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Abstract

Wearable devices have been increasingly deployed in large epidemiological

and clinical studies to provide objective measures of human activity in the

free-living environment. The statistical analysis of these wearable device data

collected in large cohort studies is challenging due to its size, dimension,

and complexity. This thesis presents three novel functional data analysis

methods, each of which addresses an important problem in the large cohort

physical activity studies. An additive functional Cox model is proposed to

flexibly quantify the association between functional predictors and survival

outcomes. A fast multilevel functional principal component analysis method

is proposed to perform variability decomposition for functional data measured

at multiple visits. A fast univariate inferential approach is proposed to model

the association between predictors and longitudinal functional data.
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Chapter 1

Introduction

Over the past two decades, wearable devices have been increasingly deployed

in large epidemiological and clinical studies to provide objective measures of

human activity in the free-living environment. Specifically, each participant of

the National Health and Nutrition Examination Survey (NHANES) 2003-2004

and 2005-2006 waves was asked to wear a hip-worn physical activity monitor

(Actigraph AM-7164) for seven consecutive days. The accelerometry data

were collected, processed, and released as minute-level activity counts (AC),

a measure of the physical activity intensity. NHANES also collected demo-

graphic, socioeconomic, and health-related information as well as examination

data, including medical, dental, and physiological measurements.

The statistical analysis of this data set is challenging because: (i) it con-

tains many study participants and many covariates (large n large p); (ii) each

study participant has multiple days of data, which induces a multilevel struc-

ture; (iii) for each day physical activity data are high-dimensional because it

contains 1440 observations; (iv) the activity counts exhibit non-stationary be-

havior across time of the day. In the thesis, we propose three novel functional

1



data analysis (FDA) methods to model this NHANES data set and answer

important scientific questions.

In Chapter 2, the research question is “what is the association between

the high dimensional baseline objective measurements of physical activity

(activity counts for every minute of the day) and time to death?”. To answer

this question, we propose an Additional Functional Cox Model (AFCM) (Cui,

Crainiceanu, and Leroux, 2021). The model extends the linear functional Cox

model to the nonparametric functional Cox model by replacing the functional

linear predictor
∫︁ 1

0 Xi(t)β(t)dt with the functional nonparametric predictor∫︁ 1
0 F{Xi(t), t}dt. An important finding is that high levels of physical activity

at night and low levels of physical activity during the day are associated with

higher risk of all-cause mortality. We have validated these findings in two

other large data sets that contain objectively measured physical activity data:

NHANES 2011-2014 and UK Biobank. The paper is published in the Journal of

Computational and Graphical Statistics.

In Chapter 3, the research question is “given the multilevel structure of the

data (multiple days of physical activity), what is the structure of the within-

and between- study participants variability of physical activity?”. To answer

this question, we propose Fast Multilevel Functional Principal Component

Analysis (Fast MFPCA) (Cui et al., 2022b), which is two orders of magnitude

faster than MFPCA and achieves similar estimation accuracy. To facilitate

the use of this method, we have contributed the function mfpca.face() to

the R package refund available in CRAN. A theoretical study of the fast

MFPCA approach is also provided. The paper is published in the Journal of

2



Computational and Graphical Statistics.

In Chapter 4, the research question is “what is the association between the

patterns of daily activity and covariates (e.g., age, sex, day of the week)?”. To

answer this question, we propose a Fast Univariate Inference (FUI) method

for longitudinal functional models (Cui et al., 2022a). We introduce a novel

method for model estimation and inference by first fitting massively univariate

mixed models and then smoothing along the functional domain. Despite the

rich literature on functional mixed models, the new approach is the only one

that is computationally feasible for the NHANES dataset, which has 1440

observations per day for more than 8000 days. The paper is published in the

Journal of Computational and Graphical Statistics.
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Chapter 2

Additive Functional Cox Model

2.1 Introduction

We introduce a class of nonparametric additive functional Cox regression

models for quantifying the association between a time to event outcome and

functional covariates. This expands the rich literature on survival analysis by

allowing for one or multiple functional covariates. It also expands the sparser

literature on functional data analysis with survival outcomes by allowing a

more flexible association between the functional covariate and time-to-event

outcome. The approach is fully reproducible, fast, is implemented in R (R

Core Team, 2019), and can be used with minimal effort on personal laptops.

Our work is motivated by the study of the association between time to death

and physical activity (PA). PA has long been known to confer health benefits

(Cooper et al., 2017) and has been associated with reduced risk of mortality

(Schmid, Ricci, and Leitzmann, 2015; Matthews et al., 2016). However, until

the relatively recent development and adoption of wearable accelerometers,

researchers relied on crude, inaccurate, and biased measures obtained from

5



self-report questionnaires (Sallis and Saelens, 2000; Silsbury, Goldsmith, and

Rushton, 2015). In contrast, accelerometers offer an unintrusive, continuous,

and unbiased alternative to objectively measure PA over the course of several

days, weeks, or even months. For these reasons they have been deployed

in many large epidemiologic studies; see, for example, Troiano et al., 2008;

Schrack et al., 2014; Bai et al., 2016; Doherty et al., 2017.

Here we are interested in quantifying the effect of timing and volume of

PA on all-cause mortality in the National Health and Nutrition Examination

Survey (NHANES). NHANES is a nationally representative study conducted

by the Centers for Disease Control (CDC) to assess the health and nutritional

status of adults and children in the United States. Participants were selected

for inclusion according to the CDC sample design (Mirel et al., 2013) and

assigned a survey weight based on the proportion the individual represents

in the US population. Broadly, the NHANES data can be divided into three

main categories: (1) questionnaire data, including responses to demographic,

socioeconomic, dietary and health-related questions; (2) examination and labo-

ratory data, including results of medical, dental, physiological measurements

and laboratory tests; (3) accelerometer-measured PA. The processed NHANES

2003-2004 and 2005-2006 data are available in the R package rnhanesdata

(Leroux et al., 2019a).

Specifically, the high resolution PA was measured by hip-worn accelerom-

eters in the NHANES 2003-2004 and 2005-2006 waves. Each eligible partic-

ipant was asked to wear the device for 7 consecutive days, and data were

summarized in minute-level activity counts (a proprietary measure of PA

6



intensity level). The minute-level activity counts are then transformed as

AC → log(1 + AC) resulting in the log-transformed activity counts (LAC),

which reduces the severe skewness of original data and is an appropriate

measure of PA volume of lower levels of physical activity which have been

adopted in the physical activity research literature (Varma et al., 2017; Varma

et al., 2018). A sample of recorded minute-level LAC for one individual in

NHANES is shown in the upper-left of Figure 2.1. Data are displayed on

rows, where each row corresponds to a day of the week, where higher values

correspond to more intense PA.

Figure 2.1: A sample of minute-level LAC for one individual in NHANES shown
in the upper left and two summarising approaches. The right panel illustrates the
traditional summarising approach, which calculates a daily average (or sum) of LAC
and then averages these means (or totals) across days. The bottom panel illustrates a
less aggressive summarising approach, where LAC are averaged at each time point
across days.

There are many different approaches for compressing and using these

high dimensional accelerometry data. The most popular is to calculate a daily

average (or sum) of LAC and then average these means (or totals) across days.

7



This is illustrated in the right panel of Figure 2.1 by the horizontal arrows

labeled “Take the average of each day” and by the arrow labeled “Take the

average of daily averages”. The bottom panel illustrates a less aggressive

summarising approach, where LAC are averaged at each time point across

days. We will use this approach to create our functional covariates, which

loses information on day-to-day variability in PA but retains substantially

more information than traditional averaging over time of days and day. The

pre-processing steps used to create the functional covariates is described in

detail in Section 2.3.1.

Because NHANES can be linked to the National Death Index (NDI) re-

leased by National Center for Health Statistics (NCHI), it provides an unique

opportunity to investigate the association between accelerometer-based PA

measurements and time to death in a nationally representative sample. Fig-

ure 2.2 provides the intuition behind the problem and describes the data

structure. PA data measured as minute-level LAC averaged over available

days are shown for six study participants as a function of time of day. For

each individual the data contain sociodemographic factors (age, race, em-

ployment status, education attainment, poverty-income ratio), health factors

(self-reported overall health, smoking status, alcohol consumption, body mass

index, mobility difficulty), and disease indicators (diabetes, coronary heart

disease, congestive heart failure, stroke, cancer, systolic blood pressure, total

cholesterol). For each study participant we display only their age, though

much more additional information is available. The right panel in Figure 2.2

displays the mortality information. For example, the first study participant,
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who was 83 years old at the time the PA data were collected was deceased 2

years later (red horizontal line with a × symbol at the end to indicate a death

event). The fourth study participant was 70 years old when the PA data were

collected and was still alive 9.08 years later, the last time data were available

for this individual (black horizontal line with a • symbol at the end).

Figure 2.2: Physical activity and survival data of six study participants in NHANES.
Each function represents the minute-level average LAC over the available days of
valid data for that study participant. The age of the study participant is shown
together with their mortality status (red for dead, black for alive) and the follow up
time.

In the NHANES 2003-2004 and 2005-2006 study, accelerometry data were

collected from a total of 14631 study participants. For the purpose of this

analysis, we exclude participants who: (1) were younger than 50 years of age,

or 85 and older at the time they wore the accelerometer (10859 participants);

(2) had fewer than 3 days of data with at least 10 hours of estimated wear time
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or were deemed by NHANES to have poor quality data (517 participants);

(3) had missing covariates of interest, including age, employment status,

educational attainment, poverty-income ratio, body mass index, self-reported

overall health, coronary heart disease, congestive heart failure, stroke, cancer,

diabetes, smoking status and alcohol consumption (436 participants); or (4)

had missing mortality information (3 participants). The final data contained

2816 participants with 659 deaths in the first 10 years after the time PA data

were collected. Individuals with observed mortality beyond 10 years are

administratively censored at 10 years in our application.

Surprisingly, there are few published methods for analyzing this type

of data. In particular, Gellar et al., 2015, Qu, Wang, Wang, et al., 2016 and

Kong et al., 2018 proposed different versions of the “linear functional Cox

model”, which included a linear functional term of the form
∫︁
S Xi(s)β(s)ds

in the log-hazard expression to capture the effect of the functional covariate

{Xi(s) : s ∈ S}. In practice we only observe Xi(s) at a finite number of points.

In our example, Xi(s) is the smoothed minute-level average log-transformed

activity count (smoothed LAC) for study participant i at time s of day, and the

domain S is midnight to midnight. We introduce three important methodolog-

ical innovations: (1) extending the linear functional form to
∫︁
S F{s, Xi(s)}ds,

where F(·, ·) is an unspecified smooth function, as done by McLean et al., 2014

for generalized linear models; (2) introducing a flexible class of transformation

functions for Xi(·) to account for the complexity of the NHANES accelerome-

try data; and (3) providing necessary assumptions and constraints to ensure

the estimability and identifiability of the functional coefficient. We implement
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our method using easy-to-use software and provide a vignette which provides

a detailed introduction of our model estimation procedure.

The remainder of the paper is organized as follows. Section 2.2 introduces

the model and functional data transformations. Section 2.3 provides the

results of the model applied to NHANES and interpretations. Section 2.4

proposes a simulation framework for both functional covariates and survival

data. Section 2.5 summarizes the major findings and provides conclusions.

2.2 Methods

2.2.1 Model Setup

Motivated by the data structure illustrated in Figure 2.2, we model the log

hazard function for i = 1, ..., N study participants in the presence of indepen-

dent right censoring. Denote the mortality event time as Ti and censoring time

as Ci. We observe Yi = min(Ti, Ci) and the event indicator ∆i = I(Ti ≤ Ci)

for each study participant, where I(·) is the indicator function. The censoring

time, Ci, is assumed to be independent of the event time, Ti, conditional on

covariates. Suppose that at baseline we observe for each study participant p

scalar covariates Zi ∈ Rp, and a functional covariate X i = {Xi(s) : s ∈ S}.

The framework extends to multiple functional predictors, but we use single

functional predictor for presentation purposes. We assume that X i takes val-

ues on a compact interval, and denote the partial information in the functional

covariate up to s as XP
i (s) = {Xi(u) : u ≤ s}. Hereafter we refer to this

partial information as the “history” of the functional covariate, though this

“history” is distinct from the notion of time as it relates to the survival process.
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Although the functional domain in our application is time of day, in other

applications it may be, for example, space or some other argument. Using this

notation we propose the following additive functional Cox model

log λi(t|Zi, X i) = log λ0(t) + ZT
i β +

∫︂
S

F{s, his[XP
i (s)]}ds , (2.1)

where F(·, ·) is an unspecified bivariate twice differentiable function; see

McLean et al., 2014 for a similar approach in the context of outcomes from

the exponential family. We discuss the identifiability of F{s, his[XP
i (s)]} in

Section 2.2.3.

This formulation allows the hazard function to vary smoothly with respect

to both the functional domain and the value of the functional covariate, re-

laxing the assumption of linearity in the linear functional Cox model. We

will show that this is important in our application, where activity during the

day and night have opposite effects on the hazard of mortality. Another inno-

vation is to allow for a known subject- and domain-specific transformation,

his[XP
i (s)], of the partial history of the functional covariate up to time s of the

functional domain, XP
i (s). The main reason for considering transformations

in the NHANES accelerometry data is that its structure is highly complex and

exhibits substantial skewness, missingness, and heterogeneity within- and

between-study participants. In addition, transformations of the functional

data can be used to improve the estimability of F(·, ·); see our discussion in

Section 2.2.3.
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2.2.2 Transformations of the Functional Covariate

We consider two types of transformations, one that is domain-specific, hs(·),

and one that is subject/domain-specific, his(·). The difference is that the

second type of transformation depends on the subject, i, in addition to the

domain, s.

2.2.2.1 Domain-specific Transformations

Figure 2.3: Distribution of the transformed minute-level LAC of all selected partici-
pants in the NHANES study, including unsmoothed (left), smoothed (middle), and
smoothed + quantile transformation (right). The white top-left regions in the two left
panels indicate the lack of high activity counts during the night.

The NHANES study activity data (minute-level LAC) shown in the left

panel of Figure 2.3 indicates that during the night (1AM-4AM), PA mea-

surements are much smaller than during the day. Therefore, estimating the

function F(·, ·) on the entire rectangular domain [0, 24]× [0, 8] is nearly im-

possible. Here 24 stands for the number of hours in a day and 8 stands for an

upper bound on the LAC. Indeed, there is basically no data in the [1, 6]× [5, 8]

sub-domain. Therefore, estimates will be entirely driven by extrapolation of

the smooth function F(·, ·) that borrows information from regions that are too
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far away to provide meaningful information. Fundamentally, the problem

is that the function F(·, ·) cannot be well estimated in areas where there is

little or no data. This is a limitation of the model and the primary motivation

for our emphasis on transformation functions. The middle panel in Figure

2.3 displays the same data after smoothing each individual curve. Results

indicate that the data sparsity becomes even more serious in certain parts

of the domain of F(·, ·). Below we propose two classes of domain-specific

transformations to address this issue.

2.2.2.1.1 Quantile transformation. The first domain-specific transforma-

tion is the “quantile transformation”, which takes the form

his[XP
i (s)] = hs[Xi(s)] = P(X(s) ≤ Xi(s)|s) . (2.2)

Here {X(s) : s ∈ S} is the stochastic process on the functional domain S

and Xi(s) is the observed functional realization for the ith study participant.

As a result, the functional covariate at each s ∈ S is transformed to the

cumulative distribution function (cdf) conditional on s. The right panel in

Figure 2.3 displays the NHANES data after being smoothed and quantile-

transformed. In contrast to the original data, these transformed data cover

well its range, [0, 24]× [0, 1]. The difference is that the interpretation of F̂(·, ·)

changes because the first argument is the relative, not absolute, size of the

intensity of physical activity for an individual at a given time of day. More

precisely, F̂(s, τ) is the effect of being in the τth quantile of the functional

covariate (physical activity intensity) at time s ∈ S . Results can be interpreted

on the original scale of physical activity intensity h−1
is (τ), but interpretation
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of results should only be conducted in regions of the domain with sufficient

data density.

A similar approach was proposed by McLean et al., 2014, who used the

empirical cdf separately for each observed s ∈ S , P̂(X(s) ≤ Xi(s)|s) =

N−1 ∑N
j=1 I(Xj(s) ≤ Xi(s)) to estimate the marginal cdf. When the functional

covariate is irregularly sampled or measured with error we propose a comple-

mentary approach using additive quantile regression, which assumes smooth-

ness of the quantiles of X(s) across the functional domain. Specifically, con-

sider the model

µτ(s) = f0,τ(s) , (2.3)

where τ is the quantile to be estimated, µτ(s) = inf[Xi(s) : P(X(s) ≤ Xi(s)|s) ≥

τ] is the τth quantile of X(·) given s, and f0,τ(s) is a smooth function of s.

Computationally stable estimation of f0,τ(s) can be done via penalized splines

(Fasiolo et al., 2017; Fasiolo et al., 2019). Quantile regression estimates the in-

verse cdf and requires a separate model fit for each quantile of interest. There-

fore, our estimator for (2.2) involves separate regression models for τ ∈ τ0

where τ0 is a fine grid on (0, 1). Given these model fits, the quantile transfor-

mation is obtained by P̂(X(s) ≤ Xi(s)|s) = sup{τ : Xi(s) ≤ µ̂τ(s), τ ∈ τ0}.

While the empirical cdf approach may suffice in many applications, the pro-

posed estimator can be extended to conditioning on subject-specific features,

as discussed in Section 2.2.2.2.
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2.2.2.1.2 Domain-specific standardization. The second domain-specific

transformation subtracts the domain specific mean and divides by the domain

specific standard deviation:

his[XP
i (s)] = hs[Xi(s)] =

Xi(s)− E[X(s)|s]√︁
Var[X(s)|s]

, (2.4)

where E[X(s)|s] and Var[X(s)|s] can be estimated using their empirical esti-

mators. After this transformation the interpretation of F̂(s, x) is the effect of

being x standard deviations from the population mean at each s ∈ S . Un-

like quantile transformation, the domain standardization approach is more

sensitive to skewness and may not cover the domain of F(·, ·) well.

2.2.2.2 Subject-specific Transformations

We also consider transformations that depend on subject-specific character-

istics. In our application we will use such transformations to conduct age-

specific standardization of PA profiles. This will allow to assess the predictive

power of PA on mortality independent of the natural decline of PA with

age. Suppose that U i is a q-dimensional vector of subject-specific charac-

teristics and we want to extend the quantile transformation introduced in

Section 2.2.2.1 to account for U i. In this extended setting, X(s) is defined as

the stochastic process on the functional domain S that also depends on U i.

2.2.2.2.1 Subject-specific quantile transformation. Consider the subject/domain-

specific transformation

his[XP
i (s)] = his[Xi(s)] = P(X(s) ≤ Xi(s)|s, U i) . (2.5)
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We propose to extend model (2.3) to the more general additive quantile regres-

sion model

µτ(s|U i) =
q

∑
j=1

f j,τ(Uij, s) . (2.6)

The functions f j,τ(·, s) are smooth functions of each covariate and the func-

tional domain s ∈ S . While the model may seem involved, it can be easily

estimated by existing software; see, for example, the qgam package (Fasiolo

et al., 2019) in R. Estimating (2.5) follows the same procedure described for the

domain-specific quantile transformation. First, we estimate separate models

for τ ∈ τ0 where τ0 is a fine grid in (0, 1). Then, given these model fits, we

estimate P̂(X(s) ≤ Xi(s)|s, U i) = sup{τ : Xi(s|U i) ≤ µ̂τ(s|U i), τ ∈ τ0}. Note

that extending the empirical cdf ideas to account for subject-specific covariates,

U i, would be difficult, especially if the number of covariates is large.

