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Abstract

The world is organized around technology that does not respect its users. As a precondi-

tion of participation in digital life, users cede control of their data to third-parties with

murky motivations, and cannot ensure this control is not mishandled or abused. In this

work, we create secure, privacy-respecting computing for the average user by giving

them the tools to guarantee their data is shielded from prying eyes. We first uncover the

side channels present when outsourcing scientific computation to the cloud, and address

them by building a data-oblivious virtual environment capable of efficiently handling these

workloads. Then, we explore stronger privacy protections for interpersonal communica-

tion through practical steganography, using it to hide sensitive messages in realistic cover

distributions like English text. Finally, we discuss at-home cryptography, and leverage it to

bind a user’s access to their online services and important files to a secure location, such

as their smart home. This line of research represents a new model of digital life, one that

is both full-featured and protected against the security and privacy threats of the modern

world.
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Chapter 1

Introduction

Broadly defined, computer security is the study of intrusion detection and prevention on

software and systems. Privacy is a related goal, allowing information to remain hidden

in the presence of prying eyes. These two properties are less clear fields of study, and

more ideals; in the hunt for perfection, researchers are developing innovations – from the

stack canary to symmetric ratcheting – that are practical, efficient, and secure primitives

with wide-ranging impact on everyday people and systems.

During this period of progress, the democratization of computing has led to an

explosive growth in productivity for society. Gone are the days of ARPANET, teletypes,

and any gatekeepers to the wonders of computing. A user today could be anyone, and

have any level of experience. Users are leveraging computing in myriad new ways,

but security primitives do not always conform to these use cases. Many primitives

were largely designed for broad threat models and simple adversary types, and for not

specialized applications.

Unfortunately, the modern world is organized around complex technology that does

have its users’ best interests in mind. Users cede control of their data and computing to

third-parties to utilize the online services. Incentive structures typically prioritize these

service vendors instead of users, and these imbalances in trust and power result in breaks

in security and privacy.
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1.1 Threats Considered

The security and privacy issues that arise in everyday computing are varied in their scope

and impact. We describe them in the context of three areas: outsourced computation,

secure communication, and cryptographic secrets.

1.1.1 Side Channels in Outsourced Computation

Recent commercially-available Trusted Execution Environments (TEEs) such as Intel

SGX [56, 108] and ARM TrustZone [8] have enabled significant progress towards the out-

sourcing of secure computation. Consider for example three competing drug companies

investigating genomic factors for bipolar disorder. These companies would like to share

their proprietary genome data and run a controlled study that releases only agreed-upon

information to the three participants. TEEs enable such use cases, without requiring trust

in remote administrator software stacks such as operating systems, using a combination

of hardware-level isolation and cryptography.

The long-term vision pursued by TEE-based software systems (e.g., [19, 46]) is to

bring TEE-level security to the masses where it can be used by data scientists familiar

with existing high-level languages such as R, Ruby, and Python, but who may not have

much background in security [38].

Here, we face a challenging problem. To achieve complete security from untrusted

software, it is well known that TEE software must be hardened to block a plethora

of microarchitectural side channels (e.g., [30, 196, 217, 231]). Yet, existing software-

based techniques to block these channels—coming from a rich line of research in data-

oblivious/constant-time programming [22, 53, 145, 170]—fall short of protecting existing

high-level language stacks such as R, Ruby and Python. Specifically, these techniques

typically require experts to manually code core routines [22, 23], require the use of

custom domain-specific languages [37, 190], or only apply to close-to-metal compiled
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languages [145, 170].

Modern high-level languages, however, require complex stacks to support interpreted

execution, just-in-time compilation, etc. As a case-in-point, the popular R stack features

almost a million lines of code written in a combination of C, Fortran, and R itself [167].

Subtle issues in any of this code create security holes.

1.1.2 Censorship of Encrypted Communication

The past several years have seen a proliferation of encrypted communication systems

designed to withstand even sophisticated, nation-state attackers [162, 223]. While these

systems maintain the confidentiality of plaintext messages, the data transmitted by these

tools is easily identifiable as encrypted communication. This makes these protocols easy

targets for repressive regimes that are interested in limiting free communication [52, 79]:

for example, using network censorship techniques such as those practiced by countries

like China [80, 169, 189]. Concrete attempts to suppress the encrypted communication

technologies used to evade censors are now underway. For example, China’s Great

Firewall (GFW) not only prevents users from accessing content deemed subversive, but it

also actively detects and blocks encryption-based censorship circumvention technologies

such as Tor [63, 171, 208].

In regimes where cleartext communication is expected, the mere use of encryption

may be viewed as an indication of malicious or subversive intent. To work around

blocking and avoid suspicion, users must make their communications look mundane. For

instance, Tor users in China have begun to leverage steganographic techniques such as

ScrambleSuit/obfs4 [225], SkypeMorph [142], StegoTorus [221], TapDance [228, 229], and

Format-Transforming Encryption [67]. These techniques embed messages into traffic that

censors consider acceptable.

While the current generation of steganographic tools is sufficient to evade current

censorship techniques, these tools are unlikely to remain a sustainable solution in the

3



future. Some tools do provide strong cryptographic guarantees [101, 142, 216], but this is

achievable only because they encode messages into (pseudo-)random covertext channels,

i.e., replacing a random or encrypted stream with a chosen pseudorandom ciphertext.

Unfortunately, there is no guarantee that such channels will continue to be available: a

censor can systematically undermine such tools by preventing the delivery of encrypted

traffic for which it does not have a suitable trapdoor, (i.e., an access mechanism), or by

selectively degrading the quality of encrypted channels. An audacious, repressive regime

could even consider all encryption to be subversive, and drop all packets not explicitly

recognizable as meaningful plaintext. Rigorous studies of the capabilities of the current

GFW focus on other techniques [70, 71, 134, 209], but there is anecdotal evidence that

encryption suppression has begun to occur [24], including the blocking of some TLS 1.3

connections [29].

1.1.3 Loss of Cryptographic Secrets

Mobile devices have quickly become users’ most important trusted computing base. Users

rely on mobile devices to authenticate and interact with services that perform sensitive

tasks, e.g., online banking, file storage, and telehealth. These tasks are often secured

using a combination of passwords and locally-stored cryptographic secrets, e.g., one-time

passwords (OTPs) generated by a smartphone app for two-factor authentication (2FA).

The convenience afforded by mobile computing is accompanied by a commensurate

increase in risk. Mobile devices are highly portable, allowing them to be easily lost or

stolen. Once a mobile device is taken, any cryptographic material on the device could be

extracted [251]. This would allow an adversary to impersonate the user and access their

services—a catastrophic breakdown in online security and privacy. A corporate spy, for

instance, could use extracted 2FA OTPs to connect to a rival company’s internal VPN.

This threat is particularly dire when the user needs to keep their data private from law

enforcement agencies with access to software that can be used to circumvent on-device
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security measures. For example, border police could decrypt files from a user’s cloud

storage, inspecting it for content deemed subversive.

1.2 Proposed Approach

In this dissertation, we explore technologies that allow users to take back control of

their everyday computing. Each of the above threats concerns an individual aspect of a

user’s security and privacy. This work provides a solution to each threat, tailored to the

considerations of the problem and efficient enough to be deployed in practice.

A user at work should not have to think about if their sensitive cloud computing tasks

are not leaking information. So, we propose a trusted hardware-based architecture that

ensures code is free of such leaks before execution. A user should not have to worry that

their communications with others will be blocked due to censorship. We therefore create

a system that hides messages in seemingly-innocuous cover distributions. A user should

not have to be concerned with losing their authentication or encryption keys along with

their smartphone. Thus, we design a way for users to stash their secrets at home, re-using

devices they already own.

Overall, our proposal represents a step towards assuring users their data is always

working on their behalf. We consider each solution individually, as users have different

expectations of functionality, security, and efficiency based on the context of the appli-

cation. But, in each case, users are afforded guarantees based in proven systems and

cryptographic models, while maintaining the level of performance and clarity of interface

that they expect. Thus, all of the solutions fit together in aggregate to give users a more

trustworthy digital life.
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1.2.1 Dissertation Outline

We now give a brief overview of the components of this dissertation. First, in Chapter 2,

we analyze the side channels present in scientific computation, and provide a solution that

transforms vulnerable code into side-channel-free data-oblivious code. Next, in Chapter 3,

we build a practical steganographic system, capable of embedding secret information

into realistic generative model distributions, like English text. Then, in Chapter 4, we

show how Internet-of-Things devices can be used in concert to provide cryptographic

services, tying a user’s secrets to their smart home. Finally, in Chapter 5, we provide

some concluding thoughts on the solution model we propose.
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Chapter 2

Data-Oblivious Scientific Computation

The goal of this chapter is to extend data-oblivious/constant-time techniques to apply

to existing high-level, interpreted languages, thus enabling TEE-level security for non-

experts when outsourcing scientific computation.

2.1 Introduction

The key strategy and insight is this: if key observable features of a computation are truly

independent of sensitive data, then that computation can be carried out with a collection of

stand-ins (“pseudonyms”) for the data.

To capitalize on this idea, we perform computation in two phases. In the first phase,

we run the target computation on pseudonyms in the chosen high-level language, like

R or Python. Since there is no sensitive data present, this stage cannot leak sensi-

tive information. We instrument the programming stack so that this evaluation on

pseudonyms outputs what we call a “Data-Oblivious Transcript (DOT)”. The DOT is

akin to a straight-line code representation of the original program, i.e., the transcript of

operations performed when the program is evaluated on the pseudonyms. In the second

phase of our computation, we evaluate the DOT on a small Trusted Computing Base

(TCB) that runs within a TEE. This TEE contains the sensitive data, which is used in place

of the pseudonyms. Protecting sensitive data after the DOT is constructed is relatively
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straightforward. Since the DOT is similar to straight-line code, the TEE need only apply

simple transformations to evaluate it in a data-oblivious fashion on real hardware. In

the worst case, where the original computation was actually data dependent on the

pseudonyms, the resulting computation in the TEE may be functionally incorrect but

leaks no sensitive information.

Conceptually, the DOT plays a role similar to a compiler intermediate representation.

A key benefit of this decoupled approach is that only the backend (importantly, not the

frontend) is part of the TCB. This provides a powerful strategy for protecting complex,

high-level programming stacks against side channel attacks. In addition to a reduced

TCB, the decoupling provides modularity and extensibility benefits similar to those found

in modern compilers. For example, to add support for a new high-level language, we

need only change frontend code. Likewise if a security vulnerability is found in the

TEE, or we wish to deploy different TEEs to protect execution for different processor

microarchitectures, we need only change backend code.

2.1.1 Our Solution: DOVE

Putting it all together, we design and implement an instance of the above architecture,

called the “Data-Oblivious Virtual Environment (DOVE)”. Our proof-of-concept DOVE

implementation1 is two-fold: a DOVE frontend that translates programs written in the R

language to a DOT representation, and a DOVE backend that evaluates the DOT on sensi-

tive data inside of an Intel SGX enclave. We validate DOVE in four domains: correctness,

expressiveness, data-obliviousness, and efficiency. We experimentally compare DOVE’s

results in these domains to those of base R, using a third-party library of genomics

analysis algorithms written in R [39] applied on a real-world genomic dataset consisting

of three populations of honeybees [13].

1Code and benchmarks are available at https://github.com/dove-project/
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2.1.2 Contributions

1. We identify a number of subtle side-channel vulnerabilities in the R language.

2. We design DOVE, the first architecture that runs existing high-level interpreted

languages and is demonstrably resistant to side channels.

3. We provide an implementation of DOVE for R, creating the first side-channel

resistant R programming stack.

4. We evaluate the security and performance of DOVE against evaluation programs

drawn from the genomics literature. Relative runtime overheads of DOVE against

vanilla R on these programs range from 12.74× to 341.62×.

2.2 Background

2.2.1 Programming in R

R is a statistical language that provides convenient interfaces for computations on ar-

rays and matrices. Most function calls including primitive operators like addition and

subtraction perform element-wise operations on array-like values.

2.2.1.1 Computation in R

R is an interpreted language [167], and its interpreter is written mostly in C and to a

lesser extent Fortran and R itself. Every object is represented with an S-expression [137]

such that interpreter parses R statements into S-expressions. The S-expressions are then

evaluated and dispatched to the corresponding library functions written in C. Each C

function runs on hardware as a compiled binary object. Thus, analyzing code written in

R is more complex than analyzing code that is directly compiled and run on hardware

(e.g. C, C++).
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2.2.1.2 Not Applicable (NA)

R represents null-like, empty values with NA, the representation of which depends on

the datatype. A real-valued S-expression in R is represented with a IEEE 754 double;

NA_REAL is defined with the special double value NaN with a specific lower word (1954).

The interpreter treats NA differently from other values, even from NaN. Integer and logical

(i.e., boolean) S-expressions are implemented with an int type, so R reserves the lowest

integer value INT_MIN for the representation of NA_INTEGER and NA_LOGICAL.

2.2.2 Microarchitectural Side-Channel Attacks

Microarchitectural (shortened as “µArch”) side-channel attacks are a class of privacy-

related vulnerabilities in which a sensitive program’s hardware resource usage leaks

sensitive information to an adversary co-located to the same (or a nearby) physical

machine [84]. Over the years, numerous hardware structures—cache architectures [157,

232, 240, 241], branch predictors [2, 74], pipeline components [7, 11, 91] and others [73,

90, 143, 163, 217, 231]—have been found to leak information in this way. Many of these

attacks require that the attacker only share physical resources with the victim (e.g.,

Prime+Probe and the cache [130, 157] or Drama and the DRAM row buffer [163]), as

opposed to sharing virtual memory with the victim (e.g. [240]).

2.2.3 Enclave Execution and Intel SGX

Enclave execution [202], such as with Intel SGX [108], protects sensitive applications from

direct inspection or tampering from supervisor software. That is, the OS, hypervisor and

other software are considered to be the attacker [30, 88, 94, 144, 156, 170, 183, 196, 217, 242],

who will be referred to as the SGX adversary for the rest of the chapter. To use SGX, users

partition their applications into enclaves at some interface boundary. For example, prior

work has shown how to run whole applications with a LibOS [19, 46], containers [191],
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and data structure abstractions [183] within enclaves. At boot, hardware uses attestation

via digital signatures to verify the user’s expected program and input data are loaded

correctly into each enclave. Isolation mechanisms implemented in virtual memory protect

enclave integrity and confidentiality during execution.

SGX uses the Enclave Page Cache (EPC) to store enclave application code and data.

The EPC is stored in a protected region of memory known as Processor-Reserved Memory

(PRM). The processor prevents other system components from reading the PRM with

the help of another component, the Memory Encryption Engine (MEE), that provides

encryption and integrity protection for the PRM [138]. The EPC has a fixed size of 64 or

128 MB, shared among all enclaves [110]. For applications requiring more memory, SGX

uses an EPC paging mechanism supported by the SGX OS driver. Specifically, the OS

can move pages out of/into the EPC and manipulate them as if they were regular pages

from a demand-paging perspective. For security, pages moved out of/into the EPC are

transparently encrypted/decrypted and integrity checked by the SGX hardware [108, 138].

2.2.3.1 Side-Channel Amplification

Despite providing strong virtual isolation, SGX enclave code is still managed by untrusted

software. Prior work has shown how this exacerbates the side-channel problem described

in Section 2.2.2.

First, SGX does not provide any physical isolation. Thus, nearly all of the µArch

side-channel attacks discussed in Section 2.2.2 immediately apply in the SGX setting.

Second, importantly, the OS-level attacker has significant control over the enclave’s

execution and the processor hardware and thus can orchestrate finer-grain, lower-noise

attacks than would otherwise be possible. For example, controlled side-channel at-

tacks [231] and follow-on work [217] provide a zero-noise mechanism for an attacker to

learn a victim’s memory access pattern at page (or sometimes finer) granularity. A line of

work has further shown how the attacker can effectively single-step, and even replay, the
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victim to measure fine-grain information such as cache access pattern and arithmetic unit

port contention [30, 88, 93, 94, 144, 196, 211].

2.2.4 Threat Model

Our goal is to prevent arbitrary non-SGX enclave software from learning anything about

the users’ data, other than non-sensitive information about the data such as its bit length.

Given SGX’s architecture, this implies protecting user data from leaking over arbitrary

non-speculative µArch side channels (Section 2.2.2), given the powerful SGX adversary

described above.We do not defend against hardware attacks such as power analysis [120],

EM emissions [151], compromised manufacturing (e.g., hardware trojans [233]), denial of

service attacks, or speculative execution attacks [119] beyond default SGX protections.

Note, when we refer to trusted computing base (TCB) we mean the DOVE software

that must function as intended—i.e., be free of logic bugs and control-flow hijacking

vulnerabilities—for security to hold.

2.2.5 Data-Oblivious Programming

Data-oblivious (sometimes called “constant-time” in the hardware setting) programming

is a way to write programs that makes program behavior independent of sensitive data,

with respect to the side channels discussed in Section 2.2.2 [5, 11, 22, 23, 26, 37, 40, 53, 60,

64, 72, 78, 129, 129, 140, 145, 150, 156, 170, 184, 190, 198, 201, 207, 219, 245, 246, 248]. In

the hardware setting, what constitutes data-oblivious execution depends on the intended

adversary. In the SGX setting, we must assume a powerful adversary that can monitor

potentially any µArch side channel as described in Section 2.2.3.

Thus, prior works that try to achieve data obliviousness in an SGX context [5, 72,

78, 140, 156, 170, 184, 190, 248] implement computation using only a carefully chosen

subset of arithmetic operations (e.g., bitwise operations), conditional moves, branches

with data-independent outcomes, jumps with non-sensitive destinations, and memory
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instructions with data-independent addresses. For example, an if statement with a

sensitive predicate is implemented as straight line code that executes both sides of the

if and uses a data-oblivious ternary operator (such as the x86 cmov instruction or the

CSWAP operation) to choose which result to keep.

2.3 The (Lack of) Data-Obliviousness of R

Our goal is to protect R programs (and by extension scientific computing) from the SGX

adversary. As a starting point, imagine we try to run secure R code by moving the whole

R stack into the SGX enclave (which is the approach taken by prior work [19, 46]). If R

were data-oblivious, we could have security against the SGX adversary. However, we

show that security is not guaranteed, by demonstrating subtle µArch side-channel attack

vectors that come up in this approach.

2.3.1 Case Study

To evaluate the data obliviousness of R, we worked with an application of genomic data

sharing to accurately represent the kinds of R scripts data scientists use. The specific

application [13] aims to understand from genomics why honeybees from Puerto Rico are

gentle, like European honeybees, even though they descend from aggressive Africanized

honeybees from South America. Genomes from 30 honeybees were collected from Puerto

Rico, Mexico, and the United States to provide a total of 90 genomes.

Overall, this honeybee study simulates the idea that three parties would like to derive

critical information from their combined data set without the need for a trusted third

party to consolidate the data. We did not work with truly sensitive data in this study, but

the characteristics of the data and the data-sharing arrangement are essentially the same

as would have been used in the hypothetical bipolar disorder study mentioned in the

introduction. The honeybee data and code is available for download and will be a good
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benchmark for future studies of secuirty for genomics.

We reproduce the study in [13] with this data using R, but truncate the total number of

samples to 60 (due to machine limitations). The study relies on R code drawn from a set

of 13 genetics research programs [39] that implement important statistical measurements

found in the literature [83, 152, 205, 222], totaling 478 lines of R code [39]. We refer to

these scripts as our evaluation programs. We evaluate 11 of these evaluation programs as a

part of our analysis, as they operate on numeric values (rather than character strings or

symbols). The functionality of each of these programs is explained below.

• allele_sharing A program to calculate the allele sharing distance between pairs

of individuals [83].

• EHHS A program to calculate the EHHS values for a given chromosome [205].

• hwe_chisq A program to test the significance of deviation from Hardy–Weinberg

Equilibrium (HWE) using Pearson’s Chi-Squared test.

• hwe_fisher A program to test the significance of deviation from HWE using

Fisher’s Exact test.

• iES A program to calculate the iES statistics [205]. The code calls EHHS in computing

its statistics.

• LD A program to calculate D, D′, r, χ2, χ2′, which are statistics based on the

frequencies of alleles in the input.

• neiFis_multispop A program to calculate inbreeding coefficients, Fis [152], for

each sub-population from a given set of SNP markers.

• neiFis_onepop A program to calculate inbreeding coefficients, Fis [152], for the

total population from a given set of SNP markers.
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• snp_stats A program to calculate basic stats on SNPs, including: allele frequency,

minor allele frequency, and exact estimate of HWE.

• wcFstats A program to estimate the variance components and fixation indices [222].

• wcFst_spop_pairs A program to estimate Fst (θ) values for each pair of sub-

populations [222].

We perform our analysis of the data-obliviousness of R using the code snippet in

Figure 2.1 as a guiding example. This code is found in four of the 13 evaluation programs,

and three more feature similar snippets. We use R version 3.4.4, compiled with default

flags, on a Ubuntu Linux 18.04.4 machine for this study.

2.3.2 Example Walkthrough

geno is a set of samples made up of diploid Single Nucleotide Polymorphism (SNP)

sequences. The database of samples is represented as an m by n matrix, where each

column is one of n samples, each of which has m SNP positions. Each position in the

matrix has a genotype, denoted as an integer 0, 1, or 2. The sensitive data is the contents

of geno, namely which genotype each SNP is for each sample. The matrix dimensions

(m and n) are non-sensitive.

The line of code in Figure 2.1 sanitizes the input database: any entry that is not one of

the three allowed genotypes is replaced with the special value NA (Section 2.2.1). This

occurs in real data due to noise in the sequencing process; in particular, 1.5% of the

SNP entries in the honeybee dataset [13] are marked as NA. The code first computes

element-wise filters geno != 0, geno != 1, geno != 2, each of which produces a

matrix of booleans (a mask) indicating whether the condition is satisfied for each SNP

position in each sample. The logical AND (&) performs element-wise AND of these 3

masks (producing a new mask) which is used to conditionally assign elements in geno

to NA.
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Figure 2.1. R code snippet. geno is a sensitive diploid dataset.

1 geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA

Given the above code, the adversary’s goal is to learn the genotype at each SNP

position—that is, whether the value of each cell in geno is 0, 1, 2, or NA. Importantly,

given no additional information about R’s implementation, the R-level code in Figure 2.1

follows guidelines for achieving data-obliviousness (Section 2.2.5), which would seemingly

prevent leaking the above information. For example, it applies simple arithmetic/logical

operations element-wise over matrices of non-sensitive size, performs a count over a

subset of samples with a non-sensitive length, etc. Thus, combining each mask with &

entails performing a data-independent number of simple logical operations (&); this is

traditionally regarded as safe.

Yet, this code is not data-oblivious thanks to the transformations it undergoes in the R stack

before reaching hardware.

In particular, the R interpreter transforms the line of code from R into C calls. When

R interprets &, it invokes the C routine given in Figure 2.2a. This snippet takes different

code paths, depending on the values of x1 and x2, which the SGX adversary can

detect by single-stepping [211] or by replaying the victim [196] and measuring time,

branch predictor state, etc. We investigate the side-channel characteristics of this with

two types of analyses: instruction-level and processor-level. The following analyses

apply well-established principles for writing constant-time and data-oblivious programs

(Section 2.2.5).

2.3.3 Instruction-Level Analysis

We wish to experimentally verify the presence of such side channels in the R codebase.

We can identify them at the assembly instruction level, as the C code that R functions

call runs as a part of a compiled library. We cover both the static analysis of individual
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opcodes in the R binary, as well as dynamic analysis of execution traces of the binary for

different input values.

2.3.3.1 Static Opcode Analysis

We identify the opcodes in the R binary, libR.so, using the objdump utility. This

converts the compiled machine code into a human-readable opcode format. Then, we

sweep over the objdump output, looking for vulnerable operations over data. In particular,

we wish to find branches on sensitive data, which can leak control flow information and

help an attacker reconstruct the secret.

Consider Figure 2.2b, which is the assembly for Lines 1 to 2 in Figure 2.2a. We note

that the assembly shows a comparison (cmp) between the values stored in rbp-0x58

(x1) and 0x0, and rbp-0x54 (x2)) and 0x0. This constitutes a branchon sensitive data,

as the code will take different paths through the code depending on the result of the

computation (je, jne). In this case, the attacker learns if one of x1 or x2 equals 0. Since

this & is applied to each SNP position of each sample in Figure 2.1, this information is

leaked for every SNP position.

2.3.3.2 Dynamic Execution Trace Analysis

We now show how this static analysis can be leveraged at runtime to leak the secret. We

use the branch-trace-store execution trace recording mechanism [109] on our Intel Core i3-

6100 CPU to counts the number of instructions executed at the assembly level for different

inputs. ranch-trace-store hooks in GDB allow us to step through the program, counting

instructions between breakpoints. Table 2.1 for each possible input to &, as reported by

brance-trace-store. Confirming the above explanation, we see that the instruction count

equals 45 if and only if x1 equals 0. Thus, the adversary learns whether this is the case

if it can monitor a function of the instruction count. Other cases leak other pieces of

information such as whether both x1 and x2 equal 1.
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Figure 2.2. The R interpreter implementation of the & operator.

(a) C source code snippet of the & operator implementation.

