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Abstract  

The spinal cord enables movement and sensation. The cells within the spinal cord form a 

complex community which gives rise to its wide repertoire of functions. Recent advances in 

singe cell sequencing have given unparalleled access to analyzing diverse cell types within a 

single experiment. This enables the examination of gene expression at a single cell level, as 

well as an ability to understand the core organizing principles of cells. The following work 

examines the biology of the spinal cord at a single cell resolution, highlighting intrinsic potential 

for degeneration and regeneration of spinal cord neurons. We first present an optimized 

protocol for isolating nuclei from the spinal cord, enabling downstream single nucleus RNA 

sequencing (snRNA-Seq). With this technique, we examined the cellular diversity in the spinal 

cord of mice. Next, we sought to characterize the human spinal cord, including fundamental 

molecular features and those specific to human pathology. We present an atlas of the adult 

human spinal cord, with snRNA-Seq, spatial transcriptomics and antibody validation. We 

demonstrated the utility of this atlas by focusing on the transcriptome of spinal motoneurons that 

are selectively vulnerable to neurodegeneration in amyotrophic lateral sclerosis (ALS). We 

found that human motoneurons were enriched in genes related to cell size, cytoskeletal 

structure and ALS. These features that are related to maintaining large size of human 

motoneurons but their expression may also underly the selective vulnerability of motoneurons in 

neurodegeneration. Lastly, we used a mouse model to examine how the spinal cord responds in 

the context of injury. We used snRNA-Seq to profile cell types in the spared lumbar tissue below 

a thoracic injury at multiple timepoints after spinal cord injury (SCI) using a clinically-relevant 

contusion injury model in mice. This included an acute timepoint (1 day post-SCI), an 

intermediate timepoint (1 week post-SCI) and chronic timepoints (3 and 6 weeks post-SCI), as 

well as a baseline healthy controls. We found a rare spinal neuron that expressed a pro-
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regenerative signature and identified a major subset as spinocerebellar neurons, which 

displayed axon outgrowth after injury. This work highlights a rare molecular response to injury in 

the central nervous system that indicates plasticity within spinal cord neurons after injury and a 

potential for structural remodeling which could lead to recovery. Taken together, this work 

indicates cell-intrinsic potential for neuronal degeneration and regeneration in the spinal cord, 

which may serve as a basis for new therapeutic targets.  
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Epigraph 

 

 

 

“...To move things is all that mankind can do, for such the sole executant is muscle, whether in 

whispering a syllable or in felling a forest.”  

 

 

Sir Charles Sherrington  
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Chapter 1 

Introduction

Overview of The Spinal Cord 

Our nervous system enables us to perceive and navigate the world. The cells and circuits within the 

spinal cord play vital roles in these functions. Key functions of the spinal cord are often characterized 

as carrying signals to and from the brain or conducting motor reflexes. However, the importance of 

the spinal cord extends beyond relaying signals. Not only does the spinal cord enable movement, 

sensation, and coordination of autonomic function, including breathing, but it is also an integrative 

center of the central nervous system with complex and specialized neuronal cell types. 

The spinal cord contains many populations of cells that give rise to its functions. There are neurons 

that receive sensory information, including touch, pain, and temperature as well as proprioception. 

This information is relayed directly to the brain as well as to local spinal interneurons that integrate 

and process the information, and to motoneurons to execute a reflexive response (Watson, 2009). 

One of the unique specialized cell types in the spinal cord are motoneurons, which synapse directly 

onto muscle fibers in the periphery and drive movement. Spinal motoneurons are one of the few 

direct outputs from the central nervous system and are seen as the final common pathway for control 

of bodily movements. Studying the spinal cord is an opportunity to understand the direct motor output 

of the central nervous system and the complex circuits that govern movement and sensation.  
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Anatomy of the Spinal Cord 

The anatomically contiguous spinal cord can be divided into four functionally distinct regions: 

cervical, thoracic, lumbar, and sacral (Figure 1). The cervical and lumbar enlargements contain many 

of the motor pools that innervate the limbs, with the cervical cord controlling the forelimbs/arms and 

the lumbar cord controlling the hindlimbs/legs. The thoracic cord controls the trunk and many 

autonomic functions such as breathing and temperature regulation. The sacral spinal cord controls 

sexual function and bladder control. These regions all function in tandem with the brain to facilitate 

behavior and function. 

Figure 1.1: Anatomy of the spinal cord. Diagram of the central nervous system: the brain and

spinal cord (cervical, thoracic, lumbar and sacral). Transverse view of the lumbar spinal cord

showing white and grey matter as well as the Rexed lamiae (I-X). Dorsal-Ventral axes are shown. 

The spinal cord is comprised of grey and white matter, with white matter surrounding the butterfly-

shaped grey matter (Figure 1). Grey matter contains the majority of neuronal cell bodies, while the 

white matter is colored by the abundance of myelinated axons of ascending and descending tracts. 

These tracts in the white matter of the spinal cord create a highway of information that extends 
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rostral and caudally, interconnecting the many regions of the spinal cord and connecting the spinal 

cord with supraspinal regions. These axons connect distinct neuronal populations with diverse 

functions. 

In spinal cord grey matter, where neuronal cell bodies are found, cell body location and proposed 

function are closely related. The Rexed laminae (Figure 1) were developed in the 1950s and used to 

identify ten layers of the spinal cord grey matter (I-X; Rexed 1952). Neurons within each lamina and 

region often share several properties. Largely, dorsal neurons are involved in sensory functions and 

ventral neurons are involved in motor functions. Within each of the ten Rexed lamiae there are 

specific functions for spinal cord neurons. Lamina I neurons receive pain and temperature 

information. Lamina II neurons respond to high intensity nociceptive stimuli and brush stimuli (Light 

and Willcockson, 1999). Lamina III and IV contain neurons that respond to light mechanical stimuli 

(Abraira and Ginty, 2013) and proprioception, as well as many neurons that project to various 

supraspinal regions (Bennett et al., 1983; Kayalioglu et al., 1999; Rivero-Melian and Grant, 1990; 

Todd et al., 2000; Watson, 2009).  

Lamina V and VI contain premotor interneurons and ascending projection neurons including 

propriospinal neurons. Lamina VII contains premotor interneurons and ascending projection neurons. 

Lamina VIII neurons are largely commissural, projecting to the contralateral ventral horn and linking 

the left and right halves of the cord (Harrison et al., 1986; Matsushita, 1970; Nissen et al., 2005; 

Scheibel and Scheibel, 1969; Stokke et al., 2002). Both lamina VII and VIII contain long-distance 

propriospinal neurons connecting cervical and lumbar levels (Watson, 2009). Lamina IX contains 

large alpha motoneurons that innervate extrafusal muscle fibers within skeletal muscle and smaller 

gamma motoneurons that innervate intrafusal muscle fibers within muscle spindles. Lamina X around 

the central canal contains neurons that integrate nociceptive and visceral somatosensation. While 
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each lamina contains a multitude of cells, the location of a neuron in the spinal cord is a core 

organizing principle for its function. 

In the white matter of the spinal cord, longitudinal axon tracts related to specific functions convey 

information along ascending and descending pathways. These axon tracts are present throughout 

the white matter but can be categorized by their location in the dorsal, ventral, or lateral columns. 

While some axons in the white matter are propriospinal, connecting short and long-range segments 

of the spinal cord (Laliberte et al., 2019; Pocratsky et al., 2020), the long-range projections to and 

from supraspinal regions to the spinal cord will be discussed. 

Ascending tracts transmit a diverse array of sensory information, including from pain, temperature, 

touch, and proprioception. These include spinocerebellar (Bosco and Poppele, 2000), spinothalamic 

(Martin et al., 1990), spinohypothalamic (Cliffer et al., 1991), and spinoparabrachial tracts (Barik et 

al., 2021; Choi et al., 2020; Sheahan et al., 2020; Todd, 2010) as well as the postsynaptic dorsal 

column pathway (Paixao et al., 2019). The ascending tracts vary widely in their projections and 

functions. For example, spinoparabrachial tracts convey affective touch and pain signals (Barik et al., 

2021; Choi et al., 2020; Sheahan et al., 2020) while the post synaptic dorsal column pathway 

conveys cutaneous mechanical and/or noxious visceral information (Ekerot et al., 1991; Paixao et al., 

2019). Both of these pathways convey information regarding touch, but highlight the diversity of 

ascending sensory information. 

Other ascending pathways are involved in coordination and motor control. One example is the 

spinovestibular tract, which originates from upper segments of the spinal cord (cervical segments 1-

4), and plays a role in neck reflexes and posture (Matsushita et al., 1995; Watson, 2009; Xiong and 
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Matsushita, 2001). Another example are the spinocerebellar tracts, which relay sensory information 

from muscles and tendons to the cerebellum to provide feedback between peripheral sensory 

systems and central circuits, enabling coordinated behavior (Figure 1) (Aoyama et al., 1988; Chalif et 

al., 2022; Edgley and Jankowska, 1988; Jankowska and Hammar, 2013). There are two main 

spinocerebellar tracts, including the dorsal and ventral spinocerebellar tracts (Cooper and 

Sherrington, 1940; Watson, 2009). Among dorsal spinocerebellar neurons, Clarke’s column neurons 

are located throughout the thoracic spinal cord and through rostral segments of the lumbar spinal 

cord (until L2/L3) (Baek et al., 2019; Matsushita and Ikeda, 1980). Ventral spinocerebellar neurons 

project to the cerebellum, but also form local circuits with spinal motoneurons and spinal 

interneurons (Chalif et al., 2022). Silencing of these ventral spinocerebellar neurons perturbs 

locomotor ability in freely moving adult mice (Chalif et al., 2022). Not only are these ascending 

neurons involved in relaying positional information to the cerebellum, but are essential for 

coordinated locomotion. 

Many descending tracts also have diverse functions and primarily direct movement. The best known 

descending tract is the corticospinal tract, which has a large bundle of axons in the dorsal funiculus 

(Figure 1.2) (Brown, 1971). The corticospinal tract also has a lateral and ventral component (Figure 

1.2). A similar tract, the rubrospinal tract, is found in the dorsal-lateral white matter (Basile et al., 

2021). Both the corticospinal and rubrospinal tract enable the initiation and execution of movements 

(Jankowska, 1988; Olivares-Moreno et al., 2021), including locomotion (Courtine et al., 2005; Morris 

and Whishaw, 2016) and skilled movements like reaching (Whishaw et al., 1993). While the 

rubrospinal tract is considered vestigial in humans, it plays a role in other mammals including mice 

and rats (Olivares-Moreno et al., 2021). Furthermore, the corticospinal and rubrospinal tract can 

compensate when there is damage to one of the tracts (Ishida et al., 2019). Given their roles in 
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movement and compensatory roles, they have been of particular interest in the case of spinal cord 

injury. The importance of these descending tracts is highlighted after an injury, when this descending 

input can be disrupted and leading to an inability to voluntarily initiate movement. 

Figure 1.2: Selected Ascending and Descending Tracts in the Spinal Cord. A. Two

selected ascending tracts: the dorsal and ventral spinocerebellar tracts (SCT) in light green 

(dorsal) and dark green (ventral). B. Four selected descending tracts: rubrospinal tract (RST)

in purple, dorsal corticospinal tract (dorsal CST) in red, lateral corticospinal tract (lateral CST) 

in dark red, and ventral corticospinal tract (ventral CST) in orange-red. Motorneurons (MN) in 

lamina IX with their axons projecting towards muscles in the periphery are shown in black.

The Spinal Cord in Human Health 

The spinal cord is an intricate ecosystem of neurons and supporting cells working together to enable 

movement and sensation. However, injury, disease, and neurodegeneration can compromise these 

functions. Given the complex anatomy of the spinal cord and vast array of specialized cells, each 
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type of assault on the system has a different outcome depending on the region and cells that are 

affected.  

Injury to the spinal cord can disrupt communication with supraspinal areas and lead to paralysis. The 

spinal cord has a limited capability for recovery after injury, which can be seen with the limited 

spontaneous recovery seen in patients with spinal cord injury (Anderson, 2004; Gupta et al., 2010; 

McDonald and Sadowsky, 2002). While the sensory neurons of the peripheral nervous system can 

regenerate, there is limited recovery after spinal cord injury especially at long-term chronic timepoints 

(Anderson, 2004). The prognosis and potential for recovery largely depends on the extent of the 

injury. Most spinal cord injuries are a contusion or bruising of the spinal cord, resulting in the 

disconnection of certain ascending and descending tracts. While an anatomically incomplete injury 

may leave axons of passage intact, some patients may still experience complete paralysis. A 

principal motivation in studying the spinal cord is to better understand spinal cord biology and to 

enable the recovery of movement after injury. 

Disease and neurodegeneration can have major effects on spinal cord function. In particular, there 

are certain cell types in the spinal cord that are selectively vulnerable to neurodegeneration. In 

hereditary spastic paraplegia, corticospinal, sensory and spinocerebellar neurons show degeneration 

(Blackstone, 2018; Bruyn et al., 1994; Schwarz and Liu, 1956). While in amyotrophic lateral sclerosis 

(ALS), it is motoneurons that primarily degenerate (Allodi et al., 2021; Averback and Crocker, 1982; 

Kawamura et al., 1981; Ravits et al., 2013; Romer et al., 2017; Salamatina et al., 2020; Stephens et 

al., 2006; Williams et al., 1990). Particular mutations, both sporadic and familial, can cause ALS 

(Shaw, 2005). The first identified ALS-related gene was the free radical scavenging enzyme 

superoxide dismutase 1 (SOD1), which when mutated results in a toxic gain of function (Rosen et al., 
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1993; Berdyński, 2022). Other genes have also been implicated in ALS, including neurofilament 

genes (neurofilament heavy, NF-H and neurofilament light, NF-L) as well as peripherin (PRPH) 

(Shaw, 2005). It remains unclear as to why motoneurons are selectively vulnerable to mutations in 

these genes. The cellular features or functional properties of motoneurons may make them 

selectively vulnerable. By studying the properties of cell types within the spinal cord, including 

motoneurons, we may be able to better understand what leads to neurodegeneration and how to 

prevent it.  

Approaches to Studying the Spinal Cord 

Cells within the spinal cord give rise to its many functions. There are many approaches to 

categorizing cells in the spinal cord and examining their roles. The cells within the spinal cord can be 

categorized by their properties, including broad function, location, neurotransmitter status, 

morphology, connectivity, and embryonic lineage. In terms of broad function, neurons can be 

characterized as sensory neurons, motoneurons, and the most prevalent which are interneurons that 

collectively shape the response of the system. The cells of the spinal cord can be categorized by 

their location, whether dorsal/ventral, medial/lateral, or within a Rexed lamina. The cells within the 

spinal cord can also be categorized by their neurotransmitter status, including excitatory, inhibitory, 

and cholinergic. Because there are so many dimensions to cells within the spinal cord, there is no 

singular way to characterize them. Instead, by looking at a cell’s gene expression profile we can 

characterize the molecular underpinnings that endow a cell with its many functions.  
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Figure 1.3: In tissue examination of spinal cord cell types by their protein and RNA 

expression or connectivity. Image of cell types in the mouse lumbar spinal cord, including

classic protein markers (immunostaining), refined RNA markers (in situ hybridization, 

RNAscope), and connectivity based tracing (dextran labeling of ascending neurons). 

Single Cell Profiling 

To study the gene expression within cells of the spinal cord, many approaches have been used 

including bulk RNA sequencing. A bulk RNA sequencing approach can determine tissue-wide 

changes in gene expression but often miss cell-type specific changes in gene expression, especially 

in rare populations. In the last ten years, the ability to sequence the RNA or DNA from a single cell 

has highlighted the vast diversity of cells within the spinal cord. 

Single cell sequencing has emerged as a powerful tool to profile cells, particularly from 

heterogeneous tissues like the central nervous system. Early single cell sequencing studies on a 

small number of cells (Grindberg et al., 2013; Tang et al., 2009) led the way for massively parallel 
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single cell sequencing (Jaitin et al., 2014; Macosko et al., 2015; Tasic et al., 2016; Zeisel et al., 

2018). This approach led to a fundamental change in our ability to view cells as the culmination of 

their whole molecular repertoire (Tanay and Regev, 2017). Instead of labeling cells with the 

expression of a single gene, we can now consider the many features that give rise to a cell’s 

functions and properties.  

 

Examining the Contribution of Diverse Cell Types to Spinal Cord Function 

Single cell sequencing has highlighted the molecular programs that contribute to cell function and 

organization in the spinal cord. However, the vast diversity of neurons raises the question of why so 

many types of neurons are necessary. Why are these cell types different? How does the diversity of 

neurons lead to the diversity of functions for the spinal cord? How does their diversity relate to 

function? How do they respond in the case of disease or injury? This thesis will attempt to answer 

these questions and more, while examining spinal cord biology at a single cell level. 

 

Summary of Thesis 

After this introductory Chapter 1, Chapter 2 describes an optimized isolation of nuclei from the adult 

mouse spinal cord for downstream massively parallel single nucleus RNA sequencing. This work 

was published in JoVE (2018) and has been viewed nearly 14,000 times and cited 30 times. Beyond 

optimization of a protocol, this method enabled my subsequent work served as a resource for many 

others in the field.  

 

Chapter 3 of this thesis describes an atlas of the adult human spinal cord, profiling all cells including 

the neurons, glia and support cells in the spinal cord. This serves as a guidepost for studying a wide 

range of cell types involved in human spinal cord health and disease. We characterized the 
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taxonomic relationships of cell types to one another and validated key expression profiles using 

spatial transcriptomics. We compared the human spinal cord cell types to those of mice, many of 

which have known behavioral contributions and circuit information allowing us to extrapolate to 

potential function for human cell types. We found that dorsal-ventral location is a core conserved 

organizing principal of spinal cord neurons. We also found that in the human spinal cord, 

motoneurons are enriched in genes related to Amyotrophic lateral sclerosis (ALS). Notably, these 

genes may be related to the function and maintenance of large cell size. This observation provides a 

link between motoneuron gene expression and function, and may explain the selective vulnerability 

of motoneurons in neurodegenerative diseases like ALS. By capturing the endogenous gene 

expression profile of all cells in the human spinal cord, we were able to identify coherent signatures 

underlying cellular functions of the human spinal cord.    

In Chapter 4 of this thesis, I examine how cell types in the spinal cord respond after injury. 

Specifically, how does the tissue below the injury respond and what latent mechanisms of plasticity 

may be present? I found a rare population of neurons expressing regeneration-associated genes and 

identified these molecularly. A substantial fraction of these neurons were spinocerebellar. An 

examination of spinocerebellar neurons after injury found that they exhibit structural plasticity, which 

is the first example of anatomical plasticity in ascending neurons after injury. Through this work I 

contributed to three additional studies (Kathe C et al., 2022; Skinnider et al., 2021; Squair et al., 

2021a), which have progressed the analysis of single cell data and highlighted cells that are critical 

to recovery after spinal cord injury.  

In the Perspective Chapter of this thesis I explore the eruption of single cell sequencing as a 

powerful tool, as well as its limitations and future advancements that will help better utilize this data. 
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My work has established single nucleus profiling as a robust technique to study the spinal cord, both 

in human and mouse. Ultimately, this approach enables the identification of the molecular repertoire 

that gives rise to functional properties. With this, we have found cell type specific intrinsic potential 

for degeneration and regeneration in the spinal cord.  
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Chapter 2 

Isolation of Adult Spinal Cord Nuclei for Massively Parallel Single-

Nucleus RNA Sequencing

This chapter contains a protocol for isolating nuclei from the adult mouse spinal cord, for downstream 

massively parallel single nucleus RNA sequencing. This manuscript was published in JoVE (2018), 

doi: 10.3791/58413. 
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Abstract

Probing an individual cell's gene expression enables the identification of cell type and cell state. 

Single-cell RNA sequencing has emerged as a powerful tool for studying transcriptional profiles of 

cells, particularly in heterogeneous tissues such as the central nervous system. However, 

dissociation methods required for single cell sequencing can lead to experimental changes in the 

gene expression and cell death. Furthermore, these methods are generally restricted to fresh tissue, 

thus limiting studies on archival and bio-bank material. Single nucleus RNA sequencing (snRNA-

Seq) is an appealing alternative for transcriptional studies, given that it accurately identifies cell 

types, permits the study of tissue that is frozen or difficult to dissociate, and reduces dissociation-

induced transcription. Here, we present a high-throughput protocol for rapid isolation of nuclei for 
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downstream snRNA-Seq. This method enables isolation of nuclei from fresh or frozen spinal cord 

samples and can be combined with two massively parallel droplet encapsulation platforms. 

Introduction 

The nervous system is comprised of heterogenous groups of cells that display a diverse array of 

morphological, biochemical, and electrophysiological properties. While the bulk RNA sequencing has 

been useful for determining tissue-wide changes in the gene expression under different conditions, it 

precludes the detection of transcriptional changes at the single-cell level. Recent advances in the 

single-cell transcriptional analysis have enabled the classification of heterogenous cells into 

functional groups based on their molecular repertoire and can even be leveraged to detect sets of 

neurons that had been recently active (Hrvatin et al., 2018; Hu et al., 2017; Sathyamurthy et al., 

2018; Wu et al., 2017). Over the last ten years, the development of single cell RNA sequencing 

(scRNA-Seq) has enabled the study of gene expression in individual cells, providing a view into cell-

type diversity (Tang et al., 2009). 

The emergence of scalable approaches such as massively parallel scRNA-Seq, has provided 

platforms to sequence heterogeneous tissues, including many regions of the central nervous system 

(Campbell et al., 2017; Chen et al., 2017; Jaitin et al., 2014; Li et al., 2016; Macosko et al., 2015; 

Shin et al., 2015; Tasic et al., 2016; Usoskin et al., 2015; Villani et al., 2017; Zeisel et al., 2018). 

However, single cell dissociation methods can lead to the cell death as well as experimental changes 

in gene expression (Lacar et al., 2016). Recent work has adapted single cell sequencing methods to 

enable preservation of endogenous transcriptional profiles (Grindberg et al., 2013; Hrvatin et al., 

2018; Krishnaswami et al., 2016; Lake et al., 2016; Sathyamurthy et al., 2018; Wu et al., 

2017). These strategies have been particularly suitable for detecting immediate early gene (IEG) 
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expression following sensory stimulus or behavior (Sathyamurthy et al., 2018; Wu et al., 2017). In the 

future, this strategy could also be used to study dynamic changes in tissues in disease states or in 

response to stress. Of these methods, single nucleus RNA sequencing (snRNA-Seq) is a promising 

approach that does not involve stress-inducing cell dissociation and can be used on difficult to 

dissociate tissue (such as the spinal cord), as well as frozen tissue (Grindberg et al., 2013; 

Krishnaswami et al., 2016; Lake et al., 2016; Sathyamurthy et al., 2018). Adapted from previous 

nuclei isolation methods (Bergmann and Jovinge, 2012; Halder et al., 2016; Matevossian and 

Akbarian, 2008; Nohara et al., 2017), snRNA-Seq typically utilizes rapid tissue disruption and cell 

lysis under cold conditions, centrifugation, and separation of nuclei from cellular debris 

(Sathyamurthy et al., 2018). Nuclei can be isolated for the downstream next-generation sequencing 

on multiple microfluidic droplet encapsulation platforms (Habib et al., 2017; Macosko et al., 2015; 

Sathyamurthy et al., 2018). This method allows for a snapshot of the transcriptional activity of 

thousands of cells at a moment in time. 

There are multiple strategies for releasing nuclei from cells before isolation and sequencing, each 

with their own advantages and disadvantages. Here, we describe and compare two protocols to 

enable isolation of nuclei from the adult spinal cord for the downstream massively parallel snRNA-

Seq: detergent-mechanical lysis and hypotonic-mechanical lysis. Detergent-mechanical lysis 

provides complete tissue disruption and a higher final yield of nuclei. Hypotonic mechanical-lysis 

includes a controllable degree of tissue disruption, providing an opportunity for selecting a balance 

between the quantity and purity of the final nuclear yield. These approaches provide comparable 

RNA yield, detected numbers of genes per nucleus, and cell-type profiling and also can both be used 

successfully for snRNA-Seq. 
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Results 

Here, we performed isolation of nuclei from the adult mouse lumbar spinal cord for downstream 

massively parallel RNA sequencing. The protocol involved three main components: tissue disruption 

and cellular lysis, homogenization, and sucrose density centrifugation (Figure 1). Within seconds, the 

detergent-mechanical lysis yielded a crude nuclei preparation with a large number of nuclei as well 

as cellular and tissue debris (Figure 2A, Table 2). After fifteen minutes, the hypotonic-mechanical 

lysis yielded a crude nuclei preparation that had less debris, but also fewer nuclei (Figure 2B, Table 

2). Both preparations underwent homogenization (Figure 2C and D) and sucrose density gradient 

centrifugation before resuspension in phosphate buffered saline (PBS) with 0.04% BSA (Figure 2E 

and F). On an average, a mouse lumbar spinal cord (325.5 mg ± 63.9 mg standard error of the 

mean, SEM, N = 4) yielded 5.1 x 105 nuclei (± 6.3 x 104 SEM, N = 3) following the detergent-

mechanical lysis and 2.0 x 105 nuclei  (± 5.9 x 104 SEM, N = 3) following the hypotonic-mechanical 

lysis. The number of nuclei in the lumbar spinal cord was estimated from the initial crude preparation 

after Dounce homogenization in the detergent-mechanical lysis protocol (2.6 x 106 nuclei ± 4.0 x 105 

SEM, N = 3, Table 2). The final sample from the detergent-mechanical lysis protocol consists of 20% 

of the initial nuclei (± 2% SEM, N = 3, Table 2). The crude nuclei preparation from the hypotonic-

mechanical lysis following trituration contains 62% of the initial nuclei (± 2% SEM, N = 3, Table 2). 

The final hypotonic-mechanical lysis sample contains only 8% of initial nuclei (± 1% SEM, N = 3, 

Table 2). We did not detect any difference in the total RNA yield or the cDNA yield for a 

housekeeping gene (Gapdh) between the two preparation methods. Using qPCR, the detergent 

method yielded 463.7 ng (± 98.9 SEM, N= 6) of total RNA and an average detection threshold cycle 

of 25.2 (± 1.3 SEM) for Gapdh cDNA by qPCR and the hypotonic method yielded 419.2 ng (± 85.3 

SEM, N = 6) of total RNA and an average detection threshold cycle of 26.1 for Gapdh cDNA (± 0.8 
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SEM). The two lysis options both isolate nuclei from difficult-to-dissociate tissues and provide the 

high-quality material for the downstream single-nucleus RNA sequencing.  

Figure 2.1: Schematic of nuclear isolation. Nuclei from the adult spinal cord can be isolated using

detergent-mechanical or hypotonic- mechanical cell lysis, followed by homogenization, and sucrose 

density gradient centrifugation.  

Given the size of microfluidic channels for downstream massively parallel single nucleus sequencing 

platforms, it is critical to input a nuclei suspension free of large particles or cellular debris to prevent 

clogging. Following the protocol presented here, there were no instances of clogging on the platform 

adapted from Macosko et al. 2015 (N = 17) and one partial clog on the commercial platform (N = 16). 
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Figure 2.2: Representative brightfield and DAPI-stained nuclei at key steps in the protocol. 

(A,B) Crude nuclei following detergent- mechanical or hypotonic-mechanical lysis. (C,D) Nuclei

following homogenization. (E,F) Nuclei resuspended in PBS with 0.04% BSA following sucrose

density centrifugation. Nuclei were fixed with 2% paraformaldehyde and subsequently stained using 

Trypan Blue or DAPI. Images were taken at 10X (Scale bar = 100 μm) using brightfield and epi-

fluorescence. 
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The detergent-mechanical and hypotonic-mechanical procedures were used to isolate nuclei 

successfully for two massively parallel droplet encapsulation platforms and representative results are 

shown in Figure 3. Both of these approaches enabled transcriptional profiling of thousands of nuclei, 

and classification of cell types in the adult mouse lumbar spinal cord (Figure 3). These approaches 

resulted in comparable genes per nucleus for each cell type (Figure 3C and D). The rates of recovery 

of input nuclei between the two platforms differ. The platform adapted from Macosko et al. 2015 with 

modifications from Sathyamurthy et al. 2018 recovered an estimated 0.59% of nuclei (± 0.05% SEM, 

N = 17), while the commercial platform recovered an estimated 53.7% nuclei (N = 2).  
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Figure 2.3: Representative tSNE plot of sequenced nuclei: using detergent-mechanical and 

hypotonic-mechanical lysis. (A) Results obtained from sequencing over 17,000 nuclei from the

dissected adult mouse lumbar spinal cord following detergent-mechanical lysis and according to 

Macosko et al. 2015 with modifications from Sathyamurthy et al. 2018. This figure has been modified 

with permission from Sathyamurthy et al. 2018. (B) Results obtained from sequencing 5,000 nuclei

from the ejected adult lumbar spinal cord following hypotonic- mechanical lysis and a commercial 

microfluidic single cell encapsulation platform (Genomics, 2018). (C,D) Average genes per nucleus

results following clustering of major cell types in the adult mouse spinal cord ± SEM. Of note, the 

detergent-mechanical lysis procedure followed by the Macosko et al. 2015 platform was performed 

using dissected lumbar spinal cord, while the hypotonic-mechanical lysis followed by the commercial 

platform was performed using ejected lumbar spinal cord (as described in this protocol). Given that 

ejecting the cord removes the dura and dorsal root ganglia, the meningeal/Schwann cell cluster is 

absent from Figure 3B and D.

This protocol slightly enriches for neuronal nuclei in the final preparation. In lumbar spinal cord tissue 

sections, we found that 27% of nuclei were positive for the neuronal marker NeuN (N = 7,368 nuclei 

from 2 animals), while detergent-mechanical nuclei preparation of the lumbar spinal cord resulted in 

31.9% of total nuclei expressing NeuN, as determined by fluorescence-activated cell sorting (FACS, 

± 2.0% SEM, N = 13 independent nuclei preparations using pooled samples from multiple animals in 

each preparation, Figure 4). This is similar to what has been observed previously for the percent of 

NeuN-positive nuclei in the entire spinal cord (20% to 24% depending on age), including the cervical 

and thoracic regions that have more white matter and oligodendrocytes (Fu et al., 2013). Of note, 

NeuN/Rbfox3 is not expressed in all neurons and, accordingly, these numbers are likely modest 
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underestimates. It is possible that smaller non-neuronal cells are slightly depleted during the sucrose 

gradient purification. In addition, downstream filtering and analysis parameters following sequencing 

may alter the final cell-type distribution because neurons have more genes per nucleus (Figure 3C 

and D) and, therefore, are less likely to be removed during the filtering process.  

Figure 2.4: FACS plot of NeuN+ nuclei following detergent-mechanical lysis. FACS plot

showing fixed nuclei stained for NeuN (average 31.9% of total nuclei ± 2.0% SEM, N = 13), isolated 

using the detergent-mechanical lysis protocol. For the immediate fixation, nuclei for FACS validation, 

a crude nuclei preparation was obtained by dounce homogenization of spinal cords using the 

detergent-mechanical preparation, followed by immediate fixation with 1% PFA with a 5 min 

incubation period. Fixation was quenched with 250 mM glycine, and nuclei were collected. Staining 

with anti-NeuN antibody was performed in solution. FACS was performed on fixed, NeuN stained 

nuclei using a cell sorter.  
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There are several key steps in this protocol that require care. First, excessive douncing or trituration 

(in steps 3 or 4, respectively) can lead to an increase in cellular debris and particle formation. 

Although filtration and sucrose density centrifugation can separate large particles, once small 

particles are generated during cellular lysis, they are difficult to remove. Secondly, during 

homogenization, do not place the homogenizer directly onto the bottom of the Oak Ridge tube. 

Instead, submerge the end of the homogenizer into the low sucrose solution containing resuspended 

nuclei, without touching the bottom of the tube. Homogenization improves nuclear isolation by 

removing cellular debris and reducing clumps and multiplets (Figure 5). Following sucrose density 

centrifugation, it is critical to immediately remove the Oak Ridge tube from the centrifuge, and quickly 

decant the supernatant in a rapid 'flicking' motion. When resuspending nuclei from the wall of the 

Oak Ridge tube, resuspend the 'salty' pellet from halfway between the myelin band and the bottom of 

the tube. Note that the pellet may not be visible. Resuspending nuclei higher along the tube may 

result in myelin contamination in the nuclei preparation. The cellular lysis and sucrose density 

centrifugation steps are the most critical to reducing particulates that may clog microfluidic channels 

for downstream application.  
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Figure 2.5: Nuclei preparation without homogenization. Nuclei were resuspended prior to

sucrose density centrifugation following A detergent- mechanical or B hypotonic-mechanical lysis, 

without homogenization. * Denotes cellular debris attached to nuclei (A) and a multiplet of nuclei

attached by cellular debris (B). Nuclei resuspended in PBS with 0.04% BSA following sucrose

density centrifugation. Nuclei were fixed with 2% paraformaldehyde and subsequently stained using 

Trypan Blue or DAPI. Images were taken at 10X (scale bar 100 μm) using brightfield and epi- 

fluorescence.  

Discussion 

The ultimate goal of this protocol is to isolate nuclei containing high-quality RNA for downstream 

transcriptional analysis. We adapted snRNA-Seq methods in order to profile all of the cell types in 

the spinal cord. Initially, we found that typical cell dissociation methods were ineffective for single cell 
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RNA sequencing, as spinal cord neurons are particularly vulnerable to cell death. Furthermore, cell 

dissociation methods induce expression of various activity- and stress-response genes by up to 

several hundred-fold (Lacar et al., 2016; Sathyamurthy et al., 2018; Wu et al., 2017). Given the 

drawbacks associated with single cell preparations, we and others have used nuclei as an alternative 

(Grindberg et al., 2013; Habib et al., 2017; Lacar et al., 2016; Lake et al., 2016). This method can 

also be used on human tissue, including frozen spinal cord tissue (Habib et al., 2017; Krishnaswami 

et al., 2016; Sathyamurthy et al., 2018). Here, we will describe the strengths and limitations of this 

approach. 

Strengths of this method include the avoidance of experimentally-induced IEGs as well as the ability 

to use both fresh and frozen tissue (Sathyamurthy et al., 2018). Thus, this approach can be useful for 

probing endogenous IEGs following a behavior or stimulus (Hrvatin et al., 2018; Sathyamurthy et al., 

2018; Wu et al., 2017). One of the benefits of this method is that it does not require specialized 

devices for utilization of nuclei for massively parallel single nucleus sequencing, but can use the 

platform developed by Macosko et al. 2015, with minor adjustments of lysis buffer and flow rate, or 

use commercially available systems. Moreover, single nucleus sequencing is proven to be a 

comparable method to that of single cell sequencing for the identification of cell types, lending to the 

strength of this approach (Bakken et al., 2018; Lake et al., 2017). However, there are several 

important limitations of this approach. Nuclei contain approximately 20-50% of cellular mRNA 

(Bakken et al., 2018), and this is reflected in a lower number of transcripts per nucleus compared to 

single cell sequencing (Bakken et al., 2018; Grindberg et al., 2013). Including intronic reads from 

snRNA-Seq is one approach to increase the number of detected genes. 
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There are several available protocols that enable isolation of nuclei from tissue (Grindberg et al., 

2013; Habib et al., 2017; Habib et al., 2016; Hu et al., 2017; Lacar et al., 2016; Lake et al., 2016). In 

comparison with most other methods, the protocols presented here do not require myelin removal, 

ultracentrifugation, or many centrifugation steps or washes that can lead to lower final numbers of 

nuclei. Furthermore, this protocol takes 45 min (detergent-mechanical) or 1 hour (hypotonic-

mechanical) to complete. Commercial protocols supported on microfluidic platforms are more than 

double the time, and require many more centrifugation steps, increasing the risk of losing nuclei. In 

contrast with nuclei isolation protocols that involve only lysis and filtering, the methods presented 

here include a sucrose gradient to increase the purity of the final nuclei. This step is required for 

adult spinal cord tissue due to the large percentage of white matter and the resulting myelin debris. 

The detergent-mechanical lysis protocol can be used for the complete tissue dissociation and lysis, 

and the hypotonic-mechanical lysis protocol can be used to control the amount of tissue dissociation 

and cellular debris allowed in the downstream application. These protocols can be used for bio-bank 

material, difficult to dissociate tissues and for the investigation of activity-dependent transcriptional 

changes through the isolation of nuclei for downstream massively parallel snRNA-Seq. In addition to 

massively parallel single nucleus RNA sequencing, this protocol may be used to isolate nuclei for 

alternative applications, including immunofluorescence and FACS and epigenetic analysis such as 

DNA methylation studies and ChIP-Seq (Figure 4) (Halder et al., 2016).

Methods 

All animal work was performed in accordance with a protocol approved by the National Institute of 

Neurological Disorders and Stroke Animal Care and Use Committee. Balanced samples of male and 
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female ICR/CD-1 wild-type mice, between 8 and 12 weeks old, were used for all experiments. Mice 

should be handled in accordance with local Institutional Animal Care and Use Committee guidelines. 

1. Preparation of Materials and Buffers

1. Prepare all buffers the day of use and pre-chill on ice (see Table 1).

1. If using detergent-mechanical lysis, prepare the detergent lysis buffer (> 500 μL per

sample), low sucrose buffer (> 6 mL per sample),

sucrose density buffer (> 12.5 mL per sample), and the resuspension solution (> 1 mL). 

2. If using hypotonic-mechanical lysis, prepare the hypotonic lysis buffer (> 5 mL per

sample), HEB medium (> 5 mL per sample), low

sucrose buffer (> 3 mL per sample), sucrose density buffer (>12.5 mL per sample), and the 

resuspension solution (> 1 mL).  

3. Add 25 μL of dithiothreitol (DTT) to 25 mL of the low sucrose buffer and another 25 μL

of DTT to 25 mL of the sucrose density gradient

buffer just before starting the protocol. 

2. Cover the dissecting surface with aluminum-foil to minimize contamination of the sample with

fibers from paper towels or bench protectors, which can clog microfluidic channels used for

capturing single nuclei.

3. Spray dissecting tools and bench space with an RNase decontamination solution.

Additionally, spray the inside of the Dounce homogenizer tube (if using detergent-mechanical

cell lysis) and Oak Ridge tube with an RNase decontamination solution. Rinse out the

Dounce and Oak Ridge tube with ultrapure, RNase-free water.

4. Pre-chill all collection tubes (50 mL conical, Oak Ridge) and Dounce homogenizer tubes on

ice.

5. Fire polish a series of Pasteur pipettes (if using hypotonic-mechanical cell lysis).
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2. Preparation of the Spinal Cord  

1. If using fresh tissue, euthanize the mouse by CO2 inhalation. Following euthanasia, spray the 

coat of the mouse with 70% ethanol to minimize hair contamination in the sample.  

2. Decapitate the mouse with sharp, RNase-free surgical scissors. Next, gently lifting the 

abdominal skin with forceps and make an incision along the length of the body to expose the 

inner organs.  

3. Eviscerate the mouse by pulling the inner organs from the body cavity using forceps. Do not 

use paper towels to clean the area or to remove organs as this may introduce contaminants. 

Using scissors, cut the vertebral column between the L2 and L3 spinal vertebrae. 

NOTE: With practice, this step can be achieved in less than 30 seconds.  

1. To eject the spinal cord, fit a 3 mL syringe containing ice-cold PBS with a 25 G 1⁄4 

inch needle. Place the tip of the needle into the sacral end of the vertebral column. 

Use two fingers to pinch the vertebrae to create a tight seal around the tip of the 

needle and press down on the plunger to eject the spinal cord rostrally. Place the 

spinal cord in a petri dish with ice-cold PBS.  

2. At this point, freeze the tissue and store at -80 °C or use immediately for either 

detergent-mechanical (Step 3) or hypotonic-mechanical (Step 4) lysis.  

4. If using frozen tissue, maintain the tissue on dry ice, proceed to detergent-mechanical (Step 

3) or hypotonic-mechanical (Step 4) lysis.  

3. Detergent-Mechanical Cell Lysis  

1. Place the lumbar spinal cord in a pre-chilled Dounce homogenizer and add 500 μL pre-chilled 

detergent lysis buffer. 

NOTE: A mouse lumbar spinal cord is 325.5 mg ± 63.9 mg standard error of the mean (SEM, 

N = 4). 50 mg–1.5 g of tissue can be successfully used.  
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2. Dounce with 5 strokes of pestle A (‘loose’ pestle), then 5-10 strokes of pestle B (‘tight’ pestle).

Avoid lifting the homogenizer out of the lysis solution in between strokes and avoid

introducing bubbles.

3. Place a 40 μm strainer over a pre-chilled 50 mL conical tube and prewet with 1 mL of low

sucrose buffer.

4. Add 1 mL of low sucrose buffer to the Dounce homogenizer containing the crude nuclei in the

lysis buffer and mix gently by pipetting 2–3

times. 

5. Pass the crude nuclei prep over the 40 μm strainer into the pre-chilled 50 mL conical tube.

6. Pass an additional 1 mL low sucrose buffer over the 40 μm strainer, bringing the final volume

to 3 mL of the low sucrose buffer and 500 μL of

the lysis buffer. 

7. Repeat steps 3.1–3.6 if combining multiple cords, pooling in the same conical tube.

8. Centrifuge the sample at 3,200 x g for 10 min at 4 °C. Once the centrifugation is complete,

decant the supernatant. Proceed to Step 5.

4. Hypotonic-mechanical Cell Lysis

1. Place the lumbar spinal cord in 5 mL of the hypotonic lysis buffer in a tissue culture dish. Use

the blunt end of spring scissors to bisect the spinal cord, then use spring scissors to cut the

cord into 3–4 mm pieces, but do not mince.

Note: 50 mg–1.5 g of tissue can be successfully used.

2. Incubate on the ice for 15 min, swirling 2–3 times.

3. Add 5 mL of HEB medium to dilute the hypotonic lysis buffer.
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4. Triturate the tissue 10 times with a 5 mL serological pipette, or until all of the pieces of the

tissue move smoothly through the opening of the

pipette. 

5. Triturate with a series of three fire-polished Pasteur pipettes with progressively narrower

diameters (~900–600 μm).

1. For each pipette, triturate 5-15 times, allow tissue to settle, remove 1–2 mL of

supernatant containing dissociated nuclei and pass over

a 40 μm strainer into a pre-chilled 50 mL conical tube. 

2. After trituration with the smallest-sized Pasteur pipette, ensure that the homogenate

flows smoothly through the pipette tip. Pass the

remaining solution over the 40 μm strainer into the 50 mL conical tube. 

NOTE: The total number of triturations can be adjusted as desired. The meninges of the mouse 

spinal cord will remain, but it is important to triturate any visible chunks of spinal cord. Pass the 

remaining homogenate over the 40 μm strainer. Avoid introducing bubbles during trituration.  

6. Centrifuge the filtered sample at 1,000 x g for 10 min at 4 °C. Once the centrifugation is

complete, decant and discard the supernatant. Proceed to Step 5.

5. Homogenization and Sucrose Density Gradient

1. After either Step 3 or 4, resuspend the pellet using 3 mL of low sucrose buffer. Gently swirl to

remove the pellet from the wall to facilitate the resuspension. Let the sample sit on ice for 2

min and transfer the suspension to an Oak Ridge tube.

2. Using the homogenizer at setting 1, homogenize the nuclei in low sucrose buffer for 15–30 s,

keeping the sample on ice. NOTE: Use 15 s if using one lumbar spinal cord or 30 s if using

pooled samples or a whole spinal cord.
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3. Using a serological pipette, layer 12.5 mL of density sucrose buffer underneath the low

sucrose buffer homogenate, taking care not to create a bubble that disrupts the density

layers.

4. Centrifuge the tubes at 3,200 x g for 20 min at 4 °C.

5. Once the centrifugation is complete, immediately decant the supernatant in a flicking motion.

NOTE: A residual volume (less than 400 μL) of sucrose buffer can be discarded if desired to produce 

a lower volume and cleaner final  

sample, but this residual volume does contain nuclei and can be preserved to maximize nuclei yield.  

6. Using 100 μL - 1 mL of resuspension solution, resuspend the nuclei remaining on the wall.

Avoid the myelin ‘frown’ that remains with the

detergent-based preparation. 

7. Filter the nuclei through a 30–35 μm pore-size strainer and collect in a pre-chilled tube.

8. Determine the nuclei yield using a hemocytometer to count nuclei under a 10X objective.

NOTE: Trypan blue can be added to visualize nuclei, which should appear blue. Note the amount of 

cellular debris.  

9. Proceed to either Step 6 or 7.

6. Massively Parallel snRNA-Sequencing: Academic Platform7

1. Perform the massively parallel snRNA sequencing (e.g., Drop-Seq) method as previously

described7 with the following modifications:4 1. Adjust nuclei to a final concentration of 225 nuclei 

per μL. 

2. Prepare barcoded beads at a concentration of 250 beads per μL.

3. Prepare the lysis buffer with 0.7% sarkosyl.

4. Adjust the flow rates to 35 μL per min for beads, 35 μL per min for nuclei, and 200 μL per min for

oil. 
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7. Massively parallel snRNA-sequencing: Commercial Platform  

1. Perform massively parallel snRNA-sequencing using the commercial platform (e.g., Chromium 

Single Cell Gene Expression Solution) products according to the manufacturer’s instructions 

(Genomics, 2018) with the following modification:  

1. Following reverse-transcription, add an additional PCR cycle to the calculated number of cycles for 

cDNA amplification based on the targeted cell recovery to compensate for decreased cDNA from 

nuclei compared to cells.  
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Chapter 3 

 

A Cellular Taxonomy of the Adult Human Spinal Cord 

 

This chapter contains a resource of the first complete atlas of the adult human spinal cord. We 

catalog the diversity of cell types including neurons, glia and support cells and compare these to cells 

in mice. Through this resource, we discovered that ALS-related genes are enriched in human 

motoneurons. We confirmed these findings in tissue, suggesting that the selective vulnerability to 

ALS in motoneurons is due to their transcriptional profile. Archana Yadav and I are co-first authors 

on this manuscript.  
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Abstract:

The mammalian spinal cord functions as a community of glial and neuronal cell types to accomplish 

sensory processing, autonomic control, and movement; conversely, the dysfunction of these cell 

types following spinal cord injury or disease states can lead to chronic pain, paralysis, and death. 

While we have made great strides in understanding spinal cellular diversity in animal models, it is 

crucial to characterize human biology directly to uncover specialized features of basic function and to 

illuminate human pathology. Here, we present a cellular taxonomy of the adult human spinal cord 

using single nucleus RNA-sequencing with spatial transcriptomics and antibody validation. We 

observed 29 glial clusters, including rare cell types such as ependymal cells, and 35 neuronal 

clusters, which we found are organized principally by anatomical location. To demonstrate the 

potential of this resource for understanding human disease, we analyzed the transcriptome of spinal 

motoneurons that are prone to degeneration in amyotrophic lateral sclerosis (ALS) and other 

diseases. We found that, compared with all other spinal neurons, human motoneurons are defined 

by genes related to cell size, cytoskeletal structure, and ALS, thereby supporting a model of a 

specialized motoneuron molecular repertoire that underlies their selective vulnerability to disease. 

We include a publicly available browsable web resource with this work, in the hope that it will 

catalyze future discoveries about human spinal cord biology. 

Introduction: 

The human spinal cord relays, processes, and transforms sensory inputs and descending cues from 

the brain into sensory, motor, respiratory, and autonomic outputs. These critical processes rely on a 

diverse array of spinal cord cell types, each with their own functions, molecular repertoires, and 

vulnerabilities to injury or disease. For example, in hereditary spastic paraplegia, corticospinal, 
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sensory, and spinocerebellar neurons show degeneration (Blackstone, 2018; Bruyn et al., 1994; 

Schwarz and Liu, 1959); in spinal muscular atrophy spinal motoneurons are primarily affected during 

development (Arnold and Fischbeck, 2018); and in amyotrophic lateral sclerosis, corticospinal 

neurons and multiple populations of ventral spinal interneurons die in addition to the signature 

phenotype involving degeneration of spinal motoneurons (Allodi et al., 2021; Averback and Crocker, 

1982; Kawamura et al., 1981; Ravits et al., 2013; Romer et al., 2017; Salamatina et al., 2020; 

Stephens et al., 2006; Williams et al., 1990). These cell types have been extensively studied in 

model organisms, including molecular profiling of all spinal cord cell types at the single-cell level in 

the mouse spinal cord (Haring et al., 2018; Osseward et al., 2021; Rosenberg et al., 2018; Russ et 

al., 2021; Sathyamurthy et al., 2018; Zeisel et al., 2018). However, technical obstacles and limited 

access to high quality tissue specimens have prevented the full application of single cell approaches 

to study human spinal cord biology. Thus, prior work has only been done on limited cell types or in 

human fetal tissue (Rayon et al., 2021; Zhang et al., 2022; Zhang et al., 2021). 

