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Abstract

Macroeconomic Expectations and Noisy Memory

Yeji Sung

A large empirical literature has documented that people often react too much to

recent information compared to the rational benchmark. In this thesis, I propose an

explanation for overreaction based on the idea of limited memory. Using

information-theoretic constraints, I formalize that past knowledge is recalled with

random errors (hence the “noisy memory”). Since forecasts are not accurately based on

past knowledge, revising one’s views more aggressively is optimal. While this mechanism

explains over-reaction in general, I focus on specific applications in three chapters of this

thesis. In the first two chapters, I explore how noisy memory impacts the learning of

structural parameters. Specifically, I focus on learning about mean and variance of a

stochastic process in each chapter. In the third chapter, I study how noisy memory

interacts with conventional information frictions.
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Preface

Despite the popularity of the rational expectations hypothesis (REH), people consis-

tently hold expectations that are inconsistent with the optimal Bayesian inference. Many

patterns of such behavior are documented by long and extensive empirical literature that is

almost as old as the history of modern macroeconomics. In particular, it is often observed

that people react too much to new information compared to what they ought to, given the

knowledge they ought to have. This notion of over-reaction has been a popular explana-

tion for several perplexing features of asset price dynamics, such as the high premium of

holding stocks that cannot be readily justified by conventional models. While many expla-

nations have been proposed to explain why people react too much, it turned out that the

pattern of observations is far more prevalent than what these candidate explanations can

make sense of.

In this thesis, I propose another explanation for overreaction by formalizing the idea

that human judgments are based on limited memory. The constraint is a limit on the com-

plexity of memory measured using Shannon’s mutual information, as in models of rational

inattention by Sims (2003). The difference is that retrieving past cognitive states is not

costless. The consequence of this memory constraint is that past knowledge is recalled

with random errors (hence the “noisy memory”). I optimally derive the process in which

knowledge is accumulated with random noise. The presence of such information friction

implies that learning is slower and less accurate compared to the perfect memory bench-

1



mark. Since prior knowledge resolves less uncertainty about the state of the economy, it

is optimal to revise one’s views more aggressively. In the three chapters of the thesis, I

explore specific applications of noisy memory.

The first chapter, written with Rava A. da Silveira and Michael Woodford, introduces

the formulation of memory constraints used throughout the thesis. We focus on a partic-

ular example of a decision-maker learning about the mean of a stochastic process. The

model implies that forecasts exhibit idiosyncratic random variation and that even average

beliefs also differ from rational-expectations beliefs. The bias in forecasts fluctuates for-

ever with a variance that does not fall to zero, even in the long run. In addition, more

recent news will be given disproportionate weight in forecasts. We solve the model under

various assumptions (such as the degree of persistence of the variable to be forecasted and

the horizon over which it must be forecasted) and examine how the nature of forecast

biases depends on these parameters.

The second chapter, written with Miguel Acosta, documents that people become more

uncertain about future inflation when current inflation deviates from their expectations.

This behavior is a feature of professional forecasts, even when inflation is low and stable.

Typical models of expectation formation leave little room for this link between inflation

surprises and perceived inflation risk, especially when inflation has long been stable. We

propose limited memory as an explanation for this link. When people learn about the

inflation process from their experience, they perceive inflation to be more variable when

faced with large variations in inflation. This intuition has implications for the price deter-

mination of financial contracts that compensate for the variation of the underlying assets.

The third chapter incorporates noisy memory into conventional models of information

frictions to explain the puzzling patterns observed in survey forecasts. One conventional

motivation for information frictions is that it is costly to process information. I propose

a model in which one’s past knowledge (stored in memory) is also costly to process.

The model is consistent with survey-forecast patterns and offers an estimation strategy

2



to identify the extent of information frictions. I then explore the macroeconomic implica-

tions of these frictions. The proposed model suggests that inflation expectations are not

well anchored, making it more challenging to stabilize inflation than under conventional

information-friction models.

3



Chapter 1: Optimally Imprecise Memory and Biased Forecasts

with Rava Azeredo da Silveira1 and Michael Woodford2

1 Introduction

The hypothesis of rational expectations (RE) proposes that decisions are based on ex-

pectations that make use of all available information in an optimal way: that is, those that

would be derived by correct Bayesian inference from an objectively correct prior and the

data that has been observed to that date. Yet both in surveys of individual forecasts of

macroeconomic and financial variables and in forecasts elicited in experimental settings,

beliefs are more heterogeneous than this hypothesis should allow, and forecast errors are

predictable on the basis of variables observable by the forecasters, contrary to this hypoth-

esis. In particular, a number of studies have argued that forecasts typically over-react to

new realizations of the variable being forecasted. (See Bordalo et al., 2020, and Afrouzi et

al., 2020, for recent examples with extensive references to prior literature.)

Here we offer an explanation for the pervasiveness of over-reaction, that depends nei-

ther on an assumption that people follow arbitrary (and distinctly sub-optimal) heuristics,

or that their forecasts make sense only under an incorrectly specified statistical model.

We propose a theory in which a decision maker’s forecasts (or more generally, actions with

consequences that depend on the future realization of some variable) can be based both on

currently observable information and an imperfect memory of past observations. Subject

to this constraint on the information that the decision rule can use, we assume that their

decision rule is optimal. Moreover, rather than making an arbitrary assumption about the

kind of statistics about past experience that can be recalled with greater or lesser precision,

1ENS and University of Basel
2Columbia University
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we allow the memory structure to be specified in a very flexible way, and assume that it is

optimized for the particular decision problem, subject only to a constraint on the overall

complexity of the information that can be stored in (and retrieved from) memory — or

more generally, subject to a cost of using a more complex memory structure.

In the limiting case in which the cost of memory complexity is assumed to be negligible,

the predictions of our model coincide with those of the rational expectations hypothesis.

But when the cost is larger (or the constraint on memory complexity is tighter), our model

predicts that forecasts should be both heterogeneous (even in the case of forecasters who

observe identical data) and systematically biased. Moreover, the predicted biases include

the type of over-reaction to news documented in surveys of forecasts of macroeconomic

and financial time series by Bordalo et al. (2020) and in laboratory forecasting experi-

ments by Afrouzi et al. (2020). And unlike the theory of “natural expectations”l of Fuster

et al. (2010, 2011), our model predicts that over-reaction to news will be most severe in

the case of time series exhibiting little serial correlation.

In seeking to endogenize the information content of the noisy cognitive state on the

basis of which people must act, our theory is in the spirit of Sims’s (2003) theory of “ratio-

nal inattention”; and indeed, we follow Sims in modeling the complexity constraint using

information theory. There is nonetheless an important difference between our theory and

that of Sims (2003). Sims assumes a constraint on the precision with which new obser-

vations of the world can reflect any current or past conditions outside the head of the

decision maker, but assumes perfectly precise memory of all of the decision maker’s own

past cognitive states, and also assumes that past external states can be observed at any

time with the same precision as current conditions. We instead assume (for the sake of

simplicity) that the current external state can be observed with perfect precision, but that

memory of past cognitive states is subject to an information constraint; and we further

assume that the decision maker has no access to external states that occurred in the past,

except through (information-constrained) access to her own memory of those past states.

5



These differences are crucial for the ability of our model to explain over-reaction to news.3

In section 1, we present the assumptions of our model of endogenously imprecise mem-

ory, and illustrate its consequences for a simple example in which the variable to be fore-

casted is i.i.d. Section 2 then offers a more general characterization of the optimal memory

structure in our model, showing in particular that even when the variable to be forecasted

is serially correlated, it is optimal under our assumptions for the memory state at each

point in time to be represented by a single real number, a random variable the mean of

which depends on the entire sequence of previous observations. Section 3 illustrates the

model’s implications, discussing quantitative aspects of numerical solutions of the model

for particular parameter values. We emphasize the failure of beliefs ever to converge to

those associated with a rational expectations equilibrium, and show that instead, there

are perpetual stationary fluctuations in subjective beliefs similar (though not identical)

to those predicted by models of “constant-gain learning” (Evans and Honkapohja, 2001).

Finally, section 4 compares the quantitative predictions of the model to the reported ex-

pectations of subjects in the laboratory experiment of Afrouzi et al. (2020), showing not

only that the model can produce over-reaction to news, but that it can be parameterized

so as to predict roughly the degree of over-reaction that is observed. Section 5 compares

our model with alternative explanations for over-reaction of expectations, some of which

are based on alternative models of imperfect memory, and section 6 concludes.

2 A Flexible Model of Imprecise Memory: A Simple Example

Here we precisely specify the constraint on the precision of memory that we propose,

and illustrate the kind of conclusions that follow from it by first discussing a simple case,

in which the state variable to be forecasted is an i.i.d. random variable. The problem of

3Other recent papers that explore the consequences of assuming that memory allows only a noisy rec-
ollection of past observations include Afrouzi et al. (2020) and Neligh (2022). While these authors also
assume that some aspects of memory structure are optimized for a particular decision problem, the classes
of memory structures that they consider are different than the one that we analyze here. See section 5.2 for
further discussion.

6



the decision maker [DM] is generalized in the following section.

Suppose that the variable yt is an independent draw each period from a Gaussian dis-

tribution, yt ∼ N(µ, σ2
y), and that the DM’s problem at each time t is to produce a forecast

zt of the value of yt+h — that is, the value of the external state that will be observed h

periods later (for some h ≥ 1). The forecast zt is produced after observing the value of

yt. If we suppose that the DM’s loss from making an inaccurate forecast is proportional to

the squared error of the forecast, then an optimal forecasting rule (subject to the memory

constraints to be specified below) will be one that minimizes the expected value of the

discounted quadratic loss function

∞∑
t=0

βt(zt − yt+h)
2, (2.1)

where 0 < β < 1 is the DM’s discount factor.

Given that future realizations of the state are completely independent of anything ob-

served in the past, it is obvious that if the parameters of the distribution from which yt is

drawn are known (that is, if the DM’s decision rule can be designed using the values of

these parameters), then the optimal forecast each period will simply be zt = µ, the uncon-

ditional expected value of yt+h. We assume, however, that the DM’s decision rule must be

chosen without knowledge of the value of µ; instead, the decision is optimized for a prior

over the possible values of µ, µ ∼ N(0, Ω), for some Ω > 0. In this case, an optimal deci-

sion rule will seek to estimate the value of µ (and hence the minimum-mean-squared-error

[MMSE] forecast) from observations of the state that have been made up to time t.

We simplify the discussion by supposing that the value of σ2
y is known (can be used in

specifying the DM’s decision rule); this makes it straightforward to say how much can be

inferred about the value of µ from an observation of the state yt. In the case of perfect

memory, so that the DM’s forecast zt can be a function of the complete sequence of obser-

vations (y0, . . . , yt) from some initial period zero onwards, the computation of the MMSE

7



estimate of µ is a standard Kalman-filtering problem. Posterior beliefs after yt−1 has been

observed are of the form µ ∼ N(µ̂t−1, σ̂
2
t−1), where the mean and variance of this Gaussian

distribution are to be calculated. It then follows that after the next observation yt, the new

posterior will be of the same form, with mean and variance given by the recursions

µ̂t = µ̂t−1 + γt(yt − µ̂t−1),

σ̂2
t =

σ̂2
t−1σ

2
y

σ̂2
t−1 + σ2

y

,

where the “Kalman gain”

γt =
σ̂2
t−1

σ̂2
t−1 + σ2

y

is a factor between 0 and 1. These equations can be solved recursively to determine µ̂t and

σ̂2
t for all t (given a sequence of realizations of the state), starting from initial conditions

µ̂−1 = 0, σ̂2
−1 = Ω.

These equations imply that the precision σ̂−2
t grows linearly with the number of ob-

servations, and hence that σ̂2
t → 0 as t → ∞, regardless of the sequence of observations.

Eventually the correct value of µ is learned to arbitrary precision, and new observations

cease to affect the estimate of µ (γt → 0), and consequently cease to affect the DM’s fore-

cast. Thus forecasts are eventually the same as under an assumption of (full-information)

rational expectations. We wish to examine how these conclusions change in the case of

imperfect memory.

2.1 Feasible memory structures

We assume that the memory carried into each period t ≥ 0 can be summarized by a

vector mt of dimension dt; the action chosen in period t (i.e., the choice of µ̂t) must be

a function of the cognitive state specified by st = (mt, yt). The dimension of the memory

state is assumed only to be finite, and is not required to be the same for all t. (The case

of perfect memory can be accommodated by our notation, by assuming that dt = t, and

8



that the elements of the vector mt correspond to the values (y0, y1, . . . , yt−1).) We assume

that current external state yt is perfectly observable,4 but that behavior can depend on past

states only to the extent that memory provides information about them.

We further suppose that the memory state evolves according to a linear law of motion

of the form

mt+1 = Λtst + ωt+1, ωt+1 ∼ N(0, Σω,t+1) (2.2)

starting from an initial condition of dimension d0 = 0 (that is, s0 consists only of y0).

However, the dimension dt+1 of the memory that is stored, and the elements of the matrices

Λt,Σω,t+1 are allowed to be arbitrary; we require only that Σω,t+1 must be positive semi-

definite (though it need not be of full rank).

For example, one type of memory structure that this formalism allows us to consider

is an “episodic” memory of the kind assumed by Neligh (2022).5 In this case, dt = t, and

there is an element ofmt corresponding to each of the past observations yτ for 0 ≤ τ ≤ t−1

(generalizing the case of perfect memory just discussed). The memory of yτ at some later

time t is given by mτ+1,t = yτ + uτ+1,t, where uτ+1,t is a Gaussian noise term, independent

of the value of yτ , and with a variance that is necessarily non-decreasing in t. This can

be represented by letting dt = t, Λt be the identity matrix of dimension t + 1, and Σω,t+1

a diagonal matrix of dimension n + 1 (with non-negative elements, but not necessarily of

full rank).

Another type of memory that we can consider is one in which only the n most recent

past observations of the external state can be recalled, though these are recalled with

perfect precision. The requirement that forecasts be functions of the cognitive state would

then require them to be functions of (yt, yt−1, . . . , yt−n) for some finite n, as under the

hypothesis of “natural expectations” proposed by Fuster, Hébert, and Laibson (2011). This

4The case in which the current state is observable only imprecisely is discussed in Sung (2022).
5Note however that Neligh’s model is not a special case of ours, because in addition to restricting attention

to a more special class of memory structures, he assumes a different cost function for precision than the one
we propose below.
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case would correspond to a specification in which dt = n for all t; Λt is an n × (n + 1)

matrix, the right n× n block of which is an identity matrix, and the first column of which

consists entirely of zeroes; and Σω,t+1 = 0. Our formalism is much more flexible than either

of these cases, however, and neither of those specifications turns out to be optimal.

We limit the precision of memory by further assuming that there is a cost of storing

and/or accessing the memory state mt+1, that is an increasing function of the Shannon

mutual information between the memory state mt+1 and the cognitive state st about which

it provides information.6 In this section, we assume that there is a finite upper bound Ī on

the feasible rate of information transmission: thus feasible memory structures must satisfy

the constraint It ≤ Ī, where It is the mutual information between st and mt+1.
7 Subject to

this constraint on feasible memory structures, both the memory structure and the decision

rule (specifying zt as a function of the cognitive state st) each period are chosen so as to

achieve the minimum possible expected value of (2.4).

2.2 The optimal memory structure

Here we sketch the implications of this model of noisy memory for the simple fore-

casting problem introduced above. (A more complete presentation of the calculations is

offered below, where we also discuss a more general problem.) If we introduce the nota-

tion

µ |st ∼ N(µ̂t, σ̂
2
t ) (2.3)

for the posterior distribution for µ conditional on the cognitive state st, we observe that the

DM’s optimal decision rule will be zt = µ̂t each period, and that the minimum achievable

6Mutual information is a non-negative scalar quantity that can be defined for any joint distribution for
(st,mt+1), that measures the degree to which the realized value of either random variable provides informa-
tion about the value of the other (Cover and Thomas, 2006). This measure is used to determine the relative
cost of different information structures in the rational inattention theory of Sims (2003); properties of this
measure as an information cost function are discussed in Caplin, Dean and Leahy (2019).

7In section 2, we generalize this assumption to allow It to be increased at some positive marginal cost.
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value for the loss function (2.4), given the memory structure, will be

∞∑
t=0

βt[σ̂2
t + σ2

y].

It follows that the optimal memory structure will be the one that minimizes the implied

value of
∞∑
t=0

βtσ̂2
t , (2.4)

When {yt} is an i.i.d. random variable, the only possible relevance of memory for

decisions in periods t + 1 or later is the evidence that memory can provide about the

value of the parameter µ. Hence the only aspect of the cognitive state st that is worth

remembering later is what was known then about the value of µ, which is to say, the

parameters of the distribution (2.3). Given the linear-Gaussian dynamics in our model,

one can show that σ̂2
t is independent of the history of realizations of the external state, and

hence the same in all possible cognitive states st.8 Thus the scalar quantity µ̂t is the only

aspect of the cognitive state that is worth remembering.

Since a memory state mt+1 that was informative about any other aspect of st would

increase the value of It without increasing the information provided about the value of µ,

an optimal memory structure will make the distribution of the random variable mt+1 |st
a function only of µ̂t. Under the assumption of linear-Gaussian dynamics (2.2), we must

therefore be able to write

mt+1 = Λt µ̂t + ωt+1, (2.5)

where Λt is now a column vector rather than a matrix.

Given the memory state mt that can retrieved in any period, the implied posterior

8It depends on t, which is to say the number of observations that have occurred; but this is assumed to
be available as an input to the decision rule, rather than something that has to be remembered using costly
memory.
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distribution for the parameter µ will be a Gaussian distribution,

µ |mt ∼ N(m̄t, Σt).

(When memory is imperfect, however, we can no longer identify (m̄t, Σt) with (µ̂t−1, σ̂
2
t−1).)

After the value of yt is observed, these beliefs are updated to a posterior of the form (2.3),

where

µ̂t = m̄t + γt (yt − m̄t), (2.6)

using the notation

γt =
Σt

Σt + σ2
y

(2.7)

for the Kalman gain, and

σ̂2
t =

Σtσ
2
y

Σt + σ2
y

. (2.8)

Our linear-Gaussian framework further implies that m̄t must be a linear function of mt,

while Σt is independent of mt. It then follows from (2.5) that we can write

m̄t+1 = λt µ̂t + ω̄t+1, (2.9)

where now λt is a scalar, and ω̄t+1 ∼ N(0, σ2
ω̄,t+1) a scalar random variable. We can further

show that for any feasible memory structure, λt must be a quantity no less than zero and

less than 1, and that

σ2
ω̄,t+1 = λt(1− λt) var[µ̂t] = λt(1− λt) [Ω− σ̂2

t ].

Thus the law of motion (2.9) is fully specified by choosing a value for λt.

The only information about st contained in mt+1 must be the information about the

value of µ̂t provided by the value of m̄t+1; hence under an optimal information structure,

the value of It will be the mutual information between the random variables µ̂t and m̄t+1.
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It follows from (2.9) that this is equal to −(1/2) ln(1 − λt), an increasing function of λt.

Thus the constraint It ≤ Ī can alternatively be expressed as a constraint of the form λt ≤ λ̄,

where 0 < λ̄ < 1. (The limiting case in which λ̄ = 1 corresponds to no upper bound on the

mutual information, and hence perfect memory.)

We can further show that the uncertainty about the value of µ in all periods τ > t

is minimized (and hence the loss function (2.4) is minimized) by setting λt as large as

possible, consistent with the constraint. Hence in each period the upper bound constraint

will bind, and the optimal memory structure will be the one in which λt = λ̄ each period.

The law of motion (2.9) can accordingly be written

m̄t+1 = λ̄ µ̂t + ω̄t+1, (2.10)

and the associated posterior variance will equal

Σt+1 = Ω− var(m̄t+1) = (1− λ̄)Ω + λ̄σ̂2
t . (2.11)

Equations (2.6)–(2.8) and (2.10)–(2.11) then constitute a complete system of equations

to recursively determine the evolution of the variables {m̄t,Σt, µ̂t, σ̂
2
t } for all t ≥ 0 given

the sequence of observations {yt}, starting from initial conditions m̄0 = 0,Σ0 = Ω corre-

sponding to the prior. (This generalizes the recursive system given above for the case of

perfect memory.)

2.3 Implications for forecast dynamics and forecast errors

In the simple problem considered here, the optimal forecast each period is given by

zt = µ̂t; the predictable part of the forecast error (if any) will simply be the predictable

error (if any) in µ̂ as an estimate of µ; and the mean squared error of the forecast will

equal σ̂2
t + σ2

y, where σ̂2
t is the mean squared error of the estimate of µ. Thus we need only

analyze the dynamics of the estimate µ̂t and the estimation error that this reflects.
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In the perfect-memory case, the recursive system of equations presented above imply

that

µ̂t = γt

t∑
τ=0

yτ ,

so that each observation up through date t has an equal effect on the estimate (there are

no “order effects”), and the optimal estimate is a positive multiple of the mean of the

observed values {yτ}. The multiplicative factor kt = (t+1)γt is less than 1,9 but converges

to 1 as t becomes large (and γt → 0).

In the noisy-memory (λ̄ < 1) case, instead, the solution for µ̂t is different in three

important respects. First, the Kalman gain γt (which is again the weight on the current

observation yt) does not converge to 0 as t becomes large, but instead converges to a long-

run value γ̄ between 0 and 1. This is because the dynamics of the sequence {σ̂2
t } implied by

equations (2.8) and (2.11) imply that σ̂2
t converges to a positive long-run value,10 so that

(2.7) then implies that γt converges to a positive value less than 1. Second, the weights on

the different observations {yτ} are not equal; instead the effect of a given observation on

the estimate is smaller, the more distant the observation in the past (a “recency effect”).

And third, instead of µ̂t being a deterministic function of the {yτ}, the estimate is also

affected by the sequence of memory noise terms {ω̄τ}.

Specifically, one can write

µ̂t =
t∑

j=0

αj,tyt−j +
t∑

j=0

βj,tω̄t−j, (2.12)

where the coefficients are given by

αj,t = λ̄jγt−jΠ
j
i=1(1− γt−j+i), (2.13)

βj,t = λ̄jΠj
i=0(1− γt−j+i)

9This reflects shrinkage of the Bayesian estimate of µ toward the prior mean of zero.
10See Figure 1 below for numerical examples, and Appendix F.4 for further analytical discussion.
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for all j ≥ 0.11 In the limit as t becomes large, the coefficients converge:

αj,t → αj ≡ γ̄(λ̄(1− γ̄))
j
,

βj,t → βj ≡ λ̄j(1− γ̄)j+1.

Thus in the large-t limit, the estimate µ̂t comes to equal a positive multiple of an

exponentially-weighted moving average of past observations {yτ}, plus a serially-correlated

noise term. Because of the exponentially decreasing weights, the term
∑

j αjyt−j continues

to fluctuate randomly in response to the randomness in recent observations, rather than

converging to the true value of µ with probability 1 (as in the perfect-memory case). Be-

cause
∑

j αj < 1, this term is also on average closer to 0 than is the true value of µ: the

shrinkage toward the prior mean is not eliminated even as t→ ∞. And because the βj are

positive, the term
∑

j βjω̄t−j is an additional source of random variation in the estimate

(and hence in the DM’s forecast), independent of the sequence of observations {yτ}.

Because the limiting coefficients αj are positive, the estimate µ̂t (and hence the DM’s

forecast zt) continues to be influenced by recent observations yt−j even when t is large

— unlike the rational-expectations forecast, zt = µ. Thus the DM’s forecast is predicted

to “over-react” to news about recent observations.12 Though the calculations required are

more complex, we obtain qualitatively similar conclusions in the case that the DM forecasts

a serially correlated variable, as we show next.

3 The Optimal Memory Structure when the State is Persistent

We now consider a more general class of linear-quadratic decision problems, allowing

both for simultaneous forecasting of many different horizons, and for persistent dynamics

in the state {yt} that is to be forecasted. We allow the state yt to follow a stationary AR(1)

11When j = 0 in (2.13), we define the product with no factors to equal 1.
12We compare the predictions of our model to the measures of over-reaction reported by Afrouzi et al.

(2020) in section 4.
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process. We write its law of motion as

yt = µ + ρ(yt−1 − µ) + ϵyt, (3.14)

where µ is again the mean, ρ is the coefficient of serial correlation (with |ρ| < 1), and

{ϵyt} is an i.i.d. sequence, drawn each period from a Gaussian distribution N(0, σ2
ϵ ). The

variance of the external state (conditional on the value of µ and the other parameters) will

therefore equal σ2
y ≡ σ2

ϵ/(1− ρ2).

The DM’s problem is to produce each period a vector of forecasts zt, so as to minimize

the expected value of a discounted quadratic loss function

E
∞∑
t=0

βt(zt − z̃t)
′W (zt − z̃t), (3.15)

where W is a positive definite matrix specifying the relative importance of accuracy of the

different dimensions of the vector of forecasts, and the eventual outcomes that the DM

seeks to forecast are functions of the future evolution of the external state,13

z̃t ≡
∞∑
j=0

Ajyt+j,

where the coefficients {Aj} satisfy
∑

j |Aj| < ∞. (We again assume that 0 < β < 1.) This

formalism allows us to assume that the DM may produce forecasts about the future state at

multiple horizons (as is typically true in surveys of forecasters, and also in the experiment

of Afrouzi et al., 2020). It also allows us to treat cases in which the DM may choose a

vector of actions, the rewards from which are a quadratic function of the action vector and

the external state in various periods; the problem of action choice to maximize expected

reward in such a case is equivalent to a problem of minimizing a quadratic function of the

13Note that the variables denoted z̃t are not quantities the value of which is determined at time t; the
subscript t is used to identify the time at which the DM must produce a forecast of the quantity, not the
time at which the outcome will be realized. Thus the best possible forecast of z̃t at time t, even with full
information, would be given by Etz̃t, which will generally not be the same as the realized value z̃t.
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DM’s error in forecasting certain linear combinations of the value of the external state at

various horizons.14

To simplify our discussion, we continue to assume that the second moments of the

stochastic process for the external state are known (more precisely, that the DM’s decision

rule can be optimized for particular values of these parameters, that are assumed to be the

correct ones), while the first moment is not, so that the DM’s decision rule must respond

adaptively to evidence about the unknown mean value provided by the DM’s observations

of the state. Thus the values of the parameters ρ and σ2
ϵ are assumed to be known, while

µ is not; the parameter µ is again assumed to be drawn from a prior distribution µ ∼

N(0, Ω). Conditional on the value of µ, the initial lagged state y−1 is assumed to be drawn

from the prior distribution N(µ, σ2
y), the ergodic distribution for the external state given a

value for µ. When we consider the optimality of a possible decision rule for the DM, we

integrate over this prior distribution of possible values for µ and y−1, assuming that the

decision rule must operate in the same way regardless of which values happen to be true

in a given environment.

In any problem of this form (regardless of the assumed memory limitations), the DM’s

problem can equivalently be formulated as one of simply choosing an estimate µ̂t of the

unknown mean µ at each date t, based on the information available at the time that zt

must be chosen. It follows from the law of motion (3.14) that

Etz̃t =
∞∑
j=0

Aj[µ+ ρj(yt − µ)],

where we use the notation Et[·] for the expected value conditional on the true state at time

t, i.e., the value of µ and the history of realizations (y0, . . . , yt), even though not all of this

information is available to the DM. Conditioning instead on the coarser information set

14For example, in a standard consumption-smoothing problem with quadratic consumption utility, the
DM’s level of expected utility depends on the accuracy with which “permanent income” is estimated at each
point in time. This requires the DM to forecast a single variable z̃t, for which the coefficient Aj is proportional
to βj for all j ≥ 0.
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that represents the DM’s cognitive state at time t (and noting that this includes precise

awareness of the value of yt), we similarly find that the optimal estimate of z̃t will be given

by

zt =
∞∑
j=0

Aj[µ̂t + ρj(yt − µ̂t)], (3.16)

where we again use the notation (2.3).

We show in the appendix that the DM’s expected loss cannot be reduced by restricting

attention to a class of decision rules of the form (3.16), under different possible assump-

tions about how the estimate µ̂t is formed.15 In the case of any forecasting rule of that

kind, the loss function (3.15) is equal to

α ·
∞∑
t=0

βtMSEt (3.17)

plus a term that is independent of the DM’s forecasts, where

MSEt ≡ E[(µ̂t − µ)2]

is the mean squared error in estimating µ, and α > 0 is a constant that depends on the

coefficients {Aj} and W . Thus one can equivalently formulate the DM’s problem as one of

optimal choice of an estimate µ̂t each period, so as to minimize MSEt.

Feasible memory structures are again assumed to be described by linear-Gaussian dy-

namics of the kind specified in section 1.1. However, rather than assuming that there must

be a fixed upper bound Ī on the mutual information It, we can assume more generally

that there is a cost c(It) of storing and/or accessing the memory state mt+1, where c(I) is

an increasing and (at least weakly) convex function.16

The cost c(It) can equivalently be viewed as either a cost of storing a memory record

15See Appendix A for details of the argument.
16The case of a fixed upper bound on the mutual information, considered above, can be nested as a special

case of this model, in which c(I) = 0 for all I ≤ Ī, while the function is equal to +∞ in the case of any I > Ī.
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with information content It (that is then available with perfect precision in period t + 1),

or a cost of retrieving a signal from memory with information content It in period t + 1

(while the memory stored in period t is taken to have been a perfect record of the period

t cognitive state). These two formulations are identical, given that we assume that only

the signal mt+1 that is retrieved in period t + 1 can be stored for future use; thus only the

fidelity with which the retrieved memory mt+1 reproduces the cognitive state st matters.

Under the retrieval-cost interpretation, however, our model remains importantly different

from the one proposed by Afrouzi et al. (2020), in which memory contains a perfect record

of all past observations, but there is a cost of retrieving a precise signal about the contents

of memory for use in a decision. That model assumes that past observations can be stored

indefinitely with perfect precision, with a limit on the precision of recall becoming relevant

only when memory must be consulted; this means that it does not predict “recency bias”

as ours does.17

The memory structure each period, together with the rule for choosing an estimate

µ̂t as a function of each period’s cognitive state, are then assumed to be chosen so as to

minimize total discounted costs

∞∑
t=0

βt [α ·MSEt + c(It), ] (3.18)

taking into account both the cost of less accurate forecasts (3.17) and the cost of greater

memory precision. Note that no expectation is needed in this objective, since both MSEt

and It are functions of the entire joint probability distribution of possible values for µ,mt, yt, µ̂t

and mt+1. We turn now to a general characterization of the solution to this dynamic opti-

17See the discussion in sections 3.4 and 5.2.2. The model of Afrouzi et al. also assumes that information
that is retrieved from memory (at a cost) for use in a decision at time t has no consequences for the infor-
mation that will be available at later times; the perfectly accurate record of all past observations continues
to contain the same information regardless of what is retrieved at time t, while the information retrieved
(added to “working memory”) at time t is not available at any later time. This makes the problem of op-
timal selection of the information to be retrieved at any time t a (relatively simple) static problem in their
model, whereas it is a dynamic problem in the model proposed here, since in our model, information not
remembered at time t cannot (at any cost) be retrieved in any later period.
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mization problem.

3.1 Implications of linear-Gaussian dynamics

For any memory structure in the class specified in section 1.1, the posterior distribution

over possible values of (µ, y−1, y0, . . . , yt−1) implied by memory state mt will be a multivari-

ate Gaussian distribution. It is thus fully characterized by specifying a finite set of first and

second moments of the posterior associated with the memory state. Moreover, the partic-

ular memory state mt at a given date t can be identified by the associated vector of first

moments. For the second moments of the posterior are the same for all possible memory

states at any time t: they depend on the matrices {Λτ ,Σω,τ+1} for τ < t, but not on the

history of the external state, or on the history of realizations of the memory noise {ωt+1}.

In what follows, we therefore use the notation mt for the vector of posterior means.

Among the state variables about which the memory state may convey information, we

are particularly interested in the vector of variables xt = (µ, yt−1)
′, which are the states

determined prior to period t that are relevant for predicting the external state in periods

τ ≥ t. Let m̄t ≡ E[xt |mt] be the two elements of the memory state that identify the

posterior mean of xt, and let Σt be the 2 × 2 block of second moments of xt under this

same posterior, so that

xt |mt ∼ N(m̄t, Σt).

(Here m̄t is now a 2-vector, and Σt a 2 × 2 matrix.) And let us furthermore introduce the

vectors

e′1 ≡ [1 0], c′ ≡ [1− ρ ρ]

to select particular elements of this reduced state vector. Then e′1m̄t is the posterior mean

and e′1Σte1 the posterior variance for µ; while c′m̄t is the posterior mean and c′Σtc the

posterior variance of the full-information forecast Et−1yt.

The for µ after also observing yt will then be of the form (2.3), with mean and variance
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given by the usual Kalman filter formulas,18

µ̂t ≡ E[µ |st] = e′1m̄t + γ1t [yt − c′m̄t], (3.19)

σ̂2
t ≡ var[µ |st] = e′1Σte1 − γ21t[c

′Σtc + σ2
ϵ ], (3.20)

with a Kalman gain equal to19

γ1t =
e′1Σtc

c′Σtc + σ2
ϵ

. (3.21)

Since yt is observed precisely, these formulas completely characterize posterior beliefs in

cognitive state st about the states xt+1 that are relevant for forecasting yτ for all τ > t. Note

that σ̂2
t is necessarily positive (complete certainty about the value of µ cannot be achieved

in finite time, even in the case of perfect memory), and must satisfy the upper bound

σ̂2
t ≤ σ̂2

0 ≡ Ωσ2
y

Ω + σ2
y

, (3.22)

which corresponds to the degree of uncertainty about µ after observing the external state

in the case of no informative memory whatsoever (the DM’s situation in period t = 0).

Then the average losses from inaccurate forecasting in period t are given by

MSEt = σ̂2
t . (3.23)

This determines the value of one of the terms in (3.18) as a function of the posterior un-

certainty associated with the memory state each period. We note that the optimal estimate

µ̂t depends only on m̄t (not other components of the memory state), and that the average

loss implied by this estimate depends only on the posterior uncertainty Σt associated with

those same two components.

18Note that these equations generalize (2.6)–(2.8) above for the ρ = 0 case.
19We use a 1 subscript in the notation for this variable because it is the first element of a vector of Kalman

gains, defined in the more general formula given in Appendix B.
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3.2 The sufficiency of memory of a reduced cognitive state

We further show in the appendix20 that an optimal memory structure makes the mem-

ory state mt+1 a function only of the “reduced cognitive state”

s̄t ≡


µ̂t

yt

 = E[xt+1 |st]. (3.24)

We first note (using (3.19) and the fact that yt is part of the cognitive state) that the

elements of s̄t are a linear function of st. Thus we can choose a representation of the

vector st in which its elements are made up of two parts, s̄t and st, where the elements of

st are uncorrelated with those of s̄t. We then observe that

m̄t+1 = E[s̄t |mt+1].

Hence the only aspect of the memory state that matters for m̄t+1, and hence for deter-

mining both the optimal estimate µ̂t+1 and the reduced cognitive state s̄t+1, will be the

information that mt+1 contains about s̄t.

To the extent that mt+1 conveys any information about the elements of st, this infor-

mation has no consequences for the DM’s estimates µ̂τ in any periods τ ≥ t + 1, but it

increases the mutual information between st and mt+1, and hence the information cost

c(It). Hence under an optimal information structure, the reduced memory state m̄t must

evolve according to a law of motion of the form

m̄t+1 = Λ̄ts̄t + ω̄t+1, (3.25)

where ω̄t+1 ∼ N(0, Σω̄,t+1) is distributed independently of the cognitive state. And in

20See Appendix C for details of the argument.
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addition, the complete memory state must convey no more information about st than

what is conveyed by the reduced memory state, so that we can without loss of generality

assume that mt+1 consists solely of m̄t+1 (so that dt+1 = 2 for all t ≥ 0).

Finally, the 2× 2 matrices Λ̄t and Σω̄,t+1 must satisfy additional restrictions in order for

the reduced memory state defined in (3.25) to be consistent with the normalization

E[s̄t |m̄t+1] = m̄t+1. (3.26)

We show in the appendix that this relationship will hold if and only if21

Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t, (3.27)

where Xt ≡ var[s̄t]. Note that (3.24) implies that

var[xt+1] = var[s̄t] + var[xt+1 |st],

from which we see that

Xt = X(σ̂2
t ) ≡


Ω− σ̂2

t Ω

Ω Ω + σ2
y

 . (3.28)

Thus the matrix Xt depends only on the value of σ̂2
t . In addition, (3.22) implies that Xt

will be positive semi-definite (p.s.d.), and non-singular (hence positive definite) except in

the case that σ̂2
t = σ̂2

0 (the case of a totally uninformative memory state mt).

In order for it to be possible for (3.27) to hold, the matrix Λ̄t must satisfy certain

properties: (a) the matrix Λ̄tXt = XtΛ̄
′
t must be symmetric (so that the right-hand side of

(3.27) is also symmetric); and (b) the right-hand side of (3.27) must be a p.s.d. matrix.

21See the introductory section of Appendix D for details of the argument.
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For any symmetric, positive definite 2× 2 matrix Xt, we let L(Xt) be the set of matrices Λ̄t

with these properties. Then in addition to assuming that Λ̄t ∈ L(Xt), the variance matrix

Σω̄,t+1 must be given by (3.27).

In the special case in which mt is completely uninformative, µ̂t is proportional to the

observation yt, so that there exists a vector w >> 0 such that s̄t = w · yt. In this case,

Xt = X0 ≡ [Ω + σ2
y]ww

′,

and we can show that the requirements stated above are satisfied by a matrix Λ̄t if and only

if Λ̄tw = λtw (w is a right eigenvector), with an eigenvalue satisfying 0 ≤ λt ≤ 1. Since the

two elements of s̄t are perfectly collinear in this case, the only part of the matrix Λ̄t that

matters for the evolution of the memory state is the implied vector Λ̄tw (which must be a

multiple of w). Thus we can without loss of generality impose the further restriction that if

σ̂2
t = σ̂2

0, we will describe the dynamics of the memory state using a matrix Λ̄t of the form

Λ̄t = λt
ww′

w′w
, (3.29)

for some 0 ≤ λt ≤ 1. We now adopt this more restrictive definition of the set L(X0) in this

special case.22

We have now shown that the memory structure for period t is completely determined by

a specification of a matrix Λ̄t ∈ L(Xt). In any period t, the value of σ̂2
t and hence the matrix

Xt will be implied by the choice of memory structure for the periods prior to t. Given a

choice of Λ̄t, the variance-covariance matrix Σω̄,t+1 is uniquely determined by (3.27). As

shown in the appendix,23 this then uniquely determines Σt+1, indicating the degree of

uncertainty implied by the memory state mt+1, which then determines σ̂2
t+1 using (3.20).

22Restricting the set of transition matrices Λ̄t that may be chosen in this way has no consequences for the
evolution of the memory state, but it makes equation (3.30) below also valid in the case that Xt = X0, and
thus it allows us to state certain conditions below more compactly.

23See Appendix D.1 for details of the argument.
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The degree of uncertainty about µ in the following period is then given by a function of

the form

σ̂2
t+1 = f(σ̂2

t , Λ̄t),

that is uniquely defined for any non-negative σ̂2
t satisfying the bound (3.22) and any Λ̄t ∈

L(X(σ̂2
t )).

Then given that we start from an initial degree of uncertainty σ̂2
0 at time t = 0 defined

by (3.22), we can define the class of sequences {Λ̄t} for all t ≥ 0 with the property that

Λ̄t ∈ L(Xt) for all t ≥ 0; let us call this class Lseq. Moreover, for any sequence of transition

matrices in Lseq, we can uniquely define the sequences of values {Σt, γ1t, σ̂
2
t , Xt} for all

t ≥ 0 implied by it. Thus given any sequence {Λ̄t} ∈ Lseq, we can calculate the implied

sequence of losses {MSEt} from forecast inaccuracy, using (3.23).

We can also uniquely identify the information cost implied by such a sequence of tran-

sition matrices, since as shown in the appendix,24 the mutual information between st and

mt+1 will be given by

It = I(Λ̄t) ≡ −1

2
log det(I − Λ̄t) (3.30)

each period. Note that the requirement that Λ̄t ∈ L(Xt) implies that

0 < det(I − Λ̄t) ≤ 1,

so that the quantity (3.30) is well-defined, and necessarily non-negative. As the elements

of Λ̄t are made small, so that memory ceases to be very informative about the prior cog-

nitive state, I − Λ̄t approaches the identity matrix, and It approaches zero. If Λ̄t is varied

in such a way as to make one of its eigenvalues approach 1, I − Λ̂t approaches a singular

matrix, and Σω̂,t+1 must approach a singular matrix as well; this means that in the limit,

some linear combination of the elements of s̄t is a random variable with positive variance

that comes to be recalled with perfect precision. In this case, det(I − Λ̂t) approaches zero,

24See Appendix D.2 for details of the argument.
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so that It grows without bound.

Thus a given sequence of transition matrices {Λ̄t} uniquely determines sequences

{MSEt, It}, allowing the value of the objective (3.18) to be calculated. The problem

of optimal design of a memory structure can then be reduced to the choice of a sequence

{Λ̄t} ∈ Lseq so as to minimize (3.18). This objective is necessarily well-defined for any such

sequence, since each of the terms is non-negative; the infinite sum will either converge to

a finite value, or will diverge, in which case the sequence in question cannot be optimal.25

3.3 A recursive formulation

We now observe that if for any point in time t, we know the value of σ̂2
t (which depends

on the choices made regarding memory structure in periods τ < t), the set of admissible

transition matrices {Λ̄τ} for τ ≥ t specifying the memory structure from that time onward

will depend only on the value of σ̂2
t , and not any other aspect of choices made about the

earlier periods. Moreover, any admissible continuation sequence {Λ̄τ} for τ ≥ t implies

unique continuation sequences {MSEτ , Iτ} for τ ≥ t, so that the value of the continuation

objective
∞∑
τ=t

βτ−t [α ·MSEτ + c(Iτ )] (3.31)

will be well-defined.26

We can then consider the problem of choosing an admissible continuation plan {Λ̄τ}

for τ ≥ t so as to minimize (3.31), given an initial condition for σ̂2
t . (This is simply a

more general form of our original problem choosing memory structures for all t ≥ 0 to

minimize (3.18), given the initial condition for σ̂2
0 specified in (3.22).) Let V (σ̂2

t ) be the

lowest achievable value for (3.31), as a function of the initial condition σ̂2
t ; this function

is defined for any value of σ̂2
t satisfying the bound (3.22), and is independent of the date t

25Note that it is clearly possible to choose memory structures for which the infinite sum converges. For
example, if one chooses Λ̄t = 0 for all t ≥ 0 (perfectly uninformative memory at all times), MSEt = σ̂2

0 and
It = 0 each period, and (3.18) will equal the finite quantity σ̂2

0/(1− β).
26Since a finite value for the continuation objective is always possible (see (3.32) below), it is clear that

plans that make (3.31) a divergent series cannot be optimal, and can be excluded from consideration.
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from which we consider the continuation problem. Note that the lower bound necessarily

lies in the interval

ασ̂2
t ≤ V (σ̂2

t ) ≤ α

[
σ̂2
t +

β

1− β
σ̂2
0

]
. (3.32)

(The lower bound follows from the fact that MSEt = σ̂2
t , and all other terms in (3.31)

must be non-negative; the upper bound is the value of (3.31) if one chooses Λ̄τ = 0 for all

τ ≥ t, which is among the admissible continuation plans.)

This value function also necessarily satisfies a Bellman equation of the form

V (σ̂2
t ) = min

Λ̄t∈L(X(σ̂2
t ))
[ασ̂2

t + c(I(Λ̄t)) + βV (f(σ̂2
t , Λ̄t))], (3.33)

where I(Λ̄t) is the function defined in (3.30). Thus once we know how to compute the

value function for arbitrary values of σ̂2
t+1, the problem of the optimal choice of a memory

structure in any period t can be reduced to the one-period optimization problem stated

on the right-hand side of (3.33). This indicates how the memory structure for period t

must be chosen to trade off the cost c(It) of retaining a more precise memory against the

continuation loss V (σ̂2
t+1) from having access to a less precise memory in period t+ 1.

Let F be the class of continuous functions V (σ̂2
t ), defined for values of σ̂2

t consistent

with (3.22), and consistent with the bounds (3.32) everywhere on this domain. Then

(3.33) defines a mapping Φ : F → F : given any conjectured function V (σ̂2
t+1) ∈ F that

is used to evaluate the right-hand side for any value of σ̂2
t , the minimized value of the

problem on the right-hand side defines a new function Ṽ (σ̂2
t ) that must also belong to

F . Condition (3.33) states that the value function that defines the minimum achievable

continuation loss must be a fixed point of this mapping: a function such that V = Φ(V ).

We can further show that for any function V ∈ F , the function Φ(V ) defined by the

right-hand side of (3.33) is necessarily a monotonically increasing function.27 It follows

that the fixed point V (σ̂2
t ) must be a monotonically increasing function. Moreover, we can

27See Appendix E.1 for a proof.
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restrict the domain of the mapping Φ to the subset F∗ of increasing functions.

This then provides us with an approach to computing the optimal memory structure

for a given parameterization of our model. First, we find the value function V (σ̂2) ∈ F∗

that is a fixed point of the mapping Φ, by iterating Φ to convergence. Then, given the

value function, we can numerically solve the minimization problem on the right-hand side

of (3.33) to determine the optimal transition matrix Λ̄t in any period, once we know the

value of σ̂2
t for that period. Solution of this problem also allows us to determine the value of

σ̂2
t+1 = f(σ̂2

t , Λ̄t), so that the entire sequence of values {σ̂2
τ} for all τ ≥ t can be determined

once we know σ̂2
t . Finally, we recall that for the initial period t = 0, the value of σ̂2

0 is

given by (3.22); we can thus solve for the entire sequence {σ̂2} for all t ≥ 0 by integrating

forward from this initial condition.

Once we have determined the sequence of values {σ̂2
t } implied by an optimal memory

structure for each period, we can determine the elements of the matrix Xt = X(σ̂2
t ) each

period, using (3.28). We show in the appendix28 that the degree of uncertainty at the

beginning of any period given the structure of the memory chosen for the previous period

is given by

Σt+1 = Σ0 − XtΛ̄
′
t.

This in turn allows us to calculate the DM’s optimal estimate µ̂t each period, as a function

of the history of realizations {yτ} of the external state for all 0 ≤ τ ≤ t and the history of

realizations of the DM’s memory noise {ω̃τ+1} for all 0 ≤ τ ≤ t− 1, using (3.19). The DM’s

complete vector of forecasts zt each period is then given by (3.16).

3.4 Optimality of a unidimensional memory state

We can show further that the optimal memory state must have a one-dimensional rep-

resentation. This simplifies the computational formulation of the optimization problem on

the right-hand side of (3.33), and provides further insight into the nature of an optimally

28See Appendix D.1 for details of the argument.
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imprecise memory. Although the information contained in the cognitive state st that is

relevant for predictiing (at time t) what actions will be desirable for the DM in later pe-

riods is two-dimensional (both elements of s̄t matter, if ρ > 0, and except when memory

is completely uninformative, these are not perfectly correlated with each other), we find

that it is optimal for the DM’s memory to include only a noisy record of a single linear

combination of the two variables. Moreover, this is true regardless of how small memory

costs may be.

There is in fact a fairly simple intuition for the result. Note that in any period t, the

Kalman filter (3.19) implies that the optimal estimate of the unknown value of µ will be

given by a linear function of elements of the cognitive state of the form

µ̂t = ζt + δ′tm̄t. (3.34)

It follows from this that the only information in the memory state mt that matters for the

estimate µ̂t is the single quantity δ′tm̄t.

We can establish the optimality of a unidimensional memory in the following way. Con-

sider the optimization problem on the right-hand side of (3.33) in any period t, given the

degree of uncertainty σ̂2
t determined by the memory structures chosen in earlier periods.

The fact that V (σ̂2
t+1) is an increasing function, and that c(It) is at least weakly increasing,

means that an optimal memory structure must minimize the mutual information It given

the uncertainty σ̂2
t+1 that it implies for the following period.29 Hence the optimal choice

for Λ̄t must solve the problem

min
Λ̄t∈L(X(σ̂2

t ))
I(Λ̄t) s.t. f(σ̂2

t , Λ̄t) ≤ σ̂2
t+1, (3.35)

29In the case that c(I) is constant over some interval, reducing It need not reduce c(It), but it cannot
increase it; thus the solution to the problem (3.35) must be among the solutions to the problem on the
right-hand side of (3.33), even if it is not a unique solution. In such case, showing that the solution to (3.35)
is necessarily a singular matrix suffices to show that we can without any loss impose the further constraint
in (3.33) that the matrix Λ̄t must be at most of rank one.
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for given values of (σ̂2
t , σ̂

2
t+1). We shall show that whenever (σ̂2

t , σ̂
2
t+1) are such that the

set of matrices satisfying the constraint in (3.35) is non-empty,30 the solution Λ̄t to this

problem must be at most of rank one. Thus it must be of the special form

Λ̄t = λtXtvtv
′
t, (3.36)

where λt is a scalar satisfying 0 ≤ λ ≤ 1 and vt is a vector normalized to satisfy v′tXtvt = 1.

It follows that in each period m̄t+1 = Xtvtm̃t+1, where m̃t+1 is a unidimensional memory

state with a law of motion

m̃t+1 = λtv
′
ts̄t + ω̃t+1, ω̃t+1 ∼ N(0, λt(1− λt)). (3.37)

If σ̂2
t = σ̂2

0, the set L(X0) consists only of matrices of the form (3.36), with

vt =
w

(Ω + σ2
y)

1/2(w′w)
, (3.38)

because of (3.29). Hence the asserted result is obviously true in that case. Suppose instead

that σ̂2
t < σ̂2

0, and consider any matrix Λ̄t ∈ L(X(σ̂2
t )) that satisfies the constraint in (3.35).

If Λ̄t is not itself of rank one (or lower), we shall show that we can choose an alternative

transition matrix of the form (3.36), that is also consistent with the constraint in (3.35),

but which achieves a lower value of I(Λ̄t).

Let the alternative transition matrix be given by (3.36), with

λt =
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′
tδt+1

, vt =
Λ̄′

tδt+1

(δ′t+1Λ̄tXtΛ̄′
tδt+1)1/2

,

where δt+1 ≡ e1 − γ1,t+1c is the vector introduced in (3.34), and let the matrix Σω̄,t+1 be

correspondingly modified in the way specified by (3.27). We show in the appendix31 that

30Note that this must be the case if σ̂2
t+1 is chosen optimally given σ̂2

t .
31See Appendix E.2 for details of the argument.
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this specification implies that 0 ≤ λt ≤ 1, so that this alternative matrix also belongs to

L(Xt). Moreover, the new memory structure implies a conditional distribution

δ′t+1m̄t+1|st ∼ N(δ′t+1Λ̄ts̄t, δ
′
t+1Σω̄,t+1δt+1)

that is the same as under the original memory structure. This implies that the optimal

estimate µ̂t+1 conditional on the cognitive state st+1 will be the same function of m̄t+1

and yt+1 in the case of the new memory structure, and that the conditional distribution

µ̂t+1|st, yt+1 will be the same. It follows that σ̂2
t+1 will be the same, so that the alternative

transition matrix also satisfies the constraint in (3.35).

At the same time, we show in the appendix that the reduction in the complexity of

memory cannot increase information costs in any period.32 The new memory structure

consists effectively of a scalar memory state m̃t+1 in each period, which is a multiple of

d′t+1m̄t+1, a particular linear combination of the elements of the memory state under the

previous memory structure. Hence the information about s̄t that is revealed by mt+1 under

the new memory structure (i.e., that is revealed by m̃t+1) is also information that was

revealed by m̄t+1 under the previous memory structure; thus the value of It under the

previous memory structure must have been at least as large as under the new memory

structure. In fact, the only case in which the mutual information will not be reduced by

the proposed modification of the memory structure is if all elements of m̄t+1 were multiples

of d′t+1m̄t+1; which is to say, only if Λ̄t were already of the special form (3.36).

