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Abstract

Recently, there has been an explosion of research into machine learning methods

applied to graph data. Most work is focused on performing either node classification

or graph classification; however, there is much to be gained by learning instead a

generative model for the underlying random graph distribution. We present a novel

neural network-based approach to learning generative models for random graphs. The

features used for training are graphlets, subgraph counts of small order, and the loss

function is based on a moment estimator for these features. Random graphs are

realized by feeding random noise into the network and applying a kernel to the output;

in this way, our model is a generalization of the ubiquitous Random Dot Product

Graph. Networks produced this way are demonstrated to be able to imitate data from

chemistry, medicine, and social networks. The created graphs are similar enough to

the target data to be able to fool discriminator neural networks otherwise capable of

separating classes of random graphs. This method is inexpensive, accurate, and is

readily applied to data-poor problems.
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Chapter 1

Notation and Overview

1.1 Introduction

It has recently grown apparent that network data is all around us. From social

networks to networks of protein interactions, more and more fields are discovering

the utility of data structured as graphs, consisting of vertices representing objects

and edges codifying their relationships. As the amount of available data has grown,

so too has the corresponding branch of data science. Statistical learning on graphs

is a burgeoning field, with new ideas introduced constantly, including both original

designs and generalizations of machine learning methods on traditional objects.

The contribution of this dissertation is one such idea: We will introduce a generative

model for random graph distributions based on sufficient statistics called graphlets.

The model is built on a neural network foundation, and has the capability of generating

graphs end-to-end, from its edge structure to the attributes assigned to its vertices

and edges. We will carefully lay out the model, apply it to a number of real datasets

for validation, and analyze results.

1.2 Notation

In general, introduced notation that uses the Roman alphabet will be chapter-specific,

while notation that uses the Greek alphabet will be considered defined for the span of

1



the dissertation. However, we will depart from this occasionally to adhere to some

conventions of the field.

G = (V,E) will always represent a graph, where V and E are the graph’s vertex

and edge set, respectively. G will represent a set of random graphs drawn from

distribution G. n will always represent the number of vertices in the graph being

discussed.

In general, capital letters will be used to represent random variables, while lower

case letters will represent real variables or realizations of the corresponding ran-

dom variable. To avoid any ambiguity, other mathematical objects, such as sets or

nonrandom matrices, will be represented by symbols in other scripts, e.g. A.

We will denote the real numbers by R and the integers by Z. In will represent

the n × n identity matrix, and we will drop the suffix when it is understood from

context. We will always reserve i and j as index variables. If X is an array, then XT

will represent the transpose of that array.

A list of all notations defined for the duration of the dissertation can be found in

Table 1-I.

1.3 Organization

This dissertation will begin in Chapter 2 with a historical overview of the field of

random graphs, as well as some background on relevant methods from machine learning.

It will also provide an overview of the state of the art of the thesis’ subject matter by

discussing inference on graphs, generative models, and competing methods.

Chapter 3 will introduce the Visual Turing Test, a motivating problem that

underlies most of the work contained herein.

Chapter 4 will contain the main body of the work, introducing a novel way to learn

generative models for random graph distributions. The model is based on graphlets,

2



subgraph counts of small size.

Chapter 5 will discuss extensions to the main model to graphs with vertex and

edge attributes.

Chapter 6 will give the implementation and results from both the main model

described in Chapter 4 and the extensions to attributed graphs in Chapter 5.

Chapter 7 will conclude the thesis with discussion and suggestions for future

directions of research.

References can be found at the end of each chapter, and all references are collected

at the end of the dissertation.
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Symbol Meaning Chapter defined
G A graph 1
G Sample of random graphs 1
G Random graph distribution 1
V Vertex set 1
E Edge set 1
n Number of vertices 1
R Real numbers 1
Z Integers 1
Γ SBM edge probability matrix 2
Π SBM block probability 2
ϕ kernel function 2
λ Loss function 2
θ Machine learning parameters 2
µ(·) Loss function 2
τ(·) ReLU function 2
∼ Graph isomorphism 4
[n] Set of first n integers 4
[n]p Subsets of [n] of size p 4
H Graphlets 4
HF Graphlet isomporphic to graph F 4
Ω Random noise 4
Ξ Diagonal matrix of weights 4
Ψ1 First neural network 4
Ψ2 Second neural network 5
∆ Vertex attribute vocabulary 5
Λ Edge attribute vocabulary 5

Table 1-I. A list of notations defined for the duration of the dissertation.
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Chapter 2

Background

2.1 Random Graphs

2.1.1 Erdos-Renyi Graphs

The study of edge random graphs, i.e. graphs whose vertices are fixed but whose edges

appear according to some probability distribution, dates to 1959, when they were

introduced independently by Gilbert [1] and by Erdos and Renyi [2]. In the simplest

of terms, a random graph is one for which we associate a binary random variable

Xij with each pair of vertices i and j in the graph, and include an edge between two

vertices if their corresponding variable takes value 1. In the case that all the Xij are

independent and identically distributed, the model is called an Erdos-Renyi random

graph. This model effectively utilizes only two parameters - namely, the number of

vertices and the common edge probability - to create graphs.

Despite its simplicity, the Erdos-Renyi model exhibits a great deal of interesting

emergent behavior. We can easily calculate the probability that the ER model

generates a particular graph G; if we call n the number of vertices in G, p the common

edge probability, and let b be the number of edges in the G, then the probability of

creating that graph is simply

pb(1 − p)(
n
2)−b.

The degree of any given vertex in an ER graph follows the binomial distribution with

5



parameters (n− 1) and p.

ER graphs were studied further by Erdos and Renyi in [3], where the primary

focus was on connectedness of the created graphs for various values of the parameter

p. If we set

p = c
log n
n

,

then the value of c determines the graphs’s behavior as n → ∞: If c > 1, the graph is

almost surely connected, and if c < 1, the graph is almost surely disconnected. log n
n

is

often called the percolation threshold for the ER model, and the concept of percolation

has been heavily studied for a variety of graph models built on top of the Erdos-Renyi

[4] [5].

Beyond the simplicity of the Erdos-Renyi, a great many models for random graphs

have been proposed and studied over the past six decades. The two broadest categories

for models are those that are based on creating community structure, and those that

are designed to enforce certain values for sets of sufficient statistics.

2.1.2 Stochastic Block Models

Among the most popular today on the community structure side is the Stochastic

Block Model (SBM), first introduced in 1983 by Holland et al. [6]. Here, to each of the

n vertices i we associate a latent variable Qi, taking values in [1, 2, . . . ,m] for some

choice of a parameter m ≤ n. These variables are usually independent and identically

distributed, and are understood to represent the community to which each vertex

belongs. The model is designed to create differing edge structure for nodes within

communities and between them; indeed, P (Xij = 1) depends on, and only on, the

values of Qi and Qj; the Xij are conditionally independent given the Πi. In fact, the

parameters of an SBM are commonly represented in a matrix Γ of size m×m, with

P (Xij = 1) = ΓQiQj
.
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This matrix of m2 parameters, plus the m− 1 parameters that describe the probability

distribution for the Π random variables, fully define the model.

Typical uses of the Stochastic Block Model include the study of social networks,

though they have been employed in many places, including the physical sciences and

medicine [7] [8]. Most commonly, we see the diagonal entries of the matrix Γ larger

than the off-diagonal entries; this represents the common situation in nature where

individuals belonging to the same community are more likely to hold a relationship

than those in separate communities. It is also common to see all diagonal and all

off-diagonal entries of the matrix to be respectively identical, in which case the model

is sometimes called the planted partition model, or more simply, symmetric.

The SBM exhibits many of the same characteristics as the ER model. While it is

no longer tractable to compute the probability of any given graph being produced,

some other calculations remain feasible. For instance, the expected vertex degree for

any node in an SBM is given as

(n− 1)
m∑︂

j=1
P (Q = j)

m∑︂
k=1

ΓjkP (Q = k).

We note that the ER model is a special case of the SBM, where all entries of Γ are

equal.

2.1.3 Random Dot Product Graphs

It is the proverbial older brother of the Stochastic Block Model that we make use

of most in this work. The Random Dot Product Graph (RDPG) [9] shares many

properties with the SBM, and is in some cases a direct supermodel of it. The RDPG

was introduced in 1998 by Fiduccia, Scheinerman et al. [10]. To each node i in the

graph, we associate a latent vector zi ∈ Rd for some choice of dimension d. We then

set P (Xij = 1) to be equal to the normalized dot product of zi with zj, i.e.

P (Xij = 1) = zT
i zj

|zi| |zj|
.
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In this way, nodes whose latent vectors (henceforth “embeddings”) are near each other

in real space are more likely to share an edge.

It is quite common to consider the embeddings z to be random variables rather

than fixed quantities. Early work on RDPGs considered embeddings distributed over

the unit sphere [11] [12], and some structural results, such as the diameter of the

largest connected component or clustering of nodes, were quickly proved. Later work

has focused more on statistical inference on RDPGs [9]; numerous theorems exist

about recovery of the embeddings and comparison of distributions.

2.1.4 Latent Position Graphs

While the RDPG is already quite a flexible model, it extends rather easily to a more

general class of models that have the ability to more easily capture a wider variety

of graph behaviors. We point out that, once the latent vectors zi are set, there is

no reason that the way we use them be limited to inner products; instead, we could

choose to apply any of a variety functions to pairs of latent vectors.

We define a kernel to be a symmetric function ϕ : Rd × Rd → [0, 1], that is, any

symmetric function which accepts two inputs from the latent vector space and returns

a probability. We call a kernel positive semidefinite if

k∑︂
i=1

k∑︂
j=1

aiajϕ(zi, zj) ≥ 0

holds for every z1 . . . zk ∈ Rd and a1 . . . ak ∈ R. We further call a kernel positive

definite if equality in the above implies that ai = 0 ∀i. We note that we will not in

general require that any kernel we use in this work be either positive semidefinite or

positive definite unless otherwise specified.

If we replace the Euclidean inner product in the RDPG with a more general kernel,

the result remains a generative model for random graphs. This class of model has

a variety of names in the literature, but we will choose to call it the latent position
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model.

In [13], the authors demonstrate that the latent position model is inherently

nonidentifiable. A kernel function ϕ is called invariant to some transformation q

if ϕ(q(zi), q(zj)) = ϕ(zi, zj), which also would immediately imply the model is not

identifiable. Many kernels have this property for one or more transformations; for

example, the usual inner product kernel is invariant to angle-preserving rotations.

This may present difficulties when learning a set of embeddings z; our future loss

function will not have a unique minimum.

It was shown in [11] that latent position graphs can be approximated arbitrarily

well by what the authors call ‘vertex random graphs’. In a vertex random graph, latent

positions are randomly selected as above, but the existence of edges is nonrandom;

it is instead determined by a deterministic function of the latent positions. Despite

this, we will choose to retain the randomness in both the edges in vertices and edges

inherent in the latent position model to encourage variation in our results.

Both the ER model and some varieties of SBM are submodels of the latent position

model. The ER model corresponds to the situation where the kernel function is

constant (so the embedding becomes irrelevant). The SBM can be recovered by

allowing all vertices assigned to the same community to share an embedding, an idea

that will be explored in detail in Chapter 4.

2.1.5 Exponential Random Graphs

For sufficient statistic-focused methods, the most ubiquitous choice is the Exponential

Random Graph Model (ERGM) [14, 15]. Introduced in the late 1980s, the ERGM is

designed to maximize Gibbs Entropy for the probability distribution over all possible

graphs of a certain size. The resulting set of probability distributions is an exponential

family.

The ERGM focuses on a vector of sufficient statistics s for the random graph
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distribution, with the assumption that all information about the dependence between

edge probabilities is contained in the vector. The sufficient statistics used could be

characteristics of the graph as a whole, such as connectivity or number of subgraphs

of a certain type, or can be more specific about each node, such as individual node

degrees. In any case, the probability that an ERGM produces a graph G on n nodes

is given by

P (G|W ) = exp(W T s(G))∑︁
G′ exp(W T s(G′)) ,

where W is a parameter vector and the sum is over all possible graphs on n nodes.

ERGMs should be particularly useful when there is not much information available

about the nature of the random graphs in question. Instead of a broad understanding

of the underlying structure of the graphs, the model uses only the values of a curated

set of sufficient statistics to represent their distribution. The model further has the

advantage of being highly interpretable. However, in the next chapter we will discuss

the difficulties associated with learning these models in practice.

2.2 Machine Learning and Neural Networks

The field of statistical and machine learning has grown rapidly in the past few decades

due to the near-universal applicability of its methods and their feasibility thanks to

modern computing. In this work, we make heavy use of certain methods from machine

learning, especially neural networks.

Machine learning generally falls into two broad categories: Supervised and unsu-

pervised learning. In supervised ML, we generally have some kind of function that

we want to approximate; that function may be a data classifier, a value predictor, a

probabilistic density, or one of any number of other things. To estimate, or ‘learn’

that function, we are provided with a sample of evaluations of it; we may know its

value at a number of inputs. We leverage this knowledge to build a working imitation
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of that function. In the unsupervised case, there is usually no specific target function;

instead, given a set of data, we attempt to extract patterns from it. This may mean

classifying data into groups that were not prespecified, or reducing the dimensionality

of large data. While both settings are meaningful, we will focus entirely on the former

in this work.

Our general setting for supervised machine learning will be this: Given a model

parameterized by θ, a set of data G, and a loss function λ(·), we seek to optimize θ to

minimize λ.

The neural network is now so widely used that it warrants little discussion on

its own; we provide only a brief overview of its function. Broadly speaking, neural

networks are (or at least appear to be) universal function approximators [16, 17].

Through optimization of a set of parameters θ by means of the gradient descent

algorithm or any of numerous other related methods, neural networks ‘learn’ to imitate

a function from which we possess a number of sample points (which are usually

tarnished by some added noise). (In this work, the sample points, or ‘data’, will be

a set of random graphs, but in general could be anything from grayscale images to

word counts in a novel.) Creation of a neural net requires two things to be carefully

chosen: First, a good choice of the loss function λ whose minimization corresponds to

desirable results; second, an architecture for the network that is conducive to learning

the needed function.

