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Abstract

In this dissertation, we address the development of elastic shape analysis frameworks

for the registration, comparison and statistical shape analysis of geometric objects

with complex topological structures and partial correspondences. In particular, we

introduce a variational framework and several numerical algorithms for the estimation

of geodesics and distances induced by higher-order elastic Sobolev metrics on the space

of parametrized and unparametrized curves and surfaces. We extend our framework

to the setting of shape graphs (i.e., geometric objects with branching structures where

each branch is a curve) and surfaces with complex topological structures and partial

correspondences. To do so, we leverage the flexibility of varifold fidelity metrics in

order to augment our geometric objects with a spatially-varying weight function,

which in turn enables us to indirectly model topological changes and handle partial

matching constraints via the estimation of vanishing weights within the registration

process. In the setting of shape graphs, we prove the existence of solutions to the

relaxed registration problem with weights, which is the main theoretical contribution

of this thesis. In the setting of surfaces, we leverage our surface matching algorithms

to develop a comprehensive collection of numerical routines for the statistical shape

analysis of sets of 3D surfaces, which includes algorithms to compute Karcher means,

perform dimensionality reduction via multidimensional scaling and tangent principal

component analysis, and estimate parallel transport across surfaces (possibly with

partial matching constraints).

Moreover, we also address the development of numerical shape analysis pipelines
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for large-scale data-driven applications with geometric objects. Towards this end, we

introduce a supervised deep learning framework to compute the square-root velocity

(SRV) distance for curves. Our trained network provides fast and accurate estimates of

the SRV distance between pairs of geometric curves, without the need to find optimal

reparametrizations. As a proof of concept for the suitability of such approaches in

practical contexts, we use it to perform optical character recognition (OCR), achieving

comparable performance in terms of computational speed and accuracy to other

existing OCR methods.

Lastly, we address the difficulty of extracting high quality shape structures from

imaging data in the field of astronomy. To do so, we present a state-of-the-art

expectation-maximization approach for the challenging task of multi-frame astronomi-

cal image deconvolution and super-resolution. We leverage our approach to obtain a

high-fidelity reconstruction of the night sky, from which high quality shape data can

be extracted using appropriate segmentation and photometric techniques.

Thesis Readers

Dr. Nicolas Charon (Primary Advisor)
Assistant Professor
Department of Applied Mathematics and Statistics
Johns Hopkins University

Dr. Laurent Younes
Professor
Department of Applied Mathematics and Statistics
Johns Hopkins University

iii



To Dada, Dadi, Nana, Nani, Mami and Na.

For having laid the foundations.

iv



Acknowledgements

I would like to thank Professor Nicolas Charon, who has been a fantastic PhD advisor.

You have introduced me to the beautiful field of shape analysis, initiated me to

the world of cutting-edge research, and imparted me with a wealth of knowledge

throughout my graduate studies. I will forever be grateful and thankful for your

constant support and guidance, and will keep absolutely fond memories of my time as

your student.

Moreover, I would like to thank Professor Tamás Budavári, who has been a

wonderful research advisor. You made me discover the field of astronomy, and

presented me with a myriad of opportunities to develop holistically as a researcher. I

will eternally be appreciative for your support and mentorship during my graduate

studies.

Furthermore, I would like to thank Professor Laurent Younes, Professor Fadil

Santosa and Dr. Mario Micheli for having served on my dissertation committee.

I was inspired to do research in shape analysis by Professor Younes’ pioneering

contributions in the field, and built up my foundational knowledge through his book,

Shapes and Diffeomorphisms. Professor Santosa has been instrumental in my progress

during my graduate studies, especially through the numerous professional development

opportunities that he introduced me to, for which I am very grateful. Finally, I learnt

a lot from Dr. Micheli, firstly through his Mathematical Image Analysis course which

I thoroughly enjoyed, but also from his passion and dedication to teaching, which

have been a huge influence on my own teaching style.

v



I would also like to express my gratitude to Professor Martin Bauer, Professor Eric

Klassen, Emmanuel Hartman and Fausto Navarro, with whom I have collaborated on

several research projects. It was a privilege to be able to learn from all of you, and it

was an absolute pleasure to work together on a variety of interesting problems.

Moreover, I would like to thank all the faculty and staff in the Department of

Applied Mathematics and Statistics and the Center for Imaging Sciences at Johns

Hopkins University. I have had the privilege of being taught by several faculty members,

and I am very grateful for all the support provided to me throughout the years by the

AMS and CIS staff.

Furthermore, I would like to thank Professor Paul Dupuis and Professor Jérôme

Darbon from Brown University for having inspired and encouraged me to pursue

graduate studies and research while I was still an undergraduate student. I would also

like to thank all my teachers and professors from my undergraduate days at Brown

University, and from my formative years at UWC Maastricht, Bocage, Clavis and

pre-primary school. I was lucky to receive a solid formation from many great people

at these institutions throughout all these years.

Additionally, I wanted to thank my friend Yuri Sanspeur, with whom it has been

an absolute pleasure to work with on research endeavours of mutual interest, always

in a fun and creative atmosphere.

It also goes without saying that I am genuinely thankful for all my friends from

Johns Hopkins, Brown, UWC Maastricht, Bocage, Clavis and all the places where I’ve

lived. The big days we’ve had will remain defining, lasting memories of my PhD.

And last, but not least, I would like to thank all my family, and in particular

my mother and father, for their unwavering support, valuable guidance and all the

sacrifices they have made throughout the years, without which none of this would

have been achieved.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Shape data and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Riemannian approach . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Challenges: Complex topological structures, partial correspondences,

large datasets, and extraction of shape data . . . . . . . . . . . . . . 8

1.4 Contributions and organization . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Riemannian shape analysis . . . . . . . . . . . . . . . . . . . 14

2.1 Riemannian metrics on shape spaces . . . . . . . . . . . . . . . . . . 14

2.1.1 Metrics on the pre-shape space . . . . . . . . . . . . . . . . . 15

2.1.2 Invariance properties . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Metrics on the shape space . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Extrinsic and intrinsic metrics . . . . . . . . . . . . . . . . . . 22

2.2 The LDDMM framework . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



2.3 Elastic shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Higher-order Sobolev metrics on the space of curves . . . . . . 27

2.3.2 Second-order Sobolev metrics on the space of surfaces . . . . . 34

2.4 Relaxed shape matching . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Varifold fidelity metrics . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Relaxed matching problem . . . . . . . . . . . . . . . . . . . . 49

Chapter 3 Shape graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Riemannian metrics on shape graphs . . . . . . . . . . . . . . . . . . 55

3.3 Relaxed shape graph registration . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Existence of minimizers . . . . . . . . . . . . . . . . . . . . . 62

3.4 Weighted shape graph registration . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Limitations of the previous elastic matching model . . . . . . 66

3.4.2 A new variational problem . . . . . . . . . . . . . . . . . . . . 68

3.4.2.1 The weight regularization term . . . . . . . . . . . . 69

3.4.2.2 The varifold norm for weighted shape graphs . . . . . 70

3.4.3 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Optimization approach . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Discretizing the energy . . . . . . . . . . . . . . . . . . . . . . 74

3.5.1.1 Riemannian path energy . . . . . . . . . . . . . . . . 74

3.5.1.2 Weight regularizer . . . . . . . . . . . . . . . . . . . 76

3.5.1.3 Varifold norm . . . . . . . . . . . . . . . . . . . . . . 79

3.5.2 Minimizing the energy . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



Chapter 4 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Sobolev metrics on surfaces . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Geodesic BVP for surfaces . . . . . . . . . . . . . . . . . . . . 99

4.2.2 Geodesic IVP for surfaces . . . . . . . . . . . . . . . . . . . . 100

4.3 Relaxed surface matching . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Numerical optimization approach . . . . . . . . . . . . . . . . . . . . 104

4.4.1 The H2-metric on the space of triangular meshes . . . . . . . 105

4.4.2 Discretizing the H2-path energy . . . . . . . . . . . . . . . . . 108

4.4.3 Solving the geodesic BVP for parametrized surfaces . . . . . . 108

4.4.4 Discretizing the varifold norm . . . . . . . . . . . . . . . . . . 109

4.4.5 Solving the geodesic BVP for unparametrized surfaces . . . . 111

4.4.6 Solving the initial value problem . . . . . . . . . . . . . . . . . 112

4.4.7 Influence of the metric coefficients . . . . . . . . . . . . . . . . 113

4.5 Statistical shape analysis of surfaces . . . . . . . . . . . . . . . . . . . 118

4.5.1 Karcher mean . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . 120

4.5.2.1 Multidimensional scaling . . . . . . . . . . . . . . . . 121

4.5.2.2 Tangent PCA . . . . . . . . . . . . . . . . . . . . . . 122

4.5.3 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Partial matching of surfaces . . . . . . . . . . . . . . . . . . . . . . . 127

4.6.1 Limitations of the previous framework . . . . . . . . . . . . . 127

4.6.2 The varifold norm on the space of weighted surfaces . . . . . . 128

4.6.3 Relaxed surface matching with weights . . . . . . . . . . . . . 129

4.6.4 Numerical optimization with weights . . . . . . . . . . . . . . 131

4.6.5 Partial matching experiments . . . . . . . . . . . . . . . . . . 132

ix



4.7 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 5 Deep learning of shape distances . . . . . . . . . . . . . . . 139

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 The SRV distance on the space of curves . . . . . . . . . . . . . . . . 142

5.3 Deep learning of SRV distances . . . . . . . . . . . . . . . . . . . . . 148

5.3.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.2 Training method . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.1 Computation method . . . . . . . . . . . . . . . . . . . . . . . 152

5.4.2 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4.3 Experiments with functions . . . . . . . . . . . . . . . . . . . 153

5.4.4 Experiments with curves in R2 . . . . . . . . . . . . . . . . . . 155

5.4.5 Preliminary experiments for curves in R3 . . . . . . . . . . . . 158

5.5 Optical character recognition . . . . . . . . . . . . . . . . . . . . . . . 159

5.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5.2 Shape-based OCR . . . . . . . . . . . . . . . . . . . . . . . . 161

5.5.3 Preliminary results and discussion . . . . . . . . . . . . . . . . 164

5.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Chapter 6 Astronomical imaging . . . . . . . . . . . . . . . . . . . . . . 170

6.1 Background and related work . . . . . . . . . . . . . . . . . . . . . . 172

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2 Modeling the imaging data . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . 178

6.4 Expectation-maximization . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5 Astronomical image reconstruction framework . . . . . . . . . . . . . 180

x



6.5.1 Multi-frame deconvolution via expectation-maximization . . . 180

6.5.2 Extensions: Super-resolution . . . . . . . . . . . . . . . . . . . 182

6.5.3 Extensions: Blind deconvolution . . . . . . . . . . . . . . . . . 183

6.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.7 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Conclusion and future directions . . . . . . . . . . . . . . . . . . . . . . . 190

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xi



List of Figures

Figure 1-1 Segmenting the image (left) produces shape data, i.e., a curve

representing the boundary of the leaf (right). Imaging data

obtained from the Swedish leaf dataset [8]. . . . . . . . . . . 2

Figure 1-2 Shape data represented as curves and surfaces. Left: A closed

curve in R2 from the MPEG-7 dataset [9] representing the

outline of a bat. Center left: A protein backbone from the

SHREC’ 10 dataset [10] represented as an open curve in R3.

Center right: A volumetric scan of the hippocampus from the

PyKeops library demo files [11] represented as a closed surface

of genus zero. Right: A facial scan from [12] represented as

an open surface. . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1-3 Consider a geometric object, such as the planar curve repre-

senting the outline of an insect from the MPEG-7 dataset [9]

(in black, top left). Top row: The geometric object’s shape

remains unchanged regardless of how it is rotated, translated,

or scaled (in blue, from left to right). Bottom row: The ge-

ometric object’s shape also remains unchanged regardless of

how it is parametrized, as highlighted by the coloring of the

points along the curve (bottom row). . . . . . . . . . . . . . 3

Figure 1-4 Point-to-point correspondences (dotted lines) obtained after

registering a pair of surfaces using the approach of [17]. . . . 4

xii



Figure 1-5 Shape comparison may be performed by quantifying the cost

of an ‘optimal’ deformation between a pair of shapes. In this

example, we illustrate optimal deformations between pairs

of surfaces (on the leftmost column and rightmost column),

obtained using the approach of [18]. . . . . . . . . . . . . . . 5

Figure 1-6 Estimating the average shape of a sample of eight curves (left)

using the approach of [19]. The mean shape is displayed in

large, on the right. . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1-7 Shape data with complex branching or network structures.

Left: A pair of 3D plant roots with different branching struc-

tures. Middle: A pair of nerve fibre bundles with different

densities. Right: A retinal blood vessel with complex branch-

ing structure from [34]. . . . . . . . . . . . . . . . . . . . . 8

Figure 1-8 A 3D scan of primate teeth (courtesy of Siobhan Cooke from

JHU), represented as a surface with complex topological struc-

ture, due to the presence of holes and noise in the mesh. . . 9

Figure 1-9 Left: Occlusions in the data acquisition process results in

missing data (blue curve). Right: Partial correspondences

(dotted lines) obtained between the incomplete curve and

complete curve (with matching parts in red) obtained using

the method of [35]. . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1-10 Astronomical exposures with low signal to noise ratio due to

missing pixel values (dark grey band), heavy atmospheric blur,

and additive noise. Data obtained from the Hyper Suprime-

Cam survey [36, 37]. . . . . . . . . . . . . . . . . . . . . . . 10

xiii

https://github.com/RSA-benchmarks/collaborative-comparison
http://www.tractometer.org/ismrm_2015_challenge/


Figure 2-1 Parametrized immersed (closed) curve q ∈ Imm(S1,R2) and a

tangent vector in h ∈ Tq Imm(S1,R2). Figure courtesy of N.

Charon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2-2 Riemannian submersion on the space of curves. Figure cour-

tesy of N. Charon. . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2-3 The induced pullback metric on M of an immersion q : M → R3. 35

Figure 3-1 Parametrized shape graph (left) with associated adjacency

matrix (right). The shape graph c = ∏︁K
k=1 c

k has K = 4

component curves, where c1 is a closed curve (red), c2 is an

immersion with self intersection (blue), and c3 and c4 are open

curves (yellow and green respectively). . . . . . . . . . . . . 56

Figure 3-2 Geodesic between two shape graphs with the same topology:

the source c0 (left) and target c1 (in red on the right). The

target is overlayed on the transformed source c(1) at t = 1.

The estimated geodesic distance is distSG([c0], [c1]) = 0.83. . 67

xiv



Figure 3-3 Geodesic between source (blue at t = 0) and target (red

at t = 1) shape graphs having different topologies. (Top

row) We use the relaxed shape graph registration framework

described in (3.11), which only allows for a geometric defor-

mation of the source. The estimated geodesic distance is

distSG(c0, c1) = 1.44, around 1.7 times higher than in Fig-

ure 3-2. (Bottom row) Result obtained from the weighted

shape graph registration framework described in (3.12) that

jointly estimates a deformation and weight changes on the

source. Components of the source which get “erased” are

colored in progressively transparent shades of blue. The es-

timated geodesic distance here is distSG(c0, c1) = 0.77, now

fairly comparable to Figure 3-2. . . . . . . . . . . . . . . . . 67

Figure 3-4 Graph of the {0, 1}-penalty ρ ↦→ (ρ(ρ− 1))2, clipped at ϵ = 0.25. 78

Figure 3-5 Matching incomplete leaves. Geodesics between Swedish

leaves [8] with partial matching constraints. The source (blue

at t = 0) and target (red at t = 1) have distinct topologies,

with the source being a closed curve, and the target being

e.g., an open curve or having multiple connected components.

The target is overlayed on the transformed source c(1) on the

right, and parts of the transformed source which get “erased”,

i.e. where the estimated weight function vanishes, are colored

in progressively transparent shades of blue. (Top to bottom)

The estimated geodesic distances distSG([c0], [c1]) are (i) 1.29,

(ii) 0.95, (iii) 0.51, (iv) 1.35. . . . . . . . . . . . . . . . . . . 84

xv



Figure 3-6 3D maize root systems. The source (blue at t = 0) is a 3D

maize root system with multiple lateral roots, and the target

(red at t = 1) is another maize root system with only 2 lateral

roots. The extra branches of the transformed source which get

“erased” are colored in progressively transparent shades of blue.

The estimated geodesic distance here is distSG([c0], [c1]) = 0.64.

We note that the left branch of the target matches with the

particular branch on the transformed source shown above

because matching with this specific branch requires the least

amount of geometric deformation in R3 (and hence the least

amount of energy) when compared to any of the 4 other

branches. The algorithm then decides to erase these other 4

branches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 3-7 Splitting into multiple connected components. In this

example, the source shape graph consists of a single circle

while the target is made of two disconnected circles. The target

is overlayed on the transformed source on the rightmost image,

where the estimated weights on the “bridge” between the two

connected components are equal to 0, shaded in translucent

blue. The method thus effectively erases this part. We find

an estimated geodesic distance of distSG([c0], [c1]) = 2.64. . . 86

xvi



Figure 3-8 Simultaneous mass deletion and creation. The source

(blue at t = 0) is a millet root with five lateral branches, to

which we add one artificial lateral branch having weight zero

(i.e., a phantom component), and the target (red at t = 1)

is another millet root with five lateral branches. We first

ran the algorithm backwards by matching the target to the

source, then used the resulting endpoint shape graph and

weight function to determine the precise location at which

to augment the source with a phantom branch. Branches of

the transformed source which get “created” are colored in

progressively opaque shades of blue. Those that get “deleted”

are colored in progressively transparent shades of blue. The

estimated geodesic distance is distSG([c0], [c1]) = 0.90. . . . . 87

Figure 3-9 Matching result of a single curve (left) onto a bundle of 42

curves (superimposed in transparent blue on the right image).

Here, the color represents the weight on the deforming source

curve. The matching at t = 1 leads to both a reasonable esti-

mate of the average geometry of the bundle and an estimated

weight function that provides a measure of the local density

of curves in the bundle. . . . . . . . . . . . . . . . . . . . . 88

Figure 3-10 Sliding motions. In this example, the source is blue and

the target is red. The geodesic path represents a natural

deformation where the two side branches slide down and up

along the trunk to align. . . . . . . . . . . . . . . . . . . . . 90

Figure 4-1 Defining H2-metrics using discrete differential geometry. The

cell dual to the vertex v is shown in blue. . . . . . . . . . . . 107

xvii



Figure 4-2 Solution to a parametrized BVP (top) and to the correspond-

ing IVP (middle), i.e., after solving the BVP, we calculated

the corresponding initial velocity of the solution and used

this as the initial condition to solve the IVP. The results are

overlaid (bottom) to illustrate the small discrepancy in the

solutions. Data obtained from the TOSCA dataset [16]. . . . 113

Figure 4-3 Influence of constants. An example of the same boundary

value problem with different choices for the H2-metric coeffi-

cients (a0, a1, b1, c1, d1, a2). First row: (1, 1, 1, 1, 1, 1), Second

row: (10, 1, 1, 1, 1, 1), Third row: (1, 1, 1, 1, 1, 0.1), Fourth row:

(1, 10, 10, 1, 1, 0.1), Fifth row: (1, 1, 10, 0, 1, 10), Sixth row:

(1, 100, 1, 1, 1, 1). . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 4-4 Matching of two skulls with highly incompatible topology.

Top row: Geodesic w.r.t. to an H2-metric with coefficients:

(1, 1, 1, 1, 1, 2). Bottom row: the deformed source q(1) for

different metrics and methods: the SRNF pseudo distance

obtained with the code of [69] (yellow), an H1-metric with

coefficients: (1, 1, 1, 1, 1, 0) (green), an H2-metric with coeffi-

cients: (1, 1, 1, 1, 1, 2) (turquoise), an H2-metric with coeffi-

cients allowing for partial matching: (1, 1, 1, 1, 1, 2) (violet).

The target is displayed on the right. One can observe the

regularizing effect of the second-order terms (turquoise and

violet) and, in addition, how topological inconsistencies (such

as the thin arc near the left ear) are correctly removed in the

partial matching framework of Section 4.6 (violet) instead of

getting shrunk to almost zero volume (turquoise). Data taken

from the MorphoSource archive [132]. . . . . . . . . . . . . . 116

xviii

https://www.morphosource.org


Figure 4-5 Visualizing the distance matrix between ten human body

shapes using multidimensional scaling. The geodesic distance

naturally clusters the population into male and female shapes.

Mesh data obtained from the FAUST dataset [135]. . . . . . 121

Figure 4-6 First row: a data set of 10 faces with inconsistent mesh

structures. Second row: the first principal component geodesic

(in the positive and negative directions) from the Karcher mean

(purple) of the data set. The principal direction is obtained

by tangent PCA. Data obtained from [137]. . . . . . . . . . 123

Figure 4-7 Tangent PCA for a set of parametrized surfaces. On the left

we display the first three principal component geodesics of

a training set. On the right, we display a reconstruction of

two elements from a separate testing set, where each vertex

is colored based on the Euclidean error of the reconstruction.

Data taken from the CoMA dataset [138]. . . . . . . . . . . 125

Figure 4-8 Example of parallel transport using Schild’s ladder. We com-

pute the initial tangent vector in the direction of the top

geodesic, use Schild’s ladder (Algorithm 6) to transport the

tangent vector along the geodesic between the leftmost sur-

faces, and finally compute the geodesic on the the bottom as

an IVP. Data taken from [137]. . . . . . . . . . . . . . . . . 126

xix



Figure 4-9 Matching with missing data. We use a complete set of pha-

langes (i.e., hand bones) as the source, and a different set

of phalanges as the target, where some bones on the index

finger and thumb were artificially removed. Top row: We

matched the surfaces without weight estimation using Algo-

rithm 2. The parts of the transformed source that are getting

matched to the removed bones from the target get shrunk

to almost zero volume. The estimated geodesic distance is

117.006. Bottom row: We augment the surfaces with weights

and use Algorithm 7 to match them. Our model correctly

“erases” (i.e., estimates vanishing weights) the appropriate

parts of the transformed source to account for corresponding

missing bones on the target. This produces a natural looking

geodesic between the source and target, without the produc-

tion of singularities, with a lower estimated geodesic distance

of 114.564. Data taken from [132]. . . . . . . . . . . . . . . 133

Figure 4-10 Splitting into multiple components (top): We match a sin-

gle sphere with two disconnected spheres using Algorithm 7.

The transformed source q(1) contains a “bridge” between the

two spheres in the target where the algorithm estimates zero

weights. Matching with highly inconsistent topological struc-

tures (bottom): We match a sphere (genus zero surface) and

a torus (genus one surface) via Algorithm 7. Our model artifi-

cially accounts for the creation of a hole, i.e., the change in

topology, via the estimation of vanishing weights. . . . . . . 134

xx



Figure 4-11 Karcher mean estimation with weights. Left: The data

(turquoise) consists of 5 distinct hands each missing a dif-

ferent finger, and the Karcher mean estimate (yellow) is a

complete hand. Right: Geodesics between Karcher mean esti-

mate (yellow on the left) and the data points (turquoise on

the right). Mesh data obtained from [142]. . . . . . . . . . . 135

Figure 5-1 Network architecture: Weights contained in the red blocks are

trainable and the Siamese convolutional nodes have shared

weights. The green blocks perform shape-preserving data

augmentation as described in Section 5.3.2. . . . . . . . . . 149

Figure 5-2 Example of shape-preserving data augmentation: The curve on

the left is an example of the parameterization (i.e. sampling)

of a curve from the Swedish Leaf II dataset, see Section 5.4.

The remaining two curves represent reparameterizations and

rotations of this curve as produced by our shape preserving

data augmentation strategy. . . . . . . . . . . . . . . . . . . 150

Figure 5-3 On both figures, the x-axis represents epochs, and on the

y-axis, we plot the network’s mean squared error on training

data (blue), and on unseen testing data (red). Convergence

curves for network trained on open, real-valued functions

discretized at 90 points from our Synthetic I dataset, trained

for 500 epochs (left). Convergence curves for network trained

on closed, 2D curves discretized at 100 points from the Kimia

dataset, trained for 50 epochs (right). Descriptions of the

datasets are given in Section 5.4. . . . . . . . . . . . . . . . 151

xxi



Figure 5-4 Five examples from Synthetic I (left) and the CPC Precipita-

tion dataset (center left). Third and fourth figure: Comparison

of DP (red) and our trained network (blue). Scatter plot of

relative errors for 1000 testing cases from the CPC precipita-

tion dataset, using a network trained on Synthetic I (center

right). Corresponding correlation plot for both methods, with

exact distances on the y-axis, and estimated distances on the

x-axis, and the line y = x in green (right). . . . . . . . . . . 154

Figure 5-5 Five examples from the MPEG-7 dataset (left). Five examples

from the Swedish leaf dataset (right). . . . . . . . . . . . . . 156

Figure 5-6 Example of a curve from the Swedish Leaf I dataset, where

curves have arc length parametrization (left), and from the

Swedish Leaf II dataset with adversarial parametrizations

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 5-7 CMDS clusters of 40 curves selected from the Swedish leaf

dataset using exact distances (left) and DL distances (right). 157

Figure 5-8 Examples from the hurricane path dataset (top) and from the

taproot dataset (bottom). . . . . . . . . . . . . . . . . . . . 158

Figure 5-9 From left to right: Template shapes representing the outer

contours of the optical characters ‘u’, ‘Y’ and ‘7’. . . . . . 162

Figure 5-10 Template database generation. . . . . . . . . . . . . . . . . . 162

Figure 5-11 Top: Original sentence written in English using the Tahoma

font. Middle: Output of our shape-based OCR procedure,

with incorrectly labelled characters highlighted in red. Our

procedure produces a 9.52% error rate. Bottom: Output of

Tesseract OCR engine, where there are no errors in this case. 165

xxii



Figure 5-12 Left and middle: Template shapes corresponding to ‘O’ and

‘o’ respectively, which are indistinguishable as they have

the same shape after rescaling. Right: Outer contour repre-

sentation of character ‘A’, which might be more adequately

represented using a shape graph. . . . . . . . . . . . . . . . 166

Figure 5-13 Top: Original sentence written in Mauritian Creole using the

Lucida Sans Typewriter font. Middle: Output of our shape-

based OCR procedure, with incorrectly labelled characters

highlighted in red. Our procedure produces a 3.70% error

rate. Bottom: Output of Tesseract OCR engine, where errors

include incorrectly labelling characters (in red), missing certain

characters (in red with green background), and spuriously

adding characters (in red with blue background). The error

rate in Tesseract’s output (not including missing characters

or erroneously added characters) is 4.94%. . . . . . . . . . . 167

Figure 6-1 Supernovae may be distinguished based on the shape of their

light curves (which refers to the light intensity of a celestial

object as a function of time). The light curves corresponding

to supernovae of Type IA (left) all share a common ‘shape’,

similarly to those of Type II (right). Data taken from the

simulated PLAsTiCC dataset [184]. . . . . . . . . . . . . . 171

xxiii



Figure 6-2 The detection and classification of tidal features around galax-

ies is a central task as their characterization gives valuable

information about the past assembly history of their host

galaxy. One may exploit patterns in the ‘shape’ of these fea-

tures to automate this classification process, which is usually

done manually and takes a non-negligible amount of time [182].

Images depict the process of manually annotating these tidal

features from astronomical exposures (top), and the resulting

shape representations of these features (bottom). Pictures

taken from [182]. . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 6-3 Hyper Suprime-Cam data. Left: We are given a set of n = 33

exposures y≡{y(1), . . . , y(n)}, each of size 4K by 4K pixels, and

corresponding PSFs f≡{f (1), . . . , f (n)} of size 43 by 43 pixels

(bottom). Right: An exposure y(t) (top), with corresponding

mask m(t) whose entries are binary, with pixels where m(t)
ij = 1

colored in white (middle), and corresponding variance image

v(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xxiv



Figure 6-4 Comparison: Selected cutouts of the same part of the sky from

an original exposure (top left), versus a “sample mean” co-add

(top right) versus a restored image ˆ︁x obtained from our EM

approach using Algorithm 8 without super-resolution (bottom

left), and another restored image ˆ︁x∆ with super-resolution

factor ∆ = 2 (bottom right). Our method deblurs a wide

array of sources, such as spiral arm and elliptical galaxies,

and stars of varying sizes and shapes as well as small, faint

sources. The reconstructions (bottom row) contain none of

the usual unwanted artifacts (e.g ringing, speckles, noise in the

sky background). As a result, we obtain high-fidelity images

where e.g., the pixels are non-negative, the sky-background

has zero pixel values, and the number and relative sizes, shapes

and fluxes of the sources is preserved. Overall, the method

produces a physically meaningful restored image of the night

sky which is suitable for photometry, especially when super-

resolution is used. . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 6-5 Comparison: Selected cutouts of the same part of the sky

from an original exposure (top left), versus a “sample mean”

co-add (top right) versus a restored image ˆ︁x obtained from

our EM approach using Algorithm 8 without super-resolution

(bottom left), and another restored image ˆ︁x∆ with super-

resolution factor ∆ = 2 (bottom right). Our method produces

high-fidelity reconstructions (bottom row) in which small, faint

sources are present and detectable, which is ideal for photometry.188

xxv



Figure 6-6 Left: Source detection in the co-add (red ellipses) and EM

reconstruction ˆ︁x (blue ellipses) overlayed on ˆ︁x. Right: Scatter

plot of flux (brightness) of each associated detected source

from the co-add and ˆ︁x, overlayed on a plot of the line y = x

(in red). The x-axis represents the flux of sources in the co-add

and the y-axis represents the flux of those in ˆ︁x. The axes are

log scale. The scatter plot is concentrated around the line

y = x, indicating that the fluxes in both the co-add and ˆ︁x are

comparable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xxvi



Chapter 1

Introduction

The shape of an object is arguably one of its most basic and fundamental physical

properties. Indeed, we can often recognize an object by identifying it with its shape.

Sometimes, we can determine whether an object is in a normal or anomalous state

simply by comparing its typical shape in each state. And one day, we might even be

capable of reliably inferring physical laws or biological mechanisms by analyzing the

evolution of the shape of objects over time. The point here is that the study of shape

is playing, and will continue to play, a key role in many practical and scientific tasks

across a variety of disciplines.

1.1 Shape data and analysis

Over the past few decades, the study of shape from a mathematical perspective has

greatly benefited from an explosion in the availability of shape data, which broadly

speaking, refers to data whose predominant features are of geometric and topological

nature. The increased availability of shape data is a direct consequence of tremendous

advances in imaging technologies in fields such as medicine and neuroscience. Indeed,

shapes arise naturally from imaging data as the boundaries of objects segmented from

2D images or volumetric 3D scans, see Figure 1-1 for an illustration. In turn, such data

admits a natural mathematical representation as curves or surfaces, which opens up the
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Figure 1-1. Segmenting the image (left) produces shape data, i.e., a curve representing
the boundary of the leaf (right). Imaging data obtained from the Swedish leaf dataset [8].

door for a data-driven mathematical study of shape. While several other mathematical

representations have been considered in the literature, including landmarks [1–3], point

clouds [4], level set representations [5], medial axis skeletonizations [6], and metric

measure spaces [7] to name a few, our discussion in this thesis will focus on shapes

represented as curves or surfaces. We illustrate several such examples in Figure 1-2.

Figure 1-2. Shape data represented as curves and surfaces. Left: A closed curve in R2

from the MPEG-7 dataset [9] representing the outline of a bat. Center left: A protein
backbone from the SHREC’ 10 dataset [10] represented as an open curve in R3. Center
right: A volumetric scan of the hippocampus from the PyKeops library demo files [11]
represented as a closed surface of genus zero. Right: A facial scan from [12] represented
as an open surface.
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Among the plethora of mathematical techniques that have emerged for the study of

shape data, several methods from the field of shape analysis have proven to be successful

in numerous applications with geometric objects such as curves and surfaces [13–16].

The guiding principle in shape analysis lies in the concept of invariance: an object’s

shape is the information that remains after factoring out the action of certain so-called

shape-preserving groups. This includes the finite-dimensional groups of transformations

that act on the ambient space of the objects (rotations, translations, scalings), and

more importantly, the infinite-dimensional group of reparametrizations that acts on

the parameter space of the curve or surface. See Figure 1-3 for a depiction.

Figure 1-3. Consider a geometric object, such as the planar curve representing the outline
of an insect from the MPEG-7 dataset [9] (in black, top left). Top row: The geometric
object’s shape remains unchanged regardless of how it is rotated, translated, or scaled
(in blue, from left to right). Bottom row: The geometric object’s shape also remains
unchanged regardless of how it is parametrized, as highlighted by the coloring of the points
along the curve (bottom row).
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The main goal of shape analysis is the development of theoretical and numerical

tools for shape registration, shape comparison and statistical shape analysis. Shape

registration refers to the process of establishing point-to-point correspondences between

a pair of geometric objects, see Figure 1-4 for an illustration. Meanwhile, shape

comparison involves quantifying the dissimilarity between a pair of curves or surfaces,

see Figure 1-5. And finally, statistical shape analysis encompasses the development of

procedures for the statistical study of populations, or random samples, of shape data.

This includes, but is not limited to, techniques for the estimation of mean shapes and

shape variability within samples, tools for classifying or clustering a set of geometric

objects, and methods to perform hypothesis testing for differences between samples,

see Figure 1-6.

Figure 1-4. Point-to-point correspondences (dotted lines) obtained after registering a
pair of surfaces using the approach of [17].
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Figure 1-5. Shape comparison may be performed by quantifying the cost of an ‘optimal’
deformation between a pair of shapes. In this example, we illustrate optimal deformations
between pairs of surfaces (on the leftmost column and rightmost column), obtained using
the approach of [18].

Figure 1-6. Estimating the average shape of a sample of eight curves (left) using the
approach of [19]. The mean shape is displayed in large, on the right.

5



1.2 The Riemannian approach

In particular, Riemannian shape analysis frameworks [14, 15], which we will elaborate

on in Chapter 2, provide us with a platform to perform the registration, comparison and

statistical analysis of shape data in a unified fashion; which is highly desirable. Indeed,

in several use cases involving geometric data, such as medical imaging applications [20],

it is commonplace for the registration on the one hand, and comparison plus statistical

analysis on the other, to be performed independently of each other. One typically

proceeds by first registering the data in a pre-processing step under a certain criteria

(as defined by a metric or objective function), before subsequently comparing and

performing statistical analysis independently of this registration criteria. This practice

is, however, being increasingly questioned. Indeed, performing the pre-processing step

under an inappropriately chosen metric can lead to a severe loss in the data structure,

thus rendering any subsequent comparisons and statistical inference moot, see e.g. the

discussion in Chapter 1 of [15] and the references therein.

Performing shape analysis in a Riemannian setting allows us to circumvent such

issues. In the Riemannian setup, we adopt the viewpoint that shape data represented

as curves and surfaces belongs to an infinite-dimensional manifold which, crucially,

is endowed with a Riemannian metric that is invariant with respect to the action of

shape-preserving groups, see Section 2.1 for precise definitions and technical details

about the construction of these metrics. These Riemannian metrics are of fundamental

importance as they allow us to model a very natural notion of similarity between

shapes: they measure the cost of deformations, and can thus be used to define

the distance (similarity) between two geometric objects as the cost of the cheapest

deformation that transforms one of them onto the other. By computing these optimal

deformations (called geodesics), we recover optimal point-to-point correspondences

(registrations) between pairs of shapes. In turn, we can leverage these distances and
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their associated geodesics in order to apply the methods of geometric statistics [21,

22] for the purposes of developing a comprehensive statistical framework for analyzing

shape data, via which one can estimate Karcher means, perform principal component

analysis and conduct hypothesis testing on manifolds of shapes, among many other

things. The Riemannian approach to shape analysis thus gives us the desired unified

framework to register, compare and perform statistics with shape data.

Riemannian shape analysis has found several practical applications in a number of

fields such as computational anatomy, computer vision and computer graphics. For

instance, the large deformation diffeomorphic metric mapping (LDDMM) framework,

a prominent Riemannian shape analysis framework which we will elaborate on in

Chapter 2, has been used in a number of biomedical applications. As a case in

point, it enabled the detection and quantification of patterns of abnormality in the

shapes of several brain structures belonging to patients suffering from mild cognitive

impairment and Alzheimer’s disease [23, 24]. Another study leveraged the LDDMM

framework to demonstrate a statistically significant shape difference in the complex

of deep brain structures of subjects suffering from Down syndrome as compared to

control subjects [25]. Moreover, statistical shape analysis methodologies have been

used to identify morphological features that are correlated to knee osteoarthritis, a

degenerative disease resulting in the wearing down of cartilage in the knee [26]. Fur-

thermore, curve registration has been employed to find point-to-point correspondences

between vascular structures in order to assist surgical procedures [27, 28]. Another

prominent Riemannian shape analysis framework called the elastic shape analysis

(ESA) framework, which we will also discuss in greater depth in the next chapter, has

also been utilized in several applications. For instance, ESA techniques have been

used to compare and analyze human facial data [29]. Additionally, elastic surface

registration has been leveraged for human body pose estimation; a central component

of many computer vision problems [30].
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1.3 Challenges: Complex topological structures,
partial correspondences, large datasets, and
extraction of shape data

Nevertheless, despite their remarkable success to date, existing tools from the field of

Riemannian shape analysis may be significantly more challenging to apply, or even

simply be ill-suited, in the context of several modern day data-driven applications.

Indeed, a number of problems in fields such as biology or medicine involve shape

data with complex topological structures. This includes geometric objects with branch-

ing or network structures, such as plant roots, nerve fiber bundles and retinal blood

vessels, see Figure 1-7. It also includes shapes having a range of genuses or several

connected components, see Figure 1-8. Most methods that have been developed to

deal with such objects come from the field of topological data analysis (TDA) [31–33].

For instance, TDA techniques can provide summaries of the topological features of

shape data, which is useful e.g. as a dimensionality reduction tool. However, TDA

methods are often agnostic to salient geometric features of the data, which might be

undesirable in several applications. Existing frameworks are thus simply not designed

to handle the interplay between the geometry and topology of shape data.

Figure 1-7. Shape data with complex branching or network structures. Left: A pair of
3D plant roots with different branching structures. Middle: A pair of nerve fibre bundles
with different densities. Right: A retinal blood vessel with complex branching structure
from [34].
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Figure 1-8. A 3D scan of primate teeth (courtesy of Siobhan Cooke from JHU),
represented as a surface with complex topological structure, due to the presence of holes
and noise in the mesh.

Moreover, shape data often involves partial correspondences. Intuitively, this refers

to situations where there is no natural or well-defined point-to-point correspondence

between a pair of geometric objects. This occurs for instance due to inherent inconsis-

tencies in the topological structure of subjects in a sample, or due to multiple factors

such as occlusions, segmentation issues or inadequate fields of view during the data

acquisition process, see Figure 1-9. Existing shape analysis frameworks often implicitly

assume some form of topological consistency in the geometric data, and as a result,

are not adapted for performing tasks such as shape registration or statistical shape

analysis in the presence of partial correspondences.

Figure 1-9. Left: Occlusions in the data acquisition process results in missing data (blue
curve). Right: Partial correspondences (dotted lines) obtained between the incomplete
curve and complete curve (with matching parts in red) obtained using the method of [35].
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Furthermore, many applications with shape data now entail working with increas-

ingly large datasets of geometric objects. This is a direct result of the increased

availability of such data in several fields. Unfortunately, existing numerical tech-

niques for tasks such as shape registration or shape clustering incur a relatively high

computational cost, thus rendering current numerical shape analysis pipelines rather

impractical for processing large samples of shapes containing, for instance, several

thousands of subjects, let alone millions or billions of sample points.

Lastly, the reach of shape analysis techniques is limited in application areas where

it is hard to acquire shape data. Indeed, as mentioned earlier, geometric data is often

extracted from images. Yet, while imaging data is ubiquitous across several fields,

shape data is not. One reason why this occurs is that shapes are often buried in

low signal-to-noise images where, for instance, the presence of large noise-dominated

regions, heavy blur and missing or spurious pixel values makes it infeasible to perform

segmentation in a reliable way in order to extract curves or surfaces from the raw

images. Such a situation occurs, for instance, in astronomy: a field which is rich in

imaging data where shape analysis techniques have the potential to address a number

of unmet needs, but where the extraction of shape data is complicated by e.g. the low

signal-to-noise ratio of astronomical exposures acquired by telescopes, see Figure 1-10.

Figure 1-10. Astronomical exposures with low signal to noise ratio due to missing pixel
values (dark grey band), heavy atmospheric blur, and additive noise. Data obtained from
the Hyper Suprime-Cam survey [36, 37].
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1.4 Contributions and organization

The aforementioned challenges highlight the need to:

• Extend existing shape analysis frameworks by developing new theoretical tools

and numerical techniques in order to perform shape registration, shape compari-

son and statistical shape analysis of geometric objects with complex topological

structures which can also exhibit partial correspondences.

• Produce numerical pipelines that are suitable for processing large datasets

of geometric objects, where the goal is ultimately to render shape analysis

techniques more amenable for usage in large-scale data-driven applications.

• Develop state-of-the-art methods to pre-process low signal-to-noise imaging data

in order to facilitate the extraction of high quality shape data in a broader range

of fields.

The work presented in this thesis attempts to address these needs. The thesis is

structured as follows:

• In Chapter 2, we present background material that we will rely on for the

remainder of the thesis. This includes an overview of some of the most prominent

Riemannian frameworks for the shape analysis of curves and surfaces, such as

the large deformation diffeomorphic metric mapping (LDDMM) framework, and

the elastic shape analysis (ESA) framework with higher-order invariant Sobolev

metrics. In particular, the ESA framework will act as the backbone for the novel

frameworks that we introduce in subsequent chapters. Notably, we also give

an exposition of the varifold-based relaxed matching approach for curve and

surface registration, which is a versatile variational framework that we leverage

to extend existing ESA frameworks in order to account for complex topological
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structures and partial correspondences in curve-like shape data (Chapter 3) and

surface-like shape data (Chapter 4).

• More precisely, in Chapter 3, we unveil an elastic shape analysis framework for

shape graphs; a general class of geometric structures that can be used to model

curve-like shape data with arbitrary topological structures, such as the data

in Figure 1-7. In particular, we present a variational framework, together with

numerical techniques, for performing shape graph registration in the presence of

partial correspondences and topological inconsistencies.

• Next, in Chapter 4, we introduce another new elastic shape analysis framework

for surfaces with complex topological structures. In particular, we develop a

variational framework, together with a set of algorithms, for the registration,

comparison and statistical shape analysis of datasets of surfaces (with possible

partial correspondences), including methods for estimating Karcher means and

performing tangent principal component analysis with datasets of surfaces, and

for computing parallel transport along paths of surfaces.

• In Chapter 5, we then present a supervised deep learning framework for fast

estimation of the square-root velocity distance on the space of curves; a widely-

used quantitative measure for curve comparison. As a proof of concept to show

that such shape-analysis-inspired deep learning approaches may be useful as part

of scalable numerical pipelines in large-scale data-driven applications, we leverage

our framework to perform optical character recognition (OCR), and demonstrate

comparable performance in terms of speed and accuracy with respect to other

existing OCR techniques.

• Finally, in Chapter 6, we present an early roadmap for the application of elastic

shape analysis techniques in the field of astronomy. In particular, to address

the difficulty of extracting high quality shape data from astronomical imaging
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data, we present a state-of-the-art expectation-maximization approach for the

challenging task of multi-frame astronomical image deconvolution and super-

resolution. We leverage our approach to obtain a high-fidelity reconstruction

of the night sky, from which high quality shape data can be extracted using

appropriate techniques.
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Chapter 2

Riemannian shape analysis

We begin by presenting an overview of the Riemannian approach for shape analysis;

a framework which allows us to perform the registration, comparison and statistical

analysis of shape data in a unified fashion. This chapter contains an exposition of two

of the major Riemannian frameworks for the analysis of curve and surface data: the

large deformation diffeomorphic metric mapping (LDDMM) and elastic shape analysis

(ESA) frameworks. We also present the relaxed version of the registration problem for

curves and surfaces via varifold fidelity metrics in the ESA setting, which will form

the foundation for the new frameworks introduced in the next chapters of this thesis.

2.1 Riemannian metrics on shape spaces

In Riemannian shape analysis, the general modus operandi consists of:

(i) Modeling geometric data such as curves and surfaces as elements of the infinite-

dimensional manifold of parametrized immersions, which we refer to as the

pre-shape space.

(ii) Equipping the pre-shape space with a Riemannian metric, which is used to

define minimizing geodesics and geodesic distances on this space.

(iii) Requiring that the Riemannian metric be invariant with respect to the action
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of the shape-preserving group of reparametrizations. Other shape-preserving

groups of interest include those of translations, rotations and scalings.

(iv) Leveraging these invariances so that the metric descends to the quotient manifold

of unparametrized immersions (i.e the manifold of parametrized immersions

modulo the reparametrization group), which we call the shape space.

This induced Riemannian metric on the shape space, and its corresponding geodesic

distance function, are the central tools that allow us to accomplish the ultimate goal

of shape analysis: which is to register, compare and perform statistics with geometric

objects such as curves and surfaces, regardless of how they are parametrized (and

possibly translated, rotated and/or scaled). In what follows, we elaborate on the

construction of Riemannian metrics on shape spaces of curves and surfaces.

2.1.1 Metrics on the pre-shape space

In the Riemannian setup, one starts by viewing geometric objects such as curves

and surfaces as elements of an infinite-dimensional manifold, which we refer to as

the pre-shape space. Typically, we model the pre-shape space as the manifold of all

parametrized immersions from a parameter space M into d-dimensional Euclidean

space Rd, i.e., the set of all smooth mappings q ∈ C∞(M,Rd) whose differential dq is

injective at every point of M . We denote the manifold of parametrized immersions

by Imm(M,Rd), and note that the tangent space to this manifold at any immersion

q ∈ Imm(M,Rd), denoted by Tq Imm(M,Rd), is given by C∞(M,Rd).

Example 1 (Parametrized immersed curves). As a concrete example of a pre-shape

space Imm(M,Rd), consider the space of parametrized immersed curves in Rd, which

corresponds to the case where M is a one-dimensional parameter space and d ≥ 2. In

particular, we have open curves if the parameter space M is the unit interval [0, 1] ⊂ R,

and closed curves if M is the unit circle S1. Any tangent vector h ∈ Tq Imm(M,Rd) ≡
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C∞(M,Rd) can be canonically identified with a vector field along the curve q by simply

viewing h(θ) ∈ Rd as the vector attached to the point q(θ) ∈ Rd for every θ ∈ M , see

Figure 2-1.

Figure 2-1. Parametrized immersed (closed) curve q ∈ Imm(S1,R2) and a tangent vector
in h ∈ Tq Imm(S1,R2). Figure courtesy of N. Charon.

Example 2 (Parametrized immersed surfaces). Likewise, when the parameter space

M is a 2-dimensional compact manifold (possibly with boundary) and d = 3, the

manifold Imm(M,R3) corresponds to the space of parametrized immersed surfaces in

R3. Once more, any tangent vector h ∈ Tq Imm(M,R3) ≡ C∞(M,R3) can be thought

of as a vector field in R3 along the surface q.

