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Abstract

Automatic video understanding is critical for enabling new applications in

video surveillance, augmented reality, and beyond. Powered by deep net-

works that learn holistic representations of video clips, and large-scale anno-

tated datasets, modern systems are capable of accurately recognizing hun-

dreds of human activity classes. However, their performance significantly

degrades as the number of actors in the scene or the complexity of the activities

increases. Therefore, most of the research thus far has focused on videos that

are short and/or contain a few activities performed only by adults. Further-

more, most current systems require expensive, spatio-temporal annotations

for training. These limitations prevent the deployment of such systems in

real-life applications, such as detecting activities of people and vehicles in an

extended surveillance videos.

To address these limitations, this thesis focuses on developing data-driven,

compositional, region-based video understanding models motivated by the

observation that actors, objects and their spatio-temporal interactions are

the building blocks of activities and the main content of video descriptions

provided by humans. This thesis makes three main contributions. First, we

ii



propose a novel Graph Neural Network for representation learning on hetero-

geneous graphs that encode spatio-temporal interactions between actor and

object regions in videos. This model can learn context-aware representations

for detected actors and objects, which we leverage for detecting complex

activities. Second, we propose an attention-based deep conditional gener-

ative model of sentences, whose latent variables correspond to alignments

between words in textual descriptions of videos and object regions. Building

upon the framework of Conditional Variational Autoencoders, we train this

model using only textual descriptions without bounding box annotations,

and leverage its latent variables for localizing the actors and objects that are

mentioned in generated or ground-truth descriptions of videos. Finally, we

propose an actor-centric framework for real-time activity detection in videos

that are extended both in space and time. Our framework leverages object

detections and tracking to generate actor-centric tubelets, capturing all rel-

evant spatio-temporal context for a single actor, and detects activities per

tubelet based on contextual region embeddings. The models described have

demonstrably improved the ability to temporally detect activities, as well as

ground words in visual inputs.
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Chapter 1

Introduction

The amount of unconstrained video data gathered daily by consumer devices

and surveillance cameras is exploding. Every 60 seconds, on average, people

upload 500 hours of video to YouTube worldwide [13]. Also, more than

70 million surveillance cameras had been installed in the US by 2018 [14].

Therefore, it has become infeasible for humans to analyze the content of such

videos.

Monitoring public safety video is particularly challenging for humans,

since suspicious activities might occur (1) after long periods of no activities, (2)

in multiple regions of the video simultaneously, or (3) in the background far

from the video sensor. For example, Figure 1.1 shows example frames from

a surveillance video, where in different spatial regions people are talking to

each other, a person opens a vehicle trunk, while another vehicle is dropping

off a person. Considering that the attention span of a human camera operator

has been estimated at only 20 minutes [15], it becomes evident that human

camera operators are typically overwhelmed with the amount of video data

that they need to monitor. Thus, the need for automated systems that can
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Figure 1.1: Sample frames from an extended surveillance video of the MEVA
dataset [10]. Extended videos capture atomic activities (such as vehicle turning left),
group activities (such as people talking), and actor-object interactions (such as vehicle
dropping off person or person riding bike). Activities might occur simultaneously in dif-
ferent spatio-temporal volumes of the video, both in the background and foreground.

understand the rich visual content of extended surveillance videos is growing.

Moreover, the increase in life expectancy and population aging has moti-

vated the design of assistive robots that can help elderly individuals [16, 1, 17].

The automatic understanding of the underlying scene and events captured in

a video is crucial for enabling these robotic agents to recognize the activities

of humans and comprehend their instructions, so as to effectively monitor

and assist them. For example, an assistive robot needs to be able to determine

where the bottle and the table is in the video recorded by its sensors, in order

to “fetch the bottle on top of the table”. It also needs to recognize the activities

performed by humans in order to respond appropriately to them (e.g., clean

the table after the person finishes eating a sandwich).
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person_exits_vehicle
person_opens_door

vehicle_drops_off person

(a) Temporal Activity Detec-
tion

A man wearing a white hat
is riding a bike next to a 

silver SUV. 

(b) Grounded Visual Descrip-
tion

(c) Activity Detection in Ex-
tended Videos

Figure 1.2: An overview of different video understanding tasks tackled in this thesis.
(a) Given a video that is spatially-centered around a few actors, the task of temporal
activity detection aims to answer what activities occur in it and when? (b) The task of
grounded visual description aims to describe the event in the video with a natural
language sentence and also localize (ground) the semantic entities mentioned in the
sentence. (c) Given a video that is extended both in space and time, the task of activity
detection in extended videos aims to detect what activities are happening and when,
as well as localize the interacting entities.

1.1 Video Understanding Tasks

The goal of video understanding is to create algorithms that are able to under-

stand the events captured in videos and convey that information to humans.

Traditionally, computer vision researchers have focused on the problem

of predicting a human activity label for a short, trimmed video capturing

a person performing a single activity. This is a video understanding task

known as Video Classification. However, simply classifying activities performed

only by humans in short videos falls short of matching the way humans

see and perceive the world around them, and is not enough for building

automated systems that can be deployed in real-life applications such as smart

surveillance and assistive robotics. For example, consider the “snapshots”
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from the surveillance video shown in Figure 1.1. To effectively assist security

personnel, an automated video understanding system would ideally be able

to automatically and effectively analyze such a long, multi-actor video and

(1) detect which activities occur and when, (2) convey that information to

humans by means of activity labels or sentences, and (3) localize in space and

time all the interacting entities (people, vehicles and interacting objects). This

requires tackling more complex video understanding tasks, that move towards

increasing levels of detail and increasing complexity of the input video data.

In this thesis, we focus on the following tasks, summarized in Figure 1.2:

• Temporal Activity Detection: Moving beyond temporally trimmed

videos, this task aims to detect which activities from a predefined set of

activities of interest are happening in a long, untrimmed video that is

spatially-centered around a few actors and when. In other words, this

task involves predicting which activities of interest occur at each frame.

• Grounded Visual Description: Given a video segment that is spatially-

centered around a few actors and shows an event, i.e., a set of related

activities, this task aims to describe it with a sentence, and localize where

all the interacting entities (actors and objects) of the described event

are. For example, given the video description “a woman is unloading

a suitcase from a blue SUV”, the goal is to localize each mentioned

semantic entity (woman, suitcase, SUV), i.e., draw a bounding box around

each mentioned semantic entity at each video frame. This task not

only describes videos, but also connects linguistic symbols to external

physical objects (which is known as grounding [18]), hence the name
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Grounded Visual Description.

• Activity Detection in Extended Videos: Given an extended (untrimmed,

multi-actor) surveillance video, the goal is to detect when activities are

happening and localize the interacting entities of each activity instance.

The rest of this chapter is organized as follows. First, in Section 1.2, we

review approaches for representing videos and tackling the aforementioned

tasks, in order to place this thesis in context. Then, we discuss the main open

challenges in Section 1.3. Last, we conclude by describing our contributions

to address these challenges and provide an outline of the thesis in Section 1.4.

1.2 Related Work

In this section, we present an overview of related work structured around:

(a) video representations, and (b) approaches for temporal activity detection

and for visual grounding. The goal of this global overview is to facilitate

our discussion of open challenges that follows and to place this thesis in

context. Additional related work that is specific to the tasks we address in

later chapters will be presented in the respective chapters.

1.2.1 Video Representations

Video understanding requires capturing high-level semantic concepts and

reasoning about their spatio-temporal interactions. This is very challeng-

ing for computer vision systems, whose inputs are just sequences of arrays

of brightness values. The system then needs to convert this sequence to a
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video representations that captures spatio-temporal visual cues, such as the

appearance of actors, objects and the scene, their motion and their interactions.

Early approaches. Early works on activity recognition relied on explicit 3D

models of the human body and recognized activities based on the movement

patterns of structures such as legs and arms [19, 20, 21]. Since estimating and

tracking the 3D pose of non-rigid objects such as the human body is a very

challenging problem, view-based approaches observed that different activities

of a human could be characterized by different spatio-temporal patterns, and

leveraged 2D appearance (e.g., 2D silhouettes [22, 23]) or motion (e.g., frame

differences or optical flow [24, 25, 26]) instead of 3D structural elements. For

instance, Bobick et al. [25] represented human movement in terms of Motion

History Images, where pixels that have recently moved are brighter, and

then used a template-matching approach to match a test video of a human to a

database of known movements.

Holistic hand-crafted representations. Although global motion templates

might be sufficient for recognizing atomic actions, such as waving hands, that

a detected person is performing in front of a homogeneous, static background,

they do not generalize to natural videos, which often depict multiple move-

ments and background clutter. This limitation motivated the development

of approaches that focus on interest points in the video and compactly de-

scribe the appearance and motion in small spatio-temporal volumes around

each interest point with local descriptors. For example, interest points might
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correspond to corners or points with non-constant motion [27], and an ap-

pearance descriptor could be the histogram of the distribution of edge ori-

entations (HOG), the histogram of optical flow (HOF) or the histogram of

oriented optical flow (HOOF) in a spatio-temporal neighborhood of an inter-

est point [28, 29, 30]. Although these descriptors capture local neighborhood

characteristics, they are eventually aggregated to represent a video with a

holistic Bag-of-Visual-Words [29] or a Bag-of-Dynamical-Systems represen-

tation [30, 31, 32]. At a high-level, a dictionary of codewords is constructed,

for example by clustering the descriptors and keeping the cluster centers, and

then histograms are computed that describe the statistics of the descriptors

of a video, e.g., by assigning each descriptor to its closest codeword and

counting how many times each codeword appears in the video. This line of

work culminated in the seminal Dense Trajectories (DT) [33] and Improved

Dense Trajectories (iDT) [34] approaches, which densely sample feature points

in each frame, and track them in the video based on optical flow. Multiple

descriptors are then computed along the trajectories of feature points to cap-

ture shape, appearance and motion information, local features are quantized,

and the video is represented by a histogram. Given labeled training videos,

classifiers, such as Support Vector Machines, can be trained to predict video

labels based on this compact histogram representation.

Holistic deep representations. In 2012, Krizhevsky et al. [35] demonstrated

impressive improvement over hand-crafted representations in image classifi-

cation by training AlexNet, a deep Convolutional Neural Network (CNN) that
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consists of stacks of trainable convolutional filters. These filters compute spa-

tial feature maps, capturing appearance cues, and can be trained end-to-end,

jointly with classifiers. Motivated by the success of CNNs in the image do-

main, researchers started exploring deep architectures for video classification.

Initially, Karpathy et al. [36] directly apply 2D CNNs on frames and design

frame-level fusion methods to aggregate features over time. To better model

motion cues, Simonyan and Zisserman [37] propose a two-stream approach,

where the first stream consists of a 2D CNN applied on each RGB frame, while

the second stream applies a 2D CNN on stacked Optical Flow frames. The

action predictions of these two separately-trained streams are combined via

late fusion. Instead of relying on the additional flow stream to model motion

cues, another group of methods introduces spatio-temporal convolutional

filters [38, 39, 40], that are applied on short video clips and can learn to encode

discriminative spatio-temporal patterns directly from raw pixels. To capture

more long-range temporal context, Lea et al. [41, 42, 43] propose to use tempo-

ral convolutional networks that capture both fine-grained motion patterns as

well as long-term temporal interactions. However, up until 2016, hand-crafted

video representations, such as the iDT, were still the video representation

of choice and were combined with deep features to yield state-of-the-art re-

sults. The I3D model proposed by Carreira et al. [44] led to a significant

breakthrough in video understanding performance. It not only combines

insights about (a) 3D convolutional filters, (b) two-stream architectures, and

(c) effective initialization from 2D networks pretrained on image datasets, but

it is also trained on the Kinetics large-scale annotated video dataset. In this

thesis, we use pretrained I3D models to compute rich spatio-temporal feature
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maps of videos. All the aforementioned deep architectures, including more

recent Convolutional Neural Networks, such as the SlowFast network [45],

or Transformer-based networks that employ self-attention on patches, such

as the Multiscale Vision Transformer [46], represent frames or short clips as a

whole (similar to the statistical bag-of-words representations). Hence, they

cannot scale easily to long, extended videos due to GPU memory constraints

and are not designed for recognizing complex, fine-grained activities.

Part-based and region-based video representations. To better model fine-

grained activities, e.g., activities that differ in subtle motions or involve human-

object interactions, mid-level video representation approaches [47, 48, 49, 50,

51] discover or specify a set of mid-level semantic units (e.g., parts, regions

and attributes) and represent a video utilizing them. The semantic units can be

2D patches [52, 47, 53], 3D spatio-temporal patches [54, 48, 55], convolutional

action primitives [41], trajectory clusters [56], body-part tubelets [49], or based

on object proposals [57, 50, 51]. For instance, Maji et al. [47] represent a video

in terms of activated poselets, where each poselet is a linear classifier that

encodes a part of human pose under a given viewpoint. Zhu et al. [54], gener-

alize that to actons, which capture patterns within spatio-temporal volumes,

and Mavroudi et al. [49] learn deep moving poselets, i.e., mid-level classifiers

that capture spatio-temporal configurations of a body part during different

phases of an action. Lan et al. [57] represent a video as hierarchy of discrimi-

native spatio-temporal segments, with segments grouped in different levels of

granularity, ranging from actors and interacting objects to fine-grained body

part movements and individual objects. Interactions between actor and object
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regions are modeled in [58, 59, 50]. Prest et al. [59] use hand-crafted features

for representing human-object interactions. After tracking human and object

detections, they model the interaction between a human track and an object

track in terms of relative position and motion features. Gkioxari et al. [50]

represent actor and object regions with deep features and when predicting

an activity they select the most informative secondary, object region, and add

its score to the actor region. Baradel et al. [51] compute pairwise relational

features between object detections with learnable functions (Relational Net-

works [60]) and use them to predict activites. However, all these methods

represent each semantic unit either with local hand-crafted/deep features,

or with features extracted from pairwise interactions, without taking into

account the global spatio-temporal interactions among them. Addressing this

limitation of region-based approaches will be one of the main contributions of

this thesis.

1.2.2 Task-specific Video Understanding Frameworks

Temporal activity detection. While most work on activity recognition fo-

cuses on activity classification, by assuming that each input video is manually

temporally trimmed and spatially-cropped to capture a single activity, there

exist works that attempt to temporally detect activities in long, untrimmed

videos that are spatially-centered around a few actors. Recent approaches

can be grouped into three families: (a) frame-wise or clip-wise classification

approaches, (b) two-stage, proposal-based approaches, and (c) end-to-end ap-

proaches. Frame-wise or clip-wise classification approaches [61, 62, 63, 64, 65]
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follow a bottom-up approach, where they apply classifiers to each individual

frame or short clip to detect the presence or absence of each activity class.

Then, a post-processing step, involving smoothing and merging, is required

to obtain temporal activity detections. These approaches typically incorpo-

rate long-term temporal context in the representation of each frame or short

clip, by applying deep temporal models (such as Recurrent Neural Networks

or Temporal Convolutional Networks). For example, the TGM [64] method

constructs a frame representation while focusing at different neighboring tem-

poral segments, by applying a Temporal Convolutional layer whose kernels

are constructed based on a mixture of temporal Gaussian distributions. In

this thesis, we will also employ a frame-wise classification approach, due to

its simplicity, efficiency, and superior performance in the case of temporally-

overlapping activities. We will focus on representing frames in terms of

contextual region embeddings that capture actor-object spatio-temporal inter-

actions.

In proposal-based approaches [66, 67, 68, 69, 70, 71], a large number of

candidate temporal segments (temporal proposals) which are likely to contain

an activity is extracted, and then each proposal is separately classified (as-

signed to one activity class or rejected as background) and temporally refined.

Essentially, these approaches are more efficient and sophisticated versions of

the sliding window paradigm, where every possible window with different

temporal scales needs to be classified. Temporal proposals of pre-defined

temporal durations and intervals can be extracted based on sparse dictio-

naries [66], or by adapting the Region Proposal module of object detector
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networks [72] to the time domain [69], while variable duration proposals can

be extracted based on start/end frame probabilities and segment confidence

scores (dense proposals) [73, 71].

Last, end-to-end approaches either integrate proposal generation and

classification into a single, end-to-end architecture [74], or approach temporal

activity detection as a structured output prediction problem [75].

Grounded visual description. Developing models that can both generate a

sentence and link the generated words to their corresponding visual regions

is a nascent research area, motivated by a need for more trustworthy and

interpretable captioning models [76, 77, 78]. Such models can be seen as

an evolution of early image auto-annotation methods [79], and methods

for generating either visually grounded storylines [80] or descriptions with

grounded and co-referenced people [81]. Zhou et al. [4] proposed using

attention-based captioning models for generating sentences. Their GVD model

then grounds words based on region attention coefficients.

Visual object grounding. Grounding words (rather than whole sentences [82]

or phrases [83, 84]) in images and videos is an active research field in the

intersection of vision and language. Early attempts for weakly-supervised

visual grounding given textual descriptions of images and videos relied on

graphical models [85, 86]. Powered by advances in region proposal generation,

a large group of recent methods [87, 88] cast the task as a Multiple Instance

Learning (MIL) problem. These methods define an image-sentence matching

score determined by word-to-region alignments and learn how to correctly

match images to sentences using ranking losses. Such methods have also
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been extended to videos [89, 90, 9] with frame-sentence matching scores

and mechanisms to account for missing objects. However, these MIL-based

methods cannot both generate sentences and ground objects. This limitation is

lifted by the captioning-based GVD-Grd method [4], which grounds each word

based on region attention coefficients, computed with the previous words

as query, combined with region-to-class similarity coefficients. These are

obtained by transferring object class knowledge from external datasets.

1.3 Challenges

Despite the significant advances in video understanding presented in the

previous section, many challenges still remain. In this thesis we focus on three

challenges, described next.

Temporal detection of fine-grained, co-occurring activities. Powered by deep

convolutional networks that process whole video frames or short clips, and

large datasets with rich human annotations, modern systems are capable of

accurately recognizing hundreds of activity classes in benchmark datasets.

However, studies have suggested that these holistic representations often

focus on the scene context and the objects that are present [91, 92], rather than

the fine-grained human movements and human-object interactions. Although

leveraging such holistic context is sufficient for recognizing short, simple

activities such as playing the piano, swimming, or riding a bike, it might not

be sufficient to distinguish between more complex activities with similar

appearance and motion patterns. This is the case for a large number of daily

activities: they are performed in the same scene context (e.g., in a kitchen or
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in a parking lot), and involve interactions with the same objects (e.g., opening

a vehicle door/exiting a vehicle, opening a door/closing a door/entering

through doorway).

One way of augmenting holistic representations is by developing more

structured, mid-level representations of videos in terms of semantic parts,

such as body parts or detected objects [56, 59, 49, 50]. Since in the past the

technology to identify such semantic parts was not robust enough to serve

as basis for high-level video understanding, these approaches were mostly

applied to small datasets and restricted domains. However, recently deep

learning models [93] have made impressive progress in efficiently detecting

objects in unconstrained scenes. Building upon these recent advances in object

detection, we can utilize the detected actors and objects in a video as the

semantic parts. Hence, we need to develop algorithms that can represent

videos in terms of the detected semantic regions and their fine-grained spatio-

temporal interactions.

Limited localization supervision for visual grounding. Since we aim to

design region-based frameworks that can tackle diverse tasks in real-world

videos with the ultimate goal of deploying them in real-world applications,

their training must be as computationally- and data- efficient as possible.

However, the performance of fully-supervised grounded visual description

models often depends on the quantity and quality of annotated data. In

particular, training a system that can localize the semantic entities that are

mentioned in the sentence in the video typically requires per-frame bounding

box annotations of the these entities (actors and objects), which are costly and
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time-consuming to obtain. Due to this reason, many datasets only provide

images/videos with textual descriptions without bounding box annotations.

Thus, there is a need for approaches that can be trained with weak, textual su-

pervision. A line of work for weakly-supervised grounding in videos leverages

a set of candidate regions extracted from the video and uses video-to-sentence

matching as a downstream training task, where the matching is determined

by the compatibility of words and regions. However, these methods cannot

both generate descriptions and ground the referred semantic entities of the

generated description.

Real-time activity detection in extended surveillance videos. The majority of

real-world videos, such as surveillance or sports videos, are extended in time

and space, i.e., they are long untrimmed videos that capture multiple actors

of various types (people, vehicles, animals) performing multiple activities in

various regions of indoor or outdoor scenes. Therefore, efficiently detecting

activities of interest in extended videos is a key step towards real-world video

understanding.

Activity detection in long, untrimmed videos with a large variation in

the number and scale of actors is an under-explored and challenging area.

Current systems’ performance is indeed shown to degrade with an increasing

number of actors and decreasing actor scale [94]. Hence, they are expected

to struggle with activity detection in extended videos containing an average

of around 30 actors (up to hundreds) of varying scales, including tiny actors,

performing multiple activities of varying lengths [10].

Moreover, most activity recognition methods assume that actors are adult
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humans, although this assumption does not hold in many critical applications.

For example, in surveillance videos activities of interest might be performed

by both humans and vehicles. Based on the aforementioned assumption, most

state-of-the-art methods first detect adults in the video and then process these

single person regions and/or tracks, in order to detect activitiess [95, 96, 94,

97, 98, 99, 100, 101, 102]. Such regions of interest cannot handle multiple types

of actors and, more importantly, it is not trivial to combine them to obtain

the relevant visual context for detecting various types of activities, such as

activities involving a single actor, interactions between actors or actor-object

interactions. Last, a system that processes every single region or volume

associated with a potential actor will be very slow for multi-actor videos.

1.4 Thesis Outline and Contributions

Motivated by the fact that events in natural videos typically arise from spatio-

temporal interactions between actors and objects, in this dissertation we aim

to tackle the challenges described in the previous section by learning data-

driven, task-driven, interaction-aware actor and object representations. We

also aim to leverage these representations in novel region-based, composi-

tional frameworks that tackle multiple diverse video understanding tasks,

such as temporal activity detection, and grounded visual description. We

argue that region-based video understanding frameworks can facilitate the

recognition of complex, fine-grained activities by explicitly modeling interac-

tions, can more tightly connect vision and language by facilitating grounding,

and can scale to extended videos with multiple actors performing multiple
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activities in different spatio-temporal regions.

In Chapter 2, we will start by exploring the use of interactions among

detected actor and object regions together with the idea of graph-based repre-

sentation learning for temporal activity detection. Our goal is to develop a

representation learning framework to learn task-driven, discriminative, and

context-aware region representations by performing representation learning

on graphs, which model spatio-temporal interactions among detected actors

and objects in a video and interactions among symbolic concepts in a common

semantic space. For this purpose, we propose a novel graph neural network

for graph-based representation learning on spatio-temporal graphs, called

Visual-Symbolic Spatio-Temporal Message Passing Neural Network (VS-ST-

MPNN). Given a heterogeneous graph, with multiple types of nodes (such as

actors and objects), and multiple types of edges (such as spatial or symbolic),

our model computes a context-aware embedding for each region by aggre-

gating context from neighboring, interacting regions, while capturing the

nuances of different region and interaction types. We also design region-based

video understanding frameworks that leverage the context-aware region rep-

resentations for two applications, including temporal activity detection in

long, untrimmed videos. We then present an experimental evaluation on the

CAD-120 and Charades video datasets. Our results demonstrate that our

contextual region embeddings lead to improved activity detection perfor-

mance when compared to local region features or embeddings computed by

state-of-the-art Graph Neural Networks, and help us establish the new state

of the art in activity detection on both datasets. This proposed graph-based
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region representation learning method was first presented as a conference

paper in [103]. In this thesis, we explore an alternative formulation for het-

erogeneous visual message passing that employs multi-head attention, and

include new experimental results that evaluate different graph design choices

and different variants of our model.

In Chapter 3, we study approaches for aligning words in sentences with

visual regions, which is the key for tackling the Grounded Visual Descrip-

tion (GVD) and Visual Object Grounding (VOG) tasks. We start in the fully-

supervised setting, where we are given training videos with ground-truth

textual descriptions and bounding boxes for each referred semantic entity. We

introduce the AO-GVD model that extends a popular soft-attention-based

grounded video description model [4] by adopting the heterogeneous message

passing modules from Chapter 2 to enrich region embeddings with contex-

tual cues about the interactions among actors. We present an experimental

evaluation of different variants of this model on the ActivityNet Entities video

dataset. The rest of the Chapter focuses on the more challenging training

setup, where without any bounding boxes, the goal is to design and train a

model that can tackle both GVD and VOG tasks. We account for the lack of

ground-truth grounding annotations by introducing a sequence of discrete

latent variables, each one of which models a word-to-region alignment. Our

model, called Grounded Visual Description - Conditional Variational Autoen-

coder (GVD-CVAE) allows us to both generate sentences and also infer the

latent word-to-region alignments given ground-truth or generated sentences,

by taking into account the whole sentence, including the word to be grounded.
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To learn the parameters of the latent variable model, we leverage Amortized

Variational Inference (AVI) and design a training objective that encourages

the model to learn latent variables that capture meaningful word-to-region

alignments. Experiments on three benchmark datasets, Flickr30k Entities,

ActivityNet Entities and YouCook2, demonstrate both our learned alignment

distributions improve upon soft attention in grounding and set the state of

the art in two of these datasets. This model is published in [104]. In this thesis,

we also propose an extension of our latent variable model, which models

the temporal dependency between word-to-region alignments of words in

a sentence, and provide a more extensive evaluation of our approach, that

includes comparison with additional baselines, additional ablation studies

and qualitative results.

In Chapter 4 we move beyond videos that are spatially-centered around an

event, and instead focus on activity detection in surveillance videos that are

extended both in space and time. For this purpose, we propose an actor-centric

framework, that decomposes an extended video into a collection of action-

agnostic actor-centric tubelets of interest, where each tubelet is a sub-video

that is spatially-centered around an actor. Our proposed approach for tubelet

extraction is based on object detection, tracking and region grouping, and not

only helps localize activities in space on an actor-level, but also also reduces

the number of video regions that need to be processed, reducing the overall

processing time. Given a tubelet, one can then detect the activities of the

primary actor using the region-based framework from Chapter 2. To better

handle activities of low resolution occurring at the background of extended
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videos, we adapt the region-based activity detection framework to leverage

local motion cues in the form of optical flow. We also present an experimental

evaluation of our system on the MEVA dataset, and compare with state-of-

the-art methods. This system was originally presented in [105]. Finally, we

conclude the thesis in Chapter 5.

The contributions of this thesis were motivated by a number of preliminary

studies. In particular, we began the exploration of discriminative, region-based

video representations for video understanding by using deep appearance and

motion features extracted from spatio-temporal volumes defined along body-

part trajectories to learn mid-level classifiers called deep moving poselets [49].

We demonstrated that learning such discriminative body part representations

jointly with action classifiers and sharing them among action classes enhances

full body representations for classification of atomic activities in benchmark

datasets. However, these representations are not suitable for recognizing non-

atomic, complex activities, such as group activities or human-object interac-

tions. Overcoming this limitation stimulated Contribution 1 of this dissertation

that builds video representations based on regions of semantic entities and

their interactions. We also conducted preliminary studies on video under-

standing for extended videos, focusing on (a) action classification in trimmed

videos extended in space with a single actor, using videos captured during

sessions of rehabilitation therapy for infants and (b) untrimmed time-series of

kinematic data, using robotic kinematic data captured during performing sur-

gical tasks with a surgical robot. For the former, we adapted Multiple Instance
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Learning techniques for training multi-view classifiers based on weak single-

view frame-level labels instead of per-view actor-level labels [106], and we

also experimented with a actor detection-based approach [107]. For the latter,

we proposed a novel framework that combines a temporal Conditional Ran-

dom Field model with a frame-level representation based on discriminative

sparse coding [108]. On the one hand, our work in infant action classification

demonstrated the need for training models without spatio- temporal bound-

ing boxes, which are costly to obtain especially in the medical domain, and

the benefits of first localizing the actor and then recognizing the activities.

On the other hand, our work on surgical gesture segmentation demonstrated

the benefits of properly capturing long-term temporal context and further

motivated learning task-driven, discriminative features.
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Chapter 2

Graph-based Representation
Learning for Region-based Activity
Detection in Videos

In this chapter, we focus on the problem of learning structured video repre-

sentations based on the interactions among actors and contextual objects. We

describe how such interactions can be modeled with heterogeneous, spatio-

temporal graphs and introduce our novel graph-based region representation

learning framework.

We first provide motivation and discuss prior work for modeling spatio-

temporal visual interaction cues and semantic interaction cues for tackling

complex video understanding tasks. Then, we present our framework for

learning task-driven, context-aware actor and object embeddings by lever-

aging the rich information encoded in heterogeneous graphs that model the

interactions among actor and object regions in a video.

Finally, we show how our framework can be applied to tackle fine-grained

video understanding tasks that require spatial and temporal reasoning, such as
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sub-activity and object affordance detection, and temporal activity detection.

The learned, graph-structure-aware region embeddings lead to state-of-the-art

performance in activity recognition when evaluated on benchmark datasets

with natural videos of daily indoors activities performed by humans. In

Chapter 4 we will extend our framework to handle extended videos that

capture a large number of actors of multiple types (humans and vehicles) in

indoor and outdoor settings.

2.1 Motivation and Overview

The field of video understanding has been moving towards increasing levels

of complexity beyond simple classification of a single action performed by a

single person in a short, trimmed video. A plethora of real-world applications

require video understanding systems that can automatically detect multiple

complex activities performed by multiple actors interacting with objects in

untrimmed videos, or systems that can describe videos with natural language

sentences.

Modeling contextual interactions is crucial for addressing such video un-

derstanding tasks. As a motivating example, consider the video frames in

Fig. 2.1). Recognizing the activity watching tv requires capturing the spatial

interaction between the actor and the object, while taking a cup requires tem-

poral reasoning as well, considering the change of the pose of the actor and

the change of the position of the object. In addition to such local visual spatio-

temporal interactions, video understanding can be aided by interactions in a
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Figure 2.1: Interactions among video regions are powerful video understanding cues.
Video regions can correspond to actors (e.g., humans) or contextual objects (e.g., tv or
sofa). Each region type is associated with not only different semantics but also features
of potentially different dimensionality. Furthermore, interactions between regions
can occur in the same time frame (spatial interactions) or between different frames
(temporal interactions). All these potential interactions between regions in a video
can be encoded using heterogeneous graphs. (Sample frames from the Charades [2]
dataset.)

global semantic space, such as prior knowledge about co-occurring or seman-

tically similar activities or objects in videos. For example, the activity sitting in

a chair frequently co-occurs with the activity watching tv. Therefore, there is a

need to develop algorithms that can effectively model spatio-temporal visual

and semantic context.

One way of capturing such context is to use graphs whose nodes represent

scene entities and whose edges represent relationships between scene entities.

Such graph-based models have a rich history in computer vision, including

probabilistic graphical models, stochastic grammars, and compositional sys-

tems. However, traditional graph-based approaches to video understanding

based on probabilistic graphical models [109, 1, 110, 111] focused mainly on

modeling context at the level of symbols rather than visual signals or represen-

tations. Moreover, while stochastic grammars [112] used appearance models
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to bridge the gap between signals to symbols and modeled rich hierarchical

relationships, they used hand-crafted features to represent regions and only

modeled simple, pairwise spatial and functional relationships between enti-

ties at the same representation level. Hence, their feature representations and

horizontal relationships remained fairly limited.

Recent advances in deep learning have enabled representation learning on

graph-structured data using deep architectures called Graph Neural Networks

(GNNs). The central idea behind GNNs is to learn graph-structure-aware

node embeddings via the repeated aggregation of information from local node

neighborhoods using non-linear transformations [3]. GNNs have recently

been designed for refining the local region features of semantic entities in

videos based on the spatio-temporal context captured by visual st-graphs [82,

113, 114, 115].

Although representation learning on visual st-graphs has lead to significant

advances in video understanding there are four key limitations of state-of-

the-art approaches that prevent them from fully exploiting the rich structure

of these graphs. First, the visual st-graph is a heterogeneous graph that has

distinct node types (actor, object, etc.) and distinct edge types (object-to-actor

spatial, actor-to-actor temporal, etc.), with each type being associated with a

feature of potentially different dimensionality and semantics, as shown in the

example of Fig. 2.1. However, most GNNs assume that all nodes/edges are of

the same type. Therefore, recent attempts at explicitly modeling actors and

objects have resorted to applying separate GNNs for each node type [116]

or edge type [82, 117]. Second, most methods operate on a graph of fixed
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edge weights [113] with dense connectivity. In practice, only a few of the

edges capture meaningful interactions. Third, current approaches do not

incorporate edge features, such as geometric relations between regions, for updat-

ing the node representations. Finally, despite modeling local visual context,

existing approaches do not reason at a global video level or exploit semantic

interactions, which have been shown to be beneficial in the image recognition

domain [118, 119].

In this thesis, in an effort to address these limitations, we propose a novel

GNN model, called Visual-Symbolic Spatio-Temporal Message Passing Neural

Network (VS-ST-MPNN), that performs representation learning on hetero-

geneous visual-symbolic graphs to obtain context-aware representations of

actors and objects. Our model handles heterogeneous graphs by employing

learnable message functions that are specialized for each edge type. We also adapt

the visual edge weights with an attention mechanism that is specialized for

each type of interaction. For example, an actor node will separately attend

to actor nodes at the previous frame and object nodes at the current frame.

Furthermore, we employ edge features to refine the actor and object represen-

tations, as well as to compute the attention coefficients that determine the

connection strength between regions. Intuitively, nodes which are close to

each other or are interacting should be strongly connected. Finally, one of

our key contributions is incorporating an attributed symbolic graph whose

nodes correspond to semantic concepts, such as actions described by word

embeddings, and whose edges capture semantic concept relationships, such

as co-occurrence. We represent a video as a graph consisting of two major
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subgraphs: (a) a video-specific visual spatio-temporal subgraph that encodes

potential local spatio-temporal visual interactions among actor and object re-

gions in a video, and (b) a symbolic subgraph that encodes global interactions

in a semantic interaction space and is shared among all videos of a dataset.

We fuse the information of the two subgraphs with learnable connections

between their nodes, and we employ graph convolutions to learn global se-

mantic interaction-aware features. Importantly, we do not require ground

truth annotations of objects, tracks, scene graphs, or semantic labels for each

visual node.

Preliminary results or the VS-ST-MPNN framework were first published

in [103]. In this thesis, we extend the framework by proposing an alternative

message passing mechanism for refining the visual node embeddings inspired

by Transformers [120]. We also provide a more in-depth discussion of the

algorithm with more details about the region-based video understanding

framework, the construction of the input heterogeneous graph and training

objectives. We also conduct additional, extensive ablation studies to thor-

oughly assess the effectiveness of each graph design choice and each message

passing component of our model. Importantly, we expand the types of input

graphs that we consider, including visual graphs with temporal edges con-

necting regions in both past and futures frames and symbolic graphs with

latent semantic concepts initialized with random node attributes.

Consequently, our contributions are as follows:

1. Modeling region interactions with heterogeneous graphs: We model
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contextual cues for video understanding by combining a symbolic sub-

graph, capturing semantic interactions, with a visual spatio-temporal

subgraph, encoding interactions between actors and objects (Section

2.3.1).

2. Graph-based representation learning on heterogeneous spatio-temporal

graphs: We introduce a Message Passing Neural Network that is tailored

to our input heterogeneous graphs with edge-type-specific message func-

tions and node-type-specific node update functions, both of which take

into account edge features. We also describe how the VS-ST-MPNN

can be trained jointly with task-specific recognition networks to learn

task-driven, context-aware region embeddings (Section 2.3.2).

3. Experimental evaluation: To demonstrate the effectiveness and gener-

ality of our method, we evaluate it on tasks such as temporal activity

detection, and sub-activity and object affordance detection on two chal-

lenging, benchmark datasets and show that it achieves state-of-the-art

performance (Section 2.5).

2.2 Related Work

In Section 1.2, we provided a review of holistic video representations, in-

cluding a discussion of convolutional networks for representation learning

on 2D or 3D grids, and deep temporal models for representation learning

on time-series. Here, we provide additional discussion of approaches that

model actor-object interactions and semantic interactions with a focus on
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methods that perform representation learning on graphs, and draw connec-

tions between our graph neural network and related models in other research

areas.

2.2.1 Modeling Human-Object Interaction and Semantic In-
teraction Cues

Context and its role in computer vision has been studied for a long time [121,

122]. Our proposed model is related to approaches that capture context in

terms of contextual objects, human-object interactions and semantic interac-

tions. These approaches can be grouped into four families.

The first family includes probabilistic graphical models of human activities

and videos, where graphs are used to model statistical dependencies among

region labels [109, 123, 1, 110, 111]), or among the activity label and latent

part labels [124]. Gupta et al. [123] aim to simultaneously recognize objects,

estimate manipulation movements and object reactions by taking advantage

of the contextual information provided by each element to the others via

a Bayesian Network. Koppula et al. [1] use a graph to represent the joint

probability of sub-activity and object affordance labels in a video with a

Conditional Random Field (CRF). The energy of a particular assignment of

sub-activity and object affordance labels to humans and objects is a function of

the labels and hand-crafted region and interaction features. Other approaches

move beyond Bayesian Networks and CRFs, and utilize deep hierarchical

context models [111]. Another related line of work designs representations

of visual scenes based on stochastic grammars and their associated And-Or

graphs [112, 125, 126, 127], which capture hierarchical decompositions (e.g., a
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scene is composed of foreground and background, the foreground is composed

of objects, each object can be composed of parts etc.), as well as functional

and spatial relationships among structures at each level of the hierarchy.

Our work is more related to the horizontal links of And-Or graphs at the

terminal node level (region proposal level). While prior work has focused on

rich, vertical compositional structures, capturing the hierarchy of labels, their

horizontal links capture simple spatial, geometric relations (such as occlusions)

or functional relations (such as carry, support, etc.) between pairs of nodes. In

addition, each object node is represented by a detector that can recognize the

object based on primitives or hand-crafted local region features. Instead, our

regions are represented with rich, discriminative features extracted from deep

networks, which we aim to further refine based on long-range spatio-temporal

visual and semantic interactions captured in heterogeneous visual-symbolic

graphs.

The second group of approaches treats the activity recognition task as a

graph-matching problem, wherein to recognize the activity for a video, they

extract a graph from it and find its closest match from a set of graph exemplars

per activity class [128, 129]. For example, Brendel et al. [128] represent an

activity as a spatio-temporal graph whose nodes correspond to multi-scale

spatio-temporal video segments. Then, given the graphs of training videos,

they learn an archetype graph for each activity via least-squares optimization.

A new video is then parsed by matching its extracted graph with the closest

activity archetype graph.

The third family encodes semantic dependencies among activity labels
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with symbolic graphs, whose nodes correspond to activity labels. These ap-

proaches build upon a long line of work on exploiting external knowledge

encoded in label relation graphs for visual recognition tasks. Semantic label

hierarchies, such as co-occurrence, have been leveraged for improving object

recognition [130, 131, 132, 133], multi-label zero-shot learning [134] and other

image-based visual tasks [135, 136]. Much fewer papers utilize knowledge

graphs for video understanding [137, 138, 139], possibly due to the limited

number of semantic classes in traditional video datasets. For example, the

SINN [139] performs graph-based inference in a hierarchical label space for

action recognition. Although we also leverage such symbolic graphs, we use

them to define a semantic space that facilitates the computation of semantic

context-aware region embedding, rather than directly performing inference

on them.

Most related to our method is the last group of approaches that compute

interaction-aware mid-level representations of videos that are then mapped

to activity labels. These representations capture pairwise interactions of ac-

tors with other regions [58, 59] and/or scene context [58, 96]. Prest et al. [59]

use hand-crafted features for representing human-object interactions. After

tracking human and object detections, they model the interaction between

a human track and an object track in terms of relative position and motion

features. Baradel et al. [51] compute pairwise relational features between

object detections with learnable functions (Relational Networks [60]) and use

them to predict activites. However, these methods only model pairwise inter-

actions, while our method builds upon a recent line of methods that encode
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visual interactions with graphs and learn graph-structure aware features via

end-to-end training.

