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Abstract

In this article, I will discuss some recent results related to the minimal log discrepancies in dimension two and
dimension three based on [HLL22] and [HL20]. I will also discuss some of their applications in birational
geometry.
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Chapter 1

Introduction and Main Results

1.1 Background

The classification of algebraic varieties has been the key task for algebraic geometers. One of the most
important progresses, the minimal model program, was proposed and initially tackled by Mori in 1980s,
and it was later subsequently developed by many people. The minimal model program aims to classify
algebraic varieties up to birational equivalence in higher dimensions, and it provides many powerful tools for
constructing and studying moduli spaces. In recent years, the minimal model program played a key role in

the development of the K-stability theory.

In dimension no less than 3, singularities (such as terminal, Kawamata log terminal (klt), canonical, log
canonical (Ic) singularities) inevitably and naturally appear in MMP, the study of these singularities and the
development of MMP are deeply intertwined. Moreover, in the development of MMP, the log pair (pair for
short), which contains a variety and a divisor on this variety satisfying certain properties, appears naturally.

Now log pairs are the main objects that birational geometers work with.

The minimal log discrepancy, initially proposed by Shokurov, is one of the most basic but important

invariants in birational geometry. One of the main concerns in MMP is the termination problem, that



is, whether the minimal model program eventually terminates. Shokurov [Sho04a] proved that his ACC
conjecture for mlds [Sho88, Problem 5] together with the lower-semicontinuity conjecture for mlds [Amb99,
Conjecture 0.2] imply the termination of all minimal model programs. Minimal log discrepancies also play

an important role in the boundedness problem of certain varieties.

1.2 Main Results

In this paper, we focus on the ACC conjecture for mlds, which is initially proposed by Shokurov:

Conjecture 1.2.1 (ACC conjecture for MLDs). Let n be a positive integer and T' C [0, 1] a set satisfying the

descending chain condition (DCC). Then the set

Mld(n,T) := {mld(X > 2,B) | (X 2,B)isle, dimX =n,B €T}

satisfies the ascending chain condition (ACC).

This conjecture is only known in full generality for surfaces [Ale93] (see [Sho94b, HL20] for other
proofs), toric pairs [Amb06], and exceptional singularities [HLS19]. Based on [HLL22], we will discuss
the recent progresses on the ACC conjecture for mlds and some related conjectures on the minimal log

discrepancies.
The minimal log discrepancy (mld) of a pair (X, B), denoted by mld(X, B), is defined to be the

infimum of log discrepancies of all prime divisors that are exceptional over X (for a specific dfinition, see

Definition 2.1.4).

Theorem 1.2.2. Let T' C [0, 1] be a DCC set. Then there exists a positive real number § depending only on
I, such that

{mld(X, B) | dim X = 3,B € T} N[l — 8, +00)



satisfies the ACC, where B € I" means that the coefficients of B belong to the set T'.

Theorem 1.2.2 solves the conjecture for terminal threefold pairs, and it generalizes all the recent progress
towards the ACC conjecture for mlds for threefolds [Kaw15b, Theorem 1.3], [Nak16, Corollary 1.5], [Jia21,
Theorem 1.3]. Indeed, we prove a slightly stronger version of Theorem 1.2.2 for germs (X > x, B) instead

of pairs (X, B), see Theorem 3.6.1.

Although the MMP and the abundance conjecture are settled in dimension 3, and we even have a
complete classification of terminal threefold singularities including flips as well as divisorial contractions (cf.
[Mor85, Rei87, KM92, Kaw01, Kaw02, Kaw03, Kaw05, Kaw12, Yam18]), the ACC conjecture for mlds for
terminal threefold pairs remains open. Thus Theorem 1.2.2 strengthens our grasp on terminal threefolds. Note
that many important results in birational geometry were first observed and proved for terminal threefolds
before generalizing to other larger classes of singularities and to higher dimensions, such as the existence of
flips [Mor88, Sho92]. It is our hope that Theorem 1.2.2 will shed light on the study of algebraic varieties in

higher dimensions.
1.2.1 Divisors computing the minimal log discrepancies

The following conjecture (see also Conjecture 6.0.2 and Question 6.0.3) is a generalization of a conjecture

([MN18, Conjecture 1.1]) proposed by Nakamura:

Conjecture 1.2.3 ([HL20, Introduction]). Let d be a positive integer and T' C [0, 1] a DCC set. Then there

exists a positive real number | depending only on d and T satisfying the following.

Assume that (X > xz, B) is an lc pair of dimension d such that X is Q-Gorenstein and B € I'. Then there

exists a prime divisor E over X > x, such that a(E, X, B) = mld(X > z, B) and a(E, X,0) <.

The dimension two case is completely solved in [HL.20] (whose proof will be given in the appendix):



Theorem 1.2.4. Ler T C [0, 1] be a set which satisfies the DCC. Then there exists an integer N depending
only on I satisfying the following.
Let (X > x, B) be an lc surface germ such that B € T. Then there exists a prime divisor E over X > x

such that a(E, X, B) = mld(X 3z, B) and a(E, X,0) < N.

For terminal threefold germs, the above conjecture is also confirmed (in fact a slightly stronger version is

given). Moreover, the proof of Theorem 1.2.2 is intertwined with the proof of Theorem 1.2.5.

Theorem 1.2.5. Let T' C [0,1] be a DCC set. Then there exists a positive integer | depending only on T
satisfying the following. Assume that (X > x, B) is a threefold pair such that X is terminal, B € T, and
mld(X > z, B) > 1. Then there exists a prime divisor E over X > x, such that a(E, X, B) = mld(X >

x,B) and a(E, X,0) < L.

Theorem 1.2.5 generalizes a result of Kawakita [Kaw21, Theorem 1.3(ii)], which requires X to be smooth
and I to be a finite set. When X > x is a fixed germ and I’ is a finite set, the existence of such a uniform
bound [ was predicted by Nakamura [MN18, Conjecture 1.1], and it is equivalent to the ACC conjecture for

mlds for fixed germs (cf. [Kaw21, Theorem 4.6]).

Theorem 1.2.2 has many applications towards other topics on threefolds, both for local singularities and

global algebraic structures. We list a few of them in the rest part of the introduction.

1.2.2 Reid’s general elephant for pairs and Shokurov’s boundedness of comple-
ments conjecture

For a terminal threefold singularity z € X, we say that a Weil divisor H is an elephant of x € X if

H €| — Kx|and (X, H) is canonical near z. By [Rei87, 6.4(B)], elephant exists for any terminal threefold

singularity. As an application of Theorem 1.2.2, we generalize Reid’s general elephant theorem to the category

of pairs.



Theorem 1.2.6. LetT' C [0, 1] N Q be a finite set. Then there exists a positive integer N depending only on
I' satisfying the following.

Let (X 3 x, B) be a threefold pair such that X is terminal, B € T, and (X, B) is canonical near x. Then
on a neighborhood of x, there exists an element G € | — N(Kx + B)| such that (X, B + % G) is canonical

near x.

We remark that in Theorem 1.2.6, if x € X is a threefold terminal singularity that is not smooth, then we
can choose G € |— N (Kx + B)| such that (X, B+ + G) is canonical near z and mld(X > z, B+ +G) =1
(see Theorem 4.2.4).

It is worth mentioning that Reid’s general elephant theorem is a special case of Theorem 1.2.6 when
I' = {0} and z is a closed point, where we can take N = 1. We refer the reader to Kolldr, Mori, Prohokorv,
Kawakita’s previous works [KM92, Kaw02, MP08a, MP09, MP21] and reference therein for other results on
general elephant for terminal threefolds.

Theorem 1.2.6 is closely related to Theorem 1.2.7, which gives an affirmative answer to Shokurov’s
conjecture on the boundedness of (e, V)-complements ((CH21, Conjecture 1.1]; see [Sho04b, Conjecture],
[Bir04, Conjectures 1.3, 1.4] for some embryonic forms) for terminal threefold germs. We refer the reader to

Subsection 2.1.2 for basic notation on complements.
Theorem 1.2.7. Let € > 1 be a real number and T C [0, 1] a DCC set. Then there exists a positive integer N
depending only on € and T satisfying the following.

Assume that (X 3 x, B) is a threefold pair, such that X is terminal, B € T, and mld(X > z,B) > e

Then there exists an N-complement (X > z, BT) of (X > x, B) such that mld(X > z, BT) > e.

We refer the reader to Theorem 4.3.7 for a more detailed version of Theorem 1.2.7.

We remark that the boundedness of (0, N)-complements proved in [Birl9, HLS19] plays an important



role in several breakthroughs in birational geometry including the proof of Birkar-Borisov-Alexeev-Borisov
Theorem and the openness of K-semistability in families of log Fano pairs (cf. [Bir21, Xu20]), while the
conjecture on the boundedness of (e, NV )-complements was only known for surfaces ([Bir04, Main Theorem

1.6], [CH21, Theorem 1.6]) before.

A special case of Theorem 1.2.7 gives an affirmative answer on Shokurov’s index conjecture (cf. [CH21,

Conjecture 7.3], [Kaw15a, Question 5.2]) for terminal threefolds.

Theorem 1.2.8. Let € > 1 be a real number and T' C [0,1] N Q a DCC set. Then there exists a positive
integer I depending only on € and T satisfying the following.
Let (X > x, B) be a threefold pair such that X is terminal, B € T', and mld(X > z,B) = e. Then

I(Kx + B) is Cartier near z.

Kawakita showed that for any canonical threefold singularity 2z € X with mld(X > z) = 1, IKx
is Cartier for some I < 6 [Kawl5a, Theorem 1.1], hence [Kaw15a, Theorem 1.1] can be viewed as a
complementary result to Theorem 1.2.8 when € = 1. We refer the reader to Theorem 4.1.7 for an explicit

bound of I when I is a finite set.

1.2.3 Other Applications

As an application of our main theorems, we show the ACC for a-lc thresholds (a generalization of Ic thresholds,

see Definition 2.1.5) for terminal threefolds when a > 1:

Theorem 1.2.9 (ACC for a-Ic thresholds for terminal threefolds). Let a > 1 be a real number, and I' C

[0,1], IV C [0, 4+00) two DCC sets. Then the set of a-lc thresholds,

{a-1ct(X > 2, B; D) | dim X = 3, X is terminal, B € ', D € "},



satisfies the ACC.

Theorem 1.2.9 implies the ACC for canonical thresholds in dimension 3:

Theorem 1.2.10. LetT" C [0, 1] and T” C [0, +00) be two DCC sets. Then the set
CT(3,1,1") := {ct(X,B; D) | dim X =3,Be I, D e I'}
satisfies the ACC.

It is worth to mention that the canonical thresholds in dimension 3 is deeply related to Sarkisov links in
dimension 3 (cf. [Cor95, Prol8]). Moreover, we have a precise description of the accumulation points of

CT(3, {0}, Zzl)I

Theorem 1.2.11. The set of accumulation points of CT(3,{0}, Z>1) is {0} U{L | m € Z>»}.

Theorem 1.2.11 plays a crucial role in the proof of Theorem 1.2.2. We refer the reader to Theorem 3.5.3
for a more detailed version of Theorem 1.2.11.

[Stell, Theorem 1.7] proved Theorem 1.2.10 when I = {0}, I = Z>1, and X is smooth, and [Chel9,
Theorem 1.2] proved Theorem 1.2.10 when I' = {0} and IV = Z>4. [Chel9, Theorem 1.3] proved that % is
the largest accumulation point of CT(3, {0}, Z>1). We refer the reader to [Shr06, Pro08] for other related

results.

Theorem 1.2.12 is another application of our main theorems:

Theorem 1.2.12. Let T’ C [0, 4+00) be a DCC set. Then the set of non-canonical kit threefold log Calabi-Yau

pairs (X, B) with B € T forms a bounded family modulo flops.

Theorem 1.2.12 is a generalization of [BDS20, Theorem 1.4] for threefolds. Jiang proved Theorem 1.2.12

for the case when I" = {0} [Jia21, Theorem 1.6].



We also remark that the assumption “non-canonical klt” is natural and necessary as rationally connected
Calabi-Yau varieties are not canonical, and the set of (X :=Y x Pl F + F5) is not birationally bounded,

where Y takes all K3 surfaces and Fy, F, are two fibers of X — P!,



Chapter 2

Preliminaries and Structure of the
Proofs

2.1 Preliminaries

We adopt the standard notation and definitions in [KM98, BCHM10] and will freely use them. All varieties

are assumed to be normal quasi-projective and all birational morphisms are assumed to be projective. We

2mi
n

denote by &, the n-th root of unity e ™=, and denote by Clx1, ..., z4] (tesp. C{z1, ..., x4}, C[[z1, ..., z4]])

the ring of power series (resp. analytic power series, formal power series) with the coordinates x1, ..., 4.
Let K = Q or R be either the rational number field QQ or the real number field R. Let X be a normal
variety. A K-divisor is a finite K-linear combination D = > d; D; of prime Weil divisors D;, and d; denotes
the coefficient of D; in D. A K-Cartier divisor is a K-linear combination of Cartier divisors.
We use ~ to denote the K-linear equivalence between K-divisors. For a projective morphism X — 7,

we use ~, 7 to denote the relative K-linear equivalence.



2.1.1 Pairs and singularities

Definition 2.1.1. A contraction is a projective morphism f : Y — X such that f,Oy = Ox. In particular,

f is surjective and has connected fibers.

Definition 2.1.2. Let f : Y — X be a birational morphism, and Exc(f) the exceptional locus of f. We say

that f is a divisorial contraction (of a prime divisor E) if Exc(f) = E and —FE is f-ample.

Definition 2.1.3 (Pairs, cf. [CH21, Definition 3.2]). A pair (X/Z > z, B) consists of a contraction 7 : X —
Z, a (not necessarily closed) point z € Z, and an R-divisor B > 0 on X, such that K'x 4+ B is R-Cartier over
a neighborhood of z and dim z < dim X. If  is the identity map and z = x, then we may use (X > z, B)
instead of (X/Z 5 z, B). In addition, if B = 0, then we use X > z instead of (X > z,0). When we
consider a pair (X > z, Zl b;B;), where B; are distinct prime divisors and b; > 0, we always assume that
x € Supp B; for each i.

If (X > z, B) is a pair for any codimension > 1 point z € X, then we call (X, B) a pair. A pair

(X 3z, B) is called a germ if x is a closed point. We say « € X is a singularity if X > x is a germ.

Definition 2.1.4 (Singularities of pairs). Let (X/Z > z, B) be a pair associated with the contraction
m: X — Z, and let E be a prime divisor over X such that z € m(centerx F). Let f : Y — X be a log
resolution of (X, B) such that centery F is a divisor, and suppose that Ky + By = f*(Kx + B) over a
neighborhood of z. We define a(F, X, B) := 1 — multg By to be the log discrepancy of E with respect to
(X, B).

For any prime divisor E over X, we say that F is over X/Z > z if m(centerx E) = Zz. If 7 is the identity

map and z = z, then we say that F' is over X > x. We define

mld(X/Z > z,B) := inf{a(E, X,B) | Eisover Z > z}

10



to be the minimal log discrepancy (mld) of (X/Z > z, B).

Let € be a non-negative real number. We say that (X/Z > z, B) is Ic (resp. Klt, e-lc,e-klt) if mld(X/Z >
z,B) > 0 (resp. > 0, > €, > €). We say that (X, B) is lc (resp. Klt, e-lc, e-klt) if (X > z, B) is Ic (resp. klt,
e-lc, e-klt) for any codimension > 1 point x € X.

We say that (X, B) is canonical (resp. terminal, plt) if (X > z, B) is 1-lc (resp. 1-klt, klt) for any
codimension > 2 pointz € X.

For any (not necessarily closed) point € X, we say that (X, B) is lc (resp. klt, e-Ic, e-klt, canonical,
terminal) near z if (X, B) is Ic (resp. klt, e-Ic, e-klt, canonical, terminal) in a neighborhood of z. If X is
(resp. Kklt, e-lc, e-klt, canonical, terminal) near a closed point x, then we say that z € X is an Ic (resp. klt,

e-Ic, e-klt, canonical, terminal) singularity. We remark that if (X > z, B) is Ic, then (X, B) is Ic near z.

Definition 2.1.5. Let a be a non-negative real number, (X > z, B) (resp. (X, B)) a pair, and D > 0 an

R-Cartier R-divisor on .X. We define

a-let(X 3z, B; D) := sup{—o0,t |t > 0,(X >z, B+ tD)is a-lc}

(resp. a-1ct(X, B; D) := sup{—o0,t |t > 0, (X, B + tD) is a-lc})

to be the a-lc threshold of D with respect to (X > x, B) (resp. (X, B)). We define

ct(X 3 x,B; D) :=1-1ct(X > z,B; D)

(resp. ct(X,B; D) :=sup{—o0,t |t >0, (X, B+ tD) is canonical })

to be the canonical threshold of D with respect to (X 3> x, B) (resp. (X, B)). We define lct(X >
x,B; D) := 0-1ct(X > «x, B; D) (resp. lct(X, B; D) := 0-1ct(X, B; D)) to be the Ic threshold of D with

respect to (X > z, B) (resp. (X, B)).

11



Lemma 2.1.6. Let (X > z, B) be a pair such that X is terminal and dim x = dim X — 2. Let E; be the

exceptional divisor obtained by blowing up x € X. If mult, B < 1, then

mld(X 3 z,B) =a(F1,X,B) =2 —mult, B > 1.

Moreover, mld(X > x, B) > 1 if and only if mult, B < 1.

Proof. Since X is terminal, by [KM98, Corollary 5.18], X is smooth in codimension 2. Since dimz =
dim X — 2, possibly shrinking X to a neighborhood of z, we may assume that X is smooth. By [KM98,

Lemma 2.45], there exists a sequence of blow-ups
X, I ox, o I x By oy x
such that forany 1 <13 < n,
e f;is a blow-up of X;_; ata point z;_; of codimension at least 2 with the exceptional divisor F;,

e X, is smooth, z;_; := centery, , E,, and

e o(E,,X,B) =mld(X >z, B).

In particular, z;_; dominates x, o = x, and dimz;_; =dim X —2for1 < ¢ <n.Forany 0 <i < n, we

let B; be the strict transform of B on X;. Forany 1 < i < n, we have

fi*Bifl = Bl + (multxiﬂ Bifl)El

Let U;_; be an open neighborhood of ;1 such that U; _; and z;_

v,_, are both smooth. Then f; ! (U;_;)N
E; is covered by smooth rational curves that are contracted by f; and whose intersection numbers with F; are

all equal to —1 (cf. [Har77, §2, Theorem 8.24(c)]), from which we may choose a general curve and denote it

12



by C;, such that C; ¢ Supp B; and C; N Z; # () when i # n. Thus
0 = fi*Bifl . Cz = (Bz + (multmi_l Bzfl)El) . Cz = Bl . 01 — multzi_l Bifl,

which implies that mult,, , B,y = B; - C;. Since x; dominates z;_; and dimz; = dim X — 2 for
1 <i<n-—1, wemay choose C; sothat C; ¢ Z;. Forany 1 <i <n —1,let C; be the birational transform

of Cj on X;41. We have C; ¢ E;,. By the projection formula,

Bi,1 = B,L . Cz = f‘xilei . C_Yl Z (multml Bi>Ei+1 . C_Yl Z multmi Bi-

mult,, ;

1
By induction on 7, we have 1 > mult, B > mult,, B; forany 0 <17 < n — 1, thus

a(E1,X,B) =2 —mult, B<2-—mult,, , By_1=a(E,,X,_1,Bn-1). (2.1.1)
Moreover, since

KXi + B; = fi*(KX'i—l + Bi—l) + (1 - multﬁi—lBi—l)Ei > fi*(KX'i—l + Bi—l)

for 1 <4 < n, by induction, we have Kx,_, + Bp—1 > (fi0---0 fr,_1)*(Kx + B), hence

n—1
a(En,Xn—1,Bn-1) <a(E,,X,B) =mld(X 3 z,B) < a(F1,X,B). 2.1.2)
Lemma 2.1.6 now follows from Inequalities (2.1.1) and (2.1.2). O

2.1.2 Complements

Definition 2.1.7. Let n be a positive integer, € a non-negative real number, I'y C (0, 1] a finite set, and
(X/Z > 2,B) and (X/Z > z, B*) two pairs. We say that (X/Z > z, BT) is an (¢, R)-complement of

(X/Z 5 =z, B)if
e (X/Z >z B")iselc,

13



e BY > B, and
e Kx + BT ~p 0 over a neighborhood of z.
We say that (X/Z > z, BY) is an (€, n)-complement of (X/Z > z, B) if
e (X/Z > 2z, B")iselc,
e nB* > |(n+1){B}| +n|B]J,and

e n(Kx + B1) ~ 0 over a neighborhood of z.

A (0, R)-complement is also called an R-complement, and a (0, n)-complement is also called an n-complement.
We say that (X/Z > z, B) is (e, R)-complementary (resp. (e, n)-complementary, R-complementary, n-
complementary) if (X/Z > z, B) has an (¢, R)-complement (resp. (€, n)-complement, R-complement,

n-complement).

We say that (X/Z > z, BT) is a monotonic (¢,n)-complement of (X/Z > z,B)if (X/Z > z, BT) is an

(€,n)-complement of (X/Z > z, B) and Bt > B.

We say that (X/Z > z, B") is an (n, I'g)-decomposable R-complement of (X /Z > z, B) if there exist a

positive integer k, ay, . . ., ax € [y, and Q-divisors By, ..., B,j on X, such that
e >F ai=1and ¥ ;B = BY,
e (X/Z > z,B") is an R-complement of (X/Z > z, B), and
e (X/Z > z, B}) is an n-complement of itself for each .

Theorem 2.1.8 ([HLS 19, Theorem 1.10]). Let d be a positive integer and T' C [0, 1] a DCC set. Then there

exists a positive integer n and a finite set T'y C (0, 1] depending only on d and T and satisfy the following.

14



Assume that (X/Z > z, B) is a pair of dimension d and B € T, such that X is of Fano type over Z
and (X/Z > z, B) is R-complementary. Then (X/Z > z, B) has an (n,To)-decomposable R-complement.

Moreover; if T C Q, then (X/Z > z, B) has a monotonic n-complement.

2.1.3 Index of canonical threefolds

Definition 2.1.9. Let (X > z, B) be a pair such that B € Q, and (X" > x, B®") the corresponding analytic
pair. The index (resp. analytic index) of (X > z, B) is the minimal positive integer I such that I (K x + B)

is (resp. I(K xsn + B®")) is Cartier near x.

The following lemma indicates that the index of X > z coincides with the analytic index of X > z.

Hence we will not distinguish the index and the analytic index in our paper.

Lemma 2.1.10 ([Kaw88, Lemma 1.10]). Let X be a variety and D a Weil divisor on X. Let X" be the
underlying analytic space of X and D?" the underlying analytic Weil divisor of D on X?". Then D" is

Cartier on X*" if and only if D is Cartier on X.

Theorem 2.1.11 (cf. [Kaw15a, Theorem 1.1]). Let X be a canonical threefold and x € X a (not necessarily

closed) point such that mld(X > x) = 1. Then [ K x is Cartier near x for some positive integer I < 6.

Proof. 1If dimz = 2 then K x is Cartier near z. If dimz = 0, then the theorem follows from [Kaw15a,
Theorem 1.1]. If dimx = 1, then we let f : Y — X be the terminalization of X > x. By [KM98,
Theorem 4.5], Y is smooth over a neighborhood of x. Since Ky = f*Kx, Kx is Cartier near x by the cone

theorem. O

Lemma 2.1.12. Let (X > z, B) be a threefold germ such that mld(X > x,B) > 1. Let D > 0 be an
R-Cartier R-divisor on X and t := c¢t(X 3 x, B; D). Then mld(X > z, B4+tD) = 1 if one of the following

holds:
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1. multg(B +tD) < 1 for any prime divisor S C Supp D,
2. X is Q-factorial terminal near x and x € X is not smooth, and

3. X is Q-Gorenstein, x € X is not smooth, and D is a Q-Cartier prime divisor.

Proof. f mld(X >z, B4+tD) > 1, thent = lct(X > z, B; D). For (1), since mults(B + tD) < 1 for any
prime divisor S C Supp D, there exists a curve C' passing through x, such that mld(X > ne, B 4+ tD) = 0,
where 7¢ is the generic point of C. By [Amb99, Theorem 0.1], mld(X > z,B+tD) < 1+ mld(X >
nc¢, B+ tD) = 1, a contradiction.

For (2) and (3), by (1), we may assume that there exists a QQ-Cartier prime divisor S C Supp D such that
multg(B + tD) = 1. By [Sho92, Appendix, Theorem] and [Mar96, Theorem 0.1], there exists a divisor
E over X > z such that a(E, X,0) = 1 + }, where I is the index of € X. Since multg(B + tD) >

multy S > 1, a(E, X, B+tD) = a(E, X,0)—multg(B+tD) < 1,hence mld(X 3 z, B+tD) =1. O

Theorem 2.1.13. Let (X >z, B := " b;B;) be a threefold germ such that mld(X > z, B) > 1, X is

terminal, and each B; > 0 is a Q-Cartier Weil divisor. Then we have the following:
1. If X > x is smooth, then Y~ | b; < 2.
2. If X > x is not smooth, then y .~ | b; < 1. Moreover, if Y .~ | b; = 1, then mld(X > z,B) = 1.

Proof. If X > x is smooth, then let I be the exceptional divisor of the blowing-up of X at x. Since X 3> x
is smooth, multg B; > 1 for each i. Thus
1<mld(X 5> 2,B) <a(E,X,B)=3-multg B=3-> bmultg B; <3 b,
i=1 i=1

and we get (1).
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If X > x is not smooth, then let I be the index of X > z. By [Sho92, Appendix, Theorem] and [Mar96,
Theorem 0.1], there exists a prime divisor £ over X > x such that a(F, X,0) = 1 + % Moreover, by

[Kaw88, Lemma 5.1], I B; is Cartier near x, and I multg B; > 1 for each i. Thus

1<mld(X 3z,B)<a(E,X,B) =a(F,X,0) —multg B

1 & 1 1&
:1+F—;bimultEBi <145 - Yz;bi,
which implies (2). O

2.1.4 Singular Riemann-Roch formula and Reid basket

Definition 2.1.14. Let X > x be a smooth germ such that dim X = d, and m,, (resp. m3") the maximal ideal

of the local ring O x , (resp. analytic local ring (9‘;(“136). We say that x1,...,x4 € my (resp. 1,...,2q € M)
is a local coordinate system (resp. analytic local coordinate system) of x € X if the image of x4, ..., x4 span
the linear space m,/m2 (resp. m2* /(m2")2). We also call z1, . . ., 74 local coordinates (resp. analytic local

coordinates) of x € X.

Definition 2.1.15 (Cyclic quotient singularities). Let d and n be two positive integers, and a1, . . . , a4 integers.
A cyclic quotient singularity of type +(a1, ..., aq) is the cyclic quotient singularity (o € C%)/p given by the
action

M (xla cee 7xd) — (5;11‘176%212? cee 7£Zd$d)

on C%, where z1, ..., x, are the local coordinates of C? > 0. We may also use (o € C?)/L(ay,...,a4) to

represent the singularity (o € C%)/p, and use (C? 3 0)/1(ay, ..., aq) to represent the germ (C? 2 o) /p.

In particular, we may always assume that (see for example [Fuj74, §1]) the cyclic group action is small, that

is, the action is free in codimension one.
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We remark that a cyclic quotient singularity of type £ (a1, ..., aq) is isolated if and only if gcd(a;, n) = 1

for 1 <4 < d (see [Fuj74, Remark 1]).

By the terminal lemma (cf. [MS84, Corollary 1.4]), if a cyclic quotient threefold singularity x € X is
terminal, then
1
(LI? € X) = (O € (C3)/E(17 _1ab)
for some positive integers b, n such that gcd(b, n) = 1. We say that the terminal (cyclic quotient threefold)

singularity 2 € X is of type 4 (1, —1,b) in this case.

Definition 2.1.16 ([Rei87, Theorem 10.2(2)]). For any integers 1 < u < v and real numbers s, . . . , S,, We

define S0 s; := — 30" s; when v > u + 2, and define 3" s; := 0 when v = u + 1.

Let n be a positive integer and m a real number. We define

(m), =m—|=]n.

Let b, n be two positive integers such that gcd(b,n) = 1. Let x € X be a terminal cyclic quotient
singularity of type £ (1, —1,b) and D a Weil divisor on X, such that Ox (D) = Ox (iKx) for some integer

i near x. We define

=1 & Gh),(n— (b))
12n 2n '

We remark that ¢, (D) is independent of the choices of 7 and b by construction.

