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ABSTRACT The task of multi-target regression (MTR) is concerned with learning predictive models
capable of predicting multiple target variables simultaneously. MTR has attracted an increasing attention
within research community in recent years, yielding a variety of methods. The methods can be divided
into two main groups: problem transformation and problem adaptation. The former transform a MTR
problem into simpler (typically single target) problems and apply known approaches, while the latter
adapt the learning methods to directly handle the multiple target variables and learn better models which
simultaneously predict all of the targets. Studies have identified the latter group of methods as having
competitive advantage over the former, probably due to the fact that it exploits the interrelations of the
multiple targets. In the related task of multi-label classification, it has been recently shown that organizing
the multiple labels into a hierarchical structure can improve predictive performance.

In this paper, we investigate whether organizing the targets into a hierarchical structure can improve the
performance for MTR problems. More precisely, we propose to structure the multiple target variables into
a hierarchy of variables, thus translating the task of MTR into a task of hierarchical multi-target regression
(HMTR). We use four data-driven methods for devising the hierarchical structure that cluster the real values
of the targets or the feature importance scores with respect to the targets. The evaluation of the proposed
methodology on 16 benchmark MTR datasets reveals that structuring the multiple target variables into a
hierarchy improves the predictive performance of the corresponding MTR models. The results also show
that data-driven methods produce hierarchies that can improve the predictive performance even more than
expert constructed hierarchies. Finally, the improvement in predictive performance is more pronounced for

the datasets with very large numbers (more than hundred) of targets.

INDEX TERMS clustering, feature ranking, hierarchy, multi-target regression, target space

. INTRODUCTION

N supervised learning, the main goal is to learn, from
I a set of examples with known output (target) values,
a function predicting the target value of a previously
unseen example. The task where the examples refer to
one target is called single target prediction and if the
examples refer to more than one target is called multi-
target prediction. In certain studies, the target components
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are considered independently and predictive models are
built for each component separately. The overall predic-
tion is then generated as a combination of all per-target
predictions. In this way, the potential relations between
the target components are not taken into account and the
gap that is left with this is directly related with the quality
of the obtained models.

Considering the ¢ components of the output space, we
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can distinguish between single (¢t = 1) and multi-target
prediction (¢ > 1). If the target space consists of continu-
ous/numeric variables then the task at hand is multi-target
regression (MTR). Likewise, if the target space consists
of discrete/nominal variables then the task is called multi-
target classification. The multi-label classification can be
treated as a special case of multi-target classification [[1]].
Namely, multi-label classification (MLC) is the task of
learning from data examples where each example can
be associated with multiple labels, which belong to a
predefined set of labels. The point of interest in our study
is the multi-target regression task.

In many real life problems, for instance, in ecology
(predicting the abundance of different species occupy-
ing the same habitat [2], estimating different vegetation
quality indices for the same site [3]] and predicting the
composition of a community of organisms [4]), the target
space is structured, meaning that there are some internal
relations and dependencies (e.g., hierarchical structure)
among the targets. Finding those potential dependen-
cies/relations is one of the most challenging problems in
machine learning [5].

The methods for multi-target prediction can be cat-
egorized into two groups: (1) local methods (problem
transformation methods), that create an individual model
per target, and then combine the separate models in order
to obtain an overall prediction and (2) global methods
(known as big-bang methods or algorithm adaptation
methods), that predict all targets at once [6], [7]. The main
advantage of the global over the local methods is that the
latter exploit the potential dependencies among the targets
during the learning phase to obtain predictive models with
better predictive performance.

A drawback of global models is that they ignore the
local modularity in the connections among the target com-
ponents such as parent-child, siblings relationships etc. In
order to address this challenge, we focus on identifying
some potential target relations by structuring the output
space using a data-driven approach. Here, we approach
the problem of structuring the output space by looking
into two different spaces coupled with using different
clustering approaches (balanced k-means, agglomerative
and predictive clustering). First, we cluster the original
output space that consists of the target values for each
example. We then cluster the space consisting of the fea-
ture ranks for each component. At the end, we transform
a flat multi-target regression problem into a hierarchical
one using the hierarchy obtained by one of the cluster-
based approaches. In other words, we translate the MTR
task into a hierarchical multi-target regression (HMTR)
task. The main research question is to investigate whether
a predictive model learned on the transformed problem
can achieve better predictive performance compared to a
predictive model learned from the flat multi-target regres-

2

sion problem.

The predictive models that we use in the study are pre-
dictive clustering trees (PCTs). We selected PCTs since
they are global models that can be used for different struc-
tured output prediction tasks (including MTR and HMTR)
and they are constructed very efficiently. They are able to
make a predictions for several types of structured outputs
such as tuples of numerical/discrete values, time series,
and hierarchies of variables. More details can be found
in [8-[13]. PCTs can be considered as a generalization
of standard decision trees towards predicting structured
outputs. But the change in just a few of the training
examples can sometimes drastically change the structure
of the tree. To improve their predictive performance, the
predictive models can be combined into an ensemble [[14].
An ensemble is a set of single (base) predictive models
whose predictions are combined. For basic classification
and regression tasks, it is widely accepted that ensemble
learners improve the predictive performance of single tree
learners [6]].

More specifically, we use single PCTs and ensemble of
PCTs for both MTR and HMTR setting. We perform an
extensive empirical evaluation of the proposed methods
on 16 MTR benchmark datasets. Most of the datasets (11
out of 16 datasets) are also used in [15]]: The remaining
datasets from [[15]] have small number of targets (2 or 3)
and there is not much point in learning hierarchies in such
small output spaces. For hierarchy creation, we use ag-
glomerative clustering methods with single and complete
linkage, balanced k-means, and predictive clustering trees
(PCTs). In order to make our study more comprehensive,
we perform experiments on two large datasets (with 111
and 492 targets) thus exploring the effect of including
structures in large output spaces.

The results from the evaluation reveal that better pre-
dictive performance can be achieved by using data-driven
approaches to construct the hierarchies rather than con-
sidering either, the flat multi-target regression task, or
the pre-defined hierarchy created by a domain expert.
Moreover, for large datasets, the results are in line with
teh results for MLC [[16]], [[17]]: divisive hierarchy creation
algorithms (balanced k-means and PCTs for clustering)
are the best methods for clustering large output spaces.
All in all, constructing a hierarchy of the target variables
improves the predictive performance of the predictive
models.

The reminder of this paper is organized as follows.
In Section 2, we present the related work on the topic
of multi-target regression and hierarchical multi-target
regression. In Section 3, we show the data-driven ap-
proaches for structuring the target space and the space
created from feature ranks of the targets for MTR. Fur-
thermore, in this section we present the learning method-
ology used to create predictive models. Computational

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publigy s g e 5~ PR
10.1109/ACCESS.2019.2945084, IEEE Access l E E E ACCGSS

complexity is also discussed at this point. In Section 4, we
present the experimental design, where we describe out
data, point out the addressed experimental questions and
instantiate the parameters used in our study, present the
evaluation measures and the used statistical validation as
well as the explanation on how the expert hierarchies are
created for each data set. Experimental results are given
and discussed in Section 5, while Section 6 concludes this

paper.

1. BACKGROUND AND RELATED WORK

A. FORMAL DEFINITION OF MULTI-TARGET
REGRESSION (MTR)

In our study, we focus on the task of multi-target regres-
sion that can be formally defined as follows [6]], [18].
Given is:

o A description (input) space X covered by tuples of
D independent descriptive instances (examples) i.e.,
X = {Xl,X27. .. ,XD};

« A target (output) space Y covered by tuples
of T continuous target variables ie., ¥ =
{Yl, }/2, ey YT};

« Set of examples F consisting of a pairs of elements,
one from input and another from output space, ac-
cordingly i.e., E = {(z;,y:)|z; € X,y; € V,1 <
1 < N}, where N is a number of examples;

o A quality criterion ¢, which selects and chooses the
models with the lowest predictive error.

Find:

o A function f : X — Y which maximizes quality
criterion q.

In our study, f is represented with predictive clustering

trees (PCTs) or ensembles thereof.

B. METHODS FOR MULTI-TARGET REGRESSION

As mentioned above, we distinguish two groups of MTR
methods: local (problem transformation) and global (al-
gorithm adaptation) methods [6], [7]], [19]. Local meth-
ods construct ¢ separate models for the ¢ target variables,
which are combined to give the overall prediction for all
the targets. From the other side, global methods build
only one model for predicting all of the ¢ target variables
simultaneously. We next present the state-of-the-art MTR
algorithms from both groups of methods.

1) Local (problem transformation) methods

Since the local methods transform the problem into ¢
separate single-target models, any known single target
regression algorithm can be used to learn the single-target
models. Prominent methods addressing the MTR task
include: ridge regression [20]], support vector regression
machines, regression trees [14] and stochastic gradient
boosting [21]. [20] proposed a separate ridge regression
algorithm that deals with MTR problems.

VOLUME 4, 2016

Regressor chain (RC) [22] is another problem trans-
formation method motivated by the multi-label chain
classifier [23]]. During the training process, RC randomly
selects a chain (permutation) of the target space, then
builds a separate regression model for each target in
consistence with the selected chain. Since RC uses the
actual values of all previous targets in a chain, [22]], also
proposed regressor chain corrected (RCC) that uses cross-
validation estimates instead of actual values. However,
RC and RCC are sensitive to the selected chain order-
ing. In order to avoid this problem, [15]], proposed an
approach called ensemble of regressor chains (ERC) and
ensemble of regression chains corrected (ERCC), where
they randomly select as many models as the number of
distinct label chain if the number of labels is less than
10. Otherwise, they randomly selected 10 chains and
construct an ensemble of chains.

Multi-target regressor stacking (MTRS) [22] is another
problem transformation method inspired by [24] where
multi-label classification is performed by using stacked
generalization. MTRS training is performed in two stages.
First, ¢ different single-target models are learned and
then, instead of concatenating the ¢ obtained predictions,
MTRS includes additional training stage, where a second
collection of ¢ separate single target meta-models are
learned. At the end, the predictions are calculated from
both stages. The predictions from the second stage use
and adjust the predictions from the first stage.

Zhang et al.(2012) [25]], presented a new problem trans-
formation method based on multi-output support vector
regression approach. Basically, they extend the actual
feature space and represent the multi-output problem as
equivalent single-output problems, that are solved using
the single-output least squares SVRs (LS-SVR) algo-
rithm. The multi-output model takes into account the tar-
get correlations by using the vector virtualization method.