We conclude, then, that an optimal memory structure must involve a transition matrix

in every period of the special form (3.36), so that the memory state each period can be

represented by a scalar quantity m̃t. The choice of memory structure can then be reduced to

a problem of choosing, in each period t ≥ 0, a scalar quantity 0 ≤ λt ≤ 1, and the direction

of a vector vt (the length of which will then be chosen each period so as to ensure that

v′tXtvt = 1); the values chosen for these quantities then determine the law of motion for

32See Appendix E.2 for details of the argument.
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the unidimensional memory state m̃t+1, specified by (3.37). This in turn determines the

elements of the matrix Σt+1, and hence the value of the gain coefficient γ1,t+1 in the Kalman

filter formula (3.19) and the value of σ̂2
t+1, which determines the matrix Xt+1 = X(σ̂2

t+1).

For any value 0 ≤ σ̂2
t < σ̂2

0, let V(σ̂2
t ) be the set of vectors vt satisfying v′tX(σ̂2

t )vt = 1.

In the case that σ̂2
t = σ̂2

0, we add the further stipulation that V(σ̂2
0) consists only of the

single vector (3.38). Then given a value for σ̂2
t , determined by the memory structures for

periods τ < t, the memory structure for period t is specified by a scalar quantity 0 ≤ λt ≤ 1

and a vector vt ∈ V(σ̂2
t ). These determine a value for σ̂2

t+1 = f(σ̂2
t , λt, vt), where now the

function f is defined for any values of its arguments satisfying 0 ≤ σ̂2
t ≤ σ̂2

0, 0 ≤ λt ≤ 1,

and vt ∈ V(σ̂2
t ).

Because of the monotonicity of the value function V (σ̂2
t+1), the optimal weight vector

vt in any period must be the one that solves the static optimization problem

f̄(σ̂2
t , λt) ≡ min

vt∈V(σ̂2
t )
f(σ̂2

t , λt, vt). (3.39)

In the appendix,33 we give an explicit algebraic solution for the optimal vt for any given

values 0 ≤ σ̂2
t ≤ σ2

0 and 0 < λt ≤ 1,34 and hence for the function f̄(σ̂2
t , λt). The latter

function is also defined when λt = 0, and easily seen to equal f̄(σ̂2
t , 0) = σ̂2

0. Thus we can

solve for the dynamics of {σ̂2
t } implied by any sequence {λt}, by iterating the law of motion

σ̂2
t+1 = f̄(σ̂2

t , λt),

starting from the initial condition σ̂2
0 defined in (3.22).

Moreover, it follows from (3.30) that the mutual information associated with the period

t memory structure will be given by

It = −1

2
log(1− λt), (3.40)

33See Appendix E.3 for details.
34Note that no solution is needed in the case that λt = 0, since in this case vt is undefined.
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just as in the i.i.d. case discussed in section 1. The Bellman equation (3.33) can therefore

be written in the simpler form

V (σ̂2
t ) = min

0≤λt≤1
[ασ̂2

t + c(−(1/2) log(1− λt)) + βV (f̄(σ̂2
t , λt))]. (3.41)

4 Features of the Model Solution

Here we provide numerical examples of solutions for an optimal memory structure, un-

der alternative assumptions about both the degree of persistence of the process that must

be forecasted and the nature of the information cost function. In reporting our results, it

is useful to describe the model solution in terms of scale-invariant quantities — that is,

ones that are independent of the value of σy, indicating the amplitude of the transitory

fluctuations in the external state around its mean. Thus we parameterize the degree of

prior uncertainty about µ not in terms a value for Ω (the variance of the prior distribution

for µ), but rather by a value for K ≡ Ω/σ2
y (the variance of the prior distribution for µ/σy).

We similarly measure the degree of uncertainty about µ conditional on the cognitive state

at a given point in time (i.e., after a given amount of experience) not in terms of the value

of σ̂2
t , but rather by the scaled uncertainty measure ηt ≡ σ̂2

t /σ
2
y.

In terms of this scaled uncertainty measure, an optimal memory structure minimizes

the value of
∞∑
t=0

βt [ηt + c̃(It), ]

a scaled version of (3.18), where the scaled cost function is defined as c̃(I) ≡ c(I)/(ασ2
y).

(Dividing by α further reduces the numbers of parameters that we need to specify in con-

sidering the different possible forms that the optimal memory structure may take, since

it is only the relative weights on the two loss terms in the objective (3.18) that matter

for the optimal memory structure.) Our scale-invariant model is then completely specified

by values for the parameters ρ, β,K and the scaled cost function c̃(I). In our quantita-
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tive analysis, we assume that each “period” of our discrete-time model corresponds to a

quarter of a year (the variable to be forecasted is a quarterly time series), and hence set

β = 0.99 (implying a discount rate of 4 percent per annum). We consider a variety of

values 0 ≤ ρ < 1 for the assumed degree of serial correlation of the external state, and

explore the effects of different assumptions regarding the degree of prior uncertainty and

the size of information costs.

4.1 The case of a fixed per-period bound on mutual information

We begin by considering the case in which c̃(I) = 0 for all I ≤ Ī , but values of It greater

than Ī are infeasible, as assumed in section 1. Solution for the optimal memory structure

is particularly simple in this case. Because of (3.40), the per-period bound on mutual

information can equivalently be written as an upper bound λt ≤ λ̄, just as in section 1.

The optimal memory structure in period t is then characterized by the λt that minimizes

f̄(σ̂2
t , λt) subject to this constraint. We show in the appendix35 that the minimizing value

of λt is necessarily the largest feasible value; hence in the solution to this problem, λt = λ̄,

the value determined by the per-period information bound.

The dynamics of the uncertainty measure are then given by σ̂2
t+1 = f̄(σ̂2

t , λ̄). In terms of

the rescaled variables, the law of motion can be written as

ηt+1 = ϕ(ηt; λ̄), (4.42)

where ϕ(η; λ̄) is a function that is independent of the scale factor σy.36

For any value of λ̄ indicating the tightness of the constraint on the complexity of mem-

ory, equation (4.42) indicates how the DM’s degree of uncertainty about µ evolves as

additional observations of the external state are made. Starting from the initial condition

η0 = K/(K + 1) implied by (3.22), the law of motion (4.42) can be iterated to obtain a

35See Appendix F.1 for details of the argument.
36See Appendix F.1 for an explicit algebraic solution for this function.
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Section 3.1 The case of a fixed per-period bound on mutual information

Figure 1: The evolution of scaled uncertainty about µ
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Figure 2: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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The top-right panel shows the direction of the vector v∞, and the bottom-right panel shows the ”intrinsic” persistence
derived as ρm ≡ λ∞(e′1v∞) (e′1 − γ1c)X∞v∞.

2

Figure 1.1: The evolution of uncertainty about µ (for varying degress of λ̄)

The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remem-
bered) observations grows. The right panel shows the long-run value of scaled uncertainty (to
which ηt converges as t → ∞) as a function of the constraint on the complexity of memory,
parameterized by λ̄.

unique solution for the complete sequence of values {ηt} for all t ≥ 0. In the limiting case

λ̄ = 1 (unlimited memory), the law of motion (4.42) takes the especially simple form

1

ηt+1

=
1

ηt
+

1− ρ

1 + ρ
. (4.43)

This is simply the standard result for the linear growth in posterior precision under Bayesian

updating as additional observations are made; it has the implication that ηt declines mono-

tonically, and converges to zero for large t. Thus in the case of perfect memory, the DM

should eventually learn the value of µ with perfect precision, and hence make forecasts of

the kind implied by the hypothesis of rational expectations.

When λ̄ > 0, instead, the law of motion (4.42) implies that ηt should decrease initially,

as even imprecise memory of the DM’s observations of the external state reduces uncer-

tainty to some degree, but that ηt remains bounded away from zero, and converges to

a value η∞(λ̄) > 0. This is illustrated in Figure 1, which shows the dynamics implied by
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(4.42) for each of several different values of λ̄, in the case that ρ = 0 and K = 1.37 The

left panel plots the sequence of values {ηt} implied by (4.42) for a given value of λ̄. (Note

that the initial value η0 is the same in each case.) The right panel shows the value η∞ to

which the sequence converges as t grows; this value depends on λ̄, and the functional rela-

tionship between λ̄ and this limiting degree of uncertainty can be described by a function

η∞(λ̄), plotted as a smooth curve in the right panel of the figure.

In the case that λ̄ = 1 (shown as a dashed curve in the left panel of Figure 1), the se-

quence {ηt} decreases monotonically to zero at the rate predicted by the difference equa-

tion (4.43). But for any number of prior observations t > 0, the value of ηt remains higher

the lower is λ̄ (that is, the tighter the memory constraint), and the long-run degree of

uncertainty about µ, measured by η∞, is a decreasing function of λ̄ as well, as shown by

the curve in the right panel of the figure. Because of the limit on the amount of infor-

mation that can be retained in memory, the DM’s uncertainty about the value of µ never

falls below a certain level, even in the long run, despite our assumption that the value of

µ is fixed for all time. We further observe that the long-run degree of uncertainty η∞ is

larger, the smaller is λ̄ (that is, the tighter the constraint on memory). In the limit as λ̄

approaches zero (corresponding to a constraint that memory must be completely uninfor-

mative), the long-run degree of uncertainty η∞ approaches the prior degree of uncertainty

η0 = K/(K + 1).

As ηt falls along one of these trajectories, the weight vector vt that solves the problem

(3.39) shifts as well. As ηt converges to the long-run value η∞, the optimal weight vector

vt similarly converges to a long-run value v∞, indicating the particular linear combination

of µ̂t and yt that is imprecisely recorded in memory each period. Associated with this

stationary long-run memory structure there will also be a stationary long-run value for the

Kalman gain coefficient γ1 in equation (3.19), and more generally, stationary values for

37The effects of variation in the parameters ρ and K are illustrated in additional figures shown in Appendix
F.1. We use the parameterization K = 1 in the figures shown in the text because this value allows a
reasonably good fit of the predictions shown in Figure 7 below with the experimental evidence reported by
Afrouzi et al. (2020).
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Section 3.1 The case of a fixed per-period bound on mutual information

Figure 1: The evolution of scaled uncertainty about µ
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Figure 2: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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The top-right panel shows the direction of the vector v∞, and the bottom-right panel shows the ”intrinsic” persistence
derived as ρm ≡ λ∞(e′1v∞) (e′1 − γ1c)X∞v∞.

2

Figure 1.2: The optimal memory structure in the long run (for varying degress of λ̄)

Coefficients describing the optimal memory structure in the long run, as a function of the
degree of persistence ρ of the external state, for alternative values of λ̄. Respective panels show
the long-run values for η (measuring uncertainty about µ), the direction vector v (indicating
the content of the memory state), the Kalman gain γ1 (for updating the DM’s estimate of µ),
and ρm (measuring the intrinsic persistence of fluctuations in the memory state).

the coefficients of the linear difference equations describing the joint dynamics {yt, m̃t} of

the external state and the memory state.

These long-run stationary coefficients will depend on the value of λ̄ (indicating the

tightness of the memory constraint) and also on the value of ρ (indicating the degree of

persistence of the fluctuations in the external state). Figure 2 indicates how variation in

each of these parameters affects several of the long-run stationary coefficients.38 In each

panel, a curve shows how the coefficient in question varies as a function of ρ (for values

of ρ between 0.0 and 0.9), for a given value of λ̄; curves of this kind are shown for each of

three different values of λ̄, ranging between λ̄ = 0.95 (in which case memory is relatively

precise) and λ̄ = 0.30 (in which case it is much more constrained). All of the curves shown

in Figure 2 are again for the case of prior uncertainty K = 1.

38See Appendix G.1 for the formulas used to calculate each of the coefficients plotted here as functions of
the model parameters.
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The upper-right panel of the figure shows the long-run direction vector v∞; the quantity

reported on the vertical axis is the long-run value of the ratio v2/v1 of the vector’s two com-

ponents.39 Thus a value of −0.3 for this quantity means that the univariate memory state

m̃t+1 is (up to a multiplicative factor that does not affect its information content) equal to

the value of µ̂t − 0.3yt, plus additive Gaussian noise. The figure shows that when ρ = 0,

the optimal univariate memory state involves v2 = 0; that is, only the current estimate µ̂t

of the unknown mean is remembered with noise, with the current observation yt being

completely forgotten. This is optimal because when ρ = 0, the current value yt contains

no information that is relevant for improving subsequent forecasts of the external state,

except to the extent that it helps to improve the DM’s estimate of µ (which information is

already reflected in the estimate µ̂t). Instead, when the external state is serially correlated,

it is optimal to commit to memory a linear combination of µ̂t and the current state yt; in

the case that ρ > 0, the optimal linear combination puts a negative relative weight on yt, to

an extent that is greater the greater the degree of serial correlation, and greater the tighter

the constraint on memory.

The upper-left panel of the figure shows the long-run degree of uncertainty about µ,

measured by η∞. As shown in Figure 1, when ρ = 0, η∞ is a decreasing function of λ̄. We

see in Figure 2 that this is also true when ρ > 0. However, for a given memory constraint

λ̄, the long-run value η∞ is also an increasing function of ρ, with the degree of increase

when the external state is highly persistent being particularly notable when memory is

more accurate. The greater the serial correlation of the state, the fewer the effective

number of independent noisy observations of µ that the DM receives over any finite time

period; thus even under perfect Bayesian updating, equation (4.43) indicates that the rate

at which precision is increased by each additional observation is smaller the larger is ρ.

39This information (together with the value of η∞ given in the upper left panel) suffices to completely
determine the vector vt, since the vector is normalized so that v′Xv = 1. The value of λ (given by the
constraint λ̄), the matrix X (determined by the value of η∞), and the vector v then completely determine
the long-run stationary elements of the matrix Λ̄ (using (3.36)) and hence also of the matrix Σω̄ (using
(3.27)); thus the dynamics of the memory state given by (3.25) are completely specified.
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In the case of perfect memory, the long-run degree of uncertainty about µ is nonetheless

zero (there is simply slower convergence to that long-run value when ρ is large); but with

moderately imperfect memory, the effective amount of experience that can ever be drawn

upon remains bounded, so that the uncertainty about µ remains larger forever when ρ is

larger. When memory is even more imperfect, not much more than one observation (the

most recent one) can be used in any event, so that the value of η∞ is in this case less

sensitive to the value of ρ.

In the long run, the dynamics of the cognitive state s̄t and the memory state m̄t+1 are

described by linear equations with constant coefficients. The lower-left panel of Figure

2 shows the long-run value for the Kalman gain γ1t in (3.19). With imperfect memory,

this is always a quantity between 0 and 1, meaning that a higher value of the current

state yt raises the DM’s estimate of the value of µ, though by less than the amount of the

increase in yt. For a given value of ρ, the Kalman gain is larger the tighter the constraint

on memory; in the limit as λ̄ → 1 (perfect memory), the long-run value of this coefficient

approaches zero (as the true value of µ is eventually learned), while in the limit as λ̄ → 0

(no memory), the value approaches a maximum value that is still less than one (because

of the DM’s finite-variance prior).

Finally, the lower-right panel reports the long-run value of ρm, a measure of the in-

trinsic persistence of the memory state. The impulse response function for the effect of a

memory-noise innovation ω̃t on the subsequent path of the univariate memory state m̃τ is

proportional to (ρm)
τ−t for all τ ≥ t;40 thus the value of ρm indicates the rate of exponential

decay of the memory state back to its long-run average value. A smaller value of ρm means

that the contents of memory decay more rapidly; for any value of ρ, the figure shows that

ρm is smaller, the tighter the memory constraint. At the same time, while a larger value

of ρm implies that memory persists for a longer time, it also implies that when memory

40Here we refer to the difference that the realization of ω̃t makes for the forecasts of m̃τ at different
horizons τ ≥ t, by an observer who knows the true value of µ and the DM’s cognitive state at time t − 1, in
addition to observing the realization of ω̃t. See Appendix G.1 for details of the calculation.
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noise creates an erroneous impression of prior experience, this bias in what is recalled

about is also corrected more slowly; thus the value of ρm is an important determinant of

the predicted persistence of forecast bias.

4.2 The case of a linear cost of information

Analysis of the model is more complex when instead the amount of information stored

in memory each period can be increased at some finite cost. As an illustration we consider

the polar opposite case in which c̃(I) is a linear function of I, so that the marginal cost

of a further increase in the mutual information is independent of how large it already is.

Thus we assume that c̃(I) = θ̃ · I, for some coefficient θ̃ > 0 which parameterizes the cost

of memory.

In this case, the optimal choice of λt in any period will depend on the value of reducing

uncertainty in the following period. We note that the value function V (σ̂2
t+1) appearing

in the Bellman equation (3.41) can be written as σy · Ṽ (ηt+1), where ηt+1 is the scaled

uncertainty measure and the function Ṽ (η) is independent of the scale factor σy (for given

values of the parameters K, ρ, β and θ̃). We can then write the Bellman equation in the

scale-invariant form

Ṽ (ηt) = min
0≤λt≤1

{
ηt −

θ̃

2
log(1− λt) + βṼ (ϕ(ηt;λt))

}
. (4.44)

The optimal choice of λt in any period will be the value that solves the problem on the

right-hand side of (4.44). This problem has a solution λt = λ∗(ηt) which depends only on

the value of ηt, the degree of uncertainty in period t determined by the memory structures

chosen for periods prior to t.

Thus we can solve for the optimal policy function λ∗(ηt) once we know the value func-

tion Ṽ (ηt+1), and we can solve numerically for the value function by iterating the Bellman

equation (4.44), as discussed further in the appendix.41 The policy function λt = λ∗(ηt)

41See Appendix F.2 for details.
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Figure 5: The evolution of scaled uncertainty about µ
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Figure 6: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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Figure 1.3: The evolution of uncertainty about µ (for varying degress of θ̃)

The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remem-
bered) observations grows, now for the case of a linear cost of memory complexity. The right
panel shows the long-run value of scaled uncertainty for each value of the cost parameter θ̃,
plotted as a point on the same locus of optimal long-run memory structures as in Figure 1.

together with the law of motion

ηt+1 = ϕ(ηt;λt) (4.45)

derived earlier can then be solved for the dynamics of the scaled uncertainty {ηt} for

all t ≥ 0, starting from the initial condition η0 = K/(K + 1).42 The dynamics of scaled

uncertainty as a function of the number of observations t are shown for progressively

larger values of θ̃ in Figure 3, using the same format as in Figure 1. Once again, we see

that while uncertainty about µ eventually falls to zero as a result of when there is no cost

of memory complexity, as long as the cost is positive, the value of ηt remains bounded

away from zero, and converges asymptotically to a value η∞ that is higher the higher the

cost of memory complexity.

Associated with such an asymptotic degree of uncertainty is a particular long-run mem-

ory structure (λ∞, v∞), which will imply a particular long-run value for the Kalman gain

42See Appendix F.2 for further discussion of the implied dynamics.
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Figure 6: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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Figure 1.4: The optimal memory structure in the long run (for varying degress of θ̃)

Coefficients describing the optimal memory structure in the long run, as a function of the
degree of persistence ρ of the external state, in the case of a linear memory cost function, for
alternative values of θ̃. Respective panels show the long-run values for η, the direction vector
v, the Kalman gain γ1, and the memory precision coefficient λ.

γ1. The way in which the long-run values of these different quantities vary with different

assumptions about the values of ρ and θ̃ is illustrated in Figure 4. (We use the same con-

vention as in Figure 2 to indicate the direction of the vector v∞ in the upper-right panel

of the figure.) As we vary ρ for a given value of θ̃, the associated value of λ∞ changes;

hence the fixed-θ̃ curves shown in Figure 4 do not correspond exactly to any of the fixed-λ

curves plotted in Figure 2, even though each of the long-run memory structures associated

with a pair (ρ, θ̃) is identical to the long-run memory structure associated with some pair

(ρ, λ̄). As shown in the lower-right panel of the figure, the optimal λ∞ rises as ρ increases,

for any value of the cost parameter θ̃ > 0; the more persistent the external state that must

be forecasted, the more it becomes worthwhile to pay a larger information cost in order to

retain a more precise memory of prior experience.

Not surprisingly, we observe that for any value of ρ, increasing the memory cost θ̃ makes

it optimal for the long-run precision of memory λ∞ to be smaller, and consequently for the
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Figure 1.5: The long-run uncertainty

Long-run value of the scaled uncertainty measure η∞ (blue dots) as a function of the cost
parameter θ̃, in the case of a linear memory cost function. Left panel: K = 1, ρ = 0. Right
panel: K = 10, ρ = 0.

long-run degree of uncertainty about µ to be larger. In the case of a sufficiently high value

of θ̃, it will be optimal for memory to be completely uninformative. In fact, this happens

for a finite value of θ̃, and it occurs abruptly, rather than through a gradual increase in

the long-run degree of uncertainty η∞ toward the limiting value of η0 = K/(K + 1) as θ̃ is

increased. A graph of the relationship between η∞ and the value of θ̃ is shown in Figure

5, for the case ρ = 0, and two different possible values of K: K = 1 and K = 10. For each

value of θ̃, the value of η∞ associated with the optimal memory structure is shown by a

large blue dot.

In each panel of this figure, the continuous black curve is the correspondence consisting

of all points (θ̃, η∞) such that η∞ is a stationary solution of the Euler equation associated

with the optimization problem on the right-hand side of (4.44).43 The Euler equation rep-

resents a first-order condition for the optimal choice of the degree of precision of memory;

satisfaction of this condition is necessary but not sufficient for memory precision leading

43See Appendix F.4 for derivation of this equation.
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to ηt+1 = η to be optimal starting from a situation in which ηt = η. Because the objective

function on the right-hand side of (4.44) is not a convex function, it can have multiple lo-

cal minima (as well as a local maximum located between two local minima). Which of the

local minima represents the global minimum (and hence the optimal memory structure)

can jump abruptly as a result of a small change in parameters;44 this is what happens when

the value of η∞ changes abruptly in the right panel of Figure 5, for a value of θ̃ slightly

above 0.28.

In the K = 10 case, we see that there need not be a unique value of η∞ for a given value

of θ̃ that represents a stationary solution to the Euler equation. For any value of θ̃ greater

than a critical value around 0.15, if one starts from ηt = η0 (a completely uninformative

memory), the choice of ηt+1 = η0 again represents a local minimum of the objective; hence

η = η0 is a stationary solution of the Euler equation for all of these values of θ̃, as shown

in the figure. However, for values of θ̃ only moderately larger than the critical value (such

as θ̃ = 0.20), this is not the only local minimum, and the global minimum is instead at

an interior choice for λt; this value results in a path {ηt} that converges to a different

stationary value for η∞, on the lower branch of the correspondence (as shown for example

by the blue dot for θ̃ = 0.20). Yet for values of θ̃ that exceed a second critical value just

above 0.28, the global minimum shifts from the interior minimum to the local minimum

at ηt+1 = η0. For all values beyond this point, the optimal memory structure involves

λt = 0 for all t, so that η∞ = η0 (as shown by the blue dots on the upper branch of the

correspondence).

Thus while the locus of fixed points η∞(λ) is the same in Figures 1 and 3, all points on

this locus represent possible long-run memory structures (attainable through an appropri-

ate choice of λ̄) in the case of a fixed upper bound on mutual information, but not all of

them are always attainable in the case of a linear memory cost function. In the case K = 1,

the two sets of long-run solutions are identical; but in the case K = 10, there is a range

44See Appendix F.3 for a numerical example.
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of values for η∞ that are associated with particular (relatively low) values of λ̄ but do not

correspond to any possible value of θ̃.45

4.3 Stationary fluctuations in the long run

Because our model implies that a DM does not learn the true value of µ with cer-

tainty even in the long run, despite an arbitrarily long sequence of observations of the

external state, over which time the coefficients of the data-generating process (3.14) are

assumed not to change, it follows that the DM’s forecasts can be quite different from

rational-expectations forecasts — that is, the forecasts of an ideal statistician who knows

the true coefficient values. From the standpoint of an observer who is able to determine

the true process, the forecasts of the DM with limited memory will appear to be system-

atically biased. The biases in the DM’s forecasts will furthermore fluctuate over time, in

response both to variations in the external state (to which the DM reacts differently than

someone with rational expectations would) and to noise in the evolution of the memory

state.

We obtain a particularly simple characterization of the systematic pattern of forecast

biases if we consider the long run — the predictions of the equations in the previous two

sections in the case of very large values of t, so that ηt has converged to the constant value

η∞, λt has converged to λ∞, and so on. In this case, our model, like the model of “natural

expectations” of Fuster et al. (2010, 2011), predicts a stationary pattern of forecast biases

that do not reflect incomplete adjustment to a new environment.

In the long run, equations (3.14), (3.19), and (3.25) become a system of linear equa-

tions with constant coefficients and Gaussian innovation terms, describing the evolution

45We can show analytically that the continuous relationship shown in the left panel of Figure 5 occurs
for all K ≤ 1 when ρ = 0, while the backward-bending correspondence and consequent discontinuous
relationship between θ̃ and η∞ occurs for all K > 1. See Appendix F.4 for further explanation.
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of the DM’s cognitive state. This system of equations can be reduced to a VAR(1) system

s̃t+1 = fµ + F s̃t + ut+1, ut+1 ∼ N(0, Σu) (4.46)

where

s̃t ≡


m̃t

yt

 , ut+1 ≡


ω̃t+1

ϵy,t+1

 ,
and f, F and Σu are a 2-vector and two 2× 2 matrices of constant coefficients respectively.

In this vector system, the first equation is obtained by substituting (3.19) into (3.37), while

the second equation is given by (3.14).

The matrix F furthermore has an upper-triangular form, while Σu is diagonal. We show

in the appendix that the eigenvalues of the matrix F are ρ and ρm.46 We further show that

0 < ρm < 1, so that both yt and m̃t exhibit stationary fluctuations around well-defined

long-run average values which depend linearly on µ. The two independent exogenous

sources of variation in this system are the innovations ϵy,t+1 in the external state and the

memory noise innovations ω̃t+1.

The DM’s optimal estimate of µ at each point in time, µ̂t, as well as her optimal forecast

of the external state at any horizon τ > t,

ŷτ |t = E[yτ |m̃t, yt] = (1− ρτ−t)µ̂t + ρτ−tyt, (4.47)

will then be linear functions of the elements of s̃t, with coefficients that are also time-

invariant. We thus obtain a stationary multivariate Gaussian distribution for any number

of leads and lags of the external state, the DM’s memory state, and the DM’s estimates and

forecasts. This allows us to analyze not only the extent to which the DM’s forecasts should

differ from rational-expectations forecasts, but the correlation that one should observe

46See Appendix G.1 for the derivation.
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Figure 1.6: Impulse responses

Impulse responses of the DM’s estimate of µ (left panel) and one-period-ahead forecast of
the state (right panel) to a unit positive innovation in the observed value of yt at the time
marked as “time = 0” on the horizontal axis. Responses are plotted for alternative values of
the information bound λ̄, in the case that K = 1, ρ = 0.4.

between the bias in the DM’s forecasts and other observable variables.

In particular, the biases in the DM’s forecasts will be correlated with the evolution of the

external state. An unexpectedly high observed value for yt will be interpreted (because of

the DM’s uncertainty about µ) as implying a higher optimal estimate of µ, and this increase

in the DM’s estimate of µ will furthermore persist, decaying only gradually in subsequent

periods. This is illustrated in the left panel of Figure 6, which shows the impulse response

function for µ̂τ to a unit positive innovation in the value of yt. The response is plotted for

a variety of alternative values for the information bound λ̄, in the case that K = 1 and

ρ = 0.4 .47

In the case that λ̄ = 1 (perfect memory), the value of µ is learned with perfect precision,

and as a consequence there is no effect (in the long run, depicted here) of fluctuations in yt

on the DM’s estimate of µ. (The Kalman gain γ1 has a long-run value of zero in this case.)

47See Appendix G.1 for illustration of how this figure would change under alternative assumptions about
the degree of persistence of the fluctuations in the external state.
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Instead, for values of λ̄ < 1, a higher observed value of yt leads the DM to increase her

estimate µ̂t (the Kalman gain is positive). The estimate µ̂τ remains higher (on average) in

subsequent periods as well. The memory state m̃t+1 carried into the period following the

innovation is a noisy record of µ̂t, and hence is higher because of the increase in yt; this

increases the average value of the estimate µ̂t+1, which increases the average value of the

memory state m̃t+2, and so on. The tighter the memory constraint (the lower the value of

λ̄), the greater the effect of the innovation in yt on µ̂t, because the DM is more uncertain

about the value of µ before observing yt; however, the effect on the DM’s estimate of µ is

also more transient the lower the value of λ̄, because less information is retained from one

period to the next about past cognitive states.

These effects on the DM’s optimal estimate of µ then feed into her optimal forecast of

the external state at any future horizon τ , because of (4.47). As an illustration, the right

panel of Figure 6 shows the impulse response of the one-quarter-ahead forecast ŷτ+1|τ to

a unit positive innovation in yt, using the same conventions as in the left panel.48 When

ρ > 0, the rational-expectations forecast (corresponding to λ̄ = 1 in the figure) is itself in-

creased by a positive innovation in yt (by an amount equal to fraction ρ of the innovation),

and the increase in the forecast is furthermore persistent (decaying back to its original level

at a rate proportional to ρτ−t). But when λ̄ < 1, the forecast is increased by even more,

owing to the fact that the higher observation of yt increases the DM’s estimate of µ as well.

This additional effect on the forecast is initially larger the smaller is λ̄; but a smaller λ̄

(tighter memory constraint) also causes the additional effect to die out more rapidly, since

its propagation can only be through the DM’s memory of her previous judgment about the

value of µ.

Thus our model predicts that forecasts of the future value of a variable will over-react to

news about the current value of that variable (assuming, as is often the case with economic

time series, that the variable in question exhibits positive serial correlation). Positive serial

48The corresponding impulse responses for alternative values of ρ are again shown in Appendix G.1.
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correlation means that a higher current observation should increase somewhat one’s fore-

cast of the variable’s future value, even under rational expectations; but imperfect memory

results in a larger increase in the forecast than is consistent with rational expectations. The

model also predicts that biases of this kind will persist for some time. Once a situation oc-

curs that leads the DM to over-estimate the future level of some time series, the DM will

as a consequence continue (on average) to over-estimate the future level of that variable

for several more quarters.

4.4 “Recency bias” in expectation formation

One type of systematic difference between observed expectations and those of a perfect

Bayesian decision maker that has often been reported is “recency bias” (e.g., Malmendier

and Nagel, 2016; Malmendier et al., 2020) — a tendency for expectations to be influenced

more by more recent observations, even when in principle, observations of a given time se-

ries at earlier dates should be equally relevant as a basis for inference. As we have already

previewed in section 1.3, our model predicts that such a bias should exist, as a conse-

quence of optimal adaptation to limited memory precision (or to the cost of maintaining a

more precise memory). Observations of the external state farther in the past are recalled

with more noise, and as a consequence are given less weight in estimating parameters of

the data generating process than would be optimal in the case of a perfect memory of past

data.

The system (4.46) implies that, in the case that data have been generated in accordance

with this law of motion for a sufficiently long time, we can express the value of the memory

state m̃t+1 as a function of the sequence of external states {yτ} for τ ≤ t and the sequence

of memory noise realizations {ω̃τ+1} for τ ≤ t:

m̃t+1 = F12 ·
∞∑
j=0

(ρm)
jyt−j + ω̃sum

t+1 , (4.48)
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where F12 is the (1, 2) element of the matrix F in (4.46) and

ω̃sum
t+1 ≡

∞∑
j=0

(ρm)
jω̃t+1−j (4.49)

is a serially correlated Gaussian noise term.49

Equation (3.19) implies that a DM’s estimate of the unknown mean µ of the external

state is given by a linear relation of the form

µ̂t = ξm̃t + γ1yt, (4.50)

where the coefficient ξ > 0 is defined in the appendix. Using (4.48) to substitute for the

memory state in this expression, we see that we can write the estimate in the form

µ̂t =
∞∑
j=0

αjyt−j + ξω̃sum
t , (4.51)

where the weights {αj} are all positive, and the weights for j ≥ 1 decrease exponentially:

αj = α1(ρm)
j−1.

The forecasts specified by (4.47) using this value for µ̂t are similar to those implied

by a model of least-squares learning (Evans and Honkapohja, 2001) in which the DM is

assumed to know that the variable’s law of motion is of the form (3.14); the value of the

coefficient ρ is assumed to be known while µ must be estimated; and the unknown coef-

ficient is estimated using a “constant-gain” estimator.50 The biases in forecasts predicted

by our model will therefore have important similarities to those of a model of constant-

gain learning, of the kind included in estimated macroeconomic models by authors such

as Milani (2007, 2014) and Slobodyan and Wouters (2012).

49This is a stationary random process with a finite unconditional variance, since 0 < ρm < 1 as shown in
Appendix G.1.

50The differences between (4.51) and a standard constant-gain estimate of the mean of a series are the
fact that the coefficient α0 is differently specified, and the presence of the Gaussian error term. See further
discussion in section 5.1.2 below.
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We provide, however, a justification for the declining weight on observations farther

in the past, as a consequence of optimal forecasting based on an imperfect memory, and

furthermore endogenize the nature of that memory. The fact that our model predicts de-

creasing weights on observations made farther in the past is a notable difference between

our model and the one proposed by Afrouzi et al. (2020), as we discuss further in section

5.2.2.

5 Experimental Evidence

We have shown that our model provides an explanation for important qualitative fea-

tures of observed subjective expectations. Here we briefly discuss the model’s quantitative

fit with data on subjective expectations from the laboratory experiment of Afrouzi et al.

(2020). We focus on this particular evidence for a quantitative test of our model, because

it involves forecasts of a stationary AR(1) process, and in that sense matches exactly the

problem assumed in our theoretical analysis above. A laboratory experiment also has the

advantage over field studies of allowing us to be sure exactly what the true data-generating

process is, and exactly what information is available to decision makers at each point in

time (though of course questions remain about how the situation is understood by the

experimental subjects, and what they pay attention to).

As noted in the introduction, Afrouzi et al. (2020) conduct a laboratory experiment

in which subjects observe successive realizations of an AR(1) process, and forecast what

the next realizations should be. They find that subjects’ reported expectations over-react to

innovations in this process, as predicted by our model (as well as the related model of noisy

memory that they discuss). They give particular emphasis to a measure of over-reaction

in which a subject’s forecast ŷt+h|t (where h is the number of realizations in advance for

which the forecast is solicited in trial t) is regressed on the realization of the variable just
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before the forecast is solicited:

ŷt+h|t = αsubj
h + ρsubjh yt + vt. (5.52)

A separate regression (with coefficients αh, ρ
subj
h ) can be estimated for each of several

horizons h. Afrouzi et al. are interested in the difference between the “subjective degree of

persistence” measured by the estimated coefficient ρsubjh and the corresponding coefficient

ρh in a regression using actual outcomes:

yt+h = αh + ρhyt + ut+h. (5.53)

The authors measure the degree of over-reaction of expectations to news by the extent to

which ρsubjh is larger than ρh. Note that this is an example of a test of the predictability of

forecast errors, since the coefficient of a regression of the forecast error yt+h − ŷt+h|t on yt

will equal ρh − ρsubjh .

We can investigate what our model of expectation formation on the basis of an imper-

fect memory implies about the relationship between ρsubjh and ρh in the case of a stationary

AR(1) process. Here we consider the predicted values of the regression coefficients in the

long run, as the length of the time series used to estimate them goes to infinity. The law

of motion (3.14) implies that for any horizon h ≥ 1, the joint distribution of yt and yt+h

(conditional on the value of µ) will be bivariate Gaussian, with

E[yt+h |µ, yt] = (1− ρh)µ + ρhyt.

Hence with a sufficiently long series of observations, the coefficients in a regression of the

form (5.53) should approach the asymptotic values

αh = (1− ρh)µ, ρh = ρh.
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(Here we assume that the regression uses an arbitrarily long sequence of realizations of a

process for which there is a single, unchanging value of µ.)

Equation (4.47) implies that subjective forecasts should be given by

ŷt+h|t = (1− ρh)µ̂t + ρhyt,

so that the predicted coefficient ρsubjh in regression (5.52) will equal

ρsubjh = (1− ρh)βµ̂|y + ρh = (1− ρh)βµ̂|y + ρh, (5.54)

where βµ̂|y is the coefficient in a regression of µ̂t on yt,

βµ̂|y =
cov[µ̂t, yt |µ]

var[yt |µ]
=

cov[µ̂t, yt |µ]
σ2
y

.

We show in the appendix how to calculate this coefficient as a function of the model

parameters.51

Importantly, our numerical solutions indicate that µ̂t and yt are always positively cor-

related (conditional on µ). This is because a positive innovation in the external state yt

raises (or at least never lowers) the expected value of yτ for all τ ≥ t, and at the same

time also raises the expected value of µ̂τ for all τ ≥ t (as illustrated in Figure 6 and similar

figures in the appendix). Since the memory noise has no effect on the evolution of the ex-

ternal state, there are no shocks that move µ̂t and yt in opposite directions, while some (at

least the innovation ϵyt) move both of them in the same direction. But given that βµ̂|y > 0,

equation (5.54) implies that ρsubjh > ρh; that is, our model implies over-reaction of the kind

exhibited by the forecasts of the subjects of Afrouzi et al.

Equation (5.54) also implies that for fixed values of the model parameters other than

ρ, the over-reaction measure ρsubjh −ρh converges to zero as ρ→ 1, for any forecast horizon

51See Appendix G.3 for details.
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Figure 1.7: Two regression coefficients

Comparison of the values for the regression coefficients ρh and ρsubjh for different values of
ρ and h. (The figure is shown for the case K = 1, λ̄ = 0.3.) The diagonal line indicates the
prediction of the rational-expectations hypothesis.

h.52 This is also approximately true of the regression coefficients reported by Afrouzi et al.

(see their Figures 2B, 5A, and 5B). Indeed, these authors stress the finding that in their

data, the discrepancy ρsubjh − ρh is much larger when ρh is relatively small (either because

ρ is small, or because ρ is well below one and h is large). This is also true in numerical

solutions of our model as indicated in Figure 7.

One of the more striking features of the regressions reported by Afrouzi et al. is that

ρsubjh is well approximated by an increasing function of ρh, with approximately the same

functional relationship regardless of whether the variation in ρh occurs as a result of vari-

52This prediction depends on βµ̂|y remaining bounded as ρ approaches 1. This is the case in our numerical
solutions, both when λ̄ is held constant as ρ is varied (as in Figure 2) and when θ̃ is held constant as ρ is
varied (as in Figure 4).
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ation in ρ or variation in h.53 The relationship ρsubj(ρ) is furthermore an upward-sloping

one, with a slope much less than one, starting well above the diagonal for low values of ρ

and approaching the diagonal as ρ→ 1. (See the plot of their regression coefficients in Fig-

ure 7.54) While our model does not imply that a functional relationship of that kind should

hold precisely, it is worth noting that to the extent that the value of βµ̂|y remains approxi-

mately the same as one varies ρ, (5.54) implies that the value of ρsubjh should be nearly the

same for all pairs (ρ, h) that imply the same value of ρh. Perhaps more to the point, our

model can be parameterized so that it simultaneously fits the experimental evidence for

each of the three different horizons for which forecasts are solicited in the experiment of

Afrouzi et al.

Figure 7 plots the predicted value of ρsubjh against the value of ρh, for each of several

different horizons h, each represented by a distinct curve; the curves are shown for the case

in which K = 1 and λ̄ = 0.3. Along each curve, the variation in ρh is due purely to variation

in ρ. (The fact that λ̄ is fixed despite variation in ρ means that we assume a fixed upper

bound on the mutual information, as in section 1, rather than a convex cost function.)

The horizons used are h = 1, 2 and 5, as these are the horizons for which Afrouzi et al.

elicit forecasts from their subjects; the regression coefficients that they estimate for various

combinations of ρ and h are indicated by the circles in the figure (with colors indicating

the horizon h).

The three curves are not exactly the same, since in our model βµ̂|y is a function of ρ

(but the same for all values of h), rather than being a function only of ρh. Nonetheless, for

the parameterization chosen here, βµ̂|y is nearly constant as ρ is varied; as a consequence,

the relationship between ρh and ρsubjh predicted by (5.54) is close to a linear one, and is

nearly the same for all values of h. Our model therefore provides quite a good account of

the effects of variation in either ρ or h on the value of ρsubjh , as indicated by the fact that

53This was shown in an earlier version of the paper now circulated as Afrouzi et al. (2020), though this
figure is omitted from their most recent draft.

54The data plotted here are based on Figures 2B, 5A, and 5B of Afrouzi et al. (2020).
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none of the circles in Figure 7 are far from the corresponding curve.

There is also evidence of over-reaction to news in the forecasts of macroeconomic and

financial variables by professional forecasters, as discussed by Bordalo et al. (2020). A sat-

isfactory quantitative account of the predictable forecast errors observed in these forecasts

requires an extension of the model presented here, as discussed by Sung (2022). While the

more complex model in that paper involves additional information frictions, as addition

to allowing for more complex dynamics of the variables that are forecasted, noisy memory

of the kind modeled here remains crucial for explaining the observed patterns. And while

information frictions of the kind proposed by Coibion and Gorodnichenko (2012, 2015)

are also important, Sung finds that quantitative estimates of the size of those frictions are

significantly biased by failing to take account of the effects of noisy memory.

6 Related Models

Here we compare our model to alternative models of belief formation that make at least

somewhat similar predictions, most notably with regard to the possibility of over-reaction

to recent news. We show how our model has important formal similarities to some of these

others, and clarify the ways in which it differs from them.

6.1 Alternative Explanations for Over-Reaction

We begin by reviewing possible explanations for over-reaction to news that do not

rely upon imperfect memory. To simplify the discussion, we here consider only possible

explanations for a pattern of over-reaction that would continue to be observed even after

an arbitrarily long sequence of observations (rather than discussing transitory dynamics

that depend on the DM having insufficient experience with a given context).
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Reactions to News when the Mean is Understood to Drift

In our model, over-reaction of forecasts to new observations of the variable yt reflect

revisions of the DM’s estimate of the mean of the stochastic process {yt}, even though the

mean µ is assumed to be constant over time; failure of the DM to learn the exact value of

µ, even in the long run, depends on imperfect memory. However, there would be perpetual

revision of beliefs about the mean, even with perfect memory (and perfect Bayesian infer-

ence) in a world where the mean is (correctly) understood to evolve stochastically over

time. In this case, observations farther in the past would be of progressively less relevance

to the DM’s current estimate of the mean, even with perfect memory.

Such a model can predict forecast dynamics similar (though not identical) to those in

our model. As a simple example, suppose that yt = µt+ ϵt, where ϵt ∼ N(0, σ2
y) represents

an i.i.d. deviation from the time-varying mean µt; and suppose that the mean evolves

according to an AR(1) process,

µt = ϕµt−1 + νt,

where 0 < ϕ < 1 and νt ∼ N(0, (1− ϕ2)Ω) is another i.i.d. process. Note that this specifi-

cation implies that the unconditional prior distribution for the mean is given by N(0, Ω),

just as in our model.55 Let us consider the evolution of the beliefs of a perfect Bayesian DM

in such an environment, who observes yt with perfect precision each period, starting from

prior beliefs about µ0 (before y0 is observed) corresponding to the unconditional prior.

The posterior distribution for the value of µt, just before the observation of yt, will be

a Gaussian distribution N(µ̂t|t−1, σ̂
2
t|t−1). The posterior after observing yt will be another

Gaussian distribution N(µ̂t|t, σ̂
2
t|t). The mean and variance of this distribution are given by

the same Kalman-filter formulas (2.6)–(2.8) as above.56 In the case of perfect memory,

55The difference is that in the drifting-mean model, we no longer assume that a value of the mean is drawn
from this distribution and then remains constant forever after. Our specification in the previous sections can
be regarded as the ϕ → 1 limit of this prior.

56Here we must substitute µ̂t|t−1 for the prior mean m̄t in equation (2.6), and σ̂2
t|t−1 for the prior variance

Σµ
t . Similarly µ̂t|t and σ̂2

t|t correspond to the variables called simply µ̂t and σ̂2
t in the previous equations.
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these posterior beliefs about µt imply a posterior distribution for the value of µt+1 that is

also Gaussian, with mean and variance

µ̂t+1|t = ϕµ̂t|t, (6.55)

σ̂2
t+1|t = σ̂2

t|t + (1− ϕ2)(Ω− σ̂2
t|t). (6.56)

Comparison of equation (6.56) with the corresponding equation (2.11) for the dy-

namics of posterior uncertainty in our noisy-memory model reveals that the degree of

uncertainty, after any particular number of observations of yt, is the same in both mod-

els in the case that ϕ2 = λ̄. The same path for uncertainty about the mean then implies

the same path for the Kalman gain γt, given by (2.7). Hence the perfect-Bayesian model

with a stochastic mean is equally capable of explaining why a DM’s estimate of the mean

should continue to be influenced by recent observations, even after a long sequence of

observations; the predictions of the two models about this are identical, if the parameter

ϕ is chosen appropriately.

However, this does not mean that the two models are observationally equivalent. Equa-

tions (6.55)–(6.56) together with the Kalman-filter equation (2.6) imply that after any fi-

nite sequence of observations the Bayesian estimate of the mean will be given by a solution

of the form (2.12), but with the weights {αj} given by

αj,t = ϕjγt−jΠ
j
i=1(1− γt−j+i)

and the weights βj,t = 0. If we assume that ϕ2 = λ̄, so that the Kalman gains implied by

both models are the same, the weights on past observations {yτ} will equal

αj,t = λ̄j/2γt−jΠ
j
i=1(1− γt−j+i).

The weights decay exponentially, like the weights (2.13) implied by the noisy-memory
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model; but they do not decay at the same rate. (The weights decay more rapidly as j

increases in the case of the noisy-memory model; hence the weights are smaller for all

j ≥ 1 in that case.)

Another difference between the two models is that the perfect-Bayesian model implies

that there should be a tight relationship between the degree of persistence of the series

{µt} — and hence the autocorrelation of the observed series {yt} — and the coefficients

(such as the Kalman gain γt) that describe the dynamics of beliefs about the mean. In the

noisy-memory model, the coefficient λ̄ that determines the size of the Kalman gain and the

intrinsic persistence of the belief state can be specified independently of the time-series

properties of the process {yt}. This flexibility is important for accounting for observed

beliefs. Bayesian models of subjective forecasts often have to posit a DM with an apparent

prior belief that an unknown state fluctuates more than is actually the case.57 The noisy-

memory model can account for such findings without having to suppose that people fail

to learn the correct statistics of their environment. The example just presented shows that

noisy memory (λ̄ < 1) can result in belief dynamics similar to those of a Bayesian model in

which the DM’s prior assumes that the mean µt is less persistent than it really is (the prior

assumes that ϕ < 1 when actually µ never changes).

Finally, the perfect-Bayesian model implies that the DM’s estimate µ̂t|t at any time (and

hence their forecasts) will be a deterministic function of the sequence of values (y0, . . . , yt)

that have been observed. It follows from this that all forecasters who observe the same

series should have identical forecasts, and that the variation over time in their forecasts

can be fully accounted for by the variation in the values that have been observed. The

noisy-memory model instead implies that each DM’s beliefs (and hence their forecasts)

are affected by memory noise (βj,t ̸= 0); this implies both that forecasts are not perfectly

predictable from the past history of the series being forecasted, and that they should differ

across forecasters. This is an attractive feature of the noisy-memory model, since observed

57See, for example, Yu and Cohen (2009).
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forecasts have both of these properties.58

Constant-Gain Learning

One also obtains a prediction of perpetual learning, and hence continued over-reaction

to news even after an arbitrarily long sequence of observations, in a model where the

DM is assumed to estimate the value of the parameter µ using a “constant-gain” variant

of least-squares learning (Evans and Honkapohja, 2001, sec. 7.4). Constant-gain (CG)

algorithms effectively put an exponentially decreasing weight on observations farther in

the past; for example, an unknown mean is estimated by a linear estimator of the form

µ̂t =
t∑

j=0

γ(1− γ)jyt−j + (1− γ)t+1µ̂−1,

where 0 < γ < 1 is the constant “gain factor” and µ̂−1 is an initial condition (representing

the state of belief before y0 is observed). If we set µ̂−1 = 0 (in accordance with the prior as-

sumed in our noisy-memory model), this is similar to the kind of estimate of the unknown

mean implied by the perfect-Bayesian model in the case of a drifting mean.59 Moreover,

in the CG algorithm, the value of γ can be specified independently of the dynamics of the

process {yt} that is forecasted.60

To the extent that a model of CG learning is considered to be empirically realistic,

however, a question arises as to what determines the value of the gain parameter. In the

adaptive control literature, such algorithms are proposed as a way of dealing with drift

in the values of parameters to be estimated; the appropriate value of the gain parameter

58See Sung (2022) for discussion of the difference between individual professional forecasters’ forecasts
and the consensus forecast, in the case of a variety of macroeconomic variables.

59Note that if we consider a limiting case in which ϕ → 1 while (1 − ϕ2)Ω → σ2
ν > 0, then as t → ∞ the

solution (2.12) for the perfect-Bayesian model approaches one in which γt−j → γ̄, a constant value between
0 and 1, for all j. In this case the dynamics of the mean estimate implied by the perfect-Bayesian model are
exactly those of a constant-gain mean estimate with a gain factor of γ̄.

60In empirical applications (e.g., Milani, 2007, 2014; Slobodyan and Wouters, 2012), the gain parame-
ter and the parameters specifying the persistence of the exogenous states are treated as independent free
parameters to be estimated.
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should thus depend on one’s prior regarding the degree of volatility of the parameters

to be estimated, as in our discussion above of Bayesian inference when the mean drifts.

But once again, the gain parameters that are found to best fit expectations data do not

seem to correspond to ones that would be optimal given the degree of structural change in

the forecasted time series.61 Alternatively, authors such as Malmendier and Nagel (2016)

propose that aggregate dynamics similar to those predicted by a model of CG learning can

result from aggregation of the decisions of people of different ages, who each form beliefs

on the basis of their personal experience (and hence on the basis of samples extending

different distances into the past).62 But also under this explanation for CG learning, the

predicted gain parameter should depend on other features of the model, that may not

justify a gain parameter as large as the one required to explain the observed degree of

over-reaction to news.63 Our model provides an alternative foundation for belief dynamics

similar to those implied by a CG algorithm, in which a substantial gain parameter can exist

even when the value of the mean remains constant (or nearly constant) over long periods

of time, and even when forecasts have long personal histories of observations.

Forecasts Based on an Incorrect Model

A longstanding explanation for systematic over-reaction to news is the hypothesis that

people form their forecasts on the basis of an incorrect statistical model — for example,

under an assumption that the fluctuations in {yt} are more persistent than is actually the

case. Explanations of this kind have continued to be prominent in the recent literature

(e.g., Angeletos et al., 2021), but they raise the question: why should people persist in

mis-estimating the dynamics?

