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ABSTRACT

This thesis presents results on complexities of finite and infinite words, where “complexity” is de-

fined using finite state and Turing machines, respectively. Specifically, the complexity of a word

w is defined to be the minimum number of states in a finite state machine needed to uniquely

output w among all words of length |w|. A theorem counting the number of words of length n and

deterministic hidden Markov model complexity q is proven, giving insight into the distribution of

deterministic hidden Markov model complexity. In particular, this theorem allows for the compu-

tation of deterministic hidden Markov model complexity in polynomial time, an improvement over

the exponential-time naive computation. Non-deterministic hidden Markov models of various states

are shown to be realized by deterministic hidden Markov models, and the strengths of languages

defined by hidden Markov model complexity are investigated. Finally, analogs of these results are

expanded to infinite words and to finite-state gambler complexity.

When discussing complexities of infinite words in the next topic, Σ0
1 and constructively Σ0

1 dense

sets are introduced. It is shown that these classes are distinct and that they occur in non-∆0
2 degrees,

high degrees, and c.e. degrees. Then, connections from Σ0
1 sets to a problem on the computable

dense subsets of Q is established. Finally, results on effective notions of the complexities of finite

words are presented, providing a link between the two topics.
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CHAPTER 1
INTRODUCTION

Given a word over some alphabet, what makes it complex? Most people would say that

10111111110111000001 1 is more complex than 01010101010101010101, though both have the same

probability
(

1
220

)
of being chosen among all binary words of length 20. Notions of complexity bridge

this gap; roughly, a word’s complexity is defined to be the size (in bytes, states, etc.) of the smallest

computer program that can output the word. A wide variety of established notions of theoretical

program (or “machine”) make explorations in complexity a fruitful research area.

The classical definition of complexity has many presentations, such as in [22], and relies on a

Turing machine as its model of computation. More specifically, the Kolmogorov complexity of a

finite binary string σ is

K(σ) := min {|τ | : U(τ) = σ}

where U is a prefix-free universal Turing machine and τ ranges over the set of finite binary strings.

However, a major drawback of Kolmogorov complexity and the use of Turing machines in general

is that Turing machines are not computable, i.e. for a given σ, the question “What is K(σ)?” may

not be decidable. As an alternative, complexity for finite words has been considered with finite-

state machines, a class of theoretical machines. In [29], Shallit and Wang defined the automatic

complexity of a word x to be the number of states of a deterministic finite automaton M that

uniquely accepts x among all words of length |x|. That is,

A(x) := min
{
|M | : L(M) ∩ Σ|x| = {x}

}
where L(M) is the language of words accepted by the deterministic finite automaton M . A third

alternative was proposed in [19], where quantum deterministic automata were considered:

Q(x) := min {|Q| : ∃α, ω ∈ CPq, δxα = ω}

where δx ∈ PU(q), the projective unitary group of q dimensions. Bounds for A(x) and Q(x)

were shown in [17] and [19], among others. However, deterministic automata are a very restrictive

class of machines; it would be natural to ask for a definition of complexity that is somehow more

descriptive than A(x) and Q(x), but not as complicated as K(σ) as to be unable to be computed

for specific words.

Chapter 2 aims to bridge this gap by defining complexity in terms of hidden Markov models

(HMMs). Define the deterministic HMM complexity D(x) to be

D(x) := min {|H| : H emits x}2

1This sequence was constructed via a Python random number generator.
2If a deterministic HMM emits a word, then it emits that word with probability 1 by definition, so it is not

necessary to repeat the uniqueness conditions in the definitions of A(x) and Q(x).
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Chapter 2 establishes initial properties of D(x) and concludes with a result on the distribution of

D(x): given

sq(n) := | {x : |x| = n ∧D(x) = q} |

a formula for sq(n) whenever n ≥ 2q − 1 is derived, establishing the asymptotic behavior of sq(n).

This, in turn, leads to a computational improvement from exponential to polynomial time in cal-

culating sq(n) for n ≥ 2q − 1. Additionally, links between deterministic and general HMMs are

established when the number of states is low, showing that deterministic HMMs capture much of

the power of general HMMs.

Chapter 3 extends the results of Chapter 2 to present proofs that the families of languages

Ln,1 = {x ∈ {0, . . . , n− 1}∗ : D(x) < |x|}

Ln,2 = {x ∈ {0, 1}∗ : D(x) = |x|}

are regular. Chapter 3 then defines complexity for finite words via finite-state gamblers and for

infinite words via Büchi automata, and proves results analogous to those in Chapter 2.

Chapter 4, which appeared in [3], departs from the decidable machines used in Chapter 2 to

consider problems related to Martin-Löf randomness, which has many classical expositions, such

as [14]. A real A ∈ 2ω is Martin-Löf random if there does not exist a computable collection of

computably enumerable sets Un, n ∈ ω, such that A ∈
⋂

n∈ω Un; intuitively, A is Martin-Löf

random if it is “unusual” relative to any possible computable “test.” It is a well-known and deep

theorem that A is Martin-Löf random if and only if there exists some natural number C such that

for all n, K(A ↾ n) > n−C, i.e. if almost all initial segments of A are maximally complex. Chapter

4 arose after investigating the following question: “If S ⊆ Q is ‘random’ in the sense of Martin-Löf,

when does S = R?” where S is the closure of S in the usual topology. More precisely,

For which A ⊆ ω is ν(A) dense in the usual topology, for all injective computable numberings ν?

The answer to this question is shown to be exactly the co-immune sets. This leads naturally

to considering the class of construtively Σ0
1 dense sets which have nonempty intersection with

each infinite computably enumerable set, and where the witness for this intersection is uniformly

computable. It is shown that the concept of constructive Σ0
1 density is distinct from non-constructive

Σ0
1 density and that Σ0

1 dense sets are represented in the non ∆0
2 degrees, high degrees, and c.e.

degrees.

Finally, Chapter 5 provides a link between the results in Chapters 2 and 3 by exploring the

role of effectiveness in complexities of finite words. Upper bounds on the time complexities for the

problems of determining whether a hidden Markov model witnesses the complexity of a given word,

and finding a string to append to a word to make it sufficiently complex, are presented. Chapter 3

2



is then revisited by proving that, although the number of states in a DFA accepting the language

Ln,2 grows exponentially in n, only a linearly increasing number of states in n is required in a

pushdown automata that accepts Ln,2.
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CHAPTER 2
THE DISTRIBUTION OF DETERMINISTIC HMM

COMPLEXITY

2.1 Preliminaries

Definition 2.1. An alphabet is a finite set. Given an alphabet Σ, a finite word over Σ is a sequence

x0x1 . . . xn for some n ∈ N, where xi ∈ Σ for all i ≤ n. Let N denote the natural numbers; an

infinite word over A is a sequence x0x1 . . . , where xi ∈ Σ for all i ∈ N. If w is a finite word, |w| is
the length of w. Write Σn for the set of words of length n over Σ, Σ<ω for the set of finite words

over Σ, and Σω for the set of infinite words over Σ.

The term “word” will be used in place of “finite word” everywhere unless otherwise specified.

The main tool used in this chapter to describe the complexity of words is the hidden Markov

Model. The definition of a hidden Markov model will be built up through auxiliary definitions.

Definition 2.2. Let (Ω,F , µ) be a probability space, where Ω is a set, F is a σ-algebra on Ω, and

µ is a probability measure on Ω. Let E be a measurable space. An E-valued random variable is a

measurable function X : Ω → E.

Definition 2.3 ([20]). Let Q be a finite set. A function X : N × Ω → Q is a stochastic process if

for every n ∈ N, X(n, ·) : Ω → Q is a Q-valued random variable.

Intuitively, arguments from N will represent time.

Fix finite sets Q and Σ. Q will represent a set of “hidden” states, and Σ will be an alphabet of

“output” symbols. Let X and Y be stochastic processes X : N×Ω → Q and Y : N×Ω → Σ. Write

Xn(ω) = X(n, ω) for ω ∈ Ω and similarly for Y . Additionally, for O ∈ Ω, write Pr(O) for µ({O}).

Definition 2.4 ([20]). X is a Markov process if

Pr(Xn = a | Xn−1) = Pr(Xn = a | X0, . . . , Xn−1)

for all a ∈ Q and n ∈ N.

Definition 2.5 ([20]). The pair (X,Y ) is a hidden Markov model if X is a Markov process and

Pr(Yn ∈ S | Xn = xn) = Pr(Yn ∈ S | X1 = x1, . . . , Xn = xn)

for all n ≥ 1, x1, . . . , xn ∈ Q, and every S ⊆ Σ.

4



Intuitively, Definition 2.4 states that if X is a Markov process, then for all n and a, the

probability of X equalling a at time n depends only on the values of X at time n − 1. In

particular, for all n and a1, a2 ∈ Q, Pr(Xn = a1 | Xn−1 = a2) is constant, and for all m,

Pr(Xn = a1 | Xn−1 = a2) = Pr(Xm = a1 | Xm−1 = a2). Q was assumed to be finite by

definition, so let |Q| = n and Q = q0, q1, . . . qn−1. Then X can be associated with the matrix

A =


a00 a01 . . . a0(n−1)

a10
. . . . . . a1(n−1)

...
. . . . . . . . .

a(n−1)0 a(n−1)1 . . . a(n−1)(n−1)


where aij = Pr(Xn = qj | Xn−1 = qi).

Similarly, Definition 2.5 states that if (X,Y ) is a hidden Markov model, the probability that Y

takes on values in A at time n depends only on Xn. Let |Σ| = m and Σ = {σ0, σ1, . . . , σm−1}. Y
can then be associated with the matrix

B =


b00 b01 . . . b0(m−1)

b10
. . . . . . b1(m−1)

...
. . . . . . . . .

b(n−1)0 b(n−1)1 . . . b(n−1)(m−1)


where bij = Pr(Yn = σj | Xn = qi). Informally, the matrix A represents the probabilities of transi-

tioning between states of a hidden Markov model, and the matrix B represents the probabilities of

emitting output symbols given the hidden Markov model’s state. The terms transition matrix and

emission matrix will be used to refer to A and B, respectively. Transition and emission matrices

will be explicitly discussed in Section 3.1.

Through the rest of this section, hidden Markov models will be referred to by the acronym

HMM. The single variable H will be used to refer to HMMs, without directly referencing the

underlying stochastic processes if the discussion does not require it.

Definition 2.6. Let w = w0 . . . wn be a word over an alphabet Σ and let H = (X,Y ) be a hidden

Markov model. A sequence ω = ω0, ω1, . . . , ωn ∈ Ω is an emitting sequence for w if Yi(ωi) = wi

for all i ≤ n. Let E(w) be the set of emitting sequences for w. The probability of H emitting w is∑
ω∈E(w)

∏
i≤n

Pr(Yi = ωi).

Definition 2.7 ([21]). Let w be a word over an alphabet Σ. The HMM complexity of w, written

CHMM(w), is the minimum number of states in a HMM H such that if w′ ̸= w is a word with

|w′| = |w|, then the probability of H emitting w′ is strictly less than the probability of H emitting

w.

5



This section will be primarily be concerned with upper bounds of HMM complexity. In partic-

ular, to show that the complexity of w is not greater than n for some natural number n, it suffices

to show that there exists a HMM with n states that outputs w with probability 1. The following

theorem produces such a bound, which indirectly proves that HMM complexity is well-defined.

Definition 2.8. The empty word over any alphabet is the (necessarily unique) word of length 0.

Write ϵ for the empty word and define u0 := ϵ.

Definition 2.9. Let u = u0u1 . . . un and v = v0v1 . . . vm be words over an alphabet Σ. u ⌢ v :=

u0u1 . . . unv0v1 . . . vm is the concatenation of u and v.

Definition 2.10. Let w = x0x1 . . . xn−1xn . . . xm be a word over an alphabet Σ with n ≤ m. Then

w ↾ n is the word x0x1 . . . xn−1.

Definition 2.11. Let w = x0x1 . . . xn−1xn . . . xm be a word with n ≤ m. Then w[n :] is the word

xnxn+1 . . . xm. In this notation, write w[−n :] for w[|w| − n :].

Definition 2.12. Let w be a word over an alphabet Σ and let n ≥ |w|. w
n
|w| := w

⌊
n
|w|

⌋
⌢ wn mod |w|.

Example 2.13. (010)
5
3 = 01001

Theorem 2.14 ([21]). The minimum number of states of an HMM such that w occurs with prob-

ability 1 is min {|u|+ |v| : ∃u, v ∈ Σ<ω, ∃p ∈ Q, w = uvp}.

Theorem 2.15 ([21]). Any binary word of length n starting with 0 except 0n−11 can be written as

uvp with |v| > 0 and p > 1 with p ∈ Q.

2.2 Asymptotic counts of words of given complexities

Definition 2.16 ([1]). A nonempty word w is primitive if there does not exist a word u and a

natural number k > 1 such that w = uk.

Definition 2.17. The Möbius function M(n) is defined as

M(n) :=

0 if n is divisible by a square > 1

(−1)i if n = p1p2 . . . pi, where pj for j ≤ i are distinct primes

Definition 2.18. Let Σ be an alphabet with |Σ| = m. For n > 0, define P(n,m) to be the number

of primitive words of length n over Σ. That is, P(n,m) := {w ∈ Σn : w is primitive}.

6



Theorem 2.19 ([1]). For n > 0, P(n,m) =
∑
d|n

M(d)m
n
d .

The argument m will be omitted from P(n,m) when Σ is clear from the context.

Much of this chapter will be concerned with with complexities based on the special class of

HMMs defined below.

Definition 2.20. A deterministic HMM is a hidden Markov model such that for every state s1,

there is exactly one (not necessarily distinct) state s2 such that s1 transitions to s2 with probability

1.

Definition 2.21. For w ∈ Σ∗, the deterministic HMM complexity of w is the minimal number of

states in a deterministic HMM that accepts w.

Write D(w) for the deterministic HMM complexity of w.

Theorem 2.22. For any word w, D(w) = min {|u|+ |v| : ∃u, v ∈ Σ<ω, ∃p ∈ Q, w = uvp}.

Proof. Let H witness the deterministic HMM complexity of w. Since H is deterministic, H emits

w with probability 1. Further, since H witnesses HMM complexity, the number of states of H is

minimal. By Theorem 2.14, H must have exactly min {|u|+ |v| : ∃u, v ∈ Σ<ω, ∃p ∈ Q, w = uvp}
states.

Theorem 2.23. Deterministic HMM complexity is well-defined. In particular, for every w ∈ Σ∗,

D(w) ≤ |w|.

Proof. Let w = w1w2 . . . wk. Consider the HMM with states s1, . . . , sk such that for all i, 1 ≤ i ≤ n,

si outputs wi with probability 1.

Definition 2.24. Given a word w over Σ, the integer HMM complexity of w is

I(w) := min
{
|u|+ |v| : ∃u, v ∈ Σ<ω, k ∈ N such that w = uvk

}
The motivation for restricting to integer powers in the definition of integer HMM complexity is

to be able to answer questions about the asymptotic behavior of HMM complexity. For example,

010 = (01)
3
2 has complexity 2 under the usual definition, but considering 010 = (01)01 with

complexity 3 makes sense when considering 010 as a stand-in for 010k for arbitrarily large k. This

intuition is made precise by the following definition:

Definition 2.25. A pair of words (u, v) has has eventually integral complexity if I(uv) = |uv| and
for all but finitely many n, I(uvn) = D(uvn).

Proposition 2.26. Let u = 01 and v = 0. Then (u, v) has eventually integral complexity.

7



Proof. Since I(010n) = 3 for all n, it suffices to show that D(010n) = 3 for all but finitely many

n. It will be shown that D (uvn) = 3 for all n ≥ 2. Fix n ≥ 2 and suppose that D (010n) = 2. By

Theorem 2.22, 010n = uvp for |u|+ |v| = 2 and p ∈ Q. The definitions of u and v imply that either

|v| = 1 or |v| = 2. Assume |v| = 1. Then p ∈ N, and if v = 0 then uvp ↾ 2 ̸= 010n ↾ 2 = 01, and if

v = 1 then uvp ↾ 1 ̸= 010n ↾ 1 = 0. So assume that |v| = 2 and let 010n = xp for some binary word

x of length 2. It must be the case that x = 01, as 01 = (010n) ↾ 2 = x. But n ≥ 2 implies that

|010n| ≥ 4 and therefore that p ≥ 2, so it must be the case that x(4) = 1, a contradiction.

