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Abstract

Cloud data centers are a critical infrastructure for modern Internet services such as

web search, social networking and e-commerce. However, the gradual slow-down of

Moore’s law has put a burden on the growth of data centers’ performance and energy

efficiency. In addition, the increasing of millisecond-scale and microsecond-scale tasks

also bring higher requirements to the throughput and latency for the cloud applications.

Today’s server-based solutions are hard to meet the performance requirements in many

scenarios like resource management, scheduling, high-speed traffic monitoring and

testing.

In this dissertation, we study these problems from a network perspective. We

investigate a new architecture that leverages the programmability of new-generation

network switches to improve the performance and reliability of clouds. As pro-

grammable switches only provide very limited memory and functionalities, we exploit

compact data structures and deeply co-design software and hardware to best utilize

the resource. More specifically, this dissertation presents four systems:

(i) NetLock: A new centralized lock management architecture that co-designs

programmable switches and servers to simultaneously achieve high performance

and rich policy support. It provides orders-of-magnitude higher throughput than

existing systems with microsecond-level latency, and supports many commonly-

used policies such as performance isolation.

(ii) HCSFQ: A scalable and practical solution to implement hierarchical fair queueing
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on commodity hardware at line rate. Instead of relying on a hierarchy of queues

with complex queue management, HCSFQ does not keep per-flow states and

uses only one queue to achieve hierarchical fair queueing.

(iii) AIFO: A new approach for programmable packet scheduling that only uses a

single FIFO queue. AIFO utilizes an admission control mechanism to approxi-

mate PIFO which is theoretically ideal but hard to implement with commodity

devices.

(iv) Lumina: A tool that enables fine-grained analysis of hardware network stack.

By exploiting network programmability to emulate various network scenarios,

Lumina is able to help users understand the micro-behaviors of hardware network

stacks.
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Chapter 1

Introduction

Cloud data centers are a critical infrastructure for modern society as they power

large portions of Internet services like search, e-commerce and social networking. The

performance and energy efficiency are important for large data centers. While in recent

years, the slow-down of Moore’s law brings challenges: the processors’ frequency and

power efficiency are not increasing as fast as before. It puts a burden on the growth of

data centers’ performance and energy effciency. Besides, the rise of millisecond-scale

and even microsecond-scale tasks bring unprecedented requirements on the throughput

and latency for the cloud applications. Today’s server-based solutions cannot meet the

performance requirements in many scenarios like resource management, scheduling,

high-speed traffic monitoring and testing.

To tackle the challenges, various of domain-specific accelerators (DSAs) such as

GPU, TPU, smartNIC, programmable switches etc., are widely adopted by data

centers. Domain-specific accelerators have shown significant improvement over general-

purpose processors in terms of performance and energy efficiency. However, the

performance improvement comes with a price: domain-specific accelerators normally

focus on specific functionalities and lack generality compared with general-purpose

processors. To fully utilize the performance gain from DSAs, the co-design between

general CPUs and DSAs, software and hardware is essential for data centers.

1



In this dissertation, we investigate the problem from a network perspective. Specif-

ically, we focus on DSAs for networking—programmable networking ASICs, and study

how can programmable networking empower data centers.

1.1 Domain-Specific Accelerator for Networking

Domain-specific accelerators enable developers to program domain-specific tasks

flexibly and efficiently. They are suitable for performing a narrow range of intensive

computation tasks, such as GPUs for graphics processing tasks and TPUs for machine

learning tasks. DSAs have demonstrated the ability to balance flexibility (better

than fixed-function ASICs) and performance (better than general-purpose processors)

for computing systems. Languages and programming APIs have been designed for

popular DSAs as they get widely used in the industry.

In recent years, the network community also proposed domain-specific accelerators

for networking. Among them, programmable switches have drawn great attention

from both research community and industry. One of the most popular architectures

for programmable switches is called PISA (Protocol Independent Switch Architecture).

PISA-based programmable switch normally has a control plane CPU and a data

plane programmable ASIC connected by PCIe. There are two major components

in the switch data plane—programmable parser and programmable match-action

pipeline. The parser can parse customized key-value fields in the packet. The match-

action pipeline has multiple stages and stateful ALUs that can read and update

key-value fields at line rate. PISA-based programmable switches have been available

commercially and can be easily programmed with the specialized language named

P4 [1]. With the support of PISA and P4, network owners can easily write self-defined

network functions based on their own needs. The network functions can be flexibly

compiled and deployed to the switches, which greatly save the time cost when we need
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to add/change some features on the switch, compared with the traditional fashion 1.

1.2 Opportunities and Challenges

Cloud data center is typically owned by a single administrative entity (cloud provider

like Amazon, Microsoft, Google) that controls both software and hardware. It’s

relatively easy for a cloud provider to adopt new system architectures. For example,

follwing the notion of software-defined networking (SDN) [2], Google built their private

software defined WAN called B4 ten years ago, which largely improves the efficiency

and flexibility of traffic engineering. Similarly, other companies like Microsoft and Meta

(Facebook) have also proposed their SDN solutions. While with SDN, network owners

can control the network by programming the control plane module, programmable

networking takes one step further: network owners can have the control of packet

processing in the data plane. Programmable network has the potential to enable new

features and provide extraordinary performance for cloud data centers in various of

aspects. In this dissertation, we explore new architectures with the power of new-

generation programmable switches. We prove that the new architectures can provide

advanced features and exceptional performance improvement for cloud data centers,

compared with conventional architectures.

While the new architecture directly benefits from switch hardware for high per-

formance, integrating programmable networking devices into the current data center

architecture is nontrivial. There are three main challenges:

• Limited on-chip memory and lack of memory management mechanism,

memory access pattern. In recent years, the computation tasks are becoming

more and more memory hungry. Unlike modern commodity servers that can
1Traditionally, when the network owners want a new feature, they need to inform the device

vendors. The vendors need to let their software team write the software for the new feature. After
that, the hardware team will start to design the new ASIC. In order to have a stable hardware with
the feature, the whole process normally takes two or three years.

3



have hundreds of GBs to several TBs of memory, network switches normally

only have 10–100MBs of on-chip memory due to the consideration of cost and

performance. Besides, switch memory is usually organized in a manner suitable

for packet processing: the memory is normally splitted among multiple stages in

the processing pipeline as the packets are processed stage by stage. A memory

region (register) can only be accessed by its own stage and a register array can only

be accessed once when a packet is processed in the pipeline. As a result, network

programs should be dedicatedly designed to fully utilize the switch memory to

realize the functionalities.

• Limited functionalities. Because of strict timing and resource requirements, in

a processing pipeline, a network switch is only able to support a small number

of operations from a limited operation set. Some operations that may seem

straightforward on general CPUs such as multiplication, division, floating-point

operations, sorting, etc., are complex for ALUs on switches. Besides, the commodity

programmable switches lack the programmability in their traffic manager or MMU

(Memory Management Unit)—they are using multiple first-in first-out (FIFO)

queues to manage packet scheduling just like what traditional switches do. However,

this also gives us the chances to think out of the box: what traffic manager do we

need? In fact, we will describe some of our findings in Chapter 3 and Chapter 4.

• Difficult co-design across devices. There are two approaches to overcome the

challenge of limited memory and limited functionalities. The first approach is to use

approximations. For example, instead of storing everything on the switch memory,

we can use sketches to largely save memory footprint. Besides, some operations

like multiplication can be composed by several simple operations (such as addition,

subtraction, bit shifting). However, this approach does not always work as it can

hurt the performance and accuracy, and sometimes it is not possible to approximate
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all operations well. The second approach is to co-design programmable switch with

other devices (other switches and servers). Such co-design requires efficient memory

allocation among multiple devices and offloading in-network primitives from general

processors to switches. When doing the approximations and/or co-designs, there are

several questions we need to consider: How to identify which operation/primitive

to approximate or offload? Does the co-design make the whole system brittle, is it

error-prone to packet loss and other failures? Do the approximation and co-design

work in a larger scale? How to conduct realistic experiments to evaluate the effect

of the changes we make?

1.3 Contributions

In this dissertation, we present four novel systems that leverage flexible network

programming to realize advanced features and provide exceptional performance im-

provement.

NetLock: Fast and Centralized Lock Management Using Programmable

Switches. Lock managers are widely used by distributed systems. Traditional

centralized lock managers can easily support policies between multiple users using

global knowledge, but they suffer from low performance. In contrast, emerging decen-

tralized approaches are faster but cannot provide flexible policy support. Furthermore,

performance in both cases is limited by the server capability.

We present NetLock in Chapter 2, a new centralized lock manager that co-designs

servers and network switches to achieve high performance without sacrificing flexibility

in policy support. The key idea of NetLock is to exploit the capability of emerging

programmable switches to directly process lock requests in the switch data plane.

Due to the limited switch memory, we design a memory management mechanism to

seamlessly integrate the switch and server memory. To realize the locking functionality
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in the switch, we design a custom data plane module that efficiently pools multiple

register arrays together to maximize memory utilization We have implemented a

NetLock prototype with an Intel Tofino switch and a cluster of commodity servers.

Evaluation results show that NetLock improves the throughput by 14.0–18.4×, and

reduces the average and 99% latency by 4.7–20.3× and 10.4–18.7× over DSLR, a

state-of-the-art RDMA-based solution, while providing flexible policy support.

HCSFQ: Hierarchical Core-Stateless Fair Queueing. Core-Stateless Fair

Queueing (CSFQ) is a scalable algorithm proposed more than two decades ago to

achieve fair queueing without keeping per-flow state in the network. Unfortunately,

CSFQ did not take off, in part because it required protocol changes (i.e., adding new

fields to the packet header), and hardware support to process packets at line rate.

In Chapter 3, we argue that two emerging trends are making CSFQ relevant again:

(i) cloud computing which makes it feasible to change the protocol within the same

datacenter or across datacenters owned by the same provider, and (ii) programmable

switches which can implement sophisticated packet processing at line rate. To this end,

we present the first realization of CSFQ using programmable switches. In addition,

we generalize CSFQ to a multi-level hierarchy, which naturally captures the traffic

in today’s datacenters, e.g., tenants at the first level and flows of each tenant at the

second level of the hierarchy. We call this scheduler Hierarchical Core-Stateless Fair

Queueing (HCSFQ), and show that it is able to accurately approximate hierarchical

fair queueing. HCSFQ is highly scalable: it uses just a single FIFO queue, does not

perform per-packet scheduling, and only needs to maintain state for the interior nodes

of the hierarchy. We present analytical results to prove the lower bounds of HCSFQ.

Our testbed experiments and large-scale simulations show that CSFQ and HCSFQ

can provide fair bandwidth allocation and ensure isolation.

AIFO: Programmable packet scheduling with a single queue. Programmable

6



packet scheduling enables scheduling algorithms to be programmed into the data

plane without changing the hardware. Existing proposals either have no hardware

implementations for switch ASICs or require multiple strict-priority queues.

Chapter 4 presents Admission-In First-Out (AIFO) queues, a new solution for

programmable packet scheduling that uses only a single first-in first-out queue. AIFO is

motivated by the confluence of two recent trends: shallow buffers in switches and fast-

converging congestion control in end hosts, that together leads to a simple observation:

the decisive factor in a flow’s completion time (FCT) in modern datacenter networks

is often which packets are enqueued or dropped, not the ordering they leave the

switch. The core idea of AIFO is to maintain a sliding window to track the ranks of

recent packets and compute the relative rank of an arriving packet in the window for

admission control. Theoretically, we prove that AIFO provides bounded performance

to Push-In First-Out (PIFO). Empirically, we fully implement AIFO and evaluate

AIFO with a range of real workloads, demonstrating AIFO closely approximates PIFO.

Importantly, unlike PIFO, AIFO can run at line rate on existing hardware and use

minimal switch resources—as few as a single queue.

Lumina: Fine-grained Analyzation Tool for Hardware Offloaded Network

Stacks. Hardware offloaded network stacks are widely adopted in modern datacenters

to meet the demand for high throughput, ultra-low latency and low CPU overhead.

To best utilize the superb performance, network developers need to have in-depth

understandings of their behaviors. Recent years, there have been various of testing

tools helping users to test and understand software network stacks. However, hardware

network stacks are left behind as its kernel bypass nature and high performance make

testing challenging. In Chapter 5, we present Lumina, a tool to test the correctness and

performance of hardware network stacks. The key idea of Lumina is exploiting network

programmability to emulate various network scenarios and dumping the complete

packet trace for offline analysis. Lumina supports injecting deterministic events with
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user-friendly interfaces, thus enabling developers to write precise reproducible tests.

Due to the limited resource and flexibility of programmable network devices, we mirror

and dump traffic to a pool of dedicated servers for offline analysis. We start with

RDMA NIC as the testing target and prototype Lumina with our testbed. We evaluate

Lumina with microbenchmark experiments and share our findings on three widely

used RDMA NICs using Lumina.
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Chapter 2

NetLock: Fast, Centralized Lock
Management Using Programmable
Switches.

2.1 Introduction

As more and more enterprises move their workloads to the cloud, they are increasingly

relying on databases provided by public cloud providers, such as Amazon Web Ser-

vices [3], Microsoft Azure [4], and Google Cloud [5]. Performance and policy support

are two important considerations for cloud databases. Specifically, cloud databases

are expected to provide high performance for many tenants and enable rich policy

support to accommodate tenant-specific performance and isolation requirements, such

as starvation freedom, service differentiation, and performance isolation.

Lock managers are a critical building block of cloud databases. They are used

by multiple concurrent transactions to mediate access to shared resources in order

to achieve high-level transactional semantics such as serializability. With recent

advancements that exploit fast RDMA networks and in-memory databases to signifi-

cantly improve the performance of distributed transactions [6, 7] (i.e., decrease think

time), the overhead of acquiring and releasing locks is now a major component in the

end-to-end performance of cloud-based enterprise software [8].
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Existing lock manager designs (both centralized and decentralized) face a trade-off

between performance and policy support (Figure 2-1). The traditional centralized

approach uses a server as a central point to grant locks [9, 10]. With the global view

of all lock operations in the server, this approach can easily support various policies,

such as starvation freedom and fairness [10–13]. The drawback is that the lock server,

especially its CPU, becomes the performance bottleneck as transaction throughput

increases.

To mitigate the CPU bottleneck, recent decentralized solutions leverage fast RDMA

networks to achieve high throughput and low latency [7, 8, 14, 15]. Clients acquire

and release locks by updating the lock information on the lock server through RDMA,

without involving the server’s CPU. However, since the locking decisions are made by

the clients in a decentralized manner, it is hard to support and enforce rich policies [8].

We present NetLock, a new approach to design and build lock managers that

sidesteps the trade-off and achieves both high performance and rich policy support.

We observe that compared to the actual data stored in a database, the lock information

is only a small amount of metadata. Nonetheless, the metadata requires high-speed,

concurrent accesses. Network switches are specifically designed and optimized for

high-speed, concurrent data input-output workloads, making them a natural place to

accelerate lock operations.

The key idea of NetLock is to leverage this observation and co-design switches and

servers to build a fast, centralized lock manager. Switches provide orders-of-magnitude

higher throughput and lower latency than servers. By using switches to process lock

requests in the switch data plane, NetLock avoids the CPU bottleneck of server-based

centralized approaches, and achieves high performance. By using a centralized design,

NetLock avoids the drawback of decentralized approaches and can support many

essential policies.

Realizing this idea is challenging for at least two reasons. First, switches only
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have limited on-chip memory. Although the size of lock information is orders-of-

magnitude smaller than that of the actual storage data, it can still exceed the switch

memory size for large-scale cloud databases. While previous work [16] has proposed

the idea of extending the switch memory with the server memory, it does not consider

the characteristics of locking and does not provide a concrete solution for memory

management. To address this challenge, we design a mechanism to seamlessly integrate

the switch and server memory to store and process lock requests. NetLock only offloads

the popular locks to the switch and leaves other locks to servers. We formulate the

problem as an optimization problem and design an optimal algorithm for memory

allocation.

Second, switches only have limited functionalities in the data plane and cannot

process lock requests. Prior work [17] has shown how to build a key-value store in

switches and solved the fault-tolerance problem, but a key-value store is not a fully

functional lock manager that can support different types of locks and support policies.

To address this challenge, we leverage the capability of emerging programmable

switches to design a data plane module to implement necessary features required

by NetLock. To maximize memory utilization and avoid memory fragmentation, we

design a shared queue data structure to pool the register arrays in multiple data plane

stages together and allocate it to the locks. Each lock owns an adjustable, continuous

region in the shared queue to store its requests. We design custom match-action tables

in the data plane to support both shared and exclusive locks with common policies.

NetLock is incrementally deployable and compatible with existing datacenter

networks. It is well-suited for cloud providers that have dedicated racks for database

services. It only needs to augment the Top-of-Rack (ToR) switches of these database

racks with a custom data plane module for processing lock requests. Since the custom

module is only invoked by lock messages, other packets are processed by switches as

before. NetLock does not change other switches in the network, and it is compatible
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Figure 2-1. Design space for lock management.

with existing routing protocols and network functions.

Recently there is a surge of interest in in-network computing. While it is arguable

whether applications should be moved to the network and to what extent, NetLock

takes a modest approach to make the network more application-aware. Assisting

locking in the network is not a radical deviation from traditional network functionalities.

We emphasize that the application (i.e., transaction processing) is still running on

servers. NetLock provides locks with switches to resolve contentions and enforce

policies for concurrent transactions, which is similar to using switch-based signals like

Random Early Detection (RED) and Explicit Congestion Notification (ECN) to resolve

congestion and enforce fairness for concurrent flows, but in a more application-aware

way for databases. Furthermore, compared to changing all NICs and redesigning

applications to leverage RDMA, replacing only the switch and transparently updating

the lock manager provides a competitive alternative to high-performance database

applications. NetLock can provide better performance and lower the cost by reducing

the lock servers.

In summary, we make the following contributions.
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• We propose NetLock, a new centralized lock manager architecture that co-designs

programmable switches and servers to achieve high performance and flexible policy

support.

• We design a memory management mechanism to seamlessly integrate the switch

and server memory, and a custom data plane module for switches to store and

process lock requests.

• We implement a NetLock prototype on an Intel Tofino switch and commodity

servers. Evaluation results show that NetLock improves transaction throughput by

14.0–18.4×, and reduces the average and 99% latency by 4.7–20.3× and 10.4–18.7×

over the state-of-the-art DSLR, while providing flexible policy support.

The code of NetLock is open-source and available at https://github.com/netx-

repo/NetLock.

2.2 Background and Motivation

In this section, we first provide background on the design of lock managers. Then we

motivate the usage of programmable switches to design lock managers, by identifying

potential benefits and discussing its feasibility.

2.2.1 Background on Lock Management

Lock managers are used by distributed systems to mediate concurrent access to shared

resources over the network, where locks are typically held in servers. There are two

main approaches, i.e., centralized and decentralized, as shown in Figure 2-1.

Centralized lock management. A centralized lock manager uses a server as a

central point to grant locks [9, 10]. Because the server has the global view of all lock
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requests and grant decisions, it can easily enforce policies to provide many strong and

useful properties, such as starvation-freedom and fairness [10–13].

A centralized lock manager can be distributed across multiple servers, by having

each server be responsible for a subset of lock objects. There is a distinction between

distributed and decentralized. Centralized and decentralized approaches differ in how

the decisions to grant locks are made, i.e., whether they are made by the central lock

manager or by the clients in a decentralized manner. Both approaches can be made

distributed to scale out.

The lock manager can either be co-located with the storage server that actually

stores the objects or be in a separate server. In the former case, the lock manager

daemon would consume the resources of the storage server, which can be otherwise

used to process storage requests such as transactions. In the latter case, lock managers

for multiple storage servers can be consolidated to a few dedicated servers.

Decentralized lock management. Centralized lock managers suffer from low

performance, as the server CPUs become the bottleneck to handle a large number

of lock requests from clients [8]. Decentralized lock managers often leverage fast

RDMA networks to address the performance problem [7, 8, 14, 15]. A decentralized

lock manager still has a designated server to maintain necessary information for each

lock in a lock table, e.g., the current transaction ID that holds the lock and whether

the lock is shared or exclusive. Different from centralized ones, a decentralized lock

manager relies on clients to make decisions in a distributed manner. The lock table at

the lock server is updated by the clients using RDMA verbs, such as SEND, RECV,

READ, WRITE, CAS, and FA. This approach reduces CPU utilization at the lock

server.

There are a few different strategies for the clients to acquire locks in this ap-

proach. The simplest one is blind fail-and-retry, where each client tries to acquire
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a lock independently, and retries after a timeout if not succeed [7]. This strategy

has high client CPU usage, and can cause starvation and hence long tail latencies.

Exponential back-off can be used to reduce the CPU usage, but it further increases

latencies. More advanced ones use distributed queues to emulate centralized lock

managers [14]. Such strategies, while avoiding starvation, incur extra network round-

trips and lose the benefit of high performance. The most recent solution in this

category, DSLR [8], adapts Lamport’s bakery algorithm [18] to order lock requests

and guarantees first-come-first-serve (FCFS) scheduling; this reduces starvation and

achieves high throughput.

Decentralized lock managers typically use advisory locking, where clients cooperate

and follow a distributed locking protocol. This is because the clients use RDMA verbs

to interact with the lock table in the lock server without involving the server’s CPU. It

is different from mandatory locking used by centralized lock managers that can enforce

a locking protocol, as the lock manager is solely making locking decisions. Besides the

difficulty to enforce a protocol, decentralized lock managers cannot flexibly support

various policies such as isolation, without significantly degrading performance using

an expensive distributed protocol.

2.2.2 Exploiting Programmable Switches

Providing both high performance and policy support. Traditional server-based

approaches make a trade-off between performance and policy support. Centralized

approaches provide flexible policy support, but have low performance; decentralized

approaches achieve the opposite. The goal of this chapter is to design a solution that

sidesteps the trade-off and provides both high performance and policy support. Our

key idea is to design a centralized solution with fast switches, which can benefit from

switches to achieve high performance while still providing flexible policy support as

being a centralized approach. Moreover, since switches provide orders-of-magnitude
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higher throughput and lower latency than servers, this solution is even faster than

decentralized, RDMA-based approaches. This is especially important for emerging

fast transaction systems based on RDMA networks and in-memory storage [6, 7]. In

these systems, the transactions themselves are executed in memory, and thus the

execution cost is comparable to the locking and unlocking cost, meaning that the

system needs to spend a considerable amount of server resources for lock managers as

for the storage servers themselves. Leveraging switches to build faster lock managers

can both improve the transaction performance and reduce the system cost.

Building lock managers with programmable switches. While traditional

switches are fixed-function, emerging programmable switches, such as Intel Tofino [19],

Broadcom Trident [20] and Cavium XPliant [21], make it feasible to design, build

and deploy switch-based lock managers. Leveraging programmable switches pro-

vides orders-of-magnitude higher performance than FPGA-based (e.g., SmartNICs)

or NPU-based solutions. While this chapter focuses on programmable switches, the

mechanisms designed for NetLock can also be applied to programmable NICs.

Programmable switches allow users to develop custom data plane modules, which

can parse custom packet headers, perform user-defined actions, and access the switch

on-chip memory for stateful operations [1, 22]. With this capability, we can program

the switch data plane to parse lock information embedded in a custom header format,

to perform lock and unlock actions, and to store the lock table in the switch on-chip

memory.

2.3 NetLock Architecture

In this section, we first give the design goals of NetLock, and then provide a system

overview of NetLock.
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Figure 2-2. NetLock architecture.

2.3.1 Design Goals

NetLock is a fast, centralized lock manager. It is designed to meet the following goals.

• High throughput. State-of-the-art distributed transaction systems can process

hundreds of millions of transactions per second (TPS) with a single rack [6, 23, 24],

and each transaction can involve a few to tens of locks. To avoid being the

performance bottleneck of fast distributed transaction systems, the lock manager

should be able to process up to a few billion lock requests per second (RPS).

• Low latency. Given the tens of microseconds transaction latency enabled by fast

networks and in-memory databases [6, 23, 24], the lock manager should provide

low latency to process lock requests, in the range of a few to tens of microseconds.

• Policy support. For a cloud environment, the lock manager should provide

flexible policy support to accommodate tenant-specific requirements. Specifically,
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we consider common policies including starvation freedom, service differentiation,

and performance isolation.

2.3.2 System Overview

A NetLock lock manager consists of one switch and multiple servers in the same rack

(as shown in Figure 2-2), where the round-trip time (RTT) between machines within

the same switch is typically single-digit microsecond. The switch is the ToR switch

of a dedicated database rack that is specifically provisioned for database services,

which is common in public clouds. Different database racks have their own NetLock

instances. Besides adding a new data plane module for NetLock to the ToR switch,

no other changes are made to the datacenter network. The ToR switch only invokes

the NetLock module to process lock requests, and it processes other packets as usual.

NetLock does not affect existing network functionalities.

At a high level, clients send lock requests to NetLock without knowing whether

the requests will be processed by a switch or a server. Behind the scene, NetLock

processes lock requests with a combination of switch and servers. It integrates the
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Algorithm 1 ProcessLockRequest(req)
1: if req.lock ∈ switch.locks() then
2: if req.type == acquire then
3: if switch.CanGrant(req) then
4: Grant req.lock to req.client
5: else if switch.CanQueue(req) then
6: Queue req at switch
7: else
8: Forward req to server
9: else

10: Release req.lock, and grant it to pending requests
11: else
12: Forward req to server

switch and server memory to store and process lock requests. When a lock request

arrives at the switch, the switch checks whether it is responsible for the lock. If so,

it invokes the data plane module to process the lock; otherwise, it forwards the lock

requests to the server. The switch only stores and processes the requests on popular

locks, while the lock servers are responsible for the requests on unpopular locks. The

lock servers also buffer the requests on popular locks when the queues in the switch

are overflowed.

2.4 NetLock Design

In this section, we describe the design of NetLock that exploits programmable switches

for fast, centralized lock management.

2.4.1 Lock Request Handling

As shown in Figure 2-3, to acquire a lock for a transaction, the client first sends a

lock request to NetLock and waits for NetLock to grant the lock. NetLock directly

processes most lock requests with the lock switch and only leaves a small portion to

the lock servers. After the lock is granted, the client executes its transaction and

sends a release notification to NetLock if the lock is no longer needed.

Algorithm 1 shows the pseudocode of the switch. Since the switch is the ToR
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switch of the database rack and is on the path for a request to reach the lock servers,

the switch can always process the request first. If the switch is responsible for the

corresponding lock object (line 1), it checks the lock availability and policy. If the lock

can be granted, the switch directly responds to the client (line 3-4). If the lock cannot

be granted immediately, the switch queues the request if it has enough memory (line

5-6). If the switch is not responsible for the lock object or does not have sufficient

memory, it forwards the request to the lock server based on the destination IP (line 8

and 12). The locks are partitioned between the lock servers. The client obtains the

partitioning information from an off-the-shelf directory service in datacenters [25, 26],

and sets the destination IP to that of the server responsible for the lock. After the

client releases the lock, NetLock can further grant the lock to other requests (line 10).

The performance benefit of NetLock comes from that most requests can be directly

processed by the switch, without the need to visit a lock server.

One-RTT transactions. In the basic mode, a client gets a grant from NetLock

(taking 0.5 RTT by the lock switch or 1 RTT by the lock server) and then issues

another request to fetch the data from a database server (taking 1 RTT) to finish the

transaction, which takes 1.5–2 RTTs in total. Some recent distributed transaction

systems (e.g., DrTM [7], FARM [27] and FaSST [23]) combine lock acquisition and

data fetching in a single request to a database server, and thus are able to finish

a transaction in 1 RTT. NetLock can apply the same idea to achieve one-RTT

transactions. Specifically, after a lock is granted, instead of replying to the client,

NetLock forwards the request to the corresponding database server to fetch the item,

making lock acquisition and data fetching in one RTT. More importantly, unlike

existing solutions (e.g., DrTM, FARM and FaSST) that rely on fail-and-retry which

may lead to low throughput and high latency, all requests to the database servers

can successfully fetch data, because the locks have already been granted by NetLock.

This is critical under high-contention scenarios to reduce overhead at both clients
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Figure 2-4. Basic data plane design for lock management.

and database servers, and achieve high throughput and low latency. For locks not in

the switch, the lock server is combined with the database server as existing solutions

to achieve one-RTT transactions. For requests with payloads such as writes, the

switch forwards the data if the lock can be granted, and drops the data, otherwise.

Some transactions that involve read-modify-write operations cannot fundamentally be

done in one RTT because the client has to do some compute and the current design

does not push compute to the lock and database servers. In addition to its high

performance, NetLock also supports flexible policies that cannot be implemented by

existing decentralized solutions.

2.4.2 Switch Data Plane

Programmable switches expose stateful on-chip memory as register arrays to store

user-defined data. NetLock leverages register arrays to store and process lock requests

in the switch. Figure 2-4 shows a basic data plane design. The design allocates one

array for each lock to queue its requests. A special UDP destination port is reserved

for NetLock. A lock request contains several fields: action type (acquire/release), lock
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ID, lock mode, transaction ID, and client IP. The match-action table maps a lock

ID (i.e., lid) to its corresponding register array, and the action in the table performs

operations on the register array to grant and release locks.

