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ABSTRACT

The shape of an active colloid has an enormous effect on the motion of the particle
and allows for significantly more variation in its design and application. In this thesis,
the dynamics of both convex (spheroidal) and concave (helical and toroidal) particles
are investigated with analytical and numerical methods. Starting with an individual
particle, it is shown that breaking symmetries of the particle shape can enlarge the
possibilities for particle motion, both for self-diffusiophoretic microswimmers and
within the more general “squirmer model”. These results are then extended to include
pair interactions. For interacting spheroids, two types of stable pair configurations can
exist: co-moving "head-to-tail“ and stationary "head-to-head" pairs. We also consider
the interaction of a torus and sphere, with a view towards designing "lock-and-key"
interactions.
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CHAPTER 1
INTRODUCTION

Smaller. Faster. Better. Miniaturization is an integral part of the maturation process of
any technology. Computers and electronics in general are the most famous and successful
example. While the first computers could fill a whole building, a modern smartphone with a
processing power many magnitudes higher can fit in our pocket. In his 1959 lecture “There’s
Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics” Richard
Feyman envisioned a future in which humans are able to manipulate matter at the nano and
micro scales. Many aspects of his vision have come true, but we still do not “swallow our
doctor,” as he put it. The idea of using microscale robots to perform surgeries, remove blood
clots, or deliver drugs directly to cancerous growth is still motivating scientists all around the
world and arouses interest in the general public, such as in the New York Times [3]. Why
have the problems not been solved in the sixty years since then, one might ask? First of all,
the research into active matter, and microswimmers in particular, unfortunately did not start
in earnest until decades later. Secondly, mobility in fluids at low Reynolds number, which
includes motion in water at the microscale, is drastically different compared to our everyday
experiences. Milk accidentally added to a low Reynolds number coffee could get “unstirred”
again, but even Michael Phelps would barely swim forward using the crawl or backstroke.
In order to overcome these hurdles, a natural first step is to investigate nature. Organisms
exist at all length scales and have evolved propulsion mechanisms adapted to their environ-
ments [86, 180]. Understanding why and how these work is required in order to replicate
them- or, at least, can provide the inspiration necessary to mimic them. Beyond that, a better
understanding of nature (for example bacteria), is a worthwhile goal on its own and will also
have benefits for new medical treatments.
Many microorganisms propel themselves with the help of flagella, thread-like appendages of
varying size. Often these are small but numerous, and cover the entire body, similar to a
carpet. When the cilia beat in a coordinated manner, the surrounding fluid gets pushed in
such a way that the organism moves forward. While it is not feasible to recreate the cilia
for artifical microswimmers, their effect, i.e. the resultant flows, can be mimicked. One
such interfacially-driven system are self-diffusiophoretic colloids. Being only partially cov-
ered by a catalyst, they produce an inhomogeneous concentration field in their surroundings.
Molecular-scale interactions with the product molecules can create flows similar to flows
driven by the beating of cilia and propel the particle forward. This mechanism is described
in greater detail in chapter 2.4.
Another aspect immediately obvious when studying biological microswimmers is the wide
range of shapes. Spheres, due to their relative ease of manufacturing and mathematical ele-
gance, are a favorite both for experimental and theoretical studies. However, if nature holds
true as an indicator, they are not the optimal shape in most cases. Instead, elongated, con-
torted and even concave, i.e. E. coli, shapes are much more common [21, 101, 133, 224, 263].
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Answering the question, why this is the case and how more complex geometries can be used
for real world applications is one of the main goals of this work.
It is safe to assume that most of the envisioned applications will not be achieved with only a
single type of microswimmer. While freeing a blocked artery might be similar to removing
micro plastics from corrals [20], those tasks are vastly different from controlling a chemical
spill with a lab-on-a-chip device [74]. Similarly, certain so-called micromachines have al-
ready been proposed and prototypes designed, but a microdrill [78] will never look similar
to a microgear [11]. In addition, they are often envisioned to be composed of multiple,
self-assembling parts.
Beyond the shape, the second main focus in this thesis are the interactions between mi-
croswimmers. A single particle is small and will not have enough effect to achieve the goal.
For example, a single microswimmer will not be able to deliver enough drugs to stop the
growth of a tumor. It is thus, imperative to understand how individual particles react to each
other. Only this will allow us to design particles that can function as the building blocks
of a more complex system. Over the last decade, this has lead to a significant interest in
understanding the collective behavior of artificial and biological microswimmers. The main
focus to date has been on two classes of clustering phenomena.
The first class is called motility-induced phase separation (MIPS) and relies on a self-trapping
mechanism induced by the steric interaction between particles [38, 189]. Two micoswimmers
can not swim through each other, and instead become stuck when colliding. The particles
only escape, if one rotates enough to slide past the other. However, if a third swimmer crashes
into the pair beforehand, a cluster begins to grow. While aggregation is also known for passive
colloids, microswimmer do not need an attractive particle-particle interaction in order to form
such a cluster. Instead, above a characteristic particle density and swimming speed, a phase
separation occurs. In the “gas” phase the colloids are far apart and continue to move freely.
In the second phase, the clusters, the particles are in direct contact and severely limited in
their mobility. There is no inherent alignment between particles in such clusters. Overall,
equilibrium between a dense cluster phase and a tenuous "gas" phase is established by a
kinetic balance between incoming and outgoing fluxes of particles at the interface between
the phases.
The second kind of clusters, on the other hand, form by ordering. A velocity-aligning in-
teraction between the particles enables the formation of these co-moving clusters. These
interactions are non-steric and typically hydrodynamic, electric, or magnetic. Fascinating
phenomena such as swarming [110, 113], consistent unidirectional movement [32], vortices
[31, 89, 128] and superfluidity [147] have been observed under these conditions. For artifical
microswimmers, Quincke rollers [261], magnetic rollers [113], and electrokinetic particles
[255] are commonly used. All three of these systems have two limitations in common: they
are restricted to a confined space and need an external field. For many applications, these
limitations are detrimental, if not prohibitive. For instance, a three dimensional micromachine
could not assemble and a chemical spill needs to be controlled wherever it appears.
In a recent study, hydrodynamic interaction between two active colloids are shown to create
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clusters [107]. Pairs of colloidal disks aligned in a head-to-head configuration, but crucially
their direction is not influenced by the external field and they are well separated. This indi-
cates the possibility to design artificial microswimmers, that have neither severe limitations to
their mobility (type 1), nor the restrictions associated with clusters of the second type. Such
systems could open many possibilities in the future and investigating them in the context of
complex shapes is the second part of this thesis.
After a brief introduction to the physical laws and equations underlying the dynamics of
self-phoretic particles, four novel contributions to the field are presented. All four use a
combination of analytical predictions and numerical calculations to predict and understand
the behavior of active particles with non-spherical shapes.
In the first half (Chapters 1 and 2), self-diffusiophoretic colloids are discussed. These par-
ticles achieve self-propulsion by decomposing a “fuel” in the surrounding fluid (see section
2.4). Due to their relative ease of production and not needing an external field (i.e. electrical
or magnetic field), self-diffusiophoretic colloids are commonly used in experimental studies.
These chapters focuses on self-diffusiophoretic colloids with a concave geometry. Helical
shapes (Chapter 1) create circumferential, in addition to the well-known tangential, variations
in the concentration field, and enable the colloid to swimwith many more degrees of freedom.
Using the simplest catalytic distribution, covering the bottom half of the particle, a sphere can
only swim forward or backwards. A helix, on the other hand, can swim in all three directions
and can rotate around all three axes. We investigate how these six velocity components can
be controlled through tailoring the surface chemistry and shape of the helical particle.
In Chapter 2 the pair interaction between a self-diffusiophoretic torus and sphere are investi-
gated. These pairs are shown to form stable, co-moving pairs, an important stepping stone for
many applications relying on alignment. In addition, the torus can be designed to be stationary
and impassible for specific spheres. The exclusion criterion is the sphere’s self-propulsion
speed, meaning the torus functions as a speed gate for spheres.
Instead of self-diffusiophoresis, Chapters 3 and 4 discuss the more general squirmer model
(see section 2.5) for spheroidal geometries. In Chapter 3 the traditional (spherical) squirmer
model is extended to spheroidal shapes. This does not only increase the applicability of the
model, but also shows an inherent advantage spheroidal shapes have over spherical ones.
Many patterns of surface actuation which fail to propel spherical microswimmers can do so
for spheroidal microswimmers.
Finally, in Chapter 4, this extended model is used to understand the formation of only recently
discovered stationary microswimmer pairs [107]. A full stability analysis is performed for
these “head-to-head” pairs. In addition, the existence of stable, co-moving “head-to-tail”
pairs is predicted.
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CHAPTER 2
THEORETICAL BACKGROUND

In this chapter, we review the basic theory of lowReynolds number flows, molecular diffusion,
and self-phoresis. We also briefly discuss our chosen numericalmethod, the boundary element
method. Detailed treatments of creeping flow are provided by Lauga [137], Brenner [93], and
Kim and Karilla [125]. The boundary element method is developed in detail by Pozrikidis
[199].

2.1 Navier-Stokes equation

The Navier-Stokes equation

d

(
mv
mC
(r, C) + (v(r, C) · ∇)v(r, C)

)
= −∇?(r, C) + `∇2v(r, C) + f (r, C) (2.1)

is the fundamental equation of fluid dynamics and relates the flow velocity v of a fluid, to its
dynamic viscosity `, mass density d, pressure ?, and external body force density f. It can
be derived directly from Newton’s famous second law F = d

dt (< · v) connecting an applied
force F to the changes in mass < and velocity v. In order to solve the Navier-Stokes equation,
incompressibility

∇ · v = 0 (2.2)

will be assumed, in addition to the boundary conditions.

2.1.1 Reynolds number

Reynolds number Re = *!d

`
is a dimensionless number often used in fluid dynamics to

distinguish and classify fluid flows, ranging from air around a plane Re � 1, 000, 000 to lava
flowing out of a volcano Re ≤ 2, 000 [44]. It is calculated using the characteristic velocity
|v(r, C) | ≈ * and length ! of the system in question and represents the ratio of inertial to
viscous forces as

Re =
inertial forces
viscous forces

=
*!d

`
=

1`m · s−1 · 10`m · 103kg ·m−3

10−3Pa · s
= 10−5 � 1. (2.3)

For a typical microswimmer Re is very small. Microswimmers are commonly ! ≈ 10 `m
long and swim at speeds of about* ≈ 1`m · s−1 in water (d = 103kg ·m−3; ` = 10−3Pa · s). It
follows that for microswimmers, viscous forces dominate inertial forces. The Navier-Stokes
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equation (2.1) expressed in terms of dimensionless quantities C ′, E′ and A ′ reads

d*2

!
( mv′

mC ′
(r′, C ′) + (v′(r′, C ′) · ∇′)v′(r′, C ′)) = −1

!
∇′?(r′, C ′) + `*

!2 ∇
′2v′(r′, C ′) + f (r′, C ′)

*!

`/d (
mv′

mC ′
(r′, C ′) + (v′(r′, C ′) · ∇′)v′(r′, C ′)) = −!

`*
∇′?(r′, C ′) + ∇′2v′(r′, C ′) + !

2

`*
f (r′, C ′)

Re( mv′

mC ′
(r′, C ′) + (v′(r′, C ′) · ∇′)v′(r′, C ′)) = −∇′?′(r′, C ′) + ∇′2v′(r′, C ′) + f ′(r′, C ′), (2.4)

when introducing the characteristic timescale ) = !
*

and dimensionless pressure ?′ = !
`*
?.

2.2 Stokes equation

Reynolds number being very small (Re � 1) reduces Eq. (2.1) to the Stokes equation

0 = −∇?(x) + `∇2v(x) + f (x) (2.5)

by neglecting the left hand side. Stokes equation has several mathematical properties which
describe remarkable real world behavior. The equation has no explicit time dependence,
which makes every process automatically reversible. Famously, G.I. Taylor showcased this
in a video for the National Committee for Fluid Mechanics Films by mixing and demixing
a drop of paint in glycerin [2]. This can be reproduced by anybody by slowly stiring the
glycerin a set number of turns one way to mix and then rotating it in the opposite direction
the exact same number of turns to demix. Another immediate result of reversibility is the
so-called “no scallop theorem” [200]. It states: “No time symmetric, periodic motion can
produce a net displacement for a microswimmer”. For a scallop in the low Reynolds number,
or creeping flow, regime, this means how ever much it moves forward when opening its shell,
it will move backwards the exact same amount when closing it. The speed at which the two
separate motions are done has no effect on the final outcome.
The solution to a Stokes problem can be time dependent if either the boundary conditions
or the applied forces 5 are time dependent. However, the solution will be instantaneous,
meaning the influence of these changes will spread immediately throughout the entire system.
It follows that microswimmers need a continuous propulsion mechanism. As soon as the
propulsion is interrupted, the microswimmer will come to a standstill; coasting is impossible.
Finally, Eq. (2.5) is linear, a property very useful for analytic solutions. A complex problem
can be split up into multiple, geometrically identical auxiliary problems. After solving every
auxiliary problem individually, the overall solution can be constructed by simple addition of
the individual solutions.
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2.3 Laplace equation

The convection-diffusion equation governs the spread and distribution of a chemical concen-
tration field 2 in a fluid

m2

mC
= ∇ · (�∇2) − ∇ · (v2) + (2 . (2.6)

Here (2 is a sink, which can be a function of r and C, and � the diffusion coefficient. Using
the incompressibility condition, Eq. (2.6) can be arranged into

m2

mC
= ∇ · (�∇2) + (2 , (2.7)

with the left hand side representing the effect of advection and the right hand side the effect
of molecular fluxes. The Péclet number

Pe =
advective transport rate
diffusive transport rate

= *!/� =
1`m · s−1 · 10`m

4 · 10−9m2s−1 = 2.5 · 10−3 � 1 (2.8)

compares the advective transport rate to the diffusive transport rate. For a typical self-
diffusiophoretic microswimmer in free space (see 2.4, (2 = 0, � ≈ 4 · 10−9m2s−1 for O2) the
diffusive transport rate is much higher and Eq. (2.6) reduces to the Laplace equation.

∇22 = 0. (2.9)

2.4 Self-phoretic particles

Figure 2.1: Half-covered self-diffusiophoretic prolate. The lines represent the velocity
stream lines and the color indicates the magnitude of the flow field.
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Self-diffusiophoresis is one propulsion mechanism developed for artificial microswim-
mers. These colloids propel themself by harvesting local free energy from a chemical fuel.
Due to the size limitations at the microscale (+U'3), they can not transport the fuel and
instead it needs to be available in the surrounding fluid. Their surface is split into at least
two parts with different chemical properties; one part of the particle surface catalyses a de-
composition of fuel molecules in the surrounding fluid, while the rest is inert. A common
example is platinum covered polystyrene. In an H2O-H2O2 solution the platinum catalyses
the decomposition of H2O2 into H2O and O2. The product molecules (O2) are not spread ho-
mogeneously along the surface and a concentration gradient is created. The molecules within
a molecular-sized distance, X, of the colloid surface feel either an attraction or repulsion from
the particle. This interaction generates a force on the molecules inside the X region; but the
impenetrability of the particle prevents the molecules at the particle boundary from moving
normal to it. The forces are instead balanced by a pressure difference, i.e., there is a local
hydrostatic equilibrium in the direction normal to the surface similar to the gravity induced
pressure increase in water. This local equilibrium, i.e., equilibrium concerning variation of
the concentration in the normal direction, can be achieved because the boundary layer is thin
(X � '). Whether the interaction is repulsive or attractive does not change the fundamental
mechanism, but only its sign.
Since the concentration along the surface changes, so does the pressure and a so-called slip
flow emerges [196]. This slip velocity is self-generated and causes the particle to propel itself
forward, hence the name self-diffusiophoresis.
For this work only zeroth order reaction kinetics are considered, i.e. the chemical activity
does not depend on the product concentration. This assumption is justified if the “fuel”
concentration does not diminish notably, i.e. the chemical activity is low and the “fuel” is
plentiful in solution.
As stated above, the Péclet number for a typical self-diffusiophoretic colloid is very small.
This justifies the neglection of all advection effects on the concentration field and assuming
the system to be a quasi-steady instead.
For a colloid in an unbounded fluid, it follows that the concentration field satisfies Laplace’s
equation

∇22 = 0 (2.10)

with boundary conditions on the particle surface

− � [n · ∇2] = ^ 9 (xs) (2.11)

and at infinity
2(r) → 0 for A →∞. (2.12)

As mentioned before, the catalytic activity 9 varies along the particle surface xs, ^ is the
characteristic rate of solute production per unit area, and n the surface normal pointing into
the fluid.
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Once the concentration field along the surface is known, the slip velocity can be calculated
using the equation

vs = −1∇ | |2(xs) (2.13)

as stated by Anderson [7]. The surface mobility 1 represents the interaction details between
the particle surface and the product molecules. For an attractive interaction, 1 is positive. 1
is material dependent, and hence can take different values on the inert and catalytic faces.
Self-propelled microswimmers are force and torque free. Using this property, their swimming
speed U and 
 can be calculated via the Lorentz reciprocal theorem 2.6.

2.5 Squirmer model

The squirmer model was originally invented by Lighthill [145] in 1952 and later corrected
and extended by Blake [25]. Its original intent was to model axisymmetric, spherical, ciliated
microswimmer by averaging the movement of the flagella in both space and time. This
is justified if the flagella beat much faster than the particle moves and are much shorter
than the particle body. The flow induced by the envelope of cilia tips is replaced with a
constant slip velocity in an infinitesimal surface layer between fluid and particle. Hereto, two
approximations are necessary. Firstly, the finite length of the flagella is neglected and their
effect is reduced to a single (surface) layer; secondly, since the flagella beat much faster than
the particle moves, the induced flow field is averaged over one period. This approach can be
extended to any slip driven, self-propelled microswimmer, e.g. self-diffusiophoretic colloids.
For a spherical particle the normal E= and tangential EB component are developed in terms of
the Legendre polynomials P= and associated Legendre polynomials P1

=

E= =

∞∑
=

�=P= (cos(\)) (2.14)

EB =

∞∑
=

�=
−=(= + 1)

2
P1
= (cos(\)) (2.15)

respectively. The coefficients �= and �= are the amplitudes for the individual modes. �1 and
�1 immediately and solely fix the particle swimming velocity |U| = 1

3 (2�1 − �1).

2.6 Lorentz reciprocal theorem

Lorentz reciprocal theorem will allow for the calculation of the swimming speed U and 
 of
a microswimmer without solving the fluid dynamic problem in the whole fluid. Instead, it
connects the velocity v, and Newtonian stress tensor σ, on the surfaces of two geometrically
identical systems ( and (′. The second system, with different boundary conditions, will be
conveniently chosen.
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Using Einstein notation, the equation

v′ · (∇ · f) =
m (E′

9
f8 9)

mG8
− f8 9

mE′
9

mG8
(2.16)

can be rewritten assuming incompressibility ∇ · v(r) = 0 and with the definition of the
Newtonian stress tensor

f8 9 = −X8 9 ? +
(
mE8

mG 9
+
mE 9

mG8

)
. (2.17)

This leaves

m (E′
9
f8 9)

mG8
− (−X8 9 ? + (

mE8

mG 9
+
mE 9

mG8
))
mE′

9

mG8

=
m (E′

9
f8 9)

mG8
− ( mE8

mG 9
+
mE 9

mG8
)
mE′

9

mG8
= E′9

mf8 9

mG8
, (2.18)

which can be further simplified for Stoke flows mf8 9

mG8
= 0 and if there are no external body

forces (f (r) = 0)

m (E′
9
f8 9)

mG8
− ( mE8

mG 9
+
mE 9

mG8
)
mE′

9

mG8
= 0. (2.19)

The primed and the unprimed system are interchangeable. Subtract the respective equations
from each other, one obtains the Lorentz reciprocal relation

m

mG8
(E′9f8 9 − E 9f′8 9) = 0. (2.20)

Applying Gauss’s theorem reformulates the differential equation in its integral form, also
known as Lorentz reciprocal theorem∫

mΣ

d( v′ · f · n =
∫
mΣ

d( v · f′ · n. (2.21)

Here mΣ is the boundary of the fluid and n is its normal.

2.7 Boundary element method

The boundary element method (BEM) [198] is a numerical approach to calculating the
velocities of a particle using the Lorentz reciprocal theorem. It can be split up into two steps;
first the chemical concentration field on the surface of the particle needs to be determined.
This is done by solving the Laplace problem presented in 2.4 numerically. Using its solution
the slip velocity Esurface(r%) can be calculated. With it the hydrodynamic boundary condition
on the particle surface is fixed.
As introduced above, for the Lorentz reciprocal theorem to be usable, a secondary system
(′ is necessary. BEM actually uses six (′

8
, one for each of the particle velocity components.
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Each one has a no-slip condition on the particle surface and is driven by an external force,
such that the particle velocities are fixed as

(U′1,

′
1) = (*0eG , 0)

(U′2,

′
2) = (*0eH , 0)

(U′3,

′
3) = (*0eI , 0)

(U′4,

′
4) = (0,Ω0eG)

(U′5,

′
5) = (0,Ω0eH)

(U′6,

′
6) = (0,Ω0eI).

Because the fluid flow vanishes at infinity v(x → ∞ = 0, the Lorentz reciprocal theorem
reads ∫

mΣ

d( v′8 · f · n =
∫
mΣ

d( v · f′8 · n. (2.22)

For the force driven particle, the boundary conditions are v′B = U′
8
+
′

8
× (r− r0) and the left

hand side of Eq. (2.22) changes to∫
mΣ

d ((U′8 +
′8 × (r − r0))f · n

= U′8 ·
∫
mΣ

d( f · n +
′8 ·
∫
mΣ

d( (r − r0) × f · n

= U′8 · F +
′8 · g. (2.23)

F and g are the forces and torques acting on the microswimmer.
Repeating the same calculation for the right side of (2.22) with vsurface = U8 +
8× (r−r0) +vB
leads to

U8 · F′ +
8 · g′ +
∫
mΣ

d( vs · f′8 · n. (2.24)

Active particles are force-free, F = 0 and torque-free g = 0, and the forces necessary to drive
the particle in the six chosen modes can be calculated using the code provided by Pozrikidis
[198]. The problem reduces to a system of six equations with six unknowns: *G ,*H ,*I ,ΩG ,
ΩH and ΩI

U8 · F′ +
8 · g′ = −
∫
mΣ

d( vs · f′8 · n. (2.25)

This system of equations can be solved.

2.8 Stresslet

In fluid dynamics the zeroth and first moment of the surface stress are commonly used to
define three properties[125]; the stokeslet, stresslet and rotlet. Each of those terms represents
a distinct flow field pattern (see Fig. 2.2) and fundamental solution to the Stokes equation.
The stokeslet
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Figure 2.2: Characteristic flow fields created by stokeslet (left), stresslet (middle) and rotlet
(right) respectively. The figure has been reprinted from [210] with the permission.

�9 =

∯
(f · n) 93( (2.26)

is the solution to a single point force in zero Reynolds number flow. The first moment � 9:

on the other hand is split into the symmetric stresslet ( 9: , and the antisymmetric rotlet )9: .

� 9: =

∯
(f · n) 9b:3( (2.27)

� 9: −
1
3
�88X 9: = ( 9: + )9: (2.28)

( 9: =
1
2

∫
(U

[f98=8G: + f:8=8G 9] 3( −
1
3

∫
(U

f;8=8G; 3( X 9: . (2.29)

By convention, the trace of � 9: is not part of either the stresslet or the rotlet since the
incompressibility condition prevents any effect it might have on the fluid flow.
Self-propelled microswimmers are force and torque free, this removes any stokeslet or rotlet
contribution to their flow fields. If the stresslet is non-zero, it is the slowest decaying term in
the far field:

D8 =
1

8c`

(
G8X 9:

A3 −
3G8G 9G:
A5

)
(
(U)
9:
, (2.30)

It is commonly used to distinguish two types of particles, puller and pusher. A pusher has
a positive stresslet contribution and pushes the fluid immidiatly in front and behind its body
away. A puller has a negative stresslet contribution.

2.9 Stokes stream function

For incompressible stokes flows with an axissymetric geometry and boundary conditions a
scaler auxiliary function k(r) can be defined to replace the three dimensional flow field v
[93]. This scalar function relates to the flow field with the simple transformation

v = ∇ × ( 1
ℎi
kei). (2.31)
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(a) (b)

Figure 2.3: Velocity stream lines around (a) a puller and (b) a pusher spheroidal squirmer
particle in free space. The system is chosen such that the particle is at rest (co-moving frame).

For any k the incompressibility condition is automatically fulfilled, since ∇ · ∇ × 5 = 0 for
all functions 5 .
In order to rewrite Stokes equation (2.5) in terms of k, it is convenient to apply the curl
operator on both sides of the equation. This eliminates the ∇? term and leaves

0 = ∇ × (∇2v(r)) (2.32)

for a system without external forces f = 0. Using ∇ · v = 0 in the vector identity

∇2 = ∇(∇ · v) − ∇ × (∇ × v) (2.33)

Eq. (2.32) rewrites as

0 = ∇ × (∇ × (∇ × v))

⇔ �4k = 0. (2.34)

�2 is a differential operator depending on the chosen coordinate system

�2 = ∇2 − 2
:

m

m:
. (2.35)

Here : is the coordinate orthogonal to the axis of symmetry. If k solves Eq. (2.34) with
the appropriate boundary conditions, than (2.31) is the unique solution to the corresponding
Stokes problem.
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CHAPTER 4
PHORETIC SELF-PROPULSION OF HELICAL ACTIVE

PARTICLES

Starting the discussion of self-propelled microswimmers with non-isotropic geometries, a
self-diffusiophoretic helical colloid in free space is considered. Self-diffusiophoertic colloids
are a type of artificial microswimmers commonly used in experiments. They do not rely
on an external field for their propulsion mechanism, enabling their usage in a wide range of
environments with no or limited accessibility for humans.
The work presented in this chapter has been published in the peer reviewed journal Journal
of Fluid Mechanics [187] and the copyrights are owned by Cambridge University Press &
Assessment. The results are reprinted with the permission request waived due to the policies
outlined by Cambridge University Press & Assessment [1].