1 if (x1 == 0 || x2 == 0)
2 pa[i] = 0;
3 else if (x1 == NA_LOGICAL || x2 == NA_LOGICAL)
4 pa[i] = NA_LOGICAL;
5 else
6 pa[i] = 1;

(b) The Intel-syntax x86-64 assembly for Lines 1 and 2 of the C code in Figure 2.2a, lightly edited for clarity.

; x1 in [rbp-0x58], x2 in [rbp-0x54]
a8: cmp DWORD PTR [rbp-0x58],0x0 ; x1==0
ac: je b4 ; if true, jump to pa[i]=0
ae: cmp DWORD PTR [rbp-0x54],0x0 ; x2==0
b2: jne cf ; if false, jump to else if
b4: mov rax,QWORD PTR [rbp-0x50]
b8: lea rdx,[rax*4+0x0]
c0: mov rax,QWORD PTR [rbp-0x8]
c4: add rax,rdx ; calc addr of pa[i]
c7: mov DWORD PTR [rax],0x0 ; pa[i]=0
cf: ...

2.3.4 Intel PCM Analysis

Opcode and execution trace analysis is not sufficient to cover the diverse (and undoc-

umented) set of potential µArch side channels, such as timing differences. We wish to

show that the data dependent execution visible at the opcode layer can be verified by

an attacker with access to side-channel information. Intel Processor Counter Monitor

(PCM) is an Application Programming Interface (API) to monitor performance of Intel

processors [54]. PCM offers various performance metrics, some of which are direct

indicators of side-channel vulnerabilities. Such µArch measurements include cycle counts

and L2/L3 cache hits. We leverage this API to experimentally check data-obliviousness

of R function implementations.

We examined every performance metric that can be collected from PCM and chose
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Table 2.1. The associated x86-64 instruction counts for different permutations of x1 and x2 fed as
input to & in R.

Expression Value Instruction Count
0 & 0 0 45
0 & 1 0 45
1 & 0 0 47
1 & 1 1 54
0 & NA 0 45
1 & NA NA 57
NA & 0 0 47
NA & 1 NA 53
NA & NA NA 53

Table 2.2. Intel PCM Functions used for dynamic analysis.

Function Name Criterion
getCycles cycle counts
getCyclesLostDueL3CacheMisses cycle counts, cache H/M
getCyclesLostDueL2CacheMisses cycle counts, cache H/M
getL2CacheHitRatio cache H/M
getL3CacheHitRatio cache H/M
getL3CacheMisses cache H/M
getL2CacheMisses cache H/M
getL2CacheHits cache H/M
getL3CacheHitsNoSnoop cache H/M
getL3CacheHitsSnoop cache H/M
getL3CacheHits cache H/M
getBytesReadFromMC bytes from/to MC
getBytesWrittenToMC bytes from/to MC
getIORequestBytesFromMC bytes from/to MC

metrics (listed in Table 2.2) that are relevant for µArch side-channel detection. These

metrics cover one or more of three criteria: cycle counts, cache hits/misses and bytes

from/to the memory controller. These API functions all begin with prefix get and are

followed by the metric they measure.

We illustrate an example using one of these measurements, cycle counts. In this simple

experiment, we show how such small differences in instruction count from Table 2.1

translate into measurable effects. We measure the number of cycles taken to evaluate one

million iterations of expression 0 & 0 against those of 1 & 0. Having access to a large

19



0 & 0 1 & 0

7.35

7.40

7.45

7.50

7.55

N
um

be
r o

f C
yc

le
s

1e7

Figure 2.3. Number of cycles taken to run one million iterations of 0 & 0 and 1 & 0. Each boxplot
represents 100 measurements of each expression.

number of measurements may occur naturally, e.g., if the sensitive data is accessed in a

loop, or if the attacker performs a µArch replay attack [196]. Note that the difference of

execution length between two expressions is only two x86-64 instructions in Table 2.1.

Figure 2.3 visualizes 100 trials of cycle count measurements against the aforementioned

two sets of inputs in boxplots. The left box shows distribution of 100 measurements for

each million iterations of expression 0 & 0 and the right box represents measurements

for expression 1 & 0. On average, it took µ00 = 73.9 million cycles (σ00 = 441k) for

(0 & 0), but it took µ10 = 75.2 million cycles (σ10 = 416k) for (1 & 0) on average.

The cycle count differences vary by a noticeable margin in the evaluation of these two

expressions; even in the box plot, there is a clear separation between the experimental

cycle counts of 0 & 0 and 1 & 0.
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2.3.5 Discussion

These examples are only a small subset of the parts of R that leak sensitive information.

We discovered similar issues for other logical operators | and xor(), as well as functions

like sum() found in its standard library. This, of course, does not preclude vulnerabilities

arising from data-dependent R code. For example, an if statement with a sensitive pred-

icate can reveal that predicate to the SGX adversary [2, 74] in R as well. Making matters

worse are vulnerabilities due to timing side channels of just-in-time compilation [31],

the timing differences of primitive C operations on floating point numbers [11] (such as

fdiv, used throughout R), and the use of data-dependent glibc C library functions

(e.g., pow(y,x) and log(x)).

R is a large code base comprising 992,564 lines of code, and is composed of hundreds

of API functions and other features, implemented in a combination of R, C and Fortran

[167].2 Thus, all existing µArch side-channel attacks on C and Fortran applications must

be considered when assessing security of R stack.

Side-channels in R present a serious security problem. Many data scientists and

statisticians use R to compute on sensitive data every day. Clearly, it is not tractable

for these users to understand the security implications of the code they write. At the

same time, R’s large code base makes manually patching data leaks inherently haphazard

and error prone, even for security experts. As a result, experts have hitherto focused on

replicating R’s functionality in a new language/stack [190]. While these techniques add

security, they trade-off expressiveness and usability by forcing data scientists to rewrite

their code for a new programming stack.

In the next section, we address this challenge by designing the first secure R stack,

where data scientists can program in (nearly) unchanged R, interact with the same R

functionality with which they are familiar, and have strong confidence there are no latent

2Specifically, there are 388,141 lines of C, 345,547 lines of R and 258,876 lines of Fortran in the version of
the R source we used for this work.
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side channels.

2.4 The Data-Oblivious Virtual Environment

We now describe our solution to these problems, the Data-Oblivious Virtual Environment

(DOVE). This begins with a discussion of our design principles and solution overview

(Sections 2.4.1 and 2.4.2). Section 2.4.3 discusses the Data-Oblivious Transcript (DOT),

which serves as the link between high-level programming and data-oblivious execution.

Section 2.4.4 discusses the DOVE frontend, which is a set of classes that convert R code

into the DOT, using pseudonyms instead of sensitive data. Finally, Section 2.4.5 describes

the DOVE backend, an SGX enclave that converts the DOT operations on pseudonyms to

data-oblivious computation on the actual sensitive data.

2.4.1 Design Principles

To be a practical, yet secure, programming environment for outsourcing scientific compu-

tation, DOVE requires the following:

• Correctness. It is necessary to provide some evidence that computed values are

correct, at least for a basic collection of computations. Importantly, R code run in

DOVE must have the same output as R code run outside of DOVE.

• Expressiveness. It is important to demonstrate that it can code enough interesting

cases to be worthwhile. DOVE should be able to handle enough R functionality to

be a reasonable system for data science. Additionally, DOVE should not require

any changes or modification for a user’s library of data processing scripts. In other

words, DOVE should be transparent to the user.

• Data-Obliviousness. Data-oblivious computation techniques defend computation

from the SGX adversary described in Section 2.2.3. DOVE should attempt to defend
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against all known µArch side-channels, such as the ones described in Section 2.3,

but be modular enough such that it can be easily patched in case a new class of

side-channel is found.

• Efficiency. DOVE computations must sufficiently limit computational overhead.

Some overhead is to be expected due to side-channel hardening and use of SGX,

but it should not be so much as to prevent real data-science applications.

We developed this set of principles as a result of our experiments on R. We wanted to

combine the expressiveness of R scripts with a data-oblivious core, while maintaining the

efficiency required for data science (and, of course, the correctness). Our DOVE design

aligns to these goals, and we evaluate our success in achieving them in Section 2.5.

2.4.2 Overview

DOVE’s security objective is to evaluate programs written in high-level (e.g., interpreted)

languages in a data-oblivious manner (Section 2.2.5). The key insight is that an operation

that is truly data oblivious does not require the actual data to be present. Instead, the

operation can take place on a pseudonym of the data. These pseudonyms have the same

interface as normal data of the same type and support the same operations. For example,

matrices are replaced with matrix pseudonyms, and matrix pseudonyms can be computed

upon using the same operations as normal matrices (e.g., element-wise addition, matrix

multiplication). However, the pseudonym contains no sensitive data, i.e., all of its data

entries are replaced with ⊥. This pseudonym is constructed solely through non-sensitive

information specified for each pseudonym, such as, for matrices, the number of rows and

columns. However, since the pseudonym does not actually have the data, any operation

on the pseudonym is functionally equivalent to a NOP, i.e., ∗ ⊕ ⊥ → ⊥ where ∗ is a

wildcard for any data value and ⊕ is an operation on the data. Instead, the operation

performed is appended to a log. This log, which we call a Data-Oblivious Transcript (DOT),
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is thus akin to a straight-line representation of the execution of the input program. The

DOT can then be replayed on the actual data, executing the same operations as the input

program.

With this in mind we propose the following architecture, shown in Figure 2.4. Our

architecture is broken into two components, making up a frontend and backend. Each of

N clients runs the same input — a common (non-sensitive) high-level program — in

their local environment (“frontend”). The frontend replaces any references to sensitive

data with pseudonyms and generates a DOT of the input program. Although only a

single DOT needs to be generated for evaluation later on, each client can optionally

compute its own DOT for program integrity-checking purposes (see Section 2.4.4 for

more information). This TEE (“backend”) hosts the DOVE virtual machine, which is built

with data-oblivious primitives. The virtual machine checks that all DOTs are equivalent

(optional, for integrity) and runs the operations listed on the actual data.

Intuition for security comprises two parts. First, because the DOT is conceptually an

execution trace, the backend TEE evaluates the same operations in the same order as the

R program input to the frontend, regardless of the sensitive data provided to the backend.

Importantly, the DOT was not created using any sensitive data, so the functions listed in

the DOT are inherently independent/oblivious of that data. Second, we will architect the

backend to ensure each operation is data oblivious, using well-established techniques for

constant-time/data-oblivious execution.

The above architecture is general. The frontend can be adapted for different high-level

languages (e.g., R, Python, Ruby), and the backend can be implemented for a variety of

TEEs (e.g., SGX, TrustZone). For the rest of the chapter, we explain, design, and evaluate

ideas assuming the frontend input language is R and the TEE is SGX.
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Figure 2.4. High-level overview of DOVE. Bold-face arrows between nodes represent communi-
cation over (mutually-authenticated) TLS, while thinner ones are intra-process communication
within a component. Shading indicates the location of our trusted computing base (TCB).

2.4.3 Data-Oblivious Transcript (DOT)

Relevant design principles: expressiveness,
data-obliviousness, efficiency.

The Data-Oblivious Transcript, or DOT, forms the core of the DOVE architecture,

bridging an input program written in a high-level language with data-oblivious execution

on a secure enclave. The DOT is designed to be built using only parameters related to

the computation that are non-sensitive (such as data size). Because DOTs in DOVE are

generated automatically, the client programmer does not need to learn the DOT language

to write data-oblivious code. Once generated, the DOT is sent to the backend, where it is

used to “replay” the same operations on the actual data (Section 2.4.5).

What to include in the DOT semantics strongly influences the TCB size in the backend

and DOVE’s overall performance. The structure of the DOT is similar to straight-line

code where every operation is evaluated in the order it appears. Conditionals, data-

dependent loops, etc. must be emulated with predicated, bounded execution as described

below. Then, what primitive operations to include in the DOT semantics becomes a
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Figure 2.5. A DOT (left) and its associated R program (right). The matrix x corresponds to
the pseudonym $1 in the DOT, and the loop index i with \1. 1⃝ corresponds to line 1 of the
program, 2⃝ the for loop on line 3, 3⃝ the if statement on line 4, and 6⃝ the assignment in line 5.
Intermediate values are stored in variables marked with %, and constants are declared using #.

security/performance trade-off, because the cost to parse and run each operation in the

DOT incurs non-negligible overhead in our current implementation (Section 2.5.3). For

example, DOVE might implement a transcendental function such as sin as a single

primitive operation in the DOT or as a sequence of simpler operations in the DOT (such

as bitwise operations). The former design is higher performance but requires a larger

TCB: the backend parses a single DOT operation and evaluates that operation using a

dedicated data-oblivious implementation of sin in the target Instruction Set Architecture

(ISA), e.g., x86-64. The latter has the opposite characteristics: the backend parses each

bitwise operation yet only needs dedicated support to implement data-oblivious bitwise

operations. In these situations, we decide what operations to include in the DOT semantics

on a case-by-case basis, described below and in Section 2.4.4.

We now discuss DOT semantics in more detail, using Figure 2.5 as a running example.

We break the discussion into two parts, first describing data creation and operations on

said data, and second describing (data-oblivious) control flow. A formal EBNF grammar
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Figure 2.6. The grammar for the DOT language, presented in extended Backus–Naur form. digit
consists of 0-9, nonzero-digit of 1-9, and alpha of A-Z and of a-z.

loop = 'forloop' index-var '\n' {instr} 'endloop' index-var ;

instr = (def-matrix | scalar-instr | edit-instr | select-instr) '\n' ;

def-matrix = create defn end ;
create = 'def' ' ' ['const' ' '] matrix ' ' length ' ' length '\n' ;
defn = rows | dataset | matrix-instr | bind-instr ;
rows = row {row} ;
row = '\t' 'row' ' ' natural ' ' scalar {' ' scalar} '\n' ;
dataset = '\t' 'dataset' ' ' string '\n' ;
end = 'end' ' ' natural '\n';

scalar-instr = (scalar-summary-instr | ops-instr | 'set' | 'indexvar') ' ' arg
[' ' arg] ;

scalar-summary-instr = 'any' | 'all' | 'sum' | 'prod' | 'min' | 'max' ;

matrix-instr = (ops-instr | 'empty' | 'rand' | '%*%') ' ' arg [' ' arg] ;
bind-instr = ('cbind' | 'rbind') ' ' arg ' ' {arg} ;

ops-instr = arith-instr | compare-instr | is-instr | logic-instr | math-instr
;

arith-instr = '+' | '-' | '*' | '/' | '^' | '%%' | '%/%' ;
compare-instr = '==' | '<=' | '>=' | '>' | '<' | '!=' ;
is-instr = 'NA?' | 'INF?' | 'NAN?' ;
logic-instr = '!' | '|' | '&' ;
math-instr = 'abs' | 'sign' | 'sqrt' | 'floor' | 'ceiling' | 'exp' | 'log' |
'cos' | 'sin' | 'tan' ;

edit-instr = ('update' | 'slice' | 'slice const' | 'dim') ' ' matrix ' ' seq '
' seq ' ' matrix ;

select-instr = 'select' ' ' arg ' ' arg ' ' arg ;

length = '[1:' natural ']' ;
seq = ordered-seq | unordered-seq ;
ordered-seq = '[' integer ':' integer ':' integer ']' ;
unordered-seq = '[' integer {',' integer} ']' ;

arg = matrix | scalar ;
matrix = '$' natural ;
scalar = pointer | register | value | loop-index;
pointer = '$' natural '@' '(' integer ',' integer ')' ;
register = '%' natural ;
loop-index = '\' natural ;
value = '#' (float | 'NaN') ;

integer = '0' | ['-'] natural ;
natural = nonzero-digit {digit} ;
string = {digit | alpha} ;
float = digit {digit} '.' digit {digit} ;
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for the DOT can be found in Figure 2.6.

2.4.3.1 Data Creation, Types and Operations

We first discuss variable declarations, types and primitive operations.

Data types When the frontend transcribes a program into a DOT, the DOT grammar

only allows program inputs to be (1) fixed, concrete values or (2) pseudonyms. The two

basic types of pseudonyms are matrices and scalars, with matrices being composed of

m× n scalar (i.e., numeric) elements. Each operation on a matrix is usually decomposed

into an operation on (1) its rows, (2) its columns or (3) its elements. Thus, in the case

where matrix dimensions are non-sensitive, the sequence of operations needed to compute

on actual matrix data is fully captured in the DOT.

Operations on data Core functions comprise the set of primitive operations available to

the DOT, including mathematical and logical operators (e.g. +, ==), common mathematical

functions (e.g. exp, sin), and summary operations (e.g. sum, prod).

There are two flavors of operations supported in the DOT, shown in first two rows

of Table 2.3. The Safe DOT/Core category contains operations deemed safe to operate

on sensitive data in the backend. Every operation in this set must be implemented

data-obliviously by a compliant backend, i.e., its evaluation must result in operand-

independent resource usage on the target microarchitecture (see Section 2.2.5). Each

operation in this set has the following type signature: if at least one operand is a pseudonym,

the result is a pseudonym. This is similar to taint algebras in information flow [179, 203]

where if one operand is tainted, the result is tainted.

The Unsafe DOT/Core category contains operations which the DOT deems not safe

to operate on sensitive data. For example, the forloop construct. These operations are

only allowed to take non-pseudonyms as operands. Importantly, the selection which
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operations are marked Unsafe is a design choice. An alternate set of DOVE semantics can

specify a Safe variant of any Unsafe operation, subject to the constraint that the backend

must support a data-oblivious implementation of said Safe operation.

To summarize, we have:

• Rule 1. If an operation’s operand(s) are pseudonyms, the result is a pseudonym.

• Rule 2. Safe operations may take pseudonyms or non-pseudonyms as inputs. Safe

operations must be implemented data obliviously by the DOVE backend.

• Rule 3. Unsafe operations may only take non-pseudonyms as inputs.

This is analogous to the Data-Oblivious ISA policy Confidential data↛Unsafe instruction,

which is analogous to the classic policy High↛Low in information flow. If a DOT follows

the above rules, we call it a valid DOT. Whether a DOT is valid is checked before the DOT

is evaluated by the backend (Section 2.4.5), and invalid DOTs are disallowed.

2.4.3.2 Control Flow

For reasons discussed above, the DOT disallows traditional control-flow constructs such

as if, while, and goto, but supports predicated execution and bounded-iteration loops

(similar to the program counter model [145]).

Bounded iteration The DOT provides a forloop iteration primitive that only allows

non-sensitive/non-pseudonym predicates. This primitive further does not support infinite

loops. Loop indices are declared as non-pseudonyms. We note that supporting forloop

is purely a performance/DOT size optimization. Equivalently, the loop could have been

unrolled and the forloop construct removed.

Predicated conditionals The DOT supports a select primitive that takes a pseudonym-

typed predicate and returns one of two pseudonym operands based on the value of the
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predicate. select supports both scalar (i.e., logical 0 and 1) and matrix predicates. Ma-

trix predicates are transformed into element-wise select operations between the predicate

and result/operand matrices. Thus, the predicate and its operands must have the same

dimensions.

2.4.4 Frontend

Relevant design principles: correctness,
expressiveness, efficiency.

The frontend takes R program with non-sensitive parameters as input and outputs a

DOT. We develop our prototype frontend for R, but stress that the structure of the DOT

is language-agnostic. As in a traditional compiler stack, one could design a different

frontend for a different language that likewise compiles into the a DOT.

Before initialization, clients share non-sensitive information, such as names and

dimensions of datasets, with each other. The data within each dataset is considered

sensitive and is not shared. To create a DOT, a client sources the DOVE frontend, which

loads the names and dimensions for each sensitive input and creates a pseudonym for

each in the R environment. The client then runs their program, performing operations as

normal. Instrumentation in the R interpreter (see below) records each operation into the

DOT, translating each dataset to primitives supported by the DOT semantics (e.g., scalar

and matrix types). Clients can access elements, assign new values, apply operators, and

run functions, all while dealing only with pseudonyms. Because the frontend does not

have the actual data, this transcription is data-oblivious by design.
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Table 2.3. DOVE functions/operations. Functions in group “DOT/Core” are implemented directly in the DOVE backend and are
included in the DOT semantics. Functions in the group “Supplemental” are implemented using operations in “DOT/Core” and exposed
to the user as library functions. Safe functions require a data-oblivious implementation in the backend as they may receive pseudonyms
as operands. Unsafe functions do not require a data-oblivious implementation, but can only take non-pseudonyms (non-sensitive) data
as operands.

Group Functions
Safe DOT/Core abs sqrt floor ceiling exp log cos
(in TCB) sin tan sign + - * /

^ %% %/% > < >= <=
== != | & ! all any
sum prod min max range is.na is.nan
is.infinite select %*% cbind rbind

Unsafe DOT/Core forloop dim [ [[
(in TCB)
Supplemental fisher.test pchisq mean colMeans colSums rowMeans rowSums
(not in TCB) is.finite as.numeric as.matrix apply lapply unlist which

data.frame matrix split pmin pmax nrow ncol
len t
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Our DOVE implementation ensures interface compatibility with base R in the imple-

mented functions of the frontend. We use R’s S3 method dispatch to overload functions

in base R for pseudonyms. This requires no modification to the R interpreter, as clients

merely have to import the DOVE frontend in their existing programs; in most cases, no

programmer intervention is necessary.

Table 2.3 lists all functions available to programmers. The Safe and Unsafe “DOT/Core”

group of functions are those included in the DOT semantics (see previous section). To

provide a richer library for clients, we also provide a “Supplemental” group of functions

which are built using only the operations in “DOT/Core”. For example, colSums calls

the DOT function sum in a loop over the columns of a matrix. We provide these functions

to enhance the user programming experience and to show that our DOT functions are

sufficient primitives to develop more complex functions. Note that the “Supplemental”

functions do not add to size of the TCB. They do not require changes to DOT semantics

and therefore do not change the backend implementation.

2.4.4.1 Construct-Specific Handling

We now describe how the frontend translates different R programming constructs to the

DOT semantics from Section 2.4.3.

Bounded iteration Native R’s for loop is not DOT-aware, so it just repeats the body of

the loop m times. Instead, the frontend automatically transforms such bounded loops

to use the forloop DOT construct. In our testing, we observed a > 99% decrease in

frontend runtime using the DOT’s forloop loops over normal for loops for compute-

heavy O(m2)-complexity programs. Early loop termination (e.g., break) is transformed

in a manner similar to those of prior works [37, 129].
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Predicated conditionals The frontend must translate conventional if-then-else structures

into the predicated execution model supported by the DOT (Section 2.4.3). For this, we

implement an if-conversion transformation that is similar to prior works [53, 170]: an

if-else with a sensitive predicate is converted into straight-line code where both sides of

the if-else are unconditionally evaluated and a DOT select operator is used to choose

the correct results at the end. Our frontend automatically converts R if statements to use

the select primitive (discussed in Section 2.4.3) in the DOT. The whole expression is

then recorded into the DOT directly; since the frontend does not have access to the actual

data, the DOT must necessarily record both sides of the condition.

Disallowed constructs Overall, the frontend’s job is to translate R semantics into DOT

semantics. Sometimes this is not possible, in which case the frontend signals an error.

We explain two such cases (which are also common issues in related work). First, the

frontend does not allow loops where the predicate depends on a pseudonym. Second,

the frontend does not allow running operations with unimplemented types e.g., string-

based computation or symbol-based computation. For example, one genomic evaluation

program named geno_to_allelecnt in Section 2.3.1 receives a matrix of characters

as a sensitive input. This program calls string operations like substring search or string

concatenation.

Importantly, mentioned before, the frontend may contain a bug that results in an

invalid DOT that contains an illegal construct such as those mentioned above. Such

non-compliant DOTs are checked at parse time in the backend and rejected before being

run.

2.4.5 Backend

Relevant design principles: correctness,
data-obliviousness, efficiency.

The backend is a trusted SGX enclave (optionally, with attestation support) that runs
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the DOVE virtual machine that parses the DOT and runs the instructions contained within

on the clients’ sensitive data. Code in the backend ensures that only valid DOTs are run

(Section 2.4.3), and includes implementations of all operations in the DOT semantics,

i.e, those listed under Safe and Unsafe “DOT/Core” in Table 2.3. Each client securely

uploads (e.g., over TLS) the DOT of their R program. All clients additionally upload their

shares of the sensitive dataset to the backend as well, in preparation for processing, as

shown in Figure 2.4.

The scope of DOVE is to block all non-speculative µArch side channels (Section 2.2.4).

For this purpose, the backend provides a data-oblivious implementation for operations

in Safe “DOT/Core” of Table 2.3. To implement these operations, we rely on a subset

of the x86-64 ISA and well-established coding practices [53] for implementing constant-

time/data-oblivious functions (see Section 2.5.2 for details). For example, we implement

the select operation using the x86-64 cmov instruction, and all floating-point arithmetic

functions are implemented using libfixedtimefixedpoint (libFTFP), a constant-time fixed-

point arithmetic library created as a work-around for timing issues on floating-point

hardware [11].

Importantly, what hardware operations (e.g., machine instructions) open µArch side

channels depends on the µArch. For example, two x86-64 processors can implement

cmov differently: one in a safe way, one in an unsafe way (e.g., by microcoding the cmov

into a branch plus a move [242]). DOVE is robust to new leakages found in specific µArch

because to block a newly discovered leakage, it is sufficient to make a backend change.