Remark. We highlight that depending on the context or application at hand, one may

impose different regularity assumptions on the mappings q : M → Rd that define the

underlying curves or surfaces under consideration. For instance, we consider these

mappings to be Sobolev immersions of order r > 3/2 on M in Chapter 3, while we

treat them as absolutely continuous functions on M in Chapter 5.
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The next step in Riemannian shape analysis is to endow the pre-shape space

Imm(M,Rd) with a Riemannian metric G, which intuitively speaking, defines an

abstract inner product on the tangent space Tq Imm(M,Rd) at any given immersion

q ∈ Imm(M,Rd). We note that the Riemannian metric can depend on q ∈ Imm(M,Rd),

in which case we denote this dependence explicitly by writing Gq for the metric. More

formally, a Riemannian metric on Imm(M,Rd) refers to a bilinear symmetric positive

definite map Gq : Tq Imm(M,Rd) × Tq Imm(M,Rd) → R that varies smoothly with

respect to q ∈ Imm(M,Rd). In the context of pre-shape spaces of immersed curves

and surfaces, where any given tangent vector h ∈ Tq Imm(M,Rd) can be thought of

as a vector field defined along the immersion q as outlined earlier, one can interpret

the quantity Gq(h, h) as the ‘cost’ of deforming q by an infinitesimal amount along

the direction of the vector field defined by h.

Equipped with any Riemannian metric G on Imm(M,Rd), one can define a distance

on the pre-shape space. For any pair of parametrized immersions q0, q1 ∈ Imm(M,Rd),

this so-called geodesic distance is given by

distG(q0, q1) = inf
q(·)∈Pq1

q0

∫︂ 1

0

√︂
Gq(t) (∂tq(t), ∂tq(t))dt, (2.1)

where the infimum is taken over the set of all paths of immersions q(·) connecting q0

and q1, which we denote as

Pq1
q0

:=
{︂
q(·) ∈ C∞([0, 1], Imm(M,Rd)) : q(0) = q0, q(1) = q1

}︂
, (2.2)

where ∂tq(t) denotes the derivative of the path q(·) with respect to the parameter t.

We refer to the minimization problem in (2.1) as the geodesic boundary value problem

(BVP) on the pre-shape space. The functional being minimized in this geodesic BVP,

namely

L(q(·)) :=
∫︂ 1

0

√︂
Gq(t) (∂tq(t), ∂tq(t))dt, (2.3)

is called the Riemannian length of the path q(·). Thus, solving the geodesic BVP

consists of finding paths of minimal length connecting the immersions q0 and q1, which
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we refer to as minimizing geodesics, or simply as geodesics. By a standard result in

Riemannian geometry (see e.g. Chapter 7 in [38]), finding minimizing geodesics is

equivalent to minimizing the Riemannian energy

E(q(·)) :=
∫︂ 1

0
Gq(t) (∂tq(t), ∂tq(t)) dt (2.4)

over all paths q(·) ∈ Pq1
q0 . Minimizing geodesics between q0 into q1 can thus also

be interpreted as deformations that require the least amount of ‘energy’ in order to

transform the former into the latter; although we stress here that the Riemannian

energy has no actual physical meaning. In turn, this allows us to interpret the geodesic

distance as the cost of the cheapest deformation between the pair of immersions.

We note that, while the geodesic distance induced by a Riemannian metric G on

a finite-dimensional manifold is always non-degenerate (i.e., always a well-defined

distance function), this is not always the case in the infinite-dimensional setting [39].

2.1.2 Invariance properties

Geodesics and distances on the pre-shape space obtained by solving (2.1) allow us to

compare and analyze parametrized immersions. However, the central goal in shape

analysis is to study geometric objects such as curves and surfaces after factoring out the

actions of shape-preserving groups, which includes the groups of reparametrizations,

translations, rotations and scalings. We will focus on the reparametrization group,

which is typically the most difficult one to handle due to its infinite-dimensional nature.

Thus, to compare and analyze shapes regardless of how they are parametrized, one

needs to ensure that minimizing geodesics and distances are invariant with respect to

reparametrizations. To achieve this, we will require any Riemannian metric G defined

on Imm(M,Rd) to be invariant under the action of the reparametrization group.

To be more specific, the group of reparametrizations Diff(M) consists of all

diffeomorphisms of the parameter space M , i.e., the set of all invertible smooth maps

φ ∈ C∞(M,M) with a smooth inverse. This is an infinite-dimensional group that acts

18



on the parameter domain of the parametrized immersions in Imm(M,Rd), where its

action is defined as φ · q .= q ◦ φ for any φ ∈ Diff(M) and q ∈ Imm(M,Rd). We say

that q ◦ φ is a reparametrization of q by φ.

Thus, the key requirement for any Riemannian metric G on Imm(M,Rd) is to

satisfy the following property

Gq(h, k) = Gq◦φ(h ◦ φ, k ◦ φ) (2.5)

for all φ ∈ Diff(M), q ∈ Imm(M,Rd) and h, k ∈ Tq Imm(M,Rd), as this will imply

that the geodesic distance in (2.1) satisfies

distG(q0, q1) = distG(q0 ◦ φ, q1 ◦ φ) (2.6)

for all q0, q1 ∈ Imm(M,Rd) and φ ∈ Diff(M). In turn, this will allow us to consider

the induced Riemannian metric (and distance function) on the quotient space of

unparametrized immersions, which we elaborate on in the next section.

Remark (Invariances to translations, rotations and scalings). In certain scenarios,

we may also wish to compare and analyze shapes regardless of how they are trans-

lated, rotated and/or scaled. In this case, we require any Riemannian metric G on

Imm(M,Rd) to be invariant with respect to action of the groups of translations Rd,

rotations SO(d) and/or scalings R+ as well. All of these finite-dimensional groups act

on the ambient space of the parametrized immersions in Imm(M,Rd) via their usual

action on the vector space Rd, i.e., by translating, rotating and/or scaling each point

of a given immersion in its ambient space.

More precisely, let q ∈ Imm(M,Rd) be a parametrized immersion. The group of

translations acts on Imm(M,Rd) via the action τ · q .= q + τ for any τ ∈ Rd. The

group of rotations meanwhile acts on the pre-shape space via the action of matrix

multiplication R · q .= Rq for any rotation matrix R ∈ SO(d). For instance in R2,
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these rotation matrices can be represented as

R(α) =
[︄
cos(α) − sin(α)
sin(α) cos(α),

]︄

where α ∈ [0, 2π) is the angle of rotation in the plane. Finally, the group of scalings

R+ acts on Imm(M,Rd) via the action λ · q .= λq for any λ > 0.

To perform shape analysis regardless of how shapes are translated, rotated and/or

scaled, any Riemannian metric G on Imm(M,Rd) is thus required to satisfy the

following set of properties

Gq(h, k) = Gq+τ (h, k)

Gq(h, k) = GRq(Rh,Rk) (2.7)

Gq(h, k) = Gλq(λh, λk)

for all τ ∈ Rd, R ∈ SO(d), λ > 0, q ∈ Imm(M,Rd) and h, k ∈ Tq Imm(M,Rd).

2.1.3 Metrics on the shape space

This finally brings us in a position to study shapes regardless of how they are

parametrized. To do so, we introduce the space of unparametrized immersions, which is

defined as the quotient space of parametrized immersions modulo the reparametrization

group:

S .= Imm(M,Rd)/Diff(M).

We refer to S as the shape space, and note that it consists of equivalence classes

comprised of all reparametrizations of a given immersion q ∈ Imm(M,Rd), which we

denote by [q] = q ◦ Diff(M) .= {q ◦ φ | φ ∈ Diff(M)}.

Any Riemannian metric G on the pre-shape space Imm(M,Rd) which possesses the

reparametrization invariance property in (2.5) induces a corresponding Riemannian

metric on the quotient space S; such a construction is referred to as a Riemannian

submersion, see [40] for a detailed explanation and Figure 2-2 for an illustration.
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Figure 2-2. Riemannian submersion on the space of curves. Figure courtesy of N. Charon.

Consequently the geodesic distance function corresponding to any such invariant

metric G, namely distG from (2.1), descends to a distance function on the quotient

shape space, which is given by

distS([q0], [q1]) = inf
φ∈Diff(M)

distG(q0, q1 ◦ φ) (2.8)

for any given pair of unparametrized immersions [q0], [q1] ∈ S. By expanding the

expression above, one notes that computing the geodesic distance on the shape space

can be written as the following constrained minimization problem

distS([q0], [q1]) = inf
φ∈Diff(M)

inf
q(·)∈Pq1◦φ

q0

∫︂ 1

0

√︂
Gq(t)(∂tq(t), ∂tq(t))dt, (2.9)

which involves finding the optimal reparametrization and optimal path of immersions

between [q0] and [q1]. We refer to the constrained minimization problem in (2.9) as

the geodesic boundary value problem (BVP) on shape space, or equivalently as the
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exact matching problem on shape space, or as the registration problem between [q0]

and [q1]. Compared to the BVP for parametrized immersions, the main difficulty in

terms of numerically solving this problem lies in the discretization of the action of

the reparametrization group Diff(M). We will circumvent this issue by introducing a

relaxed version of (2.9) in Section 2.4, which will make use of methods from geometric

measure theory.

Remark (Shape space modulo translations, rotations and scalings). We can also

consider the space of unparametrized immersions modulo translations, rotations and/or

scalings. Indeed, any Riemannian metric G which is also invariant with respect to

these finite-dimensional group actions by satisfying the properties in (2.7) will descend

to a metric on this quotient space. In this case, computing the induced geodesic distance

on the quotient space involves an additional minimization over the translation group

Rd, the rotation group SO(d) and/or the scaling group R+ in addition to minimizing

over the reparametrization group and over the space of paths of immersions.

2.1.4 Extrinsic and intrinsic metrics

Riemannian metrics on shape spaces of curves or surfaces come in two flavors: extrin-

sic and intrinsic metrics. Intuitively speaking, extrinsic metrics measure the cost of

deformations applied on the whole ambient space in which the curves or surfaces are

embedded. They are constructed via Riemannian submersions from right-invariant

metrics on groups of diffeomorphisms, leading notably to the large deformation diffeo-

morphic metric mapping (LDDMM) framework which we discuss next in Section 2.2.

Meanwhile, intrinsic metrics measure the cost of deformations obtained by directly

morphing the curves or surfaces (e.g. via bending, stretching or shearing). They

are constructed via Riemannian submersions of parametrization-invariant Sobolev

metrics on spaces of immersions, leading to the so-called elastic shape analysis (ESA)

framework which we outline in Section 2.3.
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Remark (Hybrid metrics). We highlight that one can also consider hybrid Riemannian

metrics, which are constructed by combining extrinsic and intrinsic metrics [41]. We

will however not discuss such hybrid metrics in great depth in this thesis.

2.2 The LDDMM framework

In the extrinsic setup, the approach to construct Riemannian metrics on the shape

space is somewhat different but related to the one presented in Section 2.1. Indeed,

the construction of extrinsic metrics is performed as follows:

• One constructs diffeomorphisms of the ambient space in which geometric objects

are embedded, via flows of time-dependent vector fields.

• One then equips the group of all such diffeomorphims with a right-invariant

Riemannian metric, from which we obtain a distance between diffeormorphisms.

• Finally, this metric and its associated distance induce an extrinsic geodesic

distance function between unparametrized immersions in the shape space S.

In what follows, we elaborate on this construction, which is inherited from the

principles of Grenander’s pattern theory [42]. It has notably led to the celebrated

large deformation diffeomorphic metric mapping (LDDMM) framework by Beg, Miller,

Trouvé and Younes [43, 44], in which distances and geodesics between pairs of geometric

objects are essentially computed by looking for a diffeomorphism of the whole ambient

space that warps one of them onto the other while minimizing the kinetic energy as

defined by the metric on the space of these diffeomorphisms.

To be more precise, the principle behind the LDDMM framework is to generate

diffeomorphisms of the ambient space via flow maps of time-dependent vector fields.

Let v = (v(t, x))(t,x)∈[0,1]×Rd be a time-dependent vector field in Rd. We define the
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flow map of v, denoted by ϕv, as the solution to the following ordinary differential

equation (ODE): ⎧⎨⎩∂tϕ(t, x) = (v ◦ ϕ)(t, x)
ϕ(0, x) = x

for all (t, x) ∈ [0, 1] × Rd. We can express the solution of this ODE more explicitly as

ϕ(t, x) = x+
∫︂ t

0
v(ϕ(s, x))ds, for all (t, x) ∈ [0, 1] × Rd.

In order for the ODE above to admit a solution ϕv such that ϕv(t, ·) is a diffeomorphism

of Rd for each t ∈ [0, 1], we need to impose certain regularity conditions on the

underlying vector field v. To do so, we consider vector fields in the space C1
0 (Rd,Rd),

i.e., the space of continuously differentiable vector fields u such that u and its differential

du vanish at infinity, and we equip this space with the norm ∥u∥1,∞
.= ∥u∥∞ + ∥du∥∞,

where we have that ∥u∥∞
.= supx∈Rd |u| is the sup norm, and ∥du∥∞

.= supx∈Rd ∥∂xu∥op

where ∥∂xu∥op
.= sup|h|≤1

|∂xu(h)|
|h| denotes the operator norm. The following theorem

from Chapter 7 of [45] summarizes the conditions under which one can generate

diffeomorphisms of the ambient space from ODEs.

Theorem 1. If the time dependent vector field v = (v(t, x))t∈[0,1]×Rd satisfies:

• v(t, ·) ∈ C1
0(Rd,Rd) for all t ∈ [0, 1]

•
∫︁ 1

0 ∥v(t, x)∥1,∞dt < ∞ for all x ∈ Rd,

then the flow map of v, denoted by ϕv(t, ·), is well-defined and is a diffeomorphism of

Rd for all t ∈ [0, 1].

The goal now is to assign a Riemannian structure to the space of all diffeomorphisms

generated from flows. To do so, we introduce the notion of an admissible Hilbert space

of vector fields on Rd, which we denote by V . We say that V is an admissible space if

it is continuously embedded in C1
0(Rd,Rd), i.e., if there exists a constant c > 0 such
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that ∥u∥1,∞ ≤ c∥u∥V for all u ∈ V , where ∥ · ∥V denotes the norm induced by the

inner product ⟨·, ·⟩V on V .

Let L2([0, 1], V ) denote the space of all square-integrable time-dependent vector

fields taking values in an admissible space V . That is, for all time-dependent vector

fields v = (v(t, x))(t,x)∈[0,1]×Rd ∈ L2([0, 1], V ), we have that v(t, ·) ∈ V for all t ∈ [0, 1],

and
∫︁ 1

0 ∥v(t, x)∥2
V dt < ∞ for all x ∈ Rd. Notice that all vector fields v ∈ L2([0, 1], V )

satisfy the conditions of Theorem 1, and hence all flows obtained from such vector

fields are diffeomorphisms.

We denote the set of all diffeomorphisms of the ambient space obtained as flows

(at time t = 1) of vector fields in L2([0, 1], V ) by

DiffV (Rd) .= {ϕv(1, ·) | v ∈ L2([0, 1], V )}. (2.10)

It can be shown that DiffV (Rd) is a group, see Chapter 7 in [45]. We can equip this

group with a Riemannian metric GV defined as

GV
ϕ (u, ũ) = ⟨u ◦ ϕ−1, ũ ◦ ϕ−1⟩V (2.11)

for all ϕ ∈ DiffV (Rd) and u, ũ ∈ V ◦ ϕ. Note that this metric is right invariant, i.e.,

it satisfies GV
ϕ (u, ũ) = GV

ϕ◦ψ(u ◦ ψ, ũ ◦ ψ) for all ψ ∈ Diff(Rd), ϕ ∈ DiffV (Rd) and

u, ũ ∈ V ◦ ϕ.

This Riemannian metric induces a distance on the group DiffV (Rd) as follows:

let ψ0, ψ1 ∈ DiffV (Rd) be two diffeomorphisms obtained as flows of vector fields in

L2([0, 1], V ), and let ψ(·) : [0, 1] → DiffV (Rd) be a path joining ψ0 and ψ1 in DiffV (Rd),

such that ∂tψ(t) exists for almost all t ∈ [0, 1]. As outlined in the previous section,

define the energy of this path as
∫︁ 1

0 G
V
ψ(t)(∂tψ(t), ∂tψ(t))dt, which can be interpreted

as the cost required to move from ψ0 to ψ1. Note that we can also define this

energy in a more convenient manner for eventually defining the distance on DiffV (Rd).

Indeed, a path joining ψ0, ψ1 ∈ DiffV (Rd) can equivalently be viewed as the flow map
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ϕv(t, ·) of a vector field v ∈ L2([0, 1], V ) which satisfies ∂tϕv(t, ·) = v(t, ·) ◦ ϕv(t, ·)

for all t ∈ [0, 1], with the terminal constraint that ψ1 = ϕv(1, ·) ◦ ψ0. The energy of

this flow map path is given by
∫︁ 1

0 G
V
ϕv(t,·)(∂tϕv(t, ·), ∂tϕv(t, ·))dt, which is equivalent

to
∫︁ 1

0 ∥v(t, ·)∥2
V dt by the right invariance of the metric GV . Thus, given a vector

field v ∈ L2([0, 1],Rd), one can parametrize the energy of a path joining any pair

of diffeomorphisms ψ0, ψ1 ∈ DiffV (Rd) via this vector field, thus giving rise to the

following Riemannian distance on DiffV (Rd)

distV (ψ0, ψ1)2 .= inf
v∈L2([0,1],V )

{︃∫︂ 1

0
∥v(t, ·)∥2

V dt | ψ1 = ϕv(1, ·) ◦ ψ0

}︃
. (2.12)

This distance can be interpreted as the minimal amount of ‘kinetic’ energy required

to move from one diffeormorphism to another in DiffV (Rd) via the flow of a vector

field taking values in the admissible space V . We refer to Chapter 7 of [45] for the

proofs that distV is indeed a (right equivariant) distance on DiffV (Rd), and that there

exists v ∈ L2([0, 1], V ) which achieves the infimum in (2.12), and that furthermore

(DiffV (Rd), distV ) is a complete metric space.

For any fixed parametrized immersion q0 ∈ Imm(M,Rd), the distance distV induces

a distance on the orbit DiffV (Rd) ◦ q0
.=
{︂
ϕ ◦ q0 | ϕ ∈ DiffV (Rd)

}︂
which is given by

distorbit(q0, q1)2 .= inf
v∈L2([0,1],V )

{︃∫︂ 1

0
∥v(t, ·)∥2

V dt | q1 = ϕv(1, ·) ◦ q0

}︃
(2.13)

for any q0 ∈ Imm(M,Rd) and q1 ∈ DiffV (Rd) ◦ q0. In turn, this distance projects down

to a distance on the shape space of unparametrized immersions S = Imm(M,Rd)/Diff(M),

which we formulate below:

For any [q0], [q1] ∈ S, the extrinsic geodesic distance is given by

distLDDMM([q0], [q1])2 .=

inf
φ∈Diff(M)

inf
v∈L2([0,1],V )

{︃∫︂ 1

0
∥v(t, ·)∥2

V dt | q(0) = q0, q(1) = q1 ◦ φ
}︃
,

(2.14)

where q(t) .= ϕv(t, ·) ◦ q0, i.e., ∂tq(t) = v(t, ·) ◦ q(t).
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The above is precisely the exact matching problem in the LDDMM setting [44].

Note that the computation of distLDDMM involves a joint optimization problem in

which one is required to search for optimal diffeomorphic deformations of the ambient

space (parametrized by vector fields v ∈ L2([0, 1], V )) that map the immersion q0 onto

q1, as well as the optimal reparametrization in Diff(M) between these two immersions.

2.3 Elastic shape analysis

We now move on to the intrinsic setting, in which the construction of Riemannian

metrics on the quotient shape space starts with a reparametrization-invariant metric

on the “top” space Imm(M,Rd), which then induces a metric on the quotient space

by Riemannian submersion, as explained in Section 2.1. More specifically, we will

consider the class of reparametrization-invariant Sobolev metrics on spaces of curves

and surfaces, which are also known as elastic metrics in the literature. These metrics,

which we will discuss in greater depth in the following sections, have been used to

develop a variety of so-called elastic shape analysis (ESA) frameworks. The common

theme across ESA techniques is that distances and geodesics between pairs of geometric

objects are essentially obtained by directly morphing one of the shapes onto the other

through a combination of transformations (such as bending, stretching and shearing)

that minimize the Riemannian energy of the metric on the shape space. The ESA

framework will act as the bedrock for the novel frameworks that we introduce in

Chapter 3 and Chapter 4.

2.3.1 Higher-order Sobolev metrics on the space of curves

We start with the space of curves, where reparametrization-invariant Sobolev metrics

were introduced by Younes [46], and later studied by Michor and Mumford [47],

Mio, Srivasta and Joshi [48], and Mennucci and Yezzi [49] amongst others. These

early works focused on the theoretical properties and computational aspects of the
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Riemannian metrics and their associated distances and geodesics. Since then, powerful

existence results for optimal reparametrizations and optimal deformations induced

by these metrics have been obtained [50–55]. Furthermore, several ensuing numerical

algorithms for the computation of the resulting elastic distances and geodesics have

been developed, see e.g. [15, 19, 52, 55–57] and the references therein.

We first review the main definitions and known theoretical results on higher-order

Sobolev metrics for closed and open curves, which we will rely on in Chapter 3 for the

purposes of introducing a novel elastic shape analysis framework for shape graphs, i.e.,

geometric objects with branching or network structures. We define a parametrized

immersed curve of regularity r (with r > 3/2) in Rd as a mapping c : D → Rd such

that c ∈ Hr(D,Rd) (the space of Sobolev functions of order r on D), where for all

θ ∈ D we have ∂θc(θ) ̸= 0. We shall denote the space of all such parametrized curves

by Immr(D,Rd), where once again, we will consider the two cases where D = [0, 1] or

D = S1, corresponding to open or closed curves respectively. As an open subset of

Hr(D,Rd), the space of parametrized curves Immr(D,Rd) is an infinite-dimensional

(Hilbert) manifold, where the tangent space at any c ∈ Immr(D,Rd), denoted by

Tc Imm(D,Rd), is given by Hr(D,Rd).

Remark. Note that for emphasis, we now denote the underlying mapping that defines

a parametrized immersed curve by c and its one-dimensional parameter space by D,

rather than by q and M respectively as was done in previous sections. We do this to

differentiate the notation for curves and surfaces, which will be treated separately in

future chapters. Moreover, the reason for considering Sobolev mappings c ∈ Hr(D,Rd)

rather than smooth mappings in C∞(D,Rd) will become clear in Chapter 3, where

our analysis only requires Sobolev immersions of regularity r > 3/2. Note that in

particular, the assumption r > 3/2 ensures that the condition on the first derivative

being non-zero is well-defined.

We now introduce the reparametrization group Diffr(D), which is the group of
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orientation-preserving Hr-diffeomorphisms of the parameter space D, i.e., the space

of all φ ∈ Hr(D,D) such that ∂θφ(θ) > 0 for all θ and φ−1 ∈ Hr(D,D).

At first glance, the usual Sobolev metric on Hr(D,Rd) might seem like a natural

choice for defining a Riemannian metric on Immr(D,Rd). This metric is defined at

each c ∈ Immr(D,Rd) by

∥h∥2
Hr =

r∑︂
i=0

∫︂
D

⟨∂iθh, ∂iθh⟩dθ (2.15)

for all tangent vectors h ∈ Hr(D,Rd). However, a critical issue is that such a metric

fails to satisfy the reparametrization invariance property in (2.5), which will prevent it

from descending to a metric on the shape space of curves modulo reparametrizations.

Let us therefore denote, for any c ∈ Immr(D,Rd), the arc length integration form

by ds
.= |∂θc(θ)|dθ, the total length of the curve by ℓc

.=
∫︁
D ds, and the arc length

differentiation along c by ∂s .= 1
|∂θc(θ)|∂θ.

For any parametrized curve c ∈ Immr(D,Rd) and tangent vector h ∈

Hr(D,Rd), let us define the following two subclasses of Riemannian metrics:

Gn
c (h, h) =

n∑︂
i=0

ai

∫︂
D

⟨∂ish, ∂ish⟩ds, (2.16)

which we will refer to as constant-coefficient Sobolev metrics of order n, and

Gn
c (h, h) =

n∑︂
i=0

aiℓ
2i−3
c

∫︂
D

⟨∂ish, ∂ish⟩ds, (2.17)

which are known as scale-invariant Sobolev metrics of order n. In both equations,

note that n ≤ r, and a0, a1, . . . , an are positive coefficients weighting the different

terms in the Sobolev metrics.

Example 3 (H2-metrics on the space of immersed curves). As a concrete example

of such a class of metrics, consider r ≥ n = 2, in which case we have the family of

second-order Sobolev metrics (H2-metrics), which will form the basis for our numerical
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framework for shape graph registration in Chapter 3. For any curve c ∈ Immr(D,Rd)

and tangent vector h ∈ Hr(D,Rd), the constant-coefficient version of this metric is

given by

G2
c(h, h) =

∫︂
D
a0⟨h, h⟩ + a1⟨∂sh⊤, ∂sh

⊤⟩ + b1⟨∂sh⊥, ∂sh
⊥⟩ + a2⟨∂2

sh, ∂
2
sh⟩ds (2.18)

where a0, a1, b1, b2 > 0 and h⊤ and h⊥ are the tangential and normal components of

the tangent vector h. The first order terms in the metric can be interpreted as thin

shell linear elastic energies which quantify the stretching and bending energies of the

curve c along the tangential and normal components of h respectively, see Appendix

A of [58] for details. This connection to classical elasticity theory explains to some

extent why the class of first-order Sobolev metrics in particular have been dubbed as

elastic metrics in the literature.

Note that the key difference between the metrics in (2.16) and (2.17) (including the

one from Example 3) compared to a standard Sobolev metric is that the derivatives

and integration are taken with respect to arc length. This is precisely what makes

these metrics invariant to reparametrizations, and we summarize their invariance

properties in the following result.

Lemma 1 (Invariances of higher-order Sobolev metrics on curves). The families Gn

of Sobolev metrics of order n in (2.16) and (2.17) are invariant under the action of

the group of reparametrizations Diffr(D), the group of rotations SO(d) and the group

of translations Rd, i.e., for any parametrized curve c ∈ Immr(D,Rd), tangent vectors

h, k ∈ Hr(D,Rd), φ ∈ Diffr(D), R ∈ SO(d) and τ ∈ Rd, we have

Gn
c (h, k) = Gn

R(c◦φ)+τ (R(h ◦ φ), R(k ◦ φ)). (2.19)

The scale-invariant metric (2.17) is also invariant with respect to the action of scaling,

where for all λ > 0, we have

Gn
c (h, k) = Gn

λc(λh, λk). (2.20)

30



Proof. For both classes of metrics in (2.16) and (2.17), invariance with respect to the

finite-dimensional groups of rotations and translations follows by the fact that all the

terms of the metric are invariant under this action. The invariance under the action of

the infinite-dimensional group of reparametrizations can be seen via a simple change

of variable in the integrals. The scale invariance of (2.17) meanwhile follows by a

simple application of the chain rule in each term of the metric, and simple algebraic

manipulations to cancel out the scaling factor λ > 0.

As detailed in (2.1), the geodesic distance between two parametrized curves

c0, c1 ∈ Immr(D,Rd) is then given by

distGn(c0, c1) = inf
{︃∫︂ 1

0

√︂
Gn
c(t)(∂tc(t), ∂tc(t))dt

}︃
, (2.21)

with the infimum being taken over all paths of immersions c(·) ∈ H1([0, 1], Immr(D,Rd))

such that c(0) = c0, c(1) = c1. Here, ∂tc(t) ∈ Hr(D,Rd) denotes the derivative of this

path with respect to the parameter t.

There are however several important subtleties compared to standard finite-

dimensional Riemannian geometry. One is the fact that (2.21) may only be a pseudo-

distance. In fact for n = 0, it is known that distGn is completely degenerate, i.e., that

distGn(c0, c1) = 0 for any c0, c1 ∈ Immr(D,Rd), see [59, 60]. Fortunately, whenever

n ≥ 1 (which we always assume in this thesis), it was shown that distGn is a true

distance for both classes of metrics from (2.16) and (2.17), see [47]. Yet another

fundamental and desirable property of Riemannian distances is metric completeness.

For finite-dimensional Riemannian manifolds, the Hopf-Rinow theorem guarantees that

completeness of the corresponding metric space is equivalent to geodesic completeness

and also equivalent to the existence of minimizing geodesics between any two points

on the manifold. However, this equivalence no longer holds in the infinite-dimensional

case, see [61]. Therefore, significant effort has been invested in the study of com-

pleteness properties for the parametrization-invariant Sobolev metrics on immersed
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curves [51, 52, 54, 62, 63]. We summarize this collection of results by the following

theorem, and note that we write the statement for r = n for simplicity although this

can be made more general.

Theorem 2. Assume that n ≥ 2. Then, given the scale-invariant Sobolev metric

(2.17) and its associated geodesic distance (2.21), the following holds:

1. The space
(︂
Immn(D,Rd), distGn

)︂
is a complete metric space.

2. The space
(︂
Immn(D,Rd), distGn

)︂
is geodesically complete, i.e., solutions of the

geodesic equation (i.e., the first-order optimality condition of the energy func-

tional (2.4)) are defined at all times for any choice of initial condition.

3. For any c0, c1 in the same connected component of Immn(D,Rd), there exists

a minimizing geodesic in Immn(D,Rd) between c0, c1, i.e., there exists c(·) ∈

H1([0, 1], Immn(D,Rd)) achieving the infimum in (2.21).

For D = S1, i.e. closed curves, these statements also hold for the class of constant-

coefficient Sobolev metrics (2.16).

This result justifies our focus on Sobolev metrics on the space of parametrized

curves which are of order n ≥ 2, especially in the context of Chapter 3. Moreover,

it is important to stress that completeness does not hold in the case of open curves

(D = [0, 1]) for constant-coefficient Sobolev metrics (see the counterexample of [55]),

which is also why the scale-invariant version of (2.17) will be more relevant from a

theoretical standpoint in Chapter 3. As a by-product of Theorem 2, one also obtains

the following bounds relating invariant Sobolev metrics and the usual Sobolev norm,

which we will rely on in our later proofs in Chapter 3:

Lemma 2 (Bounds between invariant Sobolev metrics and the Sobolev norm). Let

n ≥ 2 and let Gn be a scale-invariant metric from (2.17). Given c0 ∈ Immn(D,Rd)
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and a metric ball B(c0, δ) of radius δ > 0 in Immn(D,Rd), there exists a constant

C > 0 such that for any c ∈ B(c0, δ), it holds that

C−1∥h∥2
Hn ≤ Gn

c (h, h) ≤ C∥h∥2
Hn (2.22)

for all h ∈ Hn(D,Rd), and we have the lower bound |∂θc(θ)| ≥ C−1 for all θ ∈ D.

The same result also holds for the constant-coefficient metric (2.16) when D = S1.

Finally, we can introduce the shape space of unparametrized immersed curves, which

is defined as the quotient of parametrized immersed curves by the reparametrization

group, i.e., Immr(D,Rd)/Diffr(D). In other words, an unparametrized curve is an

equivalence class of c ∈ Immr(D,Rd) modulo its reparametrizations, which we denote

by [c] = {c ◦ φ | φ ∈ Diffr(D)}. As we are ultimately interested in comparing such

unparametrized shapes, the question is whether the distance (2.21) descends to a

distance on the quotient shape space. The following theorem from [62] addresses this

point:

Theorem 3. Let n ≥ 2 and let distGn be the Riemannian distance (2.21) asso-

ciated to the scale-invariant Sobolev metric (2.17). Then the shape space S =

Immn(D,Rd)/Diffn(D) equipped with the quotient distance

distS([c0], [c1]) = inf
φ∈Diffn(D)

distGn(c0, c1 ◦ φ) (2.23)

is a length space, and any two unparametrized curves in the same connected component

can be joined by a minimizing geodesic, i.e., there exists φ ∈ Diffn(D) achieving the

infimum in (2.23) and an optimal path in Immn(D,Rd) connecting c0 and c1 ◦ φ.

This result also holds for the constant-coefficient metric (2.16) when D = S1.

This concludes our review of the definitions and theoretical properties of higher-

order Sobolev metrics on the shape space of curves, which we will use in Chapter 3 to

present our elastic shape analysis framework for shape graphs.
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2.3.2 Second-order Sobolev metrics on the space of surfaces

We now move on to the space of surfaces. The framework of higher-order Sobolev

metrics has been generalized from the space of curves to the setting of surfaces by

Bauer, Harms and Michor [64, 65], where they established several theoretical results

such as the local well-posedness of the geodesic equation and non-vanishing geodesic

distance for these metrics.

In this section, we will present the main definitions and known theoretical results

on second-order Sobolev metrics defined on the space of surfaces, which we will rely

on in Chapter 4 in order to present a new numerical framework for the elastic shape

analysis of surfaces with complex topological structures that may also exhibit partial

correspondences.

Recall from Example 2 that a parametrized immersed surface in R3 is a mapping

q ∈ C∞(M,Rd) whose differential dq is injective at every point of M , where M is a

2-dimensional compact manifold (possibly with boundary), such as the unit sphere

S2, whose local coordinates are denoted by (u, v) ∈ R2. We denote the space of all

such immersed surfaces as Imm(M,R3). Also, recall that the tangent space to this

manifold at any immersion q ∈ Imm(M,R3), denoted by Tq Imm(M,R3), is given by

C∞(M,R3).

Furthermore, the reparametrization group Diff(M) in the case of surfaces is the

group of orientation-preserving diffeomorphisms of M , i.e., the space of all φ ∈

C∞(M,M) such that det(dφ(u, v)) > 0 for all (u, v) and φ−1 ∈ C∞(M,M), where dφ

denotes the differential (or Jacobian) of the diffeomorphism φ.

The simplest and potentially most natural invariant Riemannian metric on Imm(M,R3)

is the reparametrization-invariant L2-metric, which is given by

Gq(h, h) =
∫︂
M

⟨h, h⟩ volq, (2.24)

for any q ∈ Imm(M,R3) and h ∈ C∞(M,R3), where volq is the surface area measure
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of the parametrized immersed surface q, which is given in local coordinates (u, v) by

volq = |qu × qv|dudv,

where the subscripts denote partial derivatives, × denotes the cross product on R3,

and | · | denotes the Euclidean norm on R3. This Riemannian metric is, however, not

useful for any application in shape analysis, as it results in vanishing geodesic distance

on both the spaces of parametrized and unparametrized surfaces [39, 60]. Vanishing

geodesic distance refers to the phenomenon where the geodesic distance (2.1) induced

by the L2-metric between any pair of surfaces is zero.

Consequently, we are interested in stronger Riemannian metrics that induce mean-

ingful distances. A natural approach to strengthen the metric consists of incorporating

derivatives of the tangent vector, leading to the class of first-order Sobolev metrics.

For a given immersion q ∈ Imm(M,R3), let gq = q∗⟨·, ·⟩ be the pullback metric of the

Euclidean metric on R3, see Figure 2-3 for an explanation of this construction. A

first-order Sobolev metric is then given for any h ∈ C∞(M,R3) by

Gq(h, h) =
∫︂
M

⟨h, h⟩ + g−1
q (dh, dh) volq . (2.25)

To interpret the first-order term g−1
q (dh, dh), we view the differential dh as a vector-

valued one form, i.e., as a map from TM to R3. Then, the inverse of the pullback

metric g−1
q can be used to pair such mappings.

Figure 2-3. The induced pullback metric on M of an immersion q : M → R3.
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To understand this pairing better, we can fix a set of coordinates and view all the

involved objects as matrix fields. Then we have

g−1
q (dh, dh) = tr(dh.g−1

q .dhT ), (2.26)

where dhT denotes the point-wise transpose of the matrix field dh. By the results

of [64], we know that this metric indeed overcomes the degeneracy of the L2-metric,

i.e., the corresponding geodesic distance function is non-degenerate.

Next we further decompose the first-order term into four different terms which

each have a geometric interpretation. To do so, we write

dh = dhm + dh+ + dh⊥ + dh0, (2.27)

where

dhm = 1
2dqg

−1
q (dqTdh+ dhTdq) − 1

2 tr(g−1
q dqTdh)dq

dh+ = 1
2 tr(g−1

q dqTdh)dq

dh⊥ = dh− dqg−1
q dqTdh

dh0 = 1
2dqg

−1
q (dqTdh− dhTdq).

A straight-forward calculation (see [66]) shows that these terms are orthogonal with

respect to the inner product ∫︂
M
g−1
q (·, ·) volq .

Consequently we have:

∫︂
M
g−1
q (dh, dh) volq

=
∫︂
M
g−1
q (dhm, dhm) volq +

∫︂
M
g−1
q (dh+, dh+) volq

+
∫︂
M
g−1
q (dh⊥, dh⊥) volq +

∫︂
M
g−1
q (dh0, dh0) volq .

The geometric meaning of the first three terms becomes clear in the following remark.
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Remark 1 (Geometric interpretation of first-order terms, Su et. al. [66]). Let

q ∈ Imm(M,R3) and h ∈ C∞(M,R3). The term

∫︂
M
g−1
q (dhm, dhm) volq

measures the change of the pull-back metric gq while keeping the volume form constant

(shearing). The second term

∫︂
M
g−1
q (dh+, dh+) volq

measures the change of the volume density volq (scaling), while the third term

∫︂
M
g−1
q (dh⊥, dh⊥) volq

measures the change in the normal vector nq .= qu × qv (bending).

The interpretation of the last summand is less clear: it can be thought of as

measuring the deformation of the local parametrization by a rotation in the parameter

space M .

Remark (Connections to elasticity theory). The class of first-order Sobolev metrics,

i.e. metrics on the space of surfaces obtained as weighted combinations of the four

first-order terms discussed above, have often been referred to as elastic metrics in

the shape analysis literature [67, 68]. There is a precise connection between the high

level analogy of these metrics measuring some form of bending or stretching energies,

and classical linear elasticity theory. More specifically, the first three first-order terms

in the class of elastic metrics can be interpreted as the thin shell limit of the elastic

energy of a layered isotropic material [58].

The above considerations suggest that metrics of this form provide a meaningful

class of metrics for shape analysis of surfaces: they overcome the degeneracy of the

L2-metric and admit a physical interpretation of the different terms involved. There
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is, however, numerical evidence that these first-order metrics are still too weak for

several targeted applications, especially those involving surface data with complex

geometric and topological structures, see the experiments in Figure 4-4. Thus we will

augment the class of first-order metrics with a further higher-order term involving the

Laplacian ∆q induced by the immersion q, which using Einstein summation is given

in local coordinates (u, v) by

∆qh = 1√︂
|gq|

∂u

(︃√︂
|gq|guvq ∂vh

)︃
,

where |gq| denotes the determinant of the pullback metric in the local coordinate

frame. This allows us to define a second-order term via
∫︂
M

⟨∆qh,∆qh⟩ volq . (2.28)

By adding up all the zero, first and second-order terms, we arrive at the main

object that we were after: the family of second-order Sobolev Riemannian metrics

(H2-metrics) for surfaces, which is given by

Gq(h, k) =
∫︂
M

(︄
a0⟨h, k⟩ + a1g

−1
q (dhm, dkm)

+ b1g
−1
q (dh+, dk+) + c1g

−1
q (dh⊥, dk⊥)

+ d1g
−1
q (dh0, dk0) + a2⟨∆qh,∆qk⟩

)︄
volq .

(2.29)

Here a0, a1, b1, c1, d1, a2 are non-negative weighting coefficients for the different

terms in the metric. Note that this family incorporates the Riemannian metric

corresponding to the square-root normal field (SRNF) (pseudo)-distance [68], which

is one of the most widely used intrinsic Riemannian metrics for the shape analysis

of surfaces, see Section 4.1 for further details. It also includes the families of elastic

Riemannian metrics as proposed by Jermyn et. al. [67] and Su et. al. [66]. For a

general treatment of properties of Sobolev metrics on spaces of surfaces, we refer to
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the article [64], and for a detailed explanation of the influence of these coefficients on

numerical experiments with surface data, see the discussion in Section 4.4.7.

The following result, which summarizes the invariances of our family of H2-metrics

with respect to the certain shape-preserving group actions, ensures that the metric

descends to quotient spaces of unparametrized surfaces.

Lemma 3 (Invariances of second-order Sobolev metrics on surfaces). The family

of H2-metrics G is invariant under the action of the group of reparametrizations

Diff(M), the group of rotations SO(3) and the group of translations R3, i.e., for any

q ∈ Imm(M,R3), h, k ∈ C∞(M,R3), φ ∈ Diff(M), R ∈ SO(3) and τ ∈ R3, we have

Gq(h, k) = GR(q◦φ)+τ (R(h ◦ φ), R(k ◦ φ)). (2.30)

It follows that the geodesic distance (2.1) corresponding to this metric is also preserved

by these transformations.

Proof. The invariance to the finite-dimensional groups of rotations and translations

follows by the fact that all the terms of the metric are invariant under this action. The

invariance under the action of the infinite-dimensional group of reparametrizations

follows from an application of the substitution formula for integration.

As a result of these invariances, the family of H2-metrics descends by Riemannian

submersion to a corresponding family of metrics on S = Imm(M,Rd)/Diff(M), the

quotient shape space of unparametrized surfaces. As outlined in Section 2.1.3, this

induces a distance distS on the shape space which is given in its full generality by (2.9).

We recall that computing this distance involves a joint optimization over paths of

immersions and reparametrizations between pairs of surfaces. The main difficulty in

terms of numerically computing this distance lies in the discretization of the action of

the reparametrization group Diff(M), and we address the development of a framework

to deal with this issue in the following section.

39



For now however, we have concluded our review of second-order Sobolev metrics

on the shape space of surfaces, which we will use in Chapter 4 to present our elastic

shape analysis framework for surfaces with complex topological structures, and which

may have partial correspondences.

2.4 Relaxed shape matching

We now focus our attention on the actual computation of geodesic distances on

shape spaces of curves and surfaces. As outlined in Section 2.1.3 via equation (2.9),

computing these distances requires us to solve a matching problem which involves

finding optimal deformations between a given pair of immersions q0, q1 ∈ Imm(M,Rd),

and optimal reparametrizations φ ∈ Diff(M) of the immersion q1. In the extrinsic

setup, these optimal deformations are generated indirectly using flows of vector fields

v ∈ L2([0, 1], V ) that induce a diffeomorphic deformation of the ambient space such

that q0 gets mapped onto q1 ◦ φ. In the intrinsic setup meanwhile, the optimal

deformations are directly given by paths of immersions in Pq1◦φ
q0 that minimize the

Riemannian energy corresponding to a certain elastic metric.

In what follows, we will focus on the intrinsic setup as the frameworks that we

present in the next chapters of this thesis are all based on intrinsic elastic metrics.

In the rest of this section, we present a relaxed version of the exact elastic matching

problem for computing geodesics and distances on shape spaces of curves and surfaces

using varifold fidelity metrics.

Let G be a reparametrization-invariant Riemannian Sobolev metric on Imm(M,Rd)

satisfying property (2.5), which thus descends to a metric on S = Imm(M,Rd)/Diff(M)

by Riemannian submersion. Recall that the exact (elastic) matching problem corre-

sponding to G on this shape space is then given for any [q0], [q1] ∈ S by

distS([q0], [q1])2 = inf
φ∈Diff(M)

inf
q(·)∈Pq1◦φ

q0

∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt, (2.31)
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where we repeat for emphasis that the minimization occurs over jointly over all

paths of immersions q(·) satisfying the initial constraint q(0) = q0 and the terminal

constraint q(1) = q1 ◦ φ, and over all reparametrizations φ of q1. To solve this

problem numerically, one typically discretizes it before applying standard finite-

dimensional optimization techniques to minimize the discretized functional. On one

hand, the space of parametrized immersions, and hence the paths of immersions, can

be discretized fairly easily. For instance, the infinite-dimensional space of curves can be

discretized by considering piece-wise linear, or more generally, spline approximations

of the curves, see [19]. In the context of surfaces, an efficient discretization scheme

is given by considering a triangular mesh as the domain M of the function space

Imm(M,Rd), and then considering piece-wise linear functions defined on M , which

gives rise to triangulated surfaces as outlined in [69]. On the other hand however,

discretizing the infinite-dimensional reparametrization group and its action on the

space of parametrized immersions is unfortunately not so straightforward, see e.g. the

discussions in [19, 48, 70].

Nevertheless, there are certain specific cases where one can find exact numerical

solutions to the elastic matching problem (2.31). For instance, Lahiri, Robinson and

Klassen proposed an exact matching algorithm to compute optimal reparametrizations

between pairs of curves [50], provided they are discretized in a piece-wise linear manner,

and that the metric G in (2.31) corresponds to the square-root velocity (SRV) metric

on the space of curves; a specific first-order Sobolev metric which we will discuss in

Chapter 5. Although this algorithm allows one to compute exact distances, it has

a high polynomial complexity, rendering it impractical for large datasets that are

typically encountered in applications.

Still in the context of the SRV metric on the space of curves, several algorithms rely

on dynamic programming (DP) to find approximations of the optimal reparametriza-

tions [71–73]. These DP approaches operate by searching over subsets of all possible
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reparametrizations and are thus orders of magnitude faster than the aforementioned

exact algorithm. Nevertheless, DP also incurs a significant computational cost when

working with very large datasets. Moreover, it is extremely challenging if not impossi-

ble from a computational point of view to adapt either the exact algorithm or DP to

the setting of the shape space of surfaces, or to that of geometric data with complex

topological structures.

As a result, significant efforts have been made in order to find alternative approaches

to solve the elastic matching problem in (2.31) numerically. Inspired by the use of

tools from geometric measure theory and in particular by varifold norms with the

LDDMM model, an altogether alternative set of frameworks was recently proposed

by Bauer, Bruveris, Charon and Møller-Andersen for elastic curve matching with

second-order Sobolev metrics [55], and by Bauer, Charon, Harms and Hsieh for elastic

surface matching with the first-order SRNF pseudo-metric [69]. The common theme in

these approaches is to introduce a relaxation of the terminal constraint q(1) = q1 ◦ φ

on the path of immersions in (2.31) through the use of a parametrization-blind data

attachment term, which allows one to completely avoid the need of optimizing over the

reparametrization group. To be more specific, this framework consists in considering

the relaxed matching problem

inf
q(·)

{︃∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt+ λΓ(q(1), q1)

}︃
, (2.32)

where the minimization now occurs solely over all paths of immersions q(·) ∈

C∞([0, 1], Imm(M,Rd) that satisfy the initial constraint q(0) = q0 only, and where

Γ(q(1), q1) is a term that measures the discrepancy between the endpoint of the path

q(1) and the immersion q1, with λ > 0 being a balancing parameter. Note that in this

relaxed matching problem, we refer to q0 as the source, q1 as the target, and q(1) as

the deformed source.

If we choose a discrepancy term Γ that is independent of the parametrization of
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either of the two immersions, then solving the relaxed problem above would result

in Γ(q(1), q1) ≈ 0, which yields q(1) ≈ q1 ◦ φ. Thus, this method allows us to

approximate the end time constraint in (2.31) without the need to explicitly model

the reparametrization itself. Furthermore, this relaxed matching framework allows

for inexact matching when computing the distance, which will turn out to be crucial

when extending this approach for shape data that can exhibit different topologies and

partial correspondences, as we shall outline in Chapter 3 and Chapter 4.