To characterize the cell types of the adult human lumbar spinal cord, we used recently optimized 

tissue extraction methods on spinal cords from organ donor subjects and performed single nucleus 

RNA-sequencing of over 50,000 nuclei. We identified 64 unique clusters including 29 non-neuronal 

populations and 35 neuronal populations and validated many of the predicted expression patterns 

with independent spatial transcriptomics profiling on an independent sample. We established a 

comprehensive taxonomy of the neuronal clusters, compared them with their mouse counterparts, 

and created a publicly available browsable interface as a resource for the field 

(https://vmenon.shinyapps.io/hsc_biorxiv/). Finally, we performed a focused analysis on the 

transcriptional profile of spinal motoneurons, identifying a molecular signature that could underlie 

their selective vulnerability in neurodegenerative disease. 
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Results 

We obtained post-mortem lumbar spinal cord tissue from seven donor transplant cases (Fig. 1a and 

Data File Table S1), using neuroprotective conditions, such as body chilling and perfusion with a high 

magnesium solution, rapid collection, and flash freezing of tissue immediately in the operating room 

(see Methods). Single nuclei were isolated and profiled, resulting in a dataset of 55,420 nuclei that 

passed quality control filtering; with median detection of 2,187 genes detected per nucleus. Initial 

clustering of all nuclei clearly distinguished the major known cell classes present in spinal cord 

tissue, including oligodendrocytes and their precursors and progenitors, meningeal cells, astrocytes, 

endothelial and pericyte cells, microglia, and neurons; the latter included glutamatergic neurons, 

GABAergic/glycinergic neurons, and motoneurons. Comparison of these cell classes to our prior 

work in the mouse spinal cord (Russ et al., 2021) revealed substantial overlap in cellular signatures 

as well as notable differences. For example, oligodendrocytes accounted for a larger proportion of 

the nuclei in the human dataset. This observation is consistent with the larger ratio of white matter to 

gray matter area in human versus mouse spinal cords (Supplemental Fig. S1A) and could reflect the 

relative expansion of long axon tracts linking the brain and spinal cord in humans. To determine 

whether the overall proportions of cells classes that we observed in the sequencing dataset reflected 

in vivo tissue composition, we analyzed the prevalence of oligodendrocytes, astrocytes, microglia, 

and neurons in adult human lumbar spinal cord tissue. We found similar proportions for neurons, 

astrocytes, microglia, and oligodendrocytes (Fig. 1D, p = 0.67, p = 0.33, p = 0.06, p = 0.06) in tissue 

versus dissociated nuclei. Overall, the major cell classes in the sequencing dataset showed clear 

segregation of previously reported markers for these cell types, thus allowing for further investigation 

within each of these broad classes (Fig. 1B, Supplemental Fig. S2-S6), as described below.  
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Fig. 3.1: A single cell catalog of the human spinal cord reveals the gene expression 

signature of human motoneurons. A, Lumbar spinal cord tissue was obtained from seven 

subjects (male and female, ~50-80 years old) and processed for single nucleus RNA 

sequencing. B, UMAP plot showing the major cell types of the human spinal cord, each in 

separate color. Cells of the oligodendrocyte lineage are shown in pink/purple and include 

oligodendrocyte precursor cells (OPC), progenitors (Oligo Progen), six groups of 
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oligodendrocytes (Oligo-1 through Oligo-6), as well as two populations of Schwann cells 

(Schwann-1 and –2). Microglia cells are shown in green and includes a putatively proliferating 

population (Prolif Micro) and six groups of microglia (Micro-1 through Micro-6). Astrocytes are 

shown in turquoise and include three populations (Astro-1 through Astro-3). Meninges are 

shown in blue and include four populations (Men-1 through Men-4). Vascular cells are shown 

in teal and include two groups of endothelial cells (Endo-1 and –2) and pericytes (Peri). 

Ependymal cells are shown in teal. Neurons are shown in orange and include five broad 

classes based on their neurotransmitter status and putative location: motoneurons (MN), 

excitatory dorsal neurons (ExDorsal), inhibitory dorsal neurons (InhDorsal), excitatory mid 

neurons (ExM), excitatory ventral neurons (EV), and inhibitory mid neurons (InhM) and 

inhibitory ventral neurons (InhV). C, Bar plot showing the proportion of a given cluster in each

donor (N=7). Error bars are ± s.e.m. D, Multiplex immunohistochemistry of the lumbar human

spinal cord, stained for NeuN (yellow), IBA1 (green), SOX9 (turquoise), OLIG2 (pink). 

Brightfield (BF) is shown in white. Percent of DAPI+ cells expressing NeuN, OLIG2, IBA1 and 

SOX9 are noted in the bottom right corner of each inset (N = 2). Scale bars are 500 µm. 

Accompanying bar plots are in Supplemental Fig. S7.

Glial and Support Cell Populations of the Adult Human Lumbar Spinal Cord

Clustering of non-neuronal classes identified specific subpopulations that we identified by homology 

with related mouse cell types (Russ et al., 2021) and that we partially validated using spatial 

transcriptomics on post-mortem tissue from an independent donor (Fig. 2). Amongst 

oligodendrocytes and related populations, we observed two populations of Schwann cells that were 

detected at the edges of the spinal tissue in the dorsal root entry zone, a population of 

oligodendrocyte precursor cells and related progenitors, as well as six populations of 
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oligodendrocytes that were distributed over the entire spinal cord tissue with a bias for the white 

matter tissue, as expected (Fig. 2A-C, Supplemental Fig. S6). Amongst microglia, we observed six 

populations, including a putative proliferative type characterized by expression of POLQ, TOP2A, 

and MKI67 (Fig. 2D-F, Fig. 2M, Supplemental Fig. S6). In prior work on adult mouse spinal cord cell 

types, proliferative microglia were not observed in the healthy spinal cord, including in mature adult 

(5-6 month old) animals (Matson et al., 2022; Squair et al., 2021a). We therefore analyzed post-

mortem tissue from three independent organ donor subjects not included in the single nucleus RNA-

sequencing dataset to confirm the existence of this population existed in intact tissue. Indeed, we 

found that 23 percent of microglia in tissue co-expressed the proliferative marker Ki67 (Supplemental 

Fig. 7, 25% of cells were IBA1+, with 5.77% of cells double positive for IBA1 and Ki67). Whether this 

reflects normal human biology, is an aging-induced phenotype, or due to peri-mortem changes 

remains to be determined. Amongst astrocytes, we identified three populations, including one that 

localized to the white matter in the spatial transcriptomics data, and two that were localized to the 

gray matter. These gray matter astrocytes populations (ASTRO-2 and ASTRO-3) were enriched for 

genes involved in neural metabolism and signaling including the GABA transporter SLC6A11, the 

AMPA receptor regulator SHISA9, and the synaptic adhesion protein TENM2 (Fig. 2G-I, Fig. 2M, 

Supplemental Fig. S6). By contrast, the white matter astrocyte population was enriched for CD44, 

CPAMD8 and AQP4. Finally, amongst support cells, we identified two endothelial cell populations, 

one pericyte population, four populations of meningeal cells, a group ependymal cells and a group of 

lymphocytes (Fig. 2J-L). 
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Fig. 3.2: Glial and support cell types in the human spinal cord. Glial cell types including

A-C, Oligodendrocytes, D-F, Microglia G-I, Astrocytes J-L, Endothelial cells, ependymal cells,

pericytes and lymphocytes. For each cell type, a UMAP shows the subtypes, a spatial feature 

plot shows Cell2Location data, and a dendogram depicts the relationships between the 

subtypes. Individual spatial transcriptomic spatial feature Cell2Location plots can be found in 

Supplemental Figure S6. Dendograms were calculated using the top 2,000 highly variable 

genes from each population (Ward’s method). M, Dot plot of markers for glial subtypes

showing average expression and percent expressed. Average expression ranges from low 

(orange) to high (purple).
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Neuronal Atlas of the Adult Human Lumbar Spinal Cord 

To characterize the neuronal populations of the adult human lumbar spinal cord, we sub clustered 

the neuronal nuclei and identified 35 groups. These include a large population of spinal motoneurons 

(described in greater detail below) and 33 glutamatergic (defined by the expression of SLC17A6) or 

GABA/glycinergic populations (defined by expression of GAD1, GAD2, PAX2, and SLC6A5). 

Importantly, each of these populations contained nuclei from each of the seven donors (Fig. 3A, 

Supplemental Fig. S8A). We also observed one neuronal cluster that was defined by expression of 

immediate early response genes (IEG), though it is unclear whether this reflects neuronal 

activity/stress during the patient’s life or post-mortem artifacts. Interestingly, amongst the most 

differentially enriched genes between putative excitatory and inhibitory cell types, we observed a pair 

of calcium channel regulatory subunits (CACNA2D1 and CACNA2D3) and a pair of self-avoidance 

adhesion molecules (DSCAM and DSCAML1), both of which are conserved in mice (Russ et al., 

2021). This latter signature raises the possibility that excitatory-inhibitory network balance may be 

achieved partly through self-avoidance control of synaptic connectivity.  

Given that the function of spinal cord neurons is highly related to their anatomical location, we 

explored the spatial distribution of the 33 excitatory and inhibitory populations. We used a 

combination of comparison to spatial transcriptomics data for key marker genes and comparison with 

data from macaque and mouse to assign putative locations for each population, sorting them into 

general categories of dorsal, mid, and ventral cell types (Fig 3B). We then adopted a nomenclature 

for these cell types that references both their putative location and neurotransmitter status. To reveal 

the overall organization of human lumbar spinal neuronal populations, we analyzed their 

relationships with three different approaches: correlation of their gene expression profiles (Fig 5C), 

proximity in gene expression-derived principal component space (Supplemental Fig. S12), and their 
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separability by silhouette scoring (silhouette coefficient; Fig. 4, Supplemental Fig. S9B) and random-

forest based machine learning classifier (Supplemental Fig. S10). Each of these methods revealed 

the same patterns: (1) location in either the dorsal or mid/ventral domain was the primary factor in 

overall cell type organization, (2) putative dorsal neuron populations were well separated from each 

other into robust, distinct clusters with highly significant differential molecular markers, and (3) mid 

and ventral neuronal clusters were in less clearly distinct with partially overlapping gene expression 

profiles, were closer in principal component space and had lower accuracy in post-hoc classification. 

These findings are similar to trends observed in mouse spinal neurons, establishing dorsal-ventral 

location as the conserved, core organizational axis of spinal neuron variability in both species. 
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Fig. 3.3: Neuronal cell types in the human spinal cord. A, UMAP plot of human spinal

neurons showing 35 refined populations. B, Dendogram showing relationship of neuronal

subtypes, calculated using the top 2,000 highly variable genes (Ward’s method). For each 

cluster, 2-3 top genes are shown. C-I, For each class of spinal cord neuron (Motoneurons,

Dorsal Excitatory, Dorsal Inhibitory, Mid Excitatory, Mid Inhibitory, Ventral Excitatory and 

Ventral Inhibitory) spatial feature plots shows the expression of a marker in tissue and box 

plot shows per-cluster and per-sample expression (Counts per Million) of 3 marker genes. 

Box plots show average expression from each donor (N = 7). Outliers are plotted with a dot. 

D, Dorsal excitatory markers include TAC1, CPNE4, and EBF2. E, Dorsal inhibitory markers

include PDYN, RORB, and CDH3. F, Mid excitatory markers include CDH23, SATB2, and

NFIB. G, Mid inhibitory markers include TFAP2B, PAX8, and SAMD3. H, Ventral excitatory

markers include ZFHX3, LHX9, and VSX2. I, Ventral inhibitory markers include ESRRG,

GATA3, and GAS1RR. Spatial transcriptomic gene expression is colored from purple (low) to 

red (high). 
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Fig. 3.4: Overall organization of human and mouse lumbar spinal neuronal 

populations. A, The relationship between dorsal and ventral neurons in the human and 

mouse spinal cord neurons compared using a silhouette score, with values ranging from –1 to 

1 (where a high value indicates that clusters are significantly distinguished from one another). 

Individual cluster silhouette scores are shown in Supplemental Fig. S8B. Two-way ANOVA 

and Mann Whitney test for human and mouse dorsal vs ventral distributions are as follows. P 

< 0.0001, ****. B-C, UMAP of human neurons (B) and mouse neurons (C) colored by 

Silhouette score— purple (low) to yellow (high). D, Median correlation of a cluster to other 

clusters, as calculated by Pearson’s Correlation using the top 2,000 highly variable genes. 
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Two-way ANOVA and Mann Whitney test for human and mouse dorsal vs ventral 

distributions are as follows. P < 0.0001, ****. E-F, Heatmap correlation plot of the human

spinal cord neurons (E) and mouse spinal cord neurons (F, Russ et al., 2021). Correlation is

colored from purple (low) to yellow (high). 

We next performed a detailed comparison of individual human and mouse spinal cord neuronal 

populations by integrating our work with prior harmonized datasets from postnatal mouse tissue (Fig. 

5A-B). We found that, overall, human neurons were enriched for KAZN, ROBO2 and DPP10 while 

mouse neurons were enriched for DCC, USP29, and ASIC2 (Fig. 5E). There was good 

correspondence between the two datasets, with pairs of human-mouse dorsal clusters showing high 

correlations and specific relationships, while ventral clusters showed broader overall similarity (Fig 

5C). We used a network perspective on cluster relatedness to highlight human and mouse cell types 

pairs with particularly high conservation and analyzed these further (Fig. 5D). As examples: (1) 

Human Ex-Dorsal-4 is highly homologous to mouse Excit-05, a member of the Maf family located in 

lamina III-IV which is associated with corrective reflexes and light touch processing (Fig. 5G). Both 

the human and mouse clusters are enriched for MAF, ADARB2, and RORA, while the human cluster 

is also enriched for MAFA (found in the spatial transcriptomics data in the deeper region of the dorsal 

horn) and the mechanosensitive protein PIEZO2, which may confer evolutionarily novel functions on 

this population. (2) Human Inh-Dorsal-8 was highly homologous to mouse Inhib-11, a member of the 

Pdyn family located in lamina I-III and associated with mechanical allodynia pain symptoms (Fig. 5L). 

Both clusters were enriched for the neuropeptides PDYN and PNOC (both found in the spatial 

transcriptomics data over the dorsal horn), as well as PROX1 and TACR3. The human cluster was 

enriched for the neuropeptide NPPC while the mouse cluster was enriched for the neuropeptide Gal. 

In  
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the future, such cross-species cell type relationships can be used to propose behavioral functions for 

a broad range of human neuronal populations. 



50 



51 

Fig. 3.5: Integration of human and mouse spinal cord neurons. A, UMAP plot of human

spinal neurons. B, UMAP plot of mouse spinal neurons (Russ et al., 2021). C, Heatmap

correlation plot of the human spinal cord neurons compared to mouse populations (Russ et 

al., 2021). Correlation is colored from purple to yellow and was calculated using the top 2,000 

highly variable genes. Red boxes highlight 7 pairs of clusters shown in E-L. Human clusters

are bolded and mouse clusters are in regular font. D, A forced graph (quotient) showing

neuronal clusters as nodes connected by edges. Edges represent correlations greater than 

0.8 between human and mouse neuronal clusters. Line thickness and distance indicates 

correlation value, with greater correlations having a thicker and shorter line. Human neuronal 

clusters are bolded and shown in shades of pink. Mouse neuronal clusters are shown in 

shades of blue. Grey circles highlight 7 pairs of clusters shown in E-L. E-L, Venn-diagrams

represent differentially expressed genes between human and mouse pairs, as well as genes 

shared by a pair of clusters vs all other neurons. Top genes enriched in the human neurons 

from each pair are shown in the pink circle, and top genes enriched in mouse neurons in the 

blue circle. Genes enriched in the human and mouse pair compared to all other neurons are 

shown in the intersection of the venn-diagram. 

Human motoneurons are defined by genes related to cell structure, cell size, and ALS 

We next sought to use this cellular and molecular resource to study the gene expression profile of 

human motoneurons and to determine whether their molecular repertoire provided insight into their 

selective vulnerability in diseases such as ALS and SMA.1 We examined the top 50 marker genes 

1 With our current approach, the human motoneuron cluster could not be divided into more refined types. This
may reflect technical limits (these nuclei contained a relatively low number of genes per nucleus) or biological 
continua amongst motoneuron features. Co-clustering with mouse MNs from previously published datasets 
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that distinguished the motoneuron cluster from other human spinal neurons. To determine whether 

these genes were enriched in motoneurons in spinal cord tissue, we assessed the distribution of the 

entire predicted gene signature using the spatial transcriptomics dataset from an independent donor 

subject. Indeed, this signature was strongly enriched in the most ventral spinal tissue, confirming the 

overall pattern of motoneuron marker genes (Supplemental Fig. S13). Overall, the motoneuron 

markers included those involved in acetylcholine synthesis and function (SLC5A7 and ACLY), as 

expected, but surprisingly were dominated by three partially overlapping sets of genes: (1) those 

involved in cytoskeletal structure, (2) neurofilament genes related to cell size, and (3) those that are 

directly implicated in ALS pathogenesis (Fig. 6A).  

Cytoskeletal components were the most abundant category of motoneuron marker gene and the 

most enriched gene ontology (GO) terms, including GO annotation clusters related to microtubules 

(p=0.000009) and axon structure and neurofilaments (p=0.000018) (Data File Table S4). The marker 

genes that were structural components of neurofilaments (NEFL, NEFM, NEFH, and PRPH) have 

been directly linked to cell size, axon diameter, and degeneration (Beaulieu et al., 1999; Cote et al., 

1993; Gama Sosa et al., 2003; Marszalek et al., 1996; Xu et al., 1993a, b), providing a potential link 

between human motoneuron gene expression and cellular phenotype. Amongst ALS-related 

motoneuron marker genes, there were both cytoskeletal genes (NEFH, PRPH, TUBA4A, and 

STMN2), as well as genes that are not directly linked to cellular structure (SOD1, OPTN, and SPP1). 

suggested a division into alpha/beta and gamma sub-types but these were not clearly separated by human 
marker genes. As a result, human motoneurons were analyzed as one group. 
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Fig. 3.6. Human motoneurons are characterized by genes associated with ALS, cell 

structure, and increased cell size. A, Association network plot constructed using the String

protein database for the top 50 marker genes of human motoneurons. Genes related to 

cholinergic neurotransmission are shown in orange, genes related to ALS are shown in red, 

and genes whose over-expression in mice causes enlargement and/or degeneration of 

motoneurons are shown in green. Families of genes related to the microtubule or 

neurofilament cytoskeletal components are highlighted by gray. B, Volcano plot showing the

distribution of genes enriched in either lumbar motoneurons from adult mice or lumbar 

motoneurons from adult humans, with several significant genes of interest labeled, including 

genes related to ALS (red). Genes are plotted by the average change in expression (avg log2-

fold change) and by the statistical strength of the difference (-log10(p-value)). Insignificant 
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genes are shown in gray and genes that are significantly different are shown in black or red. 

C, Gross anatomical and neuronal measurements of the human (H) and mouse (M) lumbar

spinal cords. Measurements include median neuron size (µm), transverse area of the spinal 

cord (mm2), maximum nerve length (cm), and body mass (kg). D, Transverse sections of one

side of the adult lumbar human (above) and mouse (below) spinal cords, with antibody 

labeling for NeuN. Images are representative of data from three subjects. Scale bars are 1 

mm. Boxes indicate the regions shown in panel E. Gray lines indicate the laminar/regional

boundaries used in panel F and were based on prior work (Routal and Pal, 1999; Schoenen, 

1991; Watson, 2009). E, Higher magnification view of NeuN labeled spinal neurons from

panel D in the human (above) and mouse (below). The left-side images are from the dorsal

horn and the right-side images are of putative motoneurons in lamina IX. Scale bars are 125 

µm. F, Histogram showing the count distribution of neuron Feret distance (maximum caliper,

similar to diameter) in human (pink) and mouse (teal) across the different lamina regions of 

the adult lumbar spinal cord. Measurements are given in µm and the count scale is shown at 

the right of each plot. Bonferroni-adjust Wilcox test p-values and Bhattacharyya Coefficients 

(BC) for human vs mouse distributions are as follows. I/II: p=7.5e-27, BC=0.93, III/IV: p=4.0e-

12, BC=0.96, V/VI: p=3.2e-30, BC=0.89, VII/VIII: p=5.7e-49, BC=0.80, IX: p=1.6e-19, 

BC=0.71, X: p=9.5e-10, BC=0.92. 

We further examined the expression of a panel of ALS-related genes compiled from the literature 

(Brown and Al-Chalabi, 2017; Castellanos-Montiel et al., 2020; Klim et al., 2019; Morisaki et al., 

2016; Taylor et al., 2016; Theunissen et al., 2021; Yamamoto et al., 2017) across human spinal cord 

cell types. In addition to the genes above, we found that CHCHD10 and KIF5A were enriched in 

spinal motoneurons, extending this signature profile (Supplemental Fig. S15 and S17). We also 
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observed enriched expression of SPP1, FUS, and C9ORF72 in microglia and STMN2, and TUBA4A 

in an excitatory mid-population (Ex-M-1, Supplemental Fig. S16, S17). TARDBP was not detected at 

sufficient levels in the dataset to characterize its expression pattern. 

The enriched expression of neurodegeneration-associated genes in human motoneuron 

transcriptomics may have been partly due to the age of the study donors. We examined expression 

of ALS-related genes in a dataset of human embryonic spinal cord cell types (Rayon et al., 2021) 

and found low levels of gene expression (i.e. NEFH and TUBA4A), moderate but broad cell type 

expression (i.e. OPTN and PRPH), or high and ubiquitous cell type expression (i.e. SOD1 and 

STMN2) (Supplemental Fig. S17). Thus, the enrichment of ALS-related genes in human 

motoneurons was not apparent in newly formed motoneurons but likely emerged at some point 

during motoneuron maturation or aging. Finally, to test whether this expression profile reflected a 

non-specific enrichment of degeneration-associated genes in human motoneurons with age, we 

compared the expression of genes for multiple neurodegenerative diseases, including those with 

age-related associations, across human spinal cord cell types. This analysis revealed a specific 

association of ALS-related gene expression in human motoneurons (Supplemental Fig. S21) 

To determine whether ALS-related genes are also enriched in motoneurons in mice, the major 

animal model for studying the genetic basis of neurodegenerative disease, we compared the human 

data to prior single nucleus sequencing data from lumbar skeletal motoneurons from adult mice 

(Alkaslasi et al., 2021). We found that prominent ALS-related genes were enriched and were 

expressed at higher levels specifically in the human motoneurons as compared to mouse 

motoneurons (Fig. 7C).  To determine if this enrichment is unique to motoneurons, we examined the 

analysis of a recent study on conservation in human brain gene expression patterns (Pembroke et 

al., 2021) and found that three genes of interest (SOD1, TUBA4A, OPTN) had a significantly higher 
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mean human to mouse divergence score than other assayed genes (mean score of 0.587 ± 0.19 

versus 1,426 other genes with mean 0.320 ± 0.123, p=0.0002).  

 

Cell Size and Protein Expression in Human Lumbar Motoneurons 

Why might human motoneurons be defined by genes related to cell size and structure, compared to 

other human neurons and mouse motoneurons? It is well established that human motoneurons are 

large, but to answer these relative size questions, we analyzed neuron soma size across all laminae 

in human and mouse lumbar spinal cord tissue. Given the obvious differences in overall body size 

and anatomy, we expected that most classes of human neurons would be larger than mouse 

neurons. Surprisingly, we found that, overall, human and mouse lumbar spinal neurons were 

approximately the same size, with a median Feret diameter (maximal caliper length) of 16.02 and 

13.13 µm, respectively (human mean 20.3 ± 0.28 s.e.m; mouse mean 14.28 ± 0.12 s.e.m.) (Fig. 6C 

and Data File Table S2). Indeed, across most laminae of the spinal cord, human and mouse neurons 

displayed somewhat similar size distributions. By contrast, human lamina IX spinal neurons were 

approximately 2-fold larger than those in mouse and could be up to ~120 µm across compared to 

~50 µm in mouse (Fig. 6E-F and Data File S5). These measurements are consistent with those 

previously reported for human and mouse spinal motoneuron soma (Ishihara et al., 2001; Kawamura 

and Dyck, 1977; McHanwell and Biscoe, 1981) and the same proportion that has been observed for 

human and mouse motoneuron axon caliber (Nguyen et al., 2000; Sobue et al., 1981a; Sobue et al., 

1981b).  Assuming that human alpha motoneurons are within the higher end of this size distribution, 

then they are (1) much larger than other human spinal neurons, (2) increased in scale relative to 

mouse motoneurons, and (3) among the among the largest vertebrate neurons, including elephant 

motoneurons (~85 µm) (Hardesty, 1902), human Betz corticospinal neurons (~60-100 µm)(Braak 

and Braak, 1976), subsets of human dorsal root ganglion neurons (up to 100 µm) (Haberberger et 
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al., 2019) and salmon Mauthner cells (~87 µm) (Zottoli, 1978). This notable size of human 

motoneurons may explain the specialized gene expression signature that we observed in this 

subclass of neurons.  

Fig. 3.7. ALS-related proteins are enriched in human motoneurons.  A, Antibody staining

on adult human lumbar spinal cord against NeuN (RBFOX3 gene, general neural marker) and 

the ALS-related genes NEFH, OPTN, PRPH, SOD1, STMN2, and TUBA4A. Gray matter 

outlines are shown in pink and boundaries of lamina I/II, III/IV, V/VI, VII/VIII, IX, and X are 

shown in gray. Boxes indicate the enlarged images in panel. A, Images are representative of

data from three subjects (two male and one female). Scale bars are 500 µm. B, Inset of the

images in panel A, from the boxed region in laminae III/IV or lamina IX. The width of the

insets is 500 µm. C, Quantification of the percent of NeuN+ neurons that co-expressed the

indicated proteins in either all neurons not in lamina IX (non-IX) or those in lamina IX. The 

mean ± s.e.m. are shown. The plotted values and number of cells counted in each subject 
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and category are available in Data File Table S5). Paired t-test results are shown where * 

indicates p < 0.05, ** indicates p < 0.005, **** indicates p < 0.0001. D, The sizes of NeuN+ 

neurons are shown for each indicated protein. For NeuN, 100% of cells were positive, by 

definition, and the total counts and sizes (mean ± s.e.m.) are shown for neurons not in lamina 

IX (non-IX) or those in lamina IX. For all other indicated proteins, the Feret distance sizes are 

shown for all neurons that did not (-) or did (+) express the indicated protein (mean Feret 

distance in µm). Each line joins values within one subject. There is an unpaired value for 

NEFH because we did not detect neurons in lamina IX that did not express NEFH. The 

plotted values and number of cells measured in each subject and category are available in 

Data File Table S5. Paired two-tailed t-test p-values, after Benjamini-Hochberg FDR 

correction, are shown where * indicates p < 0.05, ** indicates p < 0.005. **** indicates p < 

0.0001. 

 

To assess specific ALS-related gene expression in tissue and to compare protein expression and in 

situ cell size, we next analyzed the protein expression of six ALS-related genes in post-mortem 

lumbar spinal cord from four donors, using immunofluorescence: NEFH, OPTN, PRPH, SOD1, 

STMN2, and TUBA4A. We found that neurons expressing NEFH, OPTN, PRPH, STMN2, and 

TUBA4A proteins were all enriched within the motoneuron region (lamina IX) of the lumbar spinal 

cord, with limited positive cells in other regions except for scattered, large cells in lamina III/IV of the 

dorsal horn which may be projection neurons and smaller neurons in medial lamina VII (Fig. 7A-D 

and Data File Table S5). SOD1 was present in lamina IX and throughout the spinal cord in a distinct 

peri-nuclear distribution, in contrast to the enriched RNA expression that we detected by single 

nucleus RNA sequencing. To ensure the accuracy of the SOD1 expression pattern, we validated the 

SOD1 antibody through targeted knockdown in human iPS neurons (Supplemental Fig. S18D). 
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Overall, these data confirm the expression of ALS-related proteins in human spinal motoneurons in 

tissue (Pardo et al., 1995; Tsang et al., 2000).  

We also studied the expression of these proteins in the mouse spinal cord, using lumbar tissue from 

aged animals (11 months old) to approximate the advanced age of the human subjects in this study. 

We found that Nefh, Optn, Prph, Stmn2, and Tuba4a displayed enrichment in lamina IX, while Sod1 

was expressed ubiquitously, similar to what has been previously described for Sod1 in mice 

(Supplemental Fig. S18 A-C) (Pardo et al., 1995). Together with the comparative transcriptomic 

analysis above, this suggests that while human and mouse motoneurons are both enriched for 

expression of ALS-related genes, in human motoneurons the relative expression levels are higher 

and the enrichment of these genes as motoneuron-specific markers is greater. 

Finally, we tested the relationship between expression of ALS-related genes and cell size within 

human spinal neurons in tissue. We measured the Feret distances of human neurons expressing 

each ALS-related protein in comparison with non-expressing neurons. We found that neurons that 

expressed NEFH, OPTN, PRPH, STMN2, and TUBA4A were generally larger than non-expressing 

neurons, both within the motoneuron region of lamina IX and in other lamina (Fig. 7D). Within lamina 

IX, this likely reflects enrichment within the larger alpha motoneurons (versus gamma) and in other 

laminae, this may reflect expression within spinocerebellar projection neurons that degenerate in 

ALS (Averback and Crocker, 1982; Williams et al., 1990) or other large cell classes. Importantly, we 

found that the very largest lamina IX neurons – that are known to be most susceptible to 

degeneration in ALS (Kawamura et al., 1981; McIlwain, 1991; Sobue et al., 1981a; Sobue et al., 

1981b)– were the most likely to express these markers. For lamina IX neurons with a Feret distance 

greater than 70 µm, on average 100% expressed NEFH, 81% expressed OPTN, 88% expressed 

PRPH, 60% expressed SOD1, 90% expressed STMN2, and 95% expressed TUBA4A (Data File 

Table S5).  
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These data further link motoneuron size and vulnerability to these cytoskeletal genes that have 

causative roles in motoneuron size and human disease.  

Discussion 

The advent of single cell transcriptomic profiling approaches has transformed many aspects of 

biology and has the potential to pinpoint novel therapeutic targets amidst the complexity of human 

disease. In the context of the human nervous system in health and pathological conditions, multiple 

single nucleus RNA-sequencing studies of the cortex have been generated, but we still lack a 

comprehensive human spinal cord characterization that could provide crucial insights into chronic 

pain, spinal cord injury, and neurodegeneration. Here, we used human tissue samples prepared 

under careful neuroprotective conditions to collect high-quality tissue from organ donor subjects to 

create a cellular taxonomy of the adult human lumbar spinal cord including an atlas of glial, vascular, 

and neuronal cell types. We characterized the highly complex landscape of human neuronal 

signatures and contextualized these findings relative to established cell types in the mouse spinal 

cord. We revealed spatial location (along the dorsal-ventral axis) as the conserved, core organizing 

principle of mammalian spinal neurons. In addition, as a demonstration of the utility of this resource, 

we identified a signature of degeneration-associated genes expressed specifically in human 

motoneurons. This atlas and an accompanying web-based resource 

(https://vmenon.shinyapps.io/hsc_biorxiv/) serve as effective tools for understanding human spinal 

cord biology and enabling future discoveries. 

This work builds on recent efforts toward understanding molecular and cellular heterogeneity in the 

human spinal cord, particularly during development. Rayon and colleagues (Rayon et al., 2021), 

focused on first trimester spinal cord derived from four human embryos, and identified diverse 
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progenitor and neuronal populations, and performed a systematic comparison with the spinal cord 

cell types of the developing mouse spinal cord. Zhang and colleagues (Zhang et al., 2021) profiled 

the early and mid-stages of fetal development with an important focus on glial development and cell-

cell communication. For the adult human spinal cord, Zhang and colleagues performed single 

nucleus RNA-seq on the spinal cord from two donors and identified coarse glial and neuronal cell 

types (Zhang et al., 2022). However, they did not characterize human neurons to the same degree 

as this study, especially with respect to motoneurons, nor did they validate predicted gene 

expression patterns in tissue or provide a web resource for researchers to interact with the data. 

Comparison of the human neuronal populations that we described here to their mouse counterparts 

can drive two major advances in our understanding of human spinal cord biology. First, the alignment 

of human cell types to mouse homologues for which the behavioral contributions and circuit 

information is available will allow us to extrapolate the function of human cell types. Together with 

overlaid human molecular data on disease markers or pharmacological responsiveness, these data 

will become a powerful perspective on pathophysiological mechanisms. Second, the discovery of 

conserved trends can identify core principles of spinal cord function. We previously found that dorsal 

and ventral neuronal populations displayed very different properties in their robustness, relatedness, 

and overall gene expression correlations. In addition, recent work that compared the influence of 

location, neurotransmitter status, and birthdate on perinatal spinal cell types also demonstrated the 

dominance of dorsal-ventral location in explaining spinal neuron variability. Together with these prior 

studies in mouse, our work here revealed that dorsal-ventral location is the shared, fundamental axis 

of spinal neuron transcriptional diversity. 

Although we captured all major cell types and most known subclasses of cells in this catalog, we 

foresee further advances as additional data sets of this type are generated. In particular, the 

motoneuron population did not segregate into discrete subgroups based on molecular profile. This 
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limitation may be technical, due to the overall signal-to-noise ratio of single-nucleus RNA-seq in key 

genes within prospective subgroups, or it may be that motoneuron substructure in adult human 

spinal cord is continuous at the transcriptomic level; studies of cortical and thalamic neurons have 

suggested the existence of such continuous transcriptomic variation (Bakken et al., 2018; Tasic et 

al., 2018). As technological advances allow for higher-sensitivity transcriptomics on large numbers of 

cells, a clearer picture of the heterogeneity within motoneurons will likely become apparent. The 

current limitations did not affect our ability to identify robust signals distinguishing motoneurons from 

other classes of spinal neurons, especially when combining single-nucleus transcriptomics with 

spatial approaches. Rather, this resource allowed us to observe key aspects of the human 

motoneuron expression profile that support a model of specific molecular repertoires for motoneuron 

cell structure that also confer selective vulnerability to degeneration (Castellanos-Montiel et al., 2020; 

Clark et al., 2016; Hardy and Rogaeva, 2014). 

An intriguing finding from our analysis, made possible by our extensive profiling of motoneurons, is 

the enrichment of cytoskeletal gene expression in these cells. All cells require a functional 

cytoskeleton, raising the question of why spinal motoneurons in particular are so crucially dependent 

on the proper expression and function of cytoskeletal-related genes. Interestingly, the neurofilament 

genes that were enriched in human spinal motoneurons compared with other neuronal populations – 

NEFL, NEFM, NEFH, and PRPH – are precisely those structural components that drive increased 

axon caliber and cell size (Friede and Samorajski, 1970; Hoffman et al., 1984; Lee and Cleveland, 

1996; Nguyen et al., 2000). Over-expression of mouse NEFL, human NEFM, human NEFH, or 

mouse PRPH in transgenic mice can each cause enlargement and swellings of motoneuron somas 

and subsequent axon degeneration (Beaulieu et al., 1999; Cote et al., 1993; Gama Sosa et al., 2003; 

Marszalek et al., 1996; Xu et al., 1993a, b), linking human motoneuron gene expression and cellular 

phenotype. Relatedly, these neurofilament genes are found in other large neurons in the brain and 
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peripheral nervous system, suggesting that they may be part of a common signature that permits 

increased cell size (Bakken et al., 2021; Limone et al., 2021; Nguyen et al., 2021; Tsang et al., 2000; 

Zeisel et al., 2018). Large soma size and axon caliber may be required to sustain extensive dendritic 

trees and axons up to a meter long, to support cell energetics, or for firing rate and conduction 

parameters (Manuel et al., 2019; Perge et al., 2012; Schoenen, 1982). These large cells then rely 

critically on this protein network and are selectively vulnerable to its abnormal function. Human 

motoneurons were also distinguished by expression of the microtubule stability factors TUBA4A and 

STMN2 (Clark et al., 2016; Klim et al., 2019), potentially highlighting a requirement for structural 

support in these peripherally projecting cells subject to axonal wear and tear during body movement. 

Finally, it is critical to consider the spinal cord as a community of cell types that function together in 

normal health and disease. While we highlight the molecular signature of motoneurons, the single 

nucleus RNA-sequencing data set that we present provides the first comprehensive resource of all 

cell types in the adult human spinal cord. We anticipate that this work will have broad implications for 

understanding spinal cord biology, allowing researchers to parse how ubiquitous genetic alterations 

interact with diverse cell-type specific molecular profiles in disease and how particular populations 

may respond to target molecular interventions and pharmacology in chronic pain. We hope that our 

work will serve as a broad resource and foundation for studying the wide range of cell types involved 

in sensory and motor function in the human spinal cord. 

 

STAR ★ Methods: 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

 Antibodies 
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KI67 Cell Signaling Tech 9449S 

IBA1 Synaptic Systems 234006 

NeuN Millipore Sigma ABN90P 

SOX9 Abcam ab185966 

OLIG2 Millipore Sigma MABN50 

SOD1 Sigma HPA001401 

OPTN Proteintech 10837-1-AP 

Neurofilament H Cell Signaling 2836S 

Chat Millpore Sigma AB144P 

TUBA4A Thermofisher PA5-29546 

Alexa Fluor® 647 Anti-alpha Tubulin Abcam ab190573 

Stathmin-2/STMN2 Novus NBP1-49461 

Peripherin/PRPH Millipore AB1530 

Biological samples   

Human spinal cord  Ottawa Hospital 

Research Institute 

N/A 

Human spinal cord  Gui de Chauliac 

Hospital 

N/A 

Human spinal cord Target ALS 

Multicenter 

Postmortem Core 

N/A 

Chemicals, peptides, and recombinant proteins 

ViralBoost Reagent ALSTEM #VB100 
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Lenti-X concentrator Takara Bio #631231 

Matrigel Corning 

Incorporated 

#354277 

Hoechst Thermo Scientific #62249 

ProLong Gold antifade reagent Invitrogen #P36934 

Sucrose Invitrogen  15503-022  

1 M HEPES (pH = 8.0)  Gibco 15630-080  

CaCl2 Sigma Aldrich  C1016-100G  

MgAc Sigma Aldrich  M5661-50G  

0.5 M EDTA (pH = 8.0) Corning  MT-46034CI  

Dithiothreitol (DTT) Sigma Aldrich  10197777001  

Triton-X Sigma Aldrich  T8787  

1 M Tris-HCl (pH = 7.4) Sigma Aldrich  T2194  

0.04% BSA New England 

Biolabs  

B9000S  

0.2 U/μL RNAse Inhibitor  Lucigen   30281-1  

Trypan Blue Stain (0.4%) Thermo Fisher 

Scientific  

T10282  

Critical commercial assays 

Chromium Single Cell 3’ GEM, Library & Gel Bead 

Kit V3 

10X Genomics PN-1000075 

Chromium Single Cell B Chip Kit 10X Genomics PN-1000074 

Chromium i7 Multiplex Kit 10X Genomics PN-120262 
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Visium Spatial Gene Expression Slide & Reagent 

Kit 

10X Genomics PN-1000184 

Visium Accessory Kit 10X Genomics PN-1000194 

Dual Index Kit TT Set A 10X Genomics PN-1000215 

Deposited data 

Anonymized raw sequencing data This paper GEO: GSE190442 

Raw mass spectrometry datasets This paper https://www.synap

se.org/ 

Experimental models: Cell lines 

Human iPSC Line Tian et al., 2019 N/A 

Experimental models: Organisms/strains 

C57BL/6J Jackson Laboratory 000664 

BALB/cJ Jackson Laboratory 000651 

Recombinant DNA 

mU6-sgRNA EF1a-puro-T2A-2XmycNLS-BFP  Addgene #127965 

Software and algorithms 

Seurat 4.0 Hafemeister and 

Satija, 2019; Stuart 

et al., 2019 

https://satijalab.org

/seurat/index.html 

biomaRt Durinck et al., 2005 https://bioconducto

r.org/packages/rel

ease/bioc/html/bio

maRt.html 
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Homologene National Center for 

Biotechnology 

Information 

https://CRAN.R-

project.org/packag

e=homologene 

Silhouette Function from the Cluster Library Maechler et al., 

2022 

 

https://cran.r-

project.org/web/pa

ckages/cluster/ind

ex.html 

Neurodegenerative disease gene analysis This paper https://colab.resear

ch.google.com/driv

e/19Ty97LOwT3A

maVCJGKA8BXX

NFYH_iSZ4?usp=

sharing 

and 

https://colab.resear

ch.google.com/driv

e/1BDJaiwhYnhM

O9VJZNWUn9Iw_

c87Y7mjr?usp=sh

aring 

Cell2Location Kleshchevnikov et 

al., 2022 

https://cell2location

.readthedocs.io/en/

latest/ 
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Fiji/ImageJ Fiji v2.1.0 https://imagej.net/s

oftware/fiji/ 

Adobe Photoshop Adobe Systems https://www.adobe.

com 

Adobe Illustrator Adobe Systems https://www.adobe.

com 

Other 

Resource website  This paper https://vmenon.shi

nyapps.io/humans

pinalcord/ 

 

Human spinal cord acquisition and preparation. Spinal cords for single nucleus RNA sequencing 

were obtained from neurologic determination of death organ-donor patients (~50-80 years old, 4 

men, 3 women) under the approval of the French institution for organ transplantation (Agence de la 

Biomédecine) or the Ottawa Health Science Network Research Ethics Board, following the template 

provided by the University of Ottawa and the Tri-Council Policy Statement Guidelines. Both 

approvals imply consent for using anonymized donor genetic information. Human lumbar spinal 

cords were retrieved under chilled body and neuroprotective conditions as described previously 

(Bauchet et al., 2022; Dedek et al., 2019; Galuta et al., 2020). The extraction procedure took 20-40 

minutes and was done within three hours of cessation of circulation by aortic cross-clamp. Lumbar 

spinal cord tissue was flash frozen on liquid nitrogen in the operating room and stored at -80°C until 

nuclei isolation. 

For immunohistochemistry experiments, lumbar spinal cord tissue was isolated from organ-donor 

patients (~55-65 years old, 3 men, 1 woman). The tissue was immediately fixed in 4% 
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paraformaldehyde for 24-48 hours, then washed in PBS, and placed in 30% sucrose for 2-4 days at 

4°C before being embedded in OCT medium for sectioning.  

For Visium spatial transcriptomics, postmortem lumbar spinal cord from a non-neurological control 

subject (~75 years old, male) was acquired from the Target ALS Multicenter Postmortem Core as 

part of the New York Genome Center (NYGC) Amyotrophic Lateral Sclerosis (ALS) Consortium. 

Informed consent is acquired by each Target ALS member site through its own institutional review 

board (IRB) protocol and samples are transferred to the NYGC in accordance with all applicable 

foreign, domestic, federal, state, and local laws and regulations for processing, sequencing and 

analysis. The Biomedical Research Alliance of New York (BRANY) IRB serves as the central ethics 

oversight body for the NYGC ALS Consortium. Ethical approval for this study was given by the 

BRANY IRB. 

 

Mouse work and spinal cord acquisition. All procedures and experiments were approved by the 

Animal Care and Use Committee of NINDS (protocol #1384). Adult mice were of 50:50 mixed 

background from strains C57BL/6J and BALB/CJ, housed in standard conditions. For basic 

anatomical experiments, two male and two female mice of approximately 24 weeks old were used. 

For ALS marker gene expression studies, two male and one female mice of approximately 11 

months old were used. To obtain spinal cord tissue, anesthetized mice were transcardially perfused 

with PBS followed by cold 4% paraformaldehyde (PFA). The spinal cords were harvested and post-

fixed in cold 4% PFA overnight at 4°C, cryoprotected by immersion in 30% sucrose overnight at 4°C 

and embedded in OCT medium for sectioning. 

Nuclei isolation. Nuclei were isolated from fresh frozen human spinal cords using a triton-based 

protocol (Matson et al., 2018). Briefly, after removing the dura, half a segment of spinal cord was 

placed in a Dounce homogenizer (Kontes Dounce Tissue Grinder) containing 500 μL of lysis buffer 
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(0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2, 3 mM 586 MgAc, 0.1 mM ETDA, 1 mM DTT, 

0.1% Triton X-100). After douncing with 5 strokes of pestle A and 5-10 strokes of pestle B, the lysate 

was diluted in 3 mL of sucrose buffer (0.32 M sucrose, 10 mM 588 HEPES [pH 8.0], 5 mM CaCl2, 3 

mM MgAc, 0.1 mM ETDA, 1 mM DTT) and passed over a 70 μm strainer. The filtered lysate was 

centrifuged at 3,200 x g for 5 min at 4°C. After centrifugation, the pellet was resuspended in 3 mL of 

sucrose buffer and centrifuged again at 3,200 x g for 5 min at 4°C. After centrifugation, the pellet was 

resuspended in 3 mL sucrose buffer and incubated for 2 min on ice. The sample was transferred to 

an Oak Ridge tube and homogenized for 1 min using an Ultra-Turrax Homogenizer (IKA). Then, 12.5 

mL of density sucrose buffer (1 M sucrose, 10 mM HEPES [pH 8.0], 3 mM MgAc, 1 mM DTT) was 

layered below the sample. The tube was centrifuged at 3,200 x g for 20 min and the supernatant 

immediately poured off. The nuclei on the side of the tube were resuspended with 100 µL of PBS 

with 0.04% BSA and 0.2 U/µL RNase inhibitor. Nuclei were inspected for visual appearance and 

quantified with a hemocytometer before proceeding with nuclei capture and sequencing.  

 

Single nucleus RNA sequencing. Single nucleus RNA sequencing was carried out using Single-

cell gene expression 3’ v3 kit on the Chromium platform (10X Genomics) according to 

manufacturer’s instructions with one modification. Following reverse-transcription, an additional PCR 

cycle was added to the number of cycles for cDNA amplification to compensate for decreased cDNA 

abundance in nuclei compared to cells. Libraries were sequenced to a minimum depth of 20,000 

reads per nucleus using an Illumina HiSeq 3000 (PE 26 – 8 – 98 bp). Raw sequencing reads were 

demultiplexed, aligned, and a count matrix was generated using CellRanger. For alignment, introns 

and exons were included in the reference genome (GRCh38).  
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Quality check analysis. All the 10x runs for each human sample were initially filtered with an nUMI 

cutoff of >1000 and then nuclei with less than 5% mitochondrial gene contamination were retained. 

Next, the mitochondrial genes were also removed from the matrices.   

 

Top level UMAP and clustering. The 8 human datasets were integrated using SCTransform 

normalization followed by CCA based integration from Seurat 4.0 (Hafemeister and Satija, 2019; 

Stuart et al., 2019). 

The integrated sets were then jointly analyzed to identify optimal Principal Component values based 

on ElbowPlot and PCheatmaps. PC value of 30 was used for clustering and UMAP. The clusters, 

obtained using a value of 0.6 for Seurat’s resolution parameter, were then manually annotated based 

on the expression of marker genes for various cell types, namely neurons, astrocytes, microglia, 

oligodendrocytes, OPCs, endothelial cells, pericytes, meningeal cells, Schwann cells, and 

lymphocytes.  

 

Sub clustering of major cell types. Identification of subclusters within cell types was performed 

separately for three major cell types (neurons, microglia, astrocytes), with the rest being subclustered 

as groups (Group 1- oligodendrocytes, OPCs, and Schwann cells; Group 2- endothelial cells, 

pericytes, meningeal cells, and lymphocytes). For each cell type/group, the subclustering was done 

in multiple rounds until no putative transcriptomic doublets or contamination of other cell types was 

observed (described below).   

For subclustering of major cell types, the raw counts were extracted from 8 datasets, for each cell 

type, and then re-normalized (using log normalization) and scaled in order to prepare for integration. 

The integration of 8 datasets belonging to a particular cell type was performed based on CCA-

integration workflow from the Seurat 4.0 package. Optimal PC values were selected based on 
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ElbowPlot and PCheatmaps for each cell type in order to be used for further sub clustering and 

preparation of UMAPs. Multiple resolutions were interrogated, depending on cell type, ranging from 

values of 0.08 to 3.   

During each round, putative transcriptomic doublet clusters and contamination of other cell types was 

removed (based on expression of multiple major class genes) and the above steps were performed 

again. Doublets were identified by clusters that expressed markers for more than one cell type. All 

clusters were checked for doublets by their markers using wilcox and auroc tests, as well as visually 

using the FeatureScatter option in Seurat.  

Subclustering of neurons. Neurons were clustered in 2 stages, first dividing the neurons into 

motoneurons, ventral neurons and dorsal neurons, followed by a second round of further 

subclustering within motoneurons, ventral neurons and dorsal neurons. As described in the main 

text, dorsal and ventral neuronal groups were identified using marker genes from previous studies on 

mouse neurons. 

During the first stage, the log normalization of raw counts and scaling (including regressing out the 

number of transcripts and mitochondrial percentage) of each dataset was done followed by 

integration based on the same steps described above for the glia and vascular cells. During the 

second stage, raw counts were again extracted from each group (motoneurons, ventral and dorsal) 

and normalized using SCTransform (to avoid dataset size related limitations) and followed by the 

standard integration workflow in the Seurat 4.0 package. In order to obtain a refined set of neuronal 

subpopulations, all the subclusters were interrogated for ‘low quality’ (based on gene detection), and 

doublets and other contamination and were subsequently removed from the analysis. All the refined 

clusters were then re-integrated to prepare a combined neuronal UMAP and mapped with refined 

subcluster annotations.   
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During each subclustering, cluster-specific genes were identified based on Wilcox Rank-Sum test 

and ROC analysis within the FindMarkers function from Seurat 4.0. Based on these genes, the 

distinct subpopulations based on expression of candidate markers were manually annotated.  

 

Cluster robustness assessment and silhouette scores. We used two approaches to assess 

cluster robustness: a post-hoc machine learning-based classification approach, and a silhouette 

score approach.  

For the post-hoc machine learning approach, we built a random forest classifier for every pair of 

neuronal clusters, trained on 80% of the nuclei. This classifier was then used to assign cluster 

membership for the remaining 20% of the cells, and the entire process repeated such that each cell 

in every pairwise cluster comparison was classified 100 times. A cell that was classified into its 

original cluster <90 times was deemed “misclassified”.  For every pair of clusters, we then calculated 

the mean percentage of cells that were misclassified among the two clusters to generate pairwise 

cluster robustness scores. For visualization as a constellation diagram, we only connected cluster 

pairs with minimum misclassification percentage >3%, representing their connections with the mean 

misclassification percentage.          