2.2.2.2.2 Subject-specific standardization. The second subject/domain-

specific transformation is

his[XP
i (s)] = his[Xi(s)] =

Xi(s)− E[X(s)|s, U i]√︁
Var[X(s)|s, U i]

. (2.7)

As with the subject- and domain-specific quantile transformation, this trans-

formation will likely involve some modeling of the first and second moments

of X(s) conditional on s and U i. Separate additive regression models for

E[X(s)|s, U i] and E[X2(s)|s, U i] with linear predictors of the same form as

Model (2.6) could be used.
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2.2.2.2.3 History of the functional domain. The third subject/domain-

specific transformation is

his[XP
i (s)] =

∫︂ s

0
Xi(u)du . (2.8)

Just as with the other transformations, the interpretation of F(·, ·) changes

compared to using the original functional covariates. For example, in the

NHANES study F(·, ·) becomes “the effect of volume and timing of cumula-

tive PA”.

2.2.2.3 Choosing a transformation function

Choosing a transformation function for any given application is an open

and important problem. We propose to choose the transformation function

based on interpretability of results, ability to cover the domain of interest,

and predictive performance. In our application predictive performance was

roughly comparable for models with or without transformations, so the first

two criteria took precedence. We also strongly suggest to display density plots

and identify regions of the space where there with sparse or no data. Model

coefficients should not be interpreted in these areas, as little is known about

extrapolation of complex nonparametric smoothers.

It could be tempting to jointly model the transformation function his(·)

and F{s, his[XP
i (s)]}, though the exact procedure for doing so is not currently

available. Such an approach would require the building of custom software

and could substantially increase the computational complexity of the asso-

ciated algorithms. To preserve computational efficiency and interpretability
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we do not pursue this idea, though this could be an important area for future

research.

2.2.3 Identifiability

Wood, 2017 discussed the necessity of adding constraints on the smooth

functions to ensure the identifiability of additive models. Specifically, the

constraint

N

∑
i=1

∫︂
S

F{s, his[XP
i (s)]}ds = 0 , (2.9)

is imposed by default when fitting an additive model using the R mgcv package.

However, this constraint is not sufficient to ensure identifiability of the addi-

tive functional Cox model. For example, for any bivariate smooth function

F(s, x) let g(s) be a function such that
∫︁
S g(s)ds = 0. If we define the function

F∗(s, x) = F(s, x) + g(s) then

∫︂
S

F∗(s, x)ds =
∫︂
S

F(s, x) + g(s)ds =
∫︂
S

F(s, x)ds +
∫︂
S

g(s)ds =
∫︂
S

F(s, x)ds .

(2.10)

Therefore, the integrals are the same, but F∗(s, x) ̸= F(s, x) as long as g(s) ̸= 0.

Müller, Wu, and Yao, 2013 proved that F(s, x) is identifiable up to a function

that does not depending on x. However, this result applies only in regions of

the domain covered by {s, Xi(s)}. Hence, the identifiability condition is not

sufficient to ensure that the model is estimable in areas of the domain sparsely

covered or not covered by {s, Xi(s)}. The domain covered by {s, Xi(s)} is

often different from and much smaller than the rectangular domain defined

by the minimum and maximum of s and Xi(s) for all s and i. We refer to this
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as the “rectangular domain”.

We will show that this distinction is crucial in our application, where

the functional coefficient is estimable only in a sub-region of the rectangular

domain. This suggests that, when possible, transformations of the functional

covariate should be considered to improve the coverage of the rectangular

domain. This is particularly important as automatic nonparametric smoothers

tend to work well on rectangular domains; see the supplementary materials

for a more detailed discussion.

Suppose enough observations are available in the functional parametric

region of interest. To address identifiability over the estimable domain we

impose the additional identifiability constraints

N

∑
i=1

F{s, his[XP
i (s)]} = 0, for each s ∈ S . (2.11)

These constraints restrict F(s, x) at each s ∈ S to have a unique form within

the range of his[XP
i (s)], thus ensuring identifiability over the area of interest.

This restriction can be implemented directly in our software. The simulation

results in Section 2.4 confirm that this approach provides a reasonable solution;

see implementation details in Section 2.2.4.

2.2.4 Estimation and Inference

2.2.4.1 Penalized Spline Smoothing

Penalized splines smoothing (Ruppert, Wand, and Carroll, 2003; Wood, Pya,

and Säfken, 2016; Wood, 2017) and its connection with mixed effects mod-

eling provide a powerful inferential platform for nonparametric regression
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modeling. Thus, pairing penalized spline smoothing and functional modeling

(Goldsmith et al., 2011; Goldsmith et al., 2012; Scheipl, Staicu, and Greven,

2015; Greven and Scheipl, 2017) provides a modern, easy to implement, ex-

tendable framework for data analysis. Here we follow this principle and

provide only the essential modeling details, as we consider penalized splines

to be a mainstream inferential approach. Other methods include regressing

on the functional principal component scores; see, for example, Müller and

Yao, 2008. While this approach leads to comparable predictive performance,

the estimation of the functional parameter is highly sensitive to the choice

of the number of principal components. For the bivariate case McLean et al.,

2014 suggested using the tensor products of two univariate P-splines to model

F(·, ·)

F(s, x) =
Ks

∑
j=1

Kx

∑
k=1

θj,kBj(s)Bk(x) , (2.12)

where Bj(·) and Bk(·) are two univariate splines on the domains of s and x,

respectively. The parameters {θj,k : j = 1, 2, ..., Ks; k = 1, 2, ..., Kx} are the

spline coefficients. We use cyclic cubic regression splines for the functional

domain s, and cubic regression splines for the functional covariate domain x.

Given the excellent mgcv software in R this can be implemented as (users of

mgcv will find this easy to understand):

ti(x, s, bs=c("cr","cc"), k=c(Kx,Ks), mc=c(TRUE,FALSE))

The mc parameter specifies marginal centering constraints to the functional

covariate domain, which coincides with the identifiability constraints (2.11)

discussed in Section 2.2.3. The cyclic cubic regression splines are used for the
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functional domain, s, to account for the periodicity of PA as both s = 0 and

s = 24 hours indicate midnight in our notation.

2.2.4.2 Estimation

Using the tensor product notation, the additive functional Cox model can be

rewritten as

log λi(t|Zi, X i) = log λ0(t) + ZT
i β +

∫︂
S

F{s, his[XP
i (s)]}ds

= log λ0(t) + ZT
i β +

Ks

∑
j=1

Kx

∑
k=1

θj,k

∫︂
S

Bj(s)Bk{his[XP
i (s)]}ds

= log λ0(t) + ZT
i β + V T

i θ

= log λ0(t) + W T
i γ .

(2.13)

Here W T
i = (ZT

i , V T
i ) and γT = (βT, θT), where θ is the vector with entries θj,k

and V i is the vector with entries
∫︁
S Bj(s)Bk{his[XP

i (s)]}ds, and both vectors

θ and V i are organized in the same order of the indices j = 1, 2, ..., Ks; k =

1, 2, ..., Kx. The parameters γ are estimated by maximizing the penalized

partial log likelihood, where the penalty is induced on the θ parameters (the

vector of parameters of the bivariate spline function) using standard quadratic

penalties that depend on the vector of smoothing parameters λ. Selection of

λ is discussed in Section 2.2.4.3. The penalized partial log likelihood has the

following form

lp(γ|λ) = l(γ)− λJ(θ) =
N

∑
i=1

δi[W T
i γ − log ∑

Yj≥Yi

eW T
i γ]− λJ(θ) . (2.14)
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For every fixed smoothing parameter λ, the estimator of the regression coeffi-

cients is obtained by γ̂(λ) = arg minγ −lp(γ|λ) using the Newton-Raphson

algorithm. Detailed information on this approach can be found in Wood, Pya,

and Säfken, 2016 supplementary materials G. Following ideas in Wood, Pya,

and Säfken, 2016 we use cubic spline penalties. The practical implication of

this approach is that it is easy to implement in the gam function of the mgcv

package. For example, suppose that the functional covariates are observed on

an equally-spaced grid {s1, ..., sm} of the functional domain. The integral in

equation (2.13) is approximated through weighted numerical summation of

functional observations, where the weights are the increments between each

neighboring pair and are stored in the vector l. In the case with only one

scalar covariate, z, if the event indicator δi and observed survival time Yi are

stored in the variables delta and Y, respectively, the code is simply

fit <- gam(Y ~ z + ti(x, s, by = l, bs=c("cr","cc"), k=c(Kx,Ks),

mc=c(TRUE,FALSE)), weights = delta, data, family = cox.ph())

The detailed procedure of fitting the model, extracting estimates on a fine

grid, and visualizing the results is provided in the vignette in the supplemen-

tary materials. We would like to underline the simplicity of the code. This

was possible because of the careful and novel methodological work and is

an important contribution. Indeed, it is only through the use of powerful,

reproducible, inferential code that functional methods can become popular

after publication in highly specialized journals.

An alternative approach to Cox regression is to use estimation of the

nonparametric proportional hazard model; see, for example, Lin, He, and
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Huang, 2016 and Hiabu et al., 2017. However, here we focus on generalizing

the Cox proportional hazard model.

2.2.4.3 Smoothing Parameter Selection

An important problem is the selection of the smoothing parameter λ. Sev-

eral selection criteria have been proposed, including GCV (Gu, 2013), AIC

(Hurvich, Simonoff, and Tsai, 1998), EPIC (Shinohara et al., 2011) and REML

(Ruppert, Wand, and Carroll, 2003). In the context of functional Cox regres-

sion, Gellar et al., 2015 proposed using a criteria based on AIC. Here we follow

the estimation procedure described in Wood, Pya, and Säfken, 2016, which

involves maximizing the Laplace approximation of the marginal likelihood of

the smoothing parameter.

2.2.4.4 Statistical Inference

In addition to estimating the model parameters, γ, the corresponding Hes-

sian matrix H is also estimated; see Wood, 2017 supplementary material G

for details. Several estimators of the covariance matrix have been proposed

in the literature, including a “sandwich estimator” H−1GH−1 proposed by

Gray, 1992, and a “pseudo standard error” H−1 proposed by Verweij and Van

Houwelingen, 1994. Here G denotes the corresponding Hessian matrix with-

out a penalty term. Therneau, Grambsch, and Pankratz, 2003 recommended to

perform significance tests on the estimator H−1 instead of H−1GH−1. Because

the structure of the problem does not change fundamentally, the inference for

our model follows a similar procedure with that introduced by McLean et al.,

2014 for the functional generalized additive model.
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2.3 Applications

The additive functional Cox model was motivated by studying the association

between the high-resolution physical activity measures and time to death.

We present results using different transformations of the functional covariate,

and compare their interpretation and predictive performance with those of

traditional approaches.

2.3.1 NHANES

As discussed in Section 4.1, NHANES contains a large number of individual

characteristics together with physical activity data measured by hip-worn

accelerometry. Data are linked to mortality outcomes and are available, for

example, through the rnhanesdata package in R. For more details on organiz-

ing and analyzing NHANES physical activity data see Leroux et al., 2019b. In

our application, the functional covariate is the smoothed minute-level average

LAC over available days, referred to as “smoothed LAC” below. We now

describe the pre-processing procedure for creating the functional covariate

(smoothed LAC). Denote the minute level activity counts ACij(s) for subject

i = 1, . . . , N, and day j = 1, . . . , 7, for minute s = 1, . . . , 1440. To account for

subject non-compliance with study wear-time protocols, we use the default

estimated wear/non-wear at every minute available in the rnhanesdata pack-

age, which were created using established algorithms (Troiano et al., 2008).

Denote wear/non-wear indicators by Wij(s), where 0 and 1 correspond to

estimated non-wear and wear, respectively. Next step introduces an indicator

variable Gij, which encodes a “good” day of accelerometry data as 1 and is
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defined as a day with at least 10 hours of estimated wear time. More pre-

cisely, Gij = 1(∑1440
s=1 Wij(s) ≥ 600), where 1(·) is the indicator function. The

index set for all good days for subject i is denoted by J∗i = {j : Gij = 1}.

To create the functional predictor the daily activity counts are transformed

as LACij(s) = g(ACij(s)) where g(y) = log(1 + y). This g(·) is introduced

when building our functional predictors and is conceptually completely sepa-

rated from the transformation function his(·) in the model. These log activity

profiles are averaged across all the “good” accelerometry days for study par-

ticipant i: LACi(s) = |J∗i |−1 ∑j∈J∗i
LACij(s). These individual profiles are then

smoothed using FPCA. Therefore, we start our NHANES application with

these smoothed LAC, denoted by LAC′
i(s) = Xi(s) = ∑K

k=1 ξ̃ ikϕ̂k(s) where ξ̃ ik

are the predicted scores and ϕ̂k(s) are the estimated eigenfunctions obtained

from functional principal component analysis (FPCA) (Xiao et al., 2016b).

These steps are all pre-processing steps and are conceptually distinct from the

subject-domain transformation function his(·).

Survival time is measured in months from accelerometer wear and, for the

purpose of this study, all survival times are censored at 10 years. Among the

2816 study participants who met the inclusion criteria, 2157 (76.6%) survived

for more than 10 years from the time when accelerometry data were collected.

We adjust for sociodemographic factors (age, race, employment status, ed-

ucation, poverty-income ratio), health factors (self-reported overall health,

smoking status, alcohol consumption, body mass index, mobility difficulty),

and disease indicators (diabetes, coronary heart disease, congestive heart

failure, stroke, cancer, systolic blood pressure, total cholesterol).
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2.3.2 Application Results

2.3.2.1 Estimated Functional Surface F̂(·, ·)

All models are fit using the R code described in Section 2.2. A vignette to

reproduce the analysis is provided in the supplementary materials. Different

transformations were used on the functional covariate, including identity

transformation, quantile transformation, and subject-specific quantile transfor-

mation. We focus on the density of different transformed functional covariates

and its connection with model estimation and interpretation.

To illustrate the complexity of the problem, Figure 2.4 displays density

plots for the observations {s, Xi(s)}, where Xi(s) is a generic notation for

the LAC before or after transformation. First and second row correspond to

individuals who were deceased within and alive for 10 years, respectively.

First column: unsmoothed LAC. Second column: smoothed LAC. Third

column: quantile-transformed smoothed LAC. The rectangular domain was

partitioned into small sub-rectangles and the number of points {s, Xi(s)} was

counted in each sub-rectangle and plotted. For example, for unsmoothed

and smoothed LAC the [0, 24]× [0, 8] rectangle domain was partitioned into

24 × 20 = 480 equal size rectangles, where each rectangle corresponds to one

hour and an increment of 0.4 on the log(1 + AC) scale. A similar partition

(into 480 equal size sub-rectangles) was done for the quantile-transformed

data, though the domain in this case was [0, 24]× [0, 1], because the quantile

transformed data spans the [0, 1] domain, whereas the original LAC data

spans the [0, 8] domain. The number in each block decreases from red (largest)

to blue (smallest). Color scales are different across plots.
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Figure 2.4: Density plots for the log-transformed activity counts (LAC) before or after
transformation. First and second row correspond to individuals who were deceased
within and alive for at least 10 years, respectively. First column: unsmoothed LAC.
Second column: smoothed LAC. Third column: quantile-transformed smoothed LAC.
The rectangular domain was partitioned into small sub-rectangles and the number of
{s, Xi(s)} was counted in each sub-rectangle and plotted. The number in each block
decreases from red (largest) to blue (smallest). Color scales are different across plots.

The panels for unsmoothed LAC (left panels) show that data are extremely

sparse in the sub-domain corresponding to high activity counts during the

night; see the dark blue in the top-left region of the grid. This illustrates

the estimability principle that we have discussed in this paper. Indeed, the

regions [0, 6]× [3, 8] and [6, 24]× [7, 8] contain little or no data, despite the

fact that we have a relatively large sample size (2816 study participants). An

additional concern is that between 12AM to 6AM, when most people sleep, the

density of observations is highly concentrated around zero counts. Thus, in
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this case, imposing the identifiability condition in Müller, Wu, and Yao, 2013

is necessary but insufficient to ensure that we obtain meaningful estimates in

these regions. In fact, we expect similar results even if the sample size were

100 times larger. The panels for smoothed LAC (second column) show that

the problem is further exacerbated by smoothing. In contrast, the panels for

quantile-transformed smoothed LAC (right panels in Figure 2.4) show a much

better coverage of the rectangle domain [0, 24]× [0, 1]. This suggests that the

quantile transformation could be an effective approach for addressing the

estimability problem over the entire domain.

The estimates using smoothed LAC before and after transformations are

shown in Figure 2.5, where each plot is visualized as a function of both the

functional domain and the value of the functional covariate. The value of

F̂(·, ·) decreases from red (highest) to white to blue (lowest), where a higher

value corresponds to a higher hazard of death. The top-left panel in Figure 2.5

provides the functional surface estimates for the smoothed LAC (his(x) = x).

A superficial look at the results could indicate that low activity intensity is

associated with a higher hazard of mortality at any time of a day. This seems

unreasonable, as a vast scientific literature exists on the benefits of restful

sleep. We believe that this result is due to spurious extrapolation in regions of

the functional domain with sparse or no data; compare these results with the

data density panels in the second column of Figure 2.4.

To further explore whether this is, indeed the case, we conducted a strati-

fied analysis by separating the time of day into night (12am to 8am) and day

(8am to 12am). Results of this analysis are shown in the two side-by-side
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Figure 2.5: Estimated surfaces using the additive functional Cox model from un-
transformed (top-left), quantile-transformed (top-right), and age-specific quantile-
transformed (bottom-right) smoothed LAC. The bottom-left panels show the estimates
from smoothed LAC when stratifying the analysis by night (12am to 8am) and day
(8am to 12am). For each time period of the stratified analysis, the functional covariate
region of interest is set at the 90th percentile of the functional covariate values to
ensure good coverage of data. The value of F̂(·, ·) decreases from red (highest) to blue
(lowest hazard of death). Color scales are different across plots.

panels on the bottom in the first column (titled “Night” and “Daytime”). The

interpretation of these results is that, higher activity during the night and

lower activity during the day are associated with a higher hazard of mortality.

However, even in this case the results during the night continue to be affected

by data sparsity (left-upper and right-upper corners of the panel labeled

“Night”). Another problem is that when conducting stratified analyses, the

y-axis (which corresponds to the value of smoothed LAC) changes for each
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strata ([0, 1.98] for night and [0, 4.44] for day), which makes interpretation

of results more difficult. The boundary value of the functional covariate is

set to the 90th percentile of smoothed LAC for each time period to ensure

good domain coverage. The lower boundary value at night is due to the

lower LAC during the night. Moreover, the choice of threshold of 8am for

night/day transition is debatable and 7am could provide a better transition

point. Deciding which transition threshold to use is not obvious in practice,

which further reduces the appeal of the stratified analysis.