4.1 Abstract

Chemically active colloids self-propel by catalysing the decomposition of molecular “fuel"
available in the surrounding solution. If the various molecular species involved in the reaction
have distinct interactions with the colloid surface, and if the colloid has some intrinsic
asymmetry in its surface chemistry or geometry, there will be phoretic flows in an interfacial
layer surrounding the particle, leading to directed motion. Most studies of chemically active
colloids have focused on spherical, axisymmetric “Janus” particles, which (in the bulk, and
in absence of fluctuations) simply move in a straight line. For particles with complex (non-
spherical and non-axisymmetric) geometry, the dynamics can be much richer. Here, we
consider chemically active helices. Via numerical calculations and slender body theory, we
study how the translational and rotational velocities of the particle depend on geometry and
the distribution of catalytic activity over the particle surface. We confirm the recent finding
of [116] that both tangential and circumferential concentration gradients contribute to the
particle velocity. The relative importance of these contributions has a strong impact on the
motion of the particle. We show that by a judicious choice of the particle design parameters,
one can suppress components of angular velocity that are perpendicular to the screw axis, or
even select for purely “sideways” translation of the helix.

4.2 Introduction

Many micro-organisms self-propel through liquid by continuously rotating a helical or screw-
like filament. A prime example is E. coli. In order to swim, it bundles its flagella in a single
helical tail and rotates the bundle to propel itself forward. The prominence of this swimming
strategy in the microscopic realm derives from the unique properties of highly viscous flows:
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owing to the linearity and time reversibility of the Stokes equation, a time-reversible sequence
of mechanical deformations of a swimmer’s body cannot induce a net displacement [200].
Continuous rotation of a helical tail evades this so-called “scallop theorem.” In terms of
mechanical forces, this swimming strategy exploits the anisotropy of the Stokes drag force
on a moving rod; the entire tail can be regard as made up of rod-like segments, and the
anisotropic drag, when integrated over the helix contour, yields a net propulsive force, i.e.,
thrust [135].

Recently, inspired by nature, and facilitated by advances in colloid fabrication methods,
a wide range of artificial microswimmers has been developed. Initially, manufacturing
capabilities limited those to simple shapes, e.g., spheres, spheroids, and rods. However, more
recently, complex and non-axisymmetric shapes have come into focus [77]. For instance,
Gibbs and Fischer showcase helical microdrills that consist of a spherical “head” and helical
“tail” [78]. On the surface, the design resembles the aforementioned E. coli. However, this
design is a self-phoretic particle: it is covered by a catalyst, and when immersed in a solution
containing molecular “fuel,” induces and sustains gradients of the various molecular species
involved in the reaction. The chemical gradients, in conjunction with the molecular forces
of interaction between the molecules and the particle surface, drive fluid flow in the vicinity
of the particle surface, leading to directed motion [6]. Accordingly, the superficial similarity
between E. coli, a mechanical swimmer, and self-phoretic helical swimmers may not hold up
upon more detailed investigation. For instance, it is not obvious whether self-phoretic helices
would exhibit any significant rotation around the helix axis, or display circular trajectories
when in the vicinity of a solid boundary, a well-known behaviour of E. coli [21, 133].
Furthermore, the optimal geometry of a helical self-phoretic swimmer for self-propulsion is
of obvious interest, and may not be identical to that of a mechanical swimmer. As another
example, we note that enhancing the screw axis rotation of a self-phoretic helix would enhance
its function as a microdrill. However, rotations with respect to the other body axes would
hinder this function. More generally, rotary micromotors and nanomotors are envisioned as
key elements of future active colloidal machines [11, 123]; being able to control their motion
(e.g., by restricting rotation to only one body-fixed axis) by design would boost development
of these applications.

The aim of this work is develop a framework to study implications of the helical geometry
for self-phoretic swimmers, and their possibilities for a wide range of applications, e.g., in
lab-on-a-chip devices or for targeted drug delivery. We start by introducing the mathematical
description of the particle shape in Section 4.3.1. We then outline the physical model and
governing equations in Section 4.3.2. In Section 4.3.3, we specify activity profiles, i.e.,
distributions of catalytic activity over the particle surface. We detail three model activity
profiles that are relevant to current experiments. Before presenting our results, we outline our
numerical method in Section 4.3.5. In the results (Section 4.4), we discuss the hydrodynamic
resistance tensor in Sect. 4.4.1, and then the concentration field and the particle velocities for
three different activity profiles in Sects. 4.4.2, 4.4.3, and 4.4.4. Finally, we provide a novel
and detailed development of slender body theory (SBT) for the concentration in Section 4.4.5.
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On this path, the hydrodynamic resistance tensor turns out to be a highly important quan-
tity. Calculation of the hydrodynamic resistance tensor for a helix is a classical problem in
low Reynolds number hydrodynamics that sparks interest in its own right [60, 85, 112, 173,
201, 207]. Moreover, it has additional relevance for application to magnetically driven helical
swimmers [23, 76, 152, 161, 184]. With our numerical implementation of the boundary
element method (BEM), we obtain good agreement with the experimental estimates of resis-
tance tensor components obtained by [201] and corresponding numerical calculations from
[47], validating our approach. Moreover, we find that slender body theory, which resolves
hydrodynamic interactions between particle segments – but not the finite thickness of the
particle – exhibits excellent agreement with detailed calculations obtained with the BEM. In
contrast, resistive force theory, which neglects hydrodynamic interactions, performs poorly
[207]. These findings have implications for the study of helix sedimentation dynamics [173].

Regarding the concentration, our numerical calculations and extended slender body theory
show that, in general, there will be circumferential spatial variations (i.e., variations circling
around the contour tangent vector) in the vicinity of the particle surface. Notably, these
variations are absent for simple geometries, e.g., spheres and spheroids with axisymmetric
patterning, and they contribute to particle motion. Depending on the helix parameters (pitch,
catalyst coverage, etc.), these variations can become negligible compared to, or dominate over,
the tangential variations. In the latter case, one can observe significant motion perpendicular
to the helix screw axis. This qualitative dependence on the helix parameters allows one to
choose between a wide range of possible trajectories by changing only one or two aspects of
the helix.

4.3 Theory

4.3.1 Particle geometry

We consider a solid particle that has the shape of a cylindrical tube bent into a helical contour
(figure 4.1). The tube radius is A0, the radius of the helix centerline around the helix axis
is ', the helix pitch is _, the end-to-end distance is !, and the total contour length of the
helix is ℒ. The two ends of the particle are terminated by hemispherical caps with radius
A0. The centerline of the helix (between the two caps) is described by a space curve xℎ (C)
parameterized by C:

Gℎ = ' cos C

Hℎ = ' sin C

Iℎ = 1C,

(4.1)
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uniformly 
catalytically active

inactive

Figure 4.1: Schematic illustration of the particle geometry. The particle consists of a solid
“tube” with a helical contour and circular cross-section, plus two solid hemispherical endcaps.
Here, we label the contour radius ', the helix pitch _, the tube radius A0, the local tangent
vector t̂ℎ, the local surface normal n̂ℎ, and the local surface binormal b̂ℎ. For a given point
on the helix centerline, the angle q defines a point on the tube surface. In this example, the
particle has a “lengthwise Janus” catalytic activity profile.

where 2c1 = _. The helix has # turns, so that ! = #_, ℒ = #
√
_2 + (2c')2, and

C ∈ {0, 2c#}. The surface of the tube (between the end caps) is described by

GB = ' cos C − A0 cos C cos q + A01√
'2 + 12

sin C sin q

HB = ' sin C − A0 sin C cos q − A01√
'2 + 12

cos C cos q

IB = 1C +
A01√
'2 + 12

cos q,

(4.2)

where q ∈ {0, 2c} is an angle that describes position on the circular cross-section of the tube
surface centered at position C on the centerline. At any point C on the helix, the tangent vector
t̂ℎ ≡ mxℎ

mC
/| mxℎ

mC
|, normal vector n̂ℎ ≡ mt̂ℎ

mC
/| mt̂ℎ
mC
| and binormal vector b̂ℎ ≡ t̂ℎ × n̂ℎ define three

orthogonal vectors, where t̂ℎ =
(
− ' sin C√

'2+12 ,
' cos C√
'2+12 ,

1√
'2+12

)
, n̂ℎ = (− cos C,− sin C, 0), and

b̂ℎ =
(
1 sin C√
'2+12 ,−

1 cos C√
'2+12 ,

'√
'2+12

)
. Accordingly, for a point on the surface of the tube, q = 0◦

if the point is displaced from the helix centerline along the local normal n̂ℎ, and q = 90◦ if
it is displaced from the centerline along the local binormal b̂ℎ. Note that the local surface
normal n̂ℎ always points towards the axis of the helix, entailing that a point on the particle
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surface with q = 0◦ is in the interior space.
For the following analysis, we also find it useful to define the tangential position B ∈ [−1, 1]

along the centerline of the cylindrical tube, where B = −1 corresponds to the centre of the
base of one hemispherical endcap, B = 1 to the centre of the base of the other hemispherical
endcap, and B = 0 to the midpoint of the contour. Additionally, all geometric quantities will
be specified in terms of a characteristic length scale !0 ∼ '.

4.3.2 Physical model and governing equations

We consider a stationary reference frame in which the instantaneous position of the geometric
centroid of the helix is x? = (G?, H?, I?). The helix is immersed in a liquid solution containing
reactant (“fuel”) molecules, and part of the surface of the helix catalyses the decomposition
of the reactant, producing a reaction product that has a number density field 2(x) (hereafter
called the concentration field), where x is a position in the solution. We assume that the
characteristic timescale for diffusion of the reactant is much smaller than the characteristic
timescale for particle motion. Therefore, the concentration field can be regarded as quasi-
static, and it satisfies the Laplace equation ∇22 = 0. The concentration field is subject to
the boundary conditions 2( |x| → ∞) = 0 and −� [n̂ · ∇2] = ^ 9 (xB) on the particle surface.
Here, � is the diffusion coefficient of the product molecules, ^ is a characteristic rate of
solute production per unit area, xB is a position on the particle surface, and n̂ is a unit vector
locally normal to the particle surface. The normal is defined to point into the fluid. (Note that
the surface normal n̂ is distinct from the space curve normal n̂ℎ introduced in the previous
section. In particular, n̂ = cos q n̂ℎ + sin q b̂ℎ over the tube surface.) The function 9 (xB) is
dimensionless, and describes the distribution of catalytic activity over the particle surface.
For simplicity, we have assumed zeroth order kinetics, i.e., the activity has no dependence on
the product concentration 2(x).

The above problem for 2(x) can be solved numerically, using the boundary element
method. Once 2(x) is known, one can obtain the surface gradient∇B2, where∇B ≡ (1−n̂n̂) ·∇.
Since ∇B2 is defined on the surface of the particle, it lies within a plane that is locally
tangent to the tube surface and has normal n̂. Conceptually, we can decompose ∇B2 into
a tangential component, (t̂ℎ · ∇B2) t̂ℎ, and a circumferential component

(
1 − t̂ℎ t̂ℎ

)
· ∇B2 =

(n̂ℎ · ∇B2) n̂ℎ + (b̂ℎ · ∇B2) b̂ℎ. This decomposition will be useful in the subsequent analysis.
The suspending fluid is assumed to be Newtonian and governed by the Stokes equation

− ∇% + `∇2u = 0, (4.3)

and incompressibility condition ∇ · u = 0, where u(x) is the velocity of the fluid, %(x) is the
fluid pressure, and ` is the viscosity. The fluid velocity is subject to the boundary conditions

u(xB) = U +
 × (xB − x?) + vB (xB) (4.4)

on the surface of the helical particle, where U and 
 are the (unknown) translational and
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( 9) U( 9) 
( 9)

1 *0x̂ 0
2 *0ŷ 0
3 *0ẑ 0
4 0 Ω0x̂
5 0 Ω0ŷ
6 0 Ω0ẑ

Table 4.1: Boundary conditions for the auxiliary problem ( 9).

angular velocities of the particle, as well as u( |x| → ∞) = 0. The quantity vB, the so-called
phoretic slip velocity, is obtained as vB = −1(xB)∇B2, where 1(xB), the so-called surface
mobility, is a material dependent quantity that encodes interactions between the reactant and
the particle surface [6]. Finally, to close the system of equations, we specify that the particle
is force-free, ∫

(

σ · n̂ 3( = 0, (4.5)

and torque-free, ∫
(

(xB − x?) × σ · n̂ 3( = 0. (4.6)

where ( indicates an integral over the particle surface.
In order to solve this problem for U and 
, we use the Lorentz reciprocal theorem. This

theorem relates two solutions to the Stokes equation with the same geometry but different
boundary conditions. For an auxiliary problem ( 9), we write:∫

(

u · σ ( 9) · n̂ 3( =
∫
(

u( 9) · σ · n̂ 3(, (4.7)

where auxiliary problem ( 9) has the boundary conditions

u( 9) (xB) = U( 9) +
( 9) × (xB − x?) (4.8)

and u( 9) ( |x| → ∞) = 0, i.e., the particle moves as a rigid body with no slip on the surface.
We specify six auxiliary problems 9 ∈ {1, 2, ..., 6}, with the boundary conditions for each ( 9)
given in table 4.1.
Combining equations 4.4,4.7, and 4.8 , we obtain

U ·
∫
(

σ ( 9) · n̂ 3( + 
 ·
∫
(

(xB − x?) × σ ( 9) · n̂ 3( +
∫
(

vB (xB) · σ ( 9) · n̂ 3( =

U( 9) ·
∫
(

σ · n̂ 3( + 
( 9) ·
∫
(

(xB − x?) × σ · n̂ 3(. (4.9)

According to equations 4.5 and 4.6, the two integrals on the right hand side vanish. More-
over, on the left hand side, we recognize that the integrals represent components of the
hydrodynamic resistance matrix ' (with a negative sign). Accordingly, the equation can be
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represented as a linear system

6c` X ·
(
U



)
= b, (4.10)

where the six-component right hand side vector b is

1 9 =

∫
(

vB (xB) · σ ( 9) · n̂ 3( / + ( 9) , (4.11)

where + ( 9) = +0 for 9 ∈ {1, 2, 3}, and + ( 9) = Ω0 for 9 ∈ {4, 5, 6}. Note the factor of 6c`
appears in equation 4.10 because of how we choose to define '. The various components of
' are proportional to, and have the same units as, !0, !2

0, or !
3
0. Equation 4.10 can be solved

by standard methods to determine U and
. Interestingly, the right-hand side vector b can be
regarded as a generalized effective swimming force; the first three rows have units of force,
and last three rows have units of torque.

Finally, from consideration of the governing equations, we determine a characteristic
concentration 20 ≡ ^!0/� and a characteristic velocity *0 = |10 |^/�, where |10 | is a
characteristic surface mobility coefficient. A characteristic force can be defined as �0 ≡
`*0!0. In the following, we will present quantitative results in terms of these characteristic
quantities, except where noted.

4.3.3 Specification of catalytic activity and surface chemistry

In this work, we consider three choices of 9 (xs). For all choices, we present results for
uniform surface mobility, i.e., 1(xB) = 10, where 10 < 0. The sign of 10 ensures that the
solute/surface interaction is repulsive, such that the particle tends to propel away from regions
of high solute concentration. Although we examined the effect of a surface mobility contrast
between the catalytic and inert regions, we did not find it to qualitatively change the results
presented below.

Lengthwise Janus particle

For the “lengthwise Janus” particle, like the one shown in figure 4.1, we choose 9 (xs) = Θ(B)
for a position on the surface of the cylindrical tube, whereΘ(B) is the Heaviside step function.
Additionally, the hemispherical endcap with its base at the point B = −1 has 9 (xs) = 1, and
the endcap with its base at the point B = 1 has 9 (xs) = 0. In other words, half of the particle
is uniformly catalytic, and the other half is inert.

z-wise Janus particle

For the “z-wise Janus” particle, we choose 9 (xs) = −(n̂ · ẑ)Θ(−n̂ · ẑ). For this particle, the
region of the surface with a negative z-component of the local surface normal n̂ is catalytically
active. Additionally, over this region, the catalytic activity is proportional to the z-component
of the local surface normal. This activity profile is shown in figure 4.8(a) for a particular
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choice of helix geometry. Note that this particle has an inherent polarity in the activity profile,
so that one expects translational motion in the z-direction and rotation around the z-axis.

There are several motivations for examining this activity profile. First, it is similar to the
experimentally relevant case of a Janus particle with a coating of catalytic material whose
thickness smoothly varies, with position on the surface, from zero thickness to somemaximum
[43, 193]. This spatially varying thickness is often obtained in coating deposition processes. It
is also similar to the case of a light-activated Janus particle, for which the catalytic activity on
the surface is locally proportional to the flux of incident light [237]. As a further motivation,
to be developed below, one can expect phoretic motion of these particles to be dominated by
circumferential concentration gradients.

Inside-outside Janus particle

For the third model activity profile, we designate 9 (xB) = Θ(q + c/2)Θ(−q − c/2). In this
case, the activity varies only with the circumferential angle q. The surfaces pointing towards
the interior space of the helix are inert, and the chemical reaction is limited to the outside
facing surfaces.

Helical fiberswith this activity profile could be obtained using a coaxial capillarymicroflu-
idic system, as shown by [259]. Additionally, one can imagine obtaining it in a deposition
process. The particle is first formed out of an inert material, and in a second step, the catalyst
is deposited onto it. For this activity profile, we assume the catalyst only covers the easier to
reach outside of the helix and leaves the inside inert.

4.3.4 Three-dimensional trajectories

In general, for a chemically active helical particle, all six components of the translational and
rotational velocity will be non-zero, except when components vanish by symmetry (e.g., for
a particle with uniform activity and uniform surface mobility). Therefore, one expects active
helices to generally exhibit helical trajectories [252]. The radius Atraj of the helical trajectory
is given as

Atraj =
|U ×
|
|
|2

(4.12)

and the pitch as

_traj = 2c
|U ·
|
|
|2

, (4.13)

where U and 
 are evaluated in a body-fixed coordinate system. Although we do not further
consider particle trajectories in this work, we note that they can be straightforwardly calculated
from equations 4.12, 4.13, and the velocities calculated below.

4.3.5 Numerical method for solution of PDEs

In order to solve the Laplace and Stokes equations numerically, we use the boundary element
method (BEM) [197, 199, 236]. Briefly, in this method, the PDE of interest is recast as an
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integral equation over the surface of the particle. For instance, for Laplace’s equation, one
can obtain the following equation via manipulation of Green’s identities [236]:∫

V
2(x) ∇2� (x, x0) 3+ = −

∫
S
[2(x) ∇� (x, x0) − � (x, x0) ∇2(x)] · n̂ 3(. (4.14)

Here,V is the fluid domain (i.e., the domain exterior to the particle), S is the particle surface,
and x0 is an observation point, which may be placed anywhere (i.e., inV, inside the particle,
or on the particle surface S). The integrals are taken with respect to x. The Green’s function
� (x, x0) solves the Poisson equation

∇2� (x, x0) + X(x − x0) = 0, (4.15)

and is given by
� (x, x0) =

1
4c |x − x0 |

. (4.16)

For x0 on the particle surface, the integral on the left hand side of Eq. 4.14 has a singularity.
Taking the Cauchy principal value, we obtain the following boundary integral equation:

1
2
2(x0) =

∫
S
[2(x) ∇� (x, x0) − � (x, x0) ∇2(x)] · n̂ 3(. (4.17)

In the problem considered in this work, Eq. 4.17 relates the unknown surface concentration
2 to the given n̂ · ∇2. For the Stokes equation, one can obtain the following single-layer
formulation of the boundary integral equation, given in index notation [103, 105, 197]:

D: (x0) = −
∫
S
[G8: (x0, x) @8] 3(, x0 ∈ S. (4.18)

where x0 is on the particle surface. Here, the Green’s function G for the Stokes equation is

G8 9 (x, x0) =
1

8c`A

(
X8 9 +

G̃8 G̃ 9

A2

)
, (4.19)

where G̃ 9 = G 9 − G0, 9 and A ≡ |x − x0 |. Concerning the quantity q, we first define the traction
f = σ · n̂ exerted by the fluid exterior to the particle on the particle surface S. We additionally
suppose that there is fluid interior to the particle volume, confined by S. The traction exerted
by this fictitious interior fluid, which is subject to the same boundary conditions on S as the
exterior fluid, is f8=. The quantity q is given as

q = f − f8=, (4.20)

and the unknown distribution of q is related to a prescribed surface distribution of u (e.g.,
rigid body motion in the six auxiliary problems) by Eq. 4.18. The quantity q is defined up
to a constant multiple of the surface normal n̂, as incompressibility implies

∫
(
G · n̂ 3( = 0.

One can choose for this constant to be zero by imposing
∫
(

q · n̂ 3( = 0. For the case of rigid
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body motion, f8= is simply a constant multiple of n̂, and q can simply be replaced with f.
Each boundary integral equation can be discretized by meshing the surface of the particle,

yielding a dense linear system that can be solved numerically. To implement the boundary
element method for active colloids, we adapt the open source numerical library BEMLIB
[199]. For the helical filaments considered here, the large variation in length scales can make
this geometry numerically challenging. Furthermore, the interface between catalytic and
inert regions of the particle surface must be resolved carefully. For all data points obtained
with the BEM and presented below, we confirm numerical convergence with respect to mesh
refinement. Specifically, as a rule of thumb, we consider numerical convergence to be obtained
when we obtain no more than 3% change in all quantities of interest upon addition of 10 000
or more surface elements. Where possible, we compare our numerical data against slender
body theory for further validation. For the “lengthwise Janus” catalytic activity profile, it
is potentially difficult to capture the abrupt change in activity with a discrete number of
meshed points. Accordingly, we have considered both a “hard” step function activity profile
and a “soft” hyperbolic tangent activity profile with a length scale ;0 ∼ A0, and found good
quantitative agreement between them for ∼ 50 000 surface elements.

To obtain insight into the conditions for numerical convergence, we visually inspected
the activity profiles by plotting 9 (xB). We found that numerical convergence is associated
with having a sufficiently smooth interface between the active and inert sides of the particle.
An illustrative example of this smoothness is provided in Fig. 4.2. The BEM code solves
for the concentration at nodes of the particle mesh (colored points). The red points represent
catalytically active nodes of the mesh, while the green points represent inert nodes. The area
elements of the mesh are colored by interpolation from the surrounding nodes; blue represents
inert and yellow represents active. The interface between the inert and active sides shows
that the active and inert nodes are separated. Moreover, the interface between the two sides
is smooth and approximately lies within a plane containing a circular cross-section of the
article. The slight roughness observed is due to slight differences / non-uniformity between
the local density of nodes (which are distributed during the meshing process on the two sides).
For future work, we suggest that refinement of the mesh near the interface could could lead
to gains in computational efficiency (requiring fewer nodes and elements for the same level
of accuracy).

With regard to computational efficiency, we note that application of the Lorentz reciprocal
theorem can save significant computational time in that, for a given helix geometry, the six
auxiliary problems for the Stokes equation only need to be solved once. Solving these
problems yields the resistance matrix and tractions that can be used for any distribution of
surface slip. Therefore, one can examine different distributions of catalytic coverage, surface
mobility parameters, etc., without having to perform additional hydrodynamic calculations.

Solution of the system in Eq. 4.10 yields the particle velocity, but not the flow field u(x).
When desired, the flow field can be obtained by subsequent additional numerical solution of
Eq. 4.18, subject to the (now completely known) boundary condition Eq. 4.4. One can then
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Figure 4.2: Close-up of a meshed interface for a lengthwise Janus particle under conditions
of numerical convergence. The red points represent catalytically active nodes of the mesh,
while the green points represent inert nodes. The area elements of the mesh are colored by
interpolation from the surrounding nodes; blue represents inert and yellow represents active.

obtain the velocity field using the boundary integral equation

D: (x0) = −
∫
S
[G8: (x0, x) @8] 3(, x0 ∈ V . (4.21)

4.4 Results

4.4.1 Hydrodynamic resistance tensor

As our starting point, we consider the hydrodynamic resistance tensor ' of a helical filament,
as it is a key quantity entering into equation 4.10. Each row 9 of ' can be obtained by
solving auxiliary problem ( 9) for rigid body motion of the helix and, from the solution for
u( 9) , calculating the force and torque on the particle. We can solve each auxiliary problem
numerically, using the BEM.

In figure 4.3, we consider an example problem in order to both validate our numerical
scheme and to shed some light on how the hydrodynamic resistance of a helix depends on its
shape. Specifically, we obtain the components of ' as a function of pitch _ for a helix with
fixed contour length L, fixed tube radius A0, and fixed contour radius '. This variation of _
can be regarded as “stretching out” an initially tightly coiled helix, as shown schematically in
figure 4.3(a). Of particular interest are '33, '36 = '63, and '66. The quantity '33 represents
the coefficient for hydrodynamic drag (in the ẑ direction) on a helix translating along its
screw axis, i.e., in the ẑ direction. Likewise, '66 represents the rotational drag coefficient for
rotation around the helix axis. Finally, '63 represents translational-rotational coupling, i.e.,
the torque in the ẑ direction that results when a helix translates in the ẑ direction, or the force
in the ẑ direction that results when a helix rotates around the ẑ axis.

Interestingly, we obtain non-monotonic behaviour for all three quantities shown in figure
4.3, with a minimum in '63 and maxima in '33 and '66 appearing around _/!0 ≈ 20. In
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Figure 4.3: (a) Schematic illustration of three helices with different values of pitch _,
but identical contour length L/!0 = 57.5, contour radius '/!0 = 2.5, and filament radius
A0/!0 = 0.265. (b) Variation of '33, the dimensionless drag coefficient for translational
motion along the axis, with _. Black circles were obtained with the boundary element
method, and red circles were obtained by the slender body theory described in [126]. (c)
Variation of the translational-rotational coupling coefficient '63 with _. Note that '63 = '36.
(d) Variation of '66, the dimensionless rotational drag coefficient for rotation around the helix
axis, as a function of _.
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#turns k '33/!0 '36/!2
0 '66/!3

0
5 20◦ 16.98 9.48 374.95
3 55◦ 5.11 2.61 63.91
5 55◦ 7.09 3.58 89.9

Table 4.2: Experimental measurements from [201], rescaled to be dimensionless for com-
parison with our BEM results in table 4.4.