For silhouette score evaluation, we used the ‘silhouette’ function from the ‘cluster’ library in R 

(https://cran.r-project.org/web/packages/cluster/index.html), where the Euclidian distance matrix 

based on the first 25 PCs was used as input, together with the neuronal cell type annotations. 

 

Tissue processing, Visium data generation, and Visium data preprocessing. Frozen 

postmortem lumbar spinal cord from a non-neurological control subject was embedded in Tissue 

Plus OCT Compound (Fisher Healthcare, catalog no. 4585) and cryosectioned at -16°C. Sections of 

10 µm thickness were collected onto prechilled Visium Spatial Gene Expression Slides (10x 
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Genomics, catalog no. 1000185) by warming the back of the slide to adhere the tissue. Visium 

spatially resolved gene expression data was generated according to the Visium Spatial Gene 

Expression User Guide (10x Genomics, CG000239 Rev F). Briefly, tissue sections were fixed in 

chilled methanol and stained using hematoxylin and eosin. Brightfield histological images were 

acquired using an EC Plan-Neofluar 10x/0.3 M27 objective on a Zeiss Axio Observer Z1 fitted with a 

Zeiss Axiocam 506 mono (Carl Zeiss Microscopy, Germany). Raw CZI images were stitched using 

Zen 2012 (blue edition) (Carl Zeiss Microscopy, Germany) and exported as JPEGs. Tissue sections 

were permeabilized for 12 minutes which was selected as the optimal time based on tissue 

permeabilization time course experiments conducted using the Visium tissue optimization protocol. 

cDNA libraries were prepared and quantified according to the Visium Spatial Gene Expression User 

Guide (10x Genomics, CG000239 Rev F) and pooled at a concentration of 10 nM for sequencing. 

Pooled spatial gene expression libraries were loaded at a concentration of 0.9 nM and sequenced on 

a NovaSeq 6000 System using a NovaSeq S4 Regent Kit v1.5 (200 cycles, Illumina, catalog no. 

20027466) using the following recipe: read 1: 100 reads, i7 index read: 10 cycles, i5 index read: 10 

cycles, read 2: 100 cycles. The average sequencing depth for each sample was approximately 200-

280 x 106 reads. 

Raw FASTQ files and histological images were processed using Space Ranger v.1.3.0, which uses a 

modified STAR v2.7.2a for genome alignment and performs barcode/UMI counting to generate 

feature-spot matrices. Reads were aligned to a GRCh38 reference genome filtered to exclude 

lncRNAs, pseudogenes and mitochondrially encoded genes. 

 

Cross species analysis between human spinal cord vs mouse meta-analysis datasets. Cross 

species comparison between human and mouse meta-analysis (Russ et al., 2021) spinal cord 
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datasets were performed at two levels: 1. “Top level” which includes all major cell types and 2. 

Neurons only.  

In both cases, the orthologous genes within mouse data matrix were converted to human homologs 

using biomaRt package (Durinck et al., 2005) from Bioconductor and in-house scripts. The raw 

counts from both human and mouse datasets were then split by different samples and then re-

normalized, scaled and integrated. For the “top-level” analysis, SCTransform based integration was 

performed whereas for neurons only, log normalization-based integration was performed. 

Subsequently, UMAPs and correlation matrices were generated for further cross-species comparison 

of various cell types at top level and neuronal sub-clusters.  

 

Cross-correlation of human and mouse cluster expression. Cross-species cluster correlation 

measures were calculated from PCs in the integrated space (using 20 PCs for the top level 

comparison of major cell classes, and Pearson’s correlation of the top 2,000 highly variable genes. 

Aggregate correlation values for each pair of clusters (one mouse, one human) were calculated as 

the mean correlation value across all human-mouse nuclei pairs from the respective clusters. 

Quotient graphs using qgraph in R were used to show the correlations greater than 0.8 based on the 

top 2,000 highly variable genes between human and mouse spinal cord neurons (graph “cor”, layout 

“spring”). 

 

GO analysis of human motoneuron marker genes. The top markers (based on smallest adjusted 

p-value) of human spinal motoneurons were determined based on the Wilcox Rank Sum test and 

were analyzed using DAVID 6.8 GO enrichment analysis (https://david.ncifcrf.gov/summary.jsp). The 

general categories of GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, and GOTERM_MF_DIRECT 
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were analyzed and functional annotation clustering was performed using default parameters 

including medium classification stringency. 

Focused comparison of mouse and human motor neurons. Human motor neurons were 

compared to mouse lumbar skeletal motor neurons from a recent study (Alkaslasi et al., 2021). 

Mouse MN genes were converted to human homologs using Homologene (https://CRAN.R-

project.org/package=homologene). Only genes with human homologs present in both datasets were 

included in the analysis (13,574). Raw counts were extracted from each original dataset, normalized 

using SCTransform, and integrated based on integration anchors. Clustering was performed as 

described above (resolution = 0.4), and differentially expressed genes were identified based on 

Wilcox Rank Sum test and ROC analysis within FindMarkers function from Seurat 4.0.   

 

Analysis of evolutionarily convergence/divergence scores. All available data on gene 

expression-based human:mouse divergence scores was downloaded from Pembroke et al 

(Pembroke et al., 2021). Genes of interest were then extracted, yielding scores for three genes 

(SOD1, TUBA4A, OPTN) that overlapped with this data. We compared the mean and standard 

deviation of these three genes to the same metrics for the remainder of the assayed genes from the 

Pembroke report (N=1426 other genes) using a standard two-sided t-test.  

 

Neurodegenerative disease gene analysis. Post-QC scRNAseq count data was extracted for 

seven major cell classes of interest. For each gene per cell class, mean expression was calculated 

across all assayed cells of that class. These means were then transformed to a Z scale to facilitate 

comparisons across multiple cell types. The Z scaling was carried out using the mean and standard 

deviations as the scaling functions as this is the common convention for this conversion. Additionally, 

genes that did not have any count based data available for that cell class were set to zero at Z 
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scaling. From this large dataframe of normalized counts per cell type, candidate genes for HSP, PD 

and ALS were extracted from Genomics England Expert Panel App genes audited at the "green" 

level of confidence [https://panelapp.genomicsengland.co.uk/]. AD genes were annotated by an 

expert panel and extracted (Ramos et al., 2021) and the ALS list was also supplemented with genes 

from the literature, as described in the main text. These extracted genes were then clustermapped 

using the python package seaborn with Z scores greater than 7 truncated to a value of 7 for display 

purposes. 

SOD1 antibody validation in human iPS neurons with targeted knockdown. Previously 

published human inducible pluripotent stem cells (hiPSCs) were used to knock down SOD1 (Tian et 

al., 2019). A SOD1 or non-targeting control sgRNA was cloned into a mU6-sgRNA EF1a-puro-T2A-

2XmycNLS-BFP vector (gift from Martin Kampmann’s lab; Addgene #127965). sgRNA sequences 

are as follows: SOD1: GAGGCACCACGACAGACCCG, non-targeting sgRNA: 

GAATATGTGCGTGCATGAAG. Lentivirus was produced via transduction of Lenti-X HEK 293T cells 

using Lipofectamine 3000 in DMEM high glucose GlutaMAX Supplement media containing 10% 

FBS. 24 hours post-transfection, media was replaced, including ViralBoost Reagent (ALSTEM, 

#VB100). 96 hours post-transfection, media was collected and concentrated 1:10 in 1xPBS using 

Lenti-X concentrator (Takara Bio, #631231), aliquoted, and stored at –80°C. 100 ml of these aliquots 

was used to transduce 100,000 hiPSCs to generate SOD1 KD and control lines. The cells were split 

and replated on Matrigel (Corning Incorporated #354277) coated coverslips with the viral concentrate 

in E8+Y-27632 ROCK Inhibitor and allowed to incubate for 24 hours at 37°C, 5% CO2. The media 

was replaced with E8 and the cells were allowed to grow for another 24 hours before fixation with 4% 

PFA in PBS for 10 mins at room temperature. Cells were washed with PBS 3 times and 

permeabilized in block (PBS + 3% donkey serum + 0.1% tritonX) for 30 mins at room temperature. 

Primary antibody targeting SOD1 (Sigma, HPA001401-100UL) was diluted at 1:500 in block and 
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cells were incubated in primary overnight at 4°C on a rocker. The next day, cells were washed three 

times with PBST and incubated in block with secondary antibody (Jackson ImmunoResearch # 711-

625-152) and Hoechst (Thermo Scientific #62249) for 1 hour at room temperature. Following 3 

washes with PBST, the coverslips were mounted using ProLong Gold antifade reagent (Invitrogen 

#P36934). After curing, the coverslips were imaged using Nikon spinning disk confocal using laser 

wavelengths of 405 nm, 488 nm, 561 nm, and 640 nm at 100ms exposure and 75%, 25%, 25% and 

100% power respectively. Images were edited using ImageJ. 

Immunohistochemistry antibodies. KI67 (Cell Signaling Tech, 9449S), IBA1 (Synaptic Systems, 

234006), NeuN (Millipore Sigma, ABN90), SOX9 (Abcam, ab185966), OLIG2 (Millipore Sigma, 

MABN50), SOD1 (Sigma, HPA001401-100UL), OPTN (Proteintech, 10837-1-AP), Neurofilament H 

(Cell Signaling, 2836S), Chat (Millpore Sigma, AB144P), TUBA4A (Thermofisher, PA5-29546), Alexa 

Fluor® 647 Anti-alpha Tubulin (Abcam, ab190573), Stathmin-2/STMN2 (Novus, NBP1-49461), and 

Peripherin/PRPH (Millipore, AB1530). 

 

Immunohistochemistry. Immunohistochemistry for human and mouse spinal cords were performed 

as previously described (Sathyamurthy et al., 2018) with modifications for human spinal cords. 

Briefly, mouse spinal cords were cut at 50 µm and blocking buffer (1% IgG-free BSA, 10% normal 

donkey serum, 0.1% Triton-X 100 in PBS) for one hour, prior to incubation in blocking buffer and 

primary antibody for 48 hours at 4°C. Primary antibody was washed off three times in PBS before a 

2-hour incubation in secondary antibody at room temperature. Secondary antibody was washed off 

three times in PBS before adding a coverslip. 

Human spinal cords were cut at 14 µm, washed twice in TBS and placed in 0.05% sodium azide-TBS 

at 4°C for 3 days under a LED light to quench autofluorescence. Human spinal cords were placed in 

blocking buffer (1% IgG-free BSA, 10% normal donkey serum, in TBS) for one hour prior to 
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incubation in blocking buffer and primary antibody for 48 hours at 4°C. Primary antibody was washed 

off three times in TBS with 0.025% triton before a 2-hour incubation in secondary antibody at room 

temperature. Secondary antibody was washed off three times in TBS with 0.025% triton before 

adding a coverslip. 

 

Imaging. Images of immunohistochemistry samples were imaged using a Zeiss 800 LSM confocal 

microscope.  

 

Image analysis and quantification. The images were overlaid in Adobe Photoshop where borders 

between the gray and white matter and the lamina within the gray matter were drawn. These images 

were then exported to ImageJ for analysis. The cells were measured manually by outlining each cell 

using the selection tool and adding them to groups within the ROIManager in ImageJ based on 

lamina. Feret diameter measurements of all the ROIs for each section were saved in a spreadsheet. 

The white and gray matter of each subject were outlined in ImageJ and their areas were exported to 

a spreadsheet.    

 

To identify colocalization of markers with NeuN, each neuron was first outlined with the selection tool 

in ImageJ and saved into different groups based on whether the cell was in lamina IX or not. Then, 

each cell that had co-occurrence of the markers were placed into separate groups (double positive in 

lamina IX and double positive outside lamina IX). Feret diameter measurements were then saved to 

a spreadsheet and the number of cells in each group were counted in Python.   

 

Statistical testing. Two-way ANOVA (repeated-measures) was used for assessing grouped data, 

such as the correlation and silhouette scores between human and mouse dorsal vs ventral neurons. 
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Two-tailed t tests (unpaired) were used all for differences in silhouette scores and correlation 

between clusters as well as expression of protein and soma size, as indicated in figure legends. 

Bonferroni-adjust Wilcox test p-values and Bhattacharyya Coefficients (BC) were used for 

comparison of human vs mouse cell diameter. Differences among groups were considered 

significant if p < 0.05. P values are denoted by asterisks: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ****p < 

0.0001; n.s – not significant. Data are represented as mean ± s.e.m. unless otherwise indicated. 

Statistical analyses were performed using GraphPad prism software and R. 

 

Data and code availability: Anonymized raw sequencing data and counts tables are deposited in 

the Gene Expression Omnibus (GEO) with accession number GSE190442 and with associated 

metadata in Data File Table S7. The raw mass spectrometry datasets are deposited with 

Synapse.org. In addition, visualization of expression data at the cluster and donor level are available 

through a searchable web resource at https://vmenon.shinyapps.io/hsc_biorxiv/. 
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Supplemental Fig. S3.1. Integration at the top level and identification of major cell types. A, 

UMAP representation of the 55,420 nuclei after integration of the 7 human datasets. B, UMAP from 

panel A split by datasets to depict the overlap between datasets. C, Number of nuclei before and after 

quality check analysis (includes removal of doublets, low quality and other cell-type based 

contaminations). The number of nuclei in panel A are equal to total post QC. D, Bar plot showing the 
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proportion of nuclei assigned as a particular cell type per dataset. E, Dot plot showing the expression 

of 28 canonical marker genes in all the major cell types and their subclusters (also depicted as UMAP 

representation in figure 1B in main manuscript. Microglia-1-5, Meninges-1-4, Endothelial1-2 

corresponds to Micro-1-5, Men-1-4, Endo1-2, respectively; in Fig1B). Ex- Excitatory, Inh- Inhibitory, 

M- Mid, V- Ventral.   
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Supplemental Fig. S3.2. Expression of marker genes in all human spinal cord cell types (1). 

Box plot representation of per-cluster and per-sample expression (Counts per Million) of toplevel 

marker genes in all cell types. Ex- Excitatory, Inh- Inhibitory, MV- Mixed ventral.   
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Supplemental Fig. S3.3. Expression of marker genes in all human spinal cord cell types (2). 

Box plot representation of per-cluster and per-sample expression (Counts per Million) of top-level 

marker genes in all cell types.   
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Supplemental Fig. S3.4. Expression of marker genes in all human spinal cord cell types (3). 

Box plot representation of per-cluster and per-sample expression (Counts per Million) of top-level 

marker genes in all cell types.  
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Supplemental Fig. S3.5. Expression of marker genes in all human spinal cord cell types (4).

Box plot representation of per-cluster and per-sample expression (Counts per Million) of top-level 

marker genes in all cell types.  
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Supplemental Fig. S3.6. Spatial mapping of estimated cell abundances (color intensity) for 64 

clusters from human spinal cord single nucleus RNA sequencing data (Cell2Location).

Estimated cell abundance is colored from yellow (low) to purple (high). 
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Supplemental Fig. S3.7. Proliferating cells in the adult human spinal cord. A, Multiplex

immunohistochemistry of the lumbar human spinal cord, stained for IBA1 (green), OLIG2 (pink), 

SOX9 (turquoise), and NeuN (yellow). Scale bar is 250 µm. B, Multiplex immunohistochemistry of

the lumbar human spinal cord, stained for IBA1 (green) and KI67 (purple). Scale bar is 250 µm. C,

Bar plot showing the percent of DAPI-expressing cells in the human spinal cord that express NeuN, 

OLIG2, IBA1, SOX9 and KI67. Error bars are ± SEM, N=2.  
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Supplemental Fig. S3.8. Dot plot depicting expression of genes within neuronal 

subpopulations. Expression is indicated by color, purple (low) to yellow (high).
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Supplemental Fig. S3.9. Integration and sub clustering of Neuronal sub-types in human 

spinal cord. A, Bar plot showing the proportion of a given neuronal cluster in each donor. Error bars

are ± SEM, N=7. B, Box plot showing distribution of silhouette scores per nucleus per neuron

population in order to assess cluster robustness. A high silhouette score indicates distinctiveness of 

a cluster.   
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Supplemental Fig. S3.10. Constellation plot depicting the connections between different 

neuronal clusters, based on 100 iterations of post-hoc classification. The nodes are different

clusters and the edges correspond to proportion of nuclei that were ambiguously predicted and are 

shared between the clusters during multiple iterations. The genes in each box represent a unique 

combination of markers to identify each cluster. Ex- Excitatory, Inh- Inhibitory, M- Mid, V- Ventral.
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Supplemental Fig. S3.11. Cross species analysis between Human spinal cord and 

harmonized mouse spinal cord atlas (Russ et al., 2021). A, Integration of the human and mouse

spinal cord datasets (includes all cell types) B, Plot showing correlation between mouse and human

cell types. Correlation is colored from purple (low) to yellow (high) and was calculated using principal 

components. C, All the human spinal cord cell types colored and labeled on integrated cross-

species UMAP. Cells of the oligodendrocyte lineage are shown in blue/purple and include 

oligodendrocyte precursor cells (OPC), progenitors (Oligo Progen), six groups of oligodendrocytes 

(Oligo-1 through Oligo-6), as well as two populations of Schwann cells (Schwann-1 and –2). 

Microglia cells are shown in seafoam and includes a putatively proliferating population (Prolif Micro) 

and six groups of microglia (Micro-1 through Micro-6). Astrocytes are shown in salmon and orange 

and include three populations (Astro-1 through Astro-3). Meninges are shown in green and include 

four populations (Men-1 through Men-4). Vascular cells include two groups of endothelial cells 
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(Endo-1 and –2) in olive and pericytes (Peri) are shown in pink. Ependymal cells are shown in khaki. 

Neurons are shown in teal. D, All the mouse spinal cord cell types colored and labeled on integrated

cross-species UMAP. Cells of the oligodendrocyte lineage are shown in blue/purple and include 

oligodendrocyte precursor cells (OPC), two groups of progenitors (Oligo Progen-1 and Oligo-

Progen-2), two groups of oligodendrocytes (Oligo-1 and Oligo-2), as well as a population of 

Schwann cells (Schwann-1 and –2). Microglia cells are shown in green. Astrocytes are shown in 

salmon and orange and include two populations (Astro-1 and Astro-2). Meninges are shown in 

green and include two populations (Meninges-1 and Meninges-2). Vascular cells include two groups 

of endothelial cells in olive and pericytes (Peri) are shown in pink. Ependymal cells are shown in 

khaki. Neurons are shown in teal.  
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Supplemental Fig. S3.12. Cross species analysis of human spinal cord and harmonized 

mouse spinal cord neuronal subtypes based on PC 1-22. A, Heatmap of the human neurons vs

mouse spinal cord neuronal subtypes from Russ et al. 2021. B, Heatmap of the human neurons vs

mouse spinal cord neuronal subtypes from young adult (Sathyamurthy at el. dataset from Russ et al. 

2021). C, Heatmap of the human neurons vs mouse spinal cord neuronal subtypes from a juvnile

age (Haring and Zeisel datasets from Russ et al. 2021). D, Heatmap of the human neurons vs

mouse spinal cord neuronal subtypes from a postnatal age (Rosenberg, Hayashi and Baek datasets 

from Russ et al. 2021). Correlation was calculated by principal component and is indicated by color, 

ranging from purple (low) to yellow (high).  
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Supplemental Fig. S3.13. Spatial expression of human motor neuron markers. A, 

Spatial expression of Cell2Location motoneuron predicted gene signature in 4 lumbar cord sections 

from a single donor spinal cord. Expression is indicated by color ranging from yellow (low) to purple 

(high). B, Spatial expression of motoneuron markers in a section of lumbar human spinal cord.

Expression is indicated by color, ranging from purple (low) to red (high).  
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Supplemental Fig. S3.14. Human and mouse motor neurons differentially express ALS risk 

genes. A, UMAP representation of integrated human and mouse MN data (46) by dataset. B, UMAP

representations of co-clustering of human and mouse MN data revealing potential alpha and gamma 

MN subtypes in human. C, Dot plot showing expression of known ALS risk genes across human and

mouse MNs. The size of the dot corresponds to the percentage of cells that belong to particular 

category. The color corresponds to Average expression across all cells for a particular class. 
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Supplemental Fig. S3.15. Expression of ALS-related genes in human spinal cord neurons. 

Log-normalized expression of NEFH, OPTN, PRPH, SOD1, STMN2, TUBA4A, CHCHD10, KIF5A, 

SPP1, FUS, C9orf72, TARDBP in the neurons represented in a UMAP plot. Color intensity from grey 

to dark blue corresponds to the amount of log normalized expression with dark blue being highest 

and grey being the lowest expression.   
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Supplemental Fig. S3.16. Expression of ALS-related genes in all human spinal cord cell types.

Box plot shows per-cluster and per-sample expression (Counts per Million) of ALS-related genes 

(NEFH, OPTN, PRPH, SOD1, STMN2, TUBA4A, RBFOX3) in order to examine consistency/variability 

across subjects.   
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Supplemental Fig. S3.17. Expression of ALS-related genes in all human spinal cord cell types.

Box plot shows per-cluster and per-sample expression (Counts per Million) of ALS-related genes 

(CHCHD10, KIF5A, SPP1, FUS, C9orf72, TARDBP), in order to examine consistency/variability 

across subjects.   



106 



107 

Supplemental Fig. S3.18. Expression of ALS-related genes in embryonic human spinal cord.

Plot showing the level (color) and percent expression (location on x-axis) of 12 selected ALS-related 

genes in human embryonic progenitor and post-mitotic cell-types, based on 

https://shiny.crick.ac.uk/scviewer/neuraltube/ from (25). Motoneurons (MN) are indicated by a black 

arrow. 
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Supplemental Fig. S3.19. Expression of ALS-related genes in mouse lumbar spinal cord 

tissue. A, Antibody staining on lumbar spinal cord from aged mice (11 months old) for the 

orthologous proteins to those shown in Fig3C in main manuscript. Gray matter outlines are shown in 

teal and boundaries of lamina I/II, III/IV, V/VI, VII/VIII, IX, and X are shown in gray. The boxes 

indicate the enlarged images in panel B. B, Inset of the images in panel A from the boxed region in 

laminae III/IV or lamina IX. Scale bars are 200 µm and the width of the enlarged images is 200 µm. 

C, Quantification of the percent of NeuN+ neurons that co-expressed the indicated proteins in either 

all neurons not in lamina IX (non-IX) or those in lamina IX. The mean +/-s.e.m.are shown. The 
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plotted values and number of cells counted in each subject and category are available in 

Supplemental Table 5. Paired t-test results are shown where * indicates p < 0.05, ** indicates p < 

0.005. D, Representative images of human inducible pluripotent stem cells (hiPSCs) with SOD1

knockdown and control guides 2 days after knockdown. Cells have nuclear-localizing GFP (green) 

and cytosolic RFP (red). BFP (blue) signifies guide uptake. Cells were stained for SOD1 (magenta). 

Scales bar are 50 µm.   
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Supplemental Fig. S3.20. Gross anatomical and neuronal measurements of the human and 

mouse lumbar spinal cords. A, Measures of body mass, nerve length, total area, white matter 

(wm) area and grey matter (gm) area in the human (pink)and mouse (teal) lumbar spinal cord. 

Sources for human body mass (https://www.cdc.gov/nchs/fastats/body-measurements.htm) and for 

human nerve length (56). B, Median size of human and mouse neurons (μm). C, Percent of lumbar 

spinal cord neurons that reside in a given Rexed lamina. Error bars are ± s.e.m.  
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Supplemental Fig. S3.21. Comparison of the z-scores (mean ± s.e.m.) for genes associated 

with the degenerative diseases Alzheimer’s disease, Parkinson’s disease, HSP, and ALS in

seven different broad classes of cells: oligodendrocytes (Olig.), microglia (Micro.), astrocytes 

(Astro.), endothelial cells (Endo.), dorsal horn neurons (Dorsal), ventral horn neurons (Ventral), and 

motoneurons (MN, orange). Gene lists for each disease are available in Data File Table S6. One-

way non-parametric Friedman’s test was used to determine whether any cell types varied within 

each panel of disease genes and subsequently, non-parametric Wilcoxon tests were used to test 

each pair of cell types for significant differences. Friedman’s test p = 0.0278. * indicates p < 0.05, ** 

indicates p < 0.005. Error bars are ± s.e.m.  
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  Chapter 4 

Single Cell Atlas of Spinal Cord Injury in Mice Reveals a Pro-Regenerative 

Signature in Spinocerebellar Neurons 

This chapter contains a single cell atlas of the tissue distal to a spinal cord injury. We examined cell 

type specific changes and created an atlas of all cell types from acute to chronic timepoints after 

injury. In a rare population of neurons, we found a molecular signature of regeneration. We identified 

these cells as spinocerebellar and found that spinocerebellar neurons display structural plasticity 

after injury. This manuscript was published in Nature Communications (2022).
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Abstract: 

After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or 

augment recovery. Targeting these cells requires a clearer understanding of their injury responses 

and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in 

the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic 

responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. 

Using this resource, we find rare spinal neurons that express a signature of regeneration in response 

to injury, including a major population that represent spinocerebellar projection neurons. We 

characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the 

spinal cord and cerebellum. Together, this work provides a key resource for studying cellular 

responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering 

a potential candidate for targeted therapy. 

Introduction: 

The brain, spinal cord, and peripheral nervous system are comprised of diverse cell types that 

operate together as global and local communities to enable normal physiology. Following acute 

trauma, a complex interplay of cellular responses shapes the outcome. Whether the tissue can 

restrict the damage, promote structural remodeling and functional compensation, and ultimately 

achieve recovery depends on a myriad of dynamic molecular changes amongst neurons, astrocytes, 

microglia, oligodendrocytes, vascular cells, and many other cell types (Kigerl et al., 2009; Sofroniew 

and Vinters, 2010).  
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Spinal cord injury (SCI) is a traumatic event that can cause long-lasting paralysis, pain, autonomic 

dysregulation, and body-wide physiological changes (McDonald and Sadowsky, 2002). While 

understanding and developing therapeutics that target cellular changes within the lesion epicenter is 

undoubtedly valuable, there is an emerging focus on molecular and neural engineering approaches 

to augment plasticity and reorganization in anatomically incomplete injuries, which are the most 

common in patients (Ballermann and Fouad, 2006; Bareyre et al., 2004; Courtine et al., 2008). 

Molecular approaches can induce sprouting of descending spared projections (Jin et al., 2015; Liu et 

al., 2017) or reorganization of the neural circuits below the injury (Bareyre et al., 2004; Courtine et 

al., 2008). Neural engineering approaches such as epidural electrical stimulation combined with 

rehabilitation training can promote impressive gains in motor function and autonomic control and 

provide enhanced quality of life (Angeli et al., 2018; Gill et al., 2018; Wagner et al., 2018), 

underscoring the importance of understanding intrinsic potential in the tissue below the injury site. 

Understanding the cellular mechanisms by which reorganization occurs in spinal cord neurons is a 

crucial step to promote recovery. 

What may be the underlying mechanisms of plasticity in the lumbar spinal cord that enable recovery 

after injury? There are many forms of plasticity, from synaptic remodeling to local axonal sprouting 

and long-distance axon growth (Courtine and Sofroniew, 2019; Sofroniew, 2018). After injury in the 

peripheral nervous system, damaged axons can successfully regrow and innervate their targets to 

restore function37,38. However, regeneration in the CNS is generally limited, due to both cell-intrinsic 

and cell-extrinsic factors (Kaplan et al., 2015). Although most CNS neurons are capable of some 

plasticity, these processes are limited to local changes such as synaptic remodeling. However, there 

are a few examples of CNS neurons that can regenerate90, suggesting that regenerative capacity is a 

cell type-specific feature. We hypothesized that the many neuronal subpopulations in the lumbar 
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cord – with their diverse molecular identities (Russ et al., 2021; Sathyamurthy et al., 2018), physical 

properties, and connectivity (Dobrott et al., 2019) – may differentially contribute to recovery after 

spinal cord injury (Squair et al., 2021b), and that specific neuronal subpopulations may display their 

own strategies for repair. 

Here, we sought to uncover the dynamic cell type-specific responses of the lumbar spinal cord 

following SCI to identify the cell type-specific molecular and cellular mechanisms that promote or 

restrict recovery. First, we performed severe thoracic contusion spinal cord injuries in mice and 

tracked the progression of injury responses from acute to chronic timepoints. To profile the diverse 

cell types within the lumbar spinal cord following thoracic injury, we used single nucleus RNA 

Sequencing (snRNA-seq) and created an atlas of the lumbar cell types after injury 

(https://seqseek.ninds.nih.gov/spinalcordinjury). This resource reveals both the changes in relative 

composition of cell types following SCI and the changes in gene expression within each cell type. 

The size and scope of this dataset allowed identification of rare cellular populations that displayed 

molecular pathways with the potential to support recovery. Specifically, we identified neuronal 

populations that expressed regeneration-associated genes (RAGs). These neurons were largely 

excitatory, and their spatial distribution, as well as gene expression, suggested that they are 

ascending projection neurons that link the spinal cord and brain. We identified the RAG-expressing 

neurons to be Shox2-expressing V2d and spinocerebellar neurons. Using viral-labeling strategies, 

we showed that after thoracic injury spinocerebellar neurons increased axons and collaterals below 

the injury site, indicating structural remodeling. Together these findings shed light on the limited 

spontaneous mechanisms of repair in the tissue below the lesion and the latent potential for targeted 

neuro-regeneration and tissue remodeling therapies. 
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Results: 

A Single Cell Atlas of the Lumbar Cord After Spinal Cord Injury 

We profiled the cell types in the lumbar cord after spinal cord injury at translationally-relevant 

timepoints to create an atlas of cell type-specific responses and uncover biological changes. A 

severe contusion was delivered to the thoracic (vertebral level T9) spinal cord of mice, resulting in 

paralysis (Supplementary Fig 1, Supplementary Table 7). Locomotor function was tracked over a 

range of timepoints that, in mice, corresponded to the acute injury period (1-day postinjury (dpi)), the 

sub-acute and intermediate stages that are typically targeted with therapeutic interventions (1 week 

and 3 weeks post-injury/wpi), and a chronic time point at which recovery typically plateaus (6 wpi; 

Supplementary Fig 1). We then dissected the lumbar spinal cord of three animals from each time 

point and performed single nucleus isolation and RNA sequencing (Fig. 1a-b) (Matson et al., 2018). 

We clustered the data, integrating by timepoint, and removed clusters that were low-quality as well 

as doublet clusters, yielding a final dataset of 67,903 nuclei (see Methods for details). 

To create an atlas of cell type responses in the lumbar cord after injury, we first clustered the nuclei 

at a coarse level to highlight large-scale changes. We identified 8 major cell classes: neurons, 

astrocytes, microglia/hematopoietic cells, oligodendrocyte lineage cells, Schwann cells, endothelial 

cells, pericytes, ependymal cells, and leptomeninges (Fig. 1c). Each of these major classes was 

identified using well-established markers (Russ, 2020) (Supplementary Fig.2, Supplementary Table 

1). Neurons expressed Snhg11, Rbfox1, Rbfox2, Snap25. Astrocytes expressed Slc7a10, Agt, Gfap, 

and Vim. Microglia/hematopoietic cells expressed C1qa, Ctss, Gpnmb, Lgals3, Itgax, Ms4a4b, Cd3g 

and Nkg7. Oligodendrocyte lineage cells including oligodendrocyte precursor cells (OPCs) 

expressed Cspg5 and Tnr; committed oligodendrocyte progenitor cells (COPs) expressed Fyn and 

Tcf7l2, whereas myelinating and mature oligodendrocytes expressed Plp1, Mag, and Mog. Schwann 
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cells, which were part of the lumbar spinal cord roots that were in the dissected tissue, expressed 

Mpz and Pmp22. Vascular cells included endothelial cells, which express Bsg and Cldn5, and 

pericytes, which express Vtn and Pdgfrb. Ependymal cells expressed Nnat and Dnah12. 

Leptomeninges expressed Dcn and Col1a1 (Supplementary Fig. 2, Supplementary Table 1). With 

this approach, we have identified the major cell classes of the uninjured and injured mouse spinal 

cord.  

Figure 4.1: Single Nucleus RNA Sequencing of the Lumbar Spinal Cord after Thoracic 

Contusion  

a. Schematics depicting the experimental design for snRNA-seq, showing the injured thoracic cord and

lumbar cord (with dark red representing the lesion) as well as nuclei isolation from the intact lumbar 

cord followed by droplet-based barcoding for single nucleus RNA sequencing. b. Top, an overview of

experimental design for injury and tissue collection. The lumbar spinal cord of three animals from each 

time point: uninjured, 1 dpi (day post injury), 1 wpi (week post injury), 3 wpi, and 6 wpi. c. Uniform

manifold approximation and projection (UMAP) visualization of 67,903 nuclei from uninjured and 
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injured lumbar spinal cords, revealing 8 classes and 39 subtypes. Colored by green (neurons), yellow, 

astrocytes, orange-red (microglia), purple (OPCs), blue (oligodendrocytes), light blue (Schwann), light 

pink (pericytes), pink (ependymal), magenta (leptomeninges), brick (endothelial). d. Multiplex

immunohistochemistry (IHC) of the lumbar spinal cord from uninjured, 1 wpi and 3 wpi. Tissue was 

stained for NeuN (green), GFAP (yellow), IBA1 (red), TMEM119 (dark orange), and OLIG2 (blue). 

Scale bars are 200 µm and 50 µm, respectively. E. Quantification of the proportion of cell types from

the snRNA-seq data and immunohistochemistry in tissue. Mean ± SEM. 

Coarse Cell Types in snRNA-seq and in Tissue 

We next compared the proportion of the coarse cell types in the snRNA-seq dataset to the proportion 

of these cell types as detected by immunohistochemistry in tissue sections. In the snRNA-seq data, 

we calculated the proportion of each cell type within a given sample. In the uninjured tissue, 

oligodendrocytes represented the largest proportion of the uninjured spinal cord (34.6% ± 1.4), 

followed by neurons (29.4% ± 1.7), astrocytes (10.5% ± 1.3), and microglia/hematopoietic cells 

(3.7% ± 0.3; mean ± SEM, N = 3, Fig. 1e). We found that the overall cellular composition stayed 

relatively stable after injury, with few exceptions. Astrocytes appeared to decrease in proportion at 1 

and 3 wpi (p = 0.013 and p = 0.013) while microglia increased in proportion at 1 wpi (p = 0.006) and 

neurons increased in proportion at 3 wpi (p = 0.030). 

To determine whether these observations accurately reflect endogenous changes in the lumbar 

spinal cord, we performed immunohistochemical staining and in situ hybridization experiments in 

tissue sections from healthy animals, 1 week, and 3 weeks after thoracic contusion injury. We 

stained for neurons (NeuN), astrocytes (GFAP and SOX9), oligodendrocytes (OLIG2), as well as 

microglia and macrophages (TMEM119, IBA1, Fig. 1d-e). Quantitative analysis of the multiplexed 
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immunohistochemistry confirmed the snRNA-seq cellular composition. In the uninjured tissue, the 

proportions of astrocytes, microglia, and oligodendrocytes were not significantly different between 

the two technical approaches (astrocytes 11.7% ± 0.7; microglia/hematopoietic 4.7% ± 0.3; 

oligodendrocytes 30.5% ± 0.4; mean ± SEM; p > 0.05; Supplementary Table 2). However, neurons 

were represented at a larger fraction in the snRNA-seq dataset compared to in tissue quantification 

of NeuN-positive cells (neurons 20.8% ± 0.6, p = 0.040). This might reflect a decrease in non-neural 

cells at 3 wpi or a bias in our snRNA-seq dataset toward neurons, which had higher genes per 

nucleus. 

While astrocytes appeared to decrease at 1 and 3 wpi in the snRNA-seq dataset, this result was not 

confirmed with immunohistochemistry in tissue (Fig. 1d-e). Rather, we observed no significant 

change in SOX9-expressing astrocytes over time (Fig. 1e). To further characterize the proportion of 

astrocytes using combinatorial RNA expression, we performed multiplexed RNA in situ hybridization 

using Agt, Gja1, and Aqp4 markers. In this context, a modest decrease was observed from 11.7% in 

uninjured lumbar cords to 9.5% 1 wpi (±0.7%, 0.9%, respectively, Supplementary Fig. 3). This 

suggests that the proportional change in astrocytes that we observed in the single cell atlas did not 

reflect endogenous cell type changes, but is likely due to the overall proportional shifts of cell types in 

the injured spinal cord.  

We emphasize the importance of in situ validation for cell proportion changes in single cell RNA 

sequencing data to distinguish authentic differences in endogenous cell compositions. While some 

cell types were significantly different between snRNA-seq and in tissue proportions, the composition 

of cell types in tissue generally reflected those observed in the sequencing analysis. Overall, single 
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nucleus RNA sequencing provides an unbiased profiling of cell types that reflects in-tissue spinal 

cord biology. 

Composition and Changes Within 39 Refined Cell Types 

Given the size of this dataset at 67,903 nuclei, we were able to cluster at a higher resolution to 

identify rare cell types. In this second level of hierarchical clustering, we subclustered neurons, 

astrocytes, microglia/hematopoietic, and oligodendrocyte lineage/Schwann cells yielding 39 cell 

types (Fig. 2a-d). Replicates are shown in the uninjured spinal cord by cell type, calculated by the 

percent within a given sample (Fig. 2e, Supplementary Table 2). To assess if the subpopulations 

increase or decrease after injury, we used scCODA, a Bayesian model for compositional single-cell 

data analysis (Fig. 2f) (Buttner et al., 2021). The scCODA framework models cell type counts while 

considering negative correlative bias via joint modeling of all measured cell type proportions. Here, 

we highlight findings from the four major cell classes (neurons, astrocytes, hematopoietic, and 

oligodendrocyte lineage/Schwann cells), including cell markers, composition, and changes after 

injury. 

Neurons: 

The 23,651 neurons were subclustered and annotated by a previously established atlas of the 

lumbar spinal cord neuronal subtypes (Russ, 2020) using label transfer (Seurat, see Methods). This 

yielded 17 neuronal populations, including 8 excitatory, 8 inhibitory, and motoneurons (Fig. 2a, 

Supplementary Fig. 2, Supplementary Fig. 4). Excitatory neurons were marked by expression of 

Slc17a6, inhibitory neurons by Gad1, Gad2, and Slc32a1, and motoneurons by Slc5a7, Chat, and 

Prph. The excitatory neuron families as defined by Russ et al. 2021 are Cpne4, Maf, Reln, Rreb1, 

Sox5, Megf11, ME (mid-excitatory), and VE (ventral excitatory). Inhibitory neuron families, are 
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Adamts5, Cdh3, Pdyn, Npy, Chat, MI (mid-inhibitory), VI (ventral inhibitory), and CSF-c (cerebral 

spinal fluid-contacting neurons). The proportions of these neuronal subtypes did not significantly 

change after injury (Fig. 2f, Supplementary Table 3). 

Astrocytes: 

Astrocyte subtypes were identified by subclustering 4,525 nuclei from coarse clustering (Fig. 1c, 

Supplementary Fig. 3). Astrocytes included five subtypes that putatively reflect two homeostatic 

populations, white matter astrocytes and reactive astrocytes (Supplementary Fig. 3). All astrocytes 

expressed Gfap, Agt, and Gja1. The two homeostatic populations, “astrocytes 1” and “astrocytes 2” 

expressed Gpc5 and Slc7a10, while putative white matter astrocytes did not. White matter astrocytes 

expressed higher levels of Gfap, as well as A2m, Cd44, C3, and Vim. Reactive astrocytes 

significantly increase acutely after injury (from 0.3% ± 0.01 of a sample in the uninjured cord to 2.3% 

± 1.2 of a sample 1 dpi, N = 3, Fig. 2f), and expressed Lcn2, Rgs20, Hpgd, Serpina3n, Iigp1, Gbp2, 

and Slc10a6 (Liddelow et al., 2017). Both coarse and refined clustering of astrocytes indicated a 

decrease in astrocyte proportions (Fig. 1e, Fig. 2f); however, these changes were not confirmed with 

immunohistochemical detection in tissue as discussed above (Fig. 1d-e, Supplementary Fig. 3b). 

The apparent decrease in astrocytes after injury in the snRNA-seq dataset may be due to overall 

proportional increases in cell types in the injured spinal cord or selective vulnerability of astrocytes 

after injury. 

Microglia and Hematopoietic Cells: 

To explore microglia and related hematopoietic cell types in greater depth, we independently 

clustered the 5,080 nuclei and observed three homeostatic and two activated microglia populations, 

a cluster of macrophages, and a cluster of natural killer and T cells (Fig. 2c, Supplementary Fig. 6). 
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Homeostatic microglial clusters were defined by Cst3, C1qa, Ctss, Hexb, Trem2, P2ry12, and 

Tmem119 (Supplementary Fig. 2). The activated microglia populations expressed lower levels of 

P2ry12 and Tmem119 and induced expression of the phagocytic markers Cd68 and Lyz2. In 

addition, “activated microglia A” expressed Gpnmb, Apoe, Lgals3, Igf1, and Spp1, while “activated 

microglia B” expressed genes associated with pro-inflammatory microglia, such as Ccl2, Ccl3, Ccl4, 

and Lpl. Macrophages expressed the genes Mrc1, Cd74, and H2-Ab1 and did not express the 

microglia-specific genes Tmem119 or P2ry12. Natural killer and T cells clustered together and 

expressed the genes Ms4a4b, Cd52, Ptprc, Nkg7, and Cd3g. All microglia/hematopoietic cell types 

increased in proportion relative to other cell types at 1 wpi, particularly activated microglia A, which 

increased 14.8-fold, from 0.1% (± 0.04) of all cells in the uninjured cord to 1.6% (± 0.60) 1 wpi (Mean 

± SEM; Supplementary Fig. 6) as was reflected in the coarse cell type analysis. Both activated 

microglia subtypes were still present at 6 wpi, suggesting that they may play an ongoing role at 

chronic timepoints (Supplementary Fig. 6), even in lumbar tissue distal to the injury. 

Notably, the gene expression profile of “activated microglia A” strongly resembled a signature 

observed recently in postnatal myelin-phagocytosing microglia, in postnatal microglia that can 

promote SCI repair, and in disease associated microglia in conditions such as Alzheimer’s disease in 

the brain and ALS in the spinal cord27-30. In addition, recent work examining the lesion site of SCI has 

identified an “injury associated microglia” cell type with a similar expression profile31,32. Pathway 

analysis of the genes that characterized “activated microglia A” revealed an enrichment of genes 

associated with (1) phagocytosis (such as Lyz2, Gpnmb, Itgax, and Cd68; GO terms: lysosome, p = 

3*10-13, antigen presentation, p = 0.0003, phagosome, p = 0.0363), (2) lipid metabolism (such as 

Fabp5, Lgals3, Apoe, Soat1, and Abca1; GO term: lipoprotein, p = 0.0041), and (3) secreted proteins 

(such as Spp1 (OPN) and Igf1; GO term: extracellular secretion, p = 0.0282, Supplementary Fig. 6c). 
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To determine whether the gene expression pattern that we observed corresponded to an in vivo cell 

type, we performed in situ hybridization in tissue sections of spared lumbar cords, using C1qa (a 

general microglial marker), Spp1 (OPN) (which marked activated microglia as well as some ventral 

horn neurons (Alkaslasi et al., 2021; Russ et al., 2021; Yamamoto et al., 2011), and Gpnmb (which 

was specific to activated microglia A). These cells were observed within the white matter of the 

injured spinal cord, and appeared consistently in small clusters along the putative rubrospinal tract 

(RST) and the dorsolateral corticospinal tract (CST) in the lateral white matter at 1, 3, and 6 wpi 

(Supplementary Fig. 6e-h). Interestingly, this region showed loss of longitudinal axons from the 

descending tracts but also showed no change in the presence of residual myelin (Supplementary 

Fig. 6i-l). Together, these data suggest that Activated microglia A cells are similar to previously 

described “DAM/PAM” cells and were found in the white matter of the injured spinal cord, where they 

may play a role in the phagocytosis of degenerating axons or apoptotic cells (Wlodarczyk et al., 

2017). 

Oligodendrocytes and Oligodendrocyte Lineage Cells: 

Oligodendrocytes and oligodendrocyte lineage cells comprised the largest proportion of the lumbar 

spinal cord. We subclustered 32,287 oligodendrocyte and oligodendrocyte lineage cells, as well as 

315 Schwann cells. Although the Schwann cells in this study are likely from lumbar spinal cord roots 

that were in the dissected tissue, we included them in the downstream analysis due to the interest in 

Schwann cells as a source of repair and remyelination after injury(Jessen and Mirsky, 2019). 

Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs), expressed Cspg5 

and Tnr; committed oligodendrocyte progenitor cells (COPs) expressed Fyn and Tcf7l2 (Marques et 

al., 2016; Zeisel et al., 2018) (Fig. 2d). Newly formed oligodendrocytes (NFOL) expressed Man1a 
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and Synpr, whereas myelinating and mature oligodendrocytes expressed Plp1, Mag and Mog 

(Supplementary Fig. 2, Supplementary Fig. 7a-c). Myelinating oligodendrocytes expressed Opalin 

and Kirrel3, representing a transitional population between newly formed and mature 

oligodendrocytes. Mature oligodendrocytes expressed Klk6 and Art3. Schwann cells expressed Mpz 

and Pmp22. The proportion of oligodendrocyte lineage cells did not significantly change after injury 

with the exception of COPs, which increased 5-fold from 0.3% (± 0.1) of cells in the uninjured spinal 

cord to 1.7% (± 0.2) of cells at 1 wpi (Fig. 2f, Supplementary Table 2). These committed 

oligodendrocyte precursor cells resemble previously identified “COPs” in the juvenile 

mouse(Marques et al., 2016; Zeisel et al., 2018). The expansion of this population after injury 

indicates the emergence of new myelinating cells (Assinck et al., 2017; Hesp et al., 2015) or potential 

roles for COPs themselves (Marisca et al., 2020).  

To determine if the oligodendrocytes identified here were similar to those previously described after 

spinal cord injury, we compared our oligodendrocyte lineage cells to those identified in Floriddia et al. 

2020 (Floriddia et al., 2020). In this previous study, the diversity of mature oligodendrocytes was 

cataloged, including spatial distribution and susceptibility to spinal cord injury. Of interest, this study 

found MOL2 and MOL5/6 to be enriched in the spinal cord, with MOL5/6 increasing with age and 

enriched in the spinal cord lesion site. We analyzed how oligodendrocyte subtypes compare in both 

studies in the different temporal conditions (using Pearson’s correlation of the shared top 2,000 

variable genes). Oligodendrocytes from both studies correlated by cell type rather than injury 

(Supplementary Fig. 7). MOL2 from Floriddia et al. correlated most with the mature oligodendrocytes 

1 and 2 (MOL-1, MOL-2) from this study across injury conditions. MOL2 was enriched in distal areas 

of the injury site, where Wallerian degeneration took place. Both datasets similarly classified OPCs, 

COPs, and MFOLs. These similarities support our classification of oligodendrocyte subtypes. 
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In all, we provide an in-depth analysis of 39 cell types in the lumbar spinal cord and their 

compositional changes after injury. The relative abundance of most cell types did not significantly 

change, except for several glial subtypes (Fig. 2f).  The increase in reactivity of cells such as reactive 

astrocytes at 1 dpi, and microglia at 1 and 3 wpi likely reflected a coordinated response by glia to the 

assault on the lesion site above. By 6 wpi, only the proportion of were astrocytes was significantly 

different, indicating a relative return to a native state by this chronic timepoint. 
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Figure 4.2: Cell Type Composition in the Uninjured Spinal Cord and after Injury 

a-d. UMAPs depicting subclustering of major cell types a. UMAP of neurons. b. UMAP of astrocytes. c.

UMAP of microglia/hematopoietic cells. d. UMAP of oligodendrocyte lineage and Schwann cells.  e. A

bar plot showing the 39 cell types in the atlas and their relative percent in each sample in the uninjured 

spinal cord. Individual replicates (N = 3) are shown as well as mean ± SEM. f. The relative composition

of the 39 cell types comparing injured samples (1 dpi, 1 wpi, 3 wpi, and 6wpi) to uninjured, generated 
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using scCODA showing the final parameter output from scCODA (confidence interval shown as 3-97% 

high density index). Cell types with an inclusion probability > 0.85 were deemed significant. 

Significance depicted with a red asterisk. N = 3. For the log FC of individual replicates, see 

Supplementary Fig. 8. 

 

Cell Type Specific Changes in Gene Expression in the Lumbar Spinal Cord After Injury 

While the overall composition of cell types is relatively stable after injury, we hypothesized that gene 

expression within cell types would change after injury, endowing particular cell types with new 

properties and functions. We next analyzed gene expression across cell types to understand how 

specific cell types change their molecular repertoire after injury. It is important to note that statistical 

differences in gene expression can largely be driven by the size of the cluster, with larger clusters 

having the power to resolve more differentially expressed genes. To determine which cell types 

changed significantly following injury, we implemented Augur, a method to rank responsiveness of 

cell types in single cell data that is not biased by cluster size9. We applied Augur to the 39 cell types 

detected in this study, including 17 neuronal clusters, 4 astrocyte clusters, 7 microglial/hematopoietic 

clusters, 6 oligodendrocyte related clusters, Schwann cells, endothelial cells, pericytes, ependymal 

cells, and leptomeninges. A cell type prioritization score was generated from Augur, indicating the 

responsiveness of cell types after injury. We found that the average cell type prioritization score 

across all cell types decreased with time after the acute response to injury, suggesting a progressive 

return to homeostatic conditions across multiple populations (average 0.55 AUC, Supplementary Fig. 

