DESIGN, SYNTHESIS AND CHARACTERIZATION OF MOLECULAR AND POLYMERIC CYCLOSILANES

by
Qifeng Jiang

A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

January 2023
© 2023 Qifeng Jiang
All rights reserved

Abstract

The structural complexity of crystalline silicon has inspired synthetic chemists to design cyclosilane building blocks for well-defined novel silicon materials with tunable optical properties. This dissertation describes synthetic strategies of constructing novel molecular and polymeric cyclosilane materials and their structure-property-relationships. Polycyclosilanes exhibit microstructure-dependent thermal properties and connectivitydependent UV-vis absorption features. Novel hybrid σ, π-conjugated cyclosilane building blocks with pre-defined stereochemistry allow access to stereoregular polysilanes. Constitutional isomers of sulfur-incorporated π, n, σ-conjugated cyclosilanes can exhibit distinct conformations and delocalization patterns. Theoretical investigations through density functional theory calculations contribute to understanding the optical and electronic properties of these molecular and polymeric cyclosilane materials.

Advisor: Professor Rebekka S. Klausen
Reader: Professor J.D. Tovar
Reader: Professor Howard Fairbrother

Acknowledgements

First, I would like to thank my advisor, Professor Rebekka S. Klausen for her mentorship. Bekka welcomed me as a visiting undergraduate student purchasing summer research and then as a graduate student joining the group. She has not only led me to grow as a synthetic chemist but encouraged me to always explore more throughout graduate school. I could not get through the hard time during the pandemic without her care and support. What I learnt from Bekka, with no doubt, will be a priceless treasure of my life.

I want to thank my thesis committee members, Prof. J.D. Tovar and Prof. Howard Fairbrother, and my GBO committee member, Prof V. Sara Thoi, for their guidance of research and thoughtful advice on career development.

I would also like to thank all the staff in the chemistry department who supported my research in the past 5 years. I want to express my appreciation to Dr. Jonathan Catazaro, the NMR manager of the chemistry department. He has been a great mentor and a heartwarming friend during my time working with him as NMR TA.

Next, I would like to thank all the former and current members of the Klausen lab. I enjoyed the welcoming and inclusive lab culture in the Klausen group and will always miss the lab after graduation. They are already more than colleagues but personal friends of mine. In particular, I would like to thank Dr. Heidi van de Wouw and Dr Eric A. Marro for their mentorship which helped me develop experimental skills and grow as a scientific researcher. I would also like to thank my fantastic undergraduate, Ms. Sydnee Wong. I grew a lot as a mentor while working together with her for almost 3 years. I wish Sydnee the best for the future!

Then I would like to thank all my friends at Hopkins. Together we have been through a wonderful journey. I want to thank Dr. Yuyang Ji, my lab mate and also a friend from my first year. He is more than a close friend, a great collaborator, but a model polymer scientist to me. I learnt a lot about polymer science from him. I would also like to thank Bing Xu , my friend from undergraduate and roommate for 5 years. I will miss all these research discussions when I talk to you about material science and you try to convince me biochemistry is fun.

Last but not least, I would like to express my deepest appreciation to my family. They always encouraged me to chase my dreams. Even on the other side of the world, they supported me with their generous love for years. Without my family, none of my accomplishments can ever be possible. This dissertation is a gift to my family.

Table of Content

Abstract ii
Acknowledgements. iii
Table of Content v
List of Tables vii
List of Figures ix
List of Schemes xv
Chapter 1: Introduction 1
1.1 Forward 1
1.2σ-Conjugation in silanes 1
1.3 Cyclosilanes inspired by crystalline silicon 5
1.4 Hydrosilylation reactions 11
1.5 Polycarbosilane synthesis via hydrosilylation 12
1.6 Functionalization of oligo- and polysilanes via hydrosilylation 15
1.7 Conclusion 18
1.8 Reference 19
Chapter 2: Effect of poly(cyclosilane) microstructure on thermal properties 22
2.1 Introduction 22
2.2 Dehydrocoupling of hydrosilanes catalyzed by Group 4 metallocene 24
2.3 Synthesis of lin-poly $\left(1,3 \mathrm{Si}_{6}\right)$ 28
2.4 Poly(cyclosilane) microstructure 31
2.5 Differential Scanning Calorimetry 35
2.6 Thermal stability of poly(cyclosilane)s 39
2.7 Bond dissociation energy calculations 41
2.8 Conclusion 44
2.9 Reference 44
Chapter 3: Poly(cyclosilane) connectivity tunes optical absorbance 47
3.1 Introduction 47
3.2 UV-vis spectroscopy: homopolymers 50
3.3 Calculated electronic transitions: homopolymers. 51
3.4 Copolymer synthesis and microstructure characterization 58
3.5 UV-vis spectroscopy: copolymers 59
3.6 Calculated electronic transitions: copolymers 61
3.7 Conclusion 66
3.8 Reference 67
Chapter 4: Highly selective addition of cyclosilanes to alkynes enabling new conjugated materials 70
4.1 Introduction 70
4.2 Investigation of regio- and diastereoselectivity 72
4.3 Substrate scope 78
4.4 UV-vis absorbance spectra 82
4.5 Stereoregular conjugated polymer synthesis 84
4.6 Conclusion 87
4.7 Reference 88
Chapter 5: Conjugation in isomeric cyclosilane thioethers 91
5.1 Introduction 91
5.2 Synthesis of isomeric cyclosilane thiolethers 93
5.3 Conformational study via DFT calculations 96
5.4 Time dependent DFT (TD-DFT) calculations 97
5.5 UV-vis spectroscopy 104
5.6 Conclusion 106
5.7 Reference 107
Chapter 6: Impact of stereoregularity on hybrid conjugated polymers 109
6.1 Introduction 109
6.2 Stereoregular hybrid σ, π-conjugated polymers 112
6.3 Synthesis of hybrid conjugated polymers containing linear silane units 116
6.4 Thermal property study with differential scanning calorimetry 118
6.5 UV-vis absorbance spectra 120
6.6 Expanded scope of hybrid conjugated polymers 122
6.7 Conclusion and future 123
6.8 Reference 124
Chapter 7: Experimental details 126
7.1 General information 126
7.2 Effect of poly(cyclosilane) microstructure on thermal properties 129
7.3 Poly(cyclosilane) connectivity tunes optical absorbance 178
7.4 Highly selective addition of cyclosilanes to alkynes enabling new conjugated materials 183
7.5 Conjugation in isomeric cyclosilane thioethers 243
7.6 Impact of stereoregularity on hybrid conjugated polymers 332
7.7 Reference 342
Chapter 8: Curriculum vitae 343

List of Tables

Table 2.3.1 Molecular weight characteristics for metallocene-initiated dehydrocoupling polymerization of cyclosilane building blocks and resultant polymers. 30

Table 2.7.1. Calculated bond dissociation energy of $\mathbf{1 , 4 \mathbf { S i } _ { 6 }}$ and lin-(1,4Si6)3. 42
Table 3.2.1. UV-vis spectroscopic properties of cyclosilane monomers and homopolymers. 51

Table 3.3.1. Calculated vertical electronic transitions in cyclosilane hexamers. TD-PBE0/6-311G(d)//B3YLP/6-31G(d). Relative contributions given in percentages, where $\mathrm{H}=\mathrm{HOMO}$ and L=LUMO... 54

Table 3.5.1. UV-Vis spectroscopic properties of cyclosilane homopolymers and copolymers 60

Table 3.6.1. Calculated vertical electronic transitions in cyclosilane tetramers. TD-PBE0/6-311G(d)//B3YLP/6-31G(d). Relative contributions given in percentages, where $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=\mathrm{LUMO}$. .63

Table 3.6.2. Energy of selected molecular orbitals of tetramers. Calculated at the TD-PBE0/6-311G(d)//B3LYP/6-31G(d) level.64

Table 4.2.1 Optimization of the $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed reaction between phenylacetylene and 1,4Si6. ${ }^{\text {a }}$... 73
Table 5.3.1 Calculated energies of conformers 5.1a and 5.2a.. 97
Table 5.4.1. Calculated vertical electronic transitions in cyclosilane thioethers. Only transitions of wavelength above 230 nm and oscillator strength above 0.05 are shown. Relative contributions given in percentages, where $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=$ LUMO. Assignments are shown if the relative contribution is higher than 10%. 100

Table 5.4.2. Calculated vertical electronic transitions in cyclosilane thioethers. $\mathrm{H}=\mathrm{HOMO}$ and L = LUMO. .. 102

Table 5.5.1. Calculated band gaps in chair-5.1a, 5.1b and 5.1c. $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=\mathrm{LUMO}$. TD-PBE0/6-311G(d)//B3YLP/6-311G(d). 106
Table 6.2.1. Variation of P6.1 molecular weight characteristics with Ni catalysts and ligands. The relative configuration was maintained in the polymerization (high-lighted in red)
Table 6.2.2. Molecular weight characteristics of hybrid conjugated polysilanes........... 115

Table 6.6.1. Molecular weight characteristics of hybrid conjugated polysilanes. ${ }^{\text {a }}$........ 122

List of Figures

Figure 1.2.1 Ladder C model of σ-conjugation. .2

Figure 1.2.2 a) The resonance integrals $\beta_{\text {prim }}, \beta_{\mathrm{gem}}$, and $\beta_{\text {vic }}$ as a function of the dihedral angle ω. b) MO diagram describing schematically the effect of chain length doubling for the case of strong (left) and weak (right) σ-conjugation. Reprinted with permission from reference. ${ }^{17}$ Copyright 2009 Wiley.3

Figure 1.2.3 Temperature evolution of the UV spectrum of PDHS upon cooling of the fresh solution. Rapid cooling (a) from +20 to $-45^{\circ} \mathrm{C}$ and (b) from -40 to $-55^{\circ} \mathrm{C}$. (c) Slow cooling from -20 to $-60^{\circ} \mathrm{C}$. Reprinted with permission from reference. ${ }^{10}$ Copyright 2001 ACS.

Figure 1.2.4 UV absorption spectra of the (a) tetrasilane and (b) hexasilane compounds. Reprinted with permission from reference. ${ }^{18}$ Copyright 2000 Wiley. .5

Figure 1.2.5 (a) UV absorption spectra of anti,cisoid-alternating oligosilanes. (b) Absorption maximum wavelength of constrained and unconstrained oligosilanes. Reprinted with permission from reference. ${ }^{11}$ Copyright 2003 ACS. .5

Figure 1.3.1 a) Polycyclic fragments highlighted in the crystalline silicon lattice. b) Cyclosilanes synthesized by the Klausen group7

Figure 1.3.2 Characterization of poly(cyclosilane) microstructures. (a) Cropped ${ }^{1} \mathrm{H}$ NMR spectra of (top to bottom) poly $\left(\mathbf{1}, \mathbf{4 S i}_{\mathbf{6}}\right), \mathbf{1 , 4 \mathbf { S i } _ { 6 }}, \operatorname{poly}\left(\mathbf{1}, \mathbf{3 S i} \mathbf{i}_{\mathbf{6}}\right)$, and $\mathbf{1 , 3 S i} \mathbf{i}_{6}$. Only the SiH region is shown. (b) Cropped ATR-FTIR spectra of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ (dashed line) and poly($\mathbf{1 , 3 S i} \mathbf{i n}_{6}$ (solid line). Only the $\mathrm{Si}-\mathrm{H}$ stretching frequencies are shown. Reprinted with permission from reference. ${ }^{34}$ Copyright 2018 ACS

Figure 2.1.1 a) Prior work: $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{n}$ - BuLi -mediated dehydrocoupling polymerization of directional building blocks $\mathbf{1 , 4} \mathbf{S i}_{6}$ and $\mathbf{1 , 3 S i} \mathbf{i}_{6}$. b) This work: Synthesis of new linear linpoly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ and analysis of relationships between microstructure and thermal decomposition .23

Figure 2.2.1 a) Cropped ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT NMR spectra of poly $\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)$ in benzene- $\left.\mathrm{d}_{6} \mathrm{~b}\right)$ UV-vis spectra of poly $\left(\mathbf{1 , 4} \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ samples. Spectra recorded in THF at room temperature. Reprinted with permission from reference. ${ }^{35}$ Copyright 2018 RSC. .28
 Determined relative to polystyrene standards at 254 nm (THF, [polymer] $=1 \mathrm{mg} \mathrm{mL}^{-1}$, $40^{\circ} \mathrm{C}, 0.35 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 10 \mu \mathrm{~L}$ injection). .. 28

Figure 2.4.1 Cropped ${ }^{1} \mathrm{H}$ NMR spectra of $\operatorname{lin}-p o l y\left(1,4 \mathbf{S i}_{6}\right)$, cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ and linpoly $\left(\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\right)$. Only the SiH region is shown.
Figure 2.4.2 Cropped ${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectra of lin-poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$, cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ and linpoly $\left(\mathbf{1 , 3} \mathbf{S i}_{6}\right)$. Only the SiH region is shown. DEPT $=$ distortionless enhancement by polarization transfer 32

Figure 2.4.3. ${ }^{29}$ Si INEPT+ NMR spectrum (79 MHz , Benzene-d ${ }_{6}$) of lin-poly (1,3Si $\mathbf{H}_{\mathbf{6}}$... 33
Figure 2.4.4 ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC NMR spectrum of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$. Crosspeaks are labelled. HSQC = heteronuclear single quantum coherence; DEPT = distortionless enhancement by polarization transfer. 34
Figure 2.4.5 Cropped ATR-FTIR spectra of cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ and lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{\mathbf{6}}\right)$ highlighting the $\mathrm{Si}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{Me}$ regions.35

Figure 2.5.1 DSC curves of a) lin-poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{6}\right)$, b) cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$, and c) and lin$\operatorname{poly}\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$. The second cycle is shown. Heating rate: $3{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ for lin-poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$, $20^{\circ} \mathrm{C}$ min $^{-1}$ for cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$ and lin-poly(1,3Si6)... 38

Figure 2.5.2. The second cooling cycle of DSC measurement of lin-poly($\mathbf{(1 , 3 S i} \mathbf{6})$. Cooling rate: $3^{\circ}{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. No phase transition was observed... 38

Figure 2.5.3. The overlay of the second (solid line) and third (dotted line) heating cycle of DSC measurement of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$. Heating rate: $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$. 39

Figure 2.6.1 TGA curves of a) lin-poly $\left(\mathbf{1 , 4 S i} \mathbf{i}_{6}\right)$, b) cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$ and c) lin-poly $(\mathbf{1 , 3 S i} \mathbf{6})$. Solid lines: derivative weight change; dotted lines: percentage weight change................ 40

Figure 2.7.1 Proposed poly(cyclosilane) pyrolysis... 43
Figure 3.1.1. Connectivity, conformation, and optical properties in poly(cyclosilane)s.. 48
Figure 3.2.1. UV-vis absorbance spectra of homopolymers. [polymer] $=0.012 \mathrm{mg} \mathrm{mL}^{-1}$, THF, room temperature 50

Figure 3.3.1 Geometry-optimized conformations of linear and cyclic hexamers of the cyclosilanes $\mathbf{1 , 3 S \mathbf { I } _ { 6 }}$ and $\mathbf{1 , 4 S \mathbf { S i } _ { 6 } \text { . Adapted with permission from J. Am. Chem. Soc. 2018, 140, }}$ 5976, copyright 2018 American Chemical Society. Methyl groups omitted for clarity. B3LYP/6-31G(d).. 52
 lin- $\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)_{6}$ relative to TD-DFT calculated absorbance spectra of the monomers showed bathochromic shifts and absolute values consistent with experiment. b) Calculated molecular orbital distributions of HOMOs. TD-PBE0/6-311G(d)//B3YLP/6-31G(d). Adapted with permission from J. Am. Chem. Soc. 2018, 140, 5976. Copyright 2018 American Chemical Society 54

Figure 3.3.3 σ-Conjugation pathways and selected torsion angles in a) $\operatorname{lin}-\left(\mathbf{1 , 3 S i}_{6}\right)_{6}$ and $\left.b\right)$ lin- $\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)_{6}$. Methyl groups and hydrogens omitted for clarity. Extended Si-Si pathways highlighted in magenta. B3YLP/6-31G(d) 57

Figure 3.5.1. UV-vis absorbance spectra of copolymers. [copolymer] $=0.012 \mathrm{mg} \mathrm{mL}^{-1}$, THF, room temperature

Figure 3.6.1. Ground state conformations of cyclosilane tetramers of different compositions and sequences. Methyl groups omitted for clarity. B3YLP/6-31G(d). 62

Figure 3.6.2 The predicted $\lambda_{\max }$ versus the number of consecutive $\mathbf{1 , 3} \mathbf{S i}_{6}$ residues. Squares indicate interior $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residues and circles indicate chain ends $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residues.

Figure 3.6.3. Impact of $\mathbf{1 , 3 S} \mathbf{S i}_{6}$ position on backbone conformation: interior sites increase consecutive trans torsion angles. Methyl groups and hydrogens omitted for clarity. B3YLP/6-31G(d)

Figure 4.1.1 Highly selective reactions between cyclosilane building blocks and functionalized acetylenes 72

Figure 4.2.1 Displacement ellipsoid plot (30\% probability level) of trans-4.1a at 110(2) K. Blue $=\mathrm{Si}$, Black $=\mathrm{C}$, Pink $=\mathrm{H}$. Hydrogens on methyl and phenyl groups were omitted for clarity 75

Figure 4.2.2 (a) Cropped ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) comparing (top to bottom) cis-4.1a (dr 25:75 trans:cis), trans-4.1a, and the as-isolated mixture of isomers. (b) Cropped ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectra ($79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) comparing (top to bottom) cis-4.1a (dr 25:75 trans:cis), trans-4.1a, and the as-isolated mixture of isomers. DEPT $=$ distortionless enhancement by polarization transfer. The methyl groups are omitted for clarity............ 76
Figure 4.2.3 ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC NMR spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 4.1a. ${ }^{1} \mathrm{~J}_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz} . .76$
Figure 4.2.4 ${ }^{29} \mathrm{Si}$ INEPT+ NMR spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of trans-4.1a....................... 77
Figure 4.2.5 The coupling constant analysis of ${ }^{1} \mathrm{H}$ NMR spectra of 4.1a. 77

Figure 4.3.1 Substrate scope of hydrosilylation of alkynes with cyclosilanes. For $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$, major diastereomers are shown. ${ }^{\text {a }}$ dr determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Isolated yields are reported. ${ }^{\mathrm{b}}$ Only the trans diastereomer was detected.79

Figure 4.3.2 X-ray crystal structure of (a) trans-4.1e and (b) trans-4.1j. Blue $=$ Si, black $=$ C , pink $=\mathrm{H}$, red $=\mathrm{O}$, yellow $=\mathrm{S}$, brown $=\mathrm{Br}$. Hydrogens on methyl and aromatic groups are omitted for clarity 80

Figure 4.3.3 Cropped ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) comparing SiH resonances of (top) 4.3a and trans- $\mathrm{Si}_{10} \mathrm{H}_{4}$ (bottom). 80

Figure 4.3.4 Displacement ellipsoid plot (30\% probability level) of 4.3a at 173(2) K. Blue $=$ Si, Black $=\mathrm{C}$, Pink $=\mathrm{H}$. Hydrogens on methyl and phenyl groups were omitted for clarity.

Figure 4.3.5 Model for stereoinduction. 81
Figure 4.4.1 UV-vis spectra with normalized absorbance ([compound] $=10^{-5} \mathrm{M}$, in n pentane). (a) Comparison to starting material. Red: trans-4.1a; black: 1,4Si $\mathbf{6}$; blue: styrene. (b) Influence of configuration. Red: trans-4.1a; blue: cis-4.1a (dr 25:75 trans:cis). (c) Cyclosilane comparison. Red: trans-4.1a; blue: 4.2a (dr 55:45 trans:cis); orange: 4.3a. (d) Heterocycle effect. Red: trans-4.1a; blue: trans-4.1j (dr 90:10 trans:cis).84

Figure 4.4.2 Calculated HOMO and LUMO of trans-4.1a. B3YLP/6-31G(d). 84
Figure 4.5.1 Size exclusion chromatograms of P4.1 and P4.2 at 254 nm (solid line) and 350 nm (dotted line). Molecular weight determined relative to polystyrene standards at 254 nm (THF, [P4.1] or $[\mathbf{P 4 . 2}]=0.5 \mathrm{mg} \mathrm{mL}^{-1}, 40^{\circ} \mathrm{C}, 0.35 \mathrm{~mL} \mathrm{~min}^{-1}, 10 \mu \mathrm{~L}$ injection) 86
Figure 4.5.2 Comparison of UV-vis spectra of trans-4.1j (blue), trans-4.1k (orange), P4.1 (red) and $\mathbf{P 4 . 2}$ (purple) in THF. [trans-4.1j] $=10^{-5} \mathrm{M},[$ trans-4.1k $]=10^{-5} \mathrm{M},[\mathbf{P 4 . 1}]=0.03$ $\mathrm{g} / \mathrm{L},[\mathbf{P} 4.2]=0.03 \mathrm{~g} / \mathrm{L}$ 86
Figure 5.2.1 Displacement ellipsoid plots (50\% probability level) of cyclosilane thioethers 5.1a-c at $110(2) \mathrm{K}(\mathbf{5 . 1 a}$ and 5.1c) or at 294(2) K (5.1b). Hydrogens omitted for clarity. Blue $=$ silicon, black $=$ carbon, yellow $=$ sulfur, burgundy $=$ bromine 95

Figure 5.2.2 Displacement ellipsoid plots (50\% probability level) of 5.2a at 110(2) K a) Top down and b) side-on views. Hydrogens omitted for clarity. Black $=$ carbon, blue $=$ silicon, yellow $=$ sulfur. .96

Figure 5.4.1 Comparison of experimental UV-vis spectra and simulated spectra with different functionals and levels of theory 98

Figure 5.4.2 Comparison of experimental UV-vis spectra and simulated spectra with different numbers of states (N). TD-PBE0/6-311G(d)//B3YLP/6-311G(d). 99

Figure 5.4.3 Calculated frontier orbitals of chair and twist-boat conformers of 5.1a and 5.2a. H atoms omitted for clarity. TD-PBE0/6-311G(d)//B3YLP/6-311G(d). Isovalue $=0.02$. 99

Figure 5.4.4 The LUMO+1 orbital of 5.1a and 5.2a. H atoms omitted for clarity. Discontinued pseudo π^{*} orbitals were found on twist-5.1a and chair-5.2a. TD-PBE0/6$311 \mathrm{G}(\mathrm{d}) / / \mathrm{B} 3 \mathrm{YLP} / 6-311 \mathrm{G}(\mathrm{d})$. Isovalue $=0.02$. 100

Figure 5.4.5 Simulated UV-vis spectra of (a) 5.1a and (b) 5.2a. Solid lines: chair conformations. Dotted lines: twist-boat conformations. TD-PBE0/6-311G(d)//B3YLP/6$311 \mathrm{G}(\mathrm{d})$

Figure 5.4.6 Comparison of calculated HOMO and LUMO of 5.1b to its isomeric structure 5.3. Hydrogen atoms omitted for clarity. TD-PBE0/6-311G(d)//B3YLP/6-311G(d). Isovalue $=0.02$. 103

Figure 5.4.7 The LUMO+1 orbital of 5.3. No pseudo π^{*} orbital delocalizing through the silicon framework was found. Hydrogen atoms omitted for clarity. TD-PBE0/6$311 \mathrm{G}(\mathrm{d}) / / \mathrm{B} 3 \mathrm{YLP} / 6-311 \mathrm{G}(\mathrm{d})$. Isovalue=0.02. 104

Figure 5.5.1 Solution-phase UV-vis spectra ([compound] $=0.01 \mathrm{mM}$, THF). a) Comparison of thioether 5.1a to thiophenol and $\mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } }}$ demonstrates red-shift in absorbance. b) Comparison of thioether 5.1a to $\mathbf{1 , 4} \mathbf{S i}_{6} \mathbf{P h}_{4}$ demonstrates delocalization between the π and σ-fragments. c) Comparison of cyclosilane thioethers 5.1a-c. c) Comparison of isomer cyclosilane thioethers 5.1a and 5.2a 105

Figure 5.5.2 Simulated UV-vis spectra of chair-5.1a (black), 5.1b (blue) and 5.1c (red). TD-PBE0/6-311G(d)//B3YLP/6-311G(d). 106

Figure 6.2.1 Solubility characteristics of (left to right) P6.1, P6.3, and P6.2 (25 mg polymer in $0.7 \mathrm{~mL} \mathrm{CDCl}_{3}$).
Figure 6.2.2 Cropped ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectra $\left(79 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) comparing (top to bottom) trans-6.1 (dr 90:10 trans:cis), P6.1, P6.2, P6.3 and cis-6.1 (dr 20:80 trans:cis). ${ }^{1} \mathrm{~J}_{\mathrm{Si}-\mathrm{H}}=120$

Hz. DEPT = distortionless enhancement by polarization transfer. The methyl groups are omitted for clarity 116

Figure 6.3.1. (a) Synthesis of linear silane building block 6.2 and its polycondensation with dibromothiophene yielding P6.4. (b) ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 6.2 (top) and P6.4 (bottom). 117

Figure 6.4.1 Cropped DSC curves of P6.1-5. The second cycle is shown. Heating rate: $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$, cooling rate: $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

Figure 6.5.1 Comparison of film UV-vis spectra of (a) P6.1, (b) P6.4 and (c) P6.5. Before annealing: Blue. After annealing: Red. 120

Figure 6.5.2 Comparison of solution UV-vis spectra of P6.1 (Red), P6.4 (Blue), and P6.5 (Prussian) in THF. [polymer] $=0.03 \mathrm{~g} / \mathrm{L}$. 121

Figure 6.6.1 Comparison of UV-vis spectra of P6.6 (red), P6.7 (blue), and P6.8 (purple)

List of Schemes

Scheme 1.3.1 Cyclosilane structures. 7
Scheme 1.3.2 Synthesis and polymerization of cyclohexasilanes. ${ }^{33,34,36}$ 8
Scheme 1.3.3 Selective synthesis of functionalized trans and cis-siladecalin 11
Scheme 1.4.1 a) Generic scheme of hydrosilylation. b) Structure of Karstedt's catalyst. c) Modified Chalk-Harrod mechanism of hydrosilylation. 12
Scheme 1.5.1 SiC fibers synthesized from polycarbosilane. 12
Scheme 1.5.2 Synthesis of saturated polycarbosilanes through transition metal-catalyzed hydrosilylation. 14
Scheme 1.5.3 Synthesis of unsaturated polycarbosilanes through transition metal catalyzed hydrosilylation 14
Scheme 1.6.1 Mechanism of Si-Si bond cleavage in hydrosilylation of alkynes with hydrodisilane. 16
Scheme 1.6.2 a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ catalyzed hydrosilylation of poly(phenylsilane). b) BH_{3} catalyzed hydrosilylation of poly(cyclosilane). c) Ru-catalyzed hydrosilylation of hydrodisilane. d) Reaction mechanisms of hydrosilylation in the presence of $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ 17
Scheme 2.2.1 Polymerization of dichlorodimethylsilane via Wurtz coupling 25
Scheme 2.2.2 Dehydrogenative polymerization of primary silanes. 25
Scheme 2.2.3 Mechanism of dehydrogenative polymerization of primary silanes catalyzed by the $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi , proposed by Corey. ${ }^{33}$ 26
Scheme 2.3.1 Synthesis of lin-poly($\mathbf{1 , 3 S i} \mathbf{S i}_{6}$), a linear polymer of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$. 29
Scheme 3.1.1. Prior work: The structural isomers $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ template linear and cyclic poly(cyclosilane) architectures. This work: Cyclosilane copolymerization raises questions of reactivity, sequence, architecture, and physical properties 49
Scheme 3.4.1. Synthesis of cyclosilane copolymers. 59
Scheme 4.2.1 Synthesis of trans and cis-4.1a via hydrosilylation of phenylacetylene with $\mathbf{1 , 4} \mathbf{S i}_{6}$ catalyzed by $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$. 74
Scheme 4.5.1 a) Model reaction: Kumada cross-coupling of trans-4.1j and 2- bromothiophene. (b) Kumada polycondensation synthesis of P4.1. c) Kumada polycondensation synthesis of $\mathbf{P 4 . 2}$ 85
Scheme 5.1.1 Heteroatomic substitution of cyclosilanes. 92
Scheme 5.1.2 Isomeric oligo- and polysilanes with distinct absorption spectra. 92
Scheme 5.1.3 Structural isomers of cyclosilane-sulfur hybrids investigated herein. Isomer
5.3 was not synthesized, but computationally evaluated. 93
Scheme 5.2.1 Catalytic dehydrocoupling of disilane and propylthiol. 94
Scheme 5.2.2 Catalytic dehydrocoupling of $\mathbf{1 , 4} \mathbf{S i}_{6}$ and arylthiols. 94
Scheme 5.2.3 Catalytic dehydrocoupling of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ and phenylthiols. 95
Scheme 6.1.1 Stereoregular polymeric structures containing cyclic units. (a)
Stereoregular hydrocarbon polymers. (b) Cyclodextrin. 109
Scheme 6.1.2 Anionic ROP of amino-functionalized masked disilene. 110
Scheme 6.1.3 (a) Prior work: hybrid conjugated polymer containing linear silane units.(b) Stereoregular polysilane synthesized with cyclosilane building blocks.111
Scheme 6.2.1. Synthesis of hybrid conjugated polymers P6.2 (predominately cis) andP6.3 (atactic). The relative configuration was maintained in the polymerization (high-lighted in red).114
Scheme 6.3.1. Synthesis of linear silane building block 6.3 and its polycondensation withdibromothiophene yielding P6.5. Adapted from known procedure. ${ }^{20}$118

Chapter 1: Introduction

1.1 Forward

Silicon is the center of the modern world for its extensive usage in electronic devices. It is such a dominant material that the current period can be defined as the silicon age. ${ }^{1}$ Its high abundance in the earth's crust ${ }^{1}$ ensures silicon a relatively affordable and sustainable material for electronics industry and energy-relative technology. Nanoscale silicon materials are particularly attractive for their optical and electronic properties with dimensional tunability. ${ }^{2}$ They have found applications in high-speed transistors ${ }^{3}$, lightemitting devices ${ }^{4}$, lithium-ion battery anode ${ }^{5}$ and bioimaging. ${ }^{6}$

Top-down synthetic approaches are mostly employed in these applications mentioned above. However, to achieve a precise control of hierarchical structures and therefore understand the structure-property relationships, the bottom-up strategy is necessary. Design, synthesis and characterization of molecular silicon-based materials (e.g., silanes) lead towards unique electronic properties arising from silicon scaffolds. Their capability as molecular building blocks further motivates exploration of synthesizing polymeric materials with well-defined structures and tailored properties.

1.2σ-Conjugation in silanes

Silanes exhibit unique optical properties compared to their group 14 relatives, saturated hydrocarbons. ${ }^{7}$ In 1964 when Sakurai and Kumada studied the ultraviolet spectra of oligosilanes, they found oligosilanes had strong absorption in the near ultraviolet region (210 to 260 nm) and the introduction of pentamethyldisilyl group into benzene caused an obvious red shift. ${ }^{8}$ This evidence suggests delocalization though $\mathrm{Si}-\mathrm{Si} \sigma$ bonds, later known
as σ-conjugation. σ-Conjugation is extended across the oilgosilanes with the increasing chain length similar to π-conjugated systems ${ }^{8,9}$, but also found to be strongly dependent on the silane conformations. ${ }^{10-13}$

Figure 1.2.1 Ladder C model of σ-conjugation.

The Sandorfy C and H approximations were first applied to understand the delocalization across oligosilanes. However, they failed to interpret conformational effects of σ-conjugation. ${ }^{7}$ The ladder C model, developed and optimized by Mich ${ }^{14,15}$, then was proved to fit experimental observation of linear oligosilanes better.

Three major types of orbital interactions are considered in oligosilanes: primary interaction - overlap of sp^{3} orbitals on Si atoms oriented towards each other; geminal interaction - hyperconjugation between geminal σ orbitals on the same silicon atom; vicinal interaction $-\sigma$ orbitals on the neighboring silicon atoms which are not oriented towards each other (Figure 1.2.1). The strength of these orbital interactions can be evaluated by the resonance integral β based on the degrees of orbital overlap.

While $\beta_{\text {prim }}$ and $\beta_{\text {gem }}$ are not sensitive to orbital geometries, $\beta_{\text {vic }}$ is a function of the Si-Si-Si-Si dihedral angle ω of the silane chain (Figure 1.2.2a). During the free rotation of the $\mathrm{Si}-\mathrm{Si}$ bond and change of dihedral angle ω, the strength of vicinal interaction increases significantly when the silane adopts to the anti-conformation $\left(\omega=180^{\circ}\right)$. Meanwhile, the
syn-conformation ${ }^{16}\left(\omega=0^{\circ}\right)$ is not favored to maximize the vicinal interaction: β_{vic} is calculated to decrease by $1.4 \mathrm{eV} .{ }^{17}$ This dependence of $\beta_{\text {vic }}$ on the dihedral angle ω results in the conformational effects on molecular orbital (MO) energies (Figure 1.2.2b). The HOMO energy increases and the LUMO energy decreases with larger β_{vic}, so that the allanti conformation reduces the HOMO-LUMO gap allowing the most effective σ conjugation (Figure 1.2.2b left). On the contrary the all-cis conformation minimizes β_{vic}, resulting in a larger HOMO-LUMO gap (Figure 1.2.2b right).

Figure 1.2.2 a) The resonance integrals $\beta_{\text {prim }}, \beta_{\text {gem }}$, and $\beta_{\text {vic }}$ as a function of the dihedral angle ω. b) MO diagram describing schematically the effect of chain length doubling for the case of strong (left) and weak (right) σ-conjugation. Reprinted with permission from reference. ${ }^{17}$ Copyright 2009 Wiley.

These predictions on MO energy tendency are supported by experimental studies on photoelectron spectra of oligosilanes. ${ }^{10,11,18,19}$ West reported thermochromism of poly(di-n-hexylsilane) (PDHS) in hexane, where multiple absorption bands showed in the UV spectrum upon cooling of the fresh solution of PDHS (Figure 1.2.3). ${ }^{10}$ It indicated that PDHS existed in three different conformational forms in the solution, which was observed the first time in a polysilane. Band III was assigned as the absorption of anti- or near anticonformation of the polysilane for its red shift from Band II (transoid-conformation)
(Figure 1.2.3c). Tamao is one of the pioneers of confirming the conformational dependence of σ-conjugation by conformationally constrained oligosilanes. ${ }^{11,18}$ Syn- and anti-disilane units were designed to construct tetrasilanes in which the dihedral angles are controlled to $\operatorname{syn}(S)$, anti(A), and eclipsed (E). When ω increases from $7.1^{\circ} \rightarrow 117.5^{\circ} \rightarrow 180^{\circ}$ (conformation: syn \rightarrow eclipsed \rightarrow anti), $\lambda_{\max }$ of UV absorption change from 210 nm to 238 nm^{18} (Figure 1.2.4a). Similar trend was also found in hexasilane compounds ${ }^{18}$ (Figure 1.2.4b). With more sterically constrained silane units, Tamao prepared anti,cisoidalternating hexa- to decasilanes and obtained the first clear-cut experimental evidence that a small dihedral angle such as cisoid turn suppresses the σ-conjugation in polysilanes. ${ }^{11}$ $\lambda_{\max }$ remain around 240 nm regardless of the silicon chain length in all the anti,cisoidalternating oligosilanes (Figure 1.2.5a), but increase with the chain length in transoidoligosilanes (Figure 1.2.5b). More recently, Nuckolls designed bicyclo[2.2.2]octasilane, which has cisoid $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ dihedral angles ranging from 15° to 20° for its three silane bridges. ${ }^{19}$ These silanes were found to be of extremely low conductance due to destructive σ-interference using a scanning tunnelling microscope break junction (STM-BJ) technique.

Figure 1.2.3 Temperature evolution of the UV spectrum of PDHS upon cooling of the fresh solution. Rapid cooling (a) from +20 to $-45^{\circ} \mathrm{C}$ and (b) from -40 to $-55^{\circ} \mathrm{C}$. (c) Slow
cooling from -20 to $-60{ }^{\circ} \mathrm{C}$. Reprinted with permission from reference. ${ }^{10}$ Copyright 2001 ACS.

Figure 1.2.4 UV absorption spectra of the (a) tetrasilane and (b) hexasilane compounds. Reprinted with permission from reference. ${ }^{18}$ Copyright 2000 Wiley.

Figure 1.2.5 (a) UV absorption spectra of anti,cisoid-alternating oligosilanes. (b) Absorption maximum wavelength of constrained and unconstrained oligosilanes. Reprinted with permission from reference. ${ }^{11}$ Copyright 2003 ACS.

1.3 Cyclosilanes inspired by crystalline silicon

Cyclosilanes have been widely studied for their unusual properties due to electron delocalization in the σ-frameworks and their reactivity pattern in the past 100 years. ${ }^{20}$ The first synthesis of cyclosilanes can be dated back to 1921, when Kipping reported series of "saturated and unsaturated $\mathrm{Si}_{4} \mathrm{Ph}_{8}$ ". ${ }^{21}$ Though some structure assignments were not
accurate initially, Gilman confirmed these compounds as perphenylated tetra, penta and hexacyclosilanes (Scheme 1.3.1). ${ }^{22,23} 30$ years later, the first permethylated cyclosilane dodecamethylhexacyclosilane $\left(\mathrm{Si}_{6} \mathrm{Me}_{12}\right)$ was discovered as a minor product (2% yield) in the synthesis of polydimethylsilane. ${ }^{24}$ The synthesis was optimized by West using lithium in tetrahydrofuran as the reducing agent and the yield was increased to about $80 \% .{ }^{25}$

West, Hengge and Marschner contributed tremendously to this field for their efforts including mechanistic studies of cyclosilane reactivities, precise control of ring sizes and development of polycyclic silanes. ${ }^{26-30}$ Recently more examples are discovered on enriching functionality on the silicon scaffolds and the resulting unique properties. ${ }^{19,31}$

Kipping 1921^{21}, Gilman $1963^{22}, 1965^{23}$
Burkhard 1949^{24}, West 1985^{25}

West 1972^{26}, Hengge 1993^{27}, Klausen 2019^{35}

West 1984^{28}

Marschner 2003^{29}

Marschner 2003^{29}

Marschner 2005^{30}

Nuckolls 2018^{19}

$\mathrm{Me}_{3} \mathrm{Si}$

Scheme 1.3.1 Cyclosilane structures.

In addition to the important electronic and optical properties of crystalline silicon, its structural complexity is also tempting and inspiring to synthetic chemists. Polycyclic fragments of chair cyclosilanes can be found in the structure of crystalline silicon lattice (Figure 1.3.1a), which brings a revealing insight on designing novel silicon materials with tunable optical properties. ${ }^{32}$ The Klausen lab has been extensively exploring the targetoriented synthesis of cyclosilanes inspired by crystalline silicon in the past few years (Figure 1.3.1b). ${ }^{32-36}$ The chemically inert $\mathrm{Si}-\mathrm{Me}$ groups and reactive $\mathrm{Si}-\mathrm{H}$ groups allow selective functionalization and polymerization of these cyclosilanes.
(a)

(b)

Figure 1.3.1 a) Polycyclic fragments highlighted in the crystalline silicon lattice. b) Cyclosilanes synthesized by the Klausen group.

The synthetic routes of cyclosilanes inspired by crystalline silicon are summarized in Scheme 1.3.2. The key intermediates for the synthesis of $\mathrm{Si}-\mathrm{H}$ functionalized cyclosilanes are a class of oligosilyl dianions (Scheme 1.3.2a). Starting from di(TMS)diphenylsilane (1.1), TMS terminated oligosilanes (1.2a-b) were synthesized through salt metathesis as precursors, and treated with tert-butoxide/crown ether yielding
α, ω-dipotassiodisilanides (1.3a-b). ${ }^{36}$ The chain length is tunable by using different dichlorooligosilanes. The cyclization of diaions and dichlorosilanes results in the isomeric tetraphenyl-functionalized cyclohexasilanes (1.4 and $\mathbf{1 . 5}$, Scheme 1.3.2b-c). The phenyl groups can be removed by treatment of trifluoromethanesulfonic acid (TfOH) giving silyl triflate intermediates, which are thereupon reduced by lithium aluminum hydride (LAH) leading to tetrahydrocyclohexasilanes, $\mathbf{1 , 4 \mathbf { S i } _ { 6 } { } ^ { 3 3 } \text { and } \mathbf { 1 , 3 S i } { } _ { 6 } { } ^ { 3 4 } \text { , which are of isomeric }}$ structures but different $\mathrm{Si}-\mathrm{H}$ functional patterns. $\mathbf{1 , 4} \mathbf{S i}_{6}$ is a white crystalline solid and the crystal structure suggests its chair-like conformation and high symmetry. ${ }^{33}$ Meanwhile, $\mathbf{1 , 3} \mathbf{S i}_{6}$ is a colorless oil at room temperature, but its precursor $\mathbf{1 . 5}$ is found to adapt a chairlike conformation in the solid state. ${ }^{34}$

Scheme 1.3.2 Synthesis and polymerization of cyclohexasilanes. ${ }^{33,34,36}$
Polycyclosilanes feature a structural pattern of a periodic alternation of methylated and hydrogenated silicon atoms. $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n-\mathrm{BuLi}$ mediated dehydrocoupling polymerizations were performed on the bifunctional cyclosilane building blocks $\mathbf{1 , 4 \mathbf { S i } _ { 6 }}$ and $\mathbf{1 , 3 S i} \mathbf{6}_{6}$ yielding poly(cyclosilane)s of comparable molecular weights but different
microstructures (Scheme 1.3.2b-c). Polymerization of $\mathbf{1 , 4} \mathbf{S i}_{6}$ resulted in a linear polymer $\mathbf{P 1 . 1}$, whereas $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ templated a macrocyclic architecture $\mathbf{P 1 . 2}$.

The cyclic polymer is distinct from the linear one by its high symmetry and the absence of SiH_{2} end groups. This makes $\mathrm{Si}-\mathrm{H}$ bonds diagnostic for spectroscopic characterization such as NMR spectroscopy and infrared spectroscopy. Comparison of experimental NMR spectra of the cyclosilane building blocks and their polymers reveals poly(cyclosilane) microstructures (Figure 1.3.2a). ${ }^{33,34}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of P1.1, several broad resonances are observed in the typical region of Si-H groups (3.5-3.0 ppm). ${ }^{33}$ These signals are assigned as internal SiH groups and SiH_{2} end groups arising from a linear structure. On the other hand, a broad singlet corresponding to internal SiH groups at 3.25 ppm dominates the Si-H region in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 1.2 .{ }^{34}$ This indicates the high symmetry macrocyclic structure rather than a linear polymer structure.

Figure 1.3.2 Characterization of poly(cyclosilane) microstructures. (a) Cropped ${ }^{1} \mathrm{H}$ NMR spectra of (top to bottom) poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{6}\right), \mathbf{1 , 4} \mathbf{S i}_{6}, \operatorname{poly}\left(\mathbf{1 , 3 S i} \mathbf{S i}_{6}\right)$, and $\mathbf{1 , 3 S i} \mathbf{i}_{6}$. Only the SiH region is shown. (b) Cropped ATR-FTIR spectra of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ (dashed line) and poly($\mathbf{1 , 3 S i} \mathbf{H}_{6}$) (solid line). Only the $\mathrm{Si}-\mathrm{H}$ stretching frequencies are shown. Reprinted with permission from reference. ${ }^{34}$ Copyright 2018 ACS.

The microstructure assignment can be further confirmed by IR spectroscopy (Figure 1.3.2b). Si-H bonds have characteristic stretching frequencies at $\sim 2100 \mathrm{~cm}^{-1}$ in IR spectroscopy and their exact values depend on the degree of silyl- substitution. The stretching frequency shifts towards lower wavenumber with silyl-substitution increasing. ${ }^{37}$ The IR spectrum of polymerized $\mathbf{1 , 3} \mathbf{S i}_{6}$ has a symmetric band in the $\mathrm{Si}-\mathrm{H}$ region centered at lower frequency than before polymerization (Figure 1.3.2b). ${ }^{34}$ This observation indicates a macrocyclic structure lacking SiH_{2} end group.

Synthesis of siladecalin, the silicon analog of decalin, has been a long-standing challenge to synthetic chemists for decades. Although in 1972 West reported first reported its synthesis as a minor product (4% yield) of dimethyldichlorosilane and trimethylchlorosilane reductive coupling ${ }^{26}$, the structure was finally assigned via X-ray crystallography by Hengge in 1993. ${ }^{27}$ Recently, Klausen reported stereocontrolled syntheses of functionalized cis- and trans-siladecalins via coupling of $\mathbf{S i}_{4}$ dianion and 1,2dichlorohexacyclosilane (Scheme 1.3.3). ${ }^{38}$ This approach allows control of relative stereochemistry and functional group interconversion.

Under optimized conditions, cis- $\mathbf{S i}_{10} \mathbf{P h}_{4}$ was synthesized with high diastereoselectivity (dr 10:90 trans:cis), and converted to cis-Si $\mathbf{1 0}_{10} \mathbf{H}_{\mathbf{4}}$ (dr 15:85 trans:cis) in 65% yield via dearylation with TfOH and reduction with LAH. cis- $\mathbf{S i}_{10} \mathbf{P h}_{4}$ underwent epimerization when heated with excess $\mathbf{S i}_{\mathbf{4}}$ dianion in toluene, yielding trans- $\mathbf{S i}_{\mathbf{1 0}} \mathbf{P h}_{\mathbf{4}}$ (dr 97:3 trans: cis) as the thermodynamically favorable product. Similar reaction conditions with trans- $\mathbf{S i}_{10} \mathbf{P h}_{4}$ (dr 97:3 trans:cis) provided $95: 5$ trans- $\mathbf{S i}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{4}}$ in 68% yield. Their structures were fully characterized and assigned by IR spectroscopy, NMR spectroscopies and X-ray crystallography. Si-H functional groups enable capabilities for future
functionalization and therefore make trans- and cis- $\mathbf{S i}_{10} \mathbf{H}_{4}$ potential bicyclic silane building blocks for novel conjugated structures.

Scheme 1.3.3 Selective synthesis of functionalized trans- and cis-siladecalin.

1.4 Hydrosilylation reactions

Hydrosilylation, the addition of hydrosilanes across unsaturated bonds (Scheme 1.4.1a), serves as an essential method to synthesize and functionalize organosilicon materials. The study of hydrosilylation reactions can be dated to 1947 when Sommer reported the first hydrosilylation of 1-octene using trichlorosilane catalyzed by peroxide. ${ }^{39}$ Later in 1957, Speier reported $\mathrm{H}_{2} \mathrm{PtCl}_{6}$-catalyzed hydrosilylation of 1-pentene and cyclohexene leading to the industrial usage of transition metal catalysts in this field. ${ }^{40}$ In 1973 Karstedt developed a platinum(0) catalyst (also known Karstedt's catalyst, Scheme 1.4.1b) showing high reactivity under ambient condition and it has been widely used in the industrial preparation of various silicone polymers. ${ }^{41}$ Nowadays, the collection of catalysts has been extended from Pt to other group VIII to X transition metals including $\mathrm{Pd}^{42}, \mathrm{Co}^{43}$, $\mathrm{Fe}^{44,45}, \mathrm{Ni}^{46}, \mathrm{Rh}^{47-49}$ and Ru. ${ }^{50,51}$

Chalk and Harrod proposed the first widely accepted mechanism of group VIII metal-catalyzed hydrosilylation of olefins ${ }^{52}$, which was then modified based on quantum chemical investigation. ${ }^{53}$ The reaction typically undergoes the following catalytic pathway: oxidative addition of a hydrosilane to a transition metal center, olefin coordination, migratory insertion of the olefin forming a Si-C bond and reductive elimination through C H bond formation (Scheme 1.4.1c).

Scheme 1.4.1 a) Generic scheme of hydrosilylation. b) Structure of Karstedt's catalyst. c) Modified Chalk-Harrod mechanism of hydrosilylation.

1.5 Polycarbosilane synthesis via hydrosilylation

Interest in synthesizing saturated polycarbosilanes has been greatly motivated since Yajima first reported polysilane and polycarbosilane pyrolysis to silicon carbide fibers at $>1000^{\circ} \mathrm{C}$ in the 1970 's (Scheme 1.5.1). ${ }^{54-56}$

Scheme 1.5.1 SiC fibers synthesized from polycarbosilane.

Copolymerization of hydromonosilanes with alkenes through transition metalcatalyzed hydrosilylations has been extensively explored as a feasible synthetic approach
to saturated polycarbosilanes. Corriu reported the polymerization of dimethylvinylsilane catalyzed by $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ yielding poly(dimethylsilylethylene) of low molecular weight ($M_{n}=$ $2740 \mathrm{~g} / \mathrm{mol}$) (Scheme 1.5.2a). ${ }^{57}$ The reaction exhibits a low selectivity towards α addition (yielding n units) and β addition (yielding m units) on alkenes. Similar selectivity is also seen in the polymerization of dichlorovinylsilane catalyzed by $\mathrm{Pt} / \mathrm{C} .{ }^{58}$ Increasing the steric hinderance on starting hydrosilanes and utilizing Karstedt's catalyst results in high ratio of β-addition units. Optically active (S)-1-phenyl-1-naphthyl-1-vinyl-3,3-dimethyl-1,3disiloxane was polymerized in the presence of Karstedt's catalyst to yield an optically pure and highly stereoregular polycarbosiloxane with all β-addition units (Scheme 1.5.2b). ${ }^{59}$ More recently, He reported the construction of polymers featuring Si-stereogenic heteroarylsilanes (Scheme 1.5.2c). ${ }^{60}$ The Si steric centers are preserved in the hydrosilylation, opening up a new approach towards tailormade chiral polymers with a wide range of applications. To obtain polycarbosilanes of high molecular weights, Rhbased catalysts were used for intermolecular hydrosilylation of the vinylhydrosilane (Scheme 1.5.2d). ${ }^{47}$ The resulting polymers exhibit wide molecular weight distribution featuring $M w$ up to $102000 \mathrm{~g} / \mathrm{mol}$ in gel permeation chromatography.
(a)

(b)

(c)

(d)

Scheme 1.5.2 Synthesis of saturated polycarbosilanes through transition metal-catalyzed hydrosilylation.
(a)

(b)

(c)

Scheme 1.5.3 Synthesis of unsaturated polycarbosilanes through transition metal catalyzed hydrosilylation.

On the other hand, hydrosilylation between hydrosilane and alkynes leads to hybrid conjugated polymers with unique optical properties arising from mixing of σ and π orbitals (Scheme 1.5.3). Poly(silafluorene-phenylene-divinylene) was synthesized through hydrosilylation between 1,1-silafluorene and 1,4-diethynylbenzene (Scheme 1.5.3a). ${ }^{61}$ The photoluminescent polymer maintains a regioregular (E)-vinylene $\mathrm{Si}-\mathrm{C}$ backbone allowing $\sigma^{*}-\pi / \pi^{*}$ conjugation. Serial photoluminescent silylene-arylene-vinylene polymers were obtained via addition of bis(silylhydrides) to 1,3-diynes (Scheme 1.5.3b). ${ }^{62}$ Although $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ and Karstedt's catalyst find their ways in synthesizing novel σ, π-conjugated polymers, Rh-based catalysts have been attracting more attention to achieve better selectivity, higher efficiency and high molecular weights. $\mathrm{RhI}\left(\mathrm{PPh}_{3}\right)_{3}$ allows a highly selective synthesis of (E) - and (Z)-poly(silylene-1,4-phenylenevinylene)s controlled by temperature (Scheme 1.5.3c). ${ }^{48}$ The formation of trans polymers favors reaction conditions at high temperature (up to $160^{\circ} \mathrm{C}$), whereas the ambient condition leads to the cis products.

1.6 Functionalization of oligo- and polysilanes via hydrosilylation

Despite the numerous achievements on polycarbonsilane synthesis through hydrosilylation between hydromonosilane and alkenes/alkynes, the application of hydrosilylation to oligo- and polysilanes is very challenging due to the extensive $\mathrm{Si}-\mathrm{Si}$ cleavage with the presence of transition metal catalysts. ${ }^{63-65}$ The mechanism was studied experimentally by the synthesis of bis(silylene)ruthenium complex from hydrodisilane. ${ }^{64}$ The same as hydromonosilanes, hydrodisilanes react with the catalyst starting from transition metal insertion between the $\mathrm{Si}-\mathrm{H}$ bond (oxidative addition). However, with existence of the weak $\mathrm{Si}-\mathrm{Si}$ bonds the transition metal center prefers to further migrate
between Si atoms yielding metal-silylene complexes, which react with alkynes forming SiSi bond cleaved products (Scheme 1.6.1).

Scheme 1.6.1 Mechanism of $\mathrm{Si}-\mathrm{Si}$ bond cleavage in hydrosilylation of alkynes with hydrodisilane.
(a)

(b)

(c)

Scheme 1.6.2 a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ catalyzed hydrosilylation of poly(phenylsilane). b) BH_{3} catalyzed hydrosilylation of poly(cyclosilane). c) Ru-catalyzed hydrosilylation of hydrodisilane. d) Reaction mechanisms of hydrosilylation in the presence of $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$.

Borane Lewis acids were used for hydrosilylation on polysilanes without skeletal fragmentation. Rosenberg reported functionalization of poly(phenylsilane) with $\mathrm{X}=\mathrm{C}$
groups catalyzed by tris(pentafluorophenyl)borane $\left(\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)$ (Scheme 1.6.2a). ${ }^{66,67}$ Klausen performed BH_{3} catalyzed functionalization of poly(cyclosilane)s with electronpoor aryl alkynes (Scheme 1.6.2b). ${ }^{33}$ Introduction of organic side chains containing dicyanovinyl electron acceptors results in novel well-defined silane donor-acceptor compounds.

Recently, Kyushin reported Ru catalyzed (E)- and (Z)- selective hydrosilylation of alkynes and hydrooligosilanes without $\mathrm{Si}-\mathrm{Si}$ bond cleavage (Scheme 1.6.2c). ${ }^{50,51}$ The SiSi bonds survive the reaction by avoiding formation of reactive metal-silylene intermediates (Scheme 1.6.2d). These studies enable the functionalization of oligo- and polysilanes to maintain diverse Si skeletons and give arise to novel organosilicon materials with desired thermal performance and unique optical properties.

1.7 Conclusion

The discussions above highlighted the progress of designing novel cyclosilanes building blocks and their polymerization. Investigating the effect of microstructures (linear vs cyclic) and connectivity patterns (1,3-linking vs 1,4 linking) on the thermal and optical properties of poly(cyclosilane)s led to further understanding the structure-property relationship of poly(cyclosilane)s as a new class of polymeric materials (Chapter 2\&3). Hydrosilylation enabled novel cyclosilanes building blocks for constructing σ, π conjugated hybrid polymers with stereoregularity (Chapter 4\&6). Dehydrocoupling of hydrocyclosilanes and thiols allows access to $\sigma-n-\pi$ conjugated molecules and density functional theory calculations bring insights to understand electron transition behaviors (Chapter 5).

1.8 Reference

(1) Emsley, J. In The Elements; Oxford: Clarendron, 1998.
(2) Teo, B. K.; Sun, X. H. Chem. Rev. 2007, 107, 1454-1532.
(3) Bohr, M. T. IEEE Trans. Nanotechnol. 2002, 1, 56-62.
(4) Daldosso, N.; Pavesi, L. Laser Photonics Rev. 2009, 3, 508-534.
(5) Xu, Z.-L.; Liu, X.; Luo, Y.; Zhou, L.; Kim, J.-K. Prog. Mater. Sci. 2017, 90, 1-44.
(6) Peng, F.; Su, Y.; Zhong, Y.; Fan, C.; Lee, S.-T.; He, Y. Acc. Chem. Res. 2014, 47, 612-623.
(7) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359-1410.
(8) Sakurai, H.; Kumada, M. Bull. Chem. Soc. Jpn. 1964, 37, 1894-1895.
(9) Gillam, A. E.; Hey, D. H. J. Chem. Soc. 1939, 1170-1177.
(10) Bukalov, S. S.; Leites, L. A.; West, R. Macromolecules 2001, 34, 6003-6004.
(11) Tsuji, H.; Terada, M.; Toshimitsu, A.; Tamao, K. J. Am. Chem. Soc. 2003, 125, 7486-7487.
(12) Fukazawa, A.; Tsuji, H.; Tamao, K. J. Am. Chem. Soc. 2006, 128, 6800-6801.
(13) Tsuji, H.; Michl, J.; Tamao, K. J. Organomet. Chem. 2003, 685, 9-14.
(14) Plitt, H. S.; Michl, J. Chem. Phys. Lett. 1992, 198, 400-405.
(15) Schepers, T.; Michl, J. J. Phys. Org. Chem. 2002, 15, 490-498.
(16) Michl, J.; West, R. Acc. Chem. Res. 2000, 33, 821-823.
(17) Bande, A.; Michl, J. Chem. - A Eur. J. 2009, 15, 8504-8517.
(18) Tamao, K.; Tsuji, H.; Terada, M.; Asahara, M.; Yamaguchi, S.; Toshimitsu, A. Angew. Chemie - Int. Ed. 2000, 39, 3287-3290.
(19) Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C. Nature 2018, 558, 416-419.
(20) Hengge, E.; Janoschek, R. Chem. Rev. 1995, 95, 1495-1526.
(21) Kipping, F. S.; Sands, J. E. J. Chem. Soc. Trans. 1921, 119, 830-847.
(22) Gilman, H.; Schwebke, G. L. J. Am. Chem. Soc. 1963, 85, 1016.
(23) Gilman, H.; Peterson, D. J.; Tomasi, R. A.; Harrell, R. L. J. Organomet. Chem. 1965, 4, 167-171.
(24) Burkhard, C. A. J. Am. Chem. Soc. 1949, 71, 963-964.
(25) Chen, S. M.; Katti, A.; Blinka, T. A.; West, R. Synth. 1985, 1985, 684-686.
(26) West, R.; Indriksons, A. J. Am. Chem. Soc. 1972, 94, 6110-6115.
(27) Jenkner, P. K.; Hengge, E.; Czaputa, R.; Kratky, C. J. Organomet. Chem. 1993, 446, 83-90.
(28) Carlson, C. W.; Haller, K. J.; Zhang, X. H.; West, R. J. Am. Chem. Soc. 1984, 106, 5521-5531.
(29) Fischer, R.; Konopa, T.; Ully, S.; Baumgartner, J.; Marschner, C. J. Organomet. Chem. 2003, 685, 79-92.
(30) Fischer, J.; Baumgartner, J.; Marschner, C. Science (80-.). 2005, 310, 825.
(31) Siu, T. C.; Imex Aguirre Cardenas, M.; Seo, J.; Boctor, K.; Shimono, M. G.; Tran, I. T.; Carta, V.; Su, T. A. Angew. Chemie - Int. Ed. 2022, 61.
(32) Marro, E. A.; Klausen, R. S. Chem. Mater. 2019, 31, 2202-2211.
(33) Press, E. M.; Marro, E. A.; Surampudi, S. K.; Siegler, M. A.; Tang, J. A.; Klausen, R. S. Angew. Chemie Int. Ed. 2017, 56, 568-572.
(34) Marro, E. A.; Press, E. M.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2018, 140, 5976-5986.
(35) Marro, E. A.; Folster, C. P.; Press, E. M.; Im, H.; Ferguson, J. T.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2019, 141, 17926-17936.
(36) Marro, E. A.; Press, E. M.; Purkait, T. K.; Jimenez, D.; Siegler, M. A.; Klausen, R. S. Chem. - A Eur. J. 2017, 23, 15633-15637.
(37) Kanabus-kaminska, J. M.; Hawari, J. A.; Griller, D.; Chatgilialoglu, C. J. Am. Chem. Soc. 1987, 109, 5267-5268.
(38) Marro, E. A.; Folster, C. P.; Press, E. M.; Im, H.; Ferguson, J. T.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2019, 141, 17926-17936.
(39) Sommer, L. H.; Pietrusza, E. W.; Whitmore, F. C. J. Am. Chem. Soc. 1947, 69, 188.
(40) Speier, J. L.; Webster, J. A.; Barnes, G. H. J. Am. Chem. Soc. 1957, 79, 974-979.
(41) Troegel, D.; Stohrer, J. Coord. Chem. Rev. 2011, 255, 1440-1459.
(42) Miller, Z. D.; Montgomery, J. Org. Lett. 2014, 16, 5486-5489.
(43) Wen, H.; Wan, X.; Huang, Z. Angew. Chemie - Int. Ed. 2018, 57, 6319-6323.
(44) Zhang, M.; Zhang, A. Applied Organometallic Chemistry. November 2010, pp 751757.
(45) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P. P.; Chirik, P. J. Science (80-.). 2012, 335, 567-570.
(46) Chang, A. S. M.; Kawamura, K. E.; Henness, H. S.; Salpino, V. M.; Greene, J. C.; Zakharov, L. N.; Cook, A. K. ACS Catal. 2022, 12, 11002-11014.
(47) Pawluc, P.; Marciniec, B.; Kownacki, I.; Maciejewski, H. Appl. Organomet. Chem. 2005, 19, 49-54.
(48) Kwak, G.; Masuda, T. Macromol. Rapid Commun. 2002, 23, 68-72.
(49) Onopchenko, A.; Sabourin, E. T.; Beach, D. L. J. Org. Chem. 1983, 48, 5101-5105.
(50) Kanno, K. ichiro; Aikawa, Y.; Kyushin, S. Tetrahedron Lett. 2020, 61, 152274.
(51) Kanno, K. ichiro; Noguchi, S.; Ono, Y.; Egawa, S.; Otsuka, N.; Mita, M.; Kyushin, S. J. Organomet. Chem. 2022, 961, 122234.
(52) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16-21.
(53) Sakaki, S.; Mizoe, N.; Sugimoto, M. Organometallics 1998, 17, 2510-2523.
(54) Yajima, S.; Hayashi, J.; Omori, M. Chem. Lett. 1975, 4, 931-934.
(55) Yajima, S.; Hasegawa, Y.; Okamura, K.; Matsuzawa, T. Nature 1978, 273, 525527.
(56) Yajima, S.; Hayashi, J.; Omori, J.; Okamura, K. Nature 1976, 261, 683-685.
(57) Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Planeix, J. M.; Vioux, A. Organometallics 1993, 12, 454-462.
(58) Boury, B.; Carpenter, L.; Corriu, R. J. P. Angew. Chemie Int. Ed. English 1990, 29, 785-787.
(59) Li, Y.; Kawakami, Y. Macromolecules 1998, 31, 5592-5597.
(60) Chen, S.; Zhu, J.; Ke, J.; Li, Y.; He, C. Angew. Chemie Int. Ed. 2022, 61.
(61) Sanchez, J. C.; Urbas, S. A.; Toal, S. J.; Dipasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Macromolecules 2008, 41, 1237-1245.
(62) Perry, R. J.; Karageorgis, M.; Hensler, J. Macromolecules 2007, 40, 3929-3938.
(63) Yamamoto, K.; Kumada, M.; Nakajima, I.; Maeda, K.; Imaki, N. J. Organomet. Chem. 1968, 13, 329-341.
(64) Tobita, H.; Wada, H.; Ueno, K.; Ogino, H. Organometallics 1994, 13, 2545-2547.
(65) Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351-1374.
(66) Lee, P. T. K.; Rosenberg, L. Dalt. Trans. 2017, 46, 8818-8826.
(67) Lee, P. T. K. K.; Skjel, M. K.; Rosenberg, L. Organometallics 2013, 32, 1575-1578.

Chapter 2: Effect of poly(cyclosilane) microstructure on thermal properties

The work presented in this chapter has been published as: Jiang, Q.; Wong, S.; Klausen, R. S. Polym. Chem. 2021, 12, 4785-4794.

2.1 Introduction

Hydrocarbon-based elastomers, thermoplastics, and thermosets are distinguished by their thermal properties, such as the operating temperature (above or below the glass transition temperature, T_{g}) and physical behaviour above the phase transition (e.g. flow). ${ }^{1}$ Models can quantitatively relate polymer T_{g} to structural phenomena (e.g. the Flory-Fox equation ${ }^{1,2}$ and the number-average molecular weight). In addition to reversible phenomena that occur at relatively low temperature like the phase transitions T_{g} or T_{m}, there is interest in the chemical reactivity of polymers at high temperature (pyrolysis). ${ }^{3}$ In contrast to hydrocarbon polymers, structure-based understanding of polysilane thermal property relationships ${ }^{4,5}$ is more limited and has focused on the influence of organic side chains. ${ }^{6,7}$ Two possible reasons for this issue are (1) the synthetic challenge of creating a structurally well-defined homologous series of polysilanes and (2) the propensity of some polysilanes to undergo skeletal rearrangement to polycarbosilanes at elevated temperatures. ${ }^{8,9}$ The polysilane to polycarbosilane rearrangement precedes the ultimate formation of silicon carbide (SiC) fibers. ${ }^{10-12}$

We recently described the synthesis and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi -mediated ${ }^{13,14}$ dehydrocoupling polymerization of the bifunctional cyclosilane monomers $\mathbf{1 , 4 S i} \mathbf{i}_{\mathbf{6}}$ and $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ (Figure 2.1.1a). ${ }^{15-20}$ These directional building blocks template distinct linear or cyclic polymeric architectures: polymers lin-poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ and $c y c-p o l y\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ were
obtained in comparable molecular weights $\left(\mathrm{M}_{\mathrm{n}}\right.$ ca. $\left.3000 \mathrm{~g} \mathrm{~mol}^{-1}\right)$, but $c y c$-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ lacked spectroscopic signatures consistent with end groups. We considered these materials an opportunity to investigate the effect of polysilane backbone on thermal properties without variation of the side chain, which in all cases were methyl or hydro groups.
Prior Work

lin-poly(1,4Si $\left.\mathbf{i}_{6}\right)$

 cyclic

Figure 2.1.1 a) Prior work: $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi -mediated dehydrocoupling polymerization of directional building blocks $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ and $\mathbf{1 , 3 S i} \mathbf{i}_{6}$. b) This work: Synthesis of new linear linpoly $\left(\mathbf{1 , 3} \mathbf{S i}_{6}\right)$ and analysis of relationships between microstructure and thermal decomposition.

We hypothesized that lin-poly $\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)$ and $c y c$-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ would exhibit distinct thermal behaviour and reactivity. Cyclic polymers, both experimentally and computationally, show markedly different properties from linear variants despite similar chemical compositions. ${ }^{21-28}$ For example, Roovers et al. reported that low molecular weight cyclic polystyrene $\left(\mathrm{M}_{\mathrm{w}}=4,700 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ has a glass transition temperature $21^{\circ} \mathrm{C}$
higher than linear polystyrene of the same molecular weight. ${ }^{27}$ In addition, the SiH_{2} end groups present in lin-poly $\left(\mathbf{1 , 4} \mathbf{4} \mathbf{i}_{\mathbf{6}}\right)$ are significantly stronger than SiH internal groups (Figure 2.1.1b) due to the weakening effect of silyl substitution on $\mathrm{Si}-\mathrm{H}$ bonds, ${ }^{29}$ which may perturb the sequence of chemical steps during thermolysis. To probe these differences, we also sought the synthesis of a linear polymer of $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}($ lin-poly $(\mathbf{1 , 3 S i} \mathbf{6}))$ which would have the same relative connectivity of $c y c$-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ but would possess SiH_{2} end groups.

Herein, we report that replacement of the standard $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n \mathrm{BuLi}$ catalyst with $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ provided lin-poly($\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$), the desired linear polymer of $\mathbf{1 , 3 S i} \mathbf{S}_{\mathbf{6}}$, a structural assignment supported by ${ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ NMR spectroscopy. We investigate the influence of poly(cyclosilane) microstructure on thermal behavior and decomposition using a combined theoretical and experimental study. Thermal stability was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) complemented by density functional theory (DFT) calculations. All three samples were glassy solids at room temperature. A glass transition was observed at $108{ }^{\circ} \mathrm{C}$ in cyc-poly $(\mathbf{1 , 3 S i} \mathbf{6})$, but no reversible phase transitions were found below $200{ }^{\circ} \mathrm{C}$ in lin-poly $\left(\mathbf{1 , 4} \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ and linpoly(1,3Si \mathbf{W}_{6}. Above $250{ }^{\circ} \mathrm{C}$, all three poly(cyclosilane)s showed significant thermal decomposition that proceeded in two phases. A generic thermolysis process of poly(cyclosilane)s is proposed based on this combined theoretical and experimental study. As a polymeric material combining cyclic subunits and mixed $\mathrm{H}-$ and Me - termination, poly(cyclosilane)s may find utility as ceramic precursors.

2.2 Dehydrocoupling of hydrosilanes catalyzed by Group 4 metallocene

Reductive Wurtz coupling of dichlorosilanes mediated by alkali metal has been the most popular method to access high molecular weight polysilanes (Scehme 2.2.1). ${ }^{30}$ Alkyl
and aryl groups are mostly seen as side chains in the yielding polysilanes, such as poly(SiMe_{2}), poly(di-n-hexylsilane) and polymethylphenylsilane. However, strong reductive conditions and intolerance to functional groups limit its utilization of synthesizing more diverse polysilane structures. ${ }^{19}$

Scheme 2.2.1 Polymerization of dichlorodimethylsilane via Wurtz coupling.

Dehydrogenative polymerization of primary silanes (e.g. PhSiH_{3}) catalyzed by Group 4 metallocenes $\left(\mathrm{Cp}_{2} \mathrm{MX}_{2}, \mathrm{M}=\mathrm{Ti}, \mathrm{Zr}\right.$ and Hf$)$ serves as an intriguing alternative to Wurtz coupling polymerization. Harrod reported the first example of dehydrogenative polymerization making polyphenylsilane using $\mathrm{Cp}_{2} \mathrm{TiMe}_{2}$ in 1985 (Scheme 2.2.2a). ${ }^{31} \mathrm{~A}$ long induction period (hours to days) was observed in such reactions. Corey later reported Group 4 metallocene chlorides $\left(\mathrm{Cp}_{2} \mathrm{MCl}_{2}, \mathrm{M}=\mathrm{Ti}, \mathrm{Zr}\right.$ and Hf$)$ in situ activated by 2 equivalents of n-BuLi were also able to catalyze the polymerization of primary silanes (Scheme 2.2.2b). ${ }^{32}$ Once metallocene chlorides activated, no induction period was required for the polymerization. Notably, the same catalytic system led to dehydrocoupling of secondary silanes rather than polymerization, and showed no reactivity to tertiary silanes. ${ }^{33}$

Scheme 2.2.2 Dehydrogenative polymerization of primary silanes.

Corey also proposed the mechanism of dehydrogenative coupling of hydrosilanes catalyzed by the $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n-\mathrm{BuLi}$ system (Scheme 2.2.3). ${ }^{13}$ Although the mechanism of catalyst activation remained unclear, Corey hypothesized a highly reactive intermediate [$\left.\mathrm{Cp}_{2} \mathrm{Zr}\right]$ was generated by treating $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with 2 equivalents of $n-\mathrm{BuLi}$. Through σ-bond metathesis first proposed by Tilley ${ }^{34}$, the coupled silane product was formed and zirconocene hydride later turned to the initial reactive $\left[\mathrm{Cp}_{2} \mathrm{Zr}\right]$.

Scheme 2.2.3 Mechanism of dehydrogenative polymerization of primary silanes catalyzed by the $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$-BuLi, proposed by Corey. ${ }^{33}$

The Klausen group carried out a mechanistic study of dehydrocoupling polymerization of cyclosilane $\mathbf{1 , 4} \mathbf{S i}_{6} .{ }^{35}$ The polymerization is sensitive to the bulkiness of metallocene ligands. With Cp groups replaced by bulkier Cp * (permethylated cyclopentadiene), the reactivity of zirconocene catalysts decreased. Incomplete conversion and a modest decrease of molecular weight were observed with $\mathrm{Cp} * \mathrm{CpZrCl}_{2} / n-\mathrm{BuLi}$ system. The bulkiest $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrCl}_{2} / n$ - BuLi did not catalyzed the polymerization.