61See, e.g., Branch and Evans (2006) and Berardi and Galimberti (2017).
62For additional examples, see Nakov and Nuño (2015), Schraeder (2016), Collin-Dufresne et al. (2017),

Ehling et al. (2018), and Malmendier et al. (2020).
63Thus Malmendier et al. (2020) posit an exponentially decaying influence of earlier experiences on a

given DM’s expectations, even among the events that have occurred during their lifetime, rather than relying
upon demographics alone to account for the rate at which past events cease to influence current market
pricing.
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Fuster et al. (2010, 2011) offer one answer: people’s forecasts are optimal, given

their estimated model of the dynamics, and their estimated model is the one that best

fits the autocorrelation function of the actual series, within some parameteric family of

possible models (that need not include the true data-generating process). Their hypothesis

of “natural expectations” assumes that the class of statistical models considered is that of

all possible AR(k) models, for some fixed bound on k.64 The authors argue that actual

time series often involve long-horizon dependencies, and show that in this case (say, an

AR(40) process forecasted by people who consider models with no more than 10 lags),

long-horizon forecasts using the best-fitting AR(k) model can significantly over-react to

recent trends in the data.

This proposal, however, remains subject to several objections. Why should the restric-

tion to models of the data with a fixed upper bound on k be maintained, even when the

available sequence of observations with which to estimate the model becomes unbound-

edly long? Moreover, even if one grants that a constraint on model complexity requires

that no more than some finite number of explanatory variables be stored and used as a

basis for forecasts, why must the possible explanatory variables correspond only to the last

k observations of the series? In the kind of example in which Fuster et al. argue that their

proposal predicts over-reaction, more accurate long-horizon forecasts would be possible if

the forecast were conditioned on a long moving average of observations, rather than only

recent observations; yet tracking a small number of moving averages would seem no more

complex than always having access to the last k observations. And above all, the Fuster et

al. explanation implies that over-reaction should only be observed in the case of variables

that are not well-described by an AR(k) process of low enough order. Yet as discussed

above, Afrouzi et al. (2020) find significant over-reaction in an experiment in which the

true data-generating process is an AR(1) process; and in fact, they find the most severe

degree of over-reaction when the process to be forecasted is white noise.

64More general versions of this hypothesis are considered in the more recent work of Molavi (2022).
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Like the hypothesis of “natural expectations,” our model assumes that forecasts are

optimal, among those forecasting rules in which the forecast is based on only a limited

summary of past history; but the way in which we model the limit on the complexity of

possible representations of past data is different. Our approach does not impose any a

priori restriction on either the dimensionality of the memory state or the number of past

observations that can be (imperfectly) represented by the memory state. And the form of

complexity limit that we assume has the advantage of implying forecasting bias (and more

specifically over-reaction) even when the true dynamics are very simple — indeed, even

when the true dynamics are white noise (and are recognized by the DM to be white noise).

6.2 Alternative Models of Imprecise Memory

We are also not the only authors to have proposed that expectational biases may result

from forecasts being based on imperfect memory of past observations. Here we briefly

discuss similarities and differences of alternative proposals with our own approach.

Models of Quasi-Bayesian Belief Updating

Nagel and Xu (2022) propose that a variety of asset-pricing anomalies can be explained

by the biases in expectations regarding future asset returns implied by a particular type of

departure from perfect Bayesian inference from observed past returns, which they call a

model of “fading memory.” As in this paper, they consider a situation in which a DM

(an investor) must infer the mean µ of a process {yt}, based on past observations of this

process; and (as in the simple case analyzed in section 1) they assume that the process is

i.i.d. (and known to be), and that the only unknown parameter of the distribution is µ.

Given a prior p(µ) over possible values of µ, and a likelihood p(y |µ) for the observation

of yt in any period conditional on the unknown mean, the Bayesian posterior distribution
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conditional on a finite sequence of observations y = (yt0 , . . . , yt−2, yt−1, yt) is given by

p(µ |y) ∼ p(µ)

t−t0∏
j=0

p(yt−j |µ).

The Nagel-Xu model of “fading memory” instead assumes a subjective posterior of the form

p(µ |y) ∼ p(µ)

t−t0∏
j=0

p(yt−j |µ)(1−ν)j , (6.57)

for some small quantity ν > 0, which indicates the rate at which memory of past observa-

tions “fades.” (Note that their model reduces to perfect Bayesian inference in the limiting

case in which ν = 0.)

The Nagel-Xu model, like ours, is one in which there is perpetual learning: in the

limit as t0 → −∞, the posterior distribution (6.57) remains non-degenerate, despite being

based on a sample of infinite length. As in our case, the reason is that past observations

have a progressively weaker influence on the posterior, the farther they are in the past, and

more specifically the influence decreases as an exponential function of the elapsed time.

Also as in our case, the Nagel-Xu model implies that one should observe “recency effects.”

Another important similarity between their approach and ours is that Nagel and Xu model

the DM’s complete posterior at each point in time, not just the DM’s point estimate of µ;

and like us, they tie the rate of decay of past information to cognitive limitations, rather

than the rate at which the environment is objectively likely to have changed.

Our model differs from that of Nagel and Xu, however, in offering an explicit repre-

sentation of the imprecise information contained in memory, and then deriving the DM’s

subjective posterior from (correct) Bayesian conditioning on this imprecise record, rather

than directly assuming a particular modification of the Bayesian expression for the poste-

rior beliefs. This is not simply a matter of having failed to provide intermediate steps in

the derivation; the subjective beliefs assumed by Nagel and Xu are not correct conditional

beliefs, if one were to condition on the information about past observations reflected in
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the assumed beliefs (and therefore revealed by the DM’s cognitive state, since the subjec-

tive posterior must be some function of the cognitive state).65 Our model also differs from

theirs in that it implies that individuals’ beliefs involve idiosyncratic cognitive noise; thus

our model, unlike that of Nagel and Xu, predicts that investors should have heterogeneous

beliefs even if they observe identical information. (This difference is relevant for appli-

cations to financial economics, since our model of heterogeneous beliefs on the part of

individual investors provides a motive for trading, even when all information about asset

fundamentals is public.) In these respects, the predictions of our model are not quantita-

tively identical to those of the model of Nagel and Xu, despite many similarities.

Prat-Carrabin et al. (2021) derive a quasi-Bayesian posterior very similar to the one

postulated by Nagel and Xu from a hypothesis of “costly Bayesian inference,” in which

belief updating after each new piece of evidence arrives is distorted (relative to exact

Bayesian updating) so as to reduce the precision of the resulting belief state.66 This hy-

pothesis is even more closely related to the one that we propose here, insofar as the sen-

sitivity of beliefs to past observations decreases over time as a consequence of a cost of

storing a more precise record of the DM’s past cognitive state. The model of Prat-Carrabin

et al. differs from ours in identifying the imprecise memory state with the DM’s (distorted)

posterior beliefs given the sequence of observations to that point; instead, we distinguish

between the DM’s cognitive state (which includes the memory state mt) and the probabil-

ity beliefs that would optimally be inferred from such a state. Thus again, while there are

many similarities between the predictions of their model and ours, the predictions are not

identical.

Alternative Models of Noisy Memory

Neligh (2022) proposes a model of decaying memory that is conceptually closer to our

own in that, as in this paper, it is assumed that memory can be retrieved only with noise,

65See the Appendix, section XX, for detailed discussion.
66Prat-Carrabin et al. (2022) fits the model to an experimental data set.
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and the judgments that are made are optimal (consistent with correct Bayesian inference)

subject to being based on the noisy memory state. The difference with our model is in

the way that the memory state, and the cost of retrieving a more precise memory, are

modeled. As noted above, Neligh assumes an “episodic” memory, in which there is an

independent noisy record of each of the past observations yτ for 0 ≤ τ ≤ t − 1; the

element of the memory vector corresponding to the observation at time τ is equal to the

value of yτ plus a mean-zero Gaussian noise term, distributed independently of the value

of yτ , and with a variance that depends on the amount of elapsed time. This is a special

case of the kind of noisy memory that our framework allows for, but is not the form of

memory that is found to be optimal for the decision problem considered in this paper. In

addition to imposing the constraint that memory must take this form, Neligh endogenizes

the precision of memory in only one respect: the precision with which observation yτ is

initially encoded at date τ is optimized (subject to a cost of greater encoding precision),

but given the choice of an initial encoding precision, the precision of the memory that can

be retrieved after a time delay is exogenously determined by the amount of time that has

elapsed. Our model instead allows the precision with which memory is maintained over

time to be endogenously varied.67

An important similarity between Neligh’s model and ours is that in both models, ob-

servations more distant in the past are retrieved with greater noise, because of the way

in which noise is cumulatively added as the memory state is maintained over time. This

means that both models predict recency effects; and it would be possible to specify the

rate of increase of memory noise with the passage of time in Neligh’s model in such a way

as to make the distribution of E[µ |mt] conditional on the sequence of past observations —

and hence the conditional distribution of all of the DM’s forecasts, in the decision problem

considered here — the same as the one predicted by our model. There would remain, how-

ever, two important differences between Neligh’s model and ours. One is that our model

67In addition to considering a different class of possible memory structures, Neligh (2022) addresses
largely distinct questions from those analyzed here.
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derives its predictions from less special assumptions and involves fewer free parameters;

thus in the case that both models were equally consistent with empirical observations like

those of Afrouzi et al. (2020), our model would provide a more parsimonious explanation.

And second, Neligh’s model implies a much higher-dimensional memory state than does

ours. In the case of the decision problem considered in this paper, this makes no differ-

ence, as forecasts depend on memory only through a single scalar summary statistic; but

the predictions of the two models would likely be different in the case of more complex

decisions.

Like us, Afrouzi et al. (2020) propose to explain the biases in their experimental sub-

jects’ forecasts using a model of endogenously imprecise memory. However, in their model,

all past observations are stored in memory with perfect precision; imprecision enters only

when an imperfect representation of the contents of memory is retrieved in order to in-

form a decision. The nature of the imprecise representation that is used for the decision is

optimized subject to a cost of precision, which as in our model is based on mutual informa-

tion (for them, the mutual information between the complete contents of memory and the

imprecise representation). As in our model, the information cost implies that an accurate

estimate of the value of µ cannot be made on the basis of memory, even after a very large

number of observations. Hence subjects’ forecasts (assumed as in our model to be optimal

subject to having to be conditioned on an imprecise cognitive state) are based on a precise

observation of the current yt together with an imprecise estimate of µ deriving from an

imprecise summary of past observations. This results, as in our model, in a prediction

of over-reaction to the most recent observation (that can be observed with greater preci-

sion than any past observations are recalled); and the predicted degree of over-reaction is

greatest in the case of variables with low persistence (since in this case optimal forecasts

are largely determined by the optimal estimate of µ).

Despite these similarities in the predictions of the two models, there is an important

difference between the model of noisy memory in Afrouzi et al. (2020) and our own.
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Their model implies that all past observations are accessible with equal precision when a

forecast needs to be made; hence the optimal noisy representation of the past weights past

observations to the extent that they are relevant to the current decision, which implies

much less “decay” of old observations than in our model. As a simple example, consider

the case in which yt is i.i.d. Then the contents of memory will be distributed independently

of the current observation yt, and the equally-weighted sample mean of the observations

{yτ} for 0 ≤ τ < t will be a sufficient statistic for the information about the mean µ that

is contained in the previous observations; hence the optimal representation will be a noisy

read-out of this sample mean. It follows that any past observation yτ (for τ < t) should

have exactly the same effect on forecasts at time t as any other: there will be no “recency

effect” at all, except for the fact that the observation yt will have a larger effect than any of

the observations at dates τ < t. Thus the model of Afrouzi et al. provides no explanation

for the kind of recency effects that have frequently been documented in the experimental

literature (e.g., Hogarth and Einhorn, 1992), as well as in macroeconomic and financial

contexts by authors such as Malmendier et al. (2020).

7 Conclusion

We have shown that it is possible to characterize the optimal structure of memory, for

a class of linear-quadratic-Gaussian forecasting problems, when the cost of a more pre-

cise memory is proptional to Shannon’s mutual information, and when we assume that

the joint distribution of past cognitive states and the memory state is of a multivariate

Gaussian form, but with no a priori restriction on the dimension of the memory state or

the dimensions of past experience that may be more or less precisely recalled. Strikingly,

we find that for the class of problems that we consider, the optimal memory structure is

necessarily at most one-dimensional. This means that what can be recalled at any time

about past observations is simply a noisy recollection of a single summary statistic for past

experience. We show how the model parameters determine the law of motion for that sum-
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mary statistic, and hence what single dimension of past experience will be (imprecisely)

available as an input to the DM’s forecasts.

Among the implications of our model, two seem of particularly general interest. First,

while our formalism allows for the possibility of an independent noisy record of each past

observation (as assumed for example in the model of Neligh, 2022), this is not optimal;

instead, the optimal memory structure is one in which only a particular weighted average

of past observations can be recalled with noise. And second, this weighted average places

much larger weights on recent observations than on ones at earlier dates, even though

observations at all dates are equally relevant to inference about the value of the parameter

µ, which matters for the DM’s decisions. Thus our model provides an explanation for

“recency bias” in the influence of past observations on current decisions, unlike the model

of endogenous memory precision proposed by Afrouzi et al. (2020).

We have shown that our model predicts “over-reaction” of forecasts of an autoregres-

sive process to current realizations of the process, and that the degree of over-reaction

should be greater in the case of less persistent time series, as observed in the forecasts of

experimental subjects (Afrouzi et al., 2020). The same mechanism provides a potential

explanation for the frequent observation of over-reaction to news in survey forecasts of

macroeconomic and financial time series (e.g., Bordalo et al., 2020). Sung (2022) extends

our model to allow for imprecise awareness of the current external state yt, in addition to

the imprecise awareness of the DM’s own past cognitive states modeled in this paper, and

shows that with this extension the model can account quantitatively for the predictable

errors in professional forecasts of a variety of macro variables. In particular, she shows

that the model can simultaneously account for the apparent “under-reaction” of consensus

forecasts stressed by Coibion and Gorodnichenko (2012, 2015) and the apparent “over-

reaction” stressed by Bordalo et al. (2020).

In these applications we have focused on biases observed in people’s stated expecta-

tions. But we suspect that the expectational biases implied by our model can help to
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explain puzzling aspects of market outcomes as well. For example, Bordalo et al. (2022)

argue that a number of well-known puzzles about the behavior of the aggregate stock mar-

ket are in fact all consistent with a simple dividend discount model of stock prices, under

the hypothesis that market expectations regarding firms’ future earnings differ systemati-

cally from rational expectations in a particular way, that is furthermore consistent with the

biases observed in survey expectations of earnings. They further show that a particular

sort of bias in market expectations is needed in order to explain both the biases in survey

expectations and the asset pricing anomalies, one very much like the kind of forecast bias

predicted by our model.

Briefly, Bordalo et al. propose a model in which asset prices at time t are based on

market expectations of dividend growth gt+h at various future horizons h. Dividend growth

is assumed to be a stationary autoregressive process; market expectations of gt+h differ

from rational expectations by an expectional error term ϵh,t. For any horizon h, ϵh,t is

assumed to be a stationary, mean-zero autoregressive process, with a substantial degree

of persistence; and the innovations in ϵh,t are positively correlated with the innovations in

gt, though fluctuations in ϵh,t also occur that are uncorrelated with fundamentals. Finally,

the fluctuations in ϵh,t for different horizons h are perfectly correlated, and ϵh,t remains

different from zero as h → ∞, so that innovations in the error process bias expectations

about dividend growth in the far future and not only in the near term.

These assumptions are all features of subjective forecasts of the future evolution of the

state yt+h in our model (if we identify our yt with dividend growth). We have shown (in the

right panel of Figure 6) that in our model, innovations in yt cause subjective expectations

of the future state to rise more than the RE forescast would, and the effect persists for

several periods, though the bias caused by the innovation in any single period t eventually

converges to zero. For each horizon h, (4.47) implies that the bias term is equal to (1 −

ρh)µ̂t; thus the biases for different forecast horizons are all perfectly correlated. Moreover,

as the horizon is increased, the bias term becomes simply µ̂t for all large enough h; thus
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the forecast errors predicted by the model are above all errors in long-term forecasts.

Our model also implies that there will be random fluctuations in forecast bias that are

uncorrelated with any underlying fundamentals; these innovations are indicated by the

ω̃t+1 shock in (4.46). The most important difference with the reduced-form specification

of expectational bias proposed by Bordalo et al. is that in their model, there are arbitrary

random variations in the “market expectations” that determine the value of the stock mar-

ket; our model instead implies the existence of idiosyncratic random variation in the beliefs

of an individual forecaster, but one might expect that these idiosyncratic variations should

cancel out in their effects on the market price. It is possible that a satisfactory model of

asset pricing will require us to suppose that some individual traders are large enough for

their idiosyncratic beliefs to have a non-negligible effect on aggregate outcomes, as in the

model of Gabaix et al. (2006). We leave the development of a complete model of asset

prices for future work. But it seems likely that imperfect memory of the kind modeled here

will be a necessary element in such a model.
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8 Appendix

8.1 Reduction of the General Forecasting Problem to Estimation of µ

Consider the problem of choosing the vector of forecasts zt each period so as to mini-

mize (3.15). The elements of zt must be chosen as a function of the DM’s cognitive state at

time t (after observing the external state yt). As explained in the text, the DM’s cognitive

state at time t is assumed to consist of the value of the current external state yt (observed

with perfect precision), along with whatever additional information is reflected in the DM’s

period t memory state mt. (In this section, it is not yet necessary to specify the nature of

the vector mt.)

If we use the notation Et[·] for the expectation of a random variable conditional on a

complete description of the state at date t (including knowledge of the true value of µ),

then

E[(zt − Etz̃t)
′W (z̃t − Etz̃t)] = 0,

since z̃t − Etz̃t is a function of innovations in the external state subsequent to date t, that

must be distributed independently of all of the determinants of both zt and Etz̃t. It follows

that the term in (3.15) involving zt can be equivalently expressed as68

E[(zt − z̃t)
′W (zt − z̃t)] = E[(zt − Etz̃t)

′W (zt − Etz̃t)]

+E[(z̃t − Etz̃t)
′W (z̃t − Etz̃t)]

≡ L1t + L2t.

Moreover, L2t is independent of the decisions of the DM, and thus irrelevant to a deter-

mination of the optimal decision rule. The loss function (3.15) can thus equivalently be

written as the discounted sum of the L1t terms, which involve squared differences between

zt and Etz̃t.

68Here we omit the factor βt that multiplies this term in (3.15).
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It further follows from the law of motion (3.14) that

Etz̃t =
∞∑
j=0

Aj[µ+ ρj(yt − µ)].

Since the precise value of yt is presumed to be part of the cognitive state on the basis of

which zt can be chosen, one can write any decision rule in the form

zt = ẑt + (
∞∑
j=0

ρjAj) · yt,

where ẑt must be some function of the cognitive state at date t. In terms of this notation,

the relevant part of the loss function (3.15) can then be written as

L1t = E[(ẑt − µa)′W (ẑt − µa)],

where we define a ≡∑∞
j=0(1− ρj)Aj and make use of the fact that Et[µ] = µ.

The term L1t that we wish to minimize can further be expressed as the expected value

(integrating over all possible realizations of the cognitive state st in period t) of the quan-

tity

L̃1(st) ≡ E[(ẑt − µa)′W (ẑt − µa) |st]

= E[ẑt |st]′WE[ẑt |st] + E[z̆′tWz̆t |st]

− 2a′WE[ẑt |st] · E[µ|st] + a′Wa · E[µ2|st],

where we define z̆t ≡ ẑt−E[ẑt |st]. (In expanding the right-hand side in this way, we use the

fact that E[z̆t |st] = 0, and that z̆t must be independent of the deviation of µ from E[µ|st],

since the DM has no way to condition her action on µ except through the information

about µ revealed by the cognitive state.) The expression L̃1(st) can then be separately

minimized for each possible cognitive state st, by choosing a distribution for ẑt conditional
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on that state. We further note that the random component z̆t of the action affects only the

second term on the right-hand side, and so should be chosen to minimize that term; since

W is positive definite, this is achieved by setting z̆t = 0 with certainty, so that ẑt must be a

deterministic function of st.

We can then simply write E[ẑt |st] as ẑt, and observe that

L̃1(st) = (ẑt − aE[µ|st])′W (ẑt − aE[µ|st]) + a′Wa · var[µ|st], (H.58)

where the final term on the right-hand side is independent of the choice of ẑt. Thus in

each cognitive state st, ẑt must be chosen to minimize the first term on the right-hand side;

since W is positive definite, this is achieved by setting ẑt = a · µ̂t, where µ̂t = E[µ|st].

Thus there is no loss of generality in restricting the DM to response rules of the form

ẑt = a · µ̂t, where µ̂t is a scalar choice that depends on the cognitive state in period t, and

that can be interpreted as the DM’s estimate of µ given the cognitive state. Substituting

this expression for ẑt into (H.58), we have

L̃1(st) = a′Wa ·
{
(µ̂t − E[µ|st])2 + var[µ(st)]

}
= a′Wa · E[(µ̂t − µ)2 |st].

Then taking the unconditional expectation of this expression, we obtain

L1t = α ·MSEt,

where α ≡ a′Wa > 0 and MSEt is defined as in the text.

Under any forecasting rule of the kind assumed here, then, the value of the loss function

(3.15) will equal (3.17), plus an additional term

∞∑
t=0

βtL2t
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that is independent of the DM’s forecasting rule. Hence within this class of forecasting

rules, the rule that minimizes (3.15) must be the one that minimizes (3.17); and since any

other kind of forecasting rule can only lead to a higher value of (3.15), we can replace

the problem of choosing a rule for determining zt that minimizes (3.15) by the problem of

choosing a rule for determining µ̂t that minimizes (3.17).

8.2 Bayesian Updating After the External State is Observed: A Kalman Filter

Let the elements of the memory state be partitioned as

mt =


mt

m̄t

 , (H.59)

where the lower block consists of the elements of the reduced memory state

m̄t ≡ E[xt |mt], where xt ≡


µ

yt−1

 ,

while the upper block consists of the conditional expectations E[yt−j |mt] for 2 ≤ j ≤ t.

(This simply requires an appropriate ordering of the elements of mt, using the notation for

this vector introduced in the main text.)

We assume a posterior distribution of the form

xt |mt ∼ N(m̄t, Σt)

conditional on the memory state mt, where m̄t is a 2-vector and Σt is a 2 × 2 symmetric,

p.s.d. matrix. Under our assumption of linear-Gaussian dynamics for the memory state,

the vector m̄t will also be drawn from a multivariate Gaussian distribution. Since the prior
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for the hidden state vector is specified to be

xt ∼ N(0, Σ0), Σ0 ≡


Ω Ω

Ω Ω + σ2
y

 , (H.60)

it follows that the unconditional distribution for the reduced memory state m̄t must be of

the form

m̄t ∼ N(0, Σ0 − Σt).

The complete set of variables (xt,mt) also have a multivariate Gaussian distribution.

Moreover, since (by assumption) the expectation of xt conditional on the realization of mt

depends only on the elements of m̄t, it follows that the entire distribution of xt conditional

on mt depends only on m̄t, so that

xt|mt = xt|m̄t.

Hence the joint distribution of the variables (xt,mt) can be factored as

p(xt,mt, m̄t) = p(xt, m̄t) · p(mt |m̄t).

The DM then observes the external state yt, which is assumed to depend on the hidden

state vector xt through an “observation equation” of the form

yt = c′xt + ϵyt, ϵyt ∼ N(0, σ2
ϵ )

as a consequence of (3.14), where we further assume that ϵyt is distributed independently

of both mt and xt. It follows that the variables (xt,mt, yt) will have a joint distribution that
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is multivariate Gaussian; and that this distribution can be factored as

p(xt,mt, yt) = p(xt,mt) · p(yt |xt)

= p(mt |m̄t) · p(xt, m̄t) · p(yt |xt)

= p(mt |m̄t) · p(xt, m̄t, yt).

From this it follows that

xt |mt, yt = xt |m̄t, yt.

Thus both the expectation of xt conditional on the cognitive state st ≡ (mt, yt), and the

variance-covariance matrix of the errors in the estimation of xt based on the cognitive

state, will depend only on the joint distribution of the variables (xt, m̄t, yt). Moreover, the

distribution for xt conditional on the realizations of the elements of the cognitive state will

be multivariate Gaussian,

xt |m̄t, yt ∼ N(µ̄t, Σ̄t), (H.61)

where µ̄t is a linear function of m̄t and yt, while Σ̄t is independent of the realizations of

either m̄t or yt.

We can further decompose the vector of means µ̄t as

µ̄t = E[xt |m̄t, yt]

= E[xt |m̄t] + {E[xt|m̄t, yt]− E[xt|m̄t]}

= m̄t + γt · (yt − E[yt |m̄t])

= m̄t + γt · (yt − c′E[xt |m̄t])

= m̄t + γt · (yt − c′m̄t),

where γt is the vector of Kalman gains. (The first element of this vector equation is then

just equation (3.19) in the main text.)
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The vector of Kalman gains must be chosen so that the estimation errors xt − µ̄t are

orthogonal to the surprise in the observation of the external state, yt − c′m̄t. This requires

that

0 = cov(xt − µ̄t, yt − c′m̄t)

= cov((xt − m̄t)− γt(yt − c′m̄t), yt − c′m̄t)

= var[xt − m̄t]c − var[c′(xt − m̄t) + ϵyt] · γt

= Σtc − [c′Σtc+ σ2
ϵ ] · γt.

Hence

γt =
Σtc

c′Σtc+ σ2
ϵ

. (H.62)

The gain coefficient γ1t in equation (3.19) is just the first element of this vector, γ1t ≡ e′1γt.

This together with (H.62) yields the formula (3.21) given in the main text.

The variance-covariance matrix in the conditional distribution (H.61) will be given by

Σ̄t = var[xt − µ̄t] = var[(xt − m̄t)− γt(yt − c′m̄t)]

= var[(I − γtc
′)(xt − m̄t) − γtϵyt]

= (I − γtc
′)Σt(I − γtc

′)′ + σ2
ϵγtγ

′
t

= Σt − 2[c′Σtc+ σ2
ϵ ]γtγ

′
t + [c′Σtc]γtγ

′
t + σ2

ϵγtγ
′
t

= Σt − [c′Σtc+ σ2
ϵ ]γtγ

′
t.

The remaining uncertainty about the value of µ given the cognitive state, σ̂2
t , is then equal

to Σ̄11,t, so that

σ̂2
t = e′1Σ̄te1 = e′1Σte1 − (c′Σtc+ σ2

ϵ )(γ1t)
2,

which is just expression (3.20) in the main text.
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Substituting expression (H.60) for Σ0 into this solution, we obtain

σ̂2
0 = Ω −

(
Ω + σ2

y

)
·
[

Ω

Ω + σ2
y

]2
=

Ωσ2
y

Ω + σ2
y

,

which is the formula given in (3.22). It remains to be shown that this is an upper bound

for σ̂2
t . To show this, we observe that

σ̂2
t = min

β,γ1
var[µ− β′m̄t − γ1yt]

≤ min
γ1

var[µ− γ1yt]

≤ var[µ − (Ω/(Ω + σ2
y)) · yt]

= var[(σ2
y/(Ω + σ2

y))µ − (Ω/(Ω + σ2
y))(yt − µ)]

=

(
σ2
y

Ω + σ2
y

)2

var[µ] +

(
Ω

Ω + σ2
y

)2

var[yt|µ]

=

(
σ2
y

Ω + σ2
y

)2

Ω +

(
Ω

Ω + σ2
y

)2

σ2
y

=
Ωσ2

y

Ω + σ2
y

= σ2
0.

This establishes the upper bound (3.22) stated in the main text.

8.3 Demonstration that an Optimal Memory Structure Records Information Only about

the Reduced Cognitive State

Let (2.2) be written in the partitioned form


mt+1

m̄t+1

 =


Λa,t Λb,t

Λc,t Λd,t



st

s̄t

 +


ωt+1

ω̄t+1

 . (H.63)
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Here mt+1 is again partitioned as in (H.59). The lower block of st consists of the elements

of the reduced cognitive state

s̄t ≡


µ̂t

yt

 ,
both elements of which are linear functions of st, as a consequence of equation (3.19). We

choose a representation for the vector st such that the lower block consists of the elements

of s̄t, the elements of st are all uncorrelated with the elements of s̄t, and the elements

of the vectors s̄t and st together span the same linear space of random variables as the

elements of st. (We can necessarily write any memory structure of the form (2.2) in this

way; it amounts simply to a choice of the basis vectors in terms of which the vectors mt+1

and st are each decomposed.)

Let us suppose furthermore that a representation for mt+1 is chosen consistent with the

normalization E[s̄t |mt+1] = m̄t+1. This holds if and only if both elements of the vector

s̄t− m̄t+1 are uncorrelated with each of the elements of mt+1. These consistency conditions

can be reduced to two requirements: (i) the requirement that

var[Λc,tst + ω̄t+1] = (I − Λd,t)XtΛ
′
d,t, (H.64)

where the matrix Xt ≡ var[s̄t] is independent of the memory structure chosen for period

t; and (ii) the requirement that s̄t − m̄t+1 be uncorrelated with all elements of mt+1. (Note

that s̄t − m̄t+1 is uncorrelated with m̄t+1 if and only if (H.64) holds.)

Forecast accuracy depends only on the matrices {Λd,t}

Suppose that in any period t, we take the memory structure in periods τ < t as given.

This means that the DM’s uncertainty about xt given the memory state mt (specified by the

posterior variance-covariance matrix Σt) will be given. (If t = 0, Σ0 is simply given by the
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prior.) Hence the value of µ̂t as a function of m̄t and yt will be given, and consequently the

value of MSEt will be given, following the discussion in the main text (and the previous

section of this appendix). The elements of the matrix Xt will similarly be given.

We next consider how Λd,t must be chosen, in order for it to be possible to choose

matrices Λc,t and var[ω̄t+1] such that (H.64) is satisfied. Equation (H.64) requires that

(I−Λd,t)XtΛ
′
d,t, be a symmetric matrix; this will hold if and only if the simpler requirement

is satisfied that Λd,tXt = XtΛ
′
d,t be a symmetric matrix. In addition, it is necessary that

(I − Λd,t)XtΛ
′
d,t be a p.s.d. matrix. The set of matrices Λd,t with these properties is a non-

empty set (Λd,t = 0 is a trivial example), and depends only on the matrix Xt. Let this set

of matrices be denoted L(Xt).

Now let Λd,t be any matrix that belongs to L(Xt). Then it is possible to choose the

matrices Λc,t and var[ω̄t+1] so that (H.64) is satisfied; and given any such choice of these

two matrices, it is further possible to choose the specification of the equation for mt+1

so that all elements of mt+1 are uncorrelated with the elements of s̄t − m̄t+1. Given any

such specifications, both conditions (i) and (ii) above will be satisfied. Thus the matrix

Λd,t is admissible as part of the specification of a memory structure; and any possible

memory structure consistent with the matrix Λd,t will be one of those with the properties

just assumed.

Given a matrix Λd,t of this sort, we next observe that the equations determining m̄t+1

can be written in the form

m̄t+1 = Λd,ts̄t + νt+1,

where νt+1 ∼ N(0, Λd,tXt) is distributed independently of s̄t. Thus the joint distribution of

(s̄t, m̄t+1) will be a multivariate Gaussian distribution, the parameters of which are com-

pletely determined by Xt and Λd,t. It then follows that the conditional distribution s̄t|m̄t+1

will be a bivariate Gaussian distribution, with a mean m̄t+1 and a variance independent

of the realization of m̄t+1, which also depends only on Xt and Λd,t. Moreover, since the

elements of mt+1 are all Gaussian random variables distributed independently of s̄t−m̄t+1,
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knowledge of mt+1 cannot further improve one’s estimate of s̄t, and so the conditional

distribution s̄t|mt+1 = s̄t|m̄t+1. Finally, since we can write

xt+1 = s̄t +


ut

0

 ,

where ut ∼ N(0, σ̂2
t ) must be uncorrelated with any of the elements of st (and hence

uncorrelated with any of the elements of mt+1), we must further have

xt+1|mt+1 ∼ N(m̄t+1, Σt+1)

where

Σt+1 = var[s̄t |m̄t+1] + σ̂2
t e1e

′
1.

Since σ̂2
t also depends only on Σt (see equation (3.20)), it follows that the elements of Σt+1

depend only on Σt and Λd,t.

This argument can then be used recursively (starting from period t = 0) to show that

given the initial uncertainty matrix Σ0 implied by the prior (H.60), we can completely

determine the entire sequence of matrices {Σt}, given a sequence of matrices {Λd,t} for

all t ≥ 0 with the property that for each t, Λd,t ∈ L(Xt), where Xt is the matrix implied

by Σt. Moreover, given such a sequence of matrices {Λd,t}, the value of MSEt for each

period t will be uniquely determined as well. Hence the terms in the loss function (3.18)

that depend on the accuracy of forecasts that are possible using a given memory structure

will depend only on the sequence of matrices {Λd,t}. (These matrices must be chosen

to satisfy a set of consistency conditions, stated above, but these conditions can also be

expressed purely in terms of the sequence of matrices {Λd,t}.) Thus the other elements of

the specification (H.63) of the memory structure matter only to the extent that they have

consequences for the information cost terms in (3.18).
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Mutual information: a useful lemma

Information costs in period t are assumed to be an increasing function of It = I(M ;S),

the Shannon mutual information between random variables M (the realizations of which

are denoted mt+1) and S (the realizations of which are denoted st).69 Each of the random

vectors M and S can further be partitioned as M = (M, M̄), S = (S, S̄).

Now for any random variables X1, X2, . . . , let H(X1, X2, . . . , Xk) be the entropy of the

joint distribution for variables (X1, X2, . . . , Xk), and H(X1, . . . , Xk |Xk+1, . . . Xk+m) be the

entropy of the joint distribution of the variables (X1, . . . , Xk) conditional on the values of

the variables (Xk+1, . . . Xk+m). The chain rule for entropy implies that

H(X1, X2, . . . , Xk) = H(X1) + H(X2 |X1) + . . . + H(Xk |X1, . . . , Xk−1).

We can then define the mutual information between the variables (X1, . . . , Xk) and the

variables (Xk+1, . . . Xk+m) as

I(X1, . . . , Xk; Xk+1, . . . , Xk+m) ≡ H(X1, . . . , Xk) − H(X1, . . . , Xk |Xk+1, . . . Xk+m).

(The information about the first set of variables that is revealed by learning the values of

the second set of variables is measured by the average amount by which the entropy of the

conditional distribution is smaller than the entropy of the unconditional distribution of the

first set of variables.) Similarly, we can define the mutual information between the first set

of variables and the second set of variables, conditioning on the values of some third set

of variables as

I(X1, . . . , Xk; Xk+1, . . . , Xk+m |Xk+m+1, . . . , Xk+m+n)

69Here we adopt the notation used in Cover (2006), with different symbols for the random variables M
and S and their realizations. This is to make it clear that It is not a function of the values taken by mt+1

and st along a particular history, but instead a function of the complete joint distribution of the two random
variables; It is itself not a random variable, but a single number for each date t.
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≡ H(X1, X2, . . . , Xk |Xk+m+1, . . . , Xk+m+n) − H(X1, . . . , Xk |Xk+1, . . . , Xk+m+n).

Thus for any set of four random variables M, M̄, S, S̄, we must have

I(S, S̄; M, M̄) = H(S, S̄) − H(S, S̄ |M, M̄)

= [H(S̄) +H(S |S̄)] − [H(S̄ |M, M̄) +H(S |S̄,M, M̄)]

= [H(S̄) +H(S |S̄)] − [H(S̄,M, M̄)−H(M |M̄)−H(M̄)] − H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] − [(H(M̄) +H(S̄ |M̄) +H(M |M̄, S̄))−H(M |M̄)−H(M̄)]

−H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] − [H(S̄ |M̄) +H(M |M̄, S̄)−H(M |M̄)] − H(S |S̄,M, M̄)

= [H(S̄)−H(S̄ |M̄)] + [H(S |S̄)−H(S |S̄,M, M̄)] + [H(M |M̄)−H(M |M̄, S̄)]

= I(S̄; M̄) + I(S; M, M̄ |S̄) + I(M ; S̄ |M̄).

Then, since mutual information is necessarily non-negative, we can establish the lower

bound

It = I(S, S̄; M, M̄) ≥ I(S̄; M̄). (H.65)

Furthermore, this lower bound is achieved if and only if

I(S; M, M̄ |S̄) = I(M ; S̄ |M̄) = 0.

For any three random variablesX, Y, Z, the conditional mutual information I(X; Y |Z) =

0 if and only if the variables X and Y are distributed independently one another, condi-

tional on the value of Z. Hence the lower bound (H.65) is achieved if and only if (a)

conditional on the value of m̄t+1, the variables s̄t and mt+1 are independent of one an-

other; and (b) conditional on the value of s̄t, the variables st and mt+1 are independent of

one another.
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Optimality of Setting Λa,t = Λb,t = Λc,t = 0

We return now to the consideration of possible memory structures. Let the sequence

of matrices {Λd,t} be chosen to satisfy the consistency conditions discussed above, and

for a given such sequence, consider an optimal choice of the remaining elements of the

specification (H.63), from among those specifications that are consistent with the sequence

{Λd,t} (that is, that will satisfy both conditions (i) and (ii) stated above).

We have shown above that the sequence of values {MSEt} is completely determined by

the specification of {Λd,t}. Hence other aspects of the specification of the memory structure

can matter only to the extent that they affect the sequence of values {It}. Moreover, we

have shown that the joint distribution of (s̄t, m̄t+1) each period is completely determined

by Xt and Λd,t, which means that the lower bound for It given in (H.65) is completely

determined by the choice of {Λd,τ} for τ ≤ t. It thus remains only to consider whether this

lower bound can be achieved, and under what conditions.

We first observe that the lower bound is achievable. For any sequence of matrices {Λd,t}

satisfying the specified conditions, a memory structure specification with Λa,t = Λb,t =

Λc,t = 0, together with a stipulation that ωt+1 be distributed independently of ω̄t+1 and

that var[ω̄t+1] = Λd,tXt, will satisfy both conditions (i) and (ii) stated in the introduction

to this appendix, and thus this represents a feasible memory structure. One can also show

that such a specification satisfies both of conditions (a) and (b) stated at the end of section

C.2, so that the lower bound (H.65) is achieved in each period. Thus such a specification

achieves the lowest possible value for the combined objective function (3.18), and will be

optimal, given our choice of the sequence {Λd,t}.

Not only will this specification be sufficient for achieving the lowest possible value of

(3.18), but it will be essentially necessary. We have shown above that achieving the lower

bound for It in period t requires that conditional on the value of s̄t, the variables st and

mt+1 are independent of one another. This means that the values of the variables in the

vector st cannot help at all in predicting any elements of mt+1, once one is already using
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the reduced cognitive state s̄t to forecast the next period’s memory state; thus one must be

able to write law of motion (H.63) for the memory state with Λa,t = Λc,t = 0.70 Thus it is

necessarily the case that the elements of mt+1 convey information only about the reduced

cognitive state s̄t, and not about any other aspects of the cognitive state st.

In addition, we have shown above that achieving the lower bound for It in period t

requires that conditional on the value of m̄t+1, the variables s̄t and mt+1 are independent

of one another. Thus all of the information about s̄t that is contained in the memory state

mt+1 is contained in the elements m̄t+1. This means either that Λb,t = 0 as well, or, to the

extent that some element of mt+1 corresponds to a row of Λb,t with non-zero elements, that

element of mt+1 must be a linear combination of the elements of m̄t+1, so that conditioning

upon its value conveys no new information about s̄t. Thus any specification of the memory

structure in which Λb,t ̸= 0 in any period represents a redundant representation of the

contents of memory available in period t+ 1; we can equivalently describe the contents of

memory by eliminating all such rows from mt+1.

Thus there is no loss of generality in assuming that the lower bound is achieved by

specifying Λa,t = Λb,t = Λc,t = 0 in each period. Finally, satisfaction of consistency con-

dition (ii) in this case requires that the elements of ωt+1 be distributed independently of

the elements of ω̄t+1. We might still allow var[ωt+1] to be non-zero; this would mean that

mt+1 contains elements that fluctuate randomly, but are completely uncorrelated with the

previous period’s cognitive state st. Such an information structure is equally optimal, in

the sense that (3.18) is made no larger by the existence of such components of the memory

state, given our assumption that only mutual information is costly. But the additional com-

ponents mt+1 of the memory structure will have no consequences for cognitive processing,

and our inclusion of them as part of the representation of the memory state violates our

70It might be possible to satisfy the condition required for the lower bound with non-zero elements in
one of these matrices; but this will occur only because of collinearity in the fluctuations in the elements
of the vector st, so that it is possible to have a law of motion in which st has no effect on mt+1, despite
non-zero matrices Λa,t and Λc,t. In such a case, the representation of the cognitive state by the vector st
would involve redundancy; and in any event, there would be no loss of generality in setting Λa,t = Λc,t = 0,
since the implied fluctuations in the memory state would be the same.
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assumption in the text that we label memory states by their implied posteriors for the val-

ues of µ and the past realizations of the external state; using labels (mt+1, m̄t+1) in which

mt+1 is non-null will mean having separate labels for memory states that imply the same

posterior (since the value of mt+1 would be completely uninformative about either µ or

any past external states).

Hence in the case of any optimal memory structure, the memory state can be described

more compactly by identifying it with the reduced memory state m̄t+1, which evolves ac-

cording to

m̄t+1 = Λ̄ts̄t + ω̄t+1, (H.66)

where Λ̄t is the matrix called Λd,t in (H.63). (This corresponds to equation (3.25) in the

main text.) We need only consider (at most) a two-dimensional memory state, and the

optimal memory state conveys information only about the reduced cognitive state s̄t, not

about any other aspects of the cognitive state st.

An alternative representation for the reduced cognitive state

We have shown in the main text (equation (3.28)) that the variance matrix of the

reduced cognitive state s̄t can be written as a function of the single parameter σ̂2
t :

Xt = X(σ̂2
t ) ≡


Ω− σ̂2

t Ω

Ω Ω + σ2
y

 .

There is another way of writing this function that will be useful below.

We can orthogonalize the reduced cognitive state using the transformation s̄t = Γšt,

where

Γ ≡


1 Ω

Ω+σ2
y

0 1

 . (H.67)
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The elements of the orthogonalized cognitive state have the interpretation

št ≡


µ̂t − E[µ|yt]

yt

 ,

from which it is obvious that the first element must be uncorrelated with the second.

The variance matrix of št is therefore diagonal:

var[št] = X̌(σ̂2
t ) ≡


σ̂2
0 − σ̂2

t 0

0 Ω + σ2
y

 . (H.68)

We can then alternatively write

X(σ̂2
t ) = ΓX̌(σ̂2

t )Γ
′. (H.69)

8.4 The Law of Motion for the Memory State and the Information Content of Memory

We now consider how the parameterization of the law of motion (H.66) for the mem-

ory state determines the degree of uncertainty about the external state vector that will

exist when beliefs are conditioned on the memory state, and how the same parameters de-

termine the mutual information between the memory state and the prior cognitive state,

and hence the size of the information cost term c(It).

We begin by recapitulating the conditions that the sequence of matrices {Λ̄t} and

{Σω̄,t+1} must satisfy, in order for (H.66) to represent a memory structure consistent with

the normalization according to which E[xt+1 |m̄t+1] = m̄t+1. Condition (H.64) will be sat-

isfied if and only if

Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t. (H.70)
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In order for there to be a symmetric, p.s.d. matrix Σω̄,t+1 that satisfies (H.70), it must be

the case that Λ̄t ∈ L(Xt). As explained above, this means that Λ̄tXt = XtΛ̄
′
t must be a

symmetric matrix, and in addition that (I − Λ̄t)XtΛ̄
′
t is p.s.d. Note that since

XtΛ̄
′
t = (I − Λ̄t)XtΛ̄

′
t + Λ̄tXtΛ̄

′
t,

and Xt is necessarily a p.s.d. matrix, it follows from the assumption that (I − Λ̄t)XtΛ̄
′
t is

p.s.d. that Λ̄tXt = XtΛ̄
′
t will also be a p.s.d. matrix; but this latter condition is weaker

than the one assumed in our definition of the set L(Xt). This constitutes the complete set

of conditions that must be satisfied for (H.66) to represent a memory structure consistent

with our proposed normalization of the vector mt+1.

We can further specialize these conditions in the case that Λ̄t is a singular matrix. (Here

we assume that Xt is of full rank.) If Λ̄t is of rank one (or less), it can be written in the form

Λ̄t = utv
′
t, where we are furthermore free to normalize the vector v′t so that v′tXtvt = 1.

Then the condition that Λ̄tXt = XtΛ̄
′
t will hold only if ut(v′tXt) = (Xtvt)u

′
t. This means that

ut must be collinear with Xtvt, so that we must be able to write ut = λtXtvt, for some

scalar λt. Thus in the singular case, we must be able to write

Λ̄t = λtXtvtv
′
t, (H.71)

where λt is a scalar and vt is a vector such that v′tXtvt = 1. Then

(I − Λ̄t)XtΛ̄
′
t = λt(1− λt)(Xtvt)(Xtvt)

′

will be a p.s.d. matrix if and only if in addition 0 ≤ λt ≤ 1. Thus a singular matrix Λ̄t is an

element of L(Xt) if and only if it is of the form (H.71) with 0 ≤ λt ≤ 1 and vt a vector such

that v′tXtvt = 1.
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Consistency with the proposed normalization of mt+1 then further requires that

Σω̄,t+1 = λt(1− λt)Xtvtv
′
tXt. (H.72)

This implies that Σω̄,t+1 is a singular matrix; the random vector ω̄t+1 can be written as

ω̄t+1 = Xtvt ·ω̃t+1, where ω̃t+1 is a scalar random variable, with distribution N(0, λt(1−λt).

It follows that in such a case, the memory state can be given a one-dimensional represen-

tation, writing m̄t+1 = Xtvt · m̃t+1, where the scalar memory state m̃t+1 has a law of

motion

m̃t+1 = λtv
′
ts̄t + ω̃t+1, ω̃t+1 ∼ N(0, λt(1− λt)). (H.73)

In the case that Xt = X0 (the only case in which it is possible for Xt = X(σ̂2
t ) to be

singular), we have defined L(X0) to include only matrices of the special form (3.29) with

0 ≤ λt ≤ 1. In this case, Λ̄t is necessarily of the form (H.71), with the vector vt given by

(3.38). Hence our comments above about the case in which Λ̄t is singular apply also in the

case in which Xt is singular, except that in this latter case we have the further restriction

that vt must be given by (3.38). In this special case, (H.72) reduces to

Σω̄,t+1 = λt(1− λt)[Ω + σ2
y]ww

′.

The degree of uncertainty implied by a given memory

structure

We turn now to the question of how the posterior uncertainty Σt+1 in the following pe-

riod is determined by the law of motion for the memory state m̄t+1 that can be accessed at

that time. Note that the variance of the marginal distribution for xt+1 can be decomposed

as

var[xt+1] = E[var[xt+1 |mt+1]] + var[E[xt+1 |mt+1]],
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where in the first term on the right-hand side, the variance refers to the distribution of

values for xt+1 conditional on the realization of mt+1, and the expectation is over realiza-

tions of mt+1, while in the second term the variance refers to the distribution of values

for mt+1, and the expectation is over values of xt+1 conditional on the realization of mt+1.

Since the marginal distribution for xt+1 is the same for all t, and coincides with the prior

distribution for x0 specified in (H.60), the left-hand side must equal the matrix Σ0 defined

there. Hence the variance decomposition can be written as

Σ0 = Σt+1 + var[m̄t+1],

which implies that in any period,

Σt+1 = Σ0 − var[m̄t+1].

Thus in order to understand how the choice of Λ̄t determines Σt+1, it suffices that we

determine the implications for the degree of variation in m̄t+1.

A law of motion of the form (H.66) implies that

var[m̄t+1] = Λ̄tXtΛ̄
′
t + Σω̄,t+1

= Λ̄tXtΛ̄
′
t + (I − Λ̄t)XtΛ̄

′
t

= XtΛ̄
′
t,

where the second line uses (H.70). Hence we obtain the prediction that

Σt+1 = Σ0 − XtΛ̄
′
t. (H.74)

Note that for any Λ̄t ∈ L(Xt), this must be a symmetric, p.s.d. matrix.

Hence for any value of σ̂2
t satisfying 0 ≤ σ̂2

t ≤ σ̂2
0 and any transition matrix Λ̄t ∈
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L(X(σ̂2
t )), we can substitute Xt = X(σ̂2

t ) and the value of Σt+1 given by (H.74) into (3.20)

to obtain a solution for σ̂2
t+1 as a function of σ̂2

t and Λ̄t. This defines the function f(σ̂2
t , Λ̄t)

referred to in the main text. We can then define Lseq as the set of sequences of transition

matrices {Λ̄t} for all t ≥ 0 such that

Λ̄0 ∈ L(X0), Λ̄1 ∈ L(X(f(σ̂2
0, Λ̄0))), Λ̄2 ∈ L(X(f(f(σ̂2

0, Λ̄0), Λ̄1))),

and so on.

Then given any sequence of transition matrices {Λ̄t} ∈ Lseq, there will be uniquely de-

fined sequences {σ̂2
t , Xt} for all t ≥ 0. Equation (H.74), together with (H.60), can then be

used to uniquely define the implied sequence of matrices {Σt} for all t ≥ 0. These matrices

can in turn be used in (3.21) to define the Kalman gain γ1t for each t ≥ 0. Thus for any

sequence of transition matrices {Λ̄t} ∈ Lseq, there will be uniquely determined sequences

{Σt, γ1t, σ̂
2
t , Xt}, as stated in the text. These in turn will imply a uniquely determined

sequence of losses {MSEt} from forecast inaccuracy, using (3.23).

The mutual information implied by a given memory structure

Finally, we compute the mutual information It in the case that the memory state con-

sists only of a reduced memory state m̄t+1, with law of motion (H.66). We first review the

definition of mutual information in the case of continuously distributed random variables.

Let X and Y be two random variables, each parameterized using a finite system of co-

ordinates (so that realizations x and y are each represented by finite-dimensional vectors),

and suppose that at least Y has a continuous distribution, with a density function p(y|x)

such that p(y|x) > 0 for all y in the support of Y and all x in the support of X. Sup-

pose also that the marginal distribution for Y can be characterized by a density function

p(y) = E[p(Y |x)], where the expectation is over possible realizations of x, and p(y) > 0

for all y in the support of Y . Then we can measure the degree to which knowing the
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realization of x changes the distribution that one can expect y to be drawn from by the

Kullback-Liebler divergence (or relative entropy) of the conditional distribution p(y|x) rel-

ative to the marginal distribution p(y), defined as

DKL(p(·|x)||p(·)) ≡ E

[
log

p(y|x)
p(y)

]
≥ 0, (H.75)

where the expectation is over possible realizations of y, and this quantity is a function of

the particular realization x.71 The mutual information I(X; Y ) can then be defined as the

mean value of this expression,

I(X; Y ) ≡ E[DKL(p(·|x)||p(·))], (H.76)

where the expectation is now over possible realization of x, and the mutual information is

also necessarily non-negative.72

This definition of the mutual information has the attractive feature of being indepen-

dent of the coordinates used to parameterize the realizations of the variable Y . Suppose

that we write y = ϕ(z), where ϕ(·) is an invertible smooth coordinate transformation be-

tween two Euclidean spaces of the same dimension. Then corresponding to the conditional

density p(y|x) for any x, there will be a corresponding density function p̃(z|x) for the ran-

dom variable Z (which is just the variable Y described using the alternative coordinate

system), such that p̃(z|x) = p(ϕ(z)|x) · Dϕ(z) for each z, where Dϕ(z) is the Jacobian

matrix of the coordinate transformation, evaluated at z. It follows that for any z in the

support of Z and any x in the support of X,

p(ϕ(z)|x)
p(ϕ(z))

=
p̃(z|x)
p̃(z)

,

71The value of this quantity is necessarily non-negative because of Jensen’s inequality, owing to the con-
cavity of the logarithm.

