
ON NEURAL ARCHITECTURES FOR
SEGMENTATION IN NATURAL AND

MEDICAL IMAGES

by

Qihang Yu

A dissertation submitted to Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

February, 2023

© 2023 Qihang Yu

All rights reserved

Abstract

Segmentation is an important research field in computer vision. It requires recognizing and

segmenting the objects at the pixel level. In the past decade, many deep neural networks

have been proposed, which have been central to the development in this area. These

frameworks have demonstrated human-level or beyond performance on many challenging

benchmarks, and have been widely used in many real-life applications, including surveil-

lance, autonomous driving, and medical image analysis. However, it is non-trivial to design

neural architectures with both efficiency and effectiveness, especially when they need to be

tailored to the target tasks and datasets.

In this dissertation, I will present our research works in this area from the following

aspects. (i) To enable automatic neural architecture design on the costly 3D medical image

segmentation, we propose an efficient and effective neural architecture search algorithm that

tackles the problem in a coarse-to-fine manner. (ii) To further take advantage of the neural

architecture search, we propose to search for a channel-level replacement for 3D networks,

which leads to strong alternatives to 3D networks. (iii) To perform segmentation with great

detail, we design a coarse-to-fine segmentation framework for matting-level segmentation;

(iv) To provide stronger features for segmentation, we propose a stronger transformer-based

backbone that can work on dense tasks. (v) To better resolve the panoptic segmentation

ii

problem in an end-to-end manner, we propose to combine transformers with the traditional

clustering algorithm, which leads to a more intuitive segmentation framework with better

performance.

iii

Thesis Readers

Dr. Alan L. Yuille (Primary Advisor)
Bloomberg Distinguished Professor
Department of Computer Science
Johns Hopkins University

Dr. Vishal Patel
Associate Professor
Electrical and Computer Engineering department
Johns Hopkins University

Dr. Wei Shen
Associate Professor
Artificial Intelligence Institute
Shanghai Jiao Tong University

iv

Acknowledgments

First and foremost, I want to express thanks to my advisor Prof. Alan Yuille for his patience,

guidance, and support during my journey as a Ph.D. student. I began as a summer intern

working with him. During the internship, I was deeply impressed by his great passion

and insightful thoughts. It was this experience that made me decide to pursue computer

vision research. I am more than lucky to have such a great mathematician and computer

scientist as my advisor who guided me to be more than a researcher. Alan has been working

hard to enrich the research collaboration and discussion in the lab, and he also has been

helping us with our research and career developments. There is no doubt that I benefit a

lot from his careful guidance. Next, I would like to thank Prof. Wei Shen for teaching me

the fundamentals of computer vision and providing consistent support and guidance on my

research on medical imaging and vision transformer. I thank Dr. Lingxi Xie for mentoring

my projects and teaching me great research practices.

Besides, I would like to thank my thesis committee, Prof. Alan Yuille, Prof. Vishal

Patal, and Prof. Wei Shen. I am also grateful to Prof. Rama Chellappa, Prof. Yinzhi Cao,

Prof. Mick Bonner, and Prof. Rene Vidal for serving on my GBO committee and providing

valuable suggestions. I would also like to thank Zachary Burwell, MaDonna Perry, and

Kim Franklin for scheduling my GBO and helping on completing my degree requirements.

v

I am fortunate to have three great internships in NVIDIA, Adobe, and Google respec-

tively. I am grateful for my received mentorship from Dong Yang, Holger Roth, Daguang

Xu at NVIDIA, Jianming Zhang, He Zhang, Yilin Wang, Ning Xu, and Zhe Lin at Adobe,

Liang-Chieh Chen, Yukun Zhu, Maxwell Collins, and Hartwig Adam at Google. They

help me pursue a higher research quality, and also learn the differences between academic

research and industry research.

During my Ph.D. journey, I am lucky to work with a group of talented and passionate

people at CCVL. I appreciate the numerous discussions, suggestions, and collaborations. I

would like to thank Lingxi, Wei, Yan, Adam, Yongyi, Weichao, Zhuotun, Chenxi, Zhishuai,

Siyuan, Cihang, Yuyin, Qing, Chenxu, Huiyu, Qi, Yi, Yingda, Hongru, Fengze, Yingwei,

Yixiao, Jieru, Zhuowan, Zihao, Chenglin, Yutong, Angtian, Chen, Jieneng, Ju, Shuhao,

Yihong. Especially, I would like to thank everyone in FELIX project, including Yingda,

Linda, Satomi, Seyoun, Fengze, Jieneng, Zhuotun, Yongyi, Yan, Wei, Lingxi, Yuyin,

Kenneth, Bert, and Elliot.

Finally, I would like to acknowledge my parents, Xiaowei Yu and Hui Zeng, for their

unconditioned love and support. I can never be here and pursue my research dream without

their support and education.

vi

Contents

Abstract ii

Acknowledgments v

Contents vii

List of Tables xiii

List of Figures xvii

1 Introduction 1

1.1 Neural Architecture Search for Efficient and Effective 3D Segmentation

Models . 2

1.2 Coarse-to-Fine Framework for Accurate and Reliable Segmentation . . . 4

1.3 Segmentation as Clustering through Mask Transformers 6

1.4 Relevant Publications . 8

2 C2FNAS: Coarse-to-Fine Neural Architecture Search for 3D Medical Image

vii

Segmentation 11

2.1 Introduction . 12

2.2 Related Work . 15

2.2.1 Medical Image Segmentation 15

2.2.2 Neural Architecture Search . 16

2.3 Coarse-to-Fine Neural Architecture Search 17

2.3.1 Inconsistency Problem . 17

2.3.2 Coarse-to-fine Neural Architecture Search 18

2.3.3 Coarse Stage: Macro-level Search 20

2.3.4 Fine Stage: Micro-level Search 23

2.4 Experiments . 25

2.4.1 Implementation Details . 26

2.4.2 Segmentation Results . 30

2.5 Ablation Study . 31

2.5.1 Coarse Stage versus Fine Stage 31

2.5.2 Search on Different Datasets . 33

2.5.3 Incorporate Model Scaling as Third Stage 33

2.6 Conclusions . 34

3 CAKES: Channel-wise Automatic KErnel Shrinking for Efficient 3D Networks 35

3.1 Introduction . 35

viii

3.2 Related Work . 38

3.2.1 Efficient 3D Convolutional Neural Networks 38

3.2.2 Neural Architecture Search . 39

3.3 Method . 40

3.3.1 Revisit Variants of 3D Convolution 40

3.3.2 Kernel Shrinking as Path-level Selection 42

3.3.3 Channel-wise Shrinkage . 44

3.3.4 Search for an Efficient Replacement 45

3.4 Experiments . 48

3.4.1 3D Medical Image Segmentation 48

3.4.2 Action Recognition in Videos 52

3.5 Conclusions . 57

4 Mask Guided Matting via Progressive Refinement Network 59

4.1 Introduction . 59

4.2 Related Work . 62

4.3 MG Matting . 65

4.3.1 Progressive Refinement Network 66

4.3.2 Foreground Color Estimation . 69

4.4 Experiments on Synthetic Datasets . 70

4.5 Experiments on Real-world Portrait Dataset 77

ix

4.6 Conclusion . 81

5 Glance-and-Gaze Vision Transformer 82

5.1 Introduction . 82

5.2 Related Work . 85

5.3 Method . 87

5.3.1 Revisit Vision Transformer . 88

5.3.2 Glance: Efficient Global Modeling with Adaptively-dilated Splitting 90

5.3.3 Gaze: Compensating Local Relationship with Depthwise Convolution 92

5.3.4 Network Instantiation . 93

5.4 Experiments . 94

5.4.1 ImageNet Classification . 94

5.4.2 ADE20K Semantic Segmentation 96

5.4.3 COCO Object Detection . 97

5.4.4 Ablation Studies . 99

5.5 Limitation . 102

5.6 Conclusion . 103

6 CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation 104

6.1 Introduction . 104

6.2 Related Works . 109

6.3 Method . 110

x

6.3.1 Transformers for Panoptic Segmentation 110

6.3.2 Current Issues and New Clustering Perspective 113

6.3.3 Clustering Mask Transformers 114

6.3.4 Network Instantiation . 119

6.4 Experimental Results . 121

6.4.1 Main Results . 122

6.4.2 Ablation Studies . 124

6.5 Conclusion . 127

7 k-means Mask Transformer 128

7.1 Introduction . 128

7.2 Related Works . 131

7.3 Method . 133

7.3.1 Mask-Transformer-Based Segmentation Framework 133

7.3.2 Relationship between Cross-Attention and k-means Clustering . . 135

7.3.3 k-means Mask Transformer . 137

7.4 Experimental Results . 141

7.4.1 Implementation Details . 141

7.4.2 Main Results . 144

7.5 Conclusion . 150

8 Conclusion 152

xi

8.1 Summary . 152

8.2 Future Work . 153

8.2.1 Unsupervised Object-Centric Tokenization. 153

8.2.2 Unified Model across Tasks and Modalities. 154

Bibliography 155

Vita 190

xii

List of Tables

2.1 Comparison with state-of-the-art methods on MSD challenge test set (num-

ber from MSD leaderboard) measured by Dice-Sørensen coefficient (DSC).

* denotes the 5-fold model ensemble. The numbers of tasks hepatic vessel,

spleen, and colon from other teams are rounded. We also report the average

on tasks and on targets respectively for an overall comparison across all

tasks/targets. 28

2.2 Comparison of parameters and FLOPs with other 3D networks. The FLOPs

are calculated based on input size 96× 96× 96. 29

2.3 Comparison with different stages and different proxy datasets on 5-fold

cross-validation. 30

2.4 Influence of model scaling, the number in the first column indicates the

scale factor applied to model C2FNAS-Panc. The results are based on

single fold of validation set and the final searched model on pancreas dataset. 34

xiii

3.1 Comparison among different operations and configurations. The subscripts

of 1D, 2D, and 3D indicate the dimensions of the operations being used.

The superscripts of “M", “P", “C" represent “Manual", “Performance-

Priority", and “Cost-Priority" respectively. 49

3.2 Comparison with prior arts on the NIH dataset. 50

3.3 Comparison among operations and configurations for ResNet50 backbone

in terms of parameter number, computation amount (FLOPs), and perfor-

mance on Something-Something V1 dataset. 52

3.4 Comparing CAKES against other methods on Something-Something V1

dataset. We mainly consider the methods that adopt convolutions in a

fully-connected manner and only take RGB as input for a fair comparison. 53

4.1 Results on Composition-1k test set. The subscripts denote the correspond-

ing guidance inputs, i.e., TrimapFG, Trimap. The other evaluated methods

all require a trimap as input. 71

4.2 Matting refinement results on Distinction-646 test set. Results with ∗ are

from methods trained on Distinction-646 train set as reported in [176] for

reference. Other results are only trained on composition-1k. 72

4.3 The foreground result (α · F) on the Composition-1k dataset. 73

4.4 Ablation studies on Composition-1k dataset. Baselines: a ResNet34-UNet

with ASPP; Deep supervision: adding side outputs and deep supervisions;

Fusion Conv: using convolutions to combine different outputs. 73

4.5 Results on Real-world Portrait test set. 77

xiv

5.1 Comparison of different models on ImageNet-1K classification. 95

5.2 Performance comparisons with different backbones on ADE20K validation

dataset. FLOPs is tested on 1024×1024 resolution. All backbones are

pretrained on ImageNet-1k. 97

5.3 Object detection and instance segmentation performance on the COCO

val2017 dataset using the Mask R-CNN framework. P(Params)/F(FLOPs)

is evaluated with Mask R-CNN architecture on a 1280×800 image. . . . 98

5.4 Choices of Gaze Kernels. 99

5.5 Comparison among different self-attentions. Gaze (Conv) uses kernels of

Fixed-(3,3,3,3). 99

5.6 Applying GG-MSA to DeiT backbone. 99

6.1 Results comparison on COCO val and test-dev set. TTA: Test-time aug-

mentation. ‡: ImageNet-22K pretraining. We provide more comparisons

with concurrent works in the supplementary materials. 121

6.2 CMT-DeepLab ablation experiments. Results are reported in an accumula-

tive manner. 122

6.3 Ablation on input resolution, backbone, and training iterations. ImageNet-

22K, mask-wise merge are used for all results. 123

xv

7.1 COCO val set results. Our FLOPs and FPS are evaluated with the input size

1200× 800 and a Tesla V100-SXM2 GPU. †: ImageNet-22K pretraining.

⋆: Using 256 object queries with drop query regularization. ‡: Using

COCO unlabeled set . 145

7.2 Cityscapes val set results. We only consider methods without extra data [138,

164] and test-time augmentation for a fair comparison. We evaluate FLOPs

and FPS with the input size 1025× 2049 and a Tesla V100-SXM2 GPU.

Our instance (AP) and semantic (mIoU) results are based on the same

panoptic model (i.e., no task-specific fine-tuning). †: ImageNet-22K pre-

training . 148

7.3 ADE20K val set results. Our FLOPs and FPS are evaluated with the

input size (641× 641 or 1281× 1281) and a Tesla V100-SXM2 GPU. †:

ImageNet-22K pretraining. The input size for kMaX-DeepLab is shown in

the parentheses . 149

xvi

List of Figures

2.1 Image and mask examples from MSD tasks (from left to right and top to

bottom): brain tumours, lung tumours, hippocampus, hepatic vessel and

tumours, pancreas tumours, and liver tumours, respectively. The abnormal-

ities, texture variance, and anisotropic properties make it very challenging

to achieve satisfying segmentation performance. Red, green, and blue

correspond to labels 1, 2, and 3, respectively, of each dataset. 13

2.2 An illustration of proposed C2FNAS. Each path from the left-most node to

the right-most node is a candidate architecture. Each color represents one

category of operations, e.g. depthwise conv, dilated conv, or 2D/3D/P3D

conv which are more common in medical image area. The dotted line

indicates skip connections from the encoder to decoder. The macro-level

topology is determined by coarse stage search, while the micro-level opera-

tions are further selected in fine stage search. 13

xvii

2.3 An example of how introduced priors help reduce search space. The grey

nodes are eliminated entirely from the graph. Besides, many illegal paths

have been pruned off as well. An example of an illegal path and a legal

path is shown as the orange line path and green line path separately. . . . 20

2.4 Proportion of clusters sampled during searching at the coarse stage. This

figure illustrates the effectiveness of the proposed evolutionary searching

algorithm. Different clusters are in different colors. The x-axis label

“Evaluated Network Number" means the total number of networks trained

and evaluated, while the y-axis label “Cluster Proportion" is the proportion

of the number of networks belonging to a specific cluster to the total number

of evaluated networks. It is shown that the algorithm gradually focuses on

the most promising cluster 1, making the search procedure more efficient. 22

2.5 Left: The final architecture of C2FNAS-Panc. Red, green, and blue denote

cell with 2D, 3D, P3D operations separately. Right: The structure of a cell

with single input and two inputs. 25

2.6 The visualization comparison between state-of-the-art methods (1st and 2nd

teams) and C2FNAS-Panc on MSD test sets. We visualize one case from

each of the three most challenging tasks: pancreas and pancreas tumours,

colon cancer, and lung tumours. Red denotes abnormal pancreas, colon

cancer, and lung tumours respectively, and green denotes pancreas tumours.

The case id and dice score of C2FNAS-Panc are at the bottom. 32

xviii

3.1 CAKES shows better accuracy-cost trade-off on both 3D medical image

segmentation (left) and action recognition (right) tasks. 37

3.2 (a) Various sub-kernels of the same 3D kernel. (b) Representation of 3D

kernel as a weighted summation of sub-kernels. (c) Path-level selection. . 43

3.3 An illustrative example of comparison between different types of convo-

lution in a residual block [92]. (a) 2D Convolution. (b) 3D Convolution.

(c) P3D Convolution. (d) the proposed CAKES. In our case, starting from

a 3D convolution, the 3D operation at each channel is replaced with an

efficient sub-kernel. 44

3.4 The searched architecture of CAKESC on medical data and video data.

Each color represents a type of sub-kernel. The heights of these blocks

are proportional to their ratios in the corresponding convolution layer. The

beginning and ending 1× 1× 1 convolutions at each residual block are not

visualized. 57

3.5 The searched architecture of CAKESP on medical data and video data.

Each color represents a type of sub-kernel. The heights of these blocks

are proportional to their ratios in the corresponding convolution layer. The

beginning and ending 1× 1× 1 convolutions at each residual block are not

visualized. 58

xix

4.1 A visual comparison of MG and other matting methods including the com-

mercial matting method in PhotoShop. The guidance input (see Sec. 4.5 for

details.) is located at the bottom-left of each image. Note that BSHM [142]

has an internal segmentation prediction network and thus does not take the

external mask. Best viewed zoomed in. 61

4.2 The proposed PRN. The network predicts alpha matte at multiple reso-

lutions, while the one at lower resolution provides guidance about the

uncertain regions to be refined in the next prediction. 64

4.3 The color labels in the commonly used training data from [242] are noisy

and inaccurate, especially near the boundary part. Note that the hair near

the ear falsely gets pinker. Best viewed in color and zoomed in. 69

4.4 A visual comparison of foreground color decontamination. Each column

from left to right: Input image and ground truth α · F, Foreground color

prediction and α · F of [97], predictions of our model with random alpha

blending. Note that the background color is mixed into the prediction

of [97], while our model can estimate a more smooth foreground color map

and be more robust. 75

xx

4.5 The visual comparison results among different methods on our portrait test

set. We visualize representative examples with both high-quality studio-

level portraits and selfies with strong noises. MG Mating performs well

on different-quality images and can maintain details. We note that our

results, though only trained on composition-1k, are not only superior to

previous state-of-the-art but also produce comparable or better results than

commercial methods in PhotoShop. 76

4.6 Our model is robust given different quality guidance masks and produces

consistent alpha estimation. 79

5.1 Toy examples illustrating different methods to reduce computation and

memory cost of self-attention. (a) Spatial reduction [224, 67] spatially

downsamples the feature map; (b) Local window [149] restricts self-

attention inside local windows; (c) Glance attention (ours) applies self-

attention to adaptively-dilated partitions. 87

5.2 A visual illustration of GG Transformer block, where the Glance and Gaze

branches parallely extract complementary information. 88

6.1 Our CMT-DeepLab generates denser cross-attention maps than MaX-

DeepLab [217]. The visualization is based on the last transformer layer

with averaged multi-head attentions. 105

xxi

6.2 Panoptic segmentation from a clustering perspective. In the proposed

Clustering Mask Transformer (CMT) layer, pixels are assigned to cluster

centers based on the feature affinity, and the clustering results are used to

update both pixel features and cluster centers. After several CMT layers, a

refined pixel-cluster assignment is obtained, resulting in the final panoptic

mask. 108

6.3 A visual illustration of Clustering Mask Transformer layer, where three

variables are updated in a dynamic manner based on the clustering re-

sults: pixel features, cluster centers, and pixel-cluster affinity. Details of

assignment and update steps are illustrated in Fig. 6.4. 111

6.4 Detailed visual illustration of pixel-cluster assignment (left), cluster centers

update (middle), and pixel features update (right). The tensor shapes are

specified for illustration. 115

6.5 Visualization of clustering results at different stages (i.e., transformer lay-

ers), with last column for reference masks. The clustering results, providing

denser attention maps, are close-to-random at the beginning and are gradu-

ally refined to focus on corresponding object. 124

7.1 To convert a typical transformer decoder into our kMaX decoder, we simply

replace the original cross-attention with our k-means cross-attention (i.e.,

with the only simple change cluster-wise argmax high-lighted in red) . . 139

xxii

7.2 The meta architecture of k-means Mask Transformer consists of three com-

ponents: pixel encoder, enhanced pixel decoder, and kMaX decoder. The

pixel encoder is any network backbone. The enhanced pixel decoder in-

cludes transformer encoders to enhance the pixel features, and upsampling

layers to generate higher resolution features. The series of kMaX decoders

transform cluster centers into (1) mask embedding vectors, which multi-

ply with the pixel features to generate the predicted masks, and (2) class

predictions for each mask. 140

7.3 An illustration of kMaX-DeepLab with ResNet-50 and MaX-S as back-

bones. The hidden dimension of FFN is 256. The design of kMaX-DeepLab

is general to different backbones by simply updating the pixel encoder

(marked in dark-blue). The enhanced pixel decoder and kMaX decoder are

colored in light-blue and yellow, respectively 141

7.4 Visualization of kMaX-DeepLab (ResNet-50) pixel-cluster assignments

at each kMaX decoder stage, along with the final panoptic prediction. In

the cluster assignment visualization, pixels with same color are assigned

to the same cluster and their features will be aggregated for updating

corresponding cluster centers . 150

xxiii

7.5 Visualization of kMaX-DeepLab (ResNet-50) pixel-cluster assignments

at each kMaX decoder stage, along with the final panoptic prediction.

kMaX-DeepLab shows a behavior of recognizing objects starting from

their parts to their the whole shape in the clustering process. For example,

the elephant’s top head, body, and nose are separately clustered at the

beginning, and they are gradually merged in the following stages 151

xxiv

Chapter 1

Introduction

Computer vision targets semantically understanding the input visual signals. The inputs can

be in 2D or 3D, such as 2D natural images and 3D medical images. Various information

is extracted from the inputs, and one of the most intuitive and informative outputs is the

segmentation mask, which densely labels every pixel with its associated semantic class.

This helps recognize and localize the objects in the complex scene and provides useful cues

for further analysis and diagnosis.

In recent years, deep neural networks have been dominant in many computer vision

tasks, including image classification [92], object detection [89], pose estimation [206],

action recognition [221], etc. In the domain of segmentation tasks, since the pioneering

works of FCN [153], many neural architectures have been proposed to further push the

quality of segmentation masks. Nonetheless, the neural architectures usually need to be

modified accordingly when applied to different tasks or datasets for optimal performance,

which is usually non-trivial and requires experts’ efforts. On the other hand, despite the

1

promising results achieved by current deep learning frameworks, there still lacks an end-to-

end framework with an intuitive mechanism for complex segmentation problems, especially

when it comes to panoptic segmentation [115], where heuristic post-processing and merging

are usually used to obtain the final results.

In this dissertation, I aim to present our research for efficient and effective segmentation

models. This dissertation consists of three parts. In part I, I will present our efforts in

designing neural architecture search algorithms for efficient and effective 3D segmentation

models. These algorithms aim to get rid of inconsistency problems between searching and

deployment, which is even more serious when it comes to the 3D scenario that has a higher

memory and computation demand. Besides, the found architectures not only show better

accuracy-cost trade-offs but also show a better generalization ability. In part II, I will discuss

our works incorporating the coarse-to-fine mechanism into the segmentation framework,

which enables segmentation with refined details and fine-grained features. In part III, I

will introduce our efforts in rethinking the mask transformer from a clustering perspective,

where we unify the challenging panoptic segmentation problem and transformers as a

process of iterative clustering assignment and updates. The proposed models in all three

parts will be evaluated on supervised learning tasks including image classification and

segmentation.

1.1 Neural Architecture Search for Efficient and Effective
3D Segmentation Models

Part I of this dissertation focuses on how to design neural architecture search algorithms for

3D segmentation, which enables automatic designs of 3D segmentation models and gets rid

2

of the heavy need for experts’ involvement.

In Chapter 2, we will try to resolve the inconsistency problem during searching and

deployment in neural architecture search, especially for 3D medical image segmentation.

Though Neural Architecture Search (NAS) has shown promising results in finding networks

with better accuracy-cost trade-off automatically, it also incurs a huge computation cost

during the searching process. This is especially serious when it comes to the 3D data

and dense prediction task, which further increases the computation and memory costs.

In C2FNAS [258], we propose to disentangle the search space into topology-level and

operation-level, and design searching methods tailored for each space respectively. By

doing so, the search costs are significantly reduced, which is desired especially for 3D

medical image segmentation. We further propose a topology prior and clustering-based

method to further reduce the searching costs. Our contributions can be summarized into 3

folds: (1) we search a 3D segmentation network from scratch in a coarse-to-fine manner

without sacrificing network size or input size; (2) we design the specific search space and

search method for each stage based on medical image segmentation priors; (3) our model

achieves state-of-the-art performance on 10 datasets from MSD challenge and shows great

robustness and transfer-ability.

In Chapter 3, we will go beyond the topology and operation-level search. 3D Convolu-

tion Neural Networks (CNNs) have been widely applied to 3D scene understanding, such

as video analysis and volumetric image recognition. However, 3D networks can easily lead

to over-parameterization, which incurs expensive computation costs. In CAKES [251],

we propose Channel-wise Automatic KErnel Shrinking (CAKES), to enable efficient 3D

learning by shrinking standard 3D convolutions into a set of economic operations (e.g.,

3

1D, 2D convolutions). Unlike previous methods, CAKES performs channel-wise kernel

shrinkage, which enjoys the following benefits: 1) enabling operations deployed in every

layer to be heterogeneous so that they can extract diverse and complementary information

to benefit the learning process; and 2) allowing for an efficient and flexible replacement

design, which can be generalized to both spatial-temporal and volumetric data. As a result,

CAKES shows superior performance to other methods with similar model sizes, and it

also achieves comparable performance to state-of-the-art with much fewer parameters and

computational costs on tasks including 3D medical imaging segmentation and video action

recognition.

1.2 Coarse-to-Fine Framework for Accurate and Reliable
Segmentation

Part II of this dissertation focuses on introducing coarse-to-fine mechanisms when designing

segmentation frameworks, which improves the segmentation quality with refined details

and leads to better features.

In Chapter 4, we study the problem of image matting, which is a fundamental computer

vision problem which aims to predict an alpha matte to precisely cut out an image region.

Recently, researchers start to study the matting problem in a trimap-free setting. One

direction is to get rid of any external guidance, and hope that the matting model can capture

both semantics and details by end-to-end training on large-scale datasets. Nevertheless,

these methods are faced with the generalization challenge due to the lack of semantic

guidance when tested on complex real-world images. In this work, we introduce a Mask

Guided (MG) Matting [261] method which takes a general coarse mask as guidance. MG

4

Matting is very robust to the guidance input and can obtain high-quality matting results

using various types of mask guidance such as a trimap, a rough binary segmentation mask

or a low-quality soft alpha matte. To achieve such robustness to guidance input, we propose

a Progressive Refinement Network (PRN) module, which learns to provide self-guidance

to progressively refine the uncertain matting regions through the decoding process. To

further enhance the robustness of our method to external guidance, we also develop a

series of guidance mask perturbation operations including random binarization, random

morphological operations, and also a stronger perturbation CutMask to simulate diverse

guidance inputs during training. In addition to alpha matting prediction, we also revisit

the foreground color prediction problem for matting. Without accurately recovering the

foreground color in the transparent region, the composited image will suffer from the

fringing issue. We note that the foreground color labels in the widely-used dataset DIM are

suboptimal for model training due to the labeling noise and limited diversity. As a simple

yet effective solution, we propose Random Alpha Blending (RAB) to generate synthetic

training data from random alpha mattes and images. We show that such simple method

can improve the foreground color prediction accuracy without requiring additional manual

annotations. As a result, combining with the proposed PRN, MG Matting is able to generate

more visual plausible composition results.

In Chapter 5, we propose an efficient and effective vision transformer backbone for

extracting strong pixel-level representation given an input image. We propose Glance-

and-Gaze Transformer (GG-Transformer [255]), inspired by the Glance-and-Gaze human

behavior when recognizing objects in natural scenes [60], which takes advantage of both

the long-range dependency modeling ability of Transformers and locality of convolutions

5

in a complementary manner. A GG-Transformer block consists of two parallel branches: A

Glance branch performs self-attention within adaptively-dilated partitions of input images

or feature maps, which preserves the global receptive field of the self-attention opera-

tion, meanwhile reduces its computation cost to a linear complexity as local window

attention [149] does; A Gaze branch compensates locality to the features obtained by the

Glance branch, which is implemented by a light-weight depth-wise convolutional layer.

A merging operation finally re-arranges the points in each partition to their original lo-

cations, ensuring that the output of the GG-Transformer block has the same size as the

input. As a proof-of-concept experiment, we compare original transformer encoder [214],

Swin’s transformer encoder [149], and the proposed Glance-and-Gaze transformer encoder

with the same meta architecture on ImageNet. As a result, Glance-and-Gaze not only

significantly outperforms Swin by 1.78%, but also even surpasses original transformer

encoder by 0.49%, indicating that Glance-and-Gaze transformer encoder does serve as an

efficient and effective alternative for building hierarchical vision transformer backbone.

Our further experimental evaluations show consistent improvements in image classification

on ImageNet[185] (+0.8% top-1 accuracy), object detection on MSCOCO[138] (+0.4%

box AP), and semantic segmentation on ADE20K [277] (+1.9% mIoU).

1.3 Segmentation as Clustering through Mask Transform-
ers

Part III of this dissertation focuses on rethinking the mask transformer from a clustering

perspective, which provides a unified view of the end-to-end segmentation problem.

6

In Chapter 6, we propose a clustering perspective to understand and re-design the trans-

former decoder for grouping pixels into object-level representation. In CMT-DeepLab [252],

which reformulates and further improves the previous end-to-end panoptic segmentation

system [217] from the traditional clustering perspective. The panoptic segmentation result

is naturally obtained by assigning each pixel to its most similar cluster center based on the

feature affinity. In the Clustering Mask Transformer (CMT) module, the pixel features, clus-

ter centers, and pixel-cluster assignments are updated in a manner similar to the clustering

algorithms [151, 1].

In Chapter 7, we further simplify the transformer decoder and better align it to k-

means clustering algorithm. In kMaX-DeepLab [254], we make a crucial observation that

the cross-attention scheme actually bears a strong similarity to the traditional k-means

clustering [151] by regarding the object queries as cluster centers with learnable embedding

vectors. Our examination of the similarity inspires us to propose the novel k-means Mask

Xformer (kMaX-DeepLab), which rethinks the relationship between pixel features and

object queries, and redesigns the cross-attention from the perspective of k-means clustering.

Specifically, when updating the cluster centers (i.e., object queries), our kMaX-DeepLab

performs a different operation. Instead of performing softmax on the large spatial dimension

(image height times width) as in the original Mask Transformer’s cross-attention [217],

our kMaX-DeepLab performs argmax along the cluster center dimension, similar to the

k-means pixel-cluster assignment step (with a hard assignment). We then update cluster

centers by aggregating the pixel features based on the pixel-cluster assignment (computed

by their feature affinity), similar to the k-means center-update step.

7

1.4 Relevant Publications

The following publications contribute to the main idea of this dissertation.

• Chapter 2 - Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao Zhang, Alan

Yuille, Daguang Xu. C2FNAS: Coarse-to-Fine Neural Architecture Search for 3D

Medical Image Segmentation, in CVPR 2020.

• Chapter 3 - Qihang Yu, Yingwei Li, Jieru Mei, Yuyin Zhou, Alan Yuille. CAKES:

Channel-wise Automatic KErnel Shrinking for Efficient 3D Networks, in AAAI

2021.

• Chapter 4 - Qihang Yu, Jianming Zhang, He Zhang, Yilin Wang, Zhe Lin, Ning Xu,

Yutong Bai, Alan Yuille. Mask Guided Matting via Progressive Refinement Network,

in CVPR 2021.

• Chapter 5 - Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan Yuille, Wei Shen.

Glance-and-Gaze Vision Transformer, in NeurIPS 2021.

• Chapter 6 - Qihang Yu, Huiyu Wang, Dahun Kim, Siyuan Qiao, Maxwell Collins,

Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen. CMT-DeepLab: Clus-

tering Mask Transformers for Panoptic Segmentation, in CVPR 2022.

• Chapter 7 - Qihang Yu, Huiyu Wang, Siyuan Qiao, Maxwell Collins, Yukun Zhu,

Hartwig Adam, Alan Yuille, Liang-Chieh Chen. k-means Mask Transformer, in

ECCV 2022.

The other related publications provide contexts for this dissertation:

8

• Qihang Yu, Lingxi Xie, Yan Wang, Yuyin Zhou, Elliot Fishman, Alan Yuille. Recur-

rent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for

Small Organ Segmentation, in CVPR 2018.

• Qihang Yu, Yingda Xia, Lingxi Xie, Elliot Fishman, Alan Yuille. Thickened 2D

Networks for Efficient 3D Medical Image Segmentation.

• Lingxi Xie, Qihang Yu, Yuyin Zhou, Yan Wang, Elliot Fishman, Alan Yuille. Recur-

rent Saliency Transformation Network for Tiny Target Segmentation in Abdominal

CT Scans, in TMI.

• Yixiao Zhang, Xiaosong Wang, Ziyue Xu, Qihang Yu, Alan Yuille, Daguang Xu.

When Radiology Report Generation Meets Knowledge Graph, in AAAI 2020.

• Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie Yang, Cihang Xie, Qihang

Yu, Yuyin Zhou, Song Bai, Alan Yuille. Neural Architecture Search for Lightweight

Non-Local Networks, in CVPR 2020.

• Yingda Xia*, Qihang Yu*, Wei Shen, Yuyin Zhou, Elliot Fishman, Alan Yuille.

Detecting pancreatic ductal adenocarcinoma in multi-phase CT scans via alignment

ensemble, in MICCAI 2020.

• Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng Tang, Wei Shen, Alan Yuille,

Cihang Xie. Shape-Texture Debiased Neural Network Training, in ICLR 2021.

• Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le

Lu, Alan Yuille, Yuyin Zhou. TransUNet: Transformers Make Strong Encoders for

Medical Image Segmentation, in IMLH 2021.

9

• Dahun Kim, Jun Xie, Huiyu Wang, Siyuan Qiao, Qihang Yu, Hong-Seok Kim,

Hartwig Adam, In So Kweon, Liang-Chieh Chen. TubeFormer-DeepLab: Video

Mask Transformer, in CVPR 2022.

• Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xiaoding Yuan, Jie-Neng

Chen, Shuai Liu, Cheng Yang, Qihang Yu, Alan Yuille. PartImageNet: A Large,

High-Quality Dataset of Parts, in ECCV 2022.

• Yingda Xia, Qihang Yu, Linda Chu, Satomi Kawamoto, Seyoun Park, Fengze Liu,

Jieneng Chen, Zhuotun Zhu, Bowen Li, Zongwei Zhou, Yongyi Lu, Yan Wang, Wei

Shen, Lingxi Xie, Yuyin Zhou, Christopher Wolfgang, Ammar Javed, Daniel Fadaei

Fouladi, Shahab Shayesteh, Jefferson Graves, Alejandra Blanco, Eva S Zinreich,

Benedict Kinny-Köster, Kenneth Kinzler, Ralph H Hruban, Bert Vogelstein, Alan L

Yuille, Elliot K Fishman.

10

Chapter 2

C2FNAS: Coarse-to-Fine Neural
Architecture Search for 3D Medical
Image Segmentation

We start with segmentation for 3D medical imaging analysis. These works are part of the

FELIX project [233], which was summarized as a system that works amazingly in early

pancreatic cancer detection. This chapter introduces one of our efforts to automatic 3D

neural architecture design during the FELIX project development stage. As it is usually

difficult and time-consuming to design a specific model for 3D medical image segmentation,

this work can help significantly reduce the search cost and save the times of trial-and-error

process, while leading to a model with better efficiencies and effectiveness. Yet most

existing NAS algorithms were designed for 2D natural images, and applying them to

3D scenarios could incur huge computational costs and a sacrifice is made leading to

inconsistency during search and deployment. Here we try to disentangle the searching

process which yields an algorithm that works better for searching 3D segmentation models.