Definition-Lemma 2.1.17 ([Rei87, (6.4)]). Let x € X be a terminal threefold singularity. By the classifica-
tion of threefold terminal singularities (cf. [Rei87, (6.1) Theorem], [Mor85, Theorems 12,23,25]), we have
an analytic isomorphism (x € X) = (y € Y)/u for some isolated cDV singularity (y € V) C (o € C%)
and cyclic group action g on o € C*. Moreover, y € Y is defined by an equation (f = 0) C (o € C*) with

analytic local coordinates 1, x2, 3, 24, and there exists 1 < ¢ < 4 such that f/x; is a rational function that
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is invariant under the p-action. Now we consider the 1-parameter deformation Y), of Y, such that Y}, is given
by (f + Az; = 0). Then the deformation Y), is compatible with the action u, and we let X := Y /u for
each A. For a general A € C, the singularities of X are terminal cyclic quotient singularities Q1, ..., Qm

for some positive integer m. We have the following.

1. Q1,...,Q., only rely on z € X and are independent of the choice of A\, and we define the set of

fictitious singularities of x € X tobe I, := {Q1,...,Qm}-

2. For any QQ-Cartier Weil divisor D on X, D is deformed to a Weil divisor Dy on X,. We define

CE(D) = Z;nzl CQj (D)\)
For such a general A, X, is called a Q-smoothing of x € X.

The following theorem indicates that ¢, (D) is well-defined.

Theorem 2.1.18 ([Rei87, Theorem 10.2(1)]). Let x € X be a terminal threefold singularity and D a Q-
Cartier Weil divisor on X. Then c,(D) depends only on the analytic type of © € X and Ox (D) near .

Moreover, if x € X is smooth, then c,(D) = 0.

Theorem 2.1.19 ([Rei87, Theorem 10.2]). Let X be a projective terminal threefold, and D a Q-Cartier Weil

divisor on X. Then

X(Ox (D) =x(Ox) + 1;D(D ~ Kx)@D— Kx) + 15D () + 3 (D).

x is a closed point

Definition 2.1.20 (Reid basket for divisorial contractions). Let f : Y — X be a divisorial contraction of a

prime divisor F' such that Y is a terminal threefold.

For any closed point y € F’, consider a (J-smoothing of y € F' C Y as in Definition-Lemma 2.1.17, and

let I, be the corresponding set of fictitious singularities. For each @, € I, let Y, be the deformed variety on
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which @, € Yq, is a cyclic quotient terminal threefold singularity of type %(1, —1,bq,).and F, C Yg,
the deformed divisor of F' C Y. Let fg, be the smallest non-negative integer such that Fip, ~ fq, Ky,,

near (),,. Possibly replacing bg, with rg, — bg,, we may assume that vg, := (fq, be)TQy < %. The

Reid basket for the divisorial contraction f : Y — X with the exceptional divisor F' is defined as
J:=A{(rq,,vq,) |y € F,Qy € I,,uq, # 0}.
2.1.5 Weighted blow-ups over quotient of complete intersection singularities

Definition 2.1.21. A weight is a vector w € Q< for some positive integer d.

Definition 2.1.22 (Weights of monomials and polynomials). Let d be a positive integer and w = (w1, ..., wq) €
4, a weight. F = Y/ defi o= o4, and
$o ght. For any vector & = (..., aq) € 2, we define x® := z7" ... x5, an

d
w(x®) = Zwiai
i=1
to be the weight of *™ with respect to w. For any analytic power series 0 # h 1= ) ;4 aqx®, we define
>0
w(h) = min{w(x¥) | ae # 0}
to be the weight of h with respect to w. If h = 0, then we define w(h) := +oo0.

Definition 2.1.23. Let h € C{z1,...,24} be an analytic power series and G a group which acts on
C{x1,...,24}. We say that h is semi-invariant with respect to the group action G if for any g € G, @ e C.

If the group action is clear from the context, then we simply say that & is semi-invariant.

Definition 2.1.24. Let (X > z, B := Zle b; B;) be a threefold germ such that X is terminal and B; > 0

are Q-Cartier Weil divisors on X. Let d, n and m < d be positive integers such that
(X9$)2(¢1::¢m20)c(c 90)/ﬁ(ala"'7ad)
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for some semi-invariant irreducible analytic power series @1 . .., ¢, € C{z1,..., x4} such that mult, ¢; > 1
for each 7, here the group action on C? is free outside 0. By [Kaw88, Lemma 5.1], B; can be identified with
((h; =0) C (C*20)/L(a1,...,aq))|x for some non-negative integers ai, . . ., a4 and some semi-invariant
analytic power series h; € C{z1,...,x4} near z € X, and we say that B; is defined by (h; = 0) near x or

B; is locally defined by (h; = 0) for simplicity. We define the set of admissible weights of X > x to be

1 1
{=(wy,...,wq) € *Zio | there exists b € Z such that w; = ba; mod n, 1 < i < d}.
n n
For any admissible weight w = X (w1, ..., wq), we define

m

k
w(X 3 x) Zwl Zw ¢;) — 1, and w(B) ::Zbiw(h
i=1 =1

By construction, w(B) is independent of the choices of b; and B;, as we will explain in the following lemma.

Lemma 2.1.25. Let dy,...,dn,d},...,d,, be real numbers and D1, ..., Dy, D1,..., D, , Q-Cartier

» Y/

Weil divisors such that
> diD; = d;D;.
i=1 i=1

Then Z:il diw(D;) = Zq y diw (D).

Proof. Letr,...,r, € Rbeabasis for the Q-linear space spanned by the real numbers {d1, . .., dm,d;,...,d,/ }.

we may write

’

rj idzvﬂD’La and id;D/ ZTJ Zd/ D/

1 =1 =1

i d;D; =

n

i=1 j=
. , N

for some rational numbers {d; ; }1<i<m,1<j<n and {d; ; }1<i<m’,1<j<n. For each prime divisor D, we have

’

multp(zm: dlDZ) = zn: Ty multp(i dithi) = zn: Tj multD(i d;]D;) = multp (Z d;D;),

i=1 j=1 i=1 j=1 i=1 i=1
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hence multp (3"~ d; ;D;) = mult (™ D) for each j, this implies that for each j, we have

=1 ""1,7
m m’
> dijDi=) di;Dj.
i=1 i=1
Hence
m n m n m' m'
S diw(Di) = > digw(Dy) =Y r; Y dijw(D)) =Y djw(D;)
i=1 j=1 i=1 j=1 i=1 i=1
O
Definition 2.1.26. Let d be a positive integer, p a real number, and w := (w1,...,wq) € @io’ w =
(wh,...,w)) € Qio two weights. If w; > w)} for each 4, then we write w > w’, and if w; = pw) for each 1,

then we write w = pw’.

Definition-Lemma 2.1.27. Under the same settings as in Definition 2.1.24. Let f' : W — (C? >
0)/%(a1,...,aq) be the weighted blow-up at o with the (admissible) weight w := L (wy,...,wq) with
respect to the coordinates x1, . .., xq (cf. [KM92, §10] and [Hay99, §3.2]). The exceptional locus for f”,
denoted by E’, is isomorphic to the cyclic quotient of the weighted projective space P (w1, ..., wq)/n, where

the cyclic group action is given by

n: [.’L’l ot xd]w — [E?lel e 7€'ra7,dwd]w7
and [z : -+ : 24]w denotes the image of (21,...,24) € C?\ {0} under the natural quotient morphism
C?\ {o} = P(wy,...,wy). We remark that if the admissible weight w satisfies w; = ba; mod n for

1 < ¢ < d and some integer b such that gcd(b,n) = 1, then E/ = P(wq, ..., wq) (cf. [Hay99, §3.2]).

Now we have an induced morphism f : Y — X by restricting f’ to Y, which is the strict transform of X
under f'. Wecall f : Y — X the weighted blow-up with weight w at x € X, and E := F'|y the exceptional

divisor of the weighted blow-up f : Y — X with the weight w at x € X (cf. [Hay99, §3.7]). If E is an
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integral scheme, then we also say f extracts a prime divisor.

Remark 2.1.28. The weighted blow-up constructed as above depends on the choice of local coordinates.
However, we will not mention them later in this paper when the local coordinates for a weighted blow-up are

clear from the context.

We will use the following well-known lemma frequently:

Lemma 2.1.29 (cf. [Mor85, the proof of Theorem 2] and [Hay99, §3.9]). Under the same settings as in
Definition 2.1.24. For any admissible weight w of X > x, let E be the exceptional divisor of the corresponding

weighted blow-up f 1Y — X at x (cf. Definition-Lemma 2.1.27). If E is a prime divisor, then

Ky = f*Kx +w(X >z)E, and f*B = By + w(B)E,

where By is the strict transform of B on'Y. In particular, a(E, X, B) = 1+ w(X 3 z) — w(B).

Proof. Let f' : W — Z := (C? 3> 0)/L(ay,...,aq) be the weighted blow-up with the (admissible) weight

n
w = %(wl, ..., wq) with respect to the coordinates x1, . . ., x4 near o. The singular locus of W is contained
in the exceptional locus £/ C W and has codimension > 2. Here, E/ = P(wy, ..., wq)/n, where the cyclic
group action is given by

n: [‘Tl peecd xd}w - [5;1111'1 e 7£gdxd]w7

and [z1 @ --- : 74, denotes the image of (z1,...,24) € C%\ {0} under the natural quotient morphism
C?\ {o} — P(wy,...,wy). Since W is covered by open sets U; with cyclic quotient singularities such
that the induced cyclic group action acts diagonally on {z1,..., x4}, by [Fuj74, Lemma 1], each irreducible
component of the singular locus of W coincide with a coordinate linear space W; := {N;er(z; = 0)} C

(P(ws,...,wq)/n = E') for some proper subset I of {1,...,d}.

Let ¢;,, be the weighted leading terms of ¢; ,, for 1 < 7 < m (see Definition ??). Let X; be the
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hyperplane near (C¢ 5 0)/%(a1,...,aq4) defined by ¢; = 0, and Y; the strict transform of X; on W. Then
Yilgr = (¢ps.0 = 0) C P(wn,...,wq)/n. Since E is an integral scheme and £ = (¢1, = -+ = Q00 =
0) C P(wy,...,wq)/n, each ¢; ,, is an irreducible power series whose multiplicities at o € C? is greater
than two. Hence (¢; ,, = 0) does not contain the coordinate hyperplanes in P (w1, ..., wq)/n for1 <i < m.
In fact, since Y| g := N;c Y;| g is integral for each proper subset J C {1,...,m}, Y;| g does not contain

the coordinate linear space W as its irreducible component for any I. This implies that Y; does not contain

any codimension one locus that is a codimension |.J| + 1 irreducible component of the singular locus of W

for each proper subset J C {1,...,m}. Since Y N E’ is a local complete intersection, ¥ and Y; are smooth
in codimension one for each proper subset J C {1,...,m} near Y. Hence
(Kw +Y1+-+Y)ly, |y, = Ky. (2.1.3)

By [Rei87, (4.8)] (see also [Jia21, Propostion 2.1]),

Ky +Yi+ - +Y,=f"K; +w(X 32)F,
restricting to Y; for ¢ = 1, ..., m successively, we are done. O
2.1.6 Newton polytope

Definition 2.1.30. Let n be a positive integer. A Newton polytope N is a subset of Z,, satisfying the

following: for any point & € N/,
x4+ 725 :={x+v|veZi} CN.

Definition 2.1.31. Let n be a positive integer, 0 the origin of Z™ and N C Z%,, a Newton polytope. A vertex

of N is a point w € N, such that for any £ € A and v € 7%, ifu =z + v, thenu =z and v = 0.
Lemma 2.1.32. Let {v;};ez., be a sequence of vectors in 7% ,. Then the set {P; = U, (v + Z%)}jezs,
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satisfies the ACC under the inclusion of polytopes. Furthermore, for any Newton polytope N in 2%, there

are only finitely many vertices of N.

Proof. Suppose that {P;} jezs, does not satisfy the ACC, possibly passing to a subsequence, we may assume
that {P; }j6221 is strictly increasing. As Z> satisfies the DCC, we may find a pair (7, j) such that ¢ < j and
v; € v + Zgo. Thus P; = P;_1, a contradiction.

Suppose that A" has infinitely many vertices v;, i € Zs1. Then the set {P; = U/_, (v; + Z50)}jens, i

strictly increasing, a contradiction. O

Theorem 2.1.33 is proved in [Stel1] based on some results from Russian literature, we give a proof here

for the reader’s convenience.

Theorem 2.1.33 (ACC for Newton polytopes). Let n be a positive integer, and {J\/}}iez21 a sequence of
Newton polytopes in Z%,,. Then there exists a subsequence {NG, } jez, of Newton polytopes, such that

Ni, 2 N, for every positive integer j.

Proof. Suppose that the theorem does not hold. Then there exists 41 € Z>; such that Ny 2 Ny for all
positive integers k > 1.

Inductively, we may construct a sequence of positive integers i; < i3 < --- such that { M := /\/}j } €L
satisfies that M; 2 M, for all positive integers m > [. Then { Q; := U<;j My }jez., is astrictly increasing
sequence of Newton polytopes. So the statement is equivalent to the ACC for Newton polytopes.

By Lemma 2.1.32, any Newton polytope Q in Z%, can be written as a finite union Q = U, (v+ ZTZLO),
where each v is a vertex of Q. So we can find a sequence of vectors {v; };cz. , and a sequence of positive

integers ny < ng < ---, such that Q; = U:l:jl('vi + Zgo). This contradicts Lemma 2.1.32. O
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2.1.7 Divisorial contractions between terminal threefold singularities

Let f : Y — X be a divisorial contraction of a prime divisor F between two terminal threefolds such that
f(F) is a closed point on X. Then f is classified into two types: the ordinary type and the exceptional type.
Moreover, in the ordinary type case, any non-Gorenstein singularity on Y which contributes to the Reid

basket of f is a cyclic quotient terminal singularity (see the paragraph after [Kaw05, Theorem 1.1]).

Definition 2.1.34. Let h € C{x1, ..., 24} be an analytic power series. Let aox® be a monomial for some
aq € Cand a € Zio. By aqx® € h, we mean the monomial term x® appears in the analytic power series

h with the coefficient a,.

Theorem 2.1.35 ([Kaw05, Theorem 1.2]). In the statement of this theorem, d,r,T1, 72, & are assumed to be
positive integers, A, p are assumed to be complex numbers, and g, p, q are assumed to be analytic power

series with no non-zero constant terms.

Let x € X be a terminal singularity that is not smooth, f 1Y — X a divisorial contraction of a prime
divisor ¥ over X > x (see Definition 2.1.2), such that 'Y is terminal over a neighborhood of x. Let n be the
index of X > x. We may write

Ky = f*"Kx + %E
for some positive integer a. If f :' Y — X is of ordinary type, then one of the following holds:
1. x € X is a cA/n type singularity. Moreover, under suitable analytic local coordinates x4, x2, T3, X4,
(a) we have an analytic identification
(X 32) = (¢ = mas +g(af, 22) = 0) C (C* 3 0)/(1,-1,5,0),

where g(x3,74) € (23,74)%

(b) fis a weighted blow-up with the weight w = *(r1,72,a,n),
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(c) x§" € g(a§, x4),
(d) nw(¢) =11 + re = adn, and

(e) a =br; mod n.
2. x € X is a cD type singularity. In this case, one of the following holds:

(2.1) Under suitable analytic local coordinates x1,x2, 3, T4,

(a) we have an analytic identification
(X 2 2) = (¢ := ai+x1q(23, 34) + 25204+ AT2x3 +pai+p(a2, x3,24) = 0) C (C* 2 0),

where p(z2,73,74) € (T2,73,14)%,
(b) fis a weighted blow-up with the weight w = (r + 1,7, a, 1), where a is an odd integer,
(c) W'zl € ¢ for some i’ # 0 and an odd integer d > 3, and if d = 3, then i/ = p,
(d) w(¢) = w(zdrs) = w(zd) =2r +1 = ad,
(e) if q(xs,x4) # 0, then w(z1q(x3,24)) = 2r + 1, and
(f) ifd > 3, then u =X =0.
(2.2) Under suitable analytic local coordinates x1,xs,x3, T4, X5,

(a) we have an analytic identification

$1 = 23 + wows + p(we, w3, 74) =0
¢z = zows + 24 + q(x3,24)T4 + 25 =0

(Xax)%< >C((C590),

Where p(£27 x3a'r4) S (1‘2, x3,$4)4,
(b) f is a weighted blow-up with the weight w = (r + 1,1,a,1,r + 2),
(c) r+1=adandd > 2,

(d) w(¢1) =2(r+1),
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(e) w(ga) =71+1, and

(f) if q(z3,24) # 0, then w(q(z3, x4)xs) =17 + 1.
3. x € X isacD/2 type singularity. In this case, one of the following holds:

(3.1) Under suitable analytic local coordinates x1, x2, 3, 4,

(a) we have an analytic identification
~ 2 2 2 2a-1 2 4 1
(X 2 2) 2 (¢ :=xi+z123q(25, x4)+r504+AT225% +p(as, x4) =0) C (C* > o)/§(17 1,1,0),

(b) f is a weighted blow-up with the weight w = %(r +2,ra,2),
(c) w(p) = w(x3x4) = r + 1 = ad, where a,r are odd integers,
(d) ifq(x%,x;;) # 0, then w(xlxgq(xg,u)) =r+1, and
(e) 237 € p(a3, z4).

(3.2) Under suitable analytic local coordinates x1,x2, 3,24, Ts,

(a) we have an analytic identification

¢1 =2} + zows + p(zd,24) =0
b2 = woxs + 2 + q(a}, x4) w324 + 25 = 0

(X >2) = ( ) c(C°> 0)/%(1,1,1,0,1),

(b) fis aweighted blow-up with the weight w = %(r +2,ra,2,7+4),
(c¢) v+ 2 = ad and d is an odd integer,

(d) w(gr) =r+2

(e) w(¢o) = "2, and

(f) if q(x3, z4) # O, then w(q(23, 4)z324) = “52.

Moreover, if a > 5, then f is of ordinary type. The cases are summarized in Table 2.1:
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Table 2.1: A summary of Theorem 2.1.35

Case | Type Local coordinates w w(¢) or w(e;)
(1) | cA/n (¢ =0)c C'/1(1,-1,b,0) L(ry,r2,a,n) e

1) | ¢D (p=0)cC* (r+1,7r,a,1) 2r +1
(22) | ¢D (1 =¢2=0) C C> (r+1,ra,1,r4+2) | 2(r+1)andr+1
(3.1) | eD/2 (¢p=0) c C*/3(1,1,1,0) 2(r+2,r,a,2) r+1

(32 [ cD/2 | (pr=¢2=0)Cc C'/1(1,1,1,0,1) | 5(r+1,7,a,2,r +4) r 4 2and =2

Proof. Most part of this theorem are identical to [Kaw05, Theorem 1.2] but with small differences for further

applications. For the reader’s convenience, we give a proof here.

Since f : Y — X is a divisorial contraction of ordinary type and x € X is not smooth, by [Kaw05,

Theorem 1.2], we have the following possible cases.

x € X is of type cA/n, then we are in case (1). (1.a) and (1.b) follow from [Kaw05, Theorem 1.2(i)]. By
[Kaw05, Theorem 1.2(i.a)], (1.e) holds, and we may pick a positive integer d such that r; + 7o = adn. By

[Kaw05, Theorem 1.2(i.c)] and [KawO05, Theorem 1.2(i.d)], (1.c) and (1.d) hold.

x € X is of type cD or ¢D/2, then we are in either case (2) or case (3). Now (2.1.a), (2.1.b), (3.1.a),
(3.1.b) follow directly from [Kaw05, Theorems 1.2(ii.a) and 1.2(ii.a.1)], and (2.2.a), (2.2.b), (3.2.a), (3.2.b)
follow directly from [Kaw05, Theorem 1.2(ii.b)]. (2.1.d), (3.1.c) follow from [Kaw05, Theorems 1.2(ii.a.1)
and 1.2(ii.a.2)], and (2.2.c), (3.2.c) follow from [Kaw05, Theorem 1.3(ii.b.1)]. (2.1.e), (3.1.d) follow from
[Kaw05, Theorem 1.2(ii.a.2)], and (2.2.d), (2.2.e), (2.2.f), (3.2.d), (3.2.e), (3.2.f) follow from [Kaw05,
Theorem 1.2(ii.b.2)]. For (2.1.f), if d > 3, by (2.1.d) we have ¢ = 0. Assume that A # 0. By (2.1.d),
w(zox3) =7+ 2a > 2r 4+ 1, hence 2a > 7 + 1 and 2r + 1 = ad > $(2r + 1)d. It follows that d < 4, a

contradiction.

(2.1.c), (3.1.e) are not contained in the statement of [Kaw(05, Theorem 1.2], however, they are implied

by the proofs of the corresponding results. To be more specific, (2.1.c) is stated in [Chel5, §4, Case Ic] and
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(3.1.e) is stated in [CH11, Page 13, Line 10].

For the moreover part, the Theorem follows directly from [Kaw05, Theorem 1.3]. O

2.2 Sketch of the Proofs

The proof of Theorem 1.2.2 is intertwined with the proof of Theorem 1.2.5. For simplicity, we only deal with
the interval [1, +00). Suppose on the contrary, there exists a sequence of threefold germs {(X; > z;, B;)}5°,,
where X is terminal and B; € T for each i, such that {mld(X; > z;, B;)}2; C (1,+00) is strictly
increasing. Then the index of X; 3 x; is bounded from above. We may assume that there exists a finite set
T, such that lim;_, o B; = B; and B; € T'y. By the ACC for threefold canonical thresholds (Theorem
1.2.10) and [Nak16, Corollary 1.3], we may assume that mld(X; > x;, Bi) = « > 1. for some constant .. In
order to derive a contradiction, it suffices to show a special case of Theorem 1.2.5, that is, there exists a prime
divisor E; over X; 3 x;, such that a(E;, X;, B;) = mld(X; 3 z;, B;) = o, and a(E;, X;,0) < [ for some
constant number [/, see Step 3 of the proof of Theorem 3.6.1. If @ > 1, and =; € X is neither smooth nor of
cA/n type for each i, then we show the special case by the uniform canonical rational polytopes (Theorem
3.4.3) and the accumulation points of the set of canonical thresholds in dimension 3 (Theorem 1.2.11).
Otherwise, we show the following key fact: there exists a divisorial contraction Y; — X; from a terminal
variety Y; which extracts a prime divisor E/ over X; > x; such that a(E!, X;, B;) = mld(X; > z;, B;).
Note that when o = 1, we may show the fact by standard tie breaking trick even in higher dimensions, see
Lemma 3.1.4. The case when « > 1 and either z; € X; is smooth or of type cA/n, which is one of our key
observations, depends on the proofs of the classification of divisorial contractions for terminal threefolds
[Kaw01, Kaw02, Kaw03, Kaw05, Yam18], see Lemmas 3.2.4, 3.2.5. Finally, Theorem 1.2.2 follows from the
key fact and Lemma 3.2.1. We remark that Lemma 3.2.1 implies the ACC for threefold canonical thresholds

(Theorem 1.2.10). We provide a flowchart of the structure of the paper (Table 2.2).
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Table 2.2: Flowchart of the structure of the paper

Accumulation points
(Theorem 1.2.11)

Special cases™*) of Theorem 1.2.5
(Lemmas 3.2.1, 3.2.4, 3.2.5, Theorem 3.2.9)

ACC for cts
(Theorems 1.2.10, 3.3.2)

(1)

1-gap for mlds
(Theorem 5.1.1)

ACC for mlds(")
(Theorems 1.2.2, 3.6.1),

ACC for a-Icts
Theorem 1.2.9)

/ (1)

Log Calabi-Yau
birational boundedness
(Theorem 1.2.12)

(€3] .
Index conjecture

(Theorems 1.2.8, 4.1.7)

Uniform boundedness
(Theorem 1.2.5)

/

General elephants(") and local complements®)
(Theorems 1.2.6, 1.2.7)

(%): 3-fold divisorial contraction classification [Kaw01, Kaw02, Kaw03, Kaw05, Yam18]. (1): The
boundedness of Ic complements [Birl9, HLS19]. (1): The theory of uniform rational polytopes
[HLS19, CH21]. (II): Singular Riemann-Roch formula.
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Chapter 3

Canonical Thresholds and Its
Accumulation Points

3.1 Terminal Blow-ups

Definition 3.1.1. Let (X > z, B) be an Ic pair. We say that « is a canonical center of (X, B) if mld(X >
x,B) =1and dimz < dim X — 2. A prime divisor (resp. An analytic prime divisor) F that is exceptional
over X is called a canonical place of (X, B) if a(E, X, B) = 1. Moreover, if centerx F = Z, then E is

called a canonical place of (X > z, B).

Lemma 3.1.2. Let (X > x, B) be a germ such that X is terminal and mld(X > x, B) = 1. Then there

exists a pair (X, B') that is kit near x, such that

e x is the only canonical center of (X, B'),
e there exists exactly one canonical place E of (X 3 x, B'), and
o a(E,X,B) = 1.

Proof. Possibly shrinking (X, B) to a neighborhood of x, we may assume that (X, B) is an Ic pair. We play

the so-called “tie-breaking trick” and follow the proof of [Kol07, Proposition 8.7.1].
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Step 1. Let f : W — X be a log resolution of (X, B). We may write

Kw = f*Kx + Z%‘Ei, and [*B = Bw + ZbiEia

i€J i€J

where By := f. 1B is smooth, and {E; };c5 is the set of f-exceptional divisors. Let
Jy:={i €T |centerx E; =z}, and T, 0 := {i € T, | a; = b;} # 0.

Then a; > 0 forany i € J, and b; > 0, a; > b; foreachi € J,.

Let C be a very ample Cartier divisor such that z € SuppC. Possibly replacing C with C’ €
H°(Ox(kC) ® m,) for some k& > 1 and some irreducible C’ which is sufficiently general, we may
assume that C' is a prime divisor whose support does not contain any centerx E; i € J\ J,, or any canonical
center of (X, B) except xz. We may write f*C' = Cw + ), 3, CiEi, where C is the strict transform of C

on W, and ¢; > 0 for each ¢ € J,,. Now we may choose a real number 0 < € < 1, such that

.oa;—(1—e€)b; .Gy . .oa;— (1 —=e€)b;
t:= min M =€ min — < min < min M,
1€Jz.0 C; i€Jz.0 C; 1€3:\Tz,0 C; 1€T:\Tz.0 C;

ai—bi

and (1 —€)B+tC €[0,1). Let Ky + D, := f*(Kx + (1 —€)B+tC) and Ky + D := f*(Kx + B).
We have

D.— D =e(min ZfC— f*B).
1€Jz,0 C;

Consider the finite sets

Ji,e :={codimy — multy D | y € W, f(y) # «,codim f(y) > 2}, and

Jo,e := {codimy — mult, D. |y € W, f(y) = z}.

If F is an f-exceptional divisor over X 5 2’ for some 2’ # = such that a(F, X, B) = 1, then a(F, X, (1 —

€)B + tC) > 1. By taking e sufficiently small, we may assume that 1 ¢ J; .. Since By is smooth and
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multg, D, < 0foranyi € J,,1 € Ja2. C [1,+00). By [CH21, Lemma 3.3], z is the only canonical center

of (X,(1 —¢)B+tC). Note that 1 € J ..

Possibly replacing B with (1 — €) B + tC, we may assume that z is the only canonical center of (X, B)

and (X, B) is klt.

Step 2. We may assume that f is a composition of blow-ups of centers of codimension at least 2, hence there

exists an f-ample Q-divisor — .5 e; E;. Note that e; > 0 for each ¢. Then there exists ig € J, ¢, such that

i€J
possibly replacing e;, with a bigger positive rational number, we may assume that A := ZT? < % forany ¢ €

J2,0\{i0}. Moreover, there exists a positive real number ¢, < 1, such that A" := e{A < “i;bi < ai_(leje(’)b"'

forany i € J3,\J,,0. Let E := E;,. Let H be an ample Q-Cartier Q-divisor on X such that f*H—ZZ.ej e; E;

is ample. Now a; — (1 — €{)b; — A'e; > Oforany i € 3, \ {ip}, and a;, — (1 — €()b;, — N'e;, = 0. We have

KW + (1 — ‘56)BW + /\,(f*H — Z eiEi) = f*(KX + (1 — 66)3 + /\/H) + Z(ai — (1 - 66)[)1 — /\’ei)Ei.
i€J i€J

Let Ay > 0be a Q-divisor such that Ay ~q f*H —> .5 e; E;, the coefficients of the prime components of

i€d
Ay are sufficiently small, and Supp Ay U Supp Bw U;es Supp E; has simple normal crossings. Consider

the pair (X > z, B’ := (1 — ¢(,) B + X A), where A is the strict transform of Ay, on X. We may write
Kw + Dy = f*(Kx + (1 —€)B+ X A).
For any ¢’ > 0, let

3}, = {codimy — mult, D., | y € W, f(y) # «,codim f(y) > 2}, and

J9.e 9 := {codimy — mult, D}, |y € W, f(y) = z,codimy > 2}.

Since 1 ¢ J o, by taking ¢’ small enough, we may assume that 1 ¢ J _,. Thus  is the only canonical center

of (X, B'). By our choices of €), A, and Ay, ‘72,76622 C (1,+00). Hence by [CH21, Lemma 3.3], E is the
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only canonical place of (X > z, B’). The pair (X > z, B’) satisfies all the requirements. O

Definition 3.1.3. Let (X > x, B) be an Ic germ. A terminal blow-up of (X > z, B) is a birational morphism
f Y — X which extracts a prime divisor F over X > x, such that Y is terminal, «(F, X, B) = mld(X >

x,B),and —F is f-ample.