For all these reasons we considered quantile transformations of smoothed

LAC. As shown on the right panels of Figure 2.4, the improved coverage on the

grid indicates that the functional surface is more likely to be estimable on the

[0, 24]× [0, 1] grid of the transformed data. The top-right panel of Figure 2.5

indicates that lower relative activity during the day and higher relative activity

during the night are associated with a higher hazard of mortality. Specifically,

being below the 30th percentile of smoothed LAC in the population during

daytime (9am to 9pm) is associated with a higher hazard of mortality. In

contrast with the results in the top-left panel, this plot indicates that a lower

relative LAC (less than the 35th percentile of smoothed LAC in the population)

during the night (12am to 8am) is associated with a lower hazard of mortality.

These results agree with those obtained from the stratified analysis.

While both approaches yield similar interpretable results, we favor the use

of quantile transformation because: (1) the quantile transformation automati-

cally unifies different scales of functional observations across the domain; (2)

stratified analysis requires manual choice of the threshold, while the y-axis
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of the domain may be different; (3) results using quantile transformations

are interpretable and translatable, whereas stratified analyses are based on

quantities that are difficult to use for providing physical activity guidance;

(4) the quantile transformation is easier to implement; and (5) the quantile

transformation has a long and successful history in genomics analyses.

Building on the success of the quantile transformation, we have further

applied the age-specific quantile transformation, where age is the subject-

specific characteristic. This eliminates the effects of age on the individual

quantile, as older individuals tend to have lower levels of activity. The result

is illustrated on the bottom-right panel of Figure 2.5. The plot indicates that

even after using age-specific quantile transformations, the pattern of the effect

of diurnal and nocturnal activity intensity on the hazard of mortality remains

relatively unchanged. Results indicate that individuals who are above the 60th

percentile of activity during the night and below the 35th percentile during

the day in their corresponding age group are at increased risk of mortality,

irrespective of age.

2.3.2.2 Predictive Performance

Cross-validated Harrell’s C-index (Harrell Jr et al., 1982; Harrell Jr et al., 1984;

Harrell Jr, Lee, and Mark, 1996) and Brier score (Brier, 1950) are used as mea-

sures of predictive performance. Across models, the non-functional covariates

are kept the same, allowing for a comparison of different approaches for

modelling the association between activity and mortality while adjusting for
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common confounders. The results of 10-fold cross validation are shown in Ta-

ble 2.1. Two functional models, additive functional Cox model (“AFCM”) and

linear functional Cox model (“LFCM”), are implemented as the comparison.

For each functional model, we evaluate the predictive performance using three

forms of LAC including unsmoothed, smoothed, and quantile-transformed

smoothed. In addition, the non-functional Cox proportional hazard model

(“Cox PHM”) is implemented as the baseline model, where the the average

smoothed LAC over the entire day is used as a scalar predictor.

Table 2.1: The average 10-fold cross-validated Harrell’s C-index and Brier score of
all combinations of model and physical activity measures. “AFCM” denotes the
additive functional Cox model, “LFCM” denotes the linear functional Cox model, and
“Cox PHM” denotes the standard Cox proportional hazard model using the average
activity as predictor.

Model LAC Harrell’s C-index Brier score

AFCM
unsmoothed 0.795 0.0751

smoothed 0.795 0.0751
smoothed + quantile 0.793 0.0753

LFCM
unsmoothed 0.791 0.0754

smoothed 0.791 0.0754
smoothed + quantile 0.791 0.0753

Cox PHM 0.791 0.0758

The predictive performance of our models (with or without transformed

data) is better than that of the linear functional Cox model and non-functional

model, though differences are small. Among the additive functional Cox

models the difference in predictive performance is marginal. This may be

due to the fact that the test and training datasets share the regions where the

functional parameters are well estimated, irrespective of the transformation

used. This indicates that using prediction measures may not be sufficient

to differentiate between models that use raw or transformed data or among
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different types of transformations. However, interpretation of results is sub-

stantially improved by the quantile transformation and agrees with stratified

analyses by time of day, as shown in Figure 2.5.

2.4 Simulation Study

2.4.1 Simulation Framework

For simplicity, we consider the case with only one functional covariate X i

and no scalar covariate. Consider the case when his[XP
i (s)] = his[Xi(s)] and

denote by ηi =
∫︁
S F{s, his[Xi(s)]}ds. The model introduced in Section 2.2 can

be simplified as

log λi(t|X i) = log λ0(t) +
∫︂
S

F{s, his[Xi(s)]}ds = log λ0(t) + ηi . (2.15)

Functional covariates are simulated using functional principal component

analysis (FPCA) (Ramsay, 2004) applied to the NHANES data. Survival data

are simulated using either the estimated F(·, ·) based on the NHANES data

or pre-specified forms of F(·, ·) in combination with simulated functional

covariates and estimated cumulative baseline hazards.

2.4.1.1 Simulating Functional Covariates

FPCA has been widely used to smooth functional data by restricting the

projection to the first M principal components of the Karhunen-Loève ex-

pansion (Karhunen, 1947; Loeve, 1978). If we denote by µ(s) = E[X(s)],

then the subject-specific functional predictors can be expanded as Xi(s) ≈

µ(s) + ∑M
j=1
√︁

λjξijψj(s). Here λ1 ≥ ... ≥ λM and ψ1(·), ..., ψM(·) are the first
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M eigenvalues and eigenfunctions, respectively. The scores are derived by

ξij =
1√
λj

∫︁
Xi(t)ψj(t)dt and E(ξij) = 0, E(ξijξik) = I(j = k), which is equal

to 1 if j = k and 0 otherwise. The functional covariates X̃i(s) are simulated as

X̃i(s) = µ̂(s) + ∑M
j=1

√︂
λ̂jeijψ̂j(s), where eij are i.i.d. N(0, 1) random variables.

The mean, µ̂(s), eigenvalues, λ̂j, and eigenfunctions, ψ̂j(s), are estimated using

FPCA on the NHANES data. This was done using the R function fpca.face

(Xiao et al., 2016a) in the refund package (Crainiceanu et al., 2012).

In our simulation, the functional covariates X̃i(s) are generated by apply-

ing FPCA to the smoothed LAC, the functional covariates Xi(s) of NHANES

application. We then impose quantile transformation his on simulated func-

tional covariates to reduce data sparsity observed on the middle panels of

Figure 2.4. See R code in the supplementary materials for implementation

details.

2.4.1.2 Simulating Survival Data

Simulating survival data with non-pathological properties that mimic the

NHANES data was one of the most difficult tasks addressed by this paper.

We propose to use the estimated survival function, which proved to be both

practical and realistic. While methods for estimating survival times under

parametric assumptions on the distribution of survival times exist (Bender,

Augustin, and Blettner, 2005; Austin, 2012), we have been unable to adapt

these methods to NHANES. Part of the problem is that small changes on the

modeling assumptions can lead to substantial changes in the distribution of

survival times. Moreover, we could not find a general set of recommendations
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on how to choose parameters, especially in the context of functional predictors.

Thus, we are taking a different approach and use the gam function in R

package mgcv to estimate the cumulative baseline hazard Λ̃0(t) =
∫︁ t

0 λ0(u)du

from the fitted model based on the NHANES data, where certain constraints

are imposed to ensure non-negative and non-decreasing estimates; see R code

in the supplementary materials for details. We use two simulation approaches

to derive the estimated linear predictor η̃i based on: (1) the surface estimated

from NHANES; and (2) several pre-specified functional forms of F(·, ·). The

estimated survival function is calculated as S̃i(t) = exp{−eη̃i Λ̃0(t)}, and the

simulated survival time T̃i is obtained using the relationship between the

density and the survival function. The censoring times C̃i are simulated from

the empirical distribution of censoring times in the NHANES data to control

the censoring rate.

In summary, the simulation procedure has the following steps: (1) derive

the estimated cumulative baseline hazard function Λ̃0(t); (2) derive the esti-

mated linear predictor η̃i; (3) derive the estimated survival function S̃i(t); (4)

simulate survival time T̃i from S̃i(t); and (5) simulate censoring time C̃i from

the empirical distribution of censoring times in NHANES. The R code for this

simulation approach is provided in the supplementary materials.

2.4.2 Simulation Results

As discussed in Section 2.4.1.1, we simulate functional covariates using FPCA

on the NHANES data. We use two choices of F(·, ·), one based on NHANES
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and one based on pre-specified functional forms to evaluate model perfor-

mance from different perspectives.

2.4.2.1 The Functional Surface Estimated from NHANES

We simulate survival and functional data that mimic real NHANES data with

different sample sizes in the first simulation. The “true” F(·, ·) is set as the

estimator using the quantile-transformed smoothed LAC in NHANES. In

this section we show the model fitting performance using the correctly speci-

fied quantile transformation, while additional results using the misspecified

identity transformation are included in the supplementary materials. The

functional domain is rescaled to [0, 1] for notation convenience. We focus

on the estimation accuracy of the surface F(s, x) and cumulative baseline

hazard Λ0(t) under different sample sizes. The surface is estimated on the

grid S ×X = [0, 1]× [0, 1] with 100 equally-spaced points in each dimension.

Thus, the estimated surface is a 100 × 100 dimensional matrix where the value

in each cell represents the estimated F̂(·, ·) at that point in the domain. The

cumulative baseline hazard function is estimated on the interval [0, 10] on a

1000 dimensional equally-spaced grid of points.

The estimated surface based on quantile-transformed smoothed LAC of all

N = 2816 NHANES participants is shown in the top-left panel of Figure 2.6,

serving as the baseline for comparing the estimation performance of simulated

data with different sample sizes. This plot is different from the application

results in Section 2.3 since no other covariates are included. In simulations we

used three sample sizes N = 1000, 2000, 5000. The sample size N controls the
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Figure 2.6: Estimated surface in NHANES, F̂(·, ·), (first panel in the top row), which
was used as true surface in simulations. Average estimated surfaces based on 100
simulations for N = 1000, 2000, 5000 (second, third, and fourth panel in the top row).
Red, white, and blue correspond to highest, median, and lowest hazard of mortality.
For each N, the distribution of the integrated squared error (ISE) is shown in the
second row.

amount of information, in general, and the data density on the functional grid

in particular. For each N, we performed 100 simulations and the average of

the estimated surfaces are shown in Figure 2.6. A sample of randomly selected

estimates from 100 simulations are included in the supplementary materials.

As sample size increases, the average estimated surfaces are getting closer

to the baseline functional surface; see panels from left to right in Figure 2.6.

These results provide a first check that the new simulation framework is

reasonable and produces datasets with similar characteristics with the original

NHANES. Moreover, the estimation method provides, at least on average,

reasonable estimators of the target functional predictor surface. To better

quantify how well surfaces and cumulative baseline hazards are estimated,

the integrated square error (ISE) is calculated for each simulated data set. For

surfaces ISE is defined as ISE(F̂(s, x)) =
∫︁
S
∫︁
X (F̂(s, x)− F(s, x))2dxds, where
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F(s, x) refers to the baseline functional term estimated from the real data and

used in simulations. The bottom panel of Figure 2.6 displays the distribution

of ISE as a function of sample size. Results illustrate a large decrease in ISE as

sample size increases. More precisely, the median ISE when N = 5000 is less

than a third the median ISE for N = 1000. The ISE for the cumulative baseline

hazard functions is defined analogously and we show their distributions under

different sample sizes in the supplementary materials. Further decompositions

of ISE into integrated squared bias (denoted by “bias2”) and average variance

(denoted by “variance”) for both surfaces and cumulative baseline hazards

are reported in Table 2.2. Results suggest that both bias and variance decrease

as sample size increases. In addition, the estimation procedure is fast even

for large sample sizes. Indeed, it took only ∼ 2 minutes to obtain one fit with

5000 study participants on a regular laptop (2.7GHz dual-core Intel Core i5

processor), as shown in the right column of Table 2.2.

Table 2.2: The integrated squared bias and average variance for the estimated surface
F̂(·, ·) and cumulative baseline hazard function Λ̂0(·) based on 100 simulations with
different sample sizes N = 1000, 2000, 5000. The average computing time per simula-
tion is shown on the right column.

Sample size
F̂(·, ·) Λ̂0(·)(×10−4) Average Comp.

Time (sec.)bias2 variance bias2 variance
N = 1000 0.303 0.292 0.011 1.061 21.07
N = 2000 0.150 0.211 0.009 0.598 46.24
N = 5000 0.042 0.138 0.002 0.203 126.20

2.4.2.2 Pre-specified Functional Forms of F(·, ·)

We also considered pre-specified functional forms for F(s, x), while keeping

the simulation of the functional covariates the same. We considered the
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following functional forms for F(s, x): (1) F(s, x) = 2x, which scales linearly

with respect to x, and remains constant across s; (2) F(s, x) = xs, which scales

linearly with respect to both x and s; (3) F(s, x) = x3s, which scales linearly

with respect to s, but is nonlinear with respect to x; and (4) F(s, x) = sin xs,

which is nonlinear with respect to both x and s. The term
∫︁

Xi(s)β(s)ds in

the linear functional Cox model corresponds to β(s) = 2 in the first scenario

and β(s) = s in the second. However, the linear functional Cox model is

misspecified for the last two scenarios. For each F(s, x), we perform 100

simulations with sample size N = 5000 and derive the average estimated

functional surfaces from each model. To reduce the linear approximation effect

of nonlinear functions within small regions, for example f (s, x) = xs and

g(s, x) = x3s are very close for x and s between 0 and 1, and to comply with

the necessary identifiability constraints, the grid is modified to [0, 2]× [−1, 1]

for all F(s, x). The simulated functional covariates are rescaled to the same

range to ensure good data coverage.

Figure 2.7 displays the true surfaces (first row) and the average estimated

surfaces based on the linear (second row) and additive (third row) functional

Cox model. The estimated surfaces and cumulative baseline hazard func-

tions from a sample of randomly selected simulations are provided in the

supplementary materials. The color scale is the same within each F(s, x), but

varies across different functions, as they have different ranges. The first two

columns correspond to functions F(s, x) that are linear in x. Both the linear

and additive functional Cox models estimate the true surfaces well, at least

when comparing the average surfaces. The ISE distributions shown in the last
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Figure 2.7: True surface (first row) and average estimated surfaces based on 100
simulations with sample size N = 5000 (second and third row). The second row
corresponds to the linear functional Cox model and the third row corresponds to
the additive functional Cox model. The fourth row displays the integrated squared
error for the additive (red) and linear (blue) functional Cox models. Each column
corresponds to a specific functional form of F(·, ·).

row indicate that the linear model performs slightly better, probably because

of the higher complexity of the functional additive model. These results are

expected and reassuring, indicating that the additive functional Cox model

performs well when the true model is linear. The last two columns correspond
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to functions F(s, x) that are nonlinear in x. In both scenarios the additive func-

tional Cox model substantially outperforms the linear Cox model. This can be

observed both from the comparison of the average of estimated surfaces (first

three rows) and from the distributions of ISE (last row).

2.5 Discussion

The major contribution of our paper is the introduction of the nonparametric

additive functional Cox model. This allows to quantify complex associations

between a time to event outcome and functional covariates. This approach is

crucial in the NHANES application where activity intensity during the night

and day has different implications for the hazard of mortality. The technical ar-

gument is to use an unspecified bivariate function F(s, x) that depends on the

functional domain, S , and the transformed functional covariates his[XP
i (s)],

where necessary constraints are imposed to ensure the model identifiability.

Another important contribution is to introduce a class of transformations of

functional covariates, which can alleviate problems related to data sparsity in

particular areas of the domain of the F(·, ·) function and substantially improve

the model estimability. We have discussed several types of domain-specific

transformations and extended the idea to subject-specific transformation.

While the interpretation of results changes with the transformation, this pro-

vides a flexible approach for exploring the type of association between the

functional predictors and time to event.

Our model was motivated by the NHANES study, where we identified
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highly interpretable patterns of association between daily trajectories of phys-

ical activity and the hazard of mortality. The prediction performance of the

proposed model also improved slightly relative to the linear functional Cox

model. Important advantages of the model are that it can be implemented

using existing software, implementation is very fast even for large datasets,

and reproducible code is provided with this paper.

We also introduced the first approach for realistic simulations of survival

data for Cox models with functional predictors. Detailed R simulation code is

provided in the supplementary materials and the associated vignette. Simula-

tions indicate that the additive functional Cox model performs almost as well

as the linear functional Cox model when the function is linear and much better

when it is not. A vignette is provided in the rnhanesdata package introducing

and implementing all our work.

Our approach shows that complex functional models can be fit quickly and

efficiently using state of the art software. However, our work has also opened

several exciting avenues of research including establishing the theoretical

properties of the estimation approach and exploring additional functional

transformations.

2.6 Supplementary Material

The supplementary material of this project is available at https://doi.org/

10.1080/10618600.2020.1853550.
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Chapter 3

Fast Multilevel Functional Principal
Component Analysis

3.1 Introduction

Functional data measured at multiple visits have become increasingly com-

mon. A standard technique for analyzing such data is multilevel functional

principal component analysis (MFPCA) (Di et al., 2009), which provides a de-

composition of the observed data into within- and between-subject variation.

The MFPCA model generalizes traditional measurement error and multilevel

models to the case when the basic measurement unit is a function.

The motivating data is a large physical activity dataset from the National

Health and Nutrition Examination Survey (NHANES), a study conducted

in two-year waves by the United States Centers for Disease Control and

Prevention (CDC). Each study participant in the 2003-2004 and 2005-2006

waves was asked to wear a hip-worn physical activity monitor (PAM) for

seven consecutive days. Acceleration data were publicly released as minute-

level activity counts (AC), a proprietary measure of physical activity intensity.

49



For quality control purposes, some days were excluded from the analysis;

see Section 3.6 for exclusion criteria. Figure 3.1 displays the physical activity

profiles of three randomly selected NHANES study participants (left, middle

and right panels). The number of available days varies by study participant

with a maximum of 7. For example, the data for the study participant shown

in the left panels contains only 6 days, while the data for the study participant

shown in the middle panels contains only 5 days. Within a column, each row

shows the minute-level AC of one day from midnight to midnight, where the

title for each panel indicates the corresponding day of the week. The dataset

has 12802 study participants and 65777 days in total, with 1440 observations

per day for a total of 94718880 minute-level observations.

The NHANES dataset is an example of large-scale multilevel high dimen-

sional functional data. For subject i on day j of the week, the physical activity

intensity value at minute s ∈ S can be denoted as Yij(s), where S is the time

interval from midnight to midnight. Functional principal component analysis

(FPCA) is a popular approach in functional data analysis (Ramsay and Silver-

man, 2005). Some early work, including Ramsay and Dalzell (1991), Silverman

et al. (1996), and Yao, Müller, and Wang (2005), focused on single-level analy-

sis. For multilevel functional data, multilevel functional principal component

analysis (MFPCA) (Di et al., 2009) provides an explicit decomposition of the

within- and between-subject variation in the functional space. MFPCA is de-

signed to analyze functional data with two levels of functional variation. This

is the simplest model in the rapidly expanding family of multilevel functional

mixed effects models, including multilevel functional models (Brumback and
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Figure 3.1: Physical activity profiles of three NHANES study participants over avail-
able days. Each study participant is uniquely identified by the SEQN number. Left
column: SEQN 22092. Middle column: SEQN 30209. Right column: SEQN 40757.
Within each column, each row displays the minute-level AC of one day from midnight
to midnight, titled by day of the week from Sunday (top row) to Saturday (bottom
row).
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2015). MFPCA is also related to but distinct from multivariate functional data

(Berrendero, Justel, and Svarc, 2011; Chiou, Chen, and Yang, 2014; Kowal,

Matteson, and Ruppert, 2017; Happ and Greven, 2018; Wong, Li, and Zhu,

2019).

