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Abstract

This collection of essays explores several research topics in business analytics and game

theory. The first essay, Chapter 2, applies text mining and machine learning to quantify

the impact of natural disaster risk on firm performance. The second essay, Chapter 3,

uses machine learning and the Merton model to predict corporate financial distress in a

transition economy. The third essay, Chapter 4, investigates optimal investment strategies

in finite and mean field games, considering the presence of risk-seeking agents and using

a hyperbolic absolute risk aversion (HARA) utility function. Each chapter focuses on a

specific type of shock, including climate shocks (Chapter 2), economic shocks (Chapter 3),

and stochastic shocks (Chapter 4).
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Chapter 1

Introduction

This dissertation comprises three essays, each of which explores a research topic in business

analytics or game theory with focusing on a specific type of shock.

1.1 Motivations

Shocks can exist in many forms. Each chapter in this dissertation explores a type of shock.

Climate shocks. Chapter 2 investigates natural disasters such as climate shocks and their

effects on U.S. public firm performance. In this chapter, climate shocks are proxy for

environmental shocks or environmental uncertainty. There are many studies in the literature

examining (objective) environmental uncertainty/shocks (Downey et al. 1975; Swamidass

and Newell 1987; Faucheux and Froger 1995; Kreiser and Marino 2002; López-Gamero et al.

2011; Yu et al. 2018) and perceived environmental uncertainty/shocks (Duncan 1972; Lewis

and Harvey 2001; Freel 2005; Yu et al. 2018). This chapter contributes to the understanding

of both objective and perceived environmental uncertainty in terms of climate shocks and

its effects on the US firm performance. In this chapter, perceived natural disaster risk is a

proxy for perceived environmental uncertainty.

Economic shocks. Chapter 3 predicts corporate financial distress of firms in a transition

economy, Vietnam, under economic shocks (e.g. 2008-9 financial crisis, macroeconomic

fluctuations, and the COVID-19 pandemic). There exist very few studies about financial

distress prediction under shocks in Vietnam up to this point. Vo et al. (2019) predict

financial distress prediction at the industry level during the global financial crisis 2007-2009

and the post-global financial crisis between 2010 and 2017. In contrast, we will focus on

the firm-level data in this chapter.

Stochastic shocks. Brownian motions are considered as stochastic shocks. Chapter 4 will

examine Brownian motions as stochastic shocks (or stochastic uncertainty) in the framework

of a n-agent games and mean field games on the financial markets. The key new aspects

in our setting are that there are presence of risk-seeking agents and relative performance
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motivation in the stochastic environment. Brownian motions are used extensively in the

literature of optimal investment and portfolio selection to model the dynamics of wealth

(Merton 1969; Liu 2000; Espinosa and Touzi 2015; Lacker and Zariphopoulou 2019).

1.2 General research question

The general research question of this dissertation is: How do shocks affect the performance

and behavior of economic agents (e.g. firms and individual investors)?

1.3 Dissertation contributions

This dissertation contributes to the understanding of how shocks affect the performance

and behavior of economic agents, including firms and individual investors. The three essays

in this dissertation present empirical and theoretical findings on the relationships between

climate shocks and firm performance (Chapter 2), economic shocks and corporate financial

distress (Chapter 3), and stochastic shocks and investment behavior (Chapter 4).

Chapter 2 contributes to the empirical understanding of the relationship between climate

shocks and firm performance. It also contributes to the understanding of the comparison

among models performance using different machine learning techniques in predicting firm

performance. Particularly, we propose a new way to measure the perceived natural disaster

risk by using text mining. We also propose a new dictionary of words related to natural

disasters and natural hazards. To the best of my knowledge, this chapter is the first study

that measures the perceived natural disaster risk using Form 10-Ks. Moreover, this chapter

contributes to the further understanding of the relationships between perceived natural

disaster risk, government-reported damages of natural disasters and hazards, and firm

performance. Furthermore, this chapter contributes to the understanding of the relative

performance among several machine learning models (classification and regression trees or

CART, neural works, and linear regression) in predicting firm performance under natural

disaster risks.

Chapter 3 makes significant contributions to the limited literature on predicting corporate

financial distress in a transition economy, Vietnam, during economic shocks. Specifically,

this study provides empirical insights into predicting financial distress in a transition

economy like Vietnam, where market conditions and data may not be as available or

reliable as in many developed economies. It is the first study to employ three methods,

including accounting-based, market-based, and machine-learning models, to investigate

financial distress among public firms in Vietnam. Additionally, this study is the first to use

the synthetic minority oversampling technique (SMOTE) to address biased results caused

by imbalanced financial distress data in Vietnam. Another contribution is the provision of

new and explicit data for the Merton model, which can be valuable for future research.

2



Chapter 4 contributes to the theoretical understanding of the behavior of risk-averse and

risk-seeking agents on the financial markets. For the case of strictly concave utility function,

We prove that there exists the Nash equilibrium for the n-agent games and the mean-field

equilibrium for the mean-field games (MFG) in both exponential and power utility functions.

Under some mild conditions, the equilibrium is unique. For the case of strictly convex utility

function, we prove that there exists a unique corner solution in both n-agent games and

MFG for both exponential and power cases. We also quantify the qualitative effects of

personal and market parameters on the optimal investment strategies in both n-agent and

mean field games.

1.4 The outline of the dissertation

The organization of this dissertation, aside from the introduction (Chapter 1) and conclusion

(Chapter 5), consists of two main blocks: business analytics and game theory. The

relationship between these two blocks and their related chapters is illustrated in a tree

in the following figure.

Figure 1.1: The organizational diagram of two blocks of the dissertation

Essays on business analytics and game theory

Business analytics

(Chapter 2, 3)

Modeling

firm performance

Corporate financial

distress prediction

Game theory

(Chapter 4)

Finite and

mean field games

This dissertation examines the performance and behavior of various economic agents,

including both firms and individual investors.

Figure 1.2: The organizational diagram of agents in the dissertation

Agents in the dissertation

Microeconomic agents

Firms

(Chapter 2, 3)

Individual investors

(Chapter 4)
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Chapter 2

Natural disaster risk and firm performance: Text

mining and machine learning approach

Abstract

We develop a perceived measure of firms’ disaster exposure and/or preparedness equal

to the number of words related to natural disaster events in the firms’ Form 10-Ks. We

then link this measure to contemporary and future firm decision-making and performance.

We find that this perceived natural disaster risk and the government-reported damages

of natural hazards this year are negatively associated with firm profitability next year.

However, the perceived natural disaster risk is not associated with sales growth and Tobin’s

Q ratio. Specifically, the perceived natural disaster risk negatively affects firm profitability

in the services sector but not in the manufacturing sector. The firm profitability in the

services sector is also negatively affected by the billion-dollar natural disasters in the

same year. Finally, we find that advanced machine learning models robustly outperform

linear regression in predicting firm performance under natural disaster risks. The main

implication from this study is that we can employ textual data in financial reports to

measure the perceived natural disaster risk and predict its effects on firm performance.

Keywords: Natural disaster risk, firm performance, Form 10-Ks, text mining, machine

learning.

JEL Codes: C45, C53, L25, M21, Q51, Q54.

This is a joint work with Ting-Tsen Yeh, Yuanzhang Xiao, and Shirley Daniel. This paper is now
under review at International Review of Economics and Finance. We would like to thank Ruben Juarez,
Peter Fuleky, Miroslav Gabrovski, Michael Roberts, Max Biggs, Toan Phan, Marc Gronwald, Imelda Wang,
Jonghyun Lee, Teresa Molina, Lester Lusher, Justin Tyndall, Ekaterina Sherstyuk, Chak Tan, Anh Tran,
Sanghum Cho, Anna Jeong, Minh-Ly Lieu, Quy Ta, Hoa Vu, and participants at the Workshop on Energy
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2.1 Introduction

Natural disasters and natural hazards are common phenomena that all public authorities,

firms, and academics are concerned about. Academics might measure the effects (direction

and magnitude) of the natural disasters and natural hazards on many outcomes such as

damages, economic growth, or employment. Public authorities might try to find good

strategies and guidance to help vulnerable communities and economic sectors to adapt

and respond to natural disasters and hazards. Firms might want to identify factors and

mechanisms how natural disasters and natural hazards affect their performance so that they

can survive and thrive especially during and after each major weather and climate event.

Therefore, a study on environmental uncertainty (natural disasters and natural hazards) is

necessary for public authorities, firms, and academics.

This study aims to address several research gaps in the literature. The first research gap is

that despite the increasing of number of the billion-dollar natural disaster events as well as

its damages as seen in Figure 2.1 and Figure 2.2 respectively and the growing of number

studies of the effects of natural disasters on supply chain (Ye and Abe 2012; Abe and Ye

2013), the literature of the relationship between natural disasters and firm performance is

relatively limited and fragmented. Many studies just focus on one specific aspect of firms’

activities such as firm investment (Hosono et al. 2016) or operating performance (Hsu et al.

2018). At the moment since the evidence of the relationship between natural hazards and

disasters and firm performance is relatively limited, this study aims at providing further

understanding about this relationship.

The second research gap is that even though the perception of natural hazards and disasters

has long been studied in the literature, for example Burton and Kates (1963), the way to

measure it mostly bases on the Likert-type scale questions. This type of scale might be

subjective and might not be comparable.

Another research gap in the literature of firm performance is that most current empirical

studies rely heavily on the linear regression method. This method, however, is not always the

best tool for predicting firm performance. This study aims at going beyond linear regression

by investigating systematically several common machine learning techniques to predict firm

performance. Specifically, this paper will model firm performance under environmental

uncertainty by using linear regression (baseline model) and several other advanced machine

learning techniques (classification and regression trees or CART, neural networks, and linear

regression). The reason to use CART and neural networks is that they are promising tools

to capture the nonlinear interactions between natural disasters and firm performance and

among other variables in this study. It is necessary to examine more machine learning
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techniques to have a comparative perspective of the performances among these techniques,

which might help to select the suitable models in predicting firm performance.

This study aims to address these above gaps by answering the following three questions: (i)

How to construct an alternative measure for the perceived natural disaster risk? (ii) How do

this perceived risk of natural disasters and the government-reported of natural hazards and

disasters affect firm performance? (iii) How are differences in performance among several

machine learning models (linear regression, CART, and neural networks) in predicting firm

performance under natural disaster risks?

Contributions. This study makes the following primary contributions to the existing

literature on natural disasters and firm performance. First, we propose a new way to

measure the perceived risk of natural hazards and disasters (or perceived natural disaster

risk for short) by using text mining. Second, in order to create a measure of perceived risk of

natural disasters, we propose a new dictionary of words related to natural disasters disasters

and hazards (see Table 2.11). Third, to the best of my knowledge, this is the first study

measures the perceived natural disaster risk using Form 10-Ks. Four, this study contributes

to the further understanding of the relationships between perceived natural disaster risk,

government-reported damages of natural disasters and hazards, and firm performance. Five,

this study contributes to the understanding of the relative performance among several

machine learning models (CART, neural works, and linear regression) in predicting firm

performance under natural disaster risks.

2.1.1 Motivations

An increase in number of billion-dollar natural disasters

The number of billion-dollar weather and climate disaster events in the U.S. between 1988

and 2021 is shown in Figure 2.1. In general, there is an upward trend of the number of

billion-dollar natural disasters in the given period with the trough being in 1988 (1 disaster)

and the peak is in 2020 (22 disasters). The average number of billion-dollar natural disasters

is approximately 8.44 per year. Note that this upward trend is not affected by inflation since

the damages are already adjusted to CPI in 2021. In this study, natural disasters are a proxy

for environmental uncertainty. In the sense of frequency, we can consider the billion-dollar

disasters as black swan events since they are rare and it is hard to predict when a disaster

happening in a particular area.
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Figure 2.1: Number of billion-dollar natural disasters in the U.S. between 1988 and 2021

Source: The National Oceanic and Atmospheric Administration (NOAA)

Figure 2.2 illustrates the damages of the billion-dollar natural disasters adjusted to CPI in

2021 in the U.S. in the 1988-2021 period. We can observe that the second highest peak

and the highest peak are in 2005 with the record-breaking hurricane Katrina1 and in 2017

with hurricane Harvey, Maria, Irma, and the largest wildfire season ever in California. On

average, the damage of billion-dollar disasters is $59.43 billion per year in the U.S. over the

1988-2021 period.

Figure 2.2: Damages of billion-dollar natural disasters in the U.S. between 1988 and 2021

Source: NOAA

1Hurricane Katrina caused 1,833 deaths and $178.8 billion in damages. For more details, please see
https://www.ncdc.noaa.gov/billions/events.
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Note that natural disasters in this study include seven types of natural disasters which are

tropical cyclones, severe storm, drought, flooding, wildfire, winter storm, and freeze. It can

be seen that tropical cyclones are the main billion-dollar natural disasters in the United

States.

Figure 2.3: The damages of seven types of natural disasters in the U.S between 1988-2021

Source: NOAA

Table 2.3 shows the damages of the U.S. natural hazards and U.S. billion-dollar natural

disasters between 1988 and 2021. The differences between these damages are discussed

more details in Section 2.3.1. Note that these damages are already adjusted to CPI in 2021.

It can be seen that Texas, Louisiana, Florida, and California are the four most affected

states by the damages of both natural hazards and billion-dollar natural disasters in this

period.
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Table 2.1: Damages of the U.S. natural hazards and billion-dollar natural disasters by state
between 1996 and 2021 (unit: $ billion)

State Damage (hazards) Damage (disasters) State Damage (hazards) Damage (disasters)

AK 0.5306 1.7800 MT 0.4548 9.0050

AL 14.7559 43.1300 NC 19.4234 79.3075

AR 6.7640 13.7600 ND 8.9996 13.4275

AZ 5.3592 5.6500 NE 7.8058 20.0050

CA 42.0547 110.0250 NH 0.4074 1.4925

CO 9.8094 30.6775 NJ 32.8633 66.1300

CT 0.3078 6.6125 NM 3.4049 5.5775

DE 0.2454 2.1675 NV 1.5264 2.4725

FL 77.1236 172.8375 NY 6.7471 63.1825

GA 10.8816 30.5525 OH 8.9132 22.7075

HI 0.3525 0.0000 OK 11.6543 33.4800

IA 15.1654 39.1650 OR 5.5070 11.4050

ID 1.2038 4.9775 PA 5.6403 23.3850

IL 7.3788 34.8275 RI 0.1615 1.5200

IN 3.9683 19.0575 SC 2.2795 18.4800

KS 4.9935 23.9325 SD 2.1579 13.3050

KY 5.0951 15.7875 TN 9.8923 29.9775

LA 119.7575 258.3025 TX 147.8666 342.3525

MA 1.1323 5.0600 UT 1.2495 1.8175

MD 1.9651 13.2100 VA 4.0211 15.6600

ME 0.8270 1.5100 VT 1.9174 1.7625

MI 6.9556 8.2100 WA 4.0305 6.1600

MN 7.3728 19.9275 WI 5.8471 14.1550

MO 10.9232 33.2300 WV 1.7502 3.0300

MS 44.3708 51.9075 WY 0.2957 3.2925

Notes: For the U.S. billion-dollar natural disasters (disasters for short), NOAA only provides the

estimation of the interval of damages for each state every year. I take the average damages of each

interval in each year, then summarize all of these averages to get the total damages for each state in this

table. For the U.S. natural hazards, the damages are not adjusted to CPI. Therefore, they are adjusted

to CPI in 2021 to be consistent with that of the U.S. billion-dollar natural disasters.

The revolution of textual data

At the firm level, textual data is increasingly widely used. Recently, there are many studies

using textual data to examine many aspects of business such as corporate disclosures (Li

2011), firm performance prediction (Qiu et al. 2014), bankruptcy prediction (Mai et al.

2019), corporate innovation (Bellstam et al. 2021), product sales (Li et al. 2019), and

corporate culture (Li et al. 2021).

The textual data obtained from Form 10-Ks seems a good channel which reflects firm

performance. Cohen et al. (2020) find that “changes to the language and construction

of financial reports have strong implications for firms’ future returns and operations”.

1See more details at https://www.businessinsider.com/world-cup-favorites-2014-4
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Specifically, they show that the changes to Form 10-Ks predict the firm’s future earnings

and profitability. One of the first textual-data studies using Form 10-Ks is the seminar

paper (Loughran and McDonald 2011). Specifically, they develop a word list that reflects

the tone in financial text and link it to 10-Ks filings. There are several other studies using

Form 10-Ks such as (Kang et al. 2018; Ladas 2021).

There are a number of previous studies using the qualitative Management Discussion and

Analysis (MD&A) section, which is one of the richest information sections in Form 10-Ks, to

explore bankruptcy prediction (Mai et al. 2019), company’s earnings (Feldman et al. 2010;

Bochkay and Levin 2019), firm investment (Cho and Muslu 2021), and corporate credit

rating prediction (Choi et al. 2020). Our study take into account the MD&A Section as

well as other sections in the Form 10-Ks.

2.1.2 Related literature

Objective and perceived environmental uncertainty

Environmental uncertainty is an object of many fields including economics of disasters,

environmental economics, environmental management, strategic management, organization

theory, microeconomics, and business economics. We will review two different kinds

of environmental uncertainty which are actual environmental uncertainty and perceived

environmental uncertainty.

Objective environmental uncertainty (OEU), in the context of organizational environment,

has long been examined in the management literature (e.g. Downey et al. 1975; Swamidass

and Newell 1987; Faucheux and Froger 1995; Kreiser and Marino 2002; López-Gamero et al.

2011; Yu et al. 2018). However, the literature of environmental uncertainty in the context of

the natural environment is fairly limited. Many previous studies do not have explicit ways

to measure environmental uncertainty either in organizational or environmental context.

This study empirically uses the government-reported damages of natural disasters as the

proxy of objective environmental uncertainty.

Regarding perceived environmental uncertainty (PEU), there are two types of PEU. The

first type of PEU is in the sense of the organizational (or business) environment and it

has long been studied in the fields of strategic management and organization theory (e.g.

Duncan 1972; Downey et al. 1975; Miles et al. 1978; Miller 1993; Freel 2005). Meanwhile, the

second type of PEU is in the sense of the natural environment, which is studied much less

and much later compared to the first type of PEU. Indeed, the first research investigating

PEU in the natural environment is Lewis and Harvey (2001), which is thirty-four years later

compared to the first research about PEU in the organizational environment by Lawrence

and Lorsch (1967). This study, therefore, focuses on the second type of PEU to fulfill

the gap. Let’s call the second type of PEU perceived natural environmental uncertainty

(or PNEU). Note that in contrast to many previous studies in the organization theory
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literature about PEU using self-report questionnaire (e.g. Lawrence and Lorsch 1967; Tosi

et al. 1973; Tung 1979; Miller 1993; Lewis and Harvey 2001), this study employs the text

mining technique.

There are several studies examining both OEU and PEU in the context of organizational

environment (e.g Downey et al. 1975; Milliken 1987; Yu et al. 2018). It seems that most

studies explore both OEU and PEU in the context of organizational environment. This

study, however, focuses on objective and perceived environmental uncertainty in the context

of natural environment. In this paper, the government-reported damages of natural hazards

and disasters are proxy for the objective natural environmental uncertainty (ONEU) and the

perceived natural hazard risk is proxy for the perceived natural environmental uncertainty

(PNEU).

The effects of natural disasters on economy and firms

There are two ways that natural disasters affect the economy through two channels:

observed damages and perceived measure. For the first channel, the literature shows limited

and mixed results about the effects of observed damages of natural disasters on the economy

at the macro and micro level. It seems that the effects of natural disasters on both the

economy (at the macro level) and firms (at the micro level) are insignificant.

At the macro level, the neoclassical growth model anticipates that the growth effect is

negative in the very short run and the growth is temporarily higher than the balanced

growth after that (Felbermayr and Gröschl 2014). The previous macroeconomic empirical

studies seem to support this result. Indeed, natural disasters generally have negative effects

on the direct costs such as lost lives or physical destruction and an insignificant impact on

the indirect costs (consequences physical destruction) (Botzen et al. 2019; Lazzaroni and

Bergeijk 2014). Also, since the proportion of indirect costs increases in larger disasters

and might constitute a larger fraction of total costs in large disasters than in small

disasters (National Research Council 1999), the total impact of natural disasters might

be insignificant. For example, Noy and Vu (2010) find evidence in a developing country,

Vietnam, that more deadly disasters result in lower output growth, destroy more property

and capital but these negative effects appear in turn to boost the economy in the short-run.

They argue that these outcomes can be supported by the so-called ‘investment-producing

destruction’ hypothesis.

At the firm level, natural disasters might have negative effects (e.g. Hsu et al. 2018; Huang

et al. 2018; Pankratz et al. 2023), positive effects (e.g. Noth and Rehbein 2019) or mixed

effects on firms (e.g. Zhou and Botzen 2021; Leiter et al. 2009). On the one hand, Hsu et al.

(2018) find that firms with factories located in states highly affected by natural disasters

are much less profitable than states less affected. Also, firms located in countries with more

severe weather are likelier to hold more cash and less likely to distribute cash dividends
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(Huang et al. 2018). Moreover, Pankratz et al. (2023) find that increasing exposure to

extremely high temperatures reduces firms’ revenues and operating income. On the other

hand, Noth and Rehbein (2019) examine firms’ outcomes after a major flood in Germany

in 2013 and find that firms located in the disaster areas have significantly higher turnover,

lower leverage, and higher cash in the period after 2013. Furthermore, Zhou and Botzen

(2021) investigate the effects of natural disasters on the firm level in Vietnam. They find

that flooding increases labor and capital growth but reduces sales growth notably up to

three years after flooding. Also, Leiter et al. (2009) find that, in the short run, floods

lead to an increase in total assets and employment growth of firms in regions affected by

flooding more than firms in regions unaffected by flooding. However, the productivity of

the former firms is negatively affected by flooding. One explanation is that the increase

in investments in assets and employment offset the damaged production capabilities. This

research will provide further evidence on whether natural disasters have a significant effect

on firm performance or not and whether the direction of effect is positive or negative.

Regarding the second channel, perceived measure, the natural disasters might affect the

behavior and decisions of the firm’s executives and managers and firm’s related agents (e.g

investors). Several previous studies examine the reactions of executives, managers, and

investors to natural disasters (McKnight and Linnenluecke 2017; Alok et al. 2020; Huynh

and Xia 2022; Huang et al. 2022).

2.1.3 Comparison among machine learning techniques

One of the main goals of this study is to compare the modeling performances under

uncertainty using different machine learning methods. Some comparisons in the literature

are as follows.

Linear regression vs. CART. There are relatively few papers comparing the

performances of linear regression and CART models in comparison to other techniques

like ANN with linear regression. In health science, Razi and Athappilly (2005) use linear

regression, neural networks (NNs), and CART to forecast the number of days in bed due

to illness. They find that NNs and CART provide better prediction accuracy than linear

regression model2. In finance, Zhu et al. (2011) propose a combination of CART and logistic

regression for stock ranking. The work of Barth et al. (2023) implies that CART models are

a good tool to investigate the annual relations between share price and accounting amounts

(amount of accounting information).

Linear regression vs. Neural networks. As opposed to the class of linear regressions,

neural networks can be classified as the multivariate nonlinear nonparametric models (White

1989; Zhang et al. 1998). Neural networks have some advantages compared to traditional

2Even though the authors mentioned that the regression model in their paper is nonlinear. They are in
fact linear in parameters.
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econometric methods. One of the advantages of neural networks over model-based methods

like linear regression is that neural networks are data-driven methods which need very few

assumptions about the model itself3. Since neural networks are not restricted by many

assumptions they are more flexible then the model-based methods like linear regression.

As a result, in many complicated problems in which we do not have good models, neural

networks are feasible and promising ways for modeling as long as we have enough reliable

data. Another advantage is that neural networks (and also many other machine learning

techniques) have strong power of prediction. This is because, with a neural networks model,

one usually splits data into two parts: train data and test data4. One uses train data to build

the training machine learning models (e.g neural networks, CART, and linear regression),

then validating this model with unseen test data. By the nature that neural networks always

work with unseen data, they are attractive and promising for forecasting tasks (Sharda and

Patil 1992; Swanson and White 1995; Adya and Collopy 1998; Huang et al. 2007) and

management science (Sharda 1994). Further, neural networks perform well with high noise

data (Marquez et al. 1991).

The prediction ability of neural networks has improved recently relative to traditional

methods like linear regression. Early forecasting studies observe that traditional methods

including linear regression or vector autoregressions perform better (lower mean squared

errors) than neural networks (e.g. Swanson and White 1995, 1997) or equivalent to and

sometimes better than neural networks (e.g. Hill et al. 1994). Moreover, these studies also

argue that neural networks appear to be promising models for forecasting even though

further refinement of neural networks is needed. However, more recent studies in the

literature find that neural networks outperform linear regression models in prediction (e.g.

Hill et al. 1996; Desai and Bharati 1998; Fadlalla and Lin 2001; Anyaeche and Ighravwe 2013;

Pombeiro et al. 2017). Li and Ma (2010) discover that neural networks are valuable tools for

forecasting in financial economics due to the learning, generalization, and nonlinear behavior

properties. Anyaeche and Ighravwe (2013), in a study of profitability forecasting, find that

neural networks have MSE lower than multiple-linear regression model. Further, Pombeiro

et al. (2017) find that neural networks models (together with fuzzy model) outperform linear

regression in predicting electricity consumption. For a systematic review of neural networks

in business in the last two decades, please read Tkac and Verner (2016).

A noticeable point of neural networks is that simply increasing the number of hidden layers

may not improve the performance of the neural networks much when working with the

high-frequency financial data (Chen et al. 2017).

3One typical assumption of neural networks is that the neural networks are fully connected. Of course,
one can relax this assumption if necessary.

4In many cases, one splits data into three parts: train data, validation data, and test data. Also note
that in the old days, economists did not call train data and test data. Rather, they call it in-sample and
out-of-sample data (e.g. Swanson and White 1995, 1997; Altay and Satman 2005).
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CART vs. Neural networks. Yildiz et al. (2017) employ several machine learning models

including support vector regression (SVR), regression trees (RT or CART), artificial neural

networks (ANNs), nonlinear autoregressive network with exogenous inputs (NARX), and

Multivariate regression model (MLR) for commercial building electricity load forecasting.

They find that ANNs and NARX relatively perform better than other techniques.

2.1.4 Lagged dependent variables in machine learning models

Lagged dependent variables have long been studied extensively in econometrics of regression

in the forms of autocorrelation or serial correlation (e.g. Taylor and Wilson 1964; Durbin

1970; Godfrey 1978; Inder 1984; Arellano and Bond 1991). They play important roles

in regression in economics and other social sciences. For example, Wilkins (2018) argues

that including the additional lagged dependent variables leads to more accurate parameter

estimates in regression. Moreover, Keele and Kelly (2006) find that adding lagged dependent

variables remains an appropriate model used to estimate dynamic phenomena. In the case

of adding different orders of lagged variables into regression models we need to pay attention

to the multicollinearity issues among lagged variables.

Lagged dependent variables are not only examined in regression but also in the CART

models. Gocheva-Ilieva et al. (2019) employ both lagged dependent and independent

variables in the CART models. They find that the first-order of lagged dependent variables

are the most relatively important variables in two towns in Bulgaria. Ou et al. (2017) use

many lagged features in CART as well as other techniques to forecast traffic flow in urban

roads in Kunshan City, China.

Lagged dependent (and independent) variables are also studied widely in many neural

network models. Doganis et al. (2006) find that ANN models with lagged variables of sales

are better than traditional methods in forecasting such as linear regression or moving average

model. Swanson and White (1995) use both lagged dependent and lagged independent

variables in linear regression as well as ANN to predict future spot rates. Tsoumakas (2019)

surveys a number of previous studies in many machine learning models (moving average,

radial basis function network, ensemble approach, long short-term memory, and deep neural

networks) for food sales prediction in which lagged variables play very important roles.

2.1.5 Firm performance indicators

This study investigates four common measures of firm performance in the business

literature which are return on assets (ROA), earnings before interest and taxes on assets

(EBITAT)5, Tobin’s Q ratio, and sales growth. Here, ROA and EBITAT represent firm

5Note that in this study I use EBITAT for in-text sentences. The corresponding lower word, ebitat, is
used as a variable. Similarly for ROA and roa.
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profitability, Tobin’s Q represents the investment opportunity, and sales growth is an

indicator representing the efficiency of firm operations.

Return on assets (ROA). ROA is a measure that represents the profitability (or

efficiency) of a firm in relation to its total assets. Specifically, return on assets is calculated

by dividing a firm’s net income by its total assets as follows

ROA =
Net income

Total assets
, (2.1)

where

Net income = Total revenue− Total expenses.

Therefore, we can say that ROA measures the profitability or efficiency of a firm. The

higher ROA, the more efficient assets are and vice versa. Note that net income and total

assets are normally measured in the same period of time.

Earnings before interest and taxes on assets (EBITAT). EBITAT is another

indicator of a firm’s profitability. It is the ratio of earnings before interest and taxes on

assets (EBIT) to total assets6. To make it comparable with ROA, EBIT is divided by total

assets to obtain the earnings before interest and taxes on total assets.

EBITAT =
Earnings before interest and taxes

Total assets
. (2.2)

Similarly to (2.1), in (2.2) EBIT and total assets are measured in the same period of time.

Tobin’s Q. Tobin’s Q (or just Q for short) is an indicator as a proxy for investment

opportunities. It was first studied by two macroeconomists: Nicholas Kaldor and James

Tobin. Kaldor (1966) introduces the evaluation ratio v (or Kaldor’s v) of the stock market

in the following formula

Kaldor’s v =
Firm’s market value

Replacement cost
,

where the replacement cost means the capital employed by the firms, which is normally

approximately by the book value of total assets. It is named after the q theory of investment

in Tobin (1969).

More recently, Lindenberg and Ross (1981) develop a procedure for calculating q ratio

in which the numerator is not the market value of shares like in the Kaldor’s v formula.

Rather, the numerator should be the firm’s total market value including the market value of

6The ratio of EBIT/total assets is a common measure of profitability in many previous studies (e.g.
Margaritis and Psillaki 2010; Cornett et al. 2008; Yu et al. 2009).
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a firm’s debt, the market value of common stock, and the market value of preferred stock.

The denominator, which measures the replacement cost, is more complicated to measure.

Loosely speaking, the denominator can be approximated by the book value of the firm’s

total assets. Therefore, Tobin’s Q is defined as the ratio of the market value of a firm’s

equity and liabilities to its corresponding book values, i.e.

Tobin’s Q =
Equity market value + Liabilities market value

Equity book value + Liabilities book value

=
Equity market value + Liabilities market value

Total assets
,

where Total assets = Shareholders’equity + Liabilities = Equity market value +

Liabilities book value in which the first equality is the basic relation in accounting.

In this study, I denote Q as Tobin’s Q and estimate it by the similar formula as that in

Smirlock et al. (1984) given by

Q =
Equity market value+ Total preferred stock+ Total long-term debt+ Total debt in current liabilities

Total assets
.

(2.3)

Sales growth. Sales growth (or revenue growth) is one of the most common measures

of firm performance. There are many previous studies that use revenue growth (i.e. sale

growth) as an indicator of firm performance (e.g. Thornhill 2006; Mithas et al. 2012;

Mironov 2013).

Sales growth(t) =
Sales(t+ 1)− Sales(t)

Sales(t)
. (2.4)

The remainder of this chapter is organized as follows. Section 2.2 presents the methods that

we use in this chapter. Section 2.3 describes the data and variables. The results of different

models are presented in Section 2.4. We discuss several noticeable points in Section 2.5

before concluding chapter in Section 2.6.

2.2 The methods

As famous statistician Leo Breiman suggested in his 2001 paper that “we need to move

away from exclusive dependence on data models and adopt a more diverse set of tools”

(Breiman 2001), this study employ three different types of machine learning techniques

representing for three different statistical methods including classical parametric method

(linear regression), non-parametric method (CART), and flexible nonlinear models (neural

networks).
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2.2.1 Linear regression

The specification of the first linear regression model is given by

yijkt = β0 + βlXlit + βeXeit + βmXt + β1disasterjt + β2disasterj,t+1 + β3disaster10Kit + νj + φk + ξt + ϵijkt,

where

• yijkt is a specific firm performance indicator for firm i in state j in industry k in year

t,

• Xlit is the list of m state controls of firm i at year t, where 2 ≤ l ≤ m,

• Xeit is the list of n−m action controls of firm i at year t, where m+ 1 ≤ e ≤ n,

• Xt are the Herfindahl-Hirschman index and macroeconomic controls in year t,

• disasterjt and disasterj,t+1 are the damages of natural disasters/hazards in state j at

year t and year t+ 1,

• disaster10Kit is the firm i’s reporting natural disasters in Form 10K in year t,

• νj is the state fixed effects, where j = 1, ..., 49 represents for forty nine states,

• φk is the industry fixed effects, where k = 1, 2, ..., 61 (historical SIC classification),

• ξt is the year fixed effects, where t = 1994, ..., 2021,

• ϵijt is the error term.

Note that the above year fixed effects ξt excluded one base year (year 2003) to avoid

the perfect multicollinearity issue. Similarly, the industry fixed effects φk and state fixed

effects νj already excluded one industry (sich2d 59) and one state (WY) to avoid perfect

multicollinearity problem. Note also that the year fixed effects, industry fixed effects,

and state fixed effects allow to eliminate bias from unobservables that change over states

and industries but constant over time, bias from unobservables that change over time and

state but constant over industries, and bias from unobservables that change over time and

industries but constant over states.

The second linear regression specification is given by

yijkt = β0 + βlXlit + βeXeit + βmXt + β1damagejt + β2damagej,t+1 + β3disaster10Kit + νj + φk + ξt + ϵijkt,
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where ξt is the year fixed effects, where t = 1997, ..., 2021. Note that for natural hazards we

only have data from 1996 to 2021 instead of from 1993 to 2021 as that of the billion-dollar

natural disasters.

2.2.2 Classification and regression trees

Classification and regression trees (also known as decision trees or CART) are a non-

parametric supervised machine learning method for classification and regression tasks. It

was first introduced by Breiman et al. (1984). Since the predicted outcomes in this study are

continuous, we will focus on regression trees. Potential applications of CART in economics

are discussed intensively in Athey and Imbens (2019).

It is necessary to give a quick overview of the empirical CART models7. Given a sample of

training data (Xt
i1, ..., X

t
iK , Yi), for i = 1, ..., N and t = 1, ..., T , where K is the number of

features and t denotes time at the period t. Here, at one time, only one predicted outcome Yi
is considered. The idea of regression trees is to split sequentially the sample of training data

into subsamples, then using regression method to estimate the average predicted outcome

in each subsample. Each split is only based on a threshold criterion of one feature.

Before the split, the empirical sum of squared errors of the training data is given by

Q =
N∑
i=1

(Y t
i − Ȳ t)2, where Ȳ t =

1

N

N∑
i=1

Y t
i .

Starting with the full training data sample, at each internal node, split the sample into two

subsamples based on one single feature Xik and a threshold criterion cj , where j = 1, ..., J .

The goal of the split is to minimize the empirical sum of squared errors of two training

subsamples after splitting

min Q(k, cj) =
∑

i:Xt
ik≤cj

(Y t
i − Ȳ t

k,cj ,l
)2 +

∑
i:Xt

ik>cj

(Y t
i − Ȳ t

k,cj ,r
)2

where

Ȳ t
k,cj ,l

=

∑
i:Xt

ik≤cj
Y t
i∑

i:Xt
ik≤cj

1
and Ȳ t

k,cj ,r
=

∑
i:Xt

ik>cj
Y t
i∑

i:Xt
ik>cj

1

are the average predicted outcomes in the two subsamples and l and r denote left and right,

respectively. Note that the split point is the internal node such that the above sum of

squared is minimum among all possible sums of squared errors. Repeat until the stopping

criterion is reached. The common stopping criterion is the minimum number of training

7A similar framework can be found in Athey and Imbens (2019).
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observations (or sample as a common word used in the machine learning language) at each

leaf node.

The key feature importance metric for CART is the weighted impurity reduction (or mean

decrease in impurity or variance reduction). Note that in the tree, a node will be split if

this split induces a decrease of impurity greater than or equal to this impurity value. The

weighted impurity decrease (or variance decrease) formula is given as follows

weighted impurity decrease =
Nt

N
(impurity− NtR

Nt
∗ right impurity− NtL

Nt
∗ left impurity),

where N is the total number of samples, Nt is the number of samples at the current node,

NtL and NtR are the number of samples in the left and right child, respectively8. Note that

the CART model in this study contains only one decision tree. This is in contrast to other

several ensemble learning methods like XGBoost (Extreme Gradient Boosting), AdaBoost

(Adaptive Boosting), or Random Forest which use several different trees.

2.2.3 Neural networks

This study employs neural networks with a single hidden layer called artificial neural

network (ANN) and neural networks with two or more hidden layers called deep neural

networks (DNN)9. Specifically, an ANN is a network with one input layer, one hidden layer,

and one output layer10. As we will see, the only difference between ANN and DNNs is the

number of hidden layers. In this study, the word “deep” in deep neural networks stands for

many (at least two) hidden layers.

Deep neural networks (DNNs) are a class of neural networks that compose two or more

hidden layers. Inspired by the notations used in Amasyali and El-Gohary (2021), in this

study, DNN[2], DNN[3], and DNN[4] are defined as the DNN model with two, three, and

four hidden layers, respectively. Assume that all DNN models are fully connected neural

networks. In all DNN models, Rectified Linear Unit (ReLU) is used as the activation

function. Note that by the Universal Approximation Theorem, any complex continuous

functions can be approximated by neural networks.

The goal of learning in DNNs is to adjust the set of weights so that the performances of

the networks are as good as possible (e.g. as small mean squared error as possible). In

order to do that we need to adjust a list of parameters such as number of hidden layers,

8For more details, please see https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestRegressor.html.
9Note that this classification is just with the naming purpose. In reality, ANN and DNN might be used

interchangeably.
10This definition is similar to that in Amasyali and El-Gohary (2021). Meanwhile, other studies might

define that ANNs are neural networks with one or two hidden layers and DNNs are neural networks with
more than two hidden layers (e.g. Merkel et al. 2018).
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number of neurons in each layer, optimizer, batch size, number of epochs, initialization

(using random seed), and dropout rate. They are normally called hyperparameters, which

are the parameters of weights (or coefficients).

Note that in contrast with the linear regression models, CART and neural networks are

nonlinear models. This implies that CART and neural networks can capture the nonlinear

relationships and heterogeneous effects among features which are usually ignored in the

linear models. However, some costs of using neural networks are computational intensity,

losing the level of interpretability, curse of dimensionality, and overfitting problems.

2.2.4 Comparison among models

Meanwhile there are many studies that compare linear regression, CART, and neural

networks in other fields (Razi and Athappilly 2005; Kim 2008; Wang et al. 2016), there

are much less studies comparing models using these techniques in the literature of business,

management, and finance. In the business, management, and finance literature, Bensic et al.

(2005) studies small business credit scoring using neural networks, decision trees, and logistic

regression rather than linear regression. Also, Schumacher et al. (2010) predict success of

actuarial students using neural networks, classification trees, and logistic regression rather

than regression trees and linear regression. It seems there are no studies in the literature

of business, management, and finance using linear regression, CART (decision trees), and

neural networks at the same time. Further, even though there might exist some studies

using these three comparative techniques, it is unlikely that these studies focus on firm

performance prediction. This is a big gap in the literature of business, management,

accounting, and finance and this study aims to partially fulfill this gap.

2.3 The data and variables

2.3.1 Data sources

The datasets and corresponding sources used in this research are shown in Table 2.2. All

data are annual and they are collected from 1993 and 2021 except for the U.S. natural

hazard data that is collected between 1996 and 2021. The firm’s characteristics are collected

from the Compustat-Capital IQ (or just Compustat for short) database from the Wharton

Research Data Services (WRDS). Macroeconomic variables are collected from the World

Bank’s website. The costs of natural disasters are collected from the National Oceanic

and Atmospheric Administration (NOAA)’s billion-dollar weather and climate disasters

database. Form-10Ks are collected from the Electronic Data Gathering, Analysis, and

Retrieval system (EDGAR) from the U.S. Securities and Exchange Commission (SEC).
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Table 2.2: The data and corresponding sources

Data Frequency Period Source

Firm’s characteristics Annually 1993-2021 Compustat

Macroeconomic variables Annually 1993-2021 The World Bank

Natural hazards Annually 1996-2021 NOAA

Billion-dollar natural disasters Annually 1993-2021 NOAA

Form 10-Ks (reporting) Annually 1993-2021 EDGAR filings

Regarding the U.S. billion-dollar natural disasters, there are 287 billion-dollar natural

disaster events (e.g. floods, tropical cyclones, droughts) that occurred between 1993 and

2021 in the United States. This is equivalent to, on average, 8.44 billion-dollar natural

disaster events per year. The number of events at the state level is clearly less than 8.44

since not all events occur in all states, which makes billion-dollar disasters as rare events in

the U.S. at the state level.