Recently, Wang et al. [26] propose a multi-target re-
gression method (MTR-TSF) that embeds the intra-target
relationships. First, by using hierarchical clustering on the
output space, they reveal the correlation among the targets
and create an additional feature vector X, 4¢, consisting
of the indices of the nodes where specific instances be-
longs to. Next, they use a boosting regression algorithm
to learn a similarity matrix for each target. Finally, by
querying and clustering of the similarity matrix, a target
specific feature vector Xy, s is created for all instances and
is added to the original feature vector X. At the end, a
prediction model per target is learned by considering the
"merged’ feature space X' = X (J Xindes | Xts¢-

2) Global (algorithm adaptation) methods

Algorithm adaptation learns a single model for all target
variables and thus take into account the dependencies
among the targets. There are many advantages over the

3
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local methods such as interpretability, better predictive
performances, especially, if the targets are related [6].
Below, we briefly discuss various algorithm adaptation
methods proposed in the literature.

First attempt to deal with prediction of multiple target
variables are the statistical methods such as reduced-
rank regression [27|]. Furthermore, [28] proposed the
general version of a multivariate regression problem of
the James-Stein estimator, called as filtered canonical y-
variate regression. Next, lasso regression [29]] is a pop-
ular regression method for estimation in linear models.
It produces interpretable models while at the same time
it is stable. Next, gaussian process for MTR are based
on the algorithm proposed by [30]. The most prominent
statistical approach that deals with multiple targets is the
curds and whey (C & W) method [31].

Predictive clustering trees (PCTs) are tree-based meth-
ods built within the predictive clustering framework [8].
This framework learns decision trees called predictive
clustering trees (PCTs) where the top node contains all
of the training examples and then it recursively splits into
lower partitions (clusters) of the whole train set. PCTs can
be used for classical machine learning tasks (clustering,
classification and regression), but also, can be applied
to multi-target prediction. PCTs can deal with structured
outputs prediction, such as vectors, time series, sequences
or hierarchies [9]—[13]].

In addition, [32]] presented an algorithm called multi-
target step-wise model tree induction (MTSMOTI) for
generation a multi-target model tree on a step-wise man-
ner. The tree model is generated similarly as in PCTs,
with TDIDT algorithm. The difference is that each leaf
in a tree model is associated with a set of linear models
which generate the final target predictions. Conditional
Inference Trees (CTrees) are non-parametric regression
trees embedding tree-structured regression models into
conditional inference procedures and estimate a regres-
sion relationship in a multi-target scenario [33].

A different type of MTR algorithm is the rule based
algorithm called Fltted Rule Ensemble (FIRE) method,
proposed by [34]. This is a method for learning rule
ensembles based on representing an ensemble of regres-
sion trees as a large collection of rules. FIRE uses an
optimization procedure (minimization) to select the best
(much smaller) set of rules and determine their respective
weights.

Furthermore, Breskvar et al. [35] present an ensemble
method with random output selection (ROS). Instead of
using all target attributes, they randomly select subsets of
target attributes when learning the base predictive models
of the ensemble. This additional randomization improves
the performance both in terms of time complexity and
predictive accuracy.

The most famous non-parametric distance-based

method for regression task is the k-nearest neighbour
method. It takes the average of the values of the & nearest
examples as a prediction. K -nearest neighbour is a flexi-
ble algorithm, since it can use any distance function and
any number k (nearest neighbours) [36].

Multiple-input multiple-output (MIMO) support vector
regression method is a generalization of support vector
machines (SVMs) for addressing the MTR task. The gen-
eralization is achieved by minimization of a Lagrangian
equation which has multi-dimensional parameters that
have to be optimized [37]], [38]].

Partial Least Squares Regression (PLS-PLSR) and
Principal Component Regression (PLS-PCR) methods are
another methods for multi-target regression which are
implemented in the R software package pls [39]. These
methods are commonly used in many natural sciences
and are based on calculation of the scores obtained by
decomposition of the product matrix of orthogonal scores
and loadings. Then regression coefficients are calculated
using the scores.

Multivariate Adaptive Regression Splines (MARS)
is a non-parametric regression method implemented in
EARTH package in R. MARS, as a generalization of step-
wise linear regression [40] constructs the dependencies
between input and output variables by using a data-driven
set of base functions and coefficients.

Another well-known and widely used method for MTR
are the artificial neural networks (NN). They are designed
based on human brain to recognize patterns in data. They
can automatically model the nonlinearity and can deal
with multi-input multi-output problems. The most often
used algorithm for training artificial neural networks is
backpropagation algorithm [41]. Backpropagation algo-
rithm is recursive and iterative method which efficiently
optimize the network weights by following the gradient
descent method that exploits the chain rule. Deep neural
networks (DNN) are artificial neural networks containing
multiple hidden layers. It update the network weights by
establishing the correlation between input (past events)
and output (future events). There are several variants of
DNNs designed based on the specific domains that are
used for. Convolutional deep neural networks (CNNs) are
used in the domain of computer vision. Recurrent neural
networks (RNNs) are used in various cases of language
modelling, such as handwriting and speech recognition
[42], [43]. Zhen et al. [44] present a deep learning
approach for considering the intra-target dependencies.
Namely, they propose a multi-layer multi-target regres-
sion (MMR) method where intra-target dependencies are
explicitly encoded by using matrix elastic nets (MEN) to
create the structure of the target space (structure matrix
S), which enables learning of the target correlations by
minimization of the rank(S). Then, the kernel trick is
used in order to solve the problem of non-linearity in the
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representation of the target dependencies.

C. FORMAL DEFINITION OF HIERARCHICAL
MULTI-TARGET REGRESSION (HMTR)

We follow similar guidelines as for defining the task of
MTR to formally define the task of hierarchical multi-
target regression [ 13]]:

Given is:

o A description (input) space X covered by tuples of
D independent descriptive instances (examples) i.e.,
X = {Xl,X%...,XD};

e A target (output) space Z covered by tuples
of T continuous target variables ie., Z =
{Z1,25,...,2r}. We define a hierarchy H =
(Z,<,) for the variables from the output space
Z. The relation 7 <, ” represents a parent-child
relationship between tree nodes (V(Z1,22) € H :
Z1 <, Z, if and only if Z, is a parent (meta-
label) of Z;) and is called hierarchical constraint.
The meta-labels are result of an aggregation function
(for example, sum or average) on their respective
children i.e 2, = agg{ Z;|Z; <, Zi};

o Set of examples E consisting of pairs of elements,
one from input and another from output space, ac-
cordingly i.e., B = {(x;,y;)|x; € X,z € Z,1 <
it < N}, where N is a number of examples and
where the values of the target variables satisfy the
hierarchical constraint 7 <, 7 i.e Vj : Ji(Z; <,
Zj = zj = agg{zil Zi <p Z});

e A quality criterion ¢, which selects and chooses
the models with the lowest predictive error and the
highest accuracy.

Find:

e a function f : X — Y which maximizes the
quality criterion ¢ and all predictions 2 = f(z) are
satisfying the hierarchical constraint.

The difference to the task of MTR is in the definition
of the output space: for HMTR we have a set of numeric
variables organized in a hierarchy instead of a flat tuple
of numeric variables. The definition of the parent-child
relationships (hierarchy constraint) states that the variable
belonging to a given hierarchy node automatically con-
tributes to all its parent nodes.

D. METHODS FOR HIERARCHICAL MULTI-TARGET
REGRESSION

In this part, we present the existing (state-of-the-art)
methods, related to the task of hierarchical multi-target re-
gression. To begin with, multilevel analysis refers broadly
to the methodology of research and data structures that
deal with nested data, i.e., including more than one type
of unit. This is directly related with involving several
levels of aggregation. Consider an example from educa-
tional research, where students from different schools are
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considered, and their performance (e.g., grades) is being
predicted.

Then, a separate regression model can be fitted within
each school, and the model parameters from these schools
can be modeled as depending on each school properties
(such as the socioeconomic status of the school’s neigh-
bourhood, whether the school is public or private, and
so on). The student-level regression and the school-level
regression here are the two levels of a multilevel model.
The lowest level is the student-level and each student
belonging to this level can be linked with appropriate
class, and then each class to appropriate school and so on.
With this, a kind of dependency levels (i.e., a hierarchy)
is created. Moreover, in the higher levels in the multilevel
model, regression parameters (hyper-parameters) can be
fitted for the regression model. That is the reason why
in most of the research, the term "multilevel analysis"
is mostly used interchangeably with "hierarchical linear
modeling", although strictly speaking they are distinct.

Another application of the hierarchical linear modeling
approach can be found in [45]], where a two-level hierar-
chical linear model with multiple outputs was employed
to analyze an information obtained from two different
groups of informants (child and parents participants) in
order to assess the demographic risk factors on children’s
exposure to violence (ETV) and how these effects vary by
informants.

The main advantage of multilevel modeling is spread-
ing of a residual components through each level of a
hierarchy, thus the overall variance is partitioned and
moreover, the predictors are included at each level. Hence,
with application of multi-target regression at each level,
the model can deal with between-level relations in the hi-
erarchy. Latter makes multilevel modelling superior than
regression modeling with respect to the model perfor-
mance [46]. An extensive review for multilevel modeling
is given by [47]] and [48].

Next, online analytical processing (OLAP) is a method
which allows to extract and analyze data from multiple
sources at the same time. The data is multidimensional,
hence the extracted information can be compared in dif-
ferent ways. For example, a book store might compare
their book sales in September with sales in August, then
compare those results with the sales from another lo-
cation, which might be stored in a different database.
The OLAP data is stored in multidimensional databases
and all attributes are considered as a separate dimen-
sion. Considering the multi-dimensionality, the OLAP
data is structured in a hierarchical form by using some
of the OLAP tools: consolidation (roll-up), drill-down,
and slicing and dicing [49]. This structuring and hierar-
chical representation enables a complex calculations and
manipulation of the data (trend analysis, data modeling)
[50]. The natural relationships in the data by using OLAP
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method are also researched by [51] by using a partially
ordered set of levels (dimension schema).

Predictive clustering trees (PCTs) for HMTR task is
proposed recently by [[13]]. The original PCTs for MTR
are extended to HMTR task with defining prototype func-
tion and variance function. All operations for aggregation
can be used as a prototype functions, but keeping in mind
that with some of them (for example, minimum or maxi-
mum) after averaging, the hierarchical constraint (parent-
child relation within the hierarchy) can be violated. For
the variance function, the weighted Euclidean distance
is used where the weights are defined such that they
decrease exponentially with the depth of the node in the
hierarchy.

