𝑞) − 𝑅𝑒𝑣(𝑞𝐹)

𝑞 − 𝑞𝐹
(𝑞𝑏 − 𝑞𝐹).

This implies that

𝑅𝑒𝑣(𝑞𝑏)
𝑅𝑒𝑣(𝑞𝐹)

≥ 1 +
(
𝑅𝑒𝑣(𝑞)
𝑅𝑒𝑣(𝑞𝐹)

− 1
)
𝑞𝑏 − 𝑞𝐹
𝑞 − 𝑞𝐹

≥ 𝑞 − 𝑞𝑏
𝑞 − 𝑞𝐹

+ 𝑅𝑒𝑣(𝑞)
𝑅𝑒𝑣(𝑞𝐹)

𝑞𝑏 − 𝑞𝐹
𝑞 − 𝑞𝐹

≥ 𝑞 − 𝑞𝑏
𝑞 − 𝑞𝐹

.

Noting that 𝐹 is regular and using Lemma 4.1, we have

𝑞𝑏 ≤ Γ0

(
Γ−1

0 (𝑞)
𝑏

𝑤

)
=

1
1 + (𝑞−1 − 1)𝑏/𝑤

.

Therefore

𝑅𝑒𝑣(𝑞𝑏)
opt(𝐹) ≥ 𝑞

𝑞 − 𝑞𝐹

(
1 − 1

𝑞
(
1 +

(
𝑞−1 − 1

)
𝑏/𝑤

) ) ≥ 1 − 1
𝑞

(
1 +

(
𝑞−1 − 1

)
𝑏/𝑤

) .
Returning to (4.E-2), we deduce

𝑅(Ψ𝑏, 𝐹) ≥ 𝑅(Ψ, 𝐹) −
1

𝑞(1 + (𝑞−1 − 1)𝑏/𝑤)
.

Combining both cases, the result follows. □

Proof of Lemma 4.E-2. Let 𝑟𝐹 denote the optimal oracle price, 𝑞𝐹 the corresponding quantity. We

have

𝑅(Ψ𝜖,𝑣, 𝐹) = 𝑅(Ψ, 𝐹) +
∫ 𝑣

𝑣−𝜖

𝑅𝑒𝑣(𝑞𝑣−𝜖 ) − 𝑅𝑒𝑣(𝑞𝑥)
opt(𝐹) 𝑑Ψ(𝑥).
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Case 1. Suppose 𝑟𝐹 ≤ 𝑣 − 𝜖 . In this case, using the regularity of 𝐹 and the unimodality of the

revenue curve, we have for any 𝑥 ≥ 𝑣 − 𝜖 ≥ 𝑟𝐹 , 𝑅𝑒𝑣(𝑞𝑣−𝜖 ) − 𝑅𝑒𝑣(𝑞𝑥) ≥ 0, and

𝑅(Ψ𝜖,𝑣, 𝐹) ≥ 𝑅(Ψ, 𝐹).

Case 2. Suppose now 𝑣 − 𝜖 < 𝑟𝐹 ≤ 𝑣. In this case, we have

𝑅(Ψ𝜖,𝑣, 𝐹) = 𝑅(Ψ, 𝐹) +
∫ 𝑣

𝑣−𝜖

𝑅𝑒𝑣(𝑞𝑣−𝜖 ) − 𝑅𝑒𝑣(𝑞𝑥)
𝑜𝑝𝑡 (𝐹) 𝑑Ψ(𝑥)

≥ 𝑅(Ψ, 𝐹) +
∫ 𝑣

𝑣−𝜖

(
𝑅𝑒𝑣(𝑞𝑣−𝜖 )

opt(𝐹) − 1
)
𝑑Ψ(𝑥)

= 𝑅(Ψ, 𝐹) +
(
𝑅𝑒𝑣(𝑞𝑣−𝜖 )

opt(𝐹) − 1
)
(Ψ(𝑣) − Ψ(𝑣 − 𝜖)).

In this case, we have opt(𝐹) = 𝑟𝐹𝑞𝐹 ≤ 𝑣𝑞𝑣−𝜖 . Therefore

𝑅(Ψ𝜖,𝑣, 𝐹) ≥ 𝑅(Ψ, 𝐹) +
(𝑣 − 𝜖
𝑣
− 1

)
(Ψ(𝑣) − Ψ(𝑣 − 𝜖))

≥ 𝑅(Ψ, 𝐹) − 𝜖
𝑣
(Ψ(𝑣) − Ψ(𝑣 − 𝜖)).

Case 3. Suppose now 𝑣 < 𝑟𝐹 . In this case, for any 𝑣 − 𝜖 ≤ 𝑥 ≤ 𝑣 < 𝑟𝐹 , by monotonicity of the

revenue curve, 𝑅𝑒𝑣(𝑞𝑣−𝜖 ) − 𝑅𝑒𝑣(𝑞𝑥) ≤ 0, and furthermore, 𝑅𝑒𝑣(𝑞𝑥) ≤ 𝑅𝑒𝑣(𝑞𝑣) ≤ opt(𝐹). In turn,
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we have

𝑅(Ψ𝜖,𝑣, 𝐹) = 𝑅(Ψ, 𝐹) +
∫ 𝑣

𝑣−𝜖

𝑅𝑒𝑣(𝑞𝑣−𝜖 ) − 𝑅𝑒𝑣(𝑞𝑥)
opt(𝐹) 𝑑Ψ(𝑥)

≥ 𝑅(Ψ, 𝐹) +
∫ 𝑣

𝑣−𝜖

(
𝑅𝑒𝑣(𝑞𝑣−𝜖 )
𝑅𝑒𝑣(𝑞𝑣)

− 𝑅𝑒𝑣(𝑞𝑥)
𝑅𝑒𝑣(𝑞𝑣)

)
𝑑Ψ(𝑥)

≥ 𝑅(Ψ, 𝐹) +
∫ 𝑣

𝑣−𝜖

(
𝑅𝑒𝑣(𝑞𝑣−𝜖 )
𝑅𝑒𝑣(𝑞𝑣)

− 1
)
𝑑Ψ(𝑥)

= 𝑅(Ψ, 𝐹) +
(
𝑅𝑒𝑣(𝑞𝑣−𝜖 )
𝑅𝑒𝑣(𝑞𝑣)

− 1
)
(Ψ(𝑣) − Ψ(𝑣 − 𝜖))

= 𝑅(Ψ, 𝐹) +
(
(1 − 𝜖

𝑣
) 𝑞𝑣−𝜖
𝑞𝑣
− 1

)
(Ψ(𝑣) − Ψ(𝑣 − 𝜖))

≥ 𝑅(Ψ, 𝐹) +
(
(1 − 𝜖

𝑣
) − 1

)
(Ψ(𝑣) − Ψ(𝑣 − 𝜖))

= 𝑅(Ψ, 𝐹) − 𝜖
𝑣
(Ψ(𝑣) − Ψ(𝑣 − 𝜖)).

Combining the three cases yields the result. □

Proofs for Section 4.5.2

Proof of Proposition 4.3. The proof is divided into two steps. In the first step, we will show the

lower bound by analyzing the performance of a specific mechanism. Then in a second step, we will

derive the upper through the analysis of a family of hard cases when 𝑞 is close to 0.

Step 1: Lower bound Let us define the following measure:

𝑑Ψ(𝑢) =



0 if 𝑢 < 𝑤𝑞,

1
𝑢 log( 1

𝑞
) if 𝑢 in [𝑞𝑤, 𝑤)

0 if 𝑢 ≥ 𝑤.

We have that Ψ(𝑢) is a distribution since

∫ ∞

0
𝑑Ψ(𝑢) = 1

log( 1
𝑞
)

∫ 𝑤

𝑤𝑞

1
𝑢
𝑑𝑢 = 1,
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Using Theorem 4.1 and the fact that F𝛼 (𝑤, 𝑞) ⊆ F0(𝑤, 𝑞) for any 𝛼 ∈ [0, 1], we have

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ inf
𝐹∈F0 (𝑤,𝑞)

𝑅(Ψ, 𝐹)

= min

{
inf

𝑥∈[𝑟0 (𝑤,𝑞),𝑤)

1
opt(𝐹0(·|𝑥, (𝑤, 𝑞)))

∫ ∞

0
𝑢𝐹0(𝑢 |𝑥, (𝑤, 𝑞))𝑑Ψ(𝑢),

inf
𝑥∈[𝑤,𝑟0 (𝑤,𝑞)]

1
opt(𝐹0(·|𝑥, (𝑤, 𝑞)))

∫ ∞

0
𝑢𝐹0(𝑢 |𝑥, (𝑤, 𝑞)))𝑑Ψ(𝑢)

}
= min

{
inf

𝑥∈[𝑤𝑞,𝑤)

1
𝑥

[∫ 𝑥

0
𝑢𝑑Ψ(𝑢) +

∫ 𝑤

𝑥

𝑢𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]
,

inf
𝑥∈[𝑤,∞)

1
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫ 𝑥

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)

}
.

We will analyze each term separately depending whether 𝑥 in [𝑤𝑞, 𝑤) or 𝑥 in [𝑤,∞).