2.4.1 Varifold fidelity metrics

We now describe how to construct the key ingredient in the relaxed model outlined

above: an effective and simple to compute data attachment term Γ which gives a

notion of discrepancy between unparametrized immersions. Among different possible

approaches, we will rely specifically on methods derived from geometric measure theory

which have been used for that particular purpose in several past works on curve and

surface registration [69, 74–77], see also the recent survey [78]. In this thesis, we adopt

the framework of oriented varifolds introduced by Kaltenmark, Charlier and Charon

in [79].

Intuitively, the central idea in this framework is to represent a parametrized

immersion as a joint distribution of point positions and directions. At a high level,

this distribution, denoted by µq and referred to as the varifold representation of

q ∈ Imm(M,Rd), is an alternative viewpoint whereby one considers the underlying

geometric object described by q to be a distribution of mass on points in Rd with

an attached directional component in Sd−1, where Sd−1 is the unit hyper-sphere in

d-dimensional Euclidean space. The mass assigned by µq to each of these couples

in Rd × Sd−1 is determined by the volume form induced by the immersion q. Note

that in this thesis, we will restrict our discussion of varifolds to the setting where the

dimension of the parameter space M is one-dimensional (i.e., the setting of curves),
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or where M is (d− 1)-dimensional (i.e., the setting of (hyper)-surfaces). For a more

general treatment of varifolds, we refer the reader to [79, 80].

Formally, the (oriented) varifold µq associated to any parametrized immersion

q ∈ Imm(M,Rd) is a positive Radon measure on the product space Rd × Sd−1. This

space of measures is called the space of varifolds, and we will denote it by V in

what follows. More specifically, the varifold µq ∈ V is defined as the image measure

(q,−→tq )∗ volq, where −→
tq is the unit oriented tangent (or normal) field of q, and volq is the

d-volume measure of q. The following examples serve to provide concrete illustrations

of these quantities in the case of curves and surfaces respectively.

Example 4. Let c ∈ Immr(D,Rd) be a parametrized immersed curve in Rd as defined

in Example 1. Then, for every θ ∈ D, one can associate a directional component to

the point c(θ) ∈ Rd by considering the unit tangent vector −→
tc (θ) ∈ Sd−1 defined as

−→
tc (θ) .= ∂θc(θ)

|∂θc(θ)|
.

Note that the volume form induced by the immersed curve c is given by the arclength

measure volc(θ) = ds
.= |∂θc(θ)|dθ.

Example 5. Let q ∈ Imm(M,R3) be a parametrized immersed surface in R3 as defined

in Example 2. Then, for every (u, v) ∈ M , one can associate a directional component

to the point q(u, v) ∈ R3 by considering the unit normal vector −→
tq (u, v) ∈ S2 defined as

−→
tq (u, v) .= qu(u, v) × qv(u, v)

|qu(u, v) × qv(u, v)|
,

where the subscripts denote partial derivatives, and × is the cross-product in R3. Note

that the volume form induced by q is the surface area measure of the immersion, which

is given by volq(u, v) .= |qu(u, v) × qv(u, v)|dudv.

For any q ∈ Imm(M,Rd) and any Borel set B ⊂ Rd × Sd−1, the quantity µq(B) is

the total mass with respect to volq of all m ∈ M such that (q(m),−→tq (m)) ∈ B, i.e.,

µq(B) =
∫︂
M
1(q(m),−→tq (m))∈B volq(m). (2.33)

44



Equivalently, by the Riesz representation theorem, the varifold µq may be viewed as

an element of the space of distributions C0(Rd × Sd−1,R)∗, i.e., the dual space to the

space of real-valued continuous functions on Rd × Sd−1 going to 0 at infinity, denoted

by C0(Rd × Sd−1,R). Thus, one can conveniently express the varifold µq through its

action on a general test function ω ∈ C0(Rd × Sd−1,R), which is given by

(µq|ω) =
∫︂
M
ω
(︂
q(m),−→tq (m)

)︂
d volq(m). (2.34)

The mapping Imm(M,Rd) ∋ q ↦→ µq ∈ V has several important properties. First, it is

invariant to reparametrizations; indeed a simple change of variables in the integral

(2.34) leads to µq◦φ = µq for all φ ∈ Diff(M). As a consequence, this varifold mapping

descends to a well-defined mapping on the quotient space of unparametrized immersions

S = Imm(M,Rd)/Diff(M). Furthermore, the measure µq uniquely determines the

equivalence class [q] = q ◦ Diff(M) under some mild technical assumptions. In the

context of curves for example, this occurs for immersed curves with a finite number of

transverse self-intersections, see Theorem 3.6 in [55] for details.

As a result, it becomes possible to compare unparametrized immersions [q0], [q1] ∈ S

by considering a pair of representative immersions q0 ∈ [q0] and q1 ∈ [q1] from each

class, and comparing their respective varifold representations µq0 , µq1 ∈ V. This can

be done for instance via a distance function distV on the space of varifolds V. We

emphasize that for such a distance function, the quantity distV(µq0 , µq1) does not

depend on the choice of parametrizations for q0 and q1 in the respective equivalence

classes [q0] and [q1]. In theory, one could use any appropriate distance function defined

on spaces of measures for this purpose, such as the class of Wasserstein metrics, or

bounded Lipschitz distances on spaces of positive measures [81]. However, the class

of kernel metrics, which are also known as maximum mean discrepancies [81], has

been shown to be particularly advantageous for numerical computations, as they can

be expressed and even differentiated explicitly. Since this is highly desirable for the

purposes of developing numerical frameworks for shape analysis, which is one of our
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main concerns in this thesis, we will rely on these kernel metrics.

At a high level, this class of metrics is constructed by considering positive definite

kernels on Rd × Sd−1 and the distance induced by their associated reproducing kernel

Hilbert space (RKHS) norms, which was the construction proposed in [75, 79]. To be

more specific, we consider a positive definite kernel function on Rd × Sd−1 which is

constructed as the product of a radial kernel Ψ on Rd and a zonal kernel Φ on Sd−1,

whose expression for all (x,−→t ), (x′,
−→
t ′) ∈ Rd × Sd−1 is given by

K(x,−→t , x′,
−→
t ′) .= Ψ(|x− x′|)Φ(−→t · −→

t ′). (2.35)

The following theorem gives us conditions under which there exists a unique RKHS

whose associated reproducing kernel is given by K.

Theorem 4 (Existence of RKHS). Let K be a kernel of the form (2.35). Suppose

that Ψ : Rd → R is a continuous function that vanishes at infinity, i.e., Ψ(x) → 0

as |x| → +∞, and that Φ : Sd−1 → R is continuous. By Aronszajn’s Theorem [82],

there exists a unique reproducing kernel Hilbert space H associated to the kernel K.

In addition, H is continuously embedded into the space C0(Rd × Sd−1,R), i.e., the

space of continuous functions on Rd × Sd−1 which vanish at infinity, equipped with the

sup-norm ∥ · ∥∞. This implies that there exists a constant CH > 0 such that for all

ω ∈ H, we have ∥ω∥∞ ≤ CH∥ω∥H, where ∥ω∥H denotes the RKHS norm on H.

Several examples of kernels that satisfy the properties of Theorem 4 are given in

[55, 79]. In particular, these include radial kernels such as:

• The Gaussian kernel, Ψ(|x− x′|) .= exp
(︂
− |x−x′|2

2σ2

)︂
,

• The Cauchy kernel, Ψ(|x− x′|) .= 1
1+|x−x′|2/σ2 .

They also include zonal kernels such as:

• The linear kernel, Φ(−→t · −→
t ′) = −→

t · −→
t ′,
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• The Cauchy-Binet kernel, Φ(−→t · −→
t ′) = (−→t · −→

t ′)2,

• The spherical Gaussian kernel, Φ(−→t · −→
t ′) = exp

(︂
2
σ2 (1 − −→

t · −→
t ′)
)︂
.

Kernels K of the form (2.35) satisfying the conditions of Theorem 4 then induce a

norm on the dual space H∗ via the dual Hilbert norm ∥ · ∥H∗ , which in turn induces

a pseudo-distance on the space of varifolds V = C0(Rd × Sd−1,R)∗ via the dual map

C0(Rd × Sd−1,R)∗ → H∗. This pseudo-metric on V is given, via the definition of the

dual norm ∥ · ∥H∗ , for any µ, ν ∈ V by

∥µ− ν∥V = sup
ω∈H,∥ω∥H≤1

(µ− ν | ω). (2.36)

Note that, although the notation above does not emphasize it, the norm ∥ · ∥V depends

on the kernel K. In general however, the metric induced by ∥ · ∥V may only be a

pseudo-distance on V. Yet, under the right regularity and density assumptions on

the kernel K, one can recover a true distance function when restricting this distance

to embedded unparametrized shapes. We summarize this result below, and we refer

the reader to the results in Proposition 4 of [79], Section 3.2 of [83], and Section 3.2

of [55] for more details.

Theorem 5. Consider a kernel function K on Rd × Sd−1 of the form (2.35). Suppose

the following holds:

• The radial kernel function Ψ : Rd → R, and the zonal kernel function Φ : Sd−1 →

R, are both continuously differentiable functions.

• The kernel Ψ is C0-universal, i.e., its reproducing kernel Hilbert space is dense

in C0(Rd,R).

• We have Φ(1) > 0, and Φ(−α) ̸= Φ(α) for all α ∈ [−1, 1].

Then the pseudo-metric defined on V given in (2.36) is a true distance function

between embedded unparametrized shapes on the space Emb(M,Rd)/Diff(M), where
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Emb(M,Rd) denotes the set of embeddings of M into Rd, i.e., the set of one-to-one

mappings q ∈ C∞(M,Rd) such that q−1 : q(M) → M is continuous, and dq(m) is full

rank for all m ∈ M .

Moreover, this result for embedded unparametrized shapes can be generalized in

the context of curves. Indeed, the pseudo-distance defined on V given in (2.36) is a

true distance function on the space of unparametrized immersed curves with a finite

number of transverse self-intersections, see Theorem 3.6 in [55] for a proof. No such

result has yet been established for the setting of unparametrized immersed surfaces.

However, note that there is no notion of geodesics in S corresponding to this

varifold distance, as the straight path {(1 − t)µq0 + tµq1}t∈[0,1] in V is not associated

to a corresponding path between q0 and q1 in the space of immersions, due to the non-

surjectivity of the mapping q ↦→ µq. Lastly, we point out that the varifold distance is

also equivariant to the action of rigid motions. Specifically, for any q0, q1 ∈ Imm(M,Rd)

and any R ∈ SO(d), τ ∈ Rd, we have

∥µRq0+τ − µRq1+τ∥2
V = ∥µq0 − µq1∥2

V ,

which follows directly from the form of the kernel (2.35).

To summarize so far, although the varifold distance introduced in this section

may not always be able to distinguish two given unparametrized immersed shapes,

such a situation will only occur in pathological cases which are rarely encountered in

typical practical applications with curve and surface data. As a result, the varifold

(pseudo)-distance (2.36) is a viable tool for comparing unparametrized immersed

shapes in S = Imm(M,Rd)/Diff(M), possibly modulo rotations and translations as

well.

Yet, while the varifold metric possesses all the requisite properties for use as

a valid discrepancy term for the relaxed matching problem in (2.32), one cannot

compute it directly from the expression in (2.36). Thankfully, it can be shown

48



from the reproducing kernel property that, for any given pair of immersions q0, q1 in

Imm(M,Rd), the inner product between their associated varifolds ⟨µq0 , µq1⟩V can be

expressed explicitly as

⟨µq0 , µq1⟩V =
∫︂∫︂

M×M
K
(︂
q0(m),−→tq0(m), q1(m̃),−→tq1(m̃)

)︂
d volq0(m)d volq1(m̃). (2.37)

In turn, this allows us to rewrite the expression for the distance between the varifolds

µq0 , µq1 ∈ V explicitly via a quadratic expansion of the norm

distV(µq0 , µq1)2 .= ∥µq0 − µq1∥2
V = ∥µq0∥2

V + ∥µq1∥2
V − 2⟨µq0 , µq1⟩V . (2.38)

Thus, another additional important advantage of this varifold distance is that it is

simple to evaluate (and differentiate) numerically.

2.4.2 Relaxed matching problem

As a result, due to its reparametrization invariance and ease of numerical evaluation,

the squared varifold distance (2.38) is ideally suited for use as the discrepancy term Γ

in the relaxed matching problem outlined in (2.32). Indeed, by setting Γ(q(1), q1) .=

distV(µq(1), µq1)2 = ∥µq(1) − µq1∥2
V in (2.32), we obtain a discrepancy term that is

independent of the parametrizations of the deformed source q(1) and the target q1,

as desired. This finally allows us to formulate the varifold-based relaxed matching

problem:

Given q0, q1 ∈ Imm(M,Rd), we consider the variational problem:

inf
{︃∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt+ λ∥µq(1) − µq1∥2

V

}︃
, (2.39)

where the minimization occurs over paths of immersions q(·) ∈

C∞([0, 1], Imm(M,Rd)) that satisfy the initial constraint q(0) = q0, and

where λ > 0 is a balancing parameter.
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Note that the (relaxed) terminal constraint q(1) ≈ q1 ◦ φ for some φ ∈ Diff(M) is

encoded in the varifold attachment term. The interpretation of the two terms in the

relaxed energy (4.9) is as follows: the first term (the energy of the path of immersions)

measures the cost of the optimal deformation, whereas the second term is merely a

data attachment term that enforces the terminal constraint. We re-emphasize that in

this relaxed matching framework, we refer to q0 as the source, q1 as the target and

q(1) as the deformed source.

The existence of solutions for this relaxed matching problem has also been studied

in certain cases. In particular, solutions exist in the setting of higher-order Sobolev

metrics on the space of immersed curves. We summarize this result in the following

theorem, whose proof will be given in Section 3.3.1.

Theorem 6 (YS, Bauer & Charon [35]). Under the assumption that the kernel K

from (2.35) defines a RKHS H which is continuously embedded in C1
0 (Rd × Sd−1), the

existence of solutions holds for the varifold-based relaxed elastic matching problem (4.9)

in the intrinsic setting for the class of invariant second-order (or higher) Sobolev

metrics (2.17) on the space of immersed curves.

Note that the relaxed matching problem using varifold fidelity metrics has also

been adapted for the LDDMM framework, where the following existence result holds:

Theorem 7 (Hsieh & Charon [83]). Under the assumption that the kernel K from (2.35)

defines a RKHS H which is continuously embedded in C1
0(Rd × Sd−1), the existence

of solutions for the relaxed version of the exact matching problem in the LDDMM

framework (2.14) – where one relaxes the terminal constraint using the varifold

discrepancy term (2.38) – holds under the assumption that the admissible space of

vector fields V is continuously embedded in C2
0(Rd,Rd), i.e., the space of continuous

vector fields in Rd that vanish at infinity together with their first and second order

derivatives.
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Chapter 3

Shape graphs

We now move on to the introduction of novel shape analysis frameworks for the

study of geometric data with complex topological structures and/or with partial

correspondences. In this chapter, we present a new extension of Riemannian elastic

curve matching with higher-order Sobolev metrics to the setting of (weighted) shape

graphs; a general class of geometric structures defined as the union of an arbitrary

number of component curves in Euclidean space with potential connectivity constraints

between some of their boundary points, together with a weight function defined on each

component curve. Essentially, shape graphs are a natural mathematical representation

for geometric data with branching structures, such as arterial or venation networks.

As highlighted in the previous chapter, higher-order invariant Sobolev metrics are

particularly well suited for constructing notions of distances and geodesics between

unparametrized curves. The main difficulty in adapting this framework to the setting

of shape graphs is the absence of topological consistency, which typically results in an

inadequate search for an exact matching between two shape graphs. We overcome

this hurdle by defining an inexact variational formulation of the matching problem

between (weighted) shape graphs of any underlying topology, relying on the convenient

measure representation given by varifolds to relax the exact matching constraint. We

then prove the existence of minimizers to this variational problem when we choose

Sobolev metrics of sufficient regularity and a total variation (TV) regularization on
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the weight function. We propose a numerical optimization approach which adapts the

smoothed fast iterative shrinkage-thresholding (SFISTA) algorithm to deal with TV

norm minimization and allows us to reduce the matching problem to solving a sequence

of smooth unconstrained minimization problems. An open source implementation

of our method is available on Github1, and results presented in this chapter were

published in [35, 84].

3.1 Related work

As highlighted in Section 1.3, a persistent challenge in shape analysis is the issue of

partial correspondences or changes in topology. This is of particular importance for

applications involving partially-observed data (e.g. corrupted data) and/or topological

inconsistencies (e.g. airway vessels or brain arteries with distinct graph structures).

Several works have attempted to address the issue of partial matching, such as

frameworks that build on the Gromov-Hausdorff distance [85] and the functional maps

framework [86] in the context of 3D surfaces.

In the more specific setting of shape graphs, i.e., objects with network or branching

structures where each branch is a geometric curve, an interesting approach is the

model of the space of unlabelled trees with quotient Euclidean distance [87–90]. This

framework allows one to register and perform statistics with datasets of tree and

graph-like geometric data. Yet, performing registration with this approach requires

an optimization over permutations of the branches of the shape graphs, and more

importantly, restricts to modeling each branch by a finite set of landmark points

and comparing those through the usual Euclidean metric, which does not embed the

fundamental reparametrization invariance of the shape space of geometric curves.

Riemannian shape analysis techniques have also been utilized to develop partial

matching approaches for curve-like data. In particular, this includes diffeomorphic
1https://github.com/charoncode/ShapeGraph_H2match
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models relying on the LDDMM framework [91–94], in which asymmetric data attach-

ment terms are introduced in the registration functional for matching curve or surface

data with partial correspondences. However, these diffeomorphic transformations

typically impose stronger constraints on curve deformations and usually incur a higher

numerical cost compared to elastic models, as pointed out in [55].

Speaking of elastic shape analysis (ESA) techniques, they have also been used to

analyze geometric data with partial correspondences and inconsistent topologies. For

instance, in [95], a certain type of partial matching constraint was included into the

so-called square-root velocity (SRV) framework (see Section 5.2); where the shape

space is constructed using a particular first-order Sobolev metric on the space of

curves [15, 73]. In this approach, shape graphs are essentially registered by searching

for a single “subcurve” of the source shape graph to be matched to a single “subcurve”

of the target. Although this approach has led to promising results, it remains quite

restrictive as to the class of partial correspondences that can be accounted for. For

instance, it does not allow for several missing parts or different numbers of branches

in the source and target.

In recent work by Srivastava et. al. [96–102], a collection of frameworks for the

statistical shape analysis of shape graphs have been introduced. These works are

all based on the SRV framework once again, and they have shown great promise in

applications with real data such as brain arterial networks [100] and retinal blood

vessel networks [102]. In these approaches, standard ESA methods developed for the

space of curves are combined with graph matching algorithms in order to determine

correspondences between each separate branch of the shape graphs. Yet, while the

SRV framework has tremendous algorithmic advantages, it corresponds to a very

specific choice of Riemannian metric, which may be undesirable in situations where

one would prefer to have a data-driven selection of the metric, see e.g. the results of

Needham and Kurtek [103] and the benefits of metric learning [58].
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3.1.1 Contributions

In light of the discussion above, we introduce an extension of the relaxed curve

matching framework with higher-order invariant Sobolev metrics [55] to the space

of shape graphs, thereby also complementing the recent work of Srivastava et. al.

Our model differs from the SRV shape graph framework in several ways. Most

significantly, instead of registering shape graphs by solving a series of independent

exact matching problems which are preceded by a branch matching algorithm, we

directly solve a single inexact matching problem where the matching of component

curves from the shape graphs is geometrically driven through a varifold relaxation

term. Secondly, our approach allows for a wide class of Riemannian metrics instead of

focusing on one particular metric for computational ease. This allows us to recover a

quite general result on the existence of minimizers for the shape graph registration

variational problem (Theorem 10), the proof of which leverages the recent theoretical

results of [63] for higher-order elastic metrics combined with the derivation of specific

semi-continuity properties for varifold relaxation terms.

Yet, the main contribution and original motivation of the work presented in this

chapter is to incorporate partial matching constraints and topological inconsistencies

into the shape matching framework. Towards this end, we consider weighted shape

graphs, which augment the shape graph model with a spatially varying weight function.

When registering weighted shape graphs, this weight function is jointly estimated

together with the geometric deformation of the source shape graph, which allows us to

discard or “create” specific parts of the shape graph thanks to the varifold relaxation

term. By penalizing the weight variation through a TV-norm based regularization, we

show that the existence of minimizers again holds in this generalized setting (Theorem

11), which is the main theoretical result of this chapter.

Finally, our model is accompanied with an open source implementation, available
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on Github2. It builds up on the H2-metrics matching code of [19, 55], which relies

on a discretization of the curves using smooth splines. In addition, we deal with the

numerical optimization over the weight function with the non-smooth TV regularizer

by adapting the SFISTA algorithm of [104]. This allows us to reduce the matching

problem to solving a sequence of smooth unconstrained minimization problems on

the spline control points and weights defined on the shape graphs. We illustrate the

capabilities of our new model through several examples using both real and artificial

data, thereby showcasing its ability to tackle partially observed and topologically

varying data.

3.2 Riemannian metrics on shape graphs

We start by introducing the pre-shape space of parametrized shape graphs, see Figure 3-

1 for examples of objects that lie in this space. Shape graphs generalize the concept

of open and closed curves, which were introduced in Section 2.3.1, thus providing

us with a framework to perform elastic shape analysis for shapes with non-standard

topologies, such as trees, venation networks and shapes with multiple connected

components. In this section, our aim is to equip the space of shape graphs with

a reparametrization-invariant Riemannian metric and show that the completeness

properties, as obtained for open curves, continue to hold on this space. We note that

throughout this chapter, we will rely on notations and definitions that have already

been introduced in Section 2.3.1.

A parametrized shape graph c = ∏︁K
k=1 c

k is a Cartesian product of K component

curves c1, ..., cK , where ck ∈ Immr([0, 1],Rd) for each k = 1, ..., K, with r > 3/2. To

describe the connectivity between component curves ck and cl, where k, l = 1, ..., K,

we fix an adjacency matrix A ∈ {0, 1}2K×2K which encodes whether a boundary point

of the kth component curve is connected to a boundary point of the lth component
2https://github.com/charoncode/ShapeGraph_H2match
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curve. More precisely, the adjacency matrix A is defined as follows:

A2k−1,2l−1 =

⎧⎨⎩1 if ck(0) = cl(0),
0 else.

(3.1)

A2k,2l =

⎧⎨⎩1 if ck(1) = cl(1),
0 else.

(3.2)

A2k−1,2l =

⎧⎨⎩1 if ck(0) = cl(1),
0 else.

(3.3)

Note that when k = l, condition (3.3) encodes the topology of component curve ck,

i.e., it encodes if the curve ck is closed or open:

A2k−1,2k =

⎧⎨⎩1 if ck is a closed curve,
0 if ck is an open curve.

We point out that the topology of the shape graph is entirely encoded by the adjacency

matrix, while its geometry is encoded by the component curves. See Fig. 3-1 for an

illustrative example of this construction.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 1
0 0 0 1 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3-1. Parametrized shape graph (left) with associated adjacency matrix (right).
The shape graph c = ∏︁K

k=1 c
k has K = 4 component curves, where c1 is a closed curve

(red), c2 is an immersion with self intersection (blue), and c3 and c4 are open curves
(yellow and green respectively).

This leads us to define the space of parametrized shape graphs of regularity r with

fixed adjacency matrix A as

Graphr(A) =
{︄
c ∈

K∏︂
k=1

Immr([0, 1],Rd) : c satisfies (3.1) − (3.3)
}︄
.
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The space Graphr(A) is a Hilbert manifold as it is a product of Hilbert manifolds

with linear constraints. Its tangent space at a shape graph c ∈ Graphr(A) is given by

TcGraphr(A) =
{︄
h ∈

K∏︂
k=1

Hr([0, 1],Rd) : h satisfies (3.1) − (3.3)
}︄
.

We will consider the action of the product reparametrization group ∏︁K
k=1 Diffr([0, 1])

on the space of parametrized shape graphs, whose action is defined component-wise as

φ · c .=
K∏︂
k=1

ck ◦ φk (3.4)

for any shape graph c
.= ∏︁K

k=1 c
k ∈ Graphr(A) and any reparametrization φ

.=∏︁K
k=1 φ

k ∈ ∏︁K
k=1 Diffr([0, 1]). Due to the product structure of the space of parametrized

shape graphs, the class of elastic Sobolev metrics on the space of immersed curves

defined in (2.16) and (2.17) generalizes to a reparametrization-invariant metric on this

space. Taking into account the linear constraints (3.1), (3.2) and (3.3), we obtain the

following set of completeness results on this product space, which follows directly from

the analogous completeness results for the component curves outlined in Theorem 2.

We formulate the result again for n = r only.

Theorem 8 (Completeness properties for parametrized shape graphs). For n ≥ 2 let

Ḡ
n

c (h, h) =
K∑︂
k=1

Gn
ck(hk, hk), (3.5)

where c ∈ Graphn(A), h ∈ TcGraphn(A), and where Gn is the scale-invariant Sobolev

metric as defined in (2.17). Then Ḡ
n defines a smooth, strong and reparametrization-

invariant Riemannian metric on Graphn(A). Let distḠn denote the induced geodesic

distance of Ḡn on Graphn(A). The following properties hold:

1. The space (Graphn(A), distḠn) is a complete metric space.

2. The space
(︂
Graphn(A), Ḡn

)︂
is geodesically complete.

3. For any c0, c1 ∈ Graphn(A) there exists a minimizing geodesic in Graphn(A)

(w.r.t. to the metric Ḡn), that connects c0 to c1.
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In addition to being reparametrization-invariant, the Riemannian metric Ḡn on

the space of parametrized shape graphs is also invariant to permutations of the shape

graph components, i.e., it remains unchanged when applying a reordering of the

component curves of a shape graph c ∈ Graphr(A). This follows from the fact that

the metric is defined as a sum of the individual Riemannian metrics for the component

curves. To be more precise, we will consider the permutation group Sym(K), whose

action on Graphr(A) is defined as

σ · c .=
K∏︂
k=1

cσ(k) ∈ Graphr(P T
σ APσ) (3.6)

for all shape graphs c = ∏︁K
k=1 c

k ∈ Graphr(A) and permutations σ ∈ Sym(K), whose

associated permutation matrix is denoted by Pσ. In other words, the permutation

group acts on the space of shape graphs by reordering the component curves of a shape

graph, and accordingly permuting the rows and columns of its adjacency matrix.

This brings us to the space of unparametrized shape graphs with adjacency

structure A, which we define as the quotient space of parametrized shape graphs with

adjacency structure A modulo the product reparametrization and permutation groups:

SG(A) .=
⎛⎝ ⋃︂
σ∈Sym(K)

Graphr(P T
σ APσ)

⎞⎠/︃ K∏︂
k=1

Diffr([0, 1])
/︃

Sym(K). (3.7)

This space is not a smooth manifold, but it is a Hausdorff topological space; this can

be seen similarly as in [62]. In what follows, we will denote elements of this quotient

space by [c], i.e., equivalence classes of parametrized shape graphs.

As outlined in Section 2.1, the reparametrization and permutation invariance of the

metric Ḡn implies that it descends to a metric on the quotient space of unparametrized

shape graphs SG(A), on which we obtain the following quotient Riemannian distance

which is given for any [c0], [c1] ∈ SG(A) by
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distSG(A)([c0], [c1]) = inf
φ∈
∏︁K

k=1 Diffr([0,1])
σ∈Sym(K)

distḠn(c0, σ · (c1 ◦ φ))

= inf
φ∈
∏︁K

k=1 Diffr([0,1])
σ∈Sym(K)

inf
c(·)

∫︂ 1

0

√︂
Ḡ
n

c(t)(∂tc(t), ∂tc(t))dt,
(3.8)

where the minimization occurs over all paths of parametrized shape graphs c(·) ∈

H1([0, 1],Graphr(A)) satisfying c(0) = c0 and c(1) = σ · (φ · c1), and over the product

reparametrization group and permutation group also.

The following theorem summarizes the completeness properties of the resulting

metric space. Its proof follows from Theorem 8, using the same arguments as [62].

Note that the permutation group does not lead to any additional difficulties, as this is

only a finite group.

Theorem 9 (Completeness properties for unparametrized shape graphs). Let n ≥ 2.

Then
(︂
SG(A), distSG(A)

)︂
is a length space and any two shape graphs in the same

connected component can be joined by a minimizing geodesic.

Remark 2 (Shape graphs modulo rotations). We can also consider the space of

unparametrized shape graphs modulo rotations, where the rotation operation acts on

a given shape graph by rotating each of its component curves by a given angle of

rotation. Since our Riemannian metric is also invariant with respect to this finite

dimensional group action, it also descends to a Riemannian metric on this quotient

space. Computing the induced geodesic distance would thus involve a minimization over

the rotation group SO(d) in addition to minimizing over the product reparametrization

group and permutation group.

3.3 Relaxed shape graph registration

As highlighted in (3.8), to compute the geodesic distance on the space of unparametrized

shape graphs, it is necessary to optimize over both the product reparametrization
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group and over all permutations of the component curves, which a priori presents

a significant computational challenge. Thankfully, we can address this issue once

again by relaxing the exact matching problem via the introduction of a varifold data

attachment term for the terminal matching constraint, as outlined in Section 2.4. As

we will see, it turns out that these varifold fidelity metrics are also independent of the

ordering of the component curves in either of the shape graphs, which allows us to

circumvent the minimization over the finite (but potentially large) permutation group

when performing shape graph registration.

First, we shall briefly recap the construction of varifold metrics for curves. Let K

be a positive-definite kernel on Rd × Sd−1, which is constructed as the product of a

radial kernel and a zonal kernel, as in (2.35), and which satisfies the conditions in

Theorem 4. As outlined in Section 2.4.1, there is a unique RKHS H associated to this

kernel, whose dual norm induces a (pseudo)-metric on the space of varifolds V , which

we denote by ∥ · ∥V . In fact, given two curves c0, c1 in Immr(D,Rd), (where D = [0, 1]

or D = S1) it can be shown from the reproducing kernel property that the inner

product between their associated varifolds µc0 and µc1 can be expressed explicitly as:

⟨µc0 , µc1⟩V =
∫︂∫︂

D×D
K
(︄
c0(θ),

c0(θ)
|c0(θ)|

, c1(θ̃),
c1(θ̃)
|c1(θ̃)|

)︄
|∂θc0(θ)||∂θc1(θ̃)|dθdθ̃. (3.9)

Then, by setting Γ(c0, c1) = ∥µc1 −µc0∥2
V = ∥µc0∥2

V +∥µc1∥2
V −2⟨µc0 , µc1⟩V , we obtain a

discrepancy term that is independent of the parametrizations of c0 and c1, and which

can be expressed explicitly from (3.9). This varifold metric can thus be used as a data

attachment term in the relaxed matching problem for curve registration.

A further advantage of varifold-based data attachment terms is that they provide an

adequate measure of discrepancy between shape graphs. For n ≥ 2 and an adjacency

matrix A, consider a shape graph c = ∏︁K
k=1 c

k ∈ Graphn(A). The varifold associated

to c can be simply defined as µc = ∑︁K
k=1 µck ∈ V, with each µck being the varifold

representation of the curve ck. Then, the aforementioned dual RKHS metric ∥ · ∥V
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extends directly to shape graphs. Due to the invariance properties of ∥ · ∥V , the

resulting distance induces a (pseudo)-distance on the quotient space of unparametrized

shape graphs SG(A). This follows from the observation that the varifold construction

is invariant to the ordering of the curves of a shape graph, and to reparametrizations

of these component curves.

Remarkably, the dual norm ∥ · ∥V , and hence the varifold data attachment term,

remain well-defined on the entire set Graphn .= ⋃︁
A Graphn(A) of all shape graphs

having an arbitrary number of component curves and arbitrary adjacency matri-

ces. Indeed, if c0 = ∏︁K
k=1 c

k
0 and c1 = ∏︁L

l=1 c
l
1 are two shape graphs with K and

L components respectively, we can compare them through the discrepancy term

Γ(c0, c1) .= ∥µc0 − µc1∥2
V = ∥µc0∥2

V + ∥µc1∥2
V − 2⟨µc0 , µc1⟩V , where

⟨µc0 , µc1⟩V =
K∑︂
k=1

L∑︂
l=1

⟨µck
0
, µcl

1
⟩V , (3.10)

in which each ⟨µck
0
, µcl

1
⟩V can be expressed through (3.9). In fact, the reparametrization

and permutation invariance of the varifold norm implies that it remains well defined

on the space of all unparametrized shape graphs SG = ⋃︁
A SG(A) having an arbitrary

number of component curves and arbitrary adjacency matrices.

This finally allows us to formulate the following relaxed shape graph registration

problem:

Given c0, c1 ∈ Graphn, where A is the adjacency matrix of c0, we consider the

variational problem:

inf
{︃∫︂ 1

0
Ḡ
n

c(t)(∂tc(t), ∂tc(t))dt+ λ∥µc(1) − µc1∥2
V

}︃
(3.11)

where the infimum is taken over all paths c(·) ∈ H1([0, 1],Graphn(A)) satisfying

the initial constraint c(0) = c0. Note that in this problem, we refer to c0 as the

source shape graph, c1 as the target shape graph, and c(1) as the deformed source.
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Note that for all t ∈ [0, 1], c(t) is by construction a shape graph whose adjacency

matrix A may differ from the one of the target shape graph c1. Thus, we can interpret

(3.11) as the problem of finding the optimal path with respect to the metric Ḡ
n

between the source shape c0 and a shape graph c(1) having the same graph structure

as c0, which is “close” to the target c1 in terms of the varifold distance. As a particular

case, when K = L = 1, problem (3.11) reduces to the relaxed elastic curve matching

problem introduced by Bauer, Bruveris, Charon and Møller-Andersen in [55].

Remark 3. Note that minimizing paths c(·)) in (3.11) provide estimates of geodesics in

the space SG of all unparametrized shape graphs. Meanwhile, the quantity distSG([c0], [c1])2 .=∫︁ 1
0 Ḡ

n

c(t)(∂tc(t), ∂tc(t))dt evaluated at such a minimizer provides an estimate of the cor-

responding geodesic distance on this space.

3.3.1 Existence of minimizers

The existence of a minimizing path c(·) in (3.11) is not a priori guaranteed since,

unlike with the existence of geodesics given by Theorem 8, the deformed source c(1)

is not fixed anymore in this relaxed variational problem. In fact, this very question

was also left aside by the authors in [55] for the special case of open and closed curves.

In this section, we will show that the existence of minimizers holds for scale-invariant

metrics (2.17) of regularity n ≥ 2:

Theorem 10. Let c0, c1 ∈ Graphn, where A is the adjacency matrix of c0. Assume

that n ≥ 2 and let Ḡn be a scale-invariant metric on Graphn(A). We further assume

that the varifold fidelity term ∥ · ∥V in (3.11) is induced by a kernel K which defines

a RKHS H that is continuously embedded into C1
0(Rd × Sd−1). Then the infimum in

(3.11) is achieved by a path c(·) ∈ H1([0, 1],Graphn(A)).

Remark 4. For K = 1, i.e., when c0 is a single open curve, Theorem 10 gives

in particular the existence of solutions to the relaxed open curve matching problem
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introduced in [55] for the class of scale-invariant metrics of order n ≥ 2. We point out

that the proof can be adapted almost verbatim to also recover the existence of solutions

in the case of a single closed curve for both the constant-coefficient and scale-invariant

Sobolev metrics (2.16) and (2.17) as long as n ≥ 2.

Our proof will follow the standard approach of calculus of variations. We will first

need the following lemma on the convergence of varifold norms.

Lemma 4. Let (cp)p∈N be a sequence of C1-immersions of D (with D = [0, 1] or

D = S1) into Rd such that cp converges to a C1-immersion c∞ for the ∥ · ∥1,∞ norm.

Then µcp converges to µc∞ in V.

Proof of Lemma 4. By assumption we have cp(θ) → c∞(θ) and ∂θcp(θ) → ∂θc∞(θ)

uniformly on D with ∂θcp(θ) ̸= 0 and ∂θc(θ)∞ ≠ 0 for all n and θ ∈ D. As H is

continuously embedded into C1
0 (Rd × Sd−1), we have ∥ω∥1,∞ ≤ CH∥ω∥H for all ω ∈ H

and it results that:

∥µcp − µc∞∥V = sup
∥ω∥H≤1

(µcp − µc∞|ω)

≤ sup
∥ω∥1,∞≤CH

(µcp − µc∞|ω)

≤ CH sup
∥ω∥1,∞≤1

(µcp − µc∞|ω).

Therefore, we only need to show that sup∥ω∥1,∞≤1(µcp − µc∞|ω) → 0 as p → +∞. Let

ω ∈ C1
0(Rd × Sd−1) with ∥ω∥1,∞ ≤ 1. We have:

|(µcp − µc|ω)| ≤
∫︂
D

⃓⃓⃓⃓
⃓ω
(︄
cp(θ),

∂θcp(θ)
|∂θcp(θ)|

)︄
|∂θcp(θ)| − ω

(︄
c∞(θ), ∂θc∞(θ)

|∂θc∞(θ)|

)︄
|∂θc∞(θ)|

⃓⃓⃓⃓
⃓ dθ

≤
∫︂
D

⃓⃓⃓⃓
⃓ω
(︄
cp(θ),

∂θcp(θ)
|∂θcp(θ)|

)︄⃓⃓⃓⃓
⃓⃓⃓⃓|∂θcp(θ)| − |∂θc∞(θ)|

⃓⃓⃓
dθ

+
∫︂
D

⃓⃓⃓⃓
⃓ω
(︄
cp(θ),

∂θcp(θ)
|∂θcp(θ)|

)︄
− ω

(︄
c∞(θ), ∂θc∞(θ)

|∂θc∞(θ)|

)︄⃓⃓⃓⃓
⃓ |∂θc∞(θ)|dθ.

Denoting by λ1(D) the Lebesgue measure of D and ℓc∞ the total length of c∞, we
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obtain:

|(µcp − µc|ω)| ≤ λ1(D)∥ω∥∞∥∂θcp(θ) − ∂θc∞(θ)∥∞ + ℓc∞∥ω∥1,∞∥cp − c∞∥1,∞

≤ C ∥ω∥1,∞∥cp − c∞∥1,∞

≤ C ∥cp − c∞∥1,∞

where C is a constant that only depends on D and c. Therefore we get

sup
∥ω∥1,∞≤1

|(µcp − µc|ω)| ≤ C∥cp − c∥1,∞ → 0

and thus ∥µcp − µc∥V → 0 as p → +∞.

We now prove Theorem 10 by showing the existence of a minimizing path for the

relaxed shape graph registration problem (3.11).

Proof of Theorem 10. Let us define the energy of (3.11):

E(c) .=
∫︂ 1

0
Ḡ
n

c(t)(∂tc(t), ∂tc(t))dt+ λ∥µc(1) − µc1∥2
V .

Note that the infimum of E is finite as one can for instance consider the constant

path c(t) = c0 for all t ∈ [0, 1] for which E(c) = ∥µc0 − µc1∥2
V < +∞. Then, introduce

a minimizing sequence (c̃p)p∈N in H1([0, 1],Graphn(A)) achieving this infimum, i.e.,

a sequence such that E(c̃p) → inf E(c) < +∞. We denote the different component

curves of the shape graph c̃p(t) by c̃kp(t). Both terms in the energies E(c̃p) are bounded,

meaning that there exists δ > 0 such that for all p ∈ N and k = 1, . . . , K:

∫︂ 1

0
Gn
c̃k

p(t)(∂tc̃
k
p(t), ∂tc̃kp(t))dt ≤

∫︂ 1

0
Ḡ
n

c̃p(t)(∂tc̃p(t), ∂tc̃p(t))dt < δ.

Since c̃kp(0) = ck0, we obtain that for all t ∈ [0, 1], c̃kp(t) belongs to the ball B(ck0, δ) for

the Sobolev distance distGn . It follows from Lemma 2 (from Section 2.3.1) that there

exists C > 0 such that

∥∂tc̃kp(t)∥2
Hn ≤ CGn

c̃k
p(t)(∂tc̃

k
p(t), ∂tc̃kp(t))
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and |∂θc̃kp(t, θ)| ≥ C−1 for all p ∈ N, k = 1, . . . , K, t ∈ [0, 1] and θ ∈ [0, 1]. Since

c̃kp(t) = ck0 +
∫︁ t

0 ∂tc̃
k
p(u)du, we get that ∥c̃kp(t)∥Hn ≤ ∥c0∥Hn +

√
Cδ and thus

∥c̃kp∥2
H1([0,1],Hn([0,1]) ≤ (∥c0∥Hn +

√
Cδ)2 + Cδ.

Therefore the sequence (c̃kp)p∈N is bounded in H1([0, 1], Hn([0, 1],Rd)). Thus, up

to the extraction of a subsequence, we have that c̃kp converges weakly to some c̃k

in H1([0, 1], Hn([0, 1],Rd)). As H1([0, 1], Hn([0, 1],Rd)) is compactly embedded into

C([0, 1], C1
0 ([0, 1])) by the Aubin-Dubinskii lemma [105], we deduce that for all t ∈ [0, 1],

the (sub)-sequence c̃kp(t) converges to c̃k(t) in ∥ · ∥1,∞ on [0, 1]. Also, the above lower

bound |∂θc̃kp(t, θ)| ≥ C−1 leads to |∂θc̃k(t, θ)| ≥ C−1 for all t and θ, from which

we deduce that c̃k ∈ H1([0, 1], Immn([0, 1],Rd) for each k = 1, . . . , K, i.e., that the

component curves in the limit are all immersions. Furthermore, the convergence in

∥ · ∥1,∞ of the ckp also implies that the set of linear constraints defining the graph

structure given by A via (3.1),(3.2) and (3.3) are also satisfied by the limit curves c̃k.

Thus, defining c̃(t) = ∏︁K
k=1 c̃

k(t), we have that c̃ ∈ H1([0, 1],Graphn(A)).

Moreover, by Lemma 4, as c̃kp(1) −−−→
p→∞

c̃k(1) in ∥ · ∥1,∞ for all k, we get that

µc̃k
p(1) → µc̃k(1) in V. Then µc̃p = ∑︁K

k=1 µc̃k
p

−−→
∥·∥V

∑︁K
k=1 µc̃k = µc̃ and as a result

∥µc̃p(1) − µc1∥V −−−→
p→∞

∥µc̃(1) − µc1∥V . Finally, as follows from the proof of Theorem

5.2 in [62], the mapping c ↦→
∫︁ 1

0 G
n
c(t)(∂tc(t), ∂tc(t))dt is weakly lower semicontinuous

on H1([0, 1], Hn([0, 1],Rd)), from which we deduce that the first term in the energy

E is weakly lower semicontinuous with respect to the convergence of c̃p to c̃ in∏︁K
k=1 H

1([0, 1], Hn([0, 1],Rd)).

We conclude that E(c̃) ≤ lim inf
p→+∞

E(c̃p) = inf E(c) and consequently that c̃ is a

minimizer of E.
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3.4 Weighted shape graph registration

We now further extend the elastic shape graph registration framework of the previous

section by incorporating weights and weight changes along the shape graphs.

3.4.1 Limitations of the previous elastic matching model

We start by motivating the need for such an extended approach. Indeed, the model

presented so far is primarily built to compare shape graphs of the same topology,

such as in the example shown on Figure 3-2, which was obtained with our proposed

shape graph registration algorithm (with fixed weights) that will be introduced in

Section 3.5. Although the matching in (3.11) is inexact and may in practice be able

to handle small inconsistencies including topological noise, it remains inadequate for

many typical datasets (e.g. trees, arterial networks) which routinely involve shape

graphs with significant topological differences. Attempting to compare two such shape

graphs based on (3.11) can lead to highly singular and unnatural behaviour in the

estimated geodesic and distance, as illustrated in Figure 3-3. This is in great part due

to the fact that our model does not yet allow for partial matching constraints.

In what follows, we propose to indirectly (and only partially) address this difficult

challenge by augmenting the previous notion of shape graphs with a weight function

defined on the shape, leveraging the flexibility of the varifold representation for that

purpose. This leads to a new matching formulation where, in combination to the

geometric matching process, one can vary the mass of different components of the

source or target shape graphs. In particular, this allows us to remove certain parts of

a shape graph when no corresponding components can be found in the other shape,

as shown in Figure 3-3.
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 3-2. Geodesic between two shape graphs with the same topology: the source
c0 (left) and target c1 (in red on the right). The target is overlayed on the transformed
source c(1) at t = 1. The estimated geodesic distance is distSG([c0], [c1]) = 0.83.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 3-3. Geodesic between source (blue at t = 0) and target (red at t = 1) shape
graphs having different topologies. (Top row) We use the relaxed shape graph registration
framework described in (3.11), which only allows for a geometric deformation of the source.
The estimated geodesic distance is distSG(c0, c1) = 1.44, around 1.7 times higher than
in Figure 3-2. (Bottom row) Result obtained from the weighted shape graph registration
framework described in (3.12) that jointly estimates a deformation and weight changes
on the source. Components of the source which get “erased” are colored in progressively
transparent shades of blue. The estimated geodesic distance here is distSG(c0, c1) = 0.77,
now fairly comparable to Figure 3-2.
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3.4.2 A new variational problem

Let A be a fixed adjacency matrix. We first define the space of parametrized weighted

shape graphs of regularity r > 3/2 having adjacency matrix A as the space of couples

(c, ρ) where c ∈ Graphr(A) and ρ is a non-negative function of bounded variation

on the shape graph. By this, we mean specifically that ρ = ∏︁K
k=1 ρ

k is a Cartesian

product of functions ρk ∈ BV ([0, 1],R+), where BV ([0, 1],R+) is the space of non-

negative functions of bounded variation on the interval [0, 1], see [106] for a complete

presentation of these spaces and their properties. For each k = 1, . . . , K and θ ∈ [0, 1],

we can interpret ρk(θ) as the weight (or mass) assigned to the point ck(θ) of the curve

ck. We will denote by WGraphr(A) the space of all such weighted shape graphs, and

by WGraphr = ⋃︁
A WGraphr(A) the space of all weighted shape graphs of regularity

r for all adjacency matrices A. We can now formulate a generalized matching problem

between two given weighted shape graphs as follows:

Given (c0, ρ0), (c1, ρ1) ∈ WGraphn we consider the minimization problem

inf
{︃∫︂ 1

0
Ḡ
n

c(t)(∂tc(t), ∂tc(t))dt+ αFρ0(c(1), δρ) + λ∥µc(1),ρ0+δρ − µc1,ρ1∥2
V

}︃
, (3.12)

where the infimum is taken over all paths c(·) ∈ H1([0, 1],Graphn(A)) satisfying

the initial constraint c(0) = c0, and also over all weight change functions δρ ∈

(BV ([0, 1],R))K . In this framework, we refer to (c0, ρ0) as the source shape graph,

(c(1), ρ0 + δρ) as the transformed source, and (c1, ρ1) as the target.