U.S. natural hazards vs. U.S. billion-dollar natural disasters. The U.S natural

hazards data (officially the U.S. Natural Hazard Statistics11) provides the statistical

information on damages caused by weather related hazards. There are some important

differences between the U.S. natural hazards data and the U.S. billion-dollar natural

disasters. First, the natural hazard data include all hazardous weather events either big or

small weather phenomena. In contrast, the U.S. billion-dollar natural disasters only covers

the major weather and climate disasters in the U.S. Second, the U.S. natural hazardous

damages are the real values obtained or estimated from each event while the U.S. billion-

dollar disasters are the interval estimates. Those interval estimates are averaged to get

a unique value of damage of each natural disaster. Third, it seems that the damages of

the U.S. natural hazardous events are the estimated direct damages while that of the U.S.

billion-dollar natural disasters are the total (direct and relevant indirect) damages of natural

disasters. Moreover, the average damages of the U.S. natural hazard is approximately $1.008

billion per year while that of the U.S. billion-dollar natural disasters is around $2.8538 billion

per year. Table 2.3 summarizes the comparison between the U.S. natural hazards and the

U.S. billion-dollar natural disasters.

11See https://www.weather.gov/hazstat/
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Table 2.3: Comparison between U.S. natural hazards and billion-dollar natural disasters

Natural hazards Natural disasters

Size of disasters Small & big Big (billion-dollar events)

Types of costs Direct Direct & Indirect

Values of estimates Unique real number Interval

CPI adjustment to 2021 Yes Yes

Average damages per year $1.008 billion $2.8538 billion

This study takes inflation (i.e Consumer Price Index or CPI) into account. The U.S. billion-

dollar natural disasters are adjusted to CPI in 2021. However, the damages of the U.S.

natural hazards are measured every year. To make sure these two damages are comparable,

we adjust the damages of the U.S. natural hazards to CPI in 2021. That is, both damages

of the U.S. natural hazards and billion-dollar natural disasters are adjusted to CPI in 2021.

By taking CPI into account, we reduce the possibility of the endogeneity issue regarding

the changes of the values of damages of natural hazards and disasters over time.

2.3.2 The variables

Dependent variables

The dependent variables and the corresponding definitions are shown in Table 2.4. Note

that in this table t stands for the current year and t+ 1 stands for the next year.

Table 2.4: The list of dependent variables

Variable Definition

roa Net income(t+1)/Total assets(t+1)

ebitat Income before interest and taxes(t+1)/Total assets(t+1)

Q
(Equity market value(t+1) + Total preferred stock(t+1) + Total long-term

debt(t+1) + Total debt in current liabilities (t+1))/Total assets(t+1)

salegrowth (Sales(t+1) - Sales(t)) / Sales(t)

Since all of the firm-level state independent variables are at time t and all dependent

variables are at time t + 1, this is a prediction problem. Specifically, this is a short-term

prediction problem since data this year is used to predict the next year firm performance.

Independent variables

In order to investigate the relationships between uncertainty variables and firm performance,

various control variables, including firm-wide state and action variables, industry-wide

variable, and macroeconomic variables, are utilized. These controls are generated based on
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the literature on bankruptcy, firm performance, and accounting, specifically many variables

are borrowed from Mai et al. (2019). When predicting firm performance, it is natural to

consider variables at the firm-wide, industry-wide, and the economy-wide variables. The

firm-level variables are split into two groups: firm-wide state independent variables and

firm-wide action independent variables. Here the word “action” implies that firms can

adjust these variables to obtain the desired firm performance indicators next year based on

the current performance and the effects of natural disasters this year. The definitions of

these controls are described in detail in the following tables.

Firm-wide state independent variables. Table 2.5 shows the list of firm-wide state

independent variables (features). Most of variables in this list are the ratio variables with

the denominator is total assets or sales. One important advantage of the ratio variables

with total assets as denominator is that it helps to deal with the so-called asset inflation.

As a result, the ratio variables might help dealing with the endogeneity problem because

of the increase of the values of (total) assets over time. The similar argument might make

sense when the denominator is sales.

Table 2.5: The list of firm-wide state independent variables

Variable Definition

roalag1 Prior year ROA

ebitatlag1 Prior year EBITAT

Qlag1 Prior year Q

salegrowthlag1 Prior year sales growth

lctat Current liabilities(t)/Total assets(t)

chlct Cash(t)/Current liabilities(t)

lctlt Current liabilities(t)/Total liabilities(t)

relct Retained earnings(t)/Current liabilities(t)

atemp Total assets(t)/Employees(t)

logat Ln(Total assets(t))

cheat Cash and short-term investment(t)/Total assets(t-1)

saleat Sales(t)/Total assets(t-1)

reat Return earnings(t)/Total assets(t-1)

dtat Total debt including current(t)/Total assets(t-1)

seqat Total stockholers’ equity(t)/Total asset(t-1)

invtsale Inventories(t)/Sales(t-1)

xintsale Total interest and related expense(t)/Sales(t-1)

invtgrowth (Inventories(t) – Inventories(t-1))/Inventories(t-1)

Notes: This table includes four blocks of variables: lagged, ratio, and normalized variables. First block

contains four lagged dependent variables. Second block contains the next five ratio variables. Third

block only contains the logarithm of total assets. The last block contains nine state variables, which are

normalized either by last year total assets or last year sales. Normalization by last year total assets or

sales is necessary to avoid the endogeneity problem.
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Firm-wide action independent variables. A list of firm-wide action independent

variables used in this study is shown in Table 2.6.

Table 2.6: The list of firm-wide action independent variables

Variable Definition

xintgrowth
(Total Interest and Related Expense(t+1) - Total Interest and Related Expense(t))

/Total Interest and Related Expense(t)

capxgrowth (Capital expense(t+1) - Capital expense(t))/Capital expense(t)

empgrowth (Employees(t+1) - Employees(t))/Employees(t)

dvcib Dividends common, ordinary(t+1)/Income before extraordinary items(t+1)

Note: These variables are called action variables since firms can observe the effects of natural disasters

on their performance to adjust these actions (or controls) to achieve their goals.

Herfindahl-Hirschman Index and macroeconomic variables. The Herfindahl-

Hirschman Index (or Herfindahl index or industrial concentration index) is considered as

a measure for industrial concentration. This index is calculated by the sum of square of

market shares of all firms within a particular 3-digit SIC industry in a particular year12.

Macroeconomic variables, including GDP growth, inflation, and real interest rate, can be

found from the World Bank’s database13 and the Bureau of Economic Analysis (BEA)

database14, and the Federal Reserve Economic Data (FRED) database15. The Herfindahl

index and three macroeconomic variables used in this study are shown in Table 2.7.

Table 2.7: The list of exogenous variables

Variable Definition Source

hhi Industrial concentration(t) Calculated by author

gdpgrowth GDP growth, annual %(t) World Bank, BEA

inflation Inflation, annual %(t) World Bank

interestrate Real interest rate, annual %(t) World Bank, FRED

Notes: The Herfindahl index is calculated based on the data of sales and 3-digit historical Standard

Industrial Classification (or SICH) from the Compustat database with four steps. Step 1: Calculate the

“total sales” of all firms within a 3-digit SICH industry in every year; Step 2: Calculate the market

share for each firm within this 3-digit SICH industry in every year; Step 3: Square every market share;

Step 4: Sum of all of the squares by 3-digit SICH industry in every year to obtain the Herfindahl index.

Moreover, at the time we accessed, 06/06/2022, the World Bank database, the U.S. GDP growth in

2021 is not available. Therefore, we used data of U.S GDP growth in 2021 from the Bureau of Economic

Analysis. Similarly, since U.S. real interest rate in 2021 is not available on 06/06/2022 in the World

Bank database, we used the average of all monthly U.S. real interest rates from the Federal Reserve

Economic Data (FRED) database as the U.S. real interest rate in 2021.

12For more details about 3-digit SIC industry classification, see https://siccode.com/.
13See https://data.worldbank.org/country/united-states?view=chart
14See https://www.bea.gov/news/2022/

gross-domestic-product-fourth-quarter-and-year-2021-advance-estimate
15See https://fred.stlouisfed.org/series/REAINTRATREARAT1YE
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Variables of interest and sources. Table 2.8 shows the list of all variables of interest, the

data type, definition, and the data sources. Note that in this table, the damages of natural

disasters in the last year (or year t) are denoted as disaster and the damages of natural

disasters in the current year (or year t+1) are denoted as disaster0. Similarly for damage

and damage0 for the case of natural hazards. There is only one perceived natural disaster

risk for both natural hazards and natural disasters, which is denoted as disaster10K.

Table 2.8: The list of variables of interest

Variable Type Definition Source

disaster Government-reported Damages of natural disasters(t) NOAA database

disaster0 Government-reported Damages of natural disasters(t+1) NOAA database

damage Government-reported Damages of natural hazards (t) NOAA database

damage0 Government-reported Damages of natural hazards(t+1) NOAA database

disaster10K Firms’ self-reported Reporting disaster(t) Form 10-Ks

Notes: Note that there are two variables related to the damages of natural billion-dollar disasters and

two corresponding for natural hazards. However, for each linear regression specification, we only consider

these two kinds of damages in two separate cases. For more details, see Subsection 2.2.1.

2.3.3 Data collection procedure

Table 2.9 describes the steps to collect data (the number of firms and firm-year observations).

At the beginning (Step 1), there are 29,908 firms and 315,051 firm-year observations. Note

that at Step 1 not all observations are firm-based observations. The reason is that many

stock ticker symbols are bonds or exchange-traded funds (ETFs). The following steps will

remove these non-firm stocks.

The raw data from Step 1 contains so many rows with missing values in most of the columns.

These rows should be deleted. Step 2 removes all rows with missing values in more than

75% of the columns. Many of them might be bonds and ETFs since they are not firm-

based stocks, then there are not common financial statement variables such as number of

employees, sales, total assets, and so on. After Step 2, there are 23,950 firms and 247,477

firm-year observations. At Step 3, the data getting from Step 2 is merged with the actual

damages of natural disasters and reporting disasters data.

Step 4 and Step 5-8 help to exclude the non-firm stocks. In total, our final sample size

includes 10,575 firms and 97,761 firm-year observations with no missing values. Table 2.9

shows the procedure to get the final sample size as well as all number of firms and firm-

year observations at each step. Note that the sample size excludes the firms in the utility,

finance, insurance, and real estate sector (Step 5) since these firms typically have the capital

structures and other characteristics different compared to manufacturing and other sectors.
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Table 2.9: The data collection procedure

Step Observations Number of firms

1. Total U.S. firms from Compustat database 315,051 29,908

2. Firms with data in at least 75% columns 247,477 23,950

3. U.S. firms with state and disasters data 141,229 16,601

4. U.S. firms with SICH, CIK, and GVKEY number 139,968 16,452

5. Exclude U.S. utilities, financial, insurance, real estate firms 113,009 13,689

6. U.S. firms with total assets at least $0.1 million 111,361 13,569

7. U.S. firms with positive sales 107,019 13,074

8. U.S. firms with at least 1 employee 103,401 12,776

9. Sample after handling missing values 97,761 10,575

Final sample size 97,761 10,575

The approximate number of firms by sector and the corresponding proportions are shown in

Table 2.10. It is apparent that most of the firms in our sample are manufacturing (45.72%)

and services (27.02%). These proportions seem representative for all public firms. Note

that the number of firms in Table 2.10 and that in Table 2.9 are close to each other with

11,373 and 97,761, respectively, but not the same. The reason is because a number of firms

belong to two or more sectors. For example, some firms are classified to the whole trade

sector but they are also classified to the retail trade sector because they do both wholesale

and retail trading.

Table 2.10: Number of firms and proportions by sector

Sector Number of firms Proportion (%)

Agriculture, Forestry, Fishing 21 0.18

Mining 586 5.15

Construction 172 1.51

Manufacturing 5,200 45.72

Transportation 951 8.36

Wholesale Trade 545 4.79

Retail Trade 827 7.27

Services 3,071 27.02

Total 11,373 100

2.3.4 Constructing a natural disaster dictionary

In order to capture the intensity of the natural disasters to accurately reflect the perceived

natural disaster risk we need the following assumption.

Assumption 2.3.1. People (i.e. firms) are likely to discuss the big natural disasters more

often than the relatively smaller ones in their Form 10-Ks.
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This assumption is necessary to examine the different intensities of different natural

disasters. Without this assumption, the perceived natural disaster risk might be biased.

For example, a Form 10-K of a company mentions both Hurricane Katrina in 2005 (one

of the most powerful hurricane in the U.S. in the history) and Hurricane Iniki (the most

powerful hurricanes striking Hawaii in recorded history) in 1992. Obviously, these two

hurricanes have different intensities. Separately, one word related to Hurricane Katrina is

not equivalent to one word related to Hurricane Iniki (in the sense that these hurricanes were

damaged differently). By Assumption 2.3.1, on average, firms tend to talk about Hurricane

Katrina more than Hurricane Iniki. This obviously makes sense in the real world. Note

that this assumption can be applied to not only the same types of natural disasters but also

the different ones (e.g hurricanes in Louisiana vs. wildfires in California).

Table 2.11 shows the natural disaster dictionary including 133 words or phrases related to

natural disasters in alphabetical order. This dictionary is generated based on the words

related to natural disasters from the National Oceanic and Atmospheric Administration

(NOAA) website16, the Emergency Events Database (EM-DAT) glossary on natural

disasters17, Oxford’s English dictionaries from Oxford Languages18, and the well-known

Merriam-Webster dictionary19.

16https://www.ncei.noaa.gov/access/billions/events
17https://www.emdat.be/Glossary
18https://languages.oup.com/google-dictionary-en/
19https://www.merriam-webster.com/
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Table 2.11: The natural disaster dictionary

adaptive capacity droughts heat wave seiches

air burst earthquake heat waves severe winter condition

airburst earthquakes heavy rainfall severe winter conditions

airbursts El Nino heavy snow snow

apocalypse extreme heat high wind snowstorm

apocalypses extreme rain high winds snowstorms

ash fall extreme rainfall hurricane storm

ashfall extreme rains hurricanes storms

avalanche extreme temperature hydrological hazard thunderstorm

avalanches extreme temperatures hydrological hazards thunderstorms

blizzard extreme weather La Nina tornado

blizzards firestorm landfall tornadoes

calamity firestorms landfalls tremor

camilities flood landslide tsunami

cataclysm flooded landslides tsunamis

cataclysms flooding lava flow twister

climate change floodings lava flows typhoon

climate warms floods microburst typhoons

coastal erosion fog microbursts volcanic

cold wave fogs mudslide volcano

cold waves forest fire mudslides volcanos

coping capacity forest fires natural hazard whirlpool

cyclone freeze natural hazards whirlpools

cyclones freezes rainfall wildfire

debacle freezing rainfalls wildfires

debacles gale rainstorm wind

derecho gales rainstorms winds

derechos geophysical hazard rock fall windstorm

disaster geophysical hazards rock-fall windstorms

disaster risk global warming rockfall winterstorm

disaster risk management hail rockfalls winterstorms

disaster risks hailstorm rogue wave

disasters hailstorms rogue waves

drought hazard mitigation seiche

Notes: The words list related to natural disasters in this dictionary bases on several reliable sources

including NOAA, EM-DAT glossary, Oxford Languages (Oxford’s English dictionaries), and Merriam-

Webster dictionary.

2.3.5 Using the natural disaster dictionary to explore Form 10-Ks

The natural disaster dictionary in Table 2.11 is used to count the number of words related

to natural disasters in Form 10-Ks from 1993 to 2021. Note that our raw data includes

195,229 firm-year Form 10-Ks and 35,640 unique firms. That is, on average, each firm has

approximately 5.48 Form 10-Ks.

Table 2.12 shows the most frequent words, number of firms mentioned that word, and

number of word count. Two most frequent words related to natural disasters between 1993
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and 2021 are flood (from 1996 to 2004) and disasters (in 2007 and from 2012 to 2021). The

word hurricanes is the most frequent in 2005 and 2006, which might be caused by Hurricane

Katrina in late August 2005. The word earthquake and wind are the most frequent words

related natural disasters in several years.

Table 2.12: The most frequent words related to natural disasters in Form 10-Ks

Year Most frequent word Number of firms mentioned Word count

1993 earthquake 114 373

1994 earthquake 110 359

1995 earthquake 262 798

1996 flood 620 1,432

1997 flood 688 1,796

1998 flood 689 1,623

1999 flood 650 1,436

2000 flood 695 1,560

2001 flood 636 1,465

2002 flood 931 2,220

2003 flood 967 2,144

2004 flood 1,177 2,390

2005 hurricanes 1,290 4,677

2006 hurricanes 1,341 4,470

2007 disasters 2,411 4,479

2008 wind 905 5,494

2009 wind 1,036 7,713

2010 wind 1,093 8,947

2011 wind 1,067 7,283

2012 disasters 3,208 7,298

2013 disasters 3,357 7,680

2014 disasters 3,481 8,178

2015 disasters 3,522 8,363

2016 disasters 3,523 8,484

2017 disasters 3,592 9,113

2018 disasters 3,677 9,533

2019 disasters 3,893 10,804

2020 disasters 4,193 12,209

2021 disasters 808 2,427

Table 2.13 describes the top ten topics related to natural disasters in Form 10-Ks. We

can observe that the words or phrases belong to the topic of natural disasters, wind, and

flooding are the most common in Form 10-Ks with the corresponding number of word count

are 204,007 terms, 116,670 terms, and 112,338 terms. For the full list of the frequencies of

all words/phrases related natural disasters in Forms 10-Ks, please see Appendix 5.
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Table 2.13: Top 10 topics related to natural disasters in Form 10-Ks

Topic Word/Phrase Word count

natural disasters disaster, disasters, natural hazard, natural hazards 204,007

wind wind, winds, windstorm, windstorms, high wind, high winds 116,670

flooding
flood, floods, flooding, floodings, heavy rainfall, rainfalls,

extreme rains, extreme rainfall, rainstorm, rainstorms
112,338

earthquake earthquake, earthquakes 93,743

hurricanes hurricane, hurricanes 81,314

storm storm, storms, winterstorm 73,710

climate change climate change, global warming, climate warms 67,725

freeze freeze, freezes, freezing, snow, heavy snow, snowstorm, snowstorms 51,873

drought drought, droughts 19,194

tornado tornado, tornadoes 16,365

2.3.6 Data processing

In order to obtain reliable input data, it is necessary to do the following steps. First of all,

all variable (except fixed effects) are winsorized at the 1st and 99th percentiles20. Next,

the correlation matrix of all independent variables is generated. Thus, one of the two

variables in pairs with correlations greater than 0.8 will be dropped. This step is repeated

until obtaining all correlations less than 0.8. For the models with the billion-dollar natural

disasters, the following table shows the top 20 correlations of the independent variables21.

20These percentiles are common to handle outliers, e.g Dessaint and Matray (2017), Mai et al. (2019).
21The top 20 correlations of the models corresponding with the damages of the natural hazards are exactly

the same that of natural disasters so we do not show it here.
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Table 2.14: Top 20 absolute correlations of Model 1 and Model 2

Model 1 (ROA) Model 2 (EBITAT)

Variable 1 Variable 2 Correlation Variable 1 Variable 2 Correlation

logoil interestrate 0.732368 logoil interestrate 0.732368

lctat reat 0.687432 lctat reat 0.687432

lctat seqat 0.635743 reat ebitatlag1 0.642279

reat roalag1 0.621879 lctat seqat 0.635743

lctat roalag1 0.542714 cheat chlct 0.541779

cheat chlct 0.541779 reat relct 0.534726

reat relct 0.534726 lctat ebitatlag1 0.529939

lctlt logat 0.515386 lctlt logat 0.515386

dtat seqat 0.467097 logat ebitatlag1 0.490036

reat seqat 0.463247 dtat seqat 0.467097

logat roalag1 0.456176 reat seqat 0.463247

logat reat 0.427153 relct ebitatlag1 0.428460

seqat roalag1 0.414960 logat reat 0.427153

gdpgrowth inflation 0.395303 gdpgrowth inflation 0.395303

logoil gdpgrowth 0.393173 logoil gdpgrowth 0.393173

lctlt dtat 0.389953 lctlt dtat 0.389953

xintsale roalag1 0.388670 xintsale ebitatlag1 0.385681

relct roalag1 0.383257 seqat ebitatlag1 0.384161

reat xintsale 0.381331 reat xintsale 0.381331

logat relct 0.377250 logat relct 0.377250
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Table 2.15: Top 20 absolute correlations of Model 3 and Model 4

Model 3 (Tobin’s Q) Model 4 (Sales growth)

Variable 1 Variable 2 Correlation Variable 1 Variable 2 Correlation

logoil interestrate 0.732368 logoil interestrate 0.732368

lctat reat 0.687432 lctat reat 0.687432

lctat seqat 0.635743 lctat seqat 0.635743

cheat chlct 0.541779 cheat chlct 0.541779

reat relct 0.534726 reat relct 0.534726

lctlt logat 0.515386 lctlt logat 0.515386

dtat seqat 0.467097 dtat seqat 0.467097

reat seqat 0.463247 reat seqat 0.463247

logat reat 0.427153 logat reat 0.427153

reat Qlag1 0.425811 gdpgrowth inflation 0.395303

gdpgrowth inflation 0.395303 logoil gdpgrowth 0.393173

logoil gdpgrowth 0.393173 lctlt dtat 0.389953

lctlt dtat 0.389953 reat xintsale 0.381331

reat xintsale 0.381331 logat relct 0.377250

logat relct 0.377250 lctat saleat 0.377027

lctat saleat 0.377027 xintsale salegrowthlag1 0.376152

cheat relct 0.370620 cheat relct 0.370620

lctat logat 0.368511 lctat logat 0.368511

lctat xintsale 0.349713 lctat xintsale 0.349713

gdpgrowth interestrate 0.340178 gdpgrowth interestrate 0.340178

VIF test. To eliminate severe multicollinearity problem, besides using correlation coefficient

matrix, we do the Variance Inflation Factor (VIF) test by calculating VIFj =
1

1−R2
j
, where

R2
j is the goodness of fit value obtained by regressing the jth variable on the remaining

independent variables. Empirically, variables with VIF’s values less than 8 are kept as

shown in Table 2.5122.

22The top VIF’s values of the linear regression for the case of natural hazards are shown in Appendix 4.
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Table 2.16: Top 20 VIF’s values for linear regression models

Model 1 VIF Model 2 VIF Model 3 VIF Model 4 VIF

inflation 7.017203 inflation 7.013184 lctlt 7.334174 inflation 6.998687

lctlt 6.916450 lctlt 6.922942 inflation 7.009825 lctlt 6.955896

logat 6.449909 logat 6.549338 logat 6.347809 logat 6.380665

lctat 6.235576 lctat 6.233981 lctat 6.120241 lctat 6.187584

interestrate 4.376896 interestrate 4.373795 seqat 4.406900 interestrate 4.379291

seqat 4.281882 seqat 4.277134 interestrate 4.374459 seqat 4.300491

reat 3.871019 reat 3.900545 gdpgrowth 3.834821 gdpgrowth 3.832852

gdpgrowth 3.833718 gdpgrowth 3.832756 reat 3.829549 reat 3.760325

saleat 3.639975 saleat 3.697453 saleat 3.607631 saleat 3.655896

cheat 3.240497 cheat 3.250151 cheat 3.242551 cheat 3.248636

hhi 2.661929 hhi 2.663623 hhi 2.661298 hhi 2.661279

relct 2.282047 relct 2.295641 dtat 2.258163 dtat 2.258033

dtat 2.257078 dtat 2.256507 relct 2.243393 relct 2.241613

chlct 2.186465 ebitatlag1 2.239404 chlct 2.197794 chlct 2.178986

roalag1 2.136983 chlct 2.187009 Qlag1 2.112606 disaster10K 1.685062

disaster10K 1.688482 disaster10K 1.691070 disaster10K 1.686413 invtsale 1.627244

invtsale 1.582029 invtsale 1.585414 invtsale 1.579723 atemp 1.560506

atemp 1.558577 atemp 1.558415 atemp 1.558741 xintsale 1.553171

xintsale 1.424234 xintsale 1.418182 xintsale 1.407173 salegrowthlag1 1.403611

capxgrowth 1.228371 capxgrowth 1.228950 capxgrowth 1.224616 capxgrowth 1.224616

2.3.7 Data transformation

Note that in this study we use two datasets: original data and transformed data. For the

comparison between linear regression and CART, we use the original data. For comparison

among linear regression, CART, and neural networks, we use the transformed data.

To compare among all models (linear regression, CART, and neural networks), the entire

data (both train and test data) is scaled by min-max scaler. Consider a feature or target x

with values xi, i = 1, 2, ..., n. The original values of x will be transformed as follows

xscaled =
x− xmin

xmax − xmin
, (2.5)

where xmin and xmax is the minimum and the maximum of feature (or variable) x,

respectively.

By using min-max scaler, all targets and features of both train and test data will be

transformed into the range [0, 1]. This means that the minimum and maximum value

of a feature or target is 0 and 1, respectively. In Python, one can use the MinMaxScaler()

built-in function.

33



2.3.8 Exploratory data analysis

Exploratory data analysis (EDA) is a crucial step of performing initial investigations on

data. Three common tools for EDA are summary statistics, histogram, and heat map.

Table 2.17 illustrates the summary statistics of all dependent and lagged dependent

variables. Note that even though the mean ROA and EBITAT are negative, the median

ROA and EBITAT are about 1.9% and 5.1%, respectively, which seem rational.

Table 2.17: Summary statistics of the dependent and lagged dependent variables

roa ebitat Q salegrowth roalag1 ebitatlag1 Qlag1 salegrowthlag1

count 97761 97761 97761 97761 97761 97761 97761 97761

mean -0.1597 -0.0885 2.3457 0.0487 -0.1664 -0.0927 2.2709 0.0494

std 0.6107 0.4922 3.3787 0.7767 0.6381 0.5093 3.2011 0.7812

min -4.2418 -3.2768 0.3079 -0.8855 -4.4444 -3.4259 0.2866 -0.8855

25% -0.1127 -0.0677 0.8721 -0.1840 -0.1153 -0.0694 0.8552 -0.1838

50% 0.0186 0.0515 1.3185 -0.0637 0.0193 0.0509 1.2901 -0.0637

75% 0.0652 0.1061 2.3400 0.0505 0.0666 0.1063 2.2770 0.0505

max 0.3100 0.3346 25.0567 5.8950 0.3232 0.3411 23.4122 5.9450

Table 2.18 shows the summary statistics of action independent variables and variables of

interest (natural disasters).

Table 2.18: Summary statistics of action independent variables and variables of interest

xintgrowth capxgrowth empgrowth dvcib disaster0 disaster disaster10K

count 97761 97761 97761 97761 97761 97761 97761

mean 0.6231 0.6050 0.0257 0.1154 2.8538 2.7275 8.9035

std 3.1686 2.4821 0.4038 0.3731 11.1612 10.7287 14.5812

min -1.0000 -0.9939 -0.7000 -0.8834 0.0000 0.0000 0.0000

25% -0.2339 -0.3252 -0.1214 0.0000 0.0525 0.0525 0.0000

50% 0.0000 -0.0142 -0.0207 0.0000 0.3750 0.3750 3.0000

75% 0.2782 0.4742 0.0654 0.0177 1.5000 1.5000 11.0000

max 25.6000 17.9381 2.5854 2.4079 150.0000 150.0000 84.0000

The histograms of all variables of the original data are shown in Figure 2.4.
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Figure 2.4: The histograms of the original data

Heat map of original features. The heat map of all of the original features of the entire data

(both train and test data) are shown in Figure 2.5. Heat map gives us a general image of

the relationships among variables in terms of direction and magnitude. The green implies

the positive relationship while the pink implies the negative relationship between a pair of

two variables. Note that the bolder green cells represent the more positive correlation and

the bolder pink cells imply the more negative correlation.
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Figure 2.5: Heat map of the original features of Model 1 (ROA)

Notes: The figure shows that the correlation coefficient between any pair of variables is less than 0.8.

This implies that there are no severe correlations among independent variables in Model 1. Note that,

for the illustration purpose, only the heat map of Model 1 is shown in Figure 2.5. Other heat maps are

shown in Appendix 3.

2.3.9 Train and test data

Data is split into train data (or in-sample data) and test data (or out-of-sample data). Train

data is used to build and train models and unseen test data will be used to validate the

models.

In order to quantify the effects of natural disasters on firm performance in the linear

regression and CART model for the original data, we use the 50/50 split ratio in this

study for two reasons. The reason is because, on average, the billion-dollar disasters are

rare events at the state level and also at the firm level. Therefore, for the linear regression

and CART models, we randomly split data into 50% of training data and 50% of test data to

avoid the bias of splitting due to the nature of rare events (billion-dollar natural disasters).
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In order to compare the performances among neural networks, CART, and the benchmark

linear regression models using the scaled data, we use the most common split ratios in

machine learning including 80/20, 90/10, and 50/5023. Note that the 80/20 split ratio

means that the entire data is split into 80% train data and 20% test data (hold-out sample),

and similarly for other split ratios. In turn, the train data is split into 80% of training data

and 20% of validation data for the 80/20 split, which yields 64% (0.8 ∗ 80%) training

data, 16%(0.2 ∗ 80%) validation data, and 20% unseen test data. Similarly for other splits.

Table 2.19 shows the proportions of training data, validation data, and test data for neural

networks models.

Table 2.19: Training, validation, and test data for different splits

Split ratio Training data Validation data Test data

80/20 64% 16% 20%

90/10 81% 9% 10%

50/50 25% 25% 50%

2.4 Results

The results in this paper are obtained from running data using Python version 3.7, Numpy

version 1.19.5, and Tensorflow version 2.7.0.

2.4.1 The linear regression results

The effects of natural hazards and disasters on firm performance. We can observe

from Table 2.20 that the observed damages of natural disasters are not associated with any

firm performance criteria. However, the perceived natural disaster risk (i.e. disaster10K)

are negatively associated with the firm’s profitability (ROA and EBITAT) at the 99%

and 90% confidence level, respectively. Moreover, perceived natural disaster risk is not

associated with Tobin’s Q and sales growth.

Let’s dive deeper into the meaning of the coefficients of the variables of interest. The

coefficient of disaster10K for ROA equals to −0.0004, which means that if Form 10-Ks

include one more additional word related to natural disasters then ROA tends to decrease by

0.0004%. Linearly, we can say that if Form 10-Ks include 10 more additional words (which

approximately equals the mean of disaster10K) related to natural disasters then ROA is

likely to decrease by 0.004%. Also, if Form 10-Ks include 15 more additional words (which

is approximately 1 standard deviation) related to natural disasters then ROA is likely to

decrease by 0.006%. These results imply that the effects of perceived natural disasters on

23Some previous studies also utilize these three split ratios of 50/50, 80/20, and 90/10, for example Wilson
and Sharda (1994).
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ROA is insignificant. Moreover, the effects of perceived natural disasters on EBITAT is two

times smaller than that on ROA.

Table 2.20: Linear regression results

roa ebitat Q salegrowth

const -0.2226*** -0.1496*** 0.7068*** 0.0278

lctat -0.0929*** -0.0555*** 0.4708*** 0.1444***

cheat -0.0533*** -0.0738*** 0.7328*** 0.0485***

chlct -0.0024 -0.0028*** 0.0295*** 0.0129***

lctlt -0.0198** -0.0087 0.0124 -0.0133

saleat 0.0537*** 0.0373*** -0.1842*** -0.0732***

logat 0.0307*** 0.0233*** -0.0765*** -0.0111***

reat 0.0097*** 0.0048*** -0.0234*** 0.0066***

relct 0.0036*** 0.0028*** -0.0016 -0.0047***

dtat 0.0121 0.0244*** 0.0156 -0.0131

seqat 0.0805*** 0.0596*** 0.0140 0.0136

invtsale -0.0116 -0.0108 0.1272* 0.1112***

xintsale -0.0917*** -0.0600*** 0.1430*** 0.1845***

atemp 0.0000 -0.0000* 0.0000** 0.0000

invtgrowth 0.0065** 0.0032 -0.0298** 0.0033

hhi 0.0233 0.0205 -0.2553 0.0892

gdpgrowth -0.0030 -0.0013 0.0051 -0.0059*

inflation -0.0089 -0.0111 0.1078* -0.0168

interestrate 0.0005 0.0004 0.0065 0.0038*

roalag1 0.4251***

ebitatlag1 0.5423***

Qlag1 0.6879***

salegrowthlag1 0.0794***

xintgrowth -0.0021*** 0.0006 -0.0017 0.0131***

capxgrowth -0.0100*** -0.0062*** -0.0355*** 0.0176***

empgrowth 0.0478*** 0.0452*** -0.5972*** 0.6607***

dvcib 0.0147*** 0.0108*** 0.0512* 0.0110

disaster -0.0002 -0.0002 -0.0015 -0.0003

disaster0 -0.0002 -0.0002 0.0007 -0.0002

disaster10K -0.0004*** -0.0002* -0.0003 0.0002

Year FE Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

State FE Yes Yes Yes Yes

N 48881 48881 48881 48881

R2 0.5587 0.6438 0.5716 0.2386

Notes: In this table, each column shows the coefficients and its levels of significance in the corresponding

model. Here, ∗, ∗∗, and ∗ ∗ ∗ stand for p-value are less than 0.1, 0.05, and 0.01, respectively.

Natural hazards vs. Natural disasters. Table 2.21 compares the effects of the U.S.

natural hazards and U.S. (billion-dollar) natural disasters together with the perceived

natural disaster risk on firm performance. It can be seen that the effects of perceived

natural disaster risk on firm profitability are the same in both cases. However, the effects
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of government-reported damages of natural hazards on firm profitability are different with

that of the billion-dollar natural disasters. Specifically, the damages of natural hazards are

negatively associated with firm profitability while that of the billion-dollar natural disasters

have no effects on firm profitability. Regarding Tobin’s Q and sales growth, both the

damages of natural hazards and that of the billion-dollar natural disasters have no effects

on these criteria of firm performance.

Table 2.21: The effects of natural hazards vs. natural disasters on firm performance

Natural hazards Billion-dollar natural disasters

roa ebitat Q salegrowth roa ebitat Q salegrowth

Controls Yes Yes Yes Yes Yes Yes Yes Yes
damage -0.0012*** -0.0009*** 0.0004 -0.0006
damage0 -0.0001 -0.0004 -0.0023 0.0004
disaster -0.0002 -0.0002 -0.0015 -0.0003
disaster0 -0.0002 -0.0002 0.0007 -0.0002
disaster10K -0.0004** -0.0002* -0.0007 0.0002 -0.0004*** -0.0002* -0.0003 0.0002

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes

N 46376 46376 46376 46376 48881 48881 48881 48881
R2 0.5792 0.6567 0.5839 0.2347 0.5587 0.6438 0.5716 0.2386

Natural disasters vs. Perceived risk of natural disasters. We now run the models

with only natural disasters and only perceived risk of natural disasters to examine the

sensitivity of the coefficients of variables of interest. Table 2.22 compares the results of the

variables of interest in the case of billion-dollar natural disasters only and perceived risk of

natural disasters only. Comparing the coefficients of variables of interest in the model of

natural disasters only, perceived risk of natural disasters only, and both, we observe that

the signs, magnitudes, and levels of statistical significance of the coefficients in the first two

models are exactly the same as that in the third model. This implies that the regression

coefficients are robust either we take into account natural disaster and perceived risk of

natural disasters separately or at the same time.

Table 2.22: The effects of the natural disasters vs. perceived risk of natural disasters

Natural disasters Perceived risk of natural disasters Both

roa ebitat Q saleg roa ebitat Q saleg roa ebitat Q saleg

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

disaster -0.0003 -0.0002 -0.0015 -0.0003 -0.0002 -0.0002 -0.0015 -0.0003

disaster0 -0.0002 -0.0002 0.0007 -0.0002 -0.0002 -0.0002 0.0007 -0.0002

disaster10K -0.0004*** -0.0002* -0.0003 0.0002 -0.0004*** -0.0002* -0.0003 0.0002

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 48881 48881 48881 48881 48881 48881 48881 48881 48881 48881 48881 48881

R2 0.5586 0.6438 0.5716 0.2386 0.5587 0.6438 0.5715 0.2386 0.5587 0.6438 0.5716 0.2386

Note: saleg stands for sales growth and ∗p < .1, ∗ ∗ p < .05, ∗ ∗ ∗p < .01.
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The results and implications in the case of natural hazards are similar compared to that

of natural disasters. Note that the perceived risk of natural disasters are the same in both

Table 2.22 and Table 2.23.

Table 2.23: Natural hazards vs. perceived risk of natural disasters

Natural hazards Perceived risk of natural disasters Both

roa ebitat Q saleg roa ebitat Q saleg roa ebitat Q saleg

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

damage -0.0012*** -0.0009*** 0.0004 -0.0006 -0.0012*** -0.0009*** 0.0004 -0.0006

damage0 -0.0001 -0.0005 -0.0023 0.0004 -0.0001 -0.0004 -0.0023 0.0004

disaster10K -0.0004*** -0.0002* -0.0007 0.0002 -0.0004** -0.0002* -0.0007 0.0002

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 46376 46376 46376 46376 46376 46376 46376 46376 46376 46376 46376 46376

R2 0.5792 0.6567 0.5839 0.2347 0.5791 0.6566 0.5839 0.2346 0.5792 0.6567 0.5839 0.2347

Note: saleg stands for sales growth and ∗p < .1, ∗ ∗ p < .05, ∗ ∗ ∗p < .01.

Manufacturing vs. Services sector. Since manufacturing and services are two dominant

sectors in the U.S. economy (see Table 2.10), it is worth to examine the effects of natural

disasters on these sectors separately. Specifically, the effects of natural disasters and

natural hazards on firm performance of manufacturing sector, services sector, and the whole

economy are shown in Table 2.24 and Table 2.25, respectively. We can observe in both tables

that, for the manufacturing sector, perceived natural uncertainty is negatively associated

with Tobin’s Q. Meanwhile, for the services sector actual damages in year t+1 and perceived

environmental uncertainty in year t are negatively associated with firm profitability in year

t+1.

Table 2.24: The effects of natural disasters on the manufacturing vs. services sector

Manufacturing sector Services sector Whole economy
roa ebitat Q saleg roa ebitat Q saleg roa ebitat Q saleg

controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
disaster -0.0002 -0.0002 -0.0007 -0.0002 -0.0001 -0.0003 -0.0002 -0.0007 -0.0002 -0.0002 -0.0015 -0.0003
disaster0 0.0001 -0.0001 -0.0016 0.0002 -0.0014** -0.0009** 0.0052 -0.0010 -0.0002 -0.0002 0.0007 -0.0002
disaster10K 0.0003 0.0002 -0.0032*** 0.0006 -0.0011* -0.0009** 0.0056 -0.0004 -0.0004*** -0.0002* -0.0003 0.0002
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 24269 24269 24269 24269 10713 10713 10713 10713 48881 48881 48881 48881

R2 0.6209 0.7058 0.6029 0.1917 0.5459 0.6143 0.5475 0.2996 0.5587 0.6438 0.5716 0.2386

Note: saleg stands for sales growth and ∗p < .1, ∗ ∗ p < .05, ∗ ∗ ∗p < .01.

Table 2.25: The effects of natural hazards on the manufacturing vs. services sector

Manufacturing sector Services sector Whole economy
roa ebitat Q saleg roa ebitat Q saleg roa ebitat Q saleg

controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
damage -0.0005 -0.0003 0.0004 0.0021 -0.0023 -0.0015 0.0079 -0.0016 -0.0012*** -0.0009*** 0.0004 -0.0006
damage0 0.0003 -0.0001 0.0033 -0.0003 -0.0020 -0.0022** 0.0029 -0.0013 -0.0002 -0.0002 0.0007 -0.0002
disaster10K -0.0001 0.0000 -0.0023* 0.0012*** -0.0014** -0.0010** 0.0021 -0.0005 -0.0004*** -0.0002* -0.0003 0.0002
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 22909 22909 22909 22909 10377 10377 10377 10377 48881 48881 48881 48881

R2 0.6083 0.6894 0.6022 0.1913 0.5372 0.6171 0.5556 0.3195 0.5587 0.6438 0.5716 0.2386

Note: saleg stands for sales growth and ∗p < .1, ∗ ∗ p < .05, ∗ ∗ ∗p < .01.

Small vs. Large firms. We check the regression results according to the firm’s size by

splitting the data into two groups: Small firms and big firms. Small firms are those have
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total assets less than the median of total assets of all firms (237.119 million USD) while

big firms are those have total assets greater than or equal the median of total assets of

all firms. The regression results of small and big firms corresponding to the billion-dollar

natural disasters and natural hazards are shown in Table 2.26 and Table 2.27, respectively.

The effects of natural disasters on firm profitability is consistently negatively in all three

cases (small, large, or all firms).

Table 2.26: The effects of natural disasters on small vs. large firms

Small firms Large firms All firms
roa ebitat Q saleg roa ebitat Q saleg roa ebitat Q saleg

controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
disaster 0.0001 -0.0003 -0.0007 -0.0021 -0.0002*** -0.0002*** -0.0001 -0.0003*** -0.0002 -0.0002 -0.0015 -0.0003
disaster0 -0.0009 -0.0015*** 0.0061* 0.0005 0.0000 -0.0000 -0.0003 -0.0000 -0.0002 -0.0002 0.0007 -0.0002
disaster10K -0.0002 -0.0001 -0.0059* 0.0001 -0.0001*** -0.0001** 0.0002 0.0002*** -0.0004*** -0.0002* -0.0003 0.0002
N 24679 24679 24679 24679 23766 23766 23766 23766 48881 48881 48881 48881
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.5230 0.5955 0.5313 0.1815 0.4469 0.6612 0.7321 0.3873 0.5587 0.6438 0.5716 0.2386

Note: saleg stands for sales growth and ∗p < .1, ∗ ∗ p < .05, ∗ ∗ ∗p < .01.