E. METHODS FOR STRUCTURING THE OUTPUT
SPACE

The main goal in this article is structuring the output space
in MTR. To the best of our knowledge, structuring of the
target space for MTR has not been explored yet. Hence,
we overview the methods for structuring the output space
for the related multi-label classification (MLC) task where
learning hierarchies in the output space has been studied
to a wider extent [[16], [[17], [S2]-[55]-

Joly et al. (2014) [52]] propose a method for dimension-
altiy reduction of the output space by random projections
of it, mainly focused on MLC task. The projections are
made in such a way that preserve distances in projected
space. The reduction of the variance function is made
on the projected space, while the predictions are made
directly in the original output space using a decoding
procedure. Similarly, Joly et al. (2017) [56]], proposes a
gradient boosting method for MTR which automatically
adapt the target correlations by random projection of the
output space.

Madjarov et al. (2016) [16] present a comprehensive
study of different data-derived methods for structuring the
label space in the form of hierarchies for MLC. Namely,
they use the label co-occurrence matrix to obtain a hierar-
chy of labels by using several clustering algorithms such
as: agglomerative clustering with single and complete
linkage, balanced k-means and PCTs. Their results say
that divisive clustering methods (balanced k-means and
PCTs) perform the best.

Tsoumakas et al. (2007) [S5]] propose a transformation-
based ensemble method for random k-labelsets (RAKEL)
for MLC by using existing algorithms for MLC. The
RAKEL algorithm creates an ensemble by random sam-
pling a small subset with k labels for each base model.
The sampled subsets are structured as a label powerset
and multi-class classifier is then used.

Next, Szymanski et al. (2016) [54] present a study
which addressed to the question, whether data-driven
methods on a graph consisting of label co-occurrences is

6

significantly better than random generated graph of labels
for MLC. This method is actually data-driven version of
RAKEL method. Their results show that in general data-
driven approach is superior to random created graphs of
labels.

Nikoloski et al. (2017) [17] propose an algorithm for
structuring the output space using feature ranking in
MLC. They create a hierarchy from a space constructed
by feature rankings for each of the classes. Furthermore,
they present a comparative analysis with the approach
from [16]], where hierarchy is created by clustering the
space consisting of label co-occurrences. In both cases,
it is shown that some improvements in predictive perfor-
mance can be achieved if data-driven approach for output
space structuring is used, compared to using a flat multi-
label classification task, despite the higher complexity
added by additional procedure for calculating the feature
importance and the clustering procedures.

lll. STRUCTURING THE OUTPUT SPACE FOR MTR

The idea for structuring the output space in MLC pro-
posed by [17] and [16] motivates the exploitation of
methods for structuring the output space in MTR. In this
study, we propose to transform a flat MTR task into a
task of hierarchical multi-target regression (HMTR) [13]].
Namely, we use the hierarchies created with data-driven
clustering approaches to investigate whether the predic-
tive models obtained with the HMTR task yield better
predictive performance than predictive models obtained
with the flat MTR task.

A. STRUCTURING THE TARGET SPACE

In our paper, we propose a framework that transforms the
original multi-target regression (MTR) task into a hierar-
chical multi-target regression (HMTR) task, by clustering
the output space. The flowchart of the framework is given
in Figure[T]

The method for structuring the target space is out-
lined in the procedure StructuringTargetSpace from Al-
gorithm [I] First, we take the original training dataset
F'rain and extract the target space W™ from the
complete dataset. To obtain a hierarchy, we cluster the
space W™ by using the procedure Clustering (it
can use any arbitrary algorithm for clustering). With the
function TransformData, we transform the original
datasets F'"®" and F'! to new datasets F{7*"™ and
F}¢5t by including the obtained hierarchy and then, we
learn a predictive model and generate the predictions.
Next, we calculate the predictions for each node in the
hierarchy and extract only the predictions related to the
targets, which are in the hierarchy leafs. Finally, using
those predictions, we evaluate the predictive performance.
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consider two spaces i.e.,

representations to cluster the targets: the original target space (TS) i.e., the values of a given target for each example and
feature ranking space (FR) i.e., the importance scores for each feature with respect to a given target, for transforming the

original MTR task to a HMTR task

B. STRUCTURING THE SPACE OF FEATURE RANKS
OF THE TARGETS

The method for structuring the feature importance scores
of the targets is outlined in procedure StructuringFRSpace
from Algorithm 2] First, we take the original training
dataset F'*"*" and by using an arbitrary feature ranking
approach (function CreateFimp), we create feature impor-
tance scores for each target separately. Then, the F7"Fs
dataset is constructed from the feature importance scores.

Algorithm 1 The algorithm for structuring the target
space.

procedure StructuringTargetSpace(Ft7 " Ftest)

Input: F*7%" _ training dataset

Input: F*est - test dataset

Output: Per formance

. Witrein — ExtractTargetSpace( F173i");

. hierarchy = Clustering(Wtrem);

: Firein = TransformData(Ft %" hierarchy);

: Ffle“ = TransformData(Ft5t, hierarchy);
HMTR_Model = HMTRMethOd(F;}"“m);

: predictions = CalculatePredictions(HMTR_Model, F1£t);

DUaE Wy

: P = ExtractLeafsPredictions(predictions);
. Per formance = Evaluate(P);
. return Performance

O 0
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Next, we obtain a hierarchy with clustering the F7"*s
space, using an arbitrary clustering algorithm. Same as the
previous Algorithm [T} we transform the original datasets
Firain and Ftest (o new datasets Fir®™ and Fist by
including the obtained hierarchy and then, we learn a
predictive model, generate the predictions and evaluate
the predictive performance.

Algorithm 2 The algorithm for structuring the target
space using feature importance scores per target.

procedure StructuringFRSpace( 744", Ftest)

Input: F*"%%" _ training dataset

Input: F*e5t - test dataset

Output: Per formance

: FimpPath = CreateFimp(Ftr%");

. Franks — CreateArffFromFimp(FimpPath);

: hierarchy = Clustering(Fenks).

Firein — TransformData(Ft"%™ hierarchy);
Fiest = Trans formData(F*¢st, hierarchy);
HMTR_Model = HMTRMethod(Frain);

: predictions = CalculatePredictions(HMT R_M odel, FItht);

A N

8: P = ExtractLeafsPredictions(predictions);
9: Per formance = Evaluate(P);
: return Performance

From the abovementioned procedures for structuring
the output space, we can notice that in the procedure
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StructuringFRSpace (Algorithm [2), there is an additional
step, compared to the procedure StructuringTargetSpace
(Algorithm [I). The additional step is the function Create-
Fimp at line 1 (Algorithm [2), which increases the theoret-
ical complexity of the algorithm StructuringFRSpace.

Next, we describe the feature ranking approach for
calculating the importance of the descriptive variables.
Random forests are constructed by using the algorithm
for learning PCTs in CLUS, modified according to the
original random forest method proposed by [57]]. Their
use as feature ranking methods has been well studies
in the literature (cf. [58]]). First, random forests perform
bootstrap sampling on the data and then build a decision
tree for each bootstrap sample. Next, at each node of the
tree, the best test is taken from a randomly selected feature
subset.

Huynh-Thu et al. (2010) [59]], proposed the GENIE3
algorithm for feature ranking. It uses reduction of the
variance (of the target variables) at each node in the tree.
The algorithm is checking which of the input variables
reduce the variance more, and then, those which reduce
more, are more important. Consequently, the ones which
reduce the variance less, are less important. For each
selected descriptive variable as a splitting variable, the
produced reduction of the variance is being measured.
The importance will be O if the descriptive variable is
never been selected as a splitting variable (for any tree
in the ensemble), meaning that it was not deemed im-
portant enough. The GENIE3 algorithm has been vastly
evaluated for single-target regression tasks, for instance,
in the domains of gene reconstruction. The random forest
algorithm used for feature ranking is adapted with the
idea proposed in the GENIE3 algorithm. For building
the ensemble, the random forests of PCTs are used. The
outcome is a feature ranking algorithm which is adapted
to be used for various types of tasks for structure output
prediction [60].

C. HIERARCHY CREATION (CLUSTERING)
ALGORITHMS

In this part, we overview the clustering methods used to
create the hierarchies of the target space. For achieving
a good performance of the HMTR methods, it is neces-
sary to construct target hierarchies that are capturing the
relations (dependencies) among the target attributes. The
main constraint in hierarchy creation is that the original
MTR task should be defined by the leafs of the hierarchy.
Specifically, each leaf in the hierarchy represents a set of
targets from the original MTR problem. At the end, the
number of targets in the hierarchy leafs must be the same
as the number of targets from the original MTR problem.
Furthermore, the internal nodes of the hierarchy (so called
meta-labels) represent the potential relations among the
original targets.

8

For creating the hierarchies, we use four different clus-
tering methods (two divisive and two agglomerative):

o balanced k-means clustering (divisive);

o predictive clustering trees (divisive);

« agglomerative clustering with complete linkage and
o agglomerative clustering with single linkage.

Agglomerative clustering algorithms are bottom-up al-
gorithms for clustering, where in the first iteration, each
example is consider as a separate cluster. In the next
iterations, the pairs of clusters are merged based on their
linkage (distance metric). There are several possibilities
for linkage of the examples. Namely, if the maximal
distance of two examples from the clusters C; and C5 is
used, then this type of linkage is called complete linkage,
i.e., max{dist(cy,cq) : ¢1 € C1,ca € Co}. Then, if the
minimal distance between two examples for two different
clusters is used, then we have an agglomerative clustering
with single linkage i.e., min{dist(c1,cq) : ¢1 € C1,c2 €
Cy}.

Balanced k-means is divisive top-down approach for
clustering. First, root node of the hierarchy represents the
one common cluster, consisting of all targets from the
target space 7. Then, consecutively, this cluster is divided
into k disjoint sub-clusters (meta-labels) (k < |7T|) using
the k-means clustering algorithm. The number of cluster
divisions k is an input to this algorithm, hence the algo-
rithm output clusters with approximately equal size [61].
The procedure recursively is repeated on each sub-cluster
until the number ¢ of targets in each sub-cluster is smaller
than k—1. In other words, our target space 7T is covered by
leafs of the hierarchy obtained by the balanced k-means
clustering approach.

We also use predictive clustering trees (PCTs), which
can be used as another divisive hierarchical clustering
method, to build up the target hierarchies. More specif-
ically, we treat the target space as descriptive space.
Descriptive and target variables, all together, are used to
provide descriptions for the obtained clusters. To calculate
the heuristic score, a variance function is used during
the learning process until some stopping criterion is met.
This means that there is no need for using predefined
number of clusters, as required by traditional clustering
methods. The focus of using PCTs for clustering is on
using predictive clustering framework in unsupervised
manner i.e., on the task of clustering instead of predictive
modelling [62], [63].