9a, Supplementary Table 3). At 1dpi we found that microglia were the most perturbation-responsive 

cell type (0.86 average AUC for Microglia 1, 2, and 3). These results suggest that microglia could 

play an important role in the immediate phase after injury, even in spared tissue distant from the site 

of injury.  
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To understand the cellular processes driving these changes, we examined differentially-expressed 

genes within these cell types at each stage after injury and performed gene ontology (GO) and 

pathway analysis (Supplementary Fig. 9-10). At 1 dpi, microglia/hematopoietic cells changed 

dramatically and were characterized by a burst of expression of genes related to cell metabolism, 

which may support the significant expansion in microglial cell numbers that we observed above. 

Reactive astrocytes also emerged at 1 dpi, expressing pan-reactive genes such as Lcn2 and 

Serpina3n, as well as markers for pro-inflammatory and neuroprotective astrocytes (Liddelow et al., 

2017) such as Gbp2 and Slc10a6 (Supplementary Fig. 9b). Similarly, endothelial cells and meninges 

displayed acute gene expression changes at 1 dpi, particularly in molecules related to structure, cell-

cell connections, and extracellular matrix (ECM) adhesion. In addition, nearly all cell types showed 

increased expression of Mt1 (metallothionein-1) and Fth1 (Ferritin Heavy Chain 1) genes which are 

both involved in binding heavy metals, including iron. This suggests that extravascular blood may be 

an early environmental cue to reach the tissue of the lumbar cord (Supplementary Fig. 9b).  

While non-neuronal populations changed most acutely, neurons displayed more delayed responses. 

One week post-injury, neuronal populations showed altered expression of genes related to cell 

stress, including oxidation-reduction processes and protein folding stress response, and molecules 

related to neurotransmission and ion channel activity. Intriguingly, specific populations of excitatory 

neurons in the dorsal horn and inhibitory neurons within the ventral horn displayed changes in 

synaptic organization and plasticity-relate genes. This suggests the potential for tailored circuit 

remodeling. At the same time, oligodendrocytes altered their cellular metabolism molecules and 

genes related to cell-cell adhesion. Three weeks after injury, multiple neuronal populations continued 

to show signatures of cell stress and changes in cell-cell contacts, while oligodendrocytes continued 
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to show changes related to cell metabolism and cell-cell adhesion. Finally, by 6 wpi, many cell types 

showed modest or no changes in gene expression compared to the uninjured state, showing an 

overall return to baseline expression patterns by this point (Supplementary Fig. 9b).  

 

Together with the cellular composition analysis above, these data comprise a natural history time 

course of the lumbar spinal cord response to injury. Within each time window or epoch, the 

community of cell types responds with diverse molecular signatures which can be observed across 

time. 

 

Transcriptional Changes in Neurons of the Lumbar Spinal Cord After Injury 

Neurons in the lumbar cord are largely spared, unlike the neurons at the lesion site(Liu et al., 1997). 

However, many of these cells undergo axotomy and abrupt changes to their descending input 

(D'Amico et al., 2014; Wang et al., 2018). We sought to characterize the changes within all neurons 

after injury. Histological analysis of the tissue, revealed no significant change in the number of 

neurons (Fig. 1e), neurofilament signal, or MAP2+ dendritic signal (Fig. 3b-c) after injury, suggesting 

no large-scale death or loss of neuronal processes. However, overall, neurons displayed dynamic 

changes in gene expression, particularly at 1 and 3 wpi, with more genes enriched in uninjured 

neurons compared to injured neurons (Fig. 3d). Pathway analysis showed that mitochondrial, 

endoplasmic reticulum, and ATP synthesis pathways are enriched in the uninjured cord (Fig. 3e), 

likely reflecting a greater level of neuronal firing and homeostatic function. At 1 and 3 wpi, pathways 

associated with plasticity such as post-synaptic density, neurotransmitter receptors, and axon 

guidance were upregulated. Particular genes that are upregulated include neurotransmitter receptors 

(such as Gria1, Gria2, Gria3, Grid1, Grik1, and Chrm2), those related to synaptogenesis (Nrnx3, 

Nlgn1, Lrrmt4, Tenm2, Lrrc4c, and Dscam), and synaptic structure (Bdnf, Stat3, Socs3, Klf6, Gap43, 
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Atf and Sprr1a, Fig. 3g). The upregulation of these pathways suggests a broad change in 

neurotransmission and synaptic remodeling amongst neurons in the first few weeks after spinal cord 

injury. These changes would likely render spinal neurons more responsive to low levels of 

neurotransmitters and their activity within local circuits. 
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Figure 4.3: Plasticity-Related Expression in Neurons after Injury

a. Schematic depicting lumbar spinal cord neurons and their response to injury, whether that

be an ascending neuron or an interneuron. b. Immunohistochemistry of the lumbar spinal

cord from uninjured, 1 wpi and 3 wpi. Tissue was stained for neurofilament (a cocktail of 

neurofilament-light, neurofilament-medium, neurofilament-heavy; purple) and MAP2 (green). 

Scale bars are 200 µm. c. Quantification of neurofilament and dendritic changes. Pixels were

quantified from thresholded images of neurofilament and MAP2. Error bars are mean ± SEM 

(N = 4). d. Differential gene expression analysis comparing uninjured to 1 and 3 wpi neurons,

the timepoints of maximal neuronal gene expression changes. Black dots indicate pvalue 

adjusted < 0.001, grey indicate p ≥ 0.001. e. Pathway analysis for differentially expressed

genes between uninjured and injured timepoints. X-axis indicates -log(p val adj) of GO and 

KEGG pathway clusters. P values (adjusted) were calculated using Benjamini-Hochberg false 

discovery rate (FDR). Yellow indicates relatively high normalized average expression and 

dark blue indicates relatively low normalized average expression.  f. Chord plot indicating

shared genes between top 5 GO terms from genes upregulated 1 and 3 wpi. g. Heatmaps

showing average neuronal gene expression from top GO terms, including neurotransmitter 

receptors, synaptogenesis, and synaptic structure. Yellow indicates relatively high normalized 

average expression (1) and dark blue indicates relatively low normalized average expression 

(-1). 

Rare Populations of Spinal Neurons Induce a Gene Expression Signature of Regeneration 

We observed broad changes in the expression of genes related to neural excitability, plasticity, and 

circuit structure that could support tissue-wide changes in function (Fig. 3). In addition to these broad 

effects that could alter local spinal network function, we hypothesized that specific neuronal 
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populations might be capable of spontaneous long-range remodeling. Such changes would be 

challenging to observe without the resolution of single nucleus sequencing, and thus the dataset that 

we generated held opportunities for discovery. 

As was described above, we determined the refined identities of neuronal populations in the dataset 

using annotations described in a recent atlas of mouse spinal cord cell types(Russ, 2020). While we 

observed nearly all the cell types that we expected, one group of neurons remained challenging to 

categorize (Fig. 4a-b, Supplementary Fig. 5b-c). By clustering neuronal populations without label 

transfer annotations, we found that these neurons were distinguished by genes associated with axon 

regeneration, including Atf3, Sprr1a, Tnfrsf12a (Fn14), Sox11, Klf6, Bdnf, Adcyap1, and elevated 

expression of Gap43 (Fig. 4c, Supplementary Fig. 4c-d). These genes all belong to a class of 

“regeneration associated genes” (RAGs) that is induced robustly in the peripheral nervous system 

after nerve injury and can enable regeneration of axons(Holland et al., 2019),(Nguyen et al., 2019; 

Renthal et al., 2020). The expression of individual regeneration-associated genes has been reported 

in the spinal cord after injury (Holland et al., 2019),(Bonilla et al., 2002; Starkey et al., 2009),(Kim et 

al., 2004),(Dhara et al., 2019; Forstner et al., 2018). However, the full spatiotemporal profile of this 

rare central nervous system phenotype, the cellular identity of these neurons, and the association 

with axon outgrowth in this context are all unknown. This has been a major obstacle in understanding 

what enables, restricts, or modulates circuit reorganization after injury.  

We examined the expression of cell type marker genes in this RAG+ cluster and found evidence of a 

mixed cell type origin. Cells with the highest RAG expression largely downregulated their 

endogenous gene expression, as previously reported in peripheral neurons, confounding the initial 

molecular definition of their cell type (Nguyen et al., 2019; Renthal et al., 2020). Despite this caveat, 
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the RAG+ cluster expressed a diverse set of genes associated with ascending projection neurons 

from the lumbar spinal cord to the brain, including Lypd1, Tacr1, Zfhx3, Pou6f2, and Tac1 (Barik et 

al., 2021; Chiang et al., 2020; Haring et al., 2018; Roome et al., 2020) (Fig. 4d). Additionally, the 

expression of Slc17a6 (vGlut2), Zfhx3, and Pou6f2 suggested that some of these cells were likely 

excitatory neurons that resided in the lateral part of deep dorsal or ventral horn (Russ et al., 2021).  

 

We next probed the expression of Sprr1a and Atf3 in tissue to test whether the RAG signature in the 

sequencing data is reflected in vivo. Expression of Sprr1a and Atf3 were observed in lumbar spinal 

cord tissue beginning at one week following spinal cord injury and extending to chronic timepoints at 

three and six weeks after injury (Fig. 4e-g, Supplementary Fig. 5g), thereby confirming the 

transcriptional data above. Spatial analysis using in situ hybridization revealed a rostral-caudal 

gradient in the number of RAG-expressing cells, with a greater number of Sprr1a-positive cells at 

rostral lumbar segments closer to the lesion site (Supplementary Fig. 11a-b). The cellular distribution 

within the transverse plane also shifted such that RAG-expressing cells were found in the dorsal, 

mid, and ventral horns at L2, but were restricted to the ventral horn in L5. We compared RAG 

expression to that of the excitatory marker Slc17a6 and confirmed that most RAG-expressing 

neurons were indeed excitatory (Fig. 4i), and we next examined whether these represent any of the 

V0c, V2a, or V2d ventral excitatory populations (Arber, 2012; Gosgnach et al., 2017). We did not 

detect any co-expression of RAGs with the V0c marker Chat or the V2a marker Vsx2. In contrast, a 

small subset of RAG neurons expressed Shox2 (Fig. 4j-k), a marker of V2d excitatory, rhythm-

generating central pattern generator neurons of the ventral horn(Dougherty et al., 2013; Garcia-

Ramirez et al., 2021; Ha and Dougherty, 2018). 
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To determine if certain neurons have a molecular predisposition to express RAGs over others, we 

applied single nucleus ATAC-seq to the lumbar spinal cord of uninjured mice. We leveraged our 

snRNA-seq annotations to identify cell types, first assessing neurons compared to non-neurons 

(Supplementary Fig. 12a-d). We detected increased chromatin accessibility of Sprr1a, Sox11, and 

Gap43 RAG loci within neurons. To provide greater resolution of neurons, we next grouped these 

into families of cell types, including dorsal excitatory (DE), dorsal inhibitory (DI), mid-excitatory (ME), 

mid-inhibitory (MI), ventral excitatory (VE), ventral inhibitory (VI) and motoneurons. We found no 

clear differential pattern of chromatin accessibility between families of neurons (Supplementary Fig. 

12e-h). Although this dataset did not provide deep neuronal subtype resolution, these findings do not 

support the existence of specific neuronal subpopulations that are primed to express RAG genes.  

If molecularly defined populations do not explain the majority of RAG-expressing neurons, what other 

factors should be considered? Ascending projection neurons are important candidates for RAG 

expression after injury based on the expression of ascending markers in the RAG+ cluster and the 

passage of these neurons through the lesion area. We next hypothesized that the lumbar projection 

neurons with axons directly injured by the thoracic contusion respond by expressing this pro-

regenerative signature. 

To determine whether direct injury to axons elicited RAG expression, we performed complete 

transection injuries of the thoracic spinal cord plus dextran injection to the transected area 

(Supplementary Fig. 13a). One week later, we found that 4.6% of neurons in the lumbar cord were 

labeled by dextran (taken up by cut axons and transported to the cell body), with less than 1% of 

total neurons expressing ATF3 (Supplementary Fig. 13b-c). Of the ATF3-expressing neurons after 

complete transection, less than half (48%) were dextran positive (Supplementary Fig. 13b-c). We 
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repeated this study using a lateral hemisection injury to distinguish ipsilateral and contralateral-

projecting populations and found similar results (Supplementary Fig. 13d-e). Thus, ATF3 is either 

expressed by both injured and non-injured neurons or the dextran labeling was not complete in 

labeling all directly injured neurons. More importantly, we found that only a subset of lumbar 

projection neurons that were directly injured by transection (and took up dextran label at the injury 

site) induced expression of ATF3. Finally, we examined what percent of lumbar neurons are 

axotomized during a contusion, by administering dextran to the contusion site at the time of injury. In 

a contusion model, we found three weeks post injury that 18% of neurons were directly injured 

ascending neurons, as marked by dextran (18%, Supplementary Fig. 11e). In conclusion, the 

expression of RAGs after the injury is not found in a single molecularly-defined population, nor is it a 

general feature of axotomized spinal neurons. 
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Figure 4.4: Specific Neurons Express Genes Associated with Regeneration

a. UMAP showing predicted neuronal families. b. Targeted view of RAG-expressing cluster over injury

time points. c. Featureplots showing RAGs expressed in neurons. d. A dotplot showing expression of

RAGs within targeted RAG-expressing cluster (cluster 23 defined by independent clustering in 

Supplementary Fig. 5), split by timepoint. e-f. RNAscope in situ hybridization showing expression of

Sprr1a and Atf3 in the uninjured cord and 1 wpi. Scale bars are 200 and 50 µm, respectively. g.
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Quantification of Sprr1a+ cells and Atf3+ cells in the uninjured and 1 wpi injury cord (** p < 0.01, *** p < 

0.001, N = 7, 10). h. Diagram of spatial location of transcription types, including ChAT (light green), 

Vsx2 (dark green) and Shox2 (orange). i-l. Visualization and quantification of VGluT2/Slc17a6+, 

Shox2+, Chx10/Vsx2+, and Sprr1a-expressing cells in the ventral spinal cord. m. Diagram of spatial 

location of connectivity types, including ascending neurons labeled by dextran (aqua) and 

spinocerebellar (SCT, orange) neurons. n. Visualization and quantification of lumbar spinal cord 

neurons labeled by dextran injected into a thoracic contusion lesion site. Aqua arrows indicate ATF3 

and dextran overlap. o-q. Visualization and quantification of the percent of RAG-expressing cells— 

Sox11 (o), Sprr1a (p), and ATF3 (q) that are spinocerebellar. Orange arrows indicate RAG gene and 

spinocerebellar dual-labeled cells. Scale bars are 50 µm. Error bars indicate ± SEM (N = 5, 4, 4 

animals). 

 

Spinocerebellar Neurons Express RAGs and Display Axon Sprouting Below the Lesion  

After the injury, the rare RAG-expressing neurons in the lumbar spinal cord displayed a 

heterogeneous gene expression pattern. Still, their rostral-caudal distribution, location in the deep 

dorsal and ventral horn, and excitatory neurotransmitter status suggested that they may be 

spinocerebellar neurons. Previously, Shox2 has been reported as a marker of spinocerebellar 

neurons in the cervical cord (Baek et al., 2019). We found that this is not the case in the lumbar 

spinal cord (0% of spinocerebellar neurons were Shox2+, ± 0.0, N = 3 animals). To test if these 

neurons are spinocerebellar, we injected AAV2retro-pmSyn1-EBFP-Cre in the cerebellum and 

AAV1-Syn-DIO-GFP bilaterally in the lumbar spinal cord to label both ipsi- and contra-laterally 

projecting spinocerebellar neurons (Fig. 5a). Two weeks later, we delivered a severe thoracic 

(vertebral level T9) contusion and dextran to label directly injured neurons. After bilateral 

spinocerebellar labeling and three weeks post thoracic injury, we found that 65.2% (± 4.3) of Sox11-

expressing neurons, 41.8% (± 1.5) of Sprr1a-expressing neurons and 38.0% (± 5.6 SEM) of ATF3-
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expressing neurons were indeed spinocerebellar (Fig. 4o-q, Supplementary Fig 11d-e), while only 

1.3% of the spinocerebellar neurons were dextran positive suggesting that spinocerebellar neurons 

are largely not axotomized by the severe thoracic contusion injury (Supplementary Fig. 11e). Ventral 

spinocerebellar neurons may avoid direct injury based on the ventral location of their axons. From 

this data, at least ~55% of ATF3-expressing neurons are ascending, as revealed by dextran-labeling 

(18% directly injured) or spinocerebellar viral-labeling (38%). Based on the inefficiencies and 

variability of these labeling approaches, this likely under-represents the proportion of ascending 

neurons amongst the RAG+ population. 

We next asked whether there is there an axon outgrowth or remodeling phenotype that correlates 

with the RAG gene expression signature that we observed in spinocerebellar neurons? Based on the 

cell-filling viral label, we examined dendritic arborizations, thoracic axons, collateral axons, and 

mossy fiber terminals of spinocerebellar neurons after injury and performed this analysis in two 

independent experimental paradigms: bilateral or contralateral spinocerebellar labeling. Dendritic 

structure did not change after injury (Fig. 5e, p = 0.206, p = 0.211, Mann-Whitney test). In contrast, 

we observed an increase in the number of axons found in the white matter of the thoracic spinal cord 

below the injury site at both three and six weeks after injury (Fig. 5f, p < 0.05, p < 0.05, Mann-

Whitney test) and a dramatic increase in grey matter collaterals of these axons caudal to the injury 

site (p < 0.005, two-way ANOVA). Specifically, these collaterals targeted lamina VII of the ventral 

horn (Fig. 5b-d). In contrast to these findings, there was no significant change in spinal cord axons in 

the tissue above the lesion (Fig. 5f, ns). In the cerebellum, there was a trend for an increase in 

spinocerebellar mossy fibers at three weeks after injury (p = 0.336, Mann-Whitney test), which then 

decreased significantly by six weeks after injury (Fig. 5g, p < 0.05, Mann-Whitney test). This 

indicates that the terminal synapses of spinocerebellar neurons are largely preserved after spinal 
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cord injury and may display dynamic reorganization. Together, these results show that lumbar 

spinocerebellar neurons expressed regeneration-associated genes after spinal cord injury, have 

axons that were spared after a severe contusion, and underwent structural remodeling below the 

injury site including axonal outgrowth after injury. This highlights an example of spontaneous 

neuronal remodeling after spinal cord injury, discovered through the power and resolution of single 

nucleus sequencing. 
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Figure 4.5: Spinocerebellar Neurons Express RAGs and Display Thoracic Sprouting 

after Injury 

a. Schematic of AAV- injection and injury. b-d. Spinocerebellar neurons and their cell bodies,

axons, and mossy fibers in the cerebellum, thoracic and lumbar spinal cord. Scale bars are 

500 µm in the cerebellum and 200 µm for spinal cord sections (thoracic and lumbar). e. 

Quantification of dendritic arborizations in SCT neurons (ns, p = 0.206, p = 0.211, Mann-
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Whitney test). f. Quantification of thoracic axons rostral and caudal to the injury site (p < 0.05,

p < 0.05, Mann-Whitney test). g. Quantification of grey matter collaterals, as measured by

pixels after thresholding (p < 0.005, two-way ANOVA). h. Quantification of mossy fibers,

normalized by the number of SCT neurons in the same animal (p = 0.336, p < 0.05). Mean ± 

SEM, N = 4,5,6. *p < 0.05; ****p < 0.0001; n.s., not significant.

Discussion: 

SCI disrupts neuronal connections, eliciting trauma on a wide array of cells within the tissue. While 

the capacity for axonal regeneration and recovery after SCI is limited (O'Shea et al., 2017; Tran et 

al., 2018), there may be latent mechanisms for spontaneous recovery within the spinal cord, 

particularly in anatomically incomplete injury where reorganization of circuits below the lesion site 

can support the restoration of function (Ballermann and Fouad, 2006). We used single nucleus RNA 

sequencing to profile the lumbar spinal cord after a severe thoracic contusion injury to track the cell 

type-specific injury responses and identify spontaneous changes that could be leveraged for 

recovery. We present a natural history time-course extended from acute through chronic timepoints 

and an accompanying interactive website as a resource for the field 

(https://seqseek.ninds.nih.gov/spinalcordinjury). We observed rare spinal neurons that expressed a 

pro-regenerative transcriptional signature, identified a major subset of these cells as spinocerebellar 

neurons and demonstrated axonal sparing and outgrowth of these cells after spinal cord injury.  

Our findings build on prior work that used single cell or nucleus sequencing to profile the cell type-

specific responses to spinal cord injury. Most of these studies have focused on non-neuronal cells in 

and surrounding the lesion area or throughout the spinal tissue, such as the cells that make up the 

fibrotic core, glial scar, myeloid cells, vascular cells, and oligodendrocyte lineage (Floriddia et al., 
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2020; Millich, 2020; Wahane et al., 2021). In particular, an emerging finding from multiple studies, 

bolstered by our own observations, is the presence of damage-associated microglia in disease and 

injury (Benmamar-Badel et al., 2020; Hakim et al., 2021; Hammond et al., 2019; Kamphuis et al., 

2016; Keren-Shaul et al., 2017; Li et al., 2019; Li et al., 2020; Millich, 2020). Of the microglia that 

respond after SCI, activated microglia A cells expressed neuroprotective growth factors and were 

transcriptionally similar to proliferative axon tract-associated microglia in postnatal mice (Hammond 

et al., 2019; Li et al., 2019; Wlodarczyk et al., 2017), disease-associated microglia (Keren-Shaul et 

al., 2017), as well as microglia from the human spinal cord (Shannon Tansley, 2020). Future work is 

needed to address the implications of this disease-associated microglia for recovery after injury in 

adults (Li et al., 2020). While these studies have highlighted the spontaneous trauma responses 

amongst glia, they have left neuronal plasticity mechanisms largely unaddressed. We previously 

used single nucleus RNA sequencing to identify neurons that respond to epidural electrical 

stimulation (Skinnider et al., 2021), but did not examine the effect of spinal cord injury itself or 

explore the molecular pathways that could mediate spontaneous or therapeutic circuit remodeling. 

The cell type- and context-specific factors that control a neuron’s response to injury are not well 

understood, hampering efforts to target, expand, and modulate this cellular potential. We leveraged 

the resolution of single nucleus sequencing to explore this question in the context of spinal cord 

injury. We found that broad neuronal responses mainly included the down-regulation of physiological 

pathways and the upregulation of genes associated with neurotransmission and synaptic structure. 

In contrast, two specific subsets of spinal cord neurons – Shox2 expressing V2d neurons and 

spinocerebellar neurons – expressed RAGs after injury. These genes included transcription factor 

RAGs (such as Atf3 and Sox11) that act as indirect regulators of many growth proteins, as well as 

effector RAGs (such as Sprr1a and Gap43) that play a direct effector role in growth cone and axon 
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outgrowth cytoskeletal changes (Bomze et al., 2001; Bonilla et al., 2002; Ma and Willis, 2015). By 

defining the identities of spinal neurons that express RAGs, our work opens the door to tracking the 

axonal remodeling that may accompany the transcriptional regeneration signature. 

RAGs can be necessary and sufficient to support axon regrowth after injury (Bonilla et al., 2002; 

Fagoe et al., 2015; Jing et al., 2012; Nguyen et al., 2019; Renthal et al., 2020; Starkey et al., 2009), 

prompting us to test whether spinocerebellar neurons displayed structural plasticity after injury. 

Indeed, we found that spinocerebellar axons are spared by severe contusion injury and even show 

increased numbers in the thoracic spinal cord, together with enhanced axon collaterals in the 

thoracic grey matter and evidence of cerebellar mossy fiber reorganization. Importantly, these 

structural changes confirm that spinocerebellar neurons, that express RAGs after spinal cord injury, 

undergo spontaneous axon outgrowth. 

What may be the functional consequences of spinocerebellar circuit remodeling? Sprouting of 

existing axon fibers is an important component of recovery from spinal cord injury, permitting spared 

neurons to make new connections, serve as circuit relays, and take on compensatory roles for 

improved behavioral function (Cafferty et al., 2008; Collyer et al., 2014; Jain et al., 1995; Sofroniew, 

2018). We found that spinocerebellar neurons showed significant remodeling in the caudal thoracic 

cord just below the lesion, with a major expansion in the lamina VII of the ventral horn. Here, these 

neurons may contact local central pattern generator circuits or connect with spared and regenerating 

descending pathways (Barriere et al., 2008; Wang et al., 2018). Spinocerebellar neurons also 

showed structural plasticity at their mossy fiber terminals in the cerebellum. Given the importance of 

these connections in locomotion and motor learning, such anatomical changes could provide a key 

substrate for therapeutic interventions (Chalif et al., 2022; Lei and Perez, 2021). 
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There are several limitations to consider in this work. First, we extracted nuclei instead of whole cells 

for transcriptional profiling to avoid experimentally induced gene expression and selective cell death 

common in single cell profiling (Alkaslasi, 2021; Lacar et al., 2016; Sathyamurthy et al., 2018; Wu et 

al., 2017). However, this approach may yield fewer genes detected per cell/nucleus and may slightly 

bias the cellular composition (Bakken et al., 2018). For example, snRNA-seq on the human brain 

showed that using nuclei for transcriptional profiling depleted activated microglia, compared to using 

cells (Thrupp et al., 2020). While it is possible that we under-represented activated microglia in our 

data, both single cell and single nucleus RNA sequencing approaches have limitations (Marsh, 2022) 

that are important to consider when choosing a technique. Second, this study provided a global 

overview of all cell types in the lumbar spinal cord, and should be followed up by future studies on 

specific cell types after spinal cord injury enabling deeper analysis of the molecular pathways and 

trauma responses of each cell type. Third, the atlas component of this work examines changes at the 

gene expression level and does not address post-transcriptional cellular mechanisms. Despite these 

limitations, this work provides a powerful and temporally resolved reference atlas of cell type-specific 

changes after traumatic injury and allowed us to discover rare molecular changes that could provide 

the substrates of repair and recovery. 

Here, we sought to uncover the endogenous mechanisms by which the adult nervous system can 

recover from a severe SCI. The single cell atlas, discovery of RAG-expressing neurons, and the 

plasticity in spinocerebellar neurons following severe but incomplete thoracic contusion injury provide 

important insight into the natural mechanisms of recovery after SCI. Understanding of these intrinsic 

mechanisms will provide new therapeutic targets to control or even reverse pathological changes 

across a wide variety of injuries and diseases. 
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Methods:

Mice 

All procedures and experiments were approved by the Veterinary Office of the Canton of Geneva 

(Switzerland) and the National Institute of Neurological Disorders and Stroke Animal Care and Use 

Committee. Mice for RNA sequencing were female C57BL/6 (12-30 weeks of age). For all other 

experiments, balanced samples of male and female C57BL/6 mice (12-30 weeks of age) were used. 

Surgical Procedures 

Surgical procedures were performed as previously described (Asboth et al., 2018). Briefly, following 

a mid-thoracic laminectomy (T9 vertebra), a spinal cord impactor (IH-0400 Impactor, Precision 

Systems and Instrumentation LLC) was used to induce a contusion injury. The applied force was set 

to 90 kdyn. Spinal transections were performed following a mid-thoracic laminectomy (T9 vertebra), 

cutting the spinal cord with spring scissors before filling the void with gel foam. Animal care, including 

manual bladder voiding, was performed twice daily or as needed following injury. 

For dextran-labeling experiments, 1 μL dextran (Rhodamine B, 10,000 MW, ThermoFisher Scientific, 

Catalog Number D1824) was injected into gel foam separating the transected cord.  

Two days after injury, all mice were evaluated in an open field, and all animals exhibiting any 

hindlimb movements were not further studied. A larger cohort of mice was taken through kinematic 

analysis, and 3 mice representative of each timepoint were selected for snRNA-Seq. Mice that fell a 

standard deviation outside of the average for each timepoint were excluded.  
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Viruses 

AAV2retro-pmSyn1-EBFP-Cre virus was produced at Addgene (Plasmid #51507)(Madisen et al., 

2015). AAV1-Syn-DIO-GFP virus was produced by Vigene (CV17077-AV1). Viral particles were 

injected at a titer of 5E12-1E13 genome copies per mL.  

 

Intraspinal Injections 

Intraspinal injections were performed as previously described (Chaterji et al., 2021; Sathyamurthy et 

al., 2020). Briefly, mice were anesthetized by intraperitoneal injection of a drug cocktail containing 

fentanyl (0.2 mg.kg), dexmedetomidine (1 mg/kg), and midazolam (5 mg/kg) dissolved in saline. For 

spinal injections, a small incision was made in the skin, and the underlying musculature and adipose 

tissue were teased apart to reveal the vertebral column. Tissue joining the dorsal processes of 

consecutive vertebrae was removed, and the vertebral surfaces were cleaned with fine forceps and 

gently separated to reveal the dorsal surface of the spinal cord (at spinal levels L2 and L5). The dura 

was punctured by pinching with sharp forceps to facilitate the smooth entry of the needle. A glass 

pulled needle was lowered to a depth of 300 μm, halfway between the midline of the spinal cord and 

the lateral edge. The needle was then pulled back to 250 μm before pressure injecting 250 nL of viral 

particles at a rate of 75 nL per minute. Following virus injection, the needle was left in place for one 

minute before it was removed. Each spinal cord received 3 unilateral injections at L2, L3/4 and L5 

(Harrison et al., 2013). 

 

The overlying muscle was sutured after injections, and the skin incision was closed using wound 

clips. Anesthesia was reversed by intraperitoneal administration of buprenorphine (0.1 mg/kg), 

atipamezole (2.5 mg/kg), and flumenazil (0.2 mg/kg) in saline. Additionally, mice received an 

intradermal injection of meloxicam SR for analgesia and were returned to their home cages. 
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Intracranial Injections 

Mice were anesthetized by intraperitoneal injection of a drug cocktail containing fentanyl (0.2 mg.kg), 

dexmedetomidine (1 mg/kg), and midazolam (5 mg/kg) dissolved in saline. A small incision was 

made in the scalp, and a craniotomy was made at -5.8 mm AP, -4.0 mm ML, referencing from 

bregma (1Cb-4/5Cb)(Sengul et al., 2015). Virus (500 nL volume) was pressure injected through a 

pulled glass needle at a rate of 150 nL per minute, starting at a depth of 1.8 mm, slowly raising to a 

depth of 1.5 mm. Following virus injection, the needle was left in place for one minute before it was 

removed. The craniotomy was closed with gel foam followed by bone wax, and the scalp was closed 

with a wound clip. Anesthesia was reversed by intraperitoneal administration of buprenorphine (0.1 

mg/kg), atipamezole (2.5 mg/kg), and flumenazil (0.2 mg/kg) in saline. Additionally, mice received an 

intradermal injection of meloxicam SR for analgesia and were returned to their home cages. 

Behavioral assessments 

All procedures used for mice in the sequencing experiment have been described in detail previously 

(Asboth et al., 2018). Limb movements were evaluated while running on a horizontal walkway. 

Bilateral leg kinematics were captured with the Vicon Motion Systems, UK (combining 12 infrared 

cameras) for tracking with reflective markers on the crest, hip, knee, ankle joints and distal toes. The 

limbs were modelled as an interconnected chain of segments. Based on these, a total of 80 gait 

parameters were computed for each limb for each gait cycle. All gait parameters are reported in 

Supplementary Table 7. In Supplementary Figure 1, quantifications of key gait parameters are 

shown: Step height (calculated from the toe), % drag (as percent of the gait cycle), whole limb 

oscillation (difference between maximum and minimum angle of limb axis, that is crest to toes, in XY 

plane within a gait cycle), whole limb oscillation velocity (velocity of the previous), ankle/ knee / hip 
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joint oscillation (difference between maximum and minimum joint angle within a gait cycle) and ankle 

joint oscillation velocity (velocity of previous). Differences among groups were calculated using two-

tailed t tests (unpaired) and were considered significant if p < 0.05. Data are represented as mean ± 

SEM unless otherwise indicated. Statistical analyses were performed using GraphPad prism 

software.  

Analysis of kinematic data 

A total of 78 gait parameters were computed for each limb for each gait cycle. We chose to represent 

the following gait parameters: step height, drag percentage, amp limb, amp speed limb, amp join 1, 

amp joint 2, amp joint 3, and amp speed joint 3. Differences among groups were calculated using 

two-tailed t-tests (unpaired) and were considered significant if p < 0.05. Data are represented as 

mean ± SEM unless otherwise indicated. Statistical analyses were performed using GraphPad Prism 

software. 

Nuclei Isolation 

Nuclei were isolated from adult mouse lumbar cords with proximal dorsal and ventral roots attached 

using a triton-based protocol adapted from Matson et al. 2018. Briefly, mice were euthanized 

according to IACUC guidelines. The spinal cord was rapidly dissected and frozen on dry ice. Later, 

fresh frozen lumbar cords (spinal segment L2-S1) were placed in a Dounce homogenizer (Kontes 

Dounce Tissue Grinder) containing 500 μL of lysis buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 

mM CaCl2, 3 mM MgAc, 0.1 mM ETDA, 1 mM DTT, 0.1% Triton X-100). The cords were dounced 

with 5 strokes of pestle A, then 5-10 strokes of pestle B. The lysate was diluted in 3 mL of sucrose 

buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2, 3 mM MgAc, 0.1 mM ETDA, 1 mM 

DTT) and passed over a 40 μm strainer. The filtered lysate was centrifuged at 3,200 x g for 10 min at 
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4°C. After centrifugation, the pellet was resuspended in sucrose buffer and incubated for 2 min on 

ice. The sample was transferred to an Oak Ridge tube and homogenized for 1 min using an Ultra-

Turrax Homogenizer (IKA). Then, 12.5 mL of density sucrose buffer (1 M sucrose, 10 mM HEPES 

[pH 8.0], 3 mM MgAc, 1 mM DTT) was layered below the sample. The tube was centrifuged at 3,200 

x g for 20 min and the supernatant immediately poured off. The nuclei on the side of the tube were 

resuspended with 100 μL of PBS with 0.04% BSA and 0.2 U/ μL RNase inhibitor. Nuclei were 

inspected for visual appearance and cell lysis using trypan blue and quantified with a hemocytometer 

before being adjusted to a concentration of 1,000 nuclei per μL. 

 

Single Nucleus RNA Sequencing 

Single nucleus RNA sequencing was carried out using Single-cell gene expression 3’ v2 kit on the 

Chromium platform (10X Genomics) according to manufacturer’s instructions with one modification. 

Following reverse-transcription, an additional PCR cycle was added to the number of cycles for 

cDNA amplification to compensate for decreased cDNA abundance in nuclei compared to cells. 

Approximately 8,000-9,000 nuclei were loaded in each well and 3,000-7,000 nuclei were recovered 

per sample. 

 

Libraries were sequenced to a minimum depth of 20,000 reads per nucleus using an Illumina HiSeq 

3000 (PE 26 – 8 – 98 bp). Raw sequencing reads were demultiplexed, aligned, and a count matrix 

was generated using CellRanger. For alignment, introns and exons were included in the reference 

genome (mm10).  
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Clustering 

Seurat v3.2.2 was used to filter, normalize, anchor, and cluster the dataset(Stuart et al., 2019). We 

filtered nuclei for downstream analysis and included only those with greater than 200 genes detected 

per nucleus and less than 20 percent of reads coming from mitochondrial genes. For neurons, the 

minimum threshold was increased to 500 genes per nucleus as we have previously found that more 

genes are detected per nucleus in neurons compared with other cell types(Russ, 2020; 

Sathyamurthy et al., 2018). All genes analyzed were present in greater than three nuclei.  

We performed integration of the 5 conditions (3 samples each) using the uninjured samples as a 

reference, followed by standard log normalization and scaled the data using 2,000 most highly 

variable genes, while regressing out percent mitochondria and nUMI. We used principal component 

analysis for dimensionality reduction. The number of principal components was selected based on 

elbow plot inflection, jackstraw plot significance, and PC heatmaps (inspecting gene loadings in each 

PC and their patterns) for individual principal components. Clustering was performed at two levels—

first we performed coarse clustering using 25 PCs and a resolution of 3. After coarse clustering, 

remaining nuclei were re-normalized, scaled, and 50 principal components were used for 

dimensionality reduction, with a resolution of 3. 

Clusters were visualized using Uniform Manifold Approximation and Projection for Dimension 

Reduction (UMAP), and cluster markers were found using the “auroc” test in Seurat. Clusters with 

less than 3 significant markers and had low nUMI, or that were not defined by a cohesive set of 

genes and had low nUMI, were identified as low-quality clusters and discarded from downstream 

analysis. We used clustering to identify doublets, rather than defining them on a cell-by-cell basis to 

avoid discarding cells that may have hybrid or continuum status between two related cell types. All 
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clusters were tested for potential doublet status by examining marker lists for defining genes, using 

DoubletFinder (McGinnis et al., 2019), and by looking for co-expression of the top markers using 

FeatureScatter (using top 10 cell type markers from a previously published spinal cord atlas (Russ, 

2020)). If these analyses supported a doublet identity for the cluster, it was removed from 

downstream analysis. Overall, 22,435 nuclei were discarded as low-quality or doublets. We next 

subclustered the neurons, oligodendrocytes, astrocytes, and microglia independently. Raw data for 

the nuclei in each class was re-analyzed with standard log normalization and a new principal 

component analysis. We used the following principal components and resolution for each 

subclustering: neurons: 40 dimensions and resolution 1; oligodendrocytes: 16 dimensions and 

resolution 0.3; astrocytes: 8 dimensions and resolution 0.3; and microglia: 11 dimensions and 

resolution 0.8. In addition, we also used label transfer(Stuart et al., 2019) to analyze the neurons and 

oligodendrocytes, as described in the Supplemental data. Nuclei had on average 1,392 genes per 

nucleus in neurons and 471 genes per nucleus in non-neuronal cells.  

 

Single Nucleus ATAC Sequencing 

Single nucleus ATAC sequencing was carried out using Chromium Next GEM Single Cell ATAC 

v.1.1 kit on the Chromium platform (10X Genomics) according to manufacturer’s instructions. 

Libraries were sequenced to a minimum depth of 10,000 reads per nucleus using an Illumina MiSeq 

(PE 50 – 8 – 16 – 50 bp). Raw sequencing reads were demultiplexed, aligned, and a count matrix 

was generated using CellRanger-atac 2.0. Cell type-specific dimensionality reduction and cluster 

analysis for snATAC-seq was performed using ArchR (version 1.0.1). To cluster our scATAC-seq 

data (for both broad clustering and neuronal subclustering), we used ArchR’s  addIterativeLSI 

function to perform iterative LSI clustering.  
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Cell types were determined using Seurat’s label-transfer algorithm with cell type annotations in 

snRNA-seq cells as the reference. Neurons were further subclustered and annotated into “families” 

(DE, DI, ME, MI, VE, VI, MN) using Seurat’s label-transfer algorithm. 

Gene activity scores were calculated using ArchR v1.0.1 with default parameters by using a 

distance-weighted accessibility model that aggregates signal inside the gene body and in the local 

genomic region (Granja et al., 2021). The resulting gene activity scores were additionally imputed 

using MAGIC (Roopra, 2020) to reduce sparsity noise in the scATAC-seq data. For peak calling and 

sequencing tracks, we used the addReproduciblePeakSet function from ArchR (v.1.0.1) with default 

parameters to call accessible chromatin peaks using MACS2 (v.2.2.7.1) in each cell type subcluster. 

Marker peaks were identified using ArchR’s getMarkerFeatures function. Sequencing tracks were 

created using ArchR’s plotBrowserTrack function. All tracks show data that have been normalized by 

‘reads-in-TSS’ to account for differences in signal-to-background ratios across samples, unless 

otherwise stated. For all tracks, genes on the plus strand are shown in red and genes on the minus 

strand are shown in blue. 

Cell Type Prioritization by AUGUR and GO Analysis 

Augur was implemented as previously described using default parameters to rank which cell types 

changed the most after injury(Skinnider et al., 2021). This approach uses a random forest classifier 

on subsampled matrices and reports the mean cross-validation AUC across many small subsamples 

(code is available on GitHub, see below). (The AUC is a measure of the performance of a classifier, 

with 1 being a perfect classification, 0 being random and negative values indicating poor 

performance.) For pathway analysis, differential gene expression across conditions was generated 

using FindMarkers using the Wilcox test. GO Analysis was done using all differentially expressed 
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genes with p_adj < 0.05 using medium stringency and default parameters at 

https://david.ncifcrf.gov/https://david.ncifcrf.gov/. GO biological process, cell compartment, and 

molecular function were analyzed and the clustering annotation tool was selected. Only clusters with 

an enrichment score (-log of p-value) greater than 1.3 were considered. In cases in which multiple 

clusters had the same genes and similar terms, only the most significant is shown.          

Immunohistochemistry and In Situ Hybridization 

Animals were euthanized with avertin and perfused with PBS and then 4% paraformaldehyde. Spinal 

cords were dissected, fixed in 4% paraformaldehyde overnight, washed in PBS for one hour, then 

dehydrated in 30% sucrose an additional night before being embedded in OCT. 

Immunohistochemistry was performed as previously described(Sathyamurthy et al., 2018). Briefly, 

spinal cords were cut at 50 µm, placed in blocking buffer (1% IgG-free BSA, 10% normal donkey 

serum, 0.1% Triton-X 100 in PBS) for one hour prior to incubation in blocking buffer and primary 

antibody for 48 hours at 4°C. Primary antibody was washed off three times in PBS before a 2-hour 

incubation in secondary antibody at room temperature. The secondary antibody was washed off 

three times in PBS before adding a coverslip.  

Multiplex immunohistochemistry was performed as previously described on 10 µm thick tissue 

sections(Maric et al., 2021). In situ hybridization was performed according to the manufacturer’s 

instructions for fixed frozen tissue RNAscope (ACD Bio).  
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Immunohistochemistry Antibodies 

IBA1 (Cedarlane Labs, 234006(SY)), TMEM 119 (Cedarlane Labs, 400004(SY)), CD11c (GeneTex, 

GTX74935), Myelin-MBP (BioLegend, 808402), NF-L (Cell Signaling, 2835S), NF-M (Cell Signaling, 

2838S), NF-H (Cell Signaling, 2836S), NeuN (Millipore Sigma, ABN90P), CD68 (Abcam, ab125212), 

CNPase (Millipore Sigma, MAB326), GFAP (Agilent/Dako, Z033429-2), DAPI, Cleaved Caspase 3 

(Cell Signalling Tech, 9661L), and Phospho-IGF1R (Invitrogen, PA5-104773). 

 

 

RNAscope In Situ Hybridization Probes 

ACDbio RNAscope probes: Spp1 (435191), Vsx2 (438341), Gap43 (318621), Chat (408731), Itgax 

(311501), Mdga1 (546411), Sprr1a (426871-C2), Vgf (517421-C2), Igf1 (443901-C2), Sprr1a 

(426871-C2), C1qa (441221-C2), Megf11 (504281-C2), GFP (409011-C2), Apoe (313271-C3), 

Tnfrsf12a (429311-C3), Atf3 (426891-C3), Gpr83 (317431-C3), Pdgfra (480661-C3), Shox2 (554291-

C3), Gpnmb (489511-C3). 

 

Imaging 

Images of immunohistochemistry and in situ hybridization samples were imaged using a Zeiss 800 

LSM confocal microscope. For quantification, a tile scan image spanning the section was generated 

for ≥ 3 sections from ≥ 3 mice. Brightness and contrast were adjusted in Photoshop (Adobe), 

standardized across images. 

 

Quantification of Cell Counts from Images of Immunohistochemistry  

Quantification of NeuN, Olig2, and DAPI immunohistochemistry for Fig. 1 was done through a 

custom MATLAB-based image analysis program (code is available on Github, see below). The 
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software automatically identifies and counts cells based on a criterion that constrains size at a user-

selectable intensity threshold. A manual selection tool is also available to identify additional cells that 

are more difficult to detect. A second channel of the same image shows can be used to count cells 

that are labeled with both stains using the results from the first channel and a second set of user-

selectable thresholds.  

Quantification of all other immunohistochemistry was done using FIJI (ImageJ) and photoshop 

counting tools. 

Pixel Quantification 

Pixels were quantified using a custom python script (code is available on Github, see below), after a 

standardized thresholding of images using FIJI (ImageJ). 

Fluorescence Intensity 

Mean fluorescence intensity was quantified using FIJI (ImageJ) after manually drawing borders 

based on DAPI and NeuN expression. 

Histological Quantification and Statistical Testing 

Two-tailed Mann Whitney t-tests (unpaired) were used for quantification of immunohistochemistry 

and in situ hybridization. Differences among groups were considered significant if p < 0.05. Data are 

represented as mean ± SEM unless otherwise indicated. Statistical analyses were performed using 

GraphPad Prism software. In all plots, dots represent individual mice. Imaging and most 

measurements were not done blinded. Only the quantification of pixels for grey matter collaterals 

was blinded. 
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Data Availability: 

A searchable version of this data is available at https://seqseek.ninds.nih.gov/spinalcordinjury. Raw 

sequencing data and count matrices have been deposited to the Gene Expression Omnibus 

(GSE172167, Token ebkhugiqnlcfbsl). Custom MATLAB-based code for quantification of cell counts 

is available at https://github.com/ArielLevineLabNINDS/CellCounter. Custom python-based code for 

quantification of pixels on thresholded images is available at https://github.com/ijhua/pixel_counts. 

Code for Augur is available at https://github.com/neurorestore/Augur.  
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Supplemental Figures: 

Single Cell Atlas of Spinal Cord Injury in Mice Reveals a Pro-Regenerative 

Signature in Spinocerebellar Neurons 

Kaya J.E. Matson, Daniel E. Russ, Claudia Kathe, Isabelle Hua, Dragan Maric, Yi Ding, Jonathan 

Krynitsky, Randall Pursley, Anupama Sathyamurthy , Jordan W. Squair, Boaz P. Levi, Gregoire 

Courtine, Ariel J. Levine 
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Supplementary Fig. 4.1. Kinematics of Mice after Injury. a. Chronophotography showing the

overground walking of uninjured mice and those 1 and 6 wpi while running on a horizontal walkway. 

b-i. Bilateral leg kinematics, showing b. step height, c. percent of steps with drag, d. whole limb

oscillation, e. whole limb oscillation velocity, f. ankle joint oscillation, g. knee joint oscillation, h. hip

joint oscillation, and i. ankle joint oscillation velocity. Error bars indicate ± SEM; Uninj N = 15; 1 dpi N

= 4; 1 wpi N = 5; 3 wpi N = 7; 6 wpi N = 8 animals. Source data are provided as a Source Data file. 
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Supplementary Fig. 4.2. Top Markers for Clusters. Dotplot showing top markers for 39 clusters, 

from all uninjured and injured timepoints combined. Dot size indicates percent expressed and dot 

color indicates average expression.  
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Supplementary Fig. 4.3. Astrocyte Subclusters. a. UMAP showing astrocyte subtypes, 

including astrocytes 1, astrocytes 2, white matter astrocytes and reactive astrocytes. b-c. In-tissue 

quantification of markers for astrocytes, including b. immunostaining for GFAP and c. RNAscope 

in situ hybridization for Agt, Gja1 and Aqp4. No significant difference between conditions. Mean ± 

SEM; N = 4 animals. Source data are provided as a Source Data file. d. Featureplots of markers 

for astrocyte subtypes. e. Dotplot showing top markers for astrocytes 1, astrocytes 2, white matter 

astrocytes and reactive astrocytes.  

  

  

Supplementary Fig. 4.4. Markers of Neuronal Subpopulations. a. Featureplots showing 

markers for families of neurons. More can be visualized on 

https://seqseek.ninds.nih.gov/spinalcordinjury. b. Annotations of neurons using label transfer from 

the atlas of mouse lumbar spinal cord cell types, Russ et al. c. Subclustering of neurons and their 
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annotations, highlighting a cluster that is not easily annotated using label transfer, but rather is 

defined by RAGs. d. Volcano plot showing differentially-expressed genes in the uninjured and

injured RAG+ Cluster (cluster 23).  
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Supplementary Figure 4.5 Neuronal Subclusters and RAG Expression. a-b. UMAP of 

neurons classified by label transfer from Russ et al. 2021. c. UMAP of neurons clustered without 

label transfer, with cluster 23 expressing RAGs. d. Volcano plot of the differential gene expression 
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after injury within cluster 23. The RAG Tnfrsf12a is the only significant gene upregulated after 

injury. Black dots indicate genes that were not significantly different. Red dots indicate significant 

genes, p < 0.01. Wilcox rank sum test. e-f. In situ hybridization of the RAGs Sprr1a and Atf3 at (d)

3 wpi and (e) 6 wpi. Scale bars are 200 and 50 µm, respectively. g. Quantification of the number

of Sprr1a in tissue at 3 and 6 wpi. Error bars indicate ± SEM; N = 6 and 10 animals, respectively. 

Source data are provided as a Source Data file.  
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Supplementary Figure 4.6. Microglia Expansion and after Injury and the Emergence of 

Activated Microglia A. a. UMAP of the 7 microglia subtypes. b. Featureplot of two marker genes 

of the “activated microglia A” population, Spp1 (cyan) and Gpnmb (magenta), split by the 

timepoint (Uninjured, 1 dpi, 1 wpi, 3 wpi, and 6 wpi). c. GO analysis for “activated microglia A” 

marker genes. Red dotted line indicates -log(p-value) 1.3 (p value 0.05). P values (adjusted) were 

calculated using Benjamini-Hochberg false discovery rate (FDR). d. Dotplot comparing top 5 

marker genes from previous studies of postnatal and disease-associated microglia. (Clec7a, not 

detected in our dataset, was excluded.) e-g. RNAscope in situ hybridization showing expression 

of Spp1 (cyan) and Gpnmb (magenta) and C1qa (yellow) in uninjured, 1 wpi, and 6 wpi lumbar 

spinal cord. Scale bars are 200 µm in top row and 50 µm in middle and bottom rows. h. Number of 

Gpnmb+ microglia (quantified by C1qa, Gpnmb doublepositive cells) in each of the following 

regions in the spinal cord: dorsal funiculus (magenta), dorsal-lateral funiculus (pink), ventral 

funiculus (purple) and grey matter (grey). Error bars indicate mean ± SEM (N = 4 animals). i-k. 