Table 2.27 shows a clear and consistent results that natural hazards are consistently

negatively associated with firm profitability. Moreover, for large firms, natural hazards

in year t are negatively associated with sales growth in year t+ 1.

Table 2.27: The effects of natural hazards on small vs. large firms

Small firms Large firms All firms
roa ebitat Q saleg roa ebitat Q saleg roa ebitat Q saleg

controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
damage 0.0003 0.0000 -0.0094 0.0032 -0.0003*** -0.0002** 0.0010 -0.0005** -0.0002 -0.0002 -0.0015 -0.0003
damage0 -0.0007 -0.0025*** 0.0062 -0.0018 0.0001 -0.0001 -0.0004 -0.0002 -0.0002 -0.0002 0.0007 -0.0002
disaster10K -0.0013** -0.0010** -0.0052 0.0014 -0.0000 0.0000 0.0004 0.0001 -0.0004*** -0.0002* -0.0003 0.0002
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 23430 23430 23430 23430 22529 22529 22529 22529 48881 48881 48881 48881

R2 0.5188 0.5814 0.5106 0.1807 0.4429 0.6669 0.7302 0.4076 0.5587 0.6438 0.5716 0.2386

Note: saleg stands for sales growth and ∗p < .1, ∗ ∗ p < .05, ∗ ∗ ∗p < .01.

2.4.2 Goodness of fit

Recall that the goodness of fit (or R2) is a measure that explains the variation of the

dependent (or target) variable due to the variation of the independent variables (or features).

Formally, the goodness of fit metric is defined as follows

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
,

where n is the size of the test data, yi, ŷi, and ȳ are the ground truth, estimated, and mean

of yi values, respectively.

Note that even though some previous studies criticize R2 and prefer error measures (e.g.

Razi and Athappilly 2005), R2 still brings some useful insights about the models and used

as a criterion for evaluating forecasting models (e.g. Swanson and White 1995). In order
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to avoid the bias in evaluating the models, we decided to use both R2 and error measures

to compare the performances among these models, including linear regression, CART, and

DNNs. However, we need to keep in mind that error measures seem more reliable criteria

to evaluate the models in relation to R2. In this subsection, we focus on evaluation models

using R2.

The architecture of the CART models. In order to find a good architecture we use two

steps: trial and error method, and grid search. we first use the trial and error method to

derive the lists of hyperparameters in Table 2.28. The trial and error step is very important

since by doing this we have an insight of what are the suitable ranges of hyperparameters

that we should choose for hyperparameter optimization.

Table 2.28: The list of hyperparameters for the CART models

Hyperparameter Range

list max depth [None, 5, 6, 7, 8, 9, 10, 11, 12]

list max features [None, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00]

list min samples split [2, 3]

list min samples leaf [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Notes: For the CART models, here we only consider four important and

common hyperparameters including max depth, max features, min samples split,

and min samples leaf. However, the CART models indeed have several

more hyperparameters such as max leaf nodes, min weight fraction leaf,

max leaf nodes, min impurity decrease, and ccp alpha.

We then use grid search (multiple for loops) based on the lists of hyperparameters from the

trial and error method to tune the hyperparameters to derive the optimal hyperparameters

for each target variable.

Table 2.29: Two methods using for hyperparameter optimization

Step Method Output

Step 1 Trial and error “Best” of lists of hyperparameters

Step 2 Grid search Optimal combination of hyperparameters

Notes: Step 1 is necessary because without this step, Step 2 (grid

search) would take too much time to be implemented. If the ranges of

hyperparameters are not restricted at Step 1, it might take many days

to run just a model at the Step 2 stage. For Step 1 itself, to obtain the

“best” lists of hyperparameters, hundreds of lists have been run to select

the best ones. That is why Step 1 is called trial and error method.

The optimal hyperparameters for the models for predicting ROA, EBITAT, Tobin’s Q, and

sales growth are shown respectively in Table 2.30. Note that, for simplicity, in this table

we use a dependent variable to represent for each corresponding model.
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Table 2.30: Hyperparameters optimization

roa ebitat Q salegrowth

max depth 9 12 10 11

max features 0.85 0.7 0.65 0.9

min samples split 2 2 2 2

min samples leaf 90 60 100 80

The comparison of goodness of fit R2 for the original data between linear regression and

CART is shown in Table 2.3124. It can be seen that the R2 of CART and that of the linear

regression are not much different. The goodness of fit of CART is slightly higher than that

of linear regression model for the models of ROA and sales growth while R2 of the linear

regression models are slightly higher than that of CART for the models of EBITAT and

Tobin’s Q25.

Table 2.31: Comparison goodness of fit
among models with test data

Linear regression CART

roa 0.5587 0.5618

ebitat 0.6438 0.6399

Q 0.5716 0.5668

salegrowth 0.2386 0.2496

Notes: This table shows that the goodness

of fit (R2) of the linear regression and CART

models are not much different in all models.

This implies R2 might not be the best

predictive metrics to evaluate the models. In

the next subsections, we will investigate two

important metrics that are feature importance

and prediction errors.

2.4.3 Feature importance

Feature importance is a scoring metric used to measure the relative importance of each input

feature in relation to other features of a predictive model. Specifically, feature importance

24Not that since R2 is not a common criterion of neural networks, we only measure R2 of CART and
linear regression model.

25Note that the list of variables in this study is restricted by some restrictions of the linear regression
model. For example, in order to avoid the severe multicollinearity problem and highly correlated between
variables, we removed several independent variables out of the initial list. Since multicollinearity problem is
an issue for linear regression, but not for the CART model, adding some more variables (which we cannot
add to the linear regression model due to the multicollinearity issue) to the CART model might help increase
R2 of this model.
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is a technique help to select the most important variables in the sense that how much each

of these variables help to reduce the level of predicted error (i.e. impurity or uncertainty)

of the target variables26. In the CART model, impurity can be understood as the level of

uncertainty present at every node. The goal of the CART model is to minimize impurity

(or minimize uncertainty) of the target variables at each of the leaf neurons.

There are two main roles of the feature importance metric. Firstly, the feature importance

metric provides insights for the feature selection process. A natural way is to keep those

features that help reduce the level of impurity the most and remove the variables that

contribute nothing or very little to decrease the level of impurity. Note that even if we do

not want to remove any features, we still know which variables contribute to the most and

which variables contribute the least. Secondly, as a consequence of the first role, by removing

some irrelevant (non-informative) or redundant features, the feature importance metric is a

good tool for the dimensionality reduction purpose and decreasing the computational cost

of processing data and training models. Thirdly, reducing the number of inputs by removing

irrelevant or redundant features might help to improve the performances of our models in

terms of error measures.

We can observe one noticeable result from Table 2.32 that the uncertainty variables

(disaster0, disaster, and disaster10K) are much relatively less important, in the sense

of helping to decrease the impurity level, compared to lagged dependent variables (e.g.

roalag1, ebitatlag1, Qlag1, salegrowthlag1) and financial statement state variables

(e.g. empgrowth, reat, logat, saleat, seqat).

26A good reference for data-driven feature selection in the CART model is Gocheva-Ilieva et al. (2019).
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Table 2.32: Feature importance of the CART models

Model 1 (ROA) Model 2 (EBITAT) Model 3 (Tobin’s Q) Model 4 (sales growth)

variable
impurity

decrease
variable

impurity

decrease
variable

impurity

decrease
variable

impurity

decrease

roalag1 0.731264 ebitatlag1 0.894507 Qlag1 0.910080 empgrowth 0.554372

reat 0.142301 logat 0.024963 logat 0.024171 saleat 0.215514

logat 0.046613 seqat 0.021086 empgrowth 0.012403 salegrowthlag1 0.110306

seqat 0.023266 reat 0.018697 capxgrowth 0.008595 reat 0.037373

saleat 0.014844 saleat 0.009083 reat 0.007689 xintgrowth 0.028039

xintsale 0.013228 xintsale 0.008432 relct 0.005536 capxgrowth 0.020958

lctat 0.007838 relct 0.007126 inflation 0.005440 logat 0.005717

relct 0.004745 empgrowth 0.005834 gdpgrowth 0.005412 lctat 0.005061

capxgrowth 0.003734 lctat 0.002278 cheat 0.004037 disaster10K 0.004982

empgrowth 0.003187 interestrate 0.001717 seqat 0.003520 invtsale 0.004648

interestrate 0.002582 capxgrowth 0.001518 interestrate 0.002652 cheat 0.003900

cheat 0.002469 chlct 0.001170 lctlt 0.002152 inflation 0.002572

dvcib 0.001411 lctlt 0.001019 xintsale 0.001980 gdpgrowth 0.001174

invtsale 0.001158 dtat 0.000797 xintgrowth 0.001278 chlct 0.001124

invtgrowth 0.000432 dvcib 0.000701 disaster10K 0.001219 seqat 0.000819

xintgrowth 0.000313 xintgrowth 0.000417 chlct 0.000827 hhi 0.000779

inflation 0.000281 atemp 0.000171 saleat 0.000756 interestrate 0.000751

gdpgrowth 0.000130 cheat 0.000147 atemp 0.000637 lctlt 0.000727

chlct 0.000074 invtgrowth 0.000145 invtgrowth 0.000503 atemp 0.000639

dtat 0.000044 invtsale 0.000073 lctat 0.000433 invtgrowth 0.000395

disaster10K 0.000039 gdpgrowth 0.000045 invtsale 0.000372 relct 0.000151

lctlt 0.000037 inflation 0.000032 hhi 0.000200 dtat 0.000000

atemp 0.000008 disaster10K 0.000025 dtat 0.000070 xintsale 0.000000

disaster0 0.000001 hhi 0.000016 disaster0 0.000038 dvcib 0.000000

hhi 0.000000 disaster0 0.000000 dvcib 0.000000 disaster0 0.000000

disaster0 0.000000 disaster 0.000000 disaster 0.000000 disaster 0.000000

A node will be split if this split induces a decrease of the impurity (mean square error)

greater than or equal to this current value27. For example, we illustrate the trees with

max depth=2. Intuitively, the trees with mean squared error (squared error), number of

samples (samples), and the average predicted value of ROA, EBITAT, Tobin’s Q, and sales

growth are respectively shown in Figure 2.6, Figure 2.7, Figure 2.8, and Figure 2.9.

27https:

//scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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Figure 2.6: Decision tree of the CART model for predicting ROA

Figure 2.7: Decision tree of the CART model for predicting EBITAT

Figure 2.8: Decision tree of the CART model for predicting Tobin’s Q
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Figure 2.9: Decision tree of the CART model for predicting sales growth

2.4.4 Prediction errors analysis

Since we are working on the prediction problems, a natural way to measure the quality of

our predictive models is how close from predicted values to the actual ground truth values.

That is, how large the error measures are. Error measures are popular indicators used to

compare the performances between linear regression model and DNNs (e.g. Doganis et al.

2006; Anyaeche and Ighravwe 2013; Pombeiro et al. 2017). Formally, the mean squared error

(MSE), root mean squared error (RMSE), and mean absolute error (MAE) are defined as

follows.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

MAE =
1

n

n∑
i=1

|yi − ŷi|,

where n is the size of the test set, yi and ŷi are the actual and predicted values, respectively.

Note that there is no absolute criterion for a “good” value of MSE, RMSE, or MAE. The best

way we can do this is to compare these criteria among models. The smaller error measures

the better. Since the definition and the behavior of each dependent variable is different

compared to the others, we are going to investigate four different models corresponding

to four different firm performance criteria including ROA, EBITAT, Tobin’s Q, and sales

growth.
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Model 1: Predicting ROA

Neural networks. Neural networks with one hidden layer, two hidden layers, three

hidden layers, and four hidden layers are denoted as ANN, DNN[2], DNN[3], and DNN[4],

respectively. Google Colab with the Numpy version 1.19.5 and the Tensorflow version 2.7.0

are used to run the neural network models. Choosing the optimal number of neurons is the

first important step to build the architecture of neural networks.

Hyperparameter tuning the number of neurons. Finding the optimal architectures for neural

networks depends critically on determining a good set of hyperparameters. Since there

are many hyperparameters, there are many ways that we can tune the hyperparameters.

First, we need to find the optimal number of neurons (or units) in each layer. In order to

tune hyperparameters we use the Keras tuner library. This library contains four types of

algorithms, including Hyperband, random search, sklearn, and Bayesian optimization. We

choose Hyperband for tuning the number of inputs for the input and hidden layers28. Note

that, in our architecture of neural networks, the number of neurons in the input layer equals

the number of independent variables (features), which is 27, and the number of output is

only one (e.g ROA). The following table shows the optimal number of neurons for the hidden

layer with epochs=500.

Table 2.33: The optimal number of neurons of neural networks for predicting ROA

min value max value Step ANN DNN[2] DNN[3] DNN[4]

Input layer 27 27 - 27 27 27 27

Hidden layer [1] 8 512 4 464 272 456 360

Hidden layer [2] 8 512 4 - 488 288 368

Hidden layer [3] 8 512 4 - - 272 288

Hidden layer [4] 8 512 4 - - - 212

Output layer 1 1 - 1 1 1 1

Now, we are going to identify the types of activation function for each layer. For the

output layer, since our problem is a prediction problem with continuous target variables it

is classified as regression problem. In practice, the common activation function for regression

problems is linear. For the input and hidden layer, in practice, there are three common

activation functions for input and hidden layers including Rectified Linear Unit (ReLU),

logistic (sigmoid), and hyperbolic tangent (tanh). In modern neural networks, the default

recommendation is to use the ReLU activation function (Goodfellow et al. 2016). Therefore,

28For more details about the Hyperband algorithm, see Li et al. (2018) or the republised version at ?. Li
et al. (2018) compare the Hyperband algorithm and the popular Bayesian optimization methods and find
that the Hyperband algorithm “can provide over an order-of-magnitude speedup over our competitor set on
a variety of deep-learning and kernel-based learning problems”.
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we use the ReLU activation function in this model. Recall that a ReLU activation function

has the form g(z) = max{0, z}.

The architectures of all neural networks models are shown in Table 2.34. From the number

of inputs in Table 2.33, we obtain the number of parameters in Table 2.34. The number of

parameters is calculated as follows. Suppose n is the number of neurons in the previous layer

and m is the number of neurons in the current layer. By adding the bias to the previous

layer, we have n + 1 neurons. The number of parameters between the previous layer and

the current layer is equal to (n + 1)m. Specifically, the number of trainable parameters of

neural networks for predicting ROA is shown as follows29.

Table 2.34: The number of trainable parameters of neural networks for predicting ROA

Activation function ANN DNN[2] DNN[3] DNN[4]

Input layer ReLU - - - -

Hidden layer [1] ReLU 12992 7616 12768 10080

Hidden layer [2] ReLU - 133224 131616 132848

Hidden layer [3] ReLU - - 78608 106272

Hidden layer [4] ReLU - - - 61268

Output layer linear 465 489 273 213

Total parameters - 13,457 141,329 223,265 310,681

Hyperparameter tuning number of epochs. In order to find the optimal number of epochs,

we first run the Keras sequential model.fit() function for ROA with epochs=500,

batch size=32, validation split=0.530. For example, for the 80/20 split data, we run

the index(min(val mse per epoch)) function and get the optimal number of epochs for

ANN, DNN[2], DNN[3], and DNN[4], which are 282, 157, 157, and 103, respectively. We

then rerun the model.fit() function with these optimal epochs, i.e. epochs=282 for ANN,

epochs=157 for DNN[2], epochs=157 for DNN[3], and epochs=103 for DNN[4]. Finally, we

evaluate the model on the test data by using the model.evaluate() function to obtain the

error measures for unseen test data.

29For example, for the ANN model, the number of parameters between the input layer and the hidden
layer equals to (27 + 1)× 464 = 12, 992. Also, the number of parameters between the hidden layer and the
output layer equals (464+1)× 1 = 465. Therefore, the total parameters equals 12, 992+465 = 13, 457. The
numbers of parameters in other neural network models are calculated in a similar manner.

30Note that the validation split parameter shows the fraction of training data to be used as validation
data. Since about 66.66% of our data is training set, the validation split=0.5 implies that the fraction of
validation data is approximately 33.33% of the entire data. So the fraction of each train set, validation set,
and test set is equally one third of the data or approximately 33.33%.
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Table 2.35: Optimal epochs of neural networks for predicting ROA

Model ANN DNN[2] DNN[3] DNN[4]

Epochs range [1, 500] [1, 500] [1, 500] [1, 500]

Optimal epoch (80/20 split) 282 157 157 112

Optimal epoch (90/10 split) 405 197 158 119

Optimal epoch (50/50 split) 384 204 160 132

Visualization of MSE and MAE of training and validation data. The variations of the mean

squared error (MSE) and mean absolute error (MAE) of training and validation data with

the 80/20 split ratio of the ANN, DNN[2], DNN[3], and DNN[4] model are shown in Figure

2.10-2.13. We can observe that both MSE and MAE drop dramatically at the very few

initial epochs then decrease very slowly after that before going up eventually.

Figure 2.10: The MSE and MAE loss function of the ANN model for predicting ROA
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Figure 2.11: The MSE and MAE loss function of the DNN[2] model for predicting ROA

Figure 2.12: The MSE and MAE loss function of the DNN[3] model for predicting ROA
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Figure 2.13: The MSE and MAE loss function of the DNN[4] model for predicting ROA

CART model. For the CART model, first the trial and error method is used to derive a

good list of values for each hyperparameter. Four common hyperparameters and their lists of

values are shown in Table 2.28. Then, four for loops are used to examine all combinations

of the lists of given values of four hyperparameters. The optimal combinations of the

hyperparameters for the CART models for testing data is shown in Table 2.30.

Performance comparison. Table 2.36 compares the performances on the test data (or

holdout sample) between CART, several neural network models, and the benchmark linear

regression model with different split ratios (80/20, 90/10, and 50/50 train and test set

respectively) and in terms of MSE, RMSE, and MAE. It can be seen that CART and neural

network models outperform linear regression in all given criteria and with any given split

ratios in predicting ROA. Comparing CART and neural networks, it is clear that CART is

better than NNs if the split ratio is 50/50, and if the split ratio is 80/20 and in terms of

MAE. Meanwhile, neural networks are better than CART if the split ratio is 90/10, and if

the split ratio is 80/20 and in terms of MSE or RMSE. Notice that simply increasing the

number of hidden layers does not consistently improve the accuracy of predictions. This

finding is similar to the result in Chen et al. (2017).
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Table 2.36: Comparison of models performance on the test data for predicting ROA

80/20 split 90/10 split 50/50 split

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

Regression 0.0078 0.0882 0.0393 0.0075 0.0868 0.0391 0.0079 0.0888 0.0393

CART 0.0073 0.0854 0.0349 0.0072 0.0851 0.0353 0.0071 0.0845 0.0344

Change -6.41% -3.17% -11.19% 4.00% 1.96% -9.72% -10.13% -4.84% -12.47%

ANN 0.0072 0.0849 0.0355 0.0069 0.0831 0.0351 0.0074 0.0860 0.0362

Change -7.69% -3.74% -9.67% -8.00% -4.26% -10.23% -6.33% -3.15% -7.89%

DNN[2] 0.0072 0.0849 0.0357 0.0069 0.0831 0.0360 0.0074 0.0860 0.0363

Change -7.69% -3.74% -9.16% -8.00% -4.26% -7.93% -6.33% -3.15% -7.63%

DNN[3] 0.0072 0.0849 0.0353 0.0069 0.0831 0.0352 0.0074 0.0860 0.0366

Change -7.69% -3.74% -10.18% -8.00% -4.26% -9.97% -6.33% -3.15% -6.87%

DNN[4] 0.0072 0.0849 0.0360 0.0070 0.837 0.0348 0.0074 0.0860 0.0359

Change -7.69% -3.74% -8.39% -6.67% -3.57% -10.99% -6.33% -3.15% -8.65%

Model 2: Predicting EBITAT

Hyperparameter tuning number of neurons. Similarly for models for predicting ROA, the

Hyperband method is used to tune the number of neurons in each layer in the neural network

models for predicting EBITAT. The following table shows the optimal number of neurons

for the input and hidden layers with epochs=500.

Table 2.37: The optimal number of neurons of neural networks for predicting EBITAT

min value max value Step ANN DNN[2] DNN[3] DNN[4]

Input layer 27 27 - 27 27 27 27

Hidden layer [1] 8 512 4 276 128 476 424

Hidden layer [2] 8 512 4 - 504 448 464

Hidden layer [3] 8 512 4 - - 472 252

Hidden layer [4] 8 512 4 - - - 44

Output layer 1 1 - 1 1 1 1

The architectures of the neural network models for EBITAT are shown in Table 2.38.
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Table 2.38: The number of trainable parameters of neural networks for predicting EBITAT

Activation function ANN DNN[2] DNN[3] DNN[4]

Input layer ReLU - - - -

Hidden layer [1] ReLU 7728 3584 13328 11872

Hidden layer [2] ReLU - 65016 213696 197200

Hidden layer [3] ReLU - - 211928 117180

Hidden layer [4] ReLU - - - 11132

Output layer linear 277 505 473 45

Total parameters - 8,005 69,105 439,425 337,429

Hyperparameter tuning number of epochs. For each model, the range from 1 to 500 epochs

is run to obtain the optimal epoch. Holding other things constant, the “optimal” epoch for

each model is the one that leads to the minimum value of the MSE of that model.

Table 2.39: Optimal epochs of neural networks for predicting EBITAT

Model ANN DNN[2] DNN[3] DNN[4]

Epochs range [1, 500] [1, 500] [1, 500] [1, 500]

Optimal epoch (80/20 split) 276 169 157 132

Optimal epoch (90/10 split) 358 185 210 122

Optimal epoch (50/50 split) 310 188 172 149

Visualization of MSE and MAE of training and validation data. The variations of MSE

and MAE of training and validation data with the 80/20 split ratio of the ANN, DNN[2],

DNN[3], and DNN[4] model for predicting EBITAT are shown in Figure 2.14-2.17.
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Figure 2.14: The MSE and MAE loss function of the ANN model for predicting EBITAT

Figure 2.15: The MSE and MAE loss function of the DNN[2] model for predicting EBITAT
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Figure 2.16: The MSE and MAE loss function of the DNN[3] model for predicting EBITAT

Figure 2.17: The MSE and MAE loss function of the DNN[4] model for predicting EBITAT

Performance comparison. Table 2.40 compares the performances on the test data among

linear regression, CART, and neural networks, it is obvious that CART and neural networks

are better than linear regression models in predicting EBITAT with any given split ratios

and in terms of any given error measures. Moreover, in general, neural networks are better

than CART if the split ratio is 80/20 or 90/10 meanwhile CART is better than neural

networks if the split ratio is 50/50.
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Table 2.40: Comparison of models performance on the test data for predicting EBITAT

80/20 split 90/10 split 50/50 split

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

Regression 0.0066 0.0813 0.0358 0.0063 0.0791 0.0353 0.0066 0.0813 0.0357

CART 0.0063 0.0792 0.0329 0.0060 0.0775 0.0329 0.0061 0.0778 0.0323

Change -4.55% -2.58% -8.10% -4.76% -2.02% -6.79% -7.58% -4.31% -9.52%

ANN 0.0062 0.0787 0.0333 0.0057 0.0755 0.0322 0.0062 0.0787 0.0337

Change -6.06% -3.19% -6.98% -9.52% -4.55% -8.78% -6.06% -3.19% -5.60%

DNN [2] 0.0062 0.0787 0.0330 0.0057 0.0755 0.0325 0.0062 0.0787 0.0338

Change -6.06% -3.19% -7.82% -9.52% -4.55% -7.93% -6.06% -3.19% -5.32%

DNN [3] 0.0061 0.0781 0.0330 0.0058 0.0761 0.0324 0.0063 0.0794 0.0338

Change -7.58% -3.94% -7.82% -7.94% -3.79% -8.21% -4.55% -2.34% -5.32%

DNN [4] 0.0061 0.0781 0.0333 0.0057 0.0755 0.0324 0.0062 0.0787 0.0336

Change -7.58% -3.94% -6.98% -9.52% -4.55% -8.21% -6.06% -3.19% -5.88%

Model 3: Predicting Tobin’s Q

Hyperparameter tuning number of neurons. Similarly to Model 1 and Model 2, the

Hyperband method is used for tuning the number of neurons in Model 3. Table 2.43

shows the optimal number of neurons for the input and hidden layers of different neural

networks with epochs=500.

Table 2.41: The optimal number of neurons of neural networks for predicting Tobin’s Q

min value max value Step ANN DNN[2] DNN[3] DNN[4]

Input layer 27 27 - 27 27 27 27

Hidden layer [1] 8 512 4 432 312 240 216

Hidden layer [2] 8 512 4 - 480 424 428

Hidden layer [3] 8 512 4 - - 416 416

Hidden layer [4] 8 512 4 - - - 120

Output layer 1 1 - 1 1 1 1

The architectures of the neural network models for Tobin’s Q are shown in the following

table.
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Table 2.42: The number of parameters of neural networks for predicting Tobin’s Q

Activation function ANN DNN[2] DNN[3] DNN[4]

Input layer ReLU - - - -

Hidden layer [1] ReLU 12096 8736 6720 6048

Hidden layer [2] ReLU - 150240 102184 92876

Hidden layer [3] ReLU - - 176800 178464

Hidden layer [4] ReLU - - - 50040

Output layer linear 433 481 417 121

Total parameters - 12,529 159,457 286,121 327,549

Hyperparameter tuning number of epochs. The range from 1 to 500 epochs is run to obtain

the optimal epoch for each model.

Table 2.43: Optimal epochs of neural networks for predicting Tobin’s Q

Model ANN DNN[2] DNN[3] DNN[4]

Epochs range [1, 500] [1, 500] [1, 500] [1, 500]

Optimal epochs (80/20 split) 294 256 139 143

Optimal epochs (90/10 split) 323 216 149 141

Optimal epochs (80/20 split) 291 253 148 148

Visualization of MSE and MAE of training and validation data. The variations of MSE

and MAE of training and validation data with the 80/20 split ratio of the ANN, DNN[2],

DNN[3], and DNN[4] model for predicting Tobin’s Q are shown in Figure 2.18-2.21.
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Figure 2.18: The MSE and MAE loss function of the ANN model for predicting Tobin’s Q

Figure 2.19: The MSE and MAE loss function of the DNN[2] for predicting Tobin’s Q
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Figure 2.20: The MSE and MAE loss function of the DNN[3] for predicting Tobin’s Q

Figure 2.21: The MSE and MAE loss function of the DNN[4] for predicting Tobin’s Q

Performance comparison. Table 2.44 compares the performances of the linear regression,

CART, and neural network models on the test data in terms of MSE, RMSE, and MAE with

the 80/20, 90/10, and 50/50 split ratios. Overall, CART and neural networks outperform

linear regression models in predicting Tobin’s Q with any given split ratios and in terms of

any given error measures. Comparison between neural networks and CART, in general,

neural networks are better predictive models when the split ratio is 80/20 and 90/10.

Meanwhile, CART models are better than neural networks when the split ratio is 50/50.
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Table 2.44: Comparison of models performance on the test data for predicting Tobin’s Q

80/20 split 90/10 split 50/50 split

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

Regression 0.0081 0.0898 0.0399 0.0078 0.0883 0.0397 0.0081 0.0901 0.0399

CART 0.0076 0.0869 0.0374 0.0076 0.0875 0.0376 0.0074 0.0859 0.0369

Change -6.17% -3.23% -6.27% -2.56% -0.91% -5.29% -8.64% -4.66% -7.52%

ANN 0.0076 0.0869 0.0382 0.0072 0.0849 0.0376 0.0078 0.0883 0.0393

Change -6.17% -3.23% -4.26% -7.69% -3.85% -5.29% -3.70% -1.99% -1.50%

DNN [2] 0.0076 0.0869 0.0382 0.0072 0.0849 0.0373 0.0078 0.0883 0.0387

Change -6.17% -3.23% -4.26% -7.69% -3.85% -6.05% -3.70% -1.99% -3.01%

DNN [3] 0.0075 0.0866 0.0384 0.0071 0.0843 0.0375 0.0078 0.0883 0.0391

Change -7.41% -3.56% -3.76% -8.97% -4.53% -5.54% -3.70% -1.99% -2.01%

DNN [4] 0.0075 0.0866 0.0375 0.0072 0.0849 0.0384 0.0078 0.0883 0.0389

Change -7.41% -3.56% -6.02% -7.69% -3.85% -3.27% -3.70% -1.99% -2.51%

Model 4: Predicting sales growth

Hyperparameter tuning number of neurons. Similarly to previous models, the Hyperband

method is used for tuning the number of neurons in Model 4. The following table shows

the optimal number of neurons for the input and hidden layers of several neural network

models with epochs=500.

Table 2.45: The optimal number of neurons of neural networks for predicting sales growth

min value max value Step ANN DNN[2] DNN[3] DNN[4]

Input layer 27 27 - 27 27 27 27

Hidden layer [1] 8 512 4 404 256 328 496

Hidden layer [2] 8 512 4 - 376 212 196

Hidden layer [3] 8 512 4 - - 440 332

Hidden layer [4] 8 512 4 - - - 412

Output layer 1 1 - 1 1 1 1

The architectures of the neural network models for sales growth are shown in Table 2.46.
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Table 2.46: The number of parameters of neural networks for predicting sales growth

Activation function ANN DNN[2] DNN[3] DNN[4]

Input layer ReLU - - - -

Hidden layer [1] ReLU 11312 7168 9184 13888

Hidden layer [2] ReLU - 96632 69748 97412

Hidden layer [3] ReLU - - 93720 65404

Hidden layer [4] ReLU - - - 137196

Output layer linear 405 377 441 413

Total parameters - 11,717 104,177 173,093 314,313

Hyperparameter tuning number of epochs. The range from 1 to 500 epochs is run to obtain

the optimal epoch (i.e. smallest MSE) for each model.

Table 2.47: Optimal epochs of neural networks for predicting sales growth

Model ANN DNN[2] DNN[3] DNN[4]

Epochs range [1, 500] [1, 500] [1, 500] [1, 500]

Optimal epochs (80/20 split) 458 288 166 128

Optimal epochs (90/10 split) 479 207 207 204

Optimal epochs (50/50 split) 199 149 165 82

Visualization of MSE and MAE of training and validation data. The MSE and MAE loss

functions of training and validation data with the 80/20 split ratio of the neural networks

for predicting sales growth are shown in Figure 2.22-2.25.

Figure 2.22: The MSE and MAE loss function of the ANN model for predicting sales growth
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Figure 2.23: The MSE and MAE loss function of the DNN[2] for predicting sales growth

Figure 2.24: The MSE and MAE loss function of the DNN[3] for predicting sales growth
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Figure 2.25: The MSE and MAE loss function of the DNN[4] for predicting sales growth

Performance comparison. The MSE, RMSE, MAE of linear regression, neural networks, and

CART models for predicting sales growth are shown in Table 2.48. It is obvious that CART

and neural networks outperform linear regression models in predicting sales growth with

any given split ratios and in terms of any given error measures. Comparison between CART

and neural networks, it seems that CART have the best predictive models for 80/20 and

50/50 split ratios, and for 90/10 split ratio in terms of MAE. Meanwhile, neural networks

are only better than CART for 90/10 split ratio in terms of MSE or RMSE. In general,

CART seem to be the best predictive models in predicting sales growth in comparison to

linear regression and neural networks.

Table 2.48: Comparison of models performance on the test data for predicting sales growth

80/20 split 90/10 split 50/50 split

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

Regression 0.0103 0.1016 0.0420 0.0104 0.1019 0.0420 0.0102 0.1008 0.0421

CART 0.0098 0.0991 0.0407 0.0102 0.1010 0.0417 0.0094 0.0967 0.0400

Change -4.85% -2.46% -3.09% -1.92% -0.88% -0.71% -7.84% -4.07% -4.99%

ANN 0.0100 0.1000 0.0414 0.0103 0.1015 0.0417 0.0099 0.0995 0.0409

Change -2.91% -1.57% -1.43% -0.96% -0.39% -0.71% -2.94% -1.29% -2.85%

DNN[2] 0.0100 0.1000 0.0417 0.0103 0.1015 0.0415 0.0099 0.0995 0.0412

Change -2.91% -1.57% -0.71% -0.96% -0.39% -1.19% -2.94% -1.29% -2.14%

DNN[3] 0.0100 0.1000 0.0412 0.0103 0.1015 0.0416 0.0100 0.1000 0.0416

Change -2.91% -1.57% -1.90% -0.96% -0.39% -0.95% -1.96% -0.79% -1.19%

DNN[4] 0.0100 0.1000 0.0412 0.0104 0.1019 0.0407 0.0100 0.1000 0.0410

Change -2.91% -1.57% -1.90% 0.00% 0.00% -3.09% -1.96% -0.79% -2.61%
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In summary, comparing Table 2.36, Table 2.40, Table 2.44, and Table 2.48 yields three

noticeable results. First, it is obvious and robust that neural networks and CART models

outperform linear regression models in predicting any given firm performance criteria with

any given split ratios and in terms of any given error measures. This finding is consistent

with many previous studies (Hill et al. 1996; Desai and Bharati 1998; Fadlalla and Lin

2001; Weatherford et al. 2003; Razi and Athappilly 2005; Anyaeche and Ighravwe 2013;

Pombeiro et al. 2017). Second, in general, neural networks are better than CART when

the split ratio is 80/20 or 90/10 in predicting ROA, EBITAT, and Tobin’s Q while CART

are better than neural networks in predicting ROA, EBITAT, and Tobin’s Q when the split

ratio is 50/50. Third, for predicting sales growth, it seems that CART are better than

neural networks when the split ratio is 80/20 or 50/50. Meanwhile neural networks seem

to be better predictive models when the split ratio is 90/10.

2.5 Discussion

2.5.1 The effects of natural disasters on firm performance revisited

In the introduction section, we know that, at the firm level, the effect of natural disasters

on firm performance is mixed or insignificant but these findings might be misleading. One

of the reasons is that many previous studies only examine one particular type of disaster or

one specific area or in a short period of time; therefore the findings might not be general

enough. For example, Noth and Rehbein (2019) only study a major flood in Germany

in only one year in 2013. Therefore, their results might not be general enough for the

whole picture of general natural disasters. Similarly, Zhou and Botzen (2021) and Leiter

et al. (2009) only focus on flooding, but not other types of disasters. Our study, however,

considers disasters in its general sense which include all main types of natural disasters such

as drought, flooding, freeze, severe storm, tropical cyclone, wildfire, and winter storm.

It is necessary to address that even though the relationships between disasters and firm

performance are in the sense of correlations, they indeed have a cause and effect relationship.

It is impossible that firms’ ROA causes natural disasters since natural disasters are

exogenous shocks. Firm profitability cannot cause disasters. Hence, the conclusion is that

both actual and reporting disasters negatively impact the firm’s ROA in the next year.

2.5.2 Objective versus perceived natural environmental uncertainty

revisited

The results in this study shows the importance of both numerical and textual data in

accessing the effects of the natural environmental uncertainty on firm performance. Most

of previous studies only examine either numerical or textual data in predicting firm

performance. The implication is that we should pay more attention on textual data,

specifically Form 10-Ks and their roles in firm performance analysis as shown, for example,
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in Feldman et al. (2010), Loughran and McDonald (2011), Bochkay and Levin (2019), Choi

et al. (2020), Cohen et al. (2020), and Cho and Muslu (2021).

More importantly, this is probably the first study investigating the jointly effects of the

actual and perceived natural environmental uncertainty. This implies there is a big gap

in the literature since, to the best of my knowledge, there are no previous studies in the

literature that consider these two natural environmental uncertainties at the same time.

This study partially helps to fill this gap. Our results actually indicate that both of the

natural environmental uncertainties simultaneously impact on firm performance.

2.5.3 CART and neural networks vs. linear regression

Generally, in most models, CART and neural network models outperform linear regression in

predicting any given firm performance criteria. This finding is consistent with the current

literature on comparison between neural networks and linear regression (e.g. (Hill et al.

1996; Fadlalla and Lin 2001; Doganis et al. 2006; Anyaeche and Ighravwe 2013; Pombeiro

et al. 2017)). It also shows that neural networks are suitable tools for forecasting in finance

and economics as discussed by Li and Ma (2010).

2.5.4 The importance of the holistic approach

One of the essential contributions of this study is employing the holistic approach for firm

performance modeling under actual and perceived environmental uncertainty. In this study,

we examine four different criteria of firm performance including ROA, EBITAT, Tobin’s Q,

and sales growth. The first two criteria (ROA and EBITAT) represent the profitability of a

firm. Tobin’s Q represents the investment opportunity of a firm. Meanwhile, sales growth

reflects the operational efficiency of a firm. These all criteria are essential to evaluate how

well a firm performs. If only one in these four criteria is used to evaluate the performance

of a firm, the comparison among models might be biased or not general enough.

Another aspect of the holistic approach in this research is that employing different models,

including linear regression, CART, and neural networks, allows us to choose the suitable

model(s) for each firm performance criterion. Particularly, as shown in the results section,

sales growth performs best with the CART model while Tobin’s Q performs best with

NNs. Moreover, ROA and EBITAT are predicted best by either neural networks or CART

depending on the error measure metrics. Using multiple models together with multiple

criteria in evaluating firm performance prediction provides the robust and unbiased (or

probably less biased) results.
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2.6 Conclusion

This study proposes a new dictionary of words related to natural hazards and disasters.

Thus, the text mining technique is used to count the number of words in Form 10-Ks which

also appear in the dictionary. The constructed indicator is called the perceived risk of

natural disasters. This textual measure of perceived risk of natural disasters is combined

with the government-reported damages of natural hazards and disasters, and a number of

control variables to predict the effects of natural hazards and disasters on the U.S firm

performance in the 1993-2021 period.

We find that this self-reported perceived risk of natural hazards and disasters and

government-reported of the damages of natural hazards in the current year are negatively

associated with firm profitability next year. However, the perceived risk indicator is not

associated with sales growth and Tobin’s Q ratio. In particular, the perceived risk of natural

hazards and disasters negatively affect firm profitability in the services sector but not in

the manufacturing sector. The firm profitability in the services sector is also negatively

affected by the billion-dollar natural disasters in the same year but not in the previous

year. This implies that there is a lag effect of perceived risk of natural disasters on firm

profitability in the services sector while there is no lag effect of the government-reported

damages of the billion-dollar natural disasters on firm profitability in this sector. Finally,

we find that CART and neural networks robustly outperform linear regression in predicting

firm performance under natural disaster risks. The main suggestion from this study is

that we can use textual data in financial reports (e.g Form 10-K filings) to measure the

perceived risk of natural disasters and predict its effects on general firm performance and

firm profitability specifically.

As would be expected, this study contains several limitations that pave several ways for

potential future works. Future works might use the factory-level data set rather than the

firm-level one to capture the situation that a firm has the headquarter in one location but

have factories in several locations. One also explores the causal relationship between natural

hazards and disasters and firm performance by using several techniques like instrumental

variables or causal machine learning.
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Appendices

Appendix 1.1 An illustration of Form 10-K (Alphabet Inc. and Google

Inc.)

Source: SEC
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Appendix 1.2 An illustration of the content in a Form 10-K.

Figure 2.26: The content of a Form 10-K

Source: SEC
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Appendix 2. Two-digit SIC codes31

Table 2.49: Two-digit SICH codes and corresponding industries

Two-digit

SIC code
Industry

01 Agricultural Production - Crops

02 Agricultural Production - Livestock

07 Agricultural Services

08 Forestry

09 Fishing, Hunting and Trapping

10 Metal Mining

12 Bituminous Coal and Lignite Mining

13 Oil and Gas Extraction

14 Mining and Quarrying of Nonmetallic Minerals, except Fuels

15 Building Construction General Contractors and Operative Builders

16 Heavy Construction other than Building Construction Contractors

17 Construction Special Trade Contractors

20 Food and Kindred Products

21 Tobacco Products

22 Textile Mill Products

23 Apparel and other Finished Products Made from Fabrics and Similar Materials
24 Lumber and Wood Products, except Furniture

25 Furniture and Fixtures

26 Paper and Allied Products

27 Printing, Publishing, and Allied Industries

28 Chemicals and Allied Products

29 Petroleum Refining and Related Industries

30 Rubber and Miscellaneous Plastics Products

31 Leather and Leather Products

32 Stone, Clay, Glass, and Concrete Products

33 Primary Metal Industries

34 Fabricated Metal Products, except Machinery and Transportation Equipment
35 Industrial and Commercial Machinery and Computer Equipment

36 Electronic and other Electrical Equipment and Components, except Computer Equipment

37 Transportation Equipment

38 Measuring, Analyzing, and Controlling Instruments; Photographic, Medical and Optical Goods; Watches and Clocks

39 Miscellaneous Manufacturing Industries

40 Railroad Transportation

41 Local and Suburban Transit and Interurban Highway Passenger Transportation

42 Motor Freight Transportation and Warehousing

31See https://siccode.com/
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Appendix 2. Two-digit SIC codes (cont.)

Table 2.50: Two-digit SICH codes and corresponding industries (cont.)