Lemma 3.14. Ler (X 3 x, B) be a germ such that X is terminal and mld(X > x, B) = 1. Then there

exists a terminal blow-up f : Y — X of (X > x, B). Moreover, if X is Q-factorial, then'Y is Q-factorial.

Proof. By Lemma 3.1.2, possibly shrinking X to a neighborhood of x, we may assume that (X, B) is kI,
and there exists exactly one canonical place Ey of (X > z, B). By [BCHMI0, Corollary 1.4.3], there
exists a birational morphism g : W — X of (X, B) such that Eyy is the only g-exceptional divisor. We may
write Ky + Bw := g*(Kx + B), where By is the strict transform of B on W. Since (W, By, ) is klt,
(W, (1 + €)Bw) is klt for some positive real number €. Let ¢ : W --» Y be the Ic model of (W, (1 + ¢) By)

over X. Since X is terminal and Eyy is a canonical place of (X > x, B),

Kw+(14+e¢)By =¢"(Kx+(14+¢)B) —eEw

for some positive real number e. It follows that — F is ample over X, where E is the strict transform of Ey

onY. Thus f : Y — X is an isomorphism over X \{z}, and Exc(f) = Supp E.

It suffices to show that Y is terminal. Let F' be any prime divisor that is exceptional over Y. If
centerx F' = z, then o(F,Y,0) > a(F, X, B) > 1 as E is the only canonical place of (X > z,B). If
centerx F' # z, then a(F,Y,0) = a(F, X,0) > 1 as f is an isomorphism over X \{z} and X is terminal.

Suppose that X is Q-factorial. Then for any prime divisor Dy # E on Y, f*f.Dy — Dy =

(multg,. f.Dy)E. It follows that Dy is Q-Cartier, and Y is Q-factorial. O

35



3.2 Weak Uniform Boundedness of Divisors Computing MLDs

Lemma 3.2.1. Let I be a positive integer, & > 1 a real number, and T’ C [0, 1] a DCC set. Then there exists

a positive integer | depending only on I, o and T satisfying the following. Assume that
1. (X 3 x,B:=),b;Bj) is a threefold germ,
2. X is terminal,
3. each b; € ' and each Bl’» > 0 is a Q-Cartier Weil divisor,
4. mld(X >2z,B)=q,
5. I Kx is Cartier near x, and
6. there exists a terminal blow-up (see Definition 3.1.3) f : Y — X of (X > z, B).

Then there exists a prime divisor E over X > x, such that a(E, X, B) = mld(X > z, B) and a(E, X,0)

1 + § for some positive integer a < I.

Proof. Suppose that the lemma does not hold. Then there exists a sequence of threefold germs {(X; >
i, B; = ?;151‘33,'-4))}{'21 and terminal blow-ups f; : Y; — X; corresponding to (X > z,B :=

> ;biBj)and f : Y — X asin (1)-(6), such that
e f; extracts a prime divisor E;,
e Ky, = f{Kx, + % E; for some positive real number a;, and
o the following sequence of non-negative integers
a’
A; = inf{a} | F;is over X; > z;,a(F;, X4, B;) = o, a(F}, X;,0) =1+ 7’}

is strictly increasing, and in particular, lim;_, | o, A; = +00.
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Since f; is a terminal blow-up, a(E;,Y;, B;) = «, hence a; > A;. Thus lim; , . a; = +00. Possibly
passing to a subsequence, we may assume that a; is strictly increasing and a; > 51 for each i. By [Kaw01,

Theorem 1.1] and Theorem 2.1.35, analytically locally, we have an embedding

1
(Xz > CCZ) — ((le > O)/f(OéLi, ey Oémﬂ')

(2
for each 4, where n; is the index of X; > x;, n; | I, m; € {3,4,5}, a1,4,..., ;s € ZN[1, 1], and f; is an

admissible weighted blow-up with the weight w; € 11’ Z. Moreover, for each 4, j, we may assume that B} j

ng
is defined by (h; ; = 0) for some semi-invariant analytic power series h; ; near ;.

By Theorems 2.1.13 and 2.1.33, possibly passing to a subsequence, we may assume that

o there exist positive integers n, m, aq, . . . , a,,, and a non-negative integer p, such that n; = n, m; = m,
(1,65 yQmi) = (01,..., ), and p; = p for each i,

e b; ; is increasing for any fixed j, and

e N(hi;) C N(hi ;) forany i > i’ and any j.

By Lemma 2.1.29,

p

a;

7 = wl(Xl > .’El) = U)Z(Bz) +a—1= z:lbidwi(hi’j) +a—1.
j=

We will show the following claim:
Claim 3.2.2. Possibly passing to a subsequence, we may assume that (X1 3 x1,B1) and (X2 3 x4, Bs)
satisfy the following:

1. As > aq, and

2. there exists an admissible weighted blow-up f' of (X2 3 x2) C (C™ 3 0)/%(au, ..., o) with the
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weight w' € %ng such that wy (Bz) < w'(Ba), w'(X2 3 x2) = w1 (X1 3 x1), and the exceptional

divisor E' of f' is an analytic prime divisor.

We proceed the proof assuming Claim 3.2.2. By Lemma ??, we may assume that £’ is a prime divisor

over X». Since
wl(Xl = :L‘l) = wl(Bl) +a—-1< wl(Bg) +a-1< w/(Bg) +a—1< w’(Xg > 1‘2) = wl(Xl > £C1),

w' (X2 3 z2) = w'(B2) + @ — 1 and a(E’, X2, B2) = a = mld(X2 > xa, Bs). Since a(E’, X3,0) =
I4+w' (X2 3 22) = 1+ wi (X1 3 1) = 14+ %, it follows that a; < Ay < a1, a contradiction. This finishes

the proof. O

Proof of Claim 3.2.2. Claim 3.2.2(1) follows from the fact that the sequence {A;}$°, is strictly increasing.
We now prove Claim 3.2.2(2) case by case. By [KawO01, Theorem 1.1] and Theorem 2.1.35, we only need to

consider the following cases.

Case 1. X; > z; (i = 1,2) are all smooth. Then m = 3, and analytically locally, (X; > z;) = (C? 3 0). We

may take w’ = w; in this case.

Case 2. X; > x; (1 = 1,2) are all of type ¢D/n for n = 1 or 2. By Theorem 2.1.35(2-3), we only need to

consider the following two subcases:

Case 2.1. m = 4. f; : Y; — X, are divisorial contractions as in Theorem 2.1.35(2.1) when n = 1 and
as in Theorem 2.1.35(3.1) when n = 2. In particular, there exist positive integers d; and r;, such that

2r; + n = na,;d;, and analytically locally,

(Xi 5 ) = (6 = 0) C (C* 3 o)/

—(1,1,1,0
n(??’)

for some semi-invariant analytic power series ¢;, and each f; is a weighted blow-up with the weight w; :=
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%(ri +mn,74,a4,n). Possibly passing to a subsequence, we may assume that dy < dp. Let 55 := §(a1dy —1).
Since %(282 +mn) =aids and 5 < a; < ag, by [HLL22, Lemma C.8(1)](1) and [HLL22, Lemma C.10], the

%(52 + n, s2, a1, n) extracts an analytic prime divisor

weighted blow-up at x5 € X9 with the weight w' :=
over Xs O o, and
’LU/(XQ > IQ) = % = ’LU1(X1 > xl).

Since dy > dy and 2r1 + n = naydy, s; = §(a1dy — 1) > §(a1d; — 1) = 71, hence w1 (B2) < w'(By).

Case 2.2. m = 5. f; : Y; — X, are divisorial contractions as in Theorem 2.1.35(2.2) when n = 1 and as in
Theorem 2.1.35(3.2) when n = 2. In particular, there exist positive integers d; and r;, such that r; +n = a;d;,

and analytically locally,

(X 3 25) = (b1 = bis = 0) C (C° 5 0)/~(1,1,1,0,1)

n
for some semi-invariant analytic power series ¢; 1, ¢; 2, and each f; is a weighted blow-up with the weight
w; = %(7‘1 + n,ri,a;,n,7; + 2n). Possibly passing to a subsequence, we may assume that d; < ds. Let
Sg := aijdy — n. Since sy +n = ajdy and 5 < a; < ag, by [HLL22, Lemma C.9(1)](1) and [HLL22,
Lemma C.11], the weighted blow-up at x5 € X5 with the weight w’ := %(52 +n, $2,a1,n, 3+ 2n) extracts

an analytic prime divisor over X3 3 x4, and
/ a
w (XQ = .132) = Z = ’LU1(X1 > xl).
Since dg > d1 and r+n= aldl, So = aldg —-n > a1d1 —-_n=r, hence wl(Bg) < w’(Bg).

Case3. m =4, X; > z; (i = 1,2) are of type cA/n and f; : Y; — X are divisorial contractions as in

Theorem 2.1.35(1). In particular, possibly passing to a subsequence, there exist positive integers d;, r1,;,72,i, b,
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such that ry ; + r2; = a;d;in, b € [1,n — 1], ged(b,n) = 1, and analytically locally,
1
(Xi32:) = (i =0) C (C"30)/~(1,-1,,0)

for some semi-invariant analytic power series ¢;, and each f; is a weighted blow-up with the weight
w; = %(r“, T;,2,a;, ). Possibly passing to a subsequence, we may assume that dq < dy. Let sg 1 := 1711
and sy 2 1= aidon — r11. Since sp 1 + S22 = ajdan and 5 < a; < ag, by [HLL22, Lemma C.7], the
weighted blow-up at zo € X5 with the weight w’ := %(5271, S2,9, a1, 1) extracts an analytic prime divisor
over Xy O x9, and

ay
w’(Xg > .132) = g = wl(Xl > 331).
Since d1 § d2 and T1,1 + T2 = aldln, S22 = aldgn —T11 2 aldln —T1,1 = T1,2, hence wl(Bg) S
'U/(BQ). O
Now we prove some boundedness results on divisors computing mlds when the germ is either smooth or

a terminal singularity of type cA/n.

Lemma 3.2.3. Let X be a smooth variety of dimension n for some n € Z>o and x € X a closed point.
Letm : X — X be the blow-up of X at x with the exceptional divisor E. For any hyperplane section
H € |0g(1)| on E, there exists a Cartier divisor H on X, such that x € Supp H, mult, H = 1 and

_1H|E :H

Proof. Let m, be the maximal ideal of the local ring Ox . Then we have a canonical isomorphism (cf.

[Har77, §2, Theorem 8.24(b)])
E=P" ! = Projc 5 m’ /mit!

x

where m? := Ox . Thus there exists a nonzero element h € m, /m? such that H is defined by (iL =0) on
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E. Let h € m, be a preimage of  under the morphism m, — m, /m2, and H the Cartier divisor locally
defined by (h = 0) near x. We have mult, H = 1 and 7, 'H |z = H (cf. [EH00, Exercise I1I-29] and

[EHOO, Exercise 1V-24]). O

Lemma 3.2.4. Let (X > z, B) be a threefold germ such that X is smooth and mld(X > x, B) > 1. Then

there exists a terminal blow-up (see Definition 3.1.3) f - Y — X of (X 3 x, B), such that Y is Q-factorial.

Proof. Let g1 : X1 — Xy := X be the blow-up at x € X and F} the g;-exceptional divisor. When
mult, B < 1, by [Kaw17, Proposition 6(i)], a(Fy, X, B) = mld(X > z, B), we may take Y = X, and
f = g1 in this case. From now on, we may assume that mult, B > 1.

Let g : W — X; be a birational morphism which consists of a sequence of blow-ups at points with
codimension at least two, such that the induced morphism A : W — X is a log resolution of (X, B). By
Lemma 3.2.3, there exists a Cartier divisor H on X passing through x, such that mult, H = 1, h*(H + B) is
an snc divisor on W, and Hy, := (g7 ').H does not contain the center of any g-exceptional divisor on X .

Lett := ct(X >z, B; H). Sincemult, B > land 1 < a(Ey, X, B+tH) = 3—mult, B—t,t < 1. By
Lemma 2.1.12(1), mld(X > =, B+ tH) = 1. By Lemma 3.1.4, there exists a terminal blow-up f : Y — X
of (X > x, B+ tH) which extracts a prime divisor F over X > x such that Y is Q-factorial. In particular,
a(E,X,B+tH)=mld(X >z,B+tH).

It suffices to show that a(E, X, B) = mld(X > z, B). By [Kaw01, Theorem 1.1], under suitable analytic
local coordinates (z1, 22, x3), f is the weighted blow-up of X with the weight (1, a, b) for some coprime
positive integers a and b. By [KawO1, Proof of Proposition 3.6, line 6], multy F} = 1*. By construction,

multy Hx = multg(Hyx, + F1) = multg F; = 1. Let F' be any prime divisor over X > x. We have

a(F, X, B) — tmultp H = a(F, X, B+ tH) > a(E, X, B+ tH) = a(E, X, B) — t mult H.

*We recall that F, and F in [Kaw01, Proposition 3.6] are the same divisorial valuation, see [KawO1, Remark 3.3], and we use the
same notion of F; and F as in [KawO1, §3], see [KawO1, Construnction 3.1].
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Since multp H > 1 = multg H, o(F, X, B) > o(E, X, B). It follows that «(E, X, B) = mld(X > x, B),

and f : Y — X is the desired terminal blow-up of (X > x, B). O

Lemma 3.2.5. Let © € X be a threefold terminal singularity of type cA/n. Then there exists a Cartier

divisor C near x satisfying the following.

Let (X > x, B) be a pair such that mld(X > x, B) > 1. Then there exists a terminal blow-up of (X >
x, B) (see Definition 3.1.3) which extracts a prime divisor E over X > x, such that a(E, X, B +tC) =1

and multg C = 1, where t :== c¢t(X > z, B; C).
Proof. By [Rei87, (6.1) Theorem] (cf. [Mor85, Theorems 12,23,25]), analytically locally,
1
(X > 2) = (¢p:=mw2 +g(x},14) =0) C (C* 3 0)/;(17 —1,b6,0),

such that b € [1,n — 1] N Z, ged(b, n) = 1, ¢ is a semi-invariant analytic power series, and x4 € g(x%, x4)
for some positive integer d. Whenn = 1, x € X is a terminal singularity of type cA,, (see [Kaw03, Page

333, Line 11]) for some positive integer m.

Claim 3.2.6. There exist a Cartier divisor C on X and an integer k € {1,4} depending only on x € X that

satisfy the following.
1. xy, is invariant under the &,-action on C*, and C is a Cartier divisor locally defined by an invariant
analytic power series (zy, + h = 0), where h € (m2*)2,

2. Lett:=ct(X >z, B;C). Thenmld(X > z, B+ tC) = 1, and there exists a terminal blow-up [ of

(X 3z, B + tC) which extracts a prime divisor E over X > .

3. Possibly choosing a new local analytic coordinates x|, x4, ¢, xly, where x1, = x) + pj for some
pj, € Mm2" such that \x}, ¢ pj, for any A € C*, analytically locally, f is a weighted blow-up with the

weight w = (w(z!), w(zy), w(zy), w(xy)) such that w(z)) = 1.
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We proceed the proof assuming Claim 3.2.6. By Claim 3.2.6(1,3), C'is locally defined by (z}, + hj, = 0)
for some h) € m2" such that Az} ¢ hj for any A € C* under the new coordinates z}, x5, x4, =)y, hence
1 <multy C =w(z), + 1) <w(z))=1,and multy C = 1. Let F' # E be any prime divisor over X > z.

We have
a(F,X,B) —tmultp C =a(F, X,B+tC) >a(E,X,B+1tC) =a(E,X,B) —tmultg C.

Since multy C > 1 = multg C, a(F, X, B) > a(E, X, B). It follows that a(E, X, B) = mld(X > z, B),

hence f is a terminal blow-up of (X > z, B). O

Proof of Claim 3.2.6. We have an analytic isomorphism
V: X238 =Y = (¢:xx + g(zh,z4) = 0) C (C* 3 0),

where 7 : X 3 # — X > z is the index one cover (cf. [KMO8, Definition 5.19]). Under the analytic
isomorphism 1, the &,-action on Y induces the cyclic group action on X > & which corresponds to 7. By
[HLL22, Lemma B.7], we can find a Cartier divisor C on X whose image under ¢ is locally defined by
(z) + h = 0) for some h € (m2*)2, and x}, + h is invariant under &,-action. Set C' := 7(C'), we finish the
proof of Claim 3.2.6(1). For Claim 3.2.6(2), since C' is a prime divisor that is Cartier, by Lemma 2.1.12(3),
mld(X > z, B+ tC') = 1. By Lemma 3.1.4, there exists a terminal blow-up of (X > z, B + tC') which

extracts a prime divisor E over X > z. Now we prove Claim 3.2.6(3) case by case.

Case 1. n > 2. By [Kaw05, Theorem 1.3], f is a divisorial contraction of ordinary type. By Theo-
rem 2.1.35(1) and [Kaw05, Lemmas 6.1, 6.2 and 6.5], there exist analytic local coordinates x, %, 25, a7,
such that analytically locally, f is a weighted blow-up with the weight w := L (r}, 75, a, n), where r}, 7%, a are
positive integers such that an | r} + r. Moreover, by [Kaw05, Proof of Lemma 6.3, Line 7], zy = x4 + 21p

for some p € m2". In this case, we take k = 4.
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Case 2. n = 1 and m > 2. By [Kaw03, Theorem 1.13] and [Yam18, Theorem 2.6], there exist analytic
local coordinates x4, 4, x4, ), such that analytically locally, f is a weighted blow-up with the weight
w = (r1,72, a, 1) for some positive integers 71, 2, a. Moreover, by [Kaw03, Proof of Lemma 6.1, Page 309,
Line 5], the coordinates change relation for x4 is given by x4 = z/y + ¢z} forsome 1 < i < 3and ¢’ € C.

Thus we may take k = 4.

Case 3. n = 1 and m = 1. By [Kaw02, Theorem 1.1], there exist analytic local coordinates 7, x5, 2%, =/,
such that analytically locally, f is a weighted blow-up with the weight w, where either w = (s, 2a — s, a, 1)
for some positive integers s and a, or w = (1,5, 3,2). Moreover, by [Kaw02, Claim 6.13], the change of
coordinates relations for x; is given by z; = x} + pi(z}) and x4 = 2 for p; € m@" and 1 <4 < 3. Thus we

may take k = 1 or 4. O

Lemma 3.2.7. LetT' C [0,1] be a set such that vy := inf{b | b € T'\ {0}} > 0. Ler (X > x,B) be a

threefold germ, such that

e x € X is a terminal singularity of type cA/n for some n > N := [%l

B :=)",b;B; for some b; € ', where B; > 0 are Q-Cartier Weil divisors,
e mld(X >2,B) > 1, and

e there exists a terminal blow-up (see Definition 3.1.3) f : Y — X of (X > z, B) which extracts a

prime divisor E over X > z, such that a(E, X,0) = 1 + & for some positive integer a > 3.

Then there exists a prime divisor E over X 3 x such that a(E, X, B) = mld(X > z, B) and a(E, X,0) =

1+ % Moreover,

1. ifmld(X 3 z,B) > 1, thena = 3, and
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2. ifmld(X 3 z,B) = 1 and T is either a DCC set or an ACC set, then b; € T' for some finite set I'

depending only on T'.

Proof. Since n > 1, by [Kaw05, Theorem 1.3], f : Y — X is a divisorial contraction of ordinary type
as in Theorem 2.1.35(1). In particular, under suitable analytic local coordinates x1, x2, X3, T4, there exist
positive integers 71,79, b, d such that r; + 7o = adn, b € ZN [1,n — 1], ged(b,n) = 1, a = br; mod n,

and analytically locally,
1
(X > z) = (¢p(21, 29,23, 24) = 0) C (C* > 0)/ﬁ(1’_1’b’0)

for some invariant analytic power series ¢, and f : Y — X is a weighted blow-up with the weight
w = %(rl, r9,a,n). Assume that each B; is locally defined by (h; = 0) for some semi-invariant analytic

power series h;.
Sincen > N > %, we can pick positive integers s1, So, such that
® s; + 89 = 3dn,
e 3 =bs; mod n, and

® 51,89 > M.

Let w := %(81, s2,3,m). Since a > 3, by [HLL22, Lemma C.7], the weighted blow-up with the weight

W extracts an analytic prime divisor £ over X > x, such that a(E, X,0) = 1 + w(X 3> 2) = 1 +

3w

By [HLL22, Lemma C.6], we may assume that F is a prime divisor over X > z. Since a(F, X, B)

l1+w(X s2)—wB) >mld(X >2,B) > 1,

Yo > % =w(X >z) > w(B) = ZbﬂD(Bi) >0 Zw(Bi)’
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which implies that w(h;) = w(B;) < 1 for each i. Since w(x1) = 2 > 1, w(xzz) = 22 > 1, and
w(xzy) = 1, for each 1, there exists a positive integer I;, such that up to a scaling of h;, xé € h; for each i,

and w(B;) = w(h;) = w(x}). In particular,

mult; B = Zblw:cg Zbl“

and 1+ 2 > @w(B) + mld(X 3z, B) = 33, b;l; + mld(X > x, B). This implies that
mld(X 32,B)—1< > 1-21;1 (3.2.1)

On the other hand,

multg B = w(B) =Y _ biw(B; <wax3 szl,

and

a a
——mld(X>z,B)+1=w(X>3>2)—mld(X>z,B)+1=w(B) < — bil;.
@ (3 2 B) 4 1= w(X 3 0) - md(X 30, B) + 1= w(B) < T3

Combining with (3.2.1), we have

1—sz )<mld(X 3z,B)—1< = 1—Zbl (3.2.2)

7

If mld(X > z,B) > 1, then by (3.2.2), a < 3, hence a = 3. It follows that a(E, X,B) = 1+ 3 —
w(B) = mld(X > z, B) in this case. If mld(X > z, B) = 1, then by (3.2.2), 3. b;l; = 1. In particular,

w(B) =3 = w(X > x), hence mld(X > z, B) = a(E, X, B) = 1.

When mld(X > 2, B) = 1 and I is a DCC set or an ACC set, the equality >, b;l; = 1 implies that B

belongs to a finite subset I'y C T'. O

Lemma 3.2.8. Let 7 be a positive real number. Let (X > xz,B := ). b;B;) be a threefold germ, where

x € X is a terminal singularity of type cA/n for some n > f%l b; > o and Q-Cartier Weil divisors
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B; > 0, such that mld(X > z,B) > 1. Then there exists a prime divisor E over X > z, such that

a(E,X,B) =mld(X > z,B) and a(E,X,0) <1+ 3.
Proof. This follows from Lemmas 3.2.5 and 3.2.7. O

Theorem 3.2.9. Let T' C [0,1] be a DCC set. Then there exists a positive integer | depending only on T
satisfying the following.

Let (X 3 x, B) be a threefold pair such that X is terminal, B € T, and mld(X > x, B) = 1. Then there
exists a prime divisor E over X > z, such that a(E, X, B) = 1 and a(E, X,0) < 1+ L, where I is the

index of X 3 x. In particular, o(E, X,0) < 1+1.

Proof. LetY be a small Q-factorialization of X, and let Ky + By := f*(Kx + B). There exists a point
y € Y such that f(y) = x and mld(Y > y, By) = mld(X > z, B) = 1. Moreover, the index of Y 3 y
divides the index of X > x. Possibly replacing (X > =, B) with (Y > y, By ), we may assume that X is

Q-factorial.

If dimx = 2, then the theorem is trivial as we can take [ = 0. If dimx = 1, then X is smooth
near x and I = 1. By Lemma 2.1.6, if E is the exceptional divisor of the blow-up at x € X, then
a(E, X, B) =mld(X > z, B). Since a(F, X,0) = 2, we may take [ = 1 in this case.

Now we may assume that dim z = 0. By Lemma 3.1.4, there exists a terminal blow-up (see Definition

3.1.3) f: Y — X of (X > x, B) which exactly extracts a prime divisor £ over X > z. We may write
a
Ky — YE = f"Kx

for some positive integer a. Moreover, we may assume that a > 5.

By Theorem 2.1.35, f is a divisorial contraction of ordinary type. If z € X is a terminal singularity

of type other than cA/n, then I < 2, and the theorem follows from Lemma 3.2.1. If € X is a terminal
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singularity of type cA/n, then by Lemma 3.2.7, there exists an integer N’ depending only on I", such that if
n =1 > N, then there exists a prime divisor £ over X 3 z with a(E, X, B) = land a(F, X,0) =1+ 2.

Hence when I > N’, we may take [ = 3, and when I < N’, the theorem follows from Lemma 3.2.1. O
3.3 ACKC for Threefold Canonical Thresholds

The main goal for this section is to show Theorem 1.2.10.

Theorem 3.3.1. Let ' C [0,1] be a DCC set. Then there exists a finite set Ty C T' depending only on T’

satisfying the following. Assume that

(X > 2,B:=),b;B;) is a threefold pair,

X is terminal,

b; € I" and B; > 0 are Q-Cartier Weil divisors, and

e mld(X >z, B)=1
Then b; € Ty for all i.

Proof. We may assume that dimz < 1. If dimz = 1, then X is smooth near z. By Lemma 2.1.6,
mld(X > z,B) =2 — ), b;mult, B; = 1 and mult, B; € Zs for each 4, hence b; belongs to a finite
set 'y C I" depending only on I'. If dim x = 0, then we let n be the index of X > x. By Theorem 3.2.9,
there exists a prime divisor E over X > z such that a(F,X,B) = a(E, X,0) — multg B = 1 and
a(E,X,0) = 1+ £ for some a < I, where [ is a positive integer depending only on I'. By [Kaw88,
Lemma 5.1], multg B; = %ci for some positive integers c¢;. It follows that % = %Z:’;l ¢;b;. Thus

b; € I'yp C T for all 7 for some finite set I'g C I" depending only on I'. O
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As a consequence of Theorem 3.3.1, we show the ACC for ct(X > z, B; D) for terminal threefold

singularities z € X.

Theorem 3.3.2. LetT" C [0, 1], TV C [0, +00) be two DCC sets. Then the set

{ct(X 3 2,B;D) | dim X =3, X isterminal, BeT, D €'}

satisfies the ACC.

Proof. Pickt € {ct(X 3 x,B;D) | dimX = 3, X isterminal, B € I, D € I'"}. Then there exists a
threefold pair (X > x, B) and an R-Cartier R-divisor D € I"\{0} on X, such that X is terminal, B € T,
andt = ct(X >z, B; D).

We only need to show that ¢ belongs to an ACC set depending only on I' and I''. By [HMX 14, Theorem
1.1], we may assume that mld(X > z, B + tD) = 1, and there exists a prime divisor F over X > z such
that a(E, X, B +tD) = 1. Possibly replacing X with a small Q-factorialization X’ and replacing x with the
generic point of centerx/ E, we may assume that X is Q-factorial. By Theorem 3.3.1, B + ¢t D belongs to a

finite set depending only on I" and TV, hence ¢ belongs to an ACC set depending only on I" and T". O

Proof of Theorem 1.2.10. Let (X, B) be a canonical threefold pair and D > 0 a non-zero R-Cartier R-divisor
on X, suchthat B €T and D € T”. Let t := ct(X, B; D). We only need to show that ¢ belongs to an ACC
set.

We may assume that ¢ > 0. In particular, (X, B) is canonical. By [BCHM 10, Corollary 1.4.3], there
exists a birational morphism f : Y — X that exactly extracts all the exceptional divisors F over X such that
a(E, X,0) = 1. Since (X, B) is canonical, X is canonical, hence Y is terminal and a(F, X, B +tD) =1
for any f-exceptional divisor E such that a(E, X,0) = 1. We have Ky + By +tDy = f*(Kx + B +tD),

where By, Dy are the strict transforms of B, D on Y respectively. Possibly replacing (X, B) and D with
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(Y, By') and Dy respectively, we may assume that X is terminal.

Now there exists a point z on X such that t = c¢t(X > =z, B; D). Theorem 1.2.10 follows from Theorem

33.2. m
3.4 Uniform Canonical Rational Polytopes

[HLS19] established a general theory to show the boundedness of complements for DCC coefficients from
the boundedness of complements for finite rational coefficients. We will follow this theory in our paper. As
the key step, we need to show the existence of uniform canonical rational polytopes in this section. Recall that
the proof of the uniform lc rational polytopes [HLS19] is based on some ideas in the proof of accumulation
points of 1c thresholds [HMX14], which relies on applying the adjunction formula to the Ic places. Our proof

is quite different from [HLS19] as we could not apply the adjunction formula to canonical places.

Lemma 3.4.1. Let I, c, m be three non-negative integers, 1, . . . , ¢ real numbers such that 1,71, ...,7. are
linearly independent over Q, and sy, . . ., S, : Rt — R Q-linear functions. Let v := (11,...,7.). Then
there exists an open subset U C R depending only on I,r and s1,. .., sy, such that U > r satisfies the
following.