Immunohistochemistry staining for MBP, IBA1 and Neurofilament light, medium and heavy (LMH). 

Scale bars are 200 µm in top row and 50 µm in bottom row. l. Quantification of fluorescence 

intensity of neurofilament-LMH and MBP in the region boxed i-k, in the dorsal-lateral white matter. 

* = p-val < 0.001, two-sided unpaired t-test. Error bars indicate mean ± SEM; N = 4 animals. 

Source data are provided as a Source Data file.  
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Supplementary Fig. 4.7. Oligodendrocyte Subclusters. a. UMAP of oligodendrocyte 

subclusters. b-c. Featureplots of genes differentiating oligodendrocyte subclusters. d. Pearsons 

correlation of top 2,000 variable genes between oligodendrocyte subclusters, split by injury 

condition compared to oligodendrocyte subclusters from Floriddia et al. 2020, split by injury 

condition. Values are colored from 0 (yellow) to 1 (blue).  
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Supplementary Fig. 4.8. Changes in Cell Type Proportion after Injury. Heatmap showing the

change in cell type proportion after spinal cord injury. Log2 fold change was calculated based on 

the average percent of a sample in the uninjured cord. Negative (decreases) in proportion are 

colored in blue and positive (increases) in proportion are colored in red (N = 3 animals per time 

point).  
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Supplementary Fig. S.4.9. Cell Type Specific Changes in Gene Expression after Injury 

a. Cell types ranked based on responsiveness by Augur. AUC score represented from dark blue

to yellow. Clusters with insufficient number of cells in the uninjured timepoint are plotted in grey. b.

Pathway analysis for differentially expressed genes between uninjured and injured timepoints. 

Tiles are colored by -log(p value) of GO and KEGG pathway clusters. -log(p-value) 1.3 = p value 

0.05. P values (adjusted) were calculated using Benjamini-Hochberg false discovery rate (FDR). 

Source data are provided as a Source Data file.  
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Supplementary Fig. 4.10. Differential Gene Expression in Cell Types after Injury. a-f. 

Volcano plots showing differential gene expression between a. neurons b. astrocytes c. 

microglia/hematopoietic cells d. oligodendrocyte progenitor cells (OPCs) and oligodendrocyte

precursor cells (COPs). e. oligodendrocytes and f. vascular cells. Differential gene expression

was calculated using Wilcox test. Significant genes are colored in black (p < 0.01) and not 

significant genes are colored in grey. Genes with > 0.8 average log2 fold change are labeled by 

name. Source data are provided as a Source Data file.  
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Supplementary Fig. 4.11. Spatial Location and Identity of RAG-Expressing Neurons. a. 

Schematic showing the rostral-caudal axis of L2, L3/4, and L5 in relation to the thoracic contusion 

injury. b. Quantification of Sprr1a+ cells in the uninjured and 1 wpi lumbar cord along the rostral-

caudal axis. c. Spatial summary of Sprr1a in the lumbar cord along the rostral-caudal axis across 

multiple animals (N = 4 animals). d. Immunostaining of ATF3, with stereotaxically-labeled 

spinocerebellar neurons. Representative replicate is shown. Scale bars are 200 and 50 µm, 

respectively. e. Quantification of ATF3+ neurons, coinciding with SCT and or dextran-labeling. (N 

= 4 animals.) Data from one independent cohort is shown. The results of this experiment were 

replicated in a second cohort.   
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Supplementary Fig. 4.12. snATAC-seq to Examine Predisposition of RAG Expression in of 

Spinal Cord Cells. a-d. Plot tracks of open chromatin regions for RAGs in neurons and non-

neurons. eh. Plot tracks of open chromatin regions for RAGs across neuronal subtypes, including

dorsal excitatory (DE), dorsal inhibitory (DI), mid-excitatory (ME), mid-inhibitory (MI), motoneurons 

(MN), ventral excitatory (VE), and ventral inhibitory (VI).  
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Supplementary Fig. 4.13. Dextran Labels Directly Injured Ascending Neurons, a Subset of 

ATF3+ Neurons. a. Schematic of dextran injection and injury. b. Immunohistochemistry of ATF3 

on dextran-labeled thoracically transected lumbar spinal cord 1 wpi. Scale bars are 200 and 50 

µm, respectively. c. Quantification of dextran and ATF3 as a proportion of all NeuN-expressing 

cells after thoracic transection. (N = 4 animals.) d. Immunohistochemistry of ATF3 on 

dextranlabeled thoracically lateral hemisectioned lumbar spinal cord 1 wpi. Scale bars are 200 

and 50 µm, respectively. e. Quantification of dextran and ATF3 as a proportion of all NeuN-

expressing cells after thoracic lateral hemisection. (N = 4 animals.)  



178 

Supplementary Fig. 4.14. Quality Control and Doublet Identification. a. The number of nuclei

per sample. b. The number of genes per nucleus in each sample. Source data are provided as a
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Source Data file. c. UMAP of all nuclei prior to removal of doublets. Doublets d. Identification of 

doublets using doublet finder.  

  

 

Supplementary Fig. 4.15. RAGs within Neuronal Subtypes Over Time. A dotplot showing the 

expression of the RAGs Atf3, Sprr1a, Klf6, Sox11, Tnfrsf12a and Gap43 in uninjured and injured 

timepoint. Average expression is indicated from grey (low) to blue (high).  
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Perspective: On the Exactitude of Cell Types 

Cells are the foundational unit of life. Understanding the cells that comprise the organism is crucial to 

understand mechanistic underpinnings of how organisms function normally as well as in disease or 

after injury (Fishell and Heintz, 2013). Given the diversity and vast number of cells, categorizing them 

into groups or cell types makes their study tractable (Arendt, 2008). While there is no singular way to 

identify a cell into a category or type, single cell sequencing provides an unprecedented way to 

examine the transcriptional profile of cells and identify features that group cells together (Macosko et 

al., 2015). With the recent explosion of single cell sequencing studies, cells are categorized into 

clusters by their shared gene expression profiles. It is assumed that these clusters are biologically 

meaningful and discrete cell types exist in tissue. How biologically meaningful are “cell types” from 

single cell sequencing data and to what extent do they represent discrete types of cells in the 

organism? 

One strategy to make sense of this torrent of data is to align or compare transcriptional data with 

other data modalities, such as single cell epigenomic data, proteomic data, spatial transcriptomic 

data, electrophysiological data, and connectivity data (Bheda and Schneider, 2014; Butler et al., 

2018; Cadwell et al., 2016; Cao et al., 2018; Chen et al., 2019; Fuzik et al., 2016; Haghverdi et al., 

2018; Hie et al., 2019; Huang et al., 2020; Kebschull et al., 2016; Lin et al., 2018; Lipovsek et al., 

2021; Rao et al., 2021; Stuart et al., 2019; Tasic et al., 2018; Welch et al., 2019; Zhu et al., 2019). In 

the near future, for every cell in the body we could have a complete transcriptional profile, chromatin 

accessibility profile, proteomic profile, and spatial localization data (Regev et al., 2017; Zhu et al., 

2020). However, will the added cell type characterizations enable us to understand the roles of all the 
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profiled cells? The surplus of new atlases including multimodal data may add more information to 

these atlases but do not necessarily reveal their functional contribution to an organism. If we know 

(nearly) everything about each cell, will we understand its functional contribution to the organism? 

 

In Jorge Luis Borges’s 1946 short story “On the Exactitude of Science,” cartographers create a 

perfect map— one that captured every detail, but only by increasing the map’s size until it precisely 

equaled the territory it sought to represent (Borges and Hurley, 2004).  

...In that Empire, the Art of Cartography attained such Perfection that the map of a single 
Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province. 
In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck 
a Map of the Empire whose size was that of the Empire, and which coincided point for point 
with it. The following Generations, who were not so fond of the Study of Cartography as their 
Forebears had been, saw that that vast Map was Useless, and not without some Pitilessness 
was it, that they delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the 
West, still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars; in 
all the Land there is no other Relic of the Disciplines of Geography.  
 

Do our expanding profiles for each cell help understand how they contribute to an organism’s 

function? Will they provide a useful map that clarifies the diversity and complex interactions of cells 

within an organism? 

 

To utilize the incredibly vast amount of information from these single cell sequencing studies, the 

identified cells should be linked to a clear function (Zeng, 2022). Select cells already have an 

established role. Spinal motoneurons have a clear function of innervating muscles and enabling 

movement. They have a clear morphology, location, neurotransmitter, and gene expression profile 

which can be integrated across different modalities of data. The contribution of spinal motoneurons 

to organismal function is well-defined and important, as their degeneration has devastating 

consequences for the organism. However, not all cells have a definite link between their molecular 

signature and their contribution to the function of the organism.  
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Will advances in single cell technologies lead to a coherent understanding of cell types? The 

integration of RNA expression, chromatin accessibility, electrophysiology and connectivity increases 

the amount of information on different cell classes, but will not inherently lead to the identification of 

their functional contribution. It is possible that pairing single cell approaches with new cell type 

specific genetic tools (Graybuck et al., 2021; Mich et al., 2021) will lead to a cohesive identity of cells 

between molecular signatures and function. However, we may still need new conceptual and 

theoretical frameworks to turn this information into knowledge (Zeng and Sanes, 2017). The next big 

hurdle will be to utilize our atlases and linking the state of a cell to function, for all cells. Without 

prioritizing this utility, we risk our atlases becoming relics.  
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Appendix 1 

Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their 

Activity during Behavior 
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A Harmonized Atlas of Mouse Spinal Cord Cell Types and their Spatial Organization 

Appendix 3 

Activated Microglia Localize to Injured Axon Tracts after Spinal Cord Injury 
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Appendix 1 

Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal 

Cord Neurons and Their Activity during Behavior  

This section contains the first single cell atlas of the adult mouse spinal cord, profiling the diversity of 

neuronal subtypes. My contribution to this work was isolating the nuclei from mouse spinal cord 

(naïve as well as after behavior), using DropSeq to capture the nuclei and performing single nucleus 

RNA sequencing. This work was led by Anupama Sathyamurthy.
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Massively Parallel Single Nucleus Transcriptional 
Profiling Defines Spinal Cord Neurons and Their 
Activity during Behavior 
Graphical Abstract 

Highlights 
d  An atlas of adult mouse spinal cord cell types 

d A resource of the molecular repertoires of 43 neuronal 
populations 

d A simple method using snRNA-seq to identify activated 
neurons following behavior 

Authors 
Anupama Sathyamurthy, 
Kory R. Johnson, Kaya J.E. Matson, ..., 
Michael C. Kelly, Matthew W. Kelley, 
Ariel J. Levine 
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In Brief 
Sathyamurthy et al. use massively parallel 
single nucleus RNA-seq to probe spinal 
cord cell types and present an atlas of 43 
neuronal populations. By using this 
approach after a sensory and a motor 
behavior, they were able to detect and 
molecularly identify activated neurons 
associated with each function. 

Data and Software Availability 
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SUMMARY 

To understand the cellular basis of behavior, it is 
necessary to know the cell types that exist in the 
nervous system and their contributions to function. 
Spinal networks are essential for sensory processing 
and motor behavior and provide a powerful system for 
identifying the cellular correlates of behavior. Here, we 
used massively parallel single nucleus RNA 
sequencing (snRNA-seq) to create an atlas of the adult 
mouse lumbar spinal cord. We identified and 
molecularly characterized 43 neuronal popula- tions. 
Next, we leveraged the snRNA-seq approach to 
provide unbiased identification of neuronal popu- 
lations that were active following a sensory and a motor 
behavior, using a transcriptional signature of neuronal 
activity. This approach can be used in the future 
to link single nucleus gene expression data with 
dynamic biological responses to behavior, injury, and 
disease. 

INTRODUCTION 

To understand how networks of cells mediate behavior, it is 
necessary to classify the various cell types of the brain, spinal 
cord, and peripheral nervous system and to know which popu- 
lations of cells are involved in specific functions. Gene expres- 
sion-based definitions of cell identity have been a foundation of 
spinal cord biology for the past 30 years. In particular, the use of 
post-natal genetic markers to control defined classes of spi- nal 
cord neurons has enabled the functional characterization of 
many cell types and has advanced our understanding of how 
these populations contribute to normal sensory-motor behavior 
(Abraira et al., 2017; Azim et al., 2014; Bikoff et al., 2016; Bour- 
ane et al., 2015; Dougherty et al., 2013; Duan et al., 2014; Hilde 
et al., 2016; Koch et al., 2017b; Mishra and Hoon, 2013; Peirs et 
al., 2015; Satoh et al., 2016; Sun et al., 2009). However, there 

are three important limitations to this approach. First, there is no 
census of neuronal cell types in the adult spinal cord. The lack 
of such a resource limits the application and interpretation of 
genetic manipulations, and it is not known how previously 
described cell types relate to one another. Second, the unique 
gene expression profiles that endow cell types with their func- 
tional repertoires are not known. Third, we lack an unbiased 
approach to identify the set of spinal cord cell types associated 
with a given neural function, such as motor behavior or the 
response to a sensory stimulus. 
Pioneering work using massively parallel single-cell sequencing 

has established that a cell’s transcriptional program is a powerful 
strategy for defining cell type (Campbell et al., 2017; Chen et al., 
2017; Jaitin et al., 2014; Lake et al., 2016; Li et al., 2016; Macosko 
et al., 2015; Shin et al., 2015; Tasic et al., 2016; Usoskin et al., 

2015; Villani et al., 2017). Furthermore, single-cell RNA 
sequencing has been adapted to provide unbiased detection of 
immediate-early gene expression in molecularly defined cell 
types following seizure, acute anxiety, or sensory experience in 
the striatum and visual cortex (Hrvatin et al., 2018; Wu et al., 2017). 
We sought to develop an approach that simultaneously pro- 

vides a single-cell gene expression census of the cell types of 
the adult spinal cord and the ability to overlay a map of the tran- 
scriptional signature of neuronal activity following behavior. To 
characterize the gene expression and cell-type composition of 
the adult mouse spinal cord, we used massively parallel single 
nucleus RNA-seq (snRNA-seq). We created a catalog of spinal 
cord neuronal cell types, characterizing 43 classes of neurons. 
Analysis of the genes expressed in each cell type provided a 
powerful resource for understanding the mechanistic basis of 
functional neuronal heterogeneity. This work also revealed 
distinct organizing principles for molecular heterogeneity be- 
tween neuronal populations in the dorsal and ventral horns. To 
provide unbiased characterization of the classes of spinal neu- 
rons that were associated with defined behaviors, we performed 
this technique immediately following a painful sensory stimula- 
tion or a locomotor behavior. This approach could be used to 

reveal comprehensive single nucleus response maps for a range 
of behaviors and disease states, establishing an unprecedented 
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Figure 1. Massively Parallel snRNA-Seq Was 
Used to Define Cell Types in the Adult Mouse 
Spinal Cord 
(A) Summary of experimental strategy. 
(B) Barnyard plot of pooled human and mouse 
spinal cord nuclei showing beads that were asso- 
ciated with human transcripts, mouse transcripts, 
both human and mouse transcripts (mixed), or 
those that could not be determined (undeter- 
mined). 
(C) tSNE visualization plot of 17,354 spinal cord 
nuclei, colored according to seven major SC3- 
defined clusters: neurons, oligodendrocytes (oli- 
gos), meningeal and Schwann cells, astrocytes, 
vascular cells, oligodendrocyte precursor cells
(OPCs), and microglia. 
(D) Heatmap of normalized mean expression for 
key marker genes for each major SC3-defined 
cluster. 
See also Figure S1 and Table S1. 

link between single nucleus gene expression and circuit- and 
system-level function within the spinal cord. 

RESULTS 

snRNA-Seq Identification of Major Spinal Cord Cell 
Types 
To adapt massively parallel RNA sequencing approaches to the 
spinal cord, we opted to perform single nucleus, rather than sin- 
gle cell, analysis for three key reasons: single nucleus transcrip- 
tional profiling accurately permits cell-type analysis, avoids 
experimental artifacts from transcriptional changes induced in 
intact cells during the tissue dissociation process, and can be 

performed easily from whole tissue, including tissue that is diffi- 
cult to dissociate (such as the spinal cord), frozen material, and 
human biobank material (Grindberg et al., 2013; Habib et al., 

2017; Lake et al., 2016, 2017; Matevossian and Akbarian, 2008). 
To establish an snRNA-seq strategy for the adult spinal cord, 
we used a detergent-based protocol, which allowed rapid and 
thorough nuclear release and transfer of the material to cold 
temperatures, thereby minimizing gene expression changes 

(Figure 1A; Figure S1A). Nuclei were easily 
isolated from adult mouse spinal cord and 
frozen adult human spinal cord. We next 
sought to modify Drop-Seq (Macosko et 
al., 2015), a droplet-based approach for 
massively parallel single-cell RNA cap- 
ture, cDNA synthesis, and sequencing, to 
allow this technique to be used for single 
nuclei. We found that simply increasing 
the concentration of detergent in the 
Drop-Seq lysis buffer improved nuclear 
lysis and generated smaller droplets than 
standard Drop-Seq (mean 0.48 ± 0.06 nL 
SEM) (Figures S1B–S1D). To 
determine whether this approach enables 
single nucleus droplet encapsulation, 

nuclei from human spinal cord were pooled with nuclei from 
mouse spinal cord, and we examined how many beads con- 
tained both human and mouse transcripts (Figure 1B). We found 
that 2% of droplets with a mouse nucleus also contained a 
human nucleus (4/196 mouse nuclei), which represents a calcu- 
lated doublet rate of 4.1%. Thus, single nuclei can be obtained 
from difficult-to-dissociate and frozen human spinal cord tissue 
and can be processed through Drop-Seq with a simple buffer 
modification. 
Using this approach, we sequenced and analyzed 17,354 

nuclei from adult mouse lumbar spinal cord. We found seven 
major clusters that corresponded to the following cell types, 
based on marker expression: neurons (52% of total nuclei), ol- 
igodendrocytes (16% of total nuclei), a mixed population of 
meningeal and Schwann cells (14% of total nuclei), astrocytes 
(9% of total nuclei), vascular cells (5% of total nuclei), oligoden- 
drocyte precursor cells (1% of total nuclei), and microglia 
(1% of total nuclei) (Figure 1D; Figure S1E; Table S1). The diver- 
sity of the RNA transcript yield that we obtained, reflected in the 
number of genes per nucleus, varied among cell types (Figure 
S1F). 
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Figure 2. Massively Parallel snRNA-Seq 
Identified 43 Neuronal Populations in the Adult 
Spinal Cord 
(A) tSNE visualization plot and cluster key of 4,280 
spinal cord neuronal nuclei, colored according to 
membership in 43 SC3-defined clusters. Cluster 
names were assigned based on cluster location (D,
dorsal; M, mid; and V, ventral) and neuro- 
transmitter status (E, excitatory; I, inhibitory; M, 
mixed; and C, cholinergic), as shown in the key 
below the plot. 
(B) Unrooted dendrogram depicting cluster re- 
lationships based on mean gene expression for 
each cluster. Units shown are Euclidean distance. 
(C) tSNE visualization plots of spinal cord neuronal
nuclei, colored to depict neurotransmitter status 
(green, excitatory; red, inhibitory; yellow, mixed; 
cholinergic clusters were also predominantly 
excitatory and are green) or location (blue, dorsal; 
orange, ventral; purple, deep dorsal, intermediate 
zone, or mid). 
See also Figures S2 and S3 and Tables S2 and S3. 

Census of Adult Spinal Cord Neuronal Populations 
To identify and characterize neuronal classes within the adult 
mouse spinal cord, 4,280 neuronal nuclei were analyzed and 
partitioned into 43 clusters (Figure 2A; Figure S2A; Table S2). 
We first characterized the neurotransmitter status, a core feature 
of neuronal identity, of each cluster by analyzing excitatory, 
inhibitory, and cholinergic marker expression. We found that 
53% of neuronal nuclei were in 23 predominantly excitatory clus- 
ters (including 2 cholinergic clusters), 45% were in 18 predomi- 
nantly inhibitory clusters, and 2.5% were in 2 clusters with 
both excitatory and inhibitory markers (Figure S3A). Within this 
latter group, only rare individual neuronal nuclei co-expressed 
excitatory and inhibitory markers (n = 2/109), which may reflect 
doublets and cannot account for the substantial fractions of 
excitatory and inhibitory marker-expressing nuclei in these clus- 
ters. Therefore, these two clusters contained separate excitatory 
and inhibitory populations that share overall similar gene 
expression. 
Next, we analyzed relationships between clusters by per- 

forming Euclidean-based hierarchical clustering on the mean 
expression of each gene in each cluster (Figure 2B). A dendro- 
gram presentation of these relationships revealed seven major 
groupings, five of which shared a common neurotransmitter 
status (groups 1, 2, 3, 5, and 7) (Figure 2B). To determine what 
other parameters are major organizing features of neuronal 
populations, we compared all genes that significantly contributed 
to defining any cluster with public gene expression databases 
(Gong et al., 2003; Lein et al., 2007). This allowed us to probe the 
cluster distribution of previously known marker genes (Figure 
S3B) and to determine the spatial location of each cluster. We 
found that 55% of neuronal nuclei were in 25 dorsal clusters, 
34% were in 13 ventral clusters, and 11% were in 5 clusters in 
the deep dorsal horn or intermediate zone. Four of seven major 
dendrogram groupings each had a 

common regional location within the spinal cord (groups 1, 2, 3, 
and 5) (Figure 2B). To further analyze neurotransmitter status 
and spatial location across clusters, each population was 
colored by these features and plotted by t-distributed stochas- tic 
neighbor embedding (tSNE) analysis (Figure 2C). The struc- ture 
of the tSNE distribution of neurons according to these 
parameters supported the importance of location and neuro- 
transmitter status as defining features of spinal cord cell types. 
Accordingly, clusters were named by their spatial location (D, 
dorsal; V, ventral; or M, deep dorsal, intermediate, or ‘‘mid’’ cord) 
and their neurotransmitter status (E, excitatory; I, inhibitory; M, 
mixed; C, cholinergic) (Figure 2). 
A major difference in cluster organization was observed be- 

tween dorsal and ventral clusters. tSNE visualization revealed 
that dorsal clusters form an outer ring of discrete groups while 
ventral clusters overlapped one another in the center of the plot, 
with deep dorsal and intermediate clusters between (Fig- ure 
2C). Similarly, dorsal clusters were generally present as ho- 
mogeneous blocks in a cell consensus matrix and had high SC3 
silhouette width consensus values (a measure that repre- sents 
the diagonality of the matrix), while ventral clusters showed inter- 
relatedness with other ventral clusters and had low silhou- ette 
width consensus values (Figure S2). At a molecular level, 
markers for ventral clusters were often shared across ventral 
populations (as explained later). These differences were not 
based on a failure to segregate ventral neurons due to low mo- 
lecular information content, because the number of genes per 
nucleus was 2,465 ± 202 in ventral neurons and 1,346 ± 33 in 
dorsal neurons (mean ± SEM). This analysis suggests a general 
principle that the dorsal horn of the spinal cord contains more 
molecularly distinct populations while the ventral horn displays 
overlapping gene expression patterns. 
We next sought to determine what categories of genes drive 

neuronal diversity. Gene ontology (GO) term analysis of the 
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Figure 3. Gene Expression that Defined Spinal Cord Neuronal 
Populations 
(A) Summarized GO terms that were significantly enriched (>1.3 enrichment
score) among the top genes associated with each cluster.
(B) Validation co-labeling for pairs of cluster-defining genes using immuno- 
fluorescence (DE-4 and DE-7) or fluorescent in situ hybridization (DE-5, DI-1, 
and DI-4). Images taken at 203, with the full image (scale bar, 200 mm) and 
magnification (scale bar, 100 mm) shown in the left and right panels of each
pair, respectively. 
See also Figure S3 and Table S3. 

top genes associated with each cluster was performed. We 
found that neurotransmitter receptors and ion channels, 
transcription factors, and cyclic AMP (cAMP) signal transduc- 
tion components are significantly over-represented among the 
top genes that contribute to defining these clusters (Fig- ure 3A). 
Many genes within these molecular function families 

were enriched or specifically expressed in particular popula- 
tions or related groups (Figures S3C–S3E). 
To identify candidate marker genes for the 43 clusters, and to 

characterize their gene expression profiles, we further analyzed 
all genes that significantly contributed to defining each cluster. 
Many clusters were partially defined by previously established 
markers (Figure S3B) (Abraira et al., 2017; Bikoff et al., 2016; 
Koch et al., 2017a; Lu et al., 2015; Todd, 2017), and in most of 
these clusters, we identified new key genes (Figures 3B and 4). 
In addition, we identified previously unrecognized cell popula- 
tions (Figure 4). Table S3 is a searchable database of the mean 
gene expression and the percent cluster membership for each 
gene. This provides the opportunity to probe the molecular iden- 
tity of each population or to search across clusters for a gene of 
interest. A summary of each group of clusters with highlighted 
findings follows. 

Group 1 was composed of the dorsal excitatory (DE) clusters 
DE-1–DE-3. These clusters shared expression of the tran- 
scription factor Ebf2 (together with DE-4–DE-7) and the 
g-aminobutyric acid (GABA) receptor Gabrg3. They were
peptidergic, expressing the enzyme Pam and the genes for
neuropeptides Grp and/or Sst. DE-1 expressed the mu opioid
receptor Oprm1, DE-2 expressed the peptide receptor Npy1r,
and DE-3 expressed Ntrk2/TrkB.
Group 2 was composed of the dorsal inhibitory (DI) clusters
DI-1–DI-3. These clusters shared expression of the peptide
receptor Sstr2, as well as the glutamate receptor Grik2 and
the potassium channel Kcnc2. DI-1 expressed Calb2/calreti- 
nin, and DI-2 and DI-3 were peptidergic, expressing the
enzyme Pam and the genes for Gal (DI-2) and Pnoc/nocicep- 
tion (DI-3), as well as Nos1 (DI-3).
Group 3 was composed of the DE clusters DE-4–DE-10.
There were two subgroups. DE-4–DE-7 expressed Ebf2
(together with DE-1–DE-3) and Calb1/calbindin and were
peptidergic, expressing Pam, as well as Sst/SOM (DE-4 and
DE-5), Tac2/NeurokininA (DE-5), Calca/CGRP (DE-5),
Nts/neurotensin (DE-6), Penk/enkephalin (DE-6), and Cck
(DE-7). DE-4 also expressed Prkcg/PKCg. DE-8–DE-10 ex- 
pressed the transcription factor Maf and were not peptider- 
gic. DE-8 expressed Cbln2, DE-9 expressed Adarb2, and DE-
10 expressed enriched levels of Slc17a8/vGlut3.
Group 4 was composed of the ventral inhibitory (VI) clusters
VI-1–VI-5, ventral excitatory (VE) clusters VE-1–VE-4, ventral
mixed (VM) clusters VM-1 and VM-2, and mid inhibitory (MI)
deep dorsal clusters MI-1 and MI-2. Overall, this group
shared expression of the transcription factors Esrrg/ERRg
and Foxp2, as well as the sodium channel Scn1a, which has
been shown to correlate positively with maximum firing rate
(Tripathy et al., 2017). Several ventral clusters (VI-1, VI-4,
VI-5, VE-3, and VE-4) and MI-2 also shared expression of the
peri-neuronal net components Acan and Bcan and the link
protein Hapln1. This is consistent with the observation that
peri-neuronal nets have been shown to surround many
previously unidentified ventral neurons (Galtrey et al., 2008).
Cluster VI-5 was also distinguished by being enriched for
nearly all genes associated with the mammalian target of ra- 
pamycin (mTOR) complexes mTORC1 and mTORC2 that

189



Figure 4. Summary of 43 Spinal Cord Neuronal 
Populations 
For each population, the cluster name, a putative 
cell-type assignment, and key marker genes are 
shown. Previously undescribed cell types and 
markers are shown in bold. The expression of the 
marker genes across clusters are shown as a 
heatmap of normalized mean gene expression. 
See also Table S3. 

play key roles in cell metabolism and survival (Laplante and 
Sabatini, 2012), including Mtor/mTOR, Rptor/RAPTOR, 
Mlst8/GbL, Deptor, Rictor, and Mapkap1/SIN1, as well as the 
mTOR pathway regulators Rheb, Tsc1, and Tsc2. Surpris- ingly, 
many embryonic and early postnatal ventral cell fate markers 
were found within these clusters and may provide a link 
between the embryonic lineage-defined identity and the adult 
populations described here (Figure S3F) (Alvarez et al., 
2005; Bikoff et al., 2016; Catela et al., 2015; Lu et al., 
2015; Perry et al., 2015; Seredick et al., 2014). As examples, 
VE-1–VE-3 were enriched for embryonic lineage 

V2a markers, including Vsx2/Chx10, 
Shox2, Lhx3, and Lhx4, and cluster VI- 
4 was enriched for the embryonic 
lineage dI6 markers Wt1 and Dmrt3 
and the embryonic lineage V1-subtype 
markers Chrna2 (Renshaw), Pvalb 
(1a inhibitory interneurons), and 
Esrrb/Nr3b2. However, many of these 
embryonically expressed genes had 
very low expression levels in these 
clusters, and even for the genes with 
stronger expression, it is not certain 
whether the same cells continue to ex- 
press these genes from embryonic 
through adult stages. 
Group 5 was composed of the DE 
clusters DE-11 and DE-12, which 
shared expression of the transcription 
factor Sox5 and the potassium chan- 
nel Kcnd3. DE-11 was peptidergic, 
expressing Pam, Penk, and Tac1/sub- 
stance P, while DE-12 was not pepti- 
dergic but expressed the peptide 
receptor Grpr. 
Group 6 was composed of a diverse 
collection of clusters: DI-4, DE-13– 
DE-16, MI-3, mid excitatory (ME) clus- 
ter ME-1, and ventral cholinergic (VC) 
clusters VC-1 and VC-2. Clusters DI- 
4 and DE-13–DE-16 are peptider- gic, 
expressing Npy (DI-4), Calca/ CGRP 
(DE-13), Cck and Tac1/sub- stance P 
(DE-14), Pdyn/dynorphin (DE-15), and 
Penk/enkephalin (DE- 16). VC-1 
expressed the embryonic lineage V0c 
marker Pitx2. VC-2 ex- 

pressed markers of spinal motoneurons, including Prph/pe- 
ripherin, Isl1, Map1b, Nrg1, and Slit3, as well as Nkain1, which 
has been shown to correlate positively with input resistance 
(Tripathy et al., 2017). 
Group 7 was composed of the DI clusters DI-5–DI-9 and the 
deep dorsal cluster MI-4 that shared expression of the gluta- 
mate receptor Grik2. These clusters expressed previously 
described DI transcription factors Gbx1 (DI-5), Lhx1 (DI-7), 
and Rorb (DI-9). DI-5 also expressed the estrogen receptor 
Esr1, DI-6 expressed Cdh3 and Kcnip2, and DI-8 expressed 
Nrgn/Neurogranin. 
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Figure 5. snRNA-Seq Identified Active Neu- 
rons Following Behavior 
(A) Characteristic pattern of cFOS expression at 
baseline, following rotarod locomotion or after 
formalin injection in the hindpaw, at 60 min 
following behavior. 
(B) Fos RNA expression as detected by snRNA- 
seq across clusters in baseline, rotarod, and 
formalin samples, shown as normalized mean 
gene expression per cluster. 
(C) Experimental validation of clusters associated 
with each behavior, as detected by snRNA-seq. 
For each cluster, a marker gene was compared
with cFOS protein expression by immuno- 
fluorescence (En1:Cre;Ai9/Chx10, Satb1, and 
Neurogranin) or Fos RNA by fluorescent in situ
hybridization (Rorb and Npy) (scale bars, 100 mm). 
(D) Summary of the set of neuronal populations
associated with each behavior, as identified by
snRNA-seq. 
See also Figure S4. 

Collectively, these 43 clusters establish an atlas of spinal cord 
neuronal populations and their constituent molecules. 

snRNA-Seq Following Behavior Identified Active 
Neurons 
Having characterized the spinal cord neuron populations, we 
next considered that snRNA-seq could provide an unbiased, cell-
type based characterization of neurons that express imme- 
diate-early genes following a behavioral paradigm. We found 
that direct isolation of nuclei did not induce Fos RNA (Figure S1A) 
but that detectable Fos expression in nuclei could be induced 

5 min following a painful sensory stimulus 
(formalin hindpaw injection) (Figure S4). 
To determine whether Fos RNA can be 
detected at the single nucleus level 
following behavior, snRNA-seq was per- 
formed following formalin injection or ro- 
tarod locomotion. Fos was expressed in a 
higher proportion of nuclei following ro- 
tarod locomotion (1.6%) or formalin 
administration (1.9%) compared with 
baseline (0.48%), and the level of Fos 
gene expression was significantly 
increased (0.0082 ± 0.0025 counts per 
million (cpm) after rotarod, 0.0175 ± 
0.0040 cpm after formalin, and 0.0024 ± 
0.0009 cpm at baseline; mean ± SEM; 
p < 0.001, ANOVA, corrected p value). 
Thus, massively parallel snRNA-seq 
following behavior detected a transcrip- 
tional signature of neuronal activity. 
Next, we used the distribution of Fos 

RNA expression to map neuronal activity 
across clusters following rotarod locomo- 
tion or formalin administration, because 
these experimental paradigms produce 
classic patterns of cFOS protein expres- 

sion (Figure 5A) (Herdegen et al., 1994; Jasmin et al., 1994). Dur- 
ing locomotion, each of the major ventral embryonic lineage 
domains gives rise to neurons that are important for specific fea- 
tures of locomotion, such as flexor and extensor alternation (V1- 
and V2b-derived cells) and left and right alternation (V2a-derived 
cells) (Crone et al., 2008; Zhang et al., 2014). In addition, cholin- 
ergic interneurons express cFOS protein following locomotion in 
cat, and these may correlate with V0c neurons (Huang et al., 
2000; Zagoraiou et al., 2009). However, the identities of locomo- 
tor-associated intermediate and dorsal horn neurons are not well 
established, with the exceptions of protein kinase C gamma 
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(PKCg)-expressing neurons in the rat (Neumann et al., 2008) and 
Rorb-expressing neurons (Koch et al., 2017b). We hypothesized 
that the application of snRNA-seq following rotarod running 
would help to reveal the set of adult neurons that are active dur- 
ing locomotion. 
Following locomotion, Fos RNA was detected in ventral clus- 

ters VC-1 (which includes Pitx2-expressing V0c neurons), VC-2 
(spinal motoneurons), VE-4 (which includes putative V2a neu- 
rons) and VI-5 (which includes putative V1/V2b neurons), thereby 
confirming that these cell types are associated with locomotion 
(Figure 5B). We used markers to validate this approach and 
found that VE-4 (Chx10) and VI-5 cells (En1:Cre;Ai9) express 
cFOS after rotarod locomotion (Figure 5C). Within the intermedi- 
ate zone and dorsal horn, clusters ME-1, MI-1, DE-5, DI-6, and 
DI-8 expressed Fos RNA, but we did not detect Fos RNA in clus- 
ter DE-4 that expresses Prkcg/PKCg (Figure 5B). This may be
due to species differences or a technical false negative. Rorb
expression is highest in cluster DI-9, which was not detected us- 
ing this approach, but it is also present in cluster DI-8, which did
express Fos after locomotion. Using markers for clusters ME-1
(Satb1) and DI-8 (Nrgn), we confirmed that these newly defined
clusters express cFOS protein after locomotion, thereby ex- 
panding the known set of neuronal populations that are associ- 
ated with this core behavior (Figure 5D).
Formalin administration is a well-established pain assay, and it 

has previously been shown to activate predominantly dorsal horn 
spinal cord neurons, including those that express Gal, Sstr2, 
Nos1, Npy, Penk, and Tacr1/Nk1r, creating specific ex- 
pectations for which clusters should be detected (Herdegen 
et al., 1994; Hossaini et al., 2010; Lee et al., 1993; Polga´ r et al., 
2013). Following formalin injection, Fos RNA was observed in 
clusters DI-2 (which includes Gal and Sstr2-expressing neurons), 
DI-3 (which includes Nos1-expressing neurons), and DI-4 (which
includes Npy-expressing neurons), confirming that these neu- 
rons express Fos after formalin administration, as well as DI-8,
DI-9, DE-7, VI-4, VC-1, VC-2, and MI-2 (Figure 5C). Penk and
Tacr1/Nk1r are both distributed across several clusters. We used
markers for clusters DI-4 (Npy), DI-8 (Nrgn), and DI-9 (Rorb) to
validate these findings and found that these popula- tions
express Fos RNA or cFOS protein following formalin
administration (Figure 5C). Thus, in both a sensory test and a
motor behavior, massively parallel snRNA-seq provided an unbi- 
ased definition of cell types that displayed activity-induced tran- 
scription and revealed new cell types that are associated with
each function.

DISCUSSION 

The spinal cord plays essential roles in sensory processing and 
motor control, but how the cells of the cord function together 
in networks to mediate behavior is not well understood. Here, we 
sought to identify spinal cord cell types and their contribu- tions 
to behavior through single nucleus transcriptional profiling. 
Massively parallel snRNA-seq was used to analyze more than 
17,000 nuclei from the adult mouse spinal cord. We created an 
atlas of spinal cord neuronal populations, characterizing 43 cell 
types. By applying snRNA-seq following behavior, we detected 
transcriptional signatures of neuronal activity and identified 

neuronal populations associated with a sensory and a motor 
function. 
We have described 43 neuronal populations within the adult 

mouse lumbar spinal cord, including previously unrecognized 
cell types. This work establishes a cellular framework for the spi- 
nal cord and facilitates the comparison and integration of prior 
work that generally used single markers to define cell types. We 
detected clusters that correspond to nearly all previously 
described adult spinal cord neuronal populations, with the 
primary exceptions being populations that were previously 
described by a single marker gene that is expressed more 
broadly within the spinal cord (such as Penk and Pvalb). 
The perspective afforded by massively parallel single nucleus 

sequencing also revealed an intriguing difference between dor- 
sal and ventral neuronal populations. We found that dorsal 
neuron types were more distinct from one another, forming 
discrete clusters, while ventral neuron types were more closely 
associated with one another. Previously, most analysis of spinal 
cord cell types emphasized adult molecular markers in the dorsal 
horn and embryonic lineage domain-defined cell types in the 
ventral horn. Together with our findings, this may reflect different 
organizing principles for neuronal identity in the dorsal and 
ventral spinal cord. It is possible that in the adult spinal cord, 
cellular identity in the dorsal horn is governed by restricted and 
ongoing expression of genes for specific cellular functions, 
whereas in the ventral horn, it is governed by factors defined dur- 
ing development, such as cell location, axon guidance, and 
genetically programmed synaptic specificity. 
This work also reveals the molecular repertoire of each 

neuronal population, providing a significant extension of our un- 
derstanding of spinal cord cell types. The searchable database 
that is included here (Table S3) will allow researchers to probe 
the complement of genes in cell types of interest and analyze the 
expression of genes of interest across clusters. This will serve 
as a powerful tool to advance our understanding of the molecular 
mechanisms that mediate functional heterogeneity among 
neuronal populations. 
Despite the strengths of this work, three major limitations must 

be noted. First, we detected a lower number of genes per 
nucleus than is typically detected from whole cells or nuclei 
(Grindberg et al., 2013; Habib et al., 2016, 2017; Lacar et al., 
2016; Lake et al., 2016; Macosko et al., 2015). This is likely due 
to several factors, including the lower amount of RNA in the 
nucleus compared with the whole cell, the trade-off be- tween 
resolution and scale for low-throughput versus massively parallel 
approaches, technical differences such as mRNA cap- ture and 
reverse transcription efficiency, and cell-type differ- ences. 
Despite this first limitation, we obtained a sufficient number of 
genes per nucleus to permit successful clustering of neuronal 
populations. A second major limitation is that this work only 
characterized the cell types of the lumbar spinal cord. Although 
the major classes of known cell types are pre- sent along the full 
rostro-caudal axis of the spinal cord, work has revealed that 
distinct subpopulations may vary at different segmental levels 
(Francius et al., 2013; Hayashi et al., 2018; Sweeney et al., 
2018). Accordingly, future work is necessary to fully characterize 
spinal cord cell types outside of the lumbar region. A third major 
limitation is that the use of snRNA-seq for 
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activity profiling can only identify cells that induced a transcrip- 
tional response above a detection threshold. As a result, this 
approach will not detect all neural activity, and negative results 
must be interpreted with caution. 
Massively parallel single nucleus transcriptional profiling has 

the potential to reveal unprecedented knowledge about cell 
types, the transcriptional programs of cell types, and gene 
expression control in an array of in vivo settings in animal 
models. With this resource in hand, single nucleus transcriptional 
profiling can be used to probe spinal cord neuronal and non- 
neuronal responses to disease or injury, to study how the molec- 
ular and cellular composition of a tissue changes over time, and 
to reveal the selective loss of cell types during degeneration or 
gain of cell types during inflammation. Because nuclei are readily 
obtained from human patient-derived and archived bio-bank 
material, snRNA-seq can be applied to study human biology 
as well (Habib et al., 2017; Lake et al., 2016; Matevossian and 
Akbarian, 2008). We now have the tools to reach a new level in 
our understanding of the molecular and cellular mechanisms by 
which complex tissues mediate basic function, behavior, and 
disease. 

EXPERIMENTAL PROCEDURES 

Mice and Behavior 
All animal work was performed in accordance with a protocol approved by the 
National Institute of Neurological Disorders and Stroke Animal Care and Use 
Committee. Balanced samples of male and female ICR/CD-1 wild-type 
mice, between 8 and 12 weeks old, were used for all experiments except those 
shown in Figure 5C, for which En1:Cre;Ai9 mice (Stock No. 007916 3 Stock 
No. 007909, both from The Jackson Laboratory) were used. Formalin injection 
was done by injecting 30–40 mL of 2% paraformaldehyde into the plantar sur- 
face of the hindpaw. Rotarod testing was done with a standard program accel- 
erating from 0 to 40 rotations per minute over 5 min. 

Nuclei Preparation 
This protocol was adapted from Halder et al. (2016). Animals were euthanized 
by CO2 inhalation, the lumbar spinal cord was rapidly dissected, and dorsal 
root ganglia were removed. The cords were dounced in 500 mL of sucrose 
buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2, 3 mM Mg-ace- 
tate, 0.1 mM EDTA, 1 mM DTT) with 0.1% Triton X-100 using five strokes with 
the A pestle (Kontes Dounce Tissue Grinder) followed by five strokes with the B 
pestle. The lysate was then diluted with 3 mL of sucrose buffer and was centri- 
fuged at 3,200 3 g for 10 min. The supernatant was removed, and 3 mL of su- 
crose buffer was added to the pellet and incubated for 1–2 min; the loosened 
pellet was then transferred to an Oak Ridge centrifuge tube. The pellet was 
then homogenized using Ultra-Turrax on setting 1 for 1 min. 12 mL of density 
buffer (1 M sucrose, 10 mM HEPES [pH 8.0], 3 mM Mg-acetate, 1 mM DTT) 
was then added carefully below the nuclei layer, and the tube was centrifuged 
at 3,200 3 g for 20 min. The supernatant was then rapidly poured off, and the 
nuclei on the walls of the tube were collected with 1 mL of PBS with 0.02% BSA 
and spun at 3,200 3 g for 10 min. Nuclei were then resuspended in PBS with 
0.02% BSA. 

Drop-Seq and Analysis 
Each Drop-Seq sample was produced from the lumbar cords of a pair of ICR 
mice 8–12 weeks old. There were nine independent samples for baseline (four 
male and five female), five independent samples for formalin treatment (three 
male and two female), and five independent samples for rotarod behavior 
(three male and two female). 
The Drop-Seq method was performed as previously described (Macosko et 

al., 2015) except that the following concentrations were used: 225 nuclei/mL, 250 
beads/mL, and 0.7% sarkosyl in the lysis buffer; flow rates were adjusted 

accordingly. Clustering was performed using SC3 consensus clustering (Kise- 
lev et al., 2017). All antibodies and in situ hybridization probes used for valida- 
tion are listed in Table S4. 

DATA AND SOFTWARE AVAILABILITY 
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Figure S1. Characterization of the massively parallel single nucleus RNA-seq approach to identify 
spinal cord cell types. Related to Figure 1. Characterization of the massively parallel single nucleus RNA- 
seq approach to identify spinal cord cell types. (A) RT-qPCR detection of Fos RNA from whole spinal cord 
tissue, dissociated cells, and dissociated nuclei (normalized to Gapdh, performed from three independent 
biological samples for each). Mean ± s.e.m. are shown. (B) DNA visualized with DAPI stain from isolated 
nuclei in lysis buffer containing varying concentrations of the detergent sarkosyl. 0.7% sarkosyl was 
selected for further experiments. Scale bars are 500 μm. (C) Droplet volume with varying concentrations of 
sarkosyl. Mean ± s.e.m. are shown. (D) Drop-Seq apparatus image showing bead inflow, nuclei inflow, and 
oil inflow, as well as the formation of droplets and the encapsulation of beads. (E) Pie chart showing the 
overall contribution of each major cell type to the total population of 17,354 nuclei: Neurons, 
Oligodendrocytes (Oligo), Meningeal/Schwann cells (Menin./Schw.), Astrocytes (Astro), Vascular cells (Vas), 
Oligodendrocyte precursor cells (OPC), and Microglia. (F) Genes detected per nucleus, by major cell type. A 
violin plot distribution is shown, as well as the mean ± s.e.m. 



Figure S2. Cluster consensus metrics. Related to Figure 2. (A) Nucleus-by-nucleus 
consensus matrix based on co-clustering within SC3. Consensus is measured on a scale from 
0 (blue) to 1 (red). Fifty-two clusters are shown, including those that were discarded (see 
Experimental Procedures; black). Clusters DE-3, DE-6, and DE-16 were obtained by sub- 
clustering the indicated cluster. The spatial location of each cluster is shown on top (D – 
dorsal, V – ventral, M – intermediate zone/deep dorsal/”mid”). Note that the cluster order is 
distinct from other figures and is shown on the left. (B) Silhouette width consensus values, 
plotted by cluster for the final set of forty-three clusters. This measure represents the 
“diagonality” of the consensus matrix. 
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Figure S3. Gene expression across clusters. Related to Figures 2 and 3. (A) Normalized mean 
gene expression for neurotransmitter markers using excitatory marker Slc17a6/vGlut2, inhibitory 
markers Slc6a5/GlyT2 (glycinergic), Gad1 (gaba-ergic), and Gad2 (gaba-ergic), and cholinergic 
markers Chat and Slc5a7/CHT. (B-F) Normalized mean gene expression across clusters for genes 
that are classic spinal cord markers (B), neurotransmitter receptors and channel proteins (C), 
transcription factors (D), cAMP pathway components (defined by GO analysis) (E), and embryonic- 
lineage domain markers (F). 
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Figure S4. Fos mRNA detected in nuclei following formalin administration. Related to Figure 
5. Fos mRNA detected in nuclei following formalin administration. (A) Fos mRNA as
detected by RT-qPCR from bulk nuclei isolated following formalin administration at
0, 5, 15, or 30 minutes. mRNA levels are presented as fold-change from baseline,
after normalization to Gapdh levels. Five independent biological samples were
analyzed for each time point. Mean ± s.e.m are shown. (B) Fos mRNA as detected
by fluorescent in situ hybridization at 5 minutes (left) and 30 minutes (right)
following formalin administration, showing sub-cellular distribution of mRNA. Scale
bars are 10 μm.
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Appendix 2 

A Harmonized Atlas of Mouse Spinal Cord Cell Types and their Spatial 

Organization 

This section contains a harmonized atlas of mouse spinal cord cell types. With the numerous 

single cell studies profiling the spinal cord, this work integrated six studies to classify cells in the 

spinal cord across different postnatal timepoints, isolation approaches, and sequencing 

techniques. My contribution to this work was in its conceptualization and analysis.
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A revolution in single-cell sequencing technologies is 
transforming many fields of biology. By sequencing the 
RNA/cDNA or open chromatin from many individual 

cells and using computational analysis to identify shared patterns 
of gene expression or epigenetic structure, we may simultaneously 
define cell types, characterize their molecular signatures, and 
track how each cell type in tissue changes in different biological 
conditions such as development and disease. Within the central 
nervous system, this approach may also reveal the molecular basis 
of the impressive levels of neuronal diversity, can provide marker 
genes for developing genetic tools to manipulate neuronal func- 
tion, and may help to reveal the cellular basis of behavior. 

In the postnatal mouse spinal cord, there have been several 
papers profiling single-cell RNA expression that, combined, cover 
a range of biological parameters, including age, tissue region, 
developmental lineage, and circuit features1–11. These studies 
provide a powerful and multi-faceted perspective on spinal cord 
cell types, yet despite this significant effort and a rich literature of 
spinal cord cell type characterization (see reviews12–19), there is 
still no consensus cell type atlas of the spinal cord20. A major 
obstacle is the lack of accepted ground truth of cell types in this 
tissue that could form the basis of a reference atlas. Unfortu- 
nately, this challenge is compounded by the difficulty in com- 
paring data between studies even when the same tissue types and 
techniques are used3,5. This is partly due to biological differences 
and technical limitations, but may also reflect particular analysis 
parameters and technical artifacts that conceal underlying simi- 
larities between these studies. Indeed, it is not clear whether the 
cell types from the original studies are comparable in their cur- 
rent forms, resulting in a fragmented set of incomplete and 
conflicting atlases for the spinal cord. Rather than being specific 
to the study of the spinal cord, these are among the grand chal- 
lenges that scientists face as we re-discover the cells and tissues we 
study through the perspective of single-cell profiling21. 