Applying MFPCA to a dataset with over 10000 study participants and over

1000 observations per function remains computationally challenging. The

current implementation of MFPCA is slow for high dimensional functional

data, as the number of computations is proportional to the cube of the number

of observations per function. The problem is that the current MFPCA requires:

(1) the construction, smoothing and eigendecomposition of covariance ma-

trices with the dimension equal to the number of observations per function;

and (2) the score prediction which relies on the inversion of multiple high

dimensional covariance matrices. The fast covariance estimation in Xiao et al.

(2016), referred to as FACE, addressed these problems for single-level func-

tional data. Indeed, FACE, implemented in the fpca.face() function of the

refund R package (Goldsmith et al., 2020), requires only minutes to smooth

covariance matrices of dimension 100000. Here we provide methods that

substantially accelerate MFPCA by extending methods inspired by FACE.

Therefore, we propose fast multilevel functional principal component

analysis (fast MFPCA) and implement it in the mfpca.face() function of

the refund R package. The fast MFPCA approach improves MFPCA by: (1)

constructing transformed functional data instead of calculating the method

of moments estimators of covariance matrices; (2) obtaining level-specific

eigendecompositions by extending FACE to multilevel functional data, which
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avoids using high dimensional covariance matrices; and (3) predicting prin-

cipal component scores based on mixed model equations (MME). Using the

combination of these ideas, the fast MFPCA scales up linearly with the number

of observations per function and is orders of magnitude faster than MFPCA.

For example, fast MFPCA took less than 5 minutes to fit the NHANES data

compared with MFPCA, which took more than 5 days.

The rest of the paper is organized as follows. We review MFPCA in Sec-

tion 3.2 and introduce the fast MFPCA approach in Section 3.3. A theoretical

study of the proposed method is provided in Section 3.4. A simulation study is

conducted in Section 3.5 to compare the computation time and accuracy of our

new approach with existing methods. We discuss the NHANES application

results in Section 3.6 and conclude with a discussion in Section 3.7.

3.2 Multilevel Functional Principal Component Anal-
ysis

We briefly review the multilevel functional data model proposed in Di et

al., 2009. Denote by Yij(s) the observed data for subject i = 1, . . . , I at visit

j = 1, . . . , Ji and location s ∈ {s1, . . . , sL} ∈ S , where S is a compact do-

main. Each function has L observations at the same set of time points and

we focus on the case when L is relatively large. Denote by n = ∑I
i=1 Ji the

total number of visits. Consider a functional ANOVA model with measure-

ment error: Yij(s) = Xij(s) + ϵij(s) = µ(s) + ηj(s) + Zi(s) + Wij(s) + ϵij(s),

where µ(s) is the population mean function, ηj(s) is the jth visit-specific shift

from µ(s), Zi(s) is the random subject-specific mean deviation for the ith
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subject, Wij(s) is the random jth visit-specific deviation from Zi(s), and ϵij(s)

is a white noise with variance σ2. The random functions Zi(s) and Wij(s)

are mutually independent zero mean processes with covariance functions

KB(s, t) = cov{Zi(s), Zi(t)} and KW(s, t) = cov{Wij(s), Wij(t)}, respectively.

Algorithm 1 MFPCA

1. Estimate mean functions µ(s) and ηj(s) by applying univariate smoothers
to observed data under working independence assumption and subtract
them from observed data.
2. Construct method of moment (MoM) estimators of the total covariance
KT(s, t) and between-subject covariance KB(s, t), denoted by ˆ︁KT(s, t) andˆ︁KB(s, t), respectively.
3. Smooth ˆ︁KT(s, t) and ˆ︁KB(s, t) using bivariate smoothing, leading to
two smooth estimates, denoted by ˜︁KT(s, t) and ˜︁KB(s, t), respectively. Let˜︁KW(s, t) = ˜︁KT(s, t)− ˜︁KB(s, t).
4. Conduct eigenanalysis on discretized ˜︁KB(s, t) and ˜︁KW(s, t) matrices.
5. Estimate error variance σ2 by σ̂2 =

∫︁
S{K̂T(s, s)− K̃T(s, s)}ds.

6. Predict scores using best linear unbiased prediction (BLUP).

Let KT(s, t) := cov
{︁

Xij(s), Xij(t)
}︁
= KB(s, t) + KW(s, t) be the total vari-

ance of the smooth functional data. Suppose that the between-subject covari-

ance function KB admits the eigendecomposition KB(s, t) = ∑k≥1 λ
(1)
k ϕk(s)ϕk(t),

where λ
(1)
1 ≥ λ

(1)
2 ≥ · · · ≥ 0 are eigenvalues with associated orthonormal

eigenfunctions ϕk(s), that is,
∫︁
S ϕk1(s)ϕk2(s)ds = δ{k1=k2} for any pair (k1, k2).

Here δ{·} is an indicator function which is equal to 1 if the statement is true

and 0 otherwise. Then the random function Zi(s) can be written as Zi(s) =

∑k≥1 ξikϕk(s), where ξik are scores with zero mean and variance λ
(1)
k and are

mutually uncorrelated. Similarly, suppose that the within-subject covariance

function KW also has an eigendecomposition KW(s, t) = ∑k≥1 λ
(2)
k ψk(s)ψk(t),

where λ
(2)
1 ≥ λ

(2)
2 ≥ · · · ≥ 0 are the eigenvalues with associated orthonormal
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eigenfunctions ψk(s). Then Wij(s) = ∑k≥1 ζijkψk(s), where ζijk are mutually

uncorrelated scores with zero mean and variance λ
(2)
k .

The primary goal of MFPCA is to reduce the functional data to two sets of

uncorrelated scores: level-1 scores ξik1 and level-2 scores ζijk2 . The eigenfunc-

tions are also useful for understanding the variation patterns in functional

data. The traditional MFPCA methods in Di et al., 2009 are summarized in

Algorithm 1.

3.3 Fast MFPCA

MFPCA slows down substantially when the number of observations per

function increases. Indeed, constructing the L × L sample covariance matrices

(step 2 of Algorithm 1) requires O(IL2) computations, where I is the total

number of functions. Next, standard bivariate smoothing of L × L covariance

matrices (step 3 of Algorithm 1) requires O(L3) computations. Furthermore,

the eigenanalysis of L × L matrices (step 4 of Algorithm 1) also requires

O(L3) computations. Finally, the score prediction (step 6 of Algorithm 1)

requires inversion of covariance matrices of size L × L, which require O(L3)

computations.

To deal with the computational challenges of traditional MFPCA, we pro-

pose the fast MFPCA approach, which differs from traditional MFPCA in

three aspects. First, we construct transformed functional data for which the

underlying smooth curves have the desired covariance operators. This con-

struction takes only O(IL) computations compared to O(IL2) computations

for the method of moment (MoM) sample covariance estimators. Second, we
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apply the fast covariance estimation method (FACE, Xiao et al., 2016) to the

transformed data to estimate the covariance operators. FACE avoids the direct

calculation of MoM and eigenanalysis of empirical of L × L covariance matri-

ces. The computational complexity of FACE is O(ILc), where c is the number

of B-spline bases functions used for smoothing and is much smaller than I

and L. Finally, we predict the principal component scores using mixed model

equations (MME), which is computationally efficient because the number of

eigenfunctions is much smaller than the number of observations per curve.

To the best of our knowledge, this is the first time FACE is extended and

applied to general multilevel functional data. Moreover, we are not aware

of any literature using MME for score prediction in functional data analysis.

This idea combination reduces the computational complexity of MFPCA from

from O(IL2 + L3) to O(ILc).

3.3.1 FACE and Eigenanalysis

The fast covariance estimation method (FACE) in Xiao et al. (2016) is a bi-

variate smoothing method based on the tensor-product splines. FACE is

computationally fast as it scales up linearly with the number of functions

and the number of observations per function. In addition, the eigenanalysis

via FACE avoids computationally expensive eigendecompositions of large

covariance matrices. Below, we provide the technical details of FACE, which

inspired the functional data transformation described in Section 3.3.2.

Let Y be an L × I data matrix with each column corresponding to one

observed single-level function (centered and scaled) evaluated at the time
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points {s1, . . . , sL}. Let ˆ︁K = I−1YYT be the sample covariance matrix es-

timator. Denote by B(s) = [B1(s), . . . , Bc(s)]T the c × 1 dimensional vec-

tor of c cubic B-spline basis evaluated at s. Let B = [B(s1), . . . , B(sL)]
T be

the L × c design matrix, where each row corresponds to a sampling point

and each column corresponds to a spline basis. An L × L smoother ma-

trix is constructed as S = B(BTB/L + λP)−1BT/L, where P is the qth order

penalty matrix in P-splines (Eilers and Marx, 1996) and λ is the smoothing

parameter; see Section S.1 in the supplementary material for more details.

FACE uses ˜︁K = Sˆ︁KS as the smooth estimator of the covariance. Thus,

the (s, t) entry of the covariance estimator is ˜︁K(s, t) = BT(s)ΘB(t), where

Θ = (BTB/L + λP)−1(BT ˆ︁KB/L2)(BTB/L + λP)−1 is a c × c symmetric and

positive semi-definite matrix. FACE does not directly calculate ˜︁K and only

computes the c × c coefficient matrix Θ, which can be written as FFT with

F = (L
√

I)−1(BTB + λP)−1BTY. Notice that F is of dimension c × I and its

calculation requires O(ILc) computations. Because c is the number of spline

functions, which is much smaller than L and I, the calculation of F is much

faster than direct bivariate smoothing of a covariance operator. The main idea

is to use the decomposition of the sample covariance ˆ︁K combined with the

property that the smoothed covariance ˜︁K matrix is low rank. FACE selects the

smoothing parameter λ by minimizing the pooled generalized cross valida-

tion (PGCV) (Xiao, Li, and Ruppert, 2013), which is fast because it relies on

univariate functional smoothing to control bivariate covariance smoothing.
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The tensor product spline form of ˜︁K(s, t) can be used to reduce the com-

putational complexity of eigenfunctions and eigenvalues estimation proce-

dure. Indeed, let G =
∫︁

B(s)BT(s)ds, which can be constructed to be pos-

itive definite. Take the eigendecomposition G1/2ΘG1/2 = UΛUT, where

U = [U1, . . . , Uc] is an orthonormal matrix and Λ = diag(λ1, . . . , λc) is a

diagonal matrix with λ1 ≥ λ2 ≥ · · · ≥ λc ≥ 0. Then, UT
k G−1/2B(s) is the

estimated kth eigenfunction corresponding to eigenvalue λk. In contrast, the

direct approach is to conduct a spectral decomposition of the covariance ma-

trix evaluated on a dense grid; see, for example, Yao, Müller, and Wang, 2005.

This method is computationally expensive, especially in high dimensions.

3.3.2 Transformed Functional Data

To simplify the notation introduced in Section 3.2, let ˜︁Yij(s) = Yij(s)− µ(s)−

ηj(s) be the demeaned observed data, where µ(s) and ηj(s) will be replaced

by their estimates in applications. Recall that the data are observed on a

regular grid {s1, ..., sL}. Define ˜︁Yij = [˜︁Yij(s1), . . . , ˜︁Yij(sL)]
T and ˜︁Y = [˜︁Y11, . . . ,˜︁Y1J1 , . . . , ˜︁YI1, . . . , ˜︁YI JI ] ∈ RL×n. Denote by n = ∑I

i=1 Ji, the total number of

curves, and define nI = ∑I
i=1 Ji(Ji − 1).

As suggested in Shou et al. (2015), MoM estimators of covariance matrices

in structured functional data often take the “sandwich” form n−1˜︁YH˜︁YT, where

H are design-specific matrices. For example, for the MoM estimator of total

covariance, H is the n × n identity matrix. Therefore, FACE can be applied to

the transformed data ˜︁YH1/2 to smooth the covariance whenever H is positive

semi-definite. However, there are two potential issues with this approach.
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First, the sample covariance matrix for the between-subject covariance ˆ︁KB and

the corresponding H matrix are not positive semi-definite. Therefore, FACE is

not directly applicable. One solution was proposed by Xiao et al., 2016, who

truncated negative eigenvalues to zero. The second issue the computation of

H1/2, which is of dimension n × n. When the total number of curves, n, is

large, calculating H1/2 can become challenging.

To address the first problem, we smooth the total and within-subject covari-

ance, which are positive semi-definite. The between-subject covariance is then

estimated by the difference between total and within-subject covariance. To

address the second problem, we provide an analytic form for the transformed

functional data. We provide the technical details below.

As in Di et al., 2009, an empirical estimator of the between-subject covari-

ance is given by the L× L matrix ˆ︁KB = n−1
I
˜︁YHB˜︁YT, where HB = blockdiag(1J11T

J1
−

I J1 , . . . , 1JI 1
T
JI
− I JI ), I J is the identity matrix of size J and 1J = (1, 1, . . . , 1)T

J .

As each block matrix 1Ji1
T
Ji
− I Ji has only two different eigenvalues, Ji − 1

(with geometric multiplicity 1) and −1 (with geometric multiplicity Ji − 1),

HB is not a positive semi-definite matrix. Because most eigenvalues are equal

to −1, this may be the reason why the estimation performance was found to

be sub-optimal when trimming negative eigenvalues of HB (Xiao et al., 2016).

We next focus on the total and within-subject covariance.

For the total covariance, let J̄ = n−1 ∑i Ji be the average number of visits

per subject. The MoM estimator of the total covariance, KT(s, t), is ˆ︁KT(s, t) =

∑n
i=1 ∑Ji

j=1 wi ˜︁Yij(s)˜︁Yij(t), where wi > 0 are weights that satisfy the constraint

∑i Jiwi = 1. In Di et al., 2009, the same weight is used for each visit, which
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means wi = 1/(nJ̄), though other weights could be used. For example, by

setting wi = 1/(I Ji), equal weights are assigned to study participants instead

of visits. The matrix format of ˆ︁KT(s, t) is ˆ︁KT = ∑I
i=1 ∑Ji

j=1 wi˜︁Yij˜︁YT
ij. The key

insight is that ˆ︁KT is the sample covariance of the transformed functional data

{√nwi˜︁Yij, 1 ≤ j ≤ Ji, 1 ≤ i ≤ I}. Therefore, smoothing ˆ︁KT can be achieved

by applying FACE to the transformed functional data.

For the within-subject covariance, notice that KW(s, t) = E{˜︁Yij(s)− ˜︁Yik(s)}

{˜︁Yij(t) − ˜︁Yik(t)}T/2 if j ̸= k. Let vi ≥ 0 be weights such that ∑I
i=1 Ji(Ji −

1)vi = 1. An estimator of KW(s, t) is ˆ︁KW = ∑I
i=1 vi/2 ∑j ̸=k(˜︁Yij − ˜︁Yik)(˜︁Yij −˜︁Yik)

T. The constraint on the weights ensures that when functional data are

observed without random noise, σ2 = 0, ˆ︁KW is an unbiased estimator of

KW . If the same weight is used for each visit, then vi = n−1
I . If the same

weight is used for each participant, then vi = {(∑I
l=1 δ{Jl≥2})Ji(Ji − 1)}−1

if Ji ≥ 2 and 0 otherwise. Let Ȳi· = J−1
i (∑Ji

j=1
˜︁Yij). It can be shown thatˆ︁KW = ∑I

i=1 ∑Ji
j=1 vi Ji(˜︁Yij − Ȳi·)(˜︁Yij − Ȳi·)

T, which is the sample covariance of

the transformed data {
√

nvi Ji(˜︁Yij − Ȳi·), 1 ≤ j ≤ Ji, 1 ≤ i ≤ I}. Therefore,

smoothing of ˆ︁KW can be achieved by applying FACE to the above transformed

data.

The construction of transformed functional data for the total and within-

subject covariance require O(nL) operations. This is a critical difference from

the traditional MoM estimators, which require O(nL2) operations.
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3.3.3 Multilevel FACE

We apply FACE to the transformed functional data for the total covariance

and within-subject covariance, respectively, and obtain the smooth estimates.

The corresponding eigenfunctions are obtained as described in the FACE

approach for univarate functional data. Let ˜︁KT(s, t) = BT(s)ΘTB(t) be the

estimate of KT(s, t) and ˜︁KW(s, t) = BT(s)ΘWB(t) be the estimate of KW(s, t).

Here ΘT and ΘW are both c × c positive semi-definite matrices obtained from

FACE. The between-subject covariance KB(s, t) is estimated by ˜︁KB(s, t) =

B(s)TΘBB(t), where ΘB = ΘT − ΘW . To ensure that ˜︁KB(s, t) is positive semi-

definite, an eigendecomposition of ΘB is taken and the eigenvectors associated

with negative eigenvalues are discarded. For details, see Section S.2 of the

supplementary material.

3.3.4 Score Prediction via Mixed Model Equations

Predicting the principal component scores via best linear unbiased prediction

(BLUP) requires the inversion of matrices that are of dimension equal to the

number of observations per curve, L. Here we propose a novel solution based

on mixed model equations (MME), which further reduces the computational

complexity.

Assuming the level-1 eigenfunctions ϕk(s) and level-2 eigenfunctions ψk(s)

are known, the multilevel functional model becomes the mixed effects model

˜︁Yij(s) = ∑
k1≥1

ξik1ϕk1(s) + ∑
k2≥1

ζijk2ψk2(s) + ϵij(s), (3.1)

where ξik1 , ζijk2 are uncorrelated scores that are uncorrelated with the ϵij(s).
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After obtaining ϕk(s) and ψk(s) by multilevel FACE in Section 3.3.3, Equation

(3.1) can be approximated by

˜︁Yij(s) =
N1

∑
k1=1

ξik1ϕk1(s) +
N2

∑
k2=1

ζijk2ψk2(s) + ϵij(s),

where we have retained N1 level-1 scores and N2 level-2 scores.

Define Mi = JiL. Let ˜︁Yij = [˜︁Yij(s1), . . . , ˜︁Yij(sL)]
T, ξi = [ξi1, . . . , ξiN1 ]

T, ζij =

[ζij1, . . . , ζijN2 ]
T, ϕk1

= [ϕk1(s1), . . . , ϕk1(sL)]
T, ψk2

= [ψk2(s1), . . . , ψk2(sL)]
T,

Φ = [ϕ1, . . . , ϕN1
] ∈ RL×N1 , Ψ = [ψ1, . . . , ψN2

] ∈ RL×N2 , and ϵij = [ϵij1, . . . , ϵijL]
T.

