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Abstract: 

Information from the world unfolds over time, and to navigate the everyday world and make future 

predictions, our brain needs to integrate information over time. For instance, when having a 

conversation with someone, our brain needs to accumulate information about words and sentences 

to comprehend the ongoing discussion and respond appropriately. However, ubiquitous accumulation 

of information can cause interference, especially if we end up combining unrelated information. For 

instance, the topic of conversation may change from one sentence to the next, in which case 

combining information from consecutive sentences could cause interference and confusion. 

These examples demonstrate that integrating information over time is sometimes necessary for 

successful comprehension and prediction, but it should not be performed indiscriminately. How then 

should temporal integration mechanisms be implemented, especially in constrained brain-like learning 

architectures? What kinds of temporal integration and separation mechanisms are employed by 

contemporary machine learning models? And how do these integration and separation processes 

compare against what we observe in human behavior? 

In this thesis, we examined the costs and benefits of integrating and separating information sequences 

in humans and machines. In the first two projects we focused on learning and tested the performance 

of biologically-plausible temporal integration mechanisms in neural networks; we characterized the 

efficacy of these systems in learning categories from a sequence of examples, and investigated how 

their internal representations are altered by how they integrate information over time. In two further 

projects we focused on online comprehension and prediction, in the setting of humans reading natural 

language sequences, and we contrasted our findings with neural network models that predict and 

generate natural language sequences. We tested how online comprehension and subsequent memory 
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are affected by interruptions in the text that humans are reading. Finally, we tested how neural language 

models respond to the insertion of incongruent information into a broader coherent text, and we 

compared these findings against our observations of how humans handle interruptions while reading.  

Altogether, these studies identify mechanisms by which humans and machines can exploit temporal 

continuity in the environment, in the service of learning about, understanding and predicting our 

dynamic world.  
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Chapter 1: Introduction  

 
 
1.1. Costs and Benefits of Integrating Information over Time 

Imagine you recently landed a new job, and on your first day in the office, you join a group of new 

colleagues for an introductory lunch. In this situation, your ability to learn from this experience and 

to comprehend it in real time will naturally benefit from being able to accumulate information over 

time. 

First, as new colleagues introduce themselves to you at the table, you must learn their names 

and associate them with the faces you see around you at the table. However, the faces that you see are 

not distributed randomly over time: instead, you will see multiple samples of one individual’s face, as 

they move their faces and heads while introducing themselves, before moving to the next person 

(Figure 1-1). While learning the facial features from a single individual, it could be beneficial to 

integrate and combine the multiple samples you receive of their facial features. However, you should 

not indiscriminately seek to combine any visual samples that are nearby in time as part of the same 

category: when moving from one colleague to the next, you will see a new face with its own unique 

features. So, it is beneficial to employ some form temporal integration of information, but you should 

also temporally separate information when moving from one person to the next. Thus, for the 

purposes of learning, it seems we need a flexible combination of mechanisms for integrating and 

separating consecutive samples from the environment (Figure 1-1).  
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Figure 1-1. Temporally correlated data in the real world accompanied by sudden changes. 
Example of a situation where we meet new people and learn about their names and associate them with their faces that 
we see. The examples that we see from each person’s face are usually temporally correlated as we see multiple examples 
of on person’s face consecutively. But this autocorrelation can be suddenly disrupted when moving from one person to 
the next. 

 

Of course, temporal integration does not only affect how we learn, but also how we 

comprehend and predict the environment online. For example, during the lunch conversation, you 

may encounter a situation that requires you to handle a transient change in the information stream. 

For instance, the conversation at the table may concern the musical abilities of each of the 

colleagues and their families. As the conversation proceeds, you gradually integrate sequences of 

information about the musical abilities of your colleagues and their families, and you load mental 

schemas about musical education and music genres. But then, a colleague may notice a political news 

headline on their smartphone and interrupt the conversation to read the political headline aloud to 

the group. Less than a minute later, the conversation returns to the topic of families and music, but 
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now you require cognitive processes that can identify and store the incongruent information (the 

news headline) and help you to resume integrating information on the broader theme (of musical 

families), rather than starting the integration process all over again (Figure 1-2). Here again, we can 

benefit if we are able to maintain and integrate information over time, but we also require 

mechanisms that enable us to separately handle incongruous information, before resuming the 

integration process. 

 

Figure 1-2. Temporally correlated linguistic data in the real world accompanied by transient changes. 
Example of a situation where we suddenly hear an interrupting piece of information during a conversation. The 
interrupting information (news about oil prices) can be thought of as a transient change in an otherwise temporally 
correlated data (conversation about family members). 

 

The scenarios described above motivate a series of research questions: What are the 

consequences of sudden changes in the information stream for our learning and comprehension? How 

might biologically plausible mechanisms be implemented to enable us to learn from temporally 
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correlated input in the real world? How do humans (and how do contemporary machine learning 

models) deal with sudden changes in their information stream, and then resume the broader 

integration process? To address these questions, this thesis examines the costs and benefits of 

integration and separation of temporal information for learning and comprehension in humans and 

machines.  

The first two projects in this thesis (Chapter 2 and Chapter 3) focus on temporal integration 

for the purposes of learning. We designed and tested biologically plausible integration mechanisms for 

neural networks performing a learning task, and we compared their efficacy for learning incrementally 

from a sequence of examples, as well as how they alter the internal representations that are learned.  

The next two projects in this thesis (Chapter 4 and Chapter 5) focus on temporal integration 

for the purpose of online comprehension, prediction and memory.  We quantified human behavior and the 

output of contemporary machine learning models designed to predict and generate language 

sequences. Specifically, we focused on the settings of incongruencies and interruptions, and how 

humans and machine learning models are affected by them. We also compared the integration and 

separation processes observed in machine language processing against the online comprehension and 

memory processes in humans, under the same conditions. 

In the remainder of this introductory Chapter, I summarize prior works, provide an overview 

of the current state of knowledge in each topic, and identify the gaps in the literature. 

1.2. Learning Incrementally from Temporally Structured Data 

Imagine that all the events of your life are captured, second-by-second, and then replayed to you. 

Except they are not played in their original order: the seconds of life are scrambled, so that a moment 
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of reaching down to pick up your keys at age 30 is followed by an instant of you opening your mouth 

to cry at age 3. Much of the classical theoretical work in learning treats the learning problem in this 

way, as if the events in the world are a homogenous pool from which we can sample randomly. Of 

course, we do not learn from and experience the world in that way, and this a key reason why temporal 

integration is so important.  

The world is structured temporally in many ways, but one of the most basic is that it is 

correlated in time: one moment tends, on average, to resemble the other moments nearby in time. In 

this section, I review prior research on learning from temporally correlated data for (i) category 

learning and (ii) representation learning.  

1.2.1. Effects of Temporally Smooth Data on Category Learning 

In the biological world, category learning usually takes place in time, as the learner is exposed to 

exemplars presented one after the other. For instance, when meeting a group of new people, we learn 

and remember their faces by seeing multiple samples of each face from different angles. But crucially, 

such real-world information is usually correlated across nearby points in time. So, for instance, we 

would usually see multiple angles (examples) of one face, consecutively (Figure 1-1). How does this 

temporal correlation across the exemplars influence category learning? How can a system exploit this 

temporal correlation for higher efficiency when learning categories? 

1.2.1.1. Effects of Sampling Strategies on Incremental Learning  

The ordering of training examples affects the speed and quality of learning in artificial neural networks. 

For example, learning can be sped by presenting “easier” examples earlier, and then gradually 

increasing difficulty (Bengio et al. 2009; Kumar, Packer, and Koller 2010; Elman 1993). Similarly, 
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learning can be more efficient if training data is organized so that the magnitude of weight updates 

increases over training samples (Gao and Jojic 2017).  

However, the natural world often presents training data in temporally autocorrelated manner 

rather than ordering training items based on item difficulty or proximity to category boundaries. We, 

therefore, here are interested in exploring the effects of ordering similar training items nearby in time. 

With the data ordered in this way, we then seek to identify mechanisms that can accelerate learning 

across multiple levels of temporal autocorrelation, adapting to what is present in the data. This ability 

to adapt to the properties of the data is important in real-world settings, where a learner may lack 

control over the training order, or prior knowledge of item difficulty is unavailable.  

1.2.1.2. Potential Costs and Benefits of Training with Smooth Data 

Temporally correlated data may slow learning in feedforward neural networks. If consecutive items 

are similar, then the gradients induced by them will be related, especially early in training. If we 

consider the average of the gradients induced by the whole training set as the “ideal” gradient, then 

subsets of similar samples provide a higher variance (i.e., noisier) estimate of this ideal.  

Smoothness in data may also slow learning due to catastrophic forgetting (Robert M. French 1999). 

Suppose that, for smoother training, we sample multiple times from a category before moving to 

another category. This means that the next presentation of each category will be, on average, farther 

apart from its previous appearance. This increased distance could lead to greater forgetting for that 

category, thus slowing learning overall.  

On the other hand, smoother training data might also benefit learning. For example, there may 

be some category-diagnostic features that will not reliably be extracted by a learning algorithm unless 
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multiple weight updates occur for that feature nearby in time; smoother training data would be more 

liable to present such features nearby in time.  

1.2.1.3. Biological Constraints as Inductive Biases for Category Learning 

Neural networks are thought to provide a model of how biological brains perform categorization, 

which involves learning to classify objects into different categories (Grill-Spector and Weiner 2013; 

Yamins and DiCarlo 2016; Spoerer, McClure, and Kriegeskorte 2017; Nayebi et al. 2018). However, 

biological brains have a peculiar combination of properties. On the one hand, neural circuits are 

replete with anatomical recurrence and exhibit substantial autocorrelation in their dynamics (Honey 

et al. 2012; S. M. Smith et al. 2013; Kietzmann et al. 2019; Bright et al. 2020; Raut, Snyder, and Raichle 

2020; Cocchi et al. 2017). On the other hand, it is not thought feasible for biological brains to 

implement backpropagation-through-time (BPTT), which is generally necessary for efficiently training 

artificial neural networks with recurrent connections (Lillicrap and Santoro 2019). How might 

recurrent dynamics in the brains achieve learning without propagating gradients through time? 

Particularly, based on the observation that real-world data is also often temporally autocorrelated, in 

what ways might brains exploit the temporal structure of their input data without propagating 

gradients through time?  

There is ubiquitous correlation across cortical dynamics which can influence item-by-item 

incremental learning. Cortical dynamics exhibit autocorrelation on the scale of milliseconds to 

seconds, so that correlation in consecutive internal states is unavoidable (Honey et al. 2012; Murray et 

al. 2014; Bright et al. 2020; U. Hasson et al. 2008). Primate brains exhibit both local and long-range 

recurrence in their architectures, and their dynamics are autocorrelated over many seconds (Honey et 
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al. 2012; S. M. Smith et al. 2013; Chaudhuri et al. 2015; Bright et al. 2020; Murray et al. 2014; Raut, 

Snyder, and Raichle 2020).  

However, cortical states are not always correlated over time: neural circuits can identify ”event-

boundaries” in the data sequence and can sharply shift their state accordingly (DuBrow and Davachi 

2016; Baldassano et al. 2018). This shift appears to be associated with “resetting” of context 

representations, which has been understood as a form of memory gating (Chien and Honey 2020) so 

that neural circuits can combine information from related training samples, and avoid interference 

from unrelated samples.  

In Chapter 2, we will explore the possibility that these two neural properties – autocorrelation 

and context-resetting – serve as an inductive bias for cortical learning. First, if the training data are 

temporally autocorrelated, then it may be advantageous to bias internal dynamics to be autocorrelated 

as well, as this effectively acts as an accurate prior over properties of the environment. For instance, 

data sampled from a slowly- changing environment may contain important features that are stable 

over time, which can be better extracted by mixing current input with a memory of recent input (e.g., 

mixing different exemplars of someone’s face). Second, by "resetting" local memory states at 

boundaries between events, brains can reduce interference between irrelevant prior information and 

current input (e.g., separating exemplars of one person’s face from another) (Figure 1-3). 
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Figure 1-3. Examples of temporally correlated training data in the real world. 
Information that we see nearby in time are usually similar (correlated), for instance, we see multiple examples from one 
person’s face during a conversation. This autocorrelation is also accompanied with abrupt changes in the information 
stream such as when we move from one person to another and see a new face with its own unique features.  

 
 

1.2.2. Learning Representations from Multiscale Data Sequences 

In the real world, we may need to learn from data that vary on both slow and fast timescales. For 

instance, when having a conversation with a new person, we see many examples of the same face from 

different angles nearby in time, and their facial features vary at different timescales: the features around 

a person’s mouth change quickly, while their face’s outline changes more slowly (Figure 1-4). When 

trained using training data that possesses multiple scales of structure, how can a learning system 

generate internal representations that reflect the multi-timescale properties of the data?  

 

Figure 1-4. Example of real-world data with multiple timescales. 
Facial features vary at different timescales: the features around a person’s mouth (blue) change quickly, while their face’s 
outline (red) changes more slowly. 
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1.2.2.1. Learning from Multi-Timescale Data in Artificial and Biological Neural Networks 

Artificial recurrent neural networks (RNNs) are powerful models for learning from multi-timescale 

sequences, and their internal representations reflect temporal properties of their training data (Strobelt 

et al. 2018; Ming et al. 2018). Evidence of recurrence in cortical circuits has motivated RNN models 

of sensory and cognitive processes in cortical circuits (Honey et al. 2012; S. M. Smith et al. 2013; 

Murray et al. 2014; Bright et al. 2020; Raut, Snyder, and Raichle 2020; Kozachkov et al. 2022). 

However, for learning from temporal information, RNNs employ backpropagation through time 

(BPTT), which is thought to be implausible for biological systems (Lillicrap and Santoro 2019). How 

then can biological systems learn from multi-timescale sequences similar to RNNs, without 

propagating gradient in time? 

Evidence from hierarchical processing in cortical circuits shows that neural circuits closer to 

the sensory cortex shift their state more rapidly than circuits further away from sensory areas (Murray 

et al. 2014; Chaudhuri et al. 2015; Chien and Honey 2020). Roughly speaking, this means that a sensory 

region of the neocortex will exhibit relatively small correlation in its state between time t and t+1, 

while a higher order association area will exhibit a relatively large correlation in state between time t 

and t+1. Similarly, sudden changes in state will happen more frequently in sensory areas, and less 

frequently in higher order association cortices. Assuming that sudden shifts in cortical state reflect the 

“resetting” of a context representation stored in each brain region, then shifting cortical states at 

multiple timescales would mean that the context representations are reset at different times.  

In Chapter 3, we will explore the hypothesis that multiscale resetting enables cortical circuits 

to take advantage of multi-timescale data to learn internal representations that reflect temporal 
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properties of the information. However, the functional efficacy of the multiscale resetting mechanism 

in learning multiscale representations from the data is still unexplored. 

 

1.3. Effects of Transient Incongruencies on Language Processing in 

Humans and Neural Language Models 

In this section, I review prior works related to how language processing in humans and neural language 

models is affected by transient incongruencies (interruptions). 

1.3.1. Effects of Interruptions on Human Language Comprehension and 

Memory 

Interruptions are commonplace in real-world language processing. Recall the scenario we sketched 

above, in which a new employee is having lunch with colleagues, and then their conversation about 

musical families is interrupted by a news item (Figure 1-2). After experiencing the interruption 

(hearing the news), the conversation may then pick up where it left off (discussion about musical 

families), but we may have difficulty reinstating the original processing of the topic that was in our 

mind prior to the interruption. Indeed, in some cases, we may never be able to re-instate the same 

mental processes that preceded an interruption. Therefore, it is practically important to determine 

which kinds of interruptions are most disruptive to language and discourse comprehension. Moreover, 

if we can understand which interruptions hinder mental context the most, we may gain better insight 

into how and what we are holding in mind as we try to navigate interruptions in everyday situations. 
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1.3.1.1. What Makes an Interruption Disruptive? 

The disruptiveness of an interruption is likely to vary with its similarity to the primary task. In this 

respect, we can distinguish between interruptions that have “cognitive similarity” and interruptions 

that have “content similarity”. For example, if your primary task is reading a narrative, and the 

interruption also involves reading, we describe these tasks as “cognitively similar”, regardless of the 

content that is being read in each case. On the other hand, if the primary task is reading a story, and 

the interrupting task involves performing arithmetic or visuospatial reasoning, then these tasks are 

cognitively dissimilar, because they likely involve different kinds of operations over different kinds of 

mental representations.  

Early investigations of interruption in reading argued that interruptions were harmful if they 

erased a short-term memory trace of the verbatim content of the primary reading text. Glanzer et al. 

(Glanzer, Dorfman, and Kaplan 1981; Glanzer, Fischer, and Dorfman 1984) introduced a reading 

interruption paradigm in which participants would read sentences, self-paced, but would occasionally 

be interrupted by other tasks, such as arithmetic or reading unrelated materials. They first found that 

reading was slowed when interleaved with interrupting arithmetic problems (Glanzer, Dorfman, and 

Kaplan 1981) and then showed that reading of the primary text was slowed when unrelated reading 

materials were interleaved (Glanzer, Fischer, and Dorfman 1984). They argued, that because the 

deleterious effects of interruption were present both with task-switching (reading interleaved with 

arithmetic) and without task-switching (reading interleaved with reading), the primary driver of 

interruption cannot be task-switching. They argued that the reading slow-downs occurred because the 

interrupting task (regardless of type) erased or interfered with verbatim textual information stored in 

short-term memory. 
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1.3.1.2. Role of Content-Similarity on Disruptiveness of Interruptions 

Ledoux and Gordon (Ledoux and Gordon 2006) returned to the question of the type of interruptions 

by comparing the effects of stylistically similar and dissimilar interruptions. They proposed that more 

similar interruptions were more likely to cause interference with the memory representations 

associated with the primary task, leading to slower reading. They tested this hypothesis in a self-paced 

reading task, in which the primary text and the interrupting text could be of the same or different style, 

narrative or expository. Narrative texts were more similar (semantically and stylistically) other narrative 

texts, while expository texts were more similar (semantically and stylistically) to other expository texts. 

Ledoux & Gordon found that the disruption (measured by increased reading time following the 

interruption) was greater when the interrupting text was of the same style as the primary text.  

1.3.1.3. Role of Cognitive-Similarity on Disruptiveness of Interruptions 

The disruption caused by encountering an interruption with a similar content to the main task may 

come from several kinds of interference between the interruption and the primary task:  

 

Figure 1-5. Schematic of information flow during interrupted reading.  
C1 represents the primary text before an interruption and C2 represents the primary text following an interruption. 

 

I. During encoding of the interrupting materials, there may be interference in working memory, 

because working memory may contain a combination of both the text preceding the 

interruption (C1 in Figure 1-5) and the interruption material (“Int” in Figure 1-5). In this 
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case, if the two sources of information cannot be kept separate in working memory, the 

interruption effectively adds noise to the WM representation of the preceding text (C1). 

II. Upon resuming the primary text (start of C2), some narrative information from before the 

interruption (C1) often needs to be retrieved from long-term memory (Ericsson and Kintsch 

1995). There may be interference in the retrieval process as the interrupting material (Int) is 

also present in working memory and in long-term memory. 

III. Upon resuming the primary text (start of C2), information about the narrative (C2) needs to 

be extracted from the text, stored, and manipulated in working memory. However, some of 

the material from the interruption phase may still be in working memory. Thus, there may be 

interference in the working-memory between Int and C2 materials. 

In addition to content-similarity, the similarities (overlap) in the cognitive processes between 

the primary task and the interruptions may also enhance the interfering effects of interruptions. For 

instance, one may expect memory-based interruptions to posit a higher difficulty on narrative 

processing than math-related interruptions. Rubin et al. (Rubin, Schrauf, and Greenberg 2003) found 

that cognitive processes involved in autobiographical memory and narrative are more similar than 

those involved in arithmetic and narrative. Furthermore, the neural pathways that process memory 

are tightly intertwined with the neural circuits that process narratives (Spreng, Mar, and Kim 2008). 

Moreover, in an ECoG study, Foster et al. (Foster, Dastjerdi, and Parvizi 2012) found that the default 

mode network in the brain displays opposing responses during memory and numerical processing. 

These findings suggest that, in comparison to numerical processing, memory processing is more 

closely related to narrative processing, both in terms of cognitive processes and the content. Although 

Glanzer et al. (Glanzer, Fischer, and Dorfman 1984) de-emphasized the role played by task-switching, 

they did not directly compare the reading time consequences of (e.g.) arithmetic-task and reading-task 
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interruptions. Therefore, it is still not known how interruption effects vary according to the degrees 

of similarity of the cognitive processes involved in the primary task and the interrupting task. In 

Chapter 4, we will return to this question in the context of reading interruptions. 

1.3.1.4. Evaluation Methods for Measuring Disruptiveness of Interruptions 

The disruptiveness of an interruption during reading has primarily been quantified in two ways: first, 

via its effects on reading time and second, via its effects on memory accuracy. Specifically, the most 

common method for quantifying disruption is to measure the reading time of the first sentence 

immediately following the interruption, with longer reading times interpreted as greater disruption 

(Ledoux and Gordon 2006). A less common method of quantifying cognitive disruption is to measure 

what participants remember from the reading task (Foroughi et al. 2015).  

Participants are generally slower when resuming a task after interruptions, an effect known as 

resumption lag. Two findings are consistently obtained across different human studies that investigate 

the effects of incongruencies on reading comprehension: (1) There is an increase in reading time 

following the interruptions; (2) The increase in reading time is higher for incongruencies with a longer 

duration (Monk, Trafton, and Boehm-Davis 2008; Foroughi, Werner, Barragán, et al. 2016). The 

increase in reading time is interpreted as a higher difficulty in processing the information when 

resuming reading after the interruptions. For instance, Ledoux and Gordon showed that participants 

were slower to resume reading after encountering an interruption with a higher similarity to the 

primary reading task, suggesting a higher disruption caused by the more similar interruptions (Ledoux 

and Gordon 2006). Despite the consistent observation of resumption lag following, the processes that 

cause this delay and its dependence on the type of interruption (e.g., arithmetic problems versus 

memory-oriented problems) remain uncertain. 
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In contrast to the consistently observed resumption lag, the effects of interruptions on 

subsequent memory have varied widely. In their classic work introducing the reading interruption 

paradigm, Glanzer et al. (Glanzer, Dorfman, and Kaplan 1981; Glanzer, Fischer, and Dorfman 1984) 

employed many different types of interruption tasks during reading (e.g. unrelated reading, counting, 

arithmetic problems), but consistently observed that subjects’ comprehension was unaffected by 

interruptions. However, Foroughi  et al. (Foroughi et al. 2015) later revealed that when the memory 

questions were not simple recognition questions, but demanded further (perhaps inferential) 

processing of the text, then interruptions were found to affect memory and comprehension 

performance.  

Interruptions can also be thought of as “event boundaries” in an ongoing perceptual stream, 

and there are inconsistent findings of how such “event-boundaries” affect memory. On the one hand, 

arousal at event-boundaries can be beneficial for immediate memory recognition following the event 

boundaries. Swallow et al. (Swallow, Zacks, and Abrams 2009) showed that event boundaries in 

perception, improve memory encoding. Similarly, Zheng et al. (Zheng et al. 2022) found that 

boundaries boost immediate recognition. However, other studies have indicated detrimental effect of 

event boundaries on memory. When information spanned across boundaries, the memory for 

information was declined (Lawrence and Peterson 2016; Radvansky and Copeland 2010). 

Furthermore, Payne et al. (Payne et al. 2007) showed that arousal impaired the consolidation of 

surrounding memory. Finally, Ben-Yakov et al. (Ben-Yakov, Smith, and Henson 2021) demonstrated 

that surprise did not retroactively modulate memory of preceding events, neither when participants 

were tested immediately after the event videos nor when they were tested 24 hours later. Altogether, 

the literature does not present a consistent picture of how interruptions should influence delayed recall 

of the information immediately before and after interruptions.  
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1.3.1.3. Handling Interruptions using Working Memory and Long-Term Memory  

Induced interruptions have been used as an experimental technique to understand human memory 

mechanisms. In traditional memory theories, two qualitatively different memory stores have been 

identified. First there is a transient short-term memory (STM) with very limited capacity, and this term 

is often used interchangeably with working memory (WM) (Cowan 2017). Second, there is long-term 

memory (LTM) with very large capacity, where successful storage required significant time (Malmberg, 

Raaijmakers, and Shiffrin 2019) .  