To begin to overcome these challenges within the mammalian 
central nervous system, we sought to establish a harmonized, 
validated atlas of postnatal spinal cord cell types that could reveal 
the organizing principles of spinal neuronal diversity and serve as 
a standard foundation for future work. We began by performing a 
merged and integrated analysis of the raw data from the first six 
publicly available postnatal spinal cord single-cell datasets. We 
clustered the cells and nuclei of this meta-dataset to reveal 15 
non-neural and 69 neural cell types, thereby providing a cell type 
resolution and characterization that surpasses all prior studies, 
both in the depth of its detail and the breadth of general trends. 
By analyzing gene expression profiles across families of cell types, 
we created a combinatorial panel of dozens of marker genes and 
validated it with high-content in situ hybridization to characterize 
the spatial distribution and prevalence of each cell type in adult 
tissue. This work revealed striking differences between dorsal and 
ventral neuronal cell types, both in their cell-type relationships 
and molecular trends. Co-integration with embryonic cell types 
allowed us to infer putative lineage relationships for each post- 
natal cell type and uncovered complex convergent contributions 
from multiple lineages to many cell types. Finally, we tested a 
range of automated classification algorithms and identified a two- 
tiered model based on label transfer and neural networks as the 
best method for classifying spinal cord cell types. We now present 
SeqSeek, a web-based resource for querying this data by gene or 
cell type and for accessing automated classification algorithm of 
any spinal cord cell or nucleus from raw sequencing data. 

Results 
Merged analysis of spinal cord cells and nuclei. We first created 
a merged dataset with over one hundred thousand cells and 

nuclei from the first six published studies of the postnatal mouse 
spinal cord1–6. These studies cover a range of biological and 
experimental parameters (Fig. 1a). To best compare the data from 
these studies, we began with the raw sequencing reads from each 
study and performed our own data processing with uniform 
methods and filters. All sequencing reads were aligned to a com- 
mon genomic sequence that included both exons and introns and 
we used common, liberal filtering thresholds for inclusion (> 200 
genes per cell/nucleus) and exclusion (<5% percent of genes from 
mitochondria). As a result, this merged dataset contains more cells 
and nuclei than were analyzed in the original studies and a uniform 
set of genes. 

Our first major goal was to create a harmonized atlas of the 
major spinal cord cell types that are shared across these studies 
and we considered whether it would be possible to register 
different studies to each other and thereby identify a common set 
of cell types that would simply require the resolution of 
differences in nomenclature. To perform a direct comparison of 
the clusters between different studies, we used the merged data 
(with common threshold criteria and genes analyzed) and we 
focused on dorsal neurons that were commonly studied by 
Sathyamurthy et al., Haring et al., and Zeisel et al. For each study, 
we calculated the mean expression of each gene in each cluster 
and then analyzed the correlation in overall gene expression 
between the studies. When either all genes or the top 500 highly 
variable genes were analyzed, there were weak overall correlations 
and very few alignments between clusters from different studies 
(Supplementary Fig. 1a, b, d). We therefore concluded that the 
previously published atlases cannot simply be registered to each 
other to achieve a valid reference atlas. This is similar to previous 
reports which used correlation in gene expression between 
clusters to attempt to link cell types across studies and this 
approach yielded weak and/or incomplete correlations, even 
between studies in which the same sample age and tissue 
dissociation method were used3,5. 

Next, we hypothesized that co-clustering cells and nuclei across 
all of the studies would provide an improved ability to relate cell 
types in one study to those in another. We performed 
dimensionality reduction using principal component analysis 
and visualized the cells and nuclei using Unifrom Manifold 
Approximation and Projection (UMAP) plots. Unfortunately, the 
cells or nuclei from each study were segregated from each other 
almost completely, indicating that the study of origin is a major 
source of variability in the dataset (Fig. 1b). This technical 
limitation obscured all cell type distinctions. 

Finally, we used a recently developed integration method, 
implemented in the Seurat software package, to align the cells and 
nuclei across studies to reduce experimental sources of variability 
and reveal the core set of spinal cord cell types22,23. With this 
approach, the cells and nuclei from all six studies were spatially 
interposed in a UMAP visualization of principal component 
space (Fig. 1c) and separated into groupings that each expressed a 
panel of well-established cell type markers such as Snap25 
(neurons), Mbp (oligodendrocytes), Aqp4 (astrocytes), and Ctss 
(microglia) (Fig. 1d, e). Moreover, the integration-adjusted gene 
expression values markedly improved the ability to identify 
relationships between the clusters of the original studies and also 
improved the top correlation score for each original cluster 
(Supplementary Fig. 1c, d). 

With the integrated merged data, we performed preliminary 
clustering and removed low-quality clusters and doublets (see 
Methods) to obtain a final dataset of over fifty thousand cells and 
nuclei (Supplementary Fig. 2a, e). The majority of these cells/ 
nuclei from this analysis are from the three studies that used high 
throughput collection and barcoding techniques (the Sathya- 
murthy, Rosenberg, and Zeisel datasets). A comparison across 
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Fig. 1 Integration of six independent studies on single cell spinal cord data reveals the major cell types of the spinal cord . a Summary of the datasets 
used in this study, including the studies that used single-cell/nucleus RNA sequencing to analyze postnatal mouse spinal cord cell types (colored names 
above the gray bar) and additional studies that were used for focused aspects of the analysis below the gray bar. The age and technique (cell or nucl ei 
isolation) is represented for each study. b UMAP presentation of the 52,623 cells/nuclei in the final dataset, without integration and colored by the study of 
origin (colors in the legend). c UMAP presentation of the same 52,623 cells/nuclei in the final dataset, integrated by study a nd colored by the study of 
origin (same colors as in (b)). d UMAP presentation of the cells/nuclei in the merged dataset, integrated by study and colore d by cell type. e Dot plot of 
the expression of marker genes for the major coarse cell types. Average expression for each cluster is shown by color intensity and the percent of cells/ 
nuclei in each cluster that expressed each gene is shown by dot diameter. 

studies revealed that these high throughput studies detected fewer 
genes per cell/nucleus than studies that used single well technical 
approaches (the Hayashi, Haring, and Baek datasets), and studies 
that used cells (the Hayashi, Haring, Zeisel, and Baek datasets) 
detected more genes per cell/nucleus but had higher levels of 
immediate early gene and stress gene expression than did studies 
that used nuclei (the Sathyamurthy and Rosenberg datasets) 
(Supplementary Fig. 2). These trends across technical approaches 
were expected based on other reports (reviewed22). Thus, 
integration has the potential to facilitate merged analysis and 
comparison amongst independent datasets by reducing (but not 
eliminating) the effects of technical differences between the 
studies. 

To test whether the particular integration method may bias 
downstream results and alter cell type assessments, we also 
performed integration using three independent methodologies24: 
Harmony25, Conos26, and LIGER27 (Supplementary Fig. 3). In 
each case, highly reliable cell type results were observed, based on 
visual inspection of UMAP distributions and low Local Inverse 
Simpson Index (LISI) values for cell type coherence when 
compared to Seurat integration. Together, these analyses 
demonstrated that integration of publicly available datasets can 
be used to harmonize spinal cord sequencing data, preserve 
important biological differences between studies, and uncover a 
robust set of shared cell types. 

A harmonized atlas of major cell types. Next, we performed 
coarse clustering to define the major cell types of the mouse 
spinal cord (Fig. 1d, e and Supplementary Fig. 2). Sixteen major 
types were identified that represent all known classes of spinal 
cord cell types. These cell types are: (1) oligodendrocyte precursor 
cells; (2–3) two maturational stages of oligodendrocyte progeni- 
tors; (4–5) two types of oligodendrocytes that likely correspond to 
myelinating and mature cell types and that blend into each other; 
(6) Schwann cells; (7) peripheral glia; (8–9) two types of meninges
that likely correspond to vascular leptomeningeal cells and ara- 
chnoid barrier cells; (10) ependymal cells that surround the
central canal; (11–12) two types of astrocytes that likely corre- 
spond to a major population of regular astrocytes and a minor
population of Gfap-expressing proliferating/activated/white
matter astrocytes; (13–14) two types of vascular cells that likely
correspond to endothelial cells and pericytes; (15) microglia; and 
(16) neurons, which are discussed in detail below.

As expected, the cell types that were derived from each study
corresponded to the techniques used to isolate the cells or nuclei 
(Supplementary Fig. 2e). The three studies that FACS sorted 
neurons from the spinal cord (Hayashi, Haring, and Baek 
datasets) predominantly gave rise to cells in the neuronal sub- 
clusters, as well as non-neural cells that most likely represented 
doublets. Moreover, among the three studies that examined all 
cell  types,  the  early  postnatal  Rosenberg  study  showed 
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a Harmonized Neuron Clusters b Dataset c Robustness Score 

d Neurotransmitter e Lamina 

UMAP_1 
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Fig. 2 Harmonized atlas of 69 populations of spinal cord neurons. a UMAP presentation of 19,353 neuronal cells/nuclei of the postnatal mouse spinal 
cord, colored and annotated by cell type cluster. b–f The same cells/nuclei, colored by the study of origin (b), by robustness (silhouette) score (c), a 
neurotransmitter (d), lamina (e), and family (f). I inhibitory, I/Ch inhibitory cholinergic, Ch cholinergic, E/Ch excitatory cholinergic, E excitatory, MN 
motoneurons, ME mid excitatory, CC Clarke’s Column (*see main text for note on this designation), MI mid inhibitory, VE ventral excitatory, VI ventral 
inhibitory. Laminae were assigned based on in situ hybridization validation experiments and are colored by the approximate depth from the dorsal surface 
of the cord (hot pink to violet). See main text for description of neuronal families. 

enrichment of immature cells of oligodendrocyte lineage relative 
to the adult Sathyamurthy study, while the adolescent Zeisel study 
showed an intermediate distribution. The only study to dissect 
the spinal cord including the dorsal and ventral spinal roots (the 
Sathyamurthy dataset) was the only source of Schwann and 
peripheral glia cells that would be located in these roots. 

Overview of harmonized neuronal cell types. We next focused 
our analysis on neuronal populations to further probe their 
impressive diversity and to define a reference set of cell types for 
understanding the spinal cord cellular basis of behavior. Based on 
the coarse cell type assignments above, we selected and clustered 
all neuronal cells/nuclei (Supplementary Fig. 4). Preliminary 
analysis revealed that putative dorsal horn clusters separated well 
in principal component space while putative mid and ventral 
horn clusters did not, which prompted us to perform a targeted 
sub-clustering of all mid and ventral cells/nuclei (see Methods). 
In total, 69 neuronal clusters were identified (Fig. 2, Supple- 
mentary Figs. 4 and 5, Supplementary Table 2, and Supplemen- 
tary Movie 1) and the neurotransmitter status and putative 
regional location (dorsal horn, mid-region, ventral horn) were 
determined by marker gene expression and comparison to the 
original six studies. Subsequent validation studies confirmed these 
determinations (see below). We observed 20 dorsal excitatory 

clusters, 14 dorsal inhibitory clusters, 10 deep dorsal/mid exci- 
tatory clusters, 7 deep dorsal/mid inhibitory clusters, 8 ventral 
excitatory clusters, 6 ventral inhibitory clusters, 3 cholinergic 
motoneuron clusters, and 1 cluster of the cerebrospinal fluid 
contacting neurons (CSF-cN). 

To determine the robustness of these clusters, we used a 
bootstrapped co-clustering test of the consistency with which cells 
and nuclei in each cluster remain together upon repeated clustering 
(Fig. 2c and Supplementary Fig. 5). Dorsal clusters showed very 
high robustness with this measure, whereas mid and ventral clusters 
showed low to moderate robustness. This general feature was 
consistent with previous observations and likely reflects similar 
patterns of gene expression amongst mid and ventral clusters1,4. 

To assess how these neuronal clusters relate to previously 
characterized transcriptomic spinal cord cell types, we first 
focused on the original clusters from the Sathyamurthy and 
Haring datasets because these two studies included a common set 
of cell types (dorsal horn neurons) and provided the most 
analysis, annotation, and marker validation for their respective 
cell types. Some ventral neurons from the Sathyamurthy dataset 
appeared in low-quality clusters that were discarded from the 
harmonized analysis due to low counts of genes per cell/nucleus 
and a lack of marker genes, whereas some neurons from the 
Haring dataset were classified as non-neural cell types or 
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appeared in doublet clusters that were also discarded from the 
harmonized analysis. Nevertheless, we found that cells/nuclei 
from the original studies were distributed into the harmonized 
clusters in coherent patterns that facilitated the registration of the 
original clusters based on their distance in the neuron principal 
component space (Supplementary Fig. 6). We next compared the 
harmonized clusters to the clusters reported in a recent study by 
Blum et al. which focused on spinal motoneurons but also 
included many interneurons and glia. We found general 
agreement between the clusters that they reported and our 
harmonized analysis with the following differences (Supplemen- 
tary Fig. 7). First, they described many more sub-types of 
motoneurons, similar to the work of Alkaslasi et al., and we 
incorporated both of these studies and performed an expanded 
analysis of motoneuron sub-types (see below). Second, most 
excitatory or inhibitory clusters that Blum et al. described 
corresponded to multiple refined harmonized clusters. Third, 
Blum et al. cluster “0” was described as inhibitory neurons but 
likely included both inhibitory and excitatory ventral neurons. 
And fourth, there were a few putative mis-annotation errors in 
the Blum et al. dataset: cluster “22” was not annotated but likely 
corresponded to ependymal cells; cluster “24” was annotated as 
inhibitory interneurons but likely corresponded to oligodendro- 
cyte precursor cells; and cluster “35” was annotated as 
oligodendrocytes but likely corresponded to a mix (or doublets) 
of oligodendrocyte precursors/progenitors and other glial cell 
types such as astrocytes. Finally, we compared all marker genes 
that we highlight in this paper (those in Table 1 and all figures) to 
their patterns in a recent spatial transcriptomics analysis of the 
spinal cord28 and to the Allen29 and Gensat30 expression 
databases and found general concordance between these 
resources (Supplementary Table 4). Together, this analysis reveals 
the overall reproducibility of single-cell sequencing atlases of the 
spinal cord but also highlights the power of integrating many 
sources of information to obtain the most refined and robust cell 
types and the importance of having an annotated reference atlas 
to facilitate cell type analysis in future work. 

General trends in molecular identity relationships amongst 
neuronal populations. We next sought to examine the major 

features that govern the broad molecular identity relationships 
amongst spinal cord neurons. We used a dendrogram analysis of 
the distance between the clusters within the 50-dimensional 

principal component space. This revealed that the primary dis- 
tinctions within spinal interneurons/projection neurons (non- 
motoneurons) were based on spatial location in the dorsal horn 
or mid/ventral regions of the spinal cord. Interestingly, this 
bifurcation occurred even before cell types split by neuro- 

transmitter status (for example into dorsal excitatory or dorsal 
inhibitory types), a core feature of neuronal identity. This analysis 
also revealed that putative dorsal clusters were well separated 
from each other by long dendrogram branches, while putative 

mid and ventral clusters were much closer to each other in this 
reduced gene expression space (Fig. 3a). Intriguingly, neurons 

that are located at the spatial mid-point between the dorsal and 
ventral sides of the cord (preganglionic cells and two excitatory 

populations near the central canal) were organized as a single 
branch (Fig. 3a; center), further underscoring the importance of 
spatial distribution as an organizing principle in the spinal cord. 

We next performed differential expression between dorsal and 
mid/ventral neuron types and compared the signature gene 

expression profiles by gene ontology analysis to uncover the 
broad molecular differences that distinguish these classes. 

Remarkably, we found that genes related to plasticity were 
significantly enriched in the dorsal horn of the spinal cord. This 

included (1) genes that were widely expressed in the dorsal horn 
but not in the ventral horn, such as Camk2a which has well- 
established roles in long-term potentiation (LTP)31; (2) genes that 
were present at higher levels in the dorsal horn than the mid/ 
ventral horn, such as Grm5 which encodes the mGluR5 receptor 
which has been linked to meta-plasticity32, Plcb1 (PLCβ), and 
Gria3 (GluR3); and (3) genes with restricted expression in 
particular dorsal horn neuron types such as Prkcg (PKCγ), 
Kcnip3 (DREAM), Nrgn, and Nos1 (nNOS) (Fig. 3b, c, d, g). In 
contrast, genes related to structural adhesion and stability were 
enriched in the ventral horn of the spinal cord, including (1) 
genes related to cell-cell adhesion such as Lrrtm3, Cntn5, Cdh18, 
and Sdk1; (2) genes related to perineuronal net components such 
as Bcan (Brevican) and Tnr (Tenascin R), and genes related to 
limiting the signal transduction pathways associated with LTP 
such as Ptpn5 (STEP)33 (Fig. 3b, e, f, g). We validated the 
differentially expressed patterns of several of these genes using 
in situ hybridization and also at the protein level for CAMK2α 
and WFA-lectin to reveal perineuronal nets, thereby confirming 
predicted gene expression signatures that would differentially 
regulate plasticity in the dorsal and ventral horns of the spinal 
cord (Fig. 3c–f). Thus, we discovered general differences in the 
relationships between clusters in the dorsal versus the ventral 
horn and molecular trends that could confer differential plasticity 
control in these two regions. 

We also performed a similar analysis to compare gene 
expression between excitatory and inhibitory classes of spinal 
neurons. As expected, genes involved in neurotransmitter status 
were detected (such as Pax2 and Gad2) but we also observed 
consistent differential expression between excitatory and inhibi- 
tory neurons for a pair of calcium channels (Cacna2d3 and 
Cacna2d1) and a pair of synaptic adhesion molecules that 
promote repulsion to limit homophilic interactions (Dscam and 
Dscaml1) (Supplementary Fig. 8). 

Detailed cluster analysis and marker validation for harmonized 
neuronal cell types. Next, we sought to characterize the indivi- 
dual clusters at a molecular level and to define their marker genes. 
There are multiple approaches for identifying cell type markers 
based on single-cell data. Commonly used methods such as the 
Wilcox Rank Sum test and Area Under the Curve Receiver 
Operating Characteristic (AUROC) analysis use differential 
expression to identify genes that are enriched within one identi- 
fied cell cluster as compared to all other clusters and we used this 
approach to generate candidate markers for each cluster (Sup- 
plementary Table 1). However, these approaches do not prioritize 
markers that are shared between related clusters or those markers 
that are well-established for a given tissue, nor do they produce 
an efficient final set of markers that can be used to define neu- 
ronal cell types for use in other types of experiments. To over- 
come these obstacles, we therefore used a combination of Wilcox 
and ROC individual cluster markers, Wilcox and ROC markers 
for dendrogram branches, and established markers from the lit- 
erature to generate a panel of combinatorial markers for spinal 
cord neurons that follows a family name and given name analogy. 
For example, Excit-14 through Excit-19 comprise the Sox5 family. 
They are distinguished by expression of Col5a2 (Excit-14), 
Col5a2 and Enpp1 (Excit-15), Col5a2, Enpp1, and Tac1 (Excit- 
16), Dcx expression and being present almost exclusively at early 
post-natal stages (Excit-17), Nmu (Excit-18), and Tac2 (Excit-19) 
(Fig. 4A, B). 

To determine whether this panel of markers corresponded to 
in situ gene expression patterns and to define the anatomical 
distribution of each cluster, we performed high-content in situ 
hybridization with combinatorial sets of marker gene probes 
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Chemical synaptic transmission 0.0015 

Long-term depression 0.0021 

Gene Category p-Value 
Cell adhesion 0.000000006 

Axon guidance 0.00000017 

Neuron system dev. 0.0000029 

Homophilic cell adhesion 0.0000033 

Positive regulation of synapse assembly 0.0000042 

Axon guidance 0.000008 

cAMP signaling pathway 0.000025 

Actomyosin structure organization 0.00011 

Chemical synaptic transmission 0.00023 

Fig. 3 Trends in dorsal-ventral organization of spinal cord neuron types. a Dendrogram showing the relationships between the 69 neuronal cell types  
based on their distance from each other in the 50-dimensional principal component (PC) space. MN motoneuron, IN interneurons (and projection 
neurons), CSF-cN cerebrospinal fluid contacting neurons, DE dorsal excitatory, DI dorsal inhibitory ME mid excitatory, MI mid inhibitory, VE  ventral 
excitatory, VI ventral inhibitory, center represents a group of 3 cell types located near lamina X–the center of the spinal cord. b Differential gene expression 
tests (ROC) were used to compare overall gene expression between the dorsal cell types and mid/ventral cell types and significant gene lists were 
analyzed by gene ontology (GO) term searches with GO DAVID using molecular function and biological process terms, as well as KEGG pathway lists 
(which are underlined) and the top terms for each cell class are shown. c–f Validation of differentially expressed genes using RNA in situ hybridization (c, 
e), antibody staining (d), or WFA-lectin staining (f). 20x tiled images, with brightness and contrast adjusted. All images are representative of the pattern 
observed in at least 3 sections each from N = 3 animals. Scale bars are 200 μm. g Dot plots showing expression of plasticity-related genes in each 
harmonized cluster, in which dot color intensity corresponds to average expression level (Ave Exp) and dot size corresponds to the percent of each cluster 
that expressed the gene (% Exp). 

including both known and not previously described marker genes 
(Supplementary Table 3). While the harmonized analysis above 
included a range of tissue ages, all validation work was done in 
the adult lumbar spinal cord to test whether predicted gene 
expression patterns are accurate and whether they can be used in 
the adult context to study cells involved in the mature function. 
We tested 95 unique genes and analyzed gene expression in ten 
overlapping sets of 12 genes each. For each set, hundreds of cells 
were counted from three spinal cords and their locations mapped 
by lamina with examples shown in Fig. 4 and Supplementary 
Fig. 9. (Details for the counting procedure including are described 
in the “Methods”.) 

Using this approach, 79 genes (out of 95) showed reliable 
expression in the adult spinal cord (Supplementary Table 3) and 
71% of neurons in the adult lumbar spinal cord could be 
identified as belonging to one of the 69 neuronal clusters (2057/ 
2894 total). An additional 9% of neurons could be identified as 
belonging to pairs of closely related clusters (266/2894 total). Of 
note, the ability to use defined markers to identify cell types in 
tissue varied by combinatorial gene set such that dorsal sets could 
be more readily assigned based on in situ gene expression than 
ventral sets (Fig. 4F). This suggests that the distinction between 
dorsal and ventral neurons that we described above is not limited 
to the sequencing data but exists in the adult spinal cord tissue. 

This detailed in situ hybridization analysis also revealed the in- 
tissue prevalence and laminar location of each of the lumbar adult 
neuronal cell types (Table 1) and can serve to translate single-cell 
sequencing data back into tissue-based analysis. 

The cell type markers, typical laminar distribution, prevalence, 
and putative embryonic lineage (described below) of each cluster 
are shown in Table 1, Fig. 4, and Supplementary Fig. 9. 

The motoneuron (MN) family includes alpha motoneurons 
(MNa) which had relatively higher levels of Poln and Spp134, 
gamma motoneurons (MNg) which had relatively higher levels of 
Esrrg and Htr1f35, and the related preganglionic cells (PGC) 
which expressed Gfra3, Nos1, and Fbn236,37. This family was only 
comprised of nuclei from the Sathyamurthy and Rosenberg 
datasets but we could not detected refined sub-populations of 
motoneurons. However, this included only 565 MNs. Recently, 
data from Blum et al.10 and Alkaslasi et al.11, focusing only on 
cholinergic neurons, became available. Therefore, we incorpo- 
rated this data and performed a targeted analysis of a merged set 
of 23,032 spinal motoneurons. This larger dataset, combined with 
the barcoding of the Alkaslasi study enabled the identification of 
distinctly localized MN subtypes that were not previously 
resolved. PGCs were clustered into 23 subtypes that varied by 
spinal cord level and MNa were clustered into 14 subtypes that 
also varied by spinal level. For example, we found that digit- 
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innervating motoneurons, expressing Cpne4 and Fign38, sepa- 
rated into two subtypes, one found in limb-innervating regions 
(both cervical and lumbar) and one that was specifically localized 
to the lumbar spinal cord39,40 (Supplementary Fig. 9A and 
Supplementary Fig. 10). 

Cerebrospinal fluid contacting neurons (CSF-cN) were dis- 
tinguished by Pkd2l1 and Pkd1l2. This population has been 

suggested to be involved in postural control in zebrafish41–45. 
This cluster was very distinct from other neuronal populations, 
inhibitory, and also expressed the early neuron marker Sox2 and 
the V2b lineage markers Gata2 and Gata3, suggesting an 
immature phenotype. (Supplementary Fig. 9A). 

The dorsal excitatory cell types were comprised of the 
following families: 
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Fig. 4 Family structure and in situ validation for adult spinal cord tissue. a UMAP for neuronal cell types Excit-14 through Excit-19. b Dot plot of the 
distribution of selected marker genes across the 69 neuronal clusters in which dot color intensity corresponds to average expression level (Ave Expression) 
and dot size corresponds to the percent of each cluster that expressed the gene (% Expressed). c Feature plots of each gene expression pattern in Excit-14 
through Excit-19. Expression levels are indicated by color intensity, with the maximum level indicated below each plot. The co-expression of Nmu (red) and 
Tac2 (green) are shown in the right-most plot, with expression levels cut-off at a maximum of 2.5 to highlight co-expressing cells in yellow. d, e RNA in situ 
hybridization of selected marker genes Sox5, Col5a2, Tac1, Nmu, Tac2 on an adult mouse lumbar spinal cord section. Cells were assigned to individual 
excitatory clusters with cluster number identity shown based on marker gene expression. Inset show representative cells of Excit-14 (14*) and Excit-15 
(15**) with in situ hybridization for Sox5 (green), Col5a2 (red), Enpp1 (blue). 20x tiled images, with brightness and contrast adjusted. All images are 
representative of the pattern observed in at least 3 sections each from N = 3 animals. Scale bar is 100 μm in (d) and 25 μm in (e). f Quantification of the 
cells in adult spinal cord tissue that could be defined using sets of marker genes in situ. The cell types analyzed by each set of genes are shown on the left, 
the number of cells counted for each set are shown at the base of the bars, and the percent of counted cells are shown for each animal (N = 3, replicates 
and mean ± standard error) that could be confidently assigned to a single cluster (white bars), or that could be assigned to a single cluster or to pair of 
closely related clusters (gray). For each set, the coarse criteria for counting total cells are specified in the Methods. Set 4, which includes the Sox5 family 
clusters, is highlighted in green as an example. 

The Cpne4 dorsal, excitatory family was comprised of Excit- 
1 and Excit-2. Excit-1 was a rare subset, both in the 
harmonized clusters and in the in situ counts, that also 
expressed Dach2. Excit-2 was more prevalent and co-expressed 
Prkcg as well as Cbln2. This family had markers of 
interneurons suggested to be involved in mechanical itch46,47. 
(Supplementary Fig. 9B). 

The Prkcg dorsal, excitatory family was comprised of Excit-3 
and Excit-4 and likely corresponded to neurons involved in light 
static touch and allodynic pain in pathological situations46,48–56. 
Prkcg is a classic marker gene in the spinal cord and defined this 
family together with the neuropeptides Cck and Trh (Excit-3) and 
Nts (Excit-4). Both subsets also expressed Calb1, although it was 
not specific to these clusters. This family was also close to Excit-7, 
an immature cluster grouped with the Maf family. Of note, there 
were two discrepancies in this family between the sequencing data 
and the in situ hybridization data: Cck was present at high levels 
in the Excit-3 in the sequencing data but we did not detect Cck in 
most Prkcg-expressing cells of the adult spinal cord and Prkcg 
was not enriched in Excit-4 in the sequencing data but was readily 
detected with Nts and Calb1 in this cluster in adult tissue. 
(Supplementary Fig. 9B). 

The Maf dorsal, the excitatory family was comprised of Excit-5, 
Excit-6, and Excit-7 which expressed markers of neurons 
involved in light touch46,48,50,56,57. All three clusters expressed 
enriched levels of Maf and Rora (which was broadly expressed in 
many other clusters at lower levels). Excit-5 also expressed Pvalb 
and Cck, Excit-6 expressed Rorb and Cpne4, and Excit-7 was 
distinguished by having only nuclei from the Rosenberg dataset 
and expressed the immature neuron marker Dcx, suggesting an 
immature phenotype. The similarity of Excit-7 with Excit-3, 
Excit-4, Excit-5, and Excit-6 suggests a shared lineage relationship 
between these families. This family also expressed low levels of 
Slc17a8 (vGlut3). (Supplementary Fig. 9B). 

The Reln dorsal, excitatory family was comprised of Excit-8, 
Excit-9, Excit-10, and Excit-11 and expressed markers indicative 
of a role in chemical itch sensation58–62. These clusters expressed 
enriched levels of Car12 (in particular in Excit-9 and Excit-10), 
the neuropeptide receptors Trhr (Excit-8), Npr1 (Excit-9 and 
Excit-10), and Nmur2 (Excit-10), and the neuropeptide Grp 
(Excit-9). (Supplementary Fig. 9C). 

The Rreb1 dorsal, excitatory family was comprised of Excit-12 
and Excit-13. These clusters also expressed Satb1 and either Zim1 
(Excit-12) or Nmur2 and Crh (Excit-13). (Supplementary Fig. 9C). 

The Sox5 dorsal, the excitatory family was comprised of Excit- 
14, Excit-15, Excit-16, Excit-17, Excit-18, and Excit-19, and 

expressed markers suggestive of a role in coping pain and 
mechanical nociception46,52,56,63–67. Within this family, Excit-14 
and Excit-15 were slightly separated and also similar to the Rreb1 

family clusters and expressed Col5a2 (Excit-14) or Col5a2 and 
Enpp1 (Excit-15). Excit-16, Excit-18, and Excit-19 expressed the 
neuropeptides Tac1 (Excit-16), Nmu-hi/Tac2-lo (Excit-18), and 
Tac2hi/Nmu-lo (Excit-19). Excit-17 included almost exclusively 
nuclei from the Rosenberg dataset and showed enriched 
expression of the immature neuron marker Dcx. (Fig. 4). 

The Megf11 cluster (Excit-20) displayed features of dorsal 
excitatory neurons and mid excitatory neurons, being located in 
lamina 4/5 and being grouped with mid neurons in principal 
component space in the UMAP and dendrogram analysis. It 
expressed Megf11 and Mdga1. 

The dorsal inhibitory cell types were comprised of the 
following families: 

The Rorb and Adamts5 dorsal, the inhibitory family was 
comprised of Inhib-1, Inhib-2, Inhib-3, Inhib-4, and Inhib-5, with 

markers of neurons involved in the dampening of dynamic 
touch48,68,69. Each of these clusters, except Inhib-2, expressed 
Rorb. Inhib-2 is grouped with this family based on its proximity 

in principal component space, as reflected in the UMAP and 
dendrogram analysis. In addition to Rorb, Inhib-1 expressed 

Sorcs3, Inhib-3 expressed Nppc as well as Nrgn, Inhib-4 
expressed Rxfp2, and Inhib-5 did not express these other genes. 

Inhib-2 expressed Sorcs3 and Adamts5. (Supplementary Fig. 9D). 
The Cdh3 dorsal, inhibitory family was comprised of Inhib-6, 

Inhib-7, and Inhib-8 and are likely to be involved in the 
dampening of dynamic touch and therefore in mechanical 

allodynia70–72. Inhib-6 and Inhib-7 expressed Cdh3 and were 
distinguished by co-expression of Kcnip2 and Pvalb in Inhib-7. 

While Inhib-8 contained only low levels of Cdh3 in this analysis, 
Cdh3 expression was confirmed by in situ hybridization and this 

cluster was included in this family based on proximity in 
principal component space as reflected in the UMAP and 

dendrogram analysis. Inhib-8 also expressed Klhl14. (Supple- 
mentary Fig. 9D). 

The Pdyn dorsal, inhibitory family was comprised of Inhib-9, 
Inhib-10, and Inhib-11 and expressed markers suggestive of a role 
in chemical itch52,61,73–77. Each of these clusters expressed Pdyn, 
while Inhib-10 also expressed Gal and Mlxipl and Inhib-11 also 
expressed Gal only. Of note, the clusters in this family also 
expressed Rorb and Nrgn. (Supplementary Fig. 9E). 

The Npy dorsal, the inhibitory family was comprised of Inhib- 
12 and Inhib-13. Studies suggest this family’s markers identify 
neurons involved in mechanical itch and pain73,78,79. These 
clusters expressed Npy and were distinguished by low levels of 
Vgf (Inhib-12) or by expression of Qrfpr (Inhib-13). (Supple- 
mentary Fig. 9E). 

The Chat dorsal inhibitor cluster Inhib-14 was a deep dorsal 
(lamina 4), inhibitory and cholinergic population and also 
expressed Nos180–82. 
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Table 1 Cell-type census of 69 populations of spinal cord neurons. 

Cluster Lamina % NT Family Individual Markers Putative Lineage 
MN-alpha 9 1.1 Chat MN Spp1 Poln Tns1 MN 
MN-gamma 9 0.5 Chat MN Esrrg Htr1f Tns1 MN 
PGC 7-IML Chat MN Gfra3 Nos1 Fbn2 MN 
CSF-cN 10 0.3 Slc6a1 CSF-cN Pkd2l1 V2b.2/V2b.4 
Excit-1 1/2o 0.6 Slc17a6 Cpne4 Dach2 (Cck) dI3.3/dI5 
Excit-2 1/2o/2i 3.7 Slc17a6 Cpne4 Prkcg (Rorb) dI5.4 
Excit-3 1/2o/2i 3.8 Slc17a6 Prkcg (Cck) Calb1 dI5.4 
Excit-4 2i/3 2.8 Slc17a6 (Prkcg) Nts Calb1-hi dI5.4 
Excit-5 2i/3/4 3.2 Slc17a6 Maf Cck dI5.4 
Excit-6 3/4 2.4 Slc17a6 Maf Rorb Cpne4 dI5.4/dI5.5 
Excit-7 N/A N/A Slc17a6 Maf Dcx (vGlut3) dI5.4/dI5.5 
Excit-8 1/2 1.4 Slc17a6 Reln Trhr (Car12) (Grp) dI3.3/dI5.4 
Excit-9 1/2/3 1.7 Slc17a6 (Reln) Grp Calb2 dI5.4/dI5.5 
Excit-10 1/2 2 Slc17a6 Reln Car12 Nmur2 dI5.4 
Excit-11 N/A 0 Slc17a6 Reln Car12 Gabra2 dI5.4 
Excit-12 1/2 0.2 Slc17a6 Rreb1 Satb1 Zim1 dI5.5 
Excit-13 2i/3 0.7 Slc17a6 Rreb1 Nmur2 (Satb1) dI5.5 
Excit-14 1/2o 1.7 Slc17a6 Sox5 Col5a2 (dI5) 
Excit-15 1/2/3 0.2 Slc17a6 Sox5 Col5a2 Enpp1 (dI5) 
Excit-16 1/2o (2i-4) 6.5 Slc17a6 Sox5 Col5a2 Enpp1 Tac1 (dI5) 
Excit-17 N/A N/A Slc17a6 Sox5 Dcx (dI5) 
Excit-18 1/2o (2i-4) 2.7 Slc17a6 Sox5 Nmu (Tac2) (dI5) 
Excit-19 2i (3/4) 1.9 Slc17a6 Sox5 Tac2 (Nmu) dI5.4/dI5.5 
Excit-20 4/5 2 Slc17a6 Megf11 Mdga1 dI2.1/dI5.5 
Inhib-1 3 (1-4) 7.4 Slc6a1 Rorb Sorcs3 (Nppc) (Runx2) dI4.3 
Inhib-2 3 (1-4) 10.3 Slc6a1 (Rorb) Adamts5 Klhl14 Sorcs3 dI4.3 
Inhib-3 1-4 3 Slc6a1 Rorb Nppc Nrgn dI4.3 
Inhib-4 1/2o/2i 0.4 Slc6a1 Rorb Rxfp2 dI4.3 
Inhib-5 1/2o (3) 1 Slc6a1 Rorb dI4.3 
Inhib-6 3/4 (1/2o) 1.3 Slc6a1 Cdh3 dI4.4 
Inhib-7 2i/3 (1-4) 3.6 Slc6a1 Cdh3 Kcnip2 Pvalb dI4.4 
Inhib-8 3/4 0.5 Slc6a1 (Cdh3) Klhl14-hi dI4.4 
Inhib-9 1/2o (2i/3) 1.6 Slc6a1 Pdyn (Rorb) (Rspo3) dI4.1/dI4.4 
Inhib-10 3 (1-5) 9.7 Slc6a1 Pdyn Gal Mlxipl Rspo3 dI4.1/dI4.4 
Inhib-11 1/2o/2i/3 0.9 Slc6a1 Pdyn Gal (Rorb) Nrgn dI4.1/dI4.4 
Inhib-12 1/2o/4 1.8 Slc6a1 Npy (Vgf) dI4.6 
Inhib-13 1/2o/2i 2.1 Slc6a1 Npy Qrfpr dI4.6 
Inhib-14 4 0.1 Slc6a1 Chat Slc6a5 Nos1 dI4.1/dI4.6 
Excit-21 4/lat 5 0.5 Slc17a6 ME/Lmx1b Zfhx3 Nms dI5.5 
Excit-22 4/5/6 0.1 Slc17a6 ME/Lmx1b Zfhx3 dI3.3/dI5.5 
Excit-23 4/med 5 1.2 Slc17a6 ME/Lmx1b Nfib Cep112 (dI5) 
Excit-24 4/5/6 0.7 Slc17a6 ME/Lmx1b (Nfib) (Cep112) (dI5) 
Excit-25 4/5/6 0 Slc17a6 ME/Lmx1b Nfib Prox1 (dI5) 
Excit-26 4 0.1 Slc17a6 ME Nfib (Prox1) (Satb1) (dI1/dI2) 
Excit-27 4/5 1.3 Slc17a6 ME Adamts2 Cep112) (dI2) 
Excit-28 10 0.1 Chat ME Pitx2 Pou6f2 Onecut2 V0* 
Excit-29 5/6 0.3 Slc17a6 ME Onecut2 Pmfbp1 (V0)
Excit-30 5 0.8 Slc17a6 CC# Gbx2 Neurod2+ Pou6f2 V2a.1 
Inhib-15 med 5 1.1 Slc6a5 MI Prox1 Gabra1 Nfib V1.7 
Inhib-16 med 5 0.6 Slc6a5 MI Gpc3 (Rorb) Sema5b dI4.6 
Inhib-17 N/A N/A Slc6a5 MI Satb2 dI4.4/dI4.6/(dI6) 
Inhib-18 5/6 0.5 Slc6a5 MI Sema5b dI4 
Inhib-19 med 5 0.5 Slc6a5 MI Ccbe1 Pou6f2 dI4.4 
Inhib-20 5/6 1 Slc6a5 MI Tfap2b dI4.6/V1.1/(dI6) 
Inhib-21 4/med 5 0.8 Gad2 MI Nfib Pax6 dI4.6/V1.6/(dI6) 
Excit-31 6/7/8 0.3 Slc17a6 VE Lhx9 Gm26673 Syt2 (dI1/dI2) 
Excit-32 6/7/8 0.4 Slc17a6 VE Lhx9 Prlr Mdga1 dI1/dI2/dI3 
Excit-33 N/A N/A Slc17a6 VE Lhx9 dI2.1 
Excit-34 6/7/8 0.4 Slc17a6 VE Bnc2 Pou6f2 Lhx2 dI1/dI2 
Excit-35 6/7 0.5 Slc17a6 VE Vsx2 Pou6f2 Vamp1 V2a* 
Excit-36 6/7 0.3 Slc17a6 VE Vsx2 Esrrg (Gm26673) dI1/dI2/V2a 
Excit-37 7 0.8 Slc17a6 VE Vsx2 Shox2* V2a* 
Excit-38 N/A N/A Slc17a6 VE Sim1 Rnf220 V3* 
Inhib-22 7 0.1 Slc6a5 VI Foxp2 (Esrrb) (dI6)/V1.3 
Inhib-23 7/8 0.6 Slc6a5 VI Foxp2 Esrrbb+ Gm26673 (dI6)/V1.3 
Inhib-24 7 0.6 Slc6a5 VI Pou6f2 Nr5a2 V1 
Inhib-25 7/8 1.1 Slc6a5 VI Esrrb (Pvalb) (dI6)/V1 
Inhib-26 ventral 7 0.5 Slc6a5 VI Chrna7 Calb1 (Pvalb) V1.1/V1.2 
Inhib-27 7 0.3 Slc6a5 VI Foxp2 (Gata3) Pax2-hi (dI6)/V1/V2b 

The lamina, prevalence, neurotransmitter marker gene, family, individual marker genes, and putative embryonic lineage for each neuronal cluster are shown. The clusters are color-coded to correspond 
approximately to their color in Fig. 2a. The prevalence of each cluster was determined by counting the confidently assigned cells of each type based on RNA in situ hybridization on sections from three 
animals and are presented as the percent of the total number of confidently assigned neurons. Genes in parenthesis are expressed at lower levels. Genes in gray were not validated (due to probe failure, 
being present only in postnatal animals, or were not included in the analysis). + denotes relatively higher expression. # denotes a possible identity of Clarke’s column (CC). * denotes a marker that was 
validated using RNAScope V2 but did not work in the RNAScope Hiplex assay. 
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The cell types of the mid-region of the spinal cord, the deep 
dorsal horn, were comprised of the following families and the 
clusters were generally less robust than dorsal clusters (Fig. 2b 
and Supplementary Fig. 5). 

The mid excitatory (ME)/Lmx1b family was comprised of 
Excit-21, Excit-22, Excit-23, Excit-24, and Excit-25 and corre- 
sponds to cells suggested to be involved in pain3,83. These clusters 
expressed Lmx1b, suggesting a dI5/dILB embryonic origin. All of 
the clusters except Excit-25 expressed Tacr1 and Excit-21 also 
expressed Lypd1, suggesting that these are candidate ascending 
populations3. These clusters could also be distinguished by 
expression of Zfhx3 (Excit-21 and Excit-22) or Nfib (Excit-23, 
Excit-24, and Excit-25), which corresponded to lateral Zfhx3 and 
medial Nfib sub-types. Other markers sub-divided the clusters in 
a combinatorial manner, including Nms (Excit-21), Bcl11a 
(Excit-22 through Excit-25), Satb1 and Cdh23 (Excit-23, Excit- 
24, and Excit-25), Cep112 (Excit-23 and Excit-24), and Prox1 
(Excit-25). Of note, nearly all of the cells and nuclei in this family 
were from the Rosenberg and Sathyamurthy datasets. (Supple- 
mentary Fig. 9F). 

The remaining ME family was comprised of mid, excitatory 
clusters were comprised of Excit-26, Excit-27, Excit-28, and Excit- 
29. These clusters do not express Lmx1b, in contrast to the other
mid excitatory family and are likely derived from dI1-3 or ventral
embryonic lineages. Excit-26 expressed Nfib, Excit-27 expressed
Adamts2, Excit-28 expressed Chat and Pitx2 and thus likely
corresponds to V0c neurons, and Excit-29 expressed Pmfbp1.
Excit-28 and Excit-29 also express Onecut2 and Pou6f2,
potentially revealing a link with ventral cell types. Of note, nearly
all of the cells and nuclei in this family were from the Rosenberg
and Sathyamurthy datasets and Excit-26 in particular was
predominantly from the Rosenberg dataset. (Supplementary
Fig. 9A and F).

The Excit-30 cluster was marked by Gbx2, Neurod2, and Sp8 
and there was partial evidence that it corresponded to Clarke’s 
column (CC). This cluster expressed multiple genes associated 
with Clarke’s column including Chmp2b, Syt4, Ebf3, Rgs4, and 
Enc16. The Clarke’s column marker gene, Gdnf, was expressed at 
very low levels in the merged dataset, but was present in several 
Excit-30 cells. However, this cluster only contained two defined 
spinocerebellar cells from the Baek et al. dataset while the 
majority of this cluster was from the Hayashi dataset, arguing 
against Clarke’s column identity and also suggesting a V2 
embryonic lineage. As the in situ hybridization experiments were 
performed on mid/lower lumbar spinal cord sections, we did not 
validate markers for this cluster. 

The mid inhibitory cell types were grouped as one family 
comprised of Inhib-15, Inhib-16, Inhib-17, Inhib-18, Inhib-19, 
Inhib-20, and Inhib-21, which expressed the glycinergic marker 
Slc6a5 (with the exception of Inhib-21) and also the gaba-ergic 
marker Gad2, implicating these neurons in sensorimotor 
processing84–86. Inhib-15 expressed Prox1, Gabra1, and Nfib, 
Inhib-16 expressed Gpc3 and Sema5b, Inhib-17 expressed Satb2, 
Inhib-18 expressed Sema5b, Inhib-19 expressed Ccbe1 and 
Pou6f2, Inhib-20 expressed higher levels of Tfap2b as well as 
Zfhx3, and Inhib-21 expressed Nfib and was distinguished by 
having only Gad2 and not Slc6a5 and was mainly derived from 
the Rosenberg dataset. (Supplementary Fig. 9G). 

In general, we found that the ventral clusters had less distinct 
gene expression patterns and were less robust than dorsal and 
mid clusters; therefore, the final identities of these clusters should 
be considered with caution. We identified several genes that 
contribute to overlapping gene expression patterns across clusters 
by being present in a spatial region of the cord and in diverse 
mid/ventral cell types. For example, Pou6f2 was expressed in the 
deep dorsal horn and in the dorsal part of the ventral horn and 

was enriched in mid-excitatory (Excit-21, Excit-28, and Excit 30), 
ventral excitatory (Excit-34 and Excit-35), and ventral inhibitory 
(Inhib-24) clusters that are located within this domain. Similarly, 
Nfib was expressed in the medial deep dorsal horn (mid) spinal 
cord and was enriched in both excitatory (Excit-23, Excit-25, and 
Excit-30) and inhibitory (Inhib-15 and Inhib-21) clusters. Of 
note, several cluster markers of ventral cell types, such as Sim1, 
were not observed in adult spinal cord tissue by in situ 
hybridization and while they are detected in the harmonized 
sequencing data, they likely represent lingering RNA from 
developmental samples. 

The ventral, excitatory clusters were grouped as one family 
comprised of Excit-31, Excit-32, Excit-33, Excit-34, Excit-35, 
Excit-36, Excit-37, and Excit-38. Of these, Excit-31, Excit-32, 
Excit-33, and Excit-34 expressed low levels of Lhx2, Lhx9, and 
Isl1, potentially suggesting dorsal dI1/dI2/dI3 embryonic lineages 
for these clusters. These clusters could be distinguished by 
Gm26673, Syt2, and Prlr (Excit-31), Mdga1 and Prlr (Excit-32), 
and Bnc2 and Pou6f2 (Excit-34). Excit-33 was comprised almost 
entirely of nuclei from the Rosenberg dataset and may represent 
an immature cell type. Excit-35, Excit-36, and Excit-37 are likely 
derived from the V2a lineage, as they expressed Vsx2 (Chx10) 
and included many cells from the Hayashi dataset that sorted cells 
based on Chx10 genetic expression and thus may play a role in 
skilled reaching87. Excit-35 also expressed Vamp1, Pou3f1, Shox2, 
and Pou6f2 and Excit-36 expressed Esrrg. Intriguingly, many cells 
from the Baek dataset, which sorted cells based on spinocerebellar 
status were found in Excit-35, suggesting that this population 
includes ascending projection neurons that target the cerebellum. 
Excit-37 expressed low levels of the V3 marker gene Sim1 as well 
as Rnf220. (Supplementary Fig. 9H). 

The ventral, inhibitory clusters were also grouped as one family 
that was comprised of Inhib-22, Inhib-23, Inhib-24, Inhib-25, 
Inhib-26, and Inhib-27. Each of these clusters expressed the 
glycinergic marker Slc76a5. Inhib-22 and Inhib-27 also expressed 
the gaba-ergic marker Gad2 as well as Pax2 and Pou6f2. They 
were distinguished by low levels of Gata3 expression in Inhib-27, 
which may represent V2b lineage. Inhib-23 and Inhib-25 
expressed Foxp2 and Esrrb, suggesting they correspond to the 
Foxp2 clade of V1 lineage neurons described by Bikoff and 
colleagues88. They were identified by expression of Gm26673 and 
Pvalb in Inhib-23, which may suggest that this cluster included 
Ia-inhibitory neurons89. Inhib-24 expressed both Pou6f2 and 
Nr5a2, suggesting that this cluster corresponded to the Pou6f2/ 
Nr5a2 clade of V1 lineage neurons88. Inhib-26 was the most 
robust ventral cluster and expressed the Renshaw marker genes 
Chrna2, Chrna7, and Calb1, suggesting that this cluster 
corresponded to Renshaw cells89,90. (Supplementary Fig. 9I). 

Developmental lineages of postnatal spinal neuron popula- 
tions. Having established this harmonized atlas of postnatal 
through adult spinal cord neurons, we next asked if these cell 
types could be aligned with the cardinal classes of embryonic 
spinal progenitors. Developmental lineage has been a powerful 
and influential framework for categorizing spinal neurons, par- 
ticularly within the ventral horn, and relies on the combinatorial 
expression code of transcription factors that specify distinct 
progenitor domains along the dorsal-ventral axis of the spinal 
cord. While recent work has revealed an impressive diversity of 
gene expression patterns within each cardinal class2,88,89,91–97, 
the contribution of these populations to adult neuronal classes 
and function is still not clear. 