Moreover, λ, α > 0 are balancing parameters between the different terms,

Fρ0(c(1), δρ) is a regularizing term for the weight change function defined on the

transformed source, see Section 3.4.2.1, and the last term denotes the extension of

the varifold norm for weighted shape graphs, see Section 3.4.2.2.

We re-emphasize that the minimum value in (3.12) is independent of the ordering

68



of the components of both shape graphs c0 and c1 as well as the parametrizations of

each of their components, despite the fact that we are not explicitly optimizing over

those groups. This follows from the invariances of all terms in the matching functional

and the independence of the varifold data attachment term to reparametrizations and

permutations of the components of c0 and c1.

Remark 5. Note that the model formulated in (3.12) is asymmetric as it accounts

for weight changes on the transformed source only. However, it can be adapted almost

straightforwardly to weight changes on the target by instead optimizing over a function

δρ that transforms (c1, ρ1) as (c1, ρ1+δρ). The existence result of Theorem 11 also holds

in this case through a similar reasoning. Even more generally, one could consider the

problem in which both the source and target weights are estimated by jointly optimizing

over two weight change functions δρ0 and δρ1. The existence of solutions in this case

is again easy to prove, although the design of the constraint function F̃ , which will be

introduced in 3.4.2.1, becomes critical in order to avoid the trivial solution in which

both ρ0 + δρ0 and ρ1 + δρ1 are equal to 0 everywhere on the shape graphs.

3.4.2.1 The weight regularization term

We now introduce a specific choice for the regularization term F that leads to the

existence of solutions for this new minimization problem. For a general weighted

shape graph (c, ρ) ∈ WGraphn(A), we define the total variation (TV ) norm of ρ as

the sum of the TV norms on [0, 1] of each individual weight function:

∥ρ∥TV =
K∑︂
k=1

∥ρk∥TV,[0,1]. (3.13)

In the context of (3.12), we can now define the weight regularizer for the weight change

function on the transformed source as follows:

Fρ0(c(1), δρ) = ∥δρ∥TV + β̃F̃ ρ0(c(1), δρ), (3.14)
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where F̃ is a generic additional term that can be used to impose further constraints

on the weight change function, with β̃ > 0 being a balancing parameter. For instance,

one could design these constraints to ensure the non-negativity of ρ0 + δρ, or as we

shall see in the experiments section, one could push the values of ρ0 + δρ to stay close

to either 0 or 1 by choosing F̃ to be a double-well potential function.

Remark 6. We point out that the TV norm defined above does not depend on

parametrization. Indeed, for any BV function ρ on [0, 1] and reparametrization

φ ∈ Diff([0, 1]), by the usual properties of BV functions and of the TV norm, one has

that ρ ◦ φ is also in BV and that ∥ρ ◦ φ∥TV,[0,1] = ∥ρ∥TV,[0,1]. It is also worth noting

that if c : [0, 1] → Rd is an embedding, then the function ρ ◦ c−1 is a BV function on

the manifold curve c([0, 1]) as defined in e.g. [106], and that ∥ρ∥TV,[0,1] coincides with

the total variation norm of ρ ◦ c−1 along that curve.

The following classical compactness property in the space BV (that follows from

Theorem 3.23 in [106]) is the main reason for choosing to define F using the TV norm

of δρ:

Lemma 5. If (ρm) is a sequence in BV ([0, 1],R) with supm∈N ∥ρm∥TV,[0,1] < +∞,

then there exists ρ ∈ BV ([0, 1],R) such that, up to the extraction of a subsequence,

one has ρm → ρ in L1([0, 1]), and for almost all θ ∈ [0, 1], ρm(θ) → ρ(θ).

3.4.2.2 The varifold norm for weighted shape graphs

Next, we discuss the extension of the varifold norm to the space of weighted shape

graphs. For n ≥ 2, we represent any weighted shape graph (c, ρ) ∈ WGraphn as the

varifold µc,ρ ∈ V given by µc,ρ = ∑︁K
k=1 ρ

k · µck , where for each k, we define ρk · µck for

any given test function ω ∈ C0(Rd × Sd−1,R) by:

(ρk · µck |ω) =
∫︂ 1

0
ρk(θ)ω

(︄
ck(θ), ∂θc

k(θ)
|∂θck(θ)|

)︄
|∂θck(θ)|dθ. (3.15)

70



Thus we can still rely on the varifold norm ∥ · ∥V to compare weighted shape graphs,

even when they have different numbers of component curves or adjacency matrices.

We have the following technical lemma, which will be of importance in the proof of

our existence result:

Lemma 6. Let (cm, ρm) be a sequence of weighted shape graphs in WGraphn(A) for

some fixed adjacency matrix A ∈ R2K×2K such that for all m ∈ N and all k = 1, . . . , K,

ckm is a C1-immersion and (ckm) converges uniformly to a C1-immersion ck, with the

same holding true for its derivatives. Assume also that for all k, (ρkm) converges in

L1 to some ρk ∈ BV ([0, 1],R+). Then, for c = ∏︁K
k=1 c

k and ρ = ∏︁K
k=1 ρ

k, we have

µcm,ρm

∥·∥V−−−→
m→∞

µc,ρ.

Proof of Lemma 6. Similarly to the proof of Lemma 4, we only need to show that for

all k = 1, . . . , K, we have that sup∥ω∥1,∞≤1(ρkm · µck
m

− ρk · µck |ω) → 0 as m → +∞. If

ω ∈ C1
0(Rd × Sd−1) with ∥ω∥1,∞ ≤ 1, we have:

|(ρkm · µck
m

− ρk · µck |ω)|

≤
∫︂ 1

0

⃓⃓⃓⃓
⃓ω
(︄
ckm(θ), ∂θc

k
m(θ)

|∂θckm(θ)|

)︄
ρkm(θ)|∂θckm(θ)| − ω

(︄
ck(θ), ∂θc

k(θ)
|∂θck(θ)|

)︄
ρk(θ)|∂θck(θ)|

⃓⃓⃓⃓
⃓ dθ

≤
∫︂ 1

0

⃓⃓⃓⃓
⃓ω
(︄
ckm(θ), ∂θc

k
m(θ)

|∂θckm(θ)|

)︄
ρkm(θ)|∂θckm(θ)| − ω

(︄
ckm(θ), ∂θc

k
m(θ)

|∂θckm(θ)|

)︄
ρk(θ)|∂θck(θ)|

⃓⃓⃓⃓
⃓ dθ⏞ ⏟⏟ ⏞

.=(1)

+
∫︂ 1

0

⃓⃓⃓⃓
⃓ω
(︄
ckm(θ), ∂θc

k
m(θ)

|∂θckm(θ)|

)︄
ρk(θ)|∂θck(θ)| − ω

(︄
ck(θ), ∂θc

k(θ)
|∂θck(θ)|

)︄
ρk(θ)|∂θck(θ)|

⃓⃓⃓⃓
⃓ dθ⏞ ⏟⏟ ⏞

.=(2)

We can then derive the following upper bounds for each term:

(1) ≤ ∥ω∥∞

∫︂ 1

0

⃓⃓⃓
ρkm(θ)|∂θckm(θ)| − ρk(θ)|∂θck(θ)|

⃓⃓⃓
dθ

≤
∫︂ 1

0
|ρkm(θ) − ρk(θ)||∂θckm(θ)|dθ +

∫︂ 1

0
ρk(θ)|∂θckm(θ) − ∂θc

k(θ)|dθ

≤
(︄

sup
m∈N

∥ckm∥1,∞

)︄
∥ρkm − ρk∥L1 + ∥ρk∥L1∥ckm − ck∥1,∞.
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For the second term, we have

(2) ≤
∫︂ 1

0

⃓⃓⃓⃓
⃓ω
(︄
ckm(θ), ∂θc

k
m(θ)

|∂θckm(θ)|

)︄
− ω

(︄
ck(θ), ∂θc

k(θ)
|∂θck(θ)|

)︄⃓⃓⃓⃓
⃓ ρk(θ)|∂θck(θ)|dθ

and the same arguments as in the proof of Lemma 4 give that (2) ≤ C ∥ckm − ck∥1,∞.

Since ∥ckm − ck∥1,∞ and ∥ρkm − ρk∥L1 both converge to 0, it follows that

sup
∥ω∥1,∞≤1

(ρkm · µck
m

− ρk · µck |ω) → 0

as m → +∞.

3.4.3 Existence of solutions

We are now able to show the well-posedness of the weighted shape graph registration

problem (3.12), thereby generalizing Theorem 10:

Theorem 11. Consider (c0, ρ0) and (c1, ρ1) in WGraphn, and let A be the adjacency

matrix of c0. Assume that n ≥ 2 and that Ḡn is a scale-invariant metric on Graphn(A).

We further assume that the varifold fidelity term ∥·∥V in (3.12) is induced by a kernel K

which defines a RKHS H that is continuously embedded into C1
0 (Rd ×Sd−1). Moreover,

suppose that that the TV-based weight regularization term F is given by (3.14), and

that δρ ↦→ F̃ ρ0(·, δρ) is continuous with respect to the convergence a.e. of δρ.

Then there exists c(·) ∈ H1([0, 1],Graphn(A)) and δρ ∈ (BV ([0, 1],R))K achieving

the infimum in (3.12).

Proof. Let us denote by E(c(·), δρ) the energy of (3.12) and let (c̃m(·), δρm) be a

minimizing sequence of E with c̃m(·) ∈ H1([0, 1],Graphn(A)), with A ∈ R2K×2K being

the adjacency matrix of c0. With the same arguments as in the proof of Theorem 10,

we deduce that up to a subsequence, we have that (c̃m(·)) converges weakly to some

c(·) ∈ H1([0, 1],Graphn(A)), and that for all k = 1, . . . , K and all t ∈ [0, 1], we have

that c̃km(t, ·) converges to ck(t, ·) with respect to the ∥·∥1,∞ norm on [0, 1]. Furthermore,
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∥δρm∥TV is uniformly bounded in m, so by Lemma 5, up to the extraction of another

subsequence, we can also assume that there exists δρ ∈ (BV ([0, 1],R))K such that for

all k, we have δρkm → δρk in L1([0, 1]) and δρkm(θ) → δρk(θ) for almost all θ ∈ [0, 1].

This last statement implies, thanks to the assumption on F , that Fρ0(c(1), δρm) →

Fρ0(c(1), δρ) as m → +∞. In addition, by Lemma 6, we deduce that ∥µc̃m(1),ρ0+δρm −

µc1,ρ1∥2
V → ∥µc(1),ρ0+δρ − µc1,ρ1∥2

V . Also, given the weak lower semi-continuity of

the Riemannian distance already noted above and the fact that ∥ · ∥TV,[0,1] is lower

semicontinuous with respect to the L1–convergence on [0, 1], we see that:

E(c(·), δρ) ≤ lim inf
m→+∞

E(c̃m(·), δρm),

and consequently, we obtain that (c(·), δρ) is a minimizer of (3.12).

3.5 Optimization approach

We now propose a numerical optimization approach to solve the generalized weighted

shape graph registration problem introduced in (3.12). We will focus exclusively

on shape graph registration using the class of second-order elastic Sobolev metrics.

As a result, we denote the space of parametrized shape graphs of regularity r = 2

with fixed adjacency structure A by Graph2(A), the second-order Sobolev metrics of

order n = r = 2 on this space as Ḡ2, and the corresponding space of weighted shape

graphs as WGraph2(A). We will also denote the corresponding spaces for arbitrary

adjacencry structures by Graph2 .= ⋃︁
A Graph2(A) and WGraph2 .= ⋃︁

A WGraph2(A).

Our approach to solve (3.12) consists of discretizing the relaxed matching energy,

before using appropriate optimization algorithms to minimize the discretized energy.

We provide an open source implementation of our approach on GitHub.
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3.5.1 Discretizing the energy

We first recall that the energy for the matching problem is given by:

E(c(·), δρ) :=
∫︂ 1

0
Ḡ

2
c(t)(∂tc(t), ∂tc(t))dt+ αFρ0(c(1), δρ) + λ∥µc(1),ρ0+δρ − µc1,ρ1∥2

V .

Thus, we see that the energy is a weighted sum of three terms, namely the Riemannian

energy of the path of shape graphs satisfying the initial condition c(0) = c0, the weight

regularizer for the weight changes defined on the transformed source, and the varifold

distance between the transformed source and target. In what follows, we describe how

to discretize and compute each of these three terms separately.

3.5.1.1 Riemannian path energy

To evaluate the Riemannian energy in the matching functional, we discretize the paths

of shape graphs c(·) ∈ H1([0, 1],Graph2(A)) satisfying the initial condition c(0) = c0,

and then find an expression for the energy in terms of these discretized paths.

We first note that all shape graphs in the path have the same topology as the

source shape graph c0 = ∏︁K
k=1 c

k
0, i.e., they consist of K component curves whose

connectivity is described by the adjacency matrix A. Therefore, we construct a

discretized path of immersions for each component curve, which we denote by ck(·) ∈

H1([0, 1], Imm2([0, 1],Rd)) for k = 1, ..., K. We use the same procedure as defined

in [19, Section 3] to construct these discretized paths of immersions, i.e., we discretize

each ck(·) using tensor product B-splines on knot sequences of orders nt in time and

nθ in space. Typically, we choose nt = 1 and nθ = 2 in our numerical experiments.

This produces Nt × Nθ basis splines, with Nt and Nθ being the number of control

points in time and space respectively. Typical values used in experiments are Nt = 10

and Nθ = O(102). We can thus write the discretized path of immersions for each

component curve as follows:

ck(t, θ) =
Nt∑︂
i=1

Nθ∑︂
j=1

cki,jBi(t)Cj(θ), (t, θ) ∈ [0, 1] × [0, 1]
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where cki,j ∈ Rd are the control points for ck(·), and Bi(t) and Cj(θ) are B-splines

defined by an equidistant simple knot sequence on [0, 1] with full multiplicity at

the boundary knots. The full multiplicity of boundary knots in t implies that the

discretized initial curve ck(0) for each k = 1, ..., K depends only on the control points

ck1,j. This allows us to easily enforce the initial constraint by keeping these control

points fixed. We point out that if the source shape graph c0 = ∏︁K
k=1 c

k
0 with adjacency

matrix A is not already split into its individual component curves, this can be done

using e.g., Tarjan’s algorithm [107].

Note that we can analytically differentiate our spline paths in both time and

space. Thus we get an explicit expression for the Riemannian energy of each path

of immersions using the formulas for the Riemannian metrics in (3.5), (2.16) and

(2.17). Since we are using a B-spline discretization for the paths, we evaluate the

integrals in the resulting expression using Gaussian quadrature with quadrature

sites placed between knots where the curves are smooth, see [55]. This gives us a

numerical approximation of the energy for the paths of immersions corresponding

to each component curve of the shape graph, which we then sum up to obtain the

Riemannian energy of the full path of shape graphs, as the linearity of integrals

combined with the formula for the Riemannian metric on Graph2(A) in (3.5) allows

us to write:

∫︂ 1

0
Ḡ

2
c(t)(∂tc(t), ∂tc(t))dt =

K∑︂
k=1

(︃∫︂ 1

0
G2
ck(t)(∂tck(t), ∂tck(t))dt

)︃
.

This results in a fast and robust way to evaluate the Riemannian energy of the path

of shape graphs satisfying c(0) = c0. The same is true for the evaluation of the

derivatives of this energy. The formulas for the derivatives for each component curve

can be found in [55, Appendix A].

Remark (Preserving connectivity in the discretized path). We also note that when

minimizing the Riemannian energy above over the discretized path of shape graphs,
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as will be discussed in Section 3.5.2, we maintain the same connectivity between the

component curves of each shape graph in the path (which is determined by A) during

the registration process by ensuring that the control points of the endpoints of each

component curve (which are shared across adjacent component curves) all get updated

using a common gradient.

3.5.1.2 Weight regularizer

We next discuss the discretization and computation of the weight regularizer for the

weight change function δρ ∈ (BV ([0, 1],R))K defined on the transformed source.

First, we express the discretized transformed source in a convenient format for

discretizing the weight function defined on it. This is done by evaluating each spline

component ck(1) of the transformed source at the uniform samples θi = i
Nk

, leading

to an ordered list of vertices {vk0 , vk1 , . . . , vkNk
}, together with corresponding oriented

edge vectors eki = vki+1 − vki and edge centers xki = (vki + vki+1)/2. This allows us to

discretize the transformed weight function ρk := ρk0 + δρk ∈ BV ([0, 1],R) as weights

defined over the edges of the discretized component curve ck(1), which we represent

by a list ρki := ρk0,i + δρki , for i = 0, . . . , Nk − 1 for each k = 1, . . . , K. We thus have a

simpler representation for the discretized transformed source as a weighted piecewise

linear (i.e. polygonal) curve given by the full list of edge vectors e1, e2, . . . , eN , edge

centers x1, x2, . . . , xN , and edge weights ρ1, ρ2, . . . , ρN , where N = N1N2 . . . NK .

Next, we see that the weight regularizer Fρ0(c(1), δρ) = ∥δρ∥TV + β̃F̃ ρ0(c(1), δρ)

consists of the TV norm of the weight change function, plus a flexible choice for

the additional term F̃ ρ0 . To compute the TV norm, we use the aforementioned

discretization of the transformed source as a weighted polygonal curve, and write:

∥δρ∥TV =
K∑︂
k=1

∥δρk∥TV,[0,1] ≈
K∑︂
k=1

Nk−1∑︂
i=1

|δρki − δρki−1| =
K∑︂
k=1

∥Dkδρk∥1,

where for each k = 1, . . . , K, we denote the discretized weight change function on

each component with a slight abuse of notation by δρk = (δρk0, . . . , δρkNk−1) ∈ RNk ,
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with Dk ∈ R(Nk−1)×Nk being the appropriate difference operator such that ∥Dkδρk∥1 =∑︁Nk−1
i=1 |δρki − δρki−1|, namely:

Dk =

⎡⎢⎢⎢⎢⎣
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . −1 1

⎤⎥⎥⎥⎥⎦
(Nk−1)×Nk

.

In what follows, it will be more convenient to express the numerical approximation

for the TV norm of the weight change function as follows:

∥δρ∥TV ≈ ∥Dδρ∥1, (3.16)

where δρ = (δρ1, . . . , δρK) ∈ RN represents the discretized weight change function on

the full transformed source shape graph, and D = diag(D1, . . . , DK) ∈ R(N−K)×N is a

non-square block diagonal matrix of the difference operators. We note that since the

TV norm is non-differentiable with respect to δρ, we will require carefully selected

optimization techniques to solve (3.12), as will be outlined in Section 3.5.2.

Meanwhile, as mentioned in Section 3.4.2.1, the flexible additional term F̃ ρ0 can

be chosen to impose further constraints on the weight change function, such as

nonnegativity constraints, or constraints that binarize the value of ρ := ρ0 + δρ. As

long as δρ ↦→ F̃ ρ0(·, δρ) is continuous, the existence result from Theorem 11 holds. In

our numerical experiments, we will focus on the following particular choice for F̃ ρ0 ,

which is inspired from a similar penalty used in the context of clustering in [108]:

F̃ ρ0(c, δρ) :=
K∑︂
k=1

∫︂ 1

0
8(ρk(θ)(ρk(θ) − 1))2|∂θck(θ)|dθ.

We call this mapping F̃ ρ0 the {0, 1}-penalty, as it is minimized precisely when a weight

function ρ ∈ (BV ([0, 1],R)K defined on a shape graph c ∈ Graphn takes on pointwise

values of either 0 or 1. We focus on the {0, 1}-penalty as it is particularly well-suited

for comparing weighted shape graphs with different topologies or for shape registration

problems with partial matching constraints, as we will illustrate in Section 3.6.
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Given the discretized weighted transformed source (c(1), ρ), which is represented

by its list of oriented edge vectors e1, e2, . . . , eN , edge centers x1, x2, . . . , xN and edge

weights ρ1, ρ2, . . . , ρN with ρi = ρ0,i + δρi for i = 1, . . . , N , one can approximate the

{0, 1}-penalty numerically as follows:

F̃ ρ0(c(1), δρ) ≈
N∑︂
i=1

8(ρi(ρi − 1))2|ei|. (3.17)

From the expression above, we see that the {0, 1}-penalty is differentiable with respect

to the edges eki , and by the chain rule, with respect to the vertices vki of the discretized

transformed source for each k = 1, . . . , K. By applying a second chain rule, one obtains

the differentiability and the explicit expression of the derivatives of the {0, 1}-penalty

with respect to the final spline control points ckNt,j , similar to what is done in [55] and

in the library [109]. Moreover, since the {0, 1}-penalty is a quartic function of the edge

weights ρi := ρ0,i + δρi, its derivative with respect to each δρi is also easy to compute.

In our experiments, we control the high growth of the penalty’s derivatives with

respect to the weight changes δρi outside the interval [0, 1] by using a clipped version

of the penalty, which has piecewise linear segments outside the interval (−ϵ, 1 + ϵ) for

some fixed value of ϵ > 0, see our Figure 3-4 for details.

Figure 3-4. Graph of the {0, 1}-penalty ρ ↦→ (ρ(ρ− 1))2, clipped at ϵ = 0.25.
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3.5.1.3 Varifold norm

Lastly, we address the discretization and numerical computation of the varifold norm

∥ · ∥V that defines the discrepancy term between the transformed source and target.

As explained above, we can represent the discretized transformed source (c(1), ρ),

where ρ = ρ0 +δρ, by the lists of edge vectors e1, e2, . . . , eN , edge centers x1, x2, . . . , xN

and edge weights ρ1, ρ2, . . . , ρN . Similarly, the discretized target (c1, ρ1) will be

represented by its list of edge vectors ẽ1, ẽ2, . . . , eÑ , edge centers x̃1, x̃2, . . . , x̃Ñ and

edge weights ρ̃1, ρ̃2, . . . , ρ̃Ñ . This allows us to write the following approximation for

⟨µc(1),ρ0+δρ, µc1,ρ1⟩V :

⟨µc(1),ρ0+δρ, µc1,ρ1⟩V ≈
N∑︂
i=1

Ñ∑︂
j=1

K
(︄
xi,

ei
|ei|

, x̃j,
ẽj
|ẽj|

)︄
ρiρ̃j|ei||ẽj|, (3.18)

and obtain a corresponding finite approximation of the squared varifold distance

∥µc(1),ρ0+δρ − µc1,ρ1∥2
V . Note that (3.18) essentially amounts in approximating the

varifold inner product between edge ei in the transformed source c(1) and edge ej in

the target c1 by a single evaluation of the kernel K at the center of those respective edges.

We point to the references [79, 83, 110] for a more treatment on this discretization

scheme and the resulting approximation bounds that one is able to recover. In

particular, the main result is that the approximation error in (3.18) is proportional to

the maximal edge length of the discretized shape graphs; see Proposition 1 in [79] for

details.

Regarding the choice of kernel K on Rd × Sd−1, we once again focus on the

class of positive definite separable radial and zonal kernels which take the form

K(x,−→t , x′,
−→
t ′) = Ψ(|x− x′|)Φ(−→t · −→

t ′), where Ψ and Φ are two C1-functions on R+

and [−1, 1] respectively. These kernels do satisfy the assumptions required for the

existence of solutions in Theorem 11, while also leading to translation and rotation

invariant distances between shape graphs. In our experiments, we choose Ψ(t) = e− t2
σ2 ,

i.e., a Gaussian kernel of width σ > 0. The scale parameter σ is typically selected
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depending on the spatial size of the shape graphs to be matched. As for the kernel on

Sd−1, we typically choose either the Cauchy-Binet kernel Φ(−→t ·−→t ′) = (−→t ·−→t ′)2, which

leads to distances independent of the orientation of the shape graph components, or

alternatively the spherical Gaussian kernel Φ(−→t · −→
t ′) = e− 2

τ2 (1−−→
t ·−→t ′), in which case

the varifold metric does take orientation into account.

With this regularity on the kernel K, the discrete varifold inner product in (3.18),

and by extension, the data attachment term ∥µc(1),ρ0+δρ − µc1,ρ1∥2
V are clearly differen-

tiable with respect to the xi’s and ei’s, and by a simple chain rule, with respect to the

vertices vki of the discretized transformed source. Then by applying a second chain

rule, one again obtains the differentiability and explicit expression of the derivatives

of the varifold data attachment term with respect to the final spline control points

ckNt,j . Furthermore, since the varifold norm is a quadratic function of the edge weights

ρi := ρ0,i + δρi, its derivative with respect to each δρi is straightforward to compute.

3.5.2 Minimizing the energy

With the discretization introduced in Section 3.5.1, the generalized weighted shape

graph registration problem becomes a standard finite-dimensional optimization problem

over the spline control points of the discretized path of shape graphs c(·) ∈ RNt×Nθ ,

and the changes in edge weights δρ ∈ RN defined on the transformed source. The main

technicality arises from the presence of the non-smooth TV norm of δρ as a regularizer,

which prevents us from directly applying standard gradient-descent based optimization

techniques. To tackle this issue, we propose an approach which broadly speaking,

involves iteratively minimizing a smoothed version of the matching energy, which

we obtain by carefully rewriting the TV norm and introducing appropriate auxiliary

variables. This is adapted from the smoothed fast iterative shrinkage-thresholding

(SFISTA) algorithm proposed in [104] for convex non-smooth minimization. For the

problem we consider here, the advantage of this approach over alternative splitting
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methods for TV norm minimization, such as the split Bregman algorithm, is that it

will allow us to tackle the minimization over both control points and weight changes as

a series of unconstrained smooth optimization problems that can be solved efficiently

using a limited memory BFGS procedure. We detail our full approach below.

First, by using the expression for the TV norm introduced in (3.16), namely

∥δρ∥TV = ∥Dδρ∥1, and by introducing the auxiliary variable η = Dδρ ∈ RN−K , we

can rewrite (3.12) as a constrained minimization problem:

inf
c(·),δρ,η

∫︂ 1

0
Ḡ

2
c(t)(∂tc(t), ∂tc(t))dt+ λ∥µc(1),ρ0+δρ − µc1,ρ1∥2

V + βF̃ ρ0(c(1), δρ) + α∥η∥1

such that η = Dδρ.

By relaxing this constrained problem using a Lagrange multiplier γ ∈ R, we obtain

the unconstrained problem:

inf
c(·),δρ,η

∫︂ 1

0
Ḡ

2
c(t)(∂tc(t), ∂tc(t))dt+ λ∥µc(1),ρ0+δρ − µc1,ρ1∥2

V

+ βF̃ ρ0(c(1), δρ) + α∥η∥1 + γ

2∥η −Dδρ∥2
2. (3.19)

We denote the energy above as Eγ(c(·), δρ, η), and note that as γ → +∞, the uncon-

strained minimization of Eγ(c(·), δρ, η) becomes equivalent to its constrained coun-

terpart. The minimization for (3.19) now involves an additional variable η, but

fortunately, the objective function is strictly convex in η. For fixed c(·) and δρ, the

unique global minimizer η∗ for (3.19) is obtained from the proximal operator of ∥ · ∥1

as:

η∗ = argmin
η

Eγ(c(·), δρ, η) = argmin
η

∥η∥1 + 1
2α/γ ∥η −Dδρ∥2

2 = prox α
γ

∥·∥1(Dδρ).

Specifically, η∗ = (η∗
1, . . . , η

∗
N−K) can be expressed element-wise as follows:

η∗
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Dδρ)i − α

γ
if (Dδρ)i > α

γ
,

(Dδρ)i + α
γ

if (Dδρ)i < −α
γ
,

0 otherwise.
(3.20)
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By plugging this explicit expression for η∗ back into (3.19), we recover a minimization

problem over c(·) and δρ only, namely:

inf
c(·),δρ

∫︂ 1

0
Ḡ

2
c(t)(∂tc(t), ∂tc(t))dt+λ∥µc(1),ρ0+δρ−µc1,ρ1∥2

V+βF̃ ρ0(c(1), δρ)+
N−K∑︂
i=1

Hα,γ((Dδρ)i),

(3.21)

where Hα,γ : R → R is the so-called Huber function, which is defined as:

v ↦−→ Hα,γ(v) :=

⎧⎪⎨⎪⎩
γ
2v

2 if |v| ≤ α/γ,

α
[︃
|v| − α

2γ

]︃
if |v| > α/γ.

(3.22)

We notice that (3.21) corresponds to the minimization of a continuously differentiable

function since one can check the continuity of the Huber function and its derivative at

the points v = ±α/γ.

As a result, for a given γ > 0, minimizing the energy in (3.21) can be done using

standard gradient-descent based methods. In our experiments, we use an L-BFGS

procedure, whose MATLAB implementation is available via the HANSO library3. Yet,

the smoothed problem (3.21) only coincides with (3.12) as γ → +∞. Therefore, to

obtain a solution for our original problem, we solve the smoothed problem repeatedly

with warm start initialization and values of γ that are incrementally increased. The

precise analysis of the validity and convergence of this sequential approach can be

found in [104], albeit for convex functions. Moreover, we point out that the most

computationally expensive operation at each iteration of the optimization process

involves evaluating the varifold discrepancy term and its gradient, which requires

O(NÑ) kernel evaluations as described in (3.18).

3.6 Numerical results

We now present results from several numerical experiments which demonstrate how

the generalized weighted shape graph elastic matching framework can be useful
3https://cs.nyu.edu/overton/software/hanso/
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in the context of partially observed and topologically varying data. Note that all

of the following experiments were performed by numerically solving (3.12) using a

MATLAB implementation of the optimization approach outlined in Section 3.5. In

our experiments, the optimization procedure is initialized by default with a constant

path equal to the source shape graph. This is an added benefit of our variational

formulation, as it gives us a more principled initialization compared to other gradient

descent-based graph matching algorithms, where random initializations are usually

employed. Our source code is publicly available on GitHub4.

We point out that in order to solve problem (3.12), one needs to select a range

of parameter values, such as the balancing parameters in the smoothed matching

energy from (3.21), namely λ and β, the coefficients of the Riemannian metric for the

energy of the path of shape graphs, parameters for the varifold data attachment term,

and the Huber function parameters α and γ. While the latter is chosen according to

the suggested scheme in [104], the selection of the other parameters is highly data

dependent as it typically depends on the size of the considered shape graphs, or

the relative amount of expected geometric deformation versus weight change. Our

current approach is to select parameter values by grid search combined with sequential

parameter refinement, and we leave it as future work to devise a more principled or

data-driven scheme for parameter selection. In all our experiments we scale the shape

graphs to unit diameter and use the constant coefficient Sobolev metric from (2.16)

with coefficients a0 = 0.1, a1 = 1, a2 = 10−5 rather than the scale-invariant counterpart

since this typically leads to faster numerics and, from our experience, very similar

results when there are no major scale differences between the two shapes.

Matching partially observed data. Many practical applications frequently

involve incomplete shapes. This can be due to multiple factors such as occlusions,

segmentation issues or simply inadequate fields of view during the data acquisition
4https://github.com/charoncode/ShapeGraph_H2match
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 3-5. Matching incomplete leaves. Geodesics between Swedish leaves [8] with
partial matching constraints. The source (blue at t = 0) and target (red at t = 1) have
distinct topologies, with the source being a closed curve, and the target being e.g., an open
curve or having multiple connected components. The target is overlayed on the transformed
source c(1) on the right, and parts of the transformed source which get “erased”, i.e.
where the estimated weight function vanishes, are colored in progressively transparent
shades of blue. (Top to bottom) The estimated geodesic distances distSG([c0], [c1]) are (i)
1.29, (ii) 0.95, (iii) 0.51, (iv) 1.35.

process. In such cases, performing shape registration using usual elastic shape matching

algorithms will typically bend, stretch or compress portions of the source in an attempt

to e.g. fill in some of those missing parts. This results in unnatural deformations

which lead to a significant overestimation of the Riemannian distance between the
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shape graphs, as we pointed out with Figure 3-3. One way to overcome this issue

is through partial matching, which broadly refers to the process of registering a

source shape onto an (unknown) subset of a target shape. In our proposed weighted

shape graph registration framework, this can be achieved by setting vanishing weights

to portions of the transformed source that cannot be matched to the target. The

automatic estimation of these vanishing parts is achieved precisely thanks to the

optimality criterion of (3.12), where the {0, 1}-penalty F̃ ρ0 discussed in Section 3.4.2.1

enforces the weight function to be essentially binary. We illustrate the efficiency of

this approach with experiments on 2D curves extracted from the Swedish leaf dataset5,

for which different parts of the target curves were artificially removed, see Figure 3-5.

Matching with topological variations. As outlined in Section 3.4.1 with

Figure 3-3, beyond the situation of partial data observation, one advantage of our

weighted shape registration framework is that it can account for certain topological

changes between source and target shape graphs.

Here again, by allowing variations in the weight function in addition to the geometric

deformation, we can effectively allow certain components on the transformed source

shape graph to get “erased” if they have no corresponding matching part in the target.

This is essential for instance in situations where the source shape graph has extra

branches compared to the target, as we show with the examples of 3D maize root

systems6 in Figure 3-6. It can also constitute an effective way to model a shape

undergoing certain topological transformations such as a split into distinct connected

components, as illustrated with the synthetic example of Figure 3-7. However, we do

highlight that we are indirectly modeling topological changes in this scenario via the

estimation of vanishing weights, as all the shape graphs in the path (including the

deformed source) have the same topology as the source.
5https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
6https://github.com/RSA-benchmarks/collaborative-comparison
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 3-6. 3D maize root systems. The source (blue at t = 0) is a 3D maize
root system with multiple lateral roots, and the target (red at t = 1) is another maize
root system with only 2 lateral roots. The extra branches of the transformed source
which get “erased” are colored in progressively transparent shades of blue. The estimated
geodesic distance here is distSG([c0], [c1]) = 0.64. We note that the left branch of the
target matches with the particular branch on the transformed source shown above because
matching with this specific branch requires the least amount of geometric deformation in
R3 (and hence the least amount of energy) when compared to any of the 4 other branches.
The algorithm then decides to erase these other 4 branches.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 3-7. Splitting into multiple connected components. In this example, the
source shape graph consists of a single circle while the target is made of two disconnected
circles. The target is overlayed on the transformed source on the rightmost image, where
the estimated weights on the “bridge” between the two connected components are equal
to 0, shaded in translucent blue. The method thus effectively erases this part. We find an
estimated geodesic distance of distSG([c0], [c1]) = 2.64.

Note that so far, we have only focused on the asymmetric scenario in which

the source shape has extra components that need to be erased to match the target.

However, one could technically model mass creation as well in order to tackle the

opposite situation. However, this case is less obvious since one needs prior knowledge of

potential components that need to be added to the source shape, because in our model

weights are only defined on existing components. Similarly to what was proposed

with other frameworks, such as the supertree model of [90], one idea is to assume

that the source shape graph contains additional phantom components or branches

whose weights are initially set to 0. To determine the location of these phantom
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components, we can first run the algorithm backwards by matching the target to the

source, before using the resulting deformed target shape graph c1(1) and its estimated

weight function to determine the precise location at which to augment the source

with phantom components (e.g. branches having zero weights). We then let our

algorithm increase the weights on these components if needed. This is illustrated with

the example of Figure 3-8 in which one source branch is being created while another

one is being erased. Here as well, this process yields a quite natural geodesic between

the two root systems, and hence a robust estimate of the elastic distance between

them, despite the presence of topological inconsistencies.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 3-8. Simultaneous mass deletion and creation. The source (blue at t = 0) is
a millet root with five lateral branches, to which we add one artificial lateral branch having
weight zero (i.e., a phantom component), and the target (red at t = 1) is another millet
root with five lateral branches. We first ran the algorithm backwards by matching the
target to the source, then used the resulting endpoint shape graph and weight function to
determine the precise location at which to augment the source with a phantom branch.
Branches of the transformed source which get “created” are colored in progressively opaque
shades of blue. Those that get “deleted” are colored in progressively transparent shades of
blue. The estimated geodesic distance is distSG([c0], [c1]) = 0.90.

Shapes with multiplicities. So far, in most of the examples we presented, the

estimated weights were essentially binary as they were meant to account for partial

matching constraints. We conclude this section with a final example to illustrate that

our weighted shape graph model can be also useful when matching shapes with e.g.

different densities or multiplicities. As a proof-of-concept, we consider the problem

of matching a single line to a bundle of multiple curves, specifically a portion of the
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anterior commissure (CA) white matter fiber tract from the publicly available ISMRM

2015 Tractography Challenge repository7. This bundle, shown in Figure 3-9, contains

42 individual curves roughly aligned along a same path. Under a pure geometric

matching model, the source curve would typically get folded multiple times as an

attempt to compensate for the much higher total mass of the target. Although a

natural solution could be to simply re-weight the shapes based on the number of

curves in the bundle prior to matching, this procedure may be difficult to automate in

practice when, for instance, bundles display crossing and fanning effects, or when some

fibers are only partially recovered and possibly split into several components from the

application of tractography algorithms. Our approach on the other hand allows us to

bypass such concerns by estimating local weight factors within the matching itself. As

shown in Figure 3-9, we are able to recover a transformed source curve that matches

the overall geometry of the whole target bundle. The weight function we obtain has

an average value of 38.8. We also notice that the estimated weights tend to be smaller

near the extremities, which is consistent with the fact that the bundle is fanning in

those parts, and thus has a lower fiber density.

t = 0 t = 1/3 t = 2/3 t = 1

Figure 3-9. Matching result of a single curve (left) onto a bundle of 42 curves (superim-
posed in transparent blue on the right image). Here, the color represents the weight on
the deforming source curve. The matching at t = 1 leads to both a reasonable estimate
of the average geometry of the bundle and an estimated weight function that provides a
measure of the local density of curves in the bundle.

7http://www.tractometer.org/ismrm_2015_challenge/
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3.7 Conclusion and outlook

In this chapter, we introduced an extended mathematical model and algorithm for

the estimation of higher-order Sobolev metrics and their corresponding geodesics and

distances between shape graphs. We also proposed to resolve the issue of partial

matching constraints in the situation of inconsistent topological structures through

the additional estimation of a weight function defined on the source shape graph. We

proved the well-posedness of the variational problem and derived an optimization

scheme to numerically estimate its solutions. One of the main advantages of our

variational framework is that it does not require optimizing explicitly over permutation

or reparametrization groups.

There are however some remaining limitations to this approach. Firstly, it is a

priori mainly suited for cases in which the target graph structure is topologically a

subset of the source, as the estimation of vanishing weights allows us to remove specific

portions of the source shape graph during the matching. As we briefly pointed out

earlier, the opposite scenario in which the source shape graph has to be matched to a

subset of the target could be addressed almost mutatis mutandis by instead defining

the weights on the target shape graph. Although we opted not to present results in

this alternative setting, our open source implementation does in fact encompass this

case as well.

A much less obvious situation however is the symmetric problem in which one

expects missing parts on both the source and target simultaneously. While extending

our formulation to estimate weights on both shape graphs may seem a natural solution,

one difficulty is to come up with an appropriate penalty function to avoid the trivial

solution in which both shapes are entirely erased. Another possible approach, which

was illustrated with Figure 3-8, is to rather model mass creation and deletion on the

source shape graph, a downside being that this requires some prior information on
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the branches or parts of the source that will need to be created. In certain situations,

such as in the example of Figure 3-8, one approach to deal with this issue is to first

run the algorithm backwards by matching the target onto the source, before using the

resulting deformed target shape graph and its estimated weight function to determine

the precise location at which to augment the source with phantom components (i.e.,

component curves having zero weights).

Another limitation of our framework is that it does not model ‘sliding’ motions, i.e.,

natural deformations in which for instance one would allow two side branches to slide

down and up along the main branch of a shape graph in order to align, see Figure 3-10

for an illustration. Indeed, modeling such sliding motions can be quite difficult in

our framework, especially if we impose connectivity constraints at the intersection

points of the side branches with the main branch. In this case, the elastic deformation

of the main branch would not allow for a switch of the relative positions of the side

branches. However, this becomes technically feasible if instead, one does not impose

connectivity constraints between the side branches and the main branch, i.e., if these

are considered as independently moving curves. We performed this experiment on a

simple example whose result is shown in Figure 3-10.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 3-10. Sliding motions. In this example, the source is blue and the target is
red. The geodesic path represents a natural deformation where the two side branches slide
down and up along the trunk to align.

We should point out that this procedure does not quite yet represent an entirely

satisfying solution. Indeed, although it might not be apparent in this toy example, the
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lack of connectivity constraints could a priori allow side branches to split from the main

branch when they are deforming to match the target, which does not exactly model

the type of sliding transformation that one would expect. A potential improvement

could be to add first order constraints on the speed vectors at those intersection points

by enforcing them to be tangential to the main branch curve. We leave the precise

study and implementation of such first-order constraints to future work.

An interesting line of future work could involve introducing a different weight

model to augment the shape graphs. Indeed, right now we use spatially-varying weight

functions on the shape graphs, but one could consider a simpler weight model, which

is defined to be constant (e.g. constantly equal to 0 or 1) on each component curve or

branch of a shape graph. Such a weight model would still allow us to incorporate partial

matching constraints into the registration process (as entire branches or components

could get ‘erased’ via the estimation of vanishing weights), while potentially simplifying

the optimization procedure required to register shape graphs by reducing the search

space for the estimated weights.

Another avenue for improvement would be to develop a faster numerical pipeline to

estimate the distance and/or geodesics between shape graphs in view of applications

of the method to the statistical analysis of large shape datasets. This could be

achieved for instance by focusing on first-order Sobolev metrics (at the expense of solid

theoretical results on the existence of solutions), for which the computation of the

metric can be significantly simplified thanks to the availability of a general simplifying

transformation known as the F a,b-transform [58, 84, 103]. Alternatively, one could

investigate supervised deep learning approaches as a way to replace our optimization

procedure by a simple forward pass through an appropriately trained neural network.

This approach will be discussed in further details in Chapter 5.
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Chapter 4

Surfaces

In this chapter, we adapt the ideas introduced in the previous chapter in order to

develop an elastic shape analysis framework for surfaces with complex topological

structures and partial correspondences. Our approach, which is based on second-order

Riemannian Sobolev metrics, addresses the computation of geodesics and geodesic

distances between parametrized or unparametrized immersed surfaces represented as

3D meshes. In addition, we develop algorithmic tools for the statistical shape analysis

of surfaces, including methods for estimating Karcher means and performing tangent

principal component analysis with datasets of surfaces, and for computing parallel

transport along paths of surfaces. Once again, our proposed approach fundamentally

relies on a relaxed variational formulation for the geodesic matching problem via

the use of varifold fidelity terms. This enables us to enforce reparametrization

independence when computing geodesics between unparametrized surfaces, while also

yielding versatile algorithms that allow us to compare surfaces of different topologies

that possess varying sampling or mesh structures. We also demonstrate how our

relaxed variational framework can be extended to tackle partially observed surface

data. Results presented in this chapter were published in [18].

92



4.1 Related work

There exists a vast body of work in the literature on the shape analysis of surfaces,

including a large collection of numerical methods for surface matching. In what follows,

we highlight a few prominent such frameworks, and we refer the interested reader to

the survey article [111] for a broader overview.

First, methods based on the metric (measure) space approach for shape matching

have been used for studying three-dimensional surface data. In this framework, one

considers geometric objects (e.g. point clouds or meshes) as metric spaces, possibly

with a probability distribution defined on them. The geometric data is then compared

via Gromov-Haussdorf distances [16, 112], or via its extensions such as the Gromov-

Wasserstein distance [7]. These methods have even been adapted to handle partial

correspondences in the data [85]. Yet, it turns out that the practical computation of

the Gromov–Hausdorff distance is highly non-trivial, thus limiting the effectiveness

of such methods in the context of e.g. large datasets. Meanwhile, to compute the

Gromov-Wasserstein distance, one needs to solve for a probabilistic coupling that

preserves pairwise distances of points in the metric-measure space representation of

the geometric objects. From such couplings, one can produce approximate point-

to-point correspondences. The computation of pairwise distance matrices limits the

effectiveness of these methods for high resolution meshes, as these computations are

quadratic with respect to the number of vertices.

Another popular framework for the analysis of unregistered surfaces is that of

functional maps [113, 114], which allows one to find optimal maps (optimal point-to-

point correspondences) between pairs of surfaces by finding optimal pairings between

real-valued functions defined on them, even in the context of partial matching con-

straints [86]. Broadly speaking, the method finds correspondences by using a least

squares approach to solve a linear system based on the Laplace-Beltrami operator
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and Wave (or Heat) Kernel Signature descriptors. These quantities describe the local

geometry of surfaces and the method is largely successful at matching regions with

similar local geometries. However the global matching of the framework benefits

significantly from a good prior selection of landmarks. As a result, extensions of

the method, such as the evolutionary non-isometric geometric matching (ENIGMA)

approach [115], have been proposed to obtain point-to-point correspondences in a fully

automatic way, even in the context of surfaces with different topologies. Yet, such

methods struggle with topological or geometric noise, such as the presence of holes,

degenerate triangles or thin spikes in the meshes.

Furthermore, the aforementioned metric measure space, functional maps, and

ENIGMA approaches allow us to obtain (approximate) point-to-point correspondences,

but they do not provide an optimal deformation between the registered shapes. These

optimal deformations have to be calculated in a second (independent) post processing

step, using e.g. the as-isometric-as-possible, as-rigid-as-possible framework of [116],

the Hamiltonian dynamics method given by [117], or a thin shell model as presented

in [118]. Consequently, in this setup, the registration, deformation, and statistical

shape analysis of surfaces are performed separately. As discussed in Chapter 1, this

has been shown to be less desirable as it can introduce a significant bias in the resulting

statistical analysis [15].

In contrast, Riemannian shape analysis frameworks do not suffer from this short-

coming as the registration, geodesic interpolation and statistical analysis can all be

carried out under the same metric setting. In particular, several approaches based

on the LDDMM framework [11, 14, 44], which we outlined in Section 2.2, have been

proposed for the shape analysis of surfaces, leading to notable applications in fields

such as biology and medicine as highlighted in Chapter 1. We recall that in the LD-

DMM setting, distances and geodesics between two surfaces are essentially computed

by looking for a diffeomorphism of the whole space that warps the source onto the

94



target shape while minimizing the kinetic energy as defined by the metric on Diff(R3).

Recently, adaptations of the LDDMM framework have also been proposed to deal

with surfaces having partial correspondences via the introduction of varifold fidelity

terms [93, 94, 119].

Moreover, intrinsic Riemannian approaches have also been utilized for the surface

shape analysis. The most popular intrinsic framework is perhaps the square root

normal field (SRNF) model proposed in [67]. The crux of this framework is the

SRNF transformation Nq : Imm(M,R3) → L2(M,R3), which is a mapping from the

space of parametrized immersed surfaces to the space of square-integrable R3-valued

half-densities on the parameter space M , which is a Hilbert space with the L2 inner

product, see [120, Section 3.2] for further details. Using the notation from Section 2.3.2,

this mapping is defined in local coordinates for all (u, v) ∈ Rd as

q ↦→ Nq
.= nq vol1/2

q = (qu × qv)|qu × qv|−1/2. (4.1)

We note that the parameter space M is usually the unit sphere S2. This mapping is

used to define a (pseudo)-distance function on Imm(M,R3) via the pullback of the

L2-distance, which is defined for all q0, q1 ∈ Imm(M,Rd) as

distSRNF(q0, q1) .=
∫︂
M

|Nq0 −Nq1 |2. (4.2)

This framework is related to intrinsic Riemannian metrics on surfaces as the SRNF

(pseudo)-distance function above is a first-order approximation of the geodesic distance

of a particular (degenerate) Sobolev metric of order one [67]. The simplicity of the

computation of this pseudo-distance has led to several implementations [69, 121],

which have been shown to be effective in applications, see e.g. [122–125].