A standard two-store framework does not easily account for the behavioral results observed 

in studies of reading interruptions. For instance, encountering reading interruptions (e.g. arithmetic 

problems inserted in the middle of a text) is found to have little effect on reading comprehension 

(Glanzer, Fischer, and Dorfman 1984). In the view of Ericsson and Kintsch (Ericsson and Kintsch 

1995), this result cannot be explained under conventional models of WM, because if an activity is 

interrupted, information in temporary storage (such as WM) will be lost and cannot be later resumed. 

On the other hand, long-term memory is thought to be too slow to mediate the retrieval of linguistic 

content on demand during reading. Motivated in part by this observation, Ericsson & Kintsch 

proposed a new model of memory, as we elaborate below. 

Ericsson and Kintsch (Ericsson and Kintsch 1995) introduced the concept of long-term 

working memory (LTWM). Their model challenged the view that only limited-capacity WM is used 

for maintaining information in reading of short passages. First, they noted that a WM system with 

limited capacity cannot account for greatly expanded working memory capacity of skilled performers 

(i.e., experts) in domains such as chess and reading. Second, they argued that if an activity is 

interrupted, information in temporary storage (i.e., WM) will be lost and cannot be later recovered.  
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But they also argued that LTM was too slow to be used as storage in real-time reading settings. 

Therefore, the LTWM model proposed additional control processes added to LTM to facilitate rapid 

encoding and retrieval of information. A key piece of evidence for the LTWM model was the 

aforementioned findings from Glanzer et al, (Glanzer, Dorfman, and Kaplan 1981; Glanzer, Fischer, 

and Dorfman 1984) and Ledoux et al. (Ledoux and Gordon 2006) that interruptions had little effect 

on participants' ability to recognize and recall material from the passages. 

Foroughi et al. (Foroughi et al. 2015) found that interruptions during reading led to a decline 

in textual comprehension, and on this basis challenged the empirical validity of the LTWM model. 

They suggest that the transient portion of working memory is essential for text comprehension, and 

that there is no need to posit additional LTM processes (Foroughi, Werner, Barragán, et al. 2016). 

Foroughi et al. suggested that the maintenance of information in a short-term store (i.e., working 

memory) was necessary because interruptions were indeed affecting this information, and that these 

effects could be detected by text comprehension that went beyond simple recognition testing. 

Furthermore, they found that adding a time-out period before the interruptions led to a recovery of 

memory performance, which they interpreted as providing working memory systems with enough 

time to finish processing the preceding text, so that there was nothing to be disrupted (Foroughi et al. 

2015; Foroughi, Werner, Barragán, et al. 2016). Ericsson and Kintsch, however, maintain that 

Foroughi et al.’s findings do not challenge the LTWM theory, as the theory is not about whether 

disruptions to comprehension ever occur, but rather regarding the magnitude of the effects (Delaney 

and Ericsson 2016). 

The literature reviewed above suggests that our knowledge about reading interruptions is 

limited by two factors. First, there is the fact that WM-based and LTWM-based models are quite 

abstract and do not make sharply differing prediction. But the second, and possibly more fundamental 
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limitation is the variability in empirical finings across studies, which have used many different primary 

texts and interruption tasks over the decades. Therefore, in Chapter 4 we will revisit the fundamental 

questions about memory interruptions while, employing many manipulations within a single consistent 

paradigm, and employing a large sample of participants in each condition.  

Our central focus here is how people tackle a primary task with occasional interruptions, but 

this setting may share several features with the performance of two concurrent tasks. Specifically, there 

is longstanding demonstration of which kinds of working memory processes interfere in “dual task” 

settings, when participants perform two tasks at the same time. In the dual task, participants must 

divide their attention between both tasks and switch between the associated memory processes for 

each one (Treisman 1964; Broadbent 1966; Larsen and Baddeley 2003; Logie et al. 2004). In contrast, 

our focus is on how participants switch from reading (the primary task) to an interruption (a secondary 

task), and how they resume the primary reading task following each interruption. Importantly, the 

consecutive interruption tasks are not related to one another – each interruption can be performed 

individually, without drawing on knowledge of content or responses in the previous interruption. 

Therefore, participants in our interruption experiments only need to maintain and access long-term 

information from the primary task. Nonetheless, the process of reinstating memories and goals may 

be similar between dual-task paradigms and interruption paradigms. Though we do not explore the 

relationship between these paradigms here, it is a promising direction for future work. 

 

1.3.2. How Neural Language Models Separate Relevant from Irrelevant 

Information in Prior Context 

Having discussed how human temporal integration is affected by interruptions, it is instructive to 

consider how artificial systems behave when they confront the same problem. Neural language models 
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(NLMs) have recently achieved impressive performance in predicting linguistic sequences 

(Khandelwal et al. 2018; Subramanian et al. 2020). To do so, these computational models must 

determine which aspects of prior context are important for future prediction. In the terminology of 

cognitive psychology, we might say that these models, when exposed to a string of words, must decide 

which information should be stored or maintained in “memory” and then later “retrieved” in the 

service of predicting the next word. More generally, we could say that these language models are 

continually integrating information over time as they extract the meaning of the input and update their 

representations of the context. What kinds of integration mechanisms are employed by these 

contemporary NLMs, both those with feedforward and recurrent architectures? To what extent are 

they able to separate incongruent information so that it does not affect their predictions? Finally, how 

do these integration and separation processes compare with human behavior? In this Chapter, we 

begin to address these questions, by testing language models in situations where in which the language 

sequence contains a mixture of both relevant and irrelevant (incongruent) information. 

NLMs are designed and trained to make reliable language predictions when dealing with 

consistent data streams, however real-world language data often includes passages of incongruity. 

Similarly, when we process language data in the real world, we may experience incoherencies, like a 

brief change of topic during a conversation. For instance, in the middle of a conversation with a group 

of friends about our family members, one of our friends might suddenly notice a news headline on 

his cell phone and read it aloud to the group. In this case, the linguist information sequence that we 

receive includes a segment of unrelated information (Figure 1-6). How do contemporary NLMs 

process such incongruities in the language context that they are using to make predictions? How might 

the architectural characteristics of NLMs modulate their ability to access information (both relevant 

and irrelevant) in prior context? Finally, what are the similarities and differences between how language 
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models solve this problem (of incongruent interrupting text) and how humans handle interruptions in 

in linguistic context? Below, I review previous work that has explored aspects of these questions, 

before identifying the gap in the literature that I will address. 

 

Figure 1-6. Examples of how a language model’s predictions may be influenced by an intact versus an 
incongruent prior context.  
A) In this example context is intact, and so the language models can easily choose the correct word from possible 
options. B) In this case, the incongruent context which may prevent the language model from making an accurate word 
prediction. 

 

1.3.2.1. The Impact of Architectural Constraints on Maintenance and Retrieval of 

Information in NLMs 

Maintenance and retrieval capabilities of NLMs may depend on their architectural constraints. In this 

Chapter, we will test the performance of two language models with very different architectures, (i) a 

long short-term memory (LSTM) model (Schijndel and Linzen 2018; Hochreiter and Schmidhuber 

1997) and (ii) GPT-2 Transformer language model (Vaswani et al. 2017; Radford et al. 2020). The 

LSTM is a recurrent deep learning model that incorporates the past by reusing the information from 

previous time steps and through dedicated memory cells (Schijndel, Mueller, and Linzen 2019) (see 

Figure 1-7 A). The GPT-2 model (GPT stands for “Generative Pretrained Transformer”) is a 
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large Transformer-based language model (LM) trained with the objective of predicting the next word, 

given all the previous words in a fixed-length context (Radford et al. 2020). A Transformer model is 

a deep learning model that employs an attention mechanism to differentiate the significance of each 

token in the input sequence (Vaswani et al. 2017) (see Figure 1-7 B). The attention mechanism in 

Transformers determines how each token (word) in a sequence is influenced by all other words in the 

sequence. 

 

Figure 1-7. Schematic of an LSTM and a Transformer neural language model’ architectures.  
A) Schematic of an LSTM (memory-based) language model. (This schematic image is borrowed from (Le et al. 2019)). 
B) Schematic of a Transformer (attention-based) language model. (This schematic image is taken from (Vaswani et al. 
2017)). 

 

1.3.2.2. Accessibility to Prior Context in Different NLMs 

In what ways do architectural constraints affect access to prior context in LSTM? In theory and based 

on its architectural properties, LSTM has the ability to maintain pieces of information from the prior 



 23 

context in dedicated memory cells for many hundreds of tokens, and possibly longer (Khandelwal et 

al. 2018; Schijndel, Mueller, and Linzen 2019). This characteristic enables LSTM to learn long-range 

dependencies. However, LSTM’s architectural constraints pose a “limited-capacity” challenge. In 

order for the LSTM architecture to have access to prior context, it must carry the information forward 

in its internal states. Then, at the next time step, it must update its inner context based on the current 

input. Thus, at each time step, the model must make a decision of how to update a limited-dimension 

representation of context. Crucially, if the model decides not to incorporate a piece of information 

into its context representation, there is no way for it to later access that token. As a result, LSTM is 

under the pressure to forget some part of the information to free up space to maintain information 

that is most relevant to the upcoming prediction. Therefore, what happens in practice is that the access 

to prior information is proximity-dependent: on average, recent tokens exhibit a greater influence over 

the prediction of the next token (Figure 1-8). Khandelwal et al. (Khandelwal et al. 2018) described 

this property of LSTM models by saying that their context representation is “sharp nearby, fuzzy 

faraway”.  

Because it employs a Transformer architecture, GPT-2 does not face the same capacity 

pressures that an LSTM does. The GPT-2 model has direct access to a long but fixed-length window 

of the prior information (Vaswani et al. 2017). We can think of it as having perfect memory of a finite 

length of the past. In contemporary LM architectures, Transformers typically have access to hundreds 

of prior tokens, but sometimes thousands in larger models. Even with perfect memory, however, 

GPT-2 still faces the challenge of identifying what pieces of information are relevant for making 

predictions about the future token (Figure 1-8). 
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Figure 1-8. Schematics illustrating the accessibility to prior context in different neural language models. 
Neural language models use a sequence of linguistic data as their prior context to make prediction about the upcoming 
word, but LSTM (middle) and GPT-2 (bottom) have access to different types of information within their prior context. 

 
1.3.2.3. Similarities and Differences of NLMs to Language Processing in Humans. 

Humans and neural language models have some shared capabilities: both have the capability to parse 

language data, can extract abstract information from it, and can generate natural-seeming sequences 

of words (Khandelwal et al. 2018; Radford et al. 2020; Linzen, Dupoux, and Goldberg 2016). In doing 

so, it has been argued that humans and neural LMs share two computational commonalities: both are 

involved in continuous next-word prediction; and, both represent words as a function of the prior 

context (Goldstein 2021). 

In addition to studying their computational commonalities, we can also assess the “behavior” 

of humans and LMs using similar criteria (Schijndel and Linzen 2018). In humans, the time taken to 

read a word or sentence  is commonly taken as an index of how easily they are processing linguistic 

information, or how well the written text accords with their linguistic knowledge and expectations 

(Monk, Trafton, and Boehm-Davis 2008). For example, Smith and Levy (N. J. Smith and Levy 2013) 

showed that human reading time for words decreases with higher word probability. Therefore, in 
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many contexts a lower reading time (RT) reflects less surprise while reading. In NLMs, to measure a 

model’s level of “surprise” while processing a piece of language data, we can calculate their 

“perplexity” (Khandelwal et al. 2018). A low perplexity indicates that a model is not surprised by the 

linguistic information, i.e., that the word or words are consistent with its internal model. Data from 

Schijndel and Linzen (Schijndel and Linzen 2018) support the correspondence of NLMs’ surprisal 

with humans’ reading time. They showed that LMs’ surprisal matched with humans’ self-paced reading 

times in a Natural Stories corpus. From this perspective, then, LMs’ perplexity and humans’ reading 

time reflect similar measures in how easily each of them processes a particular string of language input.  

1.3.2.4. Memory Mechanisms in Humans and NLMs 

NLMs with distinct architectural constraints and memory capabilities may approximate humans’ 

language processing in different ways. While LSTM are forced to selectively maintain the most relevant 

information for subsequent predictions, GPT-2 benefits from a “perfect memory” of a fixed-length 

window of prior input. This distinction may be why LSTMs seem to represent gist-like semantic 

properties in their context representations, while GPT-2 makes predictions based on verbatim 

properties of the prior context (Armeni, Honey, and Linzen 2022). In humans, it has long been 

thought that linguistic tasks (such as reading and next-word prediction) are supported by multiple 

mnemonic and contextual representations (Kintsch and van Dijk 1978), including verbatim 

maintenance of prior text, and more gist-like representation of semantics and situation models. 

Therefore, perhaps aspects of human language processing that rely more on abstracted semantic 

information, might behave closer to a recurrent model such as our LSTM. In contrast, the aspects of 

human language processing that depend more on verbatim properties of the prior context, might 

behave closer to a Transformer, such as GPT-2. That said, the size of the models and their training 
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corpora and loss functions can dramatically impact how readily they extract abstracted situational and 

semantic features (Shin et al. 2022). 

At this moment, despite interest in augmenting neural network models with dedicated memory 

systems, there is no large language model that incorporates multiple human-like memory mechanisms. 

Humans employ multiple distinct memory systems to generate, store and retrieve context 

representations that make available rich semantic and situational properties, while also maintaining 

high-resolution surface information over the short term. This multi-memory system, allowing access 

to short- and long-term data, may render humans (relatively) robust to the irrelevant and incongruent 

items in a stream of input. 

 
1.3.2.5. Effects of Context Incoherencies on Language Processing in Humans and NLMs 

Both humans and NLMs may be sensitive to incongruent items when processing an information 

stream, but the consequences are likely different across humans and NLMs. In humans, increased 

similarities between the interruptions and the primary text generate greater processing difficulties 

(Ledoux and Gordon 2006). We reviewed the prior related works on effects of content-similarity of 

interruptions on their disruptiveness, earlier in this Chapter (section 1.3.1.2.). In contrast to humans, 

NLMs may suffer most from the deleterious effects of incongruent information when the incongruous 

information is moderately similar to the primary text. Consider, three ways in which an interruption’s 

similarity could modulate its interfering effects. First, when the prior context contains incongruencies 

that are very dissimilar from the primary text, then LMs may suffer from interference between relevant 

and irrelevant information and demonstrate a reduction in their prediction accuracy. However, if the 

information is highly incongruous, the model may also ignore it if it cannot be incorporated with the 

broader context of the text. Second, when the interrupting information is moderately similar to the 
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primary text, the predictions of the NLMs may be most corrupted.  In this “sweet spot”, the 

incongruency is similar enough to be mistaken for relevant material, but dissimilar enough to cause an 

erroneous prediction. Finally, when the interrupting information is highly similar to the primary text 

(e.g. information about rifles inserted into a story about handguns) then this additional piece of 

information might even facilitate NLMs predictions for some context-dependent words, as it can help 

to reinforce the appropriate context. Altogether, we may expect a U-shape relationship between 

similarity and disruptiveness of interruption: the most disruptive effects on NLMs may appear at an 

intermediate level of similarity to the primary text. 

The length of the incongruencies (i.e., interrupting information) may also affect their influence 

on human and NLM language processing. Two findings are consistently obtained in human studies 

of incongruencies in reading comprehension: (1) There is an increase in reading time following the 

interruptions; (2) The increase in reading time is higher for incongruencies with a longer duration 

(Foroughi, Werner, McKendrick, et al. 2016; Monk, Trafton, and Boehm-Davis 2008). Thus, if we use 

perplexity to quantify NLM surprise, then NLMs should demonstrate a similar pattern to humans in 

processing information after incongruency, exhibiting: (1) increased perplexity following the insertion 

of inconsistent or incongruous material; and (2) further increased perplexity when the incongruous 

material contains more words. 

The literature reviewed in this section motivates us to directly test how NLMs handle 

incongruencies in their input streams. In Chapter 5, we test both a recurrent architecture (LSTM) and 

a feedforward architecture (Transformer) by exposing them to multiple types of incongruent input, 

and we characterize their language prediction performance, how this compares with the measures of 

human reading times obtained in Chapter 4.  
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1.3.2.6. Achieving human-level language processing capabilities in language models 

Finally, when studying an LM from and comparing its performance to humans, we should remember 

that “human-level performance” does not necessarily reflect “human-level competence” (Firestone 

2020). Drawing on Chomsky (Chomsky 1965), Firestone defines these terms as the following: 

competence refers to what a system knows, whereas performance refers to what a system does. The 

distinction between performance and competence can arise from multiple factors: First, 

demonstrating the same level of performance may not reflect the same level of knowledge. Therefore, 

even if an LM exhibits similar performance to humans in a particular task, it does not mean that the 

LM has the same language knowledge as humans. Second, LMs and humans might perform similarly 

in a specific task, but they might not fail in the same way. Failing in different ways does not mean that 

humans and machines have completely different capacities and representations. It could be that 

humans and machines fail differently despite having similar competence but because they have 

different constraints on processing the input they receive. And, finally, humans and LMs have different 

constraints that may influence their performance. To facilitate fair comparisons humans and LMs, one 

method could be constraining one system to become more similar to the other, while another method 

could be using species-specific tasks to evaluate each system (Firestone 2020).  
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Chapter 2: Effects of Temporal Integration and Separation on 

Category Learning 

 
 
2.1. Background and Motivation 

In the biological world, category learning usually takes place in time, as the learner is exposed to 

exemplars presented one after the other. These exemplars, however, are not independent from each 

other, and are usually similar nearby in time. For instance, when meeting a group of new people, we 

see many examples of the same face from different angles consecutively before moving to the next 

person. What are the consequences of exposure to such temporally correlated data for learning? How 

could a learning system with brain-like architectural constraints, exploit the temporal structure in the 

data for more efficient learning? 

We hypothesized that a category-learning system may be able to take advantage of temporal 

structure in training data by selectively integrating information from related samples, while separating 

information from unrelated samples. Indeed, there are simple brain- inspired mechanisms that may 

enable learning systems to benefit from combining related information, while avoiding interference 

from unrelated information. Our focus on simple integration and separation mechanisms is motivated 

by the fact that (i) our brain dynamics appear to blur information over time, as there is ubiquitous 

autocorrelation in cortical dynamics (Honey et al. 2012; S. M. Smith et al. 2013; Chaudhuri et al. 2015; 

Bright et al. 2020; Murray et al. 2014; Raut, Snyder, and Raichle 2020), while (ii) neural circuits’ 

sometimes shift their state suddenly at “event boundaries”, and this appears to be associated with 

“resetting” of context representations (DuBrow and Davachi 2016; Baldassano et al. 2018; Chien and 

Honey 2020).  
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2.1.1. Research Questions 

To date, we lack a normative model of how the architectural constraints in biological neural networks 

(autocorrelation and boundary resetting) influence category-learning, in a realistic setting with 

temporal correlation in training data. Therefore, in this Chapter, we set out to examine the efficacy of 

these brain-inspired mechanisms in boosting category learning in neural networks. We investigated 

the following two brain-inspired mechanisms: (i) local linear recurrence in internal representations; (ii) 

a gating mechanism that resets internal representation at transitions between categories. In particular, 

we asked the following questions:  

• Can brain-inspired recurrence and gating mechanisms enable neural networks to exploit 

temporally correlated data for higher category learning efficiency, without using BPTT? We 

hypothesized that networks equipped with two brain-inspired mechanisms — local linear 

recurrence and gating — could exploit temporal autocorrelation in data for more efficient 

category learning.  

Significance 

In theory, the existence of autocorrelated dynamics in the brain presents a challenge, because it is 

unclear whether (and under what conditions) learning is facilitated by blending past and present 

representational states. By quantitatively addressing this question, we can better understand how 

learning can proceed in neural circuits with unavoidable correlation in their dynamics. We focused on 

computational consequences of leaky integrator and boundary-resetting mechanisms for category-

learning, in terms of the speed and efficiency of learning. Our hypothesis was that networks equipped 

with two brain-inspired mechanisms — local linear recurrence and boundary-resetting — could 

exploit temporal autocorrelation in data for more efficient category-learning. 
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2.2. Methods 

We built neural networks with and without two brain-inspired constrains. 

2.2.1. Brain-Inspired Constraints 

Leaky memory (local linear recurrence): We added leaky memory to the internal representations 

(hidden units) by linearly mixing them across consecutive time points. Hidden unit activations were 

updated according to the following function:  

 𝐻(𝑛) =  𝛼 𝐻(𝑛 − 1) + (1 − 𝛼) 𝑅𝑒𝐿𝑈(𝑊𝐼𝐻𝐼(𝑛)) Eq. (1) 

where H(n) is the state of the hidden units for trial n, I(n) is the state of the input units for trial n, α is 

a leak parameter, WIH are the connections from the input layer to the hidden layer, and ReLU is a 

rectified linear activation. We set  = 0.5 in these experiments.  

Memory Gating: To reduce the interference between items from different categories in the leaky 

memory, we employed a gating mechanism to reset memory at the transitions between categories. 

Therefore, if sample n was drawn from a category other than the category of sample n−1, then we set 

 = 0 in Eq. (1) on that trial n (Figure 2-2 C).  

2.2.2. Manipulating Autocorrelation in Data  

We manipulated the amount of autocorrelation in data by varying the number of consecutive samples 

drawn from the same category. We began each training session by generating a random “category 

order”, which was a permutation of the numbers from 1 to N (e.g., the ordering in Figure 2-1 B). The 

same category order was used for all conditions in that training session.  
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To sample with minimum autocorrelation (maximum interleaving), we sampled exactly one exemplar 

from each category, before sampling from the next category in the category order (1 repeat) (Figure 

2-1 B). This condition is called “minimum autocorrelation” because all consecutive items were from 

different categories, and there were not more examples from a category until all other categories were 

sampled. We increased autocorrelation by increasing the number of consecutive samples drawn from 

each category (3 repeats and 5 repeats in Figure 2-1 B). Finally, we also used the standard random 

sampling method, in which items were sampled at random, without replacement, from the training set 

(Figure 2-1 B). The training set was identical across all conditions, as was the order in which samples 

were drawn from within a category (Figure 2-1 B).  

 

Figure 2-1. Temporal autocorrelation in real-world data and in neural network training.  
A) Top: temporally autocorrelated data in the real world. Bottom: randomly ordered data as the common practice in 
training neural networks. B) Manipulating autocorrelation levels in training data using the ordering of training samples. 
Colored rectangles indicate the amount of autocorrelation induced by repeating a category. 

 

2.2.3. Training Neural Networks  

Dataset. We tested MNIST, Fashion-MNIST, and synthetic datasets containing low category overlap 

(LeCun, Kavukcuoglu, and Farabet 2010; Xiao, Rasul, and Vollgraf 2017)  

Learning rule. For the learning rule, we used backpropagation, however the gradient computation 

did not account for the fact that the neurons were leaky. Therefore, the update rule in [leaky memory  + 
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reset] model is different from the common update rule in recurrent models (e.g., LSTM). LSTM uses 

backpropagation through time (BPTT), which is implausible for biological settings. In learning with 

BPTT, the same neurons must store and retrieve their entire activation history (Lillicrap et al. 2020). 

In contrast, in the [leaky memory + reset] model, neurons only use local information from their most 

recent history. Therefore, it is computationally much simpler because it does not require maintaining 

the whole history and computing the gradient relative to all that history.  

Objective function. We used backpropagation with both mean squared error (MSE) and cross-

entropy (CE) loss functions. The results reported here are using MSE, primarily for the ease of 

comparison with later reconstruction error measures in this manuscript. However, the same 

pattern was observed using CE loss. Also, it has been shown MSE loss provides comparable 

performance to commonly utilized classification models with CE loss function (Illing, Gerstner, and 

Brea 2019). To test incremental learning, we employed stochastic gradient descent (SGD), updating 

weights for each training sample. 