For example, if a vulnerability is found in cmov, the backend can opt to implement the

DOT select operation using a CSWAP (bitwise operations) or other constructs.
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2.5 Experimental Evaluation

We evaluate DOVE by designing experiments to validate its four design principles of

correctness, expressiveness, data-obliviousness, and efficiency. We aim to use R as a

baseline, comparing its results to those of DOVE. In this way, we validate DOVE using

R as a reference. Our evaluations were performed on a machine with an Intel Skylake

Core i3-6100 CPU, 1 TB HDD, and 24 GB of RAM, of which 19.37 GB was allocated to the

SGX enclave. The machine was running Ubuntu 18.04.4 LTS and SGX software version

2.9.1 with EPC paging support. Thus DOVE’s memory is not limited to EPC size, but this

mechanism adds performance overhead when it is required. The frontend ran under R

interpreter version 3.4.4, and the backend was compiled against g++, toolchain version

7.5.0-3ubuntu1~18.04.

2.5.1 Correctness and Expressiveness

We combine our experiments to verify the correctness and expressiveness properties

of DOVE. We first perform unit tests to check that individual R functions have correct

output. We then proceed to use examples to show that DOVE can express solutions to

real-world problems, and does so correctly.

2.5.1.1 Unit Tests

For correctness, we confirm that what we get from DOVE is the same as what we would

get from R. We perform simple unit tests. First, we ensure that frontend generate the

correct DOTs, transliterating R functions into the appropriate DOT primitives. Then, we

verify that the DOT primitives are processed correctly on the backend and output the

expected result. Finally, we validate the end-to-end functionality of the system, checking

that R output and DOVE (frontend-DOT-backend) output are equivalent.
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Figure 2.7. The DOVE-compatible implementation of PageRank in R.

1 page_rank <- function(M) {
2 d <- 0.8
3 N <- nrow(M)
4 v <- matrix(nrow = nodes, ncol = 1, rand = TRUE)
5 norm_one <- sum(abs(v))
6 v <- v / norm_one
7 M_hat <- (M * d) + ((1-d) / N)
8 iters <- 40
9 for(i in 1:iters) {

10 v[,] <- M_hat %*% v
11 }
12 v
13 }

2.5.1.2 PageRank

We begin with an introductory case study on the PageRank algorithm that is used as a case

study on a custom data-oblivious programming language [190]. A large proportion of this

algorithm is composed of matrix multiplications, which other works choose as primary

performance benchmarks [128, 170]. Our DOVE implementation of this algorithm is

found in Figure 2.7. Note that Line 4 is syntactic sugar to generate a random matrix in

the backend, without putting those values in the DOT.

2.5.1.3 Evaluation Scripts

We demonstrate that we can conveniently (and accurately) create DOTs from R code

for our evaluation programs, as described in Section 2.3.1. Using DOVE, we were able

to transform (in the frontend) and run (in the backend) 11 out of the 13 evaluation

programs, totaling 326 lines of R code. The first program that we could not implement,

geno_to_allelecnt, works on character data instead of numeric data, and as such is

not supported by the current types available in the DOT. The second program, gwas_lm,

performs a Genome-Wide Association Study (GWAS) using support in R for linear models.
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We were not readily able to implement this; R provides parameters to models as a formula

of symbols, not values. DOVE currently does not support this paradigm, but we believe

that DOVE can be extended to do so in the future.

Ten of the remaining 11 evaluation programs were automatically transformed by the

frontend into data-oblivious code. Only one program, LD, required manual intervention,

as it was written entirely in a data-dependent style. For this program we: (1) replaced

some functions that are intrinsically data-dependent with data-oblivious primitives and

(2) changed lines that required sensitive data-dependent array indexing with worst-case

array scans. Future implementations could alternatively use an oblivious memory, e.g.,

[184], to avoid such worst-case work.

2.5.2 Data-Obliviousness

It is critical that the backend is secure against µArch side channels. Our backend is

implemented in a data-oblivious style, only using constructs that are known to the side-

channel free on the x86-64 ISA. To avoid side channels that can arise due to floating point

numbers, we use a previously-evaluated fixed-point library, libFTFP [11], designed to

provide computation on decimal numbers in constant time.

In our backend architecture, the only place we perform computation on sensitive

data is in what we term leaf functions. These functions are at the “leaf” of our call tree,

and implements a specific DOT operation on data. Up to that point in the call tree, our

backend only operates on the DOT, performing instruction fetch and setting up pointers

to data for the leaf functions. Only leaf functions dereference these pointers, and then

read and modify sensitive data. Verifying data-obliviousness of these functions is a crucial

assessment of DOVE’s security promises.

Based on the above discussion, we now scrutinize whether these leaf functions enable

our security guarantee, i.e., uphold Rule 2 from Section 2.4.3. We use the same set of

experiments we used in Section 2.3 to verify the data-obliviousness of DOVE. For this,
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Figure 2.8. Intel-syntax assembly for BitwiseAndOp::call, the DOVE backend equivalent of &
in R. This snippet has been lightly edited for clarity.

1 ; [snip] push current register state
2 ; initialize registers
3 mov r13,rcx
4 mov r12,rdi
5 mov rbp,rdx
6 mov rdi,rsi
7 mov rbx,rsi
8 ; convert fixed point number to int
9 call fixed_to_int(fixed)

10 mov rdi,rbp
11 mov r14d,eax
12 call fixed_to_int(fixed)
13 and eax,r14d ; the actual operation
14 mov rsi,r13
15 movsx edi,al
16 ; place `and` result into fixed
17 call place_bool_in_fixed(int8_t, fixed*)
18 mov rcx,r13
19 mov rdx,rbp
20 mov rsi,rbx
21 mov rdi,r12
22 ; [snip] pop previous register state
23 ; supercall to data-obliviously check for NAs
24 call BinaryOp::call(fixed, fixed, fixed*)

we manually disassemble and analyze every binary object file associated with DOVE

functions, and verify that the subset of instructions which operate on sensitive data are

instructions that do not create µArch side channels as a function of their operands. We

also inspect the PCM characteristics of DOVE to identify any missed side channels.

2.5.2.1 Static Opcode Analysis

We disassembled the object files generated during compilation and manually looked at

every function that performed an operation on sensitive data. The machine instructions

that run in these functions are of relevance to the security of DOVE, since insecure
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Table 2.4. All x86-64 opcodes that operate on sensitive data in the leaf functions of DOVE. Those
marked with * are those not found in libFTFP.

add and cdqe cmovne* cmp imul
lea mov movabs movsd movsx movsxd
movzx mul neg not or pop
push sar sbb seta setae setbe
sete setg setl setle setne shl
shr sub test xor

instructions may leak information about the data. A slightly truncated example of this

disassembly can be found in Figure 2.8 for the backend’s & operator used in our previous

examples (e.g., Figure 2.1). Note the lack of branches on conditional data, as compared to

the disassembly in Figure 2.2b. Compilation on different platforms can provide different

results, so this analysis may have to be reapplied.

We first analyze the leaf function instructions that take sensitive data as operands.

These instructions are shown in Table 2.4. We determined this set by inspecting instruction

dependencies in the objdump disassembly. All but one of the opcodes in Table 2.4 is

considered to be a data-oblivious instruction by libFTFP, our constant-time fixed-point

arithmetic library. We refer to its authors’ analysis for its security [11]. The one instruction

not found in libFTFP, cmovne, is used for conditional moves of sensitive data in the

backend. This instruction is likewise shown to be data oblivious in [170]. We further

verify that the above instructions use the direct register addressing memory mode for

each operand, if the value stored in the register for that operand is sensitive (which also

follows standard practice for writing data-oblivious code).3 Thus, we conclude that the

machine instructions operating on sensitive data in the backend do not create µArch side

channels.

Beyond the instructions in Table 2.4, there are other instructions in the leaf functions

that do not operate on sensitive data. Examples include jumps to implement loops with

3x86-64 operands can utilize one of several flavors. For example, rax denotes a register file read and
[rax] denotes a memory de-reference. The former is considered safe for use in constant-time/data-
oblivious programming, while the latter creates memory-based side channels.
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non-sensitive iteration counts, checks to validate dimensions on operations, sanity checks

for nullptr, and instructions associated with implementing polymorphism. Some of

these are not data oblivious (e.g., jumps), but do not impact security because they operate

on non-sensitive data such as matrix dimensions.

2.5.2.2 Dynamic Execution Analysis

To further corroborate our static security analysis, we also looked at runtime instruction

statistics, as we did for R in Section 2.3.3.2. We used the branch-trace-store execution trace

recording [109] of the DOVE backend execution, varying the input data. We found that the

sequence of non-speculative dynamic instructions executed was independent of the data

passed to the backend: that is, the backend satisfies the PC model [145]. Security follows

from these two analyses: (a) that the backend follows the PC model and (b) that each

individual instruction that operates on sensitive data consumes operand-independent

hardware resource usage (previous paragraphs).

2.5.2.3 Intel PCM

We additionally validate DOVE’s data-obliviousness by repeating the PCM experiments

we conducted on the R interpreter in Section 2.3.4. We performed PCM tests on every

function in the backend that correspond to the Safe DOT/Core groups in Table 2.3 on 14

metrics that previously described.

For these tests we generate and compare synthetic matrices with different data dis-

tributions, i.e., pairs of D and D′. As we have seen from our instruction analyses, base

R implementations handle corner cases for missing data (NA) and/or 0 (e.g., log(),

exp()), such that varying the proportions of these two values in the input matrix results

in noticeable differences in execution at the µArch level. Thus, we test our functions

with varying amounts of these two values. The first set tests whether the function is

data-oblivious against NA or not. This set consists of matrices with five different pro-
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Figure 2.9. Cycle count measurements for runtime Intel PCM analysis against Line 1 of Figure 2.1.
Plots above are measurements from vanilla R and plots below are from DOVE. The plots on the
left are tested against varying proportions of NA, and plots on the right are tested against varying
proportions of 0.

portions (10%, 20%, 30%, 40%, 50%) of NA. A second set tests whether the function is

data-oblivious against 0 or not. This set also consists of matrices with five different

proportions (90%, 80%, 70%, 60%, 50%) of 0. We generate 100 matrices of each proportion

randomly in both sets for our testing. The size of each matrix is 1,000 by 60.

Figure 2.9 shows boxplots that illustrate 100 trials of cycle count measurements against

the aforementioned two sets of inputs against Line 1 of Figure 2.1. Each box in the figure

represents 100 measurements of random input set with varying proportions of either NA

or 0. When Figure 2.1 was run on vanilla R, the cycle counts differ drastically when the

input’s proportion of NA (top left) or 0 (top right) is varied. Both plots at the top shows a
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linear increase in cycle counts as the proportion changes, but measurements from DOVE

do not show such a trend against NA (bottom left) or 0 (bottom right).

2.5.3 Efficiency

We define efficiency in terms of performance, which we measure primarily through the

execution time of DOVE. This is the most important metric in defining the practicality

and scalability of a solution like DOVE in a data-science context.

One run of our performance benchmark is as follows. We first record the runtime

of vanilla (insecure) R with data and a program. Then, we run the DOVE frontend on

the same program, generating the DOT and writing it to disk. We then initialize the

backend, read in the DOT, parse it, and execute the DOT instructions. Our evaluation

of the DOVE implementation discusses two measures. First, we wish to consider if our

frontend primitives are sufficient to express complex programs. Second, we examine the

performance of DOVE when compared to its base R counterpart.

To highlight the overheads inherent to SGX and libFTFP, the external data-oblivious

fixed point library [11], we ran performance benchmarks on three configurations of

DOVE: (1) backend outside an SGX enclave and without libFTFP, (2) backend outside an

SGX enclave and with libFTFP, and (3) backend inside an SGX enclave and with libFTFP

(our default configuration). SGX-related overheads include SGX’s memory encryption

and access protections that isolate the enclave from the rest of the machine [56]. In

particular, EPC paging (discussed in Section 2.2.3) is a significant overhead, especially

for large datasets. d These overheads were exacerbated by increases in the working set

of the enclave application. The libFTFP instructions’ relative performance overhead is

measured against its Streaming SIMD Extensions (SSE) counterpart; the overhead varies

depending on the instruction, ranging from 1.2× for neg (operand negation) to 208× for

exp (exponential function evaluation) [11].

We utilize the dataset from the honeybee study [13] to perform performance bench-
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Table 2.5. Absolute runtimes and sizes of the evaluation programs. Programs marked with an * were run on a reduced dataset due to
test system limitations. Program iES calls EHHS, so we include the lines of code from EHHS when measuring lines of code for iES. FE
are measurements for frontend, NEBE are for measurements with backend without SGX, and EBE are for the backend with SGX. F
indicates the use of libFTFP, the data-oblivious floating point arithmetic library that we used on our DOVE implementation. LoC stands
for Lines of Code for the original R program whereas DOT size represents the size of the counterpart DOT file in bytes. Finally, the
DOT overhead represents the relative overhead of the DOT’s file size relative to the size of the original R program.

Program Vanilla R (s) FE (s) NEBE (s) NEBE w/ F (s) EBE w/ F (s) LoC (lines) DOT size (bytes) DOT Overhead
EHHS∗ 18.9 3.85 1104.43 2131.65 3575.46 40 1538 0.51
iES∗ 23.48 6.43 1106.34 2161.95 3625 15 + 40 159853 105.44
LD∗ 1787.58 3.64 2869.48 9040 32264 54 5610 0.98
allele_sharing 283.41 5.6 650.03 1841.28 29733 12 419 0.28
hwe_chisq 38.48 4.56 113.98 262.23 853.49 21 5295 4.35
hwe_fisher 690.2 4.98 141425 154194 234054 12 10287 3.92
neiFis_multispop 85.85 16.88 111.82 278.42 1077.44 38 5311 4.09
neiFis_onepop 39.13 4.9 55.85 192.53 764.38 19 7381 2.43
snp_stats 692.73 11.21 142783 155840 236644 33 1980 1.35
wcFstats 55.27 8.21 79.38 186.27 757.38 35 6624 1.58
wcFst_spop_pairs 74.05 15.43 206.55 458.26 1343.51 45 18606 5.21
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marking. We run the full 2,808,570 × 60 (≈ 1.3 GB) dataset for all programs with space

complexity of O(m ∗ n) where m is the number of rows and n is the number of columns.

However, some of the evaluation programs could not run on this dataset due to ma-

chine limitations. Specifically, some programs with space complexity of O(m2) refuse

to run even in vanilla R at full size. To address these limitations, we run a subset of

programs with the first 10,000 rows of the honeybee dataset. Some related work also

runs performance benchmarks on genomic data with similar sizes to that of our reduced

dataset [47, 48, 180].

To normalize benchmark results run on datasets of different sizes, we present a

relative overhead metric: runtime for DOVE (DOT generation, disk reading/writing, DOT

evaluation) divided by runtime in vanilla R. This relative overhead metric is shown as

stacked bar graphs in Figure 2.10, while raw numbers can be found in Table 2.5 Each

part of the bar represents the overhead contributed by a component of the backend,

categorized by three factors: the DOVE runtime’s data-oblivious implementation itself,

constant-time fixed point operations (libFTFP), and the use of the SGX enclave. Overall,

each factor provides additional security at the cost of increased overhead. We separate our

programs into two bins: programs that run on the full honeybee dataset, and programs

that run on a reduced dataset due to machine limitations (marked with * across the

subfigures).

The min/avg/max size overhead of each DOT relative to its R script is 0.284x/10.8x/105x.

Note, the DOT may be smaller than the original program because of the DOT instruction

set. We expect that the DOT can be significantly compressed. Case in point, the current

DOT is represented in ASCII which is space inefficient.

We now provide more detailed analysis for several programs with noteworthy perfor-

mance characteristics.
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2.5.3.1 Programs with Quadratic Space Complexity

The relative overhead with DOVE is 120.7× against vanilla R on average for programs

EHHS, iES, and LD. These three programs run statistics based on pairwise SNPs, i.e.,

a row is compared to each other row in the dataset. They operate in O(m2) space, or,

quadratic in the number of rows m. The large relative overhead in the base DOVE

implementation for iES and EHHS is due to data-oblivious transformations. Namely, the

vanilla R versions of these programs benefit from early breaks in the loop body that

occur depending on sensitive values. DOVE does not directly allow such behavior for

security reasons. Hence, the backend must iterate through the entire matrix, regardless of

the data, causing potentially high overhead.

2.5.3.2 Statistical Programs

The programs hwe_chisq and hwe_fisher each call a base R statistics function:

pchisq (Chi-Square distribution) and fisher.test (Fisher’s exact test), respectively.

The program snp_stats calls both functions. In base R, the implementation of fisher.test

is written in R itself whereas pchisq is written in C. We implement both as supplemental

group functions in R Table 2.3), to provide a fair comparison and to reduce TCB size.

When called, the frontend will convert the call into a series of equivalent DOT operations.

We note that, to achieve data obliviousness, our implementations of these functions

are somewhat different than their vanilla R counterparts. For instance, computing a

factorial of a sensitive value is intrinsically data dependent, but it is required to compute

Fisher’s exact test (in R, fisher.test). To implement factorial data obliviously, we

implement it as an oblivious table lookup over a pre-determined domain of inputs, noting

that other data-oblivious implementations are possible.

While hwe_chisq has reasonable performance overhead given our data-oblivious

implementation of pchisq, both hwe_fisher and snp_stats show large performance
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overheads. These programs call the fisher.test function O(m) times. The insecure

version of this function takes O(n) time. Our data-oblivious implementation takes O(n2)

time due to inefficient oblivious-memory reads. As mentioned before, a more efficient

oblivious-memory primitive would reduce overhead.

2.5.3.3 Remaining Programs

The remaining programs do not incur a significant performance penalty, as both the

insecure and data-oblivious codes run in O(m) time. The average overhead with DOVE

is 28.3× relative to vanilla R for these programs. One program, allele_sharing (in

Figure 2.10b), has a notably larger performance overhead than others when running

inside the SGX enclave. We believe this is due to EPC paging costs. Specifically, this

program has a larger working set size than SGX has EPC/PRM (2 GB vs. 64-128 MB). It

further makes column-major traversals for a matrix that is stored in row-major order in

memory, which leads to low spatial locality and therefore, we hypothesize, a high EPC

fault rate.

2.5.4 Lessons Learned

We now discuss some of the lessons we learning during the creation of DOVE. Our

intermediate results helped us refine our design in three areas: expressiveness, data-

obliviousness, and efficiency. We hope these observations will be useful to the community.

2.5.4.1 Automating Expressiveness

An early version of DOVE was implemented as an R library instead of directly into R’s

base functions. This required end-users to rewrite their code base using DOVE functions

as provided by the library in order to generate a DOT. In retrospect, this was not a good

design, as it restricts expressiveness to only those functions the user knows how to use

with DOVE. Under this design, a user might as well learn a different, data-oblivious
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Figure 2.10. Performance evaluation results for the evaluation programs. Each stacked bar
represents a measurement for each program. Each stack represents relative overhead of DOVE
against vanilla R caused by generic data-oblivious computation, libFTFP and SGX from left to
right. Programs marked with * run on reduced dataset due to machine limitations.

language. We knew that we wanted to somehow automate the transformation of R

scripts into DOTs in the frontend. This is where the evaluation programs [39] were

useful. These scripts contain usage of many different R constructs: S3 base functions,

statistical routines, and control flow structures, among others. We used the evaluation

programs as a benchmark to ensure that our automatic conversion of scripts to DOTs

was expressive enough, leading to the frontend architecture in DOVE today. The DOVE

frontend transparently rewrites the S-expressions for a parsed R script Section 2.2.1) to

use data-oblivious primitives. The end-user, in our implementation now, does not need to

manually write DOVE-compliant R code, and instead can just run scripts out-of-the-box,
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thanks to the guidance provided by having a real-world evaluation set.

2.5.4.2 Data-Oblivious Statistics

R has a rich set of statistical functions baked into its standard library. To build some of this

functionality into DOVE, we pulled off-the-shelf open source implementations and placed

it into our backend as an external library. One of this functions is fisher.test, which

calculates Fisher’s exact test of statistical significance. Our evaluation programs [39] use

this function to calculate deviation of input data from the Hardy-Weinberg Equilibrium.

We did not consider the security implications of having an external library, nor did

we fully understand the implementation of fisher.test. However, after applying

data-oblivious tests to it, we noticed that it failed our instruction tests for branches on

sensitive data. This is due to fisher.test’s use of factorials, which are data-dependent.

We decided that the best way of implementing fisher.test was to rewrite it in data-

oblivious R. The function calculates a large lookup table of factorials, and data-obliviously

retrieves the correct value when needed. Thus, whenever a DOT running in the frontend

calls fisher.test, it calls the function in the frontend, which itself is then transcribed

into the DOT. This guarantees the security of the statistical function (and shrinks the

TCB), but at a significant performance cost: 4.9× overhead for the insecure variant versus

315× for the (current) secure variant. This underscores the importance of inspecting the

data-oblivious characteristics of the entire TCB.

2.5.4.3 Efficient Looping

Our original DOT design did not have a forloop primitive. This meant that any loops

used in input R code would be fully unrolled, its instructions copied into the DOT for

each loop iteration. The DOT would become size O(n) for loops of size n, which we

initially thought was reasonable – ostensibly, data science systems have sufficient RAM

to hold a large DOT in addition to the data upon which to operate. Our experiments
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showed that this was a flawed assumption. Evaluation programs that combined matrices

together explicitly had reasonable performance in DOVE, while evaluation programs

that explicitly looped through matrices had terrible performance. The size of the data

from [13], combined with the overhead due to SGX EPC paging Section 2.5.3), slowed

evaluation to a crawl. We realized that our backend had to minimize RAM in order to

have reasonable performance, and we thus implemented it, reducing DOT complexity

to O(1) for loops of arbitrary size. We had to make additional efficiency jumps in order

for our data-oblivious code to be performant, even if correctness and security properties

were already guaranteed, in order to run real-world workloads.
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Chapter 3

Secure Steganography for Realistic
Distributions

In this chapter, we consider how to provide censorship resistance through steganography—

the hiding of communication in other communication—using the latest techniques in

generative modeling.

3.1 Introduction

To combat extreme censorship, there is a need for steganographic protocols that can

produce stegotext (the steganographic equivalent of ciphertext) that closely mimics real,

innocuous communication. With such techniques, it would be impossible for a censor

to selectively repress communications, as subversive messages could hide in benign

communication. For instance, if dissidents could encode secret messages into mundane

appearing emails, web-forum posts, or other forms of “normal” human communication,

censorship would be impractical. The ideal tool for this task is universal steganography:

schemes which are able to securely hide sensitive information in arbitrary covertext

channels (the steganographic term for communication channels). Even if the censor

suspects something, the secret message cannot be found — nor is there any statistical

evidence of its existence.

A key challenge in this setting is to identify a generator of some useful distribution

50



where sampling will produce symbols that are identical (or at least close) to ordinary

content present in a communications channel. Given such a generator, numerous universal

steganographic constructions have been proposed that can sample from this distribution

to produce a stegotext [10, 14, 35, 61, 99, 194, 215]. Unfortunately, identifying useful

generators is challenging, particularly for complex distributions such as natural language

text. To our knowledge, the only practical attempts to achieve practical steganography

such natural communication channels have come from the natural language processing

(NLP) community [42, 43, 59, 75, 92, 103, 192, 214, 230, 234, 236, 243, 250]. While the

resulting text is quite convincing, these works largely rely on insecure steganographic

constructions that fail to achieve formal definitions [121, 139, 224, 235, 237, 238]. In

this work, we focus our attention on constructing provably secure steganography for

the kinds of distributions that would be difficult for a censor block without suffering

significant social repercussions. To do so, we identify and overcome the barriers to using

steganographic techniques as practical tools to combat network censorship.

3.1.1 Overcoming the Shortcomings of Existing Techniques

Steganographic schemes that are able to encode into any communication channel have

been the subject of significant theoretical work, e.g., [10, 14, 35, 61, 99, 194, 215]. Generally,

constructions rely on the existence of an efficient sampler functionality that, on demand,

outputs a token (sometimes referred to as a document) that could appear in the covertext

channel. These tokens are then run through a hash function that maps the token to a small,

fixed number of bits. Using rejection sampling, an encoder can find a token that maps to

some specific, desired bits, usually the first few bits of a pseudo-random ciphertext. By

repeatedly using this technique, a sender can encode an entire ciphertext into a series

of tokens, and a receiver can recover the message by hashing the tokens and decrypting

the resulting bits. Security of these approaches relies on the (pseudo-)randomness of the

ciphertext and carefully controlling the bias introduced by rejection sampling.
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There are two significant barriers to using universal steganographic systems for

censorship-resistant communication: (1) the lack of appropriate samplers for real, desir-

able covertext channels, like English text, and (2) the minimum entropy bounds required

to use existing techniques.

3.1.1.1 Generative Models as Steganographic Samplers

Existing work leaves samplers as an implementation detail. However, finding a suitable

sampler is critical to a practical construction. Sampling is straightforward for simple

covertext channels for which the instantaneous probability distribution over the next

token in the channel can be measured and efficiently computed: draw random coins and

use them to randomly select an output from the explicit probability distribution. Natural

communication channels — the most useful targets for practical steganography — are

generally too complex for such naïve sampling techniques. For example, it is infeasible

to perfectly measure the distribution of the English language, and the usage of English

continues to evolve and change.