#turns k '33/!0 '36/!2
0 '66/!3

0
5 20◦ 15.16 7.43 331.41
3 55◦ 4.64 2.50 59.81
5 55◦ 6.45 3.39 96.52

Table 4.3: Numerical calculations from [47], rescaled to be dimensionless for comparison
with our BEM results in table 4.4.

order to cross-check our results, we also performed calculations with slender body theory
(SBT), as described in the work of [126]. The BEM and SBT broadly agree, except that with
the BEM we obtain a slight oscillation in '66 as a function of _ (figure 4.3(d)). The minor
discrepancies between SBT and BEM could be due to the fact the SBT does not account for
the circumferential variation of hydrodynamic stress (i.e., variation with q) over the surface of
the particle. Moreover, the SBT equations in [126] assume that the cross-sectional radius of
the particle varies as A1

√
1 − B2, where A1 is the maximum thickness; recall that our particle

has uniform cross-section, except for the hemispherical endcaps.
We have also sought to compare our results with resistive force theory (RFT), using the

expressions in [173] and [46]. For calculation of the components of the resistance tensor,
resistive force theory treats the filament as consisting of hydrodynamically non-interacting
rod-like segments. We obtained semi-quantitative agreement of RFT with SBT and BEM for
the variation of '36 with _, semi-quantitative agreement for the variation of '36 with _ for
_/!0 > 30, and poor agreement for '33. It has been known since the work of Rodenborn et
al. that RFT generally has poor quantitative agreement with theories that include non-local
hydrodynamic interactions, such as SBT and BEM; therefore, we do not include the RFT
results here.

As another check, we consider the helix geometries studied experimentally by [201]
using metal wire and numerically with the regularized boundary element method by [47].
Specifically, both works consider a helix with fixed end-to-end distance !, number of turns
!/_, pitch angle k = 2c'/_, and filament radius A0, with ' determined from the fixed
parameters. The treatment of the two helix ends is not explicitly reported in [47]. The
quantities �, �, and � in [201] correspond to our '33, '36, and '66, respectively, and are
tabulated in table 4.2. Likewise, in [47], the quantities ', %33 and )33, correspond to '33,
'36, and '66 in this work, and are tabulated in table 4.3. However, the quantities given in
[201] and [47] are dimensional. We rescaled the quantities to be dimensionless in table 4.2
and table 4.3 by choosing the length scale to be !0 =

2
5'. In table 4.4, we show that our

implementation of the BEM has good agreement with [47] and good convergence with mesh

26



#turns k '33/!0 '36/!2
0 '66/!3

0 #elm % error '33 % error '36 % error '66
5 20◦ 15.37 -7.76 336.88 12 048 1.39 4.38 1.65
5 20◦ 15.37 -7.76 336.98 48 192 1.39 4.41 1.68
3 20◦ 4.66 -2.46 59.72 5 808 0.59 1.78 0.16
3 20◦ 4.66 -2.46 59.72 23 232 0.59 1.78 0.14
5 55◦ 6.55 -3.48 97.71 9 648 1.44 2.74 1.23
5 55◦ 6.55 -3.48 97.73 38 592 1.44 2.73 1.25

Table 4.4: Results of BEM numerical calculations for resistance matrix of a helix. Percent
error is calculated with respect to the numerical data of [47]

refinement. The slight discrepancy between our results and those of [47] may be due to the
treatment of the helix ends.

4.4.2 Lengthwise Janus chemically active particle

Now we consider the effect of catalytic activity for a lengthwise Janus particle, beginning
with the concentration field 2. In order to validate our boundary element numerical method,
we compare the results of BEM for 2 against predictions of a slender body approach that will
be developed in detail in Section 4.4.5 below. In figure 4.4(a), the grey area shows the range
of variation of concentration on the surface of a particle as a function of tangential position B,
determined with the BEM. Note that for each tangential position B there is a range of values
of concentration 2, indicated by the vertical extent of the grey area, due to variation of 2 with
the circumferential angle q. The red curve is the prediction of SBT, for this geometry and
activity profile, of the circumferentially averaged concentration on the particle surface as a
function of B. The red curve shows excellent agreement with the variation of the grey region
with B. In figure 4.4(b), we show the concentration on the surface of the particle; the variation
of 2 is dominated by tangential gradients, but circumferential variation is also clearly visible.

In order to gain a better understanding of the circumferential variation, we plot 2 as
function of q for different values of B in figure 4.4(c). The symbols were obtained with the
BEM. For each value of B, we find that 2 varies with q in a sinusoidal fashion, with the
amplitude and phase depending on B. Interestingly, in the inert region of the particle (B > 0),
the curves generally have maxima that approach q ≈ −c/2 as B approaches B = 1. As detailed
in Section 4.4.5, we extend SBT to account for circumferential variation of concentration.
Briefly, we hypothesize that the concentration on the surface of a circular cross-section of
the filament, at a given B, is polarized by an ambient gradient in concentration created by the
rest of the particle. This hypothesis is shown schematically in figure 4.4(d). By making an
analogy with a cylinder in uniform potential flow, we are able to obtain the solid curves in
figure 4.4(c).

Now we consider the velocity of the lengthwise Janus particle as a function of pitch _,
with other geometric parameters the same as in figure 4.3. In figure 4.5(a), we show the
three components of translational velocity. As one might expect,*I is significantly greater in
magnitude than *G and *H . Moreover, is *I everywhere positive, as the particle is repelled
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Figure 4.4: (a) Concentration with respect to the tangential position B for _/!0 = 5 and other
parameters the same as in figure. 4.3. The shaded grey area shows the range of values that
were obtained for 2 for a given B and various circumferential angles q (individual data points
are omitted for clarity). The solid curve is a theoretical expression for the circumferentially
averaged concentration obtained with slender body theory. The inset shows the definition
of the angle q with respect to the local n̂ℎ at a position B along the centerline, as well as
decomposition of the surface concentration gradient ∇B2 into tangential and circumferential
(i.e., in the plane of the helix cross-section at B) components. (b) Three-dimensional plot
of the concentration 2 on the surface of the particle. (c) Variation of concentration 2 as
a function of circumferential angle q for various values of B. The dashed line indicates
q = −c/2. (d) Schematic illustration of the modification of the slender body theory body to
obtain the circumferential variation of concentration around the cross-section at B. To obtain
the solid curves in (c), it is assumed that the local concentration gradient created by the rest of
the particle induces a dipolar variation of concentration on the filament surface with respect to
q. In (c), the values of B are as follows: black circles, B = −0.95; blue circles, B = −0.65; red
circles, B = −0.15; magenta diamonds, B = −0.02; blue diamonds, B = 0; magenta crosses,
B = 0.05; black crosses, B = 0.15; red crosses, B = 0.35; blue crosses, B = 0.65; green crosses,
B = 0.85.
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Figure 4.5: (a) Components of the translational velocity U of a lengthwise Janus particle as
a function of pitch _ and parameters A , L, and ' the same as in figure 4.3. In the main figure,
the dashed line shows the value of *I for a spheroidal particle with major axis diameter L
and minor axis diameter 2A , as determined from [99]. The green curve shows a stretched
exponential fit to*I . In the inset, the dashed lines indicate values of _ for which the number
of turns is a half-integer. (b) Components of the angular velocity 
 of a lengthwise Janus
particle as a function of pitch _ and other parameters the same as in figure 4.3. The inset
shows the peak in ΩI . (c) The contributions of circumferential and tangential concentration
gradients to *I as a function of _. (d) The contributions of circumferential and tangential
concentration gradients to ΩI as a function of _.
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from regions of high concentration. For _/!0 � 1, *I asymptotes to a constant value, since
the filament geometry approaches the limit of a straight cylinder with hemispherical ends.
For comparison, we plotted the velocity of a spheroidal particle with major axis diameter L
and minor axis diameter 2A (dashed line), obtained from [99]. The asymptotic value and the
velocity of the spheroid are comparable, as expected. As a side note, we find that the variation
of*I with _ is captured by a stretched exponential fit.

The components *G and *H exhibit a decaying oscillatory behaviour as a function of _.
As expected from symmetry considerations, *G and *H approach zero for large _. In the
inset of figure 4.5(a), we show the oscillatory behaviour in closer detail. Hypothesizing that
the oscillation is due to end effects for a finite length helix, we indicate with dashed lines the
values of _ for which the number of turns #turns is a half-integer. These values approximately
correspond to the locations of the maxima and minima of*G and*H , giving credence to our
hypothesis.

Now we consider the decomposition of the surface concentration gradient into circumfer-
ential and tangential components. In figure 4.5(c) and 4.5(d), we observe that the contributions
of circumferential concentration gradients to*I andΩI are surprisingly important. Concern-
ing*I , one expects that, for large pitch, i.e., for a geometry approaching that of a straight rod,
tangential gradients should dominate circumferential gradients, and this is indeed the case in
Fig. 4.5(c). However, we also find a crossover at intermediate pitch, and circumferential gra-
dients are dominant at low pitch. Moreover, tangential and circumferential gradients compete
with regard to rotation around the helix screw axis: tangential gradients tend to rotate the
particle counter-clockwise around this axis, while circumferential gradients drive clockwise
rotation (figure 4.5(d)). As a result, the angular velocity ΩI is small. These findings suggest
designing an activity profile to deliberately suppress one of the two contributions to particle
motion.

The significance of circumferential gradients for low pitch helices additionally has impact
on the flow field in the vicinity of the particle. In Fig. 4.6, we show streamlines (obtained in
a stationary frame) in the vicinity of helices with small and large pitch. For the large pitch
helix, the flow field is only weakly perturbed from being axisymmetric. A stagnation point
is identifiable near the middle of the active side of the particle. Noting that fluid is drawn
into the poles of the particle and expelled from the sides, we expect that the particle is a
hydrodynamic “puller.” For the small pitch helix, in contrast, the structure of streamlines is
much more complex. Streamlines can wrap around the helix surface over and over, owing to
the strong circumferential flows. However, a stagnation point and a puller-like structure of
streamlines in the far-field are still recognizable.

As an additional note, from the peak in '33 in Fig. 4.3(b), one might expect a correspond-
ing minimum in *I at the same value of _. However, in Fig. 4.5(a), we observe monotonic
decay of *I with _. To resolve this apparent paradox, we note that in solving Eq. 4.10, we
effectively multiply both sides of the equation by the inverse of the resistance matrix, i.e., the
mobility matrix " ≡ '−1. The extrema of the mobility matrix components may not appear
at the same _ as the extrema of the resistance matrix. Moreover, the components of the
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(a) (b)

Figure 4.6: Streamlines (obtained in the stationary frame) of flow in the vicinity of a helix
with (a) large pitch (_/!0 = 60) and (b) small pitch (_/!0 = 5).

right-hand side vector b will also vary with _. In Fig. 4.7(a) and (b), we show the entries of
the third row of the mobility matrix. The diagonal entry "33 clearly dominates the third row,
which determines *I . Moreover, "33 is approximately flat over a broad range of _/!0, and
exhibits only a very shallow minimum at _/!0 ≈ 13. This finding permits the approximation
shown in Fig. 4.7(c). Taking 6c/80 ≈ 0.236 as a characteristic value of the flat region of
Fig. 4.7(b), we approximate*I/*0 as 13/80�0, obtaining good agreement with the complete
calculation. Thus, translation along the axis is largely determined by the z-component of
the effective “force” b, and coupling to other modes of motion is negligible. Moreover, the
variation of*I with _ is determined, for most _, by the variation of 13 with _. In Fig. 4.7(d),
we show the variation of the components of b as a function of _ for the lengthwise Janus
particle. It can be observed that the dependence of 13 on _ resembles the dependence of *I
on _.

4.4.3 “z-wise” Janus particle

We now consider the “z-wise” Janus particle (figure 4.8(a)). For this particle, one can expect
circumferential gradients to be strong, while tangential gradients should be weak by symmetry
of the activity profile along the contour. These expectations are borne out by our numerical
calculations of the concentration, shown in figure 4.8(b) and figure 4.8(c). In particular, we
note that the broad width of the grey area in figure 4.8(c) for fixed B, at most values of B,
which indicates strong circumferential gradients. Additionally, the circumferentially averaged
concentration (red curve, obtained by SBT) is fairly flat, except for the helix ends, indicating
that tangential gradients are small.

Turning to the results for the velocity, we find that the particle has strong rotation around
the screw axis, i.e., the z-axis, while rotation around the perpendicular axes is negligible (figure
4.9(b)). This is useful for applications – the particle will show strong directed motion along
the screw axis direction, and will not tumble haphazardly. Concerning the decomposition
into tangential and circumferential contributions, we find that our expectations are confirmed
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Figure 4.7: (a) Off-diagonal entries of the third row of the mobility tensor " as a function
of pitch _, and other parameters as given in Fig. 4.3. (b) Mobility tensor component "33 as
a function of pitch _. Note the difference in scale from (a); the diagonal entry dominates the
third row of " . (c) Translational velocity component along the helix axis*I for a lengthwise
Janus activity profile as a function of pitch (all other parameters are the same as in Fig. 4.5).
The full calculation that takes into account all components of " and the right-hand side
vector b shows good agreement with an approximate solution obtained as 13/80, where 1/80
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right-hand side vector b as a function of pitch _ for the lengthwise Janus particle.
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Figure 4.8: (a) Dimensionless catalytic activity 9 (xB) on the surface of a z-wise Janus
particle with _/!0 = 5 and and parameters A , L, and ' the same as in figure 4.3. (b) Three-
dimensional plot of the concentration 2 on the surface of the particle. (c) Concentration with
respect to the tangential position B. The shaded grey area shows the range of values that
were obtained for 2 for a given B and various circumferential angles q (not shown). The solid
curve is a theoretical expression for the circumferentially averaged concentration obtained
with slender body theory.

(figure 4.9(c) and (d)).

4.4.4 “Inside-outside” Janus particle

Finally, we consider the “inside-out” Janus particle. As one might expect, the circumferential
variations in the concentration field 2 are substantial (see figure 4.10 (a)), and dominate
the tangential variations. Following the slender body approach in 4.4.5, we can identify
three distinct factors that contribute to the concentration profile. First, the circumferentially
averaged concentration field is again very well predicted by the circumferentially averaged
SBT (red line). First, the circumferentially averaged SBT (red line) again lies very well within
the variation of the concentration field (grey area). It also matches the mean concentration
field (blue line) to a high degree, despite only accounting for the averaged catalytic activity
(see section 4.4.5). As expected, it is symmetric with respect to B. However, for this
activity profile, two additional factors lead to circumferential variation (for a given B) of the
concentration profile (see figure 4.10 (b)).

The second factor is the circumferential variation of the activity profile, i.e., the depen-
dence of 9 (xB) on q. In the slender body approach, this factor can be accounted for in the
construction of the inner solution. Specifically, we solve for the concentration field around an
infinite, half-covered cylinder with translational symmetry via a series expansion. Therefore,
this factor be reduced to and solved in two dimensions. The third factor is, as before, polariza-
tion of the surface concentration at B induced by the ambient concentration gradient created
by the rest of the particle. Concerning these second and third factors, the contribution from
the local catalytic activity (i.e., the second factor) is dominant, and ensures that the minimal
concentration is always close to the centre of the inert region (q ≈ 0) and the maximum on
the opposite side (q ≈ ±c). Away from the centre (s = 0) of the helix (represented by black
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Figure 4.9: (a) Components of the translational velocity U of a z-wise Janus particle as a
function of pitch _, with parameters A , L, and ' the same as in figure 4.3. (b) Components
of the angular velocity 
. (c) The z-component *I of the particle translational velocity as a
function of pitch, as well as the contributions of circumferential and tangential concentration
gradients to *I . (d) The z-component ΩI of the particle angular velocity as a function of
pitch, as well as the contributions of circumferential and tangential concentration gradients.
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Figure 4.10: (a) Concentration with respect to the tangential position B for an “inside-out”
Janus helix. The shaded grey area shows the range of values that were obtained for 2 for a
given B and various circumferential angles q (not shown), and the blue line shows the mean
value as a function of B. The solid curve is a theoretical expression for the circumferentially
averaged concentration obtained with slender body theory. (b) Variation of concentration 2
as a function of circumferential angle q for various values of B. The values of B are as follows:
blue circles, B = −0.85; blue crosses, B = 0.85; red circles, B = −0.65; red crosses, B = 0.65;
green circles, B = −0.35; green crosses, B = 0.35; black diamonds, B = 0.
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diamonds in figure 4.10 (b)), the average concentration drops, and a circumferential asym-
metry develops. This circumferential asymmetry is due to the third factor, i.e., the dipolar
polarization introduced by the rest of the particle. Due to the symmetry of the activity profile
along the contour, the disturbances at locations B and −B are mirror symmetric with respect
to B = 0. The asymmetry becomes more significant further away from the center.

Analyzing the velocity components for “inside-outside” Janus helices (see figure 4.11) we
immediately see that, due to their symmetric design, both the*I and ΩI components vanish.
All other components exhibit a decaying oscillation with respect to the total number of turns
# in the helix. These particles have completely different trajectories compared to the first two
examples and are not propelled in the direction of the screw axis. For both the translation and
the rotational velocity, the minima and maxima in the G− component lead the corresponding
maxima and minima in the H− component by a quarter turn. This can again be understood
by our hypothesis that the movement in GH plane is mainly due to end effects. In order to
illustrate this, we will take a closer look at the *H component. Recall that our helices are
constructed by fixing the bottom end to point in the H direction; the tangential direction of top
end depends on the number of turns # and other parameters. For an integer number of turns,
the ends point in opposite (H and −H) directions and balance each other. Upon increasing
# , the top (B = 1) rotates by an angle W = 2c mod (#, 1) and increases its H− component
t̂ℎ (B = 1) · Ĥ ∝ − cos(W), while the bottom end stays in place. At the next half integer turn,
the top and the bottom end are pointing in the same direction, i.e., H, and the overall velocity
*H reaches a maximum. Further growth of the helix causes the top contribution to shrink,
until the two balance each other again at the next full turn. Note that *H is never negative
because of the construction of the helix. For the other three non-zero velocities, *G , ΩG and
ΩH , the periodicity can be explained similarly. When inspecting *G more closely, we see
that these end effects do not entirely account for the variation of the velocity, e.g., *G is not
exactly 0 at # = 1, 2, 3, 4, 5. This offset is caused by the finite size of the body and can be
understood best by examining the details of the # = 1 helix. The centre of this helix (B = 0)
lies on the G-axis, and circumferential variations in the concentration field at B = 0 can only
induce movement in the G− direction. For any off-center values B0 ≠ 0, the helix can have H−
contributions. However, due to the symmetry in the concentration field, the H− contribution
at B = −B0 has to be of equal magnitude and opposite sign. Thus, the two cancel each other
out, and there is no movement in the H− direction for helices with an integer number of turns.
This is not true for the G− components. The B = 0 contribution to *G is counteracted by
the points ±B0 = ± 1

4# half a turn up and down the helix axis, which have normal vectors
n̂ℎ (B0) = n̂ℎ (−B0) in the opposite direction, i.e., n̂ℎ (B0) = −n̂ℎ (0). However, the finite size
of the helix causes the concentration field to decrease away from the helix centre towards the
ends. The two contributions at ±B0 do not add up to the same magnitude as at the center, and
the particle has a net velocity in the G− direction. In summary, we consider that a finite size
effect is responsible for the slight shift of the zeroes of *G , as a function of # , away from
integer values of # (figure 4.11(c)).
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4.4.5 Slender body theory for helix surface concentration

In this section, we introduce an analytical approximation that relies on the “slenderness”
parameter n ≡ 2A0/ℒ being very small, i.e., n � 1. We neglect the role of the hemispherical
caps. Our treatment is influenced by the work in [99] and [217] on slender, axisymmetric
self-phoretic particles, as well as [121] on the hydrodynamic resistance of slender bodies.
In particular, our presentation in Section 4.4.5 closely follows the formal manipulations and
asymptotic mathematics of [121]. It can be regarded as transposing some of their results
to the context of Laplace’s equation and active colloids. Our presentation in the subsequent
section, in contrast, is intended as a phenomenological, physically motivated attempt to
model circumferential variations of concentration. It is developed on the basis of a physical
hypothesis and a physical analogy to potential flow.

We note that recently, a systematic and rigorous derivation of slender body theory for
a chemically active filament was published by [116], who work from the alternative basis
provided by [127]. One advantage of working from that basis is that it facilitates consideration
of circumferential variation of the surface stress. Thus, [116] are able to (numerically)
calculate particle velocities in the framework of SBT; in that sense, their formulation of
SBT is complete. Here, we restrict our attention to calculation of the concentration field.
Additionally, we make no pretense to the level of formal rigor and systematic mathematical
development provided in [116]. However, our brief treatment may provide an accessible point
of entry into SBT for some readers. Additionally, by being grounded in a physical model, it
sheds light on underlying physical mechanisms.

For the slender body analysis, the governing equations for the concentration will be
non-dimensionalized using a characteristic length ! ≡ ℒ/2 (i.e., the half-length of the
particle) and characteristic concentration �0 ≡ ^A0/�, distinct from the previously defined
20. Accordingly, the equations become:

∇22 = 0 (4.22)

and
n̂ · ∇2 = − 9 (B)/n, (4.23)

with 2( |x| → ∞) = 0, where 2 and the gradient operator are understood to be dimensionless.
We will use this non-dimensionalization for the rest of Section 4.4.5.

Circumferentially averaged concentration

Using asymptotic expansions, the solution for 2(x) can be separated into “inner” and “outer”
regions in the limit n → 0. The outer region is defined such that, for a position x in the outer
region, the distance A to the closest point on the helix backbone is O(1), i.e., much larger
than n in the limit n → 0. In this region, we can represent the concentration as being due to a
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distribution of sources U(B) along a infinitesimally thin space curve:

2out(x) =
∫ 1

−1

U(B′)
|x − xℎ (B′) |

3B′ (4.24)

In the inner region, where A is O(n) as n → 0, the particle resembles an infinitely long
cylinder. Here, we introduce the stretched coordinate d ≡ A/n . Following the logic of [217],
we integrate Eq. 4.22 (assuming an effectively two-dimensional problem) and impose the
boundary condition in Eq. 4.23 to obtain

2in(d, B) = � (B; n) − 9 (B) ln d, (4.25)

where the function � (B; n) will be determined by matching to the outer solution. Physically,
the logarithmic term can be interpreted as the (two-dimensional) concentration field due to an
infinitely long and uniformly active cylinder. The function� (B; n) is an “integration constant”
for the contour position B.

Our next task is to perform asymptotic matching between the inner region and outer region
in the limit n → 0 to obtain � (B; n) and U(B). Concerning the outer solution, we consider a
position x = xℎ (B) + r, with r · t̂(B) = 0 (i.e., x is in the plane defined by the particle cross-
section at B) and |r| = A . We wish to examine the limits r→ 0 as n → 0. We expect that the
concentration 2out(r, B) ≡ 2out(xℎ (B) + r) is singular as r→ 0, since the domain of the inte-
gral includes B itself, and since the evaluation point x approaches the helix backbone as r→ 0.

In the following, we closely follow the procedure in Appendix of [121]. Our aim is to
isolate the singularity, i.e., move it out of the integral, and evaluate it analytically. First, we
first change the integration variable @ = B′ − B in Eq. 4.24:

2out(x) =
∫ 1+B

−(1+B)

U(B + @)
|xℎ (B) + r − xℎ (B + @) |

3@. (4.26)

We define R0 ≡ xℎ (B) − xℎ (B + @), with '0 ≡ |R0 |, as well as

'2 ≡ |R0 + r|2 = '2
0 + 2r · R0 + A2. (4.27)

We also define the quantity  2(R0, r) by '2 ≡ A2 +  2@2. The usefulness of  will become
apparent shortly, when discussing the limit @ → 0. The integral can be rewritten as

2out(x) =
∫ 1+B

−(1+B)

U(B + @)
'

3@ =

∫ 1+B

−(1+B)

U(B + @)√
A2 +  2@2

3@. (4.28)

For small @, we can expand R0 as follows:

R0 =

(
mxℎ
mB

)2
@2 −

(
m2xℎ
mB2 · r

)
@2 + O(@3). (4.29)
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The vector i ≡ mxℎ
mB

is tangent to the backbone and, since length is non-dimensionalized by
ℒ/2 in this section, has unit length. We also define iB ≡ m2xℎ

mB2 , giving

R0 = (1 − r · iB) @2 + O(@3), (4.30)

and
 2 = 1 − r · iB + O(@). (4.31)

From Eq. 4.28 and Eq. 4.31, it is apparent that, for small A and @, the singularity in the
integral has the form 1/

√
A2 + @2. We attempt to isolate it from the integral as follows:

2out(x) =
∫ 1+B

−(1+B)

[
U(B + @)√
A2 +  2@2

− U(B)√
A2 + @2

]
3@ +

∫ 1+B

−(1+B)

U(B)√
A2 + @2

3@. (4.32)

For A = 0, the first integral is finite. This can be shown by putting the two terms in the
integrand over a common denominator @ and expanding U(B + @) with respect to @, allowing
for cancellation of the denominator. Interestingly, the numerator of the second integral has
no dependence on @. Thus, the second integral can be evaluated analytically:∫ C

0

3@√
A2 + @2

=

[
ln

(√
C2 + A2 + C

)
− ln A

]
. (4.33)

We thus obtain

lim
A→0

2out(r, B) = 2U(B) ln
(
1
A

)
+
∫ 1−B

−(1+B)

[
U(B + @)

|xℎ (B + @) − xℎ (B) |
− U(B)|@ |

]
3@+U(B) ln[4(1+B) (1−B)],

(4.34)
or equivalently

lim
A→0

2out(r, B) = 2U(B) ln
(
2
A

)
+
∫ 1−B

−(1+B)

[
U(B + @)

|xℎ (B + @) − xℎ (B) |
− U(B)|@ |

]
3@+U(B) ln[(1+B) (1−B)],

(4.35)
which exposes the logarithmic singularity. Note that equation 4.35 does not capture circum-
ferential variations of concentration. Secondly, note that the “nonlocal” integral contains
information about the helical shape of the backbone. In asymptotic matching, we determine
the unknown U(B) and � (B; n) from

lim
A→0

2out(r, B) = lim
d→∞

2in(d, B) (4.36)

as n → 0. Matching Eqs. 4.25 and 4.35, we find

U(B) = 1
2
9 (B), (4.37)

� (B; n) = 9 (B) ln
(
2
n

)
+ �o(B), (4.38)
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and

�o(B) ≡
1
2

∫ 1−B

−(1+B)

[
9 (B + @)

|xℎ (B + @) − xℎ (B) |
− 9 (B)
|@ |

]
3@ + 1

2
9 (B) ln[(1 + B) (1 − B)] . (4.39)

Using Eq. 4.25 and associated expressions evaluated at the helix surface A = n (recall the non-
dimensionalization of length in this section), we plot the red curve in figure 4.4(a) (reverting
to the previous characteristic concentration 20 in the figure). This curve runs through the
scattered data points very well; however, it cannot account for the scatter, because equation
4.39 has no q dependence. (Recall that the scatter represents the range of the variation of
concentration in the angle q for a given value of B.)

