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Abstract

In this article, I will discuss some recent results related to the minimal log discrepancies in dimension two and

dimension three based on [HLL22] and [HL20]. I will also discuss some of their applications in birational

geometry.
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Chapter 1

Introduction and Main Results

1.1 Background

The classification of algebraic varieties has been the key task for algebraic geometers. One of the most

important progresses, the minimal model program, was proposed and initially tackled by Mori in 1980s,

and it was later subsequently developed by many people. The minimal model program aims to classify

algebraic varieties up to birational equivalence in higher dimensions, and it provides many powerful tools for

constructing and studying moduli spaces. In recent years, the minimal model program played a key role in

the development of the K-stability theory.

In dimension no less than 3, singularities (such as terminal, Kawamata log terminal (klt), canonical, log

canonical (lc) singularities) inevitably and naturally appear in MMP, the study of these singularities and the

development of MMP are deeply intertwined. Moreover, in the development of MMP, the log pair (pair for

short), which contains a variety and a divisor on this variety satisfying certain properties, appears naturally.

Now log pairs are the main objects that birational geometers work with.

The minimal log discrepancy, initially proposed by Shokurov, is one of the most basic but important

invariants in birational geometry. One of the main concerns in MMP is the termination problem, that
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is, whether the minimal model program eventually terminates. Shokurov [Sho04a] proved that his ACC

conjecture for mlds [Sho88, Problem 5] together with the lower-semicontinuity conjecture for mlds [Amb99,

Conjecture 0.2] imply the termination of all minimal model programs. Minimal log discrepancies also play

an important role in the boundedness problem of certain varieties.

1.2 Main Results

In this paper, we focus on the ACC conjecture for mlds, which is initially proposed by Shokurov:

Conjecture 1.2.1 (ACC conjecture for MLDs). Let n be a positive integer and Γ ⊆ [0, 1] a set satisfying the

descending chain condition (DCC). Then the set

Mld(n,Γ) := {mld(X ∋ x,B) | (X ∋ x,B) is lc, dimX = n,B ∈ Γ}

satisfies the ascending chain condition (ACC).

This conjecture is only known in full generality for surfaces [Ale93] (see [Sho94b, HL20] for other

proofs), toric pairs [Amb06], and exceptional singularities [HLS19]. Based on [HLL22], we will discuss

the recent progresses on the ACC conjecture for mlds and some related conjectures on the minimal log

discrepancies.

The minimal log discrepancy (mld) of a pair (X,B), denoted by mld(X,B), is defined to be the

infimum of log discrepancies of all prime divisors that are exceptional over X (for a specific dfinition, see

Definition 2.1.4).

Theorem 1.2.2. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a positive real number δ depending only on

Γ, such that

{mld(X,B) | dimX = 3, B ∈ Γ} ∩ [1 − δ,+∞)
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satisfies the ACC, where B ∈ Γ means that the coefficients of B belong to the set Γ.

Theorem 1.2.2 solves the conjecture for terminal threefold pairs, and it generalizes all the recent progress

towards the ACC conjecture for mlds for threefolds [Kaw15b, Theorem 1.3], [Nak16, Corollary 1.5], [Jia21,

Theorem 1.3]. Indeed, we prove a slightly stronger version of Theorem 1.2.2 for germs (X ∋ x,B) instead

of pairs (X,B), see Theorem 3.6.1.

Although the MMP and the abundance conjecture are settled in dimension 3, and we even have a

complete classification of terminal threefold singularities including flips as well as divisorial contractions (cf.

[Mor85, Rei87, KM92, Kaw01, Kaw02, Kaw03, Kaw05, Kaw12, Yam18]), the ACC conjecture for mlds for

terminal threefold pairs remains open. Thus Theorem 1.2.2 strengthens our grasp on terminal threefolds. Note

that many important results in birational geometry were first observed and proved for terminal threefolds

before generalizing to other larger classes of singularities and to higher dimensions, such as the existence of

flips [Mor88, Sho92]. It is our hope that Theorem 1.2.2 will shed light on the study of algebraic varieties in

higher dimensions.

1.2.1 Divisors computing the minimal log discrepancies

The following conjecture (see also Conjecture 6.0.2 and Question 6.0.3) is a generalization of a conjecture

([MN18, Conjecture 1.1]) proposed by Nakamura:

Conjecture 1.2.3 ([HL20, Introduction]). Let d be a positive integer and Γ ⊂ [0, 1] a DCC set. Then there

exists a positive real number l depending only on d and Γ satisfying the following.

Assume that (X ∋ x,B) is an lc pair of dimension d such that X is Q-Gorenstein and B ∈ Γ. Then there

exists a prime divisor E over X ∋ x, such that a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) ≤ l.

The dimension two case is completely solved in [HL20] (whose proof will be given in the appendix):
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Theorem 1.2.4. Let Γ ⊆ [0, 1] be a set which satisfies the DCC. Then there exists an integer N depending

only on Γ satisfying the following.

Let (X ∋ x,B) be an lc surface germ such that B ∈ Γ. Then there exists a prime divisor E over X ∋ x

such that a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) ≤ N .

For terminal threefold germs, the above conjecture is also confirmed (in fact a slightly stronger version is

given). Moreover, the proof of Theorem 1.2.2 is intertwined with the proof of Theorem 1.2.5.

Theorem 1.2.5. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a positive integer l depending only on Γ

satisfying the following. Assume that (X ∋ x,B) is a threefold pair such that X is terminal, B ∈ Γ, and

mld(X ∋ x,B) ≥ 1. Then there exists a prime divisor E over X ∋ x, such that a(E,X,B) = mld(X ∋

x,B) and a(E,X, 0) ≤ l.

Theorem 1.2.5 generalizes a result of Kawakita [Kaw21, Theorem 1.3(ii)], which requires X to be smooth

and Γ to be a finite set. When X ∋ x is a fixed germ and Γ is a finite set, the existence of such a uniform

bound l was predicted by Nakamura [MN18, Conjecture 1.1], and it is equivalent to the ACC conjecture for

mlds for fixed germs (cf. [Kaw21, Theorem 4.6]).

Theorem 1.2.2 has many applications towards other topics on threefolds, both for local singularities and

global algebraic structures. We list a few of them in the rest part of the introduction.

1.2.2 Reid’s general elephant for pairs and Shokurov’s boundedness of comple-
ments conjecture

For a terminal threefold singularity x ∈ X , we say that a Weil divisor H is an elephant of x ∈ X if

H ∈ | −KX | and (X,H) is canonical near x. By [Rei87, 6.4(B)], elephant exists for any terminal threefold

singularity. As an application of Theorem 1.2.2, we generalize Reid’s general elephant theorem to the category

of pairs.
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Theorem 1.2.6. Let Γ ⊂ [0, 1] ∩ Q be a finite set. Then there exists a positive integer N depending only on

Γ satisfying the following.

Let (X ∋ x,B) be a threefold pair such that X is terminal, B ∈ Γ, and (X,B) is canonical near x. Then

on a neighborhood of x, there exists an element G ∈ | −N(KX +B)| such that (X,B + 1
NG) is canonical

near x.

We remark that in Theorem 1.2.6, if x ∈ X is a threefold terminal singularity that is not smooth, then we

can chooseG ∈ |−N(KX +B)| such that (X,B+ 1
NG) is canonical near x and mld(X ∋ x,B+ 1

NG) = 1

(see Theorem 4.2.4).

It is worth mentioning that Reid’s general elephant theorem is a special case of Theorem 1.2.6 when

Γ = {0} and x is a closed point, where we can take N = 1. We refer the reader to Kollár, Mori, Prohokorv,

Kawakita’s previous works [KM92, Kaw02, MP08a, MP09, MP21] and reference therein for other results on

general elephant for terminal threefolds.

Theorem 1.2.6 is closely related to Theorem 1.2.7, which gives an affirmative answer to Shokurov’s

conjecture on the boundedness of (ϵ,N)-complements ([CH21, Conjecture 1.1]; see [Sho04b, Conjecture],

[Bir04, Conjectures 1.3, 1.4] for some embryonic forms) for terminal threefold germs. We refer the reader to

Subsection 2.1.2 for basic notation on complements.

Theorem 1.2.7. Let ϵ ≥ 1 be a real number and Γ ⊂ [0, 1] a DCC set. Then there exists a positive integer N

depending only on ϵ and Γ satisfying the following.

Assume that (X ∋ x,B) is a threefold pair, such that X is terminal, B ∈ Γ, and mld(X ∋ x,B) ≥ ϵ.

Then there exists an N -complement (X ∋ x,B+) of (X ∋ x,B) such that mld(X ∋ x,B+) ≥ ϵ.

We refer the reader to Theorem 4.3.7 for a more detailed version of Theorem 1.2.7.

We remark that the boundedness of (0, N)-complements proved in [Bir19, HLS19] plays an important
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role in several breakthroughs in birational geometry including the proof of Birkar-Borisov-Alexeev-Borisov

Theorem and the openness of K-semistability in families of log Fano pairs (cf. [Bir21, Xu20]), while the

conjecture on the boundedness of (ϵ,N)-complements was only known for surfaces ([Bir04, Main Theorem

1.6], [CH21, Theorem 1.6]) before.

A special case of Theorem 1.2.7 gives an affirmative answer on Shokurov’s index conjecture (cf. [CH21,

Conjecture 7.3], [Kaw15a, Question 5.2]) for terminal threefolds.

Theorem 1.2.8. Let ϵ ≥ 1 be a real number and Γ ⊂ [0, 1] ∩ Q a DCC set. Then there exists a positive

integer I depending only on ϵ and Γ satisfying the following.

Let (X ∋ x,B) be a threefold pair such that X is terminal, B ∈ Γ, and mld(X ∋ x,B) = ϵ. Then

I(KX +B) is Cartier near x.

Kawakita showed that for any canonical threefold singularity x ∈ X with mld(X ∋ x) = 1, IKX

is Cartier for some I ≤ 6 [Kaw15a, Theorem 1.1], hence [Kaw15a, Theorem 1.1] can be viewed as a

complementary result to Theorem 1.2.8 when ϵ = 1. We refer the reader to Theorem 4.1.7 for an explicit

bound of I when Γ is a finite set.

1.2.3 Other Applications

As an application of our main theorems, we show the ACC for a-lc thresholds (a generalization of lc thresholds,

see Definition 2.1.5) for terminal threefolds when a ≥ 1:

Theorem 1.2.9 (ACC for a-lc thresholds for terminal threefolds). Let a ≥ 1 be a real number, and Γ ⊂

[0, 1], Γ′ ⊂ [0,+∞) two DCC sets. Then the set of a-lc thresholds,

{a- lct(X ∋ x,B;D) | dimX = 3, X is terminal, B ∈ Γ, D ∈ Γ′},
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satisfies the ACC.

Theorem 1.2.9 implies the ACC for canonical thresholds in dimension 3:

Theorem 1.2.10. Let Γ ⊂ [0, 1] and Γ′ ⊂ [0,+∞) be two DCC sets. Then the set

CT(3,Γ,Γ′) := {ct(X,B;D) | dimX = 3, B ∈ Γ, D ∈ Γ′}

satisfies the ACC.

It is worth to mention that the canonical thresholds in dimension 3 is deeply related to Sarkisov links in

dimension 3 (cf. [Cor95, Pro18]). Moreover, we have a precise description of the accumulation points of

CT(3, {0},Z≥1):

Theorem 1.2.11. The set of accumulation points of CT(3, {0},Z≥1) is {0} ∪ { 1
m | m ∈ Z≥2}.

Theorem 1.2.11 plays a crucial role in the proof of Theorem 1.2.2. We refer the reader to Theorem 3.5.3

for a more detailed version of Theorem 1.2.11.

[Ste11, Theorem 1.7] proved Theorem 1.2.10 when Γ = {0}, Γ′ = Z≥1, and X is smooth, and [Che19,

Theorem 1.2] proved Theorem 1.2.10 when Γ = {0} and Γ′ = Z≥1. [Che19, Theorem 1.3] proved that 1
2 is

the largest accumulation point of CT(3, {0},Z≥1). We refer the reader to [Shr06, Pro08] for other related

results.

Theorem 1.2.12 is another application of our main theorems:

Theorem 1.2.12. Let Γ ⊂ [0,+∞) be a DCC set. Then the set of non-canonical klt threefold log Calabi-Yau

pairs (X,B) with B ∈ Γ forms a bounded family modulo flops.

Theorem 1.2.12 is a generalization of [BDS20, Theorem 1.4] for threefolds. Jiang proved Theorem 1.2.12

for the case when Γ = {0} [Jia21, Theorem 1.6].
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We also remark that the assumption “non-canonical klt” is natural and necessary as rationally connected

Calabi-Yau varieties are not canonical, and the set of (X := Y × P1, F1 + F2) is not birationally bounded,

where Y takes all K3 surfaces and F1, F2 are two fibers of X → P1.
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Chapter 2

Preliminaries and Structure of the
Proofs

2.1 Preliminaries

We adopt the standard notation and definitions in [KM98, BCHM10] and will freely use them. All varieties

are assumed to be normal quasi-projective and all birational morphisms are assumed to be projective. We

denote by ξn the n-th root of unity e
2πi

n , and denote by C[x1, . . . , xd] (resp. C{x1, . . . , xd}, C[[x1, . . . , xd]])

the ring of power series (resp. analytic power series, formal power series) with the coordinates x1, . . . , xd.

Let K = Q or R be either the rational number field Q or the real number field R. Let X be a normal

variety. A K-divisor is a finite K-linear combination D =
∑
diDi of prime Weil divisors Di, and di denotes

the coefficient of Di in D. A K-Cartier divisor is a K-linear combination of Cartier divisors.

We use ∼K to denote the K-linear equivalence between K-divisors. For a projective morphism X → Z,

we use ∼K,Z to denote the relative K-linear equivalence.
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2.1.1 Pairs and singularities

Definition 2.1.1. A contraction is a projective morphism f : Y → X such that f∗OY = OX . In particular,

f is surjective and has connected fibers.

Definition 2.1.2. Let f : Y → X be a birational morphism, and Exc(f) the exceptional locus of f . We say

that f is a divisorial contraction (of a prime divisor E) if Exc(f) = E and −E is f -ample.

Definition 2.1.3 (Pairs, cf. [CH21, Definition 3.2]). A pair (X/Z ∋ z,B) consists of a contraction π : X →

Z, a (not necessarily closed) point z ∈ Z, and an R-divisor B ≥ 0 on X , such that KX +B is R-Cartier over

a neighborhood of z and dim z < dimX . If π is the identity map and z = x, then we may use (X ∋ x,B)

instead of (X/Z ∋ z,B). In addition, if B = 0, then we use X ∋ x instead of (X ∋ x, 0). When we

consider a pair (X ∋ x,
∑

i biBi), where Bi are distinct prime divisors and bi > 0, we always assume that

x ∈ SuppBi for each i.

If (X ∋ x,B) is a pair for any codimension ≥ 1 point x ∈ X , then we call (X,B) a pair. A pair

(X ∋ x,B) is called a germ if x is a closed point. We say x ∈ X is a singularity if X ∋ x is a germ.

Definition 2.1.4 (Singularities of pairs). Let (X/Z ∋ z,B) be a pair associated with the contraction

π : X → Z, and let E be a prime divisor over X such that z ∈ π(centerX E). Let f : Y → X be a log

resolution of (X,B) such that centerY E is a divisor, and suppose that KY + BY = f∗(KX + B) over a

neighborhood of z. We define a(E,X,B) := 1 − multE BY to be the log discrepancy of E with respect to

(X,B).

For any prime divisor E over X , we say that E is over X/Z ∋ z if π(centerX E) = z̄. If π is the identity

map and z = x, then we say that E is over X ∋ x. We define

mld(X/Z ∋ z,B) := inf{a(E,X,B) | E is over Z ∋ z}

10



to be the minimal log discrepancy (mld) of (X/Z ∋ z,B).

Let ϵ be a non-negative real number. We say that (X/Z ∋ z,B) is lc (resp. klt, ϵ-lc,ϵ-klt) if mld(X/Z ∋

z,B) ≥ 0 (resp. > 0, ≥ ϵ, > ϵ). We say that (X,B) is lc (resp. klt, ϵ-lc, ϵ-klt) if (X ∋ x,B) is lc (resp. klt,

ϵ-lc, ϵ-klt) for any codimension ≥ 1 point x ∈ X .

We say that (X,B) is canonical (resp. terminal, plt) if (X ∋ x,B) is 1-lc (resp. 1-klt, klt) for any

codimension ≥ 2 point x ∈ X .

For any (not necessarily closed) point x ∈ X , we say that (X,B) is lc (resp. klt, ϵ-lc, ϵ-klt, canonical,

terminal) near x if (X,B) is lc (resp. klt, ϵ-lc, ϵ-klt, canonical, terminal) in a neighborhood of x. If X is

(resp. klt, ϵ-lc, ϵ-klt, canonical, terminal) near a closed point x, then we say that x ∈ X is an lc (resp. klt,

ϵ-lc, ϵ-klt, canonical, terminal) singularity. We remark that if (X ∋ x,B) is lc, then (X,B) is lc near x.

Definition 2.1.5. Let a be a non-negative real number, (X ∋ x,B) (resp. (X,B)) a pair, and D ≥ 0 an

R-Cartier R-divisor on X . We define

a- lct(X ∋ x,B;D) := sup{−∞, t | t ≥ 0, (X ∋ x,B + tD) is a-lc}

(resp. a- lct(X,B;D) := sup{−∞, t | t ≥ 0, (X,B + tD) is a-lc})

to be the a-lc threshold of D with respect to (X ∋ x,B) (resp. (X,B)). We define

ct(X ∋ x,B;D) := 1- lct(X ∋ x,B;D)

(resp. ct(X,B;D) := sup{−∞, t | t ≥ 0, (X,B + tD) is canonical})

to be the canonical threshold of D with respect to (X ∋ x,B) (resp. (X,B)). We define lct(X ∋

x,B;D) := 0- lct(X ∋ x,B;D) (resp. lct(X,B;D) := 0- lct(X,B;D)) to be the lc threshold of D with

respect to (X ∋ x,B) (resp. (X,B)).
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Lemma 2.1.6. Let (X ∋ x,B) be a pair such that X is terminal and dim x = dimX − 2. Let E1 be the

exceptional divisor obtained by blowing up x ∈ X . If multx B ≤ 1, then

mld(X ∋ x,B) = a(E1, X,B) = 2 − multx B ≥ 1.

Moreover, mld(X ∋ x,B) ≥ 1 if and only if multx B ≤ 1.

Proof. Since X is terminal, by [KM98, Corollary 5.18], X is smooth in codimension 2. Since dim x =

dimX − 2, possibly shrinking X to a neighborhood of x, we may assume that X is smooth. By [KM98,

Lemma 2.45], there exists a sequence of blow-ups

Xn
fn−→ Xn−1

fn−1−−−→ · · · f2−→ X1
f1−→ X0 := X,

such that for any 1 ≤ i ≤ n,

• fi is a blow-up of Xi−1 at a point xi−1 of codimension at least 2 with the exceptional divisor Ei,

• Xi is smooth, x̄i−1 := centerXi−1 En, and

• a(En, X,B) = mld(X ∋ x,B).

In particular, xi−1 dominates x, x0 = x, and dim xi−1 = dimX − 2 for 1 ≤ i ≤ n. For any 0 ≤ i ≤ n, we

let Bi be the strict transform of B on Xi. For any 1 ≤ i ≤ n, we have

f∗
i Bi−1 = Bi + (multxi−1 Bi−1)Ei.

Let Ui−1 be an open neighborhood of xi−1 such that Ui−1 and x̄i−1|Ui−1 are both smooth. Then f−1
i (Ui−1)∩

Ei is covered by smooth rational curves that are contracted by fi and whose intersection numbers with Ei are

all equal to −1 (cf. [Har77, §2, Theorem 8.24(c)]), from which we may choose a general curve and denote it
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by Ci, such that Ci ̸⊂ SuppBi and Ci ∩ x̄i ̸= ∅ when i ̸= n. Thus

0 = f∗
i Bi−1 · Ci = (Bi + (multxi−1 Bi−1)Ei) · Ci = Bi · Ci − multxi−1 Bi−1,

which implies that multxi−1 Bi−1 = Bi · Ci. Since xi dominates xi−1 and dim xi = dimX − 2 for

1 ≤ i ≤ n− 1, we may choose Ci so that Ci ̸⊂ x̄i. For any 1 ≤ i ≤ n− 1, let C̄i be the birational transform

of Ci on Xi+1. We have C̄i ̸⊂ Ei+1. By the projection formula,

multxi−1 Bi−1 = Bi · Ci = f∗
i+1Bi · C̄i ≥ (multxi Bi)Ei+1 · C̄i ≥ multxi Bi.

By induction on i, we have 1 ≥ multx B ≥ multxi
Bi for any 0 ≤ i ≤ n− 1, thus

a(E1, X,B) = 2 − multx B ≤ 2 − multxn−1 Bn−1 = a(En, Xn−1, Bn−1). (2.1.1)

Moreover, since

KXi
+Bi = f∗

i (KXi−1 +Bi−1) + (1 − multxi−1Bi−1)Ei ≥ f∗
i (KXi−1 +Bi−1)

for 1 ≤ i ≤ n, by induction, we have KXn−1 +Bn−1 ≥ (f1 ◦ · · · ◦ fn−1)∗(KX +B), hence

a(En, Xn−1, Bn−1) ≤ a(En, X,B) = mld(X ∋ x,B) ≤ a(E1, X,B). (2.1.2)

Lemma 2.1.6 now follows from Inequalities (2.1.1) and (2.1.2).

2.1.2 Complements

Definition 2.1.7. Let n be a positive integer, ϵ a non-negative real number, Γ0 ⊂ (0, 1] a finite set, and

(X/Z ∋ z,B) and (X/Z ∋ z,B+) two pairs. We say that (X/Z ∋ z,B+) is an (ϵ,R)-complement of

(X/Z ∋ z,B) if

• (X/Z ∋ z,B+) is ϵ-lc,

13



• B+ ≥ B, and

• KX +B+ ∼R 0 over a neighborhood of z.

We say that (X/Z ∋ z,B+) is an (ϵ, n)-complement of (X/Z ∋ z,B) if

• (X/Z ∋ z,B+) is ϵ-lc,

• nB+ ≥ ⌊(n+ 1){B}⌋ + n⌊B⌋, and

• n(KX +B+) ∼ 0 over a neighborhood of z.

A (0,R)-complement is also called an R-complement, and a (0, n)-complement is also called an n-complement.

We say that (X/Z ∋ z,B) is (ϵ,R)-complementary (resp. (ϵ, n)-complementary, R-complementary, n-

complementary) if (X/Z ∋ z,B) has an (ϵ,R)-complement (resp. (ϵ, n)-complement, R-complement,

n-complement).

We say that (X/Z ∋ z,B+) is a monotonic (ϵ, n)-complement of (X/Z ∋ z,B) if (X/Z ∋ z,B+) is an

(ϵ, n)-complement of (X/Z ∋ z,B) and B+ ≥ B.

We say that (X/Z ∋ z,B+) is an (n,Γ0)-decomposable R-complement of (X/Z ∋ z,B) if there exist a

positive integer k, a1, . . . , ak ∈ Γ0, and Q-divisors B+
1 , . . . , B

+
k on X , such that

•
∑k

i=1 ai = 1 and
∑k

i=1 aiB
+
i = B+,

• (X/Z ∋ z,B+) is an R-complement of (X/Z ∋ z,B), and

• (X/Z ∋ z,B+
i ) is an n-complement of itself for each i.

Theorem 2.1.8 ([HLS19, Theorem 1.10]). Let d be a positive integer and Γ ⊂ [0, 1] a DCC set. Then there

exists a positive integer n and a finite set Γ0 ⊂ (0, 1] depending only on d and Γ and satisfy the following.
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Assume that (X/Z ∋ z,B) is a pair of dimension d and B ∈ Γ, such that X is of Fano type over Z

and (X/Z ∋ z,B) is R-complementary. Then (X/Z ∋ z,B) has an (n,Γ0)-decomposable R-complement.

Moreover, if Γ̄ ⊂ Q, then (X/Z ∋ z,B) has a monotonic n-complement.

2.1.3 Index of canonical threefolds

Definition 2.1.9. Let (X ∋ x,B) be a pair such that B ∈ Q, and (Xan ∋ x,Ban) the corresponding analytic

pair. The index (resp. analytic index) of (X ∋ x,B) is the minimal positive integer I such that I(KX +B)

is (resp. I(KXan +Ban)) is Cartier near x.

The following lemma indicates that the index of X ∋ x coincides with the analytic index of X ∋ x.

Hence we will not distinguish the index and the analytic index in our paper.

Lemma 2.1.10 ([Kaw88, Lemma 1.10]). Let X be a variety and D a Weil divisor on X . Let Xan be the

underlying analytic space of X and Dan the underlying analytic Weil divisor of D on Xan. Then Dan is

Cartier on Xan if and only if D is Cartier on X .

Theorem 2.1.11 (cf. [Kaw15a, Theorem 1.1]). Let X be a canonical threefold and x ∈ X a (not necessarily

closed) point such that mld(X ∋ x) = 1. Then IKX is Cartier near x for some positive integer I ≤ 6.

Proof. If dim x = 2 then KX is Cartier near x. If dim x = 0, then the theorem follows from [Kaw15a,

Theorem 1.1]. If dim x = 1, then we let f : Y → X be the terminalization of X ∋ x. By [KM98,

Theorem 4.5], Y is smooth over a neighborhood of x. Since KY = f∗KX , KX is Cartier near x by the cone

theorem.

Lemma 2.1.12. Let (X ∋ x,B) be a threefold germ such that mld(X ∋ x,B) ≥ 1. Let D ≥ 0 be an

R-Cartier R-divisor on X and t := ct(X ∋ x,B;D). Then mld(X ∋ x,B+ tD) = 1 if one of the following

holds:
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1. multS(B + tD) < 1 for any prime divisor S ⊂ SuppD,

2. X is Q-factorial terminal near x and x ∈ X is not smooth, and

3. X is Q-Gorenstein, x ∈ X is not smooth, and D is a Q-Cartier prime divisor.

Proof. If mld(X ∋ x,B+ tD) > 1, then t = lct(X ∋ x,B;D). For (1), since multS(B+ tD) < 1 for any

prime divisor S ⊂ SuppD, there exists a curve C passing through x, such that mld(X ∋ ηC , B + tD) = 0,

where ηC is the generic point of C. By [Amb99, Theorem 0.1], mld(X ∋ x,B + tD) ≤ 1 + mld(X ∋

ηC , B + tD) = 1, a contradiction.

For (2) and (3), by (1), we may assume that there exists a Q-Cartier prime divisor S ⊂ SuppD such that

multS(B + tD) = 1. By [Sho92, Appendix, Theorem] and [Mar96, Theorem 0.1], there exists a divisor

E over X ∋ x such that a(E,X, 0) = 1 + 1
I , where I is the index of x ∈ X . Since multE(B + tD) ≥

multE S ≥ 1
I , a(E,X,B+tD) = a(E,X, 0)−multE(B+tD) ≤ 1, hence mld(X ∋ x,B+tD) = 1.

Theorem 2.1.13. Let (X ∋ x,B :=
∑m

i=1 biBi) be a threefold germ such that mld(X ∋ x,B) ≥ 1, X is

terminal, and each Bi ≥ 0 is a Q-Cartier Weil divisor. Then we have the following:

1. If X ∋ x is smooth, then
∑m

i=1 bi ≤ 2.

2. If X ∋ x is not smooth, then
∑m

i=1 bi ≤ 1. Moreover, if
∑m

i=1 bi = 1, then mld(X ∋ x,B) = 1.

Proof. If X ∋ x is smooth, then let E be the exceptional divisor of the blowing-up of X at x. Since X ∋ x

is smooth, multE Bi ≥ 1 for each i. Thus

1 ≤ mld(X ∋ x,B) ≤ a(E,X,B) = 3 − multE B = 3 −
m∑

i=1
bi multE Bi ≤ 3 −

m∑
i=1

bi,

and we get (1).
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If X ∋ x is not smooth, then let I be the index of X ∋ x. By [Sho92, Appendix, Theorem] and [Mar96,

Theorem 0.1], there exists a prime divisor E over X ∋ x such that a(E,X, 0) = 1 + 1
I . Moreover, by

[Kaw88, Lemma 5.1], IBi is Cartier near x, and I multE Bi ≥ 1 for each i. Thus

1 ≤ mld(X ∋ x,B) ≤ a(E,X,B) = a(E,X, 0) − multE B

= 1 + 1
I

−
m∑

i=1
bi multE Bi ≤ 1 + 1

I
− 1
I

m∑
i=1

bi,

which implies (2).

2.1.4 Singular Riemann-Roch formula and Reid basket

Definition 2.1.14. Let X ∋ x be a smooth germ such that dimX = d, and mx (resp. man
x ) the maximal ideal

of the local ring OX,x (resp. analytic local ring Oan
X,x). We say that x1, . . . , xd ∈ mx (resp. x1, . . . , xd ∈ man

x )

is a local coordinate system (resp. analytic local coordinate system) of x ∈ X if the image of x1, . . . , xd span

the linear space mx/m
2
x (resp. man

x /(man
x )2). We also call x1, . . . , xd local coordinates (resp. analytic local

coordinates) of x ∈ X .

Definition 2.1.15 (Cyclic quotient singularities). Let d and n be two positive integers, and a1, . . . , ad integers.

A cyclic quotient singularity of type 1
n (a1, . . . , ad) is the cyclic quotient singularity (o ∈ Cd)/µ given by the

action

µ : (x1, . . . , xd) → (ξa1
n x1, ξ

a2
n x2, . . . , ξ

ad
n xd)

on Cd, where x1, . . . , xd are the local coordinates of Cd ∋ o. We may also use (o ∈ Cd)/ 1
n (a1, . . . , ad) to

represent the singularity (o ∈ Cd)/µ, and use (Cd ∋ o)/ 1
n (a1, . . . , ad) to represent the germ (Cd ∋ o)/µ.

In particular, we may always assume that (see for example [Fuj74, §1]) the cyclic group action is small, that

is, the action is free in codimension one.
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We remark that a cyclic quotient singularity of type 1
n (a1, . . . , ad) is isolated if and only if gcd(ai, n) = 1

for 1 ≤ i ≤ d (see [Fuj74, Remark 1]).

By the terminal lemma (cf. [MS84, Corollary 1.4]), if a cyclic quotient threefold singularity x ∈ X is

terminal, then

(x ∈ X) ∼= (o ∈ C3)/ 1
n

(1,−1, b)

for some positive integers b, n such that gcd(b, n) = 1. We say that the terminal (cyclic quotient threefold)

singularity x ∈ X is of type 1
n (1,−1, b) in this case.

Definition 2.1.16 ([Rei87, Theorem 10.2(2)]). For any integers 1 ≤ u < v and real numbers su, . . . , sv , we

define
∑u

i=v si := −
∑v−1

i=u+1 si when v ≥ u+ 2, and define
∑u

i=v si := 0 when v = u+ 1.

Let n be a positive integer and m a real number. We define

(m)n := m− ⌊m
n

⌋n.

Let b, n be two positive integers such that gcd(b, n) = 1. Let x ∈ X be a terminal cyclic quotient

singularity of type 1
n (1,−1, b) and D a Weil divisor on X , such that OX(D) ∼= OX(iKX) for some integer

i near x. We define

cx(D) := −in
2 − 1
12n +

i−1∑
j=1

(jb)n(n− (jb)n)
2n .

We remark that cx(D) is independent of the choices of i and b by construction.

Definition-Lemma 2.1.17 ([Rei87, (6.4)]). Let x ∈ X be a terminal threefold singularity. By the classifica-

tion of threefold terminal singularities (cf. [Rei87, (6.1) Theorem], [Mor85, Theorems 12,23,25]), we have

an analytic isomorphism (x ∈ X) ∼= (y ∈ Y )/µ for some isolated cDV singularity (y ∈ Y ) ⊂ (o ∈ C4)

and cyclic group action µ on o ∈ C4. Moreover, y ∈ Y is defined by an equation (f = 0) ⊂ (o ∈ C4) with

analytic local coordinates x1, x2, x3, x4, and there exists 1 ≤ i ≤ 4 such that f/xi is a rational function that
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is invariant under the µ-action. Now we consider the 1-parameter deformation Yλ of Y , such that Yλ is given

by (f + λxi = 0). Then the deformation Yλ is compatible with the action µ, and we let Xλ := Yλ/µ for

each λ. For a general λ ∈ C, the singularities of Xλ are terminal cyclic quotient singularities Q1, . . . , Qm

for some positive integer m. We have the following.

1. Q1, . . . , Qm only rely on x ∈ X and are independent of the choice of λ, and we define the set of

fictitious singularities of x ∈ X to be Ix := {Q1, . . . , Qm}.

2. For any Q-Cartier Weil divisor D on X , D is deformed to a Weil divisor Dλ on Xλ. We define

cx(D) :=
∑m

j=1 cQj
(Dλ).

For such a general λ, Xλ is called a Q-smoothing of x ∈ X .

The following theorem indicates that cx(D) is well-defined.

Theorem 2.1.18 ([Rei87, Theorem 10.2(1)]). Let x ∈ X be a terminal threefold singularity and D a Q-

Cartier Weil divisor on X . Then cx(D) depends only on the analytic type of x ∈ X and OX(D) near x.

Moreover, if x ∈ X is smooth, then cx(D) = 0.

Theorem 2.1.19 ([Rei87, Theorem 10.2]). Let X be a projective terminal threefold, and D a Q-Cartier Weil

divisor on X . Then

χ(OX(D)) = χ(OX) + 1
12D(D −KX)(2D −KX) + 1

12D · c2(X) +
∑

x is a closed point

cx(D).