Poly $\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)$ molecular weight characteristics were also affected by transition metal center. $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi turned out to be the most effective system yielding polysilanes
with full consumption of starting $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$, highest molecular weight and best molecular weight distribution. $\mathrm{Cp}_{2} \mathrm{HfCl}_{2} / n$ - BuLi exhibited lower reactivity for observation of starting cyclosilane after 24 hours and lower molecular weight of resulting poly $(\mathbf{1 , 4 S i} \mathbf{6})$. Although $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / n$ - BuLi also gave full conversion of $\mathbf{1 , 4} \mathbf{S i}_{6}$, low molecular weight and dispersed molecular weight distribution were observed.
${ }^{29} \mathrm{Si}$ NMRs showed $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / n-\mathrm{BuLi}$ resulted in a significant structural rearrangement of the poly(cyclosilane) (Figure 2.2.1a). Identical SiH and SiH_{2} resonances were found in ${ }^{29} \mathrm{Si}$ NMRs of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi and $\mathrm{Cp}_{2} \mathrm{HfCl}_{2} / n$ - BuLi catalyzed polymers. Such observation of internal tertiary silanes (SiH) and external secondary silane end groups $\left(\mathrm{SiH}_{2}\right)$ indicated a typical linear microstructure of $\operatorname{poly}\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)$. However, $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / n-\mathrm{BuLi}$ catalysis led to a significant structural difference: diminished intensity of SiH and SiH_{2} resonances in ${ }^{29} \mathrm{Si}$ NMRs (Figure 2.2.1a). This suggests alkyl redistribution on poly(cyclosilane) yielding highly substituted species. ${ }^{32,35}$ The structural change of Ticatalysis is also supported by UV-Vis spectroscopy (Figure 2.2.1b). An broader and lesswell defined absorption band of Ti-derived $\operatorname{poly}\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ is consistent with the structural assignments above.

Figure 2.2.1 a) Cropped ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT NMR spectra of poly $\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)$ in benzene- $\left.d_{6} \mathrm{~b}\right)$ UV-vis spectra of $\operatorname{poly}\left(\mathbf{1 , 4} \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ samples. Spectra recorded in THF at room temperature. Reprinted with permission from reference. ${ }^{35}$ Copyright 2018 RSC.

2.3 Synthesis of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$

During our initial work on $\mathbf{1 , 3 \mathbf { S i } _ { 6 }}$ polymerization with $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi , we identified two fractions by gel permeation chromatography (GPC): a dominant higher molecular weight fraction corresponding to $c y c-\operatorname{poly}\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ and a minor low molecular weight fraction attributed to linear oligomers too short to cyclize (Figure 2.3.1, dashed line). ${ }^{17}$ Spectroscopic support for this hypothesis arose from observation of minor signals consistent with SiH_{2} end groups in ${ }^{1} \mathrm{H}$ NMR and ${ }^{29} \mathrm{Si}$ DEPT spectra.

Figure 2.3.1 GPC of $c y c$-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ (dotted line) and lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ (solid line). Determined relative to polystyrene standards at 254 nm (THF, [polymer] $=1 \mathrm{mg} \mathrm{mL}^{-1}$, $40^{\circ} \mathrm{C}, 0.35 \mathrm{~mL} \min ^{-1}, 10 \mu \mathrm{~L}$ injection).

Hypothesizing that at a lower average degree of polymerization, poly($\left.\mathbf{(1 , 3 S i} \mathbf{S i}_{\mathbf{6}}\right)$ might exist exclusively of linear oligomers we reinvestigated catalysis of $\mathbf{1 , 3 S} \mathbf{i}_{6}$ polymerization.

We found that $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$-polymerization could provide either linear or cyclic samples depending on solvent. Bulk polymerization of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ with $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ (Scheme 2.3.1) provided lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$ in 87% yield that subsequent NMR analysis indicated was consistent with structural assignment to a predominantly linear structure (vide infra). GPC analysis indicated lin-poly($\mathbf{(1 , 3 S i} \mathbf{i}_{6}$) consisted of a single fraction (Figure 2.3.1). Dilution of the $\mathbf{1 , 3 S i} / \mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ polymerization with toluene resulted in $c y c$-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$, which NMR characterization suggested was consistent with a predominantly cyclic architecture (Table 2.3.1). A 7-day reaction time was required for $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ catalysis in toluene, as this catalyst requires a 4-day induction period..36,37 Heating the reaction at $65^{\circ} \mathrm{C}$ shortened the induction period to 24 hours.

Scheme 2.3.1 Synthesis of lin-poly(1,3Si \mathbf{H}_{6}, a linear polymer of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$.
 weight (ca. $3000 \mathrm{~g} \mathrm{~mol}^{-1}$) than lin-poly($\mathbf{1 , 3 S i} \mathbf{6}$) (ca. $1700 \mathrm{~g} \mathrm{~mol}^{-1}$) which supports the hypothesis that cyclization is inhibited at lower degrees of polymerization presumably due to strain in forming smaller cycles. However, the known tendency of cyclic polymers to adopt more compact conformations that can lead to anomalous elution on GPC affects confidence in the GPC-estimated molecular weight characteristics of $c y c$-poly $(\mathbf{1 , 3 S i} \mathbf{6})$ and lin-poly($\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$. For example, Veige et al. showed that GPC overestimated the molecular weight of cyclic polystyrene by $10,000 \mathrm{~g} \mathrm{~mol}^{-1}$, or approximately 100 degrees of polymerization. ${ }^{26}$ For the cyclosilane system, however, GPC is unlikely to significantly
misestimate poly(cyclosilane) molecular weight as silane dehydropolymerization rarely exceeds 20 degrees of polymerization. ${ }^{38}$

We suggest that linear oligomers were formed during bulk polymerization due to a change in physical properties. In the absence of solvent, the mixture of monomer and $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ gradually changes from a liquid to a glass. This may sequester oligomers from further reaction, providing a single fraction of low molecular weight oligomers too short to cyclize. This hypothesis is consistent with the observation that dilution with toluene actually increased molecular weight and lead to cyclized polymer. Dilution typically inhibits intermolecular reactions, such as chain extension.

Table 2.3.1 Molecular weight characteristics for metallocene-initiated dehydrocoupling polymerization of cyclosilane building blocks and resultant polymers.

Polymer	Monomer	Catalyst	Solvent	Reaction time	Structure	$\begin{gathered} \mathrm{M}_{\mathrm{n}, \mathrm{GPC}} \\ \left(\mathrm{~kg} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{w}, \mathrm{GPC}} \\ \left(\mathrm{~kg} \mathrm{~mol}^{-1}\right) \end{gathered}$	D $^{\text {B }}$	$\overline{D P}^{c}$
lin-poly($\mathbf{1 , 4 \mathbf { S i } _ { 6 } \text {) }}$	1,4Si ${ }_{6}$	$\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n-\mathrm{BuLi}$	Toluene	24 h	Linear	2.59	3.29	1.27	9
cyc-poly($\mathbf{1 , 3 S i} \mathbf{i}_{6}$)	1,3Si6	$\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n-\mathrm{BuLi}$	Toluene	24 h	Cyclic	3.07	4.52	1.48	10
lin-poly(1,3Si ${ }_{\mathbf{6}}$)	1,3Si ${ }_{6}$	$\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$	none	24 h	Linear	1.77	2.39	1.35	6
cyc-poly($\mathbf{1 , 3 S i} \mathbf{6}$)	1,3Si ${ }_{6}$	$\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$	Toluene	7 d	Cyclic	3.84	7.27	1.90	13

Mechanistic differences between the $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi catalysts may also play a role in the results. Group 4 metallocene derivatives are among the best-studied catalysts for hydrosilane dehydropolymerization and have long served an important role in understanding novel inorganic mechanisms. ${ }^{38,39}$ Corey et al. first reported that in situ activation of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in toluene with two equivalents of n-butyllithium yielded an effective catalyst for secondary silane polymerization. ${ }^{13,14}$ Chloride substitution by the alkyllithium yields an intermediate dialkyl zirconocene, which further reacts via β hydrogen abstraction to yield the active, undercoordinated catalyst, although the exact
catalyst structure remains ambiguous. ${ }^{40}$ In contrast, dimethyl zirconocene $\left(\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}\right)$, first reported by Harrod et al., does not require activation by an exogenous agent and can therefore be used either neat or with added solvent. ${ }^{36,41,42}$ However, reactions with $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ can show an induction period, ${ }^{41}$ presumably due to slow formation of the active undercoordinated catalyst in the absence of β-hydrogens.

2.4 Poly(cyclosilane) microstructure

Poly(cyclosilane)s feature a well-defined, periodic alternation of methylated and hydrogenated silicon atoms (Figure 2.1.1b). This structural pattern provides diagnostic features for spectroscopic characterization based on the unique signatures of tertiary $\left(\mathrm{Si}_{3} \mathrm{Si}^{-}\right.$ $H)$, secondary $\left(\mathrm{Si}_{2} \mathrm{Si}_{2}\right)$, and primary $\left(\mathrm{SiSi}_{3}\right)$ bonds. Variable silyl- and hydrosubstitution strongly influences chemical shift in ${ }^{29}$ Si NMR spectroscopy. ${ }^{43,44}$ The degree of silyl substitution has a marked weakening effect on $\mathrm{Si}-\mathrm{H}$ bond strength, ${ }^{29}$ which is reflected in a significant shift to lower-frequency FTIR resonances for the weaker $\mathrm{Si}_{3} \mathrm{Si}_{\mathrm{H}} H$ internal groups relative to stronger $\mathrm{Si}_{2} \mathrm{SiH}_{2}$ end groups. ${ }^{17}$

Figure 2.4.1 Cropped ${ }^{1} \mathrm{H}$ NMR spectra of $\operatorname{lin}-\operatorname{poly}(\mathbf{1 , 4 S i} \mathbf{6})$, cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ and linpoly $(\mathbf{1 , 3 S i} \mathbf{i})$. Only the SiH region is shown.
${ }^{1} \mathrm{H}$ NMR spectra are shown in Figure 2.3.1. The spectrum of $c y c$-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$ is dominated by a single broad resonance at $\delta 3.25$, consistent with its high symmetry macrocyclic structure. ${ }^{17}$ lin- $\operatorname{Poly}\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ has a series of resonances in the $\mathrm{SiH}_{\mathrm{x}}$ region $(\delta$ 3.5-3.0), which were assigned to SiH_{2} end groups or SiH internal sites by ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si} \mathrm{HSQC} .{ }^{17}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ is strikingly similar to lin-poly $\left(\mathbf{1 , 4 S \mathbf { i } _ { \mathbf { 6 } }) \text { with }}\right.$ several broad resonances from $\delta 3.45$ to 3.10 , even though each is a polymer of an isomeric cyclosilane. These spectral data are consistent with assignment of lin-poly($\left.\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ to a lower-symmetry linear structure rather than a macrocycle.

Figure 2.4.2 Cropped ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectra of lin-poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$, cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ and linpoly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$. Only the SiH region is shown. DEPT $=$ distortionless enhancement by polarization transfer.

SiH

Figure 2.4.3. ${ }^{29}$ Si INEPT+ NMR spectrum (79 MHz, Benzene- d_{6}) of lin-poly $(\mathbf{1 , 3 S i} \mathbf{6})$.

Further support for assignment of lin-poly($\mathbf{(1 , 3 S i} \mathbf{i}_{6}$) to a predominantly linear structure comes from the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT (Figure 2.3.2), ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ INEPT+ (Figure 2.3.3) and ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC (Figure 2.3.4) spectra. Like lin-poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{6}\right)$, the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectrum of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ possesses two sets of strong resonances consistent with $\mathrm{Si}_{3} \mathrm{SiH}$ tertiary silanes (internal sites, $\delta-115.3$) and $\mathrm{Si}_{2} \mathrm{SiH}_{2}$ secondary silanes (end groups, δ 97.46). A proton-coupled ${ }^{29} \mathrm{Si}$ INEPT+ spectrum showed the expected multiplicities for the number of attached protons, confirming these assignments (Figure 2.3.3). The family of doublets ($\delta-109.8$ to $-117.0,{ }^{1} J_{\mathrm{SiH}}=160.1 \mathrm{~Hz}$) were assigned to SiH internal resonances. The triplet ($\delta-97.3,{ }^{1} J_{\mathrm{SiH}}=172.3 \mathrm{~Hz}$) was assigned to SiH_{2} end groups, consistent with assignment of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ to a linear polymer of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$. The experimentally measured coupling constants were consistent with typical one-bond coupling constants between silicon and proton.

Figure 2.4.4 ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC NMR spectrum of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$. Crosspeaks are labelled. HSQC = heteronuclear single quantum coherence; DEPT = distortionless enhancement by polarization transfer.

In the ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC spectrum of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$, crosspeaks were observed between the ${ }^{1} \mathrm{H}$ resonances at $\delta 3.25$ to 3.10 and ${ }^{29} \mathrm{Si}$ NMR resonances centered at $\delta-112$ assigned to $\mathrm{Si}_{3} \mathrm{SiH}$ sites (Figure 2.3.4). Meanwhile, ${ }^{1} \mathrm{H}$ resonances at $\delta 3.44$ to 3.28 correlated with the ${ }^{29} \mathrm{Si}$ NMR resonances centered at $\delta-97$ assigned to $\mathrm{Si}_{2} \mathrm{SiH}_{2}$ sites. The 2-D spectral correlations confirm the assignment of the lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ structure to a linear structure containing both tertiary silane internal sites and secondary silane end groups.

Finally, lin-poly($\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}$)'s Fourier transform infrared (FTIR) spectrum showed two resonances in the SiH_{x} region consistent with stronger $\mathrm{Si}_{2} \mathrm{SiH}_{2}$ and weaker $\mathrm{Si}_{3} \mathrm{SiH}$ bonds
 this region centered at a lower frequency. The spectroscopic studies described here support assignment of lin-poly $\left(\mathbf{1 , 3} \mathbf{3} \mathbf{S i}_{6}\right)$ to a largely linear structure.

Figure 2.4.5 Cropped ATR-FTIR spectra of $c y c-p o l y\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ and lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i n}_{6}\right)$ highlighting the $\mathrm{Si}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{Me}$ regions.

2.5 Differential Scanning Calorimetry

While the thermal properties of Si-O polymers are well-characterized, and cyclic and linear polydimethylsiloxane (PDMS) were foundational models for understanding the effect of architecture on the $\mathrm{T}_{\mathrm{g}},{ }^{23}$ systematic investigation of polysilane thermal properties has been largely limited to understanding the role of organic side chains in influencing backbone conformation and optical properties. Polysilanes with longer side chains (hexyl, heptyl, octyl) exhibit solid-state thermochromism, ${ }^{45,46}$ while polysilanes with shorter side chains (butyl, pentyl) do not. ${ }^{47}$ Significant experimentation supports the following model: (1) Polysilanes with short side chains adopt a helical $\mathrm{Si}-\mathrm{Si}$ conformation at room temperature that absorbs higher energy light $(\lambda=317 \mathrm{~nm})$. (2) In contrast, polysilanes with longer side chains adopt an all-anti conformation at room temperature that maximizes σ conjugation and results in a bathochromically shifted absorption band $(\lambda=375 \mathrm{~nm})$. This is attributed to side chain crystallization that locks the $\mathrm{Si}-\mathrm{Si}$ backbone into the anti-
conformation. At elevated temperatures, side chain melting results in a backbone disordering that shifts the absorption band back to higher energies $(\lambda=317 \mathrm{~nm})$.

Rabolt et al. found by differential scanning calorimetry (DSC) a reversible firstorder transition at ca. $40^{\circ} \mathrm{C}$ in poly(di- n-hexylsilane) that was assigned to the side-chain melting. ${ }^{46}$ Schilling et al. reported that DSC analysis of poly(di- n-butylsilane) and poly(di-n-pentylsilane) yielded significantly different results, including the lack of a transition comparable to side-chain melting (a weaker transition to a more disordered phase was found above ca. $\left.80{ }^{\circ} \mathrm{C}\right) .{ }^{47}$ In addition, Schilling et al. reported a very weak second-order transition at $36^{\circ} \mathrm{C}$ (only apparent in poly(di- n-butylsilane) during slow DSC runs) and an intense second-order transition at $-40^{\circ} \mathrm{C}$. On the basis of solid-state NMR experiments $\left({ }^{13} \mathrm{C}\right.$ CP-MAS), all phase transitions were attributed to side chains.

The poly(di- n-alkylsilanes) studied by Miller, ${ }^{46}$ Schilling, ${ }^{47}$ and others were prepared by Wurtz polymerization of the corresponding dichlorodialkylsilane. Wurtz polymerization typically results in higher molecular weight materials than those prepared by dehydropolymerization and the products also differ in possessing two alkyl side chains rather than one (e.g. poly $\left(\mathrm{SiR}_{2}\right)$ vs. poly(SiHR$)$). While monoalkyl polysilanes surely possess different thermal properties than dialkyl, we have identified only one report of thermal analysis of a polysilane prepared by dehydropolymerization. Corey et al. reported dehydropolymerization of p-tolylsilane and that DSC analysis of poly($\mathrm{SiH}(p$-tol $)$) (degree of polymerization ca. 20) revealed no phase transitions over the temperature range 25 to $200{ }^{\circ} \mathrm{C} .{ }^{48}$ Some insight into the influence of hydro side chains arises from comparison of the copolymer poly($\left.\mathrm{SiPh}_{2}-\mathrm{co}-\mathrm{SiMeH}\right)$ to $\mathrm{poly}(\mathrm{SiMePh}) .{ }^{49}$ Both poly(SiMePh) and poly ($\left.\mathrm{SiPh}_{2}-\mathrm{co}-\mathrm{SiMeH}\right)$ exhibited a single glass transition, but the poly $\left(\mathrm{SiPh}_{2}-\mathrm{co}-\mathrm{SiMeH}\right)$
T_{g} decreased with increasing methylhydro composition ($\mathrm{T}_{\mathrm{g}}=64$ to $85^{\circ} \mathrm{C}$ vs. $88^{\circ} \mathrm{C}$ for poly(SiMePh)). These data were interpreted as showing greater flexibility and mobility in hydro-substituted polysilanes.

While prior work has provided insight into side chain effects, little is understood about how the silane architecture might influence thermal properties. We therefore performed DSC analysis of the three poly(cyclosilane)s in the temperature range 35 to 200 ${ }^{\circ} \mathrm{C}$ as thermogravimetric analysis (TGA, vide infra) indicated polymer decomposition above $200^{\circ} \mathrm{C}$. Heating rates between 3 and $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ were tested.

For the two linear systems lin-poly $\left(\mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } })}\right.$ and lin-poly $(\mathbf{1 , 3 S i} \mathbf{6})$, no reversible phase transition was observed below $200^{\circ} \mathrm{C}$ at any heating rate (Figure 2.4.1a,c). In contrast, for cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ we observed an apparent second-order phase transition at $108{ }^{\circ} \mathrm{C}$ (Figure 2.4.1b). The transition was only observed with a heating rate of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ and a cooling rate of $3{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$; no transition was apparent at slower heating rates. The reversibility of the $108{ }^{\circ} \mathrm{C}$ transition is unclear: no transition is seen on cooling (Figure 2.4.2) but the transition observed on heating is reproducible (second and third heating cycles overlay, Figure 2.4.3), which is inconsistent with a change in chemical structure. The $108{ }^{\circ} \mathrm{C}$ transition was apparent in all samples of cyc-poly(1,3Si $\mathbf{6})$ evaluated, regardless of preparative method.

 poly $\left(\mathbf{1}, \mathbf{3 S i} \mathbf{i}_{\mathbf{6}}\right)$. The second cycle is shown. Heating rate: $3{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ for lin-poly($\left.\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)$, $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ for $c y c-$ poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ and lin-poly $(\mathbf{1 , 3 S i} \mathbf{6})$.

Figure 2.5.2. The second cooling cycle of DSC measurement of lin-poly($\left.\mathbf{1 , 3 S i} \mathbf{i n}_{\mathbf{6}}\right)$. Cooling rate: $3^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. No phase transition was observed.

Figure 2.5.3. The overlay of the second (solid line) and third (dotted line) heating cycle of DSC measurement of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$. Heating rate: $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

The DSC analysis of lin-poly $\left(\mathbf{1 , 4} \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ and lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ is similar to that reported by Corey et al. for linear poly $(\mathrm{SiH}(p-t o l)) .{ }^{48}$ The comparatively high mobility of monoalkyl segments in linear polysilanes may complicate observation of the T_{g} in polymers with the general formula poly(SiHR). The observation of a $108^{\circ} \mathrm{C}$ phase transition is unprecedented. We suggest assignment to a glass transition. While the T_{g} is not apparent on cooling, this may arise from crystallization during the heating phase. Assignment to a glass transition is also consistent with the known tendency of cyclic polymers to exhibit anomalous glass transitions relative to linear polymers.

2.6 Thermal stability of poly(cyclosilane)s

Polymers based on main group elements find application as solution-processable precursors to ceramics (polymer-derived ceramics, PDCs). ${ }^{8,11}$ Yajima et al. discovered pyrolysis of polydimethylsilane ($\left[\mathrm{SiMe}_{2}\right]_{\mathrm{n}}$) yielding silicon carbide (SiC) fibers. ${ }^{50,51}$ Polysilazane pyrolysis yields silicon nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ or $\mathrm{Si} / \mathrm{C} / \mathrm{N}$ ceramics depending on the
precursor and thermolysis conditions. ${ }^{8,52,53}$ Several studies have demonstrated the influence of precursor structure on PDC structure and properties. Schilling et al. demonstrated the positive influence of backbone branching on SiC ceramic yield using polycarbosilanes prepared by potassium reduction of vinylmethyldichlorosilane. ${ }^{54}$ Polysilanes bearing both hydrogen and alkyl substituents ${ }^{55}$ are particularly attractive to circumvent carbon formation during pyrolysis, as shown by Laine et al. in the decomposition of polymethylsilane ($\left.[\mathrm{MeSiH}] \mathrm{x}_{\mathrm{x}}\right) .{ }^{56}$

The thermal decomposition of poly(cyclosilane)s was studied by thermogravimetric analysis (Figure 2.5.1). The three polymers showed overall similar thermal decomposition behavior. A minor mass loss at $65^{\circ} \mathrm{C}$ in lin-poly($\mathbf{1 , 4 S \mathbf { S i } _ { \mathbf { 6 } }) \text { was }}$ attributed to residual catalyst (Figure 2.5.1a), which was easier to remove from the more soluble $c y c-$ poly $(\mathbf{1 , 3 S i} \mathbf{6})$ and lin-poly $\left(\mathbf{1 , 3 S i}_{\mathbf{6}}\right)$ samples. TGA curves of derivative weight change reveal two main phases of weight loss when samples are heated from 40 to $600^{\circ} \mathrm{C}$ in argon flow. When the temperature increased to $500{ }^{\circ} \mathrm{C}$, about 50% weight loss is observed in all three samples. Then, the weight became constant above $550{ }^{\circ} \mathrm{C}$. A black solid residue remained in the sample pan after the TGA measurement. These observations are consistent with ceramization, ${ }^{8}$ although the product was not characterized in this study.

 Solid lines: derivative weight change; dotted lines: percentage weight change.

Some differences between the polymer systems were also apparent between 200 to $400{ }^{\circ} \mathrm{C}$. The linear polymers both showed similar derivative weight change in this region, with a peak value greater than 0.6 , while for $c y c-\operatorname{poly}\left(\mathbf{1}, \mathbf{3} \mathbf{S i}_{\mathbf{6}}\right)$ the peak value was lower than 0.5 (Figure 2.5.1b). Both linear polymers lost approximately 45% of their weight in this phase, while only 33% for cyc-poly($\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$. This indicates that linear poly(cyclosilane)s decomposed more rapidly than $c y c-p o l y(\mathbf{1 , 3 S i} \mathbf{6})$ in this temperature range. In addition, multiple features (e.g. peaks and shoulders) appeared in the derivative weight change curve of lin-poly($\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$), while smoother curves were obtained in the measurements of $c y c$-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ and lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$.

These observations point to microstructure-dependent differences in early stage poly(cyclosilane) pyrolysis. The first phase of polysilane pyrolysis to SiC is skeletal rearrangement from a polysilane to a polycarbosilane, ${ }^{57}$ in poly(SiMeH) pyrolysis, this rearrangement occurs at $400{ }^{\circ} \mathrm{C} .{ }^{56}$ The pyrolysis of hexamethyldisilane is a model system for polysilane thermolysis and several reactive intermediates have been proposed, including radical, ${ }^{57,58}$ silylene $\left(\mathrm{R}_{2} \mathrm{Si}\right),{ }^{59}$ and silene $(\mathrm{C}=\mathrm{Si})$ species. ${ }^{58} \mathrm{In}$ all cases, homolysis of a weak bond (e.g. $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{SiMe}_{3}$ to $2 \mathrm{Me}_{3} \mathrm{Si} \bullet$) initiates skeletal rearrangement. The different poly(cyclosilane) microstructures, especially with respect to $\mathrm{Si}-\mathrm{H}$ bond strengths, may influence the relative rates of processes implicated in poly(cyclosilane) thermolysis.

2.7 Bond dissociation energy calculations

To understand the influence of poly(cyclosilane) microstructure on thermolysis, we carried out density functional theory (DFT) calculations of bond dissociation energy on monomers and model molecules. As a compromise between computational ease and experimental relevance, the monomer $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ and its linear trimer were selected for study.

Geometries were fully optimized without symmetry restrictions using B3LYP hybrid exchange-correlation functional with the $6-31 \mathrm{G}(\mathrm{d})$ basis set. The basis set was utilized to investigate structures and expected characteristics of linear and cyclic forms of poly($\mathbf{1 , 3 S i} \mathbf{S}) .{ }^{17}$ To ensure optimized geometries were local minima on their potential energy surfaces, the same level of theory was utilized to perform frequency calculations and showed no imaginary frequencies. The optimized geometry of $\mathbf{1 , 4 \mathbf { S i } _ { 6 }}$ is a chair conformation (consistent with a prior X-ray crystallographic study), ${ }^{16}$ whereas in the linear trimer rings were slightly twisted. Table 2.6 .1 summarizes calculated homolytic bond dissociation energies (BDEs) of $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ and its trimer.

Table 2.7.1. Calculated bond dissociation energy of $\mathbf{1 , 4} \mathbf{S i}_{6}$ and $\operatorname{lin}-\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)_{3}$.

1,4Si ${ }_{6}$		$\operatorname{lin}-\left(\mathbf{1 , 4 \mathbf { S i } _ { 6 }) _ { 3 }}\right.$	
Bond	BDE ($\mathrm{kcal} \mathrm{mol}^{-1}$)	Bond	BDE ($\mathrm{kcal} \mathrm{mol}^{-1}$)
$\mathrm{Si}(1)-\mathrm{H}^{\text {a }}$	88.0	$\mathrm{Si}(1)-\mathrm{H}^{\text {a }}$	88.4
$\mathrm{Si}(1)-\mathrm{H}^{\text {e }}$	86.5	$\mathrm{Si}(1)-\mathrm{H}^{\mathrm{e}}$	86.7
$\mathrm{Si}(2)-\mathrm{Me}^{\mathrm{a}}$	80.0	Si(4)-H	85.6
$\mathrm{Si}(2)-\mathrm{Me}^{\mathrm{e}}$	78.9	$\mathrm{Si}(6)-\mathrm{Me}^{\text {a }}$	73.4
$\mathrm{Si}(1)-\mathrm{Si}(2)$	68.1	$\mathrm{Si}(6)-\mathrm{Me}^{\text {e }}$	73.3
Si(2)-Si(2)	68.4	Si(2)-Si(3)	63.0
		$\mathrm{Si}(3)-\mathrm{Si}(4)$	59.6
		$\mathrm{Si}(4)-\mathrm{Si}(5)$	54.9

In $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}, \mathrm{Si}-\mathrm{Si}$ bonds were significantly weaker than $\mathrm{Si}-\mathrm{Me}$ and $\mathrm{Si}-\mathrm{H}$ bonds by $12-18 \mathrm{kcal} \mathrm{mol}^{-1}$. A similar trend in relative bond strengths (from high to low: $\mathrm{Si}-\mathrm{H}, \mathrm{Si}-\mathrm{Me}$,
 weaker than endocyclic $\mathrm{Si}-\mathrm{Si}$ bonds by 5 to $8 \mathrm{kcal} \mathrm{mol}^{-1}$. These data suggest that the $\mathrm{Si}-\mathrm{Si}$ bonds between monomers are most likely to homolyse first in poly(cyclosilane) thermolysis. Small, volatile silanes generated from homolysis near an end group in linear poly(cyclosilane)s would result in a significant weight decrease, which is consistent with the major weight loss observed between 200 to $400{ }^{\circ} \mathrm{C}$ in TGA measurements. In cycpoly($\left.\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\right)$, fewer volatile products may form as at least two $\mathrm{Si}-\mathrm{Si}$ bond rupture events would be required to form a volatile byproduct. This may account for the slower mass loss observed in $c y c$-poly $\left(\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\right)$ relative to linear poly(cyclosilane)s.

At higher temperatures, organic side groups and hydrogen atoms start to detach from silicon leading to the second phase of weight loss. Combining experimental measurements and BDE calculations, the thermolysis process of poly(cyclosilane)s is proposed as shown in Figure 2.6.1.

Pyrolysis of Si backbone

Figure 2.7.1 Proposed poly(cyclosilane) pyrolysis.

2.8 Conclusion

Herein, we investigated the microstructure-dependent thermal properties of poly(cyclosilane)s. We prepared a known linear polymer of $\mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } }}($ lin-poly $(\mathbf{1 , 4 S i} \mathbf{6}))$ and a predominantly cyclic polymer of $\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\left(c y c\right.$-poly $\left.\left(\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\right)\right)$. In the course of these efforts, we also synthesized a new, linear oligomer of cyclosilane $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ (lin-poly $(\mathbf{1 , 3 S i} \mathbf{6})$). Thermal analysis by DSC found no phase transitions for linear poly(cyclosilane)s below the decomposition temperature, but a phase transition at $108{ }^{\circ} \mathrm{C}$ was found for cyc poly($\mathbf{1 , 3 S i} \mathbf{6}$). We suggested assignment to a glass transition temperature. Poly(cyclosilane) thermolysis was investigated by TGA and investigated by density functional theory calculations. Lower rates of mass loss were found for $c y c$-poly $(\mathbf{1 , 3 S i} \mathbf{6})$, which was attributed to the need for two bond homolysis events to form volatile byproducts. These studies provide insights into how synthetic control of polysilane microstructure can predictably influence thermal properties.

2.9 Reference

(1) Odian, G. Principles of Polymerization; John Wiley \& Sons, 2004.
(2) Fox, T. G.; Flory, P. J. J. Appl. Phys. 1950, 21, 581-591.
(3) Anuar Sharuddin, S. D.; Abnisa, F.; Wan Daud, W. M. A.; Aroua, M. K. Energy Convers. Manag. 2016, 115, 308-326.
(4) Zeigler, J. M. Synth. Met. 1989, 28, 581-591.
(5) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359-1410.
(6) Demoustier-Champagne, S.; Cordier, S.; Devaux, J. Polymer (Guildf). 1995, 36, 1003-1007.
(7) Asuke, T.; West, R. Macromolecules 1991, 24, 343-344.
(8) Birot, M.; Pillot, J. P.; Dunoguès, J. Chem. Rev. 1995, 95, 1443-1477.
(9) Shiina, K.; Kumada, M. J. Org. Chem. 1958, 23, 139.
(10) Yajima, S.; Hayashi, J.; Omori, J.; Okamura, K. Nature 1976, 261, 683-685.
(11) Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G. D. J. Am. Ceram. Soc. 2010, 93, 1805-1837.
(12) Barroso, G.; Li, Q.; Bordia, R. K.; Motz, G. J. Mater. Chem. A 2019, 7, 1936-1963.
(13) Corey, J. Y.; Zhu, X. H.; Bedard, T. C.; Lange, L. D. Organometallics 1991, 10, 924-930.
(14) Corey, J. Y.; Chang, L. S.; Corey, E. R. Organometallics 1987, 6, 1595-1596.
(15) Marro, E. A.; Folster, C. P.; Press, E. M.; Im, H.; Ferguson, J. T.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2019, 141, 17926-17936.
(16) Press, E. M.; Marro, E. A.; Surampudi, S. K.; Siegler, M. A.; Tang, J. A.; Klausen, R. S. Angew. Chemie Int. Ed. 2017, 56, 568-572.
(17) Marro, E. A.; Press, E. M.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2018, 140, 5976-5986.
(18) Folster, C. P.; Klausen, R. S. Polym. Chem. 2018, 9, 1938-1941.
(19) Marro, E. A.; Klausen, R. S. Chem. Mater. 2019, 31, 2202-2211.
(20) Dorn, R. W.; Marro, E. A.; Hanrahan, M. P.; Klausen, R. S.; Rossini, A. J. Chem. Mater. 2019, 31, 9168-9178.
(21) Jia, Z.; Monteiro, M. J. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 2085-2097.
(22) Bannister, D. J.; Semlyen, J. A. Polymer (Guildf). 1981, 22, 377-381.
(23) Clarson, S. J.; Dodgson, K.; Semlyen, J. A. Polymer (Guildf). 1985, 26, 930-934.
(24) Orrah, D. J.; Semlyen, J. A.; Ross-Murphy, S. B. Polymer (Guildf). 1988, 29, 14521454.
(25) Roovers, J.; Toporowski, P. M. Macromolecules 1983, 16, 843-849.
(26) Roland, C. D.; Li, H.; Abboud, K. A.; Wagener, K. B.; Veige, A. S. Nat. Chem. 2016, 8, 791-796.
(27) Santangelo, P. G.; Roland, C. M.; Chang, T.; Cho, D.; Roovers, J. Macromolecules 2001, 34, 9002-9005.
(28) Gao, L.; Oh, J.; Tu, Y.; Chang, T.; Li, C. Y. Polymer (Guildf). 2019, 170, 198-203.
(29) Kanabus-kaminska, J. M.; Hawari, J. A.; Griller, D.; Chatgilialoglu, C. J. Am. Chem. Soc. 1987, 109, 5267-5268.
(30) Kipping, F. S. J. Chem. Soc., Trans. 1924, 125, 2291-2297.
(31) Aitken, C.; Harrod, J. F.; Samuel, E. J. Organomet. Chem. 1985, 279, C11-C13.
(32) Corey, J. Y.; Xiao-Hong, Z. J. Organomet. Chem. 1992, 439, 1-17.
(33) Corey, J. Y.; Zhu, X. H.; Bedard, T. C.; Lange, L. D. Organometallics 1991, 10, 924-930.
(34) Woo, H. G.; Walzer, J. F.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 7047-7055.
(35) Folster, C. P.; Klausen, R. S. Polym. Chem. 2018, 9, 1938-1941.
(36) Aitken, C.; Harrod, J. F.; Gill, U. S. Can. J. Chem. 1987, 65, 1804-1809.
(37) Mu, Y.; Aitken, C.; Cote, B.; Harrod, J. F.; Samuel, E. Can. J. Chem. 1991, 69, 264276.
(38) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22-29.
(39) Waterman, R. Chem. Soc. Rev. 2013, 42, 5629-5641.
(40) Dioumaev, V. K.; Harrod, J. F. Organometallics 1997, 16, 1452-1464.
(41) Aitken, C.; Harrod, J. F.; Samuel, E. Can. J. Chem. 1986, 64, 1677-1679.
(42) Campbell, W. H.; Hilty, T. K.; Yurga, L. Organometallics 1989, 8, 2615-2618.
(43) Blinka, T. A.; Helmer, B. J.; West, R. Adv. Organomet. Chem. 1984, 23, 193-218.
(44) Hanrahan, M. P.; Fought, E. L.; Windus, T. L.; Wheeler, L. M.; Anderson, N. C.; Neale, N. R.; Rossini, A. J. Chem. Mater. 2017, 29, 10339-10351.
(45) Miller, R. D.; Hofer, D.; Rabolt, J.; Fickes, G. N. J. Am. Chem. Soc. 1985, 107, 2172-2174.
(46) Rabolt, J. F.; Hofer, D.; Miller, R. D.; Fickes, G. N. Macromolecules 1986, 19, 611616.
(47) Schilling, F. C.; Lovinger, A. J.; Zeigler, J. M.; Davis, D. D.; Bovey, F. A.

Macromolecules 1989, 22, 3055-3063.
(48) Grimmond, B. J.; Corey, J. Y. Organometallics 2000, 19, 3776-3783.
(49) Sacarescu, L.; Siokou, A.; Sacarescu, G.; Simionescu, M.; Mangalagiu, I. Macromolecules 2008, 41, 1019-1024.
(50) Yajima, S.; Hayashi, J.; Omori, M. Chem. Lett. 1975, 4, 931-934.
(51) Yajima, S.; Hasegawa, Y.; Okamura, K.; Matsuzawa, T. Nature 1978, 273, 525527.
(52) Han, H. N.; Lindquist, D. A.; Haggerty, J. S.; Seyferth, D. Chem. Mater. 1992, 4, 705-711.
(53) SEYFERTH, D.; WISEMAN, G. H. J. Am. Ceram. Soc. 1984, 67, C-132-C-133.
(54) Schilling, C. L.; Wesson, J. P.; Williams, T. C. J. Polym. Sci. Polym. Symp. 1983, 70, 121-128.
(55) Seyferth, D.; Wood, T. G.; Tracy, H. J.; Robison, J. L. J. Am. Ceram. Soc. 1992, 75, 1300-1302.
(56) Zhang, Z. -F; Babonneau, F.; Laine, R. M.; Mu, Y.; Harrod, J. F.; Rahn, J. A. J. Am. Ceram. Soc. 1991, 74, 670-673.
(57) Yajima, S.; Hasegawa, Y.; Hayashi, J.; Iimura, M. J. Mater. Sci. 1978, 13, 25692576.
(58) Davidson, I. M. T.; Howard, A. V. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1975, 71, 69-77.
(59) Davidson, I. M. T. J. Organomet. Chem. 1988, 341, 255-265.

Chapter 3: Poly(cyclosilane) connectivity tunes optical absorbance

The work presented in this chapter has been published as: Fang, F.; Jiang, Q.; Klausen, R. S. J. Am. Chem. Soc. 2022, 144, 17, 7834-7843

3.1 Introduction

Polysilanes are a class of organometallic polymers with a backbone comprised of $\mathrm{Si}-\mathrm{Si}$ atoms ${ }^{1-5}$ that have long attracted interest for their longer-wavelength optical transitions relative to organic polyolefins. ${ }^{6}$ Polysilane absorption spectra are conformationdependent, ${ }^{7,8}$ giving rise to thermochromism in the solid- and solution-state ${ }^{9-11}$ and conformation-dependent molecular conductance. ${ }^{12-16}$ Efforts to control conformation, with corresponding bathochromic shifts in absorption spectra, have focused on modifying the organic backbone of the molecular ${ }^{17-20}$ or polymeric silane. ${ }^{9,10}$

We now demonstrate tailoring of polysilane optical properties via changes in the silicon skeleton. The connectivity of isomeric cyclosilanes introduces distinct conformations and σ-conjugated pathways: 1,3-linkages achieve extended zigzag pathways not available to 1,4 -linked cyclosilanes, resulting in a $20-\mathrm{nm}$ difference in $\lambda_{\max }$ (Figure 1). Critically, this insight enables a connection between structural design and tunable absorption spectra. We show that copolymerization of the cyclosilane monomers $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$, results in systematic increases in $\lambda_{\max }$ with higher compositions of $\mathbf{1 , 3 S} \mathbf{i}_{\mathbf{6}}$.

Skeletal control of polysilane optical absorbance requires complex monomers. The earliest polysilanes were prepared by sodium-mediated Wurtz polymerization, which is limited to simple diorganodichlorosilanes (e.g. $\left.\mathrm{Cl}_{2} \mathrm{SiMe}_{2}\right)^{21}$ due to the strongly reducing conditions and results in disperse mixtures of oligomeric and polymeric species. ${ }^{22,23}$ Our
group, inspired by crystalline silicon's diamond lattice structure, sought to synthesize polymeric silanes with cyclic repeat units. ${ }^{24}$ The metal-catalyzed dehydrogenative coupling of hydrosilanes promised greater functional group tolerance than Wurtz polymerization, ${ }^{25,26}$ leading to the design and synthesis of the bifunctional cyclosilane monomers $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ and $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ (Scheme 3.1.1). In earlier reports, we described the structural characterization of the linear and cyclic poly(cyclosilane)s arising from $\mathbf{1 , 4 \mathbf { S i } _ { 6 }}$ and $\mathbf{1 , 3 S i} \mathbf{i n}_{\mathbf{6}}$ dehydropolymerization, ${ }^{27-30}$ as well as the effect of poly(cyclosilane) microstructure on thermal properties. ${ }^{31}$

zigzag
$\lambda_{\max }=292 \mathrm{~nm}$

1,4-linked cyclosilanes

Figure 3.1.1. Connectivity, conformation, and optical properties in poly(cyclosilane)s.

Herein, we report solution-phase UV-vis absorbance spectra of three cyclosilane homopolymers differing in connectivity (1,3- or 1,4-) and architecture (linear or cyclic). We found that lin-poly $(\mathbf{1 , 3 S i} \mathbf{6})$ was bathochromically shifted by $20-\mathrm{nm}$ relative to linpoly($\mathbf{1 , 4} \mathbf{S i}_{6}$). Time-dependent density functional theory (TD-DFT) calculations provided a structure-based hypothesis for this observation. In hexameric model systems, 1,3-linkages led to extended transoid-conformation $\left(|\omega|=165^{\circ}\right)^{32} \sigma$-conjugated pathways and lowenergy HOMO-LUMO vertical transitions, while 1,4-linkages could not access all transoid-conformations. TD-DFT calculations suggested that the HOMO-LUMO transition in 1,4-linked cyclosilanes is symmetry-forbidden, resulting in a shift to higherenergy UV-vis absorption spectra. Based on these design principles, we hypothesized that
statistical copolymers should show vertical transitions intermediate between the homopolymers. Indeed, as the composition of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ increased in statistical copolymers, $\lambda_{\max }$ increased systematically. TD-DFT provides additional insight into the influence of sequence and composition on predicted absorbance spectra.

Prior Work: Architectural Control

This Work: Optical Tuning \& Copolymerization

Scheme 3.1.1. Prior work: The structural isomers $\mathbf{1 , 3 S i} \mathbf{S i}_{6}$ and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ template linear and cyclic poly(cyclosilane) architectures. This work: Cyclosilane copolymerization raises questions of reactivity, sequence, architecture, and physical properties.

Our results establish a conceptual framework for skeletal-based control of polysilane optical properties. An advantage of skeletal control is that in principle every Si atom could contribute to optical activity. An additional key advance in the current work is the coupling of experiment to theory, which provides deeper insights to the relationship between structure and photophysical properties. While the conventional wisdom that σ conjugation is conformation-dependent implies that non-ideal conformations result in more localized bonds and changes in molecular orbital energies, our finding is that conformation
affects orbital symmetry and the identity of allowed transitions. We hope that the combined impact of these two advances is facilitate the rational design of polymeric silanes with defined optical properties.

3.2 UV-vis spectroscopy: homopolymers

A systematic comparison of poly(cyclosilane) UV-vis absorbance spectra has not previously been reported. Prior work has shown that lin-poly $\left(\mathbf{1 , 4 S i} \mathbf{i}_{6}\right)$ and $c y c-p o l y\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ were bathochromically shifted relative to their respective monomers (Table 3.2.1), but experimental and computational comparison of the homopolymers was not reported. The optical properties of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$ have not previously been described in any form. ${ }^{31}$

Figure 3.2.1. UV-vis absorbance spectra of homopolymers. [polymer] $=0.012 \mathrm{mg} \mathrm{mL}^{-1}$, THF, room temperature.

A more complete understanding of poly(cyclosilane) UV-vis absorbance spectroscopy was therefore necessary. Solution phase spectra (solvent $=$ THF) of the three distinct homopolymers were collected at room temperature (Figure 3.2.1) and data are summarized in Table 3.2.1. The spectra of the two $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ homopolymers, linear and cyclic,
were nearly identical and both were bathochromically shifted relative to poly($\mathbf{(1 , 4 \mathbf { S i } _ { \mathbf { 6 } }) \text { by }}$ over 20 nm . All three homopolymers absorbed at significantly longer wavelengths (ca. 100 nm) than their respective monomers, which have characteristic sharp absorptions around 190 nm in pentane. These results pointed to skeletal connectivity having a marked effect on the extent of σ-conjugation relative to monomer.

Table 3.2.1. UV-vis spectroscopic properties of cyclosilane monomers and homopolymers.

Polysilanes	$\lambda_{\max }(\mathrm{nm})$	$\lambda_{\text {onset }}(\mathrm{nm})$
$\mathbf{1 , 3 S i}{ }_{6}{ }^{a}$	<190	230
cyc-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$	296	311
lin-poly $\left(\mathbf{1 , 3 S i}{ }_{6}\right)$	292	308
lin-poly $\left(\mathbf{1 , 4 S i}{ }_{\mathbf{6}}\right)$	271	291
$\mathbf{1 , 4 \mathbf { S i } _ { 6 } { } ^ { a }}$	194	232

Conditions: $[$ lin-poly $(\mathbf{1 , 3 S i} \mathbf{6})]=0.005 \mathrm{mg} \mathrm{mL}^{-1},[$ lin-poly $(\mathbf{1 , 4 S i} \mathbf{6})]=0.012 \mathrm{mg} \mathrm{mL}^{-1},[c y c-$ $\left.\operatorname{poly}\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)\right]=0.010 \mathrm{mg} \mathrm{mL}^{-1},[$ monomer $]=3.0 \times 10^{-5} \mathrm{M}, \mathrm{THF}, \mathrm{rt} .{ }^{\mathrm{a}}$ solvent $=$ pentane.

3.3 Calculated electronic transitions: homopolymers.

The bathochromic shift of lin-poly $\left(\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\right)$ relative to lin-poly $\left(\mathbf{1 , 4} \mathbf{4} \mathbf{i}_{\mathbf{6}}\right)$ suggested distinct σ-conjugation pathways. That lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ appeared to have a longer effective conjugation length despite a lower degree of polymerization was particularly striking (M_{n} $=1770 \mathrm{~g} \mathrm{~mol}^{-1}$ vs. $\left.2770 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.

We hypothesized that computational characterization including time-dependent density functional theory (TD-DFT) could shed light on the unique σ-conjugation pathways in each macromolecule. We therefore sought to identify reasonable molecular analogs of each structure. The poly(cyclosilane) absorption bands were similar in position to those of molecular silanes with $8-10 \mathrm{Si}$ atoms. In linear silanes with the general formula
$\mathrm{Me}\left(\mathrm{SiMe}_{2}\right)_{\mathrm{n}} \mathrm{Me}(\mathrm{n}=2-8)$, each additional SiMe_{2} unit results in a bathochromic shift of ca. 15 nm ; the lin-poly $\left(\mathbf{1 , 4 \mathbf { S i } _ { 6 })}\right.$) transition $\left(\lambda_{\max }=279 \mathrm{~nm}\right)$ is comparable to the molecular octasilane $\mathrm{Me}\left(\mathrm{SiMe}_{2}\right)_{8} \mathrm{Me}\left(\lambda_{\max }=272.5 \mathrm{~nm}\right)$. With degrees of polymerization of ca. 10-20 monomers indicated by size exclusion chromatography (SEC) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, ${ }^{27,30}$ the experimentally observed optical transitions point to an effective conjugation length much shorter than the length of the macromolecule.

Figure 3.3.1 Geometry-optimized conformations of linear and cyclic hexamers of the cyclosilanes $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$. Adapted with permission from J. Am. Chem. Soc. 2018, 140, 5976, copyright 2018 American Chemical Society. Methyl groups omitted for clarity. B3LYP/6-31G(d).

We therefore chose cyclic and linear hexamers of $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ to model σ conjugation and predict vertical transitions. Diastereomers with trans linkages were chosen for lin- $\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)_{6}$ as ssNMR spectroscopy has indicated this is the major diastereomer. ${ }^{30}$ Lower-energy cis-linkages were chosen for $\mathbf{1 , 3 S} \mathbf{i}_{6}$ oligomers by analogy. We previously used hexamers to predict distinct infrared (IR) spectra for lin- and cyc-poly($\mathbf{1 , 3 S i} \mathbf{6}$), ${ }^{29}$ indicating that hexamers could be computationally tractable. The same functional and basis set were chosen for geometry optimization of a linear hexamer of $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\left(\operatorname{lin}-\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)_{6}\right)$ and low energy conformations of all three cyclosilane hexamers are shown in Figure 3.3.1.

While $\operatorname{lin}-\left(\mathbf{1}, \mathbf{4 S i}_{\mathbf{6}}\right)_{6}$ was predicted to be linear, $\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}$ introduces curvature and bending, as reflected in an almost helical structure for $\operatorname{lin}-\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)_{6}$ and the macrocyclic structure of $c y c-\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)_{6}$. In all oligomers, individual cyclosilane rings adopted a chair conformation, with some twisting between rings. Prior work has demonstrated that the lowest energy conformation of a cyclohexasilane is chair-like, albeit with lower barriers to inversion than in cyclohexanes. ${ }^{33-36}$

Figure 3.3.2 a) TD-DFT calculated absorbance spectra of lin-($\left.\mathbf{(, 3 S i} \mathbf{i}_{6}\right)_{6}, c y c-\left(\mathbf{1 , 3} \mathbf{S i}_{6}\right)_{6}$, and lin- $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{6}\right)_{6}$ relative to TD-DFT calculated absorbance spectra of the monomers showed bathochromic shifts and absolute values consistent with experiment. b) Calculated molecular orbital distributions of HOMOs. TD-PBE0/6-311G(d)//B3YLP/6-31G(d). Adapted with permission from J. Am. Chem. Soc. 2018, 140, 5976. Copyright 2018 American Chemical Society.

From geometry optimized ground state structures, vertical transitions were calculated (TD-PBE0/6-311G(d)//B3YLP/6-31G(d)). This combination was previously reported for simulation of linear hexasilane electronic transitions. ${ }^{19}$ The calculated spectral shapes for all three model oligomers (Figure 3.3.1) accurately depicted a sharp transition ca. 190 nm for the monomers, as well as an approximately $100-\mathrm{nm}$ bathochromic shift upon oligomerization. The experimental observation that lin-poly $\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)$ has a higher energy

The calculated transition wavelengths and oscillator strengths (Table 3.3.1 and Table 3.3.2) showed that $\operatorname{lin}-\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)_{6}$ is distinct from the linear and cyclic hexamers of $\mathbf{1 , 3 S i}$. The most intense vertical transition, with respect to oscillator strength, for linpoly $\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)$ corresponds to the $\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$ and was found at $265.5 \mathrm{~nm}, 35-\mathrm{nm}$ lower than the strong $\mathrm{HOMO} \rightarrow$ LUMO transition of $\operatorname{lin}-\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)_{6}$. In all three oligomers, not all Si atoms contributed to conjugation (Figure 3.3.1), but the extent of HOMO delocalization in $\operatorname{lin}-\left(\mathbf{1 , 4} \mathbf{S i}_{6}\right)_{6}$ was clearly less extensive than in $\operatorname{lin}-\left(\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\right)_{6}$ (e.g., no orbital density on the terminal cyclosilanes).

Table 3.3.1. Calculated vertical electronic transitions in cyclosilane hexamers. TD-PBE0/6-311G(d)//B3YLP/6-31G(d). Relative contributions given in percentages, where $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=\mathrm{LUMO}$.

Structure	$\lambda(\mathrm{nm})$	f	Assignment
$\operatorname{lin}-\left(\mathbf{1 , 4 S i} \mathbf{i}_{6}{ }_{6}\right.$	265.5	2.738	$\mathrm{H} \rightarrow \mathrm{L}+4$ (39.3\%)
			$\mathrm{H} \rightarrow \mathrm{L}(24.3 \%)$
			$\mathrm{H}-1 \rightarrow \mathrm{~L}+3(16.9 \%)$
			$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (6.3\%)
	265.4	1.269	$\mathrm{H} \rightarrow \mathrm{L}$ (49.8\%)
			$\mathrm{H} \rightarrow \mathrm{L}+4$ (20.3\%)
			$\mathrm{H} \rightarrow \mathrm{L}+2$ (8.1\%)
			$\mathrm{H}-1 \rightarrow \mathrm{~L}+2$ (6.3\%)
cyc-($\left.\mathbf{1 , 3} \mathbf{S i} \mathbf{i}_{6}\right)_{6}$	285.4	1.696	$\mathrm{H}-1 \rightarrow \mathrm{~L}(77.1 \%)$
			$\mathrm{H} \rightarrow \mathrm{L}+2$ (15.8\%)
	282.9	1.665	$\mathrm{H}-2 \rightarrow \mathrm{~L}(69.6 \%)$
			$\mathrm{H} \rightarrow \mathrm{L}+1$ (22.6\%)
$\operatorname{lin}-\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}{ }_{6}\right.$	299.4	2.809	$\mathrm{H} \rightarrow \mathrm{L}$ (88.7\%)

Table 3.3.2. Energy of selected molecular orbitals of lin- $\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)_{6}$, lin- $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)_{6}$ and cyc$\left(1,3 \mathrm{Si}_{6}\right) 6$. Calculated at the TD-PBE0/6-311G(d)//B3LYP/6-31G(d) level.

Molecular Orbital	Energy/ eV		
	$\operatorname{lin}^{2}\left(\mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } }) _ { 6 }}\right.$	$\operatorname{lin}-\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right.$	cyc-(1,3Si$)_{6}$
LUMO+5	-0.57	-0.34	-0.32
LUMO+4	-0.57	-0.47	-0.34
LUMO+3	-0.62	-0.48	-0.38
LUMO+2	-0.67	-0.53	-0.73
LUMO+1	-0.72	-0.82	-0.75
LUMO	-0.77	-1.16	-1.16
HOMO	-6.05	-6.00	-5.86
HOMO-1	-6.18	-6.24	-6.10
HOMO-2	-6.37	-6.38	-6.15

HOMO-3	-6.41	-6.42	-6.35
HOMO-4	-6.48	-6.45	-6.38
HOMO-5	-6.56	-6.52	-6.44

Our calculations point to two explanations for the experimental observation of poly($\mathbf{1 , 4} \mathbf{S i}_{6}$)'s higher energy absorption band: reduced σ-conjugation in the ground state HOMO and symmetry-forbidden electronic transitions. Both phenomena are fundamentally conformation dependent. In describing silane conformations, especially torsion angles, we used the nomenclature proposed by Michl and West: ${ }^{32}$ anti, $\omega=180^{\circ}$; transoid, $|\omega|=165^{\circ} ;$ deviant, $|\omega|=150^{\circ} ;$ ortho, $|\omega|=90^{\circ}$; gauche, $|\omega|=60^{\circ}$, and cisoid, $|\omega|=40^{\circ}$. σ-Conjugation is suppressed by small torsion angles (e.g., cisoid) ${ }^{20}$ while torsion angles close to 180° (e.g., transoid/anti) extend σ-conjugation by maximizing the interaction of vicinal sp^{3} orbitals. ${ }^{8}$ We found a transoid-pathway across multiple cyclosilanes in $\operatorname{lin}-\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)_{6}$ (Figure 3.3.3a). At the central bond (indicated with green arrow), a 130.6° torsion angle is the smallest angle along the conjugation pathway highlighted in pink. In contrast, because the $\mathrm{Si}-\mathrm{Si}$ chain in $\operatorname{lin}-\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)_{6}$ must pass through a chair cyclohexasilane, small torsion angles (ca. 60°, gauche) cannot be avoided (Figure 3.3.3b). These conformational differences interrupt σ-conjugation in the $\operatorname{lin}-\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)_{6}$ HOMO and also result in changes in symmetry that affect the probability of vertical transitions.

Figure 3.3.3 σ-Conjugation pathways and selected torsion angles in a) $\operatorname{lin}-\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)_{6}$ and $\left.b\right)$ lin- $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{6}\right)_{6}$. Methyl groups and hydrogens omitted for clarity. Extended $\mathrm{Si}-\mathrm{Si}$ pathways highlighted in magenta. B3YLP/6-31G(d).

We note that a shortcoming of the calculations reported herein is that they only consider electronic transitions from a single conformation of the ground state oligomer, while the experimental sample at room temperature is an ensemble of different oligomer lengths, conformations, and tacticities. Additionally, these calculations were performed in the gas phase and do not account for the influence of solvent on conformation or vertical transition energies. Nonetheless, the reasonable agreement with experimental UV-vis absorption data bolsters confidence in the general conclusions.

The insight that 1,3-linkages maximize extended conformations inspired interest in statistical copolymers of $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ and $\mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } }}$. We hypothesized that a chain with both $1,3-$ and 1,4-linked cyclosilanes might exhibit properties intermediate between the homopolymers. To test this hypothesis, we sought to prepare the desired statistical copolymers, verify a linear structure with tunable composition, and obtain solution-phase UV-vis spectroscopy. We also pursued TD-DFT calculations to support the experimental observations.

3.4 Copolymer synthesis and microstructure characterization

While statistical copolymerization is broadly used in organic polymers to tune properties such as solubility, ${ }^{37}$ self-assembly, ${ }^{38}$ glass transition temperature $\left(\mathrm{T}_{\mathrm{g}}\right),{ }^{39}$ and mechanical strength, ${ }^{40}$ silane copolymerization has been largely limited to Wurtz polymerization of dichloroorganosilanes. ${ }^{41}$ West demonstrated reductive copolymerization of $\mathrm{Cl}_{2} \mathrm{SiMe}_{2} / \mathrm{Cl}_{2} \mathrm{SiMePh}^{42,43}$ while Fujiki demonstrated Wurtz copolymerization of alkyl and fluoroalkyl comonomers. ${ }^{44}$ These studies have typically yielded blocky copolymers. Dehydrocopolymerization of hydrosilanes is limited to phenylsilane with substituted arylsilanes (Waymouth) ${ }^{26}$ or methylsilanes (Hengge, Marschner). ${ }^{45,46}$ Rieger investigated the copolymerization of n-hexylsilane and phenylsilane by Lewis acid catalysis. ${ }^{47}$ Given the dearth of prior investigation of zirconocene-catalyzed hydrosilane copolymerization, we identified several critical questions to address through our studies including the relative comonomer reactivity (is a copolymer obtained or a blend of homopolymers?) as well as microstructural characterization (statistical or blocky sequence; linear or cyclic?).

The synthesis of cyclosilane copolymers were investigated by Fan Fang in the Klausen group. The full structural characterization has been performed and published in the following reference: Fang, F.; Jiang, Q.; Klausen, R. S. J. Am. Chem. Soc. 2022, 144, 17, 7834-7843.

Several different comonomer ratios were evaluated for copolymerization upon exposure to $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / n$ - BuLi in toluene. This system was first identified by Corey as an effective dehydrocoupling catalyst for primary and secondary silanes ${ }^{48-50}$ and we have previously demonstrated its effectiveness for homopolymerization of $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}{ }^{27-}$ 29

A linear architecture of copolymers was assigned by NMR analysis and further supported by differential scanning calorimetry (DSC). This assessment of copolymer microstructure in solution points to a linear copolymer with composition proportional to the comonomer feed ratio. We suggest a statistical sequence is most likely based on the similar structure and reactivity of $\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}$ and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$. An alternating A-B copolymer would have resulted in identical compositions of each comonomer in all three copolymerizations. A blocky structure is unlikely as consecutive runs of $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ monomers would favor macrocyclization.

Scheme 3.4.1. Synthesis of cyclosilane copolymers.

3.5 UV-vis spectroscopy: copolymers

UV-vis spectroscopy of the three copolymers under similar conditions (THF, room temperature, Figure 3.5.1) showed a single transition intermediate between the homopolymers, consistent with the overall incorporation of each monomer. The onset of absorption also varied with composition (Table 3.5.1). These results lend support to the conclusion based on DOSY and SEC that binary copolymerization yielded a single copolymer, rather than a blend of homopolymers: a blend of homopolymers would show two optical transitions at 279 and 296 nm at intensities consistent with the concentration of each homopolymer. The observations were also more consistent with a statistical
copolymer, rather than an alternating A-B copolymer as A-B alternating copolymers would have identical connectivities and identical absorption spectra.

Figure 3.5.1. UV-vis absorbance spectra of copolymers. [copolymer] $=0.012 \mathrm{mg} \mathrm{mL}^{-1}$, THF, room temperature.

The variation of the copolymer optical transition with comonomer composition validated our hypothesis that increasing the probability of consecutive 1,3-linkages increased the wavelength of maximum absorption. We next described TD-DFT calculations that provide additional support for our experimental observations.

Table 3.5.1. UV-vis spectroscopic properties of cyclosilane homopolymers and copolymers.

Polysilanes	$\lambda_{\text {max }}(\mathrm{nm})$	$\lambda_{\text {onset }}(\mathrm{nm})$
lin-poly (1,3Si ${ }_{6}$)	<190	230
	296	311
$\left.\operatorname{poly}(\mathbf{1 , 3 S i})_{6}\right)_{0.50}$-stat-poly $\left(\mathbf{1 , 4 S i} \mathbf{S}_{6}\right)_{0.50}$	292	308

$$
\begin{aligned}
& \operatorname{poly}\left(\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}\right)_{0.25} \text {-stat-poly }\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)_{0.75} \quad 271 \quad 291 \\
& \operatorname{lin}-\mathrm{poly}\left(\mathbf{1 , 4 \mathbf { S i } _ { 6 })} 194\right. \\
& 194 \quad 232 \\
& \text { Conditions: Conditions: }[\text { copolymer }]=0.012 \mathrm{mg} \mathrm{~mL}^{-1},[\text { lin- } \operatorname{poly}(\mathbf{1 , 3 S i} \mathbf{6})]=0.005 \\
& \mathrm{mg} \mathrm{~mL}{ }^{-1},\left[\operatorname{lin}-\operatorname{poly}\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)\right]=0.012 \mathrm{mg} \mathrm{~mL}^{-1}, \text { in THF, } \mathrm{rt} .
\end{aligned}
$$

3.6 Calculated electronic transitions: copolymers

We considered tetramers with different compositions and sequences as models for the copolymers. The 4-digit numbers used herein abbreviate $\mathbf{1 , 3} \mathbf{S i}_{6}$ and $\mathbf{1 , 4} \mathbf{S i}_{6}$ to 3 and 4 , respectively. Geometry-optimized ground state conformations are shown in Figure 3.6.1. Vertical transitions were calculated in the same manner as for homopolymer models (TD-PBE0/6-311G(d)//B3YLP/6-31G(d)) and transition wavelengths, oscillator strengths, and assignments are summarized in Table 3.6.1 and Table 3.6.2. The range of predicted wavelengths (262-285 nm) compared favorably to the experimentally observed range (Table 3.6.1, 279-292 nm), suggesting that tetramers were valid models for poly(cyclosilane)s.

We found that both composition and sequence affected vertical transitions. In general, the energy of a vertical transition decreased with increasing $\mathbf{1 , 3 S i}_{6}$, but also depended on the position of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ within the tetramer (chain end or interior). Evidence for these trends is summarized below:

1. An interior $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residue increased $\lambda_{\max }$ relative to a chain end $\mathbf{1 , 3 S i} \mathbf{i}_{6}$. For example, 4443 and 4434 have the same composition $\left(25 \% \mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$ but the predicted $4434 \lambda_{\max }$ was bathochromically shifted $14-\mathrm{nm}$ relative to 4443 (Table 3.5.1).
2. When controlled for position, $\lambda_{\max }$ increased with increasing consecutive $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ residues. Each additional $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residue in the series 4443 to 4433 to 4333 resulted in a bathochromic shift from 262.3 to 278.8 to 283.9 nm . Figure 3.6 .2 plots the energy
of a vertical transition versus the number of consecutive $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residues, showing a general trend of increasing $\lambda_{\max }$.

Figure 3.6.1. Ground state conformations of cyclosilane tetramers of different compositions and sequences. Methyl groups omitted for clarity. B3YLP/6-31G(d).

Figure 3.6.2 The predicted $\lambda_{\max }$ versus the number of consecutive $\mathbf{1 , 3 S i} \mathbf{i n}_{6}$ residues. Squares indicate interior $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residues and circles indicate chain ends $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ residues.

Table 3.6.1. Calculated vertical electronic transitions in cyclosilane tetramers. TD-PBE0/6-311G(d)//B3YLP/6-31G(d). Relative contributions given in percentages, where $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=\mathrm{LUMO}$.

Composition	Sequence	$\lambda_{\text {max }}(\mathrm{nm})$	f	H-L Gap (eV)	Assignment
0\% 1,3Si ${ }_{6}$	4444	262.4	1.442	5.35	$\mathrm{H} \rightarrow \mathrm{L}$ (38.4\%)
					$\mathrm{H} \rightarrow \mathrm{L}+2$ (36.4\%)
					$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (19.4\%)
$25 \% \mathbf{1 , 3 S i}{ }_{6}$	4443	262.3	1.796	5.35	$\mathrm{H} \rightarrow \mathrm{L}+2$ (50.7\%)
					$\mathrm{H} \rightarrow \mathrm{L}$ (22.2\%)
					$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (16.6\%)
	4344	276.7	1.396	5.18	$\mathrm{H} \rightarrow \mathrm{L}$ (86.3\%)
50\% 1,3Si ${ }_{6}$	4433	278.8	1.523	5.16	$\mathrm{H} \rightarrow \mathrm{L}$ (86.2\%)
	4343	279.9	1.421	5.14	$\mathrm{H} \rightarrow \mathrm{L}$ (86.6\%)
	4334	284.8	1.730	5.06	$\mathrm{H} \rightarrow \mathrm{L}$ (92.2\%)
	3443	262.4	1.803	5.35	$\mathrm{H} \rightarrow \mathrm{L}+2$ (51.5\%)
					$\mathrm{H} \rightarrow \mathrm{L}(20.9 \%)$
					$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(19.0 \%)$
$75 \% \mathbf{1 , 3 S i}{ }_{6}$	3343	279.4	1.402	5.15	$\mathrm{H} \rightarrow \mathrm{L}$ (86.9\%)
	4333	283.9	1.700	5.08	$\mathrm{H} \rightarrow \mathrm{L}$ (92.0\%)
100\% 1,3Si ${ }_{6}$	3333	286.0	1.769	5.05	$\mathrm{H} \rightarrow \mathrm{L}$ (92.8\%)

Table 3.6.2. Energy of selected molecular orbitals of tetramers. Calculated at the TD-PBE0/6-311G(d)//B3LYP/6-31G(d) level.

		Energy/ eV									
Molecular Orbital	4444	4443	4344	4433	4343	4334	3443	3343	4333	3333	
	LUMO+5	-0.23	-0.24	-0.24	-0.21	-0.24	-0.17	-0.23	-0.23	-0.18	-0.18
LUMO+4	-0.27	-0.28	-0.28	-0.26	-0.27	-0.26	-0.29	-0.27	-0.27	-0.24	
LUMO+3	-0.30	-0.29	-0.32	-0.29	-0.29	-0.37	-0.32	-0.30	-0.39	-0.31	
LUMO+2	-0.60	-0.60	-0.43	-0.34	-0.36	-0.50	-0.60	-0.38	-0.50	-0.48	
LUMO+1	-0.68	-0.68	-0.68	-0.66	-0.68	-0.57	-0.68	-0.68	-0.58	-0.55	
LUMO	-0.76	-0.76	-0.93	-0.91	-0.95	-1.07	-0.76	-0.94	-1.07	-1.05	
HOMO	-6.11	-6.11	-6.12	-6.07	-6.09	-6.13	-6.11	-6.09	-6.15	-6.10	
HOMO-1	-6.36	-6.36	-6.35	-6.36	-6.37	-6.35	-6.37	-6.37	-6.36	-6.39	
HOMO-2	-6.46	-6.45	-6.45	-6.46	-6.44	-6.46	-6.44	-6.45	-6.47	-6.44	
HOMO-3	-6.56	-6.54	-6.53	-6.60	-6.58	-6.49	-6.56	-6.58	-6.48	-6.61	
HOMO-4	-6.70	-6.68	-6.64	-6.66	-6.60	-6.63	-6.70	-6.60	-6.66	-6.67	
HOMO	-6.72	-6.76	-6.80	-6.77	-6.80	-6.81	-6.71	-6.77	-6.76	-6.72	

The tetramers 3443 and 4334 illustrate the combined effect of consecutive $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$ monomers and interior positioning. The tetramers have the same overall composition but in 3443 both $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residues were located at chain ends and were not consecutive, while in 4334 two consecutive $\mathbf{1 , 3 S \mathbf { i } _ { 6 }}$ residues were found only in the interior. 4334 was predicted to have a longer $\lambda_{\max }$ by almost $22 \mathrm{~nm}(262.4 \mathrm{vs} .284 .8 \mathrm{~nm})$.

We noted that the tetramers predicted to have the shortest wavelength $\lambda_{\max }$ (3443 and 4443, ca. 262 nm) both had $\mathbf{1 , 3 S i} \mathbf{S i}_{6}$ residues only at chain ends and were anomalous in the assignment of the most intense vertical transition, which corresponded to the $\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$ instead of the $\mathrm{HOMO} \rightarrow$ LUMO transition for other tetramers (Table
3.6.1). A shift in the terminating orbital to a LUMO +n was also observed in lin-poly($\mathbf{(1 , 4 \mathbf { S i } _ { \mathbf { 6 } })}$
(Table 3.2.2). We expect that this is likely general for segments of consecutive $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ residues.

Figure 3.6.3. Impact of $\mathbf{1 , 3 S} \mathbf{i}_{6}$ position on backbone conformation: interior sites increase consecutive trans torsion angles. Methyl groups and hydrogens omitted for clarity. B3YLP/6-31G(d).

We attribute the observed trends in vertical transition energies to changes in conformation with increasing consecutive $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residues. Figure 3.6 .3 highlights 4344 and 4443, which had the same overall composition but different sequences. We found that the interior $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ reside in 4344 allowed for consecutive torsion angles close to 180° in the vicinity of the $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ residue (Figure 3.6.3, blue highlight in Table). This was not possible for 4443 . The σ-conjugated pathway (pink) for 4443 resembled $\operatorname{lin}-\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)_{6}$ in having small torsion angles $\left(0-60^{\circ}\right.$, eclipsing and gauche) alternate with larger torsion angles. Increasing the number of consecutive $\mathbf{1 , 3} \mathbf{S i}_{\mathbf{6}}$ residues extends this trend.

These computational models validate the experimental observation that increasing the $\mathbf{1 , 3 S} \mathbf{S i}_{6}$ concentration in the feed ratio results in bathochromically shifted experimental $\lambda_{\max }$ in the copolymers. Increasing the $\left[\mathbf{1 , 3 S i} \mathbf{i}_{6}\right]$ in the feed from 25 to 75% during a statistical copolymerization would necessarily result in more consecutive $\mathbf{1 , 3 S} \mathbf{i}_{6}$ residues in the interior of a chain. The longer length of experimental chains relative to tetramers
likely dilutes the strong effect of chain end versus interior position observed computationally. We expect that the experimental observation of increasing $\lambda_{\max }$ with increasing $\left[\mathbf{1 , 3} \mathbf{S i}_{6}\right]$ is tied to $\mathbf{1 , 3 S i _ { 6 }}$-enriched interior segments that have symmetry-allowed HOMO-LUMO transitions. In contrast, consecutive runs of $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ comonomers effect a change in LUMO symmetry, resulting in a symmetry-forbidden HOMO-LUMO transition and a shift to lower wavelength $\lambda_{\text {max. }}{ }^{19}$

3.7 Conclusion

Herein, we investigated the effect of connectivity on the optical properties of poly(cyclosilane)s. Using the isomeric monomers $\mathbf{1 , 3 S} \mathbf{i}_{\mathbf{6}}$ and $\mathbf{1 , 4} \mathbf{4} \mathbf{S i}_{\mathbf{6}}$, we prepared a homologous set of linear (co)polymers that were structurally characterized by a suite of NMR spectroscopies. We observed experimentally that across the set of linear polymers possessing from 0 to $100 \% \mathbf{1 , 3 S i} \mathbf{i}_{6}$ comonomers, $\lambda_{\max }$ and $\lambda_{\text {onset }}$ increased systematically from 271 to 292 nm .