D. LEARNING METHODOLOGIES

1) Predictive clustering trees (PCTs)

The PCT framework views a decision tree as a hierarchy
of clusters, where the top-node corresponds to one cluster
containing all the data. While moving downwards the tree,
this top-cluster is sub-divided into smaller clusters recur-
sively. The PCT framework is implemented in the CLUS
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software package (https://sourceforge.net/projects/clus/)
(61, 9.

PCTs are obtained with a standard top-down induction
of decision trees (TDIDT) algorithm [64]. As an input,
TDIDT takes a set of examples to produce a tree as an
output. By using a heuristic function, computed on the
training instances, the TDIDT procedure selects a test
for the root node. The heuristic aims to select a test
which maximizes the variance reduction caused by the
partitioning of the examples into subsets according to
the test outcome. Recursive procedure of partitioning the
examples continues until a stopping criterion is satisfied.
Further partitioning of examples yields a tree with a lower
quality. In this case, we store the prediction (output value
of a prototype function) in the corresponding leaf of the
tree.

Blockeel (1998) [8]], proposed the predictive clustering
framework, while predictive clustering trees (PCTs) for
multi- target regression (MTR) were proposed by [9].
In PCTs for MTR, the prototype function calculates the
mean vector of all target variables Y for the training
examples that belong to the leaf. In the prediction phase,
for each new example, the algorithm identifies the leaf
it belongs to and returns the value predicted by the pro-
totype function associated to that leaf. The PCTs can be
instantiated for a specific given learning task by consid-
ering specific variance (for split selection) and prototype
function (for calculating the predictions in each leaf). Ac-
tually, that is the main difference with standard decision
tree learning.

The PCTs are developed to work for the task of multi-
target regression (MTR) [65]], multi-label classification
(MLC) [66]], prediction of time series [12], hierarchical
multi-label classification (HMLC) [11] and recently, for
hierarchical multi-target regression (HMTR) [13]. We
will now describe how PCTs from hierarchical multi-
target regression are build. In order to extend the PCTs for
the HMTR task, we need to define variance and prototype
functions.

The variance is calculated by applying a distance func-
tion on the values of the variables in analogy of the
distances for HMLC and the implementation of that task,
i.e., the variance is calculated as the average squared
distance between each node II; of the examples and the
mean node vector II:

|E|

Var(E) = % Y dist(11;, D) (1)
i=1

where IT = |—]15‘ - Z‘ill 11;.
Any distance d can be used as a distance function in
Eq (1). [13] proposes for the task of HMTR to use a
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weighted Euclidean distance:

||
dist(Tly, o) = | Y 0(c) - (M s = T2 0)%  (2)
s=1

where II; , is the s’th component of the class vector II;
of the instance E;, |II| is the size of the class vector, and
the class weights 6(c) = Ggemh(c). The class weights 0(c)
decrease exponentially with the depth of the node in the
hierarchy thus making the differences in the lower parts
of the hierarchy less influential to the overall score.

The prototype function used is averaging the values of
the examples belong to a given leaf.

2) Random forests of PCTs

Random forests of PCTs are implemented in the CLUS
system [6] following the same method as for the simpler
tasks of classification and regreesion [57]. A random
forest represents an ensemble of trees where the diversity
among the trees is achieved by bootstrap replicates and
for each tree node in the learning phase, a randomly
selected subset of descriptive attributes is considered for
split selection. Bootstrap replicates are generated by ran-
dom sampling of instances from the training set, with
replacements, until the same number of instances as in
the original training set is reached.

The difference between the PCT procedure for tree
construction in random forest algorithm and the standard
PCT procedure is in the selection of descriptive attributes.
In the former, selection of the descriptive attributes is
randomized. Namely, at each node in the decision tree,
arandom subset of attributes is taken from the descriptive
space and the best attribute is chosen from this subset.
There are different ways of retaining the number of at-
tributes from descriptive space. The number of attributes
that are chosen from descriptive space is given by function
f of the total number of descriptive attributes D (e.g.
F(D) = 1,£(D) = WD + 1, f(D) = [logs D + 1
etc.). This randomness is chosen in order to avoid the
correlation between the bootstrap samples. For example,
if there are only few relevant descriptive attributes that are
important for prediction of the target variables, these will
be selected many times in the bootstrap replicates, hence
providing more correlated trees.

Prediction of new instances in random forest algorithm
for PCTs are made by combining the prediction of all
base predictive models. For both MTR and HMTR, the
prediction of each target is defined as an average of the
predictions obtained from each predictive tree.

E. COMPUTATIONAL COMPLEXITY

1) Single PCTs for MTR/HMTR

In this part, we analyze the computational complexity of
PCTs for HMTR and compare it with the computational
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complexity of PCTs for MTR. We discuss the order of
complexity for both single PCTs and ensembles of PCTs
for HMTR. Let us assume that the size of the training
set, i.e., the number of examples, is e, the number of
descriptive attributes is d out of which c are continuous,
the number of target attributes is ¢ and the number of
meta-labels is m.

The top-down induction algorithm of PCTs requires
sorting of the the ¢ numeric attributes, and it has a cost
of O(c - e-loge) and ¢ = O(d). Calculating the best
split for multiple variables has the complexity order of
O(t - d - e) and applying the split to the examples has
a linear complexity, i.e., O(e). We assume that the tree
is balanced, which means that the depth of the tree is
log e. With these calculations, the computational cost of
inducing a single MTR tree is:

O(MTRtree) = O(d - elog? e+ 3
t-d-e-loge+e-loge) ©)
For the HMTR algorithm, we also have the meta-labes
(intermediate nodes), which in this case act like targets.
This affects the computational cost only when the best
split is calculated. More specifically, this costs is given by
O((t+m)-d-eloge) compare to the O(t - d - elog e) for
PCTs for MTR. Given this, we can calculate the order of
complexity for a HMTR tree, which is very similar to the
one for a MTR tree:

O(HMTRtree) = O(d - elog® e+ @
(t+m)-d-e-loge+e-loge)

2) Random forest of PCTs

The order of complexity of constructing ensembles de-
pends on the complexity of the base predictive models and
their number b. The random forest performs sampling of
the instances and sampling of the features. This random
sampling reduces the computational complexity of the
ensemble and is lower than the intuitive O(b- MT Ritree).
Let the number of examples used to train the base pre-
dictive model with sampling of the examples be ¢’ and
the number of descriptive attributes considered in random
forests d’ , where ¢’ < e and d’ < d. The computational
complexity of the creation of the bootstrap replicates
of the training set for random forests is O(e) and the
complexity of the random sampling of the features at each
node for random forests is O(d’ - log e’).

Hence, the computational costs random forest PCT
ensembles for MTR is the following:

O(Rforest_MTR) = O(b-d' - ¢ log® ¢'+
b-t-d-e - loge+ (5)
b-e -loge +b-e+b-d -loge)

The computational complexity of the HMTR counter-
parts of the random forest PCT ensembles for HMTR is
the following:

O(Rforest_ HMTR) = O(b-d' - ¢'log? ¢’ +
b-(t+m)-d e -loge'+ (6)
b-€ -loge +b-e+b-d -loge’)

In Eq.(6) we can see a linear increasing in complexity
with respect to targets with introducing the meta-labels
(intermediate nodes). The same translation we already
considered for the single PCTs for HMTR (see Eq. (@)).

For all methods (PCTs and ensembles of PCTs for
both MTR and HMTR), from their complexity cost, we
can see that the dominant elements in the equations are
the one containing the second logarithmic power of the
number of examples, and the one that is multiplied with
the number of targets. For single PCTs, the first element
is O(d - elog® €), and the second is O(t - d - ¢ - log e) or
O((t+m)-d-e-loge) for MTR and HMTR, respectively.
If we compare the two terms, we can see that the first
term is greater than the second when loge > t for MTR
and loge > t 4+ m for HMTR. Let us explore the first
case where the first term is smaller. This means that when
comparing MTR and HMTR, HMTR will have higher
computational cost, due to the addition of m. Let us now
explore the second case where log e is higher. In this case,
the computational cost is affected only with the first term,
hence the linear increase in the second term (i.e., (i.e., the
addition of s in O((t+m)-d-e-log e)) will be insignificant,
resulting in comparable performance between MTR and
HMTR for all methods on a datasets with a sufficiently
large number of examples.

3) Algorithms for structuring the output space

We discuss the computational complexity of the proce-
dures for structuring the output space given in Algo-
rithm[T]and Algorithm 2] In the procedure for structuring
the feature ranking space, there is an additional function
CreateFimp for calculating the feature importance for
each target. Since it is done by random forest method
with GENIE3, the order of complexity of this procedure
is O(CreateFimp) ~ O(Rforest_MTR).

The most important cost for the clustering procedure is
the number of examples e — in the case of datasets with
large number of examples, the clustering procedure will
take more time to create the hierarchy. When balanced
k-means is used as a clustering procedure, the time com-
plexity will be O(e - t3). Moreover, if the agglomerative
clustering methods are used, the time complexity will be
O(e-t3) and memory consumption O(e-t2), which makes
it too slow for even medium data sets. Time complexity of
PCTs used as a clustering method is the same as in Eq (3).

Alternatively, the procedure for creating the hierarchy
(Clustering at line 5 in procedure in Algorithm [2) using
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feature rankings has a dimension which depends of the
cardinality of the feature space F"*"**, denoted as d. The
feature space cardinality is typically much smaller than
the number of examples (i.e., |FT9"*s| < [Wirein| je.,
d < e), meaning that clustering of the rankings will finish
faster than clustering of the original target space. Using
balanced k-means, it will be O(d - t3), where d < e, then,
by using agglomerative it will be O(d - t3), and memory
consumption O(d - t?), where d < e. Finally, the time
complexity of PCTs algorithm used for clustering will be
the same as in Eq (3) when we cluster the feature rankings
space, considering that d < e. All in all, the clustering
procedure is much more efficient when feature ranking
space is considered, since the number of features and
number of targets, in most of our datasets are significantly
smaller than number of instances.

IV. EXPERIMENTAL DESIGN

A. EXPERIMENTAL QUESTIONS

We set the experimental design focusing on the following

research questions:

(1.) Does structuring the output space (using a hierar-
chies) improves the predictive performance com-
pared to the original flat MTR task?

(2.) Which clustering method yields better hierarchy?

(2.1.) Can we achieve better predictive models by

using the hierarchies obtained by structuring the
feature ranking or target space?

(3.) Are the data-driven hierarchies better than the hier-
archies created by a domain expert?

(4.) How the structuring of the output space scales from
small to large output spaces?

(5.) How the performance difference translates from sin-
gle model to ensemble of models?

