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Abstract

Recent advances in deep learning have achieved remarkable success in various com-

puter vision problems. Driven by progressive computing resources and a vast amount

of data, deep learning technology is reshaping human life. However, Deep Neural

Networks (DNNs) have been shown vulnerable to adversarial examples, in which

carefully crafted perturbations can easily fool DNNs into making wrong predictions.

On the other hand, DNNs have poor generalization to domain shifts, as they suffer

from performance degradation when encountering data from new visual distributions.

We view these issues from the perspective of robustness. More precisely, existing deep

learning technology is not reliable enough for many scenarios, where adversarial ex-

amples and domain shifts are among the most critical. The lack of reliability inevitably

limits DNNs from being deployed in more important computer vision applications,

such as self-driving vehicles and medical instruments that have major safety concerns.

To overcome these challenges, we focus on investigating and addressing the

robustness of deep learning-based computer vision approaches. The first part of

this thesis attempts to robustify computer vision models against adversarial exam-

ples. We dive into such adversarial robustness from four aspects: novel attacks for

strengthening benchmarks, empirical defenses validated by a third-party evaluator,

generalizable defenses that can defend against multiple and unforeseen attacks, and
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defenses specifically designed for less explored tasks. The second part of this thesis

improves the robustness against domain shifts via domain adaptation. We dive into

two important domain adaptation settings: unsupervised domain adaptation, which

is the most common, and source-free domain adaptation, which is more practical in

real-world scenarios. The last part explores the intersection of adversarial robustness

and domain adaptation fields to provide new insights for robust DNNs. We study

two directions: adversarial defense for domain adaptation and adversarial defense via

domain adaptations. This dissertation aims at more robust, reliable, and trustworthy

computer vision.
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Introduction
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Figure 1.1: Overview of this dissertation.

This dissertation focuses on robust computer vision. Deep learning technology

has achieved remarkable success in various computer vision applications [9, 25, 37,

39, 44, 69, 180], but it is not reliable enough for many real-world scenarios [23, 26,

196]. The robustness issue of deep learning has many aspects, where adversarial

examples and domain shifts are among the most critical. In this thesis, we first attempt

to robustify computer vision models against adversarial examples. Next, we improve

the robustness against domain shifts by domain adaptation. Finally, we explore the

intersection of adversarial robustness and domain adaptation. Figure 1.1 presents an

overview of this dissertation.

Adversarial examples. Adversarial examples xadv are generated by adding carefully-

crafted perturbations δadv to the input data x:

xadv = x + δadv. (1.1)
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Figure 1.2: Illustration of adversarial examples. Adding carefully-crafted perturbations with
a very small magnitude to the input image can fool a well-trained model. The example dog
image is from ImageNet [35].

Figure 1.3: An example result of adversarial examples. Network: ResNet-50 [69]. Dataset:
CIFAR-10 [103].

The adversarial examples can fool well-trained Deep Neural Networks (DNNs) to

make wrong predictions:

fθ(xadv) ̸= y, (1.2)

where fθ is a target model with well-trained parameters, and y deontes the ground-truth

label. Such perturbations are very small and usually imperceptible or insusceptible to

human eyes. Figure 1.2 provides an illustration. A well-trained DNN can correctly

recognize the dog image. However, if we add carefully-crafted perturbations with a

very small magnitude to the input image, the DNN misclassifies the dog image as
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Figure 1.4: Illustration of domain shifts. The source domain (e.g., Cityscapes [32], Virtual
KITTI [51]) and the target domain (e.g., Foggy Cityscapes [184], KITTI [55]) have similar
contents but different appearances.

Figure 1.5: An example result of domain shifts. Network: DeepLabv2 [25]. Benchmark:
Cityscapes [32] to Foggy Cityscapes [184].

a cat. It has been known that DNNs are vulnerable to adversarial examples [13, 60,

201]. Figure 1.3 shows an example result. A well-trained ResNet-50 [69] network can

achieve 93% accuracy on the CIFAR-10 [103] dataset. However, if we add adversarial

perturbations to input images, the accuracy drops to 0%. Hence, proposing robust

models against adversarial examples is needed.

Domain shifts. Consider a scenario in which the training (source) data and test (target)

data are from different domains (i.e., datasets). In this scenario, accuracy would drop

on target data due to the domain shift problem. To address this problem, domain

adaptation is introduced. The classic domain adaptation is formulated as that: Given
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a labeled source dataset and an unlabeled target dataset, learn a model for the target

domain. Figure 1.4 provides an illustration. Given a road scene semantic segmentation

model, DeepLabv2 [25] that is trained on images with sunny weather (e.g., Cityscapes

[32]), its performance would be poor on images with foggy weather (e.g., Foggy

Cityscapes [184]). In addition, if a model is trained on synthetic virtual data (e.g.,

Virtual KITTI [51]), its performance would be poor on realistic data (e.g., KITTI [55]).

Figure 1.5 shows an example result. Given a model trained on the Cityscapes dataset,

it can achieve 81% mean of Intersection-over-Union (mIoU) accuracy on the same

dataset. However, if we test the model on the Foggy Cityscapes dataset, its mIoU

accuracy drops to 36%. Therefore, developing robust models against domain shifts is

important.

Overview. For adversarial examples, we study several aspects, including novel attacks,

empirical defenses, generalizable defenses, and defenses for less explored tasks. For

domain shifts, we study Unsupervised Domain Adaptation (UDA) and Source-Free

Domain Adaptation (SFDA). For their intersection, we explore adversarial defense

for domain adaptation and adversarial defense via domain adaptation. The following

sections elaborate background and the contributions of this thesis.

1.1 Robust Computer Vision Against Adversarial Ex-
amples

Existing studies reveal that DNN-based computer vision models are vulnerable to

adversarial examples [13, 201], and many adversarial attack algorithms have been

proposed. Fast Gradient Sign Method (FGSM) [60] leverages the sign of gradients

to produce adversarial examples. Projected Gradient Descent (PGD) [150] extends

5



FGSM from single iteration gradient descent to an iterative version with a random

start. MI-FGSM [38] generates more transferable adversarial attacks via a momentum

mechanism. We notice that most attack algorithms are additive attacks, in which

perturbations are added to input data.

Various adversarial defenses have also been introduced. Earlier approaches rely

on image transformations as pre-processing, but they fail to defend against white-box

attacks [5, 18]. In contrast, Adversarial Training (AT) [60] has been considered the

most effective strategy. AT trains a model on adversarial examples generated on the

fly according to the model’s current parameters. PGD-AT [150] formulates AT in a

min-max optimization framework and trains a model with only adversarial examples.

Feature Denoising (FD) [239] appends the feature denoising blocks to a model to

remove adversarial perturbations in the feature domain. TRADES [256] minimizes a

regularized surrogate loss to obtain a better trade-off between adversarial robustness

and clean data accuracy. However, most AT defenses are robust to only a single

perturbation type. Recent works like AVG [205], MAX [205] and Multi Steepest

Descent (MSD) [153] can defend against different Lp-norm perturbations. Still, they

do not consider physically realizable attacks (e.g., patch attacks [15, 46, 203, 231])

and unforeseen attacks. In addition, most adversarial robustness studies focus on

image classification. Many other computer vision tasks, such as action recognition

and novelty detection, remain less explored.

1.1.1 Contributions

In Part I, we dive into adversarial robustness from four aspects (see Figure 1.1).

First, diverse attack algorithms are critical to evaluate a model’s robustness, so we
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propose a novel attack to strengthen existing benchmarks. Second, we propose new

empirical adversarial defenses whose effectiveness has been validated by a third-party

evaluator. Third, we propose a generalizable defense that can defend against multiple

and unforeseen attacks. Finally, we propose a defense specifically designed for novelty

detection, which is less explored.

Novel attacks. In Chapter 3, we notice that most attack algorithms are additive

attacks, in which perturbations are added to input data (see Eq. (1.1)). To this end,

we propose MultAdv [141], a novel multiplicative attack that imposes perturbation

by multiplication instead of addition. MultAdv has different noise distributions

to the additive counterparts and thus challenges the defense methods tailored to

resisting additive adversarial attacks. For example, the FD defense has 42.7% accuracy

under the additive PGD attack on UCF-101 [198], an action recognition dataset.

Nevertheless, its accuracy decreases to 31.5% under our multiplicative MultAdv

attack. MultAdv increases the attack diversity of existing robustness benchmarks and

motivates researchers to develop defenses that can resist more attack types.

Empirical defenses. The empirical defense is one of the mainstreams of robustness

research. It can protect models to the largest extent. AT is considered the most

effective strategy. On top of AT, Chapter 4 proposes OUDefend [143], which is one

of the first defenses for action recognition. It learns both Over-and-Under complete

representations. Under-complete representations have large receptive fields to collect

global information but overlook local details, while over-complete representations

have opposite properties. OUDefend is designed to balance both local and global

features by learning those two representations. Hence, it can capture perturbation

patterns more precisely and further remove them in the feature space. Experiments
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show that OUDefend (49.5% accuracy) outperforms both PGD-AT (48.0%) and FD

(42.2%) on UCF-101.

Furthermore, Chapter 5 proposes the Halftoning defense [140], a novel image

transformation-based defense using error diffusion halftoning. Error diffusion halfton-

ing projects an image into a 1-bit space and diffuses quantization error to neighboring

pixels. This process can remove adversarial perturbations from a given image while

maintaining acceptable image quality in the meantime in favor of recognition. Al-

though most image transformation-based defenses are ineffective under white-box

attacks, Halftoning can still improve robustness. We submit this work to the DARPA

GARD [40] project with a third-party evaluator. Their results show that when combing

AT, Halftoning achieves 92% accuracy under both PGD and Masked PGD attacks on

UCF-101, which is the best method for action recognition over all the submissions of

this project.

Generalizable defenses. Most AT-based defenses are limited to a specific type

of adversarial perturbations. They often fail to offer resistance to multiple attack

types simultaneously, i.e., they lack multi-perturbation robustness. To address this,

Chapter 6 proposes a new generalizable defense, MultiBN [139], based on a multiple

Batch Normalization (BN) structure and a BN selection module. It performs AT on

multiple adversarial perturbation types using multiple independent BN layers with

a learning-based BN selection module. Compared to related works AVG (17.3%

union accuracy on the UCF-101 dataset), MAX (5.5%) and MSD (0.7%), MultiBN

(34.8%) exhibits much stronger multi-perturbation robustness against different and

even unforeseen adversarial perturbation types, ranging from Lp-norm and physically

realizable attacks.
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Defenses for less explored tasks. Most adversarial robustness studies focus on the

image classification task. Many other computer vision tasks remain less explored,

and novelty detection is one of them. A novelty detector is trained with examples

of a particular class and is tasked with identifying whether a query example belongs

to the same known class. In Chapter 7, we propose Principal Latent Space (Princi-

paLS) [138], a novel defense that learns the incrementally-trained cascade principal

components in the latent space to robustify novelty detectors. It can purify latent

space against adversarial examples and constrain latent space to exclusively model the

known class distribution. We conduct extensive experiments on 8 attacks, 5 datasets

and 7 novelty detectors, showing that PrincipaLS consistently enhances the robustness

of novelty detection models.

1.2 Robust Computer Vision Against Domain Shifts

DNN-based computer vision models suffer from performance degradation when

encountering data from new visual distributions. This is known as the domain shift

problem. UDA tackles domain shifts by aligning the representations of the source

and target domains [52]. For example, AdaDepth [109] employs adversarial learning

at both feature and output spaces to align the distributions between the two domains.

T2Net [260] transfers source images to the target style to train a model. GASDA

[259] uses bidirectional style transfer to learn the mapping between two domains.

Nevertheless, they either have suboptimal domain alignment or high computational

complexity during inference.

In real-world applications, source data are often restricted because of concerns

about data privacy, commercial proprietary, transmission efficiency, etc. Under this
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scenario, UDA is not applicable since it relies on accessing the source data to reduce

the domain gap. Recently, SFDA has been introduced to address this issue [30, 121,

125]. It adapts a source-trained model to the target domain without requiring access

to source data. SFDA-SS [132] develops a data-free knowledge distillation strategy

for adaptation. UR [197] reduces the uncertainty of target data predictions. HCL

[77] presents historical contrastive learning, which leverages the historical source

hypothesis to compensate for the absence of source data. However, SFDA is still

unexplored in videos, where existing approaches do not consider temporal information.

1.2.1 Contributions

In Part II, we dive into two important domain adaptation settings (see Figure 1.1).

First, we study the most common UDA setting. Next, given that UDA is impractical

in many real-world scenarios, we further study the more challenging SFDA setting.

Unsupervised domain adaptation. UDA tackles the domain shift problem by align-

ing the representations of the source and target domains. Chapter 8 proposes a new

UDA method, referred to as Learning Feature Decomposition for Adaptation (LFDA)

[144], for the Monocular Depth Estimation (MDE) task. Domain adaptive MDE is

less explored, especially compared to image classification and semantic segmentation.

LFDA learns to decompose the feature space into content and style components, where

it only attempts to align the content component since it has a smaller domain gap.

Moreover, LFDA uses separate feature distribution estimations to further bridge the

domain gap. Experiments show that achieves higher accuracy and 64% faster infer-

ence speed than GASDA on the standard Virtual KITTI-to-KITTI [51, 55] adaptation

benchmark.
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Source-free domain adaptation. SFDA aims to adapt a source-trained model to the

target domain without requiring access to source data, which is more feasible for real-

world applications. In Chapter 9, we notice that SFDA remains unexplored in videos,

so we explore a spatio-temporal extension of SFDA for Video Semantic Segmentation

(VSS). We propose a novel method, namely Spatio-Temporal Pixel-Level contrastive

learning (STPL) [137], which takes full advantage of spatio-temporal information for

video adaptation. Specifically, STPL explicitly learns semantic correlations among

pixels in the spatio-temporal space, providing strong self-supervision for adaptation to

the unlabeled target domain. Experiments on VSS benchmarks show the superiority

of STPL over image-based SFDA and even UDA approaches relying on source data.

1.3 Intersection of Adversarial Robustness and Do-
main Adaptation

Although adversarial robustness and domain adaptation are traditionally treated as

two individual research fields, they actually have similarities and their intersection

is worth exploring. Both of them raise the reliability issue of DNNs, which is one

of the main weaknesses of modern deep learning technology. Specifically, DNNs

can achieve great accuracy on clean samples, yet they could not resist intentional

worst-case perturbations. Similarly, DNNs have performed excellently on the data

from the same distribution as their training data, but their performance degrades when

encountering data from new distributions. These points out that DNNs work well

under only specific circumstances, which limits them from being deployed in broader

applications.

Several recent studies investigate the adversarial robustness of domain adaptation.

11



RFA [6] leverages multiple external adversarially pre-trained models as teacher models

to distill robustness knowledge. ASSUDA [245] employs an external pre-trained UDA

model that generates pseudo labels for unlabeled target data to do AT. Nevertheless,

RFA’s performance is highly sensitive to the teacher models’ setup, and ASSUDA

considers only the weak black-box attacks instead of the strong white-box attacks.

On the other hand, a few works investigate adversarial effects via domain adapta-

tion techniques. For instance, AdvProp [236] uses an auxiliary BN branch to learn

clean and adversarial feature distributions separately, which improves image recog-

nition. This idea is originally from the domain adaptation field [22]. DRRDN [247]

disentangles clean and adversarial distributions to improve robustness. This is in-

spired by domain adaptation as well [21]. Enhancing adversarial robustness from the

perspective of domain adaptation is a promising direction and still an open problem.

1.3.1 Contributions

In Part III, we investigate the intersection of adversarial robustness and domain adap-

tation from two aspects (see Figure 1.1): adversarial defense for domain adaptation,

where we propose a defense for UDA; and adversarial defense via domain adaptation,

where we propose a defense via domain adaptation techniques.

Adversarial defense for domain adaptation. Little focus is devoted to improving

UDA’s adversarial robustness. Despite AT’s success, it requires ground-truth labels

to generate adversarial examples and train models, which limits its effectiveness in

the unlabeled target domain. To this end, Chapter 10 provides a systematic study into

multiple AT variants that can potentially be applied to UDA. Based on that, we propose

a novel Adversarially Robust Training method for UDA, referred to as ARTUDA
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[142]. Compared to RFA, which achieves 34.1% robust accuracy on the VisDA-2017

[167] dataset, ARTUDA improves the UDA model’s robust accuracy to 40.7%.

Adversarial defense via domain adaptation. Despite AT’s success, its training cost is

extremely high. In Chapter 11, we attempt to develop a domain adaptation-motivated

adversarial defense to get rid of the expensive AT. Inspired by Test-Time Adaptation

(TTA) ideas [124, 212, 223], we propose Adaptive BN Network (ABNN), a non-AT

defense method. ABNN employs a pre-trained substitute model to generate clean BN

statistics and send them to the target model. The target model is exclusively trained

on clean images and learns to align the substitute model’s BN statistics. Results show

that ABNN can improve robust accuracy without using AT, and it achieves higher

clean accuracy than PGD-AT.

The main ideas of this dissertation are composed of the following
publications:

1. Shao-Yuan Lo and Vishal M. Patel. “Multav: Multiplicative adversarial videos”.

In: IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS). 2021. – [Chapter 3]

2. Shao-Yuan Lo, Jeya Maria Jose Valanarasu, and Vishal M. Patel. “Over-

complete representations against adversarial videos”. In: IEEE International

Conference on Image Processing (ICIP). 2021. – [Chapter 4]

3. Shao-Yuan Lo and Vishal M. Patel. “Error diffusion halftoning against ad-

versarial examples”. In: IEEE International Conference on Image Processing

(ICIP). 2021. – [Chapter 5]
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4. Shao-Yuan Lo and Vishal M. Patel. “Defending against multiple and unfore-

seen adversarial videos”. In: IEEE Transactions on Image Processing (T-IP).

2021. – [Chapter 6]

5. Shao-Yuan Lo, Poojan Oza, and Vishal M. Patel. “Adversarially robust one-

class novelty detection”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (T-PAMI). 2022. – [Chapter 7]

6. Shao-Yuan Lo, Wei Wang, Jim Thomas, Jingjing Zheng, Vishal M. Patel, and

Cheng-Hao Kuo. “Learning feature decomposition for domain adaptive monoc-

ular depth estimation”. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). 2022. – [Chapter 8]

7. Shao-Yuan Lo, Poojan Oza, Sumanth Chennupati, Alejandro Galindo, and

Vishal M. Patel. “Spatio-temporal pixel-level contrastive learning-based source-

free domain adaptation for video semantic segmentation”. In: IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2023. –

[Chapter 9]

8. Shao-Yuan Lo and Vishal M. Patel. “Exploring adversarially robust training for

unsupervised domain adaptation”. In: Asian Conference on Computer Vision

(ACCV). 2022. – [Chapter 10]
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Chapter 2

Background
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In this chapter, we review the background knowledge and related works of this dis-

sertation that will be frequently discussed in the following chapters. Our review covers

adversarial attacks, adversarial defenses, adversarial videos, and domain adaptation.

Lastly, we provide a list of abbreviations commonly used in this dissertation.

2.1 Adversarial Attacks

Recent advances in deep learning have led DNNs to perform outstandingly well

in many computer vision problems [7, 25, 68, 69], including tasks such as video

recognition [19, 37, 65]. However, researchers have shown that DNNs are easily

misled when presented by adversarial examples [60, 201]. The adversarial examples

are intentionally constructed or collected by humans to fool DNNs into making wrong

predictions [13, 73], which pose serious security threats.

Most current studies construct the adversarial examples by adding intentionally

worst-case perturbations to input data [15, 60, 150, 201, 253]. Szegedy et al. [201]

first showed that carefully crafted perturbations can fool DNNs. Goodfellow et al.

[60] introduced the Fast Gradient Sign Method (FGSM), which leverages the sign

of gradients to produce adversarial examples. Projected Gradient Descent (PGD)

[150] extends FGSM from single iteration gradient descent to an iterative version.

Momentum Iterative FGSM (MI-FGSM) [38] generates more transferable adversarial

attacks by a momentum mechanism. These attacks are categorized into the Lp-norm

attack, as they are bounded by Lp space. Another type of attack called physically

realizable attack is also developed. Different from Lp-norm attacks, physically

realizable attacks’ perturbations are printable and thus can be deployed in the physical

world. For example, Rectangular Occlusion Attack (ROA) [231] puts rectangular
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adversarial patches on input images, and Adversarial Framing (AF) [253] produces

framings whose perturbations are on the border of images. In the following, we

elaborate on these two main adversarial attack categories. We also propose a new

Lp-norm attack, namely Salt-and-Pepper Attack (SPA).

2.1.1 Lp-norm Attacks

PGD. PGD [150] is the most widely-used attack approach. Given a data sample

x, ground-truth label y, model parameters θ, and training loss L, PGD generates

adversarial example x̃ in an iterative way:

xt+1 = ProjLp
x, ϵ

{︁
xt + α · sign(▽xtL(xt, y; θ))

}︁
, (2.1)

where α is step size, t ∈ [0, tmax − 1] denotes attack iteration and thus x = x0 and

x̃ = xtmax . ProjLp
x,ϵ{·} projects its element into a Lp bound with perturbation size

ϵ such that ∥ xt+1 − x ∥p≤ ϵ. PGD is a multi-step with a random start variant of

FGSM. It has become one of the most important benchmarks in current adversarial

robustness research.

MI-FGSM. MI-FGSM is based on FGSM/PGD and adopts a momentum mechanism

in the attack formulation:

gt+1 = µ · gt +
▽xtL(xt, y; θ))

∥ ▽xtL(xt, y; θ) ∥1
, (2.2)

where gt gathers the gradients of the first t iterations with a decay factor µ. Then,

xt+1 = ProjLp
x, ϵ

{︁
xt + α · sign(gt+1)

}︁
. (2.3)

This formulation achieves better attack transferability due to the momentum.
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SPA. In this chapter, we propose SPA, a new Lp-norm attack inspired by the one-pixel

attack [200]. For computation saving, instead of using differential evolution, SPA

randomly selects a pre-defined number of pixels on an image, then applies PGD on

these pixels. We consider SPA as a kind of L0-norm attack because the number of

adversarial pixels is bounded. The generated perturbations look like salt-and-pepper

noise. Proposing SPA allows us to better benchmark adversarial defense approaches.

2.1.2 Physically Realizable Attacks

The physical attack is a category of adversarial attacks that is implemented in the

physical space. The physically realizable attack refers to a digital representation of

the physical attack. Such attacks fool DNNs by modifying physical objects being

photographed. Sharif et al. [191] generated printable perturbations inside eyeglass

frames to attack face recognition systems. Brown et al. [15] created an adversarial

patch that can be put next to a real-world object, making that object misclassified.

Thys et al. [203] further extended the adversarial patch to fool human detectors.

ROA performs L∞-norm PGD inside a fixed size and fixed location rectangle on an

image. The size is pre-defined, and the location is searched with respect to the highest

loss that it can cause. The perturbations look like a rectangular adversarial sticker

on an image. AF adds adversarial perturbations on the border of an image, while

the remaining pixels are kept unchanged. It first fixes the framing size and location,

then performs L∞-norm PGD inside the framing. ROA and AF can be formulated as

follows:

xt+1 = ProjLp
x, ϵ

{︁
xt + m · α · sign(▽xtL(xt, y; θ))

}︁
, (2.4)

where m ∈ {0, 1} is a binary mask of ROA or AF. Let p be a pixel index of m. For
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ROA, if p is inside the rectangular with a size of sROA within m, mp = 1; otherwise,

mp = 0. Similarly, for AF, if p is on the border of m within a framing width sAF,

mp = 1; otherwise, mp = 0.

2.2 Adversarial Defenses

To defend against adversarial attacks, various defense approaches have also been

proposed in the literature [1, 60, 64, 91, 97, 100, 110, 128, 150, 173, 188, 238, 239,

256]. Earlier attempts focus on detecting adversarial examples [71, 88, 123]. However,

detection is inherently weaker than defense in terms of resisting adversarial attacks.

Several defenses based on image transformation are introduced [11, 64, 244], but they

have been proven not robust against white-box attacks [5, 18].

Currently, Adversarial Training (AT) based defenses [60, 97, 150, 256] have

been considered the most effective, especially under the white-box setting. The

core idea is to train a model on adversarial examples that are generated on-the-fly

according to the model’s current parameters. Madry et al. [150] formulated AT

in a min-max optimization framework (PGD-AT), and this has been widely used

as a benchmark. Xie et al. [239] includes the Feature Denoising (FD) block in

networks to remove adversarial perturbations in the feature domain. Hendrycks et

al. [72] added an auxiliary rotation prediction task [56] to improve PGD-AT (i.e.,

RotNet-AT). TRADES [256] minimizes a regularized surrogate loss to obtain a better

trade-off between robustness and performance, where both clean data and adversarial

examples are used for training. Smooth Adversarial Training (SAT) [237] uses smooth

approximations of the ReLU [160] activation to enhance PGD-AT. Self-supervised

Online Adversarial Purification (SOAP) [193] employs self-supervised signals to
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purify adversarial examples during inference. In the following, we elaborate on the

image transformation-based defenses and AT.

2.2.1 Image Transformation-based Methods

Image transformation-based defenses deploy an image transformation at the pre-

processing stage before inference to protect DNNs from adversarial effects. The

intuition is that such image pre-processing could filter out adversarial perturbations,

allowing one to feed an adversary-free image to a classifier. Specifically, consider a

target classifier C, an adversarial example xadv and its ground-truth label y, where

C(xadv) ̸= y. The idea is to find a transformation T such that C(T(xadv)) = y.

Many types of transformations have been adopted in the context of adversarial defense.

Bit-depth reduction quantizes pixel values to invalidate adversarial variations in an

image [64, 244]. JPEG compression performs quantization in the frequency domain

to remove perturbations [34, 42, 91]. Image denoising operations such as mean filter,

median filter and non-local means [17] have been used as defenses as well [123,

239]. Several approaches use a DNN-based denoiser as the image transformation. For

instance, High-level representation Guided Denoiser (HGD) [126] adopts a U-Net-

based [177] denoiser with high-level feature guidance against adversaries at the pixel

level. ComDefend [91] mitigates adversarial effects through an image compression

network-based denoiser.

However, almost all of these attempts have been defeated under the white-box

threat model. Most of their effectiveness is actually caused by obfuscated gradients,

which gives a false sense of robustness. Hence, if attackers are aware of the presence

of the defense, they are able to incorporate the defense into adversary search and
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combat obfuscated gradients. Raff et al. [173] tried to stochastically combine a lot of

image transformations to defend against adaptive attacks in the white-box setting, but

failed to maintain the performance on clean images. Their clean data performance

is largely sacrificed owing to the multiple transformations. Therefore, this defense

stream is declining.

2.2.2 Adversarial Training

AT is proven to provide strong robustness, especially against challenging white-box

attacks. It has been used as a foundation for more advanced defense techniques.

Goodfellow et al. [60] first proposed this strategy. They trained DNNs with both clean

and adversarial data to improve adversarial robustness. Currently, PGD-AT is one

of the most commonly used AT algorithms. Let us recall the objective function for

training a DNN model:

θ∗ = arg min
θ

E(x,y)∼D [L(x, y; θ)] , (2.5)

where x is a clean training sample with ground-truth label y in the training set D, θ

is model parameters, and L denotes the training loss. PGD-AT formulates AT as a

min-max optimization problem and trains models exclusively with adversarial data:

θ∗ = arg min
θ

E(x,y)∼D

[︃
max
δ∈S

L(x + δ, y; θ)

]︃
, (2.6)

where δ denotes an adversarial perturbation that is within a bounded perturbation set

S.
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2.3 Adversarial Videos

Most existing literature on adversarial attacks and defenses focuses on static images.

There are only a few studies presenting attack techniques for videos. Wei et al. [228]

was the first to explore adversarial examples in videos. They found that perturbations

propagate through video frames in the video classifiers [37] that are based on a

Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN).

According to this observation, they proposed a temporally sparse attack. Li et al.

[122] produced adversarial videos by a generative model. Jiang et al. [93] developed

V-BAD against video recognition networks in the black-box setting. Pony et al. [172]

proposed a spatial patternless adversarial video, in which the perturbation is a constant

offset applied to the entire video frame. Thus, the attack is constructed using temporal

information exclusively without using any spatial information.

Similarly, not many defense techniques against adversarial videos have been

presented. Xiao et al. [233] proposed AdvIT based on temporal consistency to detect

adversarial frames within a video. However, their approach only detects whether a

video has been attacked or not. It does not provide a defense mechanism against the

attacked videos. Jia et al. [90] presented a similar detector along with a temporal

defense and a spatial defense. The temporal defense reconstructs perturbed frames

with adjacent clean frames. The spatial defense uses and denoises the reconstructed

frames to mitigate the effect of adversarial perturbations. However, their approach is

only evaluated on the black-box attack setting. It is not clear how well their defense

works on white-box attacks.
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2.4 Domain Adaptation

Recent advances in visual recognition have enjoyed remarkable success via deep

supervised learning [69, 104, 252]. However, the domain shift problem is very

common in real-world scenarios, i.e., the training (source) and test (target) data are

from different domains and thus have different data characteristics. For example,

a model trained with the images and annotations from a specific camera may not

generalize well to the images from another camera with different camera settings (e.g.,

focal length, size of field view). Furthermore, it is costly and labor-intensive to collect

the ground-truth labels of target data. Synthetic data and their annotations are easier

to acquire, but models trained with such a synthetic dataset often suffer from severe

accuracy degradation when tested on realistic data. These issues are known as the

domain shift problem. To address domain shifts, domain adaptation is introduced.

The goal is to transfer the knowledge from a labeled source dataset to an unlabeled

target dataset. There have been many domain adaptation variants in the literature.

This section reviews two common settings: Unsupervised Domain Adaptation (UDA)

and Source-Free Domain Adaptation (SFDA).

2.4.1 Unsupervised Domain Adaptation

UDA is a classic and the most common domain adaptation setting. It considers the

scenario that the source dataset contains data with labels, while label information is

unavailable to the target dataset. The goal can be formulated as that given a labeled

source dataset and an unlabeled target dataset, learn a model for the target domain.

Existing approaches can be categorized into three main streams: Adversarial Learning

(AL) [21, 41, 52, 53, 145, 146, 147, 208, 210, 220, 222], image-to-image translation
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[2, 4, 29, 75, 148, 159, 171, 259, 260], and self-training [24, 78, 156, 183, 249, 263].