11

2.1 Introduction

Medical image segmentation is an important pre-requisite of computer-aided diagnosis

(CAD) which has been applied in a wide range of clinical applications. With the emerging

of deep learning, great achievements have been made in this area. However, it remains

very difficult to get satisfying segmentation for some challenging structures, which could

be extremely small with respect to the whole volume, or vary a lot in terms of location,

shape, and appearance. Besides, abnormalities, which result in a huge change in texture,

and anisotropic property (different voxel spacing) make the segmentation tasks even harder.

Some examples are shown in Fig 2.1.

Meanwhile, manually designing a high-performance 3D segmentation network requires

adequate expertise. Most researchers are building upon existing 3D networks, such as 3D

U-Net [52] and V-Net [162], with moderate modifications. In some cases, an individual

network is designed and only works well for a certain task. To leverage this problem, Neural

Architecture Search (NAS) technique is proposed in [290], which aims at automatically

discovering better neural network architectures than human-designed ones in terms of

performance, parameters amount, or computation cost. Starting from NASNet [291],

many novel search spaces and search methods have been proposed [16, 75, 139, 141, 181].

However, only a few works apply NAS on medical image segmentation [112, 229, 285],

and they only achieve a comparable performance versus those manually designed networks.

Inspired by the successful handcrafted architectures such as ResNet [92] and Mo-

bileNet [187], many NAS works focus on searching for network building blocks. However,

12

Figure 2.1: Image and mask examples from MSD tasks (from left to right and top to bottom):
brain tumours, lung tumours, hippocampus, hepatic vessel and tumours, pancreas tumours, and liver
tumours, respectively. The abnormalities, texture variance, and anisotropic properties make it very
challenging to achieve satisfying segmentation performance. Red, green, and blue correspond to
labels 1, 2, and 3, respectively, of each dataset.

Coarse
Stage

Search

Fine
Stage

Search

Figure 2.2: An illustration of proposed C2FNAS. Each path from the left-most node to the right-most
node is a candidate architecture. Each color represents one category of operations, e.g. depthwise
conv, dilated conv, or 2D/3D/P3D conv which are more common in medical image area. The dotted
line indicates skip connections from the encoder to decoder. The macro-level topology is determined
by coarse stage search, while the micro-level operations are further selected in fine stage search.

such works usually search in a shallow network while deploying with a deeper one. An in-

consistency exists in network size between the search stage and deployment stage [38]. [18]

and [82] avoided this problem through activating only one path at each iteration, and [38]

13

proposed to progressively reduce search space and enlarge the network in order to reduce

the performance gap.

Nevertheless, when the network topology is involved in the search space, things become

more complex because no inconsistency is allowed in network size. [139] incorporated the

network topology into search space and relieved the memory tensity instead with a sacrifice

on batch size and crop size. However, on memory-costly tasks such as 3D medical image

segmentation, the memory scarcity cannot be solved by lowering the batch size or cropping

size, since they are already very small compared to those of 2D tasks. Reducing them to a

smaller number would lead to much worse performance and even failure on convergence.

To avoid the inconsistency on network size or input size between the search stage and

deployment stage, we propose a coarse-to-fine neural architecture search scheme for 3D

medical image segmentation (see Fig. 2.2). In detail, we divide the search procedure into

the coarse stage and the fine stage. In the coarse stage, the search is in a small search

space with limited network topologies, therefore searching in a train-from-scratch manner

is affordable for each network. Moreover, to reduce the search space and make the search

procedure more efficient, we constrain the search space under inspirations from successful

medical segmentation network designs: (1) U-shape encoder-decoder structure; (2) Skip-

connections between the down-sampling paths and the up-sampling paths. The search space

is largely reduced with these two priors. Afterwards, we apply a topology-similarity-based

evolutionary algorithm considering the search space properties, which makes the searching

procedure focused on the promising architecture topologies. In the fine stage, the aim is

to find the best operations inside each cell. Motivated by [285], we let the network itself

choose the operation among 2D, 3D and pseudo-3D (P3D), so that it can capture features

14

from different viewpoints. Since the topology is already determined by coarse stage, we

mitigate the memory pressure in single-path one-shot NAS manner [82].

For validation, we apply the proposed method on ten segmentation tasks from MSD

challenge [195] and achieve state-of-the-art performance. The network is searched using

the pancreas dataset which is one of the largest dataset among the 10 tasks. Our result

on this proxy dataset surpasses the previous state-of-the-art by a large margin of 1% on

pancreas and 2% on pancreas tumours. Then, we apply the same model and training/testing

hyper-parameters across the other tasks, demonstrating the robustness and transferability of

the searched network.

Our contributions can be summarized into 3 folds: (1) we search a 3D segmentation

network from scratch in a coarse-to-fine manner without sacrificing network size or input

size; (2) we design the specific search space and search method for each stage based on

medical image segmentation priors; (3) our model achieves state-of-the-art performance on

10 datasets from MSD challenge and shows great robustness and transfer-ability.

2.2 Related Work

2.2.1 Medical Image Segmentation

Deep-learning-based methods have achieved great success in natural image recognition [92],

detection [182], and segmentation [30], and they also have been dominating medical image

segmentation tasks in recent years. Since U-Net was first introduced in biomedical image

segmentation [183], several modifications have been proposed. [52] extended the 2D U-Net

to a 3D version. Later, V-Net [162] is proposed to incorporate residual blocks and soft dice

15

loss. [167] introduced attention modules to reinforce the U-Net model. Researchers also

tried to investigate other possible architectures despite U-Net. For example, [184, 257, 279]

cut 3D volumes into 2D slices and handle them with 2D segmentation network. [146]

designed a hybrid network by using ResNet50 as 2D encoder and appending 3D decoders

afterwards. In [232], 2D predictions are fused by a 3D network to obtain a better prediction

with contextual information.

However, until now, U-Net-based architectures are still the most powerful models in this

area. Recently, [104] introduced nnU-Net and won the first place in Medical Segmentation

Decalthon (MSD) Challenge [195]. They ensemble 2D U-Net, 3D U-Net, and cascaded

3D U-Net. The network is able to dynamically adapt itself to any given segmentation task

by analysing the data attributes and adjusting hyper-parameters accordingly. The optimal

results are achieved with different combinations of the aforementioned networks given

various tasks.

2.2.2 Neural Architecture Search

Neural Architecture Search (NAS) aims at automatically discovering better neural network

architectures than human-designed ones. At the beginning stage, most NAS algorithms

are based on either reinforcement learning (RL) [9, 290, 291] or evolutionary algorithm

(EA) [181, 236]. In RL-based methods, a controller is responsible for generating new

architectures to train and evaluate, and the controller itself is trained with the architecture

accuracy on the validation set as rewards. In EA-based methods, architectures are mutated

to produce better off-springs, which are also evaluated by accuracy on the validation set.

Since the parameter sharing scheme was proposed in [171], more search methods were

16

proposed, such as differentiable NAS approaches [141] and one-shot NAS approaches [16],

which reduced the search cost to several GPU days or even several GPU hours.

Besides the successes NAS has achieved in natural image recognition, researchers also

tried to extend it to other areas such as segmentation [139], detection [75], and attention

mechanism [129]. Moreover, there are also some works applying NAS to the medical

image segmentation area. [285] designed a search space consisting of 2D, 3D, and pseudo-

3D (P3D) operations, and let the network itself choose between these operations at each

layer. [163, 246] use the policy gradient algorithm for automatically tuning the hyper-

parameters and data augmentations. In [112, 229], the cell structure is explored with a

pre-defined 3D U-Net topology.

2.3 Coarse-to-Fine Neural Architecture Search

2.3.1 Inconsistency Problem

Early works of NAS [9, 181, 236, 290, 291] typically use a controller based on EA or RL

to select network candidates from search space; then the selected architecture is trained

and evaluated. Such methods need to train numerous models from scratch and thus lead to

an expensive search cost. Recent works [16, 141] propose a differentiable search method

that reduces the search cost significantly, where each network is treated as a sub-network

of a super-network. However, a critical problem is that the super-network cannot fit into

the memory. For these methods, a trade-off is made by sacrificing the network size at the

search stage and building a deeper one at deployment, which results in an inconsistency

problem. [18] proposed to activate a single path of the super-network at each iteration to

17

reduce the memory cost, and [38] proposed to progressively increase the network size with

a reduced approximate search space. However, these methods also face problems when the

network topology is included in the search. For instance, the progressive manner cannot

deal with the network topology. As for single-path methods, since there exist illegal paths

in network topology, some layers are naturally trained more times compared to others,

which results in a serious fairness problem [50].

A straightforward way to solve the issue is to train each candidate from scratch re-

spectively, yet the search cost is too expensive considering the magnitude of the search

space, which may contain millions of candidates or more. Auto-DeepLab [139] introduces

network topology into search space and sacrifices the input size instead of network size

at the training stage, where it uses a much smaller batch size and crop size. However, it

introduces a new inconsistency at input size to solve the old one at network size. Besides,

for memory-costly tasks such as 3D medical image segmentation, sacrificing input size is

infeasible. The already small input size needs to be reduced to unreasonably smaller to

fit the model in memory, which usually leads to an unstable training problem in terms of

convergence, and the method only yields a random architecture finally.

2.3.2 Coarse-to-fine Neural Architecture Search

In order to resolve the inconsistency in network size and input size, and combine NAS

with medical image segmentation, we develop a coarse-to-fine neural architecture search

method for automatically designing 3D segmentation networks. Without loss of generality,

the architecture search space A consists of topology search space S, which is represented

by a directed acyclic graph (DAG), and cell operation space C, which is represented by the

18

color of each node in the DAG. Each network candidate is a sub-graph s ∈ S with color

scheme c ∈ C and weights w, denoted as N(s, c, w).

Therefore, the search space A is divided into two parts: a small search space of topology

S, and a huge search space of operation C:

A = S × C. (2.1)

The topology search space is usually small and it is affordable to handle the inconsis-

tency by training each candidate from scratch. For instance, the topology search space S

only has up to 2.9× 104 candidates for a network with 12 cells [139]. The operation search

space C can have millions of candidates, but since topology s is given, techniques in NAS

for recognition, e.g. activating only one path at each iteration, are incorporated naturally

to solve the memory limitation. Therefore, by regarding neural architecture search from

scratch as a process of constructing a colored DAG, we divide the search procedure into two

stages: (1) Coarse stage: search at the macro-level for the network topology, and (2) Fine

stage: search for the best way to color each node, i.e. finding the most suitable operation

configuration.

We start with defining the macro-level and micro-level. Each network consists of

multiple cells, which are composed of several convolutional layers. On the macro-level,

by defining how every cell is connected to each other, the network topology is uniquely

determined. Once the topology is determined, we need to define which operation each node

represents. On the micro-level, we assign an operation to each node, which represents the

operation inside the cell, such as standard convolution or dilated convolution.

19

Figure 2.3: An example of how introduced priors help reduce search space. The grey nodes are
eliminated entirely from the graph. Besides, many illegal paths have been pruned off as well. An
example of an illegal path and a legal path is shown as the orange line path and green line path
separately.

With this two-stage procedure, we first construct a DAG representing network topol-

ogy, then assign operations to each cell by coloring the corresponding node in the graph.

Therefore, a network is constructed from scratch in a coarse-to-fine manner. By separating

the macro-level and micro-level, we relieve the memory pressure and thus resolve the

inconsistency problem between the search stage and deployment stage.

2.3.3 Coarse Stage: Macro-level Search

In this stage, we mainly focus on searching the topology of the network. A default operation

is assigned to each cell, specifically standard 3D convolution in this chapter, and the cell is

used as the basic unit to construct the network.

Due to memory constraints and fairness problems, training a super-network and evalu-

ating candidates with a weight-sharing method is infeasible, which means each network

needs to be trained from scratch. The search on the macro-level is formulated into a bi-level

20

optimization with weight optimization and topology optimization:

ws = arg min
w

Ltrain(N(s, c0, w)), (2.2)

s∗ = arg max
s ∈ S

Accval(N(s, c0, ws)), (2.3)

where s represents the current topology and c0 denotes a default coloring scheme, e.g.

standard 3D convolution everywhere, and Ltrain is the loss function used at the training

stage, and Accval the accuracy on the validation set.

It is extremely time-consuming, especially considering that 3D networks have heavier

computation requirements compared with 2D models. Thus, it is necessary to reduce the

search space to make the search procedure more focused and efficient.

We revisit the successful medical image segmentation networks, and we find they

all share something in common: (1) a U-shape encoder-decoder topology and (2) skip-

connections between the down-sampling paths and the up-sampling paths. We incorporate

these priors into our method and prune the search space accordingly. An illustration of how

the priors help prune search space is shown in Fig. 2.3. Therefore, the search space S is

pruned to S′ and the topology optimization becomes:

S′ = PriorPrune(S), (2.4)

s∗ = arg max
s ∈ S′

Accval(N(s, c0, ws)). (2.5)

To further improve the search efficiency, we propose an evolutionary algorithm based

on topology similarity to make use of macro-level properties. The idea is that with an

assumption of continuous relaxation of topology search space, two similar networks should

21

20 30 40 50 60
Evaluated Network Number

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
C

lu
st

er
 P

ro
po

rt
io

n
0
1
2
3
4
5
6
7

Figure 2.4: Proportion of clusters sampled during searching at the coarse stage. This figure
illustrates the effectiveness of the proposed evolutionary searching algorithm. Different clusters
are in different colors. The x-axis label “Evaluated Network Number" means the total number of
networks trained and evaluated, while the y-axis label “Cluster Proportion" is the proportion of the
number of networks belonging to a specific cluster to the total number of evaluated networks. It
is shown that the algorithm gradually focuses on the most promising cluster 1, making the search
procedure more efficient.

also share a similar performance. Specifically, we represent each network topology with a

code, and we define the network similarity as the euclidean distance between two codes.

The smaller the distance is, the more similar the two networks are. Based on the distance

measurement, we classify all network candidates into several clusters with K-means al-

gorithm [151] based on their encoded codes. The evolution procedure is prompted in the

unit of the cluster. In detail, when producing the next generation, we random sample some

22

Algorithm 1 Topology Similarity based Evolution
1: population← all topologies
2: P = {p1, p2, . . . , pk} ← Cluster(population)
3: history H← ∅
4: set of trained models M = {m1, m2, . . . , mk} ← {∅}k

5: for i = 1 to k do
6: model.topology← RandomSample(pi)
7: model.accuracy← TrainEval(model.topology)
8: add model to H and mi
9: while |H| ≤ l do

10: while HasIdleGPU() do
11: model for compare D← ∅
12: for i = 1 to k do
13: add RandomSample(mi) to D

14: rank P based on corresponding accuracy in D

15: model.topology← SampleUntrained(prank1)
16: model.accuracy← TrainEval(model.topology)
17: add model to H and mrank1
18: return highest-accuracy model in H

networks from each cluster, and rank the clusters by comparing the performance of these

networks. The higher rank of a cluster is, the higher proportion of the next generation will

come from this cluster. As shown in Fig. 2.4, the topology proposed by our algorithm grad-

ually falls into the most promising cluster, demonstrating its effectiveness. To better make

use of computation resources, we further implement this EA algorithm in an asynchronous

manner as shown in Algorithm 1.

2.3.4 Fine Stage: Micro-level Search

After the topology of the network is determined, we further search the model at a fine-

grained level by replacing the operations inside each cell. Each cell is a small fully

convolutional module, which takes 1 or 2 input tensors and outputs 1 tensor. Since the

23

topology is pre-determined in the coarse stage, cell i is simply represented by its operations

Oi, which is a subset of the possible operation set O. Our cell structure is much simpler

compared with [139], this is because there is a trade-off between the cell complexity and

cell numbers. Given the tense memory requirement of 3D models, we prefer more cells

instead of a more complex cell structure.

The set of possible operations, O, consisting of the following 3 choices: (1) 3× 3× 3

3D convolution; (2) 3× 3× 1 followed by 1× 1× 3 P3D convolution; (3) 3× 3× 1 2D

convolution;

Considering the magnitude of fine stage search space, training each candidate from

scratch is infeasible. Therefore, to address the problem of memory limitation while making

search efficient, we adopt single-path one-shot NAS with uniformly sampling [82] as our

search method. In detail, we construct a super-network where each candidate is a sub-

network of it, and then at each iteration of the training procedure, a candidate is uniformly

sampled from the super-network and trained and updated. After the training procedure

ends, we perform a random search for the final operation configuration. That is to say, at

the searching stage, we random sample K candidates, and each candidate is initialized with

the weights from the trained super-network. All these candidates are ranked by validation

performance, and the one with the highest accuracy is finally picked.

Therefore, optimization of the fine stage is in single-path one-shot NAS manner with

uniform sampling, which is formulated as:

w = arg min
w

Ec∈ C[Ltrain(S(s∗, c, w))], (2.6)

c∗ = arg max
c

Accval(S(s∗, c, w)), (2.7)

24

2D 3x3x1

3D 3x3x3

P3D 3x3x1 + 1x1x3

Stem 3x3x3

Conv 1x1x1
Conv

2D\3D\P3D
Conv 1x1x1x

Conv 1x1x1
Conv

2D\3D\P3D
x1

Conv 1x1x1
Conv

2D\3D\P3D

Conv 1x1x1

x2

+
3D Conv with Stride = 2

Trilinear Up-sample

Figure 2.5: Left: The final architecture of C2FNAS-Panc. Red, green, and blue denote cell with
2D, 3D, P3D operations separately. Right: The structure of a cell with single input and two inputs.

where C is the search space of fine stage, i.e. all possibles combinations of operations.

After the coarse stage is finished, the topology s∗ is obtained. And the operation

configuration c∗ comes from the fine stage. Therefore, the final network architecture

N(s∗, c∗, w) is constructed.

2.4 Experiments

In this section, we firstly introduce our implementation details of C2FNAS, and then report

our found architecture (searched on MSD Pancreas dataset) with semantic segmentation

results on all 10 MSD datasets [195], which is a public comprehensive benchmark for

general-purpose algorithmic validation and testing covering a large span of challenges, such

as small data, unbalanced labels, large-ranging object scales, multi-class labels, and multi-

modal imaging, etc. It contains 10 segmentation datasets, i.e. Brain Tumours, Cardiac, Liver

Tumours, Hippocampus, Prostate, Lung Tumours, Pancreas Tumours, Hepatic Vessels,

Spleen, and Colon Cancer.

25

2.4.1 Implementation Details

Coarse Stage Search At coarse stage search, the network has 12 cells in total, where 3 of

them are down-sampling cells and 3 up-sampling cells, so the model size is moderate. With

the priors introduced in Section 4.3, the search space is largely reduced from 2.9× 104 to

9.24× 102.

For network architecture, we define one stem module at the beginning of the network,

and another one at the end. The beginning module consists of two 3D 3× 3× 3 convolution

layers, and strides are 1, 2 respectively. The end module consists of two 3D 3× 3× 3

convolution layers, and a trilinear up-sampling layer between the two layers. Each cell

takes the output of its previous cell as input, and it will also take another input if it satisfies

(1) it has a previous-previous cell at the same feature resolution level, or (2) it is the first

cell after an up-sampling. In situation (1), the cell takes its previous-previous cell’s output

as additional input. And in the situation (2), it takes the output of the last cell before the

corresponding down-sampling as another input, which serves as the skip-connection from

the encoder part to the decoder part. A convolution with kernel size 1× 1× 1 serves

as pre-processing for the input. The two inputs go through convolution separately and

get summed afterwards, then a 1× 1× 1 convolution is applied to the output. The filter

number starts with 32, and it is doubled after a down-sampling layer and halved after an

up-sampling layer. All down-sampling operations are implemented by a 3× 3× 3 3D

convolution with stride 2, and up-sampling by a trilinear interpolation with scale factor 2

followed by a 1× 1× 1 convolution. Besides, in the coarse stage, we also set the operations

in all cells to standard 3D convolution with a kernel size of 3× 3× 3.

26

For the evolutionary algorithm part, we first represent each network topology with a

code, which is a list of numbers and the length is the same as cell numbers. The number

starts at 0 and increases one after a down-sampling and decreases one after an up-sampling.

We use the K-means algorithm to classify all candidates into 8 clusters based on the

Euclidean metric of corresponding codes. In the beginning, two networks are randomly

sampled from each cluster. Afterwards, whenever there is an idle GPU, one trained network

is sampled from each cluster, and the cluster to which the best network belongs is picked

and a new network is sampled from that cluster for training. Meanwhile, the algorithm also

random samples a cluster with the probability of 0.2 to add randomness and avoid local

minimum. After 50 networks are evaluated, the algorithm terminates and returns the best

network topology it has found.

We conduct the coarse stage search on the MSD Pancreas Tumours dataset, which

contains 282 3D volumes for training and 139 for testing. The dataset is labelled with

both pancreatic tumours and normal pancreas regions. We divide the training data into 5

folds sequentially, where the first 4 folds are for training and the last fold is for validation

purposes. To address the anisotropic problem, we re-sample all cases to an isotropic

resolution with a voxel distance of 1.0 mm for each axis as data pre-processing.

At the training stage, we use batch size of 8 with 8 GPUs, and patch size of [96, 96, 96],

where two patches are randomly cropped from each volume at each iteration. All patches

are randomly rotated by [0◦, 90◦, 180◦, 270◦] and flipped as data augmentation. We use

SGD optimizer with a learning rate of 0.02, momentum of 0.9, and weight decay of

0.00004. Besides, there is a multi-step learning rate schedule which decays the learning

rate at iterations [8000, 16000] with a factor of 0.5. We use 1000 iterations for the warm-up

27

Task Brain Liver Pancreas Prostate
Class 1 2 3 Avg 1 2 Avg 1 2 Avg 1 2 Avg
CerebriuDIKU [170] 69.52 43.11 66.74 59.79 94.27 57.25 75.76 71.23 24.98 48.11 69.11 86.34 77.73
Lupin 66.15 41.63 64.15 57.31 94.79 61.40 78.10 75.99 21.24 48.62 72.73 87.62 80.18
NVDLMED [231] 67.52 45.00 68.01 60.18 95.06 71.40 83.23 78.42 38.48 58.45 69.36 86.66 78.01
K.A.V.athlon 66.63 46.62 67.46 60.24 94.74 61.65 78.20 74.97 43.20 59.09 73.42 87.80 80.61
nnU-Net [104] 67.71 47.73 68.16 61.20 95.24 73.71 84.48 79.53 52.27 65.90 75.81 89.59 82.70
C2FNAS-Panc 67.62 48.56 69.09 61.76 94.91 71.63 83.27 80.59 52.87 66.73 73.11 87.43 80.27
C2FNAS-Panc* 67.62 48.60 69.72 61.98 94.98 72.89 83.94 80.76 54.41 67.59 74.88 88.75 81.82

Task Lung Heart Hippocampus HepaticVessel Spleen Colon Avg (Task) Avg (Class)
Class 1 1 1 2 Avg 1 2 Avg 1 1
CerebriuDIKU [170] 58.71 89.47 89.68 88.31 89.00 59.00 38.00 48.50 95.00 28.00 67.01 66.40
Lupin 54.61 91.86 89.66 88.26 88.96 60.00 47.00 53.50 94.00 9.00 65.61 65.89
NVDLMED [231] 52.15 92.46 87.97 86.71 87.34 63.00 64.00 63.50 96.00 56.00 72.73 71.66
K.A.V.athlon 60.56 91.72 89.83 88.52 89.18 62.00 63.00 62.50 97.00 36.00 71.51 70.89
nnU-Net [104] 69.20 92.77 90.37 88.95 89.66 63.00 69.00 66.00 96.00 56.00 76.39 75.00

C2FNAS-Panc 69.47 92.13 86.87 85.44 86.16 63.78 69.41 66.60 96.60 55.68 75.87 74.42
C2FNAS-Panc* 70.44 92.49 89.37 87.96 88.67 64.30 71.00 67.65 96.28 58.90 76.97 75.49

Table 2.1: Comparison with state-of-the-art methods on MSD challenge test set (number from MSD
leaderboard) measured by Dice-Sørensen coefficient (DSC). * denotes the 5-fold model ensemble.
The numbers of tasks hepatic vessel, spleen, and colon from other teams are rounded. We also report
the average on tasks and on targets respectively for an overall comparison across all tasks/targets.

stage, where the learning rate increases linearly from 0.0025 to 0.02, and 20000 iterations

for training. The loss function is the summation of Dice Loss and Cross-Entropy Loss,

and we adopt Instance Normalization [212] and ReLU activation function. We also use

Horovod [189] to speed up the multi-GPU training procedure.

At the validation stage, we test the network in a sliding window manner, where the

stride = 16 for all axes. Dice-Sørensen coefficient (DSC) metric is used to measure the

performance, which is formulated as DSC (Y,Z) = 2×|Y∩Z|
|Y|+|Z| , where Y and Z denote for the

prediction and ground-truth voxels set for a foreground class. The DSC has a range of [0, 1]

with 1 implying a perfect prediction.

Fine Stage Search In the fine stage search, we mainly choose the operations from

[2D, 3D, P3D] for each cell. This search space can be large as 5.3× 105. Since the search

space is numerous, we adopt a single-path one-shot NAS method based on super-network,

28

Model Params (M) FLOPs (G)
3D U-Net [52] 19.07 825.30
V-Net [162] 45.59 301.88
VoxResNet [23] 6.92 173.02
ResDSN [287] 10.03 188.37
Attention U-Net [167] 103.88 1162.75
C2FNAS-Panc 17.02 150.78

Table 2.2: Comparison of parameters and FLOPs with other 3D networks. The FLOPs are calculated
based on input size 96× 96× 96.

which is trained by uniform sampling.

The data pre-processing, data split, and training/validation setting are exactly the same

as what we use in the coarse stage, except that we double the number of iterations to ensure

the super-network convergence. At each iteration, a random path is chosen for training.

After the super-network training is finished, we random sample 2000 candidates from the

search space, and use the super-network weight to initialize these candidates. Since the

validation process takes a very long time due to the sliding window method, we increase

the stride to 48 at all axes to speed up the search stage.

The coarse search stage takes 5 days with 64 NVIDIA V100 GPUs with 16GB memory.

In the fine stage, the super-network training costs 10 hours with 8 GPUs, and the searching

procedure, where 2000 candidates are evaluated on the validation set, takes 1 day with 8

GPUs. The large search cost is mainly because training and evaluating a 3D model itself is

very time-consuming.

Deployment Stage The final network architecture based on the topology searched

in the coarse stage and operations searched in the fine stage is shown in Fig. 2.5. We

keep the training setting same when deploying this network architecture, which means no

inconsistency exists in our method.

29

Task Lung Pancreas
Class 1 1 2 Avg
C2FNAS-C-Lung 71.74 80.26 52.51 66.39
C2FNAS-C-Panc 69.05 80.39 53.32 66.86
C2FNAS-F-Panc 69.77 80.37 56.36 68.37

Table 2.3: Comparison with different stages and different proxy datasets on 5-fold cross-validation.

We use the same training setting mentioned in the coarse stage, and the iteration is

40000 and multi-step decay at iterations [16000, 32000]. The model is trained based on the

same settings from scratch for each dataset, except that Prostate dataset has a very small

size on the Z (Axial) axis, and Hippocampus dataset has a very small shape around only 50

for each axis. Therefore we change the patch size to 128× 128× 32 and stride = [16, 16, 4]

for the Prostate, and up-sample all data to shape 96× 96× 96 for Hippocampus.

2.4.2 Segmentation Results

We report our test set results of all 10 tasks from the MSD challenge and compare C2FNAS

with other state-of-the-art methods.

Our test set results are summarized in Table 2.1. We notice that other methods apply

multi-model ensemble to reinforce the performance, e.g. nnU-Net ensembles 5 or 10 models

based on 5-fold cross-validation with one or two models, NVDLMED and CerebriuDIKU

ensemble models trained from different viewpoints. Therefore, besides single-model results,

we also report results with a 5-fold cross-validation model ensemble, which means 5 models

are trained in a 5-fold cross-validation setting, and final test results are fused with results

from these 5 models with a majority voting.

Our model shows superior performance than state-of-the-art methods on most tasks,

30

especially the challenging ones, while enjoying a lighter model size compared to most

popular 3D models (see Table 2.2). We also have a higher performance in terms of average

on task/class. It is noticeable that the previous state-of-the-art nnU-Net uses various kinds

of data augmentation and test-time augmentation to boost the performance, while we only

adopt simple data augmentation of rotation and flip, and no test-time augmentation is

applied. Small datasets such as Heart and Hippocampus rely more on augmentation while

a powerful architecture is easy to get over-fitting, which illustrates why our performance

on these datasets does not outperform the competitors. Besides, nnU-Net uses different

networks and hyper-parameters for each task, while we use the same model and hyper-

parameters for all tasks, showing that our model is not only more powerful but also much

more robust and generalizable. Some visualization comparisons are available in Fig. 2.6.

2.5 Ablation Study

2.5.1 Coarse Stage versus Fine Stage

To verify the improvement of this two-stage design, we compare the performance of the

network from coarse stage and the network from fine stage. The “C2FNAS-C-Panc"

indicates the coarse stage network searched on the pancreas dataset, where the topology

is searched and all operations are in a standard 3D manner, while “C2FNAS-F-Panc" is

the fine stage network, where the operation configuration is searched. We compare their

performance on the pancreas and lung datasets with a 5-fold cross-validation. The result

is shown in table 2.3. It is noticeable that the fine stage search not only improves the

performance on the target dataset (pancreas) but also increases the model generality, thus

31

NVDLMED nn-UNet C2FNAS-Panc

Pancreas_079: Pancreas: 67.99% Tumour: 70.09%

Colon_087: Colon Cancer: 84.62%

Lung_067: Lung Tumour: 52.73%

Figure 2.6: The visualization comparison between state-of-the-art methods (1st and 2nd teams) and
C2FNAS-Panc on MSD test sets. We visualize one case from each of the three most challenging
tasks: pancreas and pancreas tumours, colon cancer, and lung tumours. Red denotes abnormal
pancreas, colon cancer, and lung tumours respectively, and green denotes pancreas tumours. The
case id and dice score of C2FNAS-Panc are at the bottom.

32

obtaining a better performance on other datasets (lung).

2.5.2 Search on Different Datasets

Our model is searched on MSD Pancreas dataset, which contains 282 cases, and it is one

of the largest datasets in MSD challenge. To verify the data number effect on our method,

we also search a model topology on MSD Lung dataset, which contains 64 cases, as an

ablation study. The search method and hyper-parameters are the same as what we use on

the pancreas dataset. The result is summarized in Table 2.3. The “C2FNAS-C-Lung" is the

topology searched on the lung dataset, while “C2FNAS-C-Panc" is the topology searched

on the pancreas dataset. Topology on lung dataset performs better on lung task, while

topology on pancreas dataset performs better on pancreas task. However, it is noticeable

that both topologies show good performance on another dataset, demonstrating that our

method works well even on a smaller dataset and the models are of great generality.

2.5.3 Incorporate Model Scaling as Third Stage

Inspired by EfficientNet [202], we add model scaling into the search space as the third

search stage. In this ablation study, we only study for scaling of filter numbers for simplicity,

but a compound scaling including patch size and cell numbers is feasible. Following [202],

we adopt a grid search for a channel number multiplier ranging from 0.25 to 2.0 with a

step of 0.25. We report the results based on single fold validation set on the pancreas and

lung datasets respectively, which are summarized in Table 2.4. It shows that model scaling

can increase the model capacity and lead to better performance. Nevertheless, scaling

up the model also results in much higher model parameters and FLOPs. Considering the

33

Task Lung Pancreas Hippocampus
Class 1 1 2 Avg 1 2 Avg
0.25 72.32 79.24 40.02 59.63 80.29 79.81 80.05
0.50 73.89 80.51 46.34 63.43 80.74 80.84 80.79
0.75 76.15 81.40 47.50 64.45 80.88 81.72 81.30
1.00 74.26 80.74 49.94 65.34 81.82 82.10 81.96
1.25 76.94 81.45 48.03 64.74 82.13 82.24 82.19
1.50 75.37 81.40 48.87 65.14 81.02 81.39 81.21
1.75 75.98 81.85 49.03 65.44 81.52 81.31 81.42
2.00 77.75 82.18 50.61 66.40 82.57 82.34 82.46

Table 2.4: Influence of model scaling, the number in the first column indicates the scale factor
applied to model C2FNAS-Panc. The results are based on single fold of validation set and the final
searched model on pancreas dataset.

large extra computation cost and to keep the model in a moderate size, we do not include

model scaling in our main experiment. Yet we report it in ablation study as a potential and

promising way to reinforce C2FNAS and achieve even higher performance.

2.6 Conclusions

In this chapter, we propose to use coarse-to-fine neural architecture search to automatically

design a transferable 3D segmentation network for 3D medical image segmentation, where

the existing NAS methods cannot work well due to the memory-consuming property in 3D

segmentation. Besides, our method, with the consistent model and hyper-parameters for all

tasks, outperforms MSD champion nnU-Net, a series of well-modified and/or ensembled

2D and 3D U-Net. We do not incorporate any attention module or pyramid module, which

means this is a much more powerful 3D backbone model than current popular network

architectures.

34

Chapter 3

CAKES: Channel-wise Automatic
KErnel Shrinking for Efficient 3D
Networks

In this chapter, we keep studying the topics of using Neural Architecture Search to auto-

matically obtain better 3D medical segmentation models. Unlike C2FNAS which focus

more on the searching process, here we focus more on a novel search space tailored for

3D CNN architectures, which not only brings more possibilities during the search process

but also ensure the final model specializes in the 3D learning, especially the segmentation

tasks. Specifically, we consider replacing 3D convolution with its efficient alternative in

a channel-wise manner, which leads to a more fine-grained architecture design and more

promising results.

3.1 Introduction

3D learning has attracted more and more research attention with the recent advance of deep

neural networks. However, 3D convolution layers typically result in expensive computation

35

and suffer from convergence problems due to over-fitting issues and the lack of pre-trained

weights [22, 201].

To resolve the redundancy in 3D convolutions, many efforts have been investigated

to design efficient alternatives. For instance, [177] and [210] propose to factorize the 3D

kernel and replace the 3D convolution with Pseudo-3D (P3D) and (2+1)D convolution,

where 2D and 1D convolution layers are applied in a structured manner. [238] suggests

that replacing 3D convolutions with low-cost 2D convolutions at the bottom of the network

significantly improves recognition efficiency.

Despite their effectiveness for spatial-temporal information extraction, there are several

limitations of existing alternatives to 3D convolutions. Firstly, these methods (e.g., P3D) are

specifically tailored to video datasets, where data can be explicitly separated into time and

space. However, for volumetric data such as CT/MRI where all three dimensions should

be treated equally, conventional spatial-temporal operators can lead to biased information

extraction. Moreover, existing operations are still insufficient even for spatial-temporal

data since they may exhibit certain levels of redundancy either along the temporal or the

spatial dimension, as empirically suggested in [238]. Secondly, existing replacements are

manually designed. Consequently, this process can be time-consuming and may lead to

sub-optimal results.

To address these issues, we introduce Channel-wise Automatic KErnel Shrinking

(CAKES), as a general efficient alternative to existing 3D operations. Specifically, the

proposed method simplifies conventional 3D operations by adopting a combination of di-

verse and economic operations (e.g., 1D, 2D convolutions), where these different operators

can extract complementary information to be utilized in the same layer. Our approach is not

36

Figure 3.1: CAKES shows better accuracy-cost trade-off on both 3D medical image segmentation
(left) and action recognition (right) tasks.

tailored to any specific type of input (e.g., videos), but can be generalized to different types

of data and backbone architectures to achieve a fine-grained and efficient replacement.

