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Abstract

In materials with significant interactions between magnetic spins, the reduc-

tion of temperature below the scale of the magnetic interaction of the spins

J ≈ kBT generally results in the formation of static spin textures. Frustration

between interactions can result in either the significant reduction of the order-

ing temperature or the formation of an exotic and long sought after spin-liquid

state. The origin of the frustration originates from the arrangement of spins

on lattices with geometric frustration, such as the triangular and kagome lat-

tices, where no ordered state can satisfy all interactions. Exchange anisotropy

induced by strong spin-orbit coupling has emerged as another route towards

frustration in so-called Kitaev materials.

In this dissertation, the low energy properties of five different strongly spin-

orbit coupled frustrated magnets are investigated experimentally. Through a

variety of measurements and theoretical studies, we achieve an understanding

of the unusual forms of magnetism in Ba4Nb(Ru,Ir)3O12, β-Li2IrO3, D3LiIr2O6,

and BaCo2(AsO4)2, all of which are investigated for potential spin-liquid

behaviour. Ba4NbRu3O12 and Ba4NbIr3O12 are "traditional" quantum spin-

liquid candidates in that the origin of their frustrated interactions lies in

the triangular lattice upon which (Ru,Ir)3O12 Je f f = 1
2 trimers sit. Neutron
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scattering measurements and bulk characterization are used to characterize

the magnetic ground states and excitations in each material.

The lithium iridates β-Li2IrO3 and D3LiIr2O6 are Kitaev materials in which

strong ferromagnetic bond-dependent interactions are the result of the strong

spin-orbit coupled Ir4+ ions in octahedral crystal fields on a honeycomb lattice.

Isotope enriched powder samples are examined by inelastic neutron scatter-

ing, and both materials show evidence of Kitaev interactions. D3LiIr2O6 in

particular does not show any evidence of magnetic order, and polarized in-

elastic neutron scattering combined with THz spectroscopy reveal low energy

excitations suggestive of a Kitaev spin-liquid ground state.

The final part of the thesis describes extensive work on BaCo2(AsO4)2,

a material recently examined for its potential realization of Kitaev physics.

Detailed analysis of single crystal inelastic neutron spectroscopy in an in-plane

field is performed by the application of linear spin-wave theory and molecular

dynamics simulations, and we rigorously show that BCAO is not a Kitaev

material but instead is driven by competing interactions between first and

third neighbors with an XXZ type planar anisotropy.
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Chapter 1

Introduction

The concept of symmetry breaking is ubiquitous in the realm of condensed

matter physics. In the mean-field formulation, the transitions between differ-

ent phases of matter are characterized by a so-called order parameter, which

appears upon cooling below the critical temperature and characterizes the

ordered phase. Consider a simple example, the uniaxial ferromagnet belong-

ing to the group Z2, meaning that it contains only two elements of spin-up or

spin-down. This means that the Hamiltonian governing the spin exchange

interactions is invariant under transformations belonging to the Z2 group. As

spins of this ferromagnet are constrained to be in the ẑ direction, the order

parameter is then the thermodynamic average of the magnetization in the ẑ di-

rection ⟨mz⟩. Provided ferromagnetic interactions between neighboring spins,

upon cooling the spins will eventually align to be along the same direction

once the energy scale of the interactions exceeds that of thermal fluctuations,

breaking the Z2 symmetry.

This prescription of phase transitions is known as the Landau theory of

phase transitions, and in its simplest form relies upon mean-field theory [1].
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Magnetic phase transitions, structural transitions like that from a solid to a

liquid, transitions in liquid crystals, and more are all well described by this

paradigm, where a symmetry element is lost upon the emergence of the order

parameter. While mean theory breaks down when local fluctuations are strong,

the traditional view of a phase transition in condensed matter physics is that

it must be associated with a broken symmetry and an order parameter[2].

In magnetic systems such as the simple ferromagnet described above, this

concept holds true. An order parameter associated with the uniform mag-

netization emerges upon cooling which constitutes time reversal symmetry

breaking, hereafter referred to as magnetic ordering. There exists one species

of magnetism without symmetry breaking. No order parameter exists and

there is no symmetry breaking phase transition, but quantum entanglement

and new quasiparticle excitations emerge from collective effects differentiating

this state from a correlated paramagnet. Proposed by Anderson in 1973, this

was called the resonating valence-bond state, and has since been called the

quantum spin-liquid (QSL) [3].

The work in this dissertation is centered around the QSL phase of matter.

First and foremost, can such an exotic state of matter exist in nature? Secondly,

if no features are associated with the QSL phase transition beyond its excita-

tions, how can one hope to identify it? Many resources available that discuss

these details in much greater depth than will be covered here [4–6]. Instead,

I will focus on the question of which microscopic mechanisms in materials

constitute the most promising route for the realization of the QSL phase. I

hope that this work helps to inspire the direction of future studies.
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1.1 Magnetic exchange interactions

The first step in discussing magnetism in correlated electron systems is to

introduce the concept of the exchange interaction. In insulating solids with

unpaired valence electrons, both spin and orbital degrees of freedom may give

rise to magnetic interactions between sites. Typically, the dipolar interaction

between spins is weak enough to be considered irrelevant (with exceptions

including high spin rare-earth systems like Ho2Ti2O7 [7]). A rough estimate

of the dipolar interaction between spins on the length scale of an atomic

lattice is ≈ 0.1 meV [8]. Instead, the interaction is governed almost purely

by the electrostatic repulsion between electrons subject to the Pauli exclusion

principle known as direct exchange, which typically is on an energy scale

of 1 meV or greater and decreses rapidly with atomic spacing. I will not

be discussing exchange interactions in conducting materials, as they are not

relevant to the contents of this dissertation.

1.1.1 Common exchange interactions

Direct exchange processes originate from orbital overlap, and when the inter-

actions are isotropic in spin space, they are known as Heisenberg interactions.

They may be expressed by

H = − ∑
⟨i,j⟩

JijSi · Sj. (1.1)

Here, the indices i and j denote lattice sites consisting of distinct spin pairs,

Jij is the exchange coupling between these ions, and S is the magnetic spin.

This exchange originates from Coulomb repulsion and Pauli exclusion, and
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is the most common starting point for the analysis of magnetic system. The

expression may be derived in a number of ways, but all arrive at the same

form [8].

This Hamiltonian is extremely flexible. Many insulating magnetic materi-

als may be described in detail through careful analysis of different exchange

energies defining an interacting system of spins upon a crystalline lattice [9].

When there are orbital contributions to the magnetic moment and spin-oribt

interactions then the magnetic interactions can be anisotropic. In other words,

the x, y, and z Cartesian components of the spin vector will have different ex-

change interactions. Along with crystal field effects that define the anisotropic

nature of the individual spin in these anisotropic interactions are of great

importance to determining the lowest energy spin configuration[10]. One

example of this that will be relevant in Chapter 5 is known as the XXZ model,

which is written as

H = − ∑
⟨i,j⟩

{︂
Jx
ij(S

x
i · Sx

j + Sy
i · Sy

j ) + Jz
ijS

z
i · Sz

j

}︂
. (1.2)

Although not an exchange interaction, magnetic ions with an orbital com-

ponent of magnetization experience what is known as single ion anisotropy.

Such crystal field effects, rely on linking spin and orbital moments relativistic

spin-orbit coupling. A famous example can be found in rare-earth pyrochlore

systems like Ho2Ti2O7 and Tb2Ti2O7. Here, the large orbital moments and

spin-orbit coupling leads to a single ion anisotropy that energetically con-

strain spins to point along the (111) direction, which when combined with

ferromagnetic interactions on the pyrochlore lattice leads to a state with local

4



M, 3d M, 3dM, 3dz2 O, pz M, 3dz
2

O, pz

(a) AFM (b) FM

Figure 1.1: Sketch of superexchange processes between transition metal ions mediated
by oxygen for the antiferromagnetic case (a) and ferromagnetic case (b).

order defined by the so-called "ice rules" [11–13].

Many other types of exchange interactions exist, including the anisotropic

Dzyaloshinskii-Moriya (DM) interaction [14] and itinerant interactions be-

tween conduction electrons. One additional type of interaction is the anisotropic

Kitaev interaction, which will be discussed in detail.

1.1.2 Superexchange

The direct Heisenberg exchange described cannot explain antiferromagnetic

orders commonly found in transition metal oxides, as the spacing between

the d-orbitals of the metals is too large to allow for direct overlap. Instead,

a process called superexchange takes place, wherein magnetic interactions

proceed through an intermediary ion typically with a shared ligand. The idea

was first formulated by Anderson [15], and later refined into a semi empirical

set of rules by Goodenough and Kanamori [16, 17]. The sign and strength of

the interactions are extremely sensitive to the precise M-O-M (Where M is a

transition metal ion) bond angle.

Quite often, this process involves two transition metal ions with d-orbitals
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mediated by an oxygen p orbital. The sign and strength of the superexchange

process is generally dictated by the Goodenough-Kanamori rules. This process

drives the interaction in many of the materials discussed in this thesis, where

transition metal ions surrounded by edge-sharing oxygen octahedra allow for

strong super-exchange interactions.

1.1.3 Magnetic frustration

In the mean-field picture, one expects that the temperature below which a

magnetic material forms a static spin structure rather than a paramagnetic

phase is controlled by the strength of the exchange interaction. For unfrus-

trated three dimensional materials with large S, the characteristic temperature

scale known as the Curie-Weiss temperature, θCW , provides a quantitatively

accurate estimate for the magnetic ordering temperature TN. When there are

competing interactions, symmetry breaking may occur at temperature scales

far lower than θCW . Often, this is due to degeneracy between ground states

induced by geometrical frustration. Geometrical frustration is a phenomenon

where spins are arranged in such a way that the lattice geometry supports

a nominally degenerate magnetic ground state. This competition between

different ground states is easiest to illustrate for an Ising-type interaction on

the triangular lattice, where six different spin configurations are energetically

equivalent. Two other famous frustrated lattices are the two-dimensional

kagome lattice and the three-dimensional pyrochlore lattice. A relatively un-

explored frustrated lattice is the honeycomb lattice, which is not frustrated

for only nearest neighbor interactions but requires the introduction of further
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(a) (b)

Figure 1.2: Examples of geometrically frustrated spins on the antiferromagnetic
Ising triangular (a) and Heisenberg antiferromagnetic kagome (b) lattices. For the
triangular case, six different spin configurations minimize the total exchange energy
in the triangle.

neighbor exchange to induce frustration. Chapters 4 and 5 will investigate

materials featuring this lattice in detail, whereas Chapter 3 will focus on the

triangular lattice.

1.2 Quantum spin-liquids

1.2.1 Anderson’s model

The origin of the quantum spin-liquid (QSL) may be traced back to Ander-

son’s proposal in 1973 of the so-called resonating valence bond state, which

originally was proposed to help explain the bonding structure in benzene

rings [3]. The idea was revived again in 1987 in the context of superconducting

cuprates, where the RVB picture was suggested to explain the unconventional

high temperature superconductivity in these systems [18].

A QSL may be described as a state in which magnetic spins on a periodic

lattice do not order magnetically upon approaching T = 0 K, but instead form
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a ground state that does not break any lattice symmetries with a wavefunction

that is a linear combination of singlets covering the lattice. The wavefunction

has long ranged entanglement of the spin-degree of freedom, giving rise to a

large length scale quantum mechanical phase that is entirely unique in mag-

netism. No order parameter is associated with this type of phase, instead the

ground state is characterized by exotic quasiparticle excitations that are topo-

logical in nature. This means that the presence of the quasiparticle is apparent

in the pattern of singlet coverings even far from the quasiparticle itself. Many

varieties of spin-liquids exist depending upon the type of magnetic lattice, the

quantum spin number of the magnetic ion, and the exchange interactions, but

all are defined by their quantum entanglement and by the quasiparticles that

they support.

This is an extremely simplified description, and many resources are avail-

able to those interested in further details [4, 19, 20]. Numerical studies have

shown that spin-liquids can exist in theory, but in practice the most compelling

examples are in 1D spin chain systems like LiCuSbO4 [21] and CuSO4·5D2O

[22]. Although these may be technically called quantum spin-liquids, a much

more satisfying realization would be in higher dimensions where quasiparti-

cle interactions are less constrained by momentum and energy conservation.

Geometrical frustration is one possible route to a QSL beyond one dimension,

but although a number of promising materials exist [5, 23–25] there still is no

definitive example of a QSL beyond one dimension in a real material.
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1.2.2 Kitaev’s model

Among QSL’s, a special subset of spin liquids exist, which are the Kitaev

quantum spin-liquids (KSL) [26]. The KSL has attracted significant attention,

both theoretically and experimentally, since the initial proposal in by Alexi

Kitaev 2006. Among its appealing features are the fact that unlike all other

spin-liquids beyond one dimension, the KSL has an exactly solvable spin-

liquid ground state. All other proposed QSL’s require the use of approximate

numerical methods like density matrix renormalization group (DMRG) [27]

studies to support their existence theoretically. As a famous example, the

S=1/2 kagome lattice with antiferromagnetic interactions between nearest

neighbor spins has been shown by DMRG to possibly support a QSL ground

state [28], but this is different from the Kitaev case in that it is not an exact

result and there remains significant uncertainty about whether ground state is

a quantum spin liquid or a valence bond solid.

The Kitaev model may be described as a honeycomb lattice of S=1/2 spins

with nearest neighbor bond-dependent Ising interactions. The easy axis of

these interactions are Cartesian x, y, z axes perpendicular to the bonds. The

Hamiltonian may then be compactly written as

H = ∑
⟨ij⟩γ

KγSγ
i Sγ

j . (1.3)

Here the index ⟨ij⟩γ is over the x, y, and z type bonds. This is summarized in

Fig. 1.3. The balance between the three exchange constants permits different

QSL phases. If any one constant is significantly larger than the two others, a

gapped phase emerged as shown in Fig. 1.3(b). However, almost all modern
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Figure 1.3: (a) Sketch of Cartesian xyz axes as defined in the Kitaev model. The axes
are orthogonal and tilted out of the plane. (b) Permitted spin-liquid states in the
Kitaev spin-liquid versus the x, y, and z bond exchange. The white shaded areas
are gapped spin liquids, and the blue area is the gapless spin liquid containing the
isotropic Kx = Ky = Kz point.

studies only consider the isotropic point for Kx = Ky = Kz which results in

a gapless state. The full solution of the model is beyond the scope of this

dissertation, but it may be summarized in the following way [29]. The original

work [26] contains the detailed solution. For each honeycomb plaquette as

shown in Fig. 1.3(a), we define a flux operator

Ŵp = ∏
j∈p

Kγ
j,j+1. (1.4)

The quantity Kγ
j,j+1 is a bond operator where γ ∈ {x, y, z} and the subscript

denotes the sites forming the bond. This loops over all the bonds in the

honeycomb plaquette, and gives eigenvalues +1 for the zero flux configuration

and -1 for what is referred to as the π flux configuration. The excitation of a

plaquette flux is gapped, and we now focus on the ground-state flux sector.

The introduction of four Majorana fermion operators allow us to represent

the spin degrees of freedom in the form σα
j = iaα

j cj where j denotes the

site and α is the spin component. The bond operators are now given by
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Kγ
j,k = −(iaγ

j akγ)icjck. This Hamiltonian is reduced to quartic terms, and

may be described as a non-interacting Majorana hopping Hamiltonian in a Z2

gauge field. Interested readers may find the full details elsewhere [26, 29, 30],

but the resulting ground state of the KSL may be summarized most succinctly

as a quantum spin-liquid with anyonic Majorana fermion and Z2 gauge flux

excitations.

Another appealing feature of this model is the nature of the excitations

themselves. The Majorana fermions predicted by this result are anyonic,

meaning that they obey nontrivial braiding statistics. The braiding of any-

onic quasiparticles has been proposed as a method of fault-tolerant quantum

computation [31]. The so-called topological quantum computer would have

significant advantages over current quantum computing techniques like su-

perconducting qubits or trapped ions, in that the braiding of the anyons would

help to prevent decoherence. The first step towards this technology is the

discovery of a KSL in a real material.

The exact solubility of the model also permits the calculation of quantities

that may be compared to experiment. The dynamical spin structure factor

S(Q, ω) has been computed in detail [32], along with Raman spectroscopy

response [33]. The result is a broad Q-independent spectra with an excita-

tion gap (even in the gapless phase), with a second higher energy excitation

corresponding to the excitation of the gauge fluxes. Specific heat may also

be calculated, and reveals two temperature scales corresponding to the for-

mation of Majorana fermions and then flux ordering at lower temperatures

[33, 34] carrying a total magnetic entropy of ∆Smag = R ln(2)/2 in each peak.
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Each of these measurable quantities is not necessarily conclusive evidence

for the existence of a KSL state in real materials, as the response is broad and

featureless, making the KSL difficult to differentiate from a definitively not

quantum correlated paramagnet.

A more direct method for the observation of the fermionic quasiparticle

excitations is thermal transport via a finite quantized thermal hall effect for

κxy/T = π/12 [35] upon approaching T=0. While this was initially thought

to be the correct way to determine if the true ground state of a material is a

KSL, experimental studies have resulted in significant controversy regarding

the presence of a κxy term in real materials. Thermal transport in general is a

difficult measurement technically, as keeping samples and probes thermally

isolated is almost impossible, but even for a perfect experiment it has been

shown that simple phonons may give rise to a κxy term [36] meaning that back-

ground contributions must be removed from these transport measurements

before making any conclusions.

So, the prospect of the detection of a KSL state is only slightly better than

other spin-liquids. Despite the fact that observable quantities may be exactly

calculated, the broad nature of the excitations will always cast doubt on the

ground state based on individual measurements. Instead, a combination of

different measurements must be used to create a body of work supporting

the presence of a KSL state in any given material. A significant part of this is

the measurement of the dynamic correlation function using inelastic neutron

scattering, which will be featured in this dissertation in Chapter 4.
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Figure 1.4: Realization of Kitaev interactions via spin-orbit coupling in an octahedral
field as proposed by Jackeli and Khaliullin, reproduced from Ref. [30].

1.2.3 Modern experimental pursuits of Kitaev’s model

The peculiar interactions required by the Kitaev model originally meant that

it was treated as a toy model, and despite its novel qualities there were no

paths to its material realization until a proposal by Jackeli and Khaliullin

in 2009 [37]. To realize spatially anisotropic bonding on the honeycomb

lattice, spin-orbit coupling was used in heavy transition metal ions with an

unquenched orbital moment. For this purpose, Ru3+ and Ir4+ are suitable.

We first consider the d5 spin of Ir4+ in an octahedral crystal field, for example

in an oxide. For large crystal field splitting, Hund’s first rule is broken and

the spin configuration may be described as a single hole residing in a t2g

orbital manifold of the xy, xz, and yz orbitals. Considering the single-ion spin

Hamiltonian of H0 = λ
−→
l · −→s + ∆l2

z , we now consider the effect of spin-orbit

coupling on the t2ghole.

Provided that the spin-orbit coupling λSO is great enough, as it is in Ir,

the lower energy t2g manifold is further split into a Je f f =1/2 doublet and

a Je f f =3/2 quartet, with a splitting proportional to λSO. The single hole is
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then accommodated in the Je f f =1/2 doublet, meaning that each site may be

treated as a net Je f f =1/2 as required by the Kitaev model. The wavefunction

of this state is a spin-orbital entangled superposition of the xy, xz, and yz

orbitals of different complex phase, giving rise to spatial anisotropy as visually

depicted in Fig. 1.4(b). Considering the hopping between neighboring Ir

ions, it may be shown that the effective Heisenberg-type contribution to the

exchange has a destructive interference, instead with easy-axis Ising-type

interactions emerging where the axes are perpendicular to the bonds. This is

precisely the prescription of the Kitaev model, and from this work two main

candidate families of materials were proposed. The first is a family known as

the honeycomb iridates of the form X-Li2IrO3 (X=α, β, γ) [38], and the second

is α-RuCl3 [39].

Both of these materials will be discussed in detail in future chapters, but

their status as candidate realization of the Kitaev interaction is worth a brief

discussion here. All behave as Je f f =1/2 Mott insulators. Among this first gen-

eration of materials, all show magnetic order upon cooling, thus precluding a

pure KSL ground state. For the honeycomb iridate polytypes, the ordering

temperatures are TN=15 K, 38 K, and 40 K for α, β, and γ respectively [40–

42]. The observed orders are of a complex incommensurate spiral as shown

through magnetic resonant x-ray spectroscopy [43, 44], while α-RuCl3 hosts a

zigzag type order [45] for temperatures below TN=7 K. Evidently, there exist

non-Kitaev interactions in all of these materials leading to the formation of

static spin ordering rather than a QSL phase, and subsequent theory work
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showed that including a nearest neighbor Heisenberg and off-diagonal ex-

change originating from direct orbital overlap admits a rich phase diagram

of magnetic structures [46, 47] that well describes the observed order in the

honeycomb iridates. The case of α-RuCl3 is interesting and will be discussed

in Chapter 5, but it has been proposed that the observed zigzag order is proxi-

mate to a KSL phase. Application of a strong in-plane field of Hc=7 T melts

the order into an extremely controversial spin-liquid phase that some have

called a field-induced Kitaev spin liquid.

With this in mind, what is the future of the study of Kitaev magnetism?

The physics of the so-called first generation materials briefly discussed here

is already extremely rich, and a better understanding of the precise spin

exchange in each is necessary to determine how well the anisotropic Kitaev

interaction is realized in each. Despite the materials all being nearly a decade

old, only recently has the community begun to converge on these topics.

With a better understanding of why these materials fail to realize the KSL,

we may then engineer better materials. Both chapters 4 and 5 will discuss

examples of these, the first of which is an evolution of the lithium iridates

H3LiIr2O6 and the second being a honeycomb cobaltate BaCo2(AsO4)2. The

honeycomb cobaltates have been proposed as a new route for the realization of

the Kitaev interaction [48] using a similar method to the Jackeli and Khaliullin

mechanism, which will be discussed in detail in Chapter 5.
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1.3 Overview of thesis

This thesis comprises a brief overview of experimental techniques, and three

major research topics. Chapter 2 is a brief overview of the experimental

techniques relevant to the results of this dissertation. These techniques in-

clude heat capacity, magnetization, susceptibility, and neutron scattering. A

brief discussion of experimental strategies for the detection of QSL’s is also

discussed.

Chapters 3, 4, and 5 each cover different sets of materials. Chapter 3 is a

study of a triangular lattice of molecular magnets Ba4Nb(Ru,Ir)3O12 that may

be in a QSL phase, or proximate to one. Chapter 4 discusses inelastic neutron

scattering studies of the archetypal Kitaev materials, the honeycomb iridates.

These include β-Li2IrO3 and D3LiIr2O6. Chapter 5 discusses the story of the

easy-plane frustrated honeycomb lattice BaCo2(AsO4)2, which was originally

studied in the context of Kitaev physics but which we shall show is in fact an

easy plane magnetic with geometric frustration assosciated with third nearest

neighbor interactions.

Quantum spin-liquids are still an extremely rich area of study, even after

decades of research. The contents of this dissertation provide some examples

of experimental studies of sufficient quality to make quantitative determina-

tions of the magnetic interactions in highly frustrated quantum spin liquid

related materials. My intention in sharing this work is to inform future studies

towards the realization of a QSL, and to suggest specific avenues towards that

goal that are guided by the results presented in this dissertation.
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Chapter 2

Experimental techniques

2.1 Bulk thermodynamic characterization

As a first step towards understanding exchange interactions in magnetic ma-

terials, it is extremely important to first measure their bulk thermodynamic

magnetic characteristics. The ones most relevant to this dissertation are spe-

cific heat and susceptibility, but there are many other relevant quantities such

as thermal and electronic transport measurements that will not be discussed.

The first step towards the study of the phase transitions in magnetic ma-

terials is often heat capacity, which detects both the low energy density of

excited states and first and second order phase transitions. A first order phase

transition will appear as an extremely sharp delta function-like spike in C(T)

whereas a second order transition will be a divergent peak or discontinuous

jump [2]. Heat capacity measurements also provide a precise measure of the

magnetic entropy in a system as a function of temperature

∆S(T) =
∫︂

C(T)/TdT. (2.1)
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It is often very difficult to separate magnetic specific heat from that associated

with phonons, but this information can still be very useful. Phase transitions

measured by specific heat can be used to precisely determine critical expo-

nents, from which the dimensionality of the order parameter and of the spin

interactions may be deduced [49]. The dimensionality and gap associated

with spin-wave excitations in ordered states may be inferred from the low

temperature specific heat [50, 51], and a linear Sommerfeld-like contribution

to C(T)/T ∝ γ is often associated with low energy fermionic quasiparticles in

spin-liquids and superconductors [52, 53].

Susceptibility, or equivalently magnetization, is also an extremely im-

portant tool to measure the effective moment in a system as a function of

temperature and field. Susceptibility is formally defined by

χ =
dM
dH

. (2.2)

For many electrically insulating spin systems, the fluctuations are in the THz

frequency scale or 1 ps time scale. Susceptibility is typically measured in the

kHz range, meaning that on the time scale of the probing field the sample

magnetization is essentially static. The magnitude of the applied field is also

relevant as the fields typically applied in a susceptibility measurement are

small compared to the saturation field of the overall magnetization. This

means that susceptibility and magnetization in these systems may often be

thought of as equivalent.

A high temperature expansion of the Heisenberg model yields what is
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known as the Curie-Weiss law,

χ =
1
3

µ2
e f f

T − θCW
. (2.3)

Here g is the Lande g-factor, µe f f is the effective moment of the ion which

may also be expressed as gµBS(S + 1) where µB is the Bohr magneton, and

θCW is the Curie temperature. The Curie temperature also gives, to a good

approximation at high temperatures, the average magnetic exchange for each

ion

θCW =
J̃S(S + 1)

3kB
. (2.4)

In this expression, J̃ is the sum of the exchange interactions associated with

each ion, or J̃ = ∑i Ji, where the index i is over all unique exchange paths.

A positive θCW denotes antiferromagnetic interactions, and a negative θCW

denotes ferromagnetic. Thus, through two relatively simple bulk measure-

ments of specific heat and susceptibility, it is possible to completely map out

the phase diagram of the compound of interest, find the effective magnetic

moment of the ion, and characterize the exchange interactions.

2.2 Neutron Scattering

2.2.1 Magnetic neutron scattering

Neutrons are unique as a probe of condensed matter systems in that as a neu-

tral particle, they pass through most matter with ease. The only interactions

are the nuclear strong force with atomic nuclei, and magnetic interactions
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between spin degrees of freedom in the solid and the neutron spin. Neutrons

are generated for the purpose of scattering experiments through either a spal-

lation process or in a fission reactor source, and can be moderated with water,

liquid hydrogen, or deuterium to produce what are known as thermal or cold

neutrons respectively. The energy scale of thermal neutrons makes them ideal

for the study of collective modes of excitation in crystalline materials, as their

wavelength is on the Å scale which is also the length scale between atoms in

solids while their energy matches the 1 meV-100 meV range assosciated with

collective modes.

A basic scattering process starts with an incident neutron with wavevector

ki. The neutron scatters off the sample and emerges from it with wavevector

k f . This process may be elastic or inelastic. The signal to be measured is

the scattering probability distribution, which is the Fourier transform of the

neutron-sample interaction potential in real space and time, be it nuclear or

magnetic in origin. This is also known as the correlation function. In the most

general form, the scattering cross-section for magnetic scattering is written as

[54–56]
d2σ

dω dΩ
=

k f

ki
|g
2

F(Q)|2r2
0 ∑

α,β
(δαβ −

QαQβ

Q2 )Sαβ(Q, ω). (2.5)

Here, r0 = gre = 5.391 · 10−13 cm is the characteristic neutron magnetic scat-

tering length which originates from the product of the classical electron radius

and the neutron gyromagnetic ratio, g is the Lande g-factor, F(Q) is known

as the magnetic form factor and is the Fourier transformed magnetization

density of the ion, the indices α and β refer to the Cartesian x y z directions, ki

is the magnitude of the incident scattering vector, k f is the outgoing scattering
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vector, and Qα is the α component of the total momentum transfer Q. This

process on a triple-axis spectrometer is depicted in Fig. 2.1. An extremely

important quantity called the dynamic correlation function Sαβ(Q, ω) appears

here. This is defined by [56]

Sαβ(Q, ω) =
1

2πh̄

∫︂ ∞

−∞
dt e−iωt ∑

rr′
e−iQ·(r−r′)⟨Sα

r (0)S
β

r′(t)⟩. (2.6)

The double sum is defined as over all pairs of spins in the lattice, and the

expectation value ⟨Sα
r (0)S

β

r′(t)⟩ is known as the spin-spin correlation function.

For elastic processes this is assosciated with t = ∞ processes, and inelastic

processes have a finite time scale. This quantity may be calculated using nu-

merical or analytical techniques for some systems, making neutron scattering

an extremely powerful technique to compare against theoretically predicted

excitations.

More detail about various scattering processes, including those from

phonons and spin waves, may be found elsewhere [56, 57]. One final note I

would like to make is the polarization factor (∑αβ) in Eq. 2.5. The consequence

of this term is that neutrons are only sensitive to the component of the mag-

netization (static or dynamic) that is perpendicular to momentum transfer.