Without access to perfect samplers, we explore steganographic samplers that approxi-

mate the target channel. While this relaxation introduces the risk that an adversary can

detect a steganographic message by distinguishing between the real channel and the

approximation, this is the best we can do when perfect samplers cannot be constructed.

In this work, we propose to use generative models as steganographic samplers, as these

models are the best technique for approximating complex distributions like text-based

communication. While these models are still far from perfect, the quality of generated

content is impressive [33, 168] and continues to improve, raising concerns about the

disastrous societal impact of misuse [27].

Generative models operate by taking some context and model parameters and out-

putting an explicit probability distribution over the next token (for example, a character or

a word) to follow that context. During typical use, the next token to add to the output is
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randomly sampled from this explicit distribution. This process is then repeated, updating

the context with the previously selected tokens, until the output is of the desired length.

Model creation, or training, processes vast amounts of data to set model parameters and

structure such that the resulting output distributions approximate the true distributions

in the training data.

The use of generative models as steganographic samplers facilitates the creation of

stegotext that are provably indistinguishable from honest model output, and thus good

approximations of real communication (although not indistinguishable from real com-

munication). We show that the nature of generative models, i.e. a shared (public) model

and explicit probability distribution, can be leveraged to significantly increase concrete

efficiency of steganographic schemes. Our key insight is that a sender and receiver can

keep their models synchronized, and thus recover the same explicit probability distri-

bution from which each token is selected, a departure from traditional steganographic

models. This allows the receiver to make inferences about the random coins used by the

sender when sampling each token. If the message is embedded into this randomness (in

an appropriately protected manner), the receiver can use these inferences to extract the

original message.

3.1.1.2 Channels with High Entropy Variability

The second barrier is the channel entropy requirements of most existing schemes. Specifi-

cally, most universal steganographic schemes are only capable of encoding messages into

covertext channels if that channel maintains some minimum entropy, no matter the context.

Real communication channels often encounter moments of low (or even zero) entropy,

where the remaining contents of the message are fairly proscribed based on the prior

context. For instance, if a sentence generated by a model trained on encyclopedia entries

begins with “The largest carnivore of the Cretaceous period was the Tyranosaurus” with

overwhelming probability the next token will be “Rex”, and any other token would be
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very unlikely. In many existing steganographic proposals, if the hash of this next token

(i.e. Hash(“Rex”)) does not match the next bits of the ciphertext, no amount of rejection

sampling will help the encoder find an appropriate token, forcing them to restart or

abort. Thus, to ensure that the probability of this failure condition is small, most classi-

cal constructions impose impractical entropy requirements. We investigate overcoming

this problem in two ways. First, we evaluate the practicality of known techniques for

public-key steganography, in which an arbitrary communication channel is compiled into

one with sufficient entropy. Second, we leverage the structure of generative models to

create a new, symmetric key steganographic encoding scheme called Meteor. Our key

observation is that the best way to adapt to variable entropy is to fluidly change the

encoding rate to be proportional to the instantaneous entropy. Together, these could be

used to build hybrid steganography, where the public-key scheme is used to transmit a

key for a symmetric key scheme.

3.1.2 Contributions

In this work we explore the use of modern generative models as samplers for provably

secure steganographic schemes. This provides the groundwork for steganography that

convincingly imitates natural, human communication once the differences between

generative models and true communication become imperceptible. In doing so, we have

the following contributions:

Evaluation of Classical Public-Key Steganography in Practice We evaluate the use

of a classical public-key steganographic scheme from [98]. We investigate adapting this

scheme to work with generative models, and show that known techniques introduce

prohibitively high overhead.
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Meteor We present Meteor, a new symmetric-key, stateful, provably secure, stegano-

graphic system that naturally adapts to highly variable entropy. We provide formalization

for the underlying techniques so that they can be easily applied to new generative models

as they are developed.

Implementation and Benchmarking Additionally, we implement Meteor and evaluate

its performance in multiple computing environments, including on GPU, CPU, and

mobile. We focus primarily on English text as our target distribution, but also investigate

protocol generation. To the best of our knowledge, our work is the first to evaluate

the feasibility of a provably secure, universal steganographic using text-like covertext

channels by giving concrete timing measurements.

Comparison with Informal Steganographic Work In addition to the constructive contri-

butions above, we survey the insecure steganographic techniques present in recent work

from the NLP community [42, 43, 59, 75, 92, 103, 192, 214, 230, 234, 236, 243, 250]. We

discuss modeling differences and give intuition for why these protocols are not provably

secure.

3.1.2.1 Deployment Scenario

Our work focuses on the following scenario: Imagine a sender (e.g. news website,

compatriot) attempting to communicate with a receiver (e.g. political dissident) in the

presence of a censor (e.g. state actor) with control over the communications network.

We assume that the sender and receiver agree on any necessary key information out of

band and select an appropriate (public) generative model. Although we focus on English

text in this work, the generative model could be for any natural communication channel.

The sender and receiver then initiate communication over an existing communication

channel, using a steganographic encoder parameterized by the generative model to
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select the tokens they send over the channel. The censor attempts to determine if the

output of the generative model being exchanged between the sender and receiver is

subversive or mundane. We note that practical deployments of these techniques would

likely incorporate best practices to achieve forward secrecy, post compromise security,

and asynchronicity, possibly by using parts of the Signal protocol [162].

3.1.3 Limitations

We want to be clear about the limitations of our work.

Differences Between Machine Learning Models and Human Communications Our

work does not address how well a machine learning model can approximate an existing,

“real” communication channel. Answering this question will be crucial for deployment

and is the focus of significant, machine learning research effort [33, 168]. Regardless of

the current state of generative models and how well they imitate real communication, our

work is valuable for the following reasons:

1. The ever-changing and poorly defined nature of real communication channels

makes sampling an inherently hard problem; channels of interest are impossible to

perfectly measure and characterize. This means the imperceptibility of steganog-

raphy for these channels will always be bounded by the accuracy of the available

approximation techniques. The best approximation tool available in the existing

literature is generative modeling [112], and thus we focus on integrating them into

steganographic systems.

2. We prepare for a future in which encrypted and pseudorandom communications are

suppressed, breaking existing tools. As such, the current inadequacies of generative

models should not be seen as a limitation of our work; the quality of generative

models has steadily improved [33] and is likely to continue improving. Once the
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techniques we develop are necessary in practice, there is hope that generative

models are sufficiently mature to produce convincingly real output.

3. Finally, there already exist applications in which sending model output is normal.

For instance, artificial intelligence powered by machine learning models regularly

contribute to news articles [89, 212], create art [136, 176], and create other digital

content [1, 118]. Theses channels can be used to facilitate cryptographically secure

steganographic communication using our techniques today.

Shared Model In Meteor, we assume that the sender and receiver (along with the censor)

access the same generative model. While this requirement might seem like a limitation,

we reiterate that the security of the scheme does not require that the model remain

private. As such, this model is similar to the common random string model common in

cryptography. Additionally, it is common practice to share high quality models publicly

[33, 122, 168], and these models would outperform anything an individual could train.

As such, we believe that this assumption is reasonable and show it yields significant

performance gains.

3.2 Background and Related Work

3.2.1 Classical Steganography

Since Simmons’ first formalization of steganographic communication [194], significant

effort has been devoted to theoretical steganography. Early work focused on achieving

information-theoretic security [10, 35, 141, 252] before moving on to cryptographic [14, 99,

215] and statistical [182, 197, 204] notions of steganography. The are many symmetric-key

constructions [35, 99, 172], public-key constructions [14, 126, 127, 215], and even identity

based constructions [177]. Relatively little on formal steganography has been in the last

15 years, although there are recent works considering the boundaries of steganography
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[21], the related problem of backdoor resistance [100] and keyless steganography [3].

In general, the steganographic schemes presented in the literature rely on rejection

sampling to find randomly selected elements of the covertext distribution that hash

to desired bits. Given space constrains, we cannot describe and compare to all prior

work. For a representative example, consider the public-key steganographic scheme from

[98, 215] presented in Algorithm 3.1. First, the encoder uses a pseudorandom, public-key

encryption scheme to encrypt the message. Then, one bit xi at a time, the encoder uses

rejection sampling to find a token ci in the covertext distribution D such that f (ci) = xi,

where f is a perfectly unbiased function over D. We omit the formal description of

the simple decoding algorithm, in which the receiver simply computes f (ci) for all i,

concatenates the bits, and decrypts the result.

Security for such schemes is simple to see: each bit of the encrypted message is

random, by the pseudorandomness of the cipher, and each token in the stegotext is

randomly sampled from the true distribution, with no bias introduced by the hash

function (by definition). As such, the distribution of the stegotext matches the covertext

exactly. However, if no unbiased hash function exists, as none do for infinitely many

distributions [98], a universal hash function can be used instead, and the bias it introduces

must be carefully controlled.

These rejection sampling algorithms fail when the distribution has very low entropy.

In such cases, it is unlikely an unbiased hash function will exist, so a universal hash

function must be used. One of two possible problems is likely to occur. (1) During

sampling, it is possible that the sampling bound k may be exceeded without finding an

acceptable token, after which the encoder simply appends a randomly sampled token.

Importantly, the receiver can not detect that this error has occurred, or indeed how many

such errors are contained in the message, and will just get a decryption error during

decoding. (2) If k is set very high, it may be possible to find a token that hashes to the

correct value, at the cost of introducing noticeable bias in the output distribution. As
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Algorithm 3.1: Public-Key Encoding Scheme from [98]
Input: Plaintext Message m, Distribution D, Sampling Bound k, public-key pk
Output: Stegotext Message c
x ← PseudorandomPKEncrypt(pk, m)
Let x0||x1|| . . . ||x|x| ← x
c← ε
for i < |x| do

ci ← Sample(D)
j← 0
while f (ci) ̸= xi and j < k do

ci ← Sample(D)
j← j + 1

c← c∥ci
Output c

Figure 3.1. The public-key steganography scheme from [98]. PseudorandomPKEncrypt is the
encryption routine for a pseudorandom, public-key encryption scheme. Sample randomly selects
an token from the covertext space according to the distribution D.

such, it is critical that the distribution maintain some minimum amount of entropy. To

our knowledge, only two prior works [61, 98] build stateful steganographic techniques

that avoid the minimum entropy requirement. Focusing on asymptotic performance, both

rely on error correcting codes and have poor practical performance.

In the closest related work, the authors of [132] theoretically analyze the limitations

of using Markov Models as steganographic samplers. The prove that any sampler with

limited history cannot perfectly imitate the true covertext channel. Our work overcomes

this limitations by considering the output of the model the target covertext distribution.

In our work we consider more powerful machine learning models and allow the

sender and receiver to share access to the same public model. This is a departure from

prior steganographic work, motivated by the public availability of high quality models

[33, 122, 168] and because this relaxation introduces significant efficiency gains. As

there has been, to our knowledge, no work testing the practical efficiency of secure

steganographic constructions for complex channels, no other work considers this model.
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3.2.2 Current Steganography in Practice

The main contemporary use for steganography is to connect to Tor ([63, 171, 208])

without being flagged by the plethora of surveillance mechanisms used by censors [209].

Steganographic techniques include protocol obfuscation, e.g., obfs4/ScrambleSuit [225],

domain fronting [76], or mimicry, e.g., SkypeMorph [142], FTEProxy [67], StegoTorus

[221], CensorProofer [216], and FreeWave [101]. Although these tools allow users to

circumvent censors today, they are quite brittle. For example, protocol obfuscation

techniques are not cryptographically secure and rely on censors defaulting open, i.e., a

message should be considered innocuous when its protocol cannot be identified. Protocol

mimicry techniques, encoding one protocol into another, are not always cryptographic

and often fail when protocols are under-specified or change without warning [82].

Modern steganographic techniques that are cryptographically secure include tools

like SkypeMorph [142], CensorProofer [216], and FreeWave [101], that tunnel information

through Voice-Over-IP (VoIP) traffic, which is usually encrypted with a pseudorandom

cipher. Once encrypted communication has started, a sender can replace the normal, VoIP

encrypted stream with a different encrypted stream carrying the secret message. By the

security of the cipher, a censor cannot detect that the contents of the encrypted channel

have been replaced and the communication looks like normal, encrypted VoIP traffic. If

access to encrypted or pseudorandom communication channels were suppressed, these

tools would no longer work.

There have been small-scale tests [81] at deploying cryptography secure stegano-

graphic tagging via ISP level infrastructure changes, as suggested in Telex [229] and

TapDance [228]. These tags indicate that a message should be redirected to another server,

but stop short of hiding full messages. These tags also critically rely on the presence of

(pseudo-)random fields in innocuous protocol traffic.

Practical work has been done in the field of format-transforming encryption (FTE),
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such as [68, 69, 131, 154]. These approaches require senders to explicitly describe the

desired covertext channel distribution, an error-prone process requiring significant manual

effort and is infeasible for natural communication. None of these applications, however,

provide any kind of formal steganographic guarantee. Recently, there has also been work

attempting to leverage machine learning techniques to generate steganographic images,

i.e. [16, 45, 96, 102, 187, 227], but none of these systems provide provable security.

3.2.3 Generative Neural Networks

Generative modeling aims to create new data according to some distribution using a

model trained on input data from that distribution. High quality language models

[33, 168], are generative neural networks, which use neural network primitives. The

model itself contains a large number of “neurons” connected together in a weighted

graph of “layers”, which “activate” as the input is propagated through the network.

Unlike traditional feed-forward neural networks used in classification tasks, generative

networks maintain internal state over several inputs to generate new text. Training these

models typically ingests data in an effort to set weights to neurons, such that the model’s

output matches the input data distribution; in other words, the network “learns” the

relationships between neurons based on the input. The first practical development in

this field was the creation of long short-term memory (LSTM) networks [97]. LSTM

networks are found in machine translation [55, 117], speech recognition, and language

modeling [112]. The transformer architecture [213], exemplified by the GPT series of

models [33, 168], is also becoming popular, with results that are increasingly convincing

[27].

After training, the model can be put to work. Each iteration of the model proceeds

as follows: the model takes as input its previous state, or “context”. As the context

propagates through the network, a subset of neurons activate in each layer (based on

previously trained weights), up until the “output layer”. The output layer has one neuron
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for output token, and uses the activated neurons to assign each token a weight between 0

and 1. The model uses its trained weights and the context input to generate a distribution

of possible tokens, each with a probability assigned. The model uses random weighted

sampling to select a token from this distribution, returning the chosen token as output.

Finally, the returned token is appended to the context and the next iteration begins.

We note there is work focusing on differentiating machine-generated text from human-

generated text [4, 15, 85]. It has yet to be seen if these techniques will remain effective as

machine learning algorithms continue to improve, setting the stage for an “arms race”

between generative models and distinguishers [249].

3.3 Definitions

3.3.1 Symmetric Steganography

The new construction in this work is symmetric-key stenography, so for completeness we

include symmetric-key definitions. The definitions for public-key steganography are a

straightforward adaptation of the definitions provided here and can be found in [98].

A symmetric steganographic scheme ΣD is a triple of possibly probabilistic algorithms,

ΣD = (KeyGenD, EncodeD, DecodeD) parameterized by a covertext channel distribution

D.

• KeyGenD(1λ) takes arbitrary input with length λ and generates k, the key material

used for the other two functionalities.

• EncodeD(k, m,H) is a (possibly probabilistic) algorithm that takes a key k and a

plaintext message m. Additionally, the algorithm can optionally take in a message

history H, which is an ordered set of covertext messages H = {h0, h1, . . . , h|H|−1},

presumably that have been sent over the channel. Encode returns a stegotext message

composed of ci ∈ D.
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• DecodeD(k, c,H) is a (possibly probabilistic) algorithm that takes as input a key k and

a stegotext message c and an optional ordered set of covertext messages H. Decode

returns a plaintext message m on success or the empty string ε on failure.

We use the history notation that is used in a number of previous works [99, 215], but

not universally adopted. The history input to the encode and decode functions capture

the notion that covertext channels may be stateful. For instance, members of the ordered

set H could be text messages previously exchanged between two parties or the opening

messages of a TCP handshake.

3.3.1.1 Correctness

A steganographic protocol must be correct, i.e. except with negligible probability an

encoded message can be recovered using the decode algorithm. Formally, for any

k← KeyGenD(1λ),

Pr [DecodeD(k, EncodeD(k, m,H),H) = m ] ≥ 1− negl(˘).

3.3.1.2 Security

We adopt a symmetric-key analog of the security definitions for a steganographic system

secure against a chosen hiddentext attacks in [215], similar to the real-or-random games

used in other cryptographic notions. Intuitively, a steganographic protocol ΣD is secure

if all ppt. adversaries are unable to distinguish with non-negligible advantage if they

have access to encoding oracle EncodeD(k, ·, ·) or a random sampling oracle OD(·, ·) that

returns a sample of the appropriate length. This ensures that an adversary wishing to

block encoded messages will be forced to block innocuous messages as well. We allow

the adversary to not only have a sampling oracle to the distribution (as in [99]), but also

have the same distribution description given to the encoding algorithm. More formally,

we write,
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Definition 1. We say that a steganographic scheme ΣD is secure against chosen hiddentext

attacks if for all ppt. adversaries AD, k← KeyGenD(1λ),⃓⃓⃓
Pr

[︂
AEncodeD(k,·,·))
D = 1

]︂
− Pr

[︂
AOD(·,·)
D = 1

]︂⃓⃓⃓
< negl(˘)

where OD(·, ·) is an oracle that randomly samples from the distribution.

3.3.2 Ranged Randomness Recoverable Sampling Scheme

To construct Meteor, we will need a very specific property that many machine learning

algorithms, like generative neural networks, possess: namely, that the random coins

used to sample from the distribution can be recovered with access to a description of

the distribution. If it is possible to uniquely recover these random coins, steganography

is trivial: sample covertext elements using a pseudorandom ciphertext as sampling

randomness and recover this ciphertext during decoding. However, generative machine

learning models do not achieve unique randomness recovery.

Meteor requires a sampling algorithm with a randomness recovery algorithm that

extracts the set of all random values that would yield the sample. Because this set could

possibly be exponentially large, we requiring that the set be made up of polynomial

number1 of continuous intervals, i.e. it has a polynomial space representation that can

be efficiently tested for membership. We call schemes that have this property Ranged

Randomness Recoverable Sampling Schemes, or RRRSS. The formal interface for RRRSS

schemes is parameterized by an underlying distribution D, from which samples are to

be drawn and has two ppt. algorithms. Additionaly, we make the size of length of the

randomness explicit by requiring all random values to be selected from {0, 1}β. The two

algorithms are defined below:

• Sampleβ
D(H, r) → s. On history H and randomness r ∈ {0, 1}β, sample an output s

from its underlying distribution D
1In practice, we will be working with schemes for which there is a single set, continuous set of random

values that result in the same output.
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• Recoverβ
D(H, s)→ R. On history H and sample s, output a set R comprised of values

r ∈ {0, 1}β

Note that our sampling scheme takes in a history, making it somewhat stateful. This

allows for conditioning sampling on priors, a key property we require to ensure that

Meteor is sufficiently flexible to adapt to new covertext distributions. For example,

consider character-by-character text generation: the probability of the next character being

“x” is significantly altered if the prior character was a “e” or a “t.”

We require that these algorithms satisfy the correctness and coverage guarantees.

3.3.2.1 Correctness

We require that all of the returned randomness values would actual sample the same

value. Formally, for all r ∈ {0, 1}β, and all history sets H,

Pr
[︂
∀r̂ ∈ R, Sampleβ

D(H, r̂) = s | R ← Recoverβ
D(H, s); s← Sampleβ

D(H, r)
]︂
= 1.

3.3.2.2 Coverage

We require that the recover algorithm must return all the possible random values that

would yield the target sample. Formally, for all r ∈ {0, 1}β, and all history sets H,

Pr
[︂
∀r̂ ∈ {0, 1}β s.t. Sampleβ

D(H, r̂) = s, r̂ ∈ R | R ← Recoverβ
D(H, s); s← Sampleβ

D(H, r)
]︂
= 1.

We note that the structure of modern generative models trivially guarantees these

sampling properties. This because all of the random values that would yield a particular

output of the sample function are sequential in the lexicographical ordering of {0, 1}β.

The notion of randomness recovery has been widely studied in cryptography, primarily

when building IND−CCA secure public-key cryptography, e.g. [58, 161]. These works

define notions like unique randomness recovery and randomness recovery, in which the recover

algorithm run on some s returns a single value r such that f (k, r) = s for an appropriate
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function f and key k. Unlike the definitions in prior work, we require a sample scheme

over a some distribution and the extraction of intervals.

3.4 Adapting Classical Steganographic Schemes

In this section, we focus on adapting classical steganographic techniques to English

language distributions using generative models, specifically the GPT-2 [168] language

model.

3.4.1 Characterizing Real Distributions

As noted in Section 3.2, existing steganographic schemes require a certain, minimum

amount of entropy for each sampling event. Any positive value, no matter how small, is

sufficient for a channel to be “always informative,” i.e., theoretically permit the generation

of stegotext. In practice, as we will see, an always informative channel with trivial entropy

will yield extraordinarily long stegotext, a problem in practice.

Practical covertext channels, on the other hand, may not be always-informative, let

alone have non-trivial entropy. Figure 3.2 depicts several representative runs of the

entropy over time for a sample of tokens from the GPT-2 model. Each data point reflects

the amount of entropy in the model after sampling x characters from the model. The

entropy varies wildly between sampling events, and there is no clear consistency state of

entropy over several tokens. Moreover, the entropy occasionally drops close to zero. As

such, existing steganographic techniques will fail; in our testing, Algorithm 3.1 from [98]

has a 100% failure rate when encoding a 16-byte message using GPT-2.

3.4.1.1 Adaptation 1: Entropy Bounding

A natural adaptation to periods of low entropy would be to not attempt to encode

information while the entropy in the channel is too low. Both the sender and receiver

have access to the distribution, meaning they can both detect periods of low entropy
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Figure 3.2. Entropy of GPT-2 output distributions. Each datapoint computed as Shannon entropy
of the output distribution after sampling a certain number of tokens. Then, a random token is
sampled from that distribution and appended to the context. Different colors represent different
runs starting with the same context and different randomness.
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Figure 3.3. Binned probability of selecting the tokens included in the final stegotext using entropy
bounding with a value of 4.5 and the GPT-2 model. The stegotext tokens clearly come from a
different distribution. Note that baseline tokens were only sampled from events above the entropy
bound.

68



and skip them. This means that only “high-entropy” events are utilized for sampling,

fixing a minimum entropy that is used in the steganographic protocol. In effect, this

entropy bounding creates a sort of channel-within-a-channel that meets the always entropy

requirement.

While this does increase the success rate (this method achieved 0–10% failure rate

in our tests), it also introduces a new problem: significant bias in the sampled tokens.

Figure 3.3 is a histogram showing the probability that the selected token from the

distribution would be sampled (i.e. the probability weight of the selected tokens). In

the figure, entropy bounding for different numbers of tries are shown (k), along with a

baseline sample. The baseline is also “bounded” here: it represents the probabilities of

normally-sampled tokens when the distribution entropy was above H = 4.5.

As the figure depicts, the entropy bounding method introduces significant bias by

including a disproportionate number of tokens in certain bins. This is because the hash

function used is not unbiased, so repeated rejection sampling from the same distribution

exacerbates the bias of the hash function. In short, there is still not enough entropy to hide

the bias introduced by the hash function. Thus, an adversary can distinguish between

an encoded message and an innocuous one by seeing if the selection probabilities of the

messages are different.

3.4.1.2 Adaptation 2: Variable Length Samples

An alternative method to handle low-entropy periods, as proposed by [98], is to compile

the channel into one with sufficient entropy. If a channel is always informative, meaning

it always has some ϵ > 0 entropy, this can be done by sampling some fixed number ℓ

elements together, such that the resulting channel has at least ℓ× ϵ entropy. By setting

ℓ appropriately, the entropy in the compiled channel is guaranteed to be high enough.

However, in real communications channels, the entropy in the channel may not always be

non-zero. As such, a naïve application of this approach will fall short.
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Figure 3.4. Binned probability of selecting the tokens included in the final stegotext variable
length sampling. Although there is slight variation in the distributions, there is no clear difference
between the stegotext and the baseline. Moreover, this method is proved secure in [98].

70



We overcome this by sampling a variable number of tokens in each sampling event, such

that the cumulative entropy of the distributions from which the tokens come surpasses

the minimum requirement. More specifically, instead of sampling one token at a time

in the while loop of Algorithm 3.1, this method samples p tokens until the sum of the

entropy of the distributions from which those tokens were sampled meets a minimum

threshold Hp. Intuitively, this approach “collects” entropy before attempting to encode

into it, boosting success rate while avoiding the issues of low entropy.

Figure 3.4 shows a selection probabilities graph, with different values of Hp compared

against a baseline measurement of normal sampling from the GPT-2 (note this baseline

includes all sampled tokens, unlike in Figure 3.3). In the figure, each set of runs of the

model sets λ = k, i.e., the entropy required to encode is equivalent to the number of tries

to encode. There are differences between the probabilities, but here is no clear pattern –

this variation can be attributed to sampling error. [98] proved that for this approach to be

secure, Hp must be strictly larger than log(k); to achieve useful security parameters, we

need Hp = k ≈ 2× λ, where λ is the security parameter.