Two-digit SIC code Industry

43 United States Postal Service

44 Water Transportation

45 Transportation by Air

46 Pipelines, except Natural Gas

47 Transportation Services

48 Communications

49 Electric, Gas and Sanitary Services

50 Wholesale Trade-Durable Goods

51 Wholesale Trade-Nondurable Goods

52 Building Materials, Hardware, Garden Supply, and Mobile Home Dealers

53 General Merchandise Stores

54 Food Stores

55 Automotive Dealers and Gasoline Service Stations

56 Apparel and Accessory Stores

57 Home Furniture, Furnishings, and Equipment Stores

58 Eating and Drinking Places

59 Miscellaneous Retail

70 Hotels, Rooming Houses, Camps, and other Lodging Places

72 Personal Services

73 Business Services

75 Automotive Repair, Services, and Parking

76 Miscellaneous Repair Services

78 Motion Pictures

79 Amusement and Recreation Services

80 Health Services

81 Legal Services

82 Educational Services

83 Social Services

84 Museums, Art Galleries, and Botanical and Zoological Gardens

86 Membership Organizations

87 Engineering, Accounting, Research, Management, and Related Services

88 Private Households

89 Miscellaneous Services

Notes: These SICH codes exclude the Finance, Insurance, Real Estate sector (two-digit SICH

code from 60 to 67) and Public Administration sector (two-digit SICH code from 91 to 99). The

reason is that companies in the Finance, Insurance, Real Estate sector usually have dissimilar

patterns of capital structures compared to companies from other sectors. For the companies in

the Public Administration sector, their goals might be not profit or not only profit (profit might

be less important than other goals for example social welfare).
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Appendix 3. Histograms of independent variables of Model 2-4

Figure 2.27: Heat map of the original features of Model 2 (EBITAT)

Figure 2.28: Heat map of the original features of Model 3 (Tobin’s Q)
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Figure 2.29: Heat map of the original features of Model 4 (sales growth)

Appendix 4: Top 20 VIFs for the case of damages of natural hazards.

Table 2.51: Top 20 VIF’s values for linear regression models for the case of natural hazards

Model 5 VIF Model 6 VIF Model 7 VIF Model 8 VIF

lctlt 6.881487 lctlt 6.890518 lctlt 7.278854 lctlt 6.910421

inflation 6.691684 inflation 6.688276 inflation 6.682604 inflation 6.670935

logat 6.391205 logat 6.488870 logat 6.287555 logat 6.320445

lctat 6.205631 lctat 6.203778 lctat 6.097546 lctat 6.164566

seqat 4.287896 seqat 4.283971 seqat 4.410722 seqat 4.305235

interestrate 4.169784 interestrate 4.166773 interestrate 4.165903 interestrate 4.170176

reat 3.866809 reat 3.895254 reat 3.823880 reat 3.755915

gdpgrowth 3.699480 gdpgrowth 3.698220 gdpgrowth 3.699915 gdpgrowth 3.698156

saleat 3.579374 saleat 3.636816 saleat 3.548044 saleat 3.594935

cheat 3.229502 cheat 3.239009 cheat 3.231313 cheat 3.238179

hhi 2.683497 hhi 2.685514 hhi 2.682847 hhi 2.682481

dtat 2.319157 dtat 2.318606 dtat 2.320167 dtat 2.319864

relct 2.268091 relct 2.282542 relct 2.232440 relct 2.230530

chlct 2.176366 ebitatlag1 2.239430 chlct 2.186312 chlct 2.168748

roalag1 2.133635 chlct 2.177203 Qlag1 2.084342 disaster10K 1.695737

disaster10K 1.699093 disaster10K 1.701731 disaster10K 1.697062 invtsale 1.609227

invtsale 1.566088 invtsale 1.569528 invtsale 1.563703 atemp 1.551872

atemp 1.549942 atemp 1.549855 atemp 1.550098 xintsale 1.543207

xintsale 1.416533 xintsale 1.410274 xintsale 1.399127 salegrowthlag1 1.397037

capxgrowth 1.227708 capxgrowth 1.228246 capxgrowth 1.224133 capxgrowth 1.224133
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Appendix 5: The frequency of natural disaster words/phrases

Word/Phrase Word count Word/Phrase Word count Word/Phrase Word count

disasters 126,207 extreme temperatures 1228 rainfalls 96

wind 100,011 landfall 1,193 lava flow 86

disaster 76,652 high winds 1,105 avalanches 80

climate change 61,559 thunderstorms 1,102 gale 78

hurricanes 56,363 blizzards 1,053 debacle 64

flood 55,596 tremor 1,008 rainstorm 57

earthquake 47,391 cyclone 988 disaster risk 55

earthquakes 46,352 typhoon 946 extreme rain 47

storm 45,501 whirlpool 922 gales 47

floods 37,389 natural hazards 878 landfalls 47

storms 28,197 fog 761 firestorms 46

hurricane 24,951 mudslides 761 hazard mitigation 46

freeze 20,829 forest fires 640 rock fall 32

flooding 18,280 cyclones 616 twister 31

snow 17,748 snowstorms 577 microbursts 26

drought 13,426 extreme heat 548 La Nina 25

tornadoes 11,609 heavy rainfall 544 ash fall 21

extreme weather 11,159 heavy snow 523 cold waves 18

freezing 8,739 volcano 457 extreme rainfall 16

volcanic 7,724 avalanche 405 fogs 16

windstorm 7,046 derechos 401 winterstorm 12

rainfall 6,835 extreme temperature 395 air burst 9

wildfires 6,645 landslide 389 airburst 9

hail 6,582 heat waves 364 floodings 9

global warming 6,159 forest fire 348 adaptive capacity 8

droughts 5,768 rainstorms 346 apocalypse 8

windstorms 4,882 snowstorm 343 volcanos 8

tornado 4,756 hailstorm 330 climate warms 7

tsunamis 3,420 El Nino 310 cold wave 6

winds 3,412 natural hazard 270 extreme rains 5

tsunami 3,184 whirlpools 241 firestorm 5

freezes 3,114 mudslide 226 cataclysms 3

typhoons 3,062 high wind 214 debacles 3

wildfire 2,537 blizzard 213 cataclysm 2

derecho 2,225 thunderstorm 204 seiche 2

landslides 2,055 lava flows 172 ashfall 1

calamity 2,008 disaster risks 155 microburst 1

hailstorms 1,477 coastal erosion 146 rockfall 1

flooded 1,309 heat wave 144 rockfalls 1

rogue waves 1

Table 2.52: The frequency of words/phrases related to natural disasters in Form 10-Ks
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Chapter 3

Corporate financial distress prediction in a

transition economy

Abstract

Forecasting the financial distress of corporations is a difficult task in economies undergoing

transition, as data is scarce and highly imbalanced. This research tackles these difficulties

by gathering reliable financial distress data in the context of a transition economy and

employing the synthetic minority oversampling technique (SMOTE). The study employs

five different models, including linear discriminant analysis (LDA), logistic regression,

support vector machines (SVM), neural networks, and the Merton model, to predict

financial distress of public firms in Vietnam between 2011 and 2021. The first four models

use accounting-based variables, while the Merton model utilizes market-based variables.

The findings indicate that while all models perform fairly well in predicting results for

non-delisted firms, they perform somewhat poorly in predicting results for delisted firms

in terms of various accuracy measures such as balanced accuracy, precision, recall, and F1

score. The study shows that the models that incorporate both the Altman’s and Ohlson’s

variables consistently outperform those that only use the Altman’s or Ohlson’s variables

in terms of balanced accuracy. Additionally, the study finds that neural networks are

consistently the most effective models in terms of both balanced accuracy and Matthews

correlation coefficient (MCC). The most important variable in Altman’s variables as well

as the combination of the Altman’s and Ohlson’s variables is reat (retained earnings over

total assets), whereas ltat (total liabilities over total assets) and wcapat (working capital

over total assets) are the most important variables in Ohlson’s variables. The study also

reveals that in most cases, the models perform better in predicting results for big firms

than for small firms, and for good years than for bad years in terms of MCC.

Keywords: financial distress, transition economy, Altman’s variables, Ohlson’s variables,

Merton model, machine learning.

JEL Codes: C45, C53, G33, M21.
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3.1 Introduction

3.1.1 Motivations

Corporate financial distress prediction is very critical in corporate risk management. It is

even more critical in transition economies where data is limited and might not be reliable1.

This task is more challenging in the economic distress periods.

In the last fifteen years, Vietnam experienced some economic distress periods including

the 2008-2009 financial crisis, macroeconomic economic fluctuation in 2012-2014, and the

COVID-19 pandemic in 2020-2021. Table 3.1 shows the GDP growth of Vietnam’s economy

in the 2007-2022 period. This dynamic market is also a challenge for all entities in that

market. The need to predict the stable performance of companies is essential in many

activities such as when making investment decisions, financing decisions, and lending

decisions. The main goal of this study is to explore models to predict the corporate financial

distress of the public firms in Vietnam during the period with several economic distress.

Since firms tend to face financial distress situations during economic distress periods, this

study is necessary to understand the financial health status when the economic conditions

are not good. Our study focuses on Vietnam as an example of a transition economy in

which the legal regulations, economic conditions, and availability of data are very different

compared to that in many advanced economies.

Figure 3.1: GDP growth of Vietnam’s economy between 2007 and 2022

Source: The World Bank

1A transition economy is an economy that is transforming from a centrally planned economy to a market
economy. In East and South-East Asia, there are four transition economies including Cambodia, China, Laos,
and Vietnam. There are other 25 transition economies in other areas on over the world. For more details,
see https://www.imf.org/external/np/exr/ib/2000/110300.htm.
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Since the bankruptcy data in many developing and transition economies like Vietnam is

usually either not available or not reliable as in many developed economies like the United

States, this study focuses on the corporate financial distress probability rather than the

corporate bankruptcy probability. We consider firms delisted on the stock markets due to

financial reasons as financial distress firms and firms not delisted on the stock markets due

to financial reasons as non-financial distress firms.

3.1.2 Related literature

Financial distress vs. bankruptcy prediction

Although existing research efforts with solid data have been put on financial distress in

advanced economies (e.g. Opler and Titman 1994; Altman et al. 2019), little reliable notice

has been paid to financial distress in transition economies and developing countries, where

normally there is a lack of reliable data and unstable bankruptcy law, especially under

economic shocks. To the best of our knowledge, this study is the first of its kind in Vietnam.

It is noticeable that the bankruptcy procedure of Vietnam’s Law on Bankruptcy in 2014 is

clear, but it has rarely been implemented in reality. Therefore, it is infeasible to collect the

data of bankruptcy cases in Vietnam. That is why this study focuses on corporate financial

distress rather than corporate bankruptcy. Since financial distress is more realistic and

practical in transition economies like Vietnam than bankruptcy, it is more meaningful to

find suitable models to predict financial distress rather than bankruptcy. Moreover, financial

distress normally is the status before bankruptcy, therefore financial distress prediction is

also meaningful in the context that firms can be aware of it as the early warning signal

to avoid going bankrupt. Note that since prolonged corporate financial distress might

eventually lead to corporate bankruptcy this research is based on the framework of default

risk or default probability.

Accounting-based models

There are two main approaches in studying corporate bankruptcy prediction which uses

accounting-based variables (e.g Altman 1968; Ohlson 1980) and market-based variables

(e.g. Merton 1974)2. Each method has its own strengths and weaknesses. Indeed, choosing

which to build the prediction model is not an easy task.

Altman (1968) pioneers in studying the prediction of corporate bankruptcy and financial

distress by using the method of multivariate discriminant analysis (MDA). This statistical

technique categorizes variables into groups (or indicators) which reduces the dimensionality

2Note that we consider the machine learning models that base on the accounting-based variables as
the accounting-based models. That is, in this study, the accounting-based models include both accounting
models like Altman (1968) and Ohlson (1980), and also the machine learning models using accounting-based
variables.
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of high-dimension datasets3. In this study, Altman discriminates firms into three zones

including “non-bankrupt”, “zone of ignorance”, and “grey area” (Altman 1968) He argues

that the financial health of a company is reflected by five financial indicators, four of

which can only be constructed from one-year financial statements and one needed equity

market values. The subsequent studies expand Altman (1968) in many various ways.

Systematically, one can see the evolution of the Altman Z-score family in Chapter 10 in

Altman et al. (2019).

There are many accounting-based studies about financial distress and bankruptcy prediction

after Altman (1968) such as Ohlson (1980), Zmijewski (1984), Altman et al. (2017), and

many others. Among these studies, Ohlson (1980) is the most typical accounting-based

work after Altman (1968). In this study, Ohlson uses the logistic regression rather than the

multivariate discriminant analysis method as that in Altman (1968).

Market-based models

The Black-Scholes-Merton (BSM) model is a structural credit risk model and is a continuous

market model. In a seminal work, Black and Scholes (1973) derives a theoretical valuation

formula for options called the Black-Scholes option pricing equation. But it can also be

applied to corporate liabilities such as common stock, corporate bonds, and warrants.

Inspired by this Black and Scholes’s pioneer work, Merton (1974) builds a structural

model to estimate the continuous probability of default which is derived from the distance-

to-default calculation. Note that in this study the BSM model and Merton model are

interchangeable. But the Merton model is mostly used. One of the underlying assumptions

of the Merton model is that the total value of a firm follows a geometric Brownian motion

of the form

dV = µV V dt+ σV V dW,

where V is the total value of a firm, µV and σV are the expected return and the volatility,

and dW is the standard Wiener process. Many recent studies about the distance to default

admit this standard assumption, for example, Bharath and Shumway (2008) and Vassalou

and Xing (2004). Our study also bases on this fundamental assumption.

Based on the BSM model, the KMV-Merton model4 focuses on the default probability

of corporate liabilities (e.g. debt) in the canonical Merton model, the KMV-Merton model

investigates the probability of default of an individual company as a whole (Kealhofer 2003).

3Indeed, in the modern economy, it is complicated to categorize millions of firms into millions of financial
health levels. In this case, categorizing all firms into a few groups is a common and useful statistical technique
to analyze high-dimensional datasets that consist of many variables. This technique enables one to investigate
whether there are significant differences among groups.

4The term KMV stands for Kealhofer, McQuown and Vasicek, who are the founders of the KMV
corporation. KMV Corporation was acquired by Moody’s Corporation in 2002.
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In this model, the value of the company’s stock equity and debt are modeled as a long call

option and a short put option on the firm’s assets, respectively.

When the expected value (unobservable) of the firm is less than the firm’s debt, shareholders

would choose not to repay (not exercise their call option) while when the firm’s value is

greater than the firm’s debt, they would choose to repay (exercise their call option). That

is, ultimately the shareholders’ gain equals max{Value(T ) − Debt(T ), 0}, where Value(T )

and Debt(T ) are the expected value of the firm and the firm’s debt at time T , respectively.

The KMV-Merton model is probably the most famous application of the Merton model

in the financial sector. Our study will explore the KMV-Merton model and apply it in a

transition economy. The KMV-Merton model is used widely in practice and is used broadly

by the Big-Three credit rating agencies including Standard & Poor’s, Fitch, and Moody’s.

Some recent studies related to the KMV-Merton model are Kealhofer (2003), Tudela and

Young (2005), Benos and Papanastasopoulos (2007), Bharath and Shumway (2008), Lee

(2011), and Yeh et al. (2012).

Accounting-based vs. Market-based models

The accounting-based models (e.g Altman 1968) and market-based models (e.g KMV-

Merton model) are different in many aspects. Table 3.1 shows some differences between

these two types of models.

Table 3.1: Comparison the accounting-based and market-based models

Accounting-based model Market-based model

Firm’s equity Book value Market value

Firm’s debt Book values (Estimated) market values

Volatility of firm’s assets No Yes

Frequency of data Quarterly, yearly Daily

Regarding the ability to estimate the default probability, some studies find that the Merton-

type model outperforms the Altman-type model (Hillegeist et al. 2004; Tanthanongsakkun

et al. 2011). Specifically, Hillegeist et al. (2004) discover that the BSM option-pricing

model provides significantly more information than Altman’s (1968) Z-Score and Ohlson’s

(1980) O-Score. Also, Tanthanongsakkun et al. (2011) detects that the Merton model

is the most informative model in explaining corporate bankruptcy compared to other

models, which include the Altman model. However, some studies find that the Altman-

type model outperforms the Merton model. For example, Reisz and Perlich (2007) estimate

probabilities of bankruptcy for 5,784 industrial firms in the period 1988–2002. They find

that Altman Z-and Z”-scores outperform structural models in 1-year-ahead bankruptcy

predictions compared to BSM models.
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Some studies show that the hybrid model (combine accounting-based and market-based

models) outperforms either separate accounting-based or market-based models. For

example, Shumway (2001) shows that combining accounting and market variables results

in the most accurate model.

Financial distress prediction in Vietnam

While financial distress prediction studies, especially those studies using machine learning

methods, are popular in many other transition economies in decades (Gruszczynski 2004;

Chen et al. 2006; Wang and Li 2007; Zheng and Yanhui 2007; Li and Sun 2008; Xie et al.

2011; Sun et al. 2011), there are relatively few and late studies in Vietnam.

For Vietnam’s stock market, the previous studies about financial distress or default

probability can be classified into four groups. The first group uses the Altman model

approach (e.g. Z-score or Z”-score model), the second group utilizes the Ohlson-type

approach (i.e. logistic regression or logit), the third group employs the KMV-Merton model

approach, and the fourth group examines other models (e.g. mixed models and machine

learning models). Despite some effort has been made, there is a scarcity of reliable empirical

results in many studies in all four groups.

All studies in the first group that we found use the given coefficients and thresholds from

Altman’s and related studies, especially Altman (1968) (Lieu 2014; Vo and Nguyen 2014;

Nguyen 2015; Hoang 2020). This is clearly a big limitation since, for example, the coefficients

of variables and the Z-score thresholds derived from 66 firms in one sector (manufacturing)

in the 1960s in a developed country like the United States Altman (1968) are not necessarily

the same as those derived from firms at the moment and for the whole stock market in a

transition economy like Vietnam. It is vital to note that the Z-score model (Altman 1968) is

a data-dependent formula, which is definitely not like a universal formula in mathematics.

Therefore, that formula works in a particular market or country in a specific period does

not necessarily mean it works in another (or even the same) market or country in another

period. Using coefficients and thresholds of Altman (1968) or of any other studies to apply

to other datasets might lead to misleading and unreliable conclusions.

For the second approach, there are relatively few studies compared to the first approach.

Some studies using logistic regression include Vo (2015) and Vo et al. (2019). Both work on

highly imbalanced data. Vo (2015) works on the data including 946 non-distress observations

and 36 distress observations and Vo et al. (2019) work on the data including 1,572 non-

distress observations and 3,718 distress observations. Unfortunately, the authors in both

studies do not do anything to take imbalanced data into account. Their results, therefore,

tend to be biased toward the majority group (non-distress firms). This implies that their

results, especially accuracy in Vo et al. (2019), seem unreliable to evaluate the predictive

performances of their models.
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There are a number of studies investigating the probability of default using KMV-Merton

model in Vietnam (Lam and Phan 2009; Le and Le 2012; Nguyen and Pham 2014; Nguyen

and Nguyen 2017; Vu et al. 2019). Unfortunately, the results in these studies lack reliability

and/or verification. To the best of our knowledge, Lam and Phan (2009) is the first study

considering the KMV-Merton model in Vietnam but this paper actually discusses very little

about the KMV-Merton model. Le and Le (2012) claim that they combine CVaR and KMV-

Merton model to examine the corporate default probability. However, the paper clearly did

not derive any results related to the KMV-Merton model. Also, the authors claim that

CVaR is better VaR to estimate the default probability under shock. This is an overclaim

since they did not compare CVaR and VaR explicitly in their study. Nguyen and Pham

(2014) analyze 6,398 listed and unlisted firms as corporate customers of a bank named

Vietcombank in Vietnam and find that the probability of default of the whole portfolio is

2.6%. This study, however, does not verify the results or show the accuracy of the prediction.

Regarding the other approaches, Ninh et al. (2018) uses a combination of accounting,

market, and macroeconomic variables to examine the corporate financial distress of 800

listed firms on Vietnam’s stock market from 3003 to 2016. Unfortunately, the accounting-

based model borrows the coefficients and thresholds in the Z”-score model rather than

constructing from their own datasets. Moreover, for the Merton model, it is not clear

from the paper whether the authors estimate the firm value, expected rate of return, and

volatility or not. Hence, the results related to the Merton model are inconclusive.

Delisted firms due to financial distress

Geng et al. (2015) study the “special treatment” firms on China’s stock markets. These

firms are considered as special ones due to several reasons including two years of losses,

damaged business, or financially bankrupt. Hosaka (2019) considers delisted firms with

the reasons of (1) bankruptcy or rehabilitation or reorganization procedures, (2) excessive

debt, (3) suspension of bank transactions, (4) termination of business activities (excluding

mergers) as bankrupt firms in this study.

Table 3.2: Delisted reasons for bankruptcy in several studies

Country Study Delisted reason

United States Mai et al. (2019) Bankruptcy and liquidation

Japan Hosaka (2019)
Bankruptcy/rehabilitation/reorganization procedures, excessive debt,

suspension of bank transactions, and termination of business activities

China Geng et al. (2015) Two years of losses, damaged business, financially bankrupt

Vietnam This study
Negative profit in three consecutive years or cummulative loss (negative

profit) is greater than authorized capital
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Sample size of bankrupt vs. non-bankrupt firms

In the literature on financial distress and bankruptcy prediction, there are both studies

with equal bankrupt (or distress) and non-bankrupt (or non-distress) firms. The good news

for imbalanced data is that there are several techniques for balancing data (e.g. synthetic

minority oversampling technique or SMOTE) or balancing results (e.g. balanced accuracy).

In this study, we use SMOTE as a technique for balancing train data5. That is, by using

SMOTE, the number of observations of delisted firms is equal to that of non-delisted firms.

We will discuss more about SMOTE and how to use it for balancing data later.

Table 3.3: Number of bankrupt and non-bankrupt firms in the related literature

BR NB
Matched-pairs

design
Period

Years prior

to bankruptcy
Method Source

79 79 Yes 1954-1964 1-5 UDA Beaver (1966)

33 33 Yes 1946-1965 1-2 MDA Altman (1968)

162 162 Yes 1956-1976 1 LR Collins (1980)

105 2058 No 1970-1976 1-2 Logit model Ohlson (1980)

1600 81 No 1972-1978 NA Probit model Zmijewski (1984)

65 64 Yes 1975-1982 1 NN Odom and Sharda (1990)

65 64 Yes 1975-1982 1 NN Wilson and Sharda (1994)

1160 1160 Yes 1996-1999 NA SVM Shin et al. (2005)

58 142 No 1971-1981 NA Decision trees Gepp et al. (2010)

107 107 Yes 2008-2011 3-5 DT, SVM, NN Geng et al. (2015)

102 2062 No 2002-2016 4 CNN Hosaka (2019)

76 983 No 2011-2021 1-3
Logit, Merton,

LDA, SVM, NN
This study

Notes: BR and NB stand for the number of bankrupt and non-bankrupt firms, respectively; UDA stands

for univariate discriminant analysis; MDA stands for multivariate discriminant analysis; NN stands for neural

networks; SVM stands for support vector machines; DT stands for decision trees; DA stands for discriminant

analysis; LR stands for logistic regression.

Overall, our goal is to explore and compare the predictive performance of various models in

predicting corporate financial distress for public firms in Vietnam. The main research

question is: What are the differences between accounting-based, market-based, and

machine-learning models in predicting corporate financial distress in Vietnam?

Contributions. Our paper has three main contributions. First, this is the first study

employing three methods, including accounting-based, market-based, and machine learning

models, to investigate the financial distress of public firms in Vietnam. Second, this is also

the first study employing the synthetic minority oversampling technique (SMOTE) to tackle

5This technique was first proposed by Chawla et al. (2002).
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the biased results caused by imbalanced data on financial distress in Vietnam. Third, we

provide explicit and new data for the Merton model, which is helpful for future research.

The remainder of this chapter is organized as follows. Section 3.2 present all methods that

we use in this chapter. Section 3.3 describes the data and variables of all models. The

results of all models are presented in Section 3.4. We then investigate the effects of firm size

and macroeconomic situation on predictive performances in Section 3.5. Hence, we discuss

some noticeable points of the chapter in Section 3.6 before concluding in Section 3.7.

3.2 Methods

In nature, the corporate financial distress prediction is a classification problem. Therefore,

the goal of the models employed to predict corporate financial distress is to classify the firms

into a bankrupt and non-bankrupt class. In order to do that this study employs various

models including logistic regression, support vector machines (SVM), linear discriminant

analysis (LDA), neural networks, and Merton model. We choose logistic regression and

SVM since these are the benchmark methods for classification problems. We choose LDA

since this method is relevant to the classic method of multiple discriminant analysis (MDA)

used in the seminal work (Altman 1968). We choose neural networks since this is the typical

method in machine learning and deep learning. Finally, the Merton model is the standard

market-based method in the bankruptcy and financial distress prediction literature.

Note that the first four methods will work with the accounting-based variables. Therefore,

we can consider these four methods as accounting-based models. However, one can consider

logistic regression as the accounting-based method in the context of Ohlson (1980) and the

other three (LDA, SVM, and NN) as machine learning (ML) methods. In this context,

this study employs three kinds of models, including accounting-based, market-based, and

machine-learning models.

Note also that this study focuses on a transition economy therefore we do not use the

standard coefficients of Altman’s Z-Score and Ohlson O-Score model since these models are

built in the context of developed economies. Using the coefficients in Altman (1968) or

Ohlson (1980) as the formulas and then applying them to data in transition economies (and

also developing countries) might not be a good idea. The reason is that the MDA method

used in Altman (1968) and logistic regression used in Ohlson (1980) are statistical models in

nature and the coefficients of these models surely depend on the input data. Therefore, for

example, using coefficients obtained from a sample of 66 manufacturing firms in the United

States in the 1960s (Altman 1968) and then applying for example in the retail industry in

Vietnam in the 2020s might be a misleading idea since the data and context are totally

different. Surprisingly, there are many studies like that out there, including most of the

studies in the bankruptcy and financial distress literature in Vietnam.
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The good news is that while using the coefficients from Altman’s and Ohlson’s models

might not be a good idea, one can employ the variables used in these two standard models.

The reason is that the list of Altman’s variables (working capital/total assets, retained

earnings/total assets, earnings before interest and taxes/total assets, total sales/total assets,

and market value of equity/total liabilities) and Ohlson’s variables (nine-factor financial and

economic variables) represent for the fundamental factors that affect the firm’s activities

and performances, which then affect the probabilities of going bankrupt or being financial

distress. This study employs Altman’s and/or Ohlson’s variables as the independent

variables for our chosen methods.

3.2.1 Logistic regression

Logistic regression is a probabilistic model that takes the linear combination of a list of

variables (linear regression) and maps it to a sigmoid function. For example, given n

independent variables, says X1, ..., Xn, the logistic regression given by

p(X1, ..., Xn) =
1

1 + e−(β0+β1X1+...+βnXn)
,

where β0, β1, ..., βn are the coefficients of the corresponding linear regression. One can

consider logistic regression as the benchmark for the classification problem.

3.2.2 Linear discriminant analysis

Linear discriminant analysis (LDA) was pioneered by Ronald Fisher in 1936 (Fisher 1936)

for discriminating data with two classes. Thus, it is generalized by C. R. Rao, a Fisher’s

student, for more than two classes of the model in Rao (1948).

This is a linear classification model and is used to find linear combinations of variables (or

features) that classify two or more classes or groups. In the LDA model, input variables are

assumed to be normally distributed. Another assumption is that the input variables should

not be correlated with each other. That is, we should deal with the severe multicollinearity

if it appears. Note that, in practice, data should be transformed (standardized and

normalized) before training with the LDA model.

It is important to note that the normally distributed assumption is crucial when we want

to estimate the magnitude of the marginal effects of the predictor variables. However, for

prediction or classification purposes (as in this study), this assumption is less sensitive

(Shayan et al. 2016). That is why, in practice, the LDA model might perform well even

though the normally distributed assumption is violated.

It is necessary to note that LDA is different compared to both linear regression and logistic

regression. LDA and logistics are techniques used for classification problems where the

dependent variable is discrete (e.g. binary variable) while linear regression is used for
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prediction/causal inference where the dependent variable is continuous. LDA requires the

multivariate normality and equality of covariance matrices among groups whereas logistic

regression does not.

3.2.3 Support vector machines

Support Vector Machines (SVM) is a type of supervised learning algorithm that can be

used for classification and regression tasks. In the context of bankruptcy or financial

distress prediction, SVM can be used to classify firms as either bankrupt (or distressed)

or non-bankrupt (or non-distress) based on a set of variables such as the firm’s financial

characteristics, market and economic variables.

SVM is pioneered by Boser et al. (1992) and Cortes and Vapnik (1995). There are several

types of SVM that have different kernels such as linear, polynomial, radial basis function

(RBF), and sigmoid. In this study, we employ RBF SVM since it has a number of advantages

compared to other types of SVM such as handling nonlinear relation between class labels,

few hyperparameters, and few numerical difficulties (Hsu et al. 2016).

Formally, as shown in Hsu et al. (2016), given a train data (xi, yi), i = 1, ..., l where xi ∈ Rn

and y ∈ {1,−1}l. RBF SVM requires the solution of the following optimization problem

min
w,b,ξ

1

2
wTw+ C

l∑
i=1

ξi,

subject to yi(w
Tϕ(xi) + b) ≥ 1 + ξi,

ξi ≥ 0,

where C > 0 is the penalty parameter of the error term, w is the vector of weights, and b

is a scalar, and with RBF kernel given by K(xi,xj) = exp(−γ∥xi − xj∥2), where γ > 0.

3.2.4 Neural networks

One of the most limitations of the MDA-based studies, for example, Altman (1968), is

that this method requires the discriminating variables to be jointly multivariate normal

(Odom and Sharda 1990). We can relax this restriction of multivariate normality by using

several machine learning techniques including neural networks and decision trees. Neural

networks are flexible since we can adjust the number of inputs, hidden layers, and neurons

in each hidden layer. Neural networks can learn complex relationships between variables

(predictors) and make predictions with a high degree of accuracy.

Note that, we choose threshold=0.5 to determine whether a firm predicted financial distress

or not. It is clear that 0.5 is the standard threshold in the fields of forecasting and machine
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learning. In fact, we also tried threshold=0.4 since we thought the firms in transition

economies like Vietnam have weak financial structures and depend more on debt than firms

in developed countries. In preparing the models, we find that 0.5 is a better threshold

compared to 0.4 as most of the accuracy and Matthews coefficient correlations are higher

than in the former case. One technical reason that we choose 0.5 as the threshold is that

by choosing this threshold the accuracy from Keras and the accuracy from Sk-learn are the

same. Another threshold, for example, 0.4, will lead to different accuracy when using Keras

and when using Sk-learn. In that case, one needs to discuss which libraries that he or she

prefers. Fortunately, by choosing threshold=0.5 we do not need to do so.

3.2.5 Merton model

Denote V A
t as the dynamics for the value of the firm’s assets at time t ∈ [0, Tt]. Thus, V A

t

is described by the following geometric Brownian motion

dV A
t = (µAt V

A
t −Dt)dt+ σAt V

A
t dWt, (3.1)

where µAt is the instantaneous expected rate of return at time t, σAt is the instantaneous

estimated volatility of the return on the firm per unit time, Dt is the amount of money that

the firm pays for liabilities-holders (e.g. interest rates of corporate bonds) per unit time,

dWt is the standard Wiener process. The formal definition of default probability is defined

as follows.

Definition 3.2.1. (default probability) The probability of default of a firm is defined as

PD = P (V A
t+m < Dt), (3.2)

where Dt is the financial obligations (or debts) that the firm needs to pay at time t, and

V A
t+m is the estimated market value of the firm at time t+m, where t ∈ [0, Tt], m ∈ [0, Tm],

and 0 ≤ Tt, Tm <∞.

In practice, it is usually to assume m = 1 year (Afik et al. 2016). That is, one might

examine the debt at the current time t and estimate the value of a firm one year after that,

i.e. at time t+ 1. Therefore, we propose the following definition.

Definition 3.2.2. (one-year probability of default) The probability of default of a firm in

one year is defined as

PD = P (V A
t+1 < Dt), (3.3)

where Dt is the financial obligations (or debts) that the firm needs to pay at time t+1, and

V A
t+1 is the estimated value of the firm at time t+ 1.
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Note that the market value V A
t+m in Definition 3.2.1 and V A

t+1 in Definition 3.2.2 are

unknown. Therefore, we need to estimate it. Since we are at the current time t and

want to estimate the probability of default in time t + m, we actually investigate the

implied probability of default. Assume the forecasting horizon is one year, i.e. m = 1. For

simplicity, we call the one-year probability of default as the probability of default from now

on. Note that one year or less is the maturity date of short-term debt. Theoretically, if a

firm cannot pay the short-term debt within a year to creditors, it will go bankrupt. In the

standard finance literature (e.g. Vassalou and Xing 2004; Bharath and Shumway 2008), one

normally takes into account total short-term debt and half of long-term debt to compute

the book value of debt Dt. In this study, we will consider the book value of debts as a

function of short-term debt and long-term debt

Dt = Short-term debt + k(Long-term debt), (3.4)

where k ∈ [0, 1]. In this study, we choose k = 0.5.

Denote V E
t be the market value of the firm’s equity at time t, the Black-Scholes formula

for call options is given by the following equation

V E
t = V A

t N(d1)−Dte
−rtmN(d2), (3.5)

where rt is the instantaneous risk-free interest rate at time t, Dt is the book value of the

firm’s debt at time t, N is the standard normal cumulative density function, and

d1 =
ln(V A

t /Dt) +
(
r + 0.5(σAt )

2
)
m

σAt
√
m

, d2 = d1 − σAt
√
m.

Equation (3.5) implies that the value of a firm’s equity V E
t , which we can observe on the

stock market by multiplying the current stock price by the total number of firm’s shares

outstanding, is a nonlinear function of the expected value of the firm V A
t , which we cannot

observe directly. Note that in equation (3.5), both the value of the firm V A
t and the (implied)

volatility of the underlying asset price σAt are unobservable. Therefore, we need to find σAt
and V A

t by solving equation (3.5).

Since the lack of comprehensive bankruptcy data in many transition economies like Vietnam,

this study will work on corporate financial distress probability but still be based on the

framework of the default probability.
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3.3 The data

Since the data and variables for models using accounting-based variables are distinct from

those for the Merton model, we describe the procedure of collecting data and preparing

variables separately.

3.3.1 For accounting-based and machine learning models

Data collection

For non-delisted firms, we collect the data of the non-financial listed firms in Vietnam’s

stock market from 2009 to 2021. Although Vietnam’s stock market was established in 2000,

the scale of the market and the number of listed firms were pretty limited before 2009.

Thus, this paper focused on the period from 2009. Note that since financial institutions

such as banks, insurance, and hedge funds have different financial characteristics, therefore,

are excluded from our data.

For the accounting-based and machine learning models6, the financial reports of both

delisted and non-delisted firms are obtained from the Refinitiv Eikon database. We collect

the delisted stocks due to financial reasons as the proxies for financial distress on the

Ho Chi Minh Stock Exchange (HOSE) and Hanoi Stock Exchange (HNX). Note that

financial reasons, according to Decree 155/2020/ND-CP, include (1) negative profit in three

consecutive years and (2) cumulative loss (negative profit) is greater than authorized capital.

Table 3.4 summarizes the datasets and the corresponding sources that we use in this study.

We employ data from five sources. For the variables of firms’ characteristics and market

value of equity of each firm, we get the data from the Refinitiv Eikon database. For Gross

National Product (GNP), we get the data from the World Bank’s website. We obtain

the risk-free interest rate of Vietnam’s 1-year government bond from www.investing.com,

which is a reliable source for financial markets and investment. Finally, we get the list of

delisted stocks from the Ho Chi Minh City Stock Exchange (HOSE) and the Hanoi Stock

Exchange (HNX).

Table 3.5 shows, in the final sample of accounting-based and machine learning models,

that there are 1,097 firms and 12,685 observations in total including 1,021 non-listed

firms (with 12,154 observations) and 76 delisted firms (with 531 observations). It is

clear that our sample is an imbalanced data with 12,154 observations (approximately

95.8%) of the majority group (non-delisted firms) and 531 observations (approximately

4.2%) of the minority group (delisted firms). The final sample of the Merton model has

6Note that the accounting-based model in this study means logistic regression that is widely used in
accounting literature, for example, the seminal work of Ohlson (1980) and subsequent studies. Machine
learning models in this study include LDA, SVM, and neural networks. In the next subsection, we will
discuss the data and variables for the Merton model, which is a market-based model.
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Table 3.4: The data and corresponding sources

Data Source

Firm’s characteristics Refinitiv Eikon database
Gross National Product (GNP) World Bank
Market value of equity Refinitiv Eikon database
Risk-free interest rate www.investing.com

Delisted stocks HOSE, HNX

7,707 observations with 6,967 observations (about 90.4%) of non-delisted firms and 740

observations (about 9.6%) of delisted firms. There are 1,059 firms in the final sample of the

Merton model with 76 delisted firms and 983 non-delisted firms.

Table 3.5: Number of firms and observations in the final samples

Accounting-based and ML models Merton model
Number of firms Number of obs Number of firms Number of obs

Delisted firms 76 531 76 740
Non-delisted firms 1,021 12,154 983 6,967
Total 1,097 12,685 1,059 7,707

Notes. Initially, there are 108 delisted stocks due to financial reasons on HOSE and HNX between
2011 and 2021 as shown in Appendix 2. However, there are only 76 firms (corresponding to 76
delisted stocks) having full data for estimating the financial distress models.

Data preprocessing

From the data collected from the Refinitiv Eikon database, we generate the independent

variables as those in Altman (1968) and Ohlson (1980) as these are the standard accounting-

based models of bankruptcy prediction. Altman’s variables include working capital on total

assets (wcapat), retained earnings on total assets (reat), earnings before interest and taxes

on total assets (ebitat), sales on total assets (saleat), and market value of equity on total

liabilities (mvdebt). The Ohlson’s variables include size of the firm (size) (proxy by total

assets), total liabilities on total assets (ltat), working capital on total assets (wcapat), total

current liabilities on total current assets (lctact), dummy variable on whether total liabilities

exceed total assets (OENEG), return on assets, the fund provided by operations (proxy by

the cash flow of operating) on total liabilities (cfodebt), dummy variable whether net income

is negative in the last two years (INTWO), and income growth (CHIN). For more details,

please see Table 3.6.

We fill the missing values of each column with the mean of that column group by stock

then we delete any left missing values. Hence, we winsorize the top 5% and bottom 5% of

the data points by using the Winsorizing technique. Specifically, the data points in the top

5% of each column are replaced by the value at the 95th percentile and the data points in

the bottom 5% of each column are replaced by the value at 5% percentile. Our final data

includes 12,685 firm-year observations and 1,097 firms as shown in Table 3.5.
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The variables

There are five variables in Altman’s variables and nine variables in Ohlson’s variables.

Since there is one common variable (i.e. wcapat) in two lists, the combination has only

thirteen variables. However, we have to remove two variables (ebitat and lctact) to

avoid the multicollinearity problems in the combination model. We will present how to

detect multicollinearity in Subsection 3.3.1. Finally, in the case of Altman’s and Ohlson’s

variables (i.e. combination), there are only eleven variables as the inputs for bankruptcy

prediction models. These indicators reflected five financial aspects of firms including

liquidity, profitability, productivity, solvency, and management’s capability. All variables

used for calculating these financial ratios are collected for financial statements, balance

sheets, and cash flow statements of the firms.

Table 3.6: List of all independent variables in accounting-based and ML models

Variable Type Definition

wcapat Liquidity Working Capital/Total Assets

reat Profitability Retained Earnings/Total Assets

ebitat Profitability Earnings Before Interest and Taxes/Total Assets

mvdebt Solvency Market Value of Equity/Total debt

saleat Management’s capability Sales/Total Assets

size Size log(total assets/GNP price-level index)

ltat Solvency Total liabilities/ Total assets

lctact Solvency Total current liabilities/ Total current assets

OENEG Solvency Dummy: Total liabilities exceed total assets

roa Profitability Net income/Total assets

cfodebt Solvency Funds provided by operations/ Total liabilities

INTWO Solvency Net income < 0 for in the last 2 years

CHIN Management’s capability Net income(t)–Net income(t−1)
|Net income(t)|+|Net income(t−1)|

Notes: In most cases, we keep the names of variables in this table as that in Altman (1968) and

Ohlson (1980). For the variable CHIN, in the next sections of the paper we use income growth

(denoted by incgrowth) as the alternative (yet more intuitive) variable name.

In order to determine the financial distress status, we create a dummy variable named

bankrupt period which takes the value of 1 from the delisted year to the current year and

0 for non-listed firms. Note that we define bankrupt period equals to 1 from delisted year

to the current year because the fact that it is very rare that once a firm is delisted from

the two main stock markets (Ho Chi Minh City Stock Exchange - HOSE and Hanoi Stock

Exchange - HNX), that firm would be listed again on these two stock markets after that7.

We actually do not observe any cases like that at the moment.

7Those stocks are delisted from HOSE and HNX that will be moved to an informal market called Unlisted
Public Company Market (or Upcom).
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Table 3.7 illustrates the differences between delisted and non-delisted firms in several other

factors including total debt, market values of equity, total assets, and cash flow from

operations. The t-test method is normally used to determine whether there are significant

differences between the means of two groups. The p-values of the t-test indicate that the

differences of the four factors between two groups of firms are statistically significant at

the significant level of α = 0.05. Note that these four factors shown in Table 3.7 are not

included in the list of variables of any models. However, we use them as the intermediate

inputs to generate the final list of variables. The differences in these four factors imply that

they might be the good features to predict bankruptcy then so are the final list of variables.