Let x € X be a terminal threefold singularity such that I K x is Cartier near x, By,..., B, > 0

Weil divisors on X such that (X > z,B := B(r)) is lc and mld(X > z,B) > 1, where B(v) :=

Z;":l s;(1,v)Bj for any v € R Then (X > z, B(v)) is Ic and mld(X > z, B(v)) > 1 forany v € U.

Proof. By [HLS19, Theorem 5.6], we may pick an open subset Uy C R€ such that » € Up and (X > x, B(v))
is Ic for any v € Up. By [Kaw88, Lemma 5.1], IB; is Cartier near x for 1 < j < m, we may write

B=3"", MIB]». By [Nak16, Theorem 1.2], {a(FE, X, B) | centerx E = x} belongs to a discrete set
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depending only on I, r and s, . . ., S;,,. In particular, we may let
o :=min{a(E, X, B) | centerx E =z, a(E, X, B) > 1}.

Now we let

1 -1
U::{—r—i—a
a

Vo | Vg € Uo}.

We show that U satisfies our requirements. For any prime divisor E over X 3 «, if a(F, X, B) = 1, then
a(E, X, B(v)) = 1forany v € U as rq, ..., 7. are linearly independent over Q. If «(E, X, B) > 1, then
a(E, X, B) > . By the construction of U, for any v € U, there exists vy € Uy such that v = 17 + 2Ly,

Hence

a—1

a(E,X,B(v)) = éa(E,X,B) + a(E, X, B(vg)) > 1.

It follows that mld(X > x, B(v)) > 1 forany v € U. O

Lemma 3.4.2. Let (X > z, B) be a threefold pair such that X is Q-factorial and x € X is a terminal
singularity of type cA/n. Assume that mld(X > z, B) > 1 and | B] # 0. Then B = | B] is a prime divisor,

Kx + B is Cartier near z, and mld(X > z,B) = 1.

Proof. Let S C | B] be a prime divisor. By Theorem 2.1.13(2), B = |B] = S and mld(X > z,B) = 1.
If n = 1, by [Kaw88, Lemma 5.1], Kx + B is Cartier near x. We may assume that n > 2. By [Kaw05,
Theorem 1.3], Theorem 2.1.35(2), and [HLL22, Lemmas C.6 and C.7], there exist analytic local coordinates
x1, %2, X3, x4 and a positive integer d, such that analytically locally, x € X is a hyperquotient singularity of
the form

(X 5 2) = (¢ 1= 212 + g, 24) = 0) C (C* 3 0)/%(1, Z1,,0),

where b € [1,n — 1] N Z and ged(b,n) = 1. Moreover, the weighted blow-up with the weight w :=

L(s1,dn — s1,1,n) extracts a prime divisor E such that a(E, X,0) = 1+ 1, where s; € [1,n — 1] NZ
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and bs; =1 mod n. Let h be a semi-invariant analytic power series which defines S. Since a(E, X, S) =
a(E,X,0) —multp S =14+ L —multp S > 1, wh) = multg S = 1, andif s; = 1 (resp. dn — s; = 1),
then either x5 € h or 1 € h (resp. 2 € h) up to a scaling of h. If s; = 1 (resp. dn — s; = 1), then
b =1 (resp. b = —1), and the analytic Cartier divisor (z3 = 0) is linearly equivalent to (x; = 0) (resp.

(x2 = 0)), hence the Q-Cartier divisor (h = 0) is linear equivalent to the Q-Cartier divisor (z3 = 0). By

[Rei87, (6.4)(B.1)] and Lemma 2.1.10, K x + S is Cartier near x. O
Theorem 3.4.3. Let ¢, m be two non-negative integers, 11, . .., 7. real numbers such that 1,71, ...,r. are
linearly independent over Q, and sy, . . ., $;, : Rt — R Q-linear functions. Let v := (r1,...,7.). Then
there exists an open subset U C R depending only on v and s1, ..., Sy, such that U > r satisfies the
following.

Let X be a terminal threefold, x € X a point, B1,...,B,, > 0 distinct Weil divisors on X, and

B(v) := 3", 5;(1,v)Bj forany v € R°. Assume that (X > z, B := B(r)) islcand mld(X > z, B) > 1.
Then (X > x,B(v)) is lc and mld(X > z, B(v)) > 1 for any v € U. Moreover, if mld(X > z,B) > 1,

then we may choose U so that mld(X > z, B(v)) > 1 forany v € U.

Proof. Possibly replacing X with a small Q-factorialization, we may assume that X is Q-factorial.

By construction, we may assume that s; (1,7) > 0 for each j. If dim & = 2, then the theorem is trivial. If
dim z = 1, then X is smooth near z. By Lemma 2.1.6, mld(X > z, B) = 2—mult, B > 1, thus mult, B =
>oity 8i(1,7) mult, B; < 1, where mult,, Bj are non-negative integers. Hence 7" | s;(1, r) mult, B; <
1 — € for some ¢y € (0, 1) depending only on r and 1, . .., Sp,. By Lemma 2.1.6, mld(X > z, ﬁB) >1,
hence we can take U := {v | 0 < s;(1,v) < ﬁsj(l, r) for each j} in this case. Hence we may assume

that dim x = 0.

If | B] # 0, by [Rei87, (6.1) Theorem] and Lemma 3.4.2, we may assume that 12K x is Cartier near x, and
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the theorem follows from Lemma 3.4.1. Thus we may assume that | B| = 0. By [BCHM10, Corollary 1.4.3],
there exists a birational morphism f : Y — X from a Q-factorial variety Y that exactly extracts all the
exceptional divisors F' over X > x such that a(F, X, B) = 1. In particular, a(F, X, B(v)) = 1 for all
v € RC. It follows that f*(Kx + B(v)) = Ky + f. 1 B(v) for all v € R¢. Hence it suffices to prove the
theorem for all pairs (Y > y, f. 1 B), where y € f~(z) is a closed point. From now on, we may assume

that mld(X > z, B) > 1.

By [Rei87, (6.1) Theorem], if z € X is a terminal singularity of types other than cA/n, then the index of
X 3 xis < 4, and the theorem holds by Lemma 3.4.1. From now on, we may assume that z € X is of type

cA/n.

Claim 3.4.4. There exist a positive integer N and a positive real number ¢ depending only on r and
81, - - -, Sm Satisfying the following.

For any terminal threefold singularity x € X of type cA/n and B := 37", s;(1,r)Bj, where B; > 0
are Q-Cartier Weil divisors on X and |B] = 0, if mld(X 3> z,B) > landn > N, thent := ct(X >

z,0;B) > 1+e.

We proceed the proof assuming Claim 3.4.4. By Lemma 3.4.1, we may assume that n > N. By
Claim 3.4.4, ¢t > 1 + ¢, hence we can take U := {v | 0 < s;(1,v) < (1 + €)s;(1,r) for each j} in this
case. Moreover, if mld(X > x, B) > 1, then possibly replacing U with {3v + 3r | v € U}, we have

mld(X 3z, B(v)) > 1forallv € U. O

Proof of Claim 3.4.4. Since mld(X > z,B) > 1,t > 1. Since |B| = 0, if [tB] # 0, thent > 1 + ¢ for
some € > 0 depending only on  and sq, . .., S;,,. Thus we may assume that |[¢B] = 0. By Lemma 2.1.12(1),
mld(X > z,tB) = 1. Since t > 1, by Lemma 3.2.8, there exists a positive integer N depending only

on r and Si,..., Sy, such that if n > N, then there exists a prime divisor E over X > =z, such that
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a(E,X,tB) =1land a(E, X,0) = 1 + £ for some positive integer a < 3. Since
— — a bt
E . X,tB)=0a(E,X,0) —multztB=1+ — — — lisi(1,7) =1,
a ) = a(E, X,0) — multg +- n§< )
where [; := nmultz B; € Z for each j, we have t 377" | 1;s;(1,7) = a. Since a, s;(1,7) belong to a
finite set of positive real numbers for any j, and [; belongs to a discrete set of positive real numbers, ¢ belongs
to a set whose only accumulation point is 0. Since ¢ > 1, there exists a positive real number € depending only

onr and sy, ..., Sm,suchthatt > 1+ €. O
3.5 Accumulation Points of Canonical Thresholds

In this section, we prove Theorem 1.2.11.

Lemma 3.5.1 ([Chel9, Lemma 2.1]). Let (X > 2) = (¢1 =+ = ¢, = 0) C (C? 3 0)/2(b1,...,ba) be
a germ, where ¢1, . . ., ¢, are semi-invariant analytic power series. Let w,w' € %Z‘io be two weights and
f:Y = X "Y' — X weighted blow-ups with the weights w,w’ at x € X respectively, such that f
extracts an analytic prime divisor E and ' extracts an analytic prime divisor E’' respectively.

Let B > 0 be a Q-Cartier Weil divisor on X such that 1 = a(E,X,ct(X > z,0;D)D), m :=

nmultg D, and m' := nmultg: D. Then for any real number j > 0 such that w' = pw (see Definition

2.1.26),

w' (X 3 x)

[um] <m’ < Lm

m].

Lemma 3.5.2. Let TS be a set of terminal threefold singularities, and
TS1:={(Z € X)| & € X is an index one cover of (z € X) € TS}.
Then the set of accumulation points of

{ct(X 52,0,D) | (z € X) € TS, D € Zsg}
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is a subset of the set of accumulation points of
{ct(X 22,0;D) | (x € X) € TS1,D € Z<o}.

Proof. Let {(X; > z;, D;)}22, be a sequence of germs, such that (z; € X;) € TS and D; > 0 are non-zero
Q-Cartier Weil divisors. Let n; be the index of the terminal singularity x; € X for each ¢. By Theorem 3.3.2,
we may assume that the sequence {¢; := ct(X; 3 x;,0; D;)} is strictly decreasing with the limit point ¢ > 0.
It suffices to show that ¢ is an accumulation point of {ct(X > x,0;D) | (z € X) € TS1,D € Z~o}. We

may assume that ¢ > 0.

We may assume that 1 > ¢; for each ¢, and by Lemma 2.1.12(1), mld(X; > z;,¢;D;) = 1. For each i,
consider the pair (X; 3 z;,¢;D;), by Lemma 3.1.4, there exists a terminal blow-up (see Definition 3.1.3)
of (X;  x;,¢;D;) which extracts a prime divisor F; over X; 5 x;. We may write a(F;, X;,0) = 1+ %
and multg, D; = % for some positive integers a;, m;. Set t; := lct(X;, 0; D;) for each i, then we have
ci = ;—1 and t; < % Since {c¢;}5°, is strictly decreasing and ¢ > 0, lim;, ;o m; = +oo and

lim; 4o a; = +00. In particular, possibly passing to a subsequence, we may assume that a; > 3 for all i.

Since ¢; > ¢, by Lemma 3.2.7(2) and [Rei87, (6.1) Theorem], n; < max{4, %} for all 4.

Possibly shrinking X; to a neighborhood of z;, we may assume that (X;, ¢; D;) is Ic for each i. It follows
that

. a; . . a; +n;
c= lim — < lim ¢ < lim —— =g,

i—+00 My; i—+00 i——+00 m;
hence ¢ = lim;_, 4 oo ;.
For each 1, let 7; : ()?Z > Z;) — (X; > z;) be the index one cover of x; € X;. Set D; = w{lDi,

Ci = ct()N(,» > 7,;,0; lN)l) and t; := 1ct()~(i, 0; 51) Possibly shrinking X; to a neighborhood of z; again, we
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may assume that (Xi, éiDi) is lc. By [KM98, Proposition 5.20], t; =t; and &; > ¢;. Now

c= lim t;= lim ¢ > lim ¢ > lim ¢ =c,
1—+o00 1—+o00 1—+o00 1—+00
which implies that ¢ = lim;_, y o G;. O

Theorem 3.5.3. Let T be the set of all terminal threefold singularities. Then the set of accumulation points of
CTy=A{ct(X32,0;D) | (x€ X) €T, D€ Zso}
is {0} U{% | k € Z>2}. Moreover, 0 is the only accumulation point of

CT 1 pomon/n = {ct(X 5 2,0 D) (x € X) €%, (x € X) is neither smooth nor } .

of type cA/n for any n € Z~o, D € Z~y,

Proof. Step 0. By [Stell, Theorem 3.6], {0} U {+ | k € Z>2} is a subset of the set of accumulation
points of CT;. For any (z € X) € T, let D > 0 be a non-zero Q-Cartier Weil divisor on of X. Then
ct(X 2 2,0,kD) = ct(X > z,0; D) for any positive integer k, hence 0 is an accumulation point of
CTt,£sm,cA/n-

It suffices to show the corresponding reverse inclusions. Let ¢ > 0 be an accumulation point of C7 ;. We
will finish the proof by showing that c is not an accumulation point of CT, g, A/ in Step 2 and ¢ = =

for some positive integer k in Step 3.
Step 1. By Theorem 3.3.2, ¢ < 1. Let k be a positive integer such that l%‘,—l <c< % Consider the set
p
Ik) = {; ‘ D, qc Z>07p S 16(k + 1)2}7

which is discrete away from 0. By Theorem 3.3.2, there exists a positive real number ¢, such that for any
delCTif0<|c—d|<ethene<d < %,andc’ ¢ I.

By Lemma 3.5.2, there exists a Gorenstein terminal threefold singularity x € X and a non-zero Q-Cartier
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Weil divisor D > 0 on X, such that 0 < |¢ — ct(X > z,0; D)| < e. We have ¢ < ct(X 2 2,0;D) < 1
and ct(X > x,0; D) ¢ Ij. Let Dy := ct(X 2 x,0; D)D. By Lemma 2.1.12(1), mld(X > z, Dy) = 1. By
Lemma 3.1.4, there exists a terminal blow-up f : Y — X of (X > x, Dy) which extracts a prime divisor
Eover X > z,and Ky = f*Kx +aE, f*D = f-'D + mFE for some positive integers a, m. We have
ct(X 5 2,0;D) = 2. Ifa < 4ora | m,then = € I, a contradiction. Hence a > 5 and a { m. By
Theorem 2.1.35, f is a divisorial contraction of ordinary type as in Theorem 2.1.35(1-3) when = € X is not

smooth or as in [Kaw01, Theorem 1.1] when x € X is smooth.

Step 2. We show that = € X is either smooth or of type cA in this step. In particular, by Theorem 3.5.2, ¢ is

not an accumulation point of C7 ¢ £em,cA/n-

Otherwise, by Theorem 2.1.35, X is of type cD, and there are two cases:

Case 2.1. f is a divisorial contraction as in Theorem 2.1.35(2.1). In particular, under suitable analytic local

coordinates x1, X2, T3, T4, We have
(Xo2)=(p:= x% + x19(xs3,24) + x§x4 + A:@x% + px% + p(xe,x3,24) =0) C ((C4 3 0)

for some analytic power series ¢ as in Theorem 2.1.35(2.1), and f is a weighted blow-up with the weight
w = (r + 1,7,a,1), where r is a positive integer, 2rr + 1 = ad for some integer d > 3, and « is an odd
number. We have w(X 3 z) = a and w(D) = m.

Since a f m, ct(X 3 2,0; D) € (337, 1), and we have

2 1 1 1
T zgzct(XSx,O;D)E(
m

md

hence k(2r+1) < dm < (k+1)(2r+1). Consider the weighted blow-up f : Y/ — X (resp. f” : Y" — X)
at z € X with the weight w’ := (d,d,2,1) (resp. w” ;= (14+r —d,r —d,a — 2,1)). Since a — 2 > 3, by

[HLL22, Lemma C.8(1)], f extracts an analytic prime divisor, and w” (X > x) = a — 2. Since a > 5, by
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[HLL22, Lemma C.8(2)], f extracts an analytic prime divisor, and w’(X > z) = 2. Since w’ = ﬁdlw and

w” = 4w, by Lemma 3.5.1, | 2m] > [45m] and [42m| > [“=4m]. Thus

2 a—2 d r—d dm
=12 > > m— —2"
m LamJ+L - m| > [r+1m " m] > [m T+ D)

1,

where the first equality follows from a { 2m as a t m and a is an odd number. It follows that r((ﬁﬁn > 1.
Hence (k+1)(2r +1) > dm >r(r+1) > r(r+ 4),and r < 2(k + 1). Since 2r + 1 = ad, a < 4k + 4.

Therefore, ct(X > 2,0; D) = = € Iy, a contradiction.

Case 2.2. f is a divisorial contraction as in Theorem 2.1.35(3.1). In particular, under suitable analytic local

coordinates x1, x9, 3, T4, T5, We have

¢1 := 2% + zox5 + p(22, 73, 74) = 0
P2 = wowy + 24 + q(v3,24)T4 + 5 =0

(Xaa;)%< )C(C590)

for some analytic power series ¢1, ¢ as in Theorem 2.1.35(3.1), and f is a weighted blow-up with the weight
w:= (r+1,ra,1,7 + 2), where r is a positive integer such that » + 1 = ad and d > 2 is an integer. We
have w(X > z) = a and w(D) = m.

Since a f m, ct(X 3 #,0; D) € (337, 1) and we have

) 11
L 2 (X 32,0:D) € (s 1),
m

dm

hence k(r + 1) < dm < (k+ 1)(r +1). Consider the weighted blow-up f’ : Y' — X (resp. f”: Y" — X)
at x € X with the weight w’ := (d,d, 1,1,d) (resp. w” :== (r+1—d,r —d,a—1,1,7 + 2 — d)). Since
a — 1 > 4, by [HLL22, Lemma C.9(1)], f” extracts an analytic prime divisor, and w” (X > z) = a — 1.
Since a > 5, by [HLL22, Lemma C.9(2)], f’ extracts an analytic prime divisor, and w’(X > z) = 1. Since

w = %w and w” = “~%w, by Lemma 3.5.1, [1m] > [%ml and [“=Lm| > [==¢m]. Thus

1 a—1 d r—d 2dm
1= > > [m— =2
m LamJ+L - m| > [r+2m . m] > [m "+ 2)

1,
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where the first equality follows from a { m. This implies that T(ij:;) > 1. Hence (k +1)(r+1) > dm >
tr(r+2)>ir(r+1),andr < 2(k+1). Since r + 1 = ad, a < 2k + 2. Therefore, ct(X > z,0; D) =

% € I, a contradiction.

Step 3. We show that ¢ = k%‘_l in this step.

By Step 1, Step 2, [KawO1, Theorem 1.1], and Theorem 2.1.35, there are two cases.

Case 3.1. € X is smooth, and under suitable analytic local coordinates x1, x2, x3, f is a weighted blow-up
with the weight w := (1, r1,72) for some positive integers 71,72, such that ged(r1,7r2) = 1. Now n = 1,
a =ry+ry and ct(X 3 z,0;D) = %, such that 7y + ro ¥ m. Possibly switching x5, x3, we may

assume that r; < r5. By [Chel9, Proposition 3.3(1)],

when r; > 2. When r{ = 1, we have

1 1
(X 32,0;D) <1< — 4 —.
71 T2

Since a f m, ct(X 3 x,0; D) € (457, 1) and we have = + - > o and ry < 2(k+1). If k +2 <7y,
then ry < (k+1)(k+2) and a = r1 4+ ry < 16(k + 1)2. It follows that ct(X > #,0; D) = 22 € [} a

contradiction. Hence 1 < r; <k + 1.

Consider the weighted blow-up with the weight w’ := (1,71, 79 — 1). This weighted blow-up extracts
an analytic prime divisor E’ that is isomorphic to P(1,71,72 — 1), and w'(X > z) = r1 + 72 — 1. Since

w' = T‘ZT—_lw, by Lemma 3.5.1,
2

-1 -1
1+ 1o mJZ[Tz

m—(k+1)=| R -

m],

where the equality follows from —— € (k,k + 1). It follows that = k+1land (k+1ro <m<

r1+72

59



(k+1)(r1 + r2). Thus ct(X > z,0; D) belongs to the set

7’1+7"2

{

|1, r0,m €Z,1<ry <k+1,m <ro,(k+1roe<m<(k+1)(r1 +12)},

1

which has only one accumulation point ;.

Case 3.2. x € X isoftype cA and f : Y — X is a divisorial contraction of ordinary type as in Theo-

rem 2.1.35(1). In particular, under suitable analytic local coordinates x1, x2, 3, T4, we have

(X 2 2) = (¢ :=z122 + g(23,74) = 0) C (C* 3 0)

for some analytic power series ¢ as in Theorem 2.1.35(1), and f is a weighted blow-up with the weight
w := (r1,72,a,1), where r1, 72, d are positive integers such that 7y + ro = ad. We have w(X > z) = a and

w(D) = m. By [Chel9, Proposition 4.2],

a r r 1 1
ct(X 32,0;D)=— = 1+2§7+7.
m dm L To
Possibly switching z1, r2, we may assume that 71 < 7. Since a | m, ct(X 3 z,0; D) € (k%rl, %),

and we have % + % > k%‘_l, hence r; < 2(k+1). If k +2 < ry, then r; < (k + 1)(k + 2), hence

a < 11+ re < 16(k + 1)%, which implies that ct(X > x,0; D) = % € I, a contradiction. Hence

m

1< <k+1

Consider the weight w’ := (11,72 —d,a—1,1). By [HLL22, Lemma C.7], the weighted blow-up with the

Tz*d

weight w’ extracts an analytic prime divisor, and w’(X 3 x) = a — 1. Since w’ = =w, by Lemma 3.5.1,

a—1 ro —d
>
" m| > -

m— (k1) = m],

where the equality follows from =+ < (k,k + 1). It follows that dr—;” >k+4+1land (k4 1)rs < dm <
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(k+1)(r1 + r2). Thus ct(X > z,0; D) belongs to the set

{Tl T | 71,72, d,m € Zso, 1 <711 <k+1,r1 <ro,(k+ Dre <dm < (k+1)(r1 +12)},
which has only one accumulation point 7. O

Proof of Theorem 1.2.11. Let X be a canonical threefold and D > 0 a non-zero Q-Cartier Weil divisor
on X. Consider the pair (X, Dy := ct(X,0; D)D). For any exceptional prime divisor F' over X such
that a(F, X,0) = 1, we have a(F, X, Dy) = 1. By [BCHMI10, Corollary 1.4.3], there exists a Q-factorial
variety X’ and a birational morphism g : X’ — X that exactly extracts all exceptional divisors F' such that
a(F,X,0) = 1. By construction, X’ is terminal and K x + g, ' Dy = g*(Kx + D), hence ct(X, 0; D) =
ct(X’,0; g1 D). Possibly replacing (X, D) with (X', g; 1 D), we may assume that X is terminal.

Now either c¢t(X,0; D) = 1 ort := ct(X,0; D) = ct(X > 2,0; D) < 1 for some point z € X of

codimension > 2. If dimx = 1, then by Lemma 2.1.6, mld(X > z,tD) = 2 — mult, tD = 1, hence

1

=D € {L | m € Zso}. If dimz = 0, by Theorem 3.5.3, we are done. O

3.6 ACC for Minimal Log Discrepancies on |1, +00)

In this section, we prove the following theorem:
Theorem 3.6.1. LetT' C [0,1] be a DCC set. Then the set

{mld(X >z, B) | dim X = 3, X is terminal near x, B € T'} N [1, +00)
satisfies the ACC.

Proof of Theorem 3.6.1. Step 1. Suppose that Theorem 3.6.1 does not hold, then there exists a sequence

of threefold pairs {(X; > z;, B;)}2,, where X is terminal and B; € T for each 4, such that {mld(X; >
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xi, B;)}2, C (1, +00) is strictly increasing. Possibly replacing X; with a small Q-factorialization, we may
assume that X, is Q-factorial. If dim x; = 1, then by Lemma 2.1.6, mld(X; > x;, B;) = 2 — mult,, B;,
which belongs to an ACC set. Possibly passing to a subsequence, we may assume that dim z; = 0 for each <.
[Amb99, Theorem 0.1], we may let 8 := lim;_, 4 oo mld(X; > z;, B;). By Theorem 2.1.13, possibly passing
to a subsequence, there exists a non-negative integer p, such that B; := 2’:1 b; ; B; ; for each ¢, where B; ;
are distinct prime divisors. Set b; := lim; 4 o b; j for 1 < j < pand B; = Z§:1 b; B; ; for each i.

Let n; be the index of X; > x;. By [Sho92, Appendix, Theorem], if n; > 2, then there exists a prime

divisor F; over X; > x;, such that a(F;, X;,0) = 1 + =-. Thus

1
1+ — > CL(FZ,X“Bl) > mld(Xl > 1’1731) > mld(X1 > 1171,B1) > 1,

n;

1

and n; < S E ST

Hence, possibly passing to a subsequence, we may assume that there exists
a positive integer n such that n; = n for all <. By [Kaw88, Lemma 5.1], nD; is Cartier near z; for any

Q-Cartier Weil divisor D; on X; and for each i.

By [Amb99, Theorem 0.1] and Theorem 3.3.2, 1 < mld(X; > z;) < 3. By [Nakl6, Corollary 1.3],

{mld(X; > ;,B;) | i € Z=o} C [1,3] is a finite set. Possibly passing to a subsequence, we may assume

that there exists a positive real number o > 1, such that mld(X; 3 x;, B;) = a < § for all 7.

Step 2. In this step, we show that for each i, there exists a prime divisor F; over X; 3 z;, such that
a(E;, X;, B;) = mld(X; 3 x4, B;) = a, and a(E;, X;,0) < [ for some positive real number ! depending
only on {b;}%_,.

By Lemmas 3.2.1, 3.2.4, 3.2.5, and Theorem 3.2.9, it suffices to show that if @ > 1, then either x; € X

is smooth or is of cA/n type for all but finitely many :.

Otherwise, a > 1, and possibly passsing to a subsequence, we may assume that z; € X, is neither

smooth nor of ¢A/n type for each i. Let F; be a prime divisor over X; > x;, such that a(E;, X;, B;) =
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mld(X; > x;, B;). By Theorem 3.4.3, there exist a positive integer m depending only on {b;}"_,, and

Q-Cartier Q-divisors Bl’- > 0 on X, such that for each i,

1. mB/ is a Weil divisor,

2. mld(X; 3 z;, B}) > 1, and
3. a(E;, Xy, BY) < a(F;, X4, B;) < mld(X; > x;, B;).

Since lim;_, 1 oo mld(X; 3 ;, B;) = f3, by [Nak16, Theorem 1.2], possibly passing to a subsequence, we
may assume that there exists a positive real number v, such that o < a(E;, X;, B;) = v < mld(X; 3 21, By)

for each 7.

By Lemma 2.1.12(2), t; := ct(X;  z;,0; B) > 1 for each i. We have

v — (t; — 1) multg, B{ > a(Fy, Xi, B;) — (t; — 1) multg, BZ’ =a(E;, X;,t;B}) > 1,

which implies that #; — 1 < —23=1 Since

multg, (B; — B;) = a(E;, X;, B;) — a(E;, X;, B;) > mld(X; 3 21, By) — v > 0,

lim;_, 4 oo multy, B; = +0o. Thus lim,_, o multg, Bg = +4o0 as a(E;, X;,Bl) < a(FE;, X, B;). Tt

3

follows that lim;_, 4 o t; = 1. Hence ct(X; 3 @;,0;mB]) > L, and lim;_, ;o ct(X; 3 z;,0;mB]) = L+

m’

which contradicts Theorem 3.5.3.

Step 3. By Step 2, mult; B; = a(E;, X;,0)—a(E;, X, B;) < I—f. Thus lim; , o mult 5 (B;—B;) = 0.

Hence

a:mld(Xiax“Bi)Jr,hgl mult; (B; — B;) = lim a(E;, X;, B;)
i—~400 *

1—+00

> lim mld(X; 3 z;, B;) = 0,

T i—+oo
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a contradiction. O

As a direct corollary, we have Theorem 1.2.9:

Proof. We follow the argument in [BS10, HLS19]. Suppose that the theorem does not hold. Then there
exist a sequence of threefold a-lc germs (X; 3 z;, B;) such that X; is terminal and B; € T', and a strictly
increasing sequence of positive real numbers ¢;, such that for every i, there exists an R-Cartier R-divisor
D; on X, such that D; € TV and ¢; = a-lct(X; D x;, By; D;). Itis clear that ¢ := lim; - ¢; < +00. Let
a; = mld(X; > z;, B; +tD;). By Theorem 3.3.2, possibly passing to a subsequence, we may assume
that a; > 1. Let {¢; }22, be a strictly decreasing sequence which converges to 0, such that 0 < ¢; < 1 and
t:=t; + € (t —t;) € (;,t;41) for any 4. Then all the coefficients of B; + t;D; belong to a DCC set. By
Theorem 3.6.1, the sequence {mld(X; > z;, B; + t;D;)}5°, satisfies the ACC. By the convexity of minimal

log discrepancies, we have

a > mld(Xz >z, B + t;Dl)

t—t, t—t
= mld(X1 S Iy, 1Z—7t(Bz + tDi) + i tz- (Bz + tiDi))
t;- —t; t— tg
> ﬁmld(Xi >z, B;+tD;) + ro— mld(X; 3 z;, B; + t;D;)

t;—ti t—t;a_a (t;—ti)(a—ai)

a; = —
t—t; t—t; t—1t;

v

=a— Q(CL — ai) Z (]. — ei)a.