Circumferential variation of concentration

The slender body analysis in Section 4.4.5 gave an expression for concentration that had
no dependence on q, and which can therefore be regarded as a circumferentially averaged
concentration. This expression is useful for considering variations of concentration with B,
i.e., the component of the surface gradient in the t̂ direction. However, the circumferential
component of the surface concentration gradient could also contribute to self-propulsion, as
discussed above.

Moreover, the numerical results clearly show a circumferential variation of concentration.
In Figure 4.4(c), we show the concentration on the surface of the lengthwise Janus particle,
obtained via the BEM, as a function of q for various values of B. (Specifically, for each B, we
consider values of 2 on the surface for numerical mesh points within a small neighborhood of
B.) By inspection, there seems to be a sinusoidal dependence on q, with the phase depending
on B. For B within the active region, i.e., B < 0, the maximum in concentration is around q = 0
and the minimum at q = ±c, indicating that the circumferential variation in concentration
is largely variation between the “inside” and “outside” of the helix. For the inert region
B > 0, the maximum is shifted to approximately −90◦. This indicates that the circumferential
variation of concentration is dominated by b̂ℎ. Note that b̂ℎ has a Î component and n̂ℎ does
not; since the maximum is at −90◦, the high concentration region is oriented towards the
active side of the particle, i.e., towards −Î.

Based on these observations, we make the following hypothesis: at a point B, the cir-
cumferential variation of concentration is due to polarization by the “external” concentration
gradient ∇2, i.e., the concentration gradient created by catalytic activity on other points of
the helix. For instance, this would explain why, in the inert region of the helix, the high
concentration region is oriented towards the active side of the helix. We can make an analogy
with the classical problem of an infinite cylinder in uniform, two-dimensional potential flow,
shown schematically in figure 4.4(d). On the basis of this analogy and the solution to that
classical problem, we expect that the amplitude of the sinusoidal variation at B to be twice
the magnitude of the component of external gradient in the plane defined by n̂ℎ and b̂ℎ, i.e.,.(
1 − t̂ℎ t̂ℎ

)
· ∇2, evaluated at the centerline position xℎ (B). Secondly, the phase of sinusoidal
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variation will be such that, for a particular B, the vector between the concentration minimum
and concentration maximum (defined in three-dimensional space) will be aligned with the
in-plane component of ∇2. Our analogy receives further motivation when we consider that
we had regarded the tube surface as a “quasi-infinite cylinder” when solving for the inner
concentration in the previous section.

Based on these ideas, we proceed to consideration of ∇2 for a lengthwise Janus helix. For
a point B > 0 in the inert region, we can simply write

∇2(xℎ) = −
1
2

∫ 1

−1

9 (B′) [xℎ (B) − xℎ (B′)] 3B′
|xℎ (B) − xℎ (B′) |3

(4.40)

or

∇2(xℎ) = −
1
2

∫ 0

−1

[xℎ (B) − xℎ (B′)] 3B′
|xℎ (B) − xℎ (B′) |3

. (4.41)

For the second expression, we do not have any issues with integrating through a singularity, as
B > 0 in inert region. Specifically, we are interested in the normal and binormal components,
since we need to know the orientation of the external gradient with respect to the local value
of =̂ℎ. We obtain:

∇2(xℎ) · n̂ℎ = −
1
2

∫ 0

−1

(xℎ (B) − xℎ (B′)) · n̂ℎ (B) 3B′
|xℎ (B) − xℎ (B′) |3

, (4.42)

∇2(xℎ) · b̂ℎ = −
1
2

∫ 0

−1

(xℎ (B) − xℎ (B′)) · b̂ℎ (B) 3B′
|xℎ (B) − xℎ (B′) |3

. (4.43)

We find the amplitude � of the sinusoidal variation as

� = 2 |∇2(xℎ) · b̂ℎ + ∇2(xℎ) · n̂ℎ |, (4.44)

and the phase k as
k = arg

(
∇2(xℎ) · n̂ℎ + 8 ∇2(xℎ) · b̂ℎ (B)

)
. (4.45)

Numerically integrating Eqs. 4.42 and 4.43, we obtain the theoretical curves (solid lines) for
the inert region of the particle (corresponding to the cross symbols) in figure 4.4(c).

For the active region of the particle (B < 0), the line integral in equation 4.40 has to
been handled with care, since there is a singularity at B = B′. As in Sect. 4.4.5, we follow
the procedure in Appendix A of [121] (see Eq. A1 and Eq. 2 of that work). Via similar
manipulations, we can isolate the singularities, obtaining:

∇2(xℎ (B)) · n̂ℎ = −
1
2

[
(n̂ℎ · iB) log n − 1

2
(n̂ℎ · iB) log[(1 − B) (1 + B)]+

n̂ℎ (B) ·
(∫ 1−B

−(1+B)

[
R
'3 −

−i(B)@ +
[
−1

2 iB (B) − 9B (B)i(B)
]
@2

@3

]
3@

)] (4.46)
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and

∇2(xℎ (B)) · b̂ℎ = −
1
2

b̂ℎ (B) ·
(∫ 1−B

−(1+B)

[
R
'3 −

−i(B)@ +
[
−1

2 iB (B) − 9B (B)i(B)
]
@2

@3

]
3@

)
(4.47)

on the surface of the particle. Here, R ≡ xℎ (B) − xℎ (B + @); quantities with B subscripts
indicate partial differentiation with respect to B; and the quantity i ≡ mxℎ

mB
, i.e., i is tangent to

the contour and iB is normal to it. The integrals can be evaluated numerically.
These expressions are valid over the whole contour of the particle, and in the inert region

return the same results as equations 4.42 and 4.43. In figure 4.4(c), we plot the theoretical
curves in the active region (circle symbols and diamond symbols). We obtain generally
good agreement with the numerical data. Note that some of the disagreement is because
the slender body expressions for the mean / circumferentially averaged concentration tend
to underestimate 2 (possibly because these expressions neglect the catalytic endcap); if the
theoretical curves were shifted upward, better agreement would be obtained. The greatest
disagreement is for B close to B = 0, i.e., the interface between the active and inert halves of
the particle, but the theoretical curves still capture the general shape here.

Including circumferential variation of the activity profile

For a particle that has an activity profile that depends on q, like the “inside-outside” Janus parti-
cle, the initial approach to obtain the circumferentially averaged concentration does not change
significantly. Using the circumferentially-averaged activity profile 9̄ (B) ≡ 1

2c

∫ 2c
0 9 (B, q) 3q

instead of 9 (B) in the framework of Section 4.4.5 is sufficient.
However, to obtain the circumferential variation of the concentration, additional terms

in the inner solution are needed. In particular, for the “inside-outside” Janus particle the
azimuthal deviation from the average needs to be accounted for. One can achieve this by
solving Laplace’s equation in 2D for the boundary condition

n̂ · ∇2(x)
����
A=A0

=
m2

mA

����
A=A0

= −
(
Θ(q + c/2)Θ(−q − c/2)−1

2

)
/n . (4.48)

Essentially, one must solve for the concentration around a Janus cylinder with translational
symmetry in the I direction. The parameters 0= and 1= in the multipole solution to Laplace’s
equation in 2D,

2(A, \) = 00 log
(
1
A

)
+
∞∑
==1

0= cos(=\) + 1= sin(=\)
A=

, (4.49)

can be determined by applying the boundary conditions. One can substitute equation 4.49
into 4.48, substitute the step function Θ(q) by its Fourier series

∑
= V= sin(=q) with V= ≡

−1
=c
(cos(=c) − 1), and match terms to determine 0= and 1=.
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4.5 Conclusions

Overall, the framework developed here provides a set of analytical and numerical tools for
modeling self-phoretic helical particles. In particular, we outline methods to solve the two
principal subproblems: diffusion of the product chemical and hydrodynamic reaction to the
resulting slip velocity.

By including three-dimensional finite size effects, our extended slender body theory cap-
tures both tangential and circumferential variations in the concentration field surrounding
the particle. We find that both the magnitude |2max − 2min | and the phase qmax/min of these
(quasi-sinusoidal) variations depend on the geometric and chemical parameters of the helix
(see Sections 4.4.2 and 4.4.4). In both cases, our analytical results are in line with numerical
calculations done with the boundary element method (BEM). The BEM results for the second
subproblem also show good agreement with previously published numerical and experimental
data (Section 4.4.1). Although our development of SBT is limited to the chemical concentra-
tion field, the spatial variation of concentration near a catalytically active particle is of broad
interest in active colloids (e.g., for understanding the phoretic motion of tracer particles [11]
and chemical kinetics [185].

We recovered the intriguing recent finding of [116] that circumferential variations in the
concentration field can lead to circumferential slip. This is not seen for simpler geome-
tries. A systematic analysis of contributions to particle motion revealed a natural division
of self-phoretic helices into three categories: tangentially driven, circumferentially driven,
and intermediate. The first group mostly includes helices with large pitches, which closely
resemble straight rods, while the second groupmostly includes helices with very small pitches
or activity profiles that vary circumferentially. Furthermore, for the latter two groups we can
obtain significant movement in the plane orthogonal to the helix screw axis. This perpendic-
ular motion is mainly driven by the ends of the helix (see Sections 4.4.2 and 4.4.4). However,
the decreasing concentration away from the centre for finite-sized helices can introduce dis-
turbances. Sections of the helix with opposite normal vectors (defined with respect to the
helix contour) do not perfectly balance each other, allowing for net movement even if the end
pieces point in opposite directions. Overall, awareness of the groups allows selection of one
of the groups by design, through judicious choice of the catalyst coverage.

Self-phoretic helices have fewer inherent restrictions to their movement in all six degrees
of freedom than most other particles of this type, while still being a well known and easy
to understand geometry. Furthermore, to radically change the movement patterns, only two
parameters, pitch size and catalytic coverage, need to be controlled. This makes self-phoretic
helices a prime option for many applications, such as targeted drug delivery or chemical
clean-up. To fully evaluate their potential, further research is needed to answer questions
such as: How do they react to confining surfaces [21, 133] and external fields, e.g., chemical
gradients [192] or flows ([118, 151, 154])? How do they interact with each other, e.g., can
they synchronize their rotations [124, 203]? How do geometric perturbations, such as a slow
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variation of pitch _ or radius ' with B, change the behaviour [257]? Can the flow field in the
vicinity of a helix be engineered for cargo uptake and transport [13]?

As an outlook and stimulus for future work, we briefly speculate on motion near surfaces.
We anticipate from previous work ([241]) that we may observe “sliding” steady states in
which the particle axis is aligned in the plane of the surface, and “hovering” steady states
in which the particle axis is aligned with the surface normal, i.e., the helix is “standing
up” on the surface. In both scenarios, the particle could continuously rotate around its
axis. Concerning “sliding,” translation with continuous axial rotation was observed in active
helices by [78]. We anticipate that sufficient strong rotation could lead to circular trajectories,
similar to those seen for e. coli. For “hovering” states, in which the helix center has a
steady position, continuous rotation may be interesting from an applications standpoint (for
development of self-powered micromachines). In particular, the results in this manuscript
suggest that “hovering” may be relevant, provided that the particles are not too heavy. The
flow fields for the lengthwise Janus particle have a puller-like far-field structure. and it
is known that pullers tend to orient perpendicular to surfaces, i.e., adopt hovering states.
Additionally, the repulsive interaction with solute assumed here would tend to drive the
active side of a lengthwise Janus particle away from confining surfaces. However, both of
these aspects are dependent on the surface chemistry of a particle. For instance, changing
the sign of the surface mobility in this work, i.e., changing the particle/solute interaction to
effective attraction, would reverse the streamlines and the direction of particle motion, i.e.,
make the particle an active-forward “pusher.” Moreover, a surface mobility contrast between
the active and inert sides could change the pusher/puller character of the particle. These
considerations suggests that an immediately fruitful direction for continuing work would
be to systematically characterize the flow and concentration fields in the vicinity of a self-
phoretic helix, including the pusher/puller character, as a function of geometry and surface
mobility contrast. The pusher/puller character could be quantified via numerical calculation
of the particle’s active stresslet. We also note that in addition to “sliding” and “hovering,”
new scenarios of near-surface motion, in comparison with spheres and spheroids, could be
unlocked by the non-axisymmetric shape of helices. In particular, the configuration space of
a helix near a surface would be three-dimensional (defined by the height above the surface
and two rotational degrees of freedom), which could lead to chaotic dynamics.
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CHAPTER 5
CONSTRUCTING MICRO-CHAINS:

A STUDY OF SELF-DIFFUSIOPHORETIC TORUS-SPHERE INTERACTIONS

As a continuation of the previous project, we want to investigate the interaction between a
concave shaped particle and a sphere. In this chapter a particle is defined as concave, if a line
segment connecting at least two of its points is not fully contained within the particle. Due to
the added complexity of having a second particle, we replace the helix with a torus. If both
particles are centered on the same axis, the system regains a rotational symmetry, while still
including a concave particle, which proved to be important for self-diffusiophoretic helices.
The step from understanding single particle to pair and, later, multi-particle behavior is not
only a natural one, but also necessary. In nature, a microorganism is rarely alone; it might need
to cooperate with others, compete against them for resources, or flee from them. Similarly,
artificial microswimmers, in order to have a significant effect, will need to be applied in bulk
for many applications. However, this can impose new challenges; they could for instance
block each other. To avoid such problems and instead facilitate a productive interaction, we
need to first understand how these microswimmers interact with each other.

5.1 Introduction

Both artificial and biological microswimmers interact with their surroundings. These inter-
actions can be divided into three classes: external fields (i.e. gravity, chemical concentration,
flow field), physical objects (i.e. walls) and other microswimmers. Many interesting reac-
tions have been discovered within these cases. For example, e. coli close to a wall swim
in circles [132]. Self-diffusiophoretic janus particles can swim upstream [240] and against
gravity [41, 87]. Clusters of active colloids can induce “superfluidity” [147]. Constraining the
movement of a group of microswimmers into a chain enables them to transport or “shepherd”
a much larger quantity of a substance [110].
Clusters in particular have raised a lot of interest in the active matter community [110, 189,
204, 205, 234]. Those formed by artificial microswimmers are commonly of one of two
types. Either they rely on an external field or on steric interactions. Artificial microswimmers
typically have rigid bodies and are more dense than water. This restricts their movement
to the two dimensional plane above the wall at the bottom of their container. If two such
particles collide, they can not pass through each other, and instead have to rotate out of the
way. However, if the particle density is high enough, this process is too slow and instead,
an additional colloid can collide into the pair and the cluster will start to grow. While these
clusters are intuitive to understand, they are also limited. They have no inherent orientation or
significant collective motion. Furthermore, the individual particles at the center are blocked
from moving in any direction. In contrast, loosely bound clusters built by non-steric inter-
actions, like the recently discovered arrested mobility clusters [107], show richer dynamics
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Figure 5.1: Illustration of the particle geometries. As indicated by the colors both particles
can be self-diffusiophoretic, but the catalyst distribution is not limited to the shown case. Here
the red and white areas indicate chemically active regions and the black and blue surfaces are
inert.

and configurations. However, many of these are limited in their application by requiring an
external field.
In this chapter the interaction between a self-diffusiophoretic torus and sphere is investigated.
Such pairs are a promising candidate to combine the rich dynamics of non-steric interactions
with a greater potential for applications. In particular, whether or not the two can move
together at a fixed separation distance is of interest. A co-moving pair could be the building
block for many future applications, such as a self-diffusiophoretic train transporting drug
molecules to a target location.
A unique possibility for this system is also the capability for the sphere to swim completely
through the torus. While this behavior is unwanted for the construction of more complex
structures, it opens the fascinating possibility to sort active swimmers by their ability to do
so or not.

5.2 Geometry

The chosen system to investigate the interactions between a self-diffusiophoretic torus-sphere
pair consists of a single sphere of radius ' and a torus with tube radius 0 and tube centerline
radius 1 > ' + 0 in free space (see Fig. 5.1). Both particles are centered on the I− axis
and are symmetric with resphect to it. In their respective body-fixed frames the surfaces are

46



described by

G ′s,sphere = ' sin(ΘB) cos(iB)

H′s,sphere = ' sin(ΘB) sin(iB) (5.1)

I′s,sphere = ' cos(ΘB)

and

G ′s,torus = (1 + 0 cos(ΘC )) cos(iC )

H′s,torus = (1 + 0 cos(ΘC )) sin(iC ) (5.2)

I′s,torus = 0 sin(ΘC ),

with ΘC and iB/C ∈ [0, 2c], and ΘB ∈ [0, c]. From here onward all properties will be given
in the frame (G, H, I) co-moving with the torus unless specified otherwise. In this frame the
torus is centered at the origin and the sphere can move along the I− axis.
Both the catalytic region 9B/C on the torus and sphere are axisymmetric and fully defined by
the coverage parameter jB/C ∈ [−1, 1] (see Fig. 5.2)

9B (r′) = Θ̃(jB − I′s,sphere) (5.3)

9C (r′) = Θ̃(jC − I′s,torus), (5.4)

with Θ̃ being the Heaviside step function and . jB/C = −1 corresponds to zero coverage and
jB/C = 1 to full coverage.
Finally, the torus centerline radius 1 will be used as the characteristic lengths scale ;0 of the
system and all geometric properties will be specified in terms of it.

5.3 Self-phoretic torus-sphere pair

The velocities for the two particles in different configurations are calculated analogously to
the earlier chapter 4. First the concentration field in the liquid surrounding the particles needs
to be known. Assuming very small Péclet number %4 � 1 the concentration field 2 can be
calculated using Laplace’s equation

∇22 = 0 (5.5)

with the boundary conditions

−� [ns · ∇2] = ^ 9 (rB); r ∈ rs,sphere (5.6)

� [nt · ∇2] = ^ 9 (rC ); r ∈ rs,torus (5.7)

and
2( |r| → ∞) = 0. (5.8)
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Figure 5.2: Schematic depiction of the torus-sphere system. In this example both particles
are half covered (jB,C = 0) and separated by a distance 3. The sphere has radius ', and the
torus has tube radius 0 and tube centerline radius 1. The frame is co-moving with the torus.
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ns and nt are the surface normal vectors for the sphere and torus respectively. The surface
boundary conditions have opposing signs, because the toroidal normal vector points inwards
by convention, while the spherical points outward (see figure 5.5). � is the diffusion constant
of the product molecules and the characteristic rates of solute production per unit surface
area ^ is chosen to be identical on both the sphere and torus. Once the concentration field is
known on the surface of particles, it can be used to calculate the so-called slip velocities

vB;8 ?,B (rB) = −1B (rB)∇B2 (5.9)

vB;8 ?,C (rC ) = −1B (rC )∇B2 (5.10)

for a given surface mobility 1B. The surface mobility on the sphere and the torus is set to be
uniform, identical and negative. In free space the particles will move with their inert "faces"
forward and catalytic caps backward. The slip velocities vB;8 ?,B/C are then used to construct
and solve the hydrodynamic problem. The particles are surrounded by a incompressible,
Newtonian fluid governed the Stokes equation

− ∇% + `∇2u = 0. (5.11)

In the laboratory frame the fluid far away from the particles is at rest

u( |r| → ∞) = 0 (5.12)

and has to fulfill the surface boundary conditions

u(rs,sphere) = Us +
s × (rs,sphere − r2,B?ℎ4A4) + vB;8 ?,B (rs,sphere) (5.13)

and
u(rs,torus) = Ut +
t × (rs,torus − r2,C>ADB) + vB;8 ?,C (rs,torus). (5.14)

ΩB/C and*B/C are the rotational and translational velocities of the sphere and torus respectively.
They are not yet known but can be determined using Lorentz reciprocal theorem 2.6 and the
force and torque free conditions. For a more concise description all further parameters will
be given as dimensionless quantities. This is achieved by using the earlier equations to define
a characteristic velocity*0 = 1B^/� and concentration 20 ≡ ^;0/�

5.3.1 Pair interaction

Following the above outlined steps the relative velocity *rel = *B − *C between the torus
and the sphere can be calculated. The relative velocities presented in Fig. 5.3 (a) are for a
half-covered sphere of radius ' = 0.3 and half-covered torus with tube radius 0 = 0.5. These
results are numerically calculated with the boundary element method (BEM, see 2.7).
Qualitatively, there are four types of configuration the system can possibly take. Either the
sphere or the torus is moving faster and either the sphere or the torus is leading. Fig. 5.3 (b)
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shows schematic illustrations for all four possibilities instead of data points as a guide to the
reader. Of these four configurations the shown system is shown to be in all of them. Starting
with the sphere far in front of the torus, the two particles have no significant interaction and
simply move with their respective free space velocities. Under these circumstances the torus
is faster (bottom right quadrant) and thus catches up to the sphere. As they get closer to
each other the torus slows down a small amount (see Fig. 5.3 (c)). The sphere on the other
hand speeds up significantly. Both these changes combine to increase the relative swimming
velocity *rel. At a distance of 30 = 3.95 the velocities of both particle are equal and the
system reaches a fixed point. In this configuration the two particles still move together, but
without any more changes in their relative position or velocity. The pair swimming speed is
slightly lower than the torus’ free space velocity. This fixed point can be reached from either
side, as in the region from 3 = 3.95 to −3 = 0.09 the relative velocity is positive, meaning
the sphere moves faster than the torus.
However, for distances −0.5 / 3 / 0.5 the trend for the relative velocity reverses. As 3
decreases the sphere slows down and the torus speeds up. At a distance of 30 = −0.09 the
velocities of both particles are again equal. However, if the sphere is further behind the torus
it never catches up to the torus and it escapes instead. The second point of vanishing relative
velocity *rel is thus an unstable fixed point. Numeric calculations with the sphere moved
and rotated out of the axis of symmetry show, the first fixed point is stable against distortion
in all three dimensions, only if the surface mobility is negative. As an illustrative example,
moving the the sphere at the fixed point of the axis of symmetry, necessarily places it closer
to the torus. In this position the half of the sphere closest to the torus experiences a higher
concentration field, and combined with the negative surface mobility this pushes the sphere
back towards the center.
The interaction between the torus and the sphere consists of two parts, a hydrodynamic one
and one facilitated by the chemical field. In order to separate those two all the calculations
are redone without updating the slip velocity Eslip,s/t at each separation distance 3 and instead
using the free space slip velocities for each respective particle. This calculation gives the
contribution to the particles’ motion from hydrodynamic interactions. The difference between
the "complete" and "reduced" velocities can be regarded as the chemical contribution to the
velocity. The resulting velocities are presented in Fig. 5.4. From these results it becomes
apparent that both the hydrodynamic interaction, as well as, the chemical field interaction are
significant. However, the latter one is dominant and in the next section an analytic solution for
the Laplace equation of this system is presented and discussed to gain a deeper understanding
of the interaction.
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Figure 5.3: (a) Variation of the relative velocity *rel between a half covered self-
diffusiophoretic sphere ' = 0.3 and torus 0 = 0.5 with the separation distance 3. (b)
Schematic illustration of the four possible configurations the system can be in. (c) Torus
velocity *C as a function of 3. (d) Sphere velocity as it changes with 3. All results were
obtained with the boundary element method and the lines are only a guide to the eye.

5.4 Concentration field

5.4.1 Toroidal coordinates

In order to to develop an analytical prediction for the concentration field, it will be convenient
to use both spherical coordinates (A,Θ, i) and toroidal coordinates (b, [, i) (see Fig. 5.5).
Due to the axisymmetry in our system the azimuthal angle i can be neglected, reducing the
complexity of the system to two dimensions. The toroidal coordinates transform into the
Cartesian coordinates via the following transformations

G = 3B
sinh(b)

cosh(b) − cos([) (5.15)

I = 3B
sin([)

cosh(b) − cos([) . (5.16)

0 ≤ b ≤ ∞, 0 ≤ [ ≤ 2c and 3B is a geometric constant depending on 0 and 1. In these
coordinates the surface of the torus is defined by a constant b = b0 value. Finally, the Lame
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hydrodynamic model (see 5.3.1). Both particles are half covered and have ' = 0.3 and
0 = 0.5 respectively. All results were obtained with the boundary element method and the
lines are only a guide to the eye.
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Figure 5.5: Illustration of Cartesian (G, I), spherical (A,Θ) and toroidal (b, [) coordinate
system. The sphere and torus surface, as well as the toroidal basis vectors, are also depicted.

parameters will be needed

ℎb = ℎ[ =
3B

cosh(b) − cos([) . (5.17)

As shown in Fig. 5.5 it is important to note that the surface normal vector into the fluid ntorus

points in the opposite as the b base vector eb = −ntorus.