Then ˜︁Yij = Φξi + Ψζij + ϵij. We further define Φi = 1Ji ⊗ Φ ∈ RMi×N1 , Ψi =

IJi ⊗ Ψ ∈ RMi×(Ji N2), ζi = [ζT
i1, . . . , ζT

iJi
]T ∈ RJi N2 , ˜︁Yi = [˜︁YT

i1, . . . , ˜︁YT
iJi
]T ∈ RMi ,

and ϵi = [ϵT
i1, . . . , ϵT

iJi
]T ∈ RMi . The covariance matrix is Λ1 = diag(λ(1)

1 , . . . , λ
(1)
N1
)

for ξi, Λ2 = diag(λ(2)
1 , . . . , λ

(2)
N2
) for ζij, and σ2IMi for ϵi. We then have the

matrix form of the mixed effects model

˜︁Yi = Φiξi + Ψiζi + ϵi,

E

⎛⎝ξi
ζi
ϵi

⎞⎠ =

⎛⎝ 0N1

0Ji N2

0Mi

⎞⎠ , Cov

⎛⎝ξi
ζi
ϵi

⎞⎠ =

⎛⎝Λ1 0 0
0 IJi ⊗ Λ2 0
0 0 σ2IMi

⎞⎠ .
(3.2)

It follows that the BLUP of ξi and ζi is(︄ˆ︁ξiˆ︁ζi

)︄
=

(︃
Λ1ΦT

i
(IJi ⊗ Λ2)Ψ

T
i

)︃{︂
cov(˜︁Yi)

}︂−1 ˜︁Yi, (3.3)

where cov(˜︁Yi) = ΦiΛ1ΦT
i + Ψi(IJi ⊗ Λ2)Ψ

T
i + σ2IMi ∈ RMi×Mi .

When Mi is large, implementing equation (3.3) is difficult as the inverse

of cov(˜︁Yi) requires O(M3
i ) calculations. In practice, it takes more than a

day to predict scores when I = 1000, Ji = J = 3, L = 1000 using existing
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methods. The mixed model equations (MME) (Henderson, 1973) can be used

to re-express the scores as(︄ˆ︁ξiˆ︁ζi

)︄
=

(︃
ΦT

i Φi + σ2Λ−1
1 ΦT

i Ψi
ΨT

i Φi ΨT
i Ψi + σ2IJi ⊗ Λ−1

2

)︃−1(︄
ΦT

i
˜︁Yi

ΨT
i
˜︁Yi

)︄
, (3.4)

where the dimension of the matrix that is inverted is (N1 + JiN2), which is

usually much smaller than Mi. As a result, the total computational time

using equation (3.4) is reduced to O(Mi(N1 + JiN2)
2 + (N1 + JiN2)

3), which

is linear in L since Mi = JiL. In addition, the matrix inverse can be computed

using block-wise calculations. The equivalence of BLUP and random effects

solutions in MME was shown in Henderson (1963).

3.3.5 Fast MFPCA Algorithm

We summarize the steps of the fast MFPCA method in Algorithm 2. When

compared with Algorithm 1, there are major differences in Steps 2-4 and

6. Steps 2-4 of fast MFPCA avoid computations that involve construction,

smoothing and eigendecomposition of high dimensional covariance matrices.

Step 6 of fast MFPCA uses a faster approach to the prediction of scores. The

algorithm was implemented in the function mfpca.face() and released in the

R package refund.

3.3.6 Incomplete Data

As in the physical activity data, some data might be missing. Xiao et al. (2016)

proposed an iterative approach for single-level functional data which consists
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Algorithm 2 fast MFPCA

1. Estimate mean functions µ(s) and ηj(s) and subtract them from the
observed data.
2. Apply FACE to the transformed functional data {√nwi˜︁Yij, 1 ≤ j ≤ Ji, 1 ≤
i ≤ I} for total covariance.
3. Apply FACE to the transformed functional data {

√
nvi Ji(˜︁Yij − Ȳi·), 1 ≤

j ≤ Ji, 1 ≤ i ≤ I} for within-subject covariance and obtain within-subject
eigenfunctions/eigenvalues.
4. Calculate between-subject covariance from the difference between to-
tal and within-subject covariance and extract between-subject eigenfunc-
tions/eigenvalues.
5. Estimate error variance σ2 by σ̂2 =

∫︁
S{K̂T(s, s)− K̃T(s, s)}ds.

6. Estimate scores by MME in equation (3.4).

of: (1) initializing the missing data by imputation from any smoother; (2) ap-

plying FACE to the data and impute missing data by their BLUP; (3) iterating

step 2 until reaching convergence. They reported convergence usually within

10 iterations. As we rely on FACE, which was designed to deal with missing

data, the problem is solved automatically in our approach. The MME for score

prediction in (3.4) can be easily modified to work with observed data only and

hence the details are omitted. We have found that this method works well for

incomplete data; see simulation results in Section 3.5.

3.4 Asymptotic Theory

We establish the L2 convergence rate of the proposed fast MFPCA method for

estimating the between- and within-subject covariance functions and show

that a parametric convergence rate can be achieved when functional data are

densely observed. To simplify theoretical analysis, we assume that µ(s) and

ηj(s) are known and that the study participants have the same number of
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visits, Ji = J. In this case the weights are wi = (nJ)−1 for estimating the total

covariance function and vi = {nJ(J − 1)}−1 for estimating the within-subject

covariance function. Finally, we use the same smoothing parameter λ for both˜︁KT and ˜︁KW , the smooth estimates from fast MFPCA.

We introduce some notation. The little o and big O notation are with

respect to the number of study participants I and we allow the number of

observations per curve L to increase with I. For two scalars a and b, let

a ∧ b = min(a, b) and a ∨ b = max(a, b). For a bivariate continuous function

g over S2 let ∥g∥L2 be its L2 norm. For an integer p ≥ 2, let C p(S2) be the

class of bivariate functions such that if K ∈ C p(S2), then for any 0 ≤ j ≤ p,

∂pK(s, t)/∂sj∂tp−j is continuous in S2.

Assumption 1 (a). The random functions Zi are independent across the subjects

with zero-mean function and the same covariance function KB(s, t); (b). The random

functions Wij are independent across i and j with zero-mean function and the same

covariance function KW(s, t); (c). The random errors ϵijℓ = ϵij(sℓ) are independent

across i, j and ℓ with zero-mean and the same variance σ2
ϵ < ∞; (d). The random

functions Zi, {Wi1, . . . , Wi Ji}, and the random errors {ϵij1, . . . , ϵijL} are mutually

independent across the subjects.

Assumption 2 sups∈S E[Z4
i (s)] < ∞; sups∈S E[W4

ij(s)] < ∞; E[ϵ4
ijℓ] < ∞.

Assumption 3 (a). L ≥ Iδ1 for some constant δ1 > 0; (b). c ≥ Iδ2 for some

constant δ2 > 0 and c = o(I); (c). There exists a sufficiently small constant δ3 such

that c ≤ δ3L; (d). λ = o(I−2qδ1).
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Recall that m is the order of spline functions, c is the number of spline

functions, and q is the order of smoothness penalty. Let h = c−1 and he =

h ∨ λ1/(2q), and the latter is the effective bandwidth for penalized splines

(Xiao, 2019). The proof for the theorem below is given in Section S.3 of the

supplementary material.

Theorem 1 Suppose that Assumptions 1 - 3 hold. If KB ∈ C p(S2) and KW ∈

C p(S2) with q ≤ p ∧ m, then

E
(︂
∥˜︁KB − KB∥2

L2

)︂
= O(L−2h−1

e ) + O(h2m) + o(h2p) + O(λ2h−2q
e ) + O(I−1),

E
(︂
∥˜︁KW − KW∥2

L2

)︂
= O(h2m) + o(h2p) + O(λ2h−2q

e ) + O(I−1).

Except for the term O(L−2h−1
e ), the derived rate in Theorem 1 is the same

as those in Theorem 4.1 in Xiao, 2020, which considers covariance function

estimation using penalized splines for functional data with a fixed common

design. The convergence rate for estimating the between-subject covariance

contains the term O(L−2h−1
e ), which is due to the bias in the MoM estimator

of the total covariance, which involves the extra variance, σ2, along the main

diagonal. The convergence rate for estimating the within-subject covariance

does not have the term O(L−2h−1
e ) because the empirical estimate ˆ︁KW is an

unbiased estimate of KW .

In both of the derived rates in Theorem 1, the term O(h2m) + o(h2p) is the

approximation bias of spline functions, the term O(λ2h−2q
e ) is the shrinkage

bias due to the smoothness penalty, and the term O(I−1) is the variability of

the estimate. To achieve a parametric rate of O(I−1) for ˜︁KW , a simple choice

is to let q = p and h = O(I−1/(2p)). The second condition on h means that

66



the method could achieve a parametric rate as long as the number of knots

(or spline functions) is sufficiently large. As for ˜︁KB, the parametric rate can

also be achieved if the condition L−2h−1
e = O(I−1) also holds. This means

that a sufficiently dense sampling design for each function is required. The

additional condition seems reasonable for high-dimensional functional data.

When L is small and the condition L−2h−1
e = O(I−1) becomes stringent, one

could smooth the empirical estimate ˆ︁KT without its diagonal terms or we

replace the diagonal terms by other estimates with negligible bias.

While these theoretical results are for multilevel functional data, the proofs

can be applied to other functional data and the convergence rate of the FACE

method for single-level functional data has also been derived; see Section S.3

of the supplement for more details.

3.5 Simulation Studies

We perform simulations to: (1) assess the computational improvement and

scaling behavior of fast MFPCA; and (2) evaluate the estimation accuracy

of the fast MFPCA method. The mfpca.face() function is provided in the

supplementary material and published in the refund package. For the imple-

mentation of traditional MFPCA we use the mfpca.sc() function in the refund

package. For fast MFPCA, we use the same weight for each visit (curve), the

same as traditional MFPCA. Additional simulation results for fast MFPCA

with equal weight per subject are given in Section S.4 of the supplementary

material.
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3.5.1 Simulation Settings

We assume that the functions are observed on an equally-spaced grid {s1, ..., sL}

of domain S = [0, 1] such that sl = l/L for l = 1, . . . , L. We also consider

scenarios with incomplete (missing) data, where the number of observed

points per function is Tij = 0.5× L. Denote by J the mean number of visits per

subject. For each subject i, the number of visits Ji is either balanced (Ji = J) or

unbalanced (Ji varies by subject). We use a similar simulation setting as in Di

et al. (2009). For visit j of subject i consider the following model

Yij(sl) =
4

∑
k1=1

ξik1ϕk1(sl) +
4

∑
k2=1

ζijk2ψk2(sl) + ϵij(sl),

where ξik1 ∼ N{0, λ
(1)
k1

}, ζijk2 ∼ N{0, λ
(2)
k2

}, ϵij(s) ∼ N (0, σ2). We assume

that there are N1 = 4 components at the between-subject level and N2 = 4

components at the within-subject level. Higher ranks on both levels with

higher frequency eigenfunctions were further evaluated for both methods and

the results are shown in Section S.4 of the supplementary material. The true

eigenvalues are λ
(1)
k1

= 0.5k1−1, k1 = 1, 2, 3, 4 and λ
(2)
k2

= 0.5k2−1, k2 = 1, 2, 3, 4.

The true eigenfunctions are selected as

Level 1: ϕk1(s) = {
√

2 sin(2πs),
√

2 cos(2πs),
√

2 sin(4πs),
√

2 cos(4πs)}.

Level 2: ψk2(s) = {1,
√

3(2s − 1),
√

5(6s2 − 6s + 1),
√

7(20s3 − 30s2 + 12s −

1)}.

The eigenfunctions within levels 1 and 2 are mutually orthogonal, but they are

not orthogonal between levels. We fix σ = 1, as the difference on computation

time is marginal for different noise levels. We consider the following sample
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size parameters: (1) number of subjects: I ∈ {100, 200, 1000, 5000}; (2) number

of visits per subject: J ∈ {2, 4, 20, 100}. For unbalanced design, the number

of visits Ji is drawn from Poisson(J) with a minimum of 1 visit for subject i;

and (3) dimension of the functional domain: L ∈ {100, 200, 1000, 5000, 50000}.

To reduce computational burden, we set the baseline as {I = 100, J = 2, L =

100} and increase the sample size one at a time while fixing the others. For

example, we fix J = 2, L = 100 and increase I from 100 to 5000. This gives

a total of 2 × 2 × (4 + 3 + 4) = 44 simulation scenarios. For each scenario

we conduct 100 replications on a high performance computing cluster using

1 core per simulation. The computation time of fast MFPCA (mfpca.face)

and MFPCA (mfpca.sc) is obtained under different scenarios. In addition,

we derive the estimation accuracy of both methods by calculating MISE(Y),

MISE(ϕ) = (N1L)−1||ˆ︁ϕ − ϕ||2F and MISE(ψ) = (N2L)−1||ˆ︁ψ − ψ||2F for each

simulation.

3.5.2 Simulation Results

Table 3.1: Simulation results for different I when J = 2 and L = 100. The computation
time (“Time(s)”), MISE of Y (“MISE(Y)”) and eigenfunctions (“MISE(ϕ)”, “MISE(ψ)”)
reported in the table are median values across 100 replications.

Design I Method Balanced Unbalanced
Time(s) MISE(Y) MISE(ϕ) MISE(ψ) Time(s) MISE(Y) MISE(ϕ) MISE(ψ)

Complete

100 fast MFPCA 1.81 0.9450 0.0781 0.0319 1.74 0.9450 0.1203 0.0416
MFPCA 14.82 0.9451 0.0797 0.0315 21.51 0.9571 0.1930 0.1286

200 fast MFPCA 1.70 0.9469 0.0413 0.0182 1.88 0.9465 0.0469 0.0229
MFPCA 25.42 0.9474 0.0377 0.0171 48.90 0.9530 0.0780 0.0698

1000 fast MFPCA 2.20 0.9505 0.0093 0.0075 2.07 0.9524 0.0120 0.0063
MFPCA 109.15 0.9501 0.0073 0.0042 262.76 0.9525 0.0146 0.0176

5000 fast MFPCA 4.60 0.9506 0.0034 0.0043 5.31 0.9516 0.0037 0.0046
MFPCA 540.84 0.9503 0.0019 0.0008 943.56 0.9514 0.0036 0.0033

Incomplete

100 fast MFPCA 2.16 0.9003 0.0942 0.0348 2.03 0.9010 0.1570 0.0461
MFPCA 3.58 0.8921 0.0999 0.0614 5.00 0.9089 0.2496 0.1644

200 fast MFPCA 2.34 0.9028 0.0554 0.0198 2.46 0.9056 0.0671 0.0278
MFPCA 4.80 0.8950 0.0489 0.0303 8.34 0.9045 0.0917 0.0857

1000 fast MFPCA 5.48 0.9087 0.0230 0.0081 5.83 0.9074 0.0246 0.0074
MFPCA 13.19 0.9037 0.0102 0.0064 29.46 0.9055 0.0179 0.0194

5000 fast MFPCA 19.99 0.9077 0.0147 0.0048 22.21 0.9086 0.0150 0.0051
MFPCA 58.19 0.9041 0.0022 0.0012 134.49 0.9066 0.0043 0.0037
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Table 3.2: Simulation results for different J when I = 100 and L = 100. The com-
putation time (“Time(s)”), MISE of Y (“MISE(Y)”) and eigenfunctions (“MISE(ϕ)”,
“MISE(ψ)”) reported in the table are median values across 100 replications. Computa-
tion time more than 24 hours is denoted as ∞.

Design J Method Balanced Unbalanced
Time(s) MISE(Y) MISE(ϕ) MISE(ψ) Time(s) MISE(Y) MISE(ϕ) MISE(ψ)

Complete

2 fast MFPCA 1.81 0.9450 0.0781 0.0319 1.74 0.9450 0.1203 0.0416
MFPCA 14.82 0.9451 0.0797 0.0315 21.51 0.9571 0.1930 0.1286

4 fast MFPCA 1.98 0.9532 0.0547 0.0126 1.80 0.9528 0.0634 0.0171
MFPCA 46.93 0.9537 0.0483 0.0099 75.87 0.9597 0.0800 0.0463

20 fast MFPCA 2.33 0.9614 0.0364 0.0056 2.66 0.9618 0.0314 0.0054
MFPCA 10146.82 0.9617 0.0317 0.0019 10334.10 0.9626 0.0346 0.0088

100 fast MFPCA 6.02 0.9626 0.0335 0.0042 7.15 0.9632 0.0332 0.0043
MFPCA ∞ - - - ∞ - - -

Incomplete

2 fast MFPCA 2.16 0.9003 0.0942 0.0348 2.03 0.9010 0.1570 0.0461
MFPCA 3.58 0.8921 0.0999 0.0614 5.00 0.9089 0.2496 0.1644

4 fast MFPCA 2.48 0.9094 0.0616 0.0142 2.48 0.9100 0.0784 0.0200
MFPCA 11.07 0.9147 0.0615 0.0161 17.14 0.9173 0.0842 0.0544

20 fast MFPCA 5.88 0.9158 0.0432 0.0060 6.08 0.9162 0.0393 0.0067
MFPCA 733.01 0.9254 0.0325 0.0037 903.30 0.9262 0.0399 0.0099

100 fast MFPCA 21.44 0.9159 0.0384 0.0044 23.72 0.9160 0.0375 0.0046
MFPCA ∞ - - - ∞ - - -

Table 3.3: Simulation results for different L when I = 100 and J = 2. The computation
time (“Time(s)”), MISE of Y (“MISE(Y)”) and eigenfunctions (“MISE(ϕ)”, “MISE(ψ)”)
reported in the table are median values across 100 replications. Computation time
more than 24 hours is denoted as ∞.

Design L Method Balanced Unbalanced
Time(s) MISE(Y) MISE(ϕ) MISE(ψ) Time(s) MISE(Y) MISE(ϕ) MISE(ψ)

Complete

100 fast MFPCA 1.81 0.9450 0.0781 0.0319 1.74 0.9450 0.1203 0.0416
MFPCA 14.82 0.9451 0.0797 0.0315 21.51 0.9571 0.1930 0.1286

200 fast MFPCA 1.67 0.9722 0.0804 0.0277 1.78 0.9746 0.1193 0.0395
MFPCA 119.92 0.9733 0.0785 0.0272 334.66 0.9830 0.1933 0.1398

1000 fast MFPCA 2.51 0.9953 0.0758 0.0244 3.06 0.9976 0.1145 0.0368
MFPCA 16883.52 0.9963 0.0784 0.0237 24395.62 1.0055 0.1794 0.1058

5000 fast MFPCA 7.79 0.9990 0.0756 0.0246 12.40 1.0023 0.1103 0.0369
MFPCA ∞ - - - ∞ - - -

50000 fast MFPCA 29.05 1.0000 0.0767 0.0243 68.71 1.0028 0.1081 0.0362
MFPCA ∞ - - - ∞ - - -

Incomplete

100 fast MFPCA 2.16 0.9003 0.0942 0.0348 2.03 0.9010 0.1570 0.0461
MFPCA 3.58 0.8921 0.0999 0.0614 5.00 0.9089 0.2496 0.1644

200 fast MFPCA 2.52 0.9515 0.0828 0.0291 2.41 0.9498 0.1308 0.0408
MFPCA 17.01 0.9484 0.0914 0.0368 26.18 0.9579 0.2138 0.1426

1000 fast MFPCA 3.35 0.9923 0.0811 0.0263 3.86 0.9949 0.1160 0.0363
MFPCA 1883.75 0.9903 0.0788 0.0274 2697.17 1.0023 0.1889 0.1425

5000 fast MFPCA 10.09 0.9985 0.0773 0.0247 14.56 1.0022 0.1147 0.0374
MFPCA ∞ - - - ∞ - - -

50000 fast MFPCA 60.59 1.0006 0.0761 0.0250 91.23 1.0034 0.1091 0.0368
MFPCA ∞ - - - ∞ - - -

Tables 3.1-3.3 provide the simulation results for different scenarios. For

each table, we only increase one parameter in the order by I, J, L, while fixing

the others at their baseline, as discussed in Section 3.5.1. Within each table,

we show the computation time (“Time(s)”), MISE of Y (“MISE(Y)”) and MISE

of eigenfunctions (“MISE(ϕ)”, “MISE(ψ)”) using both methods for complete

and incomplete data for balanced and unbalanced designs. For fast MFPCA
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we display the results weighted by visits. The results weighted by subjects are

in Section S.4 of the supplementary material.