AL-based methods rely on feature distribution alignment, which aims to minimize

distribution discrepancy between source and target domains to learn domain-invariant

representations. Given a labeled source dataset Ds = {(xi
s, yi

s)}ns
i=1 and an unlabeled

target dataset Dt = {xi
t}

nt
i=1 with ns and nt number of samples, respectively, a typical

AL-based model learns a feature extractor F and a classifier C on top of F. Given an

input image x, we express its feature space representation as F(x) and its output logits

as C(x), where we use C(x) as a simplification of the formal expression C(F(x)).

The objective function of an AL-based model can be written as:

LCE
(︁
C(xs), ys

)︁
+ LDA

(︁
xs, xt

)︁
, (2.7)

where LCE is the task training loss (e.g., cross-entropy loss), and LDA is the domain

adaptation loss defined by each AL-based method. One of the most common LDA is

the adversarial loss introduced by Domain-Adversarial Neural Networks (DANN) [52,

53], which is defined as:

LDA
(︁
xs, xt

)︁
= E[logD(F(xs))] + E[1 − (logD(F(xt)))], (2.8)

where D is a domain discriminator used to encourage domain-invariant features.

DANN proposes the first AL-based method. It uses a domain discriminator that

distinguishes between source and target features, and the feature extractor is trained

to fool it via the Generative Adversarial Network (GAN) [59] learning scheme. Ad-

versarial Discriminative Domain Adaptation (ADDA) [210] combines DANN with

discriminative feature learning. Conditional Domain Adversarial Network (CDAN)

[146] extends DANN using a class-conditional adversarial game. Joint Adaptation
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Network (JAN) [147] aligns the joint distributions of domain-specific layers between

two domains.

Image-to-image translation-based methods perform source-to-target translation

(i.e., the source data will have source data content with target data style) or vice versa

to bridge the domain gap between the source and target domains. These methods are

effective, but image translation [79, 83] itself is not an easy task. Images may not be

perfectly translated to another domain or lead to contain distortion after translation.

Self-training-based methods generate pseudo-labels for target data during the training

process to guide the models in learning target domain knowledge.

2.4.2 Source-Free Domain Adaptation

UDA relies on the assumption that both source and target data are available during

adaptation. In real-world scenarios, the access to source data is often restricted

(e.g., data privacy, commercial proprietary) or infeasible (e.g., data transmission

efficiency, portability). Hence, under these source data restrictive circumstances, UDA

approaches are less practical.

To deal with these issues, SFDA, also referred to as Unsupervised Model Adap-

tation (UMA), has been introduced recently in the literature [30, 77, 107, 108, 121,

125, 132, 197, 199, 251]. SFDA aims to use a source-trained model (i.e., a model

trained on labeled source data) and adapt it to an unlabeled target domain without

requiring access to the source data. More precisely, under the SFDA formulation,

given a source-trained model and an unlabeled target dataset, the goal is to transfer

the learned source knowledge to the target domain. In addition to alleviating data

privacy or proprietary concerns, SFDA makes data transmission much more efficient.
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For example, a source-trained model (∼ 0.1 - 1.0 GB) is usually much smaller than a

source dataset (∼ 10 - 100 GB). If one is adapting a model from a large-scale cloud

center to a new edge device that has data with different domains, the source-trained

model is far more portable and transmission-efficient than the source dataset.

2.5 List of Abbreviations

In the following, we list the abbreviations that will be frequently used in this thesis.

• DNN: Deep Neural Network

• FGSM: Fast Gradient Sign Method [60]

• PGD: Projected Gradient Descent [150]

• MI-FGSM: Momentum Iterative FGSM [38]

• ROA: Rectangular Occlusion Attack [231]

• AF: Adversarial Framing [253]

• SPA: Salt-and-Pepper Attack

• AT: Adversarial Training

• PGD-AT: Madry’s AT formulation [150]

• BN: Batch Normalization [82]

• UDA: Unsupervised Domain Adaptation

• SFDA: Source-Free Domain Adaptation
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Part I

Robust Computer Vision Against
Adversarial Examples
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Chapter 3

MultAV: Multiplicative Adversarial
Videos
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3.1 Motivation

The majority of existing adversarial attacks, including Lp-bounded attacks [60, 150,

201] and physical attacks [15, 191, 231] emphasize the additive attack approach where

perturbation is added to input data; that is,

xadv = x + δadv. (3.1)

Lately, researchers have been studying some other attack types. Yang and Ji [248]

presented a type of perturbation that multiplies input images by trained binary masks,

but such perturbation is perceptible and requires complicated gradient estimators to

optimize. Besides, their purpose is to regularize semi-supervised learning, so the

adversarial attack strength is not evaluated. Some other recent works consider spatial

attacks, which fool DNNs by small spatial perturbations [45, 234]; and coloring-

based attacks, which generate adversarial examples by re-coloring the input images

[113]. Solely delving into a handful of attack approaches would make the research

community overlook many other possible adversarial examples that are threatening

our machine learning systems. Hence, novel attacks need to be explored. On the

other hand, adversarial examples for videos have not been investigated much in the

literature, and all of these adversarial videos are additive attacks [93, 122, 228, 253]

(see details in Chapter 2).

In this chapter, we propose a novel attack method, Multiplicative Adversarial

Videos (MultAV), which can be applied to both ratio-bounded attacks and physically

realizable attacks. Many coherent imaging systems such as Synthetic Aperture Radar

(SAR) and ultrasound often suffer from multiplicative noises, known as speckle [62].

Inspired by this noise type, MultAV generates adversarial videos by multiplying crafted
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noise with input examples:

xadv = x ⊙ δadv, (3.2)

where ⊙ denotes element-wise multiplication. MultAV can be imposed by different

regularizations to keep the changes imperceptible using a new constraint on adversaries

called Ratio Bound (RB). The ratio bound restricts the pixel-wise ratio of an adversarial

example to an input example, corresponding to the Lp-norm of additive counterparts

that restricts the pixel-wise difference. Furthermore, MultAV also applies to SPA

(proposed in Chapter 2) and physically realizable attacks, where we consider the video

version of ROA [231] and AF [253] in this chapter. We demonstrate that these attack

types can be generated by the proposed multiplicative algorithm as well.

MultAV produces different perturbation distributions to the additive counterparts

and thus challenges the defense approaches which are tailored to defending against

additive adversarial attacks. Specifically, given MultAV examples of an attack type

(the multiplicative version of this attack), the model adversarially trained against the

additive counterpart is less robust than the model adversarially trained against MultAV

directly. This gap also appears on Feature Denoising [239], a state-of-the-art defense,

which demonstrates the threat of our MultAV and encourages more general and robust

methods.

3.2 Proposed Method

We propose MultAV to fool video recognition systems. Recall that FGSM [60]

builds the foundation for additive adversarial attacks, then PGD [150] extends FGSM

to iterative versions for producing stronger attacks. Given a video data sample

x ∈ RF×C×H×W (F is the number of video frames, C is the number of channels, H
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and W are height and width), ground-truth label y, target model parameters θ and loss

function L, these iterative FGSM-based attacks generate adversarial examples xadv by

xt+1 = ProjL∞
x,ϵ

{︁
xt + α · sign(▽xtL(xt, y; θ))

}︁
, (3.3)

where α is step size, t ∈ [0, tmax − 1] denotes the number of attacking iterations and

thus x = x0 and xadv = xtmax . ProjL∞
x,ϵ {·} projects its element into a L∞ bound with

perturbation size ϵ such that |xt+1 − x| ≤ ϵ. This L∞-norm is the initial constraint

used by the FGSM-based attacks. These attacks can also be bounded in L2-norm:

xt+1 = ProjL2
x,ϵ
{︁

xt + α · ▽xtL(xt, y; θ)

∥ ▽xt L(xt, y; θ)∥2

}︁
, (3.4)

where ProjL2
x,ϵ{·} is a L2-norm constraint with ϵ such that ∥xt+1 − x∥2 ≤ ϵ. In this

case, the attacks take steps in the normalized gradient values instead of the sign of

them.

MultAV belongs to gradient methods as well, and it can be formulated in a single

step or iterative version. The iterative MultAV is defined as

xt+1 = ProjRB−L∞
x,ϵm

{︁
xt ⊙ α

sign(▽xtL(xt,y; θ))
m

}︁
, (3.5)

where αm is the multiplicative step size, ProjRB−L∞
x,ϵm {·} performs projection with

ratio bound ϵm such that max(xt+1

x , x
xt+1 ) ≤ ϵm. MultAV takes the sign of the

gradients as the exponent of αm, so that xt would be multiplied by either αm or 1/αm,

which is corresponded to the additive counterparts added either α or −α. The ratio

bound is favorable to the multiplicative cases because the L∞-norm would biased

clip more perturbation in brighter pixels (having larger pixel values). Both the ratio

bound and the L∞-norm limit the perturbation maximum but in terms of addition and
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multiplication, respectively. MultAV can also be extended to an L2-norm variant:

xt+1 = ProjRB−L2
x,ϵm

{︁
xt ⊙ α

▽xtL(xt ,y; θ)

∥▽xtL(xt ,y; θ)∥2
m

}︁
, (3.6)

where ProjRB−L2
x,ϵm {·} a L2-norm ratio constraint with ϵm such that ∥xt+1

x ∥2 ≤ (ϵm +

1). Adding 1 is just an offset so that we can find a proper ϵm value easier. In this case,

MultAV takes the normalized gradient values as the exponent of αm.

SPA (Chapter 2) and the physically realizable ROA [231] and AF [253] examples

can be generated by Eq. (3.3), but the perturbation is restricted in pre-defined regions,

such as a rectangular, a framing and selected pixels. These attacks allow a large

perturbation size since they can be perceptible. Similarly, their multiplicative versions

can be produced by Eq. (3.5). MultAV is a general algorithm that applies to various

attack types.

The perturbation generated by MultAV has distinct properties from that of additive

adversarial examples. In particular, we can rewrite Eq. (3.5) as

xt+1 = ProjRB−L∞
x,ϵm

{︁
xt +

[︂
xt ⊙ (α

sign(▽xtL(xt,y; θ))
m − 1)

]︂}︁
, (3.7)

and rewrite Eq. (3.6) as

xt+1 = ProjRB−L2
x,ϵm

{︁
xt +

[︂
xt ⊙ (α

▽xtL(xt ,y; θ)

∥▽xtL(xt ,y; θ)∥2
m − 1)

]︂}︁
. (3.8)

Eq. (3.7) and Eq. (3.8) indicate that the multiplicative perturbation can be treated

as so-called signal-dependent additive perturbation, which involves the input data

component in the additive perturbation.

Figure 3.1 shows different types of additive adversarial examples and MultAV
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Figure 3.1: MultAV examples generated against 3D ResNet-18 (top); and difference maps
(15× magnified for PGD-L∞, PGD-L2, MultAV-L∞ and MultAV-L2) between clean and each
MultAV example (bottom). The first frame of the video is displayed here. Detailed attack
settings are presented in Sec. 3.3.1.

examples. We can observe that the additive and the multiplicative perturbation distri-

butions are different. Particularly, there is a clear object contour in the MultAV-L∞

perturbation map, showing the signal-dependency of MultAV. The signal-dependent

perturbation is more difficult to deal with since they are related to input data (signals).

Because of the uniqueness of MultAV, the defenses tailored to resisting additive attacks

may be ineffective, posing a new challenge to video recognition systems.
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3.3 Experiments

We apply the proposed MultAV on L∞-norm PGD [150], L2-norm PGD, ROA [231],

AF [253] and SPA (Chapter 2) attacks (MultAV-L∞, MultAV-L2, MultAV-ROA,

MultAV-AF and MultAV-SPA), then evaluate them on AT-based state-of-the-art de-

fense approaches. Furthermore, we look into the visualized feature maps under these

adversarial attacks.

3.3.1 Exmerimental Setup

We conduct our experiments on the UCF101 dataset[198], an action recognition

dataset consisting of 13,320 videos with 101 action classes. We use 3D ResNet-18

[65], a 3D convolution version of ResNet-18 [69], as our video classification network.

All the models are trained or adversarially trained by SGD optimizer.

We adversarially train models against different MultAV types respectively and

evaluate their robustness to these MultAV examples. The MultAV settings for both

inference and AT in our experiments are described as follows:

• MultAV-L∞: ϵm = 1.04, αm = 1.01, and tmax = 5.

• MultAV-L2: ϵm = 160, αm = 3.55, and tmax = 5.

• MultAV-ROA: Rectangle size 30×30, ϵm = 1.7, αm = 3.55, and tmax = 5.

• MultAV-AF: Framing width 10, ϵm = 3.55, αm = 1.7, and tmax = 5.

• MultAV-SPA: 100 adversarial pixels on each video frame, ϵm = 3.55, αm = 1.7,

and tmax = 5.
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We also adversarially train models against the additive counterparts and evaluate

their robustness to MultAV. The additive counterparts for AT are set to similar attacking

strength to their corresponding MultAV examples. The settings are as below:

• PGD-L∞: ϵ = 4/255, α = 1/255, and tmax = 5.

• PGD-L2: ϵ = 160, α = 1.0, and tmax = 5.

• ROA: Rectangle size 30×30, ϵ = 255/255, α = 70/255, and tmax = 5.

• AF: Framing width 10, ϵ = 255/255, α = 70/255, and tmax = 5.

• SPA: 100 adversarial pixels on each video frame, ϵ = 255/255, α = 70/255,

and tmax = 5.

We test these attack approaches on 3D ResNet-18 with standard training and

PGD-AT [150]. We also evaluate a feature denoising-based state-of-the-art defense

approach [239]. Feature Denoising adds feature denoising blocks to an original

network and performs the same AT protocol as PGD-AT on the entire network. We

use the Gaussian version of non-local means denoising, which is their top-performing

denoising operation. Feature Denoising is designed for only image data, so we extend

it to video recognition tasks in two ways: 3D Denoise changes its operations to the

3D domain directly, and 2D Denoise performs the original 2D operations on each

video example frame-by-frame. Following the deployment in [239], we insert 3D

Denoise/2D Denoise after the conv2, conv3, conv4 and conv5 blocks of 3D ResNet-18.
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Table 3.1: Video recognition accuracy (%) on the UCF101 dataset. The "Clean" column
corresponds to the models that are trained and tested on clean data. The "Training" column
refers to the data type for training, where "Mult" is a MultAV type corresponding to each of
the last five columns, and "Add" is an additive counterpart of each of the last five columns.

Network Clean Training MultAV-L∞ MultAV-L2 MultAV-ROA MultAV-AF MultAV-SPA

3D ResNet-18 76.90 Clean 7.19 2.67 2.30 0.26 4.02

3D ResNet-18 76.90 Mult 47.00 16.23 44.12 66.35 55.54
Add 41.61 9.94 42.45 51.23 54.74

(-5.39) (-6.29) (-1.67) (-15.12) (-0.80)

3D ResNet-18 70.82 Mult 42.69 14.75 39.31 60.53 48.37
+ 3D Denoise Add 31.46 9.15 37.72 48.98 48.06

(-11.23) (-5.60) (-1.59) (-11.55) (-0.31)

3D ResNet-18 69.47 Mult 41.87 14.04 40.34 58.97 47.48
+ 2D Denoise Add 30.16 10.23 39.65 47.82 47.18

(-11.71) (-3.81) (-0.69) (-11.15) (-0.30)

3.3.2 Evaluation Results

The experimental results are reported in Table 3.1. Doing AT makes models more

robust to MultAV. However, we can see a serious robustness gap between the adversari-

ally trained models against the additive counterparts (Add Model) and against MultAV

directly (Mult Model). In particular, Add Model is less robust than Mult Model against

MultAV, showing that the defenses tailored to defending against additive treat models

fail to fully display their robustness under MultAV. Such a gap appears not only across

all the considered MultAV types but also across the networks with and without Feature

Denoising, which demonstrates the uniqueness and the threat of the proposed MultAV.

The gap size depends on MultAV types. It ranges from 5.39% to 11.71% on

MultAV-L∞, from 3.81% to 6.29% on MultAV-L2, and from 0.69% to 1.67% on

MultAV-ROA. The gap on MultAV-SPA is small. The reason is that the SPA perturba-

tion is composed of scattered single pixels, and such noise distribution has no obvious

difference between additive and multiplicative perturbation. Instead, the distribution
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Figure 3.2: MultAV-L∞ examples generated on Mult Model and Add Model (top); and their
corresponding feature maps (bottom). Three frames of the video are displayed here.

differences are apparent in the other MultAV types. The most significant gap can be

up to 15.12%, which appears on MultAV-AF.

On the other hand, Feature Denoising [239] does not perform well for the video

recognition task. For both 3D Denoise and 2D Denoise, their clean data performance

and adversarial robustness are degraded as compared with the original architecture.

This indicates that an excellent defense for image recognition may be ineffective for

videos. Our MultAV can be a good attack method motivating deeper exploration for

adversarial robustness in the video domain.

3.3.3 Feature Map Visualization

Figure 3.2 shows the effect of adversarial perturbations on features. As can be seen

from this figure, Mult Model is able to capture semantically informative content in
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video frames. By contrast, Add Model’s feature maps are blurred, which means Add

Model is easier to be distracted by multiplicative adversarial perturbation and thus

cannot focus on semantically informative regions. This visual result is consistent with

the quantitive results in Table 3.1. The proposed MultAV poses a new and strong

threat to video recognition models.

3.4 Summary

In this chapter, we propose a new attack method against video recognition networks,

MultAV, which produces multiplicative adversarial videos having different noise

distributions from the additive counterparts. It is a general multiplicative algorithm

that applies to various attack types ranging from ratio-bounded attacks to physically

realizable attacks. It challenges the defense approaches tailored to resisting additive

adversarial attacks. Moreover, adversarial robustness in the video domain still lacks

exploration. This clearly shows the threat of our MultAV. We hope this work will

encourage the research community to look into more general and more powerful

defense solutions for video recognition networks.
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Chapter 4

Overcomplete Representations
Against Adversarial Videos
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4.1 Motivation

Several studies employ denoising-based methods to increase adversarial robustness.

One stream uses denoising at the pre-processing stage to remove adversarial per-

turbations [91, 126, 177] (see details in Chapter 2). However, this stream is easily

defeated by the adaptive attacks [5]. Other methods propose robust architectures,

which contain denoising in network design instead of pre-processing and combine it

with AT [150]. AT requires a larger network capacity than standard training [240], so

designing network architectures having a high capacity to handle the difficult AT is

important. FD [239] deploys a feature denoising block for their robust architecture

design, which learns to remove perturbations at the feature level. Their method is

only tested against a single attack type and only on the image data. On the other hand,

defenses in the video domain are less explored. As discussed in Chapter 2, we are

aware of few studies for detection or defense against video attacks (Chapter 6 and [90,

233]).

In this chapter, we follow the robust architecture stream and propose a novel Over-

and-Under complete restoration network for Defending against adversarial videos

(OUDefend). OUDefend learns the overcomplete representations [118] of input

data against adversarial examples. Recall that FD [239] considers several classical

denoising operations, including non-local means [17], bilateral filters [204], mean

filters and median filters. Instead, we look into DNN-based algorithms for further

improvements.

Traditionally, image/video restoration networks adopt an encoder-decoder archi-

tecture where the encoder first downsamples the input to a lower dimension spatially

and the decoder then upsamples it back to the original dimension [250, 255]. Here

40



the receptive field of the filters in the deeper layers gets enlarged. Such a mechanism

acquires undercomplete representations, which focus more on high-level features

and global information but pay less attention to local details. In contrast, overcom-

plete representations are good at extracting meaningful low-level features and local

information that are favorable for restoration [213]. Therefore, OUDefend consists

of overcomplete and undercomplete braches to learn these two representation types

respectively, and fuses their complementary features. We include OUDefend in target

models as a feature restoration block and adversarially train the entire network end-to-

end. The proposed method improves adversarial robustness against many different

types of adversarial videos, including L∞-norm PGD [150], L2-norm PGD, MultAV

(proposed in Chapter 3), ROA [231], AF [253] and SPA (proposed in Chapter 2).

In particular, we show that FD is ineffective when applied to video data. Code is

available at: https://github.com/shaoyuanlo/OUDefend

4.2 Proposed Method

We use video restoration to develop a robust architecture that has innate adversarial

robustness for the problem of defense against adversarial videos. Previous DNNs

used for restoration adopt a generic encoder-decoder architecture in which the encoder

extracts an abstract version of input data while removing noise [250, 255]. To elaborate,

they employ convolutional layers followed by max-pooling layers in the encoder and

upsampling layers in the decoder. Such architecture is an example of undercomplete

DNNs because the spatial dimension of the latent space representation is smaller than

the inputs. As the receptive fields of filters increase after every max-pooling layer,

the learned undercomplete representations collect more high-level features and global
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context.

Overcomplete representations, in contrast to the undercomplete representations,

were used as an alternative generic method for the representation of signals [118].

It involves using overcomplete dictionaries so that the number of basis functions is

more than the number of input signal samples. This enables higher flexibility, leading

to a robust representation of signals. Interestingly, DNNs employing overcomplete

representations have not been explored much [213]. The overcomplete representations

of visual data are able to acquire more meaningful low-level features and local context

which are favorable for video restoration. As a result, we design an overcomplete

network architecture to exploit the overcomplete representations where we project

the input to a higher dimension spatially. In our overcomplete network, the receptive

field gets constrained and so more low-level features and fine details are learned

even in the deep layers compared to an undercomplete network. This happens as

we use upsampling layers after each convolutional layer (instead of max-pooling

in undercomplete networks) in the encoder which prevents the receptive field from

enlarging in the deep layers. Furthermore, we fuse the over-and-under complete

representations to fully gain their complementary advantages.

The architecture of the proposed OUDefend is illustrated in Figure 4.1. It has

two branches: an overcomplete branch (O-branch) and an undercomplete branch (U-

branch). O-branch has six 3×3×3 convolutional layers in total, where the encoder and

decoder both have three layers each. In the encoder of O-branch, each convolutional

layer is followed by an upsampling layer, whereas in the decoder, each convolutional

layer is followed by a downsampling layer. We employ interpolation for upsampling

and max-pooling for downsampling. Skip connections [177] are used between the
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Figure 4.1: The proposed OUDefend architecture.

encoder and decoder for forwarding the features from early layers to the later layers

thus helping in efficient gradient propagation. In addition, we propose using a 1×

1×1 convolutional layer in each skip connection. This layer learns and decides the

most efficient earlier layer features that should be fused with the features of later

layers. Although O-branch learns overcomplete representations that capture better

low-level features than undercomplete representations, we note that undercomplete

representations are also necessary as they leverage some high-level feature information

which improves feature denoising. Thus, we propose having U-branch, a standard

encoder-decoder structure [177, 7] with downsampling in the encoder and upsampling

in the decoder. As U-branch is used as an auxiliary branch in OUDefend, we make it

a lightweight 2-layer structure to reduce computational cost.

Next, we integrate the features from O-branch and U-branch. Before fusion, we

have a 1×1×1 convolutional layer at the end of U-branch to adjust the ratio of un-

dercomplete representations before fusing them with their overcomplete counterparts.
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We then increase the number of channels back by using another 1×1×1 convolutional

layer after the feature fusion of these two branches, and the outputs of this layer are

the final restored feature maps. Finally, a 1×1×1 convolutional layer and a residual

connection are used. Since restoration may affect signals, it can maintain a balance

between signal protection and noise suppression [239]. Furthermore, in order to keep

the computational complexity low, at the beginning we pass the input features through

a common 1×1×1 convolutional layer to reduce the number of channels prior to

feeding them to the two separate branches. All of the operations are 3D versions for

processing video data.

4.3 Experiments

We evaluate the proposed OUDefend on six different types of adversarial videos:

PGD-L∞ [150], PGD-L2, MultAV-L∞ (Chapter 3), ROA [231], AF [253] and SPA

(Chapter 2). These attack approaches range from additive attacks, multiplicative

attacks to physically realizable attacks, so we can thoroughly test the adversarial

robustness of OUDefend. We also present some analysis of the method by displaying

the feature maps under attacks.

4.3.1 Experimental Setup

Our experiments are performed on the UCF-101 [198] dataset, an action recognition

dataset composed of 13,320 videos with 101 action classes. 3D ResNet-18 [65], a

3D convolution version of ResNet-18 [69], is adopted as our backbone network. We

attach an OUDefend architecture to 3D ResNet-18 as a feature restoration block after

the conv4 block. All the networks are trained end-to-end using SGD optimizer. For
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AT, we follow Madry’s protocol [150].

For both inference and AT, the settings of the six considered attacks follow Chap-

ter 6:

• PGD-L∞: ϵ = 4/255, α = 1/255, and tmax = 5.

• PGD-L2: ϵ = 160, α = 1.0, and tmax = 5.

• MultAV-L∞: ϵm = 1.04, αm = 1.01, and tmax = 5.

• ROA: Rectangle size 30×30, ϵ = 255/255, α = 70/255, and tmax = 5.

• AF: Framing width 10, ϵ = 255/255, α = 70/255, and tmax = 5.

• SPA: 100 adversarial pixels on each video frame, ϵ = 255/255, α = 70/255,

and tmax = 5.

We compare our OUDefend with PGD-AT [150] and FD [239]. FD adds four

feature denoising blocks to ResNet after the conv2, conv3, conv4 and conv5 blocks.

We compare with their Gaussian version of non-local means denoising, which has

two 1×1 convolutional layers for embeddings. It is their best-performing denoising

operation. Since FD is designed for only image data, we extend it to the video domain

in two ways: FD-A which replaces its operations by 3D versions directly, and FD-B

which conducts the original 2D operations on videos frame-by-frame.

4.3.2 Evaluation Results

Table 4.1 reports our experimental results on the UCF-101 video recognition dataset.

Both FD-A and FD-B fail to improve PGD-AT. In fact, these methods’ performance

on clean data drops as well. This indicates that their denoising structure does not
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Table 4.1: Evaluation results (%) on UCF-101. Rows are defense methods. Columns are the
number of model parameters, clean input data, and different attacks. No Defense is trained on
clean data, and the others are trained on clean data or a specific attack (corresponding to the
columns). Avgadv is the average accuracy over the six attack types.

Method Params Clean PGD-L∞ PGD-L2 MultAV ROA AF SPA Avgadv

No Defense 33.0M 76.90 2.56 3.25 7.19 0.16 0.24 4.39 2.97

PGD-AT [150] 33.0M 76.90 33.94 35.05 47.00 41.29 74.81 55.99 48.01
FD-A [239] 33.7M 70.82 31.48 33.25 42.69 37.59 58.87 49.14 42.17
FD-B [239] 34.8M 69.47 30.19 32.65 41.87 38.22 58.74 49.14 41.80

OUDefend (Ours) 33.6M 77.90 34.18 35.32 47.63 42.00 81.76 56.25 49.52

work on video data and might degrade the quality of features. The reason may be that

conventional image denoising operations cannot be generalized to video denoising

very well, particularly when they are included as a part of a deep learning model,

i.e., they are not compatible with video DNNs. Instead, OUDefend applies to 3D

convolutional network architectures. It achieves the best adversarial robustness across

all the six attack approaches we consider, showing its effectiveness ranges from

additive attacks, multiplicative attacks to physically realizable attacks. Moreover,

OUDefend’s clean data performance is also better than the baseline architecture and

FD, which demonstrates that adding OUDefend as a restoration block will not degrade

the feature quality.

To show the importance of learning overcomplete representations in OUDefend,

we build a variant that has only U-branch and thus learns undercomplete representa-

tions only. Under PGD-L∞ attack, this variant obtains 33.15% accuracy, lower than

OUDefend. This demonstrates the advantage of learning overcomplete representa-

tions.

On the other hand, OUDefend is a lightweight architecture that has only 0.6M

parameters. It just accounts for 1.8% number of parameters when it is deployed in 3D
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Figure 4.2: Feature maps after the conv2 block of No Defense and OUDefend under PGD-L∞
and AF. No Defense is vanilla 3D ResNet-18 trained on clean data. OUDefend is adversarially
trained, and here it is inserted after the conv2 block. Top to bottom: Three selected frames from
a video. (a) PGD-L∞ example. (b) No Defense’s features under PGD-L∞. (c) OUDefend’s
features under PGD-L∞. (d) AF example. (e) No Defense’s features under AF. (f) OUDefend’s
features under AF.

ResNet-18. It achieves the best performance and robustness with a fewer number of

parameters than both FD-A and FD-B.

4.3.3 Feature Map Visualization

We visualize the feature maps of No Defense and OUDefend under the PGD-L∞

and AF attacks in Figure 4.2. As can be seen, No Defense’s features under PGD-L∞

are noisy. Their activations are scattered over semantically trivial areas and thus fail

to focus on informative content. The proposed OUDefend with AT leads to clearer

features capturing fine details. Specifically, AT forces models to learn meaningful

patterns in adversarial examples, and OUDefend further restores the perturbed features

by leveraging over-and-under complete representations.
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In the case of AF attacks, No Defense is misled to focus on the border of the

video frames where the adversarial framings are located. Apparently, this area is

semantically trivial. OUDefend with AT learns to ignore the border area and pay

attention to the semantically meaningful regions. We can observe that the activations

at the border area are almost zero. Therefore, the effectiveness of the proposed method

is demonstrated by feature visualization as well.

4.4 Summary

We propose OUDefend, a new robust network architecture that exploits overcomplete

representations to restore adversarial features. With an auxiliary undercomplete

representation branch, it is able to balance local and global contexts by fusing these

two representations. Adversarial robustness in the video domain is less explored, and

our experiments show that the defenses tailored to images may be ineffective in videos.

In contrast, OUDefend enhances robustness to many different types of adversarial

videos, ranging from additive attacks, multiplicative attacks to physically realizable

attacks.
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Chapter 5

Error Diffusion Halftoning Against
Adversarial Examples
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5.1 Motivation

The existing empirical defense approaches can be categorized into two streams. The

first one is based on AT [150]. This stream has been repeatedly validated as effective,

especially under strong adaptive attacks in the challenging white-box setting [5,

18] (see details in Chapter 2). It has been widely used as a fundamental defense

backbone [190, 231, 239]. The other stream deploys an image transformation at the

pre-processing stage before inference to protect DNNs from adversarial effects [34,

42, 64, 91, 123, 244]. However, almost all attempts in this stream have been defeated

under the white-box threat model. Raff et al. [173] stochastically combined a lot

of image transformations to defend against white-box adaptive attacks, but failed to

maintain the performance on clean images. The clean data performance is largely

sacrificed owing to the multiple transforms.