2.2.2 Graph-based Representation Learning for Video Under-
standing

Representation learning on visual spatio-temporal graphs. A growing line

of work aims to extract structured representations of videos by capturing

interactions among visual units via graphs and performing representation

learning on these graphs. One of the first approaches applying a deep network

on a visual graph for video understanding is the Structured Inference Ma-

chine [140], which refines actor features with message passing, and filters out

spurious interactions with trainable gating functions, but only captures spatial

relationships between actors. Another early approach is the S-RNN [141],

which introduces the concept of weight-sharing between nodes or edges of

the same type, but does not iteratively refine node representations.

With the advent of Graph Neural Networks (GNNs), many researchers

have explored modeling tracklets [82], feature map columns [96, 142, 143], or

object proposals [144, 51, 113, 114, 115, 117] as graph nodes and using off-the-

shelf GNNs, such as MPNNs [145] and GCNs [3] to refine the node or edge

representations, obtaining significant performance gains. However, since most

these existing GNNs are not designed to handle distinct node and edge types,

applying them to visual spatio-temporal graphs requires treating every node

and edge in the same way [113, 51, 146, 114, 142], or focusing only on one edge

type, such as actor-actor [144] and actor-object [96], or using separate GNNs
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for each node type [116] and edge type [113, 82]. In doing so, they completely

ignore or sub-optimally handle the rich, heterogeneous visual graph structure.

Recently, Arnab et al. [117] propose a variant of MPNNs that has spatial and

temporal message functions and apply it to spatio-temporal action detection

and scene graph generation. Similarly, Bertasius et al. [147] propose a Vision

Transformer which is applied on top of video patches and utilizes spatial and

temporal attention mechanisms. In contrast, our proposed method is more

general and can be directly applied to any heterogeneous spatio-temporal

graphs with an arbitrary number of node and edge types. The benefit of

such fine-grained modeling has already been established in fields such as

computational pharmacology and relational databases [148, 149, 150, 151], but

remains relatively unexplored in computer vision.

Furthermore, most of the graph-based representation learning approaches

applied on visual graphs do not use both node and edge features, and cannot

handle directed edges. Similar to [142], our method iteratively adapts the

visual edge weights, but employs an attention mechanism that is specialized

for different edge types and takes edge features into account. The GPNN [11]

also utilizes edge features both for refining the scalar edge weights connect-

ing the visual nodes and for refining the node embeddings, but it does not

iteratively refine the edge features to capture richer interactions as we do.

Our proposed edge-type-specific and edge-feature-conditioned neighborhood

aggregation mechanism can also be seen as an extension of edge-conditioned

graph convolution [152, 153].

Representation learning on semantic graphs. Our framework is also related
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to a recent line of work that leverages symbolic graphs that are shared among

all images in a dataset by projecting local visual features to the common

semantic space defined by the symbolic graph and using graph convolutions

to model global semantic interactions. For example, Liang et al. [118] enhance

feature maps extracted from images by using a symbolic graph, while [154,

155] use a latent semantic interaction graph. In contrast, we seek to improve

the representation of visual subgraph nodes rather than enhance convolutional

features on a regular grid, and our model is proposed for the video domain.

Representation learning on hybrid graphs. Fusing information from multiple

graphs (such as our visual and symbolic subgraphs) using GNNs is an exciting

new research direction [156, 157, 158, 159, 160]. Similar to our approach, Chen

et al. [119] combine a visual graph instantiated on objects with a symbolic

graph and perform graph representation learning, while [161] enforce the

scalar edge weights between visual regions to be consistent with the edges

of the symbolic graph. However, they operate on simple spatial graphs and

assume access to semantic labels of regions during training. In contrast, we

operate on hybrid visual-symbolic spatio-temporal graphs and we do not

require known correspondences between visual and symbolic nodes during

training.

2.3 Graph-based Actor and Object Representation
Learning

We propose a general framework for region-based video understanding that

incorporates structured information from an input heterogeneous graph to
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Figure 2.2: Overview of our VS-ST-MPNN model that performs representation learn-
ing on heterogeneous, visual-symbolic graphs. Given an input video that is repre-
sented as a heterogeneous graph with visual and symbolic subgraphs (as described
in Sec. 2.3.1), our framework has two modules that integrate context in the local
representations of its nodes and edges: (a) a Visual Context Module (Sec. 2.3.2.1) that
performs Lv rounds of node and edge updates on the visual subgraph, with special-
ized neighborhood aggregation functions that depend on the type of an edge, and (b)
a Semantic Context Module (Sec. 2.3.2.2) that integrates visual evidence with semantic
concepts encoded in the symbolic graph and learns global semantic interaction-aware
features. The final node and edge embeddings can be appropriately pooled and fed
to recognition networks for tackling various video understanding tasks.

address a diverse set of video understanding tasks. Given an input RGB

video with Tf frames, height H and width W, I 2 R3⇥H⇥W⇥Tf , and a set of

M regions R = {ri 2 R4
}

M
i=1 (either manually annotated or extracted with an

object detector trained on an external image dataset), we construct a heteroge-

neous, attributed graph G(R, I) that consists of two connected subgraphs: (a)

a visual spatio-temporal subgraph that encodes potential local spatio-temporal

interactions among actor and object regions in the video, and (b) a symbolic

subgraph that encodes global interactions in a semantic space and is shared
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among all videos of a dataset. We are interested in leveraging that graph

to learn a discriminative model p(Y|I, R), that models the probability of a

labeling Y from a task-specific structured label space Y (e.g., multiple activity

labels per frame or a sentence describing each video) given the input video I

and regions R. In particular, our primary goal is to refine the local features

of actors, objects and their interactions based on the contextual information

captured in the input heterogeneous graph. We refine those local features

with a novel GNN, called VS-ST-MPNN, shown in Fig. 2.2. Our VS-ST-MPNN

is tailored to exploit the rich structure of the heterogeneous input graph by (1)

learning node- and edge-type-specific neighborhood aggregation functions, (2)

adapting the scalar edge weights with edge-type-specific attention mechanisms,

without assuming a fixed, known graph structure such as actor and object

tracks or ground-truth actor-object interactions, (3) utilizing geometric region

relations and edge attributes both in the node updates and attention mecha-

nism, and (4) incorporating a soft-assignment module for connecting visual

and semantic nodes without requiring access to ground-truth semantic labels

of regions. Next, we describe our framework in more detail.

2.3.1 Modeling Interactions with Heterogeneous Graphs

Given a set of semantic regions (actors and objects) and their local features, we

build a structured representation of a video by representing it as a heteroge-

neous, attributed, directed graph that encodes interactions among actors and

objects. The graph, denoted as G(R, I) = (V , E ,H(0),Q(0)), consists of a set of
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Figure 2.3: Given a video with actor and object regions, we aim to learn region
representations that capture (1) local visual spatio-temporal interactions between
actors and objects, and (2) global semantic interactions, such as action co-occurrences.
These powerful contextual cues are encoded in a heterogeneous attributed graph with
multiple types of nodes (e.g., actor, object, symbolic) and edges (e.g., actor-to-object
spatial, visual- symbolic). In this work, we perform representation learning on such
heterogeneous graphs to obtain task-driven, context-aware region representations.
(Sample frames from the Charades [2] dataset.)

nodes V = {1, . . . , |V|} of different types, a set of edges E ✓ V ⇥ V of differ-

ent types, a set of initial node attributes H(0) = {h(0)
i }i2V , and a set of initial

edge attributes Q
(0) = {q(0)

ij }(i,j)2E . Each node is associated with a single

node type from a set T of possible types, and each pair of nodes is connected

by an edge which is associated with an edge type from a set R of possible

types (relationships). These associations are defined via a node type mapping

function n : V ! T , and an edge type mapping function r : E ! R. Note that

the dimensionality of the initial attribute describing each node (and edge) may

vary depending on their type: h(0)
i 2 Rdn(i) . Weighted heterogeneous graphs
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are additionally associated with a scalar weight function w : E ! R. The

graph connectivity can be compactly represented as a set A = {Ae}e=1,...,|R|

of adjacency matrices, where (Ae)ij = we(i, j) denotes a directed edge of type

e from node i to node j with scalar weight w(i, j). The edge-type-conditioned

neighborhood Ne(i) = {j : (i, j) 2 E , r(i, j) = e} is defined to contain all

vertices which are connected to node i via an incoming edge of type e.

In our framework, we focus on heterogeneous graphs that consist of a

spatio-temporal visual subgraph and a symbolic subgraph (Fig. 2.3). In par-

ticular, we represent a video as a graph consisting of two major subgraphs:

(a) a video-specific visual spatio-temporal subgraph, whose nodes V
v corre-

spond to actor and object regions in a video and whose edges E
v encode

potential local spatio-temporal visual interactions among these regions, and

(b) a symbolic subgraph, whose nodes V
s correspond to semantic concepts

and whose edges E s encode global interactions in a semantic interaction space

and is shared among all videos of a dataset. Therefore, each node of our hybrid

visual-symbolic graph is associated with one of three node types: actor (a),

object (o) or symbolic (s), i.e., T = {a, o, s}, while our set of edge types

can be split into three subsets R = R
v
[R

vs
[R

s, where R
v is the set of

visual spatio-temporal edge types, such as actor-to-object-spatial or actor-to-

actor-temporal, Rvs is the set of types associated with edges connecting visual

nodes with symbolic nodes subgraphs, and R
s is the set of symbolic edge

types. Accordingly, the set of adjacency matrices can be split into three sub-

sets: A = {A
v
e}e2Rv [ {A

vs
e }e2Rvs [ {A

s
e}e2Rs , and we can infer the types of

the connected nodes from the type of the edge that connects them. We emphasize
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that each connected pair of nodes in our graph is connected with a single

edge of a single type, thus we can infer the type of the connected nodes from the

type of the edge that connects them. This is a property of our input graph that is

crucial for the design of our graph-based representation learning model. Next,

we describe general steps for constructing the input visual-symbolic graph

(details for the input visual-symbolic graphs that we use in each task will be

provided in Sections 2.5.1.3 and 2.5.2.3).

Visual spatio-temporal subgraph. The main insight of our approach is that

events in natural videos typically arise from spatio-temporal interactions

between actors and objects. Suppose we are given ground-truth bounding

boxes or object detections at each frame of an input video with T frames.

These regions constitute the nodes Vv of the visual spatio-temporal subgraph.

We first need to define the node assignment function n : V
v
! T

v =

{a, o} that assigns the actor or object type to each visual node. Second, we

add directed edges that connect visual nodes and model latent local spatio-

temporal interactions. Edge types Rv are based on the types of nodes that are

connected and whether the nodes correspond to the same frame or not (e.g.,

object-to-actor spatial (obj-act-s), actor-to-object spatial (act-obj-s), object-to-

object spatial (obj-obj-s), actor-to-actor temporal (act-act-t)). Next, we compute

initial attributes of nodes and edges. A node-type-specific region feature

extraction function fn(i) is used to compute initial node attributes for each

visual node:

h(0)
i = fn(i)(ri, I) 2 Rdn(i) . (2.1)
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Similarly, each visual directed edge (i, j) 2 E
v is described by an initial edge

attribute q(0)
ij 2 Rdr(i,j) whose dimension depends on the edge type r(i, j) and

is computed with an edge-type-specific function fr(i,j)(ri, rj, I):

q(0)
ij = fr(i,j)(ri, rj, I) 2 Rdr(i,j) . (2.2)

Fig. 2.2 illustrates a toy example with a visual graph consisting of A = 1

actor and O = 2 object detections per timestep for T = 2 timesteps. Depending

on the task we can use different node type assignment function, edges, node

and edge attributes to represent potential interactions, regions and spatial

relationships, respectively. For example, for the task of activity detection, we

use a visual subgraph that models the interactions of an actor (person) with

contextual object nodes in each frame, as well as the change in the actor’s

appearance and interactions with other actors among different timesteps.

Symbolic subgraph. Let us recall that V s and E
s denote the symbolic sub-

graph’s node set and edge set, respectively. For simplicity we assume that

all symbolic nodes have type s, while symbolic edges have type s � s, i.e.,

T
s = {s} and R

s = {ss}. Each symbolic node i is initialized with a semantic

attribute h(0)
i 2 Rds of dimensionality ds using a feature extraction function

fs(·). Edges in the symbolic graph are associated with scalar weights, which

encode semantic relationships. These edge weights are summarized in the

fixed adjacency matrix A
s
ss 2 R|V

s
|⇥|V

s
|. Note that symbolic edges are not

associated with edge attributes.

Our framework supports various types of symbolic subgraphs. For ex-

ample, for the task of activity detection, we choose to use a subgraph with
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symbolic nodes corresponding to action labels, node attributes initialized with

word embeddings of the action labels, and scalar edge weights capturing

action co-occurrences.

Visual-Symbolic edges. As their name suggests, these directed edges E
vs

connect the nodes of the visual subgraph with the nodes of symbolic graph.

Although latent, we can specify a priori the allowed visual-symbolic node

connections. For example, for the task of activity detection, where we choose

to use symbolic nodes corresponding to action semantic concepts, we only

connect actor nodes and symbolic nodes. Similar to the symbolic edges, we

also do not associate an edge attribute with the visual-symbolic edges.

2.3.2 VS-ST-MPNN: Representation Learning on
Visual-Symbolic Spatio-Temporal Graphs

Our proposed VS-ST-MPNN iteratively refines the representations of detected

actors, objects and their interactions based on the contextual information

captured in the two subgraphs of the input heterogeneous graph. It extends

the original Message Passing Neural Network (MPNN) framework [145],

which we discussed earlier in this chapter, so that it can take into account the

various node and edge types, as well as the special subgraph structure.

The first key idea of our VS-ST-MPNN is to use edge-type-specific message

functions, edge-type-specific edge update functions, and node-type specific

node update functions, instead of using the same functions with the shared

parameters for all node/edge types as in the original MPNN. Given the input

graph representing a video I with initial node and edge attributes, {h(0)
i }i2V
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and {q(0)
ij }(i,j)2E , respectively, we introduce novel graph propagation rules to

iteratively compute context-aware node and edge embeddings. In particular,

at the l-th iteration, our VS-ST-MPNN first computes a message along each

edge (i, j) with a an edge-type-specific and layer-specific learnable message

passing function MSG(l)
r(i,j)(·) that takes as inputs the current embedding of

the receiver node h(l�1)
i , the current embedding of the sender node h(l�1)

j ,

and the current edge embedding q(l�1)
ij (if available). We would like to em-

phasize again, that in contrast to the original MPNN network [145], each one

of the message passing functions {MSG(l)
e (·)}e2R is a neural network param-

eterized with learnable weights q
(l)
e that depend on the edge type e. Then,

the embedding of the i-th node is updated with a node-type-specific node

update function NodeUPD(l)
n(i)(·) after aggregating messages from its neigh-

borhood N (i) = {j : (i, j) 2 E} with an aggregation function AGGR(l)(·). We

also update the embedding of every attributed edge (i, j) with an edge-type-

specific edge update function EdgeUPD(l)
r(i,j)(·). Formally, the (l)-th layer of

VS-ST-MPNN is defined by the following graph propagation rules:

m(l)
ij = MSG(l)

r(i,j)

⇣
h(l�1)

i , h(l�1)
j , q(l�1)

ij

⌘
2 R

d(l)r(i,j) , (2.3)

h(l)
i = NodeUPD(l)

n(i)

✓
h(l�1)

i , AGG(l)
✓n

m(l)
ij

o

j2N (i)

◆◆
, (2.4)

q(l)
ij = EdgeUPD(l)

r(i,j)

⇣
q(l�1)

ij , h(l�1)
i , h(l�1)

j

⌘
. (2.5)

The second key idea of our VS-ST-MPNN is to perform message passing

in stages instead of sending messages and updating all nodes of the input

graph in parallel. The intuition is to first refine the region representations
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based on local spatio-temporal interactions between actors and objects, and

then further refine them based on global semantic interactions on the latent

semantic space embodied in the symbolic subgraph. In particular, in the first

stage we iteratively compute messages along the visual edges and refine the

visual nodes based on local visual spatio-temporal context for Lv iterations.

These iterations of visual message passing (or equivalently first Lv layers of

the VS-ST-MPNN) are called the Visual Context Module (VCM). During these

iterations there are no messages computed alongside the visual-symbolic

or symbolic edges, and the symbolic node attributes are updated with the

identity transformation, i.e.

n
m(l)

ij

o

(i,j)2E\Ev
= 0, l = 1, . . . , Lv, (2.6)

h(l)
i = h(l�1)

i , i 2 V
s, l = 1, . . . , Lv. (2.7)

In the second stage, we update the symbolic nodes and edges as follows.

First, at the (Lv + 1)-th iteration, messages are computed alongside the visual-

to-symbolic edges to update symbolic nodes with visual evidence. Then, we

perform Ls iterations of symbolic message passing on the symbolic graph to

model interactions on the shared semantic interaction space. During these

iterations, there are no messages computed alongside the visual-symbolic or

visual edges and the visual node/edge attributes are updated with the identity

transformation. Finally, we compute a message alongside each symbolic-to-

visual edge to update the visual nodes (actors and objects) with the semantic-

context-aware embeddings. These iterations of visual-symbolic, symbolic and

symbolic-visual message passing (or equivalently last (Ls + 2) layers of the
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VS-ST-MPNN) are called the Semantic Context Module (SCM).

In summary, our VS-ST-MPNN performs heterogeneous message passing

and consists of two main modules: (a) the Visual Context Module (VCM), that

refines region node embeddings based on the local spatio-temporal interac-

tions among actors and objects that are encoded in the visual subgraph, and (b)

the Semantic Context Module (SCM), that models global interactions between

spatio-temporally distant regions on the shared semantic interaction space

encoded in the symbolic subgraph. Different instantiations of the graph prop-

agation rules in Eq. 2.3-2.5 give rise to different flavours of our VS-ST-MPNN

framework, which we will discuss next.

2.3.2.1 Visual Context Module

Given the input visual subgraph with initial node and edge attributes, {h(0)
i }i2Vv

and {q(0)
ij }(i,j)2Ev , respectively, the Visual Context Module performs Lv itera-

tions of heterogeneous visual message passing to obtain visual context-aware

actor and node embeddings. Since we build our visual subgraph on top of

noisy region proposals and with edges capturing potential interactions, we

expect that it will contain many spurious edges and irrelevant contextual ob-

ject nodes. To handle these type of graphs, we employ attention mechanisms

to discover relevant neighboring nodes for the update of each region feature.

To compute messages and update node and edge embeddings on the visual

subgraph, we propose two attention-based versions of the graph propaga-

tion rules, one inspired by Graph Attention Networks (GAT) [162] and one

inspired by Transformers [120]. We will now describe the instantiation of the
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message passing function (Eq. 2.3), node update function (Eq. 2.4) and edge

update function (Eq. 2.5) for each one of them.

Visual Message Passing with Heterogeneous Graph Attention Network

(HetGAT).

– Attention mechanism: At each visual message passing iteration l = 1, . . . , Lv

we first refine the strength of the connections between regions by computing

attention coefficients, a(l)ij , that capture the relevance of node j (message sender)

for the update of node i (message receiver). In contrast to GAT [162], our model

learns an attention mechanism that is specialized for each type of interaction

and utilizes edge features for its computation. The attention coefficients for

the l-th iteration are computed as follows:

a(l)ij = exp
⇣

g
(l)
ij

⌘
/

0

@ Â
k2N v

r(i,j)(i)
exp

⇣
g
(l)
ik

⌘
1

A , (2.8)

g
(l)
ij = r

✓⇣
vr(i,j)

a

⌘T h
Wn(i)

ar h(l�1)
i ; Wn(j)

as h(l�1)
j ; Wr(i,j)

ae q(l�1)
ij

i◆
. (2.9)

Here, n(i) is the type of node i, r(i, j) is the type of the edge from node j to node

i, N v
r(i,j)(i) is the set of visual nodes connected with node i via an incoming

edge of type r(i, j), h(l�1)
i is the embedding of the i-th node at the previous iter-

ation, q(l�1)
ij is the embedding of the edge from j to i at the previous iteration,

and r is a non-linearity, such as Leaky-ReLU [163]. (vr(i,j)
a , Wn(i)

ar , Wn(j)
as , Wr(i,j)

ae )

are the learnable weights of our attention mechanism (although we have

dropped the layer index (l) from these weights for readability, we use different

attention weights at each iteration).
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In other words, on the first visual message passing iteration, a node-type-

specific linear transformation, parameterized by a weight matrix Wn(i)
as 2

RdV⇥dn(i) , is applied to every sender node, where dV is the visual node em-

bedding size. Similarly, current receiver node embeddings are linearly trans-

formed with learnable weights Wn(j)
ar 2 RdV⇥dn(j) . Importantly, our attention

mechanism takes into account the current edge embeddings after projecting

them with learnable, edge-type-specific weights Wr(i,j)
ae 2 RdV⇥dr(i,j) . Given the

projected node and edge embeddings, the attention mechanism is a single-

layer feedforward neural network, parameterized by an edge-type specific

weight vector vr(i,j)
a 2 RdV . Note that in Eq. 2.8 we compute separately nor-

malized attention coefficients for each type of incoming edges to a receiver

node. Intuitively, an actor node at time t will separately attend to actor nodes

at the previous frame and object nodes at the current frame.

– Message computation: After computing the attention coefficient for each edge

(i, j) from node j to node i, we compute a message along that edge with

an edge-type-specific message computation function MSG(l)
r(i,j) that takes the

form:

m(l)
ij = a(l)ij

⇣
Wn(j)

ms h(l�1)
j + Wr(i,j)

me h(l�1)
ij

⌘
2 RdV , (2.10)

where Wn(j)
ms and Wn(j)

ms are learnable projection matrices for the node and edge

attribute, respectively. In practice, we found that using the same weights in

the attention and message computation leads to better performance (Wn(j)
ms =

Wn(j)
as , Wr(i,j)

me = Wr(i,j)
ae ).

– Node update: Following the message computation, the node embedding is

updated using an aggregation of incoming messages from different edge types
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and a residual connection,

h(l)
i = s

0

@Wn(i)
u h(l�1)

i + Â
j2N v(i)

m(l)
ij

1

A 2 RdV , (2.11)

where N
v(i) is the set of visual nodes that are connected with node i, Wn(i)

u

is a learnable projection matrix that we employ if there is a size mismatch

between the current node embeddding and the message size, and s(·) is a

non-linearity, such as ReLU.

– Edge update: A natural way of updating the edge embedding is by similarly

combining the current edge embedding with the embeddings of the connected

nodes, modulated by the attention coefficient:

q(l)
ij = a(l)ij s

⇣
Wr(i,j)

ae q(l�1)
ij + Wn(j)

as h(l�1)
j + Wn(i)

ar h(l�1)
i

⌘
2 RdV . (2.12)

In practice, passing the computed message through a non-linearity performs

comparably:

q(l)
ij = s

⇣
m(l)

ij

⌘
2 RdV . (2.13)

Visual Message Passing with Heterogeneous Graph Transformer (HetGTx).

Motivated by the success of multi-head Transformer-based architectures, we

propose an alternative heterogeneous message passing mechanism, called

HetGTx. Overall, the key differences from the HetGAT message passing

are the use of multi-head scaled-dot-product attention and the use of multi-

layer feedforward networks for the node and edge update. We also assume

for simplicity that node (edge) attributes have already been mapped to a
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common dimension dV with learnable node-type-specific (edge-type-specific)

embedding functions.

– Attention mechanism: Multi-head attention allows the model to implicitly

attend to information from different representation subspaces of neighboring

nodes. Additionally, our model is designed to (a) explicitly attend to infor-

mation in different subgraphs which arise from different edge types, and (b)

utilize edge features, both of which enhance the model’s encoding capability.

The proposed attention mechanism employs K edge-type-specific scaled-dot-

product attention heads for each message-passing iteration l. The attention

coefficients aij for each attention head k = 1, . . . , K for the l-th iteration are

computed as follows:

a(k,l)
ij = exp

⇣
g
(i,l)
ij

⌘
/

0

@ Â
n2N v

r(i,j)(i)
exp

⇣
g
(k,l)
in

⌘
1

A , (2.14)

g
(k,l)
ij =

⇣
Qr(i,j)h(l�1)

i

⌘T ⇣
Kr(i,j)h(l�1)

j

⌘

p
dV

+ wT
e q(l�1)

ij , (2.15)

where Qr(i,j)
2 RdV⇥dV is the edge-type-specific query projection matrix, with

the current receiver node embedding h(l�1)
i serving as the query. Similarly,

Kr(i,j)
2 RdV⇥dV is the key projection matrix, while we is an edge projection

vector. The proposed self-attention mechanism applied for each edge type

closely follows the scaled dot-product self-attention mechanism used in Trans-

formers [120], while the edge feature embedding (wT
e q(l�1)

ij ) can be seen as a

generalization of the relative position bias used in architectures like the Swin

Transformer [164]. Moreover, whereas the relative position bias is a learnable

embedding of the relative position between tokens, our attention coefficients
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can incorporate any edge feature describing the interaction between actors and

objects (for example, the difference in coordinates of the object centroids and

human skeleton joint locations, or visual features from the union of bounding

boxes of interacting entities).

– Message computation: Similar to HetGAT, we compute a message along each

edge from node j to node i with an edge-type-specific message computation

function MSG(l)
r(i,j). However, our message now consists of K concatenated

messages, each one of dimension bdV/Kc from each head:

m(l)
ij =

h
a(1,l)

ij

⇣
Vr(i,j)

1 h(l�1)
j + Er(i,j)

1 q(l�1)
ij

⌘
; . . . ;

a(K,l)
ij

⇣
Vr(i,j)

K h(l�1)
j + Er(i,j)

K q(l�1)
ij

⌘ i
2 RdV ,

(2.16)

where [·; ·] denotes concatenation and {Vr(i,j)
k }

K
k=1, {Er(i,j)

k }
K
k=1 are learnable

head-wise projection matrices for the values (sender node embeddings) and

edge features.

– Node update: Following the message computation, the node embedding is

updated using an aggregation of incoming messages from different edge types

and attention heads similar to the Transformer architecture:

ĥ(l)
i = LN

0

@h(l�1)
i + Â

e2Rv

0

@We
O Â

j2N v
e (i)

m(l)
ij

1

A

1

A , (2.17)

h(l)
i = LN

⇣
ĥ(l)

i + FFN(ĥ(l)
i )
⌘

, (2.18)

where LN(·) denotes LayerNorm [165], and FFN is a 2-layer MLP with hidden

size 2⇥ dV . An important difference from the original Transformer is that we

aggregate messages from all attention heads for each edge type and project
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them to an edge-type-specific vector. We do so using a set of learnable matrices
�

We
O 2 RdV⇥dV

 
e2Rv .

– Edge update: Following the node update computation, we update the edge

embeddings as:

q̂(l)
ij = LN

⇣
q(l�1)

ij + Wr(i,j)
o mij

⌘
, (2.19)

q(l)
ij = LN

⇣
q̂(l)

ij + FFN(q̂(l)
ij )
⌘

. (2.20)

After Lv rounds of node and edge updates, using the HetGAT message

passing equations (Eq. 2.10- 2.12), or the HetGTx message passing equations

(Eq. 2.16- 2.20) we obtain refined, visual context-aware node and edge embed-

dings: h(Lv)
i 2 RdV and q(Lv)

ij 2 RdV .

2.3.2.2 Semantic Context Module

The Semantic Context Module performs message passing across the visual-

symbolic and symbolic edges.

– Integration of visual evidence with the symbolic graph: As a first step, we update

the attributes of the symbolic graph using visual evidence, i.e., the visual

context-aware representations of the nodes of the visual st-graph. To achieve

this, at the (Lv + 1)-th iteration, we pass messages from visual nodes i to

symbolic nodes c across the visual-symbolic edges (c, i) 2 E
vs:

mci = wvs
ci Wvs

p h(Lv)
i 2 RdS , (2.21)
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where Wvs
p 2 RdS⇥dL is a learnable projection weight matrix and wvs

ci is a data-

dependent soft-assignment weight that represents the confidence of assigning

the current embedding of visual node i to the symbolic node c:

wvs
ci =

exp
⇣
(wvs

c )T h(Lv)
i

⌘

Âc02N vs(i) exp
⇣�

wvs
c0
�T h(Lv)

i

⌘ . (2.22)

Thus, our model learns associations between the nodes of the visual st-

graph and those of the symbolic graph, without requiring access to the ground-

truth semantic labels of regions. Once the messages are computed, each

symbolic node is represented by concatenating the symbolic attribute (e.g.,

linguistic embedding) with the weighted sum of linearly transformed visual

node embeddings:

h(Lv+1)
c =

"
h(0)

c ; s

 

Â
i

mci

!#
2 Rds+dS . (2.23)

– Semantic graph convolutions: We are now ready to obtain semantic interaction-

aware symbolic embeddings by passing messages across the symbolic edges.

To do so, we leverage the flexibility of our heterogeneous message passing

framework and design message functions that are suited to the symbolic

subgraph. Recall that the structure of the symbolic graph (adjacency matrix)

is fixed and shared across all videos of a dataset, and the symbolic graph

does not have edge attributes. Thus, instead of using an attention-based and

edge-feature-aware message function as we did for passing messages on the

visual subgraph (Eq. 2.10 or Eq. 2.16), we use a simpler message function
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(graph convolution) [3]:

m(l)
cc0 =

1p
deg(c)deg(c0)

Wshl�1
c0 2 RdS , (2.24)

where deg(c) is the degree of the c-th node in the symbolic subgraph (with

added self-loops): deg(c) = Âc0 A
s
cc0 + 1. The embedding of each symbolic

node is updated by aggregating messages from all neighboring symbolic

nodes:

h(l)
c = s

0

@ Â
c02N s(c)

mcc0

1

A , l = Lv + 2, . . . , Lv + 1 + Ls, (2.25)

– Update of visual st-graph: The evolved symbolic node embeddings obtained

after Ls iterations of graph convolutions on the symbolic graph can be mapped

back to the visual subgraph, so that the representation of the visual nodes can

be enriched by global semantic context. To achieve this we compute mapping

weights (attention coefficients) from symbolic nodes to visual nodes:

wsv
i,c =

exp
⇣
(vsv

a )T
h
h(L)

c ; h(Lv)
i

i⌘

Âc02N vs(i) exp
⇣
(vsv

a )T
h
h(L)

c0 ; h(Lv)
i

i⌘ , (2.26)

where vsv
a 2 RdL+Ds is a learnable attention vector, L = Lv + 1 + Ls.

The final visual node embedding is then obtained by updating its current

state with the aggregated messages from symbolic nodes:

mic = wsv
i,cW

sv
p h(L)

c0 (2.27)

hi = s

 
h(Lv)

i + Â
c02V s

mic0

!
(2.28)
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These context-aware representations H = {hi}
M
i=1 of visual nodes can be

fed to recognition networks to solve downstream video understanding tasks.

In the next sections, we show how our framework can be applied to various

activity recognition tasks.

2.4 VS-ST-MPNN for Region-based Activity Recog-
nition

We now return to our original goal of designing and learning region-based

discriminative models p(Y|I, R) for tackling structured output prediction

tasks, such as the prediction of multiple human activity labels per frame [2] or

the prediction of the activity performed by a person and the object affordances

in each temporal segment of a video [1]. At a high level, our proposed video

understanding frameworks consist of two main components: a visual encoder

designed based on the VS-ST-MPNN described thus far, and a task-specific

recognition network. The visual encoder learns representations for the regions,

while the recognition network maps these visual representations to the desired

video labeling.

2.4.1 VS-ST-MPNN for Sub-activity and Object Affordance
Detection

The first application that we consider for our VS-ST-MPNN is sub-activity

and object affordance detection. Consider the scenario where an assistive

robot observes a human performing a task, e.g., making cereal. During the

course of the captured video, the human interacts with several objects and
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performs multiple sub-activities. The robot needs to recognize the sequence

of sub-activities performed by the human (e.g., reaching, pouring, etc.), as well

as the object affordances, i.e., how an object is being used at each temporal

segment (e.g., reachable, pourable, stationary, etc.).

Let us assume that we are given an input video I with T ground-truth

temporal segments, i.e., we know the start and end time of each sub-activity.

Suppose we are also given the human bounding boxes
n

ra
t,i

o

i=1,...,A
and object

bounding boxes
n

ro
t,i

o

i=1,...,O
at each segment t, so that the set of regions is

given by R =

⇢n
ra

t,i

o

i=1,...,A
,
n

ro
t,i

o

i=1,...,O

�T

t=1
. The goal of the sub-activity

and object affordance detection task is to predict a sub-activity label from a

set of discrete sub-activity labels K
a for each actor region at each temporal

segment, and also predict an object affordance label from a set of discrete

object affordance labels K
o for each object of each temporal segment. Let

ya
t,i 2 K

a be a random variable that indicates the sub-activity of the i-th actor

at the t-th segment. Similarly, we denote with yo
t,i 2 K

o the object affordance

label of the i-th object at segment t. We model the conditional distribution of

a video labels Y =

⇢n
ya

t,i

o

i=1,...,A
,
n

yo
t,i

o

i=1,...,O

�T

t=1
given the input video I

and regions R by assuming conditional independence between the sub-activity

and object affordance labels of each region and each segment:

p(Y|R, I) =
T

’
t=1

A

’
i=1

p(ya
t,i|R, I)

O

’
j=1

p(yo
t,j|R, I). (2.29)

Although the above conditional independence assumption is very strong, we

rely on the ability of our VS-STMPNN to capture long-range spatio-temporal

context in each node embedding, which in turn tends to lead to smooth
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and coherent node-level predictions. As we will show in our experiments,

although we do not model dependencies between the predicted sub-activity

and affordance labels as powerful probabilistic graphical models do [166], our

proposed model is able to produce more accurate predictions given the same

input visual graph and features.

2.4.1.1 Sub-activity and Object Affordance Detection Network

We model the distribution of each sub-activity (object affordance) for region i

and temporal segment s as a Categorical distribution that is parameterized via

neural network that first encodes the input video sequence and set of regions

R into a set of region embeddings H, and then applies a subactivity classifier

on top of each actor embedding and an object affordance classifier on top of

each object embedding. In other words, we treat the problem as visual graph

node classification task.

The region embeddings H are obtained by building a Visual-Symbolic

graph G(R, I) (with the visual subgraph nodes corresponding to the actor and

object regions we just described, spatial edges capturing interactions among

humans and objects at each temporal segment, and temporal edges capturing

interactions across temporal segments) and applying our VS-ST-MPNN on

that graph:

H = MPNN(G(R, I); qg), (2.30)

where qg denotes the set of trainable parameters of the VS-ST-MPNN.

Then we apply a trainable subactivity classifier with weights and bias
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(Wact, bact) on top of each actor embedding, and a trainable object affordance

classifier (Wa f f , ba f f ) on top of each object embedding:

pa
s,i = softmax(WT

acthi + bact) 2 R|K
a
|, i 2 J

a
s , (2.31)

po
s,i = softmax(WT

a f f hi + ba f f ) 2 R|K
o
|, i 2 J

o
s , (2.32)

ya
s,i|R, I ⇠ Cat(pa

s,i), i 2 J
a

s , (2.33)

yo
s,j|R, I ⇠ Cat(po

s,i), i 2 J
o

s , (2.34)

where softmax(x)i =
exi

Âj exj , J
a

s is the set of actor regions at segment s, and

similarly J
o

s is the set of object regions at segment s.

2.4.1.2 Joint Training of the VS-ST-MPNN and Recognition Networks

The parameters qg of our graph-based representation learning model can be

jointly trained with the sub-activity and object affordance classifiers. The

joint training results in task-driven, discriminative, context-aware region

embeddings.

Formally, given training data of N videos {I(n)}N
n=1 and their structured

labels {Y(n)
}

N
n=1, we jointly optimize the following training objective using

Stochastic Gradient Descent (SGD):

min
qg,qr

N

Â
n=1

S

Â
s=1

 

Â
o2J o

s

L(y(n)
s,o , po

s,i) + Â
j2J a

s

L(y(n)
s,j , pa

s,j)

!
, (2.35)
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where L(·) is the cross-entropy loss:

L(y, ŷ) = �Â
c

yc log ŷc, (2.36)

with yc = 1 if the ground-truth label is c and yc = 0 otherwise, and ŷc being

the predicted probability for label c.

2.4.2 VS-ST-MPNN for Temporal Activity Detection

The goal of this task is to temporally detect all the activities that occur in an

untrimmed video I 2 R3⇥H⇥W⇥T with T frames. This involves predicting

the activity, or activities, present at each frame of the video sequence. Let

yt,c 2 {0, 1} be a binary random variable that indicates whether the c-th ac-

tivity from a set of C possible activity labels is present at frame t. We model

the conditional distribution of a video labeling Y =
�
{y1,c}

C
c=1, . . . , {yT,c}

C
c=1
 

given the input frames I and extracted region proposals R by assuming condi-

tional independence of the presence of each activity at each frame:

p(Y | R, I) =
T

’
t=1

C

’
c=1

p(yt,c | R, I). (2.37)

This independence assumption, although strong, is employed by most of

the recent deep learning approaches for temporal segmentation, which rely

on the ability of deep neural networks (such as recurrent neural networks

and graph neural networks) to capture long-range temporal context in the

frame representations. These representations then tend to lead to coherent

and smooth predictions, without the need for modeling dependencies among
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predicted labels. Similar findings have been observed in the image segmen-

tation literature, where state-of-the-art deep learning models are performing

pixel-level predictions without the need for post-processing with Conditional

Random Fields [167].

2.4.2.1 Activity Detection Network

We model the distribution of each activity at time t as a Bernoulli that is

parameterized via a neural network that first encodes the input video sequence

I and set of regions R into a sequence of d-dimensional features f1, . . . , fT, and

then applies binary classifiers Wcls 2 Rd⇥C (with biases bcls 2 RC) to yield

activity scores pt 2 RC at each timestep:

pt = sigmoid(WT
clsft + bcls) 2 RC, (2.38)

yt,c | R, I ⇠ Bernoulli(pt,c), (2.39)

where sigmoid(·) is the element-wise application of the sigmoid function:

sigmoid(x) = 1
1+e�x 2 [0, 1].

We will now describe how we compute the sequence of features ft by

combining our VS-ST-MPNN, that models region interactions, with deep

recurrent neural networks, that model long-term temporal dynamics. Given

the input video I and region proposals (2D bounding boxes) R, we construct a

heterogeneous graph G(R, I) = (V , E ,H(0),Q(0)) as described in Section 2.3.1.

The heterogeneous, attributed graph G is then fed to the VS-ST-MPNN with

trainable parameters qg, which yields context-aware region embeddings H 2
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RM⇥dV , as described in Section 2.3.2:

H = MPNN(G(R, I); qg). (2.40)

The next step aims to generate a frame-level feature by aggregating the actor

embeddings, since our goal is to predict all the activities present in the frame

and we only have access to frame-level activity annotations. This frame-level

feature will be fed to binary activity classifiers as explained in Eq. 2.39. To

achieve this, we use average pooling to aggregate the actor representations at

each frame, yielding a region-based frame feature f̂t:

f̂t =
1
A Â

i2J a
t

hi, (2.41)

where J
a

t is the set of visual actor nodes at frame t. These region-based frame

representations are optionally passed through a deep recurrent neural net-

work, such as the Bidirectional Gated Recurrent Unit (BiGRU) [168], yielding

the final context-aware frame embeddings ft = [
�!
ft ;
 �
ft ] 2 Rd:

�!
ft = BiGRU(

�!
ft�1, f̂t; qGRU) (2.42)

 �
ft = BiGRU(

 �
ft+1, f̂t; qGRU), (2.43)

where qGRU are the trainable parameters of the BiGRU network.

Note that an interesting avenue for future work would be to adopt Multiple

Instance Learning (MIL) and apply binary classifiers on top of each actor’s

embedding to obtain activity predictions which would be aggregated to yield

frame-level labels. This approach might be better suited to videos with a large

number of actors. In this thesis we construct the visual graph so that it only
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contains a few number of actors at each frame, either because the videos in

the chosen datasets contain one or two actors, or by designing methods for

decomposing the video in sub-videos centered around a primary actor as will

describe in Chapter 4.