Computational studies provided structural insight into the role of skeletal connectivity in influencing optical properties. We found that oligomeric model systems of 4 or 6 cyclosilanes accurately reproduced polymeric properties. These model systems demonstrated that 1,3-linked cyclosilanes can access extended transoid conformations with predicted lower-energy HOMO \rightarrow LUMO transitions. In contrast, 1,4-connectivity requires endocyclic gauche conformations that are associated with a change in LUMO symmetry. As a result of the change in terminating orbital symmetry, the most intense electronic transitions in 1,4-linked cyclosilanes correspond to higher energy HOMO \rightarrow LUMO +n transitions. Copolymers achieve optical properties intermediate between homopolymers by
increasing the probability of consecutive $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ monomers and transoid-conformation pathways.

This is the first demonstration of main chain control of polysilane optical properties.
Prior work focused on the role of alkyl side chains in constraining polysilane conformation and conformation-dependent absorbance spectra. Skeletal control could result in materials in which every Si atom contributes to optical activity. We also report computational insights into the role of conformation in affecting orbital symmetry and photophysical properties. The studies herein point to the potential for structurally complex silane building blocks to define structure-optical property relationships.

3.8 Reference

(1) Klausen, R. S.; Ballestero-Martínez, E. In Comprehensive Organometallic Chemistry IV; Elsevier, 2021.
(2) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359-1410.
(3) Kumar, V. B.; Leitao, E. M. Appl. Organomet. Chem. 2020, 34, 1-16.
(4) Priegert, A. M.; Rawe, B. W.; Serin, S. C.; Gates, D. P. Chem. Soc. Rev. 2016, 45, 922-953.
(5) Vidal, F.; Jäkle, F. Angew. Chemie - Int. Ed. 2019, 58, 5846-5870.
(6) Gilman, H.; Atwell, W. H.; Schwebke, G. L. J. Organomet. Chem. 1964, 2, 369371.
(7) Jovanovic, M.; Michl, J. J. Am. Chem. Soc. 2019, 141, 13101-13113.
(8) Jovanovic, M.; Michl, J. J. Am. Chem. Soc. 2018, 140, 11158-11160.
(9) Miller, R. D.; Hofer, D.; Rabolt, J.; Fickes, G. N. J. Am. Chem. Soc. 1985, 107, 2172-2174.
(10) Rabolt, J. F.; Hofer, D.; Miller, R. D.; Fickes, G. N. Macromolecules 1986, 19, 611616.
(11) Trefonas, P.; Damewood, J. R.; West, R.; Miller, R. D. Organometallics 1985, 4, 1318-1319.
(12) Klausen, R. S.; Widawsky, J. R.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. J. Am. Chem. Soc. 2012, 134, 4541-4544.
(13) Su, T. A.; Li, H.; Klausen, R. S.; Kim, N. T.; Neupane, M.; Leighton, J. L.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Acc. Chem. Res. 2017, 50, 1088-1095.
(14) Su, T. A.; Li, H.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Chem. 2015, 7, 215-220.
(15) Li, H.; Garner, M. H.; Shangguan, Z.; Zheng, Q.; Su, T. A.; Neupane, M.; Li, P.; Velian, A.; Steigerwald, M. L.; Xiao, S.; Nuckolls, C.; Solomon, G. C.;

Venkataraman, L. Chem. Sci. 2016, 7, 5657-5662.
(16) Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C. Nature 2018, 558, 415-419.
(17) Tamao, K.; Tsuji, H.; Terada, M.; Asahara, M.; Yamaguchi, S.; Toshimitsu, A. Angew. Chemie - Int. Ed. 2000, 39, 3287-3290.
(18) Fukazawa, A.; Tsuji, H.; Tamao, K. J. Am. Chem. Soc. 2006, 128, 6800-6801.
(19) Kanazawa, Y.; Tsuji, H.; Ehara, M.; Fukuda, R.; Casher, D. L.; Tamao, K.; Nakatsuji, H.; Michl, J. 2016, 3010-3022.
(20) Tsuji, H.; Terada, M.; Toshimitsu, A.; Tamao, K. J. Am. Chem. Soc. 2003, 125, 7486-7487.
(21) Burkhard, C. A. J. Am. Chem. Soc. 1949, 71, 963-964.
(22) Jones, R. G.; Budnik, U.; Holder, S. J.; Wong, W. K. C. Macromolecules 1996, 29, 8036-8046.
(23) Holder, S. J.; Achilleos, M.; Jones, R. G. J. Am. Chem. Soc. 2006, 128, 1241812419.
(24) Marro, E. A.; Klausen, R. S. Chem. Mater. 2019, 31, 2202-2211.
(25) Tilley, T. D.; Woo, H. Polym. Prepr. 1990, 31, 228-229.
(26) Banovetz, J. P.; Suzuki, H.; Waymouth, R. M. Organometallics 1993, 12, 47004703.
(27) Press, E. M.; Marro, E. A.; Surampudi, S. K.; Siegler, M. A.; Tang, J. A.; Klausen, R. S. Angew. Chemie Int. Ed. 2017, 56, 568-572.
(28) Folster, C. P.; Klausen, R. S. Polym. Chem. 2018, 9, 1938-1941.
(29) Marro, E. A.; Press, E. M.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2018, 140, 5976-5986.
(30) Dorn, R. W.; Marro, E. A.; Hanrahan, M. P.; Klausen, R. S.; Rossini, A. J. Chem. Mater. 2019, 31, 9168-9178.
(31) Jiang, Q.; Wong, S.; Klausen, R. S. Polym. Chem. 2021, 12, 4785-4794.
(32) Michl, J.; West, R. Acc. Chem. Res. 2000, 33, 821-823.
(33) Tekautz, G.; Binter, A.; Hassler, K.; Flock, M. 2006, 7, 421-429.
(34) Casarini, D.; Lunazzi, L.; Mazzanti, A. Tetrahedron 1998, 54, 13181-13184.
(35) Casarini, D.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 1998, 63, 9125-9127.
(36) Ferguson, J. T.; Jiang, Q.; Marro, E. A.; Siegler, M. A.; Klausen, R. S. Dalt. Trans. 2020, 49, 14951-14961.
(37) van de Wouw, H. L.; Lee, J. Y.; Awuyah, E. C.; Klausen, R. S. Angew. Chemie - Int. Ed. 2018, 57, 1673-1677.
(38) Panganiban, B.; Qiao, B.; Jiang, T.; DelRe, C.; Obadia, M. M.; Nguyen, T. D.; Smith, A. A. A.; Hall, A.; Sit, I.; Crosby, M. G.; Dennis, P. B.; Drockenmuller, E.; De La Cruz, M. O.; Xu, T. Science (80-.). 2018, 359, 1239-1243.
(39) Wang, H.; Kolodka, E.; Tande, B. M. Ind. Eng. Chem. Res. 2013, 52, 5111-5119.
(40) Holmberg, A. L.; Nguyen, N. A.; Karavolias, M. G.; Reno, K. H.; Wool, R. P.; Epps, T. H. Macromolecules 2016, 49, 1286-1295.
(41) Reuss, V. S.; Frey, H. Macromolecules 2010, 43, 8462-8467.
(42) West, R.; David, L. D.; Djurovich, P. I.; Stearley, K. L.; Srinivasan, K. S. V.; Yu, H. J. Am. Chem. Soc. 1981, 103, 7352-7354.
(43) Wolff, A. R.; Nozue, I.; Maxka, J.; West, R. J. Polym. Sci. Part A Polym. Chem.

1988, 26, 701-712.
(44) Kawabe, T.; Naito, M.; Fujiki, M. Macromolecules 2008, 41, 1952-1960.
(45) Lunzer, F.; Marschner, C. Materials (Basel). 2010, 3, 1125-1137.
(46) Hengge, E.; Weinberger, M. J. Organomet. Chem. 1992, 441, 397-410.
(47) Feigl, A.; Chiorescu, I.; Deller, K.; Heidsieck, S. U. H.; Buchner, M. R.; Karttunen, V.; Bockholt, A.; Genest, A.; Rösch, N.; Rieger, B. Chem. - A Eur. J. 2013, 19, 12526-12536.
(48) Chang, L. S.; Corey, J. Y. Organometallics 1989, 8, 1885-1893.
(49) Corey, J. Y.; Zhu, X. H.; Bedard, T. C.; Lange, L. D. Organometallics 1991, 10, 924-930.
(50) Corey, J. Y.; Xiao-Hong, Z. J. Organomet. Chem. 1992, 439, 1-17.

Chapter 4: Highly selective addition of cyclosilanes to alkynes enabling new conjugated materials

The work presented in this chapter has been published as: Jiang, Q.; Gittens, A. F.; Wong, S.; Siegler, M. A.; Klausen, R. S. Chem. Sci. 2022, 13, 7587-7593.

4.1 Introduction

We report the synthesis of visible-light absorbing organocyclosilanes via Rucatalyzed chemoselective, regioselective, and diastereoselective hydrosilylation. While extraordinary progress in predicting and controlling selectivity in organic reactions has been made, the development of similar insights for main group molecules is in its infancy. This lack of synthetic control limits the discovery of structure-property relationships in main group materials. For example, while linear oligosilanes (e.g., $\left.\operatorname{Ar}(\mathrm{SiMe})_{\mathrm{n}} \mathrm{Ar}\right)$ capped with aromatic end groups have been extensively studied for molecular electronics ${ }^{1,2}$, metalorganic framework (MOF) secondary building units, ${ }^{3}$ charge transport, ${ }^{4}$ photoinduced charge transfer, ${ }^{5-7}$ and nonlinear optical properties, ${ }^{8-10}$ there has been very limited investigation of cyclic σ, π-conjugation, ${ }^{11}$ as cyclosilanes are typically synthesized by methods ${ }^{12-14}$ that restrict functional group diversity on an organic fragment. Nonetheless, the well-established conformation-dependence of σ-conjugation ${ }^{15}$ strongly suggests that the restricted degrees of freedom in cyclosilanes should give rise to properties distinct from linear oligosilanes.

Our group is interested in the synthesis and properties of (macro)molecular mimics of crystalline silicon and we have described new approaches to the selective synthesis of materials based on cyclohexasilanes. We reported the five-step synthesis and
chemoselective polymerization of the cyclohexasilane building blocks $\mathbf{1 , 4} \mathbf{S i}_{6}$ and $\mathbf{1 , 3 S i} \mathbf{i}_{6}{ }^{16-}$ ${ }^{21}$ as well as the seven-step stereocontrolled synthesis of cis- and trans- $\mathbf{S i}_{10} \mathbf{H}_{4}$ (Figure 4.2.1). ${ }^{22}$ These works have led to new insights, such as the discovery that the diastereomeric siladecalins have vastly different absorption spectra arising from configuration- and conformation-dependent σ-conjugation.

We envisioned an alternative approach to functionalized cyclosilanes via derivatization of the $\mathrm{Si}-\mathrm{H}$ bond of our building blocks, ${ }^{23}$ but confronted several challenges. First, the $\mathrm{Me}_{3} \mathrm{Si}^{-}-\mathrm{SiMe}_{3}$ bond is weaker than a $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$ bond (BDE: 79 vs $90 \mathrm{kcal} \mathrm{mol}^{-}$ $\left.{ }^{1}\right)^{24}$ and cross-reactive with reagents for $\mathrm{Si}-\mathrm{H}$ functionalization; Pd - and Pt-complexes like Karstedt's catalyst fragment $\mathrm{Si}-\mathrm{Si}$ bonds. ${ }^{25-27}$ Second, while the targeted cyclosilanes exhibit cis/trans diastereoisomerism, $\mathrm{Si}-\mathrm{C}$ bonds are longer than $\mathrm{C}-\mathrm{C}$ bonds, ${ }^{28}$ potentially diminishing the steric factors often implicated in asymmetric stereoinduction. Third, the tetrafunctional cyclosilanes pose a significant selectivity challenge: the reaction of $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ and phenylacetylene could provide more than 40 distinct products arising from mono-, di-, tri-, or tetra-functionalization, $(E) /(Z)$-geometric isomers, α / β-addition, or cis/trans diastereoisomerism.

We report herein the extraordinarily selective outcome of the $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}-$ catalyzed ${ }^{29}$ reaction between cyclosilanes and aryl acetylenes. We observed perfect regioselectivity for 1,4 -difunctionalization and β-addition and perfect (E)-selectivity. Products were isolated as a single diastereomer or as a mixture (ca. 2:1) favoring the thermodynamic isomer. The hydrosilylation is highly functional group tolerant: no $\mathrm{Si}-\mathrm{Si}$ bond cleavage occurred, and functional group tolerance was high. These syntheses enabled a broad probe of the influence of substituent effects, structural isomerism, and
configuration on conjugation in organocyclosilanes, which revealed bathochromic shifts relative to starting materials. We also expect the work herein to expand additional frontiers for the study of conjugated materials. As an initial example, we report the synthesis of a novel thienyl-silane conjugated polymer derived from a trans-1,4bis(thienylvinyl)cyclosilane, which not only absorbs visible light, but is also an entry to stereoregular polysilanes, a class of materials where control of tacticity has been a longstanding challenge.

Prior Work: Cyclosilane Building Blocks

This Work: Highly Selective Hydrosilation Reactions

Figure 4.1.1 Highly selective reactions between cyclosilane building blocks and functionalized acetylenes.

4.2 Investigation of regio- and diastereoselectivity

Hydrosilylation is widely used in the industrial preparation of silicones (e.g., $\mathrm{Si}-\mathrm{O}$ polymers). ${ }^{30-33}$ The application of hydrosilylation to oligo- and polysilanes (e.g., Si-Si polymers) has been of interest since at least the 1960 's, ${ }^{34}$ but as documented by Rosenberg, ${ }^{35}$ free-radical ${ }^{36-38}$ and many transition-metal catalyzed ${ }^{34,39}$ hydrosilylations are accompanied by partial to extensive $\mathrm{Si}-\mathrm{Si}$ cleavage. Borane Lewis acids are useful for $\mathrm{Si}-$ $\mathrm{H} / \mathrm{X}-\mathrm{H}$ dehydrocoupling and $\mathrm{Si}-\mathrm{H} / \mathrm{X}=\mathrm{C}$ hydrosilylation without skeletal
fragmentation. ${ }^{23,40,41}$ Recently, Kyushin reported Ru-catalyzed (E)- or (Z)-selective hydrosilylation of alkynes and hydrooligosilanes without $\mathrm{Si}-\mathrm{Si}$ bond cleavage. ${ }^{29,42}$

Table 4.2.1 Optimization of the $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed reaction between phenylacetylene and $\mathbf{1 , 4} \mathbf{S i}_{6}{ }^{a}$

entry	[catalyst] ${ }^{\text {b }}$	solvent	time	conversion $^{\text {c }}$		
				mono-4.1a	4.1 a	4.1a*
1	$5 \mathrm{~mol} \%$	toluene	7 d	22\%	9\%	0\%
$2^{\text {d }}$	$10 \mathrm{~mol} \%$	toluene	24 h	42\%	50\%	0\%
3	$5 \mathrm{~mol} \%$	DCM	24 h	61\%	39\%	0\%
4	$10 \mathrm{~mol} \%$	DCM	24 h	17\%	83\%	0\%
5^{e}	$10 \mathrm{~mol} \%$	DCM	24 h	45\%	25\%	0\%
6	$20 \mathrm{~mol} \%$	DCM	2 h	0\%	100\%	0\%
$7{ }^{f}$	$20 \mathrm{~mol} \%$	DCM	2 h	0\%	100\%	0\%

${ }^{a}$ The reactions were carried out with 0.171 mmol of $\mathbf{1 , 4} \mathbf{S i}_{6}$ and 0.428 mmol of phenylacetylene in 1 mL of solvent at room temperature under nitrogen protection unless noted. ${ }^{b} \mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ loading was relative to $\mathbf{1 , 4} \mathbf{S i}_{6}$. ${ }^{c}$ The conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectra of reaction aliquots. ${ }^{d}$ The reaction was carried out at $60{ }^{\circ} \mathrm{C} .{ }^{e}$ The reactions were carried out with 0.171 mmol of $\mathbf{1 , 4 \mathbf { S i } _ { 6 }}$ and 0.171 mmol of phenylacetylene. ${ }^{f}$ The reactions were carried out with 0.171 mmol of $\mathbf{1 , 4} \mathbf{S i}_{6}$ and 1.026 mmol of phenylacetylene.

We envisioned that (E)-selective addition of cyclosilanes to alkynes could yield σ, π-conjugated cyclosilanes. As Kyushin's study focused on linear monohydrosilanes like $\mathrm{H}-\mathrm{SiMe}_{2} \mathrm{SiMe}_{2} \mathrm{Ph}$, our initial focus was regioselectivity with tetrafunctional $\mathbf{1 , 4 \mathbf { S i } _ { 6 }}$ (Table 4.2.1 and Scheme 4.2.1). It was unclear if replacement of one $\mathrm{Si}-\mathrm{H}$ bond with a vinyl group
would be activating (1,1'-functionalization), deactivating (1,4-difunctionalization), or neutral (mixture). The success of monohydrosilanes suggested the feasibility of fully alkylated Si centers, such as 4.1a*. A first attempt with 2.50 equivalents of phenylacetylene and $5 \mathrm{~mol} \% \mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ resulted in mono-4.1a (22\%) and 1,4-difunctionalized 4.1a (9\%), as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. No $1,1^{\prime}$-difunctionalized 4.1a* was observed. Further optimization of solvent and catalyst loading led to increased conversion to 4.1a without residual mono-4.1a (entry 6). 1,1'-Difunctionalization was not observed even with excess phenylacetylene (entry 7). The mechanistic origin of the selectivity for monofunctionalization, be it steric, electronic, or a combination of factors, is not yet clear. In all cases, the ${ }^{1} \mathrm{H}$ NMR spectra were consistent with Si-addition to the phenylacetylene β-position, as α-addition would result in a 1,1 -disubsituted alkene.

Scheme 4.2.1 Synthesis of trans and cis-4.1a via hydrosilylation of phenylacetylene with $\mathbf{1 , 4} \mathbf{S i}_{6}$ catalyzed by $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$.

Having established regioselectivity, we investigated (E)-selectivity and diastereoselectivity under the optimized conditions. 4.1a was isolated in 89% yield as a 65:35 mixture of two isomeric products, assigned to the trans and cis diastereomers (Scheme 4.2.1). The isomers were not separable by silica gel chromatography, but recrystallization afforded pure trans-1a (X-ray crystal structure, Figure 4.2.1), which was confirmed as the major diastereomer. The X-ray crystal structure also confirmed that
hydrosilylation proceeded without skeletal rearrangement and with (E) - and β-selectivity. In the solid state, trans-1a adopted a chair conformation with both styryl groups at equatorial positions. This was the expected thermodynamic isomer, in which 1,3-diaxial interactions were minimized. The recrystallization filtrate was enriched in the minor product, which was assigned to cis-1a based on symmetry consistent with 1,4difunctionalization. The ca. 1:3 trans:cis ratio was stable over time but could not be further increased by silica gel column chromatography. The ${ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ NMR spectra of trans, cis and mixture of diastereomers are shown in Figure 4.2.2.

Figure 4.2.1 Displacement ellipsoid plot (30\% probability level) of trans-4.1a at 110(2) K. Blue $=$ Si, Black $=$ C, Pink $=$ H. Hydrogens on methyl and phenyl groups were omitted for clarity.
(a) trans-4.1a

cis-4.1a

(b) trans-4.1a

cis-4.1a

Figure 4.2.2 (a) Cropped ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) comparing (top to bottom) cis-4.1a (dr 25:75 trans:cis), trans-4.1a, and the as-isolated mixture of isomers. (b) Cropped ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectra ($79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) comparing (top to bottom) cis-4.1a (dr 25:75 trans:cis), trans-4.1a, and the as-isolated mixture of isomers. DEPT $=$ distortionless enhancement by polarization transfer. The methyl groups are omitted for clarity.
${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC and ${ }^{29} \mathrm{Si}$ INEPT+ spectroscopy (Figure 4.2 .3 and Figure 4.2.4) allowed assignment of the SiMe_{2} and SiH resonances (Figure 4.2.2b). In the ${ }^{1} \mathrm{H}^{-29} \mathrm{Si} \mathrm{HSQC}$ spectrum of the diastereomer mixture, the $\mathrm{Si} H$ resonances only correlated with Si peaks at ca. -63.0 ppm and -64.9 ppm , which indicated these Si resonances resulted from SiH groups, rather than SiMe_{2}. The ${ }^{29} \mathrm{Si}$ INEPT+ spectrum supported assigning the doublet (δ-64.8, ${ }^{1} J_{\mathrm{SiH}}=169.8 \mathrm{~Hz}$) to the SiH resonance. The experimentally measured coupling constant was consistent with typical one-bond coupling constants between silicon and proton. ${ }^{43}$

Figure 4.2.3 ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 4.1a. ${ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

Figure 4.2.4 ${ }^{29} \mathrm{Si}$ INEPT+ NMR spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of trans-4.1a.

Figure 4.2.5 The coupling constant analysis of ${ }^{1} \mathrm{H}$ NMR spectra of 4.1a.

The coupling constant analysis of ${ }^{1} \mathrm{H}$ NMR spectra further supported the structure assignment: (E)-alkene attached to a tertiary silane (Figure 4.2.5). The coupling constants
of the vinylic peak a ($\mathrm{d}, J=\mathbf{1 8 . 7} \mathrm{Hz}$) and b (dd, $J=5.2, \mathbf{1 8 . 7} \mathrm{~Hz}$) were consistent with an (E)-alkene (Figure 4.2.5a). Peak c, the doublet assigned as $\mathrm{Si} H$ resonance ($\mathrm{d}, J=\mathbf{5 . 2} \mathrm{Hz}$), exhibited the same coupling constant as peak b , the vinylic proton on the neighboring carbon (dd, $J=\mathbf{5 . 2}, 18.7 \mathrm{~Hz}$) (Figure 4.2.5b).

4.3 Substrate scope

Having established selectivity with $\mathbf{1 , 4} \mathbf{S i}_{6}$, we investigated substrate scope (Figure 4.3.1). With a variety of 4-substituted phenylacetylenes, 1,4-bis(styryl)cyclohexasilanes were obtained in $>80 \%$ yield and without erosion in regio- or diastereoselectivity, as shown by X-ray crystallography (Figure 4.3.2). This provided σ, π-hybrids functionalized with halogens (4.1b-c), electron donating groups (4.1d-f) and moderately electron withdrawing groups (4.1g-h).

The functional groups selected for investigation in Figure 4.3.1 were chosen on the basis of potential applications. Sulfur was tolerated in thiomethyl 4.1d and thienyl 4.1i-j, of relevance to molecular electronics. ${ }^{44}$ Functional groups that would not be tolerated by the reductive coupling methods traditionally used to prepare cyclosilanes from dihalosilanes were also successfully incorporated, such as methyl ester 4.1h. Benzoate esters are useful intermediates to a variety of other oxygenated functionality, such as carboxylic acids that have been employed as MOF ligands. ${ }^{3}$ In addition, halogenated products (e.g., 4.1b and 4.1j) are suitable for catalytic cross-coupling (vide infra). Low conversion was observed with strongly electron-withdrawing substituents (e.g., 4-nitro and 4-cyanophenylacetylene) and an electron-poor heterocycle (4-ethynylpyridine).

We also explored the cyclosilane scope. Regioselectivity was maintained (Figure 4.3.1), yielding 1,3- or 1,4-difunctionalized products instead of 1,1'-difunctionalized
cyclosilanes. No skeletal decomposition was observed and perfect (E)- and β-selectivities were retained. Interestingly, cis-Sin $\mathbf{i}_{\mathbf{1}} \mathbf{H}_{4}$ underwent a slow reaction with phenylacetylene.

Low conversion ($<5 \%$) was observed in 24 hours.

Figure 4.3.1 Substrate scope of hydrosilylation of alkynes with cyclosilanes. For $\mathbf{1 , 4} \mathbf{4 i}_{\mathbf{6}}$, major diastereomers are shown. ${ }^{a}$ dr determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Isolated yields are reported. ${ }^{b}$ Only the trans diastereomer was detected.

(b)

Figure 4.3.2 X-ray crystal structure of (a) trans-4.1e and (b) trans-4.1j. Blue $=$ Si, black $=$ C , pink $=\mathrm{H}$, red $=\mathrm{O}$, yellow $=\mathrm{S}$, brown $=\mathrm{Br}$. Hydrogens on methyl and aromatic groups are omitted for clarity.

Figure 4.3.3 Cropped ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) comparing $\mathrm{Si} H$ resonances of (top) 4.3a and trans- $\mathrm{Si}_{10} \mathrm{H}_{4}$ (bottom).

Figure 4.3.4 Displacement ellipsoid plot (30\% probability level) of 4.3a at 173(2) K. Blue $=\mathrm{Si}$, Black $=\mathrm{C}, \operatorname{Pink}=\mathrm{H}$. Hydrogens on methyl and phenyl groups were omitted for clarity.

Figure 4.3.5 Model for stereoinduction.

The cyclosilane exerted a striking effect on diastereoselectivity. While diastereomeric ratios (dr) ca. 2:1 were observed for all $\mathbf{1 , 4} \mathbf{S i}_{6}$-derived products, the dr decreased to ca. 1:1 for $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ and increased dramatically for trans- $\mathbf{S i}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{4}}$, where only one diastereomer could be detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 4.3.3). A relatively complicated SiH resonance was found in the ${ }^{1} \mathrm{H}$ NMR spectrum of trans - $\mathbf{S i}_{10} \mathbf{H}_{4}$, as the equatorial $\left(\mathrm{H}_{\mathrm{eq}}\right)$ and axial $\left(\mathrm{H}_{\mathrm{ax}}\right)$ protons showed difference splitting patterns. ${ }^{22}$ Only the
axial proton undergoes W -coupling with the neighboring methyl group ($\mathrm{H}-\mathrm{Si}-\mathrm{Si}-\mathrm{C}-\mathrm{H}$), leading to a multiplet. The equatorial proton meanwhile exhibits a doublet $(J=2.1 \mathrm{~Hz})$ resulting from geminal coupling to the axial $\mathrm{Si}-\mathrm{H}$ proton. After the reaction, however, only a single $\mathrm{Si} H$ resonance (doublet) was observed for 4.3a, indicating exclusive formation of a single diastereomer. The coupling constant was found to be 5.2 Hz , the same as SiH resonance of 4.1a. The NMR evidence supports full conversion of the starting trans-Si $\mathbf{1 0}_{10} \mathbf{H}_{4}$ in the hydrosilylation reaction.

An X-ray crystal structure of 4.3a confirmed assignment to the trans diastereomer (Figure 4.3.4) with diequatorial styryl groups. Like trans-decalin, trans- $\mathbf{S i}_{10} \mathbf{H}_{4}$ is conformationally locked, ${ }^{22}$ suggesting that hydrosilylation is selective for the equatorial $\mathrm{Si}-\mathrm{H}$ bond. The reduced diastereoselectivity with $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ and $\mathbf{1 , 4} \mathbf{S i}_{6}$ was attributed to rapid ring inversion ${ }^{45-47}$ in a mono-functionalized intermediate (Figure 4.3.5). Hydrosilylation is highly selective for the equatorial proton (blue circle). Interconversion of axial and equatorial conformers (substituent labelled with orange circle) of a mono-functionalized intermediate determines the trans:cis ratio of difunctionalized products. Therefore, we expect that the equilibrium between equatorial and axial conformers in monofunctionalized intermediates should determine the dr in difunctionalized products.

4.4 UV-vis absorbance spectra

Finally, we investigated the UV-vis spectroscopic properties of the (bis)styrylcyclosilanes in pentane solution at room temperature. Comparison of trans-4.1a to $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ and phenylacetylene showed that the hybrid material was red-shifted $100-\mathrm{nm}$ compared to purely σ-conjugated and $50-\mathrm{nm}$ relative to purely π-conjugated starting materials (Figure 4.4.1a). DFT calculations showed that the HOMO and LUMO of trans-
4.1a is fully delocalized across the entire molecule including both σ (cyclosilane) and π conjugated (aromatic) moieties (Figure 4.4.2). We also compared the UV-vis spectrum of trans-4.1a to cis-4.1a (dr 25:75 trans:cis) and found that relative configuration did not strongly influence optical absorbance in solution (Figure 4.4.1b). This observation facilitated comparison of all three cyclosilanes to each other (Figure 4.4.1c), given the different outcomes with respect to dr in the hydrosilylation. While 1,4 -difunctionalized 4.1a and 1,3-difunctionalized 4.2a were quite similar in the onset of absorption, the onset of absorbance for trans-siladecalin 4.3a was red-shifted by ca. 30 nm relative to monocyclic silanes. Finally, we note the bathochromic influence of thienyl substitution relative to aryl substitution comparing trans-4.1j to trans-4.1a (Figure 4.4.1d).

Figure 4.4.1 UV-vis spectra with normalized absorbance ([compound] $=10^{-5} \mathrm{M}$, in n pentane). (a) Comparison to starting material. Red: trans-4.1a; black: 1,4Si6; blue: styrene. (b) Influence of configuration. Red: trans-4.1a; blue: cis-4.1a (dr 25:75 trans:cis). (c) Cyclosilane comparison. Red: trans-4.1a; blue: 4.2a (dr 55:45 trans:cis); orange: 4.3a. (d) Heterocycle effect. Red: trans-4.1a; blue: trans-4.1j (dr 90:10 trans:cis).

Figure 4.4.2 Calculated HOMO and LUMO of trans-4.1a. B3YLP/6-31G(d).

4.5 Stereoregular conjugated polymer synthesis

The extended conjugation observed in hybrid molecules suggested a new conjugated polymer design: stereoregular copolymers alternating in σ - and π-conjugated motifs could be prepared via copolymerization of a dibrominated building block (e.g., trans-4.1b or trans-4.1j) with an appropriate comonomer. Polymers containing $\mathrm{Si}-\mathrm{Si}$ bonds can be largely divided into two types: polysilanes (e.g., poly $\left.\left(\mathrm{SiR}_{2}\right)\right)^{48,49}$ and σ, π copolymers (e.g., poly $\left.\left(\mathrm{Ar}\left(\mathrm{SiMe}_{2}\right)_{\mathrm{n}} \mathrm{Ar}\right)\right) .{ }^{50,51}$ Polysilanes in which the alkyl substituents are not the same (e.g., poly(SiR'R"), $\mathrm{R}^{\prime} \neq \mathrm{R}^{\prime \prime}$) are stereogenic at each Si atom, but assignment and control of polysilane tacticity is a long-standing problem with no general solution. ${ }^{52-}$ ${ }^{57}$ Use of a stereochemically pre-defined monomer appeals to avoid issues of control of relative configuration during polymerization.

We found that treatment of dibromo trans-4.1j (dr 90:10 trans:cis) with stoichiometric $i-\mathrm{PrMgCl}$ resulted in quantitative Mg -halogen exchange. ${ }^{58}$ The intermediate α, ω-dimagnesiocyclosilane underwent Kumada cross-coupling with 2-bromothiophene, yielding trans-4.1k in 100% conversion (86% isolated yield) and without cyclosilane skeletal rearrangement or erosion of relative configuration (Scheme 4.5.1a).

(b)

(c)

Scheme 4.5.1 a) Model reaction: Kumada cross-coupling of trans-4.1j and 2bromothiophene. (b) Kumada polycondensation synthesis of P4.1. c) Kumada polycondensation synthesis of $\mathbf{P 4 . 2}$.

The novel polymer P4.1 $\left(\mathrm{M}_{\mathrm{n}}=6706 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=2.63\right.$, Figure 4.5.1) was prepared by Kumada polycondensation of 2,5-dibromothiophene with the α, ω dimagnesiocyclosilane derived from trans-4.1j (Scheme 4.5.1b and Figure 4.5.1). The dibromo building blocks could in principle serve as either a precursor to a nucleophile for Kumada polymerization, as showed above in the synthesis of P4.1, but also as the electrophile. We therefore also synthesized copolymer P4.2 in which Mg-halogen
exchange of trans-4.1j was followed by Kumada polycondensation with dibromo trans4.1b $\left(\mathrm{M}_{\mathrm{n}}=5075 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=2.43\right.$, Scheme 4.5.1c and Figure 4.5.1).

Figure 4.5.1 Size exclusion chromatograms of $\mathbf{P 4 . 1}$ and $\mathbf{P 4 . 2}$ at 254 nm (solid line) and 350 nm (dotted line). Molecular weight determined relative to polystyrene standards at 254 nm (THF, $[\mathbf{P 4 . 1}]$ or $[\mathbf{P 4 . 2}]=0.5 \mathrm{mg} \mathrm{mL}^{-1}, 40^{\circ} \mathrm{C}, 0.35 \mathrm{~mL} \mathrm{~min}^{-1}, 10 \mu \mathrm{~L}$ injection)

Figure 4.5.2 Comparison of UV-vis spectra of trans-4.1j (blue), trans-4.1k (orange), P4.1 (red) and $\mathbf{P 4 . 2}$ (purple) in THF. $[$ trans $-\mathbf{4 . 1 j}]=10^{-5} \mathrm{M},[$ trans $-\mathbf{4 . 1} \mathbf{k}]=10^{-5} \mathrm{M},[\mathbf{P 4 . 1}]=0.03$ $\mathrm{g} / \mathrm{L},[\mathbf{P 4 . 2}]=0.03 \mathrm{~g} / \mathrm{L}$.

The P4.1 onset of absorption (510 nm) was 140 nm red-shifted from trans-4.1 \mathbf{j} itself and 50 nm from trans-4.1k (Figure 4.5.2), validating the hypothesis that σ, π-mixing
could be extended across a conjugated polymer chain. Comparison of the UV-vis spectra showed that $\mathbf{P 4 . 1}$ was red-shifted relative to $\mathbf{P 4 . 2}$. This was attributed to the difference between dithienyl and phenyl-thienyl units, as we showed (Figure 4.5.2) that molecular thienyl cyclosilanes were red-shifted relative to phenylsilanes. The all-organic conjugated polymer PTVT (poly(thienylenevinylenethienyl)) exhibited a similar absorbance spectrum relative to $\mathbf{P 4 . 1}$ despite a much longer degree of polymerization (PTVT: $\lambda_{\max }=430 \mathrm{~nm}$, $\left.\lambda_{\text {onset }}=550 \mathrm{~nm}, \mathrm{M}_{\mathrm{n}}=21,000 \mathrm{~g} \mathrm{~mol}^{-1}\right) .{ }^{59}$

These initial studies on conjugated polymer synthesis highlight the utility of stereodefined σ, π-hybrid materials, as well as the stability of relative configuration to subsequent chemical functionalization. Future work will examine the impact of stereoregularity on physical properties, as tactic polymers can demonstrate enhanced mechanical, thermal, and other properties relative to atactic. ${ }^{60}$

4.6 Conclusion

We demonstrated that Ru-catalyzed addition of tetrafunctional cyclosilanes to functionalized alkynes proceeded with high selectivity across several parameters: chemoselectivity for $\mathrm{Si}-\mathrm{H}$ over $\mathrm{Si}-\mathrm{Si}$ bonds, regioselectivity with respect to both cyclosilane and alkyne, and high $(E) /(Z)$ and cis/trans diastereoselectivity. Broad functional group tolerance was exhibited, providing a complex organocyclosilanes bearing reactive functional groups challenging to incorporate by other means. The diverse functional groups incorporated open up several new possible directions, from MOF synthesis to molecular electronics. We also demonstrated that these synthetic achievements enabled the first broad investigation of structure-property relationships in σ, π-hybrid cyclosilanes, which revealed visible light absorption dependent on both the cyclosilane and
arene identity. As exemplified by the Kumada polycondensation herein, we expect the results of this study to inspire new approaches to stereoregular conjugated materials combining σ - and π-conjugated motifs. We believe this contribution will continue to expand possibilities for the selective synthesis of complex materials from the main group.

4.7 Reference

(1) Klausen, R. S.; Widawsky, J. R.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. J. Am. Chem. Soc. 2012, 134, 4541-4544.
(2) Su, T. A.; Li, H.; Klausen, R. S.; Widawsky, J. R.; Batra, A.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. J. Am. Chem. Soc. 2016, 138, 7791-7795.
(3) Burns, D. A.; Press, E. M.; Siegler, M. A.; Klausen, R. S.; Thoi, V. S. Angew. Chemie Int. Ed. 2020, 59, 763-768.
(4) Surampudi, S.; Yeh, M.-L. L.; Siegler, M. A.; Hardigree, J. F. M. M.; Kasl, T. A.; Katz, H. E.; Klausen, R. S. Chem. Sci. 2015, 6, 1905-1909.
(5) Zhou, J.; Surampudi, S. K.; Bragg, A. E.; Klausen, R. S. Chem. - A Eur. J. 2016, 22, 6204-6207.
(6) Zhou, J.; Folster, C. P.; Surampudi, S. K.; Jimenez, D.; Klausen, R. S.; Bragg, A. E. Dalt. Trans. 2017, 46, 8716-8726.
(7) Barrett, B. J.; Jimenez, D.; Klausen, R. S.; Bragg, A. E. J. Phys. Chem. B 2021, 125, 8460-8471.
(8) Sharma, H. K.; Pannell, K. H.; Ledoux, I.; Zyss, J.; Ceccanti, A.; Zanello, P. Organometallics 2000, 19, 770-774.
(9) Shimada, M.; Yamanoi, Y.; Matsushita, T.; Kondo, T.; Nishibori, E.; Hatakeyama, A.; Sugimoto, K.; Nishihara, H. J. Am. Chem. Soc. 2015, 137, 1024-1027.
(10) Shimada, M.; Tsuchiya, M.; Sakamoto, R.; Yamanoi, Y.; Nishibori, E.; Sugimoto, K.; Nishihara, H. Angew. Chemie - Int. Ed. 2016, 55, 3022-3026.
(11) Emanuelsson, R.; Löfås, H.; Wallner, A.; Nauroozi, D.; Baumgartner, J.; Marschner, C.; Ahuja, R.; Ott, S.; Grigoriev, A.; Ottosson, H. Chem. - A Eur. J. 2014, 20, 9304 9311.
(12) Carberry, E. A.; West, R. J. Am. Chem. Soc. 1969, 91, 5440-5446.
(13) Fischer, R.; Konopa, T.; Ully, S.; Baumgartner, J.; Marschner, C. J. Organomet. Chem. 2003, 685, 79-92.
(14) Larkin, D. Y.; Korlyukov, A. A.; Matukhina, E. V.; Buzin, M. I.; Chernyavskaya, N. A.; Antipin, M. Y.; Chernyavskii, A. I. Russ. Chem. Bull. 2005, 54, 1612-1622.
(15) Bande, A.; Michl, J. Chem. - A Eur. J. 2009, 15, 8504-8517.
(16) Press, E. M.; Marro, E. A.; Surampudi, S. K.; Siegler, M. A.; Tang, J. A.; Klausen, R. S. Angew. Chemie Int. Ed. 2017, 56, 568-572.
(17) Marro, E. A.; Klausen, R. S. Chem. Mater. 2019, 31, 2202-2211.
(18) Marro, E. A.; Press, E. M.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2018, 140, 5976-5986.
(19) Folster, C. P.; Klausen, R. S. Polym. Chem. 2018, 9, 1938-1941.
(20) Jiang, Q.; Wong, S.; Klausen, R. S. Polym. Chem. 2021, 12, 4785-4794.
(21) Dorn, R. W.; Marro, E. A.; Hanrahan, M. P.; Klausen, R. S.; Rossini, A. J. Chem. Mater. 2019, 31, 9168-9178.
(22) Marro, E. A.; Folster, C. P.; Press, E. M.; Im, H.; Ferguson, J. T.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2019, 141, 17926-17936.
(23) Harrison, D. J.; Edwards, D. R.; McDonald, R.; Rosenberg, L. Dalt. Trans. 2008, No. 26, 3401.
(24) Walsh, R. Acc. Chem. Res. 1981, 14, 246-252.
(25) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221-3256.
(26) Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351-1374.
(27) Chen, S.; Zhu, J.; Ke, J.; Li, Y.; He, C. Angew. Chemie Int. Ed. 2022, 61.
(28) Min, G. K.; Hernández, D.; Skrydstrup, T. Acc. Chem. Res. 2013, 46, 457-470.
(29) Kanno, K. ichiro; Aikawa, Y.; Kyushin, S. Tetrahedron Lett. 2020, 61, 152274.
(30) Troegel, D.; Stohrer, J. Coord. Chem. Rev. 2011, 255, 1440-1459.
(31) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P. P.; Chirik, P. J. Science (80-.). 2012, 335, 567-570.
(32) Nakajima, Y.; Shimada, S. RSC $A d v .2015,5,20603-20616$.
(33) Moretto, H.-H.; Schulze, M.; Wagner, G. Ullmann's Encyclopedia of Industrial Chemistry; 2012; pp 675-712.
(34) Yamamoto, K.; Kumada, M.; Nakajima, I.; Maeda, K.; Imaki, N. J. Organomet. Chem. 1968, 13, 329-341.
(35) Song, K. C.; Lee, K. M.; Nghia, N. Van; Sung, W. Y.; Do, Y.; Lee, M. H. Organometallics 2013, 32, 817-823.
(36) Banovetz, J. P.; Hsiao, Y. L.; Waymouth, R. M. J. Am. Chem. Soc. 1993, 115, 25402541.
(37) Hsiao, Y.-L. L.; Waymouth, R. M. J. Am. Chem. Soc. 1994, 116, 9779-9780.
(38) Shankar, R.; Shahi, V. J. Organomet. Chem. 2008, 693, 307-315.
(39) Sacarescu, L.; Siokou, A.; Sacarescu, G.; Simionescu, M.; Mangalagiu, I. Macromolecules 2008, 41, 1019-1024.
(40) Lee, P. T. K. K.; Skjel, M. K.; Rosenberg, L. Organometallics 2013, 32, 1575-1578.
(41) Lee, P. T. K.; Rosenberg, L. Dalt. Trans. 2017, 46, 8818-8826.
(42) Kanno, K. ichiro; Noguchi, S.; Ono, Y.; Egawa, S.; Otsuka, N.; Mita, M.; Kyushin, S. J. Organomet. Chem. 2022, 961, 122234.
(43) Sørensen, O. .; Ernst, R. . J. Magn. Reson. 1983, 51, 477-489.
(44) Su, T. A.; Li, H.; Klausen, R. S.; Kim, N. T.; Neupane, M.; Leighton, J. L.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Acc. Chem. Res. 2017, 50, 1088-1095.
(45) Tekautz, G.; Binter, A.; Hassler, K.; Flock, M. 2006, 7, 421-429.
(46) Casarini, D.; Lunazzi, L.; Mazzanti, A. Tetrahedron 1998, 54, 13181-13184.
(47) Casarini, D.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 1998, 63, 9125-9127.
(48) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359-1410.
(49) Klausen, R. S.; Ballestero-Martínez, E. Comprehensive Organometallic Chemistry $I V$; Elsevier, 2021.
(50) Fang, F.; Jiang, Q.; Klausen, R. S. J. Am. Chem. Soc. 2022, 144, 7834-7843.
(51) Morisaki, Y.; Fujimura, F.; Chujo, Y. Organometallics 2003, 22, 3553-3557.
(52) Banovetz, J. P.; Stein, K. M.; Waymouth, R. M. Organometallics 1991, 10, 34303432.
(53) Choi, N.; Onozawa, S.; Sakakura, T.; Tanaka, M. Organometallics 1997, 16, 27652767.
(54) Grimmond, B. J.; Corey, J. Y. Organometallics 2000, 19, 3776-3783.
(55) Dioumaev, V. K.; Rahimian, K.; Gauvin, F.; Harrod, J. F. Organometallics 1999, 18, 2249-2255.
(56) Fossum, E.; Matyjaszewski, K. Macromolecules 1995, 28, 1618-1625.
(57) Maxka, J.; Mitter, F. K.; Powell, D. R.; West, R. Organometallics 1991, 10, 660664.
(58) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chemie Int. Ed. 2003, 42, 4302-4320.
(59) Toyoshima, R.; Akagi, K.; Shirakawa, H. Synth. Met. 1997, 84, 431-432.
(60) Worch, J. C.; Prydderch, H.; Jimaja, S.; Bexis, P.; Becker, M. L.; Dove, A. P. Nat. Rev. Chem. 2019, 3, 514-535.

Chapter 5: Conjugation in isomeric cyclosilane thioethers

The work presented in this chapter has been published as: Gittens, A. F.; Jiang, Q.; Siegler, M. A.; Klausen, R. S. Organometallics 2022, 41, 23, 3762-3769.

5.1 Introduction

Since the discovery in the 1960's that permethylcyclosilanes exhibit longerwavelength absorption spectra ${ }^{1}$ than cycloalkanes and form stable radical anions, ${ }^{2}$ interest in the synthesis of increasingly complex cyclosilanes has only grown. ${ }^{3}$ Prismatic solids ${ }^{4,5}$ and polycyclic silanes ${ }^{6}$ have shed light on the impact of strain and curvature on σ conjugation, while we have investigated the synthesis of stereochemically defined cyclosilanes. ${ }^{7-9}$ An interest in the influence of heteroatomic substitution on optoelectronic properties has inspired work on boron- ${ }^{10-12}$ and nitrogen-containing cyclosilanes (Scheme 5.1.1). ${ }^{13,14}$ Herein, we report the synthesis of cyclosilane thioethers via chemoselective dehydrocoupling of partially hydrogenated cyclosilanes and arylthiols and examine the effect of structural isomerism on conjugation. Density functional theory (DFT) calculations were used to elucidate potential mechanisms underlying experimental observations.

In recent work, we found that isomeric silanes, both molecular and polymeric, can exhibit strongly different absorbance spectra due to differences in conformation. We have previously reported the synthesis of the partially hydrogenated cyclosilanes $\mathbf{1 , 3 S i}_{\mathbf{6}}$ and $\mathbf{1 , 4} \mathbf{S i}_{6}$ as monomers for dehydrocoupling polymerization ${ }^{15-20}$ and found that linear polymers of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ were red-shifted by $22-\mathrm{nm}$ relative to linear polymers of $\mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } } \text { (Scheme }}$ 5.1.2), ${ }^{20}$ while cis-siladecalin is optically inactive compared to trans-siladecalin. ${ }^{7}$

Marschner ${ }^{10}$

Klausen ${ }^{11}$

Hengge ${ }^{12}$

Klausen ${ }^{14}$

Scheme 5.1.1 Heteroatomic substitution of cyclosilanes.

$\lambda=292 \mathrm{~nm}$

$\lambda=271 \mathrm{~nm}$

Scheme 5.1.2 Isomeric oligo- and polysilanes with distinct absorption spectra.

Curious about the effect of isomerism on π, n, σ-conjugation, we sought to synthesize two sets of isomeric cyclosilanes bearing exocyclic heteroatoms (Scheme 5.1.2). Based on the high degrees of conversion and chemoselectivity identified by Rosenberg et al. in dehydrocoupling of thiols and linear oligosilanes, ${ }^{21}$ we report a combined experimental and computational study probing the effects of sulfur incorporation on the optical properties of isomeric cyclosilanes. Our study demonstrates that the reduced conformational degrees of freedom in cyclosilanes results in a compelling platform to study the effects of isomerism on optical and electronic properties, resulting in the discovery that
changes in skeletal connectivity can have competing effects on conformation and delocalization.

5.1b

5.2a

5.3

Scheme 5.1.3 Structural isomers of cyclosilane-sulfur hybrids investigated herein. Isomer 5.3 was not synthesized, but computationally evaluated.

5.2 Synthesis of isomeric cyclosilane thiolethers

Identification of methods for the functionalization of $\mathrm{Si}-\mathrm{H}$ bonds in the presence of Si-Si bonds has been a problem of long-standing interest. ${ }^{22,23} \mathrm{~A}$ consistent challenge has been chemoselectivity, given the susceptibility of $\mathrm{Si}-\mathrm{Si}$ bonds to cleavage by strong nucleophiles, ${ }^{24,25}$ Lewis acids, ${ }^{26,27}$ and late transition metals including Rh and Pt. ${ }^{28,29}$ In recent years, tris(pentafluorophenyl)borane $\left(\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right)$ has been reported as a versatile catalyst for the chemoselective activation of $\mathrm{Si}-\mathrm{H}$ bonds in linear oligosilanes and polysilanes, ${ }^{21,30,31}$ with particularly high yields observed for the dehydrocoupling of thiols
with H -functionalized oligosilanes (Scheme 5.2.1). Therefore, we selected $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ as the catalyst for cyclosilane thiolation.

Scheme 5.2.1 Catalytic dehydrocoupling of disilane and propylthiol.

The synthesis of cyclosilane thiolethers were investigated by Alex Gittens in the Klausen group. The full structural characterization has been performed and published in the following reference: Gittens, A. F.; Jiang, Q.; Siegler, M. A.; Klausen, R. S. Organometallics 2022, 41, 23, 3762-3769.

Scheme 5.2.2 Catalytic dehydrocoupling of $\mathbf{1 , 4} \mathbf{S i}_{6}$ and arylthiols.

In an initial survey of reaction scope, we found that exposing $\mathbf{1 , 4} \mathbf{4} \mathbf{i}_{6}$ to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and a slight excess of thiophenol resulted in the immediate evolution of hydrogen. A white solid precipitate formed, which was isolated by filtration and proved to be clean tetrafunctionalized cyclosilane thioether 5.1a (57% yield, Scheme 5.2.2). Full substitution
of all $\mathrm{Si}-\mathrm{H}$ bonds was notable in comparison to the Ru -catalyzed hydrosilation reaction between $\mathbf{1 , 4} \mathbf{S i}_{6}$ and alkynes, which yielded the difunctionalized product exclusively. ${ }^{9}$ Several other arylthiols were also examined (Scheme 5.2.2). X-ray crystal structures confirmed the structural assignments (Figure 5.2.1).

Figure 5.2.1 Displacement ellipsoid plots (50\% probability level) of cyclosilane thioethers 5.1a-c at $110(2) K(5.1 a$ and 5.1c) or at $294(2) K(5.1 b)$. Hydrogens omitted for clarity. Blue $=$ silicon, black $=$ carbon, yellow $=$ sulfur, burgundy $=$ bromine.

Scheme 5.2.3 Catalytic dehydrocoupling of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ and phenylthiols.

We also examined the reaction of $\mathbf{1 , 3 S i} \mathbf{i}_{6}$ with thiophenol. In general, 1,3functionalized cyclosilanes are more soluble than 1,4-functionalized. ${ }^{16}$ No product precipitation was observed from benzene. Instead, reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. We found that an increased reaction temperature and longer reaction time were necessary for complete consumption of $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$, but ultimately compound $\mathbf{5 . 2 a}$ could be isolated in 66% yield (Scheme 5.2.3). The observation of complete substitution
of $\mathrm{Si}-\mathrm{H}$ bonds with minimal byproducts across two sets of cyclosilanes and three distinct thiophenols suggests a promising level of generality and may be appropriate for the synthesis of extended solids.

Figure 5.2.2 Displacement ellipsoid plots (50\% probability level) of 5.2a at 110(2) K a) Top down and b) side-on views. Hydrogens omitted for clarity. Black = carbon, blue = silicon, yellow $=$ sulfur.

The crystal structure of 5.2a was determined (Figure 5.2.2). The central cyclosilane ring adopted a twist-boat conformation in the solid state (Figure 5.2.2). This is distinct both from the 1,4-functionalized cyclosilane thioethers 5.1a-c and from the crystal structure of a 1,3-tetraarylcyclosilane we previously reported. ${ }^{16}$ As it has long been appreciated that oligosilanes have both lower barriers to conformational change than alkanes, we considered two hypotheses for the change in conformation: (1) the twist-boat conformation is lower energy than a chair conformation for 5.2a or (2) the twist-boat conformation is not the lowest energy conformation, but attractive intermolecular aromatic interactions in the solid-state are maximized in the twist-boat conformation. To investigate these possibilities, we obtained gas-phase conformational data for isomeric 5.1a and 5.2a.

5.3 Conformational study via DFT calculations

To understand the conformational differences between 5.1a and 5.2a in their crystal structures, we used density functional theory (DFT) calculations to compare the energies of the chair and twist-boat conformers for both 5.1a and 5.2a. Geometries were fully
optimized starting from chair or twist-boat conformations respectively without symmetry restrictions using B3LYP hybrid exchange-correlation functional with the $6-311 \mathrm{G}(\mathrm{d})$ basis set. Crystal structures were used as starting geometries if applicable. Frequency calculations were performed with the same level of theory, to ensure optimized geometries were local minima on their potential energy surfaces. The calculation indicates that the chair conformation of 5.1a is of lower energy than the twist-boat conformation by 2.43 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ (Table 5.3.1). However, for 5.2a, the twist-boat conformer is lower energy by $3.06 \mathrm{kcal} \mathrm{mol}^{-1}$ compared to the chair conformer. These calculations suggest that the difference in cyclosilane conformation in the crystal structures of 5.1a and 5.2 a should also be reflected in the gas-phase or solution where intermolecular attractions might be minimized. We hypothesize that 1,3-diaxial interactions between pseudoaxial thiophenol substituents are minimized in the twist-boat conformation.

Table 5.3.1 Calculated energies of conformers 5.1a and 5.2a.

Structures	Energies $\left(\mathrm{E}_{\mathrm{h}}\right)$		$\mathrm{E}_{\text {chair-twist }}\left(\mathrm{E}_{\mathrm{h}}\right)$	$\Delta \mathrm{E}_{\text {chair-twist }}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
	chair	-4576.377926		-0.00387
$\mathbf{5 . 1 a}$	-457		-2.43	
	-4576.370076	-4576.374962	0.00489	3.07

5.4 Time dependent DFT (TD-DFT) calculations

As oligosilane optical properties are conformation-dependent, these observations suggested that the structural isomers 5.1a and 5.2a could have distinct optical properties. Quantum chemical calculations would allow us to directly compare the twist-boat and chair conformers in 5.1a and 5.2a, while experimental spectra would reflect different populations of conformers.

Different combinations of functionals and levels of theory were examined by comparing the simulated UV-vis spectra of 5.1a to the experimental results (Figure 5.4.1). The PBE0 functionals with the $6-311 \mathrm{G}(\mathrm{d})$ basis set was selected for its best match of onset and $\lambda_{\max }$ absorption compared to the experimental spectrum (Figure 5.4.1). This combination was previously reported for studying electronic transitions in linear hexasilanes and poly(cyclosilane)s. ${ }^{20,32}$ The number of states of TD-DFT calculations was set as 50 , as the simulated spectra with higher number of states better matched the broad absorption band from 220 nm to 320 nm in the experimental results (Figure 5.4.2).

Figure 5.4.1 Comparison of experimental UV-vis spectra and simulated spectra with different functionals and levels of theory.

Figure 5.4.2 Comparison of experimental UV-vis spectra and simulated spectra with different numbers of states (N). TD-PBE0/6-311G(d)//B3YLP/6-311G(d).

Figure 5.4.3 Calculated frontier orbitals of chair and twist-boat conformers of 5.1a and 5.2a. H atoms omitted for clarity. TD-PBE0/6-311G(d)//B3YLP/6-311G(d). Isovalue $=0.02$.

Conformation-dependent π, n, σ-conjugation in the cyclosilane thioethers was investigated by TD-DFT calculations for both $\mathbf{1 , 4} \mathbf{S i}_{6}$ and $\mathbf{1 , 3 S i} \mathbf{i}_{6}$-derived compounds. The calculated frontier orbitals of chair cyclosilane thioethers are shown in Figure 5.4.3. The HOMO of chair-5.1a delocalizes across the silane ring and all four thioethers. In chair-
5.2a, the electron density on the phenyl groups decreased and the HOMO was predominantly observed on one of the equatorial phenyl groups. LUMOs of chair-5.1a and chair-5.2a are mostly situated on the silicon frameworks and the equatorial thioethers.

The frontier orbitals of the twist-boat conformers were also studied (Figure 5.4.3). Both HOMOs and LUMOs delocalize across silicon frameworks, sulfur atoms and the equatorial phenyl groups. Interestingly, pseudo π^{*} orbitals were observed for the LUMO+1 of all four conformers (Figure 5.4.4). These orbitals are assembled by in-phase interaction of $\sigma^{*}(\mathrm{Si}-\mathrm{C} / \mathrm{S})$, similar to the LUMOs of decasilahexahydrotriquinacene and decasilaisotwistane reported by Kyushin. ${ }^{6}$ We note that such pseudo π^{*} orbitals were found partially broken in twist-5.1a and chair-5.2a (Figure 5.4.4).

Figure 5.4.4 The LUMO+1 orbital of 5.1a and 5.2a. H atoms omitted for clarity. Discontinued pseudo π^{*} orbitals were found on twist-5.1a and chair-5.2a. TD-PBE0/6$311 \mathrm{G}(\mathrm{d}) / / \mathrm{B} 3 \mathrm{YLP} / 6-311 \mathrm{G}(\mathrm{d})$. Isovalue $=0.02$.

Table 5.4.1. Calculated vertical electronic transitions in cyclosilane thioethers. Only transitions of wavelength above 230 nm and oscillator strength above 0.05 are shown. Relative contributions given in percentages, where $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=$ LUMO. Assignments are shown if the relative contribution is higher than 10%.

Structure	λ (nm)	f	Assignment	Structure	$\lambda(\mathrm{nm})$	f	Assignment
chair-5.1a	267.3	0.181	$\mathrm{H} \rightarrow \mathrm{L}+1$ (51.3\%)	chair-5.2a	288.4	0.102	$\mathrm{H} \rightarrow \mathrm{L}$ (84.3.1\%)
			$\mathrm{H}-2 \rightarrow \mathrm{~L}$ (32.8\%)		276.7	0.111	$\mathrm{H}-2 \rightarrow \mathrm{~L}$ (86.4\%)
	262.8	0.143	$\mathrm{H}-1 \rightarrow \mathrm{~L}(73.0 \%)$		242.6	0.060	$\mathrm{H}-2 \rightarrow \mathrm{~L}+2$ (26.5\%)
			$\mathrm{H} \rightarrow \mathrm{L}+2$ (12.0\%)		234.4	0.107	$\mathrm{H}-4 \rightarrow \mathrm{~L}+1$ (31.1\%)
	259.0	0.131	$\mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (61.1\%)				$\mathrm{H}-5 \rightarrow \mathrm{~L}+1$ (17.9\%)
			$\mathrm{H} \rightarrow \mathrm{L}+1$ (11.1\%)	twist-5.2a	282.6	0.155	$\mathrm{H} \rightarrow \mathrm{L}$ (92.1\%)
	257.5	0.066	$\mathrm{H}-2 \rightarrow \mathrm{~L}(39.2 \%)$		273.9	0.056	$\mathrm{H} \rightarrow \mathrm{L}+1$ (74.5\%)
			$\mathrm{H} \rightarrow \mathrm{L}+1$ (24.0\%)				$\mathrm{H}-1 \rightarrow \mathrm{~L}(11.5 \%)$
			$\mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (11.1\%)		269.1	0.09	$\mathrm{H}-1 \rightarrow \mathrm{~L}$ (73.6\%)
	241.8	0.069	$\mathrm{H}-1 \rightarrow \mathrm{~L}+4$ (27.2\%)		264.1	0.057	$\mathrm{H}-2 \rightarrow \mathrm{~L}$ (41.8\%)
			$\mathrm{H} \rightarrow \mathrm{L}+6$ (11.9\%)				$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (38.1\%)
			H-3 \rightarrow L+2 (10.8\%)		244.5	0.059	$\mathrm{H}-4 \rightarrow \mathrm{~L}$ (39.2\%)
	237.2	0.072	$\mathrm{H}-2 \rightarrow \mathrm{~L}+3$ (32.0\%)				$\mathrm{H} \rightarrow \mathrm{L}+2$ (16.7\%)
			$\mathrm{H} \rightarrow \mathrm{L}+6$ (15.6\%)		243.7	0.083	$\mathrm{H}-4 \rightarrow \mathrm{~L}$ (36.8\%)
	233.4	0.0624	$\mathrm{H}-2 \rightarrow \mathrm{~L}+7$ (16.6\%)				$\mathrm{H} \rightarrow \mathrm{L}+2$ (28.9\%)
			$\mathrm{H}-1 \rightarrow \mathrm{~L}+3$ (10.8\%)		234.4	0.053	$\mathrm{H}-5 \rightarrow \mathrm{~L}+1$ (77.1\%)
	232.8	0.0646	$\mathrm{H}-1 \rightarrow \mathrm{~L}+3$ (35.6\%)				
			H-5 \rightarrow L+1 (14.2\%)				
	230.9	0.0679	H-3 to L+2 (31.0\%)				
			H-4 to L (15.9\%)				
			H-2 to L+8 (12.7\%)				
twist-5.1a	268.7	0.137	$\mathrm{H}-2 \rightarrow \mathrm{~L}$ (49.0\%)				
			$\mathrm{H}-1 \rightarrow \mathrm{~L}(16.7 \%)$				
			$\mathrm{H} \rightarrow \mathrm{L}+3$ (11.6\%)				
	266.3	0.097	H-1 \rightarrow L+1 (49.9\%)				
			$\mathrm{H}-2 \rightarrow \mathrm{~L}+1$ (26.2\%)				
	259.6	0.098	$\mathrm{H}-1 \rightarrow \mathrm{~L}(31.1 \%)$				
			$\mathrm{H}-2 \rightarrow \mathrm{~L}+1$ (26.7\%)				
			$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (19.5\%)				
	244.0	0.051	$\mathrm{H} \rightarrow \mathrm{L}+2$ (25.6\%)				
			$\mathrm{H}-1 \rightarrow \mathrm{~L}+6$ (21.5\%)				
	243.2	0.091	$\mathrm{H}-1 \rightarrow \mathrm{~L}+4$ (27.4\%)				
			$\mathrm{H}-2 \rightarrow \mathrm{~L}+4$ (10.2\%)				
	242.3	0.112	$\mathrm{H} \rightarrow \mathrm{L}+3$ (31.0\%)				
			$\mathrm{H}-2 \rightarrow \mathrm{~L}+4$ (17.1\%)				
	237.1	0.052	$\mathrm{H}-2 \rightarrow \mathrm{~L}+2$ (48.8\%)				
			$\mathrm{H}-1 \rightarrow \mathrm{~L}+3$ (13.9\%)				

Electronic transitions in the cyclosilane thioethers are affected by both conformation and connectivity. In the twist and chair $\mathbf{1 , 4} \mathbf{S i}_{6}$-derived thioethers, the HOMO \rightarrow LUMO transition is symmetry forbidden (Table 5.4.1). For chair-5.1a, the HOMO \rightarrow

LUMO +1 transition is dominant. However, for twist-1a, the HOMO-2 and HOMO-1 \rightarrow

LUMO both contribute to the predicted lowest-energy vertical transition. Chair-5.1a also shows a more pronounced absorption feature at 260 nm compared to twist-5.1a in the simulated UV-vis spectra (Figure 5.4.5a).

Figure 5.4.5 Simulated UV-vis spectra of (a) 5.1a and (b) 5.2a. Solid lines: chair conformations. Dotted lines: twist-boat conformations. TD-PBE0/6-311G(d)//B3YLP/6$311 G(d)$.

Table 5.4.2. Calculated vertical electronic transitions in cyclosilane thioethers. $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=\mathrm{LUMO}$.

Transition	chair-5.1a	twist-5.1a	chair-5.2a	twist-5.2a
$\mathrm{H} \rightarrow \mathrm{L}$	5.48 eV	5.41 eV	5.20 eV	5.28 eV
$\mathrm{H} \rightarrow \mathrm{L}+1$	5.52 eV	5.47 eV	5.51 eV	5.37 eV

In contrast, in chair and twist $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$-derived thioethers the HOMO \rightarrow LUMO transition is allowed (Table 5.4.2), as well as other higher-energy transitions. Twist-5.2a has a stronger absorption at 275 nm than chair-5.2a (Figure 5.4.5b), resulting from a wider HOMO \rightarrow LUMO +1 gap in chair-5.2a (Table 5.4.3). The LUMO+1 of chair-5.2a is found to be a partially broken pseudo π^{*} orbital (Figure 5.4.4). The discontinued conjugation
raises its energy level, requiring higher energy for $\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$ transition in chair-

5.2a.

TD-DFT calculations also facilitated the study of isomeric compounds that have not yet been synthesized. We probed the influence of sulfur connectivity by comparing $\mathrm{Ar}-$ $\mathrm{S}-\mathrm{Si}$ in 5.1b and $\mathrm{MeS}-\mathrm{Ar}-\mathrm{Si}$ in 5.3 (Figure 5.4.6). In structure 5.3, sulfur atoms are substituents on the phenyl rings, rather than inserted between the cyclosilane and aromatic groups. Cyclosilane thioether 5.1b has frontier orbitals similar to 5.1a (Figure 5.4.6).

Structure

HOMO

LUMO

5.1b

Figure 5.4.6 Comparison of calculated HOMO and LUMO of 5.1b to its isomeric structure 5.3. Hydrogen atoms omitted for clarity. TD-PBE0/6-311G(d)//B3YLP/6-311G(d). Isovalue $=0.02$.

Tetraaryl cyclosilane $\mathbf{5 . 3}$ however has a HOMO mainly localized on the equatorial aromatics and the LUMO at the axial aromatics. No pseudo π^{*} orbital delocalizing through the silicon framework was found in 5.3. Its LUMO+1 is majorly formed by the π^{*} orbitals of axial phenyl groups (Figure 5.4.7). These results suggest sulfur incorporation (n-electron
donors) facilitates the delocalization between silicon frameworks (σ-conjugation) and aromatic rings (π-conjugation).

Figure 5.4.7 The LUMO +1 orbital of 5.3. No pseudo π^{*} orbital delocalizing through the silicon framework was found. Hydrogen atoms omitted for clarity. TD-PBE0/6$311 \mathrm{G}(\mathrm{d}) / / \mathrm{B} 3 \mathrm{YLP} / 6-311 \mathrm{G}(\mathrm{d})$. Isovalue $=0.02$.

5.5 UV-vis spectroscopy

Experimental UV-vis spectra were obtained to evaluate the computational predictions. We first compared the solution-phase UV-vis spectrum of 5.1a to thiophenol and $\mathbf{1 , 4} \mathbf{S i}_{6}$. The cyclosilane thioether exhibited a broad absorption band at 258 nm , which was red-shifted relative to both thiophenol and $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (Figure 5.5 .1a). The experimentally observed transition is consistent with the TD-DFT calculated spectrum, which predicted $\lambda_{\max }$ of 260 nm (Figure 5.5.1a). Compared to non-sulfur-incorporated cyclosilane $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}} \mathbf{P h}_{4}$, 5.1a also exhibited a red-shifted absorption band (Figure 5.5.1b). This observation agrees with the predication made by TD-DFT calculations that sulfur incorporation facilitates delocalization between the π - and σ-fragments. The cyclosilane thioethers 5.1b and 5.1c had very similar UV-vis spectra to $\mathbf{5 . 1} \mathbf{a}$ with respect to the onset of absorption and overall peak shape (Figure 5.5.1c), consistent with the frontier orbital
calculations (Figure 5.5.2 and Table 5.5.1). These observations suggest delocalization of the π - and σ-conjugated systems through the sulfur lone pair and that moderately electrondonating or withdrawing aromatic substituents do not strongly impact that delocalization.

Figure 5.5.1 Solution-phase UV-vis spectra ([compound] $=0.01 \mathrm{mM}$, THF). a) Comparison of thioether $\mathbf{5 . 1}$ a to thiophenol and $\mathbf{1 , 4} \mathbf{S i}_{6}$ demonstrates red-shift in absorbance. b) Comparison of thioether $\mathbf{5 . 1}$ a to $\mathbf{1 , 4} \mathbf{S i}_{6} \mathbf{P} \mathbf{h}_{4}$ demonstrates delocalization between the π and σ-fragments. c) Comparison of cyclosilane thioethers 5.1a-c. c) Comparison of isomer cyclosilane thioethers 5.1a and 5.2a.

Comparison of the UV-vis spectra of 5.1a and 5.2a validated the predictions made by TD-DFT calculations. We predicted similar absorption features for chair-5.1a and twist5.2a, the lowest-energy conformers of each cyclosilane thioether (Figure 5.4.5). Despite
stronger absorbance at 230 nm , 5.2a exhibits similar absorption bands compared to 5.1a in the experimental UV-vis spectra (Figure 5.5.1d), which agrees with computational studies as we discussed above.

Figure 5.5.2 Simulated UV-vis spectra of chair-5.1a (black), 5.1b (blue) and 5.1c (red). TD-PBE0/6-311G(d)//B3YLP/6-311G(d).

Table 5.5.1. Calculated band gaps in chair-5.1a, 5.1b and 5.1c. $\mathrm{H}=\mathrm{HOMO}$ and $\mathrm{L}=\mathrm{LUMO}$. TD-PBE0/6-311G(d)//B3YLP/6-311G(d).

Transition	chair-5.1a	$\mathbf{5 . 1 b}$	$\mathbf{5 . 1} \mathbf{c}$
$\mathrm{H} \rightarrow \mathrm{L}$	5.48 eV	5.42 eV	5.36 eV
$\mathrm{H} \rightarrow \mathrm{L}+1$	5.52 eV	5.46 eV	5.38 eV

5.6 Conclusion

We investigated the effect of conformation and connectivity on conjugation of isomeric cyclosilane thioethers. We prepared thioethers 5.1a-c and 5.2a through the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed dehydrocoupling of various thioethers and partially hydrogenated
cyclohexasilanes $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ and $\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}$. These reactions run with high chemoselectivity for $\mathrm{Si}-$ H bonds in the presence of $\mathrm{Si}-\mathrm{Si}$ bonds, preserving the σ-framework. Their structures were confirmed using ${ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ NMR spectroscopy and single crystal X-ray crystallography. X-ray crystal structures, as well as gas phase calculations, showed that cyclosilanes adopt different conformations depending on skeletal connectivity.

Computational studies were used to probe the factors that influence the photophysical properties of our π, n, σ-conjugated molecules. By comparing isomers 5.1b and 5.3 using TD-DFT calculations, we see a lack of pseudo π^{*} orbital delocalizing through the silicon framework when sulfur is not connected to both the cyclosilane and phenyl rings. Thus, the insertion of sulfur between the σ-conjugated and π-conjugated systems extends electron delocalization across the whole system.

We demonstrated the important influence of heteroatom substitution in facilitating π - and σ-conjugation in cyclosilane thioethers and observed that constitutional isomers can exhibit distinct conformations and patterns of delocalization. We expanded upon our prior work in building complex silicon building blocks and their precise functionalization. We described their photophysical activity through the use of computational and experimental data. The studies herein provide insight into the potential use of sulfur-influenced conjugated materials.