Case 1: 𝑥 in [𝑤𝑞, 𝑤) We have

1
𝑥

[∫ 𝑥

0
𝑢𝑑Ψ(𝑢) +

∫ 𝑤

𝑥

𝑢𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]

=
1

𝑥 log( 1
𝑞
)

[∫ 𝑥

𝑤𝑞

𝑢𝑑𝑢 +
∫ 𝑤

𝑥

𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑𝑢
]

=
1

𝑥 log( 1
𝑞
)

[
𝑥 − 𝑤𝑞 +

∫ 𝑤

𝑥

1
1 + (1/𝑞 − 1) 𝑢−𝑥

𝑤−𝑥
𝑑𝑢

]
,

=
1

𝑥 log( 1
𝑞
)

(
𝑥 − 𝑤𝑞 +

[
(𝑤 − 𝑥)

log(1 + (1/𝑞 − 1) 𝑢−𝑥
𝑤−𝑥 )

(1/𝑞 − 1)

]𝑢=𝑤
𝑢=𝑥

)
,

=
1

𝑥 log( 1
𝑞
)

(
𝑥 − 𝑤𝑞 + log( 1

𝑞
) 𝑤 − 𝑥
(1/𝑞 − 1)

)
,
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Hence we get that

1
𝑥

[∫ 𝑥

0
𝑢𝑑Ψ(𝑢) +

∫ 𝑤

𝑥

𝑢𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]

=
1

log( 1
𝑞
)

(
1 + 𝑤𝑞

𝑥
( log(𝑞)
𝑞 − 1

− 1) −
log( 1

𝑞
)

(1/𝑞 − 1)

)
(𝑎)
≥ 1

log( 1
𝑞
)

(
1 + 𝑤𝑞

𝑤
( log(𝑞)
𝑞 − 1

− 1) −
log( 1

𝑞
)

(1/𝑞 − 1)

)
=

1 − 𝑞
log( 1

𝑞
)
,

where (a) is due to the fact that log(𝑞) ≤ 𝑞 − 1 ≤ 0, and 𝑥 ≤ 𝑤.

Hence we conclude that

1
𝑥

[∫ 𝑥

0
𝑢𝑑Ψ(𝑢) +

∫ 𝑤

𝑥

𝑢𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]
≥ 1 − 𝑞

log( 1
𝑞
)
. (4.E-3)

Case 2: 𝑥 in [𝑤,∞) Let us now analyze the second term, we have

1
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫ 𝑥

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)

=
1

𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

[∫ 𝑤

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢) +

∫ 𝑥

𝑤

𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]

=
1

𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) log( 1
𝑞
)

∫ 𝑤

𝑤𝑞

1
1 + ( 1

𝑞
− 1) 𝑢

𝑤

𝑑𝑢 =

[
𝑤 log(1 + ( 1

𝑞
− 1) 𝑢

𝑤
)
]𝑢=𝑤
𝑢=𝑤𝑞

𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) ( 1
𝑞
− 1) log( 1

𝑞
)

=
𝑤

( 1
𝑞
− 1) log( 1

𝑞
)
(log( 1

𝑞
) − log(2 − 𝑞)) 1

𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

=
𝑤

( 1
𝑞
− 1)
(1 − log(2 − 𝑞)

log( 1
𝑞
)
) 1
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

.

The revenue function 𝑥 → 𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) is non-decreasing in [0, +∞), therefore

𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) ≤ lim
𝑥→+∞

𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) =
𝑤

( 1
𝑞
− 1)

.
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Hence

1
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫ 𝑥

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢) ≥ (1 − log(2 − 𝑞)

log( 1
𝑞
)
), (4.E-4)

By combining (4.E-3) and (4.E-3), we get that

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ min

(
1 − 𝑞

log( 1
𝑞
)
, 1 − log(2 − 𝑞)

log( 1
𝑞
)

)
.

For 𝑞 in [0, 1 − 1√
2
], we have

1 − 𝑞
log( 1

𝑞
)
≥

1√
2

log( 1
𝑞
)
≥ log(2)

log( 1
𝑞
)

and

1 − log(2 − 𝑞)
log( 1

𝑞
)

=
log( 1

𝑞(2−𝑞) )

log( 1
𝑞
)

=
log( 1

1−(1−𝑞)2 )

log( 1
𝑞
)

≥
log( 1

1−( 1√
2
)2 )

log( 1
𝑞
)

=
log(2)
log( 1

𝑞
)
.

Hence we we get that

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ log(2)
log( 1

𝑞
)
.

This conclude the lower bound.

Step 2: Upper bound Let 𝑞 in (0, 1) and 𝐾 in N∗. Define 𝜀 = 𝑞
1
𝐾 in (𝑞, 1) and 𝑎𝑘 = 𝑤𝜀𝑘 in [𝑞𝑤, 𝑤)

for 𝑘 = 1 · · ·𝐾 . Consider the family of distributions 𝐹0(·|𝑎𝑘 , (𝑤, 𝑞)) in F0(𝑤, 𝑞).
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Using Yao’s principle [126], we have

sup
Ψ∈P

inf
𝐹∈F0 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≤ sup
𝑝≥0

1
𝐾

𝐾∑︁
𝑖=1

𝑝𝐹̄0(𝑝 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

=
1
𝐾

max
1≤𝑘≤𝐾

sup
𝑝∈[𝑎𝑘+1,𝑎𝑘)

𝐾∑︁
𝑖=1

𝑝𝐹̄0(𝑝 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

. (4.E-5)

Now let’s analyze the sup on each interval [𝑎𝑘+1, 𝑎𝑘 ). For all 1 ≤ 𝑘 ≤ 𝐾, the revenue curve

associated with 𝐹̄0(·|𝑎𝑖, (𝑤, 𝑞)) is monotone non-increasing on [𝑎𝑖, 𝑤) as the optimal reserve price

of 𝐹0(·|𝑎𝑖, (𝑤, 𝑞)) is 𝑎𝑖.

Furthermore, the revenue curve is convex in [0, 𝑤) as we have:

(𝑝𝐹̄0(𝑝 |𝑎𝑖, (𝑤, 𝑞)))
′

=



1 if 𝑝 ≤ 𝑎𝑖
𝑤(1− 𝑎𝑖

𝑤𝑞
)

(𝑤−𝑎𝑖) (1+( 1
𝑞
−1) 𝑝−𝑎𝑖

𝑤−𝑎𝑖
)2 if 𝑝 < 𝑤

0 if 𝑝 ≥ 𝑤.

Therefore the derivative of the revenue function 𝑝𝐹̄0(𝑝 |𝑎𝑖, (𝑤, 𝑞)) is non-decreasing because 𝑎𝑖 ≥

𝑤𝑞 and 𝑝 ↦→ 1
(𝑤−𝑎𝑖) (1+( 1

𝑞
−1) 𝑝−𝑎𝑖

𝑤−𝑎𝑖
)2 is non-increasing. Hence the function

𝑝 ↦→
𝐾∑︁
𝑖=1

𝑝𝐹̄0(𝑝 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

is convex on [𝑎𝑘+1, 𝑎𝑘 ). Thus, the sup on an interval must be attained at one of the extreme points

of the interval.

Therefore by (4.E-5), we have that

sup
Ψ∈P

inf
𝐹∈F0 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≤ sup
𝑝≥0

𝐺 (𝑝) =
1
𝐾

max
1≤𝑘≤𝐾

𝐾∑︁
𝑖=1

𝑎𝑘 𝐹̄0(𝑎𝑘 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

. (4.E-6)

Now let us analyze the elementary term, 𝑎𝑘 𝐹̄0 (𝑎𝑘 |𝑎𝑖 ,(𝑤,𝑞))
opt(𝐹0 (·|𝑎𝑖 ,(𝑤,𝑞))) for any 𝑖, 𝑘 . Note that opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)) =

𝑎𝑖 by Lemma 4.C-4.
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There are two cases of interest either 𝑖 ≤ 𝑘 or 𝑖 > 𝑘 , let us analyze each case separately.

Case 1, 𝑖 ≤ 𝑘: We have 𝐹̄0(𝑎𝑘 |𝑎𝑖, (𝑤, 𝑞)) = 1, thus

𝑎𝑘 𝐹̄0,𝑎𝑖 ,𝑤,𝑞 (𝑎𝑘 )
opt(𝐹0,𝑎𝑖 ,𝑤,𝑞)

=
𝑎𝑘

𝑎𝑖
= 𝜀𝑘−𝑖,

which implies that

𝑘∑︁
𝑖=1

𝑎𝑘 𝐹̄0(𝑎𝑘 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

=

𝑘∑︁
𝑖=1

𝜀𝑘−𝑖 =
𝑘−1∑︁
𝑖=0

𝜀𝑖 =
1 − 𝜀𝑘
1 − 𝜀 ≤

1
1 − 𝜀 .