2.4.2.2 Training Objective

The parameters qg of our graph-based representation learning network can

be jointly trained with the parameters qrec = (qGRU, Wcls, bcls) of the task-

specific recognition network frec(·), consisting of the BiGRU and the binary

activity classifiers. This joint training results in task-driven, discriminative,

context-aware region embeddings.

Formally, given training data of Ns videos {I(n)}Ns
n=1 and their structured

labels {Y(n)
}

Ns
n=1, we jointly learn the parameters qg of the VS-ST-MPNN with

the parameters qr of the recognition network by optimizing the following

training objective L(·) using Stochastic Gradient Descent (SGD):

min
qg,qr

1
Ns

Ns

Â
n=1

L

⇣
Y(n), frec

�
MPNN(G(R, I); qg), F; qr

�⌘
, (2.44)

where L is the binary cross-entropy loss (that can be derived by maximizing

the likelihood of labeled data assuming i.i.d. training samples):

L

⇣
Y(n), Ŷ(n)

⌘
=

T

Â
t=1

C

Â
c=1

yt,c log pt,c + (1� yt,c) log(1� pt,c). (2.45)

Importantly, our framework does not require access to ground-truth semantic

labels of regions or scene graphs during training.
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Table 2.1: Overview of various models that we evaluated on activity recognition
tasks. They stem from different choices of the Visual Message Passing algorithm used
in the Visual Context Module (VCM), whether the Semantic Context Module (SCM)
is used, whether graph edge attributes are used in the VCM, and whether a deep
temporal model is used. All methods are based on the graph-based representation
learning framework discussed in this chapter.

Model VCM SCM Edge Attr. Temporal Model

V-HetGAT HetGAT 7 3 7
V-HetGTx HetGTx 7 3 7
V-HetGAT-NodeOnly HetGAT 7 7 7
V-HetGTx-NodeOnly HetGTx 7 7 7

VS-HetGAT HetGAT 3 3 7
VS-HetGTx HetGTx 3 3 7
VS-HetGAT-BiGRU HetGAT 3 3 3

2.5 Experimental Evaluation

To demonstrate the effectiveness and generality of our method, we conduct ex-

periments on the two aforementioned video understanding tasks that require

reasoning about visual and semantic interactions between semantic entities:

a) sub-activity and object affordance classification (Sec. 2.5.1), and b) temporal

activity detection (Sec. 2.5.2). We trained and tested various instantiations

of our Graph Neural Network for representation learning on heterogeneous

spatio-temporal graphs with different design and combinations of the visual

and semantic context modules. Table 2.1 gives an overview of all the compared

versions of our model.
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2.5.1 Sub-activity and Object Affordance Detection

We begin with the first application of our VS-ST-MPNN for the task of sub-

activity and object affordance detection given ground-truth temporal segmen-

tation. First, we describe the CAD-120 dataset, a public benchmark dataset

that provides annotations for the sub-activity performed by a human sub-

ject and the affordances of the objects at each temporal segment of a video.

Then, we present the metrics that we use to evaluate the performance of

our region-based framework as well as the implementation details in Sec-

tions 2.5.1.2 and 2.5.1.3. After comparing different variants of our model in

Section 2.5.1.4, we compare our best performing model variant with state-of-

the-art sub-activity and object affordance detection methods in 2.5.1.5. In

Section 2.5.1.6 we present an ablation analysis on the effect of (a) the message

size, (b) the number of visual graph node attribute updates, and (c) the node

update functions on the final performance. Last, we provide qualitative results

in Section 2.5.1.7.

2.5.1.1 CAD-120 Dataset

The CAD-120 dataset [1] provides 120 RGB-D videos, with each video show-

ing a daily activity comprised of a sequence of sub-activities (e.g., moving,

drinking) and object affordances (e.g., reachable, drinkable). Given ground-truth

temporal segments, the task is to classify each actor in each segment into

one of 10 sub-activity classes and each object into one of 12 object affordance

classes. Figure 2.4 depicts sample frames with annotations from a video in

CAD-120. Note that local actor and object representations are not sufficient
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Figure 2.4: Sample annotated frames from the CAD-120 dataset [1]. This example
video shows a person cleaning a microwave. The goal is to predict a sub-activity label
for the actor and an affordance label for each object in each temporal segment. Figure
adapted from [11].

for recognizing the sub-activities and object affordances, but rather an under-

standing of spatio-temporal interactions between human poses and objects

over longer time periods is essential.

2.5.1.2 Evaluation Metrics

Evaluation is performed with 4-fold, leave-one-subject-out, cross-validation

using F1-scores averaged over all classes as an evaluation metric. The F1-score

for a class c is the harmonic mean of the precision and recall metrics:

F1 = 2
Precision⇥ Recall
Precision + Recall

, (2.46)

where Precision is the percentage of correct predictions for class c out of the

total number of times that class c was predicted, and Recall is the percentage of

correct predictions for class c out of the total number of ground-truth instances
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of class c:

Precision =
true positives

true positives + f alse positives
(2.47)

Recall =
true positives

true positives + f alse negatives
. (2.48)

2.5.1.3 Implementation Details

Construction of the Visual Subgraph. Since the CAD-120 dataset [1] provides

a visual spatio-temporal graph (including hand-crafted features of actors

and objects and geometric relations), it is a particularly good test-bed for

comparing different GNNs. This visual graph is instantiated on the actor

and objects of each temporal segment of an input sequence. Actor node

features, fa(ri, I) 2 R1030, correspond to human skeleton joint positions, body

pose and hand position features, with a cumulative binning of the feature

values into 10 bins. Object node features, fo(ri, I) 2 R180, correspond to the

location of the object and its trajectory in the temporal segment. There are 5

edge types: edges connecting objects in the same temporal segment (obj-obj-s),

edges connecting objects with the actor within a temporal segment (obj-act-s),

edges connecting the actor with objects within a temporal segment (act-obj-s),

edges connecting actors between two consecutive temporal segments (act-act-

t), and edges connecting objects between two consecutive temporal segments

(obj-obj-t). Edge features describe the geometric relationship between nodes

(regions) i and j, such as the difference in centroids and distance between them,

and each edge type is associated with a feature of different dimensionality:

foos(ri, rj, I) 2 R200, foas(ri, rj, I) 2 R400, faos(ri, rj, I) 2 R400, faat(ri, rj, I) 2
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R160, and foot(ri, rj, I) 2 R40. For an analytic description of these features that

are used to initialize the node and edge attributes of the visual subgraph refer

to Table I in [1].

Construction of the Symbolic Subgraph. We construct a symbolic graph that

has |V s
| = 22 nodes corresponding to the 10 sub-activity and 12 affordance

classes, with edge weights As capturing per-segment class co-occurrences in

training data (Figure 2.16). The attribute of each symbolic node is obtained by

using off-the-shelf, pretrained GloVe [169] word embeddings [170] to represent

the semantic class of the node (fs(c) 2 R300, c 2 V
s). Visual-symbolic edges

E
vs connect actor visual nodes with sub-activity symbolic nodes, and object

visual nodes with affordance symbolic nodes.

Hyperparameters. In Table 2.3, we compare state-of-the-art methods with our

VS-HetGAT model and our V-HetGAT model (which operates only on the

visual subgraph). To choose the hyperparameters for these models, i.e., the

message dimensions dV and dS, the number of visual node updates Lv and

the number of symbolic node updates Ls, we used 5-fold cross-validation by

randomly sampling 50 video sequences for training and 13 for testing. We

cross-validated the following hyperparameter values: Lv = [1, 2, 4], Ls = [1, 2],

dV = [64, 256], dS = [64, 256]. This resulted in the following hyperparameters

being used in our VS-HetGAT model: Lv = 4, Ls = 1, dV = 256, dS = 256. The

Leaky-ReLU [163] non-linearity is used in the additive attention computation

(Eq. 2.9) with slope 0.2, while the ReLU non-linearity is used for the node

and edge embedding update (Eq. 2.11). As described in Section 2.4.1.2, we

use the sum of cross-entropy losses per node to jointly train our model and
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the sub-activity and affordance classifiers applied at each node of the visual

subgraph. We train for 100 epochs with a batch size of 5 sequences and use

the Adam [171] optimizer with an initial learning rate of 0.001. Dropout [172]

with a rate of 0.5 is applied to all fully connected layers.

2.5.1.4 Comparison of Models

First, we compare different variants of our VS-ST-MPNN model for sub-

activity and object affordance detection given ground-truth temporal segments

in Table 2.2. As we can see, the V-HetGAT model achieves a high F1-score both

for predicting sub-activity labels for actor regions (90.2%) and for predicting

object affordance labels for object regions (89.3%) on the validation set of

CAD-120.

Comparing V-HetGAT (NodeOnly) with V-HetGAT, as well as V-HetGTx

(NodeOnly) with V-HetGTx, shows that for both choices of heterogeneous

message passing, the performance improves when using edge features to up-

date the edge embeddings. For example, object affordance detection improves

from 80.1% to 89.3% when edge features are used in the messages of the

HetGAT VCM. This is in line with our expectation that capturing geometric

relations between connected regions is a useful cue for video understanding.

Interestingly, our more expressive HetGTx heterogeneous message passing

framework does not detect sub-activities and object affordances as accurately

as its HetGAT counterparts in this dataset, lagging by 8%. These results

suggest that multi-head attention and multi-layer node/edge updates are not

well-suited for this dataset. This is likely due to the fact that CAD-120 is a
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Table 2.2: Comparison of different variants of our VS-ST-MPNN model for sub-
activity and affordance detection with ground-truth temporal segmentation on the
CAD-120 dataset [1]. We compare variants in terms of average macro F1-score for
sub-activity and affordance detection computed from 4-fold cross-validation with
testing on a new human subject in each fold (higher is better).

Model Sub-activity F1 (%) Object Affordance F1 (%)

V-HetGAT 90.2 89.3
V-HetGAT-NodeOnly 84.6 80.1
V-HetGTx 84.2 81.0
V-HetGTx-NodeOnly 72.4 64.3

VS-HetGAT 91.3 88.6

small dataset and the more expressive Transformer-based model might overfit

in it. Also, recall that the visual subgraph is based on given actor and object

regions and does not contain many spurious edges for which multi-head

attention is suited for.

We also observe that adding the Semantic Context Module (VS-HetGAT)

does not significantly improve performance in either task. This might suggest

that the local visual spatio-temporal context that is captured by the VCM is

sufficient for recognizing the activities and object affordances in this dataset.

From qualitative results, we indeed observed that even when using just the

visual spatio-temporal subgraph, our model is able to make consistent predic-

tions for the sub-activity labels and object affordance labels at each temporal

segment. Another reason might be that the temporal duration of the visual

subgraph is very small (with a maximum duration of 24 timesteps) and there-

fore there is no significant gain from modeling long-range global interactions

between regions on the symbolic graph. Furthermore, the symbolic graph that
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Table 2.3: Comparison with state-of-the-art methods on the CAD-120 dataset [1].
We report average macro F1-score for sub-activity and affordance detection (with
ground-truth temporal segmentation) computed from 4-fold cross-validation with
testing on a new human subject in each fold. Our results are averaged across five runs,
with the standard deviation reported in parentheses (hence the slight difference with
the ablation results reported in Table 2.2, which are obtained from single runs due to
computational resource constraints). Best results are denoted in bold, second-best in
italics.

Method Sub-activity F1-score (%) Affordance Detection F1-score (%)

KGS [1] 80.4 81.5
ATCRF [166] 86.4 85.7
HCRF [173] 89.2 -

S-RNN [141] 83.2 88.7
S-RNN (d+a) [141] 82.4 91.1
GPNN [11] 88.9 88.8
STGCN [116] 88.5 -
VS-HetGAT (ours) 90.4 (±0.8) 89.2 (±0.3)
V-HetGAT (ours) 89.6 (±1.1) 88.6 (±0.6)

we used in this dataset captures label co-occurrences within each temporal

segment, and as we discussed in Figure 2.16 there are only a few co-occurring

labels.

2.5.1.5 Comparison with the State of the Art

Table 2.3 compares the performance of our method with prior work on sub-

activity and affordance detection with ground-truth temporal segmentation.

First, we observe that our method obtains state-of-the-art results for sub-

activity detection, with an average performance of 90.4% after 5 random

runs, and a best of 91.3%. It also obtains the second best result on object

affordance detection (89.2%) - being only second to the S-RNN (d+a) [141].

The superior performance of S-RNN (d+a) on object affordance detection
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could be attributed to its training regime, since it is trained to solve the joint

task of detection and anticipation (anticipating the sub-activity and object

affordance labels for 3 seconds in the future). However, this multitask training

setup does not lead to an improvement in sub-activity detection, and we

outperform S-RNN (d+a) by 8% in that task.

Delving deeper, we would like to emphasize that all compared methods

leverage the same visual spatio-temporal graph with the same node and edge

features. However, they can be divided into two complementary groups:

the first group ( [1, 166, 173]) contains probabilistic graphical models, i.e., it

includes methods that use the graph to represent the joint probability of sub-

activity (and object affordance) labels in a video. In particular, the energy of a

particular assignment of sub-activity and object affordance labels to the human

and objects in each temporal segment of a given video is a function of the labels

and the local, unrefined node/edge features. That energy consists of various

potentials that capture the dependencies between the sub-activity (and object

affordance) labels as defined by the visual spatio-temporal graph. In contrast,

the second group of methods, including ours, uses the graph structure to

refine the initial, local human and object features based on the visual context.

Given the context-aware node embeddings, each node (human/object) label

is predicted independently of the others.

Even without leveraging the symbolic subgraph with the Semantic Con-

text Module, our method improves upon the second group of graph-based

representation learning models, which were applied on the same attributed vi-

sual spatio-temporal graph, thus validating our novel heterogeneous message
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Figure 2.5: Performance of the V-HetGAT model on CAD-120 for varying number of
node updates and message functions. Using an attention mechanism (w/ attention)
outperforms using a fixed visual adjacency matrix (w/o attention).

and node/edge update functions. Furthermore, our VS-ST-MPNN performs

competitively with powerful probabilistic graphical models, in spite of not

explicitly modeling spatio-temporal label dependencies. For example, it signif-

icantly outperforms the KGS [1] probabilistic framework by more than 8.0% on

both tasks. This demonstrates the quality of the learned region embeddings.

2.5.1.6 Ablation Studies

In this section, we perform an ablation analysis of our VCM (referred to as

the V-HetGAT model in Table 2.1). We first study the impact of the attention

mechanism and inclusion of edge attributes on the tasks of sub-activity and

object affordance detection. We also study the effect of the number of visual

message passing iterations and message size on the recognition performance.
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Figure 2.6: Effect of node update function of the V-HetGAT model on CAD-120
sub-activity detection performance. Updating nodes based on both neighboring node
and incoming edge attributes (full) is superior to updating them using just the nodes
(nnode) or edges (relational).

Last, we show how the input visual graph structure affects performance.

What is the effect of (a) using an attention mechanism and (b) taking edge

attributes into account for node embedding updates on the sub-activity and

object affordance detection performance? First, in Figure 2.5 we compare the

performance of a baseline model that iteratively updates each node embedding

by simply averaging the projected current states of neighboring nodes versus

our attention-based model that updates each node by computing a weighted

average of the neighboring node embeddings using a data-dependent, learn-

able attention mechanism. Although the visual subgraph used in this dataset

is instantiated on top of ground-truth regions and does not contain many

spurious edges, as it can be seen, using the attention mechanism improves
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Figure 2.7: Performance on CAD-120 [1] for sub-activity and object affordance de-
tection given ground-truth temporal segments for varying input visual subgraph
structure. We incrementally add edges connecting actors and objects, starting from
using only object-to-object spatial edges.

performance for both tasks (sub-activity and object affordance detection given

ground-truth temporal segments) and for different number of node updates.

As the number of layers increases the gap between performance of the two

models closes, however the attention mechanism helps achieve a superior

performance with a fewer number of node updates compared to the model

without attention. This is in line with our expectation that using attention

to refine the scalar visual edge weights helps the model adaptively identify

relevant neighboring regions at each timestep. For example, given a scene

with a person, a bowl and a bottle of milk, the bowl should intuitively be more

relevant for learning a context-aware person representation when the person

is reaching for it. Second, Figure 2.6 suggests that using the attributes of both

the neighboring nodes and adjacent edges (full node update) is better than

using only those of the neighboring nodes, validating the usefulness of edge

features (relational node update).
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Figure 2.8: Effect of varying message size on CAD-120 [1] sub-activity and object
affordance detection.

How does the number of layers of the Visual Context Module affect the sub-

activity and object affordance detection performance? Another interesting

observation from both Figures 2.5 and 2.6 is that increasing the number Lv

of visual message passing iterations improves performance in all cases. This

improvement was expected, since after Lv iterations every visual node em-

bedding contains information about its Lv-hop spatio-temporal neighborhood.

Results suggest that aggregating context from more than 3 temporal segments

in the past does not significantly improve sub-activity detection performance,

while object affordance detection benefits from even larger spatio-temporal

neighborhoods and has not saturated even after 4 layers.

What is the impact of the visual spatio-temporal subgraph structure? In

Figure 2.7 we show the contribution of each edge type on the final sub-activity

and object affordance detection performance on CAD-120. Note how adding

the object-to-actor-spatial (obj-to-obj-sp) edges leads to a significant improve-

ment in the sub-activity detection (from 35% to 82%) due to the improved
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Figure 2.9: Confusion matrix for sub-activity classification (left) and object affordance
classification (right) on the CAD-120 dataset [1].

actor node embeddings that have aggregated information from their local

spatio-temporal neighborhood that includes contextual objects. Although the

addition of object-to-actor-spatial edges does not modify the incoming mes-

sages to the object nodes, object affordance detection is also slightly improved.

This can be attributed to the fact that the refinement of object and actor rep-

resentations is performed jointly in each layer of our V-HetGAT model, in

contrast to prior work [116] that applies separate GNNs on subgraphs emerg-

ing for different node types. Adding more edges, such as object-to-object

temporal (obj-obj-t) does not improve performance further.

What is the effect of the visual message size? We test our VCM with varying

visual message sizes dV = [64, 128, 256, 512] and plot the performance in

Figure 2.8. We observe that the performance is almost consistent for different

message sizes in this dataset.
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(a) Predicted sub-activity and affordance labels for a sample CAD-120 video.
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(b) Predicted sub-activity and affordance labels for a sample CAD-120 video.

Figure 2.10: Qualitative results for sub-activity and object affordance detection with
our model (V-HetGAT) given ground-truth temporal segmentation on two sample
videos from the CAD-120 dataset [1]. For each video, we show the ground-truth (GT)
and predicted (Pred) labels for one actor and two objects per temporal segment.

2.5.1.7 Qualitative Results

Figure 2.9 shows the confusion matrices for predicting sub-activity and affor-

dance labels given ground-truth temporal segments with our proposed model.

As it can be seen, given the context-aware region embeddings learned by our

V-HetGAT model, we are able to correctly classify most sub-activities/object

affordances. For both tasks, there is a strong diagonal with a few errors such

as closing being misclassified as opening, and objects that are reachable being

misclassified as stationary. Figure 2.10 shows the comparison of the predicted
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sub-activity and object affordance labeling with the ground-truth labeling for

two cleaning objects videos. It can be seen that our framework can correctly

predict most labels. Interestingly, it seems that in the second-to-last tempo-

ral segment of the first video sample, our model confuses which one of the

two objects is reachable. Another observation is that in the second example,

although the model misclassifies the sub-activity closing as opening, it makes

a consistent object affordance prediction (openable). This consistency in the

labels is not explicitly enforced in our probabilistic model, but rather arises

from the context-aware region embeddings learned by our VCM.

2.5.2 Temporal Activity Detection

In the previous subsection, we have described how the problem of sub-activity

and object affordance detection given ground-truth temporal segmentation

can be cast as a visual node classification problem and be successfully tackled

with our VS-ST-MPNN. Indeed, most evaluations of graph-based representa-

tion learning frameworks in the literature focus on node classification of graph

classification tasks. Though such evaluation tasks provide insights on the

discriminability and descriptiveness of each individual region representation,

they fail to paint a clear picture of how graph-representation learning methods

can extend beyond node classification. In this section, we show how we can

deploy our VS-ST-MPNN for the the task of temporal activity detection.
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2.5.2.1 Charades Dataset

Charades [2] is a large dataset with 9848 RGB videos of daily activities crowd-

sourced from people recording videos in their own homes. It provides tempo-

ral annotations for 157 activity classes, many of which involve human-object

interactions. Fig. 2.11 depicts sample frames from 5 videos in Charades. Note

that there are multiple activities captured in each video sequence, including

atomic activities like standing up and human-object interactions like watching

TV. Each video contains an average of 6.8 activity instances, many of which

are co-occurring.

2.5.2.2 Evaluation Metric

The goal in this dataset is to predict accurate activity labels for every frame

of an input video, where multiple activities can be present at each frame.

Following [2], activity detection performance is measured in terms of per-

frame mean Average Precision (mAP), evaluating activity predictions for 25

equidistant frames in each one of the 1.8k validation videos.

This metric treats the per-frame activity labeling task as an information

retrieval problem and summarizes the precision-recall curve. For each activity

class, we rank all the aforementioned frames based on their confidence scores

for that class, ordered from the highest to lowest, and compute Average

Precision (AP). Given the descending-score-rank of N frames for the c-th

activity class, the Interpolated Average Precision is computed using the official
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Figure 2.11: Sample frames from five Charades videos showing examples of various
activity labels. Note that multiple activities can be co-occurring at the same frame,
e.g., Holding a laptop and Walk in doorway in the top left frame. Figure reproduced
from [2].

evaluation script (Charades_v1_localize) as follows [174]:

AP(c) = ÂN
k=1(Pr(k)⇥ rel(k))

ÂN
k=1 rel(k)

, (2.49)

where N is the total number of frames, Pr(k) is the precision for the top-k

retrieved frames, and rel(k) is an indicator function that is equal to 1 if the

k-th ranked frame is a true positive and zero otherwise. The denominator is

equal to the total number of true positive frames. Ater computing the average

precision for each activity class, the results are averaged over all classes to

obtain the mean AP (mAP). We note that this framewise metric does not
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Figure 2.12: Illustration of per-frame co-occurrences of a subset of action classes from
the training annotations of the Charades dataset.

explicitly account for the start or end frame of each detected activity instance.

Nonetheless, we adopt it for a fair comparison with prior work in this dataset,

and discuss alternative metrics that take into account the temporal overlap of

activity detections with ground-truth activity instances in Chapter 4.
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2.5.2.3 Implementation Details

Construction of the Visual Subgraph. The nodes of the visual sub-graph cor-

respond to object bounding boxes returned by an object detector, specifically

the Faster-RCNN [175] object detector trained on the MS-COCO [176] image

dataset. We detect objects from the 80 categories of the MS-COCO dataset,

retaining all detections with a confidence score above a small threshold of

0.15. Bounding boxes are enlarged by a relative margin of 30% at each side.

Regions belonging to the Person MS-COCO object class are assigned the Actor

node type, while the rest of non-person, non-background object detections

are assigned the Object node type. When there are more than A = 2 actors or

O = 10 objects detected in a video frame, we select the top-2 actor detections

and top-10 object detections per frame based on their prediction confidence

scores. Note that we do not use the predicted classes of the detected objects in

our model, and treat detections as either actors or class-agnostic object region

proposals.

Rather than using the object detector features for describing the actor and

object regions (visual nodes), we exploit the rich spatio-temporal feature map

of an I3D 3D convolutional network [44].

These features capture appearance and motion cues and are obtained by

processing each 64-frame temporal chunk of the input video with the I3D RGB

model in a sliding window fashion. In particular, we use the Mixed_4f fea-

ture map of the I3D, which has a spatial output stride of 16 pixels, a temporal

output stride of 4 frames and 832 channels. We chose this feature map, since it
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retains spatial information, but is also located closer to the activity classifica-

tion layer of the finetuned I3D model. After temporally downsampling each

spatio-temporal feature map to obtain an effective temporal downsampling

by a factor of 16 frames, we apply RoIAlign [175] to pool features from each

visual node region at each downsampled frame. This leads to a feature map

of 832⇥ 7⇥ 7 per region per frame. To obtain a single feature vector for each

actor and object node, we perform max-pooling over space:

h(0)
i = fo(ri, I) = MaxPool (RoIAlign (Ft, ri)) , i 2 J

o
t (2.50)

h(0)
i = fa(ri, I) = MaxPool (RoIAlign (Ft, ri)) , i 2 J

a
t , (2.51)

where ri denotes the bounding box of the i-th region proposal, J o
t (J a

t ) denotes

the set of indices of object (actor) regions located at frame t, and Ft is the I3D

feature map corresponding to the t-th frame. The maximum temporal span of

visual spatio-temporal subgraphs on Charades is 109 time-steps after temporal

downsampling (⇠ 1 minute), which is significantly longer than the duration

of video clips processed by holistic deep networks (e.g., ⇠ 2 seconds). The

object-to-actor spatial edges connect objects to actors in the same frame t, and

similarly actor-to-object spatial edges connect actors to objects in the same frame.

The actor-to-actor temporal edges are constrained to connect an actor at timestep

t with other actors at the previous timestep t� 1. Edge attributes (q(0)
ij ) are

initialized with the relative spatial location and size of the connected regions.

Construction of the Symbolic Subgraph. Our symbolic graph is chosen to

have nodes corresponding to the 157 activity classes of the dataset and edge

weights corresponding to per-frame label co-occurrences in training data, with
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a temporal downsampling of one every 100 frames. Figure 2.12 shows the

symbolic adjacency matrix A
s for a subset of action classes of the Charades

dataset. Visual-symbolic edges E vs connect only actor nodes with symbolic

nodes. Obtaining a linguistic attribute for each symbolic node is not trivial,

since activity names often contain multiple words. To circumvent that, each

activity class is separated into a verb and an object, and the average of their

GloVe [169] word embeddings is used as the initial symbolic node attribute

(fs(c) 2 R300, c 2 V
s).

Region-based Model. As described in Section 2.4.2.1, after applying our

Graph Neural Network on the hybrid input visual-symbolic graph, we av-

erage the context-aware actor embeddings at each frame, input them to a

two-layer bidirectional Gated Recurrent Unit (BiGRU), and finally feed the

resulting hidden states to binary action classifiers for per-frame multi-label

action classification.

Holistic Model. One of our experiments on this dataset compare the perfor-

mance of our region-based video understanding framework with a holistic

video understanding model. The holistic model replaces our region-based rep-

resentation of each frame with a holistic frame feature that is extracted from

the Mixed_5c layer of the I3D RGB model. Then, we mimic our region-based

architecture, by feeding the sequence of holistic frame features to a two-layer

BiGRU and apply binary action classifiers on the hidden states of the BiGRU

to predict activity labels at each timestep.

Inspired by two-stream approaches [177, 45] that combine the activity

predictions of two separately-trained models, we also combine the predictions
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of the holistic and region-based models via late fusion. In particular, given the

trained region-based model and holistic model, we average their scores (logits)

per activity and pass them through a sigmoid to obtain the final prediction

per activity class.

Hyperparameters. In Table 2.6 we compare state-of-the-art methods with our

framework for activity detection that is combining our region-based using the

VS-HetGAT variant of our VS-ST-MPNN at its core.

The hyperparameters for this fused model were chosen via cross-validation

and are: Lv = 3, dV = 512, Ls = 1, dS = 256. We jointly train the VS-ST-

STMPNN and biGRU for 40 epochs with a binary cross-entropy loss applied

per frame, using a batch size of 16 sequences. Note that the I3D model that

is used to extract both local region features and holistic frame features is

separately fine-tuned [178] on Charades for the task of temporal activity detec-

tion and then its weights are frozen when training the rest of our framework

weights. We also apply Dropout with a rate of 0.5 on all fully connected layers

and use the Adam optimizer, with an initial learning rate of 1e�4.

2.5.2.4 Comparison of Models

We present the activity detection performance of various variants of our VS-

ST-MPNN region embedding model in Table 2.4 and compare it with two

baselines. The first baseline predicts activities for an actor based on the local

actor feature (initial node attribute) after passing it through a MultiLayer

Perceptron (MLP) with hidden size 512 (same as our region embedding size).

Predicting activities based on the local region features yields a low baseline
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Table 2.4: Comparison of region embedding models on Charades [2]. We compare
different variants of our region-based activity detection framework for different
instantiations of the visual message passing, as well as baselines that employ local
region features (MLP) or Graph Convolutional Networks [3] (GCN). Performance is
evaluated with the frame-level mAP metric. Visual: visual context, Semantic: semantic
context, Long Term: long-term temporal context.

Method Visual Semantic Long Term mAP (%)

MLP 7 7 7 10.7
GCN 3 7 7 12.2

V-HetGAT 3 7 7 13.7
V-HetGAT (NodeOnly) 3 7 7 13.2
V-HetGTx 3 7 7 13.6

VS-HetGTx 3 3 7 14.5
VS-HetGAT 3 3 7 15.3
VS-HetGAT-BiGRU 3 3 3 18.6

performance of 10.7% frame-level mAP. The second baseline applies a GCN

(with the same number of layers and region embedding size as our VS-ST-

MPNN) on the visual subgraph, which computes region embeddings by

taking into account the contextual regions based on the input graph, but treats

all nodes and edges in the same way and does not make use of edge features.

Leveraging contextual region embeddings, even when they are obtained with

this vanilla GNN, boosts performance to 12.2%, as expected.

Refining the local actor features by using our VCM (with either the HetGAT

or the HetGTX heterogeneous message passing formulation) improves perfor-

mance by 3% over the local features and ⇠ 1.5% over the region embeddings

obtained with the GCN. By furher comparing the variant of our model that

uses edge-type-specific attention mechanisms but only node embedddings

(V-HetGAT (NodeOnly)) with the baseline GCN, we see that just this property
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of our architecture improves performance from 12.2% to 13.2%.

As in our experiments on the CAD-120 dataset, the performance of the

VCM improves when edge features are used for the attention computation

and node updates. However, the improvement in this dataset (13.2%! 13.7%

is not as pronounced as in CAD-120. This is possibly due to the initial edge

attributes that are used in each setup. For example, the actor-to-actor-temporal

edge attributes in CAD-120 are initialized with richer information capturing

the distance between each corresponding human skeleton joint for 8 joints,

while on Charades we initialize the same edge attribute just with the relative

position and size between the human bounding boxes. In contrast to our

experiments on CAD-120, where the V-HetGTx model is inferior to the V-

HetGAT model, here we observe that they lead to almost the same activity

detection performance. One reason that we might not observe an improved

performance with the more expressive V-HetGTx model that employs multi-

head scaled-dot product attention is that the structure of our visual graph is

sparse with a few edges. For example, each actor node is connected with at

most 2 actor nodes at the previous frame, and at most 10 object regions at

the current frame. Due to the simplicity and competitive performance of the

HetGAT heterogeneous message passing architecture, we will use this in most

of the experiments that follow.

Continuing our comparison of model variants, we observe that graph-

based representation learning on the hybrid visual-symbolic graph (VS-HetGAT)

85



Table 2.5: Comparison between a region-based model and a holistc model for video
understanding on Charades. Performance is evaluated with the frame-level mAP
metric (higher is better).

Method Region-based Holistic mAP (%)

VS-HetGAT-BiGRU 3 7 18.6
I3D-BiGRU 7 3 21.5
Late Fusion (I3D+VS-HetGAT+BiGRU) 3 3 23.4

achieves a performance of 15.3% and, thus, yields a significant absolute im-

provement of 5% over the baseline. Additionally, modeling long-term tem-

poral dynamics with a BiGRU further improves performance, indicating that

(a) the local visual spatio-temporal interactions captured by our VCM, (b) the

global long-range semantic region interactions captured by our SCM, and

(c) the long-term temporal dynamics of region-based frame representation

captured by the BiGRU are valuable contextual cues and are complementary

to each other.

In Table 2.5, we compare our region-based activity detection framework

(VS-HetGAT-BiGRU), with the holistic activity detection, that uses later stage,

I3D clip-level features to represent each frame. As can be seen, these frame-

level features are powerful and outperform the region-based representation

(18.6% vs 21.5). First, the holistic frame features are extracted from a later

block of the I3D network (Mixed_5c), and are thus more discriminative than

the initial region features (pooled from Mixed_4f) used in our region-based

framework. Furthermore, the holistic frame representation has access to global

scene cues that might be helpful for recognizing an activity, such as the room

the activity takes place (e.g., kitchen). Interestingly, combining the predictions
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of the two models via late-fusion further improves performance to 23.4%,

indicating that the representations learned by our model are complementary

to holistic scene cues. This is the model that we will compare with state-of-

the-art methods in the next section.

2.5.2.5 Comparison with the State of the Art

As shown in Table 2.6, our framework outperforms all other methods on

temporal activity detection, with a mAP of 23.7% (averaged across 3 random

runs) by using only raw RGB frames. Note that all the compared methods on

this Table (except for the STGCN) are holistic activity detection frameworks,

that do not exploit region proposals. As we explained before, our region-based

framework is by design complementary to these approaches. Importantly, our

model yields a relative improvement of 24% over the alternative graph-based

approach [116], which uses both RGB and optical flow inputs, as well as

additional actor embeddings trained at the ImSitu dataset [179].

2.5.2.6 Ablation Studies

In this section, we perform an ablation analysis of our basic model (referred to

as the VS-HetGAT model in Table 2.1). We study the effect of (a) the number

of visual message passing iterations (Lv), and (b) the visual message sizes on

the final performance. We also show how the structure of the input visual and

symbolic subgraphs affects activity detection performance. Last, we discuss

alternative implementations of our visual message passing and edge update

functions.
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Table 2.6: Temporal activity detection results on Charades [2]. Performance is mea-
sured via frame-level mAP. R: RGB, F: optical flow,VGG: using two-stream frame
features extracted with the VGG 2D CNN, I3D: using two-stream frame features
extracted with the I3D 3D CNN.

Method Feat Input mAP (%)

Predictive-corrective [180] VGG R 8.9
Two-stream [181] VGG R+F 8.94
Two-stream + LSTM [181] VGG R+F 9.6
R-C3D [69] VGG R+F 12.7
ATF [181] VGG R+F 12.8

RGB I3D [178] I3D R 15.63
I3D [178] I3D R+F 17.22
I3D + LSTM [178] I3D R+F 18.12
RGB I3D + super-events [178] I3D R 18.64
I3D + super-events [178] I3D R+F 19.41
STGCN [116] I3D R+F 19.09
I3D + biGRU I3D R 21.7
I3D + 3TGMs + super-events [64] I3D R+F 22.3

I3D + biGRU + VS-ST-MPNN (Ours) I3D R 23.7(±0.2)
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Table 2.7: Ablation study for number of visual message passing iterations on Charades
validation set.

Number of iterations mAP (%)

0 10.7
1 12.5
2 13.5
3 13.8

Table 2.8: Ablation study for visual message size on Charades validation set.

Message Size mAP (%)

64 9.4
128 11.6
256 13.6
512 13.7

How does the number of layers and the message size of the Visual Context

Module affect the activity detection performance? As expected, increasing

the number of layers, i.e., visual node updates, improves performance due

to the incorporation of more context. However, it also increases the number

of learnable parameters which might lead to overfitting. For example, incor-

porating context from the 1-hop neighborhood of each visual node improves

performance from 10.7% to 12.5%. Adding information from the 2-hop neigh-

borhood further improves performance to 13.5%, with smaller gains when

more layers are added. To understand the effect of the visual message size

on the activity detection performance, we train models with message size dV

set to 64, 128, 256 and 512. The results shown in Table 2.8 suggest that as the

message size increases, the activity detection performance improves, possibly
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Table 2.9: Activity detection results on Charades for varying actor-to-actor-temporal
connections.

Stride (t) Half Win. (wl) Past Future mAP (%)

1 1 X - 13.7
1 1 X X 13.8
2 1 X X 14.2
1 2 X X 16.0
2 2 X X 16.1
3 2 X X 15.8
3 3 X X 16.0
4 2 X X 15.1
4 3 X X 15.2

because larger message sizes can allow for the exchange of richer informa-

tion across the visual nodes. However the improvement starts to saturate at

dV = 256. Recall that in the much smaller and simpler CAD-120 dataset the

performance was almost constant for different message sizes (Figure 2.8).

What is the impact of the visual subgraph structure? We trained and tested

our V-HetGAT model with various design choices of the actor-to-actor-temporal

edges to study the effect that the temporal context has on the activity detection

results. In particular, we connect an actor at timestep t with other actors at

timesteps t ± s · t, t = 1, . . . , wl, where s is the stride of the temporal edges

and wl is the size of the temporal window in the past (and future). The re-

sults presented in Table 2.9 show that the design of the input visual subgraph

significantly affects performance, and in particular that incorporating longer

temporal context, including connection with past and future timesteps, facili-

tates activity detection. As we can see, having a larger temporal stride (e.g.,

2 frames instead of 1) slightly improves performance even when using the
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Table 2.10: Effect of the symbolic graph design on the activity detection performance,
measured via frame-level mAP on the Charades validation set. We study varying
number of symbolic nodes, varying initialization of symbolic node attributes (Init.),
and varying adjacency matrices. Coocc: adjacency matrix of activity co-occurences,
Dense: dense adjacency matrix, Ling. Sim: adjacency matrix of linguistic similarities,
Glove: nodes initialized with GloVE word embeddings, random: nodes initialized with
random attributes (300-dimensional vectors drawn from a N (0, I) normal distribu-
tion).

SCM Nb. nodes Init. Adj. mAP (%)

- - - - 13.7
X 157 Glove coocc 15.1
X 157 Glove dense 14.9
X 157 Glove ling. sim. 15.1

X 157 random coocc 15.1
X 157 random dense 14.8

X 64 random dense 14.8
X 256 random dense 14.9

same number of temporal connections (13.8! 14.2). This could be attributed

to the fact that adjacent frames contain redundant information, so employing

a temporal stride greater than 1, might result in actor embeddings with more

meaningful temporal context. However, further increasing the temporal stride

from 3 to 4 frames degrades performance, possibly because it includes noisy

information from temporally distant frames. Another observation we make

is that using too few temporal connections (e.g., one temporal connection

to the previous frames) does not allow the graph neural network to capture

sufficient temporal context, such as the change in the appearance of an actor

(performance of 13.7%), while using too many temporal connections increases

the running time and offers diminishing gains.

What is the impact of the symbolic subgraph structure? When we defined
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the symbolic subgraph in Section 2.3.1, we had mentioned that our frame-

work supports multiple types of symbolic graphs. For all the experiments

reported so far on Charades, we had used symbolic graphs whose nodes corre-

spond to activity classes (157 symbolic nodes), scalar edge weights capturing

co-occurrences (coocc) between activities and symbolic node attributes are ini-

tialized with word embeddings (Glove). In this ablation study, we experiment

with alternative symbolic graphs, including graphs with different scalar edge

weights (e.g., determined based on linguistic similarity of activity classes)

and simpler symbolic graphs with latent symbolic concepts. In particular, we

experiment varying number of symbolic nodes, varying symbolic adjacency

matrices and varying symbolic node attribute initializations. Results sum-

marized in Table 2.10 suggest that our Semantic Context Module can model

semantic interaction in a latent semantic space and is robust to the initial-

ization of node attributes and the choice of adjacency matrix. For example,

even when using a fully-connected symbolic graph with randomly initialized

symbolic attributes (300-dimensional node embeddings drawn from a N (0, I)

normal distribution) leads to an improvement of 1% over just using the VCM

(13.7 ! 14.8). The improvement due to passing messages in the semantic

space can be largely attributed to the modeling of interactions between re-

gions that might be spatio-temporally distant, since embeddings from all actor

nodes are transferred to the common semantic space. However, results seem

to suggest that using a structured graph, i.e. using an symbolic adjacency

matrix A
s that captures co-occurrence frequencies or linguistic similarities,

slightly improves activity detection performance.
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Figure 2.13: Performance ablation on Charades when incrementally adding compo-
nents of our full model (VS-HetGAT), starting with early stage RGB I3D features
pooled from actor regions.