Table 3.7: Means of some factors of delisted vs. non-delisted firms

debt equity at cf operating
Non-delisted firms 511.2294 657.3682 1716.3659 93.7074
Delisted firms 813.5192 111.8401 1441.8224 39.7954
p-value (t-test) 0.0000 0.0000 0.0256 0.0000

Notes: Debt stands for the total debt of firms in the balance sheet. Equity
stands for the total equity in the balance sheet. ta is denoted for the total
assets of firms, and cf operating stands for the operating cash flow from
the cash flow statement. In Python, one can use the ttest ind method
in the scipy.stats package to calculate two-sampled t-test and get the
corresponding p-value. This method calculates the t-test for the means
of two independent samples. The null hypothesis is that two independent
samples have identical averages. The t statistic is given by t = X̄1−X̄2

sp
√

1
n
+ 1

m

,

where sp =

√
(n−1)s21+(m−1)s22

n+m−2
. Note that, by default, t-test assumes that

the populations have identical variances.

Table 3.8 shows the differences between delisted and non-delisted firms in terms of the mean

of Altman’s variables. It can be seen that these two groups are significantly different in

terms of wcapt, reat, ebitat, mvdebt, and saleat. The p-values of the t-test indicate that the

differences of these five variables between two groups of firms are statistically significant.

Note that in the t-test, the null hypothesis is that the means of variables in two groups

are equal. Choosing the significant level of α = 0.05. Since all p-values are smaller than

0.05, we can reject the null hypothesis. This indicates there are significant differences in

characteristics between delisted and non-delisted firms. The differences between these two

groups in terms of Altman’s variables imply that these five variables might be good factors

to predict whether a firm goes bankrupt or not. In this case, the t-test plays the role of a

good selection method.

Table 3.9 shows the summary statistics of all Altman’s variables and all Ohlson’s variables.

Note that in the combination of Altman’s and Ohlson’s variables, we do not use all variables

in this table. Rather, we will eliminate some variables to avoid the multicollinearity issue.
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Table 3.8: Means of the Altman’s variables of delisted vs. non-
delisted firms

wcapat reat ebitat mvdebt saleat

Non-delisted firms 0.1779 0.0440 0.0683 14.8720 1.0204
Delisted firms -0.0423 -0.1913 0.0063 7.1502 0.5001
p-value (t-test) 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3.9: Summary statistics

Variable count mean std min 25% 50% 75% max
bankrupt period 12685 0.0418 0.2002 0.0000 0.0000 0.0000 0.0000 1.0000
wcapat 12685 0.1687 0.2106 -0.2234 0.0266 0.1473 0.3123 0.5800
reat 12685 0.0342 0.1173 -0.3163 0.0102 0.0435 0.0924 0.2209
ebitat 12685 0.0657 0.0623 -0.0426 0.0225 0.0578 0.1023 0.2022
mvdebt 12685 14.5488 32.7578 0.1041 0.5837 1.9153 8.3740 135.0364
saleat 12685 0.9986 0.7752 0.0780 0.3755 0.7934 1.4135 2.8690
size 12685 4.8465 1.4981 2.3140 3.7416 4.7473 5.8391 7.8813
ltat 12685 0.5279 0.2351 0.1166 0.3394 0.5397 0.7104 0.9375
lctact 12685 0.7929 0.4743 0.1604 0.4721 0.7316 0.9485 2.1409
OENEG 12685 0.0342 0.1819 0.0000 0.0000 0.0000 0.0000 1.0000
roa 12685 0.0438 0.0557 -0.0675 0.0088 0.0353 0.0751 0.1662
INTWO 12685 0.0732 0.2605 0.0000 0.0000 0.0000 0.0000 1.0000
incgrowth 12685 -0.0029 0.4921 -1.0000 -0.2197 0.0000 0.2049 1.0000
cfodebt 12685 1.2403 2.8983 -0.8524 -0.0311 0.2042 0.8976 11.529

Notes: This table shows the summary statistics of variables in this study. wcapat is the ratio
of working capital to total assets. reat is the ratio of retained earnings to total assets. ebitat
is the earnings before interest and taxes to total assets. mvdebt is the market value of equity
to total debt. saleat is the ratio of sales to total assets. size is the logarithm of the ratio of
total assets to GNP adjusted to the price-level index. ltat is the ratio of total liabilities to total
assets. lctact is the total current liabilities to total current assets. OENEG is a dummy variable
that takes value 1 when total liabilities exceed total assets and 0 otherwise. roa is the ratio of
net income to total assets. INTWO is a dummy variable that takes value 1 when net income is
negative in the last 2 years. incgrowth is the ratio between the change in net income between
time t− 1 and t over the summation of net income in time t− 1 and t. cfodebt is the ratio of
funds provided by operations to total liabilities.

Correlation matrix

We will show the correlation matrix of each list of variables using a heat map. Figure 3.2

shows the heat map of Altman’s variables. It is clear that all correlation coefficients of

Altman’s variables are less than 0.8, which is usually used as an empirical threshold to

detect highly correlation between each pair of variables. A striking point from the heat

map is that all correlation coefficients of each pair of independent variables and dependent

variables are negative.
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Figure 3.2: The heat map for the Altman’s variables

Figure 3.2 shows the heat map of Ohlson’s variables. The absolute values of all correlation

coefficients are less than 0.8, except that between lctact and wcapat. Since the completeness

of the list of Ohlson’s variables, we decide to keep both lctact and wcapat in the models for

Ohlson’s variables even though they are highly negatively correlated with each other.

Figure 3.3: The heat map for the Ohlson’s variables

Figure 3.4 shows the correlation matrix among all eleven variables in the combination list of

Altman’s and Ohlson’s variables as well as the dependent variable (i.e. bankrupt period).

We can see that all correlation coefficients are less than 0.8. Note that we have to

remove ebitat and lctact since these variables have VIF’s values greater than 10. Also,
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the correlation coefficient between ebitat and roa is 0.87, and the correlation coefficient

between lctact and wcapat is -0.87. We do not show the values of these two pair correlations

in Figure 3.4 to avoid redundancy.

Figure 3.4: The heat map for the Altman’s and Ohlson’s variables

It can be seen that bankrupt period has the negative correlation with roa, reat, wcapat,

mvdebt, saleat, size, incgrowth, and cfodebt. This is rational and as our expectations. For

example, the correlation coefficient between size and bankrupt period is negative, −0.026,

which indicates that big firms are less likely to be delisted due to financial reasons than

small firms. In addition, the correlation coefficient between incgrowth and bankrupt period

is −0.048. This means that if income growth increases then bankrupt period tends to

decrease, i.e. likely to take value 0 rather than 1. The figure also shows that the correlation

coefficients between ltat, OENEG, and INTWO and bankrupt period are positive, which

make sense too. For example, the correlation coefficient between ltat and bankrupt period

is positive, 0.24, which indicates that firms with more debt relatively to total assets tend

to be delisted due to financial reasons than those with small debt to total assets.

VIF test

This subsection will check the multicollinearity problem among independent variables in

Table 3.6. Table 3.10 illustrates the VIF’s values of all independent variables of the

Altman’s, Ohlson’s, and combination variables. As the empirical rule, if VIF is greater

than 10, then we will remove those variables.
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Table 3.10 shows that all VIF’s values are less than 10 except ltat in the list of Oblson’s

variables. We decided to keep ltat due to two reasons. First, the VIF’s value of this variable

is 10.1650, which is just slightly greater than 10. Second, more importantly, we decide to

keep this variable due to the completeness of the list of variables as in Ohlson (1980). Note

that the multicollinearity issue is only a concern in logistic regression and LDA8. This is

not a problem in other models, including SVM, neural networks, and the Merton model.

Table 3.10: The VIF’s values

Altman’s variables Ohlson’s variables Combination

Variable VIF Variable VIF Variable VIF

ebitat 2.9395 ltat 10.1729 ltat 9.1657
saleat 2.1885 lctact 9.7887 size 9.0075
wcapat 1.8831 size 9.6289 roa 3.6757
reat 1.7289 wcapat 3.0244 saleat 3.0947
mvdebt 1.3321 roa 2.5652 reat 2.7760

cfodebt 1.4525 cfodebt 2.4879
OENEG 1.4449 mvdebt 2.4458
INTWO 1.4092 wcapat 2.1995
incgrowth 1.2177 OENEG 1.5290

INTWO 1.4633
incgrowth 1.2174

Scaling

Scaling variables before applying the models are very crucial in the cases of SVM and

neural networks (Hsu et al. 2016). Since we want to compare the predictive results

among all models, we normalize all features/independent variables for all models (except

the Merton model since its inputs are different). In Python, we use the package

preprocessing.normalize from scikit-learn to normalize the variables9.

3.3.2 For the Merton model

Data collecting

In the Refinitiv Eikon database, the market value of firms on the Vietnam’s stock market

is available from May 2009. Due to the missing data from January to April of 2009, our

study period started from 2010 to 2021 for the Merton model.

8Note that the effects of multicollinearity issue on linear regression and LDA are not the same. In LDA,
the goal is to find the linear combination of predictor variables (features) that maximizes the separation
between different groups or classes. Multicollinearity can still be an issue if there is too much overlap between
the predictor variables, but it is less of an issue than in linear regression because LDA is focused on the
differences between groups rather than the individual effects of predictors.

9For more details, see the documentation at https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.normalize.html
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Data processing

For the Merton model, the variables include the number of common shares, market value,

debt, and risk-free interest rate. To represent the risk-free interest rate, we use the

Vietnam 1-year bond yield10. The remaining variables are collected from the Refinitiv

Eikon database. In the Merton model, bankruptcy probability is calculated daily and then

averaged to get the yearly data. The missing values and the firms which have less than 200

trading days are excluded from the data.

Note that the Merton model works with daily datasets. Thus, we convert the debt, risk-free

interest rates into the daily format. For the missing data in the market value of firms, we

replace by the stock price multiplied by the common shares. In case the stock prices are

also missing, the rolling mean of five periods is used to fill in the market value. A 5-period

rolling mean is used with the meaning that today’s market value is related to the market

value within five trading days of the week.

The variables

For the Merton model, the variables include (1) market value, (2) short-term and long-term

debt, and (3) risk-free interest rate. Note that the market value of each firm is calculated

by multiplying the number of common shares (also known as outstanding shares or shares

outstanding) and the price of the stock of that firm. In order to represent for a risk-

free interest rate, we use the Vietnam 1-year bond yield data. The remaining variables

are collected from the Refinitive Eikon database. Table 3.11 shows all variables and the

corresponding data sources for the Merton model.

Table 3.11: The Merton’s variables and corresponding sources

Variable Source

Market value of equity Refinitive Eikon database

Debt Refinitive Eikon database

Vietnam 1-year bond yield www.investing.com

Notably, the Merton model bankruptcy probability is calculated daily and then converted

to yearly data by mean. The missing data and the firms which have less than 200 trading

days will be excluded from the data. There are 7,707 firm-year observations with 1,059

firms including 76 delisted firms and 983 non-delisted firms.

10See https://www.investing.com/rates-bonds/vietnam-1-year-bond-yield-historical-data
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3.3.3 Synthetic minority oversampling technique

In order to get balanced data for training models we use the synthetic minority oversampling

technique (SMOTE)11. This is a data augmentation technique for oversampling the minority

group. This technique was first introduced by Chawla et al. (2002). The idea of this

technique is that first a random data point a of the minority class is chosen. Then one

finds a k nearest data points (e.g. k = 5) of minority class. A randomly selected data point

b is chosen among k nearest data points. Thus, a synthetic data point is generated at a

randomly selected point between a and b.

There are two steps for using SMOTE in our study.

• Step 1: Split the data into train (80%) and test set (20%).

• Step 2: Apply SMOTE on the train set.

In Step 1, we split data into 80% of the train set and 20% of the test set. After this step,

there are 10,148 firm-year observations (with 414 observations of delisted firms) in the train

set and 2,537 firm-year observations (with 117 observations of delisted firms) in the test set.

In Step 2, we only apply SMOTE on the train set to get the balanced training data between

non-delisted and delisted firms. After this step, our train set includes 9, 734 firm-year

observations of non-delisted firms (50%) and 9, 734 firm-year observations of delisted firms

(50%). The total observations in the train set increased from 10,148 to 19,468 after using

SMOTE. Note that we keep the test set separate and only use it to validate the models.

Notably, SMOTE technique is applied only for the accounting-based and machine-learning

models but not for the Merton model. Since the Merton model is calculated independently

for each firm, it is not impacted by imbalanced data.

Table 3.12 illustrates the number of observations of train data (Train), test data (Test),

and their corresponding proportions before and after using SMOTE of delisted and non-

delisted firms. Obviously, for the train data, the data before SMOTE (original data) is

highly imbalanced with 4.08% number of observations of delisted firms and 95.92% number

of observations of non-delisted firms. After using SMOTE, we get 50% observations of

delisted firms and 50% observations of non-delisted firms in the train data. Meanwhile, the

test data is the same before and after using SMOTE since this technique only applies on

the train data.

11Note that one can use other ways to deal with imbalanced data. One way is to balance the weights of the
observations in two groups by adding class weight = ‘balanced’ into the models. While this parameter
now is available in logistic regression, SVM, and neural networks (one can calculate the weights from the
number of observations in each group and then add these manual weights to the neural networks), it is not
available for LDA and the Merton model.
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Table 3.12: Number of observations before and after using SMOTE

Before SMOTE After SMOTE

Train Percent Test Percent Train Percent Test Percent

Delisted firms 414 4.08% 117 4.61% 9,734 50% 117 4.61%

Non-delisted firms 9,734 95.92% 2,420 95.39% 9,734 50% 2,420 95.39%

All firms 10,148 100% 2,537 100% 19,468 100% 2,537 100%

3.4 Results

All the results in this section are based on the confusion matrices of relevant models.

For more details about how to calculate accuracy, balanced accuracy, Matthew correlation

coefficient, precision, recall, and F1 score please see Appendix 1.

Note that in order to obtain good results for neural networks in this section we do

hyperparameter tuning with epochs = 10, 20, 50,100, 200, 300 and batch size = 1, 2,

4, 8, 16, 32, 6412. We do not run models with epochs more than 300 to avoid overfitting

problem. Also, we do not run models with batch size more than 64 since our final sample

only contains 531 observations of delisted-firms, which is relatively small compared to the

size of datasets in many neural networks models in the literature. We find that epochs =

200 and batch size = 32 are the optimal ones.

For the architects of the neural networks, we choose optimizer=‘adam’ since this is

popular and is one of the most powerful optimizers in machine learning and we choose

loss=‘binary crossentropy’ since our target feature is binary one and this is also one

of the most popular loss functions in machine learning. Note that we choose these two

hyperparameters (optimizer adam and loss function binary crossentropy) for convenience.

But, of course, one can do hyperparameter tuning for these parameters to choose the optimal

ones in other studies.

3.4.1 Confusion matrix

We denote 0 as non-delisted firms and 1 as delisted firms. Then, we derive the confusion

matrix for all models. For example, the confusion matrices of the LDA models for the

case of Altman’s variables, Ohlson’s variables, and the combination are respectively shown

Figure 3.5. The top-left numbers mean that the firms are not delisted and the models

correctly predict that they are not delisted. The bottom-right numbers mean that the

firms are delisted and the models correctly predict that the firms are delisted. The top-

right numbers mean that the firms are non-delisted but the models incorrectly predict that

12In convention, we choose the batch size = 2k, where k = 0, 1, 2, ....
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the firms are delisted. Finally, the bottom-left numbers mean that the firms are actually

delisted but the models incorrectly predict that the firms are non-delisted.

Figure 3.5: Confusion matrices of the LDA models

(a) Altman’s variables (b) Ohlson’s variables (c) Combination

Since we want to compare the confusion matrices among models (among LDA models and

also among the LDA with other accounting-based models), it is useful to normalize the

confusion matrices. Figure 3.6 shows the normalized confusion matrices of the LDA models,

where we normalize by the sum of the horizontal values in Figure 3.5.

Figure 3.6: Normalized confusion matrices of the LDA models

(a) Altman’s variables (b) Ohlson’s variables (c) Combination

We also derive the confusion matrix for other models (logistic regression, SVM, neural

networks, and the Merton model). Note that for the SVM model, we choose the radial

basis function kernel (or RBF kernel). Note also that one can choose other kernels, for

example, linear kernel.

The confusion matrix of the Merton model is given in Table 3.13. From this table, we

can calculate that the general accuracy is 0.5864, the accuracy for non-delisted firms and

delisted firms are 0.5804 and 0.7168, respectively. Note that this general accuracy is also

the balanced accuracy of the Merton model. The reason is that in the Merton model, we

compute the bankruptcy probability for each firm independently compared to that for the
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other firms. That is the estimated probability does not depend on the situation of the

imbalanced data of the sample size.

Table 3.13: Confusion matrix of the Merton model

Predicted
Non-delisted Delisted

Actual
Non-delisted 4277 3091
Delisted 96 243

3.4.2 Balanced accuracy

One important reason that we use balanced accuracy besides accuracy is that machine

learning algorithms tend to get biased toward the majority group. That is the algorithms

perform well on the majority group and perform poorly on the minority group. In the case

of imbalanced data, high accuracy is not necessarily a good score in evaluating models.

Because of this reason balanced accuracy might be a better score compared to accuracy in

evaluating models with imbalanced data since it captures the performances of both majority

and minority groups.

Since our data is imbalanced (skewed distribution), each accuracy in the above section

is actually imbalanced accuracy. One can use a balancing technique to generate another

accuracy score, which is the so-called balanced accuracy. By definition, it equals the average

of the recall of two groups. Similar to accuracy, the values of the balanced accuracy range

from 0 to 1.

Table 3.14: Accuracy vs. Balanced accuracy

Model Accuracy Balanced accuracy
Altman’s Ohlson’s Combination Altman’s Ohlson’s Combination

LDA 0.9082 0.8715 0.8967 0.7810 0.7984 0.8523
LR 0.9018 0.8746 0.9011 0.7940 0.8082 0.8790
SVM 0.9018 0.8916 0.8975 0.8590 0.8130 0.8771
NN 0.8849 0.8971 0.9373 0.8949 0.8444 0.9021

Note: Altman’s stands for Altman’s variables and Ohlson’s stands for Ohlson’s variables.

Table 3.14 shows that all models with both Altman’s and Ohlson’s variables (the

combination case) consistently have the highest balanced accuracy compared to those with

only Altman’s variables or only Ohlson’s variables. Note that we present accuracy in this

table just for the purpose of comparison to balanced accuracy. We do not compare or

explain the performances of the models in terms of accuracy.

The predictive accuracy of the Merton model is 0.580413, which is lower than all given

accounting-based models. The poor performance of the Merton model might be because

13Note that, similarly to the accounting-based and machine learning models, in order to evaluate the
predictive power of the Merton model, we choose 0.5 as the threshold for predicted probability. That is, if
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the efficiency of Vietnam’s stock market is not clear. Further studies to verify the efficiency

of Vietnam’s stock market, as well as the predictive performance of the Merton model, are

surely necessary.

The next natural step is to separately look at the balanced accuracy in the case of non-

delisted and delisted firms in comparison with the case of all firms. It can be seen from

Table 3.15 that the balanced accuracy performances for non-delisted firms are higher than

those for delisted firms in all models, except in neural networks with Altman’s variables.

Table 3.15: Balanced accuracy of the models for non-delisted vs. delisted firms

Model All Non-delisted Delisted All Non-delisted Delisted All Non-delisted Delisted

Altman’s Ohlson’s Combination

LDA 0.7810 0.9211 0.6410 0.7984 0.8789 0.7179 0.8523 0.9012 0.8034
LR 0.7940 0.9128 0.6752 0.8082 0.8814 0.7350 0.8790 0.9033 0.8547
SVM 0.8590 0.9062 0.8119 0.8130 0.8996 0.7265 0.8771 0.8996 0.8547
NN 0.8949 0.8839 0.9059 0.8444 0.9025 0.7863 0.9021 0.9409 0.8632

In order to get metrics (e.g accuracy and balanced accuracy) to evaluate neural networks

models, we need to set up the architects for neural networks models. In all the neural

networks, we use the architects with two hidden layers, one input layer, and one output

layer. Table 3.16, Table 3.17, and Table 3.18 respectively show the architect of the neural

networks with the Altman’s variables, Ohlson’s variables, and the combination of both.

Note that the number of inputs, which are not the same as the number of neurons in the

input layer, of each neural network equals the number of variables in each model. We choose

the number of neurons in the input layer that is double the number of neurons in the first

hidden layer. Note that one can choose the number of neurons in the input layer differently.

Table 3.16: The architect of the neural networks for Altman’s variables

Layer Number of neurons Number of parameters Activation function
Input layer 10 60 ReLU
Hidden layer 1 5 55 ReLU
Hidden layer 2 5 30 ReLU
Output layer 1 6 Sigmoid
Total parameters 151

Note that in the above architects for neural networks, we choose ReLU as the activation

function in the input and hidden layers. For the output layer, we choose Sigmoid as the

activation function. Note also that since the financial distress prediction is a classification

problem in nature, one should not use linear as the activation function in the output layer.

Linear activation function is suitable when the target variable is continuous while in our

case the target variable is binary (distress or non-distress).

the predicted financial distress probability of a firm is greater than 0.5 then we label that firm as a financial
distress firm. Otherwise, we label that firm as a non-financial distress firm.
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Table 3.17: The architect of the neural networks for Ohlson’s variables

Layer Number of neurons Number of parameters Activation function
Input layer 18 180 ReLU
Hidden layer 1 9 171 ReLU
Hidden layer 2 9 90 ReLU
Output layer 1 10 Sigmoid
Total parameters 451

Table 3.18: The architect of the neural networks for Altman’s and Ohlson’s variables

Layer Number of neurons Number of parameters Activation function
Input layer 26 364 ReLU
Hidden layer 1 13 351 ReLU
Hidden layer 2 13 182 ReLU
Output layer 1 14 Sigmoid
Total parameters 911

3.4.3 Matthews correlation coefficient

Table 3.19 illustrates the Matthews correlation coefficient (MCC) of several models with

accounting-based variables. It is clear from Table 3.19 that the models with the combination

variables are consistently the best compared to those with either Altman’s or Ohlson’s

variables. Also, the models with Ohlson’s variables have the least performance compared

to those with either Altman’s variables or the combination. Note that MCC’s values range

from -1 to 1. The higher MCC’s values show a higher agreement between the predicted and

actual values and vice versa. Note that, in contrast to accuracy, MCC itself is a measure

that is less affected by the imbalanced dataset issue. However, we even do not need to worry

about this since by using SMOTE our data is balanced already.

Another striking result is that neural networks consistently outperform other models in all

of three cases, including Altman’s variables, Ohlson’s variables, and a combination of the

two.

Table 3.19: MCC of the accounting-based and machine learning models

Altman’s variables Ohlson’s variables Combination

LDA 0.3848 0.3519 0.4377
LR 0.3876 0.3651 0.4702
SVM 0.4524 0.3914 0.4627
NN 0.4607 0.4306 0.5721

In order to derive the Table 3.19 we choose 0.5 as the threshold to determine financial

distress. Note that we choose 0.5 as the threshold in this study not only because this is the

most popular threshold but also since we compared the results for the case of threshold=0.5

and 0.4 (we checked in the code but do not show the comparison here to avoid unnecessary
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redundancy) and we find that threshold 0.5 generating better results in most models14. Note

that choosing threshold between 0 and 1 (excluding 0 and 1) only affects neural networks

models but not LDA, logistic regression, and SVM since the predicted values in the last

three models are either 0 or 1 while that of neural networks can be any real values between

0 and 1.

The MCC for the Merton model is 0.1231, which is lower than any MCC of the accounting-

based and machine-learning models. The MCC together with the predictive accuracy

consistently shows that the Merton model underperforms any given model, including logistic

regression, LDA, SVM, and neural networks. One possible reason can be explained for the

poor predictive performances of the Merton model is that Vietnam’s stock markets might

not be efficient at the current time. Indeed, Loc et al. (2010) finds that Vietnam’s stock

market is not efficient in the weak form. Moreover, Vietnam’s stock market is progressing

towards weak form efficiency but the speed of transmission of information is slow (Gupta

et al. 2014).

3.4.4 Precision, recall and F1 score

Precision, recall, and F1 score are metrics used to evaluate the performance of classification

models. Precision is a metric that measures the percentage of correctly identified positive

results out of all results that are classified as positive. Recall is a metric that measures the

percentage of correctly identified positive results out of all actual positive results. The F1

score is the harmonic mean of precision and recall. For more details, please see Appendix

1.

Table 3.20 compares the precision, recall, and F1 score of the LDA and logistic regression

models for three different cases with Altman’s variables, Ohlson’s variables, and its

combination. Note that 0 and 1 in the second column of this table stand for the non-

delisted, delisted, and all firms, respectively. Table 3.21 compares the precision, recall, and

F1 score of the SVM and neural networks models for three different cases with Altman’s

variables, Ohlson’s variables, and its combination.

One striking result from Table 3.20 and Table 3.21 is that in most cases the predictive

performances for non-delisted firms obviously outperform those for delisted firms in terms of

precision, recall, F1 score. One possible reason that can explain the differences in predictive

performances between delisted and non-delisted firms is that delisted firms might report

relatively unreliable financial ratios in their financial statements. The unreliable data, in

turn, possibly affect the predictive performances of non-delisted firms. Further studies are

needed to test this hypothesis (unreliable data) and possibly other reasons.

14The reason why we compare the results with different thresholds is that some studies, for example
Staňková (2022), indicates that thresholds should be considered depending on the economic situation and
estimation methods.
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Table 3.20: Precision, recall, and F1 score of the LDA and logistic regression
models

LDA Logistic regression
Firms Precision Recall F1 Precision Recall F1

0 0.98 0.92 0.95 0.98 0.91 0.95
Altman 1 0.28 0.64 0.39 0.27 0.68 0.39

All 0.63 0.78 0.67 0.63 0.79 0.67
0 0.98 0.88 0.93 0.99 0.88 0.93

Ohlson 1 0.22 0.72 0.34 0.23 0.74 0.35
All 0.60 0.80 0.63 0.61 0.81 0.64
0 0.99 0.90 0.94 0.99 0.90 0.95

Combination 1 0.28 0.80 0.42 0.30 0.85 0.44
All 0.64 0.85 0.68 0.65 0.88 0.69

Notes: The precision, recall, and F1 measure of all firms (denoted by All) is the macro
average precision, recall, and F1 score. This is actually the average of the precision,
recall, and F1 score of both non-delisted and delisted groups, respectively.

Table 3.21: Precision, recall, and F1 score of the SVM and neural networks

SVM Neural networks
Firms Precision Recall F1 Precision Recall F1

0 0.99 0.91 0.95 0.99 0.88 0.94
Altman 1 0.30 0.81 0.43 0.27 0.91 0.42

All 0.64 0.86 0.69 0.63 0.89 0.68
0 0.99 0.90 0.94 0.99 0.90 0.94

Ohlson 1 0.26 0.73 0.38 0.28 0.79 0.41
All 0.62 0.81 0.66 0.63 0.84 0.68
0 0.99 0.90 0.94 0.99 0.94 0.97

Combination 1 0.29 0.85 0.43 0.41 0.86 0.56
All 0.64 0.88 0.69 0.70 0.90 0.76

3.4.5 Feature importance

We already quantified the predictive performances of several models. Now we go further

to see which variables are the most important. We consider the coefficients in our logistic

regression models as feature importance15. Since all variables are normalized, the coefficient

values of these variables in the logistic regression models can be considered as feature

importance.

Figure 3.7 shows the feature importance for the Altman’s variables. The variables with

negative coefficient values tend to lead the predicted outcome to be 0 (financially non-

distress). Meanwhile, the variables with positive coefficient values tend to lead the predicted

15Note that coefficients only can be considered as feature importance in the case of linear models such as
linear regression, logistic regression, and their extensions. Since there are no coefficients in some machine
learning models (e.g. SVM and neural networks), we do not quantify coefficients as feature importance in
these models.
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outcome to be 1 (financial distress). All the signs of the coefficient values in this figure

are consistent with the correlation coefficients in Figure 3.2, except that of two variables:

ebitat and wcapat. One possible reason why the coefficient values of ebitat and wcapat are

negative is because the minimum values of ebitat and wcapat in Table 3.9 are negative and

the number of observations with negative ebitat and wcapat might be many, which thus

affect the sign of the coefficient values. One striking point from Figure 3.7 is that reat is

the most important variable among all Altman’s variables.

Figure 3.7: Feature importance for the Altman’s variables

Figure 3.8 shows the feature importance for Ohlson’s variables. It is evident that the

coefficient values of ltat, OENEG, and INTWO are positive while the rest of the coefficient

values are negative. The signs of the coefficient values of feature importance in Figure

3.8 are almost consistent with the signs of correlation coefficients in Figure 3.3. The only

unexpected sign is the case of lctact. This is possibly caused by the high correlation between

lctact and wcapat.

Figure 3.8: Feature importance for the Ohlson’s variables
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Figure 3.9 shows the feature importance for Altman’s and Ohlson’s variables. All of the

signs of coefficient values in this figure are consistent with the correlation coefficients in

Figure 3.4, except that of two variables: size and roa. The negative coefficient value of

the variable “size” seems to contradict the fact in Table 3.22. However, this table is just

a simple summary statistics. Also, the difference in delisted proportion between small and

big firms is small (about 4.7% vs. 3.7%). Further research will be surely needed to quantify

the effect of firm size on financial distress probability. One might consider the median of

total assets to classify small and big firms rather than the mean to avoid the effects of

extreme total assets. For “roa”, its positive coefficient value might be because of the fact

that the minimum value of roa is negative in Table 3.9 and those negative roa might be

many, which thus affects the sign of coefficient value. Overall, strikingly, reat is the most

important variable among the list of Altman’s and Ohlson’s variables.

Figure 3.9: Feature importance for the Altman’s and Ohlson’s variables

An important result from feature importance is that reat is the most important variable

in Altman’s variables as well as the combination of Altman’s and Ohlson’s variables. Also,

ltat and wcapat are the most important variables in Ohlson’s variables.

3.5 The effects of firm size and macroeconomic situation

The outcomes of financial distress prediction might be different depending on firm size and

whether firms are in an economic distress situation or not. It is worth exploring the effects

of these aspects on predictive outcomes especially in Vietnam, where firms are significantly

different in size and where as a transition economy the macroeconomic situations are often

unstable.
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3.5.1 Small firms vs. big firms

Since many public firms in Vietnam are small and medium ones, it is necessary to split all

firms into two groups: small and big ones based on the median of the total assets. Small

firms are those having total assets less than the median of the total assets of all firms

while big firms are those having total assets more than the median of the total assets of all

firms. Note that the median of total assets of all firms is approximately 588 billion VND

(equivalent to 24.7 million USD).

After splitting, there are 6,344 big firms and 6,341 small firms. Table 3.22 compares the

mean and median of variables between small and big firms. The p-values of the t-test

indicate that most of the differences are statistically significant at the significance level of

1%, except INTWO. That is, the means of most variables are statistically different while

for INTWO we cannot reject the null hypothesis, which states that the mean of INTWO of

small firms equals the corresponding one of big firms. Note that since the means of most

variables in Table 3.22 between small and big firms are different, this implies that our list of

variables is the good one to potentially capture the differences in predictive performances

between small and big firms. Note also that this is not necessarily the case that there are

no more good variables that can explain the differences in predictive performances between

small and big firms. Possibly, there are some more but we stick with this list of variables

since they are the combination of the Altman’s and Ohlson’s variables.

Table 3.22 shows that the proportion of small firms, that are delisted due to financial reasons,

is higher than that of big firms with 4.7% and 3.7%, respectively. This is consistent with

the fact from Figure 3.4 that in general the size of a firm has a negative correlation with the

likelihood that the firm can be delisted due to financial reasons. The difference in delisted

proportion might be because of the difference in income growth. Table 3.22 indicates that

the average income growth of the small firms is negative (about −3.14% per year) while

that of big firms is positive (about 2.55% per year). Another possible explanation for the

difference in the proportions of delisted firms between small and big firms is the sensitivity

to long-term and short-term financial distress. Indeed, Cathcart et al. (2020) indicates that

short-term debt is more sensitive to default probability than long-term debt. It can be

seen from Table 3.22 that small firms have a proportion of short-term debt over total debt

(lctlt) is approximately 86.62% which is moderately higher than that of big firms with the

proportion around 72.97%. This difference is consistent with that in Cathcart et al. (2020).

Figure 3.10 compares the performances of the confusion matrices between small and big

firms using Altman’s variables, Ohlson’s variables, and the combination of both. For non-

delisted firms, there are no clear different patterns in predictive performances between

small and big firms. For delisted firms, the predictive performances between small and

big firms are clearer. Specifically, for delisted firms, the predictive performances of

big firms consistently outperform those of small firms. Specifically, the proportions of
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Table 3.22: Compare means of variables between big and small firms

Small firms Big firms
Variable Obs Mean Std Obs Mean Std p-value (t-test)
bankrupt period 6,341 0.0469 0.2116 6,344 0.0367 0.1881 0.0038
at 6,341 246.63 152.0317 6,344 3162.42 3335.2545 0.0000
roa 6,341 0.0463 0.0614 6,344 0.0412 0.0492 0.0000
reat 6,341 0.0220 0.1320 6,344 0.0464 0.0989 0.0000
ebitat 6,341 0.0655 0.0668 6,344 0.0660 0.0576 0.6504
wcapat 6,341 0.2058 0.2219 6,344 0.1316 0.1916 0.0000
mvdebt 6,341 18.2814 36.2832 6,344 10.8179 28.3214 0.0000
saleat 6,341 1.1503 0.8154 6,344 0.8469 0.7008 0.0000
size 6,341 3.6683 0.8172 6,344 6.0240 1.0229 0.0000
ltat 6,341 0.4737 0.2435 6,344 0.5821 0.2130 0.0000
lctact 6,341 0.7292 0.4690 6,344 0.8565 0.4711 0.0000
lctlt 6,341 0.8662 0.1955 6,344 0.7297 0.7976 0.0000
OENEG 6,341 0.0405 0.1972 6,344 0.0280 0.1651 0.0001
INTWO 6,341 0.0768 0.2662 6,344 0.0696 0.2546 0.1233
incgrowth 6,341 -0.0314 0.5072 6,344 0.0255 0.4749 0.0000
cfodebt 6,341 1.6364 3.3037 6,344 0.8445 2.3610 0.0000

Notes: The last column in this table shows the p-values of the t-test with the null hypothesis that the
mean of each variable of the small and big firms are equal. If we choose the significance level at 1%,
then we can see that most (except ebitat and INTWO) of the differences in variables between small
and big firms are statistically significant. Note that in this table, at and lctlt are not variables in any
models. But we show the descriptive statistics of these two variables with the purpose that we might
understand the differences between the debt structure of small vs. big firms.

correct predictions of delisted small firms are 66%, 73%, and 75% while the corresponding

proportions of correct predictions of delisted big firms are 81%, 94%, and 90%, respectively.

Table 3.23 compares accuracy, balanced accuracy, and Matthews coefficient correlation

between small and big firms in the cases of Altman’s, Ohlson’s, and a combination of

variables. In terms of Matthews coefficient correlation, there are no consistent differences

in the predictive performances of the models for big vs. small firms. However, for each

type of model, the patterns are clearer. For example, for the neural networks models the

predictive performances of big firms consistently outperform those of small firms.

In terms of balanced accuracy, the predictive models for big firms are consistently better

than those for small firms in most models. An exception is the case for the logistic regression

model with Altman’s variables. But note that even in this case the balanced accuracy for

small and big firms are almost the same with 81.64% and 81.49%, respectively. One possible

explanation for the differences in predictive performances between small and big firms is

that financial reports and data of the big firms might be more reliable and accurate than

those of small firms, thus leading to better predictive performances of big firms compared

to small firms.
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Figure 3.10: Normalized confusion matrices of the LDA models for small and big firms

(a) Small firms (Altman’s) (b) Big firms (Altman’s)

(c) Small firms (Ohlson’s) (d) Big firms (Ohlson’s)

(e) Small firms (Combination) (f) Big firms (Combination)
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Table 3.23: Comparison predictive performances between small and big firms

Small firms Big firms
Accuracy Balanced MCC Accuracy Balanced MCC

Altman’s 0.9369 0.8057 0.4800 0.8140 0.8132 0.2936
LDA Ohlson’s 0.8361 0.7851 0.3090 0.8905 0.9131 0.4507

Combination 0.9117 0.8328 0.4459 0.8597 0.8771 0.3828
Altman’s 0.9267 0.8164 0.4624 0.8171 0.8149 0.2968

LR Ohlson’s 0.8416 0.7557 0.2845 0.9031 0.8796 0.4399
Combination 0.8968 0.8169 0.4042 0.8692 0.8719 0.3879
Altman’s 0.9078 0.8146 0.4202 0.8818 0.8585 0.3902

SVM Ohlson’s 0.8503 0.7844 0.3193 0.9086 0.9025 0.4703
Combination 0.9054 0.8537 0.4548 0.8849 0.8702 0.4048
Altman’s 0.8952 0.8725 0.4560 0.9362 0.8868 0.5181

NN Ohlson’s 0.8810 0.8569 0.4213 0.9251 0.9211 0.5211
Combination 0.9448 0.8582 0.5573 0.9693 0.8839 0.6551

Notes: Balanced stands for balanced accuracy and MCC stands for Matthews correlation
coefficient.

3.5.2 Good years vs. bad years

We choose GDP growth at 6% as the cutoff to classify the study period into two periods:

good years and bad years. This is a good cutoff since it captures three economic distress

periods including the financial crisis (2008 and 2009), unstable macroeconomic fluctuation

(2012, 2013, and 2014), and the Covid-19 pandemic (2020 and 2021) in the bad years. The

other years are considered the good years (2010, 2011, 2015, 2016, 2017, 2018, 2019). Note

that our delisted data is between 2011 and 2021 but we also have the firm’s characteristics

data in 2009 and 2010. In total, there are 5,513 observations in the bad years and 7,172 in

the good years.

Table 3.24 shows the differences in the mean of variables between good and bad years of

some variables. The last column shows the p-values of the t-test for the null hypothesis that

the mean of each variable in bad years equals that in good years. Choose the significance

level at 10%, we can observe that more than half of p-values are less than 0.1 while the other

six p-values are greater than 0.1. This implies that for a number of variables including roa,

reat, saleat, size, OENEG, INTWO, and incgrowth are statistically significant differences

between bad and good years. One striking point in Table 3.24 is that the average income

growth of firms during bad years is negative (−5.41% per year) while that during good years

is positive (3.63% per year). It is reasonable to argue that those variables having significant

p-values of t-test (smaller than 0.1) might play more important roles in explaining any

differences in predictive performances of firms between bad and good years.

Figure 3.11 compares the confusion matrices of the LDA models for firms in bad and good

years. It can be seen that, for delisted firms, the predictive performances for the case of

Altman’s and Ohlson’s variables in the good years are better than the corresponding results
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Table 3.24: Comparison means of variables between bad and good years

Bad years Good years
Variable Obs Mean Std Obs Mean Std p-value (t-test)
bankrupt period 5,513 0.0417 0.1999 7,172 0.0419 0.2005 0.9446
at 5,513 1694.72 2790.70 7,172 1712.67 2762.84 0.7180
roa 5,513 0.0428 0.0569 7,172 0.0445 0.0547 0.0735
reat 5,513 0.0316 0.1197 7,172 0.0362 0.1153 0.0271
ebitat 5,513 0.0643 0.0639 7,172 0.0668 0.0611 0.0264
wcapat 5,513 0.1715 0.2113 7,172 0.1665 0.2100 0.1818
mvdebt 5,513 14.7565 32.8456 7,172 14.3891 32.6915 0.5312
saleat 5,513 0.9839 0.7790 7,172 1.0099 0.7722 0.0619
size 5,513 5.0956 1.5414 7,172 4.6549 1.4350 0.0000
ltat 5,513 0.5278 0.2352 7,172 0.5280 0.2350 0.9563
lctact 5,513 0.7917 0.4798 7,172 0.7938 0.4701 0.7998
OENEG 5,513 0.0373 0.1896 7,172 0.0319 0.1758 0.0953
INTWO 5,513 0.0440 0.2052 7,172 0.0956 0.2941 0.0000
incgrowth 5,513 -0.0541 0.5287 7,172 0.0363 0.4581 0.0000
cfodebt 5,513 1.2642 2.9195 7,172 1.2220 2.8819 0.4160

Notes: Bad years indicate the periods with economic distress while good years indicate the periods
without economic distress. Note that total assets (denoted by at) is not official variables in any
models but we want to do t-test to see whether there are significant differences between total assets
during bad years compared to good years or not (the p-value shows that there is no difference).

for the bad years. However, interestingly, the predictive performance in bad years is better

than that in good years for the combination of Altman’s and Ohlson’s variables. This

implies the role of variables in influencing the predictive ability of the models.

Table 3.25 compares the financial distress prediction performances for bad and good years.

In terms of MCC, the predictive performances of most models in the good years are better

than those in the bad years. In terms of balanced accuracy, the differences between the

predictive performances of LDA and logistic regression models do not have clear patterns.

However, for SVM and neural network models, the predictive performances in good years

consistently outperform those in bad years. One possible explanation for the outperforms

in good years compared to bad years is that during the good years the data is less noisy

compared to that in the bad years. Therefore, the predictive performances can be improved.

3.6 Discussion

In our study, we choose 0.5 as the threshold to predict bankruptcy probability after

comparing the predictive performances between the threshold of 0.4 and 0.5. One can

choose another threshold to evaluate the performances of neural networks and LDA models.