The architecture of a neural network refers to the set of iterated functions that

compose the overall action of the network on its data. Usually, these so-called layers

are a series of relatively simple functions. Examples include the fully-connected layer,

which is little more than the multiplication of the data by a matrix; convolutional

layers, which involve passing a filter over each section of spatially-structured data;

pooling layers, which involve summing pieces of the data together; and activation

layers, which involve applying a nonlinear function to the data. Activation layers
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are what give neural nets all their power, and the field has developed a few favorites,

including the sigmoid function:

f(x) = 1
1 + e−x

and the Rectified Linear Unit, or ReLU:

τ(x) =

⎧⎨⎩x x ≥ 0
0 x < 0

,

both of which we make use of in this work.

There are dozens of other layer types and thousands of published architectures

for neural networks in existence; there is nothing to say whether one is superior to

another other than demonstrated outperformances on given tasks. Effective design of

neural networks is currently more of an art than a science.

2.3 Statistical Learning on Random Graphs

In the main setting of this work, our chief concern will be learning models for random

graphs; we will be presented with a sample of random graphs G drawn from some

distribution G, and will be interested in building an approximator for G by fitting one

of the models described above to the data as well as possible. We will approach this

task from a machine learning perspective, building our model on a neural network

foundation.

The subject of machine learning on graph data has garnered huge amounts of

attention in recent years. Graphical data is simply a different sort of data structure

than previously studied objects in machine learning, as its matrix representation takes

values in {0, 1} and the order of the rows and columns are often not fixed. As such,

new methods needed to be created to deal with them in order to perform the usual

tasks (e.g., classification) that we should expect to be able to do.

There exist a number of other statistical learning tasks that one may be interested

in performing on graph data. Of most interest to us will be generation, that is, creating
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graphs belonging to a certain distribution. Leaving aside the process of learning that

distribution for the moment (see Section 2.5), the objective in this case is to use a

machine learning method, such as a neural network, to transform simple random

number generation into graph adjacency matrices. Graphs are fundamentally discrete

objects, so we will require some cleverness to create them in this way. Several of the

models described above can be deployed for this purpose.

2.3.1 Neural Networks on Graph Data

We now provide a brief overview of machine learning methods on graph data in general,

as this work operates on the same principles of such methods, and we will directly

make use of some of them during our validation in Chapter 6.

Interest in graph-structured data and activity in the field of machine learning have

grown in parallel over the last three decades or so, and these two fields naturally

began to intersect. The first published record of neural networks applied to graph data

appears to have come in 1997 from Sperduti and Starita [18], who applied Recursive

Neural Networks to directed acyclic graphs. These ideas where later extended to

graphs containing cycles by Scarselli [19] and Micheli [20].

Machine learning tasks on graph data fall broadly into two categories: Node-level

tasks and graph-level tasks. In a node-level task, the data we are presented with

generally consists of one massive graph (e.g. the Facebook social network), and we

are interested in the value of some function whose input is an individual node. We

may wish to classify nodes based on the neighborhood structure or cluster them into

communities. If the machine learning is supervised, we usually begin with knowledge

of the function value for some subset of the graph’s nodes, and wish to extend to

all the others. In contrast, graph-level tasks typically involve a dataset consisting of

many small or medium graphs (e.g. brain region scans from a sample of individuals).

In this case, we attempt to learn something about entire graphs at once; we may
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wish to classify graphs as belonging to one distribution or another, or even to sample

entire graphs from their underlying distribution. There are, of course, other machine

learning problems defined on graphs: For example, we may have one fixed graph and

data consisting of functions defined on that graph. However, we focus exclusively on

graph-level tasks as described above in this work.

A significant development in machine learning on graphs has been the introduction

of the Graph Neural Network (GNN) [19]. GNNs are convolutional neural networks,

but the convolution operations are defined over sets of node neighbors rather than, for

example, adjacent pixels in an image. GNNs have proven quite effective at classification

tasks [21], and we make use of them for validation of our model.

Wu et. al. [22] explain that graph convolution operations fall into two categories:

spectral methods and spatial methods. In either case, we assume there is a vector z

of signal features associated with the nodes in the graph.

In the spectral case, one first transforms the graph’s signal to the Fourier domain

by first computing the normalized graph Laplacian:

L = I −D−1/2AD−1/2;

where A is the adjacency matrix and D is the diagonal matrix of vertex degrees, then

factoring this Laplacian as

L = USUT ,

for S diagonal; and then finally applying the Fourier transform to the graph signal y

(which typically consists of features located at each node) as

F(y) = UTy.

Once one arrives in the Fourier domain, one can define convolutional operations

on the graph signal by using a filter vector r. Carrying out the transformation of the

filter to the Fourier domain, the convolution, and the inverse transform all in one step,
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we arrive at:

y ∗ r = F−1(F(y) ⊙ F(r))

= U(UTy ⊙ UT r)

where ⊙ denotes the entrywise product.

These spectral methods take their inspiration from the field of signal processing.

They encode local patterns in the graph using a small number of parameters, but

are highly sensitive to changes in the graph data. Examples using this approach

are ChebNet [23] and GCN [24]. They are often used in situations where the edge

structure of the graph remains the same throughout the problem, but the signal z

associated to nodes in the graph changes.

Spatial methods for graph convolutions, in contrast, more closely mirror the types

of convolutions often used in image processing tasks [25]. In each layer, they seek to

aggregate information around the neighborhood of each node, coarsening the neural

network’s view of the graph. Given a set of node states h(k)
v to be used as inputs to

the kth layer, the output of that layer is

h(k+1)
v = w

(k) T
1 x+

∑︂
u∈N(v)

w
(k) T
2 h(k)

v ,

where N(v) denotes the set of neighbors of v and w1, w2 are learnable parameters.

The second term on the right hand side parallels the local filters used in conventional

convolutional neural networks.

Spatial methods have the advantage that they can be easily applied to multiple

graphs. If two graphs have different Laplacians, the eigenfunctions of those Laplacians

are different, and a spectral GNN built on one is incompatible with the other [26]. For

this reason, they are more appropriate for tasks where the edge structure of the graph

itself is the main interest, rather than some dataset placed on top of a particular

structure. It is these that we make use of for validation in later chapters.
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2.4 Statistical Inference on Graphs

A great deal of attention has been paid in the last several years to the types of

statistical operations that can be carried out on graphical data. Graphs are a unique

class of objects, and due to their discrete nature, many of the typical solutions to

well-studied statistical problems cannot be readily applied in the graph setting. We

therefore require new methods to carry out tasks like hypothesis testing or parameter

estimation.

At the heart of any statistical task to be performed on graph data is the representa-

tion of the graph(s) of interest. In the realms of graph theory and optimization, graphs

are most often represented by their adjacency matrices. However, this representation

is unattractive in a statistical setting due to the inherent data symmetry stemming

from the existence of graph isomorphisms. A graph who vertices are permuted remains

the same graph, but its adjacency matrix changes completely, which would heavily

affect any statistical results. Because of this, the first task in any statistical study

on graph data is to choose an appropriate representation that is indifferent to these

isomorphisms.

2.4.1 Graph Invariants

A graph invariant is any characteristic quantity belonging to a graph whose value is

unaffected when a graph isomorphism is applied. There are numerous examples, with

popularity varying greatly depending on application. The maximum degree of any

node in the graph is one such example, as is the width of the minimum spanning tree

[27], the chromatic number [28], or the matching number [29].

One widely used graph invariant designed for statistical study is the Adjacency

Spectral Embedding (ASE) [30]. If A is the adjacency matrix of a random graph,

then its ASE is its normalized eigendecomposition; A is diagonalizable because it is
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symmetric, and we can write

M = USUT

similarly to how the Laplacian was defined above. The set of eigenvalues on the

diagonal of S are invariant to permutations of A.

Another graph invariant popularly used is the distribution of node degrees. This

metric has been studied widely [31] [32], most commonly in relation to social networks.

Many human built social networks, such as the world wide web, have been shown

to be scale-free, i.e. their degree distributions follow a power law. We make use of

differences in degree distributions to evaluate our model in Chapter 6.

A third graph invariant often used for analysis is the homomorphism number with

respect to another graph F [33], which is typically well understood or otherwise some

type of reference point. A homomorphism from G into F is a mapping from V (G)

to V (F ) which preserves adjacency. We then define hom(G,F ) to be the number of

homomorphisms from G into F .

In Chapter 4, we will introduce graphlets, which are a set of graph invariants suited

well to the graph generation task. Graphlets are closely related to homomorphism

numbers; we will allow the reference graph F to have fewer nodes than G and sample

subgraphs of G to compare to the reference.

2.4.2 Statistical Tests

Theoretical results about the distributions of these graph statistics exist when the

graphs are assumed to be drawn from a certain model. In some cases, one can

express their distributions specifically; for instance, in the case of the maximum vertex

degree K in a graph on n vertices drawn from a Stochastic Block Model with block
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membership probability πi and edge probability matrix Γij, we can easily find that

K = max
i
Ki, i = 1, 2, . . . n

Ki ∼ Bin(n− 1, p)

p =
∑︂

i

πi

∑︂
j

Γijπj,

i.e. K is the maximum of n i.i.d. Binomial random variables.

The ASE is known to be asymptotically normal when the graphs in question are

drawn from an RDPG distribution. Without delving into too much detail, it is shown

in [9] that, as the number of vertices in an RDPG goes to infinity, the difference

between the ASE estimates for the latent positions and the true latent positions follows

a multivariate normal distribution.

Armed with the normality of the ASE, it is possible to carry out hypothesis testing

with it. We can, for instance, test whether two vertex-matched graphs were drawn from

RDPGs built on the same set of latent positions [9]. The test considers a Procrustes

fit between the ASEs M1 and M2 of the two graphs:

min
Y ∈O

||M1 − YM2||F r

where O is the set of orthogonal matrices of the appropriate size and || · ||F r is the

Frobenius norm. This quantity is the test statistic needed for the hypothesis test.

A number of other statistical operations can be performed on graphs by using

what is known as the graph Laplacian:

L = D − A

where A is the graph’s adjacency matrix and D is a diagonal matrix of node degrees,

i.e. Dii = ∑︁
i Aij . One often-used algorithm is spectral clustering, where the nodes of a

large graph are classified into several communities based on mutual edge occurrence [34].

In spectral clustering, we compute the matrix U whose columns are the eigenvalues of
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the Laplacian, and then perform the usual k-means clustering method on the rows of

U . The result is a set of clusters corresponding to communities of nodes in the graph.

2.5 Generative Models for Random Graphs

As stated in Section 2.3, our goal in this work is to build a generative model for

random graphs using methods from statistical learning. Finding a generative model

is, in essence, estimating the distribution of a set of random graphs; we will be given

a sample from said distribution and will attempt to learn the distribution from it.

2.5.1 Statistical Models

In the statistics literature, there is a large body of work related to generative models

for random graphs. We have already introduced the Stochastic Block Model and

the Latent Position Graph; it remains to be discussed how these models are usually

learned.

To learn a Stochastic Block Model, the common approach, as explained by Bickel

et. al. [35], is a form of maximum likelihood estimation. The maximum likelihood

estimators for Γ and for the distribution of QΠ are quite straightforward; they are

given by

P̂ (Q = k) = 1
n

n∑︂
i=1

1(Qi = k)

and

Γ̂kl = 1
|Tkl|

∑︂
(i,j)∈Tkl

1((i, j) ∈ E),

where

Tkl = {(i, j) | Qi = k,Qj = l}.

However, the community variables Q are most commonly latent - they are not

observed or even observable. In that case, the optimization of these parameters is not

simple, but success has been found using the EM algorithm [36]. Bickel et. al. show
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that these estimators are asymptotically normal and prove concentration inequalities.

The result of this method is a recovery of the edge probabilities and block membership

probabilities that parameterize the distribution.

Of course, there exists a certain amount of nonidentifiability inherent in the

Stochastic Block Model. The community blocks can be relabeled, which is one source

of nonidentifiability, and the nodes within each community can be relabeled, which is

another. If any of the rows of Γ are identical, this is a third source.

In the case of Latent Position Graphs, Tang, Sussman, and Priebe demonstrate

that the unknown latent positions can be accurately estimated by way of the Adjacency

Spectral Embedding [30]. Once the ASE A = USUT is calculated, we can relate the

matrix of latent positions of the nodes in the graph to the quantity US 1
2 .

As long as the kernel function is assumed known, the latent positions fully param-

eterize a Latent Position Graph. Estimating the latent positions is therefore sufficient

for learning the model. However, the above strategy generally applies to the setting

where we observe one massive graph, rather than a sample of small graphs from one

distribution. It also assumes the number of nodes in the graph is fixed, which is an

assumption we will not generally make. We therefore will look for another strategy

for learning latent position models.

2.5.2 Machine Learning Methods

Seeing the difficulties associated with learning generative models along the avenues

described above, we seek instead to leverage the power of modern machine learning.

Our method in particular will try to model the observed graphs as Latent Position

Graphs and attempt to estimate the embeddings using Stochastic Gradient Descent;

this is not, however, the only viable approach.

We are only aware of a few methods that directly compete with our own. We will

give the most attention to GraphRNN [37]. GraphRNN models each graph it creates as

20



a sequence of binary vectors Y1 . . . Yn, with the length of vector Yi equal to i− 1. The

ith binary vector shows the existence of edges between node i and all preceding nodes.

The vectors are generated in sequence, using a recurrent neural network to model a

conditional probability distribution. In this way, graphs are built up iteratively; at

each step, one or more nodes are added, and connections are added from the new

node to any number of existing nodes. The sequential connection probabilities are

modeled with a Bernouilli distribution conditional on previous connections, and these

probabilities are learned through direct sampling of the dataset. The result is graphs

that are built up node-by-node to match a distribution on any number of nodes.

As we will see in the next chapter, our method accomplishes something similar

to GraphRNN, but there are key differences in approach. We learn the graph all at

once, rather than building it up one node at a time. We also choose a set of entirely

different statistics to train. We are not the first to introduce these statistics, but we

appear to be the first to utilize them in machine learning training in this way. Our

model defeats GraphRNN on a number of metrics, and also is more robust thanks to

key extensions addressing potential weaknesses.

There are a few other methods that accomplish similar things to our model and

GraphRNN. BiGG [38] is one such method which is specifically designed to address the

sparse case; the authors assume the number of edges in the graph is much smaller than

the number of nodes. Rather than simulate the full adjacency matrix, the method

uses a tree-structured autoregressive model for generating the set of edges associated

with each node. They are able to reduce a process which is usually O(n2) to one

which is O(n log n).