Optimization, initialization, and activation function. We tested the model both with and without 

RMSprop optimization, along with Xavier initialization. We applied ReLU to hidden units and 

Softmax or Sigmoid to the output units.  

Hyperparameters. For MNIST and Fashion-MNIST, we used a 3-layer fully connected network with 

(784, 392, 10) dimensions and a learning rate of 0.01. The learning rate was not tuned for a specific 

condition. We used the same learning rate across all conditions; only autocorrelation varied across 

conditions. To compensate for the potential advantage of a specific set of hyperparameters for a 

specific condition, we ran 5 runs, each with a different random weight initialization, and reported the 
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averaged results. When RMSprop was implemented, β1 and β2 were set to 0.9 and 0.99, respectively 

(Ruder 2016).  

2.3. Results 

We found that autocorrelated (blocked) training data slowed incremental learning in memoryless 

networks (Figure 2-2 A). Moreover, in these networks, minimum autocorrelation (maximum 

interleaving) yielded more efficient learning than random sampling (Figure 2-2 A). These 

observations generalized across all tested datasets and across MSE and CE loss, with and without 

RMSprop optimization.  

In contrast to the detrimental effects of autocorrelation in memoryless learners, 

autocorrelation in training data increased learning efficiency in learners with leaky memory, as shown 

in Figure 2-2 B. Moreover, adding a gating mechanism to the leaky memory units further increased 

their learning (Figure 2-2 C). In learners with leaky memory and gating, all levels of autocorrelation 

significantly outperformed random sampling and sampling with minimum autocorrelation (1 repeat) 

(Figure 2-2 C). These findings generalized across MNIST, Fashion-MNIST, and synthetic datasets. 
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Figure 2-2. Neural architectures for classifying temporally correlated data.  
A) Test error (MSE loss) and test accuracy in SGD training of a feedforward neural network (MNIST data) across 
different autocorrelation levels. B) The same as (A) but for a neural network with leaky memory in internal 
representations. C) The same as (A) and (B) but for a neural network with leaky memory and gating mechanisms. The 
performance of the feedforward neural network with random sampling (shown in red) is used as an identical reference in 
all 3 plots so it can be used for comparing performance across models. [Curves in this figure have been averaged over 5 
runs with different initialization and were further smoothed using a 100-iteration moving average.] 

 

Why does averaging current and prior states produce more efficient learning from sequentially 

correlated data streams?  

So far, we showed that when data sampled at a given moment shares category-relevant features with 

recent samples, learners with leaky memory were able to exploit this property for more efficient 

category learning. Importantly, the resetting mechanism prevented the mixing of hidden 

representations from samples of different categories, allowing the system to benefit most from the 
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correlation in data, while not suffering from between-category interference. However, it is still not 

clear why averaging current and prior states produces more efficient learning from autocorrelated data.  

To further investigate why combining consecutive states produces more efficient learning 

from autocorrelated data, we looked for situations in which combining consecutive states is not 

helpful. Our hypothesis was that averaging across consecutive members of the same category 

instantiates an assumption (an inductive bias) that consecutive samples from the data stream share 

task-relevant local features. When this assumption is satisfied, averaging (smoothing) across 

consecutive samples increases the proportion of variance in the hidden units, that is associated with 

category-diagnostic features. This hypothesis predicts that if consecutive items in the data stream do 

not share any local features, then the benefits of leaky memory will be eliminated. To test this 

hypothesis, we trained our model on a data structure in which the consecutive items do not share local 

features. 

 
 
 
Figure 2-3. Conditions under which recurrence and gating mechanisms impede category learning.  
Left: Synthesized data stream with no shared local features across consecutive samples. Feature i in sample (n) is 
orthogonal to feature i in sample (n+1). The numbers on the right side of each sample show the feature values. Right: 
Test error for feedforward memoryless model, model with linear recurrence, and model with linear recurrence and 
gating. 
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We found that when consecutive items in the data stream did not show autocorrelation, the 

advantage of maintaining a leaky memory in internal states was eliminated, and leaky memory, with or 

without boundary-reset, always learned more slowly than feedforward models (Figure 2-3). 

 
 
 

Figure 2-4. Change in classification accuracy when recurrent and feedforward models are tested on noisy data.  
Y-axis shows the percentage of reduction in classification accuracy when tested on noisy data. X-axis shows different 
models. Each dot shows the reduction in classification accuracy for each single run with a different random initialization. 

 

Additionally, biological systems might employ this simple linear recurrence because, while it 

does not impair learning from random data streams, it can reduce the noise in the presence of temporal 

autocorrelation (Figure 2-4). This theory was supported by our results showing that compared to the 

memoryless model, model with recurrence and gating was less susceptible to misclassify noisy data. 

Furthermore, linear recurrence can be used in biological systems to increase the accuracy of 

categorization decisions (reduce misclassification) when multiple members of the same category are 

observed sequentially (Figure 2-5). This would increase the certainty of the classification with each 

sample. 
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Figure 2-5. Percentage of misclassifications for each position within autocorrelated samples.  
Y-axis shows the percentage of misclassification. X-axis shows the position of the tested iteration in 10 repetitions of 
sampling from one category. (MNIST dataset) 

 

How does the model equipped with leaky memory and gating compare with a more flexible 

recurrent model trained with backpropagating gradients through time?  

Our leaky memory models were trained without propagating gradients backward through time. 

Backpropagation-through-time (BPTT) is the common learning rule implemented in training 

recurrent neural networks. However, it is not thought feasible for biological brains to BPTT because 

it would require neural circuits to have access to all of their history of their internal states (Lillicrap 

and Santoro 2019). Having said that, it is important to compare the performance of our model to the 

performance of a more flexible model that can directly learn from task-relevant temporal structure.  
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Figure 2-6. Effects of autocorrelation in data on learning in LSTM.  
Left) LSTM test error for different amounts of autocorrelation in training data. Right) LSTM test classification accuracy 
for different amounts of autocorrelation in training data. 

 

We used Long Short-Term Memory (LSTM) model, as a flexible recurrent model trained with 

BPTT. We then evaluated LSTM’s performance using the following criteria: (1) How efficiency of 

LSTM model is influenced when learning from temporally correlated data; (2) For a specific level of 

temporal correlation, which model, LSTM vs our [Leaky memory + boundary-reset] model, shows 

higher learning efficiency. (3) How do these two models perform when generalizing their learning to 

a sequence of samples different from what they have been trained on. 

 

Figure 2-7. Comparing LSTM to models with and without leaky memory and memory gating mechanisms.  
Left) Test error for classification with autocorrelation level equal to 5-repetitions (5 consecutive sampling) of each 
category. Right) Test error for classification with autocorrelation level equal to 10-repetitions of each category. In both 
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plots, we also show [no-memory with 1-repetition], that is “minimum autocorrelation” (the orange curve), to be used as 
a reference. 

 

For the first analysis, we found that, similar to our leaky memory model, the LSTM also 

benefited from autocorrelated data and will produce higher learning efficiency for higher amounts of 

correlation in data (Figure 2-6). In the second analysis, regarding comparing the performance of these 

two models on the same level of temporal correlation, as expected, we found that the LSTM would 

demonstrate better results (Figure 2-7). We expected this result because the LSTM has a much more 

flexible architecture and it is trained with BPTT, so the gradient updates are mathematically optimized 

for the task. For the third analysis, we found that the advantage of the LSTM trained with BPTT was 

not preserved when the models are tested out-of-domain (Figure 2-8). We expected this pattern 

because the LSTM trained with BPTT can be calibrated to the specific structure of the training data 

stream and therefore will be more susceptible to suffer from testing on new data sequences.  

 

Figure 2-8. Generalization of LSTM and the model with leaky memory and gating to data streams with 
different temporal structures.  
Left) Test error for LSTM and [leaky memory + reset] model, trained and tested on the same sequence of samples or on 
a different sequence of samples. Right) Test accuracy for LSTM and [leaky memory + reset] model, trained and tested 
on the same sequence of samples or on a different sequence of samples.  
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How does the averaging of current and prior activation states (leaky memory) compare to the 

averaging of gradients (mini-batching)? 

The linear recurrence in our leaky memory models effectively generates a weighted average of 

activations over time. Mini-batching, on the other hand, averages gradients over time (Li et al. 2014). 

In mini-batching, instead of updating the weights after n single training samples (n updates for n 

samples), the weights are updated once for each batch of n sample (1 update for n samples). This 

technique enhances the computational efficiency of training a deep learning model as it reduces the 

total number of weight update computations.  

Leaky memory and mini-batching mechanisms differ in at least two ways. First, implementing 

leaky-memory and mini-batching affect performance in different ways as a function of the amount of 

category repetition (autocorrelation in data) (Figure 2-9). We found that mini-batching with varying 

batch sizes and high or low autocorrelation in the data yielded similar accuracy levels. In contrast, the 

leaky memory model benefited more from higher levels of autocorrelation in data. Second, the effects 

of leaky-memory on learning performance can be reversed (switching from improved to worsened 

performance) when the training data within a category contain non-overlapping features (Figure 2-3). 

Though we have not tested this directly, an analogous effect seems unlikely for mini-batching. 

Altogether, leaky memory and mini-batching serve different purposes. Mini-batching is more efficient 

when the goal is to minimize the number of weight updates, regardless of the number of training 

samples. However, if there is a limited number of training samples and they are temporally 

autocorrelated, then leaky memory may produce a higher accuracy by exploiting the temporal 

correlation in the data. 
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Figure 2-9. Comparing the leaky memory approach against mini-batching.    
Mini-batching and the model with memory and gating models were affected in a qualitatively different manner by 
increasing the number of category repetitions. Left) Test error and test accuracy of mini-batch training on MNIST data. 
Right) Test error and test accuracy of the model with leaky memory and gating on MNIST data. Both models had the 
dimension of (784, 392, 10), learning rate of 0.01, and the optimization method of SGD.  

 
 
2.4. Discussion and Conclusions 

In this Chapter, we examined the efficacy of two brain-inspired mechanisms for incremental learning 

from temporally structured data. These mechanisms were motivated by the fact that (i) our brain 

dynamics appear to blur information over time, as there is ubiquitous autocorrelation in cortical 

dynamics, while (ii) neural circuits’ sometimes shift their state suddenly at “event boundaries”, and 

this appears to be associated with “resetting” of context representations. Therefore, we introduced 



 43 

temporal integration into our models via the leaky memory mechanism and we introduced temporal 

separation via a memory gating mechanism. We hypothesized that, if there is a slowly-varying temporal 

structure in real-world training data (Dong and Atick 1995), then these leaky memory and memory 

gating mechanisms would enable neural networks to exploit temporal autocorrelation in real-world 

information streams, without using backpropagation through time (BPTT).   

We found that, when training data were temporally autocorrelated, this slowed category 

learning in feedforward neural networks, but it accelerated learning in systems with leaky memory 

(Figure 2-2). Moreover, adding a simple memory gating mechanism to the leaky memory networks 

enabled them to flexibly adapt to the autocorrelation level, so that they could benefit from repeating 

structure while not suffering from the interference of unrelated prior information.  

While prior work has focused on the implications of slow neural dynamics for online 

comprehension (Uri Hasson, Chen, and Honey 2015) as well as working memory and decision making 

(Soltani et al. 2021), here we emphasized the implications of slow intrinsic dynamics for learning. At 

first glance, the presence of ubiquitous autocorrelation presents a problem for learning representations 

of individual items in the world: the information about one stimulus is mixed with information about 

stimuli that came before, and it is unclear how to resolve this interference without propagating 

gradients through time. However, here we demonstrated a beneficial effect: when the properties of 

the training data themselves are autocorrelated in time, then an intrinsic autocorrelation in neural 

dynamics can provide an inductive bias which accelerates learning. Moreover, some of the unwanted 

interference between unrelated items can be reduced if neural circuits are additionally equipped with 

a resetting mechanism.  
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We highlight two main directions for future extension of these results. First, it would be 

interesting to examine the efficacy of leaky memory and gating mechanisms in more sophisticated 

category-learning architectures such as convolutional neural networks trained to perform video 

segmentation (Wang and Hu 2021). Second, future work should test whether these results generalize 

to larger architectures and more realistic datasets, and should include a broader search of the 

hyperparameter space. We expect that the present results do have some generality, because we used 

simple architectures, made few domain-specific assumptions, and demonstrated the phenomena 

across multiple datasets. We expect the method to work best for datasets in which important or 

diagnostic data features persist over consecutive samples.  

In sum, in Chapter 2, we identified simple brain-inspired mechanisms which enabled neural 

networks to learn categories more efficiently when the training data are temporally correlated, and to 

do so without propagating gradients in time.  
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Chapter 3: Effects of Temporal Integration and Separation on 

Learning Multi-Timescale Representations 

 
 
3.1. Background and Motivation 

Our results from Chapter 2 indicate that brain-like integration mechanism accompanied by separation 

through boundary-resetting can enable a neural network to learn more rapidly from temporally 

correlated data. However, in the real world, we may need to learn from data with multiple levels of 

autocorrelation (Dong and Atick 1995; O’Doherty and Cusack 2022). For instance, when having a 

face-to-face conversation: the features around a person’s mouth change quickly, while their face’s 

outline changes more slowly (Figure 3-1 A). Moreover, there are no pre-defined labels to support the 

learning of representations in this setting. What are the consequences of learning representations from 

information with multiple timescales? How can a learning mechanism with brain-like architectural 

constraints exploit multiple timescales of data to learn multi-timescale representations? 

Evidence from research in cortical circuits suggests that our neural processes can integrate 

information at multiple time-scales (Bernacchia et al. 2011; Ulanovsky et al. 2004; Honey et al. 2012; 

Murray et al. 2014; Bright et al. 2020). Circuits in the sensory cortex exhibit rapid state-shifts, and they 

do so more frequently than circuits in the higher-order association cortex (DuBrow and Davachi 2016; 

Chien and Honey 2020). Assuming that these state-shifts reflect information-separation through 

boundary-resetting processes, how does the frequency of resetting affect the representations that are 

learned by each circuit?  
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We propose that temporal integration mechanisms augmented by memory-gating ability may 

be an ingredient of how neural circuits can separately represent fast- and slow-changing features in its 

input. Additionally, we proposed that these mechanisms can work even in setting such as an everyday 

conversation, where there are no pre-defined category labels, and representations must be learned 

without supervision. 

In this Chapter, we use the same brain-inspired integration and separation mechanisms that 

was used in Chapter 2: leaky memory and memory gating (boundary-resetting). However, instead of 

focusing on the efficacy of category learning, we investigate how the representations that are learned 

(without supervision) are altered when boundary-resetting occurs more or less frequently. In 

particular, in this Chapter, we test the hypothesis that more infrequently resetting circuits will come 

to learn representations of more slowly varying features of the sensory environment. This hypothesis 

was informally proposed by Honey et al. (Christopher J. Honey, Ehren L. Newman 2017), but has not 

been quantitatively tested. 

 

3.1.1. Research Questions 

It remains unclear how neural circuits (without employing BPTT) can separately represent quickly 

changing features (e.g., a speaking mouth) and slowly changing feature (e.g., head position), when 

input data vary on both fast and slow timescales. In this project we addressed the following questions: 

• When a neural network learns to represent features of multi-scale training data, how are these 

represented altered when the neural networks are equipped with brain-inspired integration and 

multiscale boundary-resetting mechanisms?  
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• Will the subsets of a neural network that reset less frequently come to represent slow-varying 

features of the data? 

Significance 

Answering these questions would improve our understanding of how architectural constraints in 

neural circuits may bias the nature of their internal representations, when learning from information 

with multiple timescales. We hypothesized that neural networks equipped with multi-scale (i.e., fast 

and slow) leaky memory and boundary-resetting could exploit multiscale autocorrelation in data to 

learn more “meaningful” representations, by separating their representations of structures that vary 

on fast and slow timescales. 

 
3.2. Methods 

3.2.1. Multi-Timescale Autocorrelation in Training Data  

Dataset. To test the ability of our networks to learn temporal representations, we synthesized 

simplified training datasets in which we could control the temporal autocorrelation structure. The 

input to the model at each time point consisted of 3, and each subcomponent had two elements. Each 

subcomponent was generated to express a different level of autocorrelation over time: for example, 

subcomponents changed feature-category every 1, 3, and 5 iterations, respectively (Figure 3-1 B). The 

individual features sampled at each time were generated as the sum of (i) an underlying binary state 

variable (which would switch every 1, 3 or 5 iterations for “fast”, “medium” and “slow” scales 

respectively) and (ii) uniformly distributed noise. As a result, the model was provided with features 

that varied at 3 timescales: fast, medium, and slow (Figure 3-1 B).  
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3.2.2. Autoencoder Architectures with Brain-Inspired Constraints  

Brain-inspired constraints. We used the same brain-inspired mechanisms outline in Chapter 2, here, 

for unsupervised learning models: local linear recurrence and gating mechanisms.  

 

Figure 3-1. Unsupervised learning from data with autocorrelation on multiple timescales.  
A) Example of multiple levels of autocorrelation in samples from the real world: the mouth shape changes more quickly 
than face-shape, and so has shorter autocorrelation time. B) Multiple levels of autocorrelation in synthesized data: first 2 
elements change every item, representing the fast-changing feature; second two elements change every 3 items, 
representing a medium-changing feature; and third two elements change every 5 items, representing a slow-changing 
feature. X-axis shows time, each 6-by-1 item is one sample. C) 5 Different AE models: feedforward, uniform leaky 
memory (LM), multiscale LM, uniform LM with multiscale gating, and multiscale LM with multiscale gating. α1, α2, and 
α3 indicate the memory coefficient in the hidden representations (see Eq. 1).  

 

Local Linear Recurrence (leaky memory): We implemented two types of linear recurrence: 

uniform and multiscale. In uniform linear recurrence, the time constant was constant across the nodes 

in the hidden layer. In multiscale linear recurrence, we varied the time constants across the nodes in 

the hidden layer, gradually increasing  from node 1 to node 3 (Figure 3-1 C).  
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Multiscale Memory Gating: We used a multi-timescale gating mechanism that was sensitive to the 

three levels of temporal structure in the input stream. For each timescale in the input, the gating 

mechanism would use information from current and previous input to decide to reset memory when 

the change passed a threshold (see Eq. 2) (Chien and Honey 2020). Therefore, for the data stream in 

Figure 3-1 B, the internal representation in node 1 reset when there was a shift in the fast-changing 

property of the input stream; the internal representation in node 2 reset when there was a shift in the 

medium-changing property of the input stream; and, the internal representation in node 3 reset when 

there was a shift in the slow-changing property of the input stream.  

Architectures. We used the same brain-inspired mechanisms for unsupervised learning models: leaky 

memory and gating mechanisms. To evaluate the effectiveness of the added mechanisms, we 

compared 5 types of autoencoder (AE) models (See Figure 3-1 C): i) Feedforward AE; ii) AE with 

leaky memory in internal representations; iii) AE with multi-scale leaky memory in internal 

representations, inspired by evidence showing that levels of processing in the brain can integrate 

information at different time-scales (Honey et al. 2012; Murray et al. 2014; Bright et al. 2020) and that 

multiple time-scales are present even within a single circuit (Bernacchia et al. 2011; Ulanovsky et al. 

2004) ; iv) AE with leaky memory in internal representations and boundary-sensitive gating, motivated 

by the evidence showing that processing in cortical circuits are sensitive to event-boundaries and these 

boundaries can shift learned representations (DuBrow and Davachi 2016; Chien and Honey 2020); 

and (v) AE with multi-scale leaky memory in internal representations and boundary-sensitive gating. 

We used a multi-timescale gating mechanism that was sensitive to multi-timescale changes in the input 

stream. For each timescale in the input, the gating mechanism would use information from current 

and previous input to decide to reset memory when the change passed a threshold based on the Eq. 

(2). Here, we used the comparison between the difference and the average of the following input items 
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as the resetting criterion, but other sorts of computations are also possible. Our implemented method 

is consistent with neurophysiological studies that demonstrate a sudden shift in memory 

representations in the face of a surprise in the input stimuli (DuBrow and Davachi 2016; Chien and 

Honey 2020). This bio-plausible boundary-detection mechanism resets the memory when the 

difference between the consecutive inputs is larger than their average. For instance, the memory of 

the hidden node with long memory will be reset based on the amount of change in the slow-changing 

feature of the input. In Eq.(2), 𝑡  represents the iteration number during training, 𝐼𝑡 is the current 

state, and 𝐼𝑡−1 is the previous state. 

 
| 𝐼𝑡 −  𝐼𝑡−1| >  | (𝐼𝑡 + 𝐼𝑡−1)/2 | 

Eq. (2) 

 

3.2.3. Training Autoencoder Networks 

Learning algorithm, optimization, and initialization. Similar to the classification task studied in 

Chapter 2, we used backpropagation to train the networks, but again we ensured that the gradient 

computation did not account for the fact that the neurons were leaky. In other words, we trained the 

leaky-memory networks as if they were feedforward networks. We used MSE loss, both with and 

without RMSprop optimization method, and Xavier initialization (Tieleman and Hinton 2012; Glorot 

and Bengio 2010). We applied ReLU and Sigmoid as activation functions for hidden and output units, 

respectively.  

Hyperparameters. The networks were 3-layer, fully connected autoencoders with (6, 3, 6) dimension. 

Learning rate was 0.005. In cases where RMSprop was implemented, the beta-1 and beta-2 were set 

to 0.9 and 0.99. For linear recurrence in internal representations, we tested a range of memory 

coefficients ( in Eq. 1). For uniform linear recurrence, we tested 3 sets of memory coefficients: 
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model1: 𝛼1 = 𝛼2 = 𝛼3 = 0.3; model2: 𝛼1 = 𝛼2 = 𝛼3 = 0.6; model3: 𝛼1 = 𝛼2 = 𝛼3 = 0.9. For 

multiscale linear recurrence, we tested the following combination of memory coefficients: Model 1: 

𝛼1 = 0, 𝛼2 = 0.3, 𝛼3 = 0.6; Model 2: 𝛼1 =0, 𝛼2 =0.3, 𝛼3 =0.9; Model 3: 𝛼1 =0, 𝛼2 =0.6, 𝛼3 =0.9.  

3.2.4. Evaluation Methods for Autoencoder Networks  

 

Measure of multiscale representation-learning. We measured the network’s ability to “un-mix” 

the timescales of its input. By un-mixing, we mean learning representations that selectively track 

distinct latent sources that generated features within each training sample. In particular, we tested 

whether different nodes in the internal representations of the network would track different temporal 

features of the data stream: one node would track the fast-changing features of the data, a second 

node would track the medium-changing features of the data, and the third node would track the slow-

changing features of the data.  

To this end, using squared of Pearson correlation, we measured the similarity between the 

internal representations (node 1, node 2, node 3) and the data features (fast, medium, and slowly 

changing) (Figure 3-3 A). In the models with multi-timescale linear recurrence, node 1 has no memory, 

node 2 has short memory, and node 3 has long memory. For AE models that do not have a multiscale 

memory, when referring to no-memory, short-memory, and long-memory nodes, we are referring to 

the hidden nodes in those positions (Figure 3-3 A).  

In the similarity matrix, the diagonal elements show the similarity of hidden representation to 

their corresponding timescale of data feature (similarity of fast-feature and no-memory hidden node, 

similarity of medium-feature and shot-memory hidden node, and similarity of slow-feature and long-

memory node). Off-diagonal elements of similarity matrix show the similarity of hidden representation 
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to their non-matching timescale of data feature (e.g., similarity of fast-feature and long-memory hidden 

node) (Figure 3-3 A and B).  

We then quantified the “timescale-selectivity” — e.g., whether the slow-changing feature was 

more correlated with long-memory node than other nodes (no-memory and short-memory nodes) 

(Figure 3-3 B). We therefore calculated timescale-selectivity as the average of the difference between 

the on-diagonal and the off-diagonal elements of the similarity matrix (Figure 3-3 B).  

Measure of learning efficiency. Learning efficiency was measured using the reconstruction error of 

the test data, computed as the MSE across all 3 subcomponents of each data sample.  