Definition 2.1.20 (Reid basket for divisorial contractions). Let f : Y → X be a divisorial contraction of a

prime divisor F such that Y is a terminal threefold.

For any closed point y ∈ F , consider a Q-smoothing of y ∈ F ⊂ Y as in Definition-Lemma 2.1.17, and

let Iy be the corresponding set of fictitious singularities. For eachQy ∈ Iy , let YQy
be the deformed variety on
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which Qy ∈ YQy is a cyclic quotient terminal threefold singularity of type 1
rQy

(1,−1, bQy ), and FQy ⊂ YQy

the deformed divisor of F ⊂ Y . Let fQy
be the smallest non-negative integer such that FQy

∼ fQy
KYQy

near Qy. Possibly replacing bQy
with rQy

− bQy
, we may assume that vQy

:= (fQy
bQy

)
rQy

≤ rQy

2 . The

Reid basket for the divisorial contraction f : Y → X with the exceptional divisor F is defined as

J := {(rQy , vQy ) | y ∈ F,Qy ∈ Iy, vQy ̸= 0}.

2.1.5 Weighted blow-ups over quotient of complete intersection singularities

Definition 2.1.21. A weight is a vector w ∈ Qd
>0 for some positive integer d.

Definition 2.1.22 (Weights of monomials and polynomials). Let d be a positive integer andw = (w1, . . . , wd) ∈

Qd
>0 a weight. For any vector α = (α1, . . . , αd) ∈ Zd

≥0, we define xα := xα1
1 . . . xαd

d , and

w(xα) :=
d∑

i=1
wiαi

to be the weight of xα with respect to w. For any analytic power series 0 ̸= h :=
∑

α∈Zd
≥0
aαxα, we define

w(h) := min{w(xα) | aα ̸= 0}

to be the weight of h with respect to w. If h = 0, then we define w(h) := +∞.

Definition 2.1.23. Let h ∈ C{x1, . . . , xd} be an analytic power series and G a group which acts on

C{x1, . . . , xd}. We say that h is semi-invariant with respect to the group action G if for any g ∈ G, g(h)
h ∈ C.

If the group action is clear from the context, then we simply say that h is semi-invariant.

Definition 2.1.24. Let (X ∋ x,B :=
∑k

i=1 biBi) be a threefold germ such that X is terminal and Bi ≥ 0

are Q-Cartier Weil divisors on X . Let d, n and m < d be positive integers such that

(X ∋ x) ∼= (ϕ1 = · · · = ϕm = 0) ⊂ (Cd ∋ o)/ 1
n

(a1, . . . , ad)

20



for some semi-invariant irreducible analytic power series ϕ1 . . . , ϕm ∈ C{x1, . . . , xd} such that multo ϕi > 1

for each i, here the group action on Cd is free outside o. By [Kaw88, Lemma 5.1], Bi can be identified with(
(hi = 0) ⊂ (Cd ∋ o)/ 1

n (a1, . . . , ad)
)
|X for some non-negative integers a1, . . . , ad and some semi-invariant

analytic power series hi ∈ C{x1, . . . , xd} near x ∈ X , and we say that Bi is defined by (hi = 0) near x or

Bi is locally defined by (hi = 0) for simplicity. We define the set of admissible weights of X ∋ x to be

{ 1
n

(w1, . . . , wd) ∈ 1
n
Zd

>0 | there exists b ∈ Z such that wi ≡ bai mod n, 1 ≤ i ≤ d}.

For any admissible weight w = 1
n (w1, . . . , wd), we define

w(X ∋ x) := 1
n

d∑
i=1

wi −
m∑

i=1
w(ϕi) − 1, and w(B) :=

k∑
i=1

biw(hi).

By construction, w(B) is independent of the choices of bi and Bi, as we will explain in the following lemma.

Lemma 2.1.25. Let d1, . . . , dm, d
′
1, . . . , d

′
m′ be real numbers and D1, . . . , Dm, D

′
1, . . . , D

′
m′ Q-Cartier

Weil divisors such that
m∑

i=1
diDi =

m′∑
i=1

d′
iD

′
i.

Then
∑m

i=1 diw(Di) =
∑m′

i=1 d
′
iw(D′

i).

Proof. Let r1, . . . , rn ∈ R be a basis for the Q-linear space spanned by the real numbers {d1, . . . , dm, d
′
1, . . . , d

′
m′},

we may write

m∑
i=1

diDi =
n∑

j=1
rj

m∑
i=1

di,jDi, and

m′∑
i=1

d′
iD

′
i =

n∑
j=1

rj

m′∑
i=1

d′
i,jD

′
i

for some rational numbers {di,j}1≤i≤m,1≤j≤n and {d′
i,j}1≤i≤m′,1≤j≤n. For each prime divisor D, we have

multD(
m∑

i=1
diDi) =

n∑
j=1

rj multD(
m∑

i=1
di,jDi) =

n∑
j=1

rj multD(
m′∑
i=1

d′
i,jD

′
i) = multD(

m′∑
i=1

d′
iD

′
i),

21



hence multD(
∑m

i=1 di,jDi) = multD(
∑m′

i=1 d
′
i,jD

′
i) for each j, this implies that for each j, we have

m∑
i=1

di,jDi =
m′∑
i=1

d′
i,jD

′
i.

Hence

m∑
i=1

diw(Di) =
n∑

j=1
rj

m∑
i=1

di,jw(Di) =
n∑

j=1
rj

m′∑
i=1

d′
i,jw(D′

i) =
m′∑
i=1

d′
iw(D′

i).

Definition 2.1.26. Let d be a positive integer, µ a real number, and w := (w1, . . . , wd) ∈ Qd
>0, w′ :=

(w′
1, . . . , w

′
d) ∈ Qd

>0 two weights. If wi ≥ w′
i for each i, then we write w ⪰ w′, and if wi = µw′

i for each i,

then we write w = µw′.

Definition-Lemma 2.1.27. Under the same settings as in Definition 2.1.24. Let f ′ : W → (Cd ∋

o)/ 1
n (a1, . . . , ad) be the weighted blow-up at o with the (admissible) weight w := 1

n (w1, . . . , wd) with

respect to the coordinates x1, . . . , xd (cf. [KM92, §10] and [Hay99, §3.2]). The exceptional locus for f ′,

denoted by E′, is isomorphic to the cyclic quotient of the weighted projective space P(w1, . . . , wd)/η, where

the cyclic group action is given by

η : [x1 : · · · : xd]w → [ξa1
n x1 : . . . , ξad

n xd]w,

and [x1 : · · · : xd]w denotes the image of (x1, . . . , xd) ∈ Cd \ {o} under the natural quotient morphism

Cd \ {o} → P(w1, . . . , wd). We remark that if the admissible weight w satisfies wi ≡ bai mod n for

1 ≤ i ≤ d and some integer b such that gcd(b, n) = 1, then E′ ∼= P(w1, . . . , wd) (cf. [Hay99, §3.2]).

Now we have an induced morphism f : Y → X by restricting f ′ to Y , which is the strict transform of X

under f ′. We call f : Y → X the weighted blow-up with weight w at x ∈ X , and E := E′|Y the exceptional

divisor of the weighted blow-up f : Y → X with the weight w at x ∈ X (cf. [Hay99, §3.7]). If E is an
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integral scheme, then we also say f extracts a prime divisor.

Remark 2.1.28. The weighted blow-up constructed as above depends on the choice of local coordinates.

However, we will not mention them later in this paper when the local coordinates for a weighted blow-up are

clear from the context.

We will use the following well-known lemma frequently:

Lemma 2.1.29 (cf. [Mor85, the proof of Theorem 2] and [Hay99, §3.9]). Under the same settings as in

Definition 2.1.24. For any admissible weightw ofX ∋ x, letE be the exceptional divisor of the corresponding

weighted blow-up f : Y → X at x (cf. Definition-Lemma 2.1.27). If E is a prime divisor, then

KY = f∗KX + w(X ∋ x)E, and f∗B = BY + w(B)E,

where BY is the strict transform of B on Y . In particular, a(E,X,B) = 1 + w(X ∋ x) − w(B).

Proof. Let f ′ : W → Z := (Cd ∋ o)/ 1
n (a1, . . . , ad) be the weighted blow-up with the (admissible) weight

w := 1
n (w1, . . . , wd) with respect to the coordinates x1, . . . , xd near o. The singular locus of W is contained

in the exceptional locus E′ ⊂ W and has codimension ≥ 2. Here, E′ ∼= P(w1, . . . , wd)/η, where the cyclic

group action is given by

η : [x1 : · · · : xd]w → [ξa1
n x1 : . . . , ξad

n xd]w,

and [x1 : · · · : xd]w denotes the image of (x1, . . . , xd) ∈ Cd \ {o} under the natural quotient morphism

Cd \ {o} → P(w1, . . . , wd). Since W is covered by open sets Ui with cyclic quotient singularities such

that the induced cyclic group action acts diagonally on {x1, . . . , xd}, by [Fuj74, Lemma 1], each irreducible

component of the singular locus of W coincide with a coordinate linear space WI := {∩i∈I(xi = 0)} ⊂

(P(w1, . . . , wd)/η ∼= E′) for some proper subset I of {1, . . . , d}.

Let ϕi,w be the weighted leading terms of ϕi,w for 1 ≤ i ≤ m (see Definition ??). Let Xi be the
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hyperplane near (Cd ∋ o)/ 1
n (a1, . . . , ad) defined by ϕi = 0, and Yi the strict transform of Xi on W . Then

Yi|E′ = (ϕi,w = 0) ⊂ P(w1, . . . , wd)/η. Since E is an integral scheme and E ∼= (ϕ1,w = · · · = ϕm,w =

0) ⊂ P(w1, . . . , wd)/η, each ϕi,w is an irreducible power series whose multiplicities at o ∈ Cd is greater

than two. Hence (ϕi,w = 0) does not contain the coordinate hyperplanes in P(w1, . . . , wd)/η for 1 ≤ i ≤ m.

In fact, since YJ |E′ := ∩i∈JYi|E′ is integral for each proper subset J ⊂ {1, . . . ,m}, YJ |E′ does not contain

the coordinate linear space WI as its irreducible component for any I . This implies that YJ does not contain

any codimension one locus that is a codimension |J | + 1 irreducible component of the singular locus of W

for each proper subset J ⊂ {1, . . . ,m}. Since Y ∩E′ is a local complete intersection, Y and YJ are smooth

in codimension one for each proper subset J ⊂ {1, . . . ,m} near Y . Hence

(KW + Y1 + · · · + Ym)|Y1 · · · |Ym
= KY . (2.1.3)

By [Rei87, (4.8)] (see also [Jia21, Propostion 2.1]),

KW + Y1 + · · · + Ym = f ′∗KZ + w(X ∋ x)E′,

restricting to Yi for i = 1, . . . ,m successively, we are done.

2.1.6 Newton polytope

Definition 2.1.30. Let n be a positive integer. A Newton polytope N is a subset of Zn
≥0 satisfying the

following: for any point x ∈ N ,

x + Zn
≥0 := {x + v | v ∈ Zn

≥0} ⊂ N .

Definition 2.1.31. Let n be a positive integer, 0 the origin of Zn and N ⊂ Zn
≥0 a Newton polytope. A vertex

of N is a point u ∈ N , such that for any x ∈ N and v ∈ Zn
≥0, if u = x + v, then u = x and v = 0.

Lemma 2.1.32. Let {vj}j∈Z≥1 be a sequence of vectors in Zn
≥0. Then the set {Pj = ∪j

i=1(vi +Zn
≥0)}j∈Z≥1
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satisfies the ACC under the inclusion of polytopes. Furthermore, for any Newton polytope N in Zn
≥0, there

are only finitely many vertices of N .

Proof. Suppose that {Pj}j∈Z≥1 does not satisfy the ACC, possibly passing to a subsequence, we may assume

that {Pj}j∈Z≥1 is strictly increasing. As Z≥0 satisfies the DCC, we may find a pair (i, j) such that i < j and

vj ∈ vi + Zn
≥0. Thus Pj = Pj−1, a contradiction.

Suppose that N has infinitely many vertices vi, i ∈ Z≥1. Then the set {Pj = ∪j
i=1(vi + Zn

≥0)}j∈Z≥1 is

strictly increasing, a contradiction.

Theorem 2.1.33 is proved in [Ste11] based on some results from Russian literature, we give a proof here

for the reader’s convenience.

Theorem 2.1.33 (ACC for Newton polytopes). Let n be a positive integer, and {Ni}i∈Z≥1 a sequence of

Newton polytopes in Zn
≥0. Then there exists a subsequence {Nij }j∈Z≥1 of Newton polytopes, such that

Nij
⊇ Nij+1 for every positive integer j.

Proof. Suppose that the theorem does not hold. Then there exists i1 ∈ Z≥1 such that Ni1 ̸⊇ Nk for all

positive integers k > i1.

Inductively, we may construct a sequence of positive integers i1 < i2 < · · · such that {Mj := Nij }j∈Z≥1

satisfies that Ml ̸⊇ Mm for all positive integersm > l. Then {Qj := ∪k≤jMk}j∈Z≥1 is a strictly increasing

sequence of Newton polytopes. So the statement is equivalent to the ACC for Newton polytopes.

By Lemma 2.1.32, any Newton polytope Q in Zn
≥0 can be written as a finite union Q = ∪v(v + Zn

≥0),

where each v is a vertex of Q. So we can find a sequence of vectors {vi}i∈Z>0 and a sequence of positive

integers n1 < n2 < · · · , such that Qj = ∪nj

i=1(vi + Zn
≥0). This contradicts Lemma 2.1.32.
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2.1.7 Divisorial contractions between terminal threefold singularities

Let f : Y → X be a divisorial contraction of a prime divisor E between two terminal threefolds such that

f(E) is a closed point on X . Then f is classified into two types: the ordinary type and the exceptional type.

Moreover, in the ordinary type case, any non-Gorenstein singularity on Y which contributes to the Reid

basket of f is a cyclic quotient terminal singularity (see the paragraph after [Kaw05, Theorem 1.1]).

Definition 2.1.34. Let h ∈ C{x1, . . . , xd} be an analytic power series. Let aαxα be a monomial for some

aα ∈ C and α ∈ Zd
≥0. By aαxα ∈ h, we mean the monomial term xα appears in the analytic power series

h with the coefficient aα.

Theorem 2.1.35 ([Kaw05, Theorem 1.2]). In the statement of this theorem, d, r, r1, r2, α are assumed to be

positive integers, λ, µ are assumed to be complex numbers, and g, p, q are assumed to be analytic power

series with no non-zero constant terms.

Let x ∈ X be a terminal singularity that is not smooth, f : Y → X a divisorial contraction of a prime

divisor E over X ∋ x (see Definition 2.1.2), such that Y is terminal over a neighborhood of x. Let n be the

index of X ∋ x. We may write

KY = f∗KX + a

n
E

for some positive integer a. If f : Y → X is of ordinary type, then one of the following holds:

1. x ∈ X is a cA/n type singularity. Moreover, under suitable analytic local coordinates x1, x2, x3, x4,

(a) we have an analytic identification

(X ∋ x) ∼= (ϕ := x1x2 + g(xn
3 , x4) = 0) ⊂ (C4 ∋ o)/ 1

n
(1,−1, b, 0),

where g(x3, x4) ∈ (x3, x4)2,

(b) f is a weighted blow-up with the weight w = 1
n (r1, r2, a, n),
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(c) xdn
3 ∈ g(xn

3 , x4),

(d) nw(ϕ) = r1 + r2 = adn, and

(e) a ≡ br1 mod n.

2. x ∈ X is a cD type singularity. In this case, one of the following holds:

(2.1) Under suitable analytic local coordinates x1, x2, x3, x4,

(a) we have an analytic identification

(X ∋ x) ∼= (ϕ := x2
1+x1q(x3, x4)+x2

2x4+λx2x
2
3+µx3

3+p(x2, x3, x4) = 0) ⊂ (C4 ∋ o),

where p(x2, x3, x4) ∈ (x2, x3, x4)4,

(b) f is a weighted blow-up with the weight w = (r + 1, r, a, 1), where a is an odd integer,

(c) µ′xd
3 ∈ ϕ for some µ′ ̸= 0 and an odd integer d ≥ 3, and if d = 3, then µ′ = µ,

(d) w(ϕ) = w(x2
2x4) = w(xd

3) = 2r + 1 = ad,

(e) if q(x3, x4) ̸= 0, then w(x1q(x3, x4)) = 2r + 1, and

(f) if d > 3, then µ = λ = 0.

(2.2) Under suitable analytic local coordinates x1, x2, x3, x4, x5,

(a) we have an analytic identification

(X ∋ x) ∼=
(

ϕ1 := x2
1 + x2x5 + p(x2, x3, x4) = 0

ϕ2 := x2x4 + xd
3 + q(x3, x4)x4 + x5 = 0

)
⊂ (C5 ∋ o),

where p(x2, x3, x4) ∈ (x2, x3, x4)4,

(b) f is a weighted blow-up with the weight w = (r + 1, r, a, 1, r + 2),

(c) r + 1 = ad and d ≥ 2,

(d) w(ϕ1) = 2(r + 1),
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(e) w(ϕ2) = r + 1, and

(f) if q(x3, x4) ̸= 0, then w(q(x3, x4)x4) = r + 1.

3. x ∈ X is a cD/2 type singularity. In this case, one of the following holds:

(3.1) Under suitable analytic local coordinates x1, x2, x3, x4,

(a) we have an analytic identification

(X ∋ x) ∼= (ϕ := x2
1+x1x3q(x2

3, x4)+x2
2x4+λx2x

2α−1
3 +p(x2

3, x4) = 0) ⊂ (C4 ∋ o)/1
2(1, 1, 1, 0),

(b) f is a weighted blow-up with the weight w = 1
2 (r + 2, r, a, 2),

(c) w(ϕ) = w(x2
2x4) = r + 1 = ad, where a, r are odd integers,

(d) if q(x2
3, x4) ̸= 0, then w(x1x3q(x2

3, x4)) = r + 1, and

(e) x2d
3 ∈ p(x2

3, x4).

(3.2) Under suitable analytic local coordinates x1, x2, x3, x4, x5,

(a) we have an analytic identification

(X ∋ x) ∼=
(

ϕ1 := x2
1 + x2x5 + p(x2

3, x4) = 0
ϕ2 := x2x4 + xd

3 + q(x2
3, x4)x3x4 + x5 = 0

)
⊂ (C5 ∋ o)/1

2(1, 1, 1, 0, 1),

(b) f is a weighted blow-up with the weight w = 1
2 (r + 2, r, a, 2, r + 4),

(c) r + 2 = ad and d is an odd integer,

(d) w(ϕ1) = r + 2,

(e) w(ϕ2) = r+2
2 , and

(f) if q(x2
3, x4) ̸= 0, then w(q(x2

3, x4)x3x4) = r+2
2 .

Moreover, if a ≥ 5, then f is of ordinary type. The cases are summarized in Table 2.1:
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Table 2.1: A summary of Theorem 2.1.35

Case Type Local coordinates w w(ϕ) or w(ϕi)
(1) cA/n (ϕ = 0) ⊂ C4/ 1

n (1,−1, b, 0) 1
n (r1, r2, a, n) r1+r2

n

(2.1) cD (ϕ = 0) ⊂ C4 (r + 1, r, a, 1) 2r + 1
(2.2) cD (ϕ1 = ϕ2 = 0) ⊂ C5 (r + 1, r, a, 1, r + 2) 2(r + 1) and r + 1
(3.1) cD/2 (ϕ = 0) ⊂ C4/ 1

2 (1, 1, 1, 0) 1
2 (r + 2, r, a, 2) r + 1

(3.2) cD/2 (ϕ1 = ϕ2 = 0) ⊂ C4/ 1
2 (1, 1, 1, 0, 1) 1

2 (r + 1, r, a, 2, r + 4) r + 2 and r+2
2

Proof. Most part of this theorem are identical to [Kaw05, Theorem 1.2] but with small differences for further

applications. For the reader’s convenience, we give a proof here.

Since f : Y → X is a divisorial contraction of ordinary type and x ∈ X is not smooth, by [Kaw05,

Theorem 1.2], we have the following possible cases.

x ∈ X is of type cA/n, then we are in case (1). (1.a) and (1.b) follow from [Kaw05, Theorem 1.2(i)]. By

[Kaw05, Theorem 1.2(i.a)], (1.e) holds, and we may pick a positive integer d such that r1 + r2 = adn. By

[Kaw05, Theorem 1.2(i.c)] and [Kaw05, Theorem 1.2(i.d)], (1.c) and (1.d) hold.

x ∈ X is of type cD or cD/2, then we are in either case (2) or case (3). Now (2.1.a), (2.1.b), (3.1.a),

(3.1.b) follow directly from [Kaw05, Theorems 1.2(ii.a) and 1.2(ii.a.1)], and (2.2.a), (2.2.b), (3.2.a), (3.2.b)

follow directly from [Kaw05, Theorem 1.2(ii.b)]. (2.1.d), (3.1.c) follow from [Kaw05, Theorems 1.2(ii.a.1)

and 1.2(ii.a.2)], and (2.2.c), (3.2.c) follow from [Kaw05, Theorem 1.3(ii.b.1)]. (2.1.e), (3.1.d) follow from

[Kaw05, Theorem 1.2(ii.a.2)], and (2.2.d), (2.2.e), (2.2.f), (3.2.d), (3.2.e), (3.2.f) follow from [Kaw05,

Theorem 1.2(ii.b.2)]. For (2.1.f), if d > 3, by (2.1.d) we have µ = 0. Assume that λ ̸= 0. By (2.1.d),

w(x2x
2
3) = r + 2a ≥ 2r + 1, hence 2a ≥ r + 1 and 2r + 1 = ad > 1

4 (2r + 1)d. It follows that d < 4, a

contradiction.

(2.1.c), (3.1.e) are not contained in the statement of [Kaw05, Theorem 1.2], however, they are implied

by the proofs of the corresponding results. To be more specific, (2.1.c) is stated in [Che15, §4, Case Ic] and
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(3.1.e) is stated in [CH11, Page 13, Line 10].

For the moreover part, the Theorem follows directly from [Kaw05, Theorem 1.3].

2.2 Sketch of the Proofs

The proof of Theorem 1.2.2 is intertwined with the proof of Theorem 1.2.5. For simplicity, we only deal with

the interval [1,+∞). Suppose on the contrary, there exists a sequence of threefold germs {(Xi ∋ xi, Bi)}∞
i=1,

where Xi is terminal and Bi ∈ Γ for each i, such that {mld(Xi ∋ xi, Bi)}∞
i=1 ⊂ (1,+∞) is strictly

increasing. Then the index of Xi ∋ xi is bounded from above. We may assume that there exists a finite set

Γ0, such that limi→+∞ Bi = B̄i and B̄i ∈ Γ0. By the ACC for threefold canonical thresholds (Theorem

1.2.10) and [Nak16, Corollary 1.3], we may assume that mld(Xi ∋ xi, B̄i) = α ≥ 1. for some constant α. In

order to derive a contradiction, it suffices to show a special case of Theorem 1.2.5, that is, there exists a prime

divisor Ēi over Xi ∋ xi, such that a(Ēi, Xi, B̄i) = mld(Xi ∋ xi, B̄i) = α, and a(Ēi, Xi, 0) ≤ l for some

constant number l, see Step 3 of the proof of Theorem 3.6.1. If α > 1, and xi ∈ Xi is neither smooth nor of

cA/n type for each i, then we show the special case by the uniform canonical rational polytopes (Theorem

3.4.3) and the accumulation points of the set of canonical thresholds in dimension 3 (Theorem 1.2.11).

Otherwise, we show the following key fact: there exists a divisorial contraction Yi → Xi from a terminal

variety Yi which extracts a prime divisor E′
i over Xi ∋ xi such that a(E′

i, Xi, B̄i) = mld(Xi ∋ xi, B̄i).

Note that when α = 1, we may show the fact by standard tie breaking trick even in higher dimensions, see

Lemma 3.1.4. The case when α > 1 and either xi ∈ Xi is smooth or of type cA/n, which is one of our key

observations, depends on the proofs of the classification of divisorial contractions for terminal threefolds

[Kaw01, Kaw02, Kaw03, Kaw05, Yam18], see Lemmas 3.2.4, 3.2.5. Finally, Theorem 1.2.2 follows from the

key fact and Lemma 3.2.1. We remark that Lemma 3.2.1 implies the ACC for threefold canonical thresholds

(Theorem 1.2.10). We provide a flowchart of the structure of the paper (Table 2.2).
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Table 2.2: Flowchart of the structure of the paper

Special cases(⋆) of Theorem 1.2.5
(Lemmas 3.2.1, 3.2.4, 3.2.5, Theorem 3.2.9)

↓↓

↙↙

ACC for cts
(Theorems 1.2.10, 3.3.2)

(⋆)

←←
(†)

↓↓

↙↙

Accumulation points
(Theorem 1.2.11)

→→

1-gap for mlds
(Theorem 5.1.1)

↓↓

ACC for mlds(†)

(Theorems 1.2.2, 3.6.1),
ACC for a-lcts
Theorem 1.2.9)

(‡)

↙↙

←←

(⨿)

↓↓

↙↙

Log Calabi-Yau
birational boundedness

(Theorem 1.2.12)

Index conjecture
(Theorems 1.2.8, 4.1.7)

↓↓

Uniform boundedness
(Theorem 1.2.5)

General elephants(†) and local complements(‡)

(Theorems 1.2.6, 1.2.7)

(⋆): 3-fold divisorial contraction classification [Kaw01, Kaw02, Kaw03, Kaw05, Yam18]. (†): The
boundedness of lc complements [Bir19, HLS19]. (‡): The theory of uniform rational polytopes
[HLS19, CH21]. (⨿): Singular Riemann-Roch formula.
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Chapter 3

Canonical Thresholds and Its
Accumulation Points

3.1 Terminal Blow-ups

Definition 3.1.1. Let (X ∋ x,B) be an lc pair. We say that x is a canonical center of (X,B) if mld(X ∋

x,B) = 1 and dim x ≤ dimX − 2. A prime divisor (resp. An analytic prime divisor) E that is exceptional

over X is called a canonical place of (X,B) if a(E,X,B) = 1. Moreover, if centerX E = x̄, then E is

called a canonical place of (X ∋ x,B).

Lemma 3.1.2. Let (X ∋ x,B) be a germ such that X is terminal and mld(X ∋ x,B) = 1. Then there

exists a pair (X,B′) that is klt near x, such that

• x is the only canonical center of (X,B′),

• there exists exactly one canonical place E of (X ∋ x,B′), and

• a(E,X,B) = 1.

Proof. Possibly shrinking (X,B) to a neighborhood of x, we may assume that (X,B) is an lc pair. We play

the so-called “tie-breaking trick” and follow the proof of [Kol07, Proposition 8.7.1].
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Step 1. Let f : W → X be a log resolution of (X,B). We may write

KW = f∗KX +
∑
i∈I

aiEi, and f∗B = BW +
∑
i∈I

biEi,

where BW := f−1
∗ B is smooth, and {Ei}i∈I is the set of f -exceptional divisors. Let

Ix := {i ∈ I | centerX Ei = x}, and Ix,0 := {i ∈ Ix | ai = bi} ≠ ∅.

Then ai > 0 for any i ∈ I, and bi > 0, ai ≥ bi for each i ∈ Ix.

Let C be a very ample Cartier divisor such that x ∈ SuppC. Possibly replacing C with C ′ ∈

H0(OX(kC) ⊗ mx) for some k ≫ 1 and some irreducible C ′ which is sufficiently general, we may

assume that C is a prime divisor whose support does not contain any centerX Ei i ∈ I \ Ix, or any canonical

center of (X,B) except x. We may write f∗C = CW +
∑

i∈Ix
ciEi, where CW is the strict transform of C

on W , and ci > 0 for each i ∈ Ix. Now we may choose a real number 0 < ϵ ≪ 1, such that

t := min
i∈Ix,0

ai − (1 − ϵ)bi

ci
= ϵ min

i∈Ix,0

ai

ci
< min

i∈Ix\Ix,0

ai − bi

ci
< min

i∈Ix\Ix,0

ai − (1 − ϵ)bi

ci
,

and (1 − ϵ)B + tC ∈ [0, 1). Let KW +Dϵ := f∗(KX + (1 − ϵ)B + tC) and KW +D := f∗(KX +B).

We have

Dϵ −D = ϵ( min
i∈Ix,0

ai

ci
f∗C − f∗B).

Consider the finite sets

J1,ϵ := {codim y − multy Dϵ | y ∈ W, f(y) ̸= x, codim f(y) ≥ 2}, and

J2,ϵ := {codim y − multy Dϵ | y ∈ W, f(y) = x}.

If F is an f -exceptional divisor over X ∋ x′ for some x′ ̸= x such that a(F,X,B) = 1, then a(F,X, (1 −

ϵ)B + tC) > 1. By taking ϵ sufficiently small, we may assume that 1 /∈ J1,ϵ. Since BW is smooth and
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multEi Dϵ ≤ 0 for any i ∈ Ix, 1 ∈ J2,ϵ ⊂ [1,+∞). By [CH21, Lemma 3.3], x is the only canonical center

of (X, (1 − ϵ)B + tC). Note that 1 ∈ J2,ϵ.

Possibly replacing B with (1 − ϵ)B + tC, we may assume that x is the only canonical center of (X,B)

and (X,B) is klt.

Step 2. We may assume that f is a composition of blow-ups of centers of codimension at least 2, hence there

exists an f -ample Q-divisor −
∑

i∈I eiEi. Note that ei > 0 for each i. Then there exists i0 ∈ Ix,0, such that

possibly replacing ei0 with a bigger positive rational number, we may assume that λ := ai0
ei0

< ai

ei
for any i ∈

Ix,0\{i0}. Moreover, there exists a positive real number ϵ′0 < 1, such that λ′ := ϵ′0λ <
ai−bi

ei
<

ai−(1−ϵ′
0)bi

ei

for any i ∈ Ix\Ix,0. LetE := Ei0 . LetH be an ample Q-Cartier Q-divisor onX such that f∗H−
∑

i∈I eiEi

is ample. Now ai − (1 − ϵ′0)bi − λ′ei > 0 for any i ∈ Ix \ {i0}, and ai0 − (1 − ϵ′0)bi0 − λ′ei0 = 0. We have

KW + (1 − ϵ′0)BW +λ′(f∗H−
∑
i∈I

eiEi) = f∗(KX + (1 − ϵ′0)B+λ′H) +
∑
i∈I

(ai − (1 − ϵ′0)bi −λ′ei)Ei.

LetAW ≥ 0 be a Q-divisor such thatAW ∼Q f
∗H−

∑
i∈I eiEi, the coefficients of the prime components of

AW are sufficiently small, and SuppAW ∪ SuppBW ∪i∈I SuppEi has simple normal crossings. Consider

the pair (X ∋ x,B′ := (1 − ϵ′0)B + λ′A), where A is the strict transform of AW on X . We may write

KW +D′
ϵ′

0
:= f∗(KX + (1 − ϵ′)B + λ′A).

For any ϵ′ ≥ 0, let

J′
1,ϵ′ := {codim y − multy D

′
ϵ′ | y ∈ W, f(y) ̸= x, codim f(y) ≥ 2}, and

J′
2,ϵ′,≥2 := {codim y − multy D

′
ϵ′ | y ∈ W, f(y) = x, codim y ≥ 2}.

Since 1 /∈ J′
1,0, by taking ϵ′ small enough, we may assume that 1 /∈ J′

1,ϵ′ . Thus x is the only canonical center

of (X,B′). By our choices of ϵ′0, λ, and AW , J ′
2,ϵ′

0,≥2 ⊂ (1,+∞). Hence by [CH21, Lemma 3.3], E is the
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only canonical place of (X ∋ x,B′). The pair (X ∋ x,B′) satisfies all the requirements.

Definition 3.1.3. Let (X ∋ x,B) be an lc germ. A terminal blow-up of (X ∋ x,B) is a birational morphism

f : Y → X which extracts a prime divisor E over X ∋ x, such that Y is terminal, a(E,X,B) = mld(X ∋

x,B), and −E is f -ample.

Lemma 3.1.4. Let (X ∋ x,B) be a germ such that X is terminal and mld(X ∋ x,B) = 1. Then there

exists a terminal blow-up f : Y → X of (X ∋ x,B). Moreover, if X is Q-factorial, then Y is Q-factorial.

Proof. By Lemma 3.1.2, possibly shrinking X to a neighborhood of x, we may assume that (X,B) is klt,

and there exists exactly one canonical place EW of (X ∋ x,B). By [BCHM10, Corollary 1.4.3], there

exists a birational morphism g : W → X of (X,B) such that EW is the only g-exceptional divisor. We may

write KW + BW := g∗(KX + B), where BW is the strict transform of B on W . Since (W,BW ) is klt,

(W, (1 + ϵ)BW ) is klt for some positive real number ϵ. Let ϕ : W 99K Y be the lc model of (W, (1 + ϵ)BW )

over X . Since X is terminal and EW is a canonical place of (X ∋ x,B),

KW + (1 + ϵ)BW = g∗(KX + (1 + ϵ)B) − eEW

for some positive real number e. It follows that −E is ample over X , where E is the strict transform of EW

on Y . Thus f : Y → X is an isomorphism over X\{x}, and Exc(f) = SuppE.

It suffices to show that Y is terminal. Let F be any prime divisor that is exceptional over Y . If

centerX F = x, then a(F, Y, 0) ≥ a(F,X,B) > 1 as E is the only canonical place of (X ∋ x,B). If

centerX F ̸= x, then a(F, Y, 0) = a(F,X, 0) > 1 as f is an isomorphism over X\{x} and X is terminal.