However, the SRNF framework has several theoretical shortcomings. First, the

non-injectivity of the mapping Nq implies that the pullback of the L2-metric by Nq

is degenerate. Consequently, this causes the phenomenon of distinct shapes being

indistinguishable by the SRNF shape distance. This behavior was originally studied
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in [126] and was further discussed in [127], where it was shown that for each closed

surface, there exists a convex surface which is indistinguishable by the SRNF distance.

Moreover, the image of Imm(M,R3) via Nq is not convex, which implies that the SRNF

distance is indeed only a first-order approximation of a geodesic distance function

rather than a true geodesic distance on the space of parametrized surfaces, i.e., the

SRNF distance does not come from geodesics (optimal deformations) in Imm(M,R3).

Furthermore, the problem of inverting the SRNF transformation Nq to recover an

optimal deformation in Imm(M,R3) from a geodesic in L2(M,R3) is highly ill-posed.

Consequently, to overcome the theoretical challenges of the SRNF pseudo-distance,

it is natural to consider the class of reparametrization-invariant Sobolev metrics on

the space of surfaces introduced in Section 2.3.2. A first step towards obtaining

a more general numerical framework was achieved by Su et. al. in [66], where a

framework based on a family of first-order Sobolev metrics was proposed. The main

drawback of this framework is the requirement for the data to be given by a spherical

parametrization, which severely limits its applicability in practical contexts, where

surface data can have more complex topological structures, or simply be unregistered.

In addition, the major difficulty in the implementation of such Riemannian frameworks

is the discretization of the reparametrization group. In [66, 121], the authors used a

discretization via spherical harmonics. These methods provide a relatively fast and

stable approach for solving the registration of two surfaces, but requires the surfaces

to be of genus-zero and, and to be given by their spherical parametrizations. However,

in most applications, data is typically given as triangular meshes that are not a priori

homeomorphic to S2. As the reparametrization problem is highly non-trivial and

computationally expensive, a better approach for working with real data consists of

developing methods that deal directly with triangular meshes.

Inspired by the use of tools from geometric measure theory and in particular by

varifold norms with the LDDMM model, Bauer, Charon, Harms and Hsieh proposed
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a varifold matching framework to register surfaces with respect to the SRNF pseudo-

distance [69]. This approach provides several benefits: notably, the reparametrization

group does not need to be discretized and its action on Imm(M,R3) does not need

to be implemented. This allows one to work directly with simplicial meshes without

having to first produce spherical parametrizations as required by the approaches in [66,

121]. Moreover, it extends to the analysis of surfaces with more general topologies

with or without boundaries. Yet, this framework still suffers from the theoretical

disadvantages of the SRNF (pseudo)-distance discussed above, and it has been observed

that the degeneracy of the distance can also lead to important numerical artefacts,

see Figure 4-4. Consequently, it seems natural to combine this framework with more

general Riemannian metrics on Imm(M,R3), which is one of the main contributions

of this chapter, as we explain in the following section.

4.1.1 Contributions

The central contribution of the present chapter is the development of a numerical

framework for the statistical shape analysis of surfaces (triangular meshes) with

second-order reparametrization invariant Sobolev metrics. This framework also allows

one to deal with topologically inconsistent and/or partially observed data. The code

is available on GitHub1.

More specifically, we present an extension of the relaxed varifold matching frame-

work of [69] to compute geodesics and distances with respect to reparametrization-

invariant second-order Sobolev metrics on Imm(M,R3), and introduce a natural

discretization of this metric for triangular meshes. To the best of our knowledge, this

framework is the first implementation of higher-order Sobolev metrics on parametrized

and unparametrized surfaces. In contrast with [69], our framework directly produces

geodesics (i.e. the optimal deformation path between surfaces), and the addition
1https://github.com/emmanuel-hartman/H2_SurfaceMatch
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of higher-order terms prevents the formation of numerical artefacts as mentioned

above. We also decompose the metric into separate terms, allowing us to control the

geometric changes penalized by the metric, see Remark 1. This enables us to model

different deformations, as well as control the regularizing effects of the higher-order

terms, which we demonstrate in the experiments in Section 4.4.7.

In addition to providing a framework for surface matching, we develop a compre-

hensive statistical pipeline for the computation of Karcher means, tangent principal

component analysis, and parallel transport. As an application of the latter, we demon-

strate how it can be used for motion transfer between surfaces. Thus, our framework

is well positioned to perform statistical analysis of populations of shapes such as the

ones appearing in biomedical applications.

To further improve the robustness of our proposed methods, we also present a

weighted varifold matching framework by adapting the idea introduced in Chapter 3

for shape graphs, to the context of surfaces. The joint estimation of weights on the

source surface enables this augmented model to deal more naturally with partial

matching constraints or missing parts in the target shape, or differences in topology

between the two shapes.

4.2 Sobolev metrics on surfaces

The family of H2-metrics (second-order reparametrization-invariant Sobolev metrics)

on the space of surfaces will be at the heart of the framework presented in this chapter,

and we start by recalling its definition, which was already given in (2.29):

Gq(h, k) =
∫︂
M

(︄
a0⟨h, k⟩ + a1g

−1
q (dhm, dkm)

+ b1g
−1
q (dh+, dk+) + c1g

−1
q (dh⊥, dk⊥)

+ d1g
−1
q (dh0, dk0) + a2⟨∆qh,∆qk⟩

)︄
volq .

(4.3)
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The precise definitions of each of the terms above have already been introduced

throughout Section 2.3.2, and we will rely on notation and definitions from that

section throughout the remainder of this chapter.

With the family of H2-metrics in hand, we now formulate the two main building

blocks for our framework for the comparison and statistical shape analysis of surfaces:

the geodesic boundary problem (BVP) and the geodesic initial value problem (IVP).

4.2.1 Geodesic BVP for surfaces

Let q0, q1 ∈ Imm(M,R3) be a pair of parametrized surfaces. As outlined in Sec-

tion 2.1.1, the geodesic BVP on the space of parametrized surfaces involves finding

paths of minimal length connecting q0 and q1. Finding these shortest paths, which are

called minimizing geodesics, is equivalent to minimizing the Riemannian energy:

distG(q0, q1)2 .= inf
q(·)∈Pq1

q0

∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt, (4.4)

where Pq1
q0 is defined in (2.2). Solving this problem allows us to obtain optimal

deformations as well as geodesic distances between pairs of parametrized shapes. This

operation will thus be the main building block for all our algorithms presented later

in this chapter.

The numerical aspects of this problem will be addressed in Section 4.4, where we

will explain how to discretize the above energy functional for triangulated meshes,

which will in turn allow us to solve the minimization problem using standard finite

dimensional optimization methods.

Furthermore, the reparametrization-invariance of the family of H2-metrics, as

discussed in Lemma 3, implies that they descend by Riemannian submersion to a

corresponding family of metrics on S = Imm(M,Rd)/Diff(M), the quotient shape

space of unparametrized surfaces. We recall that the geodesic BVP on this space for
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any given [q0], [q1] ∈ S can be formulated as:

distS([q0], [q1])2 = inf
φ∈Diff(M)

inf
q(·)∈Pq1◦φ

q0

∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt. (4.5)

As noted before, compared to the BVP for parametrized surfaces, the main difficulty in

terms of numerically solving the unparametrized geodesic BVP consists of discretizing

the action of the reparametrization group. In the next section, we will outline how

to circumvent this issue by introducing a relaxed version of the problem, which once

again relies on a varifold data attachment term.

4.2.2 Geodesic IVP for surfaces

While the geodesic BVP searches for the shortest path between two given surfaces,

the geodesic IVP searches for the optimal deformation path of a given surface q ∈

Imm(M,R3) in a given initial deformation direction h ∈ C∞(M,R3). In the context

of our statistical shape analysis framework for surfaces, the geodesic IVP will be of

importance for calculating shape averages, for principal component analysis and in

our motion transfer applications.

Solving the geodesic IVP amounts to solving the geodesic equation, which is the

first-order optimality condition of the Riemannian energy functional defined in (4.4).

In the context of H2-metrics for surfaces, the corresponding geodesic equation will be a

non-linear partial differential equation that is of second-order in time and fourth-order

in the two-dimensional space coordinates. As this equation is rather lengthy and

not particularly insightful, we refrain from formulating it here and instead refer the

interested reader to the article [65], where the geodesic equation is derived for a general

class of Riemanniann metrics on the space of parametrized surfaces that are induced by

abstract pseudo-differential operators, and thus include in particular the class of metrics

studied in this chapter. In addition, local well-posedness (existence and uniqueness)

of the corresponding (geodesic) initial value problem were established in [65]. To
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circumvent dealing directly with the intricacies and difficulty of solving highly non-

linear and higher-order partial differential equations, we will instead calculate the

solution to the initial value problem using the methods of discrete geodesic calculus

as developed in [128]; see Section 4.4 for a detailed description.

While the geodesic BVP on shape space is significantly more challenging than its

counterpart for parametrized surfaces, it turns out that the geodesic IVP for these

two spaces is essentially equivalent. Indeed, solving the geodesic IVP on the space of

parametrized surfaces for an initial condition that is in the so-called horizontal space

of the shape space’s tangent space (i.e., the orthogonal complement, for the chosen

metric, of the space of vector fields tangent to the shape itself), gives rise to a solution

in the space of unparametrized surfaces. Consequently, this will allow us to use the

same methods for solving the IVP on the space of parametrized and unparametrized

surfaces, which will be described in Section 4.4.

4.3 Relaxed surface matching

To solve the geodesic BVP on the space of unparametrized surfaces (4.5), we will once

again employ the approach outlined in Section 2.4, where we proceed by relaxing the

terminal constraint via varifold fidelity metrics.

In the context of surfaces, these varifold metrics are constructed via norms defined

from positive definite kernels on R3 ×S2 using the framework outlined in Section 2.4.1.

Specifically, we consider the class of norms ∥ · ∥V on the space of varifolds V that are

induced by the dual norm of a reproducing kernel Hilbert space (RKHS) of functions

on R3 × S2, whose associated kernel is of the form

K(x1, n1, x2, n2) = Ψ(|x1 − x2|)Φ(n1 · n2) , (4.6)

in which Ψ and Φ are two functions defining a radial kernel on R3 and a zonal kernel

on S2, respectively. We shall discuss specific choices for Ψ and Φ when presenting our
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numerical approach for solving the relaxed matching problem in Section 4.4.4.

Let q0, q1 ∈ Imm(M,R3) be a pair of parametrized surfaces, whose respective

varifold representations are denoted by µq0 , µq1 ∈ V. Following from the particular

form of µq0 and µq1 as well as the reproducing kernel property in V , the inner product

of these two varifolds in V can be explicitly derived as:

⟨µq0 , µq1⟩V =
∫︂∫︂

M×M
Ψ
(︂
|q0(u0, v0) − q1(u1, v1)|

)︂
Φ
(︂
nq0(u0, v0) · nq1(u1, v1)

)︂
volq0(u0, v0) volq1(u1, v1). (4.7)

Consequently, the squared varifold kernel distance between µq0 and µq1 is obtained as

follows:

∥µq0 − µq1∥2
V = ∥µq0∥2

V − 2⟨µq0 , µq1⟩V + ∥µq1∥2
V . (4.8)

Due to its reparametrization-invariance, this squared varifold distance is ideally

suited for use as the discrepancy term to relax the geodesic BVP for unparametrized

surfaces. This finally allows us to formulate the varifold-based relaxed matching problem

for surfaces:

Given q0, q1 ∈ Imm(M,R3), we consider the variational problem:

inf
{︃∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt+ λ∥µq(1) − µq1∥2

V

}︃
, (4.9)

where the minimization occurs over paths of immersed surfaces q(·) ∈

C∞([0, 1], Imm(M,R3)) that satisfy the initial constraint q(0) = q0, and where

λ > 0 is a balancing parameter.

In the relaxed matching problem above, the first term (the energy of the path of

immersed surfaces) measures the cost of the optimal deformation, whereas the second

term is merely a data attachment term that enforces the endpoint constraint. We

refer to q0 as the source, q1 as the target and q(1) as the deformed source.
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We note, however, that the model formulated in (4.9) is asymmetric in the sense

that interchanging q0 and q1 will affect the obtained minimizer. Although this is a

common phenomenon for relaxed optimization problems, we next propose a symmetric

formulation of the varifold-based relaxed geodesic boundary value problem. To do

so, we will lift the constraint of q(0) being q0 and instead add a second varifold-based

data attachment term which measures the similarity of q(0) and q0:

Given q0, q1 ∈ Imm(M,R3), we consider the variational problem:

inf
{︄∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt +

λ0 ∥µq(0) − µq0∥2
V + λ1 ∥µq(1) − µq1∥2

V

}︄
,

(4.10)

where the minimization is performed over paths of immersed surfaces q(·) ∈

C∞([0, 1], Imm(M,R3)), and where λ0, λ1 > 0 are balancing parameters.

This symmetric formulation of the relaxed matching problem has several advantages

which we will leverage in the implementation and simulations presented in the next

sections. First, for λ0 = λ1, the variational problem (4.10) is indeed symmetric in

the sense that for any path t ↦→ q(t), the time reversed path t ↦→ q(1 − t) has the

same energy value for the problem of matching q1 onto q0, and thus, the value of the

infimum is the same for both matching problems. More importantly, the introduction

of q(0) allows us to decouple the topological or mesh properties of the immersions in

the path q(·) with those of the source shape q0. As we shall explain more in details

in the following Section 4.4, this allows us to select the vertex sampling and mesh

structure of the surfaces in the geodesic path independently of that of the source q0,

which can be used to adapt the efficient multi-resolution scheme of [69] for numerically

solving the matching problem.
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4.4 Numerical optimization approach

In this section, we turn our attention to a set of numerical approaches for solving

the geodesic boundary value problem for parametrized surfaces introduced earlier in

Section 4.2.1, the varifold-based relaxed matching problem for unparametrized surfaces

introduced in Section 4.3, as well as the geodesic initial value problem introduced in

Section 4.2.2. Our source code is openly available on GitHub2.

First, we describe how to discretize parametrized surfaces. We will do so by

considering oriented triangulated surfaces, which are also called oriented triangular

meshes, that are represented by a set of vertices, edges, and faces. We view the vertices

V of a mesh as an ordered set of points in R3, i.e.,

V := {vi ∈ R3|0 ≤ i < n},

where n is the number of vertices in the mesh. Occasionally we may want to view V

equivalently as a single point in R3n. The edges E of a triangular mesh are subset of

N2 where (i, j) ∈ E if and only if there is an oriented edge from vi to vj. Similarly,

we view the faces F of a triangular mesh as a subset of N3 where (i, j, k) ∈ F if and

only if the vertices vi, vj, and vk make up a face in the triangular mesh such that

(vj − vi) × (vk − vi) points in the direction of the oriented normal vector. Canonically,

we choose to use only the representative (i, j, k) of a face such that i < j, k.

In the context of the geodesic boundary value problem for parametrized surfaces, the

relaxed matching problem for unparametrized surfaces, and the initial value problem,

we are required to solve optimization problems over paths of immersed surfaces. In the

discrete setting, we will solve these minimization problems by searching over paths of

meshes that each lie in a solution space, M, defined as the set of meshes with a fixed

combinatorial structure, i.e., the set of meshes with a fixed number of vertices and a

fixed set of edges and faces. Thus, each q ∈ M is determined precisely by the locations
2https://github.com/emmanuel-hartman/H2_SurfaceMatch
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of the vertices and it is natural to consider M ∼= R3n. However, we can equivalently

view q ∈ M as a piecewise linear surface determined exactly by the vertices. Therefore

we view q as the map

q :
⨆︂
f∈F

σ2
f → R3, (4.11)

where for each f ∈ F , σ2
f is the simplex given by

σ2
f :=

{︄[︄
x
y

]︄
∈ R2

+

⃓⃓⃓⃓
⃓x+ y < 1

}︄
,

and q restricted to σ2
f for f = (i, j, k) is given by

q|σ2
f

(︄[︄
x
y

]︄)︄
:=
[︄
x
y

]︄
·
[︄
vj − vi
vk − vi

]︄
+ vi.

This interpretation of a mesh will prove useful for defining the geometric quantities

used in the definition of the H2-metric.

4.4.1 The H2-metric on the space of triangular meshes

To establish a numerical framework based on the class of H2-metrics defined in (4.3),

we must first establish a discretization of each of the components that appear in its

definition. The field of discrete differential geometry establishes discrete counterparts

to smooth geometric quantities such as volume forms, derivatives and the Laplacian.

A review of the derivations of these discrete quantities can be found e.g. in [129]. We

will either discretize these quantities per face or per vertex of a given triangular mesh

depending on the context in which they will be used in our computation.

Recall that q ∈ M is entirely determined by the vertices V ∈ R3n. Thus, it is

natural to discretize tangent vectors on the vertices of the mesh, i.e., a tangent vector

h is viewed as a set of vectors in R3 assigned to each vertex v ∈ V of the mesh.

Therefore,

h := {hv ∈ R3|v ∈ V } ∈ R3n.

Next, we will explain how we discretize the terms that appear in the definition

of the H2-metric, i.e., the volume form, the pullback metric, the normal vector, and
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the surface Laplacian. For a graphic explanation of our discretization, we refer to

Figure 4-1.

Recall that when we view a mesh as a map q, as in (4.11), it is affine on the simplex

corresponding to each face. Therefore, it is natural to discretize the first-order terms

on each face. Given a face f ∈ F , where we will assume f = (0, 1, 2) for simplicity of

notation, with vertices v0, v1, v2 ∈ R3, we have

dqf =
[︄
e01
e02

]︄
where eij = vj − vi.

Given a tangent vector h, we can compute its differential on the face f as

dh =
[︄
h1 − h0
h2 − h0

]︄
.

Consequently a discrete version of the pullback metric gq, the volume density volq and

the normal vector nq (see Section 2.3.2 for definitions) are given by:

gf =
[︄

|e01|2 e01 · e02
e01 · e02 |e02|2

]︄
,

volf = 1
2 |e01 × e02|,

nf = e01 × e02

|e01 × e02|
.

We denote these discrete versions by gf , volf and nf to emphasize that they are

defined on the faces.

Given that the faces are affine, it is somewhat “unnatural” to discretize the

Laplacian, a second-order quantity, on the faces of a mesh. Rather, the natural place

to discretize the surface Laplacian is on the dual cells of a mesh. Each such dual

cell corresponds to a vertex of the mesh; see Figure 4-1 for an illustration. Given a

tangent vector h = {hv ∈ R3|v ∈ V } to a mesh q = (V,E, F ) ∈ M, the Laplacian ∆q

applied to h at a vertex v ∈ V is given by

(∆qh)v =
∑︂

w|(v,w)∈E
or (w,v)∈E

(cot(αvw) + cot(βvw))(hv − hw),
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Figure 4-1. Defining H2-metrics using discrete differential geometry. The cell dual to
the vertex v is shown in blue.

where αvw and βvw are angles as shown in Figure 4-1. This discretization can be

derived using either finite element methods as in [129] or discrete exterior calculus as

in [130].

The zeroth and second-order terms of the metric also contain the volume form of

our mesh, which was previously defined for each face. In order to assign this volume

form to a vertex v (instead of assigning them to a face f), we sum up one third of the

volume of each face containing v. Thus, the volume form at a vertex v is given by

volv = 1
3
∑︂
f |v∈f

volf .

Thus we have derived discrete versions of all terms appearing in the definition of

the H2-metric. Given a mesh q ∈ M and a pair of tangent vectors h, k ∈ TqM, the

discrete version of the family of H2-metrics is thus given by:

Gq(h, k) =
∑︂
v∈V

a0⟨h, k⟩ volv

+
∑︂
f∈F

(︄
a1g

−1
f (dhm, dkm) + b1g

−1
f (dh+, dk+)

+ c1g
−1
f (dh⊥, dk⊥) + d1g

−1
f (dh0, dk0)

)︄
volf

+
∑︂
v∈V

a2⟨∆qh,∆qk⟩ volv
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4.4.2 Discretizing the H2-path energy

Having discussed how to compute the Riemannian metric at a triangular mesh, we

now explain how to discretize the Riemannian energy of a path of meshes. Indeed,

given a path of triangular meshes in the solution space, denoted by V : [0, 1] → M,

we compute the path energy of V (t) via
∫︂ 1

0
GV (t)

(︂
V̇ (t), V̇ (t)

)︂
dt,

where V̇ (t) denotes the derivative with respect to time of the path. We re-emphasize

that each mesh in the path has the same, fixed combinatorial structure, implying that

the path is entirely determined by the locations of the vertices of the meshes, hence

the notation V above. Furthermore, we note that a further discrete approximation is

required to compute the energy of the path, namely we have to discretize the time

interval [0, 1]. To that end, we consider piecewise-linear (PL) approximations for paths

of meshes. Given a PL path with N + 1 evenly spaced breakpoints 0 = t0 < t1 < ... <

tN = 1, we can compute the tangent vector for the first N points via finite differences.

Thus for i ∈ {0, 1, ..., N − 1}, we have

V̇ (ti) = N(V (ti+1) − V (ti)) where ti = i

N
.

As a result, the energy of a PL path in M reduces to

E(V ) = 1
2N

N−1∑︂
i=0

GV (ti)(V̇ (ti), V̇ (ti)). (4.12)

4.4.3 Solving the geodesic BVP for parametrized surfaces

We are now able to formulate our numerical approach for solving the geodesic boundary

value problem (BVP) between parametrized surfaces. Given source and target surfaces

q0, q1 ∈ Imm(M,R3) respectively, whose discretized versions are determined by their

vertices V0 and V1 respectively, our goal will be to approximate solutions to the geodesic

boundary value problem in M by minimizing the energy in (4.12) over all PL paths
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with fixed endpoints, those being V0 and V1 respectively. In doing so, we have reduced

the boundary value problem to a finite dimensional, unconstrained minimization

problem on R3n(N−1); the free variables being the vertices of the interpolating meshes

between V0 and V1. We implement the discrete energy functional (4.12) using pytorch,

which allows us to take advantage of the automatic differentiation functionality to

calculate the gradient of this energy with respect to the vertices of the interpolating

meshes. We then use the L-BFGS algorithm, as introduced in [131], to minimize the

energy. We describe this process in Algorithm 1 below.

Algorithm 1 Geodesic BVP for Parametrized Surfaces
procedure Parametrized_Geodesic_BVP(V0, V1, V )
V0, V1 : vertices of the given source and target surfaces
V : initial guess for vertices of the interpolating meshes of the PL path

cost(V ) = E([V0, V, V1])
V = L-BFGS(V, cost)
return V

To speed up computations (convergence), we implemented a multi-resolution

method in time, i.e., we iteratively refine the temporal discretization of the path and

repeat Algorithm 1, where we initialize at each iteration with an up-sampled version

of the previous solution. An example of a solution to the boundary value problem for

parametrized surfaces can be seen in Figure 4-2.

4.4.4 Discretizing the varifold norm

In order to tackle the varifold-based relaxed matching problem for unparametrized

surfaces introduced in (4.9), we must discuss the discretization of the varifold data

attachment term ∥µq(1) − µq1∥2
V . We specifically need to compute the squared kernel

distance between the two varifolds µq(1) and µq1 associated to the piecewise linear

surfaces given by the two triangular meshes (V (1), E0, F0) and (V1, E1, F1) respectively.

The power of the varifold framework is that it applies equally well to this case and

allows us to compare discrete shapes with significantly different mesh structures,
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including those with different topologies.

Indeed, we note that an efficient discretization of the kernel inner product of (4.7)

consists in approximating the integral of the kernel over each pair of faces from F0 and

F1 respectively, by using its value at those faces’ centers. In other words, we consider

the following approximation:

⟨µq(1), µq1⟩V ≈
∑︂
f0∈F0

∑︂
f1∈F1

Ψ(|cf0 − cf1|)Φ(nf0 · nf1) volf0 volf1 ,

where cf denotes the barycenter of the face f given by cf = 1
3
∑︁
v|v∈f v. We emphasize

that the quantities cf0 , nf0 and volf0 are here calculated based on the vertices V (1) of

the endpoint of the path of meshes, whose edges and faces E0 and F0 are the same as

for the initial mesh in the path. The full discrepancy term ∥µq(1) − µq1∥2
V is then once

again calculated as in (4.8), i.e., through a squared expansion of the norm induced by

the kernel inner product (4.7), where each of the inner products is approximated as

above. We emphasize that if the two meshes are exactly aligned, then the discrepancy

term ∥µq(1) − µq1∥2
V will be minimized, while its value will be larger if the two meshes

are highly misaligned.

Although several choices of kernels are available (see e.g. [78, 79] for more detailed

presentations), in all the numerical simulations of this chapter, we specifically set the

radial kernel on R3 to be Ψ(|cf0 − cf1 |) = exp(− |cf0 −cf1 |2

σ2 ), i.e., a Gaussian kernel of

width σ > 0. The value of this scale parameter σ is typically adapted to the size of the

surfaces to be matched. As for the zonal kernel on S2, we take Φ(nf0 ·nf1) = (nf0 ·nf1)2,

i.e., the Cauchy-Binet kernel on the sphere.

Since the calculation of the varifold metric involves a number of kernel evaluations

that is quadratic in the number of faces, it typically represents the bulk of the numerical

cost of the matching algorithm. For this reason, we rely on the pykeops library [11]

in our implementation, which provides efficient GPU routines to compute such large

sums of kernel functions and enables the automatic differentiation of those expressions.
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4.4.5 Solving the geodesic BVP for unparametrized surfaces

Using the discretization of the H2-path energy described in Section 4.4.2 and the

discretization of the varifold norm described in Section 4.4.4, we can reduce both the

non-symmetric (4.9) and the symmetric (4.10) relaxed surface matching problems to

finite-dimensional, unconstrained minimization problems. Note, that free variables for

the non-symmetric problem are the vertices at time ti for i ≥ 1, while the free variables

in the symmetric version include the vertices at time t0. The main difference between

these two algorithms is, however, that the mesh structure in the non-symmetric version

is prescribed by the given data, i.e., the mesh structure (topology) in the solution

space is given by the mesh structure (topology) of the source q0. In the symmetric

version, the mesh structure of the solution is a user input and can be different from the

mesh structure of both the source and the target. We describe this process below in

Algorithm 2. To speed up convergence, we implemented a multi-resolution method in

both time and space, i.e., we iteratively refine the temporal discretization of the path

and the mesh discretization of the surfaces in the path and repeat Algorithm 2, where

we initialize at each iteration with an up-sampled version of the previous solution. In

the following, we write DistVar(·) for the varifold discrepancy term ∥ · ∥2
V for the sake

of concreteness.

Algorithm 2 Relaxed Matching for Unparametrized Surfaces
procedure Relaxed_Matching(V0, V1, V )
V0, V1 : triangular meshes for the source and target.
V : initial guess for a PL path in M.

cost(V ) = λ0DistVar(V (0), V0) + E(V )
+λ1DistVar(V (1), V1)

V = L-BFGS(V, cost)
return V
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4.4.6 Solving the initial value problem

We now turn our attention to a numerical approach for solving the geodesic initial

value problem (IVP) on the space of parametrized surfaces. We re-emphasize, as

noted in Section 4.2.2, that the geodesic IVP on the spaces of parametrized and

unparametrized surfaces are essentially equivalent. As a result, the procedure we

describe in this section gives rise to a solution in the space of unparametrized surfaces

as well.

To solve the geodesic IVP, we follow the variational discrete geodesic calculus

approach developed in [128]. Given a surface q ∈ M and a tangent vector h ∈ TqM

(which is assumed to be horizontal for unparametrized surfaces) our method involves

approximating the geodesic in the direction of h with a PL path V having N + 1

evenly spaced breakpoints. To simplify notation, we will denote surfaces in the PL

path at time ti = i
N

for i = 0, . . . , N by V (ti) := Vi. At the first step, we set V0 = q

and V1 = q + 1
N
h, and find V2 such that V1 is the geodesic midpoint of V0 and V2, i.e.,

we solve for V2 such that

V1 = argmin
Ṽ

{︂
GV0(Ṽ − V0, Ṽ − V0) +GṼ (V2 − Ṽ , V2 − Ṽ )

}︂
.

Differentiating with respect to Ṽ and evaluating the resulting expression at V1, we

obtain the system of equations

2GV0(V1 − V0, Bi) − 2GV1(V2 − V1, Bi) +DV1G·(V2 − V1, V2 − V1)i = 0, (4.13)

where Bi is the i-th basis vector of R3n. We denote the system of equations in (4.13)

by F (V2;V1, V0) = 0, where we stress again that V0 and V1 are here fixed. We solve this

system of equations for V2 using a nonlinear least squares approach, i.e., by computing

V2 = argmin
Ṽ

∥F (Ṽ ;V1, V0)∥2
2

via the L-BFGS algorithm, where we again take advantage of the automatic differenti-

ation capabilities of pytorch in our implementation. We then iterate this process step
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by step to compute V3, V4, . . . , VN . We summarize our approach via the pseudocode

in Algorithm 3. An example of a solution to the initial value problem can be seen

in Figure 4-2. These results show excellent consistency between the solutions of the

corresponding boundary and initial value problems.

Algorithm 3 Geodesic Initial Value Problem
procedure Geodesic_IVP(q, h,N)
q : a surface in M
h : a tangent vector in TqM
N : number of time steps

Set V0 = q and V1 = q + 1
N
h

for t = 2, . . . , N
Vt = argmin

Ṽ

∥F (Ṽ ;Vt−1, Vt−2)∥2
2

return V = [V0, V1, . . . , VN ]

Figure 4-2. Solution to a parametrized BVP (top) and to the corresponding IVP (middle),
i.e., after solving the BVP, we calculated the corresponding initial velocity of the solution
and used this as the initial condition to solve the IVP. The results are overlaid (bottom)
to illustrate the small discrepancy in the solutions. Data obtained from the TOSCA
dataset [16].

4.4.7 Influence of the metric coefficients

In this section we present examples detailing the influence of the choice of constants

in the H2-metric on the geodesics obtained after matching parametrized and un-

parametrized surfaces via Algorithm 1 and Algorithm 2 respectively. We also report

the influence of the constants on the corresponding computation times, see Table 4-I.
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Figure 4-3. Influence of constants. An example of the same boundary value prob-
lem with different choices for the H2-metric coefficients (a0, a1, b1, c1, d1, a2). First row:
(1, 1, 1, 1, 1, 1), Second row: (10, 1, 1, 1, 1, 1), Third row: (1, 1, 1, 1, 1, 0.1), Fourth row:
(1, 10, 10, 1, 1, 0.1), Fifth row: (1, 1, 10, 0, 1, 10), Sixth row: (1, 100, 1, 1, 1, 1).

A synthetic example of a geodesic boundary value problem for a variety of choices

of constants can be seen in Figure 4-3. We note that the zeroth-order term weighted

by a0 corresponds to the invariant L2-metric and penalizes how far the vertices move

weighted by their corresponding volume forms. In Figure 4-3 on the second row, we

see an example where a0 dominates the other coefficients and as a result, the further

a vertex moves, the more shrinking we observe for faces incident to these vertices.

The second-order term weighted by a2 penalizes paths through meshes with high local

curvature. In the third line of Figure 4-3, we present a path where a2 is chosen to be

small relative to the other coefficients and as a result the midpoints of the geodesic

with respect to this choice of coefficients have points with higher local curvature. As

noted in Remark 1, the terms corresponding to the weighting coefficients a1, b1, and c1

measure the shearing of faces, stretching of faces, and the change in the normal vector,
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respectively. In the fourth row of Figure 4-3, we choose a1 and b1 to be large and a2

to be small. As a result, the geodesic with respect to this choice of coefficients passes

through meshes where portions of the pipe are flattened, which produces vertices with

higher local curvature without shearing or stretching the faces of the mesh.

In Figure 4-4, we highlight the importance of the second order term for complex

matching problems. In this figure we consider a matching problem between two surfaces

undergoing strong deformations, which in addition, have inconsistent topologies. In

previous work [69], the same example has been considered for the SRNF pseudo-

distance: in this framework the obtained result admitted significant singularities in the

form of thin spikes that were appearing in areas of high deformations, see the yellow

skull in Figure 4-4. We repeated this experiment using the metrics implemented in this

chapter. In the second figure (the skull in green) one can see the resulting deformed

source obtained using an H1-metric. While the quality of the resulting matching is

slightly superior to the one of the SRNF framework, it still exhibits some of the spike

singularities. A theoretical explanation for the appearance of these singularities can

be found in the observation that the H1-metric is not strong enough to control the

L∞-norm; by the Sobolev embedding theorem, the H1-metric is exactly at the critical

threshold. Consequently small areas can move far with a limited cost, which can

potentially lead to these spike type singularities. This observation suggests that such

behavior should not occur for higher-order metrics and, indeed, this is also reflected

in our experiment: the turquoise skull, which was obtained using an H2-metric, does

not exhibit any spike singularities and leads to a matching of superior overall quality.

Note, that the thin arc in the right ear region of the skull is actually not a spike, but

rather, it stems from the inconsistent topology of the shapes, see the arc at the right

ear of the animal skull. We tackle these topological inconsistencies in Section 4.6,

where we introduce a partial matching framework which would automatically ‘erase’

such regions rather than shrink them to almost zero volume.
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source q(0) q(1/3) q(2/3) q(1) target

Figure 4-4. Matching of two skulls with highly incompatible topology. Top row: Geodesic
w.r.t. to an H2-metric with coefficients: (1, 1, 1, 1, 1, 2). Bottom row: the deformed
source q(1) for different metrics and methods: the SRNF pseudo distance obtained with
the code of [69] (yellow), an H1-metric with coefficients: (1, 1, 1, 1, 1, 0) (green), an
H2-metric with coefficients: (1, 1, 1, 1, 1, 2) (turquoise), an H2-metric with coefficients
allowing for partial matching: (1, 1, 1, 1, 1, 2) (violet). The target is displayed on the right.
One can observe the regularizing effect of the second-order terms (turquoise and violet)
and, in addition, how topological inconsistencies (such as the thin arc near the left ear)
are correctly removed in the partial matching framework of Section 4.6 (violet) instead of
getting shrunk to almost zero volume (turquoise). Data taken from the MorphoSource
archive [132].

Remark 7 (Robustness to geometric and topological noise). With our relaxed match-

ing framework, one can obtain an adequate matching even when the meshes under

consideration are of low quality, i.e., even if they include a certain level of degradation

caused by topological or geometric noise, such as the presence of holes or degenerate

triangles for instance. Indeed, our approach avoids the need for an exact matching of

the source and target meshes (thanks to the varifold relaxation term in our variational

formulation of the matching problem), which helps us avoid instances where enforcing

an exact matching would lead to e.g. over-fitting parts of the source to noisy parts

in the target, thus leading to inaccurate results; see the experiments in [84] for an

illustration in the context of planar curves. Moreover, in our framework, the mesh

structure for solutions to the geodesic boundary value problem is user-defined, i.e.,

meshes in the geodesic path can be prescribed to have any desired topology or resolution
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(independently of the mesh structure and resolution of the boundary shapes (i.e., the

source and/or target)). In the case where the mesh quality of the boundary shapes is

low, issues might arise as the varifold term is most sensitive to large discrepancies

in the match. Yet, with proper initialization, this issue can be mitigated and we still

obtain desirable results. This is depicted in Figure 4-4, where we are able to match

two skulls despite the presence of topological noise in the data.

Finally, we study the computation time for solving the geodesic BVP for parametrized

and unparametrized surfaces using our approach based on H2-metrics. We compare

the computation time of our method versus other intrinsic Riemannian approaches

based on H1-metrics (first-order Sobolev metrics) and the SRNF pseudo-metric of [58],

as well as the extrinsic LDDMM framework which was outlined in Section 2.2. We

report results in Table 4-I. All of these approaches scale comparably with respect to

the number of vertices in the discretized meshes. However, due to the addition of the

second-order term in the H2-metrics, the computation time using our approach is

higher overall compared to the H1 and SRNF pseudo-metrics. Moreover, the compu-

tation time using the LDDMM model is higher compared to all of the intrinsic models.

Indeed, from a numerical point of view, LDDMM registration is an optimal control

problem, and it is typically solved based on a geodesic shooting scheme [133]. The

Hamiltonian dynamical equations generally require evaluating kernel functions between

all pairs of vertices in the source surface. Thus the complexity for the integration of

these systems is quadratic in the number of vertices, which is an important difference

with the linear complexity one gets with intrinsic metrics. Thus, for surfaces with a

large number of vertices, the complexity of each iteration of the matching optimization

scheme is dominated by the computation of the varifold term and its gradient in the

intrinsic framework, while it becomes dominated by the integration of the Hamiltonian

system in the case of LDDMM. This is illustrated in Table 4-I, which shows the time

per iteration of the optimization algorithm for the different models.
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Unparametrized BVP Parametrized BVP
# vertices H2 H1 SRNF LDDMM H2 H1 SRNF LDDMM

50 0.14s 0.11s 0.08s 0.11s 0.08s 0.07s 0.05s 0.04s
200 0.15s 0.12s 0.09s 0.12s 0.08s 0.07s 0.06s 0.04s
800 0.17s 0.13s 0.10s 0.14s 0.09s 0.08s 0.07s 0.05s
3200 0.23s 0.21s 0.17s 0.27s 0.13s 0.11s 0.08s 0.06s
12800 1.39s 0.67s 0.55s 1.12s 0.30s 0.28s 0.21s 0.15s
51200 6.99s 3.88s 3.73s 14.70s 0.73s 0.69s 0.59s 1.12s

Table 4-I. Time per iteration (in seconds) of L-BFGS optimization for solving parametrized
and unparametrized boundary value problems with respect to first order (H1) and second
order (H2) Sobolev metrics, the SRNF pseudo-metric of [58], as well as the LDDMM
diffeomorphic model (see Section 2.2), using meshes sampled with different numbers of
vertices. All experiments are run on an Intel 3.2 GHz CPU with a Gigabyte GeForce GTX
2070 1620 MHz GPU.

4.5 Statistical shape analysis of surfaces

Beyond the comparison of two surfaces, the mathematical and numerical framework

developed in the previous sections can be used as building blocks for the development

of more general tools for the statistical shape analysis of sets of surfaces. In this

section, we discuss in particular how to extend our approach to calculate sample

averages, perform principal component analysis, and approximate parallel transport

between parametrized and unparametrized surfaces.

4.5.1 Karcher mean

A central tool in any statistical shape analysis toolbox is the notion of a Karcher

mean. Let (M, G) be a (possibly) infinite-dimensional Riemannian manifold with

corresponding geodesic distance function distG. Given data x1, . . . , xK ∈ M, the

Karcher mean x̄ is the minimizer of the sum of squared distances to the given data

points, i.e.,

x̄ = argmin
x∈M

K∑︂
k=1

distG(x, xk)2. (4.14)

Note that the existence and uniqueness of the Karcher mean is a priori not guaranteed,

as it requires the data to be sufficiently concentrated by belonging to a ball in the
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geodesic distance whose radius depends on the curvature of the manifold M. The

Karcher mean can be computed by a gradient descent method, as proposed e.g. in [21].

This method requires the computation of K geodesic BVPs at each gradient step,

where usually a relatively large number of iterations (gradient steps) is necessary.

For computational efficiency, we instead implemented an alternative algorithm to

approximate the Karcher mean based on the iterative geodesic centroid procedure as

proposed e.g. in [134]: Given data points x1, . . . xK ∈ M and an initial guess x0, we

generate a sequence of estimates for the Karcher mean, namely x̂i for i = 0, . . . , Niter

where Niter = O(K), by setting x̂0 = x0, and iteratively defining x̂i = x(1/(i+1)), with

x(t) being the geodesic connecting x̂i−1 to a data point xk which has been uniformly

chosen at random (with replacement) from the dataset. Thus one only has to calculate

Niter = O(K) geodesics in total, which is linear in the number of data points.

A pseudo-code of this method is presented in Algorithm 4. For parametrized

surfaces, we can initialize this algorithm with the Euclidean mean (average) of the

vertices of the surfaces in our sample, assuming of course that they have been centered.

We then iteratively solve the geodesic boundary value problem for parametrized

surfaces using Algorithm 1, whose inputs at the ith iteration are the current Karcher

mean estimate V̄ as the source, the randomly chosen surface Vk as the target, and

a linearly interpolated path between the source and target as initial guess for the

PL path V . For unparametrized surfaces, there is the additional difficulty that the

data might have inconsistent mesh structures. In order to extend the computation

of the Karcher mean to this situation, one needs to initialize the Karcher mean

estimate (V̄ , Ē, F̄ ) to some user-defined mesh, which will determine the connectivity

and topology of the Karcher mean, and then iteratively solve the relaxed matching

problem for unparametrized surfaces using Algorithm 2. Note that, as inputs for

the relaxed matching problem at the ith iteration, we can use the current Karcher

mean estimate (V̄ , Ē, F̄ ) as the source, the randomly chosen surface (Vk, Ek, Fk) as

119



the target, and a constant path of the Karcher mean estimate for the initial PL path

V . An example of a population of unparametrized shapes can be seen in Figure 4-6,

together with their Karcher mean which has been computed via Algorithm 4.

Algorithm 4 Karcher Mean
procedure Parametrized_Karcher_Mean(V1, . . . , VK , Niter)
V1, . . . , VK : vertices of parametrized surfaces from sample
Niter : number of iterations for the procedure

Initialize V̄ = 1
K

∑︁K
k=1 Vk

for i = 1, . . . , Niter
Vk ∼ Unif{V1, . . . , VK}
V = Linear_Interpolation(V̄ , Vk)
V = Parametrized_Geodesic_BVP(V̄ , Vk, V )
V̄ = V (1/(i+ 1))

return V̄
procedure Unparametrized_Karcher_Mean(V1, ..., VK , V̄ , Niter)
V1, . . . , VK : triangular meshes from the sample
V̄ : initial guess for Karcher mean
Niter : number of iterations for the procedure

for i = 1, . . . , Niter
Vk ∼ Unif{V1, . . . , VK}
V = Linear_Interpolation(V̄ , V̄ )
V = Relaxed_Matching(V̄ , Vk, V )
V̄ = V (1/(i+ 1))

return V̄

4.5.2 Dimensionality reduction

Dimensionality reduction, which broadly refers to the process of finding lower dimen-

sional representations of high (or possibly infinite) dimensional data while maintaining

meaningful properties of the original data, is a key tool in modern statistics and ma-

chine learning. We illustrate how to construct two popular dimensionality reduction

tools for the statistical shape analysis of surfaces using our framework, namely data

visualization through multidimensional scaling, and principal component analysis.
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4.5.2.1 Multidimensional scaling

Multidimentional scaling (MDS) is a well-known procedure for mapping K points in a

high (or infinite) dimensional space into a lower dimensional space, while maintaining

information about the pairwise distances between these K points. More specifically,

given a (possibly) infinite-dimensional Riemannian manifold (M, G) with correspond-

ing geodesic distance function distG, with data x1, . . . , xK ∈ M, the goal of MDS is

to find points x̂1, . . . , x̂K ∈ Rd for some d > 0 such that:

x̂1, . . . , x̂K = argmin
y1,...,yK∈Rd

⎛⎝∑︂
i ̸=j

(distG(xi, xj) − ∥yi − yj∥)2

⎞⎠ 1
2

.

In the context of statistical shape analysis, one can use MDS to project a dataset

of surfaces as points in Euclidean space for data visualization purposes, or as an

intermediary step in clustering applications with sets of surfaces, see Figure 4-5.

Figure 4-5. Visualizing the distance matrix between ten human body shapes using
multidimensional scaling. The geodesic distance naturally clusters the population into
male and female shapes. Mesh data obtained from the FAUST dataset [135].
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4.5.2.2 Tangent PCA

Principal component analysis (PCA) is an important dimensionality reduction tech-

nique in statistics for analyzing the variability of data in Euclidean space. More

precisely, given data points x1, . . . , xK ∈ Rd having zero mean, the goal of PCA is to

produce a sequence of linear subspaces {Wℓ}dℓ=1 that maximizes the variance of the

data when it is projected onto those subspaces [136]. This sequence of linear subspaces

Wℓ = span({w1, . . . , wℓ}) for ℓ = 1, . . . , d are constructed by finding an orthonormal

basis {w1, . . . , wd} of Rd which can be computed as the set of ordered eigenvectors of

the sample covariance matrix of the data. Thus, PCA amounts to finding the vectors

{wℓ}dℓ=1, which are called the principal components of the data.

Extending PCA to manifolds, even in a finite-dimensional setting, is not straight-

forward nor canonical due to the difference in tangent space at each point of the

manifold. As a result, several different models and heuristics have been proposed for

manifold PCA. Among those, tangent PCA [136] is probably the simplest as it relies

on directly linearizing the problem around a single point (the Karcher mean). More

specifically, let (M, G) be a (possibly) infinite-dimensional manifold. Consider data

points x1, . . . , xK ∈ M, and a reference point x̄ ∈ M, for which a natural choice is

e.g. the Karcher mean of the data points. The goal of tangent PCA is to find a set

of principal component geodesics for the data. By principal component geodesics, we

mean a set of geodesics all starting at x̄ whose initial velocities are given by tangent

vectors {wℓ}dℓ=1 ∈ Tx̄M that are computed as the principal components of the data

in the linear space Tx̄M. Thus, tangent PCA amounts to performing standard PCA

in Tx̄M, which can be interpreted as finding the “principal tangent vectors” for the

data, i.e., the initial velocities which uniquely determine the geodesics starting at

the reference point x̄ along which one has to move on M in order to maximize the

“variability” of the data.
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We implemented an algorithm for performing tangent PCA when given a set of

K surfaces and a reference point (such as the Karcher mean), with details given in

Algorithm 5. Our method consists of solving K geodesic boundary value problems

via Algorithm 1 (for parametrized surfaces) or Algorithm 2 (for unparametrized

surfaces, respectively), using the reference point as the source and each of the K

surfaces in our dataset as respective targets. This produces K geodesics, which

we use to estimate K tangent vectors {hk} via finite differences, i.e., by taking the

difference between the vertices in the geodesic paths at the first two time points

of the discretized path. We then perform standard PCA on these tangent vectors

with respect to the metric GV̄ at the reference point. This is specifically done by

computing the eigendecomposition {λℓ, vℓ} of the K ×K (demeaned) Gram matrix

(GV̄ (hi − h̄, hj − h̄))i,j=1,...,K , where h̄ = 1
K

∑︁K
k=1 hk. We then recover the principal

component vectors wℓ = ∑︁K
k=1 vℓ,k(hk − h̄) and the principal component geodesics by

solving initial value problems starting at the reference point V̄ in the direction of λℓwℓ

using Algorithm 3. Note that we solve these IVPs in the positive and negative principal

directions ±λℓwℓ respectively. While we only write the pseudocode for tangent PCA

on parametrized surfaces in Algorithm 5, the method works verbatim for the case of

unparametrized surfaces, except that the relaxed matching algorithm (Algorithm 2) is

used to solve the K geodesic BVPs.