 
3.3. Results 

We first confirmed that all the AE models could learn to reconstruct the input. The most efficient 

architectures (architectures with lowest test error) were the networks with recurrence and multiscale 

gating AE, and the feedforward memoryless AE (Figure 3-2). 
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Figure 3-2. Reconstruction test error (MSE loss, for individual items) during training across 5 different AE 
models.  
All the curves in this plot have been averaged over 50 runs with different random initialization. (The [LM + reset] 
model, shown in green, mostly overlaps with [multiscale LM + reset] model.) 

 

Networks equipped with both recurrence and multiscale gating could successfully un-mix the 

data, learning separated representations for the quickly and slowly changing features within the data 

stream (See “AE with Memory and Multiscale Gating” in Figure 3-3 C). The individual hidden state 

units in these AE models were selectively more correlated with their corresponding data features (e.g., 

the slow-changing feature was more correlated with the long-memory node than with the other nodes; 

Figure 3-3 C). These findings generalized across different synthesized datasets, different learning 

rates, and different recurrence (memory) coefficients.  
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Figure 3-3. Quantifying the similarity between internal representations and data features that vary on fast, 
medium, and slow timescales.  
A) Illustration of which network-units and which training-data elements contribute to each element of the similarity 
matrix. For instance, the top-left element of the matrix shows the similarity between the fast feature of the data and the 
no-memory internal representation (node 1). B) Illustration of how timescale selectivity is computed. C) Similarity 
matrices for 3 groups of models: feedforward AE, AE with memory, and AE with memory and multiscale gating. D) 
Timescale selectivity and final test error for different AE models. Blue bars show the timescale selectivity. Each bar 
shows the 95% confidence interval for results from 40 runs with different random initializations. Red dots show the 
mean final test error across 40 runs. The memory coefficients of the models shown in (C) and (D) are as follows: leaky 
memory: 0.6; Multiscale LM: 0, 0.3, 0.9; LM & multiscale gating: 0.6; Multiscale LM and multiscale gating: 0, 0.3, 0.9.  
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We found that models with recurrence and multiscale gating showed significantly higher 

timescale selectivity (Figure 3-3 D). Overall, the AE models with recurrence showed higher loss 

compared to feedforward AE. However, in the models that had both recurrence and multiscale gating, 

the small increase in the loss was accompanied by a significant increase in timescale-selectivity scores 

(Figure 3-3 D).  

Why might recurrence and gating mechanisms benefit the learning of timescale-separated 

representations?  

The two autoencoder models that had both recurrence and multiscale gating mechanisms were most 

successful in learning internal representations that tracked distinct timescales of the input. Slowly (or 

quickly) varying features were extracted by slowly (or quickly) varying subsets of the network, 

analogous to a matched filter (see also (Mozer et al. 1992)). Features that change on different 

timescales may correspond to different levels of structure in the world (Wiskott and Sejnowski 2002). 

Thus, by adding recurrence and multiscale gating to a simple feedforward AE model, we equipped it 

with an ability to separate different levels of structure in the environment. Moreover, because intrinsic 

dynamics vary on multiple scales in the human brain (Honey et al. 2012; S. M. Smith et al. 2013; Raut, 

Snyder, and Raichle 2020; Murray et al. 2014) this implies that slowly-varying brain circuits may be 

biased to extract slowly-varying structure from the world (Honey, Newman, and Schapiro 2017).  

Why did the feedforward (memoryless) model produce slightly lower reconstruction error 

than models with recurrence?  

There is a cost to using AE models with recurrence (rather than feedforward AE models) to 

reconstruct data that varies on multiple timescales: the overall test error increases slightly. This most 

likely occurs because slowly changing internal states are ineffective for reconstructing quickly changing 
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features. In other words, we attribute this (small) additional error to be problem of reconstructing 

input from an internal representation that is mismatched to the data. Consistent with this 

interpretation, we found that if a model’s "slow" hidden units (i.e., its medium and long memory units) 

were correlated with the fast-changing features in the training data, the model’s per-feature error was 

worse (Figure 3-4). This slight increase in reconstruction error is, however, accompanied by a 

significant benefit: learning more temporally interpretable, un-mixed representations of a multi-scale 

data stream.  

 

Figure 3-4. Relationship between the correlation of hidden nodes with fast output, and the reconstruction error 
for fast output.  
Top) [Multiscale leaky memory] model: y-axis shows the difference between test reconstruction error for fast feature 
(e.g. error of reconstructing fast feature in [multiscale leaky memory] model - error of reconstructing fast feature in [no 
memory] model); x-axis in the left plot shows the correlation of fast output with no-memory hidden nodes, x-axis in the 
middle plot shows the correlation of fast output with short-memory hidden nodes, x-axis in the right plot shows the 
correlation of fast output with long-memory hidden nodes. Bottom) Plots show similar results shown at the top row for 
[multiscale leaky memory + reset] model. 
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How does the magnitude of memory coefficients interact with efficiency and timescale 

selectivity of the AE models?  

Although equipping AE models with recurrence and gating enabled them to learn temporally 

interpretable representations, it also slightly increased their overall test error (Figure 3-2, Figure 3-3 

D). Indeed, in all AE models, the greater the memory coefficients (i.e., linear self-recurrence), the 

greater the test error (Figure 3-5 B). Especially when models lacked memory gating, the higher 

memory coefficients were associated with inferior reconstruction accuracy and reduced timescale 

selectivity and lower efficiency (higher test error). But when the AE models had multiscale gating in 

addition to recurrence, there was only a slight reduction in learning efficiency, and this was 

accompanied by much greater timescale selectivity (Figure 3-5 B). Thus, in practical settings, the 

memory coefficients may be adjusted to trade off timescale selectivity (when we want to learn 

separated representations for distinct sources) and test error (when we wish to optimize the accuracy 

of reconstruction of momentary input).  
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Figure 3-5. Timescale selectivity and final test error for different AE models.  
A) Results of similarity matrices for 3 groups of models: feedforward AE, AE with memory, and AE with memory and 
multiscale gating. Each similarity matrix shows the similarity pattern for a model with a specific set of memory 
coefficients shown above it. B) The colored bars show the timescale selectivity. Error bars show the 95% confidence 
interval for 40 runs with different ransom initializations. The gray dots show the average of final test error for 40 runs. 
For each group of models (e.g., uniform memory, etc.), we tested 3 models with 3 sets of memory coefficients. From left 
to right, memory coefficients increase gradually. For instance, for uniform memory, memory coeffects of all the internal 
nodes in the models left model were 0.3, for the middle model were 0.6, and for the right model were 0.9.  
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3.4. Discussion and Conclusions 

In this Chapter, we explored the efficacy of brain-inspired mechanisms to enhance unsupervised 

learning from data streams that contain both fast and slow temporal structure. Inspired by the 

observation that different areas of cortex display different rate of state-shifts, we implemented a 

multiscale memory resetting mechanism: circuits in sensory cortex display frequent, rapid state-shifts, 

which occur more often than those in the higher-order association cortex. We then asked whether 

more infrequently resetting circuits would be biased to represent the more slow-varying features of 

the multi-timescale data.  

We found that AE models equipped with recurrence and multi-timescale gating could 

successfully learn to reconstruct the input, and, moreover, that they learned representations which 

selectively separated multiple timescales of the data stream (Figure 3-3). Specifically, we found that 

when individual nodes in the network were imbued with slow dynamics (and infrequent resetting), 

these nodes became more correlated with data features that varied slowly across training examples. If 

distinct timescales in the data stream reflect distinct data generators, then these neural network nodes 

can be understood as "un-mixed" representations may provide a more "meaningful" description of 

the input data (Mitchell 2020; Mahto et al. 2020; Jain et al. 2020). 

The local linear recurrent networks we tested exhibited more interpretable internal 

representations, even though they were trained with a learning rule that did not employ any temporal 

information. Specifically, all networks were trained incrementally using backpropagation with a loss 

function that only depended on the immediate state of the network. Architectures with recurrence 

and gating can thus exploit temporal structure in a way that is computationally simpler and more 

biologically plausible than backpropagation through time (Lillicrap et al. 2020; Ilya Sutskever 2013). 
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With respect to biological plausibility, we note that the linear-recurrence-plus-gating system worked 

well for autoencoder, for which there are simple activation-based learning rules that do not require 

the propagation of partial derivatives (Lee et al. 2015). Therefore, it is possible that our model could 

be extended to a setting without any backpropagation at all. 

On the computational side, we emphasize that the gradients computed for the recurrent 

networks were, in a sense "inaccurate", because the update rule was unaware of the recurrent leak 

connections. Nonetheless, the overall classification accuracy in the recurrent networks was higher than 

in feedforward nets, for which the gradients should be more accurate. This indicates that training a 

recurrent neural network as if it is a feedforward network can be effective, and that backpropagation 

through time may not always be necessary, depending on the dataset. 

We propose two main directions for future extension of these results. First, our autoencoder 

models were trained to reconstruct the present stimuli. Future work could extend our autoencoder 

architecture to a predictive architecture so that the model would predict the next stimulus rather than 

the present one (Arora and Cai 2021). Second, it would be interesting to investigate the broader 

consequences of learning in the context of recurrent internal states: for example, human internal 

representations of natural sensory input sequences appear to be smooth in time, in contrast to the 

representations of most feedforward nets (Hénaff, Goris, and Simoncelli 2019). Training neural 

networks with smooth data and an internal leaky memory could potentially reduce the discrepancy 

between the representational spaces acquired by artificial neural networks and the “smooth” 

representational spaces learned by humans.   
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In sum, in this Chapter, we identified simple mechanisms which enabled neural networks to 

generate internal representations that separated distinct timescales of the data, without propagating 

gradients in time.  
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Chapter 4: Determining How Human Language Processing 

is Affected by Interruptions 

 
4.1. Background and Motivations 

In Chapters 2 and 3, we explored learning biologically-plausible integration mechanisms in neural 

networks, comparing their effectiveness when it comes to incremental learning from a sequence of 

examples with different levels of autocorrelation. In this Chapter 4 and the next, we shift our focus 

away from learning, and toward online comprehension and prediction of linguistic sequences. 

Specifically, we characterize the behavior of humans and neural language models when processing 

linguistic data with interrupting incongruencies.  

Experiencing moments of incongruencies while performing a task is an inevitable part of our 

daily experience. For instance, while performing a primary task of reading a research article, we may 

be distracted by an email notification and quickly read the email, before returning to our primary task. 

Here, we refer to these incongruent portions of the temporal stream as “interruptions”.  

As noted in the Introduction, the literature suggests that when humans encounter 

interruptions while reading, they will be slower when resuming the reading after interruptions, and 

this resumption lag is longer for longer interruptions (Foroughi et al. 2015; Foroughi, Barragán, and 

Boehm-Davis 2016; Glanzer, Fischer, and Dorfman 1984). Additionally, some studies have also 

shown that interruptions can disrupt participants’ deeper textual understanding while leaving their 

superficial comprehension and memory intact (Foroughi et al. 2015). However, some studies posit 

that interruptions do not disrupt our comprehension due to LTWM capabilities of our cognitive 

processes (Ericsson and Kintsch 1995). Prior research also focused on the similarity of the 
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interruption to the primary task and concluded that if reading interrupting content that is similar to 

the content of the primary reading task, the disruption is more severe (Ledoux and Gordon 2006). 

Despite prior research, inconsistencies among the results make it difficult to draw connections 

between the findings of various studies. First, the empirical findings regarding the disruptive effects 

of interruptions are inconsistent because of the use of varying designs and interruption tasks, as well 

as different criteria for measuring them. Next, the proposed WM-based and LTWM-based models 

that were proposed to explain the observed behavioral data are quite abstract and do not necessarily 

lead to different predictions. Finally, it is still uncertain whether the disruption caused by having more 

similar content would also extend to the similarity of the cognitive processes involved in the main task 

and the interruptions. To address this, in this Chapter, we revisit the question of effects of 

interruptions on reading using various manipulations in one paradigm and a large sample of 

participants in each condition. 

4.1.1. Research Questions 

 

It remains unclear when reading a narrative: (i) how processing incongruencies with low or high 

similarity to the reading task (similarity in terms of cognitive processing and in terms of information 

content) modulates how humans process the narrative; (ii) how text processing is influenced after 

different types of incongruencies; (ii) how our subsequent memory of information is affected by 

different types of incongruencies. Hence, in this project, we set out to address the following three 

research questions. 

While reading a narrative, 

i. How does encountering different types of interruptions influence our ongoing processing? 
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ii. How does encountering different types of interruptions modulate our memory of pre-

interruption information? 

iii. How does encountering different types of interruptions modulate our memory of post-

interruption information? 

Significance 

Our goal is to characterize the kinds of interruptions that produce larger and smaller effects on (1) 

ongoing processing difficulty in reading and on (2) subsequent memory. Thus, in this Chapter, using 

behavioral experiments, (1) we operationalize processing difficulty using reading times and 

comprehension metrics to probe the effects of these interruptions on the ongoing processing of the 

information; (2) we operationalize subsequent memory using delayed recognition memory of 

information that precede and follow different types of interruptions. 

In the short term, such data can be practically useful by providing some general guidelines for 

minimizing the deleterious effects of interruption in real-world settings. In the longer term, these data, 

all collected within a common paradigm, may constrain more concrete process-level models that 

explicitly characterize WM and LTM updating and interference processes happening at each moment 

during discursive reading (Budiu and Anderson 2004). 

 
4.2. Research Design and Methods 

4.2.1. Primary Task 

For the main stimuli, we used a story because it has rich temporal properties and can have short-

persistent and long-persistent features. “So Much Water So Close to Home” is an interesting short 

story (~2300 words), by Raymond Carver, detailing the tensions between a woman and her husband, 
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who she suspects may have committed a murder. The reading will be self-paced. Participants will read 

the, story sentence by sentence, with each individual sentence presented centrally. When participants 

press a key to proceed, the current sentence is erased from the screen and replaced by the next.  

4.2.2. Experimental Conditions 

When reading the narrative sentence by sentence, participants occasionally encountered interruption 

trials during which they are asked to perform a secondary task. In a between-subjects design, each 

participant saw only one type of interruption, and that type of interruption depended on the 

experimental condition to which they are assigned (Figure 4-1). 

 

 

Figure 4-1. Schematic of the information flow in the interrupted reading task. 
Top: schematic of encountering interruptions during reading a narrative. Bottom: types of interruptions that we use in 
this experiment. 
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In this experiment, we manipulated 2 independent variables: the type of interruptions similarity 

(similarity of cognitive processing and similarity of content) and the level of similarity (low or high). We also had 

three additional control conditions. First, there was a Pause interruption condition in which the 

interruptions were not filled with a secondary task, but participants simply waited. Second, we also 

tested a condition in which participants were not given any information about encountering 

interruptions. We refer to this condition as un-signaled interruptions. The un-signaled interruption 

condition can also be considered as one of the sub-conditions that tested the effects of similarity of 

content. Third, there was a continuous (no-interruption) condition in which participants read the 

entire story uninterrupted, providing a baseline for the reading time and memory performance in the 

absence of interruption (Figure 4-2).  

 

Figure 4-2. Conditions that we study in the behavioral experiment.  
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Interruption Duration and Frequency.  

Duration. All interruption conditions testing the similarity of cognitive processes had a fixed duration 

and were between 18 to 20 sec long. Interruption conditions testing the effects of similarity of content 

were either timed (had a fixed duration, 18-20 sec long), or varied depending on participants’ reading 

speed (interruptions involving self-paced reading). 

Frequency. The interruption trials appeared after reading every 11 to 13 sentences of the story. Each 

participant saw a total of 17 interruptions. The location of these 17 interruptions within the narrative 

was shared across all participants. 

4.2.2.1. Interruptions with Low/High Similarity of Cognitive Processing  

Participants were randomly assigned to one of the cognitive-similarity interruption conditions and 

each only experienced one type of interruption. This led to a between-subjects design. 

Geometry interruptions (Low similarity of cognitive processing). Participants were presented 

with an image (an example shown in Figure 4-3) and asked to count the number of triangles or 

squares it contained. They were provided 18 seconds to complete the task. Remaining time was 

indicated by a horizontal time-bar that shrank in size. After 18 seconds, a two-alternative forced choice 

(2 AFC) question appeared, asking if the image had exactly X number of the asked shape. Participants 

had to choose between 'Yes' or 'No'. Following a 300 ms delay, they were presented with the next 

sentence from the story, and then could resume their reading. 
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Figure 4-3. Schematic of a Geometry interruption trial.  
A) An example of a Geometry trial as it appears in the experiment. B) An example 2 AFC question that follows the 
interruption trial. C) Demonstration of the correct way of answering the interruption question. 

 

Scenario interruptions (High similarity of cognitive processing). For Scenario interruptions, 

participants had 18 seconds (shown by the same horizontal time bar) to read a brief scenario (~2-4 

sentences) sentence by sentence. Next, they were asked to answer a question about that scenario. 

These scenarios and questions were chosen from Dodell-Feder et al. (Dodell-Feder et al. 2011), a 

study in which these scenarios were used to localize brain regions involved in theory of mind. 

We divided the Scenario conditions into two sub-conditions: the first sub-condition tested 

situational comprehension with a 2AFC question, and the second subsection tested verbal working 

memory with a 2AFC question. Examples of these two types of question are shown below. These two 

sub-conditions enabled us to ask how different kinds of engagement with the same interrupting 

material (i.e., situational comprehension versus surface-level reading of the same text) may alter 

memory and speed in the primary reading task. 
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An example scenario:  

“When Lisa left Jacob, he was deep asleep on the beach. A few minutes later a wave woke him. Seeing 

Lisa was gone, Jacob decided to go swimming.” 

I. An example comprehension memory question 

o In this subsection participants were asked a situational or a theory-of-mind question 

about the scenario. 

▪ Example for situational question: Did Lisa Wake Jacob?  

▪ Example for theory-of-mind question: Does Lisa now believe that Jacob is 

awake?  

II. An example verbal working memory question 

o In this subsection participants were asked a verbatim question about the scenario. 

▪ Example for verbatim question: In the preceding segment, did you see the 

word “surfing”? 

Pause interruptions (Control). Participants in the Pause interruption trial were instructed to wait 

for ~20 seconds, as indicated by a horizontal time bar that shrinks over time. Once the time bar 

reached zero, a “Next” button appeared on the screen. The participants clicked this button to resume 

reading the story. This button click was implemented so that a motor response was required at the 

end of each Pause interruption trial, similar to the Geometry and Memory interruptions. Additionally, 

to ensure that the total interruption length in the Pause interruptions was the same as Geometry and 

Memory interruptions, the fixed duration of Pause interruptions was slightly (~2 s) longer than those 

of Geometry and Memory interruptions (18 s). This adjustment was introduced because, after Pause 
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interruptions, participants only had to click a Next button, while after Geometry and Memory 

interruptions, they had to answer a 2AFC question. 

Experiment Instructions 

Participants were told to read a story sentence by sentence. They were also informed about the 

Geometry, Memory, or Pause trials that they would encounter during reading. As part of the 

instructions, they were shown a demonstration trial similar to the interruption task that would take 

place in the actual experiment. They were asked to make their best effort to answer the questions in 

the Geometry and Memory trials correctly. However, no explicit information was provided to 

participants regarding which task - the story or the intermediate trials - was the main task; they were 

instructed to pay attention to everything that they read and saw.  

4.2.2.2. Interruptions with Low/High Similarity of Content  

We employed a within-subject design in which each participant would randomly encounter both high-

similarity and low-similarity interruption trials while reading the primary narrative. For each 

participant, the positions of high- and low-similarity interruptions were randomly assigned such that 

they would see a combination of either 9 high-similarity and 8 low-similarity interruptions or 8 high-

similarity and 9 low-similarity interruptions. Then for each interruption position, the interrupting text 

was randomly selected from a pool of 5 possible options at that position.  

To identify interrupting text with low or high semantic similarity to the story, we randomly 

picked several unrelated sentences from the corpus. We then computed the semantic similarity 

between the interrupting text and the text from the story preceding the interruption. To calculate 

similarity scores, we generated embeddings of the interrupting text and the preceding text, and we 
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then calculated the cosine similarity score between the embeddings. To obtain text embeddings, we 

used the Universal Sentence Encoder (USE) (Cer et al. 2018). The implemented encoder was the 

Transformer USE model, which encodes sentences into embedding vectors.  

We created a pool of interpretation content such that for each of the 17 interruption-positions 

in the story, we had 5 semantically similar text and 5 semantically dissimilar text to choose from in the 

interruption pool. To create the interruption pool, the segments of interrupting text (~ 2-4 sentences) 

were chosen randomly from the Brown corpus, which contains many categories of text (e.g., fiction, 

scientific articles, books, and news articles, etc.). 

- Sample sentences from the main story:  

o “The others stirred the sand with their shoes, said they didn’t feel inclined that way. 

They pleaded fatigue, the late hour, the fact that the girl wasn’t going anywhere.” 

- A sample interruption content with low similarity to the preceding story sentences: 

o “Much of the available information comes not from the Federal government but from 

an exchange of experiences among states. Proposals State and local agencies in the 

vocational education field must be encouraged to adopt a wider outlook on future job 

opportunities.” 

- A sample interruption content with high similarity to the preceding story sentences: 

o “At last they concluded that the heavy, full feeling in their stomachs was due to lack 

of exercise. Walking was the remedy, they decided, but a deck full of chicken coops 

and pigpens was hardly suitable. Skipping was the alternative.” 

Although the main goal of this condition was to assess the influence of semantic similarity, we 

also wanted to know whether this effect was modulated by whether the interrupting material was (i) 
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timed (so that participants could not control its duration) and (ii) signaled (so that participants knew 

that they were about to encounter interrupting material). Therefore, independently of the other 

experimental factors, we divided the semantic-similarity interruption condition into three sub-

conditions: (1) timed interruptions; (2) self-paced signaled interruptions; and (3) self-paced un-signaled 

interruptions (control). Each participant was assigned to one of these three sub-conditions. 

Timed semantic interruptions. In timed semantic interruptions, participants had 18 seconds to read 

the interrupting text. The remained time was shown by a shrinking time bar. Once the duration was 

over, in 4 out of 17 interruptions, participants were asked to answer 2AFC questions about whether 

they saw a particular word in the interruption (verbal working memory question). The occasional 

verbatim questions were asked to ensure that participants read the interrupting content. In the rest of 

the interruptions (13 out of 17), at the end of the interruption duration (18 s) they would be presented 

with the rest of the story. 

Self-paced signaled semantic interruptions. In the self-paced signaled interruptions, participants 

read the interrupting text self-paced, one sentence at a time, similar to reading the rest of the story. 

To signal the participants about encountering an interruption trial, the interruption text was written in 

a different format (purple and italic) than the primary text (black). Identical to the timed semantic 

interruptions, 4 out of 17 interruptions were followed by a 2 AFC verbal working memory questions. 

Self-paced un-signaled semantic interruptions (Control). We also tested a self-paced un-signaled 

interrupted reading condition. In this condition, participants were not given any information about 

the story and the occasional unrelated text, so that it was possible they might now be aware that they 

were processing interrupting material at all. When presented with instructions for this task, they were 



 73 

simply asked to read some text, sentence by sentence, and alerted that their memory would later be 

tested on what they read. The story and the interruptions all were written in the same format (black). 

This condition enables us to separate out which interruption effects arise from the interruption 

trials being marked as a clearly distinct task. Moreover, the data from this condition are especially 

appropriate for comparison between human interruptions (this Chapter) and language model 

interruptions (Chapter 5). Since the language models we test in Chapter 5 are not provided with any 

meta-cognitive cues about task states or the occurrence of interruptions, the un-signaled interruption 

condition enables us to measure human reading times under conditions more like those faced by the 

language model, for which interruptions are also “un-signaled”. 

Experiment Instructions.  

The participants were told that they would read a story sentence by sentence. In the timed condition 

and the self-paced signaled condition, they were informed about encountering occasional unrelated 

text. They were told to read all the text - the main story and the occasional unrelated text - carefully 

as their memory would later be tested on everything they read. In the self-paced un-signaled 

interruptions condition, they were not given any information about the story and the occasional 

unrelated text. They were only instructed to read some text carefully because their memory would later 

be tested on everything they read. 