What is the contribution of each component of the VS-HetGAT model to the

final performance? In Figure 2.13 we study in more detail the contribution of

each component of our model to the final performance, in order to validate

their necessity. We start with a baseline model that classifies actions per frame

based on the local actor features (actor node attributes). Adding a single round

of obj-act-sp and act-act-t visual messages yields a first significant improvement

in the performance (more than 1%). Frame-level mAP keeps improving as we

perform more rounds of visual node and edge updates. Adding an edge-type

specific attention mechanism for adapting the graph connectivity also benefits

our model. Importantly, using the edge features in messages and the attention

computation leads to further improvements. Our ablation ends by adding the

Semantic Context Module, which boosts performance by 2%.
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2.5.2.7 Qualitative Results

Performance improvement per activity class. To gain a better understanding

of the benefits of representation learning on the input visual-symbolic, we

highlight in Fig. 2.17 the activity classes with the highest positive and negative

difference in performance when adding different types of edges (messages

to nodes) For example, by harnessing visual human-object interaction cues

via object-to-actor spatial edges, our model is able to better recognize actions

such as Watching television. Adding visual-symbolic and symbolic edges and

applying the Semantic Context Module seems to particularly help with rare

classes, such as Holding a vacuum, which has only 213 training examples (3%

of available annotated segments), and classes with strong co-occurrences.

As can be seen in the t-SNE visualization (Figure 2.15), although the visual

context-aware actor embeddings are already capturing meaningful label re-

lationships (e.g., open and hold book), the integration of long-range semantic

interactions via the symbolic graph results in more tightly clustered embed-

dings and well-defined groups, facilitating activity detection.

In Figure 2.18 we visualize the attention computed along the object-to-

actor spatial edges, by showing the two object detections that have the highest

attention coefficients. As it can be seen, attention focuses on regions that

contain relevant context, such as the television, chairs, tables, pots etc. In the

second row, we can also see how attention shifts from the kitchen stove to the

table, as the person moves. However, not all attended regions are relevant to

the action performed by the actor. Furthermore, our model has the tendency

to attend to large regions, since they provide more context, or might miss
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Figure 2.14: Qualitative results on Charades. Action predictions of our V-HetGAT
model for 9 equidistant frames of a sample Charades video.

relevant small regions, such as the closet, as shown in the final row.

Furthermore, in Figure 2.19 we provide some sample action predictions

(scores) for 9 frames of 3 videos from the Charades dataset. These predictions

are obtained with our V-HetGAT model, without leveraging global frame

features or long-range temporal dynamics. The proposed model is able to

detect fine-grained actions that involve human-object interaction, such as

Drinking from a cup, Opening a door, Looking outside, Walking through a doorway

etc.

Model complexity. Since our visual st-graph is designed to capture only

local spatio-temporal interactions, we can compute messages in parallel and

process the entire Charades validation set (around 2K videos at 1.5FPS) in

2 minutes on a single Titan XP GPU, given initial features pooled from ac-

tor/object regions.
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Figure 2.15: Qualitative evaluation of the Semantic Context Module (SCM). t-SNE
visualization of actor node embeddings from Charades validation set obtained before
and after adding the SCM. We show 1121 random samples per class for 5 selected
action classes. (Best viewed zoomed in and in color.)

2.6 Conclusion

In this chapter, we have proposed novel heterogeneous Message Passing

Neural Networks, composed of a Visual Context Module and a Semantic

Context Module, for representation learning on heterogeneous graphs, which

encode visual and semantic interactions among actor and object regions in a

video. The key idea was learn different message functions for different edge

types, and to take into account edge attributes, such as relative geometric

relations between regions, in order to compute context-aware region embed-

dings. Experimental evaluation has shown that by jointly learning these

region embeddings with activity recognition networks, e.g., classifiers, our

framework outperformed baselines using local region features or contextual

embeddings obtained by Graph Convolutional Neural Networks applied on

a homogeneous visual graph. Our proposed VS-ST-MPNN model improves
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upon prior Graph Neural Networks in terms of sub-activity detection perfor-

mance on the CAD-120 dataset, setting a new state of the art. Also, combining

region-based activity predictions with predictions based on holistic, clip-level

RGB features led to state-of-the-art temporal activity detection performance

on the Charades dataset, significantly outperforming two-stream, holistic

approaches that utilize both RGB and Optical Flow inputs. Our ablation

studies have suggested that, given enough training data, our framework can

perform equally well for different choices of heterogeneous message and node

update functions. Moreover, qualitative analysis has shown that the learned

model automatically attends to relevant contextual objects when aggregat-

ing relevant visual context for activity prediction at each timestep, and that

richer interactions (e.g., more types of interactions or long-term interactions)

encoded in the input graph lead to better embeddings learned by our model.
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Figure 2.16: Symbolic graph adjacency matrix for CAD-120 dataset. Note that due
to the small number and the nature of activity/affordance labels in this dataset, the
graph is small, with sparse connections, many of which are rather obvious due to
redundancy of labels (like poorable and pourto, or clean (activity), clean (affordance),
cleanable). This might hinder our SCM from learning semantic context-aware node
embeddings.
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mAP Di�erence

Washing their hands
Opening a refrigerator

Someone is cooking something
Watching television

Working/Playing on a laptop
Watching a laptop or something on a laptop

Talking on a phone/camera
Playing with a phone/camera
Working on paper/notebook

Holding a phone/camera
Closing a refrigerator
Someone is laughing

Tidying something on the floor
Someone is running somewhere

Watching/Looking outside of a window
Sitting on the floor

(a) Addition of object-to-actor spatial edges.
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Tidying up with a broom
Someone is running somewhere

Holding a broom
Lying on the floor
Washing a window

Someone is undressing
Holding a vacuum

Tidying something on the floor
Someone is cooking something

Sitting on the floor
Sitting on sofa/couch

Opening a laptop
Holding a laptop

Taking a phone/camera from somewhere
Fixing a vacuum

(b) Addition of actor-to-actor temporal edges.
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mAP Di�erence

Holding a vacuum
Washing a window
Closing a window

Wash a dish/dishes
Tidying something on the floor

Holding a book
Washing their hands

Holding a laptop
Tidying some clothes

Holding a broom
Washing a table

Grasping onto a doorknob
Closing a refrigerator

Washing a cup/glass/bottle
Someone is running somewhere

(c) Addition of visual-symbolic edges.

Figure 2.17: Activity classes with the highest positive and negative performance
difference by incrementally adding various types of graph edges. (a) Incorporating
spatial structure benefits actions that involve interactions with objects far away from
the actor, such as watching television or cooking. (b) Adding actor-to-actor temporal
messages helps with long actions, such as running, and actions involving objects that
are hard to detect (Holding a broom). (c) Adding visual-symbolic edges and performing
global semantic graph convolutions benefits actions that have a few training examples,
such as Holding a vacuum or have strong co-occurrences, such as Holding a book.
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Figure 2.18: Visualization of attention over objects for updating the embedding of
the actor on sample frames from Charades dataset. Each pair of images shows: the
original frame with the actor detection in green and object detections in blue (left) and
the actor and the two objects with largest attention coefficients (right).
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Figure 2.19: Temporal action predictions when using region embeddings computed
by our V-HetGAT model for three sample videos from the Charades validation set.
Action scores for 10 equidistant frames are shown for each video.
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Chapter 3

Discriminative and Conditional
Generative Region-based Models
for Language-Driven Object
Grounding in Videos

3.1 Problem Formulation

In this chapter, we are interested in grounding object words of ground-truth

or generated visual descriptions of a video segment depicting an event. In

contrast to our temporal activity detection experiments in Chapter 2, for the

tasks tackled in this chapter, we assume that the temporal extent of the event

is known a priori.

Let Y denote a visual description of a given video segment I with a du-

ration of L frames. We represent Y = {y1, . . . , yT} as a sequence of T words

from a vocabulary V , where yt is the one-hot encoding of the t-th word, i.e.,

yt 2 {0, 1}|V| and kytk1 = 1. In the VOG task, the goal is localize each ground-

able word (e.g. object nouns and pronouns) in the input video, i.e., we are
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interested in localizing each mentioned groundable word with a bounding box

bbt at each annotated frame for every word yt in the sentence that belongs to a

pre-defined groundable vocabulary Vo ✓ V . In the GVD task, the goal is to

both generate a visual description bY and localize each generated groundable

word byt with a bounding box bbt at each annotated frame.

Our goal is to design a model that can tackle both tasks. To achieve this,

we treat the problem of grounding as a problem of word-to-region alignment

by leveraging region proposals. These region proposals R = {rm 2 R4
}

M
m=1

are obtained by an off-the-shelf object detector that is trained on an external

image dataset. In particular, we use a Faster-RCNN object detector trained

on the Visual Genome image dataset [182]. The object detector is applied at

L f selected frames (e.g., uniformly sampled frames) with M0 regions detected

at each frame (M = L f ⇥M0). Then, the grounding problem is reduced to

identifying which region at each selected frame corresponds to the t-th word.

3.2 Related Work

Grounding text in images and videos is an active research field in the inter-

section of vision and language. Depending on the type of text that is being

grounded, grounding tasks can be divided into two groups: the first group of

methods attempts to ground a single sentence or phrase (referring expression)

in the video [183, 184, 185], while the second group tries to find correspon-

dences between video regions and multiple parts of a sentence, such as object

words [4, 186]. Since in this thesis we are interested in video understanding

based on actors and objects, we focus on this latter, more fine-grained task of
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grounding each object word of a sentence in a video.

3.2.1 Fully-supervised Grounded Description and Object
Grounding in Videos

Early attempts at visual grounding of phrases or object words focused mostly

on images rather than videos. For example, Gorniak et al. [187] attempt

to ground objects on images of constrained, synthetic scenes and employ

semantic parsers. Another line of work relies on probabilistic models [188,

189], such as CRFs, for associating words in sentences to visual concepts, like

3D objects [189]. The parameters of these models are learned based on labeled

training sets, where each training sample consists of an image, a sentence and

ground-truth word-to-region alignments. Deep learning approaches for visual

grounding have also been primarily focused on images and can be grouped

in “region-proposal-based” approaches, which treat grounding as ranking of

multiple region proposals, and “one-stage” approaches, which directly predict

regions as outputs.

Region-proposal-based grounding. Building upon advances in object de-

tectors and region proposal networks, these approaches address grounding

by associating words with region proposals. For example, captioning-based

approaches [4] propose learning grounding by generating sentences word-by-

word using an attention mechanism over region proposals. The ground-truth

text-to-region alignments are used to supervise the attention mechanism, so

that it attends to the regions associated with each word. Dogan et al. [190] also

leverage region proposals and employ recurrent neural networks to perform
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sequential grounding on images. Their framework applies an LSTM on the

sequence of phrases to be grounded, starting from the last phrase, an LSTM

on the region proposals and an LSTM on the sequence of phrase-box pairs,

capturing the context of already grounded phrases. The model is trained by

penalizing incorrect grounding decisions (phrase-grounding box pairs). To

facilitate the learning of meaningful attention coefficients over regions, Zhou

et al. [4] learn contextual region embeddings using self-attention applied on

top of the set of regions from all frames. We also follow the same approach

and focus on learning contextualized region representations based on visual

and semantic interactions between actors and objects.

One-stage methods. Inspired by single-stage object detectors like YOLO [191]

and DETR [192], these methods [193, 194, 195] directly predict bounding boxes

grounding each word/phrase. For example, Yang et al. [194] adds a textual

embedding to the YOLOV3 object detector for visual grounding in images.

MDETR [195] adapts DETR to the task of visual grounding and employs large-

scale pretraining on text-image pairs. It extracts image and text features using

a convolutional backbone and a transformer language model, respectively,

projects them into a shared embedding space and applies a joint transformer

on them. Then, as in DETR, a transformer decoder is applied to object queries

and bounding boxes are predicted by attending to the encoder’s hidden states.

MDETR has also been used for frame-level visual grounding in videos [186].

Going beyond grounding words given a human-annotated sentence, the

related task of jointly generating a visual description and grounding the

generated words to their corresponding visual regions (called Grounded
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Visual Description) has attracted the interest of the research community [81, 4,

186]. Zhou et al. [4] generate video descriptions with grounded object words

by using a video captioning model with a region attention mechanism, while

Ruan et al. [186] generate captions with a holistic, captioning model, which

does not look into regions and then apply a separate grounding model on the

generated captions.

3.2.2 Weakly-Supervised Grounded Visual Description

Developing models that can both generate a sentence and link the generated

words to their corresponding visual regions and which can be trained only

with video-description pairs is a nascent research area. Zhou et al. [4] proposed

using attention-based captioning models for generating sentences. Their GVD

model then grounds words based on region attention coefficients. However, in

contrast to prior work on phrase grounding that computes attention using the

whole phrase as query [196], GVD attention is computed based on previous

words (partially generated sentence), thus it is agnostic to the word being

grounded.

A recent line of work has attempted to mitigate this issue. Ma et al. [197]

proposed a cyclical training regime for WS-GVD of images and videos that

involves two attention mechanisms: one based on the partial caption and

another based on the groundable word. By forcing the words generated

using these two attention mechanisms to match the ground-truth words, the

mechanisms are implicitly regularized to produce similar attention weights

during training. Other approaches explicitly supervise the region attention
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during training on image-caption pairs, either by using attention coefficients

based on future relevant words [198], or by leveraging the word-to-region

alignments of a separately trained image-to-text matching model [199]. In

summary, a common thread in prior work is the usage of a regular region

attention module of an UpDown [5] captioning model for grounding, which

is regularized only during training based on auxilliary models or attention

mechanisms. In contrast, inspired by discrete latent-variable models for image

captioning/neural machine translation [200, 201, 202, 203], our key innovation

is to treat word-to-region alignments as discrete latent variables in a grounded

visual description CVAE model and exploit the prior or approximate posterior

alignment distributions to infer the latent word-to-region alignments. This

enables us to consider the past, future and current words for localizing each

object word in the input image or video during testing.

3.2.3 Weakly-Supervised Visual Object Grounding

Grounding words (rather than whole sentences [82] or phrases [83, 84]) in

images and videos is an active research field in the intersection of vision

and language. Early attempts for weakly-supervised visual grounding given

textual descriptions of images and videos relied on graphical models [85, 86].

Powered by advances in region proposal generation, a large group of recent

methods [87, 88] cast the task as a Multiple Instance Learning (MIL) problem.

These methods define an image-sentence matching score determined by word-

to-region alignments and learn how to correctly match images to sentences

using ranking losses. Such methods have also been extended to videos [89,
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90, 9] with frame-sentence matching scores and mechanisms to account for

missing objects. However, these MIL-based methods cannot both generate

sentences and ground objects. This limitation is lifted by the captioning-based

GVD-Grd method [4], which grounds each word based on region attention

coefficients, computed with the previous words as query, combined with

region-to-class similarity coefficients. These are obtained by transferring

object class knowledge from external datasets. In this work, we also use

captioning as a downstream task, but we localize words with the distributions

of a conditional generative model, leveraging the full sentence context.

3.2.4 Joint Vision-Language Representation Learning

Inspired by advances in pretrained NLP models [204], researchers have also

started to use large-scale vision-text corpora to learn task-agnostic, cross-

modal vision-language representations, which can be used to facilitate down-

stream tasks. For example, Transformer-based models [205, 206] learn task-

agnostic, visiolinguistic representations using only pairs of images with object

proposals and associated textual descriptions. Our goal, however, is funda-

mentally different as we are interested in training visual grounding systems

on small-scale datasets. Importantly, we rely on text as weak supervision

for learning how to ground and we do not need bounding box annotations

directly on the target dataset. While transformer models can also be used to

tackle downstream tasks such as referring expression grounding [205], we

note that this requires finetuning on a smaller, fully-annotated dataset.
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3.2.5 Modeling Sequential Data with Variational
Autoencoders

Our proposed CVAE-based captioning model is also related to regular or

Conditional VAEs that are developed for modeling sequential data in NLP

applications. In particular, VAEs with sequences of latent variables [207, 208, 209,

210, 211, 212] instead of a single latent variable driving the whole sequential

generation process [213, 214, 215, 216] are more closely related to our work.

However, the majority of those have non-interpretable, continuous latent

variables, unlike our discrete latent word-to-region alignments. A notable

exception is the approach of Graber et al. [217] that uses sequential discrete

variables to model interactions between entities in interacting systems. Still, all

these works share the same goal of modeling the likelihood of sequential data,

while we propose exploiting the latent variables for grounding. To this end,

we need to avoid training an inference model that produces posteriors almost

identical to the prior, thus ignoring the word to be grounded. Researchers

are actively exploring various techniques to mitigate this posterior collapse

issue by modifying: the training objective [218, 219, 220, 221, 222, 223], the

training procedure [224] or the decoder architecture [225]. Similarly, we

propose controlling the relative factor between sentence reconstruction term

and the prior regularization term [218, 226, 223]. In the previous chapter

we developed models for region representation learning based on spatio-

temporal heterogeneous graphs. We showed how the refined, context-aware

representations can be used to improve performance in labeling tasks, such

as predicting multiple activity labels per frame, or predicting subactivity
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and affordance labels for actor and object regions, respectively. However,

predicting labels from a predefined set of possible activity categories/object

affordances is not sufficient for conveying the rich content of visual data. To

understand a video, a computer vision system needs to capture objects, actions,

attributes and other semantic components. Natural language sentences are a

compact way to describe this rich visual content. When used as annotations

for training, textual descriptions allow algorithms to learn richer semantic

concepts. Furthermore, by describing visual content with natural language,

machines can better communicate with humans. Due to these advantages,

the interdisciplinary, multimodal field of vision and language has recently

attracted the interst of the computer vision community.

In this chapter, we explore region-based approaches for language-driven

video understanding. Linking words to visual regions provides a fine-grained

bridge between the vision and language modalities and is a fundamental

block of many applications, such as human-robot interaction [227, 228], vi-

sual question answering [229, 230], and even unsupervised neural machine

translation [231]. Therefore, visual grounding (associating linguistic symbols

to visual entities) has become a prominent research area at the intersection

of vision and language [196, 87, 190, 232] and is the focus of this chapter. In

particular, we consider two related tasks, (1) Visual Object Grounding (VOG),

where given an input video (or image) and its visual description, the goal is to

localize the referred semantic entities in the visual input, and (2) Grounded Vi-

sual Description (GVD), where given an input video (or image), we must jointly

generate a natural language description and localize the generated words.
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Training visual grounding systems typically requires annotations of tex-

tual descriptions combined with bounding boxes for each groundable word.

In Section 3.3, we begin our exploration of region-based language-driven

video understanding systems in this fully-supervised setting. However, since

constructing datasets with such fine-grained bounding box annotations is

rather time-consuming and costly, in Section 3.4 we propose novel models for

solving the VOG and GVD tasks that can be trained with weak supervision in

the form of video-caption pairs.

3.3 Fully-Supervised Generation and Grounding
of Visual Descriptions with Discriminative Mod-
els

In this section, we address the VOG and GVD tasks under the assumption that

full supervision about the object words and their corresponding bounding

boxes is given. We begin by giving a detailed description of the GVD attention-

based encoder-decoder model proposed by Zhou et al. [4], which is the basis

of our region-based frameworks for fully-supervised GVD and VOG.

3.3.1 Review of the GVD Attention-based Model

Given an input RGB video segment I with candidate region proposals R

extracted by an off-the-shelf object detector, the GVD model proposed by

Zhou et al. [4], illustrated in Fig. 3.1, employs an encoder-decoder architecture

which consists of a visual encoder and a language decoder that communicate

via cross-modal attention mechanisms. The encoder and decoder parameterize
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Figure 3.1: Overview of the GVD model proposed by Zhou et al. [4] for tackling
the Visual Object Grounding (VOG) and Grounded Video Description (GVD) tasks.
Given an input RGB video segment with region proposals, the GVD model learns
how to ground words by learning how to generate captions with a hierarchical LSTM
equipped with a region attention mechanism. The region attention coefficients are
used to ground each word by selecting the region with maximum attention coefficient
at each frame.

the conditional distribution of a sentence Y given the region proposals R and

the image I, i.e., p(Y | R, I) = ’t p(yt | y<t, R, I), and are described next.

Visual encoder. The visual encoder consists of a holistic video encoder and a

region encoder, as shown in Fig. 3.2.

The video encoder extracts a sequence of holistic frame features F = {fl}
L
l=1

by (a) passing the RGB frames of the video segment through a 2D convolu-

tional network fRGB(·) to yield a sequence of RGB feature vectors
n

f̂RGB
l

oL

l=1
,

(b) passing optical flow frames through another 2D convolutional network

fOF(·) to extract a sequence of flow features
n

f̂OF
l

oL

l=1
, and then (c) further

modeling long-term temporal dynamics by applying a BiGRU [168] RNN on
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Figure 3.2: Overview of the visual encoder which represents a video based on holistic,
frame-level information, as well as based on regions extracted using an off-the shelf
object detector.

top the sequence of concatenated RGB features and motion features:

f̂RGB
l = fRGB(Il) 2 RDr , (3.1)

f̂OF
l = fOF(Ol) 2 RDo , (3.2)

�!
fl = BiGRU(

�!
fl�1, [f̂RGB

l ; f̂OF
l ]) (3.3)

 �
fl = BiGRU(

 �
fl+1, [f̂RGB

l ; f̂OF
l ]), (3.4)

fl = [
�!
fl ;
 �
fl ] 2 RDf , (3.5)

where Ol is the l-th optical flow frame and [·; ·] denotes the concatenation

operation.
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The frame features are summarized in a global feature vector v describing

the video segment, which is obtained by averaging the temporal sequence of

concatenated frame-wise appearance features
n

f̂RGB
l

oL

l=1
and motion features

n
f̂OF

l

oL

l=1
. Recall that the input video is assumed to be a known temporal

segment of a longer untrimmed video. To integrate that information to the

global feature vector, it is also augmented with a Ds-dimensional embedding

ps of the segment positional information (i.e., total number of segments,

segment index, start time (normalized by the video duration) and normalized

end time):

v =

"
1
L Â

l
f̂RGB

l ;
1
L Â

l
f̂OF

l ; ps

#
2 RDr+Do+Ds . (3.6)

The region encoder, namely the second module of the visual encoder, rep-

resents each region proposal with the following three features: (a) an object

appearance feature, (b) a learnable position embedding and (c) a semantic

embedding of region-to-class similarity scores. The object appearance fea-

ture o 2 Rdo is extracted from the penultimate layer of the object detector.

The position embedding Mp([r; l̃]) 2 Rdp is a learnable embedding (linear

transformation layer followed by a ReLU non-linearity) of the bounding box

coordinates r (normalized by the frame size) and the index l̃ of the frame

that the region belongs to (normalized by the number of frames in the video

segment):

Mp([r; l̃]) = ReLU(WT
p [r; l̃] + bp) 2 Rdp . (3.7)

The semantic embedding Ms(o) 2 R|Vo| is computed by applying a set of
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object classifiers on the region feature and normalizing the resulting scores

across the number of groundable object words with the softmax operator:

Ms(o) = softmax (WT
s o + bs) 2 R|Vo|, (3.8)

where Ws = [w1; . . . ; w|Vo|] 2 Rdo⇥|Vo| is a matrix of |Vo| object classifiers

and bs = [b1; . . . ; b|Vo|] 2 R|Vo| is a vector of scalar biases. To initialize these

weights and biases, we transfer object class knowledge from the external

image dataset that the object detector was trained on, by finding the nearest

neighbor from the annotated object classes of the external image dataset for

each one of the |Vo| groundable words. Then, we initialize Ws and bs with

the corresponding object classifiers, i.e., the weights and biases, from the last

linear layer of the object detector.

The object appearance feature, position embedding and semantic em-

bedding are concatenated and a parameterized linear transformation Wg 2

Rd⇥(do+dp+|Vo|) is applied to obtain the grounding-aware region feature x

introduced by Zhou et al. [4]:

x = Wg
⇥
o; Mp([r; l̃]); Ms(o)

⇤
2 Rd. (3.9)

Language decoder. The distribution over words in the vocabulary p(yt|y<t, R, I)

is a categorical distribution conditioned on the partial caption y<t, region

proposals R, and the input image I. Zhou et al. parameterize it with a fully-

connected layer g(·), that receives as input the state st of a trainable language
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model that summarizes y<t, R and I:

g(st) = softmax(Wclsst) 2 R|V|, (3.10)

yt | y<t, R, I ⇠ Cat(g(st)), (3.11)

where Wcls 2 R|V|⇥d are trainable weights (biases are omitted for brevity).

The chosen language model is a variant of the UpDown LSTM [5], which

is composed of trainable word embeddings, emb : R|V|
! Rdw , and two

LSTM [233] layers with hidden states ut 2 Rd and st 2 Rd, respectively. To

leverage the output of the visual encoder, the language decoder also employs

two cross-modal attention mechanisms: (a) an attention mechanism f (·, ·)

over holistic frame features, and (b) an attention mechanism k(·, ·) over re-

gion features. These attention mechanisms aggregate visual context from

relevant frames/regions given the hidden state ut as query that summarizes

the description generated so far.

Intuitively, the first LSTM (RNN1) captures the history of previous words

as well as the gist of the video and its hidden state ut is used as the query for

the two attention mechanisms, while the second LSTM (RNN2) additionally

captures the history of attended region and frame features:

ut = RNN1 (ut�1, [v; emb(yt�1)]) (3.12)

st = RNN2

 
st�1,

"
L

Â
l=1

f (l)(ut, F)fl;
M

Â
i=1

k(i)(ut, X)xi; ut

#!
. (3.13)

The attention mechanisms which aggregate visual context from relevant
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frames/regions given the hidden state ut as query that summarizes the de-

scription generated so far are implemented using additive attention:

f (l)(ut, F) =
exp

⇣
wT

f tanh(Wf [ut; fl]))
⌘

ÂL
l0=1 exp

⇣
wT

f tanh(Wf [ut; fl0 ]))
⌘ (3.14)

k(i)(ut, X) =
exp

�
wk

T tanh(Wk[ut; xi])
�

ÂM
j=1 exp

�
wT

k tanh(Wk[ut; xj])
� , (3.15)

where w f 2 Rda , Wf 2 Rda⇥2d, wk 2 Rda , and Wk 2 Rda⇥2d are learnable

attention weights and da is the hidden attention dimension.

3.3.2 AO-GVD: Grounding with Contextual Region Repre-
sentations

𝑿 =

Contextual
Region 

Embeddings

…

𝐼

Proposals

LSTM

<start> soccer a

Partially generated caption

Region Attention
Query: partially generated caption
Keys/Values: region proposal features

LSTM

MLP
ball

Visual Context

UpDown LSTM

ground

VS-ST-MPNN

Figure 3.3: Illustration of our proposed AO-GVD model which builds upon the
GVD model by computing contextual embeddings for the candidate region proposals
based on local spatio-temporal visual interactions among actors and objects, as well
as long-range semantic interactions captured in a heterogeneous visual-symbolic
graph. These contextual region embeddings are then fed as input to the UpDown
LSTM for generating grounded video descriptions.
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We are now ready to describe how to augment the original GVD model

proposed by Zhou et al. [4] with contextual region embeddings that take into

account local spatio-temporal visual interactions among actors and objects, as

well as long-range semantic interactions. We propose to do so by augmenting

the visual encoder described in Section 3.3.1 with our VS-ST-MPNN region

representation model, in order to refine the local, grounding-aware region

features. An overview of our model, called Actor-Object Grounded Visual

Description (AO-GVD), is shown in Fig. 3.3.

As we discussed in Chapter 2, the VS-ST-MPNN model is very flexible

and can be applied to refine the local features of video regions as long as an

appropriate visual-symbolic graph G(R, I) is defined. The key question is:

how do we design an input visual-symbolic graph tailored to the task of grounding?

For the visual subgraph of G(R, I), which is instantiated on top of the region

proposals, we need to define: the node assignment function that assigns the

actor or object type to each region proposal, the connectivity of the visual

subgraph, i.e., which nodes are connected with directed edges and what are

their edge types, and the node (edge) feature extraction function that is used

to compute initial node (edge) attributes for each visual node (edge). For

the symbolic subgraph of G(R, I), we need to define the number of symbolic

nodes, their initial attributes and the scalar symbolic edge weights. Recall that

our VS-ST-MPNN assumes that symbolic edges are not associated with edge

attributes. Next, we present our proposed visual-symbolic graph construction

for the grounded visual description and visual object grounding tasks.
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Visual spatio-temporal subgraph. Each node of the visual subgraph corre-

sponds to a region from the set of region proposals R which are extracted

using an off-the-shelf object detector trained on the Visual Genome dataset.

Therefore, each region is associated with a Visual Genome object class. Our

node type assignment function utilizes these object classes and assigns to

each region a type (actor or object) depending on the Visual Genome class

associated to this region. Specifically, regions belonging to one of 42 manually

selected classes of the Visual Genome dataset are assigned the actor node type.

These object classes are: adult, baby, biker, bride, boy, catcher, chef, child, couple,

cyclist, driver, fire extinguisher, girl, guy, groom, kid, lady, little girl, male, man, men,

mother, motorcyclist, officer, passenger, pedestrian, person, player, pitcher, police

officer, policeman, racer, referee, rider, she, skateboarder, skater, skier, tennis player,

umpire, woman, worker, young man. The rest of detected regions which belong

to the rest of the 1600 Visual Genome object classes or the background class)

are assigned the object node type. The node attributes are initialized with the

grounding-aware region feature:

h(0)
i = fo(ri, I) = Wg

⇥
o; Mp([ri; l̃]); Ms(o)

⇤
2 Rd, i 2 1, . . . , M. (3.16)

Edge attributes are initialized with the relative spatial location and size of the

connected regions:

q(0)
ij =

"
log

 
|x(i)tl �x(j)

tl |

wi

!
, log

 
|y(i)tl �y(j)

tl |

hi

!
, log

 
wi
wj

!
, log

 
hi
hj

!#
, (3.17)

where (x(i)tl , y(i)tl ) is the top-left corner of the bounding box of the i-th region

and hi and wi are the height and width, respectively.
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Symbolic subgraph and visual-symbolic edges. We use a symbolic sub-

graph that has nodes corresponding to the groundable object classes Vo and

scalar edge weights corresponding to per-sentence groundable object class co-

occurrences in training data. We initialize each symbolic node attribute with

a pretrained word embedding of its associated groundable object class. The

visual-symbolic edges densely connect every visual node to every symbolic

node. Both the symbolic edges as well as the visual-symbolic edges are only

associated with scalar edge weights and do not have an edge attribute.

Computation of context-aware region embeddings. Given the constructed

visual-symbolic graph G(R, I), we can apply our VS-ST-MPNN (and in partic-

ular its V-HetGAT and VS-HetGAT variants) to obtain context aware region

embeddings X, i.e.:

X = MPNN(G(R, I)). (3.18)

Semantic context module variants. As we discussed in Chapter 2, our VS-ST-

MPNN does not assume known correspondences between visual nodes and

symbolic nodes and instead employs learned scalar edge weights (soft assign-

ments) when computing messages across these edges (Eq. 2.22 and Eq. 2.26).

For example, for our experiments on activity detection in Section 2.5.2.3, we

had no prior knowledge of the correspondence between visual nodes (actors)

and symbolic nodes (activity labels). However, as we explained earlier in the

approach of Zhou et al. [4], we can guess the groundable object word that each

region might be related to by transferring object class knowledge from exter-

nal image datasets to obtain region-to-class similarity scores. Inspired by this,
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we propose two variants of our Semantic Context Module (SCM): (a) using

the original SCM that employs visual-symbolic soft-assignment weights that

are learned from scratch (Eq. 2.22), and (b) using fixed visual-symbolic scalar

edge weights, and in particular the region-to-class (i.e., visual-to-symbolic

node) similarity scores defined in Eq. 3.8.

3.3.3 Inference

Inference for grounded visual description. Following Zhou et al. [4], we

perform a greedy decoding for sentence generation. That is, after feeding the

special symbol < BOS > (beginning of sentence), we predict a word at each

timestep t and feed it as input to the next timestep. Formally, using the word

probability distribution defined in Eq. 3.10- 3.11, we obtain:

ŷt = argmax
c={1,...,|V|}

p(yt,c = 1 | ŷ<t, R, I) = argmax
c={1,...,|V|}

exp
⇣

w(c)
cls st

⌘

Âc0 exp
⇣

w(c0)
cls st

⌘ , (3.19)

where w(c)
cls is a row vector corresponding to the c-th row of matrix Wcls.

Each generated word that belongs to the groundable object classes Vo

is grounded at a frame l by selecting the region with maximum attention

coefficient at that frame. Formally, let Jl ⇢ {1, . . . , M} be the subset of

region indices that were extracted from the l-th frame. Then, the predicted

localization for the t-th predicted word yt at frame l, denoted as b̂(k)
t , is:

b̂t,l = rj, where j = argmax
i2Jl

k(i)(ut, X), (3.20)

where k(i)(ut, X) is the region attention coefficient for the i-th region (Eq. 3.15)
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and ut is the hidden state of RNN1, i.e., the Top-Down Attention LSTM

following the terminology from Anderson et al. [5], that captures the partial

generated caption ŷ<t (Eq. 3.12).

Inference for visual object grounding. In this case we are given both a video

and a ground-truth sentence describing it. One way of localizing a given

groundable word at a frame l is by selecting the region with maximum atten-

tion coefficient at that frame, as in the case of Grounded Visual Description

(Eq. 3.20), with the only difference that we are now feeding the ground-truth

words to the UpDown LSTM instead of the generated ones.

Another way of localizing a given groundable word proposed by Zhou

et al. [4] is to fuse the region attention with the object classifier knowledge.

Intuitively, the region-to-class similarities obtained via object class knowledge

transfer capture our prior belief regarding which object word each region is

associated with, while the region attention coefficients capture the relevant

region by taking account the sentence to be grounded. For example, assume

that we are given a video showing a crowd gathered around a piano player

and we would like to ground the word man in the following sentence: “A

man in a striped shirt is playing the piano”. Based on the object classifier

trained on Visual Genome we can associate all regions corresponding to men

in the scene to the object word “man”. That knowledge can be fused with

the region attention to ideally select the “man in a striped shirt”. To achieve

this, the unnormalized region attention coefficients are summed with the

unnormalized region-to-class similarity scores obtained via object knowledge

transfer (Eq. 3.8), and are normalized to sum to 1 across all regions of the
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video to yield region proposal ranking scores dt,i:

dt,i =
exp

⇣
k(i)(ut, X) + M(ct)

s (oi)
⌘

ÂM
i0=1 exp

⇣
k(i0)(ut, X) + M(ct)

s (oi0)
⌘ , (3.21)

b̂t,l = rj, where j = argmax
i2Jl

dt,i (3.22)

where ct is the groundable object class of the t-th word (yt,ct = 1). We will

refer to this variant as GVD-Grd in our experiments.

3.3.4 Training Objective

The parameters of the model are trained based on video-caption-grounding

triplets {(I(n), Y(n), B(n))}N
n=1 by minimizing a cross-entropy loss for word

prediction (Lword), a cross-entropy loss for word localization based on the

attention coefficients k(i)(ut, X) (Latt), and a cross-entropy loss for similarity

scores between regions and each groundable object class (Lcls), respectively.

L = Lword + Latt + Lcls (3.23)

The first term of the GVD objective is a cross-entropy loss that encourages

the predicted word distribution to be peaky around the correct t-th word of

the sentence:

Lword = �
T

Â
t=1

|V|

Â
w=1

yt,w log p(yt,w = 1 | y<t, R, I), (3.24)

where p(yt | y<t, R, I) is the predicted distribution over words of the vocabu-

lary at timestep t given the ground-truth partial caption until timestep t� 1,

y<t.
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The second term encourages the model to attend to the correct region when

generating a groundable word:

Latt = � Â
t2{t|yt2Vo}

gt,i log k(i)(ut, X), (3.25)

where k(ut, X) 2 RM the vector of attention coefficients over the M region pro-

posals R and gt = [gt,1, . . . , gt,M] is the indicator vector for positive/negative

region proposals for the t-th groundable word, i.e., gt,i = 1 if the i-th region

proposal has an IoU over 0.5 with the ground-truth box bt and gt,i = 0 other-

wise. (If multiple region proposals match with the ground-truth box, we use

the one with the largest IoU).

The third term encourages the region-to-class similarities to correctly clas-

sify regions to groundable words. For each region with IoU over 0.5 with

any ground-truth box, we encourage the region-to-class-similarity M(i)
s to

classify the region to the groundable object class of the ground-truth box (ci).

(If multiple ground-truth boxes match with the region proposal, we use the

object class of the one with maximum IoU):

Lcls = � Â
i2R⇤

ci log M(i)
s [ci], (3.26)

where R⇤ denotes the set of region proposals that match with at least a ground-

truth box and M(i)
s 2 R|Vo| are the region-to-class similarities for each region i

obtained from transferring object classifier knowledge.
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3.3.5 Experiments

To evaluate the proposed extension of the GVD model [4] with contextual

region embeddings computed with our VS-ST-MPNN model, we use the

ActivityNet Entities dataset, described in Section 3.3.5.1. In Section 3.3.5.2, we

present the metrics used to evaluate all models for the tasks of GVD and VOG

and in Section 3.3.5.3 we provide implementation details. In Section 3.3.5,

we provide the performance of the fully-supervised discriminative encoder-

decoder model for various choices of contextual region embeddings models.

Then, we present qualitative results to illustrate the benefits of performing

graph-based representation learning on hybrid visual-symbolic graphs.

3.3.5.1 ActivityNet Entities Dataset

The ActivityNet Entities dataset [4] is a public benchmark dataset that contains

15k videos with captions and more than 158k annotated bounding boxes of

referred semantic entities. In particular, it contains 52k video segments (with

a training/validation/testing split of 35k/8.6k/8.5k segments, respectively)

annotated with a caption each. Each groundable word in a sentence, i.e.

each word from a vocabulary of 431 groundable words, is annotated with a

bounding box in one out of 10 uniformly sampled frames of the video where

it can be clearly observed. To the best of our knowledge, it is the only video

dataset with bounding box annotations for each groundable word of training

video captions, and thus suitable for training our fully-supervised contextual

grounded video description model.
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3.3.5.2 Evaluation Metrics

The performance of a model on the VOG task (grounding given ground-truth

sentences) is measured with Box Accuracy [89, 9, 4], which computes the

percentage of correctly localized word instances for each groundable object

class. A word instance is considered to be correctly localized if the Intersection-

over-Union (IoU) metric between the predicted box and the ground-truth box

is above 0.5. We compute Box Accuracy for each word in the vocabulary of

groundable words Vo and report their average.

Metrics for Grounded Visual Description evaluate both grounding and cap-

tioning capabilities. Following Zhou et al. [4], the quality of generated textual

descriptions is measured using standard metrics, such as Bleu (B@1, B@4),

METEOR (M), CIDEr (C), and SPICE (S). Most of these metrics, with the excep-

tion of SPICE, are similarity measures based on n-gram matching between the

generated sentence and ground-truth sentence(s). Briefly, Bleu@N [234] is a

modified n-gram precision metric with a sentence-brevity penalty, calculated

as a weighted geometric mean over different length n-grams up to length N.

METEOR [235] aligns sentences based on exact, stem, synonym, and para-

phrase matches between words and phrases, and then computes a weighted

F-score. CIDEr [236] computes the cosine similarity between TF-IDF-weighted

n-grams of length n and averages those similarities across n-gram lengths

from 1 to N = 4, where TF-IDF stands for term frequency-inverse document

frequency. Intuitively, a higher weight is applied on n-grams that frequently

occur in the ground-truth sentence, while the weight is reduced for n-grams

that commonly occur across all textual descriptions in the dataset, and are
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thus less informative about the visual content. SPICE [237] aims to assess

the similarity of generated and ground-truth sentences based on semantic

propositional content. To do so, it extracts from each ground-truth and gen-

erated sentence a semantic scene graph encoding the objects, attributes and

relations mentioned in the sentence , and calculates an F-score defined over

the conjunction of logical tuples representing semantic propositions in the

scene graphs. Each scene graph encodes the objects, attributes and relations

present in the sentence.