As a proof test, our CAKES with a naive manual setting already exhibits superior

performances compared with existing 3D replacements (Table 3.1 & 3.3). However, the

manual selection of the set of replacing operators as well as their positioning requires

trial-and-error. To further improve the performance and the model efficiency, we introduce

a new search space consisting of computationally-efficient candidate operators, to facilitate

the search for the optimal replacement configuration given a backbone architecture. With

our search space design, the proposed CAKES is feasible to obtain a good architecture in

several GPU days.

The proposed algorithm delivers high-performance and efficient models. As shown in

Fig. 3.1, evaluated on both 3D medical image segmentation and video action recognition

tasks, our method achieves a better accuracy-cost trade-off. Compared with its 3D baseline,

CAKES not only shows superior performance but also effectively reduces the model size

37

(56.80% less on medical and 19.35% less on video) and computational cost (53.76% less

on medical and 19.01% less on video) significantly. The proposed method surpasses their

2D/3D/P3D counterparts significantly.

Our contributions can be summarized into three folds:

(1) We propose a more generic, efficient, and flexible alternative to 3D convolution

by shrinking 3D kernels into heterogeneous yet complementary efficient counterparts at a

fine-grained level.

(2) We automate the replacement configuration for simplifying 3D networks by cus-

tomizing a search space based on CAKES and combining it with neural architecture search.

(3) By applying CAKES to different 3D models, we achieve comparable results to

state-of-the-art while being much more efficient on both volumetric medical data and

temporal-spatial video data.

3.2 Related Work

3.2.1 Efficient 3D Convolutional Neural Networks

Despite the great advances of 3D CNNs [22, 52, 208, 278], existing 3D networks usually

require a heavy computational budget. Besides, 3D CNNs also suffer from unstable training

due to a lack of pre-trained weights [22, 145, 201]. These facts have motivated researchers

to find efficient alternatives to 3D convolutions. For example, it is suggested in [158, 209]

apply group convolution [118] and depth-wise convolution [47] to 3D networks to obtain

resource-efficient models. Another type of approach suggests replacing each 3D convolution

layer with a structured combination of 2D and 1D convolution layers to achieve better

38

performance while being more efficient. For instance, [177] and [210] propose to use a 2D

spatial convolution layer followed by a 1D temporal convolution layer to replace a standard

3D convolution layer. Besides, [238] demonstrates that 3D convolutions are not needed

everywhere and some of them can be replaced by 2D counterparts. Similar attempts also

occur in the medical imaging area [146]. For example, [78] tries to replace consecutive 3D

convolution layers through consecutive 2D convolution layers followed by a 1D convolution

layer.

Our method differs from these methods by the following folds: (1) Instead of applying

homogeneous operations to all channels, CAKES allows assigning complementary hetero-

geneous operations at channel-wise, which leads to a more flexible design and a potentially

better trade-off between accuracy and efficiency [203]; and (2) We enable the automatic

optimization of the replacement configuration instead of manual design through a new

search space.

3.2.2 Neural Architecture Search

Neural Architecture Search (NAS) aims at automatically discovering better network ar-

chitectures than human-designed ones. It has been proved successful not only for 2D

natural image recognition [290, 250], but also for other tasks such as segmentation [139]

and detection [75]. Besides the success on natural images, there are also some trials on

other data formats such as videos [186] and 3D medical images [259, 285]. Earlier NAS

algorithms are based on either reinforcement learning [9, 290, 291] or evolutionary algo-

rithm [181, 236]. However, these methods often require training each network candidate

from scratch, therefore the intensive computational costs hamper its usage, especially with

39

a limited computational budget. Since [171] first proposed parameter sharing scheme, more

and more search methods such as differentiable NAS approaches [38, 141, 243, 62] and

one-shot NAS approaches [16, 82, 197, 130] began to investigate how to effectively reduce

the search cost to several GPU days or even several GPU hours.

Moreover, [79, 161] successfully connect network pruning with NAS and design more

efficient search methods. Some methods [203, 161, 197] also incorporate kernel size into

the search space. Nevertheless, most of them only consider simple cases with choices among

3× 3, 5× 5, etc., while we consider much more diverse and general kernel deployment

across different channels in 3D settings.

3.3 Method

3.3.1 Revisit Variants of 3D Convolution

We first revisit 3D convolutions and existing alternatives. Without loss of generality, let X

of size Ci × Di × Hi ×Wi denotes the input tensor, where Ci stands for the input channel

number, and Di, Hi, Wi represent the spatial depth (or temporal length), the spatial height,

and the spatial width, respectively. The weights of the corresponding 3D kernel are denoted

as WCo×Ci×kd×kh×kw , where Co is the output channel number and kd × kh × kw denote the

kernel size. For simplicity, we consider each output channel individually in the formulation.

Therefore, the output tensor Y of shape Co × Do × Ho ×Wo can be derived as following:

YDo×Ho×Wo
c = XCi×Di×Hi×Wi ⊕ WCi×kd×kh×kw

c , (3.1)

where ⊕ denotes convolution, c is the output channel index, i.e., 1 ≤ c ≤ Co.

40

The computation overhead of 3D convolutions can be significantly heavier than their 2D

counterparts. Consequently, the expensive computation and over-parameterization induced

by 3D deep networks impede the scalability of network capacity. Recently, there are many

works seeking to alleviate the high demand of 3D convolutions. One common strategy is

to decouple the spatial and temporal components [177, 210]. The underlying assumption

here is that the spatial and temporal kernels are orthogonal to each other, and therefore can

effectively extract complementary information from different dimensions. Another option

is to discard 3D convolutions and simply use 2D operations instead [238]. Mathematically

speaking, these replacements can be written as:

WCi×kd×kh×kw
c ← {WCi×1×kh×kw

c , WCi×kd×1×1
c } (3.2)

WCi×kd×kh×kw
c ← {WCi×1×kh×kw

c }, (3.3)

where ← indicates the replacement operation. Similar ideas also occur in 3D medical

image analysis, where the images are volumetric data. For instance, it is shown in [145]

that using 2D convolutions in the encoder and replacing 3D convolutions with Pseudo-3D

(P3D) operations in the decoder not only largely reduce the computation overhead but also

improves the performance over the traditional 3D networks.

Though these methods have furthered the model efficiency compared with standard 3D

convolutions, there are several limitations yet to be tackled. On the one hand, as shown in

Eqn. (3.2), decomposing the kernels into orthogonal 2D and 1D components is designed

for a specific data type (i.e., spatial-temporal), which may not well generalize to other types

such as volumetric data. On the other hand, directly replacing 3D kernels with 2D operators

41

(Eqn. (3.3)) cannot effectively capture information along the third dimension.

To address these issues, we propose Channel-wise Automatic KErnel Shrinking (CAKES),

as a general alternative to 3D convolutions. The core idea is to shrink standard 3D kernels

into a set of cheaper 1D, 2D, and 3D components. To ensure the flexibility of our design

and avoid the tricky manual configuration, we further make the shrinkage channel-specific,

thus heterogeneous kernels can extract complementary information as a 3D kernel does.

We additionally introduce a brand-new search space so that the replacement configuration

can be optimized automatically.

3.3.2 Kernel Shrinking as Path-level Selection

Let’s consider the case for a single output channel, and abbreviate WCi×kd×kh×kw
c to

Wkd×kh×kw
c for simplicity. We aim to find the optimal sub-kernel Wk

′
d×k

′
h×k

′
w

c (1 ≤ k
′
d ≤

kd,1 ≤ k
′
h ≤ kh,1 ≤ k

′
w ≤ kw) as the substitute for 3D kernel Wkd×kh×kw

c . Therefore, the

original 3D kernels can be effectively reduced to smaller sub-kernels, leading to a more

efficient model.

As shown in Fig. 3.2(a), even only considering different kernel sizes, there are kd ×

kh × kw sub-kernel options for a 3D kernel, which makes it impractical to find the optimal

sub-kernel via manual designs. Therefore, we provide a new perspective—to formulate

this problem as path-level selection [141], i.e., to encode sub-kernels into a multi-path

super-network and select the optimal path among them (Fig. 3.2(c)). Then this problem can

be solved in a differentiable manner.

42

…

(a)

…

+

𝜶𝟏

𝜶𝟐

𝜶𝟑

𝜶𝒏

(c)(b)

In
p

u
t

…

𝜶𝟏 ×

𝜶𝟐 ×

𝜶𝟑 ×

𝜶𝒏 ×

Figure 3.2: (a) Various sub-kernels of the same 3D kernel. (b) Representation of 3D kernel as a
weighted summation of sub-kernels. (c) Path-level selection.

We first represent a general replacement to 3D kernel as follows (Fig. 3.2(b)):

Wkd×kh×kw
c ← {αiW

ki
d×ki

h×ki
w

c }i, (3.4)

where αi is the weight of i-th sub-kernel Wki
d×ki

h×ki
w

c , 1 ≤ ki
d ≤ kd, 1 ≤ ki

h ≤ kh,

1 ≤ ki
w ≤ kw. With this formulation, the problem of finding the optimal sub-kernel of

Wkd×kh×kw
c can be approximated as finding the optimal setting of {αi} and then keeping

the sub-kernel with maximum αi. Due to the linearity of convolution, Eqn. (3.1) can then

be derived as below:

X⊕Wkd×kh×kw
c ←∑

i
αi(X⊕Wki

d×ki
h×ki

w
c). (3.5)

43

3x3x3

1x3x3

3x1x3

3x3x1…

3x1x1

1x1x1

(d) CAKES

1x1x1

1x1x1

+
(c) P3D

1x1x1

1x1x1

+

1x1x1

1x1x1

+
(a) 2D

1x1x1

1x1x1

+
(b) 3D

Figure 3.3: An illustrative example of comparison between different types of convolution in a
residual block [92]. (a) 2D Convolution. (b) 3D Convolution. (c) P3D Convolution. (d) the proposed
CAKES. In our case, starting from a 3D convolution, the 3D operation at each channel is replaced
with an efficient sub-kernel.

To solve for the path weights {αi}, we reformulate Eqn. (3.5) as an over-parameterized

multi-path super-network, where each candidate path consists of a sub-kernel (Fig. 3.2(c)).

By relaxing the selection space, i.e., relaxing the conditions on α to be continuous, Eqn. (3.5)

can be then formulated as a differential NAS problem and optimized via gradient de-

scent [141].

3.3.3 Channel-wise Shrinkage

While previous replacements [145, 177, 210] consist of homogeneous operations in the

same layer, we argue that a more efficient replacement requires customized operations at

each channel. As shown in Fig. 3.3, kernel shrinking in a channel-wise fashion can generate

heterogeneous operations which extract diverse and complementary information within the

44

same layer, and thereby yields a fine-grained and more efficient replacement (Fig. 3.3(d))

than prior methods which use layer-wise replacements (Fig. 3.3(a) & (b) & (c)).

Contrary to previous layer-wise replacement, our core idea is to replace 3D kernel at

each channel individually, thus the target is to find the optimal sub-kernel W
kc

d×kc
h×kc

w
c as

the substitute for the c-th output channel 3D kernel Wkd×kh×kw
c :

Wkd×kh×kw
c ← {Wkc

d×kc
h×kc

w
c }, (3.6)

where the optimal size of the sub-kernel (kc
d × kc

h × kc
w) is subjected to 1 ≤ kc

d ≤ kd,

1 ≤ kc
h ≤ kh, 1 ≤ kc

w ≤ kw. Hence the computation incurred by Eqn. (3.1) can be largely

reduced by our replacement as above.

With our channel-wise replacement design, the original 3D kernels are substituted by a

series of diverse and cheaper operations at different channels as follows (recall that Co is

the output channel number):

W← {Wk1
d×k1

h×k1
w

1 , Wk2
d×k2

h×k2
w

2 , . . . , WkCo
d ×kCo

h ×kCo
w

Co
}. (3.7)

Benefited from channel-wise shrinkage, our method provides a more general and flexible

design for replacing 3D convolution than previous approaches (Eqn. (3.2) and Eqn. (3.3)),

where it can also be easily reduced to arbitrary alternatives (e.g., 2D, P3D) by integrating

these operations into the set of candidate sub-kernels. An illustration example can be found

in Fig 3.3.

3.3.4 Search for an Efficient Replacement

As aforementioned, given the tremendous feasible choices, it is impractical to manually

find the optimal replacement for a 3D kernel through a trial-and-error process. Especially, it

45

becomes even more intractable as the replacement procedure is conducted in a channel-wise

manner. Therefore, we propose a new search space for efficient 3D networks and automate

the process of learning an efficient replacement to fully exploit the redundancies in 3D

convolution operations. By formulating kernel shrinkage as a path-level selection problem,

we first construct a super-network where every candidate sub-kernel is encapsulated into a

separate trainable branch (Fig. 3.2(c)) at each channel. Once the path weights are learned

in a differentiable manner, the optimal path (sub-kernel) can be determined.

Search Space A well-designed search space is crucial for NAS algorithms [244].

Here we aim to answer the following questions: Should the 3D convolution kernel be kept

or replaced per channel? If replaced, which operation should be deployed instead?

To address these questions, for each channel, we define a set S, which contains all

candidates of sub-kernels (replacement) given a 3D kernel Wkd×kh×kw :

S = {Wkd1
×kh1

×kw1 , Wkd2×kh2×kw2 , . . . , Wkdn×khn×kwn }

Wkc
d×kc

h×kc
w

c = Choose(S).
(3.8)

As the original 3D convolution kernel can be considered a sub-kernel of itself, i.e.,

Wkd×kh×kw ∈ S, it can be kept in the final configuration. The final optimal operation

Wc is chosen among S.

Another critical problem for NAS is how to reduce search cost. To make the search cost

affordable, we adopt a differentiable NAS paradigm where the model structure is discovered

in a single-pass super-network training. Drawing inspirations from previous NAS methods,

we directly use the scaling parameters in the normalization layers as the path weights α

of the multi-path super-network (Eqn. (3.5)) [79, 161]. And our goal is then equivalent to

finding the optimal sub-network architecture based on the learned path weights. To achieve

46

this goal, we introduce two different search manners which aim at either maximizing the

performance or optimizing the computation cost of the sub-network as a search priority,

named as performance-priority and cost-priority search, respectively.

Performance-Priority Search The search aims to maximize the performance by find-

ing the optimal sub-kernels given the backbone architecture. During the search procedure,

following [14, 16], we randomly pick an operation for each channel at each iteration. This

not only allows for memory saving by activating and updating one path per iteration but

also propels the weights of the paths in the super-network training to be decoupled. After

the super-network is trained, the operation with the largest path weight will be picked as

the final choice for the given output channel:

Wkd×kh×kw
c ← {Wkdi∗

×khi∗
×kwi∗ },

where i∗ = argmaxi∈{1···n}(αi).

(3.9)

Cost-Priority Search Performance-priority may neglect the possible negative effects

on the computation cost. In order to obtain more compact models, we also introduce a

“cost-priority" search method. Inspired by [161], we search the model in a pruning manner

with a penalty on expensive operations. The outputs of each sub-kernels are concatenated

and aggregated by the following 1× 1× 1 convolution. To make the searched architecture

more compact, we introduce a “cost-aware" penalty term—A lasso term on α which is used

as the penalty loss to push many path weights to near-zero values. Therefore, the total

training loss L can be written as:

L = E+ λ ∑
i

βi|αi|, (3.10)

47

where βi is a “cost-aware" term to balance the penalty term, which is proportional to the

parameters or FLOPs cost of the sub-kernel. In Table 3.1, we also empirically show that

this term can lead to a more efficient architecture. The introduction of βi aims at giving

more penalty to “expensive" operations and leading to a more efficient replacement. λ is the

coefficient of the penalty term, and E is the conventional training loss (e.g., cross-entropy

loss combined with the regularization term such as weight decay).

3.4 Experiments

3.4.1 3D Medical Image Segmentation

Dataset We evaluate the proposed method on two public datasets: 1) Pancreas Tumours

dataset from the Medical Segmentation Decathlon Challenge (MSD) [195], which contains

282 cases with both pancreatic tumours and normal pancreas annotations; and 2) NIH

Pancreas Segmentation dataset [184], consisting of 82 abdominal CT volumes. For the

MSD dataset, we use 226 cases for training and evaluate the segmentation performance

on the rest 56 cases. The resolution along the axial axis of this dataset is extremely low

and the number of slices can be as small as 37. For data preprocessing, all images are

resampled to an isotropic 1.0 mm3 resolution. For the NIH dataset, the resolution of

each scan is 512× 512× L, where L ∈ [181, 466] is the number of slices along the axial

axis and the voxel spacing ranges from 0.5 mm to 1.0 mm. We test the model in a 4-fold

cross-validation manner following previous methods [279, 280].

Implementation Details For all experiments, C2FNAS [259] is used as the backbone

architecture. When replacing the operations, we keep the stem (the first two and the last

48

Methods Params (M) FLOPs (G) Pancreas DSC
(%)

Tumor DSC
(%)

Average DSC
(%)

2D 11.29 97.77 79.16 43.02 61.09
3D 22.50 188.48 80.34 47.57 63.96
P3D 13.16 112.88 80.36 45.27 62.82

CAKESM
1D 7.56 67.53 79.77 42.73 61.25

CAKESM
2D 11.29 97.77 80.09 46.17 63.13

CAKESM
1,2,3D 11.41 99.17 79.82 45.27 62.55

CAKESP
1D 7.56 67.53 80.32 45.57 62.95

CAKESP
2D 11.29 97.77 80.05 48.51 64.28

CAKESP
1,2,3D 11.26 99.68 80.12 48.72 64.42

CAKESC
1,2,3D 9.72 87.16 80.34 47.95 64.15

Table 3.1: Comparison among different operations and configurations. The subscripts of 1D, 2D,
and 3D indicate the dimensions of the operations being used. The superscripts of “M", “P", “C"
represent “Manual", “Performance-Priority", and “Cost-Priority" respectively.

two convolution layers) the same. For 3D medical images, for simplicity, we choose a set

of most representative sub-kernels as S. The operations set contains conv1D (1× 1× 3,

1× 3× 1, 3× 1× 1), conv2D (1× 3× 3, 3× 1× 3, 3× 3× 1) from different directions,

and conv3D (3× 3× 3). For every 3D kernel at each output channel, a sub-kernel from S

will be chosen as the replacement. For manual settings, we assign all candidate operations

uniformly across the output channels. For NAS settings, we include both “performance-

priority” and “cost-priority” search for performance comparison.

Training stage For the MSD dataset, we use random crop with patch size of 96×

96 × 96, random rotation (0◦, 90◦, 180◦, and 270◦) and flip in all three axes as data

augmentation. The batch size is 8 with 4 GPUs. We use SGD optimizer with a learning rate

starting from 0.01 with polynomial decay of power of 0.9, momentum of 0.9, and weight

decay of 0.00004. The training lasts for 40k iters. The loss function is the summation of dice

loss [162] and cross-entropy loss. For NIH dataset, the patch size is set as 96× 96× 64,

following the settings in [285]. The found architecture will be trained from scratch to

49

Method Params Average DSC Max DSC Min DSC

Coarse-to-fine [279] 268.56M 82.37% 90.85% 62.43%
RSTN [257] 268.56M 84.50% 91.02% 62.81%
C2F ResDSN [286] 20.06M 84.59% 91.45% 69.62%
V-NAS [285] 29.74M 85.15% 91.18% 70.37%

CAKESC
1,2,3D 9.27M 84.85% 91.61% 59.32%

CAKESP
1,2,3D 11.26M 85.28% 91.98% 72.78%

Table 3.2: Comparison with prior arts on the NIH dataset.

ensure a fair comparison. Both the super-network and the found architecture are trained

under the same settings as aforementioned. For the search stage with “cost-priority" setting,

a lasso term with coefficient λ = 1.0× 10−4 is applied to the path weights. And it is

further re-weighted by β = { 9
13 , 3

13 , 1
13} for 3D, 2D, 1D operations respectively, which is

their ratio of the parameters. After the training process, the operation with the largest α is

chosen as the final replacement for 3D operation for each channel.

Testing stage We test the network in a sliding-window manner, where the patch size is

96× 96× 96 and stride is 32× 32× 32 for the MSD dataset and patch size is 96× 96× 64

and stride is 20× 20× 20 for NIH dataset. The result is measured with Dice-Sørensen

coefficient (DSC) metric, which is formulated as DSC (Y,Z) = 2×|Y∩Z|
|Y|+|Z| , where Y and Z

denote the prediction and ground-truth voxels set for a foreground class. The DSC has a

range of [0, 1] with 1 implying a perfect prediction.

Manual Settings vs. Auto Settings As observed from Table 3.1, even under manual

settings, CAKES is already much more efficient with slightly inferior performance (e.g.,

from 3D to manual CAKESM
2D, parameters drop from 22.50M to 11.29M, and FLOPs

drop from 188.48G to 97.77G, with performance gap of < 1.0%). Besides, CAKESM
2D

outperforms its counterpart with standard convolution 2D layers by more than 2.0% with

50

the same model size, which indicates the benefits of our design. In addition, with the

proposed search space and method, CAKES can further reduce the performance gap and

even surpasses the original 3D model with much fewer parameters and computations, e.g.,

model size is reduced from 22.50M (3D) to 11.26M (CAKESP
1,2,3D), and FLOPs drop

from 188.48G (3D) to 99.68G (CAKESP
1,2,3D), with a performance improvement of 0.46%.

Compared with P3D, CAKESP
1,2,3D also yields superior performance (+1.60%) with a

more compact model (11.26M vs. 13.16M), which further indicates the effectiveness of the

proposed method.

Influence of the Search Space From Table 3.1, we can see that using different search

spaces, CAKES consistently outperforms its counterparts with standard 1D/2D/3D convo-

lutions. Out of different search spaces, we find that CAKESP
1D (7.56M params and 67.53G

FLOPs) offers the most efficient model with comparable performance, while CAKESP
2D

(11.29M params and 97.77G FLOPs) can already surpass the 3D baseline (22.50M params

and 188.48G FLOPs) with half parameters and computation cost. After we enlarge the

search space, CAKESP/C
1,2,3D obtains a configuration with even higher performance/efficiency

(last 2 rows of Table 3.1).

Generalization to different backbone architectures We also test our method on

different backbone architectures. Applying CAKESC
1,2,3D to another strong model 3D

ResDSN [286, 134], our method consistently leads to a more efficient model with much

fewer parameters (10.03M to 4.63M) and FLOPs (192.07G to 98.12G) with comparable

performance (61.96% to 61.65%).

NIH Results We compare CAKES with state-of-the-art methods in Table 3.2, where

it can be observed that the proposed method leads to a much more compact model size

51

Model Params (M) FLOPs (G) top1 top5

C2D 23.9 33.0 17.2 43.1
P3D 27.6 37.9 44.8 74.6
C3D 46.5 62.6 46.8 75.3

CAKESM
1,2D 20.1 28.0 46.2 75.2

CAKESM
2,3D 35.2 47.7 46.8 76.0

CAKESP
1,2D 20.9 29.1 47.1 75.9

CAKESP
2,3D 37.5 50.7 47.4 76.1

CAKESP
1,2,3D 33.5 43.9 47.2 75.7

CAKESC
1,2D 20.5 29.3 46.8 76.0

CAKESC
2,3D 35.7 41.4 46.9 75.6

CAKESC
1,2,3D 35.0 38.7 46.9 75.5

Table 3.3: Comparison among operations and configurations for ResNet50 backbone in terms of
parameter number, computation amount (FLOPs), and performance on Something-Something V1
dataset.

compared to other models. For instance, our model size is more than 25× smaller than

that of [279] and [257]. It is well worth noting that our model performed in a single-

stage fashion already outperforms many state-of-the-art methods conducted in a two-stage

coarse-to-fine manner [279, 257, 286] on the NIH pancreas dataset with much fewer model

parameters and FLOPS. It is also noteworthy to mention that the applied architecture is

searched from another dataset (MSD), where images are collected under different protocols

and have different resolutions. This result indicates the generalization of our searched

model. By directly applying the architecture searched on the MSD dataset, our method also

outperforms [285] which was directly searched on the NIH dataset with less than half the

model size.

3.4.2 Action Recognition in Videos

Dataset Something-Something V1 [81] is a large-scale action recognition dataset that

requires comprehensive temporal modeling. There are about 110k videos for 174 classes

52

Method Backbone Architecture #Frame FLOPs #Param. top1 top5

TSN [221] ResNet-50 8 33G 24.3M 19.7 46.6
TRN-2stream [276] BNInception 8+8 - 36.6M 42.0 -

ECO [289] BNIncep+3D Res18 8 32G 47.5M 39.6 -
ECO [289] BNIncep+3D Res18 16 64G 47.5M 41.4 -

ECOEn Lite [289] BNIncep+3D Res18 92 267G 150M 46.4 -

I3D [22] 3D ResNet-50 32×2clip 153G×2 28.0M 41.6 72.2
NL I3D [225] 3D ResNet-50 32×2clip 168G×2 35.3M 44.4 76.0

NL I3D+GCN [226] 3D ResNet-50+GCN 32×2clip 303G×2 62.2M 46.1 76.8

TSM [136] ResNet-50 8 33G 24.3M 45.6 74.2
TSM [136] ResNet-50 16 65G 24.3M 47.2 77.1

S3D [238] BNInception 64 66.38G - 47.3 78.1
S3D-G [238] BNInception 64 71.38G - 48.2 78.7

CAKESC
1,2D ResNet-50 8 29.3G 20.5M 46.8 76.0

CAKESP
2,3D ResNet-50 8 50.7G 37.5M 47.4 76.1

CAKESP
1,2,3D ResNet-50 8 43.9G 33.5M 47.2 75.7

CAKESC
1,2D ResNet-50 16 58.6G 20.5M 48.0 78.0

CAKESP
2,3D ResNet-50 16 101.4G 37.5M 48.6 78.6

CAKESP
1,2,3D ResNet-50 16 87.8G 33.5M 49.4 78.4

Table 3.4: Comparing CAKES against other methods on Something-Something V1 dataset. We
mainly consider the methods that adopt convolutions in a fully-connected manner and only take
RGB as input for a fair comparison.

with diverse objects, backgrounds, and viewpoints.

Implementation Details We adopt ResNet50 [92] with pre-trained weight on Ima-

geNet [118] as our backbone. The 3D convolution weights are initialized by repeating the

2D kernel by 3 times along the temporal dimension following [22], while 1D convolution

weights are initialized by averaging the 2D kernel on spatial dimensions and then repeat by

3 times along the temporal axis. For the temporal dimension, we use the sparse sampling

method as in [221]. For spatial dimension, the short side of the input frames is resized to

256 and then cropped to 224× 224.

Training Stage We use random cropping and flipping as data augmentation. We train

53

the network with a batch size of 96 on 8 GPUs with SGD optimizer. The learning rate starts

from 0.04 for the first 50 epochs and decays by a factor of 10 for every 10 epochs afterwards.

The total training epochs are 70. We also set the dropout ratio to 0.3 following [226]. The

training settings remain the same for both final network and search stage, except that when

searching with “performance-priority" we double the training epochs to ensure convergence,

and with “cost-priority", we use a lasso term with λ = 1.0× 10−4 and β = { 9
13 , 3

13 , 1
13}

for 3D, 2D, 1D operations respectively.

Testing Stage we sample the middle frame in each segment and perform a center

crop for each frame. We report the results of single crop, unless otherwise specified.

Ablation Study We study the impacts of both different operation sets and manual/auto

configurations. The results are summarized in Table 3.3. Considering the spatial-temporal

property of video data, we study the following different operations set: (1) Spatial 2D

convolution and temporal 1D convolution; (2) Spatial 2D convolution and 3D convolution;

(3) Spatial 2D, temporal 1D, and 3D convolutions.

Operation Set with 1D & 2D Sub-kernels As shown in Table 3.3, CAKESC
1,2D

surpass the 2D baseline by a large margin (+29.6%) , while the model size reduces by

14.23%. This suggests that TSN [221] may lack the ability to capture temporal information,

therefore replacing some of the 2D operations to temporal 1D operations can significantly

increase the performance and reduce the model size. Besides, it also surpasses P3D, where

each 2D convolution is followed by a temporal 1D convolution, with a significant advantage

on both performance (+2.0%) and model cost (25.72% fewer params and 53.19% fewer

FLOPs), indicating CAKES makes better use of redundancies in the networks than P3D.

Therefore, CAKES using an operation set containing 1D and 2D sub-kernels can be an

54

ideal design when looking for efficient video understanding networks.

Operation Set with 2D & 3D Sub-kernels We aim to see how CAKES balances the

trade-off between performance and model cost. From Table 3.3, CAKESC
2,3D yields a much

more compact model (-23.23%/33.87% params/FLOPs) with comparable performance to

C3D. Under “performance-priority" setting, CAKESP
2,3D searches a slightly larger model,

yet its performance boosts significantly to 47.4%.

Operation Set with 1D & 2D & 3D Sub-kernels When compared to CAKESC
2,3D,

CAKESC
1,2,3D shows a similar performance with much fewer FLOPs (38.7G vs. 41.4G).

Besides, under the “performance-priority” setting, CAKESP
1,2,3D produces a comparable

performance to CAKESP
2,3D with less computation cost (43.9G vs. 50.7G). This result

indicates that with a more general search space (e.g., 1D, 2D, and 3D), the proposed

CAKES can find more flexible designs, which leads to better performance/efficiency.

Results A comparison with other state-of-the-art methods is shown in Table 3.4.

We report the model performance under both 8-frame and 16-frame settings. Compared

with other state-of-the-art methods, CAKESP
2D,3D sampling only 8 frames can already

outperform most current methods. With smaller parameters and FLOPs, CAKESP
2D,3D

surpasses those complex models such as non-local networks [225] with graph convolu-

tion [226]. Comparing CAKESC
1,2D to other efficient video understanding frameworks

such as ECO [289] and TSM [136], our model is not only more light-weight (58.6G vs.

64G/65G), but also delivers better performance (48.0% vs. 41.4%/47.2%). And our best

model CAKESP
1,2,3D achieves a new state-of-the-art performance of 49.4% top-1 accuracy

with moderate model size. An interesting finding is that although CAKESP
1,2,3D shows

55

similar performances to CAKESP
2,3D with 8-frame inputs, it achieves a much higher accu-

racy when it comes to the 16-frame scenario, which demonstrates that with a more general

search space, CAKESP
1,2,3D shows stronger transferability than other counterparts.

Cost-Priority Architecture We plot the found architecture on both medical data

(CAKESC
1,2,3D) and video data (CAKESC

2,3D) respectively in Fig 3.4. For the architecture

searched on Something-Something dataset, we note that the algorithm prefers efficient

2D operations at the bottom of the network, and favors 3D operation at the top of the net-

work. This implies that the search algorithm successfully finds that temporal information

extracted from high-level features is more useful, which coincides with the observation

in [238]. For the architecture found on the MSD dataset, we calculated the number of

operations computed on all three data dimensions, and the numbers are (1285, 1260, 1314).

This suggests that the searched model, unlike the searched network for videos, tends to

treat each dimension equally, which aligns with the property of volumetric medical data.

In addition, the number of 1D, 2D, 3D operations are 1378, 1065, and 117 respectively,

indicating that the efficient 1D/2D operations are more preferred.

Performance-Priority Architecture As shown in Fig. 3.5, for CAKESP
1,2,3D, the

pure temporal sub-kernel (3× 1× 1) is rarely chosen at the top of the network, while it

plays a more important role as the network goes deeper. This observation agrees with our

previous finding: temporal information extracted from high-level features is more useful.

For CAKESP
1,2,3D on the medical image as shown in Fig. 3.5, we calculate the numbers

of each type of sub-kernels and computation on three axes. The numbers of 1D, 2D, and

3D sub-kernel are 1135, 1073, 352 and the number of operations computed on all three

data dimensions are 1437, 1433, 1467, which again coincides with our previous finding

56

that each dimension plays an equally important role for the symmetric volumetric data.

Compared to cost-priority CAKESC, we notice that performance-priority CAKESP favors

the operation set with more 3D sub-kernels, which can provide a larger model capacity.

1
×
9
6
×
9
6
×
9
6

3
2
×
9
6
×
9
6
×
9
6

3 × 3 × 3 1 × 3 × 3 3 × 1 × 3 3 × 3 × 1 3 × 1 × 1 1 × 3 × 1 1 × 1 × 3

3
2
×
4
8
×
4
8
×
4
8

3
2
×
4
8
×
4
8
×
4
8

32 × 48 × 48 ×48

32 × 48 × 48 ×48

3
2
×
4
8
×
4
8
×
4
8

3
2
×
4
8
×
4
8
×
4
8

3
2
×
4
8
×
4
8
×
4
8

3
2
×
9
6
×
9
6
×
9
6

32 × 48 × 48 ×48

6
4
×
2
4
×
2
4
×
2
4

6
4
×
2
4
×
2
4
×
2
4

64 × 24 × 24 × 24 64 × 24 × 24 × 24
1
2
8
×
1
2
×
1
2
×
1
2

128 × 12 × 12 × 12

2
5
6
×
6
×
6
×
6

2
5
6
×
6
×
6
×
6

1
2
8
×
1
2
×
1
2
×
1
2

1
2
8
×
1
2
×
1
2
×
1
2

7
x7

 c
o

n
v

m
ax

 p
o

o
l

av
g

p
o

o
l

fc

Figure 3.4: The searched architecture of CAKESC on medical data and video data. Each color
represents a type of sub-kernel. The heights of these blocks are proportional to their ratios in the
corresponding convolution layer. The beginning and ending 1× 1× 1 convolutions at each residual
block are not visualized.

3.5 Conclusions

As an important solution to various 3D vision applications, 3D networks still suffer from

over-parameterization and heavy computations. How to design efficient alternatives to 3D

operations remains an open problem. In this chapter, we propose Channel-wise Automatic

KErnel Shrinking (CAKES), where standard 3D convolution kernels are shrunk into efficient

sub-kernels at channel-level, to obtain efficient 3D models. Besides, by formulating kernel

57

1
×
9
6
×
9
6
×
9
6

3
2
×
9
6
×
9
6
×
9
6

3 × 3 × 3 1 × 3 × 3 3 × 1 × 3 3 × 3 × 1 3 × 1 × 1 1 × 3 × 1 1 × 1 × 3

3
2
×
4
8
×
4
8
×
4
8

3
2
×
4
8
×
4
8
×
4
8

32 × 48 × 48 ×48

32 × 48 × 48 ×48

3
2
×
4
8
×
4
8
×
4
8

3
2
×
4
8
×
4
8
×
4
8

3
2
×
4
8
×
4
8
×
4
8

3
2
×
9
6
×
9
6
×
9
6

32 × 48 × 48 ×48

6
4
×
2
4
×
2
4
×
2
4

6
4
×
2
4
×
2
4
×
2
4

64 × 24 × 24 × 24 64 × 24 × 24 × 24

1
2
8
×
1
2
×
1
2
×
1
2

128 × 12 × 12 × 12

2
5
6
×
6
×
6
×
6

2
5
6
×
6
×
6
×
6

1
2
8
×
1
2
×
1
2
×
1
2

1
2
8
×
1
2
×
1
2
×
1
2

7
x7

 c
o

n
v

m
ax

 p
o

o
l

av
g

p
o

o
l

fc

Figure 3.5: The searched architecture of CAKESP on medical data and video data. Each color
represents a type of sub-kernel. The heights of these blocks are proportional to their ratios in the
corresponding convolution layer. The beginning and ending 1× 1× 1 convolutions at each residual
block are not visualized.

shrinkage as a path-level selection problem, our method can automatically explore the

redundancies in 3D convolutions and optimize the replacement configuration. By applying

on different backbone models, the proposed CAKES significantly outperforms previous

2D/3D/P3D and other state-of-the-art methods on both 3D medical image segmentation

and action recognition from videos.