Figure 4-6. First row: a data set of 10 faces with inconsistent mesh structures. Second
row: the first principal component geodesic (in the positive and negative directions) from
the Karcher mean (purple) of the data set. The principal direction is obtained by tangent
PCA. Data obtained from [137].
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Algorithm 5 Tangent PCA (TPCA)
procedure Parametrized_TPCA(V1, . . . , VK , V̄ )
V1, . . . , VK : vertices of parametrized surfaces from sample
V̄ : vertices of the reference point

for k = 1, . . . , K
V = Linear_Interpolation(V̄ , Vk)
V = Parametrized_Geodesic_BVP(V̄ , Vk, V )
hk = N(V (1/N) − V (0))

{λℓ, wℓ} = PCA(h1, . . . , hK , V̄ )
for ℓ = 1, . . . , L

P+
ℓ = Geodesic_IVP(V̄ , λℓwℓ)
P−
ℓ = Geodesic_IVP(V̄ ,−λℓwℓ)

return {P+
ℓ , P

−
ℓ }

procedure PCA(h1, . . . , hK ,V̄ )
h̄ = 1

K

∑︁K
k=1 hk

GV̄ = Riemannian H2-metric at V̄
Σ = (GV̄ (hi − h̄, hj − h̄))i,j=1,...,K
{λℓ, vℓ} = eigenvalues and eigenvectors of Σ.
wℓ = ∑︁K

k=1 vℓ,k(hk − h̄)
return {λℓ, wℓ}

To illustrate the effectiveness of tangent PCA, we first display the principal

component geodesics for an unparametrized dataset of surfaces in Figure 4-6. As a

second, more large scale experiment, we analyze the faces of the CoMA dataset [138].

As this data comes with known point correspondences, we are able to interpret the

data as parametrized surfaces. To evaluate our method we separate the data into a

testing set of ∼ 2000 meshes and a training set of ∼ 700 meshes. In Figure 4-7, we

illustrate the principal component geodesics of the training set computed using our

method. To reconstruct a target mesh, we then perform an unparametrized geodesic

matching from a template to the target with respect to the first 40 tangent PCA basis

vectors. In particular, we optimize the relaxed matching energy over all paths where

the tangent vectors of the path can be written as a linear combination of the tangent

PCA bases. In Figure 4-7, we also display such a reconstruction of two surfaces from

the testing set. When we reconstruct the entire testing set in this way we achieve
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75% of all vertices within a Euclidean error of 1mm. For comparison, the percentage

of vertices within 1mm accuracy is 47% when using traditional PCA and 72% when

using the mesh autoencoder methods of [138].

Figure 4-7. Tangent PCA for a set of parametrized surfaces. On the left we display
the first three principal component geodesics of a training set. On the right, we display
a reconstruction of two elements from a separate testing set, where each vertex is
colored based on the Euclidean error of the reconstruction. Data taken from the CoMA
dataset [138].

4.5.3 Parallel transport

Parallel transport is a method of transporting geometric data (tangent vectors) between

different points in a manifold. In our situation this concept has a natural application

to motion transfer, as shown in Figure 4-8. Given a geodesic (i.e., a motion) between a

source and target surface (e.g. the two cats in Figure 4-8), we can transfer the motion

to a new source shape (e.g. the lioness in Figure 4-8) by parallel transporting the

initial velocity from the geodesic motion to the new source shape, and then solving an

initial value problem starting at the new source shape with initial velocity given by

the parallel transported tangent vector. This procedure requires that we approximate
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parallel transport of tangent vectors on M. We use an implementation of Schild’s

ladder to produce a first-order approximation of parallel transport [139, 140]. Given a

Riemannian manifold M, with x0, x1 ∈ M, h ∈ Tx0M, and letting V be a geodesic

such that V (0) = x0 and V (1) = x1, the calculation of parallel transport using Schild’s

ladder requires one to iteratively compute several small geodesic parallelograms with

one side corresponding to a small step along V and the other side being a small step in

the direction of h. The transport of h for this small step along V is defined to be the

log map of the side opposite of h. One then repeats the computation of these rungs

until reaching x1. An algorithmic explanation of this method is given in Algorithm 6

below.

Algorithm 6 Parallel Transport
procedure Parametrized_Parallel_Transport(V, h,N)
V : geodesic to transport the tangent vector along
h : tangent vector to be transported
N : number of iterations for Schild’s ladder

for i = 1, . . . , N
W = V ( i−1

N
) + 1

N
h

U = Linear_Interpolation((V (i/N),W ))
M = Parametrized_Geodesic_BVP(V (i/N),W, U)

(︂
1
2

)︂
k = M − V ( i−1

N
)

h = Geodesic_IVP(V ( i−1
N

), 2k)(1) − V (i/N)
return h

Figure 4-8. Example of parallel transport using Schild’s ladder. We compute the initial
tangent vector in the direction of the top geodesic, use Schild’s ladder (Algorithm 6) to
transport the tangent vector along the geodesic between the leftmost surfaces, and finally
compute the geodesic on the the bottom as an IVP. Data taken from [137].
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4.6 Partial matching of surfaces

We now further extend our elastic surface analysis framework based on H2-metrics

by augmenting the surface matching model with the estimation of spatially-varying

weights on the source shape. As we will show, this approach will enable us to compare

and perform statistics on sets of surfaces which may have incompatible topological

properties and/or exhibit partial correspondences.

4.6.1 Limitations of the previous framework

We start by motivating the need for this extended approach. The relaxed matching

framework presented so far in (4.10) (as well as its non-symmetric version (4.9)) is

primarily designed for the comparison of complete surfaces with consistent topology,

as illustrated by the examples in Figure 4-9.

Although the matching obtained from (4.10) is inexact and may in practice be

able to handle small inconsistencies including topological noise, it remains ill-suited

for datasets involving surfaces with significant missing parts or important topological

differences (either artifactual or not). Attempting to compare two such surfaces based

on model (4.10) is likely to lead to highly singular behaviour in the estimated geodesics

and distances. This was already emphasized in the case of planar shapes (such as

curves and shape graphs) in the previous chapter and in [35], and can be further

observed in the case of 3D surfaces, as seen e.g. in Figure 4-4 with the formation of

geometric artifacts such as the thin arc around the ear of the skull, and in Figure 4-9

with phalanges that shrink to almost zero volume.

To address this shortcoming in our model, we propose to incorporate partial

matching capabilities in our framework. Extending the idea introduced in [35], we do

so indirectly by considering surfaces augmented with a weight function defined on their

support, leveraging the flexibility of the varifold representation for that purpose. This
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will lead to a new matching formulation between pairs of weighted surfaces, where, in

combination to the geometric matching process, one can vary the weights assigned to

different components or parts of the source surface. In particular, this allows us, by

setting weights to 0 in specific areas, to remove parts of the source when they have no

corresponding parts in the target surface, as shown in Figure 4-9 and Figure 4-10.

4.6.2 The varifold norm on the space of weighted surfaces

We first define a parametrized weighted surface as a couple (q, ρ), where q ∈ Imm(M,R3)

is a parametrized immersed surface, and ρ : M → [0, 1] is a function on the parameter

space M . For each (u, v) ∈ M , one can interpret ρ(u, v) as the weight assigned to

the point q(u, v) on the surface. The primary reason to assume that the values of ρ

lie in the interval [0, 1] is that we are focusing on the issue of partial matching. In

such a scenario, it is indeed natural to impose this constraint, with the interpretation

being that the weight function to be estimated in the matching problem should vanish

on parts of the transformed surface that need to get erased in order to adequately

match the target, while remaining roughly equal to 1 on the other parts. Note that in

other situations such as shapes with multiplicities, one could consider more general

R+-valued weight functions.

Any such weighted surface (q, ρ) can still be represented as a varifold, which we

denote by µq,ρ .= ρ · µq and define as the image measure (q, nq)∗(ρ volq). Here nq is the

unit oriented normal field of q, which is given in local coordinates, as defined earlier

in Section 2.3.2, by

nq
.= qu × qv

|qu × qv|
.

Meanwhile, ρ volq is the area form on M induced by q rescaled by the weight function

ρ, which is given in local coordinates by

ρ volq .= ρ · (qu × qv).
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With this definition, the kernel metrics on varifolds outlined earlier in Section 4.3

immediately induce a fidelity metric between weighted surfaces. Specifically, the kernel

inner product in V between two weighted varifolds µq0,ρ0 and µq1,ρ1 is given explicitly

by:

⟨µq0,ρ0 , µq1,ρ1⟩V =
∫︂∫︂

M×M
Ψ(|q0 − q1|)Φ(n0 · n1)ρ0ρ1 volq0 volq1 , (4.15)

where we have dropped the coordinates (u0, v0) and (u1, v1) in the above expression for

concision. This simply amounts to a weighted version of (4.7). The squared weighted

varifold kernel distance ∥µq0,ρ0 − µq1,ρ1∥2
V can again be obtained via a quadratic

expansion, exactly as in (4.8).

4.6.3 Relaxed surface matching with weights

We are now able to formulate the extension of the symmetric matching problem (4.10)

of Section 4.3 to the setting of weighted surfaces:

Given a pair of weighted surfaces (q0, ρ0) and (q1, ρ1), we consider the variational

problem:

inf
{︄∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt +

λ0 ∥µq(0) − µq0∥2
V + λ1 ∥µq(1),ρ − µq1,ρ1∥2

V

}︄
,

(4.16)

where the infimum is taken over paths of immersed surfaces q(·) ∈

C∞([0, 1], Imm(M,R3)), and also over all weight functions ρ : M → [0, 1], with

λ0, λ1 > 0 being balancing parameters.

In this framework, we refer to (q0, ρ0) as the source, (q(1), ρ) as the transformed

source, and (q1, ρ1) as the target. Note that in addition to relaxing the end time

constraint, we have also relaxed the initial constraint of q(0) being q0 via a second

varifold fidelity term in the model above. Similarly to what was explained in the

context of (4.10), this allows us to choose the topological and mesh properties of
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the path q(·) independently of those of the source q0, once again paving the way for

the use of the efficient multiresolution scheme from [69] to numerically solve this

matching problem between weighted surfaces. We note that one could also formulate

an asymmetric version of problem (4.16) by instead enforcing the initial constraint

q(0) = q0 as in (4.9). For the sake of completeness, we write down this problem

explicitly below:

Given a pair of weighted surfaces (q0, ρ0) and (q1, ρ1), we consider the variational

problem:

inf
{︄∫︂ 1

0
Gq(t)(∂tq(t), ∂tq(t))dt+ λ ∥µq(1),ρ − µq1,ρ1∥2

V , (4.17)

where the infinimum is taken over paths of immersed surfaces q(·) ∈

C∞([0, 1], Imm(M,R3)) satisfying q(0) = q0, and also over all non-negative weight

functions ρ : M → [0, 1], with λ > 0 being a balancing parameter.

Furthermore, aside from the constraint of ρ taking its values in [0, 1], the variational

problems (4.16) and (4.17) do not involve any cost penalty on the weight function.

Yet it would be possible to add regularizers for the weight function to the functional,

including for instance the total variation norm of ρ − ρ0 as done in [35] for planar

shapes so as to promote piecewise constant weight functions, see Section 3.4.2.1 for

details. In the context of partial matching, it may also be relevant to enforce ρ to take

values close to 0 or 1, which can be achieved e.g. by adding a double well pointwise

penalty of the form
∫︁
M (ρ(u, v)(ρ(u, v) − 1))2 volq(u, v). A clear downside to including

extra regularizers is the added layer of complexity to the matching model due to the

presence of extra terms and balancing parameters. For that reason, we will focus on

the above unpenalized formulation.

Remark 8 (Weight variations on the source and/or target). We emphasize that

in (4.16) and (4.17), we only allow for weight variations on the transformed source,
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which lets us model in particular the erasure of parts of q(1) so as to match the target.

This is useful e.g. in the context of partial matching problems with missing data in

the target shape, see Figure 4-9. One can easily adapt the model to allow for weight

estimation on the target by minimizing over a weight function ρ̃ defined on q1, with

the weights on the transformed source shape being kept fixed. More generally, one

could technically model weight variations on both shapes, by jointly optimizing over

two weight functions ρ and ρ̃. However, the latter case requires careful regularization

on those functions in order to prevent the trivial solution of setting all weights to 0.

We will thus leave the study of this case to future work.

4.6.4 Numerical optimization with weights

We now discuss our approach for numerically solving the matching problem between

weighted surfaces, whose discretization can be performed in similar fashion as pre-

viously. A discrete weighted surface (q, ρ) is once again represented as a triangular

mesh (V,E, F ) as in Section 4.4, while the weight function ρ shall be modelled by

its discrete set of values at the center cf of each face f ∈ F of the mesh, i.e., by the

vector in [0, 1]|F | with entries ρf := ρ(cf ).

Then, letting (V,E, F, ρ) and (Ṽ , Ẽ, F̃ , ρ̃) denote the discretizations of two weighted

surfaces (q, ρ) and (q̃, ρ̃) respectively, we can first approximate the varifold inner

product via

⟨µq,ρ, µq̃,ρ̃⟩V ≈
∑︂
f∈F

∑︂
f̃∈F̃

Ψ(|cf − cf̃ |)Φ(nf · nf̃ )ρfρf̃ volf volf̃ ,

where nf , nf̃ and volf , volf̃ are the unit normals and volume forms that have been

discretized over the faces f ∈ F and f̃ ∈ F̃ of the meshes, as outlined in Section 4.4.1.

The full varifold fidelity term ∥µq,ρ − µq̃,ρ̃∥2
V is then obtained as in (4.8), via the

quadratic expansion of the squared norm.

Equipped with the discretizations of the H2-path energy described in Section 4.4.2,
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of the varifold norm described in Section 4.4.4, and of the weighted varifold norm

described above, we are led to numerically solve (4.16) as a finite-dimensional op-

timization problem, where the minimization occurs jointly over the vertices of the

discretized piece-wise linear path of meshes V : [0, 1] → M and over the discretized

weight function ρ ∈ [0, 1]|F |. In order to deal with the box constraints on the values

of ρ, we minimize the discretized matching functional using the bound constrained

limited memory BFGS (L-BFGS-B) algorithm [141], whose implementation is available

through scipy. We summarize the weighted surface matching approach in Algorithm 7

below.

Algorithm 7 Relaxed Matching for Weighted Surfaces
procedure Weighted_Matching((V0, ρ0), (V1, ρ1), V, ρ)
V0 : triangular mesh for the source
ρ0 : weights on the source
V1 : triangular mesh for the target
ρ1 : weights on the target.
V : initial guess for a PL path in M.
ρ : initial guess for weights on the transformed source

cost(V, ρ) = λ0DistVar(V (0), V0) + E(V )
+λ1DistVar((V (1), ρ)), (V1, ρ1))

V, ρ = L-BFGS-B(V, ρ, cost)
return V , ρ

4.6.5 Partial matching experiments

To illustrate the capabilities of the weighted surface framework for partial matching,

we performed several numerical experiments. In all the figures, we compute the linear

interpolation (1 − t)ρ0 + tρ between the initial and estimated weight function and

show this interpolated weight function along the geodesic through a transparency map

in order to visualize the effect of weight variations.

First, we demonstrate the benefits of weight estimation when comparing surfaces

with missing parts, see Figure 4-9 where we use an incomplete set of phalanges.

Partially observed or incomplete data is a common occurrence in practice and can
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be due to several factors, including segmentation issues, inconsistent field of views

or occlusions during the data acquisition process. Typically, matching surfaces with

missing parts using standard elastic surface matching techniques will result in the

transformed source getting bent, stretched or compressed in an attempt to fill in

some of those missing parts. This can result in unnatural deformations (see the fairly

extreme shrinking of phalanges in Figure 4-9) and in turn in an overestimation of the

geodesic distance between these surfaces, making any subsequent statistical shape

analysis spurious for datasets of partially observed surfaces. As evidenced by the

second row of Figure 4-9, the proposed approach overcomes this difficulty through the

automatic estimation of vanishing weights at the location on the parts of the source

shape corresponding to the missing ones of the target.

source q(0) q(1/3) q(2/3) q(1) target

Figure 4-9. Matching with missing data. We use a complete set of phalanges (i.e., hand
bones) as the source, and a different set of phalanges as the target, where some bones on
the index finger and thumb were artificially removed. Top row: We matched the surfaces
without weight estimation using Algorithm 2. The parts of the transformed source that
are getting matched to the removed bones from the target get shrunk to almost zero
volume. The estimated geodesic distance is 117.006. Bottom row: We augment the
surfaces with weights and use Algorithm 7 to match them. Our model correctly “erases”
(i.e., estimates vanishing weights) the appropriate parts of the transformed source to
account for corresponding missing bones on the target. This produces a natural looking
geodesic between the source and target, without the production of singularities, with a
lower estimated geodesic distance of 114.564. Data taken from [132].

Second, we computed the matching of surfaces with completely different topologies,

as shown with the example of the skulls in Figure 4-4 and the synthetic examples

from Figure 4-10. The estimation of vanishing weights indirectly allows us to recover

several useful types of transformations that are otherwise not achievable in the original,

unweighted model. For instance, it enables the model to erase the thin arc near the
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source q(0) q(1/3) q(2/3) q(1) target

Figure 4-10. Splitting into multiple components (top): We match a single sphere with
two disconnected spheres using Algorithm 7. The transformed source q(1) contains a
“bridge” between the two spheres in the target where the algorithm estimates zero weights.
Matching with highly inconsistent topological structures (bottom): We match a sphere
(genus zero surface) and a torus (genus one surface) via Algorithm 7. Our model artificially
accounts for the creation of a hole, i.e., the change in topology, via the estimation of
vanishing weights.

left ear of the turquoise skull in Figure 4-4 as opposed to geometrically shrinking it. It

further allows for the splitting of a surface into several connected components, as well

as the creation of holes when matching surfaces with different genuses, as shown in

Figure 4-10. It should be noted, however, that this approach does not directly model

topological changes in the mesh of the transformed source (which remains the same

along the geodesic), but rather allows us to compare objects with different topologies

by erasing parts of the transformed source via the weight function.

Lastly, we consider a case of Karcher mean estimation under partial observations.

As a proof of concept, we compute the Karcher mean of a set of five distinct hands, each

missing a different finger which was artificially removed, see Figure 4-11. Following the

same principle as the algorithm for Karcher mean estimation presented in Section 4.5.1

(Algorithm 4), we applied Algorithm 7 to iteratively solve weighted matching problems

from the current Karcher mean estimate to a randomly chosen surface from our

dataset. As the initial guess for the Karcher mean, we used a complete hand (i.e. a
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Figure 4-11. Karcher mean estimation with weights. Left: The data (turquoise) consists
of 5 distinct hands each missing a different finger, and the Karcher mean estimate (yellow)
is a complete hand. Right: Geodesics between Karcher mean estimate (yellow on the left)
and the data points (turquoise on the right). Mesh data obtained from [142].

closed mesh with five fingers) from a different subject. While other choices for the

initial guess, e.g. an ellipsoid, are possible, poorly chosen initializations will result

in slower convergence to the Karcher mean and potentially to a lower mesh quality

of the estimated Karcher mean. The joint estimation of weights at each successive

matching prevents the geometric shrinking of one of the fingers and ultimately results

in the realistic looking Karcher mean displayed in Figure 4-11. In this figure, we also

show the computed geodesics from the Karcher mean to each subject. We also report

the Riemannian energy of the geodesic path for each of these geodesics in Table 4-II.

As a point of comparison, we also ran the non-weighted Algorithm 2 between the

Karcher mean estimate and each of the corresponding complete hands (i.e., without

the artificially removed fingers), and report the Riemannian energy of the resulting

geodesics in the last column of Table 4-II. We observe that the geodesic distance

estimates reported in Table 4-II are comparable and quite consistent in both scenarios.

This point highlights the reliability of the distance estimates obtained with weight

estimation and hints at the potential viability of this approach for statistical shape

analysis of datasets of partially observed surfaces.
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Missing part Incomplete hand Complete hand
(Algorithm 7) (Algorithm 2)

Thumb 0.610 0.653
Index 0.687 0.708

Middle Finger 0.996 1.007
Ring Finger 0.708 0.789

Pinky 0.642 0.799

Table 4-II. Geodesic distances between the Karcher mean estimate and data points.

4.7 Conclusion and outlook

In this chapter, we introduced a mathematical framework and several numerical

algorithms for the estimation of geodesics and distances induced by second-order

elastic Sobolev metrics on the space of parametrized and unparametrized surfaces.

We leveraged our surface matching algorithms to develop a comprehensive collection

of routines for the statistical shape analysis of sets of 3D surfaces, which includes

algorithms to compute Karcher means, perform dimensionality reduction via multidi-

mensional scaling and tangent PCA, and estimate parallel transport across surfaces.

We also proposed to resolve the issue of partial matching constraints in the situation

of missing data and inconsistent topologies through the additional estimation of a

weight function defined on the source shape.

We also want to mention several limitations of the method presented in this chapter.

First, parameter selection may be an important issue in this framework if no reasonable

priors are available for the choice of the H2-metric coefficients or the kernel scale

used to compute the varifold relaxation term. As we illustrated in the numerical

experiments, those can all have significant influence on the quality of registration

and on the behavior of geodesics. While we use different practical strategies such

as multiscale schemes to mitigate this issue, a subject of active current investigation

is precisely to develop effective approaches to obtain such parameter estimates in a

data-driven way, see [58] for a recent approach to learn the optimal metric coefficients
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in the context of elastic metrics on curves.

A second potential limitation is the choice of initialization for the geodesic path,

as the variational problems that we tackle are non-convex. Typically, we initialize our

algorithms using a time constant path with either the source or target mesh. However,

one could expect extra robustness if more adapted initializations are chosen, which

could be computed for instance as the output of some other fast surface matching

procedure.

Lastly, while the computational cost of our approach is favorable when compared

to other Riemannian frameworks for shape analysis, it still involves running an

optimization procedure with quadratic complexity at each iteration. As a result, the

numerical pipelines of this paper might become somewhat impractical when working

with high resolution meshes (e.g. millions of vertices or more) or for populations with

a large number of subjects.

One way to overcome this issue would be to leverage deep learning architectures

to reduce the computation of quantities such as distances and geodesics to a simple

forward pass through a neural network trained from supervised data. Indeed, several

deep learning methods for the registration and analysis of surfaces have recently

emerged [143–145]. Nevertheless, the quality of point-to-point correspondences or

optimal deformations obtained via these deep learning methods relies on having access

to a very large database of ground truths to train the network, which in practice is

difficult and costly to obtain. As a result of this lack of good training data, these

deep learning methods are thus susceptible to having poor generalization capabilities,

resulting in situations where the method performs poorly on data that is significantly

different or of significantly worse quality than the training data. One potential

future application of our intrinsic H2-metric framework is that it could be used to

generate high quality training data (in the form of geodesic distances, point-to-point

correspondences or optimal deformations) for deep learning methods for the analysis of
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surfaces. Such ideas have recently been introduced in the case of functional data [146,

147] and in the setting of planar curves [148, 149] where early results, which we will

explore in the next chapter, have been encouraging.
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Chapter 5

Deep learning of shape distances

We now present a supervised deep learning framework for the estimation of the square-

root velocity (SRV) distance on the space of curves; a widely-used quantitative measure

for curve comparison. More specifically, we train a deep convolutional neural network

to predict the SRV distance between a pair of curves, which allows us to obtain

fast and accurate distance estimates via a forward pass through the trained network.

Such numerical shape analysis pipelines have the potential to be useful for large-scale

data-driven applications with geometric objects. As a proof of concept, we leverage

our framework to perform optical character recognition (OCR), and demonstrate

comparable performance in terms of speed and accuracy with respect to other existing

OCR techniques. Several results presented in this chapter were published in [148].

5.1 Related work

The SRV distance quantifies dissimilarity between geometric curves, and is widely

used in applications for averaging, classifying and clustering datasets of functions or

curves [73]. As we will outline in the next section, the SRV distance corresponds to the

geodesic distance induced by a specific invariant first-order Sobolev metric on the space

of curves. A key advantage of the SRV framework is that the computation of the SRV

distance on the space of parametrized curves is greatly simplified due to the so-called
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SRV transform (5.1), which allows one to define the SRV distance via the pullback of

the L2 -metric on the transform space, thereby avoiding the need to optimize over paths

of parametrized curves as highlighted in (2.1); see Section 5.2 for details. Nevertheless,

computing the SRV distance on the shape space of unparametrized curves still requires

the usual minimization over the reparametrization group, as outlined in Section 2.1.3.

These optimal reparametrizations are guaranteed to exist for certain classes of

curves, such as curves of bounded variation [150], C1-curves [151], and piecewise linear

curves [50]. The beauty of the result in [50] lies in the fact that it not only provides

an existence result, but also describes an algorithm to explicitly construct optimal

reparametrizations for piecewise linear curves. Although this algorithm allows one

to compute exact SRV distances, it has a high polynomial complexity, rendering it

impractical for large datasets that are typically encountered in applications.

Consequently, faster approaches have emerged to compute SRV distances in prac-

tical contexts [73, 152]. Several such algorithms rely on dynamic programming (DP)

to search for optimal reparametrizations [71–73]. We note that a DP algorithm that

performs a complete search over the reparametrization group (and thus guarantees a

globally optimal solution) would run in O(n4) time, where n is the number of sample

points used to discretize the curves [71]. This runtime is still rather restrictive, and

thus DP algorithms that are actually used in practice operate by searching over subsets

of all possible reparametrizations. These different DP-based approaches provide faster

over-estimates of the true SRV distance, achieving runtimes ranging from O(n) to

O(n3) time [48, 56, 71, 72]. Nevertheless, DP still incurs a significant computational

cost when working with very large datasets, implying that there is a need to develop

increasingly efficient approaches for handling modern datasets of shapes.

Towards that end, deep learning approaches have recently been introduced to

estimate optimal reparametrizations for functions and curves, including supervised [153,

154] and unsupervised [146, 147, 155, 156] methods.
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5.1.1 Contributions

In this chapter, we propose a supervised deep learning framework for directly estimating

SRV distances between functions and between spatial curves, without the need to

estimate optimal reparametrizations. More specifically, we train a deep convolutional

neural network (CNN) to learn reparametrization and rotationally-invariant SRV

distances, using training data consisting of pairs of discretized functions or curves,

together with the quotient SRV distance between them as labels. An open-source

version of our code is publicly available on GitHub1.

As a theoretical contribution that is of interest on its own, we extend the existence

results for optimal reparametrizations of [50, 151] to the space of closed curves, and to

the spaces of (open or closed) curves modulo rotations. These results were previously

only known for open curves, and also did not consider the action of the rotation group.

This in turn allows us to directly generalize the algorithm of [50] for calculating exact

SRV distances for unparametrized open or closed curves modulo rotations.

Consequently, and in contrast to e.g. [154], we use these exact SRV distances as

training labels for our network, rather than SRV distance over-estimates computed via

dynamic programming. This reduces bias in the network’s predictions. Another distinct

feature of our framework is that unlike the aforementioned dynamic programming and

deep learning approaches, we bypass the need to estimate optimal reparametrizations,

instead directly estimating SRV distances. This is especially convenient for certain

machine learning tasks, such as classification or clustering applications with datasets of

curves, where one only needs rapidly-computed pairwise distances rather than optimal

reparametrization maps or point-to-point correspondences between the shapes.

To illustrate our framework’s benefits, we show that our trained CNN’s SRV

distance estimates are comparable to or even more accurate than DP distances,
1https://github.com/emmanuel-hartman/supervisedDL-SRVFdistances
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while also being orders of magnitude faster in terms of computation time. We also

demonstrate the versatility and utility of this framework in the context of large-scale

data-driven applications by leveraging it to perform optical character recognition

(OCR), where we are able to achieve comparable performance in terms of speed and

accuracy with respect to other existing OCR techniques.

5.2 The SRV distance on the space of curves

We begin with a brief overview of the SRV framework, via which one can define a

computable elastic distance on the space of curves. In this framework, we start with

the pre-shape space of parametrized curves, which we model as elements of AC(D,Rd),

i.e., the space of Rd-valued absolutely continuous functions on a one-dimensional

parameter space D, where we recall that we have open curves if D = [0, 1], and closed

curves if D = S1. We will denote a parametrized curve by c ∈ AC(D,Rd). Note

that we do not require parametrized curves to be immersions for the SRV framework

presented in this section. Moreover, we will also consider the setting where d = 1, in

which case we have one-dimensional curves, which we call functions.

For the applications discussed later on in this chapter, it will be convenient to

work with curves regardless of how they are translated, rotated and/or parametrized.

Note that the SRV framework, and thus our deep learning approach, can easily be

extended to handle curves modulo scalings as well, but we do not consider the scaling

group here. We now briefly outline the construction of the quotient shape space of all

curves modulo translations, rotations and reparametrizations.

To identify parametrized curves that only differ by a translation, we work with

the space of absolutely continuous curves such that c(0) = 0, denoted by AC0(D,Rd).

We will later see that the SRV distance is naturally defined on this linear subspace

of all absolutely continuous curves. We then define the quotient shape space of
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unparametrized curves modulo translations and rotations as:

S .= AC0(D,Rd)/Diff(D)/ SO(d),

where Diff(D) is the group of reparametrizations, i.e., diffeomorphisms of the parameter

space, and SO(d) is the rotation group. We denote the equivalence class of a curve

c ∈ AC0(D,Rd) in this quotient space by [c]. Note that for functions, i.e., d = 1,

the rotation group is trivial and thus the shape space reduces to factoring out the

reparametrization group only.

We now outline how the SRV transform allows us to define a distance function on

this shape space. The SRV transform is the mapping Q : AC0(D,Rd) → L2(D,Rd),

which is defined by:

c(·) ↦→ Q(c)(·) .=

⎧⎨⎩
c′(·)√
|c′(·)|

if |c′(·)| > 0,

0 otherwise.
(5.1)

Here, c′(θ) denotes the first derivative of the parametrized curve c ∈ AC0(D,Rd),

which is defined for almost all θ ∈ D. This transform allows us to define the SRV

distance between parametrized curves c0, c1 ∈ AC0(D,Rd) by pulling back the L2

metric on L2(D,Rd) as follows:

distQ(c0, c1)2 .= ∥Q(c0) −Q(c1)∥2
L2

=
∫︂
D

⃓⃓⃓⃓
⃓⃓ c′

0(θ)√︂
|c′

0(θ)|
− c′

1(θ)√︂
|c′

1(θ)|

⃓⃓⃓⃓
⃓⃓
2

dθ.
(5.2)

It is worth noting that in the case of open curves, this distance can be interpreted

as the geodesic distance induced by a specific first-order Riemannian metric. For closed

curves, it is only a first order approximation of the geodesic distance corresponding to

this metric, see [151] for details. More specifically, the SRV distance above is induced

by the Ga,b-metric for the specific choice of parameter values a = 1 and b = 1/2, where,

using the notation from Section 2.3.1, the family of elastic Ga,b-metrics is defined for

all a, b > 0 and tangent vectors h, k in the tangent space to the space of parametrized
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curves at a curve c as

Ga,b
c (h, k) .=

∫︂
D
a2⟨∂sh⊤, ∂sk

⊤⟩ + b2⟨∂sh⊥, ∂sk
⊥⟩ds, (5.3)

where h⊤ and h⊥ denote the projection onto the tangential and normal parts of a

tangent vector respectively. We refer the reader to [58, 73, 151] for further details,

and point out that the metric above is a special case of the family of invariant Sobolev

metrics (2.16) and (2.18) introduced in Section 2.3.1.

The key property of the SRV distance (5.2) is its invariance under both the action

of the group of rotations SO(d), and that of the group of reparametrizations Diff(D).

The latter can be seen by a simple change of variables in the above integral. Thus,

this SRV distance descends to a distance on the quotient shape space, given for any

[c0], [c1] ∈ S, φ ∈ Diff(D) and R ∈ SO(d) by

distS([c0], [c1]) = inf
φ∈Diff(D)
R∈SO(d)

distQ
(︂
c0, R ⋆

(︂
c1 ◦ φ

)︂)︂
, (5.4)

where ⋆ denotes the action of SO(d) on AC0(D,Rd).

With a slight abuse of terminology, we henceforth refer to the quotient space

distance, namely distS , as the SRV distance. It follows that computing the SRV

distance between unparametrized curves involves solving a joint optimization problem

over the finite-dimensional group SO(d) and the infinite-dimensional reparametrization

group Diff(D). As usual, the main challenge is the minimization over Diff(D), which is

usually accomplished by discretizing the group into a finite-dimensional approximation

space, and solving the discretized problem via a dynamic programming approach.

It is important to note that in general, the existence of a reparametrization

φ ∈ Diff(D) attaining the infimum in (5.4) is not guaranteed. However, under

some additional regularity assumptions on the pair of curves c0 and c1, one can

recover such existence results. In what follows, we discuss the existence of optimal

reparametrizations and rotations in (5.4), both for the case of open curves (i.e.,

D = [0, 1]) as well as closed curves (i.e., D = S1).
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We first introduce the semi-group of generalized reparametrizations for open curves:

Γ̄([0, 1]) = {φ ∈ AC([0, 1], [0, 1]) : φ is onto, φ′ ≥ 0 a.e.} .

To introduce the analogous construction for the case of closed curves, we view S1 as

R/Z. We then define the shift operator on S1 via:

Sτ : S1 → S1, α ↦→ Sτ (α) .= α + τ.

This allows us to define the semi-group of generalized reparametrizations on S1 via:

Γ̄(S1) =
{︂
Sτ ◦ φ∗ : τ ∈ S1 and φ∗ ∈ Γ̄([0, 1])

}︂
.

In turn, this allows us to formulate the following existence result, which is the main

theoretical contribution of the present chapter.

Theorem 12. Let c0, c1 ∈ AC(D,Rd) such that either both are of class C1, or at

least one of them is piecewise linear. Assume also that c′
0 and c′

1 are both nonzero a.e.

on D. Then there exists a pair of generalized reparametrization functions (φ0, φ1) ∈

Γ̄(D) × Γ̄(D) and a rotation R ∈ SO(d) achieving the infimum in (5.4), i.e., such that:

dS([c0], [c1]) = dQ(c0 ◦ φ0, R ⋆ (c1 ◦ φ1)).

Previously this result was only known for the space of open curves and did not

consider the action of the rotation group, see [50, 151]. The proof of Theorem 12,

which builds up on these results, is presented below.

Proof of Theorem 12. Not taking into account the action of the group of rotations

and considering only open curves, this result was shown in [50], assuming that one of

the curves is piecewise linear, and in [151] under the assumptions that both curves

are of class C1.

In the case of closed curves where D = S1, by the definition of Γ̄(S1), the existence of

a pair of optimal generalized reparametrizations (φ0, φ1) ∈ Γ̄(S1) × Γ̄(S1) is equivalent
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to the existence of an optimal τ ∈ S1, an optimal R ∈ SO(d) and a pair of optimal

reparametrizations φ∗
1, φ

∗
2 ∈ Γ([0, 1]). Consider the function F : S1 × SO(d) → R given

for any fixed c0, c1 ∈ AC0(S1,Rd) by

F (α,R) = inf
φ∗

1,φ
∗
2∈Γ([0,1])

dQ(c0 ◦ φ∗
1, R ⋆ (c1 ◦ Sα ◦ φ∗

2)).

We will first show that F is continuous. Let τ ∈ S1, R ∈ SO(d) and ϵ > 0. Since

C(S1,Rd) is dense in L2(S1,Rd), let g ∈ C(S1,Rd) such that ||Q(c1) − g||L2 < ϵ/4. As

g is continuous on a compact domain it follows, by the Heine-Cantor theorem, that it

is uniformly continuous. Thus, there exists δ > 0 such that for each θ ∈ S1 and each

α ∈ S1 such that |α| ≤ δ, we have |g(θ) − g(Sα(θ))| < ϵ/4. Thus, for each α such that

|α| ≤ δ, we have

||g − g ◦ Sα||2L2 =
∫︂
S1

|g(θ) − g(Sα(θ))|2dθ

<
∫︂
S1

(ϵ/4)2dθ = (ϵ/4)2.

Pick this δ and let α ∈ S1 such that |τ − α| < δ. This implies that

||g ◦ Sτ − g ◦ Sα||L2 = ||g − g ◦ Sα−τ ||L2 < ϵ/4.

By a change of variable argument, we can show for any g1, g2 ∈ C(S1,R) and θ ∈ S1,

we have

||g1 ◦ Sθ − g2 ◦ Sθ||L2 = ||g1 − g2||L2 .

Furthermore, it is easy to show that for any c ∈ AC(S1,Rd) and any θ ∈ S1, we

have Q(c ◦ Sθ) = Q(c) ◦ Sθ. On the other hand, the action of the rotation group on

curves induces a corresponding action on their SRV transform which we write for

any R ∈ SO(d) as Q(R ⋆ c) = R ·Q(c), where we have specifically that R ·Q(c)(·) =
1√

|c′(·)|
Rc′(·). Note that this action on SRV transforms is by isometry for ∥ · ∥L2 .

Now, for any (α,R′) ∈ S1 ×SO(d) with |τ−α| < δ and ||R−R′|| < ϵ/(4||Q(c1)||L2)
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(for the operator norm on matrices), we can write

|F (α,R) − F (τ, R′)|

≤||R ·Q(c1 ◦ Sα) −R′ ·Q(c1 ◦ Sτ )||L2

=||R ·Q(c1) ◦ Sα −R′ ·Q(c1) ◦ Sτ ||L2

≤||R ·Q(c1) ◦ Sα −R′ ·Q(c1) ◦ Sα||L2

+ ||R′ ·Q(c1) ◦ Sα −R′ ·Q(c1) ◦ Sτ ||L2 .

For the first term on the right hand side, we can see that

||R ·Q(c1) ◦ Sα −R′ ·Q(c1) ◦ Sα||L2 ≤ ||R −R′||.||Q(c1) ◦ Sα||L2 ,

and since ||Q(c1) ◦ Sα||L2 = ||Q(c1)||L2 , we can bound this term by ϵ/4. On the other

hand, we have

||R′ ·Q(c1) ◦ Sα −R′ ·Q(c1) ◦ Sτ ||L2

= ||Q(c1) ◦ Sα −Q(c1) ◦ Sτ ||L2

≤ ||Q(c1) ◦ Sα − g ◦ Sα||L2 + ||g ◦ Sα − g ◦ Sτ ||L2

+ ||g ◦ Sτ −Q(c1) ◦ Sτ ||L2

= ||Q(c1) − g||L2 + ||g ◦ Sα − g ◦ Sτ ||L2 + ||g −Q(c1)||L2

< ϵ/4 + ϵ/4 + ϵ/4 = 3ϵ/4,

which finally leads to |F (α,R) − F (τ, R′)| < ϵ. Now, since F is continuous on the

compact set S1 × SO(d), there exists an optimal τ ∈ S1 and an optimal R ∈ SO(d)

such that F (τ, R) = infS1×SO(d) F . Note that the curves c0 and R ⋆ (c1 ◦ Sτ ) belong to

AC(S1,Rd) and thus in particular to AC([0, 1],Rd), and that by assumption, they are

either both of class C1 or one of them is piecewise linear. By the results of [50, 151],

there exist optimal φ∗
1, φ

∗
2 ∈ Γ([0, 1]) such that

dS([c0], [c1]) = dQ(c0 ◦ φ∗
1, R ⋆ (c1 ◦ Sτ ◦ φ∗

2)),
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which concludes the proof for the case of closed curves. The proof for open curves

modulo reparametrizations and rotations can be done exactly as above, by considering

a function F̃ that only depends on rotations.

For piecewise linear curves c0, c1 ∈ AC0(D,Rd), the results of [50] and Theo-

rem 12 even lead to an algorithm that allows us to explicitly construct these optimal

reparametrizations for calculating the exact quotient space distance, see [50]. This

algorithm plays a fundamental role in our proposed DL framework, as we use it to

calculate exact quotient SRV distances in order to generate labels for our training

data, as will be outlined in the next section.

5.3 Deep learning of SRV distances

While the algorithm in [50] allows us to compute exact SRV distances, it is computa-

tionally expensive, making it impractical for working with large datasets of shapes.

Consequently, there is a need to develop approaches that are more computationally

efficient in order to calculate SRV distances. We address this need by introducing a

supervised deep learning (DL) framework that provides fast, accurate and robust SRV

distance estimates.

5.3.1 Network architecture

We train a Siamese convolutional neural network (CNN) to learn the SRV distance

between unparametrized curves. We use training data consisting of pairs of discretized

Rd-valued curves, together with their SRV distance as labels. Each individual curve is

sampled at n vertices and represented as a flattened vector of length n × d, before

being fed as input to the network. Our Siamese CNN has a twin structure, consisting

of two components which have identical architectures and use the same weights. To

be more specific, each component of the CNN operates on an individual discretized
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Figure 5-1. Network architecture: Weights contained in the red blocks are trainable
and the Siamese convolutional nodes have shared weights. The green blocks perform
shape-preserving data augmentation as described in Section 5.3.2.

curve, which is passed through a series of convolutional layers with kernels of size 5,

followed each time by batch normalization, a rectified linear unit (ReLU) activation,

and a max-pooling layer with pool size 2. This produces two outputs, which are

concatenated and passed through four dense layers whose widths are proportional to

d, with ReLU activations being used in each dense layer. The network then outputs a

single real number: the SRV distance between the two curves. We provide a schematic

description of the network architecture in Figure 5-1.

5.3.2 Training method

We create training and testing sets for our network by randomly generating pairs of

functions or curves, or by picking them from an existing dataset, and labelling them

with their SRV distance. We use exact distances computed with the algorithm of

[50] as labels for functions and R2-valued curves, but due to this algorithm’s high

complexity, we instead use DP distances as labels for curves in R3.
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Figure 5-2. Example of shape-preserving data augmentation: The curve on the left is
an example of the parameterization (i.e. sampling) of a curve from the Swedish Leaf II
dataset, see Section 5.4. The remaining two curves represent reparameterizations and
rotations of this curve as produced by our shape preserving data augmentation strategy.

Computing these SRV distance labels using the exact algorithm or DP may be very

time consuming, which could limit the size of our training set in practice. Thankfully,

from a base training set, one can easily generate more training samples at no extra

cost by applying shape-preserving transformations, such as resampling and rotations,

to both curves. Indeed, the quotient SRV distance is invariant to reparametrizations

(i.e., to resampling in the discrete situation) and to rotations, implying that the

distance between resampled and/or rotated curves remains unchanged and need

not be recomputed. This data augmentation strategy allows the network to see a

wider variety of sampling patterns and rotations for the same curve during training,

which helps it to learn and predict distances that are invariant to reparametrizations

and rotations. Moreover, since resampling and rotating curves is computationally

inexpensive, this procedure can be performed at each iteration of the training step,

without incurring any additional storage for new training samples. We empirically

observed that this shape-preserving data augmentation-based training method reduced

overfitting in the distance learned by the network. However, we do emphasize that this

data augmentation strategy by no means guarantees that the network’s predictions

will be reparametrization or rotationally-invariant.
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The training itself is performed using an Adam optimization procedure [157]. We

observed relatively fast convergence in all cases, with convergence curves shown in

Figure 5-3. We refer readers to the code documentation on GitHub2 for further

training details, including information on the exact training parameters such as the

batchsize for each epoch of training, and parameters for the shape-preserving data

augmentation training step.

Figure 5-3. On both figures, the x-axis represents epochs, and on the y-axis, we plot the
network’s mean squared error on training data (blue), and on unseen testing data (red).
Convergence curves for network trained on open, real-valued functions discretized at 90
points from our Synthetic I dataset, trained for 500 epochs (left). Convergence curves for
network trained on closed, 2D curves discretized at 100 points from the Kimia dataset,
trained for 50 epochs (right). Descriptions of the datasets are given in Section 5.4.

5.4 Numerical experiments

We now present empirical results demonstrating the performance of our DL approach

for estimating SRV distances on real-valued functions, and on curves in R2 and R3.

As we shall see, the experiments show that when compared to DP, our approach

produces SRV distance estimates at a significantly lower numerical cost, while being

comparable, and sometimes superior, in terms of accuracy.
2https://github.com/emmanuel-hartman/supervisedDL-SRVFdistances
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5.4.1 Computation method

To compute SRV distances using both the exact algorithm and DP, we rely on the

libsrvf library developed by Martins Bruveris3, which builds on the DP code of FSU’s

Statistical Shape Analysis and Modeling Group. Our network was implemented using

TensorFlow. All computation times using the different algorithms were recorded on

an Intel Xeon X5650 2.66 GHz CPU with a Gigabyte GeForce GTX 1060 1582 MHz

GPU. A comparision of the computation times for the various algorithms can be found

in Table 5-I. As expected, one can clearly see that computing SRV distances via a

forward pass through the trained network is several orders of magnitude faster than

when using DP or the exact algorithm.

Exact DP DL (CPU) DL (GPU)
Functions 2 × 103 5 × 102 5 × 10−2 2 × 10−2

2D curves 2 × 105 8 × 102 2 × 10−1 3 × 10−2

Table 5-I. Computation time for the SRV distance between a pair of curves using several
different algorithms, in milliseconds.

5.4.2 Evaluation method

For functions and curves in R2: To evaluate the trained network’s accuracy for

functions and curves in R2, we use the mean relative error (MRE) between its output

and the true SRV distances on a test set, computed via the exact algorithm. As a

secondary measure of estimation quality, we use the Pearson correlation coefficient

ρyˆ︁y =

N∑︁
i=1

(yi − y)( ˆ︁yi − ˆ︁y)√︄
N∑︁
i=1

(yi − y)2

√︄
N∑︁
i=1

( ˆ︁yi − ˆ︁y)2

between the network’s output and exact distances on a test set of functions or curves.

Here N is the number of training samples, {yi}Ni=1 are the exact distances, { ˆ︁yi}Ni=1

3https://github.com/martinsbruveris/libsrvf
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are the outputs of the network, with y = 1
N

∑︁N
i=1 yi and ˆ︁y = 1

N

∑︁N
i=1 ˆ︁yi being their

respective sample means. A low MRE and a strong positive correlation coefficient

indicates a good performance of the network.

For curves in R3: In addition to the results for functions and planar curves, we

present preliminary results for curves in R3. As the computational complexity of the

exact algorithm is orders of magnitude higher for curves in R3 when compared to

the case of functions and curves in R2, we only label 3D curves with DP distances.

Consequently we can only evaluate the CNN’s performance for 3D curves via the

correlation coefficient between its output and DP distances.

To avoid bias in our results, elements of the test set are never contained in

the training set, which is used solely for the purpose of calibrating the network.

Furthermore, to assess our network’s generalization capabilities, we make sure that

the trained network is tested on data that is significantly different compared to the

data used for training, see Figures 5-4 and 5-5.

5.4.3 Experiments with functions

First, we tested our network’s ability to predict SRV distances for functions, using

both synthetic and real data.