In order to answer the above questions, we perform an
extensive evaluation on a diverse datasets from the envi-
ronmental and socio-economic domain. In the following
part, we will describe the data we use.

B. DATA DESCRIPTION
We use 16 datasets for multi-target regression benchmark
problems from 2 different domains (8 from the domain
of socio-economic sciences and 8 from the domain of
environmental sciences, from which 14 with small and 2
with large number of targets). The number of targets in the
datasets range from 6 to 492 and the number of descriptive
attributes from 16 to 576. The datasets with large number
of targets (> 100) are inspected separately. The number
of instances is also diverse ranging from 42 to 16976. The
basic information and statistics about these datasets are
given in Table[T]

The Andromeda (andro) dataset is for prediction of 6
water quality variables in Thermaikos Gulf of Thessa-
loniki, Greece [67]]. The Airline Ticket Price datasets are
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TABLE 1: Properties of the used benchmark datasets
in terms of number of instances (#inst), number of de-
scriptive attributes (D), number of targets (T), percent-
age of missing values (MissVal) and sorted by number
of instances. The datasets with * as superscript will be
considered separately, since they have large number of
targets.

Dataset
name

Water
quality
Andromeda
Online
Sales
Occupational
Employment
Survey for
1997
Occupational
Employment
Survey for
2010
Metal
data
Prespa Lake
Diatoms*
Prespa Lake
Diatoms Top pdt 248 16 10

10
Airline
Ticket Price atpld 337 411 6 /
(1 day)
Airline
Ticket Price atp7d 296 411 6 /
(7 days)
Vegetation
conditions
River
Flows 1
River
Flows 2
Slovenian
Rivers*
Supply
Chain
Management
tournament
(1 day)
Supply
Chain
Management
tournament
(20 days)

Abbr. #inst D T MissVal

wq 1060 16 14 /
andro 49 30 6 /
osales 639 413 12 3.79%

oes97 334 263 26 /

oes10 403 298 16 /

mdv2 42 53 10 24%

pd* 349 16 111 0.11%

0.54%

vge 16967 40 7 /

rfl 9125 64 8 0.5%

rf2 9125 576 8 6.68%

SloRiv* 1060 16 | 492 /

scmld 9803 280 16 /

sem20d 8966 61 16 /

used to infer the minimal price of an airline ticket for the
next day (atpld) i.e., next 7 days (atp7d) [68]]. Metal data
(mdv2) is the data for meta-learning of an automated as-
sistant system for choosing appropriate machine learning
algorithms for a specific data mining process [[69]. The
Occupational Employment Survey datasets are from the
US Bureau of Labor Statistics for the years 1997 (oes97)
and 2010 (oes10) [15]. The Online sales (osales) dataset
deals with the prediction of online sales of products
described with various product features. The dataset is
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from the Kaggle’s Online Product Sales competition in
2012 [[70]]. Prespa Diatoms Lake (pd) and Prespa Diatoms
Lake top 10 (pdr) datasets investigate the effect of the
environmental conditions of Lake Prespa in the Republic
of Macedonia on diatom communities [71]]. The former
(pd) is the complete data set with all 111 targets and
examples, while the latter (pdf) consists of only top 10
the most abundant diatoms. River Flows (7fI and rf2) are
datasets for prediction of the river network flows in the
Mississippi river in the United States obtained from the
US National Weather Service consists of 8 sites, with 8
attributes from each site [[15]. The difference between rf1
and rf2 is that the latter includes the forecast information
about the precipitation. The SCM datasets are from the
2010 Trading Agent Competition in the Supply Chain
Management tournament (TAC SCM). It consists of 4-
time delayed observations for traded prices of various
computing equipment for the specific day (i.e., prices
from 1, 2, 4 and 8 days ago vs. the price today) and
trying to predict the forward trend of the next tournament
day price (scmld), i.e., the mean price of the next 20
tournament days (scm20d) [72]. The Vegetation condi-
tion(vgc) dataset concerns the prediction of the vegetation
condition for the Victoria State in Australia and provided
by the Arthur Rylah Institute for Environmental Research,
Department of Sustainability and Environment (DSE) [3]].
Water quality (wg) and Slovenian Rivers (SIoRiv) are
two datasets for predicting species abundance in water
in Slovenian rivers using 16 chemical parameters as a
descriptors. The wq data set consists of only 14 the most
abundant species, while the SloRiv dataset consists of 492
different species which occur more than 5 times in the
samples [73]], [63].

C. EVALUATION MEASURES

We follow the literature recommendations regarding the
evaluation measures [19]. We present the values of the
average relative root mean squared error (aRRMSFE)
(Eq[7) for performance of the tested methods. To perform
a fair comparison, we calculate these errors only for the
target variables at the leafs of the hierarchy.

Let us assume that ¢ is the number of target variables
and N,.s: is the size of the test set. The actual value of a
target variable of an example is Y, and Y is the predicted
value using the model for that example. Similarly, Y is
the average of the actual values for that target variable.
The aRRM SE can be define as follows:

t
1
aRRMSE = Z 2 RRMSE; =

3 N (k) o-(k) @
_1 3 et (Y —Y7)?
Niest k \
L\ Sl -y

K2

If aRRMSE = 0, then we have much better perfor-

mance, but if a RRM SE =~ 1, we have a closer value to
the default prediction that predicts the average value for
each target.

D. PARAMETER INSTANTIATION

The majority of our experiments are performed using the
CLUS software package (https://sourceforge.net/projects/
clus/), where the predictive clustering framework for
MTR and HMTR tasks, including PCTs for MTR/HMTR,
random forests of PCTs for MTR/HMTR and feature
ranking [6], [9] are implemented. The algorithms are
developed to natively handle missing values.

A hierarchical tree defined by the used clustering meth-
ods in HMTR are defined as tree shaped hierarchies. For
obtaining a hierarchy using the agglomerative clustering
method, we use the non-commercial version of OCTAVE
software package (functions pdist(), linkage() and den-
drogram()). Furthermore, in OCTAVE, we used balanced
k-means clustering for numerical type values, which is
based on Hungarian (Munkres’) assignment algorithm to
assign the examples to the clusters [74]. Since most of the
datasets have a relatively small number of targets (except
the two with more than 100), we selected the value k = 2
for balanced k-means in order to obtain more branched
hierarchies.

We use Euclidean distance metric in all our algorithms
that require distance. In HMTR, as defined in previous
sections, we use weighted Euclidean distance. Moreover,
for random forest for feature ranking, we use GENIE3 as
a feature importance method based on variable selection
with ensembles of PCTs [59]], [60]. We use 100 base
ppredictive models for the random forests in all tasks
(MTR, HMTR and feature ranking). For PCTs for HMTR
task, we use sum as an aggregation function with the
weight set to 0.75 [[13].

E. HIERARCHIES CREATED BY A DOMAIN EXPERT
In our analysis, we also use hierarchies created by the
domain experts, defined as a class ontology or domain-
specific class structure. In the following part, we explain
the creation of the hierarchies for each dataset.

The hierarchy in mdv2 (Metal data) dataset is created
based on a type of machine learning algorithm in three hi-
erarchy levels. For andro (Andromeda) dataset is created
based on correlation matrix given in [[67]]. For pdt (Prespa
Lake Top 10) data set, the top 10 most abundant diatoms
are grouped into a hierarchy based on their taxonomic
rank. For atpld and atp7d (Airline ticket prices) datasets,
the target classes are grouped based on the type of the
flight, either non-stop flight or with any number of stops.
For 0es97 and oesl0 (Occupational Employment Survey
1997 and 2010), the target classes are organized into
a hierarchy based on the type of the occupation and
specific job position. For osales (Online Sales) data set,
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the hierarchies are created based on sales products in first
and the second half of the year. For wg (Water Quality)
and SloRiv (Slovenian Rivers) datasets the hierarchies are
created based on the taxonomic tanks of the species. The
expert hierarchy for rfI and rf2 (River Flows) datasets is
constructed based on three different river network flows
(Illionis, Iowa and Missouri). The hierarchy for scmlid
and scm20d (Supply Chain Management) datasets is cre-
ated based on the grouping the 16 PC configurations (tar-
gets) on 3 main market segments (low, medium and high)
consisting of a combination of 10 different components,
as it is given in Table 5 in the report [75]. Finally, the
hierarchy for the vgc (Vegetation conditions) data set in
created based on grouping of the target classes, either to
tree related scores or other type of scores [3]].

F. STATISTICAL EVALUATION

To validate our predictive models, we use 10-fold cross
validation in all settings. More specifically, the whole
dataset is first randomly split into 10 folds. Next, 9 folds
are used for training, and the remaining one for testing.
The procedure is repeated 10 times so that each fold
is used exactly once as test set. The reported results
represent an average of all 10 runs.

For statistical evaluation of the results, we adhered to
the recommendations by [[76]]. For assessing the statis-
tical significance of the differences, we used the non-
parametric Friedman test [77]] with the correction recom-
mended by [78]]. In order to compare the methods and
to check the statistical significance among them, we used
the Nemenyi post-hoc test [[79]]. The result from Nemenyi
post-hoc test is presented with an average ranks diagram
[76]. For statistical comparison between two algorithms,
we used the Wilcoxon signed-rank non-parametric statis-
tical hypothesis test [|80].

V. RESULTS

In this section, we present the obtained results from the
performed experiments using the procedures for structur-
ing the output space. In our study, as output spaces, we
consider the space consisting of the target values or the
space consisting of feature ranks for each target. We com-
pare the following methods for hierarchy construction:

« flat MTR problem (no hierarchy) (MTR);

« agglomerative clustering with single linkage (AggS);

o agglomerative clustering with complete linkage

(AggC)

« balanced k-means clustering (BkM)

o clustering using predictive clustering trees (PCT).

« hierarchy created by an expert (Expert)

Since we have two different models (single PCTs
model and random forest of PCTs) and two different

structured output spaces, we show separately the results
for single PCTs (Fig [2) and random forest of PCTs
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(Fig [7). To clarify the notation, we need to distinguish
between using either single tree or random forest of PCTs
and different methods of structuring the output space
(target space and feature ranking space). To achieve this,
we use prefixes (PCT- and RF-) and suffixes (-7'S and -
FR) before and after the hierarchy construction method
name, accordingly. For example, RF-BkM-TS refers to
the balanced k-means method used on the original target
space using random forest of PCTs for model creation.
Then, PCT-PCT-FR refers to the clustering method with
PCTs of the output space consisting of feature rankings
using single PCTs for building the model, etc.