Proposition 2.27. Let u = 010 and let v = 10. Then (u, v) does not have eventually integral

complexity.

Proof. For all n, I (uvn) = 3 since uvn = 0(10)n+1, but D (uvn) = 2 by setting u = ϵ, v = 01.

Lemma 2.28. For any word w, D(w) ≤ I(w).

Proof. Let w = uvk for some k ∈ N with |u| + |v| minimal. Then D(w) ≤ |u| + |v| by considering

k as an element of Q.

Fix a natural number q. The following results are concerned with counting the size of

S(q) := {(u, v) | |uv| = q and (u, v) has eventually integral complexity}

Definition 2.29. Given a word w, a pair of words (u, v) is a decomposition of w if |u|+ |v| = D(w)

and there exists p ∈ Q such that uvp = w. That is, a decomposition of w witnesses the deterministic

HMM complexity of w.

Definition 2.30 is defined analogously to Definition 2.29.

Definition 2.30. Given a word w a pair of words (u, v) is a integral decomposition of w if |u|+|v| =
I(w) and there exists k ∈ N such that uvk = w.

Write

∆(w) := {(u, v) : (u, v) is a decomposition of w }

and analogously,

∆N(w) := {(u, v) : (u, v) is an integer decomposition of w }

Lemma 2.33, due to Shallit, provides a sufficient condition on w for which |∆(w)| = 1 and

|∆N(w)| = 1, respectively.

Lemma 2.31 ([28] Theorem 2.3.3). Let x, y ∈ Σ+. The following are equivalent:

1. xy = yx.
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2. There exists z ∈ Z+ and integers k, l > 0 such that x = zk and y = zl.

3. There exist integers i, j > 0 such that xi = yj.

Lemma 2.32 ([28] Theorem 2.3.6). Let x and y be nonempty words. Then xy = yx if and only if

there exist rational numbers α, β ≥ 2 such that xα = yβ.

Lemma 2.33 ([28] Theorem 2.3.2). Let, x, y, z ∈ Σ+. Then xy = yz if and only if there exist

u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 0 such that x = uv, z = vu, and y = (uv)eu.

Lemma 2.34. Let a, b, c, and d be words over Σ with b and d primitive. Let j, k ∈ Q with j, k ≥ 2,

and assume that abj = cdk, |a|+ |b| = |c|+ |d|, and either a ̸= c or b ̸= d. Then there exist words

u and v and a rational number l so that abj = uvl and |a|+ |b| > |u|+ |v|.

Proof. Without loss of generality assume that |a| ≤ |c|. Since |a|+|b| = |c|+|d|, ab = cd and b = c′d

for some terminal segment c′ of c. So (c′d)j = c′dk, which implies that c′dc′d and c′dd are both

prefixes of c′dk; by considering their respective lengths, c′dd is a prefix of c′dc′d. But this implies

that d is a prefix of c′d, so c′d = de for some word e. By Lemma 2.33, there exists a nonempty

word u, a word v, and a natural number p such that c′ = uv, d = (uv)pu, and e = vu. But then

b = c′d = uv(uv)pu, so abj = a(uv)l for some l ∈ Q; further, since u ̸= ϵ, |u|+ |v| < |b|.

In simpler terms, Lemma 2.34 states that over-counting words of a given complexity can only

happen when the witnessing HMMs contain no loops.

Lemma 2.35. Let w be a word and let (u, v) ∈ ∆(w), with uvp = w for some p ∈ Q. If p ≥ 2,

then |∆(w)| = 1.

Proof. Let (u1, v1) ∈ ∆(w) and assume (u, v) ̸= (u1, v1). By Lemma 2.34, there exist words x and

y and q ∈ Q such that xyq = w and |x|+ |y| < |u|+ |v|, contradicting the minimality of (u, v).

Lemma 2.36. Let w be a word and let (u, v) ∈ ∆N(w), with uv
n = w for some n ∈ N. If n ≥ 2,

|∆N(w)| = 1.

Proof. The proof is the same as that of Lemma 2.35, considering integer decompositions and integer

powers.

δ(w) will be written to represent the unique decomposition of a word w when it is clear that it

exists, and similarly δN(w) will be written to represent a unique integer decomposition.

Lemma 2.37. Let u and v be words and let p, q ∈ Q with p, q ≥ 2. Then δ(uvp) = δ(uvq).
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Proof. Note that by Lemma 2.35, δ(uvp) and δ(uvq) are the unique decompositions of uvp and

uvq, respectively, so the statement of the theorem is justified. If p = q then the result is trivial, so

assume that p ̸= q. Without loss of generality assume that p > q. Let ∆(uvp) = (u1, v1) and let

∆(uvq) = (u2, v2). Let u1v
p1
1 = uvp and let u2v

q2
2 = uvq. Since p1 ≥ p > 1, u1v

r
1 = uv for some

r, so u1v
r′
1 = uvq for some r′ ∈ Q, which implies that |u1| + |v1| ≤ |u2| + |v2| by the definition of

decompositions. Similarly, since q2 ≥ q > 1, u2v
s
2 = uv for some s ∈ Q, so u2v

s′
2 = uvp for some

s′ ∈ Q, so |u2|+ |v2| ≤ |u1|+ |v1|. So (u1, v1) = (u2, v2) by Lemma 2.35.

Lemma 2.38. Let u and v be words and let m, k ∈ N with m, k ≥ 2. Then δN(uv
m) = δN(uv

k).

Proof. Note that by Lemma 2.36, δN(uv
m) and δN(uv

k) are the unique decompositions of uvm and

uvk, respectively, so the statement of the theorem is justified. The proof is the same as that of

Lemma 2.37, considering integer powers in lieu of rational powers and appealing to Lemma 2.36

instead of Lemma 2.35.

Lemma 2.39. Let u and v be words. If there exists k ∈ N such that (u, v) ∈ ∆N(uv
k), then

δN(uv
n) = (u, v) for all n ≥ 2.

Proof. By Lemma 2.38, δN(uv
n) = δN(uv

k).

Lemma 2.40. Let (u, v) have eventual integral complexity. Then, for all n ≥ 2, δN(uv
n) = (u, v).

Proof. By the definition of eventually integral complexity, I(uv) = |uv|, and |uv| = |u|+ |v|, so the

integer decomposition of uv is (u, v) by Lemma 2.36. The result then holds by Lemma 2.39.

Lemma 2.41. Let (u, v) have eventual integral complexity. Then, for all but finitely many n,

δ(uvn) = δN(uv
n).

Proof. Let N be large enough so that for all n > N , I(uvn) = D(uvn). Let N1 := max (N, 3)

and fix n > N1. By Lemma 2.40, δN(uv
n) = (u, v). Let δ(uvn) = (u1, v1). Since n ≥ 2 and

|u|+ |v| = I(uvn) = D(uvn) = |u1|+ |v1|, (u, v) = (u1, v1) by Lemma 2.35.

Lemma 2.42. Let u and v be words with v primitive, and assume that there does not exist k such

that u = vk. Then for all n ≥ 2, δN(uv
n) = (u, v).

Proof. Let n > 1 and let (u1, v1) = ∆N(uv
n) with u1v

n1
1 = uvn for some n1 ∈ N. Assume

|u1| + |v1| < |u| + |v|. For any k, consider k + ⟨|v1|⟩ := {k + |v1| ·m mod |v| : m ∈ N}. For some

natural number k, v(0) = v1(k) = v(|v1| mod |v|), and in general, v(0) = v(i) for all i ∈ k+ ⟨|v1|⟩.
Similarly, v(j) = v(i) for all i ∈ (j + k) + ⟨|v1|⟩. Since |u1| + |v1| < |u| + |v|, n1 ≥ n, and since

n > 1, for every i < |v| there exists j < |v1| such that i ∈ (j + k) + ⟨|v1|⟩. So v = (v ↾ r)
|v|
r where

r = gcd (|v|, |v1|), contradicting the assumption that v is primitive.
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Lemma 2.43. Let u and v be words with v primitive. Let n ≥ 2 and let ∆(uvn) = (u1, v1). Then

|v| = |v1|.

Proof. Let u1v
p
1 = uvn for some p ∈ Q. First, assuming that |u| ≤ |u1|, cancelling yields

vn = u′1v
p
1

v′vn−1 = vp1

vn−1 = v′1v
p−1
1

for u′1 a suffix of u1, v
′ a suffix of v, and v′1 a suffix of v1. Then, if |v1| < |v|, v is not primitive by

Lemma 2.32 and Lemma 2.31. Similarly, assuming that |u1| ≤ |u|,

u′vn = vp1

vn = v′1v
p−1
1

for u′ a suffix of u and v′1 a suffix of v1. Again, if |v1| < |v|, then v is not primitive by Lemma 2.32

and Lemma 2.31.

Definition 2.44. Given words w1 and w2 with |w1| = |w2| = n, w1 is a cyclic shift of w2 if there

exists k such that for all i < n, w1(i) = w2 ((i+ k) mod n).

Example 2.45. 0011 is a cyclic shift of 1001, with k = 1.

Lemma 2.46. Let u and v be words. For any n ∈ N with n > 1, let δ(uvn) = (u1, v1) and let

δN(uv
n) = (u2, v2). Then v1 is a cyclic shift of v2.

Proof. Without loss of generality assume v is primitive; if v is not primitive and v = v′k for some

word v′ and k ∈ N, rewrite vn as (v′)nk. By Lemma 2.42, δN(uv
n) = (u, v), and if δ(uvn) = (u1, v1),

|v1| = |v| by Lemma 2.43. Since n > 1, there are at least two occurrences of both v1 and v in uvn.

Further, since |u1| + |v1| ≤ |u| + |v|, |u1| ≤ |u|, so the second occurrence of v1 occurs during the

first occurrence of v, which implies that v1 is a cyclic shift of v.

Definition 2.47. Given words w and w′, w′ is a suffix of w if w′ ̸= ϵ, and there exists k > 0 such

that |w′| = |w| − k and for all i < |w′|, w′(i) = w(i+ k).

Theorem 2.48. For any words u and v, (u, v) has eventually integral complexity if and only if v

is primitive and for each suffix u′ of u, u′ ̸= v ↾ |u′|.

Proof. Let (u, v) has eventually integral complexity. If v is not primitive and v = xm for some

word x and natural number m, then uvn = uxnm for all n, contradicting that (u, v) has eventually
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integral complexity. Assume that u′ = v ↾ |u′| for some suffix u′ of u. Let u1 = u ↾ |u′| and let

v1 = u′v ↾ |u′|. Then

u1v1 =
(
u ↾ |u′|

)
u′v ↾ |u′|

=
(
(u ↾ |u′|)u′

)
v ↾ |u′|

= uv ↾ |u′|

so in particular, |u1|+ |v1| < |u|+ |v|. But for any n > 1,

uvn =
(
(u ↾ |u′|)u′

) (
(v ↾ |u′|)v[−|u′| :]

)n
=
(
(u ↾ |u′|)u′

) (
(v ↾ |u′|)u′

)n
= (u ↾ |u′|)

(
u′v ↾ |u′|

)n
u′

= u1v
n
1u

′

= u1v
n|v1|+|u′|

|v1|
1

so δ(uvn) ̸= (u, v). But by Lemma 2.40, δN(uv
n) = (u, v), and by Lemma 2.41, δN(uv

n) = ∆(uvn),

a contradiction.

Now assume that (u, v) does not have eventually integral complexity. Further, assume that v

is primitive; the objective of the proof will be to show that there exists a suffix u′ of u such that

u′ = v[−|u′| :]. Fix n > 1. If u = vk for some k, then v is a suffix of u, so assume that u ̸= vk for

all k. By Lemma 2.42, δN(uv
n) = (u, v). Let δ(uvn) = (u1, v1). Then

|u1|+ |v1| = D(uvn)

≤ I(uvn)

= |u|+ |v|

where the equalities follow from the definitions of decompositions and integer decompositions,

respectively, and the inequality follows from Lemma 2.28. If D(uvn) = I(uvn), then (u, v) =

(u1, v1). But for any m, δ(uvm) = (u1, v1) by Lemma 2.37, and δN(uv
m) = (u, v) by Lemma 2.38,

so D(uvm) = I(uvm) and (u, v) has eventually integral complexity. So D(uvn) < I(uvn) and

|u1|+ |v1| < |u|+ |v|. v1 is a cyclic shift of v by Lemma 2.46, so |v1| = |v| which implies |u1| < |u|.
Since δ(uvn) = (u1, v1), u1v

p
1 = uvn for some p ∈ Q. In particular, u = u1v

′
1 for some initial

segment v′1 of v1. Let k = |u| − |u1| and let u′ = u[−k :]. Then v1 ↾ k = u′. But since v(0) = v1(k)

and v1 is a cyclic shift of v, v1 ↾ k = v[−k :].
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u ϵ ϵ ϵ ϵ ϵ ϵ 0 1 00 01 10 11
v 001 010 011 100 101 110 01 10 1 0 1 0

Table 2.1: Eventually integral pairs of complexity 3

Theorem 2.49. For all natural numbers q, over an alphabet of size m,

|S(q)| = P(q) +

q−1∑
i=1

mi−1 (m− 1)P(q − i)

Proof. Consider uv with |uv| = q and assume |u| = i. There are P(q − i) primitive words v. By

Theorem 2.48, uv has eventually integral complexity if and only if no suffix of u is a prefix of v.

So there are m− 1 choices for the last letter of u to guarantee no suffix of u is a prefix of v. There

are then mi−1 choices for the remaining letters of u, completing the proof.

Example 2.50. By Theorem 2.49, there are P(3)+2 ·P(2)+2(2−1)P(1) = 12 eventually integral

pairs of complexity 3 over an alphabet of size 2 where u and v are binary words. The 12 pairs are

listed in Table 2.1.

For q > 0, let C(q) := P(q)+

q−1∑
i=1

mi−1 (m− 1)P(q− i), so that in particular C(q) = |S(q)|. Note

that C(q) has been studied in the literature, and in particular exists as sequence #A059412 in the

On-line Encyclopedia of Integer Sequences. C(q) was first studied by Shallit et. al. in [13], and the

link from their work to C(q) was provided by a comment of Michael Vielhaber.

Definition 2.51 ([13]). fk(q) := the number of pairwise non-isomorphic minimal DFAs with q

states over a k-letter alphabet.

Theorem 2.52 ([25], [13]). For all q ∈ N with q > 0, C(q) = f1(q).

C(q) does not count the number of words of length n with complexity q; such a formula should,

of course, also depend on n. Assuming n = q still does not give an accurate count of the words of

complexity q, as C(q) counts pairs (u, v), which over-counts when concatenation is applied. However,

consider the case when n increases relative to a fixed q. Words of length n and complexity q are

formed from elements of S(q) by taking increasingly large powers of v, making over-counting due

to concatenation less likely. Therefore, for n >> q, C(q) should accurately count the number of

words of length n with complexity k. This intuition is made precise by the following results.

Lemma 2.53. Let a, b, c, and d be words. Assume that abj = cdk for j, k ∈ Q, |a|+ |b| = |c|+ |d|,
and that either a ̸= c or b ̸= d. If |abj | ≥ 2|ab| − 1, then there exist words u and v and l ∈ Q such

that abj = uvl and |a|+ |b| > |u|+ |v|.
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Proof. Let n = |abj | and let q = |ab|. Since |abj | = |a| + j|b| and |ab| = |a| + |b|, rearranging the

terms in n ≥ 2q − 1 yields that (j − 2)|b| + 1 ≥ |a|. Since |abj | = |cdk| and |ab| = |cd|, the same

logic yields that (k − 2)|d|+ 1 ≥ |c|. There are three possible cases:

Case 1: j, k ≥ 2. Then the result immediately follows by Lemma 2.34.