72Note that this definition — rather than the one often given in terms of the average reduction in the
entropy of Y from observing X — has the advantage of remaining well-defined even when the random
variable Y has a continuous distribution. See Cover and Thomas (2006) for further discussion.
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so that

DKL(p(·|x)||p(·)) = DKL(p̃(·|x)||p̃(·))

for all x. We thus find that the mutual information I(X; Y ) will be the same as I(X; Z):

it is unaffected by a change in the coordinates used to parameterize Y .73

We can similarly define the mutual information in a case in which the support of Y is

not the entire Euclidean space, because of the existence of redundant coordinates in the

parameterization of realizations y. Suppose that all vectors y in the support of Y are of the

form y = ϕ(z), where ϕ(·) is a smooth embedding of some lower-dimensional Euclidean

space (the support of Z) into a higher-dimensional Euclidean space. Then the information

about the possible realizations of y contained in a realization of x is given by the informa-

tion that x contains about the possible realizations of z. If the joint distribution of X and

Z is such that we can define conditional density functions p̃(z|x), with p̃(z|x) > 0 for all z

and x, and a marginal density function p̃(z) > 0 for all z, then we can define the mutual

information between X and Z using (H.76) as above. Since mutual information should be

independent of the coordinates used to parameterize the variables, we can use the value

of I(X; Z) as our definition of I(X; Y ) in this case as well (even though expression (H.75)

is not defined in this case).

In the case of interest in this paper, X and Y are variables with a joint distribution that

is multivariate Gaussian. Let us consider first the generic case in which the conditional

variance-covariance matrix var[Y |x] is of full rank. (Note that this matrix will be indepen-

dent of the realization of x, and so can be written var[Y |X], to emphasize that only the

parameters of the joint distribution matter.) In this case var[Y ] is of full rank as well, and

73It is equally unaffected by a change in the coordinates used to parameterize X, though we need not
show this here.
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for any x and y, the ratio of the density functions satisfies

log
p(y|x)
p(y)

= −1

2
log

det(var[Y |x])
det(var[Y ])

− 1

2
(y − E[y|x])′var[Y |x]−1(y − E[y|x]) +

1

2
(y − E[y])′var[Y ]−1(y − E[y]).

Hence for any x, we have

DKL(x) = −1

2
log

det(var[Y |x])
det(var[Y ])

,

and since this will be independent of the realization of x, we similarly will have

I(X; Y ) = −1

2
log

det(var[Y |X])

det(var[Y ])
. (H.77)

One case in which var[Y |x] will not be of full rank is if y = Uz for some matrix U ,

where z is a random vector of lower dimension than that of y. (In this case, the rank of

var[Y |x] cannot be greater than the rank of var[Z|x], which is at most the dimension of z.)

Let us suppose that the rank of U is equal to the dimension of z, so that any vector y = Uz

is associated with exactly one vector z. In such a case we can, as discussed above, define

the mutual information between X and Y to equal the mutual information between X and

Z. If var[Z|x] is of full rank, then we can use the calculations of the previous paragraph to

show that

I(X; Y ) = I(X; Z) = −1

2
log

det(var[Z|X])

det(var[Z])
. (H.78)

We turn now to the calculation of the mutual information between the reduced cogni-

tive state s̄t and the memory state m̄t+1, in the case of a law of motion of the form (H.66)

for the memory state. We first consider the case in which Xt is of full rank (which, as noted

in the text, will be true except when the memory state mt is completely uninformative). If
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Λ̄t and I − Λ̄t are also both matrices of full rank, then

var[m̄t+1 |s̄t] = Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t

will be of full rank, and

var[m̄t+1] = Λ̄tXtΛ̄
′
t + Σω̄,t+1 = XtΛ̄

′
t

will be of full rank as well. We can then apply (H.77) to obtain

It = −1

2
log

det[(I − Λ̄t)XtΛ̄
′
t]

det[XtΛ̄′
t]

= −1

2
log det(I − Λ̄t), (H.79)

in conformity with equation (3.30) in the text.

In the case that Xt is of full rank, but Λ̄t is varied so that one of its eigenvalues ap-

proaches 1 (meaning that I − Λ̄t approaches a singular matrix, while the determinant of

Λ̄t remains bounded away from zero), the value of It implied by (H.79) grows without

bound. It thus makes sense to assign a value of +∞ to the mutual information in the case

that Λ̄t is of full rank but I−Λ̄t is not. Note that in this case there is a linear combination of

the elements of s̄t that is revealed with perfect precision by the memory state (since Σω̄,t+1

will be singular), while this linear combination is a continuous random variable with pos-

itive variance (since Xt is of full rank). This is not consistent with any finite value for the

mutual information (and so cannot represent a feasible memory structure).

Suppose instead that while Xt is of full rank, Λ̄t is only of rank one. In this case, we

have shown above that Λ̄t must be of the form (H.71), as a consequence of which Σω̄,t+1

must be given by (H.72). In this case, the memory state can be represented in the form

m̄t+1 = Xtvt · m̃t+1, where m̃t+1 is a scalar random variable with law of motion (H.73).

This implies that var[m̃t+1 |st] = var[ω̃t+1] = λt(1 − λt), while var[m̃t+1] = λt. In the case
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that 0 < λt < 1, we can then apply (H.78) to show that

It = −1

2
log

λt(1− λt)

λt
= −1

2
log(1− λt), (H.80)

Since in this case, det(I − Λ̂t) = det(I − λtvtv
′
t) = 1 − λt, result (H.80) is again just what

(H.79) would imply, so that (H.79) continues to be correct even though Λ̄t is singular.

If we consider a sequence of matrices of this kind in which λt approaches 1, the mutual

information (H.80) grows without bound. Thus we can assign the value +∞ to It in the

case that Λ̄t is a matrix of rank one with λt = 1. Indeed, in this case, the memory state

reveals with perfect precision the value of v′ts̄t, a continuous random variable with positive

variance (under the assumption that Xt is of full rank); but this is not possible in the case

of any finite bound on mutual information. Hence (H.79) can be applied to this case as

well.

Suppose instead that Xt is of full rank, but Λ̄t = 0. In this case, the distribution of

m̄t+1 is independent of the value of st+1, and the mutual information between these two

variables must be zero. This is also what (H.79) would imply, so that (H.79) is correct in

this case as well.

Finally, consider the case in which Xt = X0, the only possible case in which Xt is not

of full rank. In this case, we have defined L(X0) to consist only of matrices of the form

(H.71), with the vector vt given by (3.38). If λt = 0, then the entire matrix Λ̄t = 0, and the

argument in the previous paragraph again applies. Suppose instead that λt > 0. Just as in

the discussion above of the case of a singular transition matrix, the memory state can be

represented by a scalar state variable m̃t+1 with law of motion (H.73), and we can apply

(H.78) to show that It will be given by (H.80). Again this is just what (H.79) would imply,

so that (H.79) also yields the correct conclusion when Xt is a singular matrix.

Thus in all cases, (H.79) applies, and the value of It depends only on the choice of the

transition matrix Λ̄t. It follows that for any sequence of transition matrices {Λ̄t} ∈ Lseq,
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there will be uniquely defined sequences {MSEt, It}, allowing the objective (3.18) to be

evaluated.

8.5 Recursive Determination of the Optimal Memory Structure

We have shown in the text how the optimal memory structure can be characterized if

we can find the value function V (σ̂2
t ) that satisfies the Bellman equation

V (σ̂2
t ) = min

Λ̄t∈L(X(σ̂2
t ))
[ασ̂2

t + c(I(Λ̄t)) + βV (f(σ̂2
t , λt, vt))]. (H.81)

Here we establish some properties of the solution to the optimization problem on the

right-hand side of (H.81) for an arbitrary function V ∈ F ., which we can then be used to

establish properties of the value function V (σ̂2
t ) that solves this equation, and properties of

the optimal memory structure.

Monotonicity of the value function

We first show that, for any function V that may be assumed in the problem on the

right-hand side of (H.81), the minimum achievable value of the right-hand side is a mono-

tonically increasing function of σ̂2
t . This in turn implies that the value function (which

must satisfy (H.81)) must be a monotonically increasing function of its argument.

Fix any value function V to be used in the problem on the right-hand side of (H.81),

and consider any two possible degrees of uncertainty σ̂2
a, σ̂

2
b , satisfying

0 ≤ σ̂2
a < σ̂2

b ≤ σ2
0. (H.82)

Let Λ̄t = Λ̄b be some element of L(X(σ̂2
b )), and thus a feasible memory structure when

σ̂2
t = σ̂2

b , and let us further suppose that I(Λ̄b) <∞, as must be true of an optimal memory

structure. We wish to show that we can choose a transition matrix Λ̄a ∈ L(X(σ̂2
a)) such
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that

f(σ̂2
a, Λ̄a) = f(σ̂2

b , Λ̄b), (H.83)

and in addition

I(Λ̄a) ≤ I(Λ̄b). (H.84)

That is, in the case of the smaller degree of uncertainty σ̂2
a in the cognitive state in pe-

riod t, it is possible to choose a memory structure that implies exactly the same degree of

uncertainty in period t + 1, and hence the same value for V (σ̂2
t+1), at no greater an infor-

mation cost, and thus it is possible to achieve a strictly lower value for the right-hand side

of (H.81).

If we can show this for an arbitrary transition matrix Λ̄b ∈ L(X(σ̂2
b )), then it is also

true when Λ̄b is the transition matrix associated with the optimal memory structure (the

solution to the problem on the right-hand side of (H.81)) when σ̂2
t = σ̂2

b . This implies that

it is possible to achieve a lower value for the right-hand side of (H.81) when σ̂2
t = σ̂2

a than

it is possible to achieve when σ̂2
t = σ̂2

b . Since this must be true for any values of σ̂2
a, σ̂

2
b

consistent with (H.82), the right-hand side of (H.81) defines a monotonically increasing

function of σ̂2
t .

To show that such a construction is always possible, let us first consider the case in

which σ̂2
b = σ̂2

0, so that the memory state mt is completely uninformative in case b. In this

case, the assumption that Λ̄b ∈ L(X(σ̂2
b )) = L(X0) requires that

Λ̄b = λb
ww′

w′w

for some 0 ≤ λb < 1.74 In this case, the memory structure for the following period is

equivalent to one in which there is a univariate memory state

m̃b =
λb

(Ω + σ2
y)

1/2
yt + ω̃b, ω̃b ∼ N(0, λb(1− λb)).

74The upper bound is required in order to satisfy the assumption that I(Λ̄b) < ∞.
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The implied uncertainty in the following period (given the memory state, but before yt+1

is observed) is then given by

Σt+1 = Σ0 − λb(Ω + σ2
y)ww

′. (H.85)

Now let s̄a be the reduced cognitive state in period t, in the case of a more informative

memory structure that implies the lower degree of uncertainty σ̂2
a, and let Xa ≡ X(σ̂2

a) be

the variance of this random vector. In this case, we can choose a memory structure for the

following period defined by the transition matrix

Λ̄a = λbXa
e2e

′
2

Ω + σ2
y

where e2 ≡ [0 1]′. This is a matrix of the form (H.71), and hence an element of L(Xa).

Because Λ̄a is singular, the specified memory structure is equivalent to one in which there

is a univariate memory state

m̃a = λb
e′2s̄a

(e′2Xae2)1/2
+ ω̃a, ω̃a ∼ N(0, λb(1− λb)).

But this means that

m̃a =
λb

(Ω + σ2
y)

1/2
yt + ω̃a, ω̃a ∼ N(0, λb(1− λb)).

Hence the joint distribution of (m̃a, xt+1) is identical to the joint distribution of (m̃b, xt+1),

and the implied uncertainty in the following period given this memory structure is again

given by (H.85). Hence the value of σ̂2
t+1 implied by memory structure a is the same as

that implied by memory structure b. This establishes condition (H.83). Moreover, for both

memory structures we have the same mutual information,

I(Λ̄a) = I(Λ̄b) = −1

2
log(1− λb).
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This establishes condition (H.84). Hence the value of the right-hand side of (H.81) must

be lower when σ̂2
t = σ̂2

a.

Let us next consider the less trivial case in which 0 < σ̂2
b < σ̂2

0. Let s̄b be the reduced

cognitive state in period t that implies a degree of uncertainty σ̂2
b , and let Xb ≡ X(σ̂2

b ) be

the variance of this random vector. Let the optimal memory structure for the following

period (the solution to the problem on the right-hand side of (H.81)) in this case be

m̄b = Λ̄bs̄b + ω̄b, (H.86)

where

Λ̄b ∈ L(Xb), ω̄b ∼ N(0, (I − Λ̄b)XbΛ̄
′
b).

The implied uncertainty in the following period will then be given by

Σt+1 = Σ0 − XbΛ̄
′
b. (H.87)

Let us consider the memory structure for cognitive state a defined by the transition

matrix

Λ̄a = Λ̄bΓΨΓ−1, (H.88)

where Γ is the invertible matrix defined in (H.67), and

Ψ ≡


ψ 0

0 1

 ,

where 0 < ψ < 1 is the quantity

ψ ≡ σ̂2
0 − σ̂2

b

σ̂2
0 − σ̂2

a

.
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Note that Ψ is a diagonal matrix, with the property that

ΨX̌a = X̌aΨ = X̌b,

using the notation X̌i ≡ X̌(σ̂2
i ) for i = a, b, where X̌(σ̂2

t ) is the function defined in (H.68).

It is first necessary to verify that Λ̄a ∈ L(Xa), so that this matrix defines a possible memory

structure.

We first show that Λ̄aXa = XaΛ̄
′
a. Definition (H.88) implies that

Λ̄aXa = Λ̄bΓΨΓ−1Xa

= Λ̄bΓΨX̌aΓ
′

= Λ̄bΓX̌bΓ
′

= Λ̄bXb.

The fact that Λ̄b ∈ L(Xb) implies that Λ̄bXb must be a symmetric matrix; hence Λ̄aXa,

which is the same matrix, must also be symmetric. Thus Λ̄aXa = XaΛ̄
′
a.

Next, we must also show that (I− Λ̄a)XaΛ̄
′
a is a p.s.d. matrix. We first note that I−Ψ is

a diagonal matrix with non-negative elements on the diagonal; it follows that (I −Ψ)X̌b is

also a diagonal matrix with non-negative elements on the diagonal, and hence p.s.d. From

this it follows that

Λ̄bΓ · (I −Ψ)X̌b · Γ′Λ̄′
b = Λ̄bΓ(X̌b −ΨX̌aΨ)Γ′Λ̄′

b

= Λ̄b(ΓX̌bΓ
′)Λ̄′

b − (Λ̄bΓΨΓ−1)(ΓX̌aΓ
′)(Λ̄bΓΨΓ−1)′

= Λ̄bXbΛ̄
′
b − Λ̄aXaΛ̄

′
a

= (XaΛ̄
′
a − Λ̄aXaΛ̄

′
a) − (XbΛ̄

′
b − Λ̄bXbΛ̄

′
b)

= (I − Λ̄a)XaΛ̄
′
a − (I − Λ̄b)XbΛ̄

′
b
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must be p.s.d. as well. But since the fact that Λ̄b ∈ L(Xb) implies that (I − Λ̄b)XbΛ̄
′
b must

be p.s.d., it follows that (I − Λ̄a)XaΛ̄
′
a can be expressed as the sum of two p.s.d. matrices,

and so must also be p.s.d. This verifies the second of the conditions required in order to

show that Λ̄a ∈ L(Xa).

Thus if s̄a is a reduced cognitive state for period t that implies a degree of uncertainty

σ̂2
a, a possible memory structure for the following period is

m̄a = Λ̄as̄a + ω̄a, (H.89)

where the transition matrix Λ̄a is defined in (H.88), and

ω̄a ∼ N(0, (I − Λ̄a)XaΛ̄
′
a).

The implied uncertainty in the following period will then be given by

Σt+1 = Σ0 − XaΛ̄
′
a.

This latter matrix is the same as the one in (H.87); it follows that the implied value of

σ̂2
t+1 is also the same as for the memory structure (H.86). Thus we have shown that in the

case of the smaller degree of uncertainty σ̂2
a, it is possible to choose a memory structure

that implies exactly the same degree of uncertainty in period t + 1 as when the degree of

uncertainty in period t is given by the larger quantity σ̂2
b .

It remains to be shown that memory structure (H.89) involves no greater information

cost than memory structure (H.86). Consider first the case in which the memory state m̄b is

non-degenerate, in the sense that var[m̄b] = XbΛ̄
′
b is non-singular. It follows that the same

must be true of memory state m̄a. Then for either of the two memory structures i = a, b
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just discussed, (H.79) implies that the mutual information will be given by

It = −1

2
log

det[(I − Λ̄i)XiΛ̄
′
i]

det[XiΛ̄′
i]

.

We have shown above that the value of the denominator in this expression is the same

for i = a, b (and under the assumption that XbΛ̄
′
b is non-singular, it must be positive).

Hence the relative size of the two mutual informations depends on the relative size of the

numerator in the two cases. But we have shown above that (I− Λ̄a)XaΛ̄
′
a can be expressed

as the sum of (I− Λ̄b)XbΛ̄
′
b plus a p.s.d. matrix. Since both of these matrices are also p.s.d.,

their determinants satisfy

det[(I − Λ̄a)XaΛ̄
′
a] ≥ det[(I − Λ̄b)XbΛ̄

′
b] > 0,

where the final inequality is necessary in order for memory structure b to have a finite

information cost. It follows that condition (H.84) must hold in this case.

Now suppose instead that var[m̄b] is a singular matrix. In the case that the matrix is

zero in all elements, Λ̄b = 0, and so (H.88) implies that Λ̄a = 0 as well. In this case,

det(I − Λ̄a) = det(I − Λ̄b) = 1, so that I(Λ̄a) = I(Λ̄b) = 0, and (H.84) is satisfied in this

case as well. Thus we need only consider further the case in which var[m̄b] is of rank one,

which requires that Λ̄b be of rank one as well.

In this case, we can write

Λ̄b = λbXbvbv
′
b,

where 0 < λb < 175 and vb is a vector such that v′bXbvb = 1. All columns of Λ̄b are multiples

of the vector Xbvb, and as a consequence the unique non-null right eigenvector of Λ̄b is

given by Xbvb, with the associated eigenvalue λb. Alternatively, using the orthogonalized

75Again, the upper bound is required in order for I(Λ̄b) to be finite.
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representation of the cognitive state introduced in section C.4, we can write

Γ−1Λ̄bΓ = λbX̌bv̌bv̌
′
b,

where we define v̌b ≡ Γ′vb, and note that v̌′bX̌bv̌b = 1.

Then (H.88) implies that the columns of Λ̄a must also all be multiples of the vector

Xbvb. It follows that Λ̄a must also be singular, and that its unique non-null eigenvector

must be Xbvb, with an associated eigenvalue

λa = λbv
′
bΓΨΓ−1(Xbvb)

= λbv̌
′
bΨX̌bv̌b

= λb(v̌
′
bΨ

1/2)X̌b(Ψ
1/2v̌b)

≤ λbv̌
′
bX̌bv̌b = λb.

Thus we must have

det(I − Λ̄a) = (1− λa) ≥ (1− λb) = det(I − Λ̄b),

from which it follows that (H.84) must hold in this case as well.

Thus we have shown that whenever σ̂2
a, σ̂

2
b satisfy (H.82), for any memory structure

for case b with a finite information cost, it is possible to choose a memory stucture for

case a satisfying both (H.83) and (H.84). This means that it must be possible to achieve

a lower value for the right-hand side of (H.81) when σ̂2
t = σ̂2

a than when σ̂2
b . This in turn

implies that the right-hand side of (H.81) defines a monotonically increasing function of

σ̂2
t , regardless of the nature of the function V (σ̂2

t+1) that is assumed in this optimization

problem. Hence the value function V (σ̂2
t ) defined by (H.81) must be a monotonically

increasing function of its argument.
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Optimality of a unidimensional memory state

Here we establish, as stated in the text, that the matrix Λ̄t that solves the problem

min
Λ̄t∈L(X(σ̂2

t ))
I(Λ̄t) s.t. f(σ̂2

t , Λ̄t) ≤ σ̂2
t+1, (H.90)

for given values of (σ̂2
t , σ̂

2
t+1) is necessarily at most of rank one. As explained in the text, we

need only consider the case in which σ̂2
t < σ̂2

0. Given a matrix Λ̄t of rank two that satisfies

the constraint in (H.90), we wish to show that we can choose an alternative transition

matrix of at most rank one, that also satisfies the constraint, but which achieves a lower

value of I(Λ̄t).

We first note that when σ̂2
t < σ̂2

0, X(σ̂2
t ) is non-singular. Under the hypothesis that Λ̄t is

non-singular, it follows that XtΛ̄
′
t is non-singular as well (where we now simply write Xt

for X(σ̂2
t )), and hence positive definite. Similarly, Λ̄tXtΛ̄

′
t must be non-singular and hence

positive definite.

Then let the alternative transition matrix be given by

Λ̄1D
t = λtXtvtv

′
t, (H.91)

with

λt =
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′
tδt+1

, vt =
Λ̄′

tδt+1

(δ′t+1Λ̄tXtΛ̄′
tδt+1)1/2

,

where δt+1 ≡ e1 − γ1,t+1c is the vector introduced in (3.34), and let the matrix Σω̄,t+1 be

correspondingly modified in the way specified by (3.27). The fact that XtΛ̄
′
t is positive

definite implies that the denominator of the expression for λt is necessarily positive, so

that this quantity is well-defined. Similarly, the fact that Λ̄tXtΛ̄
′
t is positive definite implies

that the denominator of the expression for vt is necessarily positive, so that this vector is

well-defined as well.

In addition, the fact that (by assumption) Λ̄t ∈ L(Xt) implies that (I− Λ̄t)XtΛ̄
′
t must be
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p.s.d. From this it follows that

δ′t+1(I − Λ̄t)XtΛ̄
′
tδt+1 ≥ 0,

and hence that

δ′t+1XtΛ̄
′
tδt+1 ≥ δ′t+1Λ̄tXtΛ̄

′
tδt+1 > 0,

where the final inequality follows from the fact that Λ̄tXtΛ̄
′
t is positive definite. Thus the

proposed definition of λt satisfies 0 < λt ≤ 1. One also observes from the definition of vt

that v′tXtvt = 1. These conditions suffice to establish that the alternative transition matrix

Λ̄1D
t is also an element of L(Xt). That is, it represents a feasible memory structure for

period t, given the value of σ̂2
t .

This alternative transition matrix corresponds to a memory structure in which m̄t+1 =

Xtvtm̃t+1, where m̃t+1 is the unidimensional memory state with law of motion (3.37).

From this it follows that

δ′t+1m̄t+1 = λtδ
′
t+1Xtvtv

′
ts̄t + δ′t+1Xtvtω̃t+1

will be a normally distributed random variable, with conditional first and second moments

given by

E[δ′t+1m̄t+1 |st] = λtδ
′
t+1Xtvtv

′
ts̄t

=
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′
tδt+1

δ′t+1XtΛ̄
′
tδt+1 · δ′t+1Λ̄ts̄t

δ′t+1Λ̄tXtΛ̄′
tδt+1

= δ′t+1Λ̄ts̄t
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and

var[δ′t+1m̄t+1 |st] = λt(1− λt)(δ
′
t+1Xtvt)

2

= (1− λt)
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′
tδt+1

(δ′t+1XtΛ̄
′
tδt+1)

2

δ′t+1Λ̄tXtΛ̄′
tδt+1

= (1− λt)δ
′
t+1XtΛ̄

′
tδt+1

= δ′t+1XtΛ̄
′
tδt+1 − δ′t+1Λ̄tXtΛ̄

′
tδt+1

= δ′t+1[(I − Λ̄t)XtΛ̄
′
t]δt+1

= δ′t+1Σω̄t+1δt+1.

These are the same conditional mean and variance as in the case of the memory struc-

ture specified by the transition matrix Λ̄t. Since the optimal estimate µ̂t+1 depends on mt+1

only through the value of δ′t+1m̄t+1 (from equation (3.34)), it follows that the conditional

distribution µ̂t+1|st, yt+1 will be the same under the alternative memory structure. This in

turn implies that the variance of µ̂t+1 will be the same, and hence that

σ̂2
t+1 = Ω − var[µ̂t+1]

will be the same. Thus Λ̄1D
t also satisfies the constraint in (H.90).

Next we show that I(Λ̄1D
t ) must be lower than I(Λ̄t). Let u′1 and u′2 be the two left eigen-

vectors of Λ̄t, with associated eigenvalues µ1 and µ2 respectively, and let the eigenvectors

be normalized so that u′iXtui = 1 for i = 1, 2. The corresponding right eigenvectors must

then be Xtu1 and Xtu2 respectively. Thus we have

Λ̄tXtui = µiXtui, u′iΛ̄t = µiu
′
i,

for i = 1, 2, and

u′1Xtu1 = u′2Xtu2 = 1, u′1Xtu2 = 0.
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The vector δ′t+1 introduced in (3.34) can be written as a linear combination of the two

left eigenvectors,

δ′t+1 = α1u
′
1 + α2u

′
2,

for some coefficients α1, α2. This implies that

δ′t+1XtΛ̄
′
tδt+1 = α2

1µ1 + α2
2µ2,

δ′t+1Λ̄tXtΛ̄
′
tδt+1 = α2

1µ
2
1 + α2

2µ
2
2,

and hence that

λt =
α2
1µ1

α2
1µ1 + α2

2µ2

µ1 +
α2
2µ2

α2
1µ1 + α2

2µ2

µ2.

Thus we see that λt must be a convex combination of µ1 and µ2.

The fact that Λ̄t ∈ L(Xt) requires that both eigenvalues satisfy 0 ≤ µi ≤ 1, and the

assumption that Λ̄t is non-singular further requires that µi > 0 for both. Thus we must

have

1− µi > (1− µ1)(1− µ2)

for both i = 1, 2. Since λt is a convex combination of µ1 and µ2, it follows that

1− λt > (1− µ1)(1− µ2).

Thus

det(I − Λ̄1D
t ) = 1− λt > (1− µ1)(1− µ2) = det(I − Λ̄t).

Results (H.79) and (H.80) then imply that I(Λ̄1D
t ) < I(Λ̄t).

Thus Λ̄t cannot be the solution to the optimization problem (H.90). Since this argument

can be made in the case of any matrix Λ̄t ∈ L(Xt) that is of full rank, we conclude that the

optimal transition matrix can be at most of rank one.
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The optimal univariate memory state

We turn now to the question of which linear combination of the elements of the reduced

cognitive state constitutes the single variable for which it is optimal to retain a noisy record

in memory — that is, we wish to characterize the optimal weight vector vt in (H.73).

Here we take as given the value of λt (or equivalently, the mutual information between

the period t cognitive state and the memory carried into period t + 1), and solve for the

optimal choice of vt for any given value of λt. With this in hand, it will then be possible to

characterize an optimal memory structure in terms of the single parameter λt.

Given the value of σ̂2
t and the matrix Xt ≡ var[s̄t], and taking as given the value of λt,

we wish to choose vt so as to minimize σ̂2
t+1. Note that

σ̂2
t+1 = min

ξ,γ1
var[µ− ξm̃t+1 − γ1yt+1].

Hence we can write our problem as the choice of ξ, γ1, and the vector vt so as to minimize

f(σ̂2
t , λt, vt; ξ, γ1) ≡ var[µ − ξ(λtv

′
ts̄t + ω̃t+1) − γ1yt+1]

= var[µ − ξλtv
′
ts̄t − γ1yt+1] + ξ2λt(1− λt),

subject to the constraint that v′tXtvt = 1. Note that the solution to this problem will simul-

taneously determine the optimal choice of vt (and hence the optimal memory structure,

given a choice of λt) and the coefficients of the optimal estimate

µ̂t+1 = ξm̃t+1 + γ1yt+1 (H.92)

based on that memory structure.

We can alternatively define this problem as the choice of a weighting vector ψ ≡ ξλtvt

and a Kalman gain γ1. The values of these quantities suffice to determine the value of the
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objective (if we know the values of σ̂2
t and λt), since we can reconstruct ξ and vt from

them:

vt =
ψ

(ψ′Xtψ)1/2
, ξ = (ψ′Xtψ)

1/2λt.

Moreover, there is no theoretical restriction on the elements of the vector ψ, since the scale

factor ξ can be of arbitrary size in the previous formulation of the optimization problem.

Thus we can alternatively state our problem as the choice of a weighting vector ψ and a

Kalman gain γ1 to minimize

f(σ̂2
t , λt; ψ, γ1) = var[µ − ψ′s̄t − γ1yt+1] +

1− λt
λt

ψ′Xtψ. (H.93)

We can write the first term in this objective as

var[µ − ψ′s̄t − γ1yt+1] = var[(1− (1− ρ)γ1)(µ− µ̂t)− γ1(yt+1 − µ) + (e′1 − γ1c
′)s̄t − ψ′s̄t]

= (e′1 − γ1c
′ − ψ′)Xt(e1 − γ1c− ψ) + (1− (1− ρ)γ1)

2σ̂2
t + γ21σ

2
ϵ .

Substituting this into (H.93), we see that the objective is a strictly convex quadratic func-

tion of ψ and γ1, for any values of σ̂2
t and λt. It follows that the objective has an interior

minimum, given by the unique solution to the first-order conditions.

The FOCs for the minimization of (H.93) are given by the linear equations

ψ = λt(e1 − γ1c), (H.94)

c′Xt(e1 − γ1c− ψ) + (1− ρ)(1− (1− ρ)γ1)σ̂
2
t − γ1σ

2
ϵ = 0. (H.95)

Equation (H.94) already allows one valuable insight: the optimal weight vector vt is simply

a normalized version of the vector δt+1 defined in (3.34). However, this does not yet tell us

how to choose vt, since the vector δt+1 depends on the Kalman gain γ1,t+1, which depends

on the memory structure chosen in period t.

111



But together equations (H.94)–(H.95) provide a linear system that can be solved for ψ

and γ1, given the values of σ̂2
t and λt. We obtain

γ1,t+1 =
(1− λt)Ω + λt(1− ρ)σ̂2

t

(1− λt)(Ω + ρ2σ2
y) + λt(1− ρ)2σ̂2

t + σ2
ϵ

(H.96)

as an explicit solution for the Kalman gain. It is worth noting that this implies that

0 < γ1,t+1 <
1

1− ρ
. (H.97)

We can then use this solution to evaluate the elements of the vector δ. We obtain

δ1,t+1 ≡ 1− (1− ρ)γ1,t+1 =
(1− λt)ρ(Ω + ρσ2

y) + σ2
ϵ

(1− λt)(Ω + ρ2σ2
y) + λt(1− ρ)2σ̂2

t + σ2
ϵ

> 0,

δ2,t+1 ≡ −ργ1,t+1 = − (1− λt)ρΩ + λtρ(1− ρ)σ̂2
t

(1− λt)(Ω + ρ2σ2
y) + λt(1− ρ)2σ̂2

t + σ2
ϵ

≤ 0.

The weight vector vt is then just a normalized version of δt+1.

We note that when ρ = 0, the optimal weight vector has v2 = 0; that is, the memory

state m̃t+1 is just a noisy record of µ̂t. (This is intuitive, since when the state is i.i.d., and

given the estimate µ̂t of the mean, the value of yt provides no information about anything

that needs to be estimated or forecasted in period t + 1 or later.) Instead when ρ > 0, we

see that the sign of v2 is necessarily opposite to the sign of v1: the optimal memory state

averages µ̂t and yt with a negative relative weight on yt.

Given this solution for γ1, the implied solution for the vector ψ is given by (H.94).

Substituting the solutions for γ1 and ψ into the quadratic objective, we obtain for the

minimum possible value of the objective

σ̂2
t+1 = (1− λt)δ

′
t+1Σ0δt+1 + λt(δ1,t+1)

2σ̂2
t + γ21,t+1σ

2
ϵ . (H.98)

This provides an equation for the evolution of the uncertainty measure σ̂2
t+1, given a choice
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each period of λt, and using the formulas above for the values of γ1,t+1 and δt+1.

8.6 Numerical Solutions

Here we provide further details of the numerical calculations reported in section 3 of

the main text.

Dynamics of uncertainty given the path of {λt}

We begin by discussing our approach to numerical solution for the law of motion ηt+1 =

ϕ(ηt;λt) for the scaled uncertainty measure {ηt}, given a path for the memory-sensitivity

coefficient {λt}. In terms of this rescaled state variable, the law of motion (H.98) becomes

ηt+1 = (1− λt)(1− γ1,t+1)
2K + (1− ρ2λt)γ

2
1,t+1 + λt(1− (1− ρ)γ1,t+1)

2ηt, (H.99)

and (H.96) becomes

γ1,t+1 =
(1− λt)K + (1− ρ)λtηt

(1− λt)(K + ρ2) + (1− ρ2) + (1− ρ)2λtηt
. (H.100)

Substitution of (H.100) for γ1,t+1 in the right-hand side of (H.99) yields an analytical

expression for the function ϕ(ηt;λt).

This result suffices to allow us to compute the optimal dynamics of the uncertainty

measure {ηt} in the case that the only limit on the complexity of memory is an upper

bound λt ≤ λ̄ < 1 each period. We observe from (H.93) that the objective f(σ̂2
t , λt; ψ, γ1)

is minimized, for given values of the other parameters, by making λt as large as possible.

Hence the same is true for the function f(σ̂2
t , λt, vt) obtained by minimizing the objective

over possible choices of ξ and γ1. It follows that it will be optimal to choose λt = λ̄ each

period in the case of this kind of constraint.
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Figure 1.8: The evolution of uncertainty about µ (when ρ = 0)

The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remem-
bered) observations grows. Each panel corresponds to a particular value of K (maintaining
the assumption that ρ = 0, as in Figure 1). Each panel shows the evolution for several different
possible values of λ̄ (color code is the same in both panels).

We thus obtain a nonlinear difference equation

ηt+1 = ϕ(ηt; λ̄)

for the dynamics of the scaled uncertainty measure. We can iterate this mapping, starting

from the initial condition η0 = K/(K + 1), to obtain the complete sequence of values {ηt}

for all t ≥ 0 implied by any given value of λ̄. This is the method used to compute the

dynamic paths shown in Figure 1 in the main text.

Figure 1 shows the dynamics for {ηt} implied by this solution, for various possible

values of λ̄, in the case that K = 1 and ρ = 0. Figure 1.8 shows how this graph would

be different in the case of two larger values for K (but again assuming ρ = 0). A higher

value of K (greater prior uncertainty) implies a higher value for the initial value η0 of our

normalized measure of uncertainty (since η0 = K/(K + 1)). This means that the curves

all start higher, the larger the value of K. But the value of K also affects the long-run
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Figure 1.9: The evolution of uncertainty about µ (when ρ > 0)

The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remem-
bered) observations grows. Each panel corresponds to a particular value of ρ (maintaining the
assumption that K = 1, as in Figure 1). Each panel shows the evolution for several different
possible values of λ̄ (color code is the same in both panels).

level of uncertainty η∞, even though the initial condition becomes irrelevant in the long

run. Except when λ̄ = 1 (perfect memory), a higher value of K implies greater long-run

uncertainty; and when K is large (as illustrated in the right panel), η∞ is large (not much

below the degree of uncertainty implied by the prior) except in the case of quite high

values of λ̄.

Figure 1.9 similarly shows how Figure 1 would look in the case of two larger values

of ρ, but again assuming K = 1. We see that for a given degree of prior uncertainty and

a given bound on memory precision, the rate at which uncertainty is reduced is slower

when the external state is more serially correlated. This is because there are effectively

fewer independent observations over a given number of periods when the state is serially

correlated. In the case of perfect memory (λ̄ = 1), this affects the speed of learning but not

the long-run value η∞ = 0 that is eventually reached. Instead, when memory is imperfect,

the long-run value η∞ is also higher when the state is more serially correlated; effectively,
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the limited number of recent observations of the state that can be retained in memory

reveal less about the value of µ when the state is more serially correlated.

Solving for the value function Ṽ (η) and policy function λ∗(η) in the case of a linear informa-

tion cost

In the case of a linear information cost (or any other cost function with a positive

marginal cost of increasing It), it is necessary to solve the Bellman equation for the value

function Ṽ (η), in order to determine the optimal dynamics of {λt}. Here we explain the

methods used to solve this problem in the case of a linear information cost (the results

reported in section 3.2).

Once we have solved for the function ϕ(ηt;λt), as in the previous subsection, the Bell-

man equation for the case of a linear information cost can be written

Ṽ (ηt) = min
λt∈[0,1]

[
ηt −

θ̃

2
log (1− λt) + βṼ (ϕ(ηt;λt))

]
. (H.101)

We use the value function iteration algorithm to find the value function that is a fixed point

of this mapping.

When iterating the mapping to update the value function, we use a grid search method

to find the optimal policy function, because the right-hand side of the Bellman equation

is in general a non-convex function of the policy variable λt (as we illustrate in Figure

1.12 below). We approximate the value function with Chebyshev polynomials. Once the

value function has converged, we can use our solution for Ṽ (η) to solve numerically for

the policy function λ∗(η), the solution to the minimization problem on the right-hand side

of (H.101).

This function is graphed for several values of θ̃ in Figure 1.10, where we maintain

the parameter values K = 1, ρ = 0 as in Figure 1. When θ̃ = 0 (no cost of memory

precision), it is optimal to choose λt = 1 (perfect memory) in all cases. But for any value

116



The case of a linear cost of information

Figure 3: The optimal policy function λ∗(η)
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Figure 4: The dynamics of scaled uncertainty and memory precision
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Figure 1.10: The optimal policy function

The optimal policy function λ∗(η), in the case of progressively larger values for the information
cost parameter θ̃, under the assumption that K = 1, ρ = 0.

of η, the optimal λ∗(η) < 1 when θ̃ > 0 (since in this case, perfect memory becomes

infinitely costly); furthermore it is lower (memory is more imperfect) the higher is θ̃. We

also see that for any cost parameter θ̃ > 0, the optimal λ∗(η) is a decreasing function of

η. This indicates that the less accurate the information contained in the cognitive state st

(as indicated by the higher value of ηt), the less information about the cognitive state that

it will be optimal to store in memory, when the memory cost can be reduced by storing a

less informative record.

The policy function λt = λ∗(ηt) together with the law of motion

ηt+1 = ϕ(ηt;λt) (H.102)

derived in section F.1 can then be solved for the dynamics of the scaled uncertainty {ηt}

for all t ≥ 0, starting from the initial condition η0 = K/(K + 1). The dynamics implied
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The case of a linear cost of information

Figure 3: The optimal policy function λ∗(η)
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Figure 4: The dynamics of scaled uncertainty and memory precision
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Figure 1.11: The dynamics of scaled uncertainty and memory precision

The dynamics of scaled uncertainty ηt and memory precision λt graphed in the phase plane.
The left panel gives an alternative graphical presentation of the dynamics plotted in Figure
1 for the case of a fixed upper bound λ̄ on memory precision. The right panel shows the
corresponding dynamics in the case of a linear cost of precision parameterized by θ̃.

by these equations can be graphed in a phase diagram, as illustrated in Figure 1.11. In

the phase diagrams shown in each of the two panels, the value of ηt is indicated on the

horizontal axis and the value of λt on the vertical axis. Equation (H.102), which holds

regardless of the nature of the information cost function and the degree to which the

future is discounted, determines a locus η∞(λ), indicating for each value of λ the unique

value of η that will be a fixed point of these dynamics if λt is held at the value λ. We can

further show that whenever ηt < η∞(λt), the law of motion (H.102) implies that ηt+1 > ηt,

so that uncertainty will increase, while if ηt > η∞(λt), it implies instead that ηt+1 < ηt, so

that uncertainty will decrease.

The choice of λt (and hence the degree to which uncertainty will increase or decrease)

is given by the policy function, that depends on the specification of information costs.

When there is a fixed upper bound on information (the case discussed in the previous

subsection), the policy function is just a horizontal line at the vertical height λ̄, as shown
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in the left panel of the figure.76 In this case, the values of (ηt, λt) in successive periods start

at the point (η0, λ̄), labeled “t = 0” in the figure, and then move left along the graph of the

policy function (since η0 > η∞(λ̄) as shown). They continue to move left along the policy

function, with ηt converging asymptotically to η∞(λ̄) from above; the stationary long-run

values (η∞, λ∞) correspond to the point at which the policy function λ = λ̄ intersects the

locus of fixed points η∞(λ).

The right-hand panel of the figure shows the corresponding phase-plane dynamics in

the less trivial case of a linear cost function for information. In this case, the policy function

is instead a downward-sloping curve, as shown in Figure 1.10.77 Again the values of (ηt, λt)

in successive periods must always lie on the graph of the policy function; the direction of

motion up or down this curve depends on whether the current position lies to the left or

right of the locus of fixed points η∞(λ). The initial point (labeled “t = 0”) is determined

as the point on the policy curve with horizontal coordinate given by the initial condition

η0. Since this point lies to the right of the locus of fixed points, the points for successive

periods move up and to the left on the policy curve, meaning that λt rises as ηt falls.

The scaled uncertainty continues to fall, and the precision of memory continues to

rise, until the values (ηt, λt) converge to stationary long-run values (η∞, λ∞), again corre-

sponding to the point at which the policy function λ∗(η) intersects the locus of fixed points

η∞(λ). Note that convergence is slower in the right panel of the figure than in the left,

because in the early periods, when uncertainty is high, a less precise memory is chosen in

the linear-cost case, resulting in slower learning from experience.

Different values of θ̃ correspond to different locations for the policy function λ∗(η), as

shown in Figure 1.10, and hence to different dynamics in the phase plane, converging to

76The figure plots the location of this line for the case λ̄ = 0.8. The figure is drawn for parameter values
K = 1, ρ = 0. Thus the dynamics of uncertainty shown in the figure correspond to the curve labeled λ̄ = 0.8
in Figure 1.

77In the figure, the policy function and the implied dynamics are shown for the case in which θ̃ = 0.2,
corresponding to one of the intermediate curves shown in Figure 1.10. Again the figure is for the case
K = 1, ρ = 0, so that the location of the locus of fixed points η∞(λ) and the law of motion (H.102) remain
the same as in the left panel.
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Figure 1.12: The Bellman equation

The objective function RHS(λt, ηt) that is minimized in the Bellman equation, plotted as a
function of λt for the initial level of uncertainty ηt = η0. The function is normalized so that the
value is 1.0 when λt = 0, and plotted for three nearby values of θ̃, in the case that K = 10. The
minimizing value of λt jumps discontinuously as θ̃ passes a value between 0.2800 and 0.2805.

different long-run levels of scaled uncertainty. The dynamics of scaled uncertainty as a

function of the number of observations t are shown for progressively larger values of θ̃ in

Figure 3 in the main text, using the same format as in Figure 1.

The possibility of discontinuous solutions

Figure 1.12 illustrates our comment about the possible non-convexity of the optimiza-

tion problem (H.101). Let RHS(λt; ηt) be the function defined on the right-hand side of

(H.101), i.e., the objective of the minimization problem. The figure plots the value of

RHS(λ; η0), normalized by dividing by the positive constant RHS(0; η0) (so that a value of

1.0 on the vertical axis means that RHS(λ; η0) is of exactly the same size as RHS(0; η0)).

This function is shown for each of three slightly different values of θ̃, assuming in each

case that K = 10, as in the right panel of Figure 5 in the text. In the case of each of

these curves, a large dot (the same color as the curve) indicates the global minimum of
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the function. A horizontal dashed line (also the same color as the corresponding curve)

indicates the minimum of RHS(λ; η0) — and thus the value of Ṽ (η0) — again normalized

by dividing by RHS(η0).

The figure shows that for values of θ̃ in this range, RHS(λ) is not a convex function of

λ. It is increasing for small enough values of λ, making the choice λt = 0 a local minimum

in this case. (This is true for all values of θ̃ greater than a critical value around 0.15,

which explains the existence of the horizontal segment of the connected black curve in

the right panel of Figure 5.) However, the function reaches a local maximum, and then

decreases for larger values of λ, as the degree to which a larger value of λt reduces ϕ(η0;λt)

outweighs the increase in the information cost. (A large enough value of K is required for

this to occur. A larger value of K increases the sensitivity of the value of ϕ(η0;λ) to the

value of λ; see equation (H.103) below.) For even larger values of λ (values approaching

1), further increases in λ increase the information cost term so sharply that RHS(λ; η0) is

again decreasing in λ. This means that there is a second local minimum of the objective

function, at an interior value of λ. Which of the two local minima represents the global

minimum of the function depends on parameter values.

In the case illustrated in the figure, the interior local minimum achieves a lower value

of the objective than the choice λt = 0, for all values of θ̃ less than a critical value that is

slightly larger than 0.2805. (As shown in the figure, when θ̃ = 0.2805, the interior mini-

mum achieves a value of the objective that is quite close to the value RHS(0; η0). However,

the value achieved remains slightly smaller: there is a (barely visible) green dashed line,

just below the blue dashed line at the normalized value 1.0.) But the normalized value

of the objective at the interior minimum increases as θ̃ is increased, and for a value of θ̃

only slightly greater than 0.2805, the normalized value becomes greater than 1.0 (which

is to say, the interior local minimum is no longer the global minimum of the objective).

When this critical value of θ̃ is passed, the optimal value λ∗(η0) jumps discontinuously

from the interior local minimum (which is a continuously decreasing function of θ̃) to the
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Figure 1.13: The optimal policy function (for a sufficiently large θ̃)

The optimal policy function λ∗(η), in the case of progressively larger values for the information
cost parameter θ̃, under the assumption that K = 1, ρ = 0. Here we consider values of θ̃ larger
than those shown in Figure 1.10.

value zero. When this happens, the optimal long-run level for the normalized uncertainty

measure η∞ increases discontinuously, from a value on the lower branch of the correspon-

dence shown in the right panel of Figure 5 to the value η0 = K/K + 1. For all values of θ̃

higher than this, it is optimal to choose a completely uninformative memory for all t, so

that ηt = η0 for all t, and hence ηt → η∞ = η0.

For larger values of θ̃ than those considered in Figure 1.10, the optimal policy function

λ∗(η) is equal to zero for all large enough (though still finite) values of η, as illustrated in

Figure 1.13. Once θ̃ is large enough for λ∗(η0) to equal zero, the optimal dynamics imply

ηt = η0 for all t, and hence η∞ = η0 = K/K + 1, as shown in Figure 5.

The case ρ = 0

Additional analytical results are possible in the case that ρ = 0 (the external state is an

i.i.d. random variable). In this case, the law of motion for the scaled uncertainty measure
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(derived in section F.1) simplifies to

ηt+1 = 1− 1

K + 1− λt(K − ηt)
≡ ϕ(ηt;λt). (H.103)

In the case of an exogenous upper bound on mutual information, the nonlinear difference

equation obtained by setting λt = λ̄ in (H.103) is of an especially simple sort. The function

on the right-hand side of this equation is a hyperbola, increasing and concave for all ηt > 0.

We easily see that the right-hand side has a positive value when ηt = 0, and a value less

than K/(K + 1) when ηt = K/(K + 1).

Thus for any 0 < λ̄ < 1, the function ϕ(ηt; λ̄) is an increasing, concave function that is

above the diagonal at ηt = 0 and below the diagonal at ηt = K/(K + 1). It follows that the

function must intersect the diagonal at exactly one point, ηt = η∞.We can furthermore give

an explicit algebraic solution for this fixed point as the solution to a quadratic equation.

Note in particular that it is necessarily strictly positive and strictly less than K/(K+1), and

that it is a decreasing function of λ̄, approaching K/(K + 1) as λ̄ → 0, and approaching 0

as λ̄→ 1.

On the interval η∞ < ηt ≤ K/(K + 1), the law of motion (H.103) implies that η∞ <

ηt+1 < ηt. Hence when we start from the initial condition η0 = K/(K + 1), the implied

dynamics must satisfy

η0 > η1 > η2 > η3 . . . ,

a monotonically decreasing sequence. Because the sequence is bounded below by η∞, it

must converge, and it is easily seen that it can only converge to the fixed point η∞ that we

have already calculated. Hence for each possible λ̄, we obtain a monotonically decreasing,

convergent sequence of the kind shown in Figure 1. We can also easily show that the curve

must be lower for each value of t, the larger is λ̄.

We can also obtain additional analytical results in the case of a linear information cost.
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The value function satisfies a Bellman equation of the form

Ṽ (ηt) = min
λt

[
β2ηt −

θ̃

2
log (1− λ) + βṼ (ϕ(ηt;λt)))

]
.

The first order condition with respect to λt is

θ̃

2

1

1− λt
+ βṼ ′(ηt+1)

∂ϕ(ηt;λt)

∂λt
= 0. (H.104)

And the envelope condition is

Ṽ ′(ηt) = β2 + βṼ ′(ηt+1)
∂ϕ(ηt;λt)

∂ηt
.

We can use these two conditions to derive an Euler equation for the dynamics of the scaled

uncertainty measure.

Substituting the solution (H.103) for ϕ(ηt;λt) and taking the derivative with respect to

λt, we can rewrite (H.104) as

Ṽ ′(ηt+1) = − θ̃

2β

1

1− λt

(
∂ϕ(ηt;λt)

∂λt

)−1

= − θ̃

2β

1

1− λt

(
− (K − ηt)

(K + 1− λt(K − ηt))
2

)−1

=
θ̃

2β

(K + 1− λt(K − ηt))
2

(1− λt)(K − ηt)

=
θ̃

2β

1

(1− ηt+1) (1− (1− ηt+1)(1 + ηt))
,

where the last equality is derived by again substituting the law of motion (H.103). It

follows that if ηt → η∞ in the long run, the stationary solution η∞ must satisfy

Ṽ ′(η∞) =
θ̃

2β

1

(1− η∞)η2∞
. (H.105)
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Next we rewrite (8.6), again taking the derivative of expression (H.103) for (̃ηt;λt):

Ṽ ′(ηt) = β2 + βṼ ′(ηt+1)
∂ϕ(ηt;λt)

∂ηt

= β2 + βṼ ′(ηt+1)
λt

(K + 1− λ(K − ηt))
2

= β2 + βṼ ′(ηt+1)
λt

(1− ηt+1)
−2

= β2 + βṼ ′(ηt+1)(1− ηt+1)
2 (K + 1)(1− ηt+1)− 1

(K − ηt)(1− ηt+1)
.

It follows that the stationary solution η∞ must satisfy

Ṽ ′(η∞) = β2 + βṼ ′(η∞)
(1− η∞) [(K + 1)(1− η∞)− 1]

K − η∞
. (H.106)

Moreover, in a stationary solution, the value Ṽ ′(η∞) given by (H.105) must also be the

value of Ṽ ′(η∞) in (H.106). Using (H.105) to substitute for Ṽ ′(η∞) in (H.106), we obtain a

condition that must be satisfied by η∞ in any stationary solution with an interior optimum

(i.e., a stationary solution in which 0 < η∞ < K/(K + 1)):

θ̃ = 2β3(1− η∞)η2∞

[
1− β

(K + 1)(1− η∞)2 − (1− η∞)

K − η∞

]−1

. (H.107)

This is the relationship between θ̃ and η∞ that is graphed as a connected black curve in

Figure 5. Note that for any value 0 < η∞ < K/(K + 1), there is a unique θ̃ > 0 consistent

with this relationship; but (as shown in the right panel of Figure 5) there may be multiple

solutions for η∞ consistent with a given value of θ̃.

8.7 Predicted Values for the Quantitative Measures of Forecast Bias

Here we provide further explanation of the numerical results reported in section 4 of

the main text.
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Long-run stationary fluctuations

From the definition of the univariate memory state m̃t+1 = λtv
′
ts̄t + ωt+1, we can derive

a law of motion for the univariate memory state m̃t. Using the subscript ∞ for the long-run

stationary coefficients, we get

m̃t+1 = λ∞v
′
∞s̄t + ω̃t+1

= λ∞v
′
∞


µ̂t

yt

+ ω̃t+1

= λ∞ [e′1v∞ {(e′1 − γ1c
′)mt + γ1yt}+ (e′2v∞)yt] + ω̃t+1

= λ∞ [e′1v∞ {(e′1 − γ1c
′)X∞v∞m̃t + γ1yt}+ (e′2v∞)yt] + ω̃t+1

= ρmm̃t + ρmyyt + ω̃t+1

where ρm ≡ λ∞(e′1v∞) (e′1 − γ1c
′)X∞v∞ and ρmy ≡ λ∞ (γ1 + e′2v∞).