GraphVAE [39] and Graphite [40] both make use of Variational Auto-Encoders

(VAEs) to generate random graphs. VAEs work by first taking training datapoints

and finding low-dimensional representations for them, and then finding a ‘decoder’

capable of restoring the low-dimensional representations back to something close to
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the original data. The decoder is then employed on its own to generate new data.

GraphVAE’s decoder models both nodes and edges as Bernouilli random variables, and

includes attributes in the baseline model (see Chapter 5). Graphite, in contrast, uses

an iterative approach, generating a sequence of adjacency matrices and performing

message passing each time using a Graph Neural Network.

A few other approaches have been published, and many of those are detailed by

Hamilton [41]. These include autoregressive methods similar to GraphRNN, such as

Graph Recurrent Attention Networks [42], as well as methods that use Generative

Adversarial Networks [43, 44].
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Chapter 3

The Visual Turing Test:
A Motivating Problem

In this chapter, we introduce a motivating problem for the main body of work. Here,

we present the Visual Turing Test [1], a statistical test for the performance of a

computer vision system.

3.1 The Visual Turing Test

Suppose we have some black-box computer vision system that claims to be able to

understand a certain class of images; that is, it accepts image-structured data as input

and can produce meaningful information about those images as output, in some form

or another. The discerning mathematician may be interested in testing the validity of

this claim: Does the computer vision system actually do what its software engineer

says it does?

A sensible way to test this might be to ask the computer vision system yes-or-no

questions about the image, e.g. “Is there a person in this quadrant of the picture?”. We

will choose not to worry about whether or not the system can actually understand the

question in the context of this problem; we will suppose that either it is equipped with

some sort of previously-verified natural language processing engine, or perhaps that

all of the questions in our question space come from a certain hard-coded vocabulary.
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Regardless, if the system consistently gets our questions correct, we can say that it

understands the image...

...Assuming, of course, that the questions we ask it are not easily guessable. For

instance, if we were to ask it something akin to “Is there a cat driving this car?” or

“Is there a cat halfway up this skyscraper?”, it might be able to ‘cheat’, that is, answer

the question without looking at the image at all. (In both of these cases, the answer

is probably no!)

So what constitutes a good question? Improbable locations of cats aside, we might

demand that any question we ask has a probability near 0.5 of having correct answer

‘Yes’ across the entire distribution of images in the class we are considering. If we were

to look at images of cars taken from Google Images, perhaps a fair question might

be something like “Is this car black / gray?”. We will need some knowledge of the

distribution of images in order to come up with fair questions.

However, it is not enough for each question we pose to individually be fair or

balanced. Since we are asking questions in sequence, it could be possible for the

system to use the answers to previous queries to predict the answer to the next. In

fact, we must require that each question we ask is balanced, conditional on the answers

to all previous questions. This, of course, will make our task of locating fair questions

far more difficult.

We arrive, then, at the Visual Turing Test: Ask a computer vision system a

sequence of binary questions about an image, such that each question is balanced

given the entire history of questions. Our main task in this section, then, will be to

find a way to discover 50/50 questions.
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3.2 Scene Graphs

It is naturally very difficult to talk about the distribution of images belonging to some

class. Even the weaker cellphone cameras available nowadays are 10 megapixels or

more; the images they capture are therefore 10-million-dimensional vectors. However,

it is quite clear that the meaningful parts of images are in fact low-dimensional objects

in a high-dimensional space; while the image may consist of 107 pixels, they are not

completely random or independent. Most images consist of only a few objects of

interest.

We introduce the scene graph as a low-dimensional representation of an image. In

a scene graph representation of an image, each important object is represented by a

node, and edges are drawn between the objects if they are interacting in some way.

Scene graphs are typically both vertex- and edge-attributed, with the node attributes

representing the type of object in question and the edge attributes codifying the nature

of their relationships.

For the purposes of this work, the class of images we will work with will be street

views, i.e. pictures of city streets and sidewalks. In our case, we will use a node to

represent each person or vehicle in the scene (with a corresponding attribute for each),

and some possible edges may include talking to each other (in the case of two persons),

operating (in the case of a person and a vehicle), or following behind (in the case of

two vehicles). We will also include additional vertex attributes to describe what the

objects are doing, like sitting down or being in a parking space.

This representation makes it much easier to talk about the distribution of images

belonging to a certain class (in this case, street views). We now only need to think

about a probability distribution over attributed graphs, for which there are some

well-known models we can attempt to use.
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3.3 Using ERGMs

We will discuss the use of the Exponential Random Graph Model (ERGM) to un-

derstand the distribution of street view scene graphs. As discussed in the previous

chapter, ERGMs require a set of carefully chosen feature statistics in order to assign

probabilities to possible graphs. In some settings, the form of these features may be

known in advance, if the statistician has some knowledge of how the graphs in the

dataset were generated. However, in the case of the street view scene graphs, the only

thing we know about the graphs is that they were generated by taking a photo of a

sidewalk, which does not provide any obvious information about how to structure the

ERGM.

The original paper on scene graph generation for the VTT [2] makes use of a

number of statistics related to the number and type of objects found in various parts

of an image; for example, one statistic used is the number of vertices with the label

‘person’ found in the entire image. The authors use 21 statistics in all, chosen based

on qualitatively common characteristics present in a training set of images. The values

of these statistics were then calculated from said training set.

However, we must keep aware of the main criticism of this approach: We have

no idea whether these features are enough to capture the main characteristics of the

underlying distribution of images. Learning the values of these features does not

equate to learning the distribution, unless it can be verified that the distribution can

actually be parameterized by the features. In the very likely scenario that this is not

the case, learning an ERGM is an art, and a difficult one at that.

3.4 Test Procedure

Equipped with our ERGM learned from training data, we can implement the test

procedure. First, we prepare the computer vision system and the image about which
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it will be tasked with answering questions. We will assume that we possess an oracle

that is capable of accurately answering any question about this image; in most cases,

any human would suffice.

We then generate a very large sample of scene graphs from the ERGM - if we plan

to ask m binary questions, we will need at least 2m+1 graphs. From here, we iterate

through a prespecified vocabulary of possible questions. For each candidate question,

we (quickly) answer it for each graph in our sample, which effectively splits the sample

into two. We look for a question which approximately divides the sample into two

equal pieces.

When we find one whose division is acceptable within a certain tolerance, we can

stop looking, and immediately pose that question to the computer vision system about

the image of interest. We compare its answer to that of the oracle. (Hopefully, they

match!) In either case, we now drop the half of the sample that does not match the

answer given by the oracle. In this way, we are left with a subsample consistent with

the question history. We then repeat the procedure using only this subsample. If

we start with 2m+1 graphs and each question is balanced, we should have enough

graphs to continue through m questions. (However, the sample size shrinks with each

question, so the later questions are less certain to be fair.)

When all is done, we will have asked m conditionally fair questions about the

image to the computer vision system. By repeating this procedure for many images

and recording the system’s accuracy, we can get a measurement of its performance.

3.5 Conclusions

The Visual Turing Test was implemented in [2] by Hallonquist et. al., applied to

the aforementioned street view images. The querying system was designed to select

questions in stages, beginning with questions that would instantiate objects in the
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image as part of the scene graph (i.e. vertex discovery), and then moving on to

questions about the attributes of those objects (attribute discovery), and then finally

about the relationships between the objects (edge discovery).

To build its ERGMs, the study made use of a number of graph invariants as

statistical features. Some examples of the features of which it made use include the

number of objects in the image, the overlap between objects, the height of objects

within the image, the distance between objects, and the number of relationships (edges)

present.

Hallonquist et. al. reported some difficulty in the task of generating unbiased

questions in each of the three querying stages. In an attempt to avoid the brute-force

approach of generating 2m+1 graphs, they endeavored to sample from the conditional

distribution of graphs given the question history by way of the Metropolis-Hastings

algorithm. Questions asked to instantiate took the form of “Is there an object (from

the vocabulary) in this section of the image?”. 37.5% of the instantiation questions

asked in that study were answered in the affirmative, indicating a difficulty in locating

questions that would be answered positively and negatively with equal probability.

Much of the difficulty can be attributed to the ERGM and the somewhat artistic

way that it must be constructed. The graph invariants used as features when building

an ERGM are not selected according to any strategy with foundation in theory;

rather, the statistician must manually try to identify key characteristics of the graph

distribution and capture them accordingly. This is naturally difficult, which may

preclude the use of the model entirely.

Seeing the difficulty in building ERGMs, we are led naturally to the central question

of this work: How can one learn a general distribution for random graphs from a

sample drawn from that distribution?
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Chapter 4

A Generative Model for Latent
Position Graphs

In this chapter, we introduce the model that constitutes the main contribution of

this work. We present a neural network-based approach to learning general random

graph distributions, trained using a moment estimator for subgraph count sufficient

statistics called graphlets.

4.1 Introduction and Motivation

In Chapter 3, we introduced the Visual Turing Test, whose use required the ability to

learn a general model for random graph distributions. Beyond that single need, there

are numerous problems that require the use of a generative model for random graphs.

For instance, in many applications of data science methods in medicine, computational

vision, chemistry, and related fields, availability of data is often a limiting factor. In

the case of graphical data, it is not always possible to obtain datasets containing large

numbers of instances (graphs) from a specific class of interest. Brain connectivity

data (produced, e.g., by functional MRI), for example, is limited by cost and subject

availability when associated with diseases, and generally restricted to a few dozen

subjects. Chemical connectivity data [1–3] is limited by the number of compounds

and therefore naturally scarce. Many modern machine learning methods require more

35



data than may be readily available, so it is desirable to create generative models for

the distributions underlying such data. Such models can indeed be used for statistical

inference, method evaluation, and validation.

A large variety of random graph models are used in the literature, but most of

those that are invariant by isomorphism belong to the family of latent position graphs

introduced in Chapter 2. Our model, presented in Section 4.2 also belongs to this

category, which presents the advantage that, once the kernel function ϕ is fixed, the

modeling effort is reduced to the distribution of the node variables.

Neural approaches for generative models have grown in popularity recently in part

due to the successes of generative adversarial networks (GANs) [4, 5] and variational

auto-encoders (VAEs) [6]. Such generative models are capable of producing new data

(such as fake images of faces of nonexistent humans [7]), cleaning up noisy data, and

simulating unobserved phenomena in the sciences. However, only a few attempts

have been made at using the GAN paradigm for graph data [8, 9]. Other approaches

include the previously discussed use of ERGMs to implement maximum likelihood

estimation of scene graphs [10], as well as [11], which is based on an autoregressive

modeling of vectorized connectivity data.

As generative neural models have demonstrated their ability at modeling complex

large dimensional random processes, they provide a natural resource for the modeling

of the node process ζ in latent position graphs and will provide the basis of our model.

We will not use, however, the GAN or VAE learning paradigms, but rather implement

a more classical parametric estimation approach, using moment estimators. These

moments will be based on “graphlets”, or subgraph counts [12, 13], which are statistics

that evaluate the number of induced subgraphs of small size in a given isomorphism

class that are present in the random graph. These graphlets can be seen as an analog

of polynomial moments for collections of binary random variables, and act as sufficient

statistics in the characterization of the distribution of relabeling invariant distributions
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on graphs of infinite size [14, 15]. Because these counts can be represented as sums of

binary variables, they are also compatible with stochastic gradient descent strategies

in the learning algorithm, as will be seen in Section 4.3.

We will introduce, in the rest of the chapter, a novel neural-network-based approach

to creating generative models for random graphs (Section 4.2) and associated training

algorithm (Section 4.3). We use small amounts of data to learn kernel-based models

for random graph distributions, which are then able to generate unlimited amounts

of artificial data. These generative models will then be evaluated in Chapter 6 by

comparing, in particular, real to artificial data.

4.2 Notation and Model

4.2.1 Graphs and Basic Terminology

As before, a graph is a pair G = (V,E), where V is a set of elements called vertices

and E is a set of pairs of vertices. If V is ordered, say V = (v1, . . . , vn), the adjacency

matrix of G, denoted AG is the binary matrix with entry (i, j) equal to 1 if (vi, vj) ∈ E

and to 0 otherwise. If V is a set of integers, we will always assume that it is listed in

increasing order.

Two graphs G = (V,E) and G′ = (V ′, E ′) are said to be isomorphic (we will write

G ∼ G′) if there exists a bijection f : V → V ′ such that f̃ : (v1, v2) ↦→ (f(v1), f(v2))

is also a bijection from E to E ′.

A graph (V ′, E ′) is a sub-graph of (V,E) if V ′ ⊂ V and E ′ ⊂ E. It is an induced

subgraph if E ′ = {(i, j) ∈ E | i, j ∈ V ′}. We will denote by GV ′ the subgraph of G

induced by V ′.

Finally, if V ′ is a set, we will make the abuse of notation V ′ ⊂ G if G = (V,E)

and V ′ ⊂ V .

In the following, we will use [n] to denote the set {1, . . . , n} and [n]p the set of
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subsets of [n] with p elements. Letting Kn denote the complete graph with vertex set

[n], we will let Kn denote the family of all subgraphs of Kn. Denoting by Sn the set of

all n! permutations of [n], we associate to s ∈ Sn and G = (V,E) ∈ Kn the relabelled

graph s · G with vertices {s(i) : i ∈ V } and edges {(s(i), s(j)) : (i, j) ∈ E}, which

provides a group action of Sn on Kn.