In this chapter, we propose a novel defense method based on error diffusion

halftoning [47, 87]. Different from most of the other image transformation-based

defenses, it mounts resistance to adversarial examples even after accounting for the

challenging adaptive attacks. To the best of our knowledge, this work is the first to

leverage digital halftoning as the transformation for adversarial defense purposes.

Digital halftoning, which is sometimes referred to as spatial dithering, is a process

of rendering a grayscale image into a binary image (i.e., black-and-white) [14, 43,

49, 211]. There are several commonly used halftoning algorithms. Thresholding

quantizes each pixel value by comparing it with a fixed threshold. It is the simplest

algorithm but results in poor rendering quality. Random dithering compares each

pixel value with a random threshold to randomize quantization errors. This somewhat

remedies the downside of thresholding. Ordered dithering creates a dither matrix to
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Figure 5.1: (a) Original image. (b) Floyd-Steinberg halftone. One can clearly see the
geometric structure present in the halftone.

turn the pixels black or white in a specified order, yielding better halftoning results.

Error diffusion dithering [47, 87] contains an error diffusion mechanism that disperses

quantization errors to neighboring pixels. This belongs to an area operation rather

than a simple pointwise operation and can mitigate visual artifacts. We choose error

diffusion dithering as our halftoning transformation and deploy it at the pre-processing

stage for defense. Specifically, Floyd-Steinberg dithering [47] is used in our approach.

Figure 5.1 shows a sample image and the corresponding Floyd-Steinberg halftone.

As can be seen from this figure, even though the halftone only consists of black and

white dots, it maintains the overall structure of the object present in the image.

Error diffusion halftoning quantizes pixel values to filter out adversarial pertur-

bation, and the error diffusion mechanism can weaken adaptive attacks. Moreover,

spreading quantization errors produces higher halftoning quality and thus maintains

better accuracy on clean data. The proposed method significantly improves robustness

against different adversarial attacks, including PGD [150] and MultAV (proposed in
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Chapter 3), under the white-box setting. In the meantime, it is able to achieve good

clean data performance. Although most of the image transformation-based defenses

have been proven ineffective, we show that this stream is still worth exploring. Code is

available at: https://github.com/shaoyuanlo/Halftoning-Defense

5.2 Proposed Method

We use error diffusion halftoning [47, 87] as the image transformation for the ad-

versarial defense purpose. The key idea is to quantize each pixel in the raster order

(from left to right, top to bottom) one-by-one, and spread the quantization error to the

neighboring pixels. Beginning with the top-left pixel, the pixel value is binarized by

thresholding, then the quantization error is dispersed to neighboring pixels using pre-

defined weights. Following the raster-scan indexing scheme, the procedure continues

until the bottom-right pixel has been transformed. More precisely, let us consider an

input image I with pixel values ∈ [0, 1], and an error filter h. For each pixel I(i, j) in

I with the raster order, it pulls the error forward as:

Î(i, j) = I(i, j) + ∑
m,n∈S

h(m, n)e(i − m, j − n). (5.1)

Next, Î(i, j) is quantized to a binary value:

Q(i, j) = u( Î(i, j)− θ), (5.2)

where u() is a unit step function with a threshold θ = 0.5. The pixel’s quantization

error is calculated as:

e(i, j) = Î(i, j)− Q(i, j). (5.3)
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Figure 5.2: Error diffusion halftoning scheme.

Then, this error is pushed ahead, and the next pixel in the raster order pulls the errors,

repeating from Eq. (5.1) to Eq. (5.3) until the last pixel. Figure 5.2 summarizes this

procedure [14].

In this chapter, we implement error diffusion halftoning by Floyd-Steinberg dither-

ing [47] because of its efficiency and fine-grained results. The Floyd-Steinberg error

filter is defined as:

hFS =
1

16

[︃
0 ∗ 7
3 5 1

]︃
, (5.4)

where ∗ denotes the pixel being scanned currently, and it only disperses errors to

adjacent pixels. The weights are zeros for the pixels that have been scanned, so the

error diffusion does not go backward with respect to the raster order. Alg. 1 describes

this algorithm in detail. For color images, these operations are performed for each

channel independently.

We deploy Floyd-Steinberg dithering as an image transformation at the pre-

processing stage. To elaborate, let xadv be an adversarial example and TFS be the
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Algorithm 1: Floyd-Steinberg dithering
Result: Output halftone Q
Given an input image I with pixel values ∈ [0, 1],
for i from top to bottom do

for j from left to right do
oldValue = I[i][j]
if oldValue > 0.5 then

newValue = 1
else

newValue = 0
end
Q[i][j] = newValue
error = oldValue − newValue
I[i + 1][j] += error × 7/16
I[i − 1][j + 1] += error × 3/16
I[i][j + 1] += error × 5/16
I[i + 1][j + 1] += error × 1/16

end
end

Floyd-Steinberg dithering, then the input of the target model is TFS(xadv). Floyd-

Steinberg dithering can invalidate the adversarial variations of pixel values and destroy

the structure of adversarial perturbations through the quantization operation. More-

over, the error diffusion mechanism repeatedly updates the values of the neighboring

pixels in the raster order. This makes the adaptive attacks hard to identify the mapping

between the original image and the corresponding halftone, so BPDA [5] would be

difficult to approximate the gradients accurately to generate strong adversarial exam-

ples. Therefore, Floyd-Steinberg dithering allows us to mitigate adversarial effects

in advance, then feed an adversary-free image to the target model for protection. We

employ PGD-AT [150] to train the model end-to-end. That is, the halftoning trans-

formation is included in the training process so that the model can learn to recognize

halftones with adversarial patterns. On the other hand, spreading quantization errors
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produces better halftoning quality and tends to enhance edges and object boundaries

in an image, which are favorable to image recognition tasks. Furthermore, compared

to other complicated error diffusion halftoning algorithms, Floyd-Steinberg dithering

only diffuses errors to the adjacent pixels, so it saves computational costs. In short, the

proposed method takes adversarial robustness, clean data performance, and efficiency

into consideration, achieving an excellent balance between these three indicators.

5.3 Experiments

We evaluate our method on four attack types in the white-box setting: PGD-L∞ [150],

PGD-L2, Mult-L∞ and Mult-L2 (Chapter 3). Mult attack is originally designed for

adversarial videos (MultAV), and we apply it to generate adversarial images. These

attacks include both additive and multiplicative attacks. Clean images are also tested.

We compare the performance of our approach with four image transformation-based

defenses: Gaussian blur, non-local means [17], JPEG compression [34, 42] and

bit-depth reduction [64, 244]. Finally, a deep analysis is provided.

5.3.1 Experimental Setup

We conduct experiments on CIFAR-10 [103], an image classification dataset that

consists of 60,000 images with size 32 × 32 from 10 classes. We adopt ResNet-18

[69] as the backbone network. All the models are trained by the SGD optimizer. We

follow Madry’s protocol [150] for AT.

The settings of the four considered attacks for both inference and AT follow

Chapter 3. PGD-L∞: ϵ = 8/255, α = 3/255. PGD-L2: ϵ = 1.0, α = 3.0. Mult-L∞:

ϵm = 1.08, αm = 1.03. Mult-L2: ϵm = 1.3, αm = 1.03. tmax = 5 for all the attacks.
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Table 5.1: Evaluation results (%) on CIFAR-10. Rows are defense methods, and columns are
input types. On the standard training track, models are trained on clean data. On the AT track,
the "Clean" column is that models are trained on PGD-L∞ data but tested on clean data. For
the other columns, models are trained on a specific attack type (corresponding to the columns).
Avgadv and Avgall denote average accuracies over the four attacks and over all the five data
types, respectively.

Method Training Clean PGD-L∞ PGD-L2 Mult-L∞ Mult-L2 Avgadv Avgall

Vanilla 94.03 0.01 0.20 0.05 0.01 0.07 18.86
Gaussian blur 90.17 0.20 1.34 0.17 0.05 0.44 18.39
Non-local means Standard 88.66 0.02 0.49 0.03 0.00 0.14 17.84
JPEG compression training 90.06 2.97 4.82 1.81 0.22 2.46 19.98
Bit-depth reduction 78.87 15.26 10.84 10.79 4.52 10.35 24.06
Halftoning (Ours) 88.57 9.53 11.98 5.54 1.07 7.03 23.34

Vanilla 83.31 51.15 50.68 54.10 40.29 49.06 55.91
Gaussian blur 75.96 44.59 47.12 45.07 32.48 42.32 49.04
Non-local means Adversarial 75.47 44.67 45.29 16.59 14.53 30.27 39.31
JPEG compression training 24.97 38.99 43.72 59.15 44.72 46.65 42.31
Bit-depth reduction 71.66 47.34 42.40 48.50 41.63 44.97 50.31
Halftoning (Ours) 84.37 60.01 56.56 67.37 88.44 68.10 71.35

For the four compared defenses, we set the hyper-parameters as follows: The

kernel of Gaussian blur is 5 × 5 with σ = 1.5; non-local means is with the Gaussian

version; the JPEG compression level is 30/100; and the bit-depth reduction quantizes

pixel values to 1-bit for each channel. Because JPEG compression, bit-depth reduction

and halftoning cause obfuscated gradients, we employ BPDA [5] to mount adaptive

attacks for evaluating these defenses. The identity function is used as a surrogate

function to approximate the gradients.

5.3.2 Evaluation Results

Table 5.1 reports our experimental results. In the case of standard training, both

Gaussian blur and non-local means provide no resistance to any type of adversarial

attacks under the white-box threat model. JPEG compression shows somewhat effec-

tiveness. Only bit-depth reduction and halftoning obviously improve the robustness to
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all of the considered attacks. On the other hand, image transformation-based defenses

usually suffer from a drop in clean data accuracy since the transformations degrade

the semantic information. Particularly, bit-depth reduction obtains much lower clean

data performance. Instead, halftoning is able to enhance the robustness and preserve

the performance simultaneously.

AT has become the backbone of advanced defense approaches. We combine these

image transformation-based defenses with AT to pursue better robustness. As can

be seen from Table 5.1, AT makes great improvements. However, Gaussian blur,

non-local means and bit-depth reduction fail to improve upon the vanilla AT baseline

but decrease the performance. Learning features with adversarial patterns is more

difficult, so AT requires higher model capability [239]. These three transformations

degrade the model capability and thus cannot handle AT, resulting in worse robustness.

Furthermore, Gaussian blur and non-local means are especially vulnerable to Mult

attacks, indicating these two image denoising transformations are unable to deal with

the multiplicative adversarial perturbations. JPEG compression is useful for Mult

attacks but ineffective in PGD attacks. In contrast, the proposed method significantly

improves the robustness over all the four considered attacks.

Similarly, AT decreases clean data accuracy [236], and the image transformation-

based defenses make further degradation. In particular, JPEG compression obtains

very low clean data performance when it is trained adversarially. Instead, halftoning’s

performance drops slightly and achieves the highest clean data accuracy in the AT case,

which is even better than the vanilla model. This shows that the halftoning defense

is able to handle the difficult AT and can generalize to clean images. These results

demonstrate the proposed method is a preferred defense method that can improve
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robustness against different types of attacks under the white-box setting. Concurrently,

it maintains good clean data performance.

In addition, we submit this work to the DARPA GARD [40] project with a third-

party evaluator. Their results show that on the UCF-101 [198] dataset, the proposed

Halftoning with combining AT achieves 92% accuracy under the attacks of PGD with

ϵ = 4/255 and Masked PGD with 20% occlusion. This is the best result for action

recognition over all the submissions of this project.

5.3.3 Analysis

We display some of PGD-L∞ adversarial examples and their corresponding trans-

formed images in Figure 5.3. All the transformations lose information to a certain

extent, so their clean data performance drops. Particularly, bit-depth reduction pro-

duces very coarse images. Instead, halftoning can filter out adversarial perturbations

but still maintains highly recognizable image quality.

Figure 5.3 also shows the visualized differences between the features of clean

images and the features of the corresponding transformed PGD-L∞ examples. The

quantitative values of such differences are compared in Figure 5.4. The vanilla model

has the largest difference, which means the features are largely changed when the

image is adversarially perturbed and thus causes a wrong prediction. Gaussian blur,

non-local means and JPEG compression repress the differences yet insufficiently, so

their robustness is still poor. Bit-depth reduction obtains the smallest difference, but its

transformed images are too coarse to recognize accurately. In contrast, halftoning also

attains a small difference, showing its features are not easily affected by adversarial

perturbation. In the meantime, its image quality is highly recognizable. Hence, our
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Figure 5.3: Transformed PGD-L∞ adversarial examples, and the visualized differences
between the features of clean images and the features of corresponding transformed PGD-L∞
examples. The features (size 8 × 8) are from the last conv layer of ResNet-18. (a) Vanilla.
(b) Gaussian blur. (c) Non-local means. (d) JPEG compression. (e) Bit-depth reduction. (f)
Halftoning. Models are with standard training.

Figure 5.4: Mean square differences between the features of clean images and the features of
corresponding transformed PGD-L∞ examples. The features are from the last conv layer of
ResNet-18. Models are with standard training. The values are the averages of the CIFAR-10
test set.
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method can achieve good robustness and performance simultaneously.

5.4 Summary

In this chapter, we propose a novel image transformation-based defense method by

using Floyd-Steinberg halftoning. The 1-bit quantization and error diffusion mecha-

nisms can remove adversarial perturbations and weaken adaptive attacks. Furthermore,

the proposed method’s ability to produce high-quality halftones guarantees good clean

data performance. Although the majority of the image transformation-based defenses

have been shown to be ineffective under the white-box threat model, our method is

able to greatly improve adversarial robustness. We show that this defense stream is

still promising and worthy to explore.
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Chapter 6

Defending Against Multiple and
Unforeseen Adversarial Videos
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6.1 Motivation

Existing AT approaches usually lead to performance degradation on clean data [209,

256]. Xie et al. [236] indicated that this problem is due to the distribution mismatch

between clean and adversarial examples. In order to deal with this issue, they leveraged

an auxiliary BN layer [82] to disentangle the two distributions. In addition, most

existing AT techniques are tailored to one specific perturbation type, e.g., a certain

Lp-norm perturbation [150, 174, 229] or physically realizable attacks [231]. A model

trained on a specific attack can improve its robustness to that particular attack but

often fails to defend when presented with a sample that is perturbed by a different

type of attack [192]. Although there have been several attempts aim to resist multiple

attack types, they usually do not consider physically realizable attacks, unforeseen

attacks, or how well they perform on clean images [114, 127, 153, 205]. In a real-

world application, the input data could be clean (i.e., unattacked), adversarial, or even

attacked with a novel attack that the network has never seen before.

On the other hand, most recent research in this area has focused on static images.

Generating adversarial examples and defense methods for videos is relatively less

explored. As discussed in Chapter 2, although a few recent works have extended

adversarial attacks to videos [93, 122, 227, 228, 253], we are aware of few studies so

far that delve into detecting or defending against adversarial videos (Chapter 4 and

[90, 233]).

In this chapter, we propose MultiBN, which is one of the first defense methods for

defending against adversarial videos and considering the accuracy on clean samples

as well as the robustness to multiple and unforeseen perturbations. Specifically, we

consider four of the most significant types of attacks: PGD [150], ROA [231], AF

62



Figure 6.1: Illustration of the four types of adversarial videos we consider. Three video
frames from the UCF-101 [198] dataset are displayed here.

[253] and SPA (proposed in Chapter 2). Figure 6.1 gives an illustration of these attacks

on video frames. PGD and ROA are originally designed to attack images. We extend

these to videos by perturbing each frame and unveil that video recognition models are

also vulnerable to these attacks. SPA is a new video attack we design in Chapter 2,

which looks like salt-and-pepper noise. PGD and SPA belong to the Lp-bounded

attack group, while ROA and AF belong to the physically realizable attack group. We

select one from each group as the known attack type (PGD and ROA) and leave the

others as the unforeseen attack type (AF and SPA), where only the known attacks are

used for AT. MultiBN aims to defend against all of these attack types while retaining

the performance on clean samples simultaneously.

We first demonstrate that training a model on a specific attack type can gain ro-

bustness to that attack and somewhat to another attack in the same group, but typically
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cannot defend against the attacks in another group. Training models on multiple attack

types together (multi-perturbation training) improves multi-perturbation robustness,

yet the accuracy on clean samples is sacrificed. This is mainly due to the distribution

mismatch among clean and different types of adversarial examples. We assume that the

attacks in the same group have a relatively similar distribution. Therefore, inspired by

[240, 236], the proposed MultiBN employs multiple BN branches in a single network:

for the clean, Lp-norm and physically realizable attack examples, individually. Each

BN branch is responsible for learning the distribution of a specific type of examples,

which can offer more accurate distribution estimations for these types. Because BN is

a lightweight component included in common DNNs, using multiple BN branches

causes only minor parameter increases and computational overhead. MultiBN also

contains a BN selection module, which detects the attack type of an input video and

sends it to the corresponding BN branch, so the entire MultiBN is fully automatic and

allows end-to-end training. Compared to existing AT and multi-perturbation training

approaches, MultiBN achieves stronger adversarial robustness against multiple, more

diverse, and even unforeseen perturbations, while retaining higher accuracy on clean

samples. Moreover, MultiBN demonstrates effectiveness in the image domain as well.

An extensive analysis showing the properties of the multiple BN structure is also

presented. As one of the first studies of multi-perturbation robustness for videos, this

chapter provides baseline results that broadly cover multiple attack types, datasets

and target models, for this problem. We hope that these baselines will be useful to

other researchers and the adversarial robustness community. Code is available at:

https://github.com/shaoyuanlo/MultiBN

The main contributions of this chapter are summarized as follows:
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• We propose a novel adversarial defense method, MultiBN, based on a multiple

BN structure and a BN selection module. To the best of our knowledge, this is

the first defense against multiple and unforeseen adversarial videos.

• The proposed MultiBN achieves both stronger multi-perturbation robustness

and better clean sample performance than existing multi-perturbation training

approaches. This holds true on different datasets and target models.

• We provide extensive analysis to study the properties of the multiple BN struc-

ture under various conditions.

• We provide comprehensive baseline results for multi-perturbation robustness in

the video domain. These baselines broadly cover multiple attack types, threat

models, datasets, and target networks.

6.1.1 Related Work

Xie et al. [240, 236] demonstrated that proper normalization management is important

for enhancing robustness and even performance. Although our work is inspired

by [236], [236] aims to leverage the AT technique to improve image recognition

performance on clean data. It does not consider the model’s adversarial robustness,

and its model is not applicable to the multi-perturbation robustness problem.

Several studies focus on multi-perturbation robustness. Tramèr et al. [205]

investigated adversarial robustness to multiple perturbations, including Lp-bounded

attacks and rotation-translation attacks. They provided AVG and MAX AT schemes.

Maini et al. [153] incorporated multi-perturbation models into a single attack by Multi

Steepest Descent (MSD). MSD is robust to different Lp-bounded attacks. Nevertheless,
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these studies do not take potential unforeseen attack types and clean images into

consideration. Laidlaw et al. [114] adversarially trained a target model by Neural

Perceptual Threat Model (NPTM), showing good resistance to Lp-bounded attacks

and spatial attacks. However, its robustness cannot generalize to physically realizable

attacks. Lin et al. [127] aimed to defend against Lp and non-Lp attacks, but they

require a pre-constructed On-Manifold dataset, which is too expensive for practical

uses. Our MultiBN manages normalization with low costs to enhance the robustness

to multiple, more diverse, and even unforeseen perturbations, while retaining higher

accuracy on clean images simultaneously.

6.2 Preliminary

6.2.1 Multiple and Unforeseen Adversarial Videos.

In this chapter, we construct four types of video attacks: L∞-norm PGD [150], ROA

[231], AF [253], and the new SPA attack (see Figure 6.1). Among them, L∞-norm

PGD and SPA (L0-norm) belong to the Lp-bounded attacks; ROA and AF belong to

the physically realizable attacks. In our experiments, we set PGD and ROA as the

known attack types available for AT, while AF and SPA are used as unforeseen attack

types used only during inference. We aim to defend against multiple adversarial video

types, including Lp-bounded and physically realizable attacks as well as known and

unforeseen attacks. All of these attacks are set to untargeted since the untargeted

attack is considered more difficult to resist than the targeted attack.
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6.2.2 Adversarial Training and Multi-perturbation Training.

The proposed MultiBN is based on AT and multi-perturbation training. We briefly

review AT and state-of-the-art multi-perturbation training schemes to describe the

preliminary formulation of our method.

To begin with, we recall the objective function for training a DNN model:

θ∗ = arg min
θ

E(x,y)∼D [L(x, y; θ)] , (6.1)

where x is a clean training sample with ground-truth label y in the training set D,

θ is model parameters, and L denotes the training loss. PGD-AT [150] applies the

min-max optimization and trains models exclusively on adversarial examples:

θ∗ = arg min
θ

E(x,y)∼D

[︃
max
δ∈S

L(x + δ, y; θ)

]︃
, (6.2)

where δ denotes an adversarial perturbation that is within a bounded perturbation set

S. AdaProp [236] aims to improve the performance on clean samples and trains the

model with a mixture of clean data and adversarial examples as follows: [60, 110]:

θ∗ = arg min
θ

E(x,y)∼D

[︃
L(x, y; θ) + max

δ∈S
L(x + δ, y; θ)

]︃
. (6.3)

Note that AdaProp is not designed for multi-perturbation robustness. TRADES [256]

uses an alternative objective function for AT:

θ∗ = arg min
θ

E(x,y)∼D

[︃
L(x, y; θ) + max

δ∈S
L(x + δ, f (x); θ)

]︃
, (6.4)

where f (x) is the output vector of the target model with a Softmax operator. In other

words, TRADES replaces y with f (x) to compute the cross-entropy loss of adversarial

examples.
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Regarding multi-perturbation robustness, Tramèr et al. [205] introduced two AT

strategies: AVG strategy and MAX strategy. AVG trains on all types of adversarial

examples simultaneously and optimizes these adversarial losses together as follows:

θ∗ = arg min
θ

E(x,y)∼D

[︄
N

∑
i=1

max
δi∈Si

L(x + δi, y; θ)

]︄
, (6.5)

where N is the number of perturbation types. MAX considers the worst-case attack.

It trains on the strongest adversarial example that obtains the maximum loss among

all types of attacks:

θ∗ = arg min
θ

E(x,y)∼D [L(x + δk, y; θ)] , (6.6)

where

δk = arg max
i∈[1,N]

[︃
max
δi∈Si

L(x + δi, y; θ)

]︃
, (6.7)

which denotes the strongest type of attack. MSD [153] maximizing the worst-case

loss over all the considered perturbations at each projected steepest descent step to

construct a single perturbation. This can be described as the follows:

θ∗ = arg min
θ

E(x,y)∼D [L(x + δMSD, y; θ)] , (6.8)

where δMSD is the constructed single perturbation.

6.3 Proposed Method

In real-world applications, the input data could be clean, adversarial, or even attacked

with a novel attack that the network has never seen before. Hence, it is important to

design a defense solution that can resist multiple known and unforeseen perturbations
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Figure 6.2: Overview of MultiBN, the proposed adversarial defense framework. Every batch
normalization layer of the video recognition model is replaced by a multiple BN structure,
where this figure illustrates only one layer for simplicity. x + δi: an input of a specific type
adversarial example, zk: the k-th BN branch’s output features, ρk: a ratio factor to weight the
k-th BN branch’s output features, ỹ: prediction.

while retaining the performance on clean samples. The proposed method, MultiBN,

is based on a multiple BN structure and a BN selection module. Figure 6.2 gives an

overview of MultiBN.

6.3.1 Multiple Batch Normalization Structure

AT on a single perturbation type is generally weakly robust to the other types of attacks.

On the other hand, most state-of-the-art DNNs contain BNs [82] in their architecture

to normalize input features, which improves performance [65, 69]. However, owing

to the different distributions among multiple perturbation types, BNs suffer from

the distribution mismatch when multi-perturbation training is conducted, and thus

fail to gain promising multi-perturbation robustness. To address this problem, we

deploy multiple BN branches into each BN layer of the target model and keep the rest

of the parts unchanged, i.e., still a single network [236, 240]. Clean data and each

perturbation type used for training are assigned an individual BN branch. Since BN is
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a lightweight component, multiple BN branches cause only minor parameter increases

and computational overhead.

Ideally, each BN branch is responsible for estimating the assigned single or a family

distribution(s), and thus can properly disentangle multiple distributions. Consider AT

as a min-max optimization problem [150], for forward and backward passes, we can

manually make each perturbation type attack the target model through its assigned

BN branch at the inner maximization step. For the outer minimization step, we send

clean inputs or the generated adversarial examples to their corresponding BN branch

as well. The ideal objective function can be defined as follows:

θ∗ = arg min
θ

E
(x,y)∼D

[︄
L(x, y; θc, θb

0) +
N

∑
i=1

max
δi∈Si

L(x + δi, y; θc, θb
i )

]︄
, (6.9)

where θc is convolution parameters, θb
i is the BN parameters of the i-th data type, and

θ = θc + ∑N
i=0 θb

i denotes all the model parameters.

In practical scenarios, DNNs should provide robustness against unforeseen attacks.

An exhaustive investigation is too expensive; instead, we can summarize different

attack types into several groups based on their distributions, then build a BN branch

for each group. In our case, we deploy three BN branches for clean data, Lp-bounded

attacks and physically realizable attacks, respectively (see Figure 6.2). Typically,

AT on a strong attack has better robustness [150], where PGD and ROA are good

representatives of Lp-bounded attacks and physically realizable attacks, respectively.

Therefore, we train a target model on clean, PGD, and ROA examples using the 3-BN

structure with Eq. (6.9), where N = 2.
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6.3.2 Batch Normalization Selection Module

At inference time, we cannot control the data flow, so the input data have to pass

through the corresponding BN branch automatically. To this end, we propose a

BN selection module based on an adversarial video detector and a Gumbel-Softmax

operator [86, 149] (see Figure 6.2). The adversarial video detector is achieved by

a (N + 1)-class video classification model, where N is the number of attack types

used for training. It is trained to not only identify whether an input video is clean or

adversarial but also recognize the attack types. In our case, the detector is trained

with N = 2 on clean, PGD and ROA examples to recognize clean data, Lp-bounded

attacks and physically realizable attacks. Hence, unforeseen perturbations would also

be classified into the most similar attack group.

Intuitively, we can build a switch module to send the input to the proper BN branch

according to its detection result. However, the argmax operation, which applies to

the adversarial video detector’s logits for BN branch selection, is not differentiable.

This makes end-to-end training infeasible. To address this issue, we leverage the

Gumbel-Softmax trick to allow the gradients to backpropagate through a discrete

sampling process [243]. Specifically, we approximate argmax by the differentiable

and continuous Gumbel-Softmax function, which is defined as follows:

ρi =
exp((log πi + Gi) / τ)

∑K
j=1 exp((log πj + Gj) / τ)

, (6.10)

where π1, ..., πK are the adversarial video detector’s logits, G1, ..., GK are i.i.d. Gum-

bel samples, τ is the Softmax temperature, and K = 3 in our case. Next, ρ1, ..., ρK are
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used as ratio factors to weight each BN branch’s output features:

ẑ =
K

∑
i=1

ρk zk, (6.11)

where z1, ..., zK are each BN branch’s output features, and ẑ is the weighted feature

that would be the input of the next network component (see Figure 6.2). In this

way, the correct BN branch’s output feature z∗ would dominate ẑ, making ẑ a good

approximation of z∗.

6.3.3 The Entire Framework

With the BN selection module, MultiBN can operate automatically during inference

without manual control, and it enables end-to-end training since the entire framework is

differentiable. Let f ( ) be the entire MultiBN framework, g( ) be the video recognition

model with the multiple BN structure, and h( ) be the BN selection module (see

Figure 6.2). Consider an input of a specific type adversarial example x + δi, the entire

end-to-end pipeline can be described as follows:

ỹ = f (x + δi; θc, θb, θdet) = g(x + δi, h(x + δi; θdet); θc, θb), (6.12)

where ỹ is the prediction, θc is g( )’s convolution parameters, θb = ∑N
i=0 θb

i (N = 2

here, see Sec. 6.3.1) is g( )’s BN parameters in all the BN branches, and θdet denotes

the parameters of the adversarial video detector in the BN selection module h( ). h( )

outputs ρ = [ρ1, ..., ρK] defined in Sec. 6.3.2, i.e., ρ = h(x + δi; θdet).
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Then, the end-to-end training objective can be written as follows:

θ∗ = arg min
θ

E
(x,y)∼D

[︂
L(x, y; θ) + λ · L(x, ydet; θdet)

+
N

∑
i=1

(︁
max
δi∈Si

L(x + δi, y; θ) + λ · L(x + δi, ydet; θdet)
)︁]︂

,

(6.13)

where θ = θc + θb + θdet contains all the entire MultiBN’s parameters, y is the

task (video recognition here) ground-truth, ydet is the ground-truth of the video

types for training the adversarial video detector, L is the usual cross-entropy loss,

and λ is a trade-off hyperparameter. The objectives L(x, y; θ) and L(x, ydet; θdet)

are trained for clean data, while L(x + δi, y; θ) and L(x + δi, ydet; θdet) are for AT.

L(x, ydet; θdet) and L(x + δi, ydet; θdet) exclusively learns the BN selection module

h( ), while L(x, y; θ) and L(x + δi, y; θ) learns the entire framework f ( ) in an end-

to-end manner.

6.3.4 Defense Mechanism Against Unforeseen Attacks

In Sec. 6.3.1 and Sec.6.3.2, we mention how the proposed method addresses the

presence of unforeseen attacks during inference. Here we further elaborate on its

mechanism.

We deal with unforeseen attacks via proper attack type categorization, which

is achieved by the proposed multiple BN structure and BN selection module. We

consider PGD, ROA, AF and SPA attacks in this chapter. Suppose that we are

aware of only PGD and ROA at training time. We classify PGD and ROA to the

Lp-bounded attack group and the physically realizable attack group, respectively,

based on the perturbation distributions. The MultiBN framework is built according
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to this categorization. Specifically, we deploy three BN branches for clean data,

Lp-bounded attacks and physically realizable attacks, respectively (see Figure 6.2).

Each BN is adversarially trained to be robust against each particular category, and the

BN selection module is trained to identify the most similar category of given input

data.