Suppose that X is Q-factorial. Then for any prime divisor DY ̸= E on Y , f∗f∗DY − DY =

(multEY
f∗DY )E. It follows that DY is Q-Cartier, and Y is Q-factorial.
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3.2 Weak Uniform Boundedness of Divisors Computing MLDs

Lemma 3.2.1. Let I be a positive integer, α ≥ 1 a real number, and Γ ⊂ [0, 1] a DCC set. Then there exists

a positive integer l depending only on I, α and Γ satisfying the following. Assume that

1. (X ∋ x,B :=
∑

i biB
′
i) is a threefold germ,

2. X is terminal,

3. each bi ∈ Γ and each B′
i ≥ 0 is a Q-Cartier Weil divisor,

4. mld(X ∋ x,B) = α,

5. IKX is Cartier near x, and

6. there exists a terminal blow-up (see Definition 3.1.3) f : Y → X of (X ∋ x,B).

Then there exists a prime divisor E over X ∋ x, such that a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) =

1 + a
I for some positive integer a ≤ l.

Proof. Suppose that the lemma does not hold. Then there exists a sequence of threefold germs {(Xi ∋

xi, Bi :=
∑pi

j=1 bi,jB
′
i,j))}∞

i=1 and terminal blow-ups fi : Yi → Xi corresponding to (X ∋ x,B :=∑
i biB

′
i) and f : Y → X as in (1)-(6), such that

• fi extracts a prime divisor Ei,

• KYi
= f∗

i KXi
+ ai

I Ei for some positive real number ai, and

• the following sequence of non-negative integers

Ai := inf{a′
i | Fi is over Xi ∋ xi, a(Fi, Xi, Bi) = α, a(Fi, Xi, 0) = 1 + a′

i

I
}

is strictly increasing, and in particular, limi→+∞ Ai = +∞.
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Since fi is a terminal blow-up, a(Ei, Yi, Bi) = α, hence ai ≥ Ai. Thus limi→+∞ ai = +∞. Possibly

passing to a subsequence, we may assume that ai is strictly increasing and ai > 5I for each i. By [Kaw01,

Theorem 1.1] and Theorem 2.1.35, analytically locally, we have an embedding

(Xi ∋ xi) ↪→ (Cmi ∋ o)/ 1
ni

(α1,i, . . . , αm,i)

for each i, where ni is the index of Xi ∋ xi, ni | I , mi ∈ {3, 4, 5}, α1,i, . . . , αm,i ∈ Z ∩ [1, I], and fi is an

admissible weighted blow-up with the weight wi ∈ 1
ni
Zmi

>0. Moreover, for each i, j, we may assume that B′
i,j

is defined by (hi,j = 0) for some semi-invariant analytic power series hi,j near xi.

By Theorems 2.1.13 and 2.1.33, possibly passing to a subsequence, we may assume that

• there exist positive integers n,m,α1, . . . , αm and a non-negative integer p, such that ni = n, mi = m,

(α1,i, . . . , αm,i) = (α1, . . . , αm), and pi = p for each i,

• bi,j is increasing for any fixed j, and

• N (hi,j) ⊂ N (hi′,j) for any i > i′ and any j.

By Lemma 2.1.29,

ai

I
= wi(Xi ∋ xi) = wi(Bi) + α− 1 =

p∑
j=1

bi,jwi(hi,j) + α− 1.

We will show the following claim:

Claim 3.2.2. Possibly passing to a subsequence, we may assume that (X1 ∋ x1, B1) and (X2 ∋ x2, B2)

satisfy the following:

1. A2 > a1, and

2. there exists an admissible weighted blow-up f ′ of (X2 ∋ x2) ⊂ (Cm ∋ o)/ 1
n (α1, . . . , αm) with the
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weight w′ ∈ 1
nZ

m
≥1, such that w1(B2) ≤ w′(B2), w′(X2 ∋ x2) = w1(X1 ∋ x1), and the exceptional

divisor E′ of f ′ is an analytic prime divisor.

We proceed the proof assuming Claim 3.2.2. By Lemma ??, we may assume that E′ is a prime divisor

over X2. Since

w1(X1 ∋ x1) = w1(B1) + α− 1 ≤ w1(B2) + α− 1 ≤ w′(B2) + α− 1 ≤ w′(X2 ∋ x2) = w1(X1 ∋ x1),

w′(X2 ∋ x2) = w′(B2) + α − 1 and a(E′, X2, B2) = α = mld(X2 ∋ x2, B2). Since a(E′, X2, 0) =

1 +w′(X2 ∋ x2) = 1 +w1(X1 ∋ x1) = 1 + a1
I , it follows that a1 < A2 ≤ a1, a contradiction. This finishes

the proof.

Proof of Claim 3.2.2. Claim 3.2.2(1) follows from the fact that the sequence {Ai}∞
i=1 is strictly increasing.

We now prove Claim 3.2.2(2) case by case. By [Kaw01, Theorem 1.1] and Theorem 2.1.35, we only need to

consider the following cases.

Case 1. Xi ∋ xi (i = 1, 2) are all smooth. Then m = 3, and analytically locally, (Xi ∋ xi) ∼= (C3 ∋ o). We

may take w′ = w1 in this case.

Case 2. Xi ∋ xi (i = 1, 2) are all of type cD/n for n = 1 or 2. By Theorem 2.1.35(2-3), we only need to

consider the following two subcases:

Case 2.1. m = 4. fi : Yi → Xi are divisorial contractions as in Theorem 2.1.35(2.1) when n = 1 and

as in Theorem 2.1.35(3.1) when n = 2. In particular, there exist positive integers di and ri, such that

2ri + n = naidi, and analytically locally,

(Xi ∋ xi) ∼= (ϕi = 0) ⊂ (C4 ∋ o)/ 1
n

(1, 1, 1, 0)

for some semi-invariant analytic power series ϕi, and each fi is a weighted blow-up with the weight wi :=

38



1
n (ri +n, ri, ai, n). Possibly passing to a subsequence, we may assume that d1 ≤ d2. Let s2 := n

2 (a1d2 − 1).

Since 1
n (2s2 + n) = a1d2 and 5 ≤ a1 < a2, by [HLL22, Lemma C.8(1)](1) and [HLL22, Lemma C.10], the

weighted blow-up at x2 ∈ X2 with the weight w′ := 1
n (s2 + n, s2, a1, n) extracts an analytic prime divisor

over X2 ∋ x2, and

w′(X2 ∋ x2) = a1

n
= w1(X1 ∋ x1).

Since d2 ≥ d1 and 2r1 + n = na1d1, s2 = n
2 (a1d2 − 1) ≥ n

2 (a1d1 − 1) = r1, hence w1(B2) ≤ w′(B2).

Case 2.2. m = 5. fi : Yi → Xi are divisorial contractions as in Theorem 2.1.35(2.2) when n = 1 and as in

Theorem 2.1.35(3.2) when n = 2. In particular, there exist positive integers di and ri, such that ri +n = aidi,

and analytically locally,

(Xi ∋ xi) ∼= (ϕi,1 = ϕi,2 = 0) ⊂ (C5 ∋ o)/ 1
n

(1, 1, 1, 0, 1)

for some semi-invariant analytic power series ϕi,1, ϕi,2, and each fi is a weighted blow-up with the weight

wi := 1
n (ri + n, ri, ai, n, ri + 2n). Possibly passing to a subsequence, we may assume that d1 ≤ d2. Let

s2 := a1d2 − n. Since s2 + n = a1d2 and 5 ≤ a1 < a2, by [HLL22, Lemma C.9(1)](1) and [HLL22,

Lemma C.11], the weighted blow-up at x2 ∈ X2 with the weight w′ := 1
n (s2 +n, s2, a1, n, s2 + 2n) extracts

an analytic prime divisor over X2 ∋ x2, and

w′(X2 ∋ x2) = a1

n
= w1(X1 ∋ x1).

Since d2 ≥ d1 and r1 + n = a1d1, s2 = a1d2 − n ≥ a1d1 − n = r1, hence w1(B2) ≤ w′(B2).

Case 3. m = 4, Xi ∋ xi (i = 1, 2) are of type cA/n and fi : Yi → Xi are divisorial contractions as in

Theorem 2.1.35(1). In particular, possibly passing to a subsequence, there exist positive integers di, r1,i, r2,i, b,
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such that r1,i + r2,i = aidin, b ∈ [1, n− 1], gcd(b, n) = 1, and analytically locally,

(Xi ∋ xi) ∼= (ϕi = 0) ⊂ (C4 ∋ o)/ 1
n

(1,−1, b, 0)

for some semi-invariant analytic power series ϕi, and each fi is a weighted blow-up with the weight

wi := 1
n (ri,1, ri,2, ai, n). Possibly passing to a subsequence, we may assume that d1 ≤ d2. Let s2,1 := r1,1

and s2,2 := a1d2n − r1,1. Since s2,1 + s2,2 = a1d2n and 5 ≤ a1 < a2, by [HLL22, Lemma C.7], the

weighted blow-up at x2 ∈ X2 with the weight w′ := 1
n (s2,1, s2,2, a1, n) extracts an analytic prime divisor

over X2 ∋ x2, and

w′(X2 ∋ x2) = a1

n
= w1(X1 ∋ x1).

Since d1 ≤ d2 and r1,1 + r1,2 = a1d1n, s2,2 = a1d2n − r1,1 ≥ a1d1n − r1,1 = r1,2, hence w1(B2) ≤

w′(B2).

Now we prove some boundedness results on divisors computing mlds when the germ is either smooth or

a terminal singularity of type cA/n.

Lemma 3.2.3. Let X be a smooth variety of dimension n for some n ∈ Z≥2 and x ∈ X a closed point.

Let π : X̃ → X be the blow-up of X at x with the exceptional divisor E. For any hyperplane section

H̃ ∈ |OE(1)| on E, there exists a Cartier divisor H on X , such that x ∈ SuppH , multx H = 1 and

π−1
∗ H|E = H̃ .

Proof. Let mx be the maximal ideal of the local ring OX,x. Then we have a canonical isomorphism (cf.

[Har77, §2, Theorem 8.24(b)])

E ∼= Pn−1 = ProjC ⊕+∞
i=0 mi

x/m
i+1
x ,

where m0
x := OX,x. Thus there exists a nonzero element h̃ ∈ mx/m

2
x such that H̃ is defined by (h̃ = 0) on
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E. Let h ∈ mx be a preimage of h̃ under the morphism mx → mx/m
2
x, and H the Cartier divisor locally

defined by (h = 0) near x. We have multx H = 1 and π−1
∗ H|E = H̃ (cf. [EH00, Exercise III-29] and

[EH00, Exercise IV-24]).

Lemma 3.2.4. Let (X ∋ x,B) be a threefold germ such that X is smooth and mld(X ∋ x,B) ≥ 1. Then

there exists a terminal blow-up (see Definition 3.1.3) f : Y → X of (X ∋ x,B), such that Y is Q-factorial.

Proof. Let g1 : X1 → X0 := X be the blow-up at x ∈ X and F1 the g1-exceptional divisor. When

multx B ≤ 1, by [Kaw17, Proposition 6(i)], a(F1, X,B) = mld(X ∋ x,B), we may take Y = X1, and

f = g1 in this case. From now on, we may assume that multx B > 1.

Let g : W → X1 be a birational morphism which consists of a sequence of blow-ups at points with

codimension at least two, such that the induced morphism h : W → X is a log resolution of (X,B). By

Lemma 3.2.3, there exists a Cartier divisor H on X passing through x, such that multx H = 1, h∗(H +B) is

an snc divisor on W , and HX1 := (g−1
1 )∗H does not contain the center of any g-exceptional divisor on X1.

Let t := ct(X ∋ x,B;H). Since multx B > 1 and 1 ≤ a(E1, X,B+tH) = 3−multx B−t, t < 1. By

Lemma 2.1.12(1), mld(X ∋ x,B + tH) = 1. By Lemma 3.1.4, there exists a terminal blow-up f : Y → X

of (X ∋ x,B + tH) which extracts a prime divisor E over X ∋ x such that Y is Q-factorial. In particular,

a(E,X,B + tH) = mld(X ∋ x,B + tH).

It suffices to show that a(E,X,B) = mld(X ∋ x,B). By [Kaw01, Theorem 1.1], under suitable analytic

local coordinates (x1, x2, x3), f is the weighted blow-up of X with the weight (1, a, b) for some coprime

positive integers a and b. By [Kaw01, Proof of Proposition 3.6, line 6], multE F1 = 1∗. By construction,

multE HX = multE(HX1 + F1) = multE F1 = 1. Let F be any prime divisor over X ∋ x. We have

a(F,X,B) − tmultF H = a(F,X,B + tH) ≥ a(E,X,B + tH) = a(E,X,B) − tmultE H.

∗We recall that Fn and E in [Kaw01, Proposition 3.6] are the same divisorial valuation, see [Kaw01, Remark 3.3], and we use the
same notion of F1 and E as in [Kaw01, §3], see [Kaw01, Construnction 3.1].

41



Since multF H ≥ 1 = multE H, a(F,X,B) ≥ a(E,X,B). It follows that a(E,X,B) = mld(X ∋ x,B),

and f : Y → X is the desired terminal blow-up of (X ∋ x,B).

Lemma 3.2.5. Let x ∈ X be a threefold terminal singularity of type cA/n. Then there exists a Cartier

divisor C near x satisfying the following.

Let (X ∋ x,B) be a pair such that mld(X ∋ x,B) ≥ 1. Then there exists a terminal blow-up of (X ∋

x,B) (see Definition 3.1.3) which extracts a prime divisor E over X ∋ x, such that a(E,X,B + tC) = 1

and multE C = 1, where t := ct(X ∋ x,B;C).

Proof. By [Rei87, (6.1) Theorem] (cf. [Mor85, Theorems 12,23,25]), analytically locally,

(X ∋ x) ∼= (ϕ := x1x2 + g(xn
3 , x4) = 0) ⊂ (C4 ∋ o)/ 1

n
(1,−1, b, 0),

such that b ∈ [1, n− 1] ∩ Z, gcd(b, n) = 1, ϕ is a semi-invariant analytic power series, and xdn
3 ∈ g(xn

3 , x4)

for some positive integer d. When n = 1, x ∈ X is a terminal singularity of type cAm (see [Kaw03, Page

333, Line 11]) for some positive integer m.

Claim 3.2.6. There exist a Cartier divisor C on X and an integer k ∈ {1, 4} depending only on x ∈ X that

satisfy the following.

1. xk is invariant under the ξn-action on C4, and C is a Cartier divisor locally defined by an invariant

analytic power series (xk + h = 0), where h ∈ (man
o )2.

2. Let t := ct(X ∋ x,B;C). Then mld(X ∋ x,B + tC) = 1, and there exists a terminal blow-up f of

(X ∋ x,B + tC) which extracts a prime divisor E over X ∋ x.

3. Possibly choosing a new local analytic coordinates x′
1, x

′
2, x

′
3, x

′
4, where xk = x′

k + p′
k for some

p′
k ∈ man

o such that λx′
k /∈ p′

k for any λ ∈ C∗, analytically locally, f is a weighted blow-up with the

weight w = (w(x′
1), w(x′

2), w(x′
3), w(x′

4)) such that w(x′
k) = 1.
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We proceed the proof assuming Claim 3.2.6. By Claim 3.2.6(1,3), C is locally defined by (x′
k + h′

k = 0)

for some h′
k ∈ man

o such that λx′
k /∈ h′

k for any λ ∈ C∗ under the new coordinates x′
1, x

′
2, x

′
3, x

′
4, hence

1 ≤ multE C = w(x′
k + h′) ≤ w(x′

k) = 1, and multE C = 1. Let F ̸= E be any prime divisor over X ∋ x.

We have

a(F,X,B) − tmultF C = a(F,X,B + tC) ≥ a(E,X,B + tC) = a(E,X,B) − tmultE C.

Since multF C ≥ 1 = multE C, a(F,X,B) ≥ a(E,X,B). It follows that a(E,X,B) = mld(X ∋ x,B),

hence f is a terminal blow-up of (X ∋ x,B).

Proof of Claim 3.2.6. We have an analytic isomorphism

ψ : X̃ ∋ x̃ → Ỹ := (ϕ : x1x2 + g(xn
3 , x4) = 0) ⊂ (C4 ∋ o),

where π : X̃ ∋ x̃ → X ∋ x is the index one cover (cf. [KM98, Definition 5.19]). Under the analytic

isomorphism ψ, the ξn-action on Ỹ induces the cyclic group action on X̃ ∋ x̃ which corresponds to π. By

[HLL22, Lemma B.7], we can find a Cartier divisor C̃ on X̃ whose image under ψ is locally defined by

(xk + h = 0) for some h ∈ (man
o )2, and xk + h is invariant under ξn-action. Set C := π(C̃), we finish the

proof of Claim 3.2.6(1). For Claim 3.2.6(2), since C is a prime divisor that is Cartier, by Lemma 2.1.12(3),

mld(X ∋ x,B + tC) = 1. By Lemma 3.1.4, there exists a terminal blow-up of (X ∋ x,B + tC) which

extracts a prime divisor E over X ∋ x. Now we prove Claim 3.2.6(3) case by case.

Case 1. n ≥ 2. By [Kaw05, Theorem 1.3], f is a divisorial contraction of ordinary type. By Theo-

rem 2.1.35(1) and [Kaw05, Lemmas 6.1, 6.2 and 6.5], there exist analytic local coordinates x′
1, x

′
2, x

′
3, x

′
4,

such that analytically locally, f is a weighted blow-up with the weightw := 1
n (r′

1, r
′
2, a, n), where r′

1, r
′
2, a are

positive integers such that an | r′
1 + r′

2. Moreover, by [Kaw05, Proof of Lemma 6.3, Line 7], x′
4 = x4 + x1p

for some p ∈ man
o . In this case, we take k = 4.
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Case 2. n = 1 and m ≥ 2. By [Kaw03, Theorem 1.13] and [Yam18, Theorem 2.6], there exist analytic

local coordinates x′
1, x

′
2, x

′
3, x

′
4, such that analytically locally, f is a weighted blow-up with the weight

w = (r1, r2, a, 1) for some positive integers r1, r2, a. Moreover, by [Kaw03, Proof of Lemma 6.1, Page 309,

Line 5], the coordinates change relation for x4 is given by x4 = x′
4 + c′x′

i for some 1 ≤ i ≤ 3 and c′ ∈ C.

Thus we may take k = 4.

Case 3. n = 1 and m = 1. By [Kaw02, Theorem 1.1], there exist analytic local coordinates x′
1, x

′
2, x

′
3, x

′
4,

such that analytically locally, f is a weighted blow-up with the weight w, where either w = (s, 2a− s, a, 1)

for some positive integers s and a, or w = (1, 5, 3, 2). Moreover, by [Kaw02, Claim 6.13], the change of

coordinates relations for xi is given by xi = x′
i + p′

i(x′
4) and x4 = x′

4 for p′
i ∈ man

o and 1 ≤ i ≤ 3. Thus we

may take k = 1 or 4.

Lemma 3.2.7. Let Γ ⊂ [0, 1] be a set such that γ0 := inf{b | b ∈ Γ \ {0}} > 0. Let (X ∋ x,B) be a

threefold germ, such that

• x ∈ X is a terminal singularity of type cA/n for some n > N := ⌈ 3
γ0

⌉,

• B :=
∑

i biBi for some bi ∈ Γ, where Bi ≥ 0 are Q-Cartier Weil divisors,

• mld(X ∋ x,B) ≥ 1, and

• there exists a terminal blow-up (see Definition 3.1.3) f : Y → X of (X ∋ x,B) which extracts a

prime divisor E over X ∋ x, such that a(E,X, 0) = 1 + a
n for some positive integer a ≥ 3.

Then there exists a prime divisor Ē over X ∋ x such that a(Ē,X,B) = mld(X ∋ x,B) and a(Ē,X, 0) =

1 + 3
n . Moreover,

1. if mld(X ∋ x,B) > 1, then a = 3, and
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2. if mld(X ∋ x,B) = 1 and Γ is either a DCC set or an ACC set, then bi ∈ Γ0 for some finite set Γ0

depending only on Γ.

Proof. Since n > 1, by [Kaw05, Theorem 1.3], f : Y → X is a divisorial contraction of ordinary type

as in Theorem 2.1.35(1). In particular, under suitable analytic local coordinates x1, x2, x3, x4, there exist

positive integers r1, r2, b, d such that r1 + r2 = adn, b ∈ Z ∩ [1, n − 1], gcd(b, n) = 1, a ≡ br1 mod n,

and analytically locally,

(X ∋ x) ∼= (ϕ(x1, x2, x3, x4) = 0) ⊂ (C4 ∋ o)/ 1
n

(1,−1, b, 0)

for some invariant analytic power series ϕ, and f : Y → X is a weighted blow-up with the weight

w := 1
n (r1, r2, a, n). Assume that each Bi is locally defined by (hi = 0) for some semi-invariant analytic

power series hi.

Since n > N ≥ 3
γ0

, we can pick positive integers s1, s2, such that

• s1 + s2 = 3dn,

• 3 ≡ bs1 mod n, and

• s1, s2 > n.

Let w̄ := 1
n (s1, s2, 3, n). Since a ≥ 3, by [HLL22, Lemma C.7], the weighted blow-up with the weight

w̄ extracts an analytic prime divisor Ē over X ∋ x, such that a(Ē,X, 0) = 1 + w̄(X ∋ x) = 1 + 3
n .

By [HLL22, Lemma C.6], we may assume that Ē is a prime divisor over X ∋ x. Since a(Ē,X,B) =

1 + w̄(X ∋ x) − w̄(B) ≥ mld(X ∋ x,B) ≥ 1,

γ0 >
3
n

= w̄(X ∋ x) ≥ w̄(B) =
∑

i

biw̄(Bi) ≥ γ0
∑

i

w̄(Bi),
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which implies that w̄(hi) = w̄(Bi) < 1 for each i. Since w̄(x1) = s1
n > 1, w̄(x2) = s2

n > 1, and

w̄(x4) = 1, for each i, there exists a positive integer li, such that up to a scaling of hi, xli
3 ∈ hi for each i,

and w̄(Bi) = w̄(hi) = w̄(xli
3 ). In particular,

multĒ B = w̄(B) =
∑

i

biliw̄(x3) = 3
n

∑
i

bili,

and 1 + 3
n ≥ w̄(B) + mld(X ∋ x,B) = 3

n

∑
i bili + mld(X ∋ x,B). This implies that

mld(X ∋ x,B) − 1 ≤ 3
n

(1 −
∑

i

bili). (3.2.1)

On the other hand,

multE B = w(B) =
∑

i

biw(Bi) ≤
∑

i

biw(xli
3 ) = a

n

∑
i

bili,

and

a

n
− mld(X ∋ x,B) + 1 = w(X ∋ x) − mld(X ∋ x,B) + 1 = w(B) ≤ a

n

∑
i

bili.

Combining with (3.2.1), we have

a

n
(1 −

∑
i

bili) ≤ mld(X ∋ x,B) − 1 ≤ 3
n

(1 −
∑

i

bili). (3.2.2)

If mld(X ∋ x,B) > 1, then by (3.2.2), a ≤ 3, hence a = 3. It follows that a(Ē,X,B) = 1 + 3
n −

w̄(B) = mld(X ∋ x,B) in this case. If mld(X ∋ x,B) = 1, then by (3.2.2),
∑

i bili = 1. In particular,

w̄(B) = 3
n = w̄(X ∋ x), hence mld(X ∋ x,B) = a(Ē,X,B) = 1.

When mld(X ∋ x,B) = 1 and Γ is a DCC set or an ACC set, the equality
∑

i bili = 1 implies that B

belongs to a finite subset Γ0 ⊂ Γ.

Lemma 3.2.8. Let γ0 be a positive real number. Let (X ∋ x,B :=
∑

i biBi) be a threefold germ, where

x ∈ X is a terminal singularity of type cA/n for some n > ⌈ 3
γ0

⌉, bi ≥ γ0 and Q-Cartier Weil divisors
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Bi ≥ 0, such that mld(X ∋ x,B) ≥ 1. Then there exists a prime divisor E over X ∋ x, such that

a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) ≤ 1 + 3
n .

Proof. This follows from Lemmas 3.2.5 and 3.2.7.

Theorem 3.2.9. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a positive integer l depending only on Γ

satisfying the following.

Let (X ∋ x,B) be a threefold pair such that X is terminal, B ∈ Γ, and mld(X ∋ x,B) = 1. Then there

exists a prime divisor E over X ∋ x, such that a(E,X,B) = 1 and a(E,X, 0) ≤ 1 + l
I , where I is the

index of X ∋ x. In particular, a(E,X, 0) ≤ 1 + l.

Proof. Let Y be a small Q-factorialization of X , and let KY +BY := f∗(KX +B). There exists a point

y ∈ Y such that f(y) = x and mld(Y ∋ y,BY ) = mld(X ∋ x,B) = 1. Moreover, the index of Y ∋ y

divides the index of X ∋ x. Possibly replacing (X ∋ x,B) with (Y ∋ y,BY ), we may assume that X is

Q-factorial.

If dim x = 2, then the theorem is trivial as we can take l = 0. If dim x = 1, then X is smooth

near x and I = 1. By Lemma 2.1.6, if E is the exceptional divisor of the blow-up at x ∈ X , then

a(E,X,B) = mld(X ∋ x,B). Since a(E,X, 0) = 2, we may take l = 1 in this case.

Now we may assume that dim x = 0. By Lemma 3.1.4, there exists a terminal blow-up (see Definition

3.1.3) f : Y → X of (X ∋ x,B) which exactly extracts a prime divisor E over X ∋ x. We may write

KY − a

I
E = f∗KX

for some positive integer a. Moreover, we may assume that a ≥ 5.

By Theorem 2.1.35, f is a divisorial contraction of ordinary type. If x ∈ X is a terminal singularity

of type other than cA/n, then I ≤ 2, and the theorem follows from Lemma 3.2.1. If x ∈ X is a terminal
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singularity of type cA/n, then by Lemma 3.2.7, there exists an integer N ′ depending only on Γ′, such that if

n = I ≥ N ′, then there exists a prime divisor Ē over X ∋ x with a(Ē,X,B) = 1 and a(Ē,X, 0) = 1 + 3
I .

Hence when I ≥ N ′, we may take l = 3, and when I < N ′, the theorem follows from Lemma 3.2.1.

3.3 ACC for Threefold Canonical Thresholds

The main goal for this section is to show Theorem 1.2.10.

Theorem 3.3.1. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a finite set Γ0 ⊂ Γ depending only on Γ

satisfying the following. Assume that

• (X ∋ x,B :=
∑

i biBi) is a threefold pair,

• X is terminal,

• bi ∈ Γ and Bi ≥ 0 are Q-Cartier Weil divisors, and

• mld(X ∋ x,B) = 1.

Then bi ∈ Γ0 for all i.

Proof. We may assume that dim x ≤ 1. If dim x = 1, then X is smooth near x. By Lemma 2.1.6,

mld(X ∋ x,B) = 2 −
∑

i bi multx Bi = 1 and multx Bi ∈ Z>0 for each i, hence bi belongs to a finite

set Γ0 ⊂ Γ depending only on Γ. If dim x = 0, then we let n be the index of X ∋ x. By Theorem 3.2.9,

there exists a prime divisor E over X ∋ x such that a(E,X,B) = a(E,X, 0) − multE B = 1 and

a(E,X, 0) = 1 + a
n for some a ≤ l, where l is a positive integer depending only on Γ. By [Kaw88,

Lemma 5.1], multE Bi = 1
nci for some positive integers ci. It follows that a

n = 1
n

∑m
i=1 cibi. Thus

bi ∈ Γ0 ⊂ Γ for all i for some finite set Γ0 ⊂ Γ depending only on Γ.
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As a consequence of Theorem 3.3.1, we show the ACC for ct(X ∋ x,B;D) for terminal threefold

singularities x ∈ X .

Theorem 3.3.2. Let Γ ⊂ [0, 1], Γ′ ⊂ [0,+∞) be two DCC sets. Then the set

{ct(X ∋ x,B;D) | dimX = 3, X is terminal, B ∈ Γ, D ∈ Γ′}

satisfies the ACC.

Proof. Pick t ∈ {ct(X ∋ x,B;D) | dimX = 3, X is terminal, B ∈ Γ, D ∈ Γ′}. Then there exists a

threefold pair (X ∋ x,B) and an R-Cartier R-divisor D ∈ Γ′\{0} on X , such that X is terminal, B ∈ Γ,

and t = ct(X ∋ x,B;D).

We only need to show that t belongs to an ACC set depending only on Γ and Γ′. By [HMX14, Theorem

1.1], we may assume that mld(X ∋ x,B + tD) = 1, and there exists a prime divisor E over X ∋ x such

that a(E,X,B + tD) = 1. Possibly replacing X with a small Q-factorialization X ′ and replacing x with the

generic point of centerX′ E, we may assume that X is Q-factorial. By Theorem 3.3.1, B + tD belongs to a

finite set depending only on Γ and Γ′, hence t belongs to an ACC set depending only on Γ and Γ′.

Proof of Theorem 1.2.10. Let (X,B) be a canonical threefold pair andD ≥ 0 a non-zero R-Cartier R-divisor

on X , such that B ∈ Γ and D ∈ Γ′. Let t := ct(X,B;D). We only need to show that t belongs to an ACC

set.

We may assume that t > 0. In particular, (X,B) is canonical. By [BCHM10, Corollary 1.4.3], there

exists a birational morphism f : Y → X that exactly extracts all the exceptional divisors E over X such that

a(E,X, 0) = 1. Since (X,B) is canonical, X is canonical, hence Y is terminal and a(E,X,B + tD) = 1

for any f -exceptional divisor E such that a(E,X, 0) = 1. We have KY +BY + tDY = f∗(KX +B+ tD),

where BY , DY are the strict transforms of B,D on Y respectively. Possibly replacing (X,B) and D with
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(Y,BY ) and DY respectively, we may assume that X is terminal.

Now there exists a point x on X such that t = ct(X ∋ x,B;D). Theorem 1.2.10 follows from Theorem

3.3.2.

3.4 Uniform Canonical Rational Polytopes

[HLS19] established a general theory to show the boundedness of complements for DCC coefficients from

the boundedness of complements for finite rational coefficients. We will follow this theory in our paper. As

the key step, we need to show the existence of uniform canonical rational polytopes in this section. Recall that

the proof of the uniform lc rational polytopes [HLS19] is based on some ideas in the proof of accumulation

points of lc thresholds [HMX14], which relies on applying the adjunction formula to the lc places. Our proof

is quite different from [HLS19] as we could not apply the adjunction formula to canonical places.

Lemma 3.4.1. Let I, c,m be three non-negative integers, r1, . . . , rc real numbers such that 1, r1, . . . , rc are

linearly independent over Q, and s1, . . . , sm : Rc+1 → R Q-linear functions. Let r := (r1, . . . , rc). Then

there exists an open subset U ⊂ Rc depending only on I, r and s1, . . . , sm, such that U ∋ r satisfies the

following.

Let x ∈ X be a terminal threefold singularity such that IKX is Cartier near x, B1, . . . , Bm ≥ 0

Weil divisors on X such that (X ∋ x,B := B(r)) is lc and mld(X ∋ x,B) ≥ 1, where B(v) :=∑m
j=1 sj(1,v)Bj for any v ∈ Rc. Then (X ∋ x,B(v)) is lc and mld(X ∋ x,B(v)) ≥ 1 for any v ∈ U .

Proof. By [HLS19, Theorem 5.6], we may pick an open subset U0 ⊂ Rc such that r ∈ U0 and (X ∋ x,B(v))

is lc for any v ∈ U0. By [Kaw88, Lemma 5.1], IBj is Cartier near x for 1 ≤ j ≤ m, we may write

B =
∑m

j=1
sj(1,r)

I IBj . By [Nak16, Theorem 1.2], {a(E,X,B) | centerX E = x} belongs to a discrete set

50



depending only on I, r and s1, . . . , sm. In particular, we may let

α := min{a(E,X,B) | centerX E = x, a(E,X,B) > 1}.

Now we let

U := { 1
α

r + α− 1
α

v0 | v0 ∈ U0}.

We show that U satisfies our requirements. For any prime divisor E over X ∋ x, if a(E,X,B) = 1, then

a(E,X,B(v)) = 1 for any v ∈ U as r1, . . . , rc are linearly independent over Q. If a(E,X,B) > 1, then

a(E,X,B) ≥ α. By the construction of U , for any v ∈ U , there exists v0 ∈ U0 such that v = 1
α r + α−1

α v0.

Hence

a(E,X,B(v)) = 1
α
a(E,X,B) + α− 1

α
a(E,X,B(v0)) ≥ 1.

It follows that mld(X ∋ x,B(v)) ≥ 1 for any v ∈ U .

Lemma 3.4.2. Let (X ∋ x,B) be a threefold pair such that X is Q-factorial and x ∈ X is a terminal

singularity of type cA/n. Assume that mld(X ∋ x,B) ≥ 1 and ⌊B⌋ ≠ ∅. Then B = ⌊B⌋ is a prime divisor,

KX +B is Cartier near x, and mld(X ∋ x,B) = 1.

Proof. Let S ⊂ ⌊B⌋ be a prime divisor. By Theorem 2.1.13(2), B = ⌊B⌋ = S and mld(X ∋ x,B) = 1.