4.2.2 Graph Model

4.2.2.1 Kernels

In this chapter, we will develop models and training algorithms for latent position

graphs. To describe our model in full generality, we let Z = [0,+∞)d denote the

d-dimensional positive Euclidean hyperquadrant and we consider a symmetric function

ϕ : Z × Z → [0, 1] that we will call a kernel. Examples of such kernels include

ϕ(z1, z2) = zT
1 z2

|z1| |z2|

where |z| denotes the Euclidean norm of z,

ϕ(z1, z2) = exp(−|z1 − z2|2),

the Gaussian kernel, or

ϕ(z1, z2) = (1 + zT
1 z2)c√︂

(1 + zT
1 z1)c(1 + zT

2 z2)c

where c is an integer (the normalized polynomial kernel). Note that these examples

correspond to reproducing kernels [16], and can therefore be interpreted as inner

products in possibly infinite-dimensional reproducing kernel Hilbert spaces. However,

the reproducing property is not a required condition. For example, we obtain good

numerical results when modeling sparse graphs and using

ϕ(z1, z2) = 1 − zT
1 z2

|z1| |z2|
.
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4.2.2.2 A family of kernel graphs

Fixing a kernel ϕ, we will model graphs with random, but bounded, size, where

the upper bound on the size is given by a fixed integer n. More precisely, our

model will be supported by the set (denoted Kn above) of subgraphs of the complete

graph Kn. We will model below a collection of random variables Y = (Q,Z) =

((Q1, . . . , Qn), (Z1, . . . , , Zn)) taking values in [0, 1]n×Zn. Conditionally to a realization

y = (q, z), we define random variables B,R, where

1. B = (B1, . . . , Bn) is a collection of independent Bernoulli variables with respec-

tive parameters q1, . . . , qn.

2. R = (Rij, 1 ≤ i < j ≤ n) is a collection of independent Bernoulli random

variables with P (Rij = 1) = ϕ(zi, zj).

3. B,R are mutually independent.

We then define, for given realizations of B and R, the graph G = G(b, r) ∈ Kn with

vertex set {i : bi = 1} and edge set {(i, j) : rij = 1, bi = bj = 1}.

Our random graph model is then

G = S · G(B,R)

where S follows a uniform distribution on Sn. Equivalently, G is built by first forming

a graph with vertex set [n] and inserting an edge (i, j) with probability ϕ(zi, zj),

then selecting an induced subgraph by retaining each vertex with probability qi

before randomly labelling the nodes. As required, this distribution is invariant by

isomorphism, i.e., it gives the same probability to two isomorphic subgraphs of Kn.

Note that this graph construction differs from the one that is commonly used

for RDPGs [17, 18], which does not include a node selection mechanism, for which

the graph size is generally large compared to n, and Z1, . . . , Zn are associated with
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“communities” that each node selects at random before forming edges. Our model and

algorithms can however be easily modified to represent community graphs, and we

will return to this in Section 4.3.5.2.

4.2.2.3 Latent variable model

The latent variable Y is modeled as a function Y = Ψ(Ω, θ) where Ω is a random

variable with known distribution (e.g., multivariate standard Gaussian) and θ is a

vector of parameters. In our implementation Ψ is specified by a neural net architecture

of which Ω is the input layer and θ the vector of weights. However, a neural net

implementation is by no means a necessity, and the further developments only require

that Ψ and its derivative in θ are reasonably easy to compute, for the learning algorithm

to be feasible.

Our model is therefore fully specified by the kernel function, ϕ, the maximal

number of nodes, n, the “architecture” Ψ, and the parameter θ. In the following,

we assume that the first three are fixed and selected once for all, and focus on the

estimation of θ.

Returning to the notation above, we will denote by Pθ (with expectation Eθ)

the distribution of the random graph before relabelling, i.e., that of G(B,R). The

distribution of S · G(B,R) is denoted P ∗
θ , with expectation E∗

θ , so that, for G ∈ Kn,

P ∗
θ (G) = 1

n!
∑︂

s∈Sn

Pθ(s ·G).

4.3 Learning Algorithm

4.3.1 General Setting

We use a moment estimation approach, solving the equation

E∗
θ (H) = H̄,
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where H : Kn → Rm is a vector of graph statistics, and H̄ represents the empirical

value of these statistics in the training data.

Since we want to learn a distribution that is invariant by graph isomorphism, H

should also have this property, i.e., H(G) = H(G′) if G and G′ are isomorphic. Note

that, if H is relabelling invariant, one has

E∗
θ (H) =

∑︂
G∈Kn

H(G)P ∗
θ (G)

= 1
n!

∑︂
s∈Sn

∑︂
G∈Kn

H(G)Pθ(s ·G)

= 1
n!

∑︂
s∈Sn

∑︂
G∈Kn

H(s−1 ·G)Pθ(G)

=
∑︂

G∈Kn

H(G)Pθ(G)

= Eθ(H) .

so that we can solve the simpler equation

Eθ(H) = H̄,

which will remove the relabelling step from our consideration.

4.3.2 Graphlets

Our function H will be based on counts of certain subgraphs in the graphs, which are

called graphlets. More precisely, let F be a graph with p vertices, and G a subgraph

of Kn. Denote by HF (G) the probability that a set A ∈ [n]p, chosen uniformly at

random, is included in the vertex set of G and induces a subgraph that is isomorphic

to F . For a graph G with vertex set V ⊂ [n], we have

HF (G) =
(︄
n

p

)︄−1 ∑︂
W ∈[n]p

1W ⊂V 1GW ∼F

=
(︄
n

p

)︄−1 ∑︂
W ⊂V,|W |=p

1GW ∼F ,
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so that HF (G) is the number of induced subgraphs of G that are isomorphic to F

normalized by
(︂

n
p

)︂
. This awkward probabilistic definition will make sense when we

will discuss stochastic gradient descent.

We select a finite set F of graphs and define H(G) = (HF (G), F ∈ F). Letting

Gp denote the set of isomorphism classes of graphs with p nodes, we use, in our

experiments, F = G1 ∪ Gp for some integer p. (G1 is the trivial class of graphs with one

node and the corresponding HF associated to G its number of nodes divided by n.)

Equivalent classes of graphs are shown in Figure 4-1 for p = 3 and 4. There are 34

isomorphism classes with 5 nodes, 156 with 6, more than 1,000 with 7 and more than

12,000 with 8 (note that, in this work, we do not require F to be connected in order to

constitute a graphlet). These isomorphism classes were identified using a brute-force

algorithm which matched each possible graph on p vertices to a unique class.

Subgraph counts are polynomials in the binary edge variables of the random graph

corrected for isomorphism invariance and therefore are generalizations of polynomial

moments to random graphs. It is therefore not surprising that they constitute key

elements in the asymptotic study of isomorphism-invariant graph distributions, as

illustrated in [14, 15], for which they essentially provide sufficient statistics. Even

though we are interested in finite, not necessarily large, graph models in this work,

using subgraph counts as the basis of our moment estimator remains natural, and

they have proven to be powerful also for the discrimination between different classes

of graphs, in a wide range of applicative contexts [19–21].

4.3.2.1 Objective function

In the next section, we design a stochastic gradient descent (SGD) algorithm for the

minimization of

λ(θ) = (Eθ(H) − H̄)T Ξ(Eθ(H) − H̄) (4.1)
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Figure 4-1. On three nodes, there are four graph isomorphism classes, and on four
nodes, there are eleven.

where Ξ is a fixed diagonal matrix of weights, with positive coefficients, the simplest

choice being the identity matrix. We will write diag(Ξ) = (ΞF , F ∈ F).

The first part of the training procedure therefore consists in estimating the target

expectation H̄ from training data (constituted, say, by graphs G1, . . . , GN). It is in

principle simply given by the empirical averages

H̄F = 1
N

N∑︂
k=1

HF (Gk).

However, the computation of HF (G) has polynomial complexity in the size of G, with

a power equal to the size of F . The resulting cost can therefore be prohibitive for

large graphs/graphlets, and one must replace exact counts with approximations in the
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determination of H̄F .

A notable body of work has been dedicated to the derivation of efficient algorithms

for the approximation of subgraph counts (see, e.g., [22] for a recent review), many

of them optimized for the search of one specific graphlet rather than all graphlets

of a given size. Since we here need all graphlets of size p, we have used the simple

strategy of randomly sampling a sufficient number of subsets of nodes of cardinality

p, identifying for each of them its isomorphism class to estimate frequencies. More

explicitly, if J subsets are sampled from Gk, and JF among them are found to be

isomorphic with F , we estimate

ĤF (Gk) =

(︂
nk

p

)︂
(︂

n
p

)︂ JF

J

to approximate HF (Gk), where nk ≤ n is the number of nodes in Gk.

4.3.3 SGD Formulation

We recall that our model defines a vector Y of latent variables generated as a function

Y = Ψ(θ,Ω) where Ω is a random variable with known distribution, θ is a parameter,

Ψ is assumed to be differentiable in θ and Y takes the form

Y = ((Q1, . . . , Qn), (Z1, . . . , Zn)).

Conditionally to Y , we defined a node selection process B as a vector of independent

Bernoulli variables with respective parameters Q1, . . . , Qn and an edge selection process

R as a triangular array of Bernoulli variables with parameters ϕ(Zi, Zj) yielding a

graph G = G(B,R). In the following sequence of steps, we progressively express

the objective function U as the expectation, over an increasing number of random

variables, of an increasingly simple function.
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(i) If we introduce two independent copies of Ω, say, Ω, Ω̃, we can write

λ(θ) = (Eθ(H) − H̄)T Ξ(Eθ(H) − H̄)

= E(Eθ(H − H̄ | Ω))T ΞE(Eθ(H − H̄ | Ω))

= E(Eθ(H − H̄ | Ω̃)T Ξ(Eθ(H − H̄ | Ω))

where the outer expectation is with respect to the distribution of Ω, Ω̃.

(ii) Moreover, we have

HF (G) = Pn,p(W ⊂ G and GW ∼ F )

where Pn,p denotes the uniform distribution over random subsets, W, of [n] with

cardinality p, so that, introducing the set J̃ W,F of graphs G ∈ Kn such that W ⊂ G

and G ∼ F , we have

Eθ(H | Ω = ω) = En,p(Pθ(J̃ W,F | Ω = ω)).

As a consequence, we can write

λ(θ) = E((ζ(θ, Ω̃, W̃) − H̄)T Ξ(ζ(θ,Ω,W) − H̄))

where E now represents an expectation with respect to Ω, Ω̃,W, W̃ and ζ(θ, ω,W ) is

the vector formed by

ζF (θ, ω,W ) = Pθ(J̃ W,F | Ω = ω), F ∈ F .

(iii) Let F be a graph with vertex set [p]. Let AF denote the set of possible adjacency

matrices of graphs isomorphic to F , i.e., the set of all distinct matrices (AF (s(i), s(j)))

where AF is the adjacency matrix of F and s ∈ Sn.

Then, letting, for an adjacency matrix A, JW,A denote the set of graphs G ∈ Kn such

that W ⊂ G and AGF
= A, we have

Pθ(J̃ W,F | Ω = ω) = 1
|AF |

∑︂
A∈AF

η(θ, ω,W, Ã)
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where

η(θ, ω,W,A) = |[A]|Pθ(JW,A | Ω = ω),

where [A] denotes the isomorphism class of A, and we have |[A]| = |AF | if A ∈ AF .

(iv) We have

(ζ(θ, ω̃, W̃ ) − H̄)T Ξ(ζ(θ, ω,W ) − H̄) =

=
∑︂

F ∈F
ΞF (ζF (θ, ω̃, W̃ ) − H̄F )(ζF (θ, ω,W ) − H̄F )

=
∑︂

F ∈F
ΞF |AF |−2

∑︂
A,Ã∈AF

(η(θ, ω̃, W̃ , Ã) − H̄F )(η(θ, ω,W,A) − H̄F )

= tr(Ξ)E
(︂
(η(θ, ω̃, W̃ , Ã) − H̄ Ã)(η(θ, ω,W,A) − H̄A)

)︂
where we have introduced the random variables (A, Ã) whose joint distribution is as

follows: first choose a graphlet class F over F with probability proportional to ΞF and,

conditionally to F = F , take A and Ã independent and both uniformly distributed

over AF . Here, we made the abuse of notation H̄A := H̄F for any F with adjacency

matrix A.

By reformulating our loss function in this way, we ensure that it is differentiable. η is

a probability, and does not suffer from the same discontinuities that H does a priori,

being based on counting.

(v) This leads to our SGD implementation, that computes a sequence of parameters

(θt, t ≥ 1) using

θt+1 = θt − γt

L∑︂
i=1

M∑︂
j=1

∂θ

(︃
(η(θ, ω̃(j), W̃

(i)
, Ã) − H̄)T (η(θ, ω(j),W (i), A) − H̄)

)︃
(4.2)

where γt is the learning rate, ω(1), . . . , ω(M), ω̃(1), . . . , ω̃(M), W (1), . . . ,W (L), W̃ (1)
, . . . , W̃

(L)

are independent samples of Ω and W and A, Ã independent samples of A.

To complete the presentation of the SGD algorithm, we need make explicit the

computation of η(θ, ω,W,A) and its derivative in θ, as a function of the derivatives of
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Ψ in θ that are supposed to be computable either explicitly or using known algorithms

(such as back-propagation).

4.3.4 Conditional Expectations of Graphlets

Let W ∈ [n]p. We let ki ∈ [p] denote the rank in W of one of its elements, i. Then,

a graph G = G(b, r) is such that W ⊂ G and GW ∼ F if and only if bj = 1 for all

j ∈ W and there exists A ∈ AF such that r(i, j) = A(ki, kj) for i, j ∈ W , i < j. This

shows that

η(θ, ω,W,A) = |[A]|Pθ(JW,A|Ω = ω)

= |[A]|
∏︂

i∈W

qi

∏︂
i,j∈W

i<j

ϕ(zi, zj)A(ki,kj)(1 − ϕ(zi, zl))1−A(ki,kj).

Denote the right-hand side by uA(q, z). Then

∂θη(θ, ω,W ) =
∑︂
i∈W

(∂qi
uA∂θqi + ∂zi

uA∂θzi)

where, we recall, (q, z) = Ψ(θ, ω) whose derivative in θ are assumed to be known.