When I is large, fast MFPCA achieves similar accuracy for eigenfunction

estimation with MFPCA for a balanced design and performs slightly better

when the data are unbalanced. From a computational perspective, both

methods exhibit a linear increase in computation time with I, though fast

MFPCA is still much faster than MFPCA. For example, for I = 5000 with

complete data and unbalanced design fast MFPCA takes less than 6 seconds

compared to 900 seconds for traditional MFPCA (Table ??). The computational

advantage of fast MFPCA is more pronounced when J and L increase; see

Table 3.2 and Table 3.3. For example, for complete data with an unbalanced

design, MFPCA takes at least 3 hours when J = 20 and more than a day when

J = 100. In contrast, fast MFPCA takes 2.7 seconds for J = 20 and less than

8 seconds for J = 100. For large L, MFPCA slows down substantially and

takes, for example, over 6 hours for an analysis of complete unbalanced data

when L = 1000. In contrast, fast MFPCA takes fewer than 100 seconds for

L = 50000 (MFPCA would simply not run on such large examples).

Figure 3.2 shows the estimated eigenvalues for the complete unbalanced

data when I = 1000. True eigenvalues are shown as gray dashed lines, while

results from 100 simulations are shown in red for fast MFPCA and in blue for

MFPCA. The eigenvalue estimates of both levels are close to their nominal

values, while the level-2 estimates have higher precision using both methods.

For level-1 there is a slight bias for the third and fourth eigenvalues using both

methods, while the first eigenvalue estimates appears to be more precise for
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Figure 3.2: Boxplots of estimated eigenvalues from 100 replications when the data
are complete with I = 1000, J = 2, L = 100 under unbalanced design for level-1 (first
row) and level-2 (second row). True eigenvalues are shown as gray dashed lines, fast
MFPCA are shown in red while MFPCA are shown in blue.

fast FPCA. In general, the eigenvalue estimates are accurate for large datasets

using both approaches.

Figure 3.3 shows the estimated eigenfunctions under the same simulation

setting. The top two rows display estimates from fast MFPCA in red and

the bottom two rows display estimates from MFPCA in blue. Within each

panel, the black solid curves indicate the true eigenfunctions at each level.

For level-1 eigenfunctions, both methods exhibit similar accuracy. For level-2

eigenfunctions, we observe a larger variability for MFPCA, especially on the

third and fourth eigenfunctions. This higher accuracy of fast MFPCA is also

reflected by its slightly smaller MISE(ϕ) (0.0120 vs. 0.0146) and much smaller

MISE(ψ) (0.0063 vs. 0.0176) shown in Table 3.1.

In summary, fast MFPCA achieves similar estimation accuracy with MF-

PCA under different simulation settings, while the computation is at least two
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Figure 3.3: Estimated eigenfunctions for fast MFPCA (top two rows) and MFPCA
(bottom two rows) when the data are complete with I = 1000, J = 2, L = 100 with
unbalanced design. Within each model, the top row displays level-1 estimates and
the bottom row displays level-2 estimates. Black lines: true eigenfunction; red lines:
100 fast MFPCA estimates; blue lines: 100 MFPCA estimates.

orders of magnitude faster. For a dataset with a large number of visits per sub-

ject (J ∼ 100) or very high dimensions of the functional domain (L ∼ 50000),

fast MFPCA helps reduce the total computation time from several days or

longer to just a few minutes.

3.6 Application

Objective physical activity measured by accelerometers and its association

with health outcomes is an active area of research (Smirnova et al., 2020; Cui,
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Crainiceanu, and Leroux, 2021; Cui et al., 2022). The National Health and

Nutrition Examination Survey (NHANES) is a study conducted by the United

States Centers for Disease Control and Prevention (CDC) with the aim of

assessing the health and nutritional status of the US population. It became a

continuous program conducted in two-year waves since 1999. The NHANES

study collected accelerometry data using hip-worn physical activity monitors

(ActiGraph model AM-7164) in the 2003-2004 and 2005-2006 waves. Both

waves share the same protocol, where each study participant was asked to

wear the device for 7 consecutive days. Data were released by the National

Center for Health Statistics (NCHS) as minute-level activity counts (AC),

a proprietary measure of physical activity intensity. We use the processed

accelerometry data as described in Leroux et al. (2019). To reduce the severe

skewness of the original data, for this analysis the minute-level AC were

transformed into LAC := log(1 + AC), as suggested by Varma et al. (2017)

and Varma et al. (2018). The 2003-2004 and 2005-2006 waves have a total

of 14631 study participants with accelerometry data. Days with less than

10 hours of estimated wear time or days that were deemed by NHANES to

have poor quality data were excluded. The final dataset has 12802 study

participants and 65777 participant-days, with 1440 observations per day. The

average number of available days per study participant is 5.14.

For this analysis, we are interested in decomposing the variability of the

minute-level accelerometry data at both study participant (level-1) and day

of the week (level-2) levels. While the problem is stated in simple terms,

applying the existing MFPCA method to this large dataset takes at least 5 days
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on a regular laptop (2.7GHz Dual-Core i5 Processor). In contrast, fast MFPCA

took less than 5 minutes on the same laptop.

Figure 3.4 displays the estimated overall mean function µ(s) and the mean

function for each day of the week µ(s) + ηj(s), j = 1, . . . , 7. The weekend

curves are shown as dashed lines, while the weekday curves are shown as

dotted lines. The overall mean function exhibits a clear circadian rhythm. In

addition, there are distinguishable weekend-weekday patterns, as the physical

activity intensity is higher than average on Friday and Saturday nights and

lower than average on Saturday and Sunday mornings. These results provide

visual evidence of a weekend effect in the NHANES cohort.
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Figure 3.4: Estimated overall mean function µ(s) and day-of-the-week-specific mean
function µ(s) + ηj(s) in the NHANES dataset using fast MFPCA. Overall mean curve:
black solid line; weekend days means: dashed lines; weekday mean curves: dotted
lines.

We identify 22 level-1 principal components and 31 level-2 principal com-

ponents using the pre-specified percentage of variance explained (PVE) with

a value of 0.99 at both levels. The total explained between-subject variance

is 1.02. The total explained within-subject variance is 1.78, which is nearly
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twice that of the between-subject variance. The proportion of variability ex-

plained by level 1 is 0.36, defined as ∑∞
k1=1 λ

(1)
k1

/(∑∞
k1=1 λ

(1)
k1

+ ∑∞
k2=1 λ

(2)
k2

) in Di

et al. (2009). Figure 3.5a shows the first three estimated level-1 eigenfunctions

ϕ
(1)
k1

(s) of the physical activity data, which explain 78.4% of the total variabil-

ity. The first eigenfunction is negative at night and positive during the day,

suggesting that study participants with positive scores on this component

will have less activity at night and more activity during the day. The second

eigenfunction is only negative during the morning (5am to 12pm), suggesting

that study participants with positive scores on this component will have less

activity in the morning and more activity during the rest of a day. Study

participants with positive scores on the third component have less activity

during working hours (10am to 6pm) and more activity at all other times of a

day.

At level 2 the first 3 components explain only 35.8% of the level 2 variabil-

ity. Figure 3.5b shows the first three estimated level-2 eigenfunctions ψk2(s).

The interpretation is different, as level-2 characterizes within-subject behavior.

Specifically, days of the week with positive scores on the first principal compo-

nent correspond to lower physical activity at night and sharply higher in the

morning compared to the average activity of the individual. Similarly, days of

the week with positive scores on the second principal component correspond

to lower activity during the morning and higher during the rest of the day

compared to the average activity of the individual.
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Figure 3.5: The top three estimated level-1 (first row) and level-2 (second row) eigen-
functions from the NHANES dataset using fast MFPCA. The proportion of variability
explained in each principal component within each level is shown on the title of each
panel.

3.7 Discussion

We propose fast MFPCA, which solves the major computational bottlenecks

of the traditional MFPCA (Di et al., 2009), enabling it to be used on much

larger and higher dimensional data sets. For example, the NHANES dataset

contains minute-level physical activity information of more than 10000 study

participants over multiple days. While applying MFPCA on such dataset takes

more than 5 days on a regular laptop, the proposed fast MFPCA takes less

than 5 minutes. The substantial computational improvement is due both to the

development of new methods and to their careful coding. Simulation results
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show that fast MFPCA achieves similar estimation accuracy with MFPCA,

while the computation times are at least two orders of magnitude faster.

In this paper we only considered a dense design for functional data, the

most common scenario. However, the extension of FACE (Xiao et al., 2018) to

sparse designs suggests possible extensions to multilevel sparse functional

data (Di, Crainiceanu, and Jank, 2014). Such extensions will be studied in

future work.

3.8 Supplamentary Material

The supplementary material of this project is available at https://doi.org/

10.1080/10618600.2022.2115500.
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Chapter 4

Fast Univariate Inference for
Longitudinal Functional Data

4.1 Introduction

Longitudinal high dimensional data have become ubiquitous. For example,

a Diffusion Tensor Imaging (DTI) study (Greven et al., 2010; Goldsmith et

al., 2011; Goldsmith et al., 2012; Scheipl, Staicu, and Greven, 2015) collected

fractional anisotropy (FA) at multiple locations along the corpus callosum at

multiple visits for each study participant. FA is a measure of water diffusion

direction that is thought to be associated with white matter integrity and

myelination. Figure 4.1 displays the FA measures along the corpus callosum

for two study participants (left and right panels). Each curve represents data

collected during a particular visit (color-coded according to visit number). The

visit time, covariates, and health outcomes are collected at each visit but are

not displayed; for more details see Goldsmith et al. (2012). Visual inspection of

the left panel does not indicate an obvious temporal trend across visits, while

each FA profile exhibits substantial within-visit noise. The FA profiles are less
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noisy for the second study participant (right panel), though the much lower

FA values at the second visit could indicate substantial technical or biological

variability. Given such data, the scientific goal is to quantify how FA at each

location of the corpus callosum changes between visits and how these changes

are associated with study-participant characteristics. To conceptualize the

data structure, we denote by Yij(s) the FA value for study participant i at visit

j at time tij and location s ∈ S of the corpus callosum.
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Figure 4.1: The fractional anisotropy (FA) tract profiles for the corpus callosum
(functional domain) of two study participants in the DTI study. Left panel: ID 2017.
Right Panel: ID 2085. For each study participant, each curve represents the tract
profiles at one longitudinal visit. The visit number is color coded.

Another example is the National Health and Nutrition Examination Survey

(NHANES) (Leroux et al., 2019; Smirnova et al., 2019; Cui, Crainiceanu, and

Leroux, 2020), where minute-level activity counts (AC), a proprietary measure

of physical activity (PA), were collected for up to seven consecutive days

by hip-worn accelerometers. Data can be further transformed at the minute

level to an active/inactive indicator depending on whether the observed AC

is above/below a threshold. Here we use the threshold of 100, which was
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proposed by Matthews et al. (2008) for the NHANES hip accelerometry data

and has been used extensively in the literature (Koster et al., 2012). Therefore,

the data are binary (active/inactive), functional (minute-level measurements

during the day), and multilevel (multiple days). To conceptualize the data

structure, Yij(s) denotes the binary indicator of whether a study participant i

was active on day j at minute s ∈ S = {1, . . . , 1440}. For the purpose of this

paper, we are interested in studying the association between Yij(s) and sex,

age, day number from the beginning of the study, and day of the week.

Both these examples contain functional data measured at multiple visits,

while the sample size in NHANES is over 10 times larger than the DTI study.

Such data structures generalize standard longitudinal data, as instead of ob-

serving one scalar variable at each visit, one observes a high dimensional

function. Functional data methods are sometimes used to model scalar longi-

tudinal data (Yao, Müller, and Wang, 2005), but longitudinal functional data

has a more complex structure due to the large number of observations with

complex correlations at each visit. Methods have been proposed for functional

data with complex correlation structures (Guo, 2002; Morris and Carroll, 2006;

Greven et al., 2010; Zipunnikov et al., 2014; Scheipl, Staicu, and Greven, 2015;

Brockhaus et al., 2015; Scheipl, Gertheiss, Greven, et al., 2016; Shou et al.,

2015; Zhu et al., 2019). In particular, Scheipl, Staicu, and Greven (2015) and

Scheipl, Gertheiss, Greven, et al. (2016) proposed an inferential framework

and associated software for correlated functional responses based on additive

mixed models. This is an important step forward, though the method cannot

currently handle very large data sets. For example, it takes more than 24
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hours on a regular laptop (2.7 GHz Dual-Core Intel Core i5, 8GB RAM) to fit a

functional random intercept model with I = 1000 subjects and an average of 5

visits per subject. The approach of Goldsmith, Zipunnikov, and Schrack (2015)

runs into similar scaling up problems. Indeed, they reported a total computa-

tion time of 10 days in their applications using a dataset with fewer than 600

subjects, 5 visits per subject, and 144 observations per curve. Applying either

method to our NHANES example is computationally impractical.

Thus, we conclude that this area of research is still in its initial stages

of statistical development. Indeed, there is an increased need for methods

that: (1) are scalable both in terms of number of study participants and of

the dimension of the functional data; (2) can be applied to Gaussian and

non-Gaussian data; and (3) preserve the interpretability of standard mixed

effects models. To address this need, we propose fast univariate inferential

(FUI) approaches for longitudinal functional data of any type. The approach

consists of three steps: (1) fit massively univariate pointwise mixed effects

models; (2) apply a smoother along the functional domain; and (3) obtain

joint confidence bands using analytic approaches for Gaussian data or a

bootstrap of study participants for non-Gaussian data. The first two steps

are conceptually similar with Fan and Zhang (2000) and Reiss et al. (2017)

for function-on-scalar regressions. However, to the best of our knowledge,

these approaches did not model correlated functional responses or provided

joint inference that accounts for this correlation. The methods proposed by

Park et al. (2018) are the closest to our methods, though there are important

differences. First, they estimate the fixed effects under independence across-

87



and within-visits. We use mixed effects models across visits. Second, because

Park et al. (2018) rely on fixed effects, their approach cannot be used to predict

visit-specific functional effects or missing data. Third, their approach was

developed for a narrower set of models.

The remainder of the paper is organized as follows. Section 4.2 introduces

the longitudinal functional model. Section 4.3 describes two approaches for

fixed effects inference, one analytic for Gaussian data and one based on the

bootstrap of study participants for any type of data. We further discuss in

Section 4.4 a simple and flexible simulation-based approach to obtain joint

confidence bands. Section 4.5 presents the simulation results and comparisons

with existing methods. Section 4.6 describes the applications of our model

on DTI and NHANES study. We close with a discussion in Section 4.7. All

code for model implementation, simulation and application is available on

the supplementary material.

4.2 Massively Univariate Longitudinal Functional
Model

Assume that data is of the type Yij(s) on a grid {s1, s2, ..., sL} of the compact

functional domain S . Data can be Gaussian or non-Gaussian, i = 1, 2, ..., I

is the index of the study participant, and j = 1, 2, ..., Ji is the index of the

longitudinal visit at time tij. In addition to the functional outcomes, Yij(s),

X ij = [Xij1, Xij2, ..., Xijp]
T ∈ Rp are the fixed and Zij = [Zij1, Zij2, ..., Zijq]

T ∈

Rq are the random effects variables. We posit the following marginal three-

step inferential approach:
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First step: At each location sl ∈ S , l = 1, 2, ..., L, fit a separate pointwise

generalized linear mixed model (GLMM) Yij(sl) ∼ EF{µij(sl)}, where EF

denotes the exponential family distribution, µij(sl) is the conditional mean,

and

ηij(sl) = g{µij(sl)} = XT
ij β(sl) + ZT

ijui(sl) . (4.1)

Here g(·) is a link function and ui(sl) is a q × 1 dimensional vector of random

effects that depends on the location. Denote the estimates of fixed effects as

β̃(s1), ..., β̃(sL) and of the linear predictors as η̃ij(s1), ..., η̃ij(sL) obtained from

these univariate GLMMs. We refer to this as massively univariate analysis

because a GLMM is fit at every location sl, l = 1, . . . , L, where L can be very

large (hence, the use of the word “massive”).

Second step: Smooth the estimated fixed effects β̃(s1), ..., β̃(sL) and/or linear

predictors η̃ij(s1), ..., η̃ij(sL) along the functional domain. Denote these smooth

estimators by {β̂(s), s ∈ S} and {η̂ij(s), s ∈ S}, respectively. This can use any

smoother that is or is not data adaptive, including not smoothing and taking

the average over all locations.

Third step: Obtain joint confidence bands for fixed effects parameters and/or

linear predictors using analytic approaches for Gaussian data or a bootstrap

of study participants for Gaussian and non-Gaussian data.

The key insight of our method is to decompose the complex correlation

structure into longitudinal and functional directions. The first step of the

analysis is to use the familiar univariate GLMMs, a procedure that can be

easily implemented using parallel computing. This substantially reduces the
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computational burden of existing methods. The third step allows for joint

inferences that take into account within- and between-visit correlations. This

approach is not limited to estimating β(s) and ηij(s) and can be used for any

measures of interest, including random effects, quantiles, and group means.

We discuss the fixed effects inference of our approach below.

4.3 Fixed Effects Inference

Developing a principled statistical inferential framework for fixed effects in

longitudinal functional models is difficult. Several approaches that account

for the complex within- and between-study participant correlations exist and

include different Bayesian approaches (Morris and Carroll, 2006; Morris et al.,

2006; Zhu, Brown, and Morris, 2011; Goldsmith, Zipunnikov, and Schrack,

2015; Zhang et al., 2016). Unfortunately, many of these methods require

specialized software, are slow, and do not scale up with the number of study

participants and dimension of the functional domain. Our proposed approach

is philosophically closer to the methods proposed in Crainiceanu et al. (2012)

and Park et al. (2018), which use bootstrap of study participants. For Gaussian

functional data we provide an analytic solution, while for all types of data we

propose a bootstrap approach.

4.3.1 Analytic Inference for Gaussian Functional Data

For Gaussian functional data the pointwise linear mixed model has the form

Yij(sl) = XT
ij β(sl) + ZT

ijui(sl) + ϵij(sl) . (4.2)
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For the ith study participant at sl ∈ S data are {Y i(sl), X i, Zi}, where

Y i(sl) = [Yi1(sl), ..., Yi Ji(sl)], X i = [X i1, ..., X i Ji ], and Zi = [Zi1, ..., Zi Ji ]. The

observations for the entire study population are then denoted as {Y(sl), X, Z},

where Y(sl) = [Y1(sl), ..., Y I(sl)]
T, X = [X1, ..., X I ]

T, and Z = diag(ZT
1 , ..., ZT

I ).

The matrix notation of equation (4.2) is Y(sl) = Xβ(sl) + Zu(sl) + ϵ(sl),

where u(sl) = [u1(sl)
T, ..., uI(sl)

T]T and ϵ(s) = [ϵ11(s), ϵ12(s), ..., ϵI JI (s)]
T are

mutually independent random coefficients and errors with a joint multivari-

ate Gaussian distribution. The pointwise estimator of the fixed effects is

β̃(sl) = {XTV−1(sl)X}−1XTV−1(sl)Y(sl), where V(sl) = ZH(sl)ZT + R(sl)

and H(sl) and R(sl) are covariance matrices of u(sl) and ϵ(sl), respectively.