If n = 1, by [Kaw88, Lemma 5.1], KX + B is Cartier near x. We may assume that n ≥ 2. By [Kaw05,

Theorem 1.3], Theorem 2.1.35(2), and [HLL22, Lemmas C.6 and C.7], there exist analytic local coordinates

x1, x2, x3, x4 and a positive integer d, such that analytically locally, x ∈ X is a hyperquotient singularity of

the form

(X ∋ x) ∼= (ϕ := x1x2 + g(xn
3 , x4) = 0) ⊂ (C4 ∋ o)/ 1

n
(1,−1, b, 0),

where b ∈ [1, n − 1] ∩ Z and gcd(b, n) = 1. Moreover, the weighted blow-up with the weight w :=

1
n (s1, dn − s1, 1, n) extracts a prime divisor E such that a(E,X, 0) = 1 + 1

n , where s1 ∈ [1, n − 1] ∩ Z
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and bs1 ≡ 1 mod n. Let h be a semi-invariant analytic power series which defines S. Since a(E,X, S) =

a(E,X, 0) − multE S = 1 + 1
n − multE S ≥ 1, w(h) = multE S = 1

n , and if s1 = 1 (resp. dn− s1 = 1),

then either x3 ∈ h or x1 ∈ h (resp. x2 ∈ h) up to a scaling of h. If s1 = 1 (resp. dn − s1 = 1), then

b = 1 (resp. b = −1), and the analytic Cartier divisor (x3 = 0) is linearly equivalent to (x1 = 0) (resp.

(x2 = 0)), hence the Q-Cartier divisor (h = 0) is linear equivalent to the Q-Cartier divisor (x3 = 0). By

[Rei87, (6.4)(B.1)] and Lemma 2.1.10, KX + S is Cartier near x.

Theorem 3.4.3. Let c,m be two non-negative integers, r1, . . . , rc real numbers such that 1, r1, . . . , rc are

linearly independent over Q, and s1, . . . , sm : Rc+1 → R Q-linear functions. Let r := (r1, . . . , rc). Then

there exists an open subset U ⊂ Rc depending only on r and s1, . . . , sm, such that U ∋ r satisfies the

following.

Let X be a terminal threefold, x ∈ X a point, B1, . . . , Bm ≥ 0 distinct Weil divisors on X , and

B(v) :=
∑m

j=1 sj(1,v)Bj for any v ∈ Rc. Assume that (X ∋ x,B := B(r)) is lc and mld(X ∋ x,B) ≥ 1.

Then (X ∋ x,B(v)) is lc and mld(X ∋ x,B(v)) ≥ 1 for any v ∈ U . Moreover, if mld(X ∋ x,B) > 1,

then we may choose U so that mld(X ∋ x,B(v)) > 1 for any v ∈ U .

Proof. Possibly replacing X with a small Q-factorialization, we may assume that X is Q-factorial.

By construction, we may assume that sj(1, r) > 0 for each j. If dim x = 2, then the theorem is trivial. If

dim x = 1, thenX is smooth near x. By Lemma 2.1.6, mld(X ∋ x,B) = 2−multx B > 1, thus multx B =∑m
j=1 sj(1, r) multx Bj < 1, where multx Bj are non-negative integers. Hence

∑m
j=1 sj(1, r) multx Bj ≤

1 − ϵ0 for some ϵ0 ∈ (0, 1) depending only on r and s1, . . . , sm. By Lemma 2.1.6, mld(X ∋ x, 1
1−ϵ0

B) ≥ 1,

hence we can take U := {v | 0 < sj(1,v) < 1
1−ϵ0

sj(1, r) for each j} in this case. Hence we may assume

that dim x = 0.

If ⌊B⌋ ≠ 0, by [Rei87, (6.1) Theorem] and Lemma 3.4.2, we may assume that 12KX is Cartier near x, and
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the theorem follows from Lemma 3.4.1. Thus we may assume that ⌊B⌋ = 0. By [BCHM10, Corollary 1.4.3],

there exists a birational morphism f : Y → X from a Q-factorial variety Y that exactly extracts all the

exceptional divisors F over X ∋ x such that a(F,X,B) = 1. In particular, a(F,X,B(v)) = 1 for all

v ∈ Rc. It follows that f∗(KX + B(v)) = KY + f−1
∗ B(v) for all v ∈ Rc. Hence it suffices to prove the

theorem for all pairs (Y ∋ y, f−1
∗ B), where y ∈ f−1(x) is a closed point. From now on, we may assume

that mld(X ∋ x,B) > 1.

By [Rei87, (6.1) Theorem], if x ∈ X is a terminal singularity of types other than cA/n, then the index of

X ∋ x is ≤ 4, and the theorem holds by Lemma 3.4.1. From now on, we may assume that x ∈ X is of type

cA/n.

Claim 3.4.4. There exist a positive integer N and a positive real number ϵ depending only on r and

s1, . . . , sm satisfying the following.

For any terminal threefold singularity x ∈ X of type cA/n and B :=
∑m

j=1 sj(1, r)Bj , where Bj ≥ 0

are Q-Cartier Weil divisors on X and ⌊B⌋ = 0, if mld(X ∋ x,B) > 1 and n > N , then t := ct(X ∋

x, 0;B) > 1 + ϵ.

We proceed the proof assuming Claim 3.4.4. By Lemma 3.4.1, we may assume that n > N . By

Claim 3.4.4, t > 1 + ϵ, hence we can take U := {v | 0 < sj(1,v) < (1 + ϵ)sj(1, r) for each j} in this

case. Moreover, if mld(X ∋ x,B) > 1, then possibly replacing U with { 1
2 v + 1

2 r | v ∈ U}, we have

mld(X ∋ x,B(v)) > 1 for all v ∈ U .

Proof of Claim 3.4.4. Since mld(X ∋ x,B) > 1, t > 1. Since ⌊B⌋ = 0, if ⌊tB⌋ ≠ 0, then t > 1 + ϵ for

some ϵ > 0 depending only on r and s1, . . . , sm. Thus we may assume that ⌊tB⌋ = 0. By Lemma 2.1.12(1),

mld(X ∋ x, tB) = 1. Since t > 1, by Lemma 3.2.8, there exists a positive integer N depending only

on r and s1, . . . , sm, such that if n > N , then there exists a prime divisor Ē over X ∋ x, such that
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a(Ē,X, tB) = 1 and a(Ē,X, 0) = 1 + a
n for some positive integer a ≤ 3. Since

a(Ē,X, tB) = a(Ē,X, 0) − multĒ tB = 1 + a

n
− t

n

m∑
j=1

ljsj(1, r) = 1,

where lj := nmultĒ Bj ∈ Z>0 for each j, we have t
∑m

j=1 ljsj(1, r) = a. Since a, sj(1, r) belong to a

finite set of positive real numbers for any j, and lj belongs to a discrete set of positive real numbers, t belongs

to a set whose only accumulation point is 0. Since t > 1, there exists a positive real number ϵ depending only

on r and s1, . . . , sm, such that t > 1 + ϵ.

3.5 Accumulation Points of Canonical Thresholds

In this section, we prove Theorem 1.2.11.

Lemma 3.5.1 ([Che19, Lemma 2.1]). Let (X ∋ x) ∼= (ϕ1 = · · · = ϕm = 0) ⊂ (Cd ∋ o)/ 1
n (b1, . . . , bd) be

a germ, where ϕ1, . . . , ϕm are semi-invariant analytic power series. Let w,w′ ∈ 1
nZ

d
>0 be two weights and

f : Y → X, f ′ : Y ′ → X weighted blow-ups with the weights w,w′ at x ∈ X respectively, such that f

extracts an analytic prime divisor E and f ′ extracts an analytic prime divisor E′ respectively.

Let B ≥ 0 be a Q-Cartier Weil divisor on X such that 1 = a(E,X, ct(X ∋ x, 0;D)D), m :=

nmultE D, and m′ := nmultE′ D. Then for any real number µ ≥ 0 such that w′ ⪰ µw (see Definition

2.1.26),

⌈µm⌉ ≤ m′ ≤ ⌊w
′(X ∋ x)
w(X ∋ x) m⌋.

Lemma 3.5.2. Let T S be a set of terminal threefold singularities, and

T S1 := {(x̃ ∈ X̃) | x̃ ∈ X̃ is an index one cover of (x ∈ X) ∈ T S}.

Then the set of accumulation points of

{ct(X ∋ x, 0;D) | (x ∈ X) ∈ T S, D ∈ Z>0}
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is a subset of the set of accumulation points of

{ct(X ∋ x, 0;D) | (x ∈ X) ∈ T S1, D ∈ Z>0}.

Proof. Let {(Xi ∋ xi, Di)}∞
i=1 be a sequence of germs, such that (xi ∈ Xi) ∈ T S and Di ≥ 0 are non-zero

Q-Cartier Weil divisors. Let ni be the index of the terminal singularity xi ∈ Xi for each i. By Theorem 3.3.2,

we may assume that the sequence {ci := ct(Xi ∋ xi, 0;Di)} is strictly decreasing with the limit point c ≥ 0.

It suffices to show that c is an accumulation point of {ct(X ∋ x, 0;D) | (x ∈ X) ∈ T S1, D ∈ Z>0}. We

may assume that c > 0.

We may assume that 1 > ci for each i, and by Lemma 2.1.12(1), mld(Xi ∋ xi, ciDi) = 1. For each i,

consider the pair (Xi ∋ xi, ciDi), by Lemma 3.1.4, there exists a terminal blow-up (see Definition 3.1.3)

of (Xi ∋ xi, ciDi) which extracts a prime divisor Ei over Xi ∋ xi. We may write a(Ei, Xi, 0) = 1 + ai

ni

and multEi
Di = mi

ni
for some positive integers ai,mi. Set ti := lct(Xi, 0;Di) for each i, then we have

ci = ai

mi
and ti ≤ ai+ni

mi
. Since {ci}∞

i=1 is strictly decreasing and c > 0, limi→+∞ mi = +∞ and

limi→+∞ ai = +∞. In particular, possibly passing to a subsequence, we may assume that ai ≥ 3 for all i.

Since ci > c, by Lemma 3.2.7(2) and [Rei87, (6.1) Theorem], ni ≤ max{4, 3
c } for all i.

Possibly shrinking Xi to a neighborhood of xi, we may assume that (Xi, ciDi) is lc for each i. It follows

that

c = lim
i→+∞

ai

mi
≤ lim

i→+∞
ti ≤ lim

i→+∞

ai + ni

mi
= c,

hence c = limi→+∞ ti.

For each i, let πi : (X̃i ∋ x̃i) → (Xi ∋ xi) be the index one cover of xi ∈ Xi. Set D̃i := π−1
i Di,

c̃i := ct(X̃i ∋ x̃i, 0; D̃i) and t̃i := lct(X̃i, 0; D̃i). Possibly shrinking Xi to a neighborhood of xi again, we
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may assume that (X̃i, c̃iD̃i) is lc. By [KM98, Proposition 5.20], t̃i = ti and c̃i ≥ ci. Now

c = lim
i→+∞

ti = lim
i→+∞

t̃i ≥ lim
i→+∞

c̃i ≥ lim
i→+∞

ci = c,

which implies that c = limi→+∞ c̃i.

Theorem 3.5.3. Let T be the set of all terminal threefold singularities. Then the set of accumulation points of

CT t := {ct(X ∋ x, 0;D) | (x ∈ X) ∈ T, D ∈ Z>0}

is {0} ∪ { 1
k | k ∈ Z≥2}. Moreover, 0 is the only accumulation point of

CT t,̸=sm,cA/n :=
{

ct(X ∋ x, 0;D)
⏐⏐⏐⏐ (x ∈ X) ∈ T, (x ∈ X) is neither smooth nor

of type cA/n for any n ∈ Z>0, D ∈ Z>0,

}
.

Proof. Step 0. By [Ste11, Theorem 3.6], {0} ∪ { 1
k | k ∈ Z≥2} is a subset of the set of accumulation

points of CT t. For any (x ∈ X) ∈ T, let D ≥ 0 be a non-zero Q-Cartier Weil divisor on of X . Then

ct(X ∋ x, 0, kD) = 1
k ct(X ∋ x, 0;D) for any positive integer k, hence 0 is an accumulation point of

CT t,̸=sm,cA/n.

It suffices to show the corresponding reverse inclusions. Let c > 0 be an accumulation point of CT t. We

will finish the proof by showing that c is not an accumulation point of CT t,̸=sm,cA/n in Step 2 and c = 1
k+1

for some positive integer k in Step 3.

Step 1. By Theorem 3.3.2, c < 1. Let k be a positive integer such that 1
k+1 ≤ c < 1

k . Consider the set

Ik := {p
q

| p, q ∈ Z>0, p ≤ 16(k + 1)2},

which is discrete away from 0. By Theorem 3.3.2, there exists a positive real number ϵ, such that for any

c′ ∈ CT t, if 0 < |c− c′| < ϵ, then c < c′ < 1
k , and c′ /∈ Ik.

By Lemma 3.5.2, there exists a Gorenstein terminal threefold singularity x ∈ X and a non-zero Q-Cartier
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Weil divisor D ≥ 0 on X , such that 0 < |c − ct(X ∋ x, 0;D)| < ϵ. We have c < ct(X ∋ x, 0;D) < 1
k

and ct(X ∋ x, 0;D) /∈ Ik. Let D0 := ct(X ∋ x, 0;D)D. By Lemma 2.1.12(1), mld(X ∋ x,D0) = 1. By

Lemma 3.1.4, there exists a terminal blow-up f : Y → X of (X ∋ x,D0) which extracts a prime divisor

E over X ∋ x, and KY = f∗KX + aE, f∗D = f−1
∗ D + mE for some positive integers a,m. We have

ct(X ∋ x, 0;D) = a
m . If a ≤ 4 or a | m, then a

m ∈ Ik, a contradiction. Hence a ≥ 5 and a ∤ m. By

Theorem 2.1.35, f is a divisorial contraction of ordinary type as in Theorem 2.1.35(1-3) when x ∈ X is not

smooth or as in [Kaw01, Theorem 1.1] when x ∈ X is smooth.

Step 2. We show that x ∈ X is either smooth or of type cA in this step. In particular, by Theorem 3.5.2, c is

not an accumulation point of CT t,̸=sm,cA/n.

Otherwise, by Theorem 2.1.35, X is of type cD, and there are two cases:

Case 2.1. f is a divisorial contraction as in Theorem 2.1.35(2.1). In particular, under suitable analytic local

coordinates x1, x2, x3, x4, we have

(X ∋ x) ∼= (ϕ := x2
1 + x1q(x3, x4) + x2

2x4 + λx2x
2
3 + µx3

3 + p(x2, x3, x4) = 0) ⊂ (C4 ∋ o)

for some analytic power series ϕ as in Theorem 2.1.35(2.1), and f is a weighted blow-up with the weight

w := (r + 1, r, a, 1), where r is a positive integer, 2r + 1 = ad for some integer d ≥ 3, and a is an odd

number. We have w(X ∋ x) = a and w(D) = m.

Since a ∤ m, ct(X ∋ x, 0;D) ∈ ( 1
k+1 ,

1
k ), and we have

2r + 1
md

= a

m
= ct(X ∋ x, 0;D) ∈ ( 1

k + 1 ,
1
k

),

hence k(2r+1) < dm < (k+1)(2r+1). Consider the weighted blow-up f ′ : Y ′ → X (resp. f ′′ : Y ′′ → X)

at x ∈ X with the weight w′ := (d, d, 2, 1) (resp. w′′ := (1 + r − d, r − d, a− 2, 1)). Since a− 2 ≥ 3, by

[HLL22, Lemma C.8(1)], f ′′ extracts an analytic prime divisor, and w′′(X ∋ x) = a− 2. Since a ≥ 5, by
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[HLL22, Lemma C.8(2)], f ′ extracts an analytic prime divisor, and w′(X ∋ x) = 2. Since w′ ⪰ d
r+1w and

w′′ ⪰ r−d
r w, by Lemma 3.5.1, ⌊ 2

am⌋ ≥ ⌈ d
r+1m⌉ and ⌊ a−2

a m⌋ ≥ ⌈ r−d
r m⌉. Thus

m− 1 = ⌊2
a
m⌋ + ⌊a− 2

a
m⌋ ≥ ⌈ d

r + 1m⌉ + ⌈r − d

r
m⌉ ≥ ⌈m− dm

r(r + 1)⌉,

where the first equality follows from a ∤ 2m as a ∤ m and a is an odd number. It follows that dm
r(r+1) ≥ 1.

Hence (k + 1)(2r + 1) > dm ≥ r(r + 1) > r(r + 1
2 ), and r < 2(k + 1). Since 2r + 1 = ad, a ≤ 4k + 4.

Therefore, ct(X ∋ x, 0;D) = a
m ∈ Ik, a contradiction.

Case 2.2. f is a divisorial contraction as in Theorem 2.1.35(3.1). In particular, under suitable analytic local

coordinates x1, x2, x3, x4, x5, we have

(X ∋ x) ∼=
(

ϕ1 := x2
1 + x2x5 + p(x2, x3, x4) = 0

ϕ2 := x2x4 + xd
3 + q(x3, x4)x4 + x5 = 0

)
⊂ (C5 ∋ o)

for some analytic power series ϕ1, ϕ2 as in Theorem 2.1.35(3.1), and f is a weighted blow-up with the weight

w := (r + 1, r, a, 1, r + 2), where r is a positive integer such that r + 1 = ad and d ≥ 2 is an integer. We

have w(X ∋ x) = a and w(D) = m.

Since a ∤ m, ct(X ∋ x, 0;D) ∈ ( 1
k+1 ,

1
k ), and we have

r + 1
dm

= a

m
= ct(X ∋ x, 0;D) ∈ ( 1

k + 1 ,
1
k

),

hence k(r+ 1) < dm < (k+ 1)(r+ 1). Consider the weighted blow-up f ′ : Y ′ → X (resp. f ′′ : Y ′′ → X)

at x ∈ X with the weight w′ := (d, d, 1, 1, d) (resp. w′′ := (r + 1 − d, r − d, a− 1, 1, r + 2 − d)). Since

a − 1 ≥ 4, by [HLL22, Lemma C.9(1)], f ′′ extracts an analytic prime divisor, and w′′(X ∋ x) = a − 1.

Since a ≥ 5, by [HLL22, Lemma C.9(2)], f ′ extracts an analytic prime divisor, and w′(X ∋ x) = 1. Since

w′ ⪰ d
r+2w and w′′ ⪰ r−d

r w, by Lemma 3.5.1, ⌊ 1
am⌋ ≥ ⌈ d

r+2m⌉ and ⌊ a−1
a m⌋ ≥ ⌈ r−d

r m⌉. Thus

m− 1 = ⌊1
a
m⌋ + ⌊a− 1

a
m⌋ ≥ ⌈ d

r + 2m⌉ + ⌈r − d

r
m⌉ ≥ ⌈m− 2dm

r(r + 2)⌉,
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where the first equality follows from a ∤ m. This implies that 2dm
r(r+2) ≥ 1. Hence (k + 1)(r + 1) > dm ≥

1
2r(r + 2) > 1

2r(r + 1), and r < 2(k + 1). Since r + 1 = ad, a ≤ 2k + 2. Therefore, ct(X ∋ x, 0;D) =

a
m ∈ Ik, a contradiction.

Step 3. We show that c = 1
k+1 in this step.

By Step 1, Step 2, [Kaw01, Theorem 1.1], and Theorem 2.1.35, there are two cases.

Case 3.1. x ∈ X is smooth, and under suitable analytic local coordinates x1, x2, x3, f is a weighted blow-up

with the weight w := (1, r1, r2) for some positive integers r1, r2, such that gcd(r1, r2) = 1. Now n = 1,

a = r1 + r2, and ct(X ∋ x, 0;D) = r1+r2
m , such that r1 + r2 ∤ m. Possibly switching x2, x3, we may

assume that r1 ≤ r2. By [Che19, Proposition 3.3(1)],

ct(X ∋ x, 0;D) = r1 + r2

m
≤ 1
r1

+ 1
r2

when r1 ≥ 2. When r1 = 1, we have

ct(X ∋ x, 0;D) < 1 < 1
r1

+ 1
r2
.

Since a ∤ m, ct(X ∋ x, 0;D) ∈ ( 1
k+1 ,

1
k ), and we have 1

r1
+ 1

r2
> 1

k+1 , and r1 < 2(k + 1). If k + 2 ≤ r1,

then r2 < (k + 1)(k + 2) and a = r1 + r2 ≤ 16(k + 1)2. It follows that ct(X ∋ x, 0;D) = r1+r2
m ∈ Ik, a

contradiction. Hence 1 ≤ r1 ≤ k + 1.

Consider the weighted blow-up with the weight w′ := (1, r1, r2 − 1). This weighted blow-up extracts

an analytic prime divisor E′ that is isomorphic to P(1, r1, r2 − 1), and w′(X ∋ x) = r1 + r2 − 1. Since

w′ ⪰ r2−1
r2

w, by Lemma 3.5.1,

m− (k + 1) = ⌊r1 + r2 − 1
r1 + r2

m⌋ ≥ ⌈r2 − 1
r2

m⌉,

where the equality follows from m
r1+r2

∈ (k, k + 1). It follows that m
r2

≥ k + 1 and (k + 1)r2 ≤ m <
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(k + 1)(r1 + r2). Thus ct(X ∋ x, 0;D) belongs to the set

{r1 + r2

m
| r1, r2,m ∈ Z, 1 ≤ r1 ≤ k + 1, r1 ≤ r2, (k + 1)r2 ≤ m < (k + 1)(r1 + r2)},

which has only one accumulation point 1
k+1 .

Case 3.2. x ∈ X is of type cA and f : Y → X is a divisorial contraction of ordinary type as in Theo-

rem 2.1.35(1). In particular, under suitable analytic local coordinates x1, x2, x3, x4, we have

(X ∋ x) ∼= (ϕ := x1x2 + g(x3, x4) = 0) ⊂ (C4 ∋ 0)

for some analytic power series ϕ as in Theorem 2.1.35(1), and f is a weighted blow-up with the weight

w := (r1, r2, a, 1), where r1, r2, d are positive integers such that r1 + r2 = ad. We have w(X ∋ x) = a and

w(D) = m. By [Che19, Proposition 4.2],

ct(X ∋ x, 0;D) = a

m
= r1 + r2

dm
≤ 1
r1

+ 1
r2
.

Possibly switching x1, x2, we may assume that r1 ≤ r2. Since a | m, ct(X ∋ x, 0;D) ∈ ( 1
k+1 ,

1
k ),

and we have 1
r1

+ 1
r2

> 1
k+1 , hence r1 < 2(k + 1). If k + 2 ≤ r1, then r2 < (k + 1)(k + 2), hence

a ≤ r1 + r2 ≤ 16(k + 1)2, which implies that ct(X ∋ x, 0;D) = a
m ∈ Ik, a contradiction. Hence

1 ≤ r1 ≤ k + 1.

Consider the weight w′ := (r1, r2 −d, a−1, 1). By [HLL22, Lemma C.7], the weighted blow-up with the

weight w′ extracts an analytic prime divisor, and w′(X ∋ x) = a− 1. Since w′ ⪰ r2−d
r2

w, by Lemma 3.5.1,

m− (k + 1) = ⌊a− 1
a

m⌋ ≥ ⌈r2 − d

r2
m⌉,

where the equality follows from m
a ∈ (k, k + 1). It follows that dm

r2
≥ k + 1 and (k + 1)r2 ≤ dm <
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(k + 1)(r1 + r2). Thus ct(X ∋ x, 0;D) belongs to the set

{r1 + r2

dm
| r1, r2, d,m ∈ Z>0, 1 ≤ r1 ≤ k + 1, r1 ≤ r2, (k + 1)r2 ≤ dm < (k + 1)(r1 + r2)},

which has only one accumulation point 1
k+1 .

Proof of Theorem 1.2.11. Let X be a canonical threefold and D ≥ 0 a non-zero Q-Cartier Weil divisor

on X . Consider the pair (X,D0 := ct(X, 0;D)D). For any exceptional prime divisor F over X such

that a(F,X, 0) = 1, we have a(F,X,D0) = 1. By [BCHM10, Corollary 1.4.3], there exists a Q-factorial

variety X ′ and a birational morphism g : X ′ → X that exactly extracts all exceptional divisors F such that

a(F,X, 0) = 1. By construction, X ′ is terminal and KX′ + g−1
∗ D0 = g∗(KX +D0), hence ct(X, 0;D) =

ct(X ′, 0; g−1
∗ D). Possibly replacing (X,D) with (X ′, g−1

∗ D), we may assume that X is terminal.

Now either ct(X, 0;D) = 1 or t := ct(X, 0;D) = ct(X ∋ x, 0;D) < 1 for some point x ∈ X of

codimension ≥ 2. If dim x = 1, then by Lemma 2.1.6, mld(X ∋ x, tD) = 2 − multx tD = 1, hence

t = 1
multx D ∈ { 1

m | m ∈ Z>0}. If dim x = 0, by Theorem 3.5.3, we are done.

3.6 ACC for Minimal Log Discrepancies on [1, +∞)

In this section, we prove the following theorem:

Theorem 3.6.1. Let Γ ⊂ [0, 1] be a DCC set. Then the set

{mld(X ∋ x,B) | dimX = 3, X is terminal near x,B ∈ Γ} ∩ [1,+∞)

satisfies the ACC.

Proof of Theorem 3.6.1. Step 1. Suppose that Theorem 3.6.1 does not hold, then there exists a sequence

of threefold pairs {(Xi ∋ xi, Bi)}∞
i=1, where Xi is terminal and Bi ∈ Γ for each i, such that {mld(Xi ∋

61



xi, Bi)}∞
i=1 ⊂ (1,+∞) is strictly increasing. Possibly replacing Xi with a small Q-factorialization, we may

assume that Xi is Q-factorial. If dim xi = 1, then by Lemma 2.1.6, mld(Xi ∋ xi, Bi) = 2 − multxi
Bi,

which belongs to an ACC set. Possibly passing to a subsequence, we may assume that dim xi = 0 for each i.

[Amb99, Theorem 0.1], we may let β := limi→+∞ mld(Xi ∋ xi, Bi). By Theorem 2.1.13, possibly passing

to a subsequence, there exists a non-negative integer p, such that Bi :=
∑p

j=1 bi,jBi,j for each i, where Bi,j

are distinct prime divisors. Set bj := limi→+∞ bi,j for 1 ≤ j ≤ p and B̄i :=
∑p

j=1 bjBi,j for each i.

Let ni be the index of Xi ∋ xi. By [Sho92, Appendix, Theorem], if ni ≥ 2, then there exists a prime

divisor Fi over Xi ∋ xi, such that a(Fi, Xi, 0) = 1 + 1
ni

. Thus

1 + 1
ni

≥ a(Fi, Xi, Bi) ≥ mld(Xi ∋ xi, Bi) ≥ mld(X1 ∋ x1, B1) > 1,

and ni ≤ 1
mld(X1∋x1,B1)−1 . Hence, possibly passing to a subsequence, we may assume that there exists

a positive integer n such that ni = n for all i. By [Kaw88, Lemma 5.1], nDi is Cartier near xi for any

Q-Cartier Weil divisor Di on Xi and for each i.

By [Amb99, Theorem 0.1] and Theorem 3.3.2, 1 ≤ mld(Xi ∋ xi) ≤ 3. By [Nak16, Corollary 1.3],

{mld(Xi ∋ xi, B̄i) | i ∈ Z>0} ⊂ [1, 3] is a finite set. Possibly passing to a subsequence, we may assume

that there exists a positive real number α ≥ 1, such that mld(Xi ∋ xi, B̄i) = α < β for all i.

Step 2. In this step, we show that for each i, there exists a prime divisor Ēi over Xi ∋ xi, such that

a(Ēi, Xi, B̄i) = mld(Xi ∋ xi, B̄i) = α, and a(Ēi, Xi, 0) ≤ l for some positive real number l depending

only on {bj}p
j=1.

By Lemmas 3.2.1, 3.2.4, 3.2.5, and Theorem 3.2.9, it suffices to show that if α > 1, then either xi ∈ Xi

is smooth or is of cA/n type for all but finitely many i.

Otherwise, α > 1, and possibly passsing to a subsequence, we may assume that xi ∈ Xi is neither

smooth nor of cA/n type for each i. Let Ei be a prime divisor over Xi ∋ xi, such that a(Ei, Xi, Bi) =
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mld(Xi ∋ xi, Bi). By Theorem 3.4.3, there exist a positive integer m depending only on {bj}p
j=1, and

Q-Cartier Q-divisors B̄′
i > 0 on Xi, such that for each i,

1. mB̄′
i is a Weil divisor,

2. mld(Xi ∋ xi, B̄
′
i) > 1, and

3. a(Ei, Xi, B̄
′
i) ≤ a(Ei, Xi, B̄i) < mld(Xi ∋ xi, Bi).

Since limi→+∞ mld(Xi ∋ xi, Bi) = β, by [Nak16, Theorem 1.2], possibly passing to a subsequence, we

may assume that there exists a positive real number γ, such that α ≤ a(Ei, Xi, B̄i) = γ < mld(X1 ∋ x1, B1)

for each i.

By Lemma 2.1.12(2), t′i := ct(Xi ∋ xi, 0; B̄′
i) > 1 for each i. We have

γ − (t′i − 1) multEi
B̄′

i ≥ a(Ei, Xi, B̄
′
i) − (t′i − 1) multEi

B̄′
i = a(Ei, Xi, t

′
iB̄

′
i) ≥ 1,

which implies that t′i − 1 ≤ γ−1
multEi

B̄′
i

. Since

multEi
(B̄i −Bi) = a(Ei, Xi, Bi) − a(Ei, Xi, B̄i) ≥ mld(X1 ∋ x1, B1) − γ > 0,

limi→+∞ multEi
B̄i = +∞. Thus limi→+∞ multEi

B̄′
i = +∞ as a(Ei, Xi, B̄

′
i) ≤ a(Ei, Xi, B̄i). It

follows that limi→+∞ t′i = 1. Hence ct(Xi ∋ xi, 0;mB̄′
i) > 1

m , and limi→+∞ ct(Xi ∋ xi, 0;mB̄′
i) = 1

m ,

which contradicts Theorem 3.5.3.

Step 3. By Step 2, multĒi
B̄i = a(Ēi, Xi, 0)−a(Ēi, Xi, Bi) ≤ l−β. Thus limi→+∞ multĒi

(B̄i−Bi) = 0.

Hence

α =mld(Xi ∋ xi, B̄i) + lim
i→+∞

multĒi
(B̄i −Bi) = lim

i→+∞
a(Ēi, Xi, Bi)

≥ lim
i→+∞

mld(Xi ∋ xi, Bi) = β,
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a contradiction.

As a direct corollary, we have Theorem 1.2.9:

Proof. We follow the argument in [BS10, HLS19]. Suppose that the theorem does not hold. Then there

exist a sequence of threefold a-lc germs (Xi ∋ xi, Bi) such that Xi is terminal and Bi ∈ Γ, and a strictly

increasing sequence of positive real numbers ti, such that for every i, there exists an R-Cartier R-divisor

Di on Xi, such that Di ∈ Γ′ and ti = a-lct(Xi ∋ xi, Bi;Di). It is clear that t := limi→+∞ ti < +∞. Let

ai := mld(Xi ∋ xi, Bi + tDi). By Theorem 3.3.2, possibly passing to a subsequence, we may assume

that ai ≥ 1. Let {ϵi}∞
i=1 be a strictly decreasing sequence which converges to 0, such that 0 < ϵi < 1 and

t′i := ti + ϵi(t− ti) ∈ (ti, ti+1) for any i. Then all the coefficients of Bi + t′iDi belong to a DCC set. By

Theorem 3.6.1, the sequence {mld(Xi ∋ xi, Bi + t′iDi)}∞
i=1 satisfies the ACC. By the convexity of minimal

log discrepancies, we have

a > mld(Xi ∋ xi, Bi + t′iDi)

= mld(Xi ∋ xi,
t′i − ti
t− ti

(Bi + tDi) + t− t′i
t− ti

(Bi + tiDi))

≥ t′i − ti
t− ti

mld(Xi ∋ xi, Bi + tDi) + t− t′i
t− ti

mld(Xi ∋ xi, Bi + tiDi)

≥ t′i − ti
t− ti

ai + t− t′i
t− ti

a = a− (t′i − ti)(a− ai)
t− ti

= a− ϵi(a− ai) ≥ (1 − ϵi)a.

Therefore, possibly passing to a subsequence, we may assume that mld(Xi ∋ xi, Bi + t′iDi) is strictly
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increasing and converges to a, which contradicts Theorem 3.6.1.
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Chapter 4

Boundedness of Canonical
Complements for Threefolds

4.1 Boundedness of Indices for Strictly Canonical Germs

Definition 4.1.1. Let (X ∋ x,B) be pair. We say that (X ∋ x,B) is strictly canonical if mld(X ∋ x,B) =

1. We say that (X,B) is strictly canonical if mld(X,B) = 1.

Lemma 4.1.2. Let (X ∋ x,B) be a strictly canonical germ such that B is a Q-divisor. Let f : Y → X be

a birational morphism which extracts a prime divisor E over X ∋ x such that a(E,X,B) = 1. Then the

following holds.

Let mx be the maximal ideal sheaf for x ∈ X , m the smallest positive integer such that mB is a Weil

divisor, and r the smallest positive integer such that rm(KX +B) is Cartier near x. Then for any i ∈ Z,

f∗OY (im(KY +BY ) − E) =
{
mxOX(im(KX +B)) if r | i,
OX(im(KX +B)) if r ∤ i,

where KY +BY := f∗(KX +B).
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Proof. If r | i, then by the projection formula,

f∗OY (im(KY +BY ) − E) = f∗OX(−E) ⊗ OX(im(KX +B)) = mxOX(im(KX +B)),

where the last equality follows from

f∗OY (−E)(U) = {u ∈ K(X) | ((u) − E)|f−1(U) ≥ 0} = {u ∈ OX(U) | multx(u) > 0},

where U is an arbitrary open neighborhood of x ∈ X , K(X) is the field of rational functions of X , and (u)

is the Cartier divisor defined by the rational function u.