So, only the derivatives of uA in q and z need to be made explicit, and since uA is

polynomial in these variables, the computation is elementary, with

∂qi
uA(q, z) = 1

qi

uA(q, z)

and, letting

LA,W (q, z) = |[A]|
∏︂

i∈W

qi

∏︂
i,j∈W

i<j

ϕ(zi, zj)A(ki,kj)(1 − ϕ(zi, zj))1−A(ki,kj),

we have

∂zi
uA(q, z) =∑︂

j∈W

j ̸=i

(︄
∂zi
ϕ(zi, zj)
ϕ(zi, zj)

A(ki, kj) − ∂zi
ϕ(zi, zj)

1 − ϕ(zi, zj)
(1 − A(ki, kj))

)︄

× LA,W (q, z).
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4.3.5 Extensions

The formulation of the SGD algorithm, leading to equation (4.2), relies on the fact

that subgraph counts were used for the moment estimators, but not on the specific

stochastic model used to generate the graphs. The approach that it suggests can be

applied to graph models that differ from the one we have introduced and therefore

defines a general learning strategy for random graphs. The feasibility of the approach

however depends on whether the functions that we have denoted by η(θ, ω,W,A) in

Section 4.3.3 and their derivatives are easy to compute, as described in Section 4.3.4

for our model. This would be the case for any model that would define a latent variable

Y = Ψ(ω, θ), like ours, conditionally to which vertex selection and edge insertion are

modeled as independent variables. We now discuss a few examples.

4.3.5.1 Adjacency matrix model

Instead of using a kernel graph, one may choose to directly model the adjacency

matrix of the random graph. To simplify the discussion, we restrict to the situation

where the generated graphs have a fixed size (and therefore any vertex selection step

is not included). In this model, the latent variable Y is a symmetric matrix with

entries in the unit interval, and, conditionally to Y = y, an edge (i, j) is included in

the graph with probability yij (before random relabelling). In that case,

η(θ, ω,W,A) = |[A]|
∏︂

i∈W

qi

∏︂
i,j∈W

i<j

ϕ(zi, zj)A(ki,kj)(1 − ϕ(zi, zl))1−A(ki,kj),

which is still a polynomial in ϕ. We have opted for using kernel graphs models

rather than full adjacency matrices in our main model because the former are more

parsimonious, in terms, in particular, of the dimension of the generative network,

while still offering a wide modeling range. Moreover, they implicitly provide a linear

embedding of the generated graph, which has clear advantages for data analysis.
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4.3.5.2 Community graphs

Community models of random graphs may also be generated using our approach. In

this case, rather than pairing representations to nodes, they are paired to communities,

of which only a small fixed number, say, t are learned. Assuming that t is known, the

corresponding latent variable is a collection of t vectors, Y = Z = (Z1, . . . , Zt). We

also model an intermediary random variable C that assigns nodes to communities,

such that (assuming n nodes) C = (C1, . . . , Cn) ∈ [t]n with C1, . . . , Cn independent

and identically distributed. Letting sc = P (Ci = c), we now have

η(θ, ω,W,A) = |[A]| ×
∑︂

c∈[t]|W |

∏︂
i

sci

∏︂
i,j∈W

i<j

ϕ(zci
, zcj

)A(ki,kj)(1 − ϕ(zci
, zcj

))1−A(ki,kj)

Note that the sc’s are model parameters and therefore also need to be learned.

Importantly, η is polynomial in s and ϕ, so that the previous SGD approach can be

used, with the following simplification.

We recall that, in the previous SGD formulation, a set of nodes W was selected

uniformly at random over all nodes in G, where the size of W is equal to the size of

the graphlet being considered. In the community model described here, selection of

W is equivalent to selecting a set of the representations produced by the model with

replacement, since nodes now share representations. Adjacency matrices A and Ã

were also chosen uniformly at random over AF . The set AF is a permutation class of

matrices, i.e., for each pair of matrices A, Ã ∈ AF , there exists a permutation matrix

V such that Ã = V AV T , and AF is also closed under such permutations.

There is now redundancy between the above sum and the choices of A and Ã.

Since the sum is over all possible choices of representations for the nodes in W ,

all permutations of a choice of representations are included in the sum as separate

terms. Since, by sampling A in the previous SGD algorithm, we were only selecting a

permutation, this step is no longer necessary with the community model. Computing

the sum comes with computational cost, but removes one of the stochastic components
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from the algorithm.

The computation of the derivatives required for stochastic gradient descent is

largely unchanged, and the derivatives for the new s parameters are trivial.

4.3.5.3 Partial Graphlets

When dealing with graphs that include many vertices with high degree, large edge

combinations (i.e., large graphlets) may be needed to accurately model the data.

However, due to the large number of graphlets of order larger than six, and of their

probable scarcity in a finite dataset, it is necessary to select them and group them

before computing a moment estimator.

We here introduce partial graphlets, that we define to be a graphlet where a subset

of the edges are ignored. More formally, we define a partial graphlet of order p by a

p× p matrix M whose entries are 1, 0, or −1. We then say that a subgraph G of size p

with adjacency matrix A is consistent with a partial graphlet if, for some permutation

matrix D,

(DAD)ij = Mij or Mij = −1, ∀i, j ∈ [p].

This operation groups together graphlets of some maximum size that contain a specific

pattern, avoiding the issue of seeing their probabilities shrinking too small.

In particular, we make use of the “star” partial graphlet:

Mij =

⎧⎪⎪⎨⎪⎪⎩
0 i = j

1 i = 1, j ̸= i

−1 otherwise

At values of p larger than previously employed in this work, this partial graphlet is

closely related to the probability of a node having high degree. Whether a chosen

subgraph is consistent with this partial graphlet is also simple to check through a row

sum of the subgraph’s adjacency matrix.
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4.4 Examples of Kernels

The graph kernel, ϕ, is an essential component of our model. Its selection is an

important step when designing a model, and requires some basic understanding of the

dataset being modeled. Useful information includes the average number of vertices,

the distribution of vertex degrees, and any community structure information that may

be available. Here, we list kernels that were used in experiments, including a discussion

of strengths and weaknesses of each. Each kernel ϕ(z1, z2) acts as ϕ : Rd ×Rd → [0, 1].

4.4.1 Dot product kernel

The dot product kernel is

ϕ(z1, z2) = |zT
1 z2|

|z1||z2|
.

This is among the most basic kernels, and is also that most commonly used when

RDPGs are discussed. For small values of d, it has the advantage of training very

quickly because of its simple functional form. However, if the graphs are sparse, the

node representations zi ∈ Rd must be nearly mutually perpendicular, requiring d to

grow with the number of nodes in the produced graphs. For this reason, the dot

product kernel is effective for small graphs (or small numbers of communities in the

case of community graphs), but becomes inefficient as the graph size grows.

4.4.2 Complement dot product kernel

This kernel is simply the complementary probability of that produced by the dot

product kernel, ie.

ϕ(z1, z2) = 1 − |zT
1 z2|

|z1||z2|
.

If the graph contains large groups of nodes with very small probabilities of edges being

formed between them, this kernel is highly effective. It was designed specifically as a

solution for generating bipartite graphs.
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4.4.3 Radial basis function kernel

The RBF or Gaussian kernel is

ϕ(z1, z2) = exp(−|z1 − z2|2).

When this kernel is used, the probability of an edge between two nodes is dependent

only on the proximity of their representations. Because of this, many more probabilities

can be accurately modeled without the need for large d; for this reason, it vastly

outperformed the dot product kernel in both accuracy and speed of training on all

datasets with large numbers of nodes.

4.4.4 RBF kernel with scale factor

This is a variation on the previous kernel:

ϕ(z1, z2) =
√︂

(1 + |z1|2)(1 + |z2|2) exp(−|z1 − z2|2).

With the unscaled RBF kernel, if a set of nodes all mutually have edge probability

p < 1, all of their representations must exist at the same mutual distance from each

other, which is difficult to achieve in low dimension d. By adding the scale factor, the

set of nodes can all share a representation z∗, as long as that representation’s distance

to the origin creates edge probability ϕ(z∗, z∗) = p. As such, this kernel is especially

effective for graph distributions with community structure (for which, however, the

variant described in Section 4.3.5.2 may be preferred).

Because this kernel is not invariant to the scale of the inputs, we found the most

success when adding a penalty to the objective function controlling the size of the

network’s weights, i.e.,

λ(θ) = |Eθ(H) − H̄|2 + δg(θ),

with

g(θ) =

⎧⎨⎩0 |θ| < κ

|θ − κ|2 |θ| ≥ κ
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for some constants δ and κ. This ensures that the network outputs do not grow too

large, avoiding, in particular, the region where the derivative of the kernel is close to

0.

4.4.5 Polynomial kernel

We include this example for completeness, as it was not used in our experiments. The

normalized version of the polynomial kernel is

ϕ(z1, z2) = (1 + zT
1 z2)c√︂

(1 + zT
1 z1)c(1 + zT

2 z2)c

for some integer c. This kernel again depends on the inner product of the inputs,

similarly to the dot product kernels. Its nonlinearity in the inner product avoids the

issue of dimensionality described above to some extent, but the kernel still suffers

when large numbers of nodes all share a mutual edge probability. While it offers great

flexibility, we found less practical use for this kernel than the dot product and RBF

variations.
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Chapter 5

Extensions to Attributed Graphs

Having successfully created a system that can learn distributions of random graphs,

we now seek to extend the system to richer classes of graphs. Here, we will attempt

to add to the model in order to learn vertex- and edge-attributed graphs.

5.1 Attributed Graphs

Attributed graphs fall into two classes: Those with vertex attributes and those with

edge attributes, with the possibility of both included in the intersection. Vertex

attributes are common in a wide range of applications, especially chemistry [1], where

nodes are often atoms and their attributes their atomic numbers, and social networking

[2], where nodes tend to represent individuals and attributes their communities. Edge

attributes, on the other hand, are very common in optimization and operations

research, where edges could be shipping routes and the attributes their capacities [3],

or where edges could even be baseball matches and the attributes the results or scores

[4]

5.1.1 Vertex-Attributed Graphs

In a vertex-attributed graph, to each vertex we associate a list of attributes, which are

generally categorical variables. There are two possible ways we can assign attributes
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to vertices. The first way is to start from one set of possible attributes D, and to each

vertex assign a fixed or random number of unique random attributes from D. In this

case, every combination of attributes is possible at each vertex.

The second way is to start from a list of sets of attributes ∆k, k = 1, 2, . . . , µv,

and then assign each vertex exactly one attribute from each set ∆k. Every vertex

will be assigned exactly µv attributes, and the vocabulary is more strict. We note

that the first scenario is a special case of the second if each set ∆k has two elements;

we can think of the binary choice of attributes in the second case as equivalent to

inclusion/exclusion of an attribute in the first.

While the extension we build herein will easily adapt to either of the above

scenarios, it is the latter on which we will focus. Formally, for a graph G with vertices

i = 1, 2, . . . , n, we associate a matrix of random variables X such that the (i, k)th

entry of X is the random attribute for vertex i drawn from list ∆k. In effect, we are

defining a map

rv : V →
∏︂
k

∆k.

5.1.2 Edge-Attributed Graphs

The edge-attributed case is very similar to the vertex case. Again, there are two

possible methods of attribute assignment, but we will pay active attention only to

the one-from-each scenario described above. We shall this time assume there are µe

attribute sets, and index them as Λk, j = 1, 2, . . . , µe.

For a graph G, we associate a three-mode tensor Y of random variables such that

the (i, j, k)th entry of Y is the random attribute for edge (i, j) drawn from list Λk.

(Note: If edge (i, j) does not exist in G, we will instead enter a null symbol into the

tensor.) In this way, each edge is associated exactly µe attributes. Similarly to above,
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we are defining a map

re : E →
∏︂
k

Λk.

5.2 Adding Vertex Attributes

We now return to our model, and seek an extension that will allow us to not only

learn the structure of random graphs, but also a distribution over vertex attributes.

To accomplish this, we will make use of a secondary machine learning method built

on top of the first, and train it using a new kind of graphlet.

Our task here parallels the one addressed in the previous chapter: We find ourselves

with a sample of random graphs from some distribution, and we seek to train a machine

learning method to learn that distribution from the sample. However, since we now

have a fully-functional system capable of learning the edge structure of graphs in the

distribution, we will henceforth assume that we can sample from the distribution, sans

attributes, at will. This means that the remaining task is to find a way to sample

attributes, conditionally given the edge structure of a graph.

5.2.1 Vertex-Attributed Graphlets

As before, we require a representation of graphs from the distribution that is vertex

permutation-invariant, since our training data remains unlabeled. We now introduce

a new kind of graphlet that includes attribute information for this purpose.

The kth vertex-attributed graphlet is a subgraph of a particular size that additionally

pays attention to one attribute k’s value for each vertex in the subgraph, k =

1, 2, . . . , µv. Formally, let F be an attributed graph on p vertices and G a graph on n

vertices. Denote by HF (G) the probability that a set from [n]p chosen uniformly at

random induces a subgraph in G that is isomorphic to F both by edge structure and

vertex attributes.
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This definition means that two subgraphs of G with the same edge structure are

now considered to be isomorphic to different kth graphlets if the kth attribute differs

on their respective nodes. This notion of isomorphism is sometimes called strong, with

weak isomorphism used for the case where the edge structures of two graphs are the

same but their attributes differ.

We have now introduced a great many more graphlets. If we suppose |∆k| = c

∀k, then there are now κpµvc
p vertex-attributed graphlets, where p is the order of

graphlets considered and κp is the number of non-attributed graphlets of order p. This

number rapidly becomes intractable for training purposes as p increases, so we will

limit our attention to p = 2. This effectively means we will be learning from pairwise

interactions of attributes only, which seems like an acceptable concession. (However,

most of what we do in this chapter will not specifically require that p = 2, and we will

make note of generalizations to higher orders where possible.) We will, for convenience

in the next section, denote by h(F )
1 and h(F )

2 the two attributes on the two nodes in the

graph F for which HF is the corresponding graphlet, and let h(F )
3 = 1 if F contains

and edge and 0 if it does not.

Since our implementation in the next section will assume the edge structure of the

graph is known prior to creating the vertex attributes, we will find it convenient to

use a set of conditional graphlets: We will replace each HF by

HF →
HF∑︂

F̃∈F
HF̃

,

where

F = {F̃ | F̃ ∼ F weakly}.

In the p = 2 case, the above reduces to

F = {F̃ | h(F̃ )
3 = h

(F )
3 }.
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5.2.2 Another Neural Network

We again are faced with the task of generating graphs from a set of graphlets, and

likewise to the previous chapter, we will introduce a neural network to accomplish the

task. This time, the input for the network will be adjacency matrices (either produced

by the first neural network we built or taken directly from the distribution of graphs),

and the output will be n lists of mv attributes, each associated to a node in the graph.

5.2.2.1 SGD Formulation

We again train the neural net using a moment estimator, this time for the new

attributed graphlets.