To evaluate grounding performance on generated sentences, we adopt the

F1all and F1loc grounding metrics [4]. The F1all metric is the harmonic mean of

precision and recall, where a predicted bounding box for a word in a generated

sentence is considered as correct when both the word is correctly predicted

(i.e., the word appears in the ground-truth sentence) and the bounding box

sufficiently overlaps with the ground-truth bounding box (IoU > 0.5). Since

the F1all metric is affected both by whether the groundable word appears

in the generated sentence and by the localization accuracy, the F1loc metric

assesses only the localization quality by focusing only on word instances in

the ground-truth and generated sentences that were correctly predicted.

Formally, given a groundable word class from the vocabulary Vo (e.g., dog),

let us define the number of instances of that word in the generated sentences

as A, the number of instances in the ground-truth sentences as B, the number

of correctly predicted word instances in the generated sentences as C and the

counterpart in the GT sentences as D, and the number of correctly predicted
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and localized word instances as E. Then,

Precall =
E
A

, Recall =
E
B

, F1all = 2
Precall ⇥ Recall
Precall + Recall

, (3.27)

and

Precloc =
E
C

, Recloc =
E
D

, F1loc = 2
Precloc ⇥ Recloc
Precloc + Recloc

. (3.28)

The precision and recall for the two metrics are computed for each ground-

able object class, but are set to zero if an object class has never been predicted.

Finally, the scores are averaged by dividing them with the total number of

object classes in the split. We compute these metrics on the validation set

using the official evaluation scripts for captioning1 and grounding2. The

grounding results reported on the hidden test set were obtained in 2020 using

the evaluation server 3.

3.3.5.3 Implementation Details

As explained in Section 3.3.2, we augment the grounded visual description

model of Zhou et al. [4] (GVD) with our Visual and/or Semantic Context

Modules. The GVD model uses a hierarchical LSTM decoder that generates a

descriptive sentence based on global video features along with local region

features of 100 region proposals extracted from 10 uniformly sampled frames

of the video segment and it utilizes the attention coefficients to ground the

1
https://github.com/LuoweiZhou/densevid_eval_spice/blob/

bbab10c202e956266031a0dd6c791cba25b58e59/evaluate.py

2
https://github.com/facebookresearch/ActivityNet-Entities/blob/

aa5cd28383e5e9c63e875ada54057591a71509d9/scripts/eval_grd_anet_

entities.py

3
https://competitions.codalab.org/competitions/20537
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nouns in the image.

GVD model hyperparameters. We use the same region proposals and fea-

tures as Zhou et al. [4]. For each frame, we use a Faster R-CNN [72] detector

with ResNext-101 [238] backbone pretrained on Visual Genome [182] to obtain

region proposals. In particular, we retain the top 100 region proposals per

frame, based on their detection confidence score. Each region is described

by a do = 2, 048-dimensional feature vector extracted from the f c6 layer

of the ResNext-101. We also combine that region feature with a dp = 300-

dimensional trainable embedding of the bounding box coordinates (including

the normalized frame index), and a 432-dimensional vector of object classifica-

tion scores. We also use a global feature vector v of size Dr + Do + Ds = 3,122.

We use a vocabulary of 4,905 words including UNK (the symbol for rare words

not included in the vocabulary) and EOS (end of sentence special symbol).

Words are embedded to a 512-dimensional vector using randomly initialized

embeddings, trained from scratch, same as in GVD [4]. The region embed-

ding/LSTM state size is d = 1,024, while additive attention mechanisms use a

hidden layer of size da = 512.

Symbolic subgraph. Our symbolic graph has nodes corresponding to the 431

object classes. Based on our experimental results from employing the VS-ST-

MPNN for temporal action localization (in Section 2.5.2.6), the VS-ST-MPNN

is not sensitive to the choice of the symbolic graph connectivity, and using a

dense graph performs almost as well as using action label co-occurrences as

the scalar edge weights. Here we choose to use edge weights corresponding

to per-sentence object label co-occurrences in training data. The adjacency
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matrix is binarized by thresholding co-occurence frequency values with a

threshold of 0.2, removing spurious edges between object classes with very

few co-occurrences. Figure 3.4 shows a part of the adjacency matrix. As we

can see the matrix is relative sparse capturing meaningful connections, with

the exception of some words like it or person, which frequently co-occur with

most other groundable object classes. To obtain the linguistic embedding of

each object, we use off-the-self GloVe [169] word embeddings of size K = 300.

VS-ST-MPNN hyperparameters. The hyperparameters of our VS-ST-MPNN

model (variant VS-HetGAT (NodeOnly)) used in this dataset are: Lv = 2,

dV = 1,024, Ls = 2, dS = 256. We used object-to-object spatial and actor-to-object

spatial edges. Our batch size is 80 video clips, the learning rate is set to 0.0003

and we train for 30 epochs.

Visual subgraph. The actor nodes for each frame of the clip correspond to the

top 10 object detections that belong to one of the 42 manually defined actor

classes, defined in Section 3.3.2. The object nodes correspond to the remaining

90 object detections per frame, including background detections.

3.3.5.4 Experimental Results

Table 3.1 compares the performance of various variants of our AO-GVD model,

stemming from different choices of the contextual embedding module. We

compare: (a) multi-head attention (MHA) applied on the fully-connected,

homogeneous visual graph instantiated on top of region proposals, (b) our

V-HetGAT model employing heterogeneous visual message passing (Visual

Context Module) and visual-symbolic message passing (Semantic Context
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Figure 3.4: Illustration of per-sentence co-occurrences of a subset of groundable object
words from the training set of the ActivityNet Entities dataset.

Module), (c) our original Semantic Context Module applied on top of visual

context-aware region embeddings obtained via self-attention (MHA + SCM),

(d) a modified version of the Semantic Context Module that uses fixed visual-

symbolic scalar edge weights (SCM-VG), as we described in Section 3.3.2.

As it can be seen, replacing MHA with our visual module does not improve

captioning metrics, but it improves grounding of generated words with a

relative improvement of 4% in F1all (24.1% ! 25.2%). Adding our Seman-

tic Context Module to MHA leads to an improvement across all Grounded

Visual Description metrics, which is even more pronounced in the test set

(improving CIDEr from 45.5 to 47.7%). Note that the initial region features
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(Eq. 3.9) already capture semantic information by including region-to-class

similarities. Therefore, the improvement in captioning cannot be attributed

solely to the inclusion of semantic context, but rather to our semantic rea-

soning framework. Last, from the superior captioning performance of our

third variant (AO-GVD, MHA+SCM-VG), we conclude that prior knowledge

about correspondences between visual and symbolic nodes, if available, can

possibly facilitate representation learning on the hybrid graph.

Table 3.1: Grounded visual description results on ActivityNet Entities [4] using the
following metrics: Bleu (B), METEOR (M), CIDEr (C), SPICE (S), F1all and F1loc.
MHA: multi-head self-attention. VCM: Visual Context Module. SCM: Semantic
Context Module. SCM-VG: our semantic context module with visual-to-symbolic
node correspondences transferred from Visual Genome.

B@1 B@4 M C S F1all F1loc

Validation set
GVD (MHA) [4] 23.9 2.59 11.2 47.5 15.1 7.11 24.1

GVD (VCM + SCM) (ours) 23.4 2.41 11.1 47.3 14.8 7.28 25.2
GVD (MHA + SCM) (ours) 23.8 2.67 11.3 48.6 15.2 7.35 25.3
GVD (MHA + SCM-VG) (ours) 23.9 2.78 11.3 49.1 15.1 7.15 24.0

Test set

Masked Transformer [239] 22.9 2.41 10.6 46.1 13.7 - -
Bi-LSTM+TempoAttn [239] 22.8 2.17 10.2 42.2 11.8 - -
GVD (MHA) [4] 23.6 2.35 11.0 45.5 14.9 7.59 25.0

AO-GVD (VCM + SCM) (ours) 23.1 2.34 10.9 46.1 14.5 - -
AO-GVD (MHA + SCM) (ours) 23.6 2.54 11.2 47.7 15.0 7.30 24.4
AO-GVD (MHA + SCM-VG) (ours) 24.1 2.63 11.4 49.0 15.1 7.81 27.1

In Table 3.2 we report the Box Accuracy metric for grounding semantic

entities mentioned in ground-truth visual descriptions. Similar to caption-

ing, we do not observe a significant difference between our heterogeneous

visual message passing model (V-HetGAT) and multi-head attention in this
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Table 3.2: Visual Object Grounding results on the ActivityNet Entities [4] valida-
tion set. MHA: multi-head self-attention applied on region features (grounding-
aware region features: projection of the concatenation of object detector feature,
spatio-temporal location embedding and object class distribution.). Dense ST: fully-
connected, homegeneous visual spatio-temporal graph instantiated on top of region
proposals. Spatial: heterogeneous, spatial graph instantiated on each frame. Attn.:
Grounding based on soft attention, Grd: Grounding by fusing region attention with
object classifier knowledge. GVD* denotes our implementation and training of the
GVD model.

Visual Graph Box Acc. (Attn.) Box Acc. (Grd)

GVD (MHA) [4] Dense ST 34.5 41.6

GVD* (MHA) [4] (ours) Dense ST 31.89 40.45
AO-GVD (VCM + SCM) (ours) Spatial 31.15 39.47
AO-GVD (VCM) (ours) Spatial 32.10 40.27

large-scale dataset under full supervision. As we will discuss later in this

chapter, when bounding box annotations are not available during training,

the performance of both self-attention and our V-HetGAt model degrade, but

our model seems to be more robust.

3.3.5.5 Qualitative Results

Figure 3.5 illustrates video captioning results on sample video segments from

the ActivityNet Entities validation set. Augmenting the self-attention module

of GVD [4], with our Semantic Context Module seems to lead to richer, better

grounded captions, capturing more details about the objects in the frames. For

example, as we can see in the first example, our AO-GVD describes that the

woman has a mop in her hand, instead of just describing that she is in a kitchen,

as GVD does. Similarly, it refers to the rope in the last example, although it

mistakenly describes the man as holding the rope instead of walking on it.
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3.3.6 Conclusion

In the first half of this chapter, we have introduced an extension of the fully-

supervised GVD model originally proposed by Zhou et al. [4] for Grounded

Visual Description and Visual Object Grounding. Our proposed AO-GVD

model utilizes region embeddings that are aware of local spatio-temporal

actor-object interactions and global semantic interactions. To achieve this, we

have adopted the heterogeneous message passing modules from Chapter 2.

Experimental results on ActivityNet Entities have shown that our Visual

Context Module (which explicitly takes into account node and edge types

on a sparse graph) performs comparably with powerful multi-head attention

mechanisms (which operate on a fully-connected, homogeneous region graph)

for grounding words in ground-truth or generated sentences. Combining

multi-head attention with our Semantic Context Module outperformed the

original GVD model in Grounded Visual Description.
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Figure 3.5: Video captioning results on sample video segments from the ActivityNet
Entities validation set. Augmenting MHA with our Semantic Context Module module
(SCM-VG) seems to yield richer captions, capturing more details about the objects in
the video, even when there are mistakes in the described events. GT: Ground Truth.
GVD: Grounded Video Description model with MHA. GVD w/ symb (ours): GVD with
SCM (5 frames shown from each segment). Best viewed zoomed in and in color.
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3.4 Weakly-Supervised Generation and Grounding
of Visual Descriptions with Conditional Gener-
ative Models

In Section 3.3, we proposed a visual grounding system that requires bounding

box annotations for each groundable word during training. However, con-

structing datasets with such fine-grained bounding box annotations is rather

time-consuming and costly. In this section, we propose a weakly-supervised

visual grounding system that requires only video-caption pairs for training.

In particular, we consider two tasks, as illustrated in Figure 3.6: (1) Weakly-

Supervised Visual Object Grounding (WS-VOG), where given an input image (or

video) and its visual description, the goal is to localize the referred semantic en-

tities in the visual input, and (2) Weakly-Supervised Grounded Visual Description

(WS-GVD), where given an input image (or video), we must jointly generate a

natural language description and localize the generated words.

Most prior work has focused on learning how to align words with regions

by learning how to correctly match images and videos to sentences [83, 119,

90, 9]. However, these matching-based approaches can only tackle the first

task (WS-VOG), and cannot generate grounded visual descriptions. On the

other hand, captioning-based approaches [4, 197] learn to ground words by

learning to generate captions based on region proposals, thus they can tackle

both tasks. For example, the GVD model [4] we discussed in Section 3.3.1 can

be trained only with the captioning loss term and then the region attention co-

efficients can be used during inference for grounding each word. Nonetheless,

exploiting soft attention as a grounding mechanism suffers from two major
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Figure 3.6: Our proposed framework jointly models visual descriptions and word-to-
region alignments conditioned on an input image (or video) and region proposals.
Without using any bounding box annotations during training, it can tackle two tasks:
Visual Object Grounding and Grounded Visual Description. Unlike prior work [4]
that leverages soft attention for grounding and always predicts the same region for
two words given the same visual input and partial caption context, our model can
ground words by taking into account the full ground-truth or generated sentence.

limitations. First, despite being an effective, end-to-end learnable mechanism

for summarizing relevant context, attention is not encouraged in any way to

capture meaningful alignments and can result in poor grounding [76], unless

it is supervised, as in Section 3.3. More importantly, each word is generated

using attention computed from a query that summarizes the previously gener-

ated words (partial caption). Hence, the attention does not take into account

the word to be grounded. For example, consider grounding the words ‘hat’
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and ‘jacket’ given the sentences “A man is wearing a hat” and “A man is wear-

ing a jacket”, respectively. As shown in Figure 3.6, existing attention-based

grounding approaches will wrongly predict the same box for ‘hat’ and ‘jacket’,

since the partial caption is the same.

To overcome these limitations, we propose a conditional generative model

for the joint probability distribution of sentences and latent word-to-region

alignments given an input image (or video) and a set of region proposals.

That is, we account for the lack of ground-truth grounding annotations by

introducing discrete latent variables that model word-to-region alignments.

We parameterize our model with state-of-the-art visual encoders, language

decoders and attention modules, and leverage Amortized Variational Infer-

ence [240, 241] to learn their parameters. The resulting Grounded Visual

Description Conditional Variational Autoencoder (GVD-CVAE) allows us to

both generate sentences, and also infer the latent word-to-region alignments

by taking into account the whole sentence, including the word to be grounded.

Hence, it can correctly ground the hat in the motivating example.

In summary, the contributions of the second part of this chapter are three-

fold. First, we introduce the GVD-CVAE, a novel conditional generative model

of visual descriptions with a sequential discrete latent space and attention-

based parameterization of the prior and approximate posterior alignment

distributions. Second, we propose a training objective that encourages our

CVAE model to learn latent variables that capture meaningful word-to-region

alignments. Finally, we evaluate our method on three challenging image

and video datasets and demonstrate that both our “prior” and “approximate
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Figure 3.7: We propose a deep conditional generative model of visual descriptions
that models each word-to-region alignment with a discrete latent variable zt. It is able
to attend over the region proposals in an input image (or video), tell what it shows by
marginalizing out the latent word-to-region alignments from the joint distribution
and ground each word by leveraging the learned approximate posterior word-to-
region alignment distribution.

posterior” alignment distributions improve upon soft attention. This leads

to a 12% absolute improvement in Visual Object Grounding on Flickr30k

Entities. Our model also achieves state-of-the-art or competitive grounding

and captioning performance compared with a diverse family of state-of-the-art

methods that are tailored to WS-VOG or WS-GVD.

3.4.1 GVD-CVAE: Attention-based Conditional Variational
Autoencoder

As we described in Section 3.1 of this chapter, we are interested in grounding

object words of ground-truth or generated visual descriptions in an input

139



video (or image), and we treat this problem as a problem of word-to-region

alignment by leveraging M candidate region proposals R = {rm}
M
m=1 ex-

tracted by off-the-shelf object detectors. Then, the localization problem is

reduced to identifying the variable zt 2 {0, 1}M, which denotes which region

corresponds to the t-th word. However, we are now interested in training

models using only weak supervision in the form of aligned pairs of images (or

videos) and visual descriptions: {(I(n), Y(n))}N
n=1. Our key idea is to model the

word-to-region alignments as latent variables in a deep conditional generative

model. To this end, we propose a novel Grounded Visual Description Con-

ditional Variational Autoencoder (GVD-CVAE). As illustrated in Figure 3.7,

learning such a model allows us to leverage the posterior distribution of word-

to-region alignments for grounding words based on the entire sentence, unlike

attention-based grounding.

Let Z = {z1, . . . , zT} be the sequence of latent variables corresponding to

alignments between words and regions, where zt 2 {0, 1}M is a binary discrete

random variable with zt,i = 1 when the i-th region proposal corresponds to

the t-th word yt and zt,i = 0 otherwise. The joint conditional distribution of a

caption Y and sequence of alignments Z, given the input video (or image) I

and candidate regions R, can be factorized by using the chain rule on both Y

and Z as follows:

pq(Y, Z | R, I) = pq(y1, y2, . . . , yT, z1, z2, . . . , zT | R, I)

=
T

’
t=1

pq(yt | y<t, zt, R, I)pq(zt | y<t, z<t, R, I),
(3.29)

where y<t = [y1, . . . , yt�1] denotes the partial caption up to word t� 1, and
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similarly z<t = [z1, . . . , zt�1] denotes the sequence of word-to-region align-

ments up until word t� 1. We then simplify this joint distribution by making

two assumptions: (1) The t-th word depends only on the region zt given the

partial caption y<t, and (2) the region-to-word alignments zt for each word

are conditionally independent of each other given the partial caption. With

these assumptions, our joint probability distribution pq(Y, Z | R, I) becomes:

pq(Y, Z | R, I) =
T

’
t=1

language decoder
z }| {
pq(yt | y<t, zt, R, I)

region prior
z }| {
pq(zt | y<t, R, I) . (3.30)

Note that when modeling the first word t = 1, we assume that the previous

word is a special [BOS] token. Next, we describe how we parameterize our

conditional generative model with deep networks, whose trainable weights

are denoted with q, as illustrated in Figure 3.8.

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝑴

𝑦𝑡−1<start> soccer
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(𝑠), 𝑦<𝑡, 𝑅, 𝐼)
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Figure 3.8: Our proposed GVD-CVAE architecture. The input image and proposals
are fed through a visual encoder to produce region embeddings. The prior word-to-
region alignment is computed as a function of only the previous words, while the
approximate posterior is computed as a function of the full sentence. During training, a
region is sampled from the approximate posterior and is fed to the language decoder
that predicts the next word.
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3.4.1.1 Visual Encoder

We use the same visual encoder as the one we described in Section 3.3.1. Recall

that the visual encoder consists of pretrained backbone holistic models and

trainable linear projections. Each video is encoded to a global video feature

v, a sequence of frame-level features F = {fl}
L
l=1, where l indexes the frames,

and grounding-aware region representations X = {xm}
M
m=1. If the input is an

image instead of a video, we can similarly describe it with a coarse image-level

feature vector v, fine-grained frame-level features F = {fl}
L
l=1, where l indexes

the feature map spatial grid, and grounding-aware region representations [4],

X = {xm}
M
m=1, that encode information about appearance, spatial position

and object class knowledge transferred from an external dataset.

3.4.1.2 Language Decoder

The decoder pq(yt | y<t, zt, R, I) = Cat(gq(st, zt, X)) is a categorical distribu-

tion over words on the vocabulary given the partial caption y<t, the word-

to-region alignment zt, the region proposals R, and the visual input I. We

parameterize this distribution with a Multilayer Perceptron (MLP) network:

gq(st, zt, X) = softmax

 
Wc tanh

 
Wh

"
M

Â
i=1

zt,ixi; st

#!!
, (3.31)

whose inputs are: (a) the state st 2 Rd of a trainable language model that

summarizes y<t, R and I, and (b) the aligned region feature ÂM
i=1 zt,ixi 2 Rd.

Here, [·; ·] denotes concatenation and Wh 2 Rd⇥2d, Wc 2 R|V|⇥d are learnable

weights.

Although st can be chosen to be the state of any standard language
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model [5, 239], we follow all prior work on grounded visual description [4,

197, 199, 198] and adopt a variant of the UpDown [5] LSTM model. As we

discussed in detail earlier in this chapter in Sec. 3.3.1, this language model

is composed of a word embedding layer (emb) and two LSTM [233] layers

with hidden states ut (Eq. 3.12) and st (Eq. 3.13), respectively. It also uses

attention mechanisms fq(·, ·) (defined in Eq. 3.14) and kq(·, ·) (Eq. 3.15) over

holistic visual features F and region features X respectively. Another simpler

alternative that we explored uses the state st of a vanilla LSTM, which does

not use the region features X:

st = RNNq (st�1, [v; emb(yt�1)]) . (3.32)

3.4.1.3 Prior Word-To-Region Alignment Distribution

The prior distribution pq(zt | y<t, R, I) = Cat(aq(st, X)) is a categorical distri-

bution over possible word-to-region alignments. We choose to parameterize

it with an additive attention mechanism [242] that uses the concatenation of

the hidden state st of the UpDownLSTM from Eq. 3.13) and the region feature

xi as a query to compute region attention coefficients aq(st, X) 2 RM that

summarize the partial caption and visual input:

a
(i)
q (st, X) =

vT
ap tanh(Wap[st; xi])

ÂM
j=1 vT

ap tanh(Wap[st; xj])
, (3.33)

where vap 2 Rd, Wap 2 Rd⇥2d are learnable weights of the attention mecha-

nism and da is a hyperparameter.
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3.4.1.4 Variational Approximate Posterior Distribution

To learn the parameters of our conditional generative model we will lever-

age Amortized Variational Inference (AVI). Therefore, our model becomes

a CVAE [241] with sequential discrete latent space and sentences as obser-

vations. In the CVAE framework, a variational distribution qf(Z | Y, R, I)

is introduced to approximate the true posterior and is parameterized via a

neural network with weights f, also known as the “inference network”. We

experiment with various choices of the approximate posterior distribution.

Smoothing approximate posterior. Here, we choose to approximate the true

posterior with a smoothing approximate posterior, which conditions each

word-to-region alignment on the full sentence:

qf(Z | Y, R, I) =
T

’
t=1

qf(zt | yT, R, I). (3.34)

Then, we model the approximate posterior distribution of each word-to-

region alignment as a multinomial distribution that is parameterized by the

region attention coefficients af(ht, X) 2 RM obtained via another attention

network, the “q-attention-network”, which receives a query ht 2 Rd that sum-

marizes the whole sentence and visual input, and the region features as keys.

We experimented with various instantiations of this attention network, and

in particular with the additive attention mechanism of Bahdanau et al. [242]

and with the general dot product attention mechanism of Luong et al. [243].

For example, when using the general dot product attention mechanism, our
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approximate posterior distribution takes the following form:

a
(i)
f (ht, X) =

hT
t Uxi

ÂM
j=1 hT

t Uxj
, (3.35)

zt | Y, R, I ⇠ Cat(af(ht, X)), (3.36)

where U 2 Rd⇥d is a learnable weight matrix. We observed that the choice of

this attention mechanism is critical for the overall framework, and the optimal

choice differs among datasets and models.

The attention query ht, which summarizes the whole sentence, is obtained

by summing the forward and backward states of a BiLSTM network, whose in-

puts consist of the global feature v and ground-truth word yt at each timestep:

�!
ht = BiLSTMf(

��!
ht�1, [emb(yt), v]) (3.37)

 �
ht = BiLSTMf(

 ��
ht+1, [emb(yt), v]) (3.38)

ht =
�!
ht +

 �
ht , (3.39)

where emb(·) is the same word embedding layer as the one used in the

language decoder (and thus is the only set of shared parameters between the

deep conditional generative model and the approximate posterior).

Filtering approximate posterior. An alternative is to use a filtering approxi-

mate posterior, which conditions each word-to-region alignment on the partial

caption up until the word to be grounded:

qf(Z | Y, R, I) =
T

’
t=1

qf(zt | yt, R, I). (3.40)
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The q-attention network remains unmodified in this case, but since it needs to

parameterize a distribution that is conditioned on just the partial caption, it

receives as query the hidden state ht of a simple LSTM (instead of a BiLSTM),

i.e.,

ht = LSTMf(ht�1, [emb(yt), v]) (3.41)

a
(i)
f (ht, X) =

hT
t Uxi

ÂM
j=1 hT

t Uxj
, (3.42)

zt | yt, R, I ⇠ Cat(af(ht, X)), (3.43)

where U 2 Rd⇥d is a learnable weight matrix.

Object-aware approximate posterior. So far, we have designed deep infer-

ence networks, consisting of a (Bi)LSTM and an attention mechanism, for

computing the parameters of the categorical approximate posterior word-to-

region alignment distribution for each datapoint (video-caption pair). This

network treats all words of the sentence in the same way. However, as we

discussed earlier, our goal is to ground the groundable words of a sentence,

i.e., object words belonging in the vocabulary of groundable words Vo. This

motivates the third variant of the approximate word-to-region alignment dis-

tribution, which takes into account the compatibility of each region with each

groundable object word based on transferred object detector knowledge.

Recall that each grounding-aware region embedding xi computed by our

visual encoder, as defined in Eq. 3.9, contains information about the region’s

similarity to each one of the groundable object words. As we discussed, these

similarity scores Ms(o) 2 RVo (Eq. 3.8) are obtained by transferring object class
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knowledge [4] from an off-the-shelf object detector [93] trained on an external

dataset [182]. Since our approximate word-to-region alignment distribution

qf(zt | Y, R, I) for each word yt is conditioned on the full sentence, including

the word itself, we can explicitly utilize the similarity of each region to the

groundable object word when computing the parameters of our approximate

posterior distribution for the groundable words in the sentence.

More specifically, let yt be a groundable word from the vocabulary Vo and

let ct 2 [1, . . . , |Vo|] denote its groundable object word index (yt,ct = 1). Then

the object-aware approximate distribution takes the following form:

zt | Y, R, I ⇠ Cat(softmax(ãf(ht, X) + 1[(argmax yt) 2 Vo](OTW(ct)
s + b(ct)

s ))),
(3.44)

where ãf(ht, X) are the unnormalized attention coefficients obtained via the

q-attention network, O = [o1; . . . ; oM] 2 Rdo⇥M is a matrix of region object

features (extracted from the fc7 layer of the object detector and also included

in the grounding-aware region embedding defined in Eq. 3.9), W(ct)
s 2 Rd0 is

the (ct)-th row of the semantic embedding matrix defined in Eq. 3.8, i.e., it is a

weight row vector initialized with the pretrained object classifier correspond-

ing to the external dataset object class that is closest to the object word yt, and

b(ct)
s is the scalar bias corresponding to the ct object word.

3.4.1.5 Approximate Inference

Visual Object Grounding. Given an input image or video and a ground-truth

sentence Y, we address the VOG task by inferring the latent word-to-region

alignment for each word of the sentence using the approximate posterior
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word-to-region alignment distribution:

b̂t = rj, where j = argmax
i2{1,...,M}

qf(zt,i = 1 | Y, R, I). (3.45)

We also experimented with using the prior word-to-region alignment distribu-

tion for grounding:

b̂t = rj, where j = argmax
i2{1,...,M}

pq(zt,i = 1 | y<t, R, I). (3.46)

Although this distribution suffers from the same limitation as soft-attention,

namely it does not take into account the word being grounded, our exper-

imental results suggest that it outperforms soft-attention. Notice that both

grounding approaches have the same computational complexity as popu-

lar grounding methods [89, 4]: they require passing the sentence through a

(Bi)LSTM and applying an attention mechanism over regions for each word.

We would like to clarify that our model assumes a single latent region

for each groundable word both for images and videos. Therefore, given an

input video and a textual description, each groundable word is localized with

a bounding box in a potentially different frame of the video. However, we

would often like to ground words in particular frames of the video. To do

this, we use a heuristic, i.e., we choose the region at frame l with maximum

q-attention coefficient (or p-attention coefficient (Eq. 3.33)) when grounding

words given only the partial caption):

b̂t,l = rj, where j = argmax
i2Jl

a(i)f (ht, X), (3.47)

where Jl is the set of region indices extracted from frame l and af(ht, X) is
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computed with the q-attention network in Eq. 3.35.

Grounded Visual Description. For the task of GVD, we follow a two-stage ap-

proach: first we generate a sentence and then we ground the generated words.

Similar to the attention-based encoder-decoder model that we described in the

first part of this chapter, we perform greedy decoding for sentence generation,

i.e. we predict a word y⇤t at each timestep t and feed it as input to the next

timestep. In particular, each next word can be predicted by using the marginal

word distribution:

byt = argmax
yt

E
zt⇠pq(zt|y⇤<t,R,I)

pq(yt | zt, y⇤<t, R, I). (3.48)

The marginal word distribution can be approximated via Monte Carlo sam-

pling:

byt = argmax
yt

1
K Â pq(yt | z(k)t , y⇤<t, R, I), (3.49)

where
n

z(k)t

oK

k=1
are K samples drawn according to pq(zt | y⇤<t, R, I). However,

doing so is computationally expensive. Instead, we feed the expected value of

zt:

byt = argmax
y

pq(yt | E
zt⇠pq

[zt], y⇤<t, R, I). (3.50)

Observe that Ezt⇠pq [zt] = aq(st, X) 2 RM, i.e. the expected value of zt is

equal to the attention coefficients computed by the p-attention network.

Note that pq(yt | Ezt⇠pq [zt], y⇤<t, R, I) is a first-order Taylor approximation

of the expectation in Eq. 3.48. If we choose to use a single layer MLP for

word prediction (Eq. 3.31), then pq(yt | Ezt⇠pq [zt], y⇤<t, R, I) is also valid lower
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bound of Ezt pq(yt | zt, y⇤<t, R, I), since the single layer MLP is a convex

function (composed of a linear mapping and the softmax function) of zt:

gq(st, zt, X) = softmax

 
Wc

"
M

Â
i=1

zt,ixi; st

#!
, (3.51)

yt | y<t, zt, R, I ⇠ Cat(gq(st, zt, X)). (3.52)

Using the expected value of zt serves as a shortcut to avoid sampling, thus re-

taining the same computational complexity as discriminative encoder-decoder

captioning methods:

byt = argmax

"
softmax

 
Wc

"
M

Â
i=1

a(i)q (st, X)xi; st

#!#
. (3.53)

Given the generated sentence Ŷ, we can use the prior (Eq. 3.46) or approximate

posterior (Eq. 3.45) word-to-region alignment distributions to ground the

generated words.

3.4.1.6 Training

During training, we are given a dataset consisting of N i.i.d. pairs of images

(or videos) and their visual descriptions, without grounding supervision. To

train our GVD-CVAE, we minimize the following hybrid training objective

over the parameters q and f (omitting the conditioning of all distributions on

the visual input I(n) for readability):

L =
1
N Â

n,t
lLCVAE(n, t) + (1� l)LCE(n, t), (3.54)
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where LCE(n, t) = � log pq(y
(n)
t | E

zt⇠pq

[zt], y(n)
<t , R(n)) and

LCVAE(n, t) =

reconstruction lossz }| {
E

zt⇠qf

h
� log pq(y

(n)
t | y(n)

<t , zt, R(n))
i

+ bKL
⇣

qf(zt | Y(n), R(n)) || pq(zt | y(n)
<t , R(n))

⌘
. (3.55)

Here, KL(q(x) || p(x)) denotes the Kullback-Leibler divergence between two

probability distributions q(x) and p(x) defined on the same probability space

X , and it is a non-symmetric measure of the difference between the two

probability distributions. In particular it measures the information lost when

p(x) is used to approximate q(x):

KL(q || p) = E
x⇠q


ln
✓

q(x)
p(x)

◆�
. (3.56)

Let us now dive into each one of the terms of this hybrid training objective.

Evidence Lower Bound Loss Term. To fit the parameters of the q of the

latent-variable model pq(Y, Z | R, I), we would ideally like to maximize the

conditional log-likelihood of training examples (Y(n), R(n), I(n)):

max
q

log pq(Y | R, I) = max
q

log E
Z

log pq(Y, Z | R, I). (3.57)

Based on our factorization of the joint probability distribution, this takes the

form:

max
q

log E
Z

T

’
t=1

pq(yt | y<t, R, I)pq(zt | y<t, R, I). (3.58)

In the case of conditionally independent, categorical prior word-to-region
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alignments, this is tractable, but we need to compute M softmaxes per word

in the vocabulary. Depending on M and |V| (long video/large number of

region proposals and/or large vocabulary), the cost can be prohibitive.

Instead, our method builds upon the framework of Conditional Varia-

tional Autoencoders. Hence, we approximate the true posterior with another

simpler distribution qf(Z | Y, R, I) = ’T
t=1 qf(zt | Y, R, I) from a family of

approximate distributions Q.

Let (Y, R, I) be an image-regions-caption triplet in training set. We want

qf to be as “close” as possible to the true posterior p(Z | Y, R, I):

KL(q(Z | Y, R, I) || p(Z | Y, R, I)) = E
Z⇠q


log

q(Z | Y, R, I)
p(Z | Y, R, I)

�
(3.59)

= E
Z⇠q

[log q(Z | Y, R, I)]� E
Z⇠q

[log p(Z, Y | R, I)] + log p(Y | R, I). (3.60)

Given that the KL-divergence is non-negative, we get:

log p(Y | R, I) � ( E
Z⇠q

[log p(Z, Y | R, I)]� E
Z⇠q

[log q(Z | Y, R, I)]
| {z }

ELBO

) (3.61)

This shows that the term on the right, which is called the Evidence Lower

Bound (ELBO), is a lower bound on the log evidence, with the equality holding

when the approximate posterior is equal to the true posterior. We therefore

maximize the ELBO instead of maximizing the log-likelihood (log p(Y | R, I)).

Plugging in our factorization of the probability distribution (Eq. 3.30) and, for
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example our smoothing approximate posterior (Eq. 3.34), in the ELBO yields:

ELBO = E
Z⇠q

[log p(Z, Y|R, I)]� E
Z⇠q

[log q(Z | Y, R, I)] (3.62)

= E
Z⇠q

⇥
log

T

’
t=1

p(yt|y<t, zt, R, I)p(zt|y<t, R, I)
⇤
� E

Z⇠q

⇥
log

T

’
t=1

q(zt|Y, R, I)
⇤

(3.63)

= E
Z⇠q

⇥ T

Â
t=1

log p(yt|y<t, zt, R, I)
⇤
� E

Z⇠q

⇥ T

Â
t=1

log
q(zt | Y, R, I)

p(zt | y<t, R, I)
⇤

(3.64)

=
T

Â
t=1

E
zt⇠qf(zt|Y,R,I)

log p(yt|y<t, zt, R, I)�KL(q(zt|Y, R, I)||p(zt|y<t, R, I))

(3.65)

This quantity, which we would like to maximize, is exactly the negative

of our LCVAE loss term (Eq. 3.55 with b = 1), which we minimize. To derive

Eq. 3.65 from Eq. 3.64, we used the following equalities:

E
Z⇠qf

"
T

Â
t=1

log p(yt | y<t, zt, R, I)

#
= (3.66)

= E
z1,...,zT⇠qf(Z|Y,R,I)

"
T

Â
t=1

log p(yt | y<t, zt, R, I)

#
(3.67)

= E
z1⇠qf(z1|Y,R,I)

"
· · · E

zT⇠qf(zT |Y,R,I)

"
T

Â
t=1

log p(yt | y<t, zt, R, I)

##
(3.68)

=
T

Â
t=1

E
zt⇠qf(zt|Y,R,I)

[log pq(yt | y<t, zt, R, I)] (3.69)
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E
Z⇠qf

"
T

Â
t=1

log
q(zt | Y, R, I)

p(zt | y<t, R, I)

#
(3.70)

= E
z1,...,zT⇠qf(Z|Y,R,I)

"
T

Â
t=1

log
q(zt | Y, R, I)

p(zt | y<t, R, I)

#
(3.71)

= E
z1⇠qf(z1|Y,R,I)

[· · · E
zT⇠qf(zT |Y,R,I)

[
T

Â
t=1

log
q(zt | Y, R, I)

p(zt | y<t, R, I)
]] (3.72)

=
T

Â
t=1

E
zt⇠qf(zt|Y,R,I)


log

q(zt | Y, R, I)
p(zt | y<t, R, I)

�
(3.73)

=
T

Â
t=1

KL(q(zt | Y, R, I)||p(zt | Y, R, I)) (3.74)

Reweighting the KL-divergence Loss Term. Similar to prior work in gen-

erative modeling [226], we observe that optimizing the ELBO often results

in an inference model that produces posteriors almost identical to the prior,

i.e., the KL loss term goes to 0. In our case, this translates to word-to-region

alignments that do not take into account the word to be grounded, which was

the primary motivation for developing the GVD-CVAE. It can also be shown

that when the KL term vanishes, the mutual information between the latent

variables (latent region alignment) and our target (word), goes to zero as well

(using ideas from [244]).

To mitigate this issue, we re-weight the KL loss term with a non-negative

scalar factor b. We found that gradually increasing b with slope 0.5 up to a

value bclip < 1 (clipped linear annealing schedule) during training is effective

for mitigating posterior collapse in most cases, as long as the right value for
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the hyperparameter bclip is found. (Note that this is not a variation of the

b-VAE [245], where b is introduced to disentangle the latent factors and is

greater than 1). However, this simple b scheduler might fail for very expressive

variants of our GVD-CVAE framework, such as combining the UpDown LSTM

language decoder with a BiLSTM-based inference network.

An alternative approach is proposed by Shao et al. [223], who introduce

a PI-controller [223] to anneal b, so that a desired KL-divergence value vkl

is reached. Their PI-Controller samples the KL-divergence value v̂kl at each

training step i and compares it with the desired KL-divergence value vkl. The

key idea is to use the error e(i) = v(i)kl � v̂(i)kl as feedback to a PI-Controller that

tunes b(i) in order to reduce the error. For example, when the error is large

and positive, we would like the KL-diverenge to get larger, so we should use

a smaller b. In particular, b(i) is computed as follows [223]:

b(i) =
Kp

1 + exp(e(i))
� Ki

i

Â
j=0

e(j) + bmin, (3.75)

where Kp, Ki, bmin are hyperparameters. The first term changes with the error

e(i) (P), while the second term changes with the integral of error (I). We would

like to emphasize that this is not the standard instantiation of a PI-Controller

and refer the reader to ControlVAE [223] for a more detailed explanation of

the chosen instantiation. We found this approach to be the most effective for

training all variants of our GVD-CVAE. To determine a range for the desired

KL-divergence value vkl, which is a hyperparameter of our GVD-CVAE when

the PI-controller is used to anneal b, we recommend training a simple GVD-

CVAE (e.g. with a simple LSTM language decoder (Eq. 3.32) and filtering
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approximate posterior (Eq. 3.40)) with the clipped linear annealing beta schedule,

and after a model is trained successfully, the KL-divergence value at the end

of training can be a good starting point for the hyperparameter search for vkl

when training GVD-CVAE models with the PI-Controller.

Cross-entropy Word Prediction Loss Term. Inspired by the original CVAE

framework [241], which was trained with a hybrid loss, combining the ELBO

with a prediction loss using samples from the prior distribution, we also

optimize a hybrid loss that consists of the ELBO (sentence reconstruction

and KL divergence terms) as well as a teacher-forcing sentence prediction

objective. Instead of drawing samples from the prior distribution for the latter,

we simply use its expected value, i.e, the p-attention coefficients. Recall that

this is exactly the approximation that we employ to generate each word given

the partially generated caption during inference. Thus, this loss term makes

the prediction pipelines at training and testing consistent.

LCE(n, t) = � log pq(y
(n)
t | E

zt⇠pq

[zt], y(n)
<t , R(n)). (3.76)

Our experiments demonstrate that jointly optimizing the CVAE loss (ELBO)

and the cross-entropy word prediction loss (l = 0.5) that is applied on word

predictions obtained based on the p-attention-based weighted sum of region

features, is essential for training our GVD-CVAE.