Therefore, possibly passing to a subsequence, we may assume that mld(X; > z;, B; + t;D;) is strictly
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increasing and converges to a, which contradicts Theorem 3.6.1.
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Chapter 4

Boundedness of Canonical
Complements for Threefolds

4.1 Boundedness of Indices for Strictly Canonical Germs

Definition 4.1.1. Let (X > z, B) be pair. We say that (X > x, B) is strictly canonical if mld(X > z, B) =

1. We say that (X, B) is strictly canonical if mld(X, B) = 1.

Lemma 4.1.2. Let (X > x, B) be a strictly canonical germ such that B is a Q-divisor. Let f : Y — X be
a birational morphism which extracts a prime divisor E over X > x such that a(E, X, B) = 1. Then the
following holds.

Let m,, be the maximal ideal sheaf for x € X, m the smallest positive integer such that mB is a Weil

divisor, and r the smallest positive integer such that rm(K x + B) is Cartier near x. Then for any i € Z,

m,Ox (im(Kx + B)) ifr|i,

fOy (im(Ky + By) - E) = {Ox(im(Kx-i-B)) ifrii

where Ky + By = f*(Kx + B).
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Proof. If r | i, then by the projection formula,
f+Oy(im(Ky + By) — E) = f,Ox(—F) ® Ox(im(Kx + B)) = m,;Ox (im(Kx + B)),
where the last equality follows from
[0y (=E)(U) = {u e K(X) | (v) = E)| -1y = 0} = {u € Ox(U) | multy (u) > 0},

where U is an arbitrary open neighborhood of € X, K (X) is the field of rational functions of X, and (u)

is the Cartier divisor defined by the rational function .

If r {4, then f,Oy (im(Ky + By) — E)(U) C Ox(im(Kx + B))(U) for any open set U C X as

J[:Oy (im(Ky + By) — E)(U) = {u € K(X) | (v) +imf*(Kx + B) — E)|j-1y > 0}, and

Ox(im(Kx + B))(U) = {u € K(X) | ((u) +im(Kx + B))|v = 0}.

Suppose that u € K (X) satisfies ((u) +im(Kx + B))|y > 0. Since r t 4, (u) +im(Kx + B) is not Cartier
at x, so there exists an effective Q-Cartier Weil divisor D passing through x such that ((u) + im(Kx + B) —
D)|y > 0, which implies that ((u) + im(Ky + By) — f*D)|;-1() > 0. Since E C Supp(f*D), we
obtain ((u) + im(Ky + By) — E)|s-1y > 0. Thus f.Oy (im(Ky + By) — E) = Ox(im(Kx + B))

in this case. O

Notation (%). Let f : Y — X be a divisorial contraction of a prime divisor E' over X > x as in Theo-
rem 2.1.35(1) (see also [Kaw05, Theorem 1.2(1)]). Recall that in this case, x € X is a terminal singularity of

type cA/n. In particular, under suitable analytic local coordinates x1, X2, T3, 24,

(X 32) = (§:= w12+ (a8, 2) = 0) © (C* 3 0)/-(1,~1,b,0),
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where b € [1,n — 1] N Z such that ged(b,n) = 1 and f is a weighted blow-up with the weight w =

%(7‘1, r9,a,n) for some positive integers a, r1, 2, such that an | r1 + 79 and @ = br; mod n.

Let J’ be the Reid basket for f : Y — X (see Definition 2.1.20). By [Kaw05, Theorem 1.2], we
have three cases: J' = 0, J' = {(rg,, 1)g/}, or J' = {(rb,l, Days (T’Q,z, 1)@, }» where T'Q/,rb,l,r’Q/z €
Z>o, and @', Q, Q) are fictitious singularities (see Definition-Lemma 2.1.17). In the case when J' =
{(7“22,1 ;Days (r’Q,Z, 1), }> @1, @5 come from two different non-Gorenstein points on Y. In the following, we
introduce the set J := {(rq,,1)0,, (rg,,1)q, } for f, here @1, Q2 may not be fictitious cyclic quotient singu-
larities any more as they could be smooth points. We let 1, ()2 be any smooth points on Y and (rg,, rg,) :=
(1,1) when J" = ), Q; any smooth closed point on Y, Q2 = Q" and (rq,,7q,) := (1,75,) when J' =

{(ro/, Do} and @1 := @1, Q2 := QY. (rQ,, 7q.) = (rg . g, ) when J" = {(rg,, gy (g, Dy b

Lemma 4.1.3. With Notation (x). Up to a permutation, we have rg, = 11 and rq, = rq. Moreover, Q1, Q2

are indeed singularities (possibly smooth) on 'Y .

Proof. By [Kaw(05, Theorem 6.5, Page 112, Line 12-14] and [CH11, Proposition 2.15, Page 9, Line 15], there

are two cyclic quotient terminal singularities Py, P, € Y of type %(1, —1,b1), %(17 —1, b) respectively

and possibly a cA/n type singularity P; € Y. By [Kaw05, Theorem 4.3], possibly changing the order of the

indices, @1, Q2 are P;, P, on Y respectively. It follows that rg, = r1, and rg, = 7. O

Lemma 4.1.4. Ler (X > xz, B) be a threefold germ and B a Q-divisor, such that X is terminal and
mld(X 3 z,B) = 1. Let f : Y — X be a divisorial contraction of a prime divisor E over X > x as in
Notation (%), such that a(E, X, B) = 1. Let m be the smallest positive integer such that m B is a Weil divisor

near x, and r the smallest positive integer such that rm(Kx + B) is Cartier near x. Then r | gcd(r1,72).

Proof. Possibly shrinking and compactifying X, we may assume that X is projective and terminal. In

68



particular, Y is also projective and terminal. For each r € Z~( and 7 € Z, we define

1 if )
5,60 =L i
0 ler.

Let D; ,, := im(Ky + By ) = imf*(Kx + B) foreach i € Z. Since E is Q-Cartier, by [KM98, Proposition

5.26], we have the following short exact sequence

0— Oy(Di)m — E) — Oy(Diym) — OE(Dz,m‘E) — 0.

Since D; ., — E and D; ,, are both f-big and f-nef, by the Kawamata-Viehweg vanishing theorem
[KMM87, Theorem 1.2.5], R/ f,Oy (D; , — E) = R f,Oy(D; ) = 0 for all j € Z~g. It follows that

hI(Og(D; m|E)) = 0forall j € Z~o. By Lemma 4.1.2,
6-(i) = h°(Ox (im(Kx + B))/ f.Oy (im(Ky + By)) — E))
= h°(O(Dim|r)) = X(Op(Dim|r))
= X(Oy (Dim)) = X(Oy (Dim — E)).
For each fictitious singularity () € Y of some closed point on Y,

(D1,m)q ~ dqKy, and Eq ~ fqoKy,

near ) € Yy for some integers fq,dg € [1, rg], where Yy is the deformed variety on which () appears as a
cyclic quotient terminal singularity, and Eq, (D; )¢ are the corresponding deformed divisors on Yo, (see

Definition-Lemma 2.1.17). By Theorem 2.1.19,

57’(Z) = X(OY(Di,m)) - X(OY(Di,m - E)) = A1+ As + %E . CQ(X)
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with

A1 = T(Di,'m) - T(Di,m - E); AQ = Z (Cy(Di,m) - Cy(Di,’m - E))v
y€eY,dimy=0

and

T(D) = 1—12D(D — Ky)(2D — Ky).

Since D; - E> = D}, - E =D, - E- Ky =0,A = $E3 + 1 E? - Ky For any fictitious point Q, if

Eq is Cartier, then cq ((Dim)q) = ¢Q((Dim — E)qg). By Definition-Lemma 2.1.17 and Definition 2.1.20,

Ay = co(Dim) = co(Din — E) = Y (Aqlidg) — Ag(idg — fq));
QeJ QeJ

where J is defined as in Notation (x) for f : Y — X, and

By @ € J, we mean @ is a fictitious singularity that contributes to J. Here we allow ¢ < 0 if we
adopt the notation of generalized summation (see Definition 2.1.16). It is worthwhile to mention that

Ag(i) = AQ(@TQ) as ged(bg,rg) = 1. Now

(Z+1)d@ 1
8-(i+1) =Y > (Bqlibg) — Bolibg — vq))- (4.1.1)
QeJ j=idg

Here, for each ) € J, Bg(i) is an even periodic function with period r¢ defined by

By Lemma 4.1.3, J = {(r1,1)q,, (72, 1)g, }, where @1, Q2 are cyclic quotient terminal singularities

(might be smooth) on Y. It follows that

(i+1)dg, —1

or(i 1) =Y Y (Bo.liba) — Ba,(ibo, — 1)) 4.1.2)

k=12 j=idq,
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Claim 4.1.5. We have the following equality:

1 T2 }
ng(rlv dQl) ’ ng(r% sz) ’

r = lem{

We proceed the proof assuming Claim 4.1.5. Let [ := and Iy = We have

" T2
ged(ry,r2) ged(ri,ra)”

ged(lyla, 1y +15) = 1as ged(ly,la) = 1. By Claim 4.1.5, r | lem(ry, 72) = ged(r1, r2)l1l2. Since r | n and

n|r+re, 7| ged(ri,m2)(l1 + I2). Hence r | ged(ry, 72). O

Proof of Claim 4.1.5. Let A € Z such that rg, | Adg, for k =1,2. By (4.1.2),

(A+1)dg, —1

Z Z (BQk(ijk) — Bq, (.]ka —-1))

k=12 j=Xdg,

A +1) —6,.(N)

dg, —1
= Z Z (BQk (ijk) - BQk(ijk —1)) =6r(1) = 6:(0).
k=1,2 j=0

Thus r | A. By Lemma 4.1.3, | lem{ gcd(él’dQl), gcd(fid%) }.

Since 7Dy, = Tm(Ky + By) is Cartier, ry, | rdg, for k = 1,2. Thus m | r for k = 1,2, and

the claim is proved. O

Remark 4.1.6. Letn = r(4r> —2r —1),a=r,b=4r2 +2r — 1,1y = rg, = (2r — 1)?r%,dg, =
(2r —1)%r%bg, = 43 —r+ 1,1y =19, = 2r%(r — 1), dg, = 2r(r — 1), and bg, = 2r? — 1. Then
(n,a,b,r9,,dg,,b0,,7q,,dqg,,bg,) satisfies both (4.1.1) and Claim 4.1.5. Moreover, as 7 | n, gcd(b, n) =

—b
2 nTQl ,TQI) =1, (n,a,b, TQl,dQl,le77’Q2,dQ27bQ2) also

1,n|a—brg,, an | rq, + rg,, and ged(
satisfies the restrictions proved in [Kaw05, Theorem 1.2(1)]. Hence we could not show Theorem 4.1.7 by
simply applying singular Riemann-Roch formula for terminal threefold as [Kaw15a] did for the case when

B = 0, X is canonical and z is an isolated canonical center of X .

Theorem 4.1.7. LetT" C [0, 1] be a set and m a positive integer such that mI" C Z. Then the positive integer
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N := 12m? satisfies the following.

Let (X > z, B) be a threefold germ such that X is terminal, B € ', and mld(X > z, B) = 1. Then

I(Kx + B) is Cartier near x for some positive integer I < N.

Proof. Let r be the smallest positive integer such that rm (K x + B) is Cartier near .

By [Rei87, (6.1) Theorem], if 2z € X is a terminal singularity of types other than cA/n, then the index
of z € X divides 12. By [Kaw88, Lemma 5.1], 12m(K x + B) is Cartier near x. From now on, we may

assume that x € X is a terminal singularity of type cA/n.

By Lemma 3.1.4, there exists a terminal blow-up (see Definition 3.1.3) f : ¥ — X of (X > z, B)
which extracts a prime divisor F over X > z. By [Kaw05, Theorem 1.1], f is either of ordinary type or of
exceptional type.

If f is of exceptional type, then by [Kaw05, Theorem 1.3], x € X is a terminal singularity of type cA.
Hence by [Kaw88, Lemma 5.1], m(K x + B) is Cartier.

We may now assume that f is of ordinary type, and we write f*Kx + ©FE = Ky for some positive
integer a > 1. Now f : Y — X is a divisorial contraction of ordinary type as in Theorem 2.1.35(1). In

particular, under suitable analytic local coordinates x1, x2, T3, T4,

(X 52) = (6 := m1ms + glal, 24) = 0) C (C* 5 0)/%(1, ~1,6,0),

where b € [1,n — 1] N Z, ged(b,n) = 1, and f is a weighted blow-up at z € X with the weight
w = %(7‘1, ro,a,n). Now mB is a Weil divisor locally defined by a semi-invariant analytic power se-

ries (h(z1, 72,73, 24) = 0).

Claim 4.1.8. Either r < 3m, or x5* € h (up to a scaling of h).
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We proceed the proof assuming Claim 4.1.8. If » < 3m, then Im(K x + B) is Cartier for some I < 3m.
Otherwise, > 3m. By Claim 4.1.8, up to a scaling of h, we have h = z%* + p for some analytic power series
p such that \x* ¢ p for any A € C*. Recall that &, is the primitive n-th root of unity. Since h = z§* + p is

semi-invariant with respect to the &,-action: (x1, 2,3, 74) — (£nz1, &5 2o, 803, 24), En(h) /R = EMP.

Since &, (z5) /2T = €m0, &, ( x}}n) = 1 and (zim) is &,-invariant, hence (-2 ) is a rational function on X
3 3 3 3

which defines a principle divisor. Now mB = (z§* + p = 0) ~ (25" = 0) near z. Let S be the analytic

Cartier divisor locally defined by (z3 = 0) on X. By [Rei87, (6.4)(B.1)] and Lemma 2.1.10, Kx + S is

Cartier near x. It follows that m(K x + B) ~ m(Kx + S) is Cartier near x. O

Proof of Claim 4.1.8. Assume that r > 3m. By Lemma 4.1.4, r; > 3m and ro > 3m. Note also that

n>r>3m. Whena < 2,

3
w(h) = mw(B) =mw(X >z) = o
n n
Since w(zy) = 2 > 3™ for k = 1,2 and w(x4) = 1 > 22, up to a scaling of h, x € h for some | € Z~g

and w(h) = 2. Thus | = m, and the claim follows in this case.
When a > 3, we can pick positive integers s1, So such that
® 51 + s9 = 3dn,
e 3 =bs; mod n, and

® S1,S89 > n.

Let w := %(51, S2,3,n). Since a > 3, by [HLL22, Lemma C.7], the weighted blow-up with the weight w
extracts a prime analytic divisor E such that w(X > z) = =. By [HLL22, Lemma C.6], we may assume that

E is a prime divisor over X > z. Since mld(X > z,B) = 1, a(F, X,B) = 1 + w(X 2> z) —w(B) > 1,
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thus

1> = mw(X 3 x) > mw(B) = w(h).

Since w(z1) = 3+ > 1, w(w2) = 52 > 1, and w(x4) = 1, there exists a positive integer /, such that up to a

scaling of h, 2} € hand w(h) = w(z}) = 2L Since 32 > w(h) = 3!, 1 < m. On the other hand,

l
an mw(X 3 z) = w(mB) = w(h) < w(zk) = a—,
n n
which implies that [ > m. Thus [ = m, and 5" € h up to a scaling of h. O

Proof of Theorem 1.2.8. If dim x = 2, then the theorem is trivial. If dimz = 1, then X is smooth near x.
By Lemma 2.1.6, mld(X > x, B) = 2 — mult, B = ¢, hence the coefficients of B belong to a finite set of
rational numbers depending only on € and I', and the theorem holds in this case. Thus we may assume that
dim z = 0 and X is not smooth at x.

Let B; be any component of B with coefficient b;. Let f : Y — X be a small Q-factorialization, and
By the strict transform of B; on Y. We may write Ky + By := f*(Kx + B). LetY --» Z be the
canonical model of (Y, By — b1By,y) over X. Let By and B; 7z be the strict transforms of By and By y on
Z respectively. Since — Bz is ample over X, Supp B, z contains g_l(x), where g : Z — X is the natural

induced morphism. Moreover, since g is small, Kz = g* Kx and Z is terminal.

Since mld(X > x, B) = e, there exists a point z € g~ () such that mld(Z > z, Bz) = e. Then

by =elct(Z > 2,By —b1B1,z;B1,z) €T

By Theorem 1.2.9, by belongs to a finite set depending only on I'. Hence we may assume that the coefficients

of B belong to a finite set IV depending only on T

If € = 1, then Theorem 1.2.8 follows from Theorem 4.1.7. If € > 1, then we let n be the index of X > x.
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By [Sho92, Appendix, Theorem] and [Mar96, Theorem 0.1], there exists a prime divisor E over X > z such

thata(E, X,0) =14 1. Since 1 + L > a(E, X, B) > ¢,n < -5, and the theorem follows from [Kaw88,

e—1’

Lemma 5.1]. O
4.2 Boundedness of Complements for Finite Rational Coefficients

We prove Theorem 4.2.4 in this section, and Theorem 1.2.6 follows as a direct corollary. Also, for any € > 1,

we prove the existence of (e, N')-complements for terminal pairs (see Theorem 4.2.5).

Lemma 4.2.1. Let x € X be an isolated singularity such that X is affine. Let D > 0 be a Weil divisor on X

and E a prime divisor over X > x. Then there exists a finite dimensional linear system ® C |D)|, such that

1. 0 contains D,
2. the base locus of 0 is x, and

3. if D is Q-Cartier, then multg D’ > multg D for any D' € 0.

In particular, if x € X is a terminal threefold singularity such that X is affine, then there exists a finite
dimensional linear system 0 C | — K x| such that 0 contains an elephant (cf. [Rei87, (6.4)(B)]) of x € X,

and the base locus of 0 is .

Proof. Let I, be the ideal sheaf on X such that for any open setx € U C X,

{u € Ox(U) | multg(u) > 0} if D is not Q-Cartier,

Ig(U) =
=(U) {{u € Ox(U) | multg(uw) > multg D} if D is Q-Cartier,

where (u) is the Cartier divisor defined by the rational function u, and Zg(U) = Ox(U) for any open
set v ¢ U C X. Since X is affine, the coherent sheaf Ox (D) ® Zg is globally generated. Since

Ox (D) ® Ig|x\{2z} = Ox(D)|x\ () is an invertible sheaf, there exist finitely many sections s1, ..., 8, €

75



H°(X,0x(D) ® Ig), such that the linear system defined by s1, .. ., Sy, is base point free on X \{z}. Pick
s € HY(X,Ox (D) ® Zg) such that (sg) = 0. Then the linear system  defined by s, . . ., 5,,, satisfies our

requirements. O

Lemma 4.2.2. Let (X > x, B) be a canonical threefold germ such that X is affine terminal but not smooth,
m a positive integer such that mB € Z, and 0 a finite dimensional linear system whose base locus is x. Then
for any integer N > m and any general element (D1, ..., Dy) € 0V, the divisor D := sz\;1 D; satisfies

that ct(X, B; D) = ct(X > z, B; D).
Proof. Let f : Y — X be alog resolution of (X, B) such that

o f*|o| = F + |M], and

e Supp By U Supp F U Supp(Exc(f)) is snc,

where By is the strict transform of B on Y, F is the fixed part of f*|9|, and M is a base point free Cartier
divisor. Note that Supp ' C f~!(z) as 0 is base point free on X \ {z}. Let M’ := Ziil M;, where
My, -+, My are N general elements in |M|. Set D := f.(NF + M’). Then D = Zfil D;, where
D; := f.(F + M;) for each i, and (D1, ...,Dx) € 0% is a general element. Since D has N distinct
components, by Theorem 2.1.13(2), t := ct(X, B; D) < %

If | B| # 0, then B = | B] is a Q-Cartier prime divisor and ¢ = 0. By Theorem 2.1.13(2), mld(X >
x,B) = 1. Hence ct(X 3 x, B; D) = ct(X, B; D) = 0 in this case.

If |[B] =0, then B € (0,1 — L]. Since Ky + By +tM’' +tNF = f*(Kx + B + tD) + G for some
Q-divisor G > 0, Supp M’ U Supp By is snc, and ¢t < % < %, we have (Y, By +tM' + tNF) is terminal
onY \ Supp F. Hence ct(X, B; D) = c¢t(X > z, B; D) as Supp F contains at least one canonical place of

(X, B +1tD). O
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Lemma 4.2.3. Let I be a positive integer and T' C [0, 1] N Q a finite set. Then there exists a positive integer

N depending only on I and 1 satisfying the following.

Let (X > x,B) be a threefold germ such that X is terminal, B € T, mld(X > z,B) > 1, and
IKx is Cartier. Then there exists a monotonic N-complement (X > z,B%) of (X > =, B) such that
mld(X >z, BY) =1, and if (X 3 x, B) is canonical near x and x € X is not smooth, then (X > x, BT)

is canonical near x.

Proof. Possibly shrinking X near x, we may assume that (X, B) is Ic and X is affine. For any positive real
number € < 1, since (X > z, (1 — €)B) is a kit germ, by [HLS19, Lemmas 3.12 and 3.13], there exists
a Q-factorial weak plt blow-up f. : Y. — X of (X > z,(1 — €)B), such that (Y, (1 — ¢)By. + Ey.) is
Q-factorial plt, where By is the strict transform of B on Y, and E¥y. is the reduced exceptional divisor of f..
By [HMX14, Theorem 1.1], we may choose ¢ < 1 such that (Y, By, + Ey, ) islc. LetY :=Y,, By := By,
E := Ey_,and f := f.. By [HLS19, Corollary 3.20], there exists a Q-divisor Gy > 0 on Y, such that N'Gy
is a Weil divisor, and (Y/X > x, By + E + Gy) is an N’'-complement of (Y/X > z, By + E) for some
positive integer N’ depending only onT'. Then Ky + By + Gy + F = f*(Kx + B+ G), (X > 2, B+ Q)

is an N’-complement of (X > z, B), and mld(X > z, B + G) = 0, where G := f.Gy.

Let m be a positive integer such that mI' C Z and N” := m(m+ 1)N’. Since mN'G € | — mN'(Kx +
B)| near x, by Lemma 4.2.1, there exists a finite dimensional linear system 0 C | — mN’(Kx + B)| such that
0 contains mN’G, the base locus of ? is x, and multg G’ > multg mN’G for any G’ € 0. By Lemma 4.2.2,
when (X, B) is canonical and z € X is not smooth, the divisor G” := G +---+ G, € |- N"(Kx + B)|

m

satisfies that ¢ := ct(X, B; 37 G") = ct(X 3 z, B; %7 G"), where (G,..., G}, 1) € 0™ is a general

element. By construction, (X > z, B+« G") is an N”-complement of (X > z, B). Since multg -G >

multy G, mld(X 3z, B+ 57G") = 0. In particular, ¢ < 1.
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By Theorem 4.1.7, it suffices to show that ¢ belongs to a finite set of rational numbers depending only on

Iand T'. By Lemma 2.1.12(1), there exists a prime divisor F' over X > z such that a(F, X, B+ <5, G") = 1.

N

Then a(F, X, B + A},/ G") = z\;'/ for some non-negative integer 7 < N'. We have

t 1 1 1 1
Q(F, X,B + WG”) = a(F, X7B + WG”) + (1 — t) multF WGH = W + (1 — t) multF WG”,

and multy 57 G" = 75 (1 — 7). By Theorem 3.3.1, 6 < 1 — ¢ for some positive real number & depending

only on I'. Thus multg A},, G" < %(1 - ]\;,, ). By [Kaw88, Lemma 5.1], IG" is Cartier near x. It follows

that mult p > G” belongs to a finite set depending only on [ and I'. Hence t = 1 — (1 — 7)o
N
belongs to a finite set of rational numbers depending only on [ and I'. U

Theorem 4.2.4. LetT' C [0, 1] N Q be a finite set. Then there exists a positive integer N depending only on
I satisfying the following.

Let (X > x, B) be a threefold germ such that X is a terminal, B € T, and mld(X > x, B) > 1. Then
there exists a monotonic N-complement (X > x,B") of (X > x, B) such that mld(X > z,B%) = 1.

Moreover, if (X, B) is canonical near x and x € X is not smooth, then (X, BY) is canonical near x.

Proof. Let m be a positive integer such that mI" C Z.

By Theorem 4.1.7, we may assume that mld(X > x,B) > 1. Let n be the index of X > z. By
Lemma 4.2.3, we may assume that n > 4m. By [Rei87, (6.1) Theorem] (cf. [Mor85, Theorems 12,23,25]),

x € X is of type cA/n for some n > 4dm.

Possibly shrinking X near z, we may assume that X is affine. By Lemma 4.2.1, there exists a finite
dimensional linear system @ C | — K x| such that 0 contains an elephant of z € X and the base locus of 0 is
x. By Lemma 4.2.2, if (X, B) is canonical and = € X is not smooth, then the divisor D = D1 + -+ + Dy, 41
satisfies ¢t := ct(X, B; —==D) = ct(X 3 z,B; -+ D), where (D1,...,Dy,41) € 0™+ is a general

’m+1 ' m+1
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element. Since (X, -1 D) is canonical near x, by Theorem 2.1.13(2), mld(X > z, 715 D) = 1.

By Lemma 3.1.4, there exists a terminal blow-up (see Definition 3.1.3) f : ¥ — X of (X 3 z,B +

#HD) which extracts a prime divisor E over X > x. Since z € X is a terminal singularity of type cA/n

for some n > 4m > 1, by [Kaw05, Theorem 1.3] and Theorem 2.1.35, f : Y — X is a divisorial contraction

of ordinary type as in Theorem 2.1.35(1). We may write Ky = f*Kx + - E for some positive integer a.

Since (X, -+ D) is canonical near z, a(E, X, —15D) = a(E, X,0) — multp 15D = 1 + & —

mult g ﬁD > 1. It follows that multg ﬁD < 2. Since B = =mB, n > 3m, and mld(X >

x,B) > 1, by Lemma 3.2.7(1), a < 3, and multg #HD € {m | i€ ZN[1,3(m + 1)]}. Since

m(Kx + B) is Cartier, a(E, X, B) = 1+ - for some positive integer k. Since a(E, X, B+ 1< D) =1,

m—+1
tmultg ﬁD =a(E,X,B)—a(E,X,B + m—_HD) = -E which implies that ¢t = m €
mlw Now the coefficients of B + 5 D belong to mZ N [0, 1]. By Theorem 1.2.8,

(X>x,B+ #HD) is a monotonic N-complement of (X > x, B) for some positive integer N depending

only on I satisfying all the required properties. O

Proof of Theorem 1.2.6. When X is smooth near z, in particular, when dim = > 1, we may take G = 0, and
(X, B) is an m-complement of itself, where m is a positive integer such that mI' C Z. Whenz € X isa

closed point that is not smooth, by Theorem 4.2.4, we are done. O

Theorem 4.2.5. Let € > 1 be a rational number and T’ C [0, 1] N Q a finite set. Then there exists a positive

integer N depending only on € and I satisfying the following.

Let (X > x, B) be a threefold e-Ic pair such that X is terminal and B € T. Then there exists a monotonic

(€, N)-complement (X > z, B") of (X > z, B).

Proof. If dim x = 2, then the theorem is trivial. When X is smooth near z, in particular, when dimz = 1,

we may take G = 0, and (X, B) is a monotonic (€, m)-complement of itself, where m is a positive integer
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such that mI' C Z. From now on, we may assume that x € X is a closed point that is not smooth.

When € = 1, the theorem follows from Theorem 4.2.4. When € > 1, let n be the index of the terminal
singularity X > z. By [Sho92, Appendix, Theorem] and [Mar96, Theorem 0.1], there exists a prime divisor
E over X > x such that a(E, X,0) =1+ 1 hence 1 + 2 > a(E, X, B) > ¢, and n < |17 |. It follows

that (X 3 z, B) is a monotonic (¢, | 2 |!m)-complement of itself. O
4.3 Boundedness of Complements for DCC Coefficients

Definition 4.3.1. For any v = (v1,...,v) € R™, we defined ||v|| := max;{v;}. For an R-divisor

B =" b;B;, where B; are the distinct prime divisors of Supp B, we define || B|| := max;{b;}.

Theorem 4.3.2. Let m be a positive integer, € > 1 a real number, and v = (v9,...,v%) € R™ a point. Then
there exist a rational polytope v € P C R™ with vertices v; = (v{, ..., v)), positive real numbers aj, and

positive real numbers ¢; depending only on m, € and v satisfying the following.

1. Zj a; = 1,Zj a;v; =, andzj aje; > e
2. Assume that (X 2 x, B := Y_i" | v B;) is a threefold germ such that X is terminal, (X > x, B) is

=1 "1

e-lc, and By, . .., B,, > 0 are Weil divisors. Then for any j,

mld(X 5z, ) v/B;) > ¢;.
i=1

Moreover, if € > 1, then the function P — R defined by

(V1. V) = mld(X > x, Z%‘Bz')
i=1

is a linear function; if € € Q, then we may pick €; = € for any j.