Polarized neutron scattering offers the possibility of further distinguishing

the different polarization components as we shall do in 4.
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2.2.2 Sum rules

The definition of the dynamical spin structure factor S(Q, ω) results in useful

expressions for its frequency moments, which are defined by [54, 58]

∫︂ ∞

−∞
(h̄ω)nSαβ(Q, ω)dω. (2.7)

Here the α and β superscripts are the Cartesian spin components. The first

and zeroth moments are known as "sum rules", which will be used later in

this dissertation so a brief discussion of these is valuable. We begin with

the n=0 moment, which defines the static spin-structure factor S(Q). This is

also known as the Fourier-transformed equal-time correlation function and is

associated with the energy integrated magnetic scattering, which is related to

a measurement with no final energy analysis. It is evaluated as follows,

Sαβ(Q) = ∑
r

eiQ·rγαβ(l, ∞). (2.8)

Here, the sum is over all sites in the lattice and γαβ(r, ∞) is the infinite-time

spin correlation function. The evaluation of this sum gives

∑
r

eiQ·rγαβ(l, ∞) =
1
N ∑

ij
eiQ·r⟨Sα

i Sβ
j (∞)⟩ = 1

N
⟨Sα

QSβ

−Q(∞)⟩. (2.9)

Integrating Eq. 2.9 over the Brillouin zone and taking the trace of the spin

indices yields the zeroth moment sum rule

∑
α

∫︂
Sαα(Q)

V0d3Q
(2π)3 =

1
N ∑

i,α
⟨(Sα

i )
2⟩. (2.10)
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The n=0 sum rule is also known as the total moment sum rule, which when

only considering one species of magnetic ion of identical spin is consequently

∑
α

∫︂ ∫︂
Sαα(Q, ω)

V0d3Q
(2π)3 dω = S(S + 1). (2.11)

This result is quite powerful in that if the scattering is correctly normalized,

the total integrated scattering is a measure of the moment size. This may

be compared against the theoretically expected moment or the moment size

inferred from magnetization measurements.

We may readily evaluate the first moment sum rule as well, which may be

expressed as [54]

∫︂ ∞

−∞
Sαβ(Q, ω)dω =

−1
N

⟨Sα
Q

[︂
H, Sβ

−Q

]︂
⟩. (2.12)

The appearance of the Hamiltonian originates from the evaluation of the

first time derivative of the spin-spin correlation function. This result may be

applied to various well known spin-systems such as the Heisenberg model

[54]. For a Heisenberg magnet, this expression may be used to relate the bond

exchange energies Jn to the scattering by

∫︂ ∞

−∞
ωSαα(Q, ω)dω = −∑

d
Jd (1 − cos(Q · dn)) ⟨⟨Sβ

RSβ

R+dn
⟩⟩. (2.13)

Here, the sum is over all unique exchange paths and the quantity ⟨⟨Sβ

RSβ

R+dn
⟩⟩

denotes a site-independent lattice averaged spin-spin correlation. When ap-

plied to scattering from a powder sample for which scattering is averaged

over the isotropic grain orientation distribution, this evaluated cross-section
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Figure 2.1: Sketch of a general scattering process on a triple axis spectrometer.

becomes

S(Q) = −1
3 ∑

d,α
Jαα
d ⟨Sα

o · Sα
d⟩
∫︂ dΩ

4π
|F(Q)|2(1 − cos(Q · d)).

=
1
3 ∑

d,α
Jαα
d ⟨Sα

o · Sα
d⟩|F(Q)|2(1 − sin(Q · d)

Qd
).

(2.14)

2.2.3 Instrumentation

Neutron scattering requires a source of neutrons, which comes in the form

of a reactor like the NCNR source at NIST, or in the form of a spallation

source like the Spallation Neutron Source at Oak Ridge National laboratory.

Both types of facilities exist around the world, but these are the primary

sources in the United States and the only facilities that were used for the

research in this dissertation. Both types of sources are extremely expensive to

operate, meaning that we must travel to national laboratory facilities for these

experiments. The principle of both types of sources are the same for direct

geometry spectrometers, like the triple-axis spectrometer (TAS) sketched in

Fig. 2.1. In the case of the TAS, this is performed by a crystalline array in a
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monochromator.

An incident neutron energy is selected, and the monochromatic neutron

beam then scatters off of the sample. The geometry defined by the incident

and scattered beam may be used to determine the momentum transfer to

the sample, Q = ki − k f . Depending on the scattering process, the outgoing

neutron may or may not have experienced an energy transfer to or from

the sample. To detect this, an analyzing crystal array is used to determine

the energy of the neutrons incident on the detector, thereby providing a full

description of the scattering process. In a time of flight spectrometer, the

incident energy selection is performed by a disk chopper, and the final energy

is determined by the time taken for the neutron to travel from the source to

the detector via the sample.

2.2.4 Normalization of scattering data

As has should be apparent, neutron scattering is an extremely powerful tech-

nique to characterize the magnetic properties of samples. One of the many

strengths is the ability to calculate exact cross sections given a model of mag-

netism for comparison to experimental data and perform sum rule analyses

that will be used later in the text. This is particularly important in magnetic

structure refinements, where magnetic structure factors may be calculated

and compared to experimental data after proper convolution with the instru-

mental resolution function. In order to use these techniques, the experimental

data must be normalized to a well-known scattering cross section. There are a

number of methods to do this, but we will only discuss those used in the body

25



of this work. A more general review may be found in Ref. [59]. In general the

measured intensity from a neutron scattering experiment may be related to a

cross section by

I(Q, ω)A =
d2σ

dω dΩ

⃓⃓⃓⃓
R

. (2.15)

Here we have defined an overall normalization constant A, the cross section

is general and convoluted with the instrumental resolution as denoted by

R. The cross section to which one normalizes changes depending upon each

measurement. A common method is to use a known mass of vanadium which

happens to be an almost pure nuclear incoherent scatter with no nuclear

Bragg peaks. Assuming that the resolution element is the same (i.e. the same

instrumental configurations are used in the measurement of vanadium and

the sample), one may find Avan using

dσ

dΩ inc
=

Nvan

4π
σince−2W

i . (2.16)

Here Nvan is the number of vanadium atoms for the known mass of vanadium,

the Debye-Waller factor is approximated to be equal to 1, and for elemental

vanadium σinc = 5.08 barn. The factor of 1
4π comes from the fact that σinc is the

total scattering cross section whereas the differential scattering cross section is

per steradian solid angle, and the energy dimension has been integrated over.

It is straightforward to find Avan using the integrated elastic line intensity,

which may then be scaled to the sample measurement based on the known

mass of vanadium. This is expressed by

A
∫︁ Qmax

Qmin

∫︁ ∆
−∆ I(Q, ω)dωdQ∫︁ Qmax

Qmin
dQ

=
mvan

50.94
σinc

4π
. (2.17)
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Here, the values Qmin and Qmax are the integration bounds along the Q di-

mension, ∆ is the integration width in energy around the elastic line, mvan is

the mass of the vanadium standard in grams, and the factor of 50.94 is the

molar mass of vanadium. This is the most straightforward method for normal-

ization. If the sample itself has significant incoherent scattering, one may also

normalize to the sample itself in this way but this runs into problems when

the sample incoherent scattering is comparable to or less than the instrumental

background as is often the case in real measurements.

A second method of normalization is to use structural nuclear Bragg peaks

from the sample. The cross section for a Bragg reflection τ may be written as

[57]
dσ

dΩτ
= N

(2π)3

V0
|F (Q)|2δ(Q − τ) (2.18)

N is the number of unit cells, V0 is the unit cell volume, and τ is the particular

Bragg reflection. The nuclear structure factor is expanded as

F (Q) = ∑
d

b̄deiτ·de−2Wd (2.19)

The sum in this expression is over one unit cell, with b̄d being the bound

coherent nuclear scattering length of each ion as tabulated in [60] and e−2Wd

is the Debye-Waller factor, which generally also depends on τ and thus is

more properly written as e−2Wd(τ). This quantity is readily calculated for

any particular experimentally available nuclear Bragg peak. Then, one may

compare the integrated intensity of the peak to the calculated cross section in
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the following manner

∫︂ ∫︂
d3QdωI(Q, ω) =

1
AN

(2π)3

V0
|F (τ)|2. (2.20)

For a powder sample, the direction of Q relative to the crystal lattice is random-

ized by the grain orientation distribution. Thus one measures the spherically

averaged scattering cross section

dσ

dΩ powder
=
∫︂ dΩ

4π

(︃
dσ

dω

)︃
τ

= N
(2π)3

V0
|F (τ)|2 1

4π|τ|2 δ(Q − τ). (2.21)

Finally, this yields the overall normalization condition

A
∫︂ ∫︂

dQdωI(Q, ω) =
(2π)3

V0
∑
|τ|

|F (τ)|2 δ(Q − τ)

4π|τ|2 . (2.22)

In this manner, for a powder sample it is straightforward to use all available

peaks for normalization in a similar way to how one would perform a Rietveld

refinement of the nuclear structure. The sum is performed over the magnitude

of momentum transfer |τ| of the reflections to account for the multiplicity

of reflections with the same momentum transfer. For example, in the case

of a hexagonal lattice the (001) and the (001̄) reflections both contribute to

the scattering over 4π steradian, meaning that both contribute to the overall

intensity at the same |τ|. In the case that a triple-axis spectrometer is used,

where one does not have access to the ω dimension in an elastic scan, the

left side of Eq. 2.22 must be multiplied by the FWHM instrumental energy

resolution ∆FWHM to handle the integration along the energy axis. An example

of this method applied to Ba4NbRu3O12 is shown in Fig. 2.2.
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Figure 2.2: Example normalization to elastic Bragg scattering for powder
Ba4NbRu3O12. (a) Black points are the measured intensity integrated over the elastic
resolution of the instrument, red line is the fit considering a single Gaussian at every
reflection to account for resolution. Green bars represent the structure factor of each
reflection in arbitrary units. The fit is used to find the overall normalization scale A.
(b) Deviation between fit (red line in (a)) and experimental values (blue line in (a)).

2.2.5 Factorization method

For a closer examination of the Q and h̄ω dependence of these data, it is

expedient to make the assumption that S(Q, ω) may be approximated as a

product of independent functions of Q and ω. This will be referred to as a

factorization analysis, and is written as

I(Q, ω) = 2r2
0|

g
2

F(Q)|2S(Q, ω)

= 2r2
0|

g
2

F(Q)|2S(Q)G(ω). (2.23)

Within the kinematically accessible range of scattering, this is consistent with

these data and has been found to be a good approximation for a number of
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Figure 2.3: (a) Simulated scattering consisting of the product of two Gaussian func-
tions with noise, one in the energy dimension and one in the momentum transfer
dimension. (b,c) Results of the application of the factorization method to the simu-
lated scattering showing good agreement with the underlying Gaussian forms.

frustrated magnetic materials such as SrCr9Ga12O19 [61, 62] where no long-

ranged correlations develop and no dispersion is apparent in the scattering

pattern. Here the spectral function is defined to be unity normalized,

∫︂
G(ω)dω = 1 (2.24)

while the integral over S(Q) yields the effective moment by a total-moment

sum rule:

µ2
obs = 3g2

∫︁
S(Q)Q2dQ∫︁

Q2dQ
. (2.25)

This assumption allows for the full determination of S(Q) and G(ω) despite

kinematic constraints. A fitting protocol was used to project the O(NQ × Nω)

experimental pixels onto NQ values of |F(Q)|2S(Q) and Nω values of the

local excitation spectrum G(ω) throughout the factorized range of Q and ω.

One of the simplest examples of the results of this procedure is shown in

Fig. 2.3(b,c). Here, a simple example of factorizable scattering is generated
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using the product of two Gaussian functions, with some normally distributed

noise. The method does an excellent job of capturing the Gaussians used to

generate the scattering, and is more generally applied later in this dissertation.

2.3 Observable quantities in quantum spin-liquids

Before moving on to the three major projects of this dissertation, it is important

to briefly state how exactly one could hope to detect a QSL state. With no clear

order parameter, the excitations are completely different from conventional

spin waves and a different approach is needed.

2.3.1 Thermal measurements

Although this dissertation focuses on neutron scattering, thermal transport

has been proposed as a possible tool for the direct detection of a Quantum

spin-liquid state. More precisely, a half-integer quantized Thermal Hall effect

would be a direct confirmation of the topological quasiparticles that should

be present in a true KSL phase [4]. This may be seen as an analog to the

fractional quantum Hall effect seen in graphene [63]. In practice, this quantity

is extremely difficult to measure despite some reports of its existence in α-

RuCl3 that will be discussed later.

2.3.2 Dynamical spin structure factor

The dynamical spin structure factor as defined by Eq. 2.6 is a response function

related to spin-spin correlations. This quantity may be calculated for a given

spin system with a known Hamiltonian by approximate and in rare cases
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exact theoretical methods. Methods limited in accuracy only by system size

include exact diagonalization [64] the density matrix renormalization group

method [27]. Approximate methods for the description of excitations from an

ordered state include linear spin-wave theory and molecular dynamics, among

others. Because the relation between the neutron scattering cross section and

the underlying spin dynamics is exactly known, unlike the case for other

spectroscopic probes, neutrons are arguably the most powerful tool to probe

the nature of the low energy excitations in putative QSL phases. However,

no sharp signatures exist in the calculated S(Q, ω) [23, 32, 65] of the Kitaev

QSL due to the lack of long-ranged order. This may be taken as an indication

that the scattering occurs through a multi-particle process. The multiparticle

continuum is however, difficult to distinguish from the excitations of various

disorder dominated states of matter such as the random singlet state that

do not have the distinct features of entanglement and fractionalized quasi-

particles as for a QSL [66]. Without evidence of quantized thermal Hall

transport, the best evidence for a QSL is a collection of scattering data with

both theoretical support and other corroborating measurements like heat

capacity and susceptibility.
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Chapter 3

Frustrated triangular lattice Je f f =1
2

trimer materials Ba4NbRu3O12 and
Ba4NbIr3O12

3.1 Introduction

3.1.1 Crystal structure and trimer magnetic units

Ba4NbRu3O12 and Ba4NbIr3O12 are two materials in a larger family of per-

ovskites of the form Ba4MM’3O12 (M=Nb,Ce,Pr) (M’=Mn,Ru,Ir) that all crys-

tallize in the space group R3̄m [67]. A wide family of possible materials

exists within this set, and the hexagonal symmetry permits face-sharing MO6

tetrahedra forming dimer, trimer, or longer chain-like units. These geome-

tries are not possible in more widely studied oxide perovskites of the form

AMO3 that crystallize with a cubic symmetry where A is a larger ion. The

face sharing MO6 octahedra within the magnetic units permit extremely short

metal-metal distances and significantly lower M-O-M bond angles than in

traditional perovskites.
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The magnetic properties of these materials have been explored through

bulk characterization studies and their crystal structures are well known, with

diffraction data that can be described by a disorder-free structural model.

However, little is known regarding the magnetic interactions or excitations

in these materials, which will be the focus of the present work. Here we will

focus on the relevant family of trimer-based materials of the form A4MM’3O12,

but dimer-based materials of the form A3MM’2O9 (A may be an alkali or

rare-earth ion) such as Ba3InIr2O9[68] and Ba3YIr2O9[69] also show interesting

magnetic properties and may be of interest in future studies.

Trimer-based materials feature three face-sharing MO6 octahedra, with

the MO6 octahedra forming a triangular lattice, introducing the triangular

motif and geometrical frustration. A particularly interesting property of these

materials (which also exists in dimer-based materials) is that the valence

electrons may either be localized around their respective M ions or potentially

delocalize within the trimer, which has been proposed for larger 4d and 5d

elements like Ru and Ir. This makes the study of the series of trimer-based

materials Ba4NbM3O12 (M=Mn, Ru, Ir) quite interesting, as the Nb5+ site is

completely non-magnetic and with increasing atomic number Z the electrons

should in principle become further delocalized [70]. Thus, a comparison of

these materials with varying spin-orbit coupling on the M-site with λMn <

λRu < λIr may be viewed as the transition from a completely localized picture

to the more interesting molecular orbital picture of the trimer.

In the completely delocalized picture, the structure consists of well-separated

triangular layers of molecular magnets on a triangular lattice. This presents a
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O
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Figure 3.1: Depiction of dimer (a) and trimer (b) magnetic units in the hexagonal
perovskite materials of the form A5Ru2O12 and A4MM’3O12 respectively. The molec-
ular magnetic units themselves arrange within the a-b plane on a triangular lattice,
as depicted in (c). The triangular layers are well separated, which suggests a highly
frustrated 2D lattice of molecular spins.

unique scenario. Although frustrated magnetism on the triangular lattice is

well-studied, experimental examples of frustrated molecular magnets are few.

Notable exceptions to this are organic spin-liquid candidate materials such as

κ-(BEDT-TTF)2Hg(SCN)2Br [71, 72], but our discussion is focused on inorganic

materials. Inorganic molecular magnets with triangular frustration in the lit-

erature include LiZn2Mo3O8, where spin 1/2 degrees of freedom are formed

by the Mo3O8 molecule with a three-fold axis that provides a template for

the triangular lattice, and a unique quantum-critical state with short ranged

correlations was discovered at low temperature in this material [73–75]. There

exists an inevitable site-mixing between the Li/Zn ions to preserve charge

neutrality. This has led to suggestions that disorder plays a significant role in

this material and may drive it into a random-singlet state like in YbMgGaO4

[76]. These trimer materials differ significantly from LiZn2Mo3O8 in that they

appear to be chemically clean, with no detectable secondary phases or site

disorder apparent in x-ray diffraction refinements[77]. Of course, this does
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not preclude the presence of site disorder such as oxygen deficiencies in small

quantities, but puts an upper limit on their fraction of around 2%.

Ba4NbRu3O12 and Ba4NbIr3O12 both have significant spin-orbit coupling

from their respective magnetic ions and a net 13 electrons per (Ru, Ir)3O12

trimer, and by an electron counting argument a Je f f =1/2 ground state doublet

emerges from the octahedral crystal field and strong spin-orbit coupling. In an

octahedral crystal field, d orbitals split into triply degenerate t2g and doubly

degenerate eg states. Spin-orbit coupling further splits the t2g manifold into

two discrete energy levels of a J = 3/2 quartet and a J = 1/2 doublet[70].

This leads to the picture of Je f f =1/2 molecular magnets arranged on a tri-

angular lattice, but the validity of the molecular orbital picture in these two

compounds is still an open question. Recent DFT studies have supported the

idea of a molecular orbital picture in Ba4NbIr3O12 in particular [78], whereas

refinements of magnetic structure and ab initio studies strongly support a

localized spin picture for Ba4NbMn3O12 [79, 80].

With this established, the goal of this portion of the thesis is to determine

the nature of the low temperature magnetism in Ba4Nb(Ru,Ir)3O12, and if that

magnetism supports the Je f f =1/2 molecular orbital picture proposed. There

are significant experimental considerations that must be made to achieve this

goal. Single crystal samples of these materials are only available in very small

µm length scales, meaning that single crystal neutron studies are impossible.

Field dependent measurements are also required to be taken as a powder

average. Finally, iridium is a difficult element to work with for neutron

scattering as it is prohibitively expensive, has a magnetic form factor that
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Figure 3.2: Two possible energy level diagrams in MO12 trimers (M=Mn, Ru, Ir). The
electron counting considers the Ru and Ir cases with 13 electrons per trimer giving a
net residual spin of 1/2 on each molecule. (a) Direct metal-metal bonding results in a
localized picture, as discussed in Ref. [80], whereas the more interesting molecular
orbital picture would have the spin degree of freedom spread over the molecule.
Diagrams are reproduced from Refs. [67, 77, 80].

disperses strongly with wavevector transfer Q, and Ir is furthermore strongly

absorbing. For Ei=25 meV neutrons, the absorption cross section for natural

isotope Ir is σabs = 425 b [60].

3.2 Magnetic properties

3.2.1 Magnetization and susceptibility

Ba4Nb(Ru,Ir)3O12 are both Mott insulators as indicated by their measured

semiconducting band gap despite DFT predictions of a significant density of

states at the Fermi energy [77]. Synthesis of both materials was performed by

collaborators Loi Nguyen and Robert Cava at Princeton University through

a solid-state reaction as reported in Refs [70, 77]. All measurements were

performed on pressed pellets of powder samples. High temperature (T=1.8-

300 K) magnetization and susceptibility measurements were performed in

a Quantum Design PPMS (Physical Properties Measurement System) using
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the VSM (Vibrating Sample Magnetometer) and ACMS (AC Measurement

System) options respectively. These measurements used powders enclosed in

plastic capsules. For the Ir compound, AC susceptibility measurements were

also run in a dilution refrigerator covering a temperature range from T=120

mK to T=3.8 K, and magnetization measurements were also carried out in a

Quantum Design MPMS (Magnetic Properties Measurement System) with the

3He option for temperatures from T=0.3 K to T =2 K.

The temperature dependent magnetization of Ba4NbRu3O12 in a magnetic

field of H=1000 Oe is shown in Fig. 3.3. In the weakly correlated high T regime,

the Curie-Weiss law may be used to estimate the exchange interaction J. The

χ = M/H vs T curve is fit well to the Curie-Weiss form of χ(T) = C
T−θCW

+ χ0,

where χ0 is the temperature independent part of the susceptibility, C is the

Curie constant, and θCW is the Curie-Weiss temperature. These parameters

are found by a least-squares fit to be θCW = −160(20) K, µe f f = 2.59 µB,

and χ0=0.525 memu Oe−1 mol-f.u.−1. At low temperatures, a signature of

spin freezing appears around T=4 K, which is the small hump. While θCW is

not a perfect indication of the true exchange interactions in many materials,

its significant magnitude and the absence of any deviations from the Curie-

Weiss form down to temperatures T ≪ ΘCW are signatures of geometrical

frustration.

We may infer some information about the spin-state of the trimer from

the measured moment of µe f f = 2.59 µB. In a perfect Je f f = 1
2 picture the

expected effective moment would be equal to g
√︁

S(S + 1) ≈ 1.7µB. In the

localized picture, the trimer may either have S=3/2 or S=5/2. The measured
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Figure 3.3: Susceptibility of Ba4NbRu3O12 reproduced from Ref.[77].
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(a) (b)

Figure 3.4: Magnetization and susceptibility of Ba4NbIr3O12 reproduced from
Ref.[70].

moment is between the pure g=2 Je f f =1/2 picture and the S =3/2 state which

would have an expected moment of µ = 3.87 µB. Magnetization versus field at

constant temperatures of T=1.8 K and T=300 K is shown in Figure. 3.3(b). The

magnetization is not saturated at H=9 T, with a measured value of µ ≈ 0.16µB

f.u.−1.

Key evidence of spin-freezing is shown by comparing the field cooled

(FC) and zero-field cooled (ZFC) magnetization shown in Fig. 3.3. A clear

bifurcation at T=4 K is indicative of some form of spin-freezing. This is

interesting, as spin-freezing is sometimes indicative of the nucleation of spins

to a disordered site, but there is no detectable structural disorder. We conclude

that this is the result of strong geometrical frustration.

We now turn to the case of Ba4NbIr3O12, for which susceptibility versus

temperature (T=1.8-300 K) is shown in Fig. 3.4(a). The effective moment is

quite small at µe f f = 0.80 µB, and the fitted value of −θCW = 13 K indicates

weak antiferromagnetic interactions between spins[70]. Unlike the Ru case,

there exists no bifurcation between FC and ZFC susceptibility, as shown in Fig.
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Figure 3.5: Low temperature susceptibility of Ba4NbRu3O12. The lowest accessible
temperature of T=120 mK shows no signs of spin freezing, and comparisons of the
field-cooled versus zero field cooled magnetization performed in an MPMS show
no freezing at temperatures above 500 mK. High temperature measurements were
performed in the ACMS system as a calibration.

3.4(b). This behavior persists at temperatures as low as T=120 mK, as shown

in Fig. 3.5. This is extremely interesting and points towards Ba4NbIr3O12 as

a promising quantum spin-liquid candidate, but almost nothing is known at

this point about the excitations in the system. For this, we first turn to specific

heat capacity measurements.

3.2.2 Specific heat

The specific heat capacity of Ba4NbIr3O12 over a wide temperature range of

T=100 mK to T=300 K is pictured in Fig. 3.6(a). As no nonmagnetic analogue

to this material is available, a suitable phonon background was estimated

such that the magnetic specific heat, defined as Cmag(T) = C(T)− Cphonon(T),

could be calculated. To do so, a least squares routine was implemented with

the following constraints:
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1. Cphonon(T) ≤ C(T), implemented by an exponentially increasing con-

tribution to χ2. For Cphonon(T) ≤ C(T), χ2
− =

(Cphonon(T)−C(T)2

δC(T)2 , and for

Cphonon(T) > C(T), the contribution is χ2
+ = exp

[︃
(Cphonon(T)−C(T)2

δC(T)2

]︃
− 1.

Here, δC(T) is the measurement error, and the value of -1 in χ2
+ is re-

quired for the overall χ2 to be a smooth function.

2. In the absence of spin-orbital degeneracy, the full integrated magnetic

entropy from an S=1/2 system should be equal to Rln(2). The magnetic

entropy is calculated upon every fit iteration, and deviation from Rln(2)

contributes to the overall χ2 by χ2
S = (Smeas − R ln(2))2.

3. A minimal functional form must be used that is consistent with harmonic

phonons. A superposition of two Debye-type modes and an Einstein

(optical) mode were used was found to be the minimal model that

satisfies requirements (1) and (2) in the temperature range of T=15 K to

T=200 K.

The functional form used for the Debye modes is

CD(T) = 9RN
(︃

T
θD

)︃3 ∫︂ θD/T

0

x4ex

(ex − 1)2 dx. (3.1)

Here R is the universal gas constant, N is the number of ions, θD is defined as

the Debye temperature, and x is an integration variable. The functional form

used for the Einstein mode is

CE(T) = 3NkB

(︃
ϵE

kBT

)︃2 eϵE/kBT

(eϵE/kBT − 1)2 (3.2)

Here kB is the Boltzmann constant and ϵE is the Einstein frequency. With
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Parameter Constrained fit
CD1,max (R) 25.9(5)

ΘD1 (K) 308(2)
CD2,max (R) 28(3)

ΘD2 (K) 813(70)
CE,max (R) 3.6(1)

TE (K) 87.2(4)

Table 3.1: Parameters determined by fitting two Debye Models and one Einstein mode
to high-T specific heat data of Ba4NbRu3O12. ΘD1, ΘD2, and TE are the corresponding
temperature scales. The high-T limit of each term is denoted as CD1,max, CD2,max, and
CE,max. The fit sums to a value of 58(3) R, which is consistent with the Dulong-Petit
limit of 60 R per formula unit.

these constraints, a model of the phonon specific heat is found that converges

to a high temperature specific heat of 58(3)R, which is consistent with the

value expected by the law of Dulong-Petit of 3nR where n=20 is the number

of atoms in the unit cell. The convergence of the magnetic entropy is shown

clearly in Fig. 3.6(b), as well as the resulting Cmag(T). The fit parameters of

each phonon mode are also reported in Table 3.1. Though this procedure is

certainly not as reliable as measurements of a non-magnetic analogue as a

background, it qualitatively works very well and its imperfections should not

be impactful in the low temperature range where the phonon model is only a

small fraction of the signal.

Examining Cmag(T) more closely, the entropy is contained in two different

peaks. The high temperature peak may be associated with the buildup of short

ranged magnetic correlations at the energy scale defined by θCW , while the low

temperature peak is associated with spin-freezing as indicated in the FC/ZFC

susceptibility (Fig. 3.3(b)) The low temperature part of the specific heat (T<4 K)
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Figure 3.6: Heat capacity study of Ba4NbRu3O12. (a) Full temperature range from
T=100 mK to 200 K, the red line is the fitted phonon contribution described in the
text. (b) Integrated magnetic entropy inferred from the magnetic contribution to C(T)
as shown in (c). (d) Low temperature specific heat showing a nuclear contribution
and a γT contribution. Individual fit components are represented by dashed lines,
with their sum being the red line.
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is independent of the rather complicated phonon model previously discussed.

At the very lowest accessible temperatures, the small upturn in C(T)/T is

associated with the spin-full nuclear isotopes 99Ru and 101Ru with a combined

natural abundance of 30%. The hyperfine coupling to the frozen ruthenium

nuclear magnetism gives rise to a Cmag(T) = B/T2 contribution to the total

specific heat. The nuclear spin term is an independent confirmation of the

presence of the frozen moment, and one can perform a fit to this contribution

to the specific heat to extract an estimate of the frozen moment. In this case,

the anomaly is centered at too low of a temperature for a consistent fit, but

in the case of rare-earth pyrochlore systems with large moments this method

works very well [81].

Further examining the low-temperature specific heat using double log

plot reveals a clear finite value of Cmag(T)/T ∝ γ. An overall model of

Cmag(T) = B
T2 + γT + ATα accounts well for the data for T < 3 K as shown

by the solid line and the decomposed dashed lines in Fig. 3.6. The origin of

the γ=31(2) mJ/mole-K2 term is unknown, but often persists in spin-glass

materials such as this or may be associated with a spinon-Fermi surface

[82] if the remaining unfrozen spins form a spin-liquid like state below the

freezing temperature [83]. Another possibility is what is commonly known

as a random-singlet state [76]. A final observation that may be made from

the specific heat capacity data is that the power law term with α = 1.62(2)

contrasts with the power seen in other two-dimensional quantum magnets

of α = 2 which has been associated with linearly dispersive quasiparticles in

two-dimensions [84].
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Figure 3.7: Low temperature specific heat of Ba4NbIr3O12 in the presence of a mag-
netic field.

The specific heat of Ba4NbIr3O12 is even more interesting than the Ru3 case,

with the specific heat in the low temperature regime (T <3.5 K) pictured in

Fig. 3.7. Even at the lowest accessible temperature of T=50 mK no detectable

specific heat anomaly associated with magnetic ordering is found. This is

consistent with the lack of anomalies indicative of magnetic ordering or spin

freezing in the magnetic susceptibility data. Instead, a significant buildup of

C(T) is found at very low temperatures, signifying a large density of states

of low energy excitations. The zero-field specific heat integrated from over

the full range presented in Fig. 3.7 represents only ≈8% of the full expected

entropy of Rln(2) from a S=1/2 system.