Fig [2] visually presents the results of the predictive
performance of single PCTs for each dataset. Examining
the figure, it is clear that data-driven hierarchies, gen-
erally, improve the predictive performance over the flat
MTR task, except on five datasets (andro, pdt, atpld,
scmld and scm20d). It is interesting to notice that, for
most of the datasets with more than 12 targets (oes97,
oes10, osales, wq), using hierarchies noticeably improve
the performance over flat MTR (with no hierarchies).
Those results give an insight that, for the datasets with
large number of targets, there is an improvement of the
performance if the hierarchies obtained by structuring the
target space, are used.

In order to figure out which data-driven clustering
method for hierarchy creation performed the best, we
created an average rank diagrams for aBRRMSE values per
output space for p — value = 0.05. More specifically,
Fig [3] (left) illustrates the average diagram for clustering
methods over the target space and Fig |3| (right) gives
the average rank diagram for clustering methods over the
feature ranking space. We can see that the best method for
hierarchy creation over target space is PCT-BkM-TS, and
it is only significantly better than PCT-AggS-TS. From the
other side, in the average rank diagrams for the clustering
methods over the feature ranking space, we can see that
PCT-BkM-FR is the best performing method and it is
significantly better than all others. Therefore, for task
of MTR with single PCTs, we can easily recommend
using balanced k-means clustering method for creation of
hierarchies from the output space (either target or feature
rankings space).

In order to check the significance of the performance
between the two best approaches for hierarchy creation
(considering the two target spaces), we perform non-
parametric Wilcoxon hypothesis test for p-value = 0.05
for the PCT-BkM-FR and PCT-BkM-TS algorithms. The
results show that PCT-BkM-FR > PCT-BkM-TS; p-value
= 0.0325 < 0.05, which means that PCT-BkM-FR is
statistically significantly better method than PCT-BkM-
TS.

Considering this, we have that the hierarchies con-
structed over the space consisting of feature importances
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FIGURE 2: Results for the predictive performance of single PCTs from experiments per dataset represented by aRRMSE.
Green bars represent hierarchies created by an expert and orange bars represent the flat MTR results.
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FIGURE 3: Average rank diagrams for algorithms that cluster the target space (left) and feature ranking space (right)
using single PCTs.

are superior to the hierarchies constructed over the target
space, both using balanced k-means method for cluster-

ing.

For a clearer picture over the best clustering method
performance and the performance of the flat MTR method
and using the hierarchy created by an expert in HMTR
task, we took the best performing methods for structuring
the output space (PCT-BkM-TS and PCT-BkM-FR) and
compare together with flat MTR task performance (MTR-
PCT) and the performance of the hierarchy created by
an expert (PCT-Expert). The average rank diagram from

statistical evaluation is given in Fig @] We can see that
PCT-BkM-FR is the superior algorithm, and significantly
better than MTR-PCT and PCT-Expert. All in all, data-

PCT-BKM-TS

MTR-PCT

PCT-BkM-FR

PCT-Expert

driven hierarchies improve the predictive performance in
multi-target regression problems.

14

| !

1 2

4

critical distance: 0.3696
|

FIGURE 4: Average rank diagrams for the best algorithms
from Fig. [3|compared to the flat MTR task and the use of
an expert created hierarchy on the target space.
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If we consider the performances for aRRMSE using
random forest of PCT algorithm, we can see that in all
data sets, the aRRMSE is reduced, which is in accordance
with the general rule-of-thumb for the random forest. In
the Appendix part of the paper, the results for a RRM SE
using random forest of PCTs per dataset are given in
Fig[7]

To investigate the translation of predictive performance
from single PCTs to ensemble of PCTs, we performed
the same experimental analysis and statistical evalua-
tion. Similar conclusions can be made as for the single
PCTs. Generally, hierarchies improve the predictive per-
formance over the flat MTR or expert created hierarchies
(in eleven out of sixteen datasets). But, there is no statis-
tically significant difference between the performances of
used clustering algorithms and the flat MTR algorithm.
The average rank diagrams for aRRMSE using random
forest are given in Fig[8land Fig[0]in the Appendix.

The detailed results of the predictive performance
(aRRM SE) for each dataset that were used to draw the
graphs in Figure 2] for single PCTs, i.e., in Figure [7] for
random forests of PCTs, are given in Figure in the
Appendix.

We must note here that we exclude both large datasets
(PD and SLORIV) from the statistical analysis, because
the high number of targets will influence the overall per-
target evaluation and will guide us towards the statistically
incorrect conclusions. For that reason, we consider those
two datasets separately in the next subsection.

A. STRUCTURING LARGE OUTPUT SPACES

In this subsection, we present the results from the exper-
iments performed on the two datasets with large number
of targets: Prespa Diatoms Lake (pd) with 111 targets and
Slovenian rivers (SloRiv) with 492 targets. The main goal
here is to make a more comprehensive and sustainable
study which will take into consideration the size of the
output space, i.e., the target space cardinality.

The balance k-means clustering algorithm for hierar-
chy creation, especially on the space consisting of fea-
ture rankings, is the best performing method based on
above results. Furthermore, in the study of [66], they
recommend to use the divisive methods for hierarchy
creation and to some extend this relates with our results
from the statistical evaluation. For that reason, we use
the divisive methods (balanced k-means and predictive
clustering trees) for clustering the output spaces for the
two big datasets. More precisely, we show the results for
clustering the target space using predictive clustering trees
(PCT-PCT-TS and RF-PCT-TS) and for clustering the fea-
ture rankings space using balanced k-means (PCT-BkM-
FR and RF-BkKkM-FR). The results are analysed as per
target performance of the data-driven hierarchy creation
methods and expert constructed hierarchy compared to
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the performance of the flat MTR task.

To better illustrate the results, we calculate the dif-
ference ARRMSE, which is the difference between
RRM SE value of flat MTR and the RRM SFE from the
appropriate method for hierarchy creation. The results for
the pd dataset using single PCTs are shown in Fig [5
The green bars present the per target RRM SFE values
that denote that HMTR models are better than flat MTR
models (positive value for ARRM SE), while the red
bars present the per target RRM SE values where MTR
models are better than HMTR models (negative values
for ARRM SFE). Examining the results, we can see that
using the PCT-BkM-FR method, we obtain the best per-
target performance. Specifically, by using PCT-Expert
compared to PCT-MTR in the pd dataset, we have 60 out
of 111 targets where PCT-Expert>PCT-MTR, then using
PCT-BkM-FR compared to PCT-MTR, we have 76 out of
111 (68.5%) targets, where PCT-BkM-FR > PCT-MTR
and finally, using PCT-PCT-TS v.s PCT-MTR, we have 72
out of 111 target, where PCT-PCT-TS > PCT-MTR.

The results from the SloRiv dataset are shown in Fig[I0]
(in Appendix). Here, by visual inspection of the results,
we can see that using the hierarchy created by PCT-
PCT-TS algorithm we obtain a better performance on the
most of the targets compared to the PCT-MTR algorithm,
i.e., PCT-PCT-TS > PCT-MTR in 325 out of 492 (66%)
targets.

Furthermore, using random forest of PCTs yields quite
similar situation. The difference here with single PCTs is
that RF-PCT-TS clustering method gives the best results
on the pd dataset. Specifically, we have RF-PCT-TS > RF-
MTR in 89 out of 111 (80%) targets. This is a very good
improvement compared to the other clustering methods
for hierarchy creation. The results for the pd dataset are
shown in Fig [l Examining the results for the SloRiv
dataset, again, same as single PCTs, we can see that by
using RF-PCT-TS method we can obtain the best per-
target performances i.e., RF-PCT-TS > RF-MTR in 287
out of 492 (59.5%) targets. The results for the SloRiv
dataset are shown in Fig|[IT]from the Appendix.

Generally, on the larger datasets, there is an improve-
ment of the performance, when the hierarchies are used.
More precisely, divisive methods for clustering (hierarchy
creation) are the best methods for structuring the output
space, which is in accordance with the conclusions from
the recent literature [[17], [66]. Furthermore, data-driven
hierarchies are generally better than the hierarchies cre-
ated by an domain expert. It is confirmed by our results as
well.

Examining the arrows in Fig [I0] and Fig [I1] (in Ap-
pendix) shown for Slovenian Rivers (SloRiv) dataset, we
can see that for example, considering the target number
170 (which is taxa Euglena viridis from taxonomic group
EUGLENOPHYTA), there is a significant improvement in
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FIGURE 5: ARRM SE values for Prespa Diatom Lake dataset pd using single PCTs and using expert created hierarchy
(PCT-Expert), balanced k-means on a feature ranking space (PCT-BkM-FR) and predictive clustering trees for clustering
the target space (PCT-PCT-TS). The arrows represent the chosen examples with good/bad performance.

the performance, if the hierarchies are used rather than
they are not used. The average abundance of all species
in the examples is 71.8. The target 170 occurs 13 times
in the examples, which is quite below the average. This
confirms the fact that with small occurrence of the target
in the examples, the model performance will be lower
than considering a whole hierarchy (target dependence),
where the target will be included. This is in accordance
with the fact that, if we build a model with structuring
of the output space (HMTR task), we can improve the
predictive performance compared to the models built on a
flat MTR task. Alternatively, if we want to check why the
hierarchies do not help on some of the targets, as an ex-
ample, we can select the target 353, which represents the
taxa Heptagenia sulphurea from the EPHEMEROPTERA
taxonomic group.

Similarly, examining the arrows in Fig [5] and Fig [6]
for Prespa Diatoms dataset pd with 111 targets, we can
make similar conclusions as for the previous dataset. For
example, if we select the target number 14, on which we
have the best performance by using hierarchies compared

16

to the flat MTR task, the occurrence of this target in the
examples is 5 times, but the average occurrence of the
targets is 33.5. Therefore, as less the target occur in the
examples, as much better performance can be achieved
by using the structure of the output space (hierarchy)
rather than using a flat MTR task, where no hierarchy is
considered.

VI. CONCLUSIONS
In this paper, we present two data-driven approaches
for structuring the output space. Namely, we present an
algorithm for clustering the targets and the algorithm for
clustering the targets according to the importance scores
of each feature per target. Our research is focused on
the question whether the two data-driven methods for
structuring the output space can improve the predictive
performance on the original flat multi-target regression
task, and, moreover, whether data-driven hierarchies are
better than expert created hierarchies.