4.2.3. Dependent Variables 

We measured two main dependent variables: 1) reading time and 2) delayed recognition memory 

(Figure 4-4). Reading time was used to operationalize effects of interruptions on processing difficulty. 

Delayed recognition memory was used to operationalized effects of interruptions on memory 

encoding and consolidation. 



 74 

 
 
 

Figure 4-4. Schematic illustrating the two main dependent variables collected in this study.  
1) Resumption lag: we measured the change in the reading time for the first sentence following the interruptions relative 
to sentences preceding the interruptions. 2) We tested recognition memory regarding the verbal content of sentences in 
the story that immediately preceded or immediately followed the interruptions. 

 

Recognition memory was tested after participants had completed reading the entire story. On 

each memory trial, we showed a section from the story with one highlighted sentence. Within the 

highlighted sentence, a single word or short phrase was missing. Participants were given 4 option to 

select the word or phrase that they saw the in the actual story. The 4 options in the recognition memory 

test were balanced in piloting data to ensure that they were approximately exchangeable (i.e., they were 

equally likely to be chosen by a participant who had not read the story). 

- An example recognition memory question: 

“My husband eats with a good appetite. But I don’t think he’s really hungry. He chews, arms 

on the table, and stares at something across the room. He looks at me and looks away. He 

wipes his mouth on the napkin. He shrugs, and goes on eating. "What are you staring at me 
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for?" he says. "What is it?" he says and lays down his fork. "Was I staring?" I say, and shake 

my head. The telephone rings. "Don’t answer it" he says. "It might be your mother," I say. 

"Watch and see" he says. I pick up the receiver and listen. My husband ________________.” 

❑ stops eating 

❑ stops chewing 

❑ goes on eating 

❑ goes on chewing 

 
4.2.4. Participants 

We recruited participants online through the Prolific platform. Participants were 18 to 65 years old, 

native English speakers, and all located in United States. A total of 1176 participants were recruited 

across all conditions. Demographic data of our participants revealed that 526 identified as female, 624 

as male, and 26 as non-binary or with unknown gender. 

Exclusion criteria. To ensure that our participants remained attentive throughout the experiment, 

we excluded non-attentive participants by measuring their reading time in correlation to the length of 

the sentence. We assumed that if participants were attentively reading the story as instructed, there 

should be a positive correlation between their reading time and the length of the sentence. We 

excluded any participants who displayed a correlation less than 0.2 between their reading time and the 

sentence length, excluding sentences immediately following interruptions. The length of a sentence 

was measured as the number of characters it contained. 
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4.2.5. Statistical Analyses 

To investigate the statistical significance of the results, we used permutation test as described below.  

Testing whether the means of two conditions are different. The null hypothesis is that the data 

points in each condition are drawn from identical distributions, and therefore, the difference between 

their means is zero. For comparing the difference between two groups with n1 and n2 number of data 

points, we first calculated the true difference between the group means. We then combined the data 

points from both groups into a pool of all data points. We then repeated 10,000 sampling of n1 

examples from the pool without replacement. For each of 10,000 sampling, we calculated the mean 

of the n1 examples as the average of group 1. Using the mean of pool of combined data, we calculated 

the mean of group 2, for each of 10,000 repetitions. We then calculated the difference between the 

mean of group 1 and mean of group 2, for each sampling repetition. This gave us a distribution of 

10,000 differences between the mean of group1 and mean of group 2. We then compared the true 

difference between the mean of group 1 and the mean of group 2 against the distribution of 10,000 

values for difference of the means. Finally, p-value was calculated as the frequency of true difference 

of the means being lower than the values in the distribution, divided by 10,000. Here, p-value 

represents the probability of obtaining the observed difference between the means (true difference), 

assuming the null hypothesis is true. 

4.3. Results 

4.3.1. Reading Time 

All interruptions (Geometry, Pause, verbal WM, and situation comprehension) led to a significant 

increase in reading time following the interruptions. Figure 4-5 shows the change in RT per character 

for the sentence following the interruptions relative to the sentences preceding the interruptions, 
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normalized by subtracting the change in RT per character in intact (uninterrupted) condition. To gain 

a sense of what RT per character means in terms of the actual time, an average sentence has 50 

characters in it. Hence, a 20-unit increase in RT per character would mean 1 second increase in the 

reading time of an average sentence (20*50 / 1000 (ms) = 1s). 

We did not observe a difference between two sub-categories of memory interruptions: 

Scenarios plus verbal working memory questions, and Scenarios plus comprehension questions. 

Therefore, for the statistical analysis in this section, I refer to the combination of two sub-categories 

of memory interruptions as Scenario interruptions. We found that change in RT per character for 

Scenario interruptions (verbal WM and comprehension combined) was significantly higher than those 

in Geometry interruptions (permutation test for difference between Scenario and Geometry, (RT 

per character) = 5.57, p-value = 0.05). Change in RT per character for Pause interruptions was higher 

than Geometry interruptions but the difference did not reach the significance level ((RT per 

character) = 2.27, p-value = 0.19). Scenario interruptions also showed a higher increase in RT per 

character compared to Pause interruptions, but there was not a significant difference between Pause 

and Scenario interruptions ((RT per character) = 1.03, p-value = 0.384). 
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Figure 4-5. Change in RT per character for the first sentence following the interruptions with high and low 
similarity of cognitive processes to the reading task.  
For each interruption, we calculated the change in RT per character by calculating the difference between the RT per 
character of the first sentence subtracted by the average of RT per character of a few sentences preceding that 
interruption. Error bars show standard error of the mean. (n.s. = not statistically significantly different (p-value>0.05);   
* = p-value < 0.05) 

 

We did not find any difference in the change in RT per character following low-similarity 

versus high-similarity interruptions. There was no reliable difference in any of the 3 sub-conditions of 

the semantic-similarity interruptions (Figure 4-6) (e.g. in Timed sub-condition, for low- vs. high-

similarity: ((RT per character) = 3.56, p-value = 0.258). 
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Figure 4-6. Change in RT per character for the first sentence following the interruptions with high and low 
similarity of content to the reading task. 
Results shows the change in RT per character in 3 sub-conditions (Timed, Self-paced w signal, Self-paced w/o signal) 
testing the effects of content similarity. Error bars show standard error of the mean. (n.s. = not statistically significantly 
different (p-value>0.05)) 

 

We also compared the change in RT per character for content-similarity interruptions to the 

cognitive-similarity interruptions (Figure 4-7). The overall change in RT per character for timed and 

self-paced-signaled (Figure 4-7, right) was comparable to those in Scenario interruptions (Figure 4-

7, left) interruptions (mean RT per character for Self-Paced with Signal = 15.5, mean RT per character 

for Verbal WM = 20.3). However, the self-paced interruptions without signal were clearly different 

from other conditions, as they exhibited negligible change in RT per character after the interruptions 

which was not different from zero (e.g., bootstrap test, (RT per character for low-similarity 

interruptions in Self-Paced w/o Signal) = 2.2, p-value = 0.84). 
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Figure 4-7. Comparing the change in RT per character following interruptions in cognitive-similarity 
conditions and content-similarity conditions. 
Left) Change in RT per character for the first post-interruption sentence in interruption conditions for testing the 
similarity of cognitive processing. Right) Change in RT per character for first post-interruption sentence in interruption 
conditions for testing the similarity of interruption content. 

 

We were surprised that we observed near-zero resumption effect in the reaction times when 

the interruption was un-signaled, and therefore checked whether participants were sensitive to the 

content of the interruption at all. To do so, we examined the reading times during (rather than after) 

the interruption (Figure 4-8). We found that in both of the self-paced interruption conditions, there 

was a significantly increased RT per character for low-similarity interruptions compared to high-

similarity interruptions ((RT per character for low- versus high-similarity in signaled condition) = 

36.68, p-value < 0.001; ((RT per character for low- versus high-similarity in un-signaled condition) 

= 29.93, p-value < 0.001). 
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Figure 4-8. RT per character before, during, and after interruptions in content-similarity interruptions.  
Left) RT per character before and after the interruptions for timed interruptions. Middle) RT per character before, 
during, and after the interruptions for self-paced interruptions with signal. Right) RT per character before, during, and 
after the interruptions for self-paced un-signaled interruptions. Error bars are bootstrapped standard errors of the mean. 
(*** = p-value < 0.001) 

 
4.3.2. Recognition Memory 

We calculated how memory was altered by different types of interruption, by computing the change 

in 4AFC recognition performance relative to the Intact (uninterrupted) condition. In the Intact 

condition, the accuracy of information at pre-interruption positions was 49.3%, and the accuracy of 

information at post-interruption positions was 51.7%. The change in memory accuracy was computed 

both for information in the sentences that preceded an interruption and in the sentences that followed 

an interruption (Figure 4-9). 

Pause interruptions significantly increased memory accuracy of preceding interruptions 

(permutation test for Pause vs. Intact: Acc = 5.8%, p-value = 0.001). Recognition memory of 

information following verbal WM interruptions was also enhanced (permutation test for Verbal WM 

vs. Intact Acc = 3.3%, p-value = 0.003). Conversely, Geometry interruptions numerically decreased 

recognition memory for the sentences that preceded an interruption (permutation test for Geometry 
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vs. Intact: Acc = -2.7%, p-value = 0.11), though the effect was not statistically significant. We did 

not observe a reliable difference in pre-interruption recognition memory when participants 

encountered comprehension interruptions (permutation test for Comprehension vs. Intact Acc = 

0.6%, p-value = 0.31). Pre-interruption recognition memory in verbal WM interruptions was 

significantly higher than comprehension interruptions (permutation test, Acc = 2.7%, p-value = 

0.033). The difference between Pause and verbal WM conditions was not statistically significant 

(permutation test, Acc = 2.5%, p-value = 0.14). In terms of effects of similarity of cognitive 

processes on recognition memory, we found that memory of pre-interruption information for 

Geometry interruptions (low cognitive similarity) was significantly lower than Scenario interruptions 

(high cognitive similarity) (permutation test, Acc = 6.8%, p-value < 0.001).  
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Figure 4-9. Change in recognition memory of information pre- and post-interruptions relative to intact, in 
cognitive-similarity interruption conditions. 
Change in recognition memory for pre- and post-interruption information in conditions testing the effects of cognitive 
similarity of the interruptions relative to the intact (uninterrupted) condition. A) Change in pre-interruption memory. B) 
Change in post-interruption memory. (*** = p-value < 0.001) 

 

We next examined the effects on memory for sentences that followed an interruption. 

Recognition memory of information following interruptions decreased relative to the Intact baseline 

in Geometry and Scenario interruptions but not in Pause interruptions (Permutation test: Pause vs. 

Intact: Acc = -1.5%, p = 0.23; Geometry vs. Intact: Acc = -7.2%, p < 0.001; Verbal WM vs Intact: 

Acc = -3.4%, p = 0.002; Comprehension vs. Intact: Acc = -5.8%, p < 0.001). Post-interruption 

recognition memory in comprehension interruptions was lower than verbal WM, but the effect was 

only marginally significant (Acc = 2.4%, p-value = 0.049). Post-interruption recognition memory 
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was numerically lower in Geometry than comprehension interruptions (Acc = 1.4%, p-value = 0.09) 

and verbal WM interruptions (Acc = 3.8%, p-value = 0.066). Finally, we found that memory of post-

interruption information for Geometry interruptions (low cognitive similarity) was significantly lower 

than Scenario interruptions (high cognitive similarity) (permutation test, Acc = 2.7%, p-value < 

0.001). 

Neither the high- nor low-similarity interruptions appeared to substantively affect recognition 

memory of information preceding the interruptions (absolute changes in 2AFC accuracy all < 2% 

(Figure 4-10 A). However, both the high- and low-similarity interruptions worsened recognition 

memory for material following the interruptions (Figure 4-10 B). These reductions in memory were 

similar for high- and low-similarity interruptions, except in the control un-signaled condition, where 

we observed marginally larger memory-loss in the low-similarity condition (permutation test, low-vs-

high similarity, Acc = -4.6%, p-value = 0.06). 
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Figure 4-10. Change in recognition memory of information pre- and post-interruptions relative to intact, in 
content-similarity interruption conditions. 
Change in recognition memory of pre-interruption (A) and post-interruption (B) information for low- and high-
similarity of interruptions content. Error bars show standard error of the mean. (n.s. = not statistically significantly 
different (p-value>0.05); * = p-value < 0.05) 

 

Finally, we compared the pre- and post-interruption memory accuracy for the content-

similarity interruptions (high and low similarity reading) to the cognitive-similarity interruptions 

(Geometry, Scenarios, and so forth) (Figure 4-11). The change in recognition memory for content-

similarity interruptions were analogous to those of comprehension interruptions: no difference in pre-

interruption memory and significant decline in post-interruption memory. We did not find any 

difference between recognition memory data of the 3 sub-conditions of content-similarity 
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interruptions (e.g., Acc(between self-paced conditions with versus without signal) = 2.4%, p-value 

= 0.185). 

 
 
 

Figure 4-11. Comparing the overall change in recognition memory between conditions testing the effects of 
cognitive similarity and conditions testing the effects of content similarity. 
(A and C) show the recognition memory from cognitive-similarity interruption conditions. (B and D) show the 
recognition memory from content-similarity interruption conditions. 

 
 

4.3.3. Additional Analyses 

 
4.3.3.1. Accuracy in Interruption Trials 

Interruptions questions were designed to match in their level of difficulty. To that end, we had tested 

the interruption trials, when not inserted within the story. We balanced the difficulty level such that 

accuracy in Geometry questions, verbal working memory questions, and comprehension questions 
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were 87% (± 0.3 %). When the interruptions were inserted inside the story, we found the accuracy of 

Geometry interruptions dropped significantly (p-value < 0.001). On the other hand, the accuracy in 

comprehension interruptions increase significantly (p-value < 0.001). There was not a difference 

between the accuracy in verbal WM questions when tested alone and when inserted within the story 

(p-value = 0.24) (Figure 4-12). 

 
 
 

Figure 4-12. Accuracy in interruption trials for Geometry, verbal WM, and comprehension interruptions.  
Dashed line (87% accuracy) shows the baseline accuracy in interruption trials when tested alone, not within the story. 
Chance level is at 50% (2 AFC questions). Error bars show standard error of the mean. 

 
 
4.3.3.2. Transportation and Lingering Scores 

We used Green and Brock's transportation questionnaire to measure participants' immersion level 

while reading the story (Green & Brock Narrative Transportation Scale, 2000). Participants in Pause 

interruptions reported a slightly higher transportation compared to intact condition. Also, Geometry 

and Scenario interruptions showed lower transportation scores. Although there was a numerical 

difference, we did not find a significant difference between the transportation score of different types 

of cognitive-similarity interruptions compared to intact (e.g. (Transportation for Intact versus 

Geometry) = 0.11, p-value = 0.16) (Figure 4-13 A). The biggest difference in transportation score 
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among different types of cognitive-similarity interruptions was observed between Pause and 

Geometry interruptions ((Transportation) = 0.19, p-value = 0.051). 

Transportation score in content-similarity interruptions were significantly lower than intact 

(e.g. ((Transportation for intact versus self-paced with signal) = 0.25, p-value = 0.019). There was 

not any difference between the transportation scores among the 3 sub-conditions of content-similarity 

interruptions (Figure 4-13 B). 

 

Figure 4-13. Self-reported transportation scores for different interruption conditions.  
Score range was between 1 (not at all transported) to 7 (very much transported). Transportation score at 4 shows the 
neutral level. Error bars show standard error of the mean. 
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To measure whether the story was lingering in mind during the cognitive-similarity 

interruptions, we asked participants if they were intentionally or unintentionally reflecting on the story 

during interruptions. Self-report lingering was significantly lower in Geometry interruptions compared 

to Pause and Scenario interruptions (p-value for Pause versus Geometry = 0.009; p-value for 

Geometry versus verbal WM = 0.03; p-value for Geometry versus comprehension = 0.08). We did 

not observe any difference in lingering between the Pause and Scenario conditions (Figure 4-14). 

 
 
 

Figure 4-14. Self-reported lingering of the primary narrative during performance of interruption tasks. 
Percentage of participants who reported experiencing intentional or unintentional lingering of the main story during the 
interruptions. Error bars show 95% confidence interval of 10,000 bootstrapping with replacement. 

 
 
4.4. Discussion and Conclusions 

In this Chapter, we investigated how encountering different types of reading interruptions influence 

our processing and subsequent memory of a narrative. We investigated two main axes along which 

interruptions may vary. Along the first axis, we tested interruptions that similar or dissimilar to reading 

in terms of the cognitive processes they involve. Along the second axis, we tested interruptions whose 

internal semantic content was similar or dissimilar to the semantic content of the narrative. 
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Similarity of cognitive processing was an important factor in determining the effects of the 

interruptions. Among these interruption conditions, we found that participants were, in general, 

slower to read the primary text after encountering an interruption involving more similar cognitive 

processes (Scenario conditions, Figure 4-5) relative to more dissimilar cognitive processes (Geometry 

condition). On the other hand, the more cognitively dissimilar interruptions (Geometry) decreased 

recognition memory for sentences both before and after the interruption (Figure 4-9). Indeed, 

Geometry interruptions were the only type that negatively impacted the consolidation of preceding 

information. When participants encountered Scenario interruptions, thought to be more cognitively 

similar to reading, the interruption either improved the consolidation of prior memory (verbal WM 

condition) or did not change it (comprehension condition) (Figure 4-9). Encountering Pause 

interruptions, also, significantly enhanced recognition memory for preceding information, consistent 

with the findings that pauses at event boundaries aid memory consolidation (Ben-Yakov, Eshel, and 

Dudai 2013). Recognition memory for material following the interruptions was impaired in all 

conditions except Pause interruptions, with Geometry interruptions, the most dissimilar, generating 

the largest decrease (Figure 4-9). 

In contrast to the similarity of cognitive processing, the similarity of semantic content in the 

interruptions had a much smaller effect on reading times and memory. We did not find any difference 

between the resumption reading time following low- versus high-similarity interrupting content 

(Figure 4-6). Also, the degree of content similarity did not affect consolidation of pre-interruption 

memory (Figure 4-10 A). Consistently, when participants were given a signal about the occurrence of 

interruptions, there was no difference between consolidation of information following low- versus 

high-similarity interrupting content. Only when participants did not have any signal about the 
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occasional unrelated content, they showed worse consolidation following less similar interrupting 

content (Figure 4-10 B).  

The results from the content-similarity interruptions (high and low semantic similarity) were 

consistent with our observations when varying cognitive process similarity (Geometry, Pause, and 

Scenario interruptions). In terms of cognitive similarity, reading unrelated text regardless of its content, 

is very similar to reading a narrative. Both the resumption reading time and the memory consolidation 

findings were consistent between sub-conditions of content-similarity interruptions (especially timed 

and self-paced with signal) and highly similar cognitive interruptions (comprehension and verbal WM) 

(see Figure 4-7 and Figure 4-11). 

Our data suggest that when investigating the disruptive nature of interruptions, one needs to 

differentiate between the resumption lag and the memory effects. For instance, resuming reading after 

Geometry interruptions was faster relative to Pause and memory interruptions. However, the quicker 

resumption in this case does not represent a less disruptive interruption because Geometry showed a 

much higher negative impact on memory consolidation. Therefore, when comparing different types 

of interruptions on their negative impact for an ongoing task, we must determine what aspects of the 

performance are most important for the task. Negative impacts on reading time versus memory might 

draw a contrary conclusion on disruptiveness of an interruption.  

In contrast to the literature which indicated that effects on textual memory were negligible 

(Glanzer, Dorfman, and Kaplan 1981; Glanzer, Fischer, and Dorfman 1984; Ledoux and Gordon 

2006), we observed reliable effects of interruption on a detailed recognition test for the contents of 

the sentences in the text. Foroughi et al. (Foroughi et al. 2015) had already shown that deeper probes 
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of textual understanding could reveal interruption effects; now, we have found that even more surface-

level verbatim memory for the text is affected by interruption.  

What potential mechanisms underlie the memory effects and resumption delays induced by 

interruptions? It could be that when the main task and the interruptions engage similar cognitive 

processes, there is a higher interference between the ongoing processes which in turn makes it harder 

to resume the main task after the interruption as reflected in higher resumption lag. On the other 

hand, when the main task and the interrupting task engage similar cognitive processes (e.g., parsing a 

sentence or constructing a situation model), our cognitive processes seem to be capable of separately 

process unrelated information with minimal interference. One possibility is that our cognitive 

processes can identify the change in the information stream, potentially create an event or situational 

representations, and process unrelated information separately. This theory was supported by reading 

time differentiating low- and high-similarity interrupting content, but equally quickly resuming 

afterward (Figure 4-8). 

Our results also shed lights on potential underlying mechanisms modulating the effects of 

cognitive similarity and content similarity on memory. It could be that engaging less similar cognitive 

processes reduces the memory by lowering the possibility of lingering. In fact, in Pause interruptions, 

participants reported the highest lingering during the interruptions and showed the highest increase 

in pre-interruption memory (see Figure 4-14 and Figure 4-9 A). However, different types of 

interruptions might reduce the post-interruption memory for different reasons. Geometry 

interruptions might reduce post-memory because of interference caused by using less related cognitive 

processes, whereas comprehension interruptions could diminish post-memory because of the 

continuation of ongoing processing (lingering) in high-similarity cognitive processes. Further 
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investigation is needed to explore the effects of interruptions on subsequent memory in future 

research. 

The findings of this research project are subject to limitations that may be addressed in future 

work. To begin with, our method of measuring sematic similarity between interrupting texts and the 

primary text (Universal Sentence Encoder) may primarily involve lexical information, rather than 

deeper situational information conveyed by the sentence (Cer et al. 2018). Thus, further research is 

necessary to differentiate the effects of token-level information from high-level semantics contained 

in a sentence. A second limitation is that this project employed one text, a short story, as the main 

stimulus. To further investigate the effects of semantic properties of the interruptions on reading, 

future studies should evaluate and compare the effects of semantic interruptions on a wider variety of 

primary texts in different styles. Lastly, our experimental conditions provided evidence for situations 

in which the interruption and the primary task have similar cognitive processes, however, we only had 

one condition (Geometry interruptions) that involved cognitive processes that were very different 

from the main task. Future research should further explore a wider selection of interrupting tasks with 

dissimilar cognitive processes to reading. Finally, although this study reports new memory effects and 

reading time effects arising from interruption, it has not yet established how they are related. For 

example, when participants exhibit a longer-than-usual resumption delay on a specific trial, does this 

also mean that they will be more successful in avoiding memory interference on that trial? Further 

work, involving across-individual and across-trial correlations, will be required to address this 

important question. 

In summary, in Chapter 4, we investigated how encountering various types of interruptions 

while reading influences readers' ongoing processing and retention of the information. Our findings 

can be used in the short term to provide general guidelines for reducing the negative consequences of 
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interruption in real-world situations. In the long run, these results can help develop more complex 

process-level models that describe the updating and interference processes that occur during reading 

in working memory and long-term memory. 

  



 95 

Chapter 5: Determining How Processing in Neural 

Language Models is Affected by Interruptions 

 
 

5.1. Background and Motivation 

In the previous Chapter, we looked at how interruptions while reading can affect humans' 

understanding and subsequent memory of the information. In this Chapter, we explore how 

contemporary neural language models process linguistic data that contains incongruencies. 

Neural Language Models (NLMs) are powerful and flexible models supporting robust 

language predictions when processing coherent data streams. However, when we process language 

data in the real world, we may experience incongruencies, such as a sudden change in topic from one 

sentence to the next (Figure 5-1). When humans encounter interruptions in language processing, the 

content and length of the interruptions affect their comprehension performance (Ledoux and Gordon 

2006; Foroughi et al. 2015a). This effect in language comprehension is reflected in longer reading 

times following the incongruent information. NLMs and human brain share some computational 

principles as they process natural language: both involve in continuous predictions, and both use prior 

context to make predictions (Goldstein 2021). Therefore, it is possible that NLMs could be influenced 

similarly by processing incongruent information, or that they could use similar approaches to mitigate 

the costs of interruption. 
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Figure 5-1. Example of a situation with a transient change in a temporally coherent information stream. 