Proof. Step 1. There exist Q-linearly independent real numbers 9y = 1,71, ..., for some 0 < ¢ < m, and
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Q-affine functions s; : R — R such that s;(rg) = v? for any 1 < i < m, where 7o := (r1,...,7.). Note
that the map R® — V defined by

r— (51(r),. .., 8m(T))
is one-to-one, where V' C R™ is the rational envelope of v.

If c = 0, then P = V = {v}, and there is nothing to prove. Suppose that ¢ > 1. Let B(r) :=
S si(r)B;. Then B(rg) = > i, v¥B; = B. By [HLS19, Lemma 5.4(1)], Kx + B(r) is Cartier near =

K2

for any r € R°.

Step 2. We will show that there exist a positive real number § and a Q-affine function f(r) depending only
on m,€,¢, To, S1,--.,Sm such that f(rg) > ¢, and for any » € R satisfying ||r — ro|| < §, mld(X >

x, B(r)) > f(r), moreover, when ¢ > 1,
mld(X >z, B(r)) = a(E, X, B(r)) > f(r)

for some prime divisor E over X 3 z.

When e = 1, we may take f(r) = 1, and the assertion follows from Theorem 3.4.3. When € > 1, by
[Sho92, Appendix, Theorem], for all germs (X > x, B) which is e-lc, the index of X > z is bounded from
above by I := LE_%J Note that by [Kaw88, Lemma 5.1], Iy!D is Cartier for any Weil divisor D on X. Also
note that (X 3 x, B(rg)) is e-lc, and mld(X > z) < 3 (cf. [Amb99, Theorem 0.1]). The existence of § and

f(7) in this case follows from [CH21, Lemma 4.7].

Step 3. We finish the proof in this step. It follows from the same line of the proof of [CH21, Theorem 7.15].

Note that if ¢ € Q, then f(r) = € for any r € R°. We may find 2° positive rational numbers 7; 1,7; 2

such that 7, 1 < r; < ;9 and max{r; — r;1,r;2 — 7} < d forany 1 <4 < c. By our choice of ¢, the
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function R® — R defined by

r — mld(X > z, B(r))

is a linear functionon r € U, := [r11,71,2] X -+ X [re,1,Te,2]-

Let 7; be the vertices of U.. Set ¢; := f(r;),v] := s;(r;) for any i,j. Note that if ¢ € Q, then
€;j = f(r;) = eforany j. Let P := {(s1(7),...,sm(r)) | » € U.} C V. Then the function P — R :

(V1. ) = mld(X 3 2,3 v;B;) is linear, (vi,...,vJ,) are vertices of P, and

mld(X >z, iv'zBi) =mld(X >z, B(r;j)) > f(r;) > ¢

i=1
for any j.
Finally, we may find positive real numbers a; such that > ;a; =1land > ;ja;7; =7o. Then > 0 =

vand > aje; > easd o av] = Yo a5si(ry) = si(30; a;m;) = si(ro) = v? for any 1 < i < m, and

Zjajej:Zj ajf(rj):f(zjajrj):f(ro) 2 €. O

Theorem 4.3.3. Let p be a positive integer, € > 1 a real number, and T' C [0, 1] a finite set. Then there exists

a positive integer N depending only on €, p and T, such that p | N and N satisfies the following.

Let (X > x, B) be a pair such that X is a terminal threefold, B € T', and mld(X > x, B) > €. Then
there exists an N-complement (X 3 z,B") of (X 3 z, B) such that mld(X > z, BT) > e. Moreover if

Spang_, (T U {e}\Q) N (Q\{0}) = 0, then we may pick B+ > B.

roof. eorem 4.3.2, there exist three finite sets I'y C (0, 1], 'y C [0,1] N Q an of non-negative
P By Th 4.3.2, th ist three fini T 0,1],T 0,11 N Q and M of gati

rational numbers depending only on €, I', such that

® > a6 > €

e Kx +B=>a;(Kx + B"), and
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e (X >z, BY)is ¢-lc at x for any i,

for some a; € I'y, B® € 'y and ¢; € M. By Theorem 4.2.5, there exists a positive integer 1o which only
depends on I'y and M, such that (X > z, B?) has an (¢;, ng)-complement (X > z, B® + G*) for some
Q-Cartier divisor G* > 0 for any 4. Let G := Y a;G".

By [CH21, Lemma 6.2], there exists a positive integer n depending only on €, p, ng, I, I'1, I's, M, such

that there exist positive rational numbers a with the following properties:

e png|n,
e > a,=1,
o > ale; >,

naj; € noZ for any 4, and
e nB' >n|B| + [(n+ 1){B}], where B’ := 3" a}B".

Let G’ := ) a/G". Then

!
n(Kx +B +G)=nY di(Kx +B +G) =Y ‘2: no(Kx + B+ G¥) ~7 0

and

a(B,X,B'+G') =) dj(E,X,B'+G") > dje; > €
for any prime divisor E over X > z. Hence (X > z, B’ + G’) is an (¢, n)-complement of (X > z, B).

Moreover, if Spang__ (I'U {e}\Q) N (Q\{0}) = 0, then B’ > B by [CH21, Lemmas 6.2, 6.4]. O

Proposition 4.3.4 and Theorem 4.3.6 study the inversion of stability property for R-Cartier divisors, and

give a positive answer to [HL.20, Conjecture 7.8] in some special cases.
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Proposition 4.3.4. Let I be a positive integer and T' C [0, 1] a finite set. Then there exists a positive real

number T depending only on I and T satisfying the following.

Let x € X be a terminal threefold singularity, and B > 0, B’ > 0 two R-divisors on X, such that

1. IKx is Cartier near x,

2. B> B,

B-PB'||<T1,BeT,
3 mld(X 5>2,B') >1, and

4. Kx + B’ is R-Cartier.

Then K x + B is R-Cartier.

Proof. Suppose that the proposition does not hold, then there exist X; > z;, B;, B}, 7; corresponding to

X 3z, B, B, T as in the assumptions, and a DCC set I", such that

d 11m2*>+00 T = 09
° Bl{ eI, and

o Kx, + B, is not R-Cartier.

Let f; : Y; — X, be a small Q-factorialization of X;. Let By, be the strict transform of B; on Y;. Possibly
replacing Y; with a minimal model of (Y;, By,) over X;, we may assume that Ky, + By, is big and nef over
X. We may write Ky, + By, := f/(Kx, + Bj). Since mld(Y;/X; > x;, By,) = mld(X; > x;, B}) > 1, by
Theorem 1.2.10, possibly passing to a subsequence, we may assume that (Y;/X; 3 x;, By,) is 1-lc over z; for
any 7. Since the Cartier index of any Weil divisor on Y; is bounded from above by I, by [Nak16, Theorem 1.2]

and [Amb99, Theorem 0.1], {mld(Y;/X; > z;, By;)}$2, belongs to a finite set. Thus possibly passing to a
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subsequence, we may assume that there exists a real number € > 1, such that € := mld(Y;/X; > z;, By,) for
any 4. Since Ky, + Bg/i < Ky, + By,, (Y;/X; > z;, Bg/) is an (¢, R)-complement of itself.

Note that Y; is of Fano type over X;. Let Y; be a minimal model of —(KYy, + By,) over X;. Then
Y/ /X > x4, Bg/{) is an (¢, R)-complement of itself, where Bgﬁ-' is the strict transform of By, on Y. In
particular, mld(Y//X; > =, Bg,i,) > e. By Theorem 1.2.9, possibly passing to a subsequence, we may
assume that (Y;/X; > z;, By/) is elc over z;, where By is the strict transform of By, on Y. Thus
(Y//X; 3 i, Byy) is (¢, R)-complementary as —(Ky- + By) is big and nef over X;. By [CH21, Lemma
3.13], (Y;/X; 3 z;, By,) has an (¢, R)-complement (Y;/X; 3 z;, By, + Gy, ) for some R-divisor Gy, > 0.

Let Y; — Z, be the canonical model of (Y;, By,) over X and By, the strict transform of By, on Z;. Then
—G z, is ample over X, where Gz, is the strict transform of G'y; on Z;. Since K x, + B; is not R-Cartier, the
natural induced morphism g; : Z; — X is not the identity, and Gz, # 0. It follows that Supp G z, contains

g; *(x;). Thus
€= mld(Y;/X, > l'hByi) = IIlld(ZZ/)(2 > xi7BZ1-) > IIlld(ZZ/)(2 > xi7BZi + GZI) > €,
a contradiction. O

Remark 4.3.5. Note that on any fixed potential kit variety X, the Cartier index of any Weil Q-Cartier divisor
is bounded from above (cf. [CH21, Lemma 7.14]). Thus the proof of Proposition 4.3.4 also works for any
fixed potential kit variety X by assuming the ACC conjecture for minimal log discrepancies. It would be

interesting to ask if it is necessary to assume X is fixed in higher dimensional cases.

Theorem 4.3.6. Let I' C [0, 1] be a finite set. Then there exists a positive real number T depending only on T’
satisfying the following.

Let x € X be a terminal threefold singularity, and B > 0, B’ > 0 two R-divisors on X, such that
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1. BB<B,||B-B|<7,BeT,
2. mld(X 3 2,B) > 1, and

3. Kx + B’ is R-Cartier.
Then K x + B is R-Cartier.

Proof. Let T be the positive real number constructed in Proposition 4.3.4 which only depends on I'" and
I:=1.

Let f : Y — X be an index one cover of Kx. We may write Ky + B} := f*(Kx + B’), and
Ky + By := f*(Kx + B). Then Ky is Cartier, By, < By, ||By — By/|| < 7, and By € I'. Moreover,
by [KM98, Proposition 5.20], Y is terminal, and mld(Y > y, By,) > mld(X > z, B’) > 1 for any point
y € f~(z). Thus by Proposition 4.3.4, Ky + By is R-Cartier. We conclude that K x + B is R-Cartier as f

is a finite morphism. O

Theorem 4.3.7. Let p be a positive integer, € > 1 a real number, and T' C [0, 1] a finite set. Then there exists

a positive integer N depending only on €, p and T, such that p | N and N satisfies the following.

Let (X > z, B) be a pair such that X is a terminal threefold, B € T and mld(X > z, B) > €. Then
there exists an N-complement (X 3 z, B") of (X 3 z, B) such that mld(X > z, BT) > e. Moreover if

Spang_, (T U {e}\Q) N (Q\{0}) = 0, then we may pick B+ > B.

Proof. By Theorems 4.3.6, 1.2.9, [HLS19, Lemma 5.17] (see also [CH21, Lemma 5.5]) and follow the same
lines of the proof of [CH21, Theorem 5.6] (see also [HLS19, Theorem 5.18]), possibly replacing I" by a finite

subset of T, we may assume that I" is a finite set. Now the theorem follows from Theorem 4.3.3. O

Proof of Theorem 1.2.7. This is a special case of Theorem 4.3.7. O
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Chapter 5

Proof of the Main Results

5.1 Proof of Theorem 1.2.2

In this subsection, we prove the following theorem:

Theorem 5.1.1. Let T C [0, 1] be a DCC set. Then 1 is not an accumulation point of
{mld(X,B) | dimX =3,B €T}

from below.

Definition 5.1.2. Let (X, B) be a pair. We say that (X, B) is extremely non-canonical if mld(X, B) < 1,
and the set
{E | E is exceptional over X, a(E, X, B) < 1}
contains a unique element. In particular, any extremely non-canonical pair is kit.
A pair (X > z, B) is called extremely non-canonical if (X, B) is extremely non-canonical near = and

mld(X > z,B) =mld(X,B) < 1.

Lemma 5.1.3. Ler d be a positive integer and T' C [0, 1] a set. Let (X, B) be a kit pair of dimension d such

that B € T and mld(X, B) < 1. Then there exists a Q-factorial extremely non-canonical kit pair (Y, By ) of
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dimension d, such that By € I and mld(X, B) < mld(Y, By ).

Proof. Since (X, B) is klt, by [BCHM 10, Corollary 1.4.3], there exists a birational morphism f : W —
X from a Q-factorial variety W which extracts exactly all the exceptional divisors E over X such that
a(E,X,B) = 1. Let Ky + Bw = f*(Kx + B). Possibly replacing (X, B) with (W, By ), we may

assume that a(F, X, B) # 1 for any prime divisor E that is exceptional over X.

Since (X, B) is kIt and mld(X, B) < 1, there exist prime divisors F1, ..., F}, that are exceptional over
X, such that

{E\,...,Ex} = {E | Eisexceptional over X, a(E, X, B) < 1}.

Let oj := 1 —a(E;, X, B) for each j. By [Liul8, Lemma 5.3], there exists ¢ € {1,2,. .., k} and a birational

morphism h : Y — X from a Q-factorial variety Y, such that

o fexactly extracts E1,...,FE;_1,E;11,..., Ey, and

e multp, >, a;Ejy < a;, where £y = centery Ej for each j # i.
Let By := h;!B. Then

mld(Y, By) < a(E;,Y, By) = a(E;, Y, By + »_a;E;y) +multg, > a;E;y
J#i J#i
<a(BE;, X,B)+a; =1,
and for any prime divisor ' # F; that is exceptional over Y,
a(F,Y,By) > a(F,Y, By + Z o;E;y) =a(F,X,B) > 1.

j#i

Thus (Y, By ) satisfies our requirements. O
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Lemma 5.1.4. Let d be a positive integer and T' C [0, 1] a DCC set. Then there exists a positive real number
t depending only on d and T satisfying the following.

Let (X, B) be a kit pair of dimension d, E a prime exceptional divisor over X such that o(E, X, B) < 1,
and x the generic point of centerx E. Let f .Y — X be a birational morphism which only extracts E. Then

(Y, By + tE) is Ic over a neighborhood of .

Proof. By Theorem 2.1.8, there exist a positive integer n and a finite set I'g C (0, 1], such that (X > =z, B)
has an (n,I'g)-decomposable R-complement (X > x, B*) of (X > z, B). In particular, there exist real
numbers ai, . .., a; € g and Ic pairs (X > z, B;"), such that Zle a; =1, Zle a;B;t = B*, and each
(X 3z, B;") is an n-complement of itself. Let
k
TG = {>_ sia; | nsi € Zo}.
i=1

Then I'y, C [0, 4+00) is a discrete set, and we may let
Yo :=max{y € T | v < 1}.

Since na(E, X, B]") € Z> for every i,

k
1>a(E,X,B) > a(E,X,B") =Y a;a(E,X,B) €Ty,
i=1

soa(E, X, BT) < 7. Thus (Y, By +(1—~0) E) is Ic over a neighborhood of z. We may take t := 1—vp. [

Lemma 5.1.5. LetT' C [0, 1] be a DCC set. Then there exists a positive real number ¢ depending only on T’
satisfying the following.
Let (X, B) be a Q-factorial extremely non-canonical threefold pair such that X is strictly canonical.

Then mld(X,B) <1 —e.
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Proof. Since (X, B) is extremely non-canonical, (X, B) is klt. Let F be the unique prime divisor that is
exceptional over X such that a(E, X, B) < 1. Then a(FE, X, B) < 1. Moreover, for any prime divisor F' #
E that is exceptional over X, a(F, X,0) > a(F, X, B) > 1. Since X is strictly canonical, a(E, X,0) = 1.

In particular, multgy B > 0.

Let vo := min{y € I' | v > 0} and let 7 := [-]. Then B > .- Supp B,
1
a(E,X,B) <a(E,X,— Supp B) < a(F, X,0) =1,
m

and
1
1<a(F,X,B)<a(F,X,— Supp B)
m
for any prime divisor F' # FE that is exceptional over X . Thus possibly replacing " with {0, i} and B with
% Supp B, we may assume that I" is a finite set of rational numbers.

Let f : Y — X be a birational morphism which extracts F, and let By be the strict transform of B on Y.

Then Ky = f*Kx, and
Ky + By + (1 — a(E,X,B))E = f*(KX JrB).

Let = be the generic point of centerx E. If dim z = 1, by taking general hyperplane sections, the lemma
follows from [Ale93, Theorem 3.8] (see also [Sho94b] and [HL20, Theorem 1.5]). Therefore, we may assume

that z is a closed point.

By Theorem 2.1.11, 60Ky is Cartier over a neighborhood of x. By our construction, Y is terminal. By

[Kaw88, Lemma 5.1], 60D is Cartier over an neighborhood of = for any Weil divisor D on Y.

By Lemma 5.1.4, there exists a positive integer n depending only on I', such that nI' C Z>( and

(Y, By + 1 E) is Ic over a neighborhood of z.

If a(E,X,B) < 1— 2L, then we are done. Thus we may assume that a(E, X,B) > 1 — 5-. In
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this case, by the boundedness of length of extremal rays (cf. [Fujl7, Theorem 4.5.2(5)]), there exists a

(Ky + By + + E)-negative extremal ray R in N E(Y/X) which is generated by a rational curve C, such that
1
0>(Ky+By+*E)'CZ—6.
n

Since (Ky + By + (1 —a(E, X, B))E) - C =0, we have

0< (a(E,X,B)— 1+ %)(fE'C) <6.

Hence 0 < (—E-C) < 12nasa(E, X, B) > 1 — 5-. Since 60n(Ky + By ) is Cartier over a neighborhood

of x, we have

60n(Ky + By) - C
60n(—E-C) ’

a(E,X,B)=1-

soa(E,X,B) <1 and we are done. O

1
T 720n2
Lemma 5.1.6. Let T' C [0, 1] be a DCC set. Then there exists a positive real number ¢ depending only on T’
satisfying the following.

Let (X, B) be a Q-factorial extremely non-canonical threefold pair such that X is terminal. Then

mld(X,B)<1-e
Proof. Let E be the unique divisor that is exceptional over X such that a(F,X,B) < 1. Then 0 <

a(E, X, B) < 1. Since X is terminal, a(F, X,0) > 1. Thus multg B > 0.

Let « be the generic point of center x E. If dim « = 1, by taking general hyperplane sections, the lemma
follows from [Ale93, Theorem 3.8] (see also [Sho94b] and [HL.20, Theorem 1.5]). Therefore, we may assume

that z is a closed point.

Lett := ct(X, 0; B). Since X is terminal and (X, B) is extremely non-canonical, we have a(E, X, cB) =

landt = ct(X > z,0; B) < 1. By Theorem 1.2.10, there exists a real number ¢ € (0, 1) depending only
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on I'such that t < 1 — 4. Let 5 := min{y € T' [ ¥ > 0}, m := [5-], and B’ := -[mB]. Then

||B — B’|| < dv0. Hence B > B’ > tB and Supp(B’ — tB) = Supp B. Since multg B > 0,
a(E,X,B) < a(E,X,B') < a(E, X,tB) = 1,

and

1<a(F,X,B) < a(F,X,B')

for any prime divisor F' # FE that is exceptional over X. Thus possibly replacing I" with %Zzo n[o,1], B

with B’, and ¢ with ct(X, 0; B') respectively, we may assume that ' C -LZ N [0,1].

If x € X is a terminal singularity of types other than cA/n or of type cA/n with n < 2, then by [Rei87,
(6.1) Theorem], the index of X > z divides 12. By [Kaw88, Lemma 5.1], 12m(K x + B) is Cartier, and we
1

may take € = 35— in this case. Thus we may assume that 2 € X is a terminal singularity of type cA/n for

some n > 3.

By construction, (X, ¢tB) is extremely non-canonical. By Lemma 3.1.4, there exists a terminal blow-up
f:Y = X of (X > z,tB) which extracts E. Since n > 3, by [Kaw053, Theorem 1.3], f is of ordinary type.
Leta := a(E, X, B) + 1. By Theorem 2.1.35(1), under suitable analytic local coordinates x1, x2, 3, Z4,
there exist positive integers 71, r2, b, d, where ged(b,n) = 1,71 + 79 = adn and a = br; mod n, such that

analytically locally,
1
(X 3 2) = (¢(x1, 22, x3,24) = 0) C (C* 3 0)/5(17—1,@0)

for some invariant analytic power series ¢, and f : Y — X is a weighted blow-up at x € X with the weight
w := (ry,r2,a,n). Assume that mB is locally defined by (h(z1, 2,23, x4) = 0) for some semi-invariant

analytic power series h.
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Claim 5.1.7. If either d > 4 or a > 4, then n < 3m.

We proceed the proof assuming Claim 5.1.7. If either a > 4 or d > 4, then by Claim 5.1.7,n < 3m < 377”

Since a(E, X,tB) = a(E, X,0) —tmultg B = 1+ & — tmultg B,

4 fmulty B. (5.1.1)
n
It follows that
a a 1
tpgB=—>— > —.
multe tn — 3m — 3m

Thus a(E, X, B) = a(E, X,tB) — (1 — t)multy B < 1 — 32-. We can take € = 32~ in this case.

3m

We may now assume that ¢ < 3 and d < 3. Since a = bry mod n, ged(ry,n) | 6. Since 71 + ro = adn,
ged(re,n) | 6, and ged(r1,72) | adn. This implies that ged(r1, r2) | 216. Let m’ be the smallest positive
integer such that m/tB is an integral divisor and r the smallest positive integer such that rm’(Kx + tB)

is Cartier. By Lemma 4.1.4, r | gcd(rq,7r2). Thus r | 216. By (5.1.1), t = where

_a  _ a
nmultg B =~ N°

N = nmultg B is a positive integer. We may write B = —2=mB, then 216mN (Kx + tB) is Cartier.

By [Sho94a, 4.8 Corollary], there exists a prime divisor E; # E over X > z such that a(E7, X,0) =

1+ % for some positive integer a; < 2.

Since a(Ey, X,tB) > 1,

aq 1
1+ —=a(bk, X >a(F,X,tB) > 1
+ n a( 1, 70)_0/( 1, ,t )_ +216mN’

hence n < 432mN = 2329 ' follows that tn < 432am < 1296m. By (5.1.1),

a 1
— > ,
tn — 1296m

multg B =

and a(E,X,B) = a(E,X,tB) — (1 — t)multy B <1 — 55—. We can take ¢ = in this case. [J

_5 _
1296m 1296m
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Proof of Claim 5.1.7. Suppose that n > 3m. If either d > 4 or a > 4, then we can pick positive integers

$1, So such that
e 51 + s3 = a’dn for some ' < min{a, 3},
e a' =bs; mod n,
® s; >n,sy >n,and
° %(51,52,a',n) * %(Tl,rg,a,n).

In fact, when a > 4, we may take ' = 3. When d > 4, we may take o’ = 1 and (s1, s2) # (r1,72). Let

w = %(51,52,(1’,71).

Since a > o/, by [HLL22, Lemma C.7], the weighted blow-up with the weight w’ at x € X extracts an

analytic prime divisor E’ # E such that w'(X 3 z) = % By [HLL22, Lemma C.6], we may assume that

E’ is a prime divisor over X > z. By our assumption, a(E’, X, B) = 1+ w'(X 3 z) — w'(B) > 1, thus

> =2

13 _d , 1

2522 (X "(B) = —w'(mB

i S w' (X 3 z) > w'(B) mw(m )

which implies that w’(h) = w'(mB) < 1. Since w'(z1) = 2> > 1, w'(z2) = 2 > land w'(z4) = 1,

up to a scaling of h, there exists a positive integer /, such that x4 € h and w'(mB) = w'(h) = w'(z}). In

a’l

particular, w'(h) = lw'(z3) = %* and
! "
w' (X 2x)= % > w'(B) = %E’
this implies that % < 1. On the other hand,
1> (B, X,B) = 1+w(X52) —wB) > 1+ % - Luw@)=1420-Ly>1,
n o m n m
a contradiction. O
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Proof of Theorem 5.1.1. Let (X, B) be a threefold pair such that B € T". Possibly replacing (X, B) with a

Q-factorialization and replacing T’ with I' U {1}, we may assume that (X, B) is Q-factorial dlt.

If (X, B) is klt, then by Lemma 5.1.3, we may assume that (X, B) is extremely non-canonical. Then
either X is not canonical, or X is strictly canonical, or X is terminal. If X is not canonical, then by [LX21,
Theorem 1.4] (see also [Jia21, Theorem 1.3]), mld(X, B) < mld(X) < % If X is strictly canonical, then

the theorem follows from Lemma 5.1.5. If X is terminal, then the theorem follows from Lemma 5.1.6.

If (X, B) is not klt, then we let E be a prime divisor that is exceptional over X such that a(E, X, B) =

mld(X, B). If centerx E ¢ | B], then
mld(X, B) = a(E, X, B) = a(E, X,{B}) > mld(X,{B}) > mld(X, B)

and the theorem follows from the klt case. If centerxy £ C | B], then there exists a prime divisor S C | B|
such that centerx £ C S. Welet Kg + Bs := (Kx + B)|s. By [BCHM10, Corollary 1.4.5], mld(X, B) =
a(E, X, B) is equal to the total minimal log discrepancy of (S, Bs). Since Bg € D(I") which satisfies the

DCC, the theorem follows from [Ale93, Theorem 3.8] (see also [Sho0O4b] and [HL20, Theorem 1.5]). ]

Proof of Theorem 1.2.2. This follows from Theorems 3.6.1 and 5.1.1. O

5.2 Proof of Theorem 1.2.5

Lemma 5.2.1. Let I be a positive integer, and T' C [0, 1] a finite set. Then there exists a positive real number

l depending only on I and T satisfying the following. Assume that
1. (X > x, B) is a threefold pair,
2. X is terminal,

3. Bel,
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4. mld(X > 2,B) > 1, and

5. IKx is Cartier near .

Then there exists a prime divisor E over X > x, such that a(E, X, B) = mld(X 3 z, B) and a(E, X,0) =

1 + ¢ for some non-negative integer a < l.

Proof. We will use some ideas of Kawakita [Kaw21, Theorem 4.6]. Possibly replacing X with a small

Q-factorialization, we may assume that X is Q-factorial.
If dim = = 2, then the lemma is trivial as we can take [ = 0.
If dim « = 1, then X is smooth near . By Lemma 2.1.6, mld(X > z, B) = a(E, X, B), where E is the

exceptional divisor obtained by blowing up x € X. We have a(E, X, 0) = 2, and the theorem holds in this

case.

If dim = = 0 and suppose that the theorem does not hold, then there exists a sequence of threefold germs

(X; > x;, B;) satisfying (1-5), and a strictly increasing sequence of positive integers /;, such that for each 7,

l;
min{a(E, X;,0) | centerx, E = z;,a(E, X;, B;) = mld(X; > z;, B;)} =1+ 7

By [Kaw88, Lemma 5.1], I D is Cartier near x; for any Weil divisor D on X;. By [Amb99, Theorem 0.1],
1 < mld(X; 3 =;, B;) < 3 for any i. By [Nak16, Corollary 1.3], possibly passing to a subsequence, we
may assume that there exists a real number o > 1, such that mld(X; 3 z;, B;) = « for any i. By [Nak16,
Theorem 1.2], there exists a real number o/ > «, such that for any ¢ and any prime divisor F; over X; > x;,

if a(F;, X;, B;) > a, then a(F;, X;, B;) > o'. Therefore,

1+4% —« —
a’—lct(Xiaa:i,O;Bi):{%:l— al. c <1
1+% -« 1+% -«
is strictly increasing, which contradicts Theorem 1.2.9. O
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The following theorem answers a question of [HL20, Conjecture 7.2] for terminal threefold pairs. We

will use it to prove Theorem 1.2.5.

Theorem 5.2.2. Let I be a positive integer, and I' C [0, 1] a finite set. Then there exists a positive real
number T depending only on I and T satisfying the following. Assume that (X > x, B) and (X > z, B') are

two threefold Ic pairs and E' is a prime divisor over X > x, such that

1. X is terminal,
2. B>DB||B-DB'||<T7,and B €T,
3. a(E',X,B")=mld(X > x,B") > 1, and
4. IKx is Cartier near .
Then a(F’', X, B) = mld(X > z, B).

Proof. We may assume that {0} C I, otherwise B = B’ = 0 and the theorem is obvious.

Since I Kx is Cartier near « and X is terminal, by [Kaw88, Lemma 5.1], I D is Cartier for any Q-Cartier
Weil divisor on X. By [HLS19, Theorem 5.6], there exist positive real numbers a1, . .., ax € (0, 1] depending

only on T', a positive integer I’ depending only on I and I, and Q-divisors By, ..., B > 0 on X, such that

Zf:l a; =1,

Zle a;B; = B,

e (X >z, By;) is Ic for any ¢. In particular, K x + B; is Q-Cartier for any ¢, and

I'(Kx + B;) is Cartier near x for each i.
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Thus there exists a positive real number § depending only on I and I, such that for any prime divisor F' over

X >z and a(F, X, B) > mld(X 3 z, B), we have o(F, X, B) > mld(X > z, B) + .

By Lemma 5.2.1, there exists a prime divisor E over X 3 z, such that a(E, X, B) = mld(X > z, B)
and a(E, X,0) < [ for some positive integer | depending only on I and I". In particular, multg B =

a(E,X,0)—a(E,X,B) <.