Optimization. To optimize the final hybrid objective (Eq. 3.54) using Stochastic

Gradient Descent, we approximate the reconstruction loss term of the CVAE

loss (Eq. 3.55) with a Monte-Carlo estimator, with S region samples z(s)t drawn
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from qf(zt | Y, R, I), where S is a hyperparameter:

E
zt⇠qf

⇥
� log pq(y

(n)
t |y(n)

<t , zt, R(n))
⇤
⇡ �

1
S

S

Â
s=1

log pq(y
(n)
t |y(n)

<t , z(s)t , R(n)). (3.77)

Although it is straight-forward to sample from the categorical distribution,

we cannot use the reparameterization trick [240] to backpropagate gradients

from the decoder loss all the way to the parameters f of the inference model

through the sampling, as our latent variables are discrete. A recently popular

approach to handle this difficulty is to sample from a continuous approxima-

tion of the discrete categorical distribution. In particular, we sample from the

Gumbel-Softmax [246, 247] distribution:

z(s)t = softmax((af(ht, X) + g)/t), (3.78)

where g 2 RM is a vector of i.i.d. samples drawn from a Gumbel(0, 1) dis-

tribution, i.e., g = � log(log(u)), u ⇠ Uniform(0, 1) and t is a temperature

hyperparameter that controls the smoothness of the samples. Samples from

this distribution converge to one-hot samples from the categorical distribution

when t ! 0.

3.4.2 GVD-MCVAE: Sequential Grounding

In our proposed GVD-CVAE model, we assumed that the word-to-region

alignments for each word in a sentence are conditionally independent of

each other given the partial caption, the visual input and region proposals.

However, not modeling the dependence between the grounding of different

words in a sentence could result in all words grounded to the same region.
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In this subsection, we extend our GVD-CVAE approach to model the

dependency between the grounding of words in a sentence. We assume that

(a) the t-th word depends only on the region zt given the partial caption y1:t�1,

and (b) the region-to-word alignment zt for the t-th word depends only on

the grounding zt�1 of the previous word (Markov assumption). Under these

assumptions, our joint probability distribution pq(Y, Z | R, I) becomes:

pq(Y, Z | R, I) =
T

’
t=1

language decoder
z }| {
pq(yt | y<t, zt, R, I)

region prior
z }| {
pq(zt | zt�1, y<t, R, I) (3.79)

Note that the only difference with the conditional probability distribution

of the GVD-CVAE (Eq. 3.30), is in the prior word-to-region alignment distribu-

tion, which is now additionally conditioned on the previous word-to-region

alignment. We will now describe how we modify the parameterization of the

prior distribution and our choice of the approximate posterior distribution

for this model, which we call GVD-MCVAE (Grounded Visual Description -

Markov Conditional Variational Autoencoder).

The prior distribution pq(zt | zt�1, y<t, R, I) is a categorical distribution

over possible word-to-region alignments. We parameterize it with an attention

mechanism that yields region attention coefficients aq([st; Âi zt�1,ixi], x) 2 RM

based on a query [st, Âi zt�1,ixi] that summarizes the partial caption, visual

input and previously aligned region:

a
(i)
q ([st; Â

i
zt�1,ixi], x) µ wT tanh(Wa[st; Â

i
zt�1,ixi; xi]), (3.80)

zt | zt�1, y<t, R, I ⇠ Cat(aq(st, Â
i

zt�1,ixi, x)), (3.81)
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where w, Wa are learnable weights. When modeling the first word of each

sentence t = 1, the query consists only of the state st of the language model.

In practice, we add a dummy region to the set of region proposals, with its

region embedding set to a zero vector, and we assume z0,0 = 1.

Similarly, we modify the design of our approximate variational posterior

distribution by employing an attention mechanism that at each timestep takes

into account the previous word to region alignment zt�1. For example, for the

case of a filtering approximate posterior distribution, we have:

qf(Z | Y, R, I) =
T

’
t=1

qf(zt | yt, zt�1, R, I), (3.82)

where qf(zt | yt, zt�1, R, I) is a categorical distribution that is parameterized

by the attention coefficients af([ht; Âj zt�1,jxj], x) 2 RM:

zt | zt�1, Y, R, I ⇠ Cat(af([ht; Â
j

zt�1,jxj], x)). (3.83)

3.4.3 Experimental Evaluation

To evaluate our proposed deep conditional generative models on the WS-

VOG and WS-GVD tasks, we use three challenging benchmark datasets: the

Flickr30k Entities [248] image dataset and the ActivityNet Entities [4] and

YouCook2 BB [89] video datasets. These datasets are suitable for evaluating

our method since they provide RGB data paired with visual descriptions

and ground-truth bounding boxes for the objects that each noun/pronoun

in the sentences refers to. Since we are operating on the weakly-supervised

grounding regime, we ignore bounding box annotations during training, and
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we use them only to evaluate our method.

We trained and evaluated multiple variations of our latent-variable model

of sentences, which stem from different choices for (a) the language decoder,

(b) the approximate posterior word-to-region alignment distribution, (c) the

usage of transferred object classifier knowledge in the parameterization of the

approximate posterior, (d) the prior word-to-region alignment distribution,

and (e) whether the visual encoder yields contextual region embeddings.

Table 3.3 gives an overview of the variants of our deep conditional generative

model.

After presenting the datasets and implementation details in Section 3.4.3.1,

we begin our experimental evaluation by comparing the grounding perfor-

mance given both ground-truth and generated sentences for the multiple

variants of our GVD-CVAE framework on the Flickr30kEntities dataset in

Section 3.4.3.2. We also compare our GVD-CVAE with strong baselines, such

as the discriminative soft-attention-based encoder-decoder model of Zhou

et al. [4], which we reviewed in Section 3.3.1. Experimental results clearly

demonstrate that, while using the same visual encoder and language decoder,

leveraging the variational approximate posterior word-to-region alignment

distribution outperforms using soft-attention coefficients for grounding. Inter-

estingly, even grounding based on our learned prior word-to-region alignment

distribution improves upon the soft-attention baseline by a significant margin

in both tasks. In Section 3.4.3.3 we continue our discussion by comparing our

best performing GVD-CVAE model variant with state-of-the-art methods in

the three datasets, including methods that are tailored towards only one of the
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Table 3.3: Overview of different variants of our GVD-CVAE framework. They corre-
spond to different choices of (a) the language decoder, (b) the approximate posterior
word-to-region alignment distribution, (c) the usage of transferred object classifier
knowledge in the parameterization of the approximate posterior (Obj. Cls.), (d) the
prior word-to-region alignment distribution, and (e) whether the visual encoder
yields contextual region embeddings (Obj. Int.).

Approximate Posterior

Model Decoder Cond. Obj. Cls. Prior Obj. Int.

GVD-CVAE-L-Fw LSTM zt|yt 7 zt|y<t 7
GVD-CVAE-L-FwBw LSTM zt|yT 7 zt|y<t 7
GVD-CVAE-L-FwBwGrd LSTM zt|yT 3 zt|y<t 7

GVD-CVAE-U-Fw UpDown zt|yt 7 zt|y<t 7
GVD-CVAE-U-FwBw UpDown zt|yT 7 zt|y<t 7
GVD-CVAE-U-FwBwGrd UpDown zt|yT 3 zt|y<t 7

GVD-MCVAE-L-Fw LSTM zt|zt�1, yt 7 zt|zt�1, y<t 7

AO-GVD-CVAE-L-Fw LSTM zt|yt 7 zt|y<t 3

two tasks, e.g., methods that can only tackle WS-VOG and cannot both gen-

erate visual descriptions and ground the generated words. In Section 3.4.3.4

we present ablation studies on the effect of (a) each term of the training ob-

jective, (b) the b scheduler for mitigating posterior collapse, (c) the attention

mechanism used to parameterize the approximate posterior distribution, and

(d) the various hyperparameters, such as the number of samples, sampling

temperature, and bclip. Last, we provide qualitative results for both tasks and

both image and video data in Section 3.4.3.5.

3.4.3.1 Datasets and Implementation Details

Datasets. We use the following three challenging benchmark datasets:
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– Flickr30k Entities (F30k): This is a large-scale image dataset, originally an-

notated with phrase-to-region alignments [248]. To evaluate our results on

object grounding (rather than phrase grounding), we follow the setup from

Zhou et al. [4] to convert each noun phrase (e.g. her brown hat) associated with

each bounding box to a single groundable object, such as hat. This results in

|Vo| = 480 groundable words out of the |V| = 8, 639 words comprising the

vocabulary. We use the standard dataset split with 29k/1k/1k images in the

training, validation and testing sets, respectively.

– ActivityNet Entities (ANet): As we discussed in Section 3.3.5.1, this is a large-

scale video dataset, containing 52k video segments annotated with a caption

each. Following the original setup [4], we use a vocabulary of 4, 905 words, 431

of which are groundable. Each groundable word in a sentence is associated

with a bounding box in a frame of the video where it can be clearly observed.

– YouCook2: This is a video dataset containing YouTube cooking videos with

video segments paired with captions and bounding box annotations [89] at 1

fps for 67 object classes. We use the same training/validation/test split as [9].

All our models are evaluated with grounding and captioning metrics as

detailed in Section 3.3.5.

Implementation details. For the F30k and Anet datasets, our GVD-CVAE re-

ceives as inputs the region proposals, region features and image/video global

features from Zhou et al. [4], with 100 region proposals per frame/image. For

YouCook2, we use 20 region proposals and the features extracted by Shi et

al. [9]. Hyperparameters such as learning rate, bclip, attention mechanisms,

number of samples, are chosen based on the validation sets of F30k and
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YouCook2. Since annotations for the testing set of ANet are not public and

the evaluation server is closed at the time of submission, we follow [249] and

report results on the validation set. To do so, we train a model with hyperpa-

rameters selected based on the F30k validation set. All other hyperparameters,

such as layer sizes, are in general adopted from prior work [4, 9]. Additional

training and implementation details for the models in Tables 3.7, 3.8 and 3.10

are reported next.

– Flickr30k Entities Inputs: We use the same region proposals and features as

Zhou et al. [4]4. For each image, we use a Faster R-CNN [72] detector with

the ResNext-101 [238] backbone pretrained on Visual Genome [182] to obtain

region proposals. In particular, we retain the top 100 region proposals per

frame, based on their detection confidence score. Each region is described by a

2, 048-dimensional feature vector extracted from the f c6 layer of the ResNext-

101. Following GVD [4], we use a global feature vector of size 2, 048 to describe

the image being captioned. We use a vocabulary of 8, 639 words including

UNK (the symbol for rare words not included in the vocabulary) and EOS

(end of sentence special symbol). Words are embedded to a 512-dimensional

vector using randomly initialized embeddings, trained from scratch, same as

in GVD [4].

– Flickr30k Entities Model: The pre-extracted region features, image convolu-

tional features and global image feature are transformed into X, F and v by

our trainable encoder (which mirrors the encoder of GVD [4]). In particular,

the region embedding consists of the concatenation of: a linear projection

4
https://github.com/facebookresearch/grounded-video-description/

tree/flickr_branch

163

https://github.com/facebookresearch/grounded-video-description/tree/flickr_branch
https://github.com/facebookresearch/grounded-video-description/tree/flickr_branch


of the f c6 region feature (initialized with the f c7 layer weights of the object

detector), a 300-dimensional trainable embedding of the 4-dimensional posi-

tion of the bounding box coordinates, and a 481-dimensional vector of object

classification scores obtained by applying a trainable object classification layer

on top of the f c7 feature. After normalizing these 3 components with lay-

ernorm, they are concatenated and passed through a linear projection that

projects to a lower-dimensional space of dimensionality 1,024. This serves

as our grounding-aware region embedding [4] xi. Similarly, the convolutional

features and global image feature are projected with two linear transformation

layers to a lower-dimensional space of dimensionality 1,024, yielding F and v,

respectively.

We use the GVD-CVAE-U-FwBwGrd variant of our GVD-CVAE. In par-

ticular, our decoder has at its core a two layer (hierarchical) LSTM of hidden

size 1,024. The convolutional attention fq(·, ·) is an additive attention mech-

anism of attention size 512, which takes in the convolutional feature map

F and determines by the hidden state ut how significant each feature map

column should contribute to generate a word ( f (l)q (ut, F)). The same holds for

the region attention kq(·, ·). Our p-attention network is an additive attention

mechanism with attention size 512. Our full inference model uses the ground-

ing aware approximate posterior and consists of a Bi-LSTM with hidden

size 1,024 and a q-attention network with dot-product attention mechanism

(a(i)f (ht, X) µ hT
t Uxi).

– Flickr30k Entities Training: We train our model for 40 epochs with the Adam [171]

optimizer, having an initial learning rate of 2e�4 decayed by a factor 0.8 every
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3 epochs. Our batch size is 40 images, the number of Monte Carlo samples

is S = 10, and the Gumbel-Softmax temperature is t = 0.8. Note that we

start training with l = 0 for 20 epochs and then add the ELBO loss and

jointly optimize the cross-entropy and ELBO losses (l = 0.5). For annealing

b, we use the PI-Controller [223], with Ki = �0.0001, vkl = 0.06, Kp = 0.01.

Hyperparameters were either borrowed by GVD or were chosen based on

Box accuracy on the validation set. We apply dropout with probability 0.5 to

fully-connected layers. All layers are trained from scratch, except for the back-

bones yielding the initial region and image features. Ground-truth captions

are truncated to 20 words during training and testing.

– Flickr30k Entities Evaluation: We evaluate our model on weakly-supervised

object grounding and grounded visual description on the validation and

testing sets. We have chosen to evaluate the checkpoint at the end of training,

instead of the checkpoint that achieves the best metrics. We use the GVD

metrics and evaluation scripts for evaluating: captioning and grounding 5.

This yields the reported result in Table 3.7.

– ActivityNet Entities: We use the same architecture and hyperparameters for

our visual encoder and language decoder as described in Section 3.3.5. For our

GVD-CVAE, we used the architecture and hyperparameters selected on the

Flickr30k Entities validation set, except for the q-attention network, which is

implemented as additive attention in this case. We also adjusted the learning

rate for a larger batch size and reduced the number of epochs (for faster

5
https://github.com/facebookresearch/grounded-video-description/

blob/44411533ea967244867a6b186a9b5cebba476015/eval_grd_flickr30k_

entities.py
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training). Namely, we set a batch size of 60 videos, a learning rate of 3e�4 and

trained for 30 epochs, reporting validation results with the model obtained

at the end of training. Following [4], we uniformly sample 10 frames from

each video segment during training and testing. Ground-truth captions are

truncated to 20 words during training and testing.

– ActivityNet Entities Evaluation: We evaluate our model (the checkpoint at the

end of training) on weakly-supervised object grounding and grounded cap-

tioning on the validation set. Unfortunately, the official CodaLab evaluation

server6 is currently closed. We use the official metrics and evaluation scripts

for evaluating: captioning7 and grounding8.

– YouCook2 Inputs: We use the same region proposals and features as Shi et

al. [9]. For each frame, we use a Faster R-CNN [72] detector with VGG-Net [37]

backbone pretrained on Visual Genome [182] to obtain region proposals. In

particular, we retain the top 20 region proposals, based on their detection con-

fidence score. Each region is described by a 4,096-dimensional feature vector

extracted from the f c7 layer of the VGG-Net. We also combine that region

feature with a 300-dim trainable embedding of the bounding box coordinates

(including the normalized frame index). We also use a global feature vector

of size 3,072 describing the video segment to be captioned, which is obtained

by averaging the temporal sequence of frame-wise appearance and motion

features from [239]. Following GVD [4] the global feature vector is augmented

6
https://competitions.codalab.org/competitions/20537

7
https://github.com/LuoweiZhou/densevid_eval_spice/blob/

bbab10c202e956266031a0dd6c791cba25b58e59/evaluate.py

8
https://github.com/facebookresearch/ActivityNet-Entities/blob/

aa5cd28383e5e9c63e875ada54057591a71509d9/scripts/eval_grd_anet_

entities.py
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with a 50-dimensional embedding of the segment positional information (i.e.,

total number of segments, segment index, start time and end time). We note

here that MIL-based methods in this dataset do not use that global feature

vector. We use a vocabulary of 1,009 words including UNK (the symbol for

rare words not included in the vocabulary) and EOS (end of sentence special

symbol). Words are embedded to a 512-dimensional vector using randomly

initialized embeddings, trained from scratch (in contrast to Shi et al. [9], who

use pre-trained GloVE word embeddings for the groundable words).

– YouCook2 Model: The pre-extracted region and global video features are

transformed into X and v by our trainable encoder, i.e. a pair of two linear

transformation layers that project features to a lower-dimensional space of

dimensionality 1,024. Our decoder has at its core a single layer LSTM of

hidden size 1,024. Our p-attention network is an additive attention mechanism

with attention size 512. Our inference model consists of a BiLSTM with hidden

size 1,024 and a q-attention network with an additive attention mechanism of

size 512.

– YouCook2 Training: We train our model for 40 epochs with the Adam [171]

optimizer, having an initial learning rate of 1e�4 decayed by a factor of 0.8

every 3 epochs. Our batch size is 80 video segments and S = 10, t = 0.8, and

l = 0.5. The latter were chosen based on Box accuracy on the validation set.

For annealing b, we use the PI-Controller [223], with Ki = �0.0001, vkl = 0.1,

Kp = 0.01. We apply dropout with a probability of 0.5 on fully-connected

layers. All layers are trained from scratch, except for the backbones yielding

the initial region and video features. Following [89, 9], we randomly sample
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5 frames from each video segment during training, while we use all frames

(extracted at 1fps) during testing. Ground-truth captions are truncated to 20

words during training and whole captions are used during testing (maximum

sentence length 46 words).

– YouCook2 Evaluation: We evaluate our model (the checkpoint at the end of

training) on the validation and testing sets using the same experimental setup

and metrics as in NAFAE [9]9. We use the CVAE prior distribution to ground

each groundable word in each frame. We made this choice, since CVAE-p

outperformed the CVAE approximate posterior (CVAE-q) in the validation set

of this dataset.

3.4.3.2 Comparison of Models

Are the regions localized via our learned word-to-region alignment distribu-

tions better than those localized via soft-attention-based baselines? We be-

gin by comparing the grounding performance of our GVD-CVAE (and in par-

ticular the GVD-CVAE-U-FwBwGrd variant) with three soft-attention-based

baselines (p-attention, GVD, GVD-Grd) on the validation sets of Flickr30k

Entities (images) and ActivityNet Entities (videos).

The first baseline (p-attention) consists of our language decoder and p-

attention network trained by minimizing the cross-entropy sentence genera-

tion loss (by setting l = 0 in our hybrid objective defined in Eq. 3.54). Once a

model is trained, grounding is performed by selecting the region at each frame

with the highest p-attention coefficient a(i)q (st, X). These attention coefficients

9
https://github.com/jshi31/NAFAE/blob/master/lib/datasets/

youcook_eval.py
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are computed with the p-attention network given the hidden state of the top

LSTM st as the query. It should be clear that this p-attention baseline is the

exact soft-attention counterpart of our variational GVD-CVAE.

The other baselines are based on the popular attention-based encoder-

decoder captioning model [4] (Section 3.3.1), trained with the teacher-forcing

language generation cross-entropy loss. For a fair comparison, we ensure that

our p-attention baseline and our GVD-CVAE exactly mirror the inputs and the

visual encoder/language decoder modules of the GVD model. As discussed

earlier in this chapter, grounding given this model can be performed: (a)

by selecting the region with maximum region attention coefficient k(i)q (ut, X)

given the partial caption y<t (Eq. 3.20, GVD), or (b) by combining the attention

coefficients with region-to-class similarity scores based on the word yt to be

grounded for the VOG task (Eq. 3.22, GVD-Grd). Note that both the p-attention

and GVD baselines ground words with soft-attention coefficients computed

based on the partial caption, and they only differ in the query vector that is

used to compute the region attention coefficients (st or ut).

In Table 3.4, we compare our GVD-CVAE’s ability to ground objects in

ground-truth or generated sentences with these powerful, discriminative

baselines. We observe that even grounding based on our learned prior word-

to-region alignment distribution (GVD-CVAE-p) improves upon both soft-

attention baselines (p-attention and GVD) by a significant margin in both

benchmarks and tasks, despite similarly capturing only the history of previous

words. Focusing on the Flickr30k Entities dataset, the GVD-CVAE-p improves

grounding accuracy given ground-truth sentences (Box Accuracy) from 19%
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Table 3.4: Comparison of grounding performance between the p-attention, GVD and
GVD-Grd models (baselines) and our GVD-CVAE on the validation sets of F30k and
ANet. We report the box accuracy metric for evaluating grounding given ground-
truth sentences and the F1all metric for evaluating grounding of object words in
generated sentences. GVD-CVAE-p (GVD-CVAE-q) denotes using our learned prior
(approximate posterior) alignment distribution for grounding.

Dataset Method Box Acc. F1all

F30k (Image)

p-attention (Ours) 17.0 4.2
GVD [4] 22.0 4.4
GVD-Grd [4] 25.9 4.4

GVD-CVAE-p (Ours) 29.6 6.2
GVD-CVAE-q (Ours) 33.4 7.3

ANet (Video)

p-attention (Ours) 11.6 3.1
GVD [4] 14.9 3.7
GVD-Grd [4] 21.3 3.7

GVD-CVAE-p (Ours) 19.4 4.8
GVD-CVAE-q (Ours) 24.2 6.1

to 29%, although the two models differ only in their training, and in particular

whether the CVAE loss is used (l = 0.5). The reason for this improvement

is that our prior distribution is encouraged during training to “look ahead”

when sampling a region to generate a word, by mimicking the approximate

posterior alignment distribution which has access to future words. Using

the latter for grounding conditioned on the full sentence further improves

results (from 29.6% to 33.4%), verifying our intuition that leveraging the word

to be grounded in its language context can help us better localize the word.

Importantly, our GVD-CVAE-p improves the Box Accuracy of the strong

GVD baseline from 22% to 29% on the same dataset. Additionally, our GVD-

CVAE-q achieves an absolute accuracy gain of 7.5% on Box Accuracy over the

GVD-Grd discriminative baseline which also takes into account the word to be
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Table 3.5: Comparison of our deep conditional generative models on the Flickr30k
Entities validation set. Obj. Cls. denotes inference model with transferred object class
knowledge.

Approximate Posterior Box Acc. F1all

Model Decoder Cond. Obj. Cls. p q p q

GVD-CVAE-L-Fw L zt|yt 7 30.3 31.8 6.7 7.4
GVD-CVAE-L-FwBw L zt|yT 7 27.5 31.3 5.7 6.6
GVD-CVAE-L-FwBwGrd L zt|yt 3 30.2 34.8 6.9 7.5

GVD-CVAE-U-Fw U zt|yt 7 26.3 31.4 6.0 7.4
GVD-CVAE-U-FwBw U zt|yT 7 25.1 32.3 5.4 7.0
GVD-CVAE-U-FwBwGrd U zt|yt 3 29.6 33.4 6.2 7.3

GVD-MCVAE-L-Fw L zt|zt�1, yt 7 26.7 27.4 5.2 6.5

grounded, demonstrating the benefits of our conditional generative modeling.

These conclusions are further confirmed by our comparison with baseline

models on the video dataset of ActivityNet Entities, where we can observe

the same trends.

How does the choice of the language decoder, the deep conditional gener-

ative model, and the variational posterior affect grounding performance?

Table 3.5 demonstrates the grounding performance given ground-truth sen-

tences or sentences generated by our model obtained for different variants of

our GVD-CVAE model.

Interestingly, our GVD-CVAE achieves top grounding performance even

when using a simple LSTM in the decoder (GVD-CVAE-L variants) instead

of the more expressive hierarchical UpDown model, that also uses two extra

attention mechanisms. In fact, the GVD-CVAE-L-FwBwGrd variant yields

a Box Accuracy of 34.8% which outperforms the GVD-CVAE-U-FwBwGrd
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model which has an accuracy of 33.4. This demonstrates the effectiveness of

our latent-variable modeling. We will still use the UpDown language model

for our comparisons with state-of-the-art methods on ActivityNet Entities and

Flickr30k Entities, since they also use the UpDown decoder, but we will focus

on the simpler LSTM model for the rest of our experiments.

Another observation is that explicitly adding transferred information about

object class distributions in the inference model (object-aware approximate

posterior) improves grounding given ground-truth sentences (Box Accuracy)

when the approximate posterior distribution is used. For example, the GVD-

CVAE-L-FwBwGrd model improves upon the GVD-CVAE-L-FwBw model

by 3%, 31.3%! 34.8%, which is in line with our expectation. Note that the

GVD-CVAE-L-FwBwGrd model also outperforms the baseline of using the

transferred object detector knowledge to ground each object word with its

closest object classifier from the Visual Genome dataset, which yields 29%.

Even more interestingly, the prior alignment distribution of the model trained

with the object-aware smoothing approximate posterior improves over the

one of the model trained with just the smoothing approximate posterior. This

demonstrates that knowledge from the inference model is distilled to the prior

during training via the KL divergence loss, resulting in a model that is looking

at better localized regions while generating descriptions based on the prior and

decoder modules.

When using the UpDown language model, taking the full sentence into

account via a BiLSTM, i.e. using a smoothing posterior qf(zt|yT), leads

to better grounding compared to only seeing the sentence up to the current
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word yt with an LSTM (e.g., improving Box Acc. from 31.4% to 32.3%). The

difference between GVD-CVAE-L-Fw and GVD-CVAE-L-FwBw models is

smaller when using the LSTM language model, and we observe that in both

cases the grounding of generated sentences does not improve.

Last, we report preliminary results with the GVD-MCVAE model in the last

row. We observe that the model that captures dependencies between word-

to-region alignments of groundable words performs slightly better than the

model that captures dependencies between consecutive words, as expected.

However, we observe that the GVD-MCVAE-L-Fw performs worse than the

GVD-CVAE-L-FW model, despite this additional modeling of pairwise depen-

dencies between word-to-region alignments. One possible explanation might

be that we simply transferred hyperparameter values (including the train-

ing setup) from the GVD-CVAE model, however these might not be optimal

for the GVD-MCVAE model, which differs both in architecture and training

objective. We plan to conduct further experiments to determine an optimal

experimental setup for this variant. Furthermore, we were not able to train a

GVD-MCVAE without the approximate posterior collapsing to the prior with

a bilinear dot-product attention mechanism for the q-attention network (as the

one we use for the GVD-CVAE), and it was critical to use an additive attention

mechanism.

What is the effect of using contextual region embeddings on weakly super-

vised grounding performance in videos? For all the experiments reported

so far for both our GVD-CVAE model and the baselines, we have been repre-

senting each region proposal with the grounding-aware region embedding.
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This embedding only captures local cues, such as the object appearance, the

bounding box position and the transferred object class knowledge. Here, we

experiment with context-aware region embeddings, i.e., embeddings that take

into account the spatio-temporal interactions among the detected regions. In

particular, we study two approaches for learning contextual region embed-

dings: (a) a Transformer model with multi-head self-attention applied on

the set of region proposals, (b) our V-HetGAT model from Chapter 2 that

models spatio-temporal interactions among actor and object regions based on

a visual spatio-temporal graph (described in Section 3.3.2). We report results

in Table 3.6. On the one hand, we observe that using our V-HetGAT model for

computing the contextual embeddings improves upon multi-head attention

in this weakly-supervised regime for the baseline GVD model. Recall that

in the fully-supervised training setup there was no significant variation in

performance between these two approaches. Additionally, the variant of GVD-

CVAE model with context-aware region embeddings outperforms all the GVD

and GVD-Grd baselines, following the trend of the rest of our variants. On the

other hand, these results, including results from Zhou et al. [4], suggest that

using local region embeddings leads to better grounding performance. We

conjecture that the context-aware region representations which are varying

during training confuse the attention mechanisms, which without grounding

supervision fail to appropriately attend to the right region. This leads to

a significant drop in performance from 24.2 to 16.4 when we combine our

V-HetGAT with the GVD-CVAE-U-FwBwGrd model.
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Table 3.6: Weakly-supervised Visual Object Grounding with contextual region em-
beddings on ActivityNet Entities [4] validation set. Choices for region representation
(Region Repr): (Local) grounding-aware region featuresm (MHA): region-interaction-
aware region features obtained via multi-head self-attention applied on grounding-
aware region featuresm, (V-HetGAT): actor-object interaction-aware region embed-
dings obtained via applying our V-HetGAT model on grounding-aware region fea-
tures.

Method Region Repr. Box Acc.

GVD [4] Local 14.9
GVD-Grd [4] Local 21.3
GVD [4] MHA 2.4
GVD V-HetGAT 11.0
GVD-Grd [4] MHA 19.7

AO-GVD-CVAE-U-FwBwGrd (CVAE-p) V-HetGAT 16.1
AO-GVD-CVAE-U-FwBwGrd (CVAE-q) V-HetGAT 16.4
GVD-CVAE-U-FwBwGrd (CVAE-p) Local 19.4
GVD-CVAE-U-FwBwGrd (CVAE-q) Local 24.2

3.4.3.3 Comparison with the State of the Art

As shown in Table 3.7, our GVD-CVAE improves weakly-supervised object

grounding by 12% compared to the GVD method (21% to 33.8%) on the F30k

image dataset. Thus, it sets the state-of-the-art VOG result, and closes the

gap with the fully-supervised GVD approach (41.4%). It also generates more

grounded captions (higher F1all and F1loc scores) than all other methods,

given the same features from Zhou et al. [4]. We even outperform methods

using Scene Graphs [6] for grounding [250]. Note that the F1all scores ob-

tained by both our CVAE-p (6.43) and CVAE-q (6.88) distributions outperform

Cyclical [197] (4.85) and DPA [198] (4.79). This suggests that modeling align-

ments as latent variables works better than applying attention regularization

techniques during training. Despite generating more grounded captions, our
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Table 3.7: Comparison with state-of-the-art methods on the Flickr30k Entities test
set. The performance of the fully-supervised GVD model (Sup.) is reported as an
upper-bound to the weakly-supervised approaches. Types of model inputs during
inference: region proposals extracted and encoded following GVD [4] or BUTD [5],
or Scene-graphs [6]. * denotes models trained using auxiliary image-to-text matching
models [7]. SCST denotes models fine-tuned via Reinforcement Learning [8]. As it
can be seen, results in the third block are obtained with different inputs, and thus they
are not directly comparable to ours. We report average results for our GVD-CVAE
after 5 random runs.

VOG GVD

Captioning Grounding

Feat Acc B@4 M C S F1all F1loc

GVD [4] (Sup.) G 41.4 27.3 22.5 62.3 16.5 7.55 22.2

GVD [4] G 21.4 26.9 22.1 60.1 16.1 3.88 11.7
GVD-Grd [4] G 25.5 26.9 22.1 60.1 16.1 3.88 11.7
Cyclical [197] G - 26.6 22.3 60.9 16.3 4.85 13.4
DPA [198] G - 27.6 22.6 62.7 16.7 4.79 15.5
SCAN-SCST [199]* G - 28.0 22.6 66.2 17.0 6.53 15.8

BUTD [5] U 24.2 27.3 21.7 56.6 16.0 - -
DPA [198] U - 27.2 22.3 60.8 16.3 5.45 15.3
Sub-GC [250] S - 28.5 22.3 61.9 16.4 5.98 16.5
SCAN-SCST [199]* U - 30.1 22.6 69.3 16.8 7.17 17.5

GVD-CVAE G 33.7 24.0 21.3 55.3 15.7 6.70 19.2
GVD-CVAE-SCST G 31.6 29.8 23.1 67.6 17.2 6.94 17.6

method has lower captioning metrics than SoTA methods, some of which

apply reinforcement learning (RL). However, our language model can also

be finetuned with a CIDEr-based SCST loss [8] (GVD-CVAE-RL), leading to

competitive captioning metrics. In particular, we finetune the parameters of

our decoder and prior networks with SCST using CIDEr as the reward. Since

the goal of this experiment was to show that our decoder can be finetuned

with RL to match the performance of SoTA models in captioning, we chose
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Table 3.8: Comparison with state-of-the-art methods on the ActivityNet Entities
validation set. We report average results for our GVD-CVAE after 5 random runs.

VOG GVD

Captioning Grounding

Acc B@4 M C S F1all F1loc

GVD (Sup.) [4] 35.7 2.59 11.2 47.5 15.1 7.1 24.1

MIL-based
NAFAE [9] 19.5 - - - - - -
STVG [251] 21.1 - - - - - -
SCL [249] 23.8 - - - - - -

Captioning-based
GVD [4] 14.9 2.28 10.9 45.6 15.0 3.7 12.7
GVD-Grd [4] 21.3 2.28 10.9 45.6 15.0 3.7 12.7
Cyclical [197] - 2.45 11.1 46.4 14.8 4.7 15.8

GVD-CVAE 23.9 1.90 10.4 41.8 13.3 5.8 21.7

to finetune a simpler model (hence the small reduction in weakly-supervised

grounding from 33.8 to 31.6). In particular, we used the GVD-CVAE-L-Fw

model that was trained with our hybrid loss until epoch 38 and then finetuned

with SCST until epoch 60, with learning rate 5e� 5 and batch size 48.

Results on the ANet video dataset (Table 3.8) show similar trends. Our

GVD-CVAE yields better metrics when grounding ground-truth or generated

sentences. It also outperforms video-tailored, video-to-text matching models,

such as NAFAE [9]. Although powerful, these models cannot tackle the

grounded visual description task. Since we evaluate only on the validation set,

we did not select the model with best CIDEr score, or tune the learning rate

based on it. This led to slightly inferior captioning metrics compared to [4]

and [197], who used the validation set for selecting a model to be evaluated
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Table 3.9: Comparison with state-of-the-art methods on the YouCook2 test set follow-
ing the experimental setup of Shi et al. [9]. We compare with methods that exploit
various tasks for weakly-supervised learning (WSL): captioning (C) or matching with
Multiple Instance Learning (M). Our captioning-based method is competitive with
advanced MIL-based methods for weakly-supervised video object grounding and can
additionally perform grounded captioning. Obj. Int.: modeling inter-object spatio-
temporal interactions, e.g. using self-attention. Frm. Sim.: modeling word-to-frame
similarity to better handle frames where the groundable word is occluded. Reg. Sim.:
modeling similarity among grounded regions across frames for a groundable word.

Method details Box accuracy (%) Query accuracy (%)

Task OI FS RS macro micro macro micro

Upper Bound 62.41 - - -
DVSA-frm [87, 9] M 37.55 44.16 39.31 46.14
Zhou [89, 9] M 3 3 35.08 42.42 36.69 44.34
NAFAE [9] M 3 3 40.71 46.33 42.45 48.41
STVG [251] M 3 3 41.63 47.02 43.40 48.98
SCL [249] M 3 42.80 48.60 44.61 50.61

GroundR [196, 9] C 19.94 - - -
GVD-CVAE (Ours) C 38.85 44.62 40.71 46.63

on the now closed test server.

We also compare our method to MIL-based grounding approaches in the

YouCook2 test split. As it can be seen in Table 3.9, although our method

performed better or comparably to all video-to-text-matching methods on

the ANet video dataset, it is lagging behind NAFAE [9] by around 2% in

Box Accuracy on the YouCook2 dataset. A possible explanation is that, while

in ANet grounding is evaluated on a single frame, in YouCook2 grounding

predictions are evaluated in every frame. Therefore, the MIL-based methods

that model the consistency between the localized regions at each frame are

able to perform better. We believe that extending our GVD-CVAE to model

relationships between the grounded regions at each frame will improve these
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Table 3.10: Grounding performance comparison on YouCook2 validation set follow-
ing the experimental setup of Shi et al. [9].

Box accuracy (%) Query accuracy (%)
macro micro macro micro

Upper Bound 62.42 68.56 65.55 70.32
GroundR [196, 9] 19.63 - - -
DVSA-frm [87, 9] 36.90 44.26 38.48 46.27
DVSA-vid [87, 9] 36.67 43.62 38.20 45.60
MCOG [89, 9] 35.69 43.04 37.26 44.99
NAFAE [9] 39.54 46.41 41.29 48.52
STVG [251] 39.90 46.80 41.36 48.74
SCL [249] 41.94 48.46 43.46 50.45
GVD-CVAE (Ours) 38.85 45.91 40.54 48.01

Table 3.11: Impact of various training objectives on weakly-supervised object ground-
ing. Performance measured via Box accuracy (%) on the F30k validation set.

Training objective CVAE-p CVAE-q

ELBO 3.29 3.16
CE + ELBO 25.22 23.99
CE + ELBO + b anneal 26.07 25.61
CE + ELBO + b anneal + clip 26.31 28.88
CE + ELBO + PI Controller 29.27 31.71

metrics, and we leave that to future work. For completeness, we also provide

results on the validation set of YouCook2 in Table 3.10.

3.4.3.4 Ablation Studies

What is the effect of the proposed training objective? We first train our

GVD-CVAE with the vanilla CVAE loss (ELBO), i.e., with l, b = 1. Without

any of our proposed modifications, this results in a very low grounding

performance, as can be seen in the first row of Table 3.11. By adding the

cross-entropy loss term that penalizes word predictions based on soft region
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context determined by the p-attention network (CE+ELBO), we are able to

improve upon the soft-attention baseline of 22%. However, looking into the

learning curves in Figure 3.9, reveals that the KL loss term has vanished

by the end of training, suggesting that the model’s posterior has collapsed

to the prior and the approximate posterior alignment does not additionally

take into account the word being grounded. Applying known solutions to

KL vanishing, such as linearly annealing the b hyperparameter from 0 to 1

(CE+ELBO+b anneal), does not solve the problem. Instead, our proposed

clipped linear annealing schedule leads to overall better grounding of 28.9%

(KL term ⇡ 0.06). Alternatively, after we determine a desirable value for the

KL term, we can use the PI-Controller [223] to schedule b over training, which

we found to be less sensitive to changes in architecture and requires minimal

calibration. Note that in this ablation we used a single LSTM language decoder

and an LSTM in the inference model for faster experimentation (GVD-CVAE-

L-Fw).

What is the effect of the training objective hyperparameters (number of

region samples, sampling temperature, bclip) on the grounding performance?

First, we train and test our GVD-CVAE-L-Fw model with varying number of

samples S = {1, 5, 10, 15} from the variational posterior for approximating the

expectation of the sentence reconstruction term of the ELBO 3.55. Although it

is common practice to train VAEs and CVAEs with a single sample from the

variational posterior, results in Table 3.12 suggest that increasing the number

of samples from 1 to 10 improves grounding performance when either the

prior or approximate posterior word-to-region alignment distributions are
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Figure 3.9: Comparison of learning curves when training the GVD-CVAE-L-Fw
model variant for three schedules of the b hyperparameter on the Flickr30k train-
ing/validation sets. The clipped linear annealing schedule results in higher KL
divergence (the approximate posterior does not collapse to the prior) and in higher
grounding accuracy.

used. For example, the performance of CVAE-q increases from 26.75% to

28.88%. This improvement was expected, since more samples lead to a smaller

error in the approximation of the expectation. However, further increasing

the number of samples not only increases the memory requirements of our

framework, but it might also degrade performance as shown for the case of

15 samples. Results also suggest that the sampling temperature, which is

a hyperparameter of the Gumbel-Softmax continuous approximation from

which we sample our latent variables zt, is important to tune. We use a

temperature t = 0.8 for all our models in all three datasets. Last, we observe
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Table 3.12: Ablation study on the Flickr30k Entities validation set. (const) denotes
using a constant b = bclip. We report results with the GVD-CVAE-L-Fw variant of our
model. CVAE-p denotes box accuracy (%) obtained using the learned prior alignment
distribution, while CVAE-q using the approximate posterior.