If r ∤ i, then f∗OY (im(KY +BY ) − E)(U) ⊂ OX(im(KX +B))(U) for any open set U ⊂ X as

f∗OY (im(KY +BY ) − E)(U) = {u ∈ K(X) | ((u) + imf∗(KX +B) − E)|f−1(U) ≥ 0}, and

OX(im(KX +B))(U) = {u ∈ K(X) | ((u) + im(KX +B))|U ≥ 0}.

Suppose that u ∈ K(X) satisfies ((u) + im(KX +B))|U ≥ 0. Since r ∤ i, (u) + im(KX +B) is not Cartier

at x, so there exists an effective Q-Cartier Weil divisor D passing through x such that ((u) + im(KX +B) −

D)|U ≥ 0, which implies that ((u) + im(KY + BY ) − f∗D)|f−1(U) ≥ 0. Since E ⊂ Supp(f∗D), we

obtain ((u) + im(KY + BY ) − E)|f−1(U) ≥ 0. Thus f∗OY (im(KY + BY ) − E) = OX(im(KX + B))

in this case.

Notation (⋆). Let f : Y → X be a divisorial contraction of a prime divisor E over X ∋ x as in Theo-

rem 2.1.35(1) (see also [Kaw05, Theorem 1.2(1)]). Recall that in this case, x ∈ X is a terminal singularity of

type cA/n. In particular, under suitable analytic local coordinates x1, x2, x3, x4,

(X ∋ x) ∼= (ϕ := x1x2 + g(xn
3 , x4) = 0) ⊂ (C4 ∋ o)/ 1

n
(1,−1, b, 0),
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where b ∈ [1, n − 1] ∩ Z such that gcd(b, n) = 1 and f is a weighted blow-up with the weight w =

1
n (r1, r2, a, n) for some positive integers a, r1, r2, such that an | r1 + r2 and a ≡ br1 mod n.

Let J ′ be the Reid basket for f : Y → X (see Definition 2.1.20). By [Kaw05, Theorem 1.2], we

have three cases: J ′ = ∅, J ′ = {(r′
Q′ , 1)Q′}, or J ′ = {(r′

Q′
1
, 1)Q′

1
, (r′

Q′
2
, 1)Q′

2
}, where r′

Q′ , r′
Q′

1
, r′

Q′
2

∈

Z≥2, and Q′, Q′
1, Q′

2 are fictitious singularities (see Definition-Lemma 2.1.17). In the case when J ′ =

{(r′
Q′

1
, 1)Q′

1
, (r′

Q′
2
, 1)Q′

2
}, Q′

1, Q
′
2 come from two different non-Gorenstein points on Y . In the following, we

introduce the set J := {(rQ1 , 1)Q1 , (rQ2 , 1)Q2} for f , hereQ1, Q2 may not be fictitious cyclic quotient singu-

larities any more as they could be smooth points. We letQ1, Q2 be any smooth points on Y and (rQ1 , rQ2) :=

(1, 1) when J ′ = ∅, Q1 any smooth closed point on Y , Q2 = Q′ and (rQ1 , rQ2) := (1, r′
Q′) when J ′ =

{(rQ′ , 1)Q′}, and Q1 := Q′
1, Q2 := Q′

2, (rQ1 , rQ2) := (r′
Q′

1
, r′

Q′
2
) when J ′ = {(r′

Q′
1
, 1)Q′

1
, (r′

Q′
2
, 1)Q′

2
}.

Lemma 4.1.3. With Notation (⋆). Up to a permutation, we have rQ1 = r1 and rQ2 = r2. Moreover, Q1, Q2

are indeed singularities (possibly smooth) on Y .

Proof. By [Kaw05, Theorem 6.5, Page 112, Line 12-14] and [CH11, Proposition 2.15, Page 9, Line 15], there

are two cyclic quotient terminal singularities P1, P2 ∈ Y of type 1
r1

(1,−1, b1), 1
r2

(1,−1, b2) respectively

and possibly a cA/n type singularity P3 ∈ Y . By [Kaw05, Theorem 4.3], possibly changing the order of the

indices, Q1, Q2 are P1, P2 on Y respectively. It follows that rQ1 = r1, and rQ2 = r2.

Lemma 4.1.4. Let (X ∋ x,B) be a threefold germ and B a Q-divisor, such that X is terminal and

mld(X ∋ x,B) = 1. Let f : Y → X be a divisorial contraction of a prime divisor E over X ∋ x as in

Notation (⋆), such that a(E,X,B) = 1. Letm be the smallest positive integer such thatmB is a Weil divisor

near x, and r the smallest positive integer such that rm(KX +B) is Cartier near x. Then r | gcd(r1, r2).

Proof. Possibly shrinking and compactifying X , we may assume that X is projective and terminal. In
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particular, Y is also projective and terminal. For each r ∈ Z>0 and i ∈ Z, we define

δr(i) :=
{

1 if r | i,
0 if r ∤ i.

LetDi,m := im(KY +BY ) = imf∗(KX +B) for each i ∈ Z. SinceE is Q-Cartier, by [KM98, Proposition

5.26], we have the following short exact sequence

0 → OY (Di,m − E) → OY (Di,m) → OE(Di,m|E) → 0.

Since Di,m − E and Di,m are both f -big and f -nef, by the Kawamata-Viehweg vanishing theorem

[KMM87, Theorem 1.2.5], Rjf∗OY (Di,m − E) = Rjf∗OY (Di,m) = 0 for all j ∈ Z>0. It follows that

hj(OE(Di,m|E)) = 0 for all j ∈ Z>0. By Lemma 4.1.2,

δr(i) = h0(OX(im(KX +B))/f∗OY (im(KY +BY )) − E))

= h0(OE(Di,m|E)) = χ(OE(Di,m|E))

= χ(OY (Di,m)) − χ(OY (Di,m − E)).

For each fictitious singularity Q ∈ YQ of some closed point on Y ,

(D1,m)Q ∼ dQKYQ
and EQ ∼ fQKYQ

near Q ∈ YQ for some integers fQ, dQ ∈ [1, rQ], where YQ is the deformed variety on which Q appears as a

cyclic quotient terminal singularity, and EQ, (Di,m)Q are the corresponding deformed divisors on YQ (see

Definition-Lemma 2.1.17). By Theorem 2.1.19,

δr(i) = χ(OY (Di,m)) − χ(OY (Di,m − E)) = ∆1 + ∆2 + 1
12E · c2(X)
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with

∆1 = T (Di,m) − T (Di,m − E),∆2 =
∑

y∈Y,dim y=0
(cy(Di,m) − cy(Di,m − E)),

and

T (D) = 1
12D(D −KY )(2D −KY ).

Since Di,m · E2 = D2
i,m · E = Di,m · E ·KY = 0, ∆1 = 1

6E
3 + 1

4E
2 ·KY . For any fictitious point Q, if

EQ is Cartier, then cQ((Di,m)Q) = cQ((Di,m − E)Q). By Definition-Lemma 2.1.17 and Definition 2.1.20,

∆2 =
∑
Q∈J

cQ(Di,m) − cQ(Di,m − E) =
∑
Q∈J

(AQ(idQ) −AQ(idQ − fQ)),

where J is defined as in Notation (⋆) for f : Y → X , and

AQ(i) := −i
r2

Q − 1
12rQ

+
i−1∑
j=1

(jbQ)rQ
(rQ − (jbQ)rQ

)
2rQ

.

By Q ∈ J , we mean Q is a fictitious singularity that contributes to J . Here we allow i < 0 if we

adopt the notation of generalized summation (see Definition 2.1.16). It is worthwhile to mention that

AQ(i) = AQ((i)rQ
) as gcd(bQ, rQ) = 1. Now

δr(i+ 1) − δr(i) =
∑
Q∈J

(i+1)dQ−1∑
j=idQ

(BQ(jbQ) −BQ(jbQ − vQ)). (4.1.1)

Here, for each Q ∈ J , BQ(i) is an even periodic function with period rQ defined by

BQ(i) :=
(i)rQ

(rQ − (i)rQ
)

2rQ
.

By Lemma 4.1.3, J = {(r1, 1)Q1 , (r2, 1)Q2}, where Q1, Q2 are cyclic quotient terminal singularities

(might be smooth) on Y . It follows that

δr(i+ 1) − δr(i) =
∑

k=1,2

(i+1)dQk
−1∑

j=idQk

(BQk
(jbQk

) −BQk
(jbQk

− 1)). (4.1.2)
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Claim 4.1.5. We have the following equality:

r = lcm{ r1

gcd(r1, dQ1) ,
r2

gcd(r2, dQ2)}.

We proceed the proof assuming Claim 4.1.5. Let l1 := r1
gcd(r1,r2) and l2 := r2

gcd(r1,r2) . We have

gcd(l1l2, l1 + l2) = 1 as gcd(l1, l2) = 1. By Claim 4.1.5, r | lcm(r1, r2) = gcd(r1, r2)l1l2. Since r | n and

n | r1 + r2, r | gcd(r1, r2)(l1 + l2). Hence r | gcd(r1, r2).

Proof of Claim 4.1.5. Let λ ∈ Z such that rQk
| λdQk

for k = 1, 2. By (4.1.2),

δr(λ+ 1) − δr(λ) =
∑

k=1,2

(λ+1)dQk
−1∑

j=λdQk

(BQk
(jbQk

) −BQk
(jbQk

− 1))

=
∑

k=1,2

dQk
−1∑

j=0
(BQk

(jbQk
) −BQk

(jbQk
− 1)) = δr(1) − δr(0).

Thus r | λ. By Lemma 4.1.3, r | lcm{ r1
gcd(r1,dQ1 ) ,

r2
gcd(r2,dQ2 ) }.

Since rD1,m = rm(KY +BY ) is Cartier, rk | rdQk
for k = 1, 2. Thus rk

gcd(rk,dQk
) | r for k = 1, 2, and

the claim is proved.

Remark 4.1.6. Let n = r(4r2 − 2r − 1), a = r, b = 4r2 + 2r − 1, r1 = rQ1 = (2r − 1)2r2, dQ1 =

(2r − 1)2r2, bQ1 = 4r3 − r + 1, r2 = rQ2 = 2r2(r − 1), dQ2 = 2r(r − 1), and bQ2 = 2r2 − 1. Then

(n, a, b, rQ1 , dQ1 , bQ1 , rQ2 , dQ2 , bQ2) satisfies both (4.1.1) and Claim 4.1.5. Moreover, as r | n, gcd(b, n) =

1, n | a − brQ1 , an | rQ1 + rQ2 , and gcd( a−brQ1
n , rQ1) = 1, (n, a, b, rQ1 , dQ1 , bQ1 , rQ2 , dQ2 , bQ2) also

satisfies the restrictions proved in [Kaw05, Theorem 1.2(1)]. Hence we could not show Theorem 4.1.7 by

simply applying singular Riemann-Roch formula for terminal threefold as [Kaw15a] did for the case when

B = 0, X is canonical and x is an isolated canonical center of X .

Theorem 4.1.7. Let Γ ⊂ [0, 1] be a set and m a positive integer such that mΓ ⊂ Z. Then the positive integer
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N := 12m2 satisfies the following.

Let (X ∋ x,B) be a threefold germ such that X is terminal, B ∈ Γ, and mld(X ∋ x,B) = 1. Then

I(KX +B) is Cartier near x for some positive integer I ≤ N .

Proof. Let r be the smallest positive integer such that rm(KX +B) is Cartier near x.

By [Rei87, (6.1) Theorem], if x ∈ X is a terminal singularity of types other than cA/n, then the index

of x ∈ X divides 12. By [Kaw88, Lemma 5.1], 12m(KX + B) is Cartier near x. From now on, we may

assume that x ∈ X is a terminal singularity of type cA/n.

By Lemma 3.1.4, there exists a terminal blow-up (see Definition 3.1.3) f : Y → X of (X ∋ x,B)

which extracts a prime divisor E over X ∋ x. By [Kaw05, Theorem 1.1], f is either of ordinary type or of

exceptional type.

If f is of exceptional type, then by [Kaw05, Theorem 1.3], x ∈ X is a terminal singularity of type cA.

Hence by [Kaw88, Lemma 5.1], m(KX +B) is Cartier.

We may now assume that f is of ordinary type, and we write f∗KX + a
nE = KY for some positive

integer a ≥ 1. Now f : Y → X is a divisorial contraction of ordinary type as in Theorem 2.1.35(1). In

particular, under suitable analytic local coordinates x1, x2, x3, x4,

(X ∋ x) ∼= (ϕ := x1x2 + g(xn
3 , x4) = 0) ⊂ (C4 ∋ o)/ 1

n
(1,−1, b, 0),

where b ∈ [1, n − 1] ∩ Z, gcd(b, n) = 1, and f is a weighted blow-up at x ∈ X with the weight

w := 1
n (r1, r2, a, n). Now mB is a Weil divisor locally defined by a semi-invariant analytic power se-

ries (h(x1, x2, x3, x4) = 0).

Claim 4.1.8. Either r ≤ 3m, or xm
3 ∈ h (up to a scaling of h).
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We proceed the proof assuming Claim 4.1.8. If r ≤ 3m, then Im(KX +B) is Cartier for some I ≤ 3m.

Otherwise, r > 3m. By Claim 4.1.8, up to a scaling of h, we have h = xm
3 +p for some analytic power series

p such that λxm
3 /∈ p for any λ ∈ C∗. Recall that ξn is the primitive n-th root of unity. Since h = xm

3 + p is

semi-invariant with respect to the ξn-action: (x1, x2, x3, x4) → (ξnx1, ξ
−1
n x2, ξ

b
nx3, x4), ξn(h)/h = ξmb

n .

Since ξn(xm
3 )/xm

3 = ξmb
n , ξn( h

xm
3

) = h
xm

3
, and ( h

xm
3

) is ξn-invariant, hence ( h
xm

3
) is a rational function on X

which defines a principle divisor. Now mB = (xm
3 + p = 0) ∼ (xm

3 = 0) near x. Let S be the analytic

Cartier divisor locally defined by (x3 = 0) on X . By [Rei87, (6.4)(B.1)] and Lemma 2.1.10, KX + S is

Cartier near x. It follows that m(KX +B) ∼ m(KX + S) is Cartier near x.

Proof of Claim 4.1.8. Assume that r > 3m. By Lemma 4.1.4, r1 > 3m and r2 > 3m. Note also that

n ≥ r > 3m. When a ≤ 2,

w(h) = mw(B) = mw(X ∋ x) = am

n
<

3m
n
.

Since w(xk) = rk

n > 3m
n for k = 1, 2 and w(x4) = 1 > 3m

n , up to a scaling of h, xl
3 ∈ h for some l ∈ Z>0

and w(h) = la
n . Thus l = m, and the claim follows in this case.

When a ≥ 3, we can pick positive integers s1, s2 such that

• s1 + s2 = 3dn,

• 3 ≡ bs1 mod n, and

• s1, s2 > n.

Let w̄ := 1
n (s1, s2, 3, n). Since a ≥ 3, by [HLL22, Lemma C.7], the weighted blow-up with the weight w̄

extracts a prime analytic divisor Ē such that w̄(X ∋ x) = 3
n . By [HLL22, Lemma C.6], we may assume that

E is a prime divisor over X ∋ x. Since mld(X ∋ x,B) = 1, a(Ē,X,B) = 1 + w̄(X ∋ x) − w̄(B) ≥ 1,
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thus

1 > 3m
n

= mw̄(X ∋ x) ≥ mw̄(B) = w̄(h).

Since w̄(x1) = s1
n > 1, w̄(x2) = s2

n > 1, and w̄(x4) = 1, there exists a positive integer l, such that up to a

scaling of h, xl
3 ∈ h and w̄(h) = w̄(xl

3) = 3l
n . Since 3m

n ≥ w̄(h) = 3l
n , l ≤ m. On the other hand,

am

n
= mw(X ∋ x) = w(mB) = w(h) ≤ w(xl

3) = al

n
,

which implies that l ≥ m. Thus l = m, and xm
3 ∈ h up to a scaling of h.

Proof of Theorem 1.2.8. If dim x = 2, then the theorem is trivial. If dim x = 1, then X is smooth near x.

By Lemma 2.1.6, mld(X ∋ x,B) = 2 − multx B = ϵ, hence the coefficients of B belong to a finite set of

rational numbers depending only on ϵ and Γ, and the theorem holds in this case. Thus we may assume that

dim x = 0 and X is not smooth at x.

Let B1 be any component of B with coefficient b1. Let f : Y → X be a small Q-factorialization, and

B1,Y the strict transform of B1 on Y . We may write KY + BY := f∗(KX + B). Let Y 99K Z be the

canonical model of (Y,BY − b1B1,Y ) over X . Let BZ and B1,Z be the strict transforms of BY and B1,Y on

Z respectively. Since −B1,Z is ample over X , SuppB1,Z contains g−1(x), where g : Z → X is the natural

induced morphism. Moreover, since g is small, KZ = g∗KX and Z is terminal.

Since mld(X ∋ x,B) = ϵ, there exists a point z ∈ g−1(x) such that mld(Z ∋ z,BZ) = ϵ. Then

b1 = ϵ- lct(Z ∋ z,BZ − b1B1,Z ;B1,Z) ∈ Γ.

By Theorem 1.2.9, b1 belongs to a finite set depending only on Γ. Hence we may assume that the coefficients

of B belong to a finite set Γ′ depending only on Γ.

If ϵ = 1, then Theorem 1.2.8 follows from Theorem 4.1.7. If ϵ > 1, then we let n be the index of X ∋ x.
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By [Sho92, Appendix, Theorem] and [Mar96, Theorem 0.1], there exists a prime divisor E over X ∋ x such

that a(E,X, 0) = 1 + 1
n . Since 1 + 1

n ≥ a(E,X,B) ≥ ϵ, n ≤ 1
ϵ−1 , and the theorem follows from [Kaw88,

Lemma 5.1].

4.2 Boundedness of Complements for Finite Rational Coefficients

We prove Theorem 4.2.4 in this section, and Theorem 1.2.6 follows as a direct corollary. Also, for any ϵ ≥ 1,

we prove the existence of (ϵ,N)-complements for terminal pairs (see Theorem 4.2.5).

Lemma 4.2.1. Let x ∈ X be an isolated singularity such that X is affine. Let D ≥ 0 be a Weil divisor on X

and E a prime divisor over X ∋ x. Then there exists a finite dimensional linear system d ⊂ |D|, such that

1. d contains D,

2. the base locus of d is x, and

3. if D is Q-Cartier, then multE D
′ ≥ multE D for any D′ ∈ d.

In particular, if x ∈ X is a terminal threefold singularity such that X is affine, then there exists a finite

dimensional linear system d ⊂ | −KX | such that d contains an elephant (cf. [Rei87, (6.4)(B)]) of x ∈ X ,

and the base locus of d is x.

Proof. Let IE be the ideal sheaf on X such that for any open set x ∈ U ⊂ X ,

IE(U) =
{

{u ∈ OX(U) | multE(u) > 0} if D is not Q-Cartier,

{u ∈ OX(U) | multE(u) ≥ multE D} if D is Q-Cartier,

where (u) is the Cartier divisor defined by the rational function u, and IE(U) = OX(U) for any open

set x /∈ U ⊂ X . Since X is affine, the coherent sheaf OX(D) ⊗ IE is globally generated. Since

OX(D) ⊗ IE |X\{x} = OX(D)|X\{x} is an invertible sheaf, there exist finitely many sections s1, . . . , sm ∈
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H0(X,OX(D) ⊗ IE), such that the linear system defined by s1, . . . , sm is base point free on X\{x}. Pick

s0 ∈ H0(X,OX(D) ⊗ IE) such that (s0) = 0. Then the linear system d defined by s0, . . . , sm satisfies our

requirements.

Lemma 4.2.2. Let (X ∋ x,B) be a canonical threefold germ such that X is affine terminal but not smooth,

m a positive integer such that mB ∈ Z, and d a finite dimensional linear system whose base locus is x. Then

for any integer N > m and any general element (D1, . . . , DN ) ∈ dN , the divisor D :=
∑N

i=1 Di satisfies

that ct(X,B;D) = ct(X ∋ x,B;D).

Proof. Let f : Y → X be a log resolution of (X,B) such that

• f∗|d| = F + |M |, and

• SuppBY ∪ SuppF ∪ Supp(Exc(f)) is snc,

where BY is the strict transform of B on Y , F is the fixed part of f∗|d|, and M is a base point free Cartier

divisor. Note that SuppF ⊂ f−1(x) as d is base point free on X \ {x}. Let M ′ :=
∑N

i=1 Mi, where

M1, · · · ,MN are N general elements in |M |. Set D := f∗(NF + M ′). Then D =
∑N

i=1 Di, where

Di := f∗(F + Mi) for each i, and (D1, . . . , DN ) ∈ dN is a general element. Since D has N distinct

components, by Theorem 2.1.13(2), t := ct(X,B;D) ≤ 1
N .

If ⌊B⌋ ̸= 0, then B = ⌊B⌋ is a Q-Cartier prime divisor and t = 0. By Theorem 2.1.13(2), mld(X ∋

x,B) = 1. Hence ct(X ∋ x,B;D) = ct(X,B;D) = 0 in this case.

If ⌊B⌋ = 0, then B ∈ (0, 1 − 1
m ]. Since KY +BY + tM ′ + tNF = f∗(KX +B + tD) +G for some

Q-divisor G ≥ 0, SuppM ′ ∪ SuppBY is snc, and t ≤ 1
N < 1

m , we have (Y,BY + tM ′ + tNF ) is terminal

on Y \ SuppF . Hence ct(X,B;D) = ct(X ∋ x,B;D) as SuppF contains at least one canonical place of

(X,B + tD).
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Lemma 4.2.3. Let I be a positive integer and Γ ⊂ [0, 1] ∩ Q a finite set. Then there exists a positive integer

N depending only on I and Γ satisfying the following.

Let (X ∋ x,B) be a threefold germ such that X is terminal, B ∈ Γ, mld(X ∋ x,B) ≥ 1, and

IKX is Cartier. Then there exists a monotonic N -complement (X ∋ x,B+) of (X ∋ x,B) such that

mld(X ∋ x,B+) = 1, and if (X ∋ x,B) is canonical near x and x ∈ X is not smooth, then (X ∋ x,B+)

is canonical near x.

Proof. Possibly shrinking X near x, we may assume that (X,B) is lc and X is affine. For any positive real

number ϵ < 1, since (X ∋ x, (1 − ϵ)B) is a klt germ, by [HLS19, Lemmas 3.12 and 3.13], there exists

a Q-factorial weak plt blow-up fϵ : Yϵ → X of (X ∋ x, (1 − ϵ)B), such that (Yϵ, (1 − ϵ)BYϵ
+ EYϵ

) is

Q-factorial plt, where BYϵ
is the strict transform of B on Yϵ, and EYϵ

is the reduced exceptional divisor of fϵ.

By [HMX14, Theorem 1.1], we may choose ϵ < 1 such that (Yϵ, BYϵ +EYϵ) is lc. Let Y := Yϵ, BY := BYϵ ,

E := EYϵ
, and f := fϵ. By [HLS19, Corollary 3.20], there exists a Q-divisorGY ≥ 0 on Y , such thatN ′GY

is a Weil divisor, and (Y/X ∋ x,BY + E +GY ) is an N ′-complement of (Y/X ∋ x,BY + E) for some

positive integer N ′ depending only on Γ. Then KY +BY +GY +E = f∗(KX +B+G), (X ∋ x,B+G)

is an N ′-complement of (X ∋ x,B), and mld(X ∋ x,B +G) = 0, where G := f∗GY .

Let m be a positive integer such that mΓ ⊂ Z and N ′′ := m(m+ 1)N ′. Since mN ′G ∈ | −mN ′(KX +

B)| near x, by Lemma 4.2.1, there exists a finite dimensional linear system d ⊂ | −mN ′(KX +B)| such that

d contains mN ′G, the base locus of d is x, and multE G
′ ≥ multE mN

′G for any G′ ∈ d. By Lemma 4.2.2,

when (X,B) is canonical and x ∈ X is not smooth, the divisorG′′ := G′
1 + · · ·+G′

m+1 ∈ |−N ′′(KX +B)|

satisfies that t := ct(X,B; 1
N ′′G

′′) = ct(X ∋ x,B; 1
N ′′G

′′), where (G′
1, . . . , G

′
m+1) ∈ dm+1 is a general

element. By construction, (X ∋ x,B+ 1
N ′′G

′′) is anN ′′-complement of (X ∋ x,B). Since multE
1

N ′′G
′′ ≥

multE G, mld(X ∋ x,B + 1
N ′′G

′′) = 0. In particular, t < 1.
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By Theorem 4.1.7, it suffices to show that t belongs to a finite set of rational numbers depending only on

I and Γ. By Lemma 2.1.12(1), there exists a prime divisor F over X ∋ x such that a(F,X,B+ t
N ′′G

′′) = 1.

Then a(F,X,B + 1
N ′′G

′′) = i
N ′′ for some non-negative integer i < N ′′. We have

a(F,X,B + t

N ′′G
′′) = a(F,X,B + 1

N ′′G
′′) + (1 − t) multF

1
N ′′G

′′ = i

N ′′ + (1 − t) multF
1
N ′′G

′′,

and multF
1

N ′′G
′′ = 1

1−t (1 − i
N ′′ ). By Theorem 3.3.1, δ ≤ 1 − t for some positive real number δ depending

only on Γ. Thus multF
1

N ′′G
′′ ≤ 1

δ (1 − i
N ′′ ). By [Kaw88, Lemma 5.1], IG′′ is Cartier near x. It follows

that multF
1

N ′′G
′′ belongs to a finite set depending only on I and Γ. Hence t = 1 − (1 − i

N ′′ ) 1
multF

1
N′′ G′′

belongs to a finite set of rational numbers depending only on I and Γ.

Theorem 4.2.4. Let Γ ⊂ [0, 1] ∩ Q be a finite set. Then there exists a positive integer N depending only on

Γ satisfying the following.

Let (X ∋ x,B) be a threefold germ such that X is a terminal, B ∈ Γ, and mld(X ∋ x,B) ≥ 1. Then

there exists a monotonic N -complement (X ∋ x,B+) of (X ∋ x,B) such that mld(X ∋ x,B+) = 1.

Moreover, if (X,B) is canonical near x and x ∈ X is not smooth, then (X,B+) is canonical near x.

Proof. Let m be a positive integer such that mΓ ⊂ Z.

By Theorem 4.1.7, we may assume that mld(X ∋ x,B) > 1. Let n be the index of X ∋ x. By

Lemma 4.2.3, we may assume that n > 4m. By [Rei87, (6.1) Theorem] (cf. [Mor85, Theorems 12,23,25]),

x ∈ X is of type cA/n for some n > 4m.

Possibly shrinking X near x, we may assume that X is affine. By Lemma 4.2.1, there exists a finite

dimensional linear system d ⊂ | −KX | such that d contains an elephant of x ∈ X and the base locus of d is

x. By Lemma 4.2.2, if (X,B) is canonical and x ∈ X is not smooth, then the divisor D = D1 + · · · +Dm+1

satisfies t := ct(X,B; 1
m+1D) = ct(X ∋ x,B; 1

m+1D), where (D1, . . . , Dm+1) ∈ dm+1 is a general
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element. Since (X, 1
m+1D) is canonical near x, by Theorem 2.1.13(2), mld(X ∋ x, 1

m+1D) = 1.

By Lemma 3.1.4, there exists a terminal blow-up (see Definition 3.1.3) f : Y → X of (X ∋ x,B +

t
m+1D) which extracts a prime divisor E over X ∋ x. Since x ∈ X is a terminal singularity of type cA/n

for some n > 4m > 1, by [Kaw05, Theorem 1.3] and Theorem 2.1.35, f : Y → X is a divisorial contraction

of ordinary type as in Theorem 2.1.35(1). We may write KY = f∗KX + a
nE for some positive integer a.

Since (X, 1
m+1D) is canonical near x, a(E,X, 1

m+1D) = a(E,X, 0) − multE
1

m+1D = 1 + a
n −

multE
1

m+1D ≥ 1. It follows that multE
1

m+1D ≤ a
n . Since B = 1

mmB, n > 3m, and mld(X ∋

x,B) > 1, by Lemma 3.2.7(1), a ≤ 3, and multE
1

m+1D ∈ { i
(m+1)n | i ∈ Z ∩ [1, 3(m + 1)]}. Since

nm(KX +B) is Cartier, a(E,X,B) = 1+ k
nm for some positive integer k. Since a(E,X,B+ t

m+1D) = 1,

tmultE
1

m+1D = a(E,X,B) − a(E,X,B + t
m+1D) = k

nm , which implies that t = k
nm multE

1
m+1 D

∈

1
(3m+3)!mZ>0. Now the coefficients of B + t

m+1D belong to 1
(3m+3)!(m+1)mZ ∩ [0, 1]. By Theorem 1.2.8,

(X ∋ x,B + t
m+1D) is a monotonic N -complement of (X ∋ x,B) for some positive integer N depending

only on Γ satisfying all the required properties.

Proof of Theorem 1.2.6. When X is smooth near x, in particular, when dim x ≥ 1, we may take G = 0, and

(X,B) is an m-complement of itself, where m is a positive integer such that mΓ ⊂ Z. When x ∈ X is a

closed point that is not smooth, by Theorem 4.2.4, we are done.

Theorem 4.2.5. Let ϵ ≥ 1 be a rational number and Γ ⊂ [0, 1] ∩ Q a finite set. Then there exists a positive

integer N depending only on ϵ and Γ satisfying the following.

Let (X ∋ x,B) be a threefold ϵ-lc pair such that X is terminal and B ∈ Γ. Then there exists a monotonic

(ϵ,N)-complement (X ∋ x,B+) of (X ∋ x,B).

Proof. If dim x = 2, then the theorem is trivial. When X is smooth near x, in particular, when dim x = 1,

we may take G = 0, and (X,B) is a monotonic (ϵ,m)-complement of itself, where m is a positive integer
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such that mΓ ⊂ Z. From now on, we may assume that x ∈ X is a closed point that is not smooth.

When ϵ = 1, the theorem follows from Theorem 4.2.4. When ϵ > 1, let n be the index of the terminal

singularity X ∋ x. By [Sho92, Appendix, Theorem] and [Mar96, Theorem 0.1], there exists a prime divisor

E over X ∋ x such that a(E,X, 0) = 1 + 1
n , hence 1 + 1

n ≥ a(E,X,B) ≥ ϵ, and n ≤ ⌊ 1
ϵ−1 ⌋. It follows

that (X ∋ x,B) is a monotonic (ϵ, ⌊ 1
ϵ−1 ⌋!m)-complement of itself.

4.3 Boundedness of Complements for DCC Coefficients

Definition 4.3.1. For any v = (v1, . . . , vm) ∈ Rm, we defined ||v|| := maxi{vi}. For an R-divisor

B =
∑
biBi, where Bi are the distinct prime divisors of SuppB, we define ||B|| := maxi{bi}.

Theorem 4.3.2. Let m be a positive integer, ϵ ≥ 1 a real number, and v = (v0
1 , . . . , v

0
m) ∈ Rm a point. Then

there exist a rational polytope v ∈ P ⊂ Rm with vertices vj = (vj
1, . . . , v

j
m), positive real numbers aj , and

positive real numbers ϵj depending only on m, ϵ and v satisfying the following.

1.
∑

j aj = 1,
∑

j ajvj = v, and
∑

j ajϵj ≥ ϵ.

2. Assume that (X ∋ x,B :=
∑m

i=1 v
0
iBi) is a threefold germ such that X is terminal, (X ∋ x,B) is

ϵ-lc, and B1, . . . , Bm ≥ 0 are Weil divisors. Then for any j,

mld(X ∋ x,

m∑
i=1

vj
iBi) ≥ ϵj .

Moreover, if ϵ > 1, then the function P → R defined by

(v1, . . . , vm) ↦→ mld(X ∋ x,

m∑
i=1

viBi)

is a linear function; if ϵ ∈ Q, then we may pick ϵj = ϵ for any j.

Proof. Step 1. There exist Q-linearly independent real numbers r0 = 1, r1, . . . , rc for some 0 ≤ c ≤ m, and
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Q-affine functions si : Rc → R such that si(r0) = v0
i for any 1 ≤ i ≤ m, where r0 := (r1, . . . , rc). Note

that the map Rc → V defined by

r ↦→ (s1(r), . . . , sm(r))

is one-to-one, where V ⊂ Rm is the rational envelope of v.

If c = 0, then P = V = {v}, and there is nothing to prove. Suppose that c ≥ 1. Let B(r) :=∑m
i=1 si(r)Bi. Then B(r0) =

∑m
i=1 v

0
iBi = B. By [HLS19, Lemma 5.4(1)], KX +B(r) is Cartier near x

for any r ∈ Rc.

Step 2. We will show that there exist a positive real number δ and a Q-affine function f(r) depending only

on m, ϵ, c, r0, s1, . . . , sm such that f(r0) ≥ ϵ, and for any r ∈ Rc satisfying ||r − r0|| ≤ δ, mld(X ∋

x,B(r)) ≥ f(r), moreover, when ϵ > 1,

mld(X ∋ x,B(r)) = a(E,X,B(r)) ≥ f(r)

for some prime divisor E over X ∋ x.

When ϵ = 1, we may take f(r) = 1, and the assertion follows from Theorem 3.4.3. When ϵ > 1, by

[Sho92, Appendix, Theorem], for all germs (X ∋ x,B) which is ϵ-lc, the index of X ∋ x is bounded from

above by I0 := ⌊ 1
ϵ−1 ⌋. Note that by [Kaw88, Lemma 5.1], I0!D is Cartier for any Weil divisor D on X . Also

note that (X ∋ x,B(r0)) is ϵ-lc, and mld(X ∋ x) ≤ 3 (cf. [Amb99, Theorem 0.1]). The existence of δ and

f(r) in this case follows from [CH21, Lemma 4.7].