Suppose that AF and SPA are unforeseen to us at training time but present at test

time. During inference, the BN selection module identifies the most similar category

of the input AF and SPA examples (i.e., the physically realizable attack group and

the Lp-bounded attack group, respectively). Accordingly, the features from their

belonging BN branch would dominate the feature maps after the feature aggregation

step described in Eq. (6.11). Since each BN is robust against a particular attack group,

MultiBN can achieve high robustness against the unforeseen AF and SPA attacks,

which are classified as the most similar group by the BN selection module.

In contrast, a model without the multiple BN structure cannot be uniformly robust

against multiple attack groups (see Sec. 6.4.2), resulting in sub-optimal robustness

against unforeseen attacks. Besides, a model without the BN selection module cannot

properly aggregate the features from different BN branches. Therefore, the proposed

MultiBN framework consisting of the multiple BN structure and the BN selection

module can decently address unforeseen attacks.

6.4 Experiments

In this section, we first describe our experimental setup. Second, we evaluate

MultiBN’s manually-controlled version to validate the effectiveness of the multiple

BN structure and explore the properties of this structure. Next, we test the proposed
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MultiBN’s robustness and performance and compare it with state-of-the-art multi-

perturbation training approaches. We also evaluate MultiBN’s robustness against

adaptive attacks, different attack budgets, and black-box attacks. Finally, we conduct

further analyses on model size, sanity checks, and experiments on images.

6.4.1 Experimental Setup

Datasets. We use UCF-101 [198] and HMDB-51 [105] for evaluation, which are

widely used video datasets in action recognition. UCF-101 consists of 13,320 videos

from 101 action classes, and HMDB-51 has 6,766 videos from 51 action classes.

Following [228], we resize their frame dimensions to 112 × 112 and uniformly

sample each video into 40 frames. UCF-101 is the default dataset if not otherwise

specified.

Attack setting. We consider L∞-norm PGD [150], ROA [231], AF [253], and the

proposed SPA attack. For PGD, we set the perturbation size ϵ to 4/255; for ROA, we

set the rectangle size sROA to 30 × 30 and ϵ to 255/255; for AF, we set the framing

width sAF to 10 and ϵ to 255/255; for SPA, we set the number of adversarial pixels

on each frame sSPA to 100 and ϵ to 255/255. The number of attack iterations tmax is

set to 5 for all the four attacks. To test the proposed method by strong attacks, all of

these attacks are untargeted attacks and in the white-box setting (i.e., the attacker has

full knowledge of the target model, including the multiple BN structure and the BN

selection module).

Implementation details. We choose 3D ResNext-101 and 3D Wide ResNet-50 [65]

as our target models, as they are two of the top-performing 3D CNNs for video

recognition, where 3D ResNext-101 is the default target model if not otherwise
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Table 6.1: Results (%) of MultiBN-manual on target model 3D ResNeXt-101 and dataset
UCF-101. No Defense is trained on only clean data. AT-PGD, AT-ROA, AT-AF and AT-SPA
are adversarially trained on a single specific attack type. The best results are in bold, and the
best results among adversarially trained models are underlined.

Model Clean PGD ROA AF SPA Mean Union

No Defense 89.0 3.3 0.5 1.6 8.4 20.6 0.0

AT-PGD 78.6 49.0 5.0 0.6 67.1 40.1 0.3
AT-ROA 82.6 12.5 69.0 54.0 17.6 47.1 7.9
AT-AF 84.6 7.1 3.9 80.5 12.2 37.7 2.1
AT-SPA 83.5 36.9 2.6 0.7 69.5 38.6 0.2

MultiBN-manual 83.7 46.4 65.6 57.0 60.4 62.6 40.7

specified. For our adversarial video detector, we choose the lightweight 3D ResNet-18.

We use the pre-trained weights from [65] and conduct AT upon the pre-trained models.

We set MultiBN’s Softmax temperature τ = 1 and the trade-off hyperparameter

λ = 0.1. All the models are trained by a SGD optimizer with initial learning rate

5e−4, momentum 0.9 and weight decay 1e−5, where the learning rate is decreased by

a factor of 10 in the middle of the training process.

We apply the mean accuracy and the union accuracy as the metrics to evaluate

the multi-perturbation robustness. The union accuracy requires that the target models

correctly classify an input sample under all the considered input types.

6.4.2 Multiple Batch Normalization Structure

We first manually select the correct BN branches to investigate the effectiveness of

the multiple BN structure. We call this variant MultiBN-manual. Then, we compare

MultiBN-manual with vanilla AT [150] that trains on a single attack type. Table 6.1

shows that models trained on a specific attack always have the best robustness to that

attack. AT-PGD and AT-ROA also yield high robustness to another attack in their
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Table 6.2: Results (%) of each BN branch on the five input types. BN-Clean, BN-Lp and BN-
Physical are the clean, PGD and ROA BN branches in the multiple BN structure, respectively.

BN Branch Clean PGD ROA AF SPA

BN-Clean 83.7 21.3 13.5 5.9 23.8
BN-Lp 79.0 46.4 7.7 1.9 60.4
BN-Physical 83.0 23.5 65.6 57.0 26.6

own group, showing better generalization. However, all of them almost fail to defend

against the attacks from other groups.

MultiBN-manual uniformly achieves the second-highest accuracy across all the

five input types, and most of these accuracies are close to the best one. Although

MultiBN-manual is not the best from the perspective of any specific input type, it

sustains a much better balance when multiple input types are considered. This shows

the effectiveness of the multiple BN structure in multi-perturbation robustness. As

can be seen, MultiBN-manual’s mean accuracy and union accuracy are significantly

higher than AT on a single attack.

6.4.3 Analysis of Different Batch Normalization Branches

In the previous subsection, the attacker generates perturbations through the BN branch

corresponding to its type. During inference, the input is also sent to that BN branch

accordingly. In this subsection, we investigate the cases that perturbations are produced

on a BN branch that is different from the group of the used attack type, and the input

is sent to that BN branch during inference.

In Table 6.2, we can see that each BN branch performs the best on the input type

on which they are trained on. Moreover, for unforeseen attacks, BN-Lp is the most

robust to SPA, and BN-Physical is the most robust to AF. This result is consistent with
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Table 6.3: Results (%) of the cases that the target BN and the inference BN are different.

Attack PGD ROA
Inference BN \ Target BN BN-Clean BN-Lp BN-Physical BN-Clean BN-Lp BN-Physical

BN-Clean 21.3 50.9 35.9 13.5 17.9 56.6
BN-Lp 72.6 46.4 70.5 30.4 7.7 48.2
BN-Physical 46.4 52.3 23.5 78.5 76.4 65.6

Attack AF SPA
Inference BN \ Target BN BN-Clean BN-Lp BN-Physical BN-Clean BN-Lp BN-Physical

BN-Clean 5.9 7.3 49.0 23.8 55.7 41.8
BN-Lp 16.4 1.9 33.5 77.2 60.4 75.8
BN-Physical 75.2 62.5 57.0 49.8 57.4 26.6

our assumption that feeding an unforeseen adversarial example to the BN branch of

the same or the most similar group can enjoy the best benefit. Our grouping follows

the observation that PGD and SPA have similar distributions (Lp-bounded attacks),

and ROA and AF have similar distributions (physically realizable attacks).

6.4.4 Analysis of Target and Inference Batch Normalization

We further delve into the cases where an adversarial example is made inference on a

BN branch (inference BN) different from the BN branch that is used to generate the

adversarial example (target BN). In other words, we consider the cases that the target

BN and the inference BN to be different.

The results in Table 6.3 are mostly consistent with that in Table 6.2, in which

BN-Lp has the strongest robustness to Lp-bounded attacks, and BN-Physical has the

strongest robustness to physically realizable attacks. PGD attack is an exception:

When the target BN is BN-Lp, inference BN-Lp performs the worst.

In addition, we observe that for any specific inference BN, it is more robust to the

adversarial examples generated on another BN branch, i.e., target BN and inference

BN are different. In such a case, the attack is not a rigorous white-box attack, so we
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Table 6.4: Results (%) of MultiBN and state-of-the-art approaches on target model 3D
ResNeXt-101 and dataset UCF-101. The best results are in bold.

Model Clean PGD ROA AF SPA Mean Union

No Defense 89.0 3.3 0.5 1.6 8.4 20.6 0.0

TRADE [256] 82.3 29.0 5.7 3.3 42.2 32.5 1.9
AVG [205] 68.9 38.1 51.4 18.5 49.6 45.3 17.3

MAX [205] 72.8 32.5 31.0 5.8 49.4 38.3 5.5
MSD [153] 70.2 43.2 1.7 1.6 56.0 34.6 0.7

MultiBN (Ours) 74.2 44.6 58.6 44.3 53.7 55.1 34.8

Table 6.5: Results (%) of MultiBN and state-of-the-art approaches on target model 3D Wide
ResNet-50 and dataset UCF-101. The best results are in bold.

Model Clean PGD ROA AF SPA Mean Union

No Defense 88.4 11.5 0.2 1.0 10.0 22.2 0.0

TRADE [256] 81.1 26.7 1.1 0.7 39.2 29.8 0.1
AVG [205] 74.5 43.1 55.6 3.5 57.2 46.8 3.5

MAX [205] 76.0 32.5 12.2 2.3 39.2 32.4 1.9
MSD [153] 71.0 46.3 2.9 0.9 61.1 36.4 0.2

MultiBN (Ours) 77.4 46.5 59.9 48.1 56.7 57.7 37.8

treat it as a kind of gray-box attack, in which the attacker does not know which BN

branch would the adversarial example pass through during inference. This unveils

that the attacks cannot perfectly transfer to other BN branches though the rest of the

model parameters are shared in the same network. Such results show that the multiple

BN structure can make secure against this gray-box setting.

6.4.5 Robustness of the Entire MultiBN Framework

In this subsection, we evaluate the entire MultiBN and compare it with state-of-the-art

AT and multi-perturbation training approaches, including TRADES [256], AVG [205],

MAX [205] and MSD [153]. For TRADES, we apply the AVG strategy to it for

multi-perturbation training. Because we take clean data accuracy into consideration,
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Table 6.6: Results (%) of MultiBN and state-of-the-art approaches on target model 3D
ResNeXt-101 and dataset HMDB-51. The best results are in bold.

Model Clean PGD ROA AF SPA Mean Union

No Defense 65.1 0.0 0.0 0.0 0.3 13.1 0.0

TRADE [256] 54.8 6.8 0.3 0.0 20.5 16.5 0.0
AVG [205] 39.0 14.3 17.1 2.8 26.2 19.9 1.4

MAX [205] 48.6 13.9 16.0 0.1 30.3 21.8 0.0
MSD [153] 41.4 18.2 0.1 0.0 31.2 18.2 0.0

MultiBN (Ours) 51.1 22.0 23.7 7.8 29.9 26.9 5.0

we adjust AVG, MAX and MSD by involving clean data in training. That is, we add

the clean data loss term L(x, y; θ) into the expectation of objective functions Eq. (6.5),

Eq. (6.6) and Eq. (6.8).

Table 6.4 reports the results on target model 3D ResNext-101 and dataset UCF-

101, Table 6.5 reports the results on target model 3D Wide ResNet-50 and dataset

UCF-101, Table 6.6 reports the results on target model 3D ResNext-101 and dataset

HMDB-51. As expected, No Defense still achieves the best performance on clean

data, showing that AT degrades clean data performance. TRADES has the best clean

data performance among the AT approaches, but it lacks multi-perturbation robustness.

AVG improves multi-perturbation robustness to a large extent, yet its clean data

performance is very low. MAX is less robust than AVG in our case. MSD has the best

and the second-best robustness against SPA and PGD, respectively, but it is vulnerable

to physically realizable attacks. The proposed MultiBN achieves the second-best

clean data performance among the defenses, the second-best robustness against SPA,

and the best robustness against the rest of the attack types. MultiBN consistently

outperforms the competitors in terms of mean accuracy and union accuracy by a wide

margin, showing great multi-perturbation robustness. This holds true on different

datasets and target models.
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Figure 6.3: Results (%) under the four attack types with varied numbers of attack iterations.

Figure 6.4: Results (%) under the four attack types with varied perturbation bounds.

6.4.6 Attack Budgets

To further evaluate the effectiveness of MultiBN, we test its scalability to different

attack budgets. We vary the attack budgets by two aspects: The number of attack

iterations tmax and the perturbation bounds of different attack types, i.e., PGD’s ϵ,

ROA’s sROA, AF’s sAF and SPA’s sSPA. The results are presented in Figure 6.3 and

Figure 6.4. The No Defense baseline and the strongest competitor AVG are compared.

We can see that MultiBN consistently achieves better robustness against different

attack types with various attack iterations and perturbation bounds. This shows that

MultiBN’s multi-perturbation robustness is scalable to various attack budgets.
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Figure 6.5: Results (%) of MultiBN under the adaptive attacks with varied λ of the four attack
types.

6.4.7 Robustness Against Adaptive Attacks

To thoroughly evaluate MultiBN, we construct an adaptive attack [206], which jointly

attacks the target model part and the BN selection module part. The intuition is to

generate adversarial examples which can also fool the BN selection module to let it

select the incorrect BN branch, and thus become easier to fool the target model. This

adaptive attack is formulated as follows:

δ = arg max
δ∈S

[︁
L(x + δ, y; θ) + λ · L(x + δ, ydet; θdet)

]︁
. (6.14)

As presented in Figure 6.5, the canonical attack has the greatest attacking strength.

The accuracies under all the four attack types monotonously increase as |λ| increases.

This shows that the considered adaptive attack fails to break MultiBN.

82



Table 6.7: Results (%) of MultiBN and state-of-the-art approaches under black-box attacks
on UCF-101. The substitute model is the naturally trained 3D Wide ResNet-50, and the target
model is 3D ResNeXt-101. The best results are shown in bold, and the second-best results are
underlined.

Model Clean PGD ROA AF SPA Mean Union

TRADE [256] 82.3 81.0 60.8 65.0 78.0 73.4 49.3
AVG [205] 68.9 68.4 68.0 62.0 68.4 67.1 56.2

MAX [205] 72.8 72.4 71.4 63.5 71.9 70.4 57.9
MSD [153] 70.2 69.8 40.1 52.2 69.1 66.5 31.3

MultiBN (Ours) 74.2 73.6 74.0 72.4 71.5 73.1 63.5

6.4.8 Robustness Against Black-Box Attacks

In addition to the white-box robustness we discussed, we also evaluate the proposed

method’s robustness against black-box attacks [164]. Table 6.7 reports the results on

UCF-101. Here we consider a naturally trained (i.e., train with only clean data) 3D

Wide ResNet-50 as a substitute model to generate black-box adversarial examples,

and test on the target model, 3D ResNeXt-101. As we can see, the proposed MultiBN

uniformly achieves excellent robustness against multiple attack types in the black-box

setting. In particular, MultiBN’s robust accuracies are very close to its clean accuracy

(74.2%), showing that the black-box attacks hardly fool it. Its union accuracy attains

63.5%, which significantly outperforms all the competitors.

6.4.9 Model Size Analysis

Apart from performance and robustness, model size is another critical factor when we

evaluate a model. This regards the feasibility of a model for real-world applications.

Our MultiBN significantly improves multi-perturbation robustness with only a minor

increase in the number of parameters. To present the compactness of the MultiBN
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Figure 6.6: Model size analysis result. "-manual" refers to the model without the BN selection
module.

architecture, we construct a naive model ensemble approach as a baseline for com-

parison. The model ensemble approach trains an individual model for each particular

attack type, and uses our BN selection module to select the corresponding model

for the input video during inference. Figure 6.6 compares the number of parameters

of MultiBN and the model ensemble. The model ensemble’s number of parameters

linearly increases along with the number of attack types since its number of individual

models equals the number of attack types. In contrast, MultiBN only deploys distinct

BN parameters for each particular attack type and shares all the rest of the parameters

across all the attack types. Hence, the increase of model size is minimal, especially

compared to the backbone network’s size. This demonstrates that the proposed method

obtains excellent effectiveness and model compactness simultaneously.
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Table 6.8: Results (%) of MultiBN and state-of-the-art approaches on target model ResNet-18
and dataset CIFAR-10. The best results are shown in bold, and the second-best results are
underlined.

Model Clean PGD ROA AF SPA Mean Union

No Defense 94.3 0.0 4.7 0.1 16.3 23.1 0.0

TRADE [256] 71.4 14.7 34.7 30.4 52.8 40.8 10.1
AVG [205] 86.4 47.2 53.6 60.5 67.8 63.1 28.1

MAX [205] 87.7 46.3 60.0 54.6 73.6 64.4 33.7
MSD [153] 93.0 52.7 6.7 7.1 59.6 43.8 2.2

MultiBN (Ours) 94.2 49.7 74.9 66.7 60.9 69.3 36.9

6.4.10 Results on Images

The proposed method is effective in the image domain as well. For the experiment on

images, we use CIFAR-10 [103] as the dataset and ResNet-18 [69] as the target model.

The architecture of the adversarial video detector is also ResNet-18. Regarding attack

setting, we set the perturbation size ϵ to 8/255 for PGD, the rectangle size sROA to

12 × 12 for ROA, the framing width sAF to 3 for AF, and the number of adversarial

pixels on each image sSPA to 30 for SPA. All the attacks are untargeted attacks and in

the white-box setting.

Table 6.8 reports the evaluation results. Compared to the state-of-the-art ap-

proaches, MultiBN achieves the best accuracy under the ROA and AF attacks and the

second-best accuracy under clean images and the PGD attack. Similar to the results

in videos, MultiBN is far superior to all the competitors in terms of mean accuracy

and union accuracy. This demonstrates that MultiBN can be a preferred solution for

multi-perturbation robustness in both the image and the video domains.
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6.4.11 Sanity Checks to Evaluation

To verify whether the proposed MultiBN’s robustness is not due to obfuscated gradi-

ents, we report our results on the basic sanity checks introduced by [5]:

• Figure 6.3 shows that iterative attacks are stronger than one-step attacks.

• Table 6.4 and Table 6.7 show that white-box attacks are stronger than black-box

attacks.

• Unbounded attacks reach 100.0% attack success rate (accuracy drops to 0.0%).

• Figure 6.4 shows that increasing distortion bound increases attack success

(decreases accuracy).

These results confirm that our MultiBN’s robustness is indeed not due to obfuscated

gradients, which further demonstrates its reliability.

6.5 Summary

In this chapter, we proposed MultiBN, a new adversarial defense method aiming at

multi-perturbation robustness. This is one of the first defenses against multiple and

unforeseen adversarial videos. MultiBN uses a multiple BN structure to solve the

distribution mismatch problem during multi-perturbation training. A BN selection

module makes the entire framework automatic at inference time and differentiable

for end-to-end training. Compared to existing AT approaches, MultiBN achieves

stronger multi-perturbation robustness against different and even unforeseen Lp-

bounded attacks and physically realizable attacks. This holds true on different datasets

and target models. Furthermore, we conduct an extensive analysis to explore the
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properties of the multiple BN structure under various conditions. In our future

work, we will consider video-specific properties, such as temporal information, for

adversarial attacks and defenses in videos.
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Chapter 7

Adversarially Robust One-Class
Novelty Detection
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7.1 Motivation

One-class novelty detection refers to the problem of determining if a test data sample

is normal (known class) or anomalous (novel class). In real-world applications,

novel data is difficult to collect since they are often rare or unsafe. Hence, one-class

novelty detection considers training data from only a single known class. Most recent

advances in one-class novelty detection are based on the deep Auto-Encoder (AE)

style architectures, such as Denoising Auto-Encoder (DAE) [186, 218], Variational

Auto-Encoder (VAE) [102], Adversarial Auto-Encoder (AAE) [154, 170], Generative

Adversarial Network (GAN) [59, 168, 180, 187, 258], etc. Given an AE that learns

the distribution of the known class, normal data are expected to be reconstructed

accurately, while anomalous data are not. The reconstruction error of the AE is

then used as a score for a test example to perform novelty detection. Although deep

novelty detection methods achieve impressive performance, their robustness against

adversarial attacks [60, 201] lacks exploration.

Over the past few years, many adversarial attack and defense approaches have

been proposed for tasks such as image classification [64, 173, 239, 244], video

recognition (Chapter 3, 4, 6, and [228, 233]), optical flow estimation [175] and

open-set recognition [190]. However, adversarial attacks or defenses have not been

thoroughly investigated in the context of one-class novelty detection. We first show

that present novelty detectors are vulnerable to adversarial attacks. Subsequently,

we demonstrate that many state-of-the-art defenses [72, 193, 237, 239] prove to be

sub-optimal to properly defend novelty detectors against adversarial examples. This

motivates us to design an effective defense strategy specifically for one-class novelty

detection.
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To this end, we propose to leverage task-specific knowledge to protect novelty

detectors. These novelty detectors are only required to retain information about normal

data, thereby resulting in poor reconstructions for anomalous data. This is favorable

to the novelty detection problem. This can be achieved by constraining the latent

space to make the features closer to a prior distribution [165, 168]. Furthermore, it

has been shown that adversarial perturbations can be removed in the feature space

[239]. Therefore, one can largely manipulate the latent space of novelty detectors

to devoid them of feature corruption introduced by adversaries, while maintaining

the performance on clean input data. This property is unique to the novelty detection

task, as most deep learning applications (e.g., image classification) require a model

containing sophisticated semantic information, and a large manipulation on the latent

space may limit the model capability, resulting in performance degradation.

In this chapter, we propose a defense strategy, referred to as Principal Latent Space

(PrincipaLS), to defend novelty detectors against adversarial examples. Specifically,

PrincipaLS learns the incrementally-trained [179] cascade principal components in

the latent space. This contains a cascade Principal Component Analysis (PCA), which

consists of a PCA operating on the vector dimension (i.e., channel) of a latent space

[215] and the other PCA operating on the spatial dimension. We name these two

PCAs as Vector-PCA and Spatial-PCA, respectively. First, Vector-PCA uses a learned

principal latent vector to represent a latent space as the Vector-PCA space of a single-

channel map. Since the principal latent vector is a pre-trained component that would

not be affected by adversarial perturbations, most adversaries are removed at this

step, and the remaining adversaries are enclosed within the small Vector-PCA space.

Subsequently, Spatial-PCA uses learned principal Vector-PCA maps to represent the
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Figure 7.1: Overview of the proposed adversarially robust one-class novelty detection idea
(PrincipaLS). The vanilla Auto-Encoder (AE) and AE+PrincipaLS are trained with the known
class defined as digit 8. AE+PrincipaLS reconstructs every adversarial data into the known
class (digit 8) and thus produces preferred reconstruction errors for novelty detection, even
under attacks.

Vector-PCA space as the Spatial-PCA space and expel the remaining adversaries.

Finally, the corresponding cascade inverse PCA transforms the Spatial-PCA space

back to the original dimensionality, resulting in the principal latent space.

With PrincipaLS, the decoder could compute preferred reconstruction errors as

novelty scores, even under adversarial attacks (see Figure 7.1). Additionally, we

incorporate AT [150] with PrincipaLS to further exert PrincipaLS’s ability in enhanc-

ing adversarial robustness. In contrast to typical defenses which often sacrifice their

performance on clean data [209, 236], the proposed defense strategy does not hurt

the performance but rather improves it. The PrincipaLS module can be attached to

any AE-style architectures (VAE, GAN, etc.), so it can be applied to a wide variety

of the existing novelty detection approaches, such as [102, 154, 170, 180, 186] etc.

Moreover, the PrincipaLS module is lightweight and computationally efficient.
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We establish a solid evaluation benchmark for the problem of adversarially robust

one-class novelty detection. We extensively evaluate PrincipaLS on eight adversarial

attacks (ranging from digital to physically realizable attacks and from white-box to

black-box attacks), five datasets (ranging from toy to realistic datasets and from image

to video datasets) and seven different novelty detectors. We further compare Princi-

paLS with commonly-used defense methods and show that it consistently enhances the

adversarial robustness of novelty detectors by significant margins. To the best of our

knowledge, this is one of the first adversarially robust novelty detection methods. We

hope that the provided evaluation benchmark and comprehensive baseline results for

this emerging problem will be useful to the vision and machine learning communities.

Code is available at: https://github.com/shaoyuanlo/PrincipaLS

The main contributions of this chapter are summarized as follows:

• We propose a novel adversarial defense method, PrincipaLS, based on task-

specific knowledge to protect novelty detectors. To the best of our knowledge,

this is one of the first adversarially robust novelty detection methods.

• We establish a solid evaluation benchmark for the problem of adversarially

robust novelty detection.

• The proposed PrincipaLS consistently enhances the adversarial robustness of

novelty detectors by wide margins. This holds true on multiple attacks, datasets

and novelty detectors.

• We provide extensive analysis and discussion to study the proposed method and

this emerging problem.

• We provide comprehensive baseline results for this emerging problem. These
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baselines broadly cover eight adversarial attacks, five datasets and seven differ-

ent novelty detectors.

7.1.1 Related Work

One-class novelty detection is of great interest to the computer vision community.

Earlier algorithms mainly rely on Support Vector Machines (SVM) formulation [189,

202]. With the advent of deep learning, AE-based approaches are dominating this

area and achieving state-of-the-art performance [58, 165, 168, 170, 180, 185, 186,

187, 232, 261]. ALOCC [180] considers a DAE [218] as a generator and appends a

discriminator to train the entire network by the GAN framework [59]. GPND [170] is

based on AAE [154], and it employs a discriminator to the latent space and the other

discriminator to the output. OCGAN [168] includes two discriminators and a classifier

to train a DAE by the GAN framework. ARAE [186] crafts adversarial examples from

the latent space to adversarially train a DAE. Puzzle-AE [187] uses puzzle-solving

as a pretext task to learn useful features, and it also incorporates adversarially robust

training and the GAN training framework. Different from our work, ARAE and

Puzzle-AE’s adversarial examples aim to pursue performance, and their adversarial

robustness is not thoroughly evaluated (see Sec. 7.5.1). To the best of our knowledge,

APAE [61] might be the only present defense designed for anomaly detection. It uses

approximate projection and feature weighting to reduce adversarial effects. However,

its robustness is not fully tested and only anomalous data are perturbed in its evaluation

(see Sec. 7.5.2). Instead, we provide a generic framework for evaluating the adversarial

robustness of novelty detectors and our proposed defense method.
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7.2 Attacking Novelty Detection Models

We consider several popular adversarial attacks [38, 60, 141, 150, 164, 253] (see details

in Chapter 2) and modify their loss objectives to suit the novelty detection problem

setup. Here we take PGD [150] as an example to illustrate our attack formulation.

The other gradient-based attacks can be extended by a similar formulation.

Consider an AE-based target model with an encoder Enc and a decoder Dec, and

an input image X with the ground-truth label y ∈ {−1, 1}, where "1" denotes the

known class and "−1" denotes the novel classes. We generate the adversarial example

Xadv as follows:

Xt+1 = ProjL∞
X, ϵ

{︁
Xt + α · sign(▽XtL(X̂t, Xt, y))

}︁
, (7.1)

where, X̂t
= Dec(Enc(Xt)), α > 0 denotes a step size, and t ∈ [0, tmax − 1] is the

number of attacking iterations, X = X0 and Xadv = Xtmax . ProjL∞
X,ϵ{·} projects its

element into an L∞-norm bound with perturbation size ϵ such that ∥ Xt+1 −X ∥∞≤ ϵ.

L corresponds to the mean square error (MSE) loss defined as follows:

L(X̂t, Xt, y) = y ∥ X̂t − Xt ∥2 . (7.2)

Given a test example, if it belongs to the known class, we maximize its reconstruction

error (i.e., novelty score) by gradient ascent; while if it belongs to novel classes, we

minimize its reconstruction error by gradient descent. We use this formulation to

generate adversarial examples for doing AT as well. During AT, since we can only

access the training data of the known class, the label y is always 1 in Eq. (7.1) and

Eq. (7.2).

Present novelty detection methods are vulnerable to these attacks (see Sec. 7.4.2);
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that is, normal data would be misclassified into novel classes, and anomalous data

would be misclassified into the known class. Moreover, this attacking strategy is much

stronger than the attacks introduced by [186], which perturbs only normal data, and

by [61], which perturbs only anomalous data. Because the proposed attack is stronger,

our AT for defense is much more effective accordingly. A detailed comparison of the

attacking strategies is discussed in Sec. 7.5.1 and Sec. 7.5.2. The proposed strong

attack establishes a solid evaluation benchmark for the problem of adversarially robust

one-class novelty detection.

7.3 Adversarially Robust Novelty Detection

The proposed defense strategy exploits the task-specific knowledge of one-class nov-

elty detection. Specifically, we leverage the fact that a novelty detector’s latent space

can be manipulated to a larger extent as long as it retains the known class information.

This property is especially useful to remove more adversarial perturbations in the

latent space. Therefore, we propose to train a novelty detector by manipulating its

latent space such that it can improve adversarial robustness while maintaining the

performance on clean data. Note that these characteristics are specific to the novelty

detection problem. The majority of visual recognition problems, such as image clas-

sification, require a model retaining multiple category information. Hence, a large

manipulation on the latent space may hinder the model capability and thus degrade

the performance. In the following subsections, we first briefly review PCA to define

the notations used in this chapter, then discuss the proposed PrincipaLS in detail.
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7.3.1 Preliminary

PCA computes the principal components of a collection of data and uses them to

conduct a change of basis on the data through a linear transformation. Consider a data

matrix X ∈ Rn×d, its mean µ ∈ R1×d and its covariance C = (X − µ)⊤(X − µ).

C can be written as C = UΛV⊤ via Singular Vector Decomposition (SVD), where

U ∈ Rd×d is an orthogonal matrix containing the principal components of X. Here

we define a mapping h which computes the mean vector and the first k principal

components of the given X:

h(X, k) : X → {µ, Ũ}, (7.3)

where Ũ ∈ Rd×k keeps only the first k columns of U. Now we define the forward

and the inverse PCA transformation as a pair of mapping ( f : Rn×d → Rn×k,

g : Rn×k → Rn×d); f performs the forward PCA:

f (X; µ, Ũ) = (X − µ)Ũ, (7.4)

and g performs the inverse PCA:

g(XPCA; µ, Ũ) = XPCAŨ⊤
+ µ, (7.5)

where XPCA = f (X; µ, Ũ). Finally, we can write the PCA reconstruction of X as

X̂ = g( f (X; µ, Ũ); µ, Ũ).