5.7 Reference

(1) West, R.; Carberry, E. Science (80-.). 1975, 189, 179-186.
(2) Carberry, E. A.; West, R.; Glass, G. E. J. Am. Chem. Soc. 1969, 91, 5446-5451.
(3) Heider, Y.; Scheschkewitz, D. Chem. Rev. 2021, 121, 9674-9718.
(4) Kanemitsu, Y.; Suzuki, K.; Kondo, M.; Kyushin, S.; Matsumoto, H. Phys. Rev. B 1995, 51, 10666-10670.
(5) Sekiguchi, A.; Yatabe, T.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1993, 115, 5853-5854.
(6) Tsurusaki, A.; Koyama, Y.; Kyushin, S. J. Am. Chem. Soc. 2017, 139, 3982-3985.
(7) Marro, E. A.; Folster, C. P.; Press, E. M.; Im, H.; Ferguson, J. T.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2019, 141, 17926-17936.
(8) Ferguson, J. T.; Jiang, Q.; Marro, E. A.; Siegler, M. A.; Klausen, R. S. Dalt. Trans. 2020, 49, 14951-14961.
(9) Jiang, Q.; Gittens, A. F.; Wong, S.; Siegler, M. A.; Klausen, R. S. Chem. Sci. 2022, 13, 7587-7593.
(10) Markov, J.; Fischer, R.; Wagner, H.; Noormofidi, N.; Baumgartner, J.; Marschner, C. Dalt. Trans. 2004, 51, 2166.
(11) Purkait, T. K.; Press, E. M.; Marro, E. A.; Siegler, M. A.; Klausen, R. S. Organometallics 2019, 38, 1688-1698.
(12) Hengge, E.; Wolfer, D. Angew. Chemie Int. Ed. English 1973, 12, 315-316.
(13) Folster, C. P.; Nguyen, P. N.; Siegler, M. A.; Klausen, R. S. Organometallics 2019, 38, 2902-2909.
(14) Folster, C. P.; Nguyen, P. N.; Klausen, R. S. Dalt. Trans. 2020, 49, 16125-16132.
(15) Press, E. M.; Marro, E. A.; Surampudi, S. K.; Siegler, M. A.; Tang, J. A.; Klausen, R. S. Angew. Chemie Int. Ed. 2017, 56, 568-572.
(16) Marro, E. A.; Press, E. M.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2018, 140, 5976-5986.
(17) Folster, C. P.; Klausen, R. S. Polym. Chem. 2018, 9, 1938-1941.
(18) Marro, E. A.; Klausen, R. S. Chem. Mater. 2019, 31, 2202-2211.
(19) Jiang, Q.; Wong, S.; Klausen, R. S. Polym. Chem. 2021, 12, 4785-4794.
(20) Fang, F.; Jiang, Q.; Klausen, R. S. J. Am. Chem. Soc. 2022, 144, 7834-7843.
(21) Harrison, D. J.; Edwards, D. R.; McDonald, R.; Rosenberg, L. Dalt. Trans. 2008, No. 26, 3401.
(22) Banovetz, J. P.; Hsiao, Y. L.; Waymouth, R. M. J. Am. Chem. Soc. 1993, 115, 25402541.
(23) Hsiao, Y.-L. L.; Waymouth, R. M. J. Am. Chem. Soc. 1994, 116, 9779-9780.
(24) Kayser, C.; Kickelbick, G.; Marschner, C. Angew. Chemie Int. Ed. 2002, 41, 989992.
(25) Gilman, H.; Lichtenwalter, G. D. J. Am. Chem. Soc. 1958, 80, 608-611.
(26) Fischer, J.; Baumgartner, J.; Marschner, C. Science (80-.). 2005, 310, 825.
(27) Ishikawa, M.; Kumada, M. J. Chem. Soc. D Chem. Commun. 1969, No. 10, 567b 568.
(28) Rosenberg, L. Macromol. Symp. 2003, 196, 347-353.
(29) Yamamoto, K.; Kumada, M.; Nakajima, I.; Maeda, K.; Imaki, N. J. Organomet. Chem. 1968, 13, 329-341.
(30) Lee, P. T. K. K.; Skjel, M. K.; Rosenberg, L. Organometallics 2013, 32, 1575-1578.
(31) Lee, P. T. K.; Rosenberg, L. Dalt. Trans. 2017, 46, 8818-8826.
(32) Kanazawa, Y.; Tsuji, H.; Ehara, M.; Fukuda, R.; Casher, D. L.; Tamao, K.; Nakatsuji, H.; Michl, J. 2016, 3010-3022.

Chapter 6: Impact of stereoregularity on hybrid conjugated polymers

6.1 Introduction

Stereoregularity in the polymer results in pronounced differences in thermal, mechanical and optical properties, and thus well-defined stereoregular polymers are of great interest in both synthesis and applications for decades. ${ }^{1}$ In 1927, Staudinger predicted that the main-chain stereochemistry of a polymer would lead to the change of its physical properties ${ }^{2}$, and Schildknecht reported the synthesis of the first stereoregular polymer, polyvinyl alkyl ether. ${ }^{3}$ The stereoregular polyolefin synthesis catalyzed by transition-metal catalysts has been extensively studied. ${ }^{4,5}$

Hou 2019

(b) $\quad \beta$-Cyclodextrin

Scheme 6.1.1 Stereoregular polymeric structures containing cyclic units. (a) Stereoregular hydrocarbon polymers. (b) β-Cyclodextrin.

The synthesis of organic polymers with cyclic repeating units in the main chain is an emerging field for their unique physical properties compared to linear polyolefins, including higher melting $\left(\mathrm{T}_{\mathrm{m}}\right)$ or glass-transition temperatures $\left(\mathrm{T}_{\mathrm{g}}\right)$, control of polymer rigidity and optical transparency. ${ }^{6-8}$ Promotion of stereoregularity of these polymers further improves the beneficial properties. Takeuchi reported a precise isomerization
polymerization of alkenylcyclohexanes yielding stereoregular polymers containing sixmembered rings in the polymer backbone (Scheme 6.1.1a). ${ }^{7}$ Higher T_{g} were observed when the ratio of cyclohexyl units increased. More recently, Hou demonstrated the synthesis of functionalized cyclic polyolefins with high isotacticity through the scandium-catalyzed cyclopolymerization of functionalized α, ω-dienes (Scheme 6.1.1a). ${ }^{8}$

The macromolecular structures with stereoregularity can also be constructed with pre-defined stereoregular building blocks. β-Cyclodextrin is an example of highly regulated structures in nature and has found its way in industrial utilization (Scheme 6.1.1b). ${ }^{9}$ It is assembled by glucopyranosides, six-membered carbohydrate rings with multiple stereogenic centers.

Scheme 6.1.2 Anionic ROP of amino-functionalized masked disilene.

Control of polysilane main-chain stereoregularity, however, has been a long-term challenge to synthetic chemists. The difficulties are from both synthetic methods and characterization of the structures. ${ }^{10}$ Though Wurtz polymerization and dehyrocoupling polymerization generated the atactic polysilanes, anionic ring-opening polymerization (ROP) gave some success in the field. ${ }^{10}$ Matyjaszewski reported the ROP of all-trans cyclotetrasilane resulting in an isotactic polysilane. ${ }^{11}$ More recently, polymerization of the amino-functionalized masked disilene was reported by Sakurai and the resulting polysilane was found to be predominately syndiotactic (Scheme 6.1.2). ${ }^{12}$ On the other hand, a lack of stereoisomerically pure small molecule model compounds makes the tacticity assignment
of polysilanes complicated through NMR. ${ }^{10}$ Conflicting identifications of tacticity were reported in the case of poly(SiMePh) from references. ${ }^{11,13-15}$

Prior Work

Schomaker, 1991

- Hybrid conjugated polymers • Cyclosilane building blocks

This Work

- Stereoregular polysilane
- Conformational-dependent thermal and optical properties

Scheme 6.1.3 (a) Prior work: hybrid conjugated polymer containing linear silane units. (b) Stereoregular polysilane synthesized with cyclosilane building blocks.

The organosilicon materials containing hybrid σ, π-conjugated structures have raised broad interest for their unique optoelectronic properties and potential applications in photoresists, emitting polymers and semiconductive materials. ${ }^{16}$ Plenty of study in this field has pursued to increase the structural diversity of π-conjugated units. ${ }^{17-20}$ However, the σ fragments in these materials were largely limited to linear oligosilanes ${ }^{21}$ (Scheme 6.1.2) due to the limited suitable silane building blocks and synthetic methods. ${ }^{22}$ The Klausen lab has extensively explored the design, synthesis, and polymerization of cyclosilanes. ${ }^{23-26}$ We recently described a highly selective synthesis of σ, π-conjugated cyclosilanes through $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed hydrosilylation. ${ }^{27}$ As initial examples,
the copolymerization of the trans-bis(thienylvinyl)cyclosilane with dibromo building blocks was also demonstrated.

Herein, we report the synthesis of hybrid conjugated stereoregular polysilanes using trans and cis cyclosilane building blocks as stereochemically pre-defined monomers. The stereochemistry on cyclosilanes was preserved in the polymerization, enabling welldefined stereoregularity. We observed that stereoregular polysilanes exhibited more pronounced phase transition behaviors in DSC measurements and had more distinct absorption bands in the UV-vis spectra compared to atactic polysilanes. Influence of silane structures (cyclic versus linear) and vinyl group incorporation on the polysilane properties was also examined.

6.2 Stereoregular hybrid σ, π-conjugated polymers

We have reported the copolymerization of the building block trans-6.1 and 2,5dibromothiophene (Table 6.2.1, Entry 1). ${ }^{27}$ The building block trans-6.1, isolated in high diastereomeric purity after recrystallization, can be elaborated to conjugated polymer P6.1 by $\mathrm{Mg} / \mathrm{Br}$ exchange ${ }^{28,29}$ followed by NiCl_{2} dppp-catalyzed Kumada polycondensation in the presence of PPh_{3} ligands (Table 6.2.1, Entry 1). Herein, the reaction conditions were further investigated by varying catalyst and ligand species (Table 6.2.1). At this time, the focus continued to be on Ni-catalyzed Kumada polycondensation as Ni does not cleave $\mathrm{Si}-$ Si bonds, whereas the Pd catalysts employed in Stille or Suzuki polycondensation are known to cleave $\mathrm{Si}-\mathrm{Si}$ bonds. ${ }^{30-32}$

Under the NiCl_{2} dppp-catalyzed conditions, low conversions of starting materials were observed with no additional ligands (Table 6.2.1, Entry 2). Although excess ligands are not usually required in the Kumada catalyst-transfer polycondensation (KCTP) making
poly(3-hexylthiophene) ${ }^{33}$, the similar low yield was reported in Kumada couplings of heteroaryl chlorides and lithium tri(quinolyl)magnesates catalyzed by $\mathrm{Ni}(\mathrm{acac})_{2}$ and dppp. ${ }^{34}$ The low conversions might arise from a different copolymerization mechanism rather than KCTP. The cyclosilane silane building blocks lacked a continuous π-conjugated backbone, and prevented the Ni catalyst from "walking" along the polymer chain. ${ }^{33}$ Therefore, the catalyst required regeneration after a growth of each unit. PPh_{3} ligand might improve catalyst recovery and therefore result in a higher conversion of monomers.

Table 6.2.1. Variation of P6.1 molecular weight characteristics with Ni catalysts and ligands. The relative configuration was maintained in the polymerization (highlighted in red).

Entry	Catalyst	Ligand	$\mathrm{M}_{\mathrm{n}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)^{\mathrm{a}}$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}{ }^{\mathrm{a}}$	Yield
1^{b}	$\mathrm{NiCl}_{2} \mathrm{dppp}$	PPh_{3}	6.70 k	2.63	78%
2	$\mathrm{NiCl}_{2} \mathrm{dppp}$	n / a	-	-	Low conversion
3	$\mathrm{NiCl}_{2} \mathrm{dppp}$	dppp	-	-	Low conversion
4	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	PPh_{3}	4.77 k	2.05	63%
5	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	n / a	4.94 k	2.08	65%
6	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	dppp	4.32 k	2.02	55%

${ }^{\text {a }}$ Determined by size exclusion chromatography relative to polystyrene standards at 254 nm (THF, [copolymer] $=1 \mathrm{mg} \mathrm{mL}^{-1}, 40^{\circ} \mathrm{C}, 0.35 \mathrm{~mL} \mathrm{~min}^{-1}, 10 \mu \mathrm{~L}$ injection). ${ }^{\mathrm{b}}$ Previously reported in reference. ${ }^{27}$

Further experimental exploration supported the above hypothesis. Additional dppp ligands did not improve the polymerization (Table 6.2.1, Entry 3). However, reasonable starting material conversion and molecular weight characteristics of products were
observed in $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$-catalyzed polymerizations regardless of the ligand species and amount (Table 6.2.1, Entry 4-6). The reaction condition described in Table 6.2.1, Entry 1 was chosen as the general polymerization condition because of the relatively high molecular weight of products.

Scheme 6.2.1. Synthesis of hybrid conjugated polymers $\mathbf{P 6 . 2}$ (predominately cis) and P6.3 (atactic). The relative configuration was maintained in the polymerization (highlighted in red).

Under the optimized polymerization condition, we have now synthesized the stereoisomers of P6.1 (Table 6.2.1) by variation of the diastereomeric ratio in the starting monomer 6.1, yielding P6.2 (predominantly $c i s$) and P6.3 (atactic). We note that cis-6.1 (dr 20:80 trans:cis) was enriched in the filtrate of $\mathbf{6 . 1}$ recrystallization. Similar molecular weight characteristics were determined for all three macromolecules by size exclusion chromatography (Table 6.2.2). However, solubilities of these polymers in CDCl_{3} were found to be dependent on the degree of stereoregularity (Figure 6.2.1). The atactic P6.3 formed a clear solution in CDCl_{3} at room temperature, whereas the stereoregular P6.1 and P6.2 both made orange suspension in CDCl_{3} at the same concentration. The observation
was consistent with polymers of higher crystallinity exhibiting lower solubility in the solution.

Table 6.2.2. Molecular weight characteristics of hybrid conjugated polysilanes.

Cyclosilane	dr (trans:cis)	Polymer	$\mathrm{M}_{\mathrm{n}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)^{\mathrm{a}}$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}{ }^{\mathrm{a}}$	Yield (\%)
trans-6.1 $^{\mathrm{b}}$	$90: 10$	$\mathbf{P 6 . 1}$	6706	2.63	78
cis-6.1	$20: 80$	$\mathbf{P 6 . 2}$	6382	2.66	73
$\mathbf{6 . 1}$	$63: 37$	$\mathbf{P 6 . 3}$	6883	2.59	63

${ }^{\text {a }}$ Determined by size exclusion chromatography relative to polystyrene standards at 254 nm (THF, [copolymer] $=1 \mathrm{mg} \mathrm{mL}^{-1}, 40^{\circ} \mathrm{C}, 0.35 \mathrm{~mL} \mathrm{~min}^{-1}, 10 \mu \mathrm{~L}$ injection). ${ }^{\mathrm{b}}$ Previously reported in reference. ${ }^{27}$

Figure 6.2.1 Solubility characteristics of (left to right) P6.1, P6.3, and P6.2 $(25 \mathrm{mg}$ polymer in $0.7 \mathrm{~mL} \mathrm{CDCl}_{3}$).

The Si-H bonds are known to be diagnostic for NMR spectroscopy ${ }^{23-25}$, and the comparison of ${ }^{29}$ Si NMR spectra of cyclosilane monomers to polysilanes identified the preserved stereochemistry of cyclosilane units in the copolymerization. The SiH resonances of cyclosilane conformers had distinct chemical shifts in ${ }^{29}$ Si NMR spectra:
64.5 ppm for trans-6.1 and 63.0 ppm for cis-6.1 (Figure 6.2.2). Polysilane P6.1-3 had similar SiH resonances to the monomers. Distinct peaks were found at $63.0 \mathrm{and} /$ or 64.8 ppm depending on the diastereomer ratio of their starting cyclosilanes. These features confirmed the remained stereochemistry of the cyclosilane rings and no $\mathrm{Si}-\mathrm{Si}$ bond cleavage in presence of the Ni catalyst in the polycondensation.

Figure 6.2.2 Cropped ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectra $\left(79 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) comparing (top to bottom) trans-6.1 (dr 90:10 trans:cis), P6.1, P6.2, P6.3 and cis-6.1 (dr 20:80 trans:cis). ${ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120$ $\mathrm{Hz} . \mathrm{DEPT}=$ distortionless enhancement by polarization transfer. The methyl groups are omitted for clarity.

6.3 Synthesis of hybrid conjugated polymers containing linear silane units

To address the effect of cyclosilane units on the conjugated polymer properties, a linear silane building block 6.2 was synthesized through $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed hydrosilylation using dihydrodisilane and bromoethynylthiophene (Figure 6.3.1a).
(a)

(b)

$$
\xrightarrow[\substack{\text { ii. } \mathrm{NiCl}_{2} \mathrm{dppp}(10 \mathrm{~mol} \%) \\ \mathrm{PPh}_{3}(20 \mathrm{~mol} \%) \\ \text { 2,5-dibromothiophene }}]{\text { i. } i \text { - } \mathrm{PrMggCl} \text { (2.0 equiv.) }}
$$

Figure 6.3.1. (a) Synthesis of linear silane building block 6.2 and its polycondensation with dibromothiophene yielding P6.4. (b) ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 6.2 (top) and P6.4 (bottom).

The ${ }^{1} \mathrm{H}$ NMR spectrum confirmed a depletion of Si-H groups for the absence of resonances in 3.0-4.0 ppm, where $\mathrm{Si} H$ resonances were usually identified (Figure 6.3.1). The coupling constant analysis of alkenyl resonances indicated the selective formation of (E)-alkene, which was consistent with literatures. ${ }^{27,35}$ The building block 6.2 was then copolymerized with 2,5 -dibromothiophene producing the linear silane analog of σ, π conjugated polysilane (Scheme 6.3.1). The resulting polysilane P6.4 $\left(\mathrm{M}_{\mathrm{n}}=5051 \mathrm{~g} \mathrm{~mol}^{-1}\right.$, $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=2.08$) was a red powder which was fully soluble in CDCl_{3}. The Si-Me, alkenyl
and thienyl resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum broadened after the copolymerization also indicating the formation of polymeric structures (Figure 6.3.1).

Scheme 6.3.1. Synthesis of linear silane building block 6.3 and its polycondensation with dibromothiophene yielding P6.5. Adapted from known procedure. ${ }^{20}$

Known polysilane P6.5 was synthesized as a comparison to P6.4 to investigate the influence of vinyl fragments on the thermal and optical properties. The stoichiometrical $\mathrm{Mg} / \mathrm{Br}$ exchange on one side of 2,5-dibromothiophene was conducted at $-78^{\circ} \mathrm{C}$ in diethyl ether. Then the bromothienyl magnesium chloride was coupled to dichlorodisilane, affording 6.3. The linear silane $\mathbf{6 . 3}$ was copolymerized with 2,5 -dibromothiophene following the standard procedure (Table 6.2.1, Entry 1), resulting in P6.5.

6.4 Thermal property study with differential scanning calorimetry

The glass transition temperature of polymers is known to be strongly tacticitydependent. ${ }^{36}$ By achieving control of both relative configuration and molecular weight, it is possible to study the impact of tacticity on polymer properties in isolation. As an example of stereoregularity impact on bulk properties, we found that the three macromolecules exhibited distinct glass transition $\left(\mathrm{T}_{\mathrm{g}}\right)$ temperatures. The atactic P6.3 showed a minimal transition, but both trans P6.1 and cis P6.2 showed more pronounced T_{g} at distinct
temperatures (Figure 6.4.1). The thermal property of atactic $\mathbf{P 6 . 3}$ is consistent with the absence of phase transition between $40{ }^{\circ} \mathrm{C}$ to $200{ }^{\circ} \mathrm{C}$ for atactic linear poly(cyclosilane)s. ${ }^{26}$

Figure 6.4.1 Cropped DSC curves of P6.1-5. The second cycle is shown. Heating rate: $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$, cooling rate: $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

Linear silane-embedded P6.4 and P6.5 did not undergo remarkable phase transition between 40 to $180^{\circ} \mathrm{C}$. Based on these comparisons, we attributed the glass transition that P6.1 and P6.2 exhibited at $68-74{ }^{\circ} \mathrm{C}$ to the ring inversion of cyclohexasilane units. The free-energy profile of cyclohexasilane ring inversion is known to be much lower than cyclohexane. ${ }^{37}$ While the temperature increased, the ring inversion would promote mobility of polymer backbones, enhancing glass transition behaviors. We note that P6.5 was the only polymer that showed melting temperature $\left(\mathrm{T}_{\mathrm{m}}\right)$ at $203^{\circ} \mathrm{C}$. No T_{m} was detected
for the other polysilanes before they degraded above $250{ }^{\circ} \mathrm{C}$. This indicated that the incorporation of vinyl groups in the backbone built up polymer rigidity and raised their T_{m}.

6.5 UV-vis absorbance spectra

We obtained UV-vis spectra of the stereoregular polysilane thin films. The polysilanes were dissolved in THF ($2.0 \mathrm{mg} / \mathrm{mL}$), drop-casted on quartz substrates and fully dried under vacuum at room temperature overnight (Figure 6.5.1, blue curves). All three polymers were similar in UV-vis absorption: $\lambda_{\max }=c a .420 \mathrm{~nm}$ and $\lambda_{\text {onset }}=c a .570 \mathrm{~nm}$. No notable difference was identified, which agreed with the similar UV-vis absorption of trans- and cis-6.1. ${ }^{27}$

Figure 6.5.1 Comparison of film UV-vis spectra of (a) P6.1, (b) P6.4 and (c) P6.5. Before annealing: Blue. After annealing: Red.

The films were then annealed by being heated at $80^{\circ} \mathrm{C}$ for 8 hours under vacuum and slowly cooled to room temperature overnight. Compared to UV-vis spectra obtained before annealing, all three annealed polymers showed similar onset ($\lambda_{\text {onset }}$) and maximum $\left(\lambda_{\max }\right)$ absorption, whereas the absorption bands became narrower only in spectra of
annealed P6.1 and P6.2. This is consistent with the DSC results that glass transition were observed in stereoregular P6.1 and P6.2 but not atactic P6.3. Annealing the stereoregular polymers at temperature above T_{g} helped form more ordered arrangement of neighboring polymer chains, resulting in more distinct absorption bands.

Figure 6.5.2 Comparison of solution UV-vis spectra of P6.1 (Red), P6.4 (Blue), and P6.5 (Prussian) in THF. [polymer] $=0.03 \mathrm{~g} / \mathrm{L}$.

The influence of silane and vinyl units embedded in conjugated polymer chains was also investigated through UV-vis spectroscopy (Figure 6.6.2). Despite higher degree of polymerization, $\lambda_{\max }$ of both linear silane-derived polymers were blue-shifted compared to P6.1, by $c a .10 \mathrm{~nm}$ for P6.4, and $c a .55 \mathrm{~nm}$ for P6.5. This indicated that cyclosilane units better extended conjugation than their linear analogs. We also note the bathochromic influence of vinyl incorporation as the result of enlarging π-conjugated fragments (P6.4 versus P6.5).

6.6 Expanded scope of hybrid conjugated polymers

To further address the impact of stereoregularity on the polysilane optical properties in addition to bulk characteristics, we replaced the comonomer 2,5-dibromothiophene with more sterically hindered 6.4 (Table 6.6.1). The long alkyl side substituents on 6.4 were expected to amplify the influence of cyclosilane stereoregularity on the polymer chain geometry by increasing stereo effects. The standard copolymerization condition (Table 6.2.1, Entry 1) was used. Conjugated polymers P6.6-8 were synthesized by variation of diastereomer ratio of $\mathbf{6 . 1}$ (Table 6.6.1).

Table 6.6.1. Molecular weight characteristics of hybrid conjugated polysilanes. ${ }^{\text {a }}$

Cyclosilane	dr (trans:cis)	Polymer	$\mathrm{M}_{\mathrm{n}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)^{\mathrm{a}}$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}{ }^{\mathrm{a}}$	Yield (\%)
trans-6.1	$90: 10$	$\mathbf{P 6 . 6}$	4163	2.52	72
cis-6.1	$20: 80$	$\mathbf{P 6 . 7}$	4051	2.24	68
$\mathbf{6 . 1}$	$63: 37$	$\mathbf{P 6 . 8}$	4468	2.02	56

${ }^{\text {a }}$ Determined by size exclusion chromatography relative to polystyrene standards at 254 nm (THF, [copolymer] $=1 \mathrm{mg} \mathrm{mL}^{-1}, 40^{\circ} \mathrm{C}, 0.35 \mathrm{~mL} \mathrm{~min}^{-1}, 10 \mu \mathrm{~L}$ injection).

As the trans:cis ratio in 6.1 tuned from 90:10 to $63: 37$ to $20: 80$, the molecular weight characteristics of the copolymer stayed constant (Table 6.6.1), but significantly different absorbance spectra were recorded (Figure 6.6.1). Increasing the ratio of certain diastereomer of cyclosilanes led to a more pronounced transition at ca. 320 nm and a more notable shoulder at 370 nm (Figure 6.6.1).

Figure 6.6.1 Comparison of UV-vis spectra of P6.6 (red), P6.7 (blue), and P6.8 (purple) in THF solution. [polymer] $=0.03 \mathrm{~g} / \mathrm{L}$.

6.7 Conclusion and future

We demonstrated that stereoregularity showed substantial influence on the thermal and optical properties of hybrid conjugated polymers. A series of stereoregular and atactic σ, π-conjugated polymers derived from sterically pre-defined cyclosilane building blocks were synthesized. Compared to the atactic polymer, the stereoregular polysilanes exhibited notable phase transitions and their optical characteristics better benefitted from annealing. Using blocky aromatic comonomers, the impact of stereoregularity on the optical properties was amplified and the absorption features were more distance in the solution phase. We also demonstrated that the incorporation of cyclosilane and vinyl units into the polymer chain extended conjugation.

Future study of the demonstrated hybrid conjugated polymers will include examining the semicrystallinity by film X-ray diffraction (XRD) and fluorescence
emission properties by fluorescence spectroscopy. More synthetic exploration will be done, including achieving higher stereochemical purity in the building blocks by further purifying cyclosilane monomers with recycling gel permeation chromatography, and altering the electron donor/acceptor profile of aromatic comonomers.

6.8 Reference

(1) Worch, J. C.; Prydderch, H.; Jimaja, S.; Bexis, P.; Becker, M. L.; Dove, A. P. Nat. Rev. Chem. 2019, 3, 514-535.
(2) Staudinger, H. Kolloid-Zeitschrift. 1930, 51, 71-89.
(3) Schildknecht, C. E.; Zoss, A. O.; McKinley, C. Ind. Eng. Chem. 1947, 39, 180-186.
(4) Schrock, R. R. Acc. Chem. Res. 2014, 47, 2457-2466.
(5) Coates, G. W. Chem. Rev. 2000, 100, 1223-1252.
(6) Pasini, D.; Takeuchi, D. Chem. Rev. 2018, 118, 8983-9057.
(7) Takeuchi, D. J. Am. Chem. Soc. 2011, 133, 11106-11109.
(8) Wang, H.; Zhao, Y.; Nishiura, M.; Yang, Y.; Luo, G.; Luo, Y.; Hou, Z. J. Am. Chem. Soc. 2019, 141, 12624-12633.
(9) Szejtli, J. Chem. Rev. 1998, 98, 1743-1754.
(10) Klausen, R. S.; Ballestero-Martínez, E. Comprehensive Organometallic Chemistry IV; Elsevier, 2021.
(11) Fossum, E.; Matyjaszewski, K. Macromolecules 1995, 28, 1618-1625.
(12) Kameta, N.; Hiramatsu, H.; Sanji, T.; Sakurai, H. J. Inorg. Organomet. Polym. Mater. 2007, 17, 589-594.
(13) Wolff, A. R.; Nozue, I.; Maxka, J.; West, R. J. Polym. Sci. Part A Polym. Chem. 1988, 26, 701-712.
(14) Maxka, J.; Mitter, F. K.; Powell, D. R.; West, R. Organometallics 1991, 10, 660664.
(15) Jones, R. G.; Benfield, R. E.; Evans, P. J.; Holder, S. J.; Locke, J. A. M. J. Organomet. Chem. 1996, 521, 171-176.
(16) Clegg, P. L. In Nature; Jones, R. G., Ando, W., Chojnowski, J., Eds.; Springer Science \& Business Media, 1978; Vol. 271, pp 486-486.
(17) Yamaguchi, Y. Synth. Met. 1996, 82, 149-153.
(18) Morisaki, Y.; Fujimura, F.; Chujo, Y. Organometallics 2003, 22, 3553-3557.
(19) Wang, Y.; Wang, D.; Xu, C.; Wang, R.; Han, J.; Feng, S. J. Organomet. Chem. 2011, 696, 3000-3005.
(20) Herrema, J. K.; van Hutten, P. F.; Gill, R. E.; Wildeman, J.; Wieringa, R. H.; Hadziioannou, G. Macromolecules 1995, 28, 8102-8116.
(21) Wildeman, J.; Herrema, J. K.; Hadziioannou, G.; Schomaker, E. J. Inorg. Organomet. Polym. 1991, 1, 567-580.
(22) Marro, E. A.; Klausen, R. S. Chem. Mater. 2019, 31, 2202-2211.
(23) Press, E. M.; Marro, E. A.; Surampudi, S. K.; Siegler, M. A.; Tang, J. A.; Klausen, R. S. Angew. Chemie Int. Ed. 2017, 56, 568-572.
(24) Marro, E. A.; Press, E. M.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2018,

140, 5976-5986.
(25) Marro, E. A.; Folster, C. P.; Press, E. M.; Im, H.; Ferguson, J. T.; Siegler, M. A.; Klausen, R. S. J. Am. Chem. Soc. 2019, 141, 17926-17936.
(26) Jiang, Q.; Wong, S.; Klausen, R. S. Polym. Chem. 2021, 12, 4785-4794.
(27) Jiang, Q.; Gittens, A. F.; Wong, S.; Siegler, M. A.; Klausen, R. S. Chem. Sci. 2022, 13, 7587-7593.
(28) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chemie Int. Ed. 2003, 42, 4302-4320.
(29) Krasovskiy, A.; Knochel, P. Angew. Chemie Int. Ed. 2004, 43, 3333-3336.
(30) Yamamoto, K.; Kumada, M.; Nakajima, I.; Maeda, K.; Imaki, N. J. Organomet. Chem. 1968, 13, 329-341.
(31) Yamashita, H.; Reddy, N. P.; Tanaka, M. Macromolecules 1993, 26, 2143-2144.
(32) Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351-1374.
(33) Beryozkina, T.; Senkovskyy, V.; Kaul, E.; Kiriy, A. Macromolecules 2008, 41, 7817-7823.
(34) Dumouchel, S.; Mongin, F.; Trécourt, F.; Quéguiner, G. Tetrahedron 2003, 59, 8629-8640.
(35) Kanno, K. ichiro; Aikawa, Y.; Kyushin, S. Tetrahedron Lett. 2020, 61, 152274.
(36) Thompson, E. V. J. Polym. Sci. Part A-2 Polym. Phys. 1966, 4, 199-208.
(37) Dorn, R. W.; Marro, E. A.; Hanrahan, M. P.; Klausen, R. S.; Rossini, A. J. Chem. Mater. 2019, 31, 9168-9178.

Chapter 7: Experimental details

7.1 General information

General Experimental Procedures

All experiments were performed under protection of dry nitrogen or argon with the rigid exclusion of air and moisture using standard Schlenk techniques or in a nitrogen glovebox. All glassware was oven-dried overnight in a $175^{\circ} \mathrm{C}$ oven.

Materials

Unless otherwise specified, all chemicals were used as purchased without further purification. Solvents DCM (Fisher, HPLC grade), THF (Fisher, HPLC grade), pentane (Fisher, certified ACS), and toluene (Fisher, certified ACS) were dried on a J. C. Meyer Solvent Dispensing System (SDS) using stainless steel columns packed with neutral alumina (except for toluene which is dried with neutral alumina and Q5 reactant, a copper(II) oxide oxygen scavenger), following the manufacturer's recommendations for solvent preparation and dispensation unless otherwise noted. Acetylenes (4ethynylthioanisole ${ }^{1}$, 4-ethynylbromobenzene ${ }^{2}$ and 2-bromo-5-ethynylthiophene ${ }^{3}$) and 1,4-dibromo-2,5-((2-ethylhexyl)oxy)benzene ${ }^{4}$ were prepared by adaptation of literature procedures.

Instrumentation

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on either a Bruker Avance 300, 400 or III HD 400 MHz Spectrometer and chemical shifts are reported in parts per million (ppm). Spectra were recorded in benzened_{6} or chloroform- d_{1} with the residual solvent peak as the internal standard $\left({ }^{1} \mathrm{H}\right.$ NMR: $\mathrm{C}_{6} \mathrm{H}_{6}$
$\left.\delta=7.16 ; \mathrm{CHCl}_{3} \delta=7.26,{ }^{13} \mathrm{CNMR}^{\mathrm{C}} \mathrm{C}_{6} \mathrm{H}_{6} \delta 128.06 ; \mathrm{CHCl}_{3} \delta=77.16\right)$. Chemical shifts of ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were calibrated by 0.05% trifluorotoluene in $\mathrm{C}_{6} \mathrm{D}_{6}$. Chemical shifts of ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were calibrated by tris $\left(\mathrm{Me}_{3} \mathrm{Si}\right)$ methane in CDCl_{3}. The temperature was room temperature unless otherwise specified. Multiplicities are as indicated: s (singlet), d (doublet), dd (doublet of doublets), m (multiplet) and br (broad). Coupling constants, J , are reported in Hertz, and integration is provided.

Solid-state ${ }^{1} \mathrm{H} \rightarrow{ }^{29} \mathrm{Si}$ and ${ }^{13} \mathrm{C}$ CPMAS spectra were recorded on a Bruker Ascend spectrometer (500 MHz) and chemical shifts were reported in parts per million (ppm). Chemical shifts of ${ }^{1} \mathrm{H} \rightarrow{ }^{29} \mathrm{Si}$ CPMAS spectra were calibrated by silicone rubber. Chemical shifts of ${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$ CPMAS spectra were calibrated by adamantane. In a glove box, 14 mg of polymer samples were packed into a sample rotor compatible with a 3.2 mm Phoenix HX probe. Spectral data was acquired at a spinning speed of 20 kHz .

All column chromatography was performed on a Teledyne ISCO Combiflash Rf+ using Redisep Rf silica columns. Fourier transformed infrared (FTIR) spectroscopy was performed on a Thermo NicoletNexus 670 FTIR spectrometer. Mass spectrometry and high-resolution mass spectrometry were performed in the Department of Chemistry at Johns Hopkins University using a VG Instruments VG70S/E magnetic sector mass spectrometer with electron ionization (EI) (70 eV). The samples for UV-vis spectroscopy were all prepared in the glove box and packed in sealed quartz cuvettes. UV-vis spectroscopy was performed on a Shimadzu UV-1800 UV-vis spectrophotometer. Molecular weights of polymers were measured by gel permeation chromatography (GPC) on a Tosoh Bioscience EcoSEC GPC workstation with UV detection at 254 nm using butylated hydroxytoluene stabilized tetrahydrofuran (THF) as the eluent ($0.35 \mathrm{~mL} \mathrm{~min}^{-1}$,
$40^{\circ} \mathrm{C}$) through TSKgel SuperMultipore HZ-M guard column (4.6 mm ID x $2.0 \mathrm{~cm}, 4 \mu \mathrm{~m}$, Tosoh Bioscience) and a TSKgel SuperMultipore HZ-M column (4.6 mm ID x $15 \mathrm{~cm}, 4$ $\mu \mathrm{m}$, Tosoh Bioscience). Polystyrene standards (EasiVial PS-M, Agilent) were used to build a calibration curve. Processing was performed using EcoSEC Data Analysis software (Version 1.14, Tosoh Bioscience). The samples were dissolved in THF ($0.5 \mathrm{mg} \mathrm{mL}^{-1}$), filtered through syringe filters (Millex-FG Syringe Filter Unit, $0.20 \mu \mathrm{~m}$, PTFE, EMD Millipore), and injected by an auto-sampler ($10 \mu \mathrm{~L}$). Differential scanning calorimetry (DSC) was conducted using a TA Instruments DSC Q20 V24.11 Build 124 and processing was performed using Universal V4.5A (TA Instruments). Thermogravimetric analysis (TGA) was conducted using a TA Instruments SDT Q600 under flowing Ar at a heating rate of $5.0^{\circ} \mathrm{C} \mathrm{min}^{-1}$ from 40 to $600^{\circ} \mathrm{C}$.

7.2 Effect of poly(cyclosilane) microstructure on thermal properties

$\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ Synthesis of lin-poly $\left(1,3 \mathrm{Si}_{6}\right)$

In a nitrogen atmosphere glove box, $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ (0.056 equiv., $0.019 \mathrm{mmol}, 4.8 \mathrm{mg}$) was added to an oven-dried 2 -dram vial equipped with a stir bar. $\mathbf{1 , 3 S} \mathbf{i}_{\mathbf{6}}$ (1.0 equiv., 0.34 $\mathrm{mmol}, 0.100 \mathrm{~g}$) was added by syringe. The vial was sealed with a septum cap equipped with a vent needle. The mixture was stirred at room temperature in the glove box. After 24 hours, the stir bar was trapped in a dark red glass in the vial. The solid was dissolved in 10 mL of pentane and 0.5 grams of Celite was added. The solution was stirred for 2 hours. The Celite was filtered through a fritted funnel and washed with 5 mL of pentane. The filtrate was then concentrated to a yellow solid under vacuum. The procedure was repeated until a white solid was yielded, which indicated that the catalyst had been fully removed. The solid was further dried under vacuum at $60^{\circ} \mathrm{C}$ for 3 hours ($85.8 \mathrm{mg}, 87 \%$).

$\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ Synthesis of $\boldsymbol{c y c}$-poly(1,3Si $\left.\mathbf{F}_{6}\right)$

In a nitrogen atmosphere glove box, $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ (0.056 equiv., $0.019 \mathrm{mmol}, 4.8 \mathrm{mg}$) was added to an oven-dried 2-dram vial equipped with a stir bar and dissolved by 0.5 mL of toluene. $\mathbf{1 , 3 S \mathbf { i } _ { 6 }}$ (1.0 equiv., $0.34 \mathrm{mmol}, 0.100 \mathrm{~g}$) was weighed in a 1 -dram vial and diluted by 0.5 mL of toluene. The solution of $\mathbf{1 , 3 S \mathbf { i } _ { \mathbf { 6 } }}$ was added dropwise to the 2 -dram vial by syringe. 0.25 mL of toluene was used to rinse the vial and syringe, then added to the 2dram vial as well. The 2-dram vial was sealed with a septum cap equipped with a vent needle. The mixture was stirred at room temperature in the glove box. After 24 hours, the reaction mixture turned yellow, and deep orange after 4 days. 7 days later, volatile materials were removed under vacuum and the residual solid was dissolved in 10 mL of pentane. 0.5 grams of Celite was added and the solution was stirred for 2 hours. The Celite was filtered
through a fritted funnel and washed with 5 mL of pentane. The filtrate was then concentrated to a yellow solid under vacuum. The procedure was repeated until a white solid was yielded, which indicated that the catalyst had been fully removed. The solid was further dried under vacuum at $60^{\circ} \mathrm{C}$ for 3 hours ($83.4 \mathrm{mg}, 85 \%$).

NMR Spectra

${ }^{1} \mathrm{H}_{\text {NMR }}$ Spectrum (400 MHz , Benzene- d_{6}) of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right.$).

${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (79 MHz, Benzene- d_{6}) of lin-poly($\mathbf{1 , 3 S i} \mathbf{i}_{6}$). ${ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(101 \mathrm{MHz}\right.$, Benzene- $\left.d_{6}\right)$ of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)$.

${ }^{1} \mathrm{H}-{ }^{29}$ Si HSQC NMR spectrum (400 MHz , Benzene- d_{6}) of lin-poly $(\mathbf{1 , 3 S i} \mathbf{6}) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}\right.$, Benzene- $\left.d_{6}\right)$ of $c y c-$ poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)\left(\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}\right.$ synthesis).

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}\right.$, Benzene- $\left.d_{6}\right)$ of $c y c-$ poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)\left(\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}\right.$ synthesis $)$.
${ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

∞	$\stackrel{N}{\infty}$
$\underset{i}{\infty}$	$\underset{i}{\sim}$
i	

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , Benzene- d_{6}) of lin-poly $(\mathbf{1 , 4 S i} \mathbf{6}$).


```
                                    % F. . m
                                    mmmm
```


${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (79 MHz, Benzene- d_{6}) of lin-poly $\left(\mathbf{1}, \mathbf{4 S i} \mathbf{S i}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

30	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240
								ppm							

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}\right.$, Benzene- $\left.d_{6}\right)$ of $c y c$ - poly $\left(\mathbf{1 , 3} \mathbf{S i}_{6}\right)\left(\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}\right.$ synthesis). ~~~

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}\right.$, Benzene- $\left.d_{6}\right)$ of $c y c-$ poly $\left(\mathbf{1}, \mathbf{3 S i} \mathbf{S i}_{6}\right)\left(\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}\right.$ synthesis). ${ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200
							pp						

Gel Permeation Chromatography

lin-poly($\mathbf{1 , 3 S i} \mathbf{6}$)

Peak No.	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
1	1770	2390	1.35

cyc-poly($\left.\mathbf{1 , 3 S i} \mathbf{i}_{6}\right)\left(\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}\right.$ synthesis)

Peak No.	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
1	3840	7270	1.90

ATR-FTIR Spectroscopy

ATR-FTIR spectrum of lin-poly $\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)$

Differential scanning calorimetry

Differential scanning calorimetry (DSC) was conducted using a TA Instruments DSC Q20 V24.11 Build 124 and processing was performed using Universal V4.5A (TA Instruments). Samples were sealed in hermetic aluminum pans, heated from 35 to $200{ }^{\circ} \mathrm{C}$ $\left(3{ }^{\circ} \mathrm{C} \min ^{-1}\right.$ for $\operatorname{lin}-$ poly $\left(\mathbf{1}, \mathbf{4} \mathbf{S i}_{\mathbf{6}}\right)$ and $20^{\circ} \mathrm{C} \min ^{-1}$ for $c y c-p o l y(\mathbf{1 , 3 S i} \mathbf{6})$ and lin-poly $\left.\left(\mathbf{1 , 3 S i} \mathbf{i}_{\mathbf{6}}\right)\right)$, and cooled from 200 to $35^{\circ} \mathrm{C}\left(3^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}\right)$, for three cycles under a purge gas of nitrogen $\left(25 \mathrm{~mL} \mathrm{~min}^{-1}\right)$. Phase transition temperature were calculated from the second heating cycle. The second heating and cooling cycles are shown.
lin-poly($\mathbf{1 , 4 \mathbf { S i } _ { 6 } \mathbf {) })}$

cyc-poly($\mathbf{1 , 3 \mathbf { S i } _ { \mathbf { 6 } }}$)

$\operatorname{lin}-\operatorname{poly}\left(\mathbf{1 , 3 S i} \mathbf{S}_{6}\right)$

Computational Methods

All the DFT calculations are performed with the Gaussian 09 package. ${ }^{5}$ Geometries were optimized using the B3LYP functional with the $6-31 \mathrm{G}(\mathrm{d})$ basis. No symmetry restrictions were applied to geometry optimization. Homolytic bond dissociation energies (BDEs) are calculated as follows: $\mathrm{BDE}=\sum \mathrm{E}_{\mathrm{rs}}-\mathrm{E}_{\mathrm{cs}}$, where $\sum \mathrm{E}_{\mathrm{rs}}$ is the sum of energy of all radical species, and E_{cs} is the energy of the closed shell species. Hydrogens in optimized structures are omitted for clarity.

Calculated energy of closed shell and radical species of $\mathbf{1 , 4 S i} \mathbf{i n}_{6}$ Radical species are generated by homolytic bond dissociation as labeled on the left column.

Closed Shell Energies $\left(\boldsymbol{E}_{\boldsymbol{h}}\right)$	-2058.79738594
Radical Species Energies $\left(\boldsymbol{E}_{\boldsymbol{h}}\right)$	
$\operatorname{Si}(1)-\mathrm{H}^{\mathrm{a}}$	-2058.15686167
$\mathrm{Si}(1)-\mathrm{H}^{\mathrm{e}}$	-2058.15931009
$\mathrm{Si}(2)-\mathrm{Me}^{\mathrm{a}}$	-2018.83157300
$\mathrm{Si}(2)-\mathrm{Me}^{\mathrm{e}}$	-2018.83335389
$\mathrm{Si}(1)-\mathrm{Si}(2)$	-2058.68840089
$\operatorname{Si}(2)-\mathrm{Si}(2)$	-2058.68886887

Calculated energy of closed shell and radical species of lin-(1,4Si6) 3. Radical species are generated by homolytic bond dissociation as labeled on the left column.

Closed Shell Energies (E_{h})
Radical Species Energies (E_{h})

$\mathrm{Si}(1)-\mathrm{H}^{\mathrm{a}}$	-6173.37304659
$\mathrm{Si}(1)-\mathrm{H}^{\mathrm{e}}$	-6173.37569970
$\mathrm{Si}(4)-\mathrm{H}^{\mathrm{e}}$	-6173.37738920
$\mathrm{Si}(6)-\mathrm{Me}^{\mathrm{a}}$	-6134.05889350
$\mathrm{Si}(6)-\mathrm{Me}^{\mathrm{e}}$	-6134.05908879

$\operatorname{Si}(2)-\operatorname{Si}(3)$	-6173.91376417
$\operatorname{Si}(3)-\operatorname{Si}(4)$	-6173.91906634
$\operatorname{Si}(4)-\operatorname{Si}(5)$	-4115.76713951 (dimer)
	-2058.15941768 (monomer)

$\mathbf{1 , 4} \mathbf{S i}_{6}$ and its radical species
$\mathbf{1 , 4 S i} \mathbf{i}_{\mathbf{6}}($ charge $=0$, multiplicity $=1)$

$\mathrm{E}($ RB3LYP $)=-2058.79738594 \mathrm{E}_{\mathrm{h}}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
			X Y	Z
1	14	-2.569659	-0.637739	-0.356331
2	14	-3.444674	0.444823	1.565310
3	14	-5.801826	0.218408	1.586254
4	0	-6.359925	0.921230	2.789080
5	0	-6.354401	0.956059	0.403474
6	14	-6.615051	-2.004916	1.516256
7	14	-5.740036	-3.087478	-0.405385
8	14	-3.382885	-2.861063	-0.426328
9	0	-2.824786	-3.563885	-1.629155
10		-2.830309	-3.598714	0.756452
11	6	-3.107866	0.296597	-1.932811
12	10	-2.709979	1.318702	-1.931222
13	10	-2.733556	-0.203925	-2.833797
14	10	-4.198159	0.365518	-2.017209
15	6	-0.660109	-0.667459	-0.298452
16	10	-0.251011	-1.165590	-1.185521
17	10	-0.251895	0.350374	-0.269797
18	10	-0.291955	-1.202598	0.583814
19	6	-6.188827	-4.945224	-0.393908
20	10	-7.276495	-5.087715	-0.404310
21	10	-5.778485	-5.450660	-1.276307
22	10	-5.791974	-5.450396	0.493717

$\operatorname{Si}(1)-\mathrm{H}^{\mathrm{a}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

$E($ UB3LYP $)=-2058.15686167 \mathrm{E}_{\mathrm{h}}$					
Center Number	Atomic		Atomic	Coordinates (Angstroms)	
	Number		Type	X Y	Z
1	14	0	-2.562477	-0.647836	-0.335273
2	14	0	-3.402079	0.457964	1.588572
3	14	0	-5.731075	0.111982	1.686254

4	1	0	-6.406101	0.965249	2.723273
5	14	0	-6.633225	-2.060017	1.548211
6	14	0	-5.743970	-3.092292	-0.393546
7	14	0	-3.386644	-2.868134	-0.388715
8	1	0	-2.817950	-3.580955	-1.580858
9	1	0	-2.847279	-3.598878	0.804354
10	6	0	-3.104805	0.279928	-1.913514
11	1	0	-2.693149	1.296487	-1.925460
12	1	0	-2.747613	-0.233602	-2.814158
13	1	0	-4.195055	0.362070	-1.984707
14	6	0	-0.652720	-0.692392	-0.290035
15	1	0	-0.253782	-1.198694	-1.177088
16	1	0	-0.235684	0.322136	-0.269760
17	1	0	-0.283039	-1.225712	0.592692
18	6	0	-6.195165	-4.949062	-0.430599
19	1	0	-7.283114	-5.088959	-0.447821
20	1	0	-5.783305	-5.431697	-1.324929
21	1	0	-5.802012	-5.478343	0.444523
22	6	0	-6.463364	-2.267728	-1.957657
23	1	0	-6.037078	-2.708971	-2.866464
24	1	0	-7.551167	-2.401101	-2.001574
25	1	0	-6.259290	-1.191560	-1.979404
26	6	0	-8.536598	-1.939649	1.449016
27	1	0	-8.987008	-2.938743	1.398391
28	1	0	-8.941629	-1.436289	2.334920
29	1	0	-8.861684	-1.377321	0.567120
30	6	0	-6.184438	-3.090562	3.095450
31	1	0	-6.566202	-2.616906	4.007329
32	1	0	-6.624220	-4.093847	3.028454
33	1	0	-5.100658	-3.206256	3.205188
34	6	0	-2.544828	-0.230274	3.153744
35	1	0	-1.463217	-0.048937	3.110638
36	1	0	-2.930548	0.254942	4.057845
37	1	0	-2.700174	-1.309446	3.259740
38	6	0	-3.058014	2.334832	1.504377
39	1	0	-3.476003	2.846639	2.379367
40	1	0	-1.978992	2.532300	1.486986
41	1	0	-3.499162	2.787815	0.610077
---1					

$\mathrm{Si}(1)-\mathrm{H}^{\mathrm{e}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

33	1	0	-4.997831	-3.027985	3.181223
34	6	0	-2.681435	-0.295153	3.151032
35	1	0	-1.591855	-0.169007	3.158795
36	1	0	-3.081649	0.195297	4.046009
37	1	0	-2.892309	-1.367125	3.234078
38	6	0	-3.020245	2.321721	1.522462
39	1	0	-3.420959	2.831124	2.406696
40	1	0	-1.934953	2.480902	1.508267
41	1	0	-3.443723	2.806757	0.636142

$\mathrm{Si}(2)-\mathrm{Me}^{\mathrm{a}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

Center Number	Atomic Number	Atomic Type		Coordinates (Angstroms)	
				X Y	Z
1	14	0	-2.583903	-0.649939	-0.426802
2	14	0	-3.628982	0.512195	1.341123
3	14	0	-5.960535	0.259839	1.519456
4	,	0	-6.412706	0.940495	2.775678
5	10	0	-6.670030	0.976298	0.407070
6	14	0	-6.622662	-2.011982	1.531712
7	14	0	-5.785946	-3.050832	-0.429023
8	14	0	-3.426469	-2.861994	-0.452566
9	1	0	-2.878399	-3.573256	-1.654903
10	1	0	-2.876804	-3.593623	0.733319
11	6	0	-2.916968	0.181983	-2.116288
12	1	0	-2.529138	1.207484	-2.129343
13	1	0	-2.421562	-0.373976	-2.922080
14	1	0	-3.987025	0.225401	-2.346125
15	6	0	-0.697000	-0.677751	-0.144790
16	1	0	-0.194157	-1.222627	-0.952885
17	1	0	-0.287259	0.339532	-0.123785
18	1	0	-0.440173	-1.165330	0.801468
19	6	0	-6.265794	-4.899727	-0.477595

20	1	0	-7.355779	-5.022945	-0.482191
21	1	0	-5.872262	-5.380301	-1.381248
22	1	0	-5.869711	-5.442715	0.387744
23	6	0	-6.511566	-2.199493	-1.976739
24	1	0	-6.111772	-2.646400	-2.894761
25	1	0	-7.602865	-2.306419	-2.003449
26	1	0	-6.283801	-1.127809	-1.998668
27	6	0	-8.529281	-2.116294	1.590910
28	1	0	-8.864921	-3.160476	1.608489
29	1	0	-8.919611	-1.626598	2.491058
30	1	0	-8.987254	-1.630798	0.721959
31	6	0	-5.910783	-2.856115	3.087380
32	1	0	-6.288256	-2.377090	3.998618
33	1	0	-6.195765	-3.914604	3.124759
34	1	0	-4.816694	-2.803138	3.110801
35	6	0	-3.036219	2.318350	1.580002
36	1	0	-3.431158	2.735224	2.512719
37	1	0	-1.942668	2.370755	1.621565
38	1	0	-3.375254	2.958795	0.756045
--					

$\operatorname{Si}(2)-\mathrm{Me}^{\mathrm{e}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

10	1	0	-2.877732	-3.635862	0.745376
11	6	0	-3.041970	0.250740	-1.959092
12	1	0	-2.617981	1.261721	-1.948095
13	1	0	-2.661861	-0.264403	-2.849411
14	1	0	-4.128093	0.346942	-2.065660
15	6	0	-0.659086	-0.729268	-0.228960
16	1	0	-0.216305	-1.233434	-1.096220
17	1	0	-0.250294	0.287492	-0.186521
18	1	0	-0.333354	-1.263421	0.670143
19	6	0	-6.255027	-4.927465	-0.481671
20	1	0	-7.345092	-5.049586	-0.494253
21	1	0	-5.855381	-5.410461	-1.381341
22	1	0	-5.865928	-5.469069	0.387696
23	6	0	-6.488512	-2.231395	-1.988626
24	1	0	-6.084455	-2.682692	-2.902623
25	1	0	-7.579850	-2.336107	-2.020775
26	1	0	-6.257472	-1.160692	-2.013788
27	6	0	-8.542699	-2.063940	1.515371
28	1	0	-8.924390	-3.092147	1.488071
29	1	0	-8.940547	-1.584910	2.417895
30	1	0	-8.948791	-1.531557	0.648197
31	6	0	-6.018015	-2.966313	3.075979
32	1	0	-6.393391	-2.490023	3.989556
33	1	0	-6.367495	-4.005932	3.075726
34	1	0	-4.923856	-2.984290	3.132949
35	6	0	-2.684603	-0.155402	3.158597
36	1	0	-1.607809	0.045788	3.140290
37	1	0	-3.115570	0.392125	4.003718
38	1	0	-2.821234	-1.227817	3.347683
--1					

$\operatorname{Si}(2)-\operatorname{Si}(2)$ dissociated radical $($ charge $=0$, multiplicity $=3)$

$E($ UB3LYP $)=-2058.68886887 E_{h}$

Center Number	Atomic Number	Atomic Type		Coordinates (Angstroms)	
				X Y	Z
1	14	0	-2.486994	-0.799159	-1.543249
2	14	0	-3.630160	0.520909	2.848114
3	14	0	-5.722437	0.249924	1.794674
4	1	0	-6.783239	1.002802	2.548484
5	10	0	-5.650697	0.902830	0.450614
6	14	0	-6.425039	-2.002627	1.565812
7	14	0	-5.673539	-2.952117	-0.473798
8	14	0	-3.317829	-2.839407	-0.703030
9	1	0	-2.881315	-3.975327	-1.586664
10	1	0	-2.663389	-3.093488	0.618161
11	6	0	-2.904126	-0.532145	-3.385051
12	1	0	-2.574720	0.459698	-3.716247
13	1	0	-2.401632	-1.278200	-4.015401
14	1	0	-3.981081	-0.607172	-3.568076
15	6	0	-0.611811	-0.593399	-1.264683
16	1	0	-0.043111	-1.337362	-1.838598
17	1	0	-0.278128	0.401073	-1.583940
18	1	0	-0.354122	-0.714529	-0.207571
19	6	0	-6.180966	-4.794808	-0.530569
20	1	0	-7.269569	-4.908200	-0.456337
21	1	0	-5.860634	-5.255948	-1.472376
22	1	0	-5.727896	-5.364461	0.288614
23	6	0	-6.501815	-2.059931	-1.944935
24	1	0	-6.184680	-2.494793	-2.900532
25	1	0	-7.593572	-2.148285	-1.887952
26	1	0	-6.254731	-0.992521	-1.960756
27	6	0	-8.336204	-2.039681	1.598524
28	1	0	-8.714516	-3.065293	1.507528
29	1	0	-8.715951	-1.625774	2.540253
30	1	0	-8.765035	-1.449896	0.780504
31	6	0	-5.778311	-3.026009	3.042204
32	1	0	-6.139995	-2.618260	3.994038
33	1	0	-6.120712	-4.065878	2.976969
34	1	0	-4.683061	-3.036855	3.074902
35	6	0	-3.713306	0.236616	4.732433
36	1	0	-2.711967	0.286876	5.175981
37	1	0	-4.333398	1.000565	5.220446
38	1	0	-4.137352	-0.744384	4.971410
39	6	0	-2.818837	2.204733	2.473575
40	1	0	-3.411456	3.031526	2.887559
41	1	0	-1.815829	2.258972	2.913142
42	1	0	-2.725754	2.363624	1.394257

$\operatorname{Si}(1)-\operatorname{Si}(2)$ dissociated radical $($ charge $=0$, multiplicity $=3)$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
			X Y	Z
1	14	-2.524417	-0.583065	-0.134458
2	14	-2.548274	0.295425	2.057123
3	14	-7.539103	0.330929	0.520647
4	10	-8.170028	1.219458	1.547101
5	10	-8.325293	0.473807	-0.744181
6	14	-7.150796	-1.890146	1.208987
7	14	-5.831808	-3.009590	-0.419803
8	14	-3.498717	-2.745171	-0.099703
9	10	-2.837424	-3.564346	-1.170946
10	1) -3.122538	-3.417768	1.185581
11	6) -3.483497	0.584351	-1.297851
12	1	-2.998505	1.566905	-1.347408
13	1	-3.519870	0.182050	-2.317461
14	1 0	-4.513755	0.737545	-0.956748
15	6	-0.740320	-0.762354	-0.806478
16	1	-0.750135	-1.188997	-1.817036
17	1	-0.239502	0.212159	-0.856945
18	1	$0-0.135027$	-1.419821	-0.172759
19	6	$0-6.198405$	-4.883221	-0.313740
20	1	$0 \quad-7.259734$	-5.087240	-0.500839
21	1	$0 \quad-5.614837$	-5.434625	-1.060534
22	1	$0 \quad-5.946601$	-5.291457	0.671580
23	6	$0-6.301922$	-2.412239	-2.171149
24	1	$0-5.725781$	-2.951580	-2.932612
25	1	$0-7.365357$	-2.589033	-2.372922

26	1	0	-6.111469	-1.341475	-2.303059
27	6	0	-8.825193	-2.798826	1.391911
28	1	0	-8.663801	-3.835243	1.714241
29	1	0	-9.456686	-2.307433	2.141039
30	1	0	-9.380682	-2.821858	0.448004
31	6	0	-6.298827	-1.842344	2.911661
32	1	0	-6.941928	-1.358851	3.656599
33	1	0	-6.080965	-2.856901	3.266999
34	1	0	-5.354005	-1.288005	2.871826
35	6	0	-1.429918	-0.660293	3.271904
36	1	0	-0.367823	-0.514409	3.032559
37	1	0	-1.587367	-0.315249	4.300573
38	1	0	-1.636758	-1.735333	3.242775
39	6	0	-2.161129	2.162342	2.158942
40	1	0	-2.325740	2.536529	3.176357
41	1	0	-1.114941	2.369084	1.895567
42	1	0	-2.800043	2.740531	1.483086

$\operatorname{lin}-\left(\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}\right)_{3}$ and its radical species
$\operatorname{lin}-(\mathbf{1}, \mathbf{4 S i})_{3}($ charge $=0$, multiplicity $=1)$

$E($ RB3LYP $)=-6174.01411855 E_{h}$

Center Number	Atomic Number	Atomic Type		Coordinates (Angstroms)	
				X Y	Z
1	14	0	-0.848100	3.133600	9.954000
2	14	0	0.948700	2.553400	8.540300
3	1	0	2.205000	2.493300	9.355700
4	1	0	1.185600	3.617500	7.509500
5	14	0	0.606800	0.463000	7.502900
6	6	0	-0.516500	4.832100	10.767200
7	1	0	-0.422100	5.614200	10.004300
8	1	0	0.408700	4.824800	11.353700
9	1	0	-1.337600	5.117400	11.436500
10	6	0	-2.459900	3.279400	8.939400
11	1	0	-3.290600	3.597200	9.581300
12	1	0	-2.745400	2.330000	8.473500
13	1	0	-2.354800	4.024000	8.141200
14	6	0	-0.921100	0.560000	6.360500
15	1	0	-0.811900	1.368100	5.627400
16	1	0	-1.845400	0.740500	6.920000
17	1	0	-1.046100	-0.377300	5.805000
18	6	0	2.119100	0.024700	6.418300
19	1	0	1.990200	-0.951900	5.935400
20	1	0	3.041400	-0.011200	7.008200
21	1	0	2.257600	0.771600	5.627300
22	14	0	0.317600	-1.274700	9.103200
23	14	0	-1.083600	1.515800	11.676600
24	6	0	-0.465700	-2.715600	8.114400
25	1	0	-0.664000	-3.600300	8.726200
26	1	0	-1.419600	-2.400800	7.675600

27	1	0	0.193400	-3.021300	7.291800
28	6	0	2.052100	-1.765200	9.735100
29	1	0	2.687800	-2.100400	8.906700
30	1	0	2.550100	-0.912300	10.210900
31	1	0	2.005700	-2.574100	10.471900
32	6	0	0.354300	1.798100	12.902600
33	1	0	0.331100	1.088600	13.735800
34	1	0	1.321500	1.686600	12.398400
35	1	0	0.314800	2.810800	13.322100
36	6	0	-2.767900	1.897900	12.504700
37	1	0	-2.763600	2.902100	12.947100
38	1	0	-3.570700	1.866600	11.759100
39	1	0	-3.028600	1.187600	13.295000
40	14	0	-1.093700	-0.763200	10.965900
41	1	0	-2.494700	-1.012400	10.480000
42	14	0	-1.039400	-4.566800	12.119500
43	14	0	-1.125700	-6.246000	13.820300
44	14	0	-2.138400	-5.722400	15.908600
45	1	0	-3.624200	-5.823400	15.705200
46	14	0	-1.707000	-3.458700	16.491000
47	14	0	-2.054300	-1.889100	14.734900
48	14	0	-0.746400	-2.299200	12.790500
49	1	0	0.689400	-2.148000	13.207700
50	6	0	-2.644900	-4.676200	11.087000
51	1	0	-2.619400	-3.980400	10.240900
52	1	0	-2.789200	-5.686600	10.686700
53	1	0	-3.526400	-4.428000	11.689900
54	6	0	-3.904600	-1.863300	14.259200
55	1	0	-4.232900	-2.832700	13.866400
56	1	0	-4.528400	-1.631100	15.130900
57	1	0	-4.110900	-1.107900	13.491800
58	6	0	-2.906600	-2.866300	17.862000
59	1	0	-2.840900	-3.469000	18.771700
60	1	0	-2.691400	-1.826900	18.139000
61	1	0	-3.944900	-2.908900	17.512800
62	6	0	-2.103100	-7.663100	12.980600
63	1	0	-1.593600	-8.008300	12.072000
64	1	0	-2.236300	-8.529600	13.634600
65	1	0	-3.099900	-7.313800	12.689600
66	6	0	0.672300	-6.803500	14.155800
67	1	0	0.714700	-7.608500	14.897400
68	1	0	1.152100	-7.165300	13.238800
69	1	0	1.275900	-5.972600	14.540300
70	6	0	0.436100	-5.143500	11.042900
71	1	0	0.283600	-6.175000	10.700400
72	1	0	0.580900	-4.520800	10.155800

73	1	0	1.367800	-5.121100	11.619000
74	6	0	-1.601900	-0.220800	15.559300
75	1	0	-1.747500	0.634400	14.894500
76	1	0	-2.223800	-0.056100	16.448000
77	1	0	-0.554400	-0.215500	15.881800
78	6	0	0.097100	-3.286400	17.097300
79	1	0	0.306000	-2.258600	17.418400
80	1	0	0.307200	-3.948800	17.944500
81	1	0	0.807400	-3.533900	16.299800
82	14	0	-1.568300	-7.336700	17.606200
83	1	0	-0.067200	-7.326100	17.692700
84	14	0	-2.317000	-6.692100	19.783300
85	14	0	-2.129400	-8.380400	21.444700
86	14	0	-3.092900	-10.393100	20.684200
87	1	0	-3.055600	-11.443600	21.754400
88	1	0	-4.545300	-10.153200	20.401700
89	14	0	-2.053800	-11.175300	18.718100
90	14	0	-2.149100	-9.567800	16.965800
91	6	0	-2.921700	-12.772300	18.125400
92	1	0	-2.463500	-13.154600	17.204900
93	1	0	-2.844200	-13.557600	18.887000
94	1	0	-3.985800	-12.603400	17.927700
95	6	0	-3.910200	-9.575100	16.227600
96	1	0	-3.999400	-8.877800	15.387000
97	1	0	-4.177800	-10.575100	15.865600
98	1	0	-4.654200	-9.283300	16.978000
99	6	0	-0.896000	-10.223400	15.675800
100	1	0	-1.177600	-11.233800	15.352500
101	1	0	-0.827900	-9.598300	14.781400
102	1	0	0.106500	-10.283600	16.114500
103	6	0	-0.227300	-11.606600	19.078700
104	1	0	-0.148000	-12.346100	19.884400
105	1	0	0.248500	-12.034600	18.187700
106	1	0	0.355200	-10.727100	19.374300
107	6	0	-3.033300	-7.789700	23.022400
108	1	0	-2.930100	-8.529800	23.825000
109	1	0	-2.617500	-6.842300	23.386800
110	1	0	-4.103500	-7.641100	22.841700
111	6	0	-0.292600	-8.653800	21.891500
112	1	0	0.142300	-7.733500	22.300100
113	1	0	-0.183300	-9.437600	22.650500
114	1	0	0.305700	-8.945100	21.021400
115	6	0	-1.220900	-5.257600	20.420200
116	1	0	-1.188200	-4.406300	19.735000
117	1	0	-1.587800	-4.892700	21.388000
118	1	0	-0.190500	-5.602600	20.564800
18				2	
14	1	0			

$\mathrm{Si}(1)-\mathrm{H}^{\mathrm{a}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

$E($ UB3LYP $)=-6173.37304659 E_{h}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms	
			X Y	Z
1	140	-0.897227	3.143234	9.958021
2	140	0.870825	2.531058	8.540819
3	10	1.331312	3.626779	7.620464
4	140	0.624216	0.446989	7.488996
5	60	-0.541088	4.841213	10.758649
6	10	-0.437476	5.617079	9.990715
7	10	0.383402	4.826080	11.345712
8	10	-1.359800	5.139902	11.425170
9	60	-2.530697	3.295029	8.972920
10	10	-3.354218	3.590121	9.635506
11	0	-2.808453	2.350031	8.493376
12	10	-2.443631	4.055250	8.187874
13	60	-0.860357	0.482775	6.282076
14	10	-0.725699	1.261400	5.522251
15	10	-1.805316	0.680831	6.799604
16	10	-0.956443	-0.479174	5.762988
17	60	2.187260	0.043416	6.466805
18	0	2.095351	-0.935153	5.979253
19	10	3.086156	0.025499	7.092067

20	1	0	2.340493	0.793125	5.681298
21	14	0	0.315438	-1.275001	9.102967
22	14	0	-1.108195	1.518638	11.676584
23	6	0	-0.469508	-2.717670	8.117631
24	1	0	-0.676101	-3.597653	8.733345
25	1	0	-1.419071	-2.401006	7.671039
26	1	0	0.193004	-3.032099	7.300971
27	6	0	2.044691	-1.769845	9.745017
28	1	0	2.684616	-2.108231	8.921183
29	1	0	2.541262	-0.917085	10.222509
30	1	0	1.991192	-2.577239	10.482931
31	6	0	0.330401	1.812918	12.898131
32	1	0	0.320883	1.097237	13.726368
33	1	0	1.296222	1.718588	12.387891
34	1	0	0.278413	2.821979	13.324912
35	6	0	-2.793000	1.884418	12.510842
36	1	0	-2.799017	2.891852	12.946127
37	1	0	-3.599434	1.837724	11.769958
38	1	0	-3.040325	1.177022	13.307907
39	14	0	-1.102010	-0.758843	10.960669
40	1	0	-2.500952	-1.015031	10.472559
41	14	0	-1.049333	-4.562864	12.116405
42	14	0	-1.137013	-6.242936	13.816462
43	14	0	-2.138956	-5.717501	15.909489
44	1	0	-3.625976	-5.813521	15.712822
45	14	0	-1.697159	-3.455568	16.490071
46	14	0	-2.050921	-1.885203	14.735896
47	14	0	-0.751025	-2.295041	12.785763
48	1	0	0.686360	-2.145850	13.198193
49	6	0	-2.656651	-4.668888	11.086383
50	1	0	-2.631531	-3.972707	10.240527
51	1	0	-2.803631	-5.678839	10.685881
52	1	0	-3.536547	-4.419298	11.691015
53	6	0	-3.903332	-1.860447	14.268068
54	1	0	-4.232447	-2.830324	13.877034
55	1	0	-4.523649	-1.628636	15.142347
56	1	0	-4.113782	-1.105626	13.501425
57	6	0	-2.887227	-2.859967	17.867936
58	1	0	-2.820126	-3.465046	18.776012
59	1	0	-2.665575	-1.822254	18.146122
60	1	0	-3.927389	-2.896828	17.523734
61	6	0	-2.123726	-7.655148	12.979479
62	1	0	-1.619007	-8.002267	12.068880
63	1	0	-2.258727	-8.521284	13.633496
64	1	0	-3.119873	-7.300932	12.692126
65	6	0	0.660090	-6.807478	14.145012

66	1	0	0.702619	-7.610975	14.888201
67	1	0	1.134355	-7.173136	13.226698
68	1	0	1.268813	-5.978226	14.524957
69	6	0	0.423943	-5.143741	11.038879
70	1	0	0.267206	-6.174116	10.694757
71	1	0	0.572014	-4.520412	10.152965
72	1	0	1.355469	-5.126252	11.615463
73	6	0	-1.595008	-0.217849	15.560385
74	1	0	-1.742585	0.638630	14.897642
75	1	0	-2.213235	-0.054279	16.451759
76	1	0	-0.546212	-0.213619	15.878724
77	6	0	0.110676	-3.289464	17.086715
78	1	0	0.325160	-2.262368	17.406234
79	1	0	0.322586	-3.952322	17.933105
80	1	0	0.815902	-3.540131	16.285649
81	14	0	-1.566488	-7.334750	17.603294
82	1	0	-0.065023	-7.328806	17.683788
83	14	0	-2.304584	-6.689886	19.783842
84	14	0	-2.117350	-8.380776	21.442811
85	14	0	-3.088132	-10.390322	20.683158
86	1	0	-3.049763	-11.441954	21.752245
87	1	0	-4.540904	-10.146729	20.405891
88	14	0	-2.057711	-11.172972	18.712720
89	14	0	-2.156749	-9.563409	16.962777
90	6	0	-2.931140	-12.767726	18.121820
91	1	0	-2.476363	-13.150668	17.199903
92	1	0	-2.853427	-13.553512	18.882878
93	1	0	-3.995348	-12.596175	17.927110
94	6	0	-3.921422	-9.564591	16.233125
95	1	0	-4.013548	-8.863887	15.395737
96	1	0	-4.192577	-10.562763	15.868623
97	1	0	-4.661167	-9.274431	16.988364
98	6	0	-0.911923	-10.220620	15.665604
99	1	0	-1.198782	-11.229163	15.341157
100	1	0	-0.845601	-9.593627	14.772452
101	1	0	0.092400	-10.285679	16.099519
102	6	0	-0.230895	-11.608416	19.066198
103	1	0	-0.150331	-12.349536	19.870356
104	1	0	0.240939	-12.035780	18.172872
105	1	0	0.354338	-10.730613	19.361406
106	6	0	-3.015584	-7.789261	23.023452
107	1	0	-2.912217	-8.530415	23.825127
108	1	0	-2.596348	-6.843287	23.387710
109	1	0	-4.085825	-7.637700	22.845762
110	6	0	-0.280155	-8.659263	21.884895
111	1	0	0.158061	-7.740383	22.293195

112	1	0	-0.171015	-9.443844	22.643084
113	1	0	0.315505	-8.951418	21.013238
114	6	0	-1.200984	-5.260113	20.418590
115	1	0	-1.168440	-4.407442	19.734964
116	1	0	-1.562619	-4.895861	21.388604
117	1	0	-0.171147	-5.608716	20.558134
118	6	0	-4.132071	-6.139829	19.706605
119	1	0	-4.783070	-6.982395	19.445345
120	1	0	-4.464934	-5.753589	20.677669
121	1	0	-4.292175	-5.353935	18.960661

$\mathrm{Si}(1)-\mathrm{H}^{\mathrm{e}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