We can evaluate the numerical values of the coefficients defining the long-run dynamics

as follows. Equations (H.99)–(H.100) imply that the long-run coefficients λ∞, η∞, γ1,∞

must satisfy the pair of nonlinear equations

η∞ =
(1− λ∞)(1− γ1,∞)2K + (1− ρ2λ∞)γ21,∞

1 − λ∞(1− (1− ρ)γ1,∞)2
,

γ1,∞ =
(1− λ∞)K + (1− ρ)λ∞η∞

(1− λ∞)(K + ρ2) + (1− ρ2) + (1− ρ)2λ∞η∞
.

In the case of an exogenous bound on mutual information, we can set λ∞ = λ̄, in which

case these provide two equations to solve for the values of η∞ and γ1,∞. (Note that the

relevant solution is the one that satisfies the bounds 0 < η∞ < K/(K + 1), and that it

necessarily also satisfies 0 < γ1,∞ < 1/(1 − ρ).) This allows us to compute the long-run

stationary values of the coefficients η and γ1 plotted for alternative values of λ̄ in Figure 2.
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We have also shown in section E.3 that the optimal weight vector vt is just a normalized

version of the vector δt+1 ≡ e1 − γ1,t+1c. Hence in the long run, this vector must become

v∞ =
e1 − γ1,∞c

(e′1 − γ1,∞c′)X∞(e1 − γ1,∞c)
.

In particular, the ratio v2,∞/v1,∞ (the quantity plotted as “v∞” in Figure 2) is given by

v2,∞
v1,∞

= − ργ1,∞
1 − (1− ρ)γ1,∞

< 0.

Finally, we observe that the intrinsic persistence coefficient ρm defined above must

satisfy

ρm ≡ λ∞v1,∞ · (e′1 − γ1,∞c
′)X∞v∞

= λ∞v1,∞

= λ∞(1− (1− ρ)γ1,∞).

This allows us to calculate the other coefficient that is plotted in Figure 2. Note that

because the Kalman gain necessarily satisfies the bounds 0 < γ1 < 1/(1− ρ), this solution

for the intrinsic persistence coefficient implies that

0 < ρm < 1. (H.108)

In the long run, we can describe the evolution of the DM’s cognitive state using the

following system of equations:

m̃t+1 = ρmm̃t + ρmyyt + ω̃t+1

yt+1 = (1− ρ)µ+ ρyt + ϵy,t+1
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Therefore, we can write it as a VAR(1) system with constant coefficients and Gaussian

innovation terms:
m̃t+1

yt+1

 =


0

1− ρ

µ+


ρm ρmy

0 ρ



m̃t

yt

+


ω̃t+1

ϵy,t+1


Because the two eigenvalues of this vector law of motion are ρ and ρm, (H.108) implies

that this describes a stationary stochastic process. Hence we can compute stationary long-

run values for the second moments of the variables, and use these to define the impulse

response functions and predicted regression coefficients reported in the text.

For example, in the case of a fixed per-period bound on mutual information, we can

compute the impulse responses for the DM’s estimate of µ and her one-quarter-ahead

forecast of the external state, as explained in section 3.3. Here we present additional

figures, showing what the impulse responses shown in Figure 6 in the text would be like

in the case of alternative values of ρ. In Figures 1.14 and 1.15 shown here, each panel

corresponds to a different value of ρ, and shows the responses for several different possible

values of λ̄. (As with Figure 6 in the main text, we here assume that K = 1.)
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Figure 1.14: Impulse responses of the DM’s estimate of µ for alternative degrees of persis-
tence ρ of the external state process.Figure 2: Impulse response of the DM’s estimate of µ for alternative degree of persistence
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Figure 1.15: Impulse responses of the DM’s one-quarter-ahead forecast of the external
state for alternative degrees of persistence ρ of the external state process.

Figure 3: Impulse response of the DM’s one-quarter-ahead forecast of the external state for alternative degree of
persistence
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Predicted value of the regression coefficient ρsubjh

Given a long enough series of observations from an environment with a fixed µ, our

model yields stationary values for the Kalman gain γ1 and for the amplitude of fluctuations

in the memory state var[m̄t]. We can then compute the values of the following long-run

conditional second moments:

var[m̄t|µ] = var[m̄t]− cov[m̄t, µ]var[µ]
−1cov[µ, m̄t]

= var[m̄t]− cov[m̄t, xt]e1var[µ]
−1e′1cov[xt, m̄t]

= var[m̄t]−
1

var[µ]
var[m̄t]e1e

′
1var[m̄t]

cov[µ̂t, yt|µ] = cov[(e′1 − γ1c
′)m̄t + γ1yt, yt|µ]

= (e′1 − γ1c
′)cov[m̄t, yt|µ] + γ1var[yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ]c+ γ1var[yt|µ]

var[µ̂t|µ] = var[(e′1 − γ1c
′)m̄t + γ1yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ](e1 − γ1c) + γ21var[yt|µ] + 2γ1(e

′
1 − γ1c

′)cov[m̄t, yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ](e1 − γ1c) + γ21var[yt|µ] + 2γ1(e

′
1 − γ1c

′)var[m̄t|µ]c

In order to write the dynamics of the model in terms of scale-invariant quantities, we

divide each second moment by var[yt|µ] = σ2
y. Thus we can write

var[m̄t|µ]
var[yt|µ]

= Σ̃m̄ − 1

K
Σ̃m̄e1e

′
1Σ̃m̄

cov[µ̂t, yt|µ]
var[yt|µ]

= (e′1 − γ1c
′)
var[m̄t|µ]
var[yt|µ]

c+ γ1

var[µ̂t|µ]
var[yt|µ]

= (e′1 − γ1c
′)
var[m̄t|µ]
var[yt|µ]

(e1 − γ1c) + γ21 + 2γ1(e
′
1 − γ1c

′)
var[m̄t|µ]
var[yt|µ]

c,
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using the notation Σ̃m̄ ≡ var[m̄t]/σ
2
y .

We now wish to calculate the predicted asymptotic value of the regression coefficient

ρsubjh ≡ cov[ŷt+h|t, yt|µ]
var[yt|µ]

where ŷt+h|t ≡ E[yt+h|m̄t, yt]. From

cov[ŷt+h|t, yt|µ] = cov[(1− ρh)µ̂t + ρhyt, yt|µ]

= (1− ρh)cov[µ̂t, yt|µ] + ρhvar[yt|µ],

where µ̂t ≡ E[µ|m̄t, yt], we can then compute

ρsubjh = (1− ρh)
cov[µ̂t, yt|µ]
var[yt|µ]

+ ρh

= (1− ρh)

[
(e′1 − γ1c

′)

(
Σ̃m̄ − 1

K
Σ̃m̄e1e

′
1Σ̃m̄

)
c + γ1

]
+ ρh.

These are the coefficients whose values are plotted against the value of ρh = ρh in Figure

7.
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Chapter 2: Inflation Surprises and Perception of Inflation Risks

with Miguel Acosta1

1 Introduction

Perception of risk is essential in many economic decision-making processes. If house-

holds and firms are concerned that extreme events are more likely to arise, they hold off

investing in durable goods. In financial markets, market participants assess how much risk

an underlying cash flow carries, which is particularly explicit in the pricing of financial

contracts, such as variance swaps and inflation swaps.

This paper studies how people perceive risk differently from the optimal Bayesian in-

ference. In particular, we suppose that people are subject to memory friction, and thus

risk perception is not accurately based on all available past data. Our model predicts that

perceived risk perpetually fluctuates even when there is no change in the true level of risk.

Moreover, following large variations of the underlying process, people view extreme real-

izations are more likely in the future. We validate this model prediction using the inflation

forecast data of professional forecasters.

We consider a case where the variance of a random variable is unknown. To clarify the

intuition, we consider a random variable following a Gaussian distribution whose mean

and variance are constant. We further suppose that decision-maker (DM) knows the mean

of the process. Thus, the history of small and large deviations from the mean indicates how

dispersed the random variable is. If DM learns about the variance by observing such real-

ized variations, the extent of surprises is informative to gauge the variance, not whether

they are old or new.

We propose a learning model where DM’s perception is based on noisy memory. We

1Division of International Finance, Federal Reserve Board
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suppose that perception is not accurately based on past data. Instead, it is based on a

somewhat noisy recollection of past data. The essence of our model is to theorize a stock

of memory as noisy summary statistics. We first observe that lower dimensional statistics

summarize past data informative about the underlying variance. We then suppose that

this statistic is only available with noise in the subsequent periods. This formulation nests

the perfect memory benchmark, as the extent of the noise is characterized by a single

parameter. While we call this model of noisy memory, it does not necessarily mean that

DM forgets past data. We formalize the friction in accurately utilizing the past data, which

could capture imperfections in information processing other than forgetfulness.

We show that DM overweights recent surprises compared to the perfect memory bench-

mark. If a statistician were to infer the value of variance from the history of past realiza-

tions, then each realized variation carries an equal weight. We show that this is not the

case if DM’s perception is based on noisy memory. Instead of equal weight, DM puts dis-

proportionately high weight on recent experiences. Furthermore, weights on older data

are stochastic and exponentially decaying on average. This means that the sequence of

observation matters. Suppose a long period of stable realizations is followed by extreme

events. After experiencing this sequence of episodes, a statistician and DM hold differ-

ent views about the variance. DM views that unlikely events are more likely than what a

statistician thinks.

Importantly, such over-extrapolation persists even in the long run. If learning with per-

fect memory, we expect that DM will eventually learn about the variance in the long run.

As learning opportunities accumulate, a new piece of information adds less information

and eventually adds close to zero information. Thus, a new experience will stop affecting

one’s views about the variance. This, again, is not the case if perception is based on noisy

memory. We show that DM is perpetually uncertain about the exact value of the variance

since knowledge is accumulated with noise. Thus, DM continues to learn even in the long

run, which means that DM’s risk perception fluctuates and extrapolates from recent ex-

134



perience. Even in the long run, DM perceives extreme realizations are more likely in the

future when the current realization is unusual.

We test the main prediction of the model using the survey data of the US professional

forecasters. We find evidence supportive of our theory. When forecasters are surprised

by recent inflation data, they become more uncertain about inflation in the future. This

positive relationship between the size of inflation surprises and perceived inflation risk

holds not only during times of substantial volatility—as in the late 1970s—but also during

less-volatile periods. Limitations in the survey’s design do not allow us to study the most-

recent inflation, but our findings and model suggest that it was likely followed by an

increase in the perceived inflation risk.

The proposed model offers a different explanation for fluctuating risk perception com-

pared to a hypothesis that the variance is stochastic. When DM learns about a stochastically-

varying variance, the resulting risk perception is similar to ours in that risk perception

fluctuates and extrapolates from recent surprises. In this case, older data become obsolete

as they are less informative about current variance. Accordingly, fluctuation in risk per-

ception is tightly controlled by the rate at which variance shifts. While this is a plausible

explanation, past literature often finds it hard to justify the variation in risk perception

with the realistic degree of stochastic movement in the variance process (e.g., see Bakshi

and Skoulakis (2010)). In our paper, we provide an alternative theory of fluctuating risk

perception even when the volatility of the variance is negligible, in our case, zero.

2 Model

Environment A decision-maker (DM) forecasts a future realization of a variable yt that

follows a normal distribution with mean µ and precision ω:

yt ∼ N
(
µ, ω−1

)
. (B.1)
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While the DM knows this variable is drawn from a normal distribution, the exact data-

generating process—parameterized by µ and ω—is unknown. Our primary interest in

this paper is on the DM’s perception of the volatility of yt, which we refer to as perceived

volatility. To focus on how beliefs about 1
ω

are formed, we start with a more straightforward

setup where the DM has a correct understanding of the mean µ. Thus, the DM needs to

learn about one parameter: ω.

We assume that the following Gamma distribution describes the DM’s prior belief about

ω:

ω ∼ Γ (α, β) .

This prior belief ensures that the DM’s belief about ω inferred from the history of yt again

follows a Gamma distribution. We define perceived volatility as Et [ω
−1], where the expec-

tation is conditional on information available to DM at time t as detailed below.

Available information The DM is Bayesian and thus forms their beliefs about the model’s

parameters using a combination of their prior information and any new information avail-

able to them. The DM learns about the model parameters by observing the realizations of

yt. We make the conventional assumption that at each period, yt is realized, and the DM

observes this realization without error.

Where this paper differs from conventional Bayesian learning is in the use of prior

information. This paper studies how beliefs are formed when they are not accurately based

on all past yt: The DM’s beliefs about the parameters are not described as ω| y1, · · · , yt.

Instead, past data is less accurately incorporated into the DM’s current belief. To clarify

this, we describe that a statistician’s views are based on “perfect memory,” while the DM’s

views are based on “noisy memory.” In the following section, we discuss how noisy memory

is modeled.
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2.1 Learning with Perfect Memory

In this section, we consider how a statistician’s views are formed. This will serve as

the full information limit of our model. Suppose the Y t denotes the history of yt, that is,

Y t ≡ {y1, · · · , yt}. A statistician accurately infers the value of ω from the history of Y t.

It is well understood that the conditional distribution ω| Y t follows a Gamma distri-

bution and that the distribution evolves in a recursive formula. Here, we summarize this

point and introduce a notation. At any time t, we can describe the prior belief about ω at

time t as

ω| Y t−1 ∼ Γ
(
α + α∗

t−1, β + β∗
t−1

)
.

Then, an observation of yt leads DM to have the posterior belief about ω as follows.

ω| Y t ∼ Γ

(
α + α∗

t +
1

2
, β + β∗

t

)

where α∗
t and β∗

t recursively evolve according to

α∗
t = α∗

t−1 +
1

2
(B.2a)

β∗
t = β∗

t−1 +
1

2
(yt − µ)2 . (B.2b)

Thus, the distribution ω| Y t is completely summarized by the two variables α∗
t and β∗

t .

We can see that α∗
t increases incrementally independent of the realization of yt, while β∗

t

reflects how far off the realized yt is from its expected value µ. Furthermore, the sequence

of {α∗
τ , β

∗
τ}tτ=0 is described below.

α∗
t =

t

2
(B.3a)

β∗
t =

1

2

t∑
τ=1

(yτ − µ)2 (B.3b)
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starting from the initial conditions α0 = 0 and β0 = 0. Thus, α∗
t stores the length of the

learning experiences, while β∗
t stores the stock of experienced surprises until time t.

The DM’s perceived volatility at time t is given by E[ω−1| Y t] =
α+α∗

t

β+β∗ . Thus,

E[ω−1
∣∣Y t] =

β + 1
2

∑t
τ=1 (yτ − µ)2

α + t
2
− 1

(B.4)

from equations (B.3). We define the weight on the variation realized in time τ as

s∗τ =
1
2

α + t
2
− 1

, τ ≤ t. (B.5)

As expected, we observe that all previously realized variation receives the same weight.

That is, s∗τ = s∗t for all τ ≤ t. This means that all experiences have the same influence on

DM’s current perception of risk, regardless of how recent the experience is.

We can furthermore see that s∗t → 0 as t → ∞. That is, recent observations will

influence DM’s perception of ω−1 less and less over time. By the law of large numbers, it

is also straightforward to see that the estimate (B.4) converges to a true ω−1 as learning

opportunities accumulate.

2.2 Learning with Noisy Memory

This section considers how the DM’s views are formed based on noisy memory. In this

case, the DM’s beliefs about ω are not accurately based on the history of yt. Thus, the DM’s

beliefs less accurately incorporate information from past data than a statistician’s beliefs.

We propose a succinct and intuitive theory to introduce memory frictions. Following

the work of Azeredo da Silveira et al. (2020) and Sung (2022), our model of memory

will posit that the DM’s knowledge about the variance of yt is distilled down to a lower-

dimensional set of sufficient statistics. This is motivated by the notion that the DM’s beliefs

are characterized by parametric distributions (here, the Gamma distribution), then those

beliefs are completely summarized by the distributions parameters (in the case of the
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Gamma distribution, this means just two variables). Thus, these parameters summarize

the knowledge about the history of past data realizations relevant for inferring the level of

ω without losing any information.

For example, from the previous section, α∗
t and β∗

t completely describe the posterior

distribution. Furthermore, β∗
t captures information from past realizations, as the other

parameter α∗
t only depends on the number of observations. Thus, the inference based on

β∗
t coincides with the statistician’s view: It is sufficient for the DM to base her forecasts on

β∗
t to replicate the perfect memory views of a statistician. Lemma 1 summarizes this point.

Lemma 1. Suppose a posterior belief about ω is given as ω| Y t ∼ Γ (α + α∗
t , β + β∗

t ). Then,

it must be that ω| βt ∼ Γ (α + α∗
t , β + β∗

t ).

Proof. The lemma follows from β∗
t |ω ∼ Γ (α∗

t , ω).

Inspired by the fact that β∗
t fully captures knowledge about ω in the perfect memory

case, we suppose that the DM’s views are based on noisy memory about this sufficient

statistic. Thus, we propose that the DM’s knowledge about ω until the beginning of time

t is stored in a one-dimensional “memory variable” mt+1, which evolves according to the

following definition.

Definition 1. If the time-t posterior belief about ω is given as ω|mt, yt ∼ Γ (α + αt, β + βt),

then memory variable mt+1 is defined as

mt+1 = βt ut+1 (B.6)

where ut+1 is an i.i.d. draw from the Beta distribution B (λαt, (1− λ)αt) for a given scalar

λ ∈ (0, 1).

A single parameter λ describes the extent of noisy memory. We can see this from the

noise term ut+1. Note that E[ut+1] = λ and V [ut+1] =
λ(1−λ)
α+1

. Thus, the perfect memory

case is nested as λ → 1 since mt+1 = βt, in which case the DM’s views coincide with a
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statistician who accurately uses all available past yt. On the other hand, the formulation

above also incorporates the case in which the memory variable mt+1 carries no information

about ω. When λ→ 0, we can see thatmt+1 = 0. Thus, mt+1 contains no information about

previous realizations that are informative about the variability of yt. In other words, we

have that ω|mt+1 ∼ Γ (α, β) as mt+1 does not improve DM’s initial prior about ω.

Given equation (B.6), the DM’s beliefs about ω evolve as described in Proposition 1.

Importantly, the proposed memory structure allows the prior belief about ω to be the

conjugate prior, as was the case in the perfect memory benchmark. Thus, the DM’s prior

and posterior beliefs about ω are described as Gamma distributions.

Proposition 1. If memory is formed according to (B.6), then the time-t prior belief can be

expressed as

ω|mt ∼ Γ (α + αm
t , β + βm

t )

The posterior belief, after observing yt, evolves to

ω|mt, yt ∼ Γ (α + αt, β + βt)

where αt = αm
t + 1

2
and βt = βm

t + 1
2
(yt − µ)2. Finally, the beginning-of-period prior at t+ 1

is derived as

ω|mt+1 ∼ Γ
(
α + αm

t+1, β + βm
t+1

)
where αm

t+1 = λαt and βm
t+1 = mt+1 = βt ut+1.

Proof. See Appendix 5.1.

As Proposition 1 suggests, DM’s posterior belief about ω follows a Gamma distribution
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specified by two variables, αt and βt. They evolve recursively as follows.

αt = λαt−1 +
1

2
(B.7a)

βt = βt−1 ut +
1

2
(yt − µ)2 (B.7b)

where ut is randomly drawn from B (λαt−1, (1− λ)αt−1). Compared to the perfect mem-

ory counterpart (B.2), there are important differences in how αt and βt evolve. First, while

the evolution of αt from αt−1 is still independent of the realization of yt, the change is

somewhat attenuated since λ ∈ (0, 1). Second, while the fluctuation in βt is still tied to the

realized variation (yt − µ)2, there is a second source of fluctuation: The stochastic term ut

is independent of yt and multiplies βt−1. Thus, the experience of past surprises summarized

in βt−1 influences βt in a stochastic manner.

By recursively iterating (B.7), we can describe αt and βt as follows.

αt =
1

2
+
λ

2
+ · · ·+ λt−1

2
=

1

2

1− λt

1− λ
(B.8a)

βt =
1

2

t∑
τ=1

(yτ − µ)2 ūt,τ (B.8b)

starting from the initial points α0 = β0 = 0. 2 The term ūt,τ is defined as Πt
i=τ+1ui for

τ ≤ t − 1 and ūt,t = 1. The equations (B.8) summarize how limited memory affects the

DM’s learning. Note first that when λ = 1, αt and βt converge to their perfect-memory

counterpart α∗
t and β∗

t described in (B.3). However, when memory is limited, αt does not

linearly increase with the length of learning opportunities; αt converges to a positive scalar

as t → ∞. Also, βt is not simply summing past realized variations. Previous surprises

are multiplied by idiosyncratic noise, and the noise is cumulative, as captured by ūt,τ .

Therefore, older surprises have a less precise impact on the DM’s estimate of ω.

2At t = 1, we assume there is no memory to be inherited. The posterior is then ω| y1 which is a Gamma
distribution.
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The DM’s perceived variance is derived as

E[ω−1
∣∣mt, yt] =

β + 1
2

∑t
τ=1 (yτ − µ)2 ūt,τ

α + 1
2
1−λt

1−λ
− 1

(B.9)

from equations (B.8). As before, we define the weight on the variation realized at time τ

as

sτ =
1
2
ūt,τ

α + 1
2
1−λt

1−λ
− 1

, τ ≤ t. (B.10)

Note that the weights on the past realizations are stochastic due to the compounded id-

iosyncratic noise ūt,τ . Furthermore, we can see that sτ = ūt,τ st where st is the weight on

the most recent variation. Thus, it is straightforward to see that

E [sτ ] = λt−τ st, τ ≤ t (B.11)

where the expectation is taken over possible realizations of ūt,τ . This implies that weights

on past variations exponentially decay on average.

We can also see that the weight on the most recent observation st does not converge

to zero as t → ∞. Instead, the limit converges to a positive number tied to the extent of

noisy memory. This means that recent surprises keep affecting the DM’s perception of ω

even after infinitely long learning opportunities. An extreme case of “no memory” clarifies

intuition. Suppose the DM’s beliefs are formed only based on the current observations

despite having observed past variations of yt. In this case, the DM’s beliefs will markedly

differ from those of a statistician, although they have observed the same data. Since past

data does not affect the DM’s beliefs (λ = 0), it must be that αt =
1
2

and βt =
1
2
(yt − µ)2

at any t. Therefore, we can see that E[ω−1|mt, yt] and V [ω−1|mt, yt] keep fluctuating even

in the long run. Instead of beliefs converging to a number, they inherit the randomness of

the realized yt.
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2.3 Illustrating the Implications of Noisy Memory

In this section, we discuss a numerical example to emphasize the model predictions.

We consider the case where yt is drawn from N (0, 1). We suppose that DM’s initial prior

belief about ω−1 is characterized by E[ω−1] = 1 and V [ω−1] = 0.5, which implies α = 4 and

β = 3.

Figure 2.1 shows that recent experiences have bigger influences on the DM’s perceived

volatility when subject to noisy memory. The top figure describes the average weight put

on variations realized in the past when the DM has 20 periods of observations. The x axis

is the lag since t = 20, so the number 0 and 20 correspond to the most recent and the oldest

time periods. The perfect memory case is described by the purple line with a marker. As

expected from (B.5), old and new variations all receive the same weights. In inferring the

variance of yt, what matters is how big the extent of surprises are, not when they occurred.

In comparison, this prediction does not hold under noisy memory, as captured by the solid

blue and dashed green lines. More-recent observations receive higher weights compared to

the perfect memory case. Furthermore, weights on older observations decay exponentially,

as described by (B.10). This implies that the sequence of observations starts to matter if

the DM’s perception is based on noisy memory. In the bottom figure, we compare the

perceived volatility, E[ω−1|mt, yt], under two scenarios. In the first scenario, we suppose

that yτ = µ+ ω− 1
2 for the first 10 periods, followed by yτ = µ in the remaining periods. In

the second scenario, we reverse the order. We call these two sequences “Surprise Earlier”

and “Surprise Later.” Note that if perception is based on perfect memory, the two sequences

result in the same level of risk perception at t = 20. This is because the order in which

surprises are realized should not matter. In comparison, when perception is based on

noisy memory, the DM perceives the level of volatility is higher when large variations are

recently realized. This prediction is a direct consequence of the decaying weights shown

in the top figure.

Figure 2.2 illustrates the DM’s uncertainty about the variance of yt. For both figures,
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we report the expected level of the posterior uncertainty, averaging over the possible values

of V [ω−1|mt, yt]. As discussed earlier, the posterior uncertainty fluctuates in tandem with

the realized variation in yt. The top figure shows how the posterior uncertainty about ω−1

evolves from t = 0. Despite observing the same data realizations, the DM’s uncertainty

about ω−1 varies depending on the extent of noisy memory λ. The purple bottom line

(labeled with λ = 1.00) is the perfect memory benchmark. As expected, as learning oppor-

tunities accumulate, the DM’s uncertainty about ω−1 decreases over time and eventually

reaches zero. Thus, the DM can learn the actual value of ω through learning. The other

lines depict the noisy memory case, with varying degrees of noise in memory. The top red

line (labeled with λ = 0.00) is the no-memory case discussed earlier. Knowledge from past

observations is completely lost between periods, so the DM is always as uncertain about

ω−1 as they are in the initial learning period. We can see that learning is slower under

“noisier” memory. The bottom figure makes this point as well. We report the average val-

ues of the posterior uncertainty after a long learning period for each level of noisy memory

on the x-axis. Noisier memory leads to higher uncertainty about the variance of yt.

Figure 2.3 displays the impulse response function. We report how the posterior mean

of ω−1—the DM’s perceived volatility—responds in the long run to a positive one standard

deviation shock. Different lines correspond to varying degrees of noisy memory λ. The

purple line (with a circle marker) is the perfect memory benchmark. As discussed earlier,

after a long enough learning period, the DM eventually learns about ω. This means that

the DM’s perception of ω−1 does not change in response to a fluctuation in the realized

yt. This prediction does not hold when λ < 1. For all the rest of the lines, we see that

the DM perceives that yt is more variable after observing an unusually high realization of

yt. The degree of on-impact response and the dynamics afterward vary depending on the

noise in memory. For example, in the no-memory case (the red dotted line), we see the

largest on-impact response that immediately dies out the following period. Since the DM

is hugely uncertain about the value of ω, a large variation of yt signals that the variance of
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yt is high. This inference, however, is not carried over to the following periods since her

future beliefs do not put weight on past data. The posterior mean is serially correlated in

the intermediate case of λ ∈ (0, 1). A one-time experience of high yt keeps influencing the

DM’s perception of ω−1.

2.4 Testable predictions

The main prediction of the model we would like to test is captured by the relationship

between perceived risk and recent surprises.

β ≡ Cov [PerceivedRiskt, RecentSurprisest]

V [RecentSurprisest]
(B.12)

In our model, perceived volatility is defined as E[ω−1|mt, yt], and recent surprises are

defined as (yt − µ)2. From (B.4) and (B.9), we can immediately see that β = st, where st

is the weight on the most recent surprises as defined in (B.5) and (B.10).

Importantly, the long-run properties of st allow us to test if our noisy memory theory

is validated in the data. We have shown that β must be zero if DM is learning about

the variance with perfect memory. In other words, perceived risk does not fluctuate with

recent surprises. This is because the DM comes to have accurate knowledge of the actual

variance. In contrast, under noisy memory, it must be that

β =

(
2 (α− 1) +

1

1− λ

)−1

(B.13)

in the long run. Thus, st is positive and more positive for noisier memory. With noisy mem-

ory, recent surprises continue influencing the DM’s view about volatility. Thus, following a

larger magnitude of surprises, the DM perceives that extreme realizations are more likely

in the future. When the realized surprise is modest, the perceived volatility is lower un-

der noisy memory compared to the perfect memory case. The slope of this relationship is

steeper with noisier memory.
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Figure 2.1: More Weight on Recent Surprises

(a) Weights on Past Surprises
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The top figure shows the weights on past surprises. The figure assumes that DM has 20 periods
of learning opportunities. Each line corresponds to a different degree of noisy memory λ. The
bottom figure reports E[ω−1

∣∣mt, yt] when DM has observed the following sequences. The first
scenario, labeled as “Surprise Earlier”, assumes yτ = µ+ω− 1

2 for τ ≤ 10 and yτ = µ for τ > 20.
The second scenario, labeled as “Surprise Later”, assumes yτ = µ for τ ≤ 10 and yτ = µ+ω− 1

2

for τ > 20.
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Figure 2.2: Posterior Uncertainty about ω−1

(a) Evolution of V [ω−1|mt, yt]
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(b) Steady-state values of V [ω−1|mt, yt]
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Above figures display the model-predicted posterior uncertainty of ω−1. The top panel shows
how the posterior uncertainty evolves for varying degrees of noisy memory λ. The bottom
panel shows the steady-state levels of posterior uncertainty for each λ on the x axis.
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Figure 2.3: Impulse Response Function of E [ω−1|mt, yt]
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The figure displays how the posterior mean of ω−1 responds to a one standard deviation
increase in the realization of yt. Each line corresponds to a different degree of noisy memory
λ. The figure assumes that DM has had infinite learning periods.
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3 Empirical Evidence

We now turn to an empirical evaluation of the model’s implications.

3.1 Data

Our data on inflation forecasts come from U.S. Survey of Professional Forecasters (SPF),

administered quarterly by the Philadelphia Fed. For a subset of variables, the SPF asks fore-

casts to submit both point forecasts and a probability density function over realizations of

those variables at particular horizons. Probability assessments are available for inflation

based on the gross domestic product (GDP) deflator, the core personal-consumption expen-

ditures price index, and the core consumer price index. The latter two series only begin in

2007, so we focus on expectations of inflation based on the GDP deflator, expectations of

which have been collected since 1969.

We also collect data on real-time estimates of inflation from the Philadelphia Fed. The

SPF is administered shortly after the “advance” release of GDP (including its componenets

and price index). The release for quarter t−1 occurs late in the first month of quarter t−1.

We denote the first-release of annualized inflation for quarter t− 1 as πt−1|t.3 The Survey’s

administrators make this information available to forecasters when taking the survey at

time t—it is, thus, the most recently available data on inflation.

Participants in quarter t submit a probability distribution over the level of inflation that

will prevail at time τ . Specifically, participants are given B bins, indexed by b, that cover a

finite range of the real number line. Each bin has a maximum ub and minimum ℓb value.4

The probability assigned by participant i that annual inflation at time τ will fall in bin b is

3We construct this from real-time estimates of the prices index, P . Therefore, πt−1|t =

((
Pt−1|t
Pt−2|t

)4
− 1

)
×

100. We use this same construction when working with forecasts of the price level.
4This range is top- and bottom-coded. For the bottom-coded and top-coded bins, we set ub = ℓb. Thus,

our estimate of the variance is likely downward biased. We are exploring alternative approaches in ongoing
work.
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given by πi,t,τ,b. We denote the midpoint of the bin by mb = 0.5× (ub + ℓb) and define

Mi,t,τ =
B∑
b=1

πi,t,τ,bmb,

and their subjective inflaiton uncertainty by

Vi,t,τ =
B∑
b=1

πi,t,τ,b (mb − Mi,t,τ )
2 .

This is our primary measure of inflation uncertainty. In practice, τ is either the end of year

t, or the following year. Our primary measure of the inflation surprise is given by

xi,t ≡ πt−1|t − Et−1 [πt−1] ,

In words, this is the surprise component of (annualized) quarterly inflation from quarter

t− 2 to quarter t− 1. We construct the term Et−1[πt−1] from the point forecasts of the price

level, as this is the point forecast solicited by the survey.

Our baseline sample runs from 1992 through 2019. We start in 1992 because the

definition of the exact variable being forecast changed. Before 1992, the SPF asked par-

ticipants about gross national product. Starting in 1992, participants were asked about

GDP. We consider an earlier start date (the earliest possible—1969—in a robustness exer-

cise). Starting the sample after the extreme volatility in inflation in the late 1970s/early

1980s also ensures that we are learning about the behavior of forecasts when inflation is

relatively stable. We end our analysis before the COVID pandemic for a practical reason—

the increase in inflation in 2021 caused many forecasters to put high probability mass

in the highest bin. This mechanically makes uncertainty low, but is in fact the result of

unchanging bins in the survey.

Table 2.1 shows basic summary statistics of the variables we have constructed. Sur-

prises are close to zero on average, but with a fairly wide standard deviation and, thus,
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average absolute size. The average squared forecast revision in our baseline sample is

about one and a half percentage points (in annualized inflation terms). Surprises and un-

certainty tend to be larger in the earlier part of the sample, consistent with the very volatile

underlying processes in the late 70s. Uncertainty deceases later in the calendar year in both

samples—hence the quarter-of-year fixed effects—though this is not a significant feature

of the size of forecast revisions, since these are not calendar-time forecasts. Uncertainty

about the current calendar year is also lower than uncertainty about the following year.

3.2 Estimates

To assess the relationship between inflation surprises and perceived inflation risk, we

estimate the following specification

Vi,t,τ = βx2i,t + δi + δq(t),τ + εi,t. (C.14)

The term δi denotes a forecaster fixed effect, while δq(t),τ is a forecast-horizon × quarter-of-

year fixed effect. We include the latter in order to address the fact that SPF participants are

forecasting calendar-time outcomes, so τ − t becomes smaller later in the quarter, and can

thus reduce uncertainty mechanically. In robustness exercises, we show that only focusing

on next-year forecasts yields similar results. The coefficient of interest is β—the coefficient

on the squared value of the inflation surprise. We scale this term by its unconditional

standard deviation in the 1969–2019 sample for ease of interpretation. The theory of

section 2 suggests that β > 0.

Table 2.2 shows the results. In the first column, we show our baseline estimates during

the 1992–2019 sample, using all forecast horizons. The relationship between inflation

surprises and perceived inflation risk is positive and statistically significant. In terms of

magnitudes, a 1 standard deviation squared inflation surprise leads to an increase in the

perceived variance of inflation of 0.05 percentage point. This is roughly ten percent of the
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Figure 2.4: Scatter Plot of Baseline Regression
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NOTE. Panel (a) shows a binned scatter plot of equation(C.14) (i.e., all variables have been
orthogonalized to the controls in that regression). Panel (b) allows positive and negative
revisions to enter with different coefficients. See the note to table 2.2 for more details.

average value of the perceived variance.

The additional columns of table 2.2 confirm that these findings are robust to the alter-

native specifications considered. The second and third columns split the original sample

by forecast horizon—either the current calendar year, or the year after. The results are at-

tenuated somewhat for the current calendar year, though it is worth noting that perceived

inflation risk in the current calendar year is much lower for the current calendar year, as

seen in table 2.1. The results using the extended sample are similar to the baseline sample,

though are also somewhat attenuated.

Figure 2.4 shows a scatter plot of the data underlying our baseline estimates. Both

panels in the figure show inflation surprises and inflation risk orthogonalized to the same

controls as in our baseline. Panel (a) shows squared surprises, as in our baseline esti-

mates of equation (C.14). Because squaring surprises can skew the importance of larger

surprises (e.g. the point on the far right of panel (a)), in appendix 5.2 we show that this

relationship continues to hold when using the absolute value of forecast revisions, and

when estimating “Huber-robust” regressions, as in the work of Coibion et al. (2018). Panel
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(b) shows the non-squared surprises, and allows the coefficients on negative and positive

values to be equal, in contrast to our baseline estimates. Despite this relaxation, the same

pattern emerges—larger forecast revisions of both signs are associated with larger inflation

uncertainty.

4 Conclusion

We propose a theory of how risk perception is formed when subject to noisy mem-

ory. We show that perceived risk fluctuates even when the underlying true risk does not

change at all. Moreover, we show that recent surprises have an outsized influence on one’s

perceived risk, while older surprises have an exponentially decreasing influence.

Our theory provides a new implication for the asset pricing literature. Perceived risk

has been argued to be important in explaining the historical equity premium and risk-free

return. In this literature, the conventional approach is to consider a shock to the variance

of the underlying process. For example, Weitzman (2007) argues that such variance shock

can generate fluctuating market-wide risk perception, which explains several “puzzles” in

the literature. While plausible, this idea did not have a quantitative success. As Bakshi and

Skoulakis (2010) argues, explaining features of the asset prices with the variance shock

still requires an implausible level of stochasticity that the data does not justify. Our model

provides another reason why risk perception fluctuates, and this reason is not tied to the

data generating process of the underlying variance.
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Table 2.1: Summary Statistics

Baseline Sample (1992–2019)

Observations Mean Std. Dev. 25th Pctile. 75th Pctile.

si,t 6349 -0.18 1.16 -0.86 0.52

s2i,t 6349 1.38 3.14 0.12 1.42

s2i,t, Q1 or Q2 3149 1.43 2.83 0.11 1.48

s2i,t, Q3 or Q4 3200 1.33 3.41 0.13 1.38

Vi,t,τ 6349 0.51 0.55 0.20 0.65

Vi,t,τ , Q1 or Q2 3149 0.57 0.55 0.24 0.73

Vi,t,τ , Q3 or Q4 3200 0.46 0.54 0.16 0.56

Vi,t,τ , current year 3191 0.41 0.47 0.14 0.52

Vi,t,τ , next year 3158 0.61 0.60 0.25 0.77

Extended Sample Sample (1969–2019)

Observations Mean Std. Dev. 25th Pctile. 75th Pctile.

si,t 9363 -0.09 1.52 -0.92 0.71

s2i,t 9363 2.31 8.27 0.16 2.05

s2i,t, Q1 or Q2 4709 2.44 6.65 0.15 2.36

s2i,t, Q3 or Q4 4654 2.18 9.63 0.16 1.97

Vi,t,τ 9363 0.65 0.75 0.21 0.81

Vi,t,τ , Q1 or Q2 4709 0.72 0.79 0.25 0.87

Vi,t,τ , Q3 or Q4 4654 0.58 0.69 0.19 0.75

Vi,t,τ , current year 5486 0.56 0.68 0.19 0.70

Vi,t,τ , next year 3877 0.77 0.81 0.26 0.95
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Table 2.2: Empirical Estimations: Inflation Surprises and Perceived Inflation Risk

s2it 0.0514 0.0431 0.0598 0.0322

(0.0218) (0.0204) (0.0262) (0.0110)

Observations 6349 3179 3145 9363

R2 0.531 0.500 0.581 0.474

Sample 1992–2019 1992–2019 1992–2019 1969–2019

Horizons 0 & 1 0 1 0 & 1

NOTE. This table shows estimates of equation (C.14). The left-hand side is expressed
in percentage points, while x2i,t has been scaled by its unconditional standard deviation
(which can be seen in the second panel of table 2.1). The first column shows our base-
line estimates. The second and third columns show our results for forecasts of inflation
in the year the forecast is made, and in the subsequent year, respectively. The final col-
umn includes all observations since 1969. Standard errors clustered by i and t are shown
in parentheses. All regressions include the fixed effects mentioned in the description of
equation (C.14).
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5 Appendix

5.1 Detailed Derivations

We derive how beliefs about ω (the inverse of the variability of yt) evolve if the “memory

process” is formed according to (B.6). We show this recursively.

At t = 1, DM starts with a prior belief denoted as ω ∼ Γ (α, β). After observing y1, the

posterior belief is formed as

ω| y1 ∼ Γ

α +
1

2︸︷︷︸
≡α1

, β +
1

2
(y1 − µ)2︸ ︷︷ ︸

≡β1


from which we can see that β1|ω ∼ Γ (α1, ω). The memory variable is defined as

m2 = β1 u2

where u2 ∼ B (λα1, (1− λ)α1). Then, it must be that the likelihood function of m2 is

derived as m2|ω ∼ Γ (λα1, ω).

Given this structure, we can derive the prior belief at t = 2 as follows.

ω|m2 ∝ f (m2|ω) f (ω) ∝
(
ωλα1 exp−ωm2

) (
ωα−1 exp−β ω

)
∝ Γ

α + λα1︸︷︷︸
≡αm

2

, β + m2︸︷︷︸
=β1 u2 ≡βm

2


Thus, the memory variable m2 maintains the prior distribution to be a Gamma distribution.

I use the notation ω|m2 ∼ Γ (α + αm
2 , β + βm

2 ) to denote this distribution. After observing
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y2, DM updates her beliefs, which again are described as a Gamma distribution.

ω|m2, y2 ∼ Γ

α + αm
2 +

1

2︸ ︷︷ ︸
≡α2

, β + βm
2 +

1

2
(y2 − µ)2︸ ︷︷ ︸

≡β2


From βm

2 |ω ∼ Γ (αm
2 , ω) and 1

2
(y2 − µ)2

∣∣ω ∼ Γ
(
1
2
, ω
)
, we get β2|ω ∼ Γ (α2, ω). The

memory variable is defined as

m3 = β2 u3

where u3 ∼ B (λα2, (1− λ)α2). Then again, we see that

ω|m3 ∼ Γ

α + λα2︸︷︷︸
≡αm

3

, β + β2 u3︸︷︷︸
≡βm

3


Recursively, we can then express any time t prior as

ω|mt ∼ Γ (α + αm
t , β + βm

t )

where βm
t |ω ∼ Γ (αm

t , ω) is held, and we can also express the posterior as

ω|mt, yt ∼ Γ (α + αt, β + βt)

where

αt = αm
t +

1

2

βt = βm
t +

1

2
(yt − µ)2

Then, using the distribution of βm
t |ω, we see that βt|ω ∼ Γ (αt, ω). Using the definition of
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the memory variable mt+1 in (B.6), we can also derive that mt+1|ω ∼ Γ (λαt, ω). Finally,

we derive ω|mt+1 below.

ω|mt+1 ∝ f (mt+1|µ, ω) f (ω|µ)

∝
(
ωλαt exp−ωmt+1

) (
ωα−1 exp−β ω

)
∝ Γ

(
α + αm

t+1, β + βm
t+1

)
where

αm
t+1 = λαt

βm
t+1 = mt+1 = βt ut+1

5.2 Robustness Checks

In figure 2.5, we show alternative versions of figure 2.4 in which we replace squared

surprises with absolute revisions (panel (a)) or use Huber weights (panel (b)). The nu-

merical estimates associated with these figures is presented in table 2.3

Figure 2.5: Scatter Plot of Baseline Regression: Robustness

(a) Absolute Surprises

.4
5

.5
.5

5
.6

P
er

ce
iv

ed
 In

fla
tio

n 
R

is
k

(O
rt

og
on

al
iz

ed
)

0 1 2 3
Absolute Inflation Surprise

(Ortogonalized)

(b) Huber-Robust
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NOTE. Panel (a) shows a binned scatter plot of equation(C.14) (i.e., all variables have
been orthogonalized to the controls in that regression) except that we have replaced the
squared surprise with the absolute value of the surprise. Panel (b) shows estimates of our
baseline specification using Huber weights, following Coibion et al. (2018).
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Table 2.3: Empirical Estimation: Robusntess

x2it 0.0514 0.0352

(0.0218) (0.0129)

|xi,t| 0.0346

(0.0136)

Observations 6349 6136 6349

R2 0.531 0.740 0.531

Sample 1992–2019 1992–2019 1992–2019

Specification Baseline Huber Abs. Rev.

NOTE. This table shows estimates of equation (C.14). The first column is a replication of
the first column (our baseline) of table 2.2—see the note to that table for more details. In
the second column, we use Huber weights to eliminate the role of outliers. In the third
column, we replace squared surprises with absolute surprises.
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Chapter 3: Macroeconomic Expectations and Cognitive Noise

1 Introduction

Despite being commonly held, the empirical validity of the full-information rational

expectations (FIRE) assumption has long been questioned. According to FIRE, forecasts

made by economic agents should not include predictable errors because all information is

used efficiently. However, an expanding empirical literature has found that this prediction

does not hold, even for professional forecasters who presumably have ample information

and advanced tools.

In particular, recent studies argue that econometricians can predict errors that forecast-

ers will make based on the latter’s recent forecast revisions. However, a puzzle emerges.

Coibion and Gorodnichenko (2015) finds that the average forecast tends to undershoot

realizations when forecasters revise their projections upward. In comparison, Bordalo,

Gennaioli, Ma, and Shleifer (2020b) find that when an individual forecaster revises her

projection upward, her forecast tends to overshoot realizations. Of course, the revision of

the average forecast is more muted than the revision of the individual one, as the average

forecast averages different views. However, it is not apparent how to explain the flip in

the direction of predictability.

This paper shows that noisy information can account for the seemingly contradictory

pattern. While forecasters have access to a vast amount of information, they have finite

capacity to process it. I propose that forecasts are based on the mental representation of

available information, not all available information. The mental representation can be

considered a noisy summary of information; it is composed of both the mind’s distilled

understanding of available information and the noise uncorrelated with the distillation.
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This process is endogenously determined to maximize forecast accuracy given processing

constraints.

To explain these patterns in both average and individual forecasts, I distinguish be-

tween two types of information: external and internal. External information can be looked

up; it includes data releases, news articles, press conferences, and the like. Internal infor-

mation is stored in forecasters’ memory; it consists in their accumulated knowledge from

past forecasting experience. Importantly, both types of information are noisy: forecasts are

formed based on the mental representation of available external and internal information.

Using this model, I estimate the extent of information frictions using professional forecast-

ers’ projections of the overall US economy. Furthermore, I explore the monetary-policy

implications of the estimated model.

Conventional models of information frictions assume that only external information is

noisy. These models can explain why consensus forecasts undershoot. When facing a new

set of external information, forecasters, on average, are less responsive than under FIRE

because the new information is noisy. At the individual level, forecasters make projections

efficiently given the noise. Therefore, such revisions do not predict systematic errors in

individual forecasts.

I show that by adding noisy internal information, I can explain the predictability of both

average and individual forecasts. Noisy external information generates the consensus-level

pattern, as in Coibion and Gorodnichenko (2015), while noisy internal information gen-

erates the individual-level pattern. When forecasters cannot freely access their internal

information, their prior knowledge resolves less uncertainty about the forecast variable.

Thus, forecasters put extra weight on new information. This extra sensitivity to new in-

formation explains why individual forecasts tend to overshoot more than conventional

information-friction models predict.

Jointly considering both types of noisy information is crucial for understanding the

extent of information frictions. This is because the sensitivity with which forecasts are
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revised depends on both types of information. Forecast revisions can be sensitive for two

reasons: external information is not very noisy, or internal information is quite noisy. I

show that the extent of the two types of noise determines the revision pattern of average

and individual forecasts. Not considering both types of noisy information would lead one

to misestimate the degree of information frictions.

A direct implication is that Coibion and Gorodnichenko (2015) underestimates the

extent of information frictions. The authors argue that the severity of information con-

straints can be inferred from the revision pattern of consensus forecasts. However, since

this methodology implicitly assumes that accessing internal information is costless, it does

not account for the extra weight on new information arising from noisy internal infor-

mation. Therefore, the methodology proposed by Coibion and Gorodnichenko (2015)

misattributes this extra sensitivity to less severe information frictions.

To improve the model’s empirical validity, I extend the model along one more dimen-

sion: forecasters learn about the long-run mean. Instead of assuming that forecasters are

fully aware of where the forecast variable reverts to, I assume they learn about the long-

run steady state over time. While more than one parameter determines the steady state, I

focus on the mean because knowledge about the mean is essential for forecasters making

long-term forecasts.

In the proposed model, forecasters are perpetually uncertain about the long-run mean.

If accessing internal information is costless, forecasters eventually learn about the mean.

This is the basis on which many models assume forecasters have perfect awareness of the

model parameters. However, as my other work Azeredo da Silveira et al. (2020) shows,

forecasters’ knowledge about the mean is imperfectly accumulated over time when internal

information is not perfectly accessible. In this case, learning persists even after extensive

learning opportunities.

Using the extended model, I estimate the degree of information frictions. The model is

applied to professional forecasters’ projections of US economic variables related to output,
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the price level, the labor and housing markets, and borrowing costs. For each macroe-

conomic variable, the two constraints — one in processing external information and the

other in processing internal information — are inferred from the forecast-revision patterns

at the consensus and individual levels. I find that the extent of information frictions is more

substantial than what the conventional information-frictions literature finds: my estimate

of the constraint in processing external information is twice as large as that of Coibion and

Gorodnichenko (2015). I also show that the estimated model explains sizable shares of

the variation in forecasts and revisions, both in the cross sections and in the time series.

Then, I explore the macroeconomic implications of the proposed information frictions

— in particular, the implications for how inflation is determined. I use a standard New

Keynesian model in which firms set prices based on their macroeconomic expectations.

Using this framework, I show how the inflation process varies with the assumption of

the expectation-formation process. Furthermore, I investigate the operation of monetary

policy in balancing the trade-off between inflation and output stabilization.

If firms are subject to the costly information proposed in this paper, stabilizing inflation

can be more challenging than under FIRE. The key reason is that inflation expectations are

unanchored because internal information is costly to process. Since firms do not have per-

fect awareness of the long-run economy, their beliefs about it fluctuate with persistence.

This additional fluctuation is transmitted through their price setting, making aggregate

inflation volatile. In this economy, a monetary policy strongly emphasizing inflation stabi-

lization can more effectively guide economic agents’ long-run expectations.

In proposing a new expectation-formation model, I provide a parsimonious explana-

tion for the puzzling features of survey forecasts. In the model I present, one type of

information friction keeps economic agents from making forecasts consistent with FIRE:

finite capacity to process a vast amount of available information. In comparison, previous

proposals in the literature resort to a non-Bayesian assumption in addition to information

frictions to explain the forecast-revision patterns discussed in this paper. For example, rep-
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resentative heuristics (Bordalo, Gennaioli, Ma, and Shleifer (2020b)), misspecification of

the model (Angeletos, Huo, and Sastry (2021)), and desire to stand out from the crowd

(Gemmi and Valchev (2021)) have been proposed. While these may be plausible and

insightful proposals, it is unclear how economic agents come to have such biases. Further-

more, I show that the model I present explains features of survey forecasts regarding the

forecast horizon that these previous proposals cannot explain.

The findings from this paper also shed light on the formation of long-run inflation

expectations. It has long been recognized that economic agents’ inflation expectations

affect the inflation process. Thus, the implementation of monetary policy should carefully

consider the exact nature of expectation formation (Orphanides and Williams (2004)).

However, recent literature argues that expectations about long-run inflation are crucial to

understanding past inflation dynamics (Carvalho, Eusepi, Moench, and Preston (2022),

Hazell, Herreño, Nakamura, and Steinsson (2022)) and have important monetary-policy

implications (Gàti (2021)). A popular proposal in the literature is that economic agents

learn about unobservable stochastic trends from the current economy (K. Crump, Eusepi,

Moench, and Preston (2021), Farmer, Nakamura, and Steinsson (2021)). While plausible,

this idea predicts that economic agents should have well-anchored long-run expectations

in response to a sudden spike in inflation if they have experienced low and stable inflation

for a long period. In this paper, seemingly anchored long-run inflation expectations can

start moving when agents witness bouts of high inflation. This prediction is consistent

with experimental studies documenting fluctuations in long-term beliefs in a stable-trend

environment (Afrouzi, Kwon, Landier, Ma, and Thesmar (2020)).