Because register arrays can only be accessed based on a given index, they do

not natively support queue operations such as enqueue and dequeue. We implement

circular queues based on register arrays to support necessary operations for NetLock.

Specifically, we allocate extra registers to keep the head and tail pointers. The pointers

are looped back to the beginning when they reach the end of the array. For example,

queue A in Figure 2-4 has six queued requests, and the head and tail are index 1 and

6, respectively.

Each slot in a queue stores three important pieces of information, i.e., mode,

transaction ID, and client IP. Mode indicates whether the request is for a shared or

exclusive lock. Transaction ID identifies which transaction the lock is requested for.

Client IP stores the IP address from which the lock request is sent. The IP address

is used by the switch when it generates a notification to grant the lock to the client.

Additional metadata such as timestamp and tenant ID can also be stored together.

Optimize switch memory layout. Because the memory for each register array is

pre-allocated and the size is fixed after the data plane program is compiled and loaded

into the switch, the basic design cannot flexibly change the queue size at runtime.

When the workload changes, the set of locks in the switch and the size of each queue

would need to change according to the memory allocation algorithm to maximize

the performance. Allocating a large queue to accommodate the maximum possible

contentions for each lock is undesirable because it would cause memory fragmentation

and result in low memory utilization, especially given that the switch on-chip memory

is limited.

To address this problem, we design a shared queue to pool multiple register arrays
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Figure 2-5. Combine multiple register arrays to a shared queue for locks with different
queue sizes.

together and enable the queue size to be dynamically adjusted at runtime (Figure 2-5).

Instead of statically binding each register array to a lock, we combine these arrays

together to build a large queue shared by all the locks. Accessing a slot in the shared

queue with an index can be mapped to accessing the register arrays by appropriately

setting the index, e.g., accessing slot 10 in the shared queue can be mapped to accessing

slot 10-8=2 in array 1. Each lock is allocated with a continuous region in the shared

queue to store its requests. We allocate extra registers to store the boundaries of

each queue, e.g., 10 and 14 for queue B. Since the boundaries are stored in registers,

they can be modified at runtime. Another benefit of this design is that the individual

register arrays do not have to be in the same stage, which allows NetLock to pool

memory from multiple stages together to build a large queue that exceeds the memory

limit of a single stage.

Handle shared and exclusive locks. The shared queue design solves the storage

problem of how to store the requests, but it does not solve the computation problem

of how to process them. The challenge comes from the limitation that the data plane

can only perform one read/write operation to a register array when it processes a

packet.
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This limitation brings two issues. First, when a lock release notification arrives at

the switch, the switch dequeues the corresponding request from the queue, and the

lock could be granted to the next request in the queue. This requires two operations:

one is to dequeue the head, and the other is to read the new head. Second, when

a request to acquire a shared lock is granted, if the following requests in the queue

are also for a shared lock, then these requests can also be granted. This requires

multiple read operations until an exclusive lock request or the end of the queue. We

leverage a feature called resubmit available in programmable switches to overcome the

limitation. The resubmit feature allows the switch data plane to resubmit the packet

to the beginning of the packet processing pipeline, so that the packet can go through

and be processed by the pipeline again, obviating the need to send another packet

to the switch from servers. Note that the use of resubmit here does not cause extra

overhead, because the servers in the traditional server-based lock managers also need

to send a packet to grant each shared lock to the corresponding client. Figure 2-6

illustrates how to handle the four cases for shared and exclusive locks.

• Shared → Shared. When a shared lock is released, the switch dequeues the head,

and uses resubmit to check the new head. If the new head is a shared lock request,

the processing stops, because the shared lock has already been granted with the

old head when it entered the queue.

• Shared → Exclusive. This case differs from the first case on that the new head is

an exclusive lock request, which has not been granted yet. As such, after the shared

lock is released, the lock becomes available, and the switch sends a notification to

the client to grant the lock.

• Exclusive → Shared. When an exclusive lock is released, the packet is resubmit-

ted to grant the next lock request in the queue. The resubmit action is repeated

by multiple times until an exclusive request or the end of the queue.
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Figure 2-6. Handle shared and exclusive locks.

• Exclusive → Exclusive. When an exclusive lock is released and the next request

is also exclusive, the next request is granted. Because the lock is exclusive and

cannot be shared, the switch does not need to resubmit it again.

Algorithm 2 shows the pseudocode of the switch that covers the above four cases.

If the request is to acquire a lock, it is enqueued (line 1-2). The request is directly

granted if the queue is empty, or if all requests in the queue are shared and the request

is also shared (line 3-5). If the request is to release a lock, the current head in the

queue is removed, and the lock is resubmitted to grant the following request (line 7-12).

For case “shared → shared”, no further processing is needed. For case “shared →

exclusive” and “exclusive → exclusive”, the new head is granted the lock (line 15-16).

For case “exclusive → shared”, multiple subsequent shared locks are granted (line

17-27). The nuance in the lock processing is that when there are multiple transactions
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Algorithm 2 SwitchDataPlane(pkt)
1: if pkt.op == acquire then
2: queue.enqueue(pkt)
3: if queue.is_empty() or
4: (queue.is_shared() and pkt.mode == shared) then
5: grant_lock(pkt.tid, pkt.cip)
6: else
7: if meta.flag == 0 then
8: (mode, tid, cip)← queue.dequeue()
9: meta.flag ← 1

10: meta.mode← mode
11: meta.pointer ← queue.head()
12: resubmit()
13: else if meta.flag == 1 then
14: (mode, tid, cip)← queue[meta.pointer]
15: if mode == exclusive then
16: grant_lock(tid, cip)
17: else if meta.mode == exclusive then
18: grant_lock(tid, cip)
19: meta.pointer ← meta.pointer.next()
20: meta.flag ← 2
21: resubmit()
22: else
23: (mode, tid, cip)← queue[meta.pointer]
24: if mode == shared then
25: grant_lock(tid, cip)
26: meta.pointer ← meta.pointer.next()
27: resubmit()

holding a shared lock, these transactions may not release their locks in the order that

the requests are enqueued. Because the switch can only release locks at the head of

the queue, it does not check the transaction ID when releasing locks. This design does

not affect the correctness, because only one transaction can hold an exclusive lock,

and the operations for releasing shared locks are commutative.

Pipeline layout. A switch may have several pipelines, and the pipelines do not

share state. In NetLock, the lock tables and their register arrays are placed in the

egress pipes that connect to their corresponding lock servers. This placement avoids

unnecessary recirculation across pipelines. Specifically, when a request arrives, it is

sent to the egress pipe that either owns the lock or connects to a lock server that has

the lock. If the request is granted, it is mirrored to the upstream port to the client or
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the database server to finish the transaction (Section 2.4.1). Otherwise, it is enqueued

either at the egress pipe or in a lock server.

2.4.3 Switch-Server Memory Management

Since the switch on-chip memory is limited, NetLock co-designs the switch and servers

and stores only the popular locks to the switch memory. The switch control plane is

responsible for creating and deleting locks, and assigning memory for locks between

the switch and lock servers. The key challenge in memory allocation is that it requires

us to consider the contentions from multiple requests to the same lock. When a lock

is granted to a client, other requests are queued in the switch and occupy memory

space until the lock is released.

Memory allocation mechanism. We first analyze the amount of switch memory

required to support a certain throughput. Let the rate of lock requests to object i be

ri. Let the maximum contention for object i be ci, which means that there are at most

ci concurrent requests for object i. We assume ci is known based on the knowledge of

how many clients may need this lock, and we use a counter to measure ri. Let the

queue size for object i in the switch be si. If si ≥ ci, then the switch can guarantee to

process all requests for object i, without queueing requests in the server. The memory

allocation is to decide which locks to assign to the switch, and for each assigned lock,

how much switch memory to allocate for it. Let the switch memory size be S. We

formulate the problem as the following optimization problem.

maximize
∑

i

risi/ci (2.1)

s.t.
∑

i

si ≤ S (2.2)

si ≤ ci (2.3)

The goal is to process as many lock requests in the switch as possible, reducing the
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Algorithm 3 MemoryAllocation(locks)
1: Sort locks by ri/ci in decreasing order
2: for lock i in locks do
3: si ← min(switch.available, ci)
4: switch.available← switch.available− si

5: Allocate si for lock i in switch memory
6: Allocate remaining locks to the servers

number of servers we need for NetLock. For object i, because in the worse case the

lock requests for i always achieve the maximum contention ci, only a portion (si/ci) of

lock requests can be queued at the switch, and the other portion (1− si/ci) have to be

sent to the server. Therefore, the optimization objective, which is the request rate the

switch can guarantee to process, is ∑i risi/ci. The constraint is that the total memory

allocated to the locks cannot exceed the switch memory size S, i.e., ∑i si ≤ S. The

switch does not need to allocate more than ci memory slots to object i, thus we have

si ≤ ci.

This problem is similar to the fractional knapsack problem, which can be solved

with an optimal solution in polynomial time. Algorithm 3 shows the pseudocode.

Specifically, the value of allocating one slot to object i in the switch is ri/ci. To

maximize the objective, the algorithm allocates the switch memory based on the

decreasing order of ri/ci.

The rate ri and contention ci for each lock are obtained by measuring the workload.

NetLock maintains two counters to track ri and ci for each lock respectively, and

updates the memory allocation based on Algorithm 3 when the workload changes.

During the update, NetLock first drains the requests of the locks that are to be

swapped out from the switch, and then allocates the switch memory to more popular

locks. Note that, for inserting a new lock object, the new lock queue is first added to

a lock server, and then would be moved to the switch if the lock becomes popular.

Theorem 1. The memory allocation algorithm (Algorithm 3) is optimal for the

optimization problem (1-3).
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(b) Optimal memory allocation.

Figure 2-7. By allocating two slots in the switch to lock 1, the optimal allocation can
process all lock requests to lock 1 in the switch, minimizing the server load.

Proof. We consider the situation where ∑i ci > S; otherwise, there is enough memory

for all the locks. Let there be n locks in total. Without loss of generality, let r1
c1

> r2
c2

>

... > rn

cn
. Algorithm 3 allocates as much memory as possible (min(switch.available, ci))

for locks sorted by ri/ci. Assume this is not the optimal strategy. Let the optimal

strategy be s∗
1, s∗

2, ..., s∗
n. Because ∑i ci > S, there exists at least one lock i such that

s∗
i < ci. Let the lock with the smallest ID be j, i.e., for any i < j, s∗

i = ci, and s∗
j < cj .

If for any k > j, s∗
k = 0, the optimal strategy would be the same as Algorithm 3.

Therefore, there exists at least one lock k such that k > j and s∗
k > 0. Let s′

j = s∗
j + 1

and s′
k = s∗

k − 1. Because rj

cj
> rk

ck
, we have ∑i ris

′
i/ci >

∑
i ris

∗
i /ci. This contradicts

that the allocation s∗
1, s∗

2, ..., s∗
n is optimal. So Algorithm 3 is optimal.

Example. Figure 2-7 illustrates the key idea of the algorithm. There are two
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concurrent clients that acquire exclusive locks for object 1 with a rate of 100 requests

per second each. The queue needs two slots to accommodate the contentions from the

two clients. There is only one client that acquires exclusive locks for object 2, with a

rate of 10 requests per second. The queue only needs one slot for one client. Suppose

the switch memory only has two slots. The allocation in Figure 2-7(a) allocates one slot

to each lock object. Since the switch cannot queue requests for two clients for object

1, in the worse case where the clients are highly synchronized, half of the requests

are sent to the server. On the other hand, the optimal allocation in Figure 2-7(b)

allocates two slots to object 1, minimizing the load on the server.

Performance guarantee. Since servers have plenty of memory to queue requests,

servers are CPU-bounded, and the bottleneck is on the number of requests that can

be processed by a server per second. Let the workload be W = {(ri, ci)}, and the

solution to the optimization problem be S = {(si)}. Let rs and re be the request rates

that can be supported by a switch and a server, respectively. We assume that the

switch is not the bottleneck, i.e., rs ≥
∑

i ri, so the switch is always able to support

the request rate ∑i risi/ci. This assumption is reasonable, because if rs <
∑

i ri,

then the ToR switch is congested. In such a case, not all lock requests can even

be received by the database rack in the first place, and the workload would not

be meaningful. Since the switch can process the request rate ∑i risi/ci, it requires

⌈(∑i ri −
∑

i risi/ci)/re⌉ servers to serve the remaining request rate. In other words,

with one switch and ⌈(∑i ri −
∑

i risi/ci)/re⌉ servers, NetLock guarantees to support

the workload W = {(ri, ci)}.

Handling overflowed requests. It is possible that the queues in the switch can be

overflowed, because the switch cannot allocate enough memory for the last object it

handles or the estimation of maximum contention for an object is inaccurate. For lock

i, we denote its switch queue as q1[i], and its server queue as q2[i]. When q1[i] is full,

the switch forwards the overflowed requests to the server. The overflowed requests are
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only buffered in q2[i] in the server, not processed. Note that this is different from the

locks that are not allocated to the switch and only have queues in the servers—the

requests of those locks are both buffered and processed by the servers. The switch

puts a mark on the packets to distinguish between these two cases.

As both q1[i] and q2[i] may contain requests, we need to ensure that the requests

are processed as they would in a single queue. To achieve this, the requests are only

granted and dequeued by q1[i] in the switch, and new requests are only enqueued at

q2[i] in the server. When q1[i] becomes empty, the switch sends a notification to the

server, and the server pushes some requests from q2[i] to q1[i]. The number of requests

that can be pushed is no bigger than the number of available slots in q1[i] to ensure

q1[i] is not overflowed. When q2[i] becomes empty and q1[i] is not full, NetLock enters

the normal mode, i.e., new requests can directly be enqueued at q1[i] in the switch.

Because q2[i] is empty, enqueueing at q1[i] would ensure the same order as a single

queue.

Moving locks between the switch and lock servers. When the popularity of

a lock changes, the lock will be moved from the switch to a lock server or from

its lock server to the switch. When moving a lock, NetLock pauses enqueuing new

requests of this lock and waits until the queue is empty to ensure consistency. Memory

fragmentation caused by moving locks between the switch and lock servers would

reduce the memory that can be actually used to store lock requests. The memory

layout on the switch is periodically reorganized to alleviate memory fragmentation.

2.4.4 Policy Support

NetLock is a centralized lock manager that can support and enforce policies. We

consider the following three representative policies.

Starvation-freedom. Decentralized lock managers use partial information to grant
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locks, which can easily lead to lock starvation. Lock starvation happens when the

lock manager allows later lock requests to acquire a lock before earlier lock requests,

making some requests wait indefinitely to get the lock. Lock starvation is typically

avoided by using a first-come-first-serve (FCFS) policy. The FCFS policy stores lock

requests in a first-in-first-out (FIFO) queue, and always grants locks to the head of the

queue. This policy is natively supported by the circular queue we design for the switch

data plane. With this, NetLock supports request (lock) level starvation-freedom. Note

that, there can still be starvation if some transactions do not complete because of

deadlock, which is discussed in Section 2.4.5.

Service differentiation with priorities. It is challenging to support priority-based

policies in the switch, as a register array can only be accessed once when processing

a packet and a priority queue cannot be directly implemented with a register array.

We leverage the multi-stage structure of the switch data plane to support priorities.

Specifically, we allocate one queue in each stage for one priority. Since the packet is

processed stage by stage, the high-priority requests in earlier stages are granted first.

The request processing with priorities in the switch data plane follows Algorithm 2

with some tweaks. For a lock request with i-th priority, it is directly granted if all

queues are empty, or if there is no exclusive lock request holding the lock or queued in

the same or higher priority queues and the request itself is also for a shared lock. After

the lock is released, NetLock will first grant the lock to the queue with the highest

priority. Note that a priority can have a large queue spanning multiple stages to

expand its queue size. The limitation of this solution is that the number of priorities

is limited to the number of stages, which is usually 10-20 in today’s switches. This

limitation can be alleviated by approximation, e.g., grouping multiple fine-grained

priorities into a single coarse-grained priority. Moreover, only high-priority requests

need to be processed in the switch. Low-priority requests do not need fast processing,

and can always be offloaded to the lock servers.
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Performance isolation with per-tenant quota. Cloud databases often have

multiple tenants and need to enforce fairness between them. Without a centralized

lock manager, a tenant can generate requests and acquire locks at a faster rate than

another tenant, and thus occupies most of the resources. While an FCFS policy can

avoid starvation of the slower tenant, it cannot enforce the tenants to stay within

their shares. It requires the lock manager to use rate limiters to enforce per-tenant

quota. Rate limiters can be implemented in the switch data plane with either meters

that can automatically throttle a tenant, or counters that count the tenants’ requests

and compare with their quotas.

2.4.5 Practical Issues

Switch memory size. We examine whether the switch memory is sufficient for a

lock manager from two aspects.

Think time. The think time affects the maximum turnover rate of a memory slot.

Let T be the duration of a request occupying a slot, which includes the round trip time

of sending the grant and release messages and that of executing the transaction (i.e.,

think time). A slot can be reused by 1/T times per second (i.e., the turnover rate),

providing a throughput of 1/T RPS. With S slots, the switch can achieve S/T RPS.

Given fast networks and low-latency transactions, T can be a few tens of microseconds.

As a switch has tens of MB memory, 100K slots with 20B slot size only consume 2

MB memory, which is a small portion of the total memory. Assuming T = 20 µs and

S = 100K, the switch can support S/T = 5 BRPS, which is sufficient for the database

servers the same rack. On the other hand, if T = 1 ms, the switch needs 1M slots to

achieve S/T = 1 BRPS.

Memory allocation. The memory allocation mechanism affects the utilization of

the switch memory. It determines whether the switch can achieve the maximum rate

S/T . If the switch memory is allocated to unpopular locks, the switch would only
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process a small portion of the total locks. Even when a memory slot is available, it

may not be used to process a new request for its lock as there are no pending requests

for this unpopular lock. If the memory slots are empty for half of the time, then

the switch needs to double its memory slots in order to achieve the maximum rate.

NetLock uses an optimal knapsack algorithm to efficiently allocate switch memory

to popular locks to maximize the memory utilization. This handles skewed workload

distributions. For uniform workload distributions, we combine multiple locks into one

coarse-grained lock to increase the memory utilization.

In summary, the think time determines the maximum turnover rate of a memory

slot and thus the maximum throughput the switch can support with a given amount

of memory, and the memory allocation mechanism determines whether the system can

achieve the maximum turnover rate. Experimental results in Section 2.6.4 illustrate

the relationship.

Scalability. We focus on rack-scale database systems in this chapter. Based on the

above analysis on switch memory size and the experimental results in Section 2.6.4,

the memory of one switch is sufficient for most rack-scale workloads, and the ToR

switch can be naturally used as the lock switch. In the cases where more memory is

needed, additional lock switches can be attached to the rack as specialized accelerators

for lock processing. For large-scale database systems that span multiple racks, each

rack runs an instance of NetLock to handle the lock requests of its own rack.

Failure handling. We describe how to handle different types of failures in NetLock.

• Transaction failure. Transaction failures can be caused by network loss, application

crashes, and client failures. When a transaction fails without releasing its acquired

locks, other transactions that request for the same locks cannot proceed. NetLock

uses a common mechanism, leasing [28], to handle transaction failures. It stores a

timestamp together with each lock, and a transaction expires after its lease. The
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switch control plane periodically polls the data plane to clear expired transactions.

• Deadlock. Deadlocks are caused by multiple transactions waiting for locks held by

others, and no transaction can make progress. It is resolved in the same way as

for transaction failures. Clients retry when the leases expire until they succeed. In

addition, deadlocks can be avoided if priority-based policies are employed.

• NetLock failure. When a lock server fails, the locks allocated to this server is

assigned to another lock server. Clients resubmit their requests to the new server,

and the server waits for the leases to expire before granting the locks. A switch

failure is handled in the same way by assigning the locks to a backup switch. After

the original switch restarts, the lock requests are queued into the original switch.

When releasing a lock, we only grant locks from the backup switch until the queue

in the backup switch gets empty. After all the queues in the backup switch get

empty, the backup switch is no longer useful. When the switch restarts, it also

synchronizes its states with the lock servers and waits for the overflowed requests

that are buffered at the lock servers to drain before the switch starts processing new

requests on the corresponding locks. The unpopular locks stored in lock servers are

not affected by switch failures.

2.5 Implementation

We have implemented a prototype of NetLock, including the lock switch, the lock

server, and the client.

The lock switch is implemented with 1704 lines of code in P4, and is compiled to

Intel Tofino ASIC [19]. The lock table has a shared queue with a total of 100K slots.

With 20B slot size, it only consumes 2MB, which is a small portion of tens of MB

on-chip memory. The switch control plane is implemented with 750 lines of code in

Python, which allocates the memory in the shared queue to different locks.
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The lock server is implemented with 2807 lines of code in C. It handles lock requests

that cannot be directly processed by the lock switch. To maximize the efficiency of

multi-core processing and improve the performance, it uses Intel DPDK [29], and

leverages Receive Side Scaling (RSS) to partition the lock requests between cores and

dispatch the lock requests to the appropriate RX queues by the NIC for each core.

With these optimizations, a lock server can achieve up to 18 MRPS with a 40G NIC

in our testbed.

The client is implemented with 3176 lines of code in C. It is used to generate lock

requests to measure the performance in the experiments. It also uses Intel DPDK and

RSS to optimize performance, and one client server can generate up to 18 MRPS with

a 40G NIC in our testbed.

2.6 Evaluation

2.6.1 Methodology

Testbed. The experiments of NetLock are conducted on our testbed consisting of

one 6.5 Tbps Intel Tofino switch and 12 servers. Each server has an 8-core CPU (Intel

Xeon E5-2620 @ 2.1GHz) and one 40G NIC (Intel XL710).

Comparison. We compare NetLock with the state-of-the-art lock manager DSLR [8]

and DrTM [7]. Since DSLR and DrTM require RDMA, the experiments on DSLR

and DrTM are conducted in the Apt cluster of CloudLab [30]. The configuration

is comparable to our own testbed. Each server is equipped with an 8-core CPU

(Intel Xeon E5-2450 @ 2.1GHz) and a 56G RDMA NIC (Mellanox ConnectX-3). We

also compare NetLock with a recently proposed switch-based solution NetChain [17].

NetChain is not a fully functional lock manager, as it only supports exclusive locks.

Therefore, requests for shared locks are treated as exclusive locks. NetChain handles

concurrent requests with client-side retry. Since NetChain only stores items in the
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switch, we adapt the lock granularity based on the switch memory size and the number

of locks, so that NetChain can handle all the requests in the switch. We emphasize

that DSLR, DrTM and NetChain do not support flexible policies.

Workloads. We use two workloads. The first workload is a microbenchmark, which

simply generates lock requests to a set of locks. It is useful to measure the basic

performance of lock processing. The second workload is TPC-C [31]. It generates

transactions based on TPC-C, and each transaction contains a set of lock requests. It

is useful to measure the application-level performance. We use two settings for TPC-C,

which is the same as DSLR: a low-contention setting with ten warehouses per node,

and a high-contention setting with one warehouse per node. We use throughput, in

terms of lock requests granted per second (RPS) and transactions per second (TPS),

and latency as the evaluation metrics.

2.6.2 Microbenchmark

We use microbenchmark experiments to measure the basic throughput and latency of

the lock switch to process lock requests. We cover both shared and exclusive locks.

Shared locks. We first evaluate the performance for shared locks. We use all 12

servers in the testbed to generate requests to the lock switch. Since the requests

are for shared locks, there are no contentions and the locks can be directly granted.

Figure 2.8(a) shows the relationship between latency and throughput. The median

(average) latency is 8 µs (7.1 µs), and the 99% (99.9%) latency is 12 µs (14 µs).

We emphasize that the latency is dominated by the processing latency at the client

software and NIC; the processing latency at the switch is under 1 µs. The latency is

not affected by the throughput, because even we use all 12 servers to generate requests,

they can still not saturate the switch. The switch can handle the lock request at line

rate, and the Intel Tofino switch used in the experiment is able to process more than

4 billion packets per second.
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Figure 2-8. Microbenchmark results of switch performance on handling lock requests.

Exclusive locks. We then evaluate the performance for exclusive locks. Similar to

the previous experiment, we use 12 servers to generate requests for exclusive locks. To

measure the baseline performance, the requests are sent to different locks and there

are no contentions. Figure 2.8(b) shows the results, which are similar to those for

shared locks. This is because in both cases, the requests are directly granted by the

switch and processed at line rate.

To show the impact of contention on exclusive locks, we let the servers send lock

requests to the same set of locks, and vary the number of locks in the set. The level of

contention decreases as the number of locks increases. Figure 2.8(c) shows the impact

of contention on the throughput. Under high contention (i.e., when the number of

locks is small), the throughput is very limited. This is because the requests for the

same lock have to be processed one by one, even though the switch still has spare
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Figure 2-9. Comparison between a lock switch and a lock server with various number of
cores. Ten servers are used to generate requests. The lock switch is not saturated. The
lock switch can support a few billion requests per second.

capacity. The throughput increases as the contention decreases. Under low contention,

the throughput is maximized by the speed of the 12 servers to generate lock requests.

Figure 2.8(d) shows the latency results. The latency is more than 100 µs under high

contention, and decreases to a few µs under low contention.

Comparison with lock server. We also compare the performance of a lock switch

with a lock server. We use 10 servers to generate requests, and the workloads are

similar to the previous experiments: shared locks, exclusive locks without contention,

and exclusive locks with contention (5000 locks). The lock server is implemented with

the same functionality and is configured with a different number of cores (1∼8) in this

experiment. Figure 2-9 shows the throughput of a lock switch and a lock server. The

lock switch outperforms the lock server by 7× as the lock server easily gets saturated

by a large number of requests. We emphasize that the lock switch is not saturated by

the ten clients in this experiment. The performance gap would be even larger if there

are more clients sending requests: the switch can process a few billion requests per

second and can potentially replace hundreds of servers for the same functionality.
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Figure 2-10. System comparison under TPC-C with ten clients and two lock servers.

2.6.3 Benefits of NetLock

We show the benefits of NetLock on its performance improvement and flexible pol-

icy support. The experiments use the TPC-C workload to show application-level

performance.

Performance improvement over DSLR, DrTM and NetChain. We show the

performance improvement of NetLock over the state-of-the-art solutions DSLR, DrTM

and NetChain. We show two scenarios, and each is conducted under two TPC-

C workload settings (high-contention and low-contention). Figure 2-10 shows the

throughput and latency of the first scenario, where we use ten machines as clients

to generate requests, and two machines as lock servers that run NetLock, DSLR or

DrTM; NetChain only uses the switch, and does not use any servers for lock processing.

Because NetChain treats both shared and exclusive locks as exclusive locks, it has

many fail-and-retry operations which degrade its performance. With the co-design of

the switch and lock servers, NetLock avoids a large number of fail-and-retry operations
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Figure 2-11. System comparison under TPC-C with six clients and six lock servers.

caused by contentions compared to NetChain. The clients only need to retry when there

is a packet loss or deadlock. By offloading using a fast switch to process most requests

and avoiding most of retries, NetLock improves the transaction throughput by 14.9×

(28.6×, 3.5×) and 18.4× (33.5×, 4.4×) in low and high contention settings respectively

compared with DSLR (DrTM, NetChain). Besides throughput, NetLock also reduces

both the average and tail latencies, by up to 20.3× (66.8×, 5.4×) and 18.4× (653.9×,

23.1×) respectively compared with DSLR (DrTM, NetChain). Figure 2-11 shows the

results of the second scenario, where we use six machines as clients and six machines

as lock servers for NetLock, DrTM and DSLR, and NetChain only uses the switch for

lock processing. While in this scenario the lock servers are less loaded than they are

in the previous scenario, NetLock still achieves significant improvement. Compared to

DSLR (DrTM, NetChain), it improves the transaction throughput by up to 17.5×

(33.1×, 5.5×), and reduces the average and tail latency by up to 11.8× (65.6×, 7.7×)

and 10.5× (602.8×, 34.4×) respectively.

Policy support. Besides performance, another benefit of NetLock is its flexible policy
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support. The default policy is starvation-freedom which helps reduce tail latency

and is shown in the previous experiment. Here we show the other two representative

policies mentioned in Section 2.4.4. Figure 2.12(a) shows how NetLock provides service

differentiation with priorities. There are two tenants with five clients each. Without

service differentiation, both tenants have similar performance when the high-priority

tenant begins to send requests. With service differentiation, the high-priority tenant

is prioritized over the low-priority tenant.

Figure 2.12(b) shows how NetLock enforces performance isolation. Different from

the service differentiation experiment, we assign seven clients to tenant 1 and three

clients to tenant 2. Because tenant 1 has more clients to generate requests at a faster

rate than tenant 2, when there is no performance isolation, tenant 1 starves tenant 2

and achieves higher throughput. With performance isolation, each tenant can only

obtain the tenant’s own share, which is half of the resources here, and two tenants

achieve similar performance.

2.6.4 Memory Management

We evaluate the efficiency of the memory allocation algorithm and the impact of the

switch memory size on system performance. The experiments are conducted with ten

clients and two lock servers under TPC-C workload (ten warehouses per node).