Hence we conclude that

𝑘∑︁
𝑖=1

𝑎𝑘 𝐹̄0(𝑎𝑘 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

≤ 1
1 − 𝜀 . (4.E-7)

Case 2, 𝑖 ≥ 𝑘: We have that

𝑎𝑘 𝐹̄0(𝑎𝑘 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

=
𝑎𝑘

𝑎𝑖

1
1 + ( 1

𝑞
− 1) 𝑎𝑘−𝑎𝑖

𝑤−𝑎𝑖
= 𝜀𝑘−𝑖

1 − 𝜀𝑖

1 − 𝜀𝑖 + 1
𝑞
(𝜀𝑘 − 𝜀𝑖) − 𝜀𝑘 + 𝜀𝑖

= 𝜀𝑘−𝑖
1 − 𝜀𝑖

1 − 𝜀𝑘 + 1
𝑞
(𝜀𝑘 − 𝜀𝑖)

=
𝜀−𝑖 − 1

(𝜀−𝑘 − 1) + 1
𝑞
(1 − 𝜀𝑖−𝑘 )

≤ 𝜀−𝑖 − 1
(𝜀−𝑘 − 1) + 1

𝑞
(1 − 𝜀)

,

where in the last inequality we used the fact that 𝜀 ≤ 1.
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Hence we conclude that

𝐾∑︁
𝑖=𝑘+1

𝑎𝑘 𝐹̄0(𝑎𝑘 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

≤
𝐾∑︁

𝑖=𝑘+1

𝜀−𝑖 − 1
(𝜀−𝑘 − 1) + 1

𝑞
(1 − 𝜀)

(𝑎)
≤ 1

1
𝜀
− 1

1
𝜀𝐾+1
− 1
𝜀𝑘+1

(𝜀−𝑘 − 1) + 1
𝑞
(1 − 𝜀)

≤ 1
1 − 𝜀

1
𝜀𝐾
− 1
𝜀𝑘

(𝜀−𝑘 − 1) + 1
𝑞
(1 − 𝜀)

(𝑏)
≤ 1

1 − 𝜀

1
𝑞

(𝜀−𝑘 − 1) + 1
𝑞
(1 − 𝜀)

,

where in (a) we used 𝜀−𝑖 − 1 ≤ 𝜀−𝑖 and (b) we used the fact that 𝜀 ≥ 0 and that 𝜀𝐾 = 𝑞. From the

last inequality we conclude that

𝐾∑︁
𝑖=𝑘+1

𝑎𝑘 𝐹̄0(𝑎𝑘 |𝑎𝑖, (𝑤, 𝑞))
opt(𝐹0(·|𝑎𝑖, (𝑤, 𝑞)))

≤ 1
1 − 𝜀

1
𝑞(𝜀−𝑘 − 1) + (1 − 𝜀)

≤ 1
(1 − 𝜀)2

. (4.E-8)

By combining the last two cases, in particular (4.E-6), (4.E-7) and (4.E-8), we get that

sup
Ψ∈P

inf
𝐹∈F0 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≤ 1
𝐾

(
1

1 − 𝜀 +
1

(1 − 𝜀)2

)
.

By choosing 𝐾 = log(1/𝑞), thus 𝜀 = 𝑒−1, we get:

sup
Ψ∈P

inf
𝐹∈F0 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≤ 𝑐2
log(1/𝑞) with 𝑐2 =

1
1 − 𝑒−1

(
1 + 1

1 − 𝑒−1

)
This concludes the proof. □

Proof of Proposition 4.4. This proof is divided into two steps. In the first step, we will show the

lower bound by analyzing the performance of a specific mechanism. Then in a second step, we will

derive the upper through the analysis of a family of hard cases when 𝑞 is close to 1.

Throughout the proof we will assume that 𝑞 ≥ 3/4 since we are interested in the limit when

when 𝑞 is close to 1.
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Step 1: Lower bound Let us define the following measure parameterized by 𝑎, 𝑏 ≥ 0:

𝑑Ψ(𝑢) =


𝑎 if 𝑢 = 𝑤

𝑏
(𝑢𝐺0,𝑢 (𝑢 | (0,1),(𝑤,𝑞)))′

𝑢𝐺0,𝑢 (𝑢 | (0,1),(𝑤,𝑞))
if 𝑢 > 𝑤.

Note that 𝑑Ψ(𝑢) ≥ 0 since the revenue function 𝑢 → 𝑢𝐺0,𝑢 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢) is increasing

in [𝑤,∞). Let us determine the condition on the parameters 𝑎 and 𝑏 so that Ψ is a distribution. For

that we need the following

∫ ∞

0
𝑑Ψ(𝑢) = 1,

which implies that

𝑎 + 𝑏 log

(
lim𝑢→∞ 𝑢𝐺0,𝑢 (𝑢 | (0, 1), (𝑤, 𝑞))

𝑤𝐺0,𝑤 (𝑤 | (0, 1), (𝑤, 𝑞))

)
= 1.

Since 𝐺0,𝑤 (𝑤 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢) = 𝑞 and lim𝑢→∞ 𝑢𝐺0,𝑢 (𝑢 | (0, 1), (𝑤, 𝑞)) = 𝑤
1
𝑞
−1 , we get that

𝑎 + 𝑏 log
(

1
1 − 𝑞

)
= 1.

Hence the relation between 𝑎 and 𝑏 is as follows

𝑏 =
1 − 𝑎

log
(

1
1−𝑞

) and 𝑎 in [0, 1] .
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Using Theorem 4.1, we have

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ inf
𝐹∈F0 (𝑤,𝑞)

𝑅(Ψ, 𝐹)

= min

{
inf

𝑥∈[𝑤𝑞,𝑤)

1
𝑥

[∫ 𝑥

0
𝑢𝑑Ψ(𝑢) +

∫ 𝑤

𝑥

𝑢𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]
,

inf
𝑥∈[𝑤,∞)

1
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫ 𝑥

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)

}
.(4.E-9)

We will analyze each term separately depending if 𝑥 in [𝑤𝑞, 𝑤) or 𝑥 in [𝑤,∞).

Case 1: 𝑥 in [𝑤𝑞, 𝑤) We have

1
𝑥

[∫ 𝑥

0
𝑢𝑑Ψ(𝑢) +

∫ 𝑤

𝑥

𝑢𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]
(𝑎)
=
𝑎𝑞

𝑥
≥ 𝑎𝑞,

where the last inequality is due to the fact that 𝑥 ≤ 𝑤 and (𝑎) is due to 𝑑Ψ(𝑢) = 0 for 𝑢 < 𝑤,

𝑑Ψ(𝑤) = 𝑎 and 𝐺0,𝑤 (𝑤 | (𝑥, 1), (𝑤, 𝑞)) = 𝑞.

Hence we conclude that

inf
𝑥∈[𝑤𝑞,𝑤)

1
𝑥

[∫ 𝑥

0
𝑢𝑑Ψ(𝑢) +

∫ 𝑤

𝑥

𝑢𝐺0,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]
≥ 𝑎𝑞. (4.E-10)

Case 2: 𝑥 in [𝑤,∞) Let us now analyze the second term, we have

∫ 𝑥

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)

=

∫ 𝑤

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢) +

∫ 𝑥

𝑤

𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)

(𝑎)
= 𝑎𝑞 + 𝑏

∫ 𝑥

𝑤

𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))
(𝑢𝐺0,𝑢 (𝑢 | (0, 1), (𝑤, 𝑞)))′

𝑢𝐺0,𝑢 (𝑢 | (0, 1), (𝑤, 𝑞))
𝑑𝑢

= 𝑎𝑤𝑞 + 𝑏
[
𝑢𝐺0,𝑢 (𝑢 | (0, 1), (𝑤, 𝑞))

]𝑥
𝑤

≥ 𝑎𝑤𝑞 + 𝑏
(
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) − 𝑤𝑞

)
,
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(𝑎) is due to 𝑑Ψ(𝑢) = 0 for 𝑢 < 𝑤, 𝑑Ψ(𝑤) = 𝑎 and 𝑤𝐺0,𝑤 (𝑤 | (0, 1), (𝑤, 𝑞)) = 𝑤𝑞. Hence we

conclude that

1
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫ 𝑥

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢) ≥ 𝑤𝑞

𝑎 − 𝑏
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

+ 𝑏

≥ (𝑎 − 𝑏) (1 − 𝑞) + 𝑏,

where the last inequality we used the fact that 𝑥 → 𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) is non-decreasing in

[𝑤,∞) and that lim𝑥→∞ 𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞)) = 𝑤𝑞

1−𝑞 .

Thus we conclude that

inf
𝑥 in [𝑤,+∞)

1
𝑥𝐺0,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫ 𝑥

0
𝑢𝐺0,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)

≥ (𝑎 − 𝑏) (1 − 𝑞) + 𝑏. (4.E-11)

By combining (4.E-9), (4.E-10) and (4.E-11) we get that

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ min{𝑎𝑞, (𝑎 − 𝑏) (1 − 𝑞) + 𝑏}.

Now let us set

𝑎 =
𝑞

2(𝑞 − 1
2 ) log

(
1

1−𝑞

)
+ 𝑞

.

Note that 𝑎 in [0, 1] as 𝑞 in [3/4, 1], this also leads to the fact that

(𝑎 − 𝑏) (1 − 𝑞) + 𝑏 = 𝑎𝑞 =
𝑞2

2(𝑞 − 1
2 ) log

(
1

1−𝑞

)
+ 𝑞

(𝑎)
≥ 9

16
1

2(1 − 1
2 ) log

(
1

1−𝑞

)
+ 1

=
9

16(log
(

1
1−𝑞

)
+ 1)

(𝑏)
≥ 9

32
1

log
(

1
1−𝑞

) ,
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where inequality (a) stems from the fact 𝑞 in [3/4, 1], and in (b) we have used log
(

1
1−𝑞

)
≥ 1.

Hence we we get that

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ 9
32

1

log
(

1
1−𝑞

) .
This conclude the lower bound.

Step 2: Upper bound To show the upper bound we will introduce a family of “hard” cases.

We consider the family of distributions (𝐹0(·|𝑟, (𝑤, 𝑞)) in F0(𝑤, 𝑞))𝑟≥𝑤 and the following weight

distribution:

𝑑𝜆(𝑟) =


0 if 𝑟 < 𝑤

1
log

(
1

1−𝑞

) (𝑟𝐺0,𝑟 (𝑟 | (0,1),(𝑤,𝑞)))′

𝑟𝐺0,𝑟 (𝑟 | (0,1),(𝑤,𝑞))
if 𝑟 ≥ 𝑤

One can verify that
∫ ∞

0 𝑑𝜆(𝑟) = 1 and that 𝑑𝜆(𝑟) ≥ 0. Let us define

𝐺 (𝑝) =

∫ ∞

0

𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹0(·|𝑟, (𝑤, 𝑞)))

𝑑𝜆(𝑟).