 

However, it remains unclear how NLMs integrate and separate information at moments of 

incongruency in prior context and how their predictions are influenced by inconsistent prior context. 

We hypothesized that the predictions generated by NLMs will be especially affected when their prior 

contexts are contaminated by incongruent information that (i) is similar to the main information 

sequence, rather than distinct and (ii) has a long duration. The impairment of NLM prediction quality 

manifest as an increase in their perplexity scores for the veridical word sequences.  

In this Chapter, we test two kinds of NLMs architectures: a recurrent NLM (LSTM, 

(Hochreiter and Schmidhuber 1997; Schijndel and Linzen 2018)) and an attention-based NLM (GPT-

2, (Vaswani et al. 2017; Radford et al. 2020). And, we have two main motivations: First, we want to 

understand whether and when these powerful models are successfully able to integrate information 
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over time, despite the insertion of interrupting incongruent material; Second, we aim to compare the 

performance of these models against humans facing the same interruptions (from Chapter 4), to 

determine whether the models can predict which kinds of interruptions and incongruencies humans 

will struggle with.  

Our central question, here, is not whether NLMs have the same performance and the same 

representational capabilities as humans. We want to explore how robust NLMs are to different kinds 

of interruptions and how this varies as a function of architecture. However, we do also want to test 

performance of the LMs against humans. Therefore, in Chapter 4, we exposed human participants to 

high-similarity and low-similarity interruptions in a setting where they did not have any knowledge 

that there was any interrupting content. Our goal in doing so was to put humans and LMs on a more 

equal footing, facilitating the comparison between them. If a particular LM is disrupted by the same 

kinds of interruptions that humans are, then that LM could provide a useful practical predictor of 

when and where humans will be especially impacted by interruption (even if the LM does not have 

the same language competence as a human).  

5.1.1. Research Questions 

It is uncertain how contemporary language models (both recurrent LSTMs and feedforward 

Transformer models) are impacted by incongruencies in the prior context in their input stream. 

Therefore, in this Chapter we address the following research questions: 

o How does the insertion of incongruent text in an otherwise coherent text modulate the 

predictions of language models? How do these effects depend on the length, location, and 

semantic confusability of the inserted text? What role NLMs’ architecture play in the 
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magnitude of this impact? And finally, as a practical matter, can language models enable us to 

predict which passages of incongruous text humans will find difficult to process? 

Significance 

Language comprehension is one of the most complex human cognitive feats, and neural language 

models (NLMs) are (currently) the most successful machine language models for parsing, abstracting, 

and generating human language data (Kelly and Reitter 2018). Despite the purported computational 

commonalities between NLMs and the human brain and cognition (e.g., (Goldstein et al. 2022)), it 

remains unknown whether they exploit incongruent prior information similarly. 

Studying these models in a naturalistic setting, similar to the linguistic data humans typically 

encounter in the real world, is important for at least two reasons. First, we can better understand how 

NLM performance is impacted by incongruities in prior context. It would be interesting to see how 

systems with the ability to understand and generate language data handle and process incongruent 

information. Also, given that these models are widely used in various real-life applications (e.g., email 

services, question answering chatbots, etc.), understanding them allows us to be aware of their 

limitations. Second reason) We can compare how interruptions influence language processing in 

NLMs versus humans. Understanding NLMs can provide some new insights in how we can study 

human language processing. 
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5.2. Methods 

5.2.1. Language Models 

We tested two pretrained language models: the GPT-2 model (Radford et al. 2020; HuggingFace (Wolf 

et al. 2020)) and an LSTM model (Hochreiter and Schmidhuber 1997; Schijndel, Mueller, and Linzen 

2019). 

5.2.1.1. GPT-2 Transformer LM.  

GPT-2 is a large Transformer-based LM with the objective of predicting the next word, given all the 

previous words in a fixed-length context (Radford et al. 2020). Here, we used “GPT2-large” model 

which has 36 attention layers with 1.5 billion parameters. For computing word-by-word perplexity, we 

used a maximum context size of 1024 tokens. We implement GPT-2 using the HuggingFace library. 

5.2.1.2. Long Short-Term Memory LM.  

LSTM is a recurrent deep learning model that incorporates the past by reusing the information from 

previous time steps and through dedicated memory cells. The model that we implemented here has 2 

LSTM layers with 1600 units in each hidden layer (Schijndel, Mueller, and Linzen 2019). 

5.2.2. Experiment Design 

5.2.2.1. Stimuli 

Primary text 

We tested two main primary texts: One primary text was an American Psychological Association 

(APA) article (~2500 words), titled “Can this marriage be saved?”, which is about research on factors 

that influence the success of a marriage (Miller, 2013). Another primary text was a short story (~2300 
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words) by Raymond Carver, titled “So much water, so close to home”, which narrates the tension 

between a couple. The same story was used in the behavioral experiment in Chapter 4. 

The first primary text (APA article) was used to investigate the effects of incongruent prior 

context on the predictions of NLMs. Testing the second primary text (the narrative) had two 

objectives: (1) to replicate the results with a different primary stimulus; and (2) to compare the 

performance of NLMs and human participants under the same conditions (Human results are from 

Chapter 4). By testing NLMs and human participants under the same conditions, we mean the using 

same primary text, the same interrupting material, and evaluating performance for the same target 

sentences. 

Interrupting text 

To assess how NLMs perform with incongruities in prior context, we generated the incongruent 

context by randomly selecting unrelated sentences from Brown Corpus and incorporating them into 

the prior context. Brown Corpus is a collection of modern American English, comprised of 

approximately one million words, sourced from a diverse range of areas (e.g., fiction, science, 

technology, reviews, religions, hobbies, and so on (Brown Corpus, 2022). 

5.2.2.2. Operationalization 

One of our research objectives in Chapters 4 and 5 was to understand of how interrupting information 

affects the online processing of language models and humans. To measure the processing difficulty in 

humans, in Chapter 5, we used the reading time per character, relying on the common assumption 

that the longer it takes to read a sentence, the more difficult it is to process. To investigate how 



 101 

interrupting material impacts language models’ capacity to process prior context, here in Chapter 4, 

we used perplexity measures. 

Perplexity measures. We evaluated the models using perplexity measures. Perplexity (PPL) is a 

common evaluation method for assessing LM’s performance. PPL is the exponentiated average 

negative log-likelihood of a sequence. Intuitively, if a model assigns a high probability to the test data, 

it means that it is not perplexed (not surprised) by the test data, suggesting it is a good language model. 

So, a lower perplexity would identify a better model. 

If we have a tokenized sequence 𝑋 = (𝑥0, 𝑥1, … , 𝑥𝑡), then the perplexity of 𝑋 is defined as Eq. 5-1 

 𝑃𝑃𝐿(𝑋) = exp( − 
1

𝑡
 ∑ log 𝑝𝜃  (𝑥𝑖 | 𝑥< 𝑖)

𝑡

𝑖

 ) Eq. 5-1 

In Eq. 5-1, log 𝑝𝜃  (𝑥𝑖 | 𝑥< 𝑖) shows the log-likelihood of the model for the i-th token (𝑥𝑖) given the 

prior context (𝑥< 𝑖). 

5.2.2.3. Experimental Paradigm 

To investigate how NLMs’ prediction is influenced by having incongruency, we followed these 

steps: 1) Given the intact primary text, we chose a random sentence and use it as the target sentence; 

2) We then calculated the perplexity of the NLM for the target sentence, when the prior context is the 

intact context in the original text preceding the target sentence (Figure 5-2Figure 5-2); 3) To create 

the incongruent prior information, we picked a sentence randomly from the Brown corpus and insert 

it before the target sentence; 4) Then we calculated the perplexity of NLM in processing target 

sentence, when the prior data that it uses for its prediction has both the original prior context and the 
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added unrelated sentence (Figure 5-2); 5) Finally, we compared the perplexity (PPL) of the language 

model with intact prior text and incongruent prior text.  

 

 
 
 

Figure 5-2. Examples of intact and incongruent prior context.  
Top) Intact text, where the prior context has the original (uninterrupted) information; Bottom) Incongruent text, where 
the prior context consists of an incongruent price of information (the unrelated sentence inserted at the end of the 
original context.) 
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Change in PPL of target sentence after adding unrelated sentence to the prior was calculated as 

follows: 

 
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑃𝑃𝐿 =  

𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 𝑃𝑃 (target sentence)

𝐵𝑎𝑠𝑒 𝑃𝑃𝐿 (target sentence)
−  

𝐼𝑛𝑡𝑎𝑐𝑡 𝑃𝑃 (target sentence)

𝐵𝑎𝑠𝑒 𝑃𝑃𝐿 (target sentence)
  

Where Base PPL, Incongruent PPL, and Intact PPL are defined as follows: 

Base Perplexity (target sentence): PPL (target sentence) 

Intact Perplexity (target sentence): PPL (target sentence | Prior context) 

Incongruent Perplexity (target sentence): PPL (target sentence | Prior context + Unrelated sentence) 

 

5.2.2.4. Experimental Conditions 

What does make an incongruency more disruptive in language models? We first started with the 

simplest condition and assess how models’ perplexity for the target sentence change when they have 

1 sentence of incongruency preceding the target sentence. We then examined the impact of three 

moderating factors: (i) length of the incongruent information; (ii) semantic similarity of the 

incongruent information to the target sentence text; and (iii) distance of the incongruent information 

from the target sentence (Figure 5-3).  

 

Figure 5-3. Three potential moderating factors in modulating the disruptive effects of interruptions. 
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Length of the interruptions. To investigate how length of the incongruent material modulate the 

NLMs’ performance, we tested the models with both a set of 1-sentence interruption and a set of 4-

sentence interruptions. We measured the change in perplexity of the target sentence in both cases (see 

Figure 5-5).  

Semantic similarity of the interruptions. In this analysis, we examined how the semantic properties 

of incongruent material would modulate models’ confusability.  

We first tested the effects of semantic similarity of the interruptions to the target sentence, on 

processing the target sentence. Using the same semantic similarity methods outlined in Chapter 4, we 

calculated the semantic similarity between the interrupting text and the target sentence. The similarity 

score was calculated, as before, as the cosine similarity of the embeddings obtained from the 

Transformer-based USE model (Cer et al. 2018). 

Based on the similarity score of a wide range of randomly chosen sentences, we divided the 

similarity scores into 6 bins (lowest similarity centered around -0.2; highest similarity bin centered 

around +0.3, Figure 5-4).  

 
 
 

Figure 5-4. An example of a target sentence and two unrelated sentences with low and high similarity scores. 
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Additionally, to facilitate a close comparison between effects of semantic similarity on 

processing in both NLMs and humans, we tested them in the same conditions described in Chapter 

4. In this condition, the primary text was a narrative, and the semantic similarity was calculated based 

on the similarity between the interruption material and a few sentences preceding the interruption (see 

Figure 5-7). 

Distance of target sentence from the interruptions. To assess how NLMs recover from 

interruptions as they recede further into the past, we measured perplexity while varying the distance 

of the incongruent material to the target sentence. To that end, for a given incongruent context, we 

tested the (change in) perplexity of the first sentence following the interruption (lowest distance), the 

second sentence following the interruption, the third sentence following the interruption, and so on 

(see Figure 5-10).  
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5.3. Results 

5.3.1. Effects of Interruptions Length 

We found that the insertion of even one unrelated sentence to the prior context significantly increased 

the perplexity both the LSTM model and GPT-2 when processing the target sentence (One-sample t-

test: LSTM: t-statistic=8.15, p-value < 0.001; GPT-2: t-statistic=23.23, p-value < 0.001). Additionally, 

the detrimental effect of interruptions was significantly higher for longer interruptions compared to 

shorter interruptions (Paired t-test: LSTM: t-statistic=13.99, p-value < 0.001; GPT-2: t-statistic=13.03, 

p-value < 0.001) (Figure 5-5). 

 

Figure 5-5. Change in perplexity of NLMs with incongruent prior context relative to intact prior context.  
Right) Schematic of a 1-sentence and 4-sentence interruption prior to target sentence. Left) Percentage change in 
perplexity of LSTM and GPT when processing a target sentence, given incongruities in prior context due to a 1-sentence 
or 4-sentence interruption. Each bar shows the data from 600 datapoints: there were 100 randomly selected target 
sentences followed by randomly interruptions from 6 levels of similarity (100*6). Error bars show standard error of the 
mean, after excluding outliers that were more than 3 times the interquartile range from the median. The primary text was 
the APA article. (*** = p-value < 0.001) 
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5.3.2. Effects of the Semantic Similarity of Interruptions 

For the LSTM language model, we observed a negative correlation between the similarity score and 

the magnitude of change in models’ perplexity. Interruptions with low similarity to the target sentence 

increased the models’ perplexity (Figure 5-6 A). Surprisingly, however high-similarity interruptions 

showed a different impact, in some cases even lowered the models’ perplexity. The negative 

correlation between similarity and change in perplexity remained, and was even numerically larger, for 

longer interruptions (Figure 5-6 C). Using a linear least-squares regression, for 1-sentence 

interruptions, we found Pearson correlation coefficient of -0.11 (slope = -0.35, significantly different 

from zero, p-value < 0.001), whereas for 4-sentence interruptions, Pearson correlation coefficient was 

-0.19 (slope = -0.96, significantly different from zero, p-value < 0.001). 

In contrast to the LSTM model, GPT-2 was not influenced by the semantic similarity of the 

interruptions. For both 1-senetence and 4-sentence interruptions, there was no correlation between 

the similarity score and the magnitude of change in models’ perplexity (Figure 5-6 B and D) (Pearson 

correlation coefficient for 4-sentence interruptions = 0.03; regression slope not different from zero; 

p-value = 0.56).   
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Figure 5-6. Effects of semantic similarity of interruptions to the target sentence on change in perplexity of 
NLMs when processing the target sentence.  
A) Percentage of change in perplexity of LSTM when processing incongruent context composed of one interrupting 
sentence across a range of similarity scores. B) The same as A, for GPT-2 model. C) Percentage of change in perplexity 
of LSTM when processing incongruent context composed of 4 interrupting sentences across a range of similarity scores. 
D) The same C, for GPT-2 model. The primary text used for this result was the APA article. 

 

We confirmed the same pattern on the effects of semantic similarity for our second primary 

text, the narrative. Again, we observed that the increase in LSTM perplexity was higher for low-

similarity interruptions compared to high-similarity interruptions (paired t-test: statistic=7.83, p-value 

< 0.001) (Figure 5-7 A). However, for GPT-2, we did not observe any difference between low-

similarity and high-similarity interruptions (paired t-test: statistic=0.44, p-value=0.66) (Figure 5-7 B). 
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Figure 5-7. Effects of semantic similarity of interruptions to the prior context on change in perplexity of NLMs 
when processing the target sentence.  
A) Percentage of change in perplexity of LSTM when processing incongruent context with low- or high-similarity score. 
B) The same as A, for GPT-2. We had 85 data points for each bar: total of 17 target sentences with 5 different samples 
for low-similarity interruptions (17*5= 85) and 5 different samples for high-similarity interruptions. Error bars show 
standard error of the mean. (n.s. = not statistically significantly different; *** = p-value < 0.001) 

 

To compare the effects of semantic properties of the interruptions on processing in NLMs 

and humans, we compared how they process information following low- versus high-similarity 

interruptions (Figure 5-8). Recall that the reading time of human participants (following the 

interruption) was not influenced by whether the interruption was composed of low- or high-similarity 

material (Figure 5-8 C).  
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Figure 5-8. Effects of interruptions’ semantic characteristics on processing in NLMs compared to humans.  
A and B) The same results as in Figure 5-7 C) Change in humans’ reading time per character when processing a target 
sentence following a low-similarity or high-similarity interruption. Error bars show standard error of the mean. NLMs 
and humans were tested on the same primary text (the narrative) and interruption content. (n.s. = not statistically 
significantly different; *** = p-value < 0.001) 

 

To gain a better understanding of the effects of the semantic properties of interruptions on 

ongoing processing in NLMs, we compared how LSTM and GPT-2 process information during the 

interruptions, relative to humans (Figure 5-9).  

We found that humans and LSTM processed interruptions differently, but with some 

qualitative similarities. When encountering interruptions, LSTM showed a significant increase in 

perplexity of low-similarity interruptions (paired t-test: statistics=3.14, p-value=0.002), but not for 

high-similarity interruptions (paired t-test: statistics=0.74, p-value=0.46) (Figure 5-9, LSTM panel). 

Nonetheless, there was a numerical increase in perplexity for both types of interrupting material. This 

pattern qualitatively matches the human data, where we observed a significant increase in their reading 

time when encountering both low- and high-similarity interruptions. However, humans returned to 

their original reading times following both low- and high-similarity interruptions, whereas the LSTM 

showed an elevated perplexity following low-similarity interruptions (paired t-test: statistics=5.37, p-

value<0.001) (Figure 5-9).  
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We found more striking disparities in interruption handling between humans and GPT-2. 

Although neither humans nor GPT-2 demonstrated any difference between following low- versus 

high-similarity interruptions (Figure 5-8 B and C), their behavior when initially encountered 

interruptions was vastly different. GPT-2 did not demonstrate any increase in perplexity when it 

encountered either low- or high-similarity interruptions. Humans, however, showed a higher reading 

time for both interruption types, with a significantly greater increase for low-similarity interruptions 

(Figure 5-9). 

 
 
 
Figure 5-9. Effects of low- versus high-similarity interruptions on processing in LSTM, GPT-2, and human 
participants during and after interruptions.  
Left) Perplexity of LSTM and GPT-2 for the sentence preceding the interruptions (before), first sentence during the 
interruptions (during), and the first sentence following the interruptions (after). Y-axis shows the raw perplexity of the 
sentence given its prior context. Right) Reading time per character for human participants when reading the sentence 
preceding the interruptions, the first sentence during the interruptions, and the first sentence following the interruptions. 
Error bars show standard error of the mean. LSTM, GPT-2, and human participants were tested on the same primary 
text (the narrative) and interruption content. 
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5.3.3. Effects of Distance from Interruptions 

We observed a gradual decrease in the detrimental effects of interruptions as the target sentence was 

shifted further from the incongruent material. This effect was observed for both LSTM and GPT-2, 

and for both primary texts, the APA article, and the narrative (Figure 5-10). 

 
 
 

Figure 5-10. Effects of distance from interruptions on perplexity of NLMs.  
A) Percentage of change in perplexity of LSTM and GPT-2 when processing the n-th sentence (e.g., first sentence, 
second sentence, and so on) following the interruptions. The results in (A) are from using the APA article as the primary 
text. B) The same as (A) but using the narrative as the primary text. 
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5.4. Discussion and Conclusions 

In Chapter 5, we explored how NLMs respond to interrupting moments in language data and how 

length, location, and semantic confusability of the interruptions, as well as NLMs’ architectural 

constraints, affect their predictions. Our research was designed to determine the impact of these 

incongruencies on LSTM and GPT-2, which are typically trained to reliably predict language in 

consistent data streams. We also compared these models with humans in their handling of incongruent 

text segments. 

The presence, length, and distance of interruptions had similar effects on LSTM and GPT-2. 

Both the LSTM and GPT-2 faced higher processing difficulty when prior context included 

interruptions: even one unrelated sentence prior to a target sentence significantly increased NLM 

perplexity (Figure 5-5). The disruptive impact was increased for longer interruptions. In both LSTM 

and GPT-2, longer interruptions induced higher processing difficulty (Figure 5-5). Conversely, the 

disruptive effects of interruptions on both models were decreased when the incongruent material was 

placed at a greater distance (Figure 5-10).  

The semantic properties of the interruptions produced dramatically different impacts on the 

LSTM and GPT-2. The LSTM’s predictions were more disrupted by interruptions that were 

semantically dissimilar from the original context (Figure 5-6 A and C, Figure 5-7 A). In contrast, 

GPT-2’s predictions were essentially invariant to the various degrees of semantic similarity of the 

interruptions (Figure 5-6 B and D, Figure 5-7 B). One possible interpretation of this effect is that 

GPT-2 is able to discount the interrupting material in making its predictions, because it can find more 

highly matching material elsewhere in its context buffer. 
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 The observed discrepancies between the effects of the semantic properties of interruptions on 

LSTM’s and GPT-2’s predictions may stem from the difference in their architectural constraints. The 

recurrent architecture and limited-size hidden states of LSTM necessitate that the model must identify 

the most relevant features of prior context for subsequent predictions. Thus, when the model cannot 

store all details of its prior context, it is incentivized to represent a semantic gist of past information 

(Armeni, Honey, and Linzen 2022; Khandelwal et al. 2018). This hypothesis was supported by the 

evidence showing the dependence of LSTM on the semantic characteristics of interruptions. In 

contrast, we expected GPT-2’s predictions to rely more heavily on verbatim properties of the prior 

context due to its “perfect memory” of the past, which is enabled by a fixed-length window of prior 

information input. 

Despite GPT-2’s overall higher capabilities, LSTM was more sensitive to tracking the change 

in the information sequence. GPT-2’s perplexity was disrupted when the incongruent material was in 

the prior context but not when it processed incongruencies given an intact prior context. On the other 

hand, LSTM demonstrated a higher processing difficulty when facing low-similarity interruptions even 

given an intact context. LSTM’s ability in detecting low-similarity interruptions could come from 

maintaining a “leaky” and abstract version of the past, like a moving average of the context history 

(Figure 5-3). 

Our findings revealed disparities in the way humans and NLMs process incongruent material 

in a mostly consistent context. Humans did not experience an increase in reading time when returning 

to the original context after interruptions, regardless of whether the interruption was of low or high 

similarity (see Figure 5-8 C). This does not mean, however, that humans are not affected by the 

semantic properties of interruptions; rather, they exhibited a significant difference in response to 

different similarity levels during the interruptions (Figure 5-9). In contrast, neither LSTM nor GPT-
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2 could identify the change between the narrative and a sudden high-similarity interruption (see 

“during interruptions” in Figure 5-9). Furthermore, neither of the models could return to the same 

level of perplexity after interruptions as before (Figure 5-9).  

There was a qualitative resemblance between how the LSTM and humans processed 

incongruencies (Figure 5-9). Both humans and the LSTM demonstrated a significant increase in 

processing difficulty when first encountering interruptions. And, in both humans and LSTMS, there 

was a greater increase when the interrupting material had low similarity to the primary text. Finally, in 

both humans and the LSTM, the indices of processing difficulty decreased following interruptions 

when the original context resumed. In contrast to humans and the LSTM model, GPT-2’s predictions 

were hardly altered at all during the interruptions; instead, the interruption only impacted GPT-2’s 

prediction after it was complete, when it altered for the resumed primary text. Why did human reading 

times and LSTM perplexity shift in an analogous manner? One possibility is that both of these indices 

track a very local predictability of the information stream, based on the immediate word-frequency 

and the context of the past several words, as in an n-gram model. This is in contrast to GPT-2, a 

model whose strength in incorporating long-range context may have reduced the influence of transient 

shifts (a four-sentence interruption) in the information. 

The distinction between processing of interruptions in humans and NLMs could arise from 

the difference in their memory capabilities. Humans exploit a variety of short-term memory (verbatim 

and semantic) and long-term memory (semantic and episodic) systems simultaneously. This 

combination of mechanisms may enable humans to keep track of both abstracted semantic / 

situational and verbatim properties of the information stream. Additionally, episodic memory 

capabilities of humans may enable humans’ cognitive processes to identify boundaries in the 

information, create and store events information, and reload it as needed.  
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What architectural modifications could improve the susceptibility of high-performing 

language models to interruptions? Despite GPT-2 impressive and human-level performance in many 

real-world tasks, it did not process incongruent context similarly to humans. Currently, no language 

model uses a combination of all human-like memory mechanisms. Equipping large-scale language 

models, such as GPT-2, with short- and long-term memory mechanisms to detect changes in both 

short- and long-term, could enable them to process semantic properties of information more 

sensitively. Additionally, providing these models with a capacity to separately store irrelevant material 

could make them resilient when facing incongruent context.   