This buildup is not consistent with nuclear spin hyperfine splitting, as

there is no evidence for magnetic order and in the presence of a field these

excitations appear implying the formation of a significant gap. There are

few ways to explain this buildup of magnetic entropy at low temperatures
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without the presence of exotic excitations such as those that would exist in a

quantum spin-liquid. One less exotic possibility is a gradient electric which is a

consequence of a lack of inversion symmetry on the two Ir4+ sites, which could

break the nuclear spin degeneracy in the absence of time reversal symmetry

breaking magnetism. These data are extremely encouraging, and strongly

suggest that Ba4NbIr3O12 could be a triangular-lattice quantum spin-liquid.

3.3 Ba4NbRu3O12 elastic neutron scattering

The sample used in neutron scattering measurements consisted of 20(1) grams

of powder prepared by solid state reaction as described in Ref. [77]. The pu-

rity of these samples was confirmed by powder x-ray diffraction refinements

which places an upper limit of secondary phases of 3%, but no impurities were

detected within this limit. An elastic neutron measurement was performed

on the MACS instrument [85] at T=2.0(1) K, with Ei=E f =3.7 meV neutrons

to detect the frozen moment. The intensity of the scattering is normalized

to the (101̄) nuclear Bragg peak to obtain an absolute measure of the partial

differential scattering cross-section as described in Sec. 2.2.4. The temperature

dependent scattering was measured up to T=25 K. Temperature dependent

magnetic scattering is shown in Fig. 3.8. To isolate the magnetic scattering,

we have subtracted the signal at T=25.0(1) K. Upon cooling below T=15 K,

the elastic scattering intensity grows which is indicative of the development

of static magnetic correlations or spin freezing. The T=8 K maximum in the

magnetic specific heat may be the thermodynamic indicator of the freezing

transition. The different timescale associated with the measurements typically
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Figure 3.8: (a) Temperature dependence of elastic magnetic scattering of Ba4NbRu3O12
acquired on the MACS instrument with Ei=3.7meV. Averaged signals from temper-
atures ranging from 20 K to 25 K were subtracted as a background to isolate the
magnetic signal associated with spin freezing. (b) Temperature dependence of bulk
of magnetic signal integrated within the range of the white lines. The signal dramat-
ically increases below temperatures of 10.0(1) K. (c) Cut along Q integrated in the
temperature range shown by the black lines. The red line is a fit described later in
the text assuming scattering from Ru ions. The blue line is the same fit but using
assuming scattering from a trimer molecular magnet. The red boxes denote points
that are contaminated by Bragg peaks and were not used in the fit.
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leads to different characteristic temperatures of spin freezing transitions. In-

tegrating the observed scattering shown in 3.8(c) over Q yields an observed

root-mean-square (RMS) frozen moment of µstatic = 1.2(3)µB which is static

on the timescale of 30 ps associated with the 0.15 meV FWHM resolution of

the instrument. Though T << θCW = −155 K, the elastic scattering clearly

does not take the form of Bragg peaks, signifying the absence of long-ranged

order and a short ranged spin correlations even in the ordered state. The

functional form of the solid line fit shown in 3.8(c) is described later, but

are theoretical fits involving only nearest-neighbor correlations that will be

described in greater detail later.

3.4 Ba4NbRu3O12 Inelastic neutron scattering

Inelastic scattering was measured using the SEQUOIA instrument at Oak

Ridge National Laboratory [86] with incident energies of Ei=10.5 meV, 25 meV,

and 50 meV using the high flux chopper configuration. An equal accumulated

proton charge of 14 C was used in all of these measurements, and equal time

was spent counting at T=4.0(1) K for the magnetic signal and T=300.0(1) K

(150.0(1) K) to acquire background data for Ei=25 meV and Ei=50 meV (Ei=10.5

meV). An empty aluminum can was used as a background for all measurement

configurations to account for scattering from the sample environment and the

sample container. Combining the data obtained with all Ei values, we obtain

a full excitation spectrum extending from h̄ω = 1.0(2) meV to 45 meV energy

transfer that is broad Q-space. The high temperature measurements were used

to help isolate the magnetic scattering in a process that will now be described
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in detail. Multiphonon contributions were determined using the OCLIMAX

software package [87]. Fig. 3.9 shows a color map of the dynamical correlation

function S(Q, h̄ω) at T=4.0 K obtained by a combination of neutron scattering

data with different Ei configurations as described previously. Based on the

short ranged nature of the frozen magnetic state, the absence of sharp features

in the inelastic scattering from a powder sample is expected. Instead, we

observe that S(Q, h̄ω) is extremely broad in both momentum and energy

transfer space, with a maximum at low Q and an energy transfer dependence

resembling S(ω) ∝ h̄ω−1. While this is consistent with dynamical correlations

of a macroscopic interacting spin-system with short range spin freezing, intra-

molecular excitations are not observed. These would be sharp features in h̄ω

resembling discrete crystal field levels.

3.4.1 Isolation of inelastic magnetic scattering

The directly measured intensity (after normalization and sample environment

background subtraction) for all three incident energy configurations is shown

in Fig. 3.10. There are three main contributions to the scattering evident in all

measurements that are necessary to separate. The first is the high-Q part of

the scattering (Q > 2 Å
−1

) that is dominated by optical phonons involving

oxygen. The second is the low-Q (Q < 1 Å
−1

) contribution to the scattering

that is presumed to be of magnetic origin. The final contribution is a pervasive

flat background that exists despite the subtraction of an empty aluminum

can measurement, which is most clearly seen for 1 Å
−1

< Q < 2 Å
−1

in Fig.

3.10(b).
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Figure 3.9: Extracted magnetic scattering of Ba4NbRu3O12. Three incident energies
are used in this, Ei=50 meV, Ei=25 meV. The boundary between these configurations
is shown by the dashed red line.
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Figure 3.10: Normalized scattering from Ba4NbRu3O12 at T=4 K for the (a) Ei=10.5
meV, (b) Ei=25 meV, and (c) Ei=50 meV configurations.
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The isolation of inelastic magnetic scattering in Ba4NbRu3O12 is a nontriv-

ial task that will be summarized here. If the only contributions to the measured

intensity was the magnetic and the one-phonon cross-sections, it is possible to

remove phonons from a low temperature measurement by subtracting a high

temperature measurement, where phonon scattering dominates after scaling

the data by the ratio determined by the Bose-Einstein population factor. This

is described by the expression below where the subscripts H and L refer to

the low and high temperatures respectively, and β = 1/kBT,

Imag(Q, h̄ω) = Ilow(Q, h̄ω)− 1 − e−βH h̄ω

1 − e−βL h̄ω
Ihigh(Q, h̄ω). (3.3)

This method relies on a number of assumptions that are invalid in the

case of Ba4NbRu3O12. First, the high temperature measurement is assumed

to have no magnetic scattering and to constitute a purely non-magnetic back-

ground. Second, the only contribution to the background at low temperatures

is assumed to be from single-event one phonon scattering. In systems like

Ba4NbRu3O12 with complex unit cells, higher order phonon processes are of-

ten present and should be accounted for (though they frequently are ignored).

Finally, this subtraction cannot handle the case when multiple scattering

contributes significantly to the overall signal.

A simplified model of the different contributions to the measured scattering

intensity may be written as

I(Q, h̄ω) = Imag(Q, h̄ω) + I1
ph(Q, h̄ω) + In

ph(Q, h̄ω) + Im(Q, h̄ω). (3.4)

Here, the total observed intensity is a linear combination of the desired
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magnetic scattering Imag, single-event phonon scattering I1
ph, multiphonon

scattering In
ph, and multiple scattering Im. To estimate the multiphonon scat-

tering, a DFT simulation was performed using the VASP package [88]. The

calculation used the Projector Augmented Wave method to describe the effects

of the core electrons, and the Perdew-Berke-Ernzerhof implementations of the

generalized gradient approximation for the exchange correlation functional.

The electronic structure was calculated on a 6x6x1 Γ-centered mesh. Force

constants were calculated using DFPT in VASP, and the vibrational eigen-

modes were calculated by solving the dynamical matrix using PhononPy [89].

Finally, the OCLIMAX software was used to convert the calculated phonons

into a simulated INS spectra accounting for the instrumental resolution of

the SEQ instrument [87]. OCLIMAX provides an exact calculation of phonon

cross-sections up to four phonon processes, allowing us to sufficiently account

for these at every temperature. The calculated low temperature phonon scat-

tering is shown in Fig. 3.11 normalized to the measurement using integrated

intensities at high values of Q where phonons dominate.

IO(Q, h̄ω) = IO,1
ph (Q, h̄ω) + IO,n

ph (Q, h̄ω),

Here, the superscript O refers to the calculated OCLIMAX values. While the

phonon cross-section is accounted for, we now consider the effects of multiple

scattering. Multiple scattering in powders is difficult to deal with, and can be

a significant contribution to the background in cases where (1) the sample has

a high elastic incoherent cross-section or (2) there is a large mass of sample,

giving neutrons many opportunities to scatter more than once. In this case it
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Figure 3.11: Calculated phonon scattering for Ba4NbRu3O12, normalized to the ob-
served phonon scattering intensity.

is the latter, as the sample was of mass 20 g in a cylindrical powder can.

Following Ref. [90], we take the multiple process to be one strong elas-

tic process (such as incoherent scattering) and one inelastic phonon event.

Making the assumptions that the incoherent elastic scattering is isotropic and

independent of energy and that the sample geometry is not relevant, this

process leads to a detected signal of the form

I′ph(Q, h̄ω) = T Iph(Q, h̄ω) + (1 − T )
∫︂ ki+k f

|ki−k f |
Iph(Q′, h̄ω)

Q′dQ′

2kik f
(3.5)

T is the fraction of single-event phonon scattering processes, the integral

represents the solid angle average of the intermediate scattering process,

and the prime denotes the full intensity resulting from both single event

scattering and multiple scattering. One approach here would be to assume

that scattering from phonons takes the form of I(Q, h̄ω) ∝ C
h̄ω Z(h̄ω), where

C is a constant and Z(h̄ω) is a phonon density of states. In our case we have

54



1 2 3
Q (Å 1)

0

10

20

30

40

 (m
eV

)

(a)

1 2 3
Q (Å 1)

 

(b)

1 2 3
Q (Å 1)

 

(c)

0 1 2 0 1 2

S(Q, ) (mb/meV/sr/mol (Ru3O12)

1 0 1

Figure 3.12: (a) Normalized direct scattering measured at Ei=50 meV, T=4 K. (b) Best
fit to multiple scattering using OCLIMAX calculations and the form of Eq. 3.6. Scat-
tering below the kinematic limit only includes the calculated Q-independent multiple
scattering. (c) Difference between the first two plots, showing small deviations that
are corrected for by Bose-Einstein subtraction.

detailed calculations of the phonons, so this approximation does not need

to be made and the integral can be carried out numerically with the given

one-phonon scattering cross section. To calculate the multiple scattering in

this way, one needs both an overall normalization for the DFT calculation and

the multiple scattering fraction T , which will be defined as

IO
tot(Q, h̄ω) = A

(︄
IO(Q, h̄ω) + (1 − T )

∫︂ ki+k f

|ki−k f |
IO(Q′, h̄ω)

Q′dQ′

2kik f

)︄
. (3.6)

Both T and the normalization constant A are treated as free parameters in a

χ2 minimization which is defined by

χ2 = ∑
i

(Ii − IO
tot,i)

2

σI2
i

. (3.7)

This procedure is repeated for every experimental configuration, with an
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example for Ei=25 meV T=4 K shown in Fig. 3.12. Only regions in the highest

available Q were used for this fit where no magnetic scattering is expected.

The effective fraction of single-event scattering were T10.5 = 0.77, T25 = 0.84,

and T50 = 0.91 where the subscripts denote the incident neutron energy.

The procedure qualitatively reproduces the backgrounds observed in the

experiment though with some asystematic deviations, as shown in Fig.3.12(c).

We denote these differences as

Isub(Q, h̄ω) ≡ I(Q, h̄ω)− I′ph(Q, h̄ω) (3.8)

Isub(Q, h̄ω) = Imag(Q, h̄ω) + δIph(Q, h̄ω) + δIm(Q, h̄ω) (3.9)

We now assume that the phonon-based errors are dominated by single-

phonon processes and subtract them using a standard Bose-Einstein subtrac-

tion using Eq. 3.3. The result is the following data, which by design should be

dominated by magnetic scattering

Ī(Q, h̄ω) = Imag(Q, h̄ω) +
{︂

δITL
m (Q, h̄ω)−B(h̄ω)δITH

m (Q, h̄ω)
}︂

. (3.10)

Here, B(ω) is the ω-dependent ratio of Bose-Einstein factors and the

superscripts denote temperature. Even after all of this effort, some intensity

remains at high Q and finite energy transfer that cannot be magnetic of origin

given the form factor. One possibility is that this is multiple elastic scattering

involving the sample environment. The delay becomes associated with a

"false" inelasticity in the time of flight geometry. In order to treat the data

quantitatively, these events must be removed. The assumption is made that

the full spectrum of scattering for Q>2 Å
−1

is non-magnetic and that the
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Figure 3.13: (a) Inelastic neutron scattering from powder Ba4NbRu3O12 after subtrac-
tion of single-event phonon scattering and multiple event scattering. The presence of
scattering with no Q dependence at high Q signifies that some non-magnetic contri-
butions still exist in the data. (b) After making an assumption that the scattering for
Q > 2Å

−1
is non-magnetic, the high-Q scattering is averaged and subtracted across

all values of Q as a background. The result shown is what we take to be the purely
magnetic scattering.

remaining multiple scattering contribution is Q-independent.

δIT
m(h̄ω) =

∫︂ Qmax

2 Å
−1 IT(Q, h̄ω)dQ/

∫︂ Qmax

2 Å
−1 dQ (3.11)

This process is depicted in Fig. 3.13. The final result is the smooth magnetic

continuum presented in Fig. 3.9(b). The Ei=10.5 meV data did not have

enough access to high-Q to perform the described background subtractions,

and was omitted for this reason from the remainder of the analysis.
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3.4.2 Scattering analysis

3.4.3 Anisotropic character of trimer form factor

The magnetic form factor |F(Q)|2 in general is defined by the Fourier trans-

form of the real-space magnetization density, which is given by the wave-

function for the magnetic orbital(s). In neutron scattering studies this is often

referenced as F(Q) and is formally defined by

F(Q) =
∫︂

eiqrρ(r)d3r. (3.12)

This can be evaluated numerically with the assistance of ab-initio studies [91],

but in this case we take a simple analytical approach. In Eq. 3.12, ρ(r) =

|ϕ(r)|2 where ϕ(r)is the valence electron wavefunction. In Ba4NbRu3O12,

there exist two Ru4+ ions and one Ru3+ ion that combine to form the proposed

Je f f =1/2 trimer magnetic unit. A rough assumption is made to ignore the

phase of the wavefunction and assume that these ions then contain identical

magnetic form factors. If this is true, then the wavefunction of the trimer’s

valence electrons is readily calculated. We begin with the approximate valence

electron wavefunction of the trimer

ϕ(r) ≈ 1√
3
[ϕ(r) + ϕ(r − do) + ϕ(r + do)]. (3.13)

Here do is the displacement vector between Ru ions within the Ru3O12

trimer. Given that this is simply a constant along the c-axis, the form factor is
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evaluated as

|FT(Q)| =
∫︂

eiq·r 1
3
|ϕ(r)2 + ϕ(r)ϕ(r − do)+ (3.14)

ϕ(r)ϕ(r + do) + ϕ(r − do)ϕ(r + do)+ ϕ(r − do)
2 + ϕ(r + do)

2|d3r

where FT(Q) denotes the trimer magnetic form factor. We now make the

assumption of no direct orbital overlap between the ruthenium ions, meaning

that the cross terms evaluate to zero. This is of course a major simplification,

and more detailed studies of this system would require a more careful analy-

sis. This would perhaps be done by evaluating the form factor numerically

through DFT studies. With the approximation the form factor is now the

following:

|FT(Q)| =
∫︂

eiq·r 1
3
(|ϕ(r)|2 + |ϕ(r − do)|2 + |ϕ(r + do)|2)d3r. (3.15)

This form factor is notably dependent on the z-axis component of the scat-

tering. Finally, the free-ion form factor appears and the expression can be

simplified to the following:

|FT(Q)| = 1
3

[︃ ∫︂
eiQ·r|ϕ(r)|2dr+ (3.16)

∫︂
eiQ·(r−do)|ϕ(r)|2dr +

∫︂
eiQ·(r+do)|ϕ(r)|2dr

]︃

|F(Q)|2 =
|FRu(Q)|2

9
(1 + 2 cos(Q · do))

2. (3.17)

This simple form does not yet consider the powder average in the current

experiments, but Fig. 3.14 shows the difference in the form factor for in-plane
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Figure 3.14: Analytically derived trimer form factor for in-plane and out of plane
directions. The out of plane direction is not precisely Qz, as the trimers are not stacked
on top of each other.

versus out of plane scattering. The revised form factor depends on the angle

between the momentum transfer Q and the Ru-Ru displacement vector within

the trimer d of magnitude do=2.54 Å. Now consider the equal time structure

factor associated with a pair of spin-1/2 molecules displaced by a real space

vector d from each other forming a singlet state.

S(Q) = A|F(Q)|2(1 − cos(Q · d)) (3.18)

Inserting the evaluated form for the magnetic form factor gives the following

analytical expression

S(Q) =
|FRu(Q)|2

9
(1 + 2 cos(Q · do))

2(1 − cos(Q · d)). (3.19)

The anisotropy in the form factor depends explicitly on the angle between the

scattering vector and d0. Let us now consider the structure factor that would

be associated with a powder sample:

Spow(Q) =
∫︂ dΩQ

4π
S(Q) (3.20)
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In the calculation of the powder average, we take the ẑ axis to be perpen-

dicular to the plane formed by dimer displacement vector d and the Ru-Ru

displacement vector do. The x̂ axis is taken to bisect these two vectors with

the angle between the axis and the vectors being ψ. Then, the d, do, and Q

vectors can be explicitly written in spherical coordinates as

d = (x̂ cos ψ + ŷ sin ψ)d (3.21)

do = (x̂ cos ψ − ŷ sin ψ)d (3.22)

Q = Q(x̂ cos ϕ sin θ + ŷ sin ϕ sin θ + ẑ cos θ). (3.23)

The dot products in the spherical integration in Eq. 3.19 may now be

simplified to

Q · d = Qd sin θ cos (ϕ − ψ) (3.24)

Q · do = Qdo sin θ cos (ϕ + ψ) (3.25)

The deviation from the free-ion Ru behavior is encompassed purely by the

angle ψ. In this way, we can solve the integral in Eq. 3.19 to get the following

analytical form for Spow(Q)
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S(Q) = A∑
d

[︃
|FRu(Q)|2

9
{︁

3 + 2
sin (2Qdo)

2Qdo
+ 4

sin (Qdo)

Qdo
−

(3
sin (Qd)

Qd
+

sin (Q|2do − d|)
Q|2do − d| +

sin (Q|2do + d|)
Q|2do − d|

+ 2
sin (Q|do − d|)

Q|do − d| + 2
sin (Q|do + d|)

Q|do − d| )
}︁]︃

. (3.26)

This form may be further simplified by selecting the bond vector d, but

may be evaluated analytically and is used in the fits to the factorized form of

S(Q).

3.4.3.1 Elastic scattering

In the case of elastic scattering the factorization analysis is still applicable, but

we must assume that the energy dimension has already been integrated over.

The description of the Q-dependent scattering then becomes:

I(Q) = 2r2
0|

g
2

F(Q)|2Sel(Q) (3.27)

Sel(Q) =
1
3

0,d1,...

∑
d

{︃
⟨So(∞) · Sd⟩

sin(Qd)
Qd

}︃
(3.28)

where the allowed interaction vectors d includes the self-correlation term. The

corresponding expression for the intensity is

I(Q) =
2| g

2 F(Q)|2r2
o

3 ∑
d
⟨So(∞) · Sd⟩

sin(Qd)
Qd

. (3.29)
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The total moment sum rule is also modified slightly, being

µ2
static = 3g2

∫︁
Sel(Q)Q2dQ∫︁

Q2dQ
. (3.30)

Considering the anisotropic magnetic form factor, the elastic scattering inten-

sity for a powder sample takes on the following form

S(Q) =
r2

0g2

3
|FRu(Q)|2

9

0,d1,...

∑
d

⟨Sα
o (∞) · Sα

d⟩ . . .

∫︂ dΩ)Q
4π

(1 + 2 cos(Q · do))
2 cos(Q · d). (3.31)

This integral can be carried out numerically or analytically in analogy with

the earlier calculation.

3.5 Discussion and conclusions

3.5.1 Inelastic scattering and dynamic correlations

When applied to the combined background subtracted inelastic neutron scat-

tering data acquired with the three different incident neutron energies, the

factorization method results in extracted functions S(Q) and G(ω) as de-

picted in Fig. 3.15. The study of the elastic scattering has already clearly

shown the absence of magnetic Bragg peaks, therefore we cannot expect sharp

features in the momentum dependence of the inelastic scattering either. In-

stead, S(Q, ω) is peaked at low Q and h̄ω decreasing with energy transfer on

a scale that resembles the Curie-Weiss temperature. This is consistent with

dynamic correlations of a macroscopic interacting spin system that shows no
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Figure 3.15: Result of factorization method on inelastic scattering from Ba4NbRu3O12.
The Q-dependent part of the spectrum is used to extract the total dynamic magnetic
moment from the from the sample. Fits to S(Q) assuming the trimer form factor are
depicted in red, and assuming the free-ion Ru3+ are depicted in blue. The observed
fluctuating moment from this fit is found to be 1.3(2) µB (b) G(ω) spectral weight
extracted by least squares fitting to the diffuse inelastic scattering. This fits well to a
phenomenological power law of exponent α = −1.4(1), as shown by the red line.
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signs of intramolecular excitations, which would have a discrete spectrum.

The Q-averaged spectrum inferred from S(Q, ω) is continuous and devoid

of any resonances with measurable scattering up to energy scales on the order

of 15 meV, which matches the energy scale inferred by the Curie-Weiss temper-

ature. The diffuse spectrum can be approximately described by a power law

of the form (h̄ω)α with α=-1.5(1) as shown by the red line in Fig. 3.15(b). A

finite sized spin-cluster as one would expect from the localized trimer picture

would produce discrete peaks in the excitation spectrum of the low temper-

ature neutron scattering. As we observe a continuum instead, these data

are an important indication that the quantum magnetism of Ba4NbRu3O12 is

collective on the energy scale set by ΘCW .

The dynamic spatial correlations are reflected by |F(Q)|2S(Q) as displayed

in Fig. 3.15(a). The function very clearly decreases with Q, which is consistent

with a magnetic signal limited by the magnetic form factor |F(Q)|2. In addi-

tion, the scattering displays oscillations that cannot be explained by the Ru4+

form factor and must be ascribed to inter-atomic spin correlations. Using the

total moment sum rule in Eq. 2.25, we obtain an effective RMS fluctuating

moment of µdynamic = 2.1(6)µB. This may be compared with the RMS static

moment of µstatic = 1.2(2)µB from elastic scattering. The total moment from

the scattering data is then found to be µe f f =
√︂

µ2
static + µ2

dynamic =2.4(7) µB.

This is consistent with the inferred value of 2.6 µB from the high temperature

susceptibility. However, greater than the expected moment from a S = 1/2

ion of µs = gµB =
√︁

S(S + 1) = 1.73 µB.

For a fully ordered spin-S magnet the ratio of the RMS dynamic to RMS
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static moment is (S(S+ 1))− S2)/S2 = 1/S. For spin-1/2, this corresponds to

a value of 1/S=2. The value that was obtained in Ba4NbRu3O12 is µ2
dynamic/µ2

static =

3(1), is a suggestion that we are not dealing with a conventional Néel like

product state of fully frozen spins. The ratio still falls far short of expectations

for a quantum spin liquid where µ2
static = 0.

3.5.2 Correlation functions

. The factorized form for S(Q, ω) implies the following form for the dynamic

component of the equal time correlation function:

S(Q) =
1

⟨h̄ω⟩

∫︂
S(Q, ω)ωdω (3.32)

= −∑
d

Jd⟨Sr · Sr+d⟩
3⟨h̄ω⟩

[︂
1 − sin(Qd)

Qd

]︂
(3.33)

Here {d} denotes the set of all displacement vectors between spins that in-

teract with each other. The factorization was employed to represent S(Q, ω)

with the definition ⟨h̄ω⟩ =
∫︁

g(ω)ωdω. We have employed the first moment

sum-rule and assume Heisenberg interactions are dominant to obtain Eq. 3.33.

The equation implies that the correlation length associated with a factorized

dynamic correlation function is capped at the largest spacing between in-

teracting spins ξ = max(d). We write the Heisenberg spin Hamiltonian as

follows:

H =
1
2 ∑

r,d
JdSr · Sr+d. (3.34)

Here {r} are position vectors for all spins and since each interacting spin

pair appears twice in this summation, and the factor 1/2 ensures that Jd is the
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exchange energy for spin pair d.

Equation 3.33 allows the extraction of bond energies, Jd⟨Sr · Sr+d⟩ from a

fit to normalized data for S(Q) and the value of ⟨h̄ω⟩ = 10.1 meV obtained

from G(ω) (Fig. 3.15). The red line in Fig. 3.15(a) represents a fit to Eq. 3.33

assuming nearest and next-nearest neighbor interactions between spins on

the triangular lattice. The blue line in the same figure is the same fit but

considering the spatial anisotropy of the Ru3O12 trimer. The corresponding

low T excitation spectrum G(ω) is gapless to within the 1.5 meV energy

resolution and extends to ⟨h̄ω⟩ = 20 meV. G(ω) decreases monotonically with

ω.

For the elastic scattering we directly measure the infinite time spin correla-

tion function, which in the case of diffuse scattering from a powder sample

looks like

Sel(Q) =
1
3

0,d1,...

∑
d

{︃
⟨So(∞) · Sd⟩

sin(Qd)
Qd

}︃
. (3.35)

where the allowed interaction vectors d includes the self-correlation term.

One of the immediate results is the ratio of the frozen and static moment

µ2
dynamic/µ2

static ≈ 3, which reveals that at low temperatures the majority of

the magnetic moment is fluctuating and that a smaller quantity is frozen. To

extract actual bond energies rather than the quantity Jd⟨So(0) · Sd⟩, we make

the following approximation

⟨S0(∞) · Sd⟩ ≈
µ2

static
µ2

dynamic
⟨So(0) · Sd⟩, (3.36)

The resulting estimates of exchange interactions are shown in Table 3.2.
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Inelastic d(Å) |FRu(Q)|2 |FT(Q)|2
J1⟨So(0) · Sd⟩ (meV) 5.75 -0.9(4) -3.3(2)
J2⟨So(0) · Sd⟩ (meV) 9.95 -1.1(4) -0.2(3)

J1 (meV) 5.75 -0.3(1) -0.7(1)
J2 (meV) 9.95 0.6(7) 0.0(1)
Elastic d(Å) |FRu(Q)|2 |FT(Q)|2

⟨S0(∞) · S0⟩ 0 0.77(7) 1.5(1)
⟨S0(∞) · SNN⟩ 5.75 1.1(3) 0.3(2)
⟨S0(∞) · SNNN⟩ 9.95 -0.6(6) -0.8(3)

Table 3.2: Fitting parameters for fits to the inelastic and elastic spectra using Eq. 3.33
and Eq. 3.27. The interactions are the nearest-neighbor and next-nearest neighbor in
the plane of the triangular lattice. The columns |FRu(Q)|2 and |FT(Q)|2 denote the
results of assuming the Ru4+ magnetic form factor |FRu(Q)|2 and the trimer form
factor |FT(Q)|2 respectively.

The results clearly show that the system has a weak antiferromagnetic nearest-

neighbor interaction. The trimer model is far superior when fitting S(Q) as

shown in Fig. 3.15(a), which we take as a good indication of the molecular

nature of the system. For the overall exchange interactions summed over all

of the bonds, we find ∑d Jd = −0.7(1) meV. This may be compared to what

one would expect from the Weiss temperature, θCW = µ2
e f f /(3kBg2)∑d Jd. For

θCW = -155K, g = 2, and µe f f = 2.59 we expect ∑d Jd = −1.8 meV per bond

after considering the sixfold nearest and next-nearest neighbor symmetry of

the triangular lattice. The extracted values for Jd can only be interpreted as an

estimate, but their consistency with what is expected from θCW suggests that

they are physically reasonable.

Even if the absolute magnitudes of the exchange parameters are not precise,

we may still consider the signs and relative magnitudes of the interactions.

This would mean that the magnetism in Ba4NbRu3O12 can be described by a
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strong antiferromagnetic nearest neighbor exchange. Our data are not suffi-

cient to constrain further neighbor interactions, but the strongly anisotropic

magnetic form factor of the trimer could be directly measured in single crystal

experiments.

3.5.3 Conclusions

We have already shown that the interactions in Ba4NbRu3O12 can be approx-

imated as Heisenberg like, and that a large portion of the moment remains

fluctuating below the freezing temperature. The NN Heisenberg antiferro-

magnet has an ordered ground state [92, 93], which is not observed in this

case. The nature of the remaining spin fluctuations at low temperatures are

not clear from this measurement, but they are consistent with at least two

possibilities. The first is a spin-liquid like ground state with some portion of

the spins being frozen at low temperatures. The second is a partially frozen

random-singlet state, in which the fluctuating spins form into distinct singlets

across the lattice rather than in a superposition of singlets as in a spin-liquid.

Without single crystalline samples (and often even with them), it is extremely

difficult to differentiate these situations.

Before concluding this chapter, I would like to mention the sister com-

pound Ba4NbIr3O12. As discussed earlier, this material shows no signs of

order or spin-freezing unlike the Ru version. Several proposals were written

for the study of this material, which will happen some time in the future. The

studies on the Ru-variant will inform the understanding of the ground state

in Ba4NbIr3O12.