Using Yao’s principle [126], we have

sup
Ψ∈P

inf
𝐹∈F0 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≤ sup
𝑝≥0

𝐺 (𝑝) = sup
𝑝≥0

∫ ∞

0

𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹0(·|𝑟, (𝑤, 𝑞)))

𝑑𝜆(𝑟). (4.E-12)

Note that

sup
𝑝≥0

∫ ∞

0

𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹0(·|𝑟, (𝑤, 𝑞)))

𝑑𝜆(𝑟) = sup
𝑝≥0

∫ ∞

𝑤

𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹0(·|𝑟, (𝑤, 𝑞)))

𝑑𝜆(𝑟)

= sup
𝑝≥𝑤

∫ ∞

𝑤

𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹0(·|𝑟, (𝑤, 𝑞)))

𝑑𝜆(𝑟),

163



where the last equality follows from the fact that 𝑝 ↦→ 𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞)) is increasing on [0, 𝑤] for

any 𝑟 ≥ 𝑤.

Fix 𝑝 ≥ 𝑤 and let us analyze the integral term. We have

∫ ∞

𝑤

𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞))
opt(𝐹0(·|𝑟, (𝑤, 𝑞)))

𝑑𝜆(𝑟)

=

∫ ∞

𝑝

𝑝𝐹0(𝑝 |𝑟, (𝑤, 𝑞))
𝑟𝐺0,𝑟 (𝑟 | (0, 1), (𝑤, 𝑞))

1

log
(

1
1−𝑞

) (𝑟𝐺0,𝑟 (𝑟 | (0, 1), (𝑤, 𝑞)))′

𝑟𝐺0,𝑟 (𝑟 | (0, 1), (𝑤, 𝑞))
𝑑𝑟

=
1

log
(

1
1−𝑞

) 𝑝𝐺0,𝑝 (𝑝 | (0, 1), (𝑤, 𝑞))
∫ ∞

𝑝

(𝑟𝐺0,𝑟 (𝑟 | (0, 1), (𝑤, 𝑞)))′

(𝑟𝐺0,𝑟 (𝑟 | (0, 1), (𝑤, 𝑞)))2
𝑑𝑟

=
1

log
(

1
1−𝑞

) 𝑝𝐺0,𝑝 (𝑝 | (0, 1), (𝑤, 𝑞))
(

1
𝑝𝐺0,𝑝 (𝑝 | (0, 1), (𝑤, 𝑞))

− lim
𝑟→∞

1
𝑟𝐺0,𝑟 (𝑟 | (0, 1), (𝑤, 𝑞))

)

=
1

log
(

1
1−𝑞

) (
1 −

(
1
𝑞
− 1

)
𝑝𝐺0,𝑝 (𝑝 | (0, 1), (𝑤, 𝑞))

𝑤

)
≤ 1

log
(

1
1−𝑞

) .
By using the last inequality, together with (4.E-12), we obtain the result. □

4.F Proofs and auxiliary results for Section 4.6

Proof of Theorem 4.4. We aim to show that one can approximate the value of the maximin ratio

via lower and upper bounds and we quantify the asymptotic error of this approximation as a function

of the grid size 𝑁 > 0.

We will do that in different steps:

• In a first step, we extend previous results to the interval uncertainty case:

– We will first show in Proposition 4.F-1 that in the interval uncertainty case, we reduce

the family of worst case distributions by generalizing Theorem 4.1.

– Under such a reduction, we then show in Proposition 4.F-2 that we can still approximate

the performance of any mechanism by its discrete version by generalizing Proposi-

tion 4.2.

164



• In a second step, we derive lower bounds on the maximin ratio in the form of linear programs.

• In a third step, we show that through an appropriate choice of the support of a discrete

mechanism, one can approximate the maximin ratio arbitrarily closely through the lower

bound.

Step 1. We first reduce the possible set of worst-cases to consider by extending Theorem 4.1.

For that, let us define the following subset of distributions

S𝛼,𝑤,𝑞𝑙 ,𝑞ℎ =
{
𝐹𝛼 (·|𝑟, (𝑤, 𝑞𝑙)) : 𝑟 in

[
𝑟𝛼 (𝑤, 𝑞𝑙), 𝑤

)}
∪ {𝐹𝛼 (·|𝑟, (𝑤, 𝑞ℎ)) : 𝑟 in [𝑤, 𝑟𝛼 (𝑤, 𝑞ℎ)]} .(4.F-1)

where we use the convention that whenever 𝑟𝛼 (𝑤, 𝑞ℎ) < 𝑤, [𝑤, 𝑟𝛼 (𝑤, 𝑞ℎ)] := ∅. We have the

following result, whose proof is deferred to Section 4.F.

Proposition 4.F-1. For any 𝑞𝑙 , 𝑞ℎ in (0, 1)2 such that 𝑞𝑙 ≤ 𝑞ℎ, and for any subset of mechanisms

P ′ ⊆ P ,

R(P ′,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) = R(P ′, S𝛼,𝑤,𝑞𝑙 ,𝑞ℎ).

In addition, the next proposition generalizes Proposition 4.2, and its proof is deferred to

Section 4.F.

Proposition 4.F-2. Let 𝑞𝑙 , 𝑞ℎ in (0, 1)2 such that 𝑞𝑙 ≤ 𝑞ℎ. Fix a mechanism Ψ in P , 𝑁 > 1, and

any finite sequence of increasing reals A = {𝑎𝑖}𝑁𝑖=0 such that 𝑎0 = 𝑟𝛼 (𝑤, 𝑞𝑙), 𝑎𝑁 ≥ 𝑤. Then there

exists ΨA in PA such that

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(ΨA, 𝐹) ≥ inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) − Δ(A)
𝑟𝛼 (𝑤, 𝑞𝑙)

− 1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞ℎ)}
𝑞ℎ (1 + (𝑞−1

ℎ
− 1)𝑎𝑁/𝑤)

,

where Δ(A) = sup𝑖{𝑎𝑖 − 𝑎𝑖−1}.

Step 2. Fix an arbitrary sequence of increasing reals A = {𝑎𝑖}2𝑁+1𝑖=0 such that 𝑎0 = 𝑟𝛼 (𝑤, 𝑞𝑙),

𝑎𝑁+1 = 𝑤 and 𝑎2𝑁+1 ≤ 𝑟𝛼 (𝑤, 𝑞ℎ). Set 𝑎2𝑁+2 := 𝑟𝛼 (𝑤, 𝑞ℎ). Note that 𝑟𝛼 (𝑤, 𝑞ℎ) = ∞ when
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𝛼 = 0. With some abuse of notation, we will use intervals that include 𝑟𝛼 (𝑤, 𝑞ℎ). These should be

interpreted as open when 𝛼 = 0.

We next develop a lower bound on the maximin ratio R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) in the form

of a linear program. Fix a mechanism Ψ in PA and denote by 𝑝0, ..., 𝑝2𝑁+1 the corresponding

probabilities. We set 𝑝2𝑁+2 := 0. Using Proposition 4.F-1. Then we have:

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹)

= min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞𝑙),𝑤)

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞ℎ)]

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)))𝑑Ψ(𝑢)

}
= min

{
min

𝑖=0,··· ,𝑁
inf

𝑥∈[𝑎𝑖 ,𝑎𝑖+1)

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

min
𝑖=𝑁+1,··· ,2𝑁+1

inf
𝑥∈[𝑎𝑖 ,𝑎𝑖+1]

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)))𝑑Ψ(𝑢)

}
.

Note that, for 𝑥 ∈ [𝑟𝛼 (𝑤, 𝑞𝑙), 𝑤), 𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)) is non-decreasing in 𝑥 and that the revenue

function 𝑢 ↦→ 𝑢𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)) is increasing in 𝑢 on [0, 𝑥) and decreasing on (𝑥, 𝑤). In addition,

note that, for 𝑥 ∈ [𝑤, 𝑟𝛼 (𝑤, 𝑞ℎ)], the revenue function 𝑢 ↦→ 𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)) is non-decreasing

on [0, 𝑥]. We let opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙))) = lim𝑥→𝑎−
𝑖+1

opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙))) for any 𝑖 = 0, · · · , 𝑁 .

Hence, we have

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) ≥ min

{
min

𝑖=0,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑎𝑖, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

min
𝑖=𝑁+1,··· ,2𝑁+1

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑎𝑖, (𝑤, 𝑞ℎ))𝑑Ψ(𝑢)

}
= min

{
min

𝑖=0,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))𝑝 𝑗 ,

min
𝑖=𝑁+1,··· ,2𝑁+1

1
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞ℎ))𝑝 𝑗

}
,(4.F-2)
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where the equality simply stems from the fact that Ψ in PA. The problem of maximizing over

mechanisms in PA is clearly lower bounded by the problem of maximizing the RHS above over

𝑝0, ..., 𝑝2𝑁+1. The latter problem admits exactly LP-int as its epigraph formulation, and hence we

have

R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≥ L𝛼,𝑞𝑙 ,𝑞ℎ,A.

Step 3. We next establish that with a proper choice of sequence A, L𝛼,𝑞𝑙 ,𝑞ℎ,A may be arbitrarily

close to the maximin ratio R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])). To do so, we will first develop an upper bound

on R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])). Then, we will construct a particular sequence A and establish for this

sequence, the gap between R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) and L𝛼,𝑞𝑙 ,𝑞ℎ,A is small and that the gap between

R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) and R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) is also small. This will yield the result.