21	14	0	0.311886	-1.279759	9.100992
22	14	0	-1.094466	1.511867	11.679027
23	6	0	-0.465746	-2.725073	8.112374
24	1	0	-0.664381	-3.608287	8.726467
25	1	0	-1.418549	-2.413379	7.669362
26	1	0	0.197550	-3.031384	7.293400
27	6	0	2.046613	-1.762490	9.736465
28	1	0	2.683606	-2.102498	8.911083
29	1	0	2.541238	-0.904391	10.206200
30	1	0	2.000885	-2.566069	10.479083
31	6	0	0.344766	1.792775	12.902653
32	1	0	0.327340	1.075841	13.729685
33	1	0	1.310274	1.690307	12.393697
34	1	0	0.300933	2.801537	13.330952
35	6	0	-2.778205	1.891678	12.511545
36	1	0	-2.772129	2.894392	12.957316
37	1	0	-3.582566	1.863000	11.767597
38	1	0	-3.036881	1.178501	13.300075
39	14	0	-1.102782	-0.763876	10.959535
40	1	0	-2.503891	-1.017352	10.476519
41	14	0	-1.040109	-4.566367	12.117645
42	14	0	-1.127095	-6.245545	13.818560
43	14	0	-2.138540	-5.721576	15.907368
44	1	0	-3.624466	-5.821948	15.704741
45	14	0	-1.705382	-3.458045	16.488515
46	14	0	-2.055215	-1.888135	14.733140
47	14	0	-0.750049	-2.297473	12.786407
48	1	0	0.686298	-2.143198	13.200441
49	6	0	-2.644492	-4.677946	11.083674
50	1	0	-2.619831	-3.981649	10.237890
51	1	0	-2.786812	-5.688392	10.682739
52	1	0	-3.526784	-4.431680	11.686157
53	6	0	-3.906224	-1.863706	14.259869
54	1	0	-4.233947	-2.833467	13.867396
55	1	0	-4.529116	-1.632487	15.132478
56	1	0	-4.114675	-1.108574	13.492961
57	6	0	-2.902655	-2.864883	17.861188
58	1	0	-2.835883	-3.467730	18.770763
59	1	0	-2.686487	-1.825650	18.137977
60	1	0	-3.941491	-2.907010	17.513613
61	6	0	-2.105853	-7.661753	12.979013
62	1	0	-1.596751	-8.007483	12.070319
63	1	0	-2.239647	-8.528029	13.633101
64	1	0	-3.102390	-7.311556	12.688133
65	6	0	0.670588	-6.804379	14.153377
66	1	0	0.712565	-7.609285	14.895102

67	1	0	1.149777	-7.166775	13.236312
68	1	0	1.275131	-5.973994	14.537474
69	6	0	0.437615	-5.142230	11.043545
70	1	0	0.285896	-6.173671	10.700376
71	1	0	0.584609	-4.519402	10.157040
72	1	0	1.368056	-5.120082	11.621721
73	6	0	-1.602412	-0.220728	15.559372
74	1	0	-1.748121	0.636144	14.896718
75	1	0	-2.223607	-0.057800	16.448805
76	1	0	-0.554708	-0.216231	15.881249
77	6	0	0.099661	-3.286641	17.092248
78	1	0	0.309847	-2.258904	17.412534
79	1	0	0.310331	-3.948768	17.939503
80	1	0	0.808786	-3.535231	16.293975
81	14	0	-1.567875	-7.335729	17.604772
82	1	0	-0.066673	-7.326205	17.689606
83	14	0	-2.313886	-6.690187	19.782450
84	14	0	-2.126495	-8.378583	21.443847
85	14	0	-3.092371	-10.390451	20.684227
86	1	0	-3.055096	-11.440862	21.754540
87	1	0	-4.544775	-10.149315	20.402966
88	14	0	-2.055434	-11.173705	18.717429
89	14	0	-2.151200	-9.566410	16.965073
90	6	0	-2.924927	-12.770262	18.125596
91	1	0	-2.467085	-13.153340	17.205255
92	1	0	-2.848074	-13.555254	18.887560
93	1	0	-3.988861	-12.600493	17.927861
94	6	0	-3.912970	-9.572073	16.228531
95	1	0	-4.002623	-8.873902	15.388765
96	1	0	-4.181383	-10.571630	15.865819
97	1	0	-4.656105	-9.280686	16.979967
98	6	0	-0.899808	-10.222863	15.673836
99	1	0	-1.182835	-11.232729	15.350145
100	1	0	-0.831493	-9.597399	14.779734
101	1	0	0.102926	-10.284599	16.111887
102	6	0	-0.229080	-11.606409	19.076732
103	1	0	-0.149961	-12.346247	19.882215
104	1	0	0.245876	-12.034544	18.185425
105	1	0	0.354294	-10.727508	19.372354
106	6	0	-3.028841	-7.786710	23.021998
107	1	0	-2.925856	-8.526741	23.824758
108	1	0	-2.611921	-6.839608	23.385984
109	1	0	-4.098987	-7.637133	22.842029
110	6	0	-0.289674	-8.653441	21.889597
111	1	0	0.146241	-7.733450	22.297840
112	1	0	-0.180583	-9.437139	22.648702
1					

113	1	0	0.308013	-8.945402	21.019264
114	6	0	-1.215851	-5.256672	20.418299
115	1	0	-1.183233	-4.405181	19.733241
116	1	0	-1.581356	-4.891627	21.386557
117	1	0	-0.185605	-5.602548	20.561601
118	6	0	-4.142750	-6.145585	19.699525
119	1	0	-4.790368	-6.990238	19.436596
120	1	0	-4.479724	-5.760107	20.669470
121	1	0	-4.303054	-5.360384	18.952903

$\mathrm{Si}(4)-\mathrm{H}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

$\mathrm{E}(\mathrm{UB} 3 \mathrm{LYP})=12 \mathrm{E}_{\mathrm{h}}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
			X Y	Z
1	14	$0-1.389025$	3.019528	9.805204
2	14	$0 \quad 0.486642$	2.703877	8.410357
3	0	1.727227	2.933247	9.219416
4	0	0.522376	3.726572	7.313444
5	14	$0 \quad 0.542512$	0.530373	7.498111
6	60	-1.414266	4.814582	10.463190
7	0	-1.480036	5.528783	9.633564
8	0	-0.507886	5.048674	11.032537
9	0	-2.277590	4.985154	11.118110
10	6	$0-3.004109$	2.726120	8.829411
11	10	$0-3.877118$	2.917002	9.465529
12	1 0	$0-3.081898$	1.696928	8.462162
13	1 0	$0-3.071855$	3.397040	7.964724
14	6	$0-0.890318$	0.349441	6.246393
15	10	$0-0.824064$	1.115589	5.464576
16	1 0	$0-1.871799$	0.445488	6.723547
17	10	$0-0.853441$	-0.630249	5.755106
18	6	$0 \quad 2.181369$	0.264402	6.550148
19	10	02.228220	-0.742644	6.117201
20	1 0	03.050297	0.389046	7.205372
21	10	$0 \quad 2.275909$	0.984538	5.728468

22	14	0	0.373563	-1.173006	9.155083
23	14	0	-1.238022	1.523481	11.642980
24	6	0	-0.217850	-2.712526	8.182283
25	1	0	-0.325821	-3.599195	8.813178
26	1	0	-1.190146	-2.519357	7.715151
27	1	0	0.491926	-2.958617	7.382050
28	6	0	2.119673	-1.482469	9.864156
29	1	0	2.829739	-1.728537	9.065471
30	1	0	2.498528	-0.594739	10.384005
31	1	0	2.120325	-2.309800	10.582434
32	6	0	0.331804	1.977926	12.631457
33	1	0	0.492433	1.306364	13.481446
34	1	0	1.222097	1.925999	11.993907
35	1	0	0.265037	3.001231	13.021034
36	6	0	-2.805208	1.835915	12.695125
37	1	0	-2.848806	2.886553	13.008792
38	1	0	-3.707401	1.627489	12.108279
39	1	0	-2.848800	1.219462	13.597790
40	14	0	-1.139555	-0.760302	10.961119
41	1	0	-2.504679	-1.058234	10.398440
42	14	0	-0.847080	-4.590748	12.130254
43	14	0	-0.967593	-6.246270	13.853797
44	14	0	-1.939031	-5.679744	15.952547
45	1	0	-3.428812	-5.654127	15.759378
46	14	0	-1.297243	-3.466904	16.546508
47	14	0	-1.750042	-1.844274	14.865637
48	14	0	-0.774167	-2.306319	12.761500
49	6	0	-2.352245	-4.837509	10.971987
50	1	0	-2.324979	-4.134020	10.132643
51	1	0	-2.372867	-5.854106	10.560811
52	1	0	-3.293431	-4.672379	11.508561
53	6	0	-3.647583	-1.674884	14.683870
54	1	0	-4.099117	-2.616525	14.352084
55	1	0	-4.108298	-1.400487	15.641500
56	1	0	-3.910679	-0.903802	13.951307
57	6	0	-2.288700	-2.797134	18.041591
58	1	0	-2.165152	-3.402106	18.943357
59	1	0	-1.965094	-1.776903	18.282936
60	1	0	-3.359663	-2.758347	17.811723
61	6	0	-1.972677	-7.649470	13.026207
62	1	0	-1.479603	-7.991713	12.107466
63	1	0	-2.095768	-8.518069	13.678434
64	1	0	-2.972535	-7.295097	12.752589
65	6	0	0.814266	-6.854302	14.189981
66	1	0	0.826910	-7.670472	14.920851
67	1	0	1.290064	-7.217681	13.271533
				2	

68	1	0	1.440035	-6.048046	14.590739
69	6	0	0.742476	-5.071724	11.175739
70	1	0	0.679331	-6.108182	10.819889
71	1	0	0.918454	-4.434832	10.304267
72	1	0	1.622078	-4.996704	11.824366
73	6	0	-1.057738	-0.217647	15.599242
74	1	0	-1.217338	0.639683	14.939356
75	1	0	-1.543277	0.008295	16.556802
76	1	0	0.019629	-0.299498	15.782407
77	6	0	0.566197	-3.445053	16.965421
78	1	0	0.892550	-2.438706	17.254724
79	1	0	0.799769	-4.122731	17.795007
80	1	0	1.170978	-3.754618	16.104995
81	14	0	-1.492747	-7.368602	17.615217
82	1	0	0.005013	-7.464079	17.708057
83	14	0	-2.197051	-6.692733	19.793554
84	14	0	-2.371979	-8.411622	21.424908
85	14	0	-3.526869	-10.263698	20.530919
86	1	0	-3.737706	-11.319263	21.576049
87	1	0	-4.898575	-9.821142	20.119188
88	14	0	-2.420975	-11.160491	18.651150
89	14	0	-2.218203	-9.540347	16.922905
90	6	0	-3.414457	-12.641397	17.961379
91	1	0	-2.925976	-13.067139	17.076107
92	1	0	-3.493678	-13.436183	18.712784
93	1	0	-4.430771	-12.348265	17.676848
94	6	0	-3.925999	-9.402568	16.077056
95	1	0	-3.916796	-8.694591	15.241493
96	1	0	-4.247531	-10.376426	15.688076
97	1	0	-4.687655	-9.062836	16.788815
98	6	0	-0.933063	-10.282139	15.711864
99	1	0	-1.279124	-11.252465	15.333118
100	1	0	-0.734098	-9.642100	14.847698
101	1	0	0.021449	-10.448217	16.224536
102	6	0	-0.697240	-11.805587	19.162499
103	1	0	-0.778613	-12.541355	19.971501
104	1	0	-0.204621	-12.297648	18.315339
105	1	0	-0.039250	-11.001085	19.508298
106	6	0	-3.327484	-7.713320	22.926754
107	1	0	-3.408189	-8.468276	23.718031
108	1	0	-2.814874	-6.840493	23.349831
109	1	0	-4.342839	-7.407386	22.652410
110	6	0	-0.643053	-8.946675	22.035101
111	1	0	-0.131320	-8.106338	22.519550
112	1	0	-0.720111	-9.755987	22.770966
113	1	0	-0.004272	-9.298414	21.217845
13				2	1

114	6	0	-0.897428	-5.464834	20.480234
115	1	0	-0.660362	-4.657496	19.780746
116	1	0	-1.247442	-5.006397	21.413822
117	1	0	0.038849	-5.991210	20.699107
118	6	0	-3.920012	-5.874562	19.679931
119	1	0	-4.680251	-6.614304	19.402150
120	1	0	-4.213571	-5.446349	20.646167
121	1	0	-3.950434	-5.073443	18.934739

$\mathrm{Si}(6)-\mathrm{Me}^{\mathrm{a}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

$E($ UB3LYP $)=-6134.05889350 E_{h}$

Center Number	Atomic Number	Atomic Type		Coordinates (Angstroms)	
				X Y	Z
1	14	0	0.710202	2.702833	10.968946
2	14	0	0.594593	2.492830	8.617206
3	0	0	1.933257	2.043229	8.114360
4	0)	0.365499	3.837532	7.991715
5	14	0	-1.042737	0.969674	7.849378
6	60	0	2.193633	3.813582	11.436762
7	0)	2.081278	4.815800	11.006064
8	10	0	3.138287	3.397017	11.070108
9	10	0	2.274334	3.925480	12.525175
10	6	0	-0.884992	3.524579	11.622569
11	1	0	-0.824013	3.678113	12.706935
12	1	0	-1.770793	2.911157	11.423638
13	1	0	-1.043081	4.504729	11.157218
14	6	0	-2.783667	1.634918	8.264713
15	1	0	-2.946054	2.619640	7.810423
16	10	0	-2.934596	1.734333	9.345141
17	1	0	-3.558945	0.960194	7.881467
18	6	0	-0.903289	0.803231	5.949870
19	1	0	-1.653911	0.105817	5.557813
20	10	0	0.085031	0.438442	5.649014

21	1	0	-1.063255	1.772518	5.462487
22	14	0	-0.732429	-1.161560	8.856617
23	14	0	0.954841	0.554646	11.948709
24	6	0	-2.146362	-2.296820	8.250279
25	1	0	-2.008035	-3.328264	8.592219
26	1	0	-3.122559	-1.951562	8.608983
27	1	0	-2.180974	-2.315109	7.153718
28	6	0	0.920153	-1.907110	8.257144
29	1	0	0.894315	-2.059016	7.170988
30	1	0	1.770008	-1.252505	8.478223
31	1	0	1.119281	-2.879289	8.722390
32	6	0	2.647559	-0.199549	11.488023
33	1	0	2.757120	-1.200512	11.922341
34	1	0	2.785682	-0.287270	10.405213
35	1	0	3.462323	0.423065	11.877674
36	6	0	0.929558	0.748542	13.849708
37	1	0	1.728681	1.425121	14.177640
38	1	0	-0.021190	1.156267	14.210472
39	1	0	1.092392	-0.217497	14.341060
40	14	0	-0.788742	-0.900267	11.224070
41	1	0	-2.084465	-0.182487	11.478896
42	14	0	-1.326194	-4.966670	11.759495
43	14	0	-1.051426	-6.583271	13.483184
44	14	0	-2.715958	-6.338187	15.180031
45	1	0	-3.896067	-7.163628	14.748254
46	14	0	-3.511234	-4.112962	15.241697
47	14	0	-1.980044	-2.405915	14.697102
48	14	0	-0.804032	-2.824676	12.646156
49	1	0	0.632403	-2.984016	13.067863
50	6	0	-3.095179	-5.068494	11.051383
51	1	0	-3.257410	-4.331840	10.257017
52	1	0	-3.278339	-6.062660	10.625304
53	1	0	-3.850213	-4.897472	11.825200
54	6	0	-2.936361	-0.756485	14.642044
55	1	0	-3.701873	-0.753974	13.858647
56	1	0	-3.433227	-0.571343	15.602002
57	1	0	-2.260321	0.083247	14.444894
58	6	0	-5.240813	-3.922583	14.432903
59	1	0	-5.940836	-4.654792	14.849954
60	1	0	-5.644841	-2.921877	14.622986
61	1	0	-5.214293	-4.071188	13.346442
62	6	0	-1.209750	-8.313777	12.681306
63	1	0	-0.432579	-8.460449	11.920917
64	1	0	-1.111996	-9.120674	13.416102
65	1	0	-2.183719	-8.430795	12.192654
66	6	0	0.696950	-6.382520	14.221929
				2	

67	1	0	0.896221	-7.130944	14.995710
68	1	0	1.459594	-6.497296	13.441670
69	1	0	0.831632	-5.391715	14.670021
70	6	0	-0.097562	-5.403001	10.359516
71	1	0	-0.284642	-6.414379	9.977902
72	1	0	-0.189800	-4.709083	9.516373
73	1	0	0.939810	-5.363739	10.710630
74	6	0	-0.690128	-2.330143	16.102177
75	1	0	0.058748	-1.552842	15.912834
76	1	0	-1.177301	-2.105689	17.058341
77	1	0	-0.162027	-3.284109	16.212815
78	14	0	-2.118186	-7.118962	17.360954
79	1	0	-0.964679	-6.264995	17.806443
80	14	0	-3.886270	-6.756223	18.923853
81	14	0	-3.246026	-7.400433	21.119669
82	14	0	-2.499362	-9.640769	21.136557
83	1	0	-2.099704	-10.047671	22.524410
84	1	0	-3.646451	-10.533589	20.770865
85	14	0	-0.728251	-10.031987	19.625052
86	14	0	-1.360562	-9.381370	17.428379
87	6	0	-0.280963	-11.890969	19.623308
88	1	0	0.542336	-12.099591	18.928882
89	1	0	0.036332	-12.214728	20.621905
90	1	0	-1.135165	-12.510474	19.328311
91	6	0	-2.739412	-10.537290	16.787905
92	1	0	-3.043583	-10.266811	15.769712
93	1	0	-2.391491	-11.577326	16.766365
94	1	0	-3.631850	-10.499427	17.422401
95	6	0	0.184767	-9.640616	16.332764
96	1	0	0.519677	-10.683908	16.391951
97	1	0	-0.015535	-9.418420	15.279954
98	1	0	1.017364	-9.005984	16.656523
99	6	0	0.817364	-9.050991	20.168611
100	1	0	1.135719	-9.346832	21.175390
101	1	0	1.655013	-9.240212	19.486295
102	1	0	0.634951	-7.970875	20.179775
103	6	0	-4.739271	-7.217990	22.299376
104	1	0	-4.460456	-7.492331	23.323909
105	1	0	-5.102392	-6.183130	22.318741
106	1	0	-5.572965	-7.861585	21.997270
107	6	0	-1.852663	-6.251660	21.741581
108	1	0	-2.204764	-5.214298	21.796456
109	1	0	-1.518529	-6.542322	22.744670
110	1	0	-0.980626	-6.270710	21.078566
111	6	0	-4.372547	-4.910996	19.010874
112	1	0	-4.730756	-4.541346	18.043362
1					

113	1	0	-5.172785	-4.761635	19.747139
114	1	0	-3.522629	-4.285523	19.305979
115	6	0	-5.423337	-7.751178	18.381672
116	1	0	-5.230416	-8.829542	18.365096
117	1	0	-6.258562	-7.573525	19.070077
118	1	0	-5.750065	-7.456107	17.377379

$\operatorname{Si}(6)-\mathrm{Me}^{\mathrm{e}}$ dissociated radical $($ charge $=0$, multiplicity $=2)$

$E($ UB3LYP $)=-6134.05908879 E_{h}$

Center Number	Atomic Number	Atomic Type		Coordinates (Angstroms)	
				X Y	Z
1	14	0	-0.496714	3.142268	10.307288
2	14	0	0.414996	2.477347	8.237192
3	10	0	1.879938	2.214326	8.414804
4	10	0	0.320987	3.588549	7.233665
5	14	0	-0.611985	0.520632	7.417316
6	6	0	0.393890	4.714113	10.932950
7	10	0	0.254044	5.542237	10.227751
8	10	0	1.471100	4.550135	11.045205
9	10	0	-0.002087	5.033526	11.904871
10	6	0	-2.346671	3.567456	10.093879
11	1	0	-2.762944	3.950941	11.033157
12	1	0	-2.940597	2.695614	9.798743
13	1	0	-2.486067	4.341124	9.329414
14	6	0	-2.462451	0.845086	7.071365
15	1	0	-2.591839	1.666299	6.356330
16	1	0	-3.014354	1.104352	7.981414
17	1	0	-2.933523	-0.046964	6.640674
18	6	0	0.210223	0.008488	5.768527
19	1	0	-0.237054	-0.909991	5.368857
20	1	0	1.284708	-0.165311	5.891565
21	1	0	0.083758	0.795284	5.015068
22	14	0	-0.377757	-1.270647	8.961992
23	14	0	-0.238845	1.429041	11.935393

24	6	0	-1.556915	-2.626530	8.300537
25	1	0	-1.550750	-3.539016	8.902782
26	1	0	-2.587694	-2.254465	8.275732
27	1	0	-1.280493	-2.904808	7.275445
28	6	0	1.435688	-1.867103	8.881841
29	1	0	1.690620	-2.204485	7.869815
30	1	0	2.124766	-1.055294	9.143342
31	1	0	1.628124	-2.696822	9.570478
32	6	0	1.598384	1.367552	12.453736
33	1	0	1.776365	0.612856	13.227782
34	1	0	2.240678	1.122855	11.599642
35	1	0	1.926337	2.336876	12.848285
36	6	0	-1.318850	1.997387	13.410377
37	1	0	-0.982694	2.975860	13.776631
38	1	0	-2.365372	2.101050	13.101050
39	1	0	-1.292863	1.301517	14.253341
40	14	0	-0.933952	-0.747314	11.229720
41	1	0	-2.436440	-0.725414	11.281401
42	14	0	-0.917641	-4.658604	12.101564
43	14	0	-0.615304	-6.403013	13.697608
44	14	0	-1.605196	-5.822739	15.774589
45	1	0	-3.027814	-5.460851	15.454661
46	14	0	-0.570156	-3.835437	16.477822
47	14	0	-0.810486	-1.976079	15.046852
48	14	0	-0.239034	-2.467439	12.773530
49	1	0	1.263735	-2.482544	12.737015
50	6	0	-2.761740	-4.621599	11.605434
51	1	0	-2.959483	-3.869173	10.834024
52	1	0	-3.083274	-5.594731	11.215011
53	1	0	-3.394730	-4.384753	12.468589
54	6	0	-2.628401	-1.404617	15.131563
55	1	0	-3.305693	-2.218922	14.848792
56	1	0	-2.889704	-1.094842	16.150278
57	1	0	-2.824369	-0.562384	14.458872
58	6	0	-1.419132	-7.965332	12.936343
59	1	0	-0.996059	-8.181295	11.947193
60	1	0	-1.252247	-8.847221	13.564890
61	1	0	-2.501199	-7.839991	12.816923
62	6	0	1.249949	-6.744836	13.921841
63	1	0	1.428642	-7.539143	14.655722
64	1	0	1.696195	-7.065313	12.972680
65	1	0	1.790253	-5.853009	14.257610
66	6	0	0.152168	-5.227192	10.617565
67	1	0	-0.184976	-6.205120	10.251148
68	1	0	0.119971	-4.529857	9.776437
69	1	0	1.200965	-5.329467	10.919779

70	6	0	0.355901	-0.642219	15.763880
71	1	0	0.358014	0.283108	15.180767
72	1	0	0.057526	-0.391047	16.789226
73	1	0	1.386184	-1.014153	15.798370
74	6	0	1.234656	-4.118105	17.057027
75	1	0	1.641717	-3.207908	17.511361
76	1	0	1.280530	-4.918074	17.804088
77	1	0	1.892421	-4.398729	16.224723
78	14	0	-1.688280	-7.357183	17.599825
79	1	0	-0.482825	-7.036365	18.438966
80	14	0	-3.604231	-6.814044	18.904267
81	14	0	-3.600041	-8.019930	20.947981
82	14	0	-3.394844	-10.330481	20.487337
83	1	0	-3.386721	-11.112336	21.768238
84	1	0	-4.621479	-10.781944	19.753227
85	14	0	-1.499735	-10.896973	19.191478
86	14	0	-1.507729	-9.684289	17.148134
87	6	0	-1.520708	-12.771808	18.818455
88	1	0	-0.650720	-13.063404	18.217103
89	1	0	-1.493688	-13.353924	19.747445
90	1	0	-2.422714	-13.063098	18.269070
91	6	0	-2.952474	-10.289960	16.056281
92	1	0	-2.976776	-9.765314	15.094226
93	1	0	-2.851916	-11.362104	15.847110
94	1	0	-3.921842	-10.137495	16.543748
95	6	0	0.136970	-10.054921	16.245065
96	1	0	0.244505	-11.131247	16.060549
97	1	0	0.190266	-9.546040	15.276324
98	1	0	0.998461	-9.730688	16.839803
99	6	0	0.092740	-10.502949	20.169770
100	1	0	0.115769	-11.049758	21.120009
101	1	0	0.98192	-10.795739	19.596926
102	1	0	0.181293	-9.434624	20.396206
103	6	0	-5.226900	-7.703230	21.900130
104	1	0	-5.238733	-8.255401	22.847536
105	1	0	-5.344233	-6.637796	22.133939
106	1	0	-6.101005	-8.018281	21.319662
107	6	0	-2.144831	-7.451225	22.046071
108	1	0	-2.249804	-6.391141	22.307470
109	1	0	-2.110991	-8.022436	22.981449
110	1	0	-1.179580	-7.574559	21.542596
111	6	0	-3.633143	-4.940130	19.272068
112	1	0	-3.668269	-4.356421	18.344885
113	1	0	-4.516404	-4.677345	19.867900
114	1	0	-2.744637	-4.622810	19.828841
115	6	0	-5.179235	-7.246125	17.914218
15				2	1

116	1	0	-5.259232	-8.320743	17.715483
117	1	0	-6.076365	-6.944164	18.468575
118	1	0	-5.193093	-6.723957	16.950197

$\operatorname{Si}(2)-\operatorname{Si}(3)$ dissociated radical $($ charge $=0$, multiplicity $=3)$

$E(U B 3 L Y P)=-6173.91376417 E_{h}$

Center Number	Atomic Number	Atomic Type		Coordinates (Angstroms)	
				X Y	Z
1	14	0	-1.639123	2.031408	8.866302
2	14	0	0.005651	3.690091	8.463108
3	1	0	-0.031470	4.690710	9.577170
4	1 0	0	-0.395277	4.459703	7.234345
5	14	0	2.243055	2.971417	8.284040
6	6	0	-3.338845	2.905692	8.821013
7	1	0	-3.510152	3.363747	7.839586
8	1	0	-3.412803	3.696522	9.575559
9	1 0	0	-4.151927	2.192400	9.003655
10	6	0	-1.614088	0.748786	7.455333
11	1	0	-2.429678	0.025993	7.576842
12	1	0	-0.675127	0.184893	7.431599
13	1	0	-1.742898	1.238811	6.482630
14	6	0	2.557713	1.755233	6.851364
15	1	0	2.364284	2.228145	5.879080
16	1	0	1.917959	0.869985	6.931071
17	1	0	3.600760	1.417356	6.855644
18	6	0	3.465482	4.431847	8.180030
19	1	0	4.501655	4.075582	8.221155
20	1	0	3.315958	5.133366	9.007273
21	1	0	3.339257	4.986348	7.240438
22	14	0	1.054511	-1.707808	9.674679
23	14	0	-1.326682	1.048504	11.023078
24	6	0	1.217787	-3.476059	8.978727
25	1	0	1.286306	-4.212406	9.790644
26	1	0	0.361762	-3.743437	8.351126
27	1	0	2.125832	-3.566439	8.370455

28	6	0	2.585848	-1.320880	10.742437
29	1	0	3.505103	-1.470298	10.163685
30	1	0	2.580572	-0.287253	11.103251
31	1	0	2.630623	-1.984374	11.616740
32	6	0	0.157609	1.853737	11.910290
33	1	0	0.343056	1.393556	12.887707
34	1	0	1.074128	1.766907	11.315626
35	1	0	-0.026231	2.922527	12.074572
36	6	0	-2.896366	1.390439	12.057213
37	1	0	-3.094294	2.467553	12.117673
38	1	0	-3.781178	0.914430	11.619700
39	1	0	-2.785205	1.015584	13.080545
40	14	0	-0.983619	-1.292707	10.789698
41	1	0	-2.058864	-1.760606	9.850791
42	14	0	-2.487243	-4.618867	12.163704
43	14	0	-2.274452	-6.373707	13.760189
44	14	0	-2.373184	-5.714658	16.055699
45	1	0	-3.830466	-5.502458	16.358082
46	14	0	-1.324959	-3.608586	16.470012
47	14	0	-1.761290	-1.942600	14.828503
48	14	0	-1.135144	-2.747433	12.691840
49	1	0	0.259260	-3.274832	12.893401
50	6	0	-4.314124	-4.078732	12.026121
51	1	0	-4.428586	-3.275084	11.288777
52	1	0	-4.936277	-4.920364	11.697678
53	1	0	-4.717166	-3.719171	12.978604
54	6	0	-3.610981	-1.471459	14.911027
55	1	0	-4.258267	-2.348443	14.802955
56	1	0	-3.838454	-1.011940	15.880983
57	1	0	-3.889207	-0.753178	14.131750
58	6	0	-2.008502	-2.839836	18.085697
59	1	0	-1.861175	-3.475744	18.962562
60	1	0	-1.518888	-1.878825	18.288504
61	1	0	-3.084020	-2.650072	17.991904
62	6	0	-3.727924	-7.554803	13.361574
63	1	0	-3.665315	-7.899503	12.321465
64	1	0	-3.750352	-8.440463	14.002526
65	1	0	-4.685519	-7.035240	13.481246
66	6	0	-0.608301	-7.249513	13.431167
67	1	0	-0.447817	-8.093662	14.110622
68	1	0	-0.565056	-7.632534	12.404356
69	1	0	0.230596	-6.555856	13.562296
70	6	0	-1.987759	-5.334695	10.462478
71	1	0	-2.598782	-6.210528	10.210453
72	1	0	-2.136370	-4.587553	9.673696
73	1	0	-0.936306	-5.640196	10.439603
					10

74	6	0	-0.737387	-0.401253	15.314802
75	1	0	-0.966641	0.448958	14.662143
76	1	0	-0.956804	-0.093636	16.344768
77	1	0	0.338909	-0.595078	15.245550
78	6	0	0.565407	-3.844354	16.602151
79	1	0	1.059941	-2.899276	16.857412
80	1	0	0.832179	-4.579695	17.368987
81	1	0	0.984083	-4.190715	15.650273
82	14	0	-1.634359	-7.458130	17.549729
83	1	0	-0.190044	-7.710097	17.216573
84	14	0	-1.653457	-6.772771	19.841043
85	14	0	-1.362111	-8.514803	21.431387
86	14	0	-2.822948	-10.305856	20.970944
87	1	0	-2.704947	-11.377025	22.014507
88	1	0	-4.234645	-9.809172	21.056594
89	14	0	-2.455810	-11.193860	18.818224
90	14	0	-2.758460	-9.531394	17.145939
91	6	0	-3.694372	-12.612328	18.486719
92	1	0	-3.551171	-13.040582	17.486828
93	1	0	-3.560309	-13.419917	19.216475
94	1	0	-4.731221	-12.266337	18.559351
95	6	0	-4.633866	-9.211599	16.971233
96	1	0	-4.851313	-8.465373	16.199274
97	1	0	-5.163346	-10.134342	16.704751
98	1	0	-5.059380	-8.845908	17.913173
99	6	0	-2.075640	-10.337192	15.549099
100	1	0	-2.602099	-11.277623	15.341479
101	1	0	-2.177934	-9.699868	14.666659
102	1	0	-1.011275	-10.572160	15.664944
103	6	0	-0.692593	-11.920398	18.708155
104	1	0	-0.528025	-12.673878	19.487598
105	1	0	-0.538340	-12.408033	17.738015
106	1	0	0.079206	-11.150984	18.819129
107	6	0	-1.730267	-7.805905	23.168929
108	1	0	-1.569344	-8.570004	23.938995
109	1	0	-1.072946	-6.958154	23.399007
110	1	0	-2.766608	-7.460893	23.253570
111	6	0	0.447795	-9.124869	21.423452
112	1	0	1.129054	-8.308061	21.691371
113	1	0	0.594000	-9.931041	22.152246
114	1	0	0.752994	-9.502715	20.441700
115	6	0	-0.199469	-5.571559	20.171031
116	1	0	-0.208392	-4.694974	19.518036
117	1	0	-0.228786	-5.213342	21.208025
118	1	0	0.758564	-6.083625	20.024267
119	6	0	-3.320253	-5.920770	20.226092
18				2	

120	1	0	-4.149924	-6.633130	20.145921
121	1	0	-3.327023	-5.518624	21.246515
122	1	0	-3.527576	-5.093623	19.538791

$\operatorname{Si}(3)-\operatorname{Si}(4)$ dissociated radical $($ charge $=0$, multiplicity $=3)$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
			X Y	Z
1	14	-1.125970	3.172216	9.521424
2	14	$0 \quad 0.397611$	2.457348	7.870532
3	10	1.787300	2.526801	8.428120
4	10	0.383975	3.390782	6.696089
5	14	$0-0.046717$	0.246733	7.185005
6	60	-0.699051	4.955345	10.064312
7	10	-0.769524	5.644077	9.213789
8	10	0.318552	5.022957	10.464299
9	0	-1.390197	5.311296	10.838316
10	6	$0-2.897637$	3.190425	8.807033
11	1	-3.604650	3.590273	9.544003
12	1	$0-3.242402$	2.189483	8.525653
13	1	$0-2.954509$	3.826056	7.915284
14	6	-1.786320	0.153043	6.401711
15	1	$0-1.885210$	0.866691	5.575109
16	1	$0-2.578070$	0.370410	7.126847
17	1	-1.971611	-0.849575	5.997890
18	6	$0 \quad 1.220310$	-0.292088	5.857898
19	1	$0 \quad 1.039195$	-1.324407	5.533817
20	1	02.248215	-0.232192	6.231966
21	1	01.149403	0.351531	4.972772
22	14	$0 \quad 0.107404$	-1.258416	9.018570
23	14	$0-1.019516$	1.765092	11.434299
24	6	$0-0.652116$	-2.892812	8.373501
25	1	$0-0.647855$	-3.688537	9.123244

26	1	0	-1.692497	-2.735432	8.066377
27	1	0	-0.098721	-3.256603	7.498439
28	6	0	1.961172	-1.498167	9.412061
29	1	0	2.502656	-1.865743	8.531842
30	1	0	2.421937	-0.549472	9.711281
31	1	0	2.119100	-2.213420	10.226565
32	6	0	0.576438	2.229687	12.377299
33	1	0	0.717367	1.626801	13.280144
34	1	0	1.458284	2.084225	11.742205
35	1	0	0.556917	3.284279	12.678119
36	6	0	-2.572074	2.215189	12.460730
37	1	0	-2.543780	3.269354	12.764757
38	1	0	-3.476499	2.067622	11.859164
39	1	0	-2.680623	1.611107	13.366213
40	14	0	-1.045803	-0.585972	11.002167
41	1	0	-2.490976	-0.917639	10.751779
42	14	0	-0.562680	-4.240072	12.528828
43	14	0	-0.374746	-5.663210	14.430831
44	14	0	-1.575844	-4.892057	16.317915
45	1	0	-3.037365	-4.911858	15.975252
46	14	0	-0.972062	-2.649716	16.788796
47	14	0	-1.480761	-1.232911	14.947922
48	14	0	-0.390342	-1.885774	12.924614
49	1	0	1.070893	-1.605834	13.138544
50	6	0	-2.245472	-4.603829	11.699119
51	1	0	-2.380610	-4.025826	10.778461
52	1	0	-2.333123	-5.666898	11.444217
53	1	0	-3.076537	-4.354433	12.369377
54	6	0	-3.371749	-1.233529	14.679907
55	1	0	-3.735536	-2.238487	14.436166
56	1	0	-3.894753	-0.902724	15.585441
57	1	0	-3.666685	-0.567091	13.861397
58	6	0	-1.934865	-2.019818	18.315327
59	1	0	-1.703598	-2.633149	19.194420
60	1	0	-1.666834	-0.982939	18.552928
61	1	0	-3.018293	-2.058344	18.155275
62	6	0	-1.036281	-7.382974	13.919150
63	1	0	-0.489265	-7.778420	13.054121
64	1	0	-0.920123	-8.096481	14.744617
65	1	0	-2.099267	-7.343424	13.656711
66	6	0	1.465157	-5.868840	14.899997
67	1	0	1.575185	-6.565897	15.739259
68	1	0	2.035624	-6.273191	14.054900
69	1	0	1.929091	-4.920311	15.191187
70	6	0	0.865429	-4.826969	11.395767
71	1	0	0.761389	-5.897627	11.177558

72	1	0	0.906699	-4.298753	10.439401
73	1	0	1.830186	-4.684134	11.895602
74	6	0	-0.914877	0.501737	15.528227
75	1	0	-1.110699	1.288251	14.794792
76	1	0	-1.438051	0.774874	16.453428
77	1	0	0.160186	0.507781	15.742659
78	6	0	0.891141	-2.546826	17.189704
79	1	0	1.166777	-1.522327	17.468632
80	1	0	1.152444	-3.201873	18.029103
81	1	0	1.511111	-2.834483	16.333643
82	14	0	-1.298837	-6.363851	18.124582
83	1	0	0.091949	-6.272220	18.680100
84	14	0	-2.907977	-6.666291	19.818559
85	14	0	-2.392164	-8.639217	21.047912
86	14	0	-3.399601	-10.592680	20.146724
87	1	0	-3.736448	-11.465214	21.322511
88	1	0	-4.726183	-10.233070	19.551176
89	14	0	-2.242011	-11.990320	18.622557
90	14	0	-2.048667	-11.004812	16.484635
91	6	0	-3.219082	-13.635206	18.526332
92	1	0	-2.725708	-14.342950	17.848986
93	1	0	-3.284051	-14.105478	19.515204
94	1	0	-4.240230	-13.477108	18.162270
95	6	0	-3.641629	-10.159053	15.863239
96	1	0	-3.460899	-9.650277	14.909323
97	1	0	-4.446723	-10.889363	15.705183
98	1	0	-4.002777	-9.411585	16.577522
99	6	0	-1.428345	-12.230956	15.156487
100	1	0	-2.179095	-13.004290	14.944205
101	1	0	-1.217874	-11.707469	14.216331
102	1	0	-0.507222	-12.733422	15.471168
103	6	0	-0.498802	-12.393168	19.287050
104	1	0	-0.556175	-12.870754	20.272729
105	1	0	0.020911	-13.085981	18.613803
106	1	0	0.118419	-11.493775	19.381878
107	6	0	-3.093499	-8.442849	22.816402
108	1	0	-2.856561	-9.322729	23.426174
109	1	0	-2.666786	-7.563372	23.313644
110	1	0	-4.183475	-8.328451	22.809951
111	6	0	-0.501276	-8.856019	21.186555
112	1	0	-0.047575	-7.993888	21.690448
113	1	0	-0.246427	-9.751219	21.766281
114	1	0	-0.032500	-8.946815	20.200586
115	6	0	-2.911291	-5.186697	21.033536
116	1	0	-3.161859	-4.255142	20.512989
117	1	0	-3.655179	-5.339691	21.825688
17					
14	1	1			

118	1	0	-1.934795	-5.051653	21.511724
119	6	0	-4.631178	-6.765057	19.010480
120	1	0	-4.698838	-7.591474	18.295053
121	1	0	-5.408824	-6.916869	19.768823
122	1	0	-4.863021	-5.837029	18.474582

$\operatorname{Si}(4)-\operatorname{Si}(5)$ dissociated dimer radical $($ charge $=0$, multiplicity $=2)$

$E($ UB3LYP $)=-4115.76713951 E_{h}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
			X Y	Z
1	14	$0-0.669829$	3.145642	9.998197
2	14	00.794816	2.491810	8.270884
3	10	2.186075	2.388137	8.818080
4	10	0.853277	3.545127	7.204492
5	14	$0 \quad 0.178817$	0.404175	7.365543
6	60	-0.047846	4.766781	10.799307
7	10	-0.005450	5.573139	10.057209
8	10	0.956051	4.648994	11.221786
9	10	-0.716725	5.092625	11.605788
10	6	$0-2.400128$	3.489806	9.264569
11	1	$0-3.083625$	3.852646	10.041615
12	1	$0-2.848676$	2.596056	8.817510
13	1	$0-2.345300$	4.259717	8.485554
14	6	0 -1.577733	0.497358	6.619929
15	1	$0-1.644301$	1.284133	5.859066
16	1	$0-2.338880$	0.701884	7.380877
17	1	$0-1.839171$	-0.452581	6.137692
18	6	$0 \quad 1.384395$	-0.080034	5.962056
19	1	$0 \quad 1.122217$	-1.055711	5.534578
20	1	02.419090	-0.135242	6.318101
21	1	$0 \quad 1.350035$	0.658049	5.151624
22	14	$0 \quad 0.255217$	-1.278710	9.041476
23	14	$0-0.813904$	1.501714	11.711031

24	6	0	-0.431942	-2.838952	8.170394
25	1	0	-0.454020	-3.723009	8.812766
26	1	0	-1.454796	-2.660659	7.818714
27	1	0	0.181942	-3.081893	7.293652
28	6	0	2.082265	-1.547701	9.529614
29	1	0	2.678121	-1.845336	8.658103
30	1	0	2.520595	-0.625989	9.929832
31	1	0	2.194323	-2.325383	10.293190
32	6	0	0.752253	1.661081	12.794036
33	1	0	0.742628	0.952303	13.629073
34	1	0	1.657737	1.466650	12.207101
35	1	0	0.838435	2.671776	13.210934
36	6	0	-2.361394	2.020708	12.712569
37	1	0	-2.253153	3.052516	13.070999
38	1	0	-3.255957	1.982925	12.080268
39	1	0	-2.546469	1.387100	13.583924
40	14	0	-1.028927	-0.771170	10.993124
41	1	0	-2.465431	-0.930434	10.578356
42	14	0	-0.803036	-4.599759	12.079309
43	14	0	-0.939514	-6.228072	13.814668
44	14	0	-2.618819	-5.622203	15.337877
45	1	0	-3.968520	-5.666153	14.676038
46	14	0	-2.264708	-3.530098	16.340429
47	14	0	-2.062817	-1.814748	14.692974
48	14	0	-0.683791	-2.327397	12.806528
49	1	0	0.732442	-2.122344	13.266856
50	6	0	-2.350950	-4.825990	10.983821
51	1	0	-2.371569	-4.113961	10.152235
52	1	0	-2.388542	-5.837793	10.562321
53	1	0	-3.264866	-4.676832	11.570703
54	6	0	-3.826740	-1.407892	14.085018
55	1	0	-4.297760	-2.290102	13.635916
56	1	0	-4.461273	-1.079768	14.917054
57	1	0	-3.824883	-0.614147	13.330570
58	6	0	-3.731075	-3.078860	17.478480
59	1	0	-3.820377	-3.802705	18.297116
60	1	0	-3.593423	-2.085908	17.924179
61	1	0	-4.679790	-3.073724	16.931139
62	6	0	-1.334880	-7.915377	13.010193
63	1	0	-0.564026	-8.194755	12.281283
64	1	0	-1.376707	-8.704620	13.770089
65	1	0	-2.299243	-7.899305	12.490947
66	6	0	0.733262	-6.382054	14.720916
67	1	0	0.686968	-7.160254	15.491799
68	1	0	1.529837	-6.656032	14.018594
69	1	0	1.027933	-5.446711	15.209297
				2	

70	6	0	0.784430	-5.055610	11.108441
71	1	0	0.712906	-6.078947	10.718506
72	1	0	0.980010	-4.391972	10.261415
73	1	0	1.657879	-5.013158	11.769377
74	6	0	-1.324196	-0.323911	15.643055
75	1	0	-1.197651	0.565162	15.018971
76	1	0	-1.971725	-0.048887	16.485471
77	1	0	-0.340591	-0.582582	16.051267
78	6	0	-0.682403	-3.587283	17.406479
79	1	0	-0.524290	-2.627623	17.913247
80	1	0	-0.758945	-4.363062	18.177226
81	1	0	0.210816	-3.798109	16.808084

$\operatorname{Si}(4)-\operatorname{Si}(5)$ dissociated monomer radical (charge $=0$, multiplicity $=2$)

$E(U B 3 L Y P)=-2058.15941768 E_{h}$

Center Number	Atomic Number	Atomic Type		Coordinates (Angstroms)	
				X Y	Z
1	14	0	-0.862114	3.188792	9.950872
2	14	0	0.880150	2.525404	8.489163
3	10	0	2.156684	2.457911	9.272907
4	10	0	1.102860	3.594291	7.459558
5	14	0	0.560952	0.443752	7.405534
6	6	0	-0.410287	4.861924	10.759025
7	10	0	-0.272095	5.636936	9.995465
8	10	0	0.517789	4.793904	11.337268
9	10	0	-1.205448	5.198279	11.435854
10	6	0	-2.476681	3.422338	8.959529
11	1	0	-3.288903	3.760454	9.614482
12	1 0	0	-2.800755	2.491867	8.480811
13	1	0	-2.347323	4.176515	8.174083
14	6	0	-0.987982	0.525481	6.293169
15	1	0	-0.896909	1.327696	5.551210

16	1	0	-1.898081	0.708126	6.875014
17	1	0	-1.124184	-0.416947	5.748966
18	6	0	2.075410	0.065228	6.301766
19	1	0	1.955457	-0.895926	5.786859
20	1	0	2.999485	0.020065	6.888442
21	1	0	2.202988	0.840520	5.536652
22	14	0	0.281337	-1.252517	9.050982
23	14	0	-1.166930	1.512987	11.613042
24	6	0	-0.204236	-2.907801	8.232724
25	1	0	-0.319503	-3.695381	8.986566
26	1	0	-1.150680	-2.825652	7.687116
27	1	0	0.566475	-3.234165	7.523489
28	6	0	1.916063	-1.497005	10.003849
29	1	0	2.717464	-1.813559	9.325170
30	1	0	2.242985	-0.574080	10.495676
31	1	0	1.806836	-2.267655	10.775733
32	6	0	0.355355	1.470550	12.762186
33	1	0	0.245663	0.694967	13.529064
34	1	0	1.278396	1.265795	12.208216
35	1	0	0.481617	2.432385	13.273917
36	6	0	-2.718242	1.891241	12.659218
37	1	0	-2.629928	2.869102	13.148539
38	1	0	-3.624280	1.903617	12.043567
39	1	0	-2.855671	1.136599	13.442448
40	14	0	-1.412329	-0.572769	10.543532
41	1	0	-2.751506	-0.645069	9.863038
--					

7.3 Poly(cyclosilane) connectivity tunes optical absorbance

The synthesis of cyclosilane copolymers were investigated by Fan Fang in the Klausen group. The full structural characterization has been performed and published in the following reference: Fang, F.; Jiang, Q.; Klausen, R. S. J. Am. Chem. Soc. 2022, 144, 17, 7834-7843.

All DFT calculations were performed using the Gaussian 09 package. ${ }^{5}$ Geometries were optimized using the B3LYP functional with the $6-31 \mathrm{G}(\mathrm{d})$ basis set employing tight optimization parameters and an ultrafine integration grid. No symmetry restrictions were applied to geometry optimizations. All optimized structures possess zero imaginary frequencies. TD-DFT calculations were performed using the PBE0 functional with the 6$311 \mathrm{G}(\mathrm{d})$ basis set on geometries optimized with the B3LYP functional. Coordinates of optimized structures can be found in the following reference: Fang, F.; Jiang, Q.; Klausen, R. S. J. Am. Chem. Soc. 2022, 144, 17, 7834-7843.

TD-PBE0 Excitations

$\mathbf{1 , 3 S i} \mathbf{6}_{\mathbf{-}} \mathbf{1 , 3 S i} \mathbf{6}_{\mathbf{-}}^{\mathbf{- 1 , 3 S i}} \mathbf{6}_{\mathbf{-}}^{\mathbf{1}, 3 \mathrm{Si}_{6}}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.3346 \mathrm{eV} 286.03 \mathrm{~nm} \mathrm{f}=1.7691<\mathrm{S} * * 2>=0.000$ 317 -> $318 \quad 0.68139$
Excited State 2: Singlet-?Sym $4.5953 \mathrm{eV} 269.80 \mathrm{~nm} \mathrm{f}=0.0276<\mathrm{S}^{*}{ }^{*} 2>=0.000$ 315 -> $318 \quad 0.63059$ $316->318 \quad-0.16255$
Excited State 3: Singlet-?Sym $4.6863 \mathrm{eV} 264.57 \mathrm{~nm} \mathrm{f}=0.1182<\mathrm{S} * * 2>=0.000$ $314->318 \quad 0.13027$
$315->318 \quad 0.18426$
$316->318 \quad 0.61809$
317 -> 3190.14426

$\mathbf{1 , 3 S i} \mathbf{6}_{\mathbf{6}} \mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } } \mathbf { - 1 , 3 S i }} \mathbf{6}_{\mathbf{-}}^{\mathbf{1}, \mathbf{3 S i}} \mathbf{6}_{\mathbf{6}}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.4377 \mathrm{eV} 279.39 \mathrm{~nm} \mathrm{f}=1.4018<\mathrm{S} * * 2>=0.000$ 316 -> $318-0.13408$
$317->318 \quad 0.65928$
317 -> 3190.10340

Excited State 2: Singlet-?Sym $4.6895 \mathrm{eV} 264.39 \mathrm{~nm} \mathrm{f}=0.0067<\mathrm{S}^{* *} 2>=0.000$ $313->318 \quad 0.23880$
$315->318 \quad 0.60298$
$317->320 \quad-0.11206$
Excited State 3: Singlet-?Sym $4.7443 \mathrm{eV} 261.33 \mathrm{~nm} \mathrm{f}=0.5212<\mathrm{S}^{* *} 2>=0.000$
316 -> 3190.27206
$317->318 \quad-0.12014$
$317->3190.60602$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.7037 \mathrm{eV} 263.59 \mathrm{~nm} \mathrm{f}=0.3719<\mathrm{S} * * 2>=0.000$ $317->318 \quad 0.56536$
$317->320-0.36887$

Excited State	$2:$	Singlet-?Sym	$4.7246 \mathrm{eV} 262.42 \mathrm{~nm} \mathrm{f}=1.8032<\mathrm{S} * * 2>=0.000$
$316->319$	0.30821		
$317->318$	0.32362		
$317->320$	0.50746		
Excited State	Singlet-?Sym	4.7619 eV	$260.37 \mathrm{~nm} \mathrm{f}=0.0103<\mathrm{S} * * 2>=0.000$
$316->318$	0.25770		
$316->320$	0.15420		
$317->318$	-0.10938		
$317->319$	0.59700		

$\mathbf{1 , 4 S i} \mathbf{6}_{\mathbf{6}} \mathbf{1 , 3 S i} \mathbf{6}_{\mathbf{-}} \mathbf{1 , 3 S i} \mathbf{6}_{\mathbf{6}} \mathbf{- 1 , 3 S i}{ }_{6}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.3667 \mathrm{eV} 283.93 \mathrm{~nm} \mathrm{f}=1.7003<\mathrm{S} * * 2>=0.000$ 317 -> 3180.67818
Excited State 2: Singlet-?Sym $4.5855 \mathrm{eV} 270.38 \mathrm{~nm} \mathrm{f}=0.0525<\mathrm{S} * * 2>=0.000$ 314 -> $318 \quad 0.31666$
$315->318 \quad 0.47311$ $316->318 \quad-0.31374$
Excited State 3: Singlet-?Sym $4.6416 \mathrm{eV} 267.12 \mathrm{~nm} \mathrm{f}=0.0742<\mathrm{S} * * 2>=0.000$ 314 -> $318 \quad 0.21169$
$315->318 \quad 0.24036$
$315->3190.11962$
$316->318 \quad 0.56413$
$317->319-0.13531$

$\mathbf{1 , 4 S i} \mathbf{6}_{\mathbf{6}} \mathbf{- 1 , 3 S i _ { \mathbf { 6 } } \mathbf { - 1 , 3 S i }} \mathbf{6}_{\mathbf{6}}^{\mathbf{- 1}, 4 \mathbf{S i}_{\mathbf{6}}}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym 4.3526 eV 284.85 nm f=1.7297 <S**2>=0.000 317 -> 3180.67903
Excited State 2: Singlet-?Sym $4.5813 \mathrm{eV} 270.63 \mathrm{~nm} \mathrm{f}=0.0464<\mathrm{S} * * 2>=0.000$ 315 -> $318 \quad 0.63590$
Excited State 3: Singlet-?Sym $4.6295 \mathrm{eV} 267.81 \mathrm{~nm} \mathrm{f}=0.0710<\mathrm{S} * * 2>=0.000$

$$
\begin{array}{rr}
313->318 & 0.10926 \\
316->318 & 0.63839 \\
317->319 & -0.15339
\end{array}
$$

$\mathbf{1 , 4 S i} \mathbf{6}_{\mathbf{6}} \mathbf{1 , 3 S i} \mathbf{w}_{\mathbf{6}} \mathbf{- 1 , 4 \mathbf { S i } _ { \mathbf { 6 } } \mathbf { - 1 , 3 S i }} \mathbf{6}_{\mathbf{6}}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.4291 \mathrm{eV} 279.93 \mathrm{~nm} \mathrm{f}=1.4209<\mathrm{S}^{* *} 2>=0.000$ $316->318 \quad 0.14897$
$317->318 \quad 0.65818$
317 -> $319 \quad 0.10164$
Excited State 2: Singlet-?Sym $4.6653 \mathrm{eV} 265.76 \mathrm{~nm} \mathrm{f}=0.0052<\mathrm{S} * * 2>=0.000$ $313->318 \quad-0.17272$
$315->318 \quad 0.60721$
$316->318-0.16669$
317 -> $318 \quad 0.10160$
Excited State 3: Singlet-?Sym $4.7452 \mathrm{eV} 261.28 \mathrm{~nm} \mathrm{f}=0.1950<\mathrm{S}^{* *} 2>=0.000$ $314->318 \quad-0.32208$
$315->318 \quad 0.17339$
$316->318 \quad 0.49159$
$316->319 \quad 0.16061$
317 -> $319-0.20475$

$\mathbf{1 , 4 S i} \mathbf{6}_{\mathbf{6}} \mathbf{1 , 4 \mathbf { S i } _ { \mathbf { 6 } } ^ { \mathbf { - 1 } }} \mathbf{- 1 , 3 \mathrm { Si } _ { \mathbf { 6 } } \mathbf { - 1 , 3 S i }} \mathbf{6}_{\mathbf{6}}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.4470 \mathrm{eV} 278.80 \mathrm{~nm} \mathrm{f}=1.5229<\mathrm{S}^{*}{ }^{*} 2>=0.000$ $316->318 \quad-0.15323$
$317->318 \quad 0.65658$
$317->319 \quad-0.11994$
Excited State 2: Singlet-?Sym $4.7324 \mathrm{eV} 261.99 \mathrm{~nm} \mathrm{f}=0.4618<\mathrm{S}^{*} * 2>=0.000$ 315 -> $318 \quad-0.12058$
$316->318 \quad 0.21053$
$316->3190.21840$
$317->318 \quad 0.17126$
317 -> 3190.56356
Excited State 3: Singlet-?Sym $4.7347 \mathrm{eV} 261.86 \mathrm{~nm} \mathrm{f}=0.1131<\mathrm{S}^{* *} 2>=0.000$
$314->318 \quad 0.25961$
$315->318 \quad 0.45660$
$316->318-0.27300$
$316->3190.15835$
317 -> 3190.22227
$317->320-0.10428$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.4814 \mathrm{eV} 276.67 \mathrm{~nm} \mathrm{f}=1.3964<$ S**2>=0.000 314 -> $318-0.11938$

$316->318$	0.10949	
$317->318$	0.65682	
317 -> 319	-0.12048	
Excited State 2:	Singlet-?Sym	$4.6802 \mathrm{eV} 264.91 \mathrm{~nm} \mathrm{f}=0.0206<\mathrm{S}^{*} 2>=0.000$
$313->318$	0.10569	
$314->318$	0.30214	
$315->318$	0.44830	
$316->318$	0.32739	
317 -> 320	0.10082	
Excited State 3:	Singlet-?Sym	$4.7386 \mathrm{eV} 261.65 \mathrm{~nm} \mathrm{f}=0.4758<\mathrm{S} * * 2>=0.000$
314 -> 319	0.10090	
$315->318$	0.13201	
$316->318$	-0.32264	
$316->319$	-0.20409	
317 -> 318	0.14972	
$317->319$	0.51808	

$\mathbf{1 , 4 S i} \mathbf{6}_{\mathbf{6}} \mathbf{- 1 , 4 \mathbf { S i } _ { \mathbf { 6 } } \mathbf { - 1 , 4 S i }} \mathbf{6}_{\mathbf{6}}^{\mathbf{- 1}, \mathbf{3 S i}} \mathbf{6}_{\mathbf{6}}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.7033 \mathrm{eV} 263.61 \mathrm{~nm} \mathrm{f}=0.4006<\mathrm{S} * * 2>=0.000$
317 -> $318 \quad 0.56394$
$317->320 \quad 0.37783$
Excited State 2: Singlet-?Sym 4.7261 eV 262.34 nm f=1.7960 $<$ S**2>=0.000 315 -> $319 \quad 0.10851$ $316->319-0.28823$ $317->318-0.33315$ 317 -> $320 \quad 0.50344$
Excited State 3: Singlet-?Sym $4.7633 \mathrm{eV} 260.29 \mathrm{~nm} \mathrm{f}=0.0664<\mathrm{S}^{*} * 2>=0.000$ 316 -> 3180.25409 $316->320-0.15433$ $317->3190.60162$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.7034 \mathrm{eV} 263.60 \mathrm{~nm} \mathrm{f}=0.7834<$ S**2>=0.000 $312->318 \quad-0.10311$
$317->318 \quad 0.49851$
317 -> $320 \quad 0.45426$
Excited State 2: Singlet-?Sym 4.7256 eV 262.37 nm f=1.4417 <S**2>=0.000 316 -> 3190.31182 317 -> $318 \quad 0.43807$
Excited State 3: Singlet-?Sym $4.7643 \mathrm{eV} 260.24 \mathrm{~nm} \mathrm{f}=0.0008<\mathrm{S} * * 2>=0.000$ 316 -> $318 \quad 0.25707$ $316->320-0.17073$ $317->3190.60358$

lin-($\left.\mathbf{1 , 4} \mathbf{S i}_{6}\right)_{6}$

Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.6694 \mathrm{eV} 265.52 \mathrm{~nm} \mathrm{f}=2.7381<\mathrm{S} * * 2>=0.000$ $469->477-0.10422$
$474->477 \quad 0.17567$
$474->479 \quad 0.29107$
$475->476 \quad-0.34861$
475 -> $480 \quad 0.44405$
Excited State 2: Singlet-?Sym $4.6708 \mathrm{eV} 265.44 \mathrm{~nm} \mathrm{f}=1.2688<\mathrm{S} * * 2>=0.000$ 473 -> $478 \quad 0.17712$ $474->477-0.10062$
$474->479 \quad 0.10824$
475 -> $476 \quad 0.49892$
$475->478 \quad 0.20151$
475 -> $480 \quad 0.31892$
Excited State 3: Singlet-?Sym $4.7048 \mathrm{eV} 263.53 \mathrm{~nm} \mathrm{f}=0.0448<\mathrm{S}^{* *} 2>=0.000$ $474->476 \quad-0.29905$
$474->480 \quad 0.16260$
$475->477 \quad 0.46710$
475 -> 4790.31614
lin- $\left(\mathbf{1 , 3 S i} \mathbf{i}_{6}{ }_{6}\right.$
Excitation energies and oscillator strengths:
Excited State 1: Singlet-?Sym $4.1418 \mathrm{eV} 299.35 \mathrm{~nm} \mathrm{f}=2.8090<$ S**2>=0.000 474 -> $477 \quad 0.14937$
475 -> 4760.66597
Excited State 2: Singlet-?Sym $4.4803 \mathrm{eV} 276.73 \mathrm{~nm} \mathrm{f}=0.1542<\mathrm{S} * * 2>=0.000$
473 -> 4770.11913
$474->476 \quad 0.55633$
$475->477 \quad 0.35760$
Excited State 3: Singlet-?Sym $4.5681 \mathrm{eV} 271.41 \mathrm{~nm} \mathrm{f}=0.0044<\mathrm{S} * * 2>=0.000$ $470->476 \quad-0.17234$
$471->476 \quad-0.23069$
$471->477 \quad-0.22515$
$472->476 \quad 0.50680$
472 -> $477 \quad 0.13500$

7.4 Highly selective addition of cyclosilanes to alkynes enabling new conjugated materials

Hydrosilation of acetylenes with $\mathbf{1 , 4 S i} \mathbf{W}_{6}$

Synthesis of 4.1a

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (1.0 equiv., $1.71 \mathrm{mmol}, 0.500 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.342 \mathrm{mmol}, 0.325$ g). $\mathrm{DCM}(10 \mathrm{~mL})$ was added to dissolve the reagents. Phenylacetylene (2.5 equiv., 4.27 $\mathrm{mmol}, 0.47 \mathrm{~mL}$) was added dropwise by syringe. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was concentrated under vacuum, transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield 4.1a (dr 65:35 trans:cis) as a white solid ($0.756 \mathrm{~g}, 89 \%$).

Isolation of trans-4.1a: In a scintillation vial, 0.500 g of 4.1a (dr 65:35 trans:cis) was dissolved in 3 mL of DCM and layered with 17 mL of dry methanol. The solution was allowed to sit overnight in a glove box and colorless crystals were found at the bottom. The mixture was filtered through a fritted funnel, washed with 5 mL of dry methanol and dried under vacuum. trans-4.1a ($0.249 \mathrm{~g}, 77 \%$) was collected as a colorless crystal. X-ray quality crystals were grown by liquid-liquid diffusion using THF as the solvent and methanol as the antisolvent.

Enrichment of cis-1a: The filtrate was dried under vacuum yielding a white solid. The solid was determined as enriched cis-4.1a (dr 25:75 trans:cis) through ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Tabulated Characterization Data for 1a

Synthesis of 4.1b

In a glove box, an oven-dried 2-dram vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}(1.0$ equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g})$ and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651 \mathrm{~g})$. DCM (1 mL) was added to dissolve the reagents. 4-ethynylbromobenzene (2.5 equiv., $0.854 \mathrm{mmol}, 0.155 \mathrm{~g}$) was dissolved by 0.5 mL of DCM in a 1 -dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield $\mathbf{4 . 1 b}$ (dr 65:35 trans:cis) as a white solid ($0.179 \mathrm{~g}, 80 \%$).

Isolation of trans-4.1b: In a scintillation vial, 0.500 g of $\mathbf{4 . 1 b}$ (dr 65:35 trans:cis) was dissolved in 3 mL of DCM and layered with 17 mL of dry methanol. The solution was allowed to sit overnight in a glove box and colorless crystals were found at the bottom. The
mixture was filtered through a fritted funnel, washed with 5 mL of dry methanol and dried under vacuum. trans-4.1b ($0.233 \mathrm{~g}, 72 \%$) was collected as a colorless crystal.

Tabulated Characterization Data for 4.1b

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1b: $7.22(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H), 7.01(\mathrm{~d}, J=$ $18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.93 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H$), 6.50 (dd, $J=18.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.11 (d, $J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.4\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.38\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right)$. cis-4.1b: 7.22 (t, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H$), 7.03 (d, $J=$ $18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.93 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H$), 6.48 (dd, $J=18.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.11 (d, $J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.40\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.37\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.
$\delta_{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1b: 146.11 (vinyl), 137.55 (Ar), 132.05 (Ar), 122.24 (Ar), 121.19 (vinyl), $-4.58\left(-\mathrm{CH}_{3}\right),-4.59$ (CH_{3}). cis-4.1b: 146.19 (vinyl), 137.49 (Ar), 132.08 (Ar), 122.29 (Ar), 121.59 (vinyl), $-4.28\left(-\mathrm{CH}_{3}\right),-4.43$ (CH_{3}).
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1b: $-40.10\left(\mathrm{SiMe}_{2}\right),-64.84(\mathrm{SiH})$. cis-4.1b: -40.41 (SiMe_{2}), -63.00 (SiH).
HRMS	Calcd. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{Si}_{6}$: 651.9956 . Found: 651.9965.
IR (cm^{-1})	2068 (SiH).
$\lambda_{\text {max }}($ pentane $) / \mathrm{nm}$	trans-4.1b: $296\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 49300\right)$

Synthesis of 4.1c

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (1.0 equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651$ g). $\mathrm{DCM}(1 \mathrm{~mL})$ was added to dissolve the reagents. 4-ethynylchlorobenzene (2.5 equiv., $0.854 \mathrm{mmol}, 0.117 \mathrm{~g}$) was dissolved by 0.5 mL of DCM in a 1 -dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield 4.1 c (dr 62:38 trans:cis) as a white solid ($0.145 \mathrm{~g}, 75 \%$).

Tabulated Characterization Data for 4.1c

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1c: $7.10-7.03(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}$ and vinyl), $7.03-$ 6.97 (m, 4H, ArH), 6.49 (dd, $J=18.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.13 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H$), 0.41 (s, $12 \mathrm{H},-$ $\left.\mathrm{CH}_{3}\right), 0.39\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right)$. cis-4.1c: $7.10-7.03$ (m, $6 \mathrm{H}, \mathrm{ArH}$ and vinyl), $7.03-$ 6.97 (m, 4H, ArH), 6.47 (dd, $J=18.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.18 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.40(\mathrm{~s}, 12 \mathrm{H},-$ CH_{3}), 0.38 (s, 12H, $-\mathrm{CH}_{3}$).
$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1c: 146.05 (vinyl), 137.17 (Ar), 134.00 (Ar), 129.12 (Ar), 129.09 (vinyl), -4.57 (-CH3), -4.59 (CH_{3}). cis-4.1c: 146.05 (vinyl), 137.17 (Ar), 134.00 (Ar), 129.09 (Ar), 120.99 (vinyl), -4.28 (-CH3), -4.43 (CH_{3}).
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1c: -40.09 (SiMe_{2}), -64.93 (SiH). cis-4.1c: -40.39 (SiMe_{2}), -63.06 (SiH).
HRMS	Calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Si}_{6}$: 568.0907. Found: 568.0932.
IR (cm^{-1})	2061 (SiH).
$\lambda_{\text {max }}$ (pentane) $/ \mathrm{nm}$	290 ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 47400$)

Synthesis of 4.1d

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (1.0 equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651$ g). $\mathrm{DCM}(1 \mathrm{~mL})$ was added to dissolve the reagents. 4-ethynylmethylthiobenzene (2.5 equiv., $0.854 \mathrm{mmol}, 0.127 \mathrm{~g}$) was dissolved by 0.5 mL of DCM in a 1 -dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 95% hexanes $/ 5 \%$ ethyl acetate to yield 4.1d (dr 66:34 trans:cis) as a white solid ($0.167 \mathrm{~g}, 83 \%$).

Tabulated Characterization Data for 4.1d

$$
\begin{array}{ll}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) & \begin{array}{l}
\text { trans-4.1d: } 7.24-7.17(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H \text { and vinyl }), 7.07 \\
(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H), 6.57(\mathrm{dd}, J=18.7,5.2 \mathrm{~Hz}, \\
\\
\\
2 \mathrm{H}, \text { vinyl }), 4.20(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 1.98(\mathrm{~s}, 6 \mathrm{H},- \\
\\
\mathrm{S} M e), 0.44(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}), 0.41(\mathrm{~s}, 12 \mathrm{H},- \\
\\
\left.\mathrm{CH} H_{3}\right) .
\end{array} \\
& \text { cis-4.1d: } 7.24-7.17(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH} \text { and vinyl), } 7.04(\mathrm{~d}, \\
& J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.55(\mathrm{dd}, J=18.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}, \\
& \text { vinyl), } 4.24(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 1.98(\mathrm{~s}, 6 \mathrm{H},- \\
& \mathrm{SMe}), 0.45(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}), 0.40\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .
\end{array}
$$

$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1d: 146.95 (vinyl), $139.26(\mathrm{Ar}), 135.74(\mathrm{Ar})$,
	$128.87(\mathrm{Ar}), 127.11(\mathrm{Ar}), 126.88(\mathrm{Ar}), 118.98$ (vinyl),
	$15.31(-\mathrm{SMe}),-4.50\left(-\mathrm{CH}_{3}\right),-4.52\left(-\mathrm{CH}_{3}\right)$.
	cis-4.1d: $147.03(\mathrm{vinyl}), 139.30(\mathrm{Ar}), 135.65(\mathrm{Ar})$,
	$128.79(\mathrm{Ar}), 127.06(\mathrm{Ar}), 126.84(\mathrm{Ar}), 119.38($ vinyl $)$,
	$15.26(-\mathrm{SMe}),-4.22\left(-\mathrm{CH}_{3}\right),-4.36\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{Si}}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1d: $-40.15\left(\mathrm{SiMe}_{2}\right),-64.74(\mathrm{SiH})$.
	cis-4.1d: $-40.50\left(\mathrm{SiMe}_{2}\right),-62.87(\mathrm{SiH})$.
HRMS	Calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~S}_{2} \mathrm{Si}_{6}: 588.1500$. Found: 588.1492.
$\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$	$2077(\mathrm{SiH})$.

Synthesis of 4.1e

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (1.0 equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651$ g). $\mathrm{DCM}(2 \mathrm{~mL})$ was added to dissolve the reagents. 4-ethynylanisole (2.5 equiv., 0.854 $\mathrm{mmol}, 0.11 \mathrm{~mL}$) was added dropwise into the reaction mixture by syringe. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 90% hexanes $/ 10 \%$ ethyl acetate to yield 4.1e (dr 63:37 trans:cis) as a white solid (0.156 g , 82%). X-ray quality crystals were grown by liquid-liquid diffusion using THF as the solvent and methanol as the antisolvent.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1e: $7.42-7.29$ (m, 2H, $\operatorname{Ar} H$), 7.25 (d, $J=18.7$
	$\mathrm{Hz}, 2 \mathrm{H}$, vinyl), $7.08-7.01$ (m, 2H, ArH), 6.73 (t, $J=$
	$8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H$), 6.49 (dd, $J=18.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.22 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H$), 3.28 (s, 6 H , -
	$\mathrm{OMe}), 0.46\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.43\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right)$. cis-4.1e: $7.42-7.29$ (m, 2H, ArH), 7.24 (d, $J=18.7$
	$\mathrm{Hz}, 2 \mathrm{H}$, vinyl), $7.08-7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.73$ (t, $J=$
	$\begin{aligned} & 8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H), 6.47(\mathrm{dd}, J=18.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}, \\ & \text { vinyl), } 4.27(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 3.28(\mathrm{~s}, 6 \mathrm{H},- \end{aligned}$
	$\mathrm{OMe}), 0.47\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.41\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .$
$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1e: 160.25 (vinyl), 147.18 (Ar), 132.03 (Ar), 128.86 (Ar), 127.98 ($A r$), 116.61 (Ar), 114.40 (vinyl),
	$54.83(-\mathrm{OMe}),-4.46\left(-\mathrm{CH}_{3}\right),-4.49\left(-\mathrm{CH}_{3}\right) .$
	$c i s-4.1 \mathrm{e}: 160.25 \text { (vinyl), } 147.18(A r), 131.97(A r) \text {, }$
	128.79 (Ar), 127.94 ($A r$), 117.02 ($A r$), 114.42 (vinyl), $54.81(-\mathrm{OMe}),-4.19\left(-\mathrm{CH}_{3}\right),-4.34\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1e: -40.24 ($\left.\mathrm{SiMe}_{2}\right)$, -64.84 (SiH).
	cis-4.1e: -40.46 (SiMe $)$, -63.01(SiH).
HRMS	Calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{6}$: 556.1957. Found: 556.1966.
IR (cm^{-1})	2064 (SiH).
$\lambda_{\text {max }}$ (pentane) $/ \mathrm{nm}$	trans-4.1e: $292\left(8 / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 53000\right)$

Synthesis of 4.1f

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$
(1.0 equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651$
g). $\mathrm{DCM}(1 \mathrm{~mL})$ was added to dissolve the reagents. 4-ethynyl-N,N-dimethylanilline (2.5
equiv., $0.854 \mathrm{mmol}, 0.124 \mathrm{~g}$) was dissolved by 0.5 mL of DCM in a 1 -dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 85% hexanes/15\% ethyl acetate to yield 4.1 f (dr 62:38 trans:cis) as a white solid ($0.137 \mathrm{~g}, 69 \%$). The NMRs were collected at $50^{\circ} \mathrm{C}$ for the poor solubility of the trans isomer at room temperature.