More generally, this paper contributes to our understanding of how cognitive limita-

tions affect economic agents’ beliefs and decisions. In various fields of economics, cognitive

limitations have been proposed to explain several seemingly unrelated patterns (Wood-

ford (2020)). In macroeconomics, rational-inattention theories have been proposed to

explain why macroeconomic variables respond to fluctuations in the economy (for exam-
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ple, monetary-policy shocks) with a long delay (Sims (2003), Mackowiak and Wiederholt

(2009)). In behavioral economics, cognitive uncertainty has been proposed as a unify-

ing explanation for several patterns often viewed as distinct phenomena (Enke and Grae-

ber (2019)). I contribute to this literature by showing that cognitive limitations help us

understand the puzzling patterns of survey forecasts emphasized in the macroeconomic

literature on expectations.

The paper proceeds as follows. Section 2 presents a model of expectation formation in

which forecasts are based on the mental representation of available information. Section

3 discusses what representation is optimal given the information constraints. Section 4

presents the model prediction of the forecast-revision patterns and the estimation strat-

egy. Section 5 describes an extension of the expectation model. Section 6 presents the

structural-estimation results. Section 7 describes the illustrative macroeconomic model

and discusses the monetary-policy implications. Section 8 concludes.

2 A Model of Mental Representation

In this section, I introduce a model of mental representation (that is, a noisy summary

of available information). I describe how a vast amount of information is processed and

stored in memory.

2.1 The Forecasting Problem

Consider macroeconomic variable yt, which is the sum of persistent and transitory com-

ponents. I assume that

yt = zt + ηt,
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where ηt is i.i.d, and

zt = (1− ρ) µ+ ρ zt−1 + ϵt,

where µ is the long-run mean of zt, ρ is the serial correlation of zt (with |ρ| < 1), and ϵt

is an i.i.d. sequence drawn from Gaussian distribution N (0, σ2
ϵ ). I assume yt is observable

but zt and ηt are not directly observed. I assume that all values of parameters describing

the stochastic process are known.

The forecasters’ problem is to produce projections for future realizations of yt. The loss

from incorrectly forecasting is described by the expected value of a quadratic loss function:

E[
∞∑
t=0

βt

H∑
h=1

(yt+h − Fi,t yt+h)
2] (B.1)

Here, Fi,t yt+h is decision-maker (DM) i’s forecast of yt+h. Forecasters make projections up

to H periods ahead. The expectation operator E is over every possible piece of information

available at time t and is described in the remaining section.

Available information. I categorize information into two types: external and internal.

Forecasters can look up external information. It includes quantitative and qualitative infor-

mation, such as data releases, press conferences, and market reports. Internal information

is in forecasters’ memory —- that is, their past cognitive state.

Cognitive constraints: mental representation. Forecasters’ external and internal infor-

mation is high dimensional and complex. They have a finite capacity to process such data.

To capture this constraint, I introduce the notion of mental representation from psychology

and cognitive science; it can be considered a noisy summary of information. I propose that

forecasters base their projections on the mental representation of available information

instead of all available information. The original complex data is distilled into a simpler
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form and compounded with random noise, which makes the representation imprecise.

This representation is optimally determined, as discussed below.

2.2 Mental Representation of External Information

External information. The underlying state zt is partially revealed by many pieces of

quantitative and qualitative information. Examples of quantitative information are histor-

ical realizations of past yt or other variables relevant for predicting zt. Qualitative infor-

mation includes opinions and market commentaries. All such information that is at least

somewhat informative about the value of zt is stored in a large vector Nt. The relationship

between Nt and zt is described as follows:

Nt = R · zt + νt (B.2)

R is a constant vector, and νt ∼ N (0, V ) for some positive definite matrix V .

Imprecise representation. DM uses various kinds of information in Nt when making

forecasts of yt. I assume that how precisely DM’s forecasts depend on this external in-

formation is constrained. In particular, I assume that knowledge from Nt is described as

follows:

ni,t = Kt ·Nt + ui,t (B.3)

Here, Kt is a matrix (possibly with many fewer rows than the number of elements in Nt)

and ui,t ∼ N (O, Σu,t) for some positive semidefinite matrix Σu,t. The noise ui,t is not

correlated with zt and is idiosyncratic to each forecaster.

The matrices Kt and Σu,t are endogenously determined subject to a constraint. The

degree of precision of the mental representation ni,t is measured with the Shannon mutual
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information between ni,t and Nt, denoted as I (ni,t; yt).1 More inaccurate representation

is captured by lower mutual information between the two random variables. I assume that

the precision of mental representation is constrained as follows:2

I (ni,t;Nt) ≤ −1

2
lnϕn (B.4)

Here, ϕn ∈ (0, 1) parameterizes the upper bound of the mutual information that is taken as

given. One can see that a higher ϕn allows lower mutual information, thereby constraining

the accuracy of the mental representation.

If ϕn → 0, then forecasts are accurately based on information in Nt. In this case, Kt is

an identity matrix (whose dimension is equivalent to the number of rows in Nt) and Σu,t

is a zero matrix (with the same dimension as Kt). With ϕn > 0, forecasts are based on

the approximate representation of Nt, as Kt may have many fewer rows than the number

of elements in Nt and at least some of the diagonal elements of Σu,t are positive. When

ϕn → 1, forecasts are not based on information in Nt, since the representation is infinitely

inaccurate.

2.3 Mental Representation of Internal Information

Internal information. In addition to external information Nt, I assume that DM has

access to internal information such as her past cognitive state. I denote the internal infor-

mation accessible at t as (mi,t−1, ni,t−1). As discussed earlier, ni,t−1 is the mental represen-

tation of the news vector Nt−1. Meanwhile, mi,t−1 is the knowledge carried through t − 1

before observing Nt−1. One can think of mi,t−1 as the memory stock of knowledge, and its

1This metric captures how “close” ni,t is to Nt. If I (ni,t; yt) is close to zero, then it means knowing ni,t

is not informative about Nt. If, on the other hand, the metric is close to infinity, then information delivered
by ni,t about Nt is perfectly accurate.

2The proposed cost function is different from what is typically assumed in the rational-inattention liter-
ature. There, it is assumed that DM can arrange to receive a signal ni,t at time t, conditioning on all the
signals till time t− 1. That is, the cost is assumed to be proportional to I(ni,t; yt|ni,t−1, · · · , ni,0). As will be
clear from the rest of the model, I consider an environment in which the past realized values of ni,t are not
freely available. Therefore, I assume that external information is processed independently of the cognitive
state.
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evolution will be discussed shortly.

Imperfect representation. I assume the internal information can be represented as fol-

lows:

mi,t = Λt ·


mi,t−1

ni,t−1

+ ωi,t (B.5)

Here, Λt is a matrix that may have fewer rows than (mi,t−1, ni,t−1) and ωi,t is an i.i.d.

sequence that is uncorrelated with (mi,t−1, ni,t−1) and drawn from the Gaussian distribution

N (O, Σω,t) for some positive semidefinite matrix Σω,t.

The two matrixes Λt and Σω,t are chosen optimally subject to the constraint. The extent

of noise in the mental representation mi,t is measured with the Shannon mutual infor-

mation between mi,t and (mi,t−1, ni,t−1). The lower mutual information captures a more

inaccurate representation of internal information. In parallel with (B.4), I assume that the

accuracy of the representation is constrained as follows:

I (mi,t;mi,t−1, ni,t−1) ≤ −1

2
lnϕm (B.6)

Here, ϕm ∈ (0, 1) is taken as given. A higher ϕm means a more constrained representation.

If ϕm → 0, forecasts are accurately based on internal information. The corresponding

mental representation is when Λt is an identity matrix and Σω,t is a zero matrix. With ϕm >

0, forecasts rely on imperfect representation of (mi,t−1, ni,t−1). When ϕm → 1, forecasts

are not based on internal information, since the represented information is completely

inaccurate.
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2.4 Forecasts Based on Represented Information

We have seen how external and internal information is mentally represented. For

brevity, I refer to ni,t as noisy news (that is, an imperfect representation of external in-

formation) and mi,t as noisy memory (that is, an imperfect representation of internal in-

formation). I consider the representation to be noisier if the accuracy of representation is

more constrained (higher ϕn or ϕm).

Bayesian forecasts subject to information constraints. I assume that forecasts are

Bayesian efficient given the noisy news ni,t and noisy memory mi,t. That is, while the

bottleneck is in processing the complex, high-order information, forecasters have exper-

tise in combining ni,t and mi,t. The conditional distribution is derived using the usual

Kalman filter formula.

Implications of the linear-Gaussian structure. The linear-Gaussian structure of ni,t and

mi,t implies that DM’s beliefs about the past and current realizations of zt take the form of

a Gaussian distribution. In other words, (z0, · · · , zt) |mi,t and (z0, · · · , zt) |mi,t, ni,t are both

Gaussian. (The second moment of the Gaussian distribution captures the uncertainty DM

feels, which depends on the severity of news noise and memory noise.) Since DM’s beliefs

about the past and current realizations are Gaussian, DM’s belief about future realizations

is also Gaussian.

I introduce the following notations to denote DM’s beliefs about the state zτ implied by

her cognitive states:

zτ |mi,t ∼ N
(
zmi,i,τ |t, Σ

m
τ |t
)

zτ |mi,t, ni,t ∼ N
(
zi,i,τ |t, Στ |t

)
The top distribution refers to the (beginning of period t) prior belief conditioned on the
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memory state at time t. The superscript m indicates that beliefs are based on memory

alone. The bottom distribution is the posterior belief after observing ni,t (and is denoted

without the superscript m).

Then, the optimal forecasts of yt+h will be

Fi,t yt+h =
(
1− ρh

)
µ+ ρh zi,t|t,

from which the mean squared error from forecasting yt+h equals

E[(yt+h − Fi,t yt+h)
2] = ρ2hΣt|t,

where the expectation is over the entire joint probability distribution of possible values of

zt, mi,t, and ni,t. The average losses from inaccurate forecasting are proportional to Σt|t.

The loss function (B.1) then reduces to

∞∑
t=0

βt
[
q · Σt|t

]
, (B.7)

where q ≡ ρ2(1−ρ2H)
1−ρ2

is a constant known to DM.

2.5 The Nature of Information Frictions

In conventional models of information frictions, forecasters have noisy (or dispersed)

information about the state of the economy because they observe the state with idiosyn-

cratic errors (Woodford (2003)). The usual interpretation of this assumption is that fore-

casters have some fragmented information about the state and no one knows the state

perfectly. It is typical to assume further that forecasters store their information and access

it in any future period.

In contrast, the information friction in this paper is a cognitive constraint. It is not that

forecasters have different sources of information per se but that random cognitive noise

171



enters while processing the vast set of information. Therefore, even with access to the

same information, forecasters have a somewhat different understanding or interpretation

of the data, as in Sims (2003).

Importantly, a similar cognitive constraint also applies to information stored in forecast-

ers’ memory. In the same way that basing forecasts on all available external information

is costly, it is mentally costly to base one’s forecasts on all available internal information.

Given this constraint, their prior knowledge is imperfectly accessed when they make new

projections.

3 The Optimal Mental Representation

We have seen that DM bases her forecasts on two types of information: mental repre-

sentation of internal information (mi,t) and mental representation of external information

(ni,t). In this section, I discuss the optimal structure of mi,t and ni,t.

3.1 The Optimization Problem

The cognitive process is described by the sequence of {Kt,Σu,t,Λt,Σω,t}∞t=0. The optimal

sequence minimizes the loss function (B.7) subject to the information environment (B.3),

(B.4), (B.5), and (B.6).

3.2 Optimal Representation of Noisy News

The optimal ni,t is one-dimensional and has the following structure.

Proposition 2. ñi,t is the optimal representation of Ni,t such that

ñi,t = κt · E[zt|Nt] + ũi,t (C.8)

for some positive scalar κt ∈ [0, κ̄t] and idiosyncratic noise ũi,t drawn from N
(
0, σ2

u,t

)
.

Proof. See Appendix 10.2.
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Intuitively, the optimal representation of ni,t should only capture information in Nt that

is useful for predicting zt. This is because other information in Nt uses up resources but

does not further increase the forecast accuracy. Since zt|Nt follows a Gaussian distribution,

such information is summarized in the first moment. Therefore, ñi,t encodes E[zt|Nt],

which is denoted as follows without loss of generality:

E[zt|Nt] = zt + ν̃t

Here, ν̃t ∼ N (0, σ2
ν) for some non-negative σ2

ν that is taken as given and known to DM.

As one can see from (C.8), there are combinations of κt and σ2
u,t that imply the same

posterior distribution zt|mi,t, ñi,t for any given mi,t. Therefore, I impose a normalization

so that κt alone captures the accuracy of the representation. I assume that

Cov [zt, ñi,t|mi,t] = V [ ñi,t|mi,t],

in which case the posterior uncertainty is determined as

Σt|t = (1− κt) Σ
m
t|t

for a given prior uncertainty Σm
t|t. That is, observing ñi,t reduces the uncertainty about zt

by a factor of 1− κt. This normalization pins down σ2
u,t as the following function of κt:

σ2
u,t = κt (1− κt) Σ

m
t|t − κ2t σ

2
ν

One can then see that any κt ∈
[
0,

Σm
t|t

Σm
t|t+σ2

ν

]
ensures that the resulting σ2

u,t is non-negative.

The value of κt is determined by the accuracy constraint (B.4). Given the optimal

structure of ni,t, the mutual information between ni,t and Nt equals I (ñi,t; zt + ν̃t). Then,
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we can pin down κt as a function of ϕn:

κt =
Σm

t|t

Σm
t|t +

ϕn

1−ϕn
(V [zt] + σ2

ν) + σ2
ν

(C.9)

We can see that noisier news implies lower κt and higher posterior uncertainty. Also note

that after long enough learning, the subjective uncertainty Σm
t|t and Σt|t converge to a

positive steady-state level for all t. Accordingly, κt → κ.

3.3 Optimal Representation of Noisy Memory

The optimal mi,t is one-dimensional and has the following structure.

Proposition 3. m̃i,t is the optimal representation of (mi,t−1, ni,t−1) such that

m̃i,t = λt · zi,i,t|t−1 + ω̃i,t+1 (C.10)

for some positive scalar λt ∈ [0, 1] and idiosyncratic noise ω̃i,t drawn from N
(
0, σ2

ω,t

)
.

Proof. See Appendix 10.2.

The intuition for deriving the optimal structure is similar to the derivation of ñi,t. The

optimal representation of mi,t captures information in (mi,t−1, ni,t−1) that is useful for pre-

dicting zt. Since zt|mi,t−1, ni,t−1 follows a Gaussian distribution, such information is sum-

marized in the first moment. Therefore, m̃i,t encodesE[zt|mi,t−1, ni,t−1], which is expressed

as zi,t|t−1.

As one can see from (C.10), there are combinations of λt and σ2
ω,t that imply the same

prior distribution zt| m̃i,t. Therefore, I impose a similar type of normalization assumption

as I did for noisy news so that the accuracy of the representation is captured by λt alone. I

impose the restriction that

Cov [zt, m̃i,t] = V [m̃i,t],
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in which case V [zi,i,t|t−1

∣∣ m̃i,t] = (1− λt)V [zi,i,t|t−1]. That is, observing m̃i,t reduces the

uncertainty about zi,i,t|t−1 by a factor of 1 − λt. This pins down σ2
ω,t as a function of λt in

the following form:

σ2
ω,t = λt (1− λt)V [zi,i,t|t−1]

One can then see that any λt ∈ [0, 1] ensures that the resulting σ2
ω,t is non-negative.

From the representation structure above, one can see that the forecast accuracy is

described by λt. Given the posterior uncertainty from the previous period, Σt|t−1, the

prior uncertainty is determined as follows:

Σm
t|t = Σt|t−1 + (1− λt)

(
V [zt]− Σt|t−1

)
Uncertainty about zt increases from Σt|t−1 to Σm

t|t because prior knowledge is imperfectly

represented in the new forecasts.

The value of λt is determined by the accuracy constraint (B.6). Given the optimal struc-

ture of mi,t, the mutual information between mi,t and mi,t−1, ni,t−1 equals I
(
m̃i,t; zi,t|t−1

)
.

Then, we can pin down λt as a function of ϕm:

λt = 1− ϕm

One can see that noisier memory corresponds to lower λt and higher prior uncertainty.

4 Cognitive Noise and Biased Forecasts

In this section, I show that forecasts based on the mental representation exhibit fore-

cast biases found in Coibion and Gorodnichenko (2015) and Bordalo, Gennaioli, Ma, and

Shleifer (2020b). I illustrate how we can interpret these biases through the proposed

model. The model also provides an estimation strategy to infer the extent of cognitive
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constraints from the survey forecasts.

4.1 Forecasts Subject to Cognitive Constraints

DM’s time-t prior belief about zt is derived as follows:

zmi,i,t|t = (1− λ)E[zt] + λ zi,i,t|t−1 + ω̃i,t

We can see that forecasts are sluggish to incorporate past knowledge because memory is

noisy (ϕm > 0). When processing internal information is costly, remembered knowledge

about zt is anchored toward the default prior (E[zt]). In the case of perfect memory, zt|mi,t

equals zt|mi,t−1, ni,t−1.

Conditional on this prior belief, the posterior belief evolves according to the following

formula:

zi,i,t|t = (1− κ) zmi,i,t|t + κ zt + κ ν̃t + ũi,t

We can see that forecasts are sluggish to track the current economy when subject to noisy

news. When processing external information is costly, forecasts put less weight on new

information and therefore are slow to catch up with new developments in zt.

Combining these two formulas, beliefs about zt follow the following law of motion:

zi,i,t|t = (1− λ) (1− κ)E[zt] + λ (1− κ) zi,i,t|t−1 + κ zt + (1− κ)ωi,t + κui,t (D.11)

The above equation summarizes the features of forecasts subject to cognitive noise. Be-

cause of noisy news, DM sluggishly recognizes a change in zt. Because of noisy memory,

DM sluggishly incorporates her past knowledge. And the idiosyncratic cognitive noise from

noisy news and noisy memory creates forecast dispersion.

It is helpful to discuss how the noisy-memory assumption changes the predictions of
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the traditional noisy-information model. If memory is perfect, then beliefs about zt evolve

according to the following formula:

zi,i,t|t = (1− κ∗) zi,i,t|t−1 + κ∗ zt + κ∗ ui,t (D.12)

Comparing (D.11) to this law of motion, we can see three changes. With noisy memory,

(1) prior knowledge receives a smaller weight (λ < 1), (2) new information receives a

bigger weight (κ ≤ κ∗), and (3) a new source of cognitive noise appears.

Impulse response function. Figure 3.1 illustrates the effects of noisy memory when

learning about zt. For this numerical exercise, I use the parameter values ρ = 0.8 and

σ2
ϵ = 1.0 for the data-generating process. I fix the extent of noisy news at ϕn = 0.4.

The top panel shows the impulse response to innovation in zt. The black dashed line

shows the response of zt. Other lines show the response of forecasts of zt for varying

degrees of noisy memory ϕm. The blue line is the perfect-memory case: As DM slowly

learns about zt, her forecasts undershoot the true zt. With enough learning opportunities,

the undershooting disappears, and forecasts closely follow the true yt. In comparison, the

red line is the no-memory case, in which DM has no access to her prior knowledge. Two

features stand out. First, the initial response is more significant than the blue line. This

is because the Kalman gain is higher when memory is imperfect. And second, learning is

slow. Since DM cannot tap into her prior knowledge, learning takes a long time, even with

the large Kalman gain. The other colored lines show the in-between cases, and the same

intuition applies.

The bottom panel shows the impulse responses of the forecast errors, defined as zt −

zi,t|t. When memory is perfect (the blue line), the initially large, positive response di-

minishes as learning accumulates. When memory is noisy, the forecast errors are initially

smaller but remain large even as learning opportunities accrue.
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Figure 3.1: Impulse response of forecasts

(a) Forecast
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(b) Forecast errors
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The figures show the impulse response to an innovation in zt. The top panel shows the re-
sponse of zt and the forecast of zt. The bottom panel shows the response of the forecast errors,
defined as zt − zi,t|t. The data-generating process is described by ρ = 0.8 and σ2

ϵ = 1.0. I fix
the extent of noisy news as ϕn = 0.4. The black dashed line shows the full-information case
of perfect news and memory. Lines with different colors assume a varying degree of noisy
memory.
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4.2 Biases in Survey Forecasts

In this section, I revisit two regression specifications that test whether survey forecasts

deviate from FIRE. Then, I discuss what the test results can inform us about the extent of

underlying cognitive noise.

Three building-block assumptions of FIRE. Before investigating the features of survey

forecasts, it is helpful to clarify the three assumptions embedded in FIRE. First, forecasters

efficiently use all available information at hand. Thus, errors in forecasts are not system-

atically predictable by any element in the information set. Second, forecasters can access

their prior knowledge perfectly. This means that forecast revisions should be in each in-

dividual forecaster’s information set. Third, forecasters have access to the same complete

information.

The first two assumptions predict that an econometrician cannot predict errors that an

individual forecaster will make based on the latter’s recent forecast revisions. The three

assumptions together predict that an econometrician cannot predict errors in the average

forecasts based on recent revisions in average forecasts.

Coibion and Gorodnichenko (2015) Regression Specification

Coibion and Gorodnichenko (2015) propose the following regression specification as a

joint-hypothesis test for the three FIRE assumptions:

yt+h − yi,t+h|t = αC + βC
(
yi,t+h|t − yi,t+h|t−1

)
+ et+h|t (D.13)

Here, yi,t+h|t and yi,t+h|t−1 are the average forecasts of yi,i,t+h|t and yi,i,t+h|t−1.

The authors find a positive βC for many macroeconomic variables and reject the null

hypothesis. They argue that relaxing the full-information assumption can explain the re-

sult. Intuitively, if the population does not have access to complete information, revisions
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in the average forecasts will be sluggish, as at least some people make forecasts based on

outdated information. Then, on average, forecasters revise their view about the future

sluggishly in response to a change in the economy, and forecast errors are positively corre-

lated with forecast revisions. Furthermore, the authors argue that a larger estimate of βC

can be interpreted as evidence for more significant information frictions.

The expectation-formation model introduced in Section 2 gives new insight into inter-

preting the regression coefficient.

Proposition 4. For forecasts subject to cognitive noise, the asymptotic limit of βC is

βC =
1− κ

κ

{
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

}

if σ2
ν → 0. Furthermore, βC has the following properties:

1. βC > 0 if ϕn > 0, and βC = 0 if ϕn → 0.

2. ∂βC

∂ϕn
> 0, and ∂βC

∂ϕm
< 0 if ϕn ≤ ϕ̄n ≡ ḡ (ρ, σ2

ϵ ).

Proof. See Appendix 10.4.

Because of noisy news, the proposed model generates a positive βC . Forecasters update

their beliefs sluggishly because they do not have perfect awareness of the current state.

As discussed in the previous section, the Kalman gain κ of less than one captures such

sluggishness. In addition, noisier news generates a smaller gain and a larger βC , as argued

in Coibion and Gorodnichenko (2015).

A new insight from the proposed model is that noisy memory and noisy news jointly

determine the Kalman gain. With noisier memory, the recalled prior knowledge is less

accurate. Since uncertainty about the state is higher, forecasters put a larger weight on

incoming data, which results in a higher Kalman gain and a lower βC .
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Bordalo, Gennaioli, Ma, and Shleifer (2020b) Regression Specification

Bordalo, Gennaioli, Ma, and Shleifer (2020b) propose the following regression specifi-

cation as a joint-hypothesis test for the first two FIRE assumptions:

yt+h − yi,i,t+h|t = αI + βI
(
yi,i,t+h|t − yi,i,t+h|t−1

)
+ ei,t+h|t (D.14)

The authors reject the null hypothesis and find a negative βI for many macroeconomic

variables in contrast to the result from Coibion and Gorodnichenko (2015). They propose

a non-Bayesian expectation model to explain the negative coefficient. The main idea is

that forecasters irrationally put too much weight on new observations and over-revise

their forecasts. Based on such a model, forecasters are not using available information

efficiently, which generates a nonzero βI . Furthermore, the authors argue that a more

negative estimate of βI can be interpreted as the extent of irrationality.

In contrast, I propose to relax the perfect-memory assumption while keeping the Bayesian-

efficiency assumption. The proposed model offers an alternative interpretation of the re-

gression coefficient as follows.

Proposition 5. For forecasts subject to cognitive noise, the asymptotic limit of βI is

βI = − (1− λ) (1− κ)

2 (1− λ) (1− κ) + ρ−2 − 1

if ρ > 0. Furthermore, βI has the following properties.

1. βI < 0 if ϕm > 0, and βI = 0 if ϕm → 0.

2. ∂βI

∂ϕn
< 0, and ∂βI

∂ϕm
< 0.

Proof. See Appendix 10.4.

The regression coefficient captures the bias in underusing past information. Because of
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noisy memory, forecasts put less weight on past knowledge, which is captured by negative

βI .

Furthermore, noisy news and noisy memory jointly determine this forecast bias. Noisier

memory leads to more underuse of past information, which generates a more negative βI .

With noisier news, forecasters rely more on their memory when making forecasts. Since

external information is less effective in correcting the bias, βI is more negative.

Identification of the Extent of Cognitive Constraints

From Propositions 1 and 2, we can see that the two regression coefficients can pin

down the severity of noisy news and noisy memory.

Lemma 2. Given levels of βC and βI identify a unique pair of ϕn and ϕm, if it exists.

Proof. We can find the pairs of ϕn and ϕm that generate given levels of βC and βI (that

is, the iso-curve). The iso-curve for βC is upward-sloping, and the iso-curve for βI is

downward-sloping. Therefore, if the two iso-curves cross, they only cross once.

Figure 3.2 illustrates the lemma. I assume that ρ = 0.8 and σ2
ϵ = 1.0. The blue solid

line is the iso-curve when βC = 0.5. And the orange dashed line is the iso-curve when

βI = −0.2. We can see that the iso-curve for βC is upward-sloping; more aggressive belief

updating due to noisier memory is offset by more sluggish belief updating due to noisier

news. We can also see that the iso-curve for βI is downward-sloping; more underuse of

past information due to noisier memory is offset if reliance on memory declines because

of less noisy news. These two iso-curves cross once at most, identifying the extent of noisy

news and noisy memory that can jointly predict the two estimated regression coefficients.

5 Extended Model

In Section 2, I assumed that DM is fully aware of the parameters generating zt. In this

section, I assume forecasters are also learning about the long-run mean of the forecast
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Figure 3.2: βC and βI jointly identify the extent of cognitive noise
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This figure shows the iso-curves for the two regression coefficients in (D.13) and (D.14). The
blue solid line displays the pairs of noisy-news constraint ϕn and noisy-memory constraint ϕm

that generate βC = 0.5. The orange dashed line displays such pairs that generate βI = −0.2.
The point at which the two lines cross is the estimated extent of noisy news and noisy memory
— that is, ϕ∗

n = 0.58 and ϕ∗
m = 0.28. The data-generating process is described by ρ = 0.8 and

σ2
ϵ = 1.

variable. I show that this extension can improve the model predictions in explaining the

features of long-run forecasts.

5.1 Learning about the Long Run

Before I estimate the model, I revisit a commonly made assumption in the literature:

that people are perfectly aware of the model. It is often motivated by the idea that people

adapt to their environment and learn to make optimal economic decisions. However, I

show this assumption is not innocuous in the proposed model. As discussed in Azeredo da
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Silveira et al. (2020), when prior knowledge is imperfectly accessed, forecasters do not

reach complete awareness of the model parameters.

One aspect of the environment that is particularly important for making long-horizon

forecasts is the mean of the forecast process. Therefore, I assume that DM does not know

the exact level of µ and has to learn about it, starting from a Gaussian prior:

µ ∼ N (µ̄, Ω)

The state variable relevant for predicting future realizations is expanded from yt to (µ, yt).

This is because forecasts for yt+h depend on DM’s beliefs about µ and yt. I denote this state

vector as

xt =

µ
zt

 .

All other assumptions are the same as in Section 2.

5.2 The Optimal Cognitive Process

The optimization problem for deriving the optimal cognitive process is the same as de-

scribed in Section 2; the optimal process minimizes the objective function (B.1) subject to

the information environment (B.3), (B.4), (B.5), and (B.6). However, the optimal cogni-

tive process differs from the one introduced in Section 3 because the state variables are

multivariate. In this section, I sketch the optimal cognitive process. Detailed derivations

are in Appendix 10.3.

Implications of the linear-Gaussian structure. We can see that the initial prior about

xt is Gaussian. Therefore, the linear-Gaussian structure of noisy news and noisy memory

again ensures that DM’s belief about xt follows a Gaussian distribution. DM’s beliefs about
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xt (based on her cognitive state) are described with the following notation:

xτ |mi,t ∼ N
(
xmi,i,τ |t, Σ

m
τ |t
)

xτ |mi,t, ni,t ∼ N
(
xi,i,τ |t, Στ |t

)
The loss function. The loss function reduces to

∞∑
t=0

βt trace
(
Σt|tQ

)
.

Q is a matrix defined as Q ≡∑H
h=1 αh α

′
h, where αh =

(
1− ρh ρh

)
.

Optimal representation of noisy news. I first derive the optimal structure of the noisy

news ni,t. The optimal representation of Nt, denoted as ñi,t, takes the form

ñi,t = K̃t · E[xt|Nt] + ũi,t

for some matrix K̃t and idiosyncratic noise ũi,t ∼ N (O, Σu,t). The structure is similar to the

optimal ni,t in Section 3. Since the forecast accuracy depends on the posterior uncertainty

about xt, the optimal summary of the information in Nt is captured by E[xt|Nt].

Under the assumed structure of the external news Nt in (B.2), the optimal K̃t and σu,t

are determined as follows:

K̃t = κt ·
Σm

t|t e e
′

e′Σm
t|t e

Σu,t = σ2
u,t ·

Σm
t|t e e

′Σm
t|t(

e′Σm
t|t e
)−2

κt and σ2
u,t were derived in Section 3. The vector e′ =

(
0 1

)
picks out zt from the state

vector xt. The above expression shows that the information represented in ñi,t is E[zt|Nt]
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(with random errors). This is because the information in Nt about the additional state

variable µ is subsumed in E[zt|Nt].

Optimal representation of noisy memory. The optimal representation of (mi,t−1, ni,t−1)

is described with m̃i,t such that

m̃i,t = Λ̃t · xi,i,t|t−1 + ω̃i,t

for some matrix Λ̃t and idiosyncratic noise ω̃i,t ∼ N (O, Σω,t). Intuitively, it is optimal

to represent knowledge about xt from the internal information (mi,t−1, ni,t−1), which is

summarized as E[xt|mi,t−1, ni,t−1]. I apply the normalization so that the accuracy of the

representation is entirely determined by Λ̃t:

Cov
[
xi,i,t|t−1, m̃i,t

]
= V [m̃i,t]

This pins down the memory-noise variance Σω,t as a function of Λ̃t.

Σω,t =
(
I − Λ̃t

)
V [xi,t|t−1]Λ̃

′
t

Any Λ̃t is feasible as long as the resulting Σω,t is a proper variance-covariance matrix (that

is, symmetric and positive-semidefinite).

In the appendix, I describe how Λ̃t can be derived. The complication arises because the

information constraint (B.6) cannot completely determine the noisy memory anymore. To

see why, note that the constraint reduces to

I (mi,t; mi,t−1, ni,t−1) = −1

2
det
(
I − Λ̃t

)
≤ −1

2
lnϕn.

That is, this constraint limits the determinant of I − Λ̃t, leaving the elements of Λ̃t to be

specified.
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When solving for Λ̃t, I consider a myopic case, in which β → 0. I first define a matrix

Γt that is crucial for determining the Λ̃t. I call this matrix a memory-priority matrix and

define it as follows:

Γt = (I −Kt+1)
′Q (I −Kt+1)

The matrix Γt roughly captures how some information receives higher priority than other

information. Two matrices show why I make such interpretations. First, the elements in

(I −Kt+1) would be large if external information oes not resolve much uncertainty about

the state, in which case a more accurate memory would be helpful. Second, the matrix Q

is from the loss function of incorrect forecasting. If some elements in Q were high, more

accurate memory would be helpful.

I show in the appendix that V [xi,i,t+1|t]
1
2 Γt V [xi,i,t+1|t]

1
2 can be eigen-decomposed to

UtGt U
′
t, where Ut is an orthonormal matrix storing the eigenvectors and Gt is a diagonal

matrix storing eigenvalues in descending order (that is, g1,t > g2,t). Then, the optimal Λt

satisfies

Λ̃t = V [xi,i,t+1|t]
1
2 UtDt U

′
t V [xi,i,t+1|t]

− 1
2 ,

where a diagonal matrix Dt is defined to be

Dt =



1−
(

g2,t
g1,t
ϕm

) 1
2

0

0 1−
(

g1,t
g2,t
ϕm

) 1
2

 if ϕm < g2,t
g1,t

(
1− ϕm 0

0 0

)
otherwise.

One can easily see that det (I − Λt) = ϕm. The derivation above shows how the rank of

the memory variable is determined. The first case is when the dimension of the remem-

bered knowledge is not reduced (that is, mi,t+1 is two-dimensional). In this case, the first
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diagonal element in Dt is higher than the second one, indicating that the corresponding

orthogonalized factor receives a higher weight. The second case is when memory stores

information in xi,i,t+1|t in a lower dimension. The first diagonal element in Dt receives

the biggest possible weight satisfying the memory constraint, while the second element is

zero.

Summary. We have seen the derivation for optimal noisy news and noisy memory, which

is described by the sequence of {Kt,Σu,t,Λt,Σω,t}∞t=0. The time-t prior belief is described

with Λ̃t:

xmi,t|t = xi,t|t−1 +
(
I − Λ̃t

) (
E[xt]− xi,t|t−1

)
+ ω̃i,t

Σm
t|t = Σt|t−1 +

(
I − Λ̃t

) (
V [xt]− Σt|t−1

)
And the posterior belief is described with K̃t:

xi,i,t|t =
(
I − K̃t

)
xmi,i,t|t + K̃t xt + ν̃t + ũi,t

Σt|t =
(
I − K̃t

)
Σm

t|t

Here, ν̃t ∼ N (O, Σν), whose variance is defined as Σν = κ2t

(
e′Σm

t|t e
)−2

Σm
t|t e e

′ Σm
t|t.

5.3 Perpetual Uncertainty about the Long Run

This section briefly discusses how DM learns about the long-run mean when she is

subject to cognitive noise. Based on this discussion, I show the model predictions about

the forecast-error-revision test for different forecast horizons.

When DM can access her internal information perfectly, she has complete access to all

the past noisy news. In this case, the subjective uncertainty about the mean is

V [µ|ni,t, ni,t−1, · · · , ni,0] =
(
Ω−1 + t× c

)−1
,
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where Ω is the prior variance about µ, and c is a constant. We can see that the precision of

knowledge linearly increases in time; the uncertainty eventually converges to zero after a

long learning period.

Noisy memory qualitatively changes this prediction as investigated in Azeredo da Sil-

veira et al. (2020). If DM imperfectly accesses internal information, V [µ|mi,t, ni,t] does not

converge to zero even after a long learning period. The intuition is straightforward: cogni-

tive noise prevents forecasters from reaching complete awareness even after an infinitely

long learning period.

Why does it matter that DM is imperfectly aware of the long-run mean? It matters be-

cause DM will continuously update her beliefs about the mean as new data come, although

she correctly understands that the mean is a constant parameter. When yt is high, the DM

partly attributes it to higher-than-expected µ and expects future yt to be persistently high.

This prediction is similar to extrapolative-expectation models in the finance literature. My

model implies that a limited memory might be the reason such extrapolation occurs.

Impulse response function. Figure 3.3 illustrates the effect of learning about the long

run. I use the same data-generating process as Figure 3.1 and set the cognitive parameters

as ϕn = 0.4, ϕm = 0.1, and Ω = 1.

The top panel shows the impulse response to innovation in zt. The black dashed line

is the response of zt. The blue line is the response of forecasts for zt. As in Figure 3.1,

learning about yt is sluggish because of noisy news.3 The orange line shows the forecast

for µ. As discussed earlier, DM perceives that zt is high partly because the long-run mean

is high and revises her belief about µ upward.

The bottom panel of Figure 3.3 displays the response of four-quarter-ahead forecasts

for varying degrees of Ω. I realign the lines to compare forecasts to the realized zt+4. We

can see whether forecasts undershoot or overshoot compared to the black dashed line. We

3We can see that the impulse response of zt more closely tracks zt in Figure 3.3 than in Figure 3.1. This
is because uncertainty about the long run increases uncertainty about zt, pushing up the Kalman gain.
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see initial undershooting for all values of Ω because of the noisy news. However, forecasts

start overshooting after a few periods for some Ω. When Ω is high, DM revises her beliefs

about the long-run mean too much, which offsets the undershooting due to noisy news.

In this case, the forecast errors, defined as zt+4 − zi,t+4|t, are initially positive in response

to innovation in zt but soon turn negative. This prediction is consistent with findings

in Angeletos et al. (2021). The authors analyze the professional forecasters’ year-ahead

forecasts for unemployment and inflation and their impulse response to a specific shock

series constructed by Angeletos et al. (2020).

Error-revision regression. The perpetual uncertainty about the long run also implies

that the regression coefficients in the forecast error-revision test (D.13) and (D.14) will

not be constant for different forecast horizons.

Consider the regression coefficient applied to forecasts for µ. Denoting the mean fore-

casts as µ̂i,t ≡ E[µ|mi,t, ni,t] and the average forecasts as µ̂t ≡
∫
µ̂i,td i, we can see that

βµ
C =

Cov [µ− µ̂t, µ̂t − µ̂t−1|µ]
V [ µ̂t − µ̂t−1|µ]

= −1

2

βµ
I =

Cov [µ− µ̂i,t, µ̂i,t − µ̂i,t−1|µ]
V [ µ̂i,t − µ̂i,t−1|µ]

= −1

2
.

The derivation is straightforward. We can deduce that βC = − V [ µ̂t|µ]−Cov[ µ̂t,µ̂t−1|µ]
2(V [ µ̂t|µ]−Cov[ µ̂t,µ̂t−1|µ]) and

must equal −1
2
. The same reasoning applies to βI .4 Forecasters revise their views about µ

although µ is a fixed parameter.

Figure 3.4 illustrates the model predictions for βC and βI for varying forecast horizons.

I fix the degree of noisy news and noisy memory at levels in Figure 3.2 that generate the

targeted βC and βI . I use Ω = 0.2; this level corresponds to the posterior variance of µ if

DM had access to twenty years of data. The figure shows that both coefficients become

more negative for longer forecast horizons. As shown earlier, for forecasts far enough

ahead, βµ
C and βµ

I are close to −1
2
.

4Derivations for other horizons are in Appendix 10.6.
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The pattern in Figure 3.4 is in line with empirical findings in the literature. d’Arienzo

(2020) and Wang (2021) analyze professional forecasters’ projections of interest rates.

Both authors find that longer-horizon forecasts feature more negative biases when the re-

gressions (D.13) and (D.14) are estimated. Bordalo, Gennaioli, Porta, and Shleifer (2019)

and Bordalo, Gennaioli, La Porta, and Shleifer (2020a) find a similar pattern for stock

analysts’ forecasts for companies’ long-term earnings.

6 Estimating the Extent of the Cognitive Constraints

In this section, I estimate the two cognitive constraints by using professional forecasters’

survey data.

6.1 Data

Survey forecast data are from the Survey of Professional Forecasters (SPF), adminis-

tered by the Federal Reserve Bank of Philadelphia. Once every quarter, around forty fore-

casters (mostly from academia and banks) participate in this survey. The earliest survey

started in 1968. I use survey forecasts made until the second quarter of 2022.

Among the survey questions, those in the section titled “The U.S. Business Indicators”

ask forecasters to submit their views about aspects of the overall US economy, which in-

clude output, price level, labor and housing markets, and cost of borrowing. I investigate

whether the proposed model can explain features of survey forecasts made for that sec-

tion.5 Table 3.1 lists the variables.

For data on the time series of macroeconomic variables, I use the Real-Time Data Set

from the Federal Reserve Bank of Philadelphia whenever possible. This data set provides

the history of data releases for each variable. Since the variables in the National Income

and Product Accounts are often redefined or reclassified, the final data release (that is,

the most recently available data) often does not include the same variables forecast by the
5There have been some categorical changes, as the survey forms changed over time, but I include eleven

variables that are consistently included most of the time.
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professional forecasters in the data set. Therefore, I compare the initial releases of each

variable to the corresponding SPF forecasts.

6.2 Estimation Strategy

I estimate four parameters that affect how DM makes forecasts about the macroe-

conomic variables: ϕn and ϕm (the severity of the two cognitive limitations), σ2
ν (the

amount of correlated noise), and Ω (the unconditional prior uncertainty about the long-

run mean).6 The parameters describing the data-generating process are estimated from

the realized macroeconomic variables. I assume that each variable is described as a uni-

variate autoregressive process. Related parameters are in Appendix 10.5. Finally, I assume

that the longest forecast horizon of the loss function (B.1) is eight quarters ahead since the

SPF asks forecasters to submit their forecasts for up to two years ahead for the “The U.S.

Business Indicators” section.

I transform the survey forecast data so that the unit of forecasts is the log difference

from the previous quarter for most variables. I use change from the previous quarter for

the unemployment rate and the three financial variables in Table 3.1. Surveyed forecasters

make projections for different horizons, so all forecasts are annualized to make the units

consistent. I use forecasts up to four quarters ahead.

I drop some observations to restrict the influence of a few outlier variables. In each

period, I remove forecasts if they are five quantiles outside the median level. I remove

forecasters if they participate for fewer than ten periods. I further restrict samples to mea-

sure the forecast behavior in the normal business cycle. During periods of big swings in

the macroeconomy such as the COVID-19 pandemic, it is likely that forecasters use differ-

ent forecasting methods and therefore exhibit different behaviors. Since my model does

not capture such structural changes, I use a simple algorithm to remove likely structural-

6Failure to consider the correlated noise νt can bias the model estimation. This is because the estimated
regression coefficient βC from (D.13) is attenuated when forecast noise is correlated among forecasters
(Coibion and Gorodnichenko (2015) and Gemmi and Valchev (2021)).
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change episodes. Namely, I compute the average size of forecast revisions among forecast-

ers each period and remove the top five percentile periods. This procedure systematically

identifies significant revision episodes, removing the beginning of the pandemic for unem-

ployment but not for less affected variables.

Estimation targets. The first two data moments I use are the regression coefficients

described earlier: βC from (D.13) and βI from (D.14). The forecast error-revision pair

is available for the forecast horizon for up to three quarters. I estimate the regression by

pooling the four forecast horizons.7 For the individual-level regression, I include individual

and horizon dummies to purge variations due to the fixed effects.

I panel-bootstrap the SPF individual-forecast data and build bootstrap samples of the

targeted moments. Each sample contains on average forty individual forecasters, as in the

survey data. The first two panels of Table 3.1 report this coefficient. The table reports

the median and confidence interval of 5%–95% estimates. As discussed in Section 4.2, we

see positive βC and negative βI across the variables. These two moments can identify the

underlying degree of information constraints, given the two remaining parameters σ2
ν and

Ω. I also report the OLS estimates in Table 3.3. The bootstrapped estimates and the OLS

estimates are similar.

Two more moments are used to estimate the model. These moments are informative

about σ2
ν and Ω. Based on Gemmi and Valchev (2021), I measure the size of Kalman gains

using the following specification:

(
yi,i,t+h|t − yi,i,t+h|t−1

)
−
(
yt+h|t − yt+h|t−1

)
= αK + βK

(
yt+h|t−1 − yi,i,t+h|t−1

)
+ errori,t+h|t−1

(F.15)

7I pool the different forecast horizons for two reasons. An obvious reason is to increase power. But more
importantly, I am interested in estimating the constraints in processing information about the near-term
economy, not just the current economy. A literal interpretation of the model is that DM gets news only
about the current economy. (Since the time unit is a quarter, DM gets news about the current quarter only.)
However, it would be realistic to assume that forecasters learn about the near-term economy.
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This specification estimates how forecasters revise their views about the current economy

in response to news about it. The strategy is to partial out the effects of the correlated noise

by de-meaning individual forecasts. Since the correlated noise attenuates βC , comparing

the above regression coefficient to the Kalman gain implied by βC is informative about the

degree of correlated noise.8

I pool the forecast horizons and control for individual-forecaster and forecast-horizon

fixed effects. The right panel of Table 3.1 reports the regression coefficient. The table

reports the median and confidence interval of 5%–95% estimates, and the OLS estimates

are in Table 3.3.

I use a similar specification to measure how long-term forecasts are revised in response

to news about the near-term economy. We need frequent long-term forecast data to es-

timate this regression. The SPF collects these data for the Consumer Price Index (CPI)

but not for other macroeconomic variables. I use forecasts for the annual average rate of

headline CPI inflation over the next ten years to estimate the regression. The coefficient

is estimated to be 0.0862, statistically significant at the 1% level, with a standard error

of 0.0175. More details are in Appendix 10.5. Since data are not available to conduct a

similar analysis for other macroeconomic variables, I target the estimated coefficient for all

variables. While it is not feasible to verify the validity of this assumption, we can at least

see that the estimated regression coefficient for (F.15) is broadly similar across variables.

6.3 Estimation Results

I now estimate parameters that fit each bootstrapped sample discussed in the previous

section. I report the median estimate and the 5%–95% confidence band in Table 3.4.

Figure 3.6 reports the estimates of noisy news ϕn and noisy memory ϕm.

In Section 4, I showed that the methodology in Coibion and Gorodnichenko (2015) un-

derestimates the magnitude of ϕn because it misattributes the extra sensitivity from noisy

8The authors show that the new estimate of the Kalman gain is smaller for most macroeconomic variables
they study.
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memory to low ϕn. To investigate the extent of underestimation, I repeat the estimation

procedure while assuming ϕm = 0. In this case, I estimate two parameters, ϕn and σ2
ν , that

match the two estimation targets, βC and βK .

The top panel in Figure 3.6 compares ϕn estimated using the proposed model to that

estimated assuming perfect memory. As expected, the estimated ϕn is larger with noisy

memory. On average, the baseline ϕn is twice as large as ϕn estimated the using Coibion

and Gorodnichenko (2015) methodology. The bottom panel illustrates the estimated ϕm.

For most variables, ϕm is significant and positive. Overall, the estimated parameters are

somewhat stable: the average levels are ϕn = 0.31 and ϕm = 0.24; the median levels are

ϕn = 0.34 and ϕm = 0.22.

Table 3.2 assesses the model fit using the point estimate. The top and bottom panels

show the targeted and untargeted moments, respectively. This table reports the average

levels across macroeconomic variables.

We confirm that the model matches the targeted moments well. For untargeted mo-

ments, I show variations in forecasts and forecast revisions. For each variable, I report

variations in the time series (that is, dispersion of the consensus forecasts) and in the cross

section (that is, dispersion of the individual forecasts at any given time). All measures are

the standard deviation scaled by the standard deviation of the forecast variable. We can

see that the estimated model has a reasonable quantitative fit.

Figure 3.5 illustrates the fit of untargeted moments for all macroeconomic variables.

Although the model is too stylized to replicate variations across macroeconomic variables

perfectly, it generates a good fit. The detailed data for this figure are available in Table 3.6.
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Table 3.1: Estimated regression coefficients

βC CI βI CI βK CI

Nominal Gross Domestic Product 0.55 (0.43,0.66) -0.27 (-0.3,-0.24) 0.55 (0.52,0.58)

Real Gross Domestic Product 0.36 (0.26,0.45) -0.24 (-0.27,-0.21) 0.61 (0.58,0.63)

GDP Chain-Weighted Price Index 0.56 (0.43,0.69) -0.32 (-0.36,-0.28) 0.6 (0.57,0.64)

Corporate Profits after Taxes 0.49 (0.32,0.66) -0.44 (-0.48,-0.4) 0.51 (0.49,0.53)

Civilian Unemployment Rate 0.56 (0.51,0.62) -0.05 (-0.08,-0.02) 0.63 (0.6,0.65)

Industrial Production Index 0.53 (0.44,0.61) -0.18 (-0.22,-0.15) 0.57 (0.55,0.61)

Housing Starts 0.41 (0.31,0.49) -0.27 (-0.32,-0.22) 0.58 (0.55,0.6)

Consumer Price Index 0.46 (0.32,0.61) -0.17 (-0.22,-0.12) 0.57 (0.53,0.6)

Treasury Bill Rate, 3-month 0.28 (0.2,0.34) -0.01 (-0.03,0.01) 0.73 (0.69,0.77)

AAA Corporate Bond Yield 0.03 (-0.03,0.09) -0.35 (-0.38,-0.32) 0.68 (0.66,0.7)

Treasury Bond Rate, 10-year 0.26 (0.21,0.33) -0.12 (-0.15,-0.1) 0.7 (0.67,0.73)
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Figure 3.3: Impulse-response functions when learning about the long run

(a) Forecasts of zt and µ
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(b) Forecasts of zt+4
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The figures show the impulse response to an innovation in yt. The data-generating process is
described by ρ = 0.8 and σ2

ϵ = 1. The top panel shows the response of yt and the forecast of yt
and µ. I fix the cognitive noise as ϕn = 0.4 and ϕm = 0.1, and I set Ω = 1. The bottom panel
shows the response of four-period-ahead forecasts (yi,t+4|t). Different lines assume varying
degrees of Ω, the initial uncertainty about µ.
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Figure 3.4: βC and βI when learning about the long run
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This figure shows model predictions of the two regression coefficients in (D.13) and (D.14)
for different forecast horizons. The extent of cognitive noise is from Figure 3.2: ϕ∗

n = 0.28 and
ϕ∗
m = 0.58. The gray solid line is the model prediction when DM does not have to learn about

the long run (Ω = 0). The black dashed line is when DM learns about the long run (Ω = 1).
The data-generating process is described by ρ = 0.8 and σ2

ϵ = 1.
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Figure 3.5: Estimated βC and βI
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Table 3.1 reports the estimated regression coefficients. I study the variables in the SPF’s
“U.S. Business Indicators” section. From left to right, each panel presents the coefficients
in (D.13), (D.14), and (F.15). The last two regressions include individual and horizon
fixed effects. I panel-bootstrap the SPF data. The dot is the median estimate, and the
error band shows the 5% and 95% estimates. The OLS estimates are reported in Table
3.3. Figure 3.5 visualizes the estimation of βC and βI , whose x-axis uses the abbreviated
variable names that are in the same order as in the table above.
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Figure 3.6: Estimated Parameters

(a) Noisy News
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(b) Noisy Memory

NGDP
RGDP

PGDP
CPROF

UNEMP
INDPROD

HOUSING CPI
TBILL

BOND
TBOND

0.0

0.2

0.4

0.6

0.8

1.0
m

This figure’s full variable names are in Table 3.1. The top panel reports the estimated
extent of noisy news (ϕn), and the bottom panel reports that of noisy memory (ϕm).
Estimation targets the panel-bootstrapped moments discussed in Table 3.1. The dot is
the median estimate, and the error band contains the 5% and 95% estimates. Table
3.4 reports the detailed numerical results. In the top panel, I compare the estimated ϕn

(labeled as “Baseline”) to the estimation achieved under the Coibion and Gorodnichenko
(2015) assumption (labeled as “CG”). For the latter, I impose ϕm = 0 and estimate two
parameters (ϕn and σ2

ν) that match two targets (βC and βK).
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Table 3.2: Model Fit

(a) Targeted moments (average across macroeconomic variables)

βC βI βK βµ,K

Data Model Data Model Data Model Data Model

0.41 0.41 -0.22 -0.2 0.61 0.61 0.08 0.07

(b) Not-targeted moments (average across macroeconomic variables)

Variation in Forecasts Variation in Revisions

Time Series Cross Section Time Series Cross Section

Data Model Data Model Data Model Data Model

0.6 0.6 0.43 0.36 0.31 0.32 0.44 0.38
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Figure 3.7: Not-targeted moments (all macroeconomic variables)
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The tables evaluate the fit of the estimated model when using the median estimates in
Table 3.4. The upper panel shows the targeted moments, and the lower panel shows un-
targeted moments. Both panels report the average value across all macroeconomic vari-
ables in Table 3.1. For untargeted moments, I report variations of forecasts and forecast
revisions in the time series and cross sections, averaged across four consecutive forecast
horizons (current to three quarters ahead). The unit of all measures is the standard devi-
ation scaled by the standard deviation of the forecast variables. The figure illustrates the
untargeted moments for all macroeconomic variables. The detailed data for this figure
are available in Table 3.6.
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7 An Illustrative Macroeconomic Model

In this section, I study the macroeconomic implications of the proposed expectation-

formation model. Using a standard New Keynesian model, I show that if expectations

are formed as in my model, inflation may be more variable, worsening the central bank’s

policy trade-off in stabilizing inflation and output. I discuss the efficient monetary policy

in this environment and what harm can be done if the central bank conducts monetary

policy that is only efficient under conventional expectation assumptions.