Suppose that 𝑎0 > 0. Following the same reasoning as in step 2 above, we may also obtain an

upper bound on inf𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ]) 𝑅(Ψ, 𝐹). Indeed, we have

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) ≤ min

{
min

𝑖=0,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

min
𝑖=𝑁+1,··· ,2𝑁+1

1
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑑Ψ(𝑢)

}
= min

{
min

𝑖=0,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞𝑙)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗 ,

min
𝑖=𝑁+1,··· ,2𝑁+1

1
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑝 𝑗

}
.

With 𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞𝑙)) = lim𝑥→𝑎−
𝑖+1
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞𝑙)) for any 𝑢 ≥ 0 and 𝑖 = 0, · · · , 2𝑁 + 1.

The problem of maximizing over mechanisms in PA is clearly upper bounded by the problem of

maximizing the RHS above over 𝑝0, ..., 𝑝2𝑁+1. The epigraph formulation of the latter problem can

be written as
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L𝛼,𝑞𝑙 ,𝑞ℎ,A = max
p,𝑐

𝑐 (LP-int-up)

𝑠.𝑡.
1

opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞𝑙)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗 ≥ 𝑐 𝑖 = 0, ...𝑁,

1
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑝 𝑗 ≥ 𝑐 𝑖 = 𝑁 + 1, ...2𝑁 + 1,

2𝑁+1∑︁
𝑗=0

𝑝 𝑗 ≤ 1, 𝑝𝑖 ≥ 0 𝑖 = 0, ...2𝑁 + 1.

Therefore, we have

R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A.

Hence, we have established the following.

L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A.

We next quantify the gap L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A as a function the discretization grid size 𝑁 for a

particular sequence. For 𝑁 > 1, 𝑏 = 𝑟𝛼 (𝑤, 𝑞ℎ) if 𝛼 ∈ (0, 1], 𝑏 > 𝑤 if 𝛼 = 0 and 𝜂 in (0, 𝑟𝛼 (𝑤, 𝑞𝑙)),

consider the following finite sequence of prices A = {𝑎𝑖}2𝑁+1𝑖=0 in [𝑟𝛼 (𝑤, 𝑞𝑙),min{𝑏, 𝑟𝛼 (𝑤, 𝑞ℎ)}]:

𝑎𝑖 =


𝑟𝛼 (𝑤, 𝑞𝑙) +

𝑖
𝑁

(
(𝑤 − 𝜂) − 𝑟𝛼 (𝑤, 𝑞𝑙)

)
if 0 ≤ 𝑖 ≤ 𝑁,

𝑤 + 𝑖−(𝑁+1)
𝑁
(min{𝑏, 𝑟𝛼 (𝑤, 𝑞ℎ)} − 𝑤) if 𝑁 + 1 ≤ 𝑖 ≤ 2𝑁 + 1.

When fixing the probability weights p, let 𝑐(p) denote the maximum value achievable (as a

function of 𝑐) in the inner problem in (LP-int). In particular, it can be expressed as the minimum

in (4.F-2).
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Let p correspond be a probability weight vector corresponding to an optimal solution to the

upper bound linear program (LP-int-up). We have

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A − 𝑐(p).

We next analyze upper bound the gap L𝛼,𝑞𝑙 ,𝑞ℎ,A − 𝑐(p) as a function of the constraints that lead to

the minimum value when solving 𝑐(p).

Case 1: If 𝑐(p) = 1
opt(𝐹𝛼 (·|𝑎−𝑖+1,(𝑤,𝑞𝑙)))

∑2𝑁+1
𝑗=0 𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))𝑝 𝑗 for some 0 ≤ 𝑖 ≤ 𝑁 − 1.

Then we have

L𝛼,𝑞𝑙 ,𝑞ℎ,A − 𝑐(p)

= L𝛼,𝑞𝑙 ,𝑞ℎ,A −
1

opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))𝑝 𝑗

≤ 1
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞𝑙)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗

− 1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))𝑝 𝑗

=

(
1

opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞𝑙)))
− 1

opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

) 2𝑁∑︁
𝑗=0
𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗

+ 1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗

[
𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙)) − 𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))

]
𝑝 𝑗

=

(
𝑎𝑖+1 − 𝑎𝑖

𝑎𝑖

) 2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖+1, (𝑤, 𝑞𝑙))
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞𝑙)))

𝑝 𝑗

+ 1
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞𝑙)))

𝑁+1∑︁
𝑗=𝑖+1

𝑎 𝑗

[
𝐹𝛼 (𝑎 𝑗 |𝑎𝑖+1, (𝑤, 𝑞𝑙)) − 𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))

]
𝑝 𝑗 ,

where in the last equality, we have used that 𝑎𝑖+1 = opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙))) for 0 ≤ 𝑖 ≤ 𝑁 − 1

(cf. Lemma 4.C-2), 𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)) = 𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞𝑙)) for 0 ≤ 𝑖 ≤ 𝑁 − 1 and the fact that

𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞𝑙)) = 𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞𝑙)) on [0, 𝑎𝑖] and on (𝑤, +∞). We analyze the two terms on the
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RHS above separately.

(
𝑎𝑖+1 − 𝑎𝑖

𝑎𝑖

) 2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖+1, (𝑤, 𝑞𝑙))
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞𝑙)))

𝑝 𝑗 ≤
(
𝑎𝑖+1 − 𝑎𝑖

𝑎𝑖

) 2𝑁+1∑︁
𝑗=0

𝑝 𝑗 ≤
1
𝑁

(
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑟𝛼 (𝑤, 𝑞𝑙)

)
,

where the first inequality follows from the definition of opt, and the second from the fact that p

belongs to the simplex, from definition and from lower bounding 𝑎𝑖 by 𝑎0 = 𝑟𝛼 (𝑤, 𝑞𝑙).

Now, let for 𝑗 = 𝑖 + 1, ..., 𝑁 , 𝑔 𝑗 (𝑥) = 𝐹𝛼 (𝑎 𝑗 |𝑥, (𝑤, 𝑞𝑙)). Note that 𝑔 𝑗 (·) is differentiable in

[𝑎𝑖, 𝑎 𝑗 ] with derivative bounded as follows

𝑔′𝑗 (𝑥) =

(
Γ𝛼

(
Γ−1
𝛼 (𝑞𝑙)

𝑎 𝑗 − 𝑥
𝑤 − 𝑥

))′
= Γ−1

𝛼 (𝑞𝑙)
(𝑤 − 𝑎 𝑗 )
(𝑤 − 𝑥)2

(
Γ𝛼

(
Γ−1
𝛼 (𝑞𝑙)

𝑎 𝑗 − 𝑥
𝑤 − 𝑥

))2−𝛼
≤

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝑥 ≤

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂 .

We deduce that

1
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞𝑙)))

𝑁+1∑︁
𝑗=𝑖+1

𝑎 𝑗

[
𝐹𝛼 (𝑎 𝑗 |𝑎𝑖+1, (𝑤, 𝑞𝑙)) − 𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))

]
𝑎 𝑗 𝑝 𝑗

≤ 1
𝑎𝑖+1

𝑁+1∑︁
𝑗=𝑖+1

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂 (𝑎𝑖+1 − 𝑎𝑖)𝑎 𝑗 𝑝 𝑗

≤ 1
𝑁

(
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑟𝛼 (𝑤, 𝑞𝑙)

)
𝑤
Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂 .

Hence, we have, in this case

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤
1
𝑁

(
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑟𝛼 (𝑤, 𝑞𝑙)

) [
1 + 𝑤

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂

]
.

Case 2: Suppose 𝑐(p) = 1
opt(𝐹𝛼 (·|𝑎−𝑖+1,(𝑤,𝑞𝑙)))

∑2𝑁+1
𝑗=0 𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞𝑙))𝑝 𝑗 for 𝑖 = 𝑁 . In this

case, we have

𝑐(p) =
1
𝑤

©­«
𝑁∑︁
𝑗=0
𝑎 𝑗 𝑝 𝑗 + 𝑤𝑞𝑙 𝑝𝑁+1ª®¬ ,
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and

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤
1

𝑤 − 𝜂
©­«
𝑁∑︁
𝑗=0
𝑎 𝑗 𝑝 𝑗 + 𝑤𝑞𝑙 𝑝𝑁+1ª®¬ − 1

𝑤

©­«
𝑁∑︁
𝑗=0
𝑎 𝑗 𝑝 𝑗 + 𝑤𝑞𝑙 𝑝𝑁+1ª®¬

≤
(

1
𝑤 − 𝜂 −

1
𝑤

) ©­«
𝑁∑︁
𝑗=0
𝑎 𝑗 𝑝 𝑗 + 𝑤𝑞𝑙 𝑝𝑁+1ª®¬

≤ 𝜂

𝑤 − 𝜂𝑤
𝑁+1∑︁
𝑗=0

𝑝 𝑗

≤ 𝜂𝑤

𝑤 − 𝜂 .

Case 3: Suppose 𝑐(p) = 1
opt(𝐹𝛼 (·|𝑎𝑖+1,(𝑤,𝑞ℎ)))

∑2𝑁+1
𝑗=0 𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞ℎ))𝑝 𝑗 for some 𝑖 = 𝑁 +

1, ..., 2𝑁 .