These fixed effects estimators are correlated across sl, which needs to be

taken into account when conducting joint inference, including when build-

ing joint confidence bands or conducting multiple testing. This correlation

is modeled intrinsically by assuming Cov{u(sl1), u(sl2)} = G(sl1 , sl2) and

Cov{ϵ(sl1), ϵ(sl2)} = 0 for all sl1 ̸= sl2 . Thus, the covariance of the raw es-

timates at sl ∈ S is Var{β̃(sl)} = {XTV−1(sl)X}−1, and between sl1 and

sl2 ∈ S is

Cov{β̃(sl1), β̃(sl2)} = {XTV−1(sl1)X}−1XTV−1(sl1)W(sl1 , sl2)V
−1(sl2)X{XTV−1(sl2)X}−1 .

(4.3)

Here W(sl1 , sl2) = ZG(sl1 , sl2)ZT.

Estimates of H(sl) and R(sl) can be obtained directly from the mixed

effects model software. An additional smoothing approach, for example

using penalized splines (Ruppert, Wand, and Carroll, 2003), can be applied

to each entry of these matrices along the functional domain. Estimations of
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the G(sl1 , sl2) is not as intuitive. However, the method of moments (MoM)

procedure introduced in Greven et al. (2010) provides the blueprint for our

procedure. More precisely, for any sl1 ̸= sl2

E[{Yik(sl1)− XT
ikβ(sl1)}{Yij(sl2)− XT

ij β(sl2)}] =
q

∑
v=1

q

∑
t=1

ZijvZiktCov{uit(sl1), uiv(sl2)} ,

(4.4)

for any j, k = 1, ..., Ji. This suggests a simple approach: regressing linearly

the residual products {Yik(sl1)− XT
ikβ(sl1)}{Yij(sl2)− XT

ij β(sl2)} onto the co-

variates {ZijvZikt : j, k = 1, ..., Ji}. A bivariate smoother, for example, the fast

bivariate P-splines (Xiao, Li, and Ruppert, 2013), could be used to further

reduce the variability of the covariance estimators. This approach does not

guarantee that the resulting Ĥ(sl), R̂(sl), and Ĝ(sl1 , sl2) are positive definite.

This is handled by trimming the negative eigenvalues of these estimators at

0, as suggested in the literature (Yao et al., 2003; Hall, Müller, and Yao, 2008;

Greven et al., 2010).

While the model allows different smoothers in the second step, we provide

the closed form solution for penalized splines. For simplicity, we focus on the

rth fixed effect βr(s). Denoted by β̃r = [β̃r(s1), ..., β̃r(sL)]
T the raw estimates of

βr(s) obtained from the first step. Let Br = [br1, ..., brK] be the K-dimensional

spline basis matrix, where brk = [brk(s1), ..., brk(sL)]
T, k = 1, ..., K. K is usually

chosen to be much smaller than L. Given a smoothing parameter λr, penalty

matrix Pr, define Sr = Br(BT
r Br + λrPr)−1BT

r . The smoothed estimator of

the rth fixed effect is β̂r = Sr β̃r. The covariance matrix of β̂r is Cov(β̂r) =

SrCov(β̃r)Sr, a sandwich smoother of Cov(β̃r) obtained from the first step.
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This inferential approach is explicit when working with linear mixed ef-

fects models with Gaussian random effects and errors. While the inferential

approach described in this section involves additional notation, the computa-

tions are straightforward. This analytic inferential solution offers the potential

for substantially reducing the computational burden of performing bootstrap

inference for large-scale Gaussian functional data and performs well in our

simulation study (close to nominal coverage for 95% confidence bands). For

outcomes with general (Gaussian and non-Gaussian) distributional assump-

tions we now discuss the bootstrap of study participants as a general solution.

4.3.2 Nonparametric Bootstrap Approach

Bootstrapping functional data is a practical approach for fixed effects inference

(Cuevas, Febrero, and Fraiman, 2006; Crainiceanu et al., 2012). For complex

correlated functional data, Park et al. (2018) proposed both study participant

and residual bootstrap. Here we focus only on the study participant boot-

strap approach because the residual bootstrap is not defined for generalized

outcomes. The approach is described in Algorithm 3.

4.3.3 Extension to Random Effects Inference

The proposed inference procedure has a natural extension to random effects

and visit-specific predictions. We provide a brief introduction for this frame-

work. Given equation (4.2) and notations introduced in Section 4.3.1, the

pointwise BLUP of the random effects is ũ(sl) = H(sl)ZTV−1(sl){Y(sl) −

X β̃(sl)}. Without loss of generality assume R(sl) = σ2(sl)I. The uncertainty
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Algorithm 3 Nonparametric Bootstrap for fixed effects inference
Data: {Y(sl), l = 1, ..., L}, X, Z.
Result: Var(β̂(sl)), l = 1, ..., L.
For b = 1, ..., B do

1. Re-sample I subject indices from {1, ..., I} with replacement. Denote the vector
of re-sampled indices as M(b)

2. For the i′th element of M(b), i′ = 1, ..., I, include all observations of the cor-
responding subject in the bootstrap sample. Denote the bth bootstrap sample as
{{Y M(b)(sl), l = 1, ..., L}, X M(b) , ZM(b)}

3. Fit the model in Section 4.2 using the bth bootstrap sample. Derive the fixed
effects estimates {β̂(sl)(b), l = 1, ..., L}

4. For l = 1, ..., L, derive Var(β̂(sl)) from B bootstrap estimates {β̂(sl)(1), ..., β̂(sl)(B)}.
In practice we calculate the sample variance and use it as the estimator.

of u(sl) can be measured through the conditional variance (Morris, 1983) as

Var{u(sl)|Y(sl)} = σ2(sl){H(sl)− H(sl)ZTV−1(sl)ZH(sl)}. The uncertainty

of random effects between locations can be measured similarly using the

empirical Bayes estimator.

4.4 Joint Confidence Bands

Inference for functional data has a natural connection with the problem of

multiple testing due to the inherent correlations in the observed data along

the functional domain. The pointwise confidence bands described in Sec-

tions 4.3.1 and 4.3.2 do not provide any information about joint coverage

probabilities over the entire domain and are, in fact, valid when averaged

across the functional domain. The Bonferonni correction (Bonferroni, 1936) is

exact for independent data, but is inappropriate for functional data, which is

correlated and can have arbitrary sampling density. For example, a functional
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domain could be sampled at one hundred or one million equally spaced points.

In both situations the point estimators would barely change, whereas the joint

Bonferonni corrected confidence intervals would depend on the choice of

number of samples within the functional domain. At one extreme, if the

number of points is allowed to go to infinity, the length of the joint confidence

intervals diverges to infinity. This is unacceptable and cannot be addressed by

changing the testing criterion to, say, the Benjamini-Hochberg false discovery

rate (Benjamini and Hochberg, 1995). The reason is that both methods are

overly conservative when the test statistics are highly correlated. As functional

data can be sampled densely and correlations between observations increase

with sampling density, the probability of failing to reject the null hypothesis

using these corrections rapidly approaches one as the data are more densely

sampled. An alternative was proposed by Cox and Lee (2008) for functional

data based on the Westfall-Young randomization method (Westfall and Young,

1993).

The construction of joint confidence bands in the context of functional data

analysis has been studied using various approaches including local linear

estimators (Degras, 2011), piecewise constant splines (Ma, Yang, and Carroll,

2012), and polynomial splines (Cao, Yang, and Todem, 2012). However, most

of these methods assume independence between curves, which is not the

setting considered here. Crainiceanu et al. (2012) and Park et al. (2018) pro-

posed the bootstrap of study participants as a general inferential procedure

for functional data with arbitrarily complex functional correlation structures.

Here we follow a similar approach.
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Based on a bootstrap of study participants we obtain the following esti-

mators β̂r = [β̂r(s1), ..., β̂r(sL)]
T and Var(β̂r), where {βr(s), s ∈ S} is the rth

functional fixed effect. Let Ns be the sample size of simulated data. Our

approach requires simulations from the multivariate normal distribution

N{β̂r, Var(β̂r)}. When the dimension L of the functional domain is large,

this can be quite slow, but the problem can be addressed using a PCA decom-

position of the bootstrap samples β̂r(1), . . . , β̂r(B); for details see Algorithm 4.

Algorithm 4 Level α joint confidence bands of β̂r(s)
Data: β̂r, Var(β̂r), β̂r(1), ..., β̂r(B), Ns.
Result: Joint confidence bands of {β̂r(s), s ∈ S}.
1. Perform Functional Principal Component Analysis (FPCA) on [β̂r(1), ..., β̂r(B)]

T.
Derive the mean function µ = [µ(s1), ..., µ(sL)]

T, eigenvalues λ1, ..., λL and eigenfunc-
tions ψ1, ..., ψL, where ψk = [ψk(s1), ..., ψk(sL)]

T, k = 1, ..., L

For n = 1, ..., Ns do

2. Simulate ξnk ∼ N (0, λk) for k = 1, . . . , KT. Calculate β̂r,n = µ + ∑KT
k=1 ξnkψk

3. Calculate un = maxsl∈S{|β̂r,n − β̂r|/
√︂

diag(Var(β̂r))}

4. Obtain q1−α, the (1 − α) empirical quantile of {u1, ..., uNs}
5. The joint confidence interval at sl ∈ S is calculated as β̂r(sl)± q1−α

√︂
Var(β̂r)(l,l).

The upper and lower bounds of the joint confidence bands can be smoothed.

The number of functional principal component basis KT in Step 2 is se-

lected based on proportion of variance explained, as suggested in the FPCA

literature, and usually does not exceed 100 when using a 95% variance ex-

plained threshold. As a result, this modified algorithm reduces the dimension

of simulation from potentially large L to a more acceptable KT; see supple-

mentary material for a comparison of computing time between this method

and direct simulations from multivariate normal distribution.
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4.5 Simulations

An extensive simulation study is used to assess: (1) the performance of the

estimators and the pointwise/joint confidence bands; (2) how methods com-

pare to existing approaches. The R code for the simulation study is provided

in the supplementary material.

4.5.1 Simulation Setup

We simulate functional responses on an equally-spaced grid of S = [0, 1] with

length L. For simplicity, we fix p = 2, the number of fixed effects for each point

s on the functional domain and q = 1, the number of random effects for each

point on the functional domain. Therefore, X ij = [1, Xij1]
T and ui(s) = ui(s),

though the approach is designed for much larger p and q. For subject i at visit

j the data generating model is

ηij(s) = g{µij(s)} = β0(s) + Xij1β1(s) + ui(s), s ∈ S .

The fixed effects covariates are simulated as Xij1 ∼ N (0, 4), while the random

effects are simulated as ui(s) = ci1ψ1(s) + ci2ψ2(s). We use the scaled or-

thonormal functions ψ1(s) ∝ 1.5 − sin(2πs)− cos(2πs) and ψ2(s) ∝ sin(4πs)

to capture the individual-level fluctuations. The random coefficients are gen-

erated from ci1 ∼ N (0, 2σ2
B) and ci2 ∼ N (0, σ2

B), respectively. Here σ2
B is

determined by the relative importance of random effects SNRB, as described

below. We consider the following simulation scenarios:

1. Simulation parameters
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• Distribution of the functional responses: (a) Gaussian, (b) binary.

• Functional fixed effects β(s):

S1: β0(s) = −0.15− 0.1∗ sin(2πs)− 0.1∗ cos(2πs), β1(s) = 1
20 ϕ( s−0.6

0.0225);

S2: β0(s) = 0.53+ 0.06 sin(3πs)− 0.03 sin(6.5πs), β1(s) = 1
60 ϕ( s−0.2

0.12 )+

1
200 ϕ( s−0.35

0.12 ) − 1
250 ϕ( s−0.65

0.062 ) + 1
60 ϕ( s−1

0.072 ).

2. Sample size parameters

• Number of subjects: I ∈ {50, 100, 200, 400}.

• Mean number of visits per subject: J ∈ {5, 10, 20, 40}. For subject i

the number of visits Ji is drawn from Poisson(J) with a minimum

of 1 visit.

• Dimension of the functional domain: L ∈ {50, 100, 200, 400}.

3. Signal-noise parameters

• Relative importance of random effects: SNRB ∈ {0.5, 1}. Here

SNRB is the standard deviation of the fixed effects functions divided

by the standard deviation of the random effects functions; see

Scheipl, Staicu, and Greven (2015) for detailed descriptions of this

parameter.

• Signal-to-noise ratio: SNRϵ ∈ {0.5, 1} (Gaussian response only).

Here SNRϵ is the standard deviation of the linear predictors divided

by the standard deviation of the noise σϵ.

In terms of fixed effects, the S1 functions are similar to those used by

Goldsmith, Zipunnikov, and Schrack (2015), are smooth and easy-to-estimate.
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The S2 functions have more complex shapes and are designed to approximate

the estimated effects in our DTI application. To be specific, β0(s) mimics a

typical fractional anisotropy (FA) trajectory on the corpus callosum in DTI

while β1(s) represents a non-monotonic effect of scan date on the FA.

For each scenario we conducted 200 simulations. Considering all combi-

nations of parameters would have been impossible even for our extensive

computing resources. Instead, for each combination of simulation parameters

(denoted by “Gaussian S1”, “Gaussian S2”, “Binary S1”, “Binary S2” in the

simulation results), we: (1) fix the sample size parameters at their baseline

(I = 50, J = 5, L = 50), then change the signal-noise parameters; and (2) fix

the signal-noise parameters at their baseline (SNRB = 0.5, SNRϵ = 1), then

change the sample size parameter one at a time while fixing the other two

sample size parameters at baseline. For example, we fix J = 5, L = 50 to

evaluate model performance for a different number of study participants, I.

4.5.2 Comparisons to Existing Methods

Many methods have been developed to model correlated functional responses,

including Functional Additive Mixed Models (FAMM) (Scheipl, Staicu, and

Greven, 2015; Scheipl, Gertheiss, Greven, et al., 2016), Generalized Multilevel

Function-on-Scalar Regression and Principal Component Analysis (GenMF-

PCA) (Goldsmith, Zipunnikov, and Schrack, 2015), Functional Linear Array

Model (FLAM) (Brockhaus et al., 2015), Wavelet-based Functional Mixed

Models (WFMM) (Morris and Carroll, 2006), FMEM (Yuan et al., 2014; Zhu
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et al., 2019). As described in Scheipl, Staicu, and Greven (2015), FAMM out-

performed Bayesian WFMM for smooth curves. For FLAM, Brockhaus et al.

(2015) reported a similar estimation accuracy with FAMM in their simulations.

Although inference for FLAM could potentially be conducted via subject-

level bootstrap, this implementation was not available in the FDboost package

(Brockhaus, Rügamer, and Greven, 2017). For FMEM we could not identify

general purpose software. Therefore, we compare FAMM and GenMFPCA,

which have well-documented and easy-to-use implementations for inference.

Our method (FUI) is implemented in the lfosr3s() function in the sup-

plementary material, which implements univariate GLMMs and then applies

a penalized cubic spline smoother. Results are highly robust to the choice

of smoother. For FAMM we use the pffr() function from refund package

(Goldsmith et al., 2020) in R. We used 15 and 20 cubic B-splines bases with

first order difference penalty for the population average and global functional

intercept respectively; see bs.yindex and bs.int arguments in the pffr()

function. We have increased the number of bases from the default to increase

the performance of FAMM.

Because Goldsmith, Zipunnikov, and Schrack (2015) reported consider-

ably larger computing time than FAMM, comparisons with GenMFPCA are

restricted to smaller sample sizes. In addition, GenMFPCA software is only

applicable to binary response. We have attempted to manually implement

GenMFPCA for Gaussian responses, but, probably due to our sub-optimal

implementation, our implementation was quite slow. To ensure a fair com-

parison of computing time, we focus on comparing with GenMFPCA only for
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binary response. The results are shown in the supplementary material.

4.5.3 Model Evaluation Criteria

We compare the performance of each method (FUI, FAMM, GenMFPCA) with

respect to: (1) accuracy in estimating fixed effects; (2) inference on fixed effects;

and (3) computational efficiency.

Accuracy of fixed effects estimation was assessed using the integrated

squared error (ISE) of fixed effects, defined as ISEk =
∫︁ 1

0 (β̂k(s)− βk(s))2ds, k =

0, 1. The mean integrated squared error (MISE) is calculated by averaging

ISE across simulated datasets. We show ISE of β1(s), as similar results were

obtained for β0(s).

Inferential performance was assessed by calculating the empirical coverage

probability of 95% pointwise confidence bands at each location, then taking

the average along the functional domain. For FUI, we also report the empirical

coverage probability of 95% joint confidence bands proposed in Section 4.4.

For FUI we use analytic inference (mean ± 2sd) for Gaussian responses and

bootstrap inference for other families of distributions. In the nonparametric

bootstrap, we have used the formula mean ± 2.2sd instead of mean ± 2sd.

This is a simple solution that provides remarkably good results and seems

to account for the extra within-subject variability that may be missed by

conducting a bootstrap of study participants.

For each scenario, we do 200 simulations on the Joint High Performance

Computing Exchange (JHPCE) Cluster with 1 core per simulation. The com-

puting time of each method is obtained under different scenarios.
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4.5.4 Simulation Results: Signal-to-noise parameters

The simulation results for different signal-noise parameters are shown in

Figure 4.2 under the scenario with the smallest number of subjects, mean

number of visits per subject, and dimension of the observed functional re-

sponses (I = 50, J = 5, L = 50). We only display results for the Gaussian

response, as similar results were obtained for binary responses. Left two pan-

els: fixed effect is S1. Right two panels: fixed effect is S2. The MISE decreases

as signal increases, either by increasing SNRB or SNRϵ. In addition, these two

parameters exhibit similar scaling behavior using both estimation methods.

Specifically, increasing SNRB (or SNRϵ) from 0.5 to 1 decreases MISE by about

60% in S1 and about 50% in S2 using either FUI or FAMM. For this small

sample size, the coverage is close to the nominal level and the computing time

for both methods is almost identical (not displayed).
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Figure 4.2: Estimation accuracy for FUI (red) and FAMM (blue) under different
relative importance of random effects (SNRB, x axis) and signal-to-noise ratios (SNRϵ,
labels in the gray-shaded area of each panel). Functional response is Gaussian;
parameters: I = 50, J = 5, L = 50. Left two panels: S1. Right two panels: S2.
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4.5.5 Simulation Results: Sample Size Parameters

The simulation results for different sample size parameters are shown in

Figure 4.3. As results tend to be quite consistent, we display the results for

Gaussian outcomes and fixed effects S1 (denoted by “Gaussian S1” in the

title of each panel). Results for other combinations are in the supplementary

material. The baseline setting is I = 50, J = 5, L = 50, SNRB = 0.5, SNRϵ = 1.