69



Chapter 4

Determination of Anisotropic
Kitaev interactions in honeycomb
iridates β-Li2IrO3 and D3LiIr2O6

4.1 Overview

The lithium iridates are the originally proposed realizations of the Kitaev

model in the previously discussed proposal by Jackeli and Khaliullin [37, 94].

Although some potential Kitaev materials have emerged since this proposal,

including α-RuCl3 and Co2+ based materials, the iridates were some of the

most promising realizations of Kitaev’s model. In the iridates, the physical

realization of the element of bond-selective spin anisotropy is realized in the

form of Ir4+ ions with orbital degeneracy that is lifted by strong spin-orbit

coupling. In this way, the spatial anisotropy of the 5d orbitals is projected onto

the spin-state, producing the required bond-dependent exchange.

In real materials, this does not translate into purely Kitaev exchange.

Rather than the superexchange Ir-O-Ir exchange paths considered in the
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original proposal, direct orbital overlap contributes a Heisenberg-type in-

teraction[94]. The magnitude J term compared to K is strongly dependent

upon the chemical properties of the charge-transfer gap ∆pd and direct dd

overlap t′ between the nearest neighbor Ir t2g orbitals. The interplay between

these quantities has been studied theoretically in detail, suggesting exotic

ordered magnetic phases alongside the proposed KSL state.

Two additional interactions are allowed by symmetry in the generic nearest-

neighbor exchange Hamiltonian, which are known as the Γ and Γ′ terms. The

Γ′ term originates from trigonal distortions of the IrO6 octahedra, which will be

neglected for simplicity. The Γ term represents a bond-dependent symmetric

off-diagonal exchange anisotropy, which turns out be to be significant in many

materials and originates from a combination of direct dd hopping and anion

mediated d-p electron transfer [46]. This was first noticed in response to a

study of the magnetic order in Na2IrO3, in which the simple model of Kitaev

and Heisenberg interactions was found to be insufficient to produce the correct

magnetic ground state [95]. The full spin exchange Hamiltonian then has the

H = ∑
⟨ii⟩∈α,β,γ

[JSi · Sj + KSγ
i Sγ

j + Γ(Sα
i Sβ

j + Sβ
i Sα

j )]. (4.1)

This Hamiltonian has been studied in considerable detail, and all theory

work including ab-initio studies points towards the presence of a dominant

ferromagnetic K < 0 interaction [96, 97]. It permits a rich phase space of

magnetic ground states, with Γ in particular inducing exotic incommensurate

spiral magnetism.
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Though there has been significant progress on the theory side of the prob-

lem, experimentally, things remained extremely murky. Detailed knowledge

of the interplay between the different contributions to the exchange Hamilto-

nian is severely lacking. In the iridates in particular there are a few reasons

for this. First, single crystalline samples are difficult to grow and those that

do exist are too small for inelastic neutron scattering studies [40]. Secondly,

Ir4+ is unforgiving in neutron scattering studies with a neutron absorption

cross section of σabs = 425 b (assuming the natural isotope distribution), and a

magnetic form factor that sharply attenuates the scattering with increasing Q.

For Q =3 Å
−1

, only 10% of the magnetic scattering survives. Finally, iridium

is simply expensive, making large explorations of single crystal synthesis

techniques impossible. Because neutron scattering studies of these materials

is extremely limited, little is known beyond bulk characterization and refine-

ments of magnetic order from neutron diffraction and resonant x-ray studies.

Little is known about the nature of the excitations in these materials on the

energy scale of the magnetism.

This chapter will address this major gap in the literature, and two lithium

iridates will be explored experimentally- β-Li2IrO3 and D3LiIr2O6. In both

cases, inelastic neutron scattering studies are performed on isotope-enriched

polycrystalline samples. For β−Li2IrO3, where magnetic order is observed at

TN=38 K [98], the exchange Hamiltonian is refined with precision using the

JKΓ model. This is achieved by the simultaneous use of inelastic neutron scat-

tering, time-domain THz spectroscopy, and heat capacity studies. The result is

in good agreement with previous works, and quantifies the precise exchange
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interactions in the sample characterizing β-Li2IrO3 as having a dominant

ferromagnetic Kitaev exchange with competing J and Γ contributions.

D3LiIr2O6 shows no observable order and may be a true ground state KSL

candidate [99]. The scattering data is difficult to interpret due to absorption

and multiple scattering effects originating from the presence of deuterium.

Three different inelastic neutrons scattering studies along with time-domain

THz spectroscopy are used to characterize the low energy excitations. The

result is evidence of broad continua of magnetic excitations at low momentum

transfer and energies centered around h̄ω=2 meV. The extracted magnetic

scattering accounts for all of the expected dipole moment and is consistent

with nearest-neighbor spin correlations as expected in a KSL. These studies

alone are not enough to conclude the presence of a KSL phase, but the results

are encouraging and merit further study of the material.

4.2 Introduction to hyperhoneycomb iridate β-Li2IrO3

4.2.1 Structural and Magnetic Properties

It is expedient to define the hyperhoneycomb lattice and its properties before

further discussing β-Li2IrO3. β-Li2IrO3 has Ir4+ ions living on the so-called

three-dimensional "hyperhoneycomb" lattice, which is a bit of a misleading

name. The unit cell is orthorhombic of space group Fddd. While the lattice

itself may be understood as two alternating twisted zigzag chains running

along the crystallographic c-axis (Fig. 4.1), the local environment around each

IrO6 octahedra is precisely the same as the two-dimensional case. Indeed,
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Figure 4.1: (a) Hyperhoneycomb lattice of Ir atoms in β-Li2IrO3. (b) Local envi-
ronment of edge-sharing IrO6 octrahedra. Plots were generated using the VESTA
software [101].

ignoring any further-neighbor interactions the magnetic properties of the hy-

perhoneycomb lattice and the potential for Kitaev physics should be precisely

the same as in the two-dimensional case. This has been shown rigorously in

theory, as Kitaev’s exact two-dimensional solution for the honeycomb lattice

spin-liquid was repeated in three dimensions on the hyperhoneycomb lattice

[100]. The same potential KSL state exists, and the structure has the advan-

tage of the absence of structural disorder typical in two-dimensional van der

waals materials. Like α-Li2IrO3, β-Li2IrO3 is observed to form a long-range

magnetically ordered state at TN=38 K [41, 98]. The observed magnetic order

was refined in a 17 µm diameter single crystal using magnetic resonant x-ray

diffraction [43], which is described by counterrorating spirals along alternating

zigzag chains with incommensurate ordering wavevector k = (0.57(1), 0, 0))

with an ordered moment of µ = 0.47(1) µB. The magnetic order vanishes com-

pletely in an applied field of magnitude 3 T, and the nature of the magnetic
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order in an applied field is complex. X-ray diffraction studies suggest that the

application of a field along the crystallographic b-axis leads to an admixture

of a field-polarized phase and a zigzag spin mode, suggesting that the system

is a near degeneracy of different magnetic ground states [102]. This study also

showed evidence of long-lived fractionalized excitations separating the low-T

ordered phase from the high-T paramagnetic regime, suggesting proximity to

a Kitaev phase.

The bulk properties of β-Li2IrO3 have also been explored using the avail-

able small single crystals. Like other iridates, the material is a room tempera-

ture insulator with resistivity on the order of 100Ω cm at room temperature

[41]. This classifies the material as a spin-orbital Mott insulator. Magnetic

susceptibility studies on polycrystalline samples finds an effective moment of

1.61 µB/Ir, which is close to the value of 1.73 expected for S=1/2 and validates

the Je f f =1/2 picture. The observed Curie-Weiss temperature is θCW = 40 K,

suggesting dominant ferromagnetic interactions. Further more detailed stud-

ies on single crystal samples finds three different values of the Curie-Weiss

temperature along the three axes of the unit cell, θa = −33(3) K, θb = 44(4) K,

θc = 53(4) K [98]. A high temperature expansion of the JKΓ model may be

used to find that

θa = −(3J + K − Γ)/4, (4.2)

θb = −(3J + K)/4, (4.3)

θc = −(3J + K + Γ)/4. (4.4)
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Based on these results, a dominant ferromagnetic Kitaev term is inferred,

followed by a large Γ and a small J. Of course, this method has limitations

in large part due to the fact that the local moments themselves have a strong

temperature dependence in these types of Je f f =1/2 materials [103].

Following these encouraging results, theoretical efforts were made to deter-

mine the nature of the interactions in β-Li2IrO3. Ab-initio studies successfully

captured the experimentally observed band structure and magnetic order

[104], suggesting a dominant ferromagnetic Kitaev interaction. Further study

of the ordered state showed that it could be considered a deformation of the

nearby commensurate (2
3 , 0, 0) type order, and that the observed wavevec-

tor and critical field are compatible with again a dominant negative K term,

followed by a large negative Γ term, and a small value of J (≈ |K|/10) [105].

So, with a wealth of experimental results regarding the magnetic ground

state and theory predictions of strong Kitaev interactions, neutron scattering

is a natural follow-up in order to determine the nature of the low energy

excitations in the system and quantitatively determine the spin Hamiltonian.

With this information, it should be possible to determine if the system is

indeed proximate to a KSL state.

4.2.2 Experimental considerations for honeycomb iridates

In the case of β-Li2IrO3, the main experimental consideration for neutron

scattering experiments is the prohibitive absorption cross section associated

with iridium. For example, the mean free path for natural isotope β-Li2IrO3

with Ei=25 meV neutrons is merely 1 mm. For 191Ir, σabs = 954 b, and for 193 Ir
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Figure 4.2: Plot showing neutron transmission as a function of energy transfer for
both natural Li2IrO3 (black) and enriched 7Li193IrO3 (blue). The assumed Ei=30 meV,
and the mean path length is 1 mm.

σabs = 111 b. For thermal neutrons, neutron transmission may be approxi-

mated as

T(d, h̄ω) =

√︃
exp

[︂
−dσ

re f
abs λi/(V0λ0)

]︂
exp

[︂
−dσ

re f
abs λ f /(V0λ0)

]︂
. (4.5)

Here, λ0 is the reference wavelength for incident neutron energy Ei=25 meV,

for which the absorption cross section σ
re f
abs was measured with. λ f is the

final neutron energy as determined by the energy transfer, and V0 is the

volume per iridium atom. The geometric mean of absorption for the initial

and final neutron energies is taken to represent the inelastic scattering process

through the sample. d is the mean path length of the neutron through the

sample, which is dependent upon the sample geometry. While Eq. 4.5 may

be used to approximate the energy-dependent absorption, a more accurate

method is a Monte-Carlo method implemented in the Mantid software. Still,

the absorption increases exponentially with d, and to mitigate this a custom
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Figure 4.3: (a) CAD model of the aluminum can design for iridate experiments.
The sample space is of thickness 0.5 mm, minimizing absorption. (b) Cross section
showing annulus design. all dimensions in millimeters.

annular aluminum can was developed. The annulus is of inner diameter 19

mm and outer diameter 20 mm, and assembled in such a way that the space

in the center of the can is vacuum. This greatly improves upon similar designs

that contain much more aluminum and have significant background. This

design was made by Yishu Wang, who also worked closely on this project.

Though this design reduces the effective neutron path length in the sample

to be on the order of 1 mm, this does not completely fix the issue of absorption.

Assuming de f f =1 mm and incident neutron energy of 30 meV, the estimated

energy transfer dependent transmission is calculated using Eq. 4.5 and shown

in Fig. 4.2. Using natural isotopes, only about 40% of neutrons traverse

the sample and this becomes even worse at finite energy transfers. To work

around this, we decided to use enriched 7Li and 193Ir, which significantly

reduces the overall absorption cross section and increases transmission. As a

comparison, for natural isotopes σabs=556 b/fu, and for the enriched sample
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σabs =112 b/fu. Without both the can and the enrichment, these inelastic

experiments would have required significantly more beam time to complete

successfully.

4.3 Experimental results for β-Li2IrO3

4.3.1 Synthesis

The β-Li2IrO3 powder investigated in this study was synthesized by solid

state reaction using powders of Li2CO3 and metallic Ir. The reagents were 99%

enriched 7Li and 193Ir to alleviate neutron absorption as well as the strong

incoherent scattering from a natural isotope distribution of Ir. Further details

of the synthesis may be found in Ref. [41]. A total of 3.6 g of sample was used

in the neutron experiments, for which powder x-ray diffraction and suscepti-

bility studies showed no evidence of secondary phases or impurities to at least

the 1% level. One batch that was discarded contained trace IrO2 impurities,

which may then be present in trace amounts throughout the samples used in

these studies.

4.3.2 Treatment of neutron scattering data and experimental
details

4.3.2.1 Experimental details

The neutron scattering experiment was conducted on the SEQUOIA spectrom-

eter [106] at the ORNL spallation neutron source. The powder was loaded

under 1 atm 4He at room temperature in an annular aluminum can with an

outer diameter of 20 mm and annulus thickness 0.5 mm. The height of the
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Figure 4.4: (a) Powder x-ray diffraction patterns from one batch of β−7Li193
2 IrO3

showing the evolution of the diffraction pattern through various annealing steps. No
impurity phases were observed in the final product for any of the batches used in this
study. (b) Magnetization and susceptibility data for the same powder sample. The
main feature in the data indicates the magnetic phase transition expected to occur at
TN = 38 K.
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corresponding annular powder sample was 34 mm. The total mass was 3.8 g

and the packing density was 3.6 g/cm3 which is 50% of the nominal density.

The can was attached to the cold finger of a low-background closed cycle

refrigeration cryostat.

Data were acquired with fixed incident energy Ei = 18 meV, 30 meV, and

60 meV for each of the temperatures T = 4.0(1) K, 45.0(1) K, and 200.0(1) K.

In addition, Ei=120 meV data were taken at T = 4.0(1) K and 300.0(1) K. For

Ei=18 meV and 30 meV we used the fine chopper configuration, while for

Ei=60 meV and 120 meV the high flux chopper was used. Energy and momen-

tum transfer dependent absorption corrections determined by a Monte-Carlo

method were applied to the data. A temperature independent background

was removed from each measurement using the principle of detailed balance,

the details of which may be found in 4.3.2.3. The one-phonon scattering was

estimated from high temperature measurements where it dominates and then

subtracted from the lower temperature data. Elastic incoherent scattering

from a vanadium standard sample was used to normalize count rates to abso-

lute units. To cover a broad range of momentum-energy space with the right

compromise between resolution and count rate, we combined data acquired

for the four different incident energies.

Additional measurements were acquired with fixed incident energy Ei =

22 meV in the high flux configuration to examine the temperature dependence

of the magnetic Bragg Peaks along with the inelastic spectrum. These data

were corrected for absorption, normalized to vanadium, and binned in 2.5 K

temperature steps.
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4.3.2.2 Annular absorption and normalization

Although we have taken care to minimize absorption by means of a custom

annular aluminum sample can and isotopic enrichment of both 193Ir and 7Li,

significant energy transfer dependent neutron absorption still affects the mea-

surement. To account for this, we use a Monte-Carlo method implemented

in the Mantid software which takes into account the full neutron path for

each pixel as a function of scattering angle and energy transfer [107]. Further

details may be found in the Mantid documentation for the AnnularRingAb-

sorption method. Finally, the measurements were normalized to units of

barn/eV/sr/mol·Ir by comparing to the scattering intensity measured for a

known quantity of vanadium.

4.3.2.3 Detailed balance correction

To isolate the true inelastic neutron scattering from the sample from various

types of background we used the fact that inelastic scattering from the sample

at a given temperature T must obey the detailed balance principle S(−ω) =

exp(−h̄ω/kBT)S(ω). The component of the scattering that does not obey

detailed balance between positive and negative energy transfer processes

can be considered an approximately temperature-independent background

component. Assuming that there exists a true inelastic signal S(Q, ω) and a

temperature-independent background Ibkg(Q, |h̄ω|), the scattering intensity

for a particular point in Q − ω space at temperature T, should obey the

following relationship:
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I(T, δ) = Ibkg(δ) + e−βh̄ω(1−δ)/2S(T) (4.6)

Here, δ = [1,−1] and denotes positive or negative energy transfer. Due to

kinematic constraints, some values of Q and |h̄ω| do not permit (Q, |h̄ω|) and

(Q,−|h̄ω|) to be simultaneously accessed. These points are therefore excluded

from the analysis. For every pixel in Q − h̄ω space the value of Ibkg(δ),

Ibkg(−δ), and S(T) are independent free parameters. S(T) can furthermore

take on different values for each temperature. This leads to 2NT equations

with 2 + NT unknowns, where NT is the number of temperatures where full

Q− h̄ω dependent data sets have been acquired. So long as NT ≥ 2, a solution

can be found for the Q − h̄ω dependent inelastic scattering cross section at

each temperature.

The system of equations was solved using a weighted ordinary least-

squares method [108], resulting in full solutions of S(T), Ibkg(δ), and Ibkg(−δ)

for every value of Q, h̄ω, and T where scattering data are available for positive

and negative values of h̄ω Estimates for the standard error are also obtained.

This detailed balance correction was performed separately for each incident

neutron energy. We note that the method requires accurate correction for

energy-dependent neutron absorption and detector efficiency. Also note that

temperature-dependent elastic scattering is not treated correctly with this

method.

Fig. 4.5 shows how inelastic scattering with contributions from magnetism

and phonons is separated from temperature independent backgrounds and
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Figure 4.5: Inelastic neutron scattering spectra for β-7Li193
2 IrO3 before and after

background subtraction as described in Sec. 4.3.2.3. (a-c) Spectra measured at T = 4 K,
45 K, and 200 K with incident neutron energy Ei = 30.0 meV. The detailed balance
correction was performed for measurements with all Ei configurations. (d) The
temperature-independent background Ibkg(Q, ω) (Eqn. 4.6).

elastic scattering. Note the successful removal of the tails of Bragg scattering

for h̄ω < 0. These are clearly seen in the raw data (Fig. 4.5 (a-c)). They

are identified as a temperature-independent background (Fig. 4.5(d)), and

are no longer present in the inelastic scattering spectra after the procedure

(Fig. 4.5 (e-g)). In Fig. 4.6 (a-c), we presented the energy cuts integrating

over 1.5Å
−1

< Q < 2.0Å
−1

for both raw data and the inelastic spectra after

detailed balance correction. We note that at high energy transfers in panels

(a-c), the scattering intensity in the extracted inelastic spectra (blue) exceeds

that in the raw data (black) at some ω values. This is because the detailed

balance method is not employing a direct point-by-point subtraction but

carries out a least-square fit to the full temperature dependent data set under

the assumption that the non-inelastic scattering (backgrounds and elastic

scattering) is temperature-independent. Both statistical uncertainty and any
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temperature-dependence of non-inelastic contributions to the measured count

rates can cause the intensity after this background correction process to exceed

the raw count rate within error bars (Fig. 4.6).

After this point, the magnetic scattering is isolated by the subtraction of

the high temperature T=200.0(1) K measurement with the appropriate Bose-

Einstein scaling using Eq. 3.3. These procedures were repeated for all incident

energy configurations.

4.3.3 Inelastic neutron scattering

The scattering discussed from this section will feature only the extracted

magnetic contributions. Details about the isolation of magnetic scattering will

follow, but the procedures are similar to those used for Ba4NbRu3O12. Fig.

4.7(a) and 4.7(b) show color images of the inelastic magnetic neutron scattering

from the 3.6 g powder sample at T=45 K and 4 K, which are above and below

the ordering temperature respectively. Representative energy and momentum

cuts through the same data are shown in Fig. 4.8. In the paramagnetic phase

at T = 45.0(1) K [Fit. 4.8(a) and Figs. 4.8(b) and 4.8(b)], the spectrum extends

from the lowest accessible energy transfer of 2 meV to beyond the kinematic

limit of the experiment (near 30 meV). The scattering cross section is further

attenuated with increasing Q than the iridium form factor [dashed line in Fig.

4.8(b)] can account for. This indicates short-ranged inter-site spin correlations

. The spectrum of fluctuations [Fig. 4.8(a)] extends to energies well beyond

kBT, which is characteristic of frustrated magnetic materials where competing

interactions do not favor a state with long-range spin order. In particular the

85



0

2

4
S(

) (
ba

rn
/e

V/
f.u

./s
r)

(a) 4 K

0

2

4
(b) 45 K

20 10 0 10 20
 (meV)

0

2

4
(c) 200 K

Figure 4.6: Energy cuts with integration over Q ∈ [1.5, 2] Å−1 for inelastic scattering
from powder β-7Li193

2 IrO3 extracted from the data sets shown in Fig 4.5. The black
symbols represent raw data before the detailed balance correction was applied. The
blue symbols represent the extracted inelastic scattering IT(Q, h̄ω) and the green
line represents the inferred temperature-independent background Ibkg(Q, h̄ω) as
determined by the detailed balance-based routine described in the text.
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Figure 4.7: Magnetic excitation spectrum of β-7Li193
2 IrO3 probed by inelastic neutron

scattering at (a) T = 45 K and (b) T = 4 K. The data combines scattering from
neutrons of incident energies 10.5 meV, 30 meV, 60 meV, and 120 meV. Data acquired
at T = 200 K and 300 K were used to determine the temperature dependent one-
phonon scattering, which was subtracted to isolate the magnetic scattering. The
dashed lines show the kinematic limit for each incident neutron energy employed.

87



0

1

2

3

(a)

Q [0.4,1.5] Å 1

45 K

I(Q
,

) (
ba

rn
/e

V/
sr

/m
ol

Ir)
0
1
2
3
4

(b)

45 K

[2,25] meV

0 10 20 30
 (meV)

0

1

2

3
(c) 4.0(1) K

0 1 2
Q (Å 1)

0
1
2
3
4

(d) 4.0(1) K

Figure 4.8: Cuts across experimental data shown in Fig. 4.7. The spectra in (a) and
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intensity in (b) and (d) average over h̄ω ∈ [2, 25] meV. Q−averaging is weighted by
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space. The kinematic limits indicated in Fig. 4.7 impact these cuts as the averages
can only be extended over kinematically accessible regimes of Q and h̄ω. The dashed
purple line in (b) shows the scaled magnetic form factor |F(Q)|2 for Ir4+.

T=0 dynamic spin correlation function of the Kitaev quantum spin-liquid is

virtually Q independent while the spin-flip excitation spectrum is broad and

featureless above a gap [32, 109].

A massive rearrangement of spectral weight occurs upon cooling to T=4.0(1)

K ≪ TN [Fig. 4.7(b)]. Lower energy magnetic neutron scattering shifts to an

energy transfer h̄ω ≈ 12 meV intensity maximum. Strong momentum de-

pendence develops in the low-energy regime with a distinct intensity near

the incommensurate magnetic wave vector Qm = 0.57(1)a∗ [44]. There is an

apparent gap of ∆ = 2.1(1) meV in the magnetic excitation spectrum [4.8(c)].

The detailed temperature dependence of the magnetic neutron scattering
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from β-Li2IrO3 is depicted in Fig. 4.9.

Panel (a) shows the development of elastic magnetic Bragg peaks as an

order parameter (squared). The Néel temperature is consistent with a peak

in the magnetic specific heat plotted as ∆C(T)/T versus T in the inset to

Fig. 4.11(a). Fixing the critical temperature to TN = 38.5(5) K inferred from

∆C(T)/T to be discussed later, a fit to the temperature dependent Bragg

intensity yields a rough estimate of the critical exponent β = 0.42(6). This

value is consistent with the value for the 3D Ising model (βIsing = 0.326)

but also indistinguishable from the Heisenberg (βHeisenberg = 0.365) and XY

models (βXY = 0.345). Fig. 4.9(b) displays the temperature dependence of the

magnetic excitation spectrum as a color image. The data illustrate depletion

of low energy inelastic scattering as in an Ising-like phase transition and the

transfer of spectral weight into a broad peak centered at 10 meV (Fig. 2(c)).

4.3.4 Time-domain THz spectroscopy

Time-domain THz spectroscopy was performed using a custom-built system

with frequency range 0.2-2 THz [110] at zero magnetic field. The measurement

was performed on a dry pressed powder pellet of β−Li2IrO3 with diameter

5 mm, thickness 0.6 mm and mass 5.0(1) mg. Transmission spectra were

collected at temperatures from T = 3 K to 40 K. The T = 50 K spectrum was

used as an approximately nonmagnetic reference.
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Figure 4.9: Temperature dependence of magnetic neutron scattering from β-7Li193
2 IrO3.

(a) Temperature dependence of the Q-Integrated intensity of the magnetic Bragg
peaks (1,1,1)-k and (0,0,0)±k shown in the inset. The line through the data is that
of an order parameter squared with critical exponent β = 0.42(6) and the critical
temperature TN = 38 K (dashed red line) determined from the specific heat capacity
data in Fig. 4.11(a). The inset depicts the integrated elastic scattering around the
magnetic Bragg peaks at T = 3.95 K (blue points) and T = 50.0 K (red points). the
cyan line depicts an example of the gaussian fits used to extract magnetic diffraction
intensity which is a measure of the staggered magnetization squared. (b) Temperature
dependent inelastic magnetic neutron scattering integrated over Q ∈ [0.5, 1.0] Å−1.
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The energy dependent complex THz transmission through a slab of mate-

rial with thickness d may be written as

T̃ (ω) =
4ns

(1 + ns)2 exp (i
ωd
c
(ns − 1)). (4.7)

Here, ns = n− ik is the complex refractive index of the material. Note, that the

real part of the refractive index n indicates the phase velocity, while the imagi-

nary part k is called the absorption coefficient and measures the attenuation of

the electromagnetic wave while propagating through the material. We solve

for ns numerically for all temperatures. The index of refraction at temperature

T is given by nT =
√︁

ϵ(1 + χM), where ϵ is the generalized permittivity and

χM is the magnetic susceptibility. For a sample that has a magnetic response

below a reference temperature Tre f and no magnetic response above Tre f , we

derive an expression for magnetic susceptibility by taking the ratio of the

refractive indices above and below the transition temperature.

nT

nTre f

=
√︁

1 + χM, (4.8)

from which we obtain

χM(ω) = (
nT

nTre f

)2 − 1 (4.9)

The Q = 0 spectrum is of particular interest as it reflects spin-space anisotropy,

which is central to the Kitaev model. To measure this, we use THz spec-

troscopy. The THz transmission spectrum for β − Li2IrO3 is presented in Fig.

4.10(a), and the absorption coefficient k is shown in Fig. 4.10(b). Low THz

transmission at higher energy transfers precluded reliable measurements of

spin-wave excitations above 5 meV. The higher energy feature seen in THz
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Figure 4.10: Time-domain THz spectroscopy of β-7Li193
2 IrO3. (a) Raw THz transmis-

sion data at temperatures from 3 K to 40 K. (b) Absorption coefficient k inferred from
the transmission data in (a). The sharply defined temperature dependent peak at
2.8(1) meV is associated with a magnetic excitation from the long range ordered state.
Based on Eq.4.9, this peak is shown as χ′′(ω) in the inset. A second excitation is seen
around 7.0(2) meV but its temperature dependence is quite different from the 2.8 meV
peak and its origin is unclear. The quality of the higher energy data is impacted by
the reduced transmission (see frame (a)). The temperature independent peak at 1.6
meV arises from an instrumental interference effect.
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transmission near 7 meV is not temperature dependent, and thus we do not

attribute it to magnons. Another feature at ≈1.6 meV is an instrumental in-

terference effect that is not associated with the electromagnetic response of

the sample. However, the peak at 2.8(1) meV has a Lorentzian shape and

gradually forms at temperatures below TN = 38 K. The corresponding T−

dependent imaginary part of the dynamic magnetic susceptibility χ′′(ω) at

Q = 0 is shown in Fig. 4.10(c). We associate this peak with a zone center gap

in magnetic excitations from the ordered state. The finite gap in the excitation

spectrum is direct evidence of anisotropic magnetic interactions.

4.3.5 Specific heat

Heat capacity measurements were performed in a Quantum Design physical

properties measurement system (PPMS). To enhance thermal conduction, we

used a pellet pressed of equal parts by mass of silver and β-Li2IrO3. Mea-

surements were taken at zero field for the range of T = 2 − 300 K and at

µ0H = 14 T for the range of T = 2 − 100 K. The silver contribution to the

specific heat was subtracted based on tabulated values in Refs. [111–113]. Low

temperature heat capacity measurements for T = 0.1 − 3.5 K were performed

using the PPMS dilution refrigerator option. This measurement was done on

a 1.50(1) mg piece of a pressed pellet of pure β-Li2IrO3 with no silver.

To access the Q−averaged magnetic excitation spectrum at the lowest

energies, and to probe the critical regime near the magnetic phase transition,

we measured the specific heat capacity C(T). The result is shown as a plot of

C/T in Fig. 4.11(a). The zero field data set (black symbols) features a sharp
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Figure 4.11: Specific heat capacity of β-7Li193
2 IrO3 plotted as C(T)/T. Black points

represent zero field measurements, blue points represent 14 T measurements. Square
symbols denote data acquired using the dilution refrigerator in a PPMS. Circle sym-
bols denote data from the high temperature configuration of the PPMS. (a) Specific
heat at zero-field and µ0H = 14 T. (Inset) View highlighting the peak associated with
the magnetic phase transition. The quantity ∆C(T)/T is the difference between the
zero field and 14 T measurements. (b) Low T regime with model fitting. The red
line is the sum of three terms described in the text originating from the low-energy
magnetism and phonons. (c) C/T vs T2. The T−linear term in C(T) is visible here as
the intercept with the y-axis. The 14 T data (blue points) show a zero intercept so that
the T−linear term appears to be associated with magnetic excitations.