Formally, we say that our model defines a matrix X of random variables generated

as a function Ψ2(θ, AG) where AG is the adjacency matrix associated with a random

graph G drawn from distribution G, θ is a parameter, and Ψ2 is assumed to be

differentiable in θ. The (i, j)th entry of X is the jth attribute associated with vertex i

in G. As before, we progressively express the objective function U as the expectation,

over an increasing number of random variables, of an increasingly simple function.

(i) If we introduce two independent copies of AG (and drop the subscript), say, A, Ã,

we can write

U(θ) = (Eθ(H) − H̄)T Ξ(Eθ(H) − H̄)

= E(Eθ(H − H̄ | A))T ΞE(Eθ(H − H̄ | A))

= E(Eθ(H − H̄ | Ã)T Ξ(Eθ(H − H̄ | A))

where the outer expectation is with respect to the distribution of A, Ã.

(ii) We introduce M = {m ⊂ [n] | |m| = 2,m ∈ E(G)} and M̃ likewise for G̃, and

let M and M̃ be uniformly drawn from M and M̃ respectively. We also write σ to

represent the set of possible permutations of a p-element set (such as M).
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(iii) As before, we can write the loss function as

U(θ) = E(Eθ(H − H̄ | A)TEθ(H − H̄ | Ã)),

and further express

Eθ(HF | G) = 1
|σ|

∑︂
σ∈σ

η(θ, a,m, σ, F )

with η(θ, a,m, σ, F ) representing the probability that the pair of nodes M selected

from A and assigned ordering σ form the graphlet designated by F .

(iv) We have now introduced a procedure for estimating the loss function: First, select

two graphs without attributes A and Ã to consider; choose two nodes from each graph

M and M̃ ; and compute the probabilities η that these node pairs would form the

given graphlets when assigned attributes.

(v) This leads to our SGD implementation, which computes a sequence of parameters

(θt, t ≥ 1) using, as before,

θt+1 = θt − γt

N1∑︂
i=1

N2∑︂
j=1

∂θ

(︃
(η(θ, ã(i), m̃(j), σ̃(j), H) − H̄)T

(η(θ, ã(i),m(j), σ(j), H) − H̄)
)︃

(5.1)

where γt is the learning rate, a(i), ã(i), m(j), m̃(j), are independent samples of A and

M and σ(j), σ̃(j) are independent samples chosen uniformly between σ1 and σ2.

Similarly to last time, to complete the presentation of the SGD algorithm, we

need to make explicit the computation of η(θ, a,m, σi, H) and its derivative in θ.

These computations will necessarily need to be explicit or able to be computed using

algorithms such as backpropagation.

5.2.3 Conditional expectations of graphlets

In contrast to the math laid out in Section 4.3.4, the calculation of η(θ, a,m, σ,H)

here is quite simple. Let h1, h2 be two attributes specified in graphlet F . Then order
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the elements of M (two nodes) according to σ as m1, m2. We will denote by q the

output of the neural network; q can be viewed as a 3-dimensional array, with number

of rows equal to the number of nodes in the graph, number of columns equal to the

number µv of attribute lists, and height equal to the length of the attribute lists. (We

note that the attribute lists may have unequal lengths, so it is somewhat improper to

refer to q as an array, but we will index it like one all the same.)

In this case, we find that

η(θ, a,m, σi, F ) = |[F ]|
mv∏︂
j=1

qm1,j,h1∑︁
k qm1,j,k

µv∏︂
j=1

qm2,j,h2∑︁
k qm2,j,k

where

|[F ]| =

⎧⎨⎩2 H is symmetric
1 H is not symmetric

.

Denote the right hand side by ψ. We can then write

∂θη(θ, a,m, σi, F ) =
∑︂
i,j,k

∂ψ

∂qijk

∂qijk

∂θ

and we can express the derivatives of ψ in cases:

∂ψ

∂qijk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
qijk

∑︁
l qijl − 2∑︁
l qijl

ψ h1 = h2 = k

1
qijk

∑︁
l qijl − 2∑︁
l qijl

ψ h1 = k, h2 ̸= k

−2∑︁
l qijl

ψ h1 ̸= k, h2 ̸= k

.

The derivatives of qijk can be easily computed using backpropagation. Armed with

these derivatives, we can compute the SGD steps for θ and complete the learning

process.

5.3 Adding Edge Attributes

In lieu of employing yet another neural network and introducing a few dozen more

graphlets, we choose to make the simplifying assumption that the probability that
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an edge has a certain attribute depends only on the vertex attributes located at each

of its endpoints. This greatly reduces the number of codependencies in the model,

setting all edge attributes to be conditionally independent given the vertex attributes.

We simply use the empirical edge attribute probabilities from our sample of graphs

in order to calculate these dependencies. We simply set

P (Yij· = yij·|Xi· = xi·, Xj· = xj· = 1
|B|

∑︂
(u,v)∈B

1(Yuv· = yuv·)

where B is the set of all pairs of vertices in the sample G who share an edge and have

respective vertex attributes xi· and xj·.

As long as our dataset is large enough relative to the number of vertex and edge

attributes, these probabilities should be usable. To put the probabilities in context,

a dataset with 200 graphs on 200 nodes each yields nearly 4,000,000 possible node

pairs. A typical problem that we will address in the next chapter may have around

32,000 possible combinations of attributes, so even the rarer combinations of attributes

should still receive a reasonable sample size.

We note that, in the absence of vertex attributes, this approach will still function,

though our simplifying assumption may then appear a bit too simplifying. In that

case, the edge attribute probabilities would be homogeneous for all edges in every

graph, which is probably not realistic. We may choose to introduce some artificial

vertex attributes in lieu of real ones, utilizing graph characteristics that always can be

computed. For example, we might assign each vertex an attribute equal to its degree,

or choose to color all the vertices using standard minimal graph coloring techniques.
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5.4 Complete Model

With these additions, our end-to-end model is now complete. The procedure for

generating new graphs from a sample G is as follows:

1. Convert G to a set of graphlets H, including vanilla graphlets, vertex attributed

graphlets, and edge attribute probabilities.

2. Train the base neural network Ψ(1), which generates latent positions for kernels,

using H.

3. Generate new edge structures by inputting random noise Ω into Ψ(1).

4. Train the vertex attribute neural network Ψ(2) using the new edge structures

and H.

5. Generate new edge structures using Ψ(1), then use those edge structures as

inputs to Ψ(2) to generate new vertex attributes.

6. Generate edge attributes using the edge attribute probabilities calculated in

Step 1.

This algorithm is capable of generating all parts of a random graph, including edge

structure, vertex attributes, and edge attributes.
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Chapter 6

Implementation and Results

In this chapter, we use and give results from the main model and extensions presented

in Chapters 4 and 5.

6.1 Main Implementation

In addition to the kernel discussed in Chapter 4, the training algorithm needs to be

provided with the maximum number of nodes, n, maximum size of graphlets used

for learning, the geometry of the neural network used to train the function Ψ1, the

distribution of its input Ω and the weight matrix Ξ used in the definition of the

objective function. Additional inputs can also specify some parameters of the SGD

procedure, such as the number of examples used in minibatches.

In our implementation, a library of graphlets of size up to p = 8 was pre-computed

and an array of size p(p− 1)/2 was built and stored for fast retrieval of the graphlet

class associated with a p× p binary connectivity matrix. We used a feed-forward fully

connected neural network with two hidden layers for the function Ψ. Its input layer,

forming the variable Ω, was generated as independent standard Gaussian variables.

The activation function was Leaky ReLU, i.e.,

τ(x) =

⎧⎨⎩x x ≥ 0
ϵx x < 0

with ϵ = 0.01. The parameter θ is associated with the network’s weights. The imple-
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mentation was programmed using PyTorch, allowing for a straightforward computation

of the derivatives of Ψ with respect to θ.

The maximum number of nodes, n, was chosen to be the maximum number of

nodes in any graph in the dataset in use.

While training, a step-down step size strategy was employed. Fix a number of

phases, κ, target values of cost u1, . . . , uκ and step sizes γ0 > · · · > γκ−1. We run the

algorithm with step size γ0 until the first time t1 such that Ut1(θ) < u1. We then use

γ1 until the first time t2 > t1 such that Ut2(θ) < u2 and so on until time tκ is reached

and the procedure is stopped. (We used κ = 3 in our experiments.) For this purpose,

U(θ) was computed at regular intervals of training time.

6.2 Datasets

The algorithm was tested on a variety of datasets. It was first applied to a number of

synthetic datasets, generated from popular generative models for random graphs. It

was then tested on a series of real datasets with different characteristics, several of

which were accessed from a repository at [1]. Details of each dataset are given below

and in Table 6-I.

6.2.1 Empty graph

As a first step and sanity check, we attempt to imitate the empty graph distribu-

tion, i.e., graphs that always have zero edges. With the dot product kernel, this

requires all representations to be mutually perpendicular. With the RBF kernel, the

representations just must be as isolated as possible in Euclidean space.

6.2.2 Stochastic Block Models

We attempt to learn the distribution of a class of graphs generated from a particular

stochastic block model (SBM). In an SBM, each node is randomly assigned to one of
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several “blocks,” and it is the block memberships of a pair of nodes that determine the

probability of an edge existing between them. Two SBMs were chosen. The first is the

two-block model described in [2] (there called “Community”) for comparison purposes.

The second is a four-block model with higher within-block edge probabilities so that

clustering of the representations can be cleanly visualized. For the two-block model,

the membership probabilities for each block are

π = [0.5, 0.5].

The probability of an edge existing between a node from block i and a node from

block j is given by the ith, jth entry of the matrix

Γ =
(︄

0.3 0.05
0.05 0.3

)︄
.

For the four-block model, the membership probabilities for each block are

π = [0.25, 0.25, 0.25, 0.25]

and the community probability matrix is

Γ =

⎛⎜⎜⎜⎝
0.75 0.1 0.1 0.1
0.1 0.75 0.1 0.1
0.1 0.1 0.75 0.1
0.1 0.1 0.1 0.75

⎞⎟⎟⎟⎠ .
It is simple to show that if B is positive semidefinite, the SBM is a submodel of the

RDPG [3], so the method described above should be able to imitate the distribution

produced by these SBMs.

6.2.3 AIDS

This is a chemical dataset, sourced from [4]. It consists of graphs from two classes:

Compounds that are active against the HIV virus, and compounds that are not. Each

graph represents a single chemical compound, where nodes represent atoms and edges

represent covalent bounds between the atoms. We attempt to learn the “Active” class

of graphs, and use the other class for comparison.
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6.2.4 COX2_MD

This is a publicly available chemical dataset, converted to a graph format by [5]. Each

graph represents a cyclooxygenase-2 inhibitor. Nodes represent atoms and edges exist

between nodes if they are sufficiently close together in physical space.

6.2.5 OHSU

This dataset was constructed by [6] out of BrainNet Functional Brain Network Analysis

Data. Here, nodes parcellate regions of the brain, and edges represent correlations

between the regions. The two classes in this set represent typical brains and brains

with Hyperactive-Impulsive classification.

6.2.6 Brain

Provided by [7] and first used in [8, 9], this dataset consists of diffusion MRI data.

Each graph is a component of a connectome, where nodes represent regions of the

brain and edges exist between nodes when there are fiber streamlines connecting the

regions.

6.2.7 Protein

Used in [2]. Here, each graph represents a protein, comprised of amino acids. Each

node represents an amino acid, and two nodes are connected if their amino acids are

physically less than six angstroms apart in the protein structure.

6.2.8 IMDb

Used in [10]. The dataset consists of ego graphs created using the IMDb network. In

the IMDb network, nodes represent actors and an edge exists between two actors if

they appeared in the same film. In an ego network, there is one central node (the

“ego”) around which the rest of the network is constructed. In this case, a particular
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actor was chosen as the ego for each graph in the dataset, and any node connected to

the ego was included in the graph. All edges between selected nodes were included as

well.

6.3 Main Results

6.3.1 Basic Model

We start with some results and validation of our basic model presented in section

4.2.2.2. For this first set of results, the matrix Ξ in (4.1) is the identity matrix.

6.3.1.1 Training performance

Table 6-III provides some details on the outcome of the training algorithm in terms of

correctly learning the graphlet expectations.

The results of the base algorithm’s attempts to learn various random graph

distributions were favorable. On the simplest examples, the algorithm is able to

complete its task quickly and perfectly. When asked to learn the empty graph

distribution, the algorithm is able to produce the desired results exactly within a few

hundred iterations.

When attempting a more complicated example, such as the four-block stochastic

block model described in section 6.2.2, success can be found with the right combination

of hyperparameters, such as the number of nodes in the produced graphs, the dimen-

sion of their representations, the minibatch size, and the number of neurons in the

neural network. In the case of the four-block SBM described above, ten-dimensional

representations were used to create graphs on 80 nodes. Each hidden layer of the NN

contained ten neurons. Within a few thousand iterations, the algorithm was able to

match the graphlet distribution from the SBM to within 0.01%.

The embeddings that resulted from the application of the algorithm in the case of
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the four-block SBM were separated into four clusters, with each cluster corresponding

to a block in the SBM. Nodes whose embeddings are close together are more likely

to have en edge between them, and thus should be members of the same block in

the SBM. A two-dimensional projection of the embeddings produced using principal

component analysis can be seen in Figure 6-1.

Figure 6-2. PCA visualization of node representations for four-block SBM trained using
an RBF kernel. Each point represents one node in the graphs that will be produced by
the generator; PCA was performed on the latent vectors it produces. Clear clustering of
these latent vectors has occurred, indicating successful learning of the SBM community
structure.

After running these test cases, the algorithm was used to learn the distributions of

the several real datasets listed above. In these cases, the algorithm quickly converges

to a solution, closely matching the desired graphlet proportions from the target

distribution. The metric for error in these cases is the total absolute difference

between the target graphlet proportions and the graphlet proportions of graphs

produced by the network midway through training. The algorithm could usually
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Figure 6-3. The model was trained on the 4-block SBM. This matrix shows the
frequency with which each node fell into the same community as each other node. Four
clear communities are established, with zero mixing between them.

reduce the absolute difference to less than 5% of the overall graphlet proportions.

Remark. An examination of the typical output of the trained neural network

reveals a shortcoming of this model. When training for a dataset with community

structure, such as the SBM dataset, the embeddings cluster together, which is desirable.