Staňková (2022) argues that although the variables in traditional models are successful in

predicting bankruptcy risk, the threshold may not necessarily be the same when carrying

financial distress or bankruptcy prediction in different economies. Note that in our study,
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Figure 3.11: Normalized confusion matrices of the LDA models for bad and good years

(a) Bad years (Altman’s) (b) Good years (Altman’s)

(c) Bad years (Ohlson’s) (d) Good years (Ohlson’s)

(e) Bad years (Combination) (f) Good years (Combination)
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Table 3.25: Comparison predictive performances for bad and good years

Bad years Good years
Accuracy Balanced MCC Accuracy Balanced MCC

Altman’s 0.9211 0.7815 0.3626 0.8773 0.7714 0.3196
LDA Ohlson’s 0.8731 0.7947 0.3081 0.8850 0.8459 0.4014

Combination 0.8766 0.8981 0.4041 0.9003 0.8539 0.4312
Altman’s 0.9048 0.8238 0.3752 0.8940 0.8115 0.3804

LR Ohlson’s 0.8594 0.7749 0.2785 0.8822 0.8132 0.3664
Combination 0.8758 0.8849 0.3917 0.9108 0.8673 0.4621
Altman’s 0.9266 0.8478 0.4398 0.8913 0.8727 0.4351

SVM Ohlson’s 0.8867 0.7764 0.3057 0.8934 0.8268 0.3944
Combination 0.8867 0.8779 0.3988 0.9080 0.8815 0.4704
Altman’s 0.8912 0.8548 0.3842 0.9108 0.8986 0.4915

NN Ohlson’s 0.8948 0.8821 0.4137 0.9192 0.9108 0.5196
Combination 0.9411 0.8553 0.4859 0.9652 0.8878 0.6557

Notes: Balanced stands for balanced accuracy and MCC stands for Matthews correlation
coefficient.

only neural networks and LDA models are affected by the decision of choosing a threshold

between 0 and 1 (excluding 0 and 1). The predictive performances of other models, including

logistic regression, LDA, and SVM do not depend on the threshold since their predictive

output is either 0 or 1.

We agree with both Abinzano et al. (2020) and Cathcart et al. (2020) that the structure of

the sample has an important role on the accuracy of the predictive models. In particular,

the firms’ size is related to the prediction ability of the model (Abinzano et al. 2020). Also,

the predictive performance of models is impacted by the debt structure of firms (Cathcart

et al. 2020).

Regarding variables for the prediction models, our results on feature importance not only

confirm the significant predictability of variables used in Altman (1968) and Ohlson (1980)

but also support Chen et al. (2006) assertion that variables such as reat, ltat, and wcapat

provide an overall picture of a firm’s performance in terms of profitability, solvency, and

liquidity. Indeed, feature importance results provide a general view of a firm’s performance

in terms of profitability (reat), solvency (ltat), and liquidity (wcapat). Specifically, a

company with low profitability, high solvency, and illiquidity indicates early signals of

financial distress.

Regarding neural networks, this method normally works well with large datasets, which

might not be met in many financial distress and bankruptcy prediction studies due to

the limited number of observations of the minority group (i.e. financial distress firms or

bankrupt firms). If one can somehow increase the number of observations in the minority

group, then the predictive performances of the neural network models might be better.

Although with relatively small datasets, we find that neural networks might be more
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suitable than traditional statistical methods (e.g. logistic regression) in predicting corporate

financial distress. Our finding is consistent with Chen and Du (2009).

One important point is that most studies about financial distress or bankruptcy prediction

in transition economies (not only in Vietnam) work on imbalanced data but they do not

mention in detail their strategies to take into account their imbalanced data. As a result,

their results and conclusions might be misleading. For example, Vo et al. (2019) work on

two samples, one with about 87% of non-financial distress firms (and 13% of distress firms)

and another one with about 73% non-financial distress firms (and 27% financial distress

firms). In case they do not take imbalanced data into account their results about accuracy

might not be accurate. This is because the models with imbalanced data tend to be biased

toward the majority group. In our study, we use balanced accuracy rather than accuracy.

Specifically, we assign the weight to one incorrect prediction of the minority group is higher

than the weight of one incorrect prediction of the majority group. By doing so, our results

are not biased due to imbalanced data.

Note that there are two types of comparisons among models in this study. One is a

comparison among the models with the same accounting-based variables (features). The

other one is a comparison between models with different input variables. Regarding the

comparison between the Merton model and accounting-based models (i.e. logistic regression

and machine learning models), the comparability between the results of these models should

be considered with caution. One reason is that these models use really different input

variables: one base frequent market values while the other ones base on periodic book

values. Note that one key variable in the Merton model in our study is a 1-year interest

of Vietnam’s government bond, which sometimes remains constant for days. Also, the

efficiency of Vietnam’s stock markets is still not clear at the moment. If the market is

inefficient, the Merton model might not predict financial distress well.

3.7 Conclusion

This paper compares the performances of the accounting-based, market-based, and machine

learning models in predicting corporate financial distress in a transition economy, Vietnam.

The results suggest that while all models perform reasonably well in predicting financial

distress outcomes for non-delisted companies, their performance is poor when it comes to

predicting outcomes for delisted companies, as measured by various accuracy metrics like

balanced accuracy, precision, recall, and F1 score. The study shows that models that

combine Altman’s and Ohlson’s variables outperform those that use only one of these

variables when it comes to balanced accuracy. Moreover, the study finds that neural

networks are consistently the most effective models, as measured by both balanced accuracy

and Matthews correlation coefficient (MCC). The variable “reat” (retained earnings over

total assets) is the most important variable in Altman’s variables as well as in the
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combination of Altman’s and Ohlson’s variables, while “ltat” (total liabilities over total

assets) and “wcapat” (working capital over total assets) are the most important variables

in Ohlson’s variables. The study also reveals that the models generally perform better in

predicting financial distress outcomes for large companies than for small ones, and their

predictive performance is typically better in good years than in bad years, as measured by

MCC.

One limitation of this study is that we work on the given list of independent variables

(Altman’s variables, Ohlson’s variables, and the combination). Future research might

extend this work by working on a list of variables close to the context of transition economies

instead of that base on a developed economy like the United States with Altman’s variables

and Ohlson’s variables in 1968 and 1980, respectively.

Since we only consider the 80/20 split ratio of the train and test set, one potential direction

for future research is to examine other split ratios. Also, one can study good years and bad

years as a dummy variable to investigate whether this dummy variable affects the predictive

performances. Another direction is to compare the predictive results in different sectors or

different stock exchanges, including Ho Chi Minh City Stock Exchange (HOSE) and Hanoi

Stock Exchange (HNX).

For the Merton model, as we argue in the results section since there is a lack of studies on

the efficiency of Vietnam’s stock market and the Merton model, further research on both

topics is surely needed. Note that in order for the Merton model to work well, the stock

market needs to be efficient, including one of weak-form, semi-strong-form, or strong-form

efficiency in the sense of Fama (1970). Also, future research needs to verify the assumption

of standard normal distribution of some components in the Merton model before carrying it

with data. Once the standard distribution assumption and the efficiency of the market are

satisfied, the Merton model might be a good model to predict corporate financial distress

in a transition economy like Vietnam.
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Appendices

Appendix 1: Confusion matrix, Matthews correlation coefficient, accuracy,

balanced accuracy, recall (or sensitivity), and specificity

Given the following general confusion matrix as follows.

Predicted

Positive (P) Negative (N) Total

Actual Positive (P) True Positive (TP) False Negative (FN) TP + FN

Negative (N) False Positive (FP) True Negative (TN) FP + TN

Total TP + FP FN + TN P + N

The formulas of the Matthews correlation coefficient (MCC), accuracy, sensitivity, and

specificity are derived based on the above confusion matrix.

• The Matthews correlation coefficient (MCC)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC has values between −1 and 1, i.e.

−1 ≤ MCC ≤ 1.

• Accuracy (ACC)

ACC =
TP+ TN

TP+ TN+ FP + FN
.

ACC has values between 0 and 1 (or 0% and 100% percent), i.e.

0% ≤ ACC ≤ 100%.

• Balanced accuracy for imbalanced data

Balanced accuracy =
Recall (majority group) + Recall (minority group)

2
,

where the recall of each group is calculated from the confusion matrix of corresponding each

group as follows

Recall =
TP

TP + FN
.
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The values of recall vary from 0 for no recall and 1 for perfect recall. Another score that

goes side by side with recall is precision.

• Precision

Precision =
TP

TP + FP
.

• F1-score: A popular measure based on recall and precision is F1-score (aka F-score or

F-measure). The formula of F1-score is given by

F1 = 2
Precision ∗ Recall
Precision + Recall

=
2TP

2TP + FP + FN
.

• Sensitivity (or true positive rate - TPR)

TPR =
TP

P
=

TP

TP + FN
.

TPR has values between 0 and 1 (or 0% and 100% percent), i.e.

0% ≤ TPR ≤ 100%.

Note that the formulas for sensitivity and recall are exactly the same. In that sense, recall

and sensitivity are the same.

• Specificity (or true negative rate - TNR)

TNR =
TN

N
=

TN

TN + FP
.

TNR has values between 0 and 1 (or 0% and 100% percent), i.e.

0% ≤ TNR ≤ 100%.

Some of the above criteria can be used to evaluate the ability of predictions of the Merton

model approach as well as Altman model approach (Z-score).

117



Appendix 2: The list of delisted stocks on HOSE and HNX

Table 3.26: Delisted stocks on HOSE & HNX due to financial reasons between 2011-2021

Symbol Delisted year Symbol Delisted year Symbol Delisted year

FPC 2011 HHL 2014 CTN 2016

SHN 2011 ILC 2014 VC5 2016

VTA 2011 MIC 2014 SRB 2016

DVD 2011 MMC 2014 DAC 2016

VSP 2012 NSN 2014 SQC 2016

AGC 2012 NVC 2014 CYC 2017

BAS 2012 PSG 2014 VNA 2017

CAD 2012 PVA 2014 VNH 2017

VKP 2012 SDB 2014 CPI 2017

CSG 2012 SJM 2014 STT 2018

SBS 2013 VCV 2014 ICF 2019

DDM 2013 VHH 2014 PPI 2019

IFS 2013 YBC 2014 VHG 2019

VES 2013 HLA 2015 ORS 2019

VSG 2013 HSI 2015 SDE 2019

FBT 2013 VNI 2015 SCJ 2019

STL 2013 NVN 2015 DLR 2019

THV 2013 DCT 2015 PCN 2019

TLC 2013 VST 2015 PVV 2019

SVS 2013 SSG 2015 VPK 2020

VCH 2013 BVG 2015 VCR 2020

SDJ 2013 V15 2015 CT6 2020

SHC 2013 VPC 2015 SCL 2020

SD8 2013 CTM 2015 SPP 2020

S27 2013 LM3 2015 MEC 2020

SCC 2013 PFL 2015 PVE 2020

DHI 2013 VNN 2015 DID 2020

AVS 2013 TSM 2015 NGC 2021

STL 2013 SD1 2015 S74 2021

CLP 2014 PID 2015 ATG 2021

CNT 2014 BTH 2015 LO5 2021

FDG 2014 VLF 2016 VTS 2021

PXM 2014 GTT 2016 HLY 2021

BHC 2014 PXL 2016 CLG 2021

BHV 2014 CID 2016 PXT 2021

GGG 2014 S12 2016 DPS 2021

Source: HOSE, HNX
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Chapter 4

Finite and mean field games for optimal

investment with HARA utility function and the

presence of risk-seeking agents

Abstract

This study extends the work of Lacker and Zariphopoulou (2019) by considering the

financial market with the presence of both risk-averse and risk-seeking agents. Specifically,

the n-agent (finite) and mean field games for optimal investment with the family of the

hyperbolic absolute risk aversion (HARA) utility function under relative performance

concern/motivation are studied. Several specific forms of the HARA family, including

exponential, power, and logarithmic form are investigated. We prove that there exists a

unique constant Nash equilibrium and a unique constant mean field equilibrium in both

the n-agent and mean field games for the case of strictly concave utility function. For the

case of strictly convex utility function, there exists a unique corner solution in these games

where agents invest all of their wealth in risky assets (e.g. stock) and invest nothing on

riskless assets (e.g. bond). Furthermore, we discuss the qualitative effects of the personal

and market coefficients on the optimal investment strategies.

Keywords: n-agent games, mean field games, optimal investment, risk-seeking agents.

JEL Codes: C70, D81, G11.
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4.1 Introduction

The most popular assumption in the relevant literature of optimal investment and portfolio

optimization usually supposes that agents are uniform risk-averse or their utility functions

are concave on the entire domain. The second popular assumption lying in the prospect

theory is the S-shape utility function, which is convex in the domain of losses and concave

in the domain of gains, and the slope in the domain of losses is steeper than that in the

domain of gains. Instead of examining the variation of risk preferences within agents like

the prospect theory or studying uniform risk-averse behavior like the mainstream economic

literature, this study investigates risk preferences which may vary between agents depending

on their characteristics. Meanwhile, we know a lot about the behavior of risk-averse agents

who have uniformly concave or S-shape utility functions, there is a lack of understanding of

the behavior of risk-seeking agents and the interaction between risk-averse and risk-seeking

agents. In contrast to the prospect theory, this study assumes that the utility functional

form is a characteristic of each individual rather than depends on whether she gains or

losses. This implies that the individual risk preferences are stable over time and not easy

to change during a short period of time.

4.1.1 Motivation: The presence of risk-seeking agents

Risk-seeking behavior of agents (e.g. investors) is examined theoretically and empirically

by many previous studies in the literature (e.g., Kahneman and Tversky 1979; Wong and Li

1999; Niendorf and Ottaway 2002; Seel and Strack 2013; Bai et al. 2014; Hoang et al. 2015;

Guo et al. 2016; Clark et al. 2016; Wu and Jaimungal 2023). Specifically, Seel and Strack

(2013) shows that, in a declining industry, risk-loving agents might invest in projects with

negative expected returns. In addition, Niendorf and Ottaway (2002) shows that during

bear markets, agents have an incentive to act in a risk-seeking manner. Empirically, Bai

et al. (2014) find that there exist two types of investors, risk-averse and risk-seeking agents,

on the stock market. Moreover, Clark et al. (2016) find the existence of all four investor

types corresponding to concave, convex, S-shape, and reverse S-shape on the Taiwan stock

and stock index futures markets. Also, they figure out that risk-seeking agents prefer futures

markets to spot markets.

In reality, there are many situations where risk-seeking behavior exists. Indeed, we know

much about the investing activities on the traditional underlying assets (e.g., stock and

bond) on the financial markets; meanwhile, our understanding of risk-seeking investing

activities (e.g., playing the lottery, gambling, speculating, sports betting, and short selling)

of risk-seeking agents is very limited. It is worth exploring some types of risk-seeking agents

and their risk-seeking behavior.
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Lottery players as risk-seeking agents

A lottery is a game involving drawing a number for a prize for which only few buyers win

while a much greater number of buyers does not. That means this is risky entertainment.

To examine, let’s consider the California SuperLotto Plus1. To play, a player picks five

numbers between 1 and 47 and one Mega number between 1 and 27 and she needs to pay

$1 per play for each SuperLotto Plus ticket. The prize amounts and the game odds (the

inverse of the probability of winning a prize) are described in Table 4.1.

Table 4.1: A description of the California SuperLotto Plus lottery

Matching numbers Odds 1 in (1/winning probability) Prize amounts

All 5 of 5 and Mega 41,416,353 $15,000,000
All 5 of 5 1,592,937 $33,622

Any 4 of 5 and Mega 197,221 $1,400
Any 4 of 5 7,585 $89

Any 3 of 5 and Mega 4,810 $52
Any 3 of 5 185 $9

Any 2 of 5 and Mega 361 $10
Any 1 of 5 and Mega 74 $2
None of 5, only Mega 49 $1

Overall odds of winning 23 One (any) prize

Source: Calottery

The probability of winning a prize, for example, the first prize (all 5 of 5 and Mega), is(
47

5

)(
27

1

)
=

1

41, 416, 353
,

and similarly for the probabilities for other prizes. From Table 4.1, the expected payoff of

buying a California SuperLotto Plus ticket is

1

41, 416, 353
$15, 000, 000 +

1

1, 592, 937
$33, 622 + ...+

1

74
$2 +

1

49
$1 ≈ $0.5367 ≈ 54 (cents).

In general, not only the California SuperLotto Plus ticket that we mention here but it seems

almost all (or probably all) real-world private or state lotteries have expected payoffs that

are lower than the cost to purchase them.

Why do people play lotteries even though the expected payoff is less than the cost to play?

One can use knowledge of behavioral economics to explain by assuming that lottery players

1For more details, please see
https://www.calottery.com/draw-games/superlotto-plus#section-content-4-3
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are irrational. They might overestimate (or overweight) the small probability to win a

lottery. Also, they might believe that their subjective confidence in their own ability to win

a lottery is greater than the actual probability to win. This is the so-called overconfidence

effect. This study, however, assumes that lottery players are rational. They play lotteries

because they realize that by doing so they can gain benefits. We assume that lottery

players are risk-seeking agents and have convex utility functions. Therefore, even though the

expected payoff is negative, the utility they gain might be positive. Moreover, individuals

might play lotteries not only because of the monetary value but also the non-monetary value

(e.g. pleasure), which is not reflected in the expected payoff but the gaining utility (value).

Assume that the lottery players are rational and their purpose is to maximize their utility

levels. Thus, if a player prefers the California SuperLotto Plus ticket with the expected

payoff is 54 cents than a sure lottery with a payoff $1 (cost for each California SuperLotto

Plus ticket), then she is a risk-seeker.

Gamblers as risk-seeking agents

Let’s consider Roulette, which is a popular casino game. In this game, players choose to

place finite bets on either a single integer number (from 1 to 36) or a group of several

numbers, which are low (1-18), high (19-36), odd, even, black, or red on a wheel. The

number zero might appear once (French/European style roulette) or twice (American style

roulette) on the wheel and it is colored in green.

Suppose a European roulette model in which a player chooses the straight up (single number)

bet strategy with the winning space being any single number. Thus, the probability space

is (Ω, 2Ω,P), where Ω = {0, 1, ..., 36},P(A) = |A|/37 for any A ∈ 2Ω. Define a bet a triple

B = (A, s, p), where A is the set of chosen numbers, s ∈+ is the size of the bet, and p : Ω → R
is the payoff function of the bet. Thus, the payoff function of the space B = (w0, s, p) for

some w0 ∈ Ω is defined by

p(w) =

{
−s, w ̸= w0

35s, w = w0.

Thus, the expected payoff is

E[p(w)] =
1

37
(35s) +

36

37
(−s) = − s

37
≈ −0.027s.

Suppose s = $10, then E[p(w)] ≈ $ − 0.27 = −27 cents. That is, for each time of playing

with the cost of $10, the player loses approximately 27 cents after each game, which is

equivalent to 2.7%.

Alternatively, suppose a player chooses even odd bet strategy in a European roulette game.

The rule is that if the bet wins then that player gets double, if the bet loses the player gets
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nothing. Since there are 37 numbers, Ω = {0, 1, . . . , 36} and the host always win if you

choose 0, the probability that a player wins for each game is p = 18/37 ≈ 0.4864, which

is actually less than one-half. Moreover, suppose the size of the bet is s = $10. Thus, the

expected payoff for each game equals the sure lost minus expected gain, which is

10−
[
18

37
(2× 10) +

1

37
(0)

]
≈ −$0.27 (or 27 cents).

To sum up, in either straight up or even odd strategy, the player loses about 27 cents after

each game. But why are there still many people playing roulette nowadays?

Sports betting players as risk-seeking agents

Sports betting is a gambling-like activity. Football betting, for instance, is now popular

with the support of computers and the internet. Table 4.2 shows the betting odds for the

top-10 football teams in the 2014 World Cup.

Table 4.2: The 2014 World Cup betting odds for the top-10 teams2

Country Betting odds Country Betting odds

Brazil 3/13 Italy 20/1

Argentina 5/1 Holland 25/1

Germany 5/1 France 25/1

Spain 6/1 Colombia 25/1

Belgium 16/1 England 28/1

Short-sellers as risk-seeking agents

Consider the financial market where short sales are allowed. In reality, approximately 1

of 35 (equivalently about 2.88%) traded stocks on Nasdaq is short selling and the average

percentage of shorted shares of 100 most active stocks is 4.17% (Angel et al. 2003). One

noticeable result is that short-sellers have preferences for the risky factors (Dechow et al.

2001). We will theoretically show later in this study that those who short stocks are risk-

seeking. Short-sellers usually short the stocks that are relatively overvalued relative to

its fundamentals or probably the stocks of acquiring firms in the mergers and acquisitions

process (Dechow et al. 2001). They may also short the stocks of firms that misrepresent

their financial statements (Karpoff and Lou 2010). Short-sellers might borrow an asset,

for example, the shares of a stock, from the brokers and sell it and then buy it back at

some period in the future. They make a profit when the price drops and make a loss when

the price increases. Since the price can only drop to zero, then the profit is bounded.

2See more details at https://www.businessinsider.com/world-cup-favorites-2014-4
33/1 odds means one bet $1 and get $4 if Brazil wins, giving her/him a profit of $3.
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Meanwhile, since the price can go up arbitrarily high then the potential loss is unbounded.

Therefore, short-selling is a risky activity.

Speculators as risk-seeking agents

Speculators might utilize leverage to magnify gains (and losses). By using leverage, the

potential gains are high but the potential losses are also high. They usually do not

hold assets or derivative securities for a long period. Speculators aim at outperforming

traditional longer-term investors by making gains that are large enough to offset the high

risk. As risk-seeking agents, a common strategy for speculators is to invest in derivatives

(e.g. futures). Specifically, Lean et al. (2010) discover in Malaysian markets that, for

risk-averse agents, spot dominates futures under second-order stochastic dominance (SSD),

while for risk-seeking agents, futures dominate spot under SSD. That is, risk-seeking agents

prefer futures while risk-averters prefer spots to maximize their expected utility. Similarly,

Qiao et al. (2013) find that, for the emerging markets, futures dominate the spot for risk-

seeking agents while the spot dominates futures for risk-averse agents. As a result, there are

potential gains for risk-seeking agents if they switch their investment from spot to futures

and for risk-averse agents if they switch from futures to spot.

Entrepreneurs as risk-seeking agents

Entrepreneurs are willing to take many risks, particularly the risk of failure. Indeed, there

are about 90% startups failing (Cusumano 2013). This is because of uncertainties and the

lack in many aspects of the business at the early state including financing, hiring talents,

pricing, knowledge of the market demand, and experience of competition 4.

In summary, Table 4.3 compares this study and standard optimal investment literature,

expected utility theory, and prospect theory.

Table 4.3: Comparison the utility functional forms in the literature

Standard optimal

investment literature

Expected utility

theory (EUT)

Prospect

theory
This study

Utility functional

form
concave

concave, convex, or

linear

convex-concave

(S-shape)

convex,

concave

Agents risk-averse
risk-averse, risk-seeking,

and risk neutral

risk-seeking

and risk-averse

risk-seeking,

and risk-averse

Variation in

risk preferences
NA between agents within agents

between

agents

4For more details, please see https://s3-us-west-2.amazonaws.com/cbi-content/research-reports/
The-20-Reasons-Startups-Fail.pdf
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4.1.2 Mean field games

Mean field games (MFG) are the limiting version (or sometimes called the aggregated

version) of the N -agent games. This is a kind of stochastic strategic decision game. MFG

has been pioneered in Lasry and Lions (2006a,b, 2007a,b) and independently in Huang

et al. (2006). MFG has a close relationship with infinite-player games in the game theory

literature. Indeed, games with a continuum of infinite players have long been considered in

game theory (Shapiro and Shapley 1961; Milnor and Shapley 1961; Shapley 1961; Aumann

1964; Aumann and Shapley 1974; Aumann 1975; Jovanovic and Rosenthal 1988; Myerson

1991; Khan and Sun 2002; Rauh 2003; Huang 2013; Chan and Sircar 2015). In short, Table

4.4 compares the differences between infinite-player games and MFG.

Table 4.4: Comparison between infinite-player games and MFG

Infinite-player games MFG

Agents
Homogeneous

or heterogeneous
Heterogeneous

Mean-field parameter No Yes

Tools for existence proof
Fixed-point theorem

(Brouwer or Kakutani)

Optimal control (OC)

problem, PDE, SDE

Strategies
Pure (discrete) and

mixed strategies

Continuous controls

(strategies)

Setting (model)
Optimization problem

or OC problem

OC problem or

Coupled system of two PDEs

4.1.3 Brownian motions as stochastic shocks

The price dynamics is described by the following stochastic differential equation, which

includes two independent geometric Brownian motions as stochastic shocks: Wt (individual

shocks) and Bt (market shocks),

dSt
St

= µdt+ νdWt + σdBt,

where µ is the trend, ν and σ are the individual and market volatility, respectively, and St is

the price of a particular asset. The market shocks (e.g. pandemic, terrorism attacks, major

natural disasters, or financial crisis) and individual shocks (e.g. company restructuring,

cost shock, factory fire, or sudden change in dividend policies) can be arbitrarily small or

large. We assume that the shocks are random (unpredictable) for typical investors. We also

assume that all of the shocks reflect in the price in a short time via two Brownian motions

(i.e. the efficient market hypothesis holds). Note that individual shocks mean that each
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individual investor investing in an individual asset faces different shocks. Even though they

face the same market shocks, they universally face different levels of shocks.

4.1.4 Relative performance: Individual investors vs. Fund managers

Utility function with relative performance criteria is developed to reflect the human

psychology that people normally compare their performance with those of their peers. This

kind of difference-like comparison affects people’s well-being and behavior. The idea of

utility with relative performance is not new in economic literature (Abel 1990; Fehr and

Schmidt 1999).

In MFG, typical works assume that fund managers concern about the relative performance

of their peers since incentive compensation (e.g. payment incentive, promotion incentive)

is popular in the fund managers community (Chevalier and Ellison 1999; Espinosa and

Touzi 2015; Huang and Nguyen 2016; Lacker and Zariphopoulou 2019; Fu and Zhou

2020). In contrast with these studies, our study focuses on individual investors rather

than fund managers. It is noticeable that, besides incentive compensation, fund managers

and individual investors are different in the sense that fund managers are normally involved

in agent-principal problems in which the managers’ benefits and the principal’s benefits

might be different. This is not the case for individual investors. As a result, these two

groups (individual investors and fund managers) might not share the same investment

behavior. Fund managers pay attention to relative performance concern while individual

investors might pay attention to relative performance concern as well as relative performance

motivation. The differences in the behavior of these two groups of agents are reflected in

risk tolerance and relative performance parameter. Table 4.32 compares some recent related

work with this study.

Table 4.5: Some studies related to relative performance

Literature
Espinosa and

Touzi (2015)

Lacker and

Zariphopoulou (2019)
Fu et al. (2020) This study

Utility function CARA CARA, CRRA Exponential HARA

Agents (or players) Portfolio managers Fund managers Fund managers Individual investors

Risk preference Risk aversion Risk aversion Risk aversion
Risk aversion and

risk-seeking

Personal risk tolerance Positive Positive Positive Not equal zero

Relative performance (θi) θi ∈ [0, 1) θi ∈ [0, 1] θi ∈ [0, 1) θi ∈ [−1, 1]

Expected value unclear positive, unbounded bounded non-negative, bounded

Method BSDE PDE FBSDE PDE

Well-posedness Yes Yes Yes Yes

Why do we assume θi ∈ [−1, 1]? We will explain it based on psychological perspectives.

On the one hand, if comparison brings concern or worry or jealousy to agent i (if agent i

compares her performance with higher earners, which is called upward social comparison), or
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arrogance (if agent i compares her performance with lower earners, which is called downward

social comparison) then it is not good for her. In this situation, it is described by the so-

called relative performance concern and denoted by θ+i ∈ [0, 1]. In an experimental study

about the effect of economic inequality on risk behavior, Payne et al. (2017) shows that

there is 63% of participants choosing upward comparison while 37% of participants choosing

downward comparison. Note that the term “relative performance concern” in this study

is equivalent to the term “relative performance” in Espinosa and Touzi (2015) and Lacker

and Zariphopoulou (2019).

On the other hand, if comparison brings motivation or inspiration (if upward social

comparison), or pride (if downward social comparison) then it is good for agent i, which

is illustrated by the so-called relative performance motivation and denote by θ−i ∈ [−1, 0).

Some previous studies show that peer effects might help improve performance. Eisenkopf

(2010) discovers that peers impact performance not just during interaction but also before

and afterward. This implies that the performance of an individual might be affected just

by comparison with peers. Kaustia and Knüpfer (2012) find that recent stock returns that

local peers experience affect an individual’s stock market entry decision, especially in areas

with better opportunities for social learning.

Briefly, this study aims to characterize the behavior of risk-seeking and risk-averse agents

in n-agent games and MFG. Specifically, I will tackle the following questions: (i) Are there

exist Nash equilibrium (NE) and mean field equilibrium (MFE) in n-agent games and MFG

with the presence of risk-seeking agents? (ii) If NE and MFE exist, in which conditions are

they unique? (iii) How do the NE and MFE depend on the personal and market parameters?

The remainder of the chapter is organized as follows. Section 4.2 will describe a functional

form of HARA utility function. We then explore n-agent and mean field games for the

exponential form in Section 4.3 and the power form in Section 4.4. Hence, we will discuss

the effects of personal and market parameters on equilibrium in Section 4.5 and finally

conclude the chapter in Section 4.6.

4.2 HARA utility function

The family of utility functions called the HARA family is first introduced by Merton (1971)

and is studied extensively in the literature of portfolio selection (Merton 1987; Davis and

Norman 1990; Kim and Omberg 1996; Duffie et al. 1997; Benth et al. 2001; Çanakoğlu and

Özekici 2010; Escobar et al. 2017). Before considering the explicit form of the HARA family

for this study, we propose several necessary assumptions.
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4.2.1 Assumptions

Some necessary assumptions for both n-agent games and mean field games are given as

follows. These are the common (either implicit or explicit) assumptions of the standard

models in mean field games.

Assumption 4.2.1 (Rationality). In investing activities, agents are rational.

Assumption 4.2.2 (Common knowledge). The individual preference parameters and

market parameters are common knowledge.

As we will see in the next section, we will investigate models with complete information.

Specifically, the personal preferences and market parameters in n-agent games and MFG

are common knowledge for all agents and each agent knows that each other agent knows a

common knowledge.

Assumption 4.2.3 (Zero transaction costs). There are no or negligible transaction costs

in trading assets.

Assumption 4.2.4 (Complete market). The market is complete, i.e. there exists the price

for every asset in any state.

Note that the Assumption 4.2.1-4.2.4 implies that the financial market in this study is

a perfect market. Even though the perfect market might be not realistic in the current

uncertain world, “the model may indeed provide the best description of the financial system

in the long run” (Merton 1987).

Assumption 4.2.5 (Heterogeneous agents). Agents are heterogeneous, i.e. each agent has

the same utility functional form and dynamics but with different parameters.

4.2.2 HARA utility functional form

Definition 4.2.1 (HARA utility function). A utility function with nonnegative real domain

R+ is said to exhibit the hyperbolic absolute risk aversion (HARA) if and only if the inverse

of absolute risk aversion, r(x) = 1/A(x) = −U ′(x)/U ′′(x), is a linear function of wealth

(level).

In this study, the functional form of the family of HARA utility functions with relative

performance is given by

Ui(X
i
T , X̄T ) = ai

(1− α

α

)(Xi
T ∗ f(X̄T , θi)

1− α
− ηi

)α
+ b, α ̸= 0, α ̸= 1 (4.1)

where α, ai, b,−1 ≤ θi ≤ 1, and ηi are constant; ∗ is an abstract operation, which can

be subtraction or multiplication. Here, Xi
T is the agent i’s terminal wealth; X̄T is the
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average terminal wealth of all agents including agent i. There are two cases: (i) Xi
T and X̄T

have linear relationship (if ∗ is subtraction) and f(X̄T , θi) describes a linear relationship

in terms of wealth, i.e. f(X̄T , θi) = θiX̄T ; (ii) Xi
T and X̄T have nonlinear relationship

(if ∗ is multiplication) and f(X̄T , θi) describes a nonlinear relationship with wealth with

f(X̄T , θi) = X̄−θi
T . We can check that the HARA family of utility function (4.1) satisfies

Definition 4.2.1.

If ∗ is subtraction and f(X̄T , θi) = θiX̄T , we can check that the inverse of absolute risk

aversion, 1/A(Xi
T ), is a linear function of wealth Xi

T . Indeed, take the first and second

derivative of the utility function (4.1) with respect to Xi
T yields

U ′
i = ai

(
Xi
T − θiX̄T

1− α
− ηi

)α−1

, U ′′
i = −ai

(
Xi
T − θiX̄T

1− α
− ηi

)α−2

.

Thus, the linear form of the inverse of absolute risk aversion with respect to Xi
T is given by

1

A(Xi
T )

= − U ′
i

U ′′
i

=
1

1− α
Xi
T −

(
θiX̄T

1− α
+ ηi

)
.

Similarly, if ∗ is multiplication and f(X̄T , θi) = X̄−θi
T , we can derive that

U ′
i = ai

(
Xi
T X̄

−θ
T

1− α
− ηi

)α−1

X̄−θi
T , U ′′

i = −ai

(
Xi
T X̄

−θi
T

1− α
− ηi

)α−2 (
X̄−θ
T

)2
.

Thus, obtain the linear expression on the right hand side as follows

r(Xi
T ) =

1

A(Xi
T )

= − U ′
i

U ′′
i

=
1

1− α
Xi
T − ηi

X̄−θi
T

.

Remark 4.2.1. By introducing the average terminal wealth X̄T , we can induce the n-

dimensional n-agent games and infinite dimensional MFG to the 2-dimensional optimal

control problem. That is, the utility function now only depends on two variables: the agent

i’s terminal wealth Xi
T and the average terminal wealth of the population X̄T .

The utility functional form (4.1) is explicitly a function of wealth level (a stock), or wealth

for short, rather than a function of return (a flow). We will see in the next sections that the

return will be a part of the price dynamics, which then affects the stock of wealth. That

is, the return of stocks will indirectly affect the agent i’s utility level. We will explain the

meaning of the parameters in the next sections. We are going to derive a number of utility

functions, which are special cases of (4.1).
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Exponential utility function. If ∗ is subtraction, and

f(X̄T , θi) = θiX̄T , ηi =
α

1− α

1

γi
, ai =

(α− 1

α

)α−1
γα−1
i , b = 0

then

Ui(X
i
T , X̄T ) =

(α− 1

α

)α−1
γα−1
i

(1− α

α

)(Xi
T − θiX̄T

1− α
− α

1− α

1

γi

)α
= − 1

γi

(α− 1

α

)α
γαi

[ 1

α− 1

( α
γi

− (Xi
T − θiX̄T )

)]α
= − 1

γi

(
1−

γi(X
i
T − θiX̄T )

α

)α
.

Taking limit as α→ ∞, we get the exponential functional

lim
α→∞

Ui(X
i
T , X̄T ) = lim

α→∞
− 1

γi

(
1−

γi(X
i
T − θiX̄T )

α

)α
= − 1

γi
lim
α→∞

(
1−

γi(X
i
T − θiX̄T )

α

)α
=

−e−γi(Xi
T−θiX̄T )

γi
.

For simplicity, we can write

Ui(X
i
T , X̄T ) =

−e−γi(Xi
T−θiX̄T )

γi
. (4.2)

Taking the first and second derivative of the utility function (4.2) with respect to Xi
T yields

U ′
i = e−γi(X

i
T−θiX̄T ) and U ′′

i = −γie−γi(X
i
T−θiX̄T ).

Thus, we get the constant Arrow-Pratt coefficient of absolute risk aversion (CARA)

A(Xi
T ) = −U

′′
i

U ′
i

= γi, for all Xi
T .

Therefore, we say (4.2) is a CARA utility function. Note that CARA agents invest a

constant amount of dollars in risky assets regardless of wealth level. Also note that in this

case the inverse of absolute risk aversion is also constant, r(Xi
T ) = 1/A(Xi

T ) = −U ′
i/U

′′
i =

1/γi, which is mathematically still a linear function with respect to wealth.

Power utility function: If ∗ is multiplication, and for all i = 1, ..., n

f(X̄T , θi) = X̄−θi
T , γi = 1− α, ai = (1− α)α−1, b = 0, ηi = 0
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then

Ui(X
i
T , X̄T ) = (1− α)α−1 1− α

α

(Xi
T X̄

−θi
T

1− α

)α
=

1

α
(Xi

T X̄
−θi
T )α

=
(Xi

T X̄
−θi
T )1−γi

1− γi
, γi ̸= 1.

Thus,

Ui(X
i
T , X̄T ) =

(Xi
T X̄

−θi
T )1−γi

1− γi
, where X̄T =

( n∏
i=1

Xi
T

)1/n
. (4.3)

Here, X̄T is the geometric mean. Note that together with the arithmetic mean, geometric

mean is also a popular measure for investors to evaluate a portfolio selection. Since

arithmetic mean is always greater than or equal to geometric mean, using the later one

might be a better tool in the sense of safety for investors.

From (4.3), taking the first and second derivatives with respect to Xi
T yields

U ′
i = (Xi

T X̄
−θi
T )−γiX̄−θi

T and U ′′
i = −γi(Xi

T X̄
−θi
T )−γi−1X̄−2θi

T .

Thus, we can check that the power functional form (4.3) exhibits decreasing Arrow-Pratt

measure of absolute risk aversion (DARA) and constant Arrow-Pratt measure of relative

risk aversion (CRRA), respectively,

A(Xi
T ) = −U

′′
i

U ′
i

=
γi
Xi
T

and R(Xi
T ) = −Xi

T

U ′′
i

U ′
i

= γi, for all Xi
T .

Thus, the inverse of absolute risk aversion is

r(Xi
T ) =

1

A(Xi
T )

= − U ′
i

U ′′
i

=
1

γi
Xi
T ,

which is clearly a linear function of Xi
T . Therefore, it satisfies Definition 4.2.1 of the HARA

family. Further, note that a DARA agent invests more amount of dollars in risky assets as

wealth increases and a CRRA agent invests a constant fraction in risky assets regardless of

the wealth level, which are two reasonable assumptions and are seemingly supported in the

literature (Friend and Blume 1975; Graves 1979).

Logarithmic utility function. In this study, the logarithmic utility form is a special case

of power utility form (4.3) when γ tends to 1. Explicitly, it has the form

Ui(X
i
T , X̄T ) = log(Xi

T X̄
−θi
T ). (4.4)

131



Taking the first and second derivative of (4.4) with respect to Xi
T yields

U ′
i =

1

Xi
T

and U ′′
i = − 1

(Xi
T )

2
.

Hence, we can check for all Xi
T that the Arrow-Pratt coefficient of absolute risk aversion

is decreasing and the coefficient of relative risk aversion is constant as terminal wealth

increases, respectively,

A(Xi
T ) = −U

′′
i

U ′
i

=
1

Xi
T

and R(Xi
T ) = −Xi

T

U ′′
i

U ′
i

= 1 (constant).

Thus, the inverse of absolute risk aversion is

r(Xi
T ) =

1

A(Xi
T )

= Xi
T ,

which is a linear function of Xi
T . So, the logarithmic utility function (4.4) satisfies Definition

4.2.1 of HARA utility function. Further, note that the logarithmic form (4.4) is a DARA

as well as CRRA utility function.

Note that the power and logarithmic utility functions satisfy the Inada-type condition on

the behavior at infinity, i.e. U ′
i(∞) = 0 but not zero. Zero is out of our domain since the

assumption that Xi
T ≥ ε for some small ε > 0 so we do not need the condition U ′

i(0) = ∞.

4.3 Exponential utility function

Dynamics. Consider a game with n agents (investors) investing on the financial market.

Without loss of generality, one can work with the two-asset case in which each agent trades

between a common risk-free asset (e.g. bond) and an individual risky asset (e.g. stock),

which indicates asset specialization5. Similarly Lacker and Zariphopoulou (2019), here the

bond is common to all agents and plays the role of the numeraire, and we assume it yields

zero interest rate (zero-coupon bond). Specifically, the agent i invests in stock i whose price

process Sit , t ∈ [0, T ], where T is the stopping time, with continuous paths, varies according

to the following linear stochastic differential equation (SDE)

dSit
Sit

= µidt+ νidW
i
t + σidBt, (4.5)

where 0 ≤ µi ≤ µ̄i and 0 ≤ νi ≤ ν̄i and 0 ≤ σi ≤ σ̄i for some constants µ̄i, ν̄i, σ̄i > 0. Here,

µi, νi, and σi are constant market coefficients. The parameter µi denotes the expected rate

5Many previous studies examine asset specialization, for example, Brennan (1975), Merton (1987), Coval
and Moskowitz (1999), Liu (2014), Basak and Makarov (2015).
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of return of the stock i which is assumed to be non-negative. The parameters νi and σi
denote the volatility of some individual asset and the whole market, respectively.

Similarly to Lacker and Zariphopoulou (2019), in this study, the price process is driven

by two independent 1-dimension standard Brownian motions W i
t and Bt on a filtered

probability space (Ω,F ,F,P), where F = (Ft)t∈[0,T ] is the complete filtration generated

by n + 1 Brownian motions W i
t , where i = 1, ..., n, and Bt. Here, each W i

t is called the

idiosyncratic noise (idiosyncratic uncertainty) and Bt is called the common noise (aggregate

uncertainty).