While provably secure, variable length sampling results in unreasonably large stegotext

and long encoding times. Table 3.1 shows the length of stegotext and encoding times

when encoding a 16 byte plaintext message using adaptation 2 on our Desktop/GPU

test environment using the GPT-2 model (refer to Section 3.6 for hardware details). Each

row corresponds to 30 runs of the model for that set of parameters. As Hp (and thereby

k) increase, the length of the stegotext also increases: the higher resampling entropy

requirement means that more tokens must be sampled, which takes more time. We note

that these results include GPU acceleration, so there is little room for performance boosts

from hardware.
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Table 3.1. Performance results for model load encoding using the method of [98] and resampling,
averaged over 30 runs. The message being encoded is the first 16 bytes of Lorem Ipsum.

Parameters
Samples
(Tokens)

Time
(Sec)

Stegotext Len.
(KiB)

Overhead
(Length)

Hp = k = 16 502.8 42.69 2.3 149.4x
Hp = k = 32 880.4 128.41 4.1 261.8x
Hp = k = 64 1645.0 361.28 7.5 482.1x
Hp = k = 128 2994.6 765.40 13.6 870.7x

3.5 More Efficient Symmetric-Key Steganography

We now design Meteor, a symmetric-key steganographic scheme that is more practical

than the techniques above. A more efficient symmetric-key approach would allow for

hybrid steganography, in which a sender encodes a symmetric key using the public-key

steganography and then switches to a faster and more efficient encoding scheme using

this symmetric key. We note that while symmetric-key approaches have been considered

in the past, e.g. [99, 172], they also rely on the entropy gathering techniques highlighted

above. Our approach’s intuition to accommodate high entropy variability is to fluidly

change the encoding rate with the instantaneous entropy in the channel. As will become

clear, Meteor does this implicitly, by having the expected number of bits encoded be

proportional to the entropy.

3.5.1 Intuition

Suppose we have, for example, a generative modelM trained to output English text word-

by-word. Each iteration takes as input all previously generated words H and outputs a

probability distribution P for the next word, defined over all known words T . This is done

by partitioning the probability space between 0 and 1 (represented at some fixed precision)

into continuous intervals r0, r1, . . . , rm corresponding to each valid word. For instance, if

the precision is 5 bits, r0 might be interval [00000, 00101), r1 might be [00101, 10000), and
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so on. The algorithm then generates a uniform random value r ∈ [00000, 11111], finds

the interval ri into which r falls, and outputs the corresponding word. In the example, if

r = 01110, then the word corresponding to r1 would be chosen. In practice, these values

all have much higher precision, for example r ∈ {0, 1}32, ri ∈ {0, 1}32 × {0, 1}32.

Meteor embeds messages into the random number r used to sample from the model, as

illustrated in Figure 3.5. Consider the information that a potential receiver with access to

the model might learn from a single output of the generative model. Because the receiver

has access toM, they can recover the interval ri into which r must have fallen. Note that a

ri might contain a huge — possibly exponential — number of possible values that would

all yield the same sample, meaning the receiver cannot uniquely recover the true value

of r. However, because the intervals are continuous, all such values may share a prefix,

effectively fixing the first few bits of r in the view of the receiver. In this example above,

all values in r1 are contained in the first half of the distribution space, so the receiver can

conclude the first bit of r must have been a 0. Similarly, if the word corresponding to r0

had been chosen, the first bits of r must have been 00. Another example can be seen in

Figure 3.5, in which the interval corresponding to the word “The” shares the prefix 01, so

a receiver can recover these bits. In this way, if r is a function of the hidden message, the

receiver can potentially recover bits of information about the message with each output

of the model. Because the sender and receiver share the description of the distribution,

the sender can determine how many bits will be recoverable, and then discard those bits

before repeating the process.

The key challenge in this setting is keeping the message hidden from the adversarial

censor with access to the same distribution. Clearly, using the bits of the message as

the randomness is insecure, as a censor with the same model could extract the message.

Encrypting the message with a pseudorandom cipher, as in the public-key solution

above, is also insufficient because it is possible that the encoder will be forced to reuse

randomness. For example, consider a probability distribution in which the values of the
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interval containing r have no shared prefix, but 90% of the values in that interval begin

with a 0. Because no bits are transmitted and the next iteration will use the same value of

r. The censor now knows that with 90% likelihood, r in the second sampling event begins

with zero. Over enough trials, a censor could detect this bias and distinguish between

honestly sampled output and stegotext.

To avoid the reuse of randomness, Meteor generates a fresh mask for r each time the

sender samples an output. This is done using a PRG, keyed with state shared by the

sender and receiver, and applied using XOR. The receiver recovers as many bits of r as

possible and then unmasks them with the corresponding XOR mask to recover bits of

the message. Conceptually, this can be seen as repeatedly encrypting the message with a

stream cipher, facilitating bit-by-bit decryption. This novel encoding technique means the

number of bits that can be transmitted in each sampling event is not fixed. In practice,

this is a huge advantage, as the expected number of bits transmitted is proportional to

the entropy in the channel without requiring any explicit signaling (see Section 3.5.2.4).

Finally, it is intuitively clear why this approach yields a secure scheme: (1) each sampling

event is performed with a value of r that appears independent and random and (2) all

bits that can be recovered are obscured with a one-time pad.

3.5.2 Meteor

For notation, let λ be a security parameter, ϵ be the empty string, and ∥ represent

concatenation or appending to an ordered set, as appropriate. We adopt Python-like array

indexing, in which x[a : b] includes the elements of x starting with a and ending with

b, exclusive. Finally, we use two subroutines LenPrefixβ(·) and Prefixβ(·), presented in

Algorithm 3.2 and Algorithm 3.3, respectively. The first gives the length of the longest

shared bit prefix of elements in the set, and the second returns this bit prefix explicitly.
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Attack@Dawn

        0101 0111 1100 1001

PRG Mask:  0001 0110 1011 1101

Generative 
Model

Evidence indicates that 
the asteroid fell in the 
Yucatan Peninsula, at 
Chicxulub, Mexico.

An The A However Since

Message Bits:  0100 0001 0111 0100    The first importance of the Yucatan 
Peninsula is demonstrated with the 
following conclusion: the Pliocene 
Earth has lost about seven times as 
much vegetation as the Jurassic in 
regular parts of the globe, from 
northern India to Siberia…

Plaintext

Context

StegotextEncoder

Figure 3.5. An overview of the encoding strategy for Meteor. In each iteration of Meteor, a new
token (shown in green) is selected from the probability distribution created by the generative
model. Depending on the token selected, a few bits (shown in red) can be recovered by the
receiver. The stegotext above is real output from the GPT-2 model.

Pseudorandom Generators Our construction leverages a pseudorandom generator PRG

[28]. For a more formal treatment of the security notions of PRGs, see [178] and the

citations contained therein. We adopt the notation used in stateful PRGs. Specifically,

let the PRG have the functionalities PRG.Setup and PRG.Next. The setup algorithm

generates the secret state material, which we will denote kprg for simplicity, and the next

algorithm generates β pseudorandom bits. We require that the PRG satisfy at least the

real-or-random security games.

3.5.2.1 Construction

Meteor consists of three algorithms, parameterized by a bit precision β and a model

M that supports a RRRSS. We use a generative model M as our instantiation of the

distribution D for an RRRSS as defined in Section 3.3. The key generation algorithm

KeyGenβ
M is presented in Algorithm 3.4, the encoding algorithm Encodeβ

M is presented

in Algorithm 3.5, and the decoding algorithm Decodeβ
M is presented in Algorithm 3.6.

The precision β ∈ Z, β > 0 controls the maximum number of bits that can be encoded

in each iteration. β should be the accuracy of the underlying sampling scheme. Most

models in our implementation give probability distributions accurate to 32 bits, so we set

β = 32. In our tests, it is incredibly unlikely that 32 bits will successfully be encoded at
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Algorithm 3.2: LenPrefixβ

Input: Set of Bit Strings R = {r1, r2, . . . rn}
Output: Length ℓ
ℓ← 1
while ℓ < β do

if ∃ i, j ∈ {1, . . . , n} such that ri[0 : ℓ] ̸= rj[0 : ℓ] then
Output ℓ− 1

ℓ← ℓ+ 1
Output ℓ

Algorithm 3.3: Prefixβ

Input: Set of Bit Strings R = {r1, r2, . . . rn}
Output: Bit String s
Output r1[0 : LenPrefixβ(R)]

Figure 3.6. Subroutine algorithms for Meteor

once, meaning using a lower β is likely acceptable.

Because the model used in sampling is a generative one, the model maintains state

on its previous inputs. Each distribution generated by the model is dependent on the

values sampled from previous distributions. Additionally, the model requires an initial

state to begin the generative process. This state is abstracted by the history parameter H

passed to instances of Encode and Decode. This allows the distributions generated by

each successful sampling of a covertext token ci to remain synchronized between the two

parties. We assume that the entire history H is maintained between the parties, including

the initial state that primes the model.

The encoding algorithm loops through three stages until the entire message has been

successfully encoded: (1) generating and applying the mask, (2) sampling a next output

to append to the covertext, and (3) updating the state of the algorithm based on the

output of the sampling event. In the first stage, the mask is computed as the output of a

pseudorandom generator and is applied with the XOR operation. The resulting value,

r is distributed uniformly in [0, 2β+1), as each bit of r is distributed uniformly in {0, 1}.

This random value is then used in step (2) to sample the next output of the sampling
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Algorithm 3.4: KeyGenβ
M

Input: 1λ

Output: Key kprg

Output kprg ← PRG.Setup(1λ)

Algorithm 3.5: Encodeβ
M

Input: Key kprg, Plaintext Message m, History H
Output: Stegotext Message c
c← ε, n← 0
while n < |m| do

mask← PRG.Next(kprg)
r ← m[n : n + β]⊕mask
ci ← Sampleβ

M(H, r)
R ← Recoverβ

M(H, ci)

ni ← LenPrefixβ(R)
c← c∥ci, n← n + ni, H ← H∥ci

Output c

Algorithm 3.6: Decodeβ
M

Input: Key kprg, Stegotext Message c, History H
Output: Plaintext Message m
x ← ε
Parse c as {c0, c1, . . . , c|c|−1}
for i ∈ {0, 1, . . . , |c| − 1} do
R ← Recoverβ

M(H, ci)

xi ← Prefixβ(R)
mask← PRG.Next(kprg)
x ← x∥(xi ⊕mask[0 : |xi|])
H ← H∥ci

Output x

Figure 3.7. Symmetric steganography algorithms for Meteor
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scheme. To determine the number of bits this sampling event has successfully encoded,

the encoding algorithm uses the Recoverβ functionality of the RRRSS and calls LenPrefix

on the resulting (multi-)set. Finally, the algorithm then updates the β bits that will be

used in the next iteration, and updates its other state as appropriate.

The decoding algorithm performs these same three stages, but with the order of the

first two reversed. With knowledge of the output of each sampling stage ci, the first

algorithm calls Recoverβ and Prefix to recompute some (possibly zero) leading bits of the

r. Then, it calculates the mask that was used by the encoder for those bits and removes

the mask. The bits recovered in this way make up the message.

Note that we do not discuss reseeding the PRG. Most PRGs have a maximum number

of bits that can be extracted before they are no longer considered secure. Because the

PRG secret information is shared by the sender and receiver, they can perform a rekeying

or key ratcheting function as necessary.

3.5.2.2 Correctness

Correctness follows directly from the properties of the RRRSS and the correctness of the

PRG. We know that the RRRSS always will return the full set of random values that could

have generated the sample, and thus recovery of the masked plaintext it deterministic.

The receiver is able to recompute the same mask (and remove it) because of the correctness

of the PRG, i.e., it is also deterministic.

3.5.2.3 Security

We sketch the proof of security, as the formalities of this simple reduction are clear

from the sketch. Consider an adversary A which has non-negligible advantage in

the security game considered in Definition 1. We construct an adversary Â with non-

negligible advantage in the PRG real-or-random game, with oracle denoted R(·). To

properly answer queries from A, Â runs the encoding algorithm in Algorithm 2 with an

78



arbitrary input message, but queries the R(·) to obtain the mask required for sampling.

Additionally, Â keeps a table of all queries sent by A and the responses. When A queries

the decoding algorithm, Â checks its table to see if the query matches a previous encoding

query, and responds only if it is an entry in the table. Note that if R(·) implements a true

random function, the encoding algorithm simply samples a random message from the

distribution. When A terminates, outputting a bit b, Â outputs b as well.

As the message is masked by the queries Â sends to R(·), Amust be able to distinguish

between a true-random output and the xor of a message with a one-time pad. Because

XOR preserves the uniformly-random distribution of the pad, this is not possible with

non-negligible probability.

3.5.2.4 Efficiency

We now show that the asymptotic expected throughput of Meteor is proportional to the

entropy in the communication channel. Recall that the entropy in a distribution P is

computed as −∑i∈|P| pi log2(pi), where pi is the probability of the ith possible outcome

of P . Similarly, the expected throughput of Meteor can be computed as ∑i∈|P| piExp(pi),

where Exp(·) is the expected number of shared prefix bits for some continuous interval

of size pi. Thus, the remaining task is to compute a concrete bound on Exp(·).

We will make the simplifying assumption that the start of an interval pi is placed

randomly between [0, 2β+1). Note that interval i will never start after 2β+1− pi in practice,

so we the number of prefix bits in this case to be 0, so this simplification will lead to an

expected throughput strictly less than the true value. Additionally, the starting locations

for each interval are not independent in practice, as they each depend on pj ̸=i. However,

this independence assumption also leads to equal or lower expected throughput, as the

starting point for larger intervals will actually be more biased towards the middle of the

distribution, where Exp(·) will be lower, and smaller distributions will be biased to start

near the edges of the distribution, where Exp(·) will be higher.
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some small ϵ. The expected throughput can be computed as the average of this function, i.e.
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By way of example, consider an interval i such that pi =
1
4 − ϵ, for some small ϵ (see

Figure 3.8). If i starts between [0, ϵ), then it is contained completely before the prefix

01 begins, and thus would transmit 2 bits. The following pi starting points all transmit

only 1 bit, as the only shared prefix for the interval would be 0. If i starts between

[1
42β+1, (1

4 + ϵ)2β+1), the entire interval shares the prefix 01, so 2 bits can be transmitted.

In [(1
4 + ϵ)2β+1, 1

22β+1), there is no shared prefix, as some of the samples that would land

in that interval start with a 0 and others start with 1. The analysis continues in this way

for the remainder of the starting points.

More generally, the expected throughput of an interval with size p is the average of

these different sets of starting points with different length shared prefixed, weighted by

size. More explicitly, let g(p) = ⌊− log2(p)⌋, then

Exp(p) ≥
{︄

0 , p > 1/2

g(p)(2−g(p) − p)2g(p) + p ∑
g(p)−1
j=1 (j2j) , p ≤ 1/2

The first part of the expression corresponds to the starting points where the interval has

the most shared bits, e.g. the points in Figure 3.8 where the throughput is 2. There are

2g(p) of these sets, each of which has size (2−g(p) − p), the difference between p and the

nearest power of two less than 2. The sum corresponds to the when the interval transmits

fewer bits, e.g. the points in Figure 3.8 where the throughput is 1 or 0. Each of these

terms counts the p2j starting points where the number of bits transmitted is j.

Note that Exp(p) ≥ 1
2(− log2(p) − 1) for small enough p. To see this, note that
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g(p) ≥ − log2(p)− 1, because of the rounding. Then, just consider the first term

g(p)(2−g(p) − p)2g(p) ≥ (− log2(p)− 1)(1− p2− log2(p)−1)

=
1
2
(− log2(p)− 1).

While this bound is not tight, it illustrates that Exp(p) asymptotically acts like log2(p),

meaning ∑i∈|P| piExp(pi), grows proportionally to the entropy in P , −∑i∈|P| pi log2(pi).

Thus, the expected throughput of Meteor is asymptotically optimal.

3.6 Evaluation

In this section we discuss our implementation of Meteor and evaluate its efficiency

using multiple models. We focus on evaluating Meteor, not a hybrid steganography

system using the public key stegosystem in Section 3.4, because it is significantly more

efficient. Moreover, the efficiency of a hybrid stegoanography system is determined

by the efficiency of its constituent parts; the cost of such a scheme is simply the cost

of transmitting a key with the public key scheme (see Section 3.4) plus the cost of

transmitting the message with Meteor. An interactive online demonstration of our system

is available at https://meteorfrom.space.

3.6.1 Implementation Details

We implemented Meteor using the PyTorch deep learning framework [159]. We realize

the PRG functionality with HMAC_DRBG, a deterministic random bit generator defined in

NIST SP 800-90 A Rev. 1 [17]. The implementation supports any type of binary data, such

as UTF-8-encoded strings or image files, as input.

To illustrate Meteor’s support for different model types, we implemented the algorithm

with the weakened version of the GPT-2 language model released by OpenAI and two

character-level recurrent neural networks (RNN) that we train. The GPT-2 model [168]

is a generative model of the English language. It parses language into a vocabulary of
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Algorithm 3.7: Sampleβ
M for the GPT-2 model.

Input: Randomness r ∈ {0, 1}β, History H
Output: Token next
T ,P ← NextM(H)
cuml ← 0
for i ∈ {0, 1, . . . , |T | − 1} do

cuml ← cuml + P [i]
if cuml > r then

Output next← T [i]

Output next← T [|T | − 1]

Algorithm 3.8: Recoverβ
M for the GPT-2 model.

Input: History H, Sample s
Output: Randomness set R
T ,P ← NextM(H)
cuml ← 0
for i ∈ {0, 1, . . . , |T | − 1} do

if T [i] = s then
Output R ← {r ∈ {0, 1}β | cuml ≤ r < cuml + P [i]}

cuml ← cuml + P [i]
Output R ← ∅

Figure 3.9. RRRSS algorithms for the GPT-2 model. T is an array of possible next tokens and P is
the probability associated with each of these tokens.

words and generates words when given previous context. Meteor encodes stegotext into

these generated words. The character-level models generate ASCII characters in each

iteration. These models output lower-quality English text, but are more generalizable.

Character-level models work with any data that can be represented as text, including

other languages and non-text protocols, whereas word-level models are specific to the

English language models.

Our GPT-2 codebase builds upon that of [250]. We note that the next-generation GPT

language model, GPT-3, has been published by OpenAI [33]; however, at the time of this

writing, the codebase for the GPT-3 has not been released. The GPT-3 interface is the

same as the GPT-2, meaning integration will be automatic, increasing stegotext quality
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while maintaining security guarantees. Example stegotext generated with the GPT-2

model can be found in Section 3.6.4.

Figure 3.9 shows how to instantiate the Sampleβ
M and Recoverβ

M algorithms from

Section 3.3 with the distribution represented as a generative modelM (in discussion of

classical steganography, we used D). Both algorithms use NextM(H), which generates an

array of possible next tokens T and an array of probabilities associated with each token

P using the model’s internal structure. The Sampleβ
M for generative networks accumu-

lates the probabilities and selects the first token for which the cumulative probability

exceeds the randomness supplied. This is equivalent to multinomial sampling, and is the

unmodified method of sampling normally from the GPT-2 model. In the unmodified (i.e.,

non-Meteor) case, the GPT-2 chooses a true random value r instead of a PRG as in Meteor.

Recoverβ
M inverts the process, returning the entire set of random values that would yield

the target sample s.

In addition to the GPT-2 variant, we trained two character-level RNN models to test

with Meteor, using the code of [173] with locally trained models. Each model uses long

short term memory (LSTM) cells to store state [97]. The first model, named “Wikipedia”,

was trained on the Hutter Prize dataset [106], which consists of a subset of English

Wikipedia articles. The data from this model contains English text structured with

Wiki markup. The output of this model is good, but its character-level nature makes its

outputs less convincing human text than GPT-2 output. The second model, named “HTTP

Headers”, consist of the headers for 530,128 HTTP GET requests from a 2014 ZMap scan

of the internet IPv4 space [57, 66]. This highly structured dataset would facilitate hiding

messages amongst other HTTP requests. We note that the flexibility of character-level

models allows us to generalize both text-like channels and protocol-esque channels [112].

Both models have three hidden layers. The Wikipedia model has a hidden layer size

795 and was trained for 25,000 epochs. The HTTP headers model has size 512 and was

for 5,000 epochs, due to its more structured nature. The two models were trained at a
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batch size of 100 characters and learning rate 0.001. Example output from the Wikipedia

character-level model can be found in Section 3.6.4.

3.6.2 Optimizations

In evaluating Meteor, we also implement two heuristic optimizations that could lead

to better performance without compromising security. Note that while they increases

the expected throughput of scheme, it is not guaranteed to do so. Making any change

to the output selected in a given sampling event might unintentionally push the model

down a lower entropy branch of the covertext space, yielding more sampling iterations

overall. The first optimization is performing a deterministic reordering operation of the

model distribution, reduces the number of calls to the generative model by 20%-25%,

and in some cases results in more efficient encoding and decoding times. The second

optimization is an adaptation from the NLP literature that uses the generative model’s

internal word representation to compress English language messages.

Before proceeding to the optimizations themselves, recall the intuition provided for

Meteor in Section 3.5. In each iteration of the encoding algorithm, the sender extracts a

probability distribution P from the generative model. P is subdivided into a series of

continuous intervals r0, r1, . . . rm, the size of which determines the probability that the

model would select the corresponding token is the next output. Meteor then generates a

random sampling value r = mask⊕m and determines the interval ri into which r falls.

The number of bits encoded is computed as LenPrefix(ri).

3.6.2.1 Optimization 1: Reordering the Distribution

We note that while we cannot manipulate |ri| without compromising the security of

scheme, we are able to impact LenPrefix(ri) by permuting the order of r0, r1, . . . , rm. It

is clear there exists some such permutation that maximizes the expected throughput of

Meteor, although finding this permutation proves to be difficult.
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r0 r1 r2

r0r1 r2

r0r1 r2

 1) E(d) = .03*5 + .49*0 + .48*1 = .63

 2) E(d)=.49*1 + .03*0 + .48*1 = .97

 3) E(d) = .49*1 + .48*0 + .03*5 = .64

Figure 3.10. An illustrative example of the impact of reorganizing a distribution. r0 has 3% of the
total probability density, while r1 and r2 have 48% and 49% respectively. Because 2−6 < .03 < 2−5,
r0 can encode 5 bits of information when located at the beginning or end of the distribution. In
orderings (a) and (c), one of the larger intervals crosses the 50% line, meaning LenPrefix(·) = 0.
When the smallest interval is placed in the middle, the total expected throughput of the distribution
rises.

The distribution P is generally output by the model in some sorted or lexicographic

order. This might yield to some orderings of ri that are incredibly unfavorable to

LenPrefix(·). Consider an illustrative example in Figure 3.10. If an interval ri contains

values on either side of the middle of the distribution, then LenPrefix(ri) = 0. When

a large interval does so, as in cases (1) and (3), this severely decreases the expected

number of bits that the distribution can encode. While this example is clearly contrived, it

illustrates the impact correctly ordering P can have on the expected throughput – in this

example an increase of over 50%. Importantly, we can use any reorganization procedure

on the distribution provided (1) the same resulting permutation can be computed by both

the sender and the receiver and (2) the size of ri remains the same for all ri.

Finding the optimal permutation of P proves to be a difficult task. Intuitively, each

interval ri, must be placed as a continuous block somewhere between 0 and 1 such that it

does not overlap with other intervals. We take inspiration from approximation algorithms

and design a greedy algorithm with pretty good performance, and we leave formal
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r2

r1

r1 r1 r0

Bucket 0 Bucket 1 Bucket 2 Bucket 3

(1)

(2) (3)

Bucket 0 Bucket 1 Bucket 2 Bucket 3

(0)

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Bucket 0 Bucket 1 Bucket 2 Bucket 3

r2

Figure 3.11. An overview of our reorganization algorithm. This distribution has entropy 1.16, so
we create 22 = 4 buckets. In (1), we place the largest interval r1 into bucket 0, overflowing its value
through most of bucket 1. Note that r1 could have been placed in bucket 2; in general, we break
ties by taking the earlier bucket. In (2), r2 can be placed either in bucket 1, overflowing into the
following buckets, or placed in bucket 2, overflowing into bucket 3. To maximize LenPrefix(r2),
we place it in bucket 2. Finally, in (3), we note that r0 will not fit in bucket 3, so it must be placed
in bucket 1. The pushes the later intervals, in this case r2 down to make sufficient space.

analysis and bounds proving of this algorithm for future work. A simple algorithm

would be to find a “starting point” to place each interval, starting with the largest, that

maximizes LenPrefix(ri). However, there are 2β possible starting points, meaning a linear

search will be prohibitively expensive. Instead we generate 2⌈H(P)⌉ buckets with capacity

∑i(ri)

2⌈H(P)⌉ , where H(P) is the entropy in the distribution. These buckets represent potential

“starting points” that each ri can be placed. Note that the entropy represents an upper

bound on the possible value of the expected throuhput E(P) and if each interval ri could

perfectly fit into one of these bins, E(P) = H(P).