For constructing the hierarchies, we investigate the use
of agglomerative clustering method with single and com-
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FIGURE 6: ARRM SE values for Prespa Diatom Lake dataset pd using random forest of PCTs and using expert created
hierarchy (RF-Expert), balanced k-means on a feature ranking space (RF-BkM-FR) and predictive clustering trees for
clustering the target space (RF-PCT-TS). The arrows represent the chosen examples with good/bad performance.

plete linkage, balanced k-means clustering and clustering
using PCTs. The resulting problem is then transformed
into a HMTR problem, and finally addressed by using
PCTs and random forests of PCTs for HMTR. We use
16 benchmark datasets to evaluate the performance of all
methods. Two datasets have a large number of targets (
> 100 targets). After obtaining the results for the average
RMMSE (aRRMSE), we perform a statistical evalua-
tion by using Friedman non-parametric test with Nemenyi
post-hoc testing and Wilcoxon statistical test for testing
the two best methods for structuring the output space.
The results show that for single PCTs, the data-driven
approach for structuring (clustering) the output space sig-
nificantly increases the predictive performance over the
original MTR task and over the performance obtained by
using an expert created hierarchy. A recommendation that
comes out from the statistical evaluation is that balanced
k-means algorithm can be used for clustering the output
space. Moreover, by using hierarchies created over the
feature ranking space there is an improvement in the
performance. The same, but to a lesser extent, conclusions
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can be made by using ensembles of PCTs, since they are
not improving the predictive performance significantly.

For large output spaces, datasets with a large number of
targets (greater than 100), the results show that hierarchies
improve the performance compared to using the flat MTR
task, where no hierarchy is considered. For structuring the
large output spaces, the divisive methods for hierarchy
creation are the best choice, since they are constructing
good hierarchies that improve the predictive performance.
Moreover, data-driven hierarchies are a better choice than
expert created hierarchies, which implies that we could
obtain good structure of the target space if we discover
the knowledge from the data directly rather than using the
structure based on some pre-defined relations defined by
a domain expert.

For further work, we plan to make more extensive
evaluation on more datasets with a larger number of tar-
gets and to investigate different feature ranking methods
(for example, RReliefF and attention mechanism based
feature ranking with NNs). There are some insights that
there might be potential improvements of the performance
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that can be achieved with cutting the obtained hierarchies
based on data density, distance between the nodes etc.
and addressing the task of MTR as multiple smaller MTR
tasks.

ACKNOWLEDGEMENTS

We would like to acknowledge the support of the Eu-
ropean Commission through the project MAESTRA -
Learning from Massive, Incompletely annotated, and
Structured Data (Grant number ICT-2013-612944), the
project LANDMARK - Land management, assessment,
research, knowledge base (H2020 Grant number 635201)
and Teagasc Walsh Fellowship Programme.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

G. Tsoumakas and I. Katakis, “Multi Label Classification: An
Overview,” International Journal of Data Warehouse and Mining,
vol. 3, no. 3, pp. 1-13, 2007.

D. Demsar, S. DZeroski, T. Larsen, J. Struyf, J. Axelsen, M. Pedersen,
and P. Krogh, “Using multi-objective classification to model commu-
nities of soil.,” Ecological Modelling, vol. 191, pp. 131-143, 2006.
D. Kocev, S. DZeroski, M. White, G. Newell, and P. Griffioen, “Using
single- and multi-target regression trees and ensembles to model
a compound index of vegetation condition,” Ecological Modelling,
vol. 220, no. 8, pp. 1159-1168, 2009.

J. Levati¢, D. Kocev, M. Debeljak, and S. DZeroski, “Community
structure models are improved by exploiting taxonomic rank with
predictive clustering trees,” Ecological Modelling, vol. 306, pp. 294—
304, 2015.

C. N. Silla and A. Freitas, “A survey of hierarchical classification
across different application domains,” Data Mining and Knowledge
Discovery, vol. 22, pp. 31 — 72, 2011.

D. Kocev, C. Vens, J. Struyf, and S. DZeroski, “Tree ensembles for
predicting structured outputs,” Pattern Recognition, vol. 46, no. 3,
pp. 817-833, 2013.

G. H. Bakir, T. Hofmann, B. Scholkopf, A. J. Smola, B. Taskar,
and S. V. N. Vishwanathan, Predicting Structured Data. Neural
Information Processing. The MIT Press., 2007.

H. Blockeel, Top-down induction of first order logical decision trees.
PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 1998.
J. Struyf and S. DzZeroski, “Constraint Based Induction of Multi-
Objective Regression Trees,” in Proc. of the 4th International Work-
shop on Knowledge Discovery in Inductive Databases KDID - LNCS
3933, pp. 222-233, Springer, 2006.

D. Kocev, C. Vens, J. Struyf, and S. DZeroski, “Ensembles of Multi-
Objective Decision Trees,” in Proc. of the 18th European conference
on Machine Learning, pp. 624-631, 2007.

C. Vens, J. Struyf, L. Schietgat, S. DZeroski, and H. Blockeel,
“Decision trees for hierarchical multi-label classification,” Machine
Learning, vol. 73, no. 2, pp. 185-214, 2008.

I. Slavkov, V. Gjorgjioski, J. Struyf, and S. DzZeroski, “Finding ex-
plained groups of time-course gene expression profiles with predictive
clustering trees,” Molecular BioSystems, vol. 6, no. 4, pp. 729-740,
2010.

V. Mileski, S. DZeroski, and D. Kocev, “Predictive clustering trees for
hierarchical multi-target regression,” in Advances in Intelligent Data
Analysis XVI (N. Adams, A. Tucker, and D. Weston, eds.), pp. 223—
234, Springer International Publishing, 2017.

L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 1,
pp. 123-140, 1996.

E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, and I. Vlahavas,
“Multi-target regression via input space expansion: treating targets as
inputs,” Machine Learning, vol. 104, no. 1, pp. 55-98, 2016.

G. Madjarov, D. Gjorgjevikj, I. Dimitrovski, and S. DZeroski, “The use
of data-derived label hierarchies in multi-label classification,” Journal
of Intelligent Information Systems, vol. 47, no. 1, pp. 57-90, 2016.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

S. Nikoloski, D. Kocev, and S. DZeroski, “Structuring the output
space in multi-label classification using feature ranking,” International
Workshop NFMCP in conjunction with ECML-PKDD 2017 (Skopje,
Macedonia), pp. 151-166, 2018.

S. DzZeroski, V. Gjorgjioski, I. Slavkov, and J. Struyf, “Analysis
of time series data with predictive clustering trees,” in Knowledge
Discovery in Inductive Databases, 5th International Workshop, KDID
2006, Revised Selected and Invited Papers - LNCS 4747, pp. 63-80,
Springer, 2007.

H. Borchani, G. Varando, C. Bielza, and P. Larrafiaga, “A survey on
multi-output regression,” Wiley Int. Rev. Data Min. and Knowl. Disc.,
vol. 5, no. 5, pp. 216-233, 2015.

A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonothogonal problems,” Technometrics, vol. 12, pp. 55-67, 1970.
J. Friedman, “Stochastic gradient boosting,” Computational Statistical
Data Analysis, vol. 38, no. 4, pp. 367-378, 2002.

E. Spyromitros-Xioufis, W. Groves, G. Tsoumakas, and I. Vlahavas,
“Multi-label classification methods for multi-target regression,” arXiv
preprint arXiv:1211.6581 Cornall University Library, pp. 1159-1168,
2012.

J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier Chains for
Multi-label Classification,” in Proc. of the 20th European Conference
on Machine Learning, pp. 254-269, 2009.

S. Godbole and S. Sarawagi, “Discriminative Methods for Multi-
labeled Classification,” in Advances in Knowledge Discovery and
Data Mining, pp. 22-30, Springer Berlin / Heidelberg, 2004.

W. Zhang, X. Liu, Y. Ding, and D. Shi, “Multi-output Is-svr machine
in extended feature space.,” in Proc. of the 2012 IEEE International
Conference on Computational Intelligence for Measurement Systems
and Applications, pp. 130-134, 2012.

J. Wang, Z. Chen, K. Sun, H. Li, and X. Deng, “Multi-target regression
via target specific features,” Knowledge-Based Systems, vol. 170,
pp. 70 — 78, 2019.

A. Izenman, “Reduced-rank regression for the multivariate linear
model,” Journal of Multivariate Analysis, vol. 5, pp. 248-264, 1975.
A. van der Merwe and J. V. Zidek, “Multivariate regression analysis
and canonical variates,” Can J Stat, vol. 8, pp. 27-39, 1980.

R. Tibshirani, “Regression shrinkage and selection via the lasso.,”
Journal of the Royal Statistical Society. Series B (Methodological),
p. 267-288, 1996.

C. E. Rasmussen and C. K. Williams, “Gaussian processes for ma-
chine learning.,” The MIT Press, Cambridge, MA, USA, vol. 38,
p. 715-719, 2006.

L. Breiman and J. H. Friedman, “Predicting multivariate responses in
multiple linear regression,” J. R. Stat. Soc. Series B, vol. 59, no. 1,
pp. 3-54, 1997.

A. Appice and S. DZeroski, “Stepwise induction of multi-target model
trees,” in In Proc: 18th ECML 2007, Warsaw, Poland, pp. 502-509,
2007.

T. Hothorn, K. Hornik, and A. Zeileis, “Unbiased recursive partition-
ing: A conditional inference framework,” Journal of Computational
and Graphical statistics, vol. 15, pp. 651-674, 2006.

T. Aho, B. Zenko, and S. DZeroski, “Rule ensembles for multi-target
regression,” in In Proc. of Ninth IEEE International Conference on
Data Mining, pp. 21-30, IEEE Press, 2009.

M. Breskvar, D. Kocev, and S. DZeroski, “Ensembles for multi-
target regression with random output selections,” Machine Learning,
vol. 107, pp. 1673-1709, Nov 2018.

M. Pugelj and S. DZeroski, “Predicting structured outputs k-nearest
neighbours method,” in Discovery Science, LNCS vol. 6926, pp. 262—
276, 2011.

W. J. Brouwer, J. D. Kubicki, J. O. Sofo, and C. L. Gilesd, “An inves-
tigation of machine learning methods applied to structure prediction
in condensed matter.,” arXiv preprint arXiv:1405.3564, 2014.

M. Sanchez-Ferndndez, M. de Prado-Cumplido, J. Arenas-Garcia, and
F. Pérez-Cruz, “SVM multiregression for nonlinear channel estima-
tion in multiple-input multiple output systems.,” IEEE Transactions
on Signal Processing, vol. 52, no. 8, pp. 2298-2307, 2004.

B.-H. Mevik and R. e. a. Wehrens, “The pls package: Principal
component and partial least squares regression in R.,” Journal of
Statistical Software, vol. 18, no. 2, p. 1-24, 2007.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publigy s g e 5~ PR
10.1109/ACCESS.2019.2945084, IEEE Access l E E E ACCGSS

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

T. Hastie, J. Friedman, and R. Tibshirani, “Additive models, trees, and
related methods.,” In The Elements of Statistical Learning (Springer),
p. 321-329, 2001.