7.1 Firms’ Decision Problem

Optimal Price Setting

Suppose firm i reconsiders its price Pi,t in period t. The new price that it chooses

maximizes the expected value of the firm’s (current market value) profits. This pricing

decision does not constrain any future decisions. Thus, it suffices to consider the effects of

the choice on expected profits in those future states in which the price has not yet again

been re-optimized. The firm’s new price solves the following problem:

max
Pi,t

Ei,t

[
∞∑
h=0

αhQt,t+h

(
Pi,t Yi,t+h|t −Ψt+h

(
Yi,t+h|t

))]

Here, α is the probability of not resetting prices, Qt,t+h is the stochastic discount factor for

evaluating the future nominal payoffs generated at t + h, Yi,t+h|t is the output demanded

in period t + h if the price remains at the one chosen at time t, and Ψt+h is the (nominal)

cost function at time t+ h. Firm i takes into account that the demand Yi,t+h|t is given as

Yi,t+h|t =

(
Pi,t

Pt+h

)η

Ct+h,

where η is the elasticity of substitution among goods, Pt+k is the aggregate price at time

t+ h, and Ct+h is the aggregate consumption at time t+ h.
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I use the notation Ei,t to denote firm i’s subjective expectation at time t. While in the

conventional New Keynesian model Ei,t refers to full-information rational expectations,

I propose that the firm’s expectations are formed according to the cognitive limitations

proposed in earlier sections. The firm’s objective depends only on aggregate conditions at

the various dates t+ h. Thus, under rational expectations, the optimal price P ∗
i,t would be

the same for all i that reconsider their price at date t. However, under the expectation-

formation model proposed in this paper, the optimal choice P ∗
i,t may differ across firms

because of their differing expectations.

The firm’s optimal price P ∗
i,t is derived using the first-order condition. Below I describe

the first-order Taylor expansion of this condition around the zero-inflation steady state (I

use lowercase to denote the log of the variable denoted in uppercase):

p∗i,t − pi,t−1 = Ei,t

[
∞∑
h=0

(αβ)h {(1− αβ) (mct+h −mc) + πt+h}
]

Here, mct+h is the log of real marginal cost at t+h (mc is its steady-state value), and πt+h is

inflation at t+h defined as logPt+h−logPt+h−1. As detailed in Appendix 10.7, the marginal

costs do not depend on the quantity that a firm supplies. This is because of the assumed

feature of the production function that the marginal product of labor does not depend

on the quantity of production. Thus, firm i treats the nominal marginal costs as evolving

independently of its own pricing decision; they only depend on aggregate variables that

the firm takes as given.9 Let us define

zt+h ≡ (1− αβ) (mct+h −mc) + πt+h. (G.16)

Thus, the firm’s expectations of the current and future zt determine its subjectively optimal

9I introduce this assumption for the sake of simplicity. However, even when the firm’s marginal product of
labor varies with the quantity supplied, the subjectively optimal price will still depend only on its expectations
about aggregate economic variables. See Gali (2008, Chapter 3).
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price:

p∗i,t − pi,t−1 = Ei,t

[
∞∑
h=0

(αβ)h zt+h

]
(G.17)

7.2 Aggregate Economy

Real Marginal Costs

The real marginal costs are derived from the rest of the economy. As detailed in Ap-

pendix 10.7, the household optimization problem and market-clearing conditions imply

that

mct −mc = χxt + et. (G.18)

χ depends on the elasticities of the consumption and labor utility functions, and xt is

defined as yt − yet , where yet is the efficient level of output. Finally, et is the cost-push

shock. While I do not take a stance on the source of cost-push shocks, one example is a

time-varying, exogenous wage markup. The cost-push shock is a transitory i.i.d. shock

fluctuating around zero.

Monetary Policy

Because of cost-push shocks, it is infeasible for the central bank to stabilize both infla-

tion and the output gap fully. Thus, the central bank faces a policy trade-off in stabilizing

the two variables. I assume that monetary policy is specified by a targeting rule of the form

xt = −s πt, (G.19)

where s is a constant scalar that I later calibrate to match the relative variability of the

output gap to inflation in the data.
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The targeting rule illustrates the relationship between xt and πt that the central bank

seeks to maintain in response to a fluctuation in the economy. The rule implies that the

central bank accepts inflation higher than its long-run target (assumed to be zero in the

model) if and only if there is a negative output gap. Likewise, the targeting rule requires

inflation to be lower than the long-run target when there is a positive output gap at the

same time. The implication of such a targeting rule for the path of interest rates can be

derived using the household intertemporal optimization condition.

Aggregation

Once firms reconsider their price and choose their subjectively optimal price P ∗
i,t, the

aggregate price index is formed according to

Pt =
[
α (Pt−1)

1−η + (1− α) (P ∗
t )

1−η] 1
1−η ,

where P ∗
t ≡

∫
P ∗
i,t di is the average reset price of firms that reconsider their prices at time t.

The first-order Taylor expansion of the price index implies πt = (1− α) (p∗t − pt−1). There-

fore, we can derive the aggregate inflation by averaging the expectations of the different

firms:

πt = (1− α)Ēt

[
∞∑
h=0

(αβ)h zt+h

]
(G.20)

Here, Ēt averages the expectations Ei,t of all individual firms.

Determination of zt

By substituting (G.18) and (G.19) into (G.16), we can deduce that zt is determined as

follows:

zt = {1− (1− αβ)σ s} πt + (1− αβ) et (G.21)
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Equations (G.20) and (G.21) together imply that zt is determined by firms’ expectations

about current and future zt and the exogenous shock et. Thus, once we specify how firms

forecast zt, we have a complete theory of how inflation, the output gap, and zt evolve.

7.3 Firms’ Macroeconomic Expectations

Suppose that firms form their forecasts under the assumption that zt is an i.i.d. process

such that

zt ∼ N
(
µ, σ2

z

)
. (G.22)

As discussed below, this assumption is correct under FIRE. As in the proposed expectation

model, firms are not perfectly aware either of the current value of zt or of the mean µ of

the distribution from which it is drawn. (σ2
z is assumed to be known to DM.) Firms’ prior

beliefs about µ are described as

µ ∼ N (0, Ω)

for some positive Ω.

I denote the average beliefs of firms about zt and µ as ẑt and µ̂t, respectively. Then, ẑt

and µ̂t have the following law of motion:

ẑt = λ (1− κ) µ̂t−1 + κ zt (G.23)

The average expectation about the mean is

µ̂t = λ (1− κµ) µ̂t−1 + κµ zt. (G.24)

Firms’ beliefs are influenced by the realized zt, which are determined by the rest of the

aggregate economy, including the monetary policy discussed in the following section.
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7.4 Expectation Formations and Inflation Dynamics

From (G.20), we see that inflation is determined by the average expectations of firms

about the current and future courses of zt. As seen from (G.23) and (G.24), they are

are completely specified by two state variables: µ̂t−1 (the average belief about µ in the

previous period) and the realized value of zt. Furthermore, πt and the exogenous shock et

determine the evolution of zt, as described in (G.21). Combining all these equations, we

can deduce that the inflation process is a linear function of et and µ̂t−1:

πt = φe et + φµ µ̂t−1 (G.25)

We can see that πt is a persistent process since µ̂t−1 is a function of zt−1, zt−2, · · · , z0, which

are in turn functions of lags of πt and et. The coefficients φe and φµ are derived as

φe =
δ

1 + δ σ s+ 1
α

1−κ̂
κ̂

φµ =
1

1 + δ σ s+ 1
α

1−κ̂
κ̂

1− α

α

b̂

κ̂
,

where δ ≡ (1−α)(1−αβ)
α

, κ̂ = κ + κµ, and b̂ = λ(1 − κ) + αβ
1−αβ

λ(1 − κµ). See Appendix 10.7

for detailed derivation.

Comparison of different expectation assumptions. Different assumptions about expec-

tation formation result in different inflation dynamics, as captured by κ̂ and b̂. I compare

three cases: FIRE (ϕn = 0 and ϕm = 0), the conventional models of information frictions

(ϕn > 0 and ϕm = 0), and finally the proposed expectation model (ϕn > 0 and ϕm > 0).

Under FIRE, firms are perfectly aware of zt and µ. Therefore, firms expect the future

marginal costs to be zero on average (since µ = 0) and set their prices to match the current

marginal costs. Therefore, the aggregate inflation is proportional to the realized zt. The
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inflation process is derived as follows:

πt =
δ

1 + δ σ s
et

Under conventional models of information frictions, firms are imperfectly aware of zt

but have come to learn the true mean of the distribution zt is drawn from. Thus, their

subjectively optimal price is equal to the perceived value of the current marginal costs.

This is because they correctly expect that their future marginal costs are zero on average.

The inflation process is derived as

πt =
δ

1 + δ σ s+ 1
α

1−κ∗

κ∗

et,

where κ∗ refers to the Kalman gain when updating firms’ belief about zt under the perfect-

memory assumption. Firms’ reset prices are less responsive to the realized cost-push shocks

than under FIRE. This is because firms are not perfectly aware of them when resetting

prices. Accordingly, while aggregate inflation is still proportional to the cost-push shocks,

the dependence is more muted.

Under the proposed model, the inflation process is derived as follows:

πt = ρµ πt−1 + γ0 et + γ1 et−1

Here, the coefficients on the cost-push shocks are derived as γ0 = φe + φmκµ and γ1 =

−φe λ (1− κµ). Inflation is persistent, unlike in the previous two expectation models. This

is because of the fluctuating beliefs about the long run, as the coefficient ρµ is the serial

correlation of µ̂t.
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7.5 Calibration

I now discuss how I choose the model parameters. The parameters describing the ex-

pectation process come from the previous estimation section. I take the median estimates

across macroeconomic variables. For the baseline model, I use ϕn = 0.34, ϕm = 0.22, and

Ω/σ2
y = 0.12. For the conventional models of information frictions, I use ϕn = 0.15.

I set χ = 2 to reflect that the elasticity coefficients of the consumption and labor utility

function are both one, following the discussion in Hazell et al. (2022). I assume that firms

discount their future revenues with β = 0.99 because I consider the time unit of the model

to be a quarter. The frequency of price changes is matched to the slope of the Phillips

curve estimated in the literature. The inflation response to a 1% increase in the output

gap (holding the expectation terms) is estimated to be 0.024 in Rotemberg and Woodford

(1997) and 0.0062 in Hazell et al. (2022). I target 0.01 as a midpoint.

Finally, I pin down s in the central bank’s targeting rule (G.19) and the variance of the

cost-push shock σ2
e to match the empirical volatility of inflation and the output gap. I use

the quarterly log changes of the CPI for inflation. For the output gap, I use the difference

between the log of real gross domestic product (RGDP) and the log of potential RGDP. All

data are from Federal Reserve Economic Data (FRED). The standard deviation of the CPI

is 0.35% per quarter, and the standard deviation of the output gap is 2.48% per quarter.

7.6 Monetary Policy and Inflation Variability

We have seen that the expectation-formation process shapes inflation dynamics. In this

section, I consider the effects of alternative monetary policies on inflation variability and

the role of expectation formation. To do so, I consider values of s in (G.19) given by

s = s∗
θ

1− θ
, (G.26)

210



where s∗ is the calibrated value of s. Thus, θ = 1
2

represents the typical monetary policy,

bringing the model-predicted volatility of inflation and output closer to the data.

The strength of inflation targeting is measured by θ ∈ [0, 1]. Complete inflation stabi-

lization is captured by θ = 1. In this case, in response to inflationary pressures from the

cost-push shock, the central bank drives output far below the efficient level to stabilize

inflation.

The top left panel in Figure 3.8 shows firms’ subjective uncertainty about the long

run. The x-axis corresponds to the strength of inflation targeting. I discuss the prediction

for three different expectation assumptions: FIRE (black dotted line), the conventional

models of information frictions (blue solid line), and the baseline model (orange solid

line). As discussed earlier, firms are perfectly aware of the long run under FIRE and the

conventional information-frictions model for any monetary-policy rule, but this prediction

changes when noisy memory is also present. Firms continually feel uncertain about the

long run and keep revising their views. In particular, the strength of inflation targeting

matters; more stable inflation means more stable marginal costs, so firms become less

uncertain about the long-run mean.

The top right panel of Figure 3.8 displays the inflation variability for a given monetary-

policy rule on the x-axis. I confirm that stronger inflation targeting stabilizes the infla-

tion process for all expectation assumptions. Furthermore, we can see that conventional

information-friction models predict more stable inflation than under FIRE. Since firms are

not perfectly aware of the realized marginal cost, they do not reflect it in their prices. In

the baseline model, firms are imperfectly aware of both the realized marginal cost and its

long-run mean. Therefore, their expectations of future marginal costs fluctuate, inducing

more price fluctuations.

The bottom panel in Figure 3.8 illustrates the central bank’s trade-off in simultane-

ously stabilizing inflation and the output gap. Under the conventional information-frictions

model, the policy frontier shifts inward compared to FIRE; the economy faces less variable
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inflation at any output variability. In the baseline model, the policy frontier shifts out,

indicating that for any output variability, the economy bears more variable inflation.

7.7 Efficient Inflation Targeting

We have seen that the effect of monetary policy on inflation variability varies with the

expectation assumptions. In this section, I study the efficient level of inflation targeting

that maximizes social welfare for each expectation assumption.

Let us assume that social welfare depends on how variable the output gap and inflation

are. Let us further assume that the welfare-relevant measure of the output gap is the

output gap scaled by 1
s∗

. Thus, the welfare losses from the output gap and inflation are

roughly comparable in size. Thus:

L = (1− ω) V [x̃t] + ω V [πt] (G.27)

Here, x̃t = 1
s∗
xt, and ω reflects the central bank’s preference for stabilizing inflation over

stabilizing the output gap. I find the optimal level of θ that minimizes the loss function.10

The left panel in Figure 3.9 displays the efficient weight for a given ω (the welfare

weight on inflation). Under the conventional information-frictions assumption, it is ef-

ficient to put less emphasis on inflation targeting than under FIRE. Since the inflation

process is less responsive to fluctuations in marginal cost, the central bank can put more

weight on stabilizing the output gap. In comparison, putting more weight on inflation is

efficient in the baseline model. Since the volatile inflation process feeds into more widely

fluctuating beliefs about the long-run economy, the central bank prioritizes stabilizing in-

flation.

The right panel in Figure 3.9 illustrates that conducting monetary policy based on a

10One can consider the welfare-loss function whose measure of the output gap is not scaled. I propose to
use the scaled output gap to see the effect of different expectation assumptions more clearly for the entire
range of ω. In the current exercise, the standard deviation of the output gap is more than seven times larger
than that of inflation. Thus, the efficient strength of inflation targeting is quite small unless the welfare
weight on inflation is sizable.
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correct expectation assumption is essential. I show the additional inflation variability that

the economy incurs if the central bank adopts a monetary policy that is only efficient under

different expectation assumptions. The increased volatility is especially sizable when the

central bank intends to produce more stable inflation (that is, when the welfare weight on

inflation is high). That is, the central bank can generate volatile inflation because it is not

cognizant that fluctuation in marginal costs will unanchor long-run expectations.
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Figure 3.8: The effect of monetary policy

(a) Uncertainty about long run
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(b) Inflation variability
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(c) Stabilization trade-off
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The figures above illustrate the macroeconomic dynamics for varying degrees of strength of in-
flation targeting (θ). For all figures, three lines correspond to different expectation-formation as-
sumptions: “Baseline” is the proposed model, “Full Info” is the full-information model, and “CG” is
the conventional models of information frictions. For each targeting rule θ on the x-axis, the top
left panel displays the uncertainty about the long-run mean µ, and the top right panel shows the
inflation variability. The bottom panel reports the policy trade-off between inflation stabilization
and output-gap stabilization. The model parameters are stated in the main text.
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Figure 3.9: Efficient policy

(a) Efficient inflation targeting
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(b) Increased inflation volatility from naive
policy
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The left panel shows the efficient level of inflation targeting that minimizes the welfare
loss (G.27). The welfare weight on inflation variability (ω) is on the x-axis. Three lines
correspond to different expectation-formation assumptions as in Figure 3.8. The right
panel shows the increased inflation variability from implementing inefficient targeting
rules. The targeting rules are only efficient if expectations are not subject to noisy mem-
ory.
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8 Conclusion

I proposed an expectations model in which economic agents make forecasts subject to

information frictions. The proposed model accounts for puzzling patterns that conven-

tional information-friction models cannot. It also offers an estimation strategy to identify

the extent of information frictions. Using professional forecasters’ overall projections of

the US economy, I showed that an influential methodology previously proposed in the lit-

erature underestimates the extent of information frictions by half. Using the estimated

model, I discussed the model’s implications for inflation expectations and monetary pol-

icy. The public’s expectations about the long-run state of the economy are not as well

anchored as conventional information-friction models predict. I showed that the central

bank’s emphasis on inflation stabilization can be more desirable.

To reach these findings, I proposed that the relevant information friction is the cogni-

tive constraint in processing the vast amount of information people have access to. Im-

portantly, I proposed that economic agents process information both external and inter-

nal to their minds. This contrasts with conventional information-friction models, which

implicitly assume that internal information is perfectly accessible. I showed that jointly

considering the two information constraints is crucial to correctly estimating the extent of

information frictions. To study the macroeconomic implications, I introduced the proposed

expectation model into a standard New Keynesian model. I showed that price-setting firms

have unanchored expectations about the long run when internal information is not per-

fectly accessible. Furthermore, I showed that policies that are efficient under conventional

information-friction models generate excessive inflation volatility.

An important lesson from my analysis is that it is crucial to identify the fundamen-

tal bottleneck that keeps economic agents from making forecasts consistent with FIRE.

I showed that finite capacity to process information — both external and internal — ex-

plains various features of survey forecasts that previous expectation-formation models can-
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not. Recognition of these constraints allows one to see that conventional assumptions in

macroeconomic models may not be well grounded. One example is the assumption that

agents would be well aware of the long-run economic trends if the economy were stable.

In the proposed model, agents’ long-run expectations perpetually fluctuate even after ex-

tensive learning opportunities. This has the crucial implication that seemingly anchored

long-run inflation expectations can start moving when agents witness bouts of high infla-

tion. Thus, a monetary authority whose policies rely on the prospect of firmly anchored

expectations can lose its grip on the economy, leaving economic agents to doubt the au-

thority’s ability to manage inflation. Empirically relevant expectation-formation models

can guide the complex considerations that conducting monetary policy requires, especially

in new environments yet to be experienced and analyzed.
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9 Accompanying Tables and Figures

Table 3.3: Estimated regression coefficients using OLS

βC SE p-value βI SE p-value βK SE p-value

Nominal Gross Domestic Product 0.63 0.11 0.0 -0.27 0.04 0.0 0.54 0.03 0.0

Real Gross Domestic Product 0.45 0.12 0.0 -0.25 0.05 0.0 0.6 0.02 0.0

GDP Chain-Weighted Price Index 0.71 0.11 0.0 -0.32 0.04 0.0 0.6 0.03 0.0

Corporate Profits after Taxes 0.68 0.17 0.0 -0.44 0.05 0.0 0.51 0.03 0.0

Civilian Unemployment Rate 0.62 0.08 0.0 -0.05 0.05 0.31 0.62 0.02 0.0

Industrial Production Index 0.61 0.13 0.0 -0.18 0.06 0.0 0.58 0.02 0.0

Housing Starts 0.5 0.12 0.0 -0.25 0.06 0.0 0.58 0.02 0.0

Consumer Price Index 0.55 0.15 0.0 -0.17 0.09 0.04 0.56 0.03 0.0

Treasury Bill Rate, 3-month 0.29 0.05 0.0 -0.01 0.04 0.85 0.73 0.03 0.0

AAA Corporate Bond Yield 0.05 0.07 0.48 -0.35 0.04 0.0 0.68 0.02 0.0

Treasury Bond Rate, 10-year 0.28 0.07 0.0 -0.12 0.05 0.01 0.7 0.03 0.0

The first column shows the variables included in the SPF’s “U.S. Business Indicators” section.
The first panel displays the estimated regression coefficient from (D.13). The standard errors
are robust to the presence of arbitrary heteroskedasticity and autocorrelation. The second
panel shows the regression coefficient estimates from (D.14) when individual forecasts are
pooled. For this regression, the standard errors are two-way clustered by forecasters and
survey date. The last panel reports the regression coefficient from (F.15). The standard errors
are similarly clustered two-way. I include individual and horizon fixed effects for the last two
regression specifications.
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Table 3.4: Estimated parameters

ϕn CI ϕm CI Ω/σ2
y CI σ2

ν/σ
2
y CI

Nominal Gross Domestic Product 0.34 (0.29,0.39) 0.19 (0.15,0.24) 0.16 (0.14,0.18) 0.14 (0.09,0.22)

Real Gross Domestic Product 0.32 (0.28,0.36) 0.27 (0.21,0.34) 0.12 (0.11,0.14) 0.23 (0.15,0.35)

GDP Chain-Weighted Price Index 0.53 (0.46,0.59) 0.45 (0.36,0.52) 0.1 (0.09,0.11) 0.52 (0.25,1.0)

Corporate Profits after Taxes 0.51 (0.43,0.56) 0.44 (0.41,0.48) 0.08 (0.08,0.09) 1.0 (1.0,1.0)

Civilian Unemployment Rate 0.14 (0.13,0.2) 0.0 (0.0,0.1) 1.0 (0.14,1.0) 0.0 (0.0,0.03)

Industrial Production Index 0.27 (0.19,0.32) 0.14 (0.03,0.2) 0.19 (0.14,1.0) 0.1 (0.07,0.16)

Housing Starts 0.38 (0.32,0.47) 0.3 (0.21,0.4) 0.12 (0.1,0.14) 0.32 (0.18,0.64)

Consumer Price Index 0.34 (0.27,0.4) 0.22 (0.1,0.33) 0.12 (0.09,0.27) 0.28 (0.1,0.58)

Treasury Bill Rate, 3-month 0.11 (0.06,0.17) 0.0 (0.0,0.0) 0.27 (0.16,1.0) 0.09 (0.03,0.39)

AAA Corporate Bond Yield 0.38 (0.31,0.42) 0.55 (0.48,0.6) 0.08 (0.08,0.09) 1.0 (0.61,1.0)

Treasury Bond Rate, 10-year 0.14 (0.12,0.19) 0.09 (0.03,0.21) 0.26 (0.12,0.92) 0.08 (0.03,0.13)

Each panel shows the estimated parameter and its confidence interval. The standard error is
computed by panel-bootstrapping the SPF individual-forecast data. I report the 5% and the
95% point estimates from the bootstrapped samples. I estimate the scaled value of σ2

ν and
Ω (divided by the variance of the forecast variable). I restrict these scaled σ2

ν and Ω to be
between zero and one.

Table 3.5: Estimated parameters using Coibion and Gorodnichenko (2015) approach

ϕn CI σ2
ν/σ

2
y CI

Nominal Gross Domestic Product 0.17 (0.15,0.19) 0.05 (0.02,0.08)

Real Gross Domestic Product 0.15 (0.12,0.17) 0.07 (0.04,0.12)

GDP Chain-Weighted Price Index 0.21 (0.18,0.24) 0.02 (0.0,0.06)

Corporate Profits after Taxes 0.26 (0.2,0.31) 0.17 (0.08,0.27)

Civilian Unemployment Rate 0.21 (0.19,0.23) 0.01 (0.0,0.03)

Industrial Production Index 0.19 (0.17,0.21) 0.04 (0.02,0.08)

Housing Starts 0.17 (0.14,0.2) 0.09 (0.05,0.13)

Consumer Price Index 0.23 (0.18,0.28) 0.11 (0.04,0.19)

Treasury Bill Rate, 3-month 0.11 (0.08,0.12) 0.03 (0.0,0.06)

AAA Corporate Bond Yield 0.02 (0.0,0.05) 0.16 (0.13,0.2)

Treasury Bond Rate, 10-year 0.11 (0.09,0.13) 0.05 (0.02,0.08)

Each panel shows the estimated parameter and its confidence interval. The standard error is
computed by panel-bootstrapping the SPF individual-forecast data. I report the 5% and the
95% point estimates from the bootstrapped samples. I estimate the scaled value of σ2

ν (divided
by the variance of the forecast variable). I restrict these scaled σ2

ν to be between zero and one.
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Table 3.6: Model fit

(a) Targeted Moments

βC βI βK βµ,K

Data Model Data Model Data Model Data Model

Nominal Gross Domestic Product 0.55 0.54 -0.27 -0.27 0.55 0.55 0.08 0.08

Real Gross Domestic Product 0.36 0.35 -0.24 -0.24 0.61 0.61 0.08 0.08

GDP Chain-Weighted Price Index 0.56 0.57 -0.32 -0.32 0.6 0.6 0.08 0.08

Corporate Profits after Taxes 0.49 0.5 -0.44 -0.27 0.51 0.57 0.08 0.08

Civilian Unemployment Rate 0.56 0.59 -0.05 -0.05 0.63 0.65 0.08 0.04

Industrial Production Index 0.53 0.52 -0.18 -0.18 0.57 0.58 0.08 0.08

Housing Starts 0.41 0.4 -0.27 -0.27 0.58 0.58 0.08 0.08

Consumer Price Index 0.46 0.47 -0.17 -0.17 0.57 0.57 0.08 0.08

Treasury Bill Rate, 3-month 0.28 0.28 -0.01 -0.01 0.73 0.63 0.08 0.03

AAA Corporate Bond Yield 0.03 0.02 -0.35 -0.34 0.68 0.68 0.08 0.08

Treasury Bond Rate, 10-year 0.26 0.25 -0.12 -0.11 0.7 0.7 0.08 0.08

(b) Not-targeted moments

Variation in Forecasts Variation in Revisions

Time Series Cross Section Time Series Cross Section

Data Model Data Model Data Model Data Model

Nominal Gross Domestic Product 0.73 0.68 0.4 0.41 0.22 0.26 0.39 0.43

Real Gross Domestic Product 0.59 0.63 0.39 0.39 0.26 0.33 0.4 0.42

GDP Chain-Weighted Price Index 0.78 0.4 0.31 0.41 0.17 0.25 0.3 0.44

Corporate Profits after Taxes 0.62 0.35 0.74 0.35 0.31 0.26 0.73 0.36

Civilian Unemployment Rate 0.51 0.75 0.3 0.33 0.23 0.34 0.31 0.37

Industrial Production Index 0.57 0.71 0.4 0.37 0.27 0.31 0.4 0.39

Housing Starts 0.71 0.57 0.55 0.4 0.38 0.31 0.55 0.42

Consumer Price Index 0.38 0.56 0.21 0.37 0.16 0.34 0.2 0.38

Treasury Bill Rate, 3-month 0.54 0.78 0.29 0.25 0.39 0.39 0.34 0.27

AAA Corporate Bond Yield 0.72 0.44 0.73 0.35 0.58 0.34 0.76 0.4

Treasury Bond Rate, 10-year 0.49 0.78 0.43 0.3 0.43 0.39 0.47 0.34

The table compares the predictions of the estimated model to the data moments. The upper
panel shows the targeted moments, and the lower panel shows untargeted moments. For
untargeted moments, I report variations of forecasts and forecast revisions in the time series
and cross sections, whose units are standard deviations scaled by the standard deviation of
the forecast variables. For each macroeconomic variable, these moments are averaged across
four consecutive forecast horizons (current to three quarters ahead).
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10 Appendix

10.1 Derivation of the Optimal Cognitive Process

For any given state vector xt, I show the optimal structure of the cognitive process,

described by the sequence of {Kt, σu,t,Λt, σω,t}∞t=0, that minimizes the loss function (B.7)

subject to the information environment (B.3), (B.4), (B.5), and (B.6).

Proof: The Optimal Structure for the Representation

I show below that the optimal ni,t and mi,t are one-dimensional. In particular, I show

that the optimal ni,t records E[zt|Nt] with noise while the optimal mi,t stores zi,i,t|t−1 with

noise.

Step 1: Partition of ni,t and mi,t

Partition of ni,t We can partition ni,t = Kt ·Nt + ui,t into the following form


n⃗i,t

ñi,t

 =


Ka,t Kb,t

Kc,t Kd,t




N⃗t

E[x|Nt]

+


u⃗i,t+1

ũi,t+1

 (J.28)

Note that the elements of N⃗t are not correlated with E[xt|Nt] and that N⃗t and E[xt|Nt]

span the same vector space as Nt. I also impose the following normalization assumption

E[xt|mi,t, ni,t] = ñi,t + cons · E[xt|mi,t]
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This relationship holds if and only if E[xt|Nt] − ñi,t is uncorrelated with all the elements

in ni,t conditional on mi,t. That is, the two requirements are

Cov [xt − ñi,t, n⃗i,t|mi,t] = O⃗ (J.29a)

Cov [xt − ñi,t, ñi,t|mi,t] = O (J.29b)

We can see that (J.29b) implies

Cov [xt, Kd,tE[xt|Nt]|mi,t] = V [Kc,t N⃗t +Kd,tE[xt|Nt] + ũi,t

∣∣∣mi,t]

⇔ V [Kc,t N⃗t + ũi,t

∣∣∣mi,t] = Cov [xt, Kd,tE[xt|Nt]|mi,t]−Kd,t V [E[xt|Nt]|mi,t]K
′
d,t

The feasible set of Kd,t is defined as Kd,t that yields the right-hand-side term to be a proper

variance-covariance matrix (that is, symmetric and p.s.d.).

Partition ofmi,t Similarly, we can also partitionmi,t = Λt·


mi,t−1

ni,t−1

+ωi,t as the following

form 
m⃗i,t

m̃i,t

 =


Λa,t Λb,t

Λc,t Λd,t




s⃗i,t−1

xi,i,t|t−1

+


ω⃗i,t

ω̃i,t

 (J.30)

Note that the elements of s⃗i,t are not correlated with zi,i,t|t−1 and that s⃗i,t−1 and xi,i,t|t−1

span the same vector space as (mi,t−1, ni,t−1). I also impose the following normalization

assumption

E[xi,i,t|t−1

∣∣mi,t] = m̃i,t + cons · E[xi,i,t|t−1]
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This relationship holds if and only if xi,i,t|t−1 − m̃i,t is uncorrelated with all the elements in

mi,t. Two requirements summarize this relationship.

Cov
[
xi,i,t|t−1 − m̃i,t, m⃗i,t

]
= O⃗ (J.31a)

Cov
[
xi,i,t|t−1 − m̃i,t, m̃i,t

]
= O (J.31b)

The second requirement implies that

Cov
[
xi,i,t|t−1, m̃i,t

]
= V [m̃i,t]

⇔ V [Λc,t s⃗i,t−1 + ω̃i,t] = (1− Λd,t)V [xi,i,t|t−1] Λ
′
d,t

= (1− Λd,t)
(
V [xt]− Σt|t−1

)
Λ′

d,t

The feasible set of Λd,t is defined as the collection of Λd,t under which the resulting right-

hand side is a proper variance-covariance matrix (that is, symmetric and p.s.d.).

Step 2: Forecast accuracy depends only on Kd,t and Λd,t

From the proposed partition (J.28), we can see that

xt|mi,t, ni,t = xt|mi,t, ñi,t

That is, further knowledge of n⃗i,t does not improve the estimate of xt|mi,t, ñi,t. This fol-

lows from (J.29a). Furthermore, we can see that Kd,t uniquely determines the posterior

uncertainty Σt|t, given the prior uncertainty Σm
t|t,

Likewise, we can also see from (J.30) that

xi,i,t|t−1

∣∣mi,t = xi,i,t|t−1

∣∣ m̃i,t

The information in mi,t about xi,i,t|t−1 is completely captured by m̃i,t, which follows from
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(J.31a). We can furthermore see that Λd,t uniquely determines the next-period prior un-

certainty given Σt|t−1, the time-t posterior uncertainty about xt.

V [xt| m̃t] = V [xt]− Λd,tCov
[
xt, xi,i,t|t−1

]
= V [xt]− Λd,t

(
V [xt]− Σx|t−1

)
= (1− Λd,t)V [xt] + Λd,t Σt|t−1

In summary, given Σt|t−1 at any time t, Kd,t and Λd,t uniquely determine Σm
t|t and Σt|t. We

can apply this argument recursively. It must be that the sequence of {Kd,t,Λd,t} uniquely

determines the sequence of
{
Σt|t
}

, given the initial prior uncertainty.

Step 3: The Optimal Choice of Kt and Λt

Since the remaining elements of Kt and Λt do not matter for the forecast accuracy, we

can furthermore conclude that it is optimal to have them equal to zero. To see why note

that

I (ni,t;Nt) = I
(
(n⃗i,t, ñi,t) ;

(
N⃗t, E[xt|Nt]

))

As discussed in Appendix C.2 of Azeredo da Silveira et al. (2020), the lower bound of

this mutual information is equal to I (ñi,t;E[xt|Nt]). This lower bound is achieved when

Ka,t = Kb,t = Kc,t = O. Likewise,

I (mi,t;mi,t−1, ni,t−1) = I
(
(m⃗i,t, m̃i,t) ;

(
s⃗i,t−1, xi,i,t|t−1

))
whose lower bound is equal to I

(
m̃i,t;xi,i,t|t−1

)
. This lower bound is achieved when Λa,t =

Λb,t = Λc,t = O.
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10.2 Optimal Covnitive Process When zt is the Only State Variable

In this section, I apply the result from the previous section when xt = zt.

Optimal representation of noisy news

The optimal ni,t is described as

ñi,t = κt · E[zt|Nt] + ũi,t

for some positive scalar κt. The idiosyncratic noise ũi,t follows a Gaussian distribution

N
(
0, σ2

u,t

)
, where σ2

u,t is determined by the choice of κt.

σ2
u,t = κtCov [zt, E[zt|Nt]|mi,t]− κ2t V [E[zt|Nt]|mi,t]

Without loss of generality, we could assume that E[zt|Nt] can be expressed as

E[zt|Nt] = zt + ν̄t

where ν̄t ∼ N (0, σ2
ν) for some positive σ2

ν . Then, σ2
u,t is further simplified to

σ2
u,t = κt (1− κt) Σ

m
z,t|t − κ2t σ

2
ν

where Σm
z,t|t = V [zt|mi,t]. Any κt ∈

[
0,

Σm
z,t|t

Σm
z,t|t+σ2

ν

]
ensures that the resulting σ2

u,t is non-

negative.
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Determination of κt Using the information constraint, we can derive that

I (ni,t;Nt) = I (ñi,t;E[zt|Nt])

= −1

2
log

(
1− κ2t V [zt + ν̃t]

κ2t V [, zt + ν̃t] + σ2
u,t

)

= −1

2
log

1− V [zt + ν̃t]

V [zt + ν̃t] +
((
κ−1
t − 1

)
Σm

t|t − σ2
ν

)
 ≤ −1

2
log ϕn

Rearranging the last inequality yields

κt ≤
Σm

t|t

Σm
t|t +

ϕn

1−ϕn
(V [zt] + σ2

ν) + σ2
ν

(J.32)

The upper bound is the optimal κt. Then, the resulting σ2
u,t is

σ2
u,t =

(
Σm

t|t

)2 (
ϕn

1−ϕn
(V [zt] + σ2

ν)
)

(
Σm

t|t +
ϕn

1−ϕn
(V [zt] + σ2

ν) + σ2
ν

)2 (J.33)

Optimal representation of noisy memory

Likewise, we can express the optimal mi,t as

m̃i,t = λt · zi,i,t|t−1 + ω̃i,t

for some positive scalar λt. The idiosyncratic noise ω̃i,t follows a Gaussian distribution

N
(
0, σ2

ω,t

)
, whose variance is determined by the choice of λt as follows.

σ2
ω,t = λt (1− λt)V [zi,i,t|t−1]

Any λt ∈ [0, 1] ensures that the resulting σ2
ω,t is non-negative.
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Determination of λt Using the information constraint, we can derive that

I (mi,t;mi,t−1, ni,t−1) = I
(
m̃i,t; zi,i,t|t−1

)
= −1

2
log det (1− λt) ≤ −1

2
log ϕm

Therefore,

λt ≤ 1− ϕm

The optimal λt = 1− ϕm and the resulting σ2
ω,t = ϕm (1− ϕm) V [zi,i,t|t−1].

10.3 Optimal Cognitive Process When (µ, zt) is the State Vector

In this section, I apply the result from Section 10.1 when xt = (µ, zt).

Optimal representation of noisy news

The optimal ni,t is described as

ñi,t = K̃t · E[xt|Nt] + ũi,t

for some matrix scalar K̃t. The idiosyncratic noise ũi,t follows a Gaussian distribution

N (O, σu,t), where σu,t is determined by the choice of K̃t.

σu,t = Cov [xt, E[xt|Nt]|mi,t] K̃
′
t − K̃t V [E[xt|Nt]|mi,t] K̃

′
t

Note that E[xt|Nt] is spanned by E[zt|Nt]. This is because the news vector Nt is informa-

tive about µ only through the information about zt. Therefore, without loss of generality,
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we can express ñi,t as

ñi,t =


κµ,t

κt

1

 · (κtE[zt|Nt] + ūi,t)

where the idiosyncratic noise ūi,t is drawn from N
(
0, σ2

u,t

)
. The noisy news structure is

then described by three univariate variables, κµ,t, κt, and σ2
u,t, which remain to be specified.

We could furthermore see that the normalization assumption Cov [xt, ñi,t|mi,t] = V [ ñi,t|mi,t]

implies that

κt


Σm

µ,t|t (κµ,t/κt) Σm
µ,t|t

Σm
z,t|t (κµ,t/κt) Σm

z,t|t

 =
(
κ2t
(
Σm

z,t|t + σ2
ν

)
+ σ2

u,t

)

(κµ,t/κt)

2 (κµ,t/κt)

(κµ,t/κt) 1


where Σm

µ,t|t = V [µ|mi,t]. This condition pins down κµ,t and σ2
u,t as a function of κt as

follows.

κµ,t =
Σm

µ,t|t

Σm
z,t|t

κt

σ2
u,t = κt (1− κt) Σ

m
z,t|t − κ2t σ

2
ν

We can see that any κt ∈
[
0,

Σm
z,t|t

Σm
z,t|t+σ2

ν

]
ensures a non-negative σ2

u,t. Using e =

(
0 1

)
to

pick out zt from xt, we have the following expression for ñi,t.

ñi,t = K̃t · E[xt|Nt] + ũi,t, ũi,t ∼ N (O, σu,t)
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where K̃t and σu,t are defined as

K̃t = κt
Σm

t|t e e
′

e′ Σm
t|t e

σu,t = σ2
u,t

(
e′Σm

t|t e
)−2

Σm
t|t e e

′Σm
t|t

for which we use the relationship


κµ,t

κt

1

 =
Σm

t|t e

e′ Σm
t|t e

.

Determination of κt We can observe that the optimal κt and σ2
u,t are equal to the ones

determined in Section 10.2. This is because the optimal ni,t under the state vector xt =

(µ, zt) is spanned from the optimal ni,t when xt = zt. The information constraint (B.4) has

the same restriction.

Posterior beliefs It is straightforward to see that the posterior belief evolves as follows,

given ñi,t.

xi,i,t|t =
(
I − K̃t

)
xmi,i,t|t + K̃t xt + ν̃t + ũi,t

Σt|t =
(
I − K̃t

)
Σm

t|t

where ν̃t ∼ N (O, σν) and σν = κ2t

(
e′ Σm

t|t e
)−2

Σm
t|t e e

′Σm
t|t.

Optimal representation of noisy memory

We can express the optimal mi,t as

m̃i,t = Λ̃t · xi,i,t|t−1 + ω̃i,t
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The feasibility of Λ̃t is described earlier. The idiosyncratic noise ω̃i,t follows a Gaussian

distribution N (O, σω,t), whose variance is determined by the choice of Λ̃t as follows.

σω,t =
(
1− Λ̃t

) (
V [xt]− Σt|t−1

)
Λ̃′

t

Therefore, it remains to specify Λ̃t. The information constraint (B.6) constrains the choice

of Λ̃t. We can derive that

I (mi,t;mi,t−1, ni,t−1) = I
(
m̃i,t;xi,i,t|t−1

)
= h (m̃i,t)− h

(
m̃i,t|xi,i,t|t−1

)
=

1

2
ln det (V [m̃i,t])−

1

2
ln det

(
V [m̃i,t|xi,i,t|t−1]

)
=

1

2
ln det

(
V [xi,i,t|t−1] Λ̃

′
t

)
− 1

2
ln det

((
I − Λ̃t

)
V [xi,i,t|t−1] Λ̃

′
t

)
= −1

2
log det

(
1− Λ̃t

)
≤ −1

2
log ϕm

Therefore,

det
(
I − Λ̃t

)
≥ ϕm

The Choice Variable

Any Λ̃t is feasible as long as (1) the resulting Σm
t|t is a symmetric and positive semidefi-

nite matrix and (2) the diagonal elements of Σm
t|t are bigger than those of Σt|t−1 and smaller

than those of σx. That is, under any feasible Λ̃t, both Σm
t|t − Σt|t−1 and σx − Σm

t|t are proper

variance-covariance matrices (symmetric and positive semidefinite).

It is useful to define Λ̄t, which is simply a rotation of Λ̃t.

Λ̄t = V [xi,i,t|t−1]
− 1

2 Λ̃t V [xi,i,t|t−1]
1
2
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We could confirm that the same accuracy constraint (B.6) applies.

det
(
I − Λ̄t

)
= det

(
I − V [xi,i,t|t−1]

− 1
2 Λ̃tV [xi,i,t|t−1]

1
2

)
= det

(
V [xi,i,t|t−1]

− 1
2

(
I − Λ̃t

)
V [xi,i,t|t−1]

1
2

)
= det

(
I − Λ̃t

)

Therefore, I use Wt = I − Λ̄t as a choice variable. Any Wt is feasible as long as Wt and

I −Wt are positive semidefinite.

The Constraints

The prior uncertainty is formed according to

Σm
t|t = Σt|t−1 +

(
I − Λ̃t

)
V [xi,i,t|t−1]

= Σt|t−1 + V [xi,i,t|t−1]
1
2

(
I − Λ̄t

)
V [xi,i,t|t−1]

1
2

And the posterior uncertainty can be described as

Σt|t = Σm
t|t −

(
κtΣ

m
t|t e
) (
κt e

′ Σm
t|t e
)−1 (

κ e′ Σm
t|t
)

= Σm
t|t − Σm

t|t e
(
Ωm

t|t
)−1

e′ Σm
t|t

where

Ωm
t|t = e′Σm

t|t e+
ϕn

1− ϕn

(V [zt] + σν) + σ2
ν

The Optimization Problem

The optimization problem can then be written as

min
Wt

tr
(
σt|tQ

)
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subject to the law of motions of the subjective uncertainty

Σm
t|t − Σt|t−1 =

(
σx − Σt|t−1

) 1
2 Wt

(
σx − Σt|t−1

) 1
2

Ωm
t|t = e′ Σm

t|t e+
ϕn

1− ϕn

(V [zt] + σν) + σ2
ν

σt|t = Σm
t|t − Σm

t|t e
(
Ωm

t|t
)−1

e′Σm
t|t

along with the requirement that both Wt and I−Wt are positive semidefinite and symmet-

ric.

Note that when deciding which information to recall at time t (or equivalently, when

deciding which information to store at time t − 1), such a decision takes into account the

noisy news that is available at time t. That is, the availability (and the quality) of extra in-

formation not from one’s memory will affect which information is worthy of remembering.

While this is a natural trade-off given the restriction that memory cannot perfectly store

all the past information, it is also one that has not been investigated in the literature yet.

Setting up the Lagrange Multipliers

Since Wt is symmetric, it can be eigen-decomposed as Wt = U (I −D) U ′ where D

is a diagonal matrix and U U ′ = I. The constraints that Wt and I − Wt are positive

semidefinite are equivalent to the constraints that I −D and D are positive semidefinite.

The diagonal elements of I −D and D should be non-negative. The Lagrange multipliers

for each inequality constraint can be stored in a diagonal matrix, Ῡ1 and Ῡ1. Finally, I

can define Υ1 = U Ῡ1 U
′ and Υ2 = U Ῡ2 U

′. Note that Υ1Wt = U Ῡ1 (I −D) U ′ and

Υ2 (I −Wt) = U Ῡ2 (D) U ′. We can see that the inequality constraint can be expressed as

tr (Υ1Wt) ≥ 0 and tr (Υ2 (I −Wt)) ≥ 0. This is because tr (Υ1Wt) = tr
(
Ῡ1 (I −D)

)
and

tr (Υ2 (I −Wt)) = tr
(
Ῡ2 (D)

)
.

We also have equality constraints on the law of motions of subjective uncertainty. For

each constraint, I construct a symmetric matrix Γi whose kth row contains the Lagrangian
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multiplier for each kth column of the equality conditions.

The Lagrangian Problem and the First Order Conditions

The Lagrangian problem is as follows.

max− tr
(
σt|tQ

)
− tr

(
Γ1

((
σx − Σt|t−1

) 1
2 Wt

(
σx − Σt|t−1

) 1
2 + Σt|t−1 − Σm

t|t

))
− tr

(
Γ2

(
e′Σm

t|t e+
ϕn

1− ϕn

(V [zt] + σν) + σ2
ν − Ωm

t|t

))
− tr

(
Γ3

(
Σm

t|t − Σm
t|t e

(
Ωm

t|t
)−1

e′Σm
t|t − σt|t

))
+ tr (Υ1Wt) + tr (Υ2 (I −Wt)) + µ (det (Wt)− ϕm)

where the “Langrangian multipliers” Γi and Υi for all i are symmetric matrices.

The first order conditions subject to Wt, Σm
t|t, Ω

m
t|t and σt|t are (in that order)

−
(
σx − Σt|t−1

) 1
2 Γ1

(
σx − Σt|t−1

) 1
2 +Υ1 −Υ2 + µ det (Wt)W

−1
t = O (J.34a)

Γ1 − eΓ2 e
′ − Γ3 + e

(
Ωm

t|t
)−1

e′ Σm
t|t Γ3 + Γ3Σ

m
t|t e
(
Ωm

t|t
)−1

e′ = O (J.34b)

Γ2 −
(
Ωm

t|t
)−1

e′ Σm
t|t Γ3Σ

m
t|t e

(
Ωm

t|t
)−1

= O (J.34c)

−Q+ Γ3 = O (J.34d)

and the slackness conditions are

Υ1Wt = O, Υ1 ⪰ O, Wt ⪰ O (J.35a)

Υ2 (I −Wt) = O, Υ2 ⪰ O, (I −Wt) ⪰ O (J.35b)

and

µ (det (Wt)− ϕm) = 0, µ ≥ 0, det (Wt) = ϕm (J.36)
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We can first rearrange (J.34b)-(J.34d). Note that Γ3 = Q (as implied by (J.34d)) and using

the notation K̃t ≡ Σm
t|t e

(
Ωm

t|t

)−1

e′, we can express (J.34b) as

Γ1 − eΓ2 e
′ −Q+ K̃ ′

tQ+QK̃t = O

and (J.34c) as

eΓ2 e
′ − K̃ ′

tQK̃t = O

which together result in

Γ1 =
(
I − K̃t

)′
Q
(
I − K̃t

)

Next, I’d like to solve for Wt that characterizes the optimal memory system. First, multi-

plying (J.34a) by Wt (I −Wt) on the left yields

−
(
σx − Σt|t−1

) 1
2 Γ1

(
σx − Σt|t−1

) 1
2 Wt (I −Wt) + µϕm (I −Wt) = O (J.37)

after applying the slackness conditions (from which (Υ1 −Υ2)Wt (I −Wt) = O). We can

observe that
(
σx − Σt|t−1

) 1
2 Γ1

(
σx − Σt|t−1

) 1
2 should be eigen-decomposed in the form of

U GU ′, that is, it should share the basis with Υ1, Υ2 and Wt. Then, the above expression

can be written as

U (µϕm I −G (I −D))DU ′ = O (J.38)

Note that D should satisfy D ⪰ O, I −D ⪰ O, and det (I −D) = ϕm.
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The Solution to the Lagrangian Problem

The solution of D can be found as follows. Let’s first rearrange U and G so that the

diagonal elements inG are in descending order. For k = 1, · · · , n (where n is the dimension

of xt), I define θk =
(
ϕm

∏k
i=1 gi

) 1
k

then we can find k such that gk ≥ θk > gk+1 for k < n

(or k = n if gk ≥ θk). Then, the ith element of D, di, is going to be

di =


1− θk

gi
for i ≤ k

0 for i > k

We can see that all di ∈ [0, 1] and det (I −D) = Πk
i=1

θk
gi

= ϕm.

We can express the solution for D more succinctly. Following Afrouzi and Yang (2021),

I adopt the following two matrix operators. For a diagonal matrix D, max (D, θ) replaces

the diagonal elements of D that are smaller than θ with θ. For a symmetric matrix X

whose eigendecomposition is expressed as X = U DU ′, the operator Max (X, θ) is defined

as Max (X, θ) = U max (D, θ)U ′. Using these operators, I can express the optimal I −D as

I −D = θk {Max (G, θk)}−1

Since Wt = U (I −D)U ′, the optimal solution for Wt is expressed as

Wt = θk {Max (U GU ′, θk)}−1

From this, the optimal Σm
t|t is derived as

Σm
t|t = Σt|t−1 + V [xi,i,t|t−1]

1
2 θk

{
Max

(
V [xi,i,t|t−1]

1
2 Γ1 V [xi,i,t|t−1]

1
2 , θk

)}−1

V [xi,i,t|t−1]
1
2

where V [xi,i,t|t−1] = σX −Σt|t−1 captures the maximum possible increase in the uncertainty

due to forgetting the previous information si,t−1. In summary, the optimal memory system
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solves the fixed point problem for Γ1 and Σm
t|t that satisfy the following equations, given

the level of Σt|t−1 (and therefore V [xi,i,t|t−1]).

Σm
t|t = Σt|t−1 + V [xi,i,t|t−1]

1
2 θk

{
Max

(
V [xi,i,t|t−1]

1
2 Γ1 V [xi,i,t|t−1]

1
2 , θk

)}−1

V [xi,i,t|t−1]
1
2

Γ1 =
(
I − K̃t

)′
Q
(
I − K̃t

)

Furthermore, as summarized by Λ̃t, the optimal memory signal is described as follows.