However, embeddings tend to become “stuck” in their clusters, and do not typically

move between clusters when different inputs are passed through the net. As a result,

in the case where the number of nodes in the produced graphs are fixed (ie. qi = 1 ∀i),

each community will always contain the same number of nodes. This does not

properly capture the behavior of the SBM or other community models, where nodes

are randomly assigned to communities each time a graph is realized. Figure 6-3 was

produced by a net trained on the SBM described above; it is a heatmap visualization

of a matrix whose i, jth entry is the frequency that the ith node fell in the same

community as the jth node. This shortcoming limits the usefulness of the model when

applied to certain types of datasets; however, using our community model from 4.3.5.2

properly addresses the issue (see section 6.3.2.1).
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6.3.1.2 Validation

In order to further test the validity of the algorithm, we evaluated the performance of

neural net classifiers in separating true from generated data in our datasets, where

poor performance in classification is an indicator of the quality of the generative

model.

Two NN classifiers were constructed. The first is a standard feed-forward neural

network with two fully-connected hidden layers. The features used by this network were

the graphlets of order one larger than those used to train the generators. These features

were obtained for graphs in the datasets using the sampling technique described in

section 4.3.2.1. The resulting classifier is powerful enough to distinguish with near

perfect accuracy between the two real classes from the AIDS, COX2_MD, or OHSU

datasets.

We used Graph Neural Nets (GNNs) as second classifier, because they share less

with the generator in terms of features and architecture. (GNNs were introduced in

Section 2.3.1.) GNNs, which are now fairly ubiquitous for graph classification tasks

[12, 13], make use of convolutional operations specially suited for graph data. A

simple GNN was employed here, with two hidden graph-convolutional layers, and node

degrees used as the input features. The GNN was less effective than the graphlet-based

classifiers at distinguishing between classes of the real datasets, but still was able to

discriminate effectively enough for testing purposes.

After training, all classifiers performed poorly on the six real datasets. Results are

summarized in Table 6-II. Experiments generally used graphlets up to order 5, but

results for smaller graphlets are depicted in Figure 6-4.

To further evaluate the model, we make use of the same Maximum-Mean Dis-

crepancy (MMD) metrics introduced by [2]. The graph statistics used there are

degree distributions, clustering coefficient, and orbit counts. A graph’s clustering
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Dataset Graphlet GNN
Empty graph 0.500 0.500
4-block SBM 0.500 0.500
2-block SBM 0.500 0.500
AIDS 0.540 0.581
COX2_MD 0.581 0.696
OHSU 0.552 0.579
Brain 0.530 0.539
Protein 0.561 0.573
IMDb 0.577 0.621

Table 6-II. This table lists the results of the two tests described in Section 4 for each
dataset used. In each test, a classifier was trained to distinguish between real data and
generated data. The given rate is how often the classifier correctly classified a graph, with
an optimal value of 0.5.

coefficient and orbit counts are equivalent to the “triangle” three-graphlet and the

list of four-graphlets, respectively. On the two-block SBM and Protein datasets, we

compare directly to GraphRNN [2]. Results can be found in Table 3 below.

6.3.2 Results for extensions.

In this section, we give additional results from applying various extensions and changes

to the model.

6.3.2.1 Community model.

We described an alternate version of the model tailored to graph data with community

structure in Section 4.3.5.2. This version of the method learns only a small number of

node representations, allowing it to be applied to datasets with significantly larger

numbers of nodes, provided they exhibit the appropriate structure. Here, we make use

of the two-block SBM described in Section 6.2.2. We train the model using the RBF

kernel with scale factor, up to graphlets of size five. The results are in Table 6-IV.

The power of this alternative version of the model, however, is its ability to match

graphs of much larger size. We increase the number of nodes to 10,000 and perform

80



D
at

as
et

4-
bl

oc
k

SB
M

A
ID

S
C

O
X

2_
M

D
O

H
SU

D
eg

.
C

lu
st

.
O

rb
.

D
eg

.
C

lu
st

.
O

rb
.

D
eg

.
C

lu
st

.
O

rb
.

D
eg

.
C

lu
st

.
O

rb
.

Se
lf

0.
10

1
3.

75
e-

3
6.

84
e-

3
2.

01
1

1.
27

e-
2

0.
40

1
1.

17
e-

3
1.

54
e-

3
0.

35
2

2.
67

e-
2

1.
04

e-
2

G
ra

ph
M

oE
0.

22
5

8.
12

e-
3

2.
06

e-
2

1.
40

4
2.

10
e-

4
10

00
1.

67
6

2.
77

e-
2

5.
01

e-
2

1.
45

5
2.

99
e-

2
8.

83
e-

3
D

at
as

et
Br

ai
n

IM
D

b
2-

bl
oc

k
SB

M
Pr

ot
ei

n
D

eg
.

C
lu

st
.

O
rb

.
D

eg
.

C
lu

st
.

O
rb

.
D

eg
.

C
lu

st
.

O
rb

.
D

eg
.

C
lu

st
.

O
rb

.
Se

lf
0.

24
5

1.
30

e-
2

5.
39

e-
3

1.
66

0
3.

71
e-

2
1.

45
e-

2
5.

44
e-

2
4.

10
e-

4
1.

10
e-

3
4.

20
e-

2
9.

23
e-

3
1.

45
e-

2
G

ra
ph

M
oE

0.
25

1
5.

44
e-

2
7.

23
e-

3
5.

68
1

8.
69

e-
2

4.
33

e-
2

0.
47

5
9.

37
e-

4
8.

62
e-

3
0.

76
7

3.
88

e-
2

5.
71

e-
2

G
ra

ph
R

N
N

-
-

-
-

-
-

1.
40

e-
2

2.
00

e-
3

3.
90

e-
2

3.
40

e-
2

0.
93

5
0.

21
7

Ta
bl

e
6-

II
I.

Th
is

ta
bl

e
lis

ts
th

e
va

lu
es

of
th

re
e

di
ffe

re
nt

iat
io

n
st

at
ist

ics
fo

re
ac

h
re

al
da

ta
se

t.
Fi

rs
t,

th
e

da
ta

se
ti

s
sp

lit
in

ha
lf

an
d

th
e

ha
lve

sa
re

co
m

pa
re

d.
Th

en
,t

he
re

al
da

ta
is

co
m

pa
re

d
to

da
ta

ge
ne

ra
te

d
by

Gr
ap

hM
oE

.F
or

th
e

2-
bl

oc
k

SB
M

an
d

Pr
ot

ein
da

ta
se

ts
,t

he
st

at
ist

ic
va

lu
es

fo
rr

ea
ld

at
a

vs
.

da
ta

ge
ne

ra
te

d
by

Gr
ap

hR
NN

ar
e

al
so

gi
ve

n.

81



the same experiment. Since we have been using sampling to compute graphlets, it

is no more difficult to calculate graphlets for small graphs than for large ones, and

so the number of nodes included can be as large as desired. The results are again in

Table 6-IV.

We also include visualizations of a larger graph generated from the SBM and from

the model trained to imitate it; see Figure 6-5. The drawings include 1000 nodes,

as drawing more becomes computationally intensive. (Using more is not any more

difficult.) The visualizations were created using the igraph package in Python.

Dataset Total Diff. Max Diff. Classification Rate
16 Nodes 0.0451 6.6e-3 0.557
10,000 Nodes 0.0194 9.4e-4 0.509

Table 6-IV. Performance of community model trained on the four-block SBM. The
classification rate is the rate at which the graphlet classifier could correctly separate SBM
graphs from learned graphs, with optimal value 0.5.

6.3.2.2 Inversely-weighted loss function.

For most datasets, there can be large variations among the frequencies of some

graphlets of given order. For instance, the AIDS dataset is quite sparse, and of all its

subgraphs on 3 nodes, the subgraph containing one edge is ten times more present

than the subgraph containing two edges. However, we find that these less common

graphlets often contain much of the information about the overall random graph

distribution, and matching them less than perfectly can have powerful effects on the

results.

In such cases, it may be preferable to reweight the loss function to increase the

importance of rare graphlets. More precisely, we can replace the function λ(θ) =

|Eθ(H) − H̄|2 by

λ∗(θ) =
∑︂

F ∈F

(Eθ(HF ) − H̄F )2

|H̄F |
.

This corresponds to using a diagonal matrix D with diagonal elements given by |H̄F |−1
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in equation (4.1).

The overall result is an increase in the “Total Difference” between the target

graphlets and the produced graphlets, but slight improvements in the ability of the

model to fool the discriminators. Numerical results for three of the datasets are

included in Table 6-V below.

Dataset Total Difference Classification Rate
AIDS 0.102 0.556
COX2_MD 0.113 0.687
Brain 0.157 0.515

Table 6-V. Results for the inversely-weighted loss function on three of the datasets,
providing a slight improvement on the results in table 6-III

6.3.2.3 Use of larger graphlets.

We now show how using partial graphlets (Section 4.3.5.3) can help better fitting the

degree distribution in our simulated graphs. (We note that GraphMoE is outperformed

by GraphRNN in this metric on most datasets.)

In Figure 6-6 we display a comparison of the produced degree distributions to the

ground truth for the two-block SBM and Protein datasets with and without use of the

star partial graphlets for training. The addition of these higher-order graphlets does

produce some visible improvement; however, it does not entirely fix the discrepancies.

Going even further in the graphlet size would probably help, but we are limited by

computing power and training time.
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Figure 6-6. Histogram of degrees for nodes randomly sampled from a 4-block SBM
(truth) and from GraphMoE trained with and without partial graphlets.
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6.4 Implementation for Attributed Graphs

We now discuss the implementation of the second neural net described in Chapter 5

that was designed to create vertex attributes, as well as the algorithm described in

the same chapter to create edge attributes.

The model is designed in an end-to-end fashion: The network in the previous

section is to be used first to create a graph’s edge structure; then the attribute network

in this section is to be used, taking the edge structure as input; finally, the edge

algorithm is employed, which uses the vertex attributes as input. However, to isolate

each component of our analysis, we will instead use real data as the input at each

step, i.e. when evaluating the vertex network, for example, we will use the adjacency

matrices of real graphs, not those created by the preceding network.

6.4.1 Vertex Attributes Neural Network

As the set of attributed graphlets is unique to each problem and its vertex attributes,

we begin by precomputing all possible graphlet combinations for fast retrieval. The

neural network has a feed-forward architecture with two hidden layers. The activation

function is again Leaky ReLU. A sigmoid function is applied before the final output.

The implementation was again programmed using PyTorch, and a similar step-down

step size strategy to that of the last section was used. To evaluate the network, the

loss function λ(θ) was computed at regular intervals.

6.4.2 Edge Attributes Algorithm

The edge attributes algorithm was implemented using brute force for most datasets.

Every edge in the dataset was considered so that conditional probabilities of each edge

attribute given the endpoint vertex attributes could be computed. A simple lookup

table of probabilities was created for later reference.
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6.5 Attributed Datasets

As before, the methods were tested on a number of real and synthetic datasets, derived

from other popular generative models and retrieved from the repository at [1]. Details

of each dataset are given below and in Table 6-VI.

6.5.1 Complete Graph

We again employ a sanity check. This time, we create one vertex attribute list

containing two attributes, and assign every vertex the same attribute. We do the

same for edge attributes.

6.5.2 Stochastic Block Model

The 4-block stochastic block model described previously lends itself well to the task

of testing an attributed dataset, as the nodes in the graph have already been assigned

latent attributes in their communities. We also designate two types of edges: those

within communities, and those between communities.

6.5.3 AIDS

We return to the AIDS chemical dataset [4]. Node attributes in this case represent

different atomic elements. Edge attributes represent the covalence of bonds between

atoms, i.e. the attribute is equal to 1 for a single bond, 2 for a double bond, and 3 for

a triple bond.

6.5.4 COX2 and COX2_MD

This dataset which we used previously represents a set of cyclooxygenase-2 inhibitors

[5]. Node attributes denote different types of atoms, and edge attributes denote

different types of bonds.
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6.5.5 BZR and BZR_MD

Another chemical dataset, described in [14]. In this case, however, the edge attributes

are numerical and represent distances between atoms; we discretize these distances

into bins before attempting to learn the model.

6.5.6 FirstMM_DB

Created in [15], the graphs in this dataset represent common household objects. Nodes

represent pieces of the objects (as identified by a human observer) and and edge

is present if two pieces are connected. The original authors do not provide much

information about the vertex and edge attributes, but it can be inferred that they

represent types of object parts and connections. While more information would be

desirable, we make use of this dataset to avoid only performing analyses on chemical

compounds.

6.5.7 Cuneiform

We additionally include this dataset, which was created by [16]. Each graph represents

a single cuneiform sign, with individual characters in that sign each represented by

four vertices with four different labels. The four vertices always form a clique. Edges

are also allowed between pairs of vertices both belonging to one particular vertex label;

other than that, no edges are allowed. Because of the strict rules in place for graph

creation in this case, we anticipate significant challenges in learning vertex attributes.

6.6 Results for Attributed Graphs

6.6.1 Vertex Attribute Results

We now present the results of the above implementation for vertex attributes.

The generator again performs well within a relatively small number of training
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iterations. The network is able to accurately reproduce the distribution of graphlets;

training error is given in Table 6-VII. (Since there are a different number of attributed

graphlets inherent to each dataset, all training errors were normalized as a percentage

of the maximum possible error.)

For the purposes of validation, we took the subgraph of each graph induced by

the subset of nodes assigned to the mode of the attributes. These subgraphs, from

both the dataset and from the generated graphs, were then fed into a Graph Neural

Network (similar to that described in Section 6.3.1.2 above) tasked with distinguishing

between them. The results of this analysis were not as favorable as those for the base

model, but the generator still performed well given the limited nature of the pairwise

graphlets it was provided. Results for this validation test can also be found in Table

6-VII.

Results were poorest on the Cuneiform dataset, where the underlying graph

distribution had strict rules about edges in relation to attributes. The neural network

appeared to merge several of the attribute classes into one in this case, most likely

due to the lack of consistent connectivity characteristics of each class. This is an

unfortunate consequence of this method because all attributes are generated at once.