Case 2: j, k < 2. Considering that j < 2, there are two subcases to consider: either |b| = 0 or

|b| > 0. In the first subcase, |a| ≤ 1 implies that |abj | = |cdk| = 1 so the result is trivial. In the

second subcase j < 2 implies that |a| ≤ 1 + (j − 2)|b| < 1, which implies that |a| = 0. But then

(2− j)|b| ≤ 1, so bj = b2[: −1]. Applying the same logic in this subcase to the fact that k < 2 yields

that dk = d2[: −1], which implies that a = c = ϵ and b = d, a contradiction,

Case 3: exactly one of j and k is at least two. Without loss of generality assume that j ≥ 2 and

k < 2. By the arguments in the previous case, either |d| = 0 and |c| = 1, which immediately leads

to a contradiction, or |c| = 0. So abj = dk. Let b− denote b ↾ |b| − 1. By the argument in the proof

of Lemma 2.34, abab− and abb are prefixes of the same word. There are two possible subcases:

either |a| > 0 or |a| = 0. In the first subcase, abb is a prefix of abab−, which implies that b is a

prefix of ab−. So ab− = bg for some word g, which implies that ab− = b−h for some word h. Then

there exist u, v, and l satisfying the conclusion by Lemma 2.33. On the other hand, if |a| = 0, then

j|b| = k|d|. But it is also the case that |b| = |d|, so 2 ≤ j = k, contradicting the assumption.

Theorem 2.54. For n and q ≤ n, the function fn,q : S(q) → Σn defined by (u, v) 7→ uv
n−|u|
|v| is

injective whenever n ≥ 2q − 1.

Proof. Fix (u, v) ∈ S(q). First, assume that n−|u|
|v| < 1. By the definition of S(q), |uv| = q and (u, v)

has eventually integral complexity. Since (u, v) has eventually integral complexity, I(uv) = |uv|.
So n < |u|+ |v| = |uv| = I(uv) = q and the result holds vacuously.

Now assume that n−|u|
|v| ≥ 1 and let (u1, v1) ∈ S(q) with (u1, v1) ̸= (u, v). If u1v1 ̸= uv then

u1v
k
1 ̸= uvk for all natural numbers k ≥ 1, so assume u1v1 = uv. It must then be the case that

|v1| ≠ |v|; otherwise, v1 = v and then u1 = u. Without loss of generality assume that |v1| > |v|. Let
(u′, v′) ∈ S(q) be arbitrary such that n−|u′|

|v′| ≥ 1, and let n−|u′|
|v′| = m′

v′ + 1 for some natural number

m′. Then,

m′ + |v′| = n− |u′|

m′ = n− q

so in particular, m′ is a constant that does not depend on the choice of (u′, v′). Let m denote this
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constant. Then,

u1v
m
|v1|

+1

1 = uv
m
|v|+1 ⇐⇒ (2.1)

u1v1v1 ↾ m = uvv ↾ m ⇐⇒ (2.2)

v1 ↾ m = v ↾ m (2.3)

Additionally, u1v
p
1 ̸= uvq; otherwise, by Lemma 2.53, there exists words u2, v2 and l ∈ Q such

that u2v
l
2 = uvq and |u2| + |v2| < |u| + |v|. This implies that D(uvq

′
) ≤ |u2| + |v2| < |u| + |v|

for all q′ ≥ q, but I(uvn) = |u| + |v| for all n by Lemma 2.41, contradicting the assumption that

(u, v) ∈ S(q). So assume that m ≤ |v1|. Since n ≥ 2q − 1,

|u1v
m
|v1|

+1

1 | = |u1|+ |v1|+m

> 2q − 2

= 2 (|u1|+ |v1|)− 2

so |u1| + |v1| − 2 < m ≤ |v1|, which implies that |u1| < 2. Substituting u and v for u1 and v1 in

the calculation above also shows that |u| < 2. Since |v1| > |v|, |u1| < |u|, so |u1| = 0 and |u| = 1.

By Equation (2.3), v1 ↾ m = v ↾ m. Since n ≥ 2q − 1, m ≥ q − 1, so v1 ↾ q − 1 = v ↾ q − 1, which

is equal to v since |v| = q − 1. But since v1 = u1v1 = uv, v = v1[1 :]. So for all i with 0 ≤ i < q,

v1(i) = v(i) = v1(i + 1). In other words, v1 = xq for some letter x, contradicting the assumption

that (u1, v1) ∈ S(q).

In Theorem 2.55 and Theorem 2.56, fn,q(u, v) will be written for fn,q((u, v)) where (u, v) ∈ S(q).

Theorem 2.55. Let fn,q be as in Theorem 2.54. For every word w of length n and HMM complexity

q, there exists (u, v) ∈ S(q) such that fn,q(u, v) = w.

Proof. Let w ∈ Σn, and let w = uvp for |u| + |v| = q and p ∈ Q. Since |w| = n, p = n−|u|
|v| . So if

(u, v) ∈ S(q), then fn,q((u, v)) = w; it therefore suffices to show that (u, v) is an eventually integral

pair. Let k be any natural number with k ≥ p. Assume towards a contradiction that there exists

words u1 and v1 and a natural number k1 such that uvk = u1v
k1
1 and |u1|+ |v1| < |u|+ |v|. There

are three possible cases:

Case 1: |u| = |u1|. Then k|v| = k1|v1| which implies that k | k1. Let k ·m = k1 for some m and

let k − r = p for r ∈ Q. Substituting yields

uvp = uvk−r

= uv
k1
m

−r

1
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contradicting the assumption that the HMM complexity of w is q.

Case 2: |u| < |u1|. Then vk = u′vk11 , where u′ is a terminal segment of u1. After cancelling u′,

(v′)s = vk11 , where v′ is a terminal segment of v and s = k|v|−|u′|
|v′| . So v′ = v

k1
s
1 and uvp = u1v

′ p
k1s .

Additionally, |v′| = |v1| − |u1|+ |u|, so

|u1|+ |v′| = |u|+ |v1|

< |u|+ |v|

again contradicting that assumption that the HMM complexity of w is q.

Case 3: |u1| < |u|. The proof of this subcase will proceed analogously to case 2. By cancelling

u1, u
′vk = vk11 where u′ is a terminal segment of u. So then vk = v′s, where v′ is a terminal segment

of v1 and s = k1|v1|−|u′|
|v′| . So v′ = k

s and uvp = uv′
p
ks . Additionally, |v′| = |u1|+ |v1| − |u|, so

|u|+ |v′| = |u1|+ |v1|

< |u|+ |v|

again contradicting the assumption that the HMM complexity of w is q.

Theorem 2.56. Let n and q be natural numbers with n ≥ 2q − 1. Let (u, v) ∈ S(q) and let

w = fn,q(u, v). Then D(w) = q.

Proof. Let p = n−|u|
|v| , so that uvp = w. Since |u|+ |v| = q,

n− |u| ≥ 2(|u|+ |v|)− |u| − 1

= 2|v|+ |u| − 1

and hence

p = 2 +
|u| − 1

|v|
> 1

Then, if D(w) < q and δ(w) = (u1, v1) for (u1, v1) ̸= (u, v), u1v
q
1 = w for some q ≥ p, contradicting

Lemma 2.37.

Taken together, Theorem 2.54 and Theorem 2.56 show that eventually integral pairs of com-

plexity q correspond exactly to words of length n with HMM complexity q whenever n ≥ 2q − 1.

This idea will be referenced again in Theorem 2.86 of Section 2.4.

Let sq(n) be the number of words of length n with complexity q.
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u v n−|u|
|v| uv

n−|u|
|v|

ϵ 001 5/3 00100
ϵ 010 5/3 01001
ϵ 011 5/3 01101
ϵ 100 5/3 10010
ϵ 101 5/3 10110
ϵ 110 5/3 11011
0 01 2 00101
1 10 2 11010
00 1 3 00111
01 0 3 01000
10 1 3 10111
11 0 3 11000

Table 2.2: Binary words with eventually integral complexity 5

Question 2.57. For n and q with n < 2q − 1, what is C(q)− sq(n)?

Of course, Question 2.57 can be answered by providing an explicit formula for this difference,

and there is no reason to believe that deriving such a formula is out of reach. However, answering

Question 2.57 may not be necessarily to determine complexity distributions of arbitrary lengths;

solving the weaker Question 2.58 and the related Question 2.59 may be sufficient.

Question 2.58. For a fixed n, for which q with q ≤ n < 2q − 1 is C(q)− sq(n) maximized? What

is the upper bound of C(q)− sq(n) in terms of k?

Question 2.59. For each n, let qn := argmaxqC(q) − sq(n). What is the asymptotic behavior of

C(qn)− sqn(n)?

Example 2.60. Table 2.2 shows the injectivity of f5,3 with Σ = {0, 1}: Indeed, these are exactly

the binary words of length 5 with HMM complexity 3.

Example 2.61. The bound in Theorem 2.54 is sharp: if n = 4 with q and Σ as before, (001)
4
3 =

0(01)
3
2 .

2.3 Calculations on high-complexity words

2.3.1 Binary words

So far, the results presented in this chapter have been concerned with counting words with arbitrary

complexity by finding sufficient conditions on word length for which integer complexity coincides

with HMM complexity. In this section, the number of words of relatively high HMM complexity

for a fixed length will be established. The key observation for doing so is that if a word of length n

17



ends in a subword of length k that occurs elsewhere in the word, the HMM complexity of the word

is at most n− k, as the word can be outputted by “reusing” states for the last k letters.

In this section, all words will be assumed to be over the alphabet {0, 1}.

Definition 2.62. For a natural number k ≥ 2, the k-bonacci numbers are a sequence
{
F k
n

}∞
n=0

defined recursively by

F k
n =


0 n < k − 1

1 n = k − 1∑k
i=1 F

k
n−i n ≥ k

Note that when k = 2, the k-bonacci numbers are the classic Fibonacci sequence. The k-bonacci

numbers are also known as the k-step Fibonacci numbers.

Definition 2.63. Let w and w′ be words. w′ is a subword of w if there exists n such that for all

i < |w′|, w′
i = wi+n.

Note that if |w| < |w′|, then w′ cannot be a subword of w.

Lemma 2.64. For all k and i < k, F k
k+i = 2i.

Proof. Proof by strong induction on i. F k
k = 1 immediately. Assuming that F k

k+j = 2j for all j ≤ i

and i+ 1 < k,

F k
k+i+1 =

k∑
j=1

F k
i+1−j

=
i∑

j=−1

F k
k+j

= 1 +
i∑

j=0

2j = 2i+1

completing the proof. The assumption that i + 1 < k is used to rewrite the indices in the second

equality, since F k
i+1−j = 0 for all j > i− k + 2.

Definition 2.65. Let n and k be natural numbers and let w be a word of length k. Define

Sn,w := {w′ ∈ {0, 1}n | w is not a subword of w′}

and let Cn,w := |Sn,w|.

Definition 2.66. A word w is a monoword if wi = wj for all i, j < |w|.

The following result is a generalization of arguments in [4].
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Theorem 2.67. For all natural numbers n and k and words w of length k, F k
n+k ≤ Cn,w, with

equality if and only if either n < k or w is a monoword.

Proof. Write w = w0 . . . wk−1 for wi ∈ {0, 1}. If n < k, then w is not a subword of any word of

length n, so Cn = 2n = F k
n+k by Lemma 2.64. Assume n ≥ k and let w′ ∈ Sn. There are k distinct

possible cases:

w′
n−1 ̸= wk−1, or

w′
n−1 = wk−1 and w′

n−2 ̸= wk−2, or

w′
n−1 = wk−1 and w′

n−2 = wk−2 and w′
n−3 ̸= wk−3, or

. . .

w′
n−i = wk−i for all 1 ≤ i < k and w′

n−k ̸= w0

But by definition,

Sn−1,w ⊆
{
w ↾n−1 | w ∈ {0, 1}n ∧

(
w′
n−1 ̸= wk−1

)}
Sn−2,w ⊆

{
w ↾n−2 | w ∈ {0, 1}n ∧

(
w′
n−1 = wk−1 and w′

n−2 ̸= wk−2

)}
. . .

Sn−k,w ⊆
{
w ↾n−k | w ∈ {0, 1}n ∧

(
w′
n−i = wk−i for all 1 ≤ i < k and w′

n−k ̸= w0

)}
so Cn,w ≥

∑k
i=1 Cn−i,w.

Now assume w is a monoword. It suffices to show that all of the set inequalities above are all

equalities; in this case, Cn,w =
∑k

i=1 Cn−i,w and the result follows from the recursive definition of

F k
n+k. Fix i with 1 ≤ i ≤ k and let

w′ ∈
{
w ↾n−i | w ∈ {0, 1}n ∧

(
w′
n−j = wk−j for all 1 ≤ j < i and w′

n−i ̸= wk−i

)}
Since w′

n−i ̸= wk−i and w is a monoword, w′
n−i cannot be a letter in a subword containing w, and

w′ ∈ Sn−i,w.

Conversely, assume w is not a monoword. Let i be greatest such that wi ̸= wk−1 and i ̸= k− 1.

Then

w ∈
{
w ↾n−i | w ∈ {0, 1}n ∧

(
w′
n−j = wk−j for all 1 ≤ j < i and w′

n−i ̸= wk−i

)}
so

Sn−i,w ⊊
{
w ↾n−i | w ∈ {0, 1}n ∧

(
w′
n−j = wk−j for all 1 ≤ j < i and w′

n−i ̸= wk−i

)}
and Cn,w >

∑k
i=1 Cn−i,w.
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Figure 2.1: Almost all words have high complexity

Theorem 2.68. Let n and k be natural numbers with k ≤ ⌊n2 ⌋. There are at most 2k
(
2n−k − F k

n

)
words w of length n such that w′ := wn−k . . . wn−1 is a subword of w ↾n−k.

Proof. Let w be a word of length n and fix w′ := wn−k . . . wn−1. There are at least F k
n words of

length n − k that do not contain w′ by Theorem 2.67, so there are at most 2n−k − F k
n words of

length n− k that do contain w′. There are 2k possibilities for w′, which completes the proof.

Theorem 2.69. For all natural numbers n and k with k ≤ ⌊n2 ⌋, there are at most 2k
(
2n−k − F k

n

)
words w of length n such that D(w) ≤ n− k.

Proof. If the last k letters of w are contained in w ↾n−k, the HMM complexity of w is at most n−k,
so the result immediately follows from Theorem 2.68.

For natural numbers k and n with k ≤ ⌊n2 ⌋, let P(n, k) be the proportion of words w of length

n with D(w) = n− k.

Corollary 2.70. P(n, k) ≤ 1− Fk
n

2n−k .

Proof. Immediate by dividing the quantity in Theorem 2.69 by 2n.

Example 2.71. As shown in Figure 2.1, the proportion of words of length n with complexity at

most n
2 approaches zero as n→ ∞. This is intuitive, as “almost all” words should be complex.

Example 2.72. Define

f(n) := max
{
k | P(n, k) > 1

2

}
Then f(n) → log n as n → ∞, as in Figure 2.2. This is shown for specific values of n and k in

Figure 2.3.
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Figure 2.2: “Average” complexity increases logarithmically

Figure 2.3: P(n, k) for various n and k
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2.3.2 Alphabets of arbitrary size

The results of the last section will be extended to alphabets of arbitrary size.

Definition 2.73. The base-m k-bonacci numbers F̂m,k
n are defined recursively by

F̂m,k
n :=


mn n < k

mn − 1 n = k

(m− 1) ·
∑k

i=1 F
m,k
n−i n > k

.

Definition 2.74. For a natural number m and alphabet A of size m, define

Sn,w := {w′ ∈ {0, 1}n | w is not a subword of w′}

and let Cn,w := |Sn,w|.

This can be understood as overwriting the previous definitions of Sn,w and Cn,w in Defini-

tion 2.65. The implicit dependence on alphabet size here will be understood.

Theorem 2.75. Let m, k, and n be natural numbers, and let w be a word of length k over an

alphabet A of size m. Then F̂m,k
n ≤ Cn,w, with equality if and only if either n < k or w is a

monoword.