Tabulated Characterization Data for $4.1 f$

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1f: $7.44-7.37$ (m, 4H, ArH), 7.30 (d, $J=18.6$
	$\mathrm{Hz}, 2 \mathrm{H}$, vinyl), 6.53 (t, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H), 6.44$ (dd, $J=18.6,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.25 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Si} H$), 2.52 ($\mathrm{s}, 12 \mathrm{H},-\mathrm{N} M e_{2}$), 0.47 ($\mathrm{s}, 12 \mathrm{H},-\mathrm{CH}_{3}$), 0.45 (s, $12 \mathrm{H},-\mathrm{CH}_{3}$).
	cis-4.1f: $7.44-7.37$ (m, 4H, ArH), 7.28 (d, $J=18.6$
	$\mathrm{Hz}, 2 \mathrm{H}$, vinyl), 6.53 (t, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H$), 6.43 (dd, $J=18.6,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.28 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Si} H$), $2.52\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{N} M e_{2}\right), 0.50\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.43$ ($\mathrm{s}, 12 \mathrm{H},-\mathrm{CH}_{3}$).
$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1f: 150.34 (vinyl), 147.57 ($A r$), 113.30 (Ar), 112.88 (Ar), 112.29 (vinyl), 39.64 (-NMe $)_{2}$, -4.77 ($\left.\mathrm{CH}_{3}\right)$, $-4.81\left(-\mathrm{CH}_{3}\right)$. cis-4.1f: 150.34 (vinyl), 147.62 ($A r$), 112.88 (Ar), 112.27 (Ar), $39.64(-\mathrm{NMe} 2),-4.52\left(-\mathrm{CH}_{3}\right),-4.66(-$ CH_{3}).
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1f: -40.30 (SiMe_{2}), -64.48 (SiH). cis-4.1f: -40.45 (SiMe_{2}), -62.86 (SiH).
HRMS	Calcd. for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{Si}_{6}$: 582.2590. Found: 582.2593.
IR (cm^{-1})	2051(SiH).

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (1.0 equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651$ g). $\mathrm{DCM}(1 \mathrm{~mL})$ was added to dissolve the reagents. 4-ethynyltrifluoromethylbenzene (2.5 equiv., $0.854 \mathrm{mmol}, 0.12 \mathrm{~mL}$) was added dropwise into the reaction mixture by syringe. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield $\mathbf{4 . 1 g}$ (dr $65: 35$ trans:cis) as a white solid ($0.154 \mathrm{~g}, 71 \%$).

Tabulated Characterization Data for 4.1 g

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) & \text { trans-4.1g: } 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.12-7.05(\mathrm{~m}, \\
& 6 \mathrm{H}, \mathrm{Ar} H \text { and vinyl), 6.61 }(\mathrm{dd}, J=18.5,5.4 \mathrm{~Hz}, 2 \mathrm{H}, \\
& \text { vinyl), } 4.14(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.42(\mathrm{~s}, 12 \mathrm{H},- \\
& \left.\mathrm{CH})_{3}\right), 0.40(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}) . \\
& \text { cis-4.1g: } 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.12-7.05(\mathrm{~m}, 6 \mathrm{H}, \\
& \mathrm{Ar} H \text { and vinyl), } 6.60(\mathrm{dd}, J=18.7,5.4 \mathrm{~Hz}, 2 \mathrm{H}, \text { vinyl), } \\
& 4.18(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.42\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH} H_{3}\right), \\
& 0.39\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .
\end{aligned}
$$

$\delta_{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & \text { trans-4.1g: } 145.80 \text { (vinyl), } 141.71(A r), 126.72(A r) \text {, } \\ & 125.89(A r), 124.00 \text { (vinyl), }-4.61\left(-C H_{3}\right) . \\ & \text { cis- } \mathbf{4 . 1 g :} 145.89 \text { (vinyl), } 141.71(A r), 126.65(A r) \text {, } \\ & 125.86(A r), 124.36 \text { (vinyl), }-4.33\left(-\mathrm{CH}_{3}\right),-4.48(- \\ & \left.\mathrm{CH}_{3}\right) . \end{aligned}$
$\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & \text { trans-4.1g: -62.18 }\left(-C F_{3}\right) . \\ & \text { cis-4.1g: -62.24 }\left(-\mathrm{C} F_{3}\right) . \end{aligned}$
$\delta_{\text {si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & \text { trans-4.1g: -39.98 (SiMe }),-64.54(\mathrm{SiH}) . \\ & \text { cis-4.1g: }-40.31\left(\mathrm{SiMe}_{2}\right),-62.73(\mathrm{SiH}) . \end{aligned}$
HRMS	Calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~F}_{6} \mathrm{Si}_{6}$: 632.1493. Found: 632.1499 .
IR (cm^{-1})	2082 (SiH).
$\lambda_{\text {max }}($ pentane $) / \mathrm{nm}$	294 ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 40000$)

Synthesis of 4.1h

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (1.0 equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g})$ and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651$ g). $\mathrm{DCM}(1 \mathrm{~mL})$ was added to dissolve the reagents. Methyl 4-ethynylbenzoate (2.5 equiv., $0.854 \mathrm{mmol}, 0.137 \mathrm{~g}$) was dissolved by 0.5 mL of DCM in a 1 -dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was
subjected to automated column chromatography with 85% hexanes/15\% ethyl acetate to yield 4.1h (dr 60:40 trans:cis) as a white solid ($0.168 \mathrm{~g}, 80 \%$).

Tabulated Characterization Data for 4.1h

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1h: $8.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H), 7.24(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.15 (d, $J=18.8 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.68 (dd, $J=18.8,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.13 (d, $J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Si} H), 3.50(\mathrm{~s}, 6 \mathrm{H},-\mathrm{COOMe}), 0.41(\mathrm{~s}, 12 \mathrm{H},-$ CH_{3}), 0.37 (s, $12 \mathrm{H},-\mathrm{CH}_{3}$). cis-4.1h: $8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.24(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H$), 7.15 (d, $J=18.8 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.65 (dd, $J=18.8,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.13 (d, $J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Si} H), 3.50(\mathrm{~s}, 6 \mathrm{H},-\mathrm{COOMe}), 0.39(\mathrm{~s}, 12 \mathrm{H},-$ CH_{3}), 0.37 (s, $12 \mathrm{H},-\mathrm{CH}_{3}$).
$\delta_{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1h: $166.45(\mathrm{C}=\mathrm{O})$, 146.46 (vinyl), 142.51 (Ar), $130.46(A r), 130.20(A r), 126.47(A r), 124.30$ (vinyl), 51.64 (-COOMe), -4.59 (-CH3), -4.63 (-CH3). cis-4.1h: 166.41 ($C=0$), 146.37 (vinyl), 142.57 ($A r$), $130.44(A r), 130.18(A r), 126.55(A r), 123.91$ (vinyl), $51.64(-\mathrm{COOMe}),-4.29\left(-\mathrm{CH}_{3}\right),-4.45\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1h: -39.88 (SiMe_{2}), -64.86 (SiH). cis-4.1h: -40.29 (SiMe $),-62.90(\mathrm{SiH})$.
HRMS	Calcd. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{6}$: 612.1855 . Found: 612.1843 .
IR (cm^{-1})	1718 ($\mathrm{C}=\mathrm{O}$), 2073 (SiH).
$\lambda_{\text {max }}$ (pentane) $/ \mathrm{nm}$	$308\left(8 / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 43100\right)$

Synthesis of 4.1i

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{6}$
(1.0 equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651$
g). $\mathrm{DCM}(1 \mathrm{~mL}$) was added to dissolve the reagents. 3-ethynylthiophene (2.5 equiv., 0.854 $\mathrm{mmol}, 0.092 \mathrm{~g}$) was diluted by 0.5 mL of DCM in a 1-dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 30 minutes at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield $\mathbf{4 . 1 i}(\mathrm{dr}$ 63:37 trans:cis) as a white solid ($0.151 \mathrm{~g}, 87 \%$).

Tabulated Characterization Data for 4.1i

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1i: 7.14 (d, $J=18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 7.06 (dt, J $=4.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), $6.79-6.74(\mathrm{~m}, 4 \mathrm{H}$, thienyl), 6.33 (dd, $J=18.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.11 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.39\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.37(\mathrm{~s}$, $12 \mathrm{H},-\mathrm{CH}_{3}$). cis-4.1i: 7.12 (d, $J=18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 7.06 (dt, $J=$ $4.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), $6.79-6.74$ (m, 4H, thienyl), 6.31 (dd, $J=18.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 4.16 (d, $J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.39\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.36(\mathrm{~s}, 12 \mathrm{H},-$ CH_{3}).
$\delta_{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1i: 142.48 (vinyl), 141.38 (thienyl), 126.14 (thienyl), 125.05 (thienyl), 122.83 (thienyl), 119.18 (vinyl), $-4.53\left(-\mathrm{CH}_{3}\right),-4.55\left(-\mathrm{CH}_{3}\right)$. cis-4.1i: 142.43 (vinyl), 141.45 (thienyl), 126.20 (thienyl), 124.96 (thienyl), 122.83 (thienyl), 119.61 (vinyl), -4.25 (-CH3), -4.42 (-CH3).
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1i: -40.28 (SiMe_{2}), -65.22 (SiH). cis-4.1i: -40.50 (SiMe_{2}), -63.32 (SiH).
HRMS	Calcd. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~S}_{2} \mathrm{Si}_{6}$: 508.0874. Found: 508.0871.
IR (cm^{-1})	2051, $2085(\mathrm{SiH})$.

Synthesis of 4.1j

In a glove box, an oven-dried scintillation vial with stir bar was charged with $\mathbf{1 , 4} \mathbf{S i}_{\mathbf{6}}$ (1.0 equiv., $1.708 \mathrm{mmol}, 0.500 \mathrm{~g}$) and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.342 \mathrm{mmol}, 0.325$ g). $\mathrm{DCM}(8 \mathrm{~mL})$ was added to dissolve the reagents. 2-bromo-5-ethynylthiophene (2.5 equiv., $4.269 \mathrm{mmol}, 0.799 \mathrm{~g}$) was diluted by 1 mL of DCM in a 1 -dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 1 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 30 minutes at room temperature. The solution was concentrated under vacuum, transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield $\mathbf{4 . 1 j}$ (dr 63:37 trans:cis) as a white solid ($0.849 \mathrm{~g}, 75 \%$).

Isolation of trans-4.1j: In a scintillation vial, 0.500 g of $\mathbf{4 . 1 j}$ (dr 63:37 trans:cis) was dissolved in 2 mL of DCM and layered with 18 mL of dry methanol. The solution was allowed to sit overnight in a glove box and colorless crystals were found at the bottom. The mixture was filtered through a fritted funnel, washed with 5 mL of dry methanol and dried under vacuum. trans-4.1j (dr 90:10 trans:cis) (0.270 g , 83%) was collected as a colorless crystal. X-ray quality crystals were grown by liquid-liquid diffusion using THF as the solvent and methanol as the antisolvent.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1j: 7.03 (d, $J=18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.56 (d, J $=3.8 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 6.24 (dd, $J=18.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.22 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 4.03 (d, $J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.33\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.33(\mathrm{~s}, 12 \mathrm{H},-$ CH_{3}). cis-4.1j: 7.01 (d, $J=18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.56 (d, $J=$ $3.8 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 6.22 (dd, $J=18.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.22 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 4.08 (d, $J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.35\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.32(\mathrm{~s}, 12 \mathrm{H},-$ CH_{3}).
$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.1j: 147.03 (vinyl), 138.90 (thienyl), 130.81 (thienyl), 125.90 (thienyl), 120.87 (thienyl), 112.31 (vinyl), -4.61 (-CH3), -4.72 (-CH3). cis-4.1j: 146.99 (vinyl), 138.99 (thienyl), 130.84 (thienyl), 125.92 (thienyl), 121.17 (thienyl), 112.38 (vinyl), -4.61 (-CH3), -4.72 (-CH3).
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & \text { trans-4.1j: -40.23 }\left(\mathrm{SiMe}_{2}\right),-64.37(\mathrm{SiH}) \text {. } \\ & \text { cis-4.1j: }-40.38\left(\mathrm{SiMe}_{2}\right),-62.85(\mathrm{SiH}) . \end{aligned}$
HRMS	Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~S}_{2} \mathrm{Si}_{6}$: 663.9084. Found: 663.9064.
IR (cm^{-1})	2051, 2083 (SiH).
$\lambda_{\text {max }}$ (pentane) $/ \mathrm{nm}$	trans-4.1j: $321\left(8 / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 61100\right)$
$\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm}$	trans-4.1j: $323\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 51500\right)$

Hydrosilation of acetylenes with $\mathbf{1 , 3 S i} \mathbf{i}_{6}$

Synthesis of 4.2a

In a glove box, an oven-dried 2-dram vial with stir bar was charged with $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651 \mathrm{~g})$ and $\mathrm{DCM}(1.0 \mathrm{~mL}) . \mathbf{1 , 3 S i}_{6}(1.0$ equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) was diluted by 1.0 mL of DCM added to the vial.

Phenylacetylene (2.5 equiv., $0.854 \mathrm{mmol}, 94 \mu \mathrm{~L}$) was added dropwise into the reaction mixture by micro syringe. After the addition was complete, the reaction mixture turned dark red and was stirred for 2 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield $\mathbf{4 . 2}$ (dr 55:45 trans:cis) as a white oily solid ($0.152 \mathrm{~g}, 90 \%$).

Tabulated Characterization Data for 4.2a

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.2a: 7.37-7.32 (m, 2H, ArH), 7.33-7.26 (m, $2 \mathrm{H}, \mathrm{Ar} H$), 7.26 (d, $J=18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), $7.14-7.01$ (m, 4H, $\operatorname{Ar} H$), 6.62 (dd, $J=18.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), $4.22(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.53$ (s, $\left.6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.40$ ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{3}$), $0.29\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$. cis-4.2a: 7.37-7.32 (m, 2H, ArH), 7.33 - 7.26 (m, $2 \mathrm{H}, \mathrm{Ar} H), 7.23(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), $7.14-7.01$ (m, 4H, $\operatorname{Ar} H$), 6.61 (dd, $J=18.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), $4.27(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.51\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.50$ ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$), $0.38\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.37\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$, $0.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.28\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.
$\delta_{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	trans-4.2a: 147.38 (vinyl), 138.42 (Ar), 128.53 (Ar), 126.35 (Ar), 119.75 (vinyl), -3.13 (-CH3), -4.57 ($\left.\mathrm{CH}_{3}\right)$, $-4.77\left(-\mathrm{CH}_{3}\right)$. cis-4.2a: 147.37 (vinyl), 138.51 (Ar), 128.55 (Ar), 126.32 (Ar), 119.71 (vinyl), $-2.54\left(-\mathrm{CH}_{3}\right),-3.61$ ($\left.\mathrm{CH}_{3}\right)$, $-6.43\left(-\mathrm{CH}_{3}\right),-6.52\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & \text { trans-4.2a: }-40.20\left(\mathrm{SiMe}_{2}\right),-40.67\left(\mathrm{SiMe}_{2}\right),-41.28 \\ & (\mathrm{SiMe} 2),-62.68(\mathrm{SiH}) . \\ & \text { cis-4.2a: }-40.42\left(\mathrm{SiMe}_{2}\right),-40.87\left(\mathrm{SiMe}_{2}\right),-41.09 \\ & \left(\mathrm{SiMe}_{2}\right),-62.53(\mathrm{SiH}) . \end{aligned}$
HRMS	Calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Si}_{6}$: 496.1746 . Found: 496.1763.
IR (cm^{-1})	2051, 2072 (SiH).
$\lambda_{\text {max }}$ (pentane) $/ \mathrm{nm}$	$284\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 38900\right)$

Synthesis of 4.2b

In a glove box, an oven-dried 2-dram vial with stir bar was charged with $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.2$ equiv., $0.068 \mathrm{mmol}, 0.0651 \mathrm{~g})$ and $\mathrm{DCM}(1.0 \mathrm{~mL}) . \mathbf{1 , 3 S i}_{6}(1.0$ equiv., $0.342 \mathrm{mmol}, 0.100 \mathrm{~g}$) was diluted by 0.5 mL of DCM added to the vial. 2-bromo-5-ethynylthiophene (2.5 equiv., $4.269 \mathrm{mmol}, 0.160 \mathrm{~g}$) was weighed in a 1-dram vial, diluted by 0.5 mL of DCM and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of DCM and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 30 minutes at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield $\mathbf{4 . 2 b}$ (dr 50:50 trans:cis) as a pale yellow oil ($0.188 \mathrm{~g}, 84 \%$).

Tabulated Characterization Data for 4.2b

$$
\begin{aligned}
& \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad \text { trans-4.2b: } 7.03(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 2 \mathrm{H} \text {, vinyl), } 6.57(\mathrm{~d}, J \\
& =3.8 \mathrm{~Hz}, 2 \mathrm{H} \text {, thienyl), } 6.29-6.15(\mathrm{~m}, 4 \mathrm{H} \text {, vinyl and } \\
& \text { thienyl), } 4.08 \text { (d, } J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.42(\mathrm{~s}, 6 \mathrm{H},- \\
& \mathrm{CH}_{3} \text {), } 0.33\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.26\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) . \\
& \text { cis-4.2b: } 7.00 \text { (d, } J=18.4 \mathrm{~Hz}, 2 \mathrm{H} \text {, vinyl), } 6.55 \text { (d, } J= \\
& 3.8 \mathrm{~Hz}, 2 \mathrm{H} \text {, thienyl), } 6.29-6.15(\mathrm{~m}, 4 \mathrm{H} \text {, vinyl and } \\
& \text { thienyl), } 4.11 \text { (d, } J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.41 \text { (s, } 6 \mathrm{H} \text {, }- \\
& \left.\mathrm{CH}_{3}\right), 0.31\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 0.24\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) . \\
& \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad \text { trans-4.2b: } 146.99 \text { (vinyl), } 139.01 \text { (thienyl), } 130.81 \\
& \text { (thienyl), } 125.94 \text { (thienyl), } 120.87 \text { (thienyl), } 112.36 \\
& \text { (vinyl), }-2.95\left(-\mathrm{CH}_{3}\right),-4.28\left(-\mathrm{CH}_{3}\right),-4.33\left(-\mathrm{CH}_{3}\right),-4.54 \\
& \left(-\mathrm{CH}_{3}\right),-4.56\left(-\mathrm{CH}_{3}\right) \text {. }
\end{aligned}
$$

cis-4.2b: 146.94 (vinyl), 139.14 (thienyl), 130.79 (thienyl), 126.04 (thienyl), 120.82 (thienyl), 112.49 (vinyl), $-2.37\left(-\mathrm{CH}_{3}\right),-3.35\left(-\mathrm{CH}_{3}\right),-6.08\left(-\mathrm{CH}_{3}\right),-6.15$ $\left(-\mathrm{CH}_{3}\right),-6.21\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{si}}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

HRMS
trans-4.2b: $40.30\left(\mathrm{SiMe}_{2}\right),-40.78\left(\mathrm{SiMe}_{2}\right),-41.32$
(SiMe_{2}), $-62.54(\mathrm{SiH})$.
cis-4.2b: -40.37 (SiMe 2), -40.82 (SiMe_{2}), -41.14
(SiMe_{2}), -62.33 (SiH).
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{BrS}_{2} \mathrm{Si}_{6}\left(\left[\mathrm{M}^{-79} \mathrm{Br}\right]^{+}\right)$: 584.9901 . Found: 584.9899.
IR $\left(\mathrm{cm}^{-1}\right)$ 2051, 2062 (SiH).

Hydrosilation of acetylenes with trans- $\mathrm{Si}_{10} \mathrm{H}_{4}$

Synthesis of 4.3a

In a glove box, an oven-dried 2-dram vial with stir bar was charged with trans$\mathbf{S i}_{10} \mathbf{H}_{4}(\mathrm{dr} 83: 17$ trans:cis, 1.0 equiv., $0.202 \mathrm{mmol}, 0.100 \mathrm{~g})$ and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.25$ equiv., $0.051 \mathrm{mmol}, 0.048 \mathrm{~g})$. THF (1.0 mL) was added to dissolve the reagents. Phenylacetylene (4.0 equiv., $0.832 \mathrm{mmol}, 0.085 \mathrm{~g}$) was weighed in a 1-dram vial, diluted
by 0.5 mL of THF and added dropwise to the reaction mixture by syringe. The vial was rinsed by 0.5 mL of THF , and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 24 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield 4.3 a as a white solid ($0.102 \mathrm{~g}, 73 \%$).

Tabulated Characterization Data for 4.3a

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	7.38 - 7.34 (m, 4H, ArH), 7.28 (d, $J=18.7,2 \mathrm{H}$, vinyl), $7.18-7.10(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar} H), 6.69$ (dd, $J=18.7,5.5,2 \mathrm{H}$, vinyl), 4.32 (d, $J=$ $5.5,2 \mathrm{H}, \mathrm{Si} H), 0.57\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.49\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$, $0.44\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.42\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.33(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), $0.26\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.21\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$.
$\delta_{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & 146.90 \text { (vinyl), } 138.96(\mathrm{Ar}), 128.97(\mathrm{Ar}), 126.69(\mathrm{Ar}) \text {, } \\ & 121.54 \text { (vinyl), }-3.19\left(-\mathrm{CH}_{3}\right),-4.04\left(-\mathrm{CH}_{3}\right),-4.19(- \\ & \left.\mathrm{CH}_{3}\right),-4.41\left(-\mathrm{CH}_{3}\right),-4.50\left(-\mathrm{CH}_{3}\right),-6.47\left(-\mathrm{CH}_{3}\right),-8.41 \\ & \left(-\mathrm{CH}_{3}\right) . \end{aligned}$
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & -36.12\left(\mathrm{SiMe}_{2}\right),-36.51\left(\mathrm{SiMe}_{2}\right),-39.96\left(\mathrm{SiMe}_{2}\right),-67.78 \\ & (\mathrm{SiH}),-75.89\left(\mathrm{SiSi}_{2} \mathrm{Me}\right) . \end{aligned}$
HRMS	Calcd. for $\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{Si}_{10}$: 698.2231. Found: 698.2194.
IR (cm^{-1})	2072 (SiH).
$\lambda_{\text {max }}$ (pentane) $/ \mathrm{nm}$	$\begin{aligned} & 298\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 29200\right), 294\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-}\right. \\ & \left.{ }^{-} 29500\right) \end{aligned}$

Synthesis of 4.3b

In a glove box, an oven-dried 2-dram vial with stir bar was charged with trans$\mathbf{S i}_{\mathbf{1 0}} \mathbf{H}_{4}(\mathrm{dr} 83: 17$ trans:cis, 1.0 equiv., $0.149 \mathrm{mmol}, 0.074 \mathrm{~g})$ and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(0.25$ equiv., $0.042 \mathrm{mmol}, 0.036 \mathrm{~g}$). THF (0.75 mL) was added to dissolve the reagents. 4Ethynylbromobenzene (4.0 equiv., $0.042 \mathrm{mmol}, 0.108 \mathrm{~g}$) was weighed in a 1-dram vial, diluted by 0.5 mL of THF and added dropwise to the reaction mixture by syringe. The vial was rinsed by 0.25 mL of THF, and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 24 hours at room temperature. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield $\mathbf{4 . 3 b}$ as a white solid ($0.072 \mathrm{~g}, 67 \%$).

Tabulated Characterization Data for 4.3 b

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	7.25 (d, $J=8.5,4 \mathrm{H}, \mathrm{Ar} H), 7.08$ (d, $J=18.7,2 \mathrm{H}$, vinyl), 6.95 (d, $J=8.5,4 \mathrm{H}, \mathrm{Ar} H$), 6.58 (dd, $J=18.7,5.6,2 \mathrm{H}$, vinyl), $4.29(\mathrm{~d}, J=5.6,2 \mathrm{H}, \mathrm{Si} H), 0.56\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{C} H_{3}\right)$, 0.48 (s, 6H, -CH3), $0.44\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.41$ (s, 6H, CH_{3}), $0.30\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.27\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.22(\mathrm{~s}$, $6 \mathrm{H},-\mathrm{CH} 3$).
$\delta_{\text {C }}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & 145.37 \text { (vinyl), } 137.60(\mathrm{Ar}), 132.12(\mathrm{Ar}), 122.79(\mathrm{Ar}) \text {, } \\ & 122.26 \text { (vinyl), } 1.42\left(-\mathrm{CH}_{3}\right),-3.21\left(-\mathrm{CH}_{3}\right),-4.08(- \\ & \left.\mathrm{CH}_{3}\right),-4.23\left(-\mathrm{CH}_{3}\right),-4.44\left(-\mathrm{CH}_{3}\right),-4.53\left(-\mathrm{CH}_{3}\right),-6.51 \\ & \left(-\mathrm{CH}_{3}\right),-8.43\left(-\mathrm{CH}_{3}\right) . \end{aligned}$
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{aligned} & -36.08\left(\mathrm{SiMe}_{2}\right),-36.50\left(\mathrm{SiMe}_{2}\right),-39.89\left(\mathrm{SiMe}_{2}\right),-67.54 \\ & (\mathrm{SiH}),-75.85\left(\mathrm{SiSi}_{2} \mathrm{Me}\right) . \end{aligned}$
HRMS	Calcd. for $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{Br}_{2} \mathrm{Si}_{10}$: 854.0441. Found: 854.0457.
IR (cm^{-1})	2065 (SiH).

Model reaction: Kumada cross-coupling of 4.1j and 2-bromothiophene

In a glove box, an oven-dried 2-dram vial with stir bar was charged with trans-4.1 \mathbf{j} (dr 90:10 trans:cis) (1.0 equiv., $0.075 \mathrm{mmol}, 50.0 \mathrm{mg})$ and THF (1.0 mL). $i-\mathrm{PrMgCl}(2.0$ M in THF) $(75 \mu \mathrm{~L})$ was added by micro syringe. The solution was stirred at room
temperature for 30 minutes, yielding a di-Grignard intermediate. $\mathrm{NidpppCl}_{2}$ (0.1 equiv., $0.007 \mathrm{mmol}, 4.1 \mathrm{mg}$), triphenylphosphine (0.2 equiv., $0.014 \mathrm{mmol}, 3.9 \mathrm{mg}$) and 2bromothiophene (2.5 equiv., $0.187 \mathrm{mmol}, 30.6 \mathrm{mg}$) were weighed in a 2 -dram vial with stir bar and dissolved in THF (1.0 mL). The di-Grignard solution was quickly added to the reaction mixture by pipette, yielding a dark red solution. 0.5 mL of THF was used to rinse the vial and combined with the reaction mixture. The reaction was heated to $40{ }^{\circ} \mathrm{C}$ and allowed to stir for 24 hours in a glove box. The solution turned bright orange after 16 hours.

The reaction was cooled to room temperature and quenched by 0.1 mL of dry methanol. The solution was transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated column chromatography with 100% hexanes to yield trans $\mathbf{- 4 . 1 k}$ (dr 90:10 trans:cis) as a yellow solid ($43.5 \mathrm{mg}, 86 \%$).

Tabulated Characterization Data for trans-4.1k

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	7.21 (d, $J=18.3 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), 6.98 (d, $J=3.6 \mathrm{~Hz}$, 2 H , thienyl), 6.84 (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 6.69 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), $6.65-6.58$ ($\mathrm{m}, 2 \mathrm{H}$, thienyl), 6.55 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 6.42 (dd, $J=18.4$, $5.5 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl), $4.12(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Si} H), 0.39$ ($\mathrm{s}, 12 \mathrm{H},-\mathrm{CH}_{3}$), $0.38\left(\mathrm{~s}, 12 \mathrm{H}\right.$, (thienyl) H_{3}).
$\delta_{C}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	144.00 (vinyl), 139.23 (thienyl), 137.46 (thienyl), 136.84 (thienyl), 126.49 (thienyl), 124.39 (thienyl), 124.06 (thienyl), 123.83 (thienyl), 119.74 (vinyl), -$4.93\left(-\mathrm{CH}_{3}\right),-5.01\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\text {Si }}\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	-40.09 (SiMe_{2}), -64.57 (SiH).
HRMS	Calcd. for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~S}_{4} \mathrm{Si}_{6}$: 672.0627. Found: 672.0623.
IR (cm^{-1})	2084 (SiH).
$\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm}$	367 ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 32600$)

Synthesis of P4.1 via Kumada Polycondensation

In a glove box, an oven-dried 2-dram vial with stir bar was charged with $\mathbf{4 . 1} \mathbf{j}$ (dr 90:10 trans:cis) (1.0 equiv., $0.075 \mathrm{mmol}, 50.0 \mathrm{mg}$) and THF (1.0 mL). $i-\mathrm{PrMgCl}(2.0 \mathrm{M}$ in THF) ($75 \mu \mathrm{~L}$) was added by micro syringe. The solution was stirred at room temperature for 30 minutes, yielding a di-Grignard intermediate. 0.1 mL of reaction mixture was taken as an aliquot, quenched by methanol and dried under vacuum. The clean ${ }^{1} \mathrm{H}$ NMR spectrum of the quenched intermediate showed a full conversion of the starting cyclosilane. $\mathrm{NidpppCl}_{2}$ (0.1 equiv., $0.007 \mathrm{mmol}, 4.1 \mathrm{mg}$), triphenylphosphine (0.2 equiv., 0.014 mmol , 3.9 mg) and 2,5-dibromothiophene (1.5 equiv., $0.112 \mathrm{mmol}, 27.2 \mathrm{mg}$) were weighed in a 2-dram vial with stir bar and dissolved in THF (1.0 mL). The di-Grignard solution was quickly added to the reaction mixture by pipette, yielding a dark red solution. 0.5 mL of THF was used to rinse the vial and combined with the reaction mixture. The reaction was heated to $40^{\circ} \mathrm{C}$ and allowed to stir for 24 hours in a glove box. The solution turned bright orange after 16 hours.

After 24 hours, the reaction was quenched by adding the orange solution dropwise to 15 mL of dry methanol in a scintillation vial. Formation of orange precipitates was observed. The suspension was allowed to sit overnight, and the top clear yellow solution was removed. 10 mL of methanol were added, and precipitates were washed sufficiently by shaking the vial. The suspension was allowed to sit until the precipitates settled at the bottom. The above washing procedure was repeated 2 more times. Then the suspension
was filtered through a Buchner funnel and the solid was dried under vacuum, yielding an orange powder ($36.8 \mathrm{mg}, 80 \%$).

Tabulated Characterization Data for P4.1

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	7.03 (br, 4 H , vinyl and thienyl), 6.82 (br, 2 H , thienyl), 6.14 (br, 2H, vinyl), 3.77 (br, 2H, $\mathrm{Si} H$), 0.31 (br, 24H, $-\mathrm{CH}_{3}$).
$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	144.43 (vinyl), 138.64 (thienyl), 136.55 (thienyl), 136.24 (thienyl), 130.47 (thienyl), 126.36 (thienyl), 125.34 (thieny), 124.56 (thienyl), 124.12 (thienyl), 120.92 (vinyl), 120.84 (vinyl), $-4.35\left(-\mathrm{CH}_{3}\right),-4.59(-$ $\left.\mathrm{CH}_{3}\right),-4.67\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{C}}(125.7 \mathrm{MHz}, \mathrm{CPMAS})$	141.58 (aromatic and vinyl), 134.03 (aromatic), 121.74 (aromatic and vinyl), -6.89 (-CH3).
$\delta_{\mathrm{si}}\left(79 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	-39.88 (SiMe_{2}), -64.76 (SiH).
$\delta_{\text {Si }}(99.3 \mathrm{MHz}, \mathrm{CPMAS})$	-33.23 (SiMe $)$, -62.68 (br, SiH)
IR (cm^{-1})	$2051(\mathrm{SiH})$.
$\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm}$	433 ($\varepsilon / \mathrm{dm}^{3} \mathrm{~g}^{-1} \mathrm{~cm}^{-1} 8.17$), 418 ($\varepsilon / \mathrm{dm}^{3} \mathrm{~g}^{-1} \mathrm{~cm}^{-1} 8.27$)

Synthesis of P4.2 via Kumada Polycondensation

In a glove box, an oven-dried 2-dram vial with stir bar was charged with $\mathbf{4 . 1} \mathbf{j}$ (dr 90:10 trans:cis) (1.0 equiv., $0.075 \mathrm{mmol}, 50.0 \mathrm{mg}$) and THF (1.0 mL). $i-\mathrm{PrMgCl}(2.0 \mathrm{M}$ in THF) ($75 \mu \mathrm{~L}$) was added by micro syringe. The solution was stirred at room temperature for 30 minutes, yielding a di-Grignard intermediate. $\mathrm{NidpppCl}_{2}$ (0.1 equiv., 0.007 mmol , 4.1 mg), triphenylphosphine (0.2 equiv., $0.014 \mathrm{mmol}, 3.9 \mathrm{mg}$) and trans-4.1b (1.1 equiv., $0.082 \mathrm{mmol}, 54.0 \mathrm{mg}$) were weighed in a 2-dram vial with stir bar and dissolved in THF $(1.0 \mathrm{~mL})$. The di-Grignard solution was quickly added to the reaction mixture by pipette,
yielding a dark red solution. 0.5 mL of THF was used to rinse the vial and combined with the reaction mixture. The reaction was heated to $40^{\circ} \mathrm{C}$ and allowed to stir for 24 hours in a glove box. The solution turned dark red after 16 hours.

After 24 hours, the reaction was quenched by adding the orange solution dropwise to 15 mL of dry methanol in a scintillation vial. Formation of orange precipitates was observed. The suspension was allowed to sit overnight, and the top clear yellow solution was removed. 10 mL of methanol were added, and precipitates were washed sufficiently by shaking the vial. The suspension was allowed to sit until the precipitates settled at the bottom. The above washing procedure was repeated 2 more times. Then the suspension was filtered through a Buchner funnel and the solid was dried under vacuum, yielding a yellow powder ($46.7 \mathrm{mg}, 60 \%$). Solid-state ${ }^{1} \mathrm{H} \rightarrow{ }^{29} \mathrm{Si}$ and ${ }^{13} \mathrm{C}$ CPMAS spectra were recorded for its low solubility in CDCl_{3}. The broadness of peaks arises from the residual Ni catalyst.

Tabulated Characterization Data for P4.2

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	7.70-7.65 (br, 4H, aromatic), 7.55-6.98 (br, 8H, vinyl
	and aromatic), 7.03-6.98 (br, 4 H , vinyl and aromatic), 6.47 (br, 2 H , vinyl), 6.20 (br, 2 H , vinyl), 3.77 (br, 2 H , $\mathrm{Si} H$), 3.53 (br, 2H, $\mathrm{Si} H$), 0.30 (br, 48H).
$\delta_{\mathrm{C}}(125.7 \mathrm{MHz}, \mathrm{CPMAS})$	142.32 (aromatic and vinyl), 135.80 (aromatic), 128.93 (aromatic and vinyl), 124.61 (aromatic), $-1.14\left(-\mathrm{CH}_{3}\right)$, $-6.70\left(-\mathrm{CH}_{3}\right)$.
$\delta_{\text {Si }}(99.3 \mathrm{MHz}, \mathrm{CPMAS})$	-34.10 (SiMe $)^{\text {) , -65.98 (br, } \mathrm{SiH})}$
IR (cm^{-1})	2064 (SiH).
$\lambda_{\text {max }}(\mathrm{THF}) / \mathrm{nm}$	$311\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~g}^{-1} \mathrm{~cm}^{-1} 8.93\right)$

NMR Spectra

NMR Spectra of 4.1a

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1b

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, C ${ }_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} \mathrm{~J}_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1c

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1d
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, C ${ }_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1e

${ }^{1} \mathrm{H}$ NMR Spectrum of $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} \mathrm{~J}_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1f

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of $\mathbf{4 . 1 g}$

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum ($376 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$).

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} \mathrm{~J}_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1h

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1i

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} \mathrm{~J}_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.1j

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.2a

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 a}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{2 a} .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

NMR Spectra of 4.2b

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of 4.3a

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HSQC NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\text {Si-H }}=120 \mathrm{~Hz}$.

NMR Spectra of 3b

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} \mathrm{~J}_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

NMR Spectra of 4.1k
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$.

NMR Spectra of P4.1
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, CDCl_{3})

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum $\left(79 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=120 \mathrm{~Hz}$.

${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$ CPMAS spectrum (126 MHz).

${ }^{1} \mathrm{H} \rightarrow{ }^{29} \mathrm{Si}$ CPMAS spectrum (99 MHz).

${ }^{1} \mathrm{H}$ NMR Spectrum of the quenched intermediate $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.

NMR Spectra of P4.2

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$ CPMAS spectrum (126 MHz).

${ }^{1} \mathrm{H} \rightarrow{ }^{29} \mathrm{Si}$ CPMAS spectrum (99 MHz).

Single Crystal X-Ray Crystallography

All reflection intensities were measured either at 110(2) K for $\mathbf{4 . 1 a}, \mathbf{4 . 1 e}$ and $\mathbf{4 . 1 j}$ or at 173 K for 4.3a using a SuperNova diffractometer (equipped with Atlas detector) either with Mo $K \alpha$ radiation $(\lambda=0.71073 \AA)$ for $4.1 \mathbf{a}$ and $\mathbf{4 . 1} \mathbf{j}$ or with $\mathrm{Cu} K \alpha$ radiation $(\lambda=1.54178$ \AA) for 4.1e and 4.3a under the program CrysAlisPro (Version CrysAlisPro 1.171.39.29c, Rigaku OD, 2017). The same program was used to refine the cell dimensions and for data reduction. The structure was solved with the program SHELXS-2018/3 (Sheldrick, 2018) and was refined on F^{2} with SHELXL-2018/3 (Sheldrick, 2018). Numerical absorption correction based on gaussian integration over a multifaceted crystal model was applied using CrysAlisPro for 4.1a and 4.1j. Analytical numeric absorption correction using a multifaceted crystal was applied using CrysAlisPro for 4.1e and 4.3a. The temperature of the data collection was controlled using the system Cryojet (manufactured by Oxford Instruments). The H atoms were placed at calculated positions (unless otherwise specified) using the instructions AFIX 43 or AFIX 137 with isotropic displacement parameters having values 1.2 or $1.5 U_{\text {eq }}$ of the attached C atoms.
4.1a: The H atoms attached to $\mathrm{Si} 1, \mathrm{Si} 4$ and Si 7 were found from difference Fourier maps, and their coordinates were refined freely. The structure is ordered. The asymmetric unit contains $1+1 / 2$ crystallographically independent molecules. One of the two molecules is found at one site of inversion symmetry, and thus only one half is crystallographically independent.
4.1e/4.1j: The H atom attached to Sil was found from difference Fourier map, and its coordinates were refined freely. The structure is ordered. The asymmetric unit contains $1 / 2$ crystallographically independent molecule as it is found at one site of inversion symmetry.
4.3a: Some crystals were initially flashcooled from room temperature to 110 K , but these crystals cracked and the diffraction pattern was not of great quality. Another crystal was flashcooled from room temperature to 173 K , and the diffraction pattern was consistent with that of a single crystal. The H atoms attached to $\mathrm{Si} 1, \mathrm{Si}$, Si11 and Si18 were found from difference Fourier maps, and their coordinates were refined pseudofreely using the DFIX instruction in order to keep the $\mathrm{Si}-\mathrm{H}$ within and acceptable range. The asymmetric unit contains two crystallographically independent molecules of the target compound. The C1A \rightarrow C8A fragment is disordered over two orientations, and the occupancy factor of the major component of the disorder refines to $0.836(7)$.

Crystallographic data for 4.1a

	4.1a
Crystal data	
Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Si}_{6}$
M_{r}	497.10
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	110
$a, b, c(\AA)$	$36.3350(8), 6.64881(13), 18.7594(4)$
$\left({ }^{\circ}\right)$	$95.565(2)$
$V\left(\AA^{3}\right)$	$4510.62(16)$
Z	6
Radiation type	Mo K
$\left(\mathrm{~mm}^{-1}\right)$	0.29

Crystal size (mm)	$0.54 \times 0.35 \times 0.14$
Data collection	
Diffractometer	SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
$T_{\text {min }}, T_{\text {max }}$	0.410, 1.000
No. of measured, independent and observed [$I>$ 2 (I)] reflections	44126, 10362, 8191
$R_{\text {int }}$	0.037
$(\sin /)_{\text {max }}\left(\AA^{-1}\right)$	0.650
Refinement	
$\begin{aligned} & R\left[F^{2}>2\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.040, 0.095, 1.09
No. of reflections	10362
No. of parameters	427
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\left.{ }_{3}^{3}\right) \quad \rho_{\max }, \quad \rho_{\min }\left(\mathrm{e} \AA^{-}\right.$	0.53, -0.26

Crystallographic data for 4.1e

	4.1e
Crystal data	
Chemical formula	$\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{6}$
M_{r}	557.15
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	110
$a, b, c(\AA)$	$10.3662(5), 11.2796(6), 14.0764(7)$
$)$	$91.466(4)$
$V\left(\AA^{3}\right)$	$1645.37(14)$
Z	2

Radiation type	$\mathrm{Cu} K$
$\left(\mathrm{mm}^{-1}\right)$	2.53
Crystal size (mm)	$0.09 \times 0.07 \times 0.04$
Data collection	
Diffractometer	SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Analytical CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark \& J.S. Reid. (Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
$T_{\text {min }}, T_{\text {max }}$	0.864, 0.917
No. of measured, independent and observed [$I>$ 2 (I)] reflections	9929, 2958, 2235
$R_{\text {int }}$	0.054
$(\sin /)_{\text {max }}\left(\AA^{-1}\right)$	0.598
Refinement	
$\begin{aligned} & R\left[F^{2}>2\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.051, $0.139,1.04$
No. of reflections	2958
No. of parameters	163
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\left.{ }_{3}^{3}\right) \quad \rho_{\max }, \quad \rho_{\min }\left(\mathrm{e} \AA^{-}\right.$	0.92, -0.32

Crystallographic data for 4.1 \mathbf{j}

	$\mathbf{4 . 1 j}$
Crystal data	
Chemical formula	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~S}_{2} \mathrm{Si}_{6}$
M_{r}	666.95
Crystal system, space group	Monoclinic, $C 2 / c$
Temperature (K)	110
$a, b, c(\AA)$	$22.2430(8), 8.33206(19), 18.2305(6)$

$\left({ }^{\circ}\right)$	113.890 (4)
$V\left(\AA^{3}\right)$	3089.19 (19)
Z	4
Radiation type	Mo K
$\left(\mathrm{mm}^{-1}\right)$	3.00
Crystal size (mm)	$0.33 \times 0.25 \times 0.10$
Data collection	
Diffractometer	SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian CrysAlis PRO 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
$T_{\text {min }}, T_{\text {max }}$	0.593, 1.000
No. of measured, independent and observed [$I>$ 2 (I)] reflections	22208, 3551, 3249
$R_{\text {int }}$	0.027
$(\sin /)_{\text {max }}\left(\AA^{-1}\right)$	0.650
Refinement	
$\begin{aligned} & R\left[F^{2}>2\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.020, 0.047, 1.02
No. of reflections	3551
No. of parameters	144
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\left.{ }_{3}{ }^{3}\right) \rho_{\max }, \quad \rho_{\min }(\mathrm{e} \AA-$	0.53, -0.36

Crystallographic data for 4.3a

	4.3a
Crystal data	
Chemical formula	$\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{Si}_{10}$
M_{r}	699.66
Crystal system, space group	Triclinic, $P-1$

Temperature (K)	173
$a, b, c(\AA)$	8.8909 (3), 13.8639 (4), 37.0010 (12)
, , (${ }^{\circ}$)	86.116 (2), 83.625 (2), 81.600 (2)
$V\left(\AA^{3}\right)$	4477.9 (2)
Z	4
Radiation type	$\mathrm{Cu} K$
$\left(\mathrm{mm}^{-1}\right)$	2.90
Crystal size (mm)	$0.27 \times 0.16 \times 0.06$
Data collection	
Diffractometer	SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Analytical CrysAlis PRO 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark \& J.S. Reid. (Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
$T_{\text {min }}, T_{\text {max }}$	0.555, 0.864
No. of measured, independent and observed [$I>$ 2 (I)] reflections	55290, 16062, 13297
$R_{\text {int }}$	0.046
$(\sin /)_{\text {max }}\left(\AA^{-1}\right)$	0.598
Refinement	
$\begin{aligned} & R\left[F^{2}>2 \quad\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.068, $0.193,1.10$
No. of reflections	16062
No. of parameters	834
No. of restraints	261
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\left.{ }_{3}^{3}\right) \rho_{\max }, \quad \rho_{\min }\left(\mathrm{e} \AA^{-}\right.$	0.86, -0.39

Computer programs: CrysAlis PRO 1.171.39.29c (Rigaku OD, 2017), SHELXS2018/3 (Sheldrick, 2018), SHELXL2018/3 (Sheldrick, 2018), SHELXTL v6.10 (Sheldrick, 2008).

References:

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Computational methods

All DFT calculations were performed using the Gaussian 09 package. ${ }^{5}$ Geometries were optimized using the B3LYP functional with the $6-31 \mathrm{G}(\mathrm{d})$ basis set starting from the crystal structure employing tight optimization parameters and an ultrafine integration grid. No symmetry restrictions were applied to geometry optimizations. Frequency calculations carried out at the same level of theory on fully optimized geometries showed no imaginary frequencies, confirming optimized geometries as local minima on their potential surfaces. Energy calculations carried out at the same level of theory and visualization of optimized geometries and molecular orbitals were performed using GaussView 5.0.9. Coordinates of the optimized structure can be found in the following reference: Jiang, Q.; Gittens, A. F.; Wong, S.; Siegler, M. A.; Klausen, R. S. Chem. Sci. 2022, 13, 7587-7593.

7.5 Conjugation in isomeric cyclosilane thioethers

The synthesis of cyclosilane thiolethers were investigated by Alex Gittens in the Klausen group. The full structural characterization has been performed and published in the following reference: Gittens, A. F.; Jiang, Q.; Siegler, M. A.; Klausen, R. S. Organometallics 2022, 41, 23, 3762-3769.

All the DFT calculations are performed with the Gaussian 16 package. ${ }^{6}$ Geometry optimizations and energy calculations were carried out using the B3LYP functional with the $6-311 \mathrm{G}(\mathrm{d})$ basis. No symmetry restrictions were applied to geometry optimization. Crystal structures were used as starting geometries on chair-5.1a and twist-5.2a. All optimized structures possess zero imaginary frequencies.TD-DFT calculations were caried out with the PBE0 function with the $6-311 \mathrm{G}(\mathrm{d})$ basis. Numbers of states were set as 50 . Molecular orbitals were visualized in GaussView 5.0. with isovalue $=0.02$. Coordinates of optimized structures can be found in the following reference: Gittens, A. F.; Jiang, Q.; Siegler, M. A.; Klausen, R. S. Organometallics 2022, 41, 23, 3762-3769.

TD-DFT Calculations

chair-5.1a

Excitation energies and oscillator strengths:
Excited state symmetry could not be determined.
Excited State 1: Singlet-?Sym $4.6297 \mathrm{eV} 267.80 \mathrm{~nm} \mathrm{f}=0.0000<S^{* *} 2>=0.000$ $189->193 \quad-0.15002$
$190->194 \quad 0.18336$
$190->195 \quad 0.16593$
192 ->193 0.61007
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-4573.24328628$
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited state symmetry could not be determined.
Excited State 2: Singlet-?Sym $4.6387 \mathrm{eV} 267.28 \mathrm{~nm} \mathrm{f}=0.1807<\mathrm{S}^{*} * 2>=0.000$ $189->194 \quad-0.10119$
$189->195 \quad-0.13403$
$190->193 \quad 0.40508$
$192->194 \quad 0.50638$

Excited state symmetry could not be determined.
Excited State 3: Singlet-?Sym $4.7065 \mathrm{eV} 263.43 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 189 ->193 -0.33709
$189->196 \quad-0.11381$
$190->194 \quad 0.46188$
$191->194 \quad-0.24323$
$191->195 \quad-0.10752$
$192->193 \quad-0.18380$
$192->196 \quad 0.10431$

Excited state symmetry could not be determined.
Excited State 4: \quad Singlet-?Sym $4.7172 \mathrm{eV} 262.83 \mathrm{~nm} \mathrm{f}=0.1426<\mathrm{S} * * 2>=0.000$ $190->193 \quad 0.10723$
$191->193 \quad 0.60404$
$191->196-0.11541$
$192->195 \quad 0.24518$

Excited state symmetry could not be determined.
Excited State 5: Singlet-?Sym $4.7384 \mathrm{eV} 261.66 \mathrm{~nm} \mathrm{f}=0.0000<$ S $^{*} * 2>=0.000$ $189->193 \quad-0.34014$ $189->196 \quad 0.17656$ $191->194 \quad 0.46723$ $191->195 \quad-0.19589$ $192->193-0.12929$ $192->196 \quad 0.15809$

Excited state symmetry could not be determined.
Excited State 6: Singlet-?Sym $4.7864 \mathrm{eV} 259.03 \mathrm{~nm} \mathrm{f}=0.1311<S^{*}{ }^{*} 2>=0.000$ 189 ->194 0.55263
$190->193 \quad-0.15943$
$190->196 \quad-0.14829$
$191->196 \quad 0.19314$ $192->194 \quad 0.23557$

Excited state symmetry could not be determined.
Excited State 7: Singlet-?Sym $4.8158 \mathrm{eV} 257.45 \mathrm{~nm} \mathrm{f}=0.0659<\mathrm{S}^{* *} 2>=0.000$ 189 ->194 0.23587 $189->195-0.13604$

$190->193$	0.44244
$190->196$	-0.17037
$191->193$	-0.13385
$192->194$	-0.34635
$192->195$	0.11287

Excited state symmetry could not be determined.
Excited State 8: Singlet-?Sym $4.8626 \mathrm{eV} 254.98 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S} * * 2>=0.000$ $189->193 \quad 0.37582$
$189->197 \quad-0.10369$
$190->194 \quad 0.35854$
$190->198 \quad 0.10033$
$191->194 \quad 0.32361$
$192->196 \quad 0.21050$

Excited state symmetry could not be determined.
Excited State 9: Singlet-?Sym $5.0541 \mathrm{eV} 245.31 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ $183->194 \quad 0.10019$
$188->194 \quad-0.16613$
$189->193 \quad 0.14172$
$189->196 \quad 0.20744$
$189->201 \quad 0.10107$
$190->194 \quad 0.11351$
$190->198 \quad-0.17647$
$190->202 \quad 0.13812$
$191->195 \quad-0.12265$
$191->199 \quad-0.23950$
$192->197 \quad-0.16593$
$192->200 \quad 0.31748$
Excited state symmetry could not be determined.
Excited State 10: Singlet-?Sym $5.0542 \mathrm{eV} 245.31 \mathrm{~nm} \mathrm{f}=0.0140<\mathrm{S}^{*} * 2>=0.000$ 183 ->196 0.13097 $184->194 \quad 0.10544$ $188->193 \quad 0.13736$ $189->195 \quad-0.15627$ $189->198 \quad 0.16108$ $189->199 \quad-0.18419$ $190->197 \quad-0.12077$ $191->193 \quad 0.11739$
$191->196 \quad 0.14322$
$191->200 \quad 0.31495$
$192->198 \quad-0.11509$
$192->199 \quad-0.28664$
Excited state symmetry could not be determined.

Excited State 11: Singlet-?Sym $5.0561 \mathrm{eV} 245.22 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ 187 ->193 0.10358
$188->194 \quad-0.11402$
$189->193-0.10775$
$189->200 \quad-0.24320$
$190->198 \quad-0.10885$
$191->195 \quad 0.24337$
$191->198 \quad-0.14267$
$191->199 \quad 0.21271$
$192->193 \quad-0.16123$
$192->196 \quad-0.22521$
$192->197 \quad-0.13761$
$192->201 \quad-0.18036$

Excited state symmetry could not be determined.
Excited State 12: Singlet-?Sym $5.0675 \mathrm{eV} 244.66 \mathrm{~nm} \mathrm{f}=0.0329<\mathrm{S}^{* *} 2>=0.000$ $189->195 \quad 0.13630$
$189->198 \quad 0.11765$
$189->199 \quad 0.14826$
$190->193-0.13006$
$190->197 \quad-0.15205$
$190->200 \quad 0.17633$
$190->201 \quad-0.10989$
$191->193 \quad-0.20543$
$191->196-0.18487$
$191->201 \quad-0.17974$
$192->194 \quad 0.12897$
$192->195 \quad 0.29012$
$192->198 \quad-0.22996$
$192->202 \quad 0.11388$
Excited state symmetry could not be determined.
Excited State 13: Singlet-?Sym $5.1044 \mathrm{eV} 242.90 \mathrm{~nm} \mathrm{f}=0.0000<S^{*} * 2>=0.000$ 186 ->194 0.13220
$188->194 \quad 0.18353$
$189->196 \quad-0.24549$
$189->197 \quad 0.28364$
$190->198 \quad-0.16015$
$190->199 \quad-0.12216$
$191->194 \quad 0.13797$
$191->195 \quad 0.24357$
$191->198 \quad 0.19275$
$191->199 \quad-0.10686$
$191->202 \quad 0.13502$
$192->200 \quad 0.14890$
$192->201 \quad-0.10558$

Excited state symmetry could not be determined.
Excited State 14: Singlet-?Sym $5.1272 \mathrm{eV} 241.82 \mathrm{~nm} \mathrm{f}=0.0692<\mathrm{S}^{*} * 2>=0.000$ 189 ->194 0.17758
$189->195 \quad 0.23194$
$189->198 \quad 0.19787$
$189->202 \quad 0.13754$
$190->201 \quad 0.10117$
$191->196-0.16204$
$191->197 \quad 0.36908$
$191->200 \quad 0.10031$
$192->198 \quad 0.24427$

Excited state symmetry could not be determined.
Excited State 15: Singlet-?Sym $5.1565 \mathrm{eV} 240.44 \mathrm{~nm} \mathrm{f}=0.0483<\mathrm{S}^{* *} 2>=0.000$
$188->193 \quad 0.20878$
$189->195 \quad-0.21235$
$190->193 \quad-0.13855$
$190->196 \quad 0.11157$
$190->197 \quad 0.26711$
$190->201 \quad-0.10537$
$192->195 \quad 0.41203$
$192->198 \quad 0.19771$

Excited state symmetry could not be determined.
Excited State 16: Singlet-?Sym $5.1636 \mathrm{eV} 240.11 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 186 ->194 0.10069
$188->194 \quad 0.21403$
$189->196 \quad-0.10193$
$189->197 \quad-0.18045$
$189->200 \quad-0.10472$
$189->201 \quad 0.10669$
$190->194 \quad-0.10914$
$190->195 \quad 0.20792$
$190->199 \quad-0.19823$
$191->194 \quad-0.16895$
$191->198 \quad-0.15155$
$192->196 \quad 0.34682$
$192->201 \quad-0.18740$
Excited state symmetry could not be determined.
Excited State 17: \quad Singlet-?Sym $5.1900 \mathrm{eV} 238.89 \mathrm{~nm} \mathrm{f}=0.0000<S^{*} * 2>=0.000$
187 ->193 0.10182
$189->197 \quad-0.12790$
$190->195 \quad 0.31028$
$190->198 \quad 0.14929$

```
192 ->196 -0.18649
192 ->197 0.39697
192 ->200 0.17657
192 ->203 -0.16812
```

Excited state symmetry could not be determined.
Excited State 18: Singlet-?Sym $5.2279 \mathrm{eV} 237.16 \mathrm{~nm} \mathrm{f}=0.0721<\mathrm{S}^{*} * 2>=0.000$ $188->193 \quad-0.16387$
$189->194 \quad 0.15456$
$189->199 \quad 0.22107$
$190->196 \quad 0.40031$
$190->200 \quad 0.17113$
$192->195 \quad-0.19275$
$192->199-0.27898$
Excited state symmetry could not be determined.
Excited State 19: Singlet-?Sym $5.2684 \mathrm{eV} 235.34 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $186->194 \quad-0.17885$
$188->194 \quad-0.34202$
$189->196 \quad 0.11359$
$189->200 \quad-0.10612$
$190->194 \quad-0.14924$
$190->195-0.12574$
$191->195 \quad 0.19973$
$192->196 \quad 0.36610$
$192->197 \quad 0.17897$
Excited state symmetry could not be determined.
Excited State 20: Singlet-?Sym $5.2723 \mathrm{eV} 235.16 \mathrm{~nm} \mathrm{f}=0.0142<\mathrm{S}^{* *} 2>=0.000$
186 ->193 0.15178
$188->193 \quad 0.48088$
$189->198 \quad 0.15766$
$189->199 \quad 0.12143$
$190->196 \quad 0.13064$
$190->197 \quad-0.13328$
$191->196 \quad-0.14849$
$191->200 \quad-0.13284$
$192->195-0.20906$
$192->199 \quad 0.13600$
Excited state symmetry could not be determined.
Excited State 21: Singlet-?Sym $5.3086 \mathrm{eV} 233.55 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ 189 ->196 -0.17555
$189->200 \quad-0.22818$
$190->195 \quad-0.24992$
$190->199 \quad-0.20074$

$190->204$	0.10276
$191->195$	-0.19882
$191->199$	0.12980
$192->200$	0.24452
$192->201$	0.29795
$192->203$	-0.17552

Excited state symmetry could not be determined.
Excited State 22: Singlet-?Sym $5.3121 \mathrm{eV} 233.40 \mathrm{~nm} \mathrm{f}=0.0624<S^{* *} 2>=0.000$ $189->194 \quad-0.15064$
$189->198 \quad 0.13134$
$189->199 \quad 0.21285$
$190->196 \quad-0.22182$
$190->200 \quad 0.28852$
$190->203 \quad-0.12511$
$191->196 \quad 0.23194$
$191->197 \quad 0.20509$
$191->200 \quad-0.18946$
$192->198 \quad 0.16027$

Excited state symmetry could not be determined.
Excited State 23: Singlet-?Sym $5.3173 \mathrm{eV} 233.17 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 189 ->193 0.15737
$189->197 \quad 0.27772$
$189->200 \quad-0.16253$
$190->195 \quad 0.22215$
$190->198 \quad-0.25243$
$191->195-0.21461$
$191->198 \quad 0.27038$
$191->199 \quad 0.18001$
$192->200 \quad-0.13479$

Excited state symmetry could not be determined.
Excited State 24: Singlet-?Sym $5.3250 \mathrm{eV} 232.84 \mathrm{~nm} \mathrm{f}=0.0646<S^{*} * 2>=0.000$ 187 ->194 0.26664
$189->195 \quad 0.12694$
$189->198 \quad 0.10942$
$190->196 \quad 0.16925$
$190->197 \quad-0.18300$
$190->200 \quad-0.12154$
$191->196 \quad 0.42199$
$191->197 \quad 0.13637$
$191->200-0.10693$
$191->201 \quad-0.10194$
$192->195 \quad 0.13569$
$192->202 \quad-0.11527$

Excited state symmetry could not be determined.
Excited State 25: Singlet-?Sym $5.3274 \mathrm{eV} 232.73 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $187->193 \quad 0.50760$
$188->195 \quad-0.14460$
$189->200 \quad 0.12029$
$190->199 \quad 0.13018$
$191->195 \quad 0.12386$
$191->199 \quad-0.10930$
$192->196 \quad 0.15131$
$192->197 \quad-0.14624$
$192->201 \quad 0.17740$

Excited state symmetry could not be determined.
Excited State 26: Singlet-?Sym $5.3666 \mathrm{eV} 231.03 \mathrm{~nm} \mathrm{f}=0.0000<S^{*} * 2>=0.000$ $185->193 \quad-0.18523$
$187->193-0.17847$
$188->194 \quad 0.28787$
189 ->196 0.33116
$189->201 \quad-0.15016$
$190->205 \quad-0.10543$
$191->195 \quad 0.24456$
$192->201 \quad 0.10413$
$192->203-0.14676$
Excited state symmetry could not be determined.
Excited State 27: \quad Singlet-?Sym $5.3694 \mathrm{eV} 230.91 \mathrm{~nm} \mathrm{f}=0.0679<\mathrm{S}^{*} * 2>=0.000$ $188->1930.28225$ $189->195 \quad 0.39394$ $189->198 \quad-0.20181$ $190->197 \quad 0.13410$ $190->201 \quad 0.25198$ $191->196 \quad 0.11274$ $191->201 \quad-0.13256$ $192->199-0.14187$

Excited state symmetry could not be determined.
Excited State 28: Singlet-?Sym $5.3938 \mathrm{eV} 229.87 \mathrm{~nm} \mathrm{f}=0.1160<\mathrm{S}^{*} * 2>=0.000$ 185 ->194 0.24760 $187->194 \quad 0.46664$ $188->196-0.13011$ $190->201 \quad 0.10596$ $190->203 \quad-0.12630$ $191->196 \quad-0.14571$ $191->203 \quad-0.10837$ $192->2020.11469$

Excited state symmetry could not be determined.
Excited State 29: Singlet-?Sym $5.4014 \mathrm{eV} 229.54 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $185->193-0.15908$
$187->193 \quad-0.25929$
$188->194 \quad-0.14041$
$189->196 \quad-0.22509$
$189->200 \quad 0.13861$
$190->195 \quad 0.29484$
$190->199 \quad 0.13936$
$191->195 \quad 0.13561$
$192->193 \quad-0.11358$
$192->196 \quad 0.12520$
$192->197 \quad-0.21231$
$192->201 \quad 0.20647$
Excited state symmetry could not be determined.
Excited State 30: Singlet-?Sym $5.4343 \mathrm{eV} 228.15 \mathrm{~nm} \mathrm{f}=0.0004<\mathrm{S}^{* *} 2>=0.000$ 185 ->194 0.13070 $190->193 \quad 0.10651$ $190->196 \quad-0.11947$ $190->197 \quad 0.13350$ $190->200 \quad-0.12133$ $190->201 \quad-0.18580$ $190->203 \quad 0.14230$ $191->201 \quad-0.23440$ $191->2030.11068$ $192->195 \quad-0.10042$ $192->198 \quad 0.25925$ $192->202 \quad 0.13624$ $192->205 \quad 0.21709$

Excited state symmetry could not be determined.
Excited State 31: Singlet-?Sym $5.4563 \mathrm{eV} 227.23 \mathrm{~nm} \mathrm{f}=0.0970<\mathrm{S}^{*} * 2>=0.000$ 181 ->194 0.12409
$185->194 \quad-0.32044$
$186->193 \quad 0.40081$
$187->194 \quad 0.14310$
$187->195 \quad 0.14993$
$188->196 \quad 0.11482$
$190->196 \quad-0.13961$
$191->200 \quad 0.11951$
$192->2020.12727$
Excited state symmetry could not be determined.
Excited State 32: Singlet-?Sym $5.4733 \mathrm{eV} 226.52 \mathrm{~nm} \mathrm{f}=0.0053<\mathrm{S}^{* *} 2>=0.000$

$188->193$	0.11145
$189->195$	0.17650
$189->199$	0.18823
$189->205$	-0.18345
$189->207$	0.11748
$190->196$	-0.19488
$190->201$	-0.26285
$190->203$	0.15750
$191->193$	-0.10046
$191->201$	0.29954
$191->203$	-0.19193
$191->208$	0.10933
$192->202$	-0.10393

Excited state symmetry could not be determined.
Excited State 33: Singlet-?Sym $5.4801 \mathrm{eV} 226.25 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $187->200 \quad 0.12501$
$189->196 \quad 0.19261$
189 ->201 0.30201
$189->203 \quad-0.10013$
$190->199 \quad-0.23677$
$191->195 \quad 0.15643$
$191->199 \quad 0.13489$
$191->204 \quad-0.14437$
$191->205 \quad-0.16186$
$192->197 \quad-0.13924$
$192->201 \quad 0.13265$

Excited state symmetry could not be determined.
Excited State 34: Singlet-?Sym $5.4869 \mathrm{eV} 225.96 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $181->193 \quad-0.11939$
$185->193 \quad 0.47894$
$186->194 \quad-0.12149$
$186->195 \quad-0.19942$
$187->193-0.16968$
$188->194 \quad 0.13264$
$188->195-0.10462$
$189->201 \quad-0.16865$
$189->203 \quad 0.10788$
$190->195 \quad 0.15899$

Excited state symmetry could not be determined.
Excited State 35: Singlet-?Sym $5.5234 \mathrm{eV} 224.47 \mathrm{~nm} \mathrm{f}=0.0000<S^{* *} 2>=0.000$ $185->193 \quad-0.17002$
$186->194 \quad 0.11646$
187 ->200 0.10936

$188->194$	-0.15438
$189->200$	-0.12614
$189->201$	-0.18347
$189->203$	0.22936
$190->199$	-0.12530
$191->195$	0.10616
$191->198$	0.17728
$191->199$	-0.17563
$191->207$	-0.12977
$192->197$	-0.21915
$192->203$	0.22347

Excited state symmetry could not be determined.
Excited State 36: Singlet-?Sym $5.5258 \mathrm{eV} 224.37 \mathrm{~nm} \mathrm{f}=0.0070<S^{*} * 2>=0.000$
185 ->194 0.20532
$186->193 \quad 0.16746$
$186->196-0.15046$
$187->194 \quad-0.22368$
$190->196 \quad 0.18052$
$190->197 \quad-0.20009$
$191->196 \quad 0.10046$
$191->197 \quad-0.13903$
$191->201 \quad 0.12113$
$191->203 \quad-0.11690$
$192->198 \quad 0.22062$
$192->2020.27793$

Excited state symmetry could not be determined.
Excited State 37: Singlet-?Sym $5.5304 \mathrm{eV} 224.19 \mathrm{~nm} \mathrm{f}=0.0126<\mathrm{S}^{*} * 2>=0.000$
$185->194 \quad-0.24540$
$186->193 \quad-0.12209$
$187->198 \quad 0.10609$
$190->200 \quad 0.12896$
$191->196 \quad 0.10786$
$192->199 \quad 0.31149$
$192->202 \quad 0.27359$
$192->204 \quad-0.13073$
Excited state symmetry could not be determined.
Excited State 38: Singlet-?Sym $5.5448 \mathrm{eV} 223.60 \mathrm{~nm} \mathrm{f}=0.0105<\mathrm{S}^{*} * 2>=0.000$ 185 ->194 0.12772
$187->194 \quad-0.17328$
$190->196 \quad 0.11277$
$190->197 \quad 0.19450$
$191->197 \quad 0.31003$
$191->200 \quad 0.15698$

```
191 ->201 -0.10152
191 ->203 -0.24622
192 ->198 -0.21053
192 ->199 0.17461
```

Excited state symmetry could not be determined.
Excited State 39: Singlet-?Sym $5.5632 \mathrm{eV} 222.86 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $182->194 \quad-0.10664$
$184->1930.12897$
$186->194 \quad 0.34656$
$186->195 \quad-0.11409$
$187->196 \quad 0.15147$
$187->197 \quad 0.11985$
$188->194 \quad-0.12066$
$188->198 \quad-0.14841$
$189->197 \quad 0.10665$
$190->198 \quad 0.20979$
$191->199 \quad 0.11918$
$191->204 \quad-0.11686$
$192->200 \quad-0.10076$
$192->201 \quad 0.12827$

Excited state symmetry could not be determined.
Excited State 40: Singlet-?Sym $5.5735 \mathrm{eV} 222.45 \mathrm{~nm} \mathrm{f}=0.0732<\mathrm{S}^{*}{ }^{*} 2>=0.000$ $181->194 \quad-0.10158$
$185->194 \quad 0.17300$
$186->193 \quad 0.30579$
$187->199 \quad-0.10019$
$188->200 \quad-0.11781$
$189->195 \quad 0.11082$
$189->198 \quad 0.10699$
$190->197 \quad 0.22647$
$190->200 \quad 0.17182$
$191->203 \quad 0.20319$
$192->198 \quad-0.15852$
$192->199 \quad 0.12116$
$192->204 \quad-0.14910$

Excited state symmetry could not be determined.
Excited State 41: Singlet-?Sym $5.5932 \mathrm{eV} 221.67 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ $186->194 \quad-0.16609$
$188->195 \quad-0.12974$
$189->201 \quad-0.11747$
$189->203 \quad-0.20476$
$190->198 \quad 0.31358$
$190->204 \quad-0.10961$

$191->198$	0.12469
$191->202$	0.22490
$192->200$	0.22456
$192->203$	0.17840

Excited state symmetry could not be determined.
Excited State 42: Singlet-?Sym $5.5982 \mathrm{eV} 221.47 \mathrm{~nm} \mathrm{f}=0.0000<S^{* *} 2>=0.000$ $180->193 \quad-0.14619$
$183->194 \quad-0.10405$
$185->193 \quad 0.11846$
$186->194 \quad 0.23818$
$188->195 \quad-0.11927$
$189->196 \quad 0.17660$
$189->200 \quad 0.13040$
$190->202 \quad-0.20761$
$191->198 \quad 0.18818$
$191->204 \quad 0.10834$
$192->197 \quad-0.14645$
$192->201 \quad-0.10584$
$192->203 \quad-0.15080$
$192->206 \quad 0.14140$
Excited state symmetry could not be determined.
Excited State 43: Singlet-?Sym $5.6140 \mathrm{eV} 220.85 \mathrm{~nm} \mathrm{f}=0.0000<S^{*}{ }^{*} 2>=0.000$
186 ->194 -0.18853
$188->195 \quad 0.19322$
$189->197 \quad-0.26004$
$189->203 \quad 0.12448$
$189->206 \quad-0.10951$
$190->198 \quad-0.11322$
$190->202 \quad-0.17726$
$191->198 \quad 0.16040$
$191->202 \quad 0.33884$
$192->200 \quad-0.10191$
$192->203-0.11597$
Excited state symmetry could not be determined.
Excited State 44: Singlet-?Sym $5.6160 \mathrm{eV} 220.77 \mathrm{~nm} \mathrm{f}=0.0080<S^{* *} 2>=0.000$ 189 ->195 0.12993
$189->198 \quad 0.39171$
$190->197 \quad 0.15926$
$190->201 \quad-0.13849$
$190->203 \quad-0.21022$
$191->197 \quad-0.25212$
$192->198 \quad 0.13102$
$192->204 \quad 0.14250$

Excited state symmetry could not be determined.
Excited State 45: Singlet-?Sym $5.6199 \mathrm{eV} 220.62 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $188->199 \quad-0.10531$
$189->197 \quad-0.19409$
$189->200 \quad-0.10884$
$189->201 \quad 0.17201$
$189->206 \quad 0.14174$
$190->199 \quad 0.18679$
$190->202 \quad 0.28715$
$191->198 \quad 0.38149$
$191->202-0.16086$

Excited state symmetry could not be determined.
Excited State 46: Singlet-?Sym $5.6258 \mathrm{eV} 220.38 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$
$186->194 \quad 0.14306$
$188->194 \quad-0.10912$
$189->197 \quad-0.17789$
$190->198 \quad-0.28247$
$190->202 \quad-0.17391$
$190->204 \quad-0.12702$
$192->197 \quad 0.17683$
$192->200 \quad 0.19191$
$192->201 \quad 0.20342$
$192->203 \quad 0.32785$
Excited state symmetry could not be determined.
Excited State 47: Singlet-?Sym $5.6361 \mathrm{eV} 219.98 \mathrm{~nm} \mathrm{f}=0.0039<\mathrm{S}^{* *} 2>=0.000$
185 ->194 0.15467
$188->196 \quad 0.12656$
$189->194 \quad-0.10645$
$189->199 \quad 0.16970$
$189->202 \quad 0.44259$
$190->201 \quad 0.18405$
$190->203 \quad 0.16151$
$190->206 \quad 0.12983$
$191->197 \quad-0.17128$
$191->206-0.14854$
Excited state symmetry could not be determined.
Excited State 48: Singlet-?Sym $5.6655 \mathrm{eV} 218.84 \mathrm{~nm} \mathrm{f}=0.0116<S^{*} * 2>=0.000$ $181->194 \quad-0.10022$
$182->193 \quad 0.14588$
$186->193 \quad-0.18404$
$187->198 \quad-0.10950$
$188->197 \quad 0.13265$

$189->202$	0.13508
$190->201$	-0.18294
$192->198$	-0.18489
$192->202$	0.39545
$192->204$	0.16341

Excited state symmetry could not be determined.
Excited State 49: Singlet-?Sym $5.6723 \mathrm{eV} 218.58 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 182 ->194 0.11243
$187->200 \quad 0.14277$
$188->199 \quad 0.13905$
$189->200 \quad 0.13146$
$189->201 \quad-0.11600$
$190->199 \quad 0.16510$
$190->202 \quad 0.14262$
$191->199 \quad 0.29733$
$191->204 \quad-0.12820$
$192->200 \quad 0.22500$
$192->201 \quad-0.29354$
Excited state symmetry could not be determined.
Excited State 50: Singlet-?Sym $5.6800 \mathrm{eV} 218.28 \mathrm{~nm} \mathrm{f}=0.0105<\mathrm{S}^{*} * 2>=0.000$ 187 ->199 -0.11095
$190->197 \quad-0.17527$
$190->200 \quad 0.17346$
$190->201 \quad-0.17987$
$191->200 \quad 0.32629$
$191->201 \quad-0.26947$
$192->198 \quad 0.11128$
$192->199 \quad 0.27244$
$192->202 \quad-0.13970$
$192->205 \quad 0.11300$
twist-5.1a