We show that we may take 7 := & - min{y € I' | v > 0}. In this case, B’ > (1 — &) B. Since

a(E,X,0) —multg B' =a(E,X,B") > a(E',X,B’) > a(E', X, B)

=(a(F',X,B) —a(F, X, B)) + a(F, X,0) — multg B,

we have
, , ) ]
0<a(FE,X,B)—a(E,X,B) <multg(B - B') < ZmultEB < 2
which implies that a(E’, X, B) = a(F, X, B) = mld(X > z, B). O
Lemma 5.2.3. Let mq be a positive integer and let {a; 1}521,{a;i 2152, ..., {im, };2; be mo sequences of

positive real numbers. Then there exists an integer 1 < k < my, such that possibly passing to a subsequence,

{Zi &0, are decreasing (resp. increasing) for all 1 < j < my.

Proof. Possibly passing to a subsequence, we may assume that for any k&, j, {Z‘i 72 is either decreasing or

strictly increasing (resp. either increasing or strictly decreasing). Suppose that the lemma does not hold. Then

there exists a function 7 : {1,2,...,mo} — {1,2,...,mo}, such that {*2=2}2°, is strictly increasing

%7

(resp. strictly decreasing) for any j. We may pick 1 < jo < m such that 7(!)( Jjo) = Jo for some positive

integer [. Then

(1), = {ai,w(jo) CGim(r(Go) . %im®(o) oo
=1 =1
@i, 5o @i, (jo) @i, (=1 (jo)
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is strictly increasing (resp. strictly decreasing), which is absurd. O

Lemma 5.2.4. Let mo > 0,1 > 0 be integers, T’y C [0, 1] a finite set, and T' C [0, 1] a DCC set. Then there

exists a positive integer | depending only on mq, I, Ty, and I satisfying the following.

Assume that {(X; > z;, B; :== Z;"ZOI b; jBij + Bio)}2, is a sequence of Q-factorial threefold germs,

such that

1. X; is terminal for each 1,

2. {bi ;}2, is strictly increasing for any fixed j,

3. by; € 'and B; o € I'y for each i and j,

4. B;; > 0is a Weil divisor on X; for each i and j,

5. mld(X; 2 z;, B;) > 1 for each i,

6. IKx, is Cartier near x; for each i, and

7. 1+ Y% :=min{a(E;, X;,0) | centerx, E; = z;,a(E;, X;, B;) = mld(X; > z;, B;)}.
Then possibly passing to a subsequence, we have l; <l for each 1.

Proof. Step 1. We prove the lemma by induction on mg. When mg = 0, the lemma follows from Lemma
5.2.1. Thus we may assume that my > 1.
Let v := mln{l,’y | vyeTl,y > 0} Let bj = limi_)+oo bi,ja Bz = Z;n:[)l bjBi,j + Bi,O for any 1,

and T :=To U {b1,...,bm,}. By Theorem 1.2.9, possibly passing to a subsequence, we may assume that

mld(X; 3 z;, B;) > 1 for each i.

99



By [Kaw88, Lemma 5.1], for each ¢, I D; is Cartier near z; for any Weil divisor D; on X;. By [Amb99,
Theorem 0.1], 1 < mld(X; > z;, B;) < 3. By [Nak16, Theorem 1.2], possibly passing to a subsequence, we

may assume that there exist two real numbers «« > 1 and 6 > 0, such that for any 4,

[ mld(Xz > a:,»,Bi) = «, and
e for any prime divisor F; over X; > x; such that a(F;, X;, B;) > mld(X; > x;, B;), we have

a(Fi, X, Bl) >a+ 0.

For each i, let E; be a prime divisor over X; 3 z; such that a(E;, X;, B;) = mld(X; > z;, B;)
and a(E;, X;,0) = 1+ 171 By Theorem 5.2.2, possibly passing to a subsequence, we may assume that
a(Ei,Xi, Bz) = Hﬂd(XZ > Zi, Bz) = Q.

Step 2. For any ¢ and any 1 < j < my, we define Bgyj = Zk# bi kB +b;B;i; + B;o.

By the induction for mg — 1, I, T and T", possibly passing to a subsequence, we may assume that there
exists a positive integer I’ depending only on mg, I, T'g and T, such that for any 1 < j < my, there exists a

prime divisor E; ; over X; 3 x;, such that
° a(Ew-,XZ-, Bz/',j) = mld(XZ S xy, Bz{,j)’ and
o a(E;;, Xi,0) <1+ 5 <147

Since

G(Ei,j, Xi, Bz) > mld(Xl S Xy, Bl) = a(Ei7Xi,Bi)

and

a(Em-,Xl-, B;]) = mld(Xl S Zg, Bl(,j) S G(Ei,Xi, Bllv,j),
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we have multg, ; (B} ; — B;) > multg, (B} ; — B;). By the construction of B; ;, we have

multEivj Biﬁj 2 multEi Bi)j

for any 2 and 1 < j < my. Since

1< mld(Xl > X, Bl) < mld(Xl > Xy, le',j)

=a(E; ;, X;, B;yj) <a(E;;,X;,bi;B; ;) < a(E;j, X, vDBi,;)

= a(Ei,j,Xi,O) — Y% multELj Bi’j <1+ U — Yo multEi’j Bi’j,

for any ¢ and 1 < j < mg, we have

l/
multp, B; ; < multp, ; B; ; < —.
’ Yo

Step 3. Leta;; := b; — b;; forany ¢ and any 1 < 5 < my. By Lemma 5.2.3, possibly re-odering

i, | 00

indices and passing to a subsequence, we may assume that { - L tis1

a . . .
n is decreasing for any 1 < 5 < my. Let

— ai,j ; . 6 b o—
M := max{ﬁ | 1<j<mo}t= 0. bij=0bj—t

Z:i for any i, j, and Bl = Z;nzol bi,jBi,j +Bi’0.
Possibly passing to a subsequence, we may assume that a; ; < ¢ for any 4 as lim;_, - a;1 = 0.

There exist a positive integer & and a finite set A C {1,2,...,mo}, such that |A| = k, and b; ; = by ; for
any 7 andj € Aas BL'J =b; —t. By the induction for mqg — k, I, T'yu {Bl,j | j S A}, and {Bi»j}iZLlSjSmo’

possibly passing to a subsequence, for any i, there exists a prime divisor F; over X; 3 x;, such that
° a(Ei,Xi, Bz) = mld(Xz > Ty, Bz), and

. a(E~1-, X;,0) <1+ % for some positive integer ! depending only on my, I, I’y and I'.
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Since

970 970

bi P P . — b, —
Jo= m()Ml/ J m()l/’

we have

mld(Xl > Ty, Bl) < a(Ei,X,», Bz) = a(E,-,Xi, Bl) + multEi (Bz — Bz)

mo N mo 6’}/0 ll
:O‘JFZ(bj —b;j)multg, B; ; < a+ S =a+0.
j=1 j=1 mol” o

Therefore, a(E~,», X;, B;) < a(Ei7X,», Bi) = mld(X; > z;, Bi) < a+ 9, and by our choice 0, we have

a(E;, X;, B;) = mld(X; 3 x;, B;) = . By the construction of B;,

a1\ 5
;’1)3,

&
I
o

i+ (11—

It follows that a(Ei7Xi, Bl) = mld(XZ 2 Xy, Bl) Thus a(Ei,Xi, 0) =1+ l71 < (I(Ei,Xi, 0) <14+ 0O

~l~

Theorem 5.2.5. Let T' C [0,1] be a DCC set. Then there exists a positive integer | depending only on T
satisfying the following.

Assume that (X > x, B) is a threefold pair such that X is terminal, B € T, and mld(X > z, B) > 1.
Then there exists a prime divisor E over X > z, such that o(E, X, B) = mld(X > z, B) and o(E, X,0) <

1+ % where I is the index of X > x. In particular, o(E, X,0) <1+ 1.

Proof. Possibly replacing X with a small Q-factorialization, we may assume that X is Q-factorial.

Let vo := min{y € I', 1 | v > 0}. Suppose that the theorem does not hold. Then by Lemmas 2.1.6 and
3.2.8, Theorems 2.1.13 and 3.2.9, there exist a positive integer I, an integer 0 < m < 720, a strictly increasing

sequence of positive integers [;, and a sequence of threefold germs (X; > z;, B; = 27:1 b; ; B, j), such that

e X, is Q-factorial terminal for each i,
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b;; € I',and B; ; > 0 is a Weil divisor for any 4, j,

mld(Xl > wi»Bi) > 1 for each 17,

IKx, is Cartier near x; for each ¢, and
o 1+ l77 = min{a(Ei,Xi,O) | center x, E; =z, a(Ei,X,»,Bi) = mld(XZ = J?i,Bi)}.

Possibly passing to a subsequence, we may assume that {b; ;}>°; is increasing for any fixed j. We
let b; := lim;_, 4 b; ; for any j, and T'g := {b1,..., by, }. Possibly reordering indices and passing to a

subsequence, we may assume that there exists an integer 0 < mgo < m, such that
e b; ; # b, for any ¢ when j < myg, and
e b; j = b, for every ¢ when j > my.

Let B;g := > " b;jB; ;. Then B; = Y""° b; ;B; j + B; 0. By Lemma 5.2.4, possibly passing to a

Jj=mo+1 Jj=
subsequence, [; < [ for some positive integer [ depending only on I', a contradiction. U
Proof of Theorem 1.2.5. This follows from Theorem 5.2.5. O
Theorem 5.2.6. Let Ty = {b1,...,by} C [0,1] be a finite set. Then there exist a positive integer | and a

positive real number € depending only on I satisfying the following.

Assume that (X > x, B' =), b;B;) is a threefold pair such that

1. X is terminal,

2. by — e < b, < b; for each i and B > 0 are Weil divisors on X,
3. mld(X 32,B") > 1, and

4. 1Kx is Cartier near x for some positive integer 1.

103



Then for any prime divisor E over X > x such that o(E, X, B) = mld(X > x, B), we have a(E, X,0) <

1+ L. In particular, a(E, X,0) < 1+1.

Proof. Suppose that the theorem does not hold. Then there exist a strictly increasing sequence of positive

integers /; and a sequence of threefold pairs (X; > z;, B; = Z;”:l b; ;B;.;), such that

e X, is terminal,

b; ; is strictly increasing with lim;_, 1 o b; ; = b; for each 7, and B; ; > 0 is a Weil divisor for any 4, 7,

e mld(X; 3 z;, B;) > 1 for any 4,

I; K x, is Cartier near z; for some positive integer I;, and

there exists a prime divisor E; over X; 3 x; such that a(E;, X;, B;) = mld(X; > z;, B;), and
a(E;, X;,0) > &
Possibly replacing each X; with a small Q-factorialization, we may assume that X; is Q-factorial for each i.

Let B; := Z;ﬂ:l b;B; ; for any i. By Theorem 1.2.9, possibly passing to a subsequence, we may assume

that mld(X; > x;, B;) > 1 for any 4.

By Lemma 5.2.3, possibly reordering the indices and passing to a subsequence, we may assume { bi.j e

bi1
. A . . . bi i b . bi i b ..
is an increasing sequence for each j. In particular, g S g as lim; 100 pl =gk For each 7, j, let
T, s
bi;  bib;
o ij _ 9104
bij = bij + (b1 —bi1)= = == < b,

bi1 bi1

and Bj := 7", b} ;B; ; < B;. Thenmld(X; 3 2, Bj) > 1. Note that " := {b;)ffl‘j Viezo, 1<j<m satisfies

the DCC. By Theorem 5.2.5, there exists a positive integer [ depending only on I and a prime divisor E
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over X; > z; for each i, such that a(E!, X;, B}) = mld(X; > x;, B}), and a(FE}, X;,0) < 1+ IL Since
a(El, X;, Bl) + multg, (B, — B;) = mld(X; > x;, B)) + multg, (B, — B;)
<a(FE;, Xy, B)) + multg, (B, — B;) = a(F;, X;, B;) = mld(X; > x4, B;)
<a(Ej, Xi, B;) = a(E}, X;, Bj) + mult g/ (B; — By),

we have mult g, (B} — B;) < mult B (B! — B;). By the construction of B,

_ s i b; s by — b; 1
’ _ / R, . — _h. v o o2 Tutlp
B, - B; = E ( i~ bm)Bw = E (b1 bl’l)bLlBZ’j = bis B;.

=1 =1

It follows that multg, B; < mult B B;. Hence
CL(Ei, Xz', 0) = a(E,;, XZ', Bz) =+ multEi B7 S CL(E;-, Xi, Bz) + multhg Bz

l
=a(E}, X;,0) <1+ R

a contradiction.

5.2.1 Proof of Theorem 1.2.12

Definition 5.2.7 (Log Calabi—Yau pairs). A log pair (X, B) is called a log Calabi—Yau pair if Kx + B ~p 0.

Definition 5.2.8 (Bounded pairs). A collection of varieties D is said to be bounded (resp. birationally

bounded, bounded in codimension one) if there exists a projective morphism h: Z — S of schemes of finite

type such that each X € D is isomorphic (resp. birational, isomorphic in codimension one) to Z; for some

closed point s € S.

We say that a collection of log pairs D is log birationally bounded (resp. log bounded, log bounded in

codimension one) if there exist a quasi-projective scheme Z, a reduced divisor £ on Z, and a projective
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morphism h: Z — S, where S is of finite type and £ does not contain any fiber, such that for every
(X, B) € D, there exist a closed point s € S and a birational map (resp. isomorphism, isomorphism in
codimension one) f: Z, --+ X such that £ contains the support of .1 B and any f-exceptional divisor

(resp. &, coincides with the support of f. 1B, £, coincides with the support of f ! B).

Moreover, if D is a set of kit Calabi—Yau varieties (resp. klt log Calabi—Yau pairs), then it is said to be
bounded modulo flops (resp. log bounded modulo flops) if it is bounded (resp. log bounded) in codimension
one, each fiber Z, corresponding to a member in D is normal projective, and K z_ is Q-Cartier (resp.

Kz, + f7 !B is R-Cartier).

Proof of Theorem 1.2.12. We follow the proof of [Jia21, Theorem 6.1] and [CDHJS21, Theorem 5.1]. By
Theorem 1.2.2, there exists a positive real number 6 < 1 depending only on T', such that mld(X, B) <1 — 4.
By [BCHM10, Corollary 1.4.3], there exists a birational morphism f : Y — X which extracts exactly one
exceptional divisor E with @ := a(E, X, B) < 1 —§. By [HLS19, Lemma 3.21], Y is of Fano type over X.
Possibly replacing Y with the canonical model of —F over X, we may assume that —F' is ample over X,

and Exc(f) = Supp E. We may write
Ky+By—|—(1—a)E:f*(Kx+B) =0,

where By is the strict transform of B on Y. By [HMX14, Theorem 1.5], there exists a finite subset I'g C I
depending only on I', such that B € I'y. Possibly replacing I" with I'g, we may assume that I" is finite. By
[HMX14, Theorem 1.5] again (see also the proof of [CDHJS21, Lemma 3.12]), there exists a positive real
number e < 3 depending only on I' such that (X, B) is (2¢)-Ic. Thus (Y, By + (1 — a)E) is a (2¢)-Ic log
Calabi-Yau pair with 1 —a > § > 0. By [HMO7, Corollary 1.4], each fiber of f is rationally chain connected.
Since Exc(f) = Supp E, E is uniruled. Now by [Jia21, Proposition 6.4], the pairs (Y, By + (1 — a)E)

are log bounded modulo flops. That is, there are finitely many normal varieties W;, an R-divisor 3; and a
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reduced divisor £ on W;, and a projective morphism W; — §;, where .S, is a normal variety of finite type,
and B;, &; do not contain any fiber of W; — S;, such that for every (Y, By + (1 — a)E), there is an index i,
a closed point s € S;, and a small birational map g : W; s --» Y such that B; s = g, !By and &; s = g, ' E.
We may assume that the set of points s corresponding to such Y is dense in each S;. We may just consider a

fixed index ¢ and ignore the index in the following argument.

For the point s corresponding to (Y, By + (1 — a)E),
Kw, +9¢.'By + (1 —a)g; 'E = [{'(Ky + By + (1 —a)E) =0

and therefore (W, g, ' By + (1 — a)g; 1 E) is a (2¢)-Ic log Calabi-Yau pair.

Let h : W' — W be a log resolution of (W, B + &), BB’ the strict transforms of 5 on W', and £’ the sum
of all h-exceptional reduced divisors and the strict transform of £ on WW’. Then there exists an open dense
subset U C S such that for the point s € U corresponding to (Y, By + (1 —a)E), hs : W, — W, is alog

resolution of (Y, By + (1 — a)E). Since (Ws, g5 !By + (1 — a)g; ' E) is (2¢)-lc,
Ky, + B+ (1 - )&, = hi(Kw, + 9. ' By + (1 — a)g; ' E)

is an hs-exceptional R-divisor whose support coincides with Supp £.. Note that dim W = 3. By [HH20,
Lemma 2.10, Theorem 1.1], we may run a (K, + B’ + (1 —€)E’)-MMP with scaling of an ample divisor over
S and reach a relative minimal model V) over S. For the point s € U corresponding to (Y, By + (1 — a)E),
&! is contracted, and hence W, is isomorphic to X in codimension one. This gives a bounded family modulo

flops over U. Applying Noetherian induction on S, the family of all such X is bounded modulo flops. [

Remark 5.2.9. It is possible to replace Theorem 1.2.2 with the uniform Ic rational polytopes [HLS19,
Theorem 5.6] and the boundedness of indices of log Calabi-Yau threefolds [Xu19, Theorem 1.13] to conclude

mld(X, B) <1 — ¢ in the beginning of the proof of Theorem 1.2.12. We briefly describe the idea here. By
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[HMX14, Theorem 1.5], we may assume that I' is a finite set. By [HLS19, Theorem 5.6], we may reduce the
theorem to the case I' C Q. By [Xul9, Theorem 1.13], I(Kx + B) is Cartier for some positive integer 1

which only depends on I'. In particular, mld(X, B) <1 — 4.
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Chapter 6

Questions and Open Problems

It would be interesting to ask if Lemmas 3.2.4 3.2.5 hold for all terminal threefolds.

Conjecture 6.0.1. Ler (X > x, B) be an lc threefold pair, such that X is terminal and mld(X > x, B) > 1.
Then there exists a prime divisor E over X 3 x, and a divisorial contraction f : Y — X of E, such that Y

is terminal, and a(E, X, B) = mld(X > z, B).

We remark that the assumption “mld(X > x, B) > 1” is necessary in Conjecture 6.0.1. Indeed, [KSC04,
Excerise 6.45], and [Kaw17, Example 5] show that there exists a Q-divisor B on X := C3, such that
mld(X > z, B) = 0, there is exactly one prime divisor F over X > x with a(E, X, B) = mld(X > z, B),
and E is not obtained by a weighted blow-up. Recall that any divisorial contraction from a terminal threefold

to a smooth variety is always a weighted blow-up.

Conjecture 6.0.2 (cf. [HL20, Introduction]). Let d be a positive integer and T' C [0,1] a DCC set. Then

there exists a positive real number | depending only on d and T satisfying the following.

Assume that (X > xz, B) is an lc pair of dimension d such that X is Q-Gorenstein and B € I'. Then there

exists a prime divisor E over X 3 x, such that a(E, X, B) = mld(X > «, B) and a(E, X,0) <.

[MN18, Conjecture 1.1] and [CH21, Problem 7.17] are exactly Conjecture 6.0.2 for the case when X > x
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is a fixed germ and I' is a finite set, and when X > z is a fixed germ respectively. Conjecture 6.0.2 holds
when dim X = 2 [HL20, Theorem 1.2]. In this paper, we give a positive answer for terminal threefolds. A

much ambitious problem is the following.

Question 6.0.3. Let " C [0, 1] be a DCC set. Assume that (X > x, B) is an Ic pair such that X is kit near x

and mld(X > z,B) > 0.

1. Will there exist a divisorial contraction f : Y — X of a prime divisor E over X > x, such that

a(E,X,B)=mld(X >z, B)?

2. Moreover, if B €T, and mld(X 3 z,B) > 1, will a(E, X, B) = mld(X 3 «, B) and a(E, X,0) <

for some real number | depending only on dim X and T"?

It was shown in [HLQ21, Theorem 1.1] that the lc threshold polytopes satisfy the ACC, and a conjecture
due to the first author asks whether the volumes of Ic threshold polytopes satisfy the ACC. In the same fashion,

we ask the following.

Question 6.0.4 (ACC for CT-polytopes). Let d, s be positive integers, and I’ C R>g a DCC set. Let S be the

setof all (X,A; Dy, ..., Dy), where

1. dim X =d, (X, A) is canonical, and A € T, and
2. Dy,...,Dg are R-Cartier divisors, and D+, ..., Ds € T.

Then

1. {P(X,A;Dy,...,Ds) | (X,A;Dy,...,Ds) € S} satisfies the ACC (under the inclusion), and

2. {Vol(P(X,A;Dy,...,Dy)) | (X,A;D,...,D,) € S} satisfies the ACC,
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where

P(X,A; Dy, Dg) = {(t1,...,ts) €ERL, | (X, A+ 11Dy + ... +t5D;) is canonical }.
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Chapter 7

Appendix—Boundedness of Divisors
Computing Minimal Log Discrepancies
for Surfaces

We prove Theorem 1.2.4 in this chapter. We work over an algebraic closed field of arbitrary characteristic in

this chapter.

7.1 Preliminary Results

7.1.1 Arithmetic of sets

Lemma 7.1.1. LetT' C [0, 1] be a set which satisfies the DCC, and n a non-negative integer. There exists a

positive real number ~ which only depends on n and T, such that

{Z nib; —n >0 | b; € F,TLZ' S ZZO} - [’Y,'FOO).

K3

Proof. The existence of y follows from that the set {) . n;b; —n | b; € I',n; € Z>o} satisfies the DCC. [

Definition 7.1.2. Lete € R, I € R\{0}, and I" C R a set of real numbers. We define I'c := Upcr[b — €, b],

and 1T := {2 | beI'}.
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Lemma 7.1.3. Let T C [0, 1] be a set which satisfies the DCC. Then there exist positive real numbers €, < 1,
such that

> b, —1>0 0 € TN [0,1],n; € Zxo} C [5,+00).

Proof. We may assume that T' \ {0} # 0, otherwise we may take e = § = 1.

Since I' satisfies the DCC, by Lemma 7.1.1, there exists a real number v € (0, 1] such that '\ {0} C (v, 1],
and {>°, n;b; — 1 > 0| n; € Z>0,b; € I'} C [y, +00). It suffices to prove that there exist 0 < €,6 < %,
such that the set {> ", n;b, —1 € (0,1] | b) € Te N [0,1],n; € Z>0} is bounded from below by d, or
equivalently

4
{anb; —-1>0 I b; cel'.N [O, 1],717, € ZZO7Zni < ;} - [(574-00)

We claim that € = g, d = 4 have the desired property. Let b; € I'c N [0, 1] and n; € Z>, such that
Yo, mibi—1>0and ), n; < %. We may find b; € T, such that 0 < b; — b, < e for any 4. In particular,

>;mib; —1 > 0. By the choice of v, >, n;b; — 1 > ~. Thus
D onb—1=( nibi—1) =Y ni(bi — b)) > — 2e= I
i i i a v 2
and we are done. O

We will use the following lemma frequently without citing it in this article.

Lemma 7.1.4. LetT' C [0, 1] be a set, and y € (0, 1] be a real number. If {3}, n;b; =1 >01|b; € ',n; €

Z20} € [y, +00). then T\ {0} [, 11

Proof. Otherwise, we may find b € T, such that0 < b < 7. Then0 < ([3]+1)-b—1<b <y, a

contradiction. O
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7.1.2 Minimal resolution

Let X be a normal quasi-projective surface and x € X aclosed point. Then a birational morphism f : ¥ — X
(respectively f : Y — X 3 xz) is called a minimal resolution of X (respectively X > x) if Y is smooth
(respectively smooth over a neighborhood of « € X)) and there is no (—1)-curve on Y (respectively over a

neighborhood of z € X).

Note that the existence of resolutions of singularities for surfaces (see [Lip18]) and the minimal model
program for surfaces (see [Tan14] and [Tan18]) are all known in positive characteristic. In particular, for
any surface X (respectively surface germ X > 1), we can construct a minimal resolution f : X > X

(respectively f: X—X> ).

Definition 7.1.5. Let f: X — X 5 z be the minimal resolution of X > z, and we may write K + By +
> (1—a)E; = f*(Kx + B), where B < is the strict transform of B, E; are f-exceptional prime divisors
and a; := a(F;, X, B) for all 4. The partial log discrepancy of (X 3 z, B), pld(X 3 z, B), is defined as

follows.

min;{a;} ifx € X is a singular point,

pld(X >z, B) := { +00 if z € X is a smooth point.

7.1.3 Dual graphs

Definition 7.1.6 (c.f. [KM98, Definition 4.6]). Let C' = U;C}; be a collection of proper curves on a smooth

surface U. We define the dual graph DG of C' as follows.

1. The vertices of DG are the curves C}.

2. Each vertex is labelled by the negative self intersection of the corresponding curve on U, we call it the

weight of the vertex (curve).

3. The vertices C;, C; are connected with C; - C; edges.
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Let f : Y — X > z be a projective birational morphism with exceptional divisors { E; }1<;<m, such that
Y is smooth. Then the dual graph DG of f is defined as the dual graph of ' = U;<;<,, ;. In particular, DG

is a connected graph.

Definition 7.1.7. A cycle is a graph whose vertices and edges can be ordered vy, ...,v,, and e1,..., e,

(m > 2), such that e; connects v; and v;41 for 1 < i < m, where v, 11 = v;.
Let DG be a dual graph with vertices {C; }1<i<m. We call DG a tree if
1. DG does not contain a subgraph which is a cycle, and

2. C;-Cj<1lforalll <i#j<m.

Moreover, if C'is a vertex of DG that is adjacent to more than three vertices, then we call C' a fork of DG. If
DG contains no fork, then we call it a chain.
Lemma 7.1.8. Let X > x be a surface germ. Let Y,Y' be smooth surfaces, and let f : Y — X > x and

f': Y — X 5 x be two projective birational morphisms, such that [’ factors through f.

g

Y —— Y
N
f/

X>o>zx

If the dual graph of [ is a tree whose vertices are all smooth rational curves, then the dual graph of [’ is a

tree whose vertices are all smooth rational curves.

Proof. Letg:Y’ — Y be the projective birational morphism such that f o g = f’. Since g is a composition
of blow-ups at smooth closed points, by inducion on the number of blow-ups, we may assume that g is a

single blow-up of Y at a smooth closed pointy € Y.
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Let E’ be the g-exceptional divisor on Y, {E;}1<,<m the set of distinct exceptional curves of f on
Y, and {E}}1<i<pm their strict transforms on Y. By assumption £} - B, < g*E; - B} = E; - E; < 1 for
1 <i# j < m. Since E; is smooth, 0 = ¢g*E; - E' > (E/ + E') - E'. It follows that E’ - E/ < 1 for

1<e<m.

If the dual graph of f’ contains a cycle, then E' must be a vertex of this cycle. Let E', E; , ..., E] be

the vertices of this cycle, 1 < k < m. Then the vertex-induced subgraph by E;, , ..., Ej;, of the dual graph

of f is a cycle, a contradiction. O

The following lemma maybe well-known to experts. For the reader’s convenience, we include the proof

here.

Lemma 7.1.9. Let ¢g € (0,1] be two real numbers. Let (X > x, B) be an lc surface germ, Y a smooth
surface, and f 1Y — X > x a projective birational morphism with the dual graph DG. Let { Ex }1<p<m be
the set of vertices of DG, and wy, := —E}, - Ey, ai := a(Ex, X, B) for each k. Suppose that ay, < 1 for any

1 < k < m, then we have the following:

1wy < % if ap > 0, and in particular, wy, < %for 1<k <mifmld(X > z,B) > ¢.

2. If wi, > 2 for some k, then for any Ey, , Ey, which are adjacent to E}, we have 2ay, < ag, + Gp,.

Moreover, if the equality holds, then f7'B - Ej, = 0, and either wy, = 2 or aj, = ay, = ax, = 0.

3. If By, is a fork, then for any Ey, , Ey,, Ey, which are adjacent to Ey,, with wy, > 2 for 0 <1 < 2,

Gy > Q.. Moreover, if the equality holds, then wy, = 2 and f*_lB By, =0for0<i<2

4. Let By, Ey, , E, be three vertices, such that Ey, , Ey, are adjacent to Ey,,. Assume that aj, > Gj,,

ag, > €o, and wy, > 3, then ay, — ay, > .

116



5. If Ey, is a fork, and there exist three vertices Ey, , By, , E, which are adjacent to Ey,, with wy, > 2

for0 < i <3, thena(E, X, B) > ay, for any vertex E of DG.