Proof. The idea behind this proof is analogous to Theorem 2.68. If n < k, then w is not a subword

of any word of length n; there are mn such words. If n = k and w′ is a word of length n, w is a

subword of w′ if and only if w = w′; there are mn − 1 words of length n not equal to w. Let n > k

and let w′ be a subword of length n such that w′ is not a subword of w. Write w = w0 . . . wk−1 for

wi ∈ {0, 1}. As before, there are k distinct possible cases:

w′
n−1 ̸= wk−1, or

w′
n−1 = wk−1 and w′

n−2 ̸= wk−2, or

w′
n−1 = wk−1 and w′

n−2 = wk−2 and w′
n−3 ̸= wk−3, or

. . .

w′
n−i = wk−i for all 1 ≤ i < k and w′

n−k ̸= w0

Also as before,

Sn−1,w ⊆
{
w ↾n−1 | w ∈ {0, 1}n ∧

(
w′
n−1 ̸= wk−1

)}
Sn−2,w ⊆

{
w ↾n−2 | w ∈ {0, 1}n ∧

(
w′
n−1 = wk−1 and w′

n−2 ̸= wk−2

)}
. . .

Sn−k,w ⊆
{
w ↾n−k | w ∈ {0, 1}n ∧

(
w′
n−i = wk−i for all 1 ≤ i < k and w′

n−k ̸= w0

)}
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so

Cn−1 ≤ (m− 1) · |
{
w ∈ An | w′

n−1 ̸= wk−1

}
|

Cn−2 ≤ (m− 1) · |
{
w ∈ An | w′

n−1 = wk−1 and w′
n−2 ̸= wk−2

}
|

. . .

Cn−k ≤ (m− 1) · |
{
w ∈ An | w′

n−i = wk−i for all 1 ≤ i < k and w′
n−k ̸= w0

}
|

where them−1 is the number of letters in A not equal to w′
n−i for all i. So Cn ≥ (m−1)·

∑k
i=1Cn−i.

The same argument as in Theorem 2.69 shows that equality holds if and only if w is a monoword.

The notation F̂m,k
n was used to distinguish between the previously established F k

n . It may be

expected that F̂ 2,k
n − F k

n , but the sequences actually differ up to indices since F̂m,k
n is never equal

to zero. This relationship will be established more closely in a later example Example 2.77.

Theorem 2.76. For all natural numbers m, n, and k with k ≤ ⌊n2 ⌋, there are at most

mk
(
mn−k − F̂m,k

n−k

)
words w of length n over an alphabet of size m with D(w) ≤ n− k.

Proof. If the last k letters of w are contained in w ↾n−k, the HMM complexity of w is at most n−k,
so the result immediately follows from Theorem 2.75.

Example 2.77. For all natural numbers n and k, F̂ 2,k
n = F k

n+k.

Proof. Fix k. By Lemma 2.64 and the definition of F̂ , F̂ 2,k
n = F k

n+k = 2n for all n < k. The proof

immediately follows by the recursive definitions of F and F̂ .

For natural numbers m, k, and n with k ≤ ⌊n2 ⌋, let P̂(n, k) be the proportion of words w of

length n over an alphabet of size m with D(w) = n− k.

Corollary 2.78. P̂(n, k) ≤ 1− F̂m,k
n−k

mn−k

Proof. Immediate by dividing the quantity in Theorem 2.76 by mn.

Remark 2.79. Let w = w1 . . . wn be a word and let q < n. For 0 ≤ i < n− q, let Ai be the event

that wi . . . wi+q = wn−q . . . wn Then

Pr (w[−q :] ⪯ w ↾ q) = Pr (∪n
i=0Ai)

≤
n−q−1∑
i=0

Pr (Ai)

= (n− q)2−(q+1)
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which goes to zero if q is larger than log2(n). Indeed, let ϵ > 0 and let c = (log2(n))
1+ϵ. Then

n− q

2q+1
<

n

2n1+ϵ

The distribution of D(w) for random w with |w| = n is then similar to the Gumbel distribution,

the distribution of n − Z(w), where Z(w) is the length of the longest subsequence of zeroes in w,

as discussed in [4]. If 0 ≤ q < n, the number of binary words that contain 0n−q is

q∑
i=0

(
q

i

)
(i+ 1) = 2q−1(q + 2)

where each term in the left summand represents the possible arrangements of i ones in the subword

that does not contain 0n−q. In particular, the Gumbel distribution does not depend on n. In the

next section it will be shown that D(w) also does not depend on n when n is sufficiently large.

2.4 Exact HMM complexities of given words

Although we consider different machines as in [2], notation will be borrowed to extend results in

Section 2.2 with a partial answer to Question 2.57.

Definition 2.80 ([2]). For an alphabet Σ and natural numbers n and q, define

sq(n) := | {w ∈ Σn : D(w) = q} |

Although sq(n) implicitly depends on the size of the underlying alphabet Σ, this fact will not

need to be addressed and so Σ is left out of the notation for brevity.

Definition 2.81. For x ∈ Z, x ∨ 0 := max (x, 0).

Lemma 2.82 (The inclusion-exclusion principle). Let A1, . . . An be finite sets. Then∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
∅̸=J⊆{1,...,n}

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣
Lemma 2.83. Let r and m be natural numbers. Let u be a word over an alphabet of size m with

|u| = s < r. Let

s′ :=

min (|u′|) ∃l ∈ Q, 1 < l ∧ (u′)l = u

s else

P :=

{
p : p | r ∧ s′ ≤ r

p
, p is prime

}

24



For each ∅ ̸= P ′ ⊆ P , define

pP ′ :=


∏
p∈P ′

p P ′ ̸= ∅

1 P ′ = ∅

sP ′ := |P ′|

The number of primitive words w of length r such that w ↾ s = u is equal to

∑
P ′⊆P

(−1)sP ′+1 ·m

(
r

pP ′
−s

)∨
0

Proof. The proof will proceed instead by counting the non-primitive words of length r that start

with u. Let

Ad =
{
w ∈ Σr : w ↾s= u ∧ w is a r

d -th power
}

The goal is to calculate
∣∣∣⋃d|r Ad

∣∣∣ by applying Lemma 2.82. If d | r, then Ad ⊆ Ad′ for all d′ | d.
Therefore, ∣∣∣∣∣∣

⋃
d|r

Ad

∣∣∣∣∣∣ =
∣∣∣∣∣∣

⋃
p:p|r∧p prime

Ap

∣∣∣∣∣∣
However, most such Ap will be empty. Ap is nonempty if and only if there exists a word w ∈ Σr

such that both the first r
p letters of w and the first s bits of w are fixed. If u is primitive and

is not equal to (u′)l for any l ∈ Q with l > 1, then it must be the case that r
p ≥ s; otherwise,

r
p ≥ |u′|, where u′ is the shortest word such that (u′)l = u for l ∈ Q. So

∣∣∣⋃d|r Ad

∣∣∣ = ⋃
p∈P Ap.

Now, let ∅ ̸= P ′ ⊆ P ; calculating
∣∣∣⋂p∈P ′ Ap

∣∣∣ finishes the proof.
⋂

p∈P ′ Ap = Alcm(p∈P ′), and since

P ′ contains distinct primes, lcm(p ∈ P ′) =
∏

p∈P ′ . Let pP ′ =
∏

p∈P ′ . For w ∈ ApP ′ ,
(
r
p − s′

)
∨ 0

letters of w are not fixed, which implies that |ApP ′ | = m

(
r

pP ′
−s

)∨
0
. So the number of words of

length r starting with u is equal to

mr−s −
∑

∅̸=P ′⊆P

(−1)sP ′+1 ·m

(
r

pP ′
−s

)∨
0
=

mr−s −

 ∑
∅̸=P ′⊆P

(−1)sP ′+1 ·m

(
r

pP ′
−s

)∨
0
+ (−1)s∅+1 ·m

(
r

p∅
−s

)∨
0

 =

∑
P ′⊆P

(−1)sP ′+1 ·m

(
r

pP ′
−s

)∨
0
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completing the proof.

Lemma 2.84. Let r, m and l be natural numbers. Let u be a word over an alphabet of size m with

|u| = s < ⌊ r2⌋ and l ≤ s. Let P , s′, and pP ′ be as in Lemma 2.83. Define

IdxFi = {i : i < s} ∪ {i : l ≤ i < l + s}

IdxFr = {i < r : i ̸∈ IdxFi}

the set of fixed and free indices in u. For each pP ′, define

MP ′ =

{
i < s : ∃j ∈ IdxFi, i ≡ j mod

r

pP ′

}
TP ′ =

{
i <

r

pP ′
: ∀j ∈ IdxFr, i ̸≡ j mod

r

pP ′

}
and let

FP =
{
∅ ̸= P ′ ⊆ P : |MP ′ | ≤ 1

}
∪
{
∅ ̸= P ′ ⊆ P : ∀j, k ∈MP ′ , u[j] = u[k]

}
The number of primitive words w of length r such that w ↾ s = u and w[l : l + s] = u is equal to

mr−s −
∑

P ′∈FP

(−1)sP ′+1 ·m|TP ′ |

Proof. The proof is analogous to that of Lemma 2.83. As in that proof, Lemma 2.82 will be used to

count the non-primitive words satisfying the conditions. Define Ad as in Lemma 2.83. As before,

if p is a prime divisor of r, Ap may be empty. Consider IdxFi, the fixed indices of any possible

word in Ap. A word in Ap is a r
pP ′

-th power, and therefore any index in IdxFi modulo r
pP ′

is also

fixed. If u[j] ̸= u[k] for any two indices j and k in IdxFi modulo r
pP ′

, then Ap is empty. Hence∣∣∣⋃d|r Ad

∣∣∣ = ∣∣∣⋃P ′∈FP
ApP ′

∣∣∣. Let P ′ ∈ FP ; it suffices to calculate |ApP ′ |. The possible free letters of

a word in ApP ′ are the ones less than r
pP ′

such that they are not equal to any letters in IdxFr, the

free indices, modulo r
p′P

. This is exactly the definition of TP ′ , finishing the proof.

Lemma 2.85. Let r and s be natural numbers with s < ⌊ r2⌋. There are

P(r)−
s∑

i=1

∑
u∈Σi

F2(r, u, r − i)

primitive words w of length r such that for all k ≤ s, w ↾ k = w[r − k :].
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Proof. For any i ≤ s and for any word u of length i, there are F2(r, u, r − i) primitive words of

length r such that u = w ↾ k = w[r − k :] by Lemma 2.84. The result then follows by summing

over all u ∈ Σi and all i ≤ s.

Results thus far have enabled calculation of sq(n) for the regimes n ≤ q and n ≥ 2q − 1.

Specifically,

Theorem 2.86. Let m, n, and q be natural numbers. For natural numbers n and q and an alphabet

Σ with |Σ| = m,

sq(n) =


0 n < q

m(m− 1)n−1 n = q

C(q) n ≥ 2q − 1

Proof. If n < q, the result is immediate since D(w) ≤ |w| for any word w by Theorem 2.23. If

n = q, then a word w has complexity q if and only if wn−1 does not occur in w ↾n−1. Fixing one of

m possibilities for the last letter, there are (m− 1)q−1 choices for the remaining n− 1 letters.

Recall the map fn,q from the set of eventually integral pairs of complexity q, S(q), to words of

length n defined by fn,q(u, v) = uv
n−|u|
|v| . By Theorem 2.55,

{w ∈ Σn : D(w) = q} ⊆ {fn,q(u, v) : (u, v) ∈ S(q)}

and by Theorem 2.56, if n ≥ 2q − 1 then

{fn,q(u, v) : (u, v) ∈ S(q)} ⊆ {w ∈ Σn : D(w) = q}

So whenever n ≥ 2q − 1,

sq(n) = | {w ∈ Σn : D(w) = q} |

= | {fn,q(u, v) : (u, v) ∈ S(q)} |

= |S(q)|

= C(q)

where the first equality follows by the definition of sq(n), the third equality follows since fn,q is

injective for n ≥ 2q − 1 by Theorem 2.54, and the last equality follows by Theorem 2.49.

Remark 2.87. Since C(n) can be computed in polynomial time in n, sq(n) can also be computed

in polynomial time in n. This is an improvement over naively computing sq(n) for each word of

length n, a computation that would run in exponential time in n.

Lemma 2.83 and Lemma 2.84 were formulated with the goal of extending Theorem 2.86 to

calculate sq(n) for q < n < 2q − 1. Recall that if (u, v) is an eventually integral pair of complexity
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q, uv
1+n−q

|v| is a word of length n of complexity q; further, all words of length n and complexity q are

formed from eventually integral pairs with complexity q. Let (u1, v1) and (u2, v2) have eventually

integral complexity with |u1| + |v1| = |u2| + |v2| = q, and assume that (u1, v1) ̸= (u2, v2) and

u1v1 = u2v2. Without loss of generality assume that |v1| > |v2|. If u1v
1+n−q

|v1|
1 = u2v

1+n−q
|v2|

2 , then

v1 ↾n−q= v2 ↾n−q. But since u1v1 = u2v2, this implies that v1 ↾n−q= v1[l : l + n − q], where

l = |v1|− |v2|. If l ≥ n− q, then two distinct subwords of v1 are equal; otherwise, an initial segment

of v1 of length l + 1 is fixed. Naively, iterating over all possible lengths |v1| and |v2|, all possible
initial segments of v1 of length n− q, calculating the number of primitive words of length |v1| such
that there exists words of length |v2| with v1 ↾n−q= v2 ↾n−q, and deriving the number of eventually

integral pairs (u1, v1) of the corresponding v1 should be the difference between C(q) and sq(n).

That is, the following algorithm should return C(q)− sq(n):

1. Initialize a variable Tot.

2. For each i with n− q < i ≤ q,

(a) For each j with 1 ≤ j < i,

(b) If i− j < n− q,

Tot + = mi−1(m− 1)
∑

u∈Σn−q

F1(i, u)

Else,

Tot + = mi−1(m− 1)
∑

u∈Σn−q

F2(i, u, i− j)

3. Return Tot

There are two problems with this algorithm. First, fixing v1 and simply counting the number of

v2 such that v1 ↾n−q= v2 ↾n−q ignores the fact that if (u1, v1) being an eventually integral pair with

u1v1 = u2v2 does not imply that (u2, v2) is an eventually integral pair. For example, letting n = 6,

q = 5, i = 4, and j = 1, (1, 0100) is an eventually integral pair correctly associated with 101001,

which has length 6 and complexity 5, but (10100, 0) is not an eventually integral pair. Second,

primitive words of length q do not necessarily have complexity q. For example, if n = 5 and q = 4,

(ϵ, 0010) would be counted by the algorithm as a possible eventually integral pair but 00100 has

HMM complexity 3, via (001)
5
3 .

Figure 2.4 shows sq(n) for various n and q.
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Figure 2.4: sq(n) for various n and q

Figure 2.5: sq(15) for various beta distributions

Definition 2.88. The beta function B(z1, z2) is defined by

B(z1, z2) :=

∫ 1

0
tz1−1(1− t)z2−1dt

Definition 2.89. Given constants α and β, the probability density function of the beta distribution

is defined for each x with 0 ≤ x ≤ 1 by

f(x, α, β) :=
1

B(α, β)
xα−1(1− x)β−1

where B is the beta function. Figure 2.5 graphs various beta distributions against the distribu-

tion of HMM complexity among words of length 15; preliminary results suggest that the two are

similar.
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CHAPTER 3
FURTHER RESULTS ON FINITE-STATE MACHINE

COMPLEXITY

3.1 Complexity of probabilistic HMMs

So far, only deterministic HMMs and their associated definitions of complexity have been consid-

ered. This section aims to expand the results in this chapter to probabilistic HMMs.

3.1.1 Transition-probabilistic HMMs

Here, a specific class of probabilistic HMMs will be considered. Recall from Section 2.1 that if {aij}
is the transition matrix of a HMM, aij is the probability that the HMM transitions from state i to

state j.

Definition 3.1. A half-transition-probabilistic HMM is a HMM H such that if A = {aij} is the

transition matrix of H, then aij ∈
{
0, 12 , 1

}
for all i and j.