Memory allocation. NetLock uses an optimal knapsack algorithm to efficiently

pack popular locks into limited switch memory to maximize system performance.

We compare it with a strawman algorithm that randomly divides locks between the

switch and the servers. Figure 2.13(a) shows the lock request throughput and its

breakdown on the lock switch and the servers. Because the random approach does

not allocate the switch memory to the popular locks, the switch only processes a

small number of lock requests. On the other hand, NetLock efficiently utilizes the

limited switch memory to process as many requests as possible, and improves the total
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Figure 2-12. Policy support of NetLock.

throughput by 2.95×. Figure 2.13(b) shows the latency CDF of the two algorithms.

Because the random approach processes most lock requests in the lock servers, it incurs

high latency, especially at the tail. In comparison, because of the efficient memory

allocation, NetLock processes many requests directly in the switch and significantly

reduces the transaction latency.

Switch memory size. As discussed in Section 2.4.5, the impact of switch memory

size on the system performance depends on the think time and the memory allocation

mechanism. Figure 2.14(a) shows the impact of memory size on throughput under

different think times. The think time determines the maximum turnover rate of a

memory slot, which limits the maximum throughput the switch can support with a

given amount of memory. From the figure, we can see that when the think time is zero,

the throughput quickly grows up with more memory slots and achieves 8.64 MRPS at

the maximum. As the think time increases, the throughput is smaller and also grows

more slowly. When the think time is 100 µs, the system can only achieve 0.60 MRPS

because the memory in the switch is not efficiently utilized. Thus, NetLock is more

suitable for low-latency transactions.

Figure 2.14(b) shows the impact of memory size on throughput under different

memory allocation mechanisms. Because the knapsack algorithm used by NetLock can

efficiently utilize switch memory, the throughput increases quickly with more memory
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Figure 2-13. Impact of memory allocation mechanisms.
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Figure 2-14. Impact of memory size under different memory allocation mechanisms and
think times.

slots, and reaches the maximum throughput of 8.61 MRPS with 3000 slots. We

emphasize that the maximum throughput is bottlenecked by the speed of generating

requests from the clients and the intrinsic contentions between the transactions, not

the switch. On the other hand, because the random algorithm allocates the switch

memory to a random set of locks, it utilizes the switch memory poorly. As a result,

more memory slots does not help improve the transaction throughput of the system

under the inefficient memory allocation algorithm. Under this workload, NetLock can

achieve significant improvement with 5× 103 memory slots (160KB), which is only a

small fraction of the switch memory (tens of MB).
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2.6.5 Failure Handling

We finally evaluate how NetLock handles failures. We manually stop the switch

to inject a switch failure, and then reactivate the switch. Figure 2-15 shows the

throughput time series. At time 10 s, we let the NetLock switch stop processing any

packets. The system throughput drops to zero immediately upon the switch “failure”.

Then we reactivate the switch to process lock requests. The switch retains none of its

former state or register values. During the switch failure, the client keeps retrying

and requesting locks for their transactions. Upon reactivation, some lock requests of

a transaction can be processed by the new (reactivated) switch while others may be

lost. NetLock uses leasing to handle this situation. After reactivation, the system

throughput returns to the pre-failure level instantly. NetChain can be applied to chain

several NetLock switches to further reduce the temporary downtime.

2.7 Related Work

Lock management. Today’s centralized lock managers are implemented on servers [9–

13]. While they are flexible to support various policies, they suffer from limited

performance. Recent work has exploited decentralized lock managers for high perfor-

mance [7, 8, 14, 15]. These decentralized solutions achieve high performance at the cost

of limited policy support. Compared to them, NetLock is a centralized lock manager

that provides both high performance and the flexibility to support rich policies.
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Fast distributed transactions. There is a long line of research on fast distributed

transaction systems [23, 24, 27, 32–39]. These systems use a variety of techniques to

improve performance, from designing new transaction algorithms and protocols, to

exploiting new hardware capabilities like RDMA and hardware transactional memory.

NetLock can be used as a fast lock manager to improve general transactions without

any modifications to transaction protocols.

In-network processing. Recently there have been many efforts exploiting pro-

grammable switches for distributed systems, such as key-value stores [40–43], coordina-

tion and consensus [17, 44–48], network telemetry [49, 50], machine learning [51, 52],

and query processing [53]. Kim et al. [16] proposes to extend switch memory with

server memory using RDMA. NetLock provides a new solution for lock management,

does not rely on RDMA, and includes an optimal memory allocation algorithm to

integrate switch and server memory for the lock manager.

2.8 Conclusion

We present NetLock, a new centralized lock management architecture that co-designs

programmable switches and servers to simultaneously achieve high performance and

rich policy support. NetLock provides orders-of-magnitude higher throughput than

existing systems with microsecond-level latency, and supports many commonly-used

policies on performance and isolation. With the end of Moore’s law, we believe NetLock

exemplifies a new generation of systems that leverage network programmability to

extend the boundary of networking to IO-intensive workloads.
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Chapter 3

HCSFQ: Hierarchical
Core-Stateless Fair Queueing.

3.1 Introduction

Fair queueing is a canonical mechanism to provide fair bandwidth allocation to network

traffic by ensuring that each flow gets its fair share irrespective of the other flows.

This way, fair queueing enforces isolation between competing flows, which ensures that

normal flows are protected from ill-behaving flows. There is a long history of research

on fair queueing [54–65]. Many of the proposed solutions require to maintain per-flow

state in the switch, and rely on complex data structures and scheduling algorithms to

realize fair queueing.

Core-Stateless Fair Queueing (CSFQ) [66] is a scalable algorithm to realize fair

queueing. Compared to the alternatives, CSFQ has the unique property that it does

not maintain per-flow state in the network. With CSFQ, the sources or switches at

the edge classify traffic into flows and estimate per-flow rate. In turn, the switches in

the network estimate the fair rate, and use probabilistic dropping to regulate each

flow to its fair rate without maintaining per-flow state.

While CSFQ was proposed more than twenty years ago, it has not taken off. This

is primarily due to two reasons. First, it requires changes to the IP protocol (i.e.,

adding a field to the IP header) and coordination across all switches (routers) in the
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network. Second, CSFQ requires switches to estimate the fair rate, compute a drop

probability, and update the header of each packet. To perform these operations at

line rate we need hardware support. These challenges are exacerbated by the fact that

routers belong to different, often competing, Internet Service Provides (ISPs), which

would all need to cooperate to upgrade their infrastructures to support CSFQ.

However, two emerging technologies are making CSFQ relevant again: (i) the

advent of cloud computing and (ii) the increased popularity of programmable switches.

Cloud providers own large datacenters consisting of many thousands of servers. Since

a datacenter is typically owned by a single administrative entity (cloud provider) that

controls both the software and hardware, it is relatively easy for a cloud provider

to upgrade all its switches and servers to support CSFQ. FairCloud [67] proposes to

apply CSFQ for network isolation in datacenters, but it does not have a hardware

implementation for CSFQ. The emergence of programmable switches makes it possible

to implement sophisticated packet processing at line rate. In particular, as we will

show in this chapter, existing programmable switches are powerful enough to support

CSFQ at line rate.

While datacenter deployment removes the adoption barriers for CSFQ, it also

raises new challenges. In particular, while CSFQ has been designed for a flat hierarchy,

the traffic in today’s datacenters is naturally structured in a multi-level hierarchy.

For example, at the top level we typically have tenants and at the bottom level we

have the flows of those tenants. The mechanism of choice to manage such traffic is

hierarchical fair queueing [62, 63, 68], where each non-leaf node distributes its excess

bandwidth (i.e., the bandwidths unused by some of its children) across its children.

This allocation policy is consistent with a per-tenant payment granularity, i.e., network

resources are divided between tenants in proportion to their payments [67]. In this

case, if a flow of a tenant stops sending data, that tenant would want to re-allocate

the flow’s bandwidth to its other flows, and not to the flows of other tenants in the
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datacenter.

However, implementing hierarchical fair queueing is challenging. Existing solutions

require per-flow state, and more importantly, require complex queue management and

packet transfers in a hierarchy of queues [62, 63, 68]. Because of the implementation

complexity, hierarchical fair queueing is not supported by today’s high-speed hardware

switches.

To address this challenge, we propose Hierarchical Core-Stateless Fair Queueing

(HCSFQ). CSFQ only provides fair queueing, not hierarchical fair queueing. Directly

extending CSFQ to support hierarchical fair queueing would require a hierarchy of

queues. HCSFQ is able to accurately approximate hierarchical fair queueing and it is

highly scalable. The key difference of our approach is that HCSFQ requires only a

single queue, not a hierarchy of queues. HCSFQ also requires no packet scheduling.

HCSFQ recursively computes the fair rate of each node starting from the root, and

then limits the rate of each flow to its fair share rate. To the best of our knowledge,

HCSFQ is the first solution that enables hierarchical fair queueing on commodity

hardware at line rate while requiring neither per-flow state nor hierarchical queue

management.

An important distinction of HCSFQ from CSFQ is that HCSFQ keeps the state

of the interior nodes of the hierarchy in the switch. The state of the interior nodes

is necessary to support hierarchical fair queueing, as the fair share rates of distinct

interior nodes are typically different. The excess bandwidth of a flow is only shared

with its sibling flows. That is, if a flow changes its sending rate, it would impact the

fair rate of the sibling flows, but not necessarily of other flows in the hierarchy. Note

that similar to CSFQ, HCSFQ does not maintain per-flow state (i.e., the state of the

leaf nodes). Fortunately, for today’s multi-tenant clouds, the number of tenants is

orders of magnitude smaller than the number of flows, and commodity switches have

sufficient on-chip memory to maintain the state for these interior nodes.
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We exploit the capability of programmable switching to provide the first realization

of CSFQ and HCSFQ on commodity hardware. While conceptually simple, imple-

menting these schedulers on a programmable switch raises several technical challenges.

First, they use a complex formula to estimate the rates, which includes several floating-

point multiplication, divisions and exponentiation operations. Unfortunately, these

operations are not supported by today’s programmable switches. To get around this

challenge, we leverage high-precision timestamps and a window-based mechanism to

estimate these rates. Second, these algorithms rely on probabilistic packet dropping to

limit the flows to their fair rates. Unfortunately, probabilistic packet dropping cannot

be directly implemented in these switches. We discretize the probability computation

to approximate the dropping probability with bounded error. To discretize these

probabilities we leverage the switch’s random number generator and take advantage

of multiple stages. Third, computing the fair rate exhibits a circular dependency.

Unfortunately, the switch data plane consists of a multi-stage processing pipeline, and

the later stages cannot modify the state in the previous stages. To address it, we

judiciously use packet recirculation, and periodically update the fair rate to minimize

recirculation overhead.

In summary, we make the following contributions.

• We extend CSFQ to HCSFQ, the first scalable, practical solution to implement

hierarchical fair queueing on commodity hardware at line rate with no per-flow

state and no hierarchical queue management.

• We exploit the capability of programmable switching ASICs to provide the first

data plane design for CSFQ and HCSFQ.

• We implement a prototype of CSFQ and HCSFQ on a Intel Tofino Wedge 100BF-

65X switch. Our experiments show that CSFQ and HCSFQ can provide fair

bandwidth allocation and ensure isolation.
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Figure 3-1. Core-Stateless Fair Queueing.

3.2 Background and Motivation

Our work is motivated by the need for network isolation in multi-tenant datacenters.

CSFQ is a scalable solution for fair queueing. We review the background of CSFQ,

and identify the opportunities for CSFQ in modern datacenters.

3.2.1 Core-Stateless Fair Queueing

Fair queueing provides max-min fairness for competing flows. A max-min fair band-

width allocation is one that any increase of the allocation to some flows would

necessarily decrease the allocation of some other flows. The basic way to realize

fair queueing in a switch is to keep one queue for each flow and use a scheduling

algorithm to pick which queue to dequeue a packet each time. There has been decades

of research on fair queueing [54–65]. While we leave the extensive discussion to related

work (§3.7), we emphasize that most solutions are not scalable because of the need to

maintain per-flow state to classify flows and shape their rates with per-flow queues

and complex queue management. As a result, commodity switches only support 10–20

queues.

CSFQ is a scalable algorithm to achieve fair queueing with a unique property that
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it does not maintain per-flow state in the network. Figure 3-1 shows the architecture

of CSFQ. CSFQ divides the network into edge and core. The switches or hosts at the

edge, which do maintain per-flow state, use per-flow state to classify packets into flows

and estimate per-flow arrival rate. Then the arrival rate of each flow is carried in a

custom packet header. The switches in the core only estimate the total arrival rate of

all flows, and then use it to estimate the fair share rate with an iterative algorithm.

The switches compare the per-flow arrival rate in the packet header with the fair share

rate to compute a drop probability, and drop packets to shape the rate of each flow to

the fair share rate.

The key benefit of CSFQ is that the complexity (packet classification and flow

rate estimation with per-flow state) is moved to the edge, making the core extremely

simple. A core switch only maintains the state for aggregate variables (total arrival

rate, total accepted rate and fair share rate), and only uses one queue for packet

buffering. More importantly, the complexity of a core switch does not change with

the number of flows, making the core scale-free.

3.2.2 Opportunities

CSFQ did not take off because it requires cooperation between ISPs to provide end-

to-end isolation for Internet flows, and requires protocol and hardware changes. After

twenty years, we believe the time for CSFQ has come because of two opportunities.

The first opportunity is from cloud computing. Cloud computing has become

the fundamental infrastructure of today’s Internet. Datacenters power large-scale

Internet services we use everyday such as search, social networking and e-commerce,

and enterprises are increasingly moving their workloads to the cloud. Fair bandwidth

allocation and network isolation for datacenter networks is an important problem [67,

69–81]. While there has been many fair queueing algorithms proposed in the past [54–

65], they are rarely deployed in practice because they need to maintain per-flow

52



L

f1 f2 f3 f4

A1 A2

link capacity=10

55

1 4 2.5 2.5

(b) Hierarchical fair queueing.(a) Fair queueing.

flow f1 f2 f3 f4

arrival
rate

1 4 5 5

bandwidth
allocation

1 3 3 3

Figure 3-2. Fair queueing and hierarchical fair queueing.

state in switches but switches can only support 10–20 queues. CSFQ provides a

scalable solution to address this problem. Datacenter operators control the entire

infrastructure, including both software and hardware. Adopting CSFQ to enforce

isolation for datacenter networks naturally eliminates the need of cooperation between

different operators or ISPs, as a datacenter network is under a single administrative

domain.

The second opportunity is from programmable switching ASICs. Traditional

switching ASICs are fixed-function, and adding a new feature like CSFQ requires

switch vendors to design a new ASIC. Emerging programmable switching ASICs, such

as Intel Tofino [19], Broadcom Trident 4 [20] and Cavium XPliant [21], allow users to

program the data plane and develop new features. Specifically, to implement CSFQ

on a programmable switch, we can program the parser to parse the custom header

of CSFQ (to carry per-flow rate), program the match-action tables to implement

the CSFQ algorithm, and program the on-chip memory to store the aggregate state.

Because a datacenter network is under a single administrative domain, it is easy for the

operator to adopt the protocol and hardware changes with programmable switching

ASICs.
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3.3 Hierarchical Fair Queueing

A multi-tenant cloud has a natural two-layer hierarchy, with the tenants at the first

layer and the flows of each tenant at the second layer. Network isolation for multi-

tenant datacenters naturally requires hierarchical fair queueing. CSFQ only supports

fair queueing, but not hierarchical fair queueing. Hierarchical fair queueing provides

fair queueing in a hierarchical manner. Flows are grouped into flow aggregates

in multiple layers. The root of the tree includes all the flows. Each node in the

tree includes a subset of the flows, called a flow aggregate, and fairly allocates its

bandwidth to its child nodes. This is done recursively until leaf nodes, each of which

contains one flow. The flows are broadly defined, e.g., based on five-tuple or network

management considerations. In the case of multi-tenant clouds, it is a two-layer

bandwidth allocation. The bandwidth is first allocated to the tenants in the first layer,

and then each tenant allocates its bandwidth to its own flows in the second layer.

Fair queueing allocates bandwidth fairly to competing flows, and is work conserving,

i.e., unused bandwidth share of a flow can be allocated to other flows. The key benefit

of hierarchical fair queueing is that it allows unused share of a flow to be allocated to

other flows in the same flow aggregate, instead of being shared by all the flows. Fair

queueing can be considered as a special case of hierarchical fair queueing that contains

only one layer. Two-layer fair queueing for multi-tenant clouds is desirable because

the payment is based on per tenant. A tenant would want to share its bandwidth only

between its own flows, as long as it has sufficient demand.

Example. We use an example in Figure 3-2 to contrast hierarchical fair queueing

with fair queueing. There are four flows, i.e., f1, f2, f3, and f4. The arrival rates of

the four flows are 1, 4, 5, and 5, respectively. The link capacity is 10. With only

fair queueing, the unused share of f1 is evenly allocated to all other three flows. As

shown in Figure 3-2(a), the bandwidth allocation to the four flows is (1, 3, 3, 3).
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Figure 3-3. Comparison of traditional hierarchical fair queueing design, naive design to
extend CSFQ, and HCSFQ design.

Suppose that f1 and f2 are in one flow aggregate (A1), and f3 and f4 are in the other

(A2). With hierarchical fair queueing, the unused fair share of f1 is only allocated

to f2, instead of also being shared by f3 and f4. Figure 3-2(b) shows the bandwidth

allocation with two-layer hierarchical fair queueing, where the flows receive 1, 4, 2.5,

and 2.5, respectively.

Challenge. Hierarchical fair queueing is known to be challenging to realize in switches

at high speed. A traditional design to support hierarchical fair queueing is to leverage

a hierarchy of queues, and each node in the hierarchy implements fair queueing for the

queues of its child nodes. Figure 3-3(a) shows an example of such a design to support

55



the two-layer hierarchy in Figure 3-2(b). This design has two major problems. First,

the amount of state and the number of queues needed by this design is proportional

to the number of nodes in the hierarchy. It needs to maintain per-flow state and the

state of each interior node in the tree. Second, the design involves complex queue

management with a hierarchy of queues, as packets need to be moved between queues

in different layers. CSFQ does not require maintaining per-flow state, but naively

extending CSFQ to support hierarchical fair queueing would still require a hierarchy

of queues as shown in Figure 3-3(b). These two factors together make the design hard

to scale to support a large number of flows. As a result, hierarchical fair queueing is

not supported by today’s high-speed switches.

3.4 HCSFQ Design

We propose Hierarchical Core-Stateless Fair Queueing (HCSFQ), which generalizes

CSFQ to support hierarchical fair queueing. HCSFQ is the first scalable solution

that enables hierarchical fair queueing on commodity hardware at line rate without

per-flow state and complex hierarchical queue management.

We give a high-level overview of HCSFQ in Figure 3-3(c). In contrast to the

traditional design in Figure 3-3(a), HCSFQ has two unique properties: (i) it does not

maintain per-flow state, but only keeps the state of interior nodes; (ii) it does not

require a hierarchy of queues, but only uses one queue. These two properties together

dramatically simplify the design, making HCSFQ amenable to be implemented on

high-speed switches under strict timing and resource constraints.

The major distinction between HCSFQ and CSFQ is that HCSFQ needs to

maintain the state of interior nodes. This is necessary because HCSFQ aims to provide

hierarchical fair bandwidth allocation for a flow hierarchy. Note that the naive design

of extending CSFQ in Figure 3-3(b) also requires maintaining the state of interior
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(b) Allocation at time T2.
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Figure 3-4. The flow arrival rates change from T1 to T2. It is necessary for the switch to
keep the state for the interior nodes of the hierarchy in order to realize hierarchical fair
queueing.

nodes. In fair queueing, CSFQ only requires to keep one fair share rate, which is the

same for all flows. But in hierarchical fair queueing, the fair share rates for different

flows can be different if two flows are not siblings (i.e., do not have the same parent

node). If a flow changes its rate, it would affect the fair share rate of its sibling

flows, but not necessarily those of non-sibling flows. Figure 3-4 illustrates this with

a concrete example. There is a two-layer hierarchy with four flows. At time T1, the

arrival rates for the four flows are 1, 4, 5, and 5 (the same as Figure 3-2). The fair

share rate at L is 5, and those at A1 and A2 are 4 and 2.5. Then at time T2, f1

increases its arrival rate from 1 to 2. Then under fair bandwidth allocation, the new

fair share rate for the subtree under A1 becomes 3, so that f1 receives 2 and f2 receives

3. The rate change of f1, however, does not effect the fair share rate for f3 and f4.

This is because f3 and f4 are not sibling nodes of f1.

CSFQ can be considered as a special case of HCSFQ which contains only one layer,

and as such, it only carries the state for one interior node—the root.
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3.4.1 Fluid Model

We first use a fluid model to formalize hierarchical fair queueing. The fluid model

considers a switch with output link capacity C, and the flows are modeled as a

continuous stream of bits. The flow hierarchy is represented as a directed graph

G(V, E), where V is the set of nodes and E is the set of edges. A node v ∈ V

represents a flow aggregate (i.e., a set of flows), where r(v) is the arrival rate of the

flow aggregate and c(v) is the capacity allocated to v. A directed edge e(v, u) ∈ E

represents that u is a child of v.

Max-min fair bandwidth allocation ensures that the flows that are bottlenecked by

a link receives the same output rate, which we call the fair share rate. Let α(v) be

the fair share rate that node v allocates to its children. If max-min fair bandwidth

allocation is achieved, for a child node u of node v, the flow aggregate at u receives a

bandwidth allocation of c(u) = min(r(u), α(v)). The arrival rate of v is the sum of

the arrival rates of its children, i.e., r(v) = ∑
e(v,u)∈E r(u). If r(v) > c(v), the arrival

rate of v exceeds the capacity allocated to v, and the fair rate α(v) is the unique

solution to

c(v) =
∑

e(v,u)∈E

min(α(v), r(u)). (3.1)

If r(v) ≤ c(v), the arrival rate of v is no more than the capacity allocated to v, and

all flows in v can be forwarded without dropping packets. In this case, by convention

we have

α(v) = max
e(v,u)∈E

r(u). (3.2)

The fair rate computation is done recursively from the root to the leaf nodes.

When v is the root, we have c(v) = C, where C is the link capacity. Then starting

from the root, we can compute c(v) and α(v) for each node in the tree.
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Based on this fluid model, there is a simple algorithm to achieve max-min fair

bandwidth allocation. In this algorithm, we first use the recursive computation to

compute α(v.parent) for each leaf node v, which is the fair share rate allocated by

v’s parent to v. If r(v) ≤ α(v.parent), then no bits need to be dropped; otherwise, a

fraction of (r(v)−α(v.parent))/r(v) need to be dropped. Therefore, achieve max-min

fair bandwidth allocation, each incoming bit of the flow in v is dropped by probability

max(0, 1− α(v.parent)
r(v) ). (3.3)

3.4.2 HCSFQ Algorithm

The HCSFQ algorithm realizes the conceptual fluid algorithm in a real switch. Similar

to CSFQ, HCSFQ does not maintain per-flow state, and only requires a single FIFO

queue for packet buffering (Figure 3-3). The algorithm relies on two building blocks

from CSFQ, which are arrival rate estimation and fair share rate estimation, and

applies them recursively to compute the fair share rate for each leaf node.

Arrival rate estimation. The arrival rate estimation is used to estimate the arrival

rate of a flow aggregate for a node in the hierarchy. Like CSFQ, it uses the canonical

exponential averaging mechanism in networking for rate estimation. Let ti and li be

the arrival time and length of the ith packet of the flow aggregate in node v. We use

r(v) to denote the estimated arrival rate of v. It is updated each time a new packet of

v arrives, based on the following equation,

r(v)new = (1− eTi/K) li
Ti

+ eTi/Kr(v)old, (3.4)

where Ti = ti − ti−1 and K is a constant.

Fair share rate estimation. The fair share rate estimation is used to estimate the

fair share rate that a node allocates to its children. The capacity of node v is c(v).
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Eq.(3.4) gives the arrival rate of the node r(v). If r(v) ≤ c(v), then α(v) is calculated

using Eq.(3.2). Otherwise, α(v) should be the unique solution to Eq.(3.1). We apply

the iterative algorithm in CSFQ to approximately solve the equation. Specifically, for

each node v, we maintain the accepted rate estimation f(v), which is updated with

Eq.(3.4) if the packet is not dropped. Then, α(v) is approximately computed with

the following formula,

α(v)new = α(v)old
c(v)
f(v) . (3.5)

Note that the computation of α(v) is iterative. It converges to the solution of

Eq.(3.1) after several iterations, i.e., processing several packets. Similar to CSFQ,

HCSFQ also uses a window of size Kc to account for inaccuracies introduced by

exponential averaging in rate estimation. That is, α(v) is updated only if the node is

congested (r(v) > c(v)) or uncongested (r(v) ≤ c(v)) for an interval of length Kc.

Packet state. A packet pkt carries two pieces of state in the packet header, which

are pkt.r and pkt.nodes.

• pkt.r is the arrival rate estimate of the flow the packet belongs to.

• pkt.nodes is a list of node IDs that indicate the flow aggregates the packet belongs

to in the flow hierarchy, excluding the leaf. For example, in Figure 3-2, if a packet

pkt belongs to f1 or f2, then pkt.nodes = [L, A1].

CSFQ only carries pkt.r in the packet header as there is no flow hierarchy. HCSFQ

additionally carries pkt.nodes to track the set of flow aggregates the packet belongs to

in the hierarchy. Similar to CSFQ, both pkt.r and pkt.nodes are inserted at the edge.

An edge switch (e.g., a software switch, a NIC or a ToR switch in datacenter networks)

performs packet classification to get pkt.nodes, and uses Eq.(3.4) to estimate the flow

rate pkt.r. Both pkt.r and pkt.nodes are transparent to end hosts and are removed

60



Algorithm 4 HCSFQ(pkt)
1: cur_α← 0
2: for v ∈ pkt.nodes do

// estimate arrival rate
3: r[v]← estimate_rate(pkt)
4: cur_α← α[v]

// calculate drop probability
5: prob← max(0, 1− cur_α/pkt.r)
6: if prob > rand(0, 1) then
7: drop_flag ← TRUE

8: for v ∈ pkt.nodes do
// estimate accepted rate

9: if drop_flag is False then
10: f [v]← estimate_rate(pkt)

// allocate bandwidth
11: if v is root then
12: c[v]← link capacity
13: else
14: c[v]← min(α[v.parent], r[v])

// update fair share rate
15: if r[v] > c[v] then
16: if congest_flag[v] is FALSE then
17: congest_flag[v]← TRUE
18: start_time← current_time
19: else if current_time− start_time > Kc then
20: α[v]← α[v] · c[v]/f [v]
21: start_time← current_time

22: else
23: if congest_flag[v] is TRUE then
24: congest_flag[v]← FALSE
25: start_time← current_time
26: tmp_α[v]← 0
27: else if current_time− start_time ≤ Kc then
28: child_r ← v.next = NULL ? pkt.r : r[v.next]
29: tmp_α[v]← max(tmp_α[v], child_r)
30: else
31: α[v]← tmp_α[v]
32: start_time← current_time
33: tmp_α[v]← 0
34: cur_α← α[v]

// drop or enqueue pkt
35: if drop_flag then
36: drop(pkt)
37: else
38: enqueue(pkt)

// update the packet rate
39: pkt.r ← min(cur_α, pkt.r)

by the switch at the last hop.
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Hierarchical computation. The main difference between HCSFQ and CSFQ is

that HCSFQ performs fair share rate estimation recursively in a hierarchical manner.

In CSFQ, the arrival rate estimation for each flow is done at the edge, and a core

switch only estimates the total arrival rate. In HCSFQ, because there is a hierarchy

of flow aggregates, a core switch additionally estimates the arrival rate for each flow

aggregate (i.e., the internal nodes in the tree). Similarly, in CSFQ, a core switch only

calculates a fair share rate for the link, while in HCSFQ, a core switch additionally

calculates a fair share rate for each flow aggregate. Importantly, the fair share rate

estimation in HCSFQ is used to bridge the computation of different layers together.

That is, for node v, the allocated bandwidth c(v) is used to estimate the fair share

rate α(v), which is then used to compute the allocated bandwidth of its children, i.e.,

c(u) for u ∈ v.children, in the next layer.

Algorithm 4 shows the pseudo code of the HCSFQ algorithm. When a packet

pkt arrives at the switch, the switch updates the arrival rate estimate for each flow

aggregate the packet belongs to using Eq.(3.4), and gets the fair share rate of the

flow (line 1-4). Then the switch computes the dropping probability based on Eq.(3.3)

and decides whether to drop the packet (line 5-7). After this, the switch recursively

updates the fair share rate of each flow aggregate in the hierarchy (line 8-34). Based

on whether the packet is dropped, the switch updates the accepted rate estimate for

each flow aggregate (line 9-10). If node v is the root, then all flows are under this node,

and its allocated capacity is the link capacity (line 11-12); otherwise, its allocated

capacity is the max of the fair share rate allocated by its parent and its arrival rate

(line 13-14). If the arrival rate of v is bigger than its allocated capacity, then the node

is congested, and the fair share rate is updated based on Eq.(3.5) (15-21); otherwise,

the fair share rate is the max arrival rate of its children, i.e., based on Eq.(3.2) (line

22-33). Note that we use a window of length Kc for fair share update to account for

inaccuracies in rate estimation. Based on the dropping decision, the switch drops or
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Figure 3-5. Example of the HCSFQ algorithm to provide hierarchical fair queueing for
the scenario in Figure 3-2(b).

enqueues the packet (line 35-38). Finally, the arrival rate pkt.r is updated and will be

used by the next-hop switch (line 39). Note that the loops (line 2-4 and line 8-34) are

done in one pass and the fair share rate is updated based on c[v.parent] from the last

round.