Ablation bclip S l t CVAE-p CVAE-q

0.2 10 0.5 0.8 26.31 28.88

Varying number
of region
samples

0.2 1 0.5 0.8 25.62 26.75
0.2 5 0.5 0.8 27.19 27.93
0.2 15 0.5 0.8 25.58 27.68

Varying temperature 0.2 10 0.5 0.5 25.95 26.84

Varying b
scheduler

1.0 10 0.5 0.8 26.07 25.61
0.1 10 0.5 0.8 26.03 28.23
0.3 10 0.5 0.8 26.75 28.26

1.0 (const) 10 0.5 0.8 25.22 23.99
0.2 (const) 10 0.5 0.8 26.90 27.90

that the grounding performance does not vary significantly for varying values

of bclip in this dataset, as long as the b scaling factor is annealed linearly up

to a small value smaller than 1. Annealing b up to 1, or using a small, but

constant value for b significantly reduces performance (from 28.88% to 25.61%

and 27.90%, respectively).

Limitations. Similar to all other proposal-based approaches to visual ground-

ing, our model performance is limited by the quality of the region proposals.

Also, we applied the same model for image and video object grounding to

demonstrate its generality and effectiveness, without taking advantage of

several inductive biases in the video domain, such as the visual similarity

between grounded regions in consecutive frames.
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3.4.3.5 Qualitative Results

Finally, we show and discuss qualitative image grounding results on Flickr30k

Entities (Figures 3.10, 3.13 and 3.14), and video grounding results on Activi-

tyNet Entities (Fig. 3.15). We also show captions generated by our GVD-CVAE

on Flickr30k Entities validation images (Fig. 3.16). We would like to empha-

size that to obtain these qualitative results we used the the GVD-CVAE-L-Fw

model variant trained with a clipped linear annealing schedule for b. We

conclude, with grounding results on the two video datasets in Figures 3.11

and 3.17.

Computational Runtime. All models were implemented in Python using Py-

torch and are based on the Grounded Video Description (https://github.

com/facebookresearch/grounded-video-description) open-source

code. Given pre-extracted video and region features, a forward pass through

our model for performing grounding on 20 ActivityNet videos (10 frames

sampled from each, M = 1000) takes 0.7 seconds at a single Tesla K80 GPU.

We train our models on 4 GPUs and training lasts from around 6 to 24 hours

depending on the dataset (training on the ActivityNet Entities video datasets

lasts longer than training on the Flickr30k Entities image dataset).

3.4.4 Conclusion

In the second half of this chapter, we have proposed a novel grounded visual

description CVAE for weakly-supervised learning of word-to-region alig-

ments. We have designed a variety of deep conditional generative models of
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GT: an adult soccer game, soccer players
chasing after the ball during a live game 

GT: one football player in a red jersey jumping 
onto a player wearing a white jersey

GT: a woman outside on a street wearing a 
yellow shirt and sunglasses

Attn.

Attn.

CVAE-p CVAE-q

CVAE-p CVAE-q

Attn. CVAE-p CVAE-q

Figure 3.10: Qualitative weakly-supervised visual object grounding results on the
Flickr30k Entities validation set. For each ground-truth caption, we show grounding
results obtained by (a) the soft-attention baseline, (b) our prior, and (c) our approxi-
mate posterior alignment distributions. We observe that knowing the words to be
grounded improves grounding of small objects. The third row shows a failure case,
in which our CVAE-q predicts the same bounding box for all groundable words. Best
viewed zoomed in and in color.
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Figure 3.11: Weakly-supervised object grounding accuracy obtained by our GVD-
CVAE-L-Fw model for the 50 most frequent classes in the ground-truth sentences of
the ActivityNet Entities validation set.

sentences and explored the impact of architectures and conditional indepen-

dence assumptions on the grounding performance. We have demonstrated

the generality and effectiveness of our model by evaluating it on both image

and video datasets. In particular, we have shown how leveraging the latent

alignment distributions (both the prior word-to-region alignment distribution

that only looks at previous words, and the approximate posterior distribution

that looks at the full sentence) of our model significantly outperforms soft

attention for grounding given ground-truth or generated sentences. Our novel

approach also yielded competitive results under multiple metrics in both

grounding and grounded video description while comparing against methods

optimized for one of the two tasks. Notably, our GVD-CVAE has set the

state-of-the-art VOG result on Flickr30k Entities, improving over grounding
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accuracy by 12% over GVD, and has reduced the gap with the fully-supervised

GVD approach, which we discussed in the first half of this chapter.
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Figure 3.12: Comparison of weakly-supervised object grounding accuracy between
the soft-attention and the prior and approximate posterior alignment distributions
of our GVD-CVAE-L-Fw model for the 50 most frequent classes in the ground-truth
sentences of the Flickr30k Entities validation set. Grounding with our GVD-CVAE
leads to an improvement in most classes. We observe a large improvement in ground-
ing based on gender when knowing the word to be grounded (CVAE-q), for example
improving grounding of girl, boy, lady, guy, woman, man. Also, well-defined objects,
such as bike, car, ball, dog are better grounded. Soft attention is better in some clothing
classes, such as shirt, short, pants. All the compared methods fail to accurately ground
objects like face and hand, which are both small and challenging to disambiguate from
other faces/ hands. Furthermore, groups of objects, such as crowd and people, are chal-
lenging to ground with our one-to-one word- to-region correspondence assumption.
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(a) Grounding based on approximate posterior alignment corrects localization of sunglasses.

(b) Our p-attention network (parameterizing the prior alignment) correctly grounds players,
while additionally conditioning on the groundable words corrects the localization of the ball.

(c) Our GVD-CVAE can accurately localize the small objects: bucket and hat.

(d) Failure case: Our approximate posterior alignment fails to disambiguate between the two
men and the two shirts. In contrast, our prior alignment which grounds based on: “[...] in
a yellow”, accurately localizes the shirt. Grounding based on whole phrases (yellow shirt)
instead of individual words might help mitigate this issue.

Figure 3.13: Qualitative comparison of weakly-supervised object grounding results
obtained by the baseline and our GVD-CVAE on images from Flickr30k Entities. For
each caption, we show three copies of each image with grounding results obtained by
the soft-attention baseline, our prior and posterior alignment distributions.
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Figure 3.14: More weakly-supervised object grounding results on images from
Flickr30k Entities. For each caption, we show three copies of each image with ground-
ing results obtained by the soft-attention baseline, our prior and posterior alignment
distributions, respectively. Our GVD-CVAE (middle and right columns) can disam-
biguate between multiple instances of the same class (man, dog, etc.). The bottom
figure shows a failure mode of our inference model, which might select the same
region for all words.
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(a) Failure case: Although the man is localized, the bounding box is not tight enough. This
is common because of the lack of bounding box annotations. Moreover, singular and plural
forms of words are converted to the same representation during training and testing, leading
to sub-optimal grounding of groups of objects.

(b) Kids and dogs are accurately localized.

(c) Note how the model seems to ground the words at the frames that they are visible.

(d) Failure case: the model fails to ground the correct racket and the man. Modeling the
dependencies between the regions grounding each word in the sentence might help mitigate
such issues.

Figure 3.15: Qualitative weakly-supervised object grounding results obtained on
videos from the ActivityNet Entities validation set. For each groundable word in a
ground-truth caption, we show the aligned region that is the mode of the approximate
posterior distribution (region with the maximum q-attention network coefficient over
all regions in the 10 equally-spaced frames).
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(a) Pred: a man fishing in a lake with a fishing pole. (b) Pred: a man in a black suit is
holding up a microphone.

(c) Pred: a woman in a red coat is walking down the
street holding a red umbrella.

(d) Pred: a person in a snow
snowsuit is standing in the snow.

Figure 3.16: Generated image captions by our GVD-CVAE for images from the
Flickr30k Entities validation set. Generated captions, although having a simple
syntactic structure, tend to refer to objects in the image (fishing pole, umbrella,
microphone, snowsuit, etc.).
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Figure 3.17: Qualitative weakly-supervised object grounding results in YouCook2.
Both our approximate posterior and prior word-to-region alignments assume there is
a single latent region out of all available regions in all video frames. When looking
into this inferred region, the approximate posterior (CVAE-q) seems to be better able
to ground each groundable word than the prior (CVAE-p). However, the regions with
maximum q-attention (or p-attention) coefficients in each frame are not consistent.
This could be the reason why CVAE-p happens to perform better than CVAE-q in this
dataset. Ensuring grounded regions are consistent among frames (for example by
finding region correspondences as a post-processing step) is an interesting avenue
for future improvements of the GVD-CVAE model. Also note that this limitation is
shared with the baseline GVD model, which also might not attend in regions of every
frame to generate a caption word.
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Chapter 4

Actor-Centric Deep Methods for
Real-Time Activity Detection in
Extended Videos

Chapters 2 and 3 focused on videos that are spatially-centered around a couple

of actors involved in an event. In this chapter, we revisit the temporal activity

detection problem from Chapter 2, but we relax the assumption of spatially-

centered videos around a few, human adult actors. Our goal is to design a

system for real-time detection of activities in videos that are extended both in

time and space [12, 10], i.e., long untrimmed videos that capture multiple actors

of various types (people, vehicles) performing multiple activities in various

regions of indoor or outdoor scenes. We first detail the challenges associated

with real-time activity detection in extended videos, motivating the need for

decomposing the video into salient spatio-temporal sub-volumes and discuss

prior work on extracting such sub-volumes. Then, we present our region-

based framework for actor-centric activity detection in extended videos, by

leveraging tracks of actor and object detections. Our framework consists of
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two stages: the first stage extracts spatio-temporal volumes of interest (tubelets)

that are spatially-localized around an actor, while the second stage processes

each one of those tubelets in parallel to temporally detect activities in them.

Last, we present experimental results on the MEVA dataset [10] to validate

our framework in terms of speed and performance.

4.1 Motivation and Overview

Powered by deep convolutional networks that process whole video frames

and large datasets with rich human annotations, modern video understanding

systems are capable of accurately detecting hundreds of human action classes

in benchmark datasets [44, 252]. However, many of these popular datasets

hide the inherent complexity of action recognition, by either focusing on

trimmed videos with a single actor performing a single activity [252] or videos

capturing activities performed by a few actors [174, 253, 254], occupying

mostly foreground pixels. They also contain only activities performed by

humans. The performance of state-of-the-art frameworks is indeed shown to

degrade as (a) the number of actors in a scene increases [94], (b) their scale

decreases [94], and (c) the complexity of activities increases [254]. Moreover,

most activity recognition methods are not suitable for processing extended

videos in real time. These limitations affect the ability to deploy these systems

for real-time activity detection in extended videos containing a large number

of actors (e.g., an average of around 30 actors) of varying types and scales,

including tiny actors, performing multiple activities of varying durations [10].

Existing approaches for activity detection in extended videos narrow
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down the visual search space by identifying video sub-volumes, such as

cuboids [255], action tubes [256], or actor tracks [257], that might contain

activities. A cuboid is a sequence of bounding boxes with the same spatial

coordinates, thus it can be used to crop a valid sub-video and can be fed as

input to modern action recognition models. However, the rigid cuboid shape

does not necessarily capture the versatile nature of actions. In contrast, action

tubes are flexible spatio-temporal sub-volumes capturing relevant spatial con-

textual cues, but they are typically very short and fail to capture long-term

temporal context. Actor tracks are ideal for capturing such temporal context,

but might be impractical for real-time activity detection in extended videos for

two reasons. First, in typical surveillance videos, such as videos of crowded

parking lots, there is a large number of person and vehicle tracks. It is infeasi-

ble to process all these tracks under the real-time action recognition constraint.

Second, it is not trivial to combine tracks in order to obtain the relevant visual

context for detecting various types of activities, such as activities involving a

single actor, interaction between actors or actor-object interactions.

In this chapter, we propose an actor-centric framework for real-time action

detection of complex human and vehicle activities of varying spatio-temporal

scales in extended surveillance videos. As illustrated in Figure 4.1, our frame-

work is composed of two main modules: tubelet generation and temporal

activity detection per tubelet.

The object-detection-based tubelet generation module decomposes an

extended video into a collection of action-agnostic actor-centric tubelets of

interest. Each actor-centric tubelet consists of an actor tracklet and a context
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Actor-Centric Tubelets of Interest

Input: Extended Video

time

Aggregated Action Detections

Actor-Centric Activity Detection on TubeletOptical 
Flow

Actor 
Detection

Actor 
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Actor-
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Visual
Spatio-Temporal 
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Representation 
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Figure 4.1: Overview of our proposed actor-centric framework for complex activity
detection in extended videos. It consists of two main components: (a) actor-centric
tubelet generation and (b) activity detection per tubelet. The first component gener-
ates spatio-temporal tubelets of interest, which are associated with a single primary
actor (person or vehicle) and capture all the relevant spatio-temporal visual context
(scene cues, interacting objects, etc.). The second component predicts the activities
performed by an actor over time based on local motion cues (optical flow) and spatio-
temporal actor-object interactions. Details for their implementation are provided in
Sec. 4.3.

tubelet. The former is a sequence of bounding boxes of variable size that

contain the actor (human or vehicle), and the latter is a sequence of bounding

boxes of constant size that captures adaptive, long-range spatio-temporal

context for recognizing the activities of that actor. Overall, this module helps

us localize activities in space on an actor-level and also reduces the number of

regions that need to be processed in order to detect activities, reducing our

overall processing time.

Each actor-centric tubelet is then passed to the second module, which

detects the activities performed by an actor over time based on local motion

cues (optical flow) and spatio-temporal actor-object interactions. A popular

approach for actor-centric action detection applies action classifiers on top
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of local actor features pooled from an intermediate feature map of a 3D

CNN model [254, 95]. However, these local actor features do not capture

the rich spatio-temporal interactions of the actor with other actors and objects

within the tubelet. We model these interactions with a visual spatio-temporal

graph, whose nodes correspond to detected actors and objects in the tubelet

and whose edges encode different types of potential interactions, and obtain

context-aware actor features by applying the Visual ST-MPNN [103] (introduced

in Chapter 2) on this heterogeneous spatio-temporal graph. Our actor-centric

activity detection module is trained only with actor-level supervision, without

requiring annotations of relevant objects. Finally, activity detections from all

tubelets are aggregated to generate the output set of activity detections for the

input video.

In summary, the contributions of this work are three-fold. First, we in-

troduce an actor-centric framework for real-time activity detection in extended

security videos. Second, we propose an object-detection-based approach for

generating action-agnostic actor-centric tubelets of interest that capture an

adaptive spatio-temporal context for recognizing the activities of the corre-

sponding actor. Third, we encode spatio-temporal actor-object interactions

within each optical flow tubelet with a visual spatio-temporal graph and lever-

age state-of-the-art Graph Neural Networks [103] for obtaining context-aware,

discriminative actor representations. We evaluate the proposed approach

on the MEVA (Multiview Extended Video with Activities) dataset [10] and

the ActEV21 Sequestered Data Leaderboard and obtain competitive activity

detection results compared to published methods in terms of both speed and
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performance.

4.2 Related Work

Action Detection in Extended Videos. Most prior work on action detection

focuses on long, untrimmed videos with activities performed by a few adult

actors. Approaches that temporally detect activities by processing whole

frames with convolutional networks, such as the RC3D [69], without de-

termining spatio-temporal regions that might contain activities, have been

shown not to be able to handle extended videos [10]. Thus, we focus our

brief review of related work on approaches that first identify candidate spatial

locations of activities. Activities are localized either frame-by-frame by lever-

aging person detections [95, 96, 94], or via spatio-temporal volumes, like short

tubes [97, 98, 99, 100, 101] or tracks [102]. However, these approaches become

impractical for detecting activities in extended surveillance videos, not only

because they are not able to detect vehicle activities, but also because they will

typically result in a large number of proposals, hurting run-time performance.

Detecting complex activities in extended, multi-person videos [12] is a

more challenging and computationally demanding task, which requires nar-

rowing down the visual search space by identifying regions that might con-

tain activities. Our proposed approach, that leverages actor tracklets to spa-

tially localize activities, is inspired by early work which tracked moving

objects [258, 259] obtained by object detectors [257] or background subtrac-

tion [260, 261], and represented those tracks with hand-crafted, global repre-

sentations. However, we lift simplifying assumptions of such prior works,
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such as activities being only human-vehicle interactions and a single activity

happening in each region at a time [257], or videos being temporally pre-

segmented [262]. Furthermore, we combine actor tracklets with tubelets [263],

which allows us to capture adaptive, dynamic spatio-temporal context. Our

work is also complementary to recent approaches that employ global deep

representations of cuboids [255, 264, 265] or short tubes [256], and offers addi-

tional benefits, e.g., modeling of spatio-temporal interactions and long-term

temporal context, as well as localization of the actors.

Interaction-based Region Representation Learning. Modeling spatio-temporal

interactions between actors and objects has a long history in video under-

standing [266, 267, 128, 59]. However, most of prior work has focused on

modeling interactions between regions with undirected graphical models

in a discrete label space [110, 111, 268], where the regions were represented

with hand-crafted features. Instead, the focus of our work is to leverage such

interactions for learning context-aware actor representations (continuous fea-

tures). Our activity detection model builds upon recently developed deep

architectures called Graph Neural Networks (GNNs) [145], which enable rep-

resentation learning on graph-structured data. Although GNNs have recently

been applied to video understanding [113, 96, 142, 82, 117], they have not been

explored for activity detection in extended videos. This chapter adapts the

Visual ST-MPNN [103], which we introduced in Chapter 2 as a GNN tailored

to representation learning on heterogeneous spatio-temporal graphs, to the

task of actor-centric activity detection on tubelets and replaces appearance

actor/object features with local motion features.
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4.3 Actor-Centric Activity Detection

This section presents our proposed actor-centric framework for human and

vehicle activity detection in extended videos. The overview of our framework

is illustrated in Figure 4.1. An extended video is decomposed into basic

units, called actor-centric tubelets of interest. Each tubelet is associated with

an actor tracklet and ideally captures all the relevant spatio-temporal visual

context (scene cues, interacting objects, etc.) for recognizing the activities

of the actor. For the purposes of activity detection in extended surveillance

videos, we consider humans and vehicles as actors, since the activities of

interest include atomic human activities (e.g., person closes facility door), group

human activities (e.g., person embraces person), human-vehicle interactions (e.g.,

person closes trunk) and atomic vehicle activities (e.g., vehicle turning left). Our

action recognition module encodes the rich spatio-temporal visual context

in spatio-temporal actor-object visual graphs and learns context-aware actor

representations with the Spatio-Temporal Message Passing Neural Network

(ST-MPNN). In the following, we first define the actor-centric tubelet. Then,

we describe in details our approach for (a) actor-centric tubelet generation

and (b) supervised temporal multi-label action recognition per tubelet. Finally,

we discuss how to post-process the time series of action scores per tubelet in

order to output final action detections in the input extended video.

4.3.1 Actor-Centric Tubelets of Interest

An actor-centric tubelet of interest is defined as a tuple of two bounding box

sequences of the same temporal length: (a) an actor tracklet, i.e. a sequence
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of actor bounding boxes linked by an actor tracker, and (b) a context tubelet,

i.e. a sequence of bounding boxes of constant height and width that contain

the actor in addition to relevant spatial context. Formally, given an extended

video with spatio-temporal dimensions (H, W, T), each actor-centric tubelet,

denoted ti, is described as: ti = (ti
s, ti

e,Bi
a,Bi

c), where ti
s is the start frame, ti

e

is the end frame, Bi
a is the actor tracklet, and B

i
c is the context tubelet. Both

actor tracklet and context tubelet are sequences of bounding boxes of length

L = te � ts + 1  T denoted as Ba = [(xa
0, ya

0, wa
0, ha

0), . . . , (xa
L, ya

L, wa
L, ha

L)] and

Bc = [(xc
0, yc

0, wc, hc), . . . , (xc
L, yc

L, wc, hc)], respectively, such that for each frame

t the actor bounding box is included in the context bounding box and the

context boxes have constant height and width, i.e.:

0  xc
t  xa

t < xa
t + wa

t  xc
t + wc

W � 1, (4.1a)

0  yc
t  ya

t < ya
t + ha

t  yc
t + hc

 H � 1. (4.1b)

The actor-centric tubelet of interest has the following desirable properties:

(1) it captures long-term temporal context of the actor’s actions, since it is

associated with an actor tracklet of arbitrary length, (2) it includes long-range

spatial context, which complements the actor’s appearance for recognizing the

actor’s activities (since each tubelet can have a different height and width), (3)

it defines a valid sub-video with constant height and width, which can be fed

to any modern backbone deep neural network for feature extraction, and (4) it

can be annotated with unambiguous ground-truth activities at each timestep

(given actor-level annotations). We should emphasize that our tubelet is not an

action proposal, since it can be associated with zero or multiple actor activities.
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Rather, it is a sub-volume of interest that is likely to contain activities and is

focused on a single actor, similar to videos in most benchmark datasets.

Object-detection-based tubelet generation. Our actor-centric tubelet genera-

tion method filters out tracks that are not likely to contain an activity (such

as parked vehicles) or are secondary to other actor tracks (such as vehicles

involved in person-vehicle interactions for which the primary actor is the

person). It also determines an adaptive spatial extent for each actor-centric

tubelet based on interactions. It achieves this by relying only on object de-

tections without requiring training with action spatio-temporal annotations.

In particular, it consists of four stages: object detection, actor tracking, actor-

centric region of interest extraction, and tubelet generation, as illustrated in

Fig. 4.1.

– Object Detection: We initialize our tubelet generation pipeline by detecting

objects (person or vehicle) per frame with the Faster R-CNN [175] off-the-

shelf object detector, which was trained on the external MSCOCO [176] image

dataset. Note that this object detector requires no supervision from action

datasets, thus it may detect objects that are not performing an action.

– Actor Tracking: We track detections from each actor class (person or vehicle)

using the SORT [269] off-the-shelf tracker, which predicts a trajectory using

a Kalman filter and matches tracks to detections using a simple IoU metric.

Tracking not only provides the basis for linking regions of interest across

time to generate actor-centric tubelets, but also helps fill in missing object

detections.

– Actor-Centric Region of Interest Extraction: The goal of this step is to (a) find
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actors at each frame that are likely to be involved in activities and (b) identify

other actors they might be interacting with. This information will be used to

filter out track segments that are not likely to contain activities, such as static

vehicles without any people in their vicinity, thus reducing the number of

regions fed to our activity detection module with minimal impact on the recall.

It will also aid in determining the adaptive, spatial context that is relevant

for recognizing the activities of each actor. We use a rule-based approach to

find Regions of Interest (ROIs) per frame, where each region corresponds to

one out of 5 potential types of ROIs and is associated with a primary actor

detection. Such regions are automatically extracted from actor detections by

associating them with hand-crafted rules based on scale-normalized distance

thresholds, as described below:

1. Type 1: Any detected person is a region of interest of Type 1.

2. Type 2: Any moving vehicle is a region of interest of Type 2. We con-

sider a vehicle to be moving if the scale-normalized distance of two

consecutive bounding box centers dist(bv
i,t, bv

i,t�1) exceeds a threshold

qvd:

dist(bv
i,t, bv

i,t�1) � qvd. (4.2)

3. Type 3: Any group of person detections that are close enough (their

pairwise distance does not exceed a threshold qpp are considered to be a

region of interest of Type 3:

dist(bh
i,t, bh

j,t)  qpp. (4.3)
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The bounding box of this region of interest is the union box of the

individual person bounding boxes.

4. Type 4: Any person-vehicle pair where the distance of the person and

the vehicle does not exceed a threshold qpv and the vehicle is not moving

is a region of interest of Type 4:

dist(bh
i,t, bv

j,t)  qpv, bh
i,t 62 Type2 (4.4)

The bounding box of this region of the interest is the union box of the

person and vehicle bounding boxes.

5. Type 5: Any vehicle that has been recently active, i.e., vehicles that were

(will be) moving or were (will be) associated with an actor detection

within a look-back (look-ahead) window of K frames, is considered to

be a region of interest of Type 5. This rule aims to cover cases where

neither the person is visible, nor the vehicle is moving, but an activity

such as exiting the vehicle might be occurring:

bv
i,t 62 Type2[ Type4, (4.5)

9k 2 [�K, K] s.t. bv
i,t+k 2 Type2[ Type4. (4.6)

An intuitive illustration of the five types of actor-centric RoIs and their

corresponding primary actors, as well as the rules used for their construction,

is shown in Figure 4.2. Note that an actor detection can be the primary

actor of zero, one or multiple actor-centric RoIs. For example, a person can

be associated with multiple nearby people and vehicles. We would like to
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PA PA

PA

PA

PA

1. Person 2. Moving Vehicle 3. Group of People

4. Person-Vehicle 5. Active Vehicle

𝑑𝑖𝑠𝑡 𝑏𝑖,𝑡𝑣 , 𝑏𝑖,𝑡−1𝑣 ≥ 𝜃𝑣𝑑 𝑑𝑖𝑠𝑡 𝑏 𝑖,𝑡
ℎ , 𝑏𝑗,𝑡ℎ ≤ 𝜃𝑝𝑝

∃𝑘 ∈ −𝐾,𝐾 , 𝑠. 𝑡. 𝑏𝑖,𝑡+𝑘𝑣 ∈ {
𝑇𝑦𝑝. 2 ∪ 𝑇𝑦𝑝. 4 }𝑑𝑖𝑠𝑡 𝑏 𝑖,𝑡

ℎ , 𝑏𝑗,𝑡𝑣 ≤ 𝜃𝑝𝑣

PA : Primary Actor

𝜃𝑣𝑑, 𝜃𝑝𝑝,𝜃𝑝𝑣 : Distance Thresholds

𝑏𝑖,𝑡𝑣 : Bounding box of 𝑖𝑡ℎ
vehicle track at    
frame 𝑡

𝑏𝑗,𝑡ℎ : Bounding box of 𝑗𝑡ℎ
human track at 
frame 𝑡

𝑑𝑖𝑠𝑡(⋅,⋅) : Scale-normalized   
distance of bounding   
box centers

𝑏𝑖,𝑡
𝑣 ∈ {𝑇𝑦𝑝. 2 ∪ 𝑇𝑦𝑝. 4 } and

Figure 4.2: Types of regions of interest with their associated primary actors for sample
frames from the VIRAT [12] dataset. For example, regions of Type 5 correspond to
recently active vehicles, i.e., vehicles that were (will be) moving or were (will be)
associated with an actor detection within a look-back (look-ahead) window of K
frames.

emphasize some limitations of these hand-crafted rules. The moving vehicle

definition assumes a static camera, while the group of people definition results in

overlapping regions of interest, one for each person.

– Tubelet Generation: Given the actor-centric RoIs extracted per frame, we

are now ready to describe the generation of actor-centric tubelets. First, we

construct a context bounding box for each actor detection that is the primary

actor of at least one actor-centric RoI. This context box is constructed by

computing the union of all RoIs which have this actor as their primary actor.

Leveraging the extracted actor tracks, context bounding boxes associated

with the same primary actor instance are linked over time to construct an
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actor-centric tubelet of interest, with the sequence of context boxes generating

the context tubelet Bc, and the sequence of primary actor bounding boxes

generating the actor tracklet Ba. We would like to emphasize that in contrast to

track-based methods, our actor-centric tubelets do not necessarily include a

whole actor track, but only track segments that contain actor detections that

are primary actors of RoIs. For example, instead of predicting activities for

each timestep of a tracked vehicle, we only predict activities for the temporal

segments that this vehicle is either moving or people are about to enter/exit it.

Still, all detections of this vehicle can serve as context for other tubelets.

Context tubelet post-processing. The generated context tubelets might have

an irregular shape with sudden changes in the size of the consecutive bound-

ing boxes, e.g., because the number of interacting actors varies with time or

because of errors in the association of actors due to occlusions. To alleviate

this issue, we enlarge each context bounding box of the tubelet so that they

have the same height and width, with its dimension being determined by

the largest bounding box of the tubelet. A final refinement step ensures that

the tubelet consists of a smoother sequence of context bounding boxes. In

particular, a Savitzky-Golay [270] filter is used to estimate smoothed values of

the bounding box centers. Then, the top-left context bounding box coordinates

are updated accordingly without modifying the tubelet dimensions.

4.3.2 Actor-Centric Activity Detection on Tubelet

Once an extended video is decomposed into a set of actor-centric tubelets of

interest, our system seeks to temporally detect the activities performed by
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the actor of each tubelet. Our proposed structured activity detection module,

illustrated in Figure 4.3, builds upon the VS-ST-MPNN (V-HetGAT variant)

that we presented in Chapter 2. It encodes spatio-temporal interactions be-

tween actors and objects in a visual graph and learns graph-structure-aware

actor embeddings that can be used to recognize activities.

Visual spatio-temporal graph. Let t = (ts, te,Ba,Bc) be an extracted tubelet

with length L = ts � te + 1. We represent it with a visual spatio-temporal,

attributed graph Gv = (Vv, E v), which consists of a set Vv of actor nodes and

object nodes, and a set of visual edges E
v. Actor nodes correspond to the

bounding boxes of the primary actor tracklet Ba of the tubelet, while object

nodes correspond to other object detections within the context tubelet Bc,

including other visible humans and vehicles. The graph is built by adding

directed, typed edges that connect nodes. In particular, an edge connecting

node j to node i is associated with an edge type r(i, j). We use three edge types:

object-to-actor spatial (r(i, j) = 0) and actor-to-object spatial (r(i, j) = 1) edges

connect actor and object nodes in the same frame, while actor-to-actor temporal

(r(i, j) = 2) edges connect actors across frames. We constrain temporal edges

to connect only nodes of the same type between consecutive frames. We

initialize graph node and edge attributes using the same procedure that we

described for instantiating the visual subgraph on regular videos for temporal

activity detection in Section 2.5.2.3. The only difference is that for the case of

extended videos we chose to represent videos with optical flow features. Our

choice was motivated by the experimental observations of Gleason et al. [264],

who demonstrated that using optical flow features for activity detection in
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surveillance videos, outperforms RGB features, potentially because optical

flow features capture better salient motion cues even in low-resolution areas.

All graph node attributes h(0)
i are initialized with ROI-pooled features from a

feature map that is obtained by passing a cropped optical flow tubelet through

a flow I3D network [44]. Similarly, edge attributes q(0)
ij are initialized with the

relative spatial location of the connected nodes.

I3D

Flow Tubelet

Chunks

RoIPool

I3D

RoIPool

I3D

RoIPool

I3D

RoIPool

I3D

RoIPool

Action 
predictions 
per chunk

ℒ =෍
𝑡

ℒ𝑊𝐵𝐶𝐸(𝑡)

time

Figure 4.3: Graph-based activity detection module for actor-centric activity detection
in a tubelet.

Graph-based actor representation learning. Given the input visual st-graph,

our Visual Context Module iteratively refines the local node and edge features

with spatio-temporal contextual cues. As we described in detail in Section 2.3,
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at each iteration l, we (1) compute scalar visual edge weights using edge-

type-specific attention mechanisms; (2) compute a message along each edge

using the attention-based scalar edge weight, the current embeddings of the

connected nodes and the edge; (3) update the embedding of every node by

aggregating messages from incoming edges with an update function; and (4)

update the attribute of every edge by using the message that was computed

alongside it. Importantly, the message passing functions are parameterized

with learnable weights that depend on the edge type. After Lv layers of the

spatio-temporal MPNN (or equivalently Lv rounds of node and edge updates),

we obtain refined, visual context-aware node and edge features.

Temporal activity detection. Let xt be the context-aware node feature that

corresponds to the tubelet’s primary actor bounding box at time t. A linear

classifier is applied on xt to predict scores for C action classes at time t:

ỹt = Wclsxt + bcls 2 RC, t = 1, ..., L, (4.7)

where Wcls 2 RC⇥d and bcls 2 RC are learnable parameters. Since an actor

might be performing multiple activities at the same time, we treat the problem

as a multi-label per-frame action classification problem, passing scores ỹt

through a sigmoid activation function to yield the predicted action probabili-

ties ŷt 2 [0, 1]C.

The output of the previous step is a sequence of probabilities for each

activity a 2 {0, . . . , C� 1} for each tubelet timestep t. To obtain final temporal

detections for an activity a within the tubelet, we need to convert the action

scores sequence to a set of temporal segments with start, end times and
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associated confidence scores. To achieve this, we first apply a median filter to

the predicted probabilities for activity a [ŷa
0, . . . , ŷa

L�1] to obtain the smoothed

activity probabilities [sa
0, . . . , sa

L�1]. We then initialize activity detections at

the local maxima of the smoothed action score time-series [sa
0, . . . , sa

L�1]. The

temporal boundaries of an activity detected at local maximum location tk,

with score sa
tk

, are extended by including previous and future timesteps until

their action score falls below a relative threshold q · sa
tk

, where q < 1 is a

hyperparameter. In this way, we can detect activities of arbitrary lengths and

we can handle several instances of the same activity performed by the tubelet’s

primary actor, such as consecutive turning left activities corresponding to the

same vehicle tracklet.

Training. Our actor-centric activity detection module is trained with actor-

level annotations associated with the primary actor of each tubelet. Given

the ground-truth activity annotations for the primary actor of a tubelet, the

ST-MPNN network is trained jointly with the action classifiers by using a

Weighted Binary Cross-Entropy (WBCE) loss per class:

LWBCE(ya
t , ŷa

t ) = baya
t log ŷa

t + (1� ya
t ) log(1� ŷa

t ), (4.8)

where ya
t 2 {0, 1} is the ground-truth label for timestep t and action a, and

ŷa
t 2 [0, 1] is our model’s prediction. To handle the class imbalance, we apply

a weighting factor ba to positive examples of each class a, which is determined

based on the inverse class frequency.
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4.4 Experiments

4.4.1 Datasets

We validate our method on the MEVA dataset and the ActEV 2021 Sequestered

Data Leaderboard. The MEVA dataset [10] consists of 5-minute videos cap-

turing indoor and outdoor scenes. There is an ongoing effort for annotating

MEVA videos with actor-level annotations of 37 activity classes by Kitware

and the community. We use Kitware annotations1 for 784 of these videos for

training our activity detection module and 172 for constructing an internal

validation set for our ablation studies. The ActEV 2021 SDL2 consists of

sequestered surveillance videos, which are not publicly available. Evaluating

a method on this dataset requires submitting an activity recognition system

that is compatible with the ActEV Command Line Interface (CLI) protocol

and temporally detects instances of 37 activites. The submitted system is then

executed on test servers provided by NIST and scores are reported on the

public leaderboard.

4.4.2 Metrics

The activity detection performance of our system is evaluated with the official

metrics of the ActEV SDL evaluation: (a) the probability of missed detection

at fixed time-based false alarm per minute (Pmiss@0.02tfa), and partial area

under the Detection Error Tradeoff curve (nAUDC@0.2tfa). These metrics are

calculated by finding correspondences between system activity detections
1
https://gitlab.kitware.com/meva/meva-data-repo/-/tree/master/

annotation/DIVA-phase-2/MEVA/kitware-meva-training

2
https://actev.nist.gov/sdl
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and ground-truth activity instances via the Hungarian algorithm. A ground-

truth activity instance is considered to be missed if it does not overlap with

a system detection for at least one second. The time-based false alarm is

the proportion of time the system detected an activity when there was none.

Temporally fragmented activity detections that occur during the duration

of a ground-truth activity instance do not increase Tf a unless the detections

overlap temporally. For details on the computation of these metrics, we refer

the reader to the official evaluation plan [271].

For achieving a good performance under these metrics, our system needs

to accurately detect activities, while at the same time it needs to minimize the

Time-based False Alarm. We used the official scorer3 for evaluating the system

on our internal MEVA validation set. Metrics were computed per video and

we report their average.

4.4.3 Implementation Details

Tubelet generation. Our actor detections correspond to Person and Vehicle

(bicycle, car, motorcycle, bus, truck) object detections with confidence score

above 0.5. The SORT tracker [269] is used to separately track people and vehi-

cles. Tracks are terminated after not being associated with an actor detection

for 64 frames. Afterwards, regions of interest are identified in each frame

by associating actor detections with hand-crafted rules, which are based on

thresholds of scale-normalized distances, as introduced in Fig. 4.2: qpp = 6000,

qpv = 5000, qvv = 500, and an active vehicle look-ahead/look-back window

3
https://github.com/usnistgov/ActEV_Scorer
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of K = 256 frames.

Activity detection module. For activity detection on each tubelet, we first

crop the tubelets from an optical flow representation of the input extended

video. Optical flow is extracted from resized and downsampled RGB frames

with the TVL1 algorithm following the same setup as in [264]. To build the

visual graph, we first apply an optical flow I3D network [44], which was

trained for action classification on MEVA cuboids and shared by the authors

of [264], on consecutive 2-second non-overlapping chunks of the input flow

tubelet. In this way, we obtain a feature map with a temporal stride of 8 frames

for each chunk. We then instantiate the graph on top of the primary actor

detections and 10 most confident object detections (with score above 0.1) at

the corresponding tubelet frames. Note that we store the centre coordinates

of all object detections for a frame of the original extended video in a KD-

tree data structure, which enables efficient rectangle range queries. We can

then efficiently retrieve all object detections whose centre lies within a tubelet

bounding box at a given frame. The initial node features for actors/objects are

pooled from the Mixed 4f 3D feature map of the flow I3D for each detected

region using RoIAlign [175]. These features are refined to include context by

performing 3 rounds of node/edge refinement with the Visual ST-MPNN [103],

resulting in context-aware 512-dimensional embeddings of actor regions that

are fed to action classifiers. The action detection threshold q is set to 0.8 and

median window size is 25 frames (3 chunks).

Training. We jointly train the Visual ST-MPNN and action classifiers on 7151

tubelets extracted from MEVA training videos for 150 epochs using a batch
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size of 10 tubelets (with a maximum length of 30 seconds). Given ground-truth

actor-level annotations, we assign a ground-truth activity to the primary actor

of a tubelet at a given frame if its detected bounding box overlaps with the

corresponding ground-truth actor with IoU > 0.5. We use the Adam [171]

optimizer, with an initial learning of 1e�4.

CLI system. The system submitted to the ActEV SDL is customized to run

on a hardware consisting of 4 GPUs with 128GB RAM. It is implemented as a

pipeline consisting of several stages with each stage producing an output to

be used by the later stages. The stages can be enumerated as follows:

1. Optical Flow Extraction,

2. Object Detection and Actor Tracking,

3. Tubelet Generation,

4. I3D Feature Extraction, and

5. ST-MPNN Processing.

Each stage is parallelizable and spawns several subprocesses/workers which

work on multiple videos/chunks simultaneously. Among the stages, stage

3 is CPU-intensive and the rest are GPU-intensive. The pipeline processes

the entire test set in batches of 96 videos. Each stage maintains a processing

queue of 96 videos and any idle workers consume videos from this queue

until the entire video batch has been processed. The number of workers for

each of the stages are: 48, 24, 96, 8, and 8 respectively. In all stages except

stage-3, we are limited by the GPU memory and hence cannot increase the
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Table 4.1: Temporal detection results on the ActEV 2021 Known Facility SDL as of
November 1st 2021. We report the Pmiss@0.02tfa and nAUDC@0.2tfa metrics. Lower
nAUDC and pmiss values indicate a superior performance since they are related to
missing an activity.

System nAUDC pmiss@0.02tfa Rel. Time

Cuboids [264] 0.476 - 0.725
Gabriella [256] 0.438 - 0.362
Dense Prop. [272] 0.423 - -

CMU-DIVA 0.163 0.3424 0.413
UCF 0.232 0.3793 0.751
UMD 0.262 0.4544 0.380
IBM-Purdue 0.281 0.4942 0.631
Visym Labs 0.283 0.4620 0.721
UMD-Columbia 0.305 0.4716 0.516
UMCMU 0.323 0.5297 0.464
Purdue 0.332 0.5853 0.131
BUPT-MCPRL 0.799 0.9281 0.123

MINDS_JHU (Ours) 0.483 0.6649 0.967

number of workers anymore. The system submitted to the ActEV SDL slightly

differs from the system evaluated on our internal validation set: (a) the object

detector is applied on the video with a stride of 4 frames for faster processing,

while repeating the bounding box detections in between to accommodate for

the skipped frames, and (b) we keep at most 200 actor-centric tubelets from

each input video, after ranking them based on motionness cues.