58

Chapter 4

Mask Guided Matting via Progressive
Refinement Network

Starting from this chapter, we switch to natural image segmentation topics, which is more

challenging and usually brings useful insights for 3D segmentation models. We start with

natural image matting, which is a special segmentation task that predicts a transparent

mask with hair-level details. In this chapter, we propose a general mask-guided matting

framework with progressive refinement modules, which does not need users’ input and thus

can fully automatic deals with large-scale images.

4.1 Introduction

Image matting is a fundamental computer vision problem that aims to predict an alpha

matte to precisely cut out an image region. It has many applications in image and video

editing [220, 242, 123]. Most previous matting methods require a well-annotated trimap as

an auxiliary guidance input [220], which explicitly defines the regions of foreground and

background as well as the unknown part for the matting methods to solve. Although such

59

annotation makes the problem more tractable, it can be quite burdensome for users and

limits the usefulness of these methods in many non-interactive applications.

Recently, researchers start to study the matting problem in a trimap-free setting. One

direction is to get rid of any external guidance, and hope that the matting model can

capture both semantics and details by end-to-end training on large-scale datasets [268, 176].

Nevertheless, these methods are faced with the generalization challenge due to the lack

of semantic guidance when tested on complex real-world images. Another line of works

investigates alternatives to the trimap guidance, easing the requirement for human input

[142, 188, 98, 84]. For example, [98, 84] proposed techniques for automatic trimap

generation, while [188] takes background images instead as extra inputs. However, these

methods often require a very specific type of guidance they are trained with and thus

become less appealing when the guidance inputs may have varied characteristics or forms.

In this work, we introduce a Mask Guided (MG) Matting method which takes a general

coarse mask as guidance. MG Matting is very robust to the guidance input and can obtain

high-quality matting results using various types of mask guidance such as a trimap, a rough

binary segmentation mask or a low-quality soft alpha matte. To achieve such robustness

to guidance input, we propose a Progressive Refinement Network (PRN) module, which

learns to provide self-guidance to progressively refine the uncertain matting regions through

the decoding process. To further enhance the robustness of our method to external guidance,

we also develop a series of guidance mask perturbation operations including random

binarization, random morphological operations, and also a stronger perturbation CutMask

to simulate diverse guidance inputs during training.

60

Input MG (ours) CA [97] GCA [131] BSHM [142] PhotoShop

Figure 4.1: A visual comparison of MG and other matting methods including the commercial
matting method in PhotoShop. The guidance input (see Sec. 4.5 for details.) is located at the
bottom-left of each image. Note that BSHM [142] has an internal segmentation prediction network
and thus does not take the external mask. Best viewed zoomed in.

In addition to alpha matting prediction, we also revisit the foreground color prediction

problem for matting. Without accurately recovering the foreground color in the transparent

region, the composited image will suffer from the fringing issue. We note that the fore-

ground color labels in the widely-used dataset [242] are suboptimal for model training

due to the labeling noise and limited diversity. As a simple yet effective solution, we

propose Random Alpha Blending (RAB) to generate synthetic training data from random

alpha mattes and images. We show that such a simple method can improve foreground

color prediction accuracy without requiring additional manual annotations. As a result,

combined with the proposed PRN, MG Matting is able to generate more visually plausible

composition results.

Our contributions can be summarized as follows:

• We propose Mask Guided Matting, a general matting framework working with

guidance masks in various qualities and even forms, and achieve a new state-of-the-

art performance evaluated on both synthetic and real-world datasets.

61

• We introduce Progressive Refinement Network (PRN) along with a guidance pertur-

bation training pipeline as a solution to learning a robust matting model.

• We study the problem of foreground color prediction for matting and propose a

simple improvement using random alpha blending.

In addition, we collect and release a high-quality matting benchmark dataset of real images

to evaluate the real-world performance of matting models.

4.2 Related Work

Trimap-based Image Matting A majority of matting methods require a trimap as addi-

tional input, which divides an image into foreground, background, and unknown regions.

Traditional methods are often sampling-based or propagation-based. Sampling-based

ones [73, 51, 90, 190, 219] estimate foreground/background color statistics through sam-

pling pixels in the definite foreground/background regions to solve the alpha matte in the

unknown region. The propagation-based methods [36, 121, 123, 124, 199, 91], also known

as affinity-based methods, estimate alpha mattes by propagating the alpha value from the

foreground and background pixels to the unknown area.

Recently, deep learning approaches have been proven successful in many areas, in-

cluding classification [92, 202, 132, 130], detection [89, 7, 8], and segmentation [28, 260].

It also has achieved great success in image matting. [242] created a matting dataset with

annotated mattes composited to various background images, and trained a deep network on

it. Later, [160] introduced a generative adversarial framework to improve the results. [204]

proposed to combine the sampling-based method and deep learning. [156] introduced a

62

new index-guided upsampling and unpooling operations to better keep details in the predic-

tions. [97] proposed a two-encoder two-decoder architecture to simultaneously estimate

foreground and alpha. [131] further boosts the performance with a contextual attention

module.

Trimap-free Image Matting It is noticeable that there are also some trials [3, 192] to

get rid of the trimap to predict alpha matte. [268] proposed a framework consisting of a

segmentation network and a fusion network, where the input is only a single RGB image.

Later, [142] introduced a trimap-free framework consisting of a mask prediction network,

quality unification network, and matting refinement network for human portrait matting. The

trimap-free matting performance is further boosted with attention module [176]. However,

these trimap-free methods still have some gaps to trimap-based ones in terms of performance.

Another direction is to use alternative guidance to trimap. [188] introduced a framework

taking background images along with other potential priors (e.g., segmentation mask,

motion cue) as additional inputs. It shows great potential and can obtain comparable

performance to state-of-the-art trimap-based methods.

Foreground Color Decontamination Many conventional matting methods [73, 123]

proposed to predict both alpha matte and foreground color for extracting foreground objects.

However, it is only very recently [97] incorporated foreground prediction into the deep

learning framework. Later, [188] also predicts foreground color to reduce artifacts for a

better composition result. Nevertheless, these methods mainly add a foreground decoder

and directly learn from color label in [242], which only provides limited training samples

and, more seriously, the color labels can be inaccurate and noisy(see Fig. 4.3). [69] proposes

to use [123] to obtain a smoother color label.

63

PRM

PRM

Elementwise

Product

Elementwise

Sum

Progressive Refinement Module (PRM)

𝑔𝑙

𝛼𝑙

𝑓𝛼→𝑔

𝛼𝑙−1

upsample

𝛼𝑙
′

𝛼𝑙−1 1 − 𝑔𝑙

𝑔𝑙

Image Mask

Skip-

Connect

𝛼0

𝛼1

𝛼2

Figure 4.2: The proposed PRN. The network predicts alpha matte at multiple resolutions, while
the one at lower resolution provides guidance about the uncertain regions to be refined in the next
prediction.

Our method differs from the algorithms mentioned above in the following folds: 1) Our

model works in a more general setting where only an easy-to-obtain coarse mask, no matter

user-defined or model-predicted, is needed as guidance. It could handle different qualities

and even various types of guidance as input. Thus it could be used as either trimap-based or

trimap-free model depending on what guidance is available. Our model could also leverage

stronger guidance to achieve even finer details. 2) Our methods could also predict the

foreground color. Unlike [97], where the foreground prediction is directly learned from

the color label, we note that the limited training data and inaccurate human label result in

undesired results, especially in the boundary regions. Instead, we propose to use Random

Alpha Blending to avoid the bias in the label, which not only introduces more diverse

training samples but also avoid the inaccurate color label locating in boundary regions.

64

4.3 MG Matting

The problem of image matting can be formulated as:

I = αF + (1− α)B, α ∈ [0, 1], (4.1)

where I, F, B, and α refer to the image color, foreground color, background color, and

alpha matte respectively. As only I is observed, this is a very ill-posed problem. To solve

the matting problem, most methods require a trimap input, which labels the foreground

region (i.e. α = 1), the background region (i.e. α = 0), and the unknown part. In practice,

the trimap input can contain various levels of noise and errors, making the matting results

inconsistent.

We relax the strong assumption of the trimap by proposing a Mask Guided Matting

method. The mask guidance, such as a predicted segmentation mask or a rough manual

selection, only provides a coarse spatial prior of the foreground region. Therefore, our MG

Matting method needs a more high-level semantic understanding of the input mask, so

that it can detect the foreground/background region and the soft transparent part robustly.

Meanwhile, our model has to capture image low-level patterns such as edge and texture

to produce fine details of the target matte. Coordinating the high-level and the low-level

feature learning is the key to the design of our MG Matting method.

To this end, we introduce Progressive Refinement Network (PRN), which provides

a coarse-to-fine self-guidance to progressively refine the uncertain regions during the

decoding process. In the following, we present the details of PRN, the training formulation,

and some data augmentation techniques to enhance the robustness of our model.

65

4.3.1 Progressive Refinement Network

An overview of the PRN is shown in Fig. 4.2. The structure of our PRN follows the popular

encoder-decoder network with skip connections. Our network takes an image and a coarse

mask as input and outputs a matte. During the decoding process, PRN has a side matting

output at each feature level. The side outputs with deep supervision have been shown to

improve feature learning at different scales [239]. However, unlike [239], we find that

linearly fusing the side outputs is not ideal for the matting problem (see Table 4.4 for details).

This is because the image region closer to the object boundary requires lower-level features

to delineate the foreground, while identifying internal object regions needs higher-level

guidance.

To address this problem, we introduce a Progressive Refinement Module (PRM) at each

feature level to selectively fuse the matting outputs from the previous level and the current

level. Specifically, for the current level l we generate a self-guidance mask gl from the

matting output αl−1 of the previous level using the following function:

fαl−1→gl(x, y) =
{︃

1 if 0 < αl−1(x, y) < 1,
0 otherwise.

(4.2)

The αl−1 is firstly upsampled to match the size of the raw matting output α′l of the current

level and then produces resultant self-guidance mask gl. The self-guidance mask defines

the transparent region (i.e. 0 < α < 1) as unknown and replaces the unknown region of

αl−1 with the current raw output α′l to obtain an updated αl of current level:

αl = α′lgl + αl−1(1− gl). (4.3)

66

In this way, confident regions predicted from the previous higher-level features are preserved

and the current level only needs to focus on refining the uncertain region.

In practice, we obtain alpha matte side outputs at three feature levels of stride 8, 4, and

1 respectively (see Fig. 4.2) and slightly dilate the self-guidance masks for a more robust

self-guidance. The initial base matte of 1/8 image size will be progressively upsampled

and refined, and the uncertain regions will also shrink gradually through the decoding

process using the proposed PRM. The full network is trained end-to-end to auto-balance

the refinement focus at multiple feature levels. Such self-guided refinement also makes the

model less reliant on external mask guidance, leading to more robust matting performance.

Training Scheme For loss functions, we adopt the l1 regression loss, composition

loss [242], Laplacian loss [97] and denote them as Ll1, Lcomp, Llap respectively. We

represent the ground truth alpha with α̂ and prediction alpha with α. The overall loss

function is the summation of them:

L(α̂, α) = Ll1(α̂, α) +Lcomp(α̂, α) +Llap(α̂, α). (4.4)

The loss is applied to each output head of the network. To make the training more focused

on the unknown region, We further modulate the loss with gl. The final loss function can

be formulated as:

L f inal = ∑
l

wlL(αlˆ · gl, αl · gl), (4.5)

where wl is the loss weight assigned to the outputs of different levels. We use w0 : w1 :

w2 = 1 : 2 : 3 in our experiments. gl is generated from αl−1 by Eqn. 4.2, and g0 is a mask

filled with one so that the base level output can be supervised over the whole image to

provide more holistic semantic guidance for the next level output.

67

For data augmentation, we follow the training protocol proposed in [131], including

random composite two foreground object images, random resize images with random

interpolation methods, random affine transformation, and color jitters. We random crop

512× 512 patches centered on an unknown region for training. Each patch is composited

to a random background image from MS COCO dataset [138].

Guidance Perturbation To ensure that our model can adapt to guidance masks from

different sources and with different qualities, we propose a series of guidance perturbations

to generate guidance masks from ground-truth alpha matte during training. Given a ground-

truth alpha matte, we first binarize it with a random threshold uniformly sampled from 0 to

1. Then, the mask is dilated and/or eroded in random order with random kernel sizes from

1 to 30.

Moreover, we provide a stronger guidance perturbation named CutMask to further

improve the model’s robustness. Inspired by the successful natural image augmentation

CutMix [263], we randomly select a patch size ranging from 1/4 to 1/2 image size. Then,

two random patches of the guidance are selected and the content of one patch will overwrite

another. This stronger perturbation provides additional localized guidance mask corruption,

making the model more robust to semantic noises in external guidance masks.

Besides perturbing external guidance masks, we note that perturbing internal self-

guidance masks is also very important to improve the robustness. Therefore, we randomly

dilate the self-guidance masks to incorporate more variance. Particularly, during training,

the self-guidance mask from output stride 8 is dilated by K1 random sampled from [1, 30]

and the one from output stride 4 is dilated by K2 from [1, 15]. For testing, we fix K1 = 15

and K2 = 7.

68

Figure 4.3: The color labels in the commonly used training data from [242] are noisy and inaccurate,
especially near the boundary part. Note that the hair near the ear falsely gets pinker. Best viewed in
color and zoomed in.

4.3.2 Foreground Color Estimation

As indicated in Eqn. 4.1, both alpha matte and foreground color need to be solved for

foreground object extraction. Nevertheless, only a few matting methods learn to predict the

foreground color [97, 188] and all of them used the popular Composition-1k dataset [242]

for training.

However, there are a couple of issues in the Composition-1k dataset. First of all,

this dataset only contains 431 foreground images with matting and foreground color

ground truth, which is quite limited for training a foreground color model. Moreover, the

foreground color labels, which were estimated using the color decontamination feature

in PhotoShop [242], are sometimes noisy and inaccurate near the boundary regions (see

Fig. 4.3). This can introduce color spills and other artifacts into the images during the data

augmentation process, making the learning less stable. Besides, labels are only provided

where the alpha value is greater than zero, so existing methods can only apply supervision

69

to the foreground region [97], leading to unstable behaviors in the undefined part.

To address these issues, we propose a simple yet effective method, named Random

Alpha Blending (RAB), to generate synthetic training data by blending a foreground

image and a background image using a randomly selected alpha matte. Although the

composited images may not be semantically meaningful, they can provide accurate and

unbiased foreground color labels in the transparent region. The random alpha blending

can also significantly make training data more diverse and improve the generalization of

foreground color prediction. Besides, we also note that RAB makes it possible to apply

loss supervision over all images, leading to a much smoother prediction which is desired

for robust compositing. (See Fig. 4.4)

For foreground estimation, we train a separate model using a basic encoder-decoder

network, which takes an image and an alpha matte as input. The loss function is the

summation of l1 regression loss, compositing loss, and Laplacian loss. We note that

although training a single model for both matte and foreground color prediction is possible,

empirically this will degrade the matting performance [97], and the random alpha blending

will destroy the semantic cue for the matting model. In addition, decoupling foreground

color prediction from matting makes the color model transferable to the use cases where

the matte is already given.

4.4 Experiments on Synthetic Datasets

In this section, we report the evaluation results of our method under the traditional synthetic

data setting, where the test images are generated using foreground images with ground truth

70

Methods SAD MSE
(10−3) Grad Conn

Learning Based Matting [274] 113.9 48 91.6 122.2
Closed-Form Matting [123] 168.1 91 126.9 167.9
KNN Matting [36] 175.4 103 124.1 176.4
Deep Image Matting [242] 50.4 14 31.0 50.8
IndexNet Matting [156] 45.8 13 25.9 43.7
AdaMatting [19] 41.7 10.2 16.9 -
Context-Aware Matting [97] 35.8 8.2 17.3 33.2
GCA Matting [131] 35.3 9.1 16.9 32.5
OursTrimapFG 31.5 6.8 13.5 27.3
OursTrimap 32.1 7.0 14.0 27.9

Table 4.1: Results on Composition-1k test set. The subscripts denote the corresponding guidance
inputs, i.e., TrimapFG, Trimap. The other evaluated methods all require a trimap as input.

mattes and random background images.

Evaluation Metrics We follow previous methods to evaluate the results by Sum of Ab-

solute Differences (SAD), Mean Squared Error (MSE), Gradient (Grad), and Connectivity

(Conn) errors using the official evaluation code [242].

Network Architectures We adopt ResNet34-UNet proposed in [131] with an Atrous

Spatial Pyramid Pooling (ASPP) [28] as the backbone for both PRN and color prediction.

The first convolution layer is adjusted to take a 4-channel input consisting of an RGB image

along with an external guidance input. Moreover, an alpha prediction head (Conv-BN-

ReLU-Conv) is attached to the features at output stride 4 and 8 respectively to obtain side

outputs.

Training stage To fairly compare with previous deep image matting methods, we

train our MG Matting model using the Composition-1k dataset [242] which contains 431

foreground objects and the corresponding ground-truth alpha mattes for training. The

network is initialized with ImageNet [59] pre-trained weight. We use crop size 512, batch

71

Methods SAD MSE
(10−3) Grad Conn

Learning Based Matting∗ [274] 105.04 21 94.16 110.41
Closed-Form Matting∗ [123] 105.73 23 91.76 114.55
KNN Matting∗ [36] 116.68 25 103.15 121.45
Deep Image Matting∗ [242] 47.56 9 43.29 55.90
HAttMatting∗ [176] 48.98 9 41.57 49.93
Deep Image Matting [242] 48.73 11.2 42.60 49.55
+ Ours 36.58 7.2 27.37 35.08
IndexNet Matting [156] 46.95 9.4 40.56 46.80
+ Ours 35.82 5.8 25.75 34.23
Context-Aware Matting [97] 36.32 7.1 29.49 35.43
+ Ours 35.04 5.4 24.55 33.35
GCA Matting [131] 39.64 8.2 32.16 38.77
+ Ours 35.93 5.7 25.94 34.35

Table 4.2: Matting refinement results on Distinction-646 test set. Results with ∗ are from methods
trained on Distinction-646 train set as reported in [176] for reference. Other results are only trained
on composition-1k.

size of 40 in total on 4 GPUs, Adam optimizer with β1 = 0.5 and β2 = 0.999. The

learning rate is initialized to 1 × 10−3. The training lasts for 100, 000 iterations with

warm-up at the first 5, 000 iterations and cosine learning rate decay [154, 80]. We also

apply a curriculum learning manner to help the PRN training. Particularly, for the first

5, 000 iterations, the predictions of output stride 4 and 1 will be guided by guidance mask

generated from ground-truth alpha, and for the next 10, 000 iterations, the guidance will be

evenly and randomly generated from self-prediction and ground-truth alpha. Afterwards,

each alpha prediction should fully rely on its self-guidance. The foreground color prediction

is trained under the exactly same settings except that the generated training samples are

composited by random foreground and alpha matte. It is noticeable that with RAB, we can

add foreground color supervision on the whole image instead of only foreground regions,

which produces more smooth and more stable results (see Fig. 4.4).

72

Methods SAD
MSE

(10−3)
Global Matting [90] 220.39 36.29
Closed-Form Matting [123] 254.15 40.89
KNN Matting [36] 281.92 36.29
Context-Aware Matting [97] 61.72 3.24
Ours 49.80 2.48

Table 4.3: The foreground result (α · F) on the Composition-1k dataset.

Methods
Whole Image Unknown Area

SAD
MSE

(10−3)
SAD

MSE
(10−3)

Baseline 43.7 4.5 39.8 11.2
Baseline + Deep Supervision 37.8 3.7 36.3 9.5
Baseline + Fusion Conv 38.1 3.2 36.9 8.8
PRN w/o CutMask 33.9 2.9 32.8 7.5
PRN 32.3 2.5 32.1 7.0

Table 4.4: Ablation studies on Composition-1k dataset. Baselines: a ResNet34-UNet with ASPP;
Deep supervision: adding side outputs and deep supervisions; Fusion Conv: using convolutions to
combine different outputs.

Testing on Composition-1k The test set consists of 50 unique objects which are

composited with 20 background images chosen from Pascal VOC [66], thus providing

1000 test samples in total. We note that since these synthetic datasets use PASCAL VOC

images as the background which may contain other salient objects, saliency/segmentation

models may not be applicable to obtain a reasonable coarse mask. To best fairly compare

MG Matting with other trimap-based methods, we test our model under two settings: 1)

TrimapFG: We adopt the confident foreground regions in a trimap as a coarse guidance mask

for our network; 2) Trimap: We normalize trimap to [0, 1] with the unknown pixels being

0.5 and use this soft mask as guidance. We follow the evaluation setting in Composition-1k

which only computes the evaluation on the unknown region.

73

We summarize the alpha results and foreground color results in Table 4.1 and Table 4.3

respectively. We note that although our model is not trained with trimap, it still shows great

robustness and transferability on these unseen types of guidance. Our model surpasses

previous state-of-the-art models by a large margin. It also performs consistently considering

the gap between trimap and trimapFG. We also note that our foreground color prediction

not only reduces the errors significantly, but also produces much smoother results (see

Fig. 4.4), which is desired in complex real-world scenarios where alpha matte can be noisy.

Testing on Distinction-646 Distinction-646 [176] is a recent synthetic matting bench-

mark dataset, which improves the diversity of Composition-1k. It contains 1000 test

samples obtained in a similar manner as Composition-1k. However, this dataset is released

without official trimaps or other types of guidance, making it difficult to compare with

previously reported results. Therefore, we use this benchmark mainly as a testbed to show

how our method can refine a matte produced by another method.

We test a few state-of-the-art trimap-based baselines trained on Composition-1k. We

first generate trimaps from ground-truth alpha mattes by thresholding and the unknown

region is dilated by kernel size 20. Then, we use these trimap-based methods to generate

the matting results. Finally, we use these predicted alpha mattes as the guidance to our MG

Matting method, and produce refined mattes.

As shown in Table 4.2, using MG Matting as a refinement method consistently improves

the results of other state-of-the-art methods. We also show the results reported by [176] in

Table 4.2 for reference.

Ablation Studies To validate the design of PRN and the introduced guidance pertur-

bation, we conduct ablations studies as summarized in Table 4.4. Trimap is used as the

74

Figure 4.4: A visual comparison of foreground color decontamination. Each column from left to
right: Input image and ground truth α · F, Foreground color prediction and α · F of [97], predictions
of our model with random alpha blending. Note that the background color is mixed into the
prediction of [97], while our model can estimate a more smooth foreground color map and be more
robust.

guidance mask in these experiments. However, we do not assume that the guidance type

is known, so we purposefully do not use it to post-process the prediction by replacing the

75

Image w/ guidance LFM [268] GCA [131] CA [97] PhotoShop MG (Ours) GT

Image w/ guidance LFM [268] GCA [131] CA [97] PhotoShop MG (Ours) GT

Image w/ guidance LFM [268] GCA [131] CA [97] PhotoShop MG (Ours) GT

Figure 4.5: The visual comparison results among different methods on our portrait test set. We
visualize representative examples with both high-quality studio-level portraits and selfies with strong
noises. MG Mating performs well on different-quality images and can maintain details. We note that
our results, though only trained on composition-1k, are not only superior to previous state-of-the-art
but also produce comparable or better results than commercial methods in PhotoShop.

known foreground and background region. Instead, we report the two scores calculated over

the whole image and the unknown region respectively for a more comprehensive evaluation

of the robustness of our method.

We report ablations of different variants in Table 4.4. Baseline refers to a pure backbone

without any add-ons. Adding side outputs and deep supervision to the baseline improves

the performance on both whole image or unknown area. We also try to use two convolution

layers to fuse different outputs. However, linearly fusing the side outputs may not lead to

better results. In contrast, the proposed PRN can better coordinate the semantic refinement

and low-level detail refinement at different levels, thus obtaining a consistent improvement.

76

Methods
Whole Image Details

SAD MSE
(10−3) SAD MSE

(10−3)
Deep Image Matting [242] 28.5 11.7 19.1 74.6
GCA Matting [131] 29.2 12.7 19.7 82.3
IndexNet Matting [156] 28.5 11.5 18.8 72.7
Context-Aware Matting [97] 27.4 10.7 18.2 66.2
Late Fusion Matting [268] 78.6 39.8 24.2 88.3
Ours 26.8 9.3 17.4 55.1

Table 4.5: Results on Real-world Portrait test set.

We also show that the CutMask perturbation can further improve both the performance and

robustness.

We also validate the effectiveness of RAB. We calculate the MSE and SAD of fore-

ground color (F) over foreground regions (i.e. α > 0). The baseline achieves MSE =

0.00623 and SAD = 82.30, while with RAB, the performance is boosted to MSE =

0.00321 and SAD = 62.01.

4.5 Experiments on Real-world Portrait Dataset

We note that although the synthetic datasets are well-established benchmarks and provide

sufficient data to train a good model, it remains an open question whether models trained

on them are robust enough and can produce comparable results in real images. For

example, [97] found that some easy data augmentations such as re-JPEGing and gaussian

blur can avoid some shortcomings of the synthetic dataset and significantly improve the

model’s performance on real-world images, though at a cost of higher errors on the synthetic

benchmark. This begs the question: can the results on the synthetic matting dataset reflect

the performance on real images?

77

Evaluation on real-world images is thus very crucial. However, due to the lack of

high-quality matting benchmark datasets of real images, most previous models mainly

compare their matting results visually or through a user study. To better evaluate the matting

methods in a real-world scenario, we collect a real-world image matting dataset consisting

of 637 diverse and high-resolution images with matting annotation made by experts. The

images in our dataset have various image qualities and subjects of diverse poses. Moreover,

since the dataset mainly contains solid objects where the main body can be easy to predict,

we also labeled detail masks covering the hair region and other soft tissues, which tells

where the most important details of the image are located. By calculating errors in these

regions, we can further compare the ability to capture object details for different models.

We will release this dataset for better benchmarking matting methods on real images.

Implementation Details We use the Composition-1k training set to train the model.

Considering the semantic gap between the two datasets, we remove the transparent objects

from the training data using the data list of [188]. Following [97], we also apply re-JEPGing,

gaussian blur, and gaussian noises to the input image to make the model better adapt to

real-world noises which are rarely seen in the synthetic dataset. Since these augmentations

can change the color of the composited training image, thus the original color label may

not be applicable. Therefore, we remove the composition loss from the supervision. Other

training settings remain the same as in Sec. 4.4.

For trimap-based baselines, we follow [188] to generate trimaps from segmenta-

tion [266] automatically by labeling each pixel with foreground class probability > 0.95 as

foreground, < 0.05 as background, and the rest as unknown, the unknown region is further

78

Image Mask-Erode30 Mask-Dilate30

Ground-Truth Pred-Erode30 Pred-Dilate30

Figure 4.6: Our model is robust given different quality guidance masks and produces consistent
alpha estimation.

dilated by k = 20 to ensure it will not miss the long hairs. For our model, we threshold the

segmentation at prob = 0.5 to a binary mask.

Results We compare the results with state-of-the-art trimap-based methods DIM [242],

GCA [131], IndexNet [156], Context-Aware Matting [97], and trimap-free method Late

Fusion Matting [268] which is trained on Composition-1k training set and an additional

portrait dataset. The results of baselines are obtained through either the open-source

inference demos or the provided pre-trained weights.

79

We summarize the results in Table 4.5 under two settings: Whole Image, where the

errors are calculated across the whole image, which can measure the overall quality; Details,

where the errors are calculated only in manual-labeled regions containing hair details or

other soft areas.

Compared to other methods, our model achieves superior performance, especially

regarding the detail part, which illustrates its ability to capture the boundary details. We

also note that the trimap-free method LFM performs badly, which could be caused by the

fact that their portrait training data is not diverse enough and thus limits the generalizability

of their model (see Fig. 4.5 for examples).

We compare our results with another trimap-free method BSHM [142]. We contacted

the authors and obtained the test results on a 100 images subset of our portrait dataset.

Since [142] can only deal with low-resolution images, we downsample images to longer-

side 720, and the metrics are also computed on this scale. [142] achieves MSE 0.0155 and

SAD 10.66 for whole image and MSE 0.0910 and SAD 7.60 for detail regions, while our

MG Matting obtains a superior performance with MSE 0.0095 and SAD 8.01 for whole

image and MSE 0.0637 and SAD 5.94 for details.

Robustness to Guidance. To verify how robust our model is to the external guidance

mask, we conduct experiments to feed the network with perturbed external guidance masks.

Particularly, we erode/dilate the mask with kernel size 10, 20, 30 respectively. We note

that the model predicts consistently given differently perturbed external guidance. The

SAD error increases from 26.8 to 27.1, 27.2, 27.4 with mask eroded by 10, 20, and 30

respectively. For dilation, the SAD error goes to 27.0, 27.4, 28.1 with kernel 10, 20, 30

respectively. A visual example is provided in Fig. 4.6.

80

4.6 Conclusion

In this chapter, we present Mask Guided (MG) Matting, a general framework to resolve

the natural image matting problem. Unlike previous methods, our method is not tailored

to some specific guidance mask. Instead, it can handle versatile guidance masks such as a

trimap, a rough segmentation mask, or a low-quality alpha matte. The key to the robustness

of our model lies in the Progressive Refinement Network, which provides self-guidance and

progressively refines the uncertain regions during the decoding process. Further, we also

propose a simple yet effective method called Random Rendering to resolve the limitation of

the existing dataset and learn a better foreground color estimation model, which is important

yet rarely studied before. Moreover, we release a new real-world matting dataset with

high-quality labels to better quantitatively evaluate matting models in a real-world scenario,

which we hope could shed some light on the direction towards real-life matting.

81

Chapter 5

Glance-and-Gaze Vision Transformer

In this chapter, we discuss our efforts in vision transformer, which shows great potential and

serves as strong alternative to CNNs. However, due to its high complexities to the length of

input sequence, it is limited for dense tasks such as segmentation, where high-resolution

inputs/features are expected. Here we propose an efficient and effective alternative, named

Glance-and-Gaze attention module, to the original self-attention. It sparsely glances over

the image so not all pixels need to be involved, and compensates the missing local details

efficiently through a depthwise convolution in gaze branch. It shows promising results on

several public benchmarks.

5.1 Introduction

Convolution Neural Networks (CNNs) have been dominating the field of computer vision,

which have been a de-facto standard and achieved tremendous success in various tasks, e.g.,

image classification [92], object detection [89], semantic segmentation [31], etc. CNNs

model images from a local-to-global perspective, starting with extracting local features

82

such as edges and textures, and forming high-level semantic concepts gradually. Although

CNNs prove to be successful for various vision tasks, they lack the ability to globally

represent long-range dependencies. To compensate a global view to CNN, researchers

explored different methods such as non-local operation [225], self-attention [214], Atrous

Spatial Pyramid Pooling (ASPP) [31].

Recently, another type of networks with stacked Transformer blocks emerged. Unlike

CNNs, Transformers naturally learn global features in a parameter-free manner, which

makes them stronger alternatives and raises questions about the necessity of CNNs in vision

systems. Since the advent of Vision Transformer (ViT) [63], which applied Transformers to

vision tasks by projecting and tokenizing natural images into sequences, various improve-

ments have been introduced rapidly, e.g., better training and distillation strategies [207],

tokenization [262], position encoding [49], local feature learning [85]. Moreover, besides

Transformers’ success on image classification, many efforts have been made to explore

Transformers for various down-stream vision tasks [224, 149, 67, 24, 272].

Nevertheless, the advantages of Transformers come at a price. Since self-attention

operates on the whole sequences, it incurs much more memory and computation costs

than convolution, especially when it comes to natural images, whose lengths are usually

much longer than word sequences, if treating each pixel as a token . Therefore, most

existing works have to adopt a compromised strategy to embed a large image patch for

each token, although treating smaller patches for tokens leads to a better performance (e.g.,

ViT-32 compared to ViT-16 [63]). To address this dilemma, various strategies have been

proposed. For instance, Pyramid Vision Transformer (PVT) [224] introduced a progressive

shrinking pyramid to reduce the sequence length of the Transformer with the increase of

83

network depth, and adopted spatial-reduction attention, where key and value in the attention

module are down-sampled to a lower resolution. Swin-Transformer [149] also adopted the

pyramid structure, and further proposed to divide input feature maps into different fix-sized

local windows, so that self-attention is computed within each window, which reduces the

computation cost and makes it scalable to large image scales with linear complexity.

Nonetheless, we notice that these strategies have some limitations: Spatial-reduction

attention can reduce memory and computation costs to learn high-resolution feature maps,

yet with a price of losing details which are expected from the high-resolution feature

maps. Adopting self-attention within local windows is efficient with linear complexity,

but it sacrifices the most significant advantage of Transformers in modeling long-range

dependencies.

To address these limitations, we propose Glance-and-Gaze Vision Transformer (GG-

Transformer), inspired by the Glance-and-Gaze human behavior when recognizing objects

in natural scenes [60], which takes advantage of both the long-range dependency mod-

eling ability of Transformers and locality of convolutions in a complementary manner.

A GG-Transformer block consists of two parallel branches: A Glance branch performs

self-attention within adaptively-dilated partitions of input images or feature maps, which

preserves the global receptive field of the self-attention operation, meanwhile reduces its

computation cost to a linear complexity as local window attention [149] does; A Gaze

branch compensates locality to the features obtained by the Glance branch, which is im-

plemented by a light-weight depth-wise convolutional layer. A merging operation finally

re-arranges the points in each partition to their original locations, ensuring that the output

of the GG-Transformer block has the same size as the input. We evaluate GG-Transformer

84

on several vision tasks and benchmarks including image classification on ImageNet [59],

object detection on COCO [138], and semantic segmentation on ADE20K [277], and show

its efficiency and superior performance, compared to previous state-of-the-art Transformers.

5.2 Related Work

CNN and self-attention. Convolution has been the basic unit in deep neural networks for

computer vision problems. Since standard CNN blocks were proposed in [120], researchers

have been working on designing stronger and more efficient network architectures, e.g.,

VGG [194], ResNet [92], MobileNet [187], and EfficientNet [202]. In addition to studying

how to organize convolutional blocks into a network, several variants of the convolution

layer have also been proposed, e.g., group convolution [118], depth-wise convolution [47],

and dilated convolution [249]. With the development of CNN architectures, researchers

also seeked to improve contextual representation of CNNs. Representative works, such

as ASPP [31] and PPM [270] enhance CNNs with multi-scale context, and NLNet [225]

and CCNet [102] provided a non-local mechanism to CNNs. Moreover, instead of just

using them as an add-on to CNNs, some works explored to use attention modules to replace

convolutional blocks [100, 179, 218, 269].

Vision Transformer. Recently, ViT [63] was proposed to adapt the Transformer [214] for

image recognition by tokenizing and flattening 2D images into sequence of tokens. Since

then, many works have been done to improve Transformers, making them more suitable for

vision tasks. These works can be roughly categorized into three types: (1) Type I made

efforts to improve the ViT design itself. For example, DeiT [207] introduced a training

scheme to get rid of large-scale pre-training and distillation method to further improve the

85

performance. T2T-ViT [262] presented a token-to-token operation as alternatives to patch

embedding, which keeps better local details. (2) Type II tried to introduce convolution

back into the ViT design. E.g., Chu et al. [49] proposed to use convolution for position

encoding. Wu et al. [230] used convolution to replace the linear projection layers in

Transformers. (3) Type III tried to replace CNNs by building hierarchical Transformers as

a plug-in backbone in many downstream tasks. Wang et al. [224] proposed a pyramid vision

Transformer, which gradually downsamples the feature map and extract multi-scale features

as common CNN backbones do. However, applying self-attention on high-resolution

features is not affordable in terms of both memory and computation cost, thus they used

spatial-reduction attention, which downsamples key and value in self-attention as a trade-

off between efficiency and accuracy. Later, Liu et al. [149] proposed a new hierarchical

Transformer architecture, named Swin-Transformer. To handle the expensive computation

burden incurred with self-attention, they divided feature maps into several non-overlapped

windows, and limited the self-attention operation to be performed within each window.