94



peak at TN = 38 K that is suppressed and broadened by the application of

a 14 T magnetic field (inset to Fig. 4.11(a)). This indicates a magnetic phase

transition in an anisotropic material as detailed in previous studies on single

crystalline samples [41, 98, 102]. The change in entropy associated with the

temperature regime in the immediate vicinity of the phase transition (10 K to

40 K) is estimated to ∆Sm = 0.41(1)Jmol−1K−1. Representing just 7% of the

Rln2 total spin entropy per iridium, this small peak indicates the magnetic

order is incomplete and/or develops from a strongly correlated state. This

observation is consistent with the small ordered moment (0.47(1) µB [43]) and

the fact that the magnetic excitation spectrum extends well beyond kBT for

T = 45 K > TN (Fig. 4.7(a) and Fig. 4.8(a)). Correspondingly, the peak in C(T)

marking the phase transition rides on a broad maximum, which in addition

to contributions from phonons, is associated with the development of short

range spin correlations.

Fig. 4.11(b,c) display C(T)/T in the low temperature regime. While the

upturn for T < 1 K is associated with hyperfine splitting of the nuclear spin-

3/2 of iridium, there is also a Sommerfeld-like term C(T) = γT that is unusual

for a long range ordered insulating magnetic material. γ is driven to zero in a

field of 14 T, which indicates it is associated with gapless electronic excitations.

4.4 Analysis - β-Li2IrO3

4.4.1 Spin Hamiltonian and linear spin-wave theory

The three presented measurements together contain a significant amount of

information regarding the low energy excitations in β-Li2IrO3. However, even
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with all of this information the extraction of quantitative information in the

exchange Hamiltonian is highly nontrivial. If the Kitaev picture is indeed

applicable, the exchange is highly anisotropic, and it is extremely difficult

to stabilize the observed magnetic structure in software like SpinW [114].

In order to supplement our experimental efforts, we collaborated with the

Perkins group at the University of Minnesota who were already quite familiar

with this material and its magnetism [105].

To account for the counter-rotating spin structure, the minimal spin Hamil-

tonian for β-Li2IrO3 is the previously discussed J-K-Γ model [103, 105, 115]

H =∑
t

∑
⟨ij⟩∈t

Ht
ij, (4.10)

where

Ht
ij = JS⃗i · S⃗j + KSαt

i Sαt
j + σtΓ(S

βt
i Sγt

j + Sγt
i Sβt

j ). (4.11)

Following the nomenclature of Ref. [116], Si denotes the pseudo-spin

jeff = 1/2 operator at site i. The five different types of NN Ir-Ir bond are

labeled t ∈ {x, y, z, x′, y′} with associated Cartesian components (αt, βt, γt)=

(x, y, z), (y, z, x), and (z, x, y) for t ∈ {x, x′}, {y, y′}, and {z}, respectively.

For simplicity, we take K to be bond independent though the z type bond

by symmetry is distinguishable from the (x, x′) and y, y′ type bonds. The

prefactor σt = ±1 determines the sign of the Γ interactions which is bond-

dependent and prescribed by lattice symmetry [117]. Fixing the overall energy

scale to be J2 +K2 + Γ2 ≡ 1, the Hamiltonian in Eq.(4.11) can be parameterized
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in terms of polar angles θ and ϕ as

J = sin θ cos ϕ, K = sin θ sin ϕ, Γ = sgn(Γ) cos θ. (4.12)

Within this parameterization, Luttinger-Tisza (LT) analysis indicates the

counter-rotating order is stabilized in the approximate range of (θ, ϕ) ∈

[(0, π
2 ), (

3π
2 , 13π

8 )] [105, 115]. Varying mostly with ϕ, the incommensurate

wave vector Q = ha∗ takes on values in the range 0.53 ≲ h ≲ 0.80 [117],

which may be compared to the experimental value of h = 0.57(1)[43]. The LT

method does not include the higher harmonic components that are required

to ensure a fixed spin length for a general incommensurate order. Instead of

using an incommensurate wavevector, we take the magnetic structure to be

a long-wavelength deformation of the closest Q = (2/3, 0, 0) commensurate

approximation of the true order [105]. Within the region of phase space with

dominant Kitaev interactions, this description accounts for most experimental

findings reported so far, including the observed static spin structure factor, the

irreducible representation, magnetic structure of two counter-rotating spin

sublattices, the response under a magnetic field, as well as Raman scattering

[44, 102, 116, 118–120].

Given the Hamiltonian (4.11) and the parameterization (4.12), we employ

the standard 1/S semiclassical expansion and compute the dynamical spin

structure factor. To accommodate the zero-field spiral magnetic order with

propagation wavevector Q ∥ a∗, we use an enlarged magnetic unit cell com-

posed of three orthorhombic unit cells along the a-axis with 48 magnetic sites

[105].
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Figure 4.12: LSWT fitting results to magnetic neutron scattering data for β-7Li193
2 IrO3.

(a) Calculated spectrum of inelastic neutron scattering for the best fit parameters.
The white line represents the kinematic limit of the experiment which combined
four different incident neutron energies. (b) The calculated gap at the Γ point in the
phase space of J-K-Γ model, as described by parameters θ and ϕ in Eqn. (4.12).The
solid white lines depict phase boundaries between dominant K and Γ interactions
as described in Ref. [105] and the triangle represents the best fit result from our
experiment which is used to calculate the spectrum in panel (a). The white space
represents the region of phase space in which the observed magnetic structure is not
stabilized as the lowest energy ground state. The dashed white line shows the path
through phase space where ∆E = 0.4 meV. (c-e) The χ2 goodness of fit versus the
free parameters J, K, and Γ. The red dashed lines in (d) and (e) are parabolic fits from
which the minima and their uncertainties were extracted.

4.4.2 Refinement of exchange parameters

Now, using a linear spin-wave theory description of the antiferromagnetic

state of β-Li2IrO3, we may independently refine the exchange parameters J, K,

and Γ by comparison to inelastic neutron scattering, THz spectroscopy, and

heat capacity measurements as presented in Sec. 4.3.

Fig. 4.12(a) presents the calculated S(Q, ω) with the best fit INS spectra

(Fig. 4.7, with K = −24(3) meV, Γ = −9.3(1) meV, and J ≈ 0.40(2) meV.

For Q within the kinematic limits set by the experimental conditions and

indicated by the white line in Fig. 4.12(a), the model calculation is consistent
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with the experimental data in Fig. 1(b). In the J-K-Γ model, the effects of

each parameter on the calculated spectra are shown in Appendix 7.1, from

which it is immediately clear that the part of S(Q, ω) accessed in our neutron

scattering experiment is sensitive to Γ and K. In contrast, the Heisenberg

interaction J barely affects the spectrum that is visible in INS, and therefore

is not well constrained by the neutron data. The fidelity in refining J, K, Γ

from INS is quantitatively reflected in the variation of χ2 with each parameter

as shown in Fig. 4.12 (c-e). While χ2 v.s. K and Γ have a parabolic shape,

Fig. 4.12 (c) shows the value of J is not well constrained by the INS data. The

magnitude of the Q = 0 gap ∆E is however, closely linked to J. To determine

J, we therefore turn to THz spectroscopy, which probes the Γ point spectrum

and is sensitive to ∆E. The result of calculating ∆E using LSWT over the

phase space consistent with the incommensurate order is shown in Fig. 4.12

(b). Near our best fit point from INS, ∆E increases strongly with increasing

values of ϕ or J. This is shown explicitly in Fig. 4.10 (a).

Using the values of K and Γ and the range of J determined from INS,

the LSWT predicts the lowest two modes at Q = 0 to be at 0 − 1 meV and

1 − 5 meV. We designate these modes as M1 and M2 respectively and their

dependence on J within linear spin wave theory is presented in Fig. 4.10.

Assigning the 2.8 meV peak observed in THz spectroscopy (Fig. 4.10) to the

higher energy mode leads to the refinement of J = 0.40(2) meV and the

prediction of the lower energy mode at 0.4 meV. Here we do not consider the

effects of magnon anharmonicity, which may renormalize M1 and M2 to be

much closer together in energy. The Q = 0 mode energy estimates obtained
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by treating the magnon interactions at the level of a mean-field decoupling of

the quartic terms (and disregarding the magnon decay processes driven by the

cubic terms) appear to be able to bring M1 and M2 much closer to each other

with renormalized energies slightly below and slightly above 3 meV [120].

The temperature-dependent specific heat capacity Cmag(T) ≈ ∂U/∂T can

be modeled by bosonic magnons starting from

U(T) =
∫︂ ∞

∆

ϵ g(ϵ)
eβϵ − 1

dϵ. (4.13)

Here, ϵ is the spin wave excitation energy, ∆ is the excitation gap, β = 1/kBT,

and g(ϵ) is the magnon density of states[81]. For a three-dimensional antifer-

romagnet with a dispersion relation ϵ(q) =
√︁

∆2 + (cq)2 (where ∆ is the spin

gap and c is the spin-wave velocity), the density of states is

g(ϵ) =
Vη

2c3π2 ϵ
√︁

ϵ2 − ∆2 , (4.14)

where V is the unit cell volume and η is a constant. The 3D nature of the

low energy magnons is reflected in the linearity of Cmag/T versus T2 for

temperatures above ∆/kB (Fig. 4.11(c)). The values for c, ∆, and η = 4 were

fixed by the calculated linear spin-wave dispersion for the lowest energy band

at the Γ point. Because c and ∆ are closely coupled, the specific heat data do

not provide an independent estimate for ∆. To fit the measured specific heat,

we must add a T−linear term with γ = 1.28(2) mJ/mol/K2, an additional T3

term that may be associated with acoustic phonons, as well as a contribution

at very low temperatures from the nuclear specific heat (C(T) ∝ 1/T2). A

T−linear term in the specific heat capacity was previously associated with

100



fermionic quasi-particles in spin-1/2 chains [121] and quantum spin liquid

candidates [122] though it can also be associated with localized possibly

disorder related excitations [123].

4.5 Discussion - β-Li2IrO3

Using a double isotope powder sample and the high intensity time of flight

spectrometer SEQUOIA at the SNS, we have acquired inelastic magnetic

neutron scattering data within the paramagnetic and within the incommensu-

rate magnetically ordered state of the spin-1/2 hyper-honeycomb lattice of

β−7Li193
2 IrO3. Complementary information about electronic excitations was

obtained through time domain THz spectroscopy and specific heat capacity

measurements.

To quantitatively establish a spin Hamiltonian for this material we com-

pared the multiple inelastic neutron scattering measurements to detailed

spin-wave theory of the anisotropic nearest neighbor J-K-Γ model. This com-

parison constrained the parameters to J = 0.40(2) meV, K = −24(3) meV,

and Γ = −9.3(1) meV. The same set of parameters also predicts the excitations

at the Γ point observed by TDTS and is consistent with the heat capacity

measurements.

Furthermore, the extracted Heisenberg exchange J is consistent with the

critical field for the ordered state, which is predicted to vary as µBµ0Hc =

0.46J [118]. Using our result for J we find µ0Hc ≈ 3.2(2) T, which is consistent

with the observed value of 2.8 T. Secondly, the strong absorption feature near

h̄ω = 7 meV in our THz data is close to the prediction of the third-lowest
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Source JKΓ Estimate Method
Ref. [105] |K| > |Γ| ≫ |J| LLG using magnetic structure
Ref. [98] Γ = −15(11) meV, 3J +

K = −11(4) meV
Single crystal Magnetization

Ref. [118] J ≈ 0.3 meV, |K| ≫
|J|, |G| ≫ |J|

Hc and Magnetic Structure

Ref. [124] K ≈ Γ < 0, J ≪ |K|, J > 0 Diagonalization
Ref. [125] K = [−15,−12] meV,

Γ = [−3.9,−2.1] meV, J =
[0, 1.5] meV

Diagonalization and MRCI+SOC

Refs. [119,
126]

K = −18 meV, Γ = −10
meV, J = 0.4 meV

Raman Scattering, RIXS

This work K = −24(3) meV, Γ =
−9.3(1) meV, J = 0.40(2)
meV

INS, TDTS, Heat capacity

Table 4.1: Summary of literature estimates of exchange parameters in β-Li2IrO3.

excitation at h̄ω = 7.5 meV at the Γ point though low THz transmission

precludes definite identification of the 7.5 meV anomaly (Fig. 4.10(b)) with a

magnetic excitation. The feature also exists for T > TN and appears tempera-

ture independent even at high temperatures, making its nature rather unclear.

However, the main feature in the THz spectroscopy at h̄ω meV is consistent

with the two peaks seen in recent Raman scattering work. These peaks lie at

2.5 and 3.0 meV and are signatures of non-Loudon-Fleury scattering processes,

generated by magnetic-dipole-like terms in the Raman vertex, which are of a

similar nature as the excitations probed by THz and INS [120]. Our results are

generally consistent with previous theoretical and experimental works that

have attempted to estimate these parameters as shown in Table 4.1.

Finally, we discuss the linear term γT in the zero-field heat capacity
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(Fig. 4.11). The presence of a linear term in the specific heat of a magnetic ori-

gin in β−Li2IrO3 is interesting because it cannot be accounted for by the spin

wave theory that was used here to successfully account for the ordered state as

well and the inelastic magnetic neutron scattering spectrum. A T−linear term

can arise from fermionic quasi-particles with the Sommerfeld constant γ pro-

portional to the density of states at the Fermi level. γ ranges from mJ/mole/K2

in uncorrelated metals such as copper to J/mol/K2 in heavy-fermion systems

[127–129]. With no fermionic charge carriers, a linear term is generally unex-

pected for insulators. The complete suppression of γ for β−Li2IrO3 under a

14 T magnetic field (Fig. 4.11) indicates its magnetic origin and is consistent

with prior NMR and THz data [130]. While a field dependent Sommerfeld

term could arise from a metallic impurity phase, powder XRD studies as well

as low temperature susceptibility measurements place an upper limit on the

concentration of impurities at the percent level. If such impurities are the

origin of the γT term they would need to be heavy fermion like.

It seems unlikely that exotic fermionic quasi-particles associated with a

proximate spin liquid phase would contribute to the very lowest energy part

of the excitation spectrum within a symmetry-breaking long range ordered

state of β-Li2IrO3. The incommensurate nature of the order could be relevant

as it admits a gapless phason mode as well as complex domain wall structures

both of which have the potential to contribute to the low temperature heat

capacity. A detailed study of the field dependence of γ to determine for

example whether its disappearance coincides with the 2.8 T critical field [102]

would be informative.
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Figure 4.13: (a) Nuclear structure of H3LiIr2O6 with Li ions removed for clarity.
The interstitial hydrogen (white) serves to weaken the magnetic couplings between
interlayer Ir ions (purple). Red ions are oxygen. (b) Stacked honeycomb lattice with
oxygen ions removed for clarity.

4.6 Introduction to Kitaev spin-liquid candidate
(H,D)3LiIr2O6

4.6.1 Magnetic properties

In the context of the search for a Kitaev spin-liquid (KSL), the presence of

non-Kitaev perturbations typically results in the formation of symmetry-

breaking static spin-spin correlations rather than the condensation of a spin-

liquid state. Indeed, even in materials that have been quantitatively shown to

have strong Kitaev interactions like α−RuCl3 and the previously discussed

β−Li2IrO3, zero field antiferromagnetic order is observed upon cooling. With

this in mind, the suppression of non-Kitaev interactions was the motivation

behind the synthesis of H3LiIr2O6, which is isostructural to α-Li2IrO3, with

the interlayer Li+ ions replaced by H+. This was proposed to reduce magnetic

coupling between honeycomb layers, and creating a truly two-dimensional

iridate as depicted in Fig. 4.13. With this motivation, H3Li2Ir2O6 was first

synthesized in 2018 [99]. The synthesis of this material is identical to that of
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α-Li2IrO3, and the substitution of the interlayer Li+ ions by H+ is done by

a hydrothermal reaction. Initial powder x-ray diffraction studies indicated

that though the honeycomb layer itself remains intact, the structure contains

significant stacking faults evident from the lineshape associated with out of

plane peaks. More detailed studies using synchotron x-ray diffraction and

pair-distribution function analyses revealed that the stacking itself is random,

and governed by the weak O-H-O interlayer coupling [131]. The sample itself

is insensitive to air like other oxides, and is available in small single crystals

suitable for x-ray or Raman studies, but of unsuitable size for inelastic neutron

scattering [40].

Like β-Li2IrO3, H3LiIr2O6 is a shown to be a spin-orbital Mott insulator

of band gap 0.12 eV and an effective moment of 1.60 µB per Ir atom by

resistivity and high temperature susceptibility studies [99]. The observed

(powder average) value of θCW=-105 K, indicating ferromagnetic interactions

in the high temperature paramagnetic phase. Despite the ≈100 K value of

θCW , no magnetic order is observed at the lowest measured temperatures of

50 mK by specific heat and NMR studies. The low temperature NMR spin

relaxation rate captures the presence of low-lying spin excitations below T=40

K, which are rapidly suppressed by the application of magnetic field. Likewise,

specific heat studies show a fascinating scaling collapse of C(T)B1/2/T at low

temperatures suggestive of exotic quasiparticles that are rapidly suppressed

in field. Combined, these results indicate that H3LiIr2O6 is a an exciting

candidate for the realization of a ground state Kitaev spin-liquid phase.
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4.6.2 Possible magnetic ground states

Explanations for these data are varied but the absence of the formation of static

spin-spin correlations is highly constraining. One suggestion put forth by the

original study was that H3LiIr2O6 is a ground state spin-liquid, but without

detailed spectroscopy or thermal transport studies to better understand the

nature of the excitations this is only speculative. Another explanation for

the scaling of the specific heat in field was found in the form of what is

known as the random-singlet state. In this state, spins form singlet pairs

are allowed to be between any two spins on the lattice and not only nearest-

neighbor. Strongly coupled spins will pair first, which are predominantly

nearest-neighbor. The spins that are left behind then form pairs, resulting

in a power-law distribution singlet-triplet splitting which follows from a

renormalization group analysis [132]. This approach was used to explain the

scaling collapse of the C(T) data for H3LiIr2O6, along with other quantum

spin-liquid candidates like LiZn2Mo3O8 and Herbertsmithite [76].

Despite these interesting results, only a handful of experimental studies

followed this 2018 result. Dielectric spectroscopy showed direct evidence of

glass-like freezing of the H+ ion positions between two potential hopping sites,

with a crossover from thermally activated hopping to a quantum tunneling

mechanism at temperatures below T ≈100 K [133]. Still, the observed hopping

frequency is in the mHz range, meaning that on the scale of the magnetism

this effect at low temperatures may be viewed as a quasi-static disorder. Only

very recently in 2023 did two spectroscopic studies appear, the first used

a combination of anisotropic susceptibility and µSR studies and suggested
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the presence of both the random-singlet state and a disordered quantum

paramagnetic state consistent with a spin-liquid [134]. Resonant inelastic x-ray

spectroscopy studies came to a similar conclusion, with a clear Q-independent

magnetic signal at energy transfer h̄ω ≈ 25 meV in single crystalline samples

[135].

The following presented work uses inelastic neutron scattering to map the

previously unexplored low energy part of the excitation spectrum. The goal

is to provide an accurate scattering description of the low-energy excitations

free of non-magnetic backgrounds and to determine if the extracted scattering

is consistent with a spin-liquid ground state.

4.7 D3LiIr2O6 Inelastic Neutron Scattering

4.7.1 Experimental considerations

Like β-Li2IrO3, H3LiIr2O6 suffers from a high absorption cross section from

Li and Ir. Again, we mitigate this by a 99% enrichment of 7Li and 193Ir. This

brings the total absorption cross section per formula unit to σabs = 325 b/(mol

f.u.), with an effective transmission length of 3.5 mm for elastic scattering of

25 meV neutrons. We used the identical annular aluminum can design as

the β−Li2IrO3 experiment. An additional difficulty in neutron scattering on

this sample is the presence of H ions, which have a nuclear spin incoherent

scattering cross section of σi = 25.3 b. Normally, this makes the analysis of

magnetic neutron scattering data for compounds including H quite difficult

as strong incoherent scattering will introduce multiple scattering effects of

similar intensity to the magnetism. Without isotope enrichment, the overall
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incoherent scattering cross section per formula unit would be σi=242 b, and

with deuterium enrichment this becomes a more manageable σi = 6.9 b. The

end result was a 3.6 g of triply isotope enriched sample made by collaborators

at the Max Planck institute.

Three separate neutron scattering measurements were performed. The first

was measured on the SEQUOIA instrument at Oak Ridge National Laboratory

[136]. Measurements of D3LiIr2O6 were performed with incident energies

Ei=30 meV and 60meV, using the fine chopper configuration at temperatures

T=4.0(1) K and T=200.0(1) K. Counting times for the low temperature configu-

rations were 22 hours and 28 hours and counting times at the high temperature

configurations were 16 hours and 18 hours for Ei=30 meV and Ei=60 meV

respectively. The sample with mass 3.6 g was loaded into a custom annular

aluminum can of 20 mm outer diameter and 19 mm inner diameter with

height 4 cm. The sample was prepared by solid state synthesis methods as

described in Ref. [99] with triply isotope enriched 2D, 193Ir, and 7Li to mitigate

absorption and incoherent scattering. A vanadium standard was measured

using each experimental configurations to normalize both experiments to

barn/sr/eV/mol Ir. Annular angle-dependent absorption was corrected by a

Monte-Carlo method in the Mantid software [107]. Magnetic scattering from

this measurement is shown in Fig. 4.14(a).

Polarized inelastic neutron scattering was done using the HYSPEC in-

strument at Oak Ridge National Laboratory [136]. The measurement was

performed with incident energy Ei=20 meV in the high flux configuration. The

same sample as the SEQ experiment was used but reloaded into a 7 mm outer
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Figure 4.14: (a) Magnetic inelastic scattering of D3LiIr2O6 at T=4.0(1) K. Scattering
at energy transfers below energy transfer 1.8 meV is contaminated by noise from
nonmagnetic elastic scattering. (b) Q-dependence of extracted magnetic scattering
using average scattering from energy transfer over a wide window of h̄ω = 2 meV
to h̄ω=10 meV. The low temperature T=4 K scattering shows a small but significant
rise in intensity for Q<1.5 Å

−1
when compared to the T=100 K scattering. Both show

a finite increase in intensity approaching Q=0, as would be expected in a correlated
paramagnet.
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Figure 4.15: (a) Magnetic inelastic scattering from the MACS instrument of D3LiIr2O6
at T=1.8(1) K using the E f =5.0 meV configuration. Nonmagnetic contributions have
been subtracted off as described in the text. (b) Magnetic scattering using the E f = 3.7
meV configuration.
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(b) Total spin-flip scattering for comparison to magnetic scattering. (c,d) Factorizations
of magnetic scattering in (a).

diameter, 6 mm inner diameter annular can used for polarized experiments

on HYSPEC. Total counting times for each polarization channel were [30, 30,

66, 12, 12, 8] hours for the [σSF
x , σSF

y , σSF
z , σNSF

x , σNSF
y , σNSF

z ] configurations

respectively. The x and y polarization directions lie in the scattering plane as

defined by the Mezei flipper, while the z is perpendicular to the scattering

plane. Superscripts denote the spin-flip (SF) and non spin-flip (NSF) cross

sections. The NSF cross sections were measured to apply corrections due to

imperfect flipping ratio as well as to provide an overall normalization from

the sample Bragg peaks. The same absorption corrections were applied as for

the SEQ data.

The third measurement presented is from the MACS spectrometer at the

NIST Center for Neutron Research [85]. This sample consisted of 2.0 g of
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enriched D7
3Li193Ir2O6 in an aluminum sachet of 0.5 mm thickness, using

configurations of E f =3.7 and E f =5.0 meV with appropriate combinations of

cooled BeO and Be filters before and after the sample to suppress higher

order contamination. The scattering is shown in Fig 4.15 with the E f =5.0

configuration in subplot (a) and the E f =3.7 meV configuration in subplot

(b). Both configurations were measured at T=1.7(1) K and T=45 K. All four

measurements were counted for ten hours along with matching sample out

backgrounds. Further details of each of these measurements are provided in

the subsequent sections.

4.7.2 Isolation of magnetic scattering from SEQUOIA mea-
surement

Little information may be extracted from the directly measured low temper-

ature scattering in the unpolarized MACS and SEQ measurements. Even at

low temperatures, the scattering from both phonons and inelastic multiple

scattering dominates the overall signal as shown in the directly measured

intensity in Figs. 4.17 and 4.18. Still, a qualitative comparison may be made

between measurements at different temperatures by examining cuts along

the Q dimension averaged in a window of h̄ω=2 meV to h̄ω=5 meV shown

in Fig. 4.18. Here, the contribution from phonons is roughly normalized

between measurements by comparing scattering to only the high-Q part of

the scattering (Q > 2.5 Å
−1

), resulting in the scales denoted in the legend.

While the two elevated temperature measurements are identical, the T =4

K scattering shows a small buildup of intensity for Q < 1.5Å
−1

. This is the
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Figure 4.17: Directly observed intensity for all configurations in the SEQ experiment
on D3LiIr2O6. The top column is for Ei=30 meV, and the bottom is for Ei=60 meV.

direct indication of the buildup of temperature dependent dynamic spin corre-

lations, which we will now extract more rigorously. Scattering normalization

to a vanadium standard and absorption corrections are all that have been

performed up to this point. Due to the fairly mobile and strongly scattering

H+ ions, the Debye-Waller factor should be accounted for as we attempt to

subtract the associated background scattering. In general, neutron scattering

cross sections include the Debye-Waller factor which is an overall prefactor to

intensity that goes as e−⟨u2⟩Q2
where ⟨u2⟩ is the mean-squared ion displace-

ment. Of course, this is not a constant for every ion in the unit cell but as a first
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Figure 4.18: Scaled cuts of directly measured intensity from SEQUOIA experiment
on D3LiIr2O6. Cuts are taken from Ei=30 meV data.

approximation we take it to be one value for all ions and scattering processes.

The elastic scattering should then go as

I(Q, ω = 0) = e−⟨u2⟩Q2
(σbragg(Q) + σi). (4.15)

The mean-square displacement ⟨u2⟩ is temperature-dependent. Approx-

imating ⟨u2⟩=0 for T=4 K, the difference between elastic cuts as a function

of Q may be used to extract the Debye-Waller factor for each elevated tem-

perature (100 K and 200 K). The higher incident energy configuration has

access to a wider range of Q, so cuts of these measurements averaged from

h̄ω = ±1 meV are used for this purpose. The extracted values of ⟨u2⟩ are

⟨u2⟩100K = 1.1(1)× 10−3 Å
2

and ⟨u2⟩200K = 3.3(1)× 10−3 Å
2
. An example of

the elastic cuts before and after applying this correction is shown in Fig. 4.19.

Because of the relatively large incoherent scattering cross section of D

(σi=4.04 b) and the very large incoherent scattering from H which remains
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present at the 1% level due to imperfect enrichment (σH
i = 25.274 b), we at-

tribute the presence of a large flat background across the entire measurement

(Fig. 4.17) multiple scattering events that involves a strong elastic incoher-

ent process and weaker inelastic scattering processes namely phonons. The

treatment of the process is very similar to that applied to the Ba4NbRu3O12

scattering data. To model such events, we begin with the individual cross

sections for incoherent elastic and incoherent inelastic phonon scattering [56]

dσ

dΩ el inc
=

σinc

4π
Ne−2W , (4.16)

d2σ

dΩdω inel inc
=

k f

ki

Nσinc

4π

Z(ω)

ω

eβh̄ω

eβh̄ω − 1
h̄Q2

2M
e−2W . (4.17)

We now recall that such a process leads to Eq. 3.5, which for reference may be

written as

I′ph(Q, h̄ω) = T Iph(Q, h̄ω) + (1 − T )
∫︂ ki+k f

|ki−k f |
Iph(Q′, h̄ω)

Q′dQ′

2kik f
. (4.18)

In the previous case, there existed a calculated phonon spectra available for

the numerical evaluation of this integral. Here, we do not take this approach,

instead solving the integral analytically following Ref. [90]. The result is the

easily linearized form of

I′(Q, h̄ω) = f (h̄ω)(k2
i + k2

f )

(︃
TQ2

(k2
i + k2

f )
+ (1 − T)

)︃
. (4.19)

An observation to be made about this form is its strong dependence on ki

and k f . For the Ei=30 meV measurement with energy transfer h̄ω = 3 meV,

(k2
i + k2

f )=27.5 Å
−2

, whereas for the MACS measurement with E f =5.0 meV
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and energy transfer h̄ω = 3 meV, (k2
i + k2

f )=6.3 Å
−2

, meaning that this effect

would be suppressed by nearly an order of magnitude due to simple kinemat-

ics. We assume the single-event scattering fraction T to be constant across

measurements. The value of this parameter is found using the linearized form

of Eq. 4.19, which is visually represented in Fig. 4.20. The assumption that

the functional form for phonons is simply Ip(Q, h̄ω) = f (h̄ω)Q2 breaks down

significantly at high Q and energy due to the presence of acoustic phonons

which is most clearly visible in Fig. 4.17(d), but within the Q and energy range

of our interest for magnetic scattering it works quite well and from which we

extract an overall single-event scattering fraction of T = 0.90(1).

We now require a form of f (h̄ω) from which to compute I′(Q, h̄ω). Based

on the magnetic form factor of Ir4+ we assume that the extreme values of Q
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available in each measurement represent the purely non-magnetic contribu-

tions to the scattering. These regions in Q are from Q=2.5 Å
−1

to Q=3.0 Å
−1

for the Ei=30 meV measurements and Q=3.5 Å
−1

to 4.0 Å
−1

for the Ei=60 meV

measurements. Within these widows, both a simple cut along the energy trans-

fer dimension or a factorization approach described later works equally well.