5.4.2 Method of reflection

Using the method of reflections the concentration field surrounding the particles can be
predicted. This method is well known and often used for electrostatic problems and will be
adapted to the present system. In the method of reflections the two particles are viewed as
individual particles in free space with additional surface disturbances induced by the other
particle in addition to the catalyst. This enables the use of the known free space solutions
2
(8)
sphere and 2

(8)
torus. Using the linearity of Laplace’s equation the overall solution can than be

constructed by simply adding the individual terms up

2(r) =
∑
8

(
2
(8)
sphere(r) + 2

(8)
torus(r)

)
. (5.18)
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The additional disturbances are dependent on the second particle and have to be calculated
iteratively. The (8) indicates which order of reflection the solution term represents. In the
following the example of case of an inert sphere and a catalytic torus will be discussed to
illustrate this process. The inverted case of an catalytic sphere and an inert torus can be
calculated analogously. All other cases can be constructed as a combination of those two.
Starting with the catalytic torus in free space the concentration field on its surface, as well
as in the surrounding fluid, needs to be calculated. The axisymmetric solution to Laplace’s
equation in toroidal coordinates (b, [, q) (see Fig. 5.5) [162, 163, 216] is known

2
(8)
torus(b, [) =

√
cosh(b) − cos([)

∑
=

(� (8)= cos(=[) + � (8)= sin(=[))P=−1/2(cosh(b)). (5.19)

�
(8)
= and � (8)= are coefficients and P=−1/2 is the Legendre polynomial of half-integer order
= − 1/2.
By imposing the initial surface boundary condition

1
ℎb

d
db
2
(0)
torus(r) = 9C (r); r ∈ As,torus (5.20)

�
(0)
= and � (0)= are fixed and Eq. (5.19) can be used to calculate the concentration field in the

fluid. This concentration field extends all the way to the sphere and can be regarded as an
external disturbance on the surface of the inert sphere

d
dA
2
(0)
torus(r) ≠ 0; r ∈ As,sphere. (5.21)

This disturbance violates the sphere’s boundary condition and needs to be balanced. An
additional term 2

(1)
sphere is thus needed for the overall solution. Within the method of reflection

the sphere is again considered to be in free space with the general axisymmetric solution

2
(1)
sphere =

∑
=

�
(1)
= A−=−1P= (cos(o)). (5.22)

The boundary condition for this subsystem is

d
dA
2
(1)
sphere(r) = −

d
dA
2
(0)
torus(r); r ∈ As,sphere. (5.23)

such that the overall boundary condition on the sphere is restored

d
dA
2
(0)
torus(r) +

d
dA
2
(1)
sphere(r) = 0; r ∈ As,sphere. (5.24)

However, this added term now disturbs the boundary condition on the torus surface

1
ℎb

d
db
2
(1)
sphere(r) ≠ 0; r ∈ As,torus, (5.25)
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leading to a back and forth with diminishing disturbances until the new terms are sufficiently
small to be neglected. A similar iterative process needs be done starting with the boundary
condition on the torus. As the last step the individual contributions need to be added up to
gain the overall solution.

5.4.3 Solution in toroidal coordinates

For axisymmetric system, the Laplace equation in toroidal coordinates

0 =
m

mb

(
sinh b

cosh b − cos [
m2

mb

)
+ m

m[

(
sinh b

cosh b − cos [
m2

m[

)
(5.26)

is solved by

2
(8)
torus(b, [) =

√
cosh(b) − cos([)

∑
=

(� (8)= cos(=[) + � (8)= sin(=[))P=−1/2(cosh(b)), (5.27)

if the concentration field decays to 0 at infinity. The remaining boundary condition states

eb · ∇2 (8)torus(b, [) |b=b0 =
1
ℎb

m2
(8)
torus(b, [)
mb

|b=b0 = (X0,8 · 9C ([) +
m2
(8−1)
sphere(b, [)
mb

) |b=b0 . (5.28)

Following Schmiedling et al [216] the coefficients � (8)= and � (8)= can be determined by first
calculating the Fourier coefficients C= and D=

( 9C ([) +
m2
(0)
sphere ( b ,[)
mG8

)3
sinh b0

√
cosh b0 − cos [

=

,∑
=

(C= cos =[ + D= sin =[) (5.29)

and than relating them to the coefficients

,∑
=

(�= cos =[ + �= sin =[)
(
1
2
%=−1/2(cosh b0) + (cosh b0 − cos [)%′

=−1/2(cosh b0)
)

=

,∑
=

(C= cos =[ + D= sin =[). (5.30)

∑,
= are the well known sums, but with the zeroth order multiplied by 1/2.

5.4.4 Spherical solution

On the other hand the axisymmetric Laplace equation in spherical (A,Θ, i) coordinates reads
as

0 =
1
A2

m

mA

(
A2 m

mA

)
+ 1
A2 sin(Θ)

m

mΘ

(
sin(Θ) m

mΘ

)
(5.31)
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and for concentration fields vanishing at infinity

2
(8)
sphere(A,Θ) (5.32)

has the solution

2
(8)
sphere(A,Θ) =

∑
=

�
(8)
= A
−=−1P= (cos(Θ)) (5.33)

with the surface boundary condition in the normal direction

− eA · ∇2 (1)sphere(A,Θ) |A=' = 9B (Θ) +
m2
(8−1)
torus (b, [)
mA

|A=' . (5.34)

�= can be calculated by multiplying Eq. (5.34) with the corresponding Legendre polynomials
and integrating both sides with respect to Θ.

5.4.5 Coordinate Transformations

In order to use the disturbance created by the torus calculated in toroidal coordinates as a
boundary condition for the sphere and vice versa, coordinate transformations are necessary.
The four coordinate transformations are

Θ = arctan
(

sin [(cosh b − cos [)
sinh b (cosh b − cos [)

)
(5.35)

A = 3

√(
sinh b

cosh b − cos [

)2
+

(
sin [

cosh b − cos [

)2
(5.36)

from toroidal to spherical coordinates and from spherical to toroidal coordinates

31 =
√
(A cos(Θ) + 3B)2 + (A sin(Θ))2 (5.37)

32 =
√
(A cos(Θ) − 3B)2 + (A sin(Θ))2 (5.38)

b = ln(31/32) (5.39)

[ = arccos

(
32

1 + 3
2
2

23132

)
. (5.40)

5.4.6 Results

In Figs. 5.6 and 5.7 the concentration field on the surface of the torus (0 = 0.5) and sphere
(' = 0.3) for a range of separation distances 3 are shown. The solid line represents the analytic
prediction and the points numeric calculations with BEM. In both cases the qualitative, as
well as the quantitative agreement are remarkable. The method of reflection captures all
the noticeable features. Discussing the concentration field profiles on the torus first, it
is immediately noticeable that there are almost no qualitative changes with the separation

55



distance. Both when the two particles are fairly far apart (Fig. 5.6 (a)), as well as when
there is no vertical separation between the particles (Fig. 5.6 (b)), the maximum of the
concentration is at [max = 1.162c and the minimum at [min = 0.409c. [ = c represents
the points on the torus surface facing towards the center and [ = 3/2c is the center of the
catalytic patch (see Fig. 5.5). Notably the maximum concentration is not at the center of the
patch but instead gets shifted significantly towards the center of the torus due to the influence
of torus parts beyond the positive G − I plane. The produced molecules accumulate in the
hole, with all 360◦ of the torus surrounding it contributing to the increase. Whether or not the
sphere is close to the center of the torus or not has no noticeable effect on this behavior. The
concentration minimum is also shifted away from the center of the inert region [ = c/2 of
the torus surface, however not as significantly. These results agree very well with the earlier
observation that the swimming velocity of the torus remains fairly constant.
The concentration profiles on the surface of the sphere, on the other hand, varies significantly
with a changing separation distance 3 (see Fig 5.7). Starting with the particles well separated
(3 = ±5, Fig. 5.7 (a)-(b)) there is no qualitative difference between the two positions and
the minimum (Θ = 0) and the maximum (Θ = c) of the concentration field are at their
expected locations, i.e. the center of the catalytic and inert regions. The tangential gradient
is negative throughout and has its highest magnitude at the interface between the inert and
catalytic regions (Θ = c/2). Qualitatively a difference is noticeable, the minimum value is
higher for 3 = −5 since here the inert face of the sphere is closer to the active areas of the
torus. The differences depending on whether the sphere or torus are in front become much
more pronounced for decreasing 3.
Keeping the torus in front and decreasing the separation distance 3 the concentration profiles
change dramatically (see Figs 5.7 (c), (e) and (g)). While the concentration increases for all
anglesΘ, it rises much faster in the region facing the torus. This pushes both the concentration
minimum and maximum more and more towards the interface between the inert and active
region (see Fig. 5.7 (c) with 3 = −2). At even closer ranges (see Fig. 5.7 (e) with 3 = −0.5)
two minima can be seen at the center of both the inert region (Θ = 0) and the active region
(Θ = c). The sphere’s own activity is irrelevant in this position and becomes fully dominated
by the concentration field produced by the torus. The concentration maximum is at the
interface of the two regions. These changes also have an enormous influence on the tangential
gradient, which determines the slip velocity. Not only does the magnitude of the gradient
change, but also its sign. This explains why the propulsion of the sphere close to the torus
not only slows down but also changes direction.
Investigating a concentration profile in the area of rapid acceleration of the sphere (−0.5 /
3 = 0.1 / 0.5), shows a reversal back to original profile. The gradients of highest magnitude
are again at the interface between the inert and catalytic region, although the gradients are
still significantly larger.
When the sphere is in front of the torus, changing the distance between the two (see Figs.
5.7 (d), (f) and (h)) does not change the general appearance of the concentration profile.
However, the overall magnitude and gradient between the maximum and minimum increase
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as 3 decreases. This again explains why the sphere is faster if it is behind torus.
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Figure 5.6: Concentration profiles on the surface of a half covered torus (0 = 0.5) as a
function of the angle [. The torus is at a distance of 3 = −5 (a) and 3 = 0 (b) from a half
covered sphere (' = 0.3). The line indicates the analytic prediction (see 5.4.2) and the points
are calculated with the boundary element method

5.4.7 Designing a lock

Finally, in the introduction the question was raised if this system is able to function as barrier
for specific types of particles, i.e. in a lock and key type mechanism only certain self-
diffusiophoretic swimmers can pass through the torus. For the barrier to be as stationary
as possible a fully catalytic torus (jC = 1) is chosen. In Figs. 5.8 (a) and (b) two spheres
(' = 0.1) are separately tested against such a torus (0 = 0.1). The first sphere is half covered,
while the second sphere has a smaller active area (jB = −0.2). This reduces the second
sphere’s free space velocity.
Starting with the spheres located behind the torus, both move towards it. Close to the torus
both experience the same pattern of acceleration and deceleration described earlier 5.3.1.
However, for the chosen parameters (coverage jB = 0 and geometry ' = 0.1, 0 = 0.1) the
first sphere does not slow down enough to form a pair with the torus. Instead, its velocity is
always larger than zero and it passes though the torus. In contrast the second, slower sphere
gets captured and does not overcome the barrier.
These results show the system can function as a lock barrier, letting only specific, i.e. fast
enough, self-diffusiophoretic particles (keys) though.

5.5 Conclusion

In this work the interaction between a self-diffusiophoretic sphere and a self-diffusiophoretic
torus has been studied. In this system a range of interesting dynamics can be observed. Both
the sphere and the torus accelerate and decelerate depending on their relative position, their
geometric parameters and their catalytic activity. The sphere can even be shown to reverse its
direction of motion. Particularly interesting is the existence of stable separation distances, at
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which the relative velocity between the particles vanishes and they continue to swim as a pair.
Such a pair could function as the building block for a chain of many more active particles
moving together in a single direction.
Using the method of reflections an analytic prediction for the concentrations field was used
to better understand the complex nature of the observed dynamics. It can also be a useful
tool for designing particles and answering some of the still open questions in the future. How
stable is the swimming direction for the pair against perturbations? Can the stable separation
distance be changed, and how does it change depending on the varies design parameters?
And finally, what happens if a third or even more particles are added to the system? Is finding
a system with bistability (stable positions for a sphere on both sides of the torus) necessary to
achieving self-organizing chains?
For fully covered tori an interesting observation has been made. Due to their inherent
symmetry they do not move on their own in free space, but nonetheless, are able to slow down
a self-diffusiophoretic sphere. However, due to the much greater velocity difference far apart,
the earlier mentioned fixed point does not exist for all spheres. This opens the possibility to
design a speed gate. Only self-diffusiophoretic particles above a certain threshold velocity
can pass through this filter. This allows for the organized separation of a collection of self-
diffusiophoretic particles into distinct groups. Further studies, will be necessary to investigate
if these dynamics hold true when replacing the torus with a hole in a wall covered by a catalytic
patch and if they can be reproduced experimentally.
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Figure 5.7: Concentration profiles on the surface of a half covered sphere (' = 0.3) as it
changes with the angle Θ. The sphere is at a distance of 3 = −5 (a), 3 = 5 (b), 3 = −2 (c),
3 = 2 (d), 3 = −0.5 (e), 3 = 0.5 (f), 3 = −0.1 (g) and 3 = 0.1 (h) from a half covered torus
(' = 0.5). The line indicates the analytic prediction (see 5.4.2) and the points are calculated
with the boundary element method.
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Figure 5.8: The relative velocity *rel between a self-diffusiophoretic spheres (' = 0.1) and
a torus (0 = 0.1) fully covered by a catalyst as a function of their separation distance 3. In
(a) the sphere is half covered (jB = 0) and in (b) it is less then half covered (j = −0.2). All
results were obtained with the boundary element method and the lines are only a guide to the
eye.
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CHAPTER 6
AXISYMMETRIC SPHEROIDAL SQUIRMERS AND

SELF-DIFFUSIOPHORETIC PARTICLES

Up to this point thiswork has focused on one specific type ofmicroswimmer, self-diffusiophoretic
colloids. For the final two projects presented, a more general approach will be discussed,
the squirmer model. The squirmer model does not include a detailed description of the
propulsion mechanism of the microswimmer, and instead uses the slip velocity as its starting
point. It immediately follows that squirmer particles only interact hydrodynamically with
their surroundings. This simplification allows the model to be applied to a much wider range
of microswimmers. In many instances, it can be used for self-diffusiophoretic and other
artifical microswimmers [194], but its original purpose is to analyze biological microswim-
mers such as ciliated microorganisms [145]. Understanding their behavior, limitations, and
tendencies will open new opportunities for improvements in the food and nutrient industry.
Many everyday food products, such as cheese or bread, rely on microorganisms. Providing
optimal conditions for the microorganisms, e.g. bread yeast, to thrive and work at maximum
efficiency, can reduce the price of food. Furthermore, by tailoring the conditions to a specific
species, contamination can be prevented and food quality improved.
The insight to hinder unwanted microorganisms can also be applied directly in medicine.
Whether it is to develop new, more effective methods to sterilize equipment or improve the
effectiveness of known therapeutic methods, understanding how microorganisms, e.g. E.
coli., survive against outside stresses can be used to overcome these strategies.
An aspect ofmicroorganisms not fully understood is their shape. Almost none have a spherical
body, but spheroidal ones are much more common. It is well known that even this relatively
minor change in the geometry of a particle can have a significant effect on its interactions
with the surroundings. Spheroids can, to name only a few effects, align in response to an
ambient flow [238], order themselves [141] and change their diffusiophoretic behavior [53]
with respect to corresponding spherical particles.
The results of the following chapter have been published under an open access model in the
peer-reviewed journal Journal of Physics: Condensed Matter [186].

6.1 Abstract

We study, by means of an exact analytical solution, the motion of a spheroidal, axisymmetric
squirmer in an unbounded fluid, as well as the low Reynolds number hydrodynamic flow
associated to it. In contrast to the case of a spherical squirmer — for which, e.g., the velocity
of the squirmer and the magnitude of the stresslet associated with the flow induced by the
squirmer are respectively determined by the amplitudes of the first two slip (“squirming”)
modes — for the spheroidal squirmer each squirming mode either contributes to the velocity,
or contributes to the stresslet. The results are straightforwardly extended to the self-phoresis
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of axisymmetric, spheroidal, chemically active particles in the case when the phoretic slip
approximation holds.

6.2 Introduction

Self-propulsion of micro-organisms, such as bacteria, algae and protozoa, plays an important
role in many aspects of nature. Whether a bacteria tries to reach a nutrient rich area or a
sperm cell an unfertilized egg, motility often yields a substantial advantage over competitors.
Due to their small size and velocity, the viscous friction experienced by the micro-organisms
swimming in water is very strong compared to inertial forces [86, 180]; consequently, they
have developed swimming mechanisms adapted to these circumstances.

The motion of motile bacteria and other small organisms is typically induced by the
beating of thin, thread-like appendages, the so called flagella; however, these species exhibit
a broad morphology, in that they may posses either a single flagellum (e.g., monotrichous
bacteria), several flagella (e.g., E. coli.), or a carpet of many small flagella, called cilia (e.g.
Opalina). Focusing for the moment on the example of cilia covered micro-organisms, it was
proposed by Lighthill that the emergence of motility can be understood without a detailed
modeling of the complex, synchronous beating of the cilia [145]. Instead, the effect of this
beating pattern, i.e., the time-averaged surface flow induced by the envelope of cilia tips, has
been modeled as providing a prescribed active flow velocity v (actuation) at the surface of the
particle (both within the tangent plane of the surface, vB, and in the direction normal to the
surface, v=). The model, known by now as the “squirmer” model, was subsequently corrected
and extended by his student Blake [25].

In its simplest and most used form, the tangential slip velocity of a spherical squirmer is
taken to be the superposition of the fore-aft asymmetric and fore-aft symmetric modes with
the slowest decaying contributions to flow in the surrounding liquid, i.e., the leading order
modes. Combined, they make for a squirmer endowed with motility (from the leading fore-aft
asymmetric mode) and with a hydrodynamic stresslet (from the leading fore-aft symmetric
mode) [83, 240, 246, 264, 265].

Considerable progress has already been made in understanding the behavior of spherical
squirmers, and many interesting questions have been answered, such as: what does the flow
field around a squirmer look like and how it compares with the ones produced by simple
microorganisms [25, 56, 57]; what happens if the swimmer is not in free space, but rather
disturbed by boundaries [265] or external flows [240]; and how do pairs or even swarms of
these particles interact [83]. Although this model can also be used to better understand the
motion of micro-organisms, e.g. Volvox [178], observed in experiments, its restriction to
spherical swimmers limits a wider application. For example, Paramecia, one of the most
studied ciliates, has an elongated body [101, 224, 263], which prevents a straightforward
application of the traditional squirmer model. However, the aforementioned questions are
also of interest for these and other elongated micro-organisms. A generalization of the
squirmer model to non-spherical shapes is thus a natural, useful development.
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Driven by advances in technology that allow increasingly sophisticated manufacturing
capabilities, in the last decade significant efforts have been made towards the development
of artificial swimmers [81, 106, 168, 206, 243]. The envisioned lab-on-a-chip devices and
micro-cargo carriers [62, 228], e.g., for targeted drug deliveries and nanomachines focused on
monitoring and dissolving harmful chemicals [74, 223], all need to perform precise motions
on microscopic length scales. A better understanding of the general framework of microscale
locomotion is required in order to optimally design and control such devices, and theoretical
models facilitate new steps along this path. As one example, chemically active colloids
achieve self-propulsion by harvesting local free energy. They catalyze a chemical reaction
in the surrounding fluid and propel due to the ensuing chemical gradient. Spherical “Janus”
particles belong to this group, and it has been shown that the squirmer model can, in various
circumstances, capture essential features of their motion [194]. However, there are many
chemically active colloids with non-spherical shape, and rod-like particles are especially
prevalent in experimental studies (see, e.g., [155, 176, 177, 206]).

It is well known that passive, non-spherical colloids exposed to an ambient flow exhibit
significant qualitative differences — such as alignment with respect to the direction of the
ambient flow [238], Jeffery orbits by ellipsoids in shear flow [109], nematic ordering arising
from steric repulsion [141], or noise-induced migration away from confining surfaces [174]
— in comparison to their spherical counterparts. It is thus reasonable to expect that endowing
such objects with a self-propulsion mechanism will lead to rich, qualitatively novel dynamical
behaviors, some of which may be advantageous for, while others may hinder, applications.
Accordingly, it is important to develop an in-depth understanding of the shape-dependent
behavior, and significant experimental and theoretical efforts have been made in this direction
(see, e.g., Refs. [9, 22, 54, 71, 98, 147, 249, 251, 253, 254] as well as the insightful reviews
provided in Refs. [5, 18, 55, 63, 64, 95, 136, 180, 212]).

Similar to the case of spherical swimmers, physical insight into the phenomenology
exhibited by elongated swimmers can be gained from a corresponding squirmer model. For a
model spheroidal swimmer moving by small deformations of its surface, Ref. [65] derived an
analytic solution to the corresponding Stokes flow, from which the velocity of the swimmer
could be calculated. In Ref. [140] it has been pointed out that an exact squirmer model for a
spheroidal particle with a prescribed axi-symmetric, tangential slip velocity (active actuation
of the fluid) on its surface can be written down by employing an available analytical solution
for the axi-symmetric Stokes flow around a spheroidal object [50]. However, the approach
has been used in the context of a somewhat restricted model particle, involving an additional
fore-aft asymmetry of the surface slip velocity, because of the particular interest, for that
work, in the question of “hydrodynamically stealthy” microswimmers. While capturing the
self-propulsion velocity of the swimmer, this removes certain characteristics of the flow, inter
alia those that contribute to the corresponding stresslet [134] and would allow distinguishing
between, e.g., “puller” and “pusher” type squirmers. Moreover, the particle stresslet is a key
quantity connecting themicroscopic dynamics of individual particles in a colloidal suspension
with the continuum rheological properties of the suspension. For active particles like bacteria,
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the activity-induced stresslet can lead to novel material properties like "superfluidity" and
spontaneous flow [147].

We note that also a strongly truncated model, based on an ansatz for the slip velocity in
the form of two terms which, in the corresponding limit of a sphere, reproduce the first two
modes of the spherical squirmer model of Lighthill and Blake, has been discussed by Ref.
[231]. This approach, however, is significantly affected by the fact that — as noticed in Ref.
[65] and also discussed here (see Sec. 6.5) — for spheroidal squirmers both their velocity and
their stresslet involve significant contributions from the higher order slip modes, in contrast
to the case of a spherical squirmer for which only the first two modes contribute to those
observables.

In this paper we employ the available analytical solution for axi-symmetric Stokes flow
around a spheroidal object [50] to study the velocity and the induced hydrodynamic flow
field around a spheroidal squirmer with a tangential slip velocity possessing axial symmetry,
but otherwise unconstrained. The model squirmer is introduced in Sec. 6.3. The series
representation of the incompressible, axi-symmetric, creeping flow field around a spheroid
[50] is succinctly summarized in Sec. 6.4. In Section 6.5 we discuss the velocity and the
flow field corresponding to the spheroidal squirmer, with particular emphasis on illustrating
the contributions from the modes of various order. Additionally, in Sec. 6.5.1 we discuss
the straightforward extension of these results to deriving the flow field around a chemically
active self-phoretic spheroid (for a similar mapping in the case of spherical particles see Ref.
[157]). The final Sect. 6.6 is devoted to a summary of the results and to the conclusions of
the study.

6.3 Model

Themodel systemwe consider is that of a spheroidal, rigid and impermeable particle immersed
in an incompressible, unbounded, quiescent Newtonian liquid through which it moves due to
a prescribed “slip velocity” (active actuation) at its surface (see Fig. 6.1). The slip velocity
vB, which is tangential to the surface Σ of the particle (i.e., n · vB ≡ 0 on Σ, with n denoting
the outer (into the fluid) normal to Σ), is assumed to preserve the axial symmetry and to be
constant in time, but it is otherwise arbitrary. The surface slip vB is part of the model and thus
it is a given function (or, alternatively as in, c.f., Sec. 6.5.1, it is determined as the solution
of a separate problem). There are no external forces or torques acting on either the particle
or the liquid.

Due to the surface actuation, a hydrodynamic flow around the particle is induced and the
particle sets in motion; we assume that the linear size ! of the particle, the viscosity ` and the
density r of the liquid, and the magnitude |vB | of the slip velocity are such that the Reynolds
number Re := r |vB |!/` is very small. Accordingly, after a short transient time a steady state
hydrodynamic flow is induced around the particle and the particle translates steadily with
velocity U (with respect to a fixed system of coordinates, the “laboratory frame”). (Owing to
the axial symmetry, in the absence of thermal fluctuations, which are neglected in this work,
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Figure 6.1: (a) Two-dimensional (2d) cut of a prolate spheroidal particle with semi-major
axis 1I and semi-minor axis 1G; also shown are the G and I axes of the co-moving system of
coordinates and the unit vectors eg and eZ of the prolate spheroidal coordinate system; (b)
2d cut of a chemically-active self-phoretic particle; the chemically active part is the cap-like
region shown in white, while the rest of the surface (black) is chemically inert. The quantity
j (“coverage”) denotes a certain measure for the extent of the active part (see Sec. 6.5.1 in
the main text).

there is no rigid-body rotation of the particle in this model.)
The analysis is more conveniently carried out in a system of coordinates attached to the

particle (co-moving system). This is chosen with the origin at the center of the particle
and such that the I-axis is along the axis of symmetry of the particle (thus U = *eI). The
semi-axis of the particle are accordingly denoted by 1I and 1G (see Fig. 6.1); their ratio
A4 =

1G
1I

is called the aspect ratio and determines the slenderness of the particle. The values
A4 < 1, A4 = 1, and A4 > 1 correspond to prolate, spherical, and oblate shapes, respectively.

In the co-moving system of coordinates, the flow v and the velocity U are determined as
the solution of the Stokes equations

∇ · σ = 0 , ∇ · v = 0 , (6.1)

where
σ := −? I + `[∇v + (∇v)) ] , (6.2)

is the Newtonian stress tensor, with ? denoting the pressure (enforcing incompressibility), I
denoting the unit tensor, and ()) denoting the transpose, subject to:
– the boundary conditions (BC)

v|Σ = vB , (6.3a)
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and
v( |r| → ∞) → −U . (6.3b)

– the force balance condition (overdamped motion of the particle in the absence of external
forces) ∫

Σ

σ · n 3Σ = 0 . (6.4)

The hydrodynamic flow vlab in the laboratory frame, if desired, is then obtained as vlab(P) =
v(P) + U, with P denoting the observation point.

The boundary-value problem above can be straightforwardly solved numerically by using,
e.g., the Boundary Element Method (BEM) (see, e.g., Refs. [104, 111, 221, 240]) as well
as analytically. In the following, we shall focus on the analytical solution of this problem;
the corresponding numerical solutions obtained by the BEM are presented in Appendix 6.7.5
and used as a means of testing the convergence of the series representation of the analytical
solution. Before proceeding, we note that we will focus the discussion on the case of prolate
shapes, i.e., A4 < 1 (see Fig. 6.1(a)); the case of an oblate squirmer (A4 > 1) can be obtained
from the results for the prolate shapes via a certain mapping (see, e.g., Ref. [140] and
Appendix 6.7.1), while the case of a sphere is obtained from the results corresponding to a
prolate spheroid by taking the limit A4 → 1−.