4.4.4 Experimental Results

Comparison with the state of the art. Table 4.1 compares the activity detection

performance of our method with recently published work and other submitted
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Figure 4.4: Per-class nAUDC scores for systems on the ActEV 2021 SDL. Our system
ID is 25467 (light green).

systems on the ActEV 2021 SDL Known Facility Leaderboard4 as of November

2021. Our actor-centric framework for real-time activity detection achieves

activity detection performance that is close to other published methods [256,

264, 272] (rows 1-3). Notably, it achieves this metric despite only training the

GNN and action classifiers of our framework using actor-level annotations,

in under 3 hours using a single Titan XP GPU (given the extracted visual

graph), while relying on off-the-shelf, pretrained networks for object detection

and flow feature extraction. When compared to system submissions on the

ActEV SDL Challenge, which might utilize additional training datasets, end-

to-end training, and model ensembles, our system lags behind most of them.

However, as we can see in Fig. 4.4, our system (ID: 25467) performs on par

4
https://actev.nist.gov/sdl#tab_leaderboard
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Figure 4.5: Number of training instances per activity used to train our system submit-
ted to the ActEV 2021 SDL.

with other methods for a wide range of activities, such as person-vehicle

interactions (vehicle drops-off person) and vehicle activities (vehicle u-turn), while

performing significantly worse on person abandons package and person interacts

with laptop, for which we used only a few annotated instances, as illustrated

in Fig. 4.5. Our overall performance could be improved by including more

samples of these activities in our training set and by fine-tuning our object

detector on surveillance data. Furthermore, the I3D could be fine-tuned jointly

with the ST-MPNN.

Ablation analysis. We now discuss a variety of ablation studies of different

components of our framework. In Table 4.2, we compare the total number of

actor regions that are included in actor tracks with the number of regions that
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Table 4.2: Impact of tubelet generation method on the number of actor regions that
are fed to the activity detection module. Tracks: baseline tubelets spanning each
actor track of an extended video. ACToIs: our proposed Actor-Centric Tubelets of
Interest. Results are reported on our internal validation set of Kitware-annotated
MEVA videos.

Tubelet type Nb. Actor RoIs

Tracks 6783972
ACToIs 2553404

Table 4.3: Activity recall of our proposed Actor-Centric Tubelets of Interest on our
MEVA training and validation sets. Recall R@T is computed by considering an
activity instance as retrieved when at least one tubelet’s primary actor overlaps with
the ground-truth actor with IoU > 0.5 for at least T consecutive frames.

R@30 R@8 R@1

ACToIs (train) 69.0 81.7 85.0
ACToIs (val) 67.9 81.5 84.0

are the primary actors of our actor-centric tubelets. As we can see, our tubelet

generation method prunes a large number of tracked actor detections that are

unlikely to contain activities and only feeds 37% of the actor regions to the

activity detection module. This helps our model perform real-time activity

detection. Despite pruning a large number of actor regions, our generated

tubelets retrieve a large number of ground-truth activities (around 80%), as

shown in Table 4.3. The primary cause for missed activity detections are

object detection failures of the off-the-shelf, pretrained object detector. In

Table 4.4, we first experiment with two different action classification models

to determine the best architecture for our system. In particular, we compare

our context-aware feature obtained by applying the Visual ST-MPNN on our

visual graph with a baseline feature that is obtained from locally-extracted
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Table 4.4: Ablation experiments on our internal MEVA validation set for different
design choices of the activity detection module. Local Actor Feat: baseline approach
that recognizes actor activities based on locally-extracted actor features. Context-aware
Actor Feat: our proposed approach that learns context-aware actor features with
the Visual ST-MPNN. Dynamic Duration: generating activity detections of varying
durations. Fixed Duration: generating activity detections of fixed duration (6 sec)
around local maxima.

Feat Duration nAUDC pmiss@0.04 pmiss@0.02

Local Dynamic 0.558 0.556 0.680
Context-Aware Dynamic 0.531 0.501 0.663
Context-Aware Fixed 0.492 0.469 0.565

actor features passed through a trainable two-layer Multi-layer Perceptron of

hidden size 1024. Refining the local actor features with the GNN improves

performance, verifying our intuition that spatio-temporal actor-object interac-

tions are crucial for detecting activities. Furthermore, we compare generating

activity detections of fixed duration (6 seconds) around each local maximum

of the score time-series per activity class, instead of adaptively extending the

detection to the past and future by a relative score threshold. Surprisingly,

fixed duration activity detections lead to a better performance. This can be

attributed to the employed detection metrics, which consider a ground-truth

activity to be detected as long as it has an overlap of 1 second with a system

detection.

4.5 Conclusion

In this chapter, we have introduced an actor-centric framework for detecting

complex human and vehicle activities of varying spatio-temporal scales in

extended surveillance videos. The basic idea was to decompose an extended
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video into a collection of actor-centric tubelets of interest, which capture

long-range spatial and temporal context for an actor. Then, the problem was

reducted to processing each tubelet and predicting its primary actor’s activities

over time based on local motion cues (optical flow) and spatio-temporal actor-

object interactions within the tubelet. We have validated a proof-of-concept

of that system on the MEVA dataset, including the external, sequestered

Known Facility leaderboard, where our system performed competitively with

previously published methods, and yielded promising results for numerous

activities compared to other systems submitted at the ActEV SDL’21 challenge.

Last, our system has been designed in a modular fashion, making it amenable

to improvements. For instance, the current off-the-shelf object detection,

tracking and feature extraction backbones can be easily replaced by state-of-

the-art networks, such as DETR [192], Joint Detection and Embedding (JDE)

multiple-object tracker [273], and TANet [274], respectively.
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Chapter 5

Conclusion and Future Work

The goal of this thesis was to leverage actors, objects and their interactions, in

order to develop novel technology that can automate the detection of complex

activities and associated interacting entities in extended videos.

We approached this problem of designing such a computer vision system

with a “divide-and-conquer” strategy. Our main intuition was that it should

be easier for the computer vision algorithm to understand the activities that

occur in an extended video if it focuses on smaller and shorter subvideos,

such as a spatio-temporal subvolume that is centered around a couple of

interacting people and vehicles. Hence, we proposed dividing the original

extended video in such smaller subvideos and analyzing each one of them

in parallel. With that strategy in mind, we focused on the following video

understanding tasks: (a) temporal activity detection in untrimmed videos that

are spatially-centered around a few actors, (b) grounded visual description

and visual object grounding given video segments corresponding to an event,

and (c) activity detection in extended videos.

In Chapter 2 we focused on the task of temporal activity detection, which
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we addressed by learning region-based frame representations that are used

to predict the activities at each timestep. We proposed novel heterogeneous

Message Passing Neural Networks, composed of a Visual Context Module

and a Semantic Context Module, for representation learning on heterogeneous

graphs, which encode visual and semantic interactions among actor and object

regions in a video. The key idea was to learn different message functions

for different edge types, and to take into account edge attributes, such as

relative geometric relations between regions, in order to compute context-

aware region embeddings. Experimental evaluation showed that by jointly

learning these region embeddings with activity recognition networks, e.g.,

classifiers, our framework outperformed baselines using local region features

or contextual embeddings obtained by Graph Convolutional Neural Networks

applied on a homogeneous visual graph. Our proposed VS-ST-MPNN model

also improved upon prior Graph Neural Networks in terms of sub-activity

detection performance on the CAD-120 dataset, setting a new state of the art.

Moreover, combining region-based activity predictions with predictions based

on holistic, clip-level RGB features led to state-of-the-art temporal activity

detection performance on the Charades dataset, significantly outperforming

two-stream, holistic approaches that utilize both RGB and Optical Flow inputs.

Furthermore, qualitative analysis showed that the learned model automati-

cally attends to relevant contextual objects when aggregating relevant visual

context for activity prediction at each timestep, and that richer interactions

(e.g., more types of interactions or long-term interactions) encoded in the

input graph lead to better embeddings learned by our model.
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In Chapter 3, we moved beyond predicting a label from a limited set of

predefined activity classes for each activity that is temporally detected in a

video. Instead, our goal was to joinly describe temporally localized events

with a natural language description - which conveys richer details about the

visual content - as well as localize each referred semantic entity in the video

input. We explored various models to tackle this task with varying levels

of supervision. In the first half of the chapter, we introduced an extension

of the fully-supervised GVD model originally proposed by Zhou et al. [4]

for Grounded Visual Description and Visual Object Grounding. Our pro-

posed AO-GVD model utilizes region embeddings that are aware of local

spatio-temporal actor-object interactions and global semantic interactions. To

achieve this, we adapted the heterogeneous message passing modules from

Chapter 2. We evaluated this model on the ActivityNet Entities video dataset,

and demonstrated the benefits of combining multi-head self-attention (Trans-

formers) with our Semantic Context Module. In the second half of the chapter,

we explored the more challenging problem of learning how to align words in

sentences with visual regions based only on video-caption pairs and made ad-

vances in the weakly-supervised visual object grounding and grounded visual

description tasks. We proposed a novel grounded visual description CVAE

for weakly-supervised learning of word-to-region aligmnents. We designed

a variety of deep conditional generative models of sentences and explored

the impact of architectures and conditional independence assumptions on the

grounding performance. To demonstrate the generality and effectiveness of

our model we evaluated it on two tasks and both image and video datasets.

We showed that leveraging the learned latent alignment distributions (both
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the prior word-to-region alignment distribution that only looks at previous

words, and the approximate posterior distribution that looks at the full sentence)

of our model significantly outperforms soft attention for grounding given

ground-truth or generated sentences. Our novel approach also yielded com-

petitive results under multiple metrics in both grounding and grounded video

description while comparing against methods optimized for one of the two

tasks.

In Chapter 4, we relaxed the assumption that videos are spatially-centered

around a few main actors, and tackled the activity detection problem in ex-

tended surveillance videos. We introduced an actor-centric framework for

detecting complex human and vehicle activities of varying spatio-temporal

scales in extended surveillance videos. The basic idea was to decompose an

extended video into a collection of actor-centric tubelets of interest, which

capture long-range spatial and temporal context for an actor. Then, the prob-

lem was reduced to processing each tubelet and predicting its primary actor’s

activities over time based on local motion cues (optical flow) and spatio-

temporal actor-object interactions within the tubelet. We evaluated our system

on the challenging MEVA dataset, and we were able to detect activities in

real-time, yielding promising results, despite the simple design and training

of our system.

To conclude this thesis, we now discuss some directions for future research

motivated by limitations that remain despite our advances in region-based

video understanding.
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Moving beyond 2D actor and object bounding boxes. Although the graph-

based representation learning approaches and word-to-region alignment mod-

els that we proposed in this thesis are agnostic to the type of input regions,

throughout this thesis we assumed that regions correspond to 2D bounding

boxes of actors and objects. In other words, we represented videos in terms of

2D region proposals, and grounded words to bounding boxes corresponding

to semantic entities. While this was a reasonable decomposition for the types

of videos considered in this thesis (capturing daily indoor activities or outdoor

scenes), there are many cases where object region proposals might not be the

best semantic units. First, the performance of our region-based approaches is

limited by the quality of detected regions. For instance, object detectors might

fail to detect partially-occluded objects, which are commonly encountered in

crowded scenes, or unfamiliar objects that were not seen during training, such

as various cooking ingredients and types of household objects. In other cases,

videos might only capture a single person and the goal might be to recognize

their gestures or facial expressions. Decomposing a video in terms of actors

and objects would not be helpful in this case.

In these settings, it would be advantageous to decompose videos in terms

of more fine-grained semantic units, such as: (a) object parts (e.g., body parts or

vehicle doors/wheels etc.) [49], or (b) class-agnostic semantic segments [275].

For instance, recent works in the image domain have started exploring the

dense grounding of object words and phrases to semantic segments of the

image, in a task called Panoptic Narrative Grounding [276]. An interesting

direction for better handling occlusions and modeling geometric relationships
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among objects, would be to leverage recent advances that extract 3D bounding

box proposals from 3D point clouds [277] and build visual spatio-temporal

graphs on top of these 3D structures.

Joint activity detection and grounding by language specification. In this

thesis, we detected instances of activities from a closed-set of activity labels.

In real applications, one might be interested in detecting particular events,

such as detecting all instances of a “man wearing a blue hat enters a building”

and localizing the referred actors and objects. This would remove the need

to construct a fixed vocabulary of activity labels a priori, and it would allow

computer vision systems to recognize activities that they have never seen

before. Building upon the insights developed in this thesis, one can envision a

coarse-to-fine strategy for tackling this task: (a) first select which tubelet (spatio-

temporal subvolume) best matches the textual description of the desired event,

and (b) then ground the referred semantic entities within the tubelet with the

latent-variable sentence models that we developed in this thesis. To address

the first step, i.e., matching tubelets with sentences, one can leverage state-

of-the-art coarse-level image-to-text (or video-to-text) matching frameworks,

such as CLIP [278]. These frameworks typically pretrain transformer models

with contrastive objectives using a large amount of image-caption pairs, in

order to learn a joint embedding space for sentences and visual inputs.

Domain generalization. In the experiments conducted in this thesis, we as-

sumed that the test videos are drawn from the same distribution of the training

set. Although one would expect computer vision systems to be able to learn

the semantics of each activity and be able to recognize it in any setting, such

226



as in surveillance videos, videos captured by hand-held devices, or animated

movies, this is not the case for most state-of-the-art systems including ours.

The reason is that there exists a large distribution shift across these domains on

a pixel level. Even training with surveillance videos from a particular facility

(collection of buildings and scenes) and testing on videos from a different

facility [279] significantly degrades our activity detection system’s perfor-

mance compared to training and testing on videos from the same facility (e.g.,

the nAUDC@0.2tfa metric, related to the probability of missing an activity

instance, increases from 48% to 63%). Addressing this so-called unsupervised

domain adaptation problem, would also allow researchers to train models

on easily-generated, automatically-annotated synthetic data obtained from

simulations.

One solution towards region-based video understanding frameworks that

generalize across domains, would be to leverage robust region proposals from

domain adaptive object detectors [280], and then follow a semi-supervised

training approach, such as [281], during which we first pretrain our region-

based framework on source data with labels (e.g., simulated data), and then

apply the pretrained framework on a target dataset to obtain pseudo-labels,

which can be used to fine-tune the model in that new domain.

The computer vision algorithms proposed in this thesis were designed

with the goal of automatic video understanding in unconstrained videos.

The unique computer vision challenges that we addressed - detection of fine-

grained, co-occurring activities, lack of fine-grained bounding box annotations,

extended videos with multiple types of actors - were significant obstacles in
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the deployment of video understanding systems in real-life applications. We

therefore hope that this thesis will ultimately contribute to better assistive

robotic agents, and public safety systems.
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[162] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Liò, and Yoshua Bengio. Graph Attention Networks. International

Conference on Learning Representations, 2018.

[163] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In in ICML Workshop

on Deep Learning for Audio, Speech and Language Processing, 2013.

[164] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,

Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision

transformer using shifted windows. In IEEE International Conference on

Computer Vision, 2021.

[165] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normal-

ization. CoRR, abs/1607.06450, 2016.

[166] Hema S Koppula and Ashutosh Saxena. Anticipating human activities

using object affordances for reactive robotic response. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 38(1):14–29, 2015.

[167] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,

and Hartwig Adam. Encoder-decoder with atrous separable convo-

lution for semantic image segmentation. In European Conference on

Computer Vision, pages 801–818, 2018.

[168] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Ben-

gio. Empirical evaluation of gated recurrent neural networks on se-

quence modeling. In NIPS 2014 Workshop on Deep Learning, December

2014, 2014.

254



[169] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe:

Global vectors for word representation. In Conference on Empirical Meth-

ods in Natural Language Processing, pages 1532–1543, Doha, Qatar, Octo-

ber 2014. Association for Computational Linguistics.

[170] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff

Dean. Distributed Representations of Words and Phrases and their

Compositionality. In Neural Information Processing Systems, pages 3111–

3119, 2013.

[171] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[172] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. Dropout: A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning Research,

15(56):1929–1958, 2014.

[173] Ninghang Hu, Gwenn Englebienne, Zhongyu Lou, and Ben Kröse.

Latent hierarchical model for activity recognition. IEEE Transactions on

Robotics, 31(6):1472–1482, 2015.

[174] Haroon Idrees, Amir R. Zamir, Yu Gang Jiang, Alex Gorban, Ivan Laptev,

Rahul Sukthankar, and Mubarak Shah. The thumos challenge on ac-

tion recognition for videos “in the wild”. Computer Vision and Image

Understanding, 155, 2017.

[175] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2018.

255



[176] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco:

Common objects in context. In European Conference on Computer Vision,

pages 740–755, Cham, 2014. Springer International Publishing.

[177] Karen Simonyan and Andrew Zisserman. Two-stream convolutional

networks for action recognition in videos. In Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Neural In-

formation Processing Systems, pages 568–576. Curran Associates, Inc.,

2014.

[178] A. Piergiovanni and M. S. Ryoo. Learning Latent Super-Events to Detect

Multiple Activities in Videos. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 5304–5313, 2018.

[179] Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi. Situation recogni-

tion: Visual semantic role labeling for image understanding. In IEEE

Conference on Computer Vision and Pattern Recognition, 2016.

[180] A. Dave, O. Russakovsky, and D. Ramanan. Predictive-Corrective Net-

works for Action Detection. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 2067–2076, 2017.

[181] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta. Asynchronous

Temporal Fields for Action Recognition. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 5650–5659, 2017.

[182] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,

Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A.

256



Shamma, Michael S. Bernstein, and Li Fei-Fei. Visual genome: Connect-

ing language and vision using crowdsourced dense image annotations.

International Journal of Computer Vision, 123(1):32–73, 2017.

[183] Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool. Object

referring in videos with language and human gaze. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 4129–4138, 2018.

[184] Zhu Zhang, Zhou Zhao, Yang Zhao, Qi Wang, Huasheng Liu, and

Lianli Gao. Where does it exist: Spatio-temporal video grounding for

multi-form sentences. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 10668–10677, 2020.

[185] Sijie Song, Xudong Lin, Jiaying Liu, Zongming Guo, and Shih-Fu Chang.

Co-grounding networks with semantic attention for referring expression

comprehension in videos. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 1346–1355, 2021.

[186] Ludan Ruan, Jieting Chen, Yuqing Song, Shizhe Chen, and Qin Jin. Team

ruc_aim3 technical report at activitynet 2021: Entities object localization.

CoRR, abs/2106.06138, 2021.

[187] Peter Gorniak and Deb Roy. Understanding complex visually referring

utterances. In Proceedings of the HLT-NAACL 2003 workshop on Learning

word meaning from non-linguistic data, pages 14–21, 2003.

[188] Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo,

and Dieter Fox. A joint model of language and perception for grounded

257



attribute learning. In International Conference on Machine learning, pages

1435–1442, 2012.

[189] Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fi-

dler. What are you talking about? text-to-image coreference. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 3558–3565,

2014.

[190] Pelin Dogan, Leonid Sigal, and Markus Gross. Neural sequential phrase

grounding (seqground). In IEEE Conference on Computer Vision and

Pattern Recognition, pages 4175–4184, 2019.

[191] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You

only look once: Unified, real-time object detection. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 779–788, 2016.

[192] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,

Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection

with transformers. In European Conference on Computer Vision, pages

213–229, 2020.

[193] Raymond Yeh, Jinjun Xiong, Wen-Mei Hwu, Minh Do, and Alexan-

der Schwing. Interpretable and globally optimal prediction for textual

grounding using image concepts. Advances in Neural Information Process-

ing Systems, 30, 2017.

[194] Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong

Yu, and Jiebo Luo. A fast and accurate one-stage approach to visual

258



grounding. In IEEE International Conference on Computer Vision, October

2019.

[195] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve,

Ishan Misra, and Nicolas Carion. Mdetr-modulated detection for end-

to-end multi-modal understanding. In IEEE International Conference on

Computer Vision, pages 1780–1790, 2021.

[196] Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor Darrell, and

Bernt Schiele. Grounding of textual phrases in images by reconstruction.

In European Conference on Computer Vision, 2016.

[197] Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Peter Vajda, Mar-

cus Rohrbach, and Zsolt Kira. Learning to generate grounded visual

captions without localization supervision. In European Conference on

Computer Vision, 2020.

[198] Fenglin Liu, Xuancheng Ren, Xian Wu, Shen Ge, Wei Fan, Yuexian

Zou, and Xu Sun. Prophet attention: Predicting attention with future

attention. In Neural Information Processing Systems, 2020.

[199] Yuanen Zhou, Meng Wang, Daqing Liu, Zhenzhen Hu, and Hanwang

Zhang. More grounded image captioning by distilling image-text match-

ing model. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 4776–4785, 8 2020.

[200] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,

Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show,

259



attend and tell: Neural image caption generation with visual attention.

In International Conference on Machine Learning, 2015.

[201] Marco Pedersoli, Thomas Lucas, Cordelia Schmid, and Jakob Verbeek.

Areas of attention for image captioning. In IEEE International Conference

on Computer Vision, 2017.

[202] Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and Alexander M.

Rush. Latent alignment and variational attention. In Neural Information

Processing Systems, volume 2018-December, 2018.

[203] Shiv Shankar and Sunita Sarawagi. Posterior attention models for

sequence to sequence learning. In International Conference on Learning

Representations, 2019.

[204] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language un-

derstanding. In Annual Meeting of the Association for Computational Lin-

guistics, pages 4171–4186, Minneapolis, Minnesota, June 2019. Associa-

tion for Computational Linguistics.

[205] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining

task-agnostic visiolinguistic representations for vision-and-language

tasks. In Neural Information Processing Systems, pages 13–23, 2019.

[206] Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan Zhang, Lei

Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, Yejin Choi,

and Jianfeng Gao. Oscar: Object-semantics aligned pre-training for

vision-language tasks. In European Conference on Computer Vision, 2020.

260



[207] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron

Courville, and Yoshua Bengio. A recurrent latent variable model for

sequential data. In Neural Information Processing Systems, volume 2015-

January, 2015.

[208] Anirudh Goyal, Alessandro Sordoni, Marc Alexandre Côté, Nan Rose-

mary Ke, and Yoshua Bengio. Z-forcing: Training stochastic recur-

rent networks. In Neural Information Processing Systems, volume 2017-

December, 2017.

[209] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin,

Joelle Pineau, Aaron Courville, and Yoshua Bengio. A hierarchical

latent variable encoder-decoder model for generating dialogues. In

AAAI Conference on Artificial Intelligence, 2017.

[210] Hong Min Chu, Chih Kuan Yeh, and Yu Chiang Frank Wang. Deep

generative models for weakly-supervised multi-label classification. In

European Conference on Computer Vision, pages 409–425. Springer Verlag,

2018.

[211] Jyoti Aneja, Harsh Agrawal, Dhruv Batra, and Alexander Schwing.

Sequential latent spaces for modeling the intention during diverse image

captioning. In IEEE International Conference on Computer Vision, pages

4260–4269, 2019.

[212] Manzil Zaheer, Amr Ahmed, and Alexander J. Smola. Latent lstm allo-

cation joint clustering and non-linear dynamic modeling of sequential

data. In International Conference on Machine learning, volume 8, 2017.

261



[213] Liwei Wang, Alexander G. Schwing, and Svetlana Lazebnik. Diverse

and accurate image description using a variational auto-encoder with

an additive gaussian encoding space. In Neural Information Processing

Systems, volume 2017-December, 2017.

[214] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Accurate and di-

verse sampling of sequences based on a ’best of many’ sample objective.

In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[215] Artidoro Pagnoni, Kevin Liu, and Shangyan Li. Conditional variational

autoencoder for neural machine translation, 12 2018.

[216] Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning discourse-

level diversity for neural dialog models using conditional variational

autoencoders. In Annual Meeting of the Association for Computational

Linguistics, 2017.

[217] Colin Graber and Alexander G. Schwing. Dynamic neural relational

inference. In IEEE Conference on Computer Vision and Pattern Recognition,

2020.

[218] Alexander A. Alemi, Ben Poole, Ian Fische, Joshua V. Dillon, Rif A.

Saurous, and Kevin Murphy. Fixing a broken elbo. In International

Conference on Machine learning, volume 1, 2018.

[219] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz,

and Lawrence Carin. Cyclical annealing schedule: A simple approach to

mitigating kl vanishing. In Conference of the North American Chapter of the

262



Association for Computational Linguistics: Human Language Technologies,

volume 1, 2019.

[220] Bohan Li, Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick, and

Yiming Yang. A surprisingly effective fix for deep latent variable mod-

eling of text. In Conference on Empirical Methods in Natural Language

Processing, 2020.

[221] Arya D. McCarthy, Xian Li, Jiatao Gu, and Ning Dong. Addressing

posterior collapse with mutual information for improved variational

neural machine translation. In Annual Meeting of the Association for

Computational Linguistics, 2020.

[222] Ali Razavi, Oriol Vinyals, Aäron Van Den Oord, and Ben Poole. Prevent-

ing posterior collapse with d-vaes. In International Conference on Learning

Representations, 2019.

[223] Huajie Shao, Shuochao Yao, Dachun Sun, Aston Zhang, Shengzhong

Liu, Dongxin Liu, Jun Wang, and Tarek Abdelzaher. Controlvae: Con-

trollable variational autoencoder. In International Conference on Machine

learning, 2020.

[224] Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-

Kirkpatrick. Lagging inference networks and posterior collapse in

variational autoencoders. In International Conference on Learning Repre-

sentations, 2019.

263



[225] Adji B. Dieng, Yoon Kim, Alexander M. Rush, and David M. Blei. Avoid-

ing latent variable collapse with generative skip models. In International

Conference on Artificial Intelligence and Statistics, 2020.

[226] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal

Jozefowicz, and Samy Bengio. Generating sentences from a continuous

space. In 20th SIGNLL Conference on Computational Natural Language

Learning, 2016.

[227] Giorgos Tziafas and Hamidreza Kasaei. Few-shot visual grounding for

natural human-robot interaction. In 2021 IEEE International Conference

on Autonomous Robot Systems and Competitions (ICARSC), pages 50–55.

IEEE, 2021.

[228] Mohit Shridhar and David Hsu. Interactive visual grounding of refer-

ring expressions for human-robot interaction. In Proceedings of Robotics:

Science and Systems, 2018.

[229] Pingping Huang, Jianhui Huang, Yuqing Guo, Min Qiao, and Yong Zhu.

Multi-grained attention with object-level grounding for visual question

answering. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 3595–3600, Florence, Italy, July 2019.

Association for Computational Linguistics.

[230] Aisha Urooj, Hilde Kuehne, Kevin Duarte, Chuang Gan, Niels Lobo, and

Mubarak Shah. Found a reason for me? weakly-supervised grounded vi-

sual question answering using capsules. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 8465–8474, June 2021.

264



[231] Gunnar A. Sigurdsson, Jean-Baptiste Alayrac, Aida Nematzadeh, Lucas

Smaira, Mateusz Malinowski, João Carreira, Phil Blunsom, and Andrew

Zisserman. Visual grounding in video for unsupervised word trans-

lation. In IEEE Conference on Computer Vision and Pattern Recognition,

2020.

[232] Jiajun Deng, Zhengyuan Yang, Tianlang Chen, Wengang Zhou, and

Houqiang Li. Transvg: End-to-end visual grounding with transformers.

In IEEE International Conference on Computer Vision, 2021.

[233] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[234] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu:

a method for automatic evaluation of machine translation. In Annual

Meeting of the Association for Computational Linguistics, pages 311–318,

2002.

[235] Alon Lavie and Michael J Denkowski. The meteor metric for automatic

evaluation of machine translation. Machine translation, 23(2):105–115,

2009.

[236] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider:

Consensus-based image description evaluation. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 4566–4575, 2015.

[237] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould.

Spice: Semantic propositional image caption evaluation. In European

Conference on Computer Vision, pages 382–398. Springer, 2016.

265



[238] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.

Aggregated residual transformations for deep neural networks. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 1492–1500,

2017.

[239] Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher, and Caiming

Xiong. End-to-end dense video captioning with masked transformer.

In IEEE Conference on Computer Vision and Pattern Recognition, pages

8739–8748, 2018.

[240] Diederik P. Kingma and Max Welling. An introduction to variational

autoencoders. In Foundations and Trends in Machine Learning, 2019.

[241] Kihyuk Sohn, Xinchen Yan, and Honglak Lee. Learning structured

output representation using deep conditional generative models. In

Neural Information Processing Systems, 2015.

[242] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural

machine translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473, 2014.

[243] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective ap-

proaches to attention-based neural machine translation. In Conference

on Empirical Methods in Natural Language Processing, pages 1412–1421,

Lisbon, Portugal, September 2015. Association for Computational Lin-

guistics.

[244] Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another

266



way to carve up the variational evidence lower bound. In Workshop in

Advances in Approximate Bayesian Inference, NIPS, 2016.

[245] I. Higgins, Loïc Matthey, A. Pal, C. Burgess, Xavier Glorot, M. Botvinick,

S. Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual

concepts with a constrained variational framework. In International

Conference on Learning Representations, 2017.

[246] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization

with gumbel-softmax. In International Conference on Learning Representa-

tions, 2017.

[247] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete

distribution: A continuous relaxation of discrete random variables. In

International Conference on Learning Representations, 2017.

[248] Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes, Juan C.

Caicedo, Julia Hockenmaier, and Svetlana Lazebnik. Flickr30k enti-

ties: Collecting region-to-phrase correspondences for richer image-to-

sentence models. IJCV, 123(1):74–93, 2017.

[249] Wei Wang, Junyu Gao, and Changsheng Xu. Weakly-supervised video

object grounding via stable context learning. In ACM International

Conference on Multimedia, New York, NY, USA, 2021. Association for

Computing Machinery.

[250] Yiwu Zhong, Liwei Wang, Jianshu Chen, Dong Yu, and Yin Li. Compre-

hensive image captioning via scene graph decomposition. In European

Conference on Computer Vision, 2020.

267



[251] Xun Yang, Xueliang liu, Meng Jian, Xinjian Gao, and Meng Wang.

Weakly-supervised video object grounding by exploring spatio-

temporal contexts. In ACM International Conference on Multimedia, New

York, NY, USA, 2020. Association for Computing Machinery.

[252] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101:

A dataset of 101 human actions classes from videos in the wild. CoRR,

abs/1212.0402, 2012.

[253] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Car-

los Niebles. ActivityNet: A large-scale video benchmark for human

activity understanding. In IEEE Conference on Computer Vision and Pattern

Recognition, 2015.

[254] Chunhui Gu, Chen Sun, David A. Ross, Carl Vondrick, Caroline Panto-

faru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Su-

sanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jitendra Malik.

AVA: A video dataset of spatio-temporally localized atomic visual ac-

tions. In IEEE Conference on Computer Vision and Pattern Recognition,

2018.

[255] Joshua Gleason, Rajeev Ranjan, Steven Schwarcz, Carlos D. Castillo,

Jun Cheng Chen, and Rama Chellappa. A proposal-based solution to

spatio-temporal action detection in untrimmed videos. In IEEE Winter

Conference on Applications of Computer Vision, 2019.

[256] Mamshad Nayeem Rizve, Ugur Demir, Praveen Tirupattur,

Aayush Jung Rana, Kevin Duarte, Ishan Dave, Yogesh Singh

268



Rawat, and Mubarak Shah. Gabriella: An online system for real-time

activity detection in untrimmed security videos. In IEEE International

Conference on Pattern Recognition, 2020.

[257] Yasaman S. Sefidgar, Arash Vahdat, Stephen Se, and Greg Mori. Discrim-

inative key-component models for interaction detection and recognition.

Computer Vision and Image Understanding, 135, 2015.

[258] Yuri A. Ivanov and Aaron F. Bobick. Recognition of visual activities and

interactions by stochastic parsing. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22, 2000.

[259] Namrata Vaswani, Amit Roy Chowdhury, and Rama Chellappa. Activ-

ity recognition using the dynamics of the configuration of interacting

objects. In IEEE Conference on Computer Vision and Pattern Recognition,

volume 2, 2003.

[260] Chris Stauffer and W. Eric L. Grimson. Learning patterns of activity us-

ing real-time tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22, 2000.

[261] Yingying Zhu, Nandita M. Nayak, and Amit K. Roy-Chowdhury.

Context-aware activity modeling using hierarchical conditional ran-

dom fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,

37, 2015.

[262] Mohamed R. Amer and Sinisa Todorovic. Sum-product networks for

modeling activities with stochastic structure. In IEEE Conference on

Computer Vision and Pattern Recognition, 2012.

269



[263] M. Jain, J. C. van Gemert, H. Jegou, P. Bouthemy, and C. G. M. Snoek.

Tubelets: Unsupervised action proposals from spatiotemporal super-

voxels. International Journal of Computer Vision, 2017.

[264] Joshua Gleason, Carlos D. Castillo, and Rama Chellappa. Real-time de-

tection of activities in untrimmed videos. In IEEE/CVF Winter Conference

on Applications of Computer Vision (WACV) Workshops, March 2020.

[265] Wenhe Liu, Guoliang Kang, Po Yao Huang, Xiaojun Chang, Lijun Yu,

Yijun Qian, Junwei Liang, Liangke Gui, Jing Wen, Peng Chen, and

Alexander G. Hauptmann. Argus: Efficient activity detection system

for extended video analysis. In IEEE Winter Conference on Applications of

Computer Vision Workshops, 2020.

[266] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Russell, and

J. Weber. Automatic symbolic traffic scene analysis using belief networks.

In Proceedings of the National Conference on Artificial Intelligence, volume 2,

1994.

[267] Darnell J. Moore, Irfan A. Essa, and Monson H. Hayes. Exploiting

human actions and object context for recognition tasks. In IEEE Interna-

tional Conference on Computer Vision, volume 1, 1999.

[268] Nandita M. Nayak, Yingying Zhu, and Amit K. Roy Chowdhury. Hier-

archical graphical models for simultaneous tracking and recognition in

wide-area scenes. IEEE Transactions on Image Processing, 24, 2015.

[269] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.

270



Simple online and realtime tracking. In IEEE International Conference on

Image Processing, pages 3464–3468, 2016.

[270] Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of

data by simplified least squares procedures. Anal Chem, 36(8):1627–1639,

1964.

[271] Actev 2021 sdl evaluation plan. https://actev.nist.gov/pub/

Phase3_ActEV_2021_SDL_EvaluationPlan_20210803.pdf.

[272] Lijun Yu, Yijun Qian, Wenhe Liu, and Alexander G. Hauptmann. CMU

informedia at TRECVID 2020: Activity detection with dense spatio-

temporal proposals. In TREC Video Retrieval Evaluation, TRECVID, 2020,

2020.

[273] Zhongdao Wang, Liang Zheng, Yixuan Liu, and Shengjin Wang. To-

wards real-time multi-object tracking. CoRR, 2019.

[274] Zhaoyang Liu, Limin Wang, Wayne Wu, Chen Qian, and Tong Lu. Tam:

Temporal adaptive module for video recognition. In IEEE International

Conference on Computer Vision, pages 13708–13718, October 2021.

[275] Weiyao Wang, Matt Feiszli, Heng Wang, and Du Tran. Unidentified

video objects: A benchmark for dense, open-world segmentation. In

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 10776–10785, 2021.

[276] Cristina González, Nicolás Ayobi, Isabela Hernández, José Hernández,

Jordi Pont-Tuset, and Pablo Arbeláez. Panoptic narrative grounding. In

271

https://actev.nist.gov/pub/Phase3_ActEV_2021_SDL_EvaluationPlan_20210803.pdf
https://actev.nist.gov/pub/Phase3_ActEV_2021_SDL_EvaluationPlan_20210803.pdf


Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 1364–1373, 2021.

[277] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-free

3d object detection via transformers. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 2949–2958, 2021.

[278] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel

Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,

Jack Clark, et al. Learning transferable visual models from natural

language supervision. In International Conference on Machine Learning,

pages 8748–8763. PMLR, 2021.

[279] Ishan Dave, Zacchaeus Scheffer, Akash Kumar, Sarah Shiraz, Yo-

gesh Singh Rawat, and Mubarak Shah. Gabriellav2: Towards better

generalization in surveillance videos for action detection. In Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision,

pages 122–132, 2022.

[280] Mehran Khodabandeh, Arash Vahdat, Mani Ranjbar, and William G

Macready. A robust learning approach to domain adaptive object detec-

tion. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 480–490, 2019.

[281] Ankit Singh, Omprakash Chakraborty, Ashutosh Varshney, Rameswar

Panda, Rogerio Feris, Kate Saenko, and Abir Das. Semi-supervised

action recognition with temporal contrastive learning. In Proceedings

272



of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 10389–10399, 2021.

273



Vita

Effrosyni Mavroudi received her Diploma

degree in Electrical and Computer Engineer-

ing from the National Technical University

of Athens (NTUA) in 2015. Next, she joined

the Biomedical Engineering PhD program at

Johns Hopkins University in 2015. She is a

former intern with Google (Summer 2020)

and Facebook Reality Labs (Summer 2021).

Her research interests lie in the broad areas of computer vision and machine

learning, with a focus on deep learning for video understanding. She is excited

to be working at Meta AI (FAIR) as a research scientist after completing her

PhD.

274


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Video Understanding Tasks
	Related Work
	Video Representations
	Task-specific Video Understanding Frameworks

	Challenges
	Thesis Outline and Contributions

	Graph-based Representation Learning for Region-based Activity Detection in Videos
	Motivation and Overview
	Related Work
	Modeling Human-Object Interaction and Semantic Interaction Cues
	Graph-based Representation Learning for Video Understanding

	Graph-based Actor and Object Representation Learning
	Modeling Interactions with Heterogeneous Graphs
	VS-ST-MPNN: Representation Learning on  Visual-Symbolic Spatio-Temporal Graphs
	Visual Context Module
	Semantic Context Module


	VS-ST-MPNN for Region-based Activity Recognition
	VS-ST-MPNN for Sub-activity and Object Affordance Detection
	Sub-activity and Object Affordance Detection Network
	Joint Training of the VS-ST-MPNN and Recognition Networks

	VS-ST-MPNN for Temporal Activity Detection
	Activity Detection Network
	Training Objective


	Experimental Evaluation
	Sub-activity and Object Affordance Detection
	CAD-120 Dataset
	Evaluation Metrics
	Implementation Details
	Comparison of Models
	Comparison with the State of the Art
	Ablation Studies
	Qualitative Results

	Temporal Activity Detection
	Charades Dataset
	Evaluation Metric
	Implementation Details
	Comparison of Models
	Comparison with the State of the Art
	Ablation Studies
	Qualitative Results


	Conclusion

	Discriminative and Conditional Generative Region-based Models for Language-Driven Object Grounding in Videos
	Problem Formulation
	Related Work
	Fully-supervised Grounded Description and Object Grounding in Videos
	Weakly-Supervised Grounded Visual Description
	Weakly-Supervised Visual Object Grounding
	Joint Vision-Language Representation Learning
	Modeling Sequential Data with Variational Autoencoders

	Fully-Supervised Generation and Grounding of Visual Descriptions with Discriminative Models
	Review of the GVD Attention-based Model
	AO-GVD: Grounding with Contextual Region Representations
	Inference
	Training Objective
	Experiments
	ActivityNet Entities Dataset
	Evaluation Metrics
	Implementation Details
	Experimental Results
	Qualitative Results

	Conclusion

	Weakly-Supervised Generation and Grounding of Visual Descriptions with Conditional Generative Models
	GVD-CVAE: Attention-based Conditional Variational Autoencoder
	Visual Encoder
	Language Decoder
	Prior Word-To-Region Alignment Distribution
	Variational Approximate Posterior Distribution
	Approximate Inference
	Training

	GVD-MCVAE: Sequential Grounding
	Experimental Evaluation
	Datasets and Implementation Details
	Comparison of Models
	Comparison with the State of the Art
	Ablation Studies
	Qualitative Results

	Conclusion


	Actor-Centric Deep Methods for Real-Time Activity Detection in Extended Videos
	Motivation and Overview
	Related Work
	Actor-Centric Activity Detection
	Actor-Centric Tubelets of Interest
	Actor-Centric Activity Detection on Tubelet

	Experiments
	Datasets
	Metrics
	Implementation Details
	Experimental Results

	Conclusion

	Conclusion and Future Work
	Bibliography
	Vita