All other parameters are fixed at their baseline values when one sample size

parameter is changed. Left column: number of subjects (I). Middle col-

umn: mean number of visits per subject (J). Right column: dimension of the

functional domain (L). The ISE and computing time for 200 simulations are

displayed in the top and bottom row, respectively. The inference results are

shown in Table 4.1. For FUI, we report the empirical coverage probability of

both joint (denoted as “Coverage (Joint)”) and pointwise (denoted as “Cover-

age (Pointwise)”) 95% confidence bands. For FAMM, we report the coverage

of the pointwise confidence bands (denoted as “Coverage”).

As the number of subjects increases, the MISE for both FUI and FAMM

decreases. The estimation accuracy of the two methods is similar, and the

coverage of the confidence bands, both joint and pointwise for FUI and point-

wise for FAMM, reach their nominal level. However, FAMM computing time

increases substantially when the number of subjects increases (see bottom left

panel). Indeed, the median computing time exhibits a second-order polyno-

mial shape in number of subjects, with median computing time exceeding

10 hours on the cluster when I = 400. In addition, the memory usage for
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Figure 4.3: Estimation accuracy (top row) and computing time (bottom row) for FUI
(red) and FAMM (blue) from 200 simulations. Response is Gaussian and the true
fixed effects functions are S1. The baseline setting is I = 50, J = 5, L = 50, SNRB =
0.5, SNRϵ = 1. All other parameters are fixed at their baseline values when one
sample size parameter is changed. Left column: number of subjects (I). Middle
column: mean number of visits per subject (J). Right column: dimension of the
functional domain (L).

FAMM increases substantially despite the use of the efficient mgcv::bam imple-

mentation. For example, we were not able to perform simulations for FAMM

when I = 1000, as both memory (more than 40 GB RAM) and computing time

(unknown) exceeded our extensive resources. In contrast, FUI required only

40 seconds for I = 500 study participants and there are no problems with

fitting even for I = 10000.

As the mean number of visits per subject (second column of panels) and

dimension of the functional domain (third column of panels) increase, both

methods display similar estimation accuracy. The confidence bands of both

methods, including joint and pointwise confidence bands for FUI and point-

wise confidence bands for FAMM, also have good coverage close to the nomi-

nal level (middle and bottom blocks of Table 4.1). For I = 50, L = 50 FAMM
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Table 4.1: Empirical coverage probability of 95% joint and pointwise confidence bands
using FUI and 95% pointwise confidence bands using FAMM from 200 simulations.
Response is Gaussian and the true fixed effects functions are S1. The pointwise
confidence band is constructed as mean ± 2sd and the joint is mean± q0.975 × sd. The
baseline setting is I = 50, J = 5, L = 50, SNRB = 0.5, SNRϵ = 1. All other parameters
are fixed at their baseline values when one sample size parameter is changed.

Method Type Number of subjects (I)
50 100 200 400

FUI Coverage (Joint) 0.93 0.96 0.94 0.95
Coverage (Pointwise) 0.94 0.95 0.94 0.95

FAMM Coverage 0.96 0.96 0.96 0.94

Method Type Mean number of visits per subject (J)
5 10 20 40

FUI Coverage (Joint) 0.93 0.95 0.97 0.96
Coverage (Pointwise) 0.94 0.95 0.95 0.95

FAMM Coverage 0.96 0.96 0.96 0.96

Method Type Dimension of the functional domain (L)
50 100 200 400

FUI Coverage (Joint) 0.93 0.94 0.94 0.94
Coverage (Pointwise) 0.94 0.94 0.95 0.95

FAMM Coverage 0.96 0.96 0.96 0.96

requires similar computation time (3 to 7 minutes) for 5 to 40 visits per study

participant, while FUI takes on average less than 1 minute in all scenarios.

For I = 50, J = 5 computing time of FUI increases with the dimension of

the functional domain (bottom right panel) while FAMM remains unaffected.

This increase is expected as we run a GLMM at every location and the time

for these GLMMs simply add up. However, our method is easy to parallelize,

which would reduce the fitting time to the the time it would take to fit a

single GLMM. To the best of our knowledge, FAMM does not currently have

a parallel implementation.

The computation time advantages of FUI should not be surprising given

the way mgcv is used to estimate functional models. Specifically, random

effects are incorporated by fully constructing the random effects design matrix
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and applying ridge penalties. Therefore, for a model with a subject-specific

functional random intercept, u0i(s), the design matrix adds kb columns, where

kb is the number of spline bases used to represent the functional random

intercept. This is not a problem when I is in the range of 50 to 100, but it

becomes problematic when I > 200. Take our physical activity data applica-

tion for example where L = 1440, J = 7 and I = 1680 and consider a simple

functional model β0(s) + ui0(s). Assume that the population mean function

β0(s) uses 20 B-spline basis functions (the default for FAMM). The design

matrix without random effects is 1440 × 7 × 1680 = 16, 934, 400 rows and

20 columns. Assume that the model ui0(s) uses 15 B-spline basis functions

(kb = 15). Then the full design matrix is as large as 16, 934, 400 × 25, 220, since

20 + (15 × 1680) = 25, 220, amounting to over 400 billion elements. This

explains why FAMM runs into substantial computational challenges when the

number of study participants increases. The mgcv package does have method

for handling large datasets through the mgcv::bam function which avoids con-

structing and performing computations on the full design matrix. However,

even with these added efficiencies FAMM runs into substantial computational

challenges. This could be addressed in the future, but our current solution

provides a practical, “read-and-use”, stable alternative for a moderate to large

number of study participants.
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4.5.6 Simulation Summary

Our method achieves similar accuracy with the state-of-the-art FAMM method

for fixed effects under different simulation settings, including different signal-

to-noise parameters and sample size parameters. FUI is much faster than

FAMM when the number of subjects is large. To the best of our knowledge,

FUI is the first inferential method that is demonstrated to work with over

1500 study participants. The reason for implementing such approaches is

practical, as many datasets, including our NHANES application, contain such

sample sizes. Both joint and pointwise confidence bands of FUI exhibit good

coverage to the nominal level. For both FUI and FAMM, estimation accuracy is

affected by the change of signal-noise parameters and sample size parameters.

These results for FAMM are consistent with the simulation results reported in

Scheipl, Staicu, and Greven (2015).

4.6 Applications

In this section, we apply our method to the motivating examples introduced

in Section 4.1.

4.6.1 DTI Study

Multiple sclerosis (MS) is an autoimmune mediated disease that affects the

central nervous system (CNS) and can lead to substantial motor and cog-

nitive disability. While the exact cause of MS remains unknown, modern

neuroimaging has played a crucial role in the diagnosis and management of
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MS. A promising imaging technique is Diffusion Tensor Imaging based on

Magnetic Resonance Imaging (DTI-MRI or, shorter, DTI). DTI provides mea-

sures of water diffusion in the brain, which are thought to be associated with

white matter integrity. Fractional anisotropy (FA) is a measure of diffusion

anisotropy derived from DTI. A zero value of FA corresponds to perfectly

isotropic diffusion (water diffuses unrestricted in all directions), while a value

of one of FA corresponds to perfectly anisotropic diffusion (water diffuses

only in one direction). Values of FA fall somewhere within the (0, 1) range

with higher values corresponding to more anisotropic (more organized) water

diffusion. FA can be calculated at every location in the brain.

Here we focus on the FA calculated along the corpus callosum, a nerve tract

connecting the left and right cerebral hemispheres; see Goldsmith et al. (2011)

and Greven et al. (2010) for in-depth descriptions of the data. For our purposes,

the data set consists of 142 study participants (42 healthy individuals and 100

MS patients). For healthy individuals there is only one visit, whereas for MS

patients there are multiple visits with an average of 3.4 and a maximum of

8 visits per MS patient. There were a total of 382 visits across MS patients

and healthy individuals. Corpus callosum is a three-dimensional C-shaped

nerve fiber bundle that connects the left and right brain hemispheres. For

the purpose of this application, several landmarks were manually identified

on the brain image and FA was calculated as an average FA at 93 locations

along the corpus callosum. Thus, the data consist of a 382 × 93 dimensional

matrix, where each row corresponds to a brain image visit and each column

corresponds to a particular location in the corpus callosum, resulting in a total
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of 35526 observations. The study participant ID, age, sex and date of scan

information are also available for each study participant at each visit.

For illustration purposes, we are interested in quantifying the association

between age, sex and date of scan with FA measurements along the corpus

callosum. Using the notation introduced in Section 4.2, the longitudinal

functional responses are denoted by Yij(s), and are the observed FA values

along the equally-spaced grid of s ∈ S = {1, . . . 93}. For the ith individual

at the jth visit, the fixed effects X ij = [1, Xij1, Xij2, Xij3, Xij4]
T where Xij1 is a

binary indicator of case (1 for MS patients and 0 for healthy individuals), Xij2

is the date of scan (converted into year unit and treated as numeric), Xij3 is a

binary indicator of sex (there were no self-identified non-binary participants

in this study) and Xij4 is the age at baseline scan (in years). For each location

we fit a random intercept and slope model

Yij(s) = β0(s)+Xij1β1(s)+Xij2β2(s)+Xij3β3(s)+Xij4β4(s)+ui0(s)+ui1(s)Xij2 + ϵij(s) ,

where (ui0(s), ui1(s)) have a joint zero-mean bivariate Normal distribution

independent of ϵij(s), which are iid N{0, σ2(s)}. This standard linear mixed

effects model is fit 93 times, once for each location s. After pointwise fit-

ting, a penalized spline smoother is used to smooth each βl(·), l = 0, 1, 2, 3, 4

coefficient separately. All five smoothers use a cubic basis with 15 equally

spaced knots and REML estimation of the smoothing parameter. The point-

wise and joint confidence intervals are obtained as described in Section 4.3

and Section 4.4.

Figure 4.4 displays the point estimators of the fixed effects parameters
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Figure 4.4: Fixed effects estimates (dashed blue line), 95% pointwise confidence
intervals (dark gray shaded area), and 95% joint confidence intervals (light gray
shaded area) in the DTI study. Panels from left to right: intercept, case, date of scan,
sex, age at baseline.

(dashed blue lines) for the intercept, case, scan date, sex, and age (five panels

from left to right), respectively. The dark gray regions correspond to the 95%

pointwise confidence bands, while the light gray regions correspond to the 95%

joint confidence bands. The intercept estimator is consistent with the geometry

of the corpus callosum and previously published literature. Compared with

healthy individuals, MS patients of the same sex and age at the same date of

scan have significantly lower FA at most locations along the corpus callosum.

This result may indicate lower anisotropy corresponds among MS patients,

which may be consistent with brain micro-structure damage. The middle

panel shows a highly significant increase in the FA as a function of scan date at

most locations of the corpus callosum. To the best of our knowledge, there is

no biological plausible reason for such an increase in anisotropy. Therefore,

the result may correspond to the change in technology and software, which

led to a large, deterministic, increase in measured FA. The effects of sex and

age are not statistically significant at any point along the corpus callosum.

Figure 4.5 displays the data (left panels), together with the pointwise esti-

mators (middle panels) and smoothed estimators along the functional domain

(right panels). The first and second rows correspond to study participants ID
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2017 and 2085, respectively. For study participant ID 2017, the point estima-

tors are consistent with substantial reduction in the visit-to-visit variability.

Unsurprisingly, after smoothing (right-top panel) visit-specific profiles are

slightly smoother along the functional domain, but with a similar reduced

visit-to-visit variability. Comparing the middle and right top panels indicates

that the pointwise linear mixed effects models did the “heavy lifting”, while

the functional smoothing led to mostly cosmetic changes. This need not be

the case in general when the noise and correlation structures could be quite

different. Results are similar for study participant ID 2085. These results

suggest that: (1) there is a statistically significant, but small fixed effect for the

date of the visit; and (2) much of the observed variability is due to visit-to-visit

fluctuations in FA trajectories (measurement error); and (3) the effect of scan

date is largely contained in the fixed effects. The results about the decompo-

sition of the observed residual variability after accounting for fixed effects

are consistent with the literature. Indeed, Greven et al. (2010) showed that

only 2 to 3% of the observed variability can be attributed to the longitudinal

functional slope.

4.6.2 NHANES Study

The National Health and Nutrition Examination Survey (NHANES) is a large

cohort study conducted by the US Centers for Disease Control (CDC) in two-

year waves to assess the health and nutritional status of the US population.

The objectively measured physical activity (PA) data were collected using

hip-worn accelerometers on study participants in the 2003-2006 waves. The
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Figure 4.5: Fractional anisotropy (FA) tract profiles and estimated predictors for two
study participants (first row: ID 2017, second row: ID 2085). First column: FA tract
profiles for the corpus callosum over multiple visits. Second column: pointwise
estimated predictor η̃ij. Third column: smoothed estimated predictor η̂ij of the
pointwise predictors.

accelerometry data are publicly available as minute-level activity counts (AC),

a proprietary measure of PA, and can be accessed in an analysis-ready format

through the R rnhanesdata package (Leroux et al., 2019). Specifically, the

accelerometry data were collected on 14631 individuals in the NHANES 2003-

2004 and 2005-2006 waves. In this study, we focus on individuals with age

between 18 and 30 at the time of accelerometer wear. In addition, we exclude

individuals who had less than 3 days of data with at least 10 hours of estimated

wear time or were labeled as poor data quality by NHANES. The number of

available days vary between individuals with a maximum of 7. The final data

include 1680 individuals with 8765 days, each with 1440 observations per day

for a total of 12621600 minute-level observations.
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We would like to investigate whether being non-sedentary is associated

with gender, age, and day of the week (e.g., Monday, Tuesday). For the jth

day of the ith study participant, the longitudinal functional response Yij(s) is

now a binary indicator, which equals to 1 if the AC at minute s ∈ {1, ..., 1440}

exceeds 100 and 0 if not. The fixed effect X ij = [1, Xij1, Xij2, Xij3, XT
ij4]

T where

Xij1 = j is the day number, Xij2 is a binary indicator of sex (female= 1), Xij3

is the age, and X ij4 is a 6 × 1 binary vector indicating the day of the week of

day j with order {Mon, Tue, . . . , Sat}. For example, for study participant i if

day 3 is Tuesday, then the second element of X i34 is 1 while all others are 0; if

day 3 is Sunday, all elements in X i34 are 0. Denote f (s) = [ f1(s), ..., f6(s)]T. At

every minute s of the day we fit a random intercept and slope model

logit{Pr(Yij(s) = 1|X ij, ui)} = β0(s) + Xij1β1(s) + Xij2β2(s)+

Xij3β3(s) + XT
ij4 f (s) + ui0(s) + ui1(s) · j ,

where [ui0(s), ui1(s)]T ∼ N{0, Σu(s)}. This GLMM is fit 1440 times at every

location s. The same penalized spline smoother using cubic basis with 15

equally spaced knots and REML estimated smoothing parameter is applied to

smooth estimated coefficients from pointwise fits separately.

Figure 4.6 displays the estimated coefficients together with the 95% point-

wise (dark gray shaded area) and joint (light gray shaded area) confidence

bands based on 100 bootstrap replicates. The shape of the functional intercept

is consistent with the published literature and indicates less activity during the

night, a sharp increase in the morning, sustained activity during the day and

a reduction of activity in late evening. The effect of sex in this age group (18 to
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30) is statistically significant throughout most of the day with the exception of

the late afternoon/early evening period (≈ 4-10PM). The sex effect is strongest

during the late evening/early morning hours, when, on average, females are

less active. This result could correspond to more restful sleep, more sleep,

or higher compliance to study protocol for women. The effect of age is also

highly significant during the night and early to late morning indicating that

older study participants in this age group (18 to 30) tend to have less activity

during the night and more activity in the morning and early afternoon. These

findings are consistent with those reported by Varma et al. (2017).

Figure 4.6: Estimated coefficients from the NHANES data application. Smoothed
coefficient estimates are denoted using blue dashed lines. Pointwise and joint 95%
confidence intervals are shown as the dark and light gray shaded area, respectively.

The fixed effect of day number (β̂1(s)) indicates that individuals are slightly

more likely to be active during the nighttime hours and less likely to be active

during normal waking hours as a function of day, though the nighttime effect

is only pointwise significant during the period roughly corresponding to 4AM-

6AM, but not significant when considering the joint confidence bands. This

suggests that there may be a small “habituation effect”, particularly during the
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daytime. Habituation effects was proposed as a potential psychological effect

of increasing PA at the beginning of wearing a device merely by its presence.

Compared to Sundays (the reference category), weekdays correspond to lower

levels of activity during the pre-dawn hours (12AM-4AM), higher levels activ-

ity in the morning (6AM-11AM), and about the same levels of activity during

the afternoon and evening hours. Fridays and Saturdays correspond to more

activity in the evening than Sundays. Saturdays tend to have lower activity in

the morning compared to weekdays, but more activity than Sundays. These

results are consistent with previous findings that individuals tend to be less

active during the night and more active during the day on weekdays. These

differences are likely due to social behaviors on the weekends and obligations

related to school and/or work during the weekdays.

Computationally, the initial model was fit in 672 minutes, with bootstrap-

ping requiring ∼ 67200 additional minutes (1120 hours); results are reported

on a standard laptop. However, because of the parallel nature of our method,

each location-specific fit can be estimated separately and combined at the

end. This would reduce the computation time by 3 orders of magnitude, as

most computational time is taken by fitting 1440 univariate GLMMs. A fully

parallel implementation the entire procedure would take ∼ 30 seconds for

one model fit and ∼ 1 hour for the inferential procedure. Though this may

seem like a long time, we are not aware of any other methods that could fit

such a model for this large longitudinal functional data set.
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4.7 Discussion

We have introduced a fast univariate inferential approach for longitudinal

functional models, a computationally efficient method for quantifying the

association between covariates and a broad family of longitudinal functional

outcomes. The model is estimated using a three-step procedure: (1) fit a series

of separate standard longitudinal mixed models; (2) smooth estimators along

the functional domain; and (3) construct pointwise and joint confidence bands

using analytic approaches for Gaussian data or a nonparametric bootstrap

of study participants for any type of data. The proposed method is highly

computationally efficient because the first step can be parallelized to allow

fitting large high-dimensional datasets. The second step is actually optional

and one can either smooth or not smooth the resulting coefficients. Building

joint confidence bands is a crucial component for conducting joint inference

and performing testing multiplicity adjustment. Another major advantage of

the proposed approach is its conceptual simplicity and availability in the R

software. Most importantly, methods are “read-and-use”, meaning that data

scientists with a working knowledge of GLMMs can easily implement and

apply our procedures.

The most important methodological contribution of this paper is to provide

practical methods for building pointwise and joint confidence bands for very

large longitudinal functional datasets. Simulation results suggest that our

method achieves similar estimation accuracy and nominal coverage compared

with existing methods, while the computation is much faster when the number

of subjects is large (> 100).
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Our work is not without limitations. First, the smoothing parameter se-

lection assumes that the residuals of the raw estimated fixed effects around

the true coefficient along the functional domain are independent. Second,

changing the quantile of the confidence bands from 2 to 2.2 (lengthening the

confidence bands by 10%) for bootstrap inference works well in our simulation

study, but a more rigorous procedure and associated simulations may be nec-

essary. Third, our method is only applicable to concurrent functional models,

and can only take into account functional covariates that are measured on the

same grid as the functional responses. Fourth, we focus on the fixed effects

inference in this paper. While the inference for visit-specific predictions and

other metrics falls into a similar framework, as introduced in Section 4.3.3, the

extension is nontrivial and exceeds the scope of the current paper.

4.8 Supplementary Material

The supplementary material of this project is available at https://doi.org/

10.1080/10618600.2021.1950006.
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