6.4 Hydrodynamic flow and velocity of a prolate squirmer

The calculation of the hydrodynamic flow v induced by the squirmer and of the velocity U of
the squirmer are most conveniently carried out by employing the modified prolate spheroidal
coordinates (1 ≤ g ≤ ∞,−1 ≤ b ≤ 1, 0 ≤ q ≤ 2c) as in Ref. [50]. These are defined in
the co-moving system of reference, which has the origin in the center of the particle, and are
related to the Cartesian coordinates via [50]

g =
1
22
(
√
G2 + H2 + (I + 2)2+

√
G2 + H2 + (I − 2)2) ,

Z =
1
22
(
√
G2 + H2 + (I + 2)2−

√
G2 + H2 + (I − 2)2), (6.5)

i = arctan
( H
G

)
,

where 2 =
√
12
I − 12

G is a purely geometric quantity which ensures smooth convergence into
spherical coordinates in the limit 1G → 1I . The unit vectors eg and eZ (see Fig. 6.1) are
related to the ones of the Cartesian coordinates via

eg =

(
2g ·

√
1 − Z2

√
g2 − 1

eG + ZeI

)
·
√
g2 − 1√
g2 − Z2

,

eZ =

(
2Z ·
√
g2 − 1√

1 − Z2
eG + geI

)
·

√
1 − Z2√
g2 − Z2

, (6.6)
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and the corresponding Lamé metric coefficients are given by

ℎZ = 2

√
g2 − Z2√
1 − Z2

,

ℎg = 2

√
g2 − Z2
√
g2 − 1

, (6.7)

ℎi = 2
√
g2 − 1

√
1 − Z2 .

The iso-surfaces g = 2>=BC are confocal prolate spheroids with common center O; the surface
of the particle corresponds to

g0 =
1I

2
=

1√
1 − A2

4

> 1 , (6.8)

and the values g > g0 (1 ≤ g < g0) correspond to the exterior (interior) of the prolate ellipsoid,
respectively. The coordinate Z takes the values Z = ±1 at the I = ±1I apexes, respectively,
and Z = 0 on the equatorial (G − H plane cut) circle. Note that, as shown in Fig. 6.1(a), eg
coincides with the normal n while eZ and eq span the tangent plane.

6.4.1 Velocity of the squirmer

The velocity of the squirmer can be determined from Eqs. (6.1) - (6.4) as a linear functional
of the axi-symmetric slip velocity vB = EB (Z)eZ without explicitly solving for the flow v. This
follows via a straightforward application of the Lorentz reciprocal theorem [93, Chapter 3-5].
For the case of the prolate spheroid with U = *eI , this renders (for details see, e.g., Refs.
[134, 140, 196])

* = −g0
2

1∫
−1

dZ

√
1 − Z2

g2
0 − Z2

EB (Z) . (6.9)

Therefore, U can be considered as known; accordingly, the boundary value problem defined
by Eqs. (6.1) - (6.4) is specified and the solution v can be determined.

6.4.2 Stokes stream function and hydrodynamic flow

Since the boundary value problem defined by Eqs. (6.1) - (6.3) has axial symmetry, one
searches for an axisymmetric solution v(r) expressed in terms of a Stokes stream function
k(r) as v(r) = ∇ × k (r)

ℎi
ei [93, Chapter 4]; this renders

Eg (g, Z) =
1

ℎZ ℎi

mk

mZ
, (6.10)

EZ (g, Z) = −
1

ℎgℎi

mk

mg
. (6.11)

67



The general “semiseparable” solution for the stream function in prolate coordinates has been
derived by Ref. [50] in the form of a series representation

k(g, Z) = 60(g)�0(Z) + 61(g)�1(Z)

+
∞∑
==2
[6= (g)�= (Z) + ℎ= (g)�= (Z)] . (6.12)

where �= and �= are the Gegenbauer functions of the first and second kind, respectively (see
Ref. [4]). The functions 6= (g) and ℎ= (g) are given by certain linear combinations of �: (g)
and �: (g), the coefficients of which are fixed by the corresponding boundary conditions (see
below).

The general solution above is applied to our particular system as follows. Noting that
for our system the solution v(r) should be bounded (i.e., |v(r) | < ∞ everywhere), none of
the terms involving the Gegenbauer functions of the second kind �= (Z), which are divergent
along the I-axis (i.e., Z = ±1) [93, Chapter 4-23], can be present in the solution; accordingly,
ℎ= (g) ≡ 0 for all = ≥ 2. Furthermore, due to the same requirement of bounded magnitude
of the flow, the terms involving the Gegenbauer functions of the first kind �0(Z) = 1 and
�1(Z) = −Z also cannot be present in the solution because they lead to divergences of EZ at
Z = ±1 (see Eqs. (6.11) and (6.7)); accordingly, 60(g) ≡ 0 and 61(g) ≡ 0. Therefore, for our
system only the functions 6=≥2 will be of interest; these are given by [50]

62(g) =
�2
6
�1(g) + �4�4(g) + �2�2(g)

+ �2�2(g) + �4�4(g)

63(g) = −
�3
90
�0(g) + �5�5(g) + �3�3(g) (6.13)

+ �3�3(g) + �5�5(g)

6=≥4(g) =�=+2�=+2(g) + �=�=−2(g) + �=�= (g)

+ �=�= (g) + �=+2�=+2(g) + �=�=−2(g),

where the constants {�=, �=}=≥2, {�=}=≥4, and {�=}=≥2, are fixed, as noted above, by
requiring that the solution satisfies the BCs, Eqs. (6.3), and the force balance condition, Eq.
(6.4).

Since the hydrodynamic force is proportional to the coefficient �2 (see 62(g)) [140], the
force balance (Eq. (6.4)) implies

�2 = 0 . (6.14a)

The boundary condition at infinity (Eq. (6.3b)) implies the asymptotic behavior of the stream
function

k(g →∞, Z) ∝ 1
2
*22(g2 − 1) (1 − Z2) ;

by noting the asymptotic behaviors �= (g � 1) ∝ g= and �= (g � 1) ∝ g−(=+1) [4],
this implies that the functions 6=≥2(g) cannot have contributions from terms involving the
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Gegenbauer functions �= (g) of index = > 2, i.e.,

�= = 0 , = = 4, 5, . . . and �= = 0 , = = 3, 4, . . . (6.14b)

Furthermore, in order to exactly match the asymptotic (g2 −1) (1− Z2) form and its prefactor,
it is necessary that

�2 = −222* . (6.14c)

The impenetrability of the surface and Eq. (6.10) imply that k(g0, Z) is a constant; since
k(g0,±1) = 0 as �= (Z = ±1) = 0, one concludes that k(g0, Z) ≡ 0 and thus

6= (g0) = 0, = = 2, 3, . . . (6.14d)

Finally, the tangential slip velocity condition at the surface of the particle (Eq. (6.3a))
together with: the expression for EZ in Eq. (6.11), the orthogonality of the Gegenbauer
functions �=≥2(Z) (see Appendix 6.7.2), and the relation between the Gegenbauer functions
�=≥2(Z) and the associated Legendre polynomials %1

=≥1(Z) (see the Appendix 6.7.2) leads to

36=

3g

����
g=g0

=22(= − 1
2
)
+1∫
−1

dZ (g2
0 − Z

2)1/2EB (Z)%1
=−1(Z) ,

= = 2, 3, . . . . (6.14e)

For given EB (Z), and with * determined by Eq. (6.9), Eqs. (6.14d) and (6.14e) provide a
system of linear equations determining all the remaining unknown coefficients {�=≥3, �=≥2},
as detailed in the Appendix 6.7.3.

6.5 Squirmer and squirming modes

The form of Eq. (6.14e) suggests (for the expansion of the slip velocity vB) the functions

+= (Z) := (g2
0 − Z

2)−1/2%1
= (Z) , (6.15)

as a suitable basis over the space of square integrable functions 5 (Z) satisfying 5 (Z = ±1) = 0
(note that += has a parametric dependence on g0 > 1). Defining, in this space, the weighted
scalar product

〈 51(Z), 52(Z)〉F (Z ) :=
+1∫
−1

dZF(Z) 51(Z) 52(Z) , (6.16)

and choosing the weight as
F(Z) = g2

0 − Z
2 > 0 , (6.17)
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one infers (form the known properties of the associated Legendre polynomials) that indeed
the set {+=}=≥1 is an orthogonal basis,

〈+= (Z), +<(Z)〉F (Z ) =
=(= + 1)
= + 1/2 X=,< . (6.18)

Accordingly, the slip velocity function vB = EB (Z)eZ has a unique representation in terms of
a series in the functions {+=}=≥1,

EB (Z) = g0
∑
=≥1

�=+= (Z) . (6.19)

The coefficients of the expansion are written in the form above to ensure that in the limit
of a sphere (1G → 1I , i.e, g0 → ∞) one arrives at the usual form employed for a spherical
squirmer, i.e., that of an expansion in associated Legendre polynomials %1

= (cos o) (see,
e.g., Ref. [25, 102]). This can be seen by noticing that in the limit g0 → ∞ one has
g0(g2

0 −Z
2)−1/2%1

= (Z) → %1
= (Z) and that 1G → 1I implies Z → cos(o); accordingly, it follows

that, in the limit of the shape approaching that of a sphere, g0+= (Z)eZ → −%1
= (cos o)eo and

the expansion in Ref. [25] is matched identically upon changing �= → 2
=(=+1) �=.

With the representation of the slip velocity in terms of the function +=, Eq. (6.19), upon
exploiting the orthogonality relation (Eq. (6.18)) the boundary condition in Eq. (6.14e)
renders the simple relations

m6= (g)
mg

����
g=g0

= g02
2=(= − 1)�=−1 , = = 2, 3, . . . (6.20)

For a given slip velocity, thus a given set of amplitudes �= of the slip modes += (Z),
Eqs. (6.14d) and (6.20) evaluated for = ≥ 1 provide a system of coupled linear equations
for the last unknown coefficients in the stream function, �=≥3 and �=≥2. Inspection of this
system reveals that it splits into two subsystems of coupled equations, one involving only the
coefficients of even index, = = 2: , and the other one involving only the coefficients of odd
index = = 2: + 1 (see Appendix 6.7.3). Furthermore, from Eq. (6.20) it can be inferred
that in the case that the slip velocity is given by a pure slip mode +=0 (Z), i.e., �= = X=,=0

for = ≥ 1, then the parity of =0 selects one of the two subsystems. If =0 is even, then all the
coefficients �: and �: of even index : vanish and the stream function, Eq. (6.12), involves
only the functions 6: of odd index : , while for odd =0 all the coefficients �: and �: of odd
index : vanish and the stream function, Eq. (6.12), involves only the functions 6: of even
index : . Finally, we note that a pure slip mode +=0 (Z) selects, as discussed above, either the
odd or even number terms in the series representation of the the stream function, Eq. (6.12),
but not only a single squirmer mode, as it is the case for the spherical squirmer. Accordingly,
even simple distributions of active slip velocities on the surface of the particle can give rise
to quite complex hydrodynamic flows around the squirmer.

With these general results, we can proceed to the discussion of prolate squirmers. We will
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= = 1, 3, 5, 7 to the velocity of a prolate squirmer for aspect ratios A4 = 0.3, 0.5, 0.7, 0.9. The
lines represent only a guide to the eye.

focus on the usual quantities employed to characterize an axisymmetric squirmer [25, 65, 145],
i.e., the velocity * of the squirmer, the magnitude ( of the stresslet associated with the
squirmer (which determines the far-field hydrodynamic flow of the squirmer), and the general
characteristics of the hydrodynamic flow v(r) around the squirmer.

By combining Eqs. (6.14e), (6.19), (6.18), and (6.15), and noting that the polynomials
%1
= (G) are even (odd) functions of G for = odd (even), one arrives at

* (g0) =
g2

0
2

∑
=≥1,= odd

�=

1∫
−1

3G
%1

1 (G)%
1
= (G)

g2
0 − G2

(6.21)

=
∑

=≥1,= odd
�=*= (g0) .

Accordingly, it follows that (a) a squirmer may exhibit self-motility (i.e., * ≠ 0) only if
the slip velocity involves at least an odd index = slip mode +=; (b) in contrast to the case
of a spherical squirmer, for which the velocity is determined solely by the slip mode = = 1
irrespective of the details of the slip velocity vB, for a spheroidal squirmer all the slip modes
of odd index contribute to the velocity (see also Fig. 6.2); consequently, (c) spheroidal
squirmers with �1 = 0 can be self-motile (due to contributions from other odd index slip
modes), and spheroidal squirmers with �1 ≠ 0 can yet be non-motile if the contributions from
other slip modes of odd index = precisely balance the contribution of the mode �1 (which
clearly pinpoints the shortcomings of a model with only two slip modes as in Ref. [231]).

In terms of the dependence on the slenderness parameter A4 (which determines the value
of g0, see Eq. (6.8)), there are two findings. (d) for every slip mode =, the contribution |*= |
(in absolute value) is a decreasing function of A4 (see Fig. 6.2); second, (e) while at low
values of the aspect ratio the contributions |*= | of the = > 1 slip modes are significant, the
contributions from the modes = ≥ 3 decay steeply with increasing A4 and become negligible,
compared to |*1 | (which remains non-zero), as the aspect ratio A4 of the spheroid approaches
that of a sphere (A4 → 1−). This ensures a smooth transition into the spherical case, where,
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as previously mentioned, higher mode squirmers are not motile and* ∝ �1. Finally, we note
that, by comparison with the expression in Eq. (6.14c), one infers that the series in the last
line of Eq. (6.21) is proportional to the coefficient �2 in the expansion of the stream function.

In what concerns the stresslet ((g), which (similarly to the case of a spherical squirmer)
allows classification into pullers (positive stresslet, ( > 0), pushers (negative stresslet, ( < 0),
and neutral swimmers (vanishing stresslet, ( = 0), we note that it can also be expressed in
terms of the slip velocity DB (Z) as [134]:

( = − 2�`
� (A−1

4 )� (A−1
4 )

∫ 1

−1
DB (Z)Z

√
A−2
4 (1 − Z2)

Z2 + A−2
4 (1 − Z2)

3Z (6.22)

=
∑

=≥1,= even
`�=(= (g0)

where � denotes the surface area of the spheroid and

� (G) = 1
(G2 − 1)2

(
−3G2 + G(1 + 2G2)

√
1 − G2

cos−1(G)
)
,

� (G) = 1 + G2
√
G2 − 1

cos−1
(
1
G

)
.

As in the case of the velocity, there are certain significant differences from the case of a
spherical squirmer (see Fig. 6.3): (a) a necessary condition for a prolate squirmer to exhibit
a nonvanishing stresslet is that at least one even (: = 2=) mode +: contributes to the slip
velocity; (b) as for the velocity * (where more than a single mode contributes), the stresslet
depends on all even squirmer modes; hence, (c) the stresslet contribution of �2 ≠ 0 can be
offset or even inverted by other even, active modes �: ≠ 0; (d) At a given aspect ratio A4, the
contribution (in absolute value) |(2= | is a decreasing function of =; and (e) while for elongated
shapes (small values A4) the contributions |(= | from the slip modes = ≥ 4 are significant,
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Figure 6.3: The absolute value |(= | (Eq. (6.22)) of the contribution of the slip modes
= = 1, 3, 5, 7 to the stresslet of a prolate squirmer for aspect ratios A4 = 0.3, 0.5, 0.7, 0.9.
The lines represent only a guide to the eye. This figure has been updated compared to the
published version.
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these contributions are steeply decreasing towards zero with increasing A4 towards the value
1−. In contrast, |(2 | is increasing with A4. As in the case of the velocity, this behavior ensures
the smooth transition to the case of a spherical shape, where ( ∝ �2.

Since the stresslet is, by definition, the amplitude of the A−2 far-field term in the flow field
(in the lab frame) of the squirmer, the series in the last line of Eq. (6.22) can be connected with
one of the coefficients in the expansion of the stream function as follows. In the laboratory
frame, which is related to the one (kparticle) in the co-moving frame via

klab = kparticle +
1
2
*0(1 − A2

4) (g2 − 1) (1 − Z2) , (6.23)

the slowest decaying term with the distance g from the squirmer is −�3
90 G0(g)G3(Z); by Eq.

(6.10), this term leads to a contribution ∼ �3/g2 to the flow. Accordingly, ( ∝ �3 and the
pusher or puller squirmers (( ≠ 0) indeed exhibit the expected far-field hydrodynamics, while
for the neutral squirmers (( = 0) the far-field flow necessarily decays at least as ∼ 1/g3.

Turning now to the flow field around the prolate squirmer, we will discuss separately
the flow fields generated by the first few pure slip modes, i.e., the cases �= = X=,=0 with
=0 = 1, 2, 3, 4; these flows are shown, in the laboratory frame, in Fig. 6.4. From the
discussion above, we know that only a subset (either the odd index ones, if =0 is even, or vice
versa) of the terms in the series representation, Eq. (6.12), of the stream functions contributes
to the flow. Since the metric factors are even functions of Z , while �= (Z) is an odd (even)
function of Z when = is odd (even), the flow has the following fore-aft symmetries. For
=0 odd, the stream function involves the functions �: of index : an even number, and thus
k(g, Z) = k(g,−Z); this implies Eg (g, Z) = −Eg (g,−Z) and EZ (g, Z) = EZ (g,−Z) (see figures
6.5 and 6.6); i.e., the I− (G−) flow components are fore-aft (anti)symmetric (see Fig. 6.4),
and, accordingly, it contributes to the motility because it provides a “fore to back” streaming.
Vice versa, for =0 an even number one has Eg (g, Z) = Eg (g,−Z) and EZ (g, Z) = −EZ (g,−Z),
i.e., the G− (I−) flow component are fore-aft symmetric (see Fig. 6.4); consequently, they
cannot be associated to a motile particle.

Finally, we note that the similar analysis and results for the case of an oblate squirmer can
be obtained from the available ones for a prolate squirmer via a simple transformation of the
coordinates system and of the stream function (i.e., a mapping), as discussed in the Appendix
6.7.1. As an illustration of using this mapping, the results shown in Fig. 6.4, corresponding
to a prolate squirmer, have been used to determine the flows around the corresponding (i.e., of
slenderness parameters A ′4 = 1/A4) oblate squirmers induced by the pure slipmodes �= = X=,=0

with =0 = 1, 2, 3, 4; these are shown in Fig. 6.9. The analysis of the velocity * and stresslet
( (see Figs. 6.7 and 6.8) for oblate spheroids leads to conclusions that are similar with
those drawn in the case of prolate shapes. The only significant difference is that now for
oblate squirmers the contributions of from the higher orders = slip modes decay to zero with
decreasing aspect ratio A4 → 1+; again, this ensures a smooth transition to the case of a
spherical shape, where only �1 or �2 are relevant.
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Figure 6.4: The flow field (streamlines and velocity magnitude (color coded background))
induced by a prolate squirmer with �= = X=,=0 for (top to bottom) =0 = 1, 2, 3, 4 and aspect
ratio A4 = 0.3 (left column) and A4 = 0.5 (right column), respectively. The results are shown in
the laboratory frame and are obtained by using the series representation of the stream function
(see the main text). The arrows on the particles indicate the directions of their motion.
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Figure 6.5: Velocity components Eg and EZ on the iso-surfaces g = 1.1g0 and g = 2g0 near a
prolate squirmer with �= = X=,1.
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Figure 6.6: Velocity components Eg and EZ on the iso-surfaces g = 1.1g0 and g = 2g0 near a
prolate squirmer with �= = X=,3.

6.5.1 Self-phoretic particle

Squirmers with a wide range of active slip modes occur naturally in the context of model
self-phoretic particles. One of the often employed realizations of such systems consists of
micrometer-sized silica or polystyrene spherical particles partially coated with a Pt layer and
immersed in an aqueous peroxide solution [16, 96, 221]. The catalytic decomposition of
the peroxide at the Pt side creates gradients in the chemical composition of the suspension;
as in the case of classic phoresis [7], these gradients, in conjunction with the interaction
between the colloid and the various molecular species in solution, give rise to self-phoretic
motility [80]. The mechanism of steady-state motility can be intuitively understood in terms
of the creation of a so-called phoretic slip velocity tangential to the surface of the particle
[7, 51, 81]. For such chemically active, axi-symmetric, spherical particles in unbounded
solutions, the approximation of phoretic slip velocity leads to a straightforward mapping
[157, 194] onto a squirmer model; accordingly, the translational velocity of the particle and
the hydrodynamic flow around the particle in terms of the phoretic slip can be directly inferred
from the corresponding results in Ref. [25].

A similarmapping can be developed froma spheroidal, self-phoretic colloid to a spheroidal
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squirmer model for spheroidal, chemically active colloids. Following Ref. [196] the slip ve-
locity of such particles can be written as

ES(rP) =
∑
;≥0

1

2
2; (j)Q; (g0)P1

; (Z) (g
2
0 − Z

2)− 1
2 , (6.24)

where 1 is the so-called phoretic mobility (for simplicity, here assumed to be a constant) over
the surface of the particle, and Q; (g) denotes the Legendre polynomial of the second kind
[4]. The coverage j = ℎ − 1 is defined in terms of the height of the active cap (measured,
from the bottom apex, in units of 1I), i.e., j = −1 corresponds to a chemically inactive
spheroid and j = +1 corresponds to all the surface being active. The coverage dependent
coefficients 2; (j) (see Ref. [196]) describe the decoration of the surface of the particle by
the chemically active element (e.g., Pt in the example discussed above) as an expansion in
Legendre polynomials P; (Z). Knowledge of these parameters allows us to formulate a slip

76



r−1
e = 0.3 r−1

e = 0.5

Bj = δj,1

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4

z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(a)

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4

z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(b)

Bj = δj,2

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4

z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(c)

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4
z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(d)

Bj = δj,3

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4

z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(e)

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4

z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(f)

Bj = δj,4

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4

z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(g)

-4 -2  0  2  4

x/b
z

 4

 2

 0

-2

-4

z
/b

z

-6

-4

-2

0

lo
g

1
0
(|

v
(r

)|
/U

0
)

(h)

Figure 6.9: The flow field (streamlines and velocity magnitude (color coded background))
induced by an oblate squirmer with �= = X=,=0 for (top to bottom) =0 = 1, 2, 3, 4 and aspect
ratio A−1

4 = 0.3 (left column) and A−1
4 = 0.5 (right column), respectively. The results are

shown in the laboratory frame and are obtained by using the mapping discussed in the main
text and the flows of the corresponding prolate squirmers shown in Fig. 6.4. The arrows on
the particles indicate the directions of their motion.
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velocity boundary condition similar to (6.20), i.e.

m6= (g)
mg

���
g=g0

= g02
2=(= − 1)�̃=−1 ; (6.25)

by identifying the effective squirmer modes �̃; = 1
2 ·g0

2;Q; (g0), the desired mapping is
achieved. As an illustration of this mapping, we show in Fig. 6.10 (left column) the flow
fields for particles with parameters A4 = 0.3, 0.5 and j = 0,−0.3, respectively, and compare
with the corresponding results obtained by direct numerical solutions obtained using BEM
[198]. (Note that, if necessary, the accuracy of the analytical estimate can be systematically
improved simply by increasing the order of the truncation in the series expansion of the stream
function (see the Appendix 6.7.4)).

6.6 Summary and conclusion

We have studied in detail the most general axi-symmetric spheroidal squirmer and we have
shown that, in analogy with the situation for spherical shapes [157], model chemically active,
self-phoretic colloids can be mapped onto squirmers. By using the semiseparable ansatz
derived in Ref. [50] for the stream function, and representing the active slip (squirming)
velocity of the squirmer in a suitable basis (Eq. (6.19), chosen such that in the limit of a
spherical shape it smoothly transforms into the usually employed expansion for the classical
spherical squirmer [25], the velocity of the squirmer, the stresslet of the squirmer, and
the hydrodynamic flow around the squirmer have been determined analytically (Sec. 6.5).
The corresponding series representations have been validated by cross-checking against direct
numerical calculations, obtained by using theBEM, of the flowaround the squirmer (Appendix
6.7.5).

The main conclusion emerging from the study is that for spheroidal squirmers (or self-
phoretic particles) the squirming modes beyond the second are, in general, as important as the
first two ones in what concerns the contributions to the velocity and stresslet of the particle
(and, implicitly, to the flow field around the particle, even in the far-field). The velocity is
contributed by all the odd-index components (but none of the even-index ones) of the slip
velocity; accordingly, in contrast with the case of spherical squirmers, it is possible to have
spheroidal squirmers with a non-zero first mode and yet not motile, as well as ones missing
the first slip mode and yet motile. Similarly, the stresslet value is contributed by all the
even-index slip modes; thus, distinctly from the case of spherical squirmers, one can have
pushers/pullers even if the second slip mode is vanishing, as well as neutral squirmers in spite
of a non-vanishing second slip mode. Finally, even a single slip mode leads to a large number
of non-vanishing terms in the series expansion of the stream function, and thus spheroidal
squirmers with simple distributions of slip on their surface can lead to very complex flows
around them (see Figs. 6.4 and 6.9).

This raises the interesting speculative question as whether the spheroidal shape is provid-
ing an evolutionary advantage; i.e., with small modifications of the squirming pattern, e.g.,
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switching from a sole �1 mode to a sole �3 mode, a microrganism could maintain its velocity
unchanged but dramatically alter the topology of the flow around it (compare the first and
third rows in Fig. 4). In other words, compared to a squirmer with spherical shape, for which
multiple modes must be simultaneously activated in order to change the structure of the flow,
a spheroidal squirmer possesses simple means for acting in hydrodynamic disguise, which
can be advantageous as either predator or prey.

6.7 Appendices

6.7.1 Oblate spheroids

The similarity between oblate and prolate spheroids allows us to obtain the flow field around
an oblate microswimmer of aspect ratio A ′4 > 1 as a series in the oblate coordinates by using
a mapping from the results, in prolate coordinates, corresponding to a prolate microswimmer
with aspect ratio A4 = 1/A ′4 < 1 (and vice versa).

The oblate spheroidal coordinate system is defined by

_ =
1
22̄
(
√
G2 + H2 + (I − 82̄)2+

√
G2 + H2 + (I + 82̄)2) ,

Z =
1
−282̄

(
√
G2 + H2 + (I − 82̄)2−

√
G2 + H2 + (I + 82̄)2),

i = arctan
( H
G

)
,

with 0 ≤ _ ≤ ∞ and 2̄ =
√
A ′24 − 1, and the corresponding Lamé metric coefficients are

given by

ℎZ = 2̄

√
_2 + Z2√
1 − Z2

, ℎ_ = 2̄

√
_2 + Z2
√
_2 + 1

, (6.26)

ℎi = 2̄
√
_2 + 1

√
1 − Z2 .