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A

≤ 1
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑝 𝑗

− 1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞ℎ))𝑝 𝑗

=

(
1

opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))
− 1

opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ)))

) 2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑝 𝑗

+ 1
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗

[
𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞ℎ)) − 𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞ℎ))

]
𝑝 𝑗

=
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ))) − opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))

opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖+1, (𝑤, 𝑞ℎ))
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ)))

𝑝 𝑗 ,
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where in the last equality, we have used that 𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)) = 𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞𝑙)) on {𝑎0, . . . , 𝑎𝑖+1}.

We analyze the above term on the RHS.

opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ))) − opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))
opt(𝐹𝛼 (·|𝑎𝑖, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖+1, (𝑤, 𝑞ℎ))
opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ)))

𝑝 𝑗

≤
(
𝑎𝑖+1𝐺𝛼,𝑎𝑖+1 (𝑎𝑖+1 | (0, 1), (𝑤, 𝑞ℎ)) − 𝑎𝑖𝐺𝛼,𝑎𝑖 (𝑎𝑖 | (0, 1), (𝑤, 𝑞ℎ))

𝑎𝑖𝐺𝛼,𝑎𝑖 (𝑎𝑖 | (0, 1), (𝑤, 𝑞ℎ))

) 2𝑁+1∑︁
𝑗=0

𝑝 𝑗

≤
(
𝑎𝑖+1𝐺𝛼,𝑎𝑖+1 (𝑎𝑖+1 | (0, 1), (𝑤, 𝑞ℎ)) − 𝑎𝑖𝐺𝛼,𝑎𝑖 (𝑎𝑖 | (0, 1), (𝑤, 𝑞ℎ))

𝑎𝑖𝐺𝛼,𝑎𝑖 (𝑎𝑖 | (0, 1), (𝑤, 𝑞ℎ))

)
,

where the first inequality follows from the definition of opt and opt(𝐹𝛼 (·|𝑎𝑖+1, (𝑤, 𝑞ℎ))), and the

second from the fact that p belongs to the simplex.

Now, let 𝑔𝛼,𝑞ℎ (𝑥) = 𝑥𝐺𝛼,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞ℎ)). Note that 𝑔𝛼,𝑞ℎ (·) is differentiable in [𝑤, 𝑟𝛼 (𝑤, 𝑞ℎ))

with derivative bounded as follows

𝑔′𝛼,𝑞ℎ (𝑥) =

(
𝑥Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

))′
= Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

)
−
Γ−1
𝛼 (𝑞ℎ) 𝑥
𝑤

Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

)2−𝛼

= Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

) (
1 −

Γ−1
𝛼 (𝑞ℎ) 𝑥
𝑤

Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

)1−𝛼
)

= Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

) (
1 −

Γ−1
𝛼 (𝑞ℎ) 𝑥

𝑤
(
1 + (1 − 𝛼)Γ−1

𝛼 (𝑞ℎ) 𝑥𝑤
) )

= Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

) (
1 −

Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

1 + (1 − 𝛼)Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

)
= Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

) 1 − 𝛼Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

1 + (1 − 𝛼)Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

.

Therefore, since 𝑥 ≤ 𝑟𝛼 (𝑤, 𝑞ℎ) := 𝑤

𝛼Γ−1
𝛼 (𝑞ℎ)

, we have that

|𝑔′𝛼,𝑞ℎ (𝑥) | =
�����Γ𝛼 (

Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

) 1 − 𝛼Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

1 + (1 − 𝛼)Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

����� = Γ𝛼

(
Γ−1
𝛼 (𝑞ℎ)

𝑥

𝑤

) 1 − 𝛼Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

1 + (1 − 𝛼)Γ−1
𝛼 (𝑞ℎ) 𝑥𝑤

≤ 1.
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We deduce that(
𝑎𝑖+1𝐺𝛼,𝑎𝑖+1 (𝑎𝑖+1 | (0, 1), (𝑤, 𝑞ℎ)) − 𝑎𝑖𝐺𝛼,𝑎𝑖 (𝑎𝑖 | (0, 1), (𝑤, 𝑞ℎ))

𝑎𝑖𝐺𝛼,𝑎𝑖 (𝑎𝑖 | (0, 1), (𝑤, 𝑞ℎ))

)
≤ 𝑎𝑖+1 − 𝑎𝑖

𝑔𝛼,𝑞ℎ (𝑎𝑖)

≤ min{𝑏, 𝑟𝛼 (𝑤, 𝑞ℎ)} − 𝑤
𝑁𝑔𝛼,𝑞ℎ (𝑤)

=
min{𝑏, 𝑟𝛼 (𝑤, 𝑞ℎ)} − 𝑤

𝑁𝑤𝑞
.

Hence, we have, in this case

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤
min{𝑏, 𝑟𝛼 (𝑤, 𝑞ℎ)} − 𝑤

𝑁𝑤𝑞
.

Case 4: Suppose 𝑐(p) = 1
opt(𝐹𝛼 (·|𝑎𝑖+1,(𝑤,𝑞ℎ)))

∑2𝑁+1
𝑗=0 𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎𝑖, (𝑤, 𝑞ℎ))𝑝 𝑗 for 𝑖 = 2𝑁 + 1.

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A

≤ 1
opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−2𝑁+1, (𝑤, 𝑞ℎ))𝑝 𝑗

− 1
opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎2𝑁 , (𝑤, 𝑞ℎ))𝑝 𝑗

=

(
1

opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))
− 1

opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ)))

) 2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−2𝑁+2, (𝑤, 𝑞ℎ))𝑝 𝑗

+ 1
opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗

[
𝐹𝛼 (𝑎 𝑗 |𝑎−2𝑁+2, (𝑤, 𝑞ℎ)) − 𝐹𝛼 (𝑎 𝑗 |𝑎2𝑁+1, (𝑤, 𝑞ℎ))

]
𝑝 𝑗

=
opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ))) − opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))

opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−2𝑁+2, (𝑤, 𝑞ℎ))
opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ)))

𝑝 𝑗 ,

where in the last equality, we have used the fact that 𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ)) = 𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞𝑙))

on {𝑎0, · · · , 𝑎2𝑁+1}.

We analyze the above term on the RHS in two separate cases 𝛼 ∈ (0, 1] and 𝛼 = 0.
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In the case where 𝛼 ∈ (0, 1], we have

opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ))) − opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))
opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−2𝑁+2, (𝑤, 𝑞ℎ))
opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ)))

𝑝 𝑗

≤
(
𝑟𝛼 (𝑤, 𝑞ℎ)𝐺𝛼,𝑟𝛼 (𝑤,𝑞ℎ) (𝑟𝛼 (𝑤, 𝑞ℎ) | (0, 1), (𝑤, 𝑞ℎ)) − 𝑎2𝑁+1𝐺𝛼,𝑎2𝑁+1 (𝑎2𝑁+1 | (0, 1), (𝑤, 𝑞ℎ))

𝑎2𝑁+1𝐺𝛼,𝑎2𝑁+1 (𝑎2𝑁+1 | (0, 1), (𝑤, 𝑞ℎ))

) 2𝑁+1∑︁
𝑗=0

𝑝 𝑗

≤
(
𝑟𝛼 (𝑤, 𝑞ℎ)𝐺𝛼,𝑟𝛼 (𝑤,𝑞ℎ) (𝑟𝛼 (𝑤, 𝑞ℎ) | (0, 1), (𝑤, 𝑞ℎ)) − 𝑎2𝑁+1𝐺𝛼,𝑎2𝑁+1 (𝑎2𝑁+1 | (0, 1), (𝑤, 𝑞ℎ))

𝑎2𝑁+1𝐺𝛼,𝑎𝑖 (𝑎𝑖 | (0, 1), (𝑤, 𝑞ℎ))

)
≤

𝑔𝛼,𝑞ℎ (𝑟𝛼 (𝑤, 𝑞ℎ)) − 𝑔𝛼,𝑞ℎ (𝑎2𝑁+1)
𝑔𝛼,𝑞ℎ (𝑎2𝑁+1)

≤ 𝑟𝛼 (𝑤, 𝑞ℎ) − 𝑎2𝑁+1
𝑔𝛼,𝑞ℎ (𝑤)

=
𝑟𝛼 (𝑤, 𝑞ℎ) − 𝑤

𝑁𝑤𝑞
,

where the first inequality follows from the definition of opt, the second from the fact that p belongs

to the simplex, and the fourth from the fact that the derivative 𝑔′𝛼,𝑞ℎ (·) is bounded (established in

the previous case).

In the case where 𝛼 = 0, we have

opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ))) − opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))
opt(𝐹𝛼 (·|𝑎2𝑁+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−2𝑁+2, (𝑤, 𝑞ℎ))
opt(𝐹𝛼 (·|𝑎−2𝑁+2, (𝑤, 𝑞ℎ)))

𝑝 𝑗

≤ lim𝑥→∞ opt(𝐹0(·|𝑥, (𝑤, 𝑞ℎ))) − opt(𝐹0(·|𝑏, (𝑤, 𝑞ℎ)))
opt(𝐹0(·|𝑏, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=0

𝑝 𝑗

≤

1
1
𝑞ℎ
−1 −

𝑏

1+
(

1
𝑞ℎ
−1

)
𝑏

𝑏

1+
(

1
𝑞ℎ
−1

)
𝑏

=

1 +
(

1
𝑞ℎ
− 1

)
𝑏(

1
𝑞ℎ
− 1

)
𝑏

− 1 =
1(

1
𝑞ℎ
− 1

)
𝑏

,

where the first inequality follows from the definition of opt, the second from the fact that p belongs

to the simplex, and the definition of opt(𝐹𝛼 (·|𝑎−2𝑁+1, (𝑤, 𝑞ℎ))). Hence, we have, in this case

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤
𝑞ℎ

(1 − 𝑞ℎ)𝑏
.