Step 3. We finish the proof in this step. It follows from the same line of the proof of [CH21, Theorem 7.15].

Note that if ϵ ∈ Q, then f(r) = ϵ for any r ∈ Rc. We may find 2c positive rational numbers ri,1, ri,2

such that ri,1 < ri < ri,2 and max{ri − ri,1, ri,2 − ri} ≤ δ for any 1 ≤ i ≤ c. By our choice of δ, the

81



function Rc → R defined by

r ↦→ mld(X ∋ x,B(r))

is a linear function on r ∈ Uc := [r1,1, r1,2] × · · · × [rc,1, rc,2].

Let rj be the vertices of Uc. Set ϵj := f(rj), vj
i := si(rj) for any i, j. Note that if ϵ ∈ Q, then

ϵj = f(rj) = ϵ for any j. Let P := {(s1(r), . . . , sm(r)) | r ∈ Uc} ⊂ V . Then the function P → R :

(v1, . . . , vm) ↦→ mld(X ∋ x,
∑m

i=1 viBi) is linear, (vj
1, . . . , v

j
m) are vertices of P, and

mld(X ∋ x,

m∑
i=1

vj
iBi) = mld(X ∋ x,B(rj)) ≥ f(rj) ≥ ϵj

for any j.

Finally, we may find positive real numbers aj such that
∑

j aj = 1 and
∑

j ajrj = r0. Then
∑

j ajvj =

v and
∑

j ajϵj ≥ ϵ as
∑

j ajv
j
i =

∑
j ajsi(rj) = si(

∑
j ajrj) = si(r0) = v0

i for any 1 ≤ i ≤ m, and∑
j ajϵj =

∑
j ajf(rj) = f(

∑
j ajrj) = f(r0) ≥ ϵ.

Theorem 4.3.3. Let p be a positive integer, ϵ ≥ 1 a real number, and Γ ⊂ [0, 1] a finite set. Then there exists

a positive integer N depending only on ϵ, p and Γ, such that p | N and N satisfies the following.

Let (X ∋ x,B) be a pair such that X is a terminal threefold, B ∈ Γ, and mld(X ∋ x,B) ≥ ϵ. Then

there exists an N -complement (X ∋ x,B+) of (X ∋ x,B) such that mld(X ∋ x,B+) ≥ ϵ. Moreover, if

SpanQ≥0
(Γ̄ ∪ {ϵ}\Q) ∩ (Q\{0}) = ∅, then we may pick B+ ≥ B.

Proof. By Theorem 4.3.2, there exist three finite sets Γ1 ⊂ (0, 1], Γ2 ⊂ [0, 1] ∩ Q and M of non-negative

rational numbers depending only on ϵ,Γ, such that

•
∑
aiϵi ≥ ϵ,

• KX +B =
∑
ai(KX +Bi), and
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• (X ∋ x,Bi) is ϵi-lc at x for any i,

for some ai ∈ Γ1, B
i ∈ Γ2 and ϵi ∈ M. By Theorem 4.2.5, there exists a positive integer n0 which only

depends on Γ2 and M, such that (X ∋ x,Bi) has an (ϵi, n0)-complement (X ∋ x,Bi + Gi) for some

Q-Cartier divisor Gi ≥ 0 for any i. Let G :=
∑
aiG

i.

By [CH21, Lemma 6.2], there exists a positive integer n depending only on ϵ, p, n0,Γ, Γ1,Γ2,M, such

that there exist positive rational numbers a′
i with the following properties:

• pn0|n,

•
∑
a′

i = 1,

•
∑
a′

iϵi ≥ ϵ,

• na′
i ∈ n0Z for any i, and

• nB′ ≥ n⌊B⌋ + ⌊(n+ 1){B}⌋, where B′ :=
∑
a′

iB
i.

Let G′ :=
∑
a′

iG
i. Then

n(KX +B′ +G′) = n
∑

a′
i(KX +Bi +Gi) =

∑ a′
in

n0
· n0(KX +Bi +Gi) ∼Z 0

and

a(E,X,B′ +G′) =
∑

a′
i(E,X,Bi +Gi) ≥ a′

iϵi ≥ ϵ

for any prime divisor E over X ∋ x. Hence (X ∋ x,B′ +G′) is an (ϵ, n)-complement of (X ∋ x,B).

Moreover, if SpanQ≥0
(Γ̄ ∪ {ϵ}\Q) ∩ (Q\{0}) = ∅, then B′ ≥ B by [CH21, Lemmas 6.2, 6.4].

Proposition 4.3.4 and Theorem 4.3.6 study the inversion of stability property for R-Cartier divisors, and

give a positive answer to [HL20, Conjecture 7.8] in some special cases.
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Proposition 4.3.4. Let I be a positive integer and Γ ⊂ [0, 1] a finite set. Then there exists a positive real

number τ depending only on I and Γ satisfying the following.

Let x ∈ X be a terminal threefold singularity, and B ≥ 0, B′ ≥ 0 two R-divisors on X , such that

1. IKX is Cartier near x,

2. B ≥ B′, ||B −B′|| < τ,B ∈ Γ,

3. mld(X ∋ x,B′) ≥ 1, and

4. KX +B′ is R-Cartier.

Then KX +B is R-Cartier.

Proof. Suppose that the proposition does not hold, then there exist Xi ∋ xi, Bi, B
′
i, τi corresponding to

X ∋ x,B,B′, τ as in the assumptions, and a DCC set Γ′, such that

• limi→+∞ τi = 0,

• B′
i ∈ Γ′, and

• KXi +Bi is not R-Cartier.

Let fi : Yi → Xi be a small Q-factorialization of Xi. Let BYi
be the strict transform of Bi on Yi. Possibly

replacing Yi with a minimal model of (Yi, BYi
) over Xi, we may assume that KYi

+BYi
is big and nef over

X . We may write KYi +B′
Yi

:= f∗
i (KXi +B′

i). Since mld(Yi/Xi ∋ xi, B
′
Yi

) = mld(Xi ∋ xi, B
′
i) ≥ 1, by

Theorem 1.2.10, possibly passing to a subsequence, we may assume that (Yi/Xi ∋ xi, BYi
) is 1-lc over xi for

any i. Since the Cartier index of any Weil divisor on Yi is bounded from above by I , by [Nak16, Theorem 1.2]

and [Amb99, Theorem 0.1], {mld(Yi/Xi ∋ xi, BYi)}∞
i=1 belongs to a finite set. Thus possibly passing to a

84



subsequence, we may assume that there exists a real number ϵ ≥ 1, such that ϵ := mld(Yi/Xi ∋ xi, BYi) for

any i. Since KYi
+B′

Yi
≤ KYi

+BYi
, (Yi/Xi ∋ xi, B

′
Yi

) is an (ϵ,R)-complement of itself.

Note that Yi is of Fano type over Xi. Let Y ′
i be a minimal model of −(KYi

+ BYi
) over Xi. Then

(Y ′
i /Xi ∋ xi, B

′
Y ′

i
) is an (ϵ,R)-complement of itself, where B′

Y ′
i

is the strict transform of B′
Yi

on Y ′
i . In

particular, mld(Y ′
i /Xi ∋ xi, B

′
Y ′

i
) ≥ ϵ. By Theorem 1.2.9, possibly passing to a subsequence, we may

assume that (Y ′
i /Xi ∋ xi, BY ′

i
) is ϵ-lc over xi, where BY ′

i
is the strict transform of BYi

on Y ′
i . Thus

(Y ′
i /Xi ∋ xi, BY ′

i
) is (ϵ,R)-complementary as −(KY ′

i
+BY ′

i
) is big and nef over Xi. By [CH21, Lemma

3.13], (Yi/Xi ∋ xi, BYi) has an (ϵ,R)-complement (Yi/Xi ∋ xi, BYi +GYi) for some R-divisor GYi ≥ 0.

Let Yi → Zi be the canonical model of (Yi, BYi
) over X and BZi

the strict transform of BYi
on Zi. Then

−GZi
is ample over X , where GZi

is the strict transform of GYi
on Zi. Since KXi

+Bi is not R-Cartier, the

natural induced morphism gi : Zi → Xi is not the identity, and GZi ̸= 0. It follows that SuppGZi contains

g−1
i (xi). Thus

ϵ = mld(Yi/Xi ∋ xi, BYi
) = mld(Zi/Xi ∋ xi, BZi

) > mld(Zi/Xi ∋ xi, BZi
+GZi

) ≥ ϵ,

a contradiction.

Remark 4.3.5. Note that on any fixed potential klt variety X , the Cartier index of any Weil Q-Cartier divisor

is bounded from above (cf. [CH21, Lemma 7.14]). Thus the proof of Proposition 4.3.4 also works for any

fixed potential klt variety X by assuming the ACC conjecture for minimal log discrepancies. It would be

interesting to ask if it is necessary to assume X is fixed in higher dimensional cases.

Theorem 4.3.6. Let Γ ⊂ [0, 1] be a finite set. Then there exists a positive real number τ depending only on Γ

satisfying the following.

Let x ∈ X be a terminal threefold singularity, and B ≥ 0, B′ ≥ 0 two R-divisors on X , such that
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1. B′ ≤ B, ||B −B′|| < τ,B ∈ Γ,

2. mld(X ∋ x,B′) ≥ 1, and

3. KX +B′ is R-Cartier.

Then KX +B is R-Cartier.

Proof. Let τ be the positive real number constructed in Proposition 4.3.4 which only depends on Γ and

I := 1.

Let f : Y → X be an index one cover of KX . We may write KY + B′
Y := f∗(KX + B′), and

KY + BY := f∗(KX + B). Then KY is Cartier, B′
Y ≤ BY , ||BY − B′

Y || < τ , and BY ∈ Γ. Moreover,

by [KM98, Proposition 5.20], Y is terminal, and mld(Y ∋ y,B′
Y ) ≥ mld(X ∋ x,B′) ≥ 1 for any point

y ∈ f−1(x). Thus by Proposition 4.3.4, KY +BY is R-Cartier. We conclude that KX +B is R-Cartier as f

is a finite morphism.

Theorem 4.3.7. Let p be a positive integer, ϵ ≥ 1 a real number, and Γ ⊂ [0, 1] a finite set. Then there exists

a positive integer N depending only on ϵ, p and Γ, such that p | N and N satisfies the following.

Let (X ∋ x,B) be a pair such that X is a terminal threefold, B ∈ Γ and mld(X ∋ x,B) ≥ ϵ. Then

there exists an N -complement (X ∋ x,B+) of (X ∋ x,B) such that mld(X ∋ x,B+) ≥ ϵ. Moreover, if

SpanQ≥0
(Γ̄ ∪ {ϵ}\Q) ∩ (Q\{0}) = ∅, then we may pick B+ ≥ B.

Proof. By Theorems 4.3.6, 1.2.9, [HLS19, Lemma 5.17] (see also [CH21, Lemma 5.5]) and follow the same

lines of the proof of [CH21, Theorem 5.6] (see also [HLS19, Theorem 5.18]), possibly replacing Γ by a finite

subset of Γ̄, we may assume that Γ is a finite set. Now the theorem follows from Theorem 4.3.3.

Proof of Theorem 1.2.7. This is a special case of Theorem 4.3.7.
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Chapter 5

Proof of the Main Results

5.1 Proof of Theorem 1.2.2

In this subsection, we prove the following theorem:

Theorem 5.1.1. Let Γ ⊂ [0, 1] be a DCC set. Then 1 is not an accumulation point of

{mld(X,B) | dimX = 3, B ∈ Γ}

from below.

Definition 5.1.2. Let (X,B) be a pair. We say that (X,B) is extremely non-canonical if mld(X,B) < 1,

and the set

{E | E is exceptional over X, a(E,X,B) ≤ 1}

contains a unique element. In particular, any extremely non-canonical pair is klt.

A pair (X ∋ x,B) is called extremely non-canonical if (X,B) is extremely non-canonical near x and

mld(X ∋ x,B) = mld(X,B) < 1.

Lemma 5.1.3. Let d be a positive integer and Γ ⊂ [0, 1] a set. Let (X,B) be a klt pair of dimension d such

that B ∈ Γ and mld(X,B) < 1. Then there exists a Q-factorial extremely non-canonical klt pair (Y,BY ) of
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dimension d, such that BY ∈ Γ and mld(X,B) ≤ mld(Y,BY ).

Proof. Since (X,B) is klt, by [BCHM10, Corollary 1.4.3], there exists a birational morphism f : W →

X from a Q-factorial variety W which extracts exactly all the exceptional divisors E over X such that

a(E,X,B) = 1. Let KW + BW := f∗(KX + B). Possibly replacing (X,B) with (W,BW ), we may

assume that a(E,X,B) ̸= 1 for any prime divisor E that is exceptional over X .

Since (X,B) is klt and mld(X,B) < 1, there exist prime divisors E1, . . . , Ek that are exceptional over

X , such that

{E1, . . . , Ek} = {E | E is exceptional over X, a(E,X,B) < 1}.

Let αj := 1 −a(Ej , X,B) for each j. By [Liu18, Lemma 5.3], there exists i ∈ {1, 2, . . . , k} and a birational

morphism h : Y → X from a Q-factorial variety Y , such that

• f exactly extracts E1, . . . , Ei−1, Ei+1, . . . , Ek, and

• multEi

∑
j ̸=i αjEj,Y < αi, where Ej,Y = centerY Ej for each j ̸= i.

Let BY := h−1
∗ B. Then

mld(Y,BY ) ≤ a(Ei, Y, BY ) = a(Ei, Y, BY +
∑
j ̸=i

αjEj,Y ) + multEi

∑
j ̸=i

αjEj,Y

<a(Ei, X,B) + αi = 1,

and for any prime divisor F ̸= Ei that is exceptional over Y ,

a(F, Y,BY ) ≥ a(F, Y,BY +
∑
j ̸=i

αjEj,Y ) = a(F,X,B) > 1.

Thus (Y,BY ) satisfies our requirements.

88



Lemma 5.1.4. Let d be a positive integer and Γ ⊂ [0, 1] a DCC set. Then there exists a positive real number

t depending only on d and Γ satisfying the following.

Let (X,B) be a klt pair of dimension d, E a prime exceptional divisor over X such that a(E,X,B) < 1,

and x the generic point of centerX E. Let f : Y → X be a birational morphism which only extracts E. Then

(Y,BY + tE) is lc over a neighborhood of x.

Proof. By Theorem 2.1.8, there exist a positive integer n and a finite set Γ0 ⊂ (0, 1], such that (X ∋ x,B)

has an (n,Γ0)-decomposable R-complement (X ∋ x,B+) of (X ∋ x,B). In particular, there exist real

numbers a1, . . . , ak ∈ Γ0 and lc pairs (X ∋ x,B+
i ), such that

∑k
i=1 ai = 1,

∑k
i=1 aiB

+
i = B+, and each

(X ∋ x,B+
i ) is an n-complement of itself. Let

Γ′
0 := {

k∑
i=1

siai | nsi ∈ Z≥0}.

Then Γ′
0 ⊂ [0,+∞) is a discrete set, and we may let

γ0 := max{γ ∈ Γ′
0 | γ < 1}.

Since na(E,X,B+
i ) ∈ Z≥0 for every i,

1 > a(E,X,B) ≥ a(E,X,B+) =
k∑

i=1
aia(E,X,B+

i ) ∈ Γ′
0,

so a(E,X,B+) ≤ γ0. Thus (Y,BY +(1−γ0)E) is lc over a neighborhood of x. We may take t := 1−γ0.

Lemma 5.1.5. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a positive real number ϵ depending only on Γ

satisfying the following.

Let (X,B) be a Q-factorial extremely non-canonical threefold pair such that X is strictly canonical.

Then mld(X,B) ≤ 1 − ϵ.
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Proof. Since (X,B) is extremely non-canonical, (X,B) is klt. Let E be the unique prime divisor that is

exceptional over X such that a(E,X,B) ≤ 1. Then a(E,X,B) < 1. Moreover, for any prime divisor F ̸=

E that is exceptional over X , a(F,X, 0) ≥ a(F,X,B) > 1. Since X is strictly canonical, a(E,X, 0) = 1.

In particular, multE B > 0.

Let γ0 := min{γ ∈ Γ | γ > 0} and let m := ⌈ 1
γ0

⌉. Then B ≥ 1
m SuppB,

a(E,X,B) ≤ a(E,X, 1
m

SuppB) < a(E,X, 0) = 1,

and

1 < a(F,X,B) ≤ a(F,X, 1
m

SuppB)

for any prime divisor F ̸= E that is exceptional over X . Thus possibly replacing Γ with {0, 1
m } and B with

1
m SuppB, we may assume that Γ is a finite set of rational numbers.

Let f : Y → X be a birational morphism which extracts E, and let BY be the strict transform of B on Y .

Then KY = f∗KX , and

KY +BY + (1 − a(E,X,B))E = f∗(KX +B).

Let x be the generic point of centerX E. If dim x = 1, by taking general hyperplane sections, the lemma

follows from [Ale93, Theorem 3.8] (see also [Sho94b] and [HL20, Theorem 1.5]). Therefore, we may assume

that x is a closed point.

By Theorem 2.1.11, 60KY is Cartier over a neighborhood of x. By our construction, Y is terminal. By

[Kaw88, Lemma 5.1], 60D is Cartier over an neighborhood of x for any Weil divisor D on Y .

By Lemma 5.1.4, there exists a positive integer n depending only on Γ, such that nΓ ⊂ Z≥0 and

(Y,BY + 1
nE) is lc over a neighborhood of x.

If a(E,X,B) ≤ 1 − 1
2n , then we are done. Thus we may assume that a(E,X,B) > 1 − 1

2n . In
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this case, by the boundedness of length of extremal rays (cf. [Fuj17, Theorem 4.5.2(5)]), there exists a

(KY +BY + 1
nE)-negative extremal ray R in NE(Y/X) which is generated by a rational curve C, such that

0 > (KY +BY + 1
n
E) · C ≥ −6.

Since (KY +BY + (1 − a(E,X,B))E) · C = 0, we have

0 < (a(E,X,B) − 1 + 1
n

)(−E · C) ≤ 6.

Hence 0 < (−E ·C) < 12n as a(E,X,B) > 1 − 1
2n . Since 60n(KY +BY ) is Cartier over a neighborhood

of x, we have

a(E,X,B) = 1 − 60n(KY +BY ) · C
60n(−E · C) ,

so a(E,X,B) < 1 − 1
720n2 and we are done.

Lemma 5.1.6. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a positive real number ϵ depending only on Γ

satisfying the following.

Let (X,B) be a Q-factorial extremely non-canonical threefold pair such that X is terminal. Then

mld(X,B) ≤ 1 − ϵ.

Proof. Let E be the unique divisor that is exceptional over X such that a(E,X,B) ≤ 1. Then 0 <

a(E,X,B) < 1. Since X is terminal, a(E,X, 0) > 1. Thus multE B > 0.

Let x be the generic point of centerX E. If dim x = 1, by taking general hyperplane sections, the lemma

follows from [Ale93, Theorem 3.8] (see also [Sho94b] and [HL20, Theorem 1.5]). Therefore, we may assume

that x is a closed point.

Let t := ct(X, 0;B). SinceX is terminal and (X,B) is extremely non-canonical, we have a(E,X, cB) =

1 and t = ct(X ∋ x, 0;B) < 1. By Theorem 1.2.10, there exists a real number δ ∈ (0, 1) depending only
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on Γ such that t ≤ 1 − δ. Let γ0 := min{γ ∈ Γ | γ > 0}, m := ⌈ 1
δγ0

⌉, and B′ := 1
m ⌊mB⌋. Then

||B −B′|| < δγ0. Hence B ≥ B′ ≥ tB and Supp(B′ − tB) = SuppB. Since multE B > 0,

a(E,X,B) ≤ a(E,X,B′) < a(E,X, tB) = 1,

and

1 < a(F,X,B) ≤ a(F,X,B′)

for any prime divisor F ̸= E that is exceptional over X . Thus possibly replacing Γ with 1
mZ≥0 ∩ [0, 1], B

with B′, and t with ct(X, 0;B′) respectively, we may assume that Γ ⊂ 1
mZ ∩ [0, 1].

If x ∈ X is a terminal singularity of types other than cA/n or of type cA/n with n ≤ 2, then by [Rei87,

(6.1) Theorem], the index of X ∋ x divides 12. By [Kaw88, Lemma 5.1], 12m(KX +B) is Cartier, and we

may take ϵ = 1
12m in this case. Thus we may assume that x ∈ X is a terminal singularity of type cA/n for

some n ≥ 3.

By construction, (X, tB) is extremely non-canonical. By Lemma 3.1.4, there exists a terminal blow-up

f : Y → X of (X ∋ x, tB) which extracts E. Since n ≥ 3, by [Kaw05, Theorem 1.3], f is of ordinary type.

Let a := a(E,X,B) + 1. By Theorem 2.1.35(1), under suitable analytic local coordinates x1, x2, x3, x4,

there exist positive integers r1, r2, b, d, where gcd(b, n) = 1, r1 + r2 = adn and a ≡ br1 mod n, such that

analytically locally,

(X ∋ x) ∼= (ϕ(x1, x2, x3, x4) = 0) ⊂ (C4 ∋ o)/ 1
n

(1,−1, b, 0)

for some invariant analytic power series ϕ, and f : Y → X is a weighted blow-up at x ∈ X with the weight

w := 1
n (r1, r2, a, n). Assume that mB is locally defined by (h(x1, x2, x3, x4) = 0) for some semi-invariant

analytic power series h.
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Claim 5.1.7. If either d ≥ 4 or a ≥ 4, then n ≤ 3m.

We proceed the proof assuming Claim 5.1.7. If either a ≥ 4 or d ≥ 4, then by Claim 5.1.7, n ≤ 3m ≤ 3m
t .

Since a(E,X, tB) = a(E,X, 0) − tmultE B = 1 + a
n − tmultE B,

a

n
= tmultE B. (5.1.1)

It follows that

multE B = a

tn
≥ a

3m ≥ 1
3m.

Thus a(E,X,B) = a(E,X, tB) − (1 − t) multE B ≤ 1 − δ
3m . We can take ϵ = δ

3m in this case.

We may now assume that a ≤ 3 and d ≤ 3. Since a ≡ br1 mod n, gcd(r1, n) | 6. Since r1 + r2 = adn,

gcd(r2, n) | 6, and gcd(r1, r2) | adn. This implies that gcd(r1, r2) | 216. Let m′ be the smallest positive

integer such that m′tB is an integral divisor and r the smallest positive integer such that rm′(KX + tB)

is Cartier. By Lemma 4.1.4, r | gcd(r1, r2). Thus r | 216. By (5.1.1), t = a
n multE B = a

N , where

N = nmultE B is a positive integer. We may write tB = a
mNmB, then 216mN(KX + tB) is Cartier.

By [Sho94a, 4.8 Corollary], there exists a prime divisor E1 ̸= E over X ∋ x such that a(E1, X, 0) =

1 + a1
n for some positive integer a1 ≤ 2.

Since a(E1, X, tB) > 1,

1 + a1

n
= a(E1, X, 0) ≥ a(E1, X, tB) ≥ 1 + 1

216mN ,

hence n ≤ 432mN = 432am
t . It follows that tn ≤ 432am ≤ 1296m. By (5.1.1),

multE B = a

tn
≥ 1

1296m,

and a(E,X,B) = a(E,X, tB) − (1 − t) multE B ≤ 1 − δ
1296m . We can take ϵ = δ

1296m in this case.
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Proof of Claim 5.1.7. Suppose that n > 3m. If either d ≥ 4 or a ≥ 4, then we can pick positive integers

s1, s2 such that

• s1 + s2 = a′dn for some a′ ≤ min{a, 3},

• a′ ≡ bs1 mod n,

• s1 > n, s2 > n, and

• 1
n (s1, s2, a

′, n) ̸= 1
n (r1, r2, a, n).

In fact, when a ≥ 4, we may take a′ = 3. When d ≥ 4, we may take a′ = 1 and (s1, s2) ̸= (r1, r2). Let

w′ := 1
n (s1, s2, a

′, n).

Since a ≥ a′, by [HLL22, Lemma C.7], the weighted blow-up with the weight w′ at x ∈ X extracts an

analytic prime divisor E′ ̸= E such that w′(X ∋ x) = a′

n . By [HLL22, Lemma C.6], we may assume that

E′ is a prime divisor over X ∋ x. By our assumption, a(E′, X,B) = 1 + w′(X ∋ x) − w′(B) > 1, thus

1
m
>

3
n

≥ a′

n
= w′(X ∋ x) > w′(B) = 1

m
w′(mB),

which implies that w′(h) = w′(mB) < 1. Since w′(x1) = s1
n > 1, w′(x2) = s2

n > 1 and w′(x4) = 1,

up to a scaling of h, there exists a positive integer l, such that xl
3 ∈ h and w′(mB) = w′(h) = w′(xl

3). In

particular, w′(h) = lw′(x3) = a′l
n and

w′(X ∋ x) = a′

n
> w′(B) = a′

n

l

m
,

this implies that l
m < 1. On the other hand,

1 > a(E,X,B) = 1 + w(X ∋ x) − w(B) ≥ 1 + a

n
− 1
m
w(xl

3) = 1 + a

n
(1 − l

m
) > 1,

a contradiction.
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Proof of Theorem 5.1.1. Let (X,B) be a threefold pair such that B ∈ Γ. Possibly replacing (X,B) with a

Q-factorialization and replacing Γ with Γ ∪ {1}, we may assume that (X,B) is Q-factorial dlt.

If (X,B) is klt, then by Lemma 5.1.3, we may assume that (X,B) is extremely non-canonical. Then

either X is not canonical, or X is strictly canonical, or X is terminal. If X is not canonical, then by [LX21,

Theorem 1.4] (see also [Jia21, Theorem 1.3]), mld(X,B) ≤ mld(X) ≤ 12
13 . If X is strictly canonical, then

the theorem follows from Lemma 5.1.5. If X is terminal, then the theorem follows from Lemma 5.1.6.

If (X,B) is not klt, then we let E be a prime divisor that is exceptional over X such that a(E,X,B) =

mld(X,B). If centerX E ̸⊂ ⌊B⌋, then

mld(X,B) = a(E,X,B) = a(E,X, {B}) ≥ mld(X, {B}) ≥ mld(X,B)

and the theorem follows from the klt case. If centerX E ⊂ ⌊B⌋, then there exists a prime divisor S ⊂ ⌊B⌋

such that centerX E ⊂ S. We let KS +BS := (KX +B)|S . By [BCHM10, Corollary 1.4.5], mld(X,B) =

a(E,X,B) is equal to the total minimal log discrepancy of (S,BS). Since BS ∈ D(Γ) which satisfies the

DCC, the theorem follows from [Ale93, Theorem 3.8] (see also [Sho04b] and [HL20, Theorem 1.5]).

Proof of Theorem 1.2.2. This follows from Theorems 3.6.1 and 5.1.1.

5.2 Proof of Theorem 1.2.5

Lemma 5.2.1. Let I be a positive integer, and Γ ⊂ [0, 1] a finite set. Then there exists a positive real number

l depending only on I and Γ satisfying the following. Assume that

1. (X ∋ x,B) is a threefold pair,

2. X is terminal,

3. B ∈ Γ,

95



4. mld(X ∋ x,B) ≥ 1, and

5. IKX is Cartier near x.

Then there exists a prime divisor E over X ∋ x, such that a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) =

1 + a
I for some non-negative integer a ≤ l.

Proof. We will use some ideas of Kawakita [Kaw21, Theorem 4.6]. Possibly replacing X with a small

Q-factorialization, we may assume that X is Q-factorial.

If dim x = 2, then the lemma is trivial as we can take l = 0.

If dim x = 1, then X is smooth near x. By Lemma 2.1.6, mld(X ∋ x,B) = a(E,X,B), where E is the

exceptional divisor obtained by blowing up x ∈ X . We have a(E,X, 0) = 2, and the theorem holds in this

case.

If dim x = 0 and suppose that the theorem does not hold, then there exists a sequence of threefold germs

(Xi ∋ xi, Bi) satisfying (1-5), and a strictly increasing sequence of positive integers li, such that for each i,

min{a(E,Xi, 0) | centerXi E = xi, a(E,Xi, Bi) = mld(Xi ∋ xi, Bi)} = 1 + li
I
.

By [Kaw88, Lemma 5.1], ID is Cartier near xi for any Weil divisor D on Xi. By [Amb99, Theorem 0.1],

1 ≤ mld(Xi ∋ xi, Bi) ≤ 3 for any i. By [Nak16, Corollary 1.3], possibly passing to a subsequence, we

may assume that there exists a real number α ≥ 1, such that mld(Xi ∋ xi, Bi) = α for any i. By [Nak16,

Theorem 1.2], there exists a real number α′ > α, such that for any i and any prime divisor Fi over Xi ∋ xi,

if a(Fi, Xi, Bi) > α, then a(Fi, Xi, Bi) > α′. Therefore,

α′- lct(Xi ∋ xi, 0;Bi) =
1 + li

I − α′

1 + li

I − α
= 1 − α′ − α

1 + li

I − α
< 1

is strictly increasing, which contradicts Theorem 1.2.9.
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The following theorem answers a question of [HL20, Conjecture 7.2] for terminal threefold pairs. We

will use it to prove Theorem 1.2.5.

Theorem 5.2.2. Let I be a positive integer, and Γ ⊂ [0, 1] a finite set. Then there exists a positive real

number τ depending only on I and Γ satisfying the following. Assume that (X ∋ x,B) and (X ∋ x,B′) are

two threefold lc pairs and E′ is a prime divisor over X ∋ x, such that

1. X is terminal,

2. B ≥ B′, ||B −B′|| < τ , and B ∈ Γ,

3. a(E′, X,B′) = mld(X ∋ x,B′) ≥ 1, and

4. IKX is Cartier near x.

Then a(E′, X,B) = mld(X ∋ x,B).

Proof. We may assume that {0} ⊊ Γ, otherwise B = B′ = 0 and the theorem is obvious.

Since IKX is Cartier near x and X is terminal, by [Kaw88, Lemma 5.1], ID is Cartier for any Q-Cartier

Weil divisor onX . By [HLS19, Theorem 5.6], there exist positive real numbers a1, . . . , ak ∈ (0, 1] depending

only on Γ, a positive integer I ′ depending only on I and Γ, and Q-divisors B1, . . . , Bk ≥ 0 on X , such that

•
∑k

i=1 ai = 1,

•
∑k

i=1 aiBi = B,

• (X ∋ x,Bi) is lc for any i. In particular, KX +Bi is Q-Cartier for any i, and

• I ′(KX +Bi) is Cartier near x for each i.
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Thus there exists a positive real number δ depending only on I and Γ, such that for any prime divisor F over

X ∋ x and a(F,X,B) > mld(X ∋ x,B), we have a(F,X,B) > mld(X ∋ x,B) + δ.

By Lemma 5.2.1, there exists a prime divisor E over X ∋ x, such that a(E,X,B) = mld(X ∋ x,B)

and a(E,X, 0) ≤ l for some positive integer l depending only on I and Γ. In particular, multE B =

a(E,X, 0) − a(E,X,B) ≤ l.

We show that we may take τ := δ
2l · min{γ ∈ Γ | γ > 0}. In this case, B′ ≥ (1 − δ

2l )B. Since

a(E,X, 0) − multE B
′ = a(E,X,B′) ≥ a(E′, X,B′) ≥ a(E′, X,B)

=(a(E′, X,B) − a(E,X,B)) + a(E,X, 0) − multE B,

we have

0 ≤ a(E′, X,B) − a(E,X,B) ≤ multE(B −B′) ≤ δ

2l multE B ≤ δ

2 ,

which implies that a(E′, X,B) = a(E,X,B) = mld(X ∋ x,B).

Lemma 5.2.3. Let m0 be a positive integer and let {ai,1}∞
i=1, {ai,2}∞

i=1, . . . , {ai,m0}∞
i=1 be m0 sequences of

positive real numbers. Then there exists an integer 1 ≤ k ≤ m0, such that possibly passing to a subsequence,

{ ai,j

ai,k
}∞

i=1 are decreasing (resp. increasing) for all 1 ≤ j ≤ m0.

Proof. Possibly passing to a subsequence, we may assume that for any k, j, { ai,j

ai,k
}∞

i=1 is either decreasing or

strictly increasing (resp. either increasing or strictly decreasing). Suppose that the lemma does not hold. Then

there exists a function π : {1, 2, . . . ,m0} → {1, 2, . . . ,m0}, such that { ai,π(j)
ai,j

}∞
i=1 is strictly increasing

(resp. strictly decreasing) for any j. We may pick 1 ≤ j0 ≤ m such that π(l)(j0) = j0 for some positive

integer l. Then

{1}∞
i=1 = {

ai,π(j0)

ai,j0

·
ai,π(π(j0))

ai,π(j0)
· · · · ·

ai,π(l)(j0)

ai,π(l−1)(j0)
}∞

i=1
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is strictly increasing (resp. strictly decreasing), which is absurd.

Lemma 5.2.4. Let m0 ≥ 0, I > 0 be integers, Γ0 ⊂ [0, 1] a finite set, and Γ ⊂ [0, 1] a DCC set. Then there

exists a positive integer l depending only on m0, I,Γ0, and Γ satisfying the following.