7.3.2 Principal Latent Space

The proposed PrincipaLS contains two major components: (1) Vector-PCA and

(2) Spatial-PCA. In Vector-PCA, we perform (h, f , g) on the vector dimension as
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(hV , fV , gV), and in Spatial-PCA, we perform (h, f , g) on the spatial dimension as

(hS, fS, gS). Let Enc be the encoder and Dec be the decoder of a novelty detec-

tion model. Let us denote an adversarial image as Xadv, we have its latent space

Zadv = Enc(Xadv) ∈ Rs×v, where s = h × w is the spatial dimensionality ob-

tained by the product of height and width, and v is the vector dimensionality (i.e.,

the number of channels). Under adversarial attacks, Zadv would be corrupted by

adversarial perturbations such that the decoder cannot compute reconstruction errors

favorable to novelty detection. We define the proposed PrincipaLS as a transformation

PrincipaLS : Zadv → ZPrincipaLS, which removes adversaries from Zadv, where

ZPrincipaLS is referred to as principal latent space. PrincipaLS is implemented by our

incrementally-trained cascade PCA. In the beginning, a sigmoid function replaces

the encoder’s last activation function to bound Zadv values between 0 and 1. The

following procedures are described below.

First, Vector-PCA computes the mean latent vector and the principal latent vector

of Zadv:

{µV , ŨV} = hV(Zadv, kV = 1), (7.6)

where, we always set kV to 1, so ŨV is the first principal latent vector of Zadv. Second,

Vector-PCA transforms Zadv to its Vector-PCA space ZV ∈ Rs×1:

ZV = fV(Zadv; µV , ŨV). (7.7)

Next, Spatial-PCA computes the mean Vector-PCA map1 and the principal Vector-

PCA maps of ZV:

{µS, ŨS} = hS(Z⊤
V , kS), (7.8)

1We use the word "map" to indicate they are on the spatial dimension.
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Figure 7.2: Overview of the proposed PrincipaLS. fV : forward Vector-PCA, fS: forward
Spatial-PCA, gS: inverse Spatial-PCA, gV : inverse Vector-PCA, hV and hS are the mappings
for computing principal components.

where kS is a hyperparameter. Then, Spatial-PCA transforms ZV to its Spatial-PCA

space ZS ∈ RkS×1:

Z⊤
S = fS(Z⊤

V ; µS, ŨS). (7.9)

Finally, the inverse Spatial-PCA and the inverse Vector-PCA transform ZS back to its

original dimensionality:

Ẑ⊤
V = gS(Z⊤

S ; µS, ŨS), (7.10)

ZPrincipaLS = gV(ẐV ; µV , ŨV), (7.11)

where, ẐV is the Spatial-PCA reconstruction of ZV , and ZPrincipaLS is the result-

ing principal latent space. Figure 7.2 gives an overview of this procedure. The

decoder then uses ZPrincipaLS to reconstruct the input adversarial example as X̂adv =

Dec(ZPrincipaLS) for computing the novelty score.
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7.3.3 Incremental Training

The principal latent components {µV , ŨV , µS, ŨS} are incrementally-trained along

with the network weights by Exponential Moving Average (EMA) during training,

so we call this process incrementally-trained cascade PCA. Specifically, at training

iteration t, these components are updated with the following equations:

{µt
V , Ũt

V} = (1 − ηV){µt−1
V , Ũt−1

V }+ ηV · hV(Zt
adv), (7.12)

{µt
S, Ũt

S} = (1 − ηS){µt−1
S , Ũt−1

S }+ ηS · hS(Zt⊤
V ), (7.13)

where ηV and ηS are the EMA learning rates.

Consider the model weights are trained by the mini-batch gradient descent with

a batch size b, the latent dimensionality is shaped to Zadv ∈ Rbs×v, the resulting

ZV ∈ Rbs×1 is reshaped to ZV ∈ Rs×b after the Vector-PCA fV , and ẐV ∈ Rs×b is

reshaped back to ẐV ∈ Rbs×1 after the inverse Spatial-PCA gS. Hence, in a mini-

batch, both hV and hS have b times more data points to acquire better principal latent

components at each training iteration. At iteration t, ( fV , gV) performs with the com-

ponents {µt
V , Ũt

V}, and ( fS, gS) performs with the components {µt
S, Ũt

S}. When the

training process ends, the well-trained components are denoted as {µ∗
V , Ũ∗

V , µ∗
S, Ũ∗

S}.

During infernce, ( fV , gV) performs with {µ∗
V , Ũ∗

V}, and ( fS, gS) performs with

{µ∗
S, Ũ∗

S}, while hV and hS do not operate (see Figure 7.2). The entire process is

differentiable during inference and thus does not cause obfuscated gradients [5].

This incremental training helps make sure that the cascade PCA is aware of the

network weight updates at each training step, and vice versa [215]. Therefore, when

one is updated, the other one would be updated accordingly. The incremental training
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encourages mutual learning between the principle latent components and the network

weights. The entire model and thus can be well-trained end-to-end.

7.3.4 Defense Mechanism

We further elaborate on how the proposed PrincipaLS defends against adversarial

attacks. Given an adversarial example Xadv, its latent space Zadv is adversarially

perturbed. After Vector-PCA, each latent vector of Zadv is represented by a scaling

factor of the learned principal latent vector Ũ∗
V (with a bias term µ∗

V). The Vector-PCA

space ZV stores these scaling factors on a single-channel map (i.e., on the spatial

domain only). Since all the principal latent components are pre-trained parameters,

they would not be affected by adversarial perturbations. Replacing the perturbed latent

vectors by Ũ∗
V removes the majority of the adversaries. The only place where the

remaining adversaries can appear is the scaling factors of Ũ∗
V on the single-channel

map. In other words, these adversaries are enclosed within a small subspace, making

them easier to expel.

Subsequently, Spatial-PCA reconstructs this small subspace by a set of principal

Vector-PCA maps Ũ∗
S (with a bias term µ∗

S). Since Ũ∗
S and µ∗

S are adversary-free,

the remaining adversaries are further removed. From another perspective, this step

can be viewed as PCA-based denoising performed in the spatial domain of features.

With the robust principal latent space ZPrincipaLS, the decoder can obtain a preferred

reconstruction error for novelty detection, even in the presence of an adversarial

example. Additionally, we perform AT [150] to train the model, further improving the

robustness.
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7.4 Experiments

We evaluate PrincipaLS on eight adversarial attacks, five datasets and seven existing

novelty detection methods. We further compare PrincipaLS with state-of-the-art

defense approaches. An extensive analysis is also presented.

7.4.1 Experimental Setup

Datasets. We use five datasets for evaluation: MNIST [116], Fashion-MNIST (F-

MNIST) [235], CIFAR-10 [103], MVTec-AD [10] and ShanghaiTech (SHTech) [129].

MNIST consists of grayscale handwritten digits from 0 to 9. It contains 60,000 training

data and 10,000 test data. F-MNIST is composed of grayscale images from 10 fashion

product categories. It comprises 60,000 training data and 10,000 test data. CIFAR-10

consists of color images from 10 different classes. There are 50,000 training and

10,000 test images in this dataset. MVTec-AD is an anomaly detection dataset that

consists of color images from 15 objects and textures categories. Each category

contains normal and anomalous images with different types of defects. There are

3,629 training and 1,725 (467 normal and 1258 anomalous) test images in this dataset.

SHTech is a video anomaly detection dataset that consists of videos from 13 scenes.

It contains 274,515 training and 40,791 (23,465 normal and 17,326 anomalous) test

frames. It is the largest dataset among existing anomaly detection benchmarks. In our

experiments, we resize all the datasets to 32 × 32 during both training and testing.

Evaluation protocol. For the MNIST, F-MNIST and CIFAR-10 datasets, which are

originally created for image classification, we simulate a one-class novelty detection

scenario by the following protocol. Given a dataset, each class is defined as the known

class at a time, and a model is trained with the training data of this known class.

101



During inference, the test data of the known class are considered normal, and the test

data of the other classes (i.e., novel classes) are considered anomalous. We select

the anomalous data from each novel class equally to constitute half of the test set,

where the anomalous data within a novel class are selected randomly. Hence, our

test set contains 50% anomalous data, where each novel class accounts for the same

proportion. The area under the Receiver Operating Characteristic curve (AUROC)

value is used as the evaluation metric, where the ROC curve is obtained by varying

the threshold of the novelty score. For each dataset, we report the mean AUROC

(mAUROC) across its 10 classes.

For the MVTec-AD dataset, we conduct experiments on all the 15 categories and

report mAUROC across these 15 categories. Similarly, for each category, we sample

the anomalous data from each defect type equally to constitute half of the test set such

that the test set contains 50% anomalous data. For the SHTech dataset, we directly

use its default test set as its normal-to-anomalous ratio is more balanced. Following

[151, 180], we report frame-level AUROC.

Baseline defenses. To the best of our knowledge, APAE [61] might be the only

present defense designed for anomaly detection. In addition to APAE, we implement

five commonly-used defenses, which are originally designed for classification tasks,

in the context of novelty detection. They are PGD-AT [150], FD [239], SAT [237],

RotNet-AT [72] and SOAP [193], where FD, SAT and RotNet-AT incorporate PGD-

AT. We use Gaussian non-local means [17] for FD, Swish [70] for SAT, and RotNet

[56] for SOAP. These are their well-performing versions.

Benchmark novelty detectors. We apply PrincipaLS to seven novelty detection

methods, including a vanilla AE, VAE [102], AAE [154], ALOCC [180], GPND
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[170], ARAE [186] and Puzzle-AE [187], where the vanilla AE is the default novelty

detector if not otherwise specified. PrincipaLS is added after the last layer of the

novelty detection models’ encoder.

In order to evenly evaluate the adversarial robustness of these approaches, we

unify their AE backbones into the following architecture. The encoder consists of

four 3 × 3 convolutional layers, where each of the first three layers is followed by a 2

× 2 max-pooling with stride 2. We use a base channel size of 64, and increase the

number of channels by a factor of 2. The decoder mirrors the encoder but replaces

every max-pooling by a bilinear interpolation with a factor of 2. All the convolutional

layers are followed by a batch normalization layer [82] and ReLU.

Attack setting. We test adversarial robustness against five white-box attacks, including

FGSM [60], PGD [150], MI-FGSM [38], MultAdv (proposed in Chapter 3) and AF

[253], where PGD is the default attack if not otherwise specified. A black-box

attack and two adaptive attacks [164, 206] are also considered. All the attacks are

implemented based on the formulations in Sec. 7.2.

For FGSM, PGD and MI-FGSM, we set ϵ to 25/255 for MNIST, 16/255 for

F-MNIST, 8/255 for CIFAR-10, 2/255 for MVTec-AD, and 8/255 for SHTech.

For MultAdv, we set ϵm to 1.25 for MNIST, 1.16 for F-MNIST, 1.08 for CIFAR-10,

1.02 for MVTec-AD, and 1.08 for SHTech. For AF, we set ϵ to 160/255, 120/255,

80/255, 20/255 and 80/255 for MNIST, F-MNIST, CIFAR-10, MVTec-AD and

SHTech, respectively. The framing width wAF is set to 1. The number of attack

iterations tmax is set to 1 for FGSM and 5 for the other attacks. All the defenses that

incorporate PGD-AT (i.e., PGD-AT, FD, SAT, RotNet-AT and our PrincipaLS) use

the PGD setting described here for doing AT.

103



Implementation details. We implement experiments by PyTorch [166]. All the

models are trained by Adam optimizer [101] with initial learning rate 5e−5 and weight

decay 1e−4 for 50 epochs (except that 10 epochs for SHTech), where the learning rate

is decreased by a factor of 10 at the 20th and 40th epochs. The batch size is 128. For

PrincipaLS, we set kV to 1, kS to 8, initial ηV to 0.1 and initial ηS to 0.001, where ηV

and ηS are also decreased by a factor of 10 at the 20th and 40th epochs.

7.4.2 White-Box Robustness

The robustness of one-class novelty detection against various white-box attacks is

reported in Table 7.1, where the vanilla AE is used. Without a defense, mAUROC

scores drop significantly under all the white-box attacks, which shows the vulnera-

bility of novelty detectors to adversarial examples. PGD-AT improves adversarial

robustness to a great extent. FD makes a slight improvement upon PGD-AT in most

cases. SAT and Rot-AT seem not effective upon PGD-AT in the context of novelty

detection. SOAP performs well in some cases but not uniformly. Compared to other

methods, APAE generally shows less robustness. The proposed method, PrincipaLS,

significantly increases mAUROC with PGD-AT, leading the other defenses by a de-

cent margin. Moreover, PrincipaLS is consistently better across all the five white-box

attacks, ranging from digital attacks to physically realizable attacks; on five datasets,

ranging from toy datasets to realistic datasets, and from the image domain to the video

domain.

PrincipaLS-knowledgeable attacks. As discussed above, in a white-box attack,

attackers are aware of the presence of the defense mechanism, i.e., PrincipaLS (it

is differentiable at inference time, see Sec. 7.3). However, they count on only the
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Table 7.1: The mAUROC of models under various adversarial attacks.

Dataset Defense Clean FGSM PGD MI-FGSM MultAdv AF Black-box Mean

No Defense 0.964 0.350 0.051 0.022 0.170 0.014 0.790 0.337

PGD-AT [150] 0.961 0.604 0.357 0.369 0.444 0.155 0.691 0.512
FD [239] 0.963 0.612 0.366 0.379 0.453 0.142 0.700 0.516

MNIST SAT [237] 0.947 0.527 0.295 0.306 0.370 0.142 0.652 0.463
[116] RotNet-AT [72] 0.967 0.598 0.333 0.333 0.424 0.101 0.695 0.493

SOAP [193] 0.940 0.686 0.504 0.506 0.433 0.088 0.863 0.574
APAE [61] 0.925 0.428 0.104 0.105 0.251 0.022 0.730 0.366

PrincipaLS (Ours) 0.973 0.812 0.706 0.707 0.725 0.636 0.866 0.775

No Defense 0.892 0.469 0.088 0.047 0.148 0.112 0.562 0.331

PGD-AT [150] 0.890 0.518 0.368 0.348 0.327 0.253 0.540 0.463
FD [239] 0.886 0.524 0.379 0.359 0.335 0.252 0.535 0.467

F-MNIST SAT [237] 0.878 0.444 0.306 0.285 0.273 0.231 0.492 0.416
[235] RotNet-AT [72] 0.891 0.527 0.375 0.351 0.312 0.240 0.541 0.462

SOAP [193] 0.876 0.639 0.475 0.475 0.327 0.274 0.611 0.525
APAE [61] 0.861 0.510 0.174 0.174 0.220 0.135 0.513 0.370

PrincipaLS (Ours) 0.909 0.687 0.613 0.599 0.590 0.605 0.711 0.673

No Defense 0.550 0.186 0.034 0.018 0.025 0.035 0.227 0.154

PGD-AT [150] 0.546 0.236 0.145 0.139 0.107 0.096 0.223 0.213
FD [239] 0.546 0.237 0.147 0.141 0.109 0.103 0.222 0.215

CIFAR-10 SAT [237] 0.537 0.223 0.141 0.135 0.101 0.079 0.219 0.205
[103] RotNet-AT [72] 0.547 0.236 0.139 0.107 0.075 0.092 0.224 0.203

SOAP [193] 0.546 0.270 0.131 0.141 0.096 0.070 0.231 0.211
APAE [61] 0.552 0.259 0.097 0.097 0.077 0.112 0.255 0.207

PrincipaLS (Ours) 0.577 0.320 0.246 0.243 0.202 0.244 0.333 0.309

No Defense 0.667 0.111 0.032 0.022 0.034 0.061 0.595 0.217

PGD-AT [150] 0.655 0.123 0.053 0.040 0.054 0.062 0.569 0.222
FD [239] 0.658 0.145 0.061 0.050 0.061 0.066 0.572 0.230

MVTec-AD SAT [237] 0.636 0.083 0.029 0.024 0.035 0.044 0.553 0.201
[10] RotNet-AT [72] 0.677 0.123 0.050 0.038 0.049 0.059 0.586 0.226

SOAP [193] 0.540 0.167 0.092 0.056 0.095 0.456 0.582 0.284
APAE [61] 0.621 0.142 0.058 0.044 0.058 0.120 0.553 0.228

PrincipaLS (Ours) 0.638 0.334 0.243 0.238 0.197 0.164 0.542 0.337

No Defense 0.523 0.204 0.034 0.038 0.006 0.000 0.220 0.146

PGD-AT [150] 0.527 0.217 0.168 0.154 0.100 0.000 0.221 0.198
FD [239] 0.528 0.226 0.189 0.181 0.132 0.002 0.229 0.212

SHTech SAT [237] 0.529 0.184 0.110 0.092 0.040 0.000 0.199 0.165
[129] RotNet-AT [72] 0.516 0.220 0.163 0.158 0.113 0.000 0.229 0.200

SOAP [193] 0.432 0.024 0.002 0.000 0.002 0.181 0.202 0.120
APAE [61] 0.510 0.215 0.048 0.050 0.011 0.000 0.207 0.149

PrincipaLS (Ours) 0.498 0.274 0.223 0.217 0.175 0.051 0.308 0.249

novelty detection objective (i.e., MSE loss, see Eq. (7.2)) to generate adversarial

examples. We follow the practice of the most recent adversarial defense studies such

as [193], to thoroughly evaluate the proposed defense mechanism. More precisely,
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we try to find an adaptive attack [164, 206] by giving the full knowledge of the

PrincipaLS defense mechanism to the attacker. We refer to this type of attack as

PrincipaLS-knowledgeable attack.

We construct two PrincipaLS-knowledgeable attacks, Knowledgeable A and

Knowledgeable B, on top of the PGD attack. They jointly optimize Eq. (7.2) and

an auxiliary loss developed with the knowledge of PrincipaLS. Knowledgeable A

attempts to minimize the L2-norm between the latent space before and after the Prin-

cipaLS transformation. The intuition is to void PrincipaLS such that the input and the

output latent space of PrincipaLS become closer. In other words, Knowledgeable A

replaces Eq. (7.2) with the following equation:

L = y ∥ X̂t − Xt ∥2 −λA ∥ Zt
PrincipaLS − Zt

adv ∥2, (7.14)

where λA is a trade-off parameter. Knowledgeable B attempts to maximize the L2-

norm between the latent space of the current adversarial example Xt and its clean

counterpart X0 after the PrincipaLS transformation. The intuition is to keep the

adversarial latent space away from the clean one. In other words, Knowledgeable B

replaces Eq. (7.2) with the following equation:

L = y ∥ X̂t − Xt ∥2 +λB ∥ Zt
PrincipaLS − Z0

PrincipaLS ∥2, (7.15)

where λB is a trade-off parameter. When λA = 0 or λB = 0, the PrincipaLS-

knowledgeable attacks reduce to the conventional white-box attacks.

In Figure 7.3, we can observe that mAUROC monotonously increases as |λA| or

|λB| increases. That is, these PrincipaLS-knowledgeable attacks cannot further reduce

PrincipaLS’s mAUROC, and the additional auxiliary loss terms would attenuate the
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Figure 7.3: The mAUROC of PrincipaLS under PrincipaLS-knowledgeable attacks with
varied trade-off parameters. (a) Knowledgeable A. (b) Knowledgeable B.

MSE loss gradients. This indicates that attackers cannot straightforwardly benefit

from the knowledge of PrincipaLS. Hence, the conventional white-box attack still

has the greatest attacking strength. This result shows that it is not easy to find a

stronger attack to break PrincipaLS, even with the full knowledge of the PrincipaLS

mechanism.

7.4.3 Black-Box Robustness

The robustness against black-box attacks [164] is shown in the second last column

of Table 7.1. Here we consider a naturally trained (i.e., train with only clean data)

GPND as a substitute model and apply MI-FGSM, which has better transferability, to

generate black-box adversarial examples for target models. As we can see, the defenses

with PGD-AT degrade black-box robustness, which is identical to the observation in

classification tasks [207]. SOAP, which is without using AT, shows better black-box

robustness. PrincipaLS greatly improves the black-box robustness on most datasets

even with PGD-AT. The naturally trained PrincipaLS model achieves 0.907, 0.742
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Table 7.2: The mAUROC of models under PGD attack. Various novelty detectors are used.

Dataset Defense Test type AE VAE AAE ALOCC GPND ARAE Puzzle-AE

No Defense Clean 0.964 0.979 0.973 0.961 0.946 0.965 0.967
No Defense PGD 0.051 0.087 0.056 0.141 0.128 0.133 0.295

PGD-AT [150] 0.357 0.521 0.427 0.312 0.582 0.341 0.319
MNIST FD [239] 0.366 0.525 0.419 0.319 0.551 0.350 0.322

[116] SAT [237] 0.295 0.485 0.470 0.330 0.527 0.254 0.286
RotNet-AT [72] PGD 0.333 0.501 0.507 0.361 0.551 0.314 0.315

SOAP [193] 0.504 0.608 0.398 0.606 0.425 0.522 0.533
APAE [61] 0.104 0.155 0.240 0.202 0.229 0.191 0.278

PrincipaLS (Ours) 0.706 0.739 0.608 0.693 0.741 0.695 0.599

No Defense Clean 0.892 0.914 0.912 0.901 0.915 0.901 0.911
No Defense PGD 0.088 0.223 0.152 0.177 0.177 0.262 0.438

PGD-AT [150] 0.368 0.538 0.512 0.367 0.539 0.420 0.463
F-MNIST FD [239] 0.379 0.533 0.513 0.370 0.542 0.428 0.470

[235] SAT [237] 0.306 0.504 0.499 0.332 0.530 0.351 0.410
RotNet-AT [72] PGD 0.375 0.542 0.509 0.365 0.524 0.396 0.429

SOAP [193] 0.475 0.509 0.313 0.477 0.386 0.548 0.521
APAE [61] 0.174 0.366 0.300 0.246 0.398 0.310 0.409

PrincipaLS (Ours) 0.613 0.604 0.599 0.612 0.626 0.599 0.629

No Defense Clean 0.550 0.552 0.555 0.551 0.559 0.578 0.544
No Defense PGD 0.034 0.073 0.051 0.037 0.027 0.087 0.141

PGD-AT [150] 0.145 0.177 0.195 0.146 0.182 0.157 0.167
CIFAR-10 FD [239] 0.147 0.180 0.206 0.150 0.187 0.152 0.170

[103] SAT [237] 0.141 0.170 0.186 0.141 0.181 0.107 0.160
RotNet-AT [72] PGD 0.139 0.163 0.161 0.105 0.147 0.101 0.132

SOAP [193] 0.131 0.094 0.043 0.172 0.075 0.117 0.204
APAE [61] 0.097 0.179 0.171 0.095 0.062 0.154 0.193

PrincipaLS (Ours) 0.246 0.247 0.252 0.244 0.242 0.245 0.248

and 0.332 mAUROC on MNIST, F-MNIST and CIFAR-10, respectively, under the

black-box attack.

7.4.4 Generalizability

Table 7.2 shows the adversarial robustness of various state-of-the-art novelty detection

models. All of them are susceptible to adversarial attacks. We attach the PrincipaLS

module to these models to protect them. We can see that PrincipaLS uniformly

robustifies all of these novelty detectors and significantly outperforms the other

defense approaches. This confirms that PrincipaLS can be applied to a wide variety of
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Table 7.3: The mAUROC of models under clean data.

Defense MNIST F-MNIST CIFAR-10

No Defense 0.964 0.892 0.550
FD [239] 0.965 0.892 0.551

SAT [237] 0.949 0.883 0.543
RotNet-AT [72] 0.963 0.897 0.554

SOAP [193] 0.940 0.876 0.546
APAE [61] 0.925 0.861 0.552

PrincipaLS (Ours) 0.973 0.922 0.578

the present novelty detection methods, demonstrating its excellent generalizability.

7.4.5 Performance on Clean Data

We also evaluate the performance of PrincipaLS on clean data. In this experiment,

all the models are naturally trained. As shown in Table 7.3, PrincipaLS improves the

performance upon the original network architecture (No Defense), while, the other

defenses do not make obvious improvements. This shows that PrincipaLS generalizes

better for both clean data and adversarial examples. PrincipaLS enjoys this benefit

because the principal latent components are learned from only the latent space of

the known class. Due to this, when transforming the latent space of any novel class

image, PrincipaLS projects it into the known class space defined by the principal latent

component. This brings the transformed latent space closer to the latent space of the

known class, resulting in the decoder trying to reconstruct it into a known class image.

Subsequently, this produces high reconstruction error for the novel class images while

barely affecting the reconstruction of the known class images.
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Table 7.4: The inference speed of each defense. The test images are from CIFAR-10 with an
input size of 32 × 32. The experiment is performed on a single NVIDIA RTX 2080 Ti GPU.

Defense Speed (FPS) Difference

No Defense 18.0 ×103

FD [239] 6.8 ×103 -62.2%
SAT [237] 18.2 ×103 +1.1%

RotNet-AT [72] 18.0 ×103 -0.0%
SOAP [193] 3.1 ×103 -82.2%

APAE [61] 4.0 ×103 -77.8%
PrincipaLS (Ours) 15.6 ×103 -13.3%

Table 7.5: The mAUROC of different PrincipaLS variants under PGD attack.

Defense MNIST F-MNIST CIFAR-10

PGD-AT [150] 0.357 0.368 0.145
Vector-PCA 0.566 0.499 0.215

Vector-PCA+FD 0.582 0.505 0.215
PrincipaLS (Ours) 0.706 0.613 0.246

7.4.6 Inference Speed

The PrincipaLS module is lightweight and computationally efficient. We test the

inference speed of each defense via images from CIFAR-10 with an input size of

32 × 32. The experiment is performed on a single NVIDIA RTX 2080 Ti GPU.

As can be seen in Table 7.4, when the PrincipaLS module is attached to an AE, the

inference speed only decreases by 13.3%. This cost turns to significant improvements

in robustness. We use a compact AE architecture as described in Sec. 7.4.1. If a

deeper AE architecture is considered, PrincipaLS’s relative computational overhead

will be even lower. In contrast, FD contains a heavy feature denoising block which

decreases inference speed by 62.2%. SOAP and APAE rely on adversarial purification

processes at inference time, greatly increasing computational costs.
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Table 7.6: The trade-off analysis of PrincipaLS’s kV and kS values on MNIST dataset.

Input Original AE kV = 1 kV = 4 kV = 16 kV = 64

Clean 0.964 0.973 0.975 0.971 0.971
PGD 0.357 0.706 0.621 0.581 0.557

Input Vec-PCA only kS = 1 kS = 4 kS = 8 kS = 12

Clean 0.968 0.937 0.951 0.973 0.973
PGD 0.566 0.549 0.681 0.706 0.667

7.4.7 Analysis

Ablation study. Table 7.5 reports the results of different PrincipaLS variants. First,

Vector-PCA alone significantly improves the robustness upon PGD-AT. This shows

that the mechanism of replacing perturbed latent vectors by the incrementally-trained

principal latent vector is effective. As discussed earlier, in PrincipaLS the adversaries

can stay only on the scaling factors of the principal latent vector. Next, we further

remove the adversaries with the help of denoising operation on the spatial dimension.

We try to deploy a feature denoising block [239] after the forward Vector-PCA. This

baseline is denoted as Vector-PCA+FD. This makes a slight improvement over the

Vector-PCA baseline. Finally, the complete PrincipaLS uses Spatial-PCA for this

purpose instead, achieving great mAUROC increase. This shows Spatial-PCA’s

advantage over FD in our case.

Trade-off of kV and kS values. We look into the trade-off of PrincipaLS’s kV and

kS values. Table 7.6 reports the results on the MNIST dataset. For both varying kV

(fix kS=8) and kS (fix kV=1), we observe that larger k leads to lower PGD accuracy

but higher clean accuracy in general. The reason is that using larger k retains more

semantic information of feature maps while keeping more adversaries simultaneously.

kS=1 is an exception. It has lower PGD accuracy because it loses too much information.
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Figure 7.4: The mAUROC of models under PGD attack with varied numbers of attack
iterations tmax.

Figure 7.5: The mAUROC of models under PGD attack with varied perturbation sizes ϵ.

According to this trade-off analysis, we set kV=1 and kS=8 for PrincipaLS as discussed

in Sec. 7.4.1.

Attack budgets. To fully evaluate the effectiveness of the proposed PrincipaLS, we

test its scalability to different attack budgets. We vary the attack budgets by two

aspects: The number of attack iterations tmax and perturbation size ϵ. The results are

presented in Figure 7.4 and Figure 7.5, respectively.

First, we can see that the attack strength does not increase obviously along with

the increase of tmax. This observation is consistent with that of Madry et al. [150] and
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Figure 7.6: Mean L2-norm between the latent space of PGD adversarial examples and that of
their clean counterpart on different defenses. The values are the mean over an entire dataset.

Xie et al. [239]. The proposed PrincipaLS shows constant adversarial robustness and

consistently performs better than No Defense and PGD-AT under different tmax. On

the other hand, the attack strength significantly increases along with the increase of ϵ.

It can be observed that PrincipaLS consistently demonstrates better robustness under

different ϵ. Apparently, PrincipaLS is scalable to different attack budgets.

Stability of latent space. We compute the mean L2-norm between the latent space of

adversarial examples and that of their clean counterpart: ∥ Zadv − Z ∥2. As can be

seen in Figure 7.6, PrincipaLS’s mean L2-norm is three orders of magnitude smaller

than the other defenses. This indicates that PrincipaLS’s latent space is barely affected

by adversaries, showing PrincipaLS’s effectiveness in adversary removal.

Reconstruction errors. For an AE-style novelty detection model, normal data and

anomalous data are expected to get low and high reconstruction errors, respectively.

The model follows this behavior given clean data, as shown in Figure 7.7 (a). When an

attacker attempts to maximize the reconstruction errors of normal data and minimize

that of anomalous data, the model would make wrong predictions, shown in Figure 7.7

(b). Figure 7.7 (c) shows that PGD-AT pulls back the enlarged reconstruction errors of

normal data, but they still overlap for the anomalous data. In Figure 7.7 (d), it can be
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Figure 7.7: Histograms of reconstruction errors. (a) No Defense under clean data. (b) No
Defense under PGD attack. (c) PGD-AT under PGD attack. (d) PrincipaLS under PGD attack.
Digit 0 of MNIST is set to normal data, and the other digits are anomalous.

observed that PrincipaLS pushes the reconstruction errors of anomalous data with a

better margin. Although the reconstruction errors of normal data also increase, the gap

between normal and anomalous data is retained resulting in PrincipaLS performing

better under attacks.