Remark. The neural network that assigns the attribute probabilities to each node

appears to display an unsupervised emergent behavior. For some distributions, such

as the 4-block SBM, all of the attribute classes are symmetric, and we anticipated that

the neural net would have difficulty in distinguishing them. However, when looking at

real data, there is symmetry breaking: Because nodes are randomly assigned to each

of the four communities / attributes according to a multinomial distribution, each

graph will naturally contain some communities that are larger than others.

The expected size of each community in our SBM is 5 nodes (one-fourth of the

total number), but the expected size of the maximum community is around 7.4.

The network consistently assigned the same attribute to whatever nodes fell into
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Figure 6-7. (Top) A graph with vertex attributes generated directly from the Stochastic
Block Model and (Bottom) a graph whose attributes were created by the neural network
model. The specific community labels are not consistent, but the separation of communities
is clear. The software which drew the graphs used a clustering algorithm to determine
node placement.
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the largest community (with similar behavior for the smallest community, etc.) in

any particular graph. Naturally, the true attribute value for this community varied

between all options from graph to graph, but once the attributes were matched, the

neural network was quite consistent.

This behavior can be understood as the network ‘naming’ the community according

to one of its basic characteristics- in this case, the community size. The network was

able to gain an understanding of the attribute structure in an unsupervised setting.

A pair of confusion matrices is given in Figure 6-8. The first matrix displays the

rate at which the network mislabeled nodes belonging to each community without

matching the generated attributes to the true attributes. The second confusion matrix,

in contrast, shows the misclassification rates once the attributes were registered with

each other, allowing the network to use its newfound knowledge effectively.

We note that this behavior did not emerge, and was not necessary, when the

attributes were not symmetric. When the attribute classes had distinguishing charac-

teristics to begin with, the network did not need to invent differences between them

in order to be consistent.

6.6.2 Edge Attribute Results

In most cases, this simple algorithm to assign attributes to edges works well. The

example we had in mind when designing it was the Visual Turing Test of Chapter 3;

there, edges represented visual interactions between objects of interest, and the range

of possible attributes in the vocabulary were entirely dependent on the attributes of

the objects themselves. For instance, it is possible for a ‘person’ to be ‘driving’ a ‘car’,

but (probably) not possible for a person to be driving a person. In cases like this, the

distribution of edge attributes is well described by the endpoint vertex attributes, and

the algorithm performs well. Other cases where edge and vertex attributes are more

decoupled are more challenging.
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Figure 6-8. Confusion matrices for the attributes assigned by the neural net to vertices
from four communities in the Stochastic Block Model. The top matrix shows the result
without matching the labels the NN assigned to those in the model. However, once we
identify which label is which, the result is the bottom matrix. The NN generally assigned
labels based on community size, while the actual model simply had a set ordering for the
labels.
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For the purpose of evaluating the method, a test set was separated from a training

set for each of the above described samples. The attribute probabilities were calculated

from each of the training and test sets. The attribute probabilities from the training

sets were applied to the graphs in the test sets, and the distributions of attributes that

produced were compared to the test set probabilities. Each discrepancy was weighted

by the probability of that combination of attributes in the dataset, and then summed

up. The total difference can be found in Table 6-VIII, along with some characteristic

information.

The algorithm performed perfectly on the SBM synthetic dataset, where edge at-

tributes encoded same or different communities for the endpoints. Perfect performance

was also achieved on the Cuneiform dataset, where edge attributes show whether two

symbols are part of the same character or not. On the chemical datasets, where the

bond covalence is entirely dependent on the atomic numbers of the pair of vertices in

question, good performance was observed. The worst performance was on the AIDS

dataset, which had the largest number of vertex attributes possible (and thus had the

largest number of rare combinations of attributes).
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Chapter 7

Discussion and Conclusion

Thus far through this dissertation, we have introduced and evaluated a novel method

and some variants for learning generative models of random graph distributions. We

will now attempt to address the utility of the model and to explore future areas of

research that may be performed.

7.1 Discussion of Main Model

Our experimental results report good quality performance on several simulated and

real datasets. Our model is able to imitate complicated classes of random graphs with

a relatively simple architecture and small amount of computational time. The use

of graphlets as main training statistic ensures that the algorithm is able to properly

capture distributions of graphs with unlabeled vertices.

There are two potential sources of variation in the graphs produced by the base

generator. The first is simply due to the nature of the RDPG; since each edge is

generated randomly and independently, a variety of graphs can be produced using a

single set of representations put out by the neural net. However, the use of ω, a vector

of Gaussian noise, as the input of the neural network creates further variation in the

output of the network. Tests of variance were performed on the output of the neural

network after being fed multiple inputs to determine to what extent this randomness
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is actually felt by the produced representations. We find that node embeddings tend

to move around the embedding space greatly from run to run, with the variance of the

embeddings’ positions on average being around 30% of their means. However, clusters

of embeddings tend to move together, so that, depending on the kernel used, edge

probabilities may remain more consistent despite the motion in response to ω.

Computational costs for this method are quite low. While best performances are

achieved after training times on the order of hours, fairly good performance begins to

occur after just a few minutes of training. This allows for deeper or more complex

neural network architectures to be employed if desired.

Scalability is a desirable quality of generative models for random graphs; many

datasets consist of large graphs, and the ability to add a great number of nodes is

thus important. The model remains optimized only for small-to-medium graph sizes.

As discussed in Chapter 4, increasing the number of nodes directly increases the

dimension of the latent variable space. Because of this, the complexity of the model

grows with the number of nodes, and computation power quickly becomes an issue for

large graphs.

In certain special cases, we have found ways to circumnavigate these limitations:

If the graphs are known to exhibit community structure, or indeed if the nodes fall

into a limited number of classes and are homogeneous within each class, then the

extension described in Section 4.3.5.2 can be employed to increase the number of

nodes arbitrarily.

The method’s performance on disparate datasets is quite consistent. The graphs of

the COX2_MD dataset are nearly complete and node-homogeneous; in contrast, the

IMDb Ego dataset is much sparser and has a central node. Despite these fundamental

structural differences, the method’s performance on each is similar (though the training

speed for the COX dataset was much faster). The method appears robust enough to

handle a variety of random graph distributions.
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Our validation of our model was limited to results from two classifers, both of which

were based on neural networks. While the ability to fool a neural network classifier

is a good marker for many applications, we may be able to gain new understanding

of our model if a statistical test could be designed to evaluate it. Tang et. al. have

invented a hypothesis testing scheme to determine if two RDPGs have the same latent

positions [1]; however, the test does not immediately generalize to kernels other than

the Euclidean inner product, so further work would be required to apply such a test

to our problem.

It remains unclear to what extent information contained in sets of graphlets is

redundant. We see improved performance as the size of graphlets used to train is

increased, and it seems obvious that the smallest graphlets alone do not contain

enough information to completely specify a random graph distribution. The problem

of reconstructing a single graph knowing only its graphlets of size n− 1 is an open

problem in graph theory, often called the Graph Reconstruction Conjecture [2]. For

our purposes, using graphlets of only size 5 and smaller is enough to fool discriminators

(in particular, one that uses graphlets of size 6), so it is unclear how much information

is added each time the size of graphlets is increased.

This method has potential to be applied in various fields of research where limited

graph data is available. When a large amount of data is needed but acquiring it is

cost-prohibitive, the method can be used to simulate additional data. Conditional

distributions based on partially observed graphs can also be simulated empirically -

we will discuss this in the context of the Visual Turing Test shortly. Because of its

low computational cost and high training speed, the method can easily be applied

in computational vision, computational medicine, the study of social networks, or a

number of other fields.
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7.2 Discussion of Attributed Models

The attributed pieces of the method have not been as thoroughly tested as the main

generator, but still have shown good performance as measured by a few metrics. For

the vertex attribute neural network, we were usually able to get the training error

to within a range comparable to that of the main generator. Our test involving the

subgraph induced by the largest class of vertex attributes does not by any means

fully characterize the graph distribution, but it provides a convenient way to reuse

the graph neural networks we utilized to test the main generator.

The main criticism of our models for vertex and edge attributes is that in both

cases, we have restricted our learning to statistics involving only pairwise interactions

between nodes. In the vertex case, we only measure graphlets of order 2, and in the

edge case, we consider only the endpoints of each edge to determine its attribute

distribution. It is clear that this is enough to capture some types of random graphs,

such as the stochastic block models we used for testing. However, more complicated

classes of graphs may not be described well by these limited statistics. Further testing

would be advantageous to determine the size of the gap between models of first order

and higher order models.

Our approach to edge attributes is somewhat ad hoc. We add edge attributes to

our model by way only of a set of probabilities captured from the dataset based on the

vertex attributes at the endpoints. This model does not have much sophistication, and

notably does not directly allow the edge attributes to be dependent. A more advanced

approach might be to apply our vertex-attribute algorithm to the dual graph, but

we have not studied how the dual might behave under our model. However, for the

purposes of our applications, our method was sufficient.

Our model is specifically equipped to handle categorical vertex and edge attributes.

However, many scenarios, including some aspects of the Visual Turing Test, involve

102



numerical attributes for the vertices and edges. One dataset we used for testing

included these attributes, but we circumvented the issue by discretizing the range of

possible attribute values. Because graphlets are fundamentally discrete objects, it is

not immediately clear how to extend our model to numerical attributes. Doing so,

however, would broaden its applicability to practically every class of simple random

graphs.

7.3 Using the Model for Statistical Inference

The utility of a generative model can be measured by its applicability to further

problems of statistical inference. Oftentimes, a generative model is employed because

a dataset is incomplete, contains only partial information about a distribution, or

makes it difficult to see that information, and it is desirable to discover the remaining

information to draw conclusions.

We have presented our model in the context of the Visual Turing Test, for which

the task to be tackled by the generative model is clear: The VTT requires sampling

from a conditional distribution, where the space on which we are conditioning grows

successively more complex. In this case, the approach to the task is also clear: Once

the model has been trained, it is extremely cheap to generate a massive number of

graphs, requiring a number of operations that is only polynomial in the number of

graphs and their size. From there, one can look at the conditional distribution by

simply removing the graphs from the sample that do not match the condition; as

long as the size of the conditional space is not too small relative to the overall sample

space, this can be done quite easily.

With this in mind, the problem of generating unbiased questions for the Visual

Turing Test is essentially solved. If a ‘20 questions’ approach is used, we might need

to generate only 220+8 = 3e8 graphs, which is downright easy.
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More generally, this generative model is well-equipped to handle any conditioning

task for which there exists an oracle to quickly determine whether or not a given graph

satisfies the conditions. This brute-force approach of generating numerous graphs and

then cutting the sample down to only those that satisfy the condition only causes

problems if the conditions occur too rarely. The capability of the model to answer

difficult questions is limited only by computational power.

The model does not, however, provide an automatic path to statistical inference.

It only implicitly models the distribution of random graphs; that is, it allows one to

sample from the distribution, but does not express the distribution in any closed form.

It remains up to the statistician to glean the needed information from the graphs

produced, which may be equally difficult to doing so from the original sample used to

train the model in the first place.

7.4 Directions for Further Work

The model is functionally complete; however, there are areas of research that could be

pursued to improve both training and performance.

Our model is trained using the simplest form of stochastic gradient descent;

however, there is a plethora of research into optimizing the training of neural networks

(including many papers specific to graph data). Two illustrating examples are [3],

which introduces a label propagation technique for training neural networks on graph

data, and [4], which shows an adversarial method for a similar task.

Beyond these sophisticated modern techniques, there remain ideas in optimization

that are now considered somewhat classical in machine learning that we have not yet

applied. There are well known algorithms for training neural networks, such as Adam

[5]. Our architecture is also as simple as it can be, being nothing more than a very

basic feed-forward network. We have not experimented with other architectures, but
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it would not be surprising to see improvements in performance or training if a more

complex architecture was used.

It is clear that there remain limitations in how well the model approximates random

graph distributions. Some of those limitations cannot be overcome; low-dimensional

latent position graphs are a restrictive parameter space and cannot capture all random

graph distributions. Any discrepancies between the model class and the true random

graph distribution is, quite simply, modeling bias, and this bias can only be mitigated

by increasing the dimension of the latent positions. It is true that any edge-independent

random graph distribution can be expressed as a latent position graph of sufficiently

high dimension: One only need to include a number of dimensions larger than the

number of possible edges, and any distribution can be captured. However, there are

plenty of random graph distributions that cannot be expressed as a latent position

graph at all; for instance, G could be a distribution on 3 nodes such that the only

adjacency matrices with nonzero probability measure are⎛⎜⎝0 1 0
1 0 0
0 0 0

⎞⎟⎠ or

⎛⎜⎝0 0 1
0 0 0
1 0 0

⎞⎟⎠ .
This type of strict codependence between edges cannot be expressed by a valid kernel

on latent positions.

There is plenty of ground to gain outside of modeling bias, however. As seen in

Section 6.3, the model is inferior to some competing methods in certain metrics such

as clustering and orbital coefficients. There is also a degree of inability to always fool

discriminator networks, as seen in Section 6.3.1.2. Certain graph distributions appear

harder to learn than others, and it is not apparent for what reason the model may

perform well on some datasets and poorly on others.

Furthermore, there is a fair level of artistry involved in training the networks.

Hyperparameters such as layer width, as well the kernel involved in the final step

of the main model, have to be chosen carefully, as many failed attempts at training
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made apparent. A better understanding of the behavior of the model relative to these

selections would remove much of the guesswork and improve the consistency of the

model.

7.5 Conclusion

Our work accomplishes the task of learning a generative model for an unknown

random graph distribution from a small sample. It is readily employable for a variety

of applications, including the Visual Turing Test by which it was inspired.

The model is robust enough to handle a variety of applications, with demonstrated

results on datasets from chemistry, neuroscience, medicine, and social networking.

It is equipped with numerous extensions designed to address a plethora of different

problem settings. It has proven itself against modern methods of validation.

Graphlets have been shown to be powerful statistics, capable of capturing a broad

range of flavors of graph distributions. We show their effectiveness for training machine

learning techniques and as characterizing features for distributions as a whole. We

believe they have great potential as tools in both graph inference and graph learning.

Our model and our use of graphlets has opened a window into still-new world of

random graphs. A thorough understanding of what we have and why it works may

lead to greater insight into the burgeoning field of random graph study. As our model

is employed in the future, we will perhaps move towards new results and discoveries

that have not yet become visible.
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