Starting with the largest ri, we find the bin that will maximize LenPrefix(ri) when

ri is appended to that bucket. As buckets become full, they are no longer options for

placement. Note that ri may exceed the remaining capacity of a bucket, or even the

total capacity of a bucket. When this is the case, we “overflow” the remainder into the

following buckets. Occasionally, this overflowing remainder may cause a chain reaction,

requiring other, already placed intervals be “pushed” to make space. We give a simple

example of our reorganization algorithm in Figure 3.11, using the same distribution

given in Figure 3.10. Step (3) gives an example of overflow that causes one of these

86



chain reactions. Once each interval has been placed into a bin, the final ordering can be

recovered by appending the contents of the bins.

The runtime of this algorithm is O(2⌈H(P)⌉m), where m is the number of intervals;

in our experiments, ⌈H(P)⌉ is typically less than 7, so this is close to O(m), which is

unsurprising given its similarities to bin-sorting. When n is very large, however, this

algorithm is prohibitively expensive. In those cases, we use this algorithm to place the

“big” intervals, and then simply place the smaller intervals into the first bucket with space.

3.6.2.2 Optimization 2: Compressing with Native Embedding

When encoding an English language message into a word-based, English model, we can

use the model itself as a compression function. This optimization is implemented in the

code of prior work, including [250]. All known words in the model’s vocabulary are

internally represented by a unique number. Before encoding, the secret message can be

tokenized and each token can be replaced by its unique identifier. These identifiers are

then parsed as bits and encoded as normal. This technique compresses the length of the

message, thereby reducing the stegotext length required to send a message. However,

this optimization is only useful if the underlying message is an English-like distribution;

otherwise, the model cannot encode the plaintext in its internal representation.

3.6.3 Results

To measure performance across different hardware types, we evaluate Meteor on 3

systems: (1) Desktop/GPU, a Linux workstation with an Intel Core i7-6700 CPU, NVIDIA

TITAN X GPU, and 8 GiB of RAM, (2) Laptop/CPU, a Linux laptop with an Intel Core

i7-4700MQ CPU, no discrete GPU, and 8 GiB of RAM, and (3) Mobile, an iPhone X running

iOS 13. The Desktop ran benchmarks on the GPU, while the Laptop machine ran on the

CPU; as such, the Laptop is more representative of consumer hardware. We evaluate

Meteor on both the Desktop and Laptop using each of the three models discussed above.
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Additionally, we evaluate reordering and native compression optimizations (see below).

The results are summarized in Table 3.2. We discuss mobile benchmarks separately at the

end of this section.

3.6.3.1 Model Performance

The capacity, or number of bits encoded per token, is much higher for the GPT-2 model

examples than for the Wikipedia and HTTP Headers models. Intuitively, the word-level

nature of GPT-2 means there is usually more entropy in each distribution, whereas

the character-level models have, at most, 100 printable ASCII characters from which to

sample; this pushes the capacity of a single token to be much higher as a result. The

stark difference in capacity between the capacities of Wikipedia and HTTP Headers can

be attributed to the difference in structure of the training data. The Wikipedia dataset,

although structured, is mostly English text. On the other hand, the HTTP Headers dataset

is based on the HTTP protocol, which is rigid in structure — variation only exists in fields

that can change, such as dates and URLs.

3.6.3.2 Encoding Statistics

Our next suite of benchmarks measures the relationship between the length of message

and the time it takes to produce a stegotext. We generated plaintexts randomly and

encoded them, incrementing the length of the message by one in each run. The results are

plotted in Figure 3.12, which shows a clear linear relationship between the two variables.

It is also apparent from the plot that the variance in encoding time increases as the length

increases. This is because as tokens are selected, the model state can diverge; in some

of these branches, the entropy may be very low, causing longer encoding times. This is

amplified in the HTTP Headers model, as the baseline entropy is already very low.
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Figure 3.12. Comparison of plaintext length versus time to run encoding and decoding for
different Meteor models. R = 0.9745 (GPT-2), 0.9709 (Wikipedia), 0.9502 (HTTP Headers)

3.6.3.3 Optimizations

In addition to implementing Meteor, we also evaluated the two heuristic optimizations

discussed in Section 3.6.2 above that could yield shorter stegotext.

We evaluated the first optimization (Section 3.6.2.1) for all three of our models (see

Table 3.2). For the GPT-2 model, we see a marked (24.8%) increase in capacity as well as a

proportional reduction in stegotext length as a result of reordering the model outputs.

The reordering does induce computational overhead, as the distribution over which the

heuristic is performed is large (max 50,256 tokens). Reordering induces a 0.5% overhead

in the Laptop/CPU, where updating the model is slow, and 69.0% overhead in the

Desktop/GPU, where updating the model is fast. For the lower entropy models, the

reordering algorithm we use is significantly faster, but yields mixed results. We believe

these mixed results are an artifact of our choice of greedy reordering algorithms, which

89



Table 3.2. Model statistics for encoding a 160-byte plaintext. Timing results reflect model load,
encoding, and decoding combined.

Mode
Desktop/GPU

(sec)
Laptop/CPU

(sec)
Stegotext Length

(bytes)
Overhead
(length)

Capacity
(bits/token)

GPT-2 18.089 82.214 1976 12.36× 3.09
GPT-2 (Reorder) 30.570 82.638 1391 8.69× 4.11
GPT-2 (Compress) 11.070 42.942 938 3.39× 3.39
Wikipedia 19.791 46.583 2002 12.51× 0.64
Wikipedia (Reorder) 15.515 39.450 1547 9.67× 0.83
HTTP Headers 49.380 103.280 6144 38.4× 0.21
HTTP Headers (Reorder) 57.864 127.759 7237 45.23× 0.18

Table 3.3. Performance measurements for Meteor on the GPT-2 by device for a shorter context.
Times are provided in seconds.

Device Load Encode Decode Overhead (time)

GPU 5.867 6.899 6.095 1×
CPU 5.234 41.221 40.334 4.6×
Mobile 1.830 473.58 457.57 49.5×

may perform poorly with heavily biased distributions.

We also evaluated the second optimization (Section 3.6.2.2). When implemented with

GPT-2, we see a 47.77% decrease in time spent on CPU, and an associated 52.5% decrease

in stegotext size. While powerful, this technique can only be used to encode English

language messages into English language models. Compressing the plaintext message

using traditional compression (e.g., GZip) would yield similar results.

3.6.3.4 Mobile Benchmarks

Because Meteor is intended for censorship resistance, it is natural to benchmark it on

mobile devices, where most sensitive communication happens. We implement Meteor

on iOS using the CoreML framework, utilizing an existing GPT-2 iOS implementation

as a base [104]. To our knowledge, our work represents the first evaluation of a neural

network-based steganographic system on a mobile device. Our implementation, in Swift,

employs an even smaller version of the GPT-2 model which fits on mobile devices as it

uses smaller size context. An example of the output from this experiment can be found
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Plaintext:
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean a lacus sed magna
fermentum lobortis. Pellentesque et facilisis nibh. Donec sit amet odio metus.

Figure 3.13. The 160-byte plaintext used for the model outputs in this section.

in Section 3.6.4.

Our results are summarized in Table 3.3. The Mobile benchmark in the table was

performed on the iPhone X Simulator, as we wished to instrument and profile our tests.

We separately confirmed that simulator runtimes were similar to those of actual iPhone X

hardware. While Laptop/CPU is 4.6× slower than Desktop/GPU, the Mobile runtime

is a massive 49.5× slower than the baseline case. While deep learning is supported

on mobile platforms like iOS, the intensive, iterative computations required by Meteor

and other neural stegosystems are not performant on mobile systems. Nonetheless,

our proof-of-concept demonstrates that Meteor could be used in a mobile context, and

hardware improvements [195] would allow for secure communication between users even

when available communication platforms do not offer end-to-end encryption, such as

WeChat.

3.6.4 Sample Model Outputs

We now show sample stegotext outputs as generated by Meteor using several different

model types. The plaintext associated with all of these outputs is the first 160 bytes of

Lorem Ipsum (Figure 3.13). Figure 3.14 shows a truncated output for a stegotext generated

using the Wikipedia model, which seems to have generated some kind of Wiki-markup

contents page. Figures 3.15 and 3.16 are GPT-2 outputs for different contexts provided as

input. Each output reads like a news article or book chapter. Representative output for

the HTML headers model can be found in Figure 3.17. Finally, Figure 3.18 is a screenshot

of Meteor running on the iPhone Simulator, generating stream-of-consciousness news

text. Note that the context is shorter on the iPhone, as it can hold less state.
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Haired the latter expand of the legal instance of the Imperial
State of the American foal bridge, it is suspective that he
was also notable to ensure that they produced a consolidate
[[electricity]], the actual psychological cabinet [[Greece]]
was the same time. It was born in many in the second [[tuak]]
and [[timber]] at the idea of [[computer account|computer
science]], which provides sales might therefore be in popular
writings such as the European Investigation.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

==Video games==
* [[Brown Town]]
* [[Sagan in the United States|Commonwealth of Western

Technology]]↪→

* [[Template International Society of Europe]]
* [[Commonwealth of Russia]]
* [[Commerce coverage in Sweden]]
* [[List of Constitution by Westman of the United Kingdom|British

Politics]]↪→

* [[List of California Court in 1981]]
* [[International Party of Diabetos Integrated Policy]]
* [[United Kingdom]]

===Overseas Roman Empire===
* [[Communist Council of Ireland]]
* [[Confucian States of the South Edition]]
* [[Conservative Party of the United Kingdom]]

[[Category:American states]]
[[Category:Conferences of India]]

Figure 3.14. Snippet of Meteor encoding of the first 160 bytes of Lorem Ipsum as generated by the
Wikipedia model. The output was truncated to fit.
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Context:
The Alvarez hypothesis posits that the mass extinction of the dinosaurs and many other living
things during the Cretaceous-Paleogene extinction event was caused by the impact of a large
asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65
million years ago, but Renne and colleagues (2013) gave an updated value of 66 million years.
Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico. The
hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who
first suggested it in 1980. Shortly afterwards, and independently, the same was suggested by
Dutch paleontologist Jan Smit.

Stegotext:
The picture in The Pale I HCR scientists’ discussion now spans three dimensions. The first
importance of the Yucatan Peninsula is demonstrated with the following conclusion: the
Pliocene Earth has lost about seven times as much vegetation as the Jurassic in regular parts
of the globe, from northern India to Siberia. Even since 1976, the continent has received or is
already experiencing the worst mass extinction in recorded history since there were a million
years last left from the extinction of Antarctic ice and the rapid spread of hydrocarbon-rich water
as the Earth entered the Cretaceous Period. In turn, the world’s oceans have been breathtakingly
transformed and as a result the surrounding environments are especially vulnerable. The reason
is obvious: there was no geological record of the presence of the Yucatan Peninsula in the Late
Miocene epoch, which is the line that runs from the southern edge of South America to Siberia.
The commander-in-chief of the Yucatan Peninsula, Frederick Nystrom, has determined that the
area is to stay as barren as possible. As a result, individuals living on lake beds and on coastal
areas have witnessed the loss of about 90 percent of their habitat. The Yucatan Peninsula consists
of four zones, with two different habitats separated, each of which has experienced inseam
damage. In one zone, along the northern shore of Lake Shemal, the retreating Tarahumara
Ocean has been melted into a deep, seafloor called Nova Ravine, which south-east of the
Yucatan Peninsula flows into Lake Isthmus, where there is an abundance of turtle life. A
second beach, which lies at the far end of the peninsula, has been spewed down by a sea wall
supporting Madagascar’s Great Ocean Earthquake, 9,000 feet in magnitude and caused large
numbers of deaths. The third zone, along the coast of Cancun and in Asuncion, is less severely
affected. An estimated 16 percent of the continent is protected from the destruction of oceanic
winds and floods. All three zones are in a state of catastrophic destruction. According to the
definition provided by the National Commission on the extinction of the dinosaurs (Infection
and Immunization in the Ind

Figure 3.15. The “Dinosaur” context and associated Meteor encoding of the first 160 bytes of
Lorem Ipsum as generated by GPT-2. This is the context used in Figure 3.5.
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Context:
Washington received his initial military training and command with the Virginia Regiment
during the French and Indian War. He was later elected to the Virginia House of Burgesses
and was named a delegate to the Continental Congress, where he was appointed Commanding
General of the nation’s Continental Army. Washington led American forces, allied with France,
in the defeat of the British at Yorktown. Once victory for the United States was in hand in 1783,
Washington resigned his commission.

Stegotext:
Washington was martyred in the battle of Cullman in 1788. Although down 19 men, yet his
mission accomplished. He ended his life in 1896. When he died of disease, three of the men
responsible said that Washington had been moved and was seen at the funeral placing him
in his father’s arms. Another said that Washington treated his wounds with "a study of a
personal sense of injustice." (A 16th century German historian calls Washington a liar because
of this website.) He was also a friend of Dr. Henry H. Jackson, who was notable as George
Washington’s physician and a collaborator, and recognizes him by name in the any books about
him. The last surviving manuscript is from 1888 and contains a frank and truthful account of
the Quakers’ plight. One story states that while fighting in Whitesburg, Washington succumbed
to pneumonia. He was 38 years old and according to a manuscript he got out the following
year reports he grew old and fell in love. He also mentions a meeting with a woman who broke
into his home and first went with him into a bath and gave him food and sleep. Three days
later the woman left the room expecting him to eat her lunch and on that day he left home at
9:30 am in despair. He had not been to his bedside. On seeing this, he said a voice in him called
out, "Your name is Jack. What is the girl?" Hamilton said the superior told him, "She was a
layover in a bed and seven[Pg 209] feet below the bed where the general slept in very feminine
attire. Nobody had time to look into her face. What was she to tell you about the general?"
A
Washington’s Official Address to Congress with Americans May 17th, 1781
"I am the one to announce completely that I am a true Christian and an eloquent philosopher. I
am not constrained

Figure 3.16. The “Washington” context and associated Meteor encoding of the first 160 bytes of
Lorem Ipsum as generated by GPT-2. This is the encoding used throughout the benchmarks in
Section 3.6.
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HP/5.2.15^M
X-Pingback: http://dusppdames.com/xmlrpc.php^M
Link: ^M
^M
HTTP/1.1 302 Moved Temporarily^M
Date: Wed, 05 Nov 2014 11:57:22 GMT^M
Server: ^M
Content-length: 0^M
Connection: keep-alive^M
Keep-Alive: timeout=60, max=2000^M
Location: http://187.234.160.3/login.lp^M
Set-Cookie: xAuth_SESSION_ID=Cayaa6f3+fDejBq7NoO7rlAA=; path=/;

^M↪→

Cache-control: no-cache="set-cookie"^M
^M
HTTP/1.1 401 Unauthorized^M
WWW-Authenticate: Basic realm="EchoLife Portal de Inicio"^M
Content-Type: text/html^M
Transfer-Encoding: chunked^M
Server: RomPager/4.07 UPnP/1.0^M
EXT:^M
^M
HTTP/1.1 400 Bad Request^M
Content-Type: text/html^M
Date: Wed, 05 Nov 2014 16:55:54 GMT^M
Connection: close^M
Content-Length: 39^M
^M
HTTP/1.1 200 OK^M
Date: Wed, 05 Nov 2014 16:16:49 GMT^M
Server: Apache^M
Accept-Ranges: bytes^M
Connection: Keep-Alive^M
Keep-Alive: timeout=60, max=2000^M
Location: http://189.136.200.30/login.lp^M
Set-Cookie: xAuth_SESSION_ID=7rnefC8G+AxYersVCwwA=; path=/; ^M
Cache-control: no-cache="set-cookie"^M
^M

Figure 3.17. Snippet of Meteor encoding of Figure 3.13 as generated by the HTTP Headers model.
The output was truncated to fit.
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Figure 3.18. iPhone X screenshot of Meteor encoding of the first 160 bytes of Lorem Ipsum as
generated by the GPT-2 model. Generated text is highlighted, and context is unhighlighted.
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3.7 Comparison to NLP-Based Steganography

Noting the appeal of hiding sensitive messages in natural text, researchers in the field

of natural language processing (NLP) have recently initiated an independent study

of steganography. Unfortunately, this work does not carefully address the security

implications of developing steganographic systems from NLP models. Instead, the results

employ a variety of ad-hoc techniques for embedding secret messages into the output

of sophisticated models. The resulting papers, often published in top NLP conferences,

lack rigorous security analyses; indeed, existing work cannot be proven secure under the

definitions common in the cryptographic literature. Highlighting this weakness, there

is a concurrent line of work in the same conferences showing concrete attacks on these

schemes, e.g., [121, 139, 224, 235, 237, 238].

The first wave of steganographic techniques in the NLP community leverages syn-

onyms and grammatical reorganization for encoding, e.g., [42, 43, 92, 103, 192, 243]. The

key observation in this work is that natural variation in linguistic patterns can be used to

hide information. For instance, if one of two synonyms can be used in a sentence, each

with probability .5, then the selection conveys a bit of information. Similarly, comma

usage or word order can be used to encode small amounts of information. Because not

all possible linguistic variations occur with equal likelihood, some of these works adapt

a Huffman encoding scheme to facilitate variable length encoding, e.g., [43, 92]. These

approaches rely on linguistic idiosyncrasies and are therefore not generalizable.

More recently, researchers found ways to use the structure of these models to stegano-

graphically encode information, including LSTMs [75], Generative Adversarial Networks

[214], Markov Models [236], and other forms of Deep Neural Networks [59, 230, 234, 250].

Rather than give an exhaustive description of the encoding techniques used in these

works, we give a brief description of the most important techniques.

Early constructions directly modified the distributions. One such construction [75]
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organized the distribution into “bins,” each representing a short bitstring, and randomly

selected an output from the bins corresponding to the message.2 Building on this intuition,

other research [59, 234] uses Huffman coding to encode variable numbers of bit in each

iteration. More recent work has attempted to use the message itself as the sampling

method, a method known as “arithmetic coding” [250]. This method attempts to convert

a plaintext message into a deterministic stegotext based on its contents, iteratively using

bits from the message to sample into the distribution. The first two constructions heavily

modify the output distribution, rendering stegotext easily detectable. The arithmetic

construction is also insecure, since it reuses randomness in multiple sampling events, a

problem similar to the one that Meteor is designed to overcome.

The relaxed adversarial models considered in the NLP community lead to significantly

less robust constructions. For instance, the adversaries in the NLP literature do not have

access to the model [59, 75, 234, 250], significantly limiting the attacks they can mount.

Without this assumption, an adversary can clearly differentiate between a stegotext and

covertext by identifying biases in the output distribution. The adversary compares the

candidate output to random samples from the model, easily distinguishing when a

stegosystem is being run and defeating the purpose entirely.

The NLP threat model folds in the face of an advanced, persistent adversary who

can always exfiltrate the model through other means. Moreover, recent advanced in

adversarial machine learning have demonstrated how even the “secret” parameters of a

black-box model can be extracted by seeing enough output [111, 155, 181], unlike that of

encryption keys or pseudorandom functions. This pervasive requirement that the model

remains private information is therefore unreasonable. Unable to achieve cryptographic

security, these constructions evaluate their work by measuring the statistical difference

between the output produced by the encoding scheme and real text. Highlighting

the weaknesses of these schemes, numerous attack papers have been published, e.g.,

2A similar, but secure, partition based approach is investigated in [35]
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Table 3.4. Comparative distribution statistics for samples from neural steganography algorithms
in prior NLP work, with random sampling as a baseline. “N/A” indicates that a metric is not
relevant for an algorithm.

Algorithm Perplexity KL-Divergence Capacity Entropy Secure?

Meteor (this) 21.60 0.045 3.09 6.30 ✓

Arithmetic [250] 29.22 0.082 4.82 6.66 ✗

Huffman [59, 234] 8.85 0.851 2.31 N/A ✗

Bins [75] 50.82 2.594 3.00 N/A ✗

Random Sample 13.82 0.040 N/A 5.36 N/A

[121, 139, 224, 235, 237, 238]. These attacks use machine learning techniques to detect

the presence of encoded messages generated with some of the works listed previously.

Ad-hoc and non-cryptographic security is insufficient to provide security against powerful

and determined adversaries, especially nation-state adversaries.

3.7.1 Comparative Analysis

We assess Meteor against the following previous solutions: (1) bins [75], (2) Huffman

coding [234], and (3) arithmetic coding [250]. We compare standard NLP language

statistics for these with a regular, random sample from the model, and provide our

results in Table 3.4. Note that we mark entropy as “N/A” for Huffman and bins because

these methods use a binning algorithm which prevents us from calculating entropy

meaningfully. The random sample is a control distribution, and is not encoding anything

thereby having “N/A” capacity.

Of particular note in our results is the Kullback-Leibler (KL) divergence across algo-

rithms, which in this case compares the distribution of the model to the output distribution

of the algorithm. The KL-divergence for Meteor is very close to that of the random sample,

as Meteor merely changes the randomness to steganographically-encoded randomness.

As discussed previously, algorithms that modify distributions from the model have high

biases, and this is reflected in the KL-divergence of Huffman and bins being much higher

than the rest. The arithmetic algorithm has a lower KL-divergence than the rest of the
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NLP algorithms, as it does not modify the distribution; however, it has a higher value

than Meteor because it reuses randomness, while Meteor uses fresh randomness like the

baseline random sample does.

We also note that the security properties of Meteor do not hamper the capacity metric

significantly. Arithmetic output has a higher capacity, but we note that the insecurity of

this system makes this additional capacity moot; modifying the parameters to Huffman

or bins could have yielded the same capacity with the same security vulnerabilities.

Table 3.4 also includes perplexity and entropy statistics, that show Meteor is competitive

in performance with the insecure primitives proposed previously.
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Chapter 4

Building At-Home Cryptography

In this chapter, we consider at-home cryptography, and how it can be built to provide

authentication and encryption services via a user’s smart home devices.

4.1 Introduction

To mitigate the risk posed by device loss, users should be able to voluntarily restrict access

to critical key material to times when their device is in some trustworthy location, e.g.,

the home. These users can opt-in to restricting their usage, possibly because they may

consider certain actions too sensitive to operate outside of a secure location or might

consider themselves particularly at-risk. For instance, users might already limit their use

of online banking or telemedicine to times when they are at home for privacy reasons. By

limiting their use in this way, these users actively engage in misuse resistance, protecting

themselves from risks outside of the home.

Users may also wish to utilize recently proposed privacy enhancing systems that

assume the existence of a personal, fixed storage for secrets local to a user. For example,

BurnBox [210] provides self-revocable encryption, which allows users to temporarily delete

keys that could decrypt sensitive cloud data (e.g., before a border crossing), and recovers

these keys after the user is safely home with key material stored there.

The fundamental building block required to realize these applications is computation
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that can only be performed at home, which can then be leveraged to perform crypto-

graphic operations. We refer to such a system as one that provides at-home cryptography.

Importantly, mobile devices cannot facilitate at-home cryptography, as they cannot

offer fine-grained access control mechanisms based on location; even if the user only uses

the material while at home, that material is still on device—and therefore exposed—while

they are on the go. Similarly, mobile devices cannot be the fixed store of secrets required

for advanced privacy systems.

4.1.1 Prior Attempts

At first glance, achieving limited access to keys might appear trivial; a user can simply

store key material for authentication or encryption on a device that stays at home rather

than on their mobile device, e.g., a desktop computer or a dedicated hardware security

module. Because this device is stationary and only accessible on a local network—or even

air-gapped—access to the key material is inherently limited.

While straightforward, this solution requires (1) the user to own stationary hardware,

and (2) the user must have the technical expertise to manage their stationary hardware. In

the time before widespread smartphone use, this solution made sense; personal computers

were not very portable, and required at least some level of technical expertise to operate.

However, this ostensibly simple solution is becoming unworkable for a rising part of the

general population. 15% of adults in the United States only use smartphones as their

primary device, with an upward trend since 2013; in the youngest generation of adults,

18-29 years old, this proportion increases to 28% [164].

Past research efforts also focus on the use of dedicated hardware to build this

functionality. While location-based cryptography (of which at-home cryptography is a

subset) has been studied in both the theoretical [32, 34, 41, 113, 160, 165] and ap-

plied [6, 77, 166, 186, 199] literature, no practical constructions have been realized or
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widely deployed.1 As such, we turn to a more pragmatic approach: re-use the devices

users already have.

4.1.1.1 Re-using Devices for At-Home Cryptography

Although users are unlikely to have access to dedicated hardware for at-home cryptogra-

phy, users may have access to Internet-of-Things (IoT) devices. These devices typically do

not leave the home, making them an attractive prospect for anchoring a trusted computing

base for at-home cryptography.

Re-using these devices raises its own difficulties, however:

• IoT devices are designed to be single-purpose, and, to keep costs low, have just

enough compute capability to provide their application, unlike the general purpose

capabilities of smartphones and computers. Re-using an IoT device beyond its

intended purpose may induce measurable overhead, so we must ensure that at-

home cryptography operations are lightweight.

• IoT devices have a history of vulnerabilities [62, 188], so it is not advisable to use

one as a single store of secrets. Instead, we observe that it is more appropriate

to distribute trust among many IoT devices, such that an attacker would need to

compromise many IoT devices before exposing any of the user’s secret data. Of

course, resource constraints limit the viable approaches to federating trust.

As such, leveraging IoT devices into a practical at-home cryptography system requires

carefully navigating tradeoffs between functionality, deployability, and security.