Reconstructed images. Figure 7.8 compares the reconstructed images of No Defense

model and PrincipaLS under PGD and AF attacks. Digit 2 of MNIST is used as the

known class. In the PGD case, No Defense model produces decent reconstructions

for both adversarial normal and anomalous data. Hence, the reconstruction error

gap between normal data and anomalous data is insufficiently large. In the AF case,

No Defense model still captures the shape of the adversarial anomalous data and

thus produces fair reconstructions, but it fails to reconstruct recognizable patterns for

adversarial normal data. Therefore, the resulting reconstruction errors would cause

wrong predictions. Such observations are consistent with the quantitative results that

it is not adversarially robust. In contrast, PrincipaLS reconstructs every data into the

known class of digit 2. Hence, even under attacks, PrincipaLS can obtain very high
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Figure 7.8: Reconstructions under (a) PGD attack with ϵ = 76/255 and (b) AF attack with
framing with = 1, ϵ = 255/255. Digit 2 is set to normal data, and the other digits are
anomalous.

reconstruction errors from anomalous data and low errors from normal data.

Evaluation with FPR at 95% TPR. In addition to the AUROC metric, in Table 7.7,

we also provide the mean of FPR at 95% TPR comparison for different defenses

on the MNIST dataset [116]. We observe a similar trend as that of mAUROC (see

Table 7.1). The proposed PrincipaLS outperforms all the other defense approaches.
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Table 7.7: The mean of FPR at 95% TPR under PGD attack.

Defense Clean PGD

PGD-AT [150] 0.229 0.912
FD [239] 0.243 0.914

SAT [237] 0.360 0.916
RotNet-AT [72] 0.252 0.909

PrincipaLS (Ours) 0.170 0.803

7.5 Discussion

7.5.1 Further Comparison with ARAE

ARAE [186] somewhat refers to the adversarial robustness of novelty detection though

its main purpose is improving performance. As mentioned in Sec. 7.2, ARAE’s adver-

sarial robustness is not thoroughly evaluated. In this section, we make a comprehensive

comparison with ARAE.

First, ARAE evaluates adversarial robustness by crafting adversarial examples

from only the normal test data (the known class). We refer to this attack as PGD-

normal. Instead, our attack method crafts adversarial examples from every test data

regardless of their class (see Sec. 7.2). We reproduce PGD-normal with the same

setting as in Sec. 7.4.1. As shown in Table 7.8, the proposed attack (denoted as PGD)

is stronger than PGD-normal, in which PGD obtains lower mAUROC across all the

considered defense methods and datasets. It is intuitive that perturbing every input

data poses a stronger attack.

Second, ARAE performs AT on the latent space-based adversarial examples. We

name this attack as PGD-latent. Instead, in this chapter, we perform AT on the output

space-based adversarial examples (see Sec. 7.2). We reproduce PGD-latent with the

same setting as in Sec. 7.4.1. Specifically, PGD-latent replaces the loss objective
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Table 7.8: The mAUROC of models under PGD, PGD-normal, PGD-latent, PGD-clean
and PGD-anomalous attacks. Underlines denote the lowest mAUROC, which indicates the
strongest attack.

Defense Attack method MNIST F-MNIST CIFAR-10

Clean 0.964 0.892 0.550

PGD 0.051 0.088 0.034
No Defense PGD-normal 0.167 0.284 0.111

PGD-latent 0.773 0.715 0.433
PGD-clean 0.106 0.180 0.070

PGD-anomalous 0.939 0.788 0.332

PGD 0.357 0.368 0.145
PGD-normal 0.745 0.656 0.309

PGD-AT [150] PGD-latent 0.914 0.784 0.448
PGD-clean 0.863 0.802 0.403

PGD-anomalous 0.753 0.677 0.328

PGD 0.366 0.379 0.147
PGD-normal 0.750 0.654 0.309

FD [239] PGD-latent 0.906 0.762 0.447
PGD-clean 0.871 0.794 0.401

PGD-anomalous 0.761 0.673 0.331

PGD 0.706 0.613 0.246
PGD-normal 0.905 0.786 0.399

PrincipaLS (Ours) PGD-latent 0.962 0.882 0.547
PGD-clean 0.936 0.867 0.520

PGD-anomalous 0.881 0.781 0.407

Eq. (7.2) with follows:

L(Xt, X, y) = y ∥ Enc(Xt)− Enc(X) ∥2, (7.16)

where Enc denotes the encoder in an AE. As can be seen in Table 7.8, PGD is much

stronger than PGD-latent, in which PGD obtains lower mAUROC across all the

considered defense methods and datasets. Therefore, we perform AT by minimizing

Eq. (7.2) to make a stronger defense.

Third, a novelty detector would not know whether an input image is adversarial

or not during inference. In other words, if the given input is an adversarial image,

the clean counterpart is not available at test time. Hence, a novelty detector should
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compute the novelty score by the reconstruction error between the reconstructed image

and the "input image" (regardless it is clean or adversarial) instead of that between the

reconstructed image and the "clean image". For instance, if a given test image is an

adversarial example Xadv, a novelty detector should compute ∥ X̂adv −Xadv ∥2 instead

of ∥ X̂adv −X ∥2 as the novelty score, where X is the clean image. Therefore, to craft a

strong adversarial example, one should maximize the reconstruction error between the

reconstructed image and the "input image" (regardless it is clean or adversarial). The

proposed attack is based on this nature; that is, at each attack iteration, we maximize

the reconstruction error between the current adversarial example and the reconstruction

of that current adversarial example (see Eq. (7.2)). We make an attack variant, PGD-

clean, which maximizes the reconstruction error between the clean image and the

reconstruction of the current adversarial example. Specifically, PGD-clean replaces

the loss objective Eq. (7.2) with follows:

L(X̂t, X, y) = y ∥ X̂t − X ∥2 . (7.17)

ARAE uses this form. As shown in Table 7.8, PGD is much stronger than PGD-clean,

in which PGD obtains lower mAUROC across all the considered defense methods

and datasets. Therefore, we perform AT by minimizing Eq. (7.2) to make a stronger

defense.

In summary, the proposed attack is much stronger than PGD-normal, PGD-latent

and PGD-clean. Hence, we can carefully and strictly evaluate the adversarial robust-

ness of novelty detectors. Moreover, conducting AT on a stronger attack can enhance

robustness to a greater extent, so using the proposed attack for doing AT can make

novelty detectors much more robust. We hope to provide researchers with a solid
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benchmark for future work on the adversarial robustness of novelty detection.

7.5.2 Further Comparison with APAE

To the best of our knowledge, APAE [61] might be the only present defense designed

for anomaly detection. However, as mentioned in Sec. 7.2, APAE’s adversarial

robustness is not thoroughly evaluated. In this section, we make more comparisons

with APAE.

First, APAE evaluates adversarial robustness by crafting adversarial examples

from only the anomalous test data (the unknown classes), which is contrary to ARAE’s

PGD-normal (Sec. 7.5.1). We name this attack PGD-anomalous. Instead, our attack

method crafts adversarial examples from every test data regardless of their class (see

Sec. 7.2). We reproduce PGD-anomalous with the same setting as in Sec. 7.4.1. As

shown in Table 7.8, the proposed attack (denoted as PGD) is stronger than PGD-

anomalous, in which PGD obtains lower mAUROC across all the considered defense

methods and datasets. It is intuitive that perturbing every input data poses a stronger

attack. On the other hand, No Defense attains the best mAUROC compared with the

other defenses. The reason is that these defenses use only normal data to do AT, so they

overfit the adversarial normal data and show less robustness against PGD-anomalous.

Second, APAE claims that AT does not apply to the novelty detection problem.

In contrast, in this chapter, we demonstrate that AT actually does apply to novelty

detection, in which we can craft adversarial examples for the normal data and use

them to train the target model. Indeed, using AT is less robust to PGD-anomalous as

shown in Table 7.8. However, for the stronger attacks (i.e., the proposed attack) that

contain adversarial normal data, AT can significantly improve the robustness.
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Apparently, we construct a more appropriate evaluation protocol to fully test the

adversarial robustness of novelty detectors. With a proper evaluation protocol, we are

able to design a much better defense method accordingly.

7.5.3 Comparison with the Defenses that Use Dimensionality Re-
duction Techniques

A few studies employ vanilla PCA to counter adversarial attacks for the image clas-

sification problem. Hendrycks & Gimpel [71] and Jere et al. [88] utilized PCA to

detect adversarial examples. Li & Li [123] performed PCA in the feature domain

and used a cascade classifier to detect adversarial examples. However, detection is

inherently weaker than defense in terms of resisting adversarial attacks. Bhagoji et al.

[11] mapped each input image into a dimensionality-reduced PCA space to defend

against adversarial attacks, but this fails to resist white-box attacks [18]. As discussed

in Sec. 7.1, doing image classification requires a model containing sophisticated

semantic information, and large manipulation such as dimensionality reduction would

hurt the model capability. Hence, it is counterintuitive to use dimensionality reduction

for robustifying image classification models.

In contrast, we target a different downstream application, one-class novelty de-

tection. As discussed in Sec. 7.1, novelty detection has a peculiar property in that

a novelty detector’s latent space can be manipulated to a larger extent as long as it

retains the known class information. This is naturally suitable for using dimension-

ality reduction techniques to remove adversaries and maintain the model capability

simultaneously. Furthermore, we propose a novel training scheme that learns the

incrementally-trained cascade principal components in the latent space. The proposed

defense method is fully differentiable at inference time, and it is highly robust to
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white-box attacks as shown in Sec. 7.4.2.

7.5.4 Comparison with Vector Quantization

The proposed PrincipaLS learns a principal latent vector, which is adversary-free, to

replace perturbed latent vectors and enhance adversarial robustness. An alternative

way of learning the adversary-free latent vectors is using vector quantization. VQ-

VAE [215] is an AE variant that uses the vector quantization technique to improve

generation ability. To the best of our knowledge, VQ-VAE has not been adopted in

the context of novelty detection. In this section, we implement VQ-VAE for one-

class novelty detection and evaluate its adversarial robustness. We set the number of

embeddings to 4 for MNIST, 8 for F-MNIST and 256 for CIFAR-10. These numbers

achieve the best robustness according to our experiments.

Because the quantization step is non-differentiable, it causes obfuscated gradients

[5]. Hence, we build a neural network, which consists of four fully connected

layers, to learn the mapping from the latent vectors (the output of the encoder) to the

quantized latent vectors (corresponding embedding vectors). Since the neural network

is differentiable, we use it to approximate the gradients of the non-differentiable part

to perform PGD attack [150]. For comparison, we train another neural network with

the same architecture to learn the mapping from the latent space to the principal latent

space of PrincipaLS.

Table 7.9 reports the experimental results. Comparing PrincipaLS (PGD examples

are generated from the entire differentiable network) and PrincipaLS* (PGD examples

are generated from the neural network gradient approximator), we can see that the

neural network still cannot perfectly approximate the gradients, so the produced attack
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Table 7.9: The mAUROC of VQ-VAE and PrincipaLS under PGD attack. "*" denotes that
PGD examples are generated from a neural network gradient approximator.

Defense MNIST F-MNIST CIFAR-10

VQ-VAE [215]* 0.542 0.588 0.248
PrincipaLS (Ours) 0.706 0.613 0.246

PrincipaLS (Ours)* 0.816 0.755 0.325

is weaker. However, although attacked by this weaker attack, VQ-VAE achieves lower

mAUROC than PrincipaLS on MNIST and F-MNIST, and much lower mAUROC

than PrincipaLS* on all the datasets. This shows that PrincipaLS has better robustness

than VQ-VAE.

The explanations are as follows. First, PrincipaLS’s principal latent vector

is learned by the incrementally-trained cascade PCA process, which is not only

adversary-free but also contains important features that can properly substitute the

original latent vectors. In contrast, VQ-VAE’s embedding vectors are randomly ini-

tialized. Even using the training strategy in [215], the embedding vectors are still not

close to the original latent vectors. Therefore, PrincipaLS’s principal latent vector is a

better adversary-free substitute. Second, after Vector-PCA, PrincipaLS’s Vector-PCA

map stores the scaling factors of the principal latent vector with spatial information,

so we can perform Spatial-PCA on it to further remove the remaining adversaries. In

contrast, the vector quantization map stores the indices of the embedding vectors, and

we cannot do further operations on these indices. These demonstrate the advantages

of the proposed PrincipaLS.
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Table 7.10: The AUROC of multi-class novelty detection on MNIST. Digit 0 and digit 2 are
set to the known classes.

Defense Clean PGD

No Defense 0.926 0.051
PGD-AT [150] 0.926 0.052

FD [239] 0.926 0.066
PrincipaLS (Ours) 0.954 0.412

Figure 7.9: Reconstructions under PGD attack with ϵ = 25/255. Digit 0 and digit 2 are set
to normal data, and the other digits are anomalous.

7.5.5 Applying to Multi-Class Novelty Detection

Multi-class novelty detection [162, 169] has the same problem setting as one-class

novelty detection except that it considers multiple known classes. It is more chal-

lenging, as it needs to characterize the underlying distributions of multiple known

classes and identify novel classes given such knowledge of multiple known classes.

We explore applying the proposed PrincipaLS to multi-class novelty detection.

In this experiment, we define digit 0 and digit 2 of MNIST dataset as the known

classes (normal data), and the rest of the digits are novel classes (anomalous data). In

Table 7.10, we can find that PGD-AT and FD do not improve adversarial robustness,
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which demonstrates that image classification-based defense approaches cannot protect

multi-class novelty detectors. In contrast, PrincipaLS significantly increases PGD

accuracy, showing its potential for applying to multi-class novelty detection. Figure 7.9

shows that PrincipaLS reconstructs every normal and anomalous data into the known

classes of digit 0 or digit 2. Therefore, even under adversarial attacks, PrincipaLS

can obtain very high reconstruction errors from anomalous data and low errors from

normal data. Furthermore, PrincipaLS achieves higher clean accuracy, as the principal

latent components can exclusively characterize the latent space of the known classes

(see Sec. 7.4.5).

7.5.6 Applying to Image Classification

The proposed PrincipaLS method is specifically designed for the novelty detection

task. As discussed in Sec. 7.1 and Sec. 7.3, it leverages the task-specific knowledge

that novelty detectors are only required to retain information about normal data,

thereby resulting in the preferred high reconstruction errors for anomalous data. This

property allows PrincipaLS to largely manipulate the latent space of novelty detectors

to remove adversaries, while maintaining the performance on clean data. It can be

noted that such property is unique to novelty detection, as most visual recognition

problems (e.g., image classification) require a model containing high-level semantic

information. Hence, a large manipulation on the latent space would limit the model

capacity and thus degrade accuracy.

To demonstrate this, we apply PrincipaLS to the image classification task on

CIFAR-10 [103]. We attach the PrincipaLS module to ResNet-18 [69] between the

last convolutional layer and the fully-connected layer. We use PGD attack with
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Table 7.11: Image classification accuracy (%) on CIFAR-10.

Defense Clean PGD

No Defense 94.0 0.0
PGD-AT [150] 83.3 51.2

FD [239] 83.3 51.5

PrincipaLS kV = 1 36.0 30.6
PrincipaLS kV = 8 71.1 47.0

PrincipaLS kV = 64 72.7 48.3

ϵ = 8/255 for testing and AT. Table 7.11 shows that PGD-AT and FD, which are

originally designed for image classification, effectively improve adversarial robustness.

As expected, PrincipaLS obtains both lower clean and PGD accuracies. The reason

is that the PrincipaLS operation reduces the model capacity for learning high-level

semantic representations, making the latent space insufficiently discriminative for

classification. We can see that larger kV achieves higher PGD accuracy, which is an

opposite trend to that in novelty detection (see Table 7.6). In other words, different

from novelty detectors, image classifiers cannot enjoy the principal latent space since

it loses too much semantic information.

PrincipaLS, designed for novelty detection, does not work on image classification;

conversely, the defenses designed for image classification are not that effective on

novelty detection as shown in Table 7.1 and Table 7.2. Apparently, these two vision

tasks have different characteristics and thus need different adversarial defenses. This

demonstrates the need for a defense method specifically designed for novelty detection

and thus highlights the contribution of this chapter.
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7.5.7 Sanity Checks to Evaluation

To further verify that the proposed PrincipaLS’s robustness is not due to obfuscated

gradients, we report our results on the basic sanity checks introduced in [5]:

• Table 7.1 shows that iterative attacks (PGD and MI-FGSM ) are stronger than

one-step attacks (FGSM).

• Table 7.1 shows that white-box attacks are stronger than black-box attacks (by

MI-FGSM).

• Unbounded attacks reach 100% attack success rate (AUROC drops to 0.000) on

all the five datasets.

• Figure 7.5 shows that increasing distortion bound increases attack success

(decreases AUROC).

7.6 Summary

In this chapter, we study the adversarial robustness in the context of the one-class

novelty detection problem. We show that existing novelty detection models are

vulnerable to adversarial perturbations and then propose a defense method referred to

as PrincipaLS. Specifically, PrincipaLS purifies the latent space by the incrementally-

trained cascade PCA process. Moreover, we construct a generic evaluation framework

to fully test the effectiveness of the proposed PrincipaLS. We perform extensive

experiments on multiple datasets with multiple existing novelty detection models and

consider various attacks to show that PrincipaLS consistently improves adversarial

robustness.
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Part II

Robust Computer Vision Against
Domain Shifts
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Chapter 8

Learning Feature Decomposition for
Domain Adaptive Monocular Depth
Estimation
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8.1 Motivation

Depth information is essential to many robotic applications, e.g., localization, map-

ping and obstacle detection. Existing depth acquisition devices, such as Lidar and

structured-light sensors, are typically bulky, heavy and power-consuming. Therefore,

they are unsuitable for compact robotic platforms. This motivates the progress of

Monocular Depth Estimation (MDE) that predicts depth from a single image, as it has

low cost, small size, high power efficiency, and no need to re-calibrate after a long

time of use.

Recent advances in deep learning have enabled supervised learning approaches

to perform MDE [12, 44, 48, 115], but obtaining ground-truth depth annotations is

costly and labor-intensive. Moreover, if we can only obtain the depth annotations

corresponding to a specific camera for training, the domain shift problem would

happen when we test the trained model on another camera’s data (see details in

Chapter 2). These challenges hinder the MDE technique from applying to compact

robotic platforms. Hence, developing algorithms that can transfer the knowledge

learned from one labeled dataset to another unlabeled dataset becomes increasingly

important.

We approach this via UDA. Existing works mainly rely on a synthetic-to-real

translation or vice versa to bridge the domain gap [2, 4, 29, 148, 171, 259, 260].

Although these works have achieved great improvements, image translation itself is

not an easy task. Images may not be perfectly translated to another domain or contain

distortion after translation. Another research stream performs feature alignment

through adversarial learning [29, 109, 171, 260]. Nevertheless, it is difficult to

completely align the entire feature space from different domains owing to the domain
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shift problem.

To overcome these challenges, inspired by recent approaches [171, 260] and

disentangled learning techniques [21, 112, 117, 119, 130], we assume that the feature

space can be decomposed into content and style components. The content component

consists of semantic features that are shared across different domains. For example,

consider images of indoor scenes from two different datasets. Objects like tables,

chairs and beds are content information. Such semantic features are more domain-

invariant, so it is easier to align the content component from different domains. In

contrast, the style component is domain-specific. For instance, style features like

texture and color are unique to the scenes captured by a particular camera, so aligning

the style features may not be practical. Hence, to train a MDE model working for the

target data, we suggest discarding the source-specific style component that hinders

adaptation to narrow the domain gap, but including the target-specific style component

that is still useful for the primary MDE task.

Based on the above intuitions, we propose a novel UDA method for the MDE task,

referred to as Learning Feature Decomposition for Adaptation (LFDA): (1) Different

from prior works attempting to align the entire feature maps of source and target data

[29, 109, 171, 260], LFDA only needs to align the content features that already have

a much smaller domain gap. (2) To further improve the content feature alignment,

LFDA individually estimates the statistics of different feature domains via separate

BN [22, 139, 236], which can bypass the domain-specific elements in the feature

space. The separate BN structure also helps to properly integrate the content and

style features of the target data. (3) With the proposed decomposition learning, LFDA

bridges the domain gap more efficiently. In particular, it keeps a relatively compact
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Figure 8.1: Example results of domain adaptive MDE on the Foggy Cityscapes dataset [184].
It is a scenario of adverse weather adaptation. "Conventional" refers to the method based on
the usual domain adversarial learning [52]. The red boxes highlight regions where our method
makes improvements.

structure at inference time, leading to lower computational complexity compared to

the recent advances which require a sophisticated image translation network during

inference [171, 259]. (4) In addition, most existing approaches rely on a multi-stage

training procedure that first pre-trains each sub-networks separately then fine-tunes

them together [2, 4, 148, 171, 259]. Instead, LFDA is trained end-to-end in a single

stage, making it more feasible to deploy in practical applications.

In evaluation, the majority of existing studies only focus on synthetic-to-real

adaptation [2, 4, 29, 109, 171, 259, 260]. In contrast, we apply our method to three

broad scenarios of domain adaptation: (1) cross-camera adaptation, (2) synthetic-

to-real adaptation, and (3) adverse weather adaptation [220]. To the best of our

knowledge, this chapter is the first attempt that considers all the three scenarios for the

MDE task. Particularly, adverse weather adaptation is the first time explored for MDE.

Figure 8.1 shows examples of adverse weather adaptation results. Compared to a

conventional approach, our LFDA can obtain more accurate depth predictions for cars,

traffic signs, sky, etc., under foggy weather conditions. More extensive experiments in

Sec. 8.3 demonstrate that LFDA achieves promising performance in all the scenarios.
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8.1.1 Related Work

Deep learning has achieved high accuracy for MDE by supervised learning. Eigen et

al. [44] introduced a deep learning-based MDE approach with a multi-scale network.

Afterward, Laina et al. [115] presented a deeper network with a fully convolutional

network and residual learning. Fu et al. [48] divided depth ranges into multiple

depth bins and solved MDE in a classification manner using an ordinal regression

loss. Recently, Bhat et al. [12] developed a transformer-based block to adaptively

adjust the depth bins for each image. Several studies explore training MDE models via

self-supervision. Notable algorithms include exploiting epipolar geometry constraints

from stereo pairs [54, 57, 111] and utilizing multi-view information from monocular

video sequences [152, 262].

Domain adaptation for MDE is first introduced by Atapour et al. [4], where they

train a depth estimation network using synthetic images then translated real images

to synthetic style during inference. AdaDepth [109] employs adversarial learning

at both feature and output spaces to align the distributions between the source and

target domains. T2Net [260] transfers synthetic images to real style to train a MDE

network. CrDoCo [29] and GASDA [259] use bidirectional style transfer to learn

the mapping between two domains, where GASDA also exploits epipolar geometry

structure for real images. SharinGAN [171] translates both synthetic and real data

to a single shared domain to decrease their discrepancy. DESC [148] leverages an

additional semantic segmentation network and edge detection to provide semantic and

edge guidance. Akada et al. [2] adopt recent self-supervised learning techniques to

learn domain-invariant representations. However, they either suffer from sub-optimal

domain alignment or high computational complexity during inference.
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Figure 8.2: Overview of the proposed LFDA framework. Econ: shared content encoder,
Es

sty: source-specific style encoder, Et
sty: target-specific style encoder, D: depth estimation

task decoder, G: generator, and Disc: domain discriminator. (a) Main information flow.
(b) Learning translations for feature decomposition. (c) Separate BN structure for feature
alignment and integration.

8.2 Proposed Method

8.2.1 Framework

An overview of the proposed LFDA is shown in Figure 8.2. The entire framework

consists of eight sub-networks: shared content encoder Econ, source-specific style

encoder Es
sty, target-specific style encoder Et

sty, MDE task decoder D, generator G,

domain discriminator Disc, source-to-target translation discriminator Discs˃t, and

target-to-source translation discriminator Disct˃s. {Econ, D} composes as a MDE

primary task network, which is a standard encoder-decoder architecture.

Feature decomposition. As illustrated in Figure 8.2 (a), the two individual style
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encoders Es
sty and Et

sty extract the domain-specific style features of the given source

input Is and target input It, respectively. This is formulated as zs
sty = Es

sty(Is) and

zt
sty = Et

sty(It). We believe that the content of images is more domain-invariant, so a

shared content encoder Econ is used to learn the content features of both source and

target images, formulated as zs
con = Econ(Is) and zt

con = Econ(It). This decomposi-

tion is achieved by the training scheme shown in Figure 8.2 (b), and the details are

elaborated in Sec. 8.2.2.

Feature alignment. Although the content features zs
con and zt

con learned by a standard

encoder already have a small domain gap, they are still not completely domain-

invariant, as the content of images from different domains also contains some domain-

specific elements, such as scale and viewpoint. To address this, we perform feature

alignment in two aspects.

First, we propose to estimate the feature distributions of Is and It individually using

a separate BN structure [22, 139, 236]. Specifically, two BN branches [82], denoted as

BNs and BNt, are deployed after each convolutional layer in Econ (see Figure 8.2 (c)).

Each BN branch works individually for its own domain. To elaborate, BNs and BNt

learn domain-specific affine parameters {γs, βs}/{γt, βt}, and distribution statistics

{µs, σs}/{µt, σt} for the source and target data, respectively. Note that all the layers

other than BNs are still shared (e.g., convolution and ReLU). Suppose that z̈d
con is

the content feature of domain d, where d ∈ {s, t}, the separate BN structure at an

arbitrary layer in Econ is formulated as:

BNd(z̈d
con; γd, βd) = γd

(︃
z̈d

con − µd√︁
(σd)2 + k

)︃
+ βd, (8.1)

where k is a tiny constant for numerical stability. With this design, the domain gap
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between zs
con and zt

con is acquired by the domain-specific parameters {µd, σd, γd, βd},

and their domain-invariant part passes through each BN layer.

Second, inspired by GRL [52], we employ adversarial learning [59] to align the

features zs
con and zt

con (see Figure 8.2 (a)). Details are discussed in Sec. 8.2.2.

Feature integration. Our feature decomposition extracts four preferred components:

{zs
con, zs

sty, zt
con, zt

sty}, where zs
con and zt

con are aligned by our separate BN structure

and adversarial learning. To train the MDE task decoder D, we use zs
con, zt

con and zt
sty.

We discard zs
sty since it is specific to source data and thus cannot help the model adapt

to the target domain. Instead, the target-specific style component zt
sty is still useful for

the MDE model that works for the target domain.

After feature decomposition, zt
sty and zt

con have different feature characteristics

though they are from the same target domain. Hence, directly fusing them in the

task decoder D would cause potential accuracy degradation. To address this issue,

as shown in Figure 8.2 (c), we also deploy separate BNs in D. There are three BN

branches: BNs
con, BNt

con and BNt
sty, each of which works as Eq. (8.1). BNs

con and

BNt
con are used for the same purpose as discussed before, and BNt

sty is responsible

for characterizing the feature distribution of zt
sty exclusively. Since the content and

style features have different underlying distributions, simply leveraging a single set

of BN parameters for zt
con and zt

sty would estimate an inaccurate mixture. Therefore,

the additional BNt
sty is used to disentangle such mixture distribution, allowing proper

integration of zt
con and zt

sty for decoding target features. Because the content and style

components may have different importance for MDE, we employ a 1 × 1 convolution

and a residual connection to combine zt
con and zt

sty right before the output layer of D.

This weighted fusion helps to adjust the balance between these two features of target
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data. Finally, D outputs predicted depth maps, Ỹs
= D(zs

con) and Ỹt
= D(zt

con, zt
sty),

respectively.

8.2.2 Objectives

The proposed LFDA framework is trained with the following objective functions.

Feature decomposition loss. This loss is used to decompose the feature components

according to our assumption for domain adaptation. It consists of translation loss and

reconstruction loss.

Inspired by style transfer techniques [79, 95], we adopt the translation loss to

separate the content and style features of an input image. Let us consider the case

of source-to-target image translation in our framework. Given a source image Is and

a target image It, we aim to derive a translated image Is˃t = G(zs
con, zt

sty) which

consists of the content of Is and the style of It (see Figure 8.2 (b)). We achieve this

translation via objective Ls˃t
trans, which consists of two perceptual losses [95] and an

adversarial loss:

Ls˃t
trans = ∑

j∈L
wtrans

con,j
⃦⃦

ϕj(Is)− ϕj(Is˃t)
⃦⃦

1

+ ∑
j∈L

wtrans
sty,j

⃦⃦
µ(ϕj(It))− µ(ϕj(Is˃t))

⃦⃦
1

+ η
(︁

Discs˃t(Is˃t)− 1
)︁2,

(8.2)

where η = 0.2, wtrans
con and wtrans

sty are pre-defined weights, L denotes the

{relu1_1, relu2_1, relu3_1, relu4_1, relu5_1} layers of a pre-trained VGG network

[195] that measures perceptual loss, ϕj is the j-th layer in L, and µ(·) returns the

channel-wise mean values of a feature space. This translation loss has also been

136



explored by [21].

To elaborate, the first perceptual loss computes the distance of the high-level

content features between Is and Is˃t such that Is˃t contains the content of Is. Since

the content information mostly exists in higher layers of VGG, we set wtrans
con to

{0, 0, 0, 1/4, 1}. The second perceptual loss forces Is˃t to contain the style of It.

To explicitly encode the style information of an image, we employ AdaIN structure

[79] that measures the distance of the channel-wise mean values of the style features

between It and Is˃t. Since the style information mostly exists in lower layers of VGG,

we set wtrans
sty to {1, 1, 1, 0, 0}. The third term is a standard least-squares adversarial

loss [155], where we assign labels 1 and 0 to untranslated and translated images,

respectively. This loss helps to improve the quality of image translation. As for the

case of target-to-source translation, it is symmetric to source-to-target translation. We

define its objective as Lt˃s
trans, which replaces s to t, t to s and s ˃ t to t ˃ s in Eq. (8.2).

The reconstruction loss is used to guarantee that the combination of the decom-

posed content and style components forms a nearly complete representation of an input

image [21]. Let us consider the case of source image reconstruction. Given a source

image Is, we aim to derive a reconstruction Is˃s = G(zs
con, zs

sty) (see Figure 8.2 (b)).