Figure 3-5 illustrates how the algorithm works to realize hierarchical fair queueing

for the example in Figure 3-2. At the root, the total arrival rate of all flows r(L) is

15, and the capacity c(L) is the link capacity 10, which is below the arrival rate. The

root fairly allocates the capacity to the two flow aggregates, A1 and A2. The figure

shows the stable state when the accepted rates and fair share rates of all the nodes

have converged. After convergence, the accepted rate f(L) is 10, and the fair share

rate α(L) is 5. At node A1, the arrival rate r(A1), which is the sum of r(f1) and r(f2),

is 5, and the allocated capacity c(A1) is 5. The fair share rate is set as 4, and there is

no need to drop packets for f1 and f2. At node A2, the arrival rate r(A2), which is 10,

is bigger than the allocated capacity, which is 5. A2 allocates its capacity to f3 and f4

fairly. Each receives a fair share rate of 2.5. So the switch drops 50% of the packets

for both f3 and f4.

Weighted HCSFQ. The HCSFQ algorithm can be extended to support flows and

flow aggregates with weights. For node v, we use w(v) to represent the weight of the
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flow or flow aggregate of v. Under max-min fair bandwidth allocation, competing flows

or flow aggregates at the bottlenecked link have the same fair share rate r(v)/w(v).

There are two changes to the algorithm in order to incorporate the weight. The first

change is on the equation to compute the fair rate α(v) when r(v) > c(v). Eq.(3.1) is

changed to

c(v) =
∑

e(v,u)∈E

w(u) ·min(α(v), r(u)
w(u)). (3.6)

The second change is on the equation to compute the drop probability. Eq.(3.3) is

changed to

max(0, 1− α(v.parent) · w(v)
r(v) ). (3.7)

3.4.3 Theoretical Guarantee

We have the following theorem to provide the theoretical guarantees for HCSFQ. The

proof of the theorem is in Appendix.

Theorem 2. Consider a link with a hierarchical fair queueing policy and a flow in

the hierarchy. Let w1, w2, ..., wn be the weights of the nodes from the root to the flow.

Let α1, α2, ..., αn be the constant normalized fair rate of the nodes from the root to

the flow. Let rαi
= αiwi. If probabilistic dropping is applied at the last layer, then the

excess service received by the flow that sends at a rate at no larger than R, is bounded

above by

rαnK(1 + ln
R

rαn

) + lmax (3.8)

where lmax is the maximum packet length.

Consider a parent and its children in the hierarchy. Let the number of children be

k. Let rα′ be the weighted fair rate of the parent, and r(j)
α be the weighted fair rate of

the j-th child. Suppose the inter-arrival time of every packet is at least τ , and

rα′ ≥ 1
1− e−τ/K

k∑
j=1

r(j)
α .

The the parent node does not drop packets.

64



Proof. The first conclusion is directly derived from the guarantee of CSFQ [66].

For the second conclusion, we consider a model with a parent and k children. We

add a script ′ to represent the notations related to the parent, e.g., r′
i is the estimated

arrival rate of the i-th packets at the parent. We add a script (j) to represent the

notations related to the j-th child, e.g., r
(j)
i is the estimated arrival rate of the i-th

packets at the j-th child. Suppose the time episode is universal for all children.

Suppose that r
(j)
0 = r′

0 = 0 for j = 1, . . . , k.

Suppose the inter-arrival time Ti ≥ τ for all i. Suppose

rα′ ≥ 1
1− e−τ/K

k∑
j=1

r(j)
α .

Then we will show that the parent node rα′ does not drop packets. To this end,

we only need to prove that

r′
i ≤ rα′ , ∀i. (3.9)

After the first drop, the package length is hi = h
(1)
i + · · ·+ h

(k)
i , where

h
(j)
i =

⎧⎪⎨⎪⎩
ℓ

(j)
i r

(j)
i ≤ r(j)

α ,

ℓ
(j)
i

r
(j)
α

r
(j)
i

r
(j)
i > r(j)

α .

And by definition,

r′
i = (1− e−Ti/K)hi

Ti

+ e−Ti/Kr′
i−1, 1 ≤ i ≤ n.

We now recursively prove Eq. (3.9).

(i) First let i = 1.

We will use the following inequality to prove Eq. (3.9):

(1− e−T1/K)h
(j)
1

T1
≤ r(j)

α , ∀j. (3.10)

On the one hand, if Eq. (3.10) is true, we have

r′
1 = (1− e−T1/K)

∑k
j=1 hj

1

T1
≤

k∑
j=1

rj
α ≤ rα′ ,
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which implies Eq. (3.9) for i = 1.

On the other hand, recall r
(j)
1 = (1 − e−T1/K) ℓ

(j)
1
T1

, we then prove Eq. (3.10) as

following:

1. If r
(j)
1 < r(j)

α , then h
(j)
1 = ℓ

(j)
1 , thus

(1− e−T1/K)h
(j)
1
T

= (1− e−T1/K)ℓ
(j)
1
T

= r
(j)
1 ≤ r(j)

α .

2. If r
(j)
1 ≥ rα, then h

(j)
1 = ℓ

(j)
1

r
(j)
α

r
(j)
1

, thus

(1− e−T1/K)h
(j)
1

T1
= (1− e−T1/K)ℓ

(j)
1
T1

r(j)
α

r
(j)
1

= r(j)
α .

Thus Eq. (3.10) holds.

(ii) Now suppose that r′
i−1 ≤ rα′ .

We will use the following inequality to prove our claim:

(1− e−Ti/K)h
(j)
i

Ti

≤ r(j)
α , ∀j. (3.11)

On the one hand, if Eq. (3.11) is true, we have

r′
i =(1− e−Ti/K)

∑k
j=1 h

(j)
i

Ti

+ e−Ti/Kr′
i−1

≤
k∑

i=1
rα + e−a/Kr′

α ≤ r′
α,

which implies Eq. (3.9) for i.

On the other hand, recall

r
(j)
i = (1− e−Ti/K)ℓ

(j)
i

Ti

+ e−Ti/Kr
(j)
i−1,

we then prove Eq. (3.11) as following:

1. If r
(j)
i < r(j)

α , then h
(j)
i = ℓ

(j)
i , thus

(1− e−Ti/K)h
(j)
i

Ti

=(1− e−Ti/K)ℓ
(j)
i

Ti

=r
(j)
i − e−Ti/Kr

(j)
i−1

≤r
(j)
i ≤ r(j)

α .
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2. If r
(j)
i ≥ r(j)

α , then h
(j)
i = ℓ

(j)
i

r
(j)
α

ri

(j)
, thus

(1− e−Ti/K)h
(j)
i

Ti

=(1− e−Ti/K)ℓ
(j)
i

Ti

r(j)
α

r
(j)
i

=(r(j)
i − e−Ti/Kr

(j)
i−1)

r(j)
α

r
(j)
i

≤r
(j)
i

r(j)
α

r
(j)
i

= r(j)
α .

Thus Eq. (3.10) holds. By (i) and (ii) and mathematical induction our proof is

finished.

Remark. The first conclusion bounds the excess service that can be received by a

flow. The second conclusion provides the theoretical condition for only performing

probabilistic dropping at the leaf node.

3.5 Data Plane Design and Implementation

In this section, we describe a data plane design to implement CSFQ and HCSFQ

on new-generation programmable switches. Programmable switches enable users to

program the multi-stage match-action pipeline in the switch data plane to imple-

ment custom features. Users can also access the on-chip memory and implement

stateful operations using the register arrays provided by programmable switches.

Programmable switches also support a set of primitive actions (e.g., recirculate, bit

shift, add and subtract) which make HCSFQ possible. Based on the constructs

of programmable switches, we show how to design and implement the rate estima-

tion, the fair rate computation and the flow shaping logic (i.e., Algorithm 4) on

programmable switches. Our HCSFQ implementation contains 1952 lines of code in

P4 and is compiled to Intel Tofino ASIC [19]. The code is open-source and available

at https://github.com/netx-repo/HCSFQ.
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3.5.1 Single Layer

We first describe how to implement CSFQ, i.e., single-layer HCSFQ, which is used as

a building block to implement multi-layer HCSFQ. There are three challenges to im-

plement single-layer HCSFQ on programmable switches: rate estimation, probabilistic

drop, and fair rate update. We describe each challenge and its solution as follows.

Rate estimation. The switch needs to estimate two rates: the total arrival rate r,

and the accepted rate f . Both rates are estimated with Eq.(3.4). Because switches

have strict timing and resource requirements, an action in a match-action table can

only contain a small number of operations in a limited operation set. The equation

cannot be directly implemented in the switch data plane due to two reasons. First,

the equation involves several multiplication, division and exponentiation operations

on floating points. These operations are quite complex and require multiple clock

cycles to compute. As such, they are not typically supported by the switch data plane.

Second, a rate (r or f) is stored in a register of the on-chip memory. To update the

rate, the switch needs to read the rate from the register, uses the equation to calculate

the new rate, and then updates the register. A register can only be accessed by its

own stage, but the equation includes multiple arithmetic operations, which requires

multiple stages to compute.

We leverage the high-precision timestamps available in the data plane, and use a

window-based mechanism to estimate the rates. Programmable switches are able to

provide high-precision timestamps at the granularity of one nanosecond. To estimate

a rate, the switch maintains a pair of registers (reg.byte and reg.start). One register

(reg.byte) stores the total bytes of packets the switch has received in the current

window. The other register (reg.start) stores the start timestamp of the current

window. For each incoming packet, the switch first checks the current timestamp and

compares it with reg.start to see if the packet belongs to the current window. If so, the
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switch adds the size of the packet to reg.byte; otherwise, the switch clears reg.byte and

sets reg.start to the current timestamp. The switch keeps another register reg.rate

to store the current rate estimate. When a window is passed, the switch uses reg.byte

to update reg.rate, which can be done with either a direct assignment, or a moving

average. Our experiments indicate that using a moving average (implemented with

several bit shift and addition operations) works better and avoids oscillation with the

control loop that updates the fair share rate and drops packets.

The key benefit of this window-based mechanism is that because the switch

can provide nanosecond-granularity timestamps, we can use a small window size to

accurately estimate flow rate and capture sudden packet bursts. It is important to

note that the rate estimation is local to the switch and only uses timestamps to divide

time into windows. So there is no need for time synchronization between switches.

Probabilistic drop. Probabilistic drop is used to regulate the flows to the fair share

rate. The switch uses the fair share rate α and the flow arrival rate r to compute the

probability to drop packets of the flow (Eq.(3.3) and line 5 in Algorithm 4). Then

the switch checks the condition max(0, 1 − α/r) > rand(0, 1) to decide whether to

drop an incoming packet or not. Similar to rate estimation, the challenge is that

switches do not support the division operation to compute the probability. One way

to solve the problem is to use a similar window-based mechanism as rate estimation,

i.e., divide time into windows with window size δ, and keep counters to allow up to

rδ packets to pass in each window and drop all remaining packets. The drawback of

this approach is that it introduces bursty packet drops, which do not work well with

congestion control. We want to mimic the behavior of CSFQ to have random packet

drops that are uniformly distributed in the packet stream.

We discretize the probability computation to approximate the drop probability with

bounded error. We leverage the random number generator provided by the data plane

and use multiple stages to realize the discretized computation. Specifically, to check
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the condition max(0, 1− α/r) > rand(0, 1), it is sufficient to check rand(0, 1) > α/r.

We multiply r to both sides of the inequality, and transform the condition to

rand(0, r) > α.

If the switch can generate a random number between 0 and r, then we can simply

compare the generated random number and α to decide whether to drop a packet.

However, some switches can only generate a random number in a range of a power

of two, i.e., in [0, 2n − 1], where n is a given value at compilation time and cannot

be a variable. One possible solution is to use a large value for n at compilation time

and use rand(0, 2n − 1)%r to approximate rand(0, r). But the modulo operation

on an arbitrary number may not be supported, and the generated numbers are not

uniformly distributed in [0, r]. We solve this problem by discretizing the probability

computation. We use an integer, instead of a floating point, for the probability. We

convert the condition to

rand(0, 2n − 1) · r > (2n − 1) · α.

While multiplication is not directly supported, we can convert a multiplication opera-

tion into several bit shift and addition operations. Since n is small and one stage can

do multiple operations, a multiplication can be done in a few stages. This solution

introduces errors because the random number is an integer in [0, 2n − 1], instead

of a real number in [0, 1]. However, the error is bounded by 1/2n, which reduces

exponentially with n. When n is 7, the error introduced by the approximation is

bounded by 1/128, which is smaller than 1%.

Fair rate update. When the link is congested, the fair share rate is the unique

solution to Eq.(3.1). Because HCSFQ does not maintain per-flow state, it uses

αnew = αoldc/f (Eq.(3.5)) to approximately compute the fair share rate, where c

is the capacity and f is the accepted rate. Like rate estimation and probabilistic
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drop, Eq.(3.5) cannot be supported because it contains multiplication and division.

What is more challenging is that the fair rate update introduces the following circular

dependency to the packet processing.

read α → enqueue/drop → update f → update α

Specifically, the switch needs to read α to compute the drop probability. Then based

on whether to enqueue or drop a packet, the switch updates the accepted rate f ,

which is then used to update α. Because a register can only be accessed by its own

stage, the new value of α cannot be used to update the register that stores α in a

previous stage.

To address these two problems, we first observe that the update equation αnew =

αoldc/f in HCSFQ is already an approximation, and the correct α is iteratively

computed after several updates until f converges to c. As such, we replace the update

equation with an additive-increase multiplicative-decrease method, which increases

or decreases α each time if f is not equal to c. This ensures that the value for α

converges to the correct value. Note that in the original CSFQ, α is also computed

iteratively to converge to the correct value.

To address the circular dependency, we leverage packet recirculation available in

programmable switches, and let the recirculated packets carry the new value of α

to update the register for α in a previous stage. Switches have limited bandwidth

for recirculation. We judiciously use packet recirculation to minimize recirculation

overhead. We follow the same scheme as CSFQ: update α only when the node is

congested or uncongested for a window length of Kc. Given the window size Kc, α is

updated by at most 1/Kc times per second. As a concrete example, let Kc be 10 µs.

Then α is updated by at most 100K times per second, and the amount of recirculation

traffic is only a tiny fraction of the switch capacity.
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3.5.2 Multiple Layers

The single-layer design is used as a building block to support multiple layers. As shown

in Algorithm 4 and Figure 3-5, the processing of HCSFQ on a packet is performed

layer by layer, from the root to the leaf node. This well matches the multi-stage packet

processing pipeline of programmable switches. The layers in HCSFQ can be mapped to

the stages in the pipeline, which naturally processes packets sequentially stage by stage.

The major difference between HCSFQ and CSFQ is that HCSFQ needs to store more

states as it has multiple layers. CSFQ is a single-layer HCSFQ and only maintains the

state for three variables, which are the total arrival rate r, the accepted rate f , and the

fair share rate α. Each variable use multiple registers as described in §3.5.1. HCSFQ

maintains the state for all interior nodes, each of which includes the three variables.

Commodity switches have 10-100 MB on-chip memory [82], which is able to support a

large number of interior nodes. For a two-layer HCSFQ for tenant-level and flow-level

isolation in multi-tenant datacenters, a switch needs to maintain per-tenant state,

but not per-flow state. With 10-100 MB memory, the switch can support millions of

tenants. In terms of the number of layers, our prototype supports up to four layers on

Intel Tofino. There is no theoretical limit on the number of layers given the scalable

algorithm design. The constraints for practical implementations mainly come from

the restricted hardware primitives to implement the algorithm as we describe in §3.5.1.

These constraints are not fundamental. Newer programmable switches (e.g., Intel

Tofino 2) have more stages and provide more hardware primitives to support more

layers. Despite this, we expect HCSFQ with 2–4 layers should be sufficient to provide

hierarchical isolation for many datacenter scenarios (e.g., multi-tenancy).
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Figure 3-6. Testbed experiments of fair queueing for UDP. Flow 1–24 send at 2Gbps and
Flow 25-32 send at 8Gbps.

3.6 Evaluation

In this section, we provide experimental results to demonstrate the performance of

HCSFQ. We first evaluate the performance of single-layer HCSFQ (i.e., CSFQ), and

show that it can provide fair queueing (§3.6.1). We then evaluate the performance of

two-layer HCSFQ, and show that it can provide hierarchical fair queueing to enforce

tenant-level and flow-level isolation for multi-tenant datacenters (§3.6.2). Finally,

we use simulations to evaluate HCSFQ in a large-scale datacenter environment and

compare it with several alternatives (§3.6.3).

All testbed experiments are conducted on a hardware testbed with an Intel Tofino

Wedge 100BF-65X switch. Each server is configured with an 8-core CPU (Intel Xeon

E5-2620 @ 2.1GHz), 64GB memory and one 40G NIC (Intel XL710), and runs Ubuntu

16.04.6 LTS with Linux kernel 4.10.0-28-generic. Our switch implementation contains

both the edge and core functionalities for HCSFQ. Therefore, our prototype provides

hierarchical fair queueing without modifications to either the software or hardware of

the end hosts. By default, we use TCP Cubic provided by the Linux kernel.
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Figure 3-7. Testbed experiments of fair queueing for UDP. Flow 1 is sending at a different
rate every 2 seconds. Flow 2 is sending at 20Gbps.
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Figure 3-8. Testbed experiments of fair queueing for TCP.

3.6.1 Fair Queueing Experiments

We first evaluate the capability of HCSFQ to provide fair queueing. Fair queueing

requires one-layer HCSFQ. We cover both UDP and TCP traffic with equal or different

weights. In the experiments, we use four servers as the senders and one server as the

receiver. Each sender sends 8 flows (based on five-tuple), and a total of 32 flows are

sent to a receiver. All servers are connected to the switch with 40Gbps links. The

bottleneck link is the link between the switch and the receiver.

UDP. If all UDP flows have the same sending rate, they would get similar bandwidth

under the tail-drop FIFO queue in the switch. To make the experiment more interesting,

we assign different sending rates to the UDP flows. We let 24 flows (Flow 1–24) send
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at 2Gbps and 8 flows (Flow 25–32) send at 8Gbps. As shown in Figure 3.6(a), without

HCSFQ, Flow 25–32 obtain higher bandwidth than Flow 1–24 because Flow 25–32

have larger sending rates. In comparison, HCSFQ is able to fairly allocate bandwidth

to the flows.

HCSFQ supports weighted fair queueing. We assign weight 1 to Flow 1–24 to and

weight 2 to Flow 25–32. As shown in Figure 3.6(b), without HCSFQ, the result is

the same as that with equal weights in Figure 3.6(a). On the other hand, HCSFQ

is able to allocate the bandwidth based on the weights. Flow 25–32 achieve higher

throughput than Flow 1–24.

We also evaluate HCSFQ when the UDP flows dynamically change their rates. As

shown in Figure 3-7, we let Flow 1 send at a different rate every 2 seconds (10Gbps,

20Gbps, 30Gbps and 40Gbps, respectively) and let Flow 2 keep sending at 20Gbps.

Without HCSFQ, when the link is congested (from 4s to 8s), each flow achieves a

throughput in proportional to its sending rate. With HCSFQ, two flows get the fair

share (20Gbps) when the link is congested.

TCP. Figure 3.8(a) shows the throughput of the flows with and without HCSFQ.

Because TCP congestion control provides fair bandwidth allocation, the flows have

similar throughput even without HCSFQ. Adding HCSFQ to the switch does not

change the bandwidth allocation and thus has a similar result.

However, TCP cannot support weighted fair queueing. To show the benefits of

HCSFQ, we let Flow 1–24 have weight 1 and Flow 25–32 have weight 2. Without

HCSFQ, the result in Figure 3.8(b) is similar to that in Figure 3.8(a). With HCSFQ,

the flows get bandwidth in proportional to their weights. The flows with higher weights

(Flow 25–32) receive more bandwidth than those with lower weights (Flow 1–24).

Different TCP algorithms. There are many TCP congestion control algorithms.

Without in-network enforcement, the flows using aggressive congestion control algo-
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Figure 3-9. Testbed experiments of fair queueing for TCP under different configurations.

(a) Without HCSFQ. (b) With HCSFQ.

Figure 3-10. Testbed experiments of UDP convergence. Flow 1 and 2 send at 40Gbps,
and Flow 3 and 4 send at 20Gbps.

rithms would get more bandwidth. In this experiment, we let Flow 1–24 use TCP

Cubic (provided by default in Linux) and Flow 25–32 use TCP BBR. As shown in

Figure 3.9(a), without HCSFQ, because TCP BBR is more aggressive than TCP

Cubic, the flows with TCP BBR get almost all the bandwidth. On the other hand,

HCSFQ is able to provide fair queueing, regardless of the TCP algorithms they use.

We have also tried TCP Reno, which performs similar to TCP Cubic.

Different RTTs. In this experiment, we increase the RTT of Flow 25–32 by 0.4 ms

using Linux Traffic Control (Linux tc). The default RTT measured by ping in the

testbed, i.e., the RTT of Flow 1–24, is 0.3 ms (mostly host overhead). The TCP

throughput is inverse proportional to RTT [83]. In our case, the flows with 0.3 ms

RTT (Flow 1–24) should have 0.7/0.3 ≈ 2× higher bandwidth than the flows with
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(a) Without HCSFQ. (b) With HCSFQ.

Figure 3-11. Testbed experiments of TCP convergence. Flow 1 and 2 have 0.3ms RTT,
and Flow 3 and 4 have 0.7ms RTT.
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Figure 3-12. Evaluation result of mixed TCP and UDP traffic.

0.7 ms RTT (Flow 25–32), which is close to what we see in Figure 3.9(b). On the

other hand, HCSFQ is able to provide fair queueing even when the flows have different

RTTs.

Convergence. We let four flows from different clients join and leave a link every 16

seconds to evaluate convergence. Figure 3-10 shows the UDP result. Flow 1 and 2

send at 40Gbps (using DPDK [29]), and Flow 3 and 4 send 20Gbps. When HCSFQ

is enabled, the four flows quickly converge to a similar rate, even though they have

different sending rate. Figure 3-11 shows the TCP result. We set the RTTs of Flow 3

and 4 to 0.7ms using Linux tc, and the RTTs of of Flow 1 and 2 are around 0.3ms by

default. With HCSFQ, the four flows quickly converge to a similar rate, regardless of
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different RTTs.

Mixed UDP and TCP traffic. We evaluate HCSFQ under a mixed workload with

both UDP and TCP traffic, and consider the impact of ill-behaved UDP flows on

TCP flows. In the experiment, Flow 1–24 are TCP flows, and Flow 25–32 are UDP

flows that send at 3.2Gbps. As shown in Figure 3.12(a), without HCSFQ, because

UDP flows are not affected by TCP congestion control, Flow 25–32 get 84% higher

throughput than their fair share. In comparison, HCSFQ is able to allocate bandwidth

fairly between all flows.

Gap between prototype implementation and theoretical algorithm. Al-

though the above experiment demonstrates the effectiveness of HCSFQ on protecting

TCP flows from aggressive UDP flows, there is still a small gap from the theoretical

upper bound. Figure 3.12(b) shows the simulation result on the same setup using

a packet-level simulator Netbench [84]. In the simulation, the TCP and UDP flows

get almost identical throughput with HCSFQ. The reason for the gap between Fig-

ure 3.12(a) and Figure 3.12(b) is that to realize HCSFQ on a real switch, we make

several approximations described in §3.5. These approximations cause extra jitters

for TCP flows, and UDP flows occupy the spare bandwidth caused by the jitters and

obtain higher throughput. We believe as programmable switches get more capable,

these approximations can be removed to enable more accurate implementation of

HCSFQ in the future.

3.6.2 Hierarchical Fair Queueing Experiments

We now evaluate the capability of HCSFQ to provide hierarchical fair queueing. We

show that two-layer HCSFQ can provide tenant-level and flow-level isolation for multi-

tenant datacenters. Similar to the previous experiments, we use 4 servers to send a

total of 32 flows to a receiver. To evaluate hierarchical fair queueing, we let tenant A

contain 24 flows (Flow 1–24) and tenant B contain 8 flows (Flow 25-32).
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Figure 3-13. Testbed experiments of hierarchical fair queueing for UDP. Two tenants
should have the same total throughput.
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Figure 3-14. Testbed experiments of hierarchical fair queueing for TCP. Two tenants
should have the same total throughput.

UDP. We set the sending rates of all 32 UDP flows to 8 Gbps. As shown in

Figure 3.13(a), without HCSFQ, the flows have similar throughput. Because tenant A

has three times as many flows as tenant B, the total throughput of A is three times as

that of B. With HCSFQ, two tenants get the same total throughput. Because A has

more flows, each flow in A has lower throughput than that in B.

To evaluate weighted hierarchical fair queueing, we assign different weights to

tenant A’s flows. We let Flow 1–8 have weight 2 and Flow 9–24 have weight 1. We

assign the same weight to tenant A and B. As shown in Figure 3.13(b), the result

without HCSFQ is the same as it in Figure 3.13(a). All flows receive the same

bandwidth, regardless of tenants and weights. With HCSFQ, because the two tenants
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Figure 3-15. Simulation result under the web search workload.

have the same weight, the bandwidth allocation to the two tenants stays the same.

In tenant A, a flow with weight 2 has double throughput as a flow with weight 1. In

tenant B, all flows have the same weight, and thus they have the same throughput.

TCP. TCP congestion control does not recognize tenants. Figure 3.14(a) shows the

throughput of 32 TCP flows. Similar to the UDP experiment, without HCSFQ, every

flow receives the same amount of bandwidth, and tenant A has higher total throughput.

With HCSFQ, the bandwidth is allocated equally to the two tenants, and each flow in

A has lower throughput than each flow in B. We also assign weights to the TCP flows

as the UDP experiment, and the result is in Figure 3.14(b). Similarly, with HCSFQ,

Flow 1–8 in tenant A have lower throughput than Flow 9–24, because Flow 1–8 lower

higher weight. The flows in tenant B have the same throughput because we do not

change their weights.

3.6.3 Large-Scale Simulation

We use simulations to evaluate HCSFQ in a large-scale datacenter environment. The

simulations are conducted with a packet-level simulator Netbench [84]. Following

the setting in SP-PIFO [65], we use a leaf-spine topology with 144 servers, 9 leaf

switches and 4 spine switches, and set the access and leaf-spine links to 1Gbps and
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Figure 3-16. Simulation result under the web search workload with injected UDP traffic.

4Gbps, respectively. We compare HCSFQ with TCP, DCTCP, and two state-of-the-art

approaches AFQ (32 queues) [64] and SP-PIFO (32 queues) [65]. As in [64, 65], we

enable ECN marking and use DCTCP as the transport layer for HCSFQ, AFQ and

SP-PIFO.

Web search workload. We generate traffic based on the web search workload [85].

Figure 3.15(a) shows the flow completion time (FCT) for small flows less than 100KB,

and Figure 3.15(b) shows the flow completion time breakdown when the network is

at 70% utilization. HCSFQ achieves up to 60% lower FCT than vanilla TCP and

DCTCP. AFQ and SP-PIFO are 15% better than HCSFQ on FCT because HCSFQ

enforces fairness by packet dropping and cannot provide guarantee for sensitive

packets which can be a drawback for datacenter workload. However, the gap is

small and does not grow as the traffic load gets larger. The result demonstrates that

HCSFQ is compatible with DCTCP, and can provide significant improvement under a

representative datacenter topology and workload as the smaller flows can finish faster

with a fair share rate.

Web search workload with injected UDP traffic. To evaluate performance

isolation, we inject additional ill-behaved UDP flows to the web server workload.

The UDP flows are evenly distributed in the topology and occupy about half of the
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Figure 3-17. Simulation result under the incast scenario.
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Figure 3-18. Simulation result under the web search workload with two tenants. Tenant
1 sends five times as many flows as tenant 2, and should have higher FCT than tenant 2.

total bandwidth of the network. Figure 3-16 shows that TCP and DCTCP perform

significantly worse than others, because they do not have performance isolation between

TCP and UDP flows. HCSFQ performs better than AFQ and SP-PIFO, because AFQ

and SP-PIFO map different flows to a small number of queues and aggressive UDP

traffic overloads the queues shared by multiple TCP and UDP flows, while HCSFQ

drops excessive UDP packets before they enter the queues.