Noting that the oblate coordinates and the metric factors can be obtained from the expressions
of the corresponding prolate coordinates via the transformations [50]

g → 8_ 2→ −82̄ , (6.27)

one concludes that the equation and boundary conditions obeyed by the stream function in
oblate coordinates in the domain outside the oblate of aspect ratio A ′4 = 1/A4 can be obtained,
by using the same transformation, from the ones in prolate coordinates outside a prolate of
aspect ratio A4. Accordingly, it follows that kobl,A ′4 = 1/A4 (_, Z) = kpro,A4 (g = 8_, Z). The flow
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field then follows as the curl of the stream function, i.e.,

vobl,A ′4 (_, b, i) = ∇ ×
(
kobl,A ′4 (_, b)

ℎi
ei

)
. (6.28)

6.7.2 Gegenbauer functions

The Gegenbauer functions of first kind �=, are also known as the Gegenbauer polynomials
�U= with parameter U = −1/2 [4]; they are defined in terms of the Legendre polynomials %=
as

�= (G) =
1

2= − 1
(%=−2(G) − %= (G)) , (6.29a)

and fulfill the orthogonality relation∫ 1

−1

�= (G)�<(G)
1 − G2 3G =

2
=(= − 1) (2= − 1) X=,< =, < ≥ 2 . (6.30)

The Gegenbauer functions can be related to the associated Legendre polynomials P1
=, which

are defined in terms of the Legendre polynomials %= as

(1 − G2)1/2P1
; = −(1 − G

2) d
dG
%; (G).

Using the relations G2−1
=

d
dG%= (G) = GP= (G) −P =−1(G) and (=+1)P=+1(G) = (2=+1)GP= (G) −

=P=−1(G), one arrives at the following relation between the ;-th associated Legendre polyno-
mial and the ; + 1-th Gegenbauer function.

(1 − G2)1/2P1
; = −(;

2 + ;)G;+1(G)

6.7.3 Decoupling of the even- and odd-index modes in the stream function
expansion

The coefficients �= and �= appear in the functions 6: (g), entering the series expansion of
the stream function at various indexes : (e.g., �=≥4 appears at both : = =−2 and : = =); thus
the infinite system of linear equations is strongly coupled. However, since the even and odd
terms are not entering the same equations, the system splits into two decoupled subsystems,
which are solved by using different methods.

The first subsystem consists of the even numbered terms in the series expansion of k(g, Z)
and the set of conditions (Eqs. (6.14a), (6.14c), (6.14d) and (6.20)). Because each of the Eqs.
(6.14a) and (6.14c) fix one of the even index coefficients (i.e., �2 and �2), the Eqs. (6.14d)
and (6.20) evaluated at = = 2 involve only two unknowns, �4 and �2, and thus can be solved
as a sub-subsystem. With �4 and �2 known, the rest of the coefficients, up to the order #<0G
at which the system is truncated (i.e., �: is set to zero for : > #<0G), are solved iteratively
by noting that Eqs. (6.14d) and (6.20) evaluated at : = = involve only two unknowns, the rest
of the coefficients being already determined in the previous iterations up to : = = − 2.
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The second subsystem includes all odd-index terms in the series expansion of k(g, Z)
and Eqs. (6.14d) and (6.20). Complementing the previous case, only the even squirmer
modes contribute. However, unlike in the case of the first subsystem, there are no lower level
decouplings; accordingly, this subsystem is solved in the standard manner by truncation at the
cut-off #<0G (above which all the coefficients are set to zero) and inversion of the resulting
finite system of linear equations.

The choice of #<0G is done by varying the value of the cut-off and testing the changes in
the coefficients. For the cases we analyzed in this work, a value #<0G = 16 was found to be
sufficient.

6.7.4 Example of effects of too strong truncations for the case self-phoretic
particles

To show the importance of the higher orders in the case of a self-phoretic swimmer, we
compare the analytic results for keeping different numbers of squirmer modes �= in figure
6.11. Even for an aspect ratio A4 = 0.8 (i.e., close to a spherical shape), the higher orders
have significant influence on the flow field around the particle: e.g., compare the occurrence
of a region of high magnitude flow near the point (0,−1.5) (behind the particle) instead of
the correct location at near the point (0, 1.5) (in front of the particle).

6.7.5 Quantitative comparison to BEM

In figures 6.12 - 6.14 we present a more detailed comparison of the results obtained by using
the series representation (top row) with numerical results obtained by using the BEM to
directly solve the governing equations (second row). In addition, the relative error, defined as

ΔE =

√
(EG,0=0 − EG,=D<)2 + (EI,0=0 − EI,=D<)2

1
2 (

√
E2
G,0=0 + E2

I,0=0 +
√
E2
G,=D< + E2

I,=D<)
(6.31)

is shown in the bottom row. The comparison confirms the expected quantitative agreement,
with regions of significant relative error (ΔE > 10−1) corresponding precisely to the regions
where the flow is anyway very weak (| v/r)

*
| < 10−3).
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Analytical results Numerical results (BEM)

re = 0.3
χ = 0

(a) (b)

re = 0.5
χ = 0

(c) (d)

re = 0.3
χ = −0.3

(e) (f)

re = 0.5
χ = −0.3

(g) (h)

Figure 6.10: The flow field (streamlines and velocity magnitude (color coded background))
induced by a chemically active prolate particle moving by self-phoresis, calculated either
analytically via the stream function (left column) or numerically, i.e., by directly solving the
corresponding Laplace and Stokes equations using the BEM [198] (right). The results shown
correspond to the cases of half (j = 0, top two rows) and less than half (j = −0.3, bottom
two rows) coverage, and two values, A4 = 0.3 and A4 = 0.5, of the aspect ratio, respectively.
The arrows on the particles indicate the directions of their motion. The red area depicts the
chemically active region. The motion of the particle and the direction of the flow corresponds
to the choice 1 < 0; the characteristic velocity*0 is defined as in Ref. [196]
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(a) (b)

Figure 6.11: The flow field around a self-phoretic particle (j = 0.8, A4 = 0.9) when keeping
the first (a) two and (b) eight terms (effective squirmer modes) in the series expansion of the
stream function. The red area depicts the chemically active region.
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Figure 6.12: The flow field around a prolate squirmer with A4 = 0.3; in the left column only
the first slip mode is active, and on the right column only the second slip mode is active. In
both cases the analytical results are shown in the top row, the numerical results (BEM [198])
in the middle row, and the relative error between the two (Eq. (6.31)) in the bottom row.
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Bj = δj,3 Bj = δj,4
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Figure 6.13: The flow field around a prolate squirmer with A4 = 0.3; in the left column only
the third slip mode is active, and on the right column only the fourth slip mode is active. In
both cases the analytical results are shown in the top row, the numerical results (BEM [198])
in the middle row, and the relative error between the two (Eq. (6.31)) in the bottom row.
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re = 0.3 re = 0.5
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(f)Figure 6.14: The flow field around half covered (j = 0) self-phoretic particles with aspect
ratio A4 = 0.3 (left) and A4 = 0.5 (right). In both cases the analytical results are shown in the
top row, the numerical results (BEM [198]) in the middle row, and the relative error between
the two (Eq. (6.31)) in the bottom row. The red area depicts the chemically active region.

86



CHAPTER 7
SHAPE-INDUCED PAIRING OF SPHEROIDAL SQUIRMERS

7.1 Arrested-motility states in populations of shape-anisotropic
active Janus particles [107]

Together with our experimental collaborators from the Argonne National Laboratory, we
published “Arrested-motility states in populations of shape-anisotropic active Janus particles”
in the peered review journal Science Advances in 2022. In their laboratory they are able
to produce discoidal microswimmers and measure them under a variety of flow and field
conditions. In particular, their metallo-dielectric Janus particles consist of a thin coating of
metal deposited onto a dielectric core. When energized by an AC electric field, they can self-
propel through liquid via an electrokinetic mechanism called induced charge electrophoresis
(ICEP). A particular interesting behavior they observed, was the formation of stable, stationary
pairs above a planar wall (see Fig. 7.1).
After being approached to provide theoretical insight into the system, we analyzed the

Figure 7.1: Microscopy image showing pair formation in systems of disk-shaped active Janus
colloids. Pairs are identified by red circles. Scale bar, 40`m. The figure has been reprinted
from [107].

system with numerical and analytical methods. We found qualitative agreement between our
calculations performed with the boundary element method and the experimental observations
(see Fig. 7.2). Furthermore, the calculations predict a vortex in the fluid following the particle
(see Fig. 7.3 (a)). This can be verified by adding tracer particles into the experimental system
(see Fig. 7.3 (b)).
Another major result of the theoretical analysis is that the hydrodynamic interaction between
two particles dominates the pair formation. This means that the particles behave as effective
squirmers. This, and the strong similarity between the discoidal particles and oblate spheroids,
makes this system an ideal candidate to apply the extended squirmer model presented in the
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Figure 7.2: Steady separation of two particles as a function of frequency. Closed symbols
show the experimental results; open symbols show the results of numerical calculations. The
figure has been reprinted from [107].
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Figure 7.3: (a) Side view of the flow field in the vicinity of a Janus discoid in the DC limit
( 5 → 0). The discoid center is located at (0, 0, 1.06'), and the flow field is shown in the
symmetry plane H = 0. A solid wall is located at z = 0. The metal and insulating “faces” of
the particle are shown in black and grey, respectively. The color field encodes the magnitude
of the fluid velocity, |u(x) |/*0. A large vortex is located behind the particle and near the
wall. Streamlines start and end on the front and rear of the particle, respectively, reflecting
the fact the particle is moving to the right. (b) Experimental data showing the probability
distribution (left) and trajectories (right) of tracer particles in the vicinity of a Janus particle.
Tracers in the rear vortex move with the particle as they execute recirculating motions in the
vortex. The figure has been reprinted from [107].

previous chapter. We will use the spheroidal squirmer model to perform a complete stability
analysis for the pair formation discussed in [107] and predict further stable, but motile, pair
configurations.
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The work summarized in this chapter is currently also in preparation for submission to a
peer reviewed journal.

7.2 Introduction

Self-assembly [214], clustering [38, 189] and particle motility alignment [31, 32, 89, 110,
113, 128] are among the most researched and discussed topics in the active matter community.
Not only do these phenomena provide an interesting test case to show the consquences of
microscopic properties, but they are also an essential step for many if not most envisioned real
world applications, e.g. targeted drug delivery and lab-on-a-chip devices. Whether we want
to transport a cancer drug directly to the cells to minimize side effects or turn a micromotor,
a single, uncoordinated microswimmer would not be able to have a sufficient impact.
One microscopic parameter that has proven to be very important is geometry. Shape can im-
pact the swimming speed of an active particle, the power required to achieve that speed, and
the flow field sourced by the particle [48, 159, 188, 233, 258, 260]. Additionally, collisions
between rod-like particles can lead to nematic ordering in an active suspension [15]. In view
of the importance of particle shape, we have recently extended the popular squirmer model,
first introduced by Lighthill [145] and Blake [25], to spheroidal shapes [191]. Originally,
the squirming model was developed as a simple tool to describe the motion and behavior of
ciliated, spherical microorganisms [49, 59, 149, 158]. However, it has since found applica-
tions well beyond its initial purpose. For instance, interfacially-driven active colloids (e.g.,
self-electrophoretic [247], self-diffusiophoretic [97], and self-thermophoretic [30] swimmers)
can often be approximated as “effective squirmers”. Instead of modeling the wide range of
different propulsion mechanisms in detail, a slip velocity on the microswimmers surface
is prescribed [193]. This slip determines the two major swimming properties, speed * and
stresslet ( (see next section 2.8) directly [138, 227]. As an example that justifies this approach,
in recent experiments, it was observed that metallo-dielectric Janus discoids, energized by
AC fields, tend to form “head-to-head” bound pairs [107]. Our numerical modeling of the
detailed propulsion mechanism (induced charge electrophoresis [122, 226]) revealed that hy-
drodynamic interactions dominated interactions between particles, i.e., the particles indeed
behaved as effective squirmers.
For interfacially-drivenmicroswimmers, a secondmeans of controlling their motion is offered
by breaking symmetries of the slip velocity. This symmetry breaking can imposed, as when a
self-phoretic particle is designed to have non-axisymmetric surface chemistry [8, 146], or can
emerge in situ, e.g., due to effects of confinement [122, 239] or symmetry-breaking external
fields [195, 226]. So far, applications of the squirmer model have mostly been restricted
to axisymmetric surface slip, although more general slip has been considered for spherical
squirmers [66, 75, 169, 179].
In this work, we develop a general framework to study the consequences of particle shape and
non-axisymmetry of the surface slip for interactions between interfacially-driven microswim-
mers. Analytical predictions in a far-field, “point-particle” model are supported by detailed
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numerical calculations using the squirmer model. We show that both non-spherical shape
and breaking of the axisymmetry are necessary conditions to form stable “head-to-head”
particle pairs. These immotile bound states are held together purely by (far-field) hydrody-
namic interactions. Our analysis thus completes the approach taken in our previous work
[107]. Similarly, we find that motile “head-to-tail” bound pairs can be stable only when
the particles are non-spherical (although they can be axisymmetric.) Overall, we find good
agreement between our analytical predictions and the numerical calculations, suggesting that
our framework offers a promising new approach for studying hydrodynamic interactions in
hetereogeneous active suspensions.

7.3 Minimal model

In order to gain some insight into the possibility of pair formation, we consider a minimal
model in which swimmer U is modeled as a point-like particle with instantaneous swimming
direction 3̂ (U) . In isolation, swimmer U ∈ {1, 2} has self-propulsion velocity * (U)B ≥ 0.
However, each swimmer disturbs the flow around it, affecting other swimmers in its vicinity.
Accordingly, for the velocity of swimmer U, we write:

U(U) = * (U)B 3̂ (U) + u(xU). (7.1)

In the second term, the swimmer is passively advected by the ambient flow, evaluated at its
position xU. (The finite size of the swimmer is neglected.) For the rotation of the swimmer,
we write the Jeffrey equation [211]

¤̂
3
(U)

=

(
I − 3̂ (U) 3̂ (U)

)
· (ΓUE(xU) +W(xU)) · 3̂ (U) . (7.2)

Here, ΓU is a shape parameter that is zero for a sphere, positive for a prolate spheroid that
has its major axis aligned with 3̂ (U) , and negative for an oblate spheroid that has its minor
axis aligned with 3̂ (U) . The tensors E(xU) and W(xU) represent the fluid rate-of-strain and
vorticity, respectively, evaluated at xU, where E = 1

2
(
∇u + ∇u)

)
and W = 1

2
(
∇u − ∇u)

)
.

To model the flow disturbance, we associate an active “stresslet” with each swimmer.
In general, the stresslet provides the leading-order contribution of a force- and torque-free
microswimmer to the surrounding flow field. It can be obtained from the surface traction on
the swimmer as follows [125]:

(
(U)
8 9

=
1
2

∫
(U

[f8:=:G 9 + f9:=:G8] 3( −
1
3

∫
(U

f;:=:G; 3( X8 9 , (7.3)

which is symmetric and traceless by construction. Here, the integral is taken over the surface
(U of particle U, =̂ points from the surface of the particle into the surrounding fluid, and
σ = −?I + `(∇u + ∇u) ) is the stress tensor for a Newtonian fluid. The velocity field from a
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stresslet located at the origin is given by:

D8 =
1

8c`

(
G8X 9:

A3 −
3G8G 9G:
A5

)
(
(U)
9:
, (7.4)

where ` is the solution viscosity, A is distance from origin, and G8 is a location in the solution.
For a swimmer with an axisymmetric surface actuation, the stresslet can be written as

S(U) = f (U)0

(
3̂ (U) 3̂ (U) − I

3

)
, (7.5)

where I is the identity tensor [209]. The parameter f (U)0 specifies the “pusher” or “puller”
character of the swimmer: for negative (resp., positive) f (U)0 , the swimmer is a pusher (resp.,
puller).

However, not all microswimmers have axisymmetric actuation. For instance, a common
model system in active matter are metallo-dielectric particles that are energized by an AC
electric field and swim through a mechanism known as induced charge electrophoresis (ICEP)
[226]. Even if the distribution of metal and dielectric material on the particle surface is
axisymmetric, the electric field will break axisymmetry (if it is not itself aligned with the
particle’s axis of symmetry.) Thus, we consider the following as a more general stresslet,
written in a frame aligned with the principal axes 2̂, 3̂, and 4̂ of S(U) :

S(U) = ( (U)22 2̂2̂ + ( (U)33
3̂ 3̂ + ( (U)44 4̂4̂, (7.6)

with tr(S(U) ) = 0. Since S(U) is symmetric, its principal axes are orthogonal, and without loss
of generality, we define 2̂ × 3̂ = 4̂. For simplicity, we assume that the direction of propulsion
of an isolated particle is 3̂, i.e., aligned with a principal axis of the stresslet. Indeed, this
assumption is realized and motivated by an isolated ICEP particle with spheroidal shape and
axisymmetric metal coverage, swimming in unbounded solution. If the electric field is in
the Î direction and the particle axis of symmetry is given by 3̂, the particle will rotate to
orient its axis of symmetry 3̂ to be perpendicular to Î. After re-orientation, particle will
swim strictly in the 3̂ direction with a steady velocity, with a stresslet tensor in the form of
Eq. 7.6. Additionally, we note that Eq. 7.6 reduces to Eq. 7.5 when ( (U)

33
= 2/3f0 and

(
(U)
22 = (

(U)
44 = −f0/3.

In the following, we restrict our consideration to two microswimmers moving in the G − H
plane, and examine the possibility of obtaining stable bound states. For two swimmers in
unbounded fluid, the instantaneous configuration of the system is completely specified by
three degrees of freedom: the center-to-center distance 3 and the angles q1 and q2 , where
qU is the angle between 3̂U and a fixed axis (see Fig. 7.4). For convenience, we specify that
the position of swimmer 1 is instantaneously at the origin, r1 = (0, 0, 0), and that swimmer
2 has position r2 = (G2, H2, 0). We construct ¤G, ¤H, ¤q1, and ¤q2 as functions of G, H, q1, and
q2, and look for fixed point configurations at which these functions evaluate to zero. A fixed
point represents a bound pair. Additionally, we perform linear stability analysis to find the
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Figure 7.4: Schematic illustration of two spheroids, including their swimming directions 3̂ (1)
and 3̂ (2) , angles q1 and q2 and separation vector r.

conditions under which a bound pair is stable against perturbations in any of the coordinates.
For simplicity, we restrict our examination to pairs in which the particle swimming directions
are aligned with the center-to-center vector.

Overall, the minimal model is analytically tractable and yields a wealth of predictions, as
discussed below. However, owing to the severity of the approximations made in this model,
it is desirable to compare these predictions against numerical results from a more realistic
hydrodynamic model that accounts for the finite size of the particle and does not truncate the
particle-generated flow field to the leading-order term.

7.4 Squirmer model

We consider # spheroidal particles in unbounded Newtonian fluid, where # = 1 or # = 2.
Following Ref. 191, for particle U, we take the length of the semi-axis of symmetry to define
1
(U)
H , and the length of the other semi-axes to define 1 (U)G . Thus, each particle has an aspect

ratio A (U)4 defined by A4 = 1G/1H , with A4 < 1 for an prolate spheroid, A4 = 1 for a sphere, and
A4 > 1 for an oblate spheroid. The quantity ΓU is related to A (U)4 by Γ = (1 − A2

4)/(1 + A2
4).

The characteristic size of the particle, ! (U)0 , is chosen as 1 (U)I .
The geometric centroid of particle U is located at position xU. The flow u(x) is governed

by the Stokes equation, −∇? + `∇2u = 0, where ?(x) is the pressure field, and the incom-
pressibility condition ∇·u = 0. On the surface of each particle U, the flow obeys the boundary
condition u(x) = U(U) +
(U) × (x−xU) +v(U)B (x). Here, v(U)B (x), the so-called slip velocity,
provides the surface actuation for self-propulsion, as discussed below. Additionally, the flow
obeys |u| → 0 as |x| → ∞. The particles are individually force-free and torque-free, such
that

∫
(U
σ · n̂ 3( = 0 and

∫
(U
(x − xU) × σ · n̂ 3( = 0.
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For each swimmer, the surface slip v(U)B is fixed in a body frame attached to, and co-moving
with, the swimmer. It is specified via a set of squirming mode amplitudes. In previous work
(see chapter 6), we generalized the axisymmetric squirming modes to spheroidal particles.
These amplitudes are denoted by �8 , with 8 ≥ 1 [191]. In this chapter, in order to break
axisymmetry, we develop a new squirming mode �̃ (U) inspired by the slip profile of ICEP
particles. This squirming mode has a non-axisymmetric slip distribution

v(U)B (x) = �̃ (U) [sign(I) (cos(i)4̂ b − 4̂i (4̂ b · 4̂H)) (7.7)

− sign(G) (sin(i)4̂ b − 4̂i (4̂ b · 4̂G))] · � (H)

and its stresslet tensor can not be simplified into the form 7.5. � (H) is the Heaviside step
function, 4̂i and 4̂ b are the two surface tangential basis vectors in the spheroidal coordinate
system. Only 4̂ b is axisymmetric and thus, the above defined slip mode is tangential but
non-axisymmetric.
We briefly discuss the case of an isolated squirmer (# = 1). From solution of the governing

(a) (b) (c)

Figure 7.5: Assigned slip velocities for an oblate squirmer with aspect ration A4 = 5. (a)
and (b) are axisymmtric and (c) has a purely non-axisymmtric slip velocity following the
definition in Eq. 7.7. (a) Shows a motile colloid with squirming mode amplitudes �= = X=,1
and �̃ = 0. (b) and (c) are stationary particles with amplitudes (b) �= = X=,2, �̃ = 0, and (c)
�= = 0, �̃ = 1.

equations, we obtain *B for a given geometric aspect ratio and set of squirming mode
amplitudes. Additionally, the stresslet can be calculated using Eq. 7.3. Due to the linearity of
the Stokes equation, the contribution of each squirming mode can be calculated individually
and superposed. For the axisymmetric squirming modes, Fig. 7.8 show how the set �8 are
related to * (U)B and f (U)0 . Likewise, for the non-axisymmetric mode, we show (

(U)
22 , ( (U)

33

and ( (U)44 as a function of aspect ratio in Fig. 7.11. It is important to note that this squirming
mode has no contribution to ( (U)

33
or * (U)B , but only to the desired anti-symmetric values for

(
(U)
22 and ( (U)44 .

For # = 2, we solve for the particle velocities numerically, using the boundary element
method (BEM) [199]. We obtain complete particle trajectories by coupling the BEM to a
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rigid body dynamics engine. For simplicity, we assume that ! (1)0 = !
(2)
0 . (However, we

note that the “point-particle” model has no inherent length scale. Given that (8 9 ∼ !3
0 and

*B ∼ !2
0 for a squirmer, differences in particle size can be straightforwardly accommodated

in our theoretical model.)

7.5 Head-to-head pairing

We look for solutions of the minimal model with (G, H, q1, q2) = (3, 0, 0, c). We obtain

3 =

√√√√√√ −3
(
(
(1)
33
+ ( (2)

33

)
8c`

(
*
(1)
B +* (2)B

) . (7.8)

Given that * (U)B > 0, to obtain a finite separation 3 > 0, it is required that (( (1)
33
+ ( (2)

33
) < 0.

In other words, the pair must have a net “pusher” character. Intuitively, for a head-to-head
pair, self-propulsion would tend to bring the pair into contact; the hydrodynamic interaction
must therefore “push” the particles apart. In section 7.8.1, we present a detailed linear
stability analysis. In brief, translation in the center-to-center direction decouples from lateral
translation and from rotations, and the bound state is stable if the following conditions are
met. For stability against displacements in G, we need (( (1)

33
+ ( (2)

33
) < 0; from Eq. 7.8, this is

already required. Concerning the coupled dynamics in H, q1, and q2, full results are presented
in section 7.8.1. Here, for simplicity, we consider the results for identical swimmers, i.e.,
*
(1)
B = *

(2)
B = *, S(1) = S(2) = S, and Γ1 = Γ2 = Γ. We obtain the requirements Γ < −1/3

and [(22 (−1 + Γ) + (33 (1 + 2Γ)] [(22 (−1 + Γ) − (33 (1 + 4Γ)] < 0, given that (33 < 0 (as
required from above).
Notably, the requirement Γ < −1/3 corresponds to an oblate particle shape. This requirement
recalls the system of discoidal ICEP particles investigated in Ref. 107. However, intriguingly,
head-to-head pairing cannot be obtained for axisymmetric swimmers, i.e., swimmers with a
stresslet given by Eq. 7.5. Setting (33 = 2f0/3 and (22 = (44 = −f0/3, with f0 < 0, the
second requirement reduces to (1 + 9Γ) > 0. This requirement cannot be reconciled with the
requirement that Γ < −1/3. Thus, the present work clarifies and extends the (incomplete)
analysis of Ref. 107, which had assumed an axisymmetric stresslet and did not carry out a
full linear stability analysis. Here, we have shown that the non-axisymmetric character of the
surface slip for ICEP particles is a key ingredient in the stable pairing observed in Ref. 107.
To investigate further the necessary deviation from axisymmetry, we consider stresslet tensors
of the form

S = S0G + f0 X (2̂2̂ − 4̂4̂) , (7.9)

where S0G is equal to the right hand side of Eq. 7.5, and the perturbation X is a dimensionless
number. We note that for non-axisymmetric squirming mode �̃ ∝ X. We obtain the require-
ments Γ < −1/3 (as before) and (−1 + 3Γ(−3 + X) − 3X) (1 + Γ + X(−1 + Γ)) < 0. Notably,
these requirements are independent of*0 and f0.
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(a) (b)

Figure 7.6: (a) Phase map for head-to-head pairs with fixed squirming modes �1 = 0.1 and
�2 = −1 and varying X and Γ. The background colors show the stability predicted by our
model and the symbols represent numerical calculations done with BEM. The red symboles
indicate particle pairs without a stable head-to-head separation. The crosses represent data
including the non-axisymmetric squirming mode (Eq. 7.7), whereas the calculations using
the ICEP effective squirmer model (see 7.8.7) are indicated with circles. The latter data
is also connected by a dashed line as a guide to the eye. (b) Top down view of a sample
trajectory for �̃ = 1.6833 and Γ = −0.8349. The particles are initial separated by Ginitial = 2
and Hinitial = 55.