This can be achieved via objective Ls˃s
recon, which is also based on the perceptual loss:

Ls˃s
recon = ∑

j∈L
wrecon

j
⃦⃦

ϕj(Is)− ϕj(Is˃s)
⃦⃦

1, (8.3)

where wrecon = {1/32, 1/16, 1/8, 1/4, 1}. Symmetrically, target image reconstruc-

tion is achieved via objective Lt˃t
recon, which replaces s to t and s ˃ s to t ˃ t, from

Eq. (8.3).

With the above loss functions, LFDA decomposes the feature space into
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{zs
con, zs

sty, zt
con, zt

sty}, where each of which contains its supposed information exclu-

sively.

Feature alignment loss. Different from prior works that attempt to align the entire

features [29, 109, 171, 260], LFDA only needs to align the content features that

already have a much smaller domain gap, which is easier to achieve. Inspired by GRL

[52], we use a domain adversarial loss Lalign to align the distributions of zs
con and zt

con

(see Figure 8.2 (a)). This is defined as: Lalign =
(︁

Disc(zs
con)

)︁2
+
(︁

Disc(zt
con)− 1

)︁2,

where we assign labels 1 and 0 to the source and target domain, respectively. We

use the least-squares adversarial loss [155] because it is shown to be more stable at

training time. Eventually, Lalign further reduces the discrepancy between zs
con and

zt
con.

Depth estimation loss. This is the primary task objective for MDE. We employ L1 loss

to make use of the source data annotations: Ls
de = ∥Ỹs − Ys∥1, where Ỹs

= D(zs
con)

is the predicted depth map and Ys is the corresponding ground-truth. Following

GASDA [259] and SharinGAN [171], depth smoothness loss Lsm and geometry

consistency loss Lgeo are used as self-supervisions for the target data. They are

defined as: Lsm = e−∇It∥∇Ỹt∥1, where Ỹt
= D(zt

con, zt
sty) is the predicted depth

map; Lgeo = α
(︁
1− SSIM(It, Ît

)
)︁
+ β∥It − Ît∥1, where α = 0.425, β = 0.15, Ît

is

the inverse warped image derived from Ỹt the right counterpart of It, and SSIM [226]

is an image quality metric. Moreover, inspired by image translation-based adaptation

approaches [2, 29, 148, 259, 260], we leverage Is˃t that is generated during feature

decomposition learning, to adapt the task network to the target domain (i.e., feed Is˃t

produced from Figure 8.2 (b) into the pipeline of Figure 8.2 (a)). This is defined as:

zs˃t
con = Econ(Is˃t), zs˃t

sty = Et
sty(Is˃t), and Ŷs˃t

= D(zs˃t
con, zs˃t

sty). Then, the L1 loss is
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used to train with the translated image: Ls˃t
de = ∥Ỹs˃t − Ys∥1.

Full learning objective. The full objective of the proposed LFDA framework is

defined as:

L = (Ls
de + Ls˃t

de ) + λgeoLgeo + λsmLsm + λalignLalign

+ λrecon(Ls˃s
recon + Lt˃t

recon) + λtrans(Ls˃t
trans + Lt˃s

trans),

(8.4)

where λ’s are trade-off factors. We optimize this loss function end-to-end in a single

stage.

8.2.3 Inference

During inference, our goal is to predict a depth map from a given target image. This

corresponds to the red path in Figure 8.2 (a). Therefore, only Econ, Et
sty and D

are retained after training, where Et
sty is the only required sub-network in addition

to the MDE primary task network {Econ, D}. Compared to recent top-performing

approaches which require an entire sophisticated image translation network during

inference [171, 259], LFDA allows much lower computational complexity. This is

attributed to the proposed decomposition learning that reduces the domain gap more

efficiently.

8.3 Experiments

We extensively evaluate the proposed LFDA on three domain adaptation scenarios:

cross-camera adaptation, synthetic-to-real adaptation, and adverse weather adapta-

tion [220]. Moreover, we conduct an ablation study and analyze the computational

complexity of the models.
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Table 8.1: Results of Cityscapes-to-KITTI adaptation, tested on KITTI Eigen split (cap 80m).
The 1.25n columns refer to the standard δ < 1.25n accuracy metrics.

Lower, better Higher, better
Method abs-rel sq-rel rmse rmse-log 1.25 1.252 1.253

T2Net [260] 0.173 1.335 5.640 0.242 0.773 0.930 0.970
DESC [148] 0.149 0.967 5.236 0.223 0.810 0.940 0.976

LFDA (Ours) 0.119 0.963 5.049 0.207 0.855 0.948 0.977

8.3.1 Implementation Details

For fair comparison, the architectures of sub-networks {Econ, D}, Es
sty, Et

sty, Disc,

Disct˃s and Discs˃t are implemented identical to the corresponding ones in T2Net

[260]. Besides, generator G is implemented as in [21]. The models are trained by

Adam optimizer [101] with initial learning rates of 1e−4 for {Econ, D} and 2e−5 for

the other sub-networks. The learning rates decrease according to the polynomial decay

policy. We set λgeo = 1, λsm = λalign = 0.01, λrecon = 0.5, and λtrans = 0.05.

The entire framework is trained end-to-end in a single stage. The experiments are

implemented by PyTorch [166] and conducted on a single NVIDIA Tesla V100 GPU.

We will release our source code after the chapter gets accepted.

8.3.2 Cross-Camera Adaptation

Different cameras may have distinct intrinsic parameters or viewpoints, making the

captured images have different scales, fields of view, etc. Such domain gap could

cause sub-optimal adaptation performance.

Datasets. We use Cityscapes [32] as the source dataset and KITTI [55] as the target

dataset. The KITTI Eigen split [44] is used for testing. Following [260], we rescale the

input size of KITTI images from 375×1242 to 192×640, and upsample the predicted
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depth maps to the original size for evaluation. For Cityscapes, we follow [148] that

crops and resizes the images from 1024×2048 to 192×640. The ground-truth depth is

capped at 80m.

Results. Table 8.1 reports the results adhered to a standard evaluation protocol [44].

The impressive improvements on all the metrics show the superiority of our LFDA. In

particular, LFDA’s abs-rel error is 20% lower than DESC [148]. This indicates that

the proposed learning of feature decomposition is effective to reduce the domain gap

between the images captured by different cameras.

8.3.3 Synthetic-to-Real Adaptation

The style and appearance of synthetic images are usually different from that of real

images. This can negatively impact the accuracy on real data.

Datasets. We use Virtual KITTI (vKITTI) [51] and KITTI as the source and the target

domains, respectively. Following [260], we resize the vKITTI images to 192×640 and

cap the ground-truth depth at 80m. We evaluate on both KITTI Eigen split and KITTI

stereo 2015 dataset [157].

Results. Table 8.2 reports the test results on KITTI stereo 2015 dataset. We also

put our Cityscapes-to-KITTI model for comparison. As it can be observed, both

our models achieve much better accuracy than present approaches in most metrics.

Note that Atapour et al. [4] uses the images captures from the GTA5 game as their

source data, and KITTI has a smaller domain shift with GTA5 than Cityscapes or

vKITTI. Table 8.3 shows the test results on KITTI Eigen split. LFDA significantly

outperforms most existing works, while it is behind SharinGAN [171] by a slim

margin. Note that SharinGAN requires a sophisticated image translation network
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Table 8.2: Results of X-to-KITTI adaptation, tested on KITTI stereo 2015. Top-2 methods
are in bold. vK: Virtual KITTI, K: KITTI, CS: Cityscapes, G: GTA5 images.

Lower, better Higher, better
Method Dataset abs-rel sq-rel rmse rmse-log 1.25 1.252 1.253

Atapour et al. [4] G ˃ K 0.101 1.048 5.308 0.184 0.903 0.988 0.992
GASDA [259] vK ˃ K 0.106 0.987 5.215 0.176 0.885 0.963 0.986

LFDA (Ours) CS ˃ K 0.092 1.055 5.024 0.165 0.906 0.966 0.985
LFDA (Ours) vK ˃ K 0.087 0.931 4.765 0.162 0.910 0.968 0.986

Table 8.3: Results of vKITTI-to-KITTI adaptation, tested on KITTI Eigen split (cap 80m).
Top-2 methods are in bold.

Lower, better Higher, better
Method abs-rel sq-rel rmse rmse-log 1.25 1.252 1.253

AdaDepth [109] 0.214 1.932 7.157 0.295 0.665 0.882 0.950
CrDoCo [29] 0.232 2.204 6.733 0.291 0.739 0.883 0.942
T2Net [260] 0.173 1.396 6.041 0.251 0.757 0.916 0.966
Akada et al. [2] 0.168 1.228 5.498 0.235 0.771 0.921 0.973
DESC [148] 0.156 1.067 5.628 0.237 0.787 0.924 0.970
GASDA [259] 0.149 1.003 4.995 0.227 0.824 0.941 0.973
SharinGAN [171] 0.116 0.939 5.068 0.203 0.850 0.948 0.978

LFDA (Ours) 0.120 0.961 5.095 0.213 0.848 0.945 0.975

during inference, resulting in a much higher computational cost than Ours. Also,

it relies on a complicated multi-stage training procedure. Both drawbacks make it

unfriendly to be deployed in real-world applications.

8.3.4 Adverse Weather Adaptation

Adverse weather such as fog and rain produce image artifacts. These artifacts can

result in accuracy degradation.

Datasets. In this experiment, Foggy Cityscapes [184] is used as the target dataset. It

is constructed by simulating haze upon Cityscapes images. We crop and resize the

images to 192×640, and cap the ground-truth depth at 80m.

142



Table 8.4: Results on Foggy Cityscapes (cap 80m).

Lower, better Higher, better
Method Dataset abs-rel sq-rel rmse rmse-log 1.25 1.252 1.253

Src-Only CS 0.477 8.333 18.211 0.717 0.225 0.507 0.720
Src+Tgt+AL CS & K 0.422 4.672 11.879 0.448 0.249 0.698 0.915
LFDA (Ours) CS & K 0.283 3.485 11.261 0.381 0.479 0.835 0.914

Src-Only vK 0.415 9.117 17.356 0.673 0.370 0.631 0.741
Src+Tgt+AL vK & K 0.378 6.130 15.434 0.600 0.325 0.688 0.795
LFDA (Ours) vK & K 0.332 4.454 13.024 0.475 0.374 0.762 0.868

Table 8.5: Results of ablation study, tested vKITTI-to-KITTI adaptation on KITTI Eigen split
(cap 80m).

Lower, better Higher, better
Method abs-rel sq-rel rmse rmse-log 1.25 1.252 1.253

Src-Only 0.212 2.196 7.114 0.323 0.673 0.851 0.930
+Tgt+AL 0.140 1.022 5.131 0.216 0.834 0.943 0.977
+Tgt+Con+2BN 0.123 1.039 5.220 0.215 0.847 0.944 0.974
+Tgt+Con+2BN+Sty 0.273 3.566 8.371 0.314 0.659 0.882 0.948

LFDA (Ours) 0.120 0.961 5.095 0.213 0.848 0.945 0.975

Results. Table 8.4 reports the test results on Foggy Cityscapes. We evaluate both our

models of Cityscapes-to-KITTI and vKITTI-to-KITTI. Since this is the first time in the

literature to explore adverse weather adaptation for MDE, we build our own baselines

to compared with. Src-Only refers to the model trained on only the source data, and

Src+Tgt+AL is trained on both source and target data by adversarial learning to align

their entire feature distributions. Clearly, LFDA makes considerable improvements

over both baselines, indicating that it performs more stably under different weather

conditions. Examples of qualitative results are shown in Figure 8.1.

8.3.5 Ablation Study

We conduct an ablation study using our model of vKITTI-to-KITTI and evaluate on

the KITTI Eigen split. The results are reported in Table 8.5. First, we can see that
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Figure 8.3: Qualitative results of the image reconstruction and translation used for feature
decomposition. Is: source input image (vKITTI), It: target input image (KITTI), Is ˃s: source
reconstruction, It ˃t: target reconstruction, Is ˃t: source-to-target translation, It ˃s: target-to-
source translation.

+Tgt+AL makes an obvious improvement over Src-Only, showing the importance of

domain adaptation. Second, +Tgt+Con+2BN refers to the model that makes use of the

decomposed content features and deploys two separate BN branches for the source and

target domains, respectively. +Tgt+Con+2BN greatly improves the abs-rel metric by

0.017, showing our feature decomposition and separate BNs are effective in learning

the domain-invariant content feature. Next, +Tgt+Con+2BN+Sty includes zt
sty in the

pipeline but still maintains only two separate BNs. Results show that it suffers from

severe performance degradation. This proves our argument that content and style

features have different distributions, so passing them through the same BN would

drop model performance. Finally, LFDA (i.e. +Tgt+Con+3BN+Sty), which deploys

the third BN for the target style feature exclusively, resolves this issue successfully.

Obviously, LFDA performs the best in most metrics, demonstrating the effectiveness

of our method.

8.3.6 Feature Decomposition Visualization

To verify the effectiveness of our feature decomposition, Figure 8.3 shows the qualita-

tive results of the image reconstruction and translation that are illustrated in Figure 8.2
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Table 8.6: Comparison of model complexity. The number of multiply-accumulate operations
(MACs) is computed on the input size of 192×640.

Method Params MACs

GASDA [259] 112.3M 221.5G
SharinGAN [171] 57.7M 148.1G

LFDA (Ours) 57.6M 108.1G

(b). We can observe that the reconstructed images Is˃s and It˃t are very close to the

input images Is and It, respectively. In addition, the translated images Is˃t and It˃s

accurately maintain the content information while generating the style appearance of

another domain. Such high-quality results can be achieved only if the decomposition

of content and style features is successful. This demonstrates the rationale behind the

high performance of the proposed method.

8.3.7 Computational Complexity

In addition to accuracy, model size and computational cost are also important factors

when we evaluate a model. They determine the feasibility of a model for practical

applications. In Table 8.6, we compare LFDA to two existing top-performing ap-

proaches in terms of the number of parameters and the number of multiply-accumulate

operations (MACs) used at inference time. GASDA [259] includes three sub-networks

during inference, a target data MDE network, a target-to-source translation network,

and a target-to-source MDE network. This design places a heavy computational bur-

den. SharinGAN [171] also needs an image translation network plus a MDE network.

In contrast, in LFDA, the only sub-network in addition to the primary MDE network

is Et
sty, which increases minimum complexity. LFDA’s number of MACs is 51% and

20% fewer than GASDA and SharinGAN, respectively, showing that our method can
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bridge the domain gap much more efficiently.

8.4 Summary

In this chapter, we propose LFDA, a novel domain adaptive MDE method. We

suppose that a feature space can be decomposed into components of image content

and appearance style. LFDA learns to achieve this decomposition and thus can

efficiently mitigate the domain shift problem between source and target data. LFDA

shows superior accuracy on three broad scenarios of domain adaptation. Moreover,

it has a relatively low computational cost and can be trained end-to-end in a single

stage, thereby more practical for real-world applications.
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Chapter 9

Spatio-Temporal Pixel-Level
Contrastive Learning-based
Source-Free Domain Adaptation for
Video Semantic Segmentation
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9.1 Motivation

Under the SFDA setting [30, 121, 125, 221, 251], label supervision is not available

(see details in Chapter 2). Most SFDA studies adopt pseudo-supervision or self-

supervision techniques to adapt the source-trained model to the target domain [77,

197]. However, they consider only image-level information for model adaptation.

In many real-world semantic segmentation applications (autonomous driving, safety

surveillance, etc.), we have to deal with temporal data such as streams of images or

videos. Supervised approaches that use temporal information have been successful for

Video Semantic Segmentation (VSS), which predicts pixel-level semantics for each

video frame [85, 106, 131, 224]. Recently, video-based UDA strategies have also

been developed and yielded better performance than image-based UDA on VSS [63,

194, 241]. This motivates us to propose a novel SFDA method for VSS, leveraging

temporal information to tackle the absence of source data better. In particular, we

find that current image-based SFDA approaches suffer from sub-optimal performance

when applied to VSS (see Figure 9.1). To the best of our knowledge, this is the first

work to explore video-based SFDA solutions.

In this chapter, we propose a novel spatio-temporal SFDA method namely Spatio-

Temporal Pixel-Level (STPL) Contrastive Learning (CL), which takes full advantage

of both spatial and temporal information for adapting VSS models. STPL consists of

two main stages. (1) Spatio-temporal feature extraction: First, given a target video

sequence input, STPL fuses the RGB and optical flow modalities to extract spatio-

temporal features from the video. Meanwhile, it performs cross-frame augmentation

via randomized spatial transformations to generate an augmented video sequence, then

extracts augmented spatio-temporal features. (2) Pixel-level contrastive learning: Next,
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Figure 9.1: Comparison of VSS accuracy. Video-based UDA methods [63, 194, 241]
outperform image-based UDA methods [156, 249], showing the importance of video-based
strategies for the VSS task. Image-based SFDA methods [77, 197] perform lower than the
UDA methods, which shows the difficulty of the more restricted SFDA setting. The proposed
STPL, even with SFDA, achieves the best accuracy and locates at the top-right corner of the
chart (i.e., more restriction, but higher accuracy).

STPL optimizes a pixel-level contrastive loss between the original and augmented

spatio-temporal feature representations. This objective enforces representations to be

compact for same-class pixels across both the spatial and temporal dimensions.

With these designs, STPL explicitly learns semantic correlations among pixels

in the spatio-temporal space, providing strong self-supervision for adaptation to an

unlabeled target domain. Furthermore, we demonstrate that STPL is a non-trivial

unified spatio-temporal framework. Specifically, Spatial-only CL and Temporal-

only CL are special cases of STPL, and STPL is better than a naïve combination

of them. Extensive experiments demonstrate the superiority of STPL over various
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baselines, including the image-based SFDA as well as image- and video-based UDA

approaches that rely on source data (see Figure 9.1). Code is available at: https:

//github.com/shaoyuanlo/STPL

The key contributions of this chapter are summarized as follows:

• We propose a novel SFDA method for VSS. To the best of our knowledge, this

is the first work to explore video-based SFDA solutions.

• We propose a novel CL method, namely STPL, which explicitly learns semantic

correlations among pixels in the spatio-temporal space, providing strong self-

supervision for adaptation to an unlabeled target domain.

• We conduct extensive experiments and show that STPL provides a better solution

compared to the existing image-based SFDA methods as well as image- and

video-based UDA methods for the given problem formulation.

9.1.1 Related Work

Video semantic segmentation. VSS predicts pixel-level semantics for each video

frame [50, 76, 85, 106, 120, 131], which has been considered a crucial task for video

understanding [224]. VSS networks use temporal information, the inherent nature

of videos, to pursue more accurate or faster segmentation. For example, FSO [106]

employs the dense conditional random field as post-processing to obtain temporally

consistent segmentation. NetWarp [50] uses optical flow information to transfer

intermediate feature maps of adjacent frames and gains better accuracy. ACCEL [85]

integrates predictions of sequential frames via an adaptive fusion mechanism. TDNet

[76] extracts feature maps across different frames and merges them by an attention
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propagation module. ESVS [131] considers the temporal correlation during training

and achieves a higher inference speed. These works rely on large densely annotated

training data and are sensitive to domain shifts.

Unsupervised domain adaptation. Recently, there are several works studying UDA

for VSS [63, 194, 241]. DA-VSN [63] presents temporal consistency regularization

to minimize temporal discrepancy across different domains and video frames. VAT-

VST [194] extends both adversarial learning and self-training techniques to video

adaptation. TPS [241] designs temporal pseudo supervision to adapt VSS models

from the perspective of consistency training. These UDA approaches rely on labeled

source data for adaptation, which is not practical in many real-world scenarios.

Source-free domain adaptation. SFDA has been investigated for Image Semantic

Segmentation (ISS) in recent years [77, 107, 108, 132, 197, 199]. SFDA-SS [132]

develops a data-free knowledge distillation strategy for target domain adaptation.

UR [197] reduces the uncertainty of target data predictions. HCL [77] presents the

historical contrastive learning, which leverages the historical source hypothesis to

compensate for the absence of source data. Edge/Feature-Mixup [108] generates

mixup domain samples used for both source training and target adaptation. However,

the need for modifying source training makes it inflexible, and it is expensive to be

scaled to the video level. SFDA for videos is still relatively unexplored.

Contrastive learning. CL has been a successful representation learning technique

[28, 67, 99, 98, 161]. The key idea is to create positive and negative sample pairs, then

learn discriminative feature representations by maximizing the embedding distance

among positive pairs and minimizing that among negative pairs. Recent works [3, 225]

further explore pixel-to-pixel contrast for the ISS task, but they need label supervision
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Figure 9.2: Overview of the proposed Spatio-Temporal Pixel-Level (STPL) contrastive
learning framework. STPL consists of two main stages. (1) Spatio-temporal feature extraction:
First, STPL fuses the RGB and optical flow (ot−1→t) modalities to extract spatio-temporal
features (z(t−1,t), z̃(t−1,t)) from both the original and augmented video sequences (X, X̃). (2)
Pixel-level contrastive learning: Next, after passing through a projection head and pseudo
pixel-wise feature separation, STPL optimizes the pixel-level contrastive loss between the
original and augmented spatio-temporal features (Lstpl). For simplicity, this illustration
considers a two-frame video sequence as the input.

for training.

9.2 Proposed Method

An overview of the proposed STPL is illustrated in Figure 9.2. STPL is implemented

by two key designs: spatio-temporal feature extraction and pixel-level CL. This section

first introduces the detailed designs. Then we demonstrate that STPL is a non-trivial

unified spatio-temporal framework.
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Figure 9.3: (a) The proposed spatio-temporal fusion block (F). (b) The proposed fusion
operation ( f ): Spatio-Temporal Attention Module (STAM). STAM infers the attention of
a spatio-temporal feature along the spatial and temporal dimensions separately, weighting
important components in the spatio-temporal space. Details can be found in Supplementary
Materials. Our fusion block is also compatible with various fusion operations.

9.2.1 Spatio-Temporal Feature Extraction

The input is an unlabeled target video sequence X = {x1, x2, ..., xt−1, xt}, where

xt is the current frame. For simplicity, let us consider X = {xt−1, xt}, i.e., a video

with a current frame and a previous frame. Given X, the VSS network’s encoder

E extracts feature representations for each frame: zt−1 = E(xt−1) and zt = E(xt).

In addition, we employ FlowNet 2.0 [81] denoted as O, a widely used optical flow

estimator, to estimate the optical flow between the previous and the current frames as:

ot−1→t = O(xt−1, xt).

Spatio-temporal fusion block. Next, we propose a spatio-temporal fusion block F

to extract spatio-temporal feature representations from the previous and the current

features zt−1 and zt (see Figure 9.3 (a)). It adopts the estimated optical flow ot−1→t to

warp the previous feature zt−1 to the propagated feature as: z′t−1 = W(zt−1; ot−1→t),
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where W denotes the warping operation. This feature propagation aligns the pixel

correspondence between the previous and the current features, which is crucial for

the dense prediction task. Then a fusion operation f is used to fuse the cross-frame

features into a spatio-temporal feature as: z(t−1,t) = f (z′t−1, zt).

The fusion operation integrates two input features into one output feature. It

can be element-wise addition, concatenation, 1×1 convolution layer, an attention

module, or other variants. Inspired by [230], we design a Spatio-Temporal Attention

Module (STAM) illustrated in Figure 9.3 (b). STAM infers the attention of a spatio-

temporal feature along the spatial and temporal dimensions separately, weighting

important components in the spatio-temporal space. Consider the concatenation of the

propagated previous feature z′t−1 and the current feature zt as z′(t−1,t) ∈ RT×C×H×W ,

the STAM process can be written as:

z(t−1,t) = {[Aspa[Atem(z′(t−1,t))⊗ z′(t−1,t)]

⊗ [Atem(z′(t−1,t))⊗ z′(t−1,t)]} ⊕ z′(t−1,t),
(9.1)

where Atem is temporal attension, Aspa is spatial attension, ⊗ denotes element-wise

multiplication, and ⊕ denotes element-wise addition.

The proposed temporal attention mechanism learns to choose informative temporal

elements along each pixel’s temporal dimension in the spatio-temporal space. The

temporal attention Atem ∈ RT×1×1×1 is performed as:

Atem(z) = σ(FC(AvgPool(z)) + FC(MaxPool(z))), (9.2)

where σ is the sigmoid function, and FC denotes a fully connected layer.

The spatial attention mechanism chooses informative pixels along the spatial
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dimension in the spatio-temporal space. The spatial attention Aspa ∈ R1×1×H×W is

performed as:

Aspa(z) = σ(Conv(Concat[AvgPool(z), MaxPool(z)])), (9.3)

where Concat denotes the concatenation operation, and Conv denotes a convolutional

layer.

Note that the main contribution of this work is the STPL framework. In Table 9.4,

we can see that STPL can outperform all the existing methods even with the very

simple Concatenation fusion, showing its flexibility. We propose STAM to show that

STPL can further benefit from a more advanced fusion module.

Cross-frame augmentation. Meanwhile, we perform cross-frame augmentation [241]

that applies randomized spatial transformations T on each input frame to generate

an augmented video sequence: X̃ = T(X) = {x̃t−1, x̃t}. Then we apply the same

spatio-temporal feature extraction process on X̃ and extract the augmented spatio-

temporal feature z̃(t−1,t). The augmentation T contains randomized Gaussian blurring

and color jittering transformations.

9.2.2 Pixel-Level Contrastive Learning

With the extracted original and augmented spatio-temporal features z(t−1,t) and

z̃(t−1,t), we propose a new CL method to derive a semantically meaningful self-

supervision. Typical CL schemes [28, 98] assume that an input contains only a single

semantic category, and needs a large batch size to offer sufficient positive/negative

pairs for training. Nevertheless, in VSS, the input contains multiple instances, and a

large batch size is computationally infeasible. Hence, we propose a method based on
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a pixel-level CL paradigm that leverages pixel-to-pixel contrast [3, 225], and refer to

our method as Spatio-Temporal Pixel-Level (STPL) CL.

Pseudo pixel-wise feature separation. STPL aims to acquire pixel-level repre-

sentations that are similar among the same-class pixel samples but distinct among

different-class pixel samples. Since we do not have target domain labels, we use our

VSS model’s prediction for the input X as pseudo-label ŷ. Subsequently, we use ŷ

to do pixel-wise feature separation. To maintain high-quality pseudo-labels, we set a

hyperparameter of confident proportion k to control the proportion of pixels preserved

as pseudo-labels. More precisely, the confident pseudo-labels ŷ∗ are obtained by

ŷ∗ = topk(ŷ; k) ⊂ ŷ, where topk is an operation that returns the k-proportion of the

most confident predictions according to their probability scores.

Pixel-to-pixel contrastive loss. To perform CL, we first adopt a projection head H to

project our feature representations zh
(t−1,t) = H(z(t−1,t)) and z̃h

(t−1,t) = H(z̃(t−1,t)),

similar to SimCLR [28]. According to the generated confident pseudo-labels ŷ∗, we

denote the confident pixel representation sets in zh
(t−1,t) and z̃h

(t−1,t) as z∗h
(t−1,t) ⊂

zh
(t−1,t) and z̃∗h

(t−1,t) ⊂ z̃h
(t−1,t), respectively. Next, consider a query confident pixel

representation q ∈ z∗h
(t−1,t) (i.e., q is a pixel representation in the feature z∗h

(t−1,t)) with

a predicted pseudo-label ŷ∗q , we define its positive pair set as:

Pq ≡ {q+ ∈ z̃∗h
(t−1,t) : ŷ∗q+ = ŷ∗q}, (9.4)

i.e., all the same-class pixels in the augmented feature z̃∗h
(t−1,t). Then we define its

negative pair set as:

Nq ≡ {q− ∈ z̃∗h
(t−1,t) : ŷ∗q− ̸= ŷ∗q}, (9.5)

i.e., all the different-class pixels in z̃∗h
(t−1,t). We follow SupCon [98] to develop a CL
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scheme with multiple positive pairs. The complete formulation of the proposed STPL

contrastive loss is as follows:

Lstpl
q =

−1
|Pq| ∑

q+∈Pq

log
exp(q · q+/τ)

∑q−∈Nq exp(q · q−/τ)
, (9.6)

where τ is a temperature parameter, and the · symbol denotes the inner product.

Finally, the overall objective for the given video sequence input X is defined as:

Lstpl =
1

|z∗h
(t−1,t)|

∑q∈z∗h
(t−1,t)

Lstpl
q . (9.7)

This objective enforces the pixel representations in the original spatio-temporal fea-

tures to be similar to that of the same-class pixels in the augmented features, while

being distinct from that of the different-class pixels. This explicitly learns semantic

correlations among pixels in the spatio-temporal space and thus can achieve better

class discriminability. The proposed STPL provides a strong self-supervision for

video adaptation under the SFDA setup.

9.2.3 STPL as a Unified Spatio-Temporal Framework

We further demonstrate that STPL is a non-trivial unified spatio-temporal frame-

work. Specifically, Spatial-only CL and Temporal-only CL are special cases of STPL.

Moreover, we show that a naïve combination of them is sub-optimal compared to

STPL.

Spatial-only contrast. Let us turn off the fusion operation F of the STPL framework

with an identity operation. Then, let us allow only the current frame feature zt, and

similarly, only the augmented current frame feature z̃t to pass through the fusion

block. After the projection head and confident filtering steps, the contrastive loss
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would be computed between z∗h
t and z̃∗h

t instead of the spatio-temporal features

z∗h
(t−1,t) and z̃∗h

(t−1,t). That is, in Eq. (9.6) and Eq. (9.7), it becomes that q ∈ z∗h
t and

{q+, q−} ∈ z̃∗h
t . This computes contrast between only spatial variations and thus is a

spatial-only special case of STPL. We denote this loss as Lspa.

Temporal-only contrast. Let us consider a duplicate copy of the input video as an

augmentation (i.e., X̃ = X). Next, let us turn off the fusion operation F of STPL,

allowing only the current frame feature zt and the augmented previous frame feature

z̃t−1 to pass through the fusion block. Here z̃t−1 = zt−1 since X̃ = X. Hence,

after the projection head and confident filtering steps, the contrastive loss would

be computed between z∗h
t and z∗h

t−1. That is, in Eq. (9.6) and Eq. (9.7), it becomes

that q ∈ z∗h
t and {q+, q−} ∈ z∗h

t−1. This computes contrast between only temporal

variations and thus is a temporal-only special case of STPL. We denote this loss as

Ltem.