Assume that {(Xi ∋ xi, Bi :=
∑m0

j=1 bi,jBi,j +Bi,0)}∞
i=0 is a sequence of Q-factorial threefold germs,

such that

1. Xi is terminal for each i,

2. {bi,j}∞
i=1 is strictly increasing for any fixed j,

3. bi,j ∈ Γ and Bi,0 ∈ Γ0 for each i and j,

4. Bi,j ≥ 0 is a Weil divisor on Xi for each i and j,

5. mld(Xi ∋ xi, Bi) > 1 for each i,

6. IKXi
is Cartier near xi for each i, and

7. 1 + li

I := min{a(Ei, Xi, 0) | centerXi Ei = xi, a(Ei, Xi, Bi) = mld(Xi ∋ xi, Bi)}.

Then possibly passing to a subsequence, we have li ≤ l for each i.

Proof. Step 1. We prove the lemma by induction on m0. When m0 = 0, the lemma follows from Lemma

5.2.1. Thus we may assume that m0 ≥ 1.

Let γ0 := min{1, γ | γ ∈ Γ, γ > 0}. Let bj := limi→+∞ bi,j , B̄i :=
∑m0

j=1 bjBi,j + Bi,0 for any i,

and Γ′
0 := Γ0 ∪ {b1, . . . , bm0}. By Theorem 1.2.9, possibly passing to a subsequence, we may assume that

mld(Xi ∋ xi, B̄i) ≥ 1 for each i.
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By [Kaw88, Lemma 5.1], for each i, IDi is Cartier near xi for any Weil divisor Di on Xi. By [Amb99,

Theorem 0.1], 1 < mld(Xi ∋ xi, B̄i) ≤ 3. By [Nak16, Theorem 1.2], possibly passing to a subsequence, we

may assume that there exist two real numbers α ≥ 1 and δ > 0, such that for any i,

• mld(Xi ∋ xi, B̄i) = α, and

• for any prime divisor Fi over Xi ∋ xi such that a(Fi, Xi, B̄i) > mld(Xi ∋ xi, B̄i), we have

a(Fi, Xi, B̄i) > α+ δ.

For each i, let Ei be a prime divisor over Xi ∋ xi such that a(Ei, Xi, Bi) = mld(Xi ∋ xi, Bi)

and a(Ei, Xi, 0) = 1 + li

I . By Theorem 5.2.2, possibly passing to a subsequence, we may assume that

a(Ei, Xi, B̄i) = mld(Xi ∋ xi, B̄i) = α.

Step 2. For any i and any 1 ≤ j ≤ m0, we define B′
i,j :=

∑
k ̸=j bi,kBi,k + bjBi,j +Bi,0.

By the induction for m0 − 1, I,Γ′
0 and Γ, possibly passing to a subsequence, we may assume that there

exists a positive integer l′ depending only on m0, I,Γ0 and Γ, such that for any 1 ≤ j ≤ m0, there exists a

prime divisor Ei,j over Xi ∋ xi, such that

• a(Ei,j , Xi, B
′
i,j) = mld(Xi ∋ xi, B

′
i,j), and

• a(Ei,j , Xi, 0) ≤ 1 + l′

I ≤ 1 + l′.

Since

a(Ei,j , Xi, Bi) ≥ mld(Xi ∋ xi, Bi) = a(Ei, Xi, Bi)

and

a(Ei,j , Xi, B
′
i,j) = mld(Xi ∋ xi, B

′
i,j) ≤ a(Ei, Xi, B

′
i,j),
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we have multEi,j (B′
i,j −Bi) ≥ multEi(B′

i,j −Bi). By the construction of B′
i,j , we have

multEi,j Bi,j ≥ multEi Bi,j

for any i and 1 ≤ j ≤ m0. Since

1 ≤ mld(Xi ∋ xi, B̄i) ≤ mld(Xi ∋ xi, B
′
i,j)

= a(Ei,j , Xi, B
′
i,j) ≤ a(Ei,j , Xi, bi,jBi,j) ≤ a(Ei,j , Xi, γ0Bi,j)

= a(Ei,j , Xi, 0) − γ0 multEi,j
Bi,j ≤ 1 + l′ − γ0 multEi,j

Bi,j ,

for any i and 1 ≤ j ≤ m0, we have

multEi
Bi,j ≤ multEi,j

Bi,j ≤ l′

γ0
.

Step 3. Let ai,j := bj − bi,j for any i and any 1 ≤ j ≤ m0. By Lemma 5.2.3, possibly re-odering

indices and passing to a subsequence, we may assume that { ai,j

ai,1
}∞

i=1 is decreasing for any 1 ≤ j ≤ m0. Let

M := max{ a1,j

a1,1
| 1 ≤ j ≤ m0}, t := δγ0

m0Ml′ , b̃i,j := bj −tai,j

ai,1
for any i, j, and B̃i :=

∑m0
j=1 b̃i,jBi,j +Bi,0.

Possibly passing to a subsequence, we may assume that ai,1 < t for any i as limi→+∞ ai,1 = 0.

There exist a positive integer k and a finite set Λ ⊂ {1, 2, . . . ,m0}, such that |Λ| = k, and b̃i,j = b̃1,j for

any i and j ∈ Λ as b̃i,1 = b1 − t. By the induction for m0 − k, I,Γ0 ∪ {b̃1,j | j ∈ Λ}, and {b̃i,j}i≥1,1≤j≤m0 ,

possibly passing to a subsequence, for any i, there exists a prime divisor Ẽi over Xi ∋ xi, such that

• a(Ẽi, Xi, B̃i) = mld(Xi ∋ xi, B̃i), and

• a(Ẽi, Xi, 0) ≤ 1 + l
I for some positive integer l depending only on m0, I,Γ0 and Γ.
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Since

b̃i,j ≥ bj − δγ0

m0Ml′
·M = bj − δγ0

m0l′
,

we have

mld(Xi ∋ xi, B̃i) ≤ a(Ei, Xi, B̃i) = a(Ei, Xi, B̄i) + multEi
(B̄i − B̃i)

=α+
m0∑
j=1

(bj − b̃i,j) multEi Bi,j ≤ α+
m0∑
j=1

δγ0

m0l′
· l

′

γ0
= α+ δ.

Therefore, a(Ẽi, Xi, B̄i) ≤ a(Ẽi, Xi, B̃i) = mld(Xi ∋ xi, B̃i) ≤ α+ δ, and by our choice δ, we have

a(Ẽi, Xi, B̄i) = mld(Xi ∋ xi, B̄i) = α. By the construction of B̃i,

Bi = ai,1

t
B̃i + (1 − ai,1

t
)B̄i.

It follows that a(Ẽi, Xi, Bi) = mld(Xi ∋ xi, Bi). Thus a(Ei, Xi, 0) = 1 + li

I ≤ a(Ẽi, Xi, 0) ≤ 1 + l
I .

Theorem 5.2.5. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a positive integer l depending only on Γ

satisfying the following.

Assume that (X ∋ x,B) is a threefold pair such that X is terminal, B ∈ Γ, and mld(X ∋ x,B) ≥ 1.

Then there exists a prime divisor E over X ∋ x, such that a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) ≤

1 + l
I , where I is the index of X ∋ x. In particular, a(E,X, 0) ≤ 1 + l.

Proof. Possibly replacing X with a small Q-factorialization, we may assume that X is Q-factorial.

Let γ0 := min{γ ∈ Γ, 1 | γ > 0}. Suppose that the theorem does not hold. Then by Lemmas 2.1.6 and

3.2.8, Theorems 2.1.13 and 3.2.9, there exist a positive integer I , an integer 0 ≤ m ≤ 2
γ0

, a strictly increasing

sequence of positive integers li, and a sequence of threefold germs (Xi ∋ xi, Bi =
∑m

j=1 bi,jBi,j), such that

• Xi is Q-factorial terminal for each i,
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• bi,j ∈ Γ, and Bi,j ≥ 0 is a Weil divisor for any i, j,

• mld(Xi ∋ xi, Bi) > 1 for each i,

• IKXi is Cartier near xi for each i, and

• 1 + li

I = min{a(Ei, Xi, 0) | centerXi Ei = xi, a(Ei, Xi, Bi) = mld(Xi ∋ xi, Bi)}.

Possibly passing to a subsequence, we may assume that {bi,j}∞
i=1 is increasing for any fixed j. We

let bj := limi→+∞ bi,j for any j, and Γ0 := {b1, . . . , bm}. Possibly reordering indices and passing to a

subsequence, we may assume that there exists an integer 0 ≤ m0 ≤ m, such that

• bi,j ̸= bj for any i when j ≤ m0, and

• bi,j = bj for every i when j > m0.

Let Bi,0 :=
∑m

j=m0+1 bjBi,j . Then Bi =
∑m0

j=1 bi,jBi,j + Bi,0. By Lemma 5.2.4, possibly passing to a

subsequence, li ≤ l for some positive integer l depending only on Γ, a contradiction.

Proof of Theorem 1.2.5. This follows from Theorem 5.2.5.

Theorem 5.2.6. Let Γ0 = {b1, . . . , bm} ⊂ [0, 1] be a finite set. Then there exist a positive integer l and a

positive real number ϵ depending only on Γ0 satisfying the following.

Assume that (X ∋ x,B′ =
∑

i b
′
iB

′
i) is a threefold pair such that

1. X is terminal,

2. bi − ϵ < b′
i < bi for each i and B′

i ≥ 0 are Weil divisors on X ,

3. mld(X ∋ x,B′) ≥ 1, and

4. IKX is Cartier near x for some positive integer I .
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Then for any prime divisor E over X ∋ x such that a(E,X,B) = mld(X ∋ x,B), we have a(E,X, 0) ≤

1 + l
I . In particular, a(E,X, 0) ≤ 1 + l.

Proof. Suppose that the theorem does not hold. Then there exist a strictly increasing sequence of positive

integers li and a sequence of threefold pairs (Xi ∋ xi, Bi =
∑m

j=1 bi,jBi,j), such that

• Xi is terminal,

• bi,j is strictly increasing with limi→+∞ bi,j = bj for each j, and Bi,j ≥ 0 is a Weil divisor for any i, j,

• mld(Xi ∋ xi, Bi) ≥ 1 for any i,

• IiKXi
is Cartier near xi for some positive integer Ii, and

• there exists a prime divisor Ei over Xi ∋ xi such that a(Ei, Xi, Bi) = mld(Xi ∋ xi, Bi), and

a(Ei, Xi, 0) ≥ li

Ii
.

Possibly replacing each Xi with a small Q-factorialization, we may assume that Xi is Q-factorial for each i.

Let B̄i :=
∑m

j=1 bjBi,j for any i. By Theorem 1.2.9, possibly passing to a subsequence, we may assume

that mld(Xi ∋ xi, B̄i) ≥ 1 for any i.

By Lemma 5.2.3, possibly reordering the indices and passing to a subsequence, we may assume { bi,j

bi,1
}∞

i=1

is an increasing sequence for each j. In particular, bi,j

bi,1
≤ bj

b1
as limi→+∞

bi,j

bi,1
= bj

b1
. For each i, j, let

b′
i,j := bi,j + (b1 − bi,1) bi,j

bi,1
= b1bi,j

bi,1
≤ bj ,

and B̄′
i :=

∑m
j=1 b

′
i,jBi,j ≤ B̄i. Then mld(Xi ∋ xi, B̄

′
i) ≥ 1. Note that Γ′ := { b1bi,j

bi,1
}i∈Z≥1,1≤j≤m satisfies

the DCC. By Theorem 5.2.5, there exists a positive integer l depending only on Γ′ and a prime divisor E′
i
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over Xi ∋ xi for each i, such that a(E′
i, Xi, B̄

′
i) = mld(Xi ∋ xi, B̄

′
i), and a(E′

i, Xi, 0) ≤ 1 + l
Ii

. Since

a(E′
i, Xi, B̄

′
i) + multEi(B̄′

i −Bi) = mld(Xi ∋ xi, B̄
′
i) + multEi(B̄′

i −Bi)

≤a(Ei, Xi, B̄
′
i) + multEi

(B̄′
i −Bi) = a(Ei, Xi, Bi) = mld(Xi ∋ xi, Bi)

≤a(E′
i, Xi, Bi) = a(E′

i, Xi, B̄
′
i) + multE′

i
(B̄′

i −Bi),

we have multEi
(B̄′

i −Bi) ≤ multE′
i
(B̄′

i −Bi). By the construction of B̄′
i,

B̄′
i −Bi =

m∑
j=1

(b′
i,j − bi,j)Bi,j =

m∑
j=1

(b1 − bi,1) bi,j

bi,1
Bi,j = b1 − bi,1

bi,1
Bi.

It follows that multEi
Bi ≤ multE′

i
Bi. Hence

a(Ei, Xi, 0) = a(Ei, Xi, Bi) + multEi
Bi ≤ a(E′

i, Xi, Bi) + multE′
i
Bi

=a(E′
i, Xi, 0) ≤ 1 + l

Ii
,

a contradiction.

5.2.1 Proof of Theorem 1.2.12

Definition 5.2.7 (Log Calabi–Yau pairs). A log pair (X,B) is called a log Calabi–Yau pair if KX +B ∼R 0.

Definition 5.2.8 (Bounded pairs). A collection of varieties D is said to be bounded (resp. birationally

bounded, bounded in codimension one) if there exists a projective morphism h : Z → S of schemes of finite

type such that each X ∈ D is isomorphic (resp. birational, isomorphic in codimension one) to Zs for some

closed point s ∈ S.

We say that a collection of log pairs D is log birationally bounded (resp. log bounded, log bounded in

codimension one) if there exist a quasi-projective scheme Z , a reduced divisor E on Z , and a projective
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morphism h : Z → S, where S is of finite type and E does not contain any fiber, such that for every

(X,B) ∈ D, there exist a closed point s ∈ S and a birational map (resp. isomorphism, isomorphism in

codimension one) f : Zs 99K X such that Es contains the support of f−1
∗ B and any f -exceptional divisor

(resp. Es coincides with the support of f−1
∗ B, Es coincides with the support of f−1

∗ B).

Moreover, if D is a set of klt Calabi–Yau varieties (resp. klt log Calabi–Yau pairs), then it is said to be

bounded modulo flops (resp. log bounded modulo flops) if it is bounded (resp. log bounded) in codimension

one, each fiber Zs corresponding to a member in D is normal projective, and KZs
is Q-Cartier (resp.

KZs + f−1
∗ B is R-Cartier).

Proof of Theorem 1.2.12. We follow the proof of [Jia21, Theorem 6.1] and [CDHJS21, Theorem 5.1]. By

Theorem 1.2.2, there exists a positive real number δ < 1 depending only on Γ, such that mld(X,B) ≤ 1 − δ.

By [BCHM10, Corollary 1.4.3], there exists a birational morphism f : Y → X which extracts exactly one

exceptional divisor E with a := a(E,X,B) ≤ 1 − δ. By [HLS19, Lemma 3.21], Y is of Fano type over X .

Possibly replacing Y with the canonical model of −E over X , we may assume that −E is ample over X ,

and Exc(f) = SuppE. We may write

KY +BY + (1 − a)E = f∗(KX +B) ≡ 0,

where BY is the strict transform of B on Y . By [HMX14, Theorem 1.5], there exists a finite subset Γ0 ⊂ Γ

depending only on Γ, such that B ∈ Γ0. Possibly replacing Γ with Γ0, we may assume that Γ is finite. By

[HMX14, Theorem 1.5] again (see also the proof of [CDHJS21, Lemma 3.12]), there exists a positive real

number ϵ < 1
2 depending only on Γ such that (X,B) is (2ϵ)-lc. Thus (Y,BY + (1 − a)E) is a (2ϵ)-lc log

Calabi-Yau pair with 1 − a ≥ δ > 0. By [HM07, Corollary 1.4], each fiber of f is rationally chain connected.

Since Exc(f) = SuppE, E is uniruled. Now by [Jia21, Proposition 6.4], the pairs (Y,BY + (1 − a)E)

are log bounded modulo flops. That is, there are finitely many normal varieties Wi, an R-divisor Bi and a
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reduced divisor Ei on Wi, and a projective morphism Wi → Si, where Si is a normal variety of finite type,

and Bi, Ei do not contain any fiber of Wi → Si, such that for every (Y,BY + (1 − a)E), there is an index i,

a closed point s ∈ Si, and a small birational map g : Wi,s 99K Y such that Bi,s = g−1
∗ BY and Ei,s = g−1

∗ E.

We may assume that the set of points s corresponding to such Y is dense in each Si. We may just consider a

fixed index i and ignore the index in the following argument.

For the point s corresponding to (Y,BY + (1 − a)E),

KWs
+ g−1

∗ BY + (1 − a)g−1
∗ E ≡ f−1

∗ (KY +BY + (1 − a)E) ≡ 0

and therefore (Ws, g
−1
∗ BY + (1 − a)g−1

∗ E) is a (2ϵ)-lc log Calabi–Yau pair.

Let h : W ′ → W be a log resolution of (W,B + E), B′ the strict transforms of B on W ′, and E ′ the sum

of all h-exceptional reduced divisors and the strict transform of E on W ′. Then there exists an open dense

subset U ⊂ S such that for the point s ∈ U corresponding to (Y,BY + (1 − a)E), hs : W ′
s → Ws is a log

resolution of (Y,BY + (1 − a)E). Since (Ws, g
−1
∗ BY + (1 − a)g−1

∗ E) is (2ϵ)-lc,

KW′
s

+ B′
s + (1 − ϵ)E ′

s − h∗
s(KWs + g−1

∗ BY + (1 − a)g−1
∗ E)

is an hs-exceptional R-divisor whose support coincides with Supp E ′
s. Note that dim Ws = 3. By [HH20,

Lemma 2.10, Theorem 1.1], we may run a (KW′ +B′ +(1−ϵ)E ′)-MMP with scaling of an ample divisor over

S and reach a relative minimal model W̃ over S. For the point s ∈ U corresponding to (Y,BY + (1 − a)E),

E ′
s is contracted, and hence W̃s is isomorphic to X in codimension one. This gives a bounded family modulo

flops over U . Applying Noetherian induction on S, the family of all such X is bounded modulo flops.

Remark 5.2.9. It is possible to replace Theorem 1.2.2 with the uniform lc rational polytopes [HLS19,

Theorem 5.6] and the boundedness of indices of log Calabi-Yau threefolds [Xu19, Theorem 1.13] to conclude

mld(X,B) ≤ 1 − δ in the beginning of the proof of Theorem 1.2.12. We briefly describe the idea here. By
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[HMX14, Theorem 1.5], we may assume that Γ is a finite set. By [HLS19, Theorem 5.6], we may reduce the

theorem to the case Γ ⊂ Q. By [Xu19, Theorem 1.13], I(KX + B) is Cartier for some positive integer I

which only depends on Γ. In particular, mld(X,B) ≤ 1 − δ.
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Chapter 6

Questions and Open Problems

It would be interesting to ask if Lemmas 3.2.4 3.2.5 hold for all terminal threefolds.

Conjecture 6.0.1. Let (X ∋ x,B) be an lc threefold pair, such that X is terminal and mld(X ∋ x,B) ≥ 1.

Then there exists a prime divisor E over X ∋ x, and a divisorial contraction f : Y → X of E, such that Y

is terminal, and a(E,X,B) = mld(X ∋ x,B).

We remark that the assumption “mld(X ∋ x,B) ≥ 1” is necessary in Conjecture 6.0.1. Indeed, [KSC04,

Excerise 6.45], and [Kaw17, Example 5] show that there exists a Q-divisor B on X := C3, such that

mld(X ∋ x,B) = 0, there is exactly one prime divisor E over X ∋ x with a(E,X,B) = mld(X ∋ x,B),

and E is not obtained by a weighted blow-up. Recall that any divisorial contraction from a terminal threefold

to a smooth variety is always a weighted blow-up.

Conjecture 6.0.2 (cf. [HL20, Introduction]). Let d be a positive integer and Γ ⊂ [0, 1] a DCC set. Then

there exists a positive real number l depending only on d and Γ satisfying the following.

Assume that (X ∋ x,B) is an lc pair of dimension d such that X is Q-Gorenstein and B ∈ Γ. Then there

exists a prime divisor E over X ∋ x, such that a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) ≤ l.

[MN18, Conjecture 1.1] and [CH21, Problem 7.17] are exactly Conjecture 6.0.2 for the case when X ∋ x
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is a fixed germ and Γ is a finite set, and when X ∋ x is a fixed germ respectively. Conjecture 6.0.2 holds

when dimX = 2 [HL20, Theorem 1.2]. In this paper, we give a positive answer for terminal threefolds. A

much ambitious problem is the following.

Question 6.0.3. Let Γ ⊂ [0, 1] be a DCC set. Assume that (X ∋ x,B) is an lc pair such that X is klt near x

and mld(X ∋ x,B) > 0.

1. Will there exist a divisorial contraction f : Y → X of a prime divisor E over X ∋ x, such that

a(E,X,B) = mld(X ∋ x,B)?

2. Moreover, if B ∈ Γ, and mld(X ∋ x,B) ≥ 1, will a(E,X,B) = mld(X ∋ x,B) and a(E,X, 0) ≤ l

for some real number l depending only on dimX and Γ?

It was shown in [HLQ21, Theorem 1.1] that the lc threshold polytopes satisfy the ACC, and a conjecture

due to the first author asks whether the volumes of lc threshold polytopes satisfy the ACC. In the same fashion,

we ask the following.

Question 6.0.4 (ACC for CT-polytopes). Let d, s be positive integers, and Γ ⊆ R≥0 a DCC set. Let S be the

set of all (X,∆;D1, . . . , Ds), where

1. dimX = d, (X,∆) is canonical, and ∆ ∈ Γ, and

2. D1, . . . , Ds are R-Cartier divisors, and D1, . . . , Ds ∈ Γ.

Then

1. {P (X,∆;D1, . . . , Ds) | (X,∆;D1, . . . , Ds) ∈ S} satisfies the ACC (under the inclusion), and

2. {Vol(P (X,∆;D1, . . . , Ds)) | (X,∆;D1, . . . , Ds) ∈ S} satisfies the ACC,
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where

P (X,∆;D1, . . . , Ds) := {(t1, . . . , ts) ∈ Rs
≥0 | (X,∆ + t1D1 + . . .+ tsDs) is canonical}.
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Chapter 7

Appendix—Boundedness of Divisors
Computing Minimal Log Discrepancies
for Surfaces

We prove Theorem 1.2.4 in this chapter. We work over an algebraic closed field of arbitrary characteristic in

this chapter.

7.1 Preliminary Results

7.1.1 Arithmetic of sets

Lemma 7.1.1. Let Γ ⊆ [0, 1] be a set which satisfies the DCC, and n a non-negative integer. There exists a

positive real number γ which only depends on n and Γ, such that

{
∑

i

nibi − n > 0 | bi ∈ Γ, ni ∈ Z≥0} ⊆ [γ,+∞).

Proof. The existence of γ follows from that the set {
∑

i nibi −n | bi ∈ Γ, ni ∈ Z≥0} satisfies the DCC.

Definition 7.1.2. Let ϵ ∈ R, I ∈ R\{0}, and Γ ⊆ R a set of real numbers. We define Γϵ := ∪b∈Γ[b− ϵ, b],

and 1
I Γ := { b

I | b ∈ Γ}.
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Lemma 7.1.3. Let Γ ⊆ [0, 1] be a set which satisfies the DCC. Then there exist positive real numbers ϵ, δ ≤ 1,

such that

{
∑

i

nib
′
i − 1 > 0 | b′

i ∈ Γϵ ∩ [0, 1], ni ∈ Z≥0} ⊆ [δ,+∞).

Proof. We may assume that Γ \ {0} ≠ ∅, otherwise we may take ϵ = δ = 1.

Since Γ satisfies the DCC, by Lemma 7.1.1, there exists a real number γ ∈ (0, 1] such that Γ\{0} ⊆ (γ, 1],

and {
∑

i nibi − 1 > 0 | ni ∈ Z≥0, bi ∈ Γ} ⊆ [γ,+∞). It suffices to prove that there exist 0 < ϵ, δ < γ
2 ,

such that the set {
∑

i nib
′
i − 1 ∈ (0, 1] | b′

i ∈ Γϵ ∩ [0, 1], ni ∈ Z≥0} is bounded from below by δ, or

equivalently

{
∑

i

nib
′
i − 1 > 0 | b′

i ∈ Γϵ ∩ [0, 1], ni ∈ Z≥0,
∑

i

ni ≤ 4
γ

} ⊆ [δ,+∞).

We claim that ϵ = γ2

8 , δ = γ
2 have the desired property. Let b′

i ∈ Γϵ ∩ [0, 1] and ni ∈ Z≥0, such that∑
i nib

′
i − 1 > 0 and

∑
i ni ≤ 4

γ . We may find bi ∈ Γ, such that 0 ≤ bi − b′
i ≤ ϵ for any i. In particular,∑

i nibi − 1 > 0. By the choice of γ,
∑

i nibi − 1 ≥ γ. Thus

∑
i

nib
′
i − 1 = (

∑
i

nibi − 1) −
∑

i

ni(bi − b′
i) ≥ γ − 4

γ
ϵ = γ

2 ,

and we are done.

We will use the following lemma frequently without citing it in this article.

Lemma 7.1.4. Let Γ ⊆ [0, 1] be a set, and γ ∈ (0, 1] be a real number. If {
∑

i nibi − 1 > 0 | bi ∈ Γ, ni ∈

Z≥0} ⊆ [γ,+∞), then Γ \ {0} ⊆ [γ, 1].

Proof. Otherwise, we may find b ∈ Γ, such that 0 < b < γ. Then 0 < (⌊ 1
b ⌋ + 1) · b − 1 ≤ b < γ, a

contradiction.
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7.1.2 Minimal resolution

LetX be a normal quasi-projective surface and x ∈ X a closed point. Then a birational morphism f : Y → X

(respectively f : Y → X ∋ x) is called a minimal resolution of X (respectively X ∋ x) if Y is smooth

(respectively smooth over a neighborhood of x ∈ X) and there is no (−1)-curve on Y (respectively over a

neighborhood of x ∈ X).

Note that the existence of resolutions of singularities for surfaces (see [Lip18]) and the minimal model

program for surfaces (see [Tan14] and [Tan18]) are all known in positive characteristic. In particular, for

any surface X (respectively surface germ X ∋ x), we can construct a minimal resolution f̃ : X̃ → X

(respectively f̃ : X̃ → X ∋ x).

Definition 7.1.5. Let f̃ : X̃ → X ∋ x be the minimal resolution of X ∋ x, and we may write K
X̃

+B
X̃

+∑
i(1 − ai)Ei = f̃∗(KX +B), where B

X̃
is the strict transform of B, Ei are f̃ -exceptional prime divisors

and ai := a(Ei, X,B) for all i. The partial log discrepancy of (X ∋ x,B), pld(X ∋ x,B), is defined as

follows.

pld(X ∋ x,B) :=
{

mini{ai} if x ∈ X is a singular point,
+∞ if x ∈ X is a smooth point.

7.1.3 Dual graphs

Definition 7.1.6 (c.f. [KM98, Definition 4.6]). Let C = ∪iCi be a collection of proper curves on a smooth

surface U . We define the dual graph DG of C as follows.

1. The vertices of DG are the curves Cj .

2. Each vertex is labelled by the negative self intersection of the corresponding curve on U , we call it the

weight of the vertex (curve).

3. The vertices Ci, Cj are connected with Ci · Cj edges.
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Let f : Y → X ∋ x be a projective birational morphism with exceptional divisors {Ei}1≤i≤m, such that

Y is smooth. Then the dual graph DG of f is defined as the dual graph of E = ∪1≤i≤mEi. In particular, DG

is a connected graph.

Definition 7.1.7. A cycle is a graph whose vertices and edges can be ordered v1, . . . , vm and e1, . . . , em

(m ≥ 2), such that ei connects vi and vi+1 for 1 ≤ i ≤ m, where vm+1 = v1.

Let DG be a dual graph with vertices {Ci}1≤i≤m. We call DG a tree if

1. DG does not contain a subgraph which is a cycle, and

2. Ci · Cj ≤ 1 for all 1 ≤ i ̸= j ≤ m.

Moreover, if C is a vertex of DG that is adjacent to more than three vertices, then we call C a fork of DG. If

DG contains no fork, then we call it a chain.

Lemma 7.1.8. Let X ∋ x be a surface germ. Let Y, Y ′ be smooth surfaces, and let f : Y → X ∋ x and

f ′ : Y ′ → X ∋ x be two projective birational morphisms, such that f ′ factors through f .

Y ′

g

→→

f ′
↘↘

Y

f

↓↓

X ∋ x

If the dual graph of f is a tree whose vertices are all smooth rational curves, then the dual graph of f ′ is a

tree whose vertices are all smooth rational curves.

Proof. Let g : Y ′ → Y be the projective birational morphism such that f ◦ g = f ′. Since g is a composition

of blow-ups at smooth closed points, by inducion on the number of blow-ups, we may assume that g is a

single blow-up of Y at a smooth closed point y ∈ Y .
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Let E′ be the g-exceptional divisor on Y ′, {Ei}1≤i≤m the set of distinct exceptional curves of f on

Y , and {E′
i}1≤i≤m their strict transforms on Y ′. By assumption E′

i · E′
j ≤ g∗Ei · E′

j = Ei · Ej ≤ 1 for

1 ≤ i ̸= j ≤ m. Since Ei is smooth, 0 = g∗Ei · E′ ≥ (E′
i + E′) · E′. It follows that E′ · E′

i ≤ 1 for

1 ≤ i ≤ m.

If the dual graph of f ′ contains a cycle, then E′ must be a vertex of this cycle. Let E′, E′
i1
, . . . , E′

ik
be

the vertices of this cycle, 1 ≤ k ≤ m. Then the vertex-induced subgraph by Ei1 , . . . , Eik
of the dual graph

of f is a cycle, a contradiction.

The following lemma maybe well-known to experts. For the reader’s convenience, we include the proof

here.

Lemma 7.1.9. Let ϵ0 ∈ (0, 1] be two real numbers. Let (X ∋ x,B) be an lc surface germ, Y a smooth

surface, and f : Y → X ∋ x a projective birational morphism with the dual graph DG. Let {Ek}1≤k≤m be

the set of vertices of DG, and wk := −Ek ·Ek, ak := a(Ek, X,B) for each k. Suppose that ak ≤ 1 for any

1 ≤ k ≤ m, then we have the following:

1. wk ≤ 2
ak

if ak > 0, and in particular, wk ≤ 2
ϵ0

for 1 ≤ k ≤ m if mld(X ∋ x,B) ≥ ϵ0.

2. If wk ≥ 2 for some k, then for any Ek1 , Ek2 which are adjacent to Ek, we have 2ak ≤ ak1 + ak2 .

Moreover, if the equality holds, then f−1
∗ B · Ek = 0, and either wk = 2 or ak = ak1 = ak2 = 0.

3. If Ek0 is a fork, then for any Ek1 , Ek2 , Ek3 which are adjacent to Ek0 with wki
≥ 2 for 0 ≤ i ≤ 2,

ak3 ≥ ak0 . Moreover, if the equality holds, then wki
= 2 and f−1

∗ B · Eki
= 0 for 0 ≤ i ≤ 2.

4. Let Ek0 , Ek1 , Ek2 be three vertices, such that Ek1 , Ek2 are adjacent to Ek0 . Assume that ak1 ≥ ak2 ,

ak1 ≥ ϵ0, and wk0 ≥ 3, then ak1 − ak0 ≥ ϵ0
3 .
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5. If Ek0 is a fork, and there exist three vertices Ek1 , Ek2 , Ek3 which are adjacent to Ek0 with wki ≥ 2

for 0 ≤ i ≤ 3, then a(E,X,B) ≥ ak0 for any vertex E of DG.

6. Let {Eki
}0≤i≤m′ be a set of distinct vertices such that Eki

is adjacent to Eki+1 for 0 ≤ i ≤ m′ − 1,

where m′ ≥ 2. If ak0 = akm′ = mld(X ∋ x,B) > 0 and wki ≥ 2 for 1 ≤ i ≤ m′ − 1, then

ak0 = ak1 = · · · = akm′ and wki
= 2 for 1 ≤ i ≤ m′ − 1.

Proof. For (1), we may write

KY + f−1
∗ B +

∑
1≤i≤m

(1 − ai)Ei = f∗(KX +B).

For each 1 ≤ k ≤ m, we have

0 = (KY + f−1
∗ B +

∑
1≤i≤m

(1 − ai)Ei) · Ek,

or equivalently,

akwk = 2 − 2pa(Ek) −
∑
i ̸=k

(1 − ai)Ei · Ek − f−1
∗ B · Ek. (7.1.1)

So akwk ≤ 2, and wk ≤ 2
ak

.

For (2), by (7.1.1),

2ak ≤ akwk ≤ ak1 + ak2 − f−1
∗ B · Ek ≤ ak1 + ak2 .

If 2ak = ak1 + ak2 , then f−1
∗ B · Ek = 0, and either wk = 2 or ak = ak1 = ak2 = 0.

For (3), let k = ki in (7.1.1) for i = 1, 2,

aki
wki

≤ 1 + ak0 − (
∑

j ̸=k0,ki

(1 − aj)Ej · Eki
+ f−1

∗ B · Eki
) ≤ 1 + ak0 ,
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or aki ≤ 1+ak0
wki

. Thus let k = k0 in (7.1.1), we have

ak3 ≥ak0wk0 + 1 − ak1 − ak2 + f−1
∗ B · Ek0

≥ak0(wk0 − 1
wk1

− 1
wk2

) + (1 − 1
wk1

− 1
wk2

) ≥ ak0 .

If the equality holds, then wki = 2 and f−1
∗ B · Ei = 0 for 0 ≤ i ≤ 2.

For (4), by (7.1.1), we have ak0wk0 ≤ ak1 +ak2 −d, where d := f−1
∗ B·Ek0 +

∑
j ̸=k1,k2,k0

(1−aj)Ej ·Ek0 .