Excitation energies and oscillator strengths:
Excited state symmetry could not be determined.
Excited State 1: Singlet-?Sym $4.5701 \mathrm{eV} 271.29 \mathrm{~nm} \mathrm{f}=0.0025<S^{*} * 2>=0.000$ $190->196 \quad-0.16844$ $191->196 \quad 0.11458$ 192 ->193 0.63935
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-4573.24184517$
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited state symmetry could not be determined.
Excited State 2: \quad Singlet-?Sym $4.6141 \mathrm{eV} 268.71 \mathrm{~nm} \mathrm{f}=0.1366<\mathrm{S}^{*} * 2>=0.000$ $190->1930.49509$
$190->194 \quad-0.21199$
$191->193-0.28916$
$191->194 \quad-0.14886$
$192->196-0.24073$

Excited state symmetry could not be determined.
Excited State 3: Singlet-?Sym $4.6247 \mathrm{eV} 268.09 \mathrm{~nm} \mathrm{f}=0.0299<\mathrm{S}^{*} * 2>=0.000$ $191->195 \quad-0.16396$ $192->194 \quad 0.64745$

Excited state symmetry could not be determined.
Excited State 4: Singlet-?Sym $4.6554 \mathrm{eV} 266.32 \mathrm{~nm} \mathrm{f}=0.0969<\mathrm{S}^{* *} 2>=0.000$ $189->195 \quad-0.14154$
$190->193 \quad 0.17843$
$190->194 \quad 0.36211$
$191->193-0.15024$
$191->194 \quad 0.49940$

Excited state symmetry could not be determined.
Excited State 5: Singlet-?Sym 4.6688 eV 265.56 nm f=0.0111 <S**2>=0.000 189 ->196 0.10088 $190->193 \quad 0.33614$ $190->194 \quad 0.30326$ $191->193 \quad 0.41609$ $191->194 \quad-0.20295$ $192->195 \quad 0.18629$

Excited state symmetry could not be determined.
Excited State 6: Singlet-?Sym $4.7757 \mathrm{eV} 259.61 \mathrm{~nm} \mathrm{f}=0.0979<\mathrm{S}^{*} * 2>=0.000$ 190 ->193 0.14748 $190->194 \quad-0.36551$
$190->197 \quad 0.10612$
$191->193 \quad 0.39433$
$191->194 \quad 0.31190$
$192->195 \quad-0.17589$
Excited state symmetry could not be determined.
Excited State 7: Singlet-?Sym $4.8072 \mathrm{eV} 257.91 \mathrm{~nm} \mathrm{f}=0.0175<\mathrm{S}^{*} * 2>=0.000$ 189 ->193 0.17082 $189->194 \quad 0.50108$ $190->195 \quad-0.28438$ $190->196 \quad 0.15888$

```
191 ->195 -0.20918
191 ->196 0.12052
```

Excited state symmetry could not be determined.
Excited State 8: Singlet-?Sym $4.8526 \mathrm{eV} 255.50 \mathrm{~nm} \mathrm{f}=0.0090<\mathrm{S}^{*} * 2>=0.000$ 189 ->193 0.56304
$189->194 \quad-0.13689$
$190->195 \quad 0.11969$
$190->196 \quad 0.17805$
$191->195 \quad 0.12726$
$191->200 \quad 0.10831$
$192->193 \quad 0.14833$
$192->194 \quad 0.10449$

Excited state symmetry could not be determined.
$\begin{array}{ccc}\text { Excited State } & 9: & \text { Singlet-? Sym } \\ 182->193 & 0.10658 & 5.0108 \mathrm{eV} 247.44 \mathrm{~nm} \mathrm{f}=0.0056<\mathrm{S} * * 2>=0.000 \\ 188->194 & 0.15036 & \\ 190->194 & -0.13476 & \\ 190->197 & -0.18048 & \\ 190->198 & 0.12847 & \\ 190->201 & 0.16559 & \\ 191->194 & 0.12799 & \\ 191->195 & -0.11416 & \\ 191->201 & -0.11415 & \\ 192->195 & 0.15551 & \\ 192->196 & 0.19457 & \\ 192->197 & -0.15041 & \\ 192->198 & 0.21435 & \\ 192->200 & -0.17723 & \\ 192->201 & 0.14315 & \end{array}$

Excited state symmetry could not be determined.
Excited State 10: Singlet-?Sym $5.0135 \mathrm{eV} 247.30 \mathrm{~nm} \mathrm{f}=0.0026<S^{*} * 2>=0.000$ $182->196 \quad 0.12460$
$189->197 \quad-0.10111$
$190->196-0.13113$
$190->197 \quad-0.10663$
$190->198 \quad-0.21684$
$190->200 \quad 0.14823$
$190->201 \quad 0.10243$
$191->195 \quad 0.18932$
$192->194 \quad 0.12347$
$192->196 \quad 0.11130$
$192->197 \quad 0.24074$
$192->198 \quad 0.13249$

$$
\begin{array}{ll}
192->199 & -0.11798 \\
192->200 & -0.10753 \\
192->201 & -0.23592
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 11: Singlet-?Sym $5.0693 \mathrm{eV} 244.58 \mathrm{~nm} \mathrm{f}=0.0162<\mathrm{S}^{*} * 2>=0.000$ 187 ->194 0.12172
$189->194 \quad 0.32136$
$189->199 \quad 0.16337$
$189->201 \quad-0.11364$
$190->195 \quad 0.13230$
$191->195 \quad 0.36030$
$191->196-0.12367$
$191->200 \quad 0.21662$
$192->197 \quad-0.13809$
$192->199 \quad 0.14345$
Excited state symmetry could not be determined.
Excited State 12: Singlet-?Sym $5.0820 \mathrm{eV} 243.97 \mathrm{~nm} \mathrm{f}=0.0508<\mathrm{S}^{*} * 2>=0.000$ 183 ->195 0.10031
$189->195 \quad 0.16214$
$189->200 \quad 0.16073$
$191->194 \quad 0.13171$
$191->199 \quad 0.32793$
$192->195 \quad 0.35782$
$192->196 \quad-0.16823$
$192->200 \quad 0.17880$

Excited state symmetry could not be determined.
Excited State 13: Singlet-?Sym $5.0901 \mathrm{eV} 243.58 \mathrm{~nm} \mathrm{f}=0.0088<\mathrm{S}^{*} * 2>=0.000$ $184->195 \quad-0.10448$
$187->193 \quad-0.20218$
$189->193 \quad-0.13472$
$189->194 \quad-0.16012$
$189->197 \quad 0.17122$
$189->199 \quad 0.12051$
$190->195 \quad-0.14616$
$190->198 \quad 0.20157$
$191->196 \quad 0.22108$
$191->198 \quad 0.27890$
$191->200 \quad 0.20885$

Excited state symmetry could not be determined.
Excited State 14: Singlet-?Sym $5.0980 \mathrm{eV} 243.20 \mathrm{~nm} \mathrm{f}=0.0909<\mathrm{S}^{* *} 2>=0.000$ 186 ->194 -0.10916
$188->194 \quad 0.18146$

$189->195$	-0.17122
$189->196$	0.15041
$189->198$	0.13729
$190->193$	-0.10737
$190->197$	0.22620
$190->199$	-0.18068
$190->201$	0.12599
$191->197$	0.37028
$191->201$	0.11415
$192->196$	-0.18404
$192->198$	0.16006

Excited state symmetry could not be determined.
Excited State 15: Singlet-?Sym $5.1161 \mathrm{eV} 242.34 \mathrm{~nm} \mathrm{f}=0.1121<\mathrm{S}^{*}{ }^{*} 2>=0.000$
188 ->194 -0.11382
$189->198 \quad 0.19576$
$189->200 \quad 0.10659$
$190->193 \quad 0.10152$
$190->197 \quad 0.29263$
$190->199 \quad 0.20484$
$191->193-0.16784$
$191->197 \quad 0.15362$
$191->202 \quad-0.11326$
192 ->196 0.39340
Excited state symmetry could not be determined.
Excited State 16: Singlet-?Sym $5.1412 \mathrm{eV} 241.16 \mathrm{~nm} \mathrm{f}=0.0015<\mathrm{S}^{*} * 2>=0.000$ $185->193 \quad-0.11189$
$189->193 \quad-0.16794$
$189->199 \quad-0.15050$
$190->196 \quad 0.38391$
$190->198 \quad-0.21523$
$190->200 \quad-0.14847$
$191->196 \quad-0.11527$
$192->193 \quad 0.10786$
$192->197 \quad 0.19481$
$192->199 \quad 0.27218$
$192->202 \quad 0.10145$
Excited state symmetry could not be determined.
Excited State 17: Singlet-?Sym $5.1601 \mathrm{eV} 240.27 \mathrm{~nm} \mathrm{f}=0.0289<S^{*} * 2>=0.000$ $188->193 \quad-0.16475$
$189->200 \quad-0.14558$
$190->197 \quad 0.20311$
$190->199 \quad-0.11697$
$191->199-0.20544$

```
192 ->195 0.44024
192 ->198 -0.24992
```

Excited state symmetry could not be determined.
Excited State 18: Singlet-?Sym $5.2060 \mathrm{eV} 238.16 \mathrm{~nm} \mathrm{f}=0.0265<\mathrm{S}^{*}{ }^{*} 2>=0.000$
186 ->193 -0.12144
$186->194 \quad-0.18256$
$188->193 \quad 0.21649$
$188->194 \quad 0.37820$
$190->194 \quad 0.13729$
$190->199 \quad 0.19989$
$190->205 \quad 0.10190$
$192->198 \quad-0.22435$
$192->200 \quad-0.17233$

Excited state symmetry could not be determined.
Excited State 19: Singlet-?Sym $5.2102 \mathrm{eV} 237.97 \mathrm{~nm} \mathrm{f}=0.0011<\mathrm{S}^{* *} 2>=0.000$ $185->193 \quad-0.11066$
$187->193 \quad-0.13011$
$189->199 \quad-0.15770$
$190->196 \quad 0.23138$
$190->198 \quad 0.10685$
$191->195 \quad 0.25931$
$191->196 \quad 0.28989$
$191->200 \quad-0.21848$
$192->197 \quad-0.25007$
$192->199 \quad-0.18203$

Excited state symmetry could not be determined.
Excited State 20: Singlet-?Sym $5.2288 \mathrm{eV} 237.12 \mathrm{~nm} \mathrm{f}=0.0524<\mathrm{S}^{*} * 2>=0.000$ 189 ->194 0.14549
$190->195 \quad 0.49383$
$191->196 \quad 0.26403$
$191->198 \quad 0.11074$
$192->197 \quad 0.24956$
$192->199 \quad-0.10010$
$192->201 \quad 0.17691$

Excited state symmetry could not be determined.
Excited State 21: Singlet-?Sym $5.2539 \mathrm{eV} 235.98 \mathrm{~nm} \mathrm{f}=0.0058<\mathrm{S}^{*} * 2>=0.000$ $185->1930.14808$
$187->193 \quad 0.51912$
$188->196 \quad-0.10202$
$189->193 \quad-0.14753$
$190->198 \quad 0.14305$
$191->195 \quad 0.18578$

Excited state symmetry could not be determined.
Excited State 22: \quad Singlet-?Sym $5.2587 \mathrm{eV} 235.77 \mathrm{~nm} \mathrm{f}=0.0060<S^{*} * 2>=0.000$ 186 ->194 -0.11637
$188->194 \quad 0.22862$
$189->196 \quad 0.14628$
$190->199 \quad-0.24834$
$190->201 \quad-0.12840$
$191->197 \quad-0.14133$
$192->196 \quad 0.33874$
$192->200 \quad 0.30768$

Excited state symmetry could not be determined.
Excited State 23: Singlet-?Sym $5.2769 \mathrm{eV} 234.96 \mathrm{~nm} \mathrm{f}=0.0224<S^{*}{ }^{*} 2>=0.000$ $186->193 \quad-0.18363$
$188->193 \quad 0.53663$
$188->194 \quad-0.26289$
$191->199 \quad-0.11919$
$192->195 \quad 0.12499$
Excited state symmetry could not be determined.
Excited State 24: Singlet-?Sym $5.2868 \mathrm{eV} 234.51 \mathrm{~nm} \mathrm{f}=0.0048<\mathrm{S}^{*} * 2>=0.000$
$185->194 \quad 0.12067$
$187->193 \quad-0.15544$
$187->194 \quad 0.46357$
$188->195 \quad 0.13979$
$189->197 \quad 0.14362$
$190->198 \quad 0.10541$
$191->196-0.18752$
$191->198 \quad 0.15189$
$191->200 \quad-0.13530$
$192->197 \quad 0.20603$

Excited state symmetry could not be determined.
Excited State 25: Singlet-?Sym $5.3017 \mathrm{eV} 233.86 \mathrm{~nm} \mathrm{f}=0.0003<\mathrm{S}^{*} * 2>=0.000$ $190->195 \quad 0.11687$
$190->196 \quad 0.23650$
$190->198 \quad 0.16463$
$190->200 \quad 0.34323$
$191->196-0.32222$
$192->193 \quad 0.12411$
$192->199 \quad-0.14473$
$192->201 \quad-0.14564$
$192->202 \quad 0.11683$
$192->205 \quad-0.11821$

Excited state symmetry could not be determined.
Excited State 26: Singlet-?Sym $5.3348 \mathrm{eV} 232.41 \mathrm{~nm} \mathrm{f}=0.0257<\mathrm{S}^{*} * 2>=0.000$ $187->194 \quad 0.39870$
$189->194 \quad-0.18222$
$189->197 \quad-0.20902$
$190->198 \quad-0.18307$
$190->200 \quad 0.15997$
$191->195-0.21986$
$191->196 \quad 0.16766$
$191->200 \quad 0.13641$
$192->197 \quad-0.13940$
$192->201 \quad-0.10939$

Excited state symmetry could not be determined.
Excited State 27: Singlet-?Sym $5.3575 \mathrm{eV} 231.42 \mathrm{~nm} \mathrm{f}=0.0041<S^{* *} 2>=0.000$ 189 ->195 0.48464
$189->196 \quad 0.21146$
$190->201 \quad-0.19459$
$191->197 \quad 0.14609$
$191->199 \quad-0.14470$
$191->201 \quad-0.10492$
$192->200 \quad-0.17484$
$192->203-0.13342$
Excited state symmetry could not be determined.
Excited State 28: Singlet-?Sym $5.3646 \mathrm{eV} 231.12 \mathrm{~nm} \mathrm{f}=0.0070<\mathrm{S}^{* *} 2>=0.000$
$182->196 \quad-0.10084$
$187->193 \quad 0.12135$
$190->195 \quad-0.17130$
$190->200 \quad 0.14492$
$190->203 \quad 0.21069$
$191->195 \quad 0.13953$
$191->198 \quad-0.15653$
$191->203-0.11870$
$192->197 \quad 0.21814$
$192->201 \quad 0.24267$
192 ->202 0.14846
$192->205 \quad-0.19043$

Excited state symmetry could not be determined.
Excited State 29: Singlet-?Sym $5.3737 \mathrm{eV} 230.72 \mathrm{~nm} \mathrm{f}=0.0145<S^{*} * 2>=0.000$
186 ->193 0.15018
$187->195 \quad-0.10910$
$189->195 \quad-0.21670$
$189->196 \quad 0.30300$

$189->200$	0.11083
$190->199$	-0.12314
$190->201$	0.13300
$190->202$	-0.16585
$190->205$	0.13008
$191->197$	-0.15984
$192->200$	-0.16552
$192->203$	-0.20984

Excited state symmetry could not be determined.
Excited State 30: Singlet-?Sym $5.3937 \mathrm{eV} 229.87 \mathrm{~nm} \mathrm{f}=0.0198<\mathrm{S}^{* *} 2>=0.000$ $182->193 \quad 0.11157$
$186->193 \quad-0.12217$
$186->194 \quad 0.14408$
$189->196 \quad 0.23718$
$190->197 \quad 0.16944$
$190->205-0.10746$
$191->197 \quad-0.24497$
$191->201 \quad-0.20882$
$191->202 \quad-0.13387$
$192->195 \quad-0.10128$
$192->198 \quad-0.10115$
$192->203 \quad 0.24960$

Excited state symmetry could not be determined.
Excited State 31: Singlet-?Sym $5.4088 \mathrm{eV} 229.23 \mathrm{~nm} \mathrm{f}=0.0027<\mathrm{S}^{*} * 2>=0.000$ $185->193 \quad-0.18828$
$190->195 \quad-0.14706$
$190->203 \quad-0.14281$
$190->206 \quad-0.10638$
$191->198 \quad-0.11190$
$191->200 \quad 0.18944$
191 ->203 0.16841
$192->199 \quad-0.22717$
$192->201 \quad 0.24201$
$192->202 \quad-0.21200$
$192->205 \quad 0.24480$

Excited state symmetry could not be determined.
Excited State 32: Singlet-?Sym $5.4229 \mathrm{eV} 228.63 \mathrm{~nm} \mathrm{f}=0.0950<\mathrm{S}^{* *} 2>=0.000$ $186->193 \quad 0.46751$
$186->194 \quad-0.13870$
$187->196 \quad-0.10545$
$188->193 \quad 0.14589$
$189->196 \quad-0.16171$
$190->201 \quad 0.10529$

$190->202$	0.15554
$191->199$	-0.12527
$191->201$	-0.11278
$192->203$	0.14594

Excited state symmetry could not be determined.
Excited State 33: Singlet-?Sym $5.4642 \mathrm{eV} 226.90 \mathrm{~nm} \mathrm{f}=0.0275<\mathrm{S}^{*} * 2>=0.000$ $186->194 \quad 0.46268$
$188->194 \quad 0.21647$
$189->195 \quad-0.14229$
$190->199 \quad-0.10157$
$190->201 \quad-0.15489$
$191->201 \quad-0.11162$
$192->203 \quad-0.20421$
Excited state symmetry could not be determined.
Excited State 34: Singlet-?Sym $5.4776 \mathrm{eV} 226.35 \mathrm{~nm} \mathrm{f}=0.0047<\mathrm{S}^{*} * 2>=0.000$ $181->1930.10786$
$185->193 \quad 0.34098$
$186->196 \quad 0.12365$
$187->193 \quad-0.10102$
$190->196 \quad 0.19730$
$191->204 \quad-0.10033$
$192->198 \quad-0.11790$
$192->199 \quad-0.28837$
Excited state symmetry could not be determined.
Excited State 35: Singlet-?Sym $5.4805 \mathrm{eV} 226.23 \mathrm{~nm} \mathrm{f}=0.0362<\mathrm{S}^{* *} 2>=0.000$ 185 ->193 0.11314 $186->193-0.15549$
$186->194 \quad-0.15790$
$188->194 \quad-0.10762$
$189->196 \quad-0.11763$
$190->197 \quad 0.28033$
$191->197 \quad-0.24681$
$191->201 \quad-0.16998$
$192->198 \quad 0.35848$
$192->203-0.15492$
Excited state symmetry could not be determined.
Excited State 36: Singlet-?Sym $5.4972 \mathrm{eV} 225.54 \mathrm{~nm} \mathrm{f}=0.0318<\mathrm{S}^{*} * 2>=0.000$ $186->193-0.11943$
$186->194 \quad 0.12954$
$189->195 \quad 0.22749$
$189->196 \quad-0.19317$
$189->198-0.16373$

$190->199$	-0.27707
$190->201$	0.35475
$191->201$	0.16837

Excited state symmetry could not be determined.
Excited State 37: Singlet-?Sym $5.5018 \mathrm{eV} 225.35 \mathrm{~nm} \mathrm{f}=0.0010<\mathrm{S}^{*} * 2>=0.000$ $180->1930.13626$
$185->193 \quad 0.32191$
$185->194 \quad 0.18721$
186 ->196 0.12104
$187->193-0.16076$
$190->200 \quad 0.15170$
$191->203 \quad 0.14410$
$192->199 \quad 0.23887$

Excited state symmetry could not be determined.
Excited State 38: Singlet-?Sym $5.5091 \mathrm{eV} 225.05 \mathrm{~nm} \mathrm{f}=0.0015<\mathrm{S}^{*} * 2>=0.000$ $186->1930.16978$
$186->194 \quad 0.16915$
$188->193 \quad 0.10601$
$189->196 \quad 0.18373$
$189->200 \quad 0.11365$
$190->199 \quad 0.18118$
$190->201 \quad 0.14442$
$191->197 \quad-0.19245$
$191->199 \quad-0.16634$
$191->201 \quad 0.27327$
$192->198 \quad 0.24079$
$192->200 \quad 0.10938$
$192->204 \quad 0.10268$

Excited state symmetry could not be determined.
Excited State 39: Singlet-?Sym $5.5110 \mathrm{eV} 224.98 \mathrm{~nm} \mathrm{f}=0.0001<S^{*}{ }^{*} 2>=0.000$ $185->193 \quad 0.13595$ $189->197 \quad-0.11274$
$189->199 \quad-0.10446$
$190->198 \quad-0.16496$
$191->198 \quad 0.39224$
$191->200 \quad 0.15745$
$192->197 \quad-0.19653$
$192->199 \quad-0.19253$
$192->202 \quad 0.22909$
192 ->205 0.10737
Excited state symmetry could not be determined.
Excited State 40: Singlet-?Sym $5.5534 \mathrm{eV} 223.26 \mathrm{~nm} \mathrm{f}=0.0113<\mathrm{S}^{*} * 2>=0.000$

$186->193$	0.16269
$189->198$	-0.13933
$189->200$	-0.17545
$190->197$	0.12194
$190->199$	-0.10324
$190->202$	-0.14933
$191->199$	0.38951
$191->208$	-0.10249
$192->196$	0.12374
$192->200$	-0.19204
$192->206$	-0.13420

Excited state symmetry could not be determined.
Excited State 41: Singlet-?Sym $5.5572 \mathrm{eV} 223.11 \mathrm{~nm} \mathrm{f}=0.0204<\mathrm{S}^{* *} 2>=0.000$
181 ->194 0.12661
$183->194 \quad-0.10181$
$185->194 \quad 0.42119$
$186->195 \quad-0.19528$
$187->194 \quad-0.13545$
$189->197 \quad-0.19671$
$190->203 \quad 0.15014$
$191->198 \quad 0.17809$
$192->201 \quad 0.10515$
$192->202 \quad-0.10428$
$192->205 \quad-0.14347$
Excited state symmetry could not be determined.
Excited State 42: Singlet-?Sym $5.5734 \mathrm{eV} 222.46 \mathrm{~nm} \mathrm{f}=0.0055<S^{* *} 2>=0.000$
185 ->194 0.15946
$189->197 \quad 0.38524$
$189->199 \quad-0.11854$
$189->201 \quad 0.29066$
$190->198 \quad-0.27903$
$190->204 \quad 0.11847$
$191->200 \quad 0.17375$
Excited state symmetry could not be determined.
Excited State 43: Singlet-?Sym $5.5875 \mathrm{eV} 221.90 \mathrm{~nm} \mathrm{f}=0.0028<S^{* *} 2>=0.000$ $185->194 \quad 0.14094$ $186->195 \quad-0.12383$ $189->199 \quad-0.12155$ $189->201 \quad-0.14378$
$190->198 \quad 0.19439$
$190->200 \quad-0.10483$
$190->206 \quad 0.12939$
$191->198 \quad-0.14664$

$191->200$	0.28988
$191->204$	-0.13149
$192->197$	0.12323
$192->201$	-0.19850
$192->202$	0.29762

Excited state symmetry could not be determined.
Excited State 44: Singlet-?Sym $5.5984 \mathrm{eV} 221.47 \mathrm{~nm} \mathrm{f}=0.0239<\mathrm{S}^{*} * 2>=0.000$ 189 ->203 0.13524
$190->202 \quad-0.30392$
$190->205 \quad 0.16663$
$191->197 \quad 0.12343$
$191->199 \quad-0.10988$
$191->201 \quad-0.27641$
$192->200 \quad 0.34810$
$192->204 \quad-0.10658$
Excited state symmetry could not be determined.
Excited State 45: Singlet-?Sym 5.6132 eV 220.88 nm f=0.0004 <S**2>=0.000 $180->194 \quad 0.17925$
$185->194 \quad 0.10831$
$187->201 \quad 0.10313$
$188->195 \quad 0.20532$
$188->200 \quad-0.12078$
$189->208 \quad 0.13810$
$190->200 \quad 0.24276$
$190->203 \quad-0.18032$
$191->203-0.16374$
$191->204 \quad-0.10293$
$191->207 \quad-0.22029$
$192->199 \quad 0.13228$
$192->201 \quad-0.10499$
$192->202 \quad-0.10081$
Excited state symmetry could not be determined.
Excited State 46: Singlet-?Sym $5.6341 \mathrm{eV} 220.06 \mathrm{~nm} \mathrm{f}=0.0007<\mathrm{S}^{*} * 2>=0.000$ $189->1960.19598$
$189->206 \quad-0.14746$
$190->197 \quad-0.11452$
$190->201 \quad 0.16732$
$190->202 \quad 0.37071$
$190->205 \quad 0.12574$
191 ->199 0.14645
$191->202 \quad 0.24815$
$192->200 \quad 0.15218$
$192->207 \quad 0.16349$

Excited state symmetry could not be determined.
Excited State 47: Singlet-?Sym $5.6418 \mathrm{eV} 219.76 \mathrm{~nm} \mathrm{f}=0.0098<\mathrm{S}^{*}{ }^{*} 2>=0.000$ 189 ->197 0.17661
$189->199 \quad 0.25053$
$190->198 \quad-0.10038$
$190->200 \quad 0.14368$
$190->204 \quad-0.13312$
$191->200 \quad-0.21540$
$192->197 \quad-0.12753$
$192->201 \quad 0.20463$
$192->202 \quad 0.29950$
$192->2050.13856$

Excited state symmetry could not be determined.
Excited State 48: Singlet-?Sym $5.6595 \mathrm{eV} 219.07 \mathrm{~nm} \mathrm{f}=0.0056<\mathrm{S}^{* *} 2>=0.000$ $187->1950.12252$
$187->198 \quad 0.12795$
$189->196 \quad-0.11669$
$189->198 \quad 0.45018$
$189->200 \quad 0.13742$
$190->197 \quad-0.15318$
$190->199 \quad-0.21537$
$191->197 \quad-0.11656$
$191->201 \quad 0.10416$
Excited state symmetry could not be determined.
Excited State 49: Singlet-?Sym $5.6612 \mathrm{eV} 219.01 \mathrm{~nm} \mathrm{f}=0.0004<S^{* *} 2>=0.000$
180 ->194 0.11561
$188->195 \quad 0.22904$
$189->199 \quad 0.27649$
$189->201 \quad-0.18643$
$189->202 \quad 0.10089$
$190->200 \quad-0.16439$
$190->203 \quad 0.11577$
$190->206 \quad-0.16716$
$191->198 \quad 0.10870$
$191->203 \quad 0.14819$
$191->206-0.12065$
$191->207 \quad 0.10566$
$192->201 \quad-0.18624$

Excited state symmetry could not be determined.
Excited State 50: Singlet-?Sym $5.6762 \mathrm{eV} 218.43 \mathrm{~nm} \mathrm{f}=0.0015<\mathrm{S}^{*} * 2>=0.000$ 182 ->193 0.12087
$189->197 \quad 0.14943$

$189->199$	-0.14380
$189->201$	-0.13789
$189->205$	0.11067
$190->203$	0.23684
$190->204$	-0.13217
$190->207$	-0.10202
$191->201$	0.11631
$191-203$	0.12179
$191->204$	-0.14447
$191->207$	-0.12236
$192->202$	-0.14672

5.1b

Excitation energies and oscillator strengths:

Excited state symmetry could not be determined.
Excited State 1: Singlet-?Sym $4.5987 \mathrm{eV} 269.61 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 205 -> 2110.11877 $207->210-0.15702$ $207->211 \quad 0.12911$ 208 -> 2090.63262
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-4730.34793303$
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited state symmetry could not be determined.
Excited State 2: Singlet-?Sym $4.6173 \mathrm{eV} 268.52 \mathrm{~nm} \mathrm{f}=0.2817<\mathrm{S}^{* *} 2>=0.000$ $205->209-0.33976$
206 -> $211 \quad 0.10991$
$207->209-0.12981$
$207->212-0.10948$
208 -> $210 \quad 0.54472$
Excited state symmetry could not be determined.
Excited State 3: Singlet-?Sym $4.6681 \mathrm{eV} 265.60 \mathrm{~nm} \mathrm{f}=0.1088<\mathrm{S}^{* *} 2>=0.000$
207 -> 2090.60888
$207->212-0.11943$
$208->210 \quad 0.10276$
$208->2110.23154$

Excited state symmetry could not be determined.
Excited State 4: Singlet-?Sym $4.6961 \mathrm{eV} 264.02 \mathrm{~nm} \mathrm{f}=0.0000<$ S $^{* *} 2>=0.000$ 205 -> 2100.36089

$$
\begin{array}{lr}
205->211 & -0.12405 \\
206->209 & 0.45815 \\
207->210 & 0.14853 \\
207->211 & 0.14714 \\
208->209 & 0.13322 \\
208->212 & -0.17530
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 5: Singlet-?Sym $4.7163 \mathrm{eV} 262.89 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $204->210 \quad 0.13179$
$205->210-0.36273$
$206->212-0.16582$
207 -> $210 \quad 0.50611$
208 -> $212-0.11838$

Excited state symmetry could not be determined.
Excited State 6: Singlet-?Sym $4.7692 \mathrm{eV} 259.97 \mathrm{~nm} \mathrm{f}=0.1781<\mathrm{S}^{* *} 2>=0.000$

$$
203->210 \quad 0.11812
$$

$$
205->209 \quad 0.33782
$$

$$
205->212 \quad 0.11657
$$

$$
206->210 \quad 0.46117
$$

$$
207->212 \quad-0.12263
$$

$$
208->210 \quad 0.28054
$$

Excited state symmetry could not be determined.
Excited State 7: Singlet-?Sym $4.8022 \mathrm{eV} 258.18 \mathrm{~nm} \mathrm{f}=0.0553<\mathrm{S}^{* *} 2>=0.000$
205 -> 2090.40850
$205->212-0.21964$
$206->210-0.38048$
$206->211-0.15719$
$208->210 \quad 0.21358$

Excited state symmetry could not be determined.
Excited State 8: Singlet-?Sym $4.8209 \mathrm{eV} 257.18 \mathrm{~nm} \mathrm{f}=0.0000<S^{*} 2>=0.000$

$$
\begin{array}{lr}
205->210 & -0.32620 \\
205->211 & -0.10600 \\
205->214 & -0.11104 \\
206->209 & 0.40593 \\
206->212 & -0.12190 \\
207->210 & -0.29690 \\
208->212 & 0.18322
\end{array}
$$

Excited state symmetry could not be determined.

```
Excited State 9: Singlet-?Sym 4.9908 eV 248.43 nm f=0.0187 <S**2>=0.000
199 -> 212 0.12092
204 -> 209 0.16459
205 -> 209 -0.12211
205 -> 213 0.15504
205 -> 217 -0.10432
206 -> 211 -0.11361
206 -> 214 -0.22013
206 -> 215 0.10397
207 -> 213 -0.10140
207 -> 216 0.32696
208 -> 215 0.31868
```

Excited state symmetry could not be determined.
Excited State 10: Singlet-?Sym $4.9910 \mathrm{eV} 248.41 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*}{ }^{*} 2>=0.000$ 204 -> $210 \quad 0.16651$
$205->215 \quad 0.16532$
$205->218 \quad 0.10817$
$206->216 \quad-0.19817$
$207->210 \quad-0.10423$
$207->211 \quad 0.18693$
$207->214 \quad 0.22575$
$208->209-0.15668$
$208->212-0.21648$
$208->213 \quad 0.21079$
$208->216 \quad 0.10671$
$208->217-0.18260$

Excited state symmetry could not be determined.
Excited State 11: Singlet-?Sym $5.0013 \mathrm{eV} 247.90 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$
199 -> $210-0.11157$
$203->209 \quad 0.12664$
$205->214 \quad 0.15663$
206 -> $209 \quad 0.17012$
$206->212 \quad 0.10554$
$206->213-0.17081$
$206->216 \quad 0.12254$
$206->217 \quad 0.12343$
$207->210-0.10043$
$207->211-0.10914$
$207->215 \quad 0.31771$
208 -> 2160.33750

Excited state symmetry could not be determined.
Excited State 12: Singlet-?Sym $5.0098 \mathrm{eV} 247.48 \mathrm{~nm} \mathrm{f}=0.0157<\mathrm{S}^{* *} 2>=0.000$ $205->216 \quad 0.18307$
$206->215-0.19008$
$207->209 \quad-0.21449$
$207->212 \quad-0.17611$
207 -> 2130.14682
$207->217 \quad-0.20167$
$208->210-0.10585$
$208->211 \quad 0.25828$
208 -> 2140.27177
Excited state symmetry could not be determined.
Excited State 13: Singlet-?Sym $5.0911 \mathrm{eV} 243.53 \mathrm{~nm} \mathrm{f}=0.1767<\mathrm{S}^{*} * 2>=0.000$ $206->210 \quad 0.17483$
$206->211 \quad-0.16717$
$206->214 \quad 0.13579$
$206->218 \quad-0.12924$
$207->209 \quad 0.11232$
207 -> 2120.15915
207 -> $213 \quad 0.36172$
$208->211-0.30365$
$208->214 \quad 0.25790$

Excited state symmetry could not be determined.
Excited State 14: Singlet-?Sym $5.0920 \mathrm{eV} 243.49 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$
$202->210-0.13095$
$204->210-0.10334$
$205->211-0.10528$
$205->214 \quad 0.10320$
$205->218 \quad-0.11550$
$206->212 \quad-0.20751$
$206->213-0.23662$
$207->210-0.14740$
207 -> $211 \quad 0.31565$
$207->214 \quad-0.20895$
$207->218 \quad 0.12627$
$208->212 \quad-0.12680$
$208->213-0.24859$
Excited state symmetry could not be determined.
Excited State 15: Singlet-?Sym $5.1409 \mathrm{eV} 241.17 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 202 -> $210-0.19264$

$$
\begin{array}{lr}
204->210 & -0.29034 \\
205->215 & 0.13035 \\
206->212 & -0.16756 \\
207->210 & 0.11761 \\
207->214 & 0.10617 \\
208->212 & 0.35229 \\
208->213 & 0.22428 \\
208->217 & -0.19460 \\
208->219 & 0.10256
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 16: Singlet-?Sym $5.1423 \mathrm{eV} 241.11 \mathrm{~nm} \mathrm{f}=0.1025<\mathrm{S}^{* *} 2>=0.000$ 202 -> 2090.10318
$204->209 \quad 0.31419$
$205->213 \quad-0.25917$
$205->217 \quad-0.11704$
$206->211 \quad-0.26082$
$206->214 \quad 0.15633$
$207->2120.15535$
$208->211 \quad 0.31579$
$208->214 \quad-0.11555$
Excited state symmetry could not be determined.
Excited State 17: Singlet-?Sym $5.1612 \mathrm{eV} 240.22 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$

$203->209$	0.16492
$205->210$	-0.11688
$205->211$	-0.28810
$205->214$	0.18973
$205->215$	-0.12747
$206->213$	-0.23502
$207->210$	-0.10584
$208->213$	0.29070
$208->216$	-0.18855
$208->219$	0.16249

Excited state symmetry could not be determined.
Excited State 18: Singlet-?Sym $5.1964 \mathrm{eV} 238.60 \mathrm{~nm} \mathrm{f}=0.0375<\mathrm{S}^{*} * 2>=0.000$
$203->210-0.15187$
$204->209 \quad 0.39665$
$205->212-0.21368$
$205->213 \quad 0.11952$
$205->216-0.14093$
$206->210 \quad 0.10075$

$$
\begin{array}{ll}
206->214 & -0.11201 \\
206->215 & 0.12348 \\
207->212 & -0.15231 \\
207->216 & -0.11320 \\
208->215 & -0.27909
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 19: Singlet-?Sym $5.2278 \mathrm{eV} 237.16 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$

$202->210$	0.18273
$203->209$	0.22467
$204->210$	0.31480
$204->211$	0.10016
$205->210$	0.13704
$205->211$	-0.11594
$206->209$	-0.10822
$206->212$	0.10982
$207->211$	0.15037
$208->212$	0.34513
$208->213$	-0.12261
$208->217$	-0.14154

Excited state symmetry could not be determined.
Excited State 20: Singlet-?Sym $5.2418 \mathrm{eV} 236.53 \mathrm{~nm} \mathrm{f}=0.0586<\mathrm{S}^{* *} 2>=0.000$
202 -> 2090.11403
$203->210 \quad 0.21174$
$204->209 \quad 0.31713$
$204->212-0.12804$
$205->209 \quad 0.10454$
$205->2120.28835$
$205->213 \quad 0.12070$
$205->216 \quad 0.12388$
$206->210 \quad-0.17502$
$206->215-0.17530$
$206->218 \quad 0.11004$
208 -> $211-0.25497$

Excited state symmetry could not be determined.
Excited State 21: Singlet-?Sym $5.2562 \mathrm{eV} 235.88 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 203 -> 2090.50392
$204->210-0.15566$
204 -> $211 \quad 0.14501$
$205->214-0.17167$
$206->209-0.11423$

$$
\begin{array}{lr}
206->213 & 0.20258 \\
208->212 & -0.19092
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 22: Singlet-?Sym $\quad 5.2739 \mathrm{eV} 235.09 \mathrm{~nm} \mathrm{f}=0.1127<\mathrm{S}^{* *} 2>=0.000$
$203->210-0.29336$
$204->212 \quad 0.11715$
$205->212-0.15408$
$205->213-0.12567$
$205->216 \quad 0.30219$
$205->219-0.11388$
$206->210 \quad 0.11349$
$206->215-0.26876$
$208->211-0.20156$
$208->214 \quad-0.15523$
$208->2150.11136$
208 -> $220 \quad 0.11397$

Excited state symmetry could not be determined.
Excited State 23: Singlet-?Sym $5.2796 \mathrm{eV} 234.84 \mathrm{~nm} \mathrm{f}=0.0118<\mathrm{S}^{*} * 2>=0.000$ 203 -> 2100.10704 $205->212-0.17932$
$205->213 \quad 0.20167$
$206->210 \quad 0.10473$
$206->214-0.19822$
$207->212 \quad 0.47499$
$207->213-0.13162$
$207->216-0.16827$

Excited state symmetry could not be determined.
Excited State 24: Singlet-?Sym $5.2924 \mathrm{eV} 234.27 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$
203 -> $209-0.10305$
$204->210 \quad 0.11045$
$205->214 \quad-0.19357$
$205->215 \quad-0.24471$
$206->213 \quad 0.13729$
$206->2160.32636$
$207->211 \quad 0.27678$
207 -> $214 \quad 0.12107$
$207->215 \quad 0.22227$
208 -> 2190.10919

Excited state symmetry could not be determined.

Excited State 25: Singlet-?Sym $5.2970 \mathrm{eV} 234.06 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$

$203->209$	0.10099
$205->210$	-0.10755
$205->211$	0.38273
$205->214$	0.10978
$205->215$	-0.11914
$206->212$	0.21551
$206->217$	0.12528
$208->216$	-0.27369
$208->217$	-0.24059
$208->219$	0.12073

Excited state symmetry could not be determined.
Excited State 26: Singlet-?Sym $5.3271 \mathrm{eV} 232.74 \mathrm{~nm} \mathrm{f}=0.2653<\mathrm{S}^{* *} 2>=0.000$ $202->209-0.17075$
$203->210-0.32918$
$203->2110.12776$
$204->2090.15306$
205 -> 2090.12599
$205->2120.12940$
$206->211 \quad 0.32925$
$207->2120.22869$
$207->217 \quad-0.12090$
$208->2150.11332$
$208->218-0.15864$

Excited state symmetry could not be determined.
Excited State 27: Singlet-?Sym $5.3308 \mathrm{eV} 232.58 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 203 -> 2120.12699
$204->210-0.27218$
$205->210-0.12048$
$205->215-0.12648$
$205->218 \quad 0.12074$
$206->212 \quad 0.28750$
$206->217-0.14849$
$207->211 \quad 0.31362$
208 -> 2120.14443
$208->217 \quad 0.16672$
208 -> $219-0.16875$
Excited state symmetry could not be determined.
Excited State 28: Singlet-?Sym $5.3486 \mathrm{eV} 231.81 \mathrm{~nm} \mathrm{f}=0.0066<\mathrm{S}^{*} * 2>=0.000$ 201 -> $210 \quad 0.15963$

$$
\begin{array}{lr}
203->210 & 0.28620 \\
204->209 & 0.12968 \\
205->212 & -0.24092 \\
205->213 & -0.16339 \\
205->217 & 0.23729 \\
206->211 & 0.27128 \\
206->214 & 0.13472 \\
206->218 & -0.13292 \\
207->216 & 0.11572 \\
207->219 & -0.10897
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 29: Singlet-?Sym $5.3747 \mathrm{eV} 230.68 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$
201 -> 2090.13168
$203->209 \quad 0.15709$
$204->210 \quad 0.13774$
$205->210 \quad 0.10549$
$205->211 \quad 0.29958$
$205->218-0.10132$
$206->212-0.24462$
$207->211 \quad 0.13559$
207 -> $221 \quad 0.10251$
$208->209 \quad-0.10788$
$208->213 \quad 0.23162$
$208->217 \quad 0.25219$
$208->219-0.12969$
Excited state symmetry could not be determined.
Excited State 30: Singlet-?Sym $5.3901 \mathrm{eV} 230.02 \mathrm{~nm} \mathrm{f}=0.0027<\mathrm{S}^{*} * 2>=0.000$

$$
\begin{array}{lr}
202->209 & 0.17114 \\
205->216 & 0.11940 \\
205->217 & 0.11322 \\
205->219 & -0.10208 \\
207->216 & 0.13632 \\
207->217 & 0.25387 \\
207->219 & -0.19008 \\
208->214 & 0.30711 \\
208->218 & -0.13753 \\
208->221 & 0.19972
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 31: Singlet-?Sym $5.4195 \mathrm{eV} 228.78 \mathrm{~nm} \mathrm{f}=0.0582<\mathrm{S}^{*} * 2>=0.000$ 196 -> 2100.11252

$201->210$	-0.25351
$202->209$	0.43859
$203->211$	-0.13284
$206->211$	0.13187
$206->215$	0.11352
$207->217$	-0.18402
$208->215$	0.11716
$208->218$	0.15914

Excited state symmetry could not be determined.
Excited State 32: Singlet-?Sym $5.4410 \mathrm{eV} 227.87 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$
201 -> 2090.32117
$202->210 \quad-0.29841$
$203->216 \quad 0.12612$
$204->210 \quad 0.15670$
$204->2150.12148$
$205->215-0.17959$
$206->217-0.15612$
$207->211-0.10543$
$208->213-0.12868$
$208->219-0.11196$
Excited state symmetry could not be determined.
Excited State 33: Singlet-?Sym $5.4598 \mathrm{eV} 227.08 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$

$$
\begin{array}{lr}
201->209 & -0.19864 \\
202->210 & 0.28409 \\
203->216 & 0.14144 \\
204->210 & -0.14257 \\
204->215 & 0.11494 \\
205->215 & -0.15120 \\
206->212 & -0.21302 \\
207->211 & -0.12405 \\
207->214 & 0.20392 \\
208->213 & -0.20811 \\
208->219 & -0.13587
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 34: Singlet-?Sym $5.4653 \mathrm{eV} 226.86 \mathrm{~nm} \mathrm{f}=0.0112<\mathrm{S}^{*} * 2>=0.000$

$205->212$	0.12578
$205->213$	0.13303
$205->216$	0.11630
$205->217$	0.26594
$205->219$	-0.19307

$$
\begin{array}{lr}
206->211 & -0.10131 \\
206->214 & -0.11771 \\
206->215 & 0.10077 \\
206->221 & -0.14098 \\
206->223 & -0.11763 \\
207->213 & 0.29409 \\
207->219 & 0.19944 \\
208->214 & -0.16191 \\
208->220 & 0.11670
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 35: Singlet-?Sym $5.4769 \mathrm{eV} 226.38 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$

$201->209$	0.14588
$205->221$	-0.12473
$206->212$	0.11353
$206->217$	0.29224
$206->219$	-0.22756
$207->214$	0.24382
$207->215$	-0.16244
$207->220$	-0.17211
$207->221$	0.10090
$207->223$	0.10969
$208->213$	-0.16199
$208->217$	0.10253
$208->224$	0.10100

Excited state symmetry could not be determined.
Excited State 36: Singlet-?Sym $5.4821 \mathrm{eV} 226.16 \mathrm{~nm} \mathrm{f}=0.0119<\mathrm{S}^{*} * 2>=0.000$ $201->210-0.16231$
$202->209-0.10461$
$205->213-0.19015$
205 -> 2170.15355
$205->219-0.14997$
$206->211-0.10637$
206 -> 2150.12625
$207->213-0.28431$
$207->217 \quad-0.24599$
208 -> $214 \quad 0.29423$
$208->215-0.10017$
$208->218-0.10431$

Excited state symmetry could not be determined.
Excited State 37: Singlet-?Sym $5.4899 \mathrm{eV} 225.84 \mathrm{~nm} \mathrm{f}=0.0021<\mathrm{S}^{* *} 2>=0.000$

$$
\begin{array}{lr}
201->210 & 0.25544 \\
202->212 & -0.13369 \\
203->210 & -0.19612 \\
203->215 & 0.13891 \\
204->212 & -0.10481 \\
204->216 & 0.12717 \\
205->212 & 0.26116 \\
205->217 & 0.12166 \\
206->211 & -0.11997 \\
207->212 & 0.10672 \\
207->216 & 0.12735 \\
207->219 & -0.20483 \\
208->218 & 0.22416
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 38: Singlet-?Sym $5.4953 \mathrm{eV} 225.62 \mathrm{~nm} \mathrm{f}=0.0221<\mathrm{S}^{* *} 2>=0.000$

$$
\begin{array}{lr}
201->210 & -0.15365 \\
203->214 & 0.13605 \\
204->213 & 0.15107 \\
204->217 & -0.10429 \\
205->216 & 0.15803 \\
205->217 & 0.10139 \\
207->212 & 0.10198 \\
207->213 & 0.13385 \\
208->215 & -0.26356 \\
208->218 & 0.31446 \\
208->220 & -0.16414
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 39: Singlet-?Sym $5.4989 \mathrm{eV} 225.47 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$

$200->209$	0.13210
$201->209$	0.37265
$202->210$	0.25603
$202->211$	0.18237
$203->212$	0.15931
$203->217$	0.10094
$204->214$	-0.14551
$207->215$	0.10567
$208->216$	0.10051
$208->217$	-0.14277
$208->219$	0.11146

Excited state symmetry could not be determined.

Excited State 40: Singlet-?Sym $5.5217 \mathrm{eV} 224.54 \mathrm{~nm} \mathrm{f}=0.0642<\mathrm{S}^{*} * 2>=0.000$ $196->210-0.15934$
$201->210 \quad 0.36481$
$202->209 \quad 0.24854$
$202->212-0.15106$
$204->216 \quad-0.12514$
$205->213-0.13563$
205 -> $216 \quad 0.10824$
$207->219 \quad 0.20025$
$208->214 \quad 0.12310$
208 -> $220-0.15205$

Excited state symmetry could not be determined.
Excited State 41: Singlet-?Sym $5.5348 \mathrm{eV} 224.01 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $202->210-0.14309$
$203->213-0.11485$
$203->216-0.13223$
$204->214 \quad-0.13187$
$204->215-0.13047$
$205->214 \quad 0.24887$
$206->219 \quad 0.10367$
207 -> $214 \quad 0.31499$
207 -> $215 \quad 0.11213$
$207->218 \quad-0.27318$
$208->213 \quad-0.14429$
$208->2220.11505$
Excited state symmetry could not be determined.
Excited State 42: Singlet-?Sym $5.5508 \mathrm{eV} 223.36 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$
196 -> $209-0.10740$
$201->209 \quad 0.11325$
202 -> $210 \quad 0.13897$
$203->216-0.11526$
$203->217-0.11776$
$204->211 \quad 0.11129$
$204->214 \quad 0.10080$
$205->221 \quad 0.12662$
$206->212 \quad-0.11879$
$206->216-0.12385$
$206->217-0.19321$
$206->219 \quad 0.13870$
207 -> $214 \quad 0.24076$
207 -> 2180.17525

$$
\begin{array}{lr}
208->213 & -0.13215 \\
208->216 & -0.12294 \\
208->217 & 0.11857 \\
208->219 & 0.20081 \\
208->222 & -0.12503
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 43: Singlet-?Sym $5.5587 \mathrm{eV} 223.04 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$

$202->210$	-0.10710
$204->211$	-0.14644
$205->220$	-0.14565
$206->216$	-0.10345
$206->219$	-0.13138
$207->215$	-0.12466
$208->213$	-0.13855
$208->216$	0.30098
$208->217$	0.18571
$208->219$	0.38688

Excited state symmetry could not be determined.
Excited State 44: Singlet-?Sym $5.5714 \mathrm{eV} 222.54 \mathrm{~nm} \mathrm{f}=0.0239<S^{* *} 2>=0.000$

$202->209$	-0.12427
$203->215$	-0.11235
$204->213$	-0.13598
$204->216$	-0.13239
$205->213$	0.12234
$205->219$	0.11123
$206->214$	0.32334
$207->213$	-0.13600
$207->216$	-0.13167
$208->214$	0.17289
$208->215$	0.21042
$208->218$	0.31812

Excited state symmetry could not be determined.
Excited State 45: Singlet-?Sym $5.5829 \mathrm{eV} 222.08 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ $200->209-0.11746$
$204->211 \quad 0.20779$
$204->215 \quad 0.10849$
205 -> $214 \quad 0.31260$
$205->218 \quad 0.11663$
$206->212 \quad-0.12057$
$206->2130.29348$

$$
\begin{array}{lr}
206->217 & 0.21483 \\
206->219 & 0.14144 \\
207->214 & -0.20349 \\
207->218 & -0.10253 \\
208->217 & 0.10760
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 46: Singlet-?Sym $5.5990 \mathrm{eV} 221.44 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$

$$
\begin{array}{lr}
201->209 & -0.11716 \\
205->214 & 0.16629 \\
205->218 & -0.31097 \\
206->212 & 0.12158 \\
206->213 & 0.24945 \\
206->216 & 0.13253 \\
206->222 & -0.14104 \\
207->215 & -0.17701 \\
207->218 & 0.31425 \\
208->216 & 0.15961
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 47: Singlet-?Sym $5.6075 \mathrm{eV} 221.10 \mathrm{~nm} \mathrm{f}=0.0046<\mathrm{S}^{*} * 2>=0.000$

$202->209$	0.12986
$203->214$	0.13127
$203->215$	0.10378
$204->212$	-0.13883
$204->216$	0.11098
$205->213$	0.14237
$205->217$	0.23179
$206->211$	-0.10743
$206->214$	0.14851
$206->218$	-0.17913
$207->213$	-0.13993
$207->216$	-0.21028
$207->217$	0.18261
$208->215$	0.13188
$208->218$	-0.20237
$208->220$	-0.11811

Excited state symmetry could not be determined.
Excited State 48: Singlet-?Sym $5.6117 \mathrm{eV} 220.94 \mathrm{~nm} \mathrm{f}=0.0226<\mathrm{S}^{*} * 2>=0.000$ $203->215 \quad-0.10521$
$205->213 \quad 0.22804$
205 -> 2160.13898

$$
\begin{array}{lr}
206->214 & 0.23367 \\
206->218 & -0.18623 \\
207->216 & 0.31932 \\
207->217 & -0.24722 \\
208->215 & -0.25175 \\
208->218 & -0.16150
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 49: Singlet-?Sym $5.6139 \mathrm{eV} 220.85 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$

$$
\begin{array}{lr}
203->216 & 0.12338 \\
204->215 & 0.12436 \\
205->215 & 0.11621 \\
205->218 & -0.26656 \\
206->216 & -0.10100 \\
206->217 & 0.12402 \\
207->215 & 0.32723 \\
208->216 & -0.23134 \\
208->217 & 0.26566
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 50: Singlet-?Sym $5.6195 \mathrm{eV} 220.63 \mathrm{~nm} \mathrm{f}=0.0003<S^{*} * 2>=0.000$

$201->210$	0.13200
$203->214$	0.10230
$204->212$	0.12064
$205->212$	-0.10239
$205->217$	0.20813
$205->219$	0.18613
$205->222$	0.17079
$206->210$	0.10744
$206->215$	-0.10902
$206->218$	0.40948
$207->213$	0.12146

5.1c

Excitation energies and oscillator strengths:

Excited state symmetry could not be determined.
Excited State 1: Singlet-?Sym $4.5590 \mathrm{eV} 271.95 \mathrm{~nm} \mathrm{f}=0.0000<S^{*}{ }^{*} 2>=0.000$ 257 -> $262-0.11481$
$257->263-0.13382$
$258->261 \quad-0.11469$
$259->262-0.18952$

$$
\begin{array}{lr}
259->263 & -0.12955 \\
260->261 & 0.60083
\end{array}
$$

This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-14866.1374461$
Copying the excited state density for this state as the 1-particle RhoCI density.
Excited state symmetry could not be determined.
Excited State 2: Singlet-?Sym $4.5640 \mathrm{eV} 271.66 \mathrm{~nm} \mathrm{f}=0.4199<\mathrm{S}^{*}{ }^{*} 2>=0.000$
$257->261 \quad-0.32422$
$258->262-0.10101$
$258->263-0.10588$
$259->261 \quad-0.18030$
259 -> 2640.10543
$260->262 \quad 0.52521$
$260->2630.11574$

Excited state symmetry could not be determined.
Excited State 3: Singlet-?Sym $4.6295 \mathrm{eV} 267.82 \mathrm{~nm} \mathrm{f}=0.1382<S^{* *} 2>=0.000$
258 -> $263-0.11258$
$259->261 \quad 0.54568$
259 -> 2640.17200
$260->2620.14487$
$260->263-0.26841$
260 -> 2660.10654

Excited state symmetry could not be determined.
Excited State 4: Singlet-?Sym $4.6486 \mathrm{eV} 266.71 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ 255 -> $261-0.11433$
$256->262-0.10052$
257 -> 2620.38169
257 -> 2630.11423
258 -> 2610.39292
$259->263-0.16755$
260 -> $261 \quad 0.16152$
$260->264 \quad 0.20020$
260 -> 2650.10381

Excited state symmetry could not be determined.
Excited State 5: Singlet-?Sym $4.6658 \mathrm{eV} 265.73 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 256 -> 2620.14376
$257->262-0.31098$
258 -> 2640.19495
259 -> 2620.49543

$$
\begin{array}{lr}
259->263 & -0.12838 \\
260->264 & 0.17546
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 6: Singlet-?Sym $4.7089 \mathrm{eV} 263.30 \mathrm{~nm} \mathrm{f}=0.2476<\mathrm{S}^{*} * 2>=0.000$ 255 -> $262-0.15775$
$257->261 \quad 0.24466$
257 -> $264-0.17615$
258 -> 2620.48909
259 -> $264 \quad 0.16045$
$260->2620.23671$

Excited state symmetry could not be determined.
Excited State 7: Singlet-?Sym $4.7575 \mathrm{eV} 260.61 \mathrm{~nm} \mathrm{f}=0.0460<S^{*}{ }^{*} 2>=0.000$ 257 -> $261 \quad 0.41920$
257 -> $264 \quad 0.20485$
257 -> 2650.11732
$258->262-0.24877$
$258->2630.19206$
$258->266-0.10049$
$260->262 \quad 0.22947$
$260->263-0.10157$
$260->266 \quad 0.13780$
$260->267-0.11683$

Excited state symmetry could not be determined.
Excited State 8: Singlet-?Sym $4.7714 \mathrm{eV} 259.85 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ 257 -> $262-0.26942$
257 -> 2630.14207
257 -> $266-0.15920$
$258->261 \quad 0.37954$
258 -> 2640.14623
$258->2650.14341$
259 -> $262-0.24326$
$259->2670.14416$
$260->264-0.16124$
$260->2680.16105$

Excited state symmetry could not be determined.
Excited State 9: Singlet-?Sym $4.8780 \mathrm{eV} 254.17 \mathrm{~nm} \mathrm{f}=0.0433<\mathrm{S}^{* *} 2>=0.000$ 256 -> $261-0.16317$
257 -> $261 \quad 0.17442$
$257->265-0.14423$

$257->269$	0.11556
$258->266$	0.18376
$258->267$	0.15391
$259->261$	-0.12490
$259->264$	0.11966
$259->268$	0.32429
$260->267$	0.31838

Excited state symmetry could not be determined.
Excited State 10: Singlet-?Sym $4.8903 \mathrm{eV} 253.53 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ 255 -> 2610.15634
$258->261-0.25440$
$258->2650.13132$
$258->268 \quad 0.17051$
$258->269-0.14089$
259 -> $263-0.12075$
259 -> $267 \quad 0.32450$
$260->261-0.10446$
$260->264 \quad 0.18163$
$260->268 \quad 0.26538$

Excited state symmetry could not be determined.
Excited State 11: Singlet-?Sym $4.8966 \mathrm{eV} 253.20 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 256 -> 2620.13411
$257->262-0.14214$
257 -> 2660.16199
257 -> $267-0.17080$
$257->270-0.10660$
$258->268 \quad 0.18344$
259 -> $262-0.15545$
$259->263-0.12420$
259 -> 2660.22187
$260->261-0.18167$
$260->265 \quad 0.26659$
$260->268-0.19717$
$260->269-0.18417$
Excited state symmetry could not be determined.
Excited State 12: Singlet-?Sym $4.9122 \mathrm{eV} 252.40 \mathrm{~nm} \mathrm{f}=0.0060<S^{*} * 2>=0.000$ 257 -> $261-0.10421$
$257->2650.12248$
$257->268 \quad-0.19814$
258 -> 2670.19035

$259->261$	-0.25668
$259->264$	0.14977
$259->265$	0.16426
$259->269$	-0.19307
$260->262$	-0.15697
$260->263$	-0.14836
$260->266$	0.29996

Excited state symmetry could not be determined.
Excited State 13: Singlet-?Sym $4.9956 \mathrm{eV} 248.19 \mathrm{~nm} \mathrm{f}=0.1965<\mathrm{S}^{* *} 2>=0.000$ 258 -> 2620.19182
$258->2630.11609$
258 -> 2660.13863
$258->270 \quad 0.10880$
$259->261 \quad 0.13679$
259 -> $264-0.18559$
$259->2650.32280$
$260->2630.35948$
$260->2660.24274$

Excited state symmetry could not be determined.
Excited State 14: Singlet-?Sym $4.9979 \mathrm{eV} 248.07 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 254 -> 2620.12844
256 -> 2620.11696
$257->263-0.12764$
$257->266-0.12683$
$257->270-0.11713$
$258->264-0.23230$
$258->2650.22146$
259 -> 2620.18485
259 -> 2630.29345
259 -> 2660.20952
259 -> $270 \quad 0.12299$
$260->264-0.11005$
260 -> 2650.22139

Excited state symmetry could not be determined.
Excited State 15: Singlet-?Sym $5.0390 \mathrm{eV} 246.05 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$
254 -> 2620.14805
$256->2620.24477$
$257->267 \quad 0.16425$
$258->264-0.20447$
259 -> $262-0.19595$

$$
\begin{array}{lr}
260->264 & 0.45583 \\
260->265 & -0.10900 \\
260->269 & 0.13971
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 16: Singlet-?Sym $5.0501 \mathrm{eV} 245.51 \mathrm{~nm} \mathrm{f}=0.1280<S^{*} * 2>=0.000$ $256->261 \quad-0.21655$
257 -> $261 \quad 0.10821$
257 -> 2650.27554
257 -> 2690.14244
$258->263-0.27781$
$258->266-0.17490$
259 -> 2610.10198
259 -> 2640.17310
$260->2630.34710$

Excited state symmetry could not be determined.
Excited State 17: Singlet-?Sym $5.0770 \mathrm{eV} 244.21 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 255 -> $261 \quad-0.12670$
$256->263-0.11641$
$257->262-0.10612$
$257->2630.32164$
257 -> 2660.16384
257 -> 2670.13518
$258->261-0.10276$
$258->265-0.20532$
259 -> 2630.12100
$260->2650.30889$
$260->268 \quad 0.20072$
$260->2710.11680$

Excited state symmetry could not be determined.
Excited State 18: Singlet-?Sym $5.0988 \mathrm{eV} 243.16 \mathrm{~nm} \mathrm{f}=0.0560<\mathrm{S}^{* *} 2>=0.000$ 255 -> 2620.12072
256 -> 2610.22415
$257->264 \quad 0.32618$
257 -> 2680.17285
$258->2620.19056$
$258->2630.12575$
$258->267-0.21762$
259 -> $264 \quad 0.14820$
260 -> $267 \quad 0.27968$

Excited state symmetry could not be determined.
Excited State 19: Singlet-?Sym $5.1503 \mathrm{eV} 240.73 \mathrm{~nm} \mathrm{f}=0.0000<S^{*} * 2>=0.000$ 254 -> 2620.20238
$256->2620.33770$
$257->2620.15107$
257 -> 2630.13651
$258->261-0.10045$
$258->264-0.18341$
$258->265-0.11278$
$258->269-0.10687$
259 -> $263-0.20997$
$260->264-0.28606$
$260->265-0.15109$
$260->269-0.10055$

Excited state symmetry could not be determined.
Excited State 20: Singlet-?Sym $5.1514 \mathrm{eV} 240.68 \mathrm{~nm} \mathrm{f}=0.0239<\mathrm{S}^{*} * 2>=0.000$ $254->2610.11805$
$256->2610.46414$
$257->2610.11286$
257 -> $264-0.17540$
$257->268-0.12608$
$258->266-0.11994$
258 -> 2670.18865
259 -> $268 \quad 0.14047$
$260->2630.21356$

Excited state symmetry could not be determined.
Excited State 21: Singlet-?Sym $5.1689 \mathrm{eV} 239.86 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$
255 -> 2610.32197
255 -> $265 \quad 0.11131$
256 -> 2630.17159
257 -> 2660.19621
$258->2610.15734$
$258->265-0.19897$
$258->268 \quad 0.13600$
259 -> 2630.18301
$259->266-0.11396$
259 -> $267 \quad 0.11259$
$260->264-0.11838$
$260->269 \quad 0.22231$
$260->271$-0.12231

Excited state symmetry could not be determined.
Excited State 22: Singlet-?Sym $5.1773 \mathrm{eV} 239.48 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 255 -> 2610.26027
$256->2630.12608$
$257->263-0.22304$
257 -> 2660.11405
$257->267 \quad 0.22767$
258 -> $261 \quad 0.13861$
$258->264-0.13095$
$258->265-0.12512$
$258->268-0.19251$
$259->263-0.20920$
$260->268 \quad 0.18399$
$260->269-0.18464$
260 -> 2710.13995

Excited state symmetry could not be determined.
Excited State 23: Singlet-?Sym $5.1779 \mathrm{eV} 239.45 \mathrm{~nm} \mathrm{f}=0.1340<\mathrm{S}^{*} * 2>=0.000$ $255->262 \quad-0.21747$
$256->2640.19537$
$257->264 \quad-0.24149$
257 -> 2680.26404
$258->262-0.23527$
$258->267-0.21246$
$259->264 \quad 0.16409$
259 -> 2650.17409
$259->268-0.11867$
$260->2660.13333$

Excited state symmetry could not be determined.
Excited State 24: Singlet-?Sym $5.1814 \mathrm{eV} 239.29 \mathrm{~nm} \mathrm{f}=0.0593<\mathrm{S}^{*} * 2>=0.000$ 255 -> 2620.19683
$257->265-0.24520$
$258->266 \quad 0.16517$
259 -> 2640.43584
$259->268-0.15997$
259 -> $269 \quad 0.10771$
$260->2630.14985$
$260->267-0.16183$
Excited state symmetry could not be determined.
Excited State 25: Singlet-?Sym $5.1893 \mathrm{eV} 238.92 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 255 -> $261 \quad 0.24900$

$$
\begin{array}{lr}
257->262 & 0.11088 \\
257->263 & 0.22358 \\
257->266 & -0.17202 \\
257->267 & 0.14697 \\
258->265 & 0.13356 \\
258->268 & -0.18602 \\
258->269 & -0.12144 \\
259->263 & -0.21298 \\
259->266 & 0.16356 \\
259->267 & -0.18121 \\
260->265 & 0.14112 \\
260->268 & -0.15160 \\
260->269 & 0.17895
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 26: Singlet-?Sym $5.2183 \mathrm{eV} 237.59 \mathrm{~nm} \mathrm{f}=0.2312<\mathrm{S}^{*} * 2>=0.000$

$254->261$	0.10315
$255->262$	-0.23780
$255->263$	-0.15781
$256->261$	-0.24173
$257->261$	-0.17253
$257->269$	-0.18364
$258->263$	0.35084
$258->266$	-0.14938
$259->264$	0.13386
$259->269$	0.14315
$260->267$	0.13321

Excited state symmetry could not be determined.
Excited State 27: Singlet-?Sym $5.2361 \mathrm{eV} 236.79 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $255->2610.19243$ $255->264-0.12789$
$256->2620.30590$
$257->2620.17939$
258 -> 2640.22125
259 -> 2630.26394
259 -> 2720.10345
$260->264 \quad 0.10231$
$260->269-0.20761$
$260->2710.17765$

Excited state symmetry could not be determined.
Excited State 28: Singlet-?Sym $5.2539 \mathrm{eV} 235.99 \mathrm{~nm} \mathrm{f}=0.0036<\mathrm{S}^{*} * 2>=0.000$

$255->262$	0.15919
$256->261$	-0.10107
$256->274$	-0.11826
$257->264$	-0.12045
$257->269$	-0.17906
$257->271$	0.11754
$257->274$	-0.11959
$258->263$	0.14445
$258->273$	-0.14565
$259->269$	-0.20657
$259->271$	0.29074
$260->272$	0.31795

Excited state symmetry could not be determined.
Excited State 29: Singlet-?Sym $5.2579 \mathrm{eV} 235.80 \mathrm{~nm} \mathrm{f}=0.0000<S^{*} * 2>=0.000$ 255 -> 2610.16915
255 -> 2640.10240
$256->262 \quad-0.16947$
$257->262-0.12723$
$257->2630.26714$
$258->264-0.19837$
$258->268 \quad 0.10877$
$258->269-0.20485$
$258->271 \quad 0.11647$
$259->267-0.10234$
259 -> 2720.14071
$259->273-0.16862$
$260->265-0.16713$
$260->269-0.17900$

Excited state symmetry could not be determined.
Excited State 30: Singlet-?Sym $5.2687 \mathrm{eV} 235.32 \mathrm{~nm} \mathrm{f}=0.0270<\mathrm{S}^{*} * 2>=0.000$ 253 -> $262-0.10750$
255 -> 2620.38127
$257->264-0.26412$
$258->270-0.10658$
$259->264-0.10595$
$259->269 \quad 0.21451$
$260->266 \quad 0.20277$
$260->270 \quad 0.10547$

Excited state symmetry could not be determined.
Excited State 31: Singlet-?Sym $5.3017 \mathrm{eV} 233.86 \mathrm{~nm} \mathrm{f}=0.0085<\mathrm{S}^{*} * 2>=0.000$

$254->261$	0.12817
$255->266$	0.11580
$256->265$	-0.11985
$257->261$	-0.11349
$257->264$	-0.13952
$257->269$	0.17793
$257->271$	-0.20057
$258->263$	0.11148
$258->272$	0.23576
$258->273$	-0.13083
$259->274$	0.25088
$260->273$	-0.24021

Excited state symmetry could not be determined.
Excited State 32: Singlet-?Sym $5.3019 \mathrm{eV} 233.85 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 255 -> 2610.17935
$256->262-0.10363$
$257->2630.19628$
$257->2720.12712$
$258->264-0.20987$
$258->269 \quad 0.14863$
$258->271-0.20612$
$258->274-0.13484$
$259->2660.10689$
$259->272-0.15631$
$259->273 \quad 0.24401$
$260->265-0.11214$
$260->274-0.19450$

Excited state symmetry could not be determined.
Excited State 33: Singlet-?Sym $5.3440 \mathrm{eV} 232.01 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 254 -> 2620.10314
$255->268-0.18998$
$256->267 \quad 0.18277$
$257->267-0.22080$
$257->2720.10616$
259 -> $263-0.15904$
259 -> $266-0.17212$
259 -> 2720.13633
$260->2650.17685$
$260->2690.17158$
$260->271 \quad 0.25362$

Excited state symmetry could not be determined.
Excited State 34: Singlet-?Sym $5.3457 \mathrm{eV} 231.93 \mathrm{~nm} \mathrm{f}=0.0822<\mathrm{S}^{*} * 2>=0.000$ 252 -> 2620.10828
$253->262-0.22735$
$254->2610.43228$
$255->263-0.19316$
$256->264-0.14972$
$258->263-0.18714$
$259->265 \quad-0.12101$
$260->266 \quad 0.15607$
Excited state symmetry could not be determined.
Excited State 35: Singlet-?Sym $5.3605 \mathrm{eV} 231.29 \mathrm{~nm} \mathrm{f}=0.0092<\mathrm{S}^{*} * 2>=0.000$ $254->261 \quad 0.15048$
$257->264-0.10121$
$257->2650.14938$
257 -> $269 \quad 0.11260$
$259->2650.36528$
$260->266-0.33094$
$260->270-0.31483$

Excited state symmetry could not be determined.
Excited State 36: Singlet-?Sym $5.3654 \mathrm{eV} 231.08 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 254 -> $262-0.20999$
256 -> 2670.10473
$256->272-0.10228$
$257->267-0.14150$
$257->272 \quad-0.12549$
$258->264-0.20079$
$258->2710.11005$
$259->266-0.17367$
$259->272-0.11359$
$260->265 \quad 0.20318$
$260->268 \quad 0.22437$
$260->271 \quad-0.12935$
$260->2740.15078$
$260->2750.12228$
Excited state symmetry could not be determined.
Excited State 37: Singlet-?Sym $5.3690 \mathrm{eV} 230.93 \mathrm{~nm} \mathrm{f}=0.0251<\mathrm{S}^{*} * 2>=0.000$ 255 -> $262-0.15285$
$255->266 \quad 0.10701$
$255->267-0.13156$

$$
\begin{array}{lr}
256->268 & 0.15477 \\
257->264 & 0.14594 \\
258->263 & -0.11713 \\
259->261 & -0.10388 \\
259->265 & 0.15987 \\
259->268 & 0.11688 \\
259->269 & 0.24868 \\
259->271 & 0.12802 \\
260->267 & -0.19984 \\
260->270 & 0.20370 \\
260->272 & 0.10099
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 38: Singlet-?Sym $5.3839 \mathrm{eV} 230.29 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ $252->261-0.18681$
$253->261 \quad 0.33617$
$254->262-0.33374$
$254->263-0.12286$
$255->264-0.10113$
$256->2620.16113$
258 -> $264-0.12471$
$260->268-0.13698$
$260->2690.10652$

Excited state symmetry could not be determined.
Excited State 39: Singlet-?Sym $5.3867 \mathrm{eV} 230.17 \mathrm{~nm} \mathrm{f}=0.0364<\mathrm{S}^{*} * 2>=0.000$
255 -> 2670.16893
$256->268-0.20180$
257 -> 2650.16836
257 -> 2680.26687
$257->269-0.18443$
257 -> 2750.10011
259 -> 2680.14742
259 -> 271 -0.10982
$260->266-0.14305$
$260->267-0.22066$
$260->270 \quad 0.15667$
$260->272-0.12657$

Excited state symmetry could not be determined.
Excited State 40: Singlet-?Sym $5.4106 \mathrm{eV} 229.15 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$ 253 -> 2610.15474
$254->263-0.11666$

$255->265$	0.15627
$255->269$	-0.14159
$256->266$	-0.22498
$256->267$	0.11249
$257->266$	0.22082
$258->269$	0.25139
$259->266$	0.27848
$259->270$	0.12440
$260->265$	-0.11124