M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm.,” In IEEE Interna-
tional Conference on Neural Networks (IEEE), p. 586-591, 1993.

A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for improved un-
constrained handwriting recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, p. 855-868, 2009.

H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
based recurrent neural network architectures for large vocabulary
speech recognition,” CoRR, vol. abs/1402.1128, 2014.

X. Zhen, M. Yu, X. He, and S. Li, “Multi-target regression via
robust low-rank learning,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 2, pp. 497-504, 2018.

M. Kuo, B. Mohler, S. L. Raudenbush, and F. J. Earls, “Assessing
exposure to violence using multiple informants: Application of hier-
archical linear model,” Journal of Child Psychology and Psychiatry,
vol. 41, no. &, pp. 1049-1056, 2000.

A. Gelman, “Multilevel (hierarchical) modeling: What it can and
cannot do.,” Technometrics, vol. 48, p. 432-435, 2006.

J. de Leeuw and E. Meijer, Handbook of Multilevel Analysis.
Springer, New York, NY, 2008.

T. A. B. Snijders, Multilevel Analysis, pp. 879-882. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011.

A. O’Brien, James and M. Marakas, George, Management Informa-
tion Systems. McGraw-Hill/Irwin, 2010.

R. Agrawal, A. Gupta, and S. Sarawagi, “Modeling multidimensional
databases.,” In Proceedings of the 13th International Conference on
Data Engineering (IEEE Computer Society), p. 232-243, 1997.

T. Nguyen, A. M. Tjoa, and R. Wagner, “An object oriented multi-
dimensional data model for olap.,” In Proceedings of the 1st Interna-
tional Conference on Web-Age Information Management (WAIM) in
LNCS (Springer-Verlag), vol. 1846, pp. 69-69, 2000.

A. Joly, P. Geurts, and L. Wehenkel, “Random forests with random
projections of the output space for high dimensional multi-label
classification,” In Joint European conference on machine learning and
knowledge discovery in databases, pp. 607-622, 2014.

J. Levati¢, D. Kocev, and S. DZeroski, “The importance of the label
hierarchy in hierarchical multi-label classification.,” Journal of Intel-
ligent Information Systems, vol. 45, p. 247-271, 2015.

P. Szymanski, T. Kajdanowicz, and K. Kersting, “How is a data-driven
approach better than random choice in label space division for multi-
label classification?,” Entropy, vol. 18, p. 282, 2016.

G. Tsoumakas and I. Vlahavas, “Random k-Labelsets: An Ensemble
Method for Multilabel Classification,” in Proc. of the 18th European
conference on Machine Learning, pp. 406417, 2007.

A. Joly, “Exploiting random projections and sparsity with random
forests and gradient boosting methods—application to multi-label
and multi-output learning, random forest model compression and
leveraging input sparsity,” arXiv preprint arXiv:1704.08067, 2017.

L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 2001.

A. Verikas, A. Gelzinis, and M. acauskiene, “Mining data with random
forests: A survey and results of new tests,” Pattern Recognition,
vol. 44, no. 2, pp. 330-349, 2011.

V. A. Huynh-Thu, L. Irrthum, Wehenkel, and P. Geurts, “Inferring
regulatory networks from expression data using tree-based methods,”
PLos One, vol. 5, no. 9, 2010.

M. Petkovié, D. Kocev, and S. DZeroski, “Feature ranking for multi-
target regression,” Machine Learning Journal, vol. to appear, 2019.
G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and Efficient
Multilabel Classification in Domains with Large Number of Labels,”
in Proc. of the ECML/PKDD Workshop on Mining Multidimensional
Data, pp. 30-44, 2008.

D. Kocev, Ensembles for predicting structured outputs. PhD thesis,
IPS Jozef Stefan, Ljubljana, Slovenia, 2011.

I. Dimitrovski, D. Kocev, S. Loskovska, and S. DZeroski, “Fast and
scalable image retrieval using predictive clustering trees,” Interna-
tional Conference on Discovery Science, pp. 33-48, 2013.

VOLUME 4, 2016

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(77]

(78]

[79]

[80]

L. Breiman, J. Friedman, R. Olshen, and C. J. Stone, Classification
and Regression Trees. Chapman & Hall/CRC, 1984.

H. Blockeeel, S. DZeroski, and J. Grbovi¢, “Simultaneous prediction
of multiple chemical parameters of river water quality with Tilde,” in
Proceedings of the 3rd European Conference on PKDD - LNAI 1704,
pp. 32-40, Springer, 1999.

G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. DZeroski, “An exten-
sive experimental comparison of methods for multi-label learning,”
Pattern Recognition, vol. 45, no. 9, pp. 3084-3104, 2012.

E. V. Hatzikos, G. Tsoumakas, G. Tzanis, B. Nick, and I. P. Vlahavas,
“An empirical study on sea water quality prediction,” Knowl.-Based
Syst., vol. 21, no. 6, pp. 471-478, 2008.

W. Groves and M. Gini, “On optimizing airline ticket purchase
timing.,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 7, no. 3, p. 1-28, 2015.

L. Todorovski, H. Blockeel, and S. Dzeroski, “Ranking with predictive
clustering trees,” in Machine Learning: ECML 2002, 13th European
Conference on Machine Learning, Helsinki, Finland, August 19-23,
2002, Proceedings, pp. 444-455, 2002.

Kaggle, “Kaggle: Online product sales.” https://www.kaggle.com/c/
online-sales, 2012. Accessed: 2017-05-05.

D. Kocev, A. Naumoski, K. Mitreski, S. Krti¢, and S. DZeroski,
“Learning habitat models for the diatom community in Lake Prespa,”
Ecological Modelling, vol. 221, no. 2, pp. 330-337, 2010.

W. Groves and M. Gini, “Improving prediction in tac scm by integrat-
ing multivariate and temporal aspects via pls regression.,” In Agent-
Mediated Electronic Commerce. Designing Trading Strategies and
Mechanisms for Electronic Markets, pp. 28—43, 2013.

S. DZeroski, D. Demsar, and J. Grbovi¢, “Predicting chemical param-
eters of river water quality from bioindicator data,” Applied Intelli-
gence, vol. 13, no. 1, pp. 7-17, 2000.

M. Malinen and P. Friinti, “Balanced k-means for clustering,” Joint Int.
Workshop on Structural, Syntactic, and Statistical Pattern Recognition
(S+SSPR 2014), LNCS 8621, pp. 3241, 2014.

J. Collins, R. Arunachalam, N. Sadeh, J. Eriksson, N. Finne, and
S. Janson, “The supply chain management game for the 2007 trading
agent competition,” 2006.

J. Demsar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.
M. Friedman, “A comparison of alternative tests of significance for
the problem of m rankings,” Journal of Machine Learning Research,
vol. 11, no. 1, pp. 86-92, 1940.

R.L.Iman and J. M. Davenport, “Approximations of the critical region
of the Friedman statistic,” Communications in Statistics - Theory and
Methods, vol. 9, no. 6, pp. 571-595, 1980.

P. B. Nemenyi, Distribution-free multiple comparisons. PhD thesis,
Princeton University, Princeton, NY, USA, 1963.

F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biomet-
rics Bulletin, vol. 1, no. 6, pp. 80-83, 1945.

APPENDIX

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.


https://www.kaggle.com/c/online-sales
https://www.kaggle.com/c/online-sales

IEEE Access

10.1109/ACCESS.2019.2945084, IEEE Access

sublication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

0.904 0.55 andro 0.741 osales 0555 oes97 0533 oes10
0.54 0.739
0.903 0553
053 0.528
0.902 ’ 0-737 0.551
0.52 0.735 : 0.523
0.901 5 .
0.51 . 0.549
0.9 05 ) 0.547 0.518
0.899 0.49 0.731 .
0.808 0.48 0.729 0.545 0513
& @%%54—;(—,,\5 & & & %«54:/\'—:/\'1 & & & R OO oo & < & & & o &
qgi‘(q.@@&c,,\:,«c,,\c,JV C“e“d‘“«/\s & Q’k“c““ o & k,«««««’\«’\& £ & Q«« ,_,,«
&L &EE & &£ S ST O & O F &0 q,é*@
o ,(v q v@vggw *é%\ﬁ;a é\”vﬁ’% S éy%}«ékqu”éﬁé‘ *é"é*‘i"&**é\ Za \}“‘g@f@%g@é%%&
mdv2 atpld atp7d
o2 0,003 0.424 0.542 0.6112
007 0.941 o 0537 0.6102
0.939 0.532
0.92 0.937 0.6092
0035 o010 0.527
0.87 I I I 0033 I 0.522 0.6082
0.2 0.931 0.517 0.6072
& e‘; & %«:}& « 4;30 «';ga & «s@& i é«; «:«w «‘:éfb é?«:@ «5@«5 & i 0@ Q;}g & ¢: © ,\5 & «'o & é«&cf‘% f & o0 oo & 59«“@ 4&(’& &g © «s & «s\&s
& S F L3 s fb &
Q«éy QS* yﬁé .{«‘? "« ‘i‘qﬁ’{s’é @Qﬁ@(qﬁ‘é é* & “ ‘(,%«ké \k‘(‘zéév\i&oééwv@e
scmild 0.385 scm20d
0331 0.341 0315
0314 0383
0329 0.337 0313
0381
0.327 0.333 0312
- 0311 0379
0325 0.329 0.31 0377
0.309
0.323 0.325 0.308 0378 « & & & «e & o O &
& & & & & & & O S &8 & o © O
%@“% ¥ k&ié& w\#é@& & & O{b&‘i&i «:é \,s&f‘é@?é & & é'-?&@»“& ‘('z : & St &L "v”? v“?v*” F s
FEFESTE 5« TEIE L LT « SEEAS IS CEEE
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FIGURE 10: ARRM SE values for Slovenian rivers SloRiv dataset using single PCT's and using expert created hierarchy
(PCT-Expert), balanced k-means on a feature ranking space (PCT-BkM-FR) and predictive clustering trees for clustering
the target space (PCT-PCT-TS). The arrows represent the chosen examples where we have good/bad performance.
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FIGURE 11: ARRMSE values for Slovenian rivers dataset SloRiv using random forest of PCTs and using expert
created hierarchy (PCT-Expert), balanced k-means on a feature ranking space (PCT-BkM-FR) and predictive clustering
trees for clustering the target space (PCT-PCT-TS). The arrows represent the chosen examples where we have good/bad
performance.
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FIGURE 12: Detailed results for the predictive performance (e RRM SE) per dataset corresponding to the graphical

results in Figure E] for single PCTs i.e., in Figure E] for random forests of PCTs
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