The work in this Chapter is subject to several limitations which may be addressed by future 

work. First, because GPT-2 is a larger model trained on a larger dataset than our LSTM, we cannot 

confidently generalize our findings to feedforward Transformer architectures and recurrent LSTM 

architectures in general. Future work should employ an LSTM that is more closely matched in terms 

of training corpus, model size and average prediction performance (see also (Armeni, Honey, and 

Linzen 2022)). Second, GPT-2's apparent lack of sensitivity to the semantic similarity of interruptions 

may be due to the characteristics of the method that we used to calculate semantic similarity. In other 

words, GPT-2 may use semantic similarity information, but the semantic properties that it captures 

may differ from those captured by our implemented method, Universal Sentence Encoding (Cer et al. 

2018), which may prioritize token-level or syntactic similarity. Future research could explore this fur-

ther by differentiating between semantic properties and particular tokens by using semantically similar 

interruptions that involve different tokens, as well as semantically dissimilar interruptions that 

comprise similar tokens. Third, to estimate the generalizability of our findings regarding architectural 

constraints, future studies should evaluate the effects of interruptions on another and perhaps a higher 

performing LSTM, as well as another attention-based language model. Fourth, it is also unclear 
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whether the position of the incongruencies in the primary context affects susceptibility to 

interruptions. To address this, future research could investigate if inserting disruptors within an event 

or at the transition between two events would produce equal effects on the models. 

This Chapter has explored how processing incongruent contexts affect the functioning of 

NLMs. Our results shed light on the shortcomings of LSTM and GPT-2 when faced with incongruities 

in their prior context. Additionally, we explored in what ways LSTM and GPT-2 process incongruent 

language data differently from humans. The contrast between human and NLMs behavior can be used 

to suggest modifications to NLMs for greater resilience to disruption – for example, by augmenting 

them with memory systems. The comparison of humans and NLMs may also further our ability to 

predict human language processing, as when the perplexity of the LSTM model qualitatively tracked 

the changes in human reading times during the interruptions.  
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Chapter 6: General Discussion and Conclusions 

What are the implications of temporal correlation in data for learning and comprehension? How can 

temporally correlated real-world data be leveraged for learning, particularly in brain-inspired 

architectures? What effects do transient changes in the information stream have on contemporary 

machine learning models, and how do these effects compare to what is seen in human behavior? In 

this thesis, I addressed these questions using both computational and empirical methods. As each of 

the four preceding Chapters contain a more targeted discussion of the specific results, here I review 

and summarize the broader contributions of this dissertation. 

 

6.1. Summary of Research Contributions 

 
6.1.1. Efficacy of Brain-Inspired Integration and Separation Mechanisms for 

Category Learning 

Cortical circuits exhibit two characteristics that may influence how they learn category categories from 

a sequence of temporally correlated examples, as we commonly encounter in the real world. First, our 

brain dynamics appear to combine information over time, as there is ubiquitous autocorrelation in 

cortical dynamics. Second, neural circuits sometimes shift their context rapidly at “event-boundaries”, 

which appears to be related to resetting of context representations. It was unknown how these neural 

circuits’ characteristics (autocorrelation and boundary resetting) influence category learning from 

temporally correlated data. Therefore, we examined the efficacy of two brain-inspired mechanisms – 

leaky memory and memory gating – for incremental category learning from temporally structured data. 

We found, firstly, that equipping neural networks with these brain-inspired mechanism enables them 
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to learn more efficiently from temporally autocorrelated data, relative to a conventional feedforward 

network. Second, we found that when performing representation learning, these biologically plausible 

models were able to flexibly adapt to the autocorrelation level, so that they could take advantage of 

repeating structure without suffering from the interference of unrelated prior information. 

 

6.1.2. Efficacy of Brain-Inspired Integration and Separation Mechanisms for 

Learning Representations from Multi-Timescale Data 

In the real world, we may need to learn from data with multiple levels of autocorrelation. Moreover, 

in real-world settings, there are no pre-defined labels to support the learning. It was unknown how or 

whether a learning mechanism with brain-like architectural constraints could exploit multiple 

timescales of data to learn multi-timescale representations. We tested the efficacy of brain-inspired 

leaky memory and multiscale memory gating mechanisms for unsupervised representation learning. 

We found that autoencoder models equipped with recurrence and multi-timescale gating could 

successfully learn to reconstruct the input, and, moreover, that they learned representations which 

selectively separated multiple timescales of the data stream. 

 

6.1.3. How Human Language Processing is Affected by Interruptions  

In the real world, our cognitive processes may experience a transient change in the information stream, 

such as encountering interruptions, while carrying out a primary task. Experiencing interruptions when 

reading is unavoidable in our daily life, however, the consequences of encountering different types of 

interruptions for how we process the information remains unclear. Despite decades of research, there 
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were conflicting findings on which kinds of interruptions most impacted online reading 

comprehension and memory. We investigate how encountering many different types of interruptions, 

all tested within a common paradigm, would influence our processing and subsequent memory of a 

narrative. We explored two main axes along which interruptions may vary: (i) interruptions that similar 

or dissimilar to reading in terms of the cognitive processes; (ii) interruptions whose internal semantic 

content was similar or dissimilar to the semantic content of the narrative. Our data showed that 

resumption lags were smaller when the interrupting task was cognitively dissimilar from reading (e.g. 

a simple geometry task), but the similarity of the internal content of the interruption (e.g. its lexical 

and semantic similarity) had near-zero effect on resumption lags. Strikingly, we did not observe any 

resumption lag when participants were not told they would be experiencing interruptions. Moreover, 

we found consistent effects of interruption on detailed textual memory, in contrast to many prior 

claims that human reading comprehension was largely robust to interruption.  

 

6.1.4. How Processing in Neural Language Models is Affected by Interruptions 

in the Prior Context 

Neural Language Models (NLMs) are powerful and flexible models that can process coherent data 

stream, leading to robust predictions. However, when dealing with real-world language data, changes 

in the topic of a sentence from the previous one, can lead to incongruencies in the models input 

stream. It remained unexplored how NLMs process information in the presence of interrupting 

incongruent material: whether they can separate out the incongruent material to prevent it from 

influencing their predictions, and which kinds of incongruencies were most disruptive to their 

predictions. We tested two NLMs: a recurrent LSTM model and a feedforward attention-based model 

called GPT-2. We explored how NLMs respond to interrupting moments in language data and how 
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length, location, and semantic confusability of the interruptions, as well as NLMs’ architectural 

constraints, affect their predictions. Our goal was to explore whether and when these models can 

effectively combine relevant information over time, despite the insertion of interruptions; and further, 

to compare the performance of NLMs against humans in order to determine which interruptions and 

incongruencies humans find difficult to handle. 

We observed that the perplexity of the LSTM model qualitatively matched changes in human 

reading times during incongruent passages of text. Both the LSTM and humans showed a significant 

increase in processing difficulty when encountering material that was different from the content of 

the main text. Unlike humans and the LSTM model, GPT-2's predictions remained largely unchanged 

during the interruptions; it was only after the interruption was over and the primary text resumed that 

the GPT-2 predictions shifted to accommodate the new context. 

 

6.2. Future Directions 

 
6.2.1. Testing Biologically-Constrained Neural Networks for Learning from 

Naturalistic Information Sequences 

 

Category Learning 

In Chapter 2, we first investigated the influence of autocorrelation in sequence of training examples 

on category-learning in feedforward neural networks. We then identified brain-inspired integration 

and separation mechanisms that enabled these models to exploit autocorrelation in data sequences for 

learning more efficiently. Future research should explore the effects of autocorrelation in data on 
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category-learning in more complex neural networks models for object classification, such as 

convolutional neural network (CNN) models. 

Consistent with our prior findings, our preliminary data showed that feedforward CNNs also 

suffer from autocorrelation in exemplar sequences. We ran an exploratory experiment in which for 

the CNN model, we employed ResNet-18 (pretrained with ImageNet dataset (He et al. 2016)) to 

categorize Fashion MNIST examples. We found that similar to the simple feedforward neural 

networks tested in Chapter 2 (Figure 2-2 A), learning was slower for higher levels of autocorrelation, 

and fastest when any autocorrelation was avoided. Further research is required to investigate whether 

equipping CNNs with our biologically plausible integration and separation mechanisms would enable 

these models to exploit the autocorrelation in training sequences for higher learning efficiency.  

 

Representation Learning 

In Chapter 3, we investigated the temporal properties of simple autoencoder models' internal 

representations by using a synthetic dataset that had multi-timescale autocorrelation. Future research 

could explore the effect of equipping CNN models with leaky memory and reset mechanisms on their 

capability to learn interpretable temporal representations from data structures which are more realistic 

and temporally complicated, such as videos from the real world. 

Our preliminary data suggested that when training a CNN with frames of a video dataset with 

natural and complex temporal structure, internal representations of higher levels of CNN demonstrate 

multiple timescales. We tested a CNN model with sequential data from frames of a real-world video 

(Figure 6-1 A). For the CNN model, we employed ResNet-18 (He et al. 2016). We took the internal 

representations of the last hidden layer in ResNet-18, which was the output of the average pooling 
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layer, and analyzed it to see whether it contains multiple timescales (Figure 6-1 B). In our preliminary 

analyses, we measured the temporal autocorrelation in the ResNet-18 internal representations (vector 

of size 1*512), we examined how these hidden representations change over time (over different 

iterations). To this end, we calculated how fast or slow the autocorrelation of each of 512 features in 

the internal representations change over time. We called a feature fast-changing if its autocorrelation 

drops below the threshold with fewer lags (e.g. lag of 1 or 2). In contrast, a feature was called slow-

changing if its autocorrelation drops below the threshold with more lags (e.g. lag of 4 or 5). We used 

an arbitrary threshold equal to 0.35 but using other thresholds is also possible. Using lower threshold 

allows for getting more distinct timescales. We found that internal representations in higher levels of 

ResNet demonstrate multiple timescales, some changing faster over time and some changing more 

slowly (Figure 6-1 C and D). Therefore, consistent with our prediction, we found that when a CNN 

model is exposed to real-world information stream that contains multiple levels of slowness, internal 

representations in its higher levels also reflect multiple timescales. 
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Figure 6-1. Real-world video with multiple levels of autocorrelation.  
(A) Frames of a real-world video used as the input to the model shown in section B. (B) Input and output of the 
pretrained ResNet-18. Input: frames of the video shown in A; Output: values of ResNet-18 last hidden layer before 
Softmax. (C) A sample fast-changing feature and a sample slow-changing feature of the values taken from ResNet 
model. (D) Change in the consecutive values of a fast (left) vs slow (right) feature. 

 

Future research could explore whether equipping CNN models with leaky memory and reset 

mechanisms enables them to learn interpretable temporal representations from temporally 

complicated data structures, such as videos from the real world.  
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6.2.2. Effects of Lingering during Interruptions on Subsequent Memory 

The results of Chapter 4 indicated that participants' memories of the information preceding the 

interruptions varied depending on the type of interruption. When some material was followed by a 

Pause interruption, recognition memory for that material was significantly enhanced, whereas it 

marginally declined when the reading material was followed by Geometry interruptions (Figure 6-2 

A). Moreover, participants from Pause interruptions reported the highest level of lingering of the story 

in their minds during the interruptions, while those in the Geometry interruption condition reported 

the lowest (Figure 6-2 B). 

 

Figure 6-2. Memory of pre-interruption information versus lingering during interruptions.  
A) Change in accuracy of recognition memory of information preceding interruptions relative to Intact condition. B) 
Percentage of Participants who reported lingering on the main story during interruptions. 
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If lower subsequent memory is associated with lower lingering, individuals with lower lingering 

may demonstrate lower memory. Therefore, a promising line of future inquiry would be interesting to 

explore the individual differences in participants’ memory performance and their lingering scores. 

A more general possibility is that engaging in an interrupting activity that requires different 

cognitive processes than reading reduces the chances of lingering  of information that precede the 

interruption, thus disrupting the encoding of that information. Here, we use the term “lingering” to 

describe the act of reflecting, either consciously or unconsciously, on information that has been 

previously read. If lower lingering during Geometry interruptions is the cause of the decreased 

recognition memory, then modulating the lingering level should also modulate the memory 

performance. One might test this hypothesis by asking participants in the Pause condition to 

intentionally linger on the preceding material or to avoid lingering on it. We expect that those who 

actively linger will show an improvement in memory encoding, while those who actively avoid 

lingering will show a decrease in memory. 

 

6.2.3. Effects of Semantic Properties of Information on Processes in NLMs and 

Humans 

In Chapters 4 and 5, we tested the semantic similarity of interruptions to the main text within a limited 

range of similarity scores between -0.2 to 0.3. In humans, we found that when encountering high-

similarity interruptions, participants were able to identify the change in the information flow reflect in 

an increase in their reading time. Additionally, GPT-2 did not show any difference between processing 

low- versus high-similarity interruptions. One possibility is that our current high-similarity 

interruptions (~0.3 cosine similarity) are still sufficiently distinct from the main text that both humans 
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and GPT-2 can recognize that they are distinct and then process them separately without difficulty or 

confusion. In contrast to humans and GPT-2, the LSTM not only was not negatively affected by 

semantically similar interruption, it actually benefited from these interruptions (as reflected in decrease 

in perplexity). 

Future studies should explore a broader array of semantic similarity, including interruption 

content that has a higher level of similarity to the primary text. In an extreme case of similarity, the 

interruptions would be so semantically similar to the primary context that they would seem to be part 

of the main context. Humans and GPT-2 might also benefit from such interrupting material, although 

it may not be considered an “interruption” anymore.  

We ran an exploratory experiment to test the effects of extremely similar interruptions on 

LSTM and GPT-2. To create extremely similar interruptions, we utilized an Transformer language 

model called PEGASUS (Zhang et al. 2020), which is fine-tuned for paraphrasing, to automatically 

paraphrase the target sentence from the main text, and implemented it using HuggingFace library 

(Wolf et al. 2020). These interruptions had a similarity score of around 0.85, which is much higher 

than the scores previously tested (~0.3).  

Our initial findings indicate that GPT-2, similar to the LSTM, may benefit from the inserted 

interrupting context if the interruptions are very similar to the main text. GPT-2’s perplexity dropped 

drastically (up to 80% reduction) when the interruptions were paraphrases of the target sentence. 

Interestingly, LSTM's perplexity was only slightly lower than that of the randomly selected 

interruptions (up to 30% reduction), despite the fact that the target sentence and the paraphrased 

sentence contained a lot of the same tokens. The small change in LSTM’s response to similar 

interruptions (~0.3) versus extremely similar interruptions (~0.85) supports what prior research 
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suggested – that LSTM relies on the gist of the information rather than specific tokens (Armeni, 

Honey, and Linzen 2022). 

 

Figure 6-3. Effects of extremely similar interruptions on LSTM and GPT-2. 
Left) Change in perplexity of LSTM. Blue points show data for interruptions that are randomly selected from corpus 
with similarity score around 0.3. Yellow points show data for interruptions that are paraphrased of the target sentence. 
Middle) Change in perplexity of GPT-2 for the same interruptions. Right) Schematic of how similarity is captured in 
current analysis. Each dot shows data from one target sentence. The primary text used in this experiment was the APA 
article. 

 

The presence of repeated tokens could explain the drastic drop in GPT-2’s perplexity when 

processing the target sentence following a paraphrase. To further our understanding of the effects of 

semantic similarity on how humans and NLMs process incongruencies, future studies should 

investigate other paraphrasing methods that convey the same information without using the same 

tokens. Additionally, they should design interruptions that contain overlapping tokens whose 

contextual meaning differs across the two instances. By examining the proposed conditions in both 

humans and NLMs, we can gain better insights into how each model utilizes the semantics of data 

and how this is distinct from individual tokens. 

Additionally, future research should examine other semantic-capturing methods for designing 

semantically similar and dissimilar material. In our current studies, we extracted semantic properties 

of data using USE method which may only captures a subset of mostly lexical similarity (Cer et al. 
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2018). Further research is needed to investigate other semantic-capturing methods, possibly utilizing 

a more cutting-edge language model, to capture deeper aspects of semantic properties conveyed by a 

sentence such as situational information rather than just lexical information. 

 

6.3. Conclusions 

In this thesis, I pursued four lines of investigation into the costs and benefits of integration and 

separation for learning and comprehension in humans and machines. The first two studies focused 

on learning and tested the efficacy of brain-inspired constraints for exploiting temporal correlation in 

data for higher learning efficiency and for learning temporally interpretable representations. The third 

and fourth studies examined the performance of modern pretrained neural language models and 

human behavior when processing information with transient moments of incongruencies.  

In summary, our findings have identified mechanisms by which both humans and machines 

can take advantage of temporal continuity in the environment for learning about, comprehending and 

predicting our dynamic world. I hope that the methods and results in this dissertation will be useful 

for future studies investigating learning and comprehension from real-world temporally structured 

data in both artificial and biological neural networks. 

  



 130 

References 

 
Armeni, Kristijan, Christopher Honey, and Tal Linzen. 2022. “Characterizing Verbatim Short-Term 

Memory in Neural Language Models.” http://arxiv.org/abs/2210.13569. 

Arora, Tushar, and Ming Bo Cai. 2021. “Learning To Perceive Objects By Prediction,” no. Svrhm. 

Baldassano, Christopher, Janice Chen, Asieh Zadbood, Jonathan W Pillow, and Kenneth A 
Norman. 2018. “Discovering Event Structure in Continuous Narrative Perception and 
Memory” 95 (3): 709–21. https://doi.org/10.1016/j.neuron.2017.06.041.Discovering. 

Ben-Yakov, Aya, Neetai Eshel, and Yadin Dudai. 2013. “Hippocampal Immediate Poststimulus 
Activity in the Encoding of Consecutive Naturalistic Episodes.” Journal of Experimental 
Psychology: General 142 (4): 1255–63. https://doi.org/10.1037/a0033558. 

Ben-Yakov, Aya, Verity Smith, and Richard Henson. 2021. “The Limited Reach of Surprise: 
Evidence against Effects of Surprise on Memory for Preceding Elements of an Event.” 
Psychonomic Bulletin and Review. https://doi.org/10.3758/s13423-021-01954-5. 

Bengio, Yoshua, Jerome Louradour, Ronan Collobert, and Jason Weston. 2009. “Curriculum 
Learning.” Technical Report 60 (1): 22–23. https://doi.org/10.7547/87507315-60-1-22. 

Bernacchia, Alberto, Hyojung Seo, Daeyeol Lee, and Xiao Jing Wang. 2011. “A Reservoir of Time 
Constants for Memory Traces in Cortical Neurons.” Nature Neuroscience 14 (3): 366–72. 
https://doi.org/10.1038/nn.2752. 

Bright, Ian M., Miriam L.R. Meister, Nathanael A. Cruzado, Zoran Tiganj, Elizabeth A. Buffalo, and 
Marc W. Howard. 2020. “A Temporal Record of the Past with a Spectrum of Time Constants 
in the Monkey Entorhinal Cortex.” Proceedings of the National Academy of Sciences of the United States 
of America 117 (33): 20274–83. https://doi.org/10.1073/PNAS.1917197117. 

Broadbent, DE. 1966. “Perception and Communication.” Applied Psychology Unit of the Medical Research 
Council, Cambridge 8 (6): 264–69. https://doi.org/10.1108/eb015727. 

Budiu, Raluca, and John R. Anderson. 2004. “Interpretation-Based Processing: A Unified Theory of 
Semantic Sentence Comprehension.” Cognitive Science 28 (1): 1–44. 
https://doi.org/10.1016/j.cogsci.2003.10.001. 

Cer, Daniel, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah 
Constant, et al. 2018. “Universal Sentence Encoder for English.” EMNLP 2018 - Conference on 
Empirical Methods in Natural Language Processing: System Demonstrations, Proceedings, 169–74. 
https://doi.org/10.18653/v1/d18-2029. 

Chaudhuri, Rishidev, Kenneth Knoblauch, Marie Alice Gariel, Henry Kennedy, and Xiao Jing 
Wang. 2015. “A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the 
Primate Cortex.” Neuron 88 (2): 419–31. https://doi.org/10.1016/j.neuron.2015.09.008. 



 131 

Chien, Hsiang Yun Sherry, and Christopher J. Honey. 2020. “Constructing and Forgetting Temporal 
Context in the Human Cerebral Cortex.” Neuron 106 (4): 675-686.e11. 
https://doi.org/10.1016/j.neuron.2020.02.013. 

Chomsky, Noam. 1965. “Aspects of the Theory of Syntax.” The MIT Press, 827–30. 

Cocchi, Luca, Leonardo L. Gollo, Andrew Zalesky, and Michael Breakspear. 2017. “Criticality in the 
Brain: A Synthesis of Neurobiology, Models and Cognition.” Progress in Neurobiology 158: 132–
52. https://doi.org/10.1016/j.pneurobio.2017.07.002. 

Cowan, Nelson. 2017. “The Many Faces of Working Memory and Short-Term Storage.” Psychonomic 
Bulletin and Review 24 (4): 1158–70. https://doi.org/10.3758/s13423-016-1191-6. 

Delaney, Peter F., and K. Anders Ericsson. 2016. “Long-Term Working Memory and Transient 
Storage in Reading Comprehension: What Is the Evidence? Comment on Foroughi, Werner, 
Barragán, and Boehm-Davis (2015).” Journal of Experimental Psychology: General 145 (10): 1406–9. 
https://doi.org/10.1037/xge0000181. 

Dodell-Feder, David, Jorie Koster-Hale, Marina Bedny, and Rebecca Saxe. 2011. “FMRI Item 
Analysis in a Theory of Mind Task.” NeuroImage 55 (2): 705–12. 
https://doi.org/10.1016/j.neuroimage.2010.12.040. 

Dong, Dawei, and Joseph Atick. 1995. “Statistics of Natural Time-Varying Images.” Network: 
Computation in Neural Systems 6 (3): 345–58. https://doi.org/10.1088/0954-898x/6/3/003. 

DuBrow, Sarah, and Lila Davachi. 2016. “Temporal Binding within and across Events.” Neurobiology 
of Learning and Memory 134: 107–14. https://doi.org/10.1016/j.nlm.2016.07.011. 

Elman, Jeffrey L. 1993. “Learning and Development in Neural Networks: The Importance of 
Starting Small.” Cognition 48 (1): 71–99. https://doi.org/10.1016/0010-0277(93)90058-4. 

Ericsson, K. Anders, and Walter Kintsch. 1995. “Long-Term Working Memory.” 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.2523&rep=rep1&type=pdf. 

Firestone, Chaz. 2020. “Performance vs. Competence in Human–Machine Comparisons.” Proceedings 
of the National Academy of Sciences of the United States of America 117 (43): 26562–71. 
https://doi.org/10.1073/pnas.1905334117. 

Foroughi, Cyrus K., Daniela Barragán, and Deborah A. Boehm-Davis. 2016. “Interrupted Reading 
and Working Memory Capacity.” Journal of Applied Research in Memory and Cognition 5 (4): 395–
400. https://doi.org/10.1016/j.jarmac.2016.02.002. 

Foroughi, Cyrus K., Nicole E. Werner, Daniela Barragán, and Deborah A. Boehm-Davis. 2015. 
“Interruptions Disrupt Reading Comprehension.” Journal of Experimental Psychology: General 144 
(3): 704–9. https://doi.org/10.1037/xge0000074. 

Foroughi, Cyrus K., Nicole E. Werner, Daniela Barragán, and Deborah A. Boehm-Davis. 2016. 
“Multiple Interpretations of Long-Term Working Memory Theory: Reply to Delaney and 
Ericsson (2016).” Journal of Experimental Psychology: General 145 (10): 1410–11. 



 132 

https://doi.org/10.1037/xge0000221. 

Foroughi, Cyrus K., Nicole E. Werner, Ryan McKendrick, David M. Cades, and Deborah A. 
Boehm-Davis. 2016. “Individual Differences in Working-Memory Capacity and Task 
Resumption Following Interruptions.” Journal of Experimental Psychology: Learning Memory and 
Cognition 42 (9): 1480–88. https://doi.org/10.1037/xlm0000251. 