By doing so, Swin-Transformer is more efficient and also scalable to large resolution

input. Besides, to compensate the missing global information, a shifted window strategy is

proposed to exchange information between different windows.

Our method differs from aforementioned works in the following aspects: Type I,

II methods usually utilize a large patch size and thus incompatible to work with high-

resolution feature map. Type III methods proposed new attention mechanism to handle

the extreme memory and computation burden with long sequences, but they sacrifices

accuracy as a trade-off with efficiency. In contrast, GG-Transformer proposes a more

efficient Transformer block with a novel Glance-and-Gaze mechanism, which not only

86

(a) (b) (c)

Figure 5.1: Toy examples illustrating different methods to reduce computation and memory cost
of self-attention. (a) Spatial reduction [224, 67] spatially downsamples the feature map; (b) Local
window [149] restricts self-attention inside local windows; (c) Glance attention (ours) applies
self-attention to adaptively-dilated partitions.

enables it to handle long sequences and scalable to high-resolution feature maps, but also

leads to a better performance than other efficient alternatives.

5.3 Method

The design of GG-Transformer draws inspiration from how human beings observe the

world, which follows the Glance and Gaze mechanism. Specifically, humans will glance at

the global view, and meanwhile gaze into local details to obtain a comprehensive under-

standing to the environment. We note that these behaviors surprisingly match the property

of self-attention and convolution, which models long-range dependencies and local con-

text, respectively. Inspired from this, we propose GG-Transformer, whose Transformer

block consists of two parallel branches: A Glance branch, where self-attention is per-

formed to adaptively-dilated partitions of the input, and a Gaze branch, where a depth-wise

convolutional layer is adopted to capture the local patterns.

87

Q

K

V

So
ftm

ax

Depthwise
Conv

MLP

Merging

Adaptively
Dilated
Splitting

Glance Branch

Gaze Branch

Merging

Adaptively
Dilated
Splitting

Figure 5.2: A visual illustration of GG Transformer block, where the Glance and Gaze branches
parallely extract complementary information.

5.3.1 Revisit Vision Transformer

We start with revisiting the formulation of vision Transformer block, which consists of

multi-head self-attention (MSA), layer normalization (LN), and multi-layer perceptron

(MLP). A Transformer block processes input features as follows:

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, (5.1)

zℓ = MLP(LN(z′ℓ)) + z′ℓ, (5.2)

where zℓ is the encoded image representation at the ℓ-th block. MSA gives Transformers

the advantages of modeling a global relationship in a parameter-free manner, which is

formulated as:

MSA(X) = Softmax(
QKT
√

C
)V, (5.3)

88

where Q, K, V ∈ RN×C are the query, key, and value matrices which are linear mappings

of input X ∈ RN×C, C is the channel dimension of the input, and N is the length of input

sequence. Note that for simplified derivation, we assume the number of heads is 1 in the

multi-head self attention, which will not affect the following complexity analysis and can

be easily generalize to more complex cases.

For vision tasks, N is often related to the input height H and width W. In practice, a

2D image is often first tokenized based on non-overlapping image patch grids, which maps

a 2D input with size H ×W into a sequence of token embeddings with length N = H×W
P2 ,

where (P, P) is the grid size. In MSA, the relationships between a token and all tokens

are computed. Such designs, though effectively capturing long-range features, incur a

computation complexity quadratic to N:

Ω(MSA) = 4NC2 + 2N2C. (5.4)

For ViTs that only work on 16× down-sampled feature maps (i.e., P = 16), the computation

cost is affordable, since in this scenario N = 14× 14 = 196 (for a typical ImageNet setting

with input size 224× 224). However, when it comes to a more general vision scenario

with the need of dense prediction based on high-resolution feature maps (such as semantic

segmentation), where the cost dramatically increases by thousands of times or even more.

Naively applying MSA to such high-resolution feature maps can easily lead to the problem

of out-of-memory (OOM), and extremely high computational cost. Although some efficient

alternatives [224, 149] were brought up recently, accuracy is often sacrificed as a trade-off

of efficiency. To address this issue, we propose a new vision Transformer that can be

applied to longer sequence while keeping high accuracy, inspired by the Glance-and-Gaze

89

human behavior when recognizing objects in natural scenes [60].

5.3.2 Glance: Efficient Global Modeling with Adaptively-dilated Split-
ting

To address the efficiency problem of Transformers, existing solutions often adapt Transform-

ers to high-resolution feature maps by down-sampling the key and value during the attention

process [224], or limit self-attention to be computed in a local region then exchange infor-

mation through shifting these local regions to mimic a global view [149]. But limitations

exist in these methods. For down-sampling methods, although the output feature maps keep

to be high-resolution, they lose some details during the down-sampling processes. Besides,

they still has a quadratic complexity and thus may not scale up to a larger input size. For

local-region based methods, though they successfully reduce the complexity to a linear

level, they cannot directly model a long-range dependency but instead are stuck within

local context, which counters the design intuition of Transformer and self-attention for

long-range dependency modeling. Besides, two consecutive blocks need to work together

to mimic a global receptive field, which may not achieve as good performance as MSA

(see Table. 5.5).

Thus, we propose Glance attention, which performs self-attention efficiently with a

global receptive field. It shares same time complexity as [149], but directly models long-

range dependencies, as shown in Fig. 5.1. Specifically, we first splits an input feature map

to several dilated partitions, i.e., the points in a partition are not from a local region but from

the whole input feature map with a dilation rate adaptive to the feature map size and the

token size. We name this operation Adaptively-dilated Splitting. For example, a partition

90

contains M×M tokens and it is obtained with an adaptive dilation rate = (h
M , w

M), where

h, w is the height and width of current feature map respectively, and hw = N. Here we

assume all divisions have no remainder for simplicity. These partitions are easily to be

split from the input feature map or merged back. Specifically, we formulate this process as

follows:

zℓ−1 = [z1,1
ℓ−1, z1,2

ℓ−1, . . . , zh,w
ℓ−1], (5.5)

where zi,j
ℓ−1 is the feature token at position (i, j) if reshaping the sequence of token embed-

ding zℓ−1 back into a 2D feature map and use the 2D coordinates accordingly. To reduce

the memory and computation burden, while keeping a global receptive field, zℓ−1 is split

into several partitions:

z†
ℓ−1 = AdaptivelyDilatedSplitting(zℓ−1) (5.6)

= [z†,1,1
ℓ−1 , z†,1,2

ℓ−1 , . . . , z†, h
M , w

M
ℓ−1], (5.7)

where z†,i,j
ℓ−1 = [zi,j

ℓ−1, zi,j+ h
M

ℓ−1 , . . . , zi+ (M−1)h
M ,j+ (M−1)w

M
ℓ−1], (5.8)

where z†
ℓ−1 ∈ RN×C, z†,i,j

ℓ−1 ∈ RM2×C. Afterwards, MSA is applied to each partition,

which substantially reduces the computation and memory cost yet does not lose the global

feature representation. And then all partitions are merged back into one feature map and go

91

through the remaining modules:

z′,i,jℓ = MSA(LN(z†,i,j
ℓ−1)) + z†,i,j

ℓ−1, (5.9)

z′ℓ = Merging(z′,1,1
ℓ , . . . , z′,

h
M , w

M
ℓ), (5.10)

zℓ = MLP(LN(z′ℓ)) + z′ℓ, (5.11)

where Merging is an inverse operation of AdaptivelyDilatedSplitting which re-arranges

points in each partition back in their original orders.

This new self-attention module (formulated in Eq. 5.6 to 5.10), namely Glance multi-

head self attention module (G-MSA), enables a global feature learning with linear com-

plexity:

Ω(G-MSA) = 4hwC2 + 2M2hwC = 4NC2 + 2M2NC. (5.12)

5.3.3 Gaze: Compensating Local Relationship with Depthwise Convo-
lution

Although the Glance branch can effectively capture long-range representations, it misses

the local connections across partitions, which can be crucial for vision tasks relying on

local cues. To this end, we propose a Gaze branch to compensate the missing relationship

and enhance the modeling power at a negligible cost.

Specifically, to compensate the local patterns missed in the Glance branch, we propose

to apply an additional depthwise convolution on the value in G-MSA:

Gaze(X) = DepthwiseConv2d(Merging(V)), (5.13)

92

which has a neglectable computational cost and thus the overall cost is still significantly

reduced:

Ω(GG-MSA) = 4NC2 + 2M2NC + k2NC, (5.14)

where k is the Gaze branch kernel size, and M is the partition size set in Glance branch,

both k and M are constants that are much smaller than N. We note that in this way, long-

range and short-range features are naturally and effectively learned. Besides, unlike [149],

GG-MSA does not require two consecutive blocks (e.g., W-MSA and SW-MSA) to be

always used together, instead, it is a standalone module as the original MSA [63].

We propose two ways to determine the kernel size k for better compensating the local

features:

Fixed Gazing. A straightforward way is to adopt the same kernel size (e.g., 3× 3) for all

Gaze branches, which can ensure same local feature learning regardless of the dilation rate.

Adaptive Gazing. Another way is implementing Gazing branch with adaptive kernels,

where the kernel size should be the same as dilation rate (h/M, w/M). In this way,

GG-MSA still enjoys a complete view of the input.

By combining Glance and Gaze branches together, GG-MSA can achieve superior

performance to other counterparts while remaining a low cost.

5.3.4 Network Instantiation

We build a hierarchical GG-Transformer with the proposed Glance-and-Gaze branches as

shown in Fig. 5.2. For fair comparison, we follow the settings in Swin-Transformer [149]

in terms of network depth and width, with only difference in the attention methods used

93

in Transformer blocks. Furthermore, we set M to be same as the window size in [149],

so that the model size and computation cost are also directly comparable. Note that

GG-Transformer has not been specifically tuned by scaling depth and width for a better

accuracy-cost trade-off.

We build GG-T and GG-S, which share the same model size and computation costs as

Swin-T and Swin-S, respectively. For all GG-Transformers, we set the fixed patch size M =

7, expansion ratio of MLP α = 4. All GG-Transformer consists of 4 hierarchical stages,

which corresponds to feature maps with down-sampling ratio 4, 8, 16, 32, respectively. The

first patch embedding layer projects input to a feature map with channel C = 96. When

transitioning from one stage to the next one, we follow CNN design principles [92] to

expand the channel by 2× when the spatial size is down-sampled by 4×.

5.4 Experiments

In the following parts, we report results on ImageNet [59] classification, COCO [138]

object detection, and ADE20K [277] semantic segmentation to compare GG-Transformer

with those state-of-the-art CNNs and ViTs. Afterwards, we conduct ablation studies to

verify the design of Glance and Gaze branches and also compare effectiveness of different

alternative self-attention designs.

5.4.1 ImageNet Classification

We validate the performance of GG-Transformer on ImageNet-1K [59] classification task,

which contains 1.28M training images and 50K validation images for 1000 classes. We

report top-1 accuracy with a single 224× 224 crop.

94

method
image
size

#param. FLOPs
ImageNet
top-1 acc.

RegNetY-4G [178] 2242 21M 4.0G 80.0
RegNetY-8G [178] 2242 39M 8.0G 81.7
RegNetY-16G [178] 2242 84M 16.0G 82.9

EffNet-B3 [202] 3002 12M 1.8G 81.6
EffNet-B4 [202] 3802 19M 4.2G 82.9
EffNet-B5 [202] 4562 30M 9.9G 83.6

DeiT-T [207] 2242 5M 1.3G 72.2
DeiT-S [207] 2242 22M 4.6G 79.8
DeiT-B [207] 2242 86M 17.5G 81.8
TNT-S [85] 2242 24M 5.2G 81.3
TNS-B [85] 2242 66M 14.1G 82.8

T2T-ViT-7 [262] 2242 4M 1.2G 71.7
T2T-ViT-14 [262] 2242 22M 5.2G 81.5
T2T-ViT-24 [262] 2242 64M 14.1G 82.3
PVT-Tiny [224] 2242 13M 1.9G 75.1
PVT-Small [224] 2242 25M 3.8G 79.8

PVT-Medium [224] 2242 44M 6.7G 81.2
PVT-Large [224] 2242 61M 9.8G 81.7

Swin-T [149] 2242 28M 4.5G 81.2
Swin-S [149] 2242 50M 8.7G 83.2

GG-T 2242 28M 4.5G 82.0
GG-S 2242 50M 8.7G 83.4

Table 5.1: Comparison of different models on ImageNet-1K classification.

Implementation Details. To ensure a fair comparison, we follow the same training

settings of [149]. Specifically, we use AdamW [155] optimizer for 300 epochs with

cosine learning rate decay including 20 epochs for linear warm-up. The training batch

size is 1024 with 8 GPUs. Initial learning rate starts at 0.001, and weight decay is 0.05.

Augmentations and regularizations setting follows [207] including rand-augment [56],

mixup [265], cutmix [263], random erasing [275], stochastic depth [101], but excluding

repeated repeated augmentation [96] and EMA [172].

95

Results. A summary of results in Table 5.1, where we compare GG-Transformer with vari-

ous CNNs and ViTs. It is shown that GG-Transformer achieve better accuracy-cost trade-off

compared to other models. Moreover, GG-T, a light-weight model (28M/4.5G/82.0%),

can achieve comparable performance to those even much large models such as DeiT-B

(86M/17.5G/81.8%), T2T-ViT-24 (64M/14.1G/82.3%), and PVT-Large (61M/9.8G/81.7%).

Furthermore, compared to Swin-Transformer, which we follows the architecture and en-

sures the same model size and computation costs to ensure a fair comparison, our model

consistently brings an improvement to baseline, with a consistent improvement of 0.8%

and 0.2% for T and S models respectively.

5.4.2 ADE20K Semantic Segmentation

ADE20K [277] is a challenging semantic segmentation dataset, containing 20K images for

training and 2K images for validation. We follow common practices to use the training set

for training and report mIoU results on the validation sets. We use UperNet [234] as the

segmentation framework and replace the backbone with GG-Transformer.

Implementation Details. We follow [149] and use MMSegmentation [53] to implement all

related experiments. We use AdamW [155] with a learning rate starting at 6× 10−5, weight

decay of 0.01, batch size of 16, crop size of 512× 512. The learning rate schedule contains

a warmup of 1500 iterations and linear learning rate decay. The training is conducted with

8 GPUs and the training procedure lasts for 160K iterations in total. The augmentations

follows the default setting of MMSegmentation, including random horizontal flipping,

random re-scaling within ratio range [0.5, 2.0] and random photometric distortion. For

testing, we follow [272] to utilize a sliding window manner with crop size 512 and stride

96

Backbone
UperNet

Prams (M) FLOPs (G) mIoU (%) mIoU(ms+flip) (%)

ResNet50 [92] 67 952 42.1 42.8
PVT-Small [224] 55 919 43.9 44.8
Swin-T [149] 60 941 44.5 45.8
GG-T (ours) 60 942 46.4 47.2

ResNet101 [92] 86 1029 43.8 44.9
PVT-Medium [224] 74 977 44.9 45.3
Swin-S [149] 81 1034 47.6 49.5
GG-S (ours) 81 1035 48.4 49.6

Table 5.2: Performance comparisons with different backbones on ADE20K validation dataset.
FLOPs is tested on 1024×1024 resolution. All backbones are pretrained on ImageNet-1k.

341. ImageNet-1K pretrained weights are used for initialization.

Results. We show results in Table ??, where results both w/ and w/o test-time augmentation

are reported. Noticeably, GG-Transformer not only achieves better results to baselines,

but also obtain a comparable single-scale testing performance to those with multi-scale

testing results. Specifically, GG-T achieves 46.4% mIoU with single-scale testing, which

surpasses ResNet50, PVT-Small, Swin-T’s multi-scale testing results by 3.6%, 1.6%, 0.6%,

respectively. Moreover, our tiny model even can be comparable to those much larger models

(e.g., 47.2% of GG-T compared to 47.6% of Swin-S).

5.4.3 COCO Object Detection

We further verify the performance of GG-Transformer when used as a plug-in backbone to

object detection task on COCO dataset [138], which contains 118K, 5K, 20K images for

training, validation and test respectively. We use Mask-RCNN [89] and Cascaded Mask

R-CNN [20] as the detection frameworks, and compare GG-Transformer to various CNN

and ViT backbones.

97

Backbone
P F Mask R-CNN Cascaded Mask R-CNN

(M) (G) APb APb
50 APb

75 APm APm
50 APm

75 APb APb
50 APb

75 APm APm
50 APm

75

ResNet50 [92] 44 260 38.2 58.8 41.4 34.7 55.7 37.2 41.2 59.4 45.0 35.9 56.6 38.4
PVT-Small [224] 44 245 40.4 62.9 43.8 37.8 60.1 40.3 - - - - - -
Swin-T [149] 48 264 43.7 66.6 47.7 39.8 63.3 42.7 48.1 67.1 52.2 41.7 64.4 45.0
GG-T (ours) 48 265 44.1 66.7 48.3 39.9 63.3 42.4 48.4 67.4 52.3 41.9 64.5 45.0

ResNet101 [92] 63 336 40.0 60.6 44.0 36.1 57.5 38.6 42.9 61.0 46.6 37.3 58.2 40.1
ResNeXt101-
32×4d [237]

63 340 41.9 62.5 45.9 37.5 59.4 40.2 44.3 62.8 48.4 38.3 59.7 41.2

PVT-Medium [224] 64 302 42.0 64.4 45.6 39.0 61.6 42.1 - - - - - -
Swin-S [149] 69 354 45.4 67.9 49.6 41.4 65.1 44.6 49.7 68.8 53.8 42.8 66.0 46.4
GG-S (ours) 69 355 45.7 68.3 49.9 41.3 65.3 44.0 49.9 69.0 54.0 43.1 66.2 46.4

Table 5.3: Object detection and instance segmentation performance on the COCO val2017
dataset using the Mask R-CNN framework. P(Params)/F(FLOPs) is evaluated with Mask R-CNN
architecture on a 1280×800 image.

Implementation Details. We follow the setting of [149] and use MMDetection [25] to

conduct all the experiments. We adopt multi-scale training [21], AdamW optimizer [155]

with initial learning rate of 0.0001, weight decay of 0.05, batch size of 16. The training is

conducted with 8 GPUs and a 1× schedule. All models are initialized with ImageNet-1K

pretrained weights.

Results. As shown in Table 5.3, GG-Transformer achieves superior performance to other

backbones in the two widely-used detection frameworks. Specifically, GG-T achieves 44.1

box AP and 39.9 mask AP, which surpasses both CNNs and other ViTs with a similar

model size and computation costs. Compared with the state-of-the-art Swin-Transformer,

GG-Transformer achieves better performance while keeping the same model size and

computation costs for both T and S models.

98

Gaze Kernel Top-1
Fixed-(3,3,3,3) 80.28%
Fixed-(5,5,5,5) 80.31%
Adaptive-(9,5,3,3) 80.38%

Table 5.4: Choices of Gaze Kernels.

Top-1
W& SW-MSA [149] 78.50%
MSA 79.79%
Glance Only 77.21%
Gaze Only 76.76%
Glance+Gaze (Attn) 79.07%
Glance+Gaze (Conv) 80.28%

Table 5.5: Comparison among different self-attentions. Gaze (Conv) uses kernels of Fixed-(3,3,3,3).

Top-1
DeiT-T 72.2%
GG-DeiT-T 73.8%
DeiT-S 79.9%
GG-DeiT-S 80.5%

Table 5.6: Applying GG-MSA to DeiT backbone.

5.4.4 Ablation Studies

In this part, we conduct ablation studies regarding to the designs of GG-Transformer.

Meanwhile, we also compare among different efficient alternatives to MSA. Besides, we

verify GG-MSA on another ViT architecture [207] to compare its capacity to MSA directly.

We conduct all these experiments based on Swin-T [149] with 100 epochs training and

DeiT [207] architectures with 300 epochs training.

Kernel Choice of Gaze Branch. We study the choice of Gaze branch in terms of fixed

or adaptive mechanism. The kernel sizes for each stage and results are summarized in

Table 5.4, where we observe that both mechanisms work well. Using a larger kernel leads

99

to a non-significant improvement. In contrast, adaptive manner leads to a slightly better

performance. Considering the adaptive manner provides a complete view as the original

MSA has, we choose it in our final design.

Glance/Gaze Branch. We study the necessity of both Glance and Gaze branches. Mean-

while, a comparison between different ways to conduct self-attention is also studied. Results

are in Table 5.5.

Swin-T [149] serves as the baseline for all variants, which achieves 78.50% top-1

accuracy on ImageNet validation set. Firstly, we note that the local window attention

and shifted window attention (W&SW-MSA) in [149] although can significantly reduce

the computation complexity and makes Transformer easier to scale-up, it sacrifices the

accuracy and the combination of W&SW-MSA to mimic a global view is not as good as

the original MSA. We replace the W&SW-MSA with MSA for all blocks in stage 3 and

4 (i.e., stages with down-sampling rate 16 and 32), which leads to a 1.29% performance

improvement, indicating there exists a significant performance gap between MSA and its

efficient alternative. Notably, when adopting the proposed Glance and Gaze mechanism

instead, which shares a same complexity of W& SW-MSA, can achieves much better

performance, where the Glance+Gaze (Attn) improves the performance by 0.57%, and

Glance+Gaze (Conv) (i.e., GG-T) by 1.78%, which is even higher than MSA by 0.49%.

Besides using depthwise convolution, another natural choice is to also adopt self-

attention for implementing the Gaze branch. Therefore, we conduct experiments by using

local window attention [149] as the Gaze branch. Note that, unlike depthwise convolution,

a self-attention variant of the Gaze branch cannot be integrated with the Glance branch into

the same Transformer block while keeping the overall model size and computation cost at

100

the same level. To ensure a fair comparison, we use two consecutive Transformer blocks

where one is Glance attention and another is Gaze attention. Using either convolution or

self-attention to implement the Gaze branch can both improve the performance compared

to [149], illustrating the effectiveness of the Glance and Gaze designs. However, using

self-attention is inferior to depth-wise convolution with a degrade of 1.21%, which may

indicate that convolution is still a better choice when it comes to learning local relationships.

Besides, using depth-wise convolution as Gaze branch can also naturally be integrated

into the Transformer block with Glance attention, thus makes it more flexible in terms of

network designs.

We also note that Glance or Gaze branch alone is far from enough, while only a

combination of both can lead to a performance gain, which matches the behavior that we

human beings can not rely on Glance or Gaze alone. For instance, using Glance alone can

only lead to an inferior performance with accuracy of 77.21%, and Gaze alone 76.76%,

which is significantly lower than baseline with a degrade of 1.29% and 1.74%, respectively.

Nevertheless, we note that this is because Glance and Gaze branches miss important local

or global cues which can be compensated by each other. As a result, a combination of both

Glance and Gaze gives a high accuracy of 80.28%, which improves the Glance alone and

Gaze alone by 3.07% and 3.52% respectively.

Apply to other backbone. We verify the effectiveness of GG-Transformer on another

popular ViT architecture DeiT [207], as shown in Table 5.5. We replace MSA with GG-

MSA for two DeiT variants [207], DeiT-T and DeiT-S. We show that, although GG-MSA

is an efficient alternative to MSA, it can also lead to a performance gain. Compared to

DeiT-T and DeiT-S, GG-DeiT-T and GG-DeiT-S bring the performance up by 1.6% and

101

0.6% respectively, illustrating that it is not only efficient but also effectively even compared

to a fully self-attention.

Network runtime. We follow [149] to report and compare work runtime measured by FPS:

GG-T achieves 782.34 FPS compared to 737.86 of Swin-T, and GG-S achieves 441.31

FPS compared to 423.51 of Swin-S. The evaluation is done with a single Nvidia tesla

v100-sxm2-16gb GPU.

5.5 Limitation

Although GG-Transformer provides a powerful and efficient solution to make Transformers

scalable to large inputs, some limitations still exist and worth further exploring.

Firstly, over-fitting is a common problem [63] in Vision Transformers and can be

alleviated by large-scale pretraining [63] or strong augmentations and regularization [207].

This problem is more serious for stronger models (GG-Transformer) and in the tasks with

relatively small dataset (e.g. semantic segmentation). Secondly, Transformers suffer from

performance degradation in modeling longer-range dependencies, when there exists large

discrepancy in the training-testing image size. The limitations can come from position

encoding, which has fixed size and need to be interpolated to different input sizes, or

self-attention itself, which may not adapt well when significant changes happen in input

size. Lastly, there is a long-lasting debate on the impacts of AI on human world. As a

method improving the fundamental ability of deep learning, our work also advances the

development of AI, which means there could be both beneficial and harmful influences

depending on the users.

102

5.6 Conclusion

In this chapter, we present GG-Transformer, which offers an efficient and effective solution

to adapting Transformers for vision tasks. GG-Transformer, inspired by how human beings

learn from the world, is equipped with parallel and complementary Glance branch and

Gaze branch, which offer long-range relationship and short-range modeling, respectively.

The two branches can specialize in their tasks and collaborate with each other, which leads

to a much more efficient ViT design for vision tasks. Experiments on various architectures

and benchmarks validate the advantages of GG-Transformer.

103

Chapter 6

CMT-DeepLab: Clustering Mask
Transformers for Panoptic Segmentation

In this chapter, we introduces our improvements over mask transformer, which is a new

transformer-based framework that can handle complex panoptic segmentation problem in

an end-to-end manner. Specifically, we propose a clustering view to better understand and

further design the mask transformer framework, where the cross-attention and segmentation

are unified as a clustering process between pixels and objects. The resulting model CMT-

DeepLab shows great performance on the challenging COCO and Cityscapes datasts.

6.1 Introduction

Panoptic segmentation [114], a recently proposed challenging segmentation task, aims to

unify semantic segmentation [93] and instance segmentation [86]. Due to its complicated

nature, most panoptic segmentation frameworks [114, 240, 41] decompose the problem into

several manageable proxy tasks, such as box detection [182], box-based segmentation [89],

and semantic segmentation [153].

104

MaX-DeepLab

CMT-DeepLab

person tree

Figure 6.1: Our CMT-DeepLab generates denser cross-attention maps than MaX-DeepLab [217].
The visualization is based on the last transformer layer with averaged multi-head attentions.

Recently, the paradigm has shifted from the proxy-based approaches to end-to-end

systems, since the pioneering work DETR [21], which introduces the first end-to-end object

detection method with transformers [214]. In their framework, the image features, extracted

by a convolutional network [120], are enhanced by transformer encoders. Afterwards, a set

of fixed size of positional embeddings, named object queries, interact with the extracted

image features through several transformer decoders, consisting of cross-attention and

105

self-attention modules [5]. The object queries, transformed into output embeddings by the

decoders, are then directly used for bounding box predictions.

Along the same direction, end-to-end panoptic segmentation framework [217] has been

proposed to simplify the panoptic segmentation procedure, avoiding manually designed

modules. The core idea is to exploit a set of object queries conditioned on the inputs to

predict a set of pairs, each containing a class prediction and a mask embedding vector. The

mask embedding vector, multiplied by the image features, yields a binary mask prediction.

Notably, unlike the box detection task, where the prediction is based on object queries

themselves, segmentation mask prediction requires both object queries and pixel features to

interact with each other to obtain the results, which consequently incurs different needs

when updating the object queries. To have a deeper understanding towards the role that

object queries play, we particularly look into the cross-attention module in the mask

transformer decoder, where object queries interact with image features.

Our investigation finds that the update and usage of object queries are performed

differently in the transformer-based method for segmentation tasks [217]. Specifically,

when updating the object queries, a softmax operation is applied to the image dimension,

allowing each query to identify its most similar pixels. On the other hand, when computing

the segmentation output, a softmax is performed among the object queries so that each pixel

finds its most similar object queries. The formulation may potentially cause two issues:

sparse query updates and infrequent pixel-query communication. First, the object queries

are only sparsely updated due to the softmax being applied to a large image resolution, so

it tends to focus on only a few locations (top row in Fig. 6.1). Second, the pixels only have

one chance to communicate with the object queries in the final output. The first issue is

106

particularly undesired, since segmentation tasks require dense predictions, and ideally a

query should densely activate all the pixels that belong to the same target. This is different

from the box detection task, where object extremities are sufficient (see Fig. 6 of DETR

paper [21]).

To alleviate the issues, we draw inspiration from the traditional clustering algorithms [151,

1]. In the current end-to-end panoptic segmentation system [217], the final segmentation

output is obtained by assigning each pixel to the object queries based on the feature affinity,

similar to pixel-cluster assignment step in [151, 1]. The observation motivates us to rethink

the transformer-based methods from the clustering perspective by considering the object

queries as cluster centers. We therefore propose to additionally perform the cluster-update

step, where the centers are updated by pooling pixel features based on the clustering assign-

ment, when updating the cluster centers (i.e., object queries) in the cross-attention module.

As a result, our model generates denser attention maps (bottom row in Fig. 6.1). We also

utilize the pixel-cluster assignment to update the pixel features within each transformer

decoder, enabling frequent communication between pixel features and cluster centers.

Additionally, we notice that in the cross-attention module, pixel features are treated

as in “bag of words" [119], while the location information is not well utilized. To resolve

the issue, we propose to adopt a dynamic position encoding conditioned on the inputs

for location-sensitive clustering. We explicitly predict a reference mask consisting of

a few points for each cluster center. The location-sensitive clustering is then achieved

by adding location information to pixel features and cluster centers via the coordinate

convolution [143] at the beginning of each transformer decoder.

107

assignment step

update step

C
M

T

cluster centers

panoptic mask

pixel feature

pixel-cluster assignment

image

b
ackb

o
n

e

assignment step

× 𝑁. . .

Figure 6.2: Panoptic segmentation from a clustering perspective. In the proposed Clustering Mask
Transformer (CMT) layer, pixels are assigned to cluster centers based on the feature affinity, and
the clustering results are used to update both pixel features and cluster centers. After several CMT
layers, a refined pixel-cluster assignment is obtained, resulting in the final panoptic mask.

Combining all the proposed components results in our CMT-DeepLab, which reformu-

lates and further improves the previous end-to-end panoptic segmentation system [217]

from the traditional clustering perspective. The panoptic segmentation result is naturally ob-

tained by assigning each pixel to its most similar cluster center based on the feature affinity

(Fig. 6.2). In the Clustering Mask Transformer (CMT) module, the pixel features, cluster

centers, and pixel-cluster assignments are updated in a manner similar to the clustering

algorithms [151, 1]. As a result, without bells and whistles, our proposed CMT-DeepLab

surpasses its baseline MaX-DeepLab [217] by 4.4% PQ and achieves 55.7% PQ on COCO

panoptic test-dev set [138].

108

6.2 Related Works

Transformers. Transformer [214] variants [117, 222, 159, 46, 13, 264, 83, 2] have ad-

vanced the state-of-the-art in many natural language processing tasks [61, 191, 58] by

capturing relations across modalities [5] or in a single context (self-attention) [45, 214].

In computer vision, transformers are either combined with CNNs [225, 17] or used as

standalone models [180, 100, 218, 63, 149]. Both classes of methods have boosted various

vision tasks, such as image classification [39, 12, 180, 100, 130, 218, 63, 149], object detec-

tion [225, 193, 180, 99, 21, 284], semantic segmentation [34, 271, 102, 70, 288, 283], video

recognition [225, 39, 111], image generation [169, 95], and panoptic segmentation [218].

Proxy-based Panoptic Segmentation. Most panoptic segmentation methods rely on proxy

tasks, such as object bounding box detection. For example, Panoptic FPN [114] follows a

box-based approach that detects object bounding boxes and predicts a mask for each box,

usually with a Mask R-CNN [89] and FPN [137]. Then, the instance segments (‘thing’) and

semantic segments (‘stuff’) [29] are fused by merging modules [125, 128, 173, 140, 248,

240, 126] to generate panoptic segmentation. Other proxy-based methods typically start

with semantic segments [27, 32, 35] and group ‘thing’ pixels into instance segments with

various proxy tasks, such as instance center regression [108, 211, 165, 247, 42, 218, 133],

Watershed transform [215, 6, 15], Hough-voting [10, 122, 15], or pixel affinity [109, 148,

196, 71, 15]. DetectoRS [174] achieved the state-of-the-art in this category with recursive

feature pyramid and switchable atrous convolution. Recently, DETR [21] extended the

proxy-based methods with its transformer-based end-to-end detector.

End-to-end Panoptic Segmentation. Along the same direction, MaX-DeepLab [217]

109

proposed an end-to-end strategy, in which class-labeled object masks are directly predicted

and are trained by Hungarian matching the predicted masks with ground truth masks. In

this work, we improve over MaX-DeepLab by approaching the pixel assignment task from

a clustering perspective. Concurrent with our work, Segmenter [198] and MaskFormer [44]

formulated an end-to-end strategy from a mask classification perspective, same as MaX-

DeepLab [217], but extends from panoptic segmentation to semantic segmentation.

6.3 Method

Herein, we firstly introduce recent transformer-based methods [217] for end-to-end panop-

tic segmentation. Our observation reveals a difference between the cross-attention and

final segmentation output regarding the way that they utilize object queries. We then

propose to resolve it with a clustering approach, resulting in our proposed Clustering Mask

Transformer (CMT-DeepLab), as shown in Fig. 6.3 and Fig. 6.4. In the following parts,

object queries and cluster centers refer to the same learnable embedding vectors and we use

them interchangeably for clearer representation.

6.3.1 Transformers for Panoptic Segmentation

Problem Statement. Panoptic segmentation aims to segment the input image I ∈ RH×W×3

into a set of non-overlapping masks as well as the semantic labels for the corresponding

masks:

{yi}K
i=1 = {(mi, ci)}K

i=1 . (6.1)

110

𝐶

pixel-cluster assignment step

𝑆

pixel-cluster affinity
𝐻 ×𝑊 ×𝑁

𝐹

pixel feature
𝐻 ×𝑊 × 𝐷

𝐾
𝑝 ෩𝐾𝑝 𝑉

𝑝
𝑄𝑐 ෨𝑄𝑐 𝑉𝑐

…

cluster center
𝑁 × 𝐷

𝐹

updated pixel feature
𝐻 ×𝑊 × 𝐷

መ𝐶 …

updated cluster center
𝑁 × 𝐷

pixel-cluster update step

𝑍

pixel-cluster assignment
𝐻 ×𝑊 ×𝑁

𝐶

መ𝐶

Figure 6.3: A visual illustration of Clustering Mask Transformer layer, where three variables are
updated in a dynamic manner based on the clustering results: pixel features, cluster centers, and
pixel-cluster affinity. Details of assignment and update steps are illustrated in Fig. 6.4.

The K ground truth masks mi ∈ {0, 1}H×W do not overlap with each other, i.e., ∑K
i=1 mi ≤

1H×W , and ci denotes the ground truth class label of mask mi.

Inspired by DETR [21], several transformer-based end-to-end panoptic segmentation

methods [217] have been proposed recently, which directly predict N masks and their

semantic classes. N is a fixed number and N ≥ K.

{yî}N
i=1 = {(miˆ , p̂i(c))}

N
i=1, (6.2)

where p̂i(c) denotes the predicted semantic class confidence for the corresponding mask,

111

including ‘thing’ classes, ‘stuff’ classes, and the void class ∅.