For completeness, we use the factorization. This particular model of phonon

and multiple scattering assumes a form of Ip(Q, h̄ω)= f (ω)Q2 for single-event

scattering. It is then sensible that an attempt to subtract I′(Q, h̄ω) will fail in

Q − h̄ω regimes where this assumption does not hold, many of which can

be seen in Fig. 4.17. However, we may safely assume that these deviations

from the assumed form of I′(Q, h̄ω) are dominated by single-event phonon

scattering. So, the total scattering intensity may now be written as

IT(Q, h̄ω) = Imag
T (Q, h̄ω) + I′T(Q, h̄ω) + δIph

T (Q, h̄ω). (4.20)

The subscript T denotes the temperature, Imag is the magnetic contribution,

and δIph is the anharmonic phonon contribution dominated by single-phonon

scattering. Equipped with f T(h̄ω), I′T(Q, h̄ω) is readily calculated for each

configuration. The dominant single-event phonon contributions are now

subtracted using a standard Bose-Einstein form, and assuming no magnetic

scattering for high temperatures this leaves

Ī(Q, h̄ω) = ITL(Q, h̄ω)− 1 − e−βH h̄ω

1 − e−βL h̄ω
ITH(Q, h̄ω) (4.21)

Ī(Q, h̄ω) = Imag
TL

+ I′TL
(Q, h̄ω)− 1 − e−βH h̄ω

1 − e−βL h̄ω
I′TH

(Q, h̄ω). (4.22)
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Figure 4.21: Remaining scattering after subtracting high temperature measurements.
T=100 K was used as a background for the T=4 K measurement in (a), and the T=200
K measurement was used as a background for the T=100 K measurement in (b).

The intensity in the quantity Ī for each temperature still retains a non-

magnetic background from multiple scattering, which may now be defined

as

Ibkg(Q, h̄ω) = I′TL
(Q, h̄ω)− 1 − e−βH h̄ω

1 − e−βL h̄ω
I′TH

(Q, h̄ω), (4.23)

which can be explicitly calculated as depicted in Fig 4.22. An overall

normalization factor is applied such that the resulting magnetic scattering at

high Q and h̄ω fluctuates around zero. Finally, the scattering presented as

magnetic is given by

Imag(Q, h̄ω) = ĪTL(Q, h̄ω)− AIbkg(Q, h̄ω). (4.24)

The final result in Fig. 4.14 appears to be a very broad continuum of

scattering that approaches a maximum intensity upon approaching Q=0 and

h̄ω=0. The experiment is clearly energy-resolution limited. To resolve this
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Figure 4.22: (a,b) Calculated multiple scattering backgrounds I′(Q, h̄ω) for T = 4
K and T = 100 K Ei=30 meV measurements using form of Eq. 4.19. (c) Resulting
background after Bose-Einstein subtraction of phonons as defined by Eq. 4.23.

we turn to the measurement on the MACS instrument which has access to

a significantly lower energy transfer. A similarly detailed subtraction of

scattering was performed in this case, which is left to Appendix 7.2. The

resulting magnetic scattering obtained from MACS is shown in Fig. 4.15.

4.7.3 3D spin-polarized inelastic neutron measurement

A significant effort went into extracting the magnetic signal from the mea-

surements resulting in the inferred magnetic scattering shown in in Figs. 4.14

and 4.15. The inferred non-magnetic background contributions originating

from incoherent scattering are in all cases on the scale of or greater than the

intensity of the extracted magnetic scattering. Though the modelling of the

non-magnetic terms was rigorous, this many subtractions to the measure-

ment could cast doubt upon the extracted magnetic spectra and hence the

conclusions we make regarding the ground state of D3LiIr2O6.

Our answer to this was to perform a polarized beam experiment on the
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HYSPEC instrument using the 3D polarized configuration. The HYSPEC

data is useful in that very few corrections are required to find the purely

magnetic scattering. First, a correction is applied to the data to correct for

imperfect polarization of neutrons. This effect results in some SF scattering

in the NSF channel and vice versa. The corrected intensities are given by

ISF = F(F − 1)Iraw
SF − Iraw

NSF/(F − 1) and INSF = F(F − 1)Iraw
NSF − Iraw

SF /(F − 1),

where F is the flipping ratio which is determined by the fraction of Bragg peak

scattering in the raw SF measurements as compared to the NSF measurements.

For polarized magnetic powder scattering, the magnetic cross section is given

by σmag = 2(σSF
x + σSF

y − 2σSF
z ). While this is a direct way of finding the

magnetic intensity, the statistics of our measurement are too poor to present

on their own as the polarized beam configuration reduces flux by about a

factor of 10, and six different polarization configurations must be measured.

Instead, the scattering is used as a verification that the truly magnetic signal

does not contain the background that roughly goes as I(Q) ∝ A + BQ2.

Outside the standard normalization and absorption corrections, there are

two notable treatments of the measured intensity. The first is the necessary

correction for the flipping ratio, which is tuned such that the elastic Bragg

peaks vanish in the spin-flip cross section. This value is then taken to be 15

for all polarization configurations. The second is more interesting, which is

the detector normalization. The HYSPEC instrument’s polarization analysis

is performed using a state-of-the-art two of a kind supermirror polarization

analyzer (As a side note, the sister mirror is at the POLANO beam at JPARC).

The design of the mirror uses many slits that absorb or reflect the incoming
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Figure 4.23: (a) Design of HYSPEC supermirror polarizer array reproduced from Ref.
[138]. Only spin-up neutrons are reflected. (b) Extracted detector normalization from
spin-flip scattering compared to standard Ti Zr alloy.

beam based on the neutron polarization, as depicted in Fig. 4.23.

This setup comes with a systematic error which is that the detector visibility

to the sample strongly depends on the sample shape. Thus, unless the sample

geometry is exactly the same as the sample used to normalize the detector

efficiencies, systematic errors will be introduced. To remedy this in the case of

D3LiIr2O6, we assume that all detector counts in the flipping ratio corrected

spin-flip elastic channel originate from sample incoherent scattering. This

follows from the absence of Bragg diffraction in the spin-flip channel and the

dominant spin-incoherent scattering originating from the H/D ions. Because

incoherent scattering is Q-independent, we may normalize the detectors to

the sample itself, thus avoiding any issues related to differences between

our sample geometry and the shape of the TiZr sample normally used to

normalize the detectors. The difference between the TiZr normalization and

the extracted one from our sample is shown in Fig. 4.23(b).

Resulting scattering data for all six configurations are shown in Fig. 4.24.
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Each configuration is nearly identical, but significantly the buildup of excita-

tions observed at low Q and h̄ω in the previous experiments is also observed

in the spin-flip channels as shown by the cut along Q in Fig. 4.24(i). It is

extremely difficult to explain spin-flip inelastic scattering that decreases with

Q, as is observed here, without invoking magnetism.

Finally, the magnetic contribution to the scattering and its respective fac-

torization is shown in Fig. 4.16. While the statistical accuracy is limited the

data are consisted with those obtained in the unpolarized experiments.

4.7.4 Time domain terahertz spectroscopy

In addition to the detailed neutron studies, THz spectroscopy is used to cap-

ture the response of D3LiIr2O6 at the Γ-point, which naturally complements

the observed scattering. The scattering at the Γ point is extremely impor-

tant, as it points to the anisotropic nature of the magnetism. For isotropic

Heisenberg spin interactions in disordered spin systems, the powder averaged

first-moment sum rule defined by 2.12 reveals that the magnetic scattering

should go as I(Q) ∝ 1 − sin(Qd)/(Qd), which would be zero at the Γ-point.

The inelastic quasiparticle continuum predicted for the ferromagnetic Kitaev

spin-liquid instead would have a maximum of scattering at the Γ point [32],

so any signal in THz spectroscopy would be relevant to our results.

Details of TDTS may be found in Sec. 4.3.4. The experiment was done using

a dry pressed powder pellet of D3LiIr2O6 of diameter 3 mm and thickness

1.0(1) mm. Fig. 4.25(q) shows transmission for temperatures ranging from 3

to 300 K. There are two temperature scales associated with the transmission.
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124



0.0 0.5 1.0 1.5 2.0
 (THz)

0.0

0.2

0.4

0.6
|T

ra
ns

m
is

si
on

| (a) 3 K
8 K
10 K
22 K

40 K
70 K
100 K
300 K

0.0 0.3 0.6 0.9 1.2
 (THz)

0.0

0.5

1.0

1.5

2.0

′′  
(a

.u
.)

(b)(b) Tref=14 K 14 K
12 K
10 K
8 K
5 K
3 K

0 10 20 30 40
T (K)

0.51

0.52

0.53

0.54

|T
ra

ns
m

is
si

on
| 0.41 Hz

0.45 Hz
0.50 Hz

Figure 4.25: Time domain THz spectroscopy data from a pressed pellet of D3LiIr2O6.
(a) Directly measured quantity of the modulus of transmission. (b) Calculated χ′′
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of the signal at low energies showing the onset of magnetic signal for T < 15 K, and
dielectric scattering for T > 25 K.
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From room temperature to 25 K, the increase in transmission is associated

with the reduction of scattering from an electronic degree of freedom, namely

the thermally activated hopping of the H+ ion. This effect plateaus below 25

K, and the transmission then decreases below 14 K, which is interpreted as the

onset of absorption by magnetic degrees of freedom and is made more clear

by Fig. 4.25(c).

This crossover behavior indicates competition between electronic and

magnetic excitations, which in general makes optical studies of this material

difficult. If one assumes that the dielectric behavior is constant below 15 K,

the 14 K temperature may be used as a reference spectrum for which the

relative susceptibility χ′′ may be calculated as shown in Fig. 4.10(b). Here,

a continuum of excitations consistent with the INS studies appears upon

decreasing temperature. The oscillations in the data are a consequence of the

experimental configuration and should not be taken to be true peaks in χ′′.

4.7.5 Analysis - D3LiIr2O6

Corrections to the scattering aside, the analysis of these data is relatively

straightforward. As the sample is a powder and no sharp features in the

spectra were discovered, we may return to the factorization method where.

For a powder, the total observed magnetic moment may be found by

integrating over S(Q), i.e. µ2
obs = 3g2

∫︁
S(Q)Q2dQ/(

∫︁
Q2dQ). For the SEQ

and MACS measurements this provides an overall observed moment of µe f f =

2.0(6) µB and µe f f = 1.7(4) µB respectively, where the error is dominated

the vanadium normalization. These values are mostly consistent with the

126



moment from high temperature magnetization of µM = 1.36µB, as well as

the expected moment for J = 1/2 of µ = g
√

3 = 1.7 µB assuming g = 2.

The energy dependent G(ω) suggests a gapless excitation spectra within the

∆E=1.8 meV instrumental resolution that rapidly falls to zero with increasing

energy transfer. The MACS data adds more detail to the low energy part of the

excitation spectra, but statistics mean that it is difficult to determine if a peak

exists in the spectra or not. Finally, the HYSPEC data confirms that the origin of

the scattering is in fact magnetic, and that our subtractions to the unpolarized

measurements are consistent with the polarized magnetic scattering. A total

moment sum rule may also be used on the magnetic scattering inferred from

the polarized experiment resulting in µe f f = 1.7(7) µB. The compatibility of

these measurements are shown directly in Fig 4.26, where the factorizations

of each measurement are consistent. The consistency between the distinct

experiments gives confidence in the overall results.

4.7.6 Modeling of scattering

The exactly solvable ground state of the KSL has allowed a wealth of theo-

retical studies of its excitations. The dynamical structure factor S(Q, h̄ω) has

been calculated in a number of studies [32]. This quantity is of particular

interest as INS provides a direct measure of S(Q, h̄ω), giving a direct route

to compare theory and experiment. The response is expected to be nearly

featureless as a lack of long range magnetic ordering in real space corresponds

smeared features in Q-space. In the KSL we expect only on-site and nearest

neighbor correlations. With this expectation, the dynamic structure factor
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for a crystal is written as Sαα(Q, h̄ω) = 2G(h̄ω)(1 − sgn(K) cos(Q · da)). The

Kitaev interaction K is assigned as ferromagnetic based on θCW and da refers

to the distance vector of a bond in real space. The powder average of this

function while considering only on-site and nearest-neighbor correlations is

fit to the SEQ data and is shown in Fig. 4.26(a) by the red line.

The combination of spectra presented in Fig. 4.26(b) implies a broad

continuum of scattering at excitation energies below 6 meV. We can also state

that finite magnetic intensity persists down to the lowest accessible energy

transfer of h̄ω = 0.5 meV.

4.8 Discussion - D3LiIr2O6

The low energy excitations in D3Li2IrO6 have been successfully mapped by

inelastic neutron scattering for the first time. Three different measurements

were required to do so, but there is compelling evidence that the presented

scattering is truly magnetic and originates from the exotic magnetic ground

state of the material. After all of the background subtractions which have been

discussed at length, the powder averaged spectra may finally be discussed

independently in terms of its Q and h̄ω dependence. The Q-dependent part

of the spectra S(Q) is successfully described using a simple nearest-neighbor

interacting model, which is consistent with a nearest-neighbor ferromagnetic

interaction. The full expected moment is captured by these measurements,

affirming the validity of the background subtraction procedures. The fully

magnetic cross section from the polarized measurement also affirms these

procedures, and captures the full expected moment for the Je f f =1/2 Ir4+.

129



A peak is expected in the low energy spectra of the Kitaev spin-liquid,

as the ground state is a nonmagnetic singlet that neutrons are not sensitive

to. This gives the illusion of a finite energy gap in the dynamical correlation

function despite the state being gapless [32]. If a true peak exists at h̄ω ≈2

meV, this would imply an energy scale for the Kitaev interaction of K = −10

meV. However, this is significantly lower than the values expected from both

our previous study of β-Li2IrO3 and other studies on α-Li2IrO3 and Na2IrO3

which suggest a higher energy scale around |K| ≈25 meV [139]. However,

it closely matches what is expected from the high temperature susceptibility

of θCW=-105 K which suggests K=-12 meV. This may be due to the fact that

H3Li2IrO6 is not in an ideal KSL ground state. The coexistence of the random

singlet phase and the KSL slightly modifies the quasiparticle spectra as have

already been discussed, and the quality of these powder measurements make

it difficult to conclude more regarding the excitations.

4.9 Conclusions

Two detailed inelastic neutrons scattering studies have been performed in

honeycomb magnets which have been proposed to realize Kitaev-type interac-

tions. The first is β-Li2IrO3, which has long been known to have an interesting

counterrotating magnetic order that was taken as evidence of anisotropic

Kitaev interactions. Using a combination of inelastic neutron scattering, heat

capacity, and THz spectroscopy, precise exchange parameters were experi-

mentally refined for a lithium iridate for the first time. These types of studies
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are extremely scarce due in large part to the difficulties associated with neu-

trons and iridium, and this result is a valuable contribution to the field. A

publication of this work may be found in Ref. [51].

The second study was a detailed analysis of D3LiIr2O6 scattering data.

Three separate powder inelastic neutron studies are discussed, as well as

the detailed procedures for background subtractions in each. The isolation

of magnetic scattering is highly nontrivial in this case, yet the 3D polarized

scattering from the HYSPEC instrument supports that this analysis was correct.

The scattering captures the total expected moment and features a low energy

spectra with Q-dependence that may be described by only nearest-neighbor

correlations with a maxima at Q=0. This is entirely consistent with a Kitaev

spin-liquid ground state, but limited conclusions should be drawn from this

due to the quality of the data.

Work remains to be done on both materials. The studies discussed in

this dissertation have established that strong Kitaev-type interactions exist in

both and that the ground state of D3LiIr2O6 may be proximate to a KSL. The

simplest path forward for this material would be to run another measurement

on a cold neutron spectrometer like CNCS at Oak Ridge National Laboratory

or the LET spectrometer at ISIS. These instruments would not suffer from the

phonon monochromator scattering that MACS does, have sufficient energy

resolution to map the low-energy excitation spectrum, and their low incident

energies mean that while absorption effects would be significant, multiple

scattering would be significantly reduced as it scales with (k2
i + k2

f ).

Outside of this, single crystalline samples are required for further study.
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These do exist but are of exceedingly small size, on the order of length 1 mm.

A single-neutron study of crystals of this scale is feasible, and something I am

considering pursuing in my future studies. For β−Li2IrO3, the application

of field along different unit cell directions has already been shown to have

extremely anisotropic response in magnetization [98]. This could also be

studied in the excitation spectra of coaligned single crystals and is a natural

extension of the powder work. The case of D3LiIr2O6 is a bit different, in

that it is still unclear what the ground state is. Single crystal inelastic neutron

diffraction would be an invaluable addition to this effort, and would provide

much clearer information than the powder data. Provided enough crystals, I

believe that these studies are entirely possible and worth the effort to pursue.

132



Chapter 5

Proximate spin-liquid behavior in
highly frustrated XXZ-J1J3
honeycomb magnet BaCo2(AsO4)2

5.1 Introduction

5.1.1 Proposal for Kitaev interactions in Co2+ honeycomb ox-
ide materials

Since the proposal of the realization of Kitaev interactions in real materials by

Jackeli and Khaliullin in 2007 [37], a significant amount of effort has been put

forth towards the realization of a Kitaev spin-liquid. The original mechanism

for this requires 4d or 5d transition metal ions (Ru3+ Ir4+) with strong spin-

orbit coupling in an octahedral crystal field, meaning that the only materials

that may realize Kitaev interactions by this mechanism are the honeycomb

iridates and α-RuCl3. While the lithium iridates have been described in detail

in the previous chapter, α-RuCl3 is also worth a brief discussion for context.

For the purpose of engineering a Kitaev material the honeycomb iridates

have the fundamental issues of limited single-crystal availability and the
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neutron absorption associated with iridium. α-RuCl3, on the other hand,

suffers from neither of these issues with large high quality single crystalline

samples readily available and an absorption cross section of σabs = 2.56 µB.

It should be noted here that although single crystals are straightforward

to grow, different sample show different magnetic ordering temperatures

suggesting that stacking faults play an important role in the ground state order

[140]. Although α-RuCl3 orders into a characteristic zigzag antiferromagnetic

structure at TN=7 K [45], initial inelastic neutron studies suggested that the

material may be proximate to a Kitaev spin-liquid and arguments were made

for the presence of a dominant AFM Kitaev interaction with Heisenberg

and off-diagonal interactions pushing the system into ordering rather than a

quantum spin-liquid phase [45, 141].

More interesting still was the discovery of a mysterious field-induced

phase for in-plane fields higher than Hc=7 T. No magnetic order is observed by

neutron scattering in this phase, and the well-defined spin-waves in the zero

field phase melt away into a continuum that is consistent with what one would

expect from a Kitaev spin-liquid [142, 143]. Furthermore, thermal transport

studies reported a half-integer quantized thermal Hall effect as one would

expect of emergent Majorana fermion excitations [144, 145]. This result is

controversial and has proven difficult to reproduce, with compelling evidence

being that the measured quantity was simply residual phonon scattering [36].

Because of this, there is a small highly fluctuating regime just above the critical

field in which the magnetism of α-RuCl3 is poorly understood despite great

theoretical and experimental efforts [146]. The exchange interactions are very
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difficult to refine from neutron scattering data, as it is impossible to fully

magnetize the system at any reasonable field scale at which one could use

linear spin-wave theory rigorously.

This presents an interesting scenario, where even the most "successful"

Kitaev material has a poorly understood spin-Hamiltonian and conflicting

results even after nearly 15 years of study. The need for a new method

of realizing Kitaev interactions is sorely needed provided that it meets the

qualifying criteria of minimizing non-Kitaev exchange, having accessible field-

scales such that one may polarize the system for study, and availability in

single-crystal form.

In 2018, a proposal was put forward for the realization of Kitaev interac-

tions in honeycomb Co2+ materials which fits all of the above criteria. Though

the mechanism is quite complex, it will be briefly summarized. This pro-

posal is based upon d7 ions in a t5
2ge2

g configuration (S=3/2 L=1) in octahedral

crystal fields. The crystal field environment combined with some quantity of

spin-orbit coupling results in a pseudospin J=1/2 on each honeycomb site,

which has been known for many years in the honeycomb cobaltates. If one

goes further and examines the effect of hopping paths between the resulting

electrons that remain in eg orbitals, a full exchange Hamiltonian may be de-

rived [48, 147]. This is significantly different from the case of first generation

Kitaev materials where only one hole exists in the ground state manifold, as

the hopping terms allowed by the additional electrons are shown to have a

destructive interference for non-Kitaev interactions.

While this mechanism for the realization of a Kitaev contribution to the
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spin exchange is beyond the scope of what I would like to discuss here, the end

result is that for a particular value of Hubbard U there should be competing

ferromagnetic and antiferromagnetic contributions to the Heisenberg part of

the exchange interaction, leading to a dominant Kitaev interaction. This is

an appealing prospect experimentally that was immediately embraced, with

claims of the discovery of Kitaev interactions in materials like Na2Co2TeO6

[148, 149]. Honeycomb cobaltates are available in single crystalline form by

traditional methods like flux or Bridgman growth, and with the typically large

moment of Co2+ these materials are very amenable to neutron scattering ex-

periments. The excitement in the field was understandable, as the introduction

seemingly overnight a whole new family of Kitaev materials would be a huge

step forward from only having the honeycomb iridates and α-RuCl3 to study.

However, we should pause and ask a question. In real honeycomb cobaltates

is the Kitaev model actually the appropriate description of the spin exchange?

Or could these materials be described by more conventional means? This line

of inquiry bring us to the most significant work in this dissertation, which is

the investigation of BaCo2(AsO4)2.

5.1.2 Magnetic properties and previous studies of BaCo2(AsO4)2

BaCo2(AsO4)2 crystallizes in the trigonal R − 3 space group, with lattice pa-

rameters a=b=5.0Å
−1

. Honeycomb layers of edge-sharing CoO6 octahedra

are stacked in an ABC pattern along the c-axis such that no direct exchange

path exists between layers and the system may be thought of as highly two-

dimensional. Additionally, the interlayer bonding is ionic between Ba and
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Figure 5.1: (a) Nuclear structure of BaCo2(AsO4)2 showing idealized ABC stacking
pattern. O ions have been removed for clarity. (b) Honeycomb lattice of a single layer
of CoO6 octahedra.

AsO4 octahedra, meaning that the material is not van der Waals like H3LiIr2O6

or α−RuCl3 and does not have any measurable stacking faults [150]. Magnetic

order in BaCo2(AsO4)2 has been long known, with the first reports appearing

in the literature in 1977 [151]. Here, magnetic susceptibility studies revealed a

highly anisotropic response which is indicative of the two-dimensional nature

of the system. A phase transition is detected at T=5.4 K, and following neutron

diffraction studies reveal a dominant in-plane contribution to the moment

of µab = 2.95 µB and µc = 0.48 µB. Upon cooling, incommensurate order is

observed with propagation vector k = (0.261, 0,−4
3). This corresponds to an

incommensurate spiral structure with no correlations between layers. Upon

application of a field at low temperatures in the ab-plane, an intermediate

commensurate phase of wavevector k = (1/3, 0, 0) is observed at critical

field µ0Hc2 = 0.33 T, and a second critical field of µ0Hc2 = 0.55 T pushes

the system into a nearly field-polarized phase [151–154]. Heat capacity and

137



magnetization studies also affirm this, and have been used to map the full

H − T phase diagram of BaCo2(AsO4)2.

Until recently, BaCo2(AsO4)2 (BCAO) remained a peculiar frustrated anti-

ferromagnet outside a sophisticated 3D neutron polarimetry study suggesting

that the order was actually that of an ↑↑↓↓ type structure rather than an incom-

mensurate spiral [153]. The proposal of Kitaev interactions in the honeycomb

cobaltates inspired a review of long forgotten systems in this context, including

BaCo2(AsO4)2. The critical field and temperature are all small for a transition

metal oxide, indicating the tenuous nature of the magnetic order. Yet, the field

driven state is nearly fully magnetized suggesting dominant ferromagnetic

interactions. This argument was used to suggested that BaCo2(AsO4)2, like

α-RuCl3 before it, may enter into a field induced Kitaev quantum spin-liquid

phase [154], but with large defect-free single crystalline samples available. For

a time, BCAO was hailed as a more ideal next generation Kitaev spin-liquid

candidate.

5.2 Determination of magnetic exchange hamilto-
nian

Though there was a suggestion of the realization of Kitaev interactions in

BCAO, an ab-initio study suggested a different description [155]. Here it was

reported that trigonal distortions in the CoO6 octahedra played an important

role in the physics of BCAO and that it forms an easy-plane XXZ magnet

with nearest neighbor ferromagnetic interactions and frustrated third-nearest
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neighbor AFM interactions (we refer to this as the XXZ-J1-J3 model). Addi-

tionally, previous studies on the isostructural material BaCo2(PO4)2 were able

to completely describe the ground state using a similar model [156].

The goal of this work was to scrutinize in detail the magnetic interactions in

BCAO via a combination of inelastic neutron scattering studies and a classical

theoretical analysis. To this point, little experimental work had been done to

distinguish the JKΓΓ′model with large Kitaev interactions from the XXZ-J1-J3

model in BCAO or, in fact, any cobaltates. We take advantage of the fact

that BCAO polarizes at relatively low values of field, meaning that unlike α-

RuCl3 we can access the ferromagnetic regime where linear spin-wave theory

describes the excitations very well. In the highly fluctuating zero field state

linear spin-wave theory breaks down entirely, as we will demonstrate by

detailed comparisons of the scattering to both models.

Here, we will make this determination using one neutron experiment

at zero field with wavevector transfer Q in the (hk0) scattering plane and a

second experiment with Q in the (h0l) plane with a magnetic field applied

along the perpendicular [010] direction. The magnetic excitation spectrum is

fully mapped and enables a critical examination of the two competing models.

The results tightly constrain where BCAO may lie in parameter space in each

model using a linear spin-wave theory model in the field-polarized regime,

and an analysis of the allowed classical order from these constraints are used

to make conclusions about which model is more appropriate.

Before going into details of the work, in summary it highlights the need

for a more thorough examination of exchange interactions in the honeycomb
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Figure 5.2: (a) Honeycomb lattice of BCAO viewed along the c-axis. Cobalt ions
are in blue, oxygen in red, and arsenic in green. The first Brillouin zone of the
hexagonal lattice is presented with the reciprocal lattice vectors g1 and g2. The high
symmetry points M and K are depicted by the red and blue squares, respectively. (b)
Representation of the couplings in the XXZ-J1-J3 model. The crystallographic frame
is shown to the right in the black axes. (c) Local spin-frame for Kitaev interaction on
the honeycomb lattice as seen from above. The x, y, and z bonds are shown in blue,
green, and red coloring respectively.
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cobaltates, a number of which have been proposed as KSL candidates. Even if

a set of exchange parameters with a large Kitaev interaction may reproduce

observed INS spectra in the field-polarized state using LSWT, it is important to

examine if the extracted parameter set is consistent with the zero-field ordered

state and other thermodynamic measurements.

5.2.1 Experimental methods

Two sets of crystals were grown for these experiments. The MACS experiment

used 0.88(1) g of sample while the SEQUOIA and HYSPEC samples totaled

0.96(1) g. All these crystals grown by a flux method and have a dark purple

coloring [154]. No stacking faults or secondary phases were detected through

single-crystal x-ray diffraction. The T = 293(2) K lattice constants observed

are a = b = 5.007(1) Å, and c = 23.491(5) Å [150], and the system crystallizes

in space group R3̄ (No. 148).

Three neutron scattering experiments were performed. The first was per-

formed on the MACS instrument at NIST in an "orange" 4He flow cryostat

with a 1.5 K base temperature. For this experiment, many plate-like crystals

of BCAO were coaligned in the (hk0) scattering plane. The final neutron

energy was fixed at E f =5 meV, and the monochromator was in the double-

focusing high flux mode. Measurements were performed at T = 1.7(1) K and

T = 15.0(1) K, with 16 hours and 18 hours of counting time respectively. Mea-

surements were taken at energy transfers of 0 meV, 2 meV, 4 meV, and 8 meV

for both temperatures. No magnetic field was applied in this experiment.

The second experiment was conducted at the SEQUOIA instrument at
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ORNL on a second set of crystals with a total mass of 0.96(1) g. These crystals

were coaligned in the (h0l) scattering plane and the experiment was per-

formed in a vertical field magnet such that the field was applied along the

b-axis, which is parallel to the (1̄20) direction. Measurements were taken

using the Ei = 21 meV high flux configuration with Fermi chopper frequency

of 120 Hz. Measurements were conducted with the samples at T = 2 K, 15 K,

and 50 K and total proton charge of 74 C, 80 C, and 40 C, respectively.

The third experiment was run on the HYSPEC instrument at ORNL using

the same set of crystals as on SEQUOIA aligned in the (h0l) plane. We

used an Oxford instruments 14 T vertical field magnet with HYSPEC in the

unpolarized high flux 300 Hz configuration with incident energies Ei = 6 meV

and Ei = 27 meV. The main configuration was the low energy Ei = 6 meV

mode at fields of 0 T, 0.4 T, 0.55 T, 0.75 T, 1 T, 2 T, 3 T, 4 T, and 5 T. The net

proton charge on target for each field was 140 C, 72 C, 30 C, 101 C, 30 C, 30 C,

75 C, 30 C, and 30 C respectively, with a Fermi chopper frequency of 360 Hz.

The higher energy Ei = 27 meV configuration was used for µ0H = 3 T with a

total proton charge of 44 C and a 420 Hz Fermi chopper frequency. Analysis

of the scattering from ORNL experiments was performed using the MANTID

software package [107].

Low T Magnetization measurements were performed on a high-quality

single crystal of BCAO as a function of the applied magnetic field strength

and orientation within the honeycomb planes. The sample was a 0.88(2) mg

plate that was aligned using a Laue diffractometer to an accuracy better than

1 degree. The sample was mounted on a quartz rod and oriented such that
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the applied field was along the ŷ direction as indicated in Fig. 5.2(b). The

sample was then cooled from 300 K to 2 K in zero field. A full hysteresis loop

was measured at T = 2 K in the applied field range µ0H ∈ [−1, 1] T. The

sample was then warmed to 20 K, cooled back to T = 2 K in zero field, and

the hysteresis loop was remeasured to establish reproducibility. The sample

was then carefully rotated in 15◦ steps until the field was along the x̂ direction,

repeating the zero field cooled magnetization scans for each orientation. These

measurements were run in a Quantum Design MPMS3 SQUID magnetometer.