Datasets: The synthetic data was created by generating functions sampled at 90

evenly spaced points on the unit interval with random arc length. We note that the

shape class of a function modulo reparametrizations is entirely determined by its local

maxima and minima, as it is determined by its constant speed parameterization which

is a linear interpolation between the local maxima and minima. Thus, the synthetic

function data is generated by drawing the number of extrema for our function from

a normal distribution N (µ, σ2) with mean µ and standard deviation σ, randomly

assigning values for these extrema, and then randomly choosing a function with n = 90

breakpoints from the shape class determined by the generated extrema. We created
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two different synthetic datasets: the first one with parameters (µ, σ) = (18, 6), and

the second with (µ, σ) = (30, 10). These datasets, dubbed Synthetic I and Synthetic II

respectively, each contain 100,000 pairs of functions labelled with their exact distances,

partitioned into 99,000 training cases and 1,000 testing cases.

For the real dataset, we use CPC Global Unified precipitation data from the

NOAA/OAR/ESRL PSL, Boulder, Colorado, USA4, from which we extracted 90 days

of precipitation data across several locations and years. We randomly selected 400

samples from this database, computed exact pairwise distances, and partitioned them

into a set of 89700 distances for training, and 9,900 for testing. See Figure 5-4 for

examples from the different datasets.

Figure 5-4. Five examples from Synthetic I (left) and the CPC Precipitation dataset
(center left). Third and fourth figure: Comparison of DP (red) and our trained network
(blue). Scatter plot of relative errors for 1000 testing cases from the CPC precipitation
dataset, using a network trained on Synthetic I (center right). Corresponding correlation
plot for both methods, with exact distances on the y-axis, and estimated distances on the
x-axis, and the line y = x in green (right).

Results: First, we highlight the difference in performance between our trained

network (DL) and DP, see Table 5-II and Figure 5-4. When trained and validated

on the same type of data, the network significantly outperforms DP across all three

datasets, both in terms of the MRE and correlation coefficient with respect to the exact

distances, see Table 5-II. To demonstrate our network’s generalization capabilities, we

trained it on one type of data and tested it on a different dataset, e.g., we trained

on synthetic data but tested on CPC precipitation data. While this leads to a slight
4https://psl.noaa.gov/
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increase in prediction error, the network still outperforms DP on both measures by a

large margin, see Table 5-III.

Dataset MRE Correlation Coefficient
DP DL DP DL

Synthetic I 0.44551 0.04346 0.84307 0.96770
Synthetic II 0.45949 0.03806 0.87123 0.97053

CPC Precipitation 0.45853 0.03722 0.85452 0.96090

Table 5-II. Comparison between DP and our trained network (DL).

Training Set Testing Set MRE Correlation Coefficient
Synthetic I Synthetic II 0.05520 0.96782
Synthetic I CPC Precipitation 0.08088 0.95264
Synthetic II Synthetic I 0.05206 0.96110
Synthetic II CPC Precipitation 0.07093 0.94888

Table 5-III. Generalization results of DL across several testing sets.

5.4.4 Experiments with curves in R2

Next, we tested tested our network’s ability to predict SRV distances for curves in

two-dimensional Euclidean space.

Datasets: We used data from the MPEG-75 and Swedish leaf datasets6, which

contain images of objects whose boundaries were extracted and treated as curves in

R2, discretized with n = 100 points, see Figure 5-5. To extract discretized boundary

curves from these datasets, we binarized each image via Otsu’s algorithm, then

extracted vertices on the boundary using the Moore-Neighbor tracing algorithm,

before downsampling to n = 100 points.

We trained the network on 229162 distinct pairs of curves labelled with exact

distances from the MPEG-7 dataset, which contains a diverse array of 2D shapes

from many different shape classes, see Figure 5-5. We tested the network on two
5https://dabi.temple.edu/external/shape/MPEG7/dataset.html
6https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
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versions of the Swedish leaf dataset, called Swedish Leaf I and II respectively. Swedish

Leaf I contains curves with arc length parametrizations, i.e., discretized with n points

that are uniformly distributed across the curve. Swedish Leaf II contains “adversarial

parametrizations”, i.e., curves with n points that are far from uniformly distributed

across the curve, with many points concentrated on a small portion of the curve, see

Figure 5-6.

Figure 5-5. Five examples from the MPEG-7 dataset (left). Five examples from the
Swedish leaf dataset (right).

Figure 5-6. Example of a curve from the Swedish Leaf I dataset, where curves have
arc length parametrization (left), and from the Swedish Leaf II dataset with adversarial
parametrizations (right).
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Results: Due to the higher dimensionality and complexity of the data, the

network’s performance for 2D curves drops compared to the case of functions. However,

we still obtain a high correlation coefficient with the exact distance across both datasets,

namely 0.924 for Swedish Leaf I, and 0.917 for Swedish Leaf II. Meanwhile, the

corresponding correlation coefficient for DP distances is 0.996 for Swedish Leaf I, but

drops significantly to 0.899 for Swedish Leaf II. These observations show comparable

performance between our proposed DL framework and DP, with DP being more

accurate for curves that are already well-aligned (e.g., for those in Swedish Leaf I), and

DL being superior in terms of accuracy for data requiring larger reparametrizations

(e.g., for curves in Swedish Leaf II).

As yet another proof of concept for our DL approach, we perform an unsupervised

clustering experiment using 40 curves taken from the Swedish Leaf I dataset. These

curves are evenly distributed across four categories of leaves. We compute all pairwise

SRV distances using both our DL framework and the exact algorithm, and apply

classical multidimensional scaling (CMDS) to the resulting pairwise distance matrices

in order to obtain a projection of the dataset in R2, see Figure 5-7. While the

resulting 2D visualizations are slightly different, the procedure separates the data into

comparable clusters.

Figure 5-7. CMDS clusters of 40 curves selected from the Swedish leaf dataset using
exact distances (left) and DL distances (right).
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5.4.5 Preliminary experiments for curves in R3

Finally we present preliminary results for curves in R3.

Datasets: We use two distinct datasets of open 3D curves for the experiments:

hurricane paths from the National Hurricane Center Data Archive7 and plant roots8

from which we only keep the taproots (i.e. main stem of the roots), see Figure 5-8. All

curves were discretized with n = 100 points. We trained the network on 284622 distinct

pairs of hurricane paths, labelled with distances computed with the DP algorithm.

We validated the network on either a different testing set of hurricane paths, or on the

dataset of taproots. The reason for choosing DP distances instead of exact distances

for training the network is the high computational cost of calculating exact distances

in the situation of 3D curves.

Figure 5-8. Examples from the hurricane path dataset (top) and from the taproot dataset
(bottom).

Results: The correlation coefficient between the predicted DL and the DP

distances on the test set of hurricane paths is 0.977, but drops significantly to 0.823

when tested on taproots. This drop-off in prediction quality can be most likely

explained by the lack of sufficiently diverse samples in the training set, which limits

the network’s generalization capabilities. Moreover, another limitation of our training

data is that hurricane paths actually live on a sphere embedded in R3, and hence
7https://www.nhc.noaa.gov/data/
8https://github.com/RSA-benchmarks/collaborative-comparison
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have constrained geometrical structures, whereas the taproots do not. We expect

that enriching the training set with 3D curves displaying more varied geometries will

help to improve the network’s performance. However, due to the scarcity of publicly

available datasets of 3D curves, we leave it as future work to build a better training

set for 3D curves and invest the required computational resources to train our network

using SRV distance labels computed via the exact algorithm, as was done for functions

and 2D curves.

5.5 Optical character recognition

We now discuss the suitability of our deep learning framework in the context of

large-scale, real-world, data-driven applications. More specifically, we leverage the

framework presented in this chapter for performing optical character recognition

(OCR), which can be broadly thought of as automated image-to-text conversion. OCR

is used by practitioners in a wide variety of fields for a vast array of applications,

ranging from the digitalization of historical archives [158], to the production and

analysis of electronic medical records [159, 160], and to the development of automated

techniques for signature authentication and forgery detection [15, Chapter 1], among

many others.

5.5.1 Background

The task of performing OCR is generally considered a multi-step procedure [161],

which we detail below:

(i) Image acquisition: This first step involves the acquisition of an image file con-

taining some text. For instance, this could involve creating a PDF file containing

computer-generated text, or scanning a document containing handwritten char-

acters.
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(ii) Image pre-processing: This intermediary step might entail denoising, deblurring,

binarizing and/or enhancing the images in question. The purpose here is to

facilitate and improve the accuracy of text extraction, which is the ultimate end

goal of OCR, see e.g. [162–164] for details.

(iii) Feature extraction: This step involves the extraction of critical features for

ultimately performing text extraction. For example, it could involve the creation

of bounding boxes around individual characters in an image, which results in

the creation of small cutouts (i.e. sub-regions of the entire document being

processed) that can be used as image features for text extraction, see e.g [158]

for details, and Figure 5-10 for an illustration. Alternatively, this step could

also involve a segmentation procedure to extract contours of handwritten or

computer-generated text, thus resulting in shape-based features that can be

used in text extraction, see e.g. [15, Chapter 1] for an illustration.

(iv) Classification: This step is where the actual conversion into machine-encoded text

happens, whereby the extracted features are classified according to some criteria

into their ‘text labels’. Several classification methods have been proposed in the

literature, such as voting-based systems [165, 166], and more recently, a plethora

of deep learning approaches based on long short term memory (LSTM) networks,

recurrent neural networks (RNN), convolutional neural networks (CNN), or

connectionist temporal classification (CTC) architectures [167–169].

(v) Post-processing: Lastly, one might wish to perform some form of post-correction

on the extracted text files in order to eliminate systematic errors produced from

the previous steps, see e.g [170, 171].

We note that there are several highly-specialized lines of research in OCR. For

instance, one line of work distinguishes between OCR for handwritten text, see e.g. [169,

172, 173], as compared to digitally-generated text [158]. Furthermore, several existing
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OCR procedures can be further categorized into language-specific models, such as

English text recognition using the Roman alphabet [174], versus Hindi text recognition

using the Devanagari script [175] for instance. Some forms of OCR even focus on

specific sub-contexts of text extraction, such as paragraph-based text extraction [169]

as compared to table-content text retrieval [160]. The accuracy of all the different

existing OCR systems fluctuates quite widely [158], and to the best of our knowledge,

no known OCR procedure is able to achieve a consistently high level of accuracy on

any type of text, written in any language, for any given sub-context of text retrieval.

5.5.2 Shape-based OCR

In light of the discussion above, we propose a novel shape-based OCR procedure,

whereby we represent optical characters as planar curves, and essentially formulate the

character recognition problem as a classification problem using the SRV distance as a

classifier. Note that for the sake of simplicity, the presentation in this section will focus

on the very specific setting of individual character recognition of computer-generated

text written in the Roman alphabet.

More specifically, we consider a dictionary of labels L = {ℓ1, . . . , ℓN}, where each

ℓi is a ‘text label’ corresponding to an individual digital character in the Roman

alphabet. In particular, we have a total of N = 97 such text labels, consisting of

upper-case letters, lower-case letters, digits, and certain special characters such as

punctuation marks, parentheses, and brackets for instance, as illustrated below:

L = {‘A’, ‘a’, ‘B’, ‘b’, . . . , ‘Z’, ‘z’, ‘0’, ‘1’, ‘2’, . . . , ‘9’, ‘!’, ‘?’, . . . , ‘(’, ’)’}

For the purposes of performing OCR using shape comparison, we define a set of

templates shapes T = {ξ1, . . . , ξN}, where each ξi ∈ AC0(D,R2) is a closed planar

curve representing the outer contour of the optical character associated to text label

ℓi ∈ L. We show some examples in Figure 5-9.
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Figure 5-9. From left to right: Template shapes representing the outer contours of the
optical characters ‘u’, ‘Y’ and ‘7’.

In practice, we obtain these template shapes by performing Canny edge detec-

tion [176] on a PDF document consisting of the template characters written in Times

New Roman font, see Figure 5-10. This allows us to extract the outer contours for

each character, which we resample uniformly using n = 100 sample points, center at

the origin, and scale to unit box diameter in order to produce the template shapes.

Figure 5-10. Template database generation.

Then, given an intake document (e.g. a PDF file with computer-generated text)

containing M optical characters, and our template database T = {ξ1, . . . , ξN} of N

template shapes with their corresponding text labels L = {ℓ1, . . . , ℓN}, our approach

for performing OCR essentially consists in:
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• Extracting the outer contours of each optical character in the intake document

via Canny edge detection, and resampling each of these outer contours uniformly

using n = 100 points.

• This produces a set of intake shapes I = {χ1, . . . , χM} representing each optical

character in the input document.

• Then, for each intake character χi ∈ I, we assign it the text label ℓj ∈ L if

ξj = argminξk
distS(χi, ξk), (5.5)

where distS(χi, ξk) is the SRV distance (5.4) between intake shape χi and tem-

plate character ξk.

• Note: A crucial point here is that we compute these SRV distances via a forward

pass through a trained neural network using the architecture and methodology

proposed in Section 5.3.

Performing OCR using the procedure outlined above thus involves a total of M×N

SRV distance computations. It is therefore absolutely primordial to perform these

computations via a forward pass through a trained network in order to complete

the image to text conversion procedure in a reasonable amount of time. Indeed,

given that we have a template database of N = 97 characters, it implies that for a

relatively small intake document with M = 1000 characters for instance (which is

usually the length of a paragraph), this procedure would require 97, 000 SRV distance

computations. A typical SRV distance calculation using e.g. dynamic programming

with the fdasrsf package [177] takes anywhere between 0.1s to 1.0s. In this case,

we would thus require around 2.7 hours at best to 27 hours at worst for the OCR

procedure to be complete, which is clearly not satisfactory. On the other hand, when

computing the SRV distances via a forward pass through a trained network, the

above OCR procedure would only require a few seconds to be complete, due to the
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ability to perform computations in parallel using GPU-acceleration. In the examples

of Section 5.5.3, the whole procedure took 3.3s. Such significant gains in terms

of computation time are the main benefit of shape-analysis-inspired deep learning

approaches such as the one presented in this chapter.

5.5.3 Preliminary results and discussion

We now present a few preliminary results using the shape-based OCR procedure

introduced in this section. In particular, we compare our approach to the Tesseract

OCR engine [178], which is an open source OCR tool widely used in practice. We note

that several commercial OCR engines are available, such as Amazon Textract, Google

Document AI, Adobe PDF Services, ABBYY Cloud OCR, Microsoft Azure OCR and

Dropbox OCR [158]. However, aside from Tesseract, all the other OCR engines listed

above are cloud-based proprietary systems which are available as paid services [158],

and we thus leave a broader comparison of our framework with respect to these other

OCR tools as future work.

First, in Figure 5-11, we tested our procedure on a PDF document containing a

sentence written in standard English, in the commonly used Tahoma font. We measure

the accuracy of our procedure via the individual character error rate, defined as the

number of characters which were incorrectly labelled divided by the total number of

characters in the document. Our shape-based OCR procedure produces an error rate

of 9.52%, as compared to a 0% error rate for Tesseract.

This example, where our framework compares unfavorably with Tesseract, high-

lights a few limitations of our approach:

• We perform individual character recognition by comparing the shapes of charac-

ters in isolation, implying our method is not ‘context-aware’, i.e., is agnostic to

the fact that characters form part of words, and words form part of sentences,

and sentences form part of paragraphs and so on, which are all governed by a
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Figure 5-11. Top: Original sentence written in English using the Tahoma font. Middle:
Output of our shape-based OCR procedure, with incorrectly labelled characters highlighted
in red. Our procedure produces a 9.52% error rate. Bottom: Output of Tesseract OCR
engine, where there are no errors in this case.

certain language structure. On the other hand, models like Tesseract are context-

aware, as they use an LSTM layer to classify characters, words or sentences.

As a result, context-aware methods produce better results on sentences which

are commonly encountered in practice, such as the one in Figure 5-11. One

could however envisage a combination of shape-based OCR with context-aware

learning in order to improve the prediction accuracy of our framework.

• Moreover, our method fails to distinguish between certain lower-case and upper-

case characters, such as ‘S’ and ‘s’, or ‘O’ and ‘o’. This is due to the fact

that we scale all character shapes to unit box diameter before comparing them

via the SRV distance, see Figure 5-12 for an illustration. As a future direction,

one may use a more refined approach to standardize the scale of the template

and intake characters in order to maintain their relative scales. This could be

done e.g. by rescaling all other template and intake characters with respect to

the diameter of a fixed template character.
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Figure 5-12. Left and middle: Template shapes corresponding to ‘O’ and ‘o’ respectively,
which are indistinguishable as they have the same shape after rescaling. Right: Outer
contour representation of character ‘A’, which might be more adequately represented
using a shape graph.

• Furthermore, our method struggles to recognize certain characters whose true

shape representations consist of multiple component curves, such as the character

‘i’. Indeed, we currently represent such characters via the outer contour of their

largest component curve, as we need to represent them as single, closed curves in

order to apply our trained network for SRV distance computations. Similarly, we

are limited to representing other characters such as ‘A’ via their outer contours,

thus neglecting their inner contours, see Figure 5-12. An interesting avenue

for future work would be to represent these characters more naturally as shape

graphs, and use the machinery developed in Chapter 3 to compare such objects

via an appropriate distance measure.

As a second experiment, we tested our procedure on a PDF document containing

a sentence written in Mauritian Creole, in the Lucida Sans Typewriter font, see

Figure 5-13. The English translation of this sentence reads roughly as: “We were

not expecting that this approach would work as well as it does! It even manages

to accurately understand Creole!”. Our shape-based OCR procedure produces an

error rate of 3.2% on this example. Tesseract meanwhile produces a variety of errors,

such as incorrectly labelling characters, predicting an output sentence with missing

characters, as well as spuriously adding certain characters, see Figure 5-13 for details.
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Figure 5-13. Top: Original sentence written in Mauritian Creole using the Lucida Sans
Typewriter font. Middle: Output of our shape-based OCR procedure, with incorrectly
labelled characters highlighted in red. Our procedure produces a 3.70% error rate. Bottom:
Output of Tesseract OCR engine, where errors include incorrectly labelling characters (in
red), missing certain characters (in red with green background), and spuriously adding
characters (in red with blue background). The error rate in Tesseract’s output (not
including missing characters or erroneously added characters) is 4.94%.

This second example, in which our framework compares favorably with Tesseract

this time, highlights a few advantages of our approach:

• By basing our character recognition procedure on shape feature comparisons,

our approach is agnostic to the type of font, language or even to the script in

which the underlying text is written. This can be desirable in settings such as

Figure 5-13, where we have used text written in a very rare language (Mauritian

Creole), written in a font that is not commonly encountered in practice (Lucida

Sans Typewriter). In these settings, methods such as Tesseract will struggle, as
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such models have most likely rarely been trained on documents written in such

languages or fonts.

• Furthermore, our method will always preserve character (or word) counts, and

thus will never produce errors such as missing characters or adding erroneous

characters, which might occur in context aware models such as Tesseract.

5.6 Conclusion and outlook

We have introduced a supervised deep learning framework to compute SRV distances

for curves in Rd. The main advantage of our approach is that our trained netowrk

provides fast and accurate estimates of the quotient SRV distance between pairs of

geometric curves, without the need to find optimal reparametrizations. Moreover,

our experiments show that when compared to dynamic programming, our approach

produces SRV distance estimates at a significantly lower numerical cost, while also

being comparable, and sometimes superior, in terms of accuracy. We also showed

how our framework has the potential to be useful as part of large-scale data-driven

applications such as OCR, where our method provided significant gains in terms of

computation time while maintaining adequate levels of accuracy.

Yet, our approach has several limitations. For instance, we enforce reparametriza-

tion and rotation invariance via data augmentation. While being a flexible and

convenient procedure for creating and augmenting our training set, our data aug-

mentation strategy can be considered sub-optimal, as it fails to guarantee a truly

invariant prediction from the trained network. A more principled approach would be

to embed these invariances into the framework by directly training the network using a

reparametrization or rotation invariant shape representation as input, and/or by using

a carefully chosen network architecture that parameterize classes of functions that are

invariant with respect to certain groups (e.g. translations, rotations, permutations)
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that act on the inputs of the network, see [179].

Another avenue for future work is to develop deep learning frameworks for predicting

distances (or even geodesics or Karcher means) for a wider class of geometric objects,

such as shape graphs or surfaces, see e.g. [180]. Training data for such frameworks can

be generated using the tools discussed in Chapter 3 or Chapter 4. Indeed, performing

computations with a wider class of shapes using trained neural networks would allow

us to benefit from significant reductions in computation time, which could in particular

enable us to extend the reach of shape analysis techniques for novel applications with

shape data in new application areas.
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Chapter 6

Astronomical imaging

In the final chapter of this thesis, we discuss an early roadmap for the application of

elastic shape analysis techniques in the field of astronomy. Indeed, several problems

in astronomy have the potential to be addressed using the frameworks introduced in

the previous chapters. This includes supernova classification via comparison of their

light curves [181], or automated detection and classification of tidal features around

galaxies using shape-based clustering methods [182], see Figure 6-1 and Figure 6-2

for an illustration. Yet, the main roadblock to the application of shape analysis

frameworks for such tasks is the highly non-trivial extraction of shape data in the

field of astronomy, which is mainly a result of the paucity of high signal-to-noise ratio

astronomical imaging data, caused by large noise denominated regions, heavy blur and

missing pixel values in the images. To address the difficulty of extracting geometric

objects from astronomical imaging data, we present a state-of-the-art expectation-

maximization approach for the challenging task of multi-frame astronomical image

deconvolution and super-resolution. We leverage our approach to obtain a high-fidelity

reconstruction of the night sky, from which high quality shape data can be extracted

using appropriate segmentation techniques, thus paving the way for the application of

shape analysis frameworks in astronomy. Preliminary results from this chapter were

published in [183].

170



Figure 6-1. Supernovae may be distinguished based on the shape of their light curves
(which refers to the light intensity of a celestial object as a function of time). The light
curves corresponding to supernovae of Type IA (left) all share a common ‘shape’, similarly
to those of Type II (right). Data taken from the simulated PLAsTiCC dataset [184].

Figure 6-2. The detection and classification of tidal features around galaxies is a central
task as their characterization gives valuable information about the past assembly history of
their host galaxy. One may exploit patterns in the ‘shape’ of these features to automate this
classification process, which is usually done manually and takes a non-negligible amount of
time [182]. Images depict the process of manually annotating these tidal features from
astronomical exposures (top), and the resulting shape representations of these features
(bottom). Pictures taken from [182].
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6.1 Background and related work

The recent introduction of high-resolution detectors in astronomical projects has

led to rapid growth in both data volume and complexity in the field of astronomy,

making it one of the most data-intensive fields of study today. Of particular interest

to us are modern astronomy surveys where dedicated ground-based telescopes capture

repeated observations of vast portions of the sky, such as the Hyper Suprime-Cam

(HSC) survey [36] and the upcoming Legacy Survey of Space and Time from the Rubin

Observatory [185]. These ground-based surveys produce large volumes of wide-field,

deep-sky images from which one can extract expansive amounts of information about

celestial sources and the changes they undergo over time.

A key step in processing such imaging data involves combining multiple ground-

based exposures captured by the telescopes into a single, sharp and high-fidelity

image of the night sky with improved spatial resolution. However, producing such a

reconstruction is not straightforward. Indeed, this task is typically complicated by

several factors, chief among them being the varying levels of blur from exposure to

exposure caused by changes in the atmosphere, airmass, and in the parallactic angle

of observation. Other obstacles include the low signal-to-noise ratio of the exposures,

their high dynamic range, and the presence of spurious or missing pixel values in the

images due to instrument malfunction or occlusions in the telescope’s field of view.

With the advent of modern surveys, where a single exposure can contain up to tens

of millions of pixels, the sheer size and high-dimensionality of the imaging data also

becomes a major hindrance.

Despite these hurdles, the development of reliable, robust and scalable algorithms

for multi-frame reconstruction of the night sky remains a crucial component in modern

ground-based astronomical image processing pipelines. In what follows, we briefly

highlight several existing methods which have been proposed for this challenging task.
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First, there is lucky imaging, which is perhaps the simplest method employed in

practice. The lucky imaging approach involves choosing the sharpest observations,

i.e., those with the lowest levels of blur, and subsequently adding them up to obtain

a reconstruction [186–188]. However, this technique typically involves selecting the

exposures whose associated point-spread functions (PSFs) have the best Strehl ratios

for the reconstruction. This results in over 90% of the original data being discarded,

which produces restored images with a lower signal-to-noise ratio than most of the

input exposures.

Another widely used method is coadding, where reconstructions are produced by

computing a pixel-by-pixel weighted average, mean or median of the multiple input

exposures [189, 190]. Coadding suppresses noise and outliers, resulting in restorations

with higher signal-to-noise ratios. However, since the input images have different blurs,

one first needs to convolve them with the worst acceptable PSF before combining the

pixel values, which produces a reconstruction that is blurrier than most of the input

exposures.

Furthermore, a plethora of so-called deconvolution and blind deconvolution tech-

niques have also been used for multi-frame astronomical image reconstruction. As part

of these approaches, we are given a set of ground-based exposures of the same part of

the sky y≡{y(1), . . . , y(n)}, where each exposure y(t) is modelled as the convolution

of a common latent image of the sky x with a PSF f (t), plus an additive noise term

η(t); see Section 6.2 for details. In this setting, obtaining a reconstruction of the

night sky amounts to estimating x (the unknown, true latent image of the sky). The

process of estimating this latent image when the PSFs f≡{f (1), . . . , f (n)} are known

is referred to as deconvolution, and in contrast, estimating both the latent image of

the sky and the PSFs when the latter are also unknown is called blind deconvolution.

Many approaches have been proposed for astronomical image deconvolution, such as

Bayesian methods based on maximum likelihood and maximum a posteriori estimation,
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as well as Fourier and wavelet-based deconvolution procedures, see the survey by [191]

for a comprehensive overview. Meanwhile, many multi-frame blind deconvolution

approaches rely once again on maximum likelihood estimation techniques [192–194].

We point out that in the context of the aforementioned maximum likelihood

estimation (MLE) approaches, obtaining a reconstruction of the night sky amounts

to estimating x (the true latent image of the sky) by finding an image x̂, called a

maximum likelihood estimate, which is most likely to have generated the observed

exposures y. The computation of x̂ is typically framed as an optimization problem

where one optimizes a log-likelihood function, which is derived based on assumptions

on the distribution of pixel values in the additive noise terms η(t), see Section 6.3

for details. For instance, a Poisson assumption on the noise term leads to the

well-known Richardson-Lucy algorithm and its variants [195–197], while a Gaussian

noise assumption (with constant variance across pixels) leads to the so-called Image

Space Reconstruction algorithm (ISRA) and its variants [198, 199]. Thus, different

distributional assumptions on the noise terms lead to different (blind) deconvolution

procedures, implying that MLE-based techniques provide a flexible, data-driven

framework for obtaining reconstructions of the night sky and estimating blurs.

Yet, these MLE-based methods suffer from important shortcomings. Indeed, they

usually fail to result in physically meaningful reconstructions of the sky when the

optimization procedure is unconstrained [192]. For instance, these methods often

yield unwanted artifacts in the restored image, such as ringing caused by the Gibbs

phenomenon [191], which in turn limits the interpretability of the restored data by

restricting our ability to use it for accurate photometric tests. In response, several

methods attempt to constrain MLE-based (blind) deconvolution procedures via the

addition of penalty terms when optimizing the log-likelihood function, giving rise

to the so-called penalized maximum likelihood estimation techniques [192], or via

the addition of regularizers on the maximum likelihood estimate via handcrafted
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priors on the distribution of its pixel values, leading to the so-called maximum a

posteriori (MAP) estimation techniques [191]. Penalized maximum likelihood and

MAP techniques constrain the set of feasible choices for the reconstruction x̂, which

can produce physically meaningful restorations. However, one usually needs to employ

computationally expensive minimization algorithms to optimize the penalized or

regularized log-likelihood function, which results in procedures whose computational

cost scales poorly as the input exposures increase in size and dimension. In particular,

such methods are impractical for processing 4K by 4K images, which is the resolution

of exposures typically captured by modern astronomy surveys such as the HSC

survey [36].

More recently, streaming methods for multi-frame (blind) deconvolution based

on the expectation-maximization (EM) algorithm have been introduced [200–204].

Such frameworks can be used for jointly performing (blind) deconvolution and super-

resolution, which refers to the process of improving the spatial resolution of the

reconstruction of the night sky. Similarly to MLE approaches, EM-based methods aim

to find the latent image (and possibly the PSFs) that optimize a given log-likelihood,

with the method of [203] in particular employing likelihood functions derived from

robust statistics. The key difference between the two frameworks lies in the approach

for optimizing the log-likelihood. While MLE techniques directly seek to optimize

the log-likehood function, usually via variants of the (stochastic) gradient descent

algorithm, EM approaches operate by performing descent on an auxiliary function of

the (negative) log-likelihood function, see Section 6.4 for additional details. The key

advantage of these EM-approaches is that for a wide range of log-likelihood functions,

we obtain an iterative multiplicative update procedure for estimating the unknown

latent image x̂ (and the PSFs in the case of blind deconvolution). This is particularly

beneficial in the setting of astronomical image reconstruction, as the computational

cost of the multiplicative update procedure scales well with respect to the size of the
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input exposures, and also easily allows one to enforce desired physical constraints such

as non-negativity of pixel values in the restored image of the sky. Yet, these methods

still face challenges in the context of modern surveys, largely due to the sheer size of

the imaging data (e.g. when exposures contain tens of millions of pixels), and also due

to the low signal-to-noise ratio of the exposures (e.g. when exposures contain large

numbers of erroneous or missing pixel values).

6.1.1 Contributions

Inspired by the aforementioned EM-based streaming approaches, we develop a new,

robust expectation-maximization framework for fast, scalable and high-fidelity multi-

frame astronomical image (blind) deconvolution and super-resolution. Our method

addresses the shortcomings of other existing approaches, rendering it a viable candidate

for usage in modern astronomical survey software pipelines.

Our method is computationally efficient and scalable, and our TensorFlow imple-

mentation is modular and flexible, benefitting from advanced algorithmic solutions

that seamlessly allow users to leverage Graphical Processing Unit (GPU) acceleration.

The testbed for our method is a set of 4K by 4K Hyper Suprime-Cam exposures, which

are closest in terms of quality to imaging data from the upcoming Rubin Observatory.

The preliminary results are extremely promising: from our reconstructed images, we

recover unprecedented details such as the shape of the spiral arms of galaxies, while

also managing to deconvolve stars perfectly into essentially single pixels. With such

high-fidelity reconstructions in hand, one can envisage extracting geometric data using

appropriate segmentation techniques and photometric tools, which thus paves the way

for the application of shape analysis techniques for performing tasks such as supernova

classification or automated shape-based galaxy classification.
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6.2 Modeling the imaging data

We start by describing the general model for our imaging data. Suppose we are given

a set of ground-based exposures of the same part of the sky y≡{y(1), . . . , y(n)}, as well

as corresponding point-spread functions (PSFs) f≡{f (1), . . . , f (n)}, variance images

v≡{v(1), . . . , v(n)} and masks m≡{m(1), . . . ,m(n)} for each exposure. Entries of the

variance images, denoted v
(t)
ij , represent the variance of photon counts measured at

each pixel in each exposure. Additionally, entries of the masks, denoted m
(t)
ij , are

binary variables which encode whether corresponding pixel values in the exposures,

y
(t)
ij , are acceptable measurements, i.e.,

m
(t)
ij =

⎧⎨⎩1, if y(t)
ij is an acceptable measurement,

0, otherwise.
(6.1)

Note that the collection of exposures together with their associated PSFs, variance

images and masks corresponds to a typical set of data products obtained from software

pipelines of modern surveys, see e.g. Figure 6-3 for HSC survey data.

Figure 6-3. Hyper Suprime-Cam data. Left: We are given a set of n = 33 exposures y≡
{y(1), . . . , y(n)}, each of size 4K by 4K pixels, and corresponding PSFs f≡{f (1), . . . , f (n)}
of size 43 by 43 pixels (bottom). Right: An exposure y(t) (top), with corresponding mask
m(t) whose entries are binary, with pixels where m(t)

ij = 1 colored in white (middle), and
corresponding variance image v(t).
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We model each observed exposure y(t) as the convolution of a common latent image

of the sky, denoted x, with the PSF f (t), plus an additive noise term η(t) which models

the measurement error in the exposure. We emphasize that the PSFs and noise terms

can vary from exposure to exposure, while the latent image of the sky is common

across all exposures. Taking into account information from the masks, the model for

each pixel value in each exposure, denoted y
(t)
ij , is thus given by

y
(t)
ij =

⎧⎨⎩
(︂
f (t)∗ x

)︂
ij

+ η
(t)
ij , if m(t)

ij = 1,
0, otherwise.

(6.2)

In this model, pixel values in the noise terms η(t)
ij are assumed to be independently drawn

samples from some probability distribution P , whose variances under this distribution

are given by the corresponding entries in the variance images, i.e., Var(η(t)
ij ) = v

(t)
ij .

6.3 Maximum likelihood estimation

We now briefly review theoretical background on maximum likelihood techniques for

astronomical image deconvolution. Note that in this section, we focus on the situation

in which the PSFs are known, i.e., the deconvolution setting. We will address blind

deconvolution in Section 6.5.3.

In this setting, and under the assumption that our imaging data is modelled

according to (6.2), the task of reconstructing an image of the sky becomes a multi-

frame deconvolution problem where the goal is to find the unknown latent image x.

This can be done via maximum likelihood estimation, which involves finding an image

ˆ︁x, called a maximum likelihood estimate, that is most likely to have generated the

observed exposures y and the PSFs f under our model. To find ˆ︁x, we minimize the

(negative) log-likelihood of the pixel values of x given the data (i.e., the exposures y

and PSFs f):

ˆ︁x = argmin
x≥0

L (x | y, f). (6.3)
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The specific functional form of the log-likelihood depends on the distribution P of

the noise terms, and we will discuss a specific example in Section 6.5. Moreover, note

that the minimization in (6.3) takes place over the set of all images with non-negative

pixel values. We impose this non-negativity constraint in order to obtain physically

meaningful maximum likelihood estimates in which pixels representing the sky have

value zero, and where pixels representing sources (e.g. stars, galaxies) have positive

values. Typically, this constrained minimization is performed via (stochastic) gradient

descent, which converges slowly and often to undesirable local minima especially when

the size of imaging data is large, often resulting in inadequate reconstructions [191].

6.4 Expectation-maximization

Consequently, one can instead solve (6.3) using an expectation-maximization (EM)

approach. Rather than directly minimizing the (negative) log-likelihood function

L (x | y, f), this approach instead involves minimizing an auxiliary function that

majorizes the log-likelihood, i.e., a function ℓ(x; x̃) which has the following property

for all x, x̃:

ℓ(x; x̃) ≥ ℓ(x;x) = L(x | y, f). (6.4)

With this auxiliary function in hand, one can indirectly minimize the log-likelihood

by picking an initial guess for x̂, denoted by x0, and constructing the following sequence

of iterates

xk = argmin
x≥0

ℓ (x;xk−1) (6.5)

until some convergence criteria is met. With an appropriate choice of initialization,

this sequence converges to a maximum likelihood estimate. This follows by noting

that update rule (6.5) and the properties of the auxiliary function in (6.4) guarantee

that the (negative) log-likelihood decreases at each successive iteration:

L (xk−1 | y, f) = ℓ (xk−1;xk−1) ≥ ℓ (xk;xk−1) ≥ ℓ (xk;xk) = L (xk | y, f) .
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6.5 Astronomical image reconstruction framework

Equipped with the background from the previous sections, we now present our novel

EM framework for multi-frame astronomical image reconstruction and its extensions

for performing super-resolution and blind deconvolution.

6.5.1 Multi-frame deconvolution via expectation-maximization

The starting point for our framework is the derivation of the distribution P of pixel

values in the noise terms η(t)
ij . The key observation is that while photon counts

in the raw exposures follow a Poisson distribution, the large number of photons

allows us to model pixel values in the sky-subtracted images as independent Gaussian

random variables with zero mean and variances given by v
(t)
ij . Thus, we have that

η
(t)
ij ∼ N

(︂
0, v(t)

ij

)︂
.

As a result, based on our modeling assumption for the imaging data from (6.2)

(above), the log-likelihood of the pixel values of x given the data takes the form

L(x | y, f) =
n∑︂
t=1

∑︂
i,j

[︃
w

(t)
ij ·

(︃
y

(t)
ij −

(︂
f (t)∗ x

)︂
ij

)︃]︃2

=
n∑︂
t=1

∑︂
i,j

[︃
w

(t)
ij ·

(︃
y

(t)
ij −

(︂
F (t)x

)︂
ij

)︃]︃2
,

(6.6)

with w(t)
ij ≡ m

(t)
ij

/︃√︂
v

(t)
ij . Note that in the expression above, we have used the fact that

convolution is a linear operation to rewrite f (t)∗ x = F (t)x, where F (t) is the linear

operator corresponding to the PSF f (t); see [201] for additional details.

In the context of our model for the exposures given in (6.2), where the log-likelihood

is given by (6.6), the following auxiliary function satisfies property (6.4):

ℓ(x; x̃) =
n∑︂
t=1

∑︂
i,j

(︃
ω(t) ⊙

[︃
y(t)⊤

y(t) − 2y(t)⊤
F (t)x+ x̃⊤F (t)⊤

F (t)
(︃
x⊙ x

x̃

)︃]︃)︃
ij
, (6.7)

where ω
(t)
ij := m

(t)
ij /v

(t)
ij , and where the multiplication ⊙ and division are defined

element-wise.
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Equipped with this auxiliary function, we obtain the following closed-form expres-

sion for the expectation-maximization update rule from (6.5):

xk = xk−1 ⊙

⎛⎜⎝
∑︁n
t=1 ω

(t) ⊙
(︂
F (t)⊤

y(t)
)︂

∑︁n
t=1 ω

(t) ⊙
(︂
F (t)⊤

F (t)xk−1
)︂
⎞⎟⎠ . (6.8)

This follows by setting ∇xℓ(x;xk−1) = 0 and solving for x. The update rule above

allows us to minimize (6.6) via expectation-maximization, and is thus at the heart

of our EM framework for multi-frame astronomical image deconvolution, which we

summarize below in Algorithm 8.

Algorithm 8 EM algorithm for multi-frame astronomical image deconvolution
procedure Multiframe_Deconvolution(y, f, v,m, x0, N)
y≡{y(1), . . . , y(n)} : exposures
f≡{f (1), . . . , f (n)} : point-spread functions (PSFs)
v≡{v(1), . . . , v(n)} : variance images
m≡{m(1), . . . ,m(n)} : masks
x0: initial guess for reconstruction of the night sky
N : maximum number of iterations

Set ω(t) = m(t)/v(t) for each t = 1, . . . , n

Initialize ˆ︁x = x0

for k = 1, . . . , N

uk =
∑︁n

t=1 ω
(t)⊙
(︂
F (t)⊤

y(t)
)︂

∑︁n

t=1 ω
(t)⊙(F (t)⊤

F (t)ˆ︁x)
ˆ︁x = ˆ︁x⊙ uk

return ˆ︁x
A few aspects of our EM approach are worth highlighting. Firstly, updating the

current iterate for the reconstruction using formula (6.8) only involves element-wise

multiplication of its pixel values with the update matrix uk defined in Algorithm (8),

resulting in a procedure that scales well with respect to the size of the imaging data

being processed. Secondly, if we start with an initial guess x0 having strictly positive
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pixel values, the multiplicative update formula guarantees that all of our subsequent

iterates (and hence our reconstruction ˆ︁x) contains non-negative pixel values. This is

highly desirable as it speeds up convergence to a high-fidelity, physically meaningful

reconstruction of the night sky. Indeed, numerical experiments demonstrate that

performing the procedure for as few as N = 100 iterations provides high quality

reconstructions with an appropriate choice of initialization, see Section 6.6 for details.

We note that a simple yet effective initialization strategy is to first compute the mean

(or median) of the input exposures, i.e., x̄ = 1
n

∑︁n
t=1 y

(t), and define x0 by replacing

non-positive pixel values in x̄ with a constant ϵ > 0 to ensure non-negativity, i.e.,

setting the pixels of x0 as

(x0)ij =

⎧⎨⎩x̄ij, if x̄ij > 0,
ϵ, otherwise.

(6.9)

Moreover, while our procedure is closely related to the approaches of [200–202], a

key difference is that we process all frames y≡{y(1), . . . , y(n)} simultaneously when

updating our estimate for the latent image ˆ︁x, while their updates are performed in a

streaming manner by processing each frame one at a time. Streaming can be desirable

in settings where processing memory is limited, but the resulting reconstruction

depends on the order in which input exposures are processed. This is undesirable in

settings where one has access to a limited number of exposures, or in regimes where

the exposures have very low signal-to-noise ratios.

6.5.2 Extensions: Super-resolution

We now present an extension of our framework for performing super-resolution, which

refers to the process of improving the spatial resolution of the reconstruction of the

night sky. More precisely, this involves finding a “super-resolved” version of the latent

image of the sky x, denoted by x∆, whose resolution is higher than that of x by a

factor of ∆ > 1.
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To perform super-resolution, we consider a modified version of the model from (6.2):

y
(t)
ij =

[︂
D∇

(︂
h(t)∗ x∆

)︂]︂
ij

+ η
(t)
ij , where η

(t)
ij ∼ N

(︂
0, v(t)

ij

)︂
, (6.10)

where h ≡ {h(1), . . . , h(n)} are “super-resolved” versions of the given PSFs f ≡

{f (1), . . . , f (n)}, and D∇ is the down-sampling operator which reduces the resolu-

tion of an image by a factor ∆ > 1.

We self-consistently compute each h(t) by solving the following minimization

problem:

h(t) = argmin
h≥0

∑︂
i,j

(︃[︂
D∇(h ∗ g)

]︂
ij

− f
(t)
ij

)︃2
+ λ (∇h)2

ij , (6.11)

where g is a fixed Gaussian PSF with width ∆ > 1, λ > 0 is a balancing hyper-

parameter, and (∇h)ij denotes the gradient of PSF h at pixel (i, j). This computation

yields PSFs h(t) with a resolution ∆ times higher than f (t), where the down-sampled

version of h(t) is ‘close’ to f (t) (in an L2 sense) up to a convolution with a small

Gaussian PSF g. The addition of the gradient ∇h in the objective function above is

intended in order to obtain smooth super-resolved PSFs h(t), which help to obtain

physically interpretable reconstructions ˆ︁x.

To perform multi-frame deconvolution and super resolution jointly, we simply use

the super-resolved PSFs h and corresponding up-sampled versions of the exposures y∆,

masks m∆ and variance images v∆ (rather than the original PSFs f and exposures

y, masks m and variance images v) as inputs for the EM algorithm for multi-frame

astronomical image deconvolution described in Algorithm 8. We note that in practice,

we obtain y∆, m∆ and v∆ by sub-dividing the pixels in y,m and v by a factor of

∆ > 1.

6.5.3 Extensions: Blind deconvolution

We now outline how to generalize Algorithm 8 for performing blind deconvolution.

Recall that blind deconvolution refers to the process of estimating both the latent
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image of the sky and the PSFs when the latter are also unknown. In our approach for

blind deconvolution, we once again model the exposures according to (6.2), treating

both the latent image of the sky x and the PSFs f≡{f (1), . . . , f (n)} as unknowns. To

perform blind deconvolution, we seek estimates for the latent image and these PSFs,

denoted ˆ︁x and ˆ︁f≡{ ˆ︁f (1), . . . , ˆ︁f (n)} respectively, which are computed as the minimizers

of the joint (negative) log-likelihood of the pixel values of x and f given the data (i.e.,

the exposures y):

ˆ︁x, ˆ︁f = argmin
x≥0, f≥0

L (x, f | y). (6.12)

Here, the minimization takes place jointly over the set of all images and PSFs with

non-negative entries. Based on the modelling assumptions in (6.2), the expression for

the joint log-likelihood to be minimized in (6.12) is given by

L(x, f | y) =
n∑︂
t=1

∑︂
i,j

[︃
w

(t)
ij ·

(︃
y

(t)
ij −

(︂
f (t)∗ x

)︂
ij

)︃]︃2

=
n∑︂
t=1

∑︂
i,j

[︃
w

(t)
ij ·

(︃
y

(t)
ij −

(︂
F (t)x

)︂
ij

)︃]︃2
,

(6.13)

with w(t)
ij ≡ m

(t)
ij

/︃√︂
v

(t)
ij . Note that this expression is identical to the one in (6.6), with

the only difference being that both the latent image x and the PSFs f are now treated

as variables in the expression above. To perform the minimization in (6.12), we once

again refrain from directly optimizing the joint log-likelihood, and instead employ a

coordinate-descent expectation-maximization procedure. At a high level, this approach

involves iteratively alternating between:

(i) Fixing our current iterates for the PSF estimates ˆ︁f and updating our guess for

ˆ︁x via the multiplicative update formula (6.8), and

(ii) Fixing the updated guess for ˆ︁x, before updating our iterates for the PSFs using

a multiplicative update formula akin to (6.8).

This approach is summarized in Algorithm (9) below.
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Algorithm 9 EM algorithm for multi-frame astronomical image blind deconvolution
procedure Multiframe_Blind_Deconvolution(y, v,m, x0, f0, N)
y≡{y(1), . . . , y(n)} : exposures
v≡{v(1), . . . , v(n)} : variance images
m≡{m(1), . . . ,m(n)} : masks
x0: initial guess for reconstruction of the night sky
f0 ≡{ ˆ︁f (1)

0 , . . . , ˆ︁f (n)
0 }: initial guess for PSF estimates

N : maximum number of iterations

Set ω(t) = m(t)/v(t) for each t = 1, . . . , n

Initialize ˆ︁x = x0, and ˆ︁f = f0

for k = 1, . . . , N
uk =

∑︁n

t=1 ω
(t)⊙(ˆ︁F (t)⊤y(t))∑︁n

t=1 ω
(t)⊙(ˆ︁F (t)⊤ ˆ︁F (t)ˆ︁x)

ˆ︁x = ˆ︁x⊙ uk

for t = 1, . . . , n
ν(t) = ω(t) ⊙

(︃ ˆ︁X⊤y(t)ˆ︁X⊤ ˆ︁X ˆ︁f (t)

)︃
ˆ︁f (t) = ˆ︁f (t) ⊙ ν(t)

return ˆ︁x, ˆ︁f≡{ ˆ︁f (1), . . . , ˆ︁f (n)}

We note that in the context of modern surveys, PSFs are usually part of the set of

data products that are made available to users, and thus, blind deconvolution will

usually not be needed in practice. However, Algorithm 9 might be interesting and

useful as a tool for potentially generating PSFs as part of the data pipelines of modern

surveys, or as a tool for validating the PSFs that are given to users. It should also be

noted that the procedure above for estimating unknown PSFs will have difficulties

when there are a limited number of exposures available, or when the the signal-to-noise

ratio of the exposures is extremely low, both of which are scenarios that one might

plausibly encounter in practice. We shall therefore not explore blind deconvolution in

great depth in this thesis, and instead leave it as future work to adapt or modify the

procedure proposed above in order to strengthen it.
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6.6 Numerical experiments

Figure 6-4. Comparison: Selected cutouts of the same part of the sky from an original
exposure (top left), versus a “sample mean” co-add (top right) versus a restored imageˆ︁x obtained from our EM approach using Algorithm 8 without super-resolution (bottom
left), and another restored image ˆ︁x∆ with super-resolution factor ∆ = 2 (bottom right).
Our method deblurs a wide array of sources, such as spiral arm and elliptical galaxies,
and stars of varying sizes and shapes as well as small, faint sources. The reconstructions
(bottom row) contain none of the usual unwanted artifacts (e.g ringing, speckles, noise in
the sky background). As a result, we obtain high-fidelity images where e.g., the pixels are
non-negative, the sky-background has zero pixel values, and the number and relative sizes,
shapes and fluxes of the sources is preserved. Overall, the method produces a physically
meaningful restored image of the night sky which is suitable for photometry, especially
when super-resolution is used.