To predict these N masks, N object queries are utilized to aggregate information from

the image features through a transformer decoder, which consists of self-attention and

cross-attention modules. The object queries and image features interact with each other in

the cross-attention module:

Ĉ = C + softmax
HW

(Qc × (Kp)T)×Vp, (6.3)

where C ∈ RN×D refers to object queries with D channels, and Ĉ denotes the updated

object queries. We use the underscript to represent the axis for softmax, and superscripts

p and c to indicate the feature projected from the image features and object queries,

respectively. Qc ∈ RN×D, Kp ∈ RHW×D, Vp ∈ RHW×D stand for the linearly projected

features for query, key, and value. For simplicity, we ignore multi-head attention and

feed-forward network (FFN) in the equation.

The object queries, updated by multiple transformer decoders, are employed as dynamic

convolution weights (with kernel size 1 × 1) [107, 205, 227] to obtain the prediction

Z ∈ RHW×N that consists of N binary masks. That is,

Z = softmax
N

(F×CT), (6.4)

where F ∈ RHW×D refers to the extracted image features.

112

6.3.2 Current Issues and New Clustering Perspective

Even though effective, the transformer-based architectures were originally designed for

object detection [21] and thus they do not naturally deal with segmentation masks. Specif-

ically, they use different formulations for the object query updates and the segmentation

specific output head. To be precise, both the update of object queries (Eq. (7.4)) and final

output (Eq. (7.3)) are based on their corresponding feature affinity (i.e., Qc × (Kp)T and

F×CT). However, the following softmax operations are applied along different dimensions.

To update the object queries, the softmax is applied to the image spatial dimension (HW)

with the goal to identify the most similar pixels for each query. On the other hand, to obtain

the final output, the softmax is performed among the object queries (N) so that each pixel

finds its most similar object queries. The inconsistency potentially causes two issues. First,

the object queries are only sparsely updated due to the softmax operated along a large

spatial dimension, tending to focus on only a few locations (Fig. 6.1). Second, the output

update is only performed once in the end, and therefore the pixels only have one chance to

receive the information passed from the object queries.

To alleviate the issues, we take a closer look at Eq. (7.3), which assigns each pixel

to the object queries based on the feature affinity. This is, in fact, very similar to typical

clustering methods [151, 1] (particularly, the pixel-cluster assignment step). This obser-

vation motivates us to rethink the transformer-based methods from the typical clustering

perspective [282, 1] by considering the object queries C as cluster centers. With the

clustering perspective in mind, we re-interpret Eq. (7.3) as the pixel-cluster assignment.

This interpretation naturally inspires us to perform a cluster-update step where the cluster

centers are updated by pooling pixel features based on the clustering assignment, i.e.,

113

ZT × F = (softmaxN(F×CT))T × F.

We propose to extend the formulation to a transformer decoder module, whose query,

key, and value are obtained by linearly projecting the image features and cluster centers:

Ĉ = C + (softmax
N

(K̃p × (Q̃c
)T))T ×Vp. (6.5)

Comparing Eq. (7.4) and Eq. (6.5), we have the query Q̃c and key K̃p coming from

another linear projection, and the softmax is performed along the cluster center dimension.

In the following subsection, we detail how the clustering perspective alleviates the

issues of current transformer-based methods. In the discussion, we use object queries and

cluster centers interchangeably.

6.3.3 Clustering Mask Transformers

In this subsection, we redesign the cross-attention in the transformer decoder from the

clustering perspective, aiming to resolve the issues raised in Sec. 6.3.2.

Residual Path between Cluster Assignments. Similar to other designs [21], we stack

the transformer decoder multiple times. To facilitate the learning of pixel-cluster assign-

ment, we add a residual connection [92] between clustering results including the final

segmentation result. That is,

Z = softmax
N

(S + K̃p × (Q̃c
)T), (6.6)

114

𝑆

×
+

෨𝐾𝑝 ෨𝑄𝑐

pixel-cluster assignment

𝑍

softmax

𝐹

×
+

𝑉𝑐

𝐹

pixel update

𝑍

cluster update

𝑄𝑐𝐾
𝑝

×

softmax

+
×

+
…

…

𝑉
𝑝

መ𝐶

𝑍

𝐶

𝐻𝑊 × 𝐷 𝑁 × 𝐷

𝐻𝑊 ×𝑁

𝐻𝑊 ×𝑁

𝐻𝑊 ×𝑁

𝐻𝑊 ×𝑁

𝐻𝑊 × 𝐷 𝑁 × 𝐷

𝐻𝑊 × 𝐷

𝐻𝑊 ×𝑁

𝑁 × 𝐷

𝑁 × 𝐷

𝐻𝑊 ×𝑁 𝑁 × 𝐷

𝐻𝑊 × 𝐷

𝐻𝑊 × 𝐷

Figure 6.4: Detailed visual illustration of pixel-cluster assignment (left), cluster centers update
(middle), and pixel features update (right). The tensor shapes are specified for illustration.

where S ∈ RHW×N is the affinity logits between linearly projected pixel features and

cluster centers in the previous decoder (left panel of Fig. 6.4). We emphasize that since

our clustering results have the same format as the segmentation output, we are able to add

residual connections between them, which is further supervised by the ground-truths.

Solution to Sparse Query Update. We propose a simple and effective solution to avoid

the sparse query update by combining the proposed clustering center update (i.e., Eq. (6.5))

115

with the original cross-attention (i.e., Eq. (7.4)), resulting in

Ĉ =C + softmax
HW

(Qc × (Kp)T)×Vp + ZT ×Vp

=C + (softmax
HW

(Qc × (Kp)T) + ZT)×Vp,
(6.7)

where Z is obtained from Eq. (6.6). The update is shown in the center panel of Fig. 6.4,

while the effect of densified attention could be found in Fig. 6.1.

Solution to Infrequent Pixel Updates. We propose to also utilize the clustering result Z to

perform an update on the pixel features using the features of cluster centers, i.e.,

F̂ =F + Z×Vc, (6.8)

where Vc ∈ RN×D is the linearly projected values from the cluster centers. This update

is performed within each stacked transformer decoder, enabling frequent communication

between pixel features and cluster centers (right panel of Fig. 6.4).

To this end, we have improved the transformer cross-attention module by simultaneously

updating the clustering result (i.e., pixel-cluster assignment), pixel features, and cluster

centers. However, we notice that during the interaction between pixel features and cluster

centers, pixel features are treated as bag of words [119], while the location information is

not well utilized. Although learnable positional encodings (i.e. object queries [21]) are used

for the cluster center embeddings, the positional encodings are fixed for all input images,

which is suboptimal when an object query predicts masks at different locations in different

input images. To resolve the issue, we propose to adopt a dynamic positional encoding

conditioned on the inputs for location-sensitive clustering.

Location-Sensitive Clustering. To inject dynamic location information to cluster centers,

116

we explicitly predict a reference mask that consists of M points for each cluster center.

In particular, a MLP is used to predict the reference mask out of cluster center features,

followed by a sigmoid activation function. That is, we have:

ê = e + MLP(C), (6.9)

rc = sigmoid(ê), (6.10)

where e ∈ RN×2M denotes an embedding projected from the cluster centers, and rc =

[rc,h, rc,w] ∈ RN×2M are the reference mask represented with M pairs of coordinates

(rc,h
i , rc,w

i). We utilize a residual update manner [92, 284] to predict the reference mask,

with a skip-connection on the projected embedding e across stages. The location space is

normalized to [0, 1]× [0, 1].

We add location information to pixel features and cluster centers through a coordinate

convolution [143]. Specifically, we apply coordinate convolutions at the beginning of each

transformer layer to ensure location information is considered during the clustering process,

as shown below.

Ĉ = Conv(Concat(C, rc)), (6.11)

F̂ = Conv(Concat(F, rp)), (6.12)

where rp ∈ RHW×2 is the coordinates normalized to [0, 1] for pixels in image space, which

is fixed and not learnable.

We note that compared to the reference point used in the Deformable DETR [284],

the proposed reference mask provides a rough mask shape prior for the whole object

117

mask. Besides, we adopt a much simpler way to incorporate the location information via

coordinate convolution.

In order to learn meaningful reference mask predictions, we optimize the reference

masks towards ground truth masks by proposing a mask approximation loss.

Mask Approximation Loss. We propose a loss to minimize the distance between the

distribution of predicted reference points and that of points of ground-truth object masks.

In detail, we utilize the Hungarian matching result to assign the ground-truth mask for each

cluster center. Given the predicted M points for each cluster center, we infer their extreme

points [168] and mask center. We then apply an L1 loss to push them to be closer to their

ground-truth extreme points and center. Specifically, we have

Lext =
1

4K

K

∑
i=1

(|min(rc,h
i)−min(yh

i)|+ |max(rc,h
i)−max(yh

i)|

+ |min(rc,w
i)−min(yw

i)|+ |max(rc,w
i)−max(yw

i)|),

Lcen =
1

2K

K

∑
i=1

(| avg(rc,h
i)− avg(yh

i)|+ | avg(rc,w
i)− avg(yw

i)|),

Lloc = Lext +Lcen, (6.13)

where y = [yh, yw] are pixels on ground-truth masks and predicted reference masks have

been filtered and re-ordered based on Hungarian matching results.

Finally, combining all the proposed designs results in our Clustering Mask Transformer,

or CMT-DeepLab, which rethinks the current mask transformer design from the clustering

perspective.

118

6.3.4 Network Instantiation

We instantiate CMT-DeepLab on top of MaX-DeepLab-S [217] (abbreviated as MaX-

S). We first refine its architecture design. Afterwards, we enhance it with the proposed

Clustering Mask Transformers.

Base Architecture. We use MaX-S [217] as our base architecture. To better align it

with other state-of-the-art architecture designs [149], we use GeLU [94] activation to

replace the original ReLU activation functions. Besides, we remove all transformer blocks

in the pretrained backbones, which reverts the backbone from MaX-S back to Axial-

ResNet-50 [218]. On top of the backbone, we append six dual-path axial-transformer

blocks [217] (three at stage-5 w/ channels 2048, and the other three at stage-4 w/ channels

1024), yielding totally six axial self-attention and six cross-attention modules, which aligns

with the number of attention operations used in other works [21, 44]. Additionally, we

obtain a larger network backbone by scaling up the number of blocks in stage-4 of the

backbone [33]. As a result, two different model variants are used: one built upon Axial-

ResNet-50 backbone with number of blocks [3, 4, 6, 3] (starting from stage-2), and another

built upon Axial-ResNet-104 with number of blocks [3, 4, 24, 3]. See the supplementary

material for a detailed illustration.

Loss Functions. Following [217], we use the PQ-style loss and three other auxiliary losses

for the model training, including the instance discrimination loss, mask-ID cross-entropy,

and semantic segmentation loss. However, we note that the instance discrimination loss pro-

posed in [217] aims to push pixel features to be close to the feature center computed based

on the ground-truth mask, instead of directly to the cluster centers. Therefore, we adopt the

119

pixel-wise instance discrimination loss, which learns closely aligned representations for all

pixels from the same class, allowing better clustering results.

Formally, we sample a set of pixels A from the image, where we add bias to pixels’

sampling probability based on the size of object mask they belong to. Thus, final sampled

pixels are more balanced from objects with different scales. Afterwards, we directly perform

contrastive loss on top of these pixels with multiple positive targets [110]:

Linsdis = ∑
a∈A

−1
|P(a)| ∑

p∈P(a)
log

exp
(︁

fa · fp/τ
)︁

∑b∈A exp (fa · fb/τ)
, (6.14)

where P(a) is a subset of pixels of A that belongs to the same cluster (i.e., object mask)

with a, and |P(a)| is its cardinally. We use f to denote a pixel feature vector, and τ is the

temperature.

Recursive Feature Network. Motivated by DetectoRS [174] and CBNet [147], we adopt a

simple strategy, named Recursive Feature Network (RFN), to increase the network capacity

by stacking twice the whole model (including the backbone and added transformer blocks).

There are two main differences. First, since we do not employ an FPN [137] (as in [174]),

we simply connect the features at stride 4 (i.e., same stride as the segmentation output).

Second, we do not use the complicated fusion module proposed in [174], but simply average

the features between two stacked networks, which we empirically found to be better by

around 0.2% PQ.

120

val-set test-dev
method backbone TTA params PQ PQTh PQSt PQ PQTh PQSt

box-based panoptic segmentation methods
Panoptic-FPN [114] R101 40.3 47.5 29.5 - - -
UPSNet [240] R50 42.5 48.5 33.4 - - -
UPSNet [240] R50 ✓ 43.2 49.1 34.1 - - -
UPSNet [240] DCN-101 [57] ✓ - - - 46.6 53.2 36.7
DETR [21] R101 61.8M 45.1 50.5 37.0 46.0 - -
DetectoRS [174] RX-101 [237] ✓ - - - 49.6 57.8 37.1

center-based panoptic segmentation methods
Panoptic-DeepLab [42] X-71 [48] 46.7M 39.7 43.9 33.2 - - -
Panoptic-DeepLab [42] X-71 [48] ✓ 46.7M 41.2 44.9 35.7 41.4 45.1 35.9
Axial-DeepLab-L [218] AX-L [218] 44.9M 43.4 48.5 35.6 43.6 48.9 35.6
Axial-DeepLab-L [218] AX-L [218] ✓ 44.9M 43.9 48.6 36.8 44.2 49.2 36.8

end-to-end panoptic segmentation methods
MaX-DeepLab-S [217] MaX-S [217] 61.9M 48.4 53.0 41.5 49.0 54.0 41.6
MaX-DeepLab-L [217] MaX-L [217] 451M 51.1 57.0 42.2 51.3 57.2 42.4
MaskFormer [44] Swin-B‡ [149] 102M 51.8 56.9 44.1 - - -
MaskFormer [44] Swin-L‡ [149] 212M 52.7 58.5 44.0 53.3 59.1 44.5

CMT-DeepLab Axial-R50‡ [218] 94.9M 53.0 57.7 45.9 53.4 58.3 46.0
CMT-DeepLab Axial-R104‡ 135.2M 54.1 58.8 47.1 54.5 59.6 46.9
CMT-DeepLab Axial-R104‡-RFN 270.3M 55.1 60.6 46.8 55.4 61.0 47.0
CMT-DeepLab (iter 200k) Axial-R104‡-RFN 270.3M 55.3 61.0 46.6 55.7 61.6 46.8

Table 6.1: Results comparison on COCO val and test-dev set. TTA: Test-time augmentation. ‡:
ImageNet-22K pretraining. We provide more comparisons with concurrent works in the supplemen-
tary materials.

6.4 Experimental Results

We report main results on COCO along with state-of-the-art methods, followed by ablation

studies on the architecture variants, clustering mask transformers, pretrained weights, post-

processing, and scaling strategies. Finally, we analyze the working mechanism behind

CMT-DeepLab with visualizations.

Implementation Details. We build CMT-DeepLab on top of MaX-DeepLab [217] with

the official code-base [228]. The training strategy mainly follows MaX-DeepLab. If not

specified, the model is trained with 64 TPU cores for 100k iterations with the first 5k for

121

((a)) Clustering update.

PQ PQTh PQSt

baseline 46.2 50.0 40.5
+ clustering transformer 47.1 51.0 41.1
+ pixel-wise contrastive loss 47.5 51.1 42.1

((b)) Location-senseitive clustering.

PQ PQTh PQSt

baseline 46.2 50.0 40.5
+ ref. mask pred. 46.6 50.3 40.9
+ coord-conv 46.9 50.6 41.3

((c)) Architecture.

clustering location decoder params PQ PQTh PQSt

61.9M 46.2 50.0 40.5
✓ 61.9M 47.5 51.1 42.1

✓ 65.5M 46.9 50.6 41.3
✓ 91.0M 47.1 51.3 40.9

✓ ✓ 91.0M 48.1 51.9 42.2
✓ ✓ ✓ 94.9M 48.4 52.1 42.8

((d)) Pretraining, post-processing, and scaling.

IN-22K RFN mask-wise merge PQ PQTh PQSt

48.4 52.1 42.8
✓ 49.3 53.3 43.4
✓ ✓ 50.1 54.8 43.0
✓ ✓ ✓ 50.6 54.8 44.3

Table 6.2: CMT-DeepLab ablation experiments. Results are reported in an accumulative manner.

warm-up. We use batch size = 64, Adam [113] optimizer, a poly schedule learning rate of

10−3. The ImageNet-pretrained [185] backbone has a learning rate multiplier 0.1. Weight

decay is set to 0 and drop-path rate [101] to 0.2. The input images are resized and padded to

1281× 1281 for training and inference. We use |A| = 4096 for pixel-wise contrastive loss

and M = 8 for reference masks, we also tried other values but did not observe significant

difference. Loss weight is 1.0 for the mask approximation loss. Other losses employ the

same setting as [217]. During inference, we adopt a mask-wise merging scheme [44] to

obtain the final results.

6.4.1 Main Results

Our main results on the COCO panoptic segmentation val set and test-dev set are summa-

rized in Tab. 7.1.

Val Set. We compare our validation set results with box-based, center-based, and end-to-end

122

res. backbone iters PQ PQTh PQSt

641 Axial-R50 100k 50.1 53.5 44.9
641 Axial-R50 200k 50.6 54.5 44.8

1281 Axial-R50 100k 53.0 57.7 45.9
1281 Axial-R50 200k 53.5 58.5 45.9
641 Axial-R104 100k 51.7 55.4 46.4
641 Axial-R104 200k 52.2 56.4 46.0

1281 Axial-R104 100k 54.1 58.8 47.1
1281 Axial-R104-RFN 100k 55.1 60.6 46.8

Table 6.3: Ablation on input resolution, backbone, and training iterations. ImageNet-22K,
mask-wise merge are used for all results.

panoptic segmentation methods. It is noticeable that CMT-DeepLab, built upon a smaller

backbone Axial-ResNet-50, already surpasses all other box-based and center-based methods

by a large margin. More importantly, when compared with its end-to-end baseline MaX-

DeepLab-S [217], we observe a significant improvement of 4.6% PQ. Our small model even

surpasses previous state-of-the-art method MaX-DeepLab-L [217], which has more than 5×

parameters, by 1.9% PQ. Compared to recently proposed MaskFormer [44], CMT-DeepLab

still shows a significant advantage of 1.2% PQ and 1.4% PQ while being more light-

weight over the small and large model variant, respectively. The significant improvement

illustrates the importance of introducing the concept of clustering into transformer, which

leads to a denser attention preferred by the segmentation task. Our CMT-DeepLab with a

deeper backbone Axial-ResNet-104 improves the single-scale performance to 54.1% PQ,

outperforming multi-scale Axial-DeepLab [218] by 10.2% PQ. Moreover, we enhance the

model with the proposed RFN, which further improves the PQ to 55.3%.

Test-dev Set. We verify the transfer-ability of CMT-DeepLab on test-dev set, which shows

consistently better results compared to other methods. Especially, the small version of

123

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 ref. mask

Figure 6.5: Visualization of clustering results at different stages (i.e., transformer layers), with
last column for reference masks. The clustering results, providing denser attention maps, are
close-to-random at the beginning and are gradually refined to focus on corresponding object.

CMT-DeepLab with Axial-R50 backbone outperforms DETR [21] by 7.4% PQ, MaX-

DeepLab-S [217] by 4.4% PQ, and MaX-DeepLab-L [217] by 2.1% PQ. Additionally,

employing a deeper backbone Axial-R104 can boost the PQ score by 1.1% PQ. On top of

it, using the proposed RFN further improves PQ to 55.7%, surpassing MaskFormer [44]

with Swin-L [149] backbone by 2.4% PQ.

6.4.2 Ablation Studies

Herein, we evaluate the effectiveness of different components of the proposed CMT-

DeepLab. For all the following experiments, we use MaX-DeepLab-S [217] with GeLU [94]

activation function as our baseline. This improved baseline has a 0.3% higher PQ compared

to the original MaX-DeepLab-S. If not specified, we perform all ablation studies with the

Axial-R50 backbone [92, 218], ImageNet-1K [185] pretrained, crop size 641× 641, and

100k training iterations.

124

Clustering Mask Transformer. We start with adding the design variants of Clustering

Mask Transformer step by step, as summarized in Tab. 6.1(a). Regarding the object

queries as cluster centers, and adding a clustering-style update can improve the PQ by

0.9%, illustrating the effectiveness of the cluster center perspective and the importance of

including more pixels into the cluster center updates. Next, we utilize pixel-wise contrastive

loss instead of the original instance-wise contrastive loss, resulting in another 0.4% PQ

improvement, as it provides a better supervision signal from a clustering perspective. In

short, re-designing the transformer layer from a clustering perspective leads to a 1.3% PQ

improvement overall.

Location-Sensitive Clustering. Location information plays an important role in the

clustering process, as shown in Tab. 6.1(b). Each cluster center needs to predict a reference

mask without using pixel features (i.e., appearance information), which requires cluster

centers to include more location information in the feature embedding and thus benefits

clustering. Adding reference masks prediction alone brings a gain of 0.4% PQ. Using the

coordinate convolution (coord-conv) [143] to include the reference mask information yields

another 0.3% PQ improvement. In sum, the location-sensitive clustering brings up the PQ

score by 0.7%.

Stronger Decoder. We study the effect of using a stronger decoder design [21, 44].

We remove all transformer layers from the pretrained backbone, which reverts the MaX-

S backbone [217] to Axial-ResNet-50 [218]. Then we stack more axial-blocks with

transformer module in the decoder part. More specifically, we use six self-attention

modules and six cross-attention modules in total for the decoder, which aligns to the design

of DETR [21]. As shown in Tab. 6.1(c), this stronger decoder brings 0.9% PQ improvement

125

(47.1% vs. 46.2%).

As shown in Tab. 6.1(c), these improvements are complementary to each other, while

combining them together can further boost the performance. Adding all of them leads to

CMT-DeepLab, which improves 2.2% PQ over the MaX-DeepLab-S-GeLU baseline. We

note that the major cost comes from the stronger decoder, which accounts for the increase

of 29.1M parameters, while clustering update and location-sensitive clustering improve the

PQ by 1.3% and 0.7%, respectively, with neglectable extra parameters.

Pretraining, Post-processing, and Scaling. We further verify the effect of better pretrain-

ing, post-processing, and scaling-up, with results summarized in Tab. 6.1(d) and Tab. 6.3.

Specifically, we find that using ImageNet-22K for pretraining can improve the performance

by 0.9% PQ. Furthermore, we empirically find that using the mask-wise merge strategy [44]

to obtain panoptic results, compared to the simple per-pixel strategy [217], improves PQ by

0.5%. Next, we scale up CMT-DeepLab from different dimensions. With a longer training

strategies (from 100k to 200k iterations), we observe a consistent 0.5% PQ improvement

over various settings, where the improvement mainly comes from PQTh (i.e., thing classes),

indicating that the model needs a longer training schedule to better segment thing objects.

We also find that using a larger input resolution (from 641 to 1281) significantly boosts the

performance by more than 2% PQ. Besides, increasing the model size by using a deeper

backbone or stacking the model with RFN can improve the performance by 1.6% and 1.0%,

respectively.

Visualization. In Fig. 6.5, we visualize the clustering results in each stage as well as the

learned reference masks. As shown in the figure, the clustering results, starting with a close-

to-random assignment, gradually learn to focus on the target instances. For example, in the

126

last two rows of Fig. 6.5, the clustering results firstly focus on all the ‘person’ instances and

the background ‘snow’, and then they start to concentrate on the specific person instance,

showing a refinement from “semantic segmentation" to “instance segmentation". Moreover,

as shown in the last column of Fig. 6.5, the learned reference mask provides a reasonable

prior for the object mask.

6.5 Conclusion

In this chapter, we have introduced CMT-DeepLab, which rethinks object queries, used in

the current mask transformers for panoptic segmentation, from a clustering perspective.

Considering object queries as cluster centers, our framework additionally incorporates the

proposed cluster center update in the cross-attention module, which significantly enriches

the learned cross-attention maps and further facilitates the segmentation prediction. As a

result, CMT-DeepLab achieves new state-of-the-art performance on the COCO dataset, and

sheds light on the working mechanism behind mask transformers for segmentation tasks.

127

Chapter 7

k-means Mask Transformer

In this chapter, we take one more step in rethinking the mask transformer from a clustering

process. More specifically, we consider k-means clustering, based on which we re-design

the transformer module with a simple change on the activation function, which leads to

k-means transformer decoder. Although the change is very simple, it proves to be very

effective. The proposed kMaX-DeepLab not only significantly boosts the performance, but

also produces more plausible attention map to better understand the working mechanism

behind the model.

7.1 Introduction

Transformers [214] are receiving a growing attention in the computer vision community.

On the one hand, the transformer encoder, with multi-head self-attention as the central

component, demonstrates a great potential for building powerful network architectures

in various visual recognition tasks [218, 63, 149]. On the other hand, the transformer

decoder, with multi-head cross-attention at its core, provides a brand-new approach to

128

tackling complex visual recognition problems in an end-to-end manner, dispensing with

hand-designed heuristics.

Recently, the pioneering work DETR [21] introduces the first end-to-end object detec-

tion system with transformers. In this framework, the pixel features are firstly extracted by

a convolutional neural network [120], followed by the deployment of several transformer

encoders for feature enhancement to capture long-range interactions between pixels. Af-

terwards, a set of learnable positional embeddings, named object queries, is responsible

for interacting with pixel features and aggregating information through several interleaved

cross-attention and self-attention modules. In the end, the object queries, decoded by a

Feed-Forward Network (FFN), directly correspond to the final bounding box predictions.

Along the same direction, MaX-DeepLab [217] proves the success of transformers in the

challenging panoptic segmentation task [115], where the prior arts [114, 240, 41] usually

adopt complicated pipelines involving hand-designed heuristics. The essence of this frame-

work lies in converting the object queries to mask embedding vectors [107, 205, 227], which

are employed to yield a set of mask predictions by multiplying with the pixel features.

The end-to-end transformer-based frameworks have been successfully applied to mul-

tiple computer vision tasks with the help of transformer decoders, especially the cross-

attention modules. However, the working mechanism behind the scenes remains unclear.

The cross-attention, which arises from the Natural Language Processing (NLP) community,

is originally designed for language problems, such as neural machine translation [200, 5],

where both the input sequence and output sequence share a similar short length. This

implicit assumption becomes problematic when it comes to certain vision problems, where

the cross-attention is performed between object queries and spatially flattened pixel features

129

with an exorbitantly large length. Concretely, usually a small number of object queries

is employed (e.g., 128 queries), while the input images can contain thousands of pixels

for the vision tasks of detection and segmentation. Each object query needs to learn to

highlight the most distinguishable features among the abundant pixels in the cross-attention

learning process, which subsequently leads to slow training convergence and thus inferior

performance [284, 72].

In this work, we make a crucial observation that the cross-attention scheme actually

bears a strong similarity to the traditional k-means clustering [151] by regarding the object

queries as cluster centers with learnable embedding vectors. Our examination of the

similarity inspires us to propose the novel k-means Mask Xformer (kMaX-DeepLab),

which rethinks the relationship between pixel features and object queries, and redesigns

the cross-attention from the perspective of k-means clustering. Specifically, when updating

the cluster centers (i.e., object queries), our kMaX-DeepLab performs a different operation.

Instead of performing softmax on the large spatial dimension (image height times width) as

in the original Mask Transformer’s cross-attention [217], our kMaX-DeepLab performs

argmax along the cluster center dimension, similar to the k-means pixel-cluster assignment

step (with a hard assignment). We then update cluster centers by aggregating the pixel

features based on the pixel-cluster assignment (computed by their feature affinity), similar

to the k-means center-update step. In spite of being conceptually simple, the modification

has a striking impact: on COCO val set [138], using the standard ResNet-50 [92] as

backbone, our kMaX-DeepLab demonstrates a significant improvement of 5.2% PQ over

the original cross-attention scheme at a negligible cost of extra parameters and FLOPs.

130

When comparing to state-of-the-art methods, our kMaX-DeepLab with the simple ResNet-

50 backbone already outperforms MaX-DeepLab [217] with MaX-L [217] backbone by

1.9% PQ, while requiring 7.9 and 22.0 times fewer parameters and FLOPs, respectively.

Our kMaX-DeepLab with ResNet-50 also outperforms MaskFormer [44] with the strong

ImageNet-22K pretrained Swin-L [149] backbone, and runs 4.4 times faster. Using the

modern ConvNeXt-L [150] as backbone, our kMaX-DeepLab further sets a new state-of-the-

art performance on the COCO val set [138] with 58.0% PQ. It also outperforms other state-

of-the-art methods on the Cityscapes val set [54], achieving 68.4% PQ, 83.5% mIoU, 44.0%

AP, without using any test-time augmentation or extra dataset pretraining [138, 164]. Finally,

kMaX-DeepLab also advances the new state-of-the-art performance on ADE20K [277]

with 50.9% PQ and 55.2% mIoU.

7.2 Related Works

Transformers. Transformer [214] and its variants [117, 222, 159, 46, 13, 264, 83, 2]

have advanced the state-of-the-art in natural language processing tasks [61, 191, 58] by

capturing relations across modalities [5] or in a single context [45, 214]. In computer

vision, transformer encoders or self-attention modules are either combined with Convo-

lutional Neural Networks (CNNs) [225, 17] or used as standalone backbones [180, 100,

218, 63, 149]. Both approaches have boosted various vision tasks, such as image clas-

sification [39, 12, 180, 100, 130, 218, 63, 149, 256, 245], image generation [169, 95],

object detection [225, 193, 180, 99, 21, 284], video recognition [225, 39, 4, 67], semantic

segmentation [34, 271, 102, 70, 288, 283, 273, 235, 24], and panoptic segmentation [218].

Mask transformers for segmentation. Besides the usage as backbones, transformers

131

are also adopted as task decoders for image segmentation. MaX-DeepLab [217] pro-

posed Mask Xformers (MaX) for end-to-end panoptic segmentation. Mask transformers

predict class-labeled object masks and are trained by Hungarian matching the predicted

masks with ground truth masks. The essential component of mask transformers is the

conversion of object queries to mask embedding vectors [107, 205, 227], which are em-

ployed to generate predicted masks. Both Segmenter [198] and MaskFormer [44] applied

mask transformers to semantic segmentation. K-Net [267] proposed dynamic kernels

for generating the masks. CMT-DeepLab [253] proposed to improve the cross-attention

with an additional clustering update term. Panoptic Segformer [135] strengthened mask

transformer with deformable attention [284], while Mask2Former [43] further boosted the

performance with masked cross-attention along with a series of technical improvements

including cascaded transformer decoder, deformable attention [284], uncertainty-based

pointly supervision [116], etc. These mask transformer methods generally outperform

box-based methods [114] that decompose panoptic segmentation into multiple surrogate

tasks (e.g., predicting masks for each detected object bounding box [89], followed by fusing

the instance segments (‘thing’) and semantic segments (‘stuff’) [29] with merging mod-

ules [128, 173, 140, 248, 240, 126]). Moreover, mask transformers showed great success

in the video segmentation problems [111, 40, 127].

Clustering methods for segmentation. Traditional image segmentation methods [151,

282, 1] typically cluster image intensities into a set of masks or superpixels with gradual

growing or refinement. However, it is challenging for these traditional methods to cap-

ture high-level semantics. Modern clustering-based methods usually operate on semantic

132

segments [27, 32, 35] and group ‘thing’ pixels into instance segments with various repre-

sentations, such as instance center regression [108, 211, 165, 247, 42, 218, 133], Watershed

transform [215, 6], Hough-voting [10, 122, 216], or pixel affinity [109, 148, 196, 71, 103].

Recently, CMT-DeepLab [253] discussed the similarity between mask transformers and

clustering algorithms. However, they only used the clustering update as a complementary

term in the cross-attention. In this work, we further discover the underlying similarity

between mask transformers and the k-means clustering algorithm, resulting in a simple

yet effective k-means mask transformer. Finally, we note that several recent works [152,

241, 253, 281] revisited the relationship between query and key in the attention operation.

They applied the cross-attention softmax operation along the query dimension and showed

promising results.

7.3 Method

In this section, we first overview the mask-transformer-based segmentation framework

presented by MaX-DeepLab [217]. We then revisit the transformer cross-attention [214] and

the k-means clustering algorithm [151], and reveal their underlying similarity. Afterwards,

we introduce the proposed k-means Mask Xformer (kMaX-DeepLab), which redesigns

the cross-attention from a clustering perspective. Even though simple, kMaX-DeepLab

effectively and significantly improves the segmentation performance.

7.3.1 Mask-Transformer-Based Segmentation Framework

Transformers [214] have been effectively deployed to segmentation tasks. Without loss of

generality, we consider panoptic segmentation [115] in the following problem formulation,

133

which can be easily generalized to other segmentation tasks.

Problem statement. Panoptic segmentation aims to segment the image I ∈ RH×W×3

into a set of non-overlapping masks with associated semantic labels:

{yi}K
i=1 = {(mi, ci)}K

i=1 . (7.1)

The K ground truth masks mi ∈ {0, 1}H×W do not overlap with each other, i.e., ∑K
i=1 mi ≤

1H×W , and ci denotes the ground truth class label of mask mi.

Starting from DETR [21] and MaX-DeepLab [217], approaches to panoptic segmenta-

tion shift to a new end-to-end paradigm, where the prediction directly matches the format of

ground-truth with N masks (N is a fixed number and N ≥ K) and their semantic classes:

{yî}N
i=1 = {(miˆ , p̂i(c))}

N
i=1, (7.2)

where p̂i(c) denotes the semantic class prediction confidence for the corresponding mask,

which includes ‘thing’ classes, ‘stuff’ classes, and the void class ∅.

The N masks are predicted based on the N object queries, which aggregate information

from the pixel features through a transformer decoder, consisting of self-attention and

cross-attention modules.

The object queries, updated by multiple transformer decoders, are employed as mask

embedding vectors [107, 205, 227], which will multiply with the pixel features to yield the

final prediction Z ∈ RHW×N that consists of N masks. That is,

Z = softmax
N

(F×CT), (7.3)

where F ∈ RHW×D and C ∈ RN×D refers to the final pixel features and object queries,

134

respectively. D is the channel dimension of pixel features and object queries. We use

underscript N to indicate the axis to perform softmax.

7.3.2 Relationship between Cross-Attention and k-means Clustering

Although the transformer-based segmentation frameworks successfully connect object

queries and mask predictions in an end-to-end manner, the essential problem becomes how

to transform the object queries, starting from learnable embeddings (randomly initialized),

into meaningful mask embedding vectors.

Cross-attention. The cross-attention modules are used to aggregate affiliated pixel

features to update object queries. Formally, we have

Ĉ = C + softmax
HW

(Qc × (Kp)T)×Vp, (7.4)

where C ∈ RN×D refers to N object queries with D channels, and Ĉ denotes the updated

object queries. We use the underscript HW to represent the axis for softmax on spatial

dimension, and superscripts p and c to indicate the feature projected from the pixel features

and object queries, respectively. Qc ∈ RN×D, Kp ∈ RHW×D, Vp ∈ RHW×D stand for

the linearly projected features for query, key, and value. For simplicity, we ignore the

multi-head mechanism and feed-forward network (FFN) in the equation.

As shown in Eq. (7.4), when updating the object queries, a softmax function is applied

to the image resolution (HW), which is typically in the range of thousands of pixels for the

task of segmentation. Given the huge number of pixels, it can take many training iterations

to learn the attention map, which starts from a uniform distribution at the beginning (as

the queries are randomly initialized). Each object query has a difficult time to identify

135

the most distinguishable features among the abundant pixels in the early stage of training.

This behavior is very different from the application of transformers to natural language

processing tasks, e.g., neural machine translation [200, 5], where the input and output

sequences share a similar short length. Vision tasks, especially segmentation problems,

present another challenge for efficiently learning the cross-attention.