Naïve combination. To learn spatio-temporal contrast, a naïve way would be to com-

bine the spatial-only and temporal-only contrastive losses together: Lspa +Ltem. Our

experiments in Sec. 9.3.3 show that the naïve combination is sub-optimal compared

to STPL. This demonstrates that the proposed STPL is a non-trivial unified spatio-

temporal framework. Figure 9.4 compares the proposed spatio-temporal contrast

Lstpl, spatial-only contrast Lspa, and temporal-only contrast Ltem.

9.3 Experiments

9.3.1 Experimental Setup

Datasets. We evaluate our method on two widely used domain adaptive VSS

benchmarks: VIPER [176] → Cityscapes-Seq [32] and SYNTHIA-Seq [178] →
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Figure 9.4: Illustration of (a) the proposed spatio-temporal contrast Lstpl (Eq. (9.6), (9.7)),
(b) spatial-only contrast Lspa, and (c) temporal-only contrast Ltem.

Cityscapes-Seq. VIPER has 133,670 synthetic video frames with a resolution of

1080×1920. SYNTHIA-Seq consists of 8,000 synthetic video frames with a res-

olution of 760×1280. We consider VIPER and Synthia-Seq as source datasets to

pre-train source models, respectively. Cityscapes-Seq is a realistic traffic scene dataset.

It contains 2,975 training and 500 validation video sequences with a frame resolution

of 1024×2048. We use it as a target dataset. Following [63, 241], we resize the

frames of VIPER and Cityscapes-Seq to 760×1280 and 512×1024, respectively. For

evaluations, the output predictions are interpolated to the original size.

Implementation details. Following [63, 241], we employ ACCEL [85] as our VSS

network. It includes two segmentation branches, an optical flow estimation branch, and

a prediction fusion layer. These branches consist of DeepLabv2 [25] architecture with

ResNet-101 [69] backbone, FlowNet [39], and a 1×1 convolution layer, respectively.

All the adaptation models are trained by an SGD optimizer with an initial learning

rate of 2.5e−6 and a momentum of 0.9 for 20k iterations. The learning rate decreases

along the polynomial decay with a power of 0.9. We set the temperature τ = 0.07
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Table 9.1: Quantitative comparisons (%) with multiple types of domain adaptation baselines
on VIPER → Cityscapes-Seq.

Method Design DA road side. buil. fence light sign vege. terr. sky pers. car truck bus mot. bike mIoU

Source-only - - 56.7 18.7 78.7 6.0 22.0 15.6 81.6 18.3 80.4 59.9 66.3 4.5 16.8 20.4 10.3 37.1

FDA [249] Image UDA 70.3 27.7 81.3 17.6 25.8 20.0 83.7 31.3 82.9 57.1 72.2 22.4 49.0 17.2 7.5 44.4
PixMatch [156] Image UDA 79.4 26.1 84.6 16.6 28.7 23.0 85.0 30.1 83.7 58.6 75.8 34.2 45.7 16.6 12.4 46.7

RDA [78] Image UDA 70.3 27.7 81.3 17.6 25.8 20.0 83.7 31.3 82.9 57.1 72.2 22.4 49.0 17.2 7.5 44.4

UR [197] Image SFDA 84.2 20.1 80.1 11.5 30.7 31.1 82.8 22.1 69.2 59.5 81.0 4.9 52.7 36.6 8.7 45.0
HCL [77] Image SFDA 80.6 34.0 76.8 29.7 20.5 36.3 79.1 19.2 56.3 58.1 73.9 3.4 5.2 20.0 28.9 41.5

DA-VSN [63] Video UDA 86.8 36.7 83.5 22.9 30.2 27.7 83.6 26.7 80.3 60.0 79.1 20.3 47.2 21.2 11.4 47.8
VAT-VST [194] Video UDA 87.1 41.2 82.2 17.1 26.0 33.1 83.2 20.6 70.6 64.3 71.0 11.6 84.1 27.8 11.1 48.7

TPS [241] Video UDA 82.4 36.9 79.5 9.0 26.3 29.4 78.5 28.2 81.8 61.2 80.2 39.8 40.3 28.5 31.7 48.9

DA-VSN* [63] Video SFDA 77.8 32.6 79.6 29.2 37.5 34.7 82.0 22.0 64.1 61.1 76.0 6.6 32.8 32.2 11.4 45.3
VAT-VST* [194] Video SFDA 48.2 20.4 78.1 28.8 33.1 33.6 81.1 20.0 56.1 58.3 74.7 8.6 73.5 29.7 9.6 43.6

TPS* [241] Video SFDA 69.9 0.0 77.4 0.0 6.2 14.8 77.5 0.2 47.4 36.9 67.7 0.0 19.3 0.0 0.0 27.8

STPL (Ours) Video SFDA 83.1 38.9 81.9 48.7 32.7 37.3 84.4 23.1 64.4 62.0 82.1 20.0 76.4 40.4 12.8 52.5

Oracle - - 96.5 76.8 89.2 58.3 49.5 60.0 90.3 37.5 80.5 72.1 92.0 41.6 64.6 63.1 76.2 69.9

and the confident proportion k = 0.7. The mean Intersection-over-Union (mIoU) is

used as the evaluation metric. Our experiments are implemented using PyTorch [166].

9.3.2 Main Results

Baselines. Since the proposed STPL is the first SFDA method for VSS, we compare

it with multiple related domain adaptation state-of-the-art approaches described as

follows. (1) Image-based UDA: FDA [249], PixMatch [156] and RDA [78]; (2)

Image-based SFDA: UR [197] and HCL [77]; and (3) Video-based UDA: DA-VSN

[63], VAT-VST [194] and TPS [241]. The image-based approaches are applied to

videos by using a VSS backbone (ACCEL in our experiments), following the practice

of [63, 241]. Furthermore, to fairly assess our STPL, we create the SFDA versions

of these video-based UDA approaches as our (4) Video-based SFDA baselines. We

remove all of their loss terms containing source data while keeping all the loss terms
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computed from only target data. We use the * symbol to denote these baselines. The

results of the source-only and oracle (i.e., trained with target domain labels) models

are also reported for reference. For fair comparisons, all four types of baselines use

the same VSS backbone and training settings.

VIPER → Cityscapes-Seq. Table 9.1 reports the evaluation results on the VIPER →

Cityscapes-Seq adaptation benchmark. The proposed STPL outperforms all four types

of baselines by decent margins, which is 15.1% higher than the source-only model and

3.6% higher than the best-performing competitor. In particular, its superiority over the

image-based SFDA approaches indicates the benefits of a video-based solution and

demonstrates the effectiveness of our spatio-temporal strategy for videos. We can also

observe that the video-based UDA approaches suffer from performance degradation

when applied to SFDA. Whereas, STPL achieves better performance even compared

to their UDA results relying on source data.

SYNTHIA-seq → Cityscapes-Seq. Table 9.2 provides the results on the SYNTHIA-

Seq → Cityscapes-Seq benchmark. Similarly, our STPL is better than most baselines.

Although TPS achieves the best accuracy under UDA, this requires accessing source

data. Moreover, TPS*’s accuracy dramatically reduces to 22.1% under SFDA, showing

that it is not a proper solution when source data are unavailable. Overall, these results

clearly demonstrate the superiority of STPL.

Qualitative results. Figure 9.5 shows examples of qualitative results on VIPER →

Cityscapes-Seq. The source-only model produces noisy and inconsistent predictions

on the road and sidewalk, showing the domain shift effect. UR, an image-based SFDA

method, suffers from inaccurate sky predictions and cannot detect the whole sidewalk.

In contrast, the proposed STPL obtains more accurate segmentation results with high
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Table 9.2: Quantitative comparisons (%) with multiple types of domain adaptation baselines
on SYNTHIA-Seq → Cityscapes-Seq.

Method Design DA road side. buil. pole light sign vege. sky pers. rider car mIoU

Source-only - - 56.3 26.6 75.6 25.5 5.7 15.6 71.0 58.5 41.7 17.1 27.9 38.3

FDA [249] Image UDA 84.1 32.8 67.6 28.1 5.5 20.3 61.1 64.8 43.1 19.0 70.6 45.2
PixMatch [156] Image UDA 90.2 49.9 75.1 23.1 17.4 34.2 67.1 49.9 55.8 14.0 84.3 51.0

RDA [78] Image UDA 84.7 26.4 73.9 23.8 7.1 18.6 66.7 68.0 48.6 9.3 68.8 45.1

UR [197] Image SFDA 83.5 8.0 68.1 16.5 9.9 17.7 62.4 65.1 31.9 15.3 82.3 41.9
HCL [77] Image SFDA 79.0 44.7 78.9 25.4 12.9 36.6 75.2 63.0 49.0 19.5 50.1 48.6

DA-VSN [63] Video UDA 89.4 31.0 77.4 26.1 9.1 20.4 75.4 74.6 42.9 16.1 82.4 49.5
VAT-VST [194] Video UDA 82.8 26.5 78.3 23.7 12.8 20.0 78.4 64.5 45.5 16.0 69.6 47.1

TPS [241] Video UDA 91.2 53.7 74.9 24.6 17.9 39.3 68.1 59.7 57.2 20.3 84.5 53.8

DA-VSN* [63] Video SFDA 81.0 37.9 68.4 23.7 14.0 27.5 69.8 71.3 46.4 18.7 80.2 49.0
VAT-VST* [194] Video SFDA 84.8 28.6 72.4 25.6 17.1 32.9 64.5 56.9 50.7 21.9 83.4 49.0

TPS* [241] Video SFDA 62.6 0.0 69.2 0.2 0.8 14.4 56.6 10.4 4.2 0.2 24.5 22.1

STPL (Ours) Video SFDA 87.6 42.5 74.6 27.7 18.5 35.9 69.0 55.5 54.5 17.5 85.9 51.8

Oracle - - 96.4 78.1 89.1 43.6 42.3 64.9 90.3 84.4 66.8 50.7 92.7 72.7

Figure 9.5: Qualitative results on VIPER → Cityscapes-Seq. The source-only model produces
noisy and inconsistent predictions on the road and sidewalk. UR [197], an image-based SFDA
method, suffers from inaccurate predictions on the sky and sidewalk. In contrast, the proposed
STPL obtains more accurate segmentation results with high temporal consistency across the
video sequence.

temporal consistency across the video sequence. This indicates the importance of a

video-based strategy for the VSS task and demonstrates our method’s effectiveness.

The qualitative and quantitative results are consistent.
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Table 9.3: Ablation study of different objective functions on VIPER → Cityscapes-Seq.

Method / Objective function mIoU

Source-only 37.1

Vanilla Self-training 45.4 (+8.3)
Duplicate CL 45.7 (+8.6)
Temporal-only CL (Ltem) 47.4 (+10.3)
Spatial-only CL (Lspa) 51.1 (+14.0)
Naïve T+S CL (Ltem + Lspa) 51.4 (+14.3)

STPL (Ours; Lstpl) 52.5 (+15.4)

9.3.3 Ablation Analysis

Objective functions. We conduct an ablation study to validate the effectiveness of our

spatio-temporal objective for adaptation. We create several variants for comparison.

Vanilla Self-training simply computes the cross-entropy loss between predictions

and pseudo-labels with a confident threshold. Duplicate CL computes the pixel-

level contrastive loss between two identical video frames, i.e., the loss described

in Sec. 9.2.2 but uses a duplicate copy as an augmentation and passes through the

current frame features only. Temporal-only CL, Spatial-only CL and Naïve T+S CL are

described in Sec. 9.2.3, whose objective functions are Ltem, Lspa and Ltem + Lspa,

respectively.

As can be seen in Table 9.3, the simple Duplicate CL achieves higher accuracy

than Vanilla Self-training, showing the effectiveness of the pixel-level contrastive loss.

Both Temporal-only CL and Spatial-only CL make an improvement over Duplicate

CL, which indicates the importance of contrasting with variations. Naïve T+S CL,

a naïve combination of the temporal-only and spatial-only contrastive losses, is

slightly better than either single loss. The proposed spatio-temporal objective further

outperforms Naïve T+S CL, showing that our design can learn more semantically
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Table 9.4: Ablation study of different fusion operations f on VIPER → Cityscapes-Seq.

Fusion operation mIoU

Element-wise addition 51.4
1×1 convolution layer 51.8
Concatenation 52.3
STAM 52.5

Table 9.5: Temporal consistency of different objective functions on VIPER → Cityscapes-
Seq.

Method / Objective function Consistency (%)

Source-only 72.93

Temporal-only CL (Ltem) 75.84 (+2.91)
Spatial-only CL (Lspa) 77.68 (+4.75)
Naïve T+S CL (Ltem + Lspa) 80.91 (+7.89)

STPL (Ours; Lstpl) 82.14 (+9.21)

meaningful context from the spatio-temporal space than simply adding the losses of

two dimensions together. This demonstrates that our STPL is a non-trivial unified

spatio-temporal framework for video adaptation.

Fusion operations. As discussed in Sec. 9.2.1, our STPL framework is compatible

with various fusion operations used to extract spatio-temporal features. Here we

consider and compare different fusion operations, such as element-wise addition, 1×1

convolution layer, concatenation, and the proposed STAM module. In Table 9.4, we

can observe that STAM achieves the best performance, showing its effectiveness. On

the other hand, adopting any fusion operation can outperform all the baselines in

Table 9.1 and variants in Table 9.3. This demonstrates that STPL maintains superior

performance regardless of the choice of fusion operations.

Temporal consistency. We quantitatively compare the temporal consistency of

different objective functions. The temporal consistency is derived from the overlap
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Figure 9.6: The t-SNE visualization [216] of the feature space learned for VIPER →
Cityscapes-Seq, where each point in the scatter plots stands for a pixel representation. σintra
is the intra-class variance (lower is better) and σinter is the inter-class variance (higher is
better) of the feature space. All the methods are evaluated on the same selected video samples.
In comparison, the proposed STPL learns the most discriminative feature space, which is
reflected by the lowest σintra and the highest σinter.

between the predicted segmentation maps of successive frames. We compute the

percentage of overlapping pixels. As shown in Table 9.5, STPL performs the best,

indicating that the proposed spatio-temporal method significantly improves temporal

consistency. This quantitative result is consistent with the qualitative results shown in

Figure 9.5.

Feature visualization. Figure 9.6 provides the t-SNE visualization [216] of the

feature space learned for the VIPER → Cityscapes-Seq benchmark. Each point
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Figure 9.7: The t-SNE visualization [216] of the feature space learned for VIPER →
Cityscapes-Seq, where each point in the scatter plots stands for a pixel representation. Four
classes (road, traffic light, car, and bicycle) are sampled to visualize. The proposed STPL
learns the most discriminative feature space, which is reflected by the lowest σintra and the
high σinter.

in the scatter plots stands for a pixel representation. We compute the intra-class

variance σintra (lower is better) and inter-class variance σinter (higher is better) of the

feature space to provide a quantitative measurement. As can be seen, TPS*, which

is originally designed for UDA, has a less discriminative feature space under the

SFDA setup. It obtains higher σintra than the source-trained model. HCL, an image-

based SFDA approach, has a relatively better feature space. It acquires lower σintra

and higher σinter. In comparison, the proposed STPL learns the most discriminative
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Figure 9.8: The percentage of same-class pixel representations among the k-nearest neighbors
in the feature space. STPL achieves higher percentage for every k value, showing that STPL
learns a more discriminative and semantically consistent feature space.

feature space. Unlike HCL, STPL leverages spatio-temporal information for video

adaptation, and the benefit is clearly reflected by the lowest σintra and the highest

σinter. This demonstrates STPL’s ability to learn semantic correlations among pixels

in the spatio-temporal space.

For more clear observations, we provide another t-SNE visualization Figure 9.7

by sampling only four classes (road, traffic light, car, and bicycle). Similarly, TPS*

obtains a higher σintra and a lower σinter than the source-trained model. HCL acquires

a higher σinter, but its σintra is much higher. In comparison, STPL has the lowest σintra

and the high σinter. This one again demonstrates STPL’s superiority.

Feature space neighborhood. This analysis inspects the neighborhood of the feature

space learned by the proposed STPL, which quantitatively measures the discriminabil-

ity of a feature space [246]. We randomly select several video samples and extract
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the features at the pixel level. For an unbiased analysis, 500 pixel representations are

considered for each semantic class to create a feature analysis set. Next, we query

each representation in the set and retrieve the k-nearest neighbors of that representa-

tion. Among the retrieved k nearest representations, we inspect the percentage of the

same-class representations it contains.

Figure 9.8 reports the inspection results. For smaller k values, all the methods

have similar accuracy, which indicates that their feature spaces have semantically

consistent neighbors for query pixel representations. Interestingly, when we increase

the k values to retrieve more neighbors, the accuracy differences between the proposed

STPL and the other approaches significantly enlarge. In other words, the accuracy of

STPL drops much slower than the rest. We can see that for any given k values, STPL

has more semantically consistent representations in the neighborhood. This analysis

shows that the proposed method can effectively learn a discriminative feature space,

thereby resulting in better performance.

9.4 Summary

In this chapter, we propose STPL, a novel SFDA method for VSS, which takes full

advantage of spatio-temporal information to tackle the absence of source data better.

STPL explicitly learns semantic correlations among pixels in the spatio-temporal

space and provides strong self-supervision for video adaptation. To the best of our

knowledge, this is the first work to explore video-based SFDA solutions. Moreover, we

demonstrate that STPL is a non-trivial unified spatio-temporal framework. Extensive

experiments show the superiority of STPL over various baselines, including the image-

based SFDA as well as image- and video-based UDA approaches. Further insights
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into the proposed method are also provided by our comprehensive ablation analysis.

Limitations. Similar to all the existing SFDA methods, the proposed STPL assumes

that the source-trained model has learned source knowledge well. A sub-optimal

source-trained model would affect adaptation performance. Such limitation of SFDA

is an interesting direction for future investigations.

Potential negative social impact. The proposed method may make attackers easier to

adapt pre-trained open-source models to malicious uses. To avoid such risk, computer

security or defense mechanisms could be incorporated.

169



Part III

Intersection of Adversarial Robustness
and Domain Adaptation
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Chapter 10

Exploring Adversarially Robust
Training for Unsupervised Domain
Adaptation
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10.1 Motivation

Although recent UDA approaches achieve impressive performance [52, 53, 145, 146,

147, 210], they do not consider the robustness against adversarial attacks [13, 201],

which causes critical concerns. Currently, AT-based defenses [60, 97, 150, 256]

have been considered the most effective, especially under the white-box setting [5].

Nevertheless, conventional AT requires ground-truth labels to generate adversarial

examples (see details in Chapter 2). This makes it not applicable to the UDA problem

since UDA considers the scenario that label information is unavailable to a target

domain. A nearly contemporary work [6] resorts to external adversarially pre-trained

ImageNet [35] models as teacher models to distill robustness knowledge. However,

its performance is highly sensitive to the teacher models’ perturbation budget, ar-

chitecture, etc., which limits the flexibility in a wide range of uses. Another very

recent work [245] uses an external pre-trained UDA model to produce pseudo labels

for doing AT on target data. Unfortunately, we show that it suffers from suboptimal

accuracy and robustness against white-box attacks.

Given the above observations, intuitive questions emerge: Can we develop an AT

algorithm specifically for the UDA problem? How to improve the unlabeled data

robustness via AT while learning domain-invariant features for UDA? In this chapter,

we seek to answer these questions by systematically studying multiple AT variants

that can potentially be applied to UDA. First, we apply a conventional AT [150] to

an UDA model to see its effectiveness. In other words, the AT is performed on only

the labeled source data. Second, inspired by [97, 256], we attempt to train models

by minimizing the difference between the output logits of clean target data and the

corresponding adversarial examples. With this, we can conduct a kind of AT directly
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Figure 10.1: Overview of the proposed ARTUDA and its importance. LCE: Cross-entropy
loss. LKL: KL divergence loss. Compared to conventional AT [150], ARTUDA significantly
improves adversarial robustness while maintaining decent clean accuracy. We use DANN [53]
with ResNet-50 [69] backbone, the VisDA-2017 [167] dataset, and the PGD-20 [150] attack
for this experiment.

on the target data in a self-supervised manner. We call it Self-Supervised Adversarial

Training or Self-Supervised AT. Next, we look into the effects of clean images and

adversarial examples in the AT for UDA. We present the trade-off behind different

AT variants. Last, we observe that BN [82] plays an important role in the AT for

UDA. The feature statistic estimations at training time would affect an UDA model’s

robustness.

Through these investigations, we propose a novel Adversarially Robust Training

method for UDA accordingly, referred to as Adversarially Robust Training for UDA

(ARTUDA). It uses both source and target data for training and does not require target

domain labels, so it is feasible for UDA. Moreover, it does not need guidance from

external models such as adversarially pre-trained models and pre-trained UDA models.

Figure 10.1 illustrates an overview and the importance of the proposed ARTUDA.
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The naturally trained (i.e., train with only clean data) model’s accuracy decreases to

0% under an adversarial attack. Conventional AT [150] improves robust accuracy to

13% but sacrifices clean accuracy. As can be seen, ARTUDA significantly increases

robust accuracy to 41% while maintaining better clean accuracy. This shows that our

method can improve unlabeled data robustness and learn domain-invariant features

simultaneously for UDA. To the best of our knowledge, ARTUDA is the first AT-based

UDA defense that is robust against white-box attacks. In Sec. 10.3, we extensively

evaluate ARTUDA on five adversarial attacks, three datasets and three different UDA

algorithms. The results demonstrate its wide range of effectiveness. Code is available

at: https://github.com/shaoyuanlo/ARTUDA

The main contributions of this chapter are summarized as follows:

• We provide a systematic study into various AT methods that are suitable for

UDA. We believe that such experimental analysis would provide useful insight

into this relatively unexplored research direction.

• We propose ARTUDA, a new AT method specifically designed for UDA. To

the best of our knowledge, it is the first AT-based UDA defense method that is

robust against white-box attacks.

• Comprehensive experiments show that ARTUDA consistently improves UDA

models’ adversarial robustness under multiple attacks and datasets.

10.1.1 Related Work

RFA [6] and ASSUDA [245] are the most related works in the literature, which are

nearly contemporary with our work. They are the first to focus on UDA’s adversarial

174

https://github.com/shaoyuanlo/ARTUDA


robustness, but we would like to point out the clear differences from our work. RFA

leverages external adversarially pre-trained ImageNet [35] models as teacher models

to distill robustness knowledge. Its performance is highly sensitive to the teacher

models’ setup, such as perturbation budget, architecture and the number of teachers.

AT on ImageNet is very expensive, so it is not always easy to obtain the preferred

teacher models. In contrast, we propose a method that directly performs AT on a given

UDA task, enjoying maximum flexibility. ASSUDA aims at semantic segmentation

and considers only weak black-box attacks. It employs an external pre-trained UDA

model to produce pseudo labels for target data, then uses the pseudo labels to do

AT. However, we show that this approach has suboptimal accuracy and robustness

against white-box attacks. In contrast, our method is robust under both black-box and

white-box settings.

10.2 Exploring Adversarial Training for Unsupervised
Domain Adaptation

This section systematically studies multiple variants of AT to explore suitable AT

methods for UDA. Then we finalize the proposed ARTUDA accordingly. Here we

conduct a set of experiments on the VisDA-2017 [167] dataset. We employ DANN

[53] as the UDA algorithm with ResNet-50 [69] backbone. The white-box FGSM [60]

attack with a perturbation budget of ϵ = 3 is used for both AT and testing. Following

the practice of [6, 245], we assume that attackers have the labels of the target dataset

to generate adversarial examples. The rationale behind these settings is that (i) most

existing UDA approaches [146, 210] are based on DANN’s key idea, so DANN is a

fair representative; (ii) the white-box threat model is the strongest attack setting, which
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has been considered a standard evaluation protocol for defenses [5, 150, 240, 256].

In the following, we continue using the related notations and equations described in

Chapter 2.

Preliminary. Given a labeled source dataset Ds = {(xi
s, yi

s)}ns
i=1 and an unlabeled

target dataset Dt = {xi
t}

nt
i=1 with ns and nt number of samples, respectively, a typical

UDA model learns a feature extractor F and a classifier C on top of F. Given an input

image x, we express its feature space representation as F(x) and its output logits as

C(x), where we use C(x) as a simplification of the formal expression C(F(x)). The

objective function of an UDA model can be written as:

LCE(C(xs), ys) + LDA(xs, xt), (10.1)

where LCE is the standard cross-entropy loss, and LDA is the domain adaptation loss

defined by each UDA approach. One of the most common LDA is the adversarial loss

introduced by DANN [53], which is defined as:

LDA(xs, xt) = E[logD(F(xs))] + E[1 − (logD(F(xt)))], (10.2)

where D is a domain discriminator used to encourage domain-invariant features.

AT is formulated as:

min
F,C

E

[︃
max
δ∈S

L(C(x̃), y)
]︃

, (10.3)

where x̃ = x + δ is the generated adversarial example bounded by a perturbation set

S. For image classification tasks, L is the cross-entropy loss LCE. PGD [150], the

most widely-used attack generates x̃ by:

xj+1 = ProjLp
x, ϵ{xj + α · sign(▽xjL(C(xj), y))}; (10.4)
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x̃ = xjmax , where jmax is the maximum number of attack iterations and ϵ denotes an

Lp-norm perturbation budget.

10.2.1 Conventional Adversarial Training on Unsupervised Do-
main Adaptation

We start with applying a conventional AT [150] to DANN to see its effectiveness. That

is, the AT is performed on only the labeled source data, i.e., apply Eq. (10.3) on source

dataset Ds. Therefore, the objective of the DANN model becomes:

LCE(C(x̃s), ys) + LDA(x̃s, xt). (10.5)

It is reasonable to expect that Conventional AT cannot fully benefit target domain

robustness, as source domain robustness may not perfectly transfer to the target domain

due to domain shift. As reported in Table 10.1, compared to the Natural Training

baseline (i.e., train with only clean data), Conventional AT indeed improves robustness

to a certain extent but is not significant. Also, the clean accuracy is largely decreased.

Hence, we argue that applying AT directly on the target data is important.

A naive way of applying AT on the target data is to produce pseudo labels y′t

using an external pre-trained UDA model. ASSUDA [245] resorts to this idea and

applies it to the UDA semantic segmentation problem. Note that ASSUDA only

evaluates black-box robustness. Here we implement the Pseudo Labeling idea on

image classification and observe its white-box robustness. We use a naturally trained

DANN as the pseudo-labeler. The objective of Pseudo Labeling approach is as follows:

LCE(C(xs), ys) + LCE(C(x̃t), y′t) + LDA(xs, x̃t). (10.6)
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Table 10.1: Results (%) of Conventional AT and our Self-Supervised AT on the VisDA-2017
dataset.

Training method Clean FGSM

Natural Training 73.2 21.2
Conventional AT [150] 62.9 (-10.3) 27.1 (+5.9)
Pseudo Labeling 33.1 (-40.1) 27.1 (+5.9)

Self-Supervised AT-L1 56.2 (-17.0) 15.8 (-5.4)
Self-Supervised AT-L2 51.3 (-21.9) 26.0 (+4.8)
Self-Supervised AT-KL 67.1 (-6.1) 35.0 (+13.8)

In Table 10.1, we find that Pseudo Labeling’s robustness is not better than Conventional

AT, and the clean accuracy drops dramatically. We believe that the label noise problem

is inevitable in pseudo labels y′t and limits model performance. This motivates us to

explore a new AT method that can be directly performed on the target domain.

10.2.2 Self-Supervised Adversarial Training

Inspired by [97, 256], we seek to use clean target data’s logits C(xt) as a self-

supervision signal to generate adversarial examples x̃t. Based on the min-max opti-

mization for AT [150], we generate x̃t by maximizing the difference between C(xt)

and C(x̃t), and minimize that difference to train a model. With this idea, we can

generate adversarial examples via self-supervision and perform a kind of AT for the

target domain. We call it Self-Supervised Adversarial Training or Self-Supervised AT.

In other words, to generate x̃t, Self-Supervised AT changes the FGSM formulation to:

xj+1
t = Π∥δ∥p≤ϵ

(︂
xj

t + α · sign(▽
xj

t
L(C(xj

t), C(xt)))
)︂

, (10.7)
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and x̃t = xjmax
t . To adversarially train an UDA model, Self-Supervised AT changes

the PGD-AT [150] formulation to:

min
F,C

E

[︄
max
∥δ∥p≤ϵ

L
(︁
C(x̃t), C(xt)

)︁]︄
. (10.8)

L is a loss function that encourages the logits to be similar. Possible choices include

L1 loss, L2 loss, Kullback-Leibler (KL) divergence loss, etc. Taking KL divergence

loss as an example, the objective of Self-Supervised AT for UDA can be written as

follows:

LCE
(︁
C(xs), ys

)︁
+ LKL

(︁
C(x̃t), C([xt]sg)

)︁
+ LDA

(︁
xs, x̃t

)︁
, (10.9)

where [·]sg denotes the stop-gradient operator [215] constraining its operand to be

a non-updated constant. We do not expect that Self-Supervised AT is as robust as

conventional supervised AT since the ground-truth labels y are always the strongest

supervision. However, given that target domain labels yt are unavailable, we believe

that the clean logits C(xt) could be a good self-supervision signal.

Table 10.1 shows that Self-Supervised AT-L1 and Self-Supervised AT-L2 are not

effective, while Self-Supervised AT-KL achieves excellent results. Self-Supervised

AT-KL increases robust accuracy over Natural Training by 13.8%, which is much

better than Conventional AT. It also maintains decent clean accuracy. These results

demonstrate that our Self-Supervised AT strategy is effective, but the choice of the

loss function is critical, where KL divergence loss is the preferred one.
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10.2.3 On the Effects of Clean and Adversarial Examples in Self-
Supervised Adversarial Training.

Let us revisit the results of the last experiment from another perspective. We ob-

serve a trade-off between clean performance and robustness, and the upper part of

Table 10.2 illustrates this point more clearly. Specifically, from Natural Training and

Conventional AT, we can see that replacing clean images xs by adversarial examples

x̃s increases robust accuracy but decreases clean accuracy. A similar trade-off can

be found between Natural Training and Self-Supervised AT-KL, which train with

xt and x̃t, respectively. This interests us to further investigate the usage of the four

data types {xs, x̃s, xt, x̃t} in the AT for UDA. Self-Supervised AT-KL outperforms

Conventional AT in terms of both clean and robust accuracies, indicating that using x̃t

is more efficient than x̃s, so we start with Self-Supervised AT-KL as a baseline.

First, we add xt to Self-Supervised AT-KL. This turn out SSAT-s-t-t̃