We are now in a position to combine all cases and conclude.
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If 𝛼 ∈ (0, 1], we have established that

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ max
{

1
𝑁

(
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑟𝛼 (𝑤, 𝑞𝑙)

) [
1 + 𝑤

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂

]
,
𝜂𝑤

𝑤 − 𝜂 ,
𝑟𝛼 (𝑤, 𝑞ℎ) − 𝑤

𝑁𝑤𝑞

}
.

Recall that Proposition 4.F-2 implies that

R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) +
Δ(A)

𝑟𝛼 (𝑤, 𝑞𝑙)
.

Noting that Δ(A) = max{𝑤−𝜂−𝑟𝛼 (𝑤,𝑞𝑙)
𝑁

, 𝜂,
𝑟𝛼 (𝑤,𝑞ℎ)−𝑤

𝑁
}, we have

L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ]))

≤ R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) +
Δ(A)

𝑟𝛼 (𝑤, 𝑞𝑙)

≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A +
(
L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A

)
+max

{
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑁𝑟𝛼 (𝑤, 𝑞𝑙)
, 𝜂,

𝑟𝛼 (𝑤, 𝑞ℎ) − 𝑤
𝑁𝑟𝛼 (𝑤, 𝑞𝑙)

}
≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A +max

{
1
𝑁

(
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑟𝛼 (𝑤, 𝑞𝑙)

) [
1 + 𝑤

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂

]
,
𝜂𝑤

𝑤 − 𝜂 ,
𝑟𝛼 (𝑤, 𝑞ℎ) − 𝑤

𝑁𝑤𝑞

}
+max

{
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑁𝑟𝛼 (𝑤, 𝑞𝑙)
, 𝜂,

𝑟𝛼 (𝑤, 𝑞ℎ) − 𝑤
𝑁𝑟𝛼 (𝑤, 𝑞𝑙)

}
.

By choosing 𝜂 = 𝑤√
𝑁

, we obtain

L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A + O(
1
√
𝑁
).

Suppose now 𝛼 = 0. In this case.

L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ max
{

1
𝑁

(
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑟𝛼 (𝑤, 𝑞𝑙)

) [
1 + 𝑤

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂

]
,
𝜂𝑤

𝑤 − 𝜂 ,
𝑏 − 𝑤
𝑁𝑤𝑞

,
𝑞ℎ

(1 − 𝑞ℎ)𝑏

}
.
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Using again Proposition 4.F-2 and the fact that Δ(A) = max{𝑤−𝜂−𝑟𝛼 (𝑤,𝑞𝑙)
𝑁

, 𝜂, 𝑏−𝑤
𝑁
}, we have

L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ]))

≤ R(PA,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) +
Δ(A)

𝑟𝛼 (𝑤, 𝑞𝑙)

≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A +
(
L𝛼,𝑞𝑙 ,𝑞ℎ,A − L𝛼,𝑞𝑙 ,𝑞ℎ,A

)
+max

{
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑁𝑟𝛼 (𝑤, 𝑞𝑙)
, 𝜂,

𝑏 − 𝑤
𝑁𝑟𝛼 (𝑤, 𝑞𝑙)

}
≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A +max

{
1
𝑁

(
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑟𝛼 (𝑤, 𝑞𝑙)

) [
1 + 𝑤

Γ−1
𝛼 (𝑞𝑙)
𝑤 − 𝜂

]
,
𝜂𝑤

𝑤 − 𝜂 ,
𝑏 − 𝑤
𝑁𝑤𝑞

,
𝑞ℎ

(1 − 𝑞ℎ)𝑏

}
+max

{
𝑤 − 𝜂 − 𝑟𝛼 (𝑤, 𝑞𝑙)

𝑁𝑟𝛼 (𝑤, 𝑞𝑙)
, 𝜂,

𝑏 − 𝑤
𝑁𝑟𝛼 (𝑤, 𝑞𝑙)

}
.

By choosing 𝜂 = 𝑤√
𝑁

and 𝑏 = 𝑤
√
𝑁 , we obatin

L𝛼,𝑞𝑙 ,𝑞ℎ,A ≤ R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ L𝛼,𝑞𝑙 ,𝑞ℎ,A + O(
1
√
𝑁
).

This concludes the proof. □

Proofs of auxiliary results

Proof of Proposition 4.F-1. First we show that

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) = inf
𝑞∈[𝑞𝑙 ,𝑞ℎ]

inf
𝐹 in F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹)

Let 𝑞 ∈ [𝑞𝑙 , 𝑞ℎ] and 𝐹 ∈ F𝛼 (𝑤, 𝑞), we have:

𝑅(Ψ, 𝐹) ≥ inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹)

=⇒ inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹)

=⇒ inf
𝑞∈[𝑞𝑙 ,𝑞ℎ]

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹).
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Let 𝜖 > 0 and 𝐹𝜖 ∈ F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ]) such that:

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) ≥ 𝑅(Ψ, 𝐹𝜖 ) − 𝜖

=⇒ inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) ≥ inf
𝐹∈F𝛼 (𝑤,{𝐹 𝜖 (𝑤)})

𝑅(Ψ, 𝐹) − 𝜖

=⇒ inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) ≥ inf
𝑞∈[𝑞𝑙 ,𝑞ℎ]

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) − 𝜖,

by taking 𝜖 → 0, we obtain the desired result.

Let 𝐹 ∈ F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ]) and 𝑞 = 𝐹 (𝑤) ∈ [𝑞𝑙 , 𝑞ℎ], by Theorem 4.1, we have:

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) = min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞),𝑤)

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞))𝑑Ψ(𝑢),

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞)]

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞)))𝑑Ψ(𝑢)

}
= min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞),𝑤)

1
𝑥

[∫
[0,𝑥)

𝑢𝑑Ψ(𝑢) +
∫
[𝑥,𝑤]

𝑢𝐺𝛼,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]
,

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞)]

1
𝑥𝐺𝛼,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫
[0,𝑥]

𝑢𝐺𝛼,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
}
.

Using the non-decreasing monotonicity of the functions 𝑞 → 𝑟𝛼 (𝑤, 𝑞) =
𝑤

Γ−1
𝛼 (𝑞)+1

, 𝑞 → 𝑟𝛼 (𝑤, 𝑞) =
𝑤

𝛼Γ−1
𝛼 (𝑞)

, we have:

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞𝑙),𝑤)

1
𝑥

[∫
[0,𝑥)

𝑢𝑑Ψ(𝑢) +
∫
[𝑥,𝑤]

𝑢𝐺𝛼,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
]
,

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞ℎ)]

1
𝑥𝐺𝛼,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫
[0,𝑥]

𝑢𝐺𝛼,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))𝑑Ψ(𝑢)
}
.

We have, for fixed (𝑢, 𝑥) such that 𝑥 ∈ [𝑟𝛼 (𝑤, 𝑞𝑙), 𝑤), 𝑢 ∈ [𝑥, 𝑤), the following function is clearly

non-decreasing

𝑞 → 𝐺𝛼,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞)) = Γ𝛼

(
Γ−1
𝛼 (𝑞)

𝑢 − 𝑥
𝑤 − 𝑥

)
.
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We have, for fixed (𝑢, 𝑥) such that 𝑥 ∈ [𝑤, 𝑟𝛼 (𝑤, 𝑞ℎ)], 𝑢 ∈ [𝑤, 𝑥], the following function is

non-increasing

𝑞 → 𝑢𝐺𝛼,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞))
𝑥𝐺𝛼,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

=
𝑢Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑢𝑤

)
𝑥Γ𝛼

(
Γ−1
𝛼 (𝑞) 𝑥𝑤

) =


𝑢
𝑥
( 𝑢
𝑥
+ 𝑥−𝑢
𝑥(1+(1−𝛼)Γ−1

𝛼 (𝑞) 𝑥𝑤 )
) 1
𝛼−1 if 𝛼 ∈ [0, 1)

𝑢
𝑥
𝑞
𝑢−𝑥
𝑤 if 𝛼 = 1.

Using the monotonicity of the above functions we get :

inf
𝐹 in F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) ≥ min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞𝑙),𝑤)

1
𝑥

[∫
[0,𝑥)

𝑢𝑑Ψ(𝑢) +
∫
[𝑥,𝑤]

𝑢𝐺𝛼,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞𝑙))𝑑Ψ(𝑢)
]
,

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞ℎ)]

1
𝑥𝐺𝛼,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫
[0,𝑥]

𝑢𝐺𝛼,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞ℎ))𝑑Ψ(𝑢)
}
.

Since the right hand-side does not depend on 𝑞, we take the minimum on 𝑞

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) ≥ min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞𝑙),𝑤)

1
𝑥

[∫
[0,𝑥)]

𝑢𝑑Ψ(𝑢) +
∫
[𝑥,𝑤]

𝑢𝐺𝛼,𝑤 (𝑢 | (𝑥, 1), (𝑤, 𝑞𝑙))𝑑Ψ(𝑢)
]
,

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞ℎ)]

1
𝑥𝐺𝛼,𝑥 (𝑥 | (0, 1), (𝑤, 𝑞))

∫
[0,𝑥]

𝑢𝐺𝛼,𝑥 (𝑢 | (0, 1), (𝑤, 𝑞ℎ))𝑑Ψ(𝑢)
}

= min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞𝑙),𝑤)

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞ℎ)]

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)))𝑑Ψ(𝑢)

}
.