We implemented Algorithm 8 and Algorithm 9 in TensorFlow, which we chose for

two reasons: (i) it is a flexible, open-source package which allows for rapid, modular

algorithm development, including further extensions of the framework, and (ii) it

allows us to seamlessly leverage GPU acceleration, thus making it particularly well-
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suited for handling very large, high dimensional imaging data while maintaining fast

processing times. In particular, we are able to perform our multiplicative EM updates

with GPU-acceleration, resulting in very fast processing times. Moreover, we use the

built-in implementation of the Adam algorithm to obtain the super-resolved PSFs

by solving (6.11), where once again, this can be performed via GPU-acceleration for

ultra-fast processing times despite the very high-dimensionality of the problem. With

GPU-acceleration, it takes 60 seconds on average to perform multi-frame deconvolution

and super-resolution with n = 33 exposures each of size 1000 by 1000 pixels, where

we run the multiplicative update procedure for N = 100 iterations.

To demonstrate the viability of our framework for obtaining physically meaningful

reconstructions of the night sky, we tested our method on a set of n = 33 exposures

from the HSC telescope, see Figure 6-3 for details about the data. In the results

presented in this section, we compare (i) a raw exposure, versus (ii) a naive “sample”

mean co-add (computed as the mean of all n exposures), versus (iii) a reconstruction

ˆ︁x obtained using Algorithm 8 without super-resolution, and finally (iv) another

reconstruction ˆ︁x∆ obtained using a super-resolution factor of ∆ = 2. In particular, we

obtain promising results in which:

(i) We recover sharp details in complex sources (e.g. the detailed shape of spiral

arms of certain galaxies), and none of the usual artifacts are present in the recon-

structions (e.g no ringing, speckles, or noise in the sky background), especially

when super-resolution is used, see Figure 6-4.

(ii) Small, faint sources are present and detectable, see Figure 6-5.

(iii) Preliminary photometric tests demonstrate that we obtain physically meaningful

reconstructions in which almost all sources detected in the co-add are also present

in the reconstruction ˆ︁x, and where the relative fluxes (brightness) of different

sources in the reconstruction are preserved, see Figure 6-6.
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Figure 6-5. Comparison: Selected cutouts of the same part of the sky from an original
exposure (top left), versus a “sample mean” co-add (top right) versus a restored image ˆ︁x
obtained from our EM approach using Algorithm 8 without super-resolution (bottom left),
and another restored image ˆ︁x∆ with super-resolution factor ∆ = 2 (bottom right). Our
method produces high-fidelity reconstructions (bottom row) in which small, faint sources
are present and detectable, which is ideal for photometry.

Figure 6-6. Left: Source detection in the co-add (red ellipses) and EM reconstruction ˆ︁x
(blue ellipses) overlayed on ˆ︁x. Right: Scatter plot of flux (brightness) of each associated
detected source from the co-add and ˆ︁x, overlayed on a plot of the line y = x (in red).
The x-axis represents the flux of sources in the co-add and the y-axis represents the flux
of those in ˆ︁x. The axes are log scale. The scatter plot is concentrated around the line
y = x, indicating that the fluxes in both the co-add and ˆ︁x are comparable.
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6.7 Conclusion and outlook

In this chapter, we developed a new, flexible expectation-maximization framework for

fast, scalable and high-fidelity multi-frame astronomical image (blind) deconvolution

and super-resolution. We leveraged our method to produce a physically meaningful

high-quality reconstruction of the night sky using exposures from the Hyper Suprime-

Cam survey.

As next steps, one can envisage extracting high quality geometric data from this

reconstruction using appropriate segmentation techniques and photometric tools, thus

paving the way for the application of shape analysis techniques in order to perform

tasks such as supernova classification or automated shape-based galaxy classification.

As future work, one can also incorporate improved sky-background subtraction in

the framework by adding an additional variable in (6.2) that models e.g. a bi-cubic

gradient in the sky background. This could further strengthen the quality of the

reconstruction of the night sky. Additionally, one can also incorporate robust statistics

in the model by using distributions with heavier tails for the noise terms in (6.2),

which should in theory improve the reconstructions in the presence of extreme outliers

(e.g. satellite trails) in the exposures.

As yet another direction for future work, one can envisage an alternative approach

for coming up with reconstructions of the night sky using deep generative priors [205].

In this framework, the goal is to learn the inverse mapping that takes the noisy,

blurry exposures as input, and returns the clean, restored reconstruction of the

night sky as output. This is done by parametrizing this mapping using a carefully

chosen neural network architecture, implying that one can perform multi-frame (blind)

deconvolution by training the network. This unsupervised approach for performing

blind deconvolution has yielded promising results in [206], and deserves further

consideration.
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Conclusion and future directions

To conclude this thesis, let us first summarize the work presented in all of the previous

chapters.

We introduced a variational framework and several numerical algorithms for the

estimation of geodesics and distances induced by higher-order elastic Sobolev metrics

on the space of parametrized and unparametrized curves and surfaces. Importantly,

we extended this framework to the setting of shape graphs and surfaces with complex

topological structures and/or partial correspondences. The key to doing so was the

flexible varifold-based relaxation term, which allowed us to define a spatially-varying

weight function on the source shape, that in turn enabled us to handle partial matching

constraints and indirectly model topological changes via the estimation of vanishing

weights during the registration process. In the setting of shape graphs, we proved

the existence of solutions to the relaxed registration problem with weights, which

was the main theoretical contribution of this thesis. In the setting of surfaces, we

leveraged our surface matching algorithms to develop a comprehensive collection of

numerical routines for the statistical shape analysis of sets of 3D surfaces, which

included algorithms to compute Karcher means, perform dimensionality reduction via

multidimensional scaling and tangent PCA, and estimate parallel transport across

surfaces.

Moreover, we introduced a supervised deep learning framework to compute SRV

distances for curves in Rd. The main advantage of this approach was that our trained

network provides fast and accurate estimates of the SRV distance between pairs of
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geometric curves, without the need to find optimal reparametrizations. Experiments

showed that when compared to the widely-used dynamic programming (DP) approach,

our method produced SRV distance estimates at a significantly lower numerical cost,

while also being comparable, and sometimes superior, in terms of accuracy. As a

proof of concept, we also showed how such methods have the potential to be used as

part of large-scale data-driven applications, such as OCR, by providing significant

computational gains while maintaining adequate levels of accuracy.

Lastly, we developed a new, robust expectation-maximization framework for

fast and scalable multi-frame astronomical image (blind) deconvolution and super-

resolution. Our method produces high-fidelity reconstructions of the night sky, with

which one can envisage extracting geometric data using appropriate segmentation

techniques and photometric tools, which thus paves the way for the application of

shape analysis techniques for performing tasks such as supernova classification or

automated shape-based galaxy classification.

The work achieved so far opens up further avenues for future work, which we

outline below.

Firstly, while we have existence results for the varifold-based relaxed registration

problem for (weighted) shape graphs, no such results have yet been established for

the equivalent problem on the space of surfaces. Obtaining these existence results,

which is tied to the difficult problem of establishing geodesic completeness of invariant

Sobolev metrics on the shape space of surfaces, could form the basis of a future body

of work.

Furthermore, another line of future work could involve the development of more

general and more refined deep learning frameworks for computing quantities such

as geodesics, geodesic distances, Karcher means or parallel transport with datasets

of curves, shape graphs or surfaces. Indeed, this would allow us to benefit from

significant reductions in computation time, which could in particular enable us to
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extend the reach of shape analysis techniques for novel applications with shape data

in new application areas. Training data for such frameworks could be generated e.g.

using the methods developed in Chapter 3 and Chapter 4. However, the design and

regularization of neural network architectures for such deep learning problems will

need to be done in a principled manner in order to guarantee all the symmetries and

invariances with respect to the action of the groups of interest in shape analysis.

Finally, another more applied direction for future work involves the rigorous

application of shape analysis techniques for large-scale data-centric problems such as

optical character recognition (OCR), or in new application areas such as astronomy

through shape-based supernova or galaxy feature classification. The full scope of

problems in application areas where shape analysis frameworks might be useful will

only emerge gradually with the increased availability of shape data, which could shape

up a multitude of future research endeavours.

192



References

1. Kendall, D. G. A survey of the statistical theory of shape. Statistical Science 4, 87–99
(1989).

2. Bookstein, F. L. Morphometric tools for landmark data (1997).
3. Joshi, S. C. & Miller, M. I. Landmark matching via large deformation diffeomorphisms.

IEEE transactions on image processing 9, 1357–1370 (2000).
4. Dryden, I. L. & Mardia, K. V. Statistical shape analysis: with applications in R (John

Wiley & Sons, 2016).
5. Osher, S. & Fedkiw, R. P. Level set methods and dynamic implicit surfaces (Springer

New York, 2005).
6. Gorczowski, K. et al. Multi-object analysis of volume, pose, and shape using statistical

discrimination. IEEE transactions on pattern analysis and machine intelligence 32,
652–661 (2009).

7. Mémoli, F. Gromov–Wasserstein distances and the metric approach to object matching.
Foundations of computational mathematics 11, 417–487 (2011).

8. Söderkvist, O. Computer vision classification of leaves from swedish trees 2001.
9. Sikora, T. The MPEG-7 visual standard for content description-an overview. IEEE

Transactions on circuits and systems for video technology 11, 696–702 (2001).
10. Mavridis, L. et al. SHREC’10 Track: Protein Models in Eurographics Workshop on

3D Object Retrieval-3DOR 2010 (2010).
11. Charlier, B., Feydy, J., Glaunès, J., Collin, F.-D. & Durif, G. Kernel operations on

the GPU, with autodiff, without memory overflows. Journal of Machine Learning
Research 22, 1–6 (2021).

12. Vlasic, D., Brand, M., Pfister, H. & Popovic, J. Multilinear models for face synthesis
in ACM SIGGRAPH 2004 Sketches (2004), 56.

13. Kendall, D. G., Barden, D., Carne, T. K. & Le, H. Shape and shape theory xii+306
(John Wiley & Sons Ltd., Chichester, 1999).

14. Younes, L. Shapes and diffeomorphisms (Springer Science & Business Media, 2010).
15. Srivastava, A. & Klassen, E. P. Functional and shape data analysis (Springer, 2016).
16. Bronstein, A. M., Bronstein, M. M. & Kimmel, R. Numerical geometry of non-rigid

shapes (Springer Science & Business Media, 2008).

193



17. Sharma, A., Horaud, R., Mateus, D., et al. 3D shape registration using spectral graph
embedding and probabilistic matching. Image processing and analysing with graphs:
theory and practice, 441–474 (2012).

18. Hartman, E., Sukurdeep, Y., Klassen, E., Charon, N. & Bauer, M. Elastic shape
analysis of surfaces with second-order Sobolev metrics: a comprehensive numerical
framework. International Journal of Computer Vision, 1–27 (2023).

19. Bauer, M., Bruveris, M., Harms, P. & Møller-Andersen, J. A numerical framework for
Sobolev metrics on the space of curves. SIAM J. Imaging Sci. 10, 47–73 (2017).

20. Audette, M. A., Ferrie, F. P. & Peters, T. M. An algorithmic overview of surface
registration techniques for medical imaging. Medical image analysis 4, 201–217 (2000).

21. Pennec, X. Intrinsic statistics on Riemannian manifolds: Basic tools for geometric
measurements. Journal of Mathematical Imaging and Vision 25, 127–154 (2006).

22. Pennec, X., Sommer, S. & Fletcher, T. Riemannian Geometric Statistics in Medical
Image Analysis (Academic Press, 2019).

23. Wang, L. et al. Large deformation diffeomorphism and momentum based hippocampal
shape discrimination in dementia of the Alzheimer type. IEEE transactions on medical
imaging 26, 462–470 (2007).

24. Tang, X. et al. Shape abnormalities of subcortical and ventricular structures in mild
cognitive impairment and Alzheimer’s disease: detecting, quantifying, and predicting.
Human brain mapping 35, 3701–3725 (2014).

25. Durrleman, S. et al. Morphometry of anatomical shape complexes with dense defor-
mations and sparse parameters. NeuroImage 101, 35–49 (2014).

26. Charon, N., Islam, A. & Zbijewski, W. Landmark-free morphometric analysis of
knee osteoarthritis using joint statistical models of bone shape and articular space
variability. Journal of Medical Imaging 8, 044001 (2021).

27. Benseghir, T., Malandain, G. & Vaillant, R. Iterative closest curve: a framework for
curvilinear structure registration application to 2D/3D coronary arteries registration
in International Conference on Medical Image Computing and Computer-Assisted
Intervention (2013), 179–186.

28. Rivest-Henault, D., Sundar, H. & Cheriet, M. Nonrigid 2D/3D registration of coronary
artery models with live fluoroscopy for guidance of cardiac interventions. IEEE
Transactions on Medical Imaging 31, 1557–1572 (2012).

29. Srivastava, A., Samir, C., Joshi, S. H. & Daoudi, M. Elastic shape models for face
analysis using curvilinear coordinates. Journal of Mathematical Imaging and Vision
33, 253–265 (2009).

30. Hartman, E., Pierson, E., Bauer, M., Charon, N. & Daoudi, M. BaRe-ESA: A Rieman-
nian Framework for Unregistered Human Body Shapes. arXiv preprint arXiv:2211.13185
(2022).

31. Edelsbrunner, H. & Harer, J. Persistent homology-a survey. Contemporary mathemat-
ics 453, 257–282 (2008).

32. Carlsson, G. Topological pattern recognition for point cloud data. Acta Numerica 23,
289–368 (2014).

194



33. Edelsbrunner, H. & Harer, J. L. Computational topology: an introduction (American
Mathematical Society, 2022).

34. Hoover, A., Kouznetsova, V. & Goldbaum, M. Locating blood vessels in retinal images
by piecewise threshold probing of a matched filter response. IEEE Transactions on
Medical imaging 19, 203–210 (2000).

35. Sukurdeep, Y., Bauer, M. & Charon, N. A new variational model for shape graph
registration with partial matching constraints. SIAM Journal on Imaging Sciences
15, 261–292 (2022).

36. Aihara, H. et al. The Hyper Suprime-Cam SSP survey: overview and survey design.
Publications of the Astronomical Society of Japan 70, S4 (2018).

37. Bosch, J. et al. The hyper suprime-cam software pipeline. Publications of the Astro-
nomical Society of Japan 70, S5 (2018).

38. Lang, S. Fundamentals of differential geometry (Springer Science & Business Media,
2012).

39. Michor, P. W. & Mumford, D. Vanishing geodesic distance on spaces of submanifolds
and diffeomorphisms. Doc. Math 10, 217–245 (2005).

40. Bauer, M., Charon, N. & Younes, L. in Handbook of numerical analysis 613–646
(Elsevier, 2019).

41. Younes, L. Hybrid Riemannian metrics for diffeomorphic shape registration. Annals
of Mathematical Sciences and Applications 3, 189–210 (2018).

42. Grenander, U. Elements of pattern theory (JHU Press, 1996).
43. Trouvé, A. Diffeomorphisms groups and pattern matching in image analysis. Interna-

tional journal of computer vision 28, 213–221 (1998).
44. Beg, M. F., Miller, M. I., Trouvé, A. & Younes, L. Computing large deformation metric

mappings via geodesic flows of diffeomorphisms. International journal of computer
vision 61, 139–157 (2005).

45. Younes, L. Shapes and Diffeomorphisms (Springer, 2019).
46. Younes, L. Computable elastic distances between shapes. SIAM Journal on Applied

Mathematics 58, 565–586 (1998).
47. Michor, P. W. & Mumford, D. An overview of the Riemannian metrics on spaces of

curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23, 74–113
(2007).

48. Mio, W., Srivastava, A. & Joshi, S. On shape of plane elastic curves. International
Journal of Computer Vision 73, 307–324 (2007).

49. Mennucci, A., Yezzi, A. & Sundaramoorthi, G. Properties of Sobolev-type metrics in
the space of curves. Interfaces Free Bound. 10, 423–445 (2008).

50. Lahiri, S., Robinson, D. & Klassen, E. Precise matching of PL curves in RN in the
square root velocity framework. Geometry, Imaging and Computing 2, 133–186 (2015).

51. Bruveris, M., Michor, P. W. & Mumford, D. Geodesic completeness for Sobolev metrics
on the space of immersed plane curves in Forum of Mathematics, Sigma 2 (2014).

195



52. Nardi, G., Peyré, G. & Vialard, F.-X. Geodesics on shape spaces with bounded
variation and Sobolev metrics. SIAM Journal on Imaging Sciences 9, 238–274 (2016).

53. Bruveris, M. Optimal reparametrizations in the square root velocity framework. SIAM
J. Math. Anal. 48, 4335–4354 (2016).

54. Bauer, M., Maor, C. & Michor, P. W. Sobolev metrics on spaces of manifold valued
curves. arXiv preprint arXiv:2007.13315 (2020).

55. Bauer, M., Bruveris, M., Charon, N. & Møller-Andersen, J. A relaxed approach for
curve matching with elastic metrics. ESAIM: Control, Optimisation and Calculus of
Variations 25, 72 (2019).

56. Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic
curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428
(2011).

57. Bauer, M., Bruveris, M., Charon, N. & Møller-Andersen, J. A relaxed approach for
curve matching with elastic metrics. ESAIM: Control, Optimisation and Calculus of
Variations 25, 72 (2019).

58. Bauer, M. et al. Elastic metrics on spaces of euclidean curves: Theory and algorithms.
arXiv preprint arXiv:2209.09862 (2022).

59. Michor, P. W. & Mumford, D. Vanishing geodesic distance on spaces of submanifolds
and diffeomorphisms. Doc. Math. 10, 217–245 (electronic) (2005).

60. Bauer, M., Bruveris, M., Harms, P. & Michor, P. W. Vanishing geodesic distance for
the Riemannian metric with geodesic equation the KdV-equation. Annals of Global
Analysis and Geometry 41, 461–472 (2012).

61. Atkin, C. The Hopf-Rinow Theorem is false in infinite Dimensions. Bulletin of the
London Mathematical Society 7, 261–266 (1975).

62. Bruveris, M. Completeness properties of Sobolev metrics on the space of curves.
Journal of Geometric Mechanics 7, 125 (2015).

63. Bruveris, M. & Møller-Andersen, J. Completeness of Length-Weighted Sobolev Metrics
on the Space of Curves. arXiv preprint arXiv:1705.07976 (2017).

64. Bauer, M., Harms, P. & Michor, P. W. Sobolev metrics on shape space of surfaces. J.
Geom. Mech. 3, 389–438 (2011).

65. Bauer, M., Harms, P. & Michor, P. W. Fractional Sobolev metrics on spaces of
immersions. Calculus of Variations and Partial Differential Equations 59, 1–27 (2020).

66. Su, Z., Bauer, M., Preston, S. C., Laga, H. & Klassen, E. Shape analysis of surfaces
using general elastic metrics. Journal of Mathematical Imaging and Vision 62, 1087–
1106 (2020).

67. Jermyn, I. H., Kurtek, S., Klassen, E. & Srivastava, A. Elastic shape matching of
parameterized surfaces using square root normal fields in European Conference on
Computer Vision (2012), 804–817.

68. Jermyn, I. H., Kurtek, S., Laga, H. & Srivastava, A. Elastic Shape Analysis of
Three-Dimensional Objects. Synthesis Lectures on Computer Vision 12, 1–185 (2017).

196



69. Bauer, M., Charon, N., Harms, P. & Hsieh, H.-W. A numerical framework for elastic
surface matching, comparison, and interpolation. International Journal of Computer
Vision 129, 2425–2444 (2021).

70. Trouvé, A. & Younes, L. Diffeomorphic matching problems in one dimension: Designing
and minimizing matching functionals in European Conference on Computer Vision
(2000), 573–587.

71. Bernal, J., Dogan, G. & Hagwood, C. R. Fast Dynamic Programming for Elastic
Registration of Curves in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops (June 2016).

72. Dogan, G., Bernal, J. & Hagwood, C. R. A Fast Algorithm for Elastic Shape Distances
Between Closed Planar Curves in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2015).

73. Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic
curves in euclidean spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1415–1428 (2010).

74. Vaillant, M. & Glaunès, J. Surface matching via currents in Biennial International
Conference on Information Processing in Medical Imaging (2005), 381–392.

75. Charon, N. & Trouvé, A. The varifold representation of nonoriented shapes for
diffeomorphic registration. SIAM J. Imaging Sci. 6, 2547–2580 (2013).

76. Feydy, J., Charlier, B., Vialard, F.-X. & Peyré, G. Optimal transport for diffeomorphic
registration in International Conference on Medical Image Computing and Computer-
Assisted Intervention (2017), 291–299.

77. Roussillon, P. & Glaunès, J. A. Representation of surfaces with normal cycles and
application to surface registration. Journal of Mathematical Imaging and Vision 61,
1069–1095 (2019).

78. Charon, N., Charlier, B., Glaunès, J., Gori, P. & Roussillon, P. in Riemannian
Geometric Statistics in Medical Image Analysis 441–477 (Academic Press, 2020).

79. Kaltenmark, I., Charlier, B. & Charon, N. A general framework for curve and surface
comparison and registration with oriented varifolds in Computer Vision and Pattern
Recognition (CVPR) (2017).

80. Hsieh, H.-W. et al. ANALYSIS OF GEOMETRIC SHAPES WITH VARIFOLD
REPRESENTATION PhD thesis (Johns Hopkins University, 2021).

81. Peyré, G., Cuturi, M., et al. Computational optimal transport: With applications to
data science. Foundations and Trends® in Machine Learning 11, 355–607 (2019).

82. Aronszajn, N. Theory of reproducing kernels. Transactions of the American mathe-
matical society 68, 337–404 (1950).

83. Hsieh, H.-W. & Charon, N. Metrics, quantization and registration in varifold spaces.
Foundations of Computational Mathematics, 1–45 (2021).

84. Sukurdeep, Y., Bauer, M. & Charon, N. An inexact matching approach for the com-
parison of plane curves with general elastic metrics in 2019 53rd Asilomar Conference
on Signals, Systems, and Computers (2019), 512–516.

197



85. Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M. & Kimmel, R. Partial similarity
of objects, or how to compare a centaur to a horse. International Journal of Computer
Vision 84, 163 (2009).

86. Rodolà, E., Cosmo, L., Bronstein, M. M., Torsello, A. & Cremers, D. Partial functional
correspondence in Computer Graphics Forum 36 (2017), 222–236.

87. Jain, B. J. & Obermayer, K. Structure Spaces. Journal of Machine Learning Research
10 (2009).

88. Feragen, A., Lo, P., de Bruijne, M., Nielsen, M. & Lauze, F. Toward a theory of
statistical tree-shape analysis. IEEE transactions on pattern analysis and machine
intelligence 35, 2008–2021 (2012).

89. Calissano, A., Feragen, A. & Vantini, S. Populations of Unlabeled Networks: Graph
Space Geometry and Geodesic Principal Components. MOX Report (2020).

90. Feragen, A. & Nye, T. in Riemannian Geometric Statistics in Medical Image Analysis
299–342 (Elsevier, 2020).

91. Pan, Y. et al. Current-and varifold-based registration of lung vessel and airway trees
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (2016), 126–133.

92. Kaltenmark, I. & Trouvé, A. Estimation of a growth development with partial
diffeomorphic mappings. Quarterly of Applied Mathematics 77, 227–267 (2019).

93. Antonsanti, P.-L., Glaunès, J., Benseghir, T., Jugnon, V. & Kaltenmark, I. Partial
Matching in the Space of Varifolds. arXiv preprint arXiv:2103.12441 (2021).

94. Antonsanti, P.-L. et al. How to Register a Live onto a Liver? Partial Matching in the
Space of Varifolds. arXiv preprint arXiv:2204.05665 (2022).

95. Robinson, D. T. Functional data analysis and partial shape matching in the square
root velocity framework (2012).

96. Srivastava, A., Guo, X. & Laga, H. Advances in Geometrical Analysis of Topologically-
Varying Shapes in 2020 IEEE 17th International Symposium on Biomedical Imaging
Workshops (ISBI Workshops) (2020), 1–4.

97. Duncan, A., Klassen, E., Srivastava, A., et al. Statistical shape analysis of simplified
neuronal trees. Annals of Applied Statistics 12, 1385–1421 (2018).

98. Guo, X., Basu Bal, A., Needham, T. & Srivastava, A. Statistical shape analysis of
brain arterial networks (BAN). The Annals of Applied Statistics 16, 1130–1150 (2022).

99. Guo, X. & Srivastava, A. Representations, metrics and statistics for shape analysis of
elastic graphs in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (2020), 832–833.

100. Wang, G., Laga, H., Jia, J., Miklavcic, S. J. & Srivastava, A. Statistical analysis and
modeling of the geometry and topology of plant roots. Journal of theoretical biology
486, 110108 (2020).

101. Wang, G., Laga, H. & Srivastava, A. On the Statistical Analysis of Complex Tree-
shaped 3D Objects. arXiv preprint arXiv:2110.08693 (2021).

198



102. Bal, A. B., Guo, X., Needham, T. & Srivastava, A. Statistical Shape Analysis of
Shape Graphs with Applications to Retinal Blood-Vessel Networks. arXiv preprint
arXiv:2211.15514 (2022).

103. Needham, T. & Kurtek, S. Simplifying Transforms for General Elastic Metrics on the
Space of Plane Curves. SIAM Journal on Imaging Sciences 13, 445–473 (2020).

104. Tan, Z., Eldar, Y. C., Beck, A. & Nehorai, A. Smoothing and decomposition for
analysis sparse recovery. IEEE Transactions on Signal Processing 62, 1762–1774
(2014).

105. Amann, H. Compact embeddings of vector valued Sobolev and Besov spaces. Glasnik
matematički 35, 161–177 (2000).

106. Ambrosio, L., Fusco, N. & Pallara, D. Functions of bounded variation and free
discontinuity problems (Clarendon Press Oxford, 2000).

107. Tarjan, R. Depth-first search and linear graph algorithms. SIAM journal on computing
1, 146–160 (1972).

108. Wang, K., Yan, Y. & Diaz, M. Efficient Clustering for Stretched Mixtures: Landscape
and Optimality. Advances in Neural Information Processing Systems 33 (2020).

109. Bauer, M., Bruveris, M., Harms, P. & Møller-Andersen, J. H2metrics GitHub Reposi-
tory http://www.github.com/h2metrics/h2metrics. 2018.

110. Charon, N., Charlier, B., Glaunès, J., Gori, P. & Roussillon, P. in Riemannian
Geometric Statistics in Medical Image Analysis 441–477 (Elsevier, 2020).

111. Biasotti, S., Cerri, A., Bronstein, A. & Bronstein, M. Recent trends, applications, and
perspectives in 3d shape similarity assessment in Computer graphics forum 35 (2016),
87–119.

112. Bronstein, A. M., Bronstein, M. M. & Kimmel, R. Efficient computation of isometry-
invariant distances between surfaces. SIAM Journal on Scientific Computing 28,
1812–1836 (2006).

113. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A. & Guibas, L. Functional
maps: a flexible representation of maps between shapes. ACM Transactions on Graph-
ics (TOG) 31, 1–11 (2012).

114. Ren, J., Poulenard, A., Wonka, P. & Ovsjanikov, M. Continuous and orientation-
preserving correspondences via functional maps. ACM Transactions on Graphics
(ToG) 37, 1–16 (2018).

115. Edelstein, M., Ezuz, D. & Ben-Chen, M. Enigma: evolutionary non-isometric geometry
matching. arXiv preprint arXiv:1905.10763 (2019).

116. Kilian, M., Mitra, N. J. & Pottmann, H. Geometric Modeling in Shape Space. ACM
Trans. Graphics 26. Proc. SIGGRAPH (2007).

117. Eisenberger, M. & Cremers, D. Hamiltonian dynamics for real-world shape interpola-
tion in European Conference on Computer Vision (2020), 179–196.

118. Iglesias, J. A., Rumpf, M. & Scherzer, O. Shape-aware matching of implicit surfaces
based on thin shell energies. Foundations of Computational Mathematics 18, 891–927
(2018).

199

http://www.github.com/h2metrics/h2metrics


119. Hsieh, H.-W. & Charon, N. Weight metamorphosis of varifolds and the LDDMM-
Fisher-Rao metric. Calculus of Variations and Partial Differential Equations 61, 165
(2022).

120. Michor, P. W. Topics in differential geometry (American Mathematical Soc., 2008).
121. Laga, H., Xie, Q., Jermyn, I. H. & Srivastava, A. Numerical inversion of SRNF maps

for elastic shape analysis of genus-zero surfaces. IEEE Trans. Pattern Anal. Mach.
Intell. 39, 2451–2464 (2017).

122. Kurtek, S., Samir, C. & Ouchchane, L. Statistical Shape Model for Simulation of
Realistic Endometrial Tissue. in ICPRAM (2014), 421–428.

123. Joshi, S. H., Xie, Q., Kurtek, S., Srivastava, A. & Laga, H. Surface shape Morphometry
for hippocampal modeling in Alzheimer’s disease in 2016 International Conference on
Digital Image Computing: Techniques and Applications (DICTA) (2016), 1–8.

124. Matuk, J., Mohammed, S., Kurtek, S. & Bharath, K. in Handbook of Variational
Methods for Nonlinear Geometric Data 675–701 (Springer, 2020).

125. Laga, H. et al. 4D Atlas: Statistical Analysis of the Spatio-Temporal Variability in
Longitudinal 3D Shape Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1–1 (2022).

126. Klassen, E. & Michor, P. W. Closed surfaces with different shapes that are indistin-
guishable by the SRNF. Archivum Mathematicum 56, 107–114 (2020).

127. Bauer, M., Hartman, E. & Klassen, E. The Square Root Normal Field Distance and
Unbalanced Optimal Transport 2021. arXiv: 2105.06510 [math.DG].

128. Rumpf, M. & Wirth, B. Variational time discretization of geodesic calculus. IMA
Journal of Numerical Analysis 35, 1011–1046 (2015).

129. Crane, K. Discrete differential geometry: An applied introduction. Notices of the AMS,
Communication, 1153–1159 (2018).

130. Crane, K., de Goes, F., Desbrun, M. & Schröder, P. Digital Geometry Processing
with Discrete Exterior Calculus in ACM SIGGRAPH 2013 Courses (Association for
Computing Machinery, Anaheim, California, 2013).

131. Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale
optimization. Mathematical programming 45, 503–528 (1989).

132. Boyer, D. M., Gunnell, G. F., Kaufman, S. & McGeary, T. M. Morphosource: archiving
and sharing 3-D digital specimen data. The Paleontological Society Papers 22, 157–181
(2016).

133. Vialard, F.-X., Risser, L., Rueckert, D. & Cotter, C. J. Diffeomorphic 3D image
registration via geodesic shooting using an efficient adjoint calculation. International
Journal of Computer Vision 97, 229–241 (2012).

134. Ho, J., Cheng, G., Salehian, H. & Vemuri, B. Recursive Karcher expectation estimators
and geometric law of large numbers in Artificial Intelligence and Statistics (2013),
325–332.

135. Bogo, F., Romero, J., Loper, M. & Black, M. J. FAUST: Dataset and evaluation for
3D mesh registration in Proceedings of the IEEE conference on computer vision and
pattern recognition (2014), 3794–3801.

200

https://arxiv.org/abs/2105.06510


136. Fletcher, P. T., Lu, C., Pizer, S. M. & Joshi, S. Principal geodesic analysis for the
study of nonlinear statistics of shape. IEEE transactions on medical imaging 23,
995–1005 (2004).

137. Sumner, R. W. & Popović, J. Deformation transfer for triangle meshes. ACM Trans-
actions on graphics (TOG) 23, 399–405 (2004).

138. Ranjan, A., Bolkart, T., Sanyal, S. & Black, M. J. Generating 3D faces using Convo-
lutional Mesh Autoencoders in European Conference on Computer Vision (ECCV)
(2018), 725–741.

139. Kheyfets, A., Miller, W. A. & Newton, G. A. Schild’s ladder parallel transport
procedure for an arbitrary connection. International Journal of Theoretical Physics
39, 2891–2898 (2000).

140. Guigui, N. & Pennec, X. Numerical accuracy of ladder schemes for parallel transport
on manifolds. Foundations of Computational Mathematics, 1–34 (2021).

141. Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound
constrained optimization. SIAM Journal on scientific computing 16, 1190–1208 (1995).

142. Boukhayma, A., Bem, R. d. & Torr, P. H. 3d hand shape and pose from images in
the wild in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2019), 10843–10852.

143. Trappolini, G. et al. Shape registration in the time of transformers. Advances in
Neural Information Processing Systems 34, 5731–5744 (2021).

144. Cosmo, L., Norelli, A., Halimi, O., Kimmel, R. & Rodola, E. Limp: Learning latent
shape representations with metric preservation priors in European Conference on
Computer Vision (2020), 19–35.

145. Huang, Q. et al. ARAPReg: An As-Rigid-As Possible Regularization Loss for Learn-
ing Deformable Shape Generators in Proceedings of the IEEE/CVF International
Conference on Computer Vision (2021), 5815–5825.

146. Nunez, E., Lizarraga, A. & Joshi, S. H. SrvfNet: A Generative Network for Unsuper-
vised Multiple Diffeomorphic Functional Alignment in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2021), 4481–4489.

147. Chen, C. & Srivastava, A. SrvfRegNet: Elastic Function Registration Using Deep
Neural Networks in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2021), 4462–4471.

148. Hartman, E., Sukurdeep, Y., Charon, N., Klassen, E. & Bauer, M. Supervised deep
learning of elastic SRV distances on the shape space of curves in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), 4425–
4433.

149. Nunez, E. & Joshi, S. H. Deep learning of warping functions for shape analysis in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (2020), 866–867.

150. Grasmair, M. A square root velocity framework for curves of bounded variation. arXiv
preprint arXiv:2203.06633 (2022).

151. Bruveris, M. Optimal Reparametrizations in the Square Root Velocity Framework.
SIAM Journal on Mathematical Analysis 48 (July 2015).

201



152. Huang, W., Gallivan, K. A., Srivastava, A. & Absil, P.-A. Riemannian optimization for
registration of curves in elastic shape analysis. J. Math. Imaging Vision 54, 320–343
(2016).

153. Lohit, S., Wang, Q. & Turaga, P. Temporal transformer networks: Joint learning of
invariant and discriminative time warping in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2019), 12426–12435.

154. Nunez, E. & Joshi, S. H. Deep Learning of Warping Functions for Shape Analy-
sis in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops (June 2020).

155. Koneripalli, K., Lohit, S., Anirudh, R. & Turaga, P. Rate-Invariant Autoencoding of
Time-Series in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2020), 3732–3736.

156. Seetharam, K. K. Structured Disentangling Networks for Learning Deformation In-
variant Latent Spaces PhD thesis (Arizona State University, 2019).

157. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization 2014. arXiv:
1412.6980 [cs.LG].

158. Hegghammer, T. OCR with Tesseract, Amazon Textract, and Google Document AI:
a benchmarking experiment. Journal of Computational Social Science 5, 861–882
(2022).

159. Laique, S. N. et al. Application of optical character recognition with natural lan-
guage processing for large-scale quality metric data extraction in colonoscopy reports.
Gastrointestinal endoscopy 93, 750–757 (2021).

160. PR, N., Krishnamoorthy, H., Srivatsan, K., Goyal, A. & Santhiappan, S. DEXTER: An
end-to-end system to extract table contents from electronic medical health documents.
arXiv preprint arXiv:2207.06823 (2022).

161. Wei, T. C., Sheikh, U. & Ab Rahman, A. A.-H. Improved optical character recognition
with deep neural network in 2018 IEEE 14th International Colloquium on Signal
Processing & Its Applications (CSPA) (2018), 245–249.

162. Bieniecki, W., Grabowski, S. & Rozenberg, W. Image preprocessing for improving ocr
accuracy in 2007 international conference on perspective technologies and methods in
MEMS design (2007), 75–80.

163. Dengel, A. et al. in Handbook of Character Recognition and Document Image Analysis
227–258 (World Scientific, 1997).

164. Volk, M., Furrer, L. & Sennrich, R. Strategies for reducing and correcting OCR errors
in Language Technology for Cultural Heritage: Selected Papers from the LaTeCH
Workshop Series (2011), 3–22.

165. Reul, C., Springmann, U., Wick, C. & Puppe, F. Improving OCR accuracy on
early printed books by utilizing cross fold training and voting in 2018 13th IAPR
International Workshop on Document Analysis Systems (DAS) (2018), 423–428.

166. Boiangiu, C.-A., Ioanitescu, R., Dragomir, R.-C., et al. Voting-based OCR system.
The Proceedings of Journal ISOM 10, 470–486 (2016).

202

https://arxiv.org/abs/1412.6980


167. Springmann, U. et al. OCR of historical printings of Latin texts: problems, prospects,
progress in Proceedings of the First international conference on digital access to textual
cultural heritage (2014), 71–75.

168. Wick, C., Reul, C. & Puppe, F. Comparison of OCR accuracy on early printed
books using the open source engines Calamari and OCRopus. Journal for Language
Technology and Computational Linguistics 33, 79–96 (2018).

169. Coquenet, D., Chatelain, C. & Paquet, T. End-to-end handwritten paragraph text
recognition using a vertical attention network. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2022).

170. Kissos, I. & Dershowitz, N. OCR error correction using character correction and
feature-based word classification in 2016 12th IAPR Workshop on Document Analysis
Systems (DAS) (2016), 198–203.

171. Strohmaier, C. M., Ringlstetter, C., Schulz, K. U. & Mihov, S. Lexical postcorrection
of OCR-results: The web as a dynamic secondary dictionary? in Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings. 3 (2003), 1133–
1133.

172. Bluche, T., Louradour, J. & Messina, R. Scan, attend and read: End-to-end hand-
written paragraph recognition with mdlstm attention in 2017 14th IAPR international
conference on document analysis and recognition (ICDAR) 1 (2017), 1050–1055.

173. Kumari, L., Singh, S., Rathore, V. V. S. & Sharma, A. LexiconNet: An End-to-End
Handwritten Paragraph Text Recognition System. arXiv preprint arXiv:2205.11018
(2022).

174. Afroge, S., Ahmed, B. & Mahmud, F. Optical character recognition using back propa-
gation neural network in 2016 2nd International Conference on Electrical, Computer
& Telecommunication Engineering (ICECTE) (2016), 1–4.

175. Ram, S., Gupta, S. & Agarwal, B. Devanagri character recognition model using
deep convolution neural network. Journal of Statistics and Management Systems 21,
593–599 (2018).

176. Canny, J. A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, 679–698 (1986).

177. Tucker, J. D. fdasrsf Documentation (2013).
178. Smith, R. An overview of the Tesseract OCR engine in Ninth international conference

on document analysis and recognition (ICDAR 2007) 2 (2007), 629–633.
179. Villar, S., Hogg, D. W., Storey-Fisher, K., Yao, W. & Blum-Smith, B. Scalars are

universal: Equivariant machine learning, structured like classical physics. Advances in
Neural Information Processing Systems 34, 28848–28863 (2021).

180. Amor, B. B., Arguillère, S. & Shao, L. ResNet-LDDMM: advancing the LDDMM
framework using deep residual networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 3707–3720 (2022).

181. Lochner, M., McEwen, J. D., Peiris, H. V., Lahav, O. & Winter, M. K. Photometric
supernova classification with machine learning. The Astrophysical Journal Supplement
Series 225, 31 (2016).

203



182. Sola, E. et al. Characterization of low surface brightness structures in annotated deep
images. Astronomy & Astrophysics 662, A124 (2022).

183. Sukurdeep, Y., Navarro, F. & Budavari, T. A flexible Expectation-Maximization frame-
work for fast, scalable and high-fidelity multi-frame astronomical image deconvolution.
arXiv preprint arXiv:2302.05804 (2023).

184. Allam Jr, T. et al. The photometric lsst astronomical time-series classification challenge
(plasticc): Data set. arXiv preprint arXiv:1810.00001 (2018).

185. Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data
products. The Astrophysical Journal 873, 111 (2019).

186. Tubbs, R. N. Lucky Exposures: Diffraction limited astronomical imaging through the
atmosphere. arXiv preprint astro-ph/0311481 (2003).

187. Law, N. M., Mackay, C. D. & Baldwin, J. E. Lucky imaging: high angular resolution
imaging in the visible from the ground. Astronomy & Astrophysics 446, 739–745
(2006).

188. Brandner, W. & Hormuth, F. in Astronomy at High Angular Resolution 1–16 (Springer,
2016).

189. Lucy, L. & Hook, R. Co-adding Images with different PSF’s in Astronomical Data
Analysis Software and Systems I 25 (1992), 277.

190. Annis, J. et al. The sloan digital sky survey coadd: 275 deg2 of deep sloan digital sky
survey imaging on stripe 82. The Astrophysical Journal 794, 120 (2014).

191. Starck, J.-L., Pantin, E. & Murtagh, F. Deconvolution in astronomy: A review.
Publications of the Astronomical Society of the Pacific 114, 1051 (2002).

192. Schulz, T. J. Multiframe blind deconvolution of astronomical images. JOSA A 10,
1064–1073 (1993).

193. Zhulina, Y. V. Multiframe blind deconvolution of heavily blurred astronomical images.
Applied Optics 45, 7342–7352 (2006).

194. Matson, C. L. et al. Fast and optimal multiframe blind deconvolution algorithm for
high-resolution ground-based imaging of space objects. Applied Optics 48, A75–A92
(2009).

195. Richardson, W. H. Bayesian-based iterative method of image restoration. JoSA 62,
55–59 (1972).

196. Lucy, L. B. An iterative technique for the rectification of observed distributions. The
astronomical journal 79, 745 (1974).

197. Fish, D., Brinicombe, A., Pike, E. & Walker, J. Blind deconvolution by means of the
Richardson–Lucy algorithm. JOSA A 12, 58–65 (1995).

198. Daube-Witherspoon, M. E. & Muehllehner, G. An iterative image space reconstruction
algorthm suitable for volume ECT. IEEE transactions on medical imaging 5, 61–66
(1986).

199. Law, N. F. & Lane, R. Blind deconvolution using least squares minimisation. Optics
Communications 128, 341–352 (1996).

204



200. Harmeling, S., Hirsch, M., Sra, S. & Schölkopf, B. Online blind deconvolution for
astronomical imaging in 2009 IEEE International Conference on Computational
Photography (ICCP) (2009), 1–7.

201. Harmeling, S., Sra, S., Hirsch, M. & Schölkopf, B. Multiframe blind deconvolution,
super-resolution, and saturation correction via incremental EM in 2010 IEEE Inter-
national Conference on Image Processing (2010), 3313–3316.

202. Hirsch, M., Harmeling, S., Sra, S. & Schölkopf, B. Online multi-frame blind decon-
volution with super-resolution and saturation correction. Astronomy & Astrophysics
531, A9 (2011).

203. Lee, M. A., Budavári, T., White, R. L. & Gulian, C. Robust statistics for image
deconvolution. Astronomy and computing 21, 15–21 (2017).

204. Lee, M. & Budavári, T. Streaming Analysis in Astronomy: Multiframe Blind Image
Deconvolution. Astronomical Data Analysis Software and Systems XXV 512, 199
(2017).

205. Ulyanov, D., Vedaldi, A. & Lempitsky, V. Deep image prior in Proceedings of the
IEEE conference on computer vision and pattern recognition (2018), 9446–9454.

206. Navarro, F., Hall, D., Budavari, T. & Sukurdeep, Y. Learning the Night Sky with
Deep Generative Priors. arXiv preprint arXiv:2302.02030 (2023).

205


	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Shape data and analysis
	The Riemannian approach
	Challenges: Complex topological structures, partial correspondences, large datasets, and extraction of shape data
	Contributions and organization

	Riemannian shape analysis
	Riemannian metrics on shape spaces
	Metrics on the pre-shape space
	Invariance properties
	Metrics on the shape space
	Extrinsic and intrinsic metrics

	The LDDMM framework
	Elastic shape analysis
	Higher-order Sobolev metrics on the space of curves
	Second-order Sobolev metrics on the space of surfaces

	Relaxed shape matching
	Varifold fidelity metrics
	Relaxed matching problem


	Shape graphs
	Related work
	Contributions

	Riemannian metrics on shape graphs
	Relaxed shape graph registration
	Existence of minimizers

	Weighted shape graph registration
	Limitations of the previous elastic matching model
	A new variational problem
	The weight regularization term
	The varifold norm for weighted shape graphs

	Existence of solutions

	Optimization approach
	Discretizing the energy
	Riemannian path energy
	Weight regularizer
	Varifold norm

	Minimizing the energy

	Numerical results
	Conclusion and outlook

	Surfaces
	Related work
	Contributions

	Sobolev metrics on surfaces
	Geodesic BVP for surfaces
	Geodesic IVP for surfaces

	Relaxed surface matching
	Numerical optimization approach
	The H2-metric on the space of triangular meshes
	Discretizing the H2-path energy
	Solving the geodesic BVP for parametrized surfaces
	Discretizing the varifold norm
	Solving the geodesic BVP for unparametrized surfaces
	Solving the initial value problem
	Influence of the metric coefficients

	Statistical shape analysis of surfaces
	Karcher mean
	Dimensionality reduction
	Multidimensional scaling
	Tangent PCA

	Parallel transport

	Partial matching of surfaces
	Limitations of the previous framework
	The varifold norm on the space of weighted surfaces
	Relaxed surface matching with weights
	Numerical optimization with weights
	Partial matching experiments

	Conclusion and outlook

	Deep learning of shape distances
	Related work
	Contributions

	The SRV distance on the space of curves
	Deep learning of SRV distances
	Network architecture
	Training method

	Numerical experiments
	Computation method
	Evaluation method
	Experiments with functions
	Experiments with curves in R2
	Preliminary experiments for curves in R3

	Optical character recognition
	Background
	Shape-based OCR
	Preliminary results and discussion

	Conclusion and outlook

	Astronomical imaging
	Background and related work
	Contributions

	Modeling the imaging data
	Maximum likelihood estimation
	Expectation-maximization
	Astronomical image reconstruction framework
	Multi-frame deconvolution via expectation-maximization
	Extensions: Super-resolution
	Extensions: Blind deconvolution

	Numerical experiments
	Conclusion and outlook

	Conclusion and future directions
	References