Foster, Brett L., Mohammad Dastjerdi, and Josef Parvizi. 2012. “Neural Populations in Human 
Posteromedial Cortex Display Opposing Responses during Memory and Numerical 
Processing.” Proceedings of the National Academy of Sciences of the United States of America 109 (38): 
15514–19. https://doi.org/10.1073/pnas.1206580109. 

Gao, Tianxiang, and Vladimir Jojic. 2017. “Sample Importance in Training Deep Neural Networks.” 
ICLR 2017, no. 2011: 1–12. 

Glanzer, Murray, David Dorfman, and Barbara Kaplan. 1981. “Short-Term Storage in the 
Processing of Text.” Journal of Verbal Learning and Verbal Behavior 20 (6): 656–70. 
https://doi.org/10.1016/S0022-5371(81)90229-2. 

Glanzer, Murray, Beth Fischer, and David Dorfman. 1984. “Short-Term Storage in Reading.” Journal 
of Verbal Learning and Verbal Behavior 23 (4): 467–86. https://doi.org/10.1016/S0022-
5371(84)90300-1. 

Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the Difficulty of Training Deep 
Feedforward Neural Networks.” Journal of Machine Learning Research 9: 249–56. 

Goldstein, Ariel. 2021. “Thinking Ahead: Spontaneous next Word Predictions in Context as a 
Keystone of Language in Humans and Machines,” 1–43. 

Goldstein, Ariel, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A. 
Nastase, et al. 2022. “Shared Computational Principles for Language Processing in Humans 
and Deep Language Models.” Nature Neuroscience 25 (3): 369–80. 
https://doi.org/10.1038/s41593-022-01026-4. 

Grill-Spector, Kalanit, and Kevin S. Weiner. 2013. “The Functional Architecture of the Ventral 
Temporal Cortex and Its Role in Categorization.” Nature Reviews Neuroscience 23 (1): 1–7. 
https://doi.org/10.1038/nrn3747.The. 

Hasson, U., E. Yang, I. Vallines, D. J. Heeger, and N. Rubin. 2008. “A Hierarchy of Temporal 
Receptive Windows in Human Cortex.” Journal of Neuroscience 28 (10): 2539–50. 
https://doi.org/10.1523/JNEUROSCI.5487-07.2008. 

Hasson, Uri, Janice Chen, and Christopher J. Honey. 2015. “Hierarchical Process Memory: Memory 
as an Integral Component of Information Processing.” Trends in Cognitive Sciences 19 (6): 304–13. 
https://doi.org/10.1016/j.tics.2015.04.006. 

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual Learning for 
Image Recognition.” Proceedings of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition 2016-Decem: 770–78. https://doi.org/10.1109/CVPR.2016.90. 



 133 

Hénaff, Olivier J., Robbe L.T. Goris, and Eero P. Simoncelli. 2019. “Perceptual Straightening of 
Natural Videos.” Nature Neuroscience 22 (6): 984–91. https://doi.org/10.1038/s41593-019-0377-
4. 

Hochreiter, Sepp, and Jurgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation. 

Honey, Christopher J., Ehren L. Newman, and Anna C. Schapiro. 2017. “Switching between 
Internal and External Modes: Amultiscale Learning Principle.” Network Neuroscience 104 (51): 
20167–72. https://doi.org/10.1073/pnas.0709640104. 

Honey, Christopher J., Thomas Thesen, Tobias H. Donner, Lauren J. Silbert, Chad E. Carlson, 
Orrin Devinsky, Werner K. Doyle, Nava Rubin, David J. Heeger, and Uri Hasson. 2012. “Slow 
Cortical Dynamics and the Accumulation of Information over Long Timescales.” Neuron 76 
(2): 423–34. https://doi.org/10.1016/j.neuron.2012.08.011. 

Illing, Bernd, Wulfram Gerstner, and Johanni Brea. 2019. “Biologically Plausible Deep Learning — 
But How Far Can We Go with Shallow Networks?” Neural Networks 118: 90–101. 
https://doi.org/10.1016/j.neunet.2019.06.001. 

Ilya Sutskever. 2013. “Training Recurrent Neural Networks.” Ph.D Thesis. 

Jain, Shailee, Vy A. Vo, Shivangi Mahto, Amanda LeBel, Javier S. Turek, and Alexander G. Huth. 
2020. “Interpretable Multi-Timescale Models for Predicting FMRI Responses to Continuous 
Natural Speech.” Advances in Neural Information Processing Systems 2020-Decem (NeurIPS): 1–12. 

Kelly, Matthew A., and David Reitter. 2018. “How Language Processing Can Shape a Common 
Model of Cognition.” Procedia Computer Science 145: 724–29. 
https://doi.org/10.1016/j.procs.2018.11.047. 

Khandelwal, Urvashi, He He, Peng Qi, and Dan Jurafsky. 2018. “Sharp Nearby, Fuzzy Far Away: 
How Neural Language Models Use Context.” ACL 2018 - 56th Annual Meeting of the Association 
for Computational Linguistics, Proceedings of the Conference (Long Papers) 1: 284–94. 
https://doi.org/10.18653/v1/p18-1027. 

Kietzmann, Tim C., Courtney J. Spoerer, Lynn K.A. Sörensen, Radoslaw M. Cichy, Olaf Hauk, and 
Nikolaus Kriegeskorte. 2019. “Recurrence Is Required to Capture the Representational 
Dynamics of the Human Visual System.” Proceedings of the National Academy of Sciences of the United 
States of America 116 (43): 21854–63. https://doi.org/10.1073/pnas.1905544116. 

Kintsch, Walter, and Teun A. van Dijk. 1978. “Toward a Model of Text Comprehension and 
Production.” Psychological Review 85 (5): 363–94. https://doi.org/10.1037/0033-295X.85.5.363. 

Kozachkov, Leo, John Tauber, Mikael Lundqvist, Scott L Brincat, Jean-Jacques Slotine, and Earl K 
Miller. 2022. “Robust Working Memory through Short-Term Synaptic Plasticity.” BioRxiv, 
2022.01.09.475558. 
https://www.biorxiv.org/content/10.1101/2022.01.09.475558v1%0Ahttps://www.biorxiv.org
/content/10.1101/2022.01.09.475558v1.abstract. 

Kumar, M. Pawan, Benjamin Packer, and Daphne Koller. 2010. “Self-Paced Learning for Latent 



 134 

Variable Models.” Advances in Neural Information Processing Systems 23: 24th Annual Conference on 
Neural Information Processing Systems 2010, NIPS 2010, 1–9. 

Larsen, Janet D., and Alan Baddeley. 2003. “Disruption of Verbal STM by Irrelevant Speech, 
Articulatory Suppression, and Manual Tapping: Do They Have a Common Source?” Quarterly 
Journal of Experimental Psychology Section A: Human Experimental Psychology 56 (8): 1249–68. 
https://doi.org/10.1080/02724980244000765. 

Lawrence, Zachary, and Daniel Peterson. 2016. “Mentally Walking through Doorways Causes 
Forgetting: The Location Updating Effect and Imagination.” Memory 24 (1): 12–20. 
https://doi.org/10.1080/09658211.2014.980429. 

Le, Xuan Hien, Hung Viet Ho, Giha Lee, and Sungho Jung. 2019. “Application of Long Short-Term 
Memory (LSTM) Neural Network for Flood Forecasting.” Water (Switzerland) 11 (7). 
https://doi.org/10.3390/w11071387. 

LeCun, Yann, Koray Kavukcuoglu, and Clément Farabet. 2010. “Convolutional Networks and 
Applications in Vision.” ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: 
Nano-Bio Circuit Fabrics and Systems, no. May: 253–56. 
https://doi.org/10.1109/ISCAS.2010.5537907. 

Ledoux, Kerry, and Peter C. Gordon. 2006. “Interruption-Similarity Effects during Discourse 
Processing.” Memory 14 (7): 789–803. https://doi.org/10.1080/09658210600679915. 

Lee, Dong Hyun, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. 2015. “Difference Target 
Propagation.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics) 9284: 498–515. https://doi.org/10.1007/978-3-319-
23528-8_31. 

Li, Mu, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. 2014. “Efficient Mini-Batch Training 
for Stochastic Optimization.” Proceedings of the ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 661–70. https://doi.org/10.1145/2623330.2623612. 

Lillicrap, Timothy P., Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. 2020. 
“Backpropagation and the Brain.” Nature Reviews Neuroscience 21 (6): 335–46. 
https://doi.org/10.1038/s41583-020-0277-3. 

Lillicrap, Timothy P, and Adam Santoro. 2019. “Backpropagation through Time and the Brain.” 
Current Opinion in Neurobiology 55: 82–89. https://doi.org/10.1016/J.CONB.2019.01.011. 

Linzen, Tal, Emmanuel Dupoux, and Yoav Goldberg. 2016. “Assessing the Ability of LSTMs to 
Learn Syntax-Sensitive Dependencies.” ACL 4 (1990): 521–35. 

Logie, Robert H., Gianna Cocchini, Sergio Della Sala, and Alan D. Baddeley. 2004. “Is There a 
Specific Executive Capacity for Dual Task Coordination? Evidence from Alzheimer’s Disease.” 
Neuropsychology 18 (3): 504–13. https://doi.org/10.1037/0894-4105.18.3.504. 

Mahto, Shivangi, Vy A. Vo, Javier S. Turek, and Alexander G. Huth. 2020. “Multi-Timescale 
Representation Learning in LSTM Language Models,” 1–19. http://arxiv.org/abs/2009.12727. 



 135 

Malmberg, Kenneth J., Jeroen G.W. Raaijmakers, and Richard M. Shiffrin. 2019. “50 Years of 
Research Sparked by Atkinson and Shiffrin (1968).” Memory and Cognition 47 (4): 561–74. 
https://doi.org/10.3758/s13421-019-00896-7. 

Ming, Yao, Shaozu Cao, Ruixiang Zhang, Zhen Li, Yuanzhe Chen, Yangqiu Song, and Huamin Qu. 
2018. “Understanding Hidden Memories of Recurrent Neural Networks.” 2017 IEEE 
Conference on Visual Analytics Science and Technology, VAST 2017 - Proceedings, 13–24. 
https://doi.org/10.1109/VAST.2017.8585721. 

Mitchell, Melanie. 2020. “On Crashing the Barrier of Meaning in Artificial Intelligence.” AI Magazine 
41 (2): 86–92. https://doi.org/10.1609/aimag.v41i2.5259. 

Monk, Christopher A., J. Gregory Trafton, and Deborah A. Boehm-Davis. 2008. “The Effect of 
Interruption Duration and Demand on Resuming Suspended Goals.” Journal of Experimental 
Psychology: Applied 14 (4): 299–313. https://doi.org/10.1037/a0014402. 

Mozer, M, R Lippmann, J Moody, and D Touretsky. 1992. “Induction of Multiscale Temporal 
Structure.” Advances in Neural Information Processing Systems 4, 275–82. 

Murray, John D., Alberto Bernacchia, David J. Freedman, Ranulfo Romo, Jonathan D. Wallis, 
Xinying Cai, Camillo Padoa-Schioppa, et al. 2014. “A Hierarchy of Intrinsic Timescales across 
Primate Cortex.” Nature Neuroscience 17 (12): 1661–63. https://doi.org/10.1038/nn.3862. 

Nayebi, Aran, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo, James J. 
DiCarlo, and Daniel L.K. Yamins. 2018. “Task-Driven Convolutional Recurrent Models of the 
Visual System.” Advances in Neural Information Processing Systems 2018-Decem (Nips): 5290–5301. 

O’Doherty, Cliona, and Rhodri Cusack. 2022. “Objects or Context? Learning From Temporal 
Regularities in Continuous Visual Experience With an Infant-Inspired DNN.” 
https://doi.org/10.32470/ccn.2022.1093-0. 

Payne, Jessica D., Eric D. Jackson, Siobhan Hoscheidt, Lee Ryan, W. Jake Jacobs, and Lynn Nadel. 
2007. “Stress Administered Prior to Encoding Impairs Neutral but Enhances Emotional Long-
Term Episodic Memories.” Learning and Memory 14 (12): 861–68. 
https://doi.org/10.1101/lm.743507. 

Radford, Alec, * Jeffrey Wu, Rewon Child 1, David Luan, ** Dario Amodei, and Ilya Sutskever. 
2020. “Language Models Are Unsupervised Multitask Learners.” OpenAI Blog 1 (May): 1–7. 
https://github.com/codelucas/newspaper. 

Radvansky, Gabriel A., and David E. Copeland. 2010. “Reading Times and the Detection of Event 
Shift Processing.” Journal of Experimental Psychology: Learning Memory and Cognition 36 (1): 210–16. 
https://doi.org/10.1037/a0017258. 

Raut, Ryan V., Abraham Z. Snyder, and Marcus E. Raichle. 2020. “Hierarchical Dynamics as a 
Macroscopic Organizing Principle of the Human Brain.” Proceedings of the National Academy of 
Sciences of the United States of America 117 (34): 20890–97. 
https://doi.org/10.1073/pnas.2003383117. 



 136 

Robert M. French. 1999. “Catastrophic Forgetting in Connectionists Networks.” Trends in Cognitive 
Sciences 3 (4): 128–35. 

Rubin, David C., Robert W. Schrauf, and Daniel L. Greenberg. 2003. “Belief and Recollection of 
Autobiographical Memories.” Memory and Cognition 31 (6): 887–901. 
https://doi.org/10.3758/BF03196443. 

Ruder, Sebastian. 2016. “An Overview of Gradient Descent Optimization Algorithms.” 
http://arxiv.org/abs/1609.04747. 

Schijndel, Marten Van, and Tal Linzen. 2018. “A Neural Model of Adaptation in Reading.” ACL, 
no. 1. 

Schijndel, Marten Van, Aaron Mueller, and Tal Linzen. 2019. “Quantity Doesn ’ t Buy Quality 
Syntax with Neural Language Models,” 5831–37. 

Shin, Seongjin, Sang Woo Lee, Hwijeen Ahn, Sungdong Kim, Hyoung Seok Kim, Boseop Kim, 
Kyunghyun Cho, et al. 2022. “On the Effect of Pretraining Corpora on In-Context Learning by 
a Large-Scale Language Model.” NAACL 2022 - 2022 Conference of the North American Chapter of 
the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 
5168–86. https://doi.org/10.18653/v1/2022.naacl-main.380. 

Smith, Nathaniel J., and Roger Levy. 2013. “The Effect of Word Predictability on Reading Time Is 
Logarithmic.” Cognition 128 (3): 302–19. https://doi.org/10.1016/j.cognition.2013.02.013. 

Smith, Stephen M., Diego Vidaurre, Christian F. Beckmann, Matthew F. Glasser, Mark Jenkinson, 
Karla L. Miller, Thomas E. Nichols, et al. 2013. “Functional Connectomics from Resting-State 
FMRI.” Trends in Cognitive Sciences 17 (12): 666–82. https://doi.org/10.1016/j.tics.2013.09.016. 

Soltani, Alireza, John D. Murray, Hyojung Seo, and Daeyeol Lee. 2021. “Timescales of Cognition in 
the Brain.” Current Opinion in Behavioral Sciences 41: 30–37. 
https://doi.org/10.1016/j.cobeha.2021.03.003. 

Spoerer, Courtney J, Patrick McClure, and Nikolaus Kriegeskorte. 2017. “Recurrent Convolutional 
Neural Networks: A Better Model of Biological Object Recognition.” Frontiers in Psychology 8: 
1551. https://doi.org/10.3389/fpsyg.2017.01551. 

Spreng, R Nathan, Raymond A Mar, and Alice S N Kim. 2008. “The Common Neural Basis of 
Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A 
Quantitative Meta-Analysis,” 489–510. 

Strobelt, Hendrik, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M. Rush. 2018. 
“LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural 
Networks.” IEEE Transactions on Visualization and Computer Graphics 24 (1): 667–76. 
https://doi.org/10.1109/TVCG.2017.2744158. 

Subramanian, Sandeep, Jonathan Pilault, Raymond Li, and Chris Pal. 2020. “On Extractive and 
Abstractive Neural Document Summarization with Transformer Language Models,” 9308–19. 
https://doi.org/10.18653/v1/2020.emnlp-main.748. 



 137 

Swallow, Khena M., Jeffrey M. Zacks, and Richard A. Abrams. 2009. “Event Boundaries in 
Perception Affect Memory Encoding and Updating.” Journal of Experimental Psychology: General 
138 (2): 236–57. https://doi.org/10.1037/a0015631. 

Tieleman, T., and Geoffrey Hinton. 2012. “Divide the Gradient by a Running Average of Its Recent 
Magnitude.” COURSERA: Neural Networks for Machine Learning - RMSprop Lecture 04 (05): 107–
11. https://doi.org/10.4236/jcc.2016.45016. 

Treisman, Anne. 1964. “Monitoring and Storage of Irrelevant Messages in Selective Attention.” 
Journal of Verbal Learning and Verbal Behavior 3 (6): 449–59. https://doi.org/10.1016/S0022-
5371(64)80015-3. 

Ulanovsky, Nachum, Liora Las, Dina Farkas, and Israel Nelken. 2004. “Multiple Time Scales of 
Adaptation in Auditory Cortex Neurons.” Journal of Neuroscience 24 (46): 10440–53. 
https://doi.org/10.1523/JNEUROSCI.1905-04.2004. 

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, 
Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” Advances in Neural 
Information Processing Systems 2017-Decem (Nips): 5999–6009. 

Wang, Jianfeng, and Xiaolin Hu. 2021. “Convolutional Neural Networks with Gated Recurrent 
Connections.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–16. 
https://doi.org/10.1109/TPAMI.2021.3054614. 

Wiskott, Laurenz, and Terrence J Sejnowski. 2002. “Slow Feature Analysis: Unsupervised Learning 
of Invariances.” Neural Computation 14 (4): 715–70. 
https://doi.org/10.1162/089976602317318938. 

Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, 
Pierric Cistac, et al. 2020. “Transformers: State-of-the-Art Natural Language Processing,” 38–
45. https://doi.org/10.18653/v1/2020.emnlp-demos.6. 

Xiao, Han, Kashif Rasul, and Roland Vollgraf. 2017. “Fashion-MNIST: A Novel Image Dataset for 
Benchmarking Machine Learning Algorithms,” 1–6. http://arxiv.org/abs/1708.07747. 

Yamins, Daniel L K, and James J. DiCarlo. 2016. “Using Goal-Driven Deep Learning Models to 
Understand Sensory Cortex.” Nature Neuroscience 19 (3): 356–65. 
https://doi.org/10.1038/nn.4244. 

Zhang, Jingqing, Yao Zhao, Mohammad Saleh, and Peter J. Liu. 2020. “PEGASUS: Pre-Training 
with Extracted Gap-Sentences for Abstractive Summarization.” 37th International Conference on 
Machine Learning, ICML 2020 PartF16814: 11265–76. 

Zheng, Jie, Andrea G.P. Schjetnan, Mar Yebra, Bernard A. Gomes, Clayton P. Mosher, Suneil K. 
Kalia, Taufik A. Valiante, Adam N. Mamelak, Gabriel Kreiman, and Ueli Rutishauser. 2022. 
“Neurons Detect Cognitive Boundaries to Structure Episodic Memories in Humans.” Nature 
Neuroscience 25 (3): 358–68. https://doi.org/10.1038/s41593-022-01020-w. 

 


	Abstract:
	Doctoral Committee:
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	Chapter 1: Introduction
	1.1. Costs and Benefits of Integrating Information over Time
	1.2. Learning Incrementally from Temporally Structured Data
	1.2.1. Effects of Temporally Smooth Data on Category Learning
	1.2.1.1. Effects of Sampling Strategies on Incremental Learning
	1.2.1.2. Potential Costs and Benefits of Training with Smooth Data
	1.2.1.3. Biological Constraints as Inductive Biases for Category Learning

	1.2.2. Learning Representations from Multiscale Data Sequences
	1.2.2.1. Learning from Multi-Timescale Data in Artificial and Biological Neural Networks


	1.3. Effects of Transient Incongruencies on Language Processing in Humans and Neural Language Models
	1.3.1. Effects of Interruptions on Human Language Comprehension and Memory
	1.3.1.1. What Makes an Interruption Disruptive?
	1.3.1.2. Role of Content-Similarity on Disruptiveness of Interruptions
	1.3.1.3. Role of Cognitive-Similarity on Disruptiveness of Interruptions
	1.3.1.4. Evaluation Methods for Measuring Disruptiveness of Interruptions
	1.3.1.3. Handling Interruptions using Working Memory and Long-Term Memory

	1.3.2. How Neural Language Models Separate Relevant from Irrelevant Information in Prior Context
	1.3.2.1. The Impact of Architectural Constraints on Maintenance and Retrieval of Information in NLMs
	1.3.2.2. Accessibility to Prior Context in Different NLMs
	1.3.2.3. Similarities and Differences of NLMs to Language Processing in Humans.
	1.3.2.4. Memory Mechanisms in Humans and NLMs
	1.3.2.5. Effects of Context Incoherencies on Language Processing in Humans and NLMs
	1.3.2.6. Achieving human-level language processing capabilities in language models



	Chapter 2: Effects of Temporal Integration and Separation on Category Learning
	2.1. Background and Motivation
	2.1.1. Research Questions

	2.2. Methods
	2.2.1. Brain-Inspired Constraints
	2.2.2. Manipulating Autocorrelation in Data
	2.2.3. Training Neural Networks

	2.3. Results
	2.4. Discussion and Conclusions

	Chapter 3: Effects of Temporal Integration and Separation on Learning Multi-Timescale Representations
	3.1. Background and Motivation
	3.1.1. Research Questions

	3.2. Methods
	3.2.1. Multi-Timescale Autocorrelation in Training Data
	3.2.2. Autoencoder Architectures with Brain-Inspired Constraints
	3.2.3. Training Autoencoder Networks
	3.2.4. Evaluation Methods for Autoencoder Networks

	3.3. Results
	3.4. Discussion and Conclusions

	Chapter 4: Determining How Human Language Processing is Affected by Interruptions
	4.1. Background and Motivations
	4.1.1. Research Questions

	4.2. Research Design and Methods
	4.2.1. Primary Task
	4.2.2. Experimental Conditions
	4.2.2.1. Interruptions with Low/High Similarity of Cognitive Processing
	4.2.2.2. Interruptions with Low/High Similarity of Content

	4.2.3. Dependent Variables
	4.2.4. Participants
	4.2.5. Statistical Analyses

	4.3. Results
	4.3.1. Reading Time
	4.3.2. Recognition Memory
	4.3.3. Additional Analyses
	4.3.3.1. Accuracy in Interruption Trials
	4.3.3.2. Transportation and Lingering Scores


	4.4. Discussion and Conclusions

	Chapter 5: Determining How Processing in Neural Language Models is Affected by Interruptions
	5.1. Background and Motivation
	5.1.1. Research Questions

	5.2. Methods
	5.2.1. Language Models
	5.2.1.1. GPT-2 Transformer LM.
	5.2.1.2. Long Short-Term Memory LM.

	5.2.2. Experiment Design
	5.2.2.1. Stimuli
	5.2.2.2. Operationalization
	5.2.2.3. Experimental Paradigm
	5.2.2.4. Experimental Conditions


	5.3. Results
	5.3.1. Effects of Interruptions Length
	5.3.2. Effects of the Semantic Similarity of Interruptions
	5.3.3. Effects of Distance from Interruptions

	5.4. Discussion and Conclusions

	Chapter 6: General Discussion and Conclusions
	6.1. Summary of Research Contributions
	6.1.1. Efficacy of Brain-Inspired Integration and Separation Mechanisms for Category Learning
	6.1.2. Efficacy of Brain-Inspired Integration and Separation Mechanisms for Learning Representations from Multi-Timescale Data
	6.1.3. How Human Language Processing is Affected by Interruptions
	6.1.4. How Processing in Neural Language Models is Affected by Interruptions in the Prior Context

	6.2. Future Directions
	6.2.1. Testing Biologically-Constrained Neural Networks for Learning from Naturalistic Information Sequences
	6.2.2. Effects of Lingering during Interruptions on Subsequent Memory
	6.2.3. Effects of Semantic Properties of Information on Processes in NLMs and Humans

	6.3. Conclusions

	References