Discussion. Similar to cross-attention, self-attention needs to perform a softmax

function operated along the image resolution. Therefore, learning the attention map for

self-attention may also take many training iterations. An efficient alternative, such as axial

attention [218] or local attention [149] is usually applied on high resolution feature maps,

and thus alleviates the problem, while a solution to cross-attention remains an open question

for research.

k-means clustering. In Eq. (7.4), the cross-attention computes the affinity between

object queries and pixels (i.e., Qc × (Kp)T), which is converted to the attention map

through the spatial-wise softmax (operated along the image resolution). The attention map

is then used to retrieve (and weight accordingly) affiliated pixel features to update the object

queries. Surprisingly, we observe that the whole process is actually similar to the classic

k-means clustering algorithm [151], which works as follows:

A = argmax
N

(C× PT), (7.5)

Ĉ = A× P, (7.6)

where C ∈ RN×D, P ∈ RHW×D, and A ∈ RN×HW stand for cluster centers, pixel

features, and clustering assignments, respectively.

136

Comparing Eq. (7.4), Eq. (7.5), and Eq. (7.6), we notice that the k-means clustering

algorithm is parameter-free and thus no linear projection is needed for query, key, and value.

The updates on cluster centers are not in a residual manner. Most importantly, k-means

adopts a cluster-wise argmax (i.e., argmax operated along the cluster dimension) instead of

the spatial-wise softmax when converting the affinity to the attention map (i.e., weights to

retrieve and update features).

This observation motivates us to reformulate the cross-attention in vision problems,

especially image segmentation. From a clustering perspective, image segmentation is

equivalent to grouping pixels into different clusters, where each cluster corresponds to a

predicted mask. However, the cross-attention mechanism, also attempting to group pixels

to different object queries, instead employs a different spatial-wise softmax operation from

the cluster-wise argmax as in k-means. Given the success of k-means, we hypothesize that

the cluster-wise argmax is a more suitable operation than the spatial-wise softmax regarding

pixel clustering, since the cluster-wise argmax performs the hard assignment and efficiently

reduces the operation targets from thousands of pixels (HW) to just a few cluster centers

(N), which (we will empirically prove) speeds up the training convergence and leads to a

better performance.

7.3.3 k-means Mask Transformer

Herein, we first introduce the crucial component of the proposed k-means Mask Transformer,

i.e., k-means cross-attention. We then present its meta architecture and model instantiation.

137

k-means cross-attention. The proposed k-means cross-attention reformulates the

cross-attention in a manner similar to k-means clustering:

Ĉ = C + argmax
N

(Qc × (Kp)T)×Vp. (7.7)

Comparing Eq. (7.4) and Eq. (7.7), the spatial-wise softmax is now replaced by the

cluster-wise argmax. As shown in Fig. 7.1, with such a simple yet effective change, a

typical transformer decoder could be converted to a kMaX decoder. Unlike the original

cross-attention, the proposed k-means cross-attention adopts a different operation (i.e.,

cluster-wise argmax) to compute the attention map, and does not require the multi-head

mechanism [214]. However, the cluster-wise argmax, as a hard assignment to aggregate

pixel features for the cluster center update, is not a differentiable operation, posing a chal-

lenge during training. We have explored several methods (e.g., Gumbel-Softmax [106]), and

discover that a simple deep supervision scheme turns out to be most effective. In particular,

in our formulation, the affinity logits between pixel features and cluster centers directly

correspond to the softmax logits of segmentation masks (i.e., Qc × (Kp)T in Eq. (7.7)

corresponds to F×CT in Eq. (7.3)), since the cluster centers aim to group pixels of similar

affinity together to form the predicted segmentation masks. This formulation allows us

to add deep supervision to every kMaX decoder, in order to train the parameters in the

k-means cross-attention module.

Meta architecture. Fig. 7.2 shows the meta architecture of our proposed kMaX-

DeepLab, which contains three main components: pixel encoder, enhanced pixel decoder,

and kMaX decoder. The pixel encoder extracts the pixel features either by a CNN [92]

or a transformer [149] backbone, while the enhanced pixel decoder is responsible for

138

cluster centers

…

pixel features

𝑘-means cross-attention

multi-head self-attention

feed-forward network

updated
cluster centers

cluster centers

…

pixel features

linear linear linear

×

×

cluster-wise
argmax

Figure 7.1: To convert a typical transformer decoder into our kMaX decoder, we simply replace
the original cross-attention with our k-means cross-attention (i.e., with the only simple change
cluster-wise argmax high-lighted in red)

recovering the feature map resolution as well as enhancing the pixel features via transformer

encoders [214] or axial attention [218]. Finally, the kMaX decoder transforms the object

queries (i.e., cluster centers) into mask embedding vectors from the k-means clustering

perspective.

Model instantiation. We build kMaX based on MaX-DeepLab [217] with the official

code-base [228]. We divide the whole model into two paths: the pixel path and the cluster

path, which are responsible for extracting pixel features and cluster centers, respectively.

Fig. 7.3 details our kMaX-DeepLab instantiation with two example backbones.

Pixel path. The pixel path consists of a pixel encoder and an enhanced pixel decoder.

The pixel encoder is an ImageNet-pretrained [185] backbone, such as ResNet [92], MaX-

S [217] (i.e., ResNet-50 with axial attention [218]), and ConvNeXt [150]. Our enhanced

139

pixel
encoder

enhanced pixel
decoder

𝑘
M

aX
d

eco
d

er

𝑘
M

aX
d

e
co

d
e

r

𝑘
M

aX
d

e
co

d
e

r

clu
ster cen

ters

…

×

mask

mask

mask

mask

class

class

class

class
p

ixel featu
res

Figure 7.2: The meta architecture of k-means Mask Transformer consists of three components:
pixel encoder, enhanced pixel decoder, and kMaX decoder. The pixel encoder is any network
backbone. The enhanced pixel decoder includes transformer encoders to enhance the pixel features,
and upsampling layers to generate higher resolution features. The series of kMaX decoders transform
cluster centers into (1) mask embedding vectors, which multiply with the pixel features to generate
the predicted masks, and (2) class predictions for each mask.

pixel decoder consists of several axial attention blocks [218] and bottleneck blocks [92].

Cluster path. The cluster path contains totally six kMaX decoders, which are evenly

distributed among features maps of different spatial resolutions. Specifically, we deploy

two kMaX decoders each for pixel features at output stride 32, 16, and 8, respectively.

Loss functions. Our training loss functions mostly follow the setting of MaX-DeepLab [217].

We adopt the same PQ-style loss, auxiliary semantic loss, mask-id cross-entropy loss, and

pixel-wise instance discrimination loss [253].

140

𝑘MaX-DeepLab w/ R50

1/4
2563x bottleneck

4x bottleneck

6x bottleneck

1/8
512

1/16
1024

1/4
256

1/8
5121x bottleneck

1/32
2048

1x bottleneck

sep 5x5, 256

conv 7x7, max-pool 1/4
64

3x bottleneck 1/32
2048

1/16
1024

1x axial-block

5x axial-block

cluster centers

FFN

𝑁masks:
𝑁 × 𝐻 ×𝑊

mask mask mask…

𝑁 classes:
𝑁 × 𝐶

class class class…

2x 𝑘MaX decoder

2x 𝑘MaX decoder

2x 𝑘MaX decoder

1/4
2563x bottleneck

4x bottleneck

6x axial-block

1/8
512

1/16
1024

1/4
256

1/8
5121x bottleneck

1/32
2048

1x bottleneck

sep 5x5, 256

inception stem 1/4
128

3x axial-block 1/32
2048

1/16
1024

𝑘MaX-DeepLab w/ MaX-S

1x axial-block

5x axial-block

cluster centers

FFN

𝑁masks:
𝑁 × 𝐻 ×𝑊

mask mask mask…

𝑁 classes:
𝑁 × 𝐶

class class class…

2x 𝑘MaX decoder

2x 𝑘MaX decoder

2x 𝑘MaX decoder

Figure 7.3: An illustration of kMaX-DeepLab with ResNet-50 and MaX-S as backbones. The
hidden dimension of FFN is 256. The design of kMaX-DeepLab is general to different backbones
by simply updating the pixel encoder (marked in dark-blue). The enhanced pixel decoder and kMaX
decoder are colored in light-blue and yellow, respectively

7.4 Experimental Results

In this section, we first provide our implementation details. We report our main results on

COCO [138], Cityscapes [54], and ADE20K [277]. We also provide visualizations to better

understand the clustering process of the proposed kMaX-DeepLab. The ablation studies are

provided in the appendix.

7.4.1 Implementation Details

The meta architecture of the proposed kMaX-DeepLab contains three main components:

the pixel encoder, enhanced pixel decoder, and kMaX decoder, as shown in Fig. 7.2. We

141

provide the implementation details of each component below.

Pixel encoder. The pixel encoder extracts pixel features given an image. To verify

the generality of kMaX-DeepLab across different pixel encoders, we experiment with

ResNet-50 [92], MaX-S [217] (i.e., ResNet-50 with axial attention [218] in the 3rd and 4th

stages), and ConvNeXt [150].

Enhanced pixel decoder. The enhanced pixel decoder recovers the feature map

resolution and enriches pixel features via self-attention. As shown in Fig. 7.3, we adopt one

axial block with channels 2048 at output stride 32, and five axial blocks with channels 1024

at output stride 16. The axial block is a bottleneck block [92], but the 3× 3 convolution is

replaced by the axial attention [218]. We use one bottleneck block at output stride 8 and 4,

respectively. We note that the axial blocks play the same role (i.e., feature enhancement)

as the transformer encoders in other works [21, 44, 253], where we ensure that the total

number of axial blocks is six for a fair comparison to previous works [21, 44, 253].

Cluster path. As shown in Fig. 7.3, we deploy six kMaX decoders, where each

two are placed for pixel features (enhanced by the pixel decoders) with output stride 32,

16, 8, respectively. Our design uses six transformer decoders, aligning with the previous

works [21, 44, 253], though some recent works [43, 135] adopt more transformer decoders

to achieve a stronger performance.

Training and testing. We mainly follow MaX-DeepLab [217] for training settings.

The ImageNet-pretrained [185] backbone has a learning rate multiplier 0.1. For regular-

ization and augmentations, we adopt drop path [101], random color jittering [55], and

panoptic copy-paste augmentation, which is an extension from instance copy-paste aug-

mentation [68, 74] by augmenting both ‘thing’ and ‘stuff’ classes. AdamW [113, 155]

142

optimizer is used with weight decay 0.05. The k-means cross-attention adopts cluster-wise

argmax, which aligns the formulation of attention map to segmentation result. It therefore

allows us to directly apply deep supervision on the attention maps. These auxiliary losses

attached to each kMaX decoder have the same loss weight of 1.0 as the final prediction,

and Hungarian matching result based on the final prediction is used to assign supervisions

for all auxiliary outputs. During inference, we adopt the same mask-wise merging scheme

used in [44, 267, 135, 253] to obtain the final segmentation results.

COCO dataset. If not specified, we train all models with batch size 64 on 32 TPU

cores with 150k iterations (around 81 epochs). The first 5k steps serve as the warm-up stage,

where the learning rate linearly increases from 0 to 5× 10−4. The input images are resized

and padded to 1281× 1281. Following MaX-DeepLab [217], the loss weights for PQ-style

loss, auxiliary semantic loss, mask-id cross-entropy loss, instance discrimination loss are

3.0, 1.0, 0.3, and 1.0, respectively. The number of cluster centers (i.e., object queries) is

128, and the final feature map resolution has output stride 4 as in MaX-DeepLab [217].

We have also experimented with doubling the number of object queries to 256 for kMaX-

DeepLab with ConvNeXt-L, which however leads to a performance loss. Empirically, we

adopt a drop query regularization, where we randomly drop half of the object queries (i.e.,

128) during each training iteration, and all queries (i.e., 256) are used during inference.

With the proposed drop query regularization, doubling the number of object queries to 256

consistently brings 0.1% PQ improvement under the large model regime.

Cityscapes dataset. We train all models with batch size 32 on 32 TPU cores with

60k iterations. The first 5k steps serve as the warm-up stage, where learning rate linearly

increases from 0 to 3× 10−4. The inputs are padded to 1025× 2049. The loss weights for

143

PQ-style loss, auxiliary semantic loss, mask-id cross-entropy loss, and instance discrimi-

nation loss are 3.0, 1.0, 0.3, and 1.0, respectively. We use 256 cluster centers, and add an

additional bottleneck block in the pixel decoder to produce features with output stride 2.

ADE20K dataset. We adopt the same setting as the COCO dataset, except that the

model is trained for 100k iterations. We experiment with both 641× 641 and 1281× 1281

input resolutions. Our inference is run w.r.t. the whole input image, instead of in the sliding

window manner (which may yield a better performance at the cost of more FLOPs).

7.4.2 Main Results

Our main results on the COCO [138], Cityscapes [54], and ADE20K [277] val set are

summarized in Tab. 7.1, Tab. 7.2, and Tab. 7.3, respectively.

COCO val set. In Tab. 7.1, we compare our kMaX-DeepLab with other transformer-

based panoptic segmentation methods on COCO val set. Notably, with a simple ResNet-50

backbone, kMaX-DeepLab already achieves 53.0% PQ, surpassing most prior arts with

stronger backbones. Specifically, kMaX-DeepLab outperforms MaskFormer [44] and

K-Net [267], all with the ResNet-50 backbone as well, by a large margin of 6.5% and

5.9%, while maintaining a similar level of computational costs. Our kMaX-DeepLab

with ResNet-50 even surpasses the largest variants of MaX-DeepLab [217] by 1.9% PQ

(while using 7.9× fewer parameters and 22.0× fewer FLOPs), and MaskFormer (while

using 3.7× fewer parameters and 4.7× fewer FLOPs) by 0.3% PQ, respectively. With a

stronger backbone MaX-S [217], kMaX-DeepLab boosts the performance to 56.2% PQ,

outperforming MaX-DeepLab with the same backbone by 7.8% PQ. Our kMaX-DeepLab

144

method backbone params FLOPs FPS PQ PQTh PQSt

MaskFormer [44] ResNet-50 [92] 45M 181G 17.6 46.5 51.0 39.8
K-Net [267] ResNet-50 [92] - - - 47.1 51.7 40.3
CMT-DeepLab [253] ResNet-50 [92] - - - 48.5 - -
Panoptic SegFormer [135] ResNet-50 [92] 51M 214G 7.8 49.6 54.4 42.4
Mask2Former [43] ResNet-50 [92] 44M 226G 8.6 51.9 57.7 43.0
kMaX-DeepLab ResNet-50 [92] 57M 168G 22.8 53.0 58.3 44.9
MaX-DeepLab [217] MaX-S [217] 62M 324G - 48.4 53.0 41.5
CMT-DeepLab MaX-S† [217] 95M 396G 8.1 53.0 57.7 45.9
kMaX-DeepLab MaX-S† [217] 74M 240G 16.9 56.2 62.2 47.1
MaskFormer [44] Swin-B (W12)† [149] 102M 411G 8.4 51.8 56.9 44.1
CMT-DeepLab [253] Axial-R104† [253] 135M 553G 6.0 54.1 58.8 47.1
Panoptic SegFormer [135] PVTv2-B5† [223] 105M 349G - 55.4 61.2 46.6
Mask2Former [43] Swin-B (W12)† [149] 107M 466G - 56.4 62.4 47.3
kMaX-DeepLab ConvNeXt-B† [150] 122M 380G 11.6 57.2 63.4 47.8
MaX-DeepLab [217] MaX-L [217] 451M 3692G - 51.1 57.0 42.2
MaskFormer [44] Swin-L (W12)† [149] 212M 792G 5.2 52.7 58.5 44.0
K-Net [267] Swin-L (W7)† [149] - - - 54.6 60.2 46.0
CMT-DeepLab [253] Axial-R104-RFN† [175] 270M 1114G 3.2 55.3 61.0 46.6
Panoptic SegFormer [135] Swin-L (W7)† [149] 221M 816G - 55.8 61.7 46.9
Mask2Former [43] Swin-L (W12)† [149] 216M 868G 4.0 57.8 64.2 48.1
kMaX-DeepLab ConvNeXt-L† [150] 232M 744G 6.7 57.9 64.0 48.6
kMaX-DeepLab⋆ ConvNeXt-L† [150] 232M 749G 6.6 58.0 64.2 48.6
kMaX-DeepLab‡ ConvNeXt-L† [150] 232M 744G 6.7 58.1 64.3 48.8

Table 7.1: COCO val set results. Our FLOPs and FPS are evaluated with the input size 1200× 800
and a Tesla V100-SXM2 GPU. †: ImageNet-22K pretraining. ⋆: Using 256 object queries with
drop query regularization. ‡: Using COCO unlabeled set

with MaX-S backbone also improves over the previous state-of-art K-Net with Swin-

L [149] by 1.6% PQ. To further push the envelope, we adopt the modern CNN backbone

ConvNeXt [150] and set new state-of-the-art results of 57.2% PQ with ConvNeXt-B and

58.0% PQ with ConvNeXt-L, outperforming K-Net with Swin-L by a significant margin of

3.4% PQ.

When compared to more recent works (CMT-DeepLab [253], Panoptic SegFormer [135],

and Mask2Former [43]), kMaX-DeepLab still shows great performances without the ad-

vanced modules, such as deformable attention [284], cascaded transformer decoder [43],

145

and uncertainty-based pointly supervision [116]. As different backbones are utilized for

each method (e.g., PVTv2 [223], Swin [149], and ConvNeXt [150]), we start with a fair

comparison using the ResNet-50 backbone. Our kMaX-DeepLab with ResNet-50 achieves

a significant better performance compared to CMT-DeepLab, Panoptic SegFormer and

Mask2Former by a large margin of 4.5%, 3.4%, and 1.1% PQ, respectively. Additionally,

our model runs almost 3× faster than them (since kMaX-DeepLab enjoys a simple design

without deformable attention). When employing stronger backbones, kMaX-DeepLab

with ConvNeXt-B outperforms CMT-DeepLab with Axial-R104, Panoptic SegFormer with

PVTv2-B5, and Mask2Former with Swin-B (window size 12) by 3.1%, 1.8%, and 0.8%

PQ, respectively, while all models have a similar level of cost (parameters and FLOPs).

When scaling up to the largest backbone for each method, kMaX-DeepLab outperforms

CMT-DeepLab, and Panoptic SegFormer significantly by 2.7% and 2.2% PQ. Although

we already perform better than Mask2Former with Swin-L (window size 12), we notice

that kMaX-DeepLab benefits much less than Mask2Former when scaling up from base

model to large model (+0.7% for kMaX-DeepLab but +1.4% for Mask2Former), indicating

kMaX-DeepLab’s strong representation ability and that it may overfit on COCO train set

with the largest backbone. Therefore, we additionally perform a simple experiment to

alleviate the over-fitting issue by generating pseudo labels [26] on COCO unlabeled set.

Adding pseudo labels to the training data slightly improves kMaX-DeepLab, yielding a PQ

score of 58.1% (the drop query regularization is not used here and the number of object

query remains 128).

Cityscapes val set. In Tab. 7.2, we compare our kMaX-DeepLab with other state-of-

art methods on Cityscapes val set. Our reported PQ, AP, and mIoU results use the same

146

panoptic model to provide a comprehensive comparison. Notably, kMaX-DeepLab with

ResNet-50 backbone already surpasses most baselines, while being more efficient. For

example, kMaX-DeepLab with ResNet-50 achieves 1.3% PQ higher performance compared

to Panoptic-DeepLab [42] (Xception-71 [48] backbone) with 20% computational cost

(FLOPs) reduced. Moreover, it achieves a similar performance to Axial-DeepLab-XL [218],

while using 3.1× fewer parameters and 5.6× fewer FLOPs. kMaX-DeepLab achieves

even higher performances with stronger backbones. Specifically, with MaX-S backbone, it

performs on par with previous state-of-the-art Panoptic-DeepLab with SWideRNet [33]

backbone, while using 7.2× fewer parameters and 17.2× fewer FLOPs. Additionally,

even only trained with panoptic annotations, our kMaX-DeepLab also shows superior

performance in instance segmentation (AP) and semantic segmentation (mIoU). Finally,

we provide a comparison with the recent work Mask2Former [43], where the advantage

of our kMaX-DeepLab becomes even more significant. Using the ResNet-50 backbone

for a fair comparison, kMaX-DeepLab achieves 2.2% PQ, 1.2% AP, and 2.2% mIoU

higher performance than Mask2Former. For other backbone variants with a similar size,

kMaX-DeepLab with ConvNeXt-B is 1.9% PQ higher than Mask2Former with Swin-B

(window size 12). Notably, kMaX-DeepLab with ConvNeXt-B already obtains a PQ score

that is 1.4% higher than Mask2Former with their best backbone. With ConvNeXt-L as

backbone, kMaX-DeepLab sets a new state-of-the-art record of 68.4% PQ without any

test-time augmentation or COCO [138]/Mapillary Vistas [164] pretraining.

ADE20K val set. In Tab. 7.3, we summarize kMaX-DeepLab’s performance on

ADE20K against other state-of-the-art methods. We report PQ and mIoU results with

the same panoptic model, where kMaX-DeepLab consistently shows better performance.

147

method backbone params FLOPs FPS PQ AP mIoU
Panoptic-DeepLab [42] Xception-71 [48] 47M 548G 5.7 63.0 35.3 80.5
Axial-DeepLab [218] Axial-ResNet-L [218] 45M 687G - 63.9 35.8 81.0
Axial-DeepLab [218] Axial-ResNet-XL [218] 173M 2447G - 64.4 36.7 80.6
CMT-DeepLab [253] MaX-S [217] - - - 64.6 - 81.4
Panoptic-DeepLab [42] SWideRNet-(1,1,4.5) [33] 536M 10365G 1.0 66.4 40.1 82.2
Mask2Former [43] ResNet-50 [92] - - - 62.1 37.3 77.5
Mask2Former [43] Swin-B (W12)† [149] - - - 66.1 42.8 82.7
Mask2Former [43] Swin-L (W12)† [149] - - - 66.6 43.6 82.9
SETR [273] ViT-L† [63] - - - - - 79.3
SegFormer [235] MiT-B5 [235] 85M 1460G 2.5 - - 82.4
Mask R-CNN [89] ResNet-50 [92] - - - - 31.5 -
PANet [144] ResNet-50 [92] - - - - 36.5 -
kMaX-DeepLab ResNet-50 [92] 56M 434G 9.0 64.3 38.5 79.7
kMaX-DeepLab MaX-S† [217] 74M 602G 6.5 66.4 41.6 82.1
kMaX-DeepLab ConvNeXt-B† [150] 121M 858G 5.2 68.0 43.0 83.1
kMaX-DeepLab ConvNeXt-L† [150] 232M 1673G 3.1 68.4 44.0 83.5

Table 7.2: Cityscapes val set results. We only consider methods without extra data [138, 164] and
test-time augmentation for a fair comparison. We evaluate FLOPs and FPS with the input size
1025× 2049 and a Tesla V100-SXM2 GPU. Our instance (AP) and semantic (mIoU) results are
based on the same panoptic model (i.e., no task-specific fine-tuning). †: ImageNet-22K pretraining

Specifically, with ResNet-50 and input size 641× 641, kMaX-DeepLab attains 41.5%

PQ. Increasing the input size to 1281× 1281 further improves the performance to 42.3%

PQ, significantly outperforming the prior state-of-the-art Mask2Former with ResNet-50

backbone by 2.6% PQ. Finally, kMaX-DeepLab equipped with the modern ConvNeXt-L

backone achieves a new state-of-the-art performance of 50.9% PQ, signicantly surpassing

MaskFormer, Panoptic-DeepLab with SWideRNet, and Mask2Former by 16.2%, 13.0%,

and 2.8% PQ, respectively.

Visualizations. In Fig. 7.4, we provide a visualization of pixel-cluster assignments

at each kMaX decoder and final prediction, to better understand the working mechanism

behind kMaX-DeepLab. Another benefit of kMaX-DeepLab is that with the cluster-wise

argmax, visualizations can be directly drawn as segmentation masks, as the pixel-cluster

148

method backbone params FLOPs FPS PQ mIoU
MaskFormer [44] ResNet-50 [92] - - - 34.7 -
Panoptic-DeepLab [42] SWideRNet-(1,1.5,3) [33] - - - 37.4 50.4
Panoptic-DeepLab [42] SWideRNet-(1,1,4) [33] - - - 37.9 50.0
Mask2Former [43] ResNet-50 [92] - - - 39.7 46.1
Mask2Former [43] Swin-L (W12)† [149] - - - 48.1 54.5
kMaX-DeepLab (641) ResNet-50 [92] 57M 75G 38.7 41.5 45.0
kMaX-DeepLab (1281) ResNet-50 [92] 57M 295G 14.4 42.3 45.3
kMaX-DeepLab (641) ConvNeXt-L† [150] 232M 333G 14.0 48.7 54.8
kMaX-DeepLab (1281) ConvNeXt-L† [150] 232M 1302G 4.0 50.9 55.2

Table 7.3: ADE20K val set results. Our FLOPs and FPS are evaluated with the input size (641× 641
or 1281× 1281) and a Tesla V100-SXM2 GPU. †: ImageNet-22K pretraining. The input size for
kMaX-DeepLab is shown in the parentheses

assignments are exclusive to each other with cluster-wise argmax. Noticeably, the major

clustering update happens in the first three stages, which already updates cluster centers

well and generates reasonable clustering results, while the following stages mainly focus on

refining details. This coincides with our observation that 3 kMaX decoders are sufficient to

produce good results. Besides, we observe that 1st clustering assignment tends to produce

over-segmentation effects, where many clusters are activated and then combined or pruned

in the later stages. Moreover, though there exist many fragments in the first round of

clustering, it already surprisingly distinguishes different semantics, especially some persons

are already well clustered, which indicates that the initial clustering is not only based on

texture or location, but also depends on the underlying semantics. Another visualization

is shown in Fig. 7.5, where we observe that kMaX-DeepLab behaves in a part-to-whole

manner to capture an instance. More experimental results (e.g., ablation studies, test set

results) and visualizations are available in the appendix.

149

image 1st cluster assignment 2nd cluster assignment 3rd cluster assignment

4th cluster assignment 5th cluster assignment 6th cluster assignment panoptic prediction panoptic label

Figure 7.4: Visualization of kMaX-DeepLab (ResNet-50) pixel-cluster assignments at each kMaX
decoder stage, along with the final panoptic prediction. In the cluster assignment visualization,
pixels with same color are assigned to the same cluster and their features will be aggregated for
updating corresponding cluster centers

7.5 Conclusion

In this chapter, we have presented a novel end-to-end framework, called k-means Mask

Transformer (kMaX-DeepLab), for segmentation tasks. kMaX-DeepLab rethinks the rela-

tionship between pixel features and object queries from the clustering perspective. Conse-

quently, it simplifies the mask-transformer model by replacing the multi-head cross attention

with the proposed single-head k-means clustering. We have tailored the transformer-based

model for segmentation tasks by establishing the link between the traditional k-means

clustering algorithm and cross-attention. We hope our work will inspire the community to

develop more vision-specific transformer models.

150

image 1st cluster assignment 2nd cluster assignment 3rd cluster assignment

4th cluster assignment 5th cluster assignment 6th cluster assignment panoptic prediction panoptic label

Figure 7.5: Visualization of kMaX-DeepLab (ResNet-50) pixel-cluster assignments at each kMaX
decoder stage, along with the final panoptic prediction. kMaX-DeepLab shows a behavior of
recognizing objects starting from their parts to their the whole shape in the clustering process. For
example, the elephant’s top head, body, and nose are separately clustered at the beginning, and they
are gradually merged in the following stages

151

Chapter 8

Conclusion

8.1 Summary

In this dissertation, I have presented a total of 6 research projects. All of them aim at

providing a path towards better segmentation models in 2D or 3D images. In Chapter 2,

we study a disentangled search space to enable a consistent neural architecture search

for 3D segmentation models. In Chapter 3, we further propose to push the search space

towards channel level, which enables a more fine-grained model configuration and brings

better accuracy-cost trade-off. In Chapter 4, we introduce a coarse-to-fine mechanism

and mask-guided matting, which refines a coarse segmentation mask with matting-level

details. In Chapter 5, we also show that the coarse-to-fine mechanism, specifically, glance

and gaze, can help build a strong hierarchical vision transformer backbone and serves

as a strong feature extractor. In Chapter 6, we rethink the relationship among mask

transformer, panoptic segmentation, and traditional clustering algorithm, which motivates

us to reformulate the cross-attention and proposes clustering mask transformer. Furthermore

in Chapter 7, we focus on the k-means clustering and modify the attention mechanism

152

accordingly. With a simple change, we achieve much better results with more plausible

attention visualizations.

8.2 Future Work

In this section, I will discuss a few potential future research objectives.

8.2.1 Unsupervised Object-Centric Tokenization.

While we have illustrated promising ways to generate strong pixel-level representation [255]

and grouping pixel-level representation to object-level representation [252, 254], these

methods heavily rely on the dataset and annotations. Therefore, it is an interesting question

about whether object-centric tokenization may emerge under a large-scale unsupervised

manner, which provides a more general representation and avoids dataset bias (e.g., we

observe that kMaX-DeepLab performs extremely well on “person", due to it is one most

common and challenging class on COCO dataset).

The unsupervised methods include but are not limited to (a) for obtaining a strong

pixel-level feature, we may expect a pretraining in the style of pre-text tasks [166, 76],

contrastive learning [37, 88], and masked image modeling [11, 87], (b) for grouping

pixel-level representation into object-level, it can be promising to draw inspirations from

VQ-VAE [213], SAVI++ [64], which provide a reasonable way to pretrain with image/mask

reconstruction.

153

8.2.2 Unified Model across Tasks and Modalities.

One most important features of transformer is to provide the possibility of a unified model

for different tasks and modalities. E.g., Perceiver IO [105] proposes a shared architecture

that can be used to tackle different tasks, Omnivore [77] tries to unify the image and video

within a single model. More recently, Unified-IO [157] shows promising results to handle

language and vision while supporting various tasks using a single model.

Though these methods show good and promising results, it is noticeable that they

heavily rely on a pretrained VQ-VAE [213] and VQ-GAN [65] to handle the vision tasks.

Nonetheless, the tokenization with these models is not semantic enough, which actually

incurs huge computation and memory costs, as well as the need of training a strong

transformer encoder as well. In this case, building a unified model with object-centric

tokenization can be promising in terms of both efficiency and performance.

154

Bibliography

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and

Sabine Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods.

IEEE TPAMI, 2012.

[2] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Philip Pham, Anirudh Ravula, and

Sumit Sanghai. Etc: Encoding long and structured data in transformers. In EMNLP,

2020.

[3] Yağiz Aksoy, Tae-Hyun Oh, Sylvain Paris, Marc Pollefeys, and Wojciech Matusik.

Semantic soft segmentation. ACM Transactions on Graphics (TOG), 37(4):1–13,

2018.

[4] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and

Cordelia Schmid. Vivit: A video vision transformer. In ICCV, 2021.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-

tion by jointly learning to align and translate. In ICLR, 2015.

[6] Min Bai and Raquel Urtasun. Deep watershed transform for instance segmentation.

In CVPR, 2017.

155

[7] Yutong Bai, Qing Liu, Lingxi Xie, Weichao Qiu, Yan Zheng, and Alan L Yuille.

Semantic part detection via matching: Learning to generalize to novel viewpoints

from limited training data. In ICCV, pages 7535–7545, 2019.

[8] Yutong Bai, Angtian Wang, Adam Kortylewski, and Alan Yuille. Coke: Localized

contrastive learning for robust keypoint detection. arXiv preprint arXiv:2009.14115,

2020.

[9] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural

network architectures using reinforcement learning. ICLR, 2017.

[10] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern

Recognition, 1981.

[11] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers.

2022.

[12] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Atten-

tion augmented convolutional networks. In ICCV, 2019.

[13] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document

transformer. arXiv:2004.05150, 2020.

[14] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc

Le. Understanding and simplifying one-shot architecture search. In ICML, pages

550–559, 2018.

[15] Ujwal Bonde, Pablo F Alcantarilla, and Stefan Leutenegger. Towards bounding-box

free panoptic segmentation. arXiv:2002.07705, 2020.

156

[16] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot

model architecture search through hypernetworks. ICLR, 2018.

[17] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image

denoising. In CVPR, 2005.

[18] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search

on target task and hardware. ICLR, 2019.

[19] Shaofan Cai, Xiaoshuai Zhang, Haoqiang Fan, Haibin Huang, Jiangyu Liu, Jiaming

Liu, Jiaying Liu, Jue Wang, and Jian Sun. Disentangled image matting. In ICCV,

pages 8819–8828, 2019.

[20] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object

detection. In CVPR, 2018.

[21] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander

Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In

ECCV, 2020.

[22] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model

and the kinetics dataset. In CVPR, pages 6299–6308, 2017.

[23] Hao Chen, Qi Dou, Lequan Yu, Jing Qin, and Pheng-Ann Heng. Voxresnet: Deep

voxelwise residual networks for brain segmentation from 3d mr images. NeuroImage,

170:446–455, 2018.

[24] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu,

Alan L Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for

medical image segmentation. 2021.

157

[25] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,

Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab

detection toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019.

[26] Liang-Chieh Chen, Raphael Gontijo Lopes, Bowen Cheng, Maxwell D Collins,

Ekin D Cubuk, Barret Zoph, Hartwig Adam, and Jonathon Shlens. Naive-Student:

Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Seg-

mentation. In ECCV, 2020.

[27] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Semantic image segmentation with deep convolutional nets and fully

connected crfs. In ICLR, 2015.

[28] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs. TPAMI, 40(4):834–848, 2017.

[29] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs. IEEE TPAMI, 2017.

[30] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs. PAMI, 40(4):834–848, 2018.

[31] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-

thinking atrous convolution for semantic image segmentation. arXiv preprint

arXiv:1706.05587, 2017.

158

[32] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-

thinking atrous convolution for semantic image segmentation. arXiv:1706.05587,

2017.

[33] Liang-Chieh Chen, Huiyu Wang, and Siyuan Qiao. Scaling wide residual networks

for panoptic segmentation. arXiv:2011.11675, 2020.

[34] Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu, and Alan L Yuille. Attention to

scale: Scale-aware semantic image segmentation. In CVPR, 2016.

[35] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig

Adam. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In ECCV, 2018.

[36] Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. TPAMI, 35(9):2175–

2188, 2013.

[37] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In ICML, 2020.

[38] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture

search: Bridging the depth gap between search and evaluation. ICCV, 2019.

[39] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, and Jiashi Feng. Aˆ

2-nets: Double attention networks. In NeurIPS, 2018.

[40] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexander Kirillov, Rohit Gird-

har, and Alexander G Schwing. Mask2former for video instance segmentation.

arXiv:2112.10764, 2021.

159

[41] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig

Adam, and Liang-Chieh Chen. Panoptic-DeepLab. In ICCV COCO + Mapillary

Joint Recognition Challenge Workshop, 2019.

[42] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig

Adam, and Liang-Chieh Chen. Panoptic-DeepLab: A Simple, Strong, and Fast

Baseline for Bottom-Up Panoptic Segmentation. In CVPR, 2020.

[43] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit

Girdhar. Masked-attention mask transformer for universal image segmentation.

CVPR, 2022.

[44] Bowen Cheng, Alexander G Schwing, and Alexander Kirillov. Per-pixel classifica-

tion is not all you need for semantic segmentation. In NeurIPS, 2021.