Complexity for half-transition-probabilistic HMMs will be defined analogously to HMM com-

plexity.

Definition 3.2. Let H be a HMM with transition matrix A = {aij} and let w = w0w1 . . . wn−1

be a word. Assume H has n states and fix an enumeration q0, q1, . . . qn−1 of the states of H. Let

X = x0x1 . . . xn−1 be a sequence of states such that Y (xi) = wi for all i < n, and let f : {0, . . . n} →
{0, . . . , n} be such that qf(i) = xi for all i < n. The probability of H emitting w is

pH(w) =
∑
X

n∏
i=0

af(i)f(i+1)

where the sum is taken over all possible X.

Definition 3.3. Let w be a word over an alphabet Σ. The half-transition-probabilistic HMM

complexity of w, written ChtpHMM (w), is the minimum number of states in a half-transition-

probabilistic HMM H such that if w′ ̸= w is a word with |w′| = |w|, then pH(w′) < pH(w).

Note that by this definition, for all n, the set of deterministic HMMs is a proper subset of the

set of half-transition-probabilistic HMMs. This leads directly to the following observation.

Lemma 3.4. For any alphabet Σ and word w ∈ Σ+, ChtpHMM (w) ≤ D(w).

Proof. Let H be the deterministic HMM witnessing D(w). Then H is also a half-transition-

probabilistic HMM, so ChtpHMM (w) ≤ n, where n is the number of states in H.

Half-transition-probabilistic HMM complexity is equal to deterministic complexity for binary

words of complexity two. More precisely,
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Figure 3.1: Possible 2-state half-transition-probabilistic HMMs

Theorem 3.5. Let Σ = {0, 1}. Then {w ∈ Σ+ | ChtpHMM (w) = 2} = {w ∈ Σ+ | D(w) = 2}.

Proof. If n = 1, then {w ∈ Σ+ | ChtpHMM (w) = 2} = {w ∈ Σ+ | D(w) = 2} = ∅, so assume n > 1.

The result will be shown by arguing that for all possible half-transition-probabilistic HMMs H

with two states, for every word w such that H witnesses ChtpHMM (w) = 2, D(w) = 2. Without

loss of generality, assume that exactly one state of H emits 0 and exactly one state of H emits

1; otherwise, H can only emit either 0+ or 1+, neither of which have complexity 2. By assuming

that the start state of such a H emits 0, it suffices to prove the result for words starting with 0.

It can also be assumed that there is at least one instance of 1
2 in H; otherwise, H only witnesses

deterministic complexity. Finally, let A be the transition matrix of H. If a00 = 1, then H will never

transition out of the start state, making H equivalent to a one-state HMM. The possible transition

matrices for H are then [
1
2

1
2

0 1

]
,

[
1
2

1
2

1 0

]
,

[
0 1
1
2

1
2

]
These correspond to the half-transition-probabilistic HMMs in Figure 3.1.

Let H1, H2, and H3 be the half-transition-probabilistic HMMs in Figure 3.1, respectively.

Claim 1: For all n > 1 and w ∈ Σn, if w ̸= 01n−1 then pH1(w) < pH1(01
n−1).

Proof of claim 1: Let A1 be the transition matrix of H1. Since a00 = a01 = 1
2 , pH1(w) <

1
2 for

any word w. But pH1(01
n−1) = 1

2 by direct computation.

Claim 2: For all n > 1 and w ∈ Σn, if w ̸= (01)
n
2 then pH2(w) < pH2((01)

n
2 ).

Proof of claim 2: First, note that for all n ≥ 1 and all words w of length 2n+ 1, pH2(w) ≤ 1
2n .

This can be proven via induction. For n = 1, a word of length 3 is outputted by two state transitions.

If q0 and q1 are the states of H2 emitting 0 and 1, respectively, the possible state transitions to emit

a word of length 3 are q0q0, q0q1, q1q0, q1q1. These correspond to the calculations a00∗a00, a00∗a01,
a01 ∗ a10, a01 ∗ a11, which evaluate to 1

4 ,
1
4 ,

1
2 , 0, respectively. The same logic and calculations on

state transitions apply to the inductive step. The proof of claim 2 now follows from observing that

pH2((01)
n
2 ) = 1

2n for all n > 1.
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Claim 3: For all n > 1 and w ∈ Σn, if w ̸= (01)
n
2 then pH3(w) < pH2((01)

n
2 ).

Proof of claim 3: The proof of this claim is analogous to that of claim 2. First, for all n ≥ 1

and all words w of length 2n, pH2(w) ≤ 1
2n . This can be proven via induction. Let q0 and q1 be

the states of H3 emitting 0 and 1, respectively. The case n = 1 is immediate as q0 transitions to

q1 with probability 1. Assume true for n and consider the next two state changes required to emit

a word of length 2(n + 1). Regardless of which state H3 is in at time n, the next two possible

state transitions are q0q0, q0q1, q1q0, q1q1, corresponding to probabilities of 0, 0 1
2 ,

1
2 , respectively,

completing the induction. The proof of claim 3 now follows from observing that pH3((01)
n
2 ) = 1

2n

for all n ≥ 1.

Together, the three claims show that for all w ∈ Σn for n > 1 and for all 0 ≤ i ≤ 2, either Hi

is not a witness for the half-transition-probabilistic HMM complexity of w or w ∈
{
01n−1, (01)

n
2

}
.

But D(01n−1) = D((01)
n
2 ) = 2 for all n > 1, finishing the proof.

3.1.2 Emission-probabilistic HMMs

By allowing the emission matrix, and not the transmission matrix, of a HMM to be probabilistic,

a different notion of HMM complexity can be derived. Recall from Section 2.1 that if {bij} is the

emission matrix of a HMM, bij is the probability that the HMM emits symbol j if it is in state i.

Definition 3.6. A half-emission-probabilistic HMM is a HMM H such that if B is the emission

matrix of H, then bij ∈
{
0, 12 , 1

}
for all i and j.

Definition 3.7. Let w be a word over an alphabet Σ. The half-emission-probabilistic HMM com-

plexity of w, written ChepHMM (w), is the minimum number of states in a half-emission-probabilistic

HMM H such that if w′ ̸= w is a word with |w′| = |w|, then pH(w) < pH(w′).

The notions of half-emission-probabilistic HMMs and half-transmission-probabilistic HMMs do

not coincide.

Theorem 3.8. There exists a half-transmission-probabilistic HMM H1 such that for any half-

emission-probabilistic HMM H2, there is a word w such that pH1(w) ̸= pH2(w).

Proof. Let H1 be the half-transmission-probabilistic HMM with transmission matrix

[
1
2

1
2

0 1

]
and

assume there exists a half-emission-probabilistic HMM H2 such that for any word w, pH1(w) =

pH2(w). First, note that for any w ∈ Σ+,pH1(w) =
1

2n+1 ∃n, k such that w = 0n1k

0 else

In particular, pH1(0) = pH1(1) =
1
2 , which implies that the starting state of H2 must emit 0 and 1

each with probability 1
2 . If H2 only contains this state, then pH2(00) =

1
4 ̸= pH1(00), so H2 contains
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at least two states. If H2 emits 0 and 1 each with probability 1
2 , then again pH2(00) =

1
4 , but if H2

emits 1 with probability 1, then pH2(001) = 0, a contradiction.

The strict requirement that the transmission (resp. emission) probabilities of half-transmission-

probabilistic (resp. half-emission-probabilistic) HMMs only take values in
{
0, 12 , 1

}
will be dropped

when considering the dual question of whether every emission-probabilistic HMM can be simulated

by a transmission-probabilistic HMM.

Definition 3.9. A transmission-probabilistic (resp. emission-probabilistic) HMM is a HMM whose

transmission (resp. emission) matrix takes values in R ∩ [0, 1].

Definition 3.10. A delayed HMM is a HMM that does not emit a symbol until after it makes its

first transition.

Transition-probabilistic delayed HMMs will be used as a substitute for “ordinary” transition-

probabilistic HMMs because a transition-probabilistic HMM always emits the same symbol from its

start state with probability 1, so it is trivial to show that there exist emission-probabilistic HMMs

that cannot be simulated by any transition-probabilistic HMM.

Theorem 3.11. For any emission-probabilistic two-state HMM H1, there exists a transition-

probabilistic delayed HMM H2 such that for any word w, pH1(w) = pH2(w).

Proof. Let H1 have emission matrix

[
x 1− x

1− y y

]
. There are three possible transition matrices

for H1:

Case 1: the first row of the transition matrix of H1 is [1, 0]. Consider the transition-probabilistic

delayed HMM with transition matrix

[
x 1− x

x 1− x

]
. Prove that pH1(w) = pH2(w) for all words w by

structural induction. pH1(0) = pH2(0) = x and pH1(1) = pH2(1) = 1−x by definition. Now assume

that pH1(w) = pH2(w) for a word w. Then

pH1(w0) = pH1 · x = pH2 · x = pH2(w0)

and

pH1(w1) = pH1 · (1− x) = pH2 · (1− x) = pH2(w1)

completing the induction.

Case 2: the transmission matrix of H1 is

[
0 1

0 1

]
. Consider the transition-probabilistic delayed

HMM with transition matrix 0 x 1− x

0 1− y y

0 1− y y


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and emission matrix 1 0

1 0

0 1


Prove that pH1(w) = pH2(w) for all words w by structural induction. pH1(0) = pH2(0) = x and

pH1(1) = pH2(1) = 1− x by definition. Now assume that pH1(w) = pH2(w) for a word w. Then

pH1(w0) = pH1 · (1− y) = pH2 · (1− y) = pH2(w0)

and

pH1(w1) = pH1 · y = pH2 · y = pH2(w1)

completing the induction.

Case 3: the transmission matrix of H1 is

[
0 1

1 0

]
. Consider the transition-probabilistic delayed

HMM with transition matrix 
0 x 0 0 1− x

0 0 1− y y 0

0 x 0 0 1− x

0 x 0 0 1− x

0 0 1− y y 0


and emission matrix 

1 0

1 0

1 0

0 1

0 1


Prove that pH1(w) = pH2(w) for all words w by structural induction. pH1(0) = pH2(0) = x and

pH1(1) = pH2(1) = 1 − x by definition. Now assume that pH1(w) = pH2(w) for a word w. Let

s11 be the state of H1 that corresponds to the first row of the emission matrix of H1, and let s12

be the state that corresponds to the second. Similarly, for 1 ≤ i ≤ 5 define s2i to be the state of

H2 corresponding to the ith row of H2. There are two subcases: either H1 is in s11 after emitting

w or H2 is in s12. First, assume that H1 is in s11. Since H1 transitions between s1 and s2 with

probability 1, if H1 is in s11 then |w| must be odd. This implies that H2 must be in either state

s22 or s25. To emit w0, H1 transitions to s12 and

pH1(w0) = pH1 · (1− y) = pH2 · (1− y) = pH2(w0)

and
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pH1(w1) = pH1 · y = pH2 · y = pH2(w1)

as required. Now assume that H1 is in s12 after emitting w. By following the same logic, |w| is
even, so

pH1(w0) = pH1 · x = pH2 · x = pH2(w0)

and

pH1(w1) = pH1 · (1− x) = pH2 · (1− x) = pH2(w1)

as required.

3.2 HMM complexity as language

3.2.1 Regularity of complexity for fixed length

Definition 3.12. Let Σ be an alphabet. A language over Σ is a set L ⊆ Σ∗.

In this section, deterministic HMM complexity will be used to define languages over various

alphabets, and results on the properties of these languages will be derived.

Definition 3.13. Let Σ be an alphabet. A regular expression over Σ is a well-formed string over

Σ ∪ {ϵ,∅, (, ),+, ∗}.

Here, + represents a set union. Given a language Σ, note that any regular expression over Σ

defines a subset of Σ∗.

Example 3.14. Let Σ = {0, 1} and let φ be the regular expression 0∗+1∗. Then φ defines the set

{ϵ, 0, 1, 00, 11, 000, 111, . . . }.

Given an alphabet Σ and a regular expression φ, let φ̂ ⊆ Σ∗ be the set defined by φ.

Definition 3.15. A language L is regular if there exists a regular expression φ such that φ̂ = L.

Fix n ∈ N with n > 1. 1 Let Σn = {0, . . . , n− 1} and write Σ∗
n for (Σn)

∗. Let Ln be the

language {w ∈ Σ∗
n | D(w) < |w|}.

Theorem 3.16. Ln is regular.

The proof will be done by strong induction on n. The inductive hypothesis will be used by

appealing to two lemmas and a well-known result.

Lemma 3.17. Let φ be a permutation on Σn, which induces a morphism φ∗ : Σ∗
n → Σ∗

n. Then for

all w ∈ Σ∗
n, w ∈ Ln if and only if φ∗(w) ∈ Ln.

1The results here also hold for n = 0 (by defining Σ0 := ∅) and n = 1, but n = 2 is the first “interesting” case.
In particular, using n = 2 as a base case demonstrates the intuition behind the proof most clearly.
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Proof. If M is a HMM witnessing w ∈ L, relabel the state changes of M according to φ.

Lemma 3.18. Ln ⊆ Ln+1.

Proof. If M is a HMM witnessing w ∈ Ln, to create a deterministic HMM M ′ on Σn+1 witnessing

w ∈ Ln+1, create a state s such that s transitions to itself with probability 1, and a transition from

each existing state to s whenever the letter n appears.

Lemma 3.19 ([28] Theorem 3.9.5). Let L be any language and let Σ be any alphabet. For x, y ∈ Σ∗,

define x ∼L y if for all z ∈ Σ∗, xz ∈ L ↔ yz ∈ L. Then ∼L is an equivalence relation on Σ∗ and

L is regular if and only if ∼L partitions Σ∗ into finitely many equivalent classes.

And now back to,

Proof of the theorem. The goal of the proof will be to show that for all n, ∼Ln partitions Σ∗
n into

finitely many equivalence classes. The result will then follow by Lemma 3.19

Let n = 2. Then [ϵ], [0], [1], [00], [01], [11], and [010] are the only equivalence classes mod ∼L2 .

To see this, fix w ∈ Σ∗
2 and consider the following cases.

• Case 1: w ∈ L2. There are three subcases:

1a. 0 ∈ w and 1 ∈ w. Then w ∈ [010].

1b. Either 0 ∈ w or 1 ∈ w, but not both. In the former case, w ∈ [00], and in the latter,

w ∈ [11].

1c. w = ϵ. Then w ∈ [ϵ] trivially.

• Case 2: w /∈ L. Similarly to the first case, there are two subcases:

2a. 0 ∈ w and 1 ∈ w. Then w ∈ [01].

2b. Either 0 ∈ w or 1 ∈ w, but not both. In the former case, w ∈ [0], and in the latter,

w ∈ [1].

Now assume true for all k ≤ n and fix w ∈ Σ∗
n+1. The breakdown of cases is analogous to the

proof of the base case.

• Case 1: w ∈ Ln+1. There are two subcases:

1a. i ∈ w for all i ∈ Σn+1. Then w ∈ [01 . . . n0].

1b. w ∈ (Σ′)∗ for some Σ′ ⊊ Σ. Let |Σ′| = k for k < n+1 and let φ : Σ′ → Σk be a bijection.

By the inductive hypothesis, Lk is regular, so φ(w) is in one of at most finitely many

equivalence classes induced by ∼Lk
. Then if φ(w) ∈ [v] for some v ∈ Σ∗

k, w ∈
[
φ−1(v)

]
by the lemmas and there are at most finitely many such

[
φ−1(v)

]
.
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Figure 3.2: Accepting DFA for L2

• Case 2: w /∈ Ln+1.

2a. i ∈ w for all i ∈ Σn+1. Then w ∈ [01 . . . n].

1b. w ∈ (Σ′)∗ for some Σ′ ⊊ Σ. Then apply the same reasoning as in case 1b.

From the Myhill-Nerode theorem, equivalence classes of ∼L correspond to states of a DFA ac-

cepting L. The correctness of the base case of the theorem can be verified by explicitly constructing

an accepting DFA for L2, shown in Figure 3.2.