Incast. This experiment evaluates HCSFQ in an incase scenario where a receiver

requests for a 4.5MB file distributed over N (=30–180) sender nodes. We follow the

common practice to use a small RTOmin (200µs) for all schemes [86]. As shown in
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Figure 3.17(a), when the number of flows grows, HCSFQ achieves a lower request

completion time compared with SP-PIFO, TCP and DCTCP, and is close to AFQ.

SP-PIFO does not handle the incast traffic pattern well, because there are many

packets arriving at the same time with similar ranks saturating some queues and

getting dropped. Figure 3.17(b) shows that HCSFQ achieves low average completion

times for individual flows as the number of flows changes.

Web search workload with two tenants. This experiment evaluates hierarchical

fair queueing with two tenants. Tenant 1 sends five times as many flows as tenant 2,

and the flow size and arriving time follow the web search workload [85]. As shown in

Figure 3-18, HCSFQ can provide tenant-level fairness, so that since tenant 1 has more

flows, the average flow completion time of tenant 1 is higher than that of tenant 2.

We also implement a hierarchical version of PIFO (HPIFO) as an upper bound for

comparison. Note that although HPIFO delivers the best result, it needs to maintain

three queues (one in the first layer and two in the second layer) for two tenants. It

cannot be implemented on today’s switches and it is hard to support many tenants

due to the need of hierarchical queues. Other approaches do not distinguish between

tenants, and the average flow completion times of the two tenants are similar.

Scalability with many tenants. We show the scalability of HCSFQ on supporting

many tenants and flows. When there are many tenants and flows, the share of each

tenant/flow is small and the bias from rate estimation and rate update in each step

will accumulate. In this experiment, we examine 50 tenants. Half of the tenants

(tenant 1-25) have one VM in each server, and the other half (tenant 26-50) have two

VMs in each server. Each VM has a long-lasting TCP flow with another VM of the

same tenant in another rack. We set the bandwidth of access links and leaf-spine

links to 10Gbps and 40Gbps respectively in order to accommodate more tenants and

flows than previous experiments. Figure 3-19 shows that TCP, DCTCP, AFQ and

SP-PIFO do not provide tenant-level fairness, and the tenants with more flows have
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Figure 3-19. Throughput of different tenants. Each tenant of Tenants 1-25 has one
VM in each server, while each tenant of Tenants 26-50 has two VM in each server. Each
tenant is sending pairwise TCP traffic between its VMs.

higher total throughput. In comparison, HCSFQ provides fair bandwidth allocation

between tenants, regardless of the number of flows each tenant has.

3.7 Related Work

Fair queueing. There is a long history of work on fair queueing. The original proposal

from Nagle [54] introduces the idea of using separate FIFO queues for flows to achieve

fair bandwidth allocation. The bit-by-bit round robin (BR) algorithm [55, 56] computes

a bid number to estimate the departure time for each packet, and transmits the packet

with the lowest bid number with a priority queue. To avoid expensive priority queues,

several algorithms, such as SFQ [57] and DRR [58], propose to map flows to a small

number of FIFO queues, which do not work well when the number of flows are far

larger than the number of queues. Another approach is probabilistic packet dropping,

which maintains per-flow state to estimate drop probability, such as FRED [59], RED-

PD [60] and AFD [61]. CSFQ [66] is distinct from these algorithms in that it does not

require per-flow state, per-flow queues or an expensive priority queue. Hierarchical fair

queueing adds a hierarchy to fair queueing, which require not only per-flow state, but

also a hierarchy of queues [62, 63, 68]. HCSFQ eliminates both requirements, making
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hierarchical fair queueing feasible to be implemented in high-speed hardware switches.

Network isolation in multi-tenant cloud. Prior work has proposed techniques

to provide performance guarantees and share bandwidth between multiple tenants

[67, 69–81, 87, 88]. However, existing works either can only enforce hierarchical fairness

at end hosts, or can not be efficiently implemented in today’s hardware. For example,

BwE [88] is a WAN bandwidth allocation mechanism which enforces hierarchical fair

allocation at end hosts. FairCloud [67] proposes to apply CSFQ for network isolation

in datacenters, but it does not have a hardware implementation for CSFQ and does

not support hierarchical fair queueing. HCSFQ is to the best of our knowledge, the

first solution to provide hierarchical fair queueing on commodity switches with small

switch memory footprint and a single FIFO queue.

Programmable switches. Programmable switches have triggered many innovations

in recent years [17, 39, 41–53, 82, 89–94]. Programmable packet scheduling is the most

relevant to HCSFQ. UPS [95] shows that Least Slack Time First (LSTF) provides a

good approximation for many scheduling algorithms in practice. PIFO [63] provides

a hardware design to realize the abstraction of a push-in first-out (PIFO) queue. It

relies on a tree of PIFO queues to implement hierarchical fair queueing. AFQ [64]

approximates fair queueing by using a few queues to emulate many queues. It stores

per-flow counters in a count-min sketch, and does not support hierarchical fair queueing.

SP-PIFO [65] uses several strict priority queues to emulate a PIFO queue, which can

support fair queueing, not hierarchical fair queueing. Compared to them, we show

how to leverage programmable switches to support fair queueing without per-flow

state based on CSFQ, and present a new algorithm HCSFQ to support hierarchical

fair queueing.
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3.8 Conclusion

We present HCSFQ, a scalable algorithm for hierarchical fair queueing. Hierarchical

fair queueing is a long standing problem in networking. Instead of relying on a

hierarchy of queues with complex queue management, HCSFQ only keeps the state for

the interior nodes and uses only one queue to achieve hierarchical fair queueing. This

dramatically simplifies the design, and makes the design possible to be implemented in

high-speed switches. Indeed, we have built a prototype for HCSFQ on programmable

switches. Our prototype shows that HCSFQ works well with both UDP and TCP

without any changes to either the hardware (e.g., NICs) or software (e.g., TCP/IP

stack) of the end hosts.

To the best of our knowledge, HCSFQ is the first solution that has been demon-

strated to provide hierarchical fair queueing on hardware switches at line rate. HCSFQ

is not only theoretically interesting, but also has important practical implications.

Network isolation is critical to multi-tenant clouds, which have a natural two-layer

hierarchy. This hierarchy naturally requires the datacenter network to first allocate

the bandwidth to the tenants, and then allocate each tenant’s bandwidth between the

tenant’s flows. HCSFQ provides the first solution to enable this two-layer isolation in

datacenter networks. Our prototype shows that this can be done without any changes

to either the hardware (e.g., NICs) or software (e.g., TCP/IP stack) of the end hosts,

and it works well with both UDP and TCP. We believe HCSFQ is a promising solution

for network isolation in multi-tenant datacenters.
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Chapter 4

AIFO: Programmable packet
scheduling with a single queue.

4.1 Introduction

Packet scheduling is a central research topic in computer networking. Over the past

several decades, a great many packet scheduling algorithms have been designed to

provide different properties and optimize diverse objectives [55, 85, 96–98]. Unfortu-

nately, most of these algorithms, despite many novel ideas among them, never have

found their way to impact the real world. This is largely due to the high cost to design

and deploy switch ASICs to implement them, since packet scheduling algorithms must

run in the data plane at line rate in order to process every single packet.

Programmable packet scheduling is a holy grail for packet scheduling as it enables

scheduling algorithms to be programmed into a switch without changing the hardware

design. With programmable packet scheduling, one is able to develop or simply

download a packet scheduling algorithm that best matches the operational goals of

the network. This enables network operators to highly customize packet scheduling

algorithms based on their needs. Particularly, it simplifies the testing and deployment

of new scheduling algorithms, and it enables algorithms that are targeted at small

niche markets and thus cannot justify the high cost of developing new switch ASICs

to be used and deployed.

87



A Push-In First-Out (PIFO) queue is a popular abstraction for programmable

packet scheduling [63, 65]. PIFO associates a rank with each packet and maintains a

sorted queue to buffer packets. Newly arrived packets are inserted into the queue based

on their ranks, and packets are dequeued from the head. Different packet scheduling

algorithms can be implemented on top of PIFO by changing the rank computation

function. Prior works have shown that PIFO can support a wide range of popular

scheduling algorithms, such as Shortest Remaining Processing Time (SRPT) [96] for

minimizing flow completion times (FCTs) and Start-Time Fair Queueing (STFQ) [99]

for weighted fairness.

PIFO, while elegant in theory, is challenging to implement in practice. A recent

work [63] proposes a hardware design to support PIFO at a clock frequency of 1

GHz on shared-memory switches. The major design complexity lies in supporting a

sorted queue at 1 GHz. Yet, there is a gap from the design to a real switch ASIC

implementation, and the design has scalability limitations—it can only support a few

thousand flows. SP-PIFO [65] is an approximation of PIFO that can run on existing

hardware. The basic idea is to map the possibly large number of ranks into a small

set of priorities, and then simply schedule the small number of queues based on their

priorities. This solution, however, requires multiple precious strict-priority queues.

In this chapter, we present Admission-In First-Out (AIFO) queues, a new solution

for programmable packet scheduling that uses only a single first-in first-out (FIFO)

queue. FIFO (drop-tail) queues are one of the simplest queues that can run at line rate

and are available in almost all switches. Thus, AIFO is amenable to be implemented

in high-speed switches with line rate, and we show not only a concrete design, but

also a real implementation of AIFO on existing hardware (Intel Tofino), with minimal

requirements on hardware primitives—a single FIFO queue, as opposed to multiple

strict-priority queues.

AIFO is motivated by the confluence of two recent trends in datacenter networking:
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shallow buffers in the switches [100] and fast-converging congestion control protocols

implemented in end hosts [101]. Together, they significantly reduce the queueing

latency inside the network, which is especially important for datacenter environments

where low latency is critical for real-time online services with strict Service Level

Objectives (SLOs) [100]. Given these trends, we observe that the decisive factor in

modern datacenters is often which packets are enqueued or dropped by the switch,

not the ordering in which they leave the switch. For example, dropping packets of an

elephant flow when it competes with two mice flows is more important to the flow

completion times of the mice flows than the ordering that their packets are dequeued,

especially when the queue length is kept small such that only a few packets occupy it

at any moment.

Based on this insight, the major technical challenge we tackle in this chapter is

finding the right set of packets to admit into the queue. Ideally, AIFO should admit

the same set of packets as PIFO to closely approximate it. AIFO addresses this

challenge by maintaining a sliding window to track the ranks of recent packets in

the window and computing the relative rank of an arriving packet in order to decide

whether to admit or proactively drop it even when the queue may still have room!

Unlike traditional active queue management (AQM) solutions, AIFO drops packets

based on their relative ranks instead of using threshold comparisons against average

queue length [102–104] or delay estimations [105]. Theoretically, we prove that AIFO

provides performance close to that of PIFO. We complement it with a concrete data

plane design and implementation to show how to efficiently realize AIFO on Intel

Tofino.

AIFO explores an interesting design question: what are the minimal hardware

requirements for programmable packet scheduling? AIFO is an extreme point in the

design space—it only requires a single FIFO queue. This is not only theoretically

interesting, but also has important practical implications. Our conversations with
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industry collaborators, including a large-scale search engine and a large-scale e-

commerce service, indicate that physical queues are critical resources, and are reserved

to ensure strong physical isolation and differentiation between applications of multiple

tenants; modern datacenters are already short of physical queues available in switches.

Unlike SP-PIFO which requires multiple physical queues for packet scheduling, AIFO

enables operators to continue using physical queues for strong physical isolation

and differentiation between tenants, and additionally use AIFO to program the

packet scheduling algorithm for intra-tenant traffic (e.g., SRPT to minimize the flow

completion time).

As an unexpected positive byproduct, AIFO naturally supports starvation preven-

tion by design, a necessary feature of pFabric [85] that schedules the packets of the

same flow in FIFO to prevent packet reordering. While PIFO supports a wide variety

of scheduling algorithms, it cannot support starvation prevention needed by pFabric

because the latter packets of a flow would be scheduled first when PIFO is programmed

to use SRPT. With the strong demand on minimizing FCTs for low-latency online

services, pFabric is arguably the killer application of programmable packet scheduling,

as pFabric is considered to be one of the best solutions for minimizing FCTs. AIFO

enables us to implement and deploy pFabric on existing hardware.

In summary, we make the following contributions.

• We propose AIFO, a new approach to programmable packet scheduling that uses

only a single queue.

• We design an algorithm based on sliding windows and efficient relative rank

computation to realize AIFO in the switch data plane. Theoretically, we prove that

AIFO provides bounded performance to PIFO.

• We implement a AIFO prototype on a Intel Tofino switch. We use a combination

of simulations and testbed experiments to evaluate AIFO under a range of real
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Figure 4-1. Background on programmable packet scheduling with PIFO.

workloads and scheduling algorithms, demonstrating AIFO closely approximates

PIFO.

The code of AIFO is open-source and is publicly available at https://github.

com/netx-repo/AIFO.

4.2 Background and Motivation

In this section, we first provide background information on programmable packet

scheduling, and then use an example to motivate the key ideas of AIFO.

4.2.1 Programmable Packet Scheduling

Programmable packet scheduling enables the packet scheduling algorithm in a switch

to be changed without the need to change the switch ASIC. PIFO [63] is a proposal

for programmable packet scheduling. It contains two components: a PIFO queue and
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a rank computation component. Each packet is associated with a rank. The PIFO

queue is a priority queue that sorts packets based on their ranks. Packets are inserted

into the queue based on their ranks, and are dequeued from the head (i.e., the smallest

rank).

Programmability lies in the rank computation component. Programming a packet

scheduling algorithm in the context of PIFO refers to programming how a rank for

each packet is computed. One simple example is to program SRPT [96] for minimizing

FCTs, as shown in Figure 4-1. In this example, the rank of a packet is simply the

remaining processing time of the flow (or simply the remaining bytes of the flow). Note

that SRPT requires end hosts to put the remaining processing time in an appropriate

field in the packet header [85, 96], which is orthogonal to packet scheduling in the

switch. Given such rank computation, the PIFO queue would schedule the packet

with the shortest remaining processing time first, i.e., realizing SRPT.

A more complicated example is to program STFQ [99] for weighted fairness, which

is also shown in Figure 4-1. In this example, the rank of a packet is the virtual start

time of the packet in STFQ. The virtual start time is computed as the maximum of

the virtual time and the virtual finish time of the previous packet of the same flow.

The virtual time maintains the virtual start time of the last dequeued packet across

all flows. The virtual finish time of a packet is the virtual start time of the packet plus

the length of the packet divided by the flow weight. Given such rank computation,

the PIFO queue would schedule the packet with the smallest virtual start time first,

i.e., realizing STFQ.

Beyond these two example, it has been shown that PIFO can support a wide range

of packet scheduling algorithms, such as Least-Slack Time-First [97], Service-Curve

Earliest Deadline First (SC-EDF) [98], etc.
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Figure 4-2. Motivating example of AIFO.

4.2.2 Motivating Example

While PIFO is an appealing solution for programmable packet scheduling, it is chal-

lenging to implement in hardware, especially in switch ASICs. The rank computation

component is relatively easy. It can be implemented as a packet transaction [106]

in the data plane of existing programmable switches. The major challenge is to

implement the PIFO queue. Existing switches do not support a sorted queue in the

data plane. There is a proposal on how to support a sorted queue in the data plane at

1 GHz [63]. But the proposal only provides a design, not a real implementation, and

the design is not scalable as it can only support a few thousand flows. SP-PIFO [65]

provides an approximation of a PIFO queue using multiple strict-priority queues. But

strict-priority queues are precious hardware resources as commodity switches have

a limited number of strict-priority queues and the operators would like to use them

to ensure strong physical isolation between multiple tenants. In this chapter, we aim

to design a solution that has the minimal hardware requirements for programmable

93



packet scheduling.

Example. To find such a solution, let us get down to the fundamentals to analyze

the problem. We consider the arrival traffic and departure traffic of a queue. When

the packet arrival rate is no higher than the link speed (i.e., the upper bound of

the departure rate), the entire traffic is admissible and there is no persistent queue

buildup. It does not matter whether the queue is PIFO, FIFO, or anything else. The

distinction happens when the arrival rate is higher than the link speed, which can

be either due to a microburst or a longer-term congestion. In this case, some of the

packets are not admissible and the queuing discipline matters.

We examine the examples in Figure 4-2. The example is simplified to provide the

intuition of our approach. In the example, there is a burst of six packets arriving at

the switch. The queue has four slots and is empty in the beginning. For the first four

packets, PIFO would enqueue them one by one and the sorted queue becomes [1, 1, 4,

5]. Then when the fifth packet with rank 2 arrives, PIFO would insert the packet into

the queue and the last packet in the queue is dropped due to overflow. The queue

becomes [1, 1, 2, 4]. Finally, when the sixth packet arrives, the last packet in the

queue is dropped again and the queue is [1, 1, 2 ,2] in the end.

In terms of FIFO, it enqueues the packets one by one. After four packets, the

queue is full, and the fifth and sixth packets cannot be enqueued. The queue is [1, 4,

5, 1] in the end. PIFO and FIFO behave very differently.

However, if there is an oracle that knows the precise arrival pattern of the packets

in advance, then the switch can perform admission control before the packets are

enqueued. Specifically for the example in Figure 4-2, the admission control can use a

threshold of 3. If the rank of a packet is no bigger than 3, then the packet can be

enqueued; otherwise the packet is dropped. With this, the second and third packets

would be dropped and the queue is [1, 1, 2, 2] in the end. FIFO with such admission
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Figure 4-3. An example that PIFO and AIFO dequeue the same set of packets ({1, 1, 2,
2}), but the dequeueing orderings are different ([1, 1, 2, 2] vs. [1, 2, 1, 2]).

control behaves the same as PIFO in this example.

4.3 Design Goal

Based on the insights from the motivating example, we can transform the packet

scheduling problem into an admission control problem, and PIFO can be approximated

by FIFO with admission control.

We term this approach AIFO. Our goal is to minimize the gap between the ideal

case (i.e., PIFO) and the approximation (i.e., AIFO). The gap can be measured

quantitively with the following metric: the difference between the packets dequeued

by PIFO and those dequeued by AIFO. Formally, let the set of packets dequeued (up

to time t) by PIFO and AIFO to be P(t) and A(t), respectively. Then we use

∆(t) = |P(t) \ A(t)|+ |A(t) \ P(t)|
|P(t)|+ |A(t)| (4.1)

to measure the gap between PIFO and AIFO. Here, |P(t) \ A(t)| is the cardinality of

the set difference between P(t) and A(t), and |A(t) \ P(t)| is that between A(t) and

P(t). |P(t)| and |A(t)| are the cardinalities of sets P(t) and A(t), respectively.

We have ∆(t) ∈ [0, 1], and a large value of ∆ indicates a large gap between AIFO
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and PIFO. When AIFO and PIFO dequeue the same set of packets (i.e., no gap),

∆ = 0; when AIFO and PIFO dequeue completely different packets, ∆ = 1. We

theoretically prove that the difference between AIFO and PIFO is negligible when the

system is stationary (§4.4), and empirically demonstrate that AIFO provides close

performance as PIFO with a range of real workloads (§4.5).

Packet ordering. Another possible metric would be to not only count the number

of different packets that are dequeued, but also account for the difference in the

dequeuing ordering. Figure 4-3 provides an example to illustrate this metric. The

example is similar to the one in Figure 4-2, and the only difference is that the third

and the fourth arrival packets are swapped in Figure 4-3. With this arrival sequence

of packets, AIFO still admits the same set of packets as PIFO, which are {1, 1, 2, 2}.

However, the orderings that the packets are dequeued are different. AIFO uses the

ordering [1, 2, 1, 2], which PIFO uses the ordering [1, 1, 2, 2].

We argue that this metric is less important than the first metric, and sometimes

is even undesirable to optimize for. First, there are two important trends for data-

center networking: (i) the trend towards shallow buffers for low latency in modern

datacenters [100]; and (ii) the trend towards tight control loops at end hosts [101].

The confluence of these two trends ensures that the switch queues would not buffer

many packets, making the difference on the dequeueing ordering between PIFO and

AIFO minimal. As we are essentially emulating PIFO with a FIFO queue, we want

to keep the buffer shallow so that the packets can have a short waiting time in the

queue. Empirically, we show in Section 4.5 that such a difference would not impact

the flow-level metrics like flow completion time (FCT) much and AIFO behaves almost

the same as PIFO.

Second, strictly following PIFO causes packet reorderings, which is undesirable.

SRPT achieves near optimality on minimizing FCTs [96]; it schedules flows based on

the remaining flow size, so that small flows are scheduled before big flows to minimize
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FCTs. Packet reorderings happen when PIFO is programmed to implement SRPT by

using the remaining flow size as the rank (like Figure 4-1). This is because for the

same flow, a latter packet would have a smaller remaining flow size than its previous

packet, and thus is scheduled first by the switch if both packets are enqueued by the

switch.

This is a known issue, and pFabric [85] addresses this issue by adding an extra

feature called starvation prevention to SRPT. Starvation prevention dequeues the

packets of the same flow in the order they arrive, so that the first packet of a flow

would be dequeued first if the flow is scheduled and the first packet would not be

starved. Between flows, pFabric uses SRPT to select which flow to schedule first. Given

the strong demand on low-latency for datacenter networks, pFabric is arguably the

killer application of programmable packet scheduling. Yet, it cannot be supported by

PIFO [63]. Unexpectedly, a positive byproduct of AIFO is that it naturally supports

starvation prevention and eliminates packet reordering by design.

Summary. To summarize, our goal is to design an algorithm that has the minimal

hardware requirements (i.e., a single queue) and admits the right set of packets

to minimize ∆ and maintain shallow buffers. The algorithm should be able to be

implemented in the data plane of existing hardware and run at line rate. We want to

ensure that the algorithm provides bounded performance to PIFO with respect to ∆.

4.4 AIFO Design

In this section, we first introduce the key ideas of AIFO. Then we describe the AIFO

algorithm, and theoretically prove that AIFO closely approximates PIFO. Finally, we

describe the switch data plane design to implement AIFO on a programmable switch.
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4.4.1 Key Ideas

AIFO only uses a single FIFO queue, instead of a PIFO queue or multiple strict-priority

FIFO queues. It adds admission control in front of the FIFO queue to decide whether

to admit or drop an arriving packet. Admitted packets are buffered and sent by the

queue in FIFO order, and no extra scheduling is needed. The admission control is

designed to minimize ∆ described in Section 4.3, in order to minimize the gap between

AIFO and PIFO.

AIFO achieves a close approximation of PIFO with two-dimensional admission

control by simultaneously considering both time and space dimensions. Its temporal

component considers the time dimension by changing the threshold over time based on

the fluctuation of the arrival rate; its spatial component considers the space dimension

by deciding the threshold based on the ranks of the packets at each time. These two

together ensure AIFO admits a similar set of packets as PIFO. At a high level, the

two components work as follows.

• Temporal component. The threshold of admission control is dynamic, instead

of fixed. It is updated based on the real-time discrepancy between arrival rate and

departure rate. When the arrival rate significantly exceeds the departure rate, the

threshold becomes more aggressive. It ensures the rate of admitted packets roughly

matches the departure rate.

• Spatial component. The admission control treats packets differently based on

their ranks, instead of using a naive rank-agnostic criteria (e.g., randomly dropping

10% packets). It prefers to drop high-rank packets over low-rank packets, as low-

rank packets are expected to be scheduled first. The threshold is decided based

on the arrival rate distribution of different ranks. It ensures the admitted packets

have similar ranks as those admitted by PIFO.
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We note that the basic idea of dynamic, proportional adaption is widely used, and

in particular for networking, it has been instantiated in various forms in congestion

control [101, 107, 108]. For examples, delay-based congestion control algorithms

like TIMELY and Swift [101, 107] adapt the TCP window size dynamically based

on the end-to-end delay, and ECN-based algorithms like DCTCP [108] adapt the

window size in proportional to the number of packets with the ECN flag. These

instantiations all put the control in the end hosts. In comparison, AIFO places the

dynamic, proportional adaption in the network, and it serves a different purpose,

i.e., programmable packet scheduling. This context brings stringent requirements to

the algorithm design: the algorithm should not only achieve optimality, but also be

carefully designed to be implemented at line rate.

For readers familiar with the packet scheduling literature, AIFO can be considered

as an AQM solution. Traditional AQM solutions consider a specific objective, and

drop packets using threshold comparisons against average queue length [102–104] or

delay estimations [105]. In comparison, AIFO is designed to be a general solution

that can be programmed to support different objectives, and it drops packets with

a combination of threshold comparisons (i.e., the temporal component) and relative

packet rank estimations (i.e., the spatial component).

4.4.2 Algorithm

We design AIFO based on these key ideas. Algorithm 5 shows the pseudocode. At

the ingress (line 1-8), AIFO uses admission control (line 2-5) to decide whether to

enqueue (line 6) or drop a packet (line 8). The threshold is dynamically determined by

queue length (c) and queue size (C), and we use quantile estimation (W.quantile(pkt))

to estimate the relative rank of current packet. The queue is a FIFO queue which

enqueues the packet to the end of the queue. At the egress (line 9-12), when the queue

is not empty, AIFO dequeues a packet from the head of the queue, and sends the
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Algorithm 5 AIFO
1: function Ingress(pkt)

// Admission Control
2: Update sliding window W with pkt
3: c← Queue.length
4: C ← Queue.size
5: if c ≤ k · C ∥ W.quantile(pkt) ≤ 1

1−k
C−c

C
then

// Admit packet
6: Queue.enqueue(pkt)
7: else

// Drop packet
8: Drop pkt

9: function Egress
10: if Queue is not empty then
11: pkt← Queue.deque()
12: Send pkt

packet out.

Next, we explain the admission control part in detail. For the temporal component,

it uses the difference between the current queue length (denoted by c) and the

target queue size (denoted by C) to capture the discrepancy between arrival rate

and departure rate. The threshold of admission control is more aggressive when the

current queue length approaches the target queue size, i.e., when C−c
C

is small. We

allocate a headroom to tolerate small bursts with a parameter k. When the queue

length is within the headroom (i.e., c ≤ k · C), all packets are admitted. Accordingly,

the difference between the queue length and the queue size is also scaled by 1
1−k

to

account for the headroom. We separate c ≤ k ·C and W.quantile(pkt) ≤ 1
1−k

C−c
C

into

two conditions at line 5 for clarity. Mathematically, the first condition c ≤ k · C is

redundant. This is because when c ≤ k ·C, then 1
1−k

C−c
C
≥ 1 ≥ W.quantile(pkt) where

W.quantile(pkt) estimates the quantile of pkt, and the packet is always admitted.

It is important to note that C is not necessarily the physical size of the FIFO

queue. The physical size of a queue in a commodity switch varies in a large range from

tens of packets to hundreds or even thousands of packets, depending on the switch
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(a) Admit packet when current queue length c = 2.

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 	
𝐶 − 𝑐

(1 − 𝑘)𝐶 =
6 − 5
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drop

pkt.quantile = 50% k=1/6, C=6, c=5

(b) Drop packet when current queue length c = 5.

Figure 4-4. Examples of admission control in AIFO.

ASIC. Despite this capability, production networks tend to use shallow buffers and

limit the queue size in deployment for low latency. As such, C can be configured to a

smaller number than the physical queue size, and thus we term it as the target (not

physical) queue size in the algorithm description.

For the spatial component, AIFO maintains a sliding window of recently received

packets and uses the quantile of the rank of the arrival packet (W.quantile(pkt)) as

the criteria. When the quantile is no bigger than 1
1−k

C−c
C

, the packet is admitted;

otherwise, the packet is dropped. The intuition is that after accounting for the

headroom with 1
1−k

, 1
1−k

C−c
C

captures the amount of remaining queue space, in terms

of the percentage of the target queue length. Only a subset of the following packets

that can fit the remaining queue space can be admitted. We find a rank r∗ of which

the quantile is equal to the percentage representation of the remaining queue space.

We only admit the packets with ranks no bigger than r∗ to ensure that the admitted
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subset of packets are the low-rank packets that should be admitted and can just fit

the remaining queue space. We maintain a sliding window to estimate the quantile of

an arrival packet based on the past packets.

The benefit of the two-dimensional approach is that the inaccuracy of one com-

ponent can be compensated by the other component. If the quantile estimation of

the sliding window (the spatial component) is a bit off, i.e., admitting extra packets,

then the queue length c would increase, making the quantile threshold 1
1−k

C−c
C

(the

temporal component) more strict. And this corrects the spatial component to use a

smaller rank threshold.

We provide two examples to illustrate different cases in the admission control. The

examples are shown in Figure 4-4. The target queue length C is 6 and the headroom

parameter k is 1/6 (i.e., a headroom of 6× 1/6 = 1 packet). Suppose the quantile of

the arriving packet’s rank is 50%.

• Case 1: admit packet below quantile threshold. When the current queue

length c is 2, the quantile threshold is 1
1−k

C−c
C

= 80%. This means a packet can

be admitted if the quantile of the packet’s rank is no bigger than 80%. Since the

quantile of the arriving packet’s rank is 50%, which is smaller than 80%, the packet

is admitted.

• Case 2: drop packet above quantile threshold. When the current queue

length c is 5, the quantile threshold is 1
1−k

C−c
C

= 20%. This means a packet can

be admitted if the quantile of the packet’s rank is no bigger than 20%. Since the

quantile of the arriving packet’s rank is 50%, which is bigger than 20%, the packet

is dropped.
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4.4.3 Theoretical Guarantee

We provide the theoretical guarantees for AIFO as follows. The proofs of the theorems

are in Appendix.