4.1.2 SocIoTy

In this work we present SocIoTy, a system design and protocol for at-home cryptography

using a user’s existing IoT devices. SocIoTy is designed for non-expert users who want to

1Indeed, there are impossibility results that might rule out “ideal” solutions [41].

103



protect high-value digital resources but do not have the access, expertise, or inclination to

use dedicated hardware. Our system allows these users to set their own risk tolerances,

allowing them to tie whatever secrets they consider to be most valuable to their smart

home. While we focus on the smart home in this work, SocIoTy has applications wherever

there are multiple embedded devices running on the same network, such as small

businesses and hospitals. Our design is summarized in Figure 4.1.

SocIoTy builds an at-home cryptographic system for a pseudorandom function

(PRF) [86], a simple, but powerful, primitive. From this at-home PRF, we can directly

build two-factor authentication [147, 148] and derive keys for encryption. SocIoTy treats

the smart home as a PRF that users can query to provide at-home cryptographic services.

Because the user is physically at home, they can generate PRF outputs, and use these

outputs to address their real-world needs—like generation of 2FA OTPs for authentication

and of keys for cloud-encrypted content—all without worrying that their credentials are

at risk outside of the home. Moreover, the interface to users is the same, and service

providers would not have to change their architectures to accommodate SocIoTy; users

perform one setup step on their smart home, and service providers only need to use a

different PRF library in their backends.

To address the problems of IoT devices discussed above, we build a threshold, dis-

tributed PRF [149]: each IoT device computes a partial evaluation on an input, and a more

powerful device (e.g., a smartphone) reconstructs the actual PRF result from multiple

partial evaluations and its own key material. This federates trust amongst all of the de-

vices in the smart home, while reducing the computation power required from individual

devices to one operation (in implementation, a single elliptic curve multiplication) for

each user request.

We evaluate SocIoTy on a simulated smart home, consisting of analogs of smart home

devices, from high-end, full-size systems (Raspberry Pis) to tiny, embedded microcon-

trollers (ESP32s). We collect microbenchmarks on these devices, as well as benchmarks
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on full deployments of the system in realistic configurations. To highlight the ease of use

of our proposed system, we also build a simple Google Authenticator-style smartphone

app that uses SocIoTy to calculate OTPs. We find that our implementation meets the

performance needs of our envisioned applications, while remaining seamless to the end

user—performing OTP generation, for example, in < 200 milliseconds on average when

involving a smartphone and 9 SocIoTy devices.

4.1.3 Contributions

In this work, we study the problem of giving non-expert users location-based access

control to their cryptographic material, focusing on the smart home setting. Our goal is

to help average users mitigate the risk associated with carrying high-value cryptographic

material on their mobile devices, giving users the peace-of-mind in knowing that their

service or files can only be accessed from home. Specifically,

1. We discuss at-home cryptography, highlighting relevant use cases and design consid-

erations for an at-home cryptographic system (Section 4.3).

2. We present SocIoTy, an at-home cryptography system designed for non-expert users

and their smart homes, and show how it can be used to build relevant constructions

such as time-based one-time passwords [148] and self-revocable encryption [210]

that are tied to the home (Section 4.4).

3. We implement and evaluate SocIoTy on realistic hardware, providing microbench-

marks for individual cryptographic operations on representative IoT devices and full

benchmarks of an end-to-end deployment on a realistic smart home configuration

(Section 4.5).
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Figure 4.1. An overview of our SocIoTy, which uses a PRF built from IoT devices to provide
at-home cryptographic services.
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4.2 Background

4.2.1 Smart Homes

SocIoTy relies on a home Internet-of-Things network, or “smart home”, to bootstrap

at-home cryptography. IoT devices and smart home networks are proliferating rapidly

[146]. In 2022, 57.5 million Americans lived in a smart home accounting for 45% of US

households, and it is estimated that by 2026, more than 25% of homes worldwide will

have some degree of IoT capability [200]. IoT devices range in computational capacity

from extremely lightweight micro-controllers to fully-Linux-capable system boards with

gigabytes of RAM. We rely on IoT devices to perform cryptographic operations and to

communicate over the network in order to manifest a cryptographic scheme from the

participation of otherwise logically isolated systems. As in prior work (e.g., [125]), we

assume a network of constrained devices (in terms of computation and power) participates

in the cryptographic protocol, and in our evaluation (Section 4.5) model such devices to

demonstrate feasibility.

4.2.2 Pseudorandom Functions (PRFs)

A pseudorandom function [86] is one which outputs values that, without knowing some

secret sk, cannot be distinguished from random. PRFs can be used to build many other

primitives in cryptography, including symmetric encryption and authentication schemes.

For encryption, there exists a well-known theoretical construction that randomly chooses

input for the PRF and treat the output as a one-time pad for the message. It is also

possible to treat the output of a PRF as input to a key derivation function for block ciphers.

Authentication is straightforward, as the input to the PRF can be the message the party

would like to have verified, and the output being the tag for verification.

107



4.2.2.1 (Threshold) Distributed PRFs

One useful variant of a pseudorandom function is the distributed pseudorandom function

(DPRF), which allow a group to jointly evaluate a PRF. Each party uses shares of the

secret key to calculate a partial output that can later be combined to recover the full PRF

output. This can be extended to the threshold case, where the computation is successful

if t parties supply honest recovery values, but to any group of t − 1 parties the PRF

output appears to be uniformly random, creating a threshold DPRF (TDPRF). While

TDPRFs can be constructed using generic MPC, it would be highly inefficient and take

multiple rounds of communication to produce a result, both non-starters for IoT devices.

We instead utilize a protocol that requires only one round of communication between

evaluators and an aggregator, with no communication required between evaluators [149].

The protocol is based on the decisional Diffie-Hellman assumption and the use of random

oracles.

The interface of a TDPRF consists of a tuple of algorithms (Gen, PartialEval, Recon):

• Gen(1λ, K, t, n) produces shares of the PRF key K denoted as K1 . . . Kn.

• PartialEval(Ki, x) uses a key share Ki on an input x to produce a partial evaluation

of the PRF, yi.

• Recon({yi}i∈Y) takes a subset of partial evaluations by users Y ⊆ [n] where |Y| ≥ t

and produces the full PRF output y.

Finally, we note that a TDPRF may have an additional efficient algorithm which takes

in a fully reconstructed key K and an input x which we denote by Eval(K, x), allowing a

TDPRF to be used as a regular PRF.
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4.2.3 Two-Factor Authentication (2FA)

To increase user security, online service providers have started to roll out 2FA, which

requires a second form of authentication to log in to a service. The most common form of

2FA after email and SMS [49] is the time-based one-time password (time-based OTP or

TOTP) [148]. Every tc seconds, a user’s token (e.g., a smartphone app) generates an OTP.

When the user wishes to authenticate, they input their username, password, and OTP.

Unlike passwords, OTPs are short lived; they are only valid for the time interval tc in

which they are generated, and can only be used once. Users therefore authenticate with

either something they know (a password) or something they are (a fingerprint or retina scan),

alongside something they have (their token, which generates OTPs). TOTP is supported

by major social media platforms [220], electronic health records systems [65], financial

institutions [174], and corporations [51]

The security of TOTP relies on the underlying HMAC-based OTP algorithm (HOTP) [147],

which generates OTPs using the HMAC construction [124]. The security of HOTP, in

turn, relies on the assumption that HMAC is a PRF. Since adversaries without sk cannot

predict PRF outputs, they also cannot predict OTPs. Thus, as long as we assume that our

underlying primitive (HMAC) is a PRF, then the OTPs generated by HOTP (and TOTP)

are secure.

More formally, a TOTP is parameterized by tc and defined by TOTPtc(sk, ts) =

PRF(sk, ⌊ ts
tc⌋) mod 106, where ts is a timestamp and mod is the modulus operation

(used to convert the output of PRF into a 6-digit integer). We omit tc in our notation for

TOTP for simplicity, and use the recommended default tc = 30.

4.2.3.1 Compelled Access

Compelled access to a software system or to data, whether by a malicious attacker or law

enforcement agent, poses a serious risk to privacy and security. Compelled access can be
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viewed as exploiting a user’s ability to authenticate, and similarly compelled decryption

can be viewed as exploiting a user’s ability to decrypt sensitive data. Recent work has

explored the mechanisms and mitigations of compelled access and decryption in mobile

devices [251], as well as defending cryptographic protocols from compelled decryption

by identifying and reducing long-lived secret values [185]. BurnBox [210] attempts to

address compelled decryption by putting a user’s ability to decrypt their files in escrow

in a secure location—specifically, by allowing for a form secure deletion (recovation) which

is reversible only with a secret key saved elsewhere, e.g., in a vault at home.

Location-based cryptography is a powerful mechanism when considering compelled

access and decryption. Broadly, location-based cryptography ties cryptographic opera-

tions to some notion of location [41, 165, 186]. If cryptography is only possible within

a secure location (e.g., the home), and compelled access or decryption can be expected

to occur elsewhere (e.g., at a border crossing or the proverbial dark alley), these risks

are mitigated. Better yet, the user cannot be directly coerced (i.e., via “rubber-hose”

cryptanalysis) to release a key which is only accessible from a given remote location.

4.3 Designing At-Home Cryptography

To capture the notion that some cryptographic operations should only be available at

home, i.e., at-home cryptography, it is necessary to modify the interface to cryptographic

calls with a location input. This modification clearly captures generic location-based

cryptography, a superset of at-home cryptography. As we are only interested in this

subset, we (informally) modify a cryptographic function F with input z to produce the

function Fhome as follows:

Fhome(z, loc) =
{︃

F(z) if loc = home
⊥ otherwise

We emphasize that this notation is informal; by making the location an input to the

function, an adversarial caller could call the function with a location other than their
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own. Formally modeling this transformation would require limiting the caller to use

their true location, perhaps by letting users make queries to a subset of functionalities,

where the subset is determined by their present location. Indeed, this better matches

our envisioned system, in which these oracles are realized by distributed computation

on hardware segmented to only a local network. In either sense, providing a formal

framework for at-home cryptography is beyond the scope of this work; we will use the

informal notation described above, as the intuitive meaning is clear.

4.3.1 Case Studies

To make the envisioned usage of at-home cryptography clear, we briefly present several

concrete use cases. While not true anecdotes, these motivating examples are rooted

in real-world trends and contextualize the technical considerations that must go into

designing our at-home cryptography solution, SocIoTy.

4.3.1.1 Use Case 1: The Remote Worker

Consider a user that recently accepted a job offer from a prominent law firm as a legal

aid, where they will work as a remote-only employee; this kind of remote-only work

has been on the rise since the COVID-19 pandemic [158], and some anticipate that many

of these jobs will remain fully-remote permanently [175]. To access the sensitive legal

documents required to do their job, the user connects to the law firm’s network over

a VPN. To authenticate to the VPN, the user enters codes generated by a 2FA app on

their company-managed smartphone. Company policy requires that the user should

only connect to the VPN when within their home, owing to the sensitive nature of the

company’s documents. However, the user has no way of ensuring that they meet that

policy if their smartphone is lost or stolen.
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4.3.1.2 Use Case 2: The Outpatient

Consider a user who has end-stage renal disease, and requires active management through

dialysis. Instead of remaining in the hospital, the user owns a dialysis machine at home,

which are increasingly common [133]. The user regularly meets with their doctor to

discuss their condition. On days they are not able to visit their doctor for a check-up,

they set up a telemedicine appointment from home. Based on the check-up, the user’s

doctor is able to remotely configure the dialysis machine over the Internet. The user has

an app they use to connect to hospital’s electronic medical records system, but is nervous

about their health data leaking when they leave the house.

4.3.1.3 Use Case 3: The Foreign Correspondent

Consider a user who is an investigative journalist that frequently travels to war-torn,

authoritarian countries as part of their reporting duties. During such trips, the user

keeps detailed notes, initial research, article drafts, and the identities of sources on

their smartphone. To ensure that this information is not lost if their phone is lost,

they back up these files to cloud storage services; due to the sensitive nature of these

documents, they keeps them encrypted while in cloud storage and keeps decryption keys

on their smartphone. While traveling, the user is often stopped and searched by local

law enforcement (either at border crossings or during routine encounters on the street);

such stops are common in countries with repressive regimes, and border officers are

known to extract data from smartphones at border crossings [251]. The user has heard of

next-generation cryptographic systems designed to let them temporarily revoke access to

their sensitive documents until they return to a secure location (e.g., [210]), but they lack

the dedicated, stationary hardware those systems require.
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4.3.2 Design Goals

With these use cases in mind, we now discuss the goals and considerations for a realization

of an at-home cryptography system.

4.3.2.1 Functionality

All of the use cases in Section 4.3.1 require limiting execution of cryptographic functions

to the home. One way of implementing this constraint is to only hold the secrets at home,

so the required key material is unavailable in any other location. This would allow all

three of our envisioned users to opt-in to limiting access; each envisioned user either

does not require access on-the-go, or would like to ensure it is not possible.

We require support for both authentication (use cases 1 and 2) and encryption (use

case 3). An authentication primitive means that we can use the home as a second factor

for 2FA—somewhere you are in addition to the typical something you know, have, or are triad.

An encryption primitive would allows users to secure files such that they can only be

decrypted when the user is at home, suitable for privacy systems that require a digital

safe [210] to recover files after a threat has passed and they have returned home. Note

that it is possible to accomplish this task robustly while still storing encrypted files in

the cloud—even if the encrypted files are available globally, the plaintext documents are

location-bound.

4.3.2.2 Deployability

Prior work on location-based cryptography [41, 165, 186, 199] has not been deployed

in practice due to its reliance on specific hardware to provide security properties or

non-standard adversarial models. Therefore, we aim to use existing devices to achieve

the location-binding property: namely, the IoT devices of the user’s smart home. Since

we are re-using devices, we must ensure that our solution does not require intensive or

long-running computations on the IoT devices. They should achieve their cryptographic
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task quickly and return to their primary functionality in the home. From the user’s

perspective, the only change is that the location matters for the task at hand; the rest of

the interface for cryptography should be the same, and be fast enough that the user does

not notice any latency.

We note that this does not preclude a more powerful device from being involved. The

IoT devices can operate a lightweight part of the computation; then, another device—a

smartphone or tablet—performs the more heavyweight computation. This other device

and its interface can be the same as what would be used in a more traditional, non-

location-bound cryptographic solution (e.g., a 2FA app on a smartphone), abstracting

away the new at-home cryptography system.

4.3.2.3 Security

An at-home cryptography system must be secure in the context of adversaries that are

able to corrupt and control the smart home’s devices, and those that are able to compel

access to the user’s secrets outside of the home. We more concretely define our threat

model in Section 4.3.3.

The smart home setting introduces particular challenges not captured by traditional

models. For example, family members and roommates can also share the space, perhaps

with their own IoT devices. Additionally, each member of the household may have several

different at-home services they wish to use. Any solution must be therefore secure in the

presence of several other users and multiple different services.

We emphasise that our intention is to allow for users to opt-in to this extra layer

of protection for the selected services that make sense for them (or the organizations

of which they are a part); critically, these choices are highly contextualized to each

user. In use case 2, for instance, the user’s fixed medical devices should only be able to

communicate at home; any communication outside the home would likely be an error.

Moreover, the choice to location-bind access to particular services might also change over
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X

✅ X

User can access 
services from 
secure location

Compelled decryption of 
device does not allow access 
to services

Local network control does 
not allow access to services

Figure 4.2. An overview of our threat model for SocIoTy.

time, based on what the user plans to do when they leave their home and the specific

threats that they might expect along their journey. For example, in use case 3, the user

might want to add an additional layer of security to their sensitive services only when

planning to cross international borders, even if they do not location-bind access to these

services in their daily life.

4.3.3 Threat Model

Since our system makes use of multiple devices and a variety of scenarios, it is important

that our threat model systematically considers all of these components. We model around

a setting where the user has IoT devices in their smart home, as well as a powerful mobile

device (a smartphone or tablet) that can communicate with the IoT devices and can be

involved in a setup procedure that authorizes it to participate in the protocol. We will

refer to this device as the authorized device. To successfully tie cryptographic services to

the home, the system must be designed in such a way that a cryptographic operation

cannot succeed if this authorized device is not also at home and participating in the

115



protocol.

Concretely, we demonstrate this by showing that the protocol must be secure against

the following types of adversaries:

4.3.3.1 Compelled Access Adversaries

We consider adversaries that can obtain access to the authorized device when it is not

physically present in the home [251]. These adversaries can extract all of the secrets

from the authorized device. For example, consider a border control officer that compels

decryption of the user’s authorized device while the user is crossing the border [210].

While they now have access to any secrets on the authorized device, they should not

be able to successfully authenticate or decrypt as they are not physically in the home.

We note that this threat model exceeds that of many secure protocols, which assume a

malicious network but a trusted, secure end-user device.

4.3.3.2 Local Network Adversaries

We consider adversaries present on the local network. This can occur through compromis-

ing any number of the IoT devices on the network. This is a natural assumption as IoT

devices have a history of vulnerabilities [62, 188]. The adversary can be remote, or have

physical access to the devices. The latter models threats from other residents of the smart

home, such as a malicious roommate or house-guest. In either case, the local network

adversary will also be able to see all of the traffic over the LAN between the devices and

the authorized device. They would also have the ability to use this access to perform

denial-of-service. Despite all this, as long as the user’s authorized device remains secure,

the local network adversary should not be able to successfully execute the protocol.

These two adversaries represent the primary ways that a malicious party would

try to undermine an at-home cryptographic system. Building a system robust against

these two adversaries ensures that in-home compromise of the IoT devices or out-of-
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home compromise of the user’s authorized device does not violate the location-binding

property of the system. We design for this threat model in a modular way, demonstrating

the security of our system against each adversary independently. We assume that

these adversaries do not collude, as compelled access adversaries are not assumed

to have the capability to access personal devices besides those physically available to

them [185, 210, 251]. However, in Section 4.4.3 we describe some extensions that would

allow for our system to handle colluding adversaries as well.

4.4 SocIoTy

We are now ready to describe SocIoTy, our at-home cryptographic solution.

4.4.1 Preliminaries

We discuss SocIoTy in terms of its components:

• Authorized device/authorized smartphone: This device has reasonably good computa-

tional power and is carried by the user. We assume the authorized device is honest

while within the home, but might be corrupted (e.g., stolen or forcibly removed

from the user) upon leaving the home. We assume the device supports effaceable

storage, i.e., allows for secure deletion of cryptographic secrets. Such functionality is

common on modern smartphones [251].

• Remote service: The remote service is an Internet-accessible service with which the

user wishes to interact through their at-home cryptography. In the authentication

case, this is a service requiring login with two-factor authentication enabled. In the

encryption case, this is a cloud storage endpoint.

• IoT devices: The user selects IoT devices from their smart home to participate

in SocIoTy. The user selects any device with sufficient hardware and network

capabilities to execute the protocol, which may include microcontroller-class devices.
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4.4.1.1 Choosing the Correct Cryptographic Primitive

For both at-home authentication and encryption, we need to tie cryptographic operations

to a particular location. One natural way to do this is to have IoT devices use a generic

MPC protocol to perform both encryption and authentication, where the respective

keys have been secret shared among all parties and the output is given directly to the

smartphone. Unfortunately, generic MPC is too inefficient for our setting, involving

multiple rounds of communication and expensive computation operations [115, 116, 218].

Particularly in IoT environments, where even RAM is significantly limited, we cannot use

many standard tricks to improve performance and even hundreds of milliseconds per

layer may introduce unacceptable latency.

We would instead prefer to have the smart home implement a single cryptographic

primitive that is well suited for use in a wide range of applications. One primitive that

could work is a PRF, which has standard transformations to both symmetric encryption

schemes and MACs. The distributed version of a PRF that makes most sense in our setting

is a TDPRF. As discussed in Section 4.2, a TDPRF allows ≥ t parties to compute partial

evaluations of the PRF that can later be combined to recover the full PRF output, but

to any group of < t parties, the output of the TDPRF is indistinguishable from random.

This helps with both security and availability: not every IoT device needs to be online to

evaluate the TDPRF but any adversary that only compromises < t devices cannot recover

the correct output of the TDPRF on any point that they have not already seen.

4.4.1.2 Layering Security

While a TDPRF achieves some security against an adversary corrupting < t parties,

we would also like to handle the case where an adversary corrupts over this threshold,

potentially even up to all the IoT devices in the home. To protect against such adversaries,

the phone will also contribute to constructing correct output. In short, we will construct a

new PRF P′ from the proposed TDPRF of the smart home and a PRF P, with the same
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Figure 4.3. The Setup workflow of SocIoTy

co-domain as the TDPRF. If the composition of the TDPRF and P is pseudorandom, even

when either of the TDPRF key or the key for P is leaked (and the smartphone is the

only party who holds the key for P) the output of P′ will appear pseudo-random to all

adversaries covered in our model. This layering will also being more practically efficient

to compute than any generic solution that only protects against a limited number of IoT

device corruptions.

4.4.2 Protocol Description

We now briefly describe the normal operation of SocIoTy at a high level before describing

the protocol in depth. When an authorized smartphone wants to register a new service

with the smart home, it first generates the key material needed for itself and the home

using a Setup algorithm (Figure 4.3). It gives the correct key shares to all the devices

in the smart home and securely deletes them from its memory. When the smartphone

later uses the service, it broadcasts over the LAN a request for a TDPRF evaluation. The
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phone waits until it receives at least t evaluation responses from the IoT devices before

attempting reconstruction. Once reconstruction is completed, depending on whether the

application is Authentication (Figure 4.4) or Encryption (Figure 4.5), the phone takes a

series of actions. Any sensitive information is securely erased from the phone after the

operation completes. What follows is a complete description of the Setup, Authentication

and Encryption algorithms.

4.4.2.1 Setup

Let n be the number of smart devices a user owns and let t be a fixed number, equal

to the number of devices expected to be online at any given point in time. The setup

procedure is designed to produce two keys: one for the smartphone denoted by kp and

one split among the networked IoT devices denoted by K. In the case of authentication,

the keys kp and K will be provided by the remote service the phone is authenticating

to. For encryption, kp and K should be generated by the smartphone. The phone uses

the TDPRF.Gen algorithm to share the key K as K1 . . . Kn. The key share Ki is given to

device i. The phone then stores kp and after sharing the shares of K, securely deletes all

key material related to K. When a new IoT device is bought or sold from the smart home,

a phone repeats this procedure, replacing kp and K with new keys. We assume that in the

case of authentication, the remote service provides a mechanism by which the symmetric

TOTP key can be updated. Figure 4.3 illustrates the setup process.

4.4.2.2 Authentication

For authentication, the smartphone calculates a counter δ based on the current timestamp.

It then sends an authentication request to all devices within the smart home. Each device

with available bandwidth runs TDPRF.PartialEval(Ki, δ) to get yi and sends the resulting

yi to the phone. Once the phone has received t partial evaluations it recovers the PRF

output and calculates its own PRF value. The two are then combined and the output is
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Algorithm 4.1: SocIoTy Authentication
Input: kp the key of the smartphone, δ a counter value derived from a timestamp
Output: TOTP token
Request smart home devices invoke PartialEval on δ and receive {yi}i∈T where

T ⊆ [n], |T| ≥ t
y← TDPRF.Recon({yi}i∈T)
z = y + PRF.Eval(kp, δ)

Output z (mod 106)

Algorithm 4.2: SocIoTy Encryption
Input: kp the key of the smartphone, m the name of the file, f the content of the

file itself
Output: Encrypted file c
Request smart home devices invoke PartialEval on m and receive {yi}i∈T where

T ⊆ [n], |T| ≥ t
y← TDPRF.Recon({yi}i∈T)
z = y + PRF.Eval(kp, m)
k← KDF.Derive(z)
c← AE.Encrypt(k, f )
Securely delete k
Output c

truncated to 6 ten digit numbers that are displayed to the smart phone user. The remote

service can use kp and K, along with the PRF.Eval and TDPRF.Eval algorithms, to check

for correctness. An overview diagram is provided in Figure 4.4, with a more specific

description in Algorithm 4.1.

4.4.2.3 Encryption

To encrypt and decrypt sensitive files, the smartphone first makes a request for an PRF

evaluation on a filename m. The smart home devices conduct a partial PRF evaluation as

TDPRF.PartialEval(Ki, m). The output of these evaluations is then given to the smartphone.

The phone can then reconstruct the PRF output before combining it with the output of

its own PRF evaluation on m using key kp. The resulting PRF output is then used as an

entropy source for a key derivation function, KDF [123]. The value output by KDF is a

pseudorandom key which can then be used in an authenticated encryption scheme AE
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to either encrypt or decrypt the file while providing strong confidentiality and integrity.

After the operation is completed, the phone securely deletes the reconstructed key and

potentially the plaintext file. This workflow is depicted in Figure 4.5 and described

in Algorithm 4.2.

4.4.3 Security Analysis

We now give a justification of security for our construction against the relevant adversaries.

Recall that we are concerned with two types of attackers (1) a compelled access adversary

who may compromise the phone while it is abroad, but does not simultaneously have

access to any device in the smart home and (2) a local network adversary that has direct

physical access to IoT devices and any traffic over the LAN but cannot compromise

the smart phone. We note that in the multi-user setting, other users are equivalent to

adversary 2. To give a brief summary, security holds because of how the PRF and TDPRF

are composed. Even if an adversary has access to one of kp (adversary 1) or K (adversary

2), the total output retains PRF security and is indistinguishable from uniform. This

means an adversary has no chance better than random of guessing either the TOTP value

or the key used to encrypt files.