Λ̃t = V [xi,i,t|t−1]
1
2

(
k∑

i=1

(
1− θk

gi

)
ui u

′
i

)
V [xi,i,t|t−1]

− 1
2

where gi is the eigenvalues of V [xi,i,t|t−1]
1
2 Γ1 V [xi,i,t|t−1]

1
2 that are rearranged in a de-

scending order and ui is the corresponding eigenvector. As defined above, k is such that

gk ≥ θk ≥ gk+1.
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10.4 Derivations of βI and βC (when the long-run mean is known)

DM i’s forecast of zt evolves according to the following linear law of motion.

zi,t|t = (1− λ) (1− κ)µ+ λ (1− κ) zi,t|t−1 + κ zt + κ ν̃t + ũi,t + (1− κ) ω̃i,t

The consensus forecast of zt evolves according to the following linear law of motion.

zt|t = (1− λ) (1− κ)µ+ λ (1− κ) zt|t−1 + κ zt + κ ν̃t (J.39)

I define b as the weight on unconditional prior belief.

b ≡ (1− λ) (1− κ) (J.40)

Derivations of βI and βC

Derivation of βI

From the regression specification

zt − zi,t|t = αI + βI
(
zi,t|t − zi,t|t−1

)
+ errori,t,

the coefficient βI asymptotically converges to

βI =
Cov

[
zt − zi,t|t, zi,t|t − zi,t|t−1

]
V [zi,t|t − zi,t|t−1]

We can see that

Cov
[
zt − zi,t|t, zi,t|t − zi,t|t−1

]
= −Cov

[
zt − zi,t|t, zi,t|t−1

]
= −b V [zi,t|t]
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The first equality holds because Cov
[
zt − zi,t|t, zi,t|t

]
= 0. The second equality holds be-

cause E[zi,t|t
∣∣mi,t−1, ni,t−1] = b µ+ (1− b) zi,t|t−1. We can also see that

V [zi,t|t − zi,t|t−1] =
(
ρ−2 − 2 (1− b) + 1

)
V [zi,t|t−1]

where I use V [zi,t|t−1] = ρ2 V [zi,t|t]. Combining the two derivations, we get

βI = − b

2 b+ ρ−2 − 1
(J.41)

Derivation of βC

Rearranging terms, we can express the consensus forecast’s error as follows.

zt − zt|t =
1− κ

κ

(
zt|t − zt|t−1 + (1− λ)

(
zt|t−1 − µ

))
− ν̃t

From the regression specification

zt − zt|t = αC + βC
(
zt|t − zt|t−1

)
+ errort,

the coefficient βC asymptotically converges to

βC =
Cov

[
zt − zt|t, zt|t − zt|t−1

]
V [zt|t − zt|t−1]

Therefore, we can see that

βC =
1− κ

κ

(
1 + (1− λ)

Cov
[
zt|t−1, zt|t − zt|t−1

]
V [zt|t − zt|t−1]

)
− κσ2

ν

V [zt|t − zt|t−1]

It remains to derive expressions for Cov
[
zt|t−1, zt|t − zt|t−1

]
and V [zt|t − zt|t−1].
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Note that

(1− λ (1− κ) ρL) zt|t = κ (zt + ν̃t)

⇔ zt|t =
κ

1− λ (1− κ) ρL
(zt + ν̃t)

Therefore, it is straightforward to see that

Cov
[
zt, zt|t

]
=

κ

1− λ (1− κ) ρ2
V [zt]

We can also show that

V [zt|t] = V [
κ

1− λ (1− κ) ρL

1

1− ρL
ϵt +

κ

1− λ (1− κ) ρL
ν̃t]

=

[
1 + λ (1− κ) ρ2

1− λ (1− κ) ρ2
κ2

1− (λ (1− κ) ρ)2
σ2
ϵ

1− ρ2

]
+

[
κ2

1− (λ (1− κ) ρ)2
σ2
ν

]
=

κ2

1− (λ (1− κ) ρ)2

{
1 + λ (1− κ) ρ2

1− λ (1− κ) ρ2
V [zt] + σ2

ν

}

And finally,

Cov
[
zt|t, zt|t−1

]
= λ (1− κ) ρ2 V [zt|t] + κ ρ2Cov

[
zt, zt|t

]
Let’s consider the case σ2

ν → 0. Then,

Cov
[
zt, zt|t

]
=

1

k

1− (λ (1− κ) ρ)2

1 + λ (1− κ) ρ2
V [zt|t]

Cov
[
zt|t, zt|t−1

]
=

[
κ ρ2 + κ ρ2

1

k

1− (λ (1− κ) ρ)2

1 + λ (1− κ) ρ2

]
V [zt|t]

=
ρ2 + λ (1− κ) ρ2

1 + λ (1− κ) ρ2
V [zt|t] ≡ c̄ V [zt|t]
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Then,

Cov
[
zt|t−1, zt|t − zt|t−1

]
V [zt|t − zt|t−1]

=
(c̄− ρ2) V [zt|t]

(1 + ρ2 − 2 c̄)V [zt|t]
=

c̄− ρ2

1 + ρ2 − 2 c̄
=

λ (1− κ) ρ2

1− λ (1− κ) ρ2

Finally, we can derive that βC is expressed as follows.

βC =
1− κ

κ

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
(J.42)

Steady-state Uncertainty

I denote the steady state uncertainty of zt as Σ−1 ≡ V [zt|mi,t−1, ni,t−1], Σm ≡ V [zt|mi,t],

and Σ ≡ V [zt|mi,t, ni,t], which satisfy the following stationary relationship.

Σ−1 = ρ2Σ + σ2
ϵ (J.43a)

Σm = (1− λ)σ2
z + λΣ−1 (J.43b)

(Σ)−1 = (Σm)−1 +
(
σ̃2
u

)−1 (J.43c)

where σ2
z is the unconditional variance of z, which equals = σ2

ϵ

1−ρ2
, and σ̃2

u = ϕn

1−ϕn
σ2
z

captures the noisy news.

The steady-state κ and b are

κ =
Σm

Σm + σ̃2
u

(J.44)

b = (1− λ)
σ̃2
u

Σm + σ̃2
u

(J.45)

And we have shown earlier that λ = 1− ϕm.
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Comparative Statics

Comparative Statics for the Uncertainty

Equations (J.43) implicitly impose the following relation.

F
(
Σ; σ̃2

u, λ
)
= (Σm)−1 +

(
σ̃2
u

)−1 − (Σ)−1

=
(
(1− λ)σ2

z + λ
(
ρ2Σ + σ2

ϵ

))−1
+
(
σ̃2
u

)−1 − (Σ)−1 = 0 (J.46)

Then, the derivatives of F (Σ; σ̃2
u, λ) = 0 with respect to σ̃2

u and λ are

∂F

∂σ̃2
u

= − (Σm)−2 λ ρ2
∂Σ

∂σ̃2
u

−
(
σ̃2
u

)−2
+ (Σ)−2 ∂Σ

∂σ̃2
u

= 0

∂F

∂λ
= − (Σm)−2

(
−σ2

z + ρ2Σ + σ2
ϵ + λ ρ2

∂Σ

∂λ

)
+ (Σ)−2 ∂Σ

∂λ
= 0

Rearranging yields the derivatives of σ with respect to σ̃2
u and λ.

∂Σ

∂σ̃2
u

=

((
Σm

Σ

)2

− λ ρ2

)−1(
Σm

σ̃2
u

)2

> 0

∂Σ

∂λ
= −

((
Σm

Σ

)2

− λ ρ2

)−1 (
σ2
z − Σ−1

)
= −

((
Σm

σ

)2

− λ ρ2

)−1
Σm

1− λ

(
1− Σ−1

Σm

)
< 0

Additionally, the derivative of Σm with respect to σ̃2
u is

∂Σm

∂σ̃2
u

= λ ρ2
∂Σ

∂σ̃2
u

= λ ρ2

((
Σm

Σ

)2

− λ ρ2

)−1(
Σm

σ̃2
u

)2

> 0

241



and with respect to λ:

∂Σm

∂λ
= −ρ2

(
σ2
z − Σ

)
+ λ ρ2

∂Σ

∂λ

= − Σm

1− λ

(
1− Σ−1

Σm

){
1 +

λ ρ2(
Σm

Σ

)2 − λρ2

}

= − Σm

1− λ

1− Σ−1

Σm

1− λρ2
(

Σ
Σm

)2 < 0

Note that 1 > Σ−1

Σm > Σ
Σm > λρ2

(
Σ
Σm

)2
> 0, making the last term be between 0 and 1.

Comparative Statics for κ and b

Now we turn to the comparative statistics of κ and b. First, the derivative of b with

respect to σ̃2
u is computed as:

∂b

∂σ̃2
u

= (1− λ)
1

(Σm + σ̃2
u)

2

{(
Σm + σ̃2

u

)
− σ̃2

u

(
∂Σm

∂σ̃2
u

+ 1

)}
= (1− λ)

Σm

(Σm + σ̃2
u)

2

{
1− λ ρ2

Σm

Σ
− 1(

Σm

Σ

)2 − λρ2

}
> 0

We can easily see that
Σm

Σ
−1

(Σm

Σ )
2
−λρ2

∈ (0, 1), which makes the term inside the bracket be

positive. Next, the derivative of b with respect to λ is derived as:

∂b

∂λ
= − σ̃2

u

Σm + σ̃2
u

− (1− λ)
σ̃2
u

(Σm + σ̃2
u)

2

∂Σm

∂λ
= − σ̃2

u

Σm + σ̃2
u

(
1 +

1− λ

Σm + σ̃2
u

∂Σm

∂λ

)
= − σ̃2

u

Σm + σ̃2
u

(
1− Σm

Σm + σ̃2
u

1− Σ−1

Σm

1− λρ2
(

Σ
Σm

)2
)
< 0
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In addition, the derivative of κ with respect to σ̃2
u is:

∂κ

∂σ̃2
u

= − Σm

(Σm + σ̃2
u)

2

{
1− ∂Σm

∂σ̃2
u

σ̃2
u

Σm

}
= − Σm

(Σm + σ̃2
u)

2

{
1− λρ2

Σm

Σ
− 1(

Σm

Σ

)2 − λρ2

}
< 0

Finally, the derivative of κ with respect to λ:

∂κ

∂λ
=

σ̃2
u

(Σm + σ̃2
u)

2

∂Σm

∂λ
< 0

Comparative Statics for βI

Now we combine the above comparative statistics to analyze how βI and βC change

with ϕn and ϕm. Note first from (J.41) that ϕn and ϕm affect βI through the bias term b.

The derivative of βI with respect to b is:

∂βI
∂b

= −
(
2 b+ ρ−2 − 1

)−2 (
ρ2 − 1

)
< 0

Therefore, we get that

∂βI
∂ϕm

=
∂βI
∂b

∂b

∂ϕm

= −∂βI
∂b

∂βI
∂λ

< 0 (J.47a)

∂βI
∂ϕn

=
∂βI
∂b

∂b

∂σ̃2
u

∂σ̃2
u

∂ϕn

< 0 (J.47b)

Comparative Statics for βC

Next, we analyze the comparative statics for βC . First, the derivative of βC with respect

to ϕn is more straightforward. From (J.42), we can see that βC decreases in κ, and from
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above we also know that κ decreases in σ̃2
u. Therefore, we have

∂βC
∂ϕn

=
∂βC
∂κ

∂κ

∂σ̃2
u

∂σ̃2
u

∂ϕn

> 0 (J.48)

The derivative of βC with respect to ϕm is more involved. We can compute that

∂βC
∂ϕm

= − 1

κ2
∂κ

∂ϕm

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
+

1− κ

κ

∂

∂ϕm

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
= − 1

κ2
∂κ

∂ϕm

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
+

1− κ

κ
(1− λ)

∂

∂ϕm

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
+

1− κ

κ

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
∂(1− λ)

∂ϕm

= − 1

κ2
∂κ

∂ϕm︸ ︷︷ ︸
<0

+
1− κ

κ
(1− λ)

∂

∂ϕm

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
︸ ︷︷ ︸

<0

− 1

κ2

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)(1− λ)
∂κ

∂ϕm︸︷︷︸
>0

−k (1− κ)


The last equation holds because ∂(1−λ)

∂ϕm
= 1. Since all the terms except the last one are

negatively contributing to ∂βC

∂ϕm
, we can further see that

∂βC
∂ϕm

< − 1

κ2
∂κ

∂ϕm

+
1− κ

κ

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
= −1− κ

κ

(
∂σm

∂ϕm

− λ (1− κ) ρ2

1− λ (1− κ) ρ2

)

= −1− κ

κ

(1− κ) ρ2
(

σ2
z

σ
− 1
)

1− λ (1− κ)2 ρ2
− λ (1− κ) ρ2

1− λ (1− κ) ρ2


= −1− κ

κ

λ (1− κ) ρ2

1− λ (1− κ) ρ2

{
1

λ

(
σ2
z

Σ
− 1

)
1− λ (1− κ) ρ2

1− λ (1− κ)2 ρ2
− 1

}

I would like to show that we can find σ̂2
u such that for any λ, the term in the bracket is

positive for all σ̃2
u such that σ̃2

u ≤ σ̂2
u and negative otherwise.

First, it is straightforward to see that the term in the bracket is positive for σ̃2
u = 0 (since
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Σ → 0) and negative for σ̃2
u → ∞ (since σ → σ2

z) for any values of ρ, σϵ, and λ. Next, we

can also see that the term in the bracket is decreasing in σ̃2
u for any given ρ, σϵ, and λ: σ2

z

σ

decreases in σ̃2
u and 1−λ(1−κ)ρ2

1−λ(1−κ)2ρ2
decreases in 1 − k (and accordingly also decreases in σ̃2

u).

Therefore, there exists a σ̂2
u such that the term in the bracket is positive for any ρ, σϵ, and

λ as long as σu ≤ σ̂2
u. In practice, we could find such σ̂2

u by finding σ̃2
u under which

1

λ

(
σ2
z

Σ
− 1

)
1− λ (1− κ) ρ2

1− λ (1− κ)2 ρ2
= 1

for any given ρ, σ2
ϵ and λ. For a given value of ρ and σ2

ϵ , we can define the minimum σ̂2
u for

all λ as σ̂2
u ≡ g (ρ, σϵ). Therefore, we can conclude that ∂βC

∂ϕm
< 0 as long as σ̃2

u ≤ g (ρ, σ2
ϵ ).

Equivalently, ∂βC

∂ϕm
< 0 as long as ϕn ≤ ϕ̄n ≡ ḡ (ρ, σ2

ϵ ), where ḡ (ρ, σ2
ϵ ) can be easily defined

using the definition σ̃2
u = ϕn

1−ϕn
σ2
z .
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10.5 Estimation

Data Source Description

Survey Forecasts Data

The Survey of Professional Forecasters (SPF) began in 1968:Q4 and was taken over by

the Philadelphia Fed in 1990:Q2. Forecasters submit their projections in the middle month

of each quarter. Two major new data releases are available to the survey participants before

submitting their survey. One is the release of the Bureau of Economic Analysis’ advance

report of the national income and product accounts, which contains the first estimate of

GDP and its components for the previous quarter. This is released at the end of the first

month of each quarter. The other is the release of the Bureau of Labor Statistics’ monthly

Employment Situation Report, which is released on the first Friday of each month.

Variable information I use the following eleven variables in the ”U.S. Business Indica-

tors” Section. To ease the notation burden, I use the acronym when necessary.

1. Nominal Gross Domestic Product (NGDP)

• Seasonally adjusted, annual rate

• Before 1992, forecasts for nominal GNP

2. Real Gross Domestic Product (RGDP)

• Seasonally adjusted, annual rate

• Chain-weighted real GDP. Before 1992, fixed-weighted real GDP. Before 1981:Q3,

RGDP is computed as NGDP/PGDP*100.

3. GDP Chain-Weighted Price Index (PGDP)

• Seasonally adjusted, annual rate
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• Chain-weighted GDP price index. The base year varies. Before 1992, GNP

deflator.

4. Corporate Profits After Taxes (CPROF)

• Seasonally adjusted, annual rate

• Before 2006, nominal corporate profits after tax, excluding inventory valuation

adjustment (IVA) and capital consumption adjustment (CCAdj)

5. Civilian Unemployment Rate (UNEMP)

• Seasonally adjusted

• Quarterly average of the monthly unemployment rates

6. Industrial Production Index (INDPROD)

• Seasonally adjusted

• The base year of the index varies

• Quarterly average of the monthly levels

7. Housing Starts (HOUSING)

• Seasonally adjusted, annual rate

• Quarterly average of the monthly levels

8. Consumer Price Index (CPI)

• Seasonally adjusted

• Headline CPI inflation rate. The unit of the quarterly forecasts is a quarter-over-

quarter annualized growth rate of the quarterly average price index level

• Survey starts in 1981:Q3

9. 3-month Treasury Bill Rate (TBILL)
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• Quarterly average of the daily levels

10. AAA Corporate Bond Yield (BOND)

• Quarterly average of the daily levels of Moody’s Aaa corporate bond yields

• Before 1990Q4, new, high-grade corporate bond yield

11. 10-year Treasury Bond Rate (TBOND)

• Quarterly average of the daily levels of 10-year Treasury bond rate

Data availability The survey forecasts have been available for most of these variables

since 1968Q4. Exceptions are CPI, TBILL, BOND, and TBOND, whose survey forecasts

became available in 1981.

Forecast horizons Forecasters provide (1) quarterly projections for five quarters (current

and up to four-quarter-ahead) and (2) annual projections for the current and the following

year. For this paper, I use quarterly projections.

Forecast unit Forecasters could provide forecasts using either level or growth rates for

most variables. The exception is the forecasts for CPI and PCE, for which forecasters make

quarter-over-quarter forecasts.

I compute forecasters’ projections about how the variables will change from the previ-

ous quarter. For most variables, I take a log difference. For the financial variables and the

unemployment, I take the difference. I annualize this difference to compare across differ-

ent forecast horizons. For example, for the variables I take the log-difference, forecasts are

defined as

Fi,t yt+h = (log (Fi,t Yt+h)− log (Fi,t Yt−1))×
4

h

Fi,t−1 yt+h = (log (Fi,t−1 Yt+h)− log (Fi,t−1 Yt−1))×
4

h+ 1
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For variables I take the difference, forecasts are defined as

Fi,t yt+h = (Fi,t Yt+h − Fi,t Yt−1)×
4

h

Fi,t−1 yt+h = (Fi,t−1 Yt+h − Fi,t−1 Yt−1)×
4

h+ 1

When computing the forecast revision, I compare these forecasts to those made in

the previous quarter. Forecasts from the previous quarters are projections about how the

variables will change in the next quarter. Forecast revisions are defined as

Fi,t yt+h − Fi,t−1 yt+h

Outlier treatment After constructing the forecasts described above, I drop some obser-

vations to restrict the influence of a few outlier variables. First, in each period, I remove

forecasts that are five quantiles outsides of the median forecasts. And I only keep individ-

ual forecasts that have more than ten observations of the error-revision pairs.

I further restrict samples to measure the forecast behavior in the normal business cycle.

During a likely structural change, forecasters might use different forecasting models than

the one they would use during the regular cycle. To systematically identify these episodes, I

compute the average size of forecast revisions among forecasters each period and remove

the top 5 percentile periods. I find such periods of extensive revisions for each forecast

horizon. For variables of 200-period observations, I am dropping ten periods. For example,

here is the list of periods removed for the forecast of the current quarter realizations for

each variable.

1. NGDP: 1974q4, 1975q1, 1980q1, 1981q3, 1981q4, 2001q4, 2008q4, 2009q1, 2020q2,

2020q3

2. RGDP: 1970q4, 1974q4, 1975q1, 1980q1, 1980q2, 1981q4, 2001q4, 2009q1, 2020q2,

2020q3
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3. PGDP: 1970q2, 1973q4, 1974q2, 1974q4, 1975q2, 1979q3, 1980q2, 1981q3, 2020q2,

2022q2

4. CPROF: 1974q4, 1981q1, 1981q4, 1982q1, 1982q2, 2002q1, 2005q4, 2020q2, 2020q3

2020q4

5. UNEMP 1974q4, 1975q1, 1980q2, 1981q4, 1982q4, 2001q4, 2009q1, 2009q2, 2020q2,

2020q3, 2020q4

6. INDPROD: 1970q4, 1974q4, 1975q1, 1980q2, 1980q3, 1981q4, 1982q1, 1982q4,

2020q2, 2020q3

7. HOUSING: 1973q4, 1974q4, 1978q2, 1980q2, 1981q1, 1981q3, 1981q4, 2009q1,

2020q2, 2020q3

8. CPI: 1982q1, 1983q1, 1986q2, 1990q4, 2008q4, 2009q1, 2015q1, 2020q2

9. TBILL: 1981q4, 1982q1, 1982q3, 1982q4, 1984q4, 2001q4, 2008q4, 2020q2

10. BOND: 1981q4, 1982q1, 1982q2, 1982q3, 1982q4, 1983q3, 1984q2, 1994q2

11. TBOND: 1992q3, 1994q2, 1996q2, 2002q3, 2008q1, 2020q2, 2022q2

Real-time Macroeconomic Data

I use the real-time data set provided by the Philadelphia Fed. The first release of each

variable is used as the “true” realization, which has two uses for my exercise. First, I use

this data to compute the forecast errors. Second, I estimate the parameters related to

the data-generating process using this data. The last data point I use is 2019:Q4. This is

because many variables have an abrupt change during the Covid period, which I assume

is not well described as a stationary distribution.

Using real-time data allows us to compute the forecast error correctly. Macroeconomic

variables are redefined or reclassified, and the base year changes for the real variables.
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Therefore, we must compare the forecast data to a correct realized macro variable with

a consistent definition. The real-time data includes the latest data available at any given

vintage. The data released for the same vintage is constructed based on an internally

consistent variable definition and the same base year. At least for data released after 1996

(when the chain weighting replaced the fixed-weighing method), the change of base year

doesn’t affect the growth rate of variables.

Regression Estimation

As discussed in the main text, I estimate three regressions. First, following the specifi-

cation proposed in Bordalo, Gennaioli, Ma, and Shleifer (2020b), I estimate the following

regression.

yt+h − Fi,t yt+h = αi,I + βI (Fi,t yt+h − Fi,t−1 yt+h) + Ih + errori,t,h (J.49)

Fi,t yt+h is forecaster i’s projected h-quarter-ahead change of yt from the previous quarter,

and the revision variable captures how her belief changed from the previous quarter. αi,I is

a dummy variable for each forecaster, and Ih is a dummy variable for each forecast horizon

that ranges from h = 0 to h = 3. I pool all forecast horizons when estimating βI . The top

panel in Table 3.7 reports the results.

The second regression is from Coibion and Gorodnichenko (2015).

yt+h − Ft yt+h = αC + βC (Ft yt+h − Ft−1 yt+h) + Ih + errort,h (J.50)

Ft yt+h is the average forecast of Fi,t yt+h, for which I use the sample mean of individual

forecasts at any given time t. Again, I pool all forecast horizons when estimating βC . The

middle panel in Table 3.7 reports the results.
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Finally, the last regression follows the specification from Gemmi and Valchev (2021).

Fi,t yt+h − Fi,t−1 yt+h = αi,K + βK (Ft−1 yt+h − Fi,t−1 yt+h) +Dt + Ih + errori,t (J.51)

where Dt is the time dummy. This specification, in essence, regresses the de-meaned

forecast revision on de-meaned forecast surprises (defined as yt+h−Fi,t−1 yt+h). All forecast

horizons are pooled. The bottom panel in Table 3.7 reports the results.

I also report the estimated regression coefficients using only a single forecast horizon.

Table 3.8 shows the coefficients estimated from the current quarter forecasts. And Table

3.9 shows the coefficients estimated from the three-quarter-ahead forecasts. Finally, I also

report the coefficients using the entire sample period in Table 3.10. For this version, I do

not drop the high-mean-squared-error periods identified in the previous section.

CPI long-term forecasts

To estimate the uncertainty about the long-run mean, I estimate how forecasts of µ are

revised in response to news about the current quarter. I use the following specification to

build on the intuition of Gemmi and Valchev (2021).

(Fi,t µ− Fi,t−1 µ)− (Ft µ− Ft−1 µ) = αi,µ,K + βµ,K (Ft−1 µ− Fi,t−1 µ) + errori,µ,t (J.52)

where Fi,t µ is the forecast about the long-run, and Fi,t µ is the average of Fi,t µ across

forecasters at time t.

Among the forecast data, the only variable that allows the estimation of the above

regression specification is that of the CPI. SPF asks panelists to submit their views about the

annual average rate of headline CPI inflation over the next five and ten years. The five-year

forecast data started in 2005Q3, and the ten-year forecast data started in 1991Q4. Table

3.11 reports the estimation results. I also report the response of the three-quarter-ahead

and the current-quarter forecasts in response to the news about the current quarter’s CPI
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as a comparison. Unlike the previous regression specifications in Table 3.7, I transform

the quarterly forecast data to reflect the annual average inflation rate to maintain the

definition consistent with the long-term forecast data.
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Table 3.7: Baseline Regression Coefficients

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.271∗∗∗ -0.249∗∗∗ -0.318∗∗∗ -0.440∗∗∗ -0.0476 -0.180∗∗∗ -0.252∗∗∗ -0.174∗∗ -0.00757 -0.349∗∗∗ -0.124∗∗

(0.0446) (0.0515) (0.0445) (0.0465) (0.0470) (0.0607) (0.0603) (0.0853) (0.0390) (0.0438) (0.0478)

N 20919 20875 20657 14646 21279 19364 20126 14722 14993 12551 12645

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.632∗∗∗ 0.452∗∗∗ 0.706∗∗∗ 0.685∗∗∗ 0.617∗∗∗ 0.610∗∗∗ 0.505∗∗∗ 0.548∗∗∗ 0.294∗∗∗ 0.0528 0.283∗∗∗

(0.106) (0.129) (0.129) (0.181) (0.0913) (0.139) (0.113) (0.164) (0.0459) (0.0719) (0.0573)

N 797 796 799 791 800 796 795 604 614 613 455

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.545∗∗∗ 0.600∗∗∗ 0.600∗∗∗ 0.513∗∗∗ 0.623∗∗∗ 0.576∗∗∗ 0.579∗∗∗ 0.560∗∗∗ 0.727∗∗∗ 0.678∗∗∗ 0.701∗∗∗

(0.0256) (0.0227) (0.0277) (0.0289) (0.0190) (0.0239) (0.0241) (0.0303) (0.0319) (0.0234) (0.0275)

N 21302 21268 20950 14896 21560 19684 20463 15008 15157 12638 12727

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 3.8: Regression Coefficients for Current-quarter Forecasts Only

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.300∗∗∗ -0.310∗∗∗ -0.365∗∗∗ -0.438∗∗∗ -0.0794∗ -0.193∗∗∗ -0.292∗∗∗ -0.0795 -0.0742∗∗ -0.327∗∗∗ -0.0546

(0.0473) (0.0536) (0.0508) (0.0618) (0.0448) (0.0684) (0.0609) (0.0762) (0.0370) (0.0412) (0.0394)

N 5346 5357 5289 3722 5305 4918 5155 3757 3794 3183 3175

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.524∗∗∗ 0.243 0.553∗∗∗ 0.879∗∗∗ 0.455∗∗∗ 0.483∗∗ 0.369∗∗∗ 0.567∗∗ 0.182∗∗∗ 0.0351 0.293∗∗∗

(0.159) (0.185) (0.199) (0.264) (0.0892) (0.190) (0.139) (0.229) (0.0447) (0.0921) (0.0587)

N 202 202 203 201 202 202 202 153 155 155 114

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.591∗∗∗ 0.669∗∗∗ 0.666∗∗∗ 0.533∗∗∗ 0.756∗∗∗ 0.669∗∗∗ 0.673∗∗∗ 0.653∗∗∗ 0.921∗∗∗ 0.851∗∗∗ 0.861∗∗∗

(0.0312) (0.0267) (0.0321) (0.0387) (0.0244) (0.0298) (0.0257) (0.0382) (0.0405) (0.0289) (0.0281)

N 5400 5414 5316 3764 5332 4964 5203 3786 3794 3183 3175

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 3.9: Regression Coefficients for three-quarter-ahead Forecasts Only

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.236∗∗∗ -0.140 -0.206∗∗∗ -0.461∗∗∗ 0.111 -0.147 -0.285∗∗ -0.302∗∗∗ 0.0998 -0.407∗∗∗ -0.291∗∗∗

(0.0721) (0.0951) (0.0629) (0.0604) (0.117) (0.0888) (0.111) (0.112) (0.0873) (0.0653) (0.0823)

N 4994 4920 4954 3496 5101 4592 4810 3570 3611 3080 3061

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.977∗∗∗ 0.858∗∗ 1.090∗∗∗ 0.181 1.306∗∗∗ 1.002∗∗∗ 0.347 0.453 0.504∗∗ -0.113 0.188

(0.365) (0.352) (0.375) (0.509) (0.392) (0.378) (0.444) (0.418) (0.252) (0.266) (0.261)

N 194 194 195 193 195 193 194 149 152 152 113

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.500∗∗∗ 0.509∗∗∗ 0.545∗∗∗ 0.489∗∗∗ 0.439∗∗∗ 0.467∗∗∗ 0.449∗∗∗ 0.466∗∗∗ 0.507∗∗∗ 0.481∗∗∗ 0.491∗∗∗

(0.0291) (0.0341) (0.0316) (0.0286) (0.0195) (0.0305) (0.0318) (0.0332) (0.0254) (0.0228) (0.0282)

N 5131 5059 5060 3579 5212 4706 4931 3683 3691 3130 3115

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 3.10: Regression Coefficients Using All Sample Periods

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.114∗∗ -0.130∗∗ -0.230∗∗∗ -0.393∗∗∗ -0.278∗∗∗ -0.149 -0.259∗∗∗ -0.0499 -0.0226 -0.362∗∗∗ -0.114∗∗

(0.0573) (0.0631) (0.0554) (0.0660) (0.0382) (0.0931) (0.0698) (0.123) (0.0443) (0.0446) (0.0439)

N 21925 21904 21547 15391 22362 20309 21017 15366 15516 12871 13192

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.152∗ 0.105 0.772∗∗∗ 0.483∗∗∗ -0.209∗∗∗ 0.318∗∗∗ 0.201 0.463∗∗∗ 0.162∗∗∗ -0.147∗∗ 0.204∗∗∗

(0.0835) (0.0809) (0.148) (0.183) (0.0369) (0.121) (0.138) (0.107) (0.0536) (0.0737) (0.0429)

N 837 837 837 833 841 837 837 638 646 646 478

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.578∗∗∗ 0.631∗∗∗ 0.611∗∗∗ 0.498∗∗∗ 0.783∗∗∗ 0.601∗∗∗ 0.628∗∗∗ 0.589∗∗∗ 0.752∗∗∗ 0.698∗∗∗ 0.704∗∗∗

(0.0350) (0.0277) (0.0275) (0.0323) (0.0782) (0.0371) (0.0360) (0.0408) (0.0313) (0.0256) (0.0267)

N 22308 22297 21916 15641 22643 20629 21354 15652 15680 12976 13354

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 3.11: Estimationg Using the Long-term CPI Forecasts

10-Year 5-Year 3-quarter Current quarter

Surprise 0.0828∗∗∗ 0.129∗∗∗ 0.460∗∗∗ 0.855∗∗∗

(0.0183) (0.0413) (0.0599) (0.0310)

N 2672 1613 3496 3602

Significance: *=10%, **=5%; ***=1%.
Standard errors in parentheses are two-way clustered in forecaster and
time.
Dummy variables for the forecaster and forecast horizon are controlled.
Variables have different sample periods. The longest sample is 1968Q4-
2022Q2.
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Data Generating Process: AR(1)

I use the following steps to set the parameters for each macroeconomic variable yt.

Using the actual realization, I first get the OLS estimates of the AR(1) parameter ρ and σ2
ϵ .

Table 3.12 reports the parameters.

Table 3.12: Data Generating Process: AR(1) process

ρ σϵ

Nominal Gross Domestic Product 0.89 1.31

Real Gross Domestic Product 0.84 1.32

GDP Chain-Weighted Price Index 0.83 1.31

Corporate Profits After Taxes 0.75 8.03

Industrial Production Index 0.85 2.49

Housing Starts 0.84 11.68

Consumer Price Index 0.75 2.0

AAA Corporate Bond Yield 0.83 0.51

Treasury Bond Rate, 10-year 0.82 0.63
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10.6 A Stationary Relationship

In summary, the posterior mean for xt evolves according to

xi,i,t|t = (I −Kt)x
m
i,i,t|t +Kt xt + ν̄t + ūi,t

= (I −Kt)
(
(I − Λt)µx + Λt xi,i,t|t−1 + ωi,t

)
+Kt xt + ν̄t + ūi,t

= (I −Kt) (I − Λt)µx + (I −Kt) ΛtAxi,i,t−1|t−1 +Kt xt + ν̄t + ω̄i,t + ūi,t

where ω̄i,t ≡ (I −K)ωi,t. To ease the notation burden, I define ∆t ≡ (I −Kt) (I − Λt),

ĉt ≡ ∆t µx and Ât ≡ (I −Kt −∆t)A. Then,

xi,i,t|t = ĉt + Ât xi,i,t−1|t−1 +Kt xt + ν̄t + ω̄i,t + ūi,t (J.53)

Stationary relationship As t→ ∞, these matrixes converge to a steady state level. Let’s

denote this as K̄t → K̄, Kt → K and Λt → Λ. Then, forecasts for xt evolve according to

xi,i,t|t = ĉ+ Â xi,i,t−1|t−1 +K xt + ν̄t + ω̄i,t + ūi,t (J.54)

where the variance of the noise is

V [ν̄t] = V [K̄ νi,t] = σ2
ν K̄ K̄ ′

V [ūi,t] = V [K̄ ui,t] = σ2
u K̄ K̄ ′

V [ω̄i,t] = V [(I −K)ωi,t] = (I −K)σω,t (I −K)′ = (I −K) (I − Λ) V [xi,i,t|t−1] Λ
′ (I −K)′

= ∆V [xi,i,t|t−1] (I −K −∆)′
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Statistical properties of xi,i,t|t

Since xi,i,t|t is a conditional expectation of xt given available information at time t, we

can easily see that following holds.

Cov
[
xi,i,t|t, xt

]
= V [xi,i,t|t] = σx − Σt|t

Cov
[
xi,i,t|t, xi,i,t−1|t−1

]
= Cov

[(
Â+K A

)
xi,i,t−1|t−1, xi,i,t−1|t−1

]
= (I −∆)A

(
σx − Σt|t

)
Evolution of the average forecasts for xt

The average forecasts for xt evolve according to

xt|t = ĉ+ Â xt−1|t−1 +K xt + ν̄t (J.55)

Therefore, we can see that

xi,i,t|t − xt|t = Â
(
xi,i,t−1|t−1 − xt−1|t−1

)
+ ω̄i,t + ūi,t

By iterating backward, we can also see that the difference between xi,i,t|t and xt|t is the

history of noise realizations.

xi,i,t|t − xt|t =
∞∑
j=0

Âj (ω̄i,t−j + ūi,t−j) ≡ NoiseHistoryi,t

Therefore, the covariance between xt|t and xt is the same as the covariance between xi,i,t|t

and xt. Also, we can express the variance of xt|t as the variance of xi,i,t|t subtracted by the

variance of the history of noises.

V [xi,i,t|t] = V [xt|t] + V [NoiseHistoryi,t]
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where V [NoiseHistoryi,t] = V [
∑∞

j=0 Â
j (ω̄i,t + ūi,t)

(
Âj
)′
]. Finally, the serial correlation of

xt|t is derived.

Cov
[
xt|t, xt−1|t−1

]
= Â V [xt|t] +K ACov

[
xt, xt|t

]
=
(
Â+K A

)
V [xi,i,t|t]− Â

(
I − Â

)−1

V [ω̄i,t + ūi,t]

= Cov
[
xi,i,t|t, xi,i,t−1|t−1

]
− Â

(
I − Â

)−1

V [ω̄i,t + ūi,t]

Perceived covariance of individual forecast errors and revisions

Given the prior xt|mi,t ∼ N
(
xmi,i,t|t, Σ

m
t|t

)
, posterior distribution of xt|si,t is chosen so

that it satisfies Cov
[
xt − xi,i,t|t, xi,i,t|t − xmi,i,t|t

]
= O. However, we are interested in the

covariance between the forecast error and revision observed by an econometrician. To see

the difference, it is useful to express the law of motion of xi,i,t|t as follows.

xi,i,t|t = (I −K)xmi,i,t|t +K xt + ν̄t + ūi,t

= (I −K)xi,i,t|t−1 +K xt − (I −K) (I − Λ)
(
xi,i,t|t−1 − µx

)
+ ν̄t + ūi,t + ω̄i,t

From this, we can see that

Cov
[
xt − xi,i,t|t, xi,i,t|t−1

]
= Cov

[
E[xt − xi,i,t|t

∣∣ si,t−1], E[xi,i,t|t−1

∣∣ si,t−1]
]

= Cov
[
E[xt − xi,i,t|t

∣∣ si,t−1], xi,i,t|t−1

]
= (I −K) (I − Λ)V [xi,i,t|t−1]
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Therefore,

Cov
[
xt − xi,i,t|t, xi,i,t|t − xi,i,t|t−1

]
= Cov

[
xt − xi,i,t|t,

(
xi,i,t|t − xmi,i,t|t

)
−
(
xi,i,t|t−1 − xmi,i,t|t

)]
= −Cov

[
xt − xi,i,t|t, xi,i,t|t−1 − xmi,i,t|t

]
= −Cov

[
xt − xi,i,t|t, xi,i,t|t−1

]
(I − Λ)′ − Cov

[
xi,i,t|t, ωi,t

]
= − (I −K) (I − Λ)V [xi,i,t|t−1] (I − Λ)′ − (I −K)V [ωi,t]

= − (I −K) (I − Λ)V [xi,i,t|t−1] = − (I −K)
(
σm
t|t − σt|t−1

)
the last equality follows from V [ωi,t] = (I − Λ)V [xi,i,t|t−1]Λ

′. If memory is perfect, we can

confirm that forecast error would not be predicted by forecast revision.

Perceived covariance of average forecast errors and revisions

The statistical properties of the average forecast xt|t are determined from the following

law of motion.

xt|t = (I −K)xt|t−1 +K xt − (I −K) (I − Λ)
(
xt|t−1 − µx

)
+ ν̄t

Rearranging terms yields

K
(
xt − xt|t

)
= (I −K)

{(
xt|t − xt|t−1

)
+ (I − Λ)

(
xt|t−1 − µx

)}
− ν̄t

If K is invertible,

Cov
[
xt − xt|t, xt|t − xt|t−1

]
= K−1 (I −K)

{
V [xt|t − xt|t−1] + (I − Λ)Cov

[
xt|t−1, xt|t − xt|t−1

]}
−K−1Vnoise
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Correct covariance of forecast errors and revisions

While DM is uncertain about the value of µ, in reality, µ is a fixed parameter. Therefore,

the OLS regression of forecast error on revision will asymptotically converge to the covari-

ance of forecast error and revision arising from a fixed parameter. I show here how such

statistics differ from the one derived above (where the covariances are averaged across all

possible values of µ according to DM’s prior about µ). For individual forecasts,

Cov
[
xt − xi,i,t|t, xi,i,t|t − xi,i,t|t−1

∣∣µ]
= Cov

[
xt − xi,i,t|t, xi,i,t|t − xi,i,t|t−1

]
− Cov

[
E[xt − xi,i,t|t

∣∣µ], E[xi,i,t|t − xi,i,t|t−1

∣∣µ]]
Likewise, for average forecasts,

Cov
[
xt − xt|t, xt|t − xt|t−1

∣∣µ]
= Cov

[
xt − xt|t, xt|t − xt|t−1

]
− Cov

[
E[xt − xt|t

∣∣µ], E[xt|t − xt|t−1

∣∣µ]]
Note that the subtracted terms in the above two cases are the same since it must be that

E[xi,i,t|t
∣∣µ] = E[xt|t

∣∣µ] at all t. This term is non-zero because forecasts are biased even in

the long run, as DM fails to learn the correct level of µ. Using the fact that forecasts for xt

are stationary, that is E[xi,i,t|t
∣∣µ] = E[xi,i,t−1|t−1

∣∣µ], we have

E[xi,i,t|t
∣∣µ] = (I − Â

)−1

(∆µx +K E[x|µ])

Since we can express E[xi,i,t|t
∣∣µ] = cons + DE[xt|µ], where D ≡

(
I − Â

)−1

K, the cor-

rection term can be derived as

Cov
[
E[xt − xi,i,t|t

∣∣µ], E[xi,i,t|t − xi,i,t|t−1

∣∣µ]] = (I −D)V [E[xt|µ]]D′ (I − A)′
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Correct variance of revisions

The individual and average forecast revision variances are derived and can be com-

puted using the previously derived stationary relationship.

V [xi,i,t|t − xi,i,t|t−1] = V [xi,i,t|t] + V [xi,i,t|t−1]− Cov
[
xi,i,t|t, xi,i,t|t−1

]
− Cov

[
xi,i,t|t−1, xi,i,t|t

]
V [xt|t − xt|t−1] = V [xt|t] + V [xt|t−1]− Cov

[
xt|t, xt|t−1

]
− Cov

[
xt|t−1, xt|t

]
The correct variance of the forecast revision (conditional on a fixed µ) is

V [xi,i,t|t − xi,i,t|t−1

∣∣µ] = V [xi,i,t|t − xi,i,t|t−1]− V [E[xi,i,t|t − xi,i,t|t−1

∣∣µ]]
V [xt|t − xt|t−1

∣∣µ] = V [xt|t − xt|t−1]− V [E[xt|t − xt|t−1

∣∣µ]]
The correction term is the same for average and individual forecasts and is derived as

follows.

V [E[xi,i,t|t − xi,i,t|t−1

∣∣µ]] = V [(I − A)DE[xt|µ]] = (I − A)DV [E[xt|µ]]D′ (I − A)′

Gemmi-Valchev Proposal

From (J.54) and (J.55), forecast revisions are expressed as follows.

xi,i,t|t − xi,i,t|t−1 = ĉ+K
(
xt − xi,i,t|t−1

)
−∆xi,i,t|t−1 + ν̄t + ω̄i,t + ūi,t

xt|t − xt|t−1 = ĉ+K
(
xt − xt|t−1

)
−∆xt|t−1 + ν̄t

Then, the difference between individual and consensus forecast revisions (in other words,

de-meaned individual forecast revisions) can be derived as

(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)
= (K +∆)

(
xt|t−1 − xi,i,t|t−1

)
+ ω̄i,t + ūi,t
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The authors propose to estimate the covariance between the de-meaned forecast revisions

and the difference between consensus and individual forecasts from the previous period.

Cov
[(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)
, xt|t−1 − xi,i,t|t−1

]
= (K +∆)V [xt|t−1 − xi,i,t|t−1]

Note that this regression coefficient is well-defined only if individual forecasts deviate from

the consensus forecasts (that is, when ϕn > 0 or ϕm > 0).

Furthermore, we can see that the perceived covariance (based on DM’s prior about µ) is

the same as the correct covariance (given a fixed µ), unlike the other covariances I derived

earlier.

Cov
[(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)
, xt|t−1 − xi,i,t|t−1

∣∣µ]
= Cov

[(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)
, xt|t−1 − xi,i,t|t−1

]
This is because the correction term cancels out by de-meaning. That is,

E[
(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)∣∣µ] = 0

E[xt|t−1 − xi,i,t|t−1

∣∣µ] = 0

This result follows from E[xi,i,t|t
∣∣µ] = E[xt|t

∣∣µ] and E[xi,i,t|t−1

∣∣µ] = E[xt|t−1

∣∣µ].
To compute the regression coefficient, it remains to derive an expression for V [xt|t−1 −

xi,i,t|t−1]. Note that

xt|t − xi,i,t|t = Â
(
xt−1|t−1 − xi,i,t−1|t−1

)
− (ω̄i,t + ūi,t)

Therefore, V [xt|t − xi,i,t|t] satisfies the following fixed-point relation.

V [xt|t − xi,i,t|t] = ÂV [xt|t − xi,i,t|t]Â
′ + V [ω̄i,t + ūi,t]
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We can then derive

V [xt|t−1 − xi,i,t|t−1] = AV [xt|t − xi,i,t|t]A
′

Finally, for a given c′,

β =
c′ (K +∆)V [xt|t−1 − xi,i,t|t−1] c

c′ V [xt|t−1 − xi,i,t|t−1] c

Furthermore, the variance of the de-meaned forecast revisions is derived as

V [
(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)
] = (K +∆)V [xt|t−1 − xi,i,t|t−1] (K +∆)′ + V [ω̄i,t + ūi,t]

and it must be that V [
(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)∣∣µ] = V [
(
xi,i,t|t − xi,i,t|t−1

)
−
(
xt|t − xt|t−1

)
].

267



10.7 Monetary Model

I describe a textbook model below, but more details can be found in Gali (2008, Chapter

3).

Household Problem

A representative, infinitely-lived household maximizes the lifetime utility from con-

sumption and labor.

E0

β∑
t=0

[
C1−σ

t

1− σ
− N1+φ

t

1 + φ

]

where Ct is the quantity of the basket of goods consumed at time t, and Nt is the number

of hours worked. The consumption/savings and labor-supply decisions are subject to the

budget constraint that should be met every period.

PtCt +QtBt ≤ Bt−1 +WtNt + Tt

where Pt is the aggregate price index, Bt is the one-period bond and Qt its price, Wt is the

nominal hourly wage, and finally Tt is a lump-sum income. The household should also be

solvent after all, which is captured by the condition that limT→∞ EtBt ≥ 0.

The first order conditions and their Taylor expansion around the zero-inflation steady

state imply

wt − pt = σ ct + φnt (J.56)

ct = Et ct+1 −
1

σ
(−qt − Et πt+1 + log β) (J.57)

where the lowercase denotes the log of the variable denoted in uppercase.
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Firm Problem

A continuum of firms indexed by i ∈ [0, 1] produces a differentiated goods. The pro-

duction function is described as

Yt(i) = AtNt(i)

where At is the level of production technology, assumed to be common to all firms and

evolve exogenously over time.

Each firm reconsiders its price with probability 1− α, independent of when its price is

readjusted in the past. Thus, at any period, a mass of 1−α firms resets their prices and the

remaining mass of α firms keep their old prices. The aggregate price index is then formed

according to

Pt =

[
α (Pt−1)

1−η + (1− η)

(∫
P ∗
i,t di

)1−η
] 1

1−η

Optimal Price Setting

Suppose firm i chooses the price P ∗
i,t in period t. This price maximizes the current

market value of the profits if the firm cannot reoptimize the price forever.

max
Pi,t

Ei,t

[
∞∑
h=0

αhQt,t+h

(
Pi,t Yi,t+h|t −Ψt+h

(
Yi,t+h|t

))]

where α the probability of not resetting prices, Qt,t+h is the stochastic discount factor for

evaluating the future nominal payoffs generated at t + h, Yi,t+h|t is the output demanded

in period t+h if the price remains the one chosen at time t, and Ψt+h is the (nominal) cost
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function at time t+ h. Firm i takes into account that the demand Yi,t+h|t is given as

Yi,t+h|t =

(
Pi,t

Pt+h

)η

Ct+h

where θ is the elasticity of substitution among goods, Pt+k is the aggregate price at time

t+ h and Ct+h is the aggregate consumption at time t+ h.

The first-order condition implies that

Ei,t

[
∞∑
h=0

αhQt,t+hYi,t+h|t
(
P ∗
i,t −Mψt+h

)]
= 0

where M ≡ η
η−1

and ψt+h is the nominal marginal cost at t+h. Dividing by Pt−1 and letting

Πt,t+h ≡ Pt+h

Pt
, we can rewrite the first order condition as

Ei,t

[
∞∑
h=0

αhQt,t+hYi,t+h|t

(
P ∗
i,t

Pt−1

−MMCt+h Πt,t+h

)]
= 0

First-order Taylor expansion around the zero-inflation steady state implies that

p∗i,t − pt−1 = Ei,t

[
(1− αβ)

∞∑
h=0

(αβ)h ((mct+h −mc) + (pt+h − pt−1))

]

= Ei,t

[
∞∑
h=0

(αβ)h {(1− αβ) (mct+h −mc) + πt+h}
]

where mc is the steady state value of mct+h. From this expression, we can see that the

optimal reset price p∗i,t equals mc over a weighted average of the current and expected

nominal marginal costs.

Note that the marginal cost at t + h does not depend on the quantity firm i supplies.

This is because the marginal product of labor does not depend on quantity, as mpnt = at.
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Thus,

mct+h = wt+h − pt+h −mpnt+h = wt+h − pt+h − at+h

Equilibrium

Since market clears for all i goods, it follows that

Ct = Yt

which implies ct = yt. And the labor market clears, requiring

Nt =

∫
Nt(i) di

which can be shown to imply nt = yt − at in the first order approximation. Thus, using the

household’s optimality condition,

wt − pt = (σ + φ) yt − φat

Denoting ynt as the efficient level of output, we can show that ynt = 1+φ
σ+φ

at. I define the

output gap as

xt = yt − ynt

Thus, the marginal costs are derived as

mct+h = (σ + φ)xt
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Firms’ Macroeconomic Expectations

Substituting (G.22), we can see that inflation is determined as

πt = (1− α)

(
ẑt +

αβ

1− αβ
µ̂t

)

Substituting (G.23) and (G.24), we get

πt = (1− α)

{
(κ+ κµ) zt +

(
λ(1− κ) +

αβ

1− αβ
λ(1− κµ)

)
µ̂t−1

}

Defining κ̂ = κ+κµ and b̂ = λ(1−κ)+ αβ
1−αβ

λ(1−κµ), we can describe the above expression

as

πt = (1− α)
{
κ̂ zt + b̂ µ̂t−1

}
(J.58)

Inflation Determination

We can solve for the equilibrium inflation process using a guess-and-verify approach.

The equation (G.21) states that zt is determined by πt and et, and the equation (J.58)

states that πt is determined by zt and µ̂t−1. Thus, it is straightforward to see that two state

variables, et and µ̂t−1, determine inflation, and the relationship is linear. We guess the

following inflation process.

πt = φe et + φµ µ̂t−1 (J.59)
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Combining (G.21), (J.58), and (J.59), we can find the coefficients φe and φµ that verify

our initial guess. They are derived as below.

φe =
δ

1 + δ σ s+ 1
α

1−κ̂
κ̂

φµ =
1

1 + δ σ s+ 1
α

1−κ̂
κ̂

1− α

α

b̂

κ̂

where δ ≡ (1−α)(1−αβ)
α

, κ̂ = κ + κµ, and b̂ = λ(1 − κ) + αβ
1−αβ

λ(1 − κµ). When exploring

alternative monetary policies, I consider values of s such as

s = s∗ · θ

1− θ

in which case, we could express the coefficients φe and φµ as

φe =
1− θ

1− θ + θ δ̂ s∗ + 1−θ
α

1−κ̂
κ̂

δ

φµ =
1− θ

1− θ + θ δ̂ s∗ + 1−θ
α

1−κ̂
κ̂

1− α

α

b̂

κ̂

This expression makes it clear that a complete inflation stabilization (θ = 1) is supported

by φe = φm = 0.

Variability of Inflation

From (J.59), we can see that the variability of inflation is derived as

V [πt] = φ2
e V [et] + φ2

µ V [µ̂t−1]
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Therefore, it remains to derive the variability of µ̂t. First, note that from (G.21), zt is also

determined by two state variables.

zt = ϖe et +ϖµ µ̂t−1

where ϖe and ϖµ are defined as

ϖe =
α

1− α

((
1

α
− 1− θ + θδ̂

1− θ

)
φe + δ

)

ϖµ =
α

1− α

(
1

α
− 1− θ + θδ̂

1− θ

)
φµ

Using this expression, we can then describe the law of motion of µ̂t as

µ̂t = (λ (1− κµ) + κµϖµ)︸ ︷︷ ︸
≡ρµ

µ̂t−1 + κµϖe et

From this, we can see that

V [µ̂t] =
(κµϖe)

2

1− ρ2µ
V [et]

Therefore, the variability of inflation is derived as

V [πt] =

(
φ2
e +

(κµϖe)
2

1− ρ2µ

)
V [et]
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