Packet departure rate and queue length. We consider n packet ranks, denoted

by r1 < r2 < · · · < rn (smaller rank value means higher priority). Let λi be the arrival

rate of packets with rank i. Let γ > 0 be the queue draining rate. We can prove

properties for the departure rate of each rank and the queue length.

Theorem 3. Assume ∑n
i=1 λi > γ. Let n∗ := mini{λ1 + · · · + λi ≥ γ}. When the

algorithm reaches the stationary state, it has the following properties on the packets

departure rates:

1. AIFO and PIFO has the same departure rate for each rank:

• for rank i < n∗, its departure rate is λi;

• for rank i = n∗, its averaged departure rate is γ −∑i<n∗ λi;

• for rank i > n∗, its departure rate is zero.

2. FIFO does not perform as the same as PIFO:

• for rank i ∈ {1, . . . , n}, its departure rate is λi∑n

i=1 λi
γ.

When the algorithm reaches the stationary state, it has the following properties on the

queue length:

1. The queue length for PIFO and FIFO is C.

2. The queue length for AIFO is

•
(
1− n∗

n
(1− k)

)
C, if ∑j≤n∗ λj > γ;

• or bounded between
(
1− n∗+1

n
(1− k)

)
C and

(
1− n∗

n
(1− k)

)
C, if ∑j≤n∗ λj =

γ.
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Proof. We ignore the constraint c ≤ KC as it is covered by constraint W.quantile(pkt) ≤
1

1−k
C−c

C
, because 1

1−k
C−c

C
> 1 when c ≤ KC.

For FIFO, every packets are treated equally based on first arrival first admission

principle, thus their incoming rate is proportional to their sending rate. Let us assume

the incoming rates of each type of packet to be kλ1, kλ2, . . . , kλn. On the other

hand, at the stationary state, the total incoming rate of the queue equals to its total

outcoming rate γ, i.e., kλ1 + kλ2 + · · ·+ kλn = γ, which implies k = γ∑n

j=1 λj
. Thus

for packet i, its incoming and outcoming rate is kλi = γλi∑n

j=1 λj
.

For PIFO, note that the packets are admitted according to its priority, i.e., high

priority packets are always admitted ahead of low priority packets. Recall that∑n
i=1 λi > γ, i.e., the total sending rate is greater than the allowed outcoming

rate. Thus when the system reaches its stationary state, there exists a threshold

n∗ := mini{λ1 + · · ·+ λi ≥ γ}, such that for i < n∗, packet i will always be admitted,

i.e., its incoming and outcoming rate is λi; for i = n∗, packet i will be admitted

partly to fill the remaining outcoming ability apart the portion taken by packets

1, 2, . . . , n∗−1, i.e., its incoming and outcoming rate is γ−∑i<n∗ λ∗; for i > n∗, packet

i can no longer be admitted since the system is already stationary and its priority is

below the admitted ones, thus the incoming/outcoming rate is zero.

For AIFO, given a queue length c, the algorithm decides an admission priority

threshold

n(c) = 1
1− k

C − c

C
· n,

where packets i > n(c) cannot be admitted, and packets i ≤ n(c) will be admitted.

Note that n(c) is decreasing with respect to c. Consider the following two queue

length thresholds:

c− =
(

1− n∗ + 1
n

(1− k)
)

C, c∗ =
(

1− n∗

n
(1− k)

)
C.

Clearly 0 < c− < c∗ < C, and n(c−) = n∗ + 1, n(c+) = n∗. Therefore,
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• if c ≤ c−, all packets i ≤ n∗ + 1 will be admitted. By the choice of n∗ we have∑
j≤n∗+1 λj > γ, i.e., the total incoming rate is strictly greater than the total

outcoming rate, thus the queue length increases;

• if c > c∗, all packets i ≥ n∗ cannot be admitted. By the choice of n∗ we

have ∑j≤n∗−1 λj < γ, i.e., the total incoming rate is strictly less than the total

outcoming rate, thus the queue length decreases;

• if c− < c ≤ c∗, all packets i ≤ n∗ will be admitted, and all packets i > n∗ will

not be admitted. Note that ∑j≤n∗ λj ≥ γ. We discuss two cases:

– if ∑j≤n∗ λj = γ, then the system reaches its stationary state at the first

time when the queue length satisfies c− < c ≤ c∗;

– if∑j≤n∗ λj > γ, then the queue length keeps increases until it becomes larger

than c∗, and falls into the previous category hence the length decreases then.

In sum the system reaches its stationary state with queue length being c∗.

Moreover, due to the negative feedback principle, in the stationary state,

the incoming rate/outcoming rate of packet n∗ would be γ −∑j<n∗ λj.

In sum, at the stationary state, we have the following: for the packets i < n∗,

the incoming/outcoming rate is λi; for packet n∗, the incoming/outcoming rate is

γ −∑i<n∗ λi; for the packets i > n∗, the incoming/outcoming rate is 0. Moreover, we

can also compute the queue length at the stationary state: if ∑j≤n∗ λj = γ, the queue

length at the stationary state satisfies c− < c ≤ c∗; if ∑j≤n∗ λj > γ, the queue length

at the stationary state is c = c∗;

Remark 1. As an extension to the above setting, we can consider a setting with T

time interval, where within each time interval t, the packets are sent with constant

sending rate λ1(t), . . . , λn(t), but across different time interval, the sending rate of each

packet can vary, i.e., λi(t) ̸= λi(t′) for t ̸= t′. Suppose each time interval is sufficiently
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long such that the system can reach its stationary state, then we can apply the above

theorem within each time interval to characterize the behavior of the algorithms at the

stationary state.

Remark 2. We briefly discuss the behavior of each algorithms in their stationary

state.

For PIFO, the queue is filled with packets n∗ + 1, but they cannot be popped. For

packet i ≤ n∗, once it is received, it gets output. For packet i = n∗ + 1, it can be

admitted but cannot be output. For packet i > n∗ + 1, it cannot be admitted.

For AIFO, the queue is filled with packets i ≤ n∗. The AIFO outputs packets in the

queue in a random sequence (since their arrival time is random). The AIFO admits

packets according to the rule specified before: packets i ≤ n∗ will be admitted, and

packets i > n∗ cannot be admitted.

For FIFO, the queue is filled with all kinds of packets, and the number of each type

of packets are proportional to their sending rate. And the packets are admitted and

output at random.

Remark 3. So long as we assume the system stays in its stationary state for sufficiently

long time, its behavior would be nearly decided by that in the stationary state.

This theorem means that at the stationary state, the departure rate of each packet

rank with AIFO is the same as that with PIFO. The behavior of FIFO is very different

from those of AIFO and PIFO. As FIFO does not do any scheduling, the departure

rate of a rank is proportional to the arrival rate of the rank. The theorem also shows

that with admission control, the queue length with AIFO is slightly smaller than that

of PIFO.

Admitted packet set. Consider a time interval from 0 to T and n packet ranks.

Let ai(t) be the departure rate of rank i with AIFO, and pi(t) be the departure rate
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of rank i with PIFO. We can prove properties for the difference between the departure

packets with AIFO and those with PIFO.

Theorem 4. Adopt the assumption in Theorem 3. Suppose the systems are initialized

at time 0, and after time t0 both PIFO and AIFO reach and stay at their stationary

states. Then for the gap measure defined in Eq. (4.1), we have

lim
T →∞

∆(T ) = 0.

Proof. Let t0 be the maximum of the time for the AIFO and PIFO reaching its

stationary state. Suppose the sending rate of a packet is at most M . Recall that from

t0 to T , ai(t) = pi(t) as shown in the theorem. Then we have the following estimation:

∆(T ) =
∑n

i=1 |
∫ T

t=0 pi(t)dt−
∫ T

t=0 ai(t)dt|∑n
i=1

(∫ T
t=0 pi(t)dt +

∫ T
t=0 ai(t)dt

)
≤
∑n

i=1

(
|
∫ t0

t=0(pi(t)− ai(t))dt|+ |
∫ T

t=t0
(pi(t)− ai(t))dt|

)
∑n

i=1

(∫ T
t=0 pi(t)dt +

∫ T
t=0 ai(t)dt

)
=

∑n
i=1 |

∫ t0
t=0(pi(t)− ai(t))dt|∑n

i=1

(∫ T
t=0 pi(t)dt +

∫ T
t=0 ai(t)dt

)
≤ nM · t0∑n

i=1

(∫ T
t=0 pi(t)dt +

∫ T
t=0 ai(t)dt

)
≤ nM · t0∑n

i=1

(∫ T
t=t0

pi(t)dt +
∫ T

t=t0
ai(t)dt

) .

Note that for both the systems, at the stationary state (t > t0), the total incom-

ing/outcoming rate is constant γ, i.e., ∑n
i=1 pi(t) = ∑n

i=1 ai(t) = γ. Then we have
n∑

i=1

(∫ T

t=t0
pi(t)dt +

∫ T

t=t0
ai(t)dt

)
= 2γ(T − t0),

which implies
∆(T ) ≤ nM · t0∑n

i=1

(∫ T
t=t0

pi(t)dt +
∫ T

t=t0
ai(t)dt

)
≤ nM · t0

2γ(T − t0)
.

Note that (1) the nominator is a constant that is independent of T ; and (2) the

denominator keeps cumulating with constant non-zero rate at its stationary state.
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Therefore for any small tolerance ϵ > 0, let the running time T be

T > t0 + nMt0

2γϵ
,

we have

∆(T ) < ϵ.

To sum up, if the system run for sufficiently long time, the difference between PIFO

and AIFO tends to be negligible.

Theorem 3 already provides a strong guarantee on the departure rate of each rank.

Theorem 3 goes further to show the gap on the difference of the dequeued packets.

It proves that ∆ defined in Section 4.3 is close to 0, meaning that AIFO and PIFO

dequeue the same set of packets.

4.4.4 Data Plane Design and Implementation

We describe the data plane design to implement AIFO on a programmable switch.

We emphasize that the algorithm of AIFO itself is independent of the hardware

architecture, and can be implemented on programmable switch ASICs, FPGAs or

network processors. The purpose here is to provide a concrete data plane design and

implementation to demonstrate the viability of AIFO. We implement AIFO with 827

lines of code in P4. The implementation can run on Intel Tofino at line rate. We

describe the major challenges and our solutions in our design and implementation.

Queue length estimation for the temporal component. The main challenge

for the temporal component is to maintain the dynamic threshold 1
1−k

C−c
C

based on

the queue length. The queue length information is managed by a module called traffic

manager which sits between the ingress pipe and the egress pipe. The difficulty is

that for commodity switches including Intel Tofino, the queue length information can

only be obtained when a packet goes through the traffic manager, and thus can only
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Ingress Pipe Egress PipeTraffic
Managerpkt

write queue length read queue length

write queue lengthread queue length;
admission control

recirculation

Figure 4-5. Worker packets carry queue length information from egress pipe to ingress
pipe via recirculation. Normal packets read queue lengths and make admission control
decisions at ingress pipe. Normal packets also write queue lengths at egress pipe.

be read at the egress pipe. However, AIFO requires the queue length to compute the

threshold at the ingress pipe in order to make admission control decisions.

To address this challenge, we design a recirculation-based solution to bring the

queue length information from the egress pipe to the ingress pipe. Specifically, we use a

register array to store the queue length for each egress port at the egress pipe, denoted

by q_len_egress. Packets can write the queue length value into q_len_egress after

passing through the traffic manager. At the same time, we have a copy of the register

array at the ingress pipe, denoted by q_len_ingress. We use a set of worker packets

to read the queue lengths from q_len_egress at the egress pipe. The worker packets

are recirculated to enter the ingress pipe again when they leave the egress pipe, and

they update the queue lengths in q_len_ingress using the values they read.

As the worker packets make the queue lengths ready in the ingress pipe, a normal

arriving packet can then access the queue length information in the ingress pipe. After

the routing decision is made for the packet (i.e., the egress port is known), it can

read the queue length of its egress port from q_len_ingress. Then the threshold
1

1−k
C−c

C
can be calculated with the queue length to decide whether to admit or drop

the packet. If the packet is admitted, it also writes the current queue length to the
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Figure 4-6. Compute quantile with a sliding window.
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Figure 4-7. Simulation results of web search workload to minimize FCT.

egress pipe. Figure 4-5 illustrates how the solution works.

Since the worker packets keep being recirculated all the time, they only go through

a designated recirculation port, and thus would not contribute to the queue lengths

of the egress ports. Assuming it takes 200 ns for a worker packet to go through the

pipeline and be recirculated, for a port with 10Mpps rate, it would only cause a bias

of 2 packets, which is negligible. Also note that for switches that support reading

queue length directly in the ingress pipe (e.g., Intel Tofino 2), recirculation is not

needed.
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Quantile estimation for the spatial component. The spatial component esti-

mates the quantile of the rank of each arriving packet. We use a set of stages to

implement a sliding window to store recent packets and estimate quantiles. Pro-

grammable switches normally support accessing several registers per stage, e.g., m = 4

registers per stage. In order to support a sliding window with n slots, we need n/m

stages. We use m registers per stage over n/m stages, and use n registers in total.

The index of each register is from 0 to n− 1, and it indicates the position of the packet

in the sliding window. The value of register i stores the rank of the packet at position

i in the sliding window. Figure 4-6 shows an example with n = 16 and m = 4. We

use 4 stages and use 4 registers per stage, with a total of 16 registers. Each register

stores the rank for a packet in a sliding window of 16 recent packets.

We use an index tagger module to track the sliding window. The index tagger

module keeps a circular counter from 0 to n− 1. It assigns its counter the index of

an arriving packet (pkt.index), and then increments its counter by one. The counter

is reset to 0 when it reaches n. The packet index indicates which register stores the

rank of the oldest packet in the sliding window, and thus should be updated with the

rank of the arriving packet. In Figure 4-6, pkt.index is 4, and thus the value of the

first register at stage 2 (i.e., the register with i = 4) is updated with the rank of the

arriving packet. The index pkt.index will be set as 5 for the next packet and point to

the second register at stage 2 (following the dotted arrow).

At the same time, when a packet goes through each stage, the switch also compares

the rank of the packet with the value in each register with an ALU. Each ALU outputs

a result indicating whether the packet rank is smaller than the register value: if the

packet rank is smaller, output = 1; otherwise, output = 0. By summing up the outputs

of all ALUs together, we get the relative ranking of the arriving packet in the sliding

window: q = ∑
i outputi. The quantile of the arriving packet can be computed by

dividing q by the length of the window: W.quantile(pkt) = q/n.
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Figure 4-8. The effect of parameter k.

In Figure 4-6, the rank of the arriving packet is 5. The rank is smaller than the

values of 6 registers, which are marked with red in the figure. As the size of the sliding

window n is 16, the quantile is 6/16 = 37.5%.

While our evaluation results show that a small sliding window size (e.g., 20) is

sufficient for many common scenarios, a large sliding window is sometimes needed for

certain workloads. However, commodity switches normally provide only a few stages

and a small amount of memory. To efficiently use precious switch resources, we use a

sampling method to virtually scale up the sliding window size by adding a sampler

aside with the index tagger. For example, instead of using a window with the size of

1000, we can use a smaller window with the size of 20, and set the sampling rate as

0.02.

As both the queue length (c) and the quantile ( q
n
) are available, we can make the

admission control decision based on the condition q
n
≤ 1

1−k
C−c

C
. This condition can be

transformed to C·(1−k)
n
· q + c ≤ C. Since C, k, and n are constants, C·(1−k)

n
· q can be

easily calculated in one stage with a math unit available in programmable switches.

4.5 Evaluation

In this section, we provide experimental results to demonstrate the performance of

AIFO. We first evaluate AIFO using simulations to show that AIFO can achieve high

performance in a large-scale datacenter environment. In the simulations, we benchmark
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Figure 4-9. The effect of window length and sampling rate.

AIFO with state-of-the-art solutions to demonstrate its end-to-end performance.

Besides, we also evaluate the effect of different parameters, and the admitted packet

set of AIFO. At last, we evaluate our prototype for AIFO on a Intel Tofino switch in

a hardware testbed.

4.5.1 Packet-Level Simulations

We use packet-level simulations to evaluate AIFO in a large-scale datacenter envi-

ronment. We use a similar setting as recent works on packet scheduling [65, 85]: a

leaf-spine topology which contains 9 leaf switches, 4 spine switches and 144 servers,

and the bandwidth of the access and leaf-spine links is set at 10Gbps and 40Gbps,

respectively. The simulations are conducted with Netbench [84], a packet-level simula-

tor.

We evaluate two use cases of programmable packet scheduling: minimizing FCT

and providing fairness. (i) We use AIFO to implement pFabric, and compare it with

TCP, DCTCP as well as state-of-the-art approaches PIFO [63], SP-PIFO [65], and

PIEO [109] under a realistic traffic workload: web search workload [85]. We also

conduct a sensitivity analysis to evaluate and analyze the effect of different parameters

(i.e., queue length, scaling parameter k, window length and sampling rate) on AIFO

and the admitted packet set of AIFO. (ii) We implement Start-Time Fair Queueing

(STFQ) on top of AIFO and compare it with other state-of-the-art solutions. For
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AIFO, we set the target queue length as 20, k = 0.1, window length as 20, and

sampling rate as 1
15 by default.

Minimizing FCT with AIFO. We first show the performance of AIFO when

implementing SRPT for pFabric [85] to minimize FCT under the web search workload.

The traffic starts according to a Poisson distribution. For comparison, we also

implement SRPT with SP-PIFO and PIFO, and compare them with TCP and DCTCP.

In addition, we consider PIEO, which is a more scalable design for programmable

packet scheduling compared with PIFO. We use pFabric as the transport layer for

AIFO, PIFO and SP-PIFO at the hosts. Figure 4-7 shows the average FCT for small

flows (Figure 4.7(a)), the 99th percentile FCT for small flows (Figure 4.7(b)), and the

average FCT for large flows (Figure 4.7(c)). AIFO, PIFO, PIEO, and SP-PIFO can

achieve much lower FCT compared with TCP and DCTCP, especially when the load

is high. Among all these approaches, PIFO and PIEO achieve the best performance as

it enforces strict priority with a PIFO queue. The performance of SP-PIFO is close to

PIFO. While PIFO requires a PIFO queue which is hard to implement and SP-PIFO

requires multiple FIFO queues (eight queues in the simulations), AIFO achieves a

good performance that is close to PIFO and SP-PIFO with a single FIFO queue.

Besides, AIFO can deal with different sizes of traffic well as the admission control

threshold can adapt the current workload traffic dynamically. Figure 4-7 shows that

as the traffic load grows, the FCT for AIFO does not go up as TCP or DCTCP does,

and the gap between AIFO and PIFO/SP-PIFO gets smaller.

The effect of parameter k. The headroom parameter k controls how aggressively

AIFO drops high-rank packets. We set k among 0.1 ∼ 0.9 and compare the results

with FIFO and PIFO. Figure 4-8 shows the results. AIFO with smaller k always

delivers better performance than larger k for small flows, and it also delivers better

performance for large flows when the traffic load is big (e.g., 0.7, 0.8). The reason is

that with a small k, AIFO drops packets aggresively and keeps the buffer shallow so
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(b) Average FCT for large flows.

Figure 4-10. The effect of queue length on 1G/4G network.
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(b) Average FCT for large flows.

Figure 4-11. The effect of queue length on 10G/40G network.

that the admitted packets get low latency. When k is small, AIFO delivers a close

performance compared with PIFO. As we increase k, AIFO admits more packets and

it becomes closer to FIFO. When the traffic load grows, the queue buffer accumulates

quickly, and it leads to a large delay. While dropping packets aggressively harms

large flows especially when the traffic load is not big and the network capacity is

underutilized, we show that the harm is slight compared with the benefit it brings

to small flows. When k = 0.1, the average and 99th percentile FCT for small flows

is about 9× lower than that of k = 0.9, and the FCT for large flows is only slightly

higher than the lowest.

The effect of window length and sampling rate. We also evaluate how the

sliding window length affects the performance of AIFO and how well a small sliding

window approximates a large sliding window with sampling for AIFO. As shown in

115



0 1 2 3 4 5 6
Arriving order (×104)

0

2

4

6

8

10

R
an

k 
(×
10

8 )

Large flow
Medium flow
Small flow

(a) FIFO.

0 1 2 3 4 5 6
Arriving order (×104)

0

2

4

6

8

10

R
an

k 
(×
10

8 )

Large flow
Medium flow
Small flow

(b) PIFO.

0 1 2 3 4 5 6
Arriving order (×104)

0

2

4

6

8

10

R
an

k 
(×
10

8 )

Large flow
Medium flow
Small flow
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Figure 4-12. Packet distribution logged at the receiver. Three senders send one flow
each to a receiver at the same time. The size of the three flows are 100MB (large), 50MB
(medium) and 10MB (small), respectively. The link between the switch and the receiver is
the bottleneck.

Figure 4-9, when the window length is 20, the performance is better than that when

the window length is 1000 for small flows, but worse for large flows. It is because

that a large window records packets for a longer time, and the possibility for packets

from large flows (high-rank packets) to be admitted is more stable. As a result, there

are more high-rank packets admitted into the queue in the long run, which makes

the FCT for small flows higher and FCT for large flows lower. It is interesting to

see in Figure 4.9(b) that the 99th percentile FCT is decreasing as the traffic load

grows when win_len = 1000. The reason is that when the window is large and the

traffic load is low, the quantile is less accurate. The flows that experience deep buffer

and inaccurate quantile estimation would have larger FCTs, and these flows would

normally contribute to the 99th FCT.

By comparing lines <win_len=20, sample_rate=0.02>, <win_len
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Figure 4-13. The first 300 packets of the small flow logged at the receiver. The setting
is the same as Figure 4-12: Three senders send one flow each to a receiver at the same
time. The size of the three flows are 100MB (large), 50MB (medium) and 10MB (small),
respectively.

=100, sample_rate=0.1> and <win_len=1000, sample_rate=1>, we can see that

AIFO does not require a very precise quantile and a small window can approximate

a large window with sampling. This is important to the practicability of AIFO as a

window with 20 slots can be implemented in programmable switches with tiny resource

consumption.

The effect of queue length. To evaluate the impact of queue length on the

performance of AIFO, we use different queue lengths and run simulations on both a

1G/4G network (access link: 1Gbps, leaf-spine link: 4Gbps) and a 10G/40G network.

As shown in Figure 4-10 and Figure 4-11, AIFO is more sensitive to the change of

queue length when the bandwidth is low or when the traffic load is high. Figure 4-11

shows that FCT achieved by AIFO when q_len = 20 is close to q_len = 100 on

the 10G/40G network. However, FCT achieved by AIFO when q_len = 20 is much
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Figure 4-14. Simulation results of web search workload with fair queueing.

smaller than q_len = 100 in Figure 4-10 on the 1G/4G network. This is because it

takes a while for a long queue to drain when the bandwidth is low, which leads to a

considerable queueing delay. A relatively small queue benefits the FCT.

Admitted packet sets. Recall that we indicate in Theorem 4 that the sets of packets

dequeued by AIFO and PIFO are similar. This experiment examines the gap between

AIFO and PIFO in terms of the difference between the packets dequeued by AIFO and

those dequeued by PIFO. Here we use four servers and the servers are connected with

a Top-of-Rack switch. The bandwidth of the links between the servers and the switch

are set as 1Gbps. We let three servers serve as senders, and the other server serves as

a receiver. Each sender sends one flow to the receiver at the same time, and the sizes

of the flows are 100MB (large), 50MB(medium), and 10MB(small), respectively. The

servers run pFabric as the transport and the flows are tagged with the remaining flow

size as their rank. The switch is programmed to support SRPT with AIFO, PIFO or

SP-PIFO.

We log the ranks of the first 60000 packets received by the receiver, and plot the

log in Figure 4-12. The x-axis is the arriving order of the packets, and the y-axis

is the rank of the packets. As shown in Figure 4-12, when the network is running

FIFO without admission control and packet scheduling, the three flows share the

bandwidth and the small flow (blue) finishes late. For the other three solutions (AIFO,

PIFO, SP-PIFO), the small flow finishes at about the same time, and it finishes much
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(b) SP-PIFO.
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(c) AIFO.

Figure 4-15. Testbed experiments for UDP. Four flows start one by one every five seconds.
Flows have different ranks: R(Flow 1) > R(Flow 2) > R(Flow 3) > R(Flow 4).
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(b) SP-PIFO.
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(c) AIFO.

Figure 4-16. Testbed experiments for TCP. Four flows start one by one every five seconds.
Flows have different ranks: R(Flow 1) > R(Flow 2) > R(Flow 3) > R(Flow 4).

earlier than it does with FIFO. Besides, it is shown that AIFO is closer to PIFO

than SP-PIFO in terms of the admitted packets set: there are larger overlaps on the

arriving order (x-axis) between the small flow (blue) and the medium flow (green),

as well as between the medium flow and the large flow (red) in Figure 4.12(c), than

those in Figure 4.12(d) and Figure 4.12(b).

Packet reordering. Besides the admitted set, another interesting metric is the

dequeued order of the packets. PIFO always dequeues the packet with the lowest rank

in the queue, which may cause out-of-order and harm the end-to-end performance.

However, as AIFO only enforces admission control on a FIFO queue, it does not cause

out-of-order.

We run the same setting as in Figure 4-12 and we only log the first 300 packets

of the small flow in order to show the packet out-of-order clearly. As shown in

Figure 4.13(a) and Figure 4.13(d), when we enable AIFO, the packet order of one
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flow is the same as that with FIFO and there is no packet out-of-order. It is because

that AIFO only uses a FIFO queue and does not do packet scheduling inside the

queue. However, both PIFO and SP-PIFO get some out-of-order packets, as shown

in Figure 4.13(b) and Figure 4.13(c). The reason is that PIFO and SP-PIFO always

dequeue the packet with the lowest rank, while the packets with higher rank will be

left in the queue and be scheduled later. With pFabric, the rank is based on the

remaining flow size, so a later packet has a lower rank compared with an earlier packet.

As a result, these two methods lead to a number of out-of-order packets. As SP-PIFO

approximates PIFO with a set of FIFO queues, it causes fewer out-of-orders compared

with PIFO.

Fair queueing with AIFO. Programmable packet schedulers like PIFO can be used

to implement different kinds of packet scheduling algorithms by changing the rank

computation function. Besides implementing SRPT to minimize FCTs, here we show

how AIFO performs when we implement Start-Time Fair Queueing (STFQ) [99] on

top of it for fair queueing. We also implement STFQ on top of PIFO, SP-PIFO

and PIEO to compare them with AIFO. Besides, we include TCP, DCTCP, and

the state-of-the-art fair queueing solution AFQ for comparison. We run the web

search workload and show the average FCT for small flows (Figure 4.14(a)), the

99th percentile FCT for small flows (Figure 4.14(b)), and the breakdown of FCT for

different flow sizes (Figure 4.14(c)). AIFO achieves a similar performance compared

to the state-of-the-art approaches AFQ, SP-PIFO, PIFO and PIEO for both average

FCT and tail FCT, and is significantly better than TCP and DCTCP. The FCT of

AIFO for small flows is only 9.7% higher than AFQ and 3.6% higher than SP-PIFO,

despite AIFO using only a single queue.
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4.5.2 Testbed Experiments

We evaluate AIFO in the testbed. The testbed experiments are conducted in a

hardware testbed with a 6.5Tbps Intel Tofino switch and five servers. Each server is

configured with an 8-core CPU (Intel Xeon E5-2620 @ 2.1GHz) and a 40G NIC (Intel

XL710). We run Ubuntu 16.04.6LTS with Linux kernel version 4.10.0-28-generic on

the servers.

Both UDP traffic and TCP traffic are covered to examine the traffic differentiation

with ranks. We use four servers as senders which send one flow each to a receiver.

The four flows start one by one every five seconds. The link between the switch and

the receiver is the bandwidth bottleneck. We manually tag different ranks for different

flows, and the flow that starts later has a lower rank (i.e., higher priority): R(Flow

1) > R(Flow 2) > R(Flow 3) > R(Flow 4). For comparison, we also run FIFO and

SP-PIFO in the same setting. For SP-PIFO, we enable 8 queues with strict priority

in the traffic manager.

UDP. We first evaluate AIFO when the four flows are UDP flows. The four flows

are all sending at 40Gbps (using DPDK [29]). Figure 4.15(a) shows that when the

switch is running FIFO, the four flows converge to the same rate since they have the

same sending rate and has the same possibility to be dropped. When AIFO is enabled

(Figure 4.15(c)), as Flow 2 has a lower rank than Flow 1, packets from Flow 2 have a

higher chance to get into the queue when the queue builds up. Consequently, Flow

2 gets all the bandwidth and the throughput to Flow 1 drops to zero when Flow 2

comes. Similarly, when Flow 3 comes, Flow 3 gets the bandwidth between 10 seconds

and 15 seconds, and when Flow 4 comes, Flow 4 occupies most of the bandwidth.