We co-integrated the merged dataset of six postnatal studies 
with the neurons from a single cell sequencing atlas of e9.5 to 
e13.5 mouse spinal cord7 and analyzed these seven studies 
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Fig. 5 Co-integration of embryonic and postnatal through adult spinal cord neuronal types. a To reveal the temporal relationship between embryonic and 
postnatal through adult cell types, the Delile, and harmonized datasets were co-integrated and are shown in a UMAP, colored by dataset (right). b A 
UMAP of the co-integrated datasets, colored by clusters from the Delile et al. study (bold labels) or the harmonized analysis (regular font labels). Cluster 
annotations are repeated in cases in which a group of cells from a given cluster are located at a distance from the cluster centroid (ex. for dI4.6). c Feature 
plots of selected marker genes for the cardinal classes of spinal cord lineages. d Sankey plot of the relationships between embryonic lineages (left) and 
harmonized cell types (right) showing multiple examples of divergence and convergence. 

together (Fig. 5a). Dimensionality reduction with principal 
components (PC) was performed and the distances in PC-space 
between the centroid of each embryonic or postnatal cluster and 
every other cluster centroid was used to determine transcription- 
ally similar nearest neighbors between embryonic and postnatal 
cell types. In addition, the identity of the individual embryonic 
cells that were closest in PC-space to each cluster were also 
determined (Supplementary Table 5). 

We found that long trajectories of embryonic cells led towards 
particular cluster families, which allowed us to infer develop- 
mental relationships (Fig. 5b). The molecular identities of the 
cardinal classes were confirmed by classic marker analysis 
(Fig. 5c) and these marker genes often extended into the 
postnatal cell type domains as well. A combination of centroid 
distance, nearest cells, and marker gene expression was used to 
assign an embryonic lineage for each harmonized neuron 
population (Table 1 and Fig. 5d). 

The most striking finding from this analysis was the 
unexpectedly high degree of convergence of multiple lineages 
into postnatal cell types. Notable examples of this trend include: 
(1) Multiple dorsal excitatory cell types seemed to be derived
from a mixed set of dI5 lineage cells (as expected) and an Isl1-
negative, Tlx3-positive dI3.3/dI3.4 embryonic population (which
was unexpected). Although Tlx3 is known to be a dorsal marker
and a marker of dI3 neurons, the dI3 population is generally
considered to give rise to an Isl1-positive population in the deep
dorsal horn/intermediate zone98–102. (2) A subset of cells from
the dorsal dI4.6/dI6 lineages contributed to most ventral

inhibitory populations, which was unexpected though there have 
been reports of scattered dI4 Ptf1a-derived cells in the embryonic 
and perinatal ventral horn103,104, and the very small dI6 
population is known to be ventrally located105–107. (3) Dual 
contributions of dI5.5 and dI2.1 to Excit-20 and of V1 and V2b to 
Inhib-27 were also observed. This analysis also supported a 
division of deep dorsal horn excitatory neurons into two overall 
groups (with the ME/Lmx1b family being more closely related to 
dI5, while the other ME clusters are more closely related to dI1- 
dI3) and a division of ventral excitatory neurons into two groups 
(with Excit-31 through Excit-34 being closer to dI1-3 and Excit- 
35 through Excit-37 being closer to V0, V2a, and V3 popula- 
tions). Together, the joint analysis of spinal cord neurons from 
embryonic through adult stages began to align these two 
perspectives on cell types while also highlighting the complex 
relationships that exist between genetically defined cellular origins 
and mature transcriptional signatures. 

Using machine learning to classify spinal cord cell types. We 
next sought a means to standardize and automate spinal cord cell 
type classification. First, we tested three strategies that have been 
used successfully to classify single-cell data from other tissues on 
their ability to classify spinal cord cells into coarse cell types. 
These were label transfer23, a support vector machine, and a fully 
connected neural network (with two hidden layers of 512 nodes 
and L2 regularization for each). It is important to note that each 
of these models were trained using cell type labels from the 
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Fig. 6 Computational classification of spinal cord cell types. a Confusion matrices of the F1 scores for the classification of coarse cell types using label 
transfer, a support vector machine (SVM), and a fully connected neural network (neural net), (blue = 0; maroon = 1). The actual cell types are in rows and 
the predicted cell types are in columns in the same order. b Confusion matrices of the F1 scores for the classification of fine neuronal sub-types using label 
transfer and a fully connected neural network. The actual cell types are in rows and the predicted cell types are in columns, both in the order presented in 
Table 1. Alternating cell types are labeled. c Model of the two-tiered classification approach in which all cells/nuclei are classified into coarse cell types 
using label transfer (also including low-quality junk and doublets). Subsequently, all cells/nuclei that were classified as neurons, motoneurons, or doublets 
by label transfer are further classified into 69 neuronal cell types (also including doublets). d Experimental design for gene rating an independent set of 
single nucleus RNA sequencing data. e Distribution plot showing how nuclei from each cluster (rows) were distributed into each of the harmonized cell 
types (columns), normalized by rows with dark blue = 0.0 fraction; maroon = 1.0 fraction). f Bar plot of the total counts of nuclei that were from known 
clusters and were correctly classified (81% of total), that were from known clusters and were incorrectly classified (9% of total), that were from unknown 
clusters but could be identified by their classification (3% of total), or that were from unknown clusters and could not be identified (7% of total). OPC 
oligodendrocyte precursor cell, progen.1 oligodendrocyte progenitor 1, progen.2 oligodendrocyte progenitor 2, Olig.1 oligoden drocyte 1, Olig.2 
oligodendrocyte 2, Periph. peripheral glia, Mening.1 meninges 1, Mening.2 meninges 2, Epend. Ependymal cells, Astro.1 astrocytes 1, Astro.2 astrocytes 2,  
Endoth endothelial cells, Pericy pericytes, MN = motoneurons; low qual. low quality, MNa motoneurons alpha, PGC preganglionic cell. 

harmonized analysis because there is no existing gold standard 
for spinal cord cell identities. In this context, the first phase of the 
analysis that follows should be considered a feasibility study for 
machine learning classifiers on spinal cord single cell count data. 
The full merged dataset of 101,070 cells and nuclei was tested, 
including low-quality cells and nuclei and doublets, in order to 
represent the full range of input raw data. All three strategies 
performed well, with label transfer showing the best performance 

(overall accuracy of 89%), followed by the neural network (83%), 
and then the SVM (80%) (Fig. 6a and Supplementary Table 6). 

Next, we tested label transfer and neural networks on a more 
refined and challenging task: the classification of 69 neuronal sub- 
types. For label transfer, two phases of analysis were performed 
(dorsal sub-types and then mid/ventral sub-types) because we 
found that this approach was important for clustering spinal cord 
neurons. For the neural networks, a non-exhaustive hand sweep 
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of several hyperparameters was conducted, including network 
depth, optimizer, number of hidden nodes, and the number of 
training epochs, and seven different models were tested (see 
Methods and Supplementary Table 6). We found that a linear 
model (with no regularization and with an SGD optimizer) 
showed the best performance, with an overall test accuracy of 
85% (Fig. 6b and Supplementary Table 6). The model showed 
very high confidence scores for correct predictions; however, 
performance varied with cell type prevalence suggesting a target 
for improving the model in the future (Supplementary Fig. 11). 

How should the performance of this model be assessed and 
should we expect automated classification to achieve 100% 
accuracy? Perfect performance would require perfect and 
invariable biological data: discrete cell types that express 
completely distinct patterns of gene expression and experimental 
data without natural heterogeneity, doublets, low-quality cells, or 
other sources of indeterminate data. Knowing that this is not 
possible, we still sought to determine a benchmark performance 
guide for the classification of adult mouse spinal cord neurons 
using neural network models and considered four metrics of 
cluster definition and separation. We examined the relationship 
between the model performance for each cluster (F1 score) and 
(1) the co-clustering frequency of each cell type across 100
clustering iterations, (2) how distant each cluster was from its
nearest neighbor in principal component space, and (3) the
confidence with which clusters could be distinguished based on
in situ marker expression (measured by in situ analysis sets of
clusters) (Supplementary Fig. 12). We found that the model
performance varied with the co-clustering frequency of each
cluster and with the ability to identify cell types in situ and we
propose that these measures can be used to set a reasonable
expectation for neural network performance. Overall, neuronal
cells/nuclei of a given type co-clustered together 65% of the time
(average from Supplementary Fig. 5E) and a total of 70% of cells
could be classified in situ (Fig. 4). In comparison, the model’s 
accuracy of 85% reveals the outstanding performance of this
approach.

To develop a standardized pipeline for the classification of 
independent datasets unrelated to the original studies analyzed 
above, we considered a two-tiered approach that would take 
advantage of the strengths of both the label transfer for coarse 
classification (Tier 1) and a neural network model for classifica- 
tion of neuronal sub-types (Tier 2) (Fig. 6c). By combining these 
two methods, we improved overall performance by maximizing 
performance at both steps. We first selected all cells/nuclei that 
were assigned as doublets or neurons during the harmonized 
analysis above to represent the output of the first tier and input to 
the second tier. In this context, we trained another set of five 
neural network models (see Methods and Supplementary Table 6). 
A neural network model with one hidden layer (256 nodes) and 
an SGD optimizer showed the best performance (overall accuracy 
of 80%) and was selected for further work. Using the raw 
(normalized) data from each of the six original studies as an 
independent input to the two-tiered model, we found that it 
showed strong performance in identifying the neuronal sub-types 
in five of the six studies (Sathyamurthy, Hayashi, Haring, 
Rosenberg, and Zeisel) (Supplementary Fig. 11). The model 
may have shown poor performance for the sixth dataset (Baek) 
due to its very small size and minor contribution to the overall 
training data and to the neuron training data, as we observed a 
relationship between the fraction of correct predictions and the 
contribution to the training data in the context of all cell types 
(Supplementary Fig. 11). These results must be interpreted with 
caution because each of these datasets were included in the overall 
training data which could lead to artificially high performance. 

As a final performance test of the two-tiered model, we applied 
it to spinal cord nuclei from a completely independent dataset 
that was not included in the integration or model training. As the 
model was trained on different data, overfitting is not a concern 
on this dataset, so these results are indicative of real-world 
performance on independent data. Nuclei were isolated from the 
lumbar spinal cords of four adult mice, sequenced using 10x 
Chromium, clustered using Seurat, and marker genes were 
identified for each cluster (Fig. 6d and Supplementary Fig. 13). 
90% of nuclei (out of 28,584 total) were in clusters that could be 
assigned a cell-type label based on marker gene expression 
(known clusters). In cases for which labels could not be 
confidently assigned (10% of nuclei, unknown clusters), a 
placeholder name was given (Supplementary Fig. 13). We 
performed classification of all nuclei from the independent 
dataset that passed quality-control thresholds (Fig. 6c) in an 
analysis that took less than thirty minutes of computational time 
(~20 min for Tier 1 and less than one minute for Tier 2). We 
found that 90% of nuclei from known clusters were accurately 
classified by the two-tiered model (Fig. 6f known + accurate). We 
next considered how this model performed upon the classification 
of nuclei from the challenging unknown clusters that could not be 
identified based on marker genes. Surprisingly, we found that 
28% of unknown nuclei could be identified with the two-tier 
classification model (Fig. 6f unknown + identified). Thus, the 
two-tiered model surpassed the ability of experienced users to 
identify spinal cord cell types. 

Of note, several cell types were not expected to be present in 
the independent dataset, including Schwann cells, peripheral glia, 
and meninges 2 (based on the surgical dissection method used 
that did not include spinal roots or outer layers of meninges) and 
including PGC, Excitatory-7, and Excitatory-17 (based on the 
lumbar region and adult age that was used). As expected, these 
cell types were not predicted by the two-tiered model. There were 
also several cell types that were not classified as expected. In 
particular, several mid/ventral cell types were not detected in the 
independent dataset while two ventral clusters (Excitatory-31 and 
Inhibitory-27) were over-represented (Fig. 6 and Supplementary 
Fig. 13). This may reflect a training dataset that is not large 
enough to train a model that distinguishes closely related cell 
types, that small clusters are not modeled as well, and that some 
mid/ventral clusters are defined partly by early postnatal gene 
expression contained within the harmonized analysis but absent 
from the independent adult dataset. 

These results establish a two-tiered model based on label 
transfer and a neural network as an effective approach for the 
computational classification of single-cell sequencing data, even 
in the context of the finely separated populations of spinal cord 
neurons. The neural network model was at least as accurate as 
other methods such as Seurat-based clustering and high-content 
in situ hybridization and was orders of magnitude faster. In 
addition, it can standardize spinal cord cell type classification so 
that a unified and harmonized set of cell types can be identified 
and studied consistently between datasets, biological conditions, 
and laboratories throughout the field. 

SeqSeek: a community resource for analyzing and classifying 
spinal cord cell types. Finally, we have developed an online 
resource for spinal cord single-cell data, SeqSeek (available at 
seqseek.ninds.nih.gov). This resource includes user-friendly tools 
to search gene expression across spinal cord cell types using single 
genes or gene lists (SeqSeek Genes), to compare gene expression 
between clusters or groups of clusters (SeqSeek Cells), and to 
access the SeqSeek algorithm for cell-type classification (SeqSeek 
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Classify, also available on our Github repository https://github. 
com/ArielLevineLabNINDS). 

Discussion 
For the field of spinal cord biology to build upon the incredible 
promise of single-cell technologies, it is critical to establish a 
standard set of cell types. Here, we leveraged and expanded upon 
the previously published single-cell sequencing studies of the 
postnatal mouse spinal cord to define 84 types of spinal cord cells. 
We present a harmonized atlas of these cell types; a validated 
combinatorial panel of markers to facilitate their study either 
in vivo, in tissue sections, and in vitro cell culture; putative 
embryonic lineages for each cell type; computational resources for 
classifying spinal cord cells based on transcriptomics; and a web- 
based resource, SeqSeek, to allow the community to interact easily 
with and explore single cell spinal cord data. This work estab- 
lishes a common framework that will serve as a powerful resource 
for the field and facilitates the discovery of biological features of 
spinal cord cell types. As an example, we identified major dif- 
ferences between dorsal and ventral neuron types in their cluster 
relationships and in plasticity gene signatures, highlighting the 
primary role of spatial location in the organization of the mam- 
malian spinal cord. 

The first key consideration is whether the cell types of the atlas 
are correct biologically or whether they are confounded by 
technical issues contributed by the original studies or analysis 
choices that we made here. For example, it is possible that inte- 
grating these studies would obscure important biological differ- 
ences between them or that merging early postnatal and adult 
datasets would blur proper cell type descriptions. In the absence 
of a commonly accepted standard set of spinal cord cell types, it is 
impossible to answer this question completely. However, several 
pieces of evidence support the accurate description of spinal cord 
cell types. First, highly reliable clusters were identified based on 
four independent integration methodologies – Seurat V3, Har- 
mony, Conos, and LIGER – suggesting that these clusters 
represent the underlying biological reality of cell types. Second, 
these clusters correspond well with prior gene expression analysis 
of the postnatal spinal cord including many classic and well- 
established marker gene studies as well as three independent 
single nucleus sequencing datasets that were not included in the 
harmonized clustering: an independent dataset that we clustered 
separately and used to test the SeqSeek Classify algorithm, and 
two recent studies that used different analysis strategies but found 
similar markers to the harmonized set8,9. Third, and most 
importantly, this atlas does not rest only on select studies or on 
computational approaches that would be subject to the biases of 
particular tools and parameter choices. We performed high 
content in situ hybridization to test the validity of predicted 
expression profiles in the full transverse view of adult lumbar 
spinal cord tissue. In a few instances, this data differed from the 
harmonized sequencing data (for example in Excit-3 and Excit-4) 
which may reflect differences in developmental patterns. How- 
ever, we validated the vast majority of predicted expression pat- 
terns from the harmonized atlas and the resulting data provided 
the most extensive characterization of cell types, their prevalence, 
and their spatial distribution in the postnatal spinal cord. 

In addition to serving as a powerful reference resource, what 
new biological information can this study reveal? One of the most 
striking findings was the difference in cell type organization 
between the dorsal and mid/ventral regions of the spinal cord, 
both in cluster relationships and in general molecular trends. 
Dorsal clusters are distinct from each other with clearly separated 
individual cell types that can be grouped loosely into families. 
These cell types are located at greater distances from each other in 

principal component/UMAP space, have higher measures of 
robustness (such as co-clustering frequency and silhouette score), 
and can be reliably distinguished by machine learning algorithms 
or in tissue with combinatorial marker genes. In contrast, ventral 
clusters are much more similar to each other, with close or 
overlapping distributions in principal component space and 
overlapping gene expression patterns. Ventral neuron cell types 
may be organized at a second, nested level of spatial trends that 
overlay embryonic lineage-defined cell types: a Pou6f2-Esrrg 
trend along the dorsal-ventral axis and a Nfib-Zfhx3/4 and 
birthdate trends along the medial-lateral axis, consistent with a 
recent report108. It is not yet known what these differences 
between the dorsal and mid/ventral spinal cord may signify, but 
an exciting possibility is that discreet versus overlapping sets of 
cell types would give rise to different network computational 
properties109. 

Related to these overall differences in cell type relationships, 
the dorsal and ventral regions of the spinal cord displayed broad 
molecular differences from each other that drove the primary 
bifurcation amongst spinal interneurons/projection neurons 
(non-motoneurons or CSF-cN neurons) in our cluster dendo- 
gram analysis, even before excitatory and inhibitory neuron types 
separated from each other. Differential gene expression and gene 
ontology analysis revealed that learning-related genes are enri- 
ched in the dorsal horn while structural stability-related genes are 
enriched in the ventral horn. Within the dorsal horn, this 
included both broadly expressed genes such as Camk2a 
(CAMK2α) as well as cell type-specific genes such as Prkcg 
(PKCγ)31. Within the ventral horn, this included components of 
perineuronal nets (which are thought to restrict plasticity and had 
been previously detected in the ventral spinal cord110,111) such as 
Tnr (Tenascin-R), as well as adhesion molecules such as Sdk1 and 
intracellular signaling components such as Ptpn5 (STEP) which 
de-phosphorylates CAMK2α, NMDA receptors, and ERK 
kinases33. This raises the intriguing possibility that meta-plasticity 
trends govern spinal cord circuits to facilitate learning in dorsal 
regions, where central sensitization112, wind-up113, and long- 
term potentiation and depression114–116 have been observed and 
may underly chronic pain states117,118. In contrast, the ventral 
horn may be stabilized to restrict certain plasticity mechanisms 
from altering core locomotor circuits. We had previously noted 
differences in the robustness of dorsal and ventral cell type 
clusters1 and a similar trend of overlapping ventral cell types was 
observed in the neonatal spinal cord4. Building on these pre- 
liminary findings, the scope of the harmonized analysis here 
afforded a much deeper characterization of cell type relationships 
and robustness, the validation of these molecular distinctions in 
tissue, and through machine learning. This work also led to the 
surprising discovery of gene expression signatures for plasticity in 
the dorsal horn and for structural stability in the ventral horn. 

This work also provides a broad view of the relationships 
between embryonic lineage domains and their mature neuronal 
progeny. For the past thirty years, the cardinal classes of spinal 
cord progenitors have been used as a framework to classify spinal 
cord cell types, particularly within the ventral horn of the spinal 
cord13,15,16,119,120. However, it has been challenging to relate 
these domains to cell types defined in the adult by function, 
connectivity, or electrophysiology and it has therefore been 
unclear how these perspectives on cell type intersect and which 
perspective is the most useful for linking spinal cord neurons to 
behavior. Here, we co-integrated an embryonic (e9.5–e13.5) 
spinal cord sequencing dataset7 with our harmonized analysis 
and identified putative lineages of many postnatal cell types. 
These relationships must be tested experimentally in future stu- 
dies but, if true, they reveal two intriguing trends in spinal cord 
cell type organization. The first trend is that cell types within the 
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family structure that we described generally shared common 
embryonic lineages, suggesting a developmental basis for the 
group resemblances. For example, the deep dorsal horn excitatory 
neurons can be divided into two families, with Excit-21 through 
Excit-25 in one family that is likely derived from dI5 precursors 
and Excit-26 through Excit-29 in a looser family that includes 
dI1/2 and V0 precursors. The second trend is that many cell types 
were derived from multiple lineage domains. For example, dI3.3 
and dI3.4 were found together with dI5.3 and dI5.4 in a long 
trajectory toward the majority of dorsal excitatory neurons. It is 
already known that the adult cell types of Ia inhibitory neurons 
and CSF-contacting neurons each have dual origins43,45,121, 
suggesting that this could be a common occurrence. Perhaps 
there isn’t a simple but rigid logic by which cardinal classes 
mature and differentiate into distinct and refined populations. 
Rather, a complex process may operate in which there is both 
divergence and convergence in the relationships of developmental 
and mature cell types, with influences such as birthdate, cell body 
location, connectivity, or activity-dependent maturation playing 
important modulatory roles. By providing a broad perspective on 
developmental and mature cell type similarities, this work sug- 
gests that there are multiple schemes that guide the differentiation 
of spinal cord neural precursors into the highly refined and 
diverse array of neurons that mediate adult behavior. 

On the analytical side, this work is among the first practical 
applications of automated classification for large and complex 
single-cell datasets from neural tissue. A wide range of cell 
annotation approaches have been described recently but it is not 
yet clear which methods will work best for each type of 
data23,122–125. A comparative analysis of automated classification 
approaches across diverse datasets found that SVM and neural 
network models showed the best performance on the Allen Brain 
Atlas dataset of 92 neuronal cell types–a dataset similar in scale 
and complexity to the harmonized analysis here125. This analysis 
also found that performance depends partly on the number of cell 
types and the complexity (the relatedness between clusters) of a 
dataset, similar to what we observed. Here, we found that a two- 
tiered model that incorporates label transfer and a neural network 
displayed excellent performance in the computationally challen- 
ging task of classifying cells and nuclei into the 69 fine resolution 
neuronal cell types of the spinal cord. In the future, larger spinal 
cord single-cell datasets will be available and the neural network 
model that we presented here can be refined and improved. 
Specifically, larger training datasets may facilitate classification of 
closely related mid/ventral neuronal populations; region or 
sample age-specific training datasets may reduce the number of 
cell types that cannot be detected; and generative models may be 
used to enhance training on rare cell populations. As this work 
proceeds, we expect that increasingly powerful neural network 
models will be developed that allow rapid, accurate, and stan- 
dardized classification of all spinal cord cell types directly from 
raw sequencing data. This could be done by individual users with 
downloadable models or through the development of a spinal 
cord single-cell data commons that could continuously refine the 
models and provide classification analysis through a cloud-based 
platform, similar to what has been proposed for the Human Cell 
Atlas126. A forthcoming study aims to partially address these 
challenges. Theis and colleagues propose a method called single- 
cell architectural surgery that uses transfer learning to map query 
datasets onto a reference, simultaneously contextualizing the 
query while updating the reference. This allows for decentralized 
reference building without the sharing of raw data, which could 
further increase the effectiveness of neural network-based 
classifiers127. 

There are several notable limitations to this study. Most spe- 
cifically, this analysis is limited in scope to RNA expression in the 

postnatal mouse spinal cord and reflects a merged study of 
multiple time points. As more data become available from studies 
that include more specific regions of the spinal cord, more bio- 
logical conditions, more developmental stages, more species, 
more specific cellular features, and more -omics modalities, we 
anticipate that this work will reveal exciting insights from single- 
cell data. Future work could incorporate genetic lineage tracing to 
test developmental origins for postnatal cell types2, could track 
cell-type-specific changes in different biological conditions8,9,128, 
or could focus deeply on specific spinal cord regions and cell 
types10,11,39,40,77,129. Relatedly, the in situ hybridization experi- 
ments here are also limited in scope, being specific to the adult 
lumbar spinal cord. The failure to detect several genes from the 
harmonized analysis could reflect that these genes are no longer 
expressed at the adult stage or lumbar region that we analyzed, 
that the cell types themselves are not present (being transiently 
found in early postnatal stages or only in other spinal cord 
regions), or technical issues. We caution users of the SeqSeek 
resource to keep this in mind when examining individual data 
points. 

A second notable caveat that is common to most single-cell 
sequencing experiments is that this analysis is population-based. 
Data is captured from thousands of individual cells, but the rate 
of false-negative data in each cell and the requirement for sta- 
tistical power necessitates analyzing many cells of each type and 
considering population-level shared patterns. It is likely that by 
emphasizing common patterns, this analysis underrepresents true 
biological variability, including noisy gene expression and con- 
tinua of cell types. For example, three very different methods – 
single-cell data clustering, multiplexed in situ hybridization, and 
an artificial intelligence neural network – all showed a relatively 
weak ability to classify ventral cell types into discrete types and a 
relatively strong but still imperfect ability to classify dorsal cell 
types. We propose that this reflects some technical limitations but 
also a fundamental complexity and diversity in how gene 
expression is controlled within individual cells and in cell-type 
populations. 

Third, as future datasets and technologies become available, we 
anticipate an explosion of single-cell data and the opportunity to 
periodically supplement, revise, and refine the work presented 
here. In this context, the harmonized atlas is both a work in 
progress that will continue to evolve over time and the gold 
standard that we have now as the most comprehensive and 
validated resource available for the mammalian spinal cord. 

Finally, it is crucial to note that single-cell/nucleus profiling, 
particularly single-cell/nucleus RNA sequencing, produces one 
perspective on cell types and it is not yet clear how this will relate 
to other core cellular features such as circuit connectivity, elec- 
trophysiology, and behavioral function. Re-considering the very 
definition of a cell type and identifying the most useful system for 
classifying cells is now a fundamental task in understanding 
nervous system function. We expect that in each tissue, indeed in 
each region of each tissue, there may be different organizing 
principles of cell types. In that context, the work here provides a 
comprehensive atlas of spinal cord transcriptomic cell types that 
can be used as a framework to compare with other cellular 
features. 

This work brings together the first single-cell studies of the 
post-natal mouse spinal cord to create a standard reference set of 
spinal cord cell types. It will (1) serve as a unifying resource and 
nomenclature for the field, (2) provide a validated and combi- 
natorial set of markers that can be used to translate this rich 
sequencing data back into tissue-based studies, (3) be a template 
for the computational analysis of single-cell data from complex 
neural tissue, and (4) facilitate the community-wide use of single- 
cell data through a web-based resource. We hope that this work 
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will facilitate the design and interpretation of cell-based studies of 
behavior and will open up opportunities for many discoveries. 

Methods 
Mice. Animal experiments were performed in accordance with institutional 
guidelines and approved (protocol #1384) by the National Institute of Neurological 
Disorder and Stroke’s Institutional Animal Care and Use Committee. An even 
balance of male and female mice that were 9 weeks old and of mixed C57BL/6 J and 
BALB/cJ background were used for single nucleus sequencing (four mice) and 
validation studies (two groups of three mice). 

Published data acquisition. Published data were downloaded from the NCBI 
Sequence Read Archive (SRA) and are available in Supplementary Table 7. Raw 
datasets were used instead of investigator-provided count matrices so that we could 
align all sequences to the same genome and apply uniform data filtering. All raw 
datasets were pre-processed using technique-specific pipelines. For data from 
Sathyamurthy et al. (DropSeq, GEO: GSE103892, SRA: SRP117727), data were 
downloaded in fastq format from SRA. A count matrix was created following the steps 
in the McCarroll lab DropSeq cookbook130. For data from Hayashi et al. (GEO: 
108788, SRA: SRP128071), Zeisel et al. (SRA: SRP135960), and Baek et al. (GEO: 
GSE130312), 10X sequence data were download from SRA in BAM format then 
converted to cell ranger-compatible fastq files using the 10X-provided bamtofastq tool. 
Count matrices were created using the 10X cell ranger count tool. Data from Haring 
et al. (C1 Fluidigm, GEO: GSE103840, SRA: SRP117627) were downloaded from SRA. 
Each cell had its own fastq file for a total of 1545 files. We followed the UMI tools 
single-cell tutorial to remove the UMI and process the sequences (https://github.com/ 
CGATOxford/UMI-tools/blob/master/doc/Single_cell_tutorial.md). For the Rosen- 
berg et al. data (SplitSeq, GEO: GSE110823, SRA: SRP133097), data were downloaded 
in fastq format. Count matrices were made using the split-seq-pipeline tool 
developed by the Seelig Lab (https://github.com/yjzhang/split-seq-pipeline). The STAR 
alignment tool within cell range (v020201) was used to align the sequences from each 
dataset to a reference genome that was custom built to include all introns and exons, 
based on mm10, GRCm38 updated on 2016-01 (NCBI: GCA_000001635.6). 
Reference: https://support.10xgenomics.com/single-cell-gene-expression/software/ 
downloads/2.0/. Genome: https://cf.10xgenomics.com/supp/cell-exp/refdata- 
cellranger-mm10-1.2.0.tar.gz. 

Merged analysis and integration. Count matrices for each dataset were merged 
to obtain the full data file and we then applied uniform data filtering across the 
merged file. We analyzed all cells and nuclei with at least 200 detected genes (to 
exclude low quality or empty barcodes) and with less than 5% of transcripts being 
mitochondrial (to exclude lysing cells or mitochondria-nuclei doublets). This 
yielded over one hundred thousand total cells/nuclei. Of note, by starting with the 
raw data and setting relatively relaxed thresholds for data inclusion, we analyzed 
more cells/nuclei from several of the original studies than were analyzed in the 
corresponding published datasets. 

The merged data were analyzed using Seurat v323,131. The main integration was 
performed using Seurat version 3.0 Standard Workflow (CCA) Integration131 such 
that data were LogNormalized and scaled to 10,000 counts. Highly variable genes 
were found using the default var.mean.plot method, a mean cutoff at 0.0125 and 3 
and a dispersion cutoff at 0.5. The data were then scaled with a linear model and 
while regressing out the number of counts and the percent mitochondria. The top 
100 PCs were calculated. Integration anchors were calculated using 20 PCs and 
used to integrate the data. This integration was compared to three independent 
methods (Harmony25, Conos26, and LIGER27). In the case of Harmony integration, 
SCTransform normalization was used prior to performing the integration. 
Annotations from Seurat integration were then overlapped on the integrated 
UMAP projections obtained from other integration methods and the cell type 
clusters were compared for reproducibility. The neurons specific population of cells 
was pulled out from Seurat integration results and integrated using Harmony 
integration, in order to compare neuronal subclasses from two integration 
protocols. 

Clustering. Clustering was performed in three phases on (1) all cell types, (2) all 
neurons, (3a) presumptive ventral neurons, and (3b) motor neurons. For phase 1, 
data integration was performed by study, 2,000 highly variable genes were detected, 
and the most significant principal components were identified by elbow plot and 
manual inspection of the contributing gene lists and 28 PCs were used for clus- 
tering. To select cluster resolution, a range of values were tested from 0.2–8 and 
cluster evolution or clustree plots were used to determine when cluster splitting 
stabilized, and resolution 1.2 was selected. For phase 2, raw data from all cells in 
neuronal clusters was used, re-scaled, re-normalized, and re-integrated, the top 
4000 highly variable genes were detected and the top 40 PCs were selected (using 
the approach described above as well as statistical jackstraw and elbow plot ana- 
lysis, see Supplementary Fig. 4). In analyzing neuronal diversity, we favor an 
approach of using a higher resolution, as long as clusters are still robust, and then 
examining whether pairs of clusters should be merged, as we described in a recent 
paper132. Here, the range of resolutions were examined by (1) the range of average 
silhouette scores for the clusters, (2) visual inspection of UMAP cluster 

distribution, and, most importantly (3) comparison of cluster markers with known 
markers and with known co-expression patterns in the literature. (Supplementary 
Fig. 4). The third phase of targeted sub-clustering was done because mid/ventral 
and motoneuron sub-types did not separate well in preliminary neuron analysis. 
Indeed, the robustness scores for mid/ventral cell types were very low until they are 
analyzed in a focused principal component space (Supplementary Fig. 2). For phase 
3a, presumptive ventral neurons were identified by markers and by coalescence on 
UMAP into a central blob and for phase 3b, motorneurons were identified by 
expression of classic markers (Chat, Isl1, Prph). In each case, the procedures 
described above were used to sub-divide these cell types and the following para- 
meters were used: 3a: 40 PCs, resolution 4; 3b 7 PCs, resolution 0.6. 

For all three phases, each cluster was analyzed for candidate marker genes and 
excluded if the cluster met either of the following criteria. Clusters were considered 
low-quality if they had fewer than three significant markers relevant to cell type, 
particularly if they showed very low nGene. Clusters were considered doublets if 
they had significant markers for multiple unrelated cell types and a barnyard plot 
of the top ten markers of each cell type showed that individual cells in the cluster 
displayed both sets of markers. For all three phases, we used the following method 
to determine whether candidate pairs of clusters should be merged: a dendrogram 
based on mean gene expression and UMAP location were used to systemically 
identify closely related clusters and we then probed for differential gene expression 
(for example, see Supplementary Fig. 4). Pairs with fewer than three genes enriched 
in each cluster (six total) were merged unless a classic marker gene from the 
literature was one of five differentially expressed genes. Cell type annotations for 
the non-neuronal cell types were based on the presence of well-established marker 
genes (Supplementary Table 1) and on the gene expression patterns in the Allen 
in situ hybridization database (for meningeal, ependymal, Schwann cell, and 
peripheral glia clusters). 

The meta-data (and associated final cell labels) are available in Supplementary 
Table 7. 

Cell type relationships, comparison with prior studies, and differential gene + 
GO analysis. To examine the relationship between the 69 neuronal clusters in the 
harmonized analysis, the centroid of each cluster was calculated by grouping the 
cells by their labels and determining the mean of each PC. Then, the pairwise 
Euclidean distance between each cluster was calculated using 50 PCs. This was 
passed to the stats::hclust function using method = “complete”. The final den- 
drogram was plotted using the graphics::plot function. 

To examine the distribution of the original Haring and Sathyamurthy clusters 
amongst the harmonized clusters, the frequency of each pair-wise combination of 
original and harmonized clusters was counted. These data were then pivoted to 
wide form to produce the matrix with harmonized clusters along the x-axis and 
original clusters along the y-axis. Finally, the data was row-normalized, so that the 
color represents the fraction of the original label occurring in each harmonized 
cluster. 

To examine the distance between the original Haring and Sathyamurthy 
clusters in harmonized PC space, the pairwise distance between the centroids of the 
original clusters was calculated as above. Small distances, representing close 
clusters, are displayed with hot colors, while large distances, representing far apart 
clusters, are displayed with cold colors. 

To examine the correlation between PC distance and the expression of the 500 
most highly variable genes in the harmonized data, the average expression of these 
genes was calculated for each original cluster, which yielded two matrices: one a 
gene by cluster matrix of the Haring data, and the other a gene by cluster matrix of 
the Sathyamurthy data. The correlation of gene expression in each cluster between 
these matrices was calculated using the lineup::corbetw2mat function (CRAN 
version 0.37.11). These correlation scores were then plotted against the PC 
distances calculated above. Linear regression with 95% confidence intervals 
is shown. 

Differential gene expression for the dorsal/ventral and excitatory/inhibitory 
analysis was performed using the ROC test in Seurat, with genes in >30% of each 
class and with a log FC > 0.25. Genes with a ROC > 6 were compiled into lists and 
analyzed using default parameters in GO DAVID, with molecular function and 
biological process GO terms selected, as well as KEGG pathway terms. 

RNA In situ hybridization, Immunofluoresence, and WFA staining. For high 
content RNA in situ hybridization, 14 µm fresh frozen spinal cord sections from 
segment L4 were placed on Leica Apex slides and sets of 97 RNAScope HiPlex 
probes were used (Supplementary Table 3) from ACDBio, according to the man- 
ufacturer’s instructions. Images for each set were registered using RNAscope 
HiPlex Image Registration Software and brightness/contrast were adjusted using 
Adobe Photoshop. Counting of cells was done by first using a general class marker 
in each panel of probes (such as Slc17a6 or Slc6a5) to focus counting on neurons of 
a particular neurotransmitter status and by considering one region at a time 
(dorsal, mid, or ventral). In addition, the following guides were used. Set 1: All Chat 
+ cells in any laminae. Set 2: Any dorsal cell that expressed any of Cpne4, Maf, or 
Prkcg. Set 3: Any cell in the dorsal horn with any of Slc17a6, Rreb1, Reln, or Car12.
In addition, Gbx2 cells were counted separately amongst any cell in the deep dorsal 
horn with Slc17a6. Set 4: Any cell in the dorsal horn with any of Col5a2, Enpp1,
Sox5, Tac1, Tac2, Nmu, Megf11, Mdga1, Pmfbp1, or Onecut2. Set 5: Any cell in
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laminae 1-4 with any of Slc6a1, Gad2, or Kcnip2. Set 6: Any cell in the dorsal horn 
with any of Mlxipl, Pdyn, Gal, Npy, Qrfpr, Sstr2, or Rspo3. Set 7: Any cell in 
laminae 4-6 with any of Slc17a6, Adamts2, Lmx1b. Set 8: Any cell in laminae 4-6 
with either Slc6a5 or Gad2. Set 9: Any cell in laminae 6-8 with Slc17a6. Set 10: Any 
cell in laminae 6-8 with any of Pax2, Slc6a5, or Gad2. The number of cells counted 
in each set are listed in Supplementary Table 3 and were from one section per 
animal, though multiple sections per animal were inspected for expression pattern 
consistency. Sections from three animals (2 male and 1 female or 2 female and 1 
male) were counted for each set. For Fig. 3c, e, V2 RNAScope probes were used 
(also from ACDBio, according to the manufacturer’s instructions). For immuno- 
fluorescence and lectin staining, animals were perfused, and 50 µm sections of the 
frozen section were cut and stained. To detect CAMK2α, Millipore 905-532 was 
used (1:500). For perineuronal net WFA-lectin staining, fluorescent lectin (Vector 
Laboratories, FL-1351-2) was used according to the manufacturer’s instructions. 

Single nucleus sequencing. Nuclei were obtained as previously described133 and 
were processed for single-cell sequencing using the 10X Genomics Chromium 
Single Cell 3′ Kit (v3 chemistry) and sequenced at a depth of approximately 50,000 
reads per nucleus. Clustering was performed as described above and cluster 
identities were determined using the combinatorial marker code in Table 1 where 
possible (known clusters). Clusters that could not be identified in this manner were 
analyzed for neurotransmitter status and given a placeholder identification 
(unknown clusters). 

Computational classification 
Label transfer. Label transfer analysis was performed using Seurat v3(.1.5). For both 
coarse cell types and clean neurons, 10% of cells were withheld as the query dataset, 
whilst the remaining were used as the reference dataset. Broadly, label transfer 
consists of two steps. First, the transfer anchors are identified using the Find- 
TransferAnchors function. Second, these anchors are then used to transfer cluster 
labels to the query dataset with the TransferData function. 

For label transfer of coarse cell types, FindTransferAnchors was called with 
reduction = “pcaproject”, dims = 1:28, and npcs = NULL to project the previously 
calculated PCA onto the query data using the same dimensions as were used in 
clustering the reference data. Transfer data was also called with dims = 1:28 for the 
same reason. 

Label transfer of clean neurons was performed in a two-step process. First, all 
cells in mid- or ventral-clusters were grouped as one cluster. Then, the dorsal- 
clusters were transferred along with one mid/ventral cluster. Second, those cells 
classified as mid/ventral were labelled using only neurons from mid- or ventral- 
neuron clusters. In each case, a new reference object was created from the 
appropriate cells – all neurons for step 1 and mid-/ventral-neurons only for step 
2–via integration, as previously discussed in the Merged Analysis and Clustering 
section. Label transfer was run as described for coarse cell types, with the exception 
that dims = 1:100 was set for all neurons, and dims = 1:30 was set for mid-/ventral- 
neurons. 

In the final two-tier analysis, label transfer was performed as discussed for 
coarse cell types. Any cells labelled neuron, motor neuron, or doublets were passed 
to the neural network for further classification. The decision to include doublets for 
further classification was founded on the observation that a non-trivial number of 
neurons were misclassified as doublets at the coarse cell-type level. 

Support vectror machine. Support vector machine analysis was performed using 
scikit-learn version 0.22.2.post1. Count matrices were taken from the default Seurat 
RNA assay count slot as sparse matrices. Cluster labels were numerically encoded 
with LabelEncoder(). To preserve sparsity for reduced training time, these counts 
were scaled with MaxAbsScaler(copy = False). As LinearSVC() is known to be 
faster and more scalable than SVM(kernel = “linear”), it was selected for use 
(https://scikit-learn.org/0.22/modules/svm.html#svm-classification and https:// 
scikit-learn.org/0.22/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.  
LinearSVC). As the number of samples was significantly greater than the number 
of features, the dual parameter was set to “False”. Finally, to help ensure con- 
vergence, the max_iter parameter was increased from the default of 1000 to 10000. 
This pipeline achieved an overall accuracy of 80% on the validation data. Though 
this performance could likely be improved by hyperparameter tuning, given the 
performance of alternative models, the support vector machine was not selected for 
further use. 

Neural networks. Count Matrices were taken out of the default Seurat RNA assay 
count slot as sparse matrices. Genes with no counts were dropped. The counts 
were log x+1 transformed then scaled by the maximum number of counts for any 
gene in a cell. The data were converted into TensorFlow sparse tensors for input 
into neural networks define via the Keras interface to TensorFlow. Hyperpara- 
meters were initially set to default values, with a network structure consisting of 
direct connections between the input and output nodes. This simple linear model 
was the baseline. We added additional layers from 1 to 4 hidden layers, at various 
widths from 16 nodes to 512 nodes in a layer. The optimizer we switch from the 
default “Adam” optimizer to singular gradient descent (sgd). L1, L2, and dropout 
regularization were attempted. Additionally, various batch sizes were tested. 

Initially, networks trained for coarse analysis used a batch size of 128 to speed 
training. Whereas the training was faster, validation accuracy improved by 
around 5% when we lowered the batch size to 32. No additional improvement was 
seen at a batch size of 16, so the batch size was set to 32 for the rest of the study. 
In general, we used the learning curves to guide the changing of 
hyperparameters134. 

For the analysis of coarse cell types (Fig. 5a), a model with two hidden layers of 
512 nodes each and L2 regularization was used. For the analysis of the neuronal 
subtypes (Fig. 5b), seven models were tested: (1.1) a linear model with no 
regularization (1.2) a linear model with L2 regularization (learning rate 0.001) (1.3) 
a neural network with two hidden layers of 512 nodes each (1.4) an ensemble-like 
neural network with one hidden layer (128 nodes and L2 regularization) and two 
hidden layers that were concatenated, (1.5) a neural network model with three 
hidden layers (512, 256, 128 and L2 regularization on the 512 nodes hidden layer 
(1.6) a neural network model with 3 layers (128, 128, 128 and L2 regularization on 
the first hidden layer) and (1.7) a linear model with no regularization with an SGD 
optimizer. Interestingly, the baseline model had the largest validation accuracy. 
Since the training accuracy is 100% as compared to 85% in the validation set, the 
model is clearly overfitting the training data. Adding regularization helped to lower 
the gap between the training and validation accuracy, but the overall validation and 
test accuracies are still lower suggesting that the overtrained model will perform 
better on unseen data. Additional work to improve this model is needed and 
adding more data from further experimental studies in the future will help improve 
the validation accuracy. For the analysis and training of neurons and doublets 
together (Tier 2), five models were tested: (2.1) a linear model with no 
regularization (2.2) a linear model with L2 regularization (2.3) a neural network 
model with one hidden layer of 128 nodes (2.4) a neural network model with one 
hidden layer of 128 nodes and SGD optimizer, and (2.5) a neural network model 
with one hidden layer of 256 nodes and SGD optimizer. The final model (2.5) was 
selected for Tier 2. 

In the analysis of unknown clusters (Fig. 5f), individual nuclei were identified if 
(1) they were from an unknown cluster and were classified into a harmonized true
cell type (not junk or doublets) and (2) at least 80% of the total nuclei from their
cluster of origin were classified into the same single harmonized cell type.

For the two-tier classification method, Tier 1 was run on an Apple MacBook 
Pro Core i9 2.3 GHz, 32 GB, 1TB Radeon Pro, and took approximately 20 min. Tier 
2 was run on Google Colab (the CPU was not guaranteed but was Intel® Xeon®

CPU @2.20 GHz 2 CPU, 13 GB RAM, 107 GB disk. The runtime was 16 s to read in 
14 MB of test data and 1 s to run the neural network. 

Supplementary Analysis Notes 

1. Consideration of the decision to include formalin and rotarod experimental 
samples as part of the Sathyamurthy et al. dataset: To ensure that the 
inclusion of these samples would not bias the clustering or the gene
expression patterns, we performed the following analysis. First, we analyzed 
the neuronal cluster distribution of each experimental condition. Overall, 
nuclei from the formalin and rotarod conditions accounted for 11.0% of the 
total neuronal cells/nuclei and also represented 11.1% (±0.7 standard error) 
of each cluster. The only clusters that had >16% contribution from an
experimental condition were in the mid/ventral regions of the spinal cord 
(in which the Sathyamurthy dataset is somewhat overrepresented in 
general). Therefore, we concluded that the cluster contribution is not 
biased by experimental conditions. Second, we analyzed whether the gene
expression of the clusters could be biased by the inclusion of the 
experimental conditions in two ways. We used the original set of nuclei
from the Sathyamurthy dataset and tested whether any genes were
differentially expressed between the experimental conditions. The only
gene that was significantly different (ANOVA, corrected p-value < 0.05) was 
the immediate early gene Fos. This is not unexpected because the formalin
and rotarod samples in the Sathyamurthy dataset were collected five
minutes after the intervention, a very short time window that makes major 
changes in gene expression or cell composition exceedingly unlikely. Next, 
we performed a more refined analysis and compared genes that were 
differentially expressed (Wilcox test) within each cluster, between nuclei
from an experimental condition and all naïve cells/nuclei from any dataset.
Although there were genes that were different in many of the clusters, this 
likely reflects the general differences in sample age and technique between
the studies. Only one differentially expressed gene was an immediate early
gene (Homer1a was found in a higher fraction of cells/nuclei from the
experimental condition in cluster Inhib-8 but also had a lower expression 
level per cell/nucleus). Therefore, we concluded that the gene expression
profiles are not biased by the inclusion of these nuclei. In fact, the broadly
elevated levels of immediate early genes in the Haring and Zeisel datasets
(Supplementary Figs. 1 and 3) likely washes out any small effect of the 
behavioral conditions from the Sathyamurthy dataset.

2. Examination of cell vs. nuclei gene expression differences: To explore 
systematic differences in the gene expression profiles between studies that
used cells and those that used nuclei, we performed the following analysis.
First, we note that overall, the number of genes per cell/nucleus, the 
expression of immediate early genes, and the expression of stress-related
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genes were all different based on technique (Supplementary Fig. 3). In 
examining cluster composition, we found that only studies that used nuclei 
contributed to MN-alpha, MN-gamma, or PGC cells as well as Excit-7 and 
most ventral neuronal clusters (Supplementary Table 2). We next compared 
differential gene expression within each neuronal cluster for studies that 
used cells or nuclei (Wilcox, minimum FC = 0.25, minimum percent of cells 
expression = 10%), selected the top 30 genes ranked by adjusted p-value, 
and removed duplicates. We found that 484 unique genes were differentially 
expressed and of these, 482 (99.6%) were enriched in cells compared to 
nuclei. GO analysis revealed that all of the enriched gene annotation clusters 
were associated with basic cell metabolism terms such as the ribosome, 
metabolic pathways, and proton transport (Supplementary Table 8). To 
further probe genes that were enriched in nuclei compared to cells, we 
sorted all significant genes in each cluster by the average log fold change,  
selected genes with a value > 2 (nuclei > cells), and identified a list of 10 
protein-coding genes and 3 lncRNAs (Supplementary Table 8). In summary, 
the major differences that we observed were that ventral cell types were 
mainly detected in studies that used nuclei compared with cells, (which may 
reflect a differential vulnerability of ventral cells to stressful cell dissociation 
methods), and that general metabolism genes were enriched in studies that 
used cells (which may reflect increased detection of genes that have low  
levels of expression). 

Reporting summary. Further information on research design is available in the Nature 
Research Reporting Summary linked to this article. 

Data availability 
The raw sequencing data generated in this study have been deposited in the NCBI 
database under accession code GSE158380 (https://www.ncbi.nlm.nih.gov/geo/query/acc. 
cgi?acc=GSE158380). In addition, the publicly available data utilized in this study are 
available at: Sathyamurthy: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE103892 Hayashi: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE108788 Zeisel: https://www.ncbi.nlm.nih.gov/sra/SRP135960 Haring: https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103840 Rosenberg: https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823 Baek: https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi?acc=GSE130312 Blum: https://www.ncbi.nlm.nih.gov/geo/query/acc. 
cgi?acc=GSE161621 Alkaslasi: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE167597 Delile: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7320/ 
files) A searchable version of all processed data from the harmonized analysis is available 
www.seqseek.ninds.nih.gov. 

Code availability 
The code associated with this study is available at https://github.com/ArielLevineLabNINDS. 
Specific code for the full SeqSeek classifier is available at DOI: 10.5281/zenodo.5081263. Code 
for the neuron neural network only is available at DOI: 10.5281/zenodo.5081268. Sample data 
for running the classifier is available at DOI: 10.5281/zenodo.5081266. 
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Supplemental Figure 1 

Supplemental Figure 1 (supplement for Main Figure 1). The correlation in gene expression between the original 
dorsal neuronal clusters in the Sathyamurthy et al., Haring et al., and Zeisel et al. studies. (A) Analysis was 
performed using the raw values for all genes, (B) the raw values for only the most highly variable genes (amongst 

neurons), (C) or the integrated values for only the most highly variable genes (amongst neurons). The original 

clusters from Haring et al. are shown in rows, proceeding from Glut1 – Gaba15. The original dorsal/mid clusters 

from Sathyamurthy et al. are shown in columns on the left, proceeding from DE-1 through DI-9, then ME-1, MI1-4. 