Excited state symmetry could not be determined.
Excited State 41: Singlet-?Sym $5.4160 \mathrm{eV} 228.92 \mathrm{~nm} \mathrm{f}=0.0398<\mathrm{S}^{*} * 2>=0.000$ $253->262-0.15437$
$256->2650.17085$
$257->2640.11846$
$257->269-0.23766$
$258->263-0.16803$
$258->266-0.21410$
258 -> 2760.10945
$259->265 \quad 0.15180$
259 -> 2740.14230
$260->266-0.14926$
$260->267 \quad 0.24367$
$260->273-0.10086$
$260->2770.11629$

Excited state symmetry could not be determined.
Excited State 42: Singlet-?Sym $5.4203 \mathrm{eV} 228.74 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$
253 -> $261-0.18126$
$255->264-0.14735$
$256->263-0.13149$
$256->2660.12862$
$258->265-0.16083$
259 -> $266 \quad 0.33775$
$260->265-0.20291$
$260->268 \quad 0.20498$
$260->2690.20314$
Excited state symmetry could not be determined.
Excited State 43: Singlet-?Sym $5.4383 \mathrm{eV} 227.98 \mathrm{~nm} \mathrm{f}=0.0062<\mathrm{S}^{*} * 2>=0.000$ 252 -> $262-0.16769$
$253->2620.32090$
$254->2640.19908$

$$
\begin{array}{lr}
255->263 & -0.10301 \\
256->269 & 0.10710 \\
257->269 & -0.18420 \\
259->265 & -0.15102 \\
259->268 & -0.18221 \\
259->269 & 0.12735 \\
259->275 & -0.11822 \\
260->270 & -0.11577
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 44: Singlet-?Sym $5.4514 \mathrm{eV} 227.43 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$

$253->261$	-0.12411
$256->263$	-0.13883
$258->268$	-0.12710
$258->269$	0.22289
$258->275$	-0.11950
$259->267$	0.40639
$259->277$	0.10109
$260->268$	-0.18533
$260->274$	0.11221

Excited state symmetry could not be determined.
Excited State 45: Singlet-?Sym $5.4635 \mathrm{eV} 226.93 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ 252 -> $261-0.11406$
$253->261 \quad 0.26360$
$254->2620.14759$
$254->263-0.18139$
$255->2640.13709$
255 -> $265-0.11566$
$256->2660.19057$
$256->267-0.13659$
$257->266-0.10447$
$258->265-0.15587$
258 -> 2690.13058
259 -> $267-0.12801$
$260->268 \quad 0.17828$
260 -> 2690.14383

Excited state symmetry could not be determined.
Excited State 46: Singlet-?Sym $5.4664 \mathrm{eV} 226.81 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ $253->261-0.16510$
255 -> $268 \quad 0.12601$
256 -> 267 -0.20971

$$
\begin{array}{lr}
257->266 & 0.21656 \\
258->265 & 0.21228 \\
258->268 & 0.19532 \\
258->269 & 0.17862 \\
259->266 & -0.18120 \\
259->267 & -0.15582 \\
259->270 & 0.22325 \\
260->269 & 0.17291
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 47: Singlet-?Sym $5.4692 \mathrm{eV} 226.69 \mathrm{~nm} \mathrm{f}=0.1453<\mathrm{S}^{*} * 2>=0.000$

$$
\begin{array}{lr}
252->262 & 0.14185 \\
253->262 & -0.21264 \\
254->261 & -0.17976 \\
254->264 & -0.17103 \\
255->263 & 0.13862 \\
256->265 & -0.18826 \\
257->265 & 0.16690 \\
258->266 & 0.29513 \\
258->267 & 0.18195 \\
259->268 & -0.14499 \\
259->275 & -0.10559 \\
260->270 & -0.12200
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 48: Singlet-?Sym $5.4808 \mathrm{eV} 226.22 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{*} * 2>=0.000$

$252->261$	0.15318
$254->262$	-0.20352
$254->263$	0.10020
$255->261$	-0.10308
$255->269$	-0.11540
$256->263$	0.33611
$257->266$	-0.15307
$258->264$	-0.11066
$258->265$	-0.22384
$258->271$	-0.12866
$259->270$	0.22752
$260->268$	-0.11203
$260->271$	0.10016

Excited state symmetry could not be determined.
Excited State 49: Singlet-?Sym $5.4823 \mathrm{eV} 226.16 \mathrm{~nm} \mathrm{f}=0.0279<\mathrm{S}^{*} * 2>=0.000$ 256 -> 2640.16792

$$
\begin{array}{lr}
258->266 & 0.11615 \\
258->267 & -0.10299 \\
259->268 & 0.36569 \\
259->269 & 0.12997 \\
260->266 & 0.10538 \\
260->267 & -0.16381 \\
260->270 & -0.30978 \\
260->277 & 0.10501
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 50: Singlet-?Sym $5.4924 \mathrm{eV} 225.74 \mathrm{~nm} \mathrm{f}=0.0337<\mathrm{S}^{* *} 2>=0.000$ 255 -> $266-0.14676$
$255->267 \quad 0.18451$
$256->2650.17119$
$256->268-0.24232$
257 -> 2690.20170
258 -> 2670.11020
$259->265-0.11120$
259 -> $268 \quad 0.11951$
$259->269 \quad 0.32589$
$260->2760.11793$
chair-4.2a
Excitation energies and oscillator strengths:

Excited state symmetry could not be determined.
Excited State 1: Singlet-?Sym $4.2989 \mathrm{eV} 288.41 \mathrm{~nm} \mathrm{f}=0.1026<\mathrm{S}^{* *} 2>=0.000$ $190->193 \quad-0.11602$ $191->193-0.13148$ $192->1930.64910$
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-4573.24690426$
Copying the excited state density for this state as the 1-particle RhoCI density.
Excited state symmetry could not be determined.
Excited State 2: Singlet-?Sym $4.3674 \mathrm{eV} 283.89 \mathrm{~nm} \mathrm{f}=0.0144<S^{*} * 2>=0.000$ 190 ->193 0.12068
$191->193 \quad 0.64245$
$192->193 \quad 0.14211$
$192->196 \quad-0.10707$

Excited state symmetry could not be determined.

```
Excited State 3: Singlet-?Sym 4.4802 eV 276.74 nm f=0.1106 <S**2>=0.000
    190 ->193 0.65718
    191 ->193 -0.14041
```

Excited state symmetry could not be determined.
Excited State 4: Singlet-?Sym $4.5689 \mathrm{eV} 271.37 \mathrm{~nm} \mathrm{f}=0.0040<\mathrm{S}^{*} * 2>=0.000$ $190->194 \quad 0.40687$
$190->195 \quad 0.11219$
$191->194 \quad 0.38166$
$192->194-0.34316$

Excited state symmetry could not be determined.
Excited State 5: Singlet-?Sym $4.6194 \mathrm{eV} 268.40 \mathrm{~nm} \mathrm{f}=0.0245<\mathrm{S}^{*}{ }^{2} 2>=0.000$ 189 ->193 0.58467
$191->196 \quad-0.12255$
$192->194 \quad 0.18062$
$192->195 \quad-0.16936$
$192->196 \quad 0.13384$

Excited state symmetry could not be determined.
Excited State 6: Singlet-?Sym $4.6353 \mathrm{eV} 267.48 \mathrm{~nm} \mathrm{f}=0.0113<\mathrm{S}^{*}{ }^{*} 2>=0.000$
189 ->193 -0.10601
$189->194 \quad 0.11496$
$189->195 \quad-0.10097$
$190->194 \quad-0.16626$
$191->194 \quad 0.40999$
$191->195 \quad-0.30369$
$191->196 \quad-0.14152$
$191->197 \quad 0.13611$
$192->194 \quad 0.28882$

Excited state symmetry could not be determined.
Excited State 7: Singlet-?Sym $4.7650 \mathrm{eV} 260.20 \mathrm{~nm} \mathrm{f}=0.0036<\mathrm{S}^{* *} 2>=0.000$ $189->193-0.12989$ $190->194 \quad 0.42396$ $191->194 \quad-0.10015$ $192->194 \quad 0.41466$ $192->196 \quad-0.17199$ $192->198 \quad-0.13607$

Excited state symmetry could not be determined.
Excited State 8: Singlet-?Sym $4.8829 \mathrm{eV} 253.92 \mathrm{~nm} \mathrm{f}=0.0139<\mathrm{S}^{*}{ }^{*} 2>=0.000$ 189 ->194 -0.12923

$189->195$	0.12470
$189->196$	0.11326
$190->195$	-0.17574
$190->196$	-0.13452
$191->194$	0.21507
$191->195$	0.18275
$191->196$	-0.13373
$191->197$	-0.19848
$191->198$	-0.20810
$192->195$	0.25881
$192->196$	0.14542
$192->197$	0.16288
$192->198$	-0.18098

Excited state symmetry could not be determined.
Excited State 9: Singlet-?Sym 4.8978 eV $253.14 \mathrm{~nm} \mathrm{f}=0.0257<\mathrm{S}^{*} * 2>=0.000$

$187->193$	0.13755
$188->193$	-0.16068
$189->194$	0.23964
$190->194$	0.23857
$190->196$	-0.19760
$190->197$	-0.12762
$191->194$	-0.13097
$191->195$	-0.24771
$191->196$	-0.10503
$192->195$	0.15736
$192->196$	0.27055
$192->198$	0.12975

Excited state symmetry could not be determined.
Excited State 10: Singlet-?Sym $4.9313 \mathrm{eV} 251.42 \mathrm{~nm} \mathrm{f}=0.0203<\mathrm{S}^{*} * 2>=0.000$ $187->193 \quad-0.28388$
$188->193 \quad 0.20443$
$189->193 \quad 0.18023$
189 ->194 0.12024
$191->197 \quad 0.13896$
$192->195 \quad 0.39376$
$192->196-0.20578$

Excited state symmetry could not be determined.
Excited State 11: Singlet-?Sym $4.9678 \mathrm{eV} 249.57 \mathrm{~nm} \mathrm{f}=0.0441<\mathrm{S}^{*} * 2>=0.000$ $188->193 \quad-0.25322$ $189->196-0.12063$

$189->197$	-0.14489
$191->194$	0.17374
$191->196$	0.30713
$191->198$	-0.18180
$191->202$	0.10725
$192->196$	-0.11207
$192->197$	-0.28135

Excited state symmetry could not be determined.
Excited State 12: Singlet-?Sym 4.9906 eV $248.44 \mathrm{~nm} \mathrm{f}=0.0370<S^{*} * 2>=0.000$ 187 ->193 0.20779
$188->193-0.22230$
$190->195 \quad 0.17857$
$190->196 \quad 0.24575$
$191->197 \quad 0.12033$
$192->195 \quad 0.29229$
$192->198 \quad-0.26660$

Excited state symmetry could not be determined.
Excited State 13: Singlet-?Sym $5.0175 \mathrm{eV} 247.10 \mathrm{~nm} \mathrm{f}=0.0195<\mathrm{S}^{*} * 2>=0.000$ 189 ->194 0.25879
$189->196 \quad 0.11634$
$189->198-0.12844$
$190->195 \quad 0.10391$
$190->196 \quad 0.27521$
$190->197 \quad 0.12596$
$191->195 \quad 0.22375$
$191->196-0.15226$
$192->197 \quad-0.11134$
$192->198 \quad 0.20018$
$192->201 \quad-0.11446$
$192->202 \quad 0.10950$
Excited state symmetry could not be determined.
Excited State 14: Singlet-?Sym $5.0276 \mathrm{eV} 246.60 \mathrm{~nm} \mathrm{f}=0.0336<\mathrm{S}^{*} * 2>=0.000$ $188->1930.33165$ $189->193-0.11967$
$189->194 \quad 0.21209$
$189->195-0.10001$
$191->195 \quad 0.14963$
$191->197 \quad 0.13010$
$192->196 \quad 0.22776$
$192->197 \quad-0.20719$

```
192 ->198 -0.25530
```

Excited state symmetry could not be determined.
Excited State 15: Singlet-?Sym $5.0502 \mathrm{eV} 245.50 \mathrm{~nm} \mathrm{f}=0.0057<\mathrm{S}^{*} * 2>=0.000$ $181->1930.10510$ $187->193 \quad 0.14756$ $188->193 \quad-0.12860$ $189->195 \quad-0.10175$ $190->196 \quad-0.22861$ $190->197 \quad-0.19475$ $191->195 \quad 0.32958$ $191->196-0.23224$ $191->197 \quad 0.15964$ $191->198 \quad 0.13776$ $192->196-0.13618$ $192->203 \quad 0.10306$

Excited state symmetry could not be determined.
Excited State 16: Singlet-?Sym $5.0914 \mathrm{eV} 243.52 \mathrm{~nm} \mathrm{f}=0.0329<\mathrm{S}^{*} 2>=0.000$ $187->193 \quad 0.47358$
$188->1930.35378$
$188->195 \quad 0.10041$
$189->193 \quad 0.10059$
$192->196-0.11541$
$192->198 \quad 0.20334$

Excited state symmetry could not be determined.
Excited State 17: Singlet-?Sym $5.1117 \mathrm{eV} 242.55 \mathrm{~nm} \mathrm{f}=0.0597<\mathrm{S}^{*} * 2>=0.000$ $186->193 \quad-0.13482$
$187->193 \quad-0.12480$
$189->194 \quad 0.11822$
$190->195 \quad 0.36412$
$190->196 \quad-0.15637$
$190->197 \quad-0.17134$
$190->198 \quad 0.16042$
$191->196 \quad 0.12392$
$191->197 \quad-0.20712$
$191->198 \quad-0.12022$
192 ->197 0.21936

Excited state symmetry could not be determined.
Excited State 18: Singlet-?Sym $5.1507 \mathrm{eV} 240.71 \mathrm{~nm} \mathrm{f}=0.0372<\mathrm{S}^{*}{ }^{*} 2>=0.000$ 184 ->193 0.10527

$186->193$	0.35379
$189->195$	0.12001
$190->195$	0.10345
$190->199$	-0.18107
$191->196$	-0.11771
$191->197$	-0.16801
$191->199$	-0.12626
$191->201$	-0.11258
$192->197$	-0.17276
$192->198$	-0.12186
$192->199$	0.10200
$192->203$	-0.20298

Excited state symmetry could not be determined.
Excited State 19: Singlet-?Sym $5.1570 \mathrm{eV} 240.42 \mathrm{~nm} \mathrm{f}=0.0130<\mathrm{S}^{*} * 2>=0.000$ $186->193-0.11656$
$189->194 \quad-0.17390$
$189->198 \quad 0.13168$
$190->195 \quad 0.18534$
$191->194 \quad 0.14309$
$191->197 \quad-0.10889$
$191->198 \quad 0.38031$
$191->200 \quad-0.12114$
$192->194 \quad 0.14887$
$192->1950.16792$
$192->196 \quad 0.14968$
$192->197 \quad-0.20044$
$192->2020.11062$

Excited state symmetry could not be determined.
Excited State 20: Singlet-?Sym $5.1694 \mathrm{eV} 239.84 \mathrm{~nm} \mathrm{f}=0.0347<\mathrm{S}^{*} * 2>=0.000$
186 ->193 0.13826
$187->1930.10518$
$187->199 \quad-0.14235$
$189->194 \quad 0.21087$
$190->195 \quad-0.14723$
$190->196 \quad 0.10203$
$190->197 \quad-0.13579$
$190->199 \quad 0.38620$
$191->197 \quad-0.17900$
$191->199 \quad 0.13393$
$192->199 \quad-0.14780$

Excited state symmetry could not be determined.
Excited State 21: Singlet-?Sym $5.1804 \mathrm{eV} 239.33 \mathrm{~nm} \mathrm{f}=0.0025<\mathrm{S}^{*} * 2>=0.000$ 189 ->194 0.24374
$190->195 \quad-0.19339$
$190->199 \quad-0.17365$
$191->194 \quad 0.10565$
$191->195 \quad 0.12632$
$191->196 \quad 0.24585$
$191->198 \quad 0.15420$
$191->199-0.12522$
$192->197 \quad 0.21103$
$192->198 \quad 0.10252$
$192->199 \quad 0.18084$
$192->200-0.12795$
$192->201 \quad 0.18863$

Excited state symmetry could not be determined.
Excited State 22: Singlet-?Sym $5.2083 \mathrm{eV} 238.05 \mathrm{~nm} \mathrm{f}=0.0232<\mathrm{S}^{*} * 2>=0.000$
186 ->193 0.35838
$188->194 \quad 0.14879$
$189->194 \quad-0.17261$
$190->197 \quad-0.11485$
$191->196 \quad 0.14744$
$191->197 \quad 0.20263$
$192->194 \quad 0.10088$
$192->196 \quad 0.24126$
$192->2030.14519$

Excited state symmetry could not be determined.
Excited State 23: Singlet-?Sym $5.2150 \mathrm{eV} 237.75 \mathrm{~nm} \mathrm{f}=0.0121<\mathrm{S}^{*} * 2>=0.000$ $185->1950.12446$
$186->193-0.15189$
$188->200 \quad 0.19863$
$189->200-0.10776$
$190->195-0.13013$
$191->198 \quad 0.11530$
$191->199 \quad-0.12430$
$192->196-0.10687$
$192->198 \quad-0.11595$
$192->1990.18082$
192 ->200 0.29736
$192->203 \quad 0.12241$

Excited state symmetry could not be determined.
Excited State 24: Singlet-?Sym $5.2239 \mathrm{eV} 237.34 \mathrm{~nm} \mathrm{f}=0.0141<\mathrm{S}^{*} * 2>=0.000$ $180->194 \quad-0.10259$
$183->194-0.13276$
$184->196 \quad 0.10558$
$186->199-0.13072$
$187->194 \quad-0.11419$
$187->199 \quad-0.14842$
$189->194 \quad-0.12441$
$189->195 \quad 0.11147$
$189->196-0.11537$
$189->199 \quad 0.19232$
$190->199 \quad 0.10627$
$191->196-0.17216$
$191->197 \quad 0.10108$
$191->199-0.13742$
$191->201 \quad-0.15409$
$192->199 \quad 0.21307$
$192->201 \quad 0.15507$
Excited state symmetry could not be determined.
Excited State 25: Singlet-?Sym $5.2349 \mathrm{eV} 236.84 \mathrm{~nm} \mathrm{f}=0.0218<\mathrm{S}^{*} * 2>=0.000$ 181 ->193 0.12319 $183->193 \quad-0.11494$
$186->197-0.12011$
$189->195 \quad 0.14207$
$189->199 \quad-0.15523$
$190->196 \quad 0.23884$
$190->197 \quad-0.10730$
$191->196-0.13012$
$191->197-0.10156$
$191->199 \quad 0.11553$
$191->201-0.19847$
$192->199 \quad-0.18149$
192 ->201 0.18030

Excited state symmetry could not be determined.
Excited State 26: Singlet-?Sym $5.2456 \mathrm{eV} 236.36 \mathrm{~nm} \mathrm{f}=0.0141<\mathrm{S}^{*} * 2>=0.000$ 181 ->193 -0.11900
$186->193-0.13612$
$189->194 \quad 0.11019$
$189->195 \quad 0.29098$
$189->196-0.11103$

$189->198$	0.12952
$191->195$	0.13945
$191->197$	0.19374
$191->200$	-0.10622
$191->203$	0.14864
$192->198$	0.11480
$192->202$	-0.16622
$192->203$	-0.17291

Excited state symmetry could not be determined.
Excited State 27: Singlet-?Sym $5.2801 \mathrm{eV} 234.81 \mathrm{~nm} \mathrm{f}=0.0039<\mathrm{S}^{*} * 2>=0.000$

$$
\begin{array}{lr}
185->193 & -0.11909 \\
186->193 & 0.14966 \\
189->197 & -0.17898 \\
190->195 & 0.20021 \\
190->196 & -0.12735 \\
190->197 & 0.31526 \\
190->199 & 0.12804 \\
191->200 & 0.23287 \\
192->198 & 0.10683 \\
192->201 & 0.15548 \\
192->202 & -0.14802 \\
192->204 & -0.15743
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 28: Singlet-?Sym $5.2898 \mathrm{eV} 234.38 \mathrm{~nm} \mathrm{f}=0.1065<\mathrm{S}^{* *} 2>=0.000$
$186->193-0.11382$
$186->194 \quad 0.10055$
$187->194 \quad-0.29946$
$188->194 \quad 0.39418$
$189->196 \quad 0.13229$
$189->197 \quad-0.12986$
$190->197 \quad 0.13353$
$191->198 \quad 0.12158$
$191->203-0.11000$
$192->200 \quad-0.11498$
Excited state symmetry could not be determined.
Excited State 29: Singlet-?Sym $5.2999 \mathrm{eV} 233.94 \mathrm{~nm} \mathrm{f}=0.0047<S^{* *} 2>=0.000$ $186->193 \quad-0.12333$
$189->200 \quad 0.20040$
$189->202 \quad-0.10642$
$190->200 \quad-0.14441$

$191->198$	0.11143
$191->200$	0.43607
$191->202$	-0.20335
$191->203$	0.10749
$192->200$	0.12066

Excited state symmetry could not be determined.
Excited State 30: Singlet-?Sym $5.3041 \mathrm{eV} 233.75 \mathrm{~nm} \mathrm{f}=0.0044<\mathrm{S}^{*} * 2>=0.000$
184 ->193 0.21605
$185->193 \quad 0.28005$
$189->196 \quad-0.10697$
$190->196-0.14246$
$190->197 \quad 0.27284$
$191->197 \quad 0.11764$
$191->202 \quad-0.11509$
$192->198 \quad-0.16789$
$192->2020.16998$
$192->2030.13426$

Excited state symmetry could not be determined.
Excited State 31: Singlet-?Sym $5.3397 \mathrm{eV} 232.19 \mathrm{~nm} \mathrm{f}=0.0098<\mathrm{S}^{*} * 2>=0.000$
183 ->193 0.14685
$184->193 \quad 0.22992$
$185->193 \quad 0.35145$
$187->194 \quad 0.10335$
$189->197 \quad-0.11581$
$190->196 \quad 0.14493$
$190->198 \quad-0.15992$
$190->2030.13746$
$191->202 \quad 0.16638$
$192->196 \quad 0.10154$
$192->202 \quad-0.13675$

Excited state symmetry could not be determined.
Excited State 32: Singlet-?Sym $5.3621 \mathrm{eV} 231.22 \mathrm{~nm} \mathrm{f}=0.0099<\mathrm{S}^{* *} 2>=0.000$ $188->194 \quad-0.11168$
$189->196 \quad 0.20835$
$189->197 \quad 0.18706$
$189->201 \quad 0.14103$
$189->203 \quad 0.13722$
$190->197 \quad 0.11489$
$190->198 \quad-0.12711$
$190->199 \quad 0.10080$

```
191 ->196 0.15096
191 ->201 -0.16538
192 ->204 0.25360
```

Excited state symmetry could not be determined.
Excited State 33: Singlet-?Sym $5.3698 \mathrm{eV} 230.89 \mathrm{~nm} \mathrm{f}=0.0154<S^{*}{ }^{*} 2>=0.000$ $183->1930.16446$
$188->194 \quad-0.19638$
$189->195 \quad 0.24404$
$189->196 \quad 0.25732$
$189->197 \quad-0.13606$
$190->197 \quad-0.10239$
$190->198 \quad 0.24583$
$190->202 \quad-0.14177$
$191->197 \quad 0.13420$
$191->198 \quad 0.18191$

Excited state symmetry could not be determined.
Excited State 34: Singlet-?Sym $5.3773 \mathrm{eV} 230.57 \mathrm{~nm} \mathrm{f}=0.0192<\mathrm{S}^{* *} 2>=0.000$ $180->193-0.16097$
$183->193 \quad 0.35276$
$184->193-0.11266$
$185->193 \quad 0.14467$
$190->201 \quad-0.12124$
$191->198 \quad-0.10075$
$191->201 \quad-0.10229$
192 ->201 0.33071

Excited state symmetry could not be determined.
Excited State 35: Singlet-?Sym $5.4175 \mathrm{eV} 228.86 \mathrm{~nm} \mathrm{f}=0.0146<\mathrm{S}^{*} * 2>=0.000$ $188->194 \quad 0.14235$
189 ->195 0.25210
$189->196 \quad 0.17015$
$189->197 \quad 0.13638$
$190->198 \quad-0.14833$
$190->201 \quad 0.11115$
$190->202 \quad 0.12348$
$190->2030.12276$
$191->201 \quad 0.24637$
$191->204 \quad-0.12825$
$192->196 \quad-0.12266$
$192->198 \quad-0.13772$
$192->203-0.10871$

Excited state symmetry could not be determined.
Excited State 36: Singlet-?Sym $5.4271 \mathrm{eV} 228.45 \mathrm{~nm} \mathrm{f}=0.0155<\mathrm{S}^{*}{ }^{*} 2>=0.000$

$181->193$	-0.15727
$183->193$	-0.12670
$184->193$	0.13445
$186->194$	-0.12010
$187->194$	0.29223
$188->194$	0.12147
$188->195$	-0.10698
$189->196$	0.15986
$190->197$	-0.11990
$190->201$	-0.15704
$191->202$	-0.15011
$191->203$	-0.13683
$192->200$	-0.23159
$192->205$	0.12194

Excited state symmetry could not be determined.
Excited State 37: \quad Singlet-?Sym $5.4409 \mathrm{eV} 227.88 \mathrm{~nm} \mathrm{f}=0.0990<S^{*} * 2>=0.000$ 181 ->193 0.13559 183 ->193 0.13299
$184->193 \quad-0.10990$
$186->194 \quad 0.12533$
$187->194 \quad 0.35688$
$188->194 \quad 0.11035$
$188->195 \quad-0.14261$
$189->196-0.17378$
$190->197 \quad 0.10964$
$190->198 \quad 0.22260$
$190->201 \quad 0.15764$
$192->203-0.14450$

Excited state symmetry could not be determined.
Excited State 38: Singlet-?Sym $5.4484 \mathrm{eV} 227.56 \mathrm{~nm} \mathrm{f}=0.0374<\mathrm{S}^{*} * 2>=0.000$ $182->193 \quad 0.10542$
$184->193 \quad 0.17647$
$186->194 \quad 0.12921$
$189->195 \quad-0.16854$
$189->196 \quad 0.17447$
$190->198 \quad 0.16154$
$190->202 \quad-0.14260$
$191->201 \quad 0.26385$

$$
\begin{array}{ll}
192->201 & 0.12711 \\
192->204 & -0.21446
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 39: Singlet-?Sym $5.4801 \mathrm{eV} 226.24 \mathrm{~nm} \mathrm{f}=0.0067<S^{*} * 2>=0.000$
182 ->193 0.15727
$188->194 \quad 0.15075$
$188->198 \quad 0.12472$
$190->198 \quad-0.10490$
$190->199 \quad 0.10894$
$191->197 \quad 0.10221$
$191->200 \quad 0.10079$
$191->2020.18339$
$191->203 \quad 0.12962$
$191->205 \quad-0.16246$
$192->201 \quad-0.10141$
$192->2020.35349$

Excited state symmetry could not be determined.
Excited State 40: Singlet-?Sym $5.4850 \mathrm{eV} 226.04 \mathrm{~nm} \mathrm{f}=0.0039<S^{*} * 2>=0.000$ 186 ->194 0.20531
$186->199 \quad 0.15976$
$187->199 \quad 0.15533$
$190->198 \quad 0.13118$
$190->199 \quad 0.33400$
$191->199 \quad-0.26420$
$192->199 \quad 0.13148$
$192->202 \quad-0.17334$

Excited state symmetry could not be determined.
Excited State 41: Singlet-?Sym $5.4958 \mathrm{eV} 225.60 \mathrm{~nm} \mathrm{f}=0.0333<\mathrm{S}^{* *} 2>=0.000$
184 ->193 0.10850
$187->194 \quad 0.14053$
$189->195 \quad-0.10677$
$189->196 \quad 0.15849$
$190->198 \quad 0.12919$
$190->201 \quad-0.12933$
$190->202 \quad 0.10829$
$190->205 \quad 0.10892$
$191->198 \quad 0.10667$
$191->201 \quad-0.10845$
$191->2020.32994$
$192->200 \quad 0.18459$

```
192 ->202 -0.12752
192 ->205 -0.11155
```

Excited state symmetry could not be determined.
Excited State 42: Singlet-?Sym $5.5170 \mathrm{eV} 224.73 \mathrm{~nm} \mathrm{f}=0.0105<S^{*} * 2>=0.000$
186 ->194 0.29513
$189->195 \quad 0.10485$
$189->197 \quad 0.15549$
$191->197 \quad-0.10592$
$191->199 \quad 0.18752$
$191->203 \quad 0.22824$
$192->197 \quad-0.15500$
$192->200 \quad-0.24967$
$192->203 \quad 0.16860$

Excited state symmetry could not be determined.
Excited State 43: Singlet-?Sym $5.5230 \mathrm{eV} 224.49 \mathrm{~nm} \mathrm{f}=0.0299<S^{*} * 2>=0.000$ $186->194 \quad 0.35869$
187 ->195 0.11435
$189->195 \quad 0.12461$
$189->197 \quad-0.16704$
$190->198 \quad-0.19411$
$190->199 \quad-0.12445$
$191->203-0.20670$
$192->200 \quad 0.18396$

Excited state symmetry could not be determined.
Excited State 44: Singlet-?Sym $5.5281 \mathrm{eV} 224.28 \mathrm{~nm} \mathrm{f}=0.0008<\mathrm{S}^{*} * 2>=0.000$ $189->197 \quad-0.11788$
$189->198 \quad 0.12042$
$191->197 \quad-0.11762$
$191->200 \quad-0.22659$
$191->202-0.13090$
$191->203 \quad 0.25419$
$192->197 \quad-0.11206$
$192->200 \quad 0.20654$
$192->203 \quad 0.23058$

Excited state symmetry could not be determined.
Excited State 45: Singlet-?Sym $5.5500 \mathrm{eV} 223.40 \mathrm{~nm} \mathrm{f}=0.0241<\mathrm{S}^{*} * 2>=0.000$ $182->1930.13392$
$186->194 \quad-0.16412$
$188->195-0.12429$

$188->198$	0.13732
$189->195$	0.10722
$189->196$	-0.12759
$189->197$	0.15874
$189->203$	0.10984
$190->198$	0.14715
$190->201$	0.23139
$190->202$	0.15416
$191->199$	0.11739
$192->202$	-0.10000
$192->203$	0.23549

Excited state symmetry could not be determined.
Excited State 46: Singlet-?Sym $5.5665 \mathrm{eV} 222.73 \mathrm{~nm} \mathrm{f}=0.0085<\mathrm{S}^{*} * 2>=0.000$ $189->198 \quad 0.10006$
$190->199 \quad 0.10464$
$190->201 \quad-0.15895$
$190->203 \quad-0.16702$
$191->199 \quad 0.35414$
$191->203-0.15785$
$192->1990.36967$

Excited state symmetry could not be determined.
Excited State 47: Singlet-?Sym $5.5732 \mathrm{eV} 222.46 \mathrm{~nm} \mathrm{f}=0.0273<\mathrm{S}^{*} * 2>=0.000$ $181->193-0.10145$
$189->197 \quad-0.17937$
$189->198 \quad-0.17890$
$190->200 \quad-0.18510$
$190->201 \quad 0.13694$
$190->203 \quad 0.28397$
$191->199 \quad 0.26332$
$191->202 \quad-0.10944$
$192->199 \quad 0.20160$
$192->203-0.13807$
$192->204 \quad 0.14358$

Excited state symmetry could not be determined.
Excited State 48: Singlet-?Sym $5.5792 \mathrm{eV} 222.23 \mathrm{~nm} \mathrm{f}=0.0034<\mathrm{S}^{* *} 2>=0.000$ 179 ->193 0.10828
$182->193 \quad 0.18621$
$183->193-0.27966$
$184->193 \quad-0.36371$
$185->193 \quad 0.40053$

```
188 ->195 -0.13274
```

Excited state symmetry could not be determined.
Excited State 49: Singlet-?Sym $5.5971 \mathrm{eV} 221.51 \mathrm{~nm} \mathrm{f}=0.0265<\mathrm{S}^{* *} 2>=0.000$ 188 ->194 0.15835 $188->195 \quad 0.24572$
$189->201 \quad-0.15216$
$190->200 \quad 0.14193$
190 ->201 0.14025
$191->199 \quad 0.14923$
$191->201 \quad-0.21094$
$191->204 \quad 0.27627$
$192->204 \quad-0.20140$

Excited state symmetry could not be determined.
Excited State 50: Singlet-?Sym $5.6100 \mathrm{eV} 221.01 \mathrm{~nm} \mathrm{f}=0.0292<\mathrm{S}^{* *} 2>=0.000$
182 ->193 0.10838
$184->193-0.10589$
$184->194 \quad-0.11470$
$185->194 \quad-0.12623$
$187->194 \quad 0.10511$
$187->195 \quad-0.10297$
$188->194 \quad 0.17351$
$188->195 \quad 0.38484$
$189->196 \quad-0.15012$
$189->203 \quad 0.11698$
$191->201 \quad 0.17554$
$191->204 \quad-0.13042$
$192->202 \quad-0.14952$
$192->204 \quad 0.10020$
twist-4.2a

Excitation energies and oscillator strengths:
Excited state symmetry could not be determined.
Excited State 1: Singlet-?Sym $4.3867 \mathrm{eV} 282.63 \mathrm{~nm} \mathrm{f}=0.1551<\mathrm{S}^{* *} 2>=0.000$ 192 ->193 0.67863
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-4573.24900076$
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited state symmetry could not be determined.
Excited State 2: Singlet-?Sym $4.5264 \mathrm{eV} 273.92 \mathrm{~nm} \mathrm{f}=0.0563<$ S $^{* *} 2>=0.000$ $189->193 \quad-0.15647$
$191->193 \quad 0.24026$
$192->194 \quad 0.61046$
Excited state symmetry could not be determined.
Excited State 3: Singlet-?Sym $4.6082 \mathrm{eV} 269.05 \mathrm{~nm} \mathrm{f}=0.0900<\mathrm{S}^{*} * 2>=0.000$ 189 ->193 0.19344 $191->193 \quad 0.60675$ $192->194 \quad-0.19281$ $192->196 \quad 0.12708$

Excited state symmetry could not be determined.
Excited State 4: Singlet-?Sym $4.6344 \mathrm{eV} 267.53 \mathrm{~nm} \mathrm{f}=0.0422<S^{* *} 2>=0.000$ 190 ->193 0.45442 $190->195 \quad 0.13697$ $191->194 \quad 0.46464$ $191->196 \quad 0.10444$

Excited state symmetry could not be determined.
Excited State 5: Singlet-?Sym $4.6839 \mathrm{eV} 264.70 \mathrm{~nm} \mathrm{f}=0.0026<S^{* *} 2>=0.000$ 189 ->193 0.46941 $189->195 \quad 0.10013$ $190->194-0.40146$ $191->193-0.10559$ $191->195-0.11771$ $192->194 \quad 0.13826$ $192->197 \quad 0.10653$

Excited state symmetry could not be determined.
Excited State 6: Singlet-?Sym $4.6944 \mathrm{eV} 264.11 \mathrm{~nm} \mathrm{f}=0.0572<$ S $^{* *} 2>=0.000$ 189 ->194 0.19298
$190->193 \quad 0.45696$
$190->195-0.13848$
$191->194-0.43668$
Excited state symmetry could not be determined.
Excited State 7: Singlet-?Sym $4.7472 \mathrm{eV} 261.17 \mathrm{~nm} \mathrm{f}=0.0355<S^{*} * 2>=0.000$
189 ->193 0.36314
$190->194 \quad 0.49020$
$191->193-0.12333$
$191->1950.17165$

Excited state symmetry could not be determined.
Excited State 8: Singlet-?Sym $4.8154 \mathrm{eV} 257.47 \mathrm{~nm} \mathrm{f}=0.0343<\mathrm{S}^{* *} 2>=0.000$ $189->194 \quad 0.50046$
$190->193-0.15638$
$190->195 \quad-0.11097$
$191->194 \quad 0.12011$
192 ->195 0.35075
$192->199 \quad 0.17314$

Excited state symmetry could not be determined.
Excited State 9: Singlet-?Sym $4.9941 \mathrm{eV} 248.26 \mathrm{~nm} \mathrm{f}=0.0015<\mathrm{S} * * 2>=0.000$
187 ->193 0.13644
$189->199 \quad-0.10925$
$190->196 \quad 0.11460$
$190->197 \quad 0.20526$
$190->200 \quad-0.17074$
$191->198 \quad 0.28679$
$191->199 \quad-0.12990$
$192->196 \quad 0.34861$
$192->200 \quad-0.17665$

Excited state symmetry could not be determined.
Excited State 10: Singlet-?Sym $5.0041 \mathrm{eV} 247.77 \mathrm{~nm} \mathrm{f}=0.0176<\mathrm{S}^{*} * 2>=0.000$ 182 ->195 0.11891
$188->193 \quad-0.18546$
$189->197 \quad-0.12477$
$190->193-0.12316$
$190->198 \quad 0.27436$
$190->201 \quad-0.10638$
$191->196 \quad 0.25363$
$191->197 \quad 0.18813$
$191->200 \quad-0.24489$
$192->198 \quad 0.17536$
$192->199 \quad-0.16200$

Excited state symmetry could not be determined.
Excited State 11: Singlet-?Sym $5.0129 \mathrm{eV} 247.33 \mathrm{~nm} \mathrm{f}=0.0020<S^{*} * 2>=0.000$
$185->194 \quad 0.10060$
$189->193-0.13046$
$189->199 \quad 0.20070$
$190->196 \quad 0.14739$

$190->200$	-0.11917
$191->198$	0.13763
$191->201$	-0.12218
$192->197$	0.42268
$192->200$	0.17442
$192->202$	-0.14227

Excited state symmetry could not be determined.
Excited State 12: Singlet-?Sym $5.0463 \mathrm{eV} 245.69 \mathrm{~nm} \mathrm{f}=0.0226<S^{* *} 2>=0.000$ $188->193 \quad-0.16308$ $189->194 \quad-0.18392$ $189->196 \quad-0.11019$
$189->197 \quad 0.14760$
$189->200 \quad 0.19335$
$190->1950.12336$
$190->199 \quad-0.13171$
$191->194 \quad-0.10842$
$191->196 \quad 0.14793$
$192->198 \quad-0.17624$
$192->199 \quad 0.33975$
$192->201 \quad-0.22351$

Excited state symmetry could not be determined.
Excited State 13: Singlet-?Sym $5.0578 \mathrm{eV} 245.14 \mathrm{~nm} \mathrm{f}=0.0014<\mathrm{S}^{* *} 2>=0.000$ 188 ->194 0.57587
$188->202 \quad 0.11495$
$189->195 \quad 0.11039$
$190->196 \quad-0.11346$
$190->197 \quad 0.11113$
$191->195-0.21865$
$191->198 \quad 0.10493$

Excited state symmetry could not be determined.
Excited State 14: Singlet-?Sym $5.0710 \mathrm{eV} 244.49 \mathrm{~nm} \mathrm{f}=0.0593<\mathrm{S}^{* *} 2>=0.000$ 188 ->193 0.44284
$190->198 \quad 0.13255$
$191->197 \quad 0.21999$
$192->195 \quad-0.28855$
$192->198 \quad 0.15147$
$192->199 \quad 0.10093$
$192->201 \quad-0.10113$
$192->2030.13598$

Excited state symmetry could not be determined.
Excited State 15: Singlet-?Sym $5.0849 \mathrm{eV} 243.83 \mathrm{~nm} \mathrm{f}=0.0260<\mathrm{S}^{* *} 2>=0.000$ 189 ->193 -0.14867
$189->201 \quad-0.12531$
$190->196 \quad-0.19681$
$191->198 \quad-0.15569$
$192->196 \quad 0.51947$
$192->200 \quad 0.19781$
Excited state symmetry could not be determined.
Excited State 16: Singlet-?Sym $5.0883 \mathrm{eV} 243.66 \mathrm{~nm} \mathrm{f}=0.0830<\mathrm{S}^{*} * 2>=0.000$ 188 ->193 0.42866
$189->194 \quad-0.19733$
$190->195 \quad 0.13462$
$191->194 \quad-0.10971$
$191->196 \quad 0.16431$
$191->197 \quad-0.11114$
$192->195 \quad 0.38021$

Excited state symmetry could not be determined.
Excited State 17: Singlet-?Sym $5.1183 \mathrm{eV} 242.24 \mathrm{~nm} \mathrm{f}=0.0254<S^{*} * 2>=0.000$
189 ->194 0.28167
$189->196 \quad-0.10895$
$189->202 \quad 0.10657$
$190->195 \quad 0.26593$
$190->198 \quad-0.10321$
$190->199 \quad-0.16422$
$191->196 \quad 0.29109$
$191->197 \quad-0.22895$
$192->195 \quad-0.27122$

Excited state symmetry could not be determined.
Excited State 18: Singlet-?Sym $5.1230 \mathrm{eV} 242.01 \mathrm{~nm} \mathrm{f}=0.0078<\mathrm{S}^{*} * 2>=0.000$ 188 ->194 0.30029 $190->194 \quad-0.20158$ $190->196 \quad 0.24023$ $190->197 \quad-0.18722$ $190->202 \quad-0.11668$ $191->195 \quad 0.32524$ $191->198 \quad-0.12500$ $191->199 \quad-0.16525$
$192->197-0.16309$

Excited state symmetry could not be determined.
Excited State 19: Singlet-?Sym $5.1490 \mathrm{eV} 240.79 \mathrm{~nm} \mathrm{f}=0.0140<S^{*} * 2>=0.000$ 188 ->193 -0.16373
$189->197 \quad 0.21712$
$189->200 \quad-0.15969$
$190->198 \quad-0.20630$
$192->198 \quad 0.47863$
$192->199 \quad 0.10639$
$192->203 \quad 0.20153$

Excited state symmetry could not be determined.
Excited State 20: Singlet-?Sym $5.1703 \mathrm{eV} 239.80 \mathrm{~nm} \mathrm{f}=0.0437<S^{*} * 2>=0.000$ $189->198 \quad-0.28850$ $190->197 \quad 0.17385$ $190->200 \quad-0.14920$ $191->195 \quad-0.10593$ $192->197 \quad-0.28603$ $192->200 \quad 0.42449$ $192->205 \quad-0.14591$

Excited state symmetry could not be determined.
Excited State 21: Singlet-?Sym $5.2074 \mathrm{eV} 238.09 \mathrm{~nm} \mathrm{f}=0.0365<\mathrm{S}^{*} * 2>=0.000$ $184->193 \quad 0.10527$ $187->193 \quad 0.63361$ $191->198-0.10457$

Excited state symmetry could not be determined.
Excited State 22: Singlet-?Sym $5.2379 \mathrm{eV} 236.71 \mathrm{~nm} \mathrm{f}=0.0155<\mathrm{S}^{*} * 2>=0.000$ 189 ->196 0.33044 $191->196 \quad 0.18968$ $191->200 \quad 0.13306$ 192 ->195 0.10139 $192->199 \quad-0.31786$ $192->201 \quad-0.27289$ $192->203 \quad 0.20933$

Excited state symmetry could not be determined.
Excited State 23: Singlet-?Sym $5.2622 \mathrm{eV} 235.61 \mathrm{~nm} \mathrm{f}=0.0492<\mathrm{S}^{*} * 2>=0.000$ $185->194 \quad 0.15262$ $187->193-0.11605$ $189->195 \quad 0.42188$ $190->197 \quad 0.12006$ $191->1950.23731$

```
191 ->199 0.14112
192 ->197 -0.22543
192 ->202 -0.20084
```

Excited state symmetry could not be determined.
Excited State 24: Singlet-?Sym $5.2896 \mathrm{eV} 234.39 \mathrm{~nm} \mathrm{f}=0.0099<S^{*}{ }^{*} 2>=0.000$
$187->194 \quad 0.10208$
$189->195 \quad-0.16772$
$189->199 \quad-0.13541$
$190->194 \quad-0.11705$
$190->195 \quad 0.15004$
$190->196 \quad-0.33160$
$191->195 \quad 0.36761$
$191->196-0.11436$
$191->199 \quad 0.21926$
192 ->197 0.10563

Excited state symmetry could not be determined.
Excited State 25: Singlet-?Sym $5.2899 \mathrm{eV} 234.38 \mathrm{~nm} \mathrm{f}=0.0526<\mathrm{S}^{*} * 2>=0.000$ 184 ->194 0.11998
$187->194 \quad 0.62082$
$188->195-0.11943$

Excited state symmetry could not be determined.
Excited State 26: Singlet-?Sym $5.3003 \mathrm{eV} 233.92 \mathrm{~nm} \mathrm{f}=0.0291<\mathrm{S}^{*} * 2>=0.000$ 189 ->196 0.12928 $190->195 \quad 0.44808$ $190->1960.13799$ $190->199 \quad 0.15826$ $191->196-0.31211$ $191->200 \quad-0.11504$

Excited state symmetry could not be determined.
Excited State 27: Singlet-?Sym $5.3775 \mathrm{eV} 230.56 \mathrm{~nm} \mathrm{f}=0.0055<\mathrm{S}^{*} * 2>=0.000$ 189 ->197 -0.13188
$189->200 \quad-0.13752$
$190->195 \quad 0.16912$
$190->198 \quad-0.15467$
$190->199 \quad 0.24829$
$190->201 \quad-0.17698$
$191->196 \quad 0.17300$
$191->197 \quad 0.33826$
$191->200 \quad 0.26785$

Excited state symmetry could not be determined.
Excited State 28: Singlet-?Sym $5.3903 \mathrm{eV} 230.01 \mathrm{~nm} \mathrm{f}=0.0155<\mathrm{S}^{*}{ }^{*} 2>=0.000$ $189->195 \quad-0.14364$
$189->201 \quad 0.11013$
$190->196 \quad 0.25253$
$190->197 \quad 0.26838$
$190->200 \quad 0.21406$
$191->198 \quad-0.20591$
$191->199 \quad 0.24351$
$191->201 \quad-0.25309$
$191->203-0.11285$

Excited state symmetry could not be determined.
Excited State 29: Singlet-?Sym $5.4107 \mathrm{eV} 229.15 \mathrm{~nm} \mathrm{f}=0.0102<\mathrm{S}^{*} * 2>=0.000$ $180->193 \quad-0.16306$
$185->193 \quad 0.30919$
$186->193 \quad-0.30756$
$189->196 \quad 0.20655$
$190->201 \quad 0.13326$
$190->203 \quad 0.10177$
$191->197 \quad 0.13328$
$191->205 \quad 0.14322$
$192->199 \quad 0.10109$
$192->201 \quad 0.22351$

Excited state symmetry could not be determined.
Excited State 30: Singlet-?Sym $5.4276 \mathrm{eV} 228.43 \mathrm{~nm} \mathrm{f}=0.0073<\mathrm{S}^{*} * 2>=0.000$ $180->194 \quad-0.10159$
$183->193-0.10833$
$189->195 \quad 0.18536$
$189->203 \quad-0.21071$
$192->197 \quad 0.21374$
$192->2020.41563$
$192->204 \quad-0.19298$

Excited state symmetry could not be determined.
Excited State 31: Singlet-?Sym $5.4305 \mathrm{eV} 228.31 \mathrm{~nm} \mathrm{f}=0.0098<\mathrm{S}^{* *} 2>=0.000$ $185->193 \quad-0.19094$
$189->196 \quad-0.26932$
$190->198 \quad 0.15256$
$190->199 \quad-0.10637$
$191->196-0.11321$

$191->197$	0.11270
$191->205$	0.12840
$192->198$	-0.11934
$192->199$	-0.21504
$192->201$	0.18126
$192->203$	0.27517

Excited state symmetry could not be determined.
Excited State 32: Singlet-?Sym $5.4591 \mathrm{eV} 227.11 \mathrm{~nm} \mathrm{f}=0.0403<\mathrm{S}^{* *} 2>=0.000$ 184 ->193 0.23532
$186->197 \quad-0.12308$
$187->198 \quad-0.10522$
$188->197 \quad 0.12241$
$190->196 \quad 0.12525$
$190->197 \quad 0.20130$
$190->200 \quad 0.13993$
$190->204 \quad-0.11910$
$190->2050.13258$
$191->198 \quad 0.19950$
$191->201 \quad 0.19064$
$191->203 \quad 0.19903$
$191->206 \quad 0.15663$
$192->205 \quad 0.15814$

Excited state symmetry could not be determined.
Excited State 33: Singlet-?Sym $5.4829 \mathrm{eV} 226.13 \mathrm{~nm} \mathrm{f}=0.0372<S^{*} * 2>=0.000$
$180->193 \quad-0.20956$
$185->193 \quad 0.35780$
$186->193 \quad 0.31180$
$189->202 \quad-0.10137$
$191->202 \quad-0.10269$
$192->198 \quad-0.18309$
$192->201 \quad 0.11967$
$192->203 \quad 0.25244$
$192->206-0.14640$

Excited state symmetry could not be determined.
Excited State 34: Singlet-?Sym $5.4967 \mathrm{eV} 225.56 \mathrm{~nm} \mathrm{f}=0.0251<\mathrm{S}^{*} * 2>=0.000$ $185->193 \quad-0.11760$
$186->193 \quad 0.42415$
$189->1960.16778$
$190->201 \quad 0.18695$
$191->196 \quad 0.15557$

$$
\begin{array}{ll}
191->200 & 0.10693 \\
191->205 & 0.12349 \\
192->199 & 0.19883
\end{array}
$$

Excited state symmetry could not be determined.
Excited State 35: Singlet-?Sym $5.5008 \mathrm{eV} 225.39 \mathrm{~nm} \mathrm{f}=0.0066<S^{* *} 2>=0.000$ $181->193 \quad 0.16990$
$184->193 \quad 0.36911$
$185->194 \quad 0.23441$
$186->194 \quad-0.13952$
$189->195 \quad-0.12880$
$190->196 \quad-0.11124$
$190->197 \quad-0.17301$
$190->200 \quad-0.10123$
$190->205 \quad-0.11806$
$191->201 \quad-0.14137$
$192->197 \quad-0.12323$
$192->202 \quad 0.17000$

Excited state symmetry could not be determined.
Excited State 36: Singlet-?Sym $5.5141 \mathrm{eV} 224.85 \mathrm{~nm} \mathrm{f}=0.0077<S^{* *} 2>=0.000$
$185->193 \quad-0.18408$
$186->193 \quad-0.14600$
$189->196 \quad 0.21678$
$189->197 \quad-0.10742$
$189->205 \quad 0.12502$
$190->199 \quad 0.11899$
$190->203-0.14234$
$191->196 \quad 0.10824$
$191->197 \quad-0.15247$
$191->200 \quad-0.22001$
$191->204 \quad 0.10066$
$192->198 \quad-0.14703$
$192->199 \quad 0.20785$
$192->201 \quad 0.24171$
$192->2030.21808$

Excited state symmetry could not be determined.
Excited State 37: Singlet-?Sym $5.5214 \mathrm{eV} 224.55 \mathrm{~nm} \mathrm{f}=0.0014<\mathrm{S}^{* *} 2>=0.000$ $180->194 \quad-0.13312$
$184->193 \quad-0.14040$
$185->194 \quad 0.17213$
$189->195 \quad 0.13550$

$189->198$	0.14873
$189->199$	-0.18659
$189->201$	0.13260
$189->203$	0.14753
$191->195$	0.11535
$191->199$	-0.20565
$192->200$	0.32797
$192->204$	0.19708
$192->205$	0.14383

Excited state symmetry could not be determined.
Excited State 38: Singlet-?Sym $5.5529 \mathrm{eV} 223.28 \mathrm{~nm} \mathrm{f}=0.0017<\mathrm{S}^{* *} 2>=0.000$ $180->194 \quad 0.14074$
$185->194 \quad-0.23106$
$186->194 \quad 0.34694$
$187->1950.10963$
189 ->195 0.14974
$189->198 \quad 0.14839$
$189->199 \quad 0.11071$
$190->197 \quad-0.16011$
$191->198 \quad 0.22704$
$191->199 \quad 0.21006$
$192->197 \quad-0.10879$
$192->202 \quad 0.10680$
Excited state symmetry could not be determined.
Excited State 39: Singlet-?Sym $5.5605 \mathrm{eV} 222.97 \mathrm{~nm} \mathrm{f}=0.0136<\mathrm{S}^{* *} 2>=0.000$ 184 ->193 0.11562
$185->193 \quad-0.10430$
$185->194 \quad-0.13406$
$189->197 \quad 0.30593$
$190->198 \quad-0.16041$
$190->199 \quad-0.11433$
$191->197 \quad 0.26587$
$191->199 \quad-0.14159$
$191->200 \quad-0.22517$
$192->198 \quad-0.11757$
$192->203-0.13991$

Excited state symmetry could not be determined.
Excited State 40: Singlet-?Sym $5.5626 \mathrm{eV} 222.89 \mathrm{~nm} \mathrm{f}=0.0187<\mathrm{S}^{*} * 2>=0.000$ $180->194 \quad-0.14133$ $184->193-0.19759$

$185->194$	0.22980
$189->195$	-0.10999
$189->197$	0.16298
$190->196$	0.15455
$190->197$	-0.19128
$191->197$	0.12096
$191->199$	0.32355
$191->200$	-0.11766
$191->201$	0.15405
$191->203$	-0.10302

Excited state symmetry could not be determined.
Excited State 41: Singlet-?Sym $5.5737 \mathrm{eV} 222.44 \mathrm{~nm} \mathrm{f}=0.0153<S^{* *} 2>=0.000$ $180->194 \quad-0.13133$
$183->193-0.13095$
$184->1930.10899$
$185->194 \quad 0.10499$
$186->194 \quad 0.22609$
$188->196 \quad 0.32423$
$188->200 \quad-0.11855$
$190->200 \quad-0.30490$
$190->202 \quad-0.12862$
$190->204 \quad 0.11193$
$191->206 \quad-0.11677$
Excited state symmetry could not be determined.
Excited State 42: Singlet-?Sym $5.5836 \mathrm{eV} 222.05 \mathrm{~nm} \mathrm{f}=0.0048<\mathrm{S}^{* *} 2>=0.000$ $181->194 \quad 0.10816$
$187->196 \quad 0.10728$
$188->195 \quad-0.17497$
$189->196 \quad 0.10473$
$189->197 \quad 0.21350$
$189->200 \quad 0.20411$
$190->203 \quad-0.10677$
$191->200 \quad 0.25926$
$191->2020.19777$
192 ->201 0.30023

Excited state symmetry could not be determined.
Excited State 43: Singlet-?Sym $5.5930 \mathrm{eV} 221.68 \mathrm{~nm} \mathrm{f}=0.0173<\mathrm{S}^{* *} 2>=0.000$ $184->194 \quad-0.17893$
$187->194 \quad 0.11501$
$188->195 \quad 0.14703$

$189->197$	0.12309
$189->200$	-0.23452
$189->202$	-0.17449
$190->201$	0.17263
$190->203$	-0.13240
$190->206$	0.17878
$191->202$	0.28041
$191->204$	-0.16829
$192->198$	-0.13144

Excited state symmetry could not be determined.
Excited State 44: Singlet-?Sym $5.6018 \mathrm{eV} 221.33 \mathrm{~nm} \mathrm{f}=0.0006<\mathrm{S}^{* *} 2>=0.000$ 185 ->194 0.19592
$186->194 \quad 0.38926$
$187->195 \quad 0.14571$
$188->196 \quad-0.23890$
$188->200 \quad 0.10322$
$189->195 \quad-0.15741$
$189->199 \quad 0.15067$
$190->197 \quad 0.13603$
$190->204 \quad-0.10085$
$191->198-0.20368$

Excited state symmetry could not be determined.
Excited State 45: Singlet-?Sym $5.6054 \mathrm{eV} 221.19 \mathrm{~nm} \mathrm{f}=0.0046<\mathrm{S}^{* *} 2>=0.000$ $187->194 \quad 0.11880$
$188->195 \quad 0.48364$
$189->196 \quad 0.14318$
$190->199 \quad-0.29480$
$191->200 \quad 0.20003$

Excited state symmetry could not be determined.
Excited State 46: Singlet-?Sym $5.6160 \mathrm{eV} 220.77 \mathrm{~nm} \mathrm{f}=0.0694<\mathrm{S}^{* *} 2>=0.000$ 181 ->194 0.15825
$182->1930.12286$
$183->194 \quad-0.10845$
$184->194 \quad 0.32055$
$186->1930.13476$
$188->195 \quad 0.33940$
$189->197 \quad 0.10907$
$190->195 \quad-0.12189$
$190->199 \quad 0.21260$
$191->1960.10738$

Excited state symmetry could not be determined.
Excited State 47: Singlet-?Sym $5.6197 \mathrm{eV} 220.62 \mathrm{~nm} \mathrm{f}=0.0277<\mathrm{S}^{*} * 2>=0.000$ $181->193-0.15495$
$183->193 \quad 0.13711$
$184->193 \quad-0.16471$
$185->194 \quad 0.18643$
$188->197 \quad 0.10189$
$189->198 \quad 0.11077$
$189->199 \quad 0.23738$
$190->202 \quad-0.23112$
$191->198 \quad 0.10575$
$191->201 \quad-0.12680$
$191->203 \quad 0.20913$
192 ->202 0.21422
$192->204 \quad 0.10109$

Excited state symmetry could not be determined.
Excited State 48: Singlet-?Sym $5.6312 \mathrm{eV} 220.17 \mathrm{~nm} \mathrm{f}=0.0057<S^{*} * 2>=0.000$ 189 ->195 0.15370
$189->198 \quad-0.11011$
$189->201 \quad-0.26238$
$190->202 \quad 0.15274$
$190->204 \quad-0.13008$
$191->198 \quad-0.11743$
$192->200 \quad-0.11525$
$192->202 \quad 0.22895$
192 ->204 0.40839

Excited state symmetry could not be determined.
Excited State 49: Singlet-?Sym $5.6340 \mathrm{eV} 220.06 \mathrm{~nm} \mathrm{f}=0.0034<\mathrm{S}^{* *} 2>=0.000$ $181->194 \quad-0.15927$
$184->194 \quad-0.21446$
$188->198 \quad 0.11122$
$189->196-0.19216$
$189->197 \quad 0.20393$
$189->200 \quad 0.20118$
$190->198 \quad 0.18103$
$190->199 \quad 0.28039$
$191->204 \quad 0.21129$

Excited state symmetry could not be determined.

Excited State 50	50: Singlet-?Sym	$5.6448 \mathrm{eV} 219.64 \mathrm{~nm} \mathrm{f}=0.0302<\mathrm{S} * * 2>=0.000$
180 ->193	0.11207	
$184->194$	0.22454	
$185->195$	-0.10798	
$186->194$	0.10315	
188 ->196	0.14516	
189 ->201	-0.10362	
$190->199$	-0.10986	
$190->200$	0.19370	
$190->203$	-0.13741	
$191->198$	0.13245	
191 ->202	0.28922	
191 ->204	0.15357	
$192->205$	-0.13395	

7.6 Impact of stereoregularity on hybrid conjugated polymers

Isolation of trans-6.1 and cis-6.1

In a scintillation vial, 0.500 g of $\mathbf{6 . 1}$ (dr 63:37 trans:cis) was dissolved in 2 mL of DCM and layered with 18 mL of dry methanol. The solution was allowed to sit overnight in a glove box and colorless crystals were found at the bottom. The mixture was filtered through a fritted funnel, washed with 5 mL of dry methanol and dried under vacuum. trans6.1 (dr 90:10 trans:cis) (0.270 g) was collected as a colorless crystal. The filtrate was collected and dried under vacuum, yielding a white powder cis-6.1 (dr 20:80 trans:cis) $(0.178 \mathrm{~g})$.

Synthesis of 6.2

In a glove box, an oven-dried 2-dram vial with stir bar was charged with 1,1,2,2tetramethyldisilane (1.0 equiv., $0.845 \mathrm{mmol}, 0.100 \mathrm{~g})$ and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ (0.2 equiv., $0.1 .69 \mathrm{mmol}, 0.161 \mathrm{~g})$. Toluene (2.5 mL) was added to dissolve the reagents. 2-bromo-5ethynylthiophene (4 equiv., $3.38 \mathrm{mmol}, 0.632 \mathrm{~g}$) was diluted by 1 mL of toluene in a 1 dram vial and added dropwise into the reaction mixture by pipette. The vial was rinsed by 0.5 mL of toluene and the solution was added to the reaction as well. After the addition was complete, the reaction mixture turned dark red and was stirred for 24 hours at room temperature. The solution was concentrated under vacuum, transferred to a silica gel cartridge, and then dried on it under vacuum. The cartridge was subjected to automated
column chromatography with 100% hexanes to yield 6.2 as a pale-yellow oil $(0.272 \mathrm{~g}$, 65\%).

Tabulated Characterization Data for 6.2

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	6.93 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 6.78 (d, $J=18.7 \mathrm{~Hz}$,
	2 H , vinyl), 6.68 ($J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$, thienyl), 6.14 (d, $J=$ 18.7, 2 H , vinyl), 0.22 (s, $12 \mathrm{H},-\mathrm{CH}_{3}$).
$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	147.02 (vinyl), 136.01 (thienyl), 130.50 (thienyl), 128.67 (thienyl), 125.64 (thienyl), 111.92 (vinyl), -$3.99\left(-\mathrm{CH}_{3}\right)$
$\delta_{\mathrm{si}}\left(79 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	-23.80 (SiMe_{2})

Synthesis of 6.3

6.3

The procedure was adapted for literature. ${ }^{7}$ On the Schlenk line, an oven-dried 100 mL Schlenk flask with a stir bar was charged with 2,5-dibromothiophene (1.0 equiv., 8.27 $\mathrm{mmol}, 2.00 \mathrm{~g})$. Diethyl ether (50 mL) was added and the solution was cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath. With syringe pump, $i-\mathrm{PrMgCl}(2 \mathrm{M}$ in THF, 4.13 mL) was slowly added in 30 minutes, and the reaction mixture was stirred for another 30 minutes. White precipitates were overserved during the addition. 1,2-dichloro-1,1,2,2-tetramethyldisilane (0.5 equiv., $4.13 \mathrm{mmol}, 0.774 \mathrm{~g}$) was then added through syringe. The reaction mixture was allowed to warm up to room temperature and stirred for 24 hours. The reaction was quenched with 50 mL of DI water. The aqueous layer was separated with the organic layer and washed with diethyl ether (50 mL x 3). All the organic layers were combined, dried over anhydrous magnesium sulfate, concentrated under vacuum and purified by silica column with 100% hexanes. A white solid was isolated as 6.3 ($3.25 \mathrm{~g}, 89 \%$). NMR spectra were consistent with the literature.

General procedure of Kumada polycondensation using di(bromothienyl)silane and aryl dibromide building blocks

In a glove box, an oven-dried 2-dram vial with stir bar was charged with di(bromothienyl)silane (1.0 equiv) and THF (2 mL). $i-\mathrm{PrMgCl}$ (2.0 M in THF, 2.0 equiv.) was added by micro syringe. The solution was stirred at room temperature for 30 minutes, yielding a di-Grignard intermediate. $\mathrm{NidpppCl}_{2}$ (0.1 equiv.), triphenylphosphine (0.2 equiv) and aryl dibromide (1.5 equiv.) were weighed in a 2 -dram vial with stir bar and dissolved in THF. The di-Grignard solution was quickly added to the reaction mixture by pipette, yielding a dark red solution. 0.5 mL of THF was used to rinse the vial and combined with the reaction mixture. The reaction was heated to $40^{\circ} \mathrm{C}$ and allowed to stir for 24 hours in a glove box.

After 24 hours, the reaction was quenched by adding the orange solution dropwise to 15 mL of dry methanol, which was stirred fast in a round bottom flask. Formation of precipitates was observed. The suspension was allowed to sit overnight, and the top clear yellow solution was removed. 10 mL of methanol were added, and precipitates were washed sufficiently by stirring vigorously for 30 minutes. The suspension was allowed to sit until the precipitates settled at the bottom. The above washing procedure was repeated 2 more times. Then the suspension was filtered through a Buchner funnel. The solid was washed with methanol and dried under vacuum, yielding hybrid polysilane products.

Synthesis of P6.2: The polycondensation was set up at the scale of 0.150 mmol with cis6.1 (dr 20:80 trans:cis) and 2,5-dibromothiophene. Yield: $67.2 \mathrm{mg}, 73 \%$.

Synthesis of P6.3: The polycondensation was set up at the scale of 0.150 mmol with $\mathbf{6 . 1}$ (dr 65:35 trans:cis) and 2,5-dibromothiophene. Yield: $57.9 \mathrm{mg}, 63 \%$.

Synthesis of P6.4: The polycondensation was set up at the scale of 0.203 mmol with $\mathbf{6 . 2}$ and 2,5-dibromothiophene. Yield: $50.5 \mathrm{mg}, 61 \%$.

Synthesis of P6.5: The polycondensation was set up at the scale of 0.227 mmol with $\mathbf{6 . 3}$ and 2,5-dibromothiophene. Yield: $59.2 \mathrm{mg}, 70 \%$.

Synthesis of P6.6: The polycondensation was set up at the scale of 0.150 mmol with trans6.1 (dr 90:10 trans:cis) and 1,4-dibromo-2,5-((2-ethylhexyl)oxy)benzene. Yield: 90.9 mg , 72%.

Synthesis of P6.7: The polycondensation was set up at the scale of 0.150 mmol with cis6.1 (dr 20:80 trans:cis) and 1,4-dibromo-2,5-((2-ethylhexyl)oxy)benzene. Yield: 85.8 mg , 68\%.

Synthesis of P6.8: The polycondensation was set up at the scale of 0.510 mmol with $\mathbf{6 . 1}$ (dr 65:35 trans:cis) and 1,4-dibromo-2,5-((2-ethylhexyl)oxy)benzene. Yield: 70.7 mg , 56\%.

Gel Permeation Chromatography

Polymer	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
P6.3	6883	17838	2.59

Polymer	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
P6.4	5051	10486	2.08

Polymer	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
P6.5	6528	10134	1.55

Polymer	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
P6.6	4163	10472	2.52

Polymer	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
P6.7	4051	9053	2.24

Polymer	M_{n}	M_{w}	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
P6.8	4468	9025	2.02

NMR Spectra

NMR Spectra of 6.2
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Mơ
$\underset{\substack{N \\ i \\ \hline}}{ }$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (101 MHz, CDCl_{3})

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (79 MHz, $\left.\mathrm{CDCl}_{3}\right) .{ }^{1} J_{\mathrm{Si}-\mathrm{H}}=7 \mathrm{~Hz}$. $\stackrel{\sim}{\sim}$

00	70	40	10	-20	-50	-80	-110	-140	-170	-20 C
				59	$\mathrm{Si} / \mathrm{ppm}$					

7.7 Reference

(1) Schmidt, M.; Wassy, D.; Hermann, M.; González, M. T.; Agräit, N.; Zotti, L. A.; Esser, B.; Leary, E. Chem. Commun. 2021, 57, 745-748.
(2) Sattler, L. E.; Hilt, G. Chem. - A Eur. J. 2021, 27, 605-608.
(3) Ho, P. Y.; Komber, H.; Horatz, K.; Tsuda, T.; Mannsfeld, S. C. B.; Dmitrieva, E.; Blacque, O.; Kraft, U.; Sirringhaus, H.; Lissel, F. Polym. Chem. 2020, 11, 472-479.
(4) Usta, H.; Alimli, D.; Ozdemir, R.; Tekin, E.; Alkan, F.; Kacar, R.; Altas, A. G.; Dabak, S.; Gürek, A. G.; Mutlugun, E.; Yazici, A. F.; Can, A. J. Mater. Chem. C 2020, 8, 8047-8060.
(5) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. S.; M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.; Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J, 2013. .
(6) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennu, 2016. .
(7) Wildeman, J.; Herrema, J. K.; Hadziioannou, G.; Schomaker, E. J. Inorg. Organomet. Polym. 1991, 1, 567-580.

Chapter 8: Curriculum vitae

Education

2017 to 2023
Johns Hopkins University, Baltimore, MD
Department of Chemistry
Ph.D. in Chemistry, with Prof. Rebekka S. Klausen

2013 to 2017
Nanjing University, Nanjing, P.R. China
School of Chemistry \& Chemical Engineering
B.S. in Chemistry, research with Prof. Qun-dong Shen

Publications

1. Jiang, Q.; Melvin, S.; Klausen, R. S. "Impact of Stereoregularity on Hybrid Conjugated Polymers." Manuscript in preparation.
2. Guan, W.; Lu, L.; Jiang, Q.; Gittens, A.; Wang, Y.; Novaes, L. F. T.; Klausen, R. S.; Lin, S. "Electrochemical Logic to Synthesize Disilanes and Oligosilanes from Chlorosilanes" Submitted.
3. Gittens, A.; Jiang, Q.; Siegler, M. A; Klausen, R. S. "Conjugation in Isomeric Cyclosilane Thioethers." Organometallics 2022, 41, 23, 3762-3769.
4. Jiang, Q.; Gittens, A.; Wong, S.; Siegler, M. A; Klausen, R. S. "Highly Regioselective and Diastereoselective Addition of Cyclosilanes to Alkynes Enabling New Conjugated Materials." Chem. Sci., 2022, 13, 7587-7593.
5. Ji, Y.; Catazaro, J.; Jiang, Q.; Melvin, S.; Jiang J., Klausen, R. S. "Characterization of High Vinyl-Alcohol Content Polymers by Solid State CPMAS NMR Spectroscopy" Macromolecules, 2022, 55, 7032-7038.
6. Fang, F.; Jiang, Q.; Klausen, R. S. "Poly(cyclosilane) Connectivity Tunes Optical Absorbance." J. Am. Chem. Soc., 2022, 144, 7834-7843.
7. Wakefield, H. IV; Jiang, Q.; Klausen, R. S. "Azaborine Isomer Effects on Benzylic Ion Stability and Reactivity: Consequences for BN2VN Ionic Polymerization." Org. Biomol. Chem., 2022, 20, 1407-1414.
8. Jiang, Q.; Wong, S.; Klausen, R. S. "Effect of Polycyclosilane Microstructure on Thermal Properties." Polym. Chem., 2021, 12, 4785-4794.
9. Ferguson, J. T.; Jiang, Q.; Marro, E. A.; Siegler, M. A.; Klausen, R. S. "Long Range Coupling in Cyclic Silanes." Dalton Trans. 2020, 49, 14951-14961.

Presentations and Posters

- August 25, 2022, American Chemical Society Fall Meeting, Chicago

Title: "Novel Cyclosilane Building Blocks for σ, π-Conjugated Polymer Synthesis via Kumada Polycondensation"

- June 9, 2022, Tosoh Polymer Conference (TPC2022), Hollywood (Poster session)

Title: "Novel Cyclosilane Building Blocks for σ, π-Conjugated Polymer Synthesis via Kumada Polycondensation"

- August 22, 2021, American Chemical Society Fall Meeting, Virtual

Title: "Cyclosilane Polymers" on behalf of Prof. Rebekka S. Klausen

- April 12, 2021, American Chemical Society Spring Meeting, Virtual

Title: "Effect of Poly(cyclosilane) Microstructure on Thermal Properties"

Honors \& Awards

- 2022, Outstanding Poster Award of TPC2022, Second Place.
- 2022, Harry and Cleio Greer Fellowship, awarded to an outstanding advanced-year graduate student.
- 2022, Dissertation Completion Fellowship of Johns Hopkins University.
- 2017, Excellent Undergraduate Thesis of Nanjing University, 3 awardees from School of Chemistry \& Chemical Engineering per year.

Thesis Title: New Bionic and Implantable Electronic Devices Based on Ferroelectric Polymer

- 2017, Chemistry Experiment Award in School of Chemistry \& Chemical Engineering of Nanjing University, 3 awardees per year.

Teaching \& Mentoring Experience

- NMR Teaching Assistant, Department of Chemistry, Johns Hopkins University, 2021 to 2023
- Teaching Assistant, Department of Chemistry, Johns Hopkins University
- Advanced Organic Synthesis I (030.677), Fall 2019
- Organic Chemistry II (030.206), Spring 2019
- The Science of Color (030.118), Fall 2018
- Introductory Chemistry (Lecture and Lab) II (030.102), Spring 2018
- Introductory Chemistry (Lecture and Lab) I (030.101), Fall 2017
- Mentoring Undergraduate Researchers
- First-generation Undergraduate Research Experience (FiGURE), Intersession 2022
- Provost's Undergraduate Research Award (Summer PURA program), Summer 2021