[45] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks

for machine reading. In EMNLP, 2016.

[46] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long

sequences with sparse transformers. arXiv:1904.10509, 2019.

[47] François Chollet. Xception: Deep learning with depthwise separable convolutions.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1251–1258, 2017.

[48] François Chollet. Xception: Deep learning with depthwise separable convolutions.

In CVPR, 2017.

[49] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xiaolin Wei, Huaxia Xia, and

Chunhua Shen. Conditional positional encodings for vision transformers. Arxiv

160

preprint 2102.10882, 2021.

[50] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking

evaluation fairness of weight sharing neural architecture search. arXiv preprint

arXiv:1907.01845, 2019.

[51] Yung-Yu Chuang, Brian Curless, David H Salesin, and Richard Szeliski. A bayesian

approach to digital matting. In CVPR, volume 2, pages II–II. IEEE, 2001.

[52] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ron-

neberger. 3D u-net: learning dense volumetric segmentation from sparse annotation.

In MICCAI, 2016.

[53] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic seg-

mentation toolbox and benchmark. https://github.com/open-mmlab/

mmsegmentation, 2020.

[54] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.

[55] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.

Autoaugment: Learning augmentation policies from data. In CVPR, 2019.

[56] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Prac-

tical automated data augmentation with a reduced search space. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,

pages 702–703, 2020.

161

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

[57] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen

Wei. Deformable convolutional networks. In ICCV, 2017.

[58] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan

Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length

context. In ACL, 2019.

[59] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[60] Heiner Deubel and Werner X. Schneider. Saccade target selection and object recogni-

tion: Evidence for a common attentional mechanism. Vision Research, 36(12):1827–

1837, 1996.

[61] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In NAACL,

2019.

[62] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu

hours. In CVPR, pages 1761–1770, 2019.

[63] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. In ICLR, 2021.

[64] Gamaleldin F Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff,

Michael C Mozer, and Thomas Kipf. Savi++: Towards end-to-end object-centric

162

learning from real-world videos. arXiv:2206.07764, 2022.

[65] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-

resolution image synthesis. In CVPR, 2021.

[66] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew

Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303–338,

2010.

[67] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra

Malik, and Christoph Feichtenhofer. Multiscale vision transformers. In ICCV, 2021.

[68] Hao-Shu Fang, Jianhua Sun, Runzhong Wang, Minghao Gou, Yong-Lu Li, and

Cewu Lu. Instaboost: Boosting instance segmentation via probability map guided

copy-pasting. In ICCV, 2019.

[69] Marco Forte and François Pitié. f , b, alpha matting. arXiv preprint

arXiv:2003.07711, 2020.

[70] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu.

Dual attention network for scene segmentation. In CVPR, 2019.

[71] Naiyu Gao, Yanhu Shan, Yupei Wang, Xin Zhao, Yinan Yu, Ming Yang, and Kaiqi

Huang. Ssap: Single-shot instance segmentation with affinity pyramid. In ICCV,

2019.

[72] Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai, and Hongsheng Li. Fast

convergence of detr with spatially modulated co-attention. In ICCV, 2021.

163

[73] Eduardo SL Gastal and Manuel M Oliveira. Shared sampling for real-time alpha

matting. In Computer Graphics Forum, volume 29, pages 575–584. Wiley Online

Library, 2010.

[74] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk,

Quoc V Le, and Barret Zoph. Simple copy-paste is a strong data augmentation

method for instance segmentation. In CVPR, 2021.

[75] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature

pyramid architecture for object detection. In CVPR, pages 7036–7045, 2019.

[76] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation

learning by predicting image rotations. 2018.

[77] Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der Maaten, Armand Joulin,

and Ishan Misra. Omnivore: A single model for many visual modalities. In CVPR,

2022.

[78] Felix Gonda, Donglai Wei, Toufiq Parag, and Hanspeter Pfister. Parallel separable

3d convolution for video and volumetric data understanding. BMVC, 2018.

[79] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and

Edward Choi. Morphnet: Fast & simple resource-constrained structure learning of

deep networks. In CVPR, pages 1586–1595, 2018.

[80] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large

minibatch sgd: Training imagenet in 1 hour. arXiv:1706.02677, 2017.

164

[81] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska,

Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz

Mueller-Freitag, et al. The" something something" video database for learning and

evaluating visual common sense. In ICCV, volume 1, page 5, 2017.

[82] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,

and Jian Sun. Single path one-shot neural architecture search with uniform sampling.

arXiv preprint arXiv:1904.00420, 2019.

[83] Ankit Gupta and Jonathan Berant. Gmat: Global memory augmentation for trans-

formers. arXiv:2006.03274, 2020.

[84] Vikas Gupta and Shanmuganathan Raman. Automatic trimap generation for image

matting. In 2016 International Conference on Signal and Information Processing

(IConSIP), pages 1–5. IEEE, 2016.

[85] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang.

Transformer in transformer. arXiv preprint arXiv:2103.00112, 2021.

[86] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous

detection and segmentation. In ECCV, 2014.

[87] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.

Masked autoencoders are scalable vision learners. In CVPR, 2022.

[88] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In CVPR, 2020.

[89] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In

ICCV, 2017.

165

[90] Kaiming He, Christoph Rhemann, Carsten Rother, Xiaoou Tang, and Jian Sun. A

global sampling method for alpha matting. In CVPR, pages 2049–2056. IEEE, 2011.

[91] Kaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting

laplacian matrices. In CVPR, pages 2165–2172. IEEE, 2010.

[92] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[93] Xuming He, Richard S Zemel, and Miguel Á Carreira-Perpiñán. Multiscale condi-

tional random fields for image labeling. In CVPR, 2004.

[94] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint

arXiv:1606.08415, 2016.

[95] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial

attention in multidimensional transformers. arXiv:1912.12180, 2019.

[96] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel

Soudry. Augment your batch: Improving generalization through instance repeti-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8129–8138, 2020.

[97] Qiqi Hou and Feng Liu. Context-aware image matting for simultaneous foreground

and alpha estimation. In ICCV, pages 4130–4139, 2019.

[98] Chang-Lin Hsieh and Ming-Sui Lee. Automatic trimap generation for digital image

matting. In 2013 Asia-Pacific Signal and Information Processing Association Annual

Summit and Conference, pages 1–5. IEEE, 2013.

166

[99] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks

for object detection. In CVPR, 2018.

[100] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation networks for

image recognition. In ICCV, 2019.

[101] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep

networks with stochastic depth. In ECCV, 2016.

[102] Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and

Wenyu Liu. Ccnet: Criss-cross attention for semantic segmentation. In ICCV, 2019.

[103] Jyh-Jing Hwang, Stella X Yu, Jianbo Shi, Maxwell D Collins, Tien-Ju Yang, Xiao

Zhang, and Liang-Chieh Chen. SegSort: Segmentation by discriminative sorting of

segments. In ICCV, 2019.

[104] Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F Jaeger, Simon

Kohl, Jakob Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, et al.

nnu-net: Self-adapting framework for u-net-based medical image segmentation.

arXiv:1809.10486, 2018.

[105] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin

Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shel-

hamer, et al. Perceiver io: A general architecture for structured inputs & outputs.

2022.

[106] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-

softmax. In ICLR, 2017.

167

[107] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter

networks. In NeurIPS, 2016.

[108] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty

to weigh losses for scene geometry and semantics. In CVPR, 2018.

[109] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas

Brox, and Bjorn Andres. Efficient decomposition of image and mesh graphs by lifted

multicuts. In ICCV, 2015.

[110] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip

Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning.

In NeurIPS, 2020.

[111] Dahun Kim, Jun Xie, Huiyu Wang, Siyuan Qiao, Qihang Yu, Hong-Seok Kim,

Hartwig Adam, In So Kweon, and Liang-Chieh Chen. Tubeformer-deeplab: Video

mask transformer. In CVPR, 2022.

[112] Sungwoong Kim, Ildoo Kim, Sungbin Lim, Woonhyuk Baek, Chiheon Kim,

Hyungjoo Cho, Boogeon Yoon, and Taesup Kim. Scalable neural architecture

search for 3d medical image segmentation. arXiv preprint arXiv:1906.05956, 2019.

[113] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

ICLR, 2015.

[114] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature

pyramid networks. In CVPR, 2019.

[115] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár.

Panoptic segmentation. In CVPR, 2019.

168

[116] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend: Image

segmentation as rendering. In CVPR, 2020.

[117] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient

transformer. In ICLR, 2020.

[118] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In NeurIPS, 2012.

[119] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.

[120] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[121] Philip Lee and Ying Wu. Nonlocal matting. In CVPR, pages 2193–2200. IEEE,

2011.

[122] Bastian Leibe, Ales Leonardis, and Bernt Schiele. Combined object categorization

and segmentation with an implicit shape model. In Workshop on statistical learning

in computer vision, ECCV, 2004.

[123] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural

image matting. TPAMI, 30(2):228–242, 2007.

[124] Anat Levin, Alex Rav-Acha, and Dani Lischinski. Spectral matting. TPAMI,

30(10):1699–1712, 2008.

[125] Jie Li, Allan Raventos, Arjun Bhargava, Takaaki Tagawa, and Adrien Gaidon. Learn-

ing to fuse things and stuff. arXiv:1812.01192, 2018.

169

[126] Qizhu Li, Xiaojuan Qi, and Philip HS Torr. Unifying training and inference for

panoptic segmentation. In CVPR, 2020.

[127] Xiangtai Li, Wenwei Zhang, Jiangmiao Pang, Kai Chen, Guangliang Cheng, Yunhai

Tong, and Chen Change Loy. Video k-net: A simple, strong, and unified baseline for

video segmentation. In CVPR, 2022.

[128] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan Huang, Dalong Du, and

Xingang Wang. Attention-guided unified network for panoptic segmentation. In

CVPR, 2019.

[129] Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie Yang, Cihang Xie, Qihang

Yu, Yuyin Zhou, Song Bai, and Alan Yuille. Autonl: Neural architecture search for

lightweight non-local networks in mobile vision. In CVPR, 2020.

[130] Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie Yang, Cihang Xie, Qihang

Yu, Yuyin Zhou, Song Bai, and Alan L Yuille. Neural architecture search for

lightweight non-local networks. In CVPR, 2020.

[131] Yaoyi Li and Hongtao Lu. Natural image matting via guided contextual attention. In

AAAI, volume 34, pages 11450–11457, 2020.

[132] Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng Tang, Wei Shen, Alan Yuille,

and Cihang Xie. Shape-texture debiased neural network training. In ICLR, 2020.

[133] Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang, Zeming Li, Jian Sun, and

Jiaya Jia. Fully convolutional networks for panoptic segmentation. In CVPR, 2021.

[134] Yingwei Li, Zhuotun Zhu, Yuyin Zhou, Yingda Xia, Wei Shen, Elliot K Fishman, and

Alan L Yuille. Volumetric medical image segmentation: A 3d deep coarse-to-fine

170

framework and its adversarial examples. In Deep Learning and Convolutional Neural

Networks for Medical Imaging and Clinical Informatics, pages 69–91. Springer,

2019.

[135] Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anandkumar, Jose M Alvarez,

Tong Lu, and Ping Luo. Panoptic segformer. CVPR, 2022.

[136] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video

understanding. In ICCV, pages 7083–7093, 2019.

[137] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. Feature pyramid networks for object detection. In CVPR, 2017.

[138] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. In ECCV, 2014.

[139] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan

Yuille, and Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for

semantic image segmentation. In CVPR, 2019.

[140] Huanyu Liu, Chao Peng, Changqian Yu, Jingbo Wang, Xu Liu, Gang Yu, and Wei

Jiang. An end-to-end network for panoptic segmentation. In CVPR, 2019.

[141] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture

search. ICLR, 2019.

[142] Jinlin Liu, Yuan Yao, Wendi Hou, Miaomiao Cui, Xuansong Xie, Changshui Zhang,

and Xian-sheng Hua. Boosting semantic human matting with coarse annotations. In

CVPR, pages 8563–8572, 2020.

171

[143] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex

Sergeev, and Jason Yosinski. An intriguing failing of convolutional neural networks

and the coordconv solution. In NeurIPS, 2018.

[144] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network

for instance segmentation. In CVPR, 2018.

[145] Siqi Liu, Daguang Xu, S Kevin Zhou, Thomas Mertelmeier, Julia Wicklein, Anna

Jerebko, Sasa Grbic, Olivier Pauly, Weidong Cai, and Dorin Comaniciu. 3d

anisotropic hybrid network: Transferring convolutional features from 2d images to

3d anisotropic volumes. MICCAI, 2017.

[146] Siqi Liu, Daguang Xu, S Kevin Zhou, Olivier Pauly, Sasa Grbic, Thomas

Mertelmeier, Julia Wicklein, Anna Jerebko, Weidong Cai, and Dorin Comaniciu. 3d

anisotropic hybrid network: Transferring convolutional features from 2d images to

3d anisotropic volumes. In MICCAI, pages 851–858. Springer, 2018.

[147] Yudong Liu, Yongtao Wang, Siwei Wang, TingTing Liang, Qijie Zhao, Zhi Tang,

and Haibin Ling. Cbnet: A novel composite backbone network architecture for

object detection. In AAAI, 2020.

[148] Yiding Liu, Siyu Yang, Bin Li, Wengang Zhou, Jizheng Xu, Houqiang Li, and Yan

Lu. Affinity derivation and graph merge for instance segmentation. In ECCV, 2018.

[149] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,

and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted

windows. In ICCV, 2021.

172

[150] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,

and Saining Xie. A convnet for the 2020s. In CVPR, 2022.

[151] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information

theory, 28(2):129–137, 1982.

[152] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran,

Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-

centric learning with slot attention. In NeurIPS, 2020.

[153] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In CVPR, 2015.

[154] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983, 2016.

[155] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR,

2019.

[156] Hao Lu, Yutong Dai, Chunhua Shen, and Songcen Xu. Indices matter: Learning to

index for deep image matting. In ICCV, pages 3266–3275, 2019.

[157] Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha

Kembhavi. Unified-io: A unified model for vision, language, and multi-modal tasks.

arXiv:2206.08916, 2022.

[158] Chenxu Luo and Alan Yuille. Grouped spatial-temporal aggretation for efficient

action recognition. In ICCV, 2019.

[159] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches

to attention-based neural machine translation. In EMNLP, 2015.

173

[160] Sebastian Lutz, Konstantinos Amplianitis, and Aljosa Smolic. Alphagan: Generative

adversarial networks for natural image matting. BMVC, 2018.

[161] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, and

Jianchao Yang. Atomnas: Fine-grained end-to-end neural architecture search. ICLR,

2020.

[162] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolu-

tional neural networks for volumetric medical image segmentation. In 3DV, 2016.

[163] Aliasghar Mortazi and Ulas Bagci. Automatically designing cnn architectures for

medical image segmentation. In MLMI, pages 98–106. Springer, 2018.

[164] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The

mapillary vistas dataset for semantic understanding of street scenes. In ICCV, 2017.

[165] Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool. Instance

segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In

CVPR, 2019.

[166] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations

by solving jigsaw puzzles. In ECCV, 2016.

[167] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazu-

nari Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz,

et al. Attention u-net: Learning where to look for the pancreas. MIDL, 2018.

[168] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and Vittorio Ferrari. Extreme

clicking for efficient object annotation. In ICCV, 2017.

174

[169] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer,

Alexander Ku, and Dustin Tran. Image transformer. In ICML, 2018.

[170] Mathias Perslev, Erik Bjørnager Dam, Akshay Pai, and Christian Igel. One network

to segment them all: A general, lightweight system for accurate 3d medical image

segmentation. In MICCAI, pages 30–38. Springer, 2019.

[171] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient

neural architecture search via parameter sharing. ICML, 2018.

[172] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by

averaging. SIAM journal on control and optimization, 30(4):838–855, 1992.

[173] Lorenzo Porzi, Samuel Rota Bulò, Aleksander Colovic, and Peter Kontschieder.

Seamless scene segmentation. In CVPR, 2019.

[174] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects with

recursive feature pyramid and switchable atrous convolution. arXiv:2006.02334,

2020.

[175] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects with

recursive feature pyramid and switchable atrous convolution. In CVPR, 2021.

[176] Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Mingliang Xu, Qiang Zhang,

and Xiaopeng Wei. Attention-guided hierarchical structure aggregation for image

matting. In CVPR, pages 13676–13685, 2020.

[177] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation with

pseudo-3d residual networks. In ICCV, pages 5533–5541, 2017.

175

[178] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dol-

lár. Designing network design spaces. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 10428–10436, 2020.

[179] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya,

and Jonathon Shlens. Stand-alone self-attention in vision models. arXiv preprint

arXiv:1906.05909, 2019.

[180] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya,

and Jon Shlens. Stand-alone self-attention in vision models. In NeurIPS, 2019.

[181] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized

evolution for image classifier architecture search. In AAAI, volume 33, pages 4780–

4789, 2019.

[182] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In NeurIPS, 2015.

[183] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In International Conference on Medical

image computing and computer-assisted intervention, 2015.

[184] Holger R Roth, Le Lu, Amal Farag, Hoo-Chang Shin, Jiamin Liu, Evrim B Turkbey,

and Ronald M Summers. Deeporgan: Multi-level deep convolutional networks for

automated pancreas segmentation. In MICCAI, 2015.

[185] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C.

176

Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. IJCV,

115:211–252, 2015.

[186] Michael S Ryoo, AJ Piergiovanni, Mingxing Tan, and Anelia Angelova. Assem-

blenet: Searching for multi-stream neural connectivity in video architectures. arXiv

preprint arXiv:1905.13209, 2019.

[187] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR,

2018.

[188] Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steven M Seitz, and Ira

Kemelmacher-Shlizerman. Background matting: The world is your green screen. In

CVPR, pages 2291–2300, 2020.

[189] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep

learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[190] Ehsan Shahrian, Deepu Rajan, Brian Price, and Scott Cohen. Improving image

matting using comprehensive sampling sets. In CVPR, pages 636–643, 2013.

[191] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative

position representations. In NAACL, 2018.

[192] Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and Jiaya Jia. Deep automatic

portrait matting. In ECCV, pages 92–107. Springer, 2016.

[193] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient

attention: Attention with linear complexities. In WACV, 2021.

177

[194] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv:1409.1556, 2014.

[195] Amber L Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan

Farahani, Bram van Ginneken, Annette Kopp-Schneider, Bennett A Landman, Geert

Litjens, Bjoern Menze, et al. A large annotated medical image dataset for the

development and evaluation of segmentation algorithms. arXiv:1902.09063, 2019.

[196] Konstantin Sofiiuk, Olga Barinova, and Anton Konushin. Adaptis: Adaptive instance

selection network. In ICCV, 2019.

[197] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi

Priyantha, Jie Liu, and Diana Marculescu. Single-path nas: Designing hardware-

efficient convnets in less than 4 hours. ECML PKDD, 2019.

[198] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter:

Transformer for semantic segmentation. In ICCV, 2021.

[199] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson matting. In

SIGGRAPH, pages 315–321. 2004.

[200] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In NeurIPS, 2014.

[201] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B

Kendall, Michael B Gotway, and Jianming Liang. Convolutional neural networks for

medical image analysis: Full training or fine tuning? TMI, 35(5):1299–1312, 2016.

178

[202] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning, pages 6105–

6114. PMLR, 2019.

[203] Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise convolutional kernels.

BMVC, 2019.

[204] Jingwei Tang, Yagiz Aksoy, Cengiz Oztireli, Markus Gross, and Tunc Ozan Aydin.

Learning-based sampling for natural image matting. In CVPR, pages 3055–3063,

2019.

[205] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convolutions for instance

segmentation. In ECCV, 2020.

[206] Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via

deep neural networks. In CVPR, 2014.

[207] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-

rolles, and Hervé Jégou. Training data-efficient image transformers & distillation

through attention. arXiv preprint arXiv:2012.12877, 2020.

[208] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.

Learning spatiotemporal features with 3d convolutional networks. In ICCV, pages

4489–4497, 2015.

[209] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli. Video classification with

channel-separated convolutional networks. In ICCV, pages 5552–5561, 2019.

[210] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar

Paluri. A closer look at spatiotemporal convolutions for action recognition. In CVPR,

179

pages 6450–6459, 2018.

[211] Jonas Uhrig, Eike Rehder, Björn Fröhlich, Uwe Franke, and Thomas Brox. Box2pix:

Single-shot instance segmentation by assigning pixels to object boxes. In IEEE

Intelligent Vehicles Symposium (IV), 2018.

[212] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:

The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[213] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning.

2017.

[214] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS,

2017.

[215] Luc Vincent and Pierre Soille. Watersheds in digital spaces: an efficient algorithm

based on immersion simulations. IEEE TPAMI, 1991.

[216] Haochen Wang, Ruotian Luo, Michael Maire, and Greg Shakhnarovich. Pixel

consensus voting for panoptic segmentation. In CVPR, 2020.

[217] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen.

Max-deeplab: End-to-end panoptic segmentation with mask transformers. In CVPR,

2021.

[218] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-

Chieh Chen. Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmenta-

tion. In ECCV, 2020.

180

[219] Jue Wang and Michael F Cohen. Optimized color sampling for robust matting. In

CVPR, pages 1–8. IEEE, 2007.

[220] Jue Wang and Michael F Cohen. Image and video matting: a survey. Now Publishers

Inc, 2008.

[221] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and

Luc Van Gool. Temporal segment networks: Towards good practices for deep action

recognition. In ECCV, pages 20–36. Springer, 2016.

[222] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:

Self-attention with linear complexity. arXiv:2006.04768, 2020.

[223] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong

Lu, Ping Luo, and Ling Shao. Pvtv2: Improved baselines with pyramid vision

transformer. arXiv:2106.13797, 2021.

[224] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong

Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for

dense prediction without convolutions. arXiv preprint arXiv:2102.12122, 2021.

[225] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural

networks. In CVPR, 2018.

[226] Xiaolong Wang and Abhinav Gupta. Videos as space-time region graphs. In ECCV,

pages 399–417, 2018.

[227] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. SOLOv2:

Dynamic and fast instance segmentation. In NeurIPS, 2020.

181

[228] Mark Weber, Huiyu Wang, Siyuan Qiao, Jun Xie, Maxwell D. Collins, Yukun Zhu,

Liangzhe Yuan, Dahun Kim, Qihang Yu, Daniel Cremers, Laura Leal-Taixe, Alan L.

Yuille, Florian Schroff, Hartwig Adam, and Liang-Chieh Chen. DeepLab2: A

TensorFlow Library for Deep Labeling. arXiv: 2106.09748, 2021.

[229] Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-unet: Neural architecture

search for medical image segmentation. IEEE Access, 7:44247–44257, 2019.

[230] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and

Lei Zhang. Cvt: Introducing convolutions to vision transformers. arXiv preprint

arXiv:2103.15808, 2021.

[231] Yingda Xia, Fengze Liu, Dong Yang, Jinzheng Cai, Lequan Yu, Zhuotun Zhu,

Daguang Xu, Alan Yuille, and Holger Roth. 3d semi-supervised learning with

uncertainty-aware multi-view co-training. WACV, 2020.

[232] Yingda Xia, Lingxi Xie, Fengze Liu, Zhuotun Zhu, Elliot K Fishman, and Alan L

Yuille. Bridging the gap between 2d and 3d organ segmentation with volumetric

fusion net. In MICCAI, pages 445–453. Springer, 2018.

[233] Yingda Xia, Qihang Yu, Linda Chu, Satomi Kawamoto, Seyoun Park, Fengze Liu,

Jieneng Chen, Zhuotun Zhu, Bowen Li, Zongwei Zhou, et al. The felix project:

Deep networks to detect pancreatic neoplasms. medRxiv, pages 2022–09, 2022.

[234] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified percep-

tual parsing for scene understanding. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 418–434, 2018.

182

[235] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and

Ping Luo. Segformer: Simple and efficient design for semantic segmentation with

transformers. In NeurIPS, 2021.

[236] Lingxi Xie and Alan Yuille. Genetic cnn. In ICCV, pages 1379–1388, 2017.

[237] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated

residual transformations for deep neural networks. In CVPR, 2017.

[238] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethink-

ing spatiotemporal feature learning: Speed-accuracy trade-offs in video classification.

In ECCV, pages 305–321, 2018.

[239] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In ICCV, pages

1395–1403, 2015.

[240] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and

Raquel Urtasun. Upsnet: A unified panoptic segmentation network. In CVPR, 2019.

[241] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz,

and Xiaolong Wang. Groupvit: Semantic segmentation emerges from text supervi-

sion. In CVPR, 2022.

[242] Ning Xu, Brian Price, Scott Cohen, and Thomas Huang. Deep image matting. In

CVPR, pages 2970–2979, 2017.

[243] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and

Hongkai Xiong. Pc-darts: Partial channel connections for memory-efficient differen-

tiable architecture search. ICLR, 2020.

183

[244] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustrat-

ingly hard. ICLR, 2020.

[245] Chenglin Yang, Yilin Wang, Jianming Zhang, He Zhang, Zijun Wei, Zhe Lin, and

Alan Yuille. Lite vision transformer with enhanced self-attention. In CVPR, 2022.

[246] Dong Yang, Holger Roth, Ziyue Xu, Fausto Milletari, Ling Zhang, and Daguang

Xu. Searching learning strategy with reinforcement learning for 3d medical image

segmentation. In MICCAI, pages 3–11. Springer, 2019.

[247] Tien-Ju Yang, Maxwell D Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao

Zhang, Vivienne Sze, George Papandreou, and Liang-Chieh Chen. Deeperlab:

Single-shot image parser. arXiv:1902.05093, 2019.

[248] Yibo Yang, Hongyang Li, Xia Li, Qijie Zhao, Jianlong Wu, and Zhouchen Lin.

Sognet: Scene overlap graph network for panoptic segmentation. In AAAI, 2020.

[249] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolu-

tions. arXiv preprint arXiv:1511.07122, 2015.

[250] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans,

Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas:

Scaling up neural architecture search with big single-stage models. ECCV, 2020.

[251] Qihang Yu, Yingwei Li, Jieru Mei, Yuyin Zhou, and Alan Yuille. Cakes: Channel-

wise automatic kernel shrinking for efficient 3d networks. In AAAI, 2021.

[252] Qihang Yu, Huiyu Wang, Dahun Kim, Siyuan Qiao, Maxwell Collins, Yukun Zhu,

Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. Cmt-deeplab: Clustering mask

transformers for panoptic segmentation. In CVPR, 2022.

184

[253] Qihang Yu, Huiyu Wang, Dahun Kim, Siyuan Qiao, Maxwell Collins, Yukun Zhu,

Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. Cmt-deeplab: Clustering mask

transformers for panoptic segmentation. In CVPR, 2022.

[254] Qihang Yu, Huiyu Wang, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hartwig Adam,

Alan Yuille, and Liang-Chieh Chen. k-means mask transformer. In ECCV, 2022.

[255] Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan L Yuille, and Wei Shen.

Glance-and-gaze vision transformer. In NeurIPS, 2021.

[256] Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan L Yuille, and Wei Shen.

Glance-and-gaze vision transformer. NeurIPS, 2021.

[257] Qihang Yu, Lingxi Xie, Yan Wang, Yuyin Zhou, Elliot K Fishman, and Alan L Yuille.

Recurrent saliency transformation network: Incorporating multi-stage visual cues

for small organ segmentation. In CVPR, pages 8280–8289, 2018.

[258] Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao Zhang, Alan L Yuille,

and Daguang Xu. C2fnas: Coarse-to-fine neural architecture search for 3d medical

image segmentation. In CVPR, 2020.

[259] Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao Zhang, Alan L Yuille,

and Daguang Xu. C2fnas: Coarse-to-fine neural architecture search for 3d medical

image segmentation. In CVPR, pages 4126–4135, 2020.

[260] Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao Zhang, Alan L Yuille,

and Daguang Xu. C2fnas: Coarse-to-fine neural architecture search for 3d medical

image segmentation. In CVPR, pages 4126–4135, 2020.

185

[261] Qihang Yu, Jianming Zhang, He Zhang, Yilin Wang, Zhe Lin, Ning Xu, Yutong Bai,

and Alan Yuille. Mask guided matting via progressive refinement network. In CVPR,

2021.

[262] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi

Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from

scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.

[263] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and

Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with

localizable features. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 6023–6032, 2019.

[264] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris

Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,

et al. Big bird: Transformers for longer sequences. In NeurIPS, 2020.

[265] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[266] He Zhang, Jianming Zhang, Federico Perazzi, Zhe Lin, and Vishal M Patel. Deep

image compositing. WACV, 2021.

[267] Wenwei Zhang, Jiangmiao Pang, Kai Chen, and Chen Change Loy. K-net: Towards

unified image segmentation. In NeurIPS, 2021.

[268] Yunke Zhang, Lixue Gong, Lubin Fan, Peiran Ren, Qixing Huang, Hujun Bao, and

Weiwei Xu. A late fusion cnn for digital matting. In CVPR, pages 7469–7478, 2019.

186

[269] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image

recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 10076–10085, 2020.

[270] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyra-

mid scene parsing network. In CVPR, 2017.

[271] Hengshuang Zhao, Yi Zhang, Shu Liu, Jianping Shi, Chen Change Loy, Dahua Lin,

and Jiaya Jia. Psanet: Point-wise spatial attention network for scene parsing. In

ECCV, 2018.

[272] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao

Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking

semantic segmentation from a sequence-to-sequence perspective with transformers.

arXiv preprint arXiv:2012.15840, 2020.

[273] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao

Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking

semantic segmentation from a sequence-to-sequence perspective with transformers.

In CVPR, 2021.

[274] Yuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In ICCV,

pages 889–896. IEEE, 2009.

[275] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing

data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 13001–13008, 2020.

187

[276] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational

reasoning in videos. In ECCV, pages 803–818, 2018.

[277] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio

Torralba. Scene parsing through ade20k dataset. In CVPR, 2017.

[278] Yuyin Zhou, Yingwei Li, Zhishuai Zhang, Yan Wang, Angtian Wang, Elliot K Fish-

man, Alan L Yuille, and Seyoun Park. Hyper-pairing network for multi-phase pan-

creatic ductal adenocarcinoma segmentation. In MICCAI, pages 155–163. Springer,

2019.

[279] Yuyin Zhou, Lingxi Xie, Wei Shen, Yan Wang, Elliot K Fishman, and Alan L Yuille.

A fixed-point model for pancreas segmentation in abdominal ct scans. In MICCAI,

pages 693–701. Springer, 2017.

[280] Yuyin Zhou, Qihang Yu, Yan Wang, Lingxi Xie, Wei Shen, Elliot K Fishman, and

Alan L Yuille. 2d-based coarse-to-fine approaches for small target segmentation

in abdominal ct scans. In Deep Learning and Convolutional Neural Networks for

Medical Imaging and Clinical Informatics, pages 43–67. Springer, 2019.

[281] Yi Zhou, Hui Zhang, Hana Lee, Shuyang Sun, Pingjun Li, Yangguang Zhu, ByungIn

Yoo, Xiaojuan Qi, and Jae-Joon Han. Slot-vps: Object-centric representation learning

for video panoptic segmentation. In CVPR, 2022.

[282] Song Chun Zhu and Alan Yuille. Region competition: Unifying snakes, region

growing, and bayes/mdl for multiband image segmentation. IEEE TPAMI, 1996.

[283] Xizhou Zhu, Dazhi Cheng, Zheng Zhang, Stephen Lin, and Jifeng Dai. An empirical

study of spatial attention mechanisms in deep networks. In ICCV, 2019.

188

[284] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. De-

formable detr: Deformable transformers for end-to-end object detection. ICLR,

2021.

[285] Zhuotun Zhu, Chenxi Liu, Dong Yang, Alan Yuille, and Daguang Xu. V-nas: Neural

architecture search for volumetric medical image segmentation. 3DV, 2019.

[286] Zhuotun Zhu, Yingda Xia, Wei Shen, Elliot K Fishman, and Alan L Yuille. A 3d

coarse-to-fine framework for automatic pancreas segmentation. 3DV, 2018.

[287] Zhuotun Zhu, Yingda Xia, Wei Shen, Elliot K. Fishman, and Alan L. Yuille. A 3d

coarse-to-fine framework for volumetric medical image segmentation. In 3DV, 2018.

[288] Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xiang Bai. Asymmetric

non-local neural networks for semantic segmentation. In CVPR, 2019.

[289] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. Eco: Efficient

convolutional network for online video understanding. In ECCV, pages 695–712,

2018.

[290] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.

ICLR, 2017.

[291] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning trans-

ferable architectures for scalable image recognition. In CVPR, pages 8697–8710,

2018.

189

Vita

Qihang Yu is completing his Ph.D. degree of Computer Science at the Johns Hopkins

University, under the supervision of Bloomberg Distinguished Professor Alan L. Yuille.

Qihang received his B.S. degree in Computer Science from Peking University in 2018.

Qihang’s research interests lie in the fields of computer vision, deep learning, and medical

image analysis.

190

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Neural Architecture Search for Efficient and Effective 3D Segmentation Models
	Coarse-to-Fine Framework for Accurate and Reliable Segmentation
	Segmentation as Clustering through Mask Transformers
	Relevant Publications

	C2FNAS: Coarse-to-Fine Neural Architecture Search for 3D Medical Image Segmentation
	Introduction
	Related Work
	Medical Image Segmentation
	Neural Architecture Search

	Coarse-to-Fine Neural Architecture Search
	Inconsistency Problem
	Coarse-to-fine Neural Architecture Search
	Coarse Stage: Macro-level Search
	Fine Stage: Micro-level Search

	Experiments
	Implementation Details
	Segmentation Results

	Ablation Study
	Coarse Stage versus Fine Stage
	Search on Different Datasets
	Incorporate Model Scaling as Third Stage

	Conclusions

	CAKES: Channel-wise Automatic KErnel Shrinking for Efficient 3D Networks
	Introduction
	Related Work
	Efficient 3D Convolutional Neural Networks
	Neural Architecture Search

	Method
	Revisit Variants of 3D Convolution
	Kernel Shrinking as Path-level Selection
	Channel-wise Shrinkage
	Search for an Efficient Replacement

	Experiments
	3D Medical Image Segmentation
	Action Recognition in Videos

	Conclusions

	Mask Guided Matting via Progressive Refinement Network
	Introduction
	Related Work
	MG Matting
	Progressive Refinement Network
	Foreground Color Estimation

	Experiments on Synthetic Datasets
	Experiments on Real-world Portrait Dataset
	Conclusion

	Glance-and-Gaze Vision Transformer
	Introduction
	Related Work
	Method
	Revisit Vision Transformer
	Glance: Efficient Global Modeling with Adaptively-dilated Splitting
	Gaze: Compensating Local Relationship with Depthwise Convolution
	Network Instantiation

	Experiments
	ImageNet Classification
	ADE20K Semantic Segmentation
	COCO Object Detection
	Ablation Studies

	Limitation
	Conclusion

	CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
	Introduction
	Related Works
	Method
	Transformers for Panoptic Segmentation
	Current Issues and New Clustering Perspective
	Clustering Mask Transformers
	Network Instantiation

	Experimental Results
	Main Results
	Ablation Studies

	Conclusion

	k-means Mask Transformer
	Introduction
	Related Works
	Method
	Mask-Transformer-Based Segmentation Framework
	Relationship between Cross-Attention and k-means Clustering
	k-means Mask Transformer

	Experimental Results
	Implementation Details
	Main Results

	Conclusion

	Conclusion
	Summary
	Future Work
	Unsupervised Object-Centric Tokenization.
	Unified Model across Tasks and Modalities.

	Bibliography
	Vita