To construct a witnessing DFA for Ln, n > 2, consider the n subsets Σ′
1, . . . ,Σ

′
n of Σn corre-

sponding to each choice of n − 1 elements of Σn. Let M0 be the DFA accepting Ln−1. For each

Σ′
i, let Mi be the DFA defined by relabeling the arrows of M0 according to a bijection Σn−1 → Σ′

i.

Then “glue” together Mi, 0 ≤ i ≤ n. For example, if n = 3, M0 would be the DFA shown above,

M1 would be a DFA on {0, 2} and M2 would be a DFA on {1, 2}.
The benefit of the proof of Theorem 3.16 is that it immediately shows how to construct a

witnessing DFA. However, Theorem 3.16 has a simpler proof which will be presented here for

completeness.

Lemma 3.20. If L is a regular language, then Lc is also regular.

Proof. Lemma 3.19 implies that L is regular if and only if L is accepted by a DFA. Let D be a DFA

that accepts L, and let D′ be the DFA formed by turning all the accept states into non-accepting

states, and all non-accepting states into accept states. Then D′ recognizes Lc.
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Theorem 3.21. Ln is regular.

Proof. By Lemma 3.20, it suffices to show that (Ln)
c = {w : D(w) = |w|} is regular. D(w) = |w|

if and only if w[−1] /∈ w ↾|w|−1. For 0 ≤ i < n, let φi be the regular expression

(0 + 1 + · · ·+ (i− 1) + (i+ 1) + · · ·+ (n− 2) + (n− 1))∗i

That is, φi represents the set of words w such that the last letter of w is i, and i does not appear

in w ↾|w|−1. Let

φ = φ0 + φ1 + · · ·+ φn−1

Then φ̂ = (Ln)
c by definition.

3.2.2 Regularity of fixed complexity

The results here can be considered as dual to the results in Section 3.2.1. Specifically, while Sec-

tion 3.2.1 dealt with the regularity of the language of binary words of arbitrary complexity and

fixed length, this section will discuss the regularity of the language of binary words of fixed com-

plexities and arbitrary lengths. Specifically, if Σ = {0, 1}, the language Ln := {w ∈ Σ∗ | D(w) = n}
is regular for all n.

Lemma 3.22. Let u and v be words with u ⪯ v. Then D(u) ≤ D(v).

Proof. If H is a HMM that witnesses the deterministic HMM complexity of v, then H also emits

u.

Lemma 3.23. Let n be a natural number and let w be a word such that |w| > 2n and D(w) < n.

Then, for any word z, D(wz) ̸= n.

Proof. Let w = uvp for words u and v and for p ∈ Q. Assume that |u|+ |v| is minimal. |u|+ |v| < n,

so p > 1. Let z be any word. There are two cases to consider:

Case 1: Either p ∈ N and z = vq for some q ∈ Q, or p = k + r
s , z ↾s−r= v[s − r :], and

z[s − r : |v|] = v ↾s−r, z =
(
z|v|
)q

for some k, r, s ∈ N and q ∈ Q. In either of these subcases,

vpz = vp
′
for some p′ ∈ Q, so D(wz) = D(w) < n.

Case 2: Neither of the subcases in case 1 holds. Assume that uvpz = u1v
p1
1 for p1 ∈ Q and

words u1 and v1 with |u1|+ |v1| < |u|+ |v|. Then uvp = u1v
p2
1 for some p2 ∈ Q, contradicting the

fact that |u|+ |v| is minimal. But this subcase implies that vpz ̸= aq for any word a and q ∈ Q. So

D(uvpz) ≥ |uvp| > n.

Lemma 3.24. Fix a natural number n. Let Ln := {w ∈ Σ∗ | D(w) = n} and let ∼Ln be the relation

defined in Lemma 3.19. Let (u, v) be an eventually integral pair with |u|+ |v| = n. Let p1, p2 ∈ Q
with p1, p2 > n− |u| and let p1 =

r1
|v| , p2 =

r2
|v| . Then uvp1 ∼Ln uv

p2 if and only if r1 = r2.
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Proof. Let r1 = r2. Then for all words z, uvp1z ∈ Ln if and only if z ↾r1= v[|v| − r1 :], z[|v| − r1 :

|v|] = v ↾|v|−r, and z =
(
z|v|
)q

for some q ∈ Q if and only if uvp2v ∈ Ln.

Let r1 ̸= r2. Let z = v[|v| − r1 :]. Then uv
p1z ∈ Ln but uvp2z /∈ Ln, so uv

p1 ̸∼Ln uv
p2 .

Lemma 3.25. Let n, Ln, and ∼Ln be as in Lemma 3.24. Let (u1, v1) ̸= (u2, v2) be two eventually

integral pairs with |u1|+ |v1| = |u2|+ |v2| = n. Then, for all p1 ∈ Q with p1 > n− |v1| and p2 ∈ Q
with p2 > n− |v2|, u1vp11 ̸∼ u2v

p2
2 .

Proof. Let p1 =
r1
|v1| . Let z = v[|v| − r1 :]. Then u1v

p1
1 z ∈ Ln but u2v

p2
2 z /∈ Ln.

Lemma 3.26. Let n, Ln, and ∼Ln be as in Lemma 3.24. Let w1 and w2 be two words with

|w1|, |w2| > n. Then w1 ∼Ln w2.

Proof. Let z be any word. If D(w1) > n, then D(w1z) > n by Lemma 3.22, and if D(w1) < n,

D(w1z) ̸= n by Lemma 3.23, and similarly for w2. So w1 ∼Ln w2 trivially.

Lemma 3.27. Let n, Ln, and ∼Ln be as in Lemma 3.24. Then ∼Ln partitions {w ∈ Σ+ : |w| > n}
into finitely many equivalent classes.

Proof. By Lemma 3.26, all words of length > n with complexity not equal to n are in a single

equivalence class. By Lemma 3.24 and Lemma 3.25, all words of length > n with complexity equal

to n are in one of the equivalence classes corresponding to eventually integral pairs.

Theorem 3.28. Ln is regular for all n.

Proof. By Lemma 3.27, ∼Ln partitions Σn+ := {w ∈ Σ+ : |w| > n} into finitely many equivalent

classes. But since Σ∗ \Σn+ is finite, ∼Ln partitions Σ∗ into finitely many equivalence classes. The

result follows immediately by Lemma 3.19.

3.3 Complexity via other finite-state machines

3.3.1 Finite-state gamblers

Here we investigate complexity via finite-state gamblers, as discussed in [12]. Informally, a finite-

state gambler is a hidden Markov model on a binary alphabet that, instead of outputting elements

from a finite set, outputs a sequence of rational numbers, representing its capital at some time t.

This capital comes from a list of betting functions that output the capital at time t+ 1, given the

capital and state at time t. More precisely,

Definition 3.29 ([12]). A k-account finite-state gambler is a tuple

G = (Q, δ,
−→
β , q0,

−→c0)
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where

• Q is a nonempty, finite set of states

• δ : Q× {0, 1} → Q is the transition function

•
−→
β : Q → (Q ∩ [0, 1])k, where exponentiation denotes Cartesian product, is the betting func-

tion

• q0 ∈ Q is the initial state

• −→c0 is the initial capital vector.

Here, it will only be necessary to consider k-account finite-state gamblers for k = 1; the term

“finite-state gambler” will be understood to mean “1-account finite-state gambler.” β and c0 will

be written for
−→
β and −→c0 , respectively.

Definition 3.30 ([12]). Given a finite-state gambler G, the martingale of G is a function

dG : {0, 1}∗ → [0,∞)

defined recursively by

dG(ϵ) = c0

dG(wb) = 2dG(w) [(1− b)(1− β(δ(w)) + bβ(δ(w))]

A significant difference between finite-state gamblers and hidden Markov models is that finite-

state gamblers have continuous output. This can be bridged by focusing on a narrower class of

finite-state gamblers defined below.

Definition 3.31. An all-or-nothing finite-state gambler is a finite-state gambler with betting func-

tion β : Q→ {0, 1}.

The following definition and results demonstrate the link between finite-state gamblers and

complexity.

Definition 3.32. Given a word w, define the gambling complexity of w by

Γ(w) := min {|Q| | dG(w) > 0}

where Q are the states of an all-or-nothing finite-state gambler G.

In the remainder of this section, all finite-state gamblers will be assumed to be all-or-nothing

finite-state gamblers with c0 = 1. (The choice of c0 is arbitrary; any positive value will suffice.)
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Figure 3.3: 0n-accepting finite-state gambler
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Figure 3.4: (01)n-accepting finite-state gambler

Example 3.33. For every n, Γ(0n) = 1.

Proof. Consider the finite-state gambler Figure 3.3 G defined by with β(0) = 1. That is, G always

bets all of its capital that the next bit is 0. Immediately dG(0
n) = n.

Example 3.34. For every n, Γ((01)n) = 2.

Proof. Consider the finite-state gambler Figure 3.4 G defined by with β(0) = 1 and β(1) = 0. That

is, when in state 0, G bets all of its capital that the next bit is 1, and when in state 1, G bets all

of its capital that the next bit is 0. Immediately, dG((01)
n) = 2n, so Γ((01)n) ≤ 2.

To see that dG((01)
n) cannot be 1, note that any finite-state gambler with 1 state either always

bets all of its capital that the next bit is 0, or always bets all of its capital that the next bit is 0.

In either case, dG((01)
n) = 0.

Note that a finite-state gambler can be viewed as a deterministic hidden Markov model by

considering its betting function as an emission function while keeping the same underlying states

and transition function, and vice versa to view a deterministic hidden Markov model as a finite-state

gambler. This immediately implies

Theorem 3.35. For all w, Γ(w) = D(w).

3.3.2 Büchi automata

Definition 3.36. A Büchi automaton [7] is an automaton whose inputs are infinite words. An

input is accepted if it passes through an accept state infinitely many times.

Example 3.37. The Büchi automaton Figure 3.5 accepts (01)ω but not 0ω.

Definition 3.38. For X in Σω, the Büchi complexity of X is the minimum number of states in a

Büchi automaton B such that X is the only word in Aω that B accepts.
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Figure 3.5: Büchi automaton accepting (01)ω

Theorem 3.39. For every n, there is a word with Büchi complexity n.

Proof. Let w be a primitive words of length n. Then wω has Büchi complexity n.

Theorem 3.40. There is a word with infinite Büchi complexity.

Proof. Take any word that does not end in the infinite power of a single word, such as the Thue-

Morse word [1].

The above theorem is also a consequence of the following result.

Theorem 3.41. There are only countably many words with finite Büchi complexity.

Proof. A word with finite Büchi complexity is by definition composed of a finite-length initial

segment and a finite-length ω-base, and there are countably many such combinations.

Theorem 3.42. For each n, the average number of words with Büchi complexity ≤ n is
∑n

i=1 C(i)
2n .

Proof. By Theorem 2.49, these are the number of words with eventually integral complexity, and

by Theorem 2.54, Büchi complexity supersedes HMM complexity for all sufficiently long words.
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CHAPTER 4
CONSTRUCTIVE IMMUNITY

4.1 Introduction

Effectively immune sets, introduced by Smullyan in 1964 [30], are well-known in computability as

one of the incarnations of diagonal non-computability, first made famous by Arslanov’s completeness

criterion. Let ω denote the natural numbers. A set A ⊆ ω is effectively immune if there is a

computable function h such that |We| ≤ h(e) whenever We ⊆ A, where {We}e∈ω is a standard

enumeration of the computably enumerable (c.e.) sets.

There is a more obvious effectivization of immunity (the lack of infinite computable subsets),

however: constructive immunity, introduced by Xiang Li [23] who actually (and inconveniently)

called it “effective immunity”.

Definition 4.1. A set A is constructively immune if there exists a partial recursive ψ such that

for all x, if Wx is infinite then ψ(x) ↓ and ψ(x) ∈Wx \A.

The Turing degrees of constructively immune sets and the related Σ0
1-dense sets have not been

considered before in the literature, except that Xiang Li implicitly showed that they include all

c.e. degrees. We prove in Section 4.3 that the Turing degrees of Σ0
1-dense sets include all non-∆0

2

degrees, all high degrees, and all c.e. degrees. We do not know whether they include all Turing

degrees.

The history of the study of constructive immunity seems to be easily summarized. After Xiang

Li’s 1983 paper, Odifreddi’s 1989 textbook [24] included Li’s results as exercises, and Calude’s 1994

monograph [8] showed that the set RANDC
t = {x : C(x) ≥ |x|−t} is constructively immune, where

C is Kolmogorov complexity. Schafer 1997 [27] further developed an example involving minimal

indices, and Brattka 2002 [5] gave one example in a more general setting than Cantor space. Finally

in 2008 Ferbus-Zanda and Grigorieff proved an equivalence with constructive Σ0
1-density.

Definition 4.2 (Ferbus-Zanda and Grigorieff [16]). A set A ⊆ ω is Σ0
1-dense if for every infinite

c.e. set C, there exists an infinite c.e. set D such that D ⊆ C and D ⊆ A.

If there is a computable function f : ω → ω such that for each We, Wf(e) ⊆ A ∩We, and Wf(e)

is infinite if We is infinite, then A is constructively Σ0
1-dense.

We should note that while the various flavors of immune sets are always infinite by definition,

Ferbus-Zanda and Grigorieff do not require Σ0
1-dense sets to be co-infinite.

The Σ0
1-dense sets form a natural Π0

4 class in 2ω that coincides with the simple sets on ∆0
2 but

is prevalent (in fact exists in every Turing degree) outside of ∆0
2 by Theorem 4.25 below.
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4.2 Σ0
1-density

To show that there exists a set that is Σ0
1-dense, but not constructively so, we use Mathias forcing.

A detailed treatment of the computability theory of Mathias forcing can be found in [9].

Definition 4.3. A Mathias condition is a pair (d,E) where d,E ⊆ ω, d is a finite set, E is an

infinite computable set, and max(d) < min(E). A condition (d2, E2) extends a condition (d1, E1) if

• d1 = d2 ∩ (max d1 + 1), i.e., d1 is an initial segment of d2,

• E2 is a subset of E1, and

• d2 is contained in d1 ∪ E1.

A set A is Mathias generic if it is generic for Mathias forcing.

Theorem 4.4. If A is Mathias generic, then

1. ω \A is Σ0
1-dense.

2. ω \A is not constructively Σ0
1-dense.

Proof. 1. Let We be an infinite c.e. set. Let (d,E) be a Mathias condition.

Case (i): E∩We is finite. Then for any Mathias generic A extending the condition (d,E), ω \A
contains an infinite subset of We, in fact a set of the form We \ F where F is finite.

Case (ii): E ∩We is infinite. Then E ∩We is c.e., hence has an infinite computable subset D.

Write D = D1∪D2 where D1, D2 are disjoint infinite c.e. sets. The condition (d,D1) extends (d,E)

and forces a Mathias generic A extending it to be such that ω \A has an infinite subset in common

with We, namely D2.

We have shown that for each infinite c.e. set We, each Mathias condition has an extension

forcing the statement that a Matias generic A satisfies

ω \A has an infinite c.e. subset in common with We. (*)

Thus by standard forcing theory it follows that each Mathias generic satisfies (∗).
2. Let f be a computable function. It suffices to show that for each Mathias generic A, there exists

an i such that Wi is infinite and Wf(i) is either finite, or not a subset of Wi, or not a subset of A.

For this, as in (1) above it suffices to show that for each condition (d,D) there exists a condition

(d′, E′) extending (d,E) and an i such that Wi is infinite and Wf(i) is either finite, or not a subset

of Wi, or not a subset of A for any A extending (d′, D′).

Let (d,E) be a Mathias condition and write D = Wi. If Wf(i) is finite or not a subset of Wi

then we are done. Otherwise there exists a condition (d′, E′) extending (d,E) such that E′ ∩Wf(i)

is nonempty. This can be done by a finite extension (making only finitely many changes to the

condition).
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Theorem 4.5 ([16, Proposition 3.3]). A set Z ⊆ ω is constructively immune if and only if it is

infinite and ω \ Z is constructively Σ0
1-dense.

Since Ferbus-Zanda and Grigorieff’s paper has not gone through peer review, we provide the

proof.