The result is almost identical to SP-PIFO (Figure 4.15(b)) as the flow with the lowest

rank always occupies most of the bandwidth.

TCP. We also evaluate AIFO when there are four TCP flows. We use TCP Cubic
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Resource Type AIFO SP-PIFO

Match Crossbars 10.94% 8.27%

Gateway 22.92% 17.71%

Hash Bits 3.91% 2.66%

SRAM 6.98% 15.31%

TCAM 0% 0.35%

Stateful ALUs 39.6% 16.67%

Logical Table IDs 25% 18.75%

Table 4-I. Resource consumption of AIFO and SP-PIFO prototypes on Intel Tofino. Each
number indicates the percentage of resources consumed for the corresponding type.

as the congestion control algorithm on the servers. Figure 4-16 shows the results. In

the beginning, Flow 1 reaches around 34Gbps as it occupies the entire link. As Flow

2, Flow 3, and Flow 4 start one by one, when the switch is running FIFO, the four

flows converge to a similar rate as TCP congestion control provides fair bandwidth

allocation. However, when AIFO is enabled, lower-rank flows get higher throughput:

Flow 4 gets the highest throughput at about 30Gbps, while Flow 1 gets the lowest

throughput at 200Mbps–1Gbps. SP-PIFO also delivers a similar result. Note that,

compared with the results of UDP flows in Figure 4-15, AIFO acts less aggressively

in the TCP scenario: the high-rank TCP flows can still get about 3Gbps–5Gbps

throughput, while the throughput of the high-rank UDP flows in Figure 4.15(c) is close

to 0. This is because in the UDP scenario, the four flows are sending at a fixed rate.

This makes it easy for AIFO to enter a stationary state and AIFO would accept most

of the low-rank packets. However, for the TCP scenario, as the flow rate is dynamic

because of congestion control, the admission threshold of AIFO changes dynamically

and the high-rank packets can have some chance to get into the queue.

Resource consumption. AIFO uses only one queue and achieves similar performance

as SP-PIFO with eight queues. Table 4-I lists the consumption of other switch resources.
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It shows that AIFO has a higher demand on Match Crossbars, Gateway, Hash Bits,

ALUs and Logical TableIDs, while SP-PIFO has a higher demand on SRAM and

TCAM.

4.6 Related Work

Programmable networking. The emergence of programmable networking has

triggered many novel applications in network data plane [17, 39, 41, 42, 46–50, 52,

82, 90, 92, 94, 110]. Among them, programmable packet scheduling [63, 95] is an

attracting direction. Programmable packet scheduling in the data plane as opposed to

traditional fixed-function packet scheduling [55–58, 58, 66] is a relatively new concept.

After PIFO [63] and UPS [95], several solutions for enabling programmable scheduling

have proposed a combination of new abstractions, new algorithms, and new queue

structures [64, 109, 111, 112]. However, many of these rely on new hardware designs.

SP-PIFO [65] recently shows that efficient programmable packet scheduling can be

approximated by using existing devices with as few as eight queues. In this chapter,

we show that AIFO can closely approximate PIFO with just one queue.

Priority-based scheduling. Priority-based scheduling is a classic scheduling dis-

cipline [96] that is often used in the networking context to minimize the average

completion time of flows [85, 113–115] and coflows [116, 117] in both clairvoyant (size

is known a priori) and non-clairvoyant (unknown size) scenarios. In the latter case,

most of the solutions boil down classic solutions such as Multi-level Feedback Queues

(MLFQ) [118] and its continuous approximations [119, 120]. Programmable packet

scheduling uses the notion of ranks, which is similar to priorities, but more general in

the sense that the definition of ranks can be programmed based on the requirements

of users. This general notion has been shown to be able to support a wide variety of

different packet scheduling algorithms for different objectives [63].
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Active queue management (AQM). Working in conjunction with packet schedul-

ing algorithms, AQM performs admission control by probabilistically dropping packets

to prevent congestion. AQM is simple and implemented widely in most switches

(e.g., RED [102]). There are many variations: e.g., to improve fairness [103, 104] and

to provide bounded worst-case packet queuing delay [105] to name a few. Unlike

traditional AQM proposals, AIFO proactively drops packets based on their relative

ranks instead of randomly dropping them.

4.7 Conclusion

We present AIFO, a new approach for programmable packet scheduling that only

uses a single FIFO queue. AIFO computes a rank quantile for a coming packet and

decides whether to admit the packet into the queue based on the rank quantile and the

current queue length. We build a prototype for AIFO on programmable switches. Our

simulations and testbed experiments show that AIFO delivers high performance and

closely approximates PIFO. Besides, we also theoretically prove that AIFO provides

bounded performance to PIFO. We believe AIFO is a promising solution for realizing

programmable packet scheduling with minimal hardware resource consumption—as

few as a single FIFO queue.

124



Chapter 5

Lumina: Fine-grained Analyzation
Tool for Hardware Offloaded
Network Stacks.

5.1 Introduction

Modern cloud applications demand high throughput and ultra-low processing latency

(several µs) with low CPU overhead. Traditional TCP/IP stacks in operating system

(OS) kernel are ill-suited to these requirements. Therefore, cloud providers tend to

offload their network stacks into network interface card (NIC) hardware to achieve

better performance and free-up CPU cycles. Hardware offloaded networking techniques

(e.g., RDMA, SRD [121]) have been widely deployed in various of areas including data

storage [122, 123], deep learning [124, 125], etc.

To best utilize the great performance brought by hardware offloading, network

developers should be familiar with the behaviors of hardware network stacks. While

reading specifications provided by vendors is helpful, the specifications may not

provide enough details of actual implementations. In the past decades, there have

been many tools [126–129] to test software network stack implementations. These

tools enable users to test the correctness of the network stack implementation and

understand the differences between specification and actual implementation. For
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example, packetdrill [126] uses libpcap or TUN device as a “shim layer” to inject and

consume packets. Users can customize test cases based on the scripting language

provided by packetdrill to test their TCP/UDP/IP network stacks. However, testing

tools for hardware network stacks are still in a very initial stage. For example, to test

RDMA, network operators typically run synthetic workloads to measure end-to-end

performance in testbed and test clusters. Despite its effectiveness to reveal significant

functional bugs, this approach suffers from noises of different applications and network

conditions, and cannot accurately capture micro-behaviors like per-packet transmission

time.

Enabling precise and reproducible testing for hardware network stacks has two

key challenges. First, as network stacks are implemented in the hardware without

passing the kernel, we cannot directly inject packets/events or measure behaviors at

the end host. Thus the testing tools [126] that use a shim layer to inject packets

cannot work for hardware network stacks. Second, as hardware network stacks provide

high throughput and ultra-low latency, the testing tool should be able to interact with

them at high speed with low extra delay.

In this chapter, we design and implement Lumina, a tool to test the correctness and

performance of hardware network stacks. To overcome the challenge that we cannot

directly interact with the hardware implementation, Lumina adopts an in-network

solution: we connect two under-test hardware network stacks to a programmable

middlebox and use the programmable middlebox to inject network events and test the

behaviors. As mentioned above, the programmable middlebox should not introduce

substantial latency. With the rapid development of programmable network devices,

we now have various of choices for such high-performance programmable middleboxes:

programmable switches and smartNICs. Each of them can support programmability

to some extent and high-speed packet processing.

However, due to the limited resource (e.g., on-chip memory, processing cycles) on
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programmable network devices, it is hard to realize complex measurement and testing

tasks fully in the network. To this end, we utilize the mirror feature to generate a

complete clone of packets and dump the cloned packets using dedicated servers. The

dumped packet traces are used for further analysis.

The design goal of Lumina is to reliably enable developers to write reproducible

tests and inject deterministic events with user-friendly interfaces. To achieve this

goal, we co-design three components: event injector (on middlebox), traffic generator

(on traffic servers with under-test hardware), and packet dumper (on mirror servers).

Lumina creates a dedicated connection between traffic generator and event injector to

share the traffic metadata so that event injector can take user-friendly configurations as

input and generates deterministic entries for the event injector. When doing mirroring,

Lumina embeds important metadata (sequence number, timestamp, event type) in

mirrored packets to enable reliable and reproducible tests. Besides, Lumina adopts

per-packet load balancing to evenly distribute mirrored packets across all the CPU

cores of traffic dumpers, which guarantees the reliability and efficiency.

In summary, we make the following contributions.

• We propose Lumina to enable testing the correctness and performance of hard-

ware network stack implementation.

• We co-design event injector, traffic generator and packet dumper to provide

reliable and user-friendly interfaces for network developers to write reproducible

tests and inject deterministic events.

• We prototype Lumina to test RDMA NICs. Our microbenchmark experiments

demonstrate the efficiency and negligible-overhead of Lumina. Besides, we

present our test results on three widely used RDMA NICs, related to fast

retransmission, timeout, and congestion notification.
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5.2 Background and Motivation

In this section, we first introduce the background of hardware offloaded network stack.

Then we present the motivation and challenges of hardware network stack testing.

5.2.1 Hardware offloaded network stacks

We list some representative hardware offloaded network stack techniques as follows.

TCP offload engine (TOE): Unlike techniques [130–132] that only offload some

operations, TOE offloads processing of the entire TCP/IP stack to the NIC. This

technology is supported by some vendors (e.g., Chelsio Terminator 5 [133] and Broad-

com NetXtreme II 5708 [134]). TOE not only frees up CPU cycles, but also reduces

PCIe traffic.

RDMA: RDMA enables NIC to transfer data from the pre-registered memory to the

wire or from the wire to the memory. The networking protocol is implemented on

the NIC, thus bypassing OS kernel. Unlike TCP, RDMA provides message semantics

rather than stream semantics. The high performance computing (HPC) community

has long deployed RDMA in special purpose clusters [135] using InfiniBand (IB) [136].

In recent years, cloud providers also deploy RDMA in datacenters over Ethernet and

IP networks [122, 137] to free CPU cores and accelerate communication-intensive

workloads, e.g., storage and machine learning (ML). To this end, most of cloud

providers adopt RDMA over Converged Ethernet (RoCE) v2 given its large vendor

ecosystem [138–142]. Another alternative is Internet Wide Area RDMA Protocol

(iWARP) [143, 144] which runs RDMA over TCP/IP on the NIC.

Scalable reliable datagram (SRD): SRD is a customized transport protocol im-

plemented in Amazon Web Services Nitro networking card [121]. SRD spays packets

over multiple paths to minimize the chance of hotspots and use delay information for

congestion control. Unlike TCP and RDMA reliable connection (RC), SRD provides
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reliable but out-of-order delivery and leaves order restoration to applications.

5.2.2 Motivation

With wide adoptions of hardware offloaded network stacks, it is important for net-

work operators to have in-depth understandings of their behaviors. Recent years

have witnessed the progress [126, 127, 145–147] in testing software network stacks.

However, testing hardware offloaded network stacks is left behind. For example,

to safely enable RDMA, network operators run synthetic workloads (using traffic

generators like perftest [148]) and application load tests in lab testbed and test

clusters before production deployments [122, 137]. While this approach can measure

overall performance and reveal significant functional bugs, it cannot accurately capture

micro-behaviors and suffers from noises due to variations in application and network

conditions, let alone its high resource consumption. Hence, performance anomalies

and bugs in these areas are likely to remain unnoticed in tests, and then hit production

networks. These problems will be magnified as the link speed keeps increasing and

hardware network stacks are becoming more and more complex.

To illustrate this problem, we use NVIDIA Mellanox ConnectX-4 RDMA NIC as

an example. Shpiner et al. evaluated its performance over a lossy testbed network,

and found it could preserve high goodput under synthetic incast workloads (Figure 4

and 5 in [149]). However, we find that the retransmission delay of this NIC is actually

around 200µs (Figure 5-8 and 5-9), which is about 100 base round-trip times (RTTs).

Given these limitations, we need a tool that can enable developers to easily write

precise and reproducible tests for hardware offloaded network stacks. To this end, the

tool should be able to interact with hardware network stacks (e.g., inject packet losses)

in a flexible and deterministic manner, and accurately capture their micro-behaviors

(e.g., per-packet transmission time).

Compared to software network stacks, hardware network stacks impose some
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Figure 5-1. Lumina Overview.

unique challenges for testing tools. First, since hardware network stacks bypass kernel,

we cannot interact with network stacks and measure their behaviors through shim

layers, e.g., libpcap and TUN device [126] at the host as before. Second, hardware runs

at high throughput and ultra-low latency. This translates to stringent performance

requirements for test event injections and data plane measurement.

5.3 The Lumina Design

5.3.1 Overview

Motivated by above observations, we build Lumina, a tool that enables testing the

correctness and performance of RDMA NIC implementations. In this chapter, we

focus on RoCEv21 since it is the de facto hardware offloaded network stack technology

in the cloud environment with wide support [138–140] and adoptions [122, 137, 150].

RoCEv2 encapsulates an IB transport packet using UDP and IP headers to enable

routing over Ethernet/IP-based networks. We believe Lumina can be extended to
1In the following sections, we use RDMA, RoCE, and RoCEv2 interchangeably.
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support other hardware network stack technologies.

In this section, we first present the design rationale of Lumina. Then we give an

overview of Lumina. After that, we introduce the design of each mechanism in detail.

5.3.2 Design Rationale

The kernel bypass nature of hardware offloaded network stacks prevents us from

directly injecting events and measuring behaviors at the end host. To meet this

challenge, we embrace an in-network solution. We connect two hosts with hardware

network stack under test to a high-performance programmable middlebox, which is

used to emulate realistic and worst-case network scenarios. The middlebox should be

able to forward traffic and be programmed to inject various events at the line rate

with ultra-low extra processing delay. Recent industry progress on reconfigurable

network hardware provides many options [19, 151–153] for the middlebox. In current

prototype, we adopt the programmable switch.

However, the middlebox hardware may not have enough resource and flexibility (e.g.,

limited stateful memory and arithmetic operations) to realize complex measurement.

Instead of in-device measurement, we dump all the packets by mirroring them from

the middlebox to dedicated servers. After that, we reconstruct the complete packet

trace from dumped packets for further processing and analysis.

As shown in Figure 5-1, Lumina has four components: Orchestrator, Traffic

Generator, Event Injector, and Traffic Dumper. To run a test, the orchestrator takes a

user configuration file as input, sets up the environment, and sends Remote Procedure

Calls (RPCs) to each component to coordinate their executions.

Lumina uses two hosts with the same bandwidth capacity to generate traffic. Each

host is equipped with the under-test hardware offloaded network stack and runs a

traffic generator instance. We use one host as the requester and the other one as

the responder. They generate traffic based on the configurations conveyed from the
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requester:
workspace: /home/foo/bar/
username: test
control-ip: cx4-testing-traffic-requester
nic:

type: cx4
if-name: enp4s0
switch-port: 144
ip-list:

- 10.0.0.2/24
- 10.0.0.12/24

roce-parameters:
dcqcn-rp-enable: False
dcqcn-np-enable: True
min-time-between-cnps: 0
adaptive-retrans: False
slow-restart: True

Listing 5.1. Traffic Generation Host Configuration Snippet

orchestrator (§5.3.3).

The event injector forwards the traffic and injects configured events, e.g., ECN

marks, packet losses and corruptions (§5.3.4). In the meantime, the event injector also

mirrors all the RoCE packets to the traffic dumper pool, which consists of multiple

servers, for offline analysis in the future (§5.3.5).

Once the traffic finishes, the orchestrator collects results from the other components,

e.g., dumped packets, NIC counters and log files. It reconstructs the complete packet

trace from dumped packets collected by traffic dumper servers. After that, users can

parse the packet trace and other results to analyze behaviors of the hardware network

stack (§5.3.6).

5.3.3 Traffic Generation

Before starting traffic generators, the orchestrator first configures IP addresses and

network stack settings, e.g., congestion control and loss recovery parameter, of traffic

generation hosts. Listing 5.1 gives an example.

After the configuration, the orchestrator starts traffic generator instances on

both hosts. Our traffic generator adopts Reliable Connected (RC) transport, and

supports RDMA send, receive, write, and read verbs. In this chapter, we use SEND,

RECV, WRITE and READ to denote them, respectively. RDMA traffic generators
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Figure 5-2. Lumina combines the runtime traffic metadata and intent-based traffic
configuration to populate the match-action table for event injection.

communicate using one or multiple queue pairs (QPs). As shown in Listing 5.2, the

user can configure many parameters of traffic generators, e.g., the number of QPs,

retransmission timeout, and MTU.

After two traffic generators initialize objects such as QPs and memory regions

(MRs), they exchange necessary metadata, e.g., QP number (QPN), packet sequence

number (PSN), global identifier (GID), memory address and key, through a TCP

connection. Since QPNs and PSNs are randomly generated at runtime and critical

for the event injector to locate right packets, the traffic generator sends metadata

information to the event injector as well (more details in §5.3.4).

After exchanging metadata and establishing QP connections, the requester posts

work requests to generate RDMA traffic. The requester controls the total number of

requests/messages and the maximum number of outstanding requests on each QP. In

the case of SEND/RECV, the responder keeps posting RECV requests correspondingly.

The requester can support barrier synchronization among QPs: the requester posts

the next round of requests only after it gets the completions of the current round of

requests across all the QPs.
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traffic:
num-connections: 2
rdma-verb: write
num-msgs-per-qp: 10
mtu: 1024
message-size: 10240
multi-gid: true
barrier-sync: true
tx-depth: 1
min-retransmit-timeout: 14
max-retransmit-retry: 7
data-pkt-events:
# Mark the 4th pkt on the 1st QP conn
- qpn: 1

psn: 4
type: ecn
iter: 1

# Drop the 5th pkt on the 2nd QP conn
- qpn: 2

psn: 5
type: drop
iter: 1

# Drop the retrans 5th pkt on the 2nd QP conn
- qpn: 2

psn: 5
type: drop
iter: 2

Listing 5.2. Traffic and Event Injection Configuration Snippet

Finally, when the requester gets completions of all the requests, it calculates metrics

such as request/message completion times and total goodput, and sends a completion

notification to the responder through the TCP connection.

5.3.4 Event Injection

Lumina connects two traffic generation hosts to a high-performance programmable

middlebox (event injector). To emulate realistic network scenarios like congestion and

failures. the event injector can be programmed to inject packet corruptions, packet

drops and ECN marks to RDMA data packets2. It is worthwhile to notice that the

responder generates data packets for READ while the requester generates data packets

for the other verbs.

While above events are not difficult to realize on reconfigurable network hardware,

we find that the biggest challenge is to provide user-friendly interfaces for developers to

express a series of deterministic injection events. This challenge is actually translated

into two concrete requirements as follows.
2Currently Lumina does not support injecting events to control packets, e.g., ACK and NACK.
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Deterministic: Since Lumina aims at precise and reproducible tests to understand

micro-behaviors, it only accepts descriptions of deterministic injection events from the

user. A description like “randomly drop 10% packets” is not deterministic as different

rounds can drop different sequences of packets. In contrast, a description like “drop

the first packet of the first QP” can generate deterministic injection behaviors.

User-friendly: Users should be able to express their high-level testing intents without

the need to understand low-level details of Lumina. For example, the user should

be able to tell the Lumina to drop the first packet of the second QP, then drop the

retransmission of this packet. The user does not need to specify QPN and PSN for

each QP, and understand how the event injector identifies the retransmitted packet.

Listing 5.2 gives a configuration example of event injections. There are three events

across two QP connections. It is worthwhile to notice that Lumina only preserves the

order of events on the same QP connection. The events of different QP connections

are independent. On the first QP, we mark its fourth packet. On the second QP, we

drop its fifth packet. When the sender retransmits this lost packet, we drop it again.

Users just need to specify relative QPNs and PSNs, and can use iter field to express

retransmission behaviors, thus to locate retransmitted packets which have same QPN

and PSN as original packets.

Next, we will describe how Lumina translates high-level test intents (e.g., relative

QPN and PSN) to the low-level configuration of the event injector, and uses an

iteration number (ITER) to express per-connection retransmission behaviors.

Translate user intents to configurations: Since users only provide high-level

intent information such as relative PSN and QPN, Lumina needs to translate this to

the low-level configuration for the event injector. One straightforward solution is using

the event injector to detect new QPs and parse their QPNs and initial PSNs on the

data plane. While promising, this approach significantly complicates the data plane.
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Figure 5-3. Lumina maintains ITER to differentiate packets in fine-grained. ITER denotes
the rounds of (re)transmissions for a connection. If PSN of the current packet is no larger
than that of the previous packet, ITER is increased by 1.

This is because, for every RDMA packet, the event injector first checks if it belongs to

a new QP. If yes, the event injector further needs to initialize states for this new QP.

Instead of the above stateful approach, we take a stateless approach by leveraging

traffic generators to provide runtime traffic metadata. As mentioned above (§5.3.3),

traffic metadata like QPN and initial PSN (IPSN) is randomly generated at runtime.

Once traffic generator instances finish exchanging metadata through TCP, the traffic

requester sends the complete traffic metadata to the event injector through the

control plane. The metadata is organized as a list of tuples. Each tuple contains the

information for a certain QP connection: requester IP/QPN/IPSN and responder

IP/QPN/IPSN. After that, the event injector combines the runtime traffic metadata

from traffic generators and traffic configuration intents from the orchestrator to

populate the match-action table for event injections. Only after the event injector

populates the table, traffic generators can start RDMA traffic.

Figure 5-2 gives an example. The IP address, QPN, and IPSN of the requester’s

QP are 10.0.0.1, 0xfe, and 1001, respectively. The IP address, QPN, and IPSN of the

responder’s QP are 10.0.0.2, 0xea, and 3002, respectively. Data packets are sent from

the requester to the responder. The user intends to drop the fourth packet of the first
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QP connection. By combining above information, the event injector computes and

inserts the following entry: if the source IP, destination IP, destination QPN, and

PSN fields of a RoCEv2 packet are 10.0.0.1, 10.0.0.2, 0xea, and 1004 (1001 + 4 - 1),

respectively, we should mark ECN for this packet.

Express retransmission behaviors: In many tests, the user needs to inject events

to retransmitted packets to understand behaviors like retransmission timeout backoff.

However, we cannot differentiate the retransmitted packet from the original packet by

looking into the RoCEv2 packet header since they have the same IP addresses, UDP

ports, QPN and PSN.

To realize this flexibility, we introduce an iteration number ITER, which denotes

the rounds of (re)transmissions for a connection. ITER starts from 1 and is maintained

by the event injector. For every arriving RDMA packet, the event injector compares

its PSN with PSN of the last packet of its connection. If PSN of the current packet is

not larger than that of the previous packet, the event injector identifies this as a new

round of transmissions and increases ITER of this connection by 1. Regardless of the

comparison result, the event injector always updates PSN of the last packet of the

connection using PSN of the current packet. Lumina can use (PSN, ITER) to uniquely

identify every packet in a connection. It is worthwhile to note that checking per-packet

PSN and updating per-connection last PSN are done before event injections.

Figure 5-3 gives an example of how Lumina tracks ITER. In this example, there

is only a single connection and the user intends to drop the second packet in the

first round (PSN=2, ITER=1), and the third packet in the second round (PSN=3,

ITER=2). The sender transmits four packets. ITER is initialized as 1 and the last

PSN is set to IPSN-1, which is 0 in this case. In the first iteration, we drop packet

2. When packet 2 is retransmitted, current PSN (2) is smaller than the last PSN

(4), thus triggering a new round of transmissions (ITER=2). Likewise, after we drop

packet 3 in the second round, the retransmission of packet 3 triggers a new round
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(ITER=3).

5.3.5 Traffic Dumping

Lumina aims to dump all the RDMA packets between traffic generators for offline

analysis. A straightforward solution is using tools like ibdump to dump packets at

the end host. However, it is unclear if traffic dumping at the end host will impact

behaviors of network stacks. In addition, if we want to reconstruct the complete

packet trace from packets dumped at both traffic generation hosts, we need to realize

nanosecond-level clock synchronization, which is non-trivial [154].

Realizing these challenges, we adopt the event injector to mirror all the packets to

a group of dedicated servers, which forms a traffic dumper pool. Packet mirroring

essentially clones packets of specified interfaces and forward them to other interfaces

for examination. It has been widely used for measurement and diagnosis purposes [155,

156]. We mirror all the RoCE packets at the ingress pipeline before actually dropping

any packets in Memory Management Unit (more details in §5.5). We choose ingress

mirroring instead of egress mirroring because we want to capture original behaviors of

hardware network stacks.

For the ease of integrity check and traffic analysis, we leverage the event injector to

embed some important metadata in mirrored packets. To avoid losses during packet

dumping, we develop a per-packet load balancing mechanism to evenly distribute

mirrored packets across CPU cores of traffic dumpers. We will describe them in detail.

Embedding metadata in mirrored packets: For the ease and efficiency of testing,

the event injector embeds three types of metadata, mirror sequence number, event

type and mirror timestamp, in mirrored packets for the following purposes.

1. Integrity check. As we use mirrored packets to understand behaviors of the

hardware network stack, the first and most important step is to make sure we
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mirror and dump all the packets. To this end, the event injector maintains a

global variable, mirror sequence number, which is incremented for every arriving

RDMA packet and embedded in each mirrored packet. Together with switch

port counters, we can easily verify if there is any packet loss. If we dump all

the packets, we should see consecutive mirror sequence numbers, and the largest

mirror sequence number matches the total number of RX packets.

2. Indicating events. For the ease of analyzing mirrored packets, we embed an

event type in each packet to indicate the injected event, currently including ECN

marking, drop, and corruption, and none. Note that we mirror all the packets at

the ingress pipeline before Memory Management Unit (MMU) executes dropping

actions.

3. Fine-grained measurement. To accurately measure behaviors of the hard-

ware offloaded network stack, we embed a mirror timestamp in each mirrored

packet, which carries the nanosecond-level time when the original packet enters

the ingress pipeline. Since the event injector adds timestamps to all the packets,

it does not require clock synchronization.

To embed above metadata in mirrored packets, a straightforward solution is

expanding packets with new fields storing these metadata. However, this may overload

the bandwidth capacity of mirroring ports if original traffic’s throughput is close to

line rate. To avoid this, we rewrite existing header fields that are not involved in

traffic analysis to store above metadata. We use the Time to Live (TTL) field, the

source MAC address field, and the destination MAC address field, to store event type,

mirror sequence number, and mirror timestamp, respectively.

Per-packet load balancing. In our initial design, we used two hosts to dump

mirrored packets generated by the requester and the responder, respectively. Traffic

dumping hosts had the same bandwidth capacity as traffic generation hosts. Despite
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our optimization efforts on the traffic dumping program, we still occasionally observed

few packets discards ( rx_discards_phy in our testbed) on the NIC when receiving

line-rate mirrored packets. Although we can identify such invalid tests through

integrity checks (§5.3.6), this degrades the efficiency of Lumina. Beyond that, this

design requires powerful traffic dumpers which have enough capacity, e.g., network

bandwidth, memory bandwidth, and CPU, to dump packets sent by traffic generators

at line rate. This degrades the flexibility of hardware choices of Lumina.

Realizing above limitations, we develop a per-packet load balancing mechanism to

evenly distribute mirrored packets across CPU cores of all the traffic dumpers. Instead

of using two powerful hosts, we organize several hosts as a traffic dumper pool. The

user can flexibly set up hosts as long as the total capacity of the traffic dumper pool

is enough, e.g., process bi-directional line-rate traffic with minimum-sized packets. As

shown in Figure 5-4, we use a weighted round-robin scheduler at the event injector to

forward mirrored packets to different traffic dumpers based on their processing capacity.

Though the requester and responder generate traffic at heterogeneous rates, the event

injector can evenly distribute mirrored packets to homogeneous traffic dumpers.

At each traffic dumping host, we leverage Receive Side Scaling (RSS) to distribute

packets across multiple CPU cores. However, RSS preserves flow to CPU affinity by

hashing certain packet fields to select a CPU core. As a result, the CPU processing

capacity depends on the number of flows in the test. To fully exploit CPU cores, we

use the event injector to rewrite the UDP destination port to a random number. Note

that UDP destination port number 4791 is reserved for RoCEv2. By rewriting this

well-known port number, we can create an illusion of many concurrent flows to RSS,

thus maximizing CPU processing capacity.

After the traffic finishes, the orchestrator sends a TERM message to stop all the

traffic dumpers. The traffic dumper catches the message, recovers the UDP destination

port of all the packets, and writes packets to a disk file. We show the benefits of our
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Figure 5-4. Per-packet load balancing to distribute mirrored packets across all the CPU
cores of traffic dumpers.

Name Content Description
Dumped packets Packets collected by all the hosts of the traffic

dumper pool
Network stack counters Link/Network/Transport layer counters
Traffic generator log Application level metrics, e.g., goodput and

message completion time.
Switch counters TX/RX/mirrored packet counters for each

switch port

Table 5-I. Results collected by the orchestrator

traffic dumping design in §5.6.1.

5.3.6 Result Collection and Integrity Check

Once traffic generators stop, the orchestrator terminates all the other components

and collects various result files given in Table 5-I. The orchestrator collects dumped

packets from all the traffic dumpers, hardware network stack counters and traffic

generator log files from traffic generation hosts, and switch counters from the event

injector.