5.2.2 Static and dynamic spin correlations

Two inelastic neutron scattering experiments were performed on plates of

single crystalline BCAO. Constant energy slices in the (h0ℓ) scattering plane

captured in the MACS experiment are shown in Fig. 5.3. Slices at T=1.7(1)

K are shown in Fig. 5.3(a-d), and slices at T=15.0(1) K are in Fig 5.3(e-h).

Fig. 5.3(a) shows elastic scattering at 1.7 K where the 15 K data in Fig. 5.3(e)

were subtracted as a background. Magnetic satellite peaks surrounding the

(01̄0) and (11̄0) nuclear Bragg peak evidence the incommensurate magnetic

order that forms below TN. Magnetic satellite peaks are even apparent near

the origin. The different intensities of the six satellite peaks surrounding a

given nuclear Bragg peak reflect the structure factor of the magnetic order.

The full width at half maximum (FWHM) vertical Q−resolution of MACS at

Q = (100) is ∆Q = 0.09 Å−1 = 0.2c∗. Thus this (hk0) plane measurement

does not access the nominal k = (0.27, 0,−1.3) magnetic wave vector. The

appearance of the magnetic Bragg peaks in Fig. 5.3(a) despite of this is a first
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Figure 5.3: Zero field neutron scattering intensity for BaCo2(AsO4)2 as a function
of energy transfer and temperature in the (hk0) scattering plane. Panels (a-d) show
scattering at T = 1.7(1) K, and (e-h) at T = 15.0(1) K. Energy transfers for each
quadrant varies as labeled. Sample out measurements were used as backgrounds
for all measurements except (a), which shows the difference between elastic data
acquired at T = 1.7(1) K and T = 15.0(1) K.
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Figure 5.4: Elastic magnetic scattering from BaCo2(AsO4)2 at T = 1.7 K (a-d) as
a function of field applied perpendicular to the scattering plane and along the
(1̄20) direction. The scattering has been averaged in the energy transfer window of
±0.1 meV, and k ∈ [−0.1, 0.1] along the (0k0) direction. The short ranged nature of
the correlations is evident at zero field (a) and in the commensurate ordered state at
µ0H = 0.4 T (b) through the broadness of the peaks in the (00l) direction. Panels (e-f)
further highlight this, comparing cuts at the respective incommensurate wavevectors
q(H) ≡ {qh(H), 0, ql(H)}. For µ0H = 0 T, q = (0.27, 0,−1.31) and for µ0H = 0.4 T
q = (1/3, 0,−1.31). Panel (g) compares cuts along the (h00) direction over the (003)
structural Bragg peak. The increase in intensity in the field-polarized 3 T phase may
be directly accounted for by the induced in-plane moment. The full width of the
averaging windows for cuts in (e) and (g) are ∆k = 0.1, ∆l = 0.6, and for (f) from
∆h = ∆k = 0.1. (h-k) Constant energy slices around the Γ point gap energy at four
representative fields. The energy windows for panels (h-j) begin at h̄ω = 0.4 meV and
extend to h̄ω = 1.58 meV, 1.80 meV, 1.90 meV, and 2.29 meV, respectively. Dashed
white lines are shown at the incommensurate ordering wavevector for each respective
field, with no lines for the magnetized phases without AFM order.

indication of the quasi-2D nature of the magnetic order: The magnetic peaks

have tails extending along c∗ so they can be detected near l = 0. This is

distinct from resolution effects and is made clearer in the second measurement

in the (h0l) scattering plane (Fig. 5.4).

The spectrum of excitations extends well beyond kBTN ≈ 0.5 meV, which is

characteristic of a quasi-two-dimensional magnet with competing interactions

where the ordering temperature is deeply suppressed relative to the exchange
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energy scale[157]. With increasing energy transfer, a faceted ring of intensity

centered at Γ points with increasing diameter is observed (Fig. 5.3(b-d)). This

indicates anisotropic dispersive excitations with the lowest energy mode at

the Γ point as for a ferromagnet.

Even though BCAO is in the paramagnetic phase at T = 15 K, dynamic

spin correlations give rise to a peak in low energy inelastic neutron scattering

at the Γ point (Fig. 5.3(f)). This indicates dynamic ferromagnetic correlations

and is consistent with previous THz and inelastic neutron scattering studies

[153, 158, 159]. While some broadening indicating loss of spin-wave coher-

ence is apparent, hexagonally faceted rings of inelastic magnetic scattering

centered at the Γ point are clearly seen in Fig. 5.3(g,h). This indicates dynamic

correlations within honeycomb planes are established well above TN.

Elastic scattering in the (h0ℓ) plane is shown in Fig. 5.4 for three different

magnetic fields applied within the honeycomb plane. Complex peak structures

are observed at the nuclear Bragg peaks (101) and (102). These reflect the

mosaic distribution of the multi-crystal sample that defines the transverse

momentum resolution within the (h0ℓ) scattering plane. Fig. 5.4(b,d) show

that elastic magnetic scattering beyond the nuclear allowed Bragg peaks is

absent for in-plane fields of 0.75 T and beyond. In zero field (Fig. 5.4(a)),

magnetic Bragg peaks are seen at the incommensurate ordering wavevector

kc = (0.27(1), 0,−1.31(1)). The ordering wavevector becomes commensurate

within the honeycomb plane kc = (1/3, 0,−1.31) in a field of µ0H = 0.4 T

applied along the (12̄0) direction (Fig. 5.4(c)). In both the 0 T and 0.4 T

measurements, the magnetic scattering extends along the (00ℓ) direction,

146



which indicates a reduced correlation length along the c-axis.

Fig. 5.4(f) shows cuts through these elastic scattering data along the (00ℓ)

direction through the magnetic peaks for both µ0H = 0 T and µ0H = 0.4 T. The

Lorentzian fits (dashed red lines) indicate correlation lengths of ξ = 70(2) Å

and ξ = 22(1) Å along c in the incommensurate and the commensurate

phases, respectively. These may be compared to the interlayer spacing of

d = 7.64 Å, indicating a quasi-two-dimensional order and weak interactions

between honeycomb layers. Correlations along (h00), in contrast, are limited

by the instrumental resolution. After correcting for the resolution measured

at the nuclear (003) Bragg peak, we infer a correlation length exceeding ∼300

Å or ∼ 20 × a as shown in Fig 5.4(e). Fig. 5.4(g) shows that in the fully field

polarized state at µ0H=3 T, the (003) Bragg peak gains strength, which is

consistent with magnetic diffraction from the magnetized cobalt. The 24(1)%

increase of the (003) peak intensity in the 3 T applied field corresponds to

an induced magnetization of 2.4(7) µB/Co, which may be compared to the

magnetization of 2.9(1) µB/Co obtained from magnetization data.

It is interesting to contrast the Q-dependence of the elastic magnetic scatter-

ing as depicted in Fig. 5.4(a-g) with that of the low energy inelastic scattering

in Fig. 5.4(h-j). Integrating over energy transfer from h̄ω = 0.4 meV through

the Γ point excitation energy for each value of the applied field, we find a rod

of scattering extending along c and passing through the Γ point. This contrast

with the Q-dependence of the elastic magnetic scattering, which at 0 T and

0.4 T has a finite in-plane component as apparent in Fig. 5.4(a-c) and also

indicated by the dashed lines in Fig. 5.4(h-i). The dynamic spin correlations in
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BCAO thus resemble those of a 2D FM at all fields and contain no evidence of

a soft mode with a wave vector matching that of the low field AFM order.

5.2.3 Dispersive magnetic excitations

Q − h̄ω slices through inelastic neutron scattering data for Q varying along

high symmetry directions in the hexagonal Brillouin zone are shown for four

values of magnetic field applied along the (12̄0) direction in Fig. 5.5. The

momentum space labels used on the horizontal axis are defined in the inset.

In the almost fully magnetized state at 3 T (Fig. 5.5(d) and (e)), the scattering

qualitatively follows expectations for a 2D easy plane honeycomb ferromagnet.

There is a coherent gapped mode with the lowest energy at the Γ point. In this

partially polarized state a sharp flat two-magnon mode is visible near 4.3(1)

meV (Fig. 5.5(d,e)). At the lower fields (Fig. 5.5(a-c)), there are strong diffuse

contributions to the scattering near twice the field dependent gap energy. At

zero field in Fig. 5.5(a) where the magnetic order has an incommensurate

modulation within the basal plane there are multiple modes at the M points

indicative of a large unit cell. The first panels of these subplots show there

is no observable dispersion along (00ℓ), again pointing toward very weak

magnetic interaction between honeycomb layers.

Once the AFM order is suppressed at µ0H=0.75 T, a magnon remains with

a gap of h̄ω=1.0 meV and a continua of two magnon excitations centered at

h̄ω = 2.0 meV. This can be more clearly seen through cuts of the intensity at

the Γ point as a function of field, as shown in Fig. 5.6. An unusual feature of

the scattering is a difference in the dispersion relation between high symmetry
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in-plane slices in the high resolution Ei=6 meV configuration. For the Γ-A direction,
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Γ2 − M1 path, intensity has been scaled by a factor of three as indicated and R3̄m sym-
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paths that differ only in their orientation with respect to the applied magnetic

field and thus the magnetization. The high symmetry zone boundary points

nearest to the horizontal scattering plane are denoted M1 and K1, whereas the

points closest to the vertical field direction are denoted M2 and K2 (see sketch

in Fig. 5.5). Though the geometry of the instrument limits experimental access

along the latter directions, a flattening of the mode may be observed at all

non-zero fields in Fig. 5.5 for the K2-Γ1 and M2-Γ1 paths that lie along and at

30o to the field direction respectively when compared to the K1-Γ1 and M1-Γ1

paths that form larger angles with the field direction. This is direct evidence

of spin-orbit coupling and anisotropic magnetic interactions.

Fig. 5.5(e) shows a complementary higher energy measurement in the 3 T

field-polarized phase. A second magnon mode is observed near h̄ω = 12 meV

for wave vector transfer between Γ2 and M1. For a fully polarized magnet

with two magnetic ions per unit cell, one indeed expects two magnon bands.

This upper mode provides additional constraints on the model Hamiltonian.

At the Γ point, the intensity of the upper magnon mode is zero due to the spin-

structure factor, so that this excitation is not visible in Raman or THz optical

spectroscopy. The broad excitation visible near h̄ω=15 meV in Fig. 5.5(e) is

identified as a phonon through Raman scattering [158].

Fig. 5.6(a-d) show the spectrum of inelastic magnetic scattering at the

Γ point. For the lower fields where BCAO is not fully magnetized, a two-

magnon continuum is visible as a broad peak centered at twice the gap mode

energy. Fig. 5.5(a) shows an anomaly in the main magnon dispersion relation

as it enters the two-magnon continuum[160]. The broad two-magnon peak is
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particularly strong when the one-magnon gap is smallest at 0.75 T (Fig. 5.6(c))

and magnons with energies beyond the two-magnon energy scale acquire

significant physical width even though BCAO is uniformly magnetized at

0.75 T. Such interaction effects do not occur for the Heisenberg ferromagnet

in a field where single magnons are exact eigenstates. At lower fields, the

non-collinear and incommensurate nature of the ground state may play an

important role in allowing spin waves to interact with the two-magnon con-

tinuum. These effects cannot be captured by the conventional 1/S expansion

and the associated LSWT. When the system is fully magnetized at 3 T, the

gap increases, the intensity of the two-magnon excitation decreases, and it

approaches the resolution limit (Fig. 5.6(d)). Though the magnon dispersion

relation still intersects the two-magnon mode, there is no longer an anomaly.

LSWT should provide a good account of the one magnon branch in this almost

fully magnetized state. Here, LSWT dispersions were calculated using both

analytical methods and the SpinW package [114]. The full field dependence

of the gap at the Γ point is consistent with previous THz studies [158].

5.2.4 Competing exchange Hamiltonians

In this work we consider two competing theoretical proposals for the micro-

scopic description of BCAO. Following theoretical predictions that a dominant

Kitaev interaction can be obtained in high-spin 3d7 cobaltates [48, 147], recent

experiments were interpreted in terms of a JKΓΓ′ model

HJKΓΓ′ = ∑
⟨i,j⟩∈γ

ST
i H(1)

K,γSj, (5.1)
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where

H(1)
K,x =

⎛⎝J + K Γ′ Γ′

Γ′ J Γ
Γ′ Γ J

⎞⎠ , H(1)
K,y =

⎛⎝ J Γ′ Γ
Γ′ J + K Γ′

Γ Γ′ J

⎞⎠ ,

H(1)
K,z =

⎛⎝ J Γ Γ′

Γ J Γ′

Γ′ Γ′ J + K

⎞⎠ (5.2)

with a large ferromagnetic Kitaev coupling and small isotropic and off-diagonal

terms (i.e., K < 0 and |K| ≫ |J|, |Γ|, |Γ′|). The spins in this model are rep-

resented in the Kitaev frame (KF) defined in Fig. 5.2(c). The most general

form of the nearest-neighbour coupling matrix consistent with the symmetry

of BCAO contains six independent terms and is given in the supplementary

information. The simpler form used here neglects the lifting of C2v symmetry

associated with the puckering of the honeycomb layer.

Alternatively, ab initio calculations [155] suggest that BCAO can be de-

scribed by an XXZ-J1-J3 model where the spin Hamiltonian is approximately

isotropic within the basal plane

HXXZ-J1-J3 = ∑
⟨i,j⟩∈γ

ST
i H(1)

XXZ,γSj + ∑
⟨⟨⟨i,j⟩⟩⟩

ST
i H(3)

XXZSj, (5.3)
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with

H(1)
XXZ,z =

⎛⎜⎝J(1)xy + D E 0
E J(1)xy − D 0
0 0 J(1)z

⎞⎟⎠ ,

H(1)
XXZ,y = UT

2π/3H(1)
XXZ,zU2π/3,

H(1)
XXZ,x = U2π/3H(1)

XXZ,zUT
2π/3,

H(3)
XXZ =

⎛⎜⎝J(3)xy 0 0
0 J(3)xy 0
0 0 J(3)z

⎞⎟⎠ , (5.4)

where the second sum is taken over third nearest-neighbors, the spins are

represented in the crystallographic frame (CF) (see Fig. 5.2(b)), and U2π/3

denotes a 2π/3 rotation about the crystallographic c-axis perpendicular to

the honeycomb plane. The most general form of H(1)
XXZ,α consistent with the

symmetry of BCAO is given in the supplementary material. The simpler four

parameter form used here is based on Ref. [155]. In this model the global U(1)

symmetry of the pure XXZ model is broken by the D and E terms. These

are assumed to be small albeit finite to open a gap in the magnetic excitation

spectrum as observed in this work (see Fig. 5.4(a) and and Fig. 5.4(h-j)).

It is important to note that both models can be described in either the

crystallographic frame (CF) or the Kitaev frame (KF). This transformation is

shown explicitly in Appendix 7.3, and expressing the XXZ nearest neighbor

interaction in terms of the Kitaev frame results in K = D −
√

2F ≈ 0. The two

models are then distinct approximations relative to the most general form of

the interactions, where the XXZ-J1-J3 model is the case of low anisotropy and
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the JKΓΓ′model is the case of high bond-dependent anisotropy.

It is also assumed that the essential physics of BCAO can be captured by a

purely two-dimensional model. This assumption can be tested using LSWT.

Using the dispersion from A-Γ1 (Fig. 5.5, column 1), we place an upper limit

on the interlayer coupling J′1. As can be seen in Fig. 5.5, there is no noticeable

dispersion along this path. By tuning J′1 in LSWT, we find an upper limit

of |J′1| ≈ 0.3 meV, at which point the dispersion predicted in LSWT exceeds

the instrumental resolution of ∆h̄ω = 0.06 meV (FWHM). We therefore may

reasonably model BCAO as a purely two-dimensional spin system.

5.2.5 Analysis

To fit a model with a large number of free parameters, it is useful to identify

constraints that restrict the problem to a smaller region of phase space. In our

case, a straightforward method to initially restrict the set of coupling constants

to an experimentally relevant subspace is to fit the field dependence of the Γ

point magnon gap in the polarized regime illustrated in Fig. 5.6(e), and the

position of the second mode at the zone center (Fig. 5.5(e)). Within LSWT, the

energies of these modes in the field-polarized state at the Γ point are

E(1)
JKΓΓ′(k = 0) =

√︂
|h|2 + 3S(Γ + 2Γ′)|h| (5.5a)

E(2)
JKΓΓ′(k = 0) =

[︁(︁
(6J + 2K − 2Γ − 4Γ′)S − |h|

)︁
(︁
(6J + 2K + Γ + 2Γ′)S − |h|

)︁]︁1/2 (5.5b)
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and

E(1)
XXZ(k = 0) =

√︂
|h|2 + 3S(J(1)z + J(3)z − J(1)xy − J(3)xy )|h| (5.6a)

E(2)
XXZ(k = 0) =

[︂(︂
6(J(1)xy + J(3)xy )S − |h|

)︂
(︂

3(Jxy + J(3)xy + Jz + J(3)z )S − |h|
)︂]︂1/2

(5.6b)

for the JKΓΓ′ and XXZ-J1-J3 models respectively. Here h = gµBB and we use

the ab initio determined g−factors gab = 5 and gc = 2.7 [155] for in-plane and

out-of-plane fields respectively. For both models these mode energies only

depend on two specific combinations of the exchange parameters: 3J + K and

Γ + 2Γ′ for the JKΓΓ′ model. For the XXZ-J1-J3 model, the Γ point magnon

energies are controlled by J(1)xy + J(3)xy and J(1)z + J(3)z . They are independent of

D and E, which must therefore be constrained by other data.

To find a specific combination of couplings, a χ2 goodness of fit parameter

is introduced comparing the calculated energies at the Γ point to those experi-

mentally observed by neutron scattering in the field-polarized regime. The

result is a normalized map of χ2 in parameter space presented in Fig. 5.7(a,b)

for the two models. For each, we obtain two localized regions in parameter

space that reproduce the field dependence of the zone center magnon energies.
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These regions are given by{︄
3J + K = −12.1(1)meV
Γ + 2Γ′ = 3.0(1) meV

(5.7a)

and{︄
3J + K = 15.2(1) meV
Γ + 2Γ′ = 3.0(1) meV

(5.7b)

for the JKΓΓ′ model, and{︄
J(1)xy + J(3)xy = −5.0(1)meV

J(1)z + J(3)z = −2.0(1) meV
(5.8a)

and{︄
J(1)xy + J(3)xy = 4.0(1) meV

J(1)z + J(3)z = 7.0(1) meV.
(5.8b)

for the XXZ-J1-J3 model. The remainder of the analysis is restricted to these

four sets of constraints.

To further constrain the parameters, we investigate if the two models can

reproduce the observed incommensurate magnetic order within this restricted

parameter set. Despite recent suggestions of a fluctuating double-zigzag struc-

ture [153], this is close in energy to the originally proposed incommensurate

spiral structure. Subtle effects like quantum fluctuations or distortions may

favor one phase or the other. As such, we do not address these issues ind look

to stabilize the single k incommensurate spiral order for simplicity.

To obtain a classical magnetic phase diagram, we employ the Luttinger-

Tisza approximation [161, 162], in which a direct solution of the classical model
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parameter space that reproduces the field-dependent Γ−point mode energies. (c)
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The red dashed lines enclose the regions where the Luttinger-Tisza approximation
fails, and the ground state is instead determined by a combination of simulated
annealing and a variational single-Q Ansatz. The contour lines in the spiral phase of
(e) represent the magnitude of the ordering wavevector. The black stars in panels (c)
and (e) are the representative points used for both models (see (5.11) and (5.10)). (f)-(i)
Representative spin configurations for the reported classical commensurate phases
with the corresponding color in the phase diagrams.
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can be obtained by relaxing the constraint of fixed spin length at every site.

In regions where the Luttinger-Tisza approximation fails (i.e., the resulting

solution does not respect the hard constraints on the spin length on all sites),

we have employed a combination of simulated annealing on finite clusters

with 2 · 262 sites, and variational single-Q Ansatz of the form

Si =
√︂

1 − α2
i
[︁
cos(Q · ri)êx

i + sin(Q · ri)ê
y
i
]︁
+ αiêz

i , (5.9)

where the canting out of the rotation plane αi and the orthonormal frames

(êx
i , êy

i , êz
i ) are sublattice-dependent variational parameters. Here, we report

the experimentally relevant regions where incommensurate magnetic order

was observed for the JKΓΓ′ model in Fig. 5.7(c) and (d), and for the XXZ-J1-J3

model in Fig. 5.7(e).

In all cases for the JKΓΓ′ model, despite spiral order being stabilized it is of

the wrong type. Rather than the experimentally observed propagation vector

that goes from the Γ to the M point, the JKΓΓ′model predicts order from the

Γ to K point. To see if the introduction of further-neighbor exchange could

stabilize the correct type of order, a Heisenberg J3 contribution was also tested

from J3=-5 meV to J3=5 meV, which still cannot account for the observed order.

Thus, we find no values of the coupling constants for the JKΓΓ′ model with

large Kitaev interactions that can reproduce the field dependence of the Γ point

magnon energies and the correct classical ground state even with the addition

of third nearest-neighbor Heisenberg interactions. This is already a cogent

indication that the JKΓΓ′ model with large bond-dependent interactions may

not provide an accurate description of BCAO.
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In contrast, it has been reported that the XXZ-J1-J3 model on the honey-

comb lattice supports spiral incommensurate order with an ordering wavevec-

tor that smoothly interpolates between the Γ and M points with a specific

magnitude of |kc|=0.27 for J(3)xy /|J(1)xy | ≈ 0.34 and J(1)xy < 0 [163]. This incom-

mensurate spiral region is represented in Fig. 5.7(e), where there exists a line

that reproduces the experimentally determined incommensurate wavevec-

tor between zigzag and stripy phases that are stabilized for large values

of |J(1)z |. This spiral phase with |kc|=0.27 is also stable to the addition of

anisotropic terms provided they are sufficiently small (i.e., approximately if

|D|, |E| < 0.2 meV). It is consequently natural to account for both the field

dependence of the gap and the incommensurate magnetic structure of BCAO

with the XXZ-J1-J3 model.

Within this restricted parameter space, we can compute the dynamical

spin structure factors (DSSF) of both models to directly compare against

the inelastic neutron scattering results. Based on the previously described
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constraints, we select the parameters

J(1)xy = −7.6 meV,

J(1)z = −1.2 meV,

J(3)xy = 2.5 meV,

J(3)z = −0.85 meV,

D = 0.1 meV,

E = −0.1 meV

(5.10)

and

J = 0.97 meV,

K = −15.0 meV,

Γ = 2.5 meV,

Γ′ = 0.25 meV

(5.11)

as the best-fit for both models. The two models support the incommensurate

spiral and IΓ→K phases respectively, as depicted in Fig. 5.7. For XXZ-J1-J3 ,

The remaining free parameters J(1)z , D and E were chosen to be small enough

in magnitude to yield the correct spiral order, approximately reproduce the

gap observed at zero field in Fig. 5.5(a), and provide the best reproduction of

the neutron scattering in the polarized regime as presented in Fig. 5.5(c-e).

Using these parameters, the dynamical spin structure factor may now be
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computed for each model. This is done using a technique called Molecular

dynamics, which is discussed in more detail in the publication of this work

[164], but in a nutshell it performs a classical time evolution of spins using the

Laudau-Lifshitz-Gilbert equations of motion. The method is entirely classical,

but captures almost all of the features of our data.

The calculated DSSF as a function of energy between high symmetry points

in the field-polarized regime at µ0H = 3 T with the LSWT dispersion overlaid

in Fig. 5.8 (c,d). The MD results for the XXZ-J1-J3 model with our param-

eters show good agreement with experimental measurements reported in

Fig. 5.5(d,e). As can be seen from the intensity cut near the zone center in

Fig. 5.8(e), MD simulations even capture the two-magnon mode reported in

Fig. 5.6(d) and THz spectroscopy [158, 159]. In contrast, the experimental

results are not well described by our parameter set for the JKΓΓ′ model. LSWT

for the JKΓΓ′ model predicts a magnon dispersion that differs significantly

when comparing the Γ − M1 with the Γ − M2 path. Such a large anisotropy is

incompatible with our INS measurements presented in Fig. 5.5. MD further

predicts a continuum with no clear resonances as highlighted by the inten-

sity cut near the Γ point presented in Fig. 5.8(e). The sharp magnon bands

observed experimentally are compatible with the XXZ-J1-J3 model but clearly

inconsistent with our MD simulation of the JKΓΓ′ model.

Overall the calculated dispersion of both LSWT and MD simulation for

the XXZ-J1-J3 model are in close correspondence to the observed scattering.

The most important discrepancy lies at the Γ point, where LSWT predicts a

minima at the incommensurate ordering wavevector whereas MD yields a
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flatter band that is concave up at the Γ-point as observed in the data. The

disagreement suggests that the system experiences significant nonlinearities

by magnon-magnon interactions not accounted for in LSWT, leading to an

overall renormalization of the magnon dispersion. Thus, the lack of a minima

in the dispersion relation at the propagation vector is a highly nonlinear effect

that is almost certainly present in other cobaltates.

5.2.6 Field-angle dependent magnetization

As a final comparison between the two models and experiments, we examine

the in-plane magnetization for different magnetic field orientations. Increasing

the field from zero, three successive magnetization plateaus can be observed

in Fig. 5.9(a), where the transitions from one plateau to the next correspond

to the field-induced magnetic phase transitions at Hc1 and Hc2 respectively.

Measuring the magnetization with magnetic fields along the x and y-axis of

the CF (Fig. 5.2(b)), only a very small anisotropy is observed around the first

and second transitions. Using our parameter set for the XXZ-J1-J3 model, the

qualitative resemblance between the measurements and the magnetization

curves obtained from finite temperature Monte Carlo at T = 0.695 K is striking

(Fig. 5.9(b)) . The three successive plateaus are clearly observed, and the small

anisotropy between the curves for the two different field orientations near

the transitions is reproduced. We have verified that the intermediate field-

driven phase also has an ordering wavevector of magnitude |kc| = 1/3 as

observed experimentally. In contrast, the JKΓΓ′ model does not have the

correct number of transitions and polarizes at far higher field scales than
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model with the parameter set in (5.11) (T = 0 K).

expected. The temperatures in each case are chosen such that they most

closely reproduce the experimentally observed M(H) curves.

5.3 Discussion

Though our initial interest in BCAO was as a candidate Kitaev material, our

results strongly favor the XXZ-J1-J3 over the Kitaev model. We are able to

differentiate between the two models by examining the zero-field ground

state of BCAO using constraints from LSWT. We find that the JKΓΓ′ model
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cannot simultaneously reproduce the field dependence of the Γ point modes

and the magnetic order found in BCAO. Our work stresses the need for a

critical reexamination of the proposal for Kitaev physics in cobaltates. These

materials may not in fact fall within the regime of interest that was considered

in the theoretical proposals for Kitaev physics in 3d systems [48, 147].

In contrast to the XXZ-J1-J3 model, at high fields, the thermodynamic

properties of the JKΓΓ′ model vary strongly with the in-plane field direction

(Fig. 5.9(c)) [165, 166]. Such strong in-plane anisotropy has in fact been ob-

served for the leading Kitaev candidates α-RuCl3 [167, 168] and β−Li2IrO3

[98], but it is not present for BCAO (Fig. 5.9). Magnetization measurements

versus in-plane field direction can thus be an effective method to screen poten-

tial model systems. For cobaltates whose magnetization cannot be accounted

for by the XXZ-J1-J3 model, single-crystal INS with an in-plane field can sub-

sequently be employed to establish the spin Hamiltonian as we have done for

BCAO in this work. This work culminated in the publication of Ref. [164]

Although BCAO does not appear to realize large Kitaev-type interactions

but rather an XXZ-J1-J3 model, its physical properties are still of great interest.

BCAO now presents a rare case of an almost perfect two-dimensional honey-

comb magnet with well-known values for its dominant exchange interactions

((5.10)). Previous theoretical investigations indicate that a QSL ground state

may be possible for in-plane isotropic models with competing interactions

on the honeycomb lattice[169–171]. Thus the competition between first and

third nearest-neighbor interactions that we have documented for BCAO, may

place this materials in proximity to a QSL. Although the theoretical work
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indicates a second nearest-neighbor interaction (which seems to be negligible

for BCAO) is needed to stabilize a QSL, a QSL might be accessible for BCAO

in the presence of a suitably oriented external magnetic field. This possibility

has, to our knowledge, not been explored yet. The continuum scattering re-

ported by THz spectroscopy with a large c-oriented field [158] may signal the

onset of such a phase. Possibly related to this, the strong interaction between

the one and two-magnon modes reported here (Fig. 5.4) is also unusual and

interesting. Thus there are promising directions for future studies of BCAO

and the extended family of honeycomb cobaltates.

5.4 Pushing BCAO towards a spin-liquid phase by
tilted fields and doping

Before concluding this dissertation, I would like to briefly discuss two attempts

that I have participated in to try to push BCAO into a QSL phase. The

first, inspired by THz spectroscopy studies [158], used a unique tilted field

geometry in an inelastic neutron scattering experiment to try to suppress the

order with a small in-plane field and push the system into a fluctuating regime

by an out of plane field. The second is another inelastic neutrons scattering

study of V-doped BCAO where the vanadium doped on the non-magnetic

site slightly changes the lattice parameter and thus the exchange constants,

potentially pushing the system towards a quantum critical regime. The goal

of this brief section is not a full description of the physics gleaned from each

experiment, but instead to briefly share the experimental results and to give

examples of the types of studies I would like to pursue in the future.
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Figure 5.10: Tilted field geometry used in second BCAO experiment.