4.4.3.1 Extensions

We now discuss some special considerations for other types of network attacks and more

powerful adversaries.

An local network adversary in practice has some slightly stronger adversarial capabili-

ties, due to its ability to modify traffic. SocIoTy does not necessarily require authentication

and encryption of home requests, as the security of the system relies on the dual-layered

PRF. However, we do open up users to denial-of-service attacks on each of the relevant

services, as an adversary could interfere with partial evaluations. In the case of authentica-

tion and file decryption, such an attack can only temporarily prevent correct functioning
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of the system. More dire is the case of initializing user account values and file encryption,

in which denial of service attacks may be unrecoverable and lead to a breakdown of sys-

tem properties (i.e., encrypting a file with a corrupted key and then deleting the plaintext).

To protect against these attacks we can add authenticity checks to values. We add the

recently standardized Ascon AEAD scheme [153] to our implementation to maintain

security against these types of attacks, and evaluate its performance in Section 4.5.

We consider a more powerful access adversary who can gain control of both the phone

and even one IoT device on the home network to be out of scope. We believe, for most

use cases, this is a realistic assumption: even gaining the public-facing IP address of

devices on the network is not something a foreign nation can do easily, without help from

the user’s local ISP. For those highly-targeted users for whom such an adversary could

be realistic, though, turning off the smart home entirely when they leave the house will

prevent this attack, giving the user the same security guarantees as an offline solution.

4.4.4 Deployment Flexibility

SocIoTy’s design allows for significant flexibility when deploying on a smart home. We

discuss these considerations in the paragraphs below.

4.4.4.1 Devices to Use

We envision SocIoTy as running on essentially any IoT device that has some form of

networking capability, as the number and types of device vary from smart home to smart

home. Users should try to use their more powerful devices to increase performance,

but we believe this is not strictly necessary. We evaluate these performance claims in

Section 4.5, using a wide range of devices to benchmark the SocIoTy protocol.
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4.4.4.2 Multi-User Smart Homes

SocIoTy can support multiple users, each with their own services. Each device i holds

a separate key Ki (for PartialEval) for each pair (u, s) describing a user u and service s.

The wrong user u′ cannot authenticate to s as u because they do not have the key kp on

u’s smartphone. Thus, SocIoTy supports as many users and services as there is space for

keys on the IoT devices. Similarly, SocIoTy also supports multi-owner setups, where the

devices are not all owned by a single user. This is common in smart home settings, as

devices can belong to roommates, landlords, or caretakers, to name a few. If all device

owners cooperate, SocIoTy proceeds as normal. If owners deviate from the protocol, the

worst that can happen is denial-of-service—not a security break.

4.4.4.3 Network Structure

Our design does not require a specific structure of the smart home network. Traditionally,

protocols are designed point-to-point, where each device is able to directly communicate

with each other device. For some smart homes, computation is handled through a

hub, which acts as an intermediary for messages to and from the smart home devices,

especially low-resource ones. SocIoTy is able to handle this case, which we investigate

end-to-end in Section 4.5.4.

SocIoTy makes no liveness assumptions on the whole network. Other approaches, like

generic multi-party computation [20, 44, 87, 239], would require all of the IoT devices to

communicate with each other during the whole protocol. SocIoTy only needs each node

to be active for one PartialEval. So a device can respond to a request, and go back to

attending to its primary task (or return to sleep), without waiting for all of the other nodes

to respond or for the final reconstruction to occur. Moreover, because our cryptographic

protocol only requires one round of communication, we can also tolerate networks with

very low available bandwidth.
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4.4.4.4 Server Interface

SocIoTy meets our deployment goal of not requiring changes to the user interface, but

we briefly discuss how SocIoTy impacts the remote service. When applying SocIoTy to

encryption, the cloud server that provides storage does not change its interface. From

its perspective, the user is still uploading a file: a SocIoTy-encrypted blob rather than a

cleartext one. The cloud service stores it as it would any other file.

For authentication, however, the situation is different. The TOTP standard [148]

recommends HMAC-SHA-1 as the underlying PRF. Our construction is not backwards-

compatible with HMAC-SHA-1 in implementation, but the interface is the same: a

call to TOTP returns a one-time password. Rather than using HMAC-SHA-1, a call to

TOTP(sk, ts) in SocIoTy would instead invoke Algorithm 4.1, with the server keeping

sk = (kp, K). We argue that this change is minimal, as the TOTP standard has a high

level of abstraction [148]. Moreover, services are incentivized to make this change, as the

additional security and flexibility of SocIoTy is a marketable benefit.

4.4.5 Instantiating the TDPRF

We must instantiate the TDPRF underlying SocIoTy’s operations to deploy our solution

in practice. We follow the decisional Diffie-Hellman-based construction of [149] for our

TDPRF, using elliptic curve groups because of their efficiency in implementation. As is

common when discussing elliptic curves, we use additive notation for group operations.

Let G be a generator of an elliptic curve group of prime order p. We describe below the

algorithms for our TDPRF Gen, PartialEval, and Recon, as well as the extra algorithm

Eval (useful for a server implementation):

• Gen(1λ, K, t, n): Sample a random polynomial f of degree t − 1 by uniformly

sampling its coefficients from Zp, subject to the constraint that f (0) = K. The

output party shares are the scalars k1 = f (1), k2 = f (2), . . . , kn = f (n).
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• PartialEval(Ki, x): Hash the input x uniformly onto a point P along the elliptic

curve. Then, the output is simply yi ← Ki · P: scalar multiplication of the key share

to the input point.

• Recon({yi}i∈Y): Let α1 . . . αt be the identities of the parties providing points y1 . . . yt

to Recon. Consider the following function, defined ∀i ∈ [t]:

Li(x) = ∏
∀j ̸=i,j∈[t]

x− αj

αi − αj

It is well known that given t points along a polynomial f , evaluation can be done

at any point α as f (α) = ∑t
i=0 f (αi) · Li(α). Given these points “in the exponent" it

is possible to recover K “in the exponent”. To be precise, we can recover the PRF

output as:

y =
z

∑
i=1

Li(0) · yi =
z

∑
i=1

Li(0) · f (αi) · P = K · P

• Eval(K, x): Hash the input x uniformly onto a point P along the elliptic curve. Then,

the output is y ← K · P: scalar multiplication of the reconstructed key to the input

point.

Note that the hashing of the input x is important, as the output of this TDPRF is

uniform only if its input is also uniform. If we model this hash function as a random

oracle, security holds [149].

4.5 Evaluation

We now demonstrate the feasibility of our constructions on real IoT hardware.

4.5.1 Implementation

We implement SocIoTy in Rust due to its memory safety guarantees as well as its good

platform support for IoT architectures. Additionally, we use the Curve25519 as our elliptic
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Table 4.1. Hardware specifications of test devices as well as examples of comparable IoT devices.

Test Device CPU RAM Comparable IoT Device
RPi 3B+ ARM Cortex-A53 1 GiB Apple TV HD [12]
RPi 2B ARM Cortex-A7 1 GiB Amazon Echo Dot (3rd Gen) [25]
RPi Zero W ARM1176JZF-S 512 MiB Google Nest Thermostat E [135]
ESP32 Xtensa LX6 320 KiB Belkin WeMo Light Switch [206]

curve and Ascon, the winner of the NIST lightweight cryptography competition [153], for

authenticated encryption in our implementation. We will open-source all of our SocIoTy

software and benchmarks for public use and review upon publication.

4.5.2 Microbenchmarks

We wish to understand how SocIoTy runs on a variety of devices. We performed

our benchmarks on the following devices: 6 Raspberry Pi (RPi) Model 3B+ single-board

computers (SBCs), 3 RPi Model 2B SBCs, 3 RPi Zero W SBCs, and 5 ESP32 microcontrollers.

Raspberry Pis are increasingly being used a benchmarking platforms to simulate smart

home devices in lieu of commercial devices; IoT device vendors do not support running

arbitrary software for security reasons, limiting the ability to use them for development.

Table 4.1 maps our test bed devices to comparable smart home devices.

Recent generations of Raspberry Pis have been increasing in computing power with

specifications of up to 8GB of memory. Thus, we used both lower-end Raspberry Pis

and smaller microcontrollers as representative devices to better simulate a network of

heterogeneous IoT devices.

We first begin by presenting microbenchmark results for the algorithms of a TDPRF:

(Gen, PartialEval, Recon). All of our selected devices are capable of computing all three

of these algorithms.
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Table 4.2. Average runtimes for an evaluation of PartialEval, both without and with authenticated
encryption (AE). All times are in milliseconds.

Experiment RPi 3B+ RPi 2B RPi Zero ESP32
PartialEval 1.34 2.19 2.90 43.68
PartialEval (AE) 1.53 2.43 3.28 47.22

4.5.2.1 PartialEval

Because PartialEval will be conducted on resource-constrained IoT devices, microbench-

marks for it are very informative. As discussed in Section 4.4.5, each PartialEval in our

implementation is one elliptic curve multiplication. We evaluate the performance of

PartialEval, and of PartialEval followed by an authenticated encryption of the result using

Ascon (denoted AE). The Raspberry Pis performed each task 100,000 times, and the ESP32

performed each 1,000 times, with the results in Table 4.2. The Raspberry Pis complete the

task very quickly—less than 5 milliseconds on average. The sub-50ms average time on the

ESP32s is also very promising; while an order of magnitude slower than the Raspberry

Pis, this result shows that adding SocIoTy on even highly constrained devices will not

induce noticeable latency. We also note that the overhead of authenticated encryption is

minimal, even on the ESP32. As such, for the rest of our benchmarks, we have all nodes

use PartialEval with Ascon to add security against network tampering (as discussed in

Section 4.4.3).

4.5.2.2 Gen and Recon

We also perform microbenchmarks on Gen and Recon, and present our results in Fig-

ures 4.6 and 4.7. Each Raspberry Pi once again ran each task 100,000 times, with varying

configurations of the total number of parties n and the threshold required to reconstruct

t. Gen in our implementation only samples random values for the keys and, while the

time to run does scale with each (n, t) pair, it operates on the order of several hundred

microseconds (µs) on average. Recon takes longer, likely owing to the multiple elliptic
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Figure 4.6. Microbenchmarks for Gen on different test devices over varying configurations of total
number of parties n and reconstruction threshold t.
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Figure 4.7. Microbenchmarks for Recon on different test devices over varying configurations of
total number of parties n and reconstruction threshold t.
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curve operations required to interpolate the partial evaluations and recover the PRF

output. It similarly increases as the network grows, but even in a 12-device network, it

only takes around 70 milliseconds on a Raspberry Pi Zero.

We believe that these microbenchmarks represent an upper bound on the execution

time; as discussed in Section 4.4.1, we expect users to use their smartphone as the

authorized device for Gen and Recon, and modern smartphones have much better

processors than the ARM1176JZF-S found in the Pi Zero. While we do not envision users

generating and recovering on even smaller, microcontroller-class devices, for completeness

we evaluated how Gen and Recon fare on the ESP32 for different configurations of (n, t).

These results can be found in Table 4.3.

4.5.3 Scalability Benchmarks

Our next set of experiments measures how the execution time of the evaluation of

SocIoTy’s TDPRF scales once communication between devices is involved. We set up two

types of nodes, a request node and n evaluation nodes. The evaluation nodes are the

Raspberry Pis: 6 RPi 3B+s (used for all benchmarks), 3 RPi 2Bs (used for n ≥ 7), and 3 RPi

Zeros (used for n ≥ 10). In each run, the request node connects to all n evaluation nodes

and makes a request for a timestamp δ. Each evaluation node then responds with the

(authenticated-encrypted) PartialEval for δ, and the request node performs Recon once it

has received (and decrypted) t responses. All of the nodes are on the same Wi-Fi network,

and communication occurs over the Constrained Application Protocol (CoAP) [244], a

popular point-to-point protocol in IoT.

We perform 1,000 of these runs for varying configurations of (n, t), and plot our results

in Figure 4.8, with all variations of (n, t) in Table 4.4. Clearly, as the required threshold

to reconstruct t increases, the execution time increases: more responses need to arrive.

We also see a relatively large jump in average execution time at n = 7 and n = 10, likely

because of the involvement of the less-powerful Pi 2Bs and Pi Zeros at each step.
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Table 4.3. Microbenchmarks for Gen and Recon on the ESP32 devices over varying configurations
of total number of parties n and reconstruction threshold t. All times are in milliseconds. Although
we do not expect users to use the ESP32 for Gen or Recon, our implementation is nonetheless
efficient enough for this purpose.

Configuration ESP32 Gen ESP32 Recon
(n = 5, t = 3) 41.16 382.47
(n = 5, t = 4) 41.63 382.47
(n = 5, t = 5) 42.12 382.11
(n = 6, t = 4) 49.78 495.02
(n = 6, t = 5) 50.33 495.02
(n = 6, t = 6) 50.89 494.48
(n = 7, t = 5) 58.55 622.77
(n = 7, t = 6) 59.18 622.77
(n = 7, t = 7) 59.83 622.02
(n = 8, t = 6) 67.48 765.77
(n = 8, t = 7) 68.20 765.77
(n = 8, t = 8) 68.92 764.76
(n = 9, t = 7) 76.58 923.98
(n = 9, t = 8) 77.36 923.98
(n = 9, t = 9) 78.17 922.68
(n = 10, t = 8) 85.83 1097.46
(n = 10, t = 9) 86.70 1097.46
(n = 10, t = 10) 87.73 1097.44
(n = 11, t = 9) 95.25 1286.10
(n = 11, t = 10) 96.18 1286.51
(n = 11, t = 11) 97.31 1286.09
(n = 12, t = 10) 104.81 1490.53
(n = 12, t = 11) 105.83 1490.53
(n = 12, t = 12) 107.05 1490.06
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Figure 4.8. Protocol execution time over CoAP for varying configurations of total number of
parties n and reconstruction threshold t.
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Table 4.4. Protocol execution time CoAP over all evaluated configurations of total number of
parties n and reconstruction threshold t. All times are in milliseconds. The large spike in µ, σ at
n ≥ 10, n = t is likely due to faulty hardware.

Configuration µ σ

(n = 5, t = 3) 7.90 1.23
(n = 5, t = 4) 8.96 1.76
(n = 5, t = 5) 10.77 4.34
(n = 6, t = 4) 8.85 1.76
(n = 6, t = 5) 10.65 2.26
(n = 6, t = 6) 12.05 2.16
(n = 7, t = 5) 11.05 2.51
(n = 7, t = 6) 12.57 2.65
(n = 7, t = 7) 14.41 3.21
(n = 8, t = 6) 12.39 2.38
(n = 8, t = 7) 14.31 2.74
(n = 8, t = 8) 16.06 2.99
(n = 9, t = 7) 14.42 2.51
(n = 9, t = 8) 16.70 3.47
(n = 9, t = 9) 18.37 4.03
(n = 10, t = 8) 17.07 4.28
(n = 10, t = 9) 19.74 4.21
(n = 10, t = 10) 49.57 151.41
(n = 11, t = 9) 19.81 3.90
(n = 11, t = 10) 22.35 3.97
(n = 11, t = 11) 48.05 134.40
(n = 12, t = 10) 23.34 4.87
(n = 12, t = 11) 24.63 5.01
(n = 12, t = 12) 53.62 145.06
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Note that there is a sharp increase when the number of nodes is n ≥ 10 and the

threshold is t = n. In this case, we found that one of the Raspberry Pi Zeros performs

significantly worse on network communication than all other devices, perhaps due to a

manufacturing issue. Necessarily, when the threshold is sufficiently large to encompass

the slowest of devices, the computation becomes bounded by the slowest performing

devices.

Regardless, even in a relatively large configuration like (n = 12, t = 10), though, each

full run takes less than 25 milliseconds on average. Thus, SocIoTy TDPRF evaluations are

able to scale well as the smart home network adds devices.

4.5.4 End-to-End Deployment

We now perform an end-to-end deployment of SocIoTy. We focus on the authentication

process depicted in Section 4.4.2. The results for authentication will be applicable to

encryption as well, as the core of the two algorithms is the same. The only difference is the

actual authenticated encryption of a file, which has minimal overhead on smartphones.

An end-to-end authentication system must support the generation of 2FA OTPs. So

we built a smartphone app, based on an open-source implementation [18], with the

same interface as common 2FA apps. Our app performs all of the steps in the TDPRF

evaluation—making the PartialEval requests and Reconing the responses—and takes the

additional step of converting the output of Recon into a six digit OTP and displaying it

to the user. A screenshot of our app can be found in Figure 4.10.

As discussed in Section 4.4.4, smaller single purpose devices may not directly connect

to the Internet or other devices found within the smart home, but rather connect to a

central more-powerful hub. This hub coordinates the flow of data of each device to and

from parts of the smart home or Internet. A commonly used IoT protocol for this is

MQTT, in which devices subscribe to topics to receive information and publish to them to

send information, while a central broker sends published data to subscribers.
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Figure 4.9. End-to-end OTP generation time using our iOS app for varying configurations of total
number of parties n and reconstruction threshold t.
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Figure 4.10. A Simulator screenshot of our iOS app. Note that all benchmarks were performed
with a hardware iPhone X.
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Keeping this in mind, we construct the following testbed to perform our end-to-end

experiments. Our simulated smart home consists of the 12 Raspberry Pis from our

experiment in Section 4.5.3, as well as 5 ESP32 microcontrollers—representing the class of

devices that use lightweight IoT protocols like MQTT due to its hub architecture—for

total of 17 evaluation nodes, all connected to the same Wi-Fi network. A 2018 iPhone X is

used to run our smartphone app. We use a standard Ubuntu 21.04 server running on the

same LAN as the MQTT broker.

Every tc seconds (represented by a full progress circle in Figure 4.10), the iOS app

generates a new TOTP by doing the following:

1. The app calculates the TOTP counter value δ = ⌊ ts
tc⌋ based on the current timestamp

ts.

2. The app connects to the MQTT broker, subscribes to the MQTT topic socioty/tdprf/δ,

and publishes δ to the topic socioty/tdprf to the broker.

3. Each node i is subscribed to socioty/tdprf, and receives δ from the broker.

4. Each node i then computes yi ← PartialEval(Ki, δ), and publishes it to socioty/tdprf/δ.

5. Once the app has t responses, it performs the remainder of Algorithm 4.1, recon-

structing the output and displaying the new TOTP.

We consider the above steps one run, and we perform 100 runs, varying the threshold

t while leaving the number of total devices fixed as n = 17.

We present our results of our end-to-end deployment benchmarks in Figure 4.9. We

see that average execution times range from under 200ms at a majority threshold t = 9 to

under 500ms when all devices are involved at t = 17. Similarly to our results in 4.5.3, we

see a sharp increase in execution times as we rely more on weaker devices to provide

their responses. The large spread at t = 17 is likely due to the app waiting for a straggler
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device that receives the request last and computes a response last; after all, an n-of-n

system will be as fast as its slowest component.

Our experiments show that we are able to request and reconstruct the OTP well within

the lifetime of the TOTP, tc = 30 seconds. For a threshold set to a simple majority of

devices the response is quick, accounting for less than 1% of the TOTP lifetime. We find

these results demonstrate the practicality of our system to be used seamlessly as a TOTP

generator.

4.6 Related Work

We now compare SocIoTy to other work with similar goals. We summarize our compar-

isons in Table 4.5.

4.6.1 Location-Based Cryptography

Heuristics around location-based cryptography were originally formed in the networking

community, with a set of “geo-encryption” algorithms [6, 77, 166, 186] that introduce

location and time as additional parameters to a cryptographic operation by using satellite

data. More formal cryptographic definitions were introduced by Chandran et al. [41] as

“position-based cryptography,” wherein they demonstrate the impossibility of verifying

the physical position (based on radio wave communications) of a number of colluding

provers within a space in the standard model. Works since have explored the assumptions

made by Chandran and their implications in complexity theory [32] and in the quantum

setting [34].

Phuong et al. developed a location-based encryption scheme in 2019 [165]. However,

their scheme requires bilinear maps (as used in an attribute-based encryption scheme) to

achieve constant ciphertext size decryptable at arbitrary points within 2-D or 3-D grids.

Further, they rely on time-specific encryption [113, 160] to ensure decryption only at
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Table 4.5. A comparison of related work with similar goals to those of SocIoTy.

Category Authentication? Encryption? Location-binding? Uses existing hardware? Suitable for non-experts?
Geo-encryption [6, 77, 166, 186] ✗ ✓ ✓ ✗ ✗
Position-based crypto [32, 34, 41] ✓ ✓ ✓ N/A ✗
Time-specific encryption [113, 160, 165] ✗ ✓ ✓ N/A ✗
HSMs [95, 105, 226] ✓ ✓ ✓ ✗ ✗
Wearable devices [36, 50, 193] ✓ ✗ ✗ ✓ ✓
Proximity measurement [9, 247] ✓ ✗ ✗ ✓ ✗
Pico [199] ✓ ✗ ✓ ✗ ✓
SocIoTy (proposal) ✓ ✓ ✓ ✓ ✓
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particular points for a given ciphertext.

4.6.2 Hardware Security Modules (HSMs)

Hardware security modules are separate, dedicated computing devices that protect

cryptographic keys by storing them and monitoring their access and usage. They provide

tamper-evidence or even tamper-resistance through the use of special hardware. Once

tampering is detected, the device may stop functioning properly or delete its secret

keys. HSMs can be used to protect keys used by certificate authorities, banks, and

cryptocurrency wallets. They are present within vehicles [226], operational technology

[105], and clouds [95]. HSMs act as trusted security anchors and gateway to the network.

They securely generate, store, and process security-critical material shielded from any

potentially malicious actor on the network and outside of it.

While providing good security guarantees on paper, historically HSMs have been too

expensive for average consumers at the highest security levels and therefore have limited

usability outside of large corporations [107, 114]. A more modern approach to HSMs was

explored in the form of portable password storage hardware that pairs with other devices

and applications to exchange keys and enable further seamless authentication. Pico [199]

is an example of such device that can be shaped as a watch, a key fob, a bracelet or an

item of jewellery. Pico uses with Picosiblings to enable a more coordinated approach

to password storing and usage with other Pico devices. Instead of creating dedicated

hardware, SocIoTy uses existing IoT hardware that has completely different purpose to

provide security properties.

4.6.3 Security via IoT Devices

Most works in the literature that use the properties of IoT for security focus on IoT

devices themselves, either by enhancing their security or facilitating easier authentication.

Zhang et al. [247] describe an easier authentication for IoT devices by gesturing with a
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smartphone in close proximity to the devices. Aman et al. [9] used a similar concept

for the authentication of IoT devices by accounting for physical location. These works

do not provide location-binding for user data, however. Some works do employ IoT

characteristics for user authentication; in particular, [36, 50, 193] use wearable IoT devices

as a second-factor for authentication.
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Chapter 5

Conclusion

In this work, we explore a suite of techniques designed to give users control over their

everyday computing, extracting security and privacy guarantees in the process.

First, in Chapter 2, we present DOVE, which offers an approach to achieve data-

oblivious computation within a TEE for programs originally written in languages with

complex stacks such as R. The approach takes as input a high-level program and trans-

forms it to an intermediate representation (DOT) that can be more easily reasoned about

with respect to providing data obliviousness on a constrained TCB. This gives the advan-

tage of being able to program in a familiar and convenient language while providing a

very strong security guarantee. We demonstrate a design and implementation that can

cover a significant range of programs with efficiency that is an acceptable trade-off for

the benefits.

Next, in Chapter 3, we present an analysis of the practical limitations of using cryp-

tographically secure steganography on real, useful distributions, identifying the need

for samplers and impractical entropy requirements as key impediments. We show that

adapting existing public key techniques is possible, but produces stegotext that are ex-

tremely inefficient. We then present Meteor, a novel symmetric key steganographic system

that dramatically outperforms public key techniques by fluidly adapting to changes in

entropy. We evaluate Meteor, implementing it on GPU, CPU, and mobile, showing that it
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is an important first step for universal, censorship-resistant steganography. We compare

Meteor to existing insecure steganographic techniques from the NLP literature, showing

it has comparable performance while actually achieving cryptographic security.

Finally, in Chapter 4, we present SocIoTy, an at-home cryptography system designed

with non-technical users in mind. SocIoTy allows users to bind their secrets to their

smart homes, giving them the opportunity to opt-in to additional protections for sensitive

tasks. We protect against strong classes of adversaries, while providing the functionalities

users expect, like authentication and encryption. Our benchmarks show that SocIoTy is

practical, efficient, and conducive to deployment on real smart homes. In the future, we

plan exploring what other at-home services we can provide on top of IoT devices through

systems like SocIoTy.

The solutions considered in this work can each be understood as one part of a better

digital life. Users could use DOVE for their cloud-based data science work, communicate

with their friends and families via Meteor on their smartphones, and live inside of a

SocIoTy-enabled smart home for authentication and encryption. Taken as a unit, it is a

compelling model for everyday computing that is secure against realistic threat models

while remaining efficient on consumer hardware. This line of research proves that there

is hope for strong, yet practical, security and privacy for the modern world.
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