Upon collecting all the result files, the orchestrator reconstructs the packet trace
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from packets collected by all the hosts of the traffic dumper pool. Since the event

injector maintains the mirror sequence number and stores this on the source MAC

address field of every mirrored packet (§5.3.5), the orchestrator simply sorts all the

packets based on their mirror sequence numbers.

After the packet trace reconstruction, the orchestrator runs an integrity check

using the following four conditions to determine if the packet trace is complete without

losses of any packets during traffic mirroring and dumping:

1. Mirror sequence numbers in the trace are consecutive.

2. Mirror timestamps in the trace keep increasing unless the timestamp wraps

around.

3. The number of packets in the trace equals the total number of packets mirrored

by the event injector.

4. The number of packets in the trace equals the total number of RDMA packets

received by the event injector.

Only if all the conditions hold simultaneously, we can ensure that Lumina recon-

structs a complete packet trace. Otherwise, Lumina reports an “invalid test” error to

stop users from running any analysis on this test.

5.4 Built-in Analyzers

Once tests pass integrity checks, users can parse reconstructed packet traces, log files,

and counters to realize their customized requirements. For the ease of analysis in

common cases, we provide a set of built-in analyzers for some widely used features in

RDMA, e.g., Go-back-N retransmission [137] and ECN-based congestion control [157].

We use these analyzers in our later experiments (§5.6).
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Figure 5-6. Pipeline layout of Lumina switch data plane.

Retransmission logic. Retransmission is crucial for reliable delivery. Even in lossless

networks, RDMA NICs (RNICs) still need effective retransmission mechanisms to

handle non-congestion losses [137], no to mention lossy networks without Priority-based

Flow Control (PFC).

To this end, we develop a retransmission logic analyzer to check if the RNIC’s

behaviors under packet losses follow the specifications, e.g., if the Go-back-N receiver

generates a NACK packet correctly when it observes out of order arriving packets. To

realize this, we translate the specification of Go-back-N, the de facto retransmission

algorithm of RNICs [137], into a finite-state machine (FSM) and feed the reconstructed

packet trace into this FSM. If the packet trace leads to a wrong state, we can determine

the RNIC’s retransmission implementation does not fully comply with the specification.

Retransmission performance. Many efforts have been made to enable RDMA
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over lossy networks [149, 158–160]. Lossy RDMA technologies heavily rely on efficient

retransmission implementations. For example, when the RNIC receives a NACK/SACK

packet, it should start the retransmission immediately, rather than wait for a long

time.

To help users understand the retransmission performance of RNICs, we develop a

retransmission performance analyzer. Note that this tool should be used in combination

with the above retransmission logic analyzer to determine if the RNIC under test has a

correct and efficient retransmission implementation. The retransmission performance

analyzer can deal with both fast retransmissions (triggered by NACK/SACK) and

timeout retransmissions (due to tail losses), and provide the performance breakdown

to help users to identify the bottleneck.

Figure 5-5 shows how we break a NACK-triggered retransmission into two phases:

NACK generation phase (receiver side) and NACK reaction phase (sender side). The

NACK generation phase is the time between the receiver detects an out-of-order

packet and it transmits a NACK. The NACK reaction phase is the time between the

sender gets a NACK and it starts retransmission. We note that there is a half-RTT

deviation since the timestamp is added by the middlebox rather than the end host.

This deviation can be reduced by pre-measuring the RTT of the testbed.

Congestion notification. DCQCN [157] is the de facto RoCEv2 congestion control

protocol implemented in Mellanox ConnectX-3 Pro and later RNICs. Once the

DCQCN notification point (NP, receiver) receives ECN-marked packets, it notifies the

reaction point (RP, sender) to reduce the rate using Congestion Notification Packets

(CNPs). Recent Mellanox RNICs extend DCQCN to lossy networks. When the NP

receives out-of-order packets, it generates both NACKs and CNPs to notify the RP

to start the retransmission and lower the sending rate. In addition, to reduce the

volume of CNP traffic and the CNP processing overhead, Mellanox RNICs also have

a CNP pacer at the NP side, which determines the minimum interval between two
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consecutive generated CNPs [157].

In summary, the generation of CNPs depends on ECN-marked packets, packet

losses and the CNP pacer configuration. We develop a CNP analyzer to check if

CNPs are generated as expected under various network conditions and CNP pacer

configurations.

Hardware network stack counter. We also develop a counter analyzer to check

if counters of the hardware network stack are updated correctly. Currently, we

support counters related to retransmission, timeout, congestion and packet corruption:

counters of sent/received packets, sequence errors, out-of-sequences, timeouts (and

retry), packets with iCRC errors, discarded packets, CNPs sent/handled.

5.5 Implementation

We have built a prototype of Lumina using Tofino-based programmable switches and

commodity servers equipped with NVIDIA Mellanox RNICs.

The data plane of the event injector is implemented with 668 lines of code (LoC) in

P4-16 [161] and is compiled to Intel Tofino ASIC [19] using BF SDE 9.4.0. Figure 5-6

shows the data plane pipeline layout of the event injector. The event injection module

modifies packets and sets the drop flag at the ingress pipeline (§5.3.4). The events

are injected by manipulating the packet field or intrinsic metadata: packet drop is

enabled by setting The RoCE packets are mirrored from ingress to egress. The egress

pipeline includes a module to rewrite packet fields of mirrored packets (§5.3.5). We

track both incoming and outgoing RoCE packets, including mirrored packets, on each

port for integrity check (§5.3.6). The switch control plane is implemented with 815

LoC in Python, which translates RPC calls to configure the data plane modules and

dumps port counters after the experiment finishes.

The traffic generator is implemented with 3116 LoC in C. It uses Libibverbs to
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generate RDMA traffic over RC transport. The traffic generator controls the GID

(IPv4 address) associated with each QP to emulate traffic from multiple hosts. It

reports total goodput and average request/message completion times for each QP.

The packet dumper is implemented with 584 LoC in C. To maximize the perfor-

mance and efficiency with multi-core processing, it uses DPDK [29] and Receive Side

Scaling (RSS) to dispatch the packets among the RX queues and cores. It buffers

packets in the pre-allocated memory during the experiment and writes them to the

disk upon receiving the TERM message from the orchestrator.

The orchestrator is implemented with 1198 LoC in Python, and the built-in

analyzers are implemented on top of it with 1726 LoC in Python.

5.6 Evaluation and Case Studies

We test three NVIDIA Mellanox RDMA NICs: ConnectX-4 Lx MCX4131A 40GbE,

ConnectX-5 MCX515A 100GbE, and ConnectX-6 Dx MCX623105AN 100GbE. In

the rest of this section, we refer them as CX4 CX5 and CX6, respectively. The

experiments are conducted on three testbeds: namely cx4-testbed, cx5-testbed, and

cx6-testbed. Each testbed has four servers connected to an Edgecore Wedge100BF-65X

switch with Intel Tofino ASIC, which works as the event injector. Each server in

cx4-testbed has an 8-core CPU (Intel Xeon E5-2450) and a CX4 NIC. Each server in

cx5-testbed has a 16-core CPU (Intel Xeon Silver 4216) and a CX5 NIC. Each server

in cx6-testbed has a 16-core CPU (AMD EPYC 7302) and a CX6 NIC. All the servers

run Ubuntu 20.04.3 LTS and MLNX_OFED_LINUX-5.4-3.0.3.0. For each testbed,

we use two hosts to generate traffic and the rest hosts to dump packets. The MTU is

set to 1024B for all the experiments. We use WRITE verb by default.

In the rest of this section, we first use microbenchmark experiments to evaluate

the basic performance of Lumina. (§5.6.1). Then we present some interesting results
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Figure 5-7. Microbenchmark results of Lumina’s overhead (left) and load balance scheme
(right).

we find on the target devices using Lumina (§5.6.2, §5.6.3, and §5.6.4).

5.6.1 Microbenchmark

We conduct microbenchmark experiments for two purposes: (1) measure the overhead

of event injections and mirroring on the data path, and (2) evaluate the benefit of

per-packet load balancing in traffic dumping.

Overhead of event injection and mirroring. We find that Lumina adds little

overhead to under-test traffic on the data path. In this experiment, the traffic generator

keeps sending 1000 messages with fixed size over a single QP, and we measure the

average message completion time (MCT). The messages are sent back-to-back and we

run the experiment with different message sizes: 1KB, 10KB and 100KB.

We use a simple L2-Forwarding program as a baseline. For Lumina, we keep all the

match-action tables but disable the exact “drop” behavior to avoid retransmissions. We

also implement two variants of Lumina: Lumina without event injection (Lumina-ne)

and Lumina without mirroring (Lumina-nm) for comparison. As shown in Figure 5.7(a),

event injection introduces negligible overhead. The MCT of Lumina is only 4.1–7.2%

higher than that of Lumina-ne and l2-forward. In the meantime, mirroring actually
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adds almost no overhead to the under-test traffic as Lumina delivers almost the same

message completion time with or without mirroring.

Benefit of per-packet load balancing. The efficiency of Lumina relies on the

reliability of packet dumping. In the experiment, we show how our per-packet load

balancing can guarantee efficiency by minimizing during traffic mirroring and dumping

phase. We send messages with different sizes (100KB, 500KB and 1MB respectively)

at line rate and let the switch mirror all the RoCE packets. A tweaked version of

Lumina without per-packet load balancing (mirror traffic from an ingress port to

a specific server) is implemented as a comparison. We run the experiment for 100

rounds, and measure the ratio of rounds that pass the integrity check. Figure 5.7(b)

shows that as the message gets larger, the pass ratio of the tweaked version is as low

as 23%. However, with per-packet load balancing, Lumina can achieve 100% pass

ratio by capturing all the packets.

5.6.2 Fast Retransmission

When packets in the middle are dropped, the receiver can observe out-of-order packets

and generate NACK or SACK to trigger fast retransmissions. CX4, CX5 and CX6

adopt Go-back-N as the default fast retransmission algorithm. Here we use Lumina

to evaluate RNICs’ fast retransmission behaviors by deliberately dropping packets

in the middle. First, we would like to note that all the RNICs pass our FSM-based

retransmission logic check (§5.4) in a set of cunning and aggressive test cases. This

indicates that their retransmission implementations strictly follow the specification.

Then we present our findings about their fast retransmission performance.

Setting. In this experiment, the traffic generator uses one connection to generate

WRITE traffic with only a single outstanding request. For each message, we drop

one packet with a different (relative) PSN. We fix the message size as 20KB and

100KB respectively. The experiment runs 1000 iterations and we compute the average
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Figure 5-8. NACK generation latency v.s. sequence number of the dropped packet.

150

175

200

NA
CK

 rs
p.

 la
te

nc
y 

(u
s)

CX4

1 3 5 7 9 11 13 15 17 19
Seqnum. of the dropped packet

0

4

8 CX5
CX6

(a) Message size = 20KB.

150

175

200

NA
CK

 rs
p.

 la
te

nc
y 

(u
s)
CX4

1 20 40 60 80 99
Seqnum. of the dropped packet

0

4

8 CX5
CX6

(b) Message size = 100KB.

Figure 5-9. NACK reaction latency v.s. sequence number of the dropped packet.

latency. As shown in Figure 5-5, we break the Go-back-N retransmission latency into

two parts: the NACK generation latency, and the NACK reaction latency. We show

NACK generation latency results in Figure 5-8 and NACK reaction latency results in

Figure 5-9.

Performance improvement from CX4 to CX5 and CX6. From the results,

we can clearly observe significant improvement on retransmission performance from

CX4 to CX5 and CX6. As shown in Figure 5-8, if we drop one of the last several

packets (e.g., the 19-th packet in Figure 5.8(a)) for CX4, the NACK generation latency

(13–1µs) is much larger than the latency when we drop other packets (about 1.1µs).

While for CX5 and CX6, the NACK generation latency statically stays around 1.1µs.
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Figure 5-10. Effect of dropping the fifth packet for different message size on Mellanox
CX6.

We can find things more interesting in Figure 5-9: the NACK reaction latency of CX4

(150–200µs) is much larger than that of CX5 and CX6 (3–6µs). Combine the two

parts together, CX5 and CX6 have a huge improvement (∼ 200µs v.s. ∼ 4.5µs) over

CX4 in terms of retransmission performance.

Remark 1. Above observations confirm Mellanaox’s significant efforts to enable

lossy RDMA, e.g., move retransmission from firmware (CX4) to hardware (CX5 and

later) [162].

Retransmission might be blocked. While CX5 and CX6 deliver low NACK

reaction latency, the NACK reaction latency still varies. As shown in Figure 5.9(b),

when the message size is 100KB, the NACK reaction latency is about 6µs if we drop

one of the first 20 packets, while it is about 3µs if we drop a latter packet.

We conduct another set of experiments to further investigate this behavior. This

time, we would like to analyze the effect of message size. To do this, we keep dropping

the fifth packet of a message and vary the message size from 10KB to 200KB. The

packets are sent back-to-back. While CX5 and CX6 have very similar behavior in

this experiment, here we only show the results for CX6. Figure 5.10(a) plots the
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Figure 5-11. Our hypothesis for NACK reaction behavior. The retransmitteed packets
and the original packets share the same pipeline.

retransmission latency for different message sizes when we drop the fifth packet. The

retransmission latency starts growing when the message size is around 50KB, and

becomes constant after the message size is larger than 120KB. This trend reflects in

the message completion time (MCT). In Figure 5.10(b), we plot the “Actual MCT”

based on the output from traffic generator, and the “Ideal MCT” which is the sum of

MCT without retransmission and a fixed “ideal” latency 4.5µs. When message size is

between 50KB to 120KB, the “Actual MCT” grows faster than “Ideal MCT”, which

is consistent with Figure 5.10(a).

We have a hypothesis for this anomaly: retransmitted packets and original packets

share the same transmission pipeline on the NIC, and retransmitted packets cannot

preempt original packets that are already in the pipeline. As a result, retransmitted

packets may be delayed. We illustrate this hypothesis with Figure 5-11. When the

sender transmits a packet, it pushes the packet to the tail of the pipeline no matter

whether it’s a retransmitted packet or a normal packet. If the message is short (e.g.,

10KB), the pipeline is already empty when the retransmission happens (Figure 5.11(a))

because all the packets have been transmitted. Otherwise, the pipeline might still

retain a few packets that haven’t been sent when a packet is going to be retransmitted

(Figure 5.11(b)), if the message is relatively large (e.g., 100KB). Note that this guess

may or may not be correct, but we believe Lumina helps users build a clearer profile
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Figure 5-12. Retransmission latency v.s. Timeout occurrence. timeout is set as 14,
retry_cnt is set as 7. We send 5 WRITE messages and keep dropping the last packet of
each message for 7 times.

of what is going on inside the blackbox/hardware.

5.6.3 Timeout Retransmission

When tail packets or retransmitted packets are dropped, the sender can only use

retransmission timer to recover them. Inappropriate timeout values can lead to either

spurious retransmissions or poor tail performance. In this section, we report our

findings related to timeout retransmissions.

Setting. When creating QPs, Libibverbs provides an interface to configure the

timeout and retry_cnt value. We use the default values. timeout is set to 14, meaning

that the minimum timeout is 4.096µs ∗ 2timeout = 0.0671s [163]. retry_cnt indicates

the maximum number of times that the QP will try to resend the packets before

reporting an error. We set it to 7.

In the experiment, we keep dropping the tail packet to trigger timeouts. Specifically,

we use one connection to send 5 WRITE messages. For each message, the size is 10KB,

and we drop the tenth (tail) packet for 7 (retry_cnt) times. We run the experiments

in both adaptive 3 and non-adaptive mode (default) respectively. The results are
3Adaptive retransmission is a new feature in recent Mellanox RNICs to improve RDMA’s resiliency

over lossy networks.
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Setting Max. Retry of Msg1–Msg5
Mode NIC 1st 2nd 3rd 4th 5th

Adaptive CX4 13 8 7 7 7
Adaptive CX5 13 8 8 8 8
Adaptive CX6 13 8 8 8 8

Non-adaptive All 7 7 7 7 7

Table 5-II. Maximum retry times. retry_cnt is 7. We send 5 WRITE messages and keep
dropping the last packet of each message until it reports an error.

shown in Figure 5-12.

Unexpected timeout value. When adaptive retransmission is enabled, the actual

timeout value changes according to the packet loss frequency. It is worth noting

that except for the first message, the first timeout of a message jumps to a high

level unexpectedly (e.g., 0.267s for the second message and 0.671s for the latter

messages, as pointed with black arrows in Figure 5.12(a)). Besides, the timeout value

is not bounded by the pre-configured 0.0671s: for the first message, some of the

retransmission timeouts are smaller than 0.0671s: 0.0056s, 0.0041s, 0.0084s, 0.0167s,

0.0251s, 0.0671s, and 0.1342s. For non-adaptive retransmission (Figure 5.12(b)), the

timeout value obeys the specification: the first timeout is around 0.2–0.4s, then the

following timeouts are static at about 0.537s. All these values are larger than the

minimum timeout 0.0671s.

Retry times. We also find that the maximum retry times is correctly enforced on

non-adaptive mode, but not on adaptive mode. We send 5 WRITE messages and keep

dropping the last packet of each message until it reports an error. Table 5-II shows

the results for every message and every NIC in both adaptive mode and non-adaptive

mode. All the NICs work correctly under non-adaptive mode as it can retry for 7

times exactly as retry_cnt specifies. However, under adaptive mode, the first message

can retry for 13 times and the later message can retry for 7 or 8 times. The maximum

retry attempts also vary between different NIC models. For example, for the third
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message, CX4 can retry 7 times, while CX5 and CX6 can retry 8 times. The result

might make sense, since the timeout value is static in non-adaptive mode, so it is

easier to ensure QoS by enforcing a fixed total retry count. While for adaptive mode,

as the timeout is adaptively changing, it might be better to adjust the retry count

according to other patterns (e.g., time spent for retransmission).

Remark 2. Adaptive retransmission is a new feature that has been rarely explored in

the research community. We cannot find a public available specification that accurately

explains its behaviors. Despite this, Lumina can still give us some viability into its

micro-behaviors.

5.6.4 CNP Generation

In this section, we focus on CNP generation which is crucial for congestion control [157].

More specifically, we try to resolve the following doubt: “Will the CNP generation of

one connection be affected by ECNs or losses from another connection”.

Setting. We conduct this experiment using three connections, each sending a 1MB

WRITE message. All the three connections have the same responder address (10.0.0.1)

but different requester addresses (10.0.0.11, 10.0.0.12, 10.0.0.13) to simulate a scenario

that three requesters are sending WRITE traffic to one responder (as shown in Figure 5-

13). We denote the QPs at the responder side as QP1, QP2 and QP3 respectively.

Mellanox NICs use a parameter named min_time_between_cnps to control the CNP

generation interval. In this experiment, we set min_time_between_cnps to 50µs.

The three connections are sending traffic simultaneously, and we mark ECN for the

50-th packet and the 950-th packet of each connection. We disable the DCQCN

reaction functionality in the requester so that it won’t adjust the sending rate upon

receiving CNPs. After the experiment, we check how many CNPs does each (sender)

QP receives. Table 5-III and Table 5-IV present the results.
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NIC Time of 1st ECN (µs) Time of 2st ECN (µs)
Model QP1 QP2 QP3 QP1 QP2 QP3
CX4 10 31 45 616 630 643
CX5 8 17 18 246 255 258
CX6 9 16 17 246 254 259

Table 5-III. Timestamp of ECN-marked packets.

WRITE

10.0.0.1

10.0.0.11 10.0.0.12 10.0.0.13

Figure 5-13. Simulated setting

NIC Number of CNPs
Model QP1 QP2 QP3
CX4 2 2 2
CX5 2 2 2
CX6 2 0 0

Table 5-IV. CNP interval.

Per-port interval or per-dstIP interval. As shown in the Table 5-III, the first

ECN-marked packet of each connection arrives at a relatively close time frame (within

50µs). Then after a long time period (about 600µs for cx4-testbed, 200µs for cx5-testbed

and cx6-testbed), the second ECN-marked packet arrives. Table 5-IV shows how many

CNPs each (receiver) QP sends out on each testbed. It’s surprising to see that these

NICs deliver different results. For CX6, only QP1 sends two CNPs while QP2 and

QP3 do not reply to the ECN-marked packets. However, for CX4 and CX5, each of the

three QPs sends two CNPs. According to our conversation with the vendor, there are

at least two modes to enforce CNP intervals: per-port and per-destination IP. With

per-port mode, all connections share a same CNP timer. While with per-destination

IP mode, only the connections with the same destination IP share a same CNP timer.

Different NICs may use different modes. It explains what we observe: CX6 enforces

CNP interval with per-port mode, so that after a CNP is generated for an ECN-marked

packet at time 9µs, the next CNP should be generated at least after 50+9=59µs. As a

result, only QP1 sends two CNPs. While CX4 and CX5 use per-destination IP mode,

the three QPs use separate timers and each can send two CNPs. While this is not

necessarily a bug, it causes bias when users try to understand the NICs’ behaviors.
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We hope Lumina could mitigate such bias for users.

5.7 Discussion

Lossy RoCE. RoCEv2 originally relied on PFC to provide a lossless fabric. However,

there has been a lot of discussion on lossy RoCE network [122, 149, 158]. While both

industry and academia are taking the temperature of deploying lossy RDMA [122, 158],

we believe that having a deep understanding of RDMA NICs’ retransmission behavior

and performance is essential. By anatomizing the retransmission process, Lumina can

help us gain deep understanding about the micro-behaviors behind it.

Flexibility. We choose programmable switch as our middlebox implementation

solution for Lumina because it provides the set of easy-to-use functionalities we need

and it is accessible. However, our middlebox design is not restricted to programmable

switch. The middlebox can be any programmable high-performance hardware or

software. One of our future visions is to deploy Lumina with a FPGA board so that

it is more light-weight and users can directly plug-and-test.

Extensibility. We do not intent to implement our traffic generator to cove all the

traffic patterns for various application scenarios. Instead, we design Lumina in the

extensible way. Users can customize their own traffic generators to test their own

application-specific traffic patterns while no changes for other components are needed.

Lumina is also extensible in terms of different transport protocols. While we start

with RDMA as the target, Lumina can be extended with reasonable effort to test and

measure other hardware network stacks.

Fuzzing and auto testcase generation. Lumina is suitable for integration with

fuzzing or model-based testing as it provides well-structured input and output. It is

also possible to leverage reinforcement learning to find potential issues by defining

anomaly as rewards. We leave these as future work.
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5.8 Related Work

Network protocol testing. There are many tools and research works focusing

on testing network protocol implementation [126–129, 147]. Among them, packet-

drill [126] is most related. Packetdrill is a scripting tool that enables tests for entire

TCP/IP network stack. To interact with the local and remote network stack, pack-

etdrill uses libpcap and TUN device as a “shim layer” to inject or consume packets.

Packetdrill has also been utilized to test QUIC [127] and for educational purposes [164].

Similarly, Packet Shell [128] and Orchestra [129] also test the conformance of TCP

implementation to its specification by injecting packets or events. DETER [147]

focuses on deterministic TCP replay to reproduce performance problems and support

tracing of TCP executions. Compared to them, Lumina focuses on hardware offloaded

network stacks.

Performance anomaly and security of RDMA. With the wide adoption of

RDMA in datacenters, the performance anomaly and security of RDMA have drawn

a lot of attention. Collie [165] is a tool to systematically find RDMA performance

anomalies caused by NIC resource contention. Kalia et al. [166] studied the scalability

limits of RDMA: RDMA caches connection states in NICs which leads to scalability

bottlenecks. Rothenberger et al. [167] demonstrated that the design and implementa-

tion of IB-capable NICs contain vulnerabilities and design flaws. Compared to them,

Lumina focuses on transport protocol behaviors.

Network testing with programmable networks. Reconfigurable and programmable

networks are becoming more relavant than ever before. In recent years, there are

many works using smartNICs or programmable switches for applications accelera-

tion [41, 168], network telemetry [49, 91], and achieve novel applications [169, 170].
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Among them, Hypertester [169] and IMap [170] test the network environment by

injecting packets into the network using switches. Hypertester applies programmable

switches as network testers to generate and capture test traffic at line rate, and then

use switch CPU to analyze the statistics. IMap implements a network scanner with

programmable switches. It uses switch CPU to generate probe packets. The switch

data plane is responsible for replicating the probe packets by recirculation. Lumina

is the first work that leverages network programmability to test hardware network

stacks, to the best of our knowledge.

5.9 Conclusion

We present Lumina, a tool to test the correctness and performance of hardware

network stack implementation. We find several interesting micro-behaviors on RDMA

NICs using Lumina. We believe Lumina can help network developers understand the

micro-behaviors of complex hardware network stacks.
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Chapter 6

Conclusion

6.1 Summary of Contributions

In this dissertation, we realize network programming and present multiple novel

systems that enhance the performance, QoS, and reliability of today’s data centers.

We summarize our contributions as follows.

Algorithm, software, and hardware co-design. We propose efficient data struc-

tures and algorithms for data plane programs. The algorithms are carefully designed

to adapt the network context. In NetLock, we design a memory allocation algorithm to

maximize the use of switch resource. In HCSFQ, we extend CSFQ to HCSFQ to sup-

port hierarchical fair queueing. We conduct several approximation for the algorithms

to make it deployable on the hardware. In AIFO, our programmable packet scheduling

algorithm saves hardware resources—requires only one physical FIFO queue in the

switch. All these algorithms have gone through attentive considerations and trade-offs.

For the quantile computation module in AIFO, we have designed a theoretically

stronger algorithm called QPipe [50]. Although QPipe provides stronger theoretical

guaranttee, it occupies too many stages in the current hardware. So we eventually

adopt the simpler sliding-window-basd solution to keep the quantile computation part

concise and leave the space for other logics.

Resource-efficient co-design of switches and servers. To overcome the challenge

159



of limited switch functionalities and resources, we propose resource-efficient co-design

of switches and servers. In NetLock, our memory management mechanism seamlessly

integrates the switch and server memory. We only offload the popular locks to the

switch and leave other locks to servers. In Lumina, we use a programmable switch

as the middlebox to inject events to the under-test traffic and a couple of servers to

capture the mirrored traffic for offline investigation.

System implementation and extensive evaluation. We build prototypes and

conduct real-world experiments to evaluate our systems. In NetLock, we implement a

centralized lock manager with an Intel Tofino switch and several DPDK servers. We run

TPC-C workload and benchmark NetLock with state-of-the-art solutions. Lumina is

implemented with a switch and four servers. Lumina’s traffic generator supports various

RDMA traffic and can be analyzed under different scenarios. We have found several

bugs and performance issues of different RDMA interfaces with Lumina. Besides, we

also perform simulations to evaluate our systems under scenarios beyond the scale of

our testbeds. In HCSFQ and AIFO, we conduct large-scale simulation experiments

under data center settings in addition to the rack-scale hardware experiments.

6.2 Future Works

Multi-rack resource management. NetLock and many other in-network applica-

tions focus on single-rack scale. In order to make the systems more scalable, cross-rack

applications may be considered. Many problems should be considered to support multi-

rack, including but not limited to: the memory sharing between multiple switches,

consistency issue between all switches, how to diagnose and recover from failures. Fur-

ther, both the industry and research community are exploring resource disaggregation

in recent years. With resource disaggregation, the whole data center can be regarded

as a huge computer with network as its backbone. Efficient and scalable in-network
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resource management can bring tremendous benifit for disaggregated data center.

AI-informed network management. In AIFO and HCSFQ, we have to manually

tune some parameters for better performance. Although we have theories to guide the

parameter tuning and we can obtain a set of parameters that works for most of the

cases, there are still cases where our system will fall short on the performance. Manually

tuning parameters for every scenario is tedious and inefficient. By establishing an

effective feedback loop, it is possible to compose a model to guide the parameter

tuning. Besides, in Lumina’s current practice, writing configurations requires some

degree of networking expertise. Porting it with an automatic config generation module

will definitely make our tool more friendly to users.

Reliable and unified network interfaces. Lumina can be further expanded to

help analyze and test different smart network devices. The design of lumina does

not necessarily requires a programmble switch. We can explore the possibility of

replacing it with a high performance general DPDK host or a plug-and-use FPGA-

based solution. On the other hand, we can go one step further: propose a unified

abstraction for heterogeneous network interfaces with the help of tools like Lumina.

Unified abstraction can accelerate hardware innovation and software evolution. Just

like SoNiC and SAI (Switch Abstraction Interface) for switches, we believe host

network interfaces also need such a unified abstraction.

6.3 Concluding Remarks

In this dissertation, we design and build several systems that empower various aspects

of cloud data centers with network programming. We present: (a) NetLock for fast

and centralized lock management; (b) HCSFQ for hierarchical fair queueing; (c) AIFO

for programmable packet scheduling with a single queue; (d) Lumina for fine-grained

analyzation of hardware network stacks. There have been arguments about what a
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role should network play: should the switch perform various in-network applications

or just simply do packet forwarding? While both sides hold rational points and

design philosophy 1, we believe that as the programmable networking ecosystem gets

mature and reliable with handy tools, programmable networks can empower computing

systems in various aspects.

1Part of the reason why system research is appealing.
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