The original clusters from Zeisel et al. are shown in columns on the right, proceeding from SCGGLU1 – SCIN11. The 

Pearson’s correlation score for each pair of clusters is shown, colored from blue = 0 through red = 1. (D) The 

maximum Pearson’s correlation score obtained for each cluster, shown as dots for individual values (not 

replicates), and the mean +/- s.e.m. (bar and error bars) when the analysis for A, B, and C were performed. 

Comparison of the raw gene expression values between studies failed to identify clear relationships in clusters 

between datasets, while using the integrated values improved this significantly (*** is p<1E-15, unpaired t-test 

with Welch’s correction, two-tailed p-value). 
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Supplemental Figure 2 

Supplemental Figure 2 (supplement for Main Figure 1). Integrated analysis of six independent studies to reveal 
spinal cord coarse cell types. (A-D) The cells/nuclei from each study varied in terms of the number of genes 

detected per cell/nucleus (A) (scale is 12,500), the expression of immediate early genes (IEG) (B) and stress related 

genes (C) (scale is 4 for both and the data are presented as the scaled expression of the gene module normalized 

to 100 randomly selected genes), and the percent of mitochondria (D). (E) Table presenting the number of 

cells/nuclei from each study that were present in each of the coarse cell type clusters. Low-quality nuclei from the 

Sathyamurthy dataset are included, though they were discarded as such or labeled as neurons in preliminary 

analysis but discarded later in the neuron sub-analysis. (F) Label transfer using the full Zeisel oligodendrocyte 

lineage data as a reference (rows) confirmed harmonized cluster annotation (columns). The frequency of 

cells/nuclei from each harmonized cluster being annotated with a given Zeisel label is shown, normalized by 

column. 

A

Sathyamurthy Hayashi Haring Rosenberg Zeisel Baek

OPC 322 3 8 950 790

Oligo Progen-1 59 2 10 706 582 1

Oligo Progen-2 167 25 469 629

Oligos-1 3822 5 118 943 2832 3

Oligos-2 807 30 470 922

Schwann 1165 9 1

Peripheral glia/
NC derivative

298 2 1

Meninges-1 1661 5 6 444 18

Meninges-2 641 6 111

Ependymal 468 2 52 260 249

Astrocytes-1 2219 6 13 1457 1907 2

Astrocytes-2 443 3 1 694 309

Endothelial 1075 3 15 393 1462

Pericytes 463 9 310 826

Microglia 466 9 17 438 640 16

Neurons 5473 421 1042 11201 1130 86

TOTAL 19549 459 1352 18857 12298 108

B C D

E
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Supplemental Figure 3 
 

Supplemental Figure 3 (supplement to Main Figure 1). Comparison of three independent integration 
methodologies. (A-I) Harmony, Conos, and LIGER integration was performed on the merged dataset of all cell 

types from six independent studies and are presented in their own UMAP space colored by dataset (A,D,G) or 

colored by the coarse cell types obtained from Seurat integration (B,E,H). Local Inverse Simpson Index (LISI) values 

were used to assess the diversity of cells within local neighborhoods in integrated UMAP space with the definitions 

of cell types based on Seurat integration (C,F,I). Out of the 84 possible cell types, most cells showed very 

homogenous local neighborhoods based on low LISI scores. (J,K,L) A similar analysis was repeated on neurons only, 

using Harmony as the integration method and is shown in a UMAP colored by dataset (J) or the Seurat-integrated 

neuronal populations (K) and as analyzed by LISI for the 69 possible neuronal cell types (L). 
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Supplemental Figure 4 
 

Supplemental Figure 4 (supplement to Main Figure 2). Parameter selection for neuronal clustering. (A,B) 40 
principal components were used to analyze the neuronal cell types, a parameter that was selected based on being 

within the asymptotic range in the elbow plot (A), being just above statistical significance in the jackstraw plot (B), 

and inspection of the gene loadings for each principal component. PC = principal component. 
(C) Resolution 8 was selected to analyze the neuronal cell types based on being in a stable range of cluster

robustness (left, determined by average silhouette width) and comparison of generated cluster marker genes with

known markers and co-expression patterns from the literature. This generated an intermediate number of cluster

(right). For each resolution tested, a different number of clusters were generated, each shown as a single point,

with the mean +/- standard error. (D) Dendrogram of cluster relationships (using 4000 integrated genes hclust.

Average) that was used to identify pairs of related clusters as candidates for merging (see Methods for more

detail). Clusters 61 and 77 represented sensory neurons from the Zeisel dataset and were excluded. Black dots

indicate clusters that were merged. Pink dot indicates motoneuron clusters that were merged and sub-clustered in

their own principal component space. Purple dot indicates mid/ventral clusters that were merged and sub-

clustered in their own principal component space (see Methods for more detail).
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Supplemental Figure 5 

Supplemental Figure 5 (supplement to Main Figure 2). Integrated analysis of six independent studies to define 
69 spinal cord neuron cell types of varying robustness. (A) The co-clustering frequency of the cells/nuclei from 

each cluster when clustering was automated and run 100 times using a random 80% of the dataset each time, 

analyzed in two tiers (first tier: mid/ventral grouped together; second tier: mid/ventral sub-types only). (B) The 

“robustness score” (the silhouette value of the co-clustering frequency matrix) of each cluster is shown.  
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Supplemental Figure 6 

Supplemental Figure 6 (supplement to Main Figure 2). Relationship with the Sathyamurthy et al. and Haring et 
al. spinal cord atlases. (A) The distribution of cells from the original clusters of the Sathyamurthy and Haring 

datasets (rows) into the harmonized clusters (columns), ranging from 0 blue to 100% red distribution. (B) The 

distance between the centroids of the cells/nuclei from the original Haring and Sathyamurthy clusters, measured 

in 50 dimensional principal component (PC) space. Only dorsal neuron clusters are shown for the Sathyamurthy 

dataset and in both datasets, every other cluster is labeled. Distance is colored from short (red) to long (blue). (C) 

Relationship between the distance in PC space and the correlation in gene expression each pair of clusters 

between the Haring and Sathyamurthy datasets, with each point represent the distance for one pair (not 

replicates). Linear regression was used to create a best fit line, shown with 95% confidence interval. 
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Supplemental Figure 7 

Supplemental Figure 7 (supplement to Main Figure 2): Relationship with the Blum et al. spinal cord atlas. (A) 
Correlation in average gene expression between each cluster from Blum et al. (rows) and each harmonized cluster 

(columns), using the top 500 highly variable genes. Pearson’s correlation score is presented from 0 (blue) to 1 

(red). Black solid line boxes surround datapoints with notable differences. Cluster 35 shows similar correlations 

with oligodendrocyte precursors and astrocytes. Cluster 22 shows a strong correlation with ependymal cells. 

Clusters 13-36 represent a greater diversity of motoneurons than MN-alpha, MN-gamma, and PGC. Cluster 24 

shows a correlation with oligodendrocyte precursor cells. Black dashed line boxes surround examples of individual 

Blum et al. clusters that show a correlation to multiple harmonized clusters.  (B,C) Dot plots showing harmonized 

atlas marker gene expression as expressed in the Blum et al. clusters, including coarse cell type markers (B) or 

neuron sub-types and neuron family markers (C). Dot color intensity reflects average expression level and dot size 

reflects the percent of nuclei in each cluster expressing each marker. The boxes in (B) reflect the 

hybrid/mixed/doublet gene expression of oligodendrocyte and astrocyte markers in cluster 35, the expression of 

ependymal marker genes in cluster 22, and the expression of oligodendrocyte precursor/progenitor markers and 

the lack of expression of general neural markers in cluster 24. The box in (C) reflects the broad marker gene 

expression in cluster 0 including of inhibitory markers Pax2, Gad1, and Gad2 and the excitatory markers Slc17a6 

and Vsx2. 
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Supplemental Figure 8 

Supplemental Figure 8 (supplement to Table 1): Trends in excitatory-inhibitory organization of spinal cord 
neuron types. (A) Dot plot showing expression of genes associated with neurotransmitter class. (B) Validation of 

differentially expressed genes by RNA in situ hybridization. 20x tiled images, with brightness and contrast adjusted. 

All images are representative of the pattern observed in at least 3 sections each from N=3 animals. Scale bar is 100 

µm. 
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Supplemental Figure 9
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Supplemental Figure 9 (supplement to Main Figure 4). Multi-plexed RNA in situ hybridization of a combinatorial 
panel of spinal cord cell type marker genes. For each of the ten sets of RNAScope probes (listed in Supplemental 

Table 3), this figure shows a 20x tiled image, as well as multiple higher magnification images that are boxed in the 

20x tiled image and labeled by Set#.Inset# names. The expressed genes are shown for each image and the cell-type 

identity is shown by small white numbers next to positive cells in the inset pictures. 20x tiled images, with 

brightness and contrast adjusted. All images are representative of the pattern observed in at least 3 sections each 

from N=3 animals. Scale bars are 100 µm. 
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Supplemental Figure 10 
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Supplemental Figure 10 (supplement to Table 1). Focused analysis of spinal motoneuron diversity from four 
independent datasets reveals previously unrecognized diversity and enables spatial mapping of neuronal 
subtypes. (A) UMAP representation of motor neurons from the Alkaslasi dataset, highlighting 3 types of skeletal 

motor neurons and 11 preganglionic motor neurons. (B) UMAP representation of motor neurons from the Blum 

dataset, highlighting 3 types of skeletal motor neurons and 14 preganglionic motor neurons. (C) Correlation 

between Alkaslasi and Blum clusters, showing strong correspondence of clusters between datasets. (D) Integration 

of 23,032 single neurons from 4 independent datasets increases resolution of motor neuron clustering, resulting in 

25 clusters. (E) UMAPs of integrated datasets, with nuclei/neurons split into their source datasets and colored by 

cell type. (F, G) Integrated clustering of PGCs and of alpha motor neurons increases resolution of clustering. 

Combined with spatial barcoding of Alkaslasi dataset, this resolution enables the identification of distinctly 

localized subtypes that were not previously resolved. (F) PGCs are clustered into 23 subtypes that vary by spinal 

cord level. The integrated data resolves a lumbar-only cluster that was not previously recognized (2). (G) Alpha 

motor neurons are clustered into 14 subtypes that vary by spinal cord level. While the Alkaslasi data alone 

revealed primarily cervical clusters, it did not reveal lumbar-only clusters. The integrated data highlights the 

lumbar-only clusters 7 and 10. Further, the combined datasets reveal that the digit-innervating motor neurons, 

expressing Cpne4 and Fign, segregate into 2 subtypes, one in both cervical and lumbar (cluster 5), and one 

confined to lumbar spinal cord (cluster 12).  
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Supplemental Figure 11 

Supplemental Figure 11 (supplement to Main Figure 6). Performance of the two-tiered model on each 
independent dataset. (A) The fraction of correctly predicted cells/nuclei using the two-tiered label transfer and 
neural network model on each independent dataset, plotted against the fraction of the training dataset from each 

independent dataset. Overall data is on the left and the neuron-specific data is on the right. Simple linear 

regression was performed to determine the slope of the relationship between the fraction of each dataset that 

was correct and the fraction of the training data represented by that dataset. (B-G) Heatmaps of the F1 scores for 

each cell type in each study, colored from blue=0 to red=1. The actual cell types are in rows and the predicted cell 

types are in columns, both in the order presented in Table 1 and Figure 5E, with “doublets” and “junk” in the final 

two rows/columns. * denotes that, for the Sathyamurthy dataset, a random sub-sample of 20% of the data was 

used to generate the data in this figure because the full dataset was too large to process through label transfer. 
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Supplemental Figure 12 

Supplemental Figure 12 (supplement to Main Figure 6). Neural network performance and comparison to cluster 
robustness. (A) The confidence (x-axis) with which each cell/nucleus was classified (counts, y-axis), colored by 
whether the prediction was correct (blue, true) or incorrect (false, pink). (B) Scatterplot of the neural network F1 

score and the size of each cluster. (C) Scatterplot of the neural network F1 score and the co-clustering frequency of 

each cluster. (D) Scatterplot of the neural network F1 score and the distance between the centroid of each cluster 

and the centroid of its nearest neighbor in 50-dimensional principal component (PC) space. (E) Scatterplot of the 

neural network F1 score (presented as an average for each “set” of clusters) and the percent of cells in that set 

that could be confidently assigned to a single cluster by in situ hybridization analysis.  
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Supplemental Figure 13 

Supplemental Figure 13 (supplement to Main Figure 6). Comparison of clustering and automated classification of 
the independent dataset. (A) UMAP plot showing the coarse cell type of each nucleus based on clustering of the 

independent dataset. (B) UMAP plot showing the coarse cell type of each nucleus based on based on two-tiered 

computational classification. (C) UMAP plot showing the neuron type of each nucleus based on clustering of the 

independent dataset. Clusters that could not be identified at a fine resolution were given placeholder names such 

as “Inhib-b”. (D) UMAP plot showing the neuron cell type of each nucleus based on based on two-tiered 

computational classification. 
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Appendix 3 

Activated Microglia Localize to Injured Axon Tracts after Spinal Cord 

Injury 

This section contains results related to Chapter 4, Single Cell Atlas of Spinal Cord Injury in Mice 

Reveals a Pro-Regenerative Signature in Spinocerebellar Neurons. This work explores the 

microglial activation and expansion distal to the contusion site after spinal cord injury in mice.  
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Appendix 3 

Activated Microglia Localize to Injured Axon Tracts after Spinal Cord 

Injury 

Introduction 

The brain, spinal cord, and peripheral nervous system are comprised of diverse cell types that 

operate together as local communities to enable normal physiology. Following acute trauma, a 

complex interplay of cellular responses shapes the outcome. Whether the tissue can restrict the 

damage, promote structural remodeling and functional compensation, and ultimately achieve 

recovery depends on myriad dynamic molecular changes amongst neurons, astrocytes, 

microglia, oligodendrocytes, vascular cells, and many other cell types (Kigerl et al., 2009; 

Sofroniew and Vinters, 2010).  

Spinal cord injury (SCI) is a traumatic event that can cause long-lasting paralysis, pain, 

autonomic dysregulation, and body-wide physiological changes(McDonald and Sadowsky, 

2002). Understanding and developing therapeutics that target cellular changes within the lesion 

epicenter is undoubtedly valuable. In addition to the lesion of the SCI, there is an emerging 

focus on the “spared tissue” below a SCI and its inherent potential for supporting anatomical 

reorganization and recovery in people with SCI. For example, epidural electrical stimulation of 

the lumbar spinal cord, combined with rehabilitation training, can promote impressive gains in 

motor function and autonomic control and provide enhanced quality of life(Angeli et al., 2018; 

Gill et al., 2018; Wagner et al., 2018). This therapy underscores the importance of 

understanding the spared tissue below the site of injury to reveal the intrinsic potential for 

spontaneous and rehabilitation-driven recovery. 
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Here, we sought to uncover the dynamic cell type specific responses of spared lumbar spinal 

cord following SCI with the goal of identifying the molecular and cellular mechanisms that 

promote or restrict recovery. First, we performed severe contusion spinal cord injuries in mice 

and tracked the progression of injury responses from acute to chronic timepoints. To profile the 

diverse cell types within the lumbar spinal cord following thoracic injury, we used single nucleus 

RNA Sequencing (snRNA-Seq) and created an “atlas” of the spared tissue after injury. The size 

and scope of this dataset allowed us to identify rare cellular populations that displayed 

molecular pathways with the potential to support recovery. We identified neuronal populations 

that induce a transcriptional signature of regeneration, providing a template for expanding this 

potential in the future. Finally, we identified a population of “trauma associated microglia” that 

were localized along white matter tracts of degenerating axons and that used autocrine 

signaling via IGF1 and osteopontin (Spp1/OPN) to promote proliferation. This population could 

be expanded with exogenous IGF1 and Spp1/OPN to degrade, phagocytose, and clear local 

myelin. Together these findings shed light on the limited spontaneous mechanisms of repair in 

the spared tissue below a SCI but also reveal latent potential for targeted neuro-regeneration 

and tissue remodeling therapies. 

Results 

Expansion of Microglia after Injury and Emergence of Activated Microglia 

The compositional and gene expression data presented here revealed that microglia are the cell 

type that changes the most in the spared lumbar tissue after SCI (Fig. 4.1e). To explore 

microglia and related hematopoietic cell types in greater depth, we independently clustered this 

class of cells and observed three homeostatic microglia populations, two activated microglia 
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populations, a cluster of macrophages and a cluster of natural killer and T cells (Fig. 4.1a). 

Homeostatic microglial clusters were defined by Cst3, C1qa, Ctss, Hexb, Trem2, P2ry12 and 

Tmem119. The activated microglia populations expressed lower levels of P2ry12 and Tmem119 

and induced expression of the phagocytic markers Cd68 and Lyz2. In addition, “activated 

microglia A” expressed Gpnmb, Apoe, Lgals3, Igf1, and Spp1, while “activated microglia B” 

expressed genes associated with pro-inflammatory microglia, such as Ccl2, Ccl3, Ccl4 and Lpl. 

Macrophages expressed the genes Mrc1, Cd74, and H2-Ab1 and did not express the microglia-

specific genes Tmem119 or P2ry12. Natural killer and T cells clustered together and expressed 

the genes Ms4a4b, Cd52, Ptprc, Nkg7, and Cd3g. All microglia/hematopoietic cell types 

increased in proportion relative to other cell types at 1 wpi (Fig. 4.2e). Both of the activated 

microglia sub-types were still present at six weeks post injury, suggesting that they may play an 

ongoing role in spared tissue (Fig. 4.2e). 

Notably, the gene expression profile of “activated microglia A” strongly resembled a signature 

observed recently in postnatal myelin-phagocytosing microglia, in postnatal microglia that can 

promote SCI repair, and in degenerative disease associated microglia in conditions such as 

Alzheimer’s disease in the brain and ALS in the spinal cord (Hammond et al., 2019; Keren-

Shaul et al., 2017; Li et al., 2019; Li et al., 2020). In addition, recent work examining the lesion 

site of spinal cord injury has identified an “injury associated microglia” cell type with a similar 

expression profile (Millich, 2020; Wahane et al., 2021). Pathway analysis of the genes that 

characterized “activated microglia A” revealed an enrichment of genes associated with (1) 

phagocytosis (such as Lyz2, Gpnmb, Itgax, and Cd68; GO terms: lysosome, antigen 

presentation, phagosome), (2) lipid metabolism (such as Fabp5, Lgals3, Apoe, Soat1, and 

Abca1; GO term: lipoprotein), and (3) secreted proteins (such as Spp1 (OPN) and Igf1; GO term 
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“extracellular secretion”, Appendix Fig. 3.1c). We hypothesized that this population could 

phagocytose debris in the spared tissue and promote recovery through release of trophic 

factors. 

To determine whether the gene expression pattern that we observed corresponded to an in vivo 

cell type, we performed in situ hybridization in tissue sections of spared lumbar cords, using 

C1qa (a general microglial marker), Spp1 (OPN) (which marked activated microglia as well as 

some ventral horn neurons, and Gpnmb (which marked Activated Microglia A). We found that 

Activated Microglia A were observed within the white matter of the injured spinal cord. They 

appeared consistently along the putative rubrospinal tract (RST) and the dorsolateral 

corticospinal tract (CST) in the lateral white matter at 1, 3 and 6 wpi (Appendix Fig. 3.1e-h). 

Interestingly, this region showed loss of longitudinal axons from the descending tracts but also 

showed the presence of residual myelin (Appendix Fig. 3.1i-l). Myelin debris that remains after 

longitudinal axons die or retract is thought to be a major obstacle to neuro-regeneration and 

recovery after SCI (Schwab and Strittmatter, 2014). 
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Appendix Figure 3.1: Microglia Expansion and Activation after Injury 

a. UMAP of the 7 microglia subtypes. b. Featureplot of two marker genes of the “activated microglia A” population,

Spp1 (cyan) and Gpnmb (magenta), split by the timepoint (Uninjured, 1 dpi, 1 wpi, 3 wpi, and 6 wpi). c. GO analysis

for “activated microglia A” marker genes. d. Dotplot comparing top 5 marker genes from previous studies of postnatal

and disease-associated microglia. (Clec7a, not detected in our dataset, was excluded.) e-g. RNAscope in situ

hybridization showing expression of Spp1 (cyan) and Gpnmb (magenta) and C1qa (yellow) in uninjured, 1 wpi, and 6 

wpi lumbar spinal cord. Scale bars are 200 µm in top row and 50 µm in middle and bottom rows. h. Number of

Gpnmb+ microglia (quantified by C1qa, Gpnmb double-positive cells) in each of the following regions in the spinal 

cord: dorsal funiculus, dorsal-lateral funiculus, ventral funiculus and grey matter. Error bars indicate mean ± SEM (N 
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= 4 animals). i-k. Immunohistochemistry staining for MBP, IBA1 and Neurofilament light, medium and heavy (LMH). l.

Quantification of fluorescence intensity of neurofilament-LMH and MBP in the region boxed i-k, in the dorsal-lateral 

white matter. * = p-val < 0.001. Error bars indicate mean ± SEM (N = 4 animals). 

Activated Microglia A were also found transiently near the putative main CST at 1 wpi and in the 

ventral white matter near the descending reticulospinal, vestibulospinal, and cerebellospinal 

tracts at 6 wpi (Appendix Fig. 3.1f-h). In the cervical spinal cord, rostral to the injury site, 

Activated Microglia A were found in a complementary pattern along putative ascending tracts 

(Appendix Fig. 3.2f). Thus, Activated Microglia A represented a trauma induced microglial 

population that was associated with white matter tracts of degenerating axons and that 

expressed a gene signature of phagocytosis, myelin clearance and lipid processing, and trophic 

factors.  
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Appendix Figure 3.2: Microglia/Hematopoietic Cells and the Distribution of Activated 

Microglia A after Injury  

a. Proportions of microglia subtypes after injury. b. A dotplot showing markers defining microglia

subtypes. c. Quantification of Gpnmb+ singlets, doublets and multiplets in the uninjured, 1 wpi

and 6 wpi lumbar cord. Error bars indicate mean ± SEM (N = 3 mice). d. Plots depicting the

spinal cord sectioned into eight slices, showing how many Gpnmb+ microglia are in each slice 

in the uninjured, 1 wpi and 6 wpi lumbar cord. e. Quantification of the number of Gpnmb+

microglia in the cervical cord after thoracic contusion. Error bars indicate mean ± SEM (N ≥ 3 

mice).  f. In situ hybridization with Spp1, Gpnmb, and C1qa showing activated microglia rostral

to the injury site in the cervical cord.  

Igf1 and Spp1 (OPN) Trophic Factors Drive Expansion of “Activated Microglia A” 

While the phagocytic and lipid processing gene expression modules can be clearly related to a 

function of Activated Microglia A, the role and target of the trophic factors Igf1 and Spp1 (OPN) 

in the injured spinal cord is not known. Of note, Igf1 and Spp1 (OPN) often function together, 

with Spp1 (OPN) sensitizing target cells to Igf1 signaling (Liu et al., 2017). These two secreted 

proteins are known to be neuroprotective during development (Ueno et al., 2013) and their co-

expression can enable axon regrowth after injury (Anderson et al., 2018; Liu et al., 2017). In 

addition, Igf1 can prevent oligodendrocyte cell death in transected nerves (Barres et al., 1993) 

and during demyelination (Mason et al., 2000a; Mason et al., 2000b). Following SCI, we found 

that Activated Microglia A were the only cells that co-expressed Igf1 and Spp1 (OPN) while 

many cells, including neurons and oligodendrocytes, expressed the Igf1r receptor which would 

render them responsive to these trophic Activated Microglia A factors (Appendix Fig. 3.3a). 
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To identify the cellular target of Igf1 and Spp1 (OPN) signaling, we analyzed the distribution of 

the phosphorylated (activated) form of the Igf1 receptor three weeks after thoracic injury, at 

which point the numbers of Activated Microglia A have increased and plateaued in the lumbar 

cord. Surprisingly, the only cells which induced high levels of active Igf1r signaling in response 

to injury were small clusters of microglia that were present in the same white matter spatial 

distribution as Activated Microglia A, suggesting an autocrine signaling loop (Appendix Fig. 

3.3b-c). The small clusters of microglia could represent local proliferation and/or mature cell 

migration. We analyzed the distribution of the proliferative marker Ki67 together with the 

microglial marker Iba1 and the Activated Microglia A protein marker CD11c (Itgax). We found 

that small clusters of microglia in the white matter of the injured spinal cord were indeed 

proliferating and that some of these cells co-expressed CD11c (Appendix Fig. 3.3d-e). 

Together, these findings support a model in which Activated Microglia A secrete Igf1 and Spp1 

(OPN) as autocrine trophic factors to self-amplify following SCI. 

To test this hypothesis, we used AAVs to deliver an exogenous source of Igf1 and Spp1 (OPN) 

into the lumbar spinal cord of uninjured mice or following thoracic transection injury and we 

analyzed the effect on local Activated Microglia A. Three weeks after AAV-injection into the L2 

and L5 segments of the lumbar spinal cord, AAV-Igf1/Spp1 (OPN) induced a significant 

expansion of microglia in both the thoracically-injured and uninjured spinal cords (Appendix Fig. 

3.3f-j). These cells formed large nodules of compact cells with ameboid morphology with many 

examples of active phagocytosis. These microglia expressed Igf1 and Spp1 (OPN), as well as 

the Activated Microglia A marker Gpnmb. Thus, over-expression of Igf1 and Spp1 (OPN), which 

were normally expressed together endogenously in Activated Microglia A, can dramatically 

expand phagocytic microglia. 
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Finally, we considered that the ability to increase the Activated Microglia A population using 

AAV-Igf1/Spp1 (OPN) may be used to amplify the clearance of residual myelin along 

degenerating axon tracts. We analyzed the distribution of myelin and of degraded myelin in the 

context of AAV-Igf1/Spp1 (OPN) expansion of Activated Microglia A and found that, indeed, the 

region of Activated Microglia A expansion showed a depletion of myelin (Appendix Fig. 3.3l-n). 

Moreover, a cryptic epitope of myelin that is only exposed upon myelin degradation was 

significantly enhanced in response to AAV-Igf1/Spp1 (OPN) (Appendix Fig. 3.3k). Thus, the 

exogenous manipulation of Activated Microglia A signaling and population expansion is 

sufficient to clear myelin debris in spinal cord white matter.  

These data demonstrate that SCI induced a small population of Activated Microglia A in the 

white matter of the spinal cord, cells with the molecular signature that should enable them to 

phagocytose and clear myelin. While these Activated Microglia A cells signal to each other 

through Igf1 and Spp1 (OPN) and proliferate, their natural response is insufficient for removal of 

myelin debris. However, the exogenous delivery of Igf1 and Spp1 (OPN) greatly amplifies this 

population to facilitate myelin clearance and may provide a pathway for the re-growth of axons 

that connect the brain with the spinal cord. 
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Appendix Figure 3.3: Expression of Trophic Factors Specific to Activated Microglia A 

Promote Phagocytosis of Myelin  

a. RNAscope of Igf1 and Gpnmb 3 wpi. b-c. Immunohistochemistry of IBA1 and phosphor-

IGF1R in the uninjured (b) and 3 wpi (c) cords. Asterisks represent phospho-IGF1R staining

around the central canal. Arrows represent phosphor-IGF1R staining near the dorsal-lateral 

funiculus. d. Immunohistochemistry of IBA1, Ki67 and CD11c in the uninjured and 3 wpi lumbar

cord. e. Quantification of Ki67+ IBA1+ cells in the uninjured, 1 wpi and 3 wpi cord. f-g.

Schematic and immunohistochemistry of IBA1 for AAV-cherry (f) and AAV-IGF1/SPP1 (g)

injected cords. Scale bars are 200 µm. h. RNAscope in situ hybridization of Igf1 (red), Spp1

(green), and Gpnmb (cyan) at the site of AAV-IGF1/SPP1(OPN) injection. i. Quantification of

areas of IBA1+ nodules. j. Quantification of the number of Gpnmb+ nuclei. k.
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Immunohistochemistry of degraded MBP and IBA1. l. Immunohistochemistry of IBA1 and

fluoromyelin red. Scale bars are 200 µm. m. Quantification of mean fluorescence intensity after

AAV-injection. n. Immunohistochemistry of IBA1 and fluoromyelin red, showing phagocytosis of

fluoromyelin at the AAV-IGF1/SPP1(OPN)-injection site 3 wpi.

Discussion 

We identified a population of Activated Microglia A distributed along the white matter of 

degenerating axons and strongly resembled “disease associated microglia” found in Alzheimer’s 

disease (Benmamar-Badel et al., 2020; Kamphuis et al., 2016; Keren-Shaul et al., 2017) and 

ALS. We found that Activated Microglia A use autocrine Igf1/Spp1 (OPN) signaling after injury 

and that exogenous delivery of these factors expanded Activated Microglia A in vivo and 

promoted local degradation of myelin debris. 

Microglia and hematopoietic cells were the most responsive cell type after injury, beginning in 

the acute injury setting and persisting in an activated state through chronic timepoints. Of the 

microglia that respond after SCI, the Activated Microglia A were notable in that they expressed 

genes similar to proliferative axon tract-associated microglia in postnatal mice (Hammond et al., 

2018; Li et al., 2019), disease-associated microglia (Keren-Shaul et al., 2017; Krasemann et al., 

2017), as well as microglia from the human spinal cord (Shannon Tansley, 2020). Furthermore, 

studies profiling cell types at the lesion site after SCI to have identified similar microglia (Millich, 

2020; Wahane et al., 2021). Based on the widespread presence of a Activated Microglia A-

related cells across injury and disease states, we characterized these cells further. 
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Activated Microglia A-related cells co-express two trophic factors, Igf1 and Spp1 (OPN) that 

have known roles in neuroprotection and myelination (Benmamar-Badel et al., 2020). Although 

these factors are required during neuronal development (Ueno et al., 2013) and enable 

regeneration of axons after injury (Anderson et al., 2018; Bei et al., 2016; Duan et al., 2015; Liu 

et al., 2017), the cellular targets and mechanism by which these actions occur is unknown. Here 

we provide evidence for how Igf1 and Spp1 (OPN) exert their effect on neurons and 

oligodendrocytes indirectly through their autocrine signaling and expansion of this activated 

microglial population. Importantly, we found that manipulating this signaling pathway with viral 

tools allowed Activated Microglia A to clear the myelin debris that is thought to impede axon 

regeneration in the central nervous system. This observation is similar to the ability of early 

postnatal Spp1-expressing microglia to remove debris following spinal cord injury. Interestingly, 

these postnatal microglia are activated only briefly, then return to a homeostatic state within a 

few days following injury which may be a critical feature of their ability to promote wound 

healing. Relatedly, activated microglia promote OPC differentiation (Lloyd and Miron, 2019), but 

it is their subsequent down-regulation or ablation that is important for the successful myelination 

of regenerated axons (Wang et al., 2020). In the future, a temporally regulated delivery of Igf1 

and Spp1 (OPN) may provide the most effective therapeutic approach to use these factors to 

remove myelin debris, promote axon regrowth, and remyelination. 

Furthermore, the similarity of Activated Microglia A to recently described populations observed 

in other injury contexts, Alzheimer’s disease, and ALS suggest shared pathways by which the 

adult central nervous system responds to trauma. It is hoped that understanding of these 

intrinsic mechanisms will provide new therapeutic targets to control or even reverse pathological 

changes across a wide variety of injury and disease. 
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Methods 

Mice 

All procedures and experiments were approved by the Veterinary Office of the Canton of 

Geneva (Switzerland) and the National Institute of Neurological Disorders and Stroke Animal 

Care and Use Committee. Mice for RNA sequencing were female C57BL/6 (12-30 weeks of 

age). For all other experiments, balanced samples of male and female C57BL/6 mice (12-30 

weeks of age) were used. 

Surgical Procedures 

Surgical procedures were performed as previously described (Asboth et al., 2018). Briefly, 

following a mid-thoracic laminectomy (T9 vertebra), a spinal cord impactor (IH-0400 Impactor, 

Precision Systems and Instrumentation LLC) was used to induce a contusion injury. The applied 

force was set to 90 kdyn. Spinal transections were performed following a mid-thoracic 

laminectomy (T9 vertebra), by cutting of the spinal cord with spring scissors, before filling the 

void with gel-foam. Animal care, including manual bladder voiding, was performed twice daily or 

as needed following injury.  

Viruses

AAV2/1-hSyn mCherry virus was produced at Vigene Biosciences. AAV2/1-IGF1 (Liu et al., 

2017), AAV2/1-OPN (Duan et al., 2015) and AAV2/1-PLAP (Liu et al., 2010) viruses were a gift 

from Zhigang He and produced at Boston Children’s Hospital. Viral particles were injected at a 

titer of 5E12-1E13 genome copies per ml. 
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Intraspinal Injections 

Intraspinal injections were performed as previously described (Sathyamurthy et al., 2020). 

Briefly, mice were anesthetized by intraperitoneal injection of a drug cocktail containing fentanyl 

(0.2 mg.kg), dexmedetomidin (1 mg/kg), and midazolam (5 mg/kg) dissolved in saline. For 

spinal injections, a small incision was made in the skin and the underlying musculature and 

adipose tissue was teased apart to reveal the vertebral column. Tissue joining the dorsal 

processes of consecutive vertebrae was removed and the vertebral surfaces were cleaned with 

fine forceps and gently separated to reveal the dorsal surface of the spinal cord (at spinal levels 

L2 and L5). The dura was punctured by pinching with sharp forceps to facilitate smooth entry of 

the needle. Virus was pressure injected through a pulled glass needle at a depth of 250 μm 

from the dorsal surface and 250 nL of viral particles was released at a rate of 100 nl/min.  

Following injections, the overlying muscle was sutured, and the skin incision was closed using 

wound clip. Anesthesia was reversed by intraperitoneal administration of buprenorphine 

(0.1 mg/kg), atipemazole (2.5 mg/kg), and flumenazil (0.2 mg/kg) in saline. Additionally, mice 

received intradermal injection of meloxicam SR for analgesia and were returned to their home 

cages. 

Behavioral assessments. All procedures have been described in detail previously (Asboth et

al., 2018). Limb motor movements was evaluated while running on a horizontal walkway. 

Bilateral leg kinematics were captured with the Vicon Motion Systems, UK (combining 12 

infrared cameras) for tracking with reflective markers on the crest, hip, knee, ankle joints and 
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distal toes. The limbs were modelled as an interconnected chain of segments and gait 

parameters were calculated from those.  

Analysis of kinematic data. A total of 78 gait parameters were computed for each limb for

each gait cycle. We chose to represent the following gait parameters: step height, drag 

percentage, amp limb, amp speed limb, amp join 1, amp joint 2, amp joint 3, and amp speed 

joint 3. Differences among groups were calculated using two-tailed t tests (unpaired) and were 

considered significant if p < 0.05. Data are represented as mean ± SEM unless otherwise 

indicated. Statistical analyses were performed using GraphPad prism software. 

Animal Inclusion and Exclusion Criteria 

Two days after injury, all mice were evaluated in an open field and all animals exhibiting any 

hindlimb movements were not further studied. A larger cohort of mice were taken through 

kinematic analysis, and 3 mice representative of each timepoint were selected for snRNAseq. 

Nuclei Isolation 

Nuclei were isolated from adult mouse lumbar cords using a triton-based protocol adapted from 

Matson et al. 2018. Briefly, mice were euthanized according to IACUC guidelines. The spinal 

cord was rapidly dissected and frozen on dry ice. Later, fresh frozen lumbar cords (spinal 

segment L2-S1) were placed in a Dounce homogenizer (Kontes Dounce Tissue Grinder) 

containing 500 μL of lysis buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2, 3 mM 

MgAc, 0.1 mM ETDA, 1 mM DTT, 0.1% Triton X-100). The cords were dounced with 5 strokes 

of pestle A, then 5-10 strokes of pestle B. The lysate was diluted in 3 mL of sucrose buffer (0.32 

M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2, 3 mM MgAc, 0.1 mM ETDA, 1 mM DTT) and 
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passed over a 40 μm strainer. The filtered lysate was centrifuged at 3,200 x g for 10 min at 4°C. 

After centrifugation, the pellet was resuspended in sucrose buffer and incubated for 2 min on 

ice. The sample was transferred to an Oak Ridge tube and homogenized for 1 min using an 

Ultra-Turrax Homogenizer (IKA). Then, 12.5 mL of density sucrose buffer (1 M sucrose, 10 mM 

HEPES [pH 8.0], 3 mM MgAc, 1 mM DTT) was layered below the sample. The tube was 

centrifuged at 3,200 x g for 20 min and the supernatant immediately poured off. The nuclei on 

the side of the tube were resuspended with 100 μL of PBS with 0.04% BSA and 0.2 U/ μL 

RNase inhibitor. Nuclei were inspected for visual appearance and quantified with a 

hemocytometer before being adjusted to a concentration of 1,000 nuclei per μL. 

Single Nucleus RNA Sequencing 

Single nucleus RNA sequencing was carried out using Single-cell gene expression 3’ v2 kit on 

the Chromium platform (10X Genomics) according to manufacturer’s instructions with one 

modification. Following reverse-transcription, an additional PCR cycle was added to the number 

of cycles for cDNA amplification to compensate for decreased cDNA abundance in nuclei 

compared to cells. Approximately 8,000-9,000 nuclei were loaded in each well and 3,000-7,000 

nuclei were recovered per sample. 

Libraries were sequenced to a minimum depth of 20,000 reads per nucleus using an Illumina 

HiSeq 3000 (PE 26 – 8 – 98 bp). Raw sequencing reads were demultiplexed, aligned, and a 

count matrix was generated using CellRanger. For alignment, introns and exons were included 

in the reference genome (mm10).  

Clustering 
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Seurat v3.2.2 was used to filter, normalize, anchor, and cluster the dataset (Stuart et al., 2019). 

We filtered nuclei for downstream analysis, including those with greater than 200 genes per 

nucleus and less than 20 percent of reads coming from mitochondrial genes. For neurons, the 

minimum threshold was increased to 500 genes per nucleus. All genes analyzed were present 

in greater than three nuclei. We performed standard log normalization and used principal 

component analysis for dimensionality reduction. We used the FindIntegrationAnchors and 

FindTransferAnchors functions to set the uninjured samples as reference anchors for coarse 

clustering. For the re-clustering of microglia/hematopoietic cell, given the increase in diversity of 

cell types and increase in number after injury, FindIntegration and FindTransfer were run 

without using uninjured samples as a reference anchor. Clusters were visualized using Uniform 

Manifold Approximation and Projection for Dimension Reduction (UMAP), and cluster markers 

were found using the “auroc” test in Seurat. Clusters with less than 3 significant markers, or that 

were not defined by a cohesive set of genes, were identified as low-quality clusters and 

discarded from downstream analysis. Clusters that contained nuclei that expressed more than 3 

genes from two cell types were identified as doublets and removed from downstream analysis. 

Nuclei had on average 1392 genes per nucleus in neurons and 471 genes per nucleus in non-

neuronal cells. Neurons were classified using label transfer (Stuart et al., 2019) at a “family”-

level resolution (Russ, 2020). 

Pathway and Cell Type Prioritization 

Augur was implemented as previously described (Skinnider et al., 2021). For pathway analysis, 

differential gene expression across conditions was generated using FindMarkers using the 

Wilcox test. GO Analysis was done using all differentially expressed genes with p_adj < 0.05, 
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GO BP, CC, MF -> clustering. In cases in which multiple clusters had the same genes and 

similar terms, only the most significant is shown.  

Immunohistochemistry Antibodies 

IBA1 (Cedarlane Labs, 234006(SY)), TMEM 119 (Cedarlane Labs, 400004(SY)), CD11c 

(GeneTex, GTX74935), Myelin-MBP (BioLegend, 808402), NF-L (Cell Signaling, 2835S), NF-M 

(Cell Signaling, 2838S), NF-H (Cell Signaling, 2836S), NeuN (Millipore Sigma, ABN90P), CD68 

(Abcam, ab125212), CNPase (Millipore Sigma, MAB326), GFAP (Agilent/Dako, Z033429-2), 

Lectin (Vector Labs, DL-1177-1), DAPI, Cleaved Caspase 3 (Cell Signalling Tech, 9661L), 

Cleaved PARP (Cell Signalling Tech, 94885S), Phospho-IGF1R (Invitrogen, PA5-104773), 

Fluoromyelin Red (Invitrogen, F34652), Degraded MBP (Sigma-Aldrich, AB5864). 

In Situ Hybridization Probes 

Spp1 (435191), Vsx2 (438341), Gap43 (318621), Chat (408731), Itgax (311501), Mdga1 

(546411), Sprr1a (426871-C2), Vgf (517421-C2), Igf1 (443901-C2), Sprr1a (426871-C2), C1qa 

(441221-C2), Megf11 (504281-C2), GFP (409011-C2), Apoe (313271-C3), Tnfrsf12a (429311-

C3), Atf3 (426891-C3), Gpr83 (317431-C3), Pdgfra (480661-C3), Shox2 (554291-C3), Gpnmb 

(489511-C3).  

Immunohistochemistry and In Situ Hybridization 

Animals were euthanized with avertin and perfused with PBS and then 4% paraformaldehyde. 

Spinal cords were dissected, fixed in 4% paraformaldehyde overnight, washed in PBS for one 

hour, then dehydrated in 30% sucrose an additional night before being embedded in OCT. 
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Immunohistochemistry was performed as previously described (Sathyamurthy et al., 2018). 

Briefly, spinal cords were cut at 50 µm, placed in blocking buffer (1% IgG-free BSA, 10% normal 

donkey serum, 0.1% Triton-X 100 in PBS) for one hour, prior to incubation in blocking buffer and 

primary antibody for 48 hours at 4°C. Primary antibody was washed off three times in PBS 

before a 2-hour incubation in secondary antibody at room temperature. Secondary antibody was 

washed off three times in PBS before adding a coverslip.  

Multiplex immunohistochemistry was performed as previously described (Maric et al., 2021). 

In situ hybridization was performed according to manufacturer’s instructions for fixed frozen 

tissue RNAscope (ACD Bio).  

Imaging 

Images of immunohistochemistry and in situ hybridization samples were imaged using a Zeiss 

800 LSM confocal microscope. For quantification, a tile scan image spanning the section was 

generated for ≥ 3 sections from ≥ 3 mice. Brightness and contrast were adjusted in Photoshop 

(Adobe), standardized across images. 

Quantification of Cell Counts from Images of Immunohistochemistry 

A custom MATLAB-based image analysis program was developed to assist the cell counting for 

this work. The software automatically identifies and counts cells based on a criterion that 

constrains size at a user-selectable intensity threshold. A manual selection tool is also available 

to identify additional cells that are more difficult to detect. A second channel of the same image 
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shows can be used to counts cells that are labeled with both stains using the results from the 

first channel and a second set of user-selectable thresholds. 

Fluorescence Intensity 

Mean fluorescence intensity was quantified using FIJI (ImageJ). 

Histological Quantification and Statistical Testing 

Two-tailed t tests (unpaired) were used for quantification of immunohistochemistry and in situ 

hybridization. Differences among groups were considered significant if p < 0.05. Data are 

represented as mean ± SEM unless otherwise indicated. Statistical analyses were performed 

using GraphPad prism software. 
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Susceptibility (2022) 
Neurogenomics Seminars, UK Dementia Research Institute, Imperial College London,
Virtual. 

The Promise of Spared Tissue after Spinal Cord Injury: What single cell gene expression can 
reveal (2020)  
NIH-Neurobiology Interest Group, Virtual

The promise of spared tissue in enabling recovery after spinal cord injury (2020) 
Illumina Single-Cell Sequencing Virtual Symposium— MidAtlantic, Virtual

Spinal Cord Biology at Single Cell Resolution (2020) 
Society for Neuroscience: Development and Regeneration, Virtual

Decoding cell type specific changes in the spinal cord after injury (2020) 
NIH Sensory Neuroscience Group Meeting, Virtual

Nuclei Isolation for Single Nucleus RNA Sequencing (2018) 
10X Genomics NIH Campus-Wide Symposium, Bethesda, MD

From Cell to System: What single cell gene expression can teach us about spinal cord injury 
(2018) 
NIH Sensory Neuroscience Group Meeting, Bethesda, MD

POSTERS 

A Single Cell Atlas of Tissue Below a Spinal Cord Injury Reveals Cellular Mechanisms of 
Plasticity (2022)  
BIG (Brain Immunology and Glia) Symposium 2022, St. Louis, MO 
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A Single Cell Atlas of Spared Tissue Below a Spinal Cord Injury Reveals Cellular Mechanisms 
of Repair (2021)  
Keystone Symposia: NeuroImmune Interactions in Health and Disease, Virtual 

Single Cell Gene Expression Reveals the Potential of the Spinal Cord to Recover after Injury 
(2019) 
Society for Neuroscience, Washington, DC

Cell-Type Specific Responses in Neurons after Spinal Cord Injury (2019) 
Montreal Conference on Pain Circuits, Quebec, Canada

Decoding Cell Type Specific Changes in the Spinal Cord after Injury (2019) 
NINDS Intramural Scientific Retreat, Bethesda, MD

System-Wide Changes at a Single Cell Resolution: Profiling the Lumbar Cord following Thoracic 
Contusion Injury (2019) 
SCI 2020: Launching a Decade for Disruption in Spinal Cord Injury Research, Bethesda,
MD 

Learning to Move: the Role of Activity Dependent Transcription (2018)
NIH Graduate Research Symposium, Bethesda, MD

Specification of auditory and vestibular neuronal fates in the otic vesicle (2015) 
NIDCD Intramural Scientific Retreat, Washington, DC

PROFESSIONAL TRAINING AND EXPERIENCE 

2019 Craig H. Neilsen Foundation-Funded Spinal Cord Injury Training Program at The Ohio 
State University College of Medicine, Columbus, OH 

• Learned proficiency in laminectomy surgery, care of injured rodents, and behavioral
assessment of locomotor function

• Met with four patients at different stages of recovery after spinal cord injury and
discussed their daily challenges as well as what patients see as the priority for spinal
cord injury research

2019 Training for Summer Research Mentors, National Institutes of Health Office of Intramural 
Training and Education, Bethesda, MD 

• Learned crucial elements of responsibly mentoring summer students in a lab
• Discussed how to set expectations, provide feedback, set boundaries and assess

student learning
2019 NIMH Grant Writing Workshop, NIH Office of Intramural Training and Education, 

Bethesda, MD 
• Learned critical components of the grant writing process and the types of funding

mechanisms available through the NIH
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2018 Scientific Communication Workshop, NIMH Office of Fellowship Training, Bethesda, MD 
• Learned key skills for effective communication, including delivering a concise elevator

pitch
2017 Scientists Teaching Science Workshop, National Institutes of Health Office of Intramural 

Training and Education, Bethesda, MD 
• Learned teaching philosophies, student learning styles and the fundamentals of course

development
2017  Bioinformatics for Beginners, Foundation for Advanced Education in the Sciences, 

Bethesda, MD
• Gained an understanding of the wide range of uses for bioinformatics in science
• Learned basic elements of using linux, python and R

2015-2016 Neuron-Glia Interactions Scientific Interest Group Moderator, Bethesda, MD
• Coordinated seminars for the NIH scientific community with Dr. R. Douglas Fields

2015 Modern Embryonic and Developmental Biology Course, Foundation for Advanced 
Education in the Sciences, Bethesda, MD 

• Learned the principles of developmental biology, from classic experiments to new
advancements in the field from a team of NIH Principal Investigators

EDITORIAL EXPERIENCE 

Co-reviewer for Nature Neuroscience  
Nature Communications, Nature Research Journal 

Co-reviewer for Nature Communications  
Nature Communications, Nature Research Journal 

Grant Reviewer for the Medical Research Council   
UK Research and Innovation (Medical Research Council) 

TEACHING EXPERIENCE 

2021-2022 Mentor for High School Students, Program for Advancing Health Sciences (PATHS), 
Prince George’s County Public Schools 

• Met with students weekly to help guide students towards careers in STEM and health
• Assisted with college, scholarship, and internship applications
• Coordinated virtual career exploration meetings between students and health care

providers

2018-2021 Research Tools (200-Level Biology Course) Guest Lecturer, Foundation for 
Advanced Education in the Sciences, Bethesda, MD 

• Taught lectures on sequencing for research fellows at the NIH, with an emphasis on
critically assessing experiments utilizing cutting-edge sequencing techniques

• Created homework assignments and exams to assess student understanding of
sequencing
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2017 Research Tools (200-Level Biology Course) Teaching Assistant, Foundation for 
Advanced Education in the Sciences, Bethesda, MD 

• Taught lectures for research fellows at the NIH, with a focus on research tools that can
be used to study diseases, including basic and translational approaches

• Created homework assignments and exams to assess student learning
2017 Cell Biology Lab Teaching Assistant, Biology Department, Johns Hopkins University, 

Baltimore, MD    
• Planned and supervised undergraduate students in lab as they learned key techniques

in cell biology such as immunostaining and western blots
• Assisted faculty member with classroom instruction material, exams, and record keeping 

2013 Introductory Neurobiology Teaching Assistant, Biology Department, Grinnell College, 
Grinnell, IA 

• Provided weekly mentor sessions and one-on-one assistance to students
• Facilitated laboratory preparation and aided students as they designed experiments

2013 Molecules, Cells and Organisms Laboratory Teaching Assistant, Biology Department, 
Grinnell College, Grinnell, IA 

• Aided students as they learned laboratory skills and designed experiments
• Facilitated laboratory preparation such as making agarose gels, bacterial cultures and

reagents
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