This concludes the proof. □

Proof of Proposition 4.F-2. Fix 𝑞 in [𝑞𝑙 , 𝑞ℎ]. Then, using Proposition 4.2, there exists ΨA in PA

such that

inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(ΨA, 𝐹) ≥ inf
𝐹∈F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) − Δ(A)
𝑎1
− 1
𝑞(1 + (𝑞−1 − 1)𝑎𝑁/𝑤)

1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞)},
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where Δ(A) = sup𝑖{𝑎𝑖 − 𝑎𝑖−1}. We have the following function

𝑞 → − 1
𝑞(1 + (𝑞−1 − 1)𝑎𝑁/𝑤)

= − 1
𝑎𝑁
𝑤
+ 𝑞(1 − 𝑎𝑁

𝑤
)
,

is non-increasing because 𝑎𝑁 > 𝑤 therefore

− 1
𝑞(1 + (𝑞−1 − 1)𝑎𝑁/𝑤)

≥ − 1
𝑞ℎ (1 + (𝑞−1

ℎ
− 1)𝑎𝑁/𝑤)

,

moreover we have 𝑞 → 𝑟𝛼 (𝑤, 𝑞) = 𝑤

𝛼Γ−1
𝛼 (𝑞)

is non-decreasing, therefore

1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞)} ≤ 1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞ℎ)}.

Hence, since − 1
𝑞(1+(𝑞−1−1)𝑎𝑁 /𝑤)

< 0, we have

− 1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞)}
𝑞(1 + (𝑞−1 − 1)𝑎𝑁/𝑤)

≥ − 1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞ℎ)}
𝑞ℎ (1 + (𝑞−1

ℎ
− 1)𝑎𝑁/𝑤)

.

Using these lower bounds, we obtain

inf
𝐹 in F𝛼 (𝑤,𝑞)

𝑅(ΨA, 𝐹) ≥ inf
𝐹 in F𝛼 (𝑤,𝑞)

𝑅(Ψ, 𝐹) − Δ(A)
𝑟𝛼 (𝑤, 𝑞𝑙)

− 1{𝑎𝑁 < 𝑟𝛼 (𝑤, 𝑞ℎ)}
𝑞ℎ (1 + (𝑞−1

ℎ
− 1)𝑎𝑁/𝑤)

,

taking the infinimum over 𝑞 from both sides concludes the proof. □

4.G Upper bound linear program and implementation parameters

In this section, we show that one can obtain an upper bound on the maxmin ratio R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ]))

by solving a linear program. Fix an arbitrary sequence of increasing reals A = {𝑎𝑖}2𝑁𝑖=0 such that

𝑎0 = 0, 𝑎1 = 𝑟𝛼 (𝑤, 𝑞𝑙), 𝑎𝑁+1 = 𝑤 and 𝑎2𝑁 ≤ 𝑟𝛼 (𝑤, 𝑞ℎ). Set 𝑎2𝑁+1 := 𝑟𝛼 (𝑤, 𝑞ℎ).
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Fix a mechanism Ψ in P and denote by 𝑝 𝑗+1 =
∫
𝐼 𝑗
𝑑Ψ(𝑢) where we define the intervals

(𝐼 𝑗 ) 𝑗=0,··· ,2𝑁 as follows:

𝐼 𝑗 =


[𝑎 𝑗 , 𝑎 𝑗+1) if 0 ≤ 𝑗 < 2𝑁,

[𝑎2𝑁 , 𝑎2𝑁+1] if 𝑗 = 2𝑁.

Using Proposition 4.F-1, we have

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹)

= min

{
inf

𝑥∈[𝑟𝛼 (𝑤,𝑞𝑙),𝑤)

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

inf
𝑥∈[𝑤,𝑟𝛼 (𝑤,𝑞ℎ)]

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)))𝑑Ψ(𝑢)

}
= min

{
min

𝑖=1,··· ,𝑁
inf

𝑥∈[𝑎𝑖 ,𝑎𝑖+1)

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

min
𝑖=𝑁+1,··· ,2𝑁

inf
𝑥∈[𝑎𝑖 ,𝑎𝑖+1]

1
opt(𝐹𝛼 (·|𝑥, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)))𝑑Ψ(𝑢)

}
.

Following the same reasoning as in the proof of Theorem 4.4, we may also obtain an upper

bound on inf𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ]) 𝑅(Ψ, 𝐹). Indeed, we have

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹) ≤ min

{
min

𝑖=1,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

min
𝑖=𝑁+1,··· ,2𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

∫ ∞

0
𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑑Ψ(𝑢)

}
= min

{
min

𝑖=1,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

2𝑁∑︁
𝑗=0

∫
𝐼 𝑗

𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

min
𝑖=𝑁+1,··· ,2𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁∑︁
𝑗=0

∫
𝐼 𝑗

𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑑Ψ(𝑢)
}
.
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For 𝑥 ∈ [𝑟𝛼 (𝑤, 𝑞𝑙), 𝑤), the revenue function 𝑢 ↦→ 𝑢𝐹𝛼 (·|𝑥, (𝑤, 𝑞𝑙)) is increasing in 𝑢 on [0, 𝑥)

and decreasing on (𝑥, 𝑤). In addition, note that, for 𝑥 ∈ [𝑤, 𝑟𝛼 (𝑤, 𝑞ℎ)], the revenue function

𝑢 ↦→ 𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)) is non-decreasing on [0, 𝑥] and 𝑢𝐹𝛼 (𝑢 |𝑥, (𝑤, 𝑞ℎ)) = 0 for 𝑢 > 𝑥. Hence,

we have

inf
𝐹∈F𝛼 (𝑤,[𝑞𝑙 ,𝑞ℎ])

𝑅(Ψ, 𝐹)

≤ min

{
min

𝑖=1,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

2𝑁∑︁
𝑗=0

∫
𝐼 𝑗

𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑑Ψ(𝑢),

min
𝑖=𝑁+1,··· ,2𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁∑︁
𝑗=0

∫
𝐼 𝑗

𝑢𝐹𝛼 (𝑢 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑑Ψ(𝑢)
}

≤ min

{
min

𝑖=1,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

[
𝑖∑︁
𝑗=0
𝑎 𝑗+1𝐹𝛼 (𝑎 𝑗+1 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))

∫
𝐼 𝑗

𝑑Ψ(𝑢) +

2𝑁∑︁
𝑗=𝑖+1

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))
∫
𝐼 𝑗

𝑑Ψ(𝑢)
]
,

min
𝑖=𝑁+1,··· ,2𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁∑︁
𝑗=0
𝑎 𝑗+1𝐹𝛼 (𝑎 𝑗+1 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))

∫
𝐼 𝑗

𝑑Ψ(𝑢)
}

= min

{
min

𝑖=1,··· ,𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

[
𝑖+1∑︁
𝑗=1
𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗 +

2𝑁+1∑︁
𝑗=𝑖+2

𝑎 𝑗−1𝐹𝛼 (𝑎 𝑗−1 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗

]
,

min
𝑖=𝑁+1,··· ,2𝑁

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=1

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑝 𝑗

}
.

The problem of maximizing over mechanisms in P is clearly upper bounded by the problem of

maximizing the RHS above over 𝑝1, ..., 𝑝2𝑁+1. The epigraph formulation of the latter problem can
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be written as

L𝑈𝛼,𝑞𝑙 ,𝑞ℎ,A = max
p,𝑐

𝑐 (4.G-1)

𝑠.𝑡.
1

opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞𝑙)))

[
𝑖+1∑︁
𝑗=1
𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗 +

2𝑁+1∑︁
𝑗=𝑖+2

𝑎 𝑗−1𝐹𝛼 (𝑎 𝑗−1 |𝑎−𝑖+1, (𝑤, 𝑞𝑙))𝑝 𝑗

]
≥ 𝑐

𝑖 = 1, ...𝑁,

1
opt(𝐹𝛼 (·|𝑎−𝑖+1, (𝑤, 𝑞ℎ)))

2𝑁+1∑︁
𝑗=1

𝑎 𝑗𝐹𝛼 (𝑎 𝑗 |𝑎−𝑖+1, (𝑤, 𝑞ℎ))𝑝 𝑗 ≥ 𝑐 𝑖 = 𝑁 + 1, ...2𝑁,

2𝑁+1∑︁
𝑗=1

𝑝 𝑗 ≤ 1, 𝑝𝑖 ≥ 0 𝑖 = 1, ...2𝑁 + 1.

Therefore we obtain that:

R(P ,F𝛼 (𝑤, [𝑞𝑙 , 𝑞ℎ])) ≤ L𝑈𝛼,𝑞𝑙 ,𝑞ℎ,A.

Implementation parameters: For all reported values in the main text, we use the following

sequence in the Linear Programs

𝑎𝑖 =


𝑟𝛼 (1, 𝑞𝑙) +

𝑖
𝑁

(
1 − 𝜂 − 𝑟𝛼 (1, 𝑞𝑙)

)
if 0 ≤ 𝑖 ≤ 𝑁.

𝑤 + 𝑖−𝑁−1
𝑁
(min(𝑏, 𝑟𝛼 (1, 𝑞ℎ)) − 1) if 𝑁 + 1 ≤ 𝑖 ≤ 2𝑁 + 1,

with 𝑁 = 2500, 𝜂 = 10−5, 𝑏 = 250.

4.H Additional Illustrations of near optimal mechanisms for Section 4.5
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Figure 4.9: Illustration of near optimal mechanisms: The figure depicts near optimal pricing distri-
butions for 𝑤 = 1, 𝑞 in {0.01, 0.25, 0.5, 0.75}. The left panel corresponds to regular distributions
(plotted using a log scale) and the right panel to mhr distributions (on a regular scale).
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