In Fig. 7.6 (a), the background color shows the predicted phase map in the space defined
by Γ and X. Additionally, we also show two types of numerical data. The crosses repre-
sent squirmers with the above introduced non-axisymmetric squirming mode. This mode
introduces the desired perturbation X to the stresslet tensor in a controllable manner (see Fig.
7.11). The circles show the results for an effective squirmer model for ICEP particles. The
theoretical predictions and numerical results agree very well with each other, and discrepan-
cies are mainly limited to the edge between the stable and unstable regions. The one area
of significant mismatch between the theory and numerics is for Γ values close to Γ = −1,
i.e. oblate spheroids with very large aspect ratios A4. All particles are normalized by setting
1H = 1 and do not have a constant volume. Oblate shaped particles with a large aspect ratio
are thus much larger then the other particles tested. This causes more significant error due to
the point particle assumption in our theory, and explains the discrepancy for these particles.
In Fig. 7.6 (b), we show how a stable pair can form between two identical swimmers. We
choose particles with an aspect ratio A4 = 3.3333 and squirming modes �1 = 0.1, �2 = −1
and �̃ = 1.6833. For these parameters we calculate (22 , (33 , and (44, and *0, and create
the trajectory with a rigid body dynamics engine. The particles are initialized with opposing
swimming directions 3̂ (U) | |4̂H and an offset orthogonal to it G2,initial = 2. The particles swim
towards each other without any noticeable deviation from their free space velocity. Only
when the distance between them approaches the predicted separation distance 3 does this
behavior change. Both particles slow down rapidly and their rotation becomes significant.
The particles rotate towards their center-to-center line and only stop once their swimming
directions are in line with it. In this configuration all twelve velocity components are zero
and the particles have formed a stable, stationary pair.

95



(a)

x

yz

d1

d2

re
1

y2

x2

re
2

(b)

(c) (d) (e) (f) (g)

Figure 7.7: (a) Phase space for head-to-tail pairs with fixed geometric parameter Γ2 = −0.8
and velocity ratio * = 0.8 and varying ( and Γ1. The background colors show the stability
predicted by our model and the symbols represent numerical calculations done with BEM.
The red symbols indicate particle pairs without a stable head-to-tail separation. (b) Top-down
view of a head-to-tail pair. The coordinates, separation distances G2 and H2, aspect ratios A (U)4

and swimming directions 3̂ (U) are also shown. (c)-(g) Top-down view of a sample trajectory
for ( = 2.2 and Γ1 = −0.7 in five steps. This pair is represented by a blue cross in the phase
space. The particles are initial separated by G2,initial = 3 and H2,initial = 20.

7.6 Head-to-tail pairs

Now we look for solutions of the minimal model with (G, H, q1, q2) = (3, 0, 0, 0). We obtain

3 =

√√√√ 3
(
(
(1)
33
+ ( (2)

33

)
8c`(* (2)B −* (1)B )

. (7.10)

Notably, the two particles must have unequal speeds *B to be separated by a finite distance
3 > 0. The bound pair moves with a steady speed

+ = *
(1)
B +

(
(2)
3
(* (2)B −* (1)B )

(
(1)
3
+ ( (2)

3

. (7.11)

Regarding stability against displacements in G, we again obtain the condition (( (1)
33
+( (2)

33
) < 0.

Thus, fromEq. 7.10, we infer that the leading particle must be slower than the trailing particle,
*
(1)
B > *

(2)
B . Concerning stability against displacements in the other coordinates, we obtain

the requirements ( (2)
33
(1 + 3Γ1) + ( (1)33 (1 + Γ2) > 0 and Eq. 7.21.

In contrast to the head-to-head case, we can obtain stable pairing for axisymmetric squirmers.
However, the particles cannot be identical; they must at least have dissimilar self-propulsion
speeds* (U)B (see Eq. 7.10). We obtain the requirements f (1)0 +f

(2)
0 +3(f (2)0 Γ1+f (1)0 Γ2) > 0
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and Eq. 7.25. Due to their axisymmetry these stable pairs are not restricted to quasi 2D.

The phase space is four dimensional, defined by ( = f
(2)
0

f
(1)
0

, + =
*
(2)
B

*
(1)
B

, Γ1, and Γ2. For the
section of the phase space in Fig. 7.7 (a), we fix the velocity ratio + = 0.8 and geometry of
the leading particle Γ2 = −0.8, but vary Γ1 and the stresslet ration (. For both particles, only
the first and second squirming mode are non-zero, and determine* (U)B and f (U)0 respectively.
Our theoretical model again agrees very well with the numerical calculation for axisymmetric
spheroidal squirmers. There are two areas of significant disagreement. Similar to the head-
to-head pairs one is for very oblate particles with a very large aspect ratio and thus volume.
And the other one is the slim area bordering ( = −1. At ( = −1 the pair looses its net
pusher characteristic, and as the stresslet ratio approaches this value the predicted distance 3
decreases to zero. This is in contrast to the far field assumption, used in our model, explaining
the discrepancy between theory and numerical calculations.
For the sample trajectory in Fig. 7.7 (c-g) we choose ( = 2.2 and Γ1 = −0.7 and the initial
separation G2,initial = 3 and H2,initial = 20. Both particles immediately start to rotate towards
their center-to-center axis. The trailing particle, which is closer to the leading particle than
Eq. (7.10) predicts, does so much faster. The center-to-center axis and the two swimming
directions do not converge monotonically. Instead the trailing particle overcorrects and the
rotations changes sign. In contrast, the center-to-center distance does slowly approach the
predicted value. As the relative translational velocity decreases, so does the magnitude of the
overcorrection. After several of these decaying oscillations all velocity components align and
the pair forms a stable, co-moving pair. In this configuration the separation distance agrees
with our prediction Eq. 7.10.

7.7 Conclusions

We have shown that non-spherical active particles can form bound pairs through hydrody-
namic interactions alone. Our minimal model revealed that shape plays a critical role in this
pairing by inducing a coupling between particle orientation and the rate-of-strain component
of the particle-generated flows.
A surprising finding of our work is that squirmers with non-axisymmetric surface slip may
be capable of pairing behaviors that are not obtainable for squirmers with axisymmetric slip.
These predictions could be tested using spheroidal particles that move by induced charge
electrophoresis (ICEP). In recent work, we have shown that the effective squirmer model can
be an excellent approximation for the interaction of these particles, including in the presence
of bounding surfaces [107]. When we considered ICEP "effective squirmers, we restricted
our consideration to the DC limit, but the frequency of the driving AC field will also quan-
titatively impact the active stresslet and self-propulsion velocity, which can be addressed in
future work.
We restricted our consideration to microswimmers moving in the plane containing their

97



center-to-center vector (denoted the GH plane). We note that for non-axisymmetric particles
defined by Eq. 7.9, a 90◦ rotation of both particles around their 3̂ axes will invert the sign
of X. Therefore, when head-to-head bound states, aligned with the H-direction, are stable
against perturbations in the GH plane, they will be unstable against perturbations in the HI
plane. However, the quasi-two-dimensional assumption (motion restricted to the GH plane) is
realized in most active matter experiments, including on ICEP particles. Concerning head-
to-tail pairing of axisymmetric particles, the bound states that are stable in the GH plane are,
in fact, stable against general three-dimensional motions, owing to rotational symmetry.
Our findings concerning head-to-tail pairing also suggest the possibility of engineering mov-
ing “trains” of many bound particles. However, for this application, the condition that the
leading particle must be slower than the trailing particle is too restrictive. In future work,
one could investigate how near-field hydrodynamics interactions (i.e., interactions that decay
with distance more quickly than the stresslet), not considered in our minimal model, could
replace this condition by acting to slow down the leading particle in a bound pair. Finally, we
restricted our attention to bound states in which the particles’ orientations are aligned with
the center-to-center vector. This could be relaxed, potentially leading to bound states with
circular trajectories.

7.8 Appendix

7.8.1 Minimal model: Linear stability analysis

For a pair of spheroids, the three degrees of freedom q1, q2, and |r| are schematically
illustrated in Fig. 7.4. We choose to measure q1 and q2 with respect to the x-axis in the
laboratory frame.
For a fixed point, the Jacobian is constructed as follows:

J =

©­­­­­«
m ¤G
mG

m ¤G
mH

m ¤G
mq1

m ¤G
mq2

m ¤H
mG

m ¤H
mH

m ¤H
mq1

m ¤H
mq2

m ¤q1
mG

m ¤q1
mH

m ¤q1
mq1

m ¤q1
mq2

m ¤q2
mG

m ¤q2
mH

m ¤q2
mq1

m ¤q2
mq2

ª®®®®®¬G=3,H=0,q1=0,q2=c

. (7.12)

The Jacobian can be obtained numerically, by approximating the partial derivatives using
finite differences, or analytically, as shown below.
Substituting Eq. (7.4) into Eqs. (7.1) and (7.2) we gain expressions for ¤G, ¤H, ¤q1 and ¤q2 in
terms of G, H, q1 and q2, as well as ΓU,* (U)B , (88 and 3. 3 is fixed by Eqs. (7.8) and (7.10) for
head-to-head and head-to-tail pairs respectively. In the following we discuss the influence the
three particle parameters ΓU,* (U)B and (88 have on the stability of the discovered fix points.

98



7.8.2 Head-to-head bound state

From the governing dynamical system, we analytically obtain the Jacobian

J =

©­­­­­­­­­«

3
(
(
(1)
33
+( (2)
33

)
4c`33 0 0 0

0 −
3
(
(
(1)
33
+( (2)
33

)
8c`33 −* (1)B −* (2)B

0 − 3(( (2)
33
(1−4Γ1)+( (2)22 (−1+Γ1))

8c`34 − 9( (2)
33
Γ1

8c`33
3(( (2)22 −( (2)33 ) (−1+Γ1)

8c`33

0 − 3(( (1)
33
(1−4Γ2)+( (1)22 (−1+Γ2))

8c`34
3(( (1)22 −( (1)33 ) (−1+Γ2)

8c`33 −9( (1)
33
Γ2

8c`33

ª®®®®®®®®®¬
.

(7.13)
Noting, from the zeroes in the first row and first column, that translations in the G direction
decouple from translations in H and rotations, we immediately conclude the first requirement
for stability: (( (1)

33
+ ( (2)

33
) < 0. Next, we consider the densely populated 3x3 submatrix

obtained by removing the first row and first column of J. The characteristic equation of this
submatrix is:

_3 + �_2 + �_ = 0, (7.14)

with

� =
3(( (1)

33
+ ( (2)

33
) + 9( (2)

33
Γ1 + 9( (1)

33
Γ2

8c`33 (7.15)

and

� =
−3* (1)B (( (2)33 (1 − 4Γ1) + ( (2)22 (−1 + Γ1)) − 3* (2)B (( (1)33 (1 − 4Γ2) + ( (1)22 (−1 + Γ2))

8c`34 +

27(( (2)
33
Γ1 + ( (1)33Γ2) (( (1)33 + (

(2)
33
) + 81( (1)

33
(
(2)
33
Γ1Γ2 − 9(( (1)22 − ( (1)33 ) ((

(2)
22 − ( (2)33 ) (−1 + Γ1) (−1 + Γ2)

64c2`236

(7.16)

It is immediately apparent that one of the eigenvalues is _ = 0. This is to be expected, since,
for convenience, we considered more coordinates (four) than were needed to specify the state
of the system (three). The _ = 0 eigenvalue therefore corresponds to a symmetry of the
dynamical system. Factoring out this eigenvalue, we obtain

_2 + �_ + � = 0. (7.17)

Although we could solve for _, we instead apply the Routh-Hurwitz stability criterion to de-
termine the two remaining requirements for dynamical stability. For a quadratic characteristic
equation, the Routh-Hurwitz criterion specifies that a necessary and sufficient condition for
stability is that all coefficients of the equation are positive. In other words, we require � > 0
and � > 0. The requirement on � gives

(( (1)
33
+ ( (2)

33
) + 3(( (2)

33
Γ1 + ( (1)33Γ2) > 0. (7.18)
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For a pair of identical particles, the requirement � > 0 reduces to Γ < −1/3, and the
requirement � > 0 reduces to [(22 (−1 +Γ) + (33 (1 + 2Γ)] [(22 (−1 +Γ) − (33 (1 + 4Γ)] < 0.
For a pair of identical axisymmetric squirmers, the requirement � > 0 further reduces to
(1 + Γ) (1 + 9Γ) > 0. Given that −1 < Γ < 1 by definition, this requirement finally reduces to
Γ > −1/9. Thus, for axisymmetric squirmers, we obtain incompatible requirements.

7.8.3 Head-to-tail bound state

The Jacobian matrix for the head-to-tail bound state is identical to the Jacobian for the head-
to-head bound state, except that the entry in the second row, fourth column in* (2)B . Thus, the
first requirement for stability is again

(
(
(1)
33
+ ( (2)

33

)
< 0. As before, the characteristic equation

reduces to Eq. 7.17. Moreover, the coefficient � is again

� =
3(( (1)

33
+ ( (2)

33
) + 9( (2)

33
Γ1 + 9( (1)

33
Γ2

8c`33 , (7.19)

giving the condition
(( (1)
33
+ ( (2)

33
) + 3(( (2)

33
Γ1 + ( (1)33Γ2) > 0. (7.20)

The coefficient � is nearly identical to Eq. 7.16, but differs in the sign of the second term in
the numerator of the fraction with 34 in the denominator:

� =
−3* (1)B (( (2)33 (1 − 4Γ1) + ( (2)22 (−1 + Γ1)) + 3* (2)B (( (1)33 (1 − 4Γ2) + ( (1)22 (−1 + Γ2))

8c`34 +

27(( (2)
33
Γ1 + ( (1)33Γ2) (( (1)33 + (

(2)
33
) + 81( (1)

33
(
(2)
33
Γ1Γ2 − 9(( (1)22 − ( (1)33 ) ((

(2)
22 − ( (2)33 ) (−1 + Γ1) (−1 + Γ2)

64c2`236

(7.21)

Head-to-tail bound states of axisymmetric squirmers.

For non-identical axisymmetric squirmers, the condition � > 0 becomes

f
(1)
0 + f (2)0 + 3(f (2)0 Γ1 + f (1)0 Γ2) > 0. (7.22)

The condition � > 0 becomes, using the “net pusher” criterion,(
−2 (Γ2 − 1) f2

1 + (Γ2 + Γ1 (9Γ2 + 7) − 1) f (2)0 f
(1)
0 + 4Γ1f

(2)
0

2
)
*
(2)
s

−
(
Γ2f

(1)
0

(
(9Γ1 + 7) f (2)0 + 4f (1)0

)
+ (Γ1 − 1) f (2)0

(
f
(1)
0 − 2f (2)0

))
*
(1)
s < 0.

(7.23)

Defining the parameters ( ≡ f (2)0 /f
(1)
0 and + ≡ *2

B/*1
B , with + ≥ 0, we obtain

sgn
(
f
(1)
0

)
[1 + ( + 3((Γ1 + Γ2)] > 0 (7.24)
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and

Γ2((( − 2)+ − 7( − 4) + Γ1( (4(+ + 2( + 9Γ2(+ − 1) + 7+ − 1)

−((2( ++ − 1) + 2+ < 0.
(7.25)

In addition, the “net pusher” criterion can be expressed in term of (:

sgn
(
f
(1)
0

)
(1 + () < 0. (7.26)

These expressions make clear that the phase boundary exists in a space defined by four
parameters: Γ1, Γ2, (, and + .

It is instructive to fix Γ1, Γ2, and sgn
(
f
(1)
0

)
, and consider the two-dimensional phase

subspace defined by + and (. First, we note that Eqs. 7.24 and 7.26 do not involve + , and
place numerical bounds on (. Then, considering Eq. 7.25, we note that it can be written in
the form

51(() + 52(()+ < 0, (7.27)

where 51(() and 52(() are functions of (. Depending on the numerical bounds on (,
satisfaction of the condition given in Eq. 7.27 may or may not depend on the value of + .
As a concrete example, we consider sgn

(
f
(1)
0

)
= −1, Γ1 = −0.7, and Γ2 = 0.2. From Eq.

7.26, we obtain ( > −1. From Eq. 7.24, we obtain a stricter lower bound, ( > 1.46. Eq.
7.25 gives (−0.8 + 1.56( − 3.4(2) + (1.6 − 6.96( − 2.8(2)+ < 0. Both terms in parentheses
are negative for ( > 1.46. Therefore, the condition is satisfied for all + > 0, and the phase
boundary reduces to a line ( = 1.46 in (+, () space.

7.8.4 A no-cargo theorem for head-to-tail bound states.

In the framework of the theory, it is not possible to have a stable bound state in which one
of the particles is an inert cargo with no self-propulsion and no active stresslet. First, given
the criterion * (1)B > *

(2)
B , it is clear that the trailing particle cannot be an inert cargo. Now

we consider the possibility that particle 2 is inert, i.e., that * (2)B = 0, ( (2)22 = 0, ( (2)
33
= 0, and

(
(2)
44 = 0. Eq. 7.20 gives:

(
(1)
33
(1 + 3Γ2) > 0. (7.28)

Since the pair must be a net squirmer, ( (1)
33

< 0, so that Γ2 < −1/3. Similarly, using ( (1)
33

< 0,
the criterion � > 0 yields Γ2 > 0. We therefore obtain a contradiction.

7.8.5 Velocity and stresslet of axisymmetric spheroidal squirmer

For axisymmetric particles we follow the spheroidal squirmers model presented in ref. 191
with slip velocities defined by

EB (Z)4̂Z = g0(g2
0 − Z

2)−1/2%1
= (Z)4̂Z . (7.29)
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Figure 7.8: (a) The absolute value |* | of the contribution of the slip modes = = 1, 3, 5, 7 to the
velocity of a prolate squirmer for aspect ratios A4 = 0.3, 0.5, 0.7, 0.9. (b) The absolute value |( |
of the contribution of the slipmodes = = 1, 3, 5, 7 to the stresslet of a prolate squirmer for aspect
ratios A4 = 0.3, 0.5, 0.7, 0.9. (c) The absolute value |* | of the contribution of the slip modes
= = 1, 3, 5, 7 to the velocity of an oblate squirmer for aspect ratios A−1

4 = 0.3, 0.5, 0.7, 0.9. (d)
The absolute value |( | of the contribution of the slip modes = = 1, 3, 5, 7 to the stresslet of an
oblate squirmer for aspect ratios A−1

4 = 0.3, 0.5, 0.7, 0.9. The lines represent only a guide to
the eye.

Z and g are spheroidal coordinates. The free space velocity *0 and stresslet (0 =
3
2f0 for

each individual particle only depends on its aspect ratio A4 and squirming amplitudes �=.
In Fig. 7.9 we compare the analytic results for the velocity |*= | and |(= | induced by �1 and
�2 squirmer modes to numeric calculations done with BEM.

7.8.6 Separation distance

The second main prediction of our model besides the stability of the pairs is their separation
distance 3. 3 can even be calculated for two particles which are only stable against pertur-
bations in the direction of propulsion. In Fig. 7.10 we show how our prediction compares
against the distance calculated with the BEM. Similar to the stability analysis we generally
get very good agreement, but have two areas of significant disagreement. Both for oblate
particles, as well as for small distances 3, our prediction is consistently smaller then the results
of our numeric calculations.
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Figure 7.9: (a) Comparison between the analytically predicted and the numerically calculated
velocity |*B | over a range of aspect ratios A4. For these calculations, only �1 is non zero. (b)
Comparison between the analytic predicted and the numerically calculated stresslet magnitude
|(0 | over a range of aspect ratios A4. For these calculations only �2 is non zero.
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Figure 7.10: Comparison between the predicted and the calculated (BEM) separation distance
for head- to-tail pairs. The velocities * (2)B = 0.2 and * (1)B = 0.25 are fixed in all cases. We
show three different geometries (a) A (1)4 = 1.1055 and A (2)4 = 3, (b) A (1)4 = 1.1055 and
A
(2)
4 = 1.1055, (c) A (1)4 = 0.5774 and A (2)4 = 0.5774.
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Figure 7.11: The (33 , (22 and (44 contributions for a squirmer with constant asymmetric
mode �̃ = 1 for changing aspect ratio A4. The lines represent only a guide to the eye.

7.8.7 Induced charge electrophoresis

Effective squirmer model for ICEP particles. In order to model the interaction of particles
with non-axisymmetric actuation, we first consider a single spheroidal Janus particle moving
by ICEP in unbounded solution. The particle consists of a dielectric core with half of its
surface covered by metal. The metal coverage is axisymmetric, and the particle aspect ratio
is defined as above. A uniform electric field E = �0 Î is perpendicular to the particle axis
3̂: Î = 4̂. In the DC limit, the time-averaged electrostatic potential q obeys ∇2q = 0, as
well as the boundary conditions =̂ · ∇q = 0 on the surface of the particle, and q → −�0I as
|x| → ∞. As described in the SI and Refs. 122 and 107, the surface slip can be obtained
from the surface potential. Turning to the dynamics of interacting pairs, we fix v(U)B to be
the distribution for an isolated particle, i.e., we neglect electrostatic interactions between
particles. Due to the constant surface slip, the particles in this model can be regarded as
non-axisymmetric squirmers. The flow obeys the same equations as for the axisymmetric
squirmers.

7.8.8 Non-axisymmetric squirmer model

In Fig. 7.11 we show the three diagonal components of the stresslet tensor for varying aspect
ratio A4. (33 and*B are zero for all aspect ratios, and (22 and (44 decrease and increase with
with equation magnitude and opposite sign.
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CHAPTER 8
CONCLUSION

Thework presented in this thesis focuses on both convex (spheroidal) and concave (helical and
toroidal) variations to the common spherical shape of active microswimmers. The concave
surfaces are especially noteworthy for chemically active microswimmers. They facilitate the
accumulation of the product molecules in specific, controllable areas beyond what is possible
for convex geometries. Thus, the helix and torus shapes were investigated in particular for
self-diffusiophoretic particles.
The helical geometry breaks the symmetry of the particle so completely, that both motion in
all three translational directions, as well as rotations around all three axes, are accessible with
simple catalytic coatings. Numeric calculations with the boundary element method (BEM)
and the extended slender body theory developed for the concentration field agree very well and
show the importance of circumferential variations in the concentration field. The variations
are quasi-sinusoidal and both the amplitude and phase change depending on the geometric and
chemical parameters. Moreover, cicumferential variations in concentration do not require a
circumferential variation in activity profile. The circumferential changes in the concentration
field produce circumferential slips, which are a main factor in allowing for the additional
degrees of freedom in the particle motion. The other important factor are contributions
from the two ends. While they are dominated by the tangential and circumferential slip
contributions for long helices, they are especially important for ones with a small length or
pitch. Remarkably, even when the two ends point in opposite direction, motion perpendicular
to the center axis is still possible. Not all sections of the helix with opposite normal vectors
are an equal distance from the center, causing the spatially decaying concentration field to
break the symmetry and causing net perpendicular motion.
Their wide range of motions makes helical self-diffusiophoretic microswimmers a prime
option for many real world applications. However, beforehand several questions need to
be answered. Among them are: How do they behave close to a wall, and are there stable
configurations similar to those for spheres (i.e. sliding or hovering states)? How are they
reacting to an external gradient or flow? And how do they interact if multiple helices are
close to each other?
The second shapes of interest are spheroids. Despite being more similar to the basic sphere,
and even when limited to axisymmetric, tangential slip velocities, the spheroid shape also
allows for additional freedom. In this cases, the propulsion in free space is again limited
to a one dimensional translation (assuming axisymmetric actuation), but how this motion
is achieved is much more flexible. For spheroidal particles, an extension to the traditional
squirmer model was presented. This model does not need to assume a specific propulsion
mechanism and instead uses the more general slip velocity as its starting point. It can thus be
applied to both biological and artifical microswimmers, i.e. ciliated microorganisms and self-
diffusiophoretic Janus particles. The resulting fully analytic solution to the hydrodynamic
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stokes problem shows that many swimming modes propel the particle, instead of only the
first in the spherical case. A similar switch affects the stresslet. Instead of only the second
mode contributing, all even modes do so. The analytic model again agree with the numerical
calculations with BEM very well. These results give rise to several questions: Do bacteria
and other motile microorganisms, many of whom have elongated, prolate shaped bodies,
use this to their advantage? By not being limited to one swimming mode, they can change
the flow field in their immediate and distant surroundings easier and without also changing
their swimming speed. This could allow them to adapt their nutrient uptake or perform
hydrodynamic camouflage more easily, granting an evolutionary advantage. Similarly, this
flexibility might be a key part in designing artifical microswimmers optimized for specific
tasks.
During the second half of my PhD studies, I focused on the intriguing questions: How does
the shape of particles influence their interactions? And can changing the geometry of the
particles facilitate the self-organizing into complex structures without the need for an external
field or relying on steric exclusion? In chapters 5 and 7 the existence of co-moving pairs of
self-diffusiophoretic toruses and spheres, and spheroidal squirmers is predicted respectively.
In both cases the shape of the particles plays an essential role.
In the purely hydrodynamic model (Chapter 7) for spheroidal microswimmers, the geometry
is essential in determining whether the fixed points are stable or not. This holds true both for
the co-moving head-to-tail pairs, as well as the stationary head-to-head pairs. For the latter
configuration it was also shown that a breaking of the axisymmetry is essential. Additionally,
the model also predicts that spheres can not form such stable pairs. This explains, at least in
part, why a new class of clusters has only recently been described [107].
For the self-diffusiophoretic sphere and torus pair (6) an interesting additional case exists.
The sphere can move through the torus and escape on the other side without ever forming a
pair. This opens the possibility to design designing "lock-and-key" interactions. One possible
application for those could be velocity gates separating slow moving from fast moving active
spheres.
For both systems the natural next step will be to add additional particles and test if they from
long, stable chains of particles. These would be of both intellectual interest and incredible
usefulness. Such a train of particles would ease the collective navigation for large groups of
microswimmers, and also has been shown to increase the transport capabilities by an order
of magnitude[110]. In this context, many more questions would be relevant: How stable is
the combined swimming direction compared to that of a single particle? Can the combined
swimming speed be controlled and, if yes, how? Is a controlled break up at the target location
possible? How densely can the particles be packed in such structures? Are there other
geometries with similar behavior?
In this thesis, the importance of shape for a wide range of microswimmers is discussed and
shown. Geometries beyond the basic sphere enable many more possibilities for the design of
active colloids and are a prime candidate for many applications. These possibilities naturally
come with many open questions still to be answered. In particular, the topic of interacting
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active colloids will remain a top priority within the active matter community.
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