4.3.1 The n-agent games

We examine the games where n finite players trade between a common risk-free asset (e.g.

bond) and an individual risky asset (e.g. stock) in a common time horizon [0, T ]. Suppose

that all agents have the same finite time horizon [0, T ]. The exponential utility function6

for agent i at the terminal time T is given by

Ui(X
i
T , X̄T ) =

−e−γi(Xi
T−θiX̄T )

γi
, γi ̸= 0, i = 1, 2, ..., n (4.6)

where X̄T = 1
n

∑n
k=1X

k
T
7 is the arithmetic average terminal wealth invested in assets of the

whole population. In the above utility function, Xi
T ≥ 0 is the agent i’s individual wealth

invested in assets (or just simply wealth for short) at the terminal period T 8, and X̄T is

the average wealth of all agents at the terminal period T . Here, γi ̸= 0 is a constant (but

random) which represents the agent i’s Arrow-Pratt measure of absolute risk aversion. It

does not depend on the types of assets and her wealth level. Note that the parameter γi
can be positive or negative: γi > 0 represents the case of risk aversion while γi < 0 captures

the case of risk-seeking behavior. Here, the relative performance parameter θi ∈ [−1, 1] for

all i = 1, ..., n is a constant and it indicates that agent i takes into account her performance

by comparison to her peers9) in which they usually assume θi ∈ [0, 1].

6This exponential utility function is more general than that in Lacker and Zariphopoulou (2019). In our
study, γi can be positive or negative. Therefore, the utility function can be concave or convex to capture
the case of risk-averse or risk-seeking agents, respectively. In Lacker and Zariphopoulou (2019), however,
since the parameter δi > 0 so it only captures the case that agents are risk-averse.

7Similarly to Lacker and Zariphopoulou (2019), here we consider the case that the average wealth of the
population including the agent i for simplicity. The reason is that there is a one-to-one mapping between
the case of including and excluding the agent i of the optimization problem (4.8).

8Many previous studies in the literature examine long-term investment strategies, for example, Siegel
(2014).

9Note that in the utility function (4.6) the relative performance parameter θi can be negative, positive,
or zero. This is different compared to many previous studies (e.g. Espinosa and Touzi (2015) and Lacker
and Zariphopoulou (2019)
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Taking the first and second-order derivative of the utility function (4.6) with respect to Xi
T ,

we obtain

U ′
i = e−γi(X

i
T−θiX̄T ) and U ′′

i = −γie−γi(X
i
T−θiX̄T ).

We can check whether the utility function Ui is strictly concave or convex depending on the

sign of parameter γi. Specifically,

Ui(X
i
T , X̄T ) is

{
strictly concave if γi > 0

strictly convex if γi < 0.

Definition 4.3.1 (Strategy). A (trading) strategy (or portfolio) πt at time t corresponding

to the exponential utility function (4.6) is defined as πt := (xt, yt) ∈ Fs, t < s ≤ T , where

xt and yt denote the absolute value of wealth invested in stock i and in the numeraire,

respectively.

Note that the above definition is for the exponential utility function. For the case of the

power and logarithmic utility function, as we will see in the next section, xt and yt denote

the fraction of wealth invested in stock i and in the numeraire, respectively, instead of

the absolute value of wealth in this section. Note also that πt ∈ Fs, t < s ≤ T means

that investment strategy is adapted to the available information at any time s between the

current time t and the terminal time T .

The wealth of agent i is described by the following dynamics

dXi
t = πit(µidt+ νidW

i
t + σidBt), (4.7)

where 0 ≤ µi ≤ µ̄i, 0 ≤ νi ≤ ν̄i, and 0 ≤ σi ≤ σ̄i for all i = 1, ..., n; Xi
0 = x0 ∈ R is the initial

wealth, πit is the agent i’s investment strategy which indicates the amount of money that

the agent i invests in stock i. Here, the investment strategy πit only influences the change

of wealth level Xi
t at any time t ∈ [0, T ]. It thus indirectly (but not directly10) influences

the utility level in the utility function (4.6).

Definition 4.3.2 (Self-financing strategy). A self-financing strategy at time t is a strategy

πt = (xt, yt) ∈ Fs, t < s ≤ T , where the changes in the value of the portfolio are entirely

due to trading gains and losses, rather than changes in the external sources.

Similarly to Lacker and Zariphopoulou (2019) and dos Reis and Platonov (2021), we assume

that each agent i = 1, ..., n trades using a self-financing strategy πit, t ∈ [0, T ], which satisfies

the mean square integrable property, i.e. E(
∫ T
0 |πit|2dt) < ∞, ∀t ∈ [0, T ]. In other words,

10In the literature, the control might directly affect both the dynamics and the objective function, for
example, see Dorfman (1969).
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there is no borrowing and lending in this study. Note that πit can be positive, negative, or

zero which means the agent i buys, sells, or does nothing with asset i, respectively. Note

also that if πit = 0 then dXi
t = 0. That is, if agent i does not invest in any assets then her

level of wealth will remain unchanged. But in the case that she invests in some asset, i.e.

πit ̸= 0, her wealth level might still remain unchanged if µidt + νidW
i
t + σidBt = 0, which

means the asset market is absorbed itself.

Suppose agent i = 1, ..., n chooses admissible trajectories π1, ..., πn ∈ A, where A is the

set of feasible strategies. The portfolio optimization problem is that the agent i aims to

maximize her utility function (4.6) at the terminal period T

Ui(X
i
T , X̄T ) = sup

πi

E
[−e−γi(Xi

T−θiX̄T )

γi

]
(4.8)

given by the dynamics constraint (4.7).

Rewriting the utility function (4.8), we get

Ui(π
1, ..., πn) = sup

πi

E
[
−e

−γi
(
(1−θi)Xi

T+θi(X
i
T−X̄T )

)
γi

]
. (4.9)

Definition 4.3.3 (Nash equilibrium). A vector of strategy profile (π1,∗, ..., πn,∗) of

admissible strategies A constitutes a Nash equilibrium if for every i = 1, ..., n and for every

t ∈ [0, T ],

Ui(π
1,∗
t , ..., πi,∗t , ..., πn,∗t ) ≥ Ui(π

1,∗
t , ..., πi−1,∗

t , πi, πi+1,∗
t , ..., πn,∗t )

for all πi ∈ A.

Here, we assume that the space of admissible strategies A is a compact metric space. If the

strategy is constant (but random) in the whole time horizon [0, T ], then we get the constant

(but random) Nash equilibrium.

Definition 4.3.4 (Constant Nash equilibrium). A vector of strategy profile (π1,∗, ..., πn,∗)

of the set of admissible strategies A constitutes a constant Nash equilibrium if for every

i = 1, ..., n,

Ui(π
1,∗, ..., πi,∗, ..., πn,∗) ≥ Ui(π

1,∗, ..., πi−1,∗, πi, πi+1,∗
t , ..., πn,∗)

for all πi ∈ A.

The following theorem provides the conditions for the existence and uniqueness of a constant

Nash equilibrium.
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Theorem 4.3.1 (Existence and uniqueness of constant Nash equilibrium). Given Ui is

strictly concave utility function as in (4.6) with γi > 0. Define two constants

φn =
1

n

n∑
i=1

µi
γi

σi
σ2i + ν2i (1− θi/n)

and ψn =
1

n

n∑
i=1

θi
σ2i

σ2i + ν2i (1− θi/n)
. (4.10)

There are three cases:

(i) If ψn ̸= 1, then there exists a unique constant Nash equilibrium given by

πi,∗ =
µi
γi

1

σ2i + ν2i (1− θi/n)
+ θi

σi
σ2i + ν2i (1− θi/n)

φn
1− ψn

. (4.11)

Moreover, we have

1

n

n∑
k=1

σkπ
k,∗ =

φn
1− ψn

.

(ii) If ψn = 1 and φn ̸= 0, there is no constant Nash equilibrium.

(iii) If ψn = 1 and φn = 0, there are infinitely many constant Nash equilibria.

Proof. We will prove the theorem by using PDE/optimal control approach11. Let i be

fixed. We denote αk ∈ R be the constant investment strategies followed by all other agents

k, k ̸= i. Let Xk
t , t ∈ [0, T ], be the associated wealth processes, given by

Xk
t = αk(µkt+ νkW

k
t + σkBt), Xk

0 = xk0

where xk0 is the initial wealth of the agent k. Define

Yt :=
1

n

∑
k ̸=i

Xk
t , t ∈ [0, T ].

Thus, we have

Ui(X
i
t , X̄t) =

−e−γi(Xi
t−θiX̄t)

γi
=

−e−γi(X
i
t−

θi
n
(Xi

t+
∑

k ̸=iX
k
t ))

γi
=

−e−γi
(
(1− θi

n
)Xi

t−θiYt
)

γi
.

The goal of the agent i is to solve the following optimization (optimal control) problem

sup
πi∈A

E
[
−e−γi

(
(1− θi

n
)Xi

t−θiYt
)

γi

]
(4.12)

11This proof is largely inspired by the proof of Theorem 2.3 in Lacker and Zariphopoulou (2019).
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for t ∈ [0, T ], with respect to the following two dynamics (one of agent i and one of all the

other agents k, k ̸= i)

dXi
t = πit(µidt+ νidW

i
t + σidBt), Xi

0 = xi0

dYt =
1

n

∑
k ̸=i

αk(µkdt+ νkdW
k
t + σkdBt), Y0 =

1

n

∑
k ̸=i

xk0.

By denote

µ̂α =:
1

n

∑
k ̸=i

µkαk and σ̂α =:
1

n

∑
k ̸=i

σkαk,

we get

dYt = µ̂αdt+ σ̂αdBt +
1

n

∑
k ̸=i

νkαkdW
k
t .

Also, we denote

(̂να)2 =:
1

n

∑
k ̸=i

ν2kα
2
k.

Making the ansatz of the value function Vi(X
i
t , Yt, t), which we hope later on will solve the

Hamilton-Jacobi-Bellman (HJB) equation, as follows

Vi(X
i
t , Yt, t) = f(t)

−e−γi
(
(1− θi

n
)Xi

t−θiYt
)

γi
, for t ∈ [0, T ]. (4.13)

For simplicity, we write V (Xi
t , Yt, t) = Vi(X

i
t , Yt, t) for all i = 1, ..., n. Suppose V (Xi

t , Yt, t)

is differentiable at least once in t and twice in Xi
t and Yt. For simplicity, denote x = Xi

t

and y = Yt, and

Vt =
∂V

∂t
, Vx =

∂V

∂Xi
t

, Vy =
∂V

∂Yt
, Vxx =

∂2V

∂(Xi
t)

2
, Vyy =

∂2V

∂Y 2
t

, Vxy =
∂2V

∂Xi
t∂Yt

Also, since we are looking for constant Nash equilibrium, we write πit = πi for all t ∈ [0, T ].

Denote dV as the total differential of V (Xi
t , Yt, t). Then, dV can be approximated by the
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multivariate Taylor series expansion

dV = Vtdt+ Vxdx+ Vydy +
1

2
Vxx(dx)

2 +
1

2
Vyy(dy)

2 + Vxydxdy

= Vtdt+ Vx

[
πi(µidt+ νidW

i
t + σidBt)

]
+ Vy

[
µ̂αdt+ σ̂αdBt +

1

n

∑
k ̸=i

νkαkdW
k
t

]
+

1

2
Vxx

[
πi(µidt+ νidW

i
t + σidBt)

]2
+

1

2
Vyy

[
µ̂αdt+ σ̂αdBt +

1

n

∑
k ̸=i

νkαkdW
k
t ]

2

+ Vxy

[
πi(µidt+ νidW

i
t + σidBt)

][
µ̂αdt+ σ̂αdBt +

1

n

∑
k ̸=i

νkαkdW
k
t

]
= Vtdt+ Vx

[
πiµidt+ πiνidW

i
t + πiσidBt

]
+ Vy

[
µ̂αdt+ σ̂αdBt +

1

n

n∑
k ̸=i

νkαkdW
k
t

]
+

1

2
Vxx

[
(πiµi)

2(dt)2 + (πiνi)
2(dW i

t )
2 + (πiσi)

2(dBt)
2 + 2(πi)2µiνidtdW

i
t

+ 2(πi)2νiσidW
i
t dBt + 2(πi)2σiµidBtdt

]
+

1

2
Vyy

[
(µ̂α)2(dt)2 + (σ̂α)2(dBt)

2

+
1

n2

∑
k ̸=i

α2
kν

2
k(dW

i
t )

2 + 2µ̂ασ̂αdtdBt + 2µ̂α
1

n

∑
k ̸=i

νkαkdW
k
t dt+ 2σ̂α

1

n

∑
k ̸=i

νkαkdW
k
t dBt

]
+ Vxyπ

iσi
1

n

∑
k ̸=i

αkσk(dBt)
2.

According to the rules dt.dt = dt.dBt = dBt.dt = 0, we obtain

dV =Vtdt+ Vx

[
πiµidt+ πiνidW

i
t + πiσidBt

]
+ Vy

[
µ̂αdt+ σ̂αdBt +

1

n

∑
k ̸=i

νkαkdW
k
t

]
+

1

2
Vxx

[
(πiνi)

2(dW i
t )

2 + (πiσi)
2(dBt)

2 + 2(πi)2νiσidW
i
t dBt

]
+

1

2
Vyy

[
(σ̂α)2(dBt)

2

+
1

n

( 1
n

∑
k ̸=i

α2
kν

2
k

)
(dW i

t )
2 + 2σ̂α

1

n

∑
k ̸=i

νkαkdW
k
t dBt

]
+ Vxyπ

iσi
1

n

∑
k ̸=i

αkσk(dBt)
2.

Since E[dW i
t ] = E[dBt] = 0, E[(dW i

t )
2] = E[(dBt)

2] = dt, and the fact that W i
t ,W

k
t and Bt

are independent, taking expectations and rearranging the equality above, we get

dV =Vtdt+
1

2
[σ2i + ν2i ](π

i)2Vxxdt+ πi[µiVx + σiα̂σVxy]dt+
1

2

[
α̂σ2 +

1

n
(̂να)2

]
Vyydt+ α̂µVydt.

Dividing both sides of the equality by dt and note the notation that V̇ = ∂V/∂t, we get

V̇ = Vt +
1

2
[σ2i + ν2i ](π

i)2Vxx + πi[µiVx + σiα̂σVxy] +
1

2

[
α̂σ2 +

1

n
(̂να)2

]
Vyy + α̂µVy.

138



At equilibrium, the value of V is optimal, and then is constant, thus V̇ = 0. Hence, we get

the following HJB equation

Vt +
1

2
[σ2i + ν2i ](π

i)2Vxx + πi[µiVx + σiα̂σVxy] +
1

2

[
α̂σ2 +

1

n
(̂να)2

]
Vyy + α̂µVy = 0 (4.14)

for (x, y, t) ∈ R× R× [0, T ], with the terminal condition

V (x, y, T ) = f(T )
−e−γi

(
(1− θi

n
)Xi

T−θiYT
)

γi
.

Taking the first-order condition of (4.14) with respect to πi, then solving for πi, we obtain

the agent i’s implicit optimal investment strategy

πi,∗ = −µiVx + σiσ̂αVxy
(σ2i + ν2i )Vxx

. (4.15)

Then, plug (4.15) into (4.14) yields

Vt −
1

2

(µiVx + σiσ̂αVxy)
2

(σ2i + ν2i )Vxx
+

1

2

(
σ̂α2 +

1

n
(̂να)2

)
Vyy + µ̂αVy = 0. (4.16)

Thus, taking derivatives the ansatz in (4.13) V (Xi
t , Yt, t) to get Vt, Vx, Vxy, Vxx, Vy, and Vyy,

then plug into (4.16), we get

f ′(t)− ρf(t) = 0, ∀t ∈ [0, T ]

with f(T ) = 1 and ρ is given by

ρ :=
(µi + θiγiσiσ̂α)

2

2(σ2i + ν2i )
− θiγiµ̂α− θ2i γ

2
i

2

(
σ̂α2 +

2

n
(̂να)2

)
.

Consequently, we get f(t) = e−ρ(T−t). Hence,

V (x, y, t) = e−ρ(T−t)
−e−γi[(1−

θi
n
)x−θiy]

γi
=

−e−γi[(1−
θi
n
)x−θiy]−ρ(T−t)

γi
. (4.17)

Taking derivatives V (x, y, t) to get Vx, Vxy, and Vxx, then plug into (4.15), we get the agent

i’s explicit optimal investment strategy of the optimal control problem (4.12)

πi,∗ =
µi/γi + θiσiσ̂α

(σ2i + ν2i )(1− θi/n)
, (4.18)

which does not depend on t.
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For an admissible portfolio vector (α1, ..., αn) to be a constant Nash equilibrium, we need

αi = πi,∗,∀i = 1, ..., n. Define

σ̄α :=
1

n

n∑
k=1

σkαk =
1

n

n∑
k ̸=i

σkαk +
1

n
σiαi = σ̂α+

1

n
σiαi.

Then,

σ̂α = σ̄α− 1

n
σiαi.

Thus, plug into (4.18), we have

αi = πi,∗ =
µi/γi + θiσiσ̄α

(σ2i + ν2i )(1− θi/n)
− θiσ

2
i

n(σ2i + ν2i )(1− θi/n)
αi.

Hence, we get

αi =
µi/γi + θiσiσ̄α

(σ2i + ν2i )(1− θi/n)

(
1 +

θiσ
2
i

n(σ2i + ν2i )(1− θi/n)

)−1

=
µi/γi + θiσiσ̄α

(σ2i + ν2i )(1− θi/n) + σ2i θi/n

=
µi/γi + θiσiσ̄α

σ2i + ν2i (1− θi/n)
.

Multiplying both sides by σi yields

σiαi =
(σiµi)/γi + θiσ

2
i σ̄α

σ2i + ν2i (1− θi/n)
.

Thus, averaging over i = 1, ..., n, we get

1

n

n∑
i=1

σiαi =
1

n

n∑
i=1

µi
γi

σi
(σ2i + ν2i )(1− θi/n)

+
1

n

n∑
i=1

θi
σ2i

(σ2i + ν2i )(1− θi/n)
σ̄α

and then

σ̄α = φn + ψnσ̄α, (4.19)

where

φn =
1

n

n∑
i=1

µi
γi

σi
σ2i + ν2i (1− θi/n)

and ψn =
1

n

n∑
i=1

θi
σ2i

σ2i + ν2i (1− θi/n)
.

Note that since θi ∈ [−1, 1], σi ≥ 0, νi ≥ 0 and n is finite but large thus −1 ≤ ψn ≤ 1. There

are three cases.
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(i) If ψn ̸= 1, then the equation (4.19) yields σ̄α = φn/(1−ψn). Thus, there exists a unique

constant Nash equilibrium given by

πi,∗ =
µi
γi

1

σ2i + ν2i (1− θi/n)
+ θi

σi
σ2i + ν2i (1− θi/n)

φn
1− ψn

.

(ii) If ψn = 1 (if and only if θi = 1 and νi = 0 for all i = 1, ..., n) and φn ̸= 0, thus the

equation (4.19) has no solution and then no constant Nash equilibria exist.

(iii) If ψn = 1 and φn = 0, thus the equation (4.19) has infinitely many solutions and then

there are infinitely many constant Nash equilibria.

Remark 4.3.1. One necessary condition for Case (ii) and (iii) in Theorem 3.2 is ψn = 1.

This only happens if and only if θi = 1 and νi = 0 for all i = 1, 2, ..., n. That means each

investor is extremely concerned about the performance of the rest of other investors and also

the volatility of each individual stock is zero.

One real-world example to explain the case that θi = 1 and νi = 1 for all i = 1, ..., n is

the (centrally) planned economy where prices are fixed (νi = 0, ∀i) and agents are totally

concerned with others’ wealth (θi = 1, ∀i), thus ψn = 1 holds. Then, it does not matter if

agents invest more or less to a specific asset. That means there are infinitely many solutions

in this economic setting.

Remark 4.3.2. The constant φn can be positive or negative depending on the sign of µi/γi.

If µi/γi > 0 for all i then φn > 0 and if µi/γi < 0 for all i then φn < 0.

Remark 4.3.3. The case that φn = 0 can also happen. This might be the situation that

γi > 0 for some i and γi < 0 for some i. This implies that there must be some risk-averse

agents (γi > 0) and some risk-seeking agents (γi < 0) interacting on the same market.

Theorem 4.3.2 (Unique corner solution for strictly convex exponential utility function).

Given Ui is utility function of agent i as in (4.6) with γi < 0. For the exponential case, the

optimal solution is πi,∗ = Ci for risky asset (stock) and πi,∗ = 0 for riskless asset (bond),

where Ci is the total asset value that agent i has.

Proof. First we need to show that the domain of Ui is bounded and closed. Since t ∈ [0, T ],

where T is stopping time, W i
t and Bt in dynamics (4.7) are bounded. Also, since µi, νi, and

σi are bounded so Xi
t is bounded. Moreover, since t is closed, W i

t and Bt are closed. In

addition, since µi, νi, and σi are in closed intervals so Xi
t is closed.

For γi < 0, we can check the second order sufficient condition that

U ′′
Xi

T
= −γie−γi(X

i
T−θiX̄T ) > 0,
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which implies that Ui is a strictly convex utility function. Since Ui is a strictly convex

function and the domain of Ui that is bounded and closed, there exists m ∈ S such that

Ui(m) is global minimum. Suppose Ui attains maximum at M ∈ S and M /∈ ∂S. Thus,

there exists s ∈ S such that the line connecting m and M can be extended to s and

Ui(M) ̸= Ui(s). If not, then M is on the boundary ∂S, which is contradict to the above

assumption that M /∈ ∂S.

Since m,M, s ∈ S, there exists λ ∈ [0, 1] such that M = λm+ (1− λ)s. Since Ui is strictly

convex function,

Ui(M) = Ui(λm+ (1− λ)s) < λUi(m) + (1− λ)Ui(s) < λUi(s) + (1− λ)Ui(s) = Ui(s),

which is contradict to the fact that M is maximum of Ui. Hence, M ∈ ∂S. That is, the

maximum is on the boundary of the domain.

We have U ′
Xi

T
= e−γi(X

i
T−θiX̄T ) > 0, which implies that Ui is a strictly increasing function

in Xi
T . Thus, M must be on the upper boundary of the domain and M must be unique.

This implies that πi,∗ = Ci for the risky asset (stock) and πi,∗ = 0 for riskless asset (bond),

where Ci is the total asset that agent i has. For agent i, Ci is unique so the corner solution

is also unique.

Definition 4.3.5. An agent shorts a stock if and only if πi,∗ < 0.

Remark 4.3.4. Consider the case of relative performance concern, i.e. θi ∈ [0, 1]. The

constant Nash equilibrium now is

πi,∗ =
µi
γi

1

σ2i + ν2i (1− θi/n)
+ θ+i

σi
σ2i + ν2i (1− θi/n)

φn
1− ψn

.

If µi/γi > 0 (µi > 0 and γi > 0) for all i, then agent i does not short sell. If µi/γi < 0

(µi > 0 and γi < 0) for all i, then agent i short sells. This implies that risk-averse agents

are unlikely to short sell stock while risk-seeking agents are likely to short sell stock.

Corollary 4.3.1 (Existence and uniqueness equilibrium for single stock). Assume for all

i = 1, ..., n that 0 ≤ µi = µ < µ̄, 0 ≤ σi = σ ≤ σ̄, and νi = 0. Define δi and two constants

δi :=
1

γi
, δ̄ :=

1

n

n∑
i=1

δi and θ̄ :=
1

n

n∑
i=i

θi.

There are three cases:
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(i) If θ̄ ̸= 1, then there exists a unique constant Nash equilibrium given by

πi,∗ =
(
δi + θi

δ̄

1− θ̄

) µ
σ2
. (4.20)

(ii) If θ̄ = 1 and µδ̄ ̸= 0, there is no constant Nash equilibria.

(iii) If θ̄ = 1 and µδ̄ = 0, there exist infinitely many constant Nash equilibria.

Proof. With the assumptions of parameters that µi = µ, σi = σ ≥ 0, and νi = 0 for all

i = 1, ....n, we now have

φn =
1

n

n∑
k=1

δk
µ

σ
=
µ

σ
δ̄ and ψn =

1

n

n∑
k=1

θk
σ2

σ2
= θ̄.

By applying Theorem 4.3.1, (i) holds since

πi,∗ = δi
µ

σ2
+
θi
σ

φn
1− ψn

=
(
δi + θi

δ̄

1− θ̄

) µ
σ2
.

Since ψn = 1 if and only if θ̄ = 1 and φn ̸= 0 if and only if µδ̄ ̸= 0, thus (ii) holds. Moreover,

since φn = 0 if and only if µδ̄ = 0, thus (iii) holds.

4.3.2 The mean field games

In this section, we examine the limiting behavior of n-player games as the number of agents

tends to infinity, i.e. n→ ∞.

Assumption 4.3.1 (Continuum). The population is made by the continuum of agents.

Since the number of agents is continuous, we now no longer consider the agent i = 1, ..., n

discretely as in the previous section. Instead, in this section, we are going to investigate

the continuous representative agent.

Definition 4.3.6 (MFG). The MFG corresponding to the exponential utility function (4.6)

is defined by a type vector ζ = (ξ, γ, θ, µ, ν, σ) of a representative agent i where ξ is the

initial wealth of the representative agent.

Here, since the parameters of risk preferences γ and θ are random, agents are not necessarily

homogeneous.

The dynamics of wealth of the representative agent, for t ∈ [0, T ], is given by

dXt = πt(µdt+ νdWt + σdBt), X0 = ξ. (4.21)
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Given X̄ denoting the arithmetic average wealth of the continuum of agents and the

dynamics (4.21), the goal of the representative agent is to maximize the expected utility in

the following optimization problem

sup
πt∈AMF

E
[−e−γ(XT−θX̄)

γ

]
(4.22)

where AMF denotes the admissible set containing feasible strategies πt, t ∈ [0, T ], of the

mean field games.

The main goal of this section is to prove the existence of the mean field equilibrium (MFE),

which is stated in the following definitions.

Definition 4.3.7 (MFE). Given X̄ and let π∗t ∈ A be an admissible strategy. Then, π∗t is

a MFE if it solves the optimization problem (4.22) given the dynamics (4.21).

Definition 4.3.8 (Constant MFE). The optimal strategy π∗ is called a constant MFE if

π∗ = π∗t for all t ∈ [0, T ], where π∗t is a MFE defined in Definition 4.3.7.

Lemma 4.3.1. Define two constants

φ := E
(µ
γ

σ

σ2 + ν2

)
and ψ := E

(
θ

σ2

σ2 + ν2

)
. (4.23)

Then these two expectations exist and are finite.

Proof. Denote two constant but random variables

Ξ =
µ

γ

σ

σ2 + ν2
and Λ = θ

σ2

σ2 + ν2
.

By assumptions γ ≤ γ ≤ γ̄, 0 ≤ µ ≤ µ̄, 0 ≤ σ ≤ σ̄, and 0 ≤ ν ≤ ν̄. Then, Ξ must exist and

be bounded. This implies that Ξ is finite, and so is φ.

Now, we will show that ψ exists and is finite. Since θ ∈ [−1, 1] and σ2/(σ2 + ν2) ∈ [0, 1],

then −1 ≤ Λ ≤ 1. We will show that −1 ≤ E(Λ) ≤ 1. In fact, if one of two these inequalities

does not hold, that is

E(Λ) < −1 or E(Λ) > 1.

Then, there must exist θ, σ, and ν such that

Λ < −1 or Λ > 1.
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But it contradicts the fact that −1 ≤ Λ ≤ 1. So, there must exist ψ, which is finite and

bounded in the closed interval −1 ≤ ψ ≤ 1. So, the proof is complete.

Theorem 4.3.3 (Existence and uniqueness of constant MFE). Given strictly concave utility

function U . Assume for a.s. that −1 ≤ θ ≤ 1, 0 ≤ µ ≤ µ̄, 0 ≤ ν ≤ ν̄, and 0 ≤ σ ≤ σ̄. Define

two constants φ and ψ as that in Lemma 4.3.1.

There are three cases:

(i) If ψ ̸= 1, there exists a unique constant MFE, given by

π∗ =
µ

γ

1

σ2 + ν2
+ θ

σ

σ2 + ν2
φ

1− ψ
. (4.24)

Moreover, we have

E(σπ∗) =
φ

1− ψ
.

(ii) If ψ = 1 and φ ̸= 0, there is no constant MFE.

(iii) If ψ = 1 and φ = 0, there are infinitely many constant MFE.

Proof. A representative agent will solve the optimization problem (4.22) with respect

to the dynamics (4.21), given the average wealth of the population X̄. Define X̄t :=

E(Xπt
t |FB

t ),∀t ∈ [0, T ], where FB
t is the filtration generated by the common noise Bt.

The integral form of the dynamics (4.21) is

Xt = ξ + µπt

∫ t

0
ds+ νπt

∫ t

0
dWs + σπt

∫ t

0
dBs, ∀t ∈ [0, T ] (4.25)

Since we want to find the constant MFE, we need to find the corresponding constant strategy

α = πt,∀t ∈ [0, T ]. Given α = πt,∀t ∈ [0, T ], taking expectation (4.25) with the note that

(ξ, µ, ν, σ, α),Wt and Bt are independent, we get

X̄t = ξ̄ + µ̄αt+ σ̄αBt

where we use the following facts, for all t ∈ [0, T ],

B0 = 0 a.s.,

∫ t

0
ds = t,E

(∫ t

0
dWs

)
= E(Wt) = 0,

∫ t

0
dBs = Bt.

and the expectation of an integrable random variable S is denoted by S̄ = E(S).
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Denote

Zπt := Xπ
t − θX̄t, ∀t ∈ [0, T ].

Thus,

dZπt = dXπ
t − θdX̄t = πt(µdt+ νdWt + σdBt)− θ(µ̄αt+ σ̄αBt)

= (µπ − θµ̄α)dt+ νπdWt + (σπ − θσ̄α)dBt

The problem (4.22) now is equivalent to

V (Zπt , t) = sup
π∈AMF

E
[−e−γZπ

T

γ

]
(4.26)

where V : R× [0, T ] → R denotes the smooth and strictly increasing value function, which

is expected to solve the HJB equation later on. Suppose V (Zπt , t) is continuously at least

twice differentiable in Zπt and once in t. For simplicity, denote

Vt =
∂V

∂t
, Vx =

∂V

∂Xπ
t

, Vz =
∂V

∂Zπt
, Vxx =

∂2V

∂(Xπ
t )

2
, Vzz =

∂2V

∂(Zπt )
2

It is easy to see that Vx = Vz and Vxx = Vzz. Now, the total differential form dV can

be approximated by a Taylor series expansion with terms of order equal or less than dt or

(dWt)
2 or (dBt)

2

dV =Vtdt+ VxdZ
π
t +

1

2
Vxx(dZ

π
t )

2

=Vtdt+ Vz[(µπ − θµ̄α)dt+ νπdWt + (σπ − θσ̄α)dBt]

+
1

2
Vxx[(µπ − θµ̄α)dt+ νπdWt + (σπ − θσ̄α)dBt]

2

=Vtdt+ Vx[(µπ − θµ̄α)dt+ νπdWt + (σπ − θσ̄α)dBt]

+
1

2
Vxx[(νπ)

2(dWt)
2 + (σπ − θσ̄α)2(dBt)

2 + 2(µπ − θµ̄α)νπdtdWt

+ 2(µπ − θµ̄α)(σπ − θσ̄α)dtdBt + 2νπ(σπ − θσ̄α)dWtdBt].

Since E[dWt] = E[dBt] = 0 and (dWt)
2 = (dBt)

2 = dt, taking expectation, we get

dV = Vtdt+ (µπ − θµ̄α)Vxdt+
1

2
[(νπ)2 + (σπ − θσ̄α)2]Vxxdt.

Dividing both sides of the equality above by dt and note that V̇ = dV/dt, we get

V̇ = Vt + (µπ − θµ̄α)Vx +
1

2
[(νπ)2 + (σπ − θσ̄α)2]Vxx.
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At equilibrium point, V̇ = 0, then we obtain the HJB equation

Vt + (µπ − θµ̄α)Vx +
1

2
[(νπ)2 + (σπ − θσ̄α)2]Vxx = 0 (4.27)

with the terminal condition V (z, T ) = −e−γz/γ.

Taking the first-order condition (4.27) with respect to π, then after several manipulations,

we get the representative agent’s implicit optimal investment strategy

π = −µVx − θσσ̄αVxx
(σ2 + ν2)Vxx

. (4.28)

Plugging back into (4.27), it derives to

Vt −
1

2

(µVx − θσσ̄αVxx)
2

(σ2 + ν2)Vxx
− θµ̄αVx +

1

2
(θσ̄α)2Vxx = 0. (4.29)

Making the ansatz V (z, t) = f(t)−e
−γz

γ , and then taking derivatives with the note that

Vx = Vz and Vxx = Vzz. Thus, plug Vt, Vx and Vxx into (4.29), we get

f ′(t)− ρf(t) = 0, ∀t ∈ [0, T ]

with f(T ) = 1 and ρ is given by

ρ :=
(µ+ θγσσ̄α)2

2(σ2 + ν2)
− θγµ̄α− (θγσ̄α)2

2
.

Hence, we obtain

f(t) = e−ρ(T−t).

Plugging into the value function, we get

V (z, t) = e−ρ(T−t)
−e−γz

γ
= −1

γ
e−ρ(T−t)−γz.

Taking derivatives to get Vz and Vzz and note that Vz = Vx and Vzz = Vxx. Plugging into

(4.28), we get the explicit optimal investment strategy of the optimal control problem (4.26)

π∗ =
µ

γ

1

(σ2 + ν2)
+ θ

σ

σ2 + ν2
σ̄α. (4.30)
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Note that π∗ is a constant and does not depend on either z or t. The feasible control α is

a constant MFE if α = π∗, i.e. we need

π∗ =
µ

γ

1

σ2 + ν2
+ θ

σ

σ2 + ν2
¯σπ∗.

Multiplying both sides by σ and then taking expectation, we get

¯σπ∗ = E
[µ
γ

σ

σ2 + ν2

]
+ E

[
θ

σ2

σ2 + ν2

]
¯σπ∗ = φ+ ψ ¯σπ∗ (4.31)

where ¯σπ∗ = E(σπ∗). Note that since 0 ≤ θ ≤ 1, σ ≥ 0, ν ≥ 0 then 0 ≤ ψ ≤ 1. There are

three cases:

(i) If ψ ̸= 1, thus from (4.31) we get ¯σπ∗ = φ/(1−ψ). Hence, there exists a unique constant

MFE given by

π∗ =
µ

γ

1

σ2 + ν2
+ θ

σ

σ2 + ν2
φ

1− ψ
.

Note that ¯σπ∗ can be equals to zero since σ can be equal zero or π∗ can be equal to zero.

(ii) If ψ = 1 (if and only if θ = 1 and ν = 0) and φ ̸= 0, thus (4.31) has no solution and

then no constant MFE exist.

(iii) If ψ = 1 and φ = 0, thus (4.31) has infinitely many solutions and then there are

infinitely many constant MFE.

Remark 4.3.5 (No relative performance). In the case there is no relative performance, i.e.

θ = 0, the MFE (4.24) and the NE (4.11) equal to

π∗ =
µ

γ

1

σ2 + ν2
. (4.32)

Note that (4.32) is exactly the classical Merton portfolio in Merton (1969) when there is

only one Brownian process and bond (sure asset) offers zero interest rate.

Corollary 4.3.2 (Existence and uniqueness constant MFE for single stock). Assume that

(µ, σ, ν) are deterministic with 0 ≤ µ ≤ µ̄, 0 ≤ ν ≤ ν̄, and 0 ≤ σ ≤ σ̄. Define three constants

δ :=
1

γ
, δ̄ := E(δ) and θ̄ := E(θ).

There are three cases:

(i) If θ̄ ̸= 1, then there exists a unique constant MFE given by

π∗ =
(
δ + θ

δ̄

1− θ̄

) µ
σ2
. (4.33)

148



(ii) If θ̄ = 1 and µδ̄ ̸= 0, there is no constant MFE.

(iii) If θ̄ = 1 and µδ̄ = 0, there are infinitely many constant MFE.

Proof. With the assumption ν = 0, then the two later constants become

φ =
µσ

σ2 + ν2
δ̄ =

µ

σ
δ̄ and ψ =

σ2

σ2 + ν2
θ̄ = θ̄.

Applying Theorem 4.3.3 and note that ψ ̸= 0 if and only if θ̄ ̸= 1, thus (i) holds since

π∗ =
µ

γ

1

σ2 + ν2
+ θ

σ

σ2 + ν2
φ

1− ψ
= δ

µ

σ2
+
θ

σ

φ

1− ψ
=
(
δ + θ

δ̄

1− θ̄

) µ
σ2
.

Since ψ = 1 if and only if θ̄ = 1 and φ ̸= 0 if and only if µδ̄ ̸= 0, thus (ii) holds. Moreover,

since φ = 0 if and only if µδ̄ = 0, thus (iii) holds.

Remark 4.3.6. (Compare NE and MFE in our study with those in Lacker and

Zariphopoulou (2019) for the case of strictly concave utility function.)

• Our setting take into account the case of relative performance motivation. This is not the

case in Lacker and Zariphopoulou (2019).

• One difference between Theorem 4.3.1 and Theorem 4.3.3 in our study with the

corresponding Theorem 2.3 and Theorem 2.10 in Lacker and Zariphopoulou (2019),

respectively, is that the case ψ = 1 and φ = 0 cannot happen in the former study but

it happens in our study. As a result, there are infinitely many constant MFE in such case.

• By assuming of the signs of parameters in Lacker and Zariphopoulou (2019), the optimal

strategies must be positive. It contradicts to their comment on page 2 of their paper that

“the value πi,∗t may be negative, indicating that the agent shorts the stock”. Indeed, the

optimal control πi,∗ and π∗ in their study cannot be negative. Consequently, it cannot take

into account the case of short selling. In contrast, in our study, with several different

assumptions of the signs of parameters, short selling can happen. That means the optimal

strategy πi,∗, π∗ can be negative, i.e. πi,∗ < 0, π∗ < 0, which capture the popular transaction

in the stock market that agents can short their stocks.

MFE for strictly convex exponential utility function. The optimal strategy for

Theorem 4.3.2 does not depend on number of players n. Therefore, the optimal strategy

for the case of n-agent games (Nash equilibrium) and that for the case of MFG (mean field

equilibrium) should be similar. Only different point is that the optimal strategy in the case

of MFG does not depend on i. That is, π∗ = C for risky asset (stock) and π∗ = 0 for riskless

asset (bond), where C is the total asset value that the representative agent has. For each

representative agent, since C is unique so is the corner solution.
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4.4 Power and logarithmic utility function

The power and logarithmic utility functions belong to the family of constant relative risk

aversion (CRRA) utility functions. In this section, the CRRA utility function is given by

Ui(X
i
T , X̄T ) =

 1
1−γi

(
Xi
T X̄

−θi
T

)1−γi
if γi ̸= 1

log(Xi
T X̄

−θi
T ) if γi = 1

(4.34)

where X̄T =
(∏n−1

i=1 X
i
T

) 1
n−1

is the geometric average wealth of the population excluding

agent i. Note that, here, we consider the case of excluding agent i since, similar to the

case of exponential form, there is a one-to-one map from excluding to including agent i

case. Thus, the optimal strategy, if it exists, in both cases are the same. The model with

including agent i is more tractable and simpler. Therefore, we employ this model in this

study. Literally, the given CRRA utility function (4.34) has the power form if γi ̸= 1 and

logarithmic form if γi = 1. Since the logarithmic form is a special case of power form

when γi tends to 1, we will not consider these two utility forms in two separate sections

but rather consider the former case first, then naturally move to the later case within one

section. Moreover, we assume that γi ≤ γi ≤ γ̄i for some γi < 0 and γi > 0.

4.4.1 The n-agent games

Suppose there are n agents trading on the stock market. They have the same investment

horizon T , where 0 < T < ∞. The dynamics of wealth of agent i at time t, 0 ≤ t ≤ T , is

given by

dXi
t = πitX

i
t(µidt+ νidW

i
t + σiBt), Xi

0 = xi0, (4.35)

where Xi
0 = x0 ∈ R is the initial wealth, πit is the fraction of wealth, rather than the absolute

value of wealth in the case of exponential form, that agent i invests in the individual stock

Si at time t. Here, πit satisfies the mean square integrable property, i.e. E(
∫ T
0 |πit|2dt) <∞.

Definition 4.4.1 (Trading strategy). A trading strategy (or portfolio) πt at time t

corresponding to the utility function (4.34) is defined as πt := (xt, yt) ∈ Fs, t < s ≤ T ,

where xt and yt denote the fraction of wealth invested an individual stock i and a riskless

bond, respectively.