6. Let {Ey, }o<i<m’ be a set of distinct vertices such that Ey,, is adjacent to Ej,

o for0<i <m' —1,

where m' > 2. If ay, = ay,, = mld(X > z,B) > 0and wy, > 2 for 1 < i < m/ — 1, then

Ay =, = -+ =ay,_, and wy, =2 for 1 <i <m' — 1.
Proof. For (1), we may write

Ky +f7'B+ Y (1-a)Ei =f"(Kx+B).
1<i<m
For each 1 < k < m, we have
0=(Ky +f7'B+ Y (1—a)E:)-Ey,
1<i<m

or equivalently,

arpwi =2 — 2pa(Ey) — Z(l —a;)E; - By, — f,'B - Ey.

ik

So arw < 2, and wy, < %
For (2), by (7.1.1),

2a < apwg < A, + ag, — f;lB -E < Ay, + Q.-

(7.1.1)

If 2a), = ay, + ax,, then f71B - E}, = 0, and either wy, = 2 or ay = ag, = ay, = 0.

For (3),letk = k; in (7.1.1) fori = 1, 2,

agwy, <1+ ag, — (Y (1= a)Ej- By, + f7'B- Ey,) < 1+ ag,,

J#ko,ki
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or ay, < % Thus let k = kg in (7.1.1), we have

—1
Qky 2y Wi + 1 — ag, — ag, + f. B- Eko

1 1 1 1
)+ (1 -
wkl wkz wkl wkz

>0l (wko -

If the equality holds, then wy, = 2 and f7'B - E; = 0for 0 <i < 2.

For (4), by (7.1.1), we have ag, wg, < ag, +a, —d, where d := f;lB~Ek0+Zj¢khk2,ko(1—aj)Ej'Eko~

Hence

(wry = Vag, —ag, +d _ (0, = 2)ag, _ €0

Oy — Qfy 2> > .
! ° Wi, Wi 3

For (5), we may assume that E' # Ej, . There exist m’ + 1 distinct vertices { F} }o<;<m/ of DG, such that
[] FO = Eko, Fm/ = E, and

e [} is adjacent to F;,q for0 <i <m' — 1.

Denote a; := a(F;, X, B) for 0 < i < m/. By (3), we have a} > ag, and by (2), a;,, — a; > aj — aj_, for

1<i<m'—1. Thusal, —ajy > 0.

For (6), by (2) ax, < ak, <...<ag,,_ , <ag, . Thusay, =...=ag,_,. By (2) again, wy, = 2 for

1<i<m/ —1.
]

Lemma 7.1.10. Ler (X > x, B) be an lc surface germ. Let Y be a smooth surfaceand f : Y — X >z a

birational morphism with the dual graph DG. If DG contains a (—1)-curve Ey, then

1. Ey can not be adjacent to two (—2)-curves in DG,

118



2. if either mld(X > z, B) # pld(X > x, B) or mld(X > x, B) > 0, then Ey is not a fork in DG, and

3. if E, Ey, ..., Ey, are distinct vertices of DG such that E is adjacent to Ey, E; is adjacent to E; 1 for

0<i<m-—1l,and—FE; - E;=2for1 <i<m,thenm+1< —-FE-FE=w.

Proof. For (1), if Ey is adjacent to two (—2)-curves Fj, and Ej, in DG, then we may contract Ey and
get a smooth model f' : Y' — X > x over X, whose dual graph contains two adjacent (—1)-curves, this

contradicts the negativity lemma.

By [KM98, Theorem 4.7] and the assumptions in (2), the dual graph of the minimal resoltion of X > z
is a tree. If Ey is a fork, we may contract Fy and get a smooth model f’ : Y/ — X > z, whose dual graph

contains a cycle, this contradicts Lemma 7.1.8.

For (3), we will construct a sequence of contractions of (—1)-curve X := X — X1 — ... X, = X,
inductively. Let E'x, be the strict transform of E on X, and wx, := —EYx, - Ex, . For simplicity, we will
always denote the strict transform of Ej, on X; by Ej, for all k, 5. Let f; : Xo — X; be the contraction
of Ey on Xy, then wx, = w —1,and F; - E; = —1 on X;. Let fo : X; — Xo be the contraction of
E;on X, thenwx, = wx, —1 =w — 2, and Ey - E3 = —1 on X3. Repeating this procedure, we have
fr + Xi—1 — X, the contraction of Ey_q,and wx, =w —k, E - B, = —1lon X for1 <k <m+1. By

the negativity lemma, wy, ., = w — (m + 1) > 0, and we are done. O

Lemma 7.1.11. Letr v € (0, 1] be a real number. Let (X > z, B := ). b;B;) be an lc surface germ, where
B; are distinct prime divisors. Let Y be a smooth surface and f : Y — X 3 x a birational morphism with
the dual graph DG. Let { Ey }o<k<m be a vertex-induced sub-chain of DG, such that Ey, is adjacent to Ejy1

for0 <k <m—1, and let wy, := —F}, - Ey, ay, := a(F%, X, B) for all k. Suppose that wy = 1, and Fy is
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adjacent to only one vertex Fy of DG, ay, < 1, and wy, > 2 for each k > 1, then

1oif{>;nibi —1>0|n; € Z>o} C [y, +00), and ag < a1, thenm < =,

2=

2. lle nib; — 1 # 0 forall n; € Z>o, and ag < a1, then ag < a1, and

3.0 {>°,nibi—1>0|n; € Z>o} C [y, +0), and ag < a1, then m <

2=

o—0O0——0CO--0
Proof. We may write Ky + f; 'B+3_,(1 —a;)E; = f*(Kx + B), then
—2+ f7'B - Eo +woap + Y (1 —a;)E; - By = 0. (7.1.2)

i#0

Since Ej is adjacent to only one vertex F of DG, by (7.1.2) we have
a1 —ag=f'B-Ey—1.

For (1), since 1 > ay > ay, it follows that f;'B - Ey — 1 € {>_,n;b; —1 > 0| n; € Z>o} C [, +00),
Thus a3 — ap > . By Lemma 7.1.9(2), we have a;+1 —a; > a1 —ag > yforany 0 < i < m — 1, and

1>am,m >ym.Som <

2=

For (2), since f;'B-Ey—1=>.n;b; — 1 # 0 for some n; € Z>, ap < a.

(3) follows immediately from (1) and (2). O
7.1.4 Extracting divisors computing mlds

We first simplify our notions.

Definition 7.1.12. Let X > z be a smooth surface germ. Wesay X,, - X,,_1 — - = X7 — Xo:= X is

a sequence of blow-ups with the data (f;, F;, x; € X;) if
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o fi: X; — X;_1 is the blow-up of X;_; ata closed point x;_; € X;_; with the exceptional divisor F;

for any 1 <1¢ < n, where xg := z, and

o x;c Fiforanyl1 <i<n-—1.

In particular, F, is the only exceptional (—1)-curve over X.

For convenience, we will always denote the strict transform of F; on X; by I} forany n > j > 4.

The following lemma is well known. For a proof, see for example, [HL20, Lemma 3.15].

Lemma 7.1.13. Let (X > x, B) be an lc surface germ such that mld(X > x,B) > 1, then mld(X >
x,B) = 2 — mult, B, and there is exactly one prime divisor E over X > x such that a(E,X,B) =

mld(X > z, B).

Lemma 7.1.14 ((IMN18, Lemma 4.2]). Let X > x be a smooth surface germ, and X;, — --- — X1 —

Xo := X a sequence of blow-ups with the data (fi, E;, z; € X;), then a(Ey,, X,0) < 2l

Now we will construct some birational models for surfaces.

Lemma 7.1.15. Let (X > x, B) be an lc surface germ. Let h : W — (X, B) be a log resolution, and
S = {E;} a finite set of valuations of h-exceptional prime divisors over X > x such that a(E;, X,B) <1
for all j. Then there exist a smooth surface Y and a projective birational morphism f :' Y — X 3 x with the

following properties.

1. Ky + By = f*(Kx + B) for some R-divisor By > 0onY,
2. each valuation in S corresponds to some f-exceptional divisor on'Y, and

3. each f-exceptional (—1)-curve corresponds to some valuation in S.

121



Proof. We may write

Kw + Bw = h"(Kx + B) + Fw,

where By, > 0 and Fyy > 0 are R-divisors with no common components. We construct a sequence of
(Kw + Bw)-MMP over X as follows. Each time we will contract a (—1)-curve whose support is contained
in Fy . Suppose that Ky + By is not nef over X, then Fy, # 0. By the negativity lemma, there exists
a h-exceptional irreducible curve C' C Supp Fyy, such that Fyy - C = (Kw + Bw) - C < 0. Since
Bw -C >0, Ky - C < 0. Thus C is a h-exceptional (—1)-curve. We may contract C, and get a smooth
surface Yy := W — Y] over X. We may continue this process, and finally reach a smooth model Y}, on which
Ky, + By, is nef over X, where By, is the strict transform of By on Y},. By the negativity lemma, Fyy is
contracted in the MMP, thus Ky, + By, = h}(Kx + B), where hy, : Y, — X. Since a(E;, X, B) < 1, E;
is not contracted in the MMP for any E; € S.

We now construct a sequence of smooth models over X, Y, — Y311 — - -, by contracting a curve C’

satisfying the following conditions in each step.

e (' is an exceptional (—1)-curve over X, and
e O ¢58S.

Since each time the Picard number of the variety will drop by one, after finitely many steps, we will reach a
smooth model Y over X, such that f : Y — X and (Y, By) satisfy (1)—(3), where By is the strict transform

of By, onY. O

We will need Lemma 7.1.16 to prove our main results. It maybe well known to experts. Lemma 7.1.16(1)—
(4) could be proved by constructing a sequence of blow-ups (c.f. [CH21, Lemma 4.3]). We give another proof

here.

We remark that Lemma 7.1.16(5) will only be applied to prove Theorem 1.2.4.

122



Lemma 7.1.16. Let (X > x, B) be an Ic surface germ such that 1 > mld(X > z, B) # pld(X > z, B).

There exist a smooth surface Y and a projective birational morphism f : Y — X with the dual graph DG,

such that

1. Ky + By = f*(Kx + B) for some R-divisor By > 0onY,
2. there is only one f-exceptional divisor Eqy such that a(Ey, X, B) = mld(X > z, B),
3. Ey is the only (—1)-curve of DG, and

4. DG is a chain.

Moreover, if X 5 x is not smooth, let f: X — X > z be the minimal resolution of X > x, and let

g:Y — X be the morphism such that fo g = f, then

(5) there exist a f-exceptional prime divisor E on X and a closed point T € E, such that a(E ,X,B) =

pld(X > =, B), and center i E' = T for all g-exceptional divisors E.

Proof. By Lemma 7.1.15, we can find a smooth surface Y; and a birational morphism h : Y — X > z, such
that a(E{, X, B) = mld(X > x, B) for some h-exceptional divisor E{, and Ky, + By, = h*(Kx + B) for

some By, > 0 on Y.

We now construct a sequence of smooth models over X, Yy — Y; — - -, by contracting a curve C’

satisfying the following conditions in each step.
e (' is an exceptional (—1)-curve over X, and
e there exists C” # C” over X, such that o(C”, X, B) = mld(X > z, B).

Since each time the Picard number of the variety will drop by one, after finitely many steps, we will reach a

smooth model Y over X, such that f : Y — X and (Y, By ) satisfy (1), where By is the strict transform of
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By, onY. Since mld(X > z, B) # pld(X > =z, B), by the construction of Y, there exists a curve Ey on Y’
satisfying (2)-(3).

For (4), by [KM98, Theorem 4.7], the dual graph of the minimal resolution f : X - X > zisatree
whose vertices are smooth rational curves. Since Y is smooth, f factors through }’v By Lemma 7.1.8, the dual
graph DG of f is a tree whose vertices are smooth rational curves. It suffices to show that there is no fork
in DG. By Lemma 7.1.10(2), Ej is not a fork. Suppose that DG contains a fork E’ # Ej, by (3) and (5) of

Lemma 7.1.9, we have a(E’, X, B) < a(Ey, X, B), this contradicts (2). Thus DG is a chain.

For (5), since there exists only one f-exceptional (—1)-curve, there is at most one closed point = € X s
such that center z / = Z for all g-exceptional divisors . Thus the dual graph of g, which is denoted by
DG', is a vertex-induced connected sub-chain of DG by all g-exceptional divisors. Since mld(X > z, B) #
pld(X > z, B), we have DG’ C DG.

E_n, E—n’l—l E—n/1 Eo E. En’2+1 En,
SN s

DG’ Centeratz € X

Figure 7.1: The dual graph of f

We may index the vertices of DG as {E;} _,,, <i<n, for n1,ns € Z>, such that E; is adjacent to F; 1,
and a; := a(E;, X, B) for all possible i. We may assume that the set of vertices of DG’ is {Ej} —ny<j<nys
where 0 < nf < ng and 0 < ny < ng (see Figure 7.1). If n; > nf, then by Lemma 7.1.9(2), aj, —
a_pj—1 2> min{0,a_1 — ap} > 0 forall —ny < k < —nj. If ny > n), then again by Lemma 7.1.9(2),
agr — apyy1 > min{0,a1 — ag} > 0 forall ny < k' < na. Seta—y,—1 = 1,E_, 1 = E_p, if
ny =n}, and set an,+1 = 1, Enyy1 = By, if ng = nh. Then min{a,,4+1,a—pn, -1} = pld(X > x, B), and

% = g(E_n;—1) N g(Enyi1) € B, where a(E, X, B) = pld(X > x, B). O
The following lemma gives an upper bound for number of vertices of certain kind of DG constructed in
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Lemma 7.1.16, with the additional assumption that mld(X > x, B) is bounded from below by a positive real

number.

Lemma 7.1.17. Let ¢y € (0, 1] be a real number. Then N := L%J satisfies the following properties.
Let (X >z, B := > b;B;) be an lc surface germ such that mld(X > x, B) > ey, where B; are distinct

prime divisors. Let Y be a smooth surface, and f :' Y — X 3 x a birational morphism with the dual graph

DG, such that

Ky + By = f*(Kx + B) for some R-divisor By > 0onY,

e DG is a chain with only one (—1)-curve Ey,

e a(Fy, X,B) =mld(X >z, B), and

Ey is adjacent to two vertices of DG.

Then the number of vertices of DG is bounded from above by N|.

Proof. Let{E;}_,,<i<n, be the vertices of DG, such that E; is adjacent to E; 1 for —n; < i <ny—1, and

w; == —(E; - E;),a; :== a(E;, X, B) for all i. We may assume that F), is adjacent to two vertices E_1, E
of DG.
W—ny W-1 1 2 2 Wn/41  Wny
O ---0—0—0---0—0----0
<3 (=2)-curves < 3
— €0 - €0

By Lemma 7.1.10(1), we may assume that w_; > 2. By (2) and (4) of Lemma 7.1.9, a; 1 — a; > % for
any —n; +1<i< —l,anda_y > . Sincea_,, <1,n; < % Similarly, no —n’ < %, where n’ is the
largest non-negative integer such that w; = 2 forany 1 < i < n’. By Lemma 7.1.9(1), w_; < %, and by
Lemma 7.1.10(3), n’ < % — 1. Hence nj + no + 1, the number of vertices of DG, is bounded from above by

2 0

€0
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7.2 Proof of Theorem 1.2.4

7.2.1 Smooth case

The goal in this subsection is to prove a modified version of Theorem 1.2.4 with an additional assumption

that the germ x € X is smooth while the coefficient set is larger.

Theorem 7.2.1. Let vy € (0,1] be a real number. Then Ny := |1 + % + %J satisfies the following.

Let (X 3 ¢, B := ), b;B;) be an lc surface germ, where X > x is smooth, and B; are distinct prime
divisors. Suppose that {3y, n;b; —1 > 0| n; € Z>o} C [y, +00). Then there exists a prime divisor E over

X such that a(E, X, B) = mld(X > z, B), and a(E, X, 0) < 2No.

Lemma 7.2.2 is crucial in the proof of Theorem 7.2.1. Before providing the proof, we introduce some

notations first.

Notation (). Let X > x be a smooth surface germ, andletg: X,, - X,,—1 — -+ = X3 — X := X be
a sequence of blow-ups with the data (f;, F;, z; € X;). Let DG be the dual graph of g, and assume that DG
is a chain.

Let n3 > 2 be the largest integer, such that z;; € F; \ F;_1 forany 1 <4 < ng — 1, where we set Fy := ().
Let {E;}_,,,<j<n, be the vertices of DG, such that E := F,, is the only g-exceptional (—1)-curve on X,

E,, = F1,and E; is adjacent to F;;; for any —n; < 7 < ng — 1(see Figure 7.2).

E_pn, E_1 FEp E En,
OO -O=>0—<0O--0—0--—-0>
Fng Fnz—1 B

Figure 7.2: The dual graph of g

We define n;(g) := n; for 1 <i < 3,n(g) = n, w;(g) := —E;- Ej; forall j,and Wi(g) := >, 4 w;(9)

and Wy(g) := Zj>0 w;(g)-
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Lemma 7.2.2. With Notation (x). Then

(Wi(g) — n1(g)) +n3(g) — 1 = Wa(g) — na(g)- (7.2.1)

In particular, n(g) = n1(g) + n2(9) + 1 < n3(g) + min{W1(g), Wa(g) }.

Proof. For simplicity, let n := n(g), n; := n;(g) for 1 < i < 3, w; := w;(9) = —E; - E; for all j, and
W; = Wj(g) for j = 1,2.

We prove (7.2.1) by induction on the non-negative integer n — ngs.

1 2 2 2 2 1 3 2 2
O—0O---0 O O O O O----0
Frny Fnz—1 b F1  Fng Frs-1 a1

Figure 7.3: The dual graph for the case n = nz and n = n3 + 1.

If n =ng,thenny = W1 =0,ny =n3g — 1, and Wy = 2ng — 2, thus (7.2.1) holds (see Figure 7.3). If
n =ns+ 1, then z,, € F,,, N F,,_1. Inthiscase, n; =1, W1 =2, ny = n3 — 1, and W5 = 2n3 — 1, thus
(7.2.1) holds (see Figure 7.3).

In general, suppose (7.2.1) holds for any sequence of blow-ups g as in Notation (x) with positive integers
n,ng satisfying 1 < n —ngz < k. For the case when n — ng = k + 1, we may contract the (—1)-curve on X,
and consider ¢’ : X,,_1 — --- = X := X, a subsequence of blow-ups of g with the data (f;, F;, z; € X;)
for 0 < i < n — 1. Denote n} := n;(g’) forany 1 < i < 3, and W]’ = W;(¢') forany 1 < j < 2. By
Lemma 7.1.10(1), either w_; = 2 or w;=2. In the former case, W] = W7 — 2, W} = Wy — 1,n} =ny — 1,
nh = na, and n§ = ng. In the latter case, W| = W; — 1, Wj = Wy — 2, n} = n1,n5y = ny— 1, and n} = ns.

In both cases, by induction,

Wé—né—(W{—n’l):(Wg—ng)—(Wl—n1)=n3—1.
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Hence we finish the induction, and (7.2.1) is proved.

Since wj > 2 for j # 0, wehave W1 =37 | .o jw; >2nyand Wo = 7, ., w; > 2ny. By

(7.2.1),
ni+ne+1<ny+Wo—ng9g+1=W;+ns,
and
ny+ng+1< Wy —ng+ng+ng—1=Ws,
which imply that n = ny 4+ ng + 1 < ng + min{W;, Ws}. O

We will need Lemma 7.2.3 to prove Theorems 7.2.1.

Lemma 7.2.3. Let vy € (0,1] be a real number. Let Ny := |1 + j—% + %J, then we have the following.

Let (X > z,B := Zi b;B;) be an Ic surface germ, such that X > x is smooth, and B; are distinct
prime divisors. Suppose that {)_, nib; —1 > 0| n; € Z>o} C [y,400). Let Y be a smooth surface and

f:Y — X > x be a birational morphism with the dual graph DG, such that

Ky + By = f*(Kx + B) for some By >0onY,

DG is a chain that contains only one (—1)-curve Ey,

Ey is adjacent to two vertices of DG, and

either Ey is the only vertex of DG such that a(Ey, X, B) = mld(X 3> z,B), or a(Ey, X,B) =

mld(X >z, B) > 0and ), nib; # 1 for all n; € Z>o.

Then the number of vertices of DG is bounded from above by N.

Proof. By Lemma 7.1.4, b; > ~y for all 1.
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If mld(X > 2, B) > 7, then by Lemma 7.1.17 with ¢y = 3, the number of vertices of DG is bounded

from above by 176.

Thus we may assume that 0 < mld(X > x, B) < 3. We may index the vertices of DG as {E;} _pn, <j<n,
for some positive integer n1, no, where Ej is adjacent to F; 1 for —n; < j <ng — 1. Letw; := —F; - E;
and aj := a(E;, X 3>z, B) forall j.

For all —n; < k < ng, we have

(Ky + f.'B+Y (1—-a;)E)) - Ex = f*(Kx + B) - Ex = 0. (12.2)
J

Letk =0, (7.2.2) becomes 0 = -2+ f-1B-Eq+ (1 —a_1) + (1 — ay) + woao, thus
(a1 — ao) =+ (a_1 — ao) = f*_lB - Fo — ap.

By the last assumption in the lemma, either (a_1 — ag) + (a1 — ag) > 0 orag > 0, thus f71B - Eg > 0
in both cases. Hence f; 'B - Ey —ag > v — 3 = 3. Possibly switching E; (j < 0) with E; (j > 0), we

may assume that a_; —ag > 7.

By Lemma 7.1.92), a_; —a_j11 > a_y —ap > 7 for1 < j < my,thusn; -7 <a_p, <1, and
ny < 4. Since a; > %for all —ny < 7 < —1, by Lemma 7.1.9(1), w; < %for all —ny < 57 < —1.

Y

Thus Zj;"il w; < np-s < 32 Note that X > x is smooth and DG has only one (—1)-curve, thus

8
v =
f Y — X is a sequence of blow-ups as in Definition 7.1.12. Moreover, DG is a chain, thus by Lemma

722,14+ n1 +n9 <ng+ 3—3, where n3 = ng(f) is defined as in Notation (x).

It suffices to show that ng is bounded, we may assume that ng > 2. By the definition of ng, there exists a
sequence of blow-ups X, — ... X; — Xy := X with the data (f;, F;, z; € X;), such thatz; € F; \ F;_4

forany 1 < ¢ < ng — 1. Here Fy := ().

Let By, be the strict transform of B on X; for 0 < i < ns, and let a} := a(F;, X, B) for 1 < i < ngs,
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and ay := 1. Since ; € F; \ Fy_1, aj — aj,; = mult,, Bx, — 1 forany n3 —1 > i > 0. By Lemma
7.1.92), a; — aj,, > min{a; — ag,a_1 —ag} > 0for 1 < i < n3 — 2 (see Figure 7.2). Thus by the last
assumption in the lemma, either min{a; — ag,a—_1 — ap} > 0, or mult,, Bx, — 1 > 0, in both cases we
have a] — a;,, = mult,, Bx, — 1 > 0. Hence a; — aj,; = mult,, Bx, — 1>y forany 1 <i < nz —2as
{>2;nibi —1>0|n; € Z>o} C [, +00). Therefore,

n372

0< a1 =ag+ Z (aj41 —aj) <1—(nz—1)y,
i=0

andnggl—i—%.

To sum up, the number of vertices of DG is bounded from above by |1 -+ i—% + %J O
Now we are ready to prove Theorem 7.2.1.

Proof of Theorem 7.2.1. By Lemma 7.1.13, we may assume that mld(X > z, B) < 1.

Let f : Y — X > z be the birational morphism constructed in Lemma 7.1.16 with the dual graph DG.
We claim that the number of vertices of DG is bounded from above by Ny := |1 + E’;—% + %J

Assume the claim holds, then by Lemma 7.1.14, a(E, X,0) < 2No for some exceptional divisor £ such

that (E, X, B) = mld(X > X, B), we are done. It suffices to show the claim.

If the f-exceptional (—1)-curve is adjacent to only one vertex of DG, then by Lemma 7.1.11(1), the

number of vertices of DG is bounded from above by 1 + %

If the f-exceptional (—1)-curve is adjacent to two vertices of DG, then by Lemma 7.2.3, the number of

vertices of D@ is bounded from above by |1 + % + %J Thus we finish the proof. 0
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7.2.2 General case

The following result is known as the ACC for PLDs (for surfaces), and it plays an important role in the proof

of Theorem 1.2.4.

Theorem 7.2.4 ([Ale93, Theorem 3.2],[HL20, Theorem 2.2]). Let I" C [0, 1] be a set which satisfies the
DCC. Then

Pld(2,T) :={pld(X 3 2,B) | (X 2 2,B)islc,dmX =2,B €T},

satisfies the ACC.

Proof of Theorem 1.2.4. We may assume that T\ {0} # 0.

Let (X > z, B) be an Ic surface germ with B € I'. By Lemma 7.1.13, we may assume that mld(X >

x, B) < 1. By Theorem 7.2.1, it suffices to show the case when X > x is not smooth.

If mld(X > z, B) = pld(X > z, B), then a(E, X,0) < 1 for some prime divisor E over X 3 z such

that a(E, X, B) = mld(X > x, B). So we may assume that mld(X > z, B) # pld(X > z, B).

By Lemma 7.1.16, there exists a birational morphism f : Y — X > x which satisfies Lemma 7.1.16(1)—
(5). Let f: X — X be the minimal resolution of X > z, g:Y — X > 7 the birational morphism such that
fo g = f,where x € X is chosen as in Lemma 7.1.16(5), and there exists a f-exceptional prime divisor E
over X 3 z such that a(E, X, B) = pld(X > z, B) and & € E. Moreover, there is at most one other vertex
E’ of DG such that 7 € E'.

Let DG be the dual graph of ]7, and {F;}_n, <i<n, the vertices of DG, such that ni,ng € Lo, F;
is adjacent to Fj1q, w; := —F; - Fy,a; := a(F;, X, B) for all ¢, and Fy := E,Fl = F (see Figure
7.4). We may write K + By = f*(Kx + B), where B = 1B + >.;(1 — a;)F;, and we define

é = f*_lB + ZIEFi(l — ai)Fi.
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O---0—0—0---0 O—0---0
Fon Fa F \FR F, Fo F Fn,
xX

x

Figure 7.4: Cases when = € Fy N F and when = ¢ F; for i # 0.

If & ¢ F, forall i # 0, then we consider the surface germ (X 2 7, B = f*_lB + (1 — ag)Fp), where
BeTl':=TU{l—a|a e Pld(2,T)}. By [HL20, Theorem 2.9], I’ satisfies the DCC. Thus by Theorem
7.2.1, we may find a positive integer N; which only depends on I, and a prime divisor E over X > 7, such
that a(E, X, B) = a(B, X, B) = mld(X > z, B), and a(E, X,0) < a(E, X,0) < N.

So we may assume that z = F N F}. By Lemma 7.1.3, there exist positive real numbers €¢,0 < 1
depending only on I', such that {}°. n;b; =1 > 0] b; € I.N[0,1],n; € Z>o} C [d, +00). Recall that
I = Upyer [V —¢b].

If a1 — ag < €, then we consider the surface germ (X 3 %, B = f7 B + (1 — ag)Fo + (1 — a1)FY),
where B € . N [0,1]. By Theorem 7.2.1, there exist a positive integer N3 which only depends on
T, and a prime divisor E over X > Z, such that a(E, X,B) = a(E,X,B) = mld(X > z,B) and
a(E, X,0) < a(E, X,0) < Ns.

If a; — ag > ¢, then we claim that there exists a DCC set I depending only on T, such that 1 — a; € T,

z finite graph
Figure 7.5: Cases when a; — ag > e.
Assume the claim holds, then we consider the surface germ (X 3 #, B = f. 1 B+(1—ag) Fo+(1—a1) Fy),
where B € T UT'. By Theorem 7.2.1, we may find a positive integer N3 which only depends on

I, and a prime divisor E over X > 7, such that a(E,f(,f?) = a(E,X,B) = mld(X > z,B) and

a(E, X,0) < a(E, X,0) < N3. Let N := max{Ny, Ny, N3}, and we are done.
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It suffices to show the claim. By Lemma 7.1.9(1), w; < % forany 0 < ¢ < ng. Since 1 > a,, =

1 .
ap + 3120 (aiy1 — a;) > nge, np < L. We may write

Kg+f'B+ > (1-a)F;=f"(Kx+B),

—n1<i<ns

For each 1 < 5 < no, we have

(Kg+/'B+ Y. (1-a)F) F;=0,

—n1<i<ng
which implies > .., (a; = 1)F; - Fj = ~F? -2+ fiB- F}, or equivalently,
F-F, - F,,-F a; — 1 wi =2+ f7IB-Fy + (1—ag)
Fl'Fn2 an'FnQ an2_1 wn2—2+ﬁle~Fn2
By assumption, w; — 2 + f*_lB - F; belongs to a DCC set, and by Lemma 7.2.4, 1 — ag belongs to the DCC

set{l1—al|aecPld(2,I)}.
By [KM98, Lemma 3.40], (F} - F})1<i j<n, 18 a negative definite matrix. Let (s;;)n,xn, be the inverse

matrix of (F; - Fj)i<i j<n,. By [KM98, Lemma 3.41], s,; < 0 forany 1 <4, j < ng, thus
1—a; = —311(w1—2+f*1B F1+ ].—ao 281] —2—}—};71_BFJ)

belongs to a DCC set. 0
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