5.4.1 Tilted field experiments

The idea of a QSL phase induced by a tilted out of plane field was inspired by

the recent THz results suggesting a continua emerging upon the application of

a primarily out of plane field [158]. To test this, we performed inelastic neutron

scattering studies in the a such that the scattering vector Q was primarily

in the (hk0) plane, but tilted such that the field was 5deg from the ĉ-axis as

depicted in Fig. 5.10. The design uses the same plate of samples used in the

previous study of BCAO, but encased in a coffin to help brace against the

torque applied by the out of plane magnetic field. While the details of the

study will be left to a future work, the measurements were all performed at

T=1.7(1) K on the HYSPEC instrument. The measurement was performed

in a 14 T vertical magnet at fields of H=0 T, 5 T, 7 T, 9 T, and 11 T. Equal

counting times were devoted to each field. The instrumental configuration

was for incident energy Ei=7.5 meV neutrons and the high flux chopper at

300 Hz. The results are entirely compatible with the previous THz studies,

and a sample of the full INS dataset is shown in Fig. The results are not
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Figure 5.11: Observed magnon dispersion through a long path in the Brillioun zone
in BaCo2(AsO4)2.
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compatible with a QSL state, with the magnetic order being of the k = (1
3 , 0, 0)

commensurate type. This order appears to be stable up to at least 9 T, above

which the signal becomes unusable. This is due to the massive torque applied

to the crystals in the out of plane field, which caused a significant fraction to be

ripped from the plate. In Fig. 5.11(b) the "flat band" contribution around h̄ω=4

meV originates from the contribution of the loose samples. We are currently

in the process of analyzing these data, but this experiment was unsuccessful

in producing a QSL phase in tilted fields. Still, this type of experiment will be

helpful in the study of future candidate spin-liquid materials as the effect of

tilted fields in Kitaev spin-liquids is an actively discussed topic in large part

due to the thermal hall effect measurements of α−RuCl3 [172].

5.4.2 Tuning the magnetic exchange Hamiltonian in BaCo2(AsO4)2

by chemical doping

A second attempt to induce a spin-liquid state in BCAO was through the in-

troduction of chemical doping. Colleagues in the McQueen group performed

a detailed study of BaCo2(AsO4)2−2x(VO4)2x, 0.025 ≤ x ≤ 0.70. Upon increas-

ing vanadium content, a gradual suppression of order is observed with the

order being absent for substitutions around x =0.1. The ground state of this

material was thought to be a highly fluctuating variant of BCAO with slightly

modified exchange interactions, perhaps pushing it into a QSL phase [173]. To

test this, we performed studies on the CNCS instrument at ORNL. The single

crystalline samples were very small, requiring 149 coaligned crystals for a total

mass of 0.90 g.A unique mount was designed consisting of nine hexagonal

aluminum plates of width 12 mm, upon which crystals were coaligned.
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Still, the results clearly showed the presence of static spin correlations

at a commensurate propagation vector of k = (1
4 , 0, 0). This is shown most

obviously in the elastic scattering, using a T=30 K measurement as background

as depicted in Fig. 5.12(a). The order parameter extracted from this is sharp,

showing a clear transition between T=5 K and T=6 K shown directly in Fig.

5.12(b). One may also extract a spin-spin correlation length using a Lorentzian

form of

I(Q) = A ξ

1 + {(Q − q0)ξ}2 (5.12)

where ξ is the correlation length, Q is the wavevector along the (H00) direc-

tion, and q0 is the position of the magnetic Bragg peak ((3
4 , 0, 0) is used in

this case). In this experiment, we find the static spin-spin correlation length

to be merely χ ≈ 15 Å
−1

. This is only three unit cells, reflecting the highly

fluctuating nature of the ground state. Further support of the highly fluctu-

ating nature of the ground state comes from the calculated static moment.

Assuming the ↑↑↓↓ is the magnetic structure we observe, one may compare

a calculation of the magnetic structure factor of the magnetic Bragg peak to

the observed intensity. We find a moment of only µstatic = 0.7(3) µB, which is

only a small fraction of the expected moment from magnetization of 5 µB. In

BCAO in particular, it appears that doping serves to stabilize the ↑↑↓↓ ordered

phase. The nature of this phase is highly fluctuating, as evidenced through the

broad excitations shown in Fig. 5.12 and the lack of long-range order in bulk

characterization measurements. While the exact details of this system have

not been worked out yet, it is a promising example of the doping of a highly
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frustrated magnet on the nonmagnetic site to tune exchange parameters. This

is reminiscent of the famous cuprate superconductors, which require doping

to achieve high superconducting critical temperatures [174]. This approach

is relatively unexplored in the realm of frustrated magnetism, and I believe

this type of study to be a promising direction for the future study of QSL’s in

general.
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Chapter 6

Discussion and Conclusion

The work discussed in this dissertation was squarely focused upon the study

of quantum spin-liquid candidate materials, with a particular focus on the

search for the realization of Kitaev interactions. Though a number of other

numerical and experimental techniques were used for this aim, the primary

focus was on inelastic neutron scattering studies of both powder and single

crystalline samples.

The trimer-based materials Ba4NbRu3O12 and Ba4NbIr3O12 were the first

materials discussed. Detailed analysis of specific heat revealed the coexistence

of spin-freezing and fermionic heat carriers through a large γ term in C(T)/T.

Elastic powder scattering confirms the presence of short-ranged frozen spin

correlations, and powder inelastic neutron studies reveal a highly fluctuat-

ing ground state consistent with a nearest-neighbor description and trimer

molecular magnetic units. Little work has been performed on Ba4NbIr3O12,

but both present rare and interesting cases of inorganic quantum molecular

magnetism.
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Next, the honeycomb lithium iridates β-Li2IrO3 and D3LiIr2O6 are dis-

cussed. A study of β-Li2IrO3 combining inelastic neutron scattering in the

ordered state, THz spectroscopy, heat capacity, and linear spin-wave theory

confirms a dominant ferromagnetic Kitaev interaction with tighly constrained

Heisenberg J and off-diagonal Γ contributions to the spin exchange. The

results place the material proximate to a KSL phase. Powder inelastic neutron

scattering of D3LiIr2O6 reveals a disordered ground state, with an extracted

magnetic signal consistent with that of a KSL described by only nearest-

neighbor interactions.

Finally, a comprehensive study of the spin exchange in BaCo2(AsO4)2 was

performed by inelastic neutron scattering in a magnetic field applied in the

(H00) plane. A detailed analysis carefully differentiates between two different

potential Hamiltonians, finding that the honeycomb cobaltate is better describe

by a XXZ-J1J3 model rather than the suggested Kitaev interaction. The work

demonstrates the level of care required when searching for Kitaev interactions

in next generation materials.

Of the work performed in this thesis, the work on BCAO certainly had the

greatest impact on my long term outlook of the topics I would like to study. I

believe that field-angle dependent phenomena are largely unexplored, and

that the tilted field experiment briefly described at the end of Chapter 5 is

an excellent example of the types of studies that I would like to pursue on

other spin-liquid candidate materials, Kitaev or otherwise. I look forward

to applying these ideas during my upcoming postdoc at the NIST Center

for Neutron Research, and hope to continue to collaborate with the many
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wonderful friends and colleagues that I have made during my graduate

studies at Johns Hopkins.
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150. Dordević, T. BaCo2(AsO4)2. Acta Crystallographica Section E: Structure
Reports Online 64, i58. ISSN: 16005368. /pmc/articles/PMC2960660/
/pmc/articles/PMC2960660/?report=abstracthttps://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2960660/ (9 2008).

151. Regnault, L. P., Burlet, P. & Rossat-Mignod, J. Magnetic ordering in a
planar X - Y model: BaCo2(AsO4)2. Physica B+C 86-88, 660–662. ISSN:
03784363 (PART 2 1977).

152. Regnault, L. P., Rossat-Mignod, J. & Henry, J. Magnetic Properties of
the Quadi-2D Easy Plane Magnets BaM2(XO4)2 (M=Co, Ni; X=P, As).
Journal of the Physical Society of Japan 52, 1–9 (1983).

153. Regnault, L. P., Boullier, C. & Lorenzo, J. E. Polarized-neutron inves-
tigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2
frustrated honeycomb-lattice magnet. Heliyon 4. ISSN: 24058440. https:
//pubmed.ncbi.nlm.nih.gov/29560426/ (1 2018).

194

https://www.science.org/doi/10.1126/science.aay5551
https://www.science.org/doi/10.1126/science.aay5551
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.014408
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.014408
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.224429
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.224429
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.224411
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.224411
/pmc/articles/PMC2960660/ /pmc/articles/PMC2960660/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2960660/
/pmc/articles/PMC2960660/ /pmc/articles/PMC2960660/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2960660/
/pmc/articles/PMC2960660/ /pmc/articles/PMC2960660/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2960660/
https://pubmed.ncbi.nlm.nih.gov/29560426/
https://pubmed.ncbi.nlm.nih.gov/29560426/


154. Zhong, R., Gao, T., Ong, N. P. & Cava, R. J. Weak-field induced nonmag-
netic state in a Co-based honeycomb. Science Advances 6. ISSN: 23752548.
https://www.science.org (4 2020).

155. Das, S., Voleti, S., Saha-Dasgupta, T. & Paramekanti, A. XY magnetism,
Kitaev exchange, and long-range frustration in the Jeff= 12 honeycomb
cobaltates. Physical Review B 104, 134425. ISSN: 24699969. https://
journals.aps.org/prb/abstract/10.1103/PhysRevB.104.134425 (13
2021).

156. Nair, H. S., Brown, J. M., Coldren, E, Hester, G, Gelfand, M. P., Podlesnyak,
A, Huang, Q & Ross, K. A. Short-range order in the quantum XXZ hon-
eycomb lattice material BaCo2(PO4)2. Physical Review B 97, 134409. ISSN:
24699969 (13 2018).

157. Stock, C., Jonas, S., Broholm, C., Nakatsuji, S., Nambu, Y., Onuma, K.,
Maeno, Y. & Chung, J. H. Neutron-scattering measurement of incom-
mensurate short-range order in single crystals of the S=1 triangular
antiferromagnet NiGa2S 4. Physical Review Letters 105, 037402. ISSN:
00319007. https : / / journals . aps . org / prl / abstract / 10 . 1103 /
PhysRevLett.105.037402 (3 2010).

158. Zhang, X., Xu, Y., Halloran, T., Zhong, R., Broholm, C., Cava, R. J.,
Drichko, N. & Armitage, N. P. A magnetic continuum in the cobalt-
based honeycomb magnet BaCo2(AsO4)2. Nature Materials 22, 58–63.
ISSN: 14764660. https://doi.org/10.1038/s41563-022-01403-1 (1
2023).

159. Shi, L. Y., Wang, X. M., Zhong, R. D., Wang, Z. X., Hu, T. C., Zhang, S. J.,
Liu, Q. M., Dong, T., Wang, F. & Wang, N. L. Magnetic excitations of the
field-induced states in probed by time-domain terahertz spectroscopy.
Physical Review B 104, 144408. ISSN: 24699969. https://journals.aps.
org/prb/abstract/10.1103/PhysRevB.104.144408 (14 2021).

160. Stone, M., Zaliznyak, I., Hong, T, Broholm, C. & Reich, D. Quasiparticle
breakdown in a quantum spin liquid. Nature 440, 187–190. ISSN: 0028-
0836 (2006).

161. Luttinger, J. & Tisza, L. Theory of dipole interaction in crystals. Physical
Review 70, 954 (1946).

162. Litvin, D. B. The luttinger-tisza method. Physica 77, 205–219 (1974).

195

https://www.science.org
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.134425
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.134425
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.037402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.037402
https://doi.org/10.1038/s41563-022-01403-1
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.144408
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.144408


163. Fouet, J. B., Sindzingre, P. & Lhuillier, C. An investigation of the quan-
tum J1-J2-J3 model on the honeycomb lattice. European Physical Journal B
20, 241–254. ISSN: 14346028. https://link.springer.com/article/10.
1007/s100510170273 (2001).

164. Halloran, T., Desrochers, F., Zhang, E. Z., Chen, T., Chern, L. E., Xu,
Z., Winn, B., Graves-Brook, M., Stone, M. B., Kolesnikov, A. I., Qiu, Y.,
Zhong, R., Cava, R., Kim, Y. B. & Broholm, C. Geometrical frustration
versus Kitaev interactions in BaCo2(AsO4)2. Proceedings of the National
Academy of Sciences of the United States of America 120, e2215509119. ISSN:
10916490. http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2215509119/-/DCSupplemental. (2 2023).

165. Gordon, J. S. & Kee, H.-Y. Testing topological phase transitions in Kitaev
materials under in-plane magnetic fields: Application to α- RuCl 3.
Physical Review Research 3, 013179 (2021).

166. Janssen, L. & Vojta, M. Heisenberg-Kitaev physics in magnetic fields.
Journal of Physics: Condensed Matter 31, 423002 (2019).

167. Bachus, S., Kaib, D. A., Jesche, A., Tsurkan, V., Loidl, A., Winter, S. M.,
Tsirlin, A. A., Valentí, R. & Gegenwart, P. Angle-dependent thermody-
namics of α-RuCl3. Physical Review B 103, 054440. ISSN: 24699969. https:
//journals.aps.org/prb/abstract/10.1103/PhysRevB.103.054440
(2021).

168. Tanaka, O., Mizukami, Y., Harasawa, R., Hashimoto, K., Hwang, K., Ku-
rita, N., Tanaka, H., Fujimoto, S., Matsuda, Y., Moon, E. G. & Shibauchi,
T. Thermodynamic evidence for a field-angle-dependent Majorana gap
in a Kitaev spin liquid. Nature Physics 18, 429–435. ISSN: 17452481. https:
//doi.org/10.1038/s41567-021-01488-6 (2022).

169. Merino, J. & Ralko, A. Role of quantum fluctuations on spin liquids
and ordered phases in the Heisenberg model on the honeycomb lattice.
Physical Review B 97, 205112 (2018).

170. Zhu, Z. & White, S. R. Quantum phases of the frustrated XY models on
the honeycomb lattice. Modern Physics Letters B 28, 1430016 (2014).

171. Bishop, R., Li, P., Farnell, D. J. & Campbell, C. The frustrated Heisen-
berg antiferromagnet on the honeycomb lattice: J1–J2 model. Journal of
Physics: Condensed Matter 24, 236002 (2012).

196

https://link.springer.com/article/10.1007/s100510170273
https://link.springer.com/article/10.1007/s100510170273
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2215509119/-/DCSupplemental.
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2215509119/-/DCSupplemental.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.054440
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.054440
https://doi.org/10.1038/s41567-021-01488-6
https://doi.org/10.1038/s41567-021-01488-6


172. Gordon, J. S., Catuneanu, A., Sørensen, E. S. & Kee, H. Y. Theory of the
field-revealed Kitaev spin liquid. Nature Communications 10, 1–8. ISSN:
20411723. https://doi.org/10.1038/s41467-019-10405-8 (1 2019).

173. Ferrenti, A. M., Siegler, M. A., Ghosh, S., Vivanco, H. K., Kintop, N.,
Lygouras, C., Halloran, T., Klemenz, S., Broholm, C., Drichko, N. &
Mcqueen, T. M. Chemical tuning of a honeycomb magnet through a
critical point. arXiv:2210.14439. http://arxiv.org/abs/2302.07907
(2022).

174. Chu, C. W., Deng, L. Z. & Lv, B. Hole-doped cuprate high temperature
superconductors. Physica C: Superconductivity and its Applications 514,
290–313. ISSN: 09214534 (2015).

197

https://doi.org/10.1038/s41467-019-10405-8
http://arxiv.org/abs/2302.07907


Chapter 7

Appendix

7.1 Calculated scattering J, K, Γ dependence for β-
Li2IrO3

The fits to the measured INS data were performed by the systematic calcu-

lation of neutron scattering spectra for many sets of exchange parameters.

Spectra were first calculated globally in the region of J − K − Γ parameter

space that stabilizes the incommensurate magnetic order [1]. Then the calcula-

tions were refined for the smaller range of parameters that best reproduce the

observed spectra.

The pattern of scattering varies differently with each of the exchange

parameters, as illustrated in Fig. 7.1. J has very little effect on the spectra. The

value of Γ has the greatest impact on the excitation spectra, controlling the

overall energy scale of the spin-waves. The influence of K is more subtle. It

impacts the energies and intensities of select bands at energies higher than Γ.

This is seen in the second row of spectra in Fig. 7.1. Thus, inelastic magnetic

neutron scattering scattering from a powder sample of 7Li and 193Ir can be
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Figure 7.1: Calculated powder averaged INS intensities for Ei = 30 meV with
variations in J, K, and Γ. The magnetic form factor of Ir4+ is not considered in
the calculation, and a constant broadening in energy of width 1 meV is used to
approximate instrumental resolution effects. While Γ and K are well constrained by
this method, J has little influence on the scattering data that is accessible for Ei = 30
meV. The intensity scale is arbitrary but consistent across the calculations.
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Figure 7.2: Normalized scattering intensity from the MACS instrument for the four
main experimental configurations. E f =3.7 meV T=1.72(1) K is shown in (a), E f =3.7
meV T=55.0(1) K is shown in (b), E f =5.0 meV T=1.72(1) K is shown in (c), and E f =5.0
meV T=55.0(1) K is shown in (d). Scattering has been corrected for absorption and a
background measurement has been subtracted.

used to extract values for K and Γ but not J.

7.2 Isolation of D3LiIr2O6 magnetic scattering from
MACS measurement

Scattering from the 2 g sample in an aluminum sachet was normalized to

nuclear Bragg scattering as described in Sec. 2.2.4. As this sample geometry

was not as well optimized as the annular can used later, multiple scattering is

a significant problem despite the halved sample mass. After normalization to

Bragg peaks and subtraction by a sample out measurement with an appropri-

ate self-shielding factor, absorption was corrected by a Monte-Carlo method

implemented in the DAVE software suite [2]. The resulting scattering for all

instrumental configurations is shown in Fig. 7.2. One immediate observation

in the E f =3.7 meV measurements is what looks like the (001) Bragg peak

extending far into the inelastic channel. While at first glance this seems to be

associated with the instrumental resolution, the energy resolution FWHM of
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the MACS instrument in this configuration on the order of ∆h̄ω =0.1 meV.

Instead, the origin of the spurious scattering may be summarized as the elastic

line leaking into the inelastic channel. This has been seen before both on

MACS and other triple-axis spectrometers and originates from allowed inelas-

tic phonon scattering processes from the monochromator. For the inelastic

channel, we consider both of the following processes to be equally likely:

• Bragg (002) reflection from graphite monochromator (strong process),

followed by inelastic magnetic scattering at the sample (weak process).

• Acoustic phonon scattering originating from the (002) Bragg position at

the graphite monochromator (weak process), followed by elastic scatter-

ing at the sample position (strong process).

Because elastic cross sections are in general an order of magnitude higher than

inelastic, we assign these to be strong and inelastic scattering such as phonon

or magnetic scattering to be weak. Before discussing the precise mechanism

of this effect, we may describe the scattering using the following functional

form:

I(Q, ω) = A(ω)Iel(Q) + B(ω)Imag(Q) + Iph(Q, ω). (7.1)

The lineshape Iel(Q) is the elastic lineshape that persists to finite energy trans-

fers, Imag(Q) is Q-dependent form of the magnetic scattering, B(ω) describes

the spectral weight of the magnetic scattering at each energy transfer, and

Iph(Q, ω) is the dominant contribution to the background which is phonon

scattering. Performing the same Bose-Einstein subtraction of phonons as

201



0 2
Q (Å 1)

0.5

1.0
 (m

eV
)

0 2
Q (Å 1)

0

5

10
0.00 0.25 0.50

I(Q, ) (b/eV/sr/mol Ir)

0.000 0.125 0.250

I(Q, ) (b/eV/sr/mol Ir)

Figure 7.3: Scattering from the MACS experiment after subtraction of high tempera-
ture data as defined by Eq. 7.2 from the E f =5.0 meV (a) and E f =3.7 (b) configurations.

before produces the following:

Ī(Q, ω) = IL(Q, ω)− 1 − e−βHω

1 − e−βLω
IH(Q, ω)

Ī(Q, ω) = A(ω)(1 − 1 − e−βHω

1 − e−βLω
)Iel(Q) + B(ω)Imag(Q). (7.2)

The nearest neighbor distance d is 3.54 Å, and the parameters C(ω) and

B(ω) are constants allowed to fit at each energy transfer. In Fig, 7.3 the

quantity Ī is presented for both E f configurations. The remaining scattering

of elastic origin is completely dominant in the E f =3.7 meV Ī (Fig. 7.3(b)) and

the elastic Bragg peak is seen in the E f =5.0 meV measurement clearly up to

energy transfer of h̄ω=2 meV.

To understand the origin of this background, we consider allowed phonon

scattering processes from the MACS monochromator. MACS is a unique spec-

trometer in that it features an extremely large double focusing monochromator
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Figure 7.4: Sketch showing generic scattering process for a triple-axis spectrometer,
where the incident energy setting defines the value of 2θmono. The inset shows the
density of incident neutron energies from the cold source.

which provides an intense beam, but also admits any spurious features inher-

ent to pyrolytic graphite. The intended Bragg reflection from the monochroma-

tor is the (002) Bragg peak, which under the assumption of elastic scattering

defines the scattering angle of the monochromator 2θmono. This solely depends

on the incident neutron energy setting. The instrumental configuration also

defines the final neutron energy at the detector position k f using a double

analyzer crystal array. Any scattering process that simultaneously satisfies the

2θmono and k f requirements is allowed including phonons originating from

the (002) peak in pyrolytic graphite. The scattering process is sketched in Fig.

7.4, and is summarized by the scattering condition

Q2
mono = k2

s + k2
f − 2ksk f cos(2θmono). (7.3)

The wavevector ks is an arbitrary wavevector for incident neutrons, and the

momentum transfer at the monochromator is no longer fixed to be |τ002|2 but

instead an arbitrary value Qmono. Of course, the elastic scattering condition

with Q = |τ002|2 will satisfy this condition, but using the distribution of
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Figure 7.5: Depiction of allowed scattering vectors on the MACS instrument consid-
ering inelastic scattering at the monochromator for representative incident energy
settings for the E f =3.7 meV and E f =5.0 meV used in the experiment. The Q direction
is along the (00L) axis of pyrolytic graphite, and the color map shows potential scat-
tering vectors that satisfy the 2θ condition to scatter from the monochromator to the
sample. Solid black lines show phonon dispersion of pyrolytic graphite along the
(00L) direction reproduced from Ref. [3].

neutrons incident on the monochromator from the cold source we find a large

map of allowed scattering in Q − ω space. We may now weight this map by

the spectral density of neutrons from the cold source which will be referred to

as S(ω), which is reproduced in the inset of Fig. 7.4.

The color map in Fig. 7.5 depicts all allowed scattering paths that satisfy

the scattering condition in Eq. 7.3. 2θmono is fixed by the Ei setting, k f is

fixed by the E f setting, so using Eq. 7.5 one may calculate the kS wavevector
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for incoming neutrons for any momentum transfer at the monochromator

Q. The result is the color map, upon which the low energy dispersion of

pyrolytic graphite along the (00L) direction has been plotted in black lines.

The intercept of the color plot and the black lines represents a direct allowed

paths for inelastic scattering from the monochromator to reach the sample

for these particular E f configurations. This results in lower incident energy

neutron incident on the sample than intended, providing a measured energy

transfer for elastic scattering processes which was previously described as the

"leaking" of the elastic line into the inelastic channel. The spectral weight from

the cold source and the 1/ω contribution to the neutron phonon cross section

both contribute to the absence of this effect at higher energy transfers.

This simple result has a tremendous effect on the background in the MACS

measurements. To model this, the lowest accessible energy transfer in each

E f configuration is treated as purely elastic scattering. An elastic lineshape is

then extracted to this by fitting a combination of a flat elastic incoherent term

with Gaussian functions for Bragg peaks, which defines the elastic lineshape

Iel(Q). The quantity Ī(Q, ω) is then fit using the following form to find the

elastic contribution

Ī(Q, ω) = C(ω)Iel(Q) + B(ω)(1 +
sin(Qd)

Qd
). (7.4)

The nearest neighbor distance d is 3.54 Å, and the parameters C(ω) and

B(ω) are constants allowed to fit at each energy transfer. The extracted elastic

line Iel(Q) and its fitted contribution to the inelastic scattering are depicted in

Fig. 7.6.
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Figure 7.6: Extracted elastic contribution to inelastic signal from D3LiIr2O6 for E f =5.0
(a) and E f =3.7 (b) configurations. Plots (c) and (d) show the elastic line shapes used to
generate these inelastic backgrounds for the E f =5 meV and E f =3.7 meV configurations
respectively.

The clearest way to track the elastic contribution to the background is by

the Bragg peak, which will have a constant scattering angle 2θ at every mea-

sured energy transfer as it is actually an elastic process. Fig. 7.6 clearly shows

that the background completely dominates the E f =3.7 meV measurement

up to about 0.5 meV energy transfer, well beyond the expected resolution

limited elastic FWHM of 0.1 meV. The issue is less significant in the E f =5

meV measurement, where the Bragg peak becomes insignificant by about 2

meV energy transfer. These color plots are the backgrounds which are directly

subtracted from Ī(Q, ω), giving the magnetic scattering scattering in Fig. 4.15.

In retrospect, a better method of subtracting this scattering would have

been to use a detailed-balance approach as was done for β−Li2IrO3. As

the origin of the scattering is from the monochromator and elastic sample
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scattering, it is in theory temperature independent and would be removed

quite easily using that method. Unfortunately for TAS spectrometers the

negative energy transfer is not normally measured, as the beam time is better

spent collecting statistics on faint signals. If possible in the future I would like

to repeat this measurement using the new superior sample can on the MACS

instrument and measure negative energy transfers to use the detailed balance

method, which is much better constrained.

7.3 Transformation between Kitaev and XXZ coor-
dinate systems

The XXZ-J1-J3 model can be related to the JKΓΓ′ model by rotating the CF to

the KF. Written in the KF, the local basis vectors of the CF are given by

x̂ =
1√
6
(1, 1,−2)T (7.5a)

ŷ =
1√
2
(−1, 1, 0)T (7.5b)

ẑ =
1√
3
(1, 1, 1)T (7.5c)

It follows that the spins written in the CF and the KF are related by the

following transformation

U =

⎛⎜⎜⎝
1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

−
√︂

2
3 0 1√

3

⎞⎟⎟⎠ . (7.6)
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The local exchange matrices are accordingly mapped from the CF to the KF by

H(i)
KF,γ = UH(i)

CF,γU
T. (7.7)

Mapping general bilinear couplings on the nearest-neighbor z bond in the CF

of the form

H(1)
CF,z =

⎛⎜⎝J(1)xy + D E F
E J(1)xy − D G
F G J(1)z

⎞⎟⎠ (7.8)

to the KF, we obtain the exchange matrix

H(1)
KF,z =

⎛⎝J + η Γ Γ′
1

Γ J − η Γ′
2

Γ′
1 Γ′

2 J + K

⎞⎠ (7.9)

with the following identification

J = −D
3
+

√
2F
3

+
2J(1)xy

3
+

J(1)z

3
(7.10a)

η = − E√
3
−
√︃

2
3

G (7.10b)

Γ =
2D
3

+

√
2F
3

−
J(1)xy

3
+

J(1)z

3
(7.10c)

Γ′
1 = −D

3
+

E√
3
− F

3
√

2
− G√

6
−

J(1)xy

3
+

J(1)z

3
(7.10d)

Γ′
2 = −D

3
− E√

3
− F

3
√

2
+

G√
6
−

J(1)xy

3
+

J(1)z

3
(7.10e)

K = D −
√

2F. (7.10f)
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We may write an equivalent conversion from the KF to the CF

J(1)xy =
1
3
(−Γ − Γ′

1 − Γ′
2 + 3J + K) (7.11a)

J(1)z =
1
3
(2Γ + 2Γ′

1 + 2Γ′
2 + 3J + K) (7.11b)

D =
1
3
(2Γ − Γ′

1 − Γ′
2 + K) (7.11c)

E =

√
3

8
(3Γ′

1 − 3Γ′
2 − 2η) (7.11d)

F =

√
2

6
(2Γ − Γ′

1 − Γ′
2 − 2K) (7.11e)

G =

√
6

8
(−Γ′

1 + Γ′
2 − 2η). (7.11f)

It should be noted that assuming ideal edge-sharing bonds with C2v symmetry,

the NN couplings in the KF of (7.9) are constrained to η = 0 and Γ′
1 = Γ′

2.

These constraints translate to E = G = 0 for the couplings in the CF of (7.8).

The R3̄ spacegroup associated with BCAO does break the C2v symmetry for

the nearest-neighbor bond. Co occupies the 6c Wyckoff site at (00z) where

z = 0.17014[4]. This corresponds to a puckering of Co in and out of the

honecomb plane by a distance ±(z − 1
6)c=0.082Å.

The values in Eq. (14) of the main text are then represented in the KF by
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the following

J(1) = −5.5 meV, (7.12a)

K(1) = 0.1 meV, (7.12b)

η(1) = 0.06 meV, (7.12c)

Γ(1) = 2.2 meV, (7.12d)

Γ′(1)
1 = 2.0 meV (7.12e)

Γ′(1)
2 = 2.2 meV (7.12f)

J(3) = 1.38 meV, (7.12g)

K(3) = 0.0 meV, (7.12h)

η(3) = 0.0 meV, (7.12i)

Γ(3) = −1.2 meV, (7.12j)

Γ′(3)
1 = −1.2 meV, (7.12k)

Γ′(3)
2 = −1.2 meV. (7.12l)

Here, the superscripts denote the NN and third NN bonds. Equivalently, the

set of test parameters in Eq. 5.11 the main text may be written in the CF as

J(1)xy = −5.0 meV, (7.13a)

J(1)z = −2.0 meV, (7.13b)

D = −3.5 meV, (7.13c)

E = 0 meV, (7.13d)

F = 8.1 meV, (7.13e)

G = 0 meV. (7.13f)
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