Theorem 4.4.1 (Existence and uniqueness of Nash equilibrium). Given strictly concave

utility function Ui as in (4.34) with γi > 0. Assume for all i = 1, ..., n that −1 ≤ θi ≤ 1, 0 ≤
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µi ≤ µ̄i where µ̄i > 0, 0 ≤ νi ≤ ν̄i, and 0 ≤ σi ≤ σ̄i. Define two constants

φn :=
1

n

n∑
i=1

µi
γi

σi

σ2i + ν2i

[
1 +

(
1
γi

− 1
)
θi
n

] (4.36)

and

ψn :=
1

n

n∑
i=1

θi

(
1

γi
− 1

)
σ2i

σ2i + ν2i

[
1 +

(
1
γi

− 1
)
θi
n

] . (4.37)

There are four cases:

(i) If ψn ̸= 1, γi ̸= 1, and γi ̸= 0, there exists a unique constant Nash equilibrium given by

πi,∗ =
µi
γi

1

σ2i + ν2i

(
1− θi

n + θi
nγi

) + θi

(
1− 1

γi

)
σi

σ2i + ν2i

(
1− θi

n + θi
nγi

) φn
1− ψn

. (4.38)

Moreover, we have the identity given by

E(σkπk,∗) = σ̄α =
φn

1− ψn
.

(ii) If ψn ̸= 1 and γi = 1, there exists a unique constant Nash equilibrium given by

πi,∗ =
µi

σ2i + ν2i
. (4.39)

(iii) If ψn = 1 and φn ̸= 0, there is no constant Nash equilibrium.

(iv) If ψn = 1 and φn = 0, there are infinitely many constant Nash equilibria.

Proof. Fix i. Denote αk ∈ R, be the constant investment strategies followed by all other

agents k, k ̸= i. Let Xk
t be the associated wealth processes, given by

dXk
t = αkX

k
t (µkdt+ νkdW

k
t + σkdBt), Xk

0 = xk0

where xk0 is the initial wealth of agent k. Using Itô’s formula, we get

d(logXk
t ) =

(
µkαk −

1

2
(ν2kα

2
k + σ2kα

2
k)

)
dt+ νkαkdW

k
t + σkαkdBt

=

(
µkαk −

1

2
ωkα

2
k

)
+ νkαkdW

k
t + σkαkdBt
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where ωk = ν2k + σ2k. Define

Yt :=

∏
k ̸=i

Xk
t

1/n

where Xk
t solves (4.35) with constant fractions αk. Thus, we have

log Yt =
1

n
log

∏
k ̸=i

Xk
t

 =
1

n

∑
k ̸=i

logXk
t .

Then,

d log Yt =
1

n

∑
k ̸=i

d logXk
t

=
1

n

∑
k ̸=i

[(
µkαk −

1

2
ωkα

2
k

)
dt+ νkαkdW

k
t + σkαkdBt

]

=

(
µ̂α− 1

2
ω̂α2

)
+

1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt,

where we denote

µ̂α :=
1

n

∑
k ̸=i

µkαk, σ̂α :=
1

n

∑
k ̸=i

σkαk

ω̂α2 :=
1

n

∑
k ̸=i

ωkα
2
k and (̂να)2 :=

1

n

∑
k ̸=i

ν2kα
2
k

Hence, the process Yt solves

dYt
Yt

= ηdt+
1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt, Y0 =

(∏
k ̸=i

xk0

)1/n
,

where

η = µ̂α− 1

2

[
ω̂α2 − σ̂α2 − 1

n
(̂να)2

]
.
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From the first case of (4.34), we have

Ui(X
i
T , X̄T ) =

1

1− γi

(
Xi
T X̄

−θi
T

)1−γi

=
1

1− γi

Xi
T


Xi

T

∏
k ̸=i

Xk
T

1/n

−θi

1−γi

=
1

1− γi

(Xi
T

)1−θi/n 
∏
k ̸=i

Xk
T

1/n

−θi

1−γi

=
1

1− γi

[(
Xi
T

)1−θi/n Y −θi
T

]1−γi
.

The goal of the agent i is to solve the following optimization problem

sup
πi∈A

E
1

1− γi

[(
Xi
T

)1−θi/n Y −θi
T

]1−γi
with respect to the following two dynamics (one of agent i and one of all the other agents

k, k ̸= i)

dXi
t = πitX

i
t(µidt+ νidW

i
t + σidBt), Xi

0 = xi0

dYt = Yt

ηdt+ 1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt

 , Y0 =

∏
k ̸=i

xk0

1/n

.

Case 1: Suppose γi ̸= 1. Making the ansatz of the value function V (Xi
t , Yt, t)

V (Xi
t , Yt, t) = f(t)

1

1− γi

[(
Xi
t

)1−θi/n Y −θi
t

]1−γi
, t ∈ [0, T ]. (4.40)

For simplicity, denote x = Xi
t and y = Yt. Since we are looking for the constant Nash

equilibrium, then πit = πi for all t ∈ [0, T ]. Similarly to that of Theorem 4.3.1, by using the
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multivariable Taylor series expansion

dV = Vtdt+ Vxdx+ Vydy +
1

2
Vxx(dx)

2 +
1

2
Vyy(dy)

2 + Vxydxdy

= Vtdt+ Vx
[
πix(µidt+ νidW

i
t + σidBt)

]
+ Vy

y(ηdt+ 1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt

)
+

1

2
Vxx

[
πix(µidt+ νidW

i
t + σidBt)

]2
+

1

2
Vyy

y
ηdt+ 1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt

2

+ Vxy
[
πix(µidt+ νidW

i
t + σidBt)

] y(ηdt+ 1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt

)
= Vtdt+ πiµixVx + Vx(νidW

i
t + σidBt) + ηyVy + Vy

y
 1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt


+

1

2
Vxx

[(
σ2i (dBt)

2 + ν2i (dW
i
t )

2
)]

(πi)2x2 +
1

2
Vxx(µiπ

iXi
t)

2(dt)2

+ Vxx

[(
πix
)2

(µiνidtdW
i
t + µiσidtdBt + νiσidW

i
t dBt)

]
+

1

2
Vyy

σ̂α2 +
1

n
(
1

n

∑
k ̸=i

ν2kα
2
k)

 y
+

1

2
Vyy(ηy)

2(dt)2 + Vyy

η 1
n

∑
k ̸=i

νkαkdtdW
k
t + ησ̂αdtdBt + σ̂α

1

n

∑
k ̸=i

νkαkdW
k
t dBt

 y
+ Vxyπ

iσiσ̂αxy(dBt)
2 + Vxy

(πixy)
µiη(dt)2 + µi

1

n

∑
k ̸=i

dtdW i
t + µiσ̂αdtdBt + νiηdtdW

i
t


+ Vxy

(πixy)
νi 1

n

∑
k ̸=i

νkαkdW
i
t dW

k
t + νiσ̂αdW

i
t dBt + σiηdtdBt + σi

1

n

∑
k ̸=i

νkαkdBtdW
k
t


According to the rules dt.dt = dt.dBt = dBt.dt = 0, we obtain

dV = Vtdt+ πiµixVx + Vx(νidW
i
t + σidBt) + ηyVy + Vy

y
 1

n

∑
k ̸=i

νkαkdW
k
t + σ̂αdBt


+

1

2
Vxx

[(
σ2i (dBt)

2 + ν2i (dW
i
t )

2
)]

(πi)2x2 + Vxx
(
πix
)2

(νiσidW
i
t dBt)

+
1

2
Vyy

σ̂α2 +
1

n
(
1

n

∑
k ̸=i

ν2kα
2
k)

 y2 + Vyy

σ̂α 1

n

∑
k ̸=i

νkαkdW
k
t dBt

 y2 + Vxyπ
iσiσ̂αxy(dBt)

2

+ Vxy

(πixy)
νi 1

n

∑
k ̸=i

νkαkdW
i
t dW

k
t + νiσ̂αdW

i
t dBt + σi

1

n

∑
k ̸=i

νkαkdBtdW
k
t

 .
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Since E[dW i
t ] = E[dBt] = 0, E[(dW i

t )
2] = E[(dBt)

2] = dt, and the fact that W i
t ,W

k
t and Bt

are independent, taking expectations and rearranging the equality above, we get

dV = Vtdt+ πiµixVx + ηyVy +
1

2
Vxx

[(
σ2i dt+ ν2i dt

)]
(πi)2x2 + Vxyπ

iσiσ̂αxydt

+
1

2

[
σ̂α2 +

1

n
(̂να)2

]
y2Vyy.

Divide both sides of above equality by dt and rearranging, we get

V̇ = Vt +
1

2
(σ2i + ν2i )(π

i)2x2Vxx + πi(µixVx + σiσ̂αxyVxy) + ηyVy +
1

2

[
σ̂α2 +

1

n
(̂να)2

]
y2Vyy.

At equilibrium, V is optimal and then V̇ = 0. Thus, we get the HJB equation

Vt +
1

2
(σ2i + ν2i )(π

i)2x2Vxx + πi(µixVx + σiσ̂αxyVxy) + ηyVy +
1

2

[
σ̂α2 +

1

n
(̂να)2

]
y2Vyy = 0.

(4.41)

for (x, y, t) ∈ R+ × R+ × [0, T ], with terminal condition

V (x, y, T ) = f(t)
1

1− γi

[(
Xi
T

)1−θi/n Y −θi
T

]1−γi
.

Taking the first-order condition of (4.41) with respect to πi, then solving for πi, we obtain

the agent i’s implicit optimal investment strategy

πi,∗ = −µixVx + σiσ̂αxyVxy
(σ2i + ν2i )x

2Vxx
. (4.42)

Then, plug πi,∗ in the above equality into the HJB equation (4.41), we get

Vt −
1

2

(µixVx + σiσ̂αxyVxy)
2

(σ2i + ν2i )x
2Vxx

+
1

2

[
σ̂α2 +

1

n
(̂να)2

]
y2Vyy + ηyVy = 0. (4.43)

Taking derivatives the ansatz (4.40) to get Vt, Vx, Vy, Vxx, Vxy, and Vyy then plugging into

above equality, we get

1

1− γi
f ′(t) + ρf(t) = 0, ∀t ∈ [0, T ]

where

ρ =

[
µi(1− θi

n )− σiσ̂αθi(1− θi
n )(1− γi)

]2
2(σ2 + ν2i )(1−

θi
n )
[
1− (1− θi

n )(1− γi)
] + 1

2

(
σ̂α2 +

1

n
(̂να)2

)
θi [1 + θi(1− γi)]− ηθi.
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Thus, we get f(t) = eρ(1−γi)(T−t). Hence,

V (x, y, t) = eρ(1−γi)(T−t)
1

1− γi

(
x1−θi/ny−θi

)1−γi
Then, taking derivatives Vx, Vxx, and Vxy and plugging into (4.42), we obtain the agent i’s

explicit optimal investment strategy

πi,∗ =
µi − σiσ̂αθi(1− γi)

(σ2i + ν2i )[1− (1− θi/n)(1− γi)]
. (4.44)

Define

σ̄α :=
1

n

n∑
k=1

σkαk.

Then, we have

σ̄α =
1

n

∑
k ̸=i

σkαk +
1

n
σiαi = σ̂α+

1

n
σiαi → σ̂α = σ̄α− 1

n
σiαi.

We want to find the constant vector (α1, ..., αn), i.e. a constant strategy αi for each agent

i. So there must be αi = πi,∗ for every i = 1, ..., n. Thus, we have

αi =
µi − σiσ̂αθi(1− γi)

(σ2i + ν2i )[1− (1− θi/n)(1− γi)]

=
µi − σiσ̄αθi(1− γi)

(σ2i + ν2i )[1− (1− θi/n)(1− γi)]
+

σ2i αi(θi/n)(1− γi)

(σ2i + ν2i )[1− (1− θi/n)(1− γi)]

Thus, we obtain

αi =
µi − σiσ̄αθi(1− γi)

(σ2i + ν2i )[1− (1− θi/n)(1− γi)]

(
1− σ2i (θi/n)(1− γi)

(σ2i + ν2i )[1− (1− θi/n)(1− γi)]

)−1

=
µi − σiσ̄αθi(1− γi)

(σ2i + ν2i )[1− (1− θi/n)(1− γi)]− σ2i (θi/n)(1− γi)

=
µi

σ2i γi + ν2i [1− (1− θi/n)(1− γi)]
− σiσ̄αθi(1− γi)

σ2i γi + ν2i [1− (1− θi/n)(1− γi)]

=
µi
γi

1

σ2i + ν2i

(
1− θi

n + θi
nγi

) + θi

(
1− 1

γi

)
σi

σ2i + ν2i

(
1− θi

n + θi
nγi

) σ̄α. (4.45)

Multiplying both sides by σi and then averaging the above quality for i = 1, ..., n, we get

σ̄α = φn + ψnσ̄α,

where φn and ψn defined in (4.36) and (4.37). There are three cases:
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(i) If ψn ̸= 1, γi ̸= 1, and γi ̸= 0, there exists a unique constant Nash equilibrium given by

πi,∗ =
µi
γi

1

σ2i + ν2i

(
1− θi

n + θi
nγi

) + θi

(
1− 1

γi

)
σi

σ2i + ν2i

(
1− θi

n + θi
nγi

) φn
1− ψn

.

Moreover, we have the identity given by

E(σkπk,∗) = σ̄α =
φn

1− ψn
.

(ii) If ψn = 1 and φn ̸= 0, there is no constant Nash equilibrium.

(iii) If ψ = 1 and φn = 0, there are infinitely many constant Nash equilibria.

Case 2: Suppose γi = 1. Since γi = 1 > 0 then Uxx < 0. That means the logarithmic form

utility function describes the behavior of risk-averse agents. Making the ansatz of the value

function

V (x, y, t) = log
(
x1−θi/ny−θi

)
+ f(t) =

(
1− θi

n

)
log x− θi log y + f(t).

Taking derivatives this ansatz to get Vt, Vx, Vy, Vxx, Vxy, and Vyy and then plugging into

(4.43)12, we get

f ′(t) + ρ = 0,

where

ρ =
1

2

µ2i (1− θi/n)

(σ2i + ν2i )
+

1

2
θi

(
σ̂α2 +

1

n
(̂να)2

)
− θiη.

Thus, we obtain f(t) = ρ(T − t). Plugging into the above value function, we get

V (x, y, t) =

(
1− θi

n

)
log x− θi log y + ρ(T − t).

Taking derivatives Vx, Vxx, and Vxy and plugging into (4.42), we get the agent i’s explicit

optimal investment strategy

πi,∗ =
µi

σ2i + ν2i
for all i = 1, ..., n,

which is a special case of (4.44) when γi = 1 and is exactly as (4.39).

12Note that the equality (4.43) is the common result derived for both cases: power form and logarithmic
form in (4.43). Therefore, it does still work for the case that γi = 1.
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Theorem 4.4.2 (Unique corner solution for strictly convex power utility function). Suppose

Ui the utility function of agent i as in (4.34) with γi < 0. For the power case, the optimal

solution is πi,∗ = 1 for risky asset (stock) and πi,∗ = 0 for riskless asset (bond).

Proof. Most arguments in the proof of Theorem 4.3.2 for the exponential case are still

correct in the power case. The only different point is the functional form of utility function.

For the power case, we have U ′
Xi

T
= (Xi

T X̄
−θi
T )−γiX̄−θi

T > 0, which implies that Ui is a

strictly increasing function in Xi
T . Moreover, for γi < 0, we can check the second order

sufficient condition that

U ′′
Xi

T
= −γi

(
Xi
T X̄

−θi
T

)−γi−1
X̄−2θi
T > 0,

which implies that Ui is a strictly convex utility function. Thus, the maximum at M must

be unique and be on the upper boundary of the domain and M must be unique. This

implies that πi,∗ = 1 for the risky asset (stock) and thus πi,∗ = 0 for riskless asset (bond).

Obviously, the corner solution is unique.

Remark 4.4.1 (Economic meaning of corner solution for strictly convex utility function).

Theorem 4.3.2 and Theorem 4.4.2 contribute to the literature of asset specialization in the

sense that individual risk-seeking investors only invest their whole wealth in one stock as

a risky asset (or small portfolio with few stocks as a whole) and do not invest in riskless

assets (e.g. bond) in the case of strictly convex utility function.

4.4.2 The mean field games

In this section, we examine the limiting behavior of n-player games in the previous section

when n → ∞. We use the same assumption of continuum of agents as Assumption 4.3.1

and the same definition of MFG as Definition 4.3.6.

The dynamics of wealth of the representative agent is given by

dXt = πtXt(µdt+ νdWt + σdBt), X0 = ξ, (4.46)

where the investment fraction πt belongs to the admissible set AMF and satisfies the mean

square integrable property E
∫ T
0 |πt|2dt < ∞. The goal of the representative agent is to

maximize the following expected utility

sup
πt∈AMF

E
[

1

1− γ

(
XT X̄

−θ
T

)1−γ]
(4.47)
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given the dynamics (4.46). Here, X̄T is the geometric mean which is defined as follows

X̄T := expE
[
logXT | FB

T

]
, (4.48)

where FB
T denotes the filtration generated by the Brownian motion B.

Definition 4.4.2 (MFG). Given X̄T defined as (4.48) and let π∗t ∈ AMF be an admissible

strategy. Then, π∗t is a mean field equilibrium (MFE) if π∗t solves the optimization problem

(4.47).

Definition 4.4.3 (Constant MFE). The optimal control π∗ is called a constant MFE if

π∗ = π∗t for all t ∈ [0, T ], where π∗t is a MFE defined in Definition 4.4.2.

Lemma 4.4.1. Define two constants

φ := E
[
µ

γ

σ

σ2 + ν2

]
and ψ := E

[
θ

(
1− 1

γ

)
σ2

σ2 + ν2

]
,

where γ ̸= 0. We claim that these two expectations exist and are finite.

Proof. Denote

Ξ =
µ

γ

σ

σ2 + ν2
and Λ = θ

(
1− 1

γ

)
σ2

σ2 + ν2
.

By assumptions 0 ≤ µ ≤ µ̄, γ ̸= 0, 0 ≤ ν ≤ ν̄, and 0 ≤ σ ≤ σ̄ then Ξ must be exist and is

finite, and so is φ.

By assumptions −1 ≤ θ ≤ 1 and γ ̸= 0, and note that σ2/(σ2 + ν2) ≤ 1 then Λ must be

exist and is finite, and so is ψ.

Theorem 4.4.3 (Existence and uniqueness of constant MFE). Given strictly concave utility

function U . Assume for a.s. that −1 ≤ θ ≤ 1, 0 ≤ µ ≤ µ̄, 0 ≤ ν ≤ ν̄, and 0 ≤ σ ≤ σ̄. Define

two constants φ and ψ as that in Lemma 4.4.1.

There are four cases:

(i) If ψ ̸= 1, γ ̸= 1, and γ ̸= 0, then there exists a unique constant MFE given by

π∗ =
µ

γ

1

σ2 + ν2
+ θ

(
1− 1

γ

)
σ

σ2 + ν2
φ

1− ψ
. (4.49)

Moreover, we have the identity given by

E(σπ∗) =
φ

1− ψ
.
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(ii) If ψ ̸= 1 and γ = 1, there is a unique constant MFE given by

π∗ =
µ

σ2 + ν2
. (4.50)

(iii) If ψ = 1 and φ ̸= 0, there is no constant MFE.

(iv) If ψ = 1 and φ = 0, there are infinitely many constant MFE.

Proof. Define

Yt := expE(logXα
t | FB

T ),

where α is an admissible constant strategy. From the dynamics (4.46), using Itô’s formula,

we get

d(logXα
t ) =

(
µα− 1

2
(σ2 + ν2)α2

)
dt+ ναdWt + σαdBt.

Define X̂α
t := E(logXα

t | FB
T ). Denote ω = σ2 + ν2. Then, since ζ = (ξ, γ, θ, µ, ν, σ),W ,

and B are independent, we obtain

dX̂α
t =

(
µ̄α− 1

2
¯ωα2

)
dt+ σ̄αdBt,

Using Itô’s formula one more time, we get

dYt = deX̂
α
t = Yt

([
(µ̄α− 1

2
¯wα2) +

1

2
σ̄α2

]
dt+ σ̄αdBt

)
, Y0 = ξ̄,

= Yt(ηdt+ σ̄αdBt), Y0 = ξ̄, (4.51)

where η = µ̄α− 1
2(

¯ωα2 − σ̄α2).

The goal of the representative agent is to solve the following problem

sup
π∈AMF

E
1

1− γ

(
XTY

−θ
T

)1−γ
.

with the given dynamics

dXt = πtXt(µdt+ νdWt + σdBt),

and Yt, t ∈ [0, T ], solving the dynamics (4.51).

Note that when n→ ∞, we have YT ≈ X̄T . We consider two cases.
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Case 1: Suppose γ ̸= 1. Denote x = Xt, y = Yt. Making the ansatz of the value function

V (x, y, t) = f(t)
1

1− γ
x1−γy−θ(1−γ), ∀t ∈ [0, T ] (4.52)

and note that when n → ∞, we have σ̂α = σ̄α − 1
nσiαi ≈ σ̄α. Then, following the similar

steps as the proof of Theorem 4.4.1, we derive the HJB equation

Vt +
1

2
(σ2 + ν2)π2x2Vxx + π(µxVx + σσ̄αxyVxy) + ηyVy +

1

2
σ̄α2y2Vyy = 0 (4.53)

with the terminal condition V (x, y, T ) = 1
1−γ (xy

−θ)1−γ .

Taking the first-order condition (4.53) with respect to π and then manipulating, we get the

implicit optimal investment strategy

π∗ = −µxVx + σσ̄αxyVxy
(σ2 + ν2)x2Vxx

. (4.54)

Plugging back to (4.53), it reduces to

Vt −
1

2

(µxVx + σσ̄αxyVxy)
2

(σ2 + ν2)x2Vxx
+ ηyVy +

1

2
σ̄α2y2Vyy = 0. (4.55)

Taking derivatives the ansatz (4.52) to get Vt, Vx, Vy, Vxx, Vxy, and Vyy then plugging into

(4.55), we get 1
1−γ f

′(t) + ρf(t) = 0, with f(T ) = 1, where

ρ :=
[µ− θ(1− γ)σσ̄α]2

2(σ2 + ν2)γ
− ηθ +

1

2
σ̄α2θ(θ(1− γ) + 1).

Thus, we obtain f(t) = eρ(1−γ)(T−t). Plugging into (4.52), we get

V (x, y, t) = eρ(1−γ)(T−t)
1

1− γ
x1−γy−θ(1−γ).

Then, taking derivatives Vx, Vxx, and Vxy and plugging into (4.54), we obtain the explicit

optimal investment strategy

π∗ =
µ

γ

1

σ2 + ν2
+ θ

(
1− 1

γ

)
σ

σ2 + ν2
σ̄α (4.56)

We want to find the constant vector (α1, ..., αn). So there must be αi = π∗ for every

i = 1, ..., n. Multiplying both sides by σ and averaging (4.56), we get

¯σπ∗ = E
[
µ

γ

σ

σ2 + ν2

]
+ E

[
θ

(
1− 1

γ

)
σ

σ2 + ν2

]
¯σπ∗ = φ+ ψ ¯σπ∗.
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There are three cases:

(i) If ψ ̸= 1, γ ̸= 1, and γ ̸= 0, there exists a unique constant MFE given by

π∗ =
µ

γ

1

σ2 + ν2
+ θ

(
1− 1

γ

)
σ

σ2 + ν2
φ

1− ψ
.

Moreover, we have the identity given by

E(σπ∗) = ¯σπ∗ = σ̄α =
φ

1− ψ
.

(ii) If ψ = 1 and φ ̸= 0, there is no constant MFE.

(iii) If ψ = 1 and φ = 0, there are infinitely many constant MFE.

Case 2: Suppose γ = 1. Note that in this case since the logarithmic utility function is

concave, it only describes the behavior of risk-averse agents.

Making the ansatz of the value function

V (x, y, t) = log x− θ log y + f(t).

Following the similar steps as the proof of Theorem 4.4.1, we obtain f(t) = ρ(T − t). Hence,
we get

V (x, y, t) = log x− θ log y + ρ(T − t).

Taking derivatives Vx, Vxx, and Vxy and plugging into (4.54), we get the explicit optimal

investment strategy

π∗ =
µ

σ2 + ν2
,

which is exactly (4.50).

MFE for strictly convex power utility function. The optimal strategy for Theorem

4.4.2 does not depend on number of players n and also i. Therefore, the optimal strategy

for the case of n-agent games (Nash equilibrium) and that for the case of MFG (mean field

equilibrium) should be the same. That is, π∗ = 1 for risky asset (stock) and π∗ = 0 for

riskless asset (bond). Obviously, the corner solution is unique.

4.4.3 Convergence of MFE to Nash equilibria

The important link between Nash equilibria and MFE in this study is that MFE of mean

field games is the convergent result of the Nash equilibrium in the corresponding N -agent

game when n→ ∞.
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Theorem 4.4.4 (Convergence). The MFE (4.24) and (4.49) are the limits as n → ∞ of

n-player Nash equilibria (4.11) and (4.38), respectively.

Proof. It is obvious by the ways we have constructed the MFG based on the corresponding

N -agent games.

In the case of the logarithmic utility function, the Nash equilibrium and the MFE have very

similar structures, which respectively are

πi,∗ =
µi

σ2i + ν2i
and π∗ =

µ

σ2 + ν2
.

These two optimal investment strategies are always positive. That means risk-averse agents

with logarithmic utility functions always invest a positive fraction of their wealth in their

individual stock either in games with finite or infinite agents.

We can observe that the optimal strategy (4.38) and (4.11), and (4.49) and (4.24) have

similar structures, respectively. Note that in (4.11), ν2i is scaled by 1 − θi/n compared

to that in (4.38) and in (4.24), ν2i is scaled by 1 − θi
n + θi

nγi
compared to that in (4.49).

A noticeable point is that all of the above optimal strategies do not depend on wealth.

Specifically, the MFE only depends on the representative individual preferences and market

parameters. Meanwhile, the Nash equilibria depend on individual preferences and market

parameters, and the number of players.

Note that in the case there is no relative performance, i.e. θ = 0, the optimal investment

strategy (4.49) is equal to

π∗ =
µ

γ

1

σ2 + ν2
,

which is the classical Merton portfolio in Merton (1969) when there is only one Brownian

process and bond (sure asset) offers zero interest rate.

4.5 Discussion

Main theorems for the case of strictly concave utility function in this chapter including

Theorem 4.3.1, Theorem 4.3.3, Theorem 4.4.1, Theorem 4.4.3 and their proofs are largely

inspired by the frameworks of Theorem 2.3, Theorem 2.10, Theorem 3.1, and Theorem 3.6

and their proofs in Lacker and Zariphopoulou (2019), respectively, but our results are more

general. The effects of the personal and market parameters in our study are much more

complicated than the ideal case of risk aversion in Lacker and Zariphopoulou (2019). We

employ this section to discuss the qualitative effects of the number of players in n-agent

games, relative performance, and risk tolerance parameter on the optimal strategies.
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4.5.1 The effects of the number agents in n-agent games

The stock market is a complex system. Therefore, the effects of the number of agents in

n-agent games on optimal strategies in both exponential and power/logarithmic cases are

not straightforward. There are six cases illustrated in the following tree.

Figure 4.1: Tree with 6 cases depending on personal parameters

θi = 0

γi < 0 γi > 0

−1 ≤ θi < 0

γi < 0 γi > 0

0 < θi ≤ 1

γi < 0 γi > 0

Note that Lacker and Zariphopoulou (2019) only considers two cases among these six cases,

which are 0 < θi ≤ 1, γi > 0 and θi = 0, γi > 0. That means, they only study the risk-averse

agents. Rather, we analyze the behavior of both risk-averse and risk-seeking agents.

Exponential case

For the sake of convenient analysis, we restate the optimal strategy of the n-agent games

in the exponential case.

πi,∗ =
µi
γi

1

σ2i + ν2i (1− θi/n)
+ θi

σi
σ2i + ν2i (1− θi/n)

φn
1− ψn

,

where

φn =
1

n

n∑
i=1

µi
γi

σi
σ2i + ν2i (1− θi/n)

and ψn =
1

n

n∑
i=1

[
θi

σ2i
σ2i + ν2i (1− θi/n)

]
,

and 0 ≤ µi ≤ µ̄i, 0 ≤ νi ≤ ν̄i, 0 ≤ σi ≤ σ̄i, and −1 ≤ θi ≤ 1 for all i = 1, ..., n.

We will only analyze some specific cases. For simplicity, denote

M1 =
µi
γi

1

σ2i + ν2i (1− θi/n)
and M2 = θi

σi
σ2i + ν2i (1− θi/n)

φn
1− ψn

.

Case 1: There is no relative performance, i.e. θi = 0. Thus,

πi,∗ =
µi
γi

1

σ2i + ν2i
.
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In this case, the optimal investment strategy does not depend on the number of agents.

This makes sense since in this case agent i is not concerned or motivated by other agents

(i.e. θi = 0). Moreover, if γi > 0 then πi,∗ > 0 and if γi < 0 then πi,∗ < 0.

Case 2: 0 < θi ≤ 1, γi > 0. This is the situation where risk-averse agents with relative

performance concern. In this case, we can check that πi,∗ > 0. Moreover, an increase in n

leads to a decrease in the first term of πi,∗,

n ↑−→ θi
n

↓−→
(
1− θi

n

)
↑−→ 1

σ2i + ν2i (1− θi/n)
↓−→M1 ↓ .

Since µi ≥ 0 and γi > 0, then φn ≥ 0. Also, since 0 < θi ≤ 1, then 0 < ψn < 1, and then

1− ψn > 0. Consequently φn/(1− ψn) ≥ 0. Moreover,n ↑−→ θi
n ↓−→

(
1− θi

n

)
↑−→ σi

σ2
i +ν

2
i (1−θi/n)

↓−→
∑n

i=1
µi
γi

σi
σ2
i +ν

2
i (1−θi/n)

↓

n ↑−→ 1
n ↓

−→ φn ↓,

andn ↑−→ θi
n ↓−→

(
1− θi

n

)
↑−→ σ2

i

σ2
i +ν

2
i (1−θi/n)

↓−→
∑n

i=1 θi
σ2
i

σ2
i +ν

2
i (1−θi/n)

↓

n ↑−→ 1
n ↓

−→ ψn ↓−→ 1− ψn ↑ .

Thus, n increases leading to φn/(1 − ψn) decreases. Hence, an increase in n leads to a

decrease in the second term of πi,∗ (i.e. M2 ↓ ) as well as the first term of πi,∗ (i.e. M1 ↓).
As a result, an increase in the number of agents n leads to a decrease in the absolute value

of wealth that agent i invests in the individual risky stock i. This might be because an

increase in the number of agents accelerates the level of competition in the market.

Case 3: 0 < θi ≤ 1, γi < 0. This is the situation where risk-seeking agents concern with

relative performance. Assume further that µ > 0. In this case, since µi > 0 and γi < 0

then µi/γi < 0. Thus, φn < 0. Moreover, since 0 < θi ≤ 1, then 0 < ψn ≤ 1, and then

0 ≤ 1 − ψn < 1. Since the optimal strategy requires that ψn ̸= 1 or 1 − ψn ̸= 0, we get

φn/(1− ψn) < 0. As a result, M1 < 0 and M2 < 0, and then πi,∗ < 0. Moreover,

n ↑−→

{
|πi,∗| ↑ if |∆M1|+ |∆M2| > 0

|πi,∗| ↓ if |∆M1|+ |∆M2| < 0.
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Case 4:−1 ≤ θi < 0, γi > 0. Then, M1 > 0 and M2 < 0. Thus, πi,∗ can be positive or

negative,

πi,∗ is


positive , if M1 > |M2|
negative , if M1 < |M2|
0, if M1 = |M2|.

An increase in n leads to

πi,∗


increases, if ∆M1 > |∆M2|
decreases, if ∆M1 < |∆M2|
remains unchanged, if ∆M1 = |∆M2|.

Power and logarithmic case

Recall the optimal strategy of the n-agent games in the power/logarithmic case given by

πi,∗ =
µi
γi

1

σ2i + ν2i

(
1− θi

n + θi
nγi

) + θi

(
1− 1

γi

)
σi

σ2i + ν2i

(
1− θi

n + θi
nγi

) φn
1− ψn

,

where

φn :=
1

n

n∑
i=1

µi
γi

σi

σ2i + ν2i

[
1 +

(
1
γi

− 1
)
θi
n

] , ψn :=
1

n

n∑
i=1

θi

(
1

γi
− 1

)
σ2i

σ2i + ν2i

[
1 +

(
1
γi

− 1
)
θi
n

] ,
and −1 ≤ θi ≤ 1, 0 ≤ µi ≤ µ̄i, 0 ≤ νi ≤ ν̄i, and 0 ≤ σi ≤ σ̄i for all i = 1, ..., n, and with the

conditions that ψn ̸= 1, γi ̸= 1, and γi ̸= 0.

Case 1: θi = 0, i.e. there is no relative performance parameter. Then,

πi,∗ =
µi
γi

1

σ2i + ν2i
.

Obviously, this optimal strategy does not depend on the number of agents n. Moreover, it

coincides with that of the exponential utility function case.

Case 2: γi = 1. The optimal strategy does not depend on n and is given by

πi,∗ =
µi

σ2i + ν2i
.
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4.5.2 The effects of relative performance

In order to examine the effects of θ on π∗, we rewrite the MFE in the exponential and power

case respectively as follows.

π∗,exp =
µ

γ

1

σ2 + ν2
+

θ

1− E
(
θ σ2

σ2+ν2

) σ

σ2 + ν2
φ, where φ := E

(
µ

γ

σ

σ2 + ν2

)

and

π∗,pow =
µ

γ

1

σ2 + ν2
+

θ

1− E
[
θ
(
1− 1

γ

)
σ2

σ2+ν2

] (1− 1

γ

)
σ

σ2 + ν2
φ, where φ := E

(
µ

γ

σ

σ2 + ν2

)
.

For simplicity, assume

E
(
θ

σ2

σ2 + ν2

)
= θ

σ2

σ2 + ν2
, and E

[
θ

(
1− 1

γ

)
σ2

σ2 + ν2

]
= θ

(
1− 1

γ

)
σ2

σ2 + ν2
.

Thus, holding other things constant, we can write π∗ as a function of θ, i.e. π∗ = π∗(θ).

Taking derivative with respect to θ for both exponential and power cases, respectively, yield

π∗,expθ =
σ

(1− θ)σ2 + ν2
φ and π∗,powθ =

1

1− θ
(
1− 1

γ

)
σ2

σ2+ν2

(
1− 1

γ

)
σ

σ2 + ν2
φ.

Assume further that σ > 0. Thus,

σ

(1− θ)σ2 + ν2
> 0,

1

1− θ
(
1− 1

γ

)
σ2

σ2+ν2

> 0, and
σ

σ2 + ν2
> 0.

Thus, the sign of π∗,expθ depends on the sign of φ and the sign of π∗,powθ depends on the sign

of (1− 1/γ)φ.

We now analyze some specific cases to see the effects of the relative performance parameter

θ on the optimal investment strategy π∗ in both exponential and power cases.

Case 1: 0 < θ ≤ 1, γ > 0. In this case π∗,expθ > 0. Thus, an increase in θ leads to an

increase in π∗,exp in the exponential case. If γ > 1, then an increase in θ leads to an increase

in π∗,pow in the power case.

Case 2: 0 < θ < 1, γ < 0. In this case, we can check that π∗,expθ < 0. That is, an increase

in θ leads to a decrease in π∗,exp.

Case 3: −1 ≤ θ < 0, γ > 0. Assume further that µ > 0. Hence, since φ > 0, then

π∗,expθ > 0. Thus, an increase in θ leads to an increase in π∗,exp > 0. If γ > 1, then an

increase in θ leads to an increase in π∗,pow > 0.
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4.5.3 The effects of personal risk tolerance

We will analyze some specific cases to see the effects of the risk tolerance parameter γ on

the optimal investment strategy π∗ in MFG.

Case 1: Suppose there is no relative performance, i.e. θ = 0. In this case, π∗ in both

exponential and power cases coincide and become

π∗ =
µ

γ

1

σ2 + ν2
.

Taking the derivative with respect to γ yields

π∗γ = − µ

γ2
1

σ2 + ν2
,

which is negative if µ > 0. This implies that an increase in risk tolerance γ tends to decrease

the optimal investment strategy π∗.

Case 2: γ > 0, 0 < θ ≤ 1. In this case π∗ > 0 in exponential case and π∗ > 0 in power case

if γ > 1. Thus, an increase in γ leads to a decrease in π∗. That means an investor with

more risk aversion invests less in the risky asset.

Case 3: 0 < γ < 1, 0 < θ ≤ 1. For the exponential case, the effect of γ on π∗ is the same

as in Case 2. However, for the power case, π∗ can be positive, negative, or zero since the

first summand of π∗ is positive while the second summand is negative. Consequently, an

increase in γ leads to

π∗ =


increases , if ∆

(
µ
γ

1
σ2+ν2

)
> ∆

∣∣∣θ (1− 1
γ

)
σ

σ2+ν2
φ

1−ψ

∣∣∣
decreases , if ∆

(
µ
γ

1
σ2+ν2

)
< ∆

∣∣∣θ (1− 1
γ

)
σ

σ2+ν2
φ

1−ψ

∣∣∣
0, if ∆

(
µ
γ

1
σ2+ν2

)
= ∆

∣∣∣θ (1− 1
γ

)
σ

σ2+ν2
φ

1−ψ

∣∣∣.
4.6 Conclusion

In this paper, each individual agent (or investor) faces the problem of allocating her terminal

wealth in a portfolio including one risk-free asset (e.g. government bond) and one individual

risky asset (e.g. stock). We model the games with finite and infinite agents, namely n-agent

games and MFG, respectively. Each agent has a utility function that belongs to the family of

HARA utility functions. The utility function depends on her terminal wealth as well as the

average wealth of the population. The games are modeled in the context of the presence of

risk-seeking agents and relative performance. We prove that there exists a unique constant

Nash equilibrium and constant MFE for the case of strictly concave utility function. For

the case of strictly convex utility function, there exists a corner solution for both n-agent

and MFG in which risk-seeking agents invest all her asset value on risky asset (e.g. stock)
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and invest nothing on riskless asset (e.g. bond). The qualitative effects of personal and

market parameters on the optimal investment strategy are discussed deeply.

There are several limitations in this chapter which pay ways for future research. First,

all personal and market parameters in this chapter are constant over time, one might

assume these parameters vary over time. Some parameters depend on time imply that

Nash equilibrium or MFE also depend on time rather than constant as in this chapter.

Second, this study assumes that each individual investor only invests in one individual

stock, which is not always the case in the real world. One might relax this assumption to

allow each individual investor to invest in more than one stocks. Third, the setting in this

study is the perfect market with no frictions (e.g. transaction costs, and borrowing and

lending), one might take one or some frictions into account to make models more realistic.

Fourth, this study only constructs and solves an investment-only problem, one might model

and tackle an investment-consumption problem.
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Chapter 5

Conclusions

The thesis comprises three essays on business analytics and game theory, with each chapter

analyzing a particular type of shock.

Chapter 2 uses machine learning and text mining techniques to quantify natural disaster risk

(climate shocks) effects on the US firm’s performance. The first goal of this research is to

create a new dictionary of terms associated with natural hazards and disasters. Text mining

is used to determine how many of these words appear in Form 10-Ks. This information is

then used to create an indicator of the perceived risk of natural disasters, which is combined

with data on government-reported damages and other factors to investigate how natural

disasters impact the performance of US firms between 1993 and 2021. The study reveals

that self-reported perceived risk and government-reported damages of natural disasters in

the current year are both linked to reduced profitability in the following year but have no

impact on sales growth or Tobin’s Q ratio. The services sector is more heavily impacted

than the manufacturing sector. Additionally, there is a lag effect on profitability in the

services sector related to the perceived risk of natural disasters but not for government-

reported damages. The study suggests that CART and neural networks are better than

linear regression for predicting firm performance during natural disasters. Ultimately, the

study indicates that information from financial reports, such as Form 10-K filings, can be

used to evaluate the perceived risk of natural disasters and predict their effects on firm

performance, particularly profitability.

Chapter 3 explores firms as microeconomic agents regarding bankruptcy/financial distress

probability prediction under periods with good and bad years (i.e., years with economic

shocks). In particular, this study compares the effectiveness of three different models -

accounting-based, market-based, and machine-learning - in predicting financial distress in

Vietnam, a transition economy. The findings indicate that although all models perform

reasonably well in predicting outcomes for companies that have not been delisted, they

struggle to do so for delisted companies. The study also demonstrates that models

combining variables from Altman’s and Ohlson’s approaches perform better than those

using only one set of variables, as measured by balanced accuracy. Furthermore, the study
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shows that neural networks are consistently the most effective models based on balanced

accuracy and Matthews correlation coefficient. Among Altman’s variables, the reat variable

(retained earnings over total assets) is the most important, while ltat (total liabilities over

total assets) and wcapat (working capital over total assets) are the most significant in

Ohlson’s variables. The study also reveals that the models are generally more effective at

predicting outcomes for large companies than for small ones, and their performance tends to

be better in good years than in bad ones, based on Matthews correlation coefficient (MCC).

Chapter 4 examines the allocation of wealth in portfolios with potential Brownian motions

(as stochastic shocks) consisting of a risk-free asset, such as a government bond, and a

single risky asset, like a stock. Each investor is considered an individual agent and must

determine how to allocate their terminal wealth in this portfolio. The paper models two

types of games: n-agent games and mean field games, each with a different number of

players. The agents in these games have hyperbolic absolute risk aversion (HARA) utility

functions that depend on their terminal wealth and the average wealth of the population.

This chapter demonstrates that when the utility function is strictly concave, both the n-

agent and mean field games have only one Nash equilibrium and one mean field equilibrium.

On the other hand, when the utility function is strictly convex, a distinct corner solution

exists in which all agents invest their wealth in risky assets and none in riskless assets.

The paper also examines how the optimal investment strategy is affected by personal and

market coefficients.
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