Hence

ak1 − ak0 ≥ (wk0 − 1)ak1 − ak2 + d

wk0

≥ (wk0 − 2)ak1

wk0

≥ ϵ0
3 .

For (5), we may assume that E ̸= Ek0 . There exist m′ + 1 distinct vertices {Fi}0≤i≤m′ of DG, such that

• F0 = Ek0 , Fm′ = E, and

• Fi is adjacent to Fi+1 for 0 ≤ i ≤ m′ − 1.

Denote a′
i := a(Fi, X,B) for 0 ≤ i ≤ m′. By (3), we have a′

1 ≥ a′
0, and by (2), a′

i+1 − a′
i ≥ a′

i − a′
i−1 for

1 ≤ i ≤ m′ − 1. Thus a′
m − a′

0 ≥ 0.

For (6), by (2) ak0 ≤ ak1 ≤ . . . ≤ akm′−1 ≤ akm′ . Thus ak0 = . . . = akm′ . By (2) again, wki
= 2 for

1 ≤ i ≤ m′ − 1.

Lemma 7.1.10. Let (X ∋ x,B) be an lc surface germ. Let Y be a smooth surface and f : Y → X ∋ x a

birational morphism with the dual graph DG. If DG contains a (−1)-curve E0, then

1. E0 can not be adjacent to two (−2)-curves in DG,
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2. if either mld(X ∋ x,B) ̸= pld(X ∋ x,B) or mld(X ∋ x,B) > 0, then E0 is not a fork in DG, and

3. if E,E0, . . . , Em are distinct vertices of DG such that E is adjacent to E0, Ei is adjacent to Ei+1 for

0 ≤ i ≤ m− 1, and −Ei · Ei = 2 for 1 ≤ i ≤ m, then m+ 1 < −E · E = w.

w 1 2 2

Proof. For (1), if E0 is adjacent to two (−2)-curves Ek1 and Ek2 in DG, then we may contract E0 and

get a smooth model f ′ : Y ′ → X ∋ x over X , whose dual graph contains two adjacent (−1)-curves, this

contradicts the negativity lemma.

By [KM98, Theorem 4.7] and the assumptions in (2), the dual graph of the minimal resoltion of X ∋ x

is a tree. If E0 is a fork, we may contract E0 and get a smooth model f ′ : Y ′ → X ∋ x, whose dual graph

contains a cycle, this contradicts Lemma 7.1.8.

For (3), we will construct a sequence of contractions of (−1)-curveX0 := X → X1 → . . . Xm → Xm+1

inductively. Let EXk
be the strict transform of E on Xk, and wXk

:= −EXk
· EXk

. For simplicity, we will

always denote the strict transform of Ek on Xj by Ek for all k, j. Let f1 : X0 → X1 be the contraction

of E0 on X0, then wX1 = w − 1, and E1 · E1 = −1 on X1. Let f2 : X1 → X2 be the contraction of

E1 on X1, then wX2 = wX1 − 1 = w − 2, and E2 · E2 = −1 on X2. Repeating this procedure, we have

fk : Xk−1 → Xk the contraction of Ek−1, and wXk
= w− k, Ek ·Ek = −1 on Xk for 1 ≤ k ≤ m+ 1. By

the negativity lemma, wXm+1 = w − (m+ 1) > 0, and we are done.

Lemma 7.1.11. Let γ ∈ (0, 1] be a real number. Let (X ∋ x,B :=
∑

i biBi) be an lc surface germ, where

Bi are distinct prime divisors. Let Y be a smooth surface and f : Y → X ∋ x a birational morphism with

the dual graph DG. Let {Ek}0≤k≤m be a vertex-induced sub-chain of DG, such that Ek is adjacent to Ek+1

for 0 ≤ k ≤ m− 1, and let wk := −Ek · Ek, ak := a(Ek, X,B) for all k. Suppose that w0 = 1, and E0 is
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adjacent to only one vertex E1 of DG, ak ≤ 1, and wk ≥ 2 for each k ≥ 1, then

1. if {
∑

i nibi − 1 > 0 | ni ∈ Z≥0} ⊆ [γ,+∞), and a0 < a1, then m ≤ 1
γ ,

2. if
∑

i nibi − 1 ̸= 0 for all ni ∈ Z≥0, and a0 ≤ a1, then a0 < a1, and

3. if {
∑

i nibi − 1 ≥ 0 | ni ∈ Z≥0} ⊆ [γ,+∞), and a0 ≤ a1, then m ≤ 1
γ .

1 w1 w2 wm

Proof. We may write KY + f−1
∗ B +

∑
i(1 − ai)Ei = f∗(KX +B), then

−2 + f−1
∗ B · E0 + w0a0 +

∑
i ̸=0

(1 − ai)Ei · E0 = 0. (7.1.2)

Since E0 is adjacent to only one vertex E1 of DG, by (7.1.2) we have

a1 − a0 = f−1
∗ B · E0 − 1.

For (1), since 1 ≥ a1 > a0, it follows that f−1
∗ B ·E0 − 1 ∈ {

∑
i nibi − 1 > 0 | ni ∈ Z≥0} ⊆ [γ,+∞),

Thus a1 − a0 ≥ γ. By Lemma 7.1.9(2), we have ai+1 − ai ≥ a1 − a0 ≥ γ for any 0 ≤ i ≤ m − 1, and

1 ≥ am ≥ γm. So m ≤ 1
γ .

For (2), since f−1
∗ B · E0 − 1 =

∑
i nibi − 1 ̸= 0 for some ni ∈ Z≥0, a0 < a1.

(3) follows immediately from (1) and (2).

7.1.4 Extracting divisors computing mlds

We first simplify our notions.

Definition 7.1.12. Let X ∋ x be a smooth surface germ. We say Xn → Xn−1 → · · · → X1 → X0 := X is

a sequence of blow-ups with the data (fi, Fi, xi ∈ Xi) if
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• fi : Xi → Xi−1 is the blow-up of Xi−1 at a closed point xi−1 ∈ Xi−1 with the exceptional divisor Fi

for any 1 ≤ i ≤ n, where x0 := x, and

• xi ∈ Fi for any 1 ≤ i ≤ n− 1.

In particular, Fn is the only exceptional (−1)-curve over X .

For convenience, we will always denote the strict transform of Fi on Xj by Fi for any n ≥ j ≥ i.

The following lemma is well known. For a proof, see for example, [HL20, Lemma 3.15].

Lemma 7.1.13. Let (X ∋ x,B) be an lc surface germ such that mld(X ∋ x,B) > 1, then mld(X ∋

x,B) = 2 − multx B, and there is exactly one prime divisor E over X ∋ x such that a(E,X,B) =

mld(X ∋ x,B).

Lemma 7.1.14 ([MN18, Lemma 4.2]). Let X ∋ x be a smooth surface germ, and Xl0 → · · · → X1 →

X0 := X a sequence of blow-ups with the data (fi, Ei, xi ∈ Xi), then a(El0 , X, 0) ≤ 2l0 .

Now we will construct some birational models for surfaces.

Lemma 7.1.15. Let (X ∋ x,B) be an lc surface germ. Let h : W → (X,B) be a log resolution, and

S = {Ej} a finite set of valuations of h-exceptional prime divisors over X ∋ x such that a(Ej , X,B) ≤ 1

for all j. Then there exist a smooth surface Y and a projective birational morphism f : Y → X ∋ x with the

following properties.

1. KY +BY = f∗(KX +B) for some R-divisor BY ≥ 0 on Y ,

2. each valuation in S corresponds to some f -exceptional divisor on Y , and

3. each f -exceptional (−1)-curve corresponds to some valuation in S.
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Proof. We may write

KW +BW = h∗(KX +B) + FW ,

where BW ≥ 0 and FW ≥ 0 are R-divisors with no common components. We construct a sequence of

(KW +BW )-MMP over X as follows. Each time we will contract a (−1)-curve whose support is contained

in FW . Suppose that KW + BW is not nef over X , then FW ̸= 0. By the negativity lemma, there exists

a h-exceptional irreducible curve C ⊆ SuppFW , such that FW · C = (KW + BW ) · C < 0. Since

BW · C ≥ 0, KW · C < 0. Thus C is a h-exceptional (−1)-curve. We may contract C, and get a smooth

surface Y0 := W → Y1 overX . We may continue this process, and finally reach a smooth model Yk on which

KYk
+BYk

is nef over X , where BYk
is the strict transform of BW on Yk. By the negativity lemma, FW is

contracted in the MMP, thus KYk
+BYk

= h∗
k(KX +B), where hk : Yk → X . Since a(Ej , X,B) ≤ 1, Ej

is not contracted in the MMP for any Ej ∈ S.

We now construct a sequence of smooth models over X , Yk → Yk+1 → · · · , by contracting a curve C ′

satisfying the following conditions in each step.

• C ′ is an exceptional (−1)-curve over X , and

• C ′ /∈ S.

Since each time the Picard number of the variety will drop by one, after finitely many steps, we will reach a

smooth model Y over X , such that f : Y → X and (Y,BY ) satisfy (1)–(3), where BY is the strict transform

of BYk
on Y .

We will need Lemma 7.1.16 to prove our main results. It maybe well known to experts. Lemma 7.1.16(1)–

(4) could be proved by constructing a sequence of blow-ups (c.f. [CH21, Lemma 4.3]). We give another proof

here.

We remark that Lemma 7.1.16(5) will only be applied to prove Theorem 1.2.4.
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Lemma 7.1.16. Let (X ∋ x,B) be an lc surface germ such that 1 ≥ mld(X ∋ x,B) ̸= pld(X ∋ x,B).

There exist a smooth surface Y and a projective birational morphism f : Y → X with the dual graph DG,

such that

1. KY +BY = f∗(KX +B) for some R-divisor BY ≥ 0 on Y ,

2. there is only one f -exceptional divisor E0 such that a(E0, X,B) = mld(X ∋ x,B),

3. E0 is the only (−1)-curve of DG, and

4. DG is a chain.

Moreover, if X ∋ x is not smooth, let f̃ : X̃ → X ∋ x be the minimal resolution of X ∋ x, and let

g : Y → X̃ be the morphism such that f̃ ◦ g = f , then

(5) there exist a f̃ -exceptional prime divisor Ẽ on X̃ and a closed point x̃ ∈ Ẽ, such that a(Ẽ,X,B) =

pld(X ∋ x,B), and center
X̃
E = x̃ for all g-exceptional divisors E.

Proof. By Lemma 7.1.15, we can find a smooth surface Y0 and a birational morphism h : Y0 → X ∋ x, such

that a(E′
0, X,B) = mld(X ∋ x,B) for some h-exceptional divisor E′

0, and KY0 +BY0 = h∗(KX +B) for

some BY0 ≥ 0 on Y0.

We now construct a sequence of smooth models over X , Y0 → Y1 → · · · , by contracting a curve C ′

satisfying the following conditions in each step.

• C ′ is an exceptional (−1)-curve over X , and

• there exists C ′′ ̸= C ′ over X , such that a(C ′′, X,B) = mld(X ∋ x,B).

Since each time the Picard number of the variety will drop by one, after finitely many steps, we will reach a

smooth model Y over X , such that f : Y → X and (Y,BY ) satisfy (1), where BY is the strict transform of
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BY0 on Y . Since mld(X ∋ x,B) ̸= pld(X ∋ x,B), by the construction of Y , there exists a curve E0 on Y

satisfying (2)–(3).

For (4), by [KM98, Theorem 4.7], the dual graph of the minimal resolution f̃ : X̃ → X ∋ x is a tree

whose vertices are smooth rational curves. Since Y is smooth, f factors through f̃ . By Lemma 7.1.8, the dual

graph DG of f is a tree whose vertices are smooth rational curves. It suffices to show that there is no fork

in DG. By Lemma 7.1.10(2), E0 is not a fork. Suppose that DG contains a fork E′ ̸= E0, by (3) and (5) of

Lemma 7.1.9, we have a(E′, X,B) ≤ a(E0, X,B), this contradicts (2). Thus DG is a chain.

For (5), since there exists only one f -exceptional (−1)-curve, there is at most one closed point x̃ ∈ X̃ ,

such that center
X̃
E = x̃ for all g-exceptional divisors E. Thus the dual graph of g, which is denoted by

DG′, is a vertex-induced connected sub-chain of DG by all g-exceptional divisors. Since mld(X ∋ x,B) ̸=

pld(X ∋ x,B), we have DG′ ⊊ DG.

E−n1 E−n′
1−1 E−n′

1
E0

center at x̃ ∈ X̃DG′

En′
2

En′
2+1 En2

Figure 7.1: The dual graph of f

We may index the vertices of DG as {Ei}−n1≤i≤n2 for n1, n2 ∈ Z≥0, such that Ei is adjacent to Ei+1,

and ai := a(Ei, X,B) for all possible i. We may assume that the set of vertices of DG′ is {Ej}−n′
1≤j≤n′

2
,

where 0 ≤ n′
1 ≤ n1 and 0 ≤ n′

2 ≤ n2 (see Figure 7.1). If n1 > n′
1, then by Lemma 7.1.9(2), ak −

a−n′
1−1 ≥ min{0, a−1 − a0} ≥ 0 for all −n1 ≤ k < −n′

1. If n2 > n′
2, then again by Lemma 7.1.9(2),

ak′ − an′
2+1 ≥ min{0, a1 − a0} ≥ 0 for all n′

2 < k′ ≤ n2. Set a−n1−1 = 1, E−n1−1 = E−n1 if

n1 = n′
1, and set an2+1 = 1, En2+1 = En2 if n2 = n′

2. Then min{an2+1, a−n1−1} = pld(X ∋ x,B), and

x̃ = g(E−n′
1−1) ∩ g(En2+1) ∈ Ẽ, where a(Ẽ,X,B) = pld(X ∋ x,B).

The following lemma gives an upper bound for number of vertices of certain kind of DG constructed in
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Lemma 7.1.16, with the additional assumption that mld(X ∋ x,B) is bounded from below by a positive real

number.

Lemma 7.1.17. Let ϵ0 ∈ (0, 1] be a real number. Then N ′
0 := ⌊ 8

ϵ0
⌋ satisfies the following properties.

Let (X ∋ x,B :=
∑
biBi) be an lc surface germ such that mld(X ∋ x,B) ≥ ϵ0, where Bi are distinct

prime divisors. Let Y be a smooth surface, and f : Y → X ∋ x a birational morphism with the dual graph

DG, such that

• KY +BY = f∗(KX +B) for some R-divisor BY ≥ 0 on Y ,

• DG is a chain with only one (−1)-curve E0,

• a(E0, X,B) = mld(X ∋ x,B), and

• E0 is adjacent to two vertices of DG.

Then the number of vertices of DG is bounded from above by N ′
0.

Proof. Let {Ei}−n1≤i≤n2 be the vertices of DG, such that Ei is adjacent to Ei+1 for −n1 ≤ i ≤ n2 −1, and

wi := −(Ei · Ei), ai := a(Ei, X,B) for all i. We may assume that E0 is adjacent to two vertices E−1, E1

of DG.
w−n1

≤ 3
ϵ0

w−1 1 2

(−2)-curves

2 wn′+1

≤ 3
ϵ0

wn2

By Lemma 7.1.10(1), we may assume that w−1 > 2. By (2) and (4) of Lemma 7.1.9, ai−1 − ai ≥ ϵ0
3 for

any −n1 + 1 ≤ i ≤ −1, and a−1 ≥ ϵ0
3 . Since a−n1 ≤ 1, n1 ≤ 3

ϵ0
. Similarly, n2 − n′ ≤ 3

ϵ0
, where n′ is the

largest non-negative integer such that wi = 2 for any 1 ≤ i ≤ n′. By Lemma 7.1.9(1), w−1 ≤ 2
ϵ0

, and by

Lemma 7.1.10(3), n′ < 2
ϵ0

− 1. Hence n1 + n2 + 1, the number of vertices of DG, is bounded from above by

8
ϵ0

.
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7.2 Proof of Theorem 1.2.4

7.2.1 Smooth case

The goal in this subsection is to prove a modified version of Theorem 1.2.4 with an additional assumption

that the germ x ∈ X is smooth while the coefficient set is larger.

Theorem 7.2.1. Let γ ∈ (0, 1] be a real number. Then N0 := ⌊1 + 32
γ2 + 1

γ ⌋ satisfies the following.

Let (X ∋ x,B :=
∑

i biBi) be an lc surface germ, where X ∋ x is smooth, and Bi are distinct prime

divisors. Suppose that {
∑

i nibi − 1 > 0 | ni ∈ Z≥0} ⊆ [γ,+∞). Then there exists a prime divisor E over

X such that a(E,X,B) = mld(X ∋ x,B), and a(E,X, 0) ≤ 2N0 .

Lemma 7.2.2 is crucial in the proof of Theorem 7.2.1. Before providing the proof, we introduce some

notations first.

Notation (⋆). Let X ∋ x be a smooth surface germ, and let g : Xn → Xn−1 → · · · → X1 → X0 := X be

a sequence of blow-ups with the data (fi, Fi, xi ∈ Xi). Let DG be the dual graph of g, and assume that DG

is a chain.

Let n3 ≥ 2 be the largest integer, such that xi ∈ Fi \Fi−1 for any 1 ≤ i ≤ n3 − 1, where we set F0 := ∅.

Let {Ej}−n1≤j≤n2 be the vertices of DG, such that E0 := Fn is the only g-exceptional (−1)-curve on Xn,

En2 := F1, and Ei is adjacent to Ei+1 for any −n1 ≤ i ≤ n2 − 1(see Figure 7.2).

E−n1

Fn3

E−1 E0 E1

Fn3−1

En2

F1

Figure 7.2: The dual graph of g

We define ni(g) := ni for 1 ≤ i ≤ 3, n(g) = n, wj(g) := −Ej ·Ej for all j, andW1(g) :=
∑

j<0 wj(g)

and W2(g) :=
∑

j>0 wj(g).
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Lemma 7.2.2. With Notation (⋆). Then

(W1(g) − n1(g)) + n3(g) − 1 = W2(g) − n2(g). (7.2.1)

In particular, n(g) = n1(g) + n2(g) + 1 ≤ n3(g) + min{W1(g),W2(g)}.

Proof. For simplicity, let n := n(g), ni := ni(g) for 1 ≤ i ≤ 3, wj := wj(g) = −Ej · Ej for all j, and

Wj := Wj(g) for j = 1, 2.

We prove (7.2.1) by induction on the non-negative integer n− n3.

1

Fn3

2

Fn3−1

2

F2

2

F1

2

Fn3

1

Fn3−1

3 2 2

F1

Figure 7.3: The dual graph for the case n = n3 and n = n3 + 1.

If n = n3, then n1 = W1 = 0, n2 = n3 − 1, and W2 = 2n3 − 2, thus (7.2.1) holds (see Figure 7.3). If

n = n3 + 1, then xn3 ∈ Fn3 ∩ Fn3−1. In this case, n1 = 1, W1 = 2, n2 = n3 − 1, and W2 = 2n3 − 1, thus

(7.2.1) holds (see Figure 7.3).

In general, suppose (7.2.1) holds for any sequence of blow-ups g as in Notation (⋆) with positive integers

n, n3 satisfying 1 ≤ n−n3 ≤ k. For the case when n−n3 = k+ 1, we may contract the (−1)-curve on Xn,

and consider g′ : Xn−1 → · · · → X0 := X , a subsequence of blow-ups of g with the data (fi, Fi, xi ∈ Xi)

for 0 ≤ i ≤ n − 1. Denote n′
i := ni(g′) for any 1 ≤ i ≤ 3, and W ′

j := Wj(g′) for any 1 ≤ j ≤ 2. By

Lemma 7.1.10(1), either w−1 = 2 or w1=2. In the former case, W ′
1 = W1 − 2,W ′

2 = W2 − 1, n′
1 = n1 − 1,

n′
2 = n2, and n′

3 = n3. In the latter case, W ′
1 = W1 −1,W ′

2 = W2 −2, n′
1 = n1, n

′
2 = n2 −1, and n′

3 = n3.

In both cases, by induction,

W ′
2 − n′

2 − (W ′
1 − n′

1) = (W2 − n2) − (W1 − n1) = n3 − 1.
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Hence we finish the induction, and (7.2.1) is proved.

Since wj ≥ 2 for j ̸= 0, we have W1 =
∑

−n1≤j≤−1 wj ≥ 2n1 and W2 =
∑

1≤j≤n2
wj ≥ 2n2. By

(7.2.1),

n1 + n2 + 1 ≤ n1 +W2 − n2 + 1 = W1 + n3,

and

n1 + n2 + 1 ≤ W1 − n1 + n2 + n3 − 1 = W2,

which imply that n = n1 + n2 + 1 ≤ n3 + min{W1,W2}.

We will need Lemma 7.2.3 to prove Theorems 7.2.1.

Lemma 7.2.3. Let γ ∈ (0, 1] be a real number. Let N0 := ⌊1 + 32
γ2 + 1

γ ⌋, then we have the following.

Let (X ∋ x,B :=
∑

i biBi) be an lc surface germ, such that X ∋ x is smooth, and Bi are distinct

prime divisors. Suppose that {
∑

i nibi − 1 > 0 | ni ∈ Z≥0} ⊆ [γ,+∞). Let Y be a smooth surface and

f : Y → X ∋ x be a birational morphism with the dual graph DG, such that

• KY +BY = f∗(KX +B) for some BY ≥ 0 on Y ,

• DG is a chain that contains only one (−1)-curve E0,

• E0 is adjacent to two vertices of DG, and

• either E0 is the only vertex of DG such that a(E0, X,B) = mld(X ∋ x,B), or a(E0, X,B) =

mld(X ∋ x,B) > 0 and
∑

i nibi ̸= 1 for all ni ∈ Z≥0.

Then the number of vertices of DG is bounded from above by N0.

Proof. By Lemma 7.1.4, bi ≥ γ for all i.
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If mld(X ∋ x,B) ≥ γ
2 , then by Lemma 7.1.17 with ϵ0 = γ

2 , the number of vertices of DG is bounded

from above by 16
γ .

Thus we may assume that 0 ≤ mld(X ∋ x,B) ≤ γ
2 . We may index the vertices of DG as {Ej}−n1≤j≤n2

for some positive integer n1, n2, where Ej is adjacent to Ej+1 for −n1 ≤ j ≤ n2 − 1. Let wj := −Ej · Ej

and aj := a(Ej , X ∋ x,B) for all j.

For all −n1 ≤ k ≤ n2, we have

(KY + f−1
∗ B +

∑
j

(1 − aj)Ej) · Ek = f∗(KX +B) · Ek = 0. (7.2.2)

Let k = 0, (7.2.2) becomes 0 = −2 + f−1
∗ B · E0 + (1 − a−1) + (1 − a1) + w0a0, thus

(a1 − a0) + (a−1 − a0) = f−1
∗ B · E0 − a0.

By the last assumption in the lemma, either (a−1 − a0) + (a1 − a0) > 0 or a0 > 0, thus f−1
∗ B ·E0 > 0

in both cases. Hence f−1
∗ B · E0 − a0 ≥ γ − γ

2 = γ
2 . Possibly switching Ej (j < 0) with Ej (j > 0), we

may assume that a−1 − a0 ≥ γ
4 .

By Lemma 7.1.9(2), a−j − a−j+1 ≥ a−1 − a0 ≥ γ
4 for 1 ≤ j ≤ n1, thus n1 · γ

4 ≤ a−n1 ≤ 1, and

n1 ≤ 4
γ . Since aj ≥ γ

4 for all −n1 ≤ j ≤ −1, by Lemma 7.1.9(1), wj ≤ 8
γ for all −n1 ≤ j ≤ −1.

Thus
∑−n1

j=−1 wj ≤ n1 · 8
γ ≤ 32

γ2 . Note that X ∋ x is smooth and DG has only one (−1)-curve, thus

f : Y → X is a sequence of blow-ups as in Definition 7.1.12. Moreover, DG is a chain, thus by Lemma

7.2.2, 1 + n1 + n2 ≤ n3 + 32
γ2 , where n3 = n3(f) is defined as in Notation (⋆).

It suffices to show that n3 is bounded, we may assume that n3 > 2. By the definition of n3, there exists a

sequence of blow-ups Xn3 → . . . X1 → X0 := X with the data (fi, Fi, xi ∈ Xi), such that xi ∈ Fi \ Fi−1

for any 1 ≤ i ≤ n3 − 1. Here F0 := ∅.

Let BXi
be the strict transform of B on Xi for 0 ≤ i ≤ n3, and let a′

i := a(Fi, X,B) for 1 ≤ i ≤ n3,
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and a′
0 := 1. Since xi ∈ Fi \ Fi−1, a′

i − a′
i+1 = multxiBXi − 1 for any n3 − 1 ≥ i ≥ 0. By Lemma

7.1.9(2), a′
i − a′

i+1 ≥ min{a1 − a0, a−1 − a0} ≥ 0 for 1 ≤ i ≤ n3 − 2 (see Figure 7.2). Thus by the last

assumption in the lemma, either min{a1 − a0, a−1 − a0} > 0, or multxi
BXi

− 1 > 0, in both cases we

have a′
i − a′

i+1 = multxiBXi − 1 > 0. Hence a′
i − a′

i+1 = multxiBXi − 1 ≥ γ for any 1 ≤ i ≤ n3 − 2 as

{
∑

i nibi − 1 > 0 | ni ∈ Z≥0} ⊆ [γ,+∞). Therefore,

0 ≤ a′
n3−1 = a′

0 +
n3−2∑
i=0

(a′
i+1 − a′

i) ≤ 1 − (n3 − 1)γ,

and n3 ≤ 1 + 1
γ .

To sum up, the number of vertices of DG is bounded from above by ⌊1 + 32
γ2 + 1

γ ⌋.

Now we are ready to prove Theorem 7.2.1.

Proof of Theorem 7.2.1. By Lemma 7.1.13, we may assume that mld(X ∋ x,B) ≤ 1.

Let f : Y → X ∋ x be the birational morphism constructed in Lemma 7.1.16 with the dual graph DG.

We claim that the number of vertices of DG is bounded from above by N0 := ⌊1 + 32
γ2 + 1

γ ⌋.

Assume the claim holds, then by Lemma 7.1.14, a(E,X, 0) ≤ 2N0 for some exceptional divisor E such

that a(E,X,B) = mld(X ∋ X,B), we are done. It suffices to show the claim.

If the f -exceptional (−1)-curve is adjacent to only one vertex of DG, then by Lemma 7.1.11(1), the

number of vertices of DG is bounded from above by 1 + 1
γ .

If the f -exceptional (−1)-curve is adjacent to two vertices of DG, then by Lemma 7.2.3, the number of

vertices of DG is bounded from above by ⌊1 + 32
γ2 + 1

γ ⌋. Thus we finish the proof.
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7.2.2 General case

The following result is known as the ACC for PLDs (for surfaces), and it plays an important role in the proof

of Theorem 1.2.4.

Theorem 7.2.4 ([Ale93, Theorem 3.2],[HL20, Theorem 2.2]). Let Γ ⊆ [0, 1] be a set which satisfies the

DCC. Then

Pld(2,Γ) := {pld(X ∋ x,B) | (X ∋ x,B) is lc,dimX = 2, B ∈ Γ},

satisfies the ACC.

Proof of Theorem 1.2.4. We may assume that Γ \ {0} ≠ ∅.

Let (X ∋ x,B) be an lc surface germ with B ∈ Γ. By Lemma 7.1.13, we may assume that mld(X ∋

x,B) ≤ 1. By Theorem 7.2.1, it suffices to show the case when X ∋ x is not smooth.

If mld(X ∋ x,B) = pld(X ∋ x,B), then a(E,X, 0) ≤ 1 for some prime divisor E over X ∋ x such

that a(E,X,B) = mld(X ∋ x,B). So we may assume that mld(X ∋ x,B) ̸= pld(X ∋ x,B).

By Lemma 7.1.16, there exists a birational morphism f : Y → X ∋ x which satisfies Lemma 7.1.16(1)–

(5). Let f̃ : X̃ → X be the minimal resolution of X ∋ x, g : Y → X̃ ∋ x̃ the birational morphism such that

f̃ ◦ g = f , where x̃ ∈ X̃ is chosen as in Lemma 7.1.16(5), and there exists a f̃ -exceptional prime divisor Ẽ

over X ∋ x such that a(Ẽ,X,B) = pld(X ∋ x,B) and x̃ ∈ Ẽ. Moreover, there is at most one other vertex

Ẽ′ of D̃G such that x̃ ∈ Ẽ′.

Let D̃G be the dual graph of f̃ , and {Fi}−n1≤i≤n2 the vertices of D̃G, such that n1, n2 ∈ Z≥0, Fi

is adjacent to Fi+1, wi := −Fi · Fi, ai := a(Fi, X,B) for all i, and F0 := Ẽ, F1 := Ẽ′ (see Figure

7.4). We may write K
X̃

+ B
X̃

= f̃∗(KX + B), where B
X̃

:= f̃−1
∗ B +

∑
i(1 − ai)Fi, and we define

B̃ := f̃−1
∗ B +

∑
x̃∈Fi

(1 − ai)Fi.
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F−n1 F−1 F0
x̃

F1 Fn2 F0
x̃

F1 Fn2

Figure 7.4: Cases when x̃ ∈ F0 ∩ F1 and when x̃ /∈ Fi for i ̸= 0.

If x̃ /∈ Fi for all i ̸= 0, then we consider the surface germ (X̃ ∋ x̃, B̃ = f̃−1
∗ B + (1 − a0)F0), where

B̃ ∈ Γ′ := Γ ∪ {1 − a | a ∈ Pld(2,Γ)}. By [HL20, Theorem 2.9], Γ′ satisfies the DCC. Thus by Theorem

7.2.1, we may find a positive integer N1 which only depends on Γ, and a prime divisor E over X̃ ∋ x̃, such

that a(E, X̃, B̃) = a(E,X,B) = mld(X ∋ x,B), and a(E,X, 0) ≤ a(E, X̃, 0) ≤ N1.

So we may assume that x̃ = F0 ∩ F1. By Lemma 7.1.3, there exist positive real numbers ϵ, δ ≤ 1

depending only on Γ, such that {
∑

i nibi − 1 > 0 | bi ∈ Γ′
ϵ ∩ [0, 1], ni ∈ Z≥0} ⊆ [δ,+∞). Recall that

Γ′
ϵ = ∪b′∈Γ′ [b′ − ϵ, b′].

If a1 − a0 ≤ ϵ, then we consider the surface germ (X̃ ∋ x̃, B̃ = f̃−1
∗ B + (1 − a0)F0 + (1 − a1)F1),

where B̃ ∈ Γ′
ϵ ∩ [0, 1]. By Theorem 7.2.1, there exist a positive integer N2 which only depends on

Γ, and a prime divisor E over X̃ ∋ x̃, such that a(E, X̃, B̃) = a(E,X,B) = mld(X ∋ x,B) and

a(E,X, 0) ≤ a(E, X̃, 0) ≤ N2.

If a1 − a0 ≥ ϵ, then we claim that there exists a DCC set Γ′′ depending only on Γ, such that 1 − a1 ∈ Γ′′.

F−n1 F−1 F0
x̃

F1
finite graph

Fn2

Figure 7.5: Cases when a1 − a0 ≥ ϵ.

Assume the claim holds, then we consider the surface germ (X̃ ∋ x̃, B̃ = f̃−1
∗ B+(1−a0)F0+(1−a1)F1),

where B̃ ∈ Γ′′ ∪ Γ′. By Theorem 7.2.1, we may find a positive integer N3 which only depends on

Γ, and a prime divisor E over X̃ ∋ x̃, such that a(E, X̃, B̃) = a(E,X,B) = mld(X ∋ x,B) and

a(E,X, 0) ≤ a(E, X̃, 0) ≤ N3. Let N := max{N1, N2, N3}, and we are done.
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It suffices to show the claim. By Lemma 7.1.9(1), wi ≤ 2
ϵ for any 0 < i ≤ n2. Since 1 ≥ an2 =

a0 +
∑n2−1

i=0 (ai+1 − ai) ≥ n2ϵ, n2 ≤ 1
ϵ . We may write

K
X̃

+ f̃−1
∗ B +

∑
−n1≤i≤n2

(1 − ai)Fi = f̃∗(KX +B),

For each 1 ≤ j ≤ n2, we have

(K
X̃

+ f̃−1
∗ B +

∑
−n1≤i≤n2

(1 − ai)Fi) · Fj = 0,

which implies
∑

−n1≤i≤n2
(ai − 1)Fi · Fj = −Fj

2 − 2 + f̃−1
∗ B · Fj , or equivalently,⎛⎜⎝ F1 · F1 · · · Fn2 · F1

...
. . .

...
F1 · Fn2 · · · Fn2 · Fn2

⎞⎟⎠
⎛⎜⎝ a1 − 1

...
an2 − 1

⎞⎟⎠ =

⎛⎜⎝w1 − 2 + f̃−1
∗ B · F1 + (1 − a0)

...
wn2 − 2 + f̃−1

∗ B · Fn2

⎞⎟⎠ .

By assumption, wj − 2 + f̃−1
∗ B · Fj belongs to a DCC set, and by Lemma 7.2.4, 1 − a0 belongs to the DCC

set {1 − a | a ∈ Pld(2,Γ)}.

By [KM98, Lemma 3.40], (Fi · Fj)1≤i,j≤n2 is a negative definite matrix. Let (sij)n2×n2 be the inverse

matrix of (Fi · Fj)1≤i,j≤n2 . By [KM98, Lemma 3.41], sij < 0 for any 1 ≤ i, j ≤ n2, thus

1 − a1 = −s11(w1 − 2 + f̃−1
∗ B · F1 + (1 − a0)) −

n2∑
j=2

s1j(wj − 2 + f̃−1
∗ B · Fj)

belongs to a DCC set.
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