Proof. ⇐: Let the function g witness that ω\Z is constructively Σ0
1-dense. Define a partial recursive

function φ by stipulating that φ(i) is the first number in the enumeration of Wg(i), if any.

⇒: Define a partial recursive function µ(i, n) by

• µ(i, 0) = φ(i);

• µ(i, n+ 1) = φ(in), where in is such that Win =Wi \ {µ(i,m) : m ≤ n}.

Let g be total recursive so that Wg(i) = {µ(i,m) : m ∈ ω}. If Wi is infinite then all µ(i,m)’s are

defined and distinct and belong to Wi ∩ Z. Thus, Wg(i) is an infinite subset of Wi ∩ Z.

Recall that a c.e. set is simple if it is co-immune.

Theorem 4.6 (Xiang Li [23]). Let A be a set and let {ϕx}x∈ω be a standard enumeration of the

partial computable functions.

1. If A is constructively immune then A is immune and A is not immune.

2. If A is simple then A is constructively immune.

3. {x : (∀y)(ϕx = ϕy → x ≤ y)} is constructively immune.

4.2.1 Numberings

A numbering of a countable set A is an onto function ν : ω → A. The theory of numberings

has a long history [15]. Numberings of the set of rational numbers Q provide an application area

for Σ0
1-density. Rosenstein [26, Section 16.2: Looking at Q effectively] discusses computable dense

subsets of Q. Here we are mainly concerned with noncomputable sets.

Proposition 4.7. Let A ⊆ ω. The following are equivalent:

1. ν(A) is dense for every injective computable numbering ν of Q;

2. A is co-immune.

Proof. (1) =⇒ (2): We prove the contrapositive. Suppose A contains an infinite c.e. set We.

Consider a computable numbering ν that maps We onto [0, 1]∩Q. Then ν(A) is disjoint from [0, 1]

and hence not dense.

(2) =⇒ (1): We again prove the contrapositive. Assume that ν(A) is not dense for a certain

computable ν. Let {xn : n ∈ ω} be a converging infinite sequence of rationals disjoint from ν(A).

Then {ν−1(xn) : n ∈ ω} is an infinite c.e. subset of A.
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Definition 4.8. A subset A of Q is co-nowhere dense if for each interval [a, b] ⊆ Q, [a′, b′] ⊆ A for

some [a′, b′] ⊆ [a, b].

Proposition 4.9. A set is co-nowhere dense under every numbering if and only if it is co-finite.

Proof. Only the forward direction needs to be proven; the other direction is immediate. Let A be a

co-infinite set, and define ν by letting ν map ω \A onto [0, 1]. Then A is not co-nowhere dense.

Proposition 4.10. A is infinite and non-immune if and only if there exists a computable numbering

with respect to which A is co-nowhere dense.

Proof. Let A be infinite and not immune. Thus, there is an infinite We ⊆ A for some e. Let ν be

a computable numbering that maps We onto Q \ ω. Then A is co-nowhere dense under ν.

Conversely, let A be co-nowhere dense under some computable numbering ν. Then ν−1([a, b])

is an infinite c.e. subset of A for some suitable a, b.

A set D ⊆ Q is effectively dense if there is a computable function f(a, b) giving an element of

D ∩ (a, b) for a < b ∈ Q.

Proposition 4.11. A set A is constructively Σ0
1-dense if and only if it is effectively dense for all

computable numberings.

Proof. By Theorem 4.5, A is constructively Σ0
1-dense if and only if it is infinite and ω \ A is

constructively immune. Constructive immunity of ω \ A implies effective density of A since the

witnessing function for constructive immunity can be be used to witness effective density. For the

converse we exploit the assumption that we get to choose a suitable ν.

Let A and B be sets, with B computable. We say that A is co-immune within B if there is no

infinite computable subset of Ac ∩ B. The following diagram includes some claims not proved in

the paper, whose proof (or disproof) may be considered enjoyable exercises. The quantifiers ∃ν, ∀ν
range over computable numberings of Q.

4.3 Prevalence of Σ0
1-density

In this section we investigate the existence of Σ0
1-density in the Turing degrees at large.

4.3.1 Closure properties and Σ0
1-density

Proposition 4.12. 1. The intersection of two Σ0
1-dense sets is Σ0

1-dense.

2. The intersection of two constructively Σ0
1-dense sets is constructively Σ0

1-dense.

46



co-finite (Proposition 4.9)
(eff.) co-nowhere dense ∀ν

//

constructively
Σ0
1-dense (Proposition 4.11)

constr. co-immune
eff. dense ∀ν

strict: Theorem 4.4

��
Σ0
1-dense

strict: ω⊕∅
tt strict: any bi-immune

��
infinite & non-immune (Proposition 4.10)

(eff.) co-nowhere dense ∃ν
eff. dense ∃ν

**

co-immune (Proposition 4.7)
dense ∀ν

��

dense ∃ν co-immune within
some infinite computable set

oo

Figure 4.1: Co-immunity results

Proof. Let A and B be Σ0
1-dense sets. Let We be an infinite c.e. set. Since A is Σ0

1-dense, there

exists an infinite c.e. set Wd ⊆ A ∩ We. Since B is Σ0
1-dense, there exists an infinite c.e. set

Wa ⊆ B ∩Wd. Then Wa ⊆ (A ∩ B) ∩We, as desired. This proves (1). To prove (2), let f and g

witness the effective Σ0
1-density of A and B, respectively. Given We, we have Wf(e) ⊆ A ∩We and

then

Wg(f(e)) ⊆ B ∩Wf(e) ⊆ A ∩B ∩We.

In other words, g ◦ f witnesses the effective Σ0
1-density of A ∩B.

Corollary 4.13. Bi-Σ0
1-dense sets do not exist.

Proof. If A and Ac are both Σ0
1-dense then by Proposition 4.12, A ∩ Ac is Σ0

1-dense, which is a

contradiction.

For sets A and B, A ⊆∗ B means that A \B is a finite set.

Proposition 4.14. 1. If A is Σ0
1-dense and A ⊆∗ B, then B is Σ0

1-dense.

2. If A is constructively Σ0
1-dense and A ⊆∗ B, then B is constructively Σ0

1-dense.

Proof. Let We be an infinite c.e. set. Since A is Σ0
1-dense, there exists an infinite c.e. set Wd such

that Wd ⊆ A ∩ We. Let Wc = Wd \ (A \ B). Since A \ B is finite, Wc is an infinite c.e. set.

Since Wd ⊆ A, we have Wc = Wd ∩ (B ∪ Ac) = Wd ∩ B. Then, since Wd ⊆ We, we have

47



Wc ⊆ B ∩We, and we conclude that B is Σ0
1-dense. This proves (1). To prove (2), if f witnesses

that A is constructively Σ0
1-dense then a function g with Wg(e) =Wf(e) \ (A \B) witnesses that B

is constructively Σ0
1-dense.

Proposition 4.15. Let B be a co-finite set. Then B is constructively Σ0
1-dense.

Proof. The set ω is constructively Σ0
1-dense as witnessed by the identity function f(e) = e. Thus

by Item 2 of Proposition 4.14, B is as well.

As usual we write A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.

Proposition 4.16. 1. If X0 and X1 are Σ0
1-dense sets then so is X0 ⊕X1.

2. If X0 and X1 are constructively Σ0
1-dense sets then so is X0 ⊕X1.

Proof. Let We = Wc0 ⊕Wc1 be an infinite c.e. set. For i = 0, 1, since Xi is Σ0
1-dense there exists

Wdi ⊆ Xi ∩Wci such that Wdi is infinite if Wci is infinite. Then Wd0 ⊕Wd1 is an infinite c.e. subset

of (X0 ⊕X1) ∩We.

This proves (1). To prove (2), if di are now functions witnessing the effective Σ0
1-density of Xi

then Wdi(ci) ⊆ Xi ∩Wci , and Wd0(c0) ⊕Wd1(c1) is an infinite c.e. subset of (X0 ⊕X1) ∩We. Thus a

function g satisfying

Wg(e) =Wd0(c0) ⊕Wd1(c1),

where We =Wc0 ⊕Wc1 , witnesses the effective Σ0
1-density of X0 ⊕X1.

Theorem 4.17. There is no Σ0
1-dense set A such that all Σ0

1-dense sets B satisfy A ⊆∗ B.

Proof. Suppose there is such a set A. Let Wd be an infinite computable subset of A. Let G be a

Mathias generic with G ∩W c
d = ∅, i.e., G ⊆Wd. Then B := Gc is Σ0

1-dense by Theorem 4.4. Thus

A ∩Gc is also Σ0
1-dense by Proposition 4.12. And G ⊆Wd ⊆ A and by assumption A ⊆∗ Gc so we

get G ⊆∗ Gc, a contradiction.

These results show that the Σ0
1-dense sets under ⊆∗ form a non-principal filter whose Turing

degrees form a join semi-lattice.

Theorem 4.18. Let A be a c.e. set. The following are equivalent:

1. A is co-infinite and constructively Σ0
1-dense.

2. A is co-infinite and Σ0
1-dense.

3. A is co-immune.

Proof. 1 =⇒ 2 =⇒ 3 is immediate from the definitions, and 3 =⇒ 1 is immediate from

Theorem 4.5 and Theorem 4.6.
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Theorem 4.19. Every c.e. Turing degree contains a constructively Σ0
1-dense set.

Proof. Let a be a c.e. degree. If a > 0 then a contains a simple set A, see, e.g., [31], so Theorem 4.18

finishes this case. The degree 0 contains all the co-finite sets, which are constructively Σ0
1-dense by

Proposition 4.15.

4.3.2 Cofinality in the Turing degrees of constructive Σ0
1-density

Definition 4.20. For k ≥ 0, let Ik be intervals of length k + 2 such that min(I0) = 0 and

max(Ik) + 1 = min(Ik+1).

Let Ve be a subset of We defined by the following condition. We let x enter Ve at a stage where

x enters We if doing so is permitted by the rule: Let k be such that x ∈ Ik. Then for all j ≤ k,

|Vj ∩ Ik| ≤ 1; and for all j > k, Vj ∩ Ik = ∅.

Lemma 4.21. There exists a c.e., co-infinite, constructively Σ0
1-dense, and effectively co-immune

set.

Proof. Let A =
⋃

e∈ω Ve. Ve is c.e. by construction, and if We is infinite, Ve is also infinite. So

Ve =Wf(e) is the set witnessing that A is constructively Σ0
1-dense.

Moreover A is coinfinite since |A ∩ Ik| ≤ k + 1 < k + 2 = |Ik| gives Ik ̸⊆ A for each k and

|ω \A| =

∣∣∣∣∣
(⋃

k∈ω
Ik

)
\A

∣∣∣∣∣ =
∣∣∣∣∣⋃
k∈ω

(Ik \A)

∣∣∣∣∣ =∑
k∈ω

|Ik \A| ≥
∑
k∈ω

1 = ∞.

The set A is effectively co-immune because if We is disjoint from A then since as soon as a number

in Ik for k ≥ e enters We then that number is put into A, We ⊆
⋃

k<e Ik so |We| ≤
∑

k<e(k + 2) =∑
k≤e+1 k = (e+1)(e+2)

2 .

Theorem 4.22. For each set R there exists a constructively Σ0
1-dense, effectively co-immune set

S with R ≤T S.

Proof. Let R be any set, which we may assume is co-infinite. Let A be as in the proof of Lemma 4.21.

Let S ⊇ A be defined by

S = A ∪
⋃
k∈R

Ik.

Since A ⊆ S and S is co-infinite, S is constructively Σ0
1-dense and effectively co-immune. Since

k ∈ R ⇐⇒ Ik ⊆ S, we have R ≤T S.

4.3.3 Non-∆0
2 degrees

Lemma 4.23. Suppose that T ⊆ 2<ω is a tree with only one infinite path. Then for each length n

there exists a length m > n such that exactly one string of length n has an extension of length m

in T .
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Proof. Suppose not, i.e., there is a length n such that for all m > n there are at least two strings

σm, τm of length n with extensions of length m in T . By the pigeonhole principle there is a pair

(σ, τ) that is a choice of (σm, τm) for infinitely many m. Then by compactness both σ and τ must

be extendible to infinite paths of T .

Lemma 4.24. Suppose that T ⊆ 2<ω is a tree with only one infinite path A, and that T is a c.e. set

of strings. Then A is ∆0
2.

Proof. By Lemma 4.23, for each length n there exists a length m > n such that exactly one string

of length n has an extension of length m in T . Using 0′ as an oracle we can find that m and define

A ↾ n by looking for such a string. In fact, T ≤T 0′ and so its unique path A ≤T 0′ as well.

Theorem 4.25. Given A ∈ 2ω, let Â := {σ ∈ 2<ω | σ ≺ A} be the set of finite prefixes of A. If A

is not ∆0
2 then Â is co-Σ0

1-dense.

Proof. Let A∗ be the complement of Â. Let We ⊆ 2<ω be an infinite c.e. set of strings. Let T be

the set of all prefixes of elements of We. Then T is an infinite tree, hence by compactness it has at

least one infinite path. That is, there is at least one real B such that all its prefixes are in T .

Case 1: The only such real is B = A. Then by Lemma 4.24, A is ∆0
2.

Case 2: There is a B ̸= A such that all its prefixes are in T . Let σ be a prefix of B that is not

a prefix of A. Let Wd = [σ] ∩We. Since all prefixes of B are prefixes of elements of We, there are

infinitely many extensions of σ that are prefixes of elements of We. Consequently Wd is infinite.

Thus, Wd is our desired infinite subset of A∗ ∩We.

4.3.4 High degrees

Definition 4.26. A set A is co-r-cohesive if its complement is r-cohesive. This means that for

each computable (recursive) set Wd, either Wd ⊆∗ A or W c
d ⊆∗ A.

Definition 4.27 (Odifreddi [24, Exercise III.4.8], Jockusch and Stephan [18]). A set A is strongly

hyperhyperimmune (s.h.h.i.) if for each computable f : ω → ω for which the setsWf(e) are disjoint,

there is an e with Wf(e) ⊆ ω \A.
A set A is strongly hyperimmune (s.h.i.) if for each computable f : ω → ω for which the sets

Wf(e) are disjoint and computable, with
⋃

e∈ωWf(e) also computable, there is an e with Wf(e) ⊆
ω \A.

Proposition 4.28. Every s.h.i. set is co-Σ0
1-dense.

Proof. Let A be s.h.i. Let We be an infinite c.e. set. Let Wd be an infinite computable subset of

We. Effectively decompose Wd into infinitely many disjoint infinite computable sets,

Wd =
⋃
i∈ω

Wg(d,i).
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For instance, if Wd = {a0 < a1 < . . . } then we may let Wg(e,i) = {an : n = 2i(2k+1), i ≥ 0, k ≥ 0}.
Since A is s.h.i., there exists some ie such that Wg(d,ie) ⊆ Ac. The sets Wg(d,ie) witness that A

c is

Σ0
1-dense.

Clearly r-cohesive implies s.h.i., and s.h.h.i. implies s.h.i. It was shown by Jockusch and Stephan

[18, Corollary 2.4] that the cohesive degrees coincide with the r–cohesive degrees and (Corollary

3.10) that the s.h.i. and s.h.h.i. degrees coincide.

Proposition 4.29. Every high degree contains a Σ0
1-dense set.

Proof. Let h be a Turing degree. If h ̸≤ 0′, then h contains a Σ0
1-dense set by Theorem Theo-

rem 4.25.

If h ≤ 0′ and h is high then since the strongly hyperhyperimmune and cohesive degrees coincide,

and are exactly the high degrees [11], h contains a strongly hyperimmune set. Hence by Theorem

Proposition 4.28, h contains a Σ0
1-dense set.

4.3.5 Progressive approximations

Definition 4.30. Let A be a ∆0
2 set. A computable approximation {σt}t∈ω of A, where each σt is

a finite string and limt→∞ σt = A, is progressive if for each t,

• if |σt| ≤ |σt−1| then σt ↾ (|σt| − 1) = σt−1 ↾ (|σt| − 1) (the last bit of σt is the only difference

with σt−1);

• if |σt| > |σt−1| then σt−1 ≺ σt; and

• if σt ̸≺ σs for some s > t then σt ̸≺ σs′ for all s
′ ≥ s (once an approximation looks wrong, it

never looks right again).

If A has a progressive approximation then we say that A is progressively approximable.

Note that a progressively approximable set must be h-c.e. where h(n) = 2n.

Theorem 4.31. Let A be a progressively approximable and noncomputable set. Let {σt}t∈ω be a

progressive approximation of A. Then {t : σt ≺ A} is constructively immune.

Proof. Let We be an infinite c.e. set and let T be an infinite computable subset of We. Since A is

noncomputable, we do not have T ⊆ {t : σt ≺ A}. Since the approximation {σt}t∈ω is progressive,

once we observe a t for which σt ̸≺ σs, for some s > t, then we know that σt ̸≺ A. Then we define

φ(e) = t, and φ witnesses that {t : σt ≺ A} is constructively immune.

A direction for future work may be to find new Turing degrees of progressively approximable

sets.
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CHAPTER 5
FURTHER RESULTS ON FINITE WORDS AND

EFFECTIVENESS

5.1 Density for finite complexity

Connections between the notions of density described in Chapter 4 and the notions of complexity

investigated in Chapters 2 and 3 are presented here.

Definition 5.1. D ⊆ 2<ω is dense if for all x ∈ 2<ω, there exists y ∈ D such that x ⪯ y.

The “regular” notion of density defined above can be viewed as a computable analogue of Σ0
1

density. Specifically, both notions of density make precise the notion of a class having a “typical”

property. This section will connect the results of Chapter 2 to the density arguments presented in

this chapter by demonstrating the densities and non-densities of various sets defined by deterministic

HMM complexity. Recall that if w ∈ 2<ω, D(w) is the deterministic HMM complexity of w, as

defined in Definition 2.21.

Theorem 5.2. For any fixed n, the set {w : D(w) = n} is not dense.

Proof. Let x be a word such that D(x) = n + 1. By Lemma 3.22, for any word y, if x ⪯ y then

D(y) ≥ n+ 1, so y /∈ {w : D(w) = n}.

The next results are concerned with the density of high-complexity words. Although the set of

words of a fixed complexity is not dense, as shown in Theorem 5.2, and the set of words of a given

complexity fixed relative to the length of the word will be shown to not be dense in Theorem 5.4,

Theorem 5.7 shows that taking a union over these sets results in a dense set.

Definition 5.3. For every c ∈ ω, let Hc := {w : D(w) = |w| − c}.

The choice of H in the notation of Hc was motivated by the following intuition: for a fixed c

and words w with |w| growing arbitrarily large, Hc can be thought of as the set of words of high

complexity, up to some constant c.

Theorem 5.4. For every fixed c, Hc is not dense.

Proof. Let x be a word such that for every word u of length c+ 1, u is a subword of x. Then, for

any word y with x ⪯ y, D(y) ≤ |y| − (c+ 1), as the last c+ 1 bits of y appear in y.

Definition 5.5. Let H 1
2
:=
{
w ∈ 2<ω : D(w) ≤ |w|

2

}
.

In the following lemma and theorem, recall the definition of a decomposition as defined in

Definition 2.29.
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Lemma 5.6. Let w be a word such that D(w) < |w|
2 and let (u, v) be a decomposition of w, with

w = uvp. Then p > 1.

Proof. p will be minimized when |v| is maximized, so without loss of generality assume that u = ϵ.

Then

|v| = D(w) < |w|
2 = |vp|

2

so 2|v| < |vp| which immediately implies that p > 1.

Theorem 5.7. H 1
2
is dense.

Proof. Let x ∈ 2<ω. If x ∈ H 1
2
then the proof is finished, so assume not. Let x = uvp for p ∈ Q and

a decomposition (u, v) of x. By Lemma 5.6, p > 1. Let n ∈ ω be large enough so that n ≥ p and

(n + 1)|v| > |u|, and let v′ be a word such that |v′| = v and v′ is not a cyclic shift of v. Consider

y = uvnv′ and let (w, z) be a decomposition of y with y = wzq for q ∈ Q. If q ≤ 1, then y ∈ H 1
2
by

applying the contrapositive of Lemma 5.6, so assume q > 1. Cancelling v′ from both sides yields

uvn = wzq
′
for some q′ ∈ Q. If q′ > 1, then by Lemma 2.34, there exists words u′ and v′ and p′ ∈ Q

such that uvp = u′v′p
′
, contradicting the assumption that (u, v) is a decomposition; so q′ ≤ 1. Since

v′ does not occur in vn, there exists some k such that z ↾ k = u[−k :]. In particular, vnv′ is a

subword of z, so

D(y) = |w|+ |z| > (n+ 1)|v| > (n+1)|v|
2 + |u|

2 = |y|
2

completing the proof.

Remark 5.8. Note that the bound D(w) ≤ |w|
2 in Theorem 5.7 is equivalent to the bound in the

hypothesis of Theorem 2.86. Theorem 5.7 uses this assumption via Lemma 5.6, while Theorem 2.86

uses this assumption indirectly in the proof of Theorem 2.54. Since the bound in Theorem 2.86 is

sharp, it is conjectured that the bound in Theorem 5.7 is also sharp.

Definition 5.9. For every n and k let Ln,k = {w : nD(w) + k ≤ |w|}.

In contrast to Hc, Ln,k can be thought of as a class of words with low complexity.

Remark 5.10. When n = 2 and k = 1, Ln,k is exactly the set considered in Theorem 2.86.

Theorem 5.11. For any fixed n and k, the set Ln,k is dense.

Proof. Fix x ∈ 2<ω and let m be such that n+ k
|x| ≤ m. Then

nD(xm) + k ≤ n|x|+ k ≤ m|x| = |xm|

so xm ∈ Ln,k.
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5.2 Fibonacci words

Definition 5.12. Define the Fibonacci words Fn recursively by

F0 = ϵ, F1 = 1, F2 = 0, Fn = Fn−1Fn−2 for all n ≥ 3

Note that for all n ≥ 3, Fn ⪯ Fn+1. This ensures that the following definition is well-defined.

Definition 5.13. The infinite Fibonacci word F is the word formed by taking the limit of the

(finite) Fibonacci words. That is, F = lim
n→∞

Fn.

The main result of this section will be a derivation of the deterministic HMM complexity of

Fibonacci words. Let Fn denote the classic Fibonacci sequence, modified so that F0 = 1 and F1 = 2.

Theorem 5.14 ([6]). For all n ∈ ω, there exists a unique sequence {ri} such that n =
∞∑
i=0

riFi,

ri ∈ {0, 1}, and for all i, at least one of ri and ri+1 is zero.

Definition 5.15. Given n ∈ ω, the Zeckendorf representation of n n∗ is the unique sequence {ri}
guaranteed by Theorem 5.14.

Definition 5.16. Fn is the infinite word formed by removing the first n bits of F . That is,

Fn := F [n :].

Lemma 5.17 ([10] Theorem 3.2). 1 Let n1 and n2 be natural numbers with n1 ̸= n2. Let n∗1 =

r0r1 . . . and let n∗2 = s0s1 . . . . If it exists, let p be such that ri = si for all i ≤ p and rp+1 ̸= sp+1.

Then, the length of the longest common prefix of Fn1 and Fn2 is

p∑
i=0

(1− ri)Fi.

Lemma 5.18. For all n ≥ 1, (Fn − 1)∗ =

(10)
n+1
2 0ω n odd

(01)
n
2 0ω n even

Proof. It is a classic result that

n∑
i=0

F2i−1 = F2n − 1 and that

n∑
i=0

F2i = F2n+1 − 1; in particular,

this can be seen by observing the telescoping series F2i−1 = F2i − F2(i−1). The proof then follows

immediately from the definition of Zeckendorf representations.

Lemma 5.19. For all n ≥ 2, Fn−2 is a subword of Fn.

Proof. Fn+1 = FnFn−1 = (Fn−1Fn−2)Fn−1, so the result follows by induction.

1In their paper, Chuan and Ho use 1-based indices, i.e. consider w1 to be the first letter of the word w1w2 . . . . The
relevant indices in their result are adjusted so as to not conflict with the precedence of 0-based indices established in
this thesis.
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Theorem 5.20. For all n, D (Fn) = Fn−1.

Proof. D (Fn) ≤ Fn−1 by Lemma 5.19, so it suffices to show that Fn[−(|Fn−1| + 1) :] is not a

subword of Fn[: |Fn−1|−1]. Let u = Fn[−(|Fn−1|+1) :] and let v be a subword of Fn[: |Fn−1|−1].

The goal of the proof will be to use Lemma 5.17 to show that the length of the longest common

prefix of u and v is strictly less than the length of u. By Lemma 5.18, the nonzero initial segment of

the Zeckendorf representation of Fn−1 is either (01)
n+1
2 if n is odd or (10)

n
2 if n is even. Assume n

is even; the case where n is odd is proved analogously. The Zeckendorf representation of words that

agree with (10)
n+1
2 in the greatest number of indices is (10)

n−1
2 ; assume without loss of generality

that that this is the Zeckendorf representation of v. Then, the longest common prefix of v and

F ↾|Fn−1+1| has length

n−1
2∑

i=0

Fn+1
2

= Fn−1 < |u|.

5.3 Pushdown automata and HMM complexity

Definition 5.21. A pushdown automaton is 7-tuple M = (Q,Σ,Γ, δ, q0, Z, F ) where

• Q is a finite set (the states)

• Σ is a finite set (the input alphabet)

• Γ is a finite set (the stack alphabet)

• δ : Q× (Σ ∪ {ϵ})× Γ → Q× Γ∗ is a function (the transition function)

• q0 ∈ Q is the start state

• Z ∈ Γ is the initial stack symbol

• F ⊆ Q is the set of accepting states

Intuitively, a pushdown automaton is a DFA with a fixed, finite amount of memory (the stack).

In contrast to a DFA, whose transition function only depends on the current state and the last

symbol seen, a pushdown automaton transitions based on the current state, last symbol seen, and

earlier symbols that were recorded on the stack.

Recall that Section 3.2.2 established the regularity of the language family

Ln = {w : D(w) = n}

The main result of this section will be the explicit construction of a family of pushdown automata

that recognizes Ln for each n. The existence of such a family of pushdown automata is guaranteed,

as pushdown automata can recognize a strictly larger class of languages than DFAs. However, while

the DFAs implicitly constructed in Section 3.2.2 to recognize Ln grow exponentially in n, it will be
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shown that it is sufficient to increase the number of states and stack size linearly to create a family

of pushdown automata that recognize Ln.

A pushdown automaton accepts a language analogously to how a DFA accepts a language.

However, the added complexity of a stack requires an auxiliary definition to formally define what

it means for a pushdown automaton to accept a language.

Definition 5.22. Let P be a pushdown automaton with states Q, input alphabet Σ, and stack Γ.

A configuration of P is an element of Q× Σ∗ × Γ∗.

Let (q, aw,Xα) and (p, w, βα) be configurations of P , where q ∈ Q, a ∈ Σ∪{ϵ}, w ∈ Σ∗, X ∈ Γ,

α, β ∈ Γ∗. Write

(q, aw,Xα) ⊢ (p, w, βα)

if there exists a transition (p, β) ∈ δ(q, a,X). Let ⊢∗ be the reflexive and transitive closure of ⊢∗.

Definition 5.23. Let P be a pushdown automaton and let L ⊆ Σ∗. P accepts L if

L = {x ∈ Σ∗ : ∃q ∈ F, α ∈ Γ∗, (q0, x, Z) ⊢∗ (q, ϵ, α)}

where Z is the initial stack symbol of P .

This section will focus on a special subclass of pushdown automata.

Definition 5.24. A 2-stack pushdown automaton is a pushdown automaton such that Γ is replaced

by Γ× Γ for some stack alphabet Γ.

Replacing Γ with Γ× Γ allows a 2-stack pushdown automaton to record data and write to two

separate stacks. Note that a 2-stack pushdown automaton with unbounded stack size is equivalent

to a Turing machine. For the rest of this section, all pushdown automata will be assumed to be

2-stack pushdown automata.

Theorem 5.25. Let P be a pushdown automaton. Let Γ be its stack and assume that |Γ| = n,

i.e. that the stack will never grow beyond height n. Fix a state q ∈ Q \ F and assume that for all

w ∈ Σ∗ and α ∈ Γ∗,

{(p, u, β) ∈ Q× Σ∗ × Γ∗ : (q, w, α) ⊢∗ (p, u, β)} = {(q, w, α)}

Consider the following algorithm:

1. Push the first n letters seen onto the first stack.

2. Pop the first stack onto the second stack.

3. For the next n letters, let x ∈ Σ be the letter seen. Pop a letter off the second stack; call this

letter y. If x = y, push x onto the first stack.
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4. Pop the first stack onto the second stack.

5. Determine whether the word on the second stack is primitive. If it is not, or if the second

stack is empty, transition to state q. Otherwise, continue.

6. Let k be the length of the word on the second stack. While there are more letters to be seen:

(a) If the second stack is not empty, let x be the next letter seen. Pop a letter off the second

stack and call this letter y. If x = y, push x onto the first stack. Otherwise, transition

to state q.

(b) Otherwise, pop the first stack onto the second stack.

Then P recognizes Ln.

Proof. w ∈ Ln if and only if w = uvp for some words u and v with |u|+|v| = n and |u|+|v| minimal.

On input of a word w = uvp, P writes uv to the stack, then searches the next n letters to see if

w continues with another copy of v, for any possible v. If not, then w does not have complexity n

and P correctly rejects w. If v is not primitive, then w can be written as uv′p for v′ ⪯ v and v′ ̸= v,

so D(w) < n and P correctly rejects w. Having established a candidate v, P then checks to see if

the rest of w is composed of copies of v, accepting w if it is and rejecting if it is not.

5.4 Effective witnesses of deterministic HMM complexity

The results in this chapter and before have been focused on the properties of HMM complexity

and formulas to count the number of words of various classes defined via HMM complexity. This

section will focus on the effectiveness of those results and of new ones.

Theorem 5.26. Let w be a word with D(w) > n for some n. Then, for any HMM H, it can be

verified that H does not witness that D(w) ≤ n in O(n2) time.

Proof. Input w on H. For each i < |w|, let u = w ↾ i. Then, continue running w[i :] on H to verify

that there does not exist v ⪯ w[i :] such that |u|+ |v| ≤ n and uvp = w, for some p ∈ Q.

Theorem 5.27 below is analogous to Theorem 5.26: Theorem 5.26 views complexity in terms of

states of a witnessing HMM, while Theorem 5.27 is concerned with the structure of the word itself.

Theorem 5.27. Let w be a word |w| = n. A decomposition (u, v) of w can be found in O(n2) time.

Proof. As in the proof of Theorem 5.26, loop through w to find potential starting indices i of v;

then loop through w[i :] see if (w ↾ i, w[i :]) is a decomposition.
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Theorem 5.26 and Theorem 5.27 are worst-case bounds that cover all possible cases of HMM

complexity. Many results so far have indirectly proven sharper bounds, which will be made explicit

below.

Recall that Fn are the Fibonacci words defined in Definition 5.12 and that F is the infinite

Fibonacci word defined in Definition 5.13.

Theorem 5.28. For all n ≥ 3, a decomposition of Fn can be found in O(1) time.

Proof. Theorem 5.20 implies that a decomposition of Fn is (ϵ,Fn−1), and the index of Fn−1 in Fn

can be found via the closed-form formula of the Fibonacci numbers.

Theorem 5.29. Given a word w, a word x of length O(|u|) can be found in O(|w|3) time such that

D(wx) > |wx|
2 .

Proof. This result is an effectivzation of the proof of Theorem 5.7. A decomposition (u, v) of w

with uvp = w can be found in O(|w|2) time by Theorem 5.27. Let v′ be such that v′ is not a cyclic

shift of v; such a word can be found in O(|w|) time. Let n be large enough so that n ≥ p and

(n+ 1)|v| > |u|, which can be found in O(1) time. Then D(wvnv′) > |wvnv′|
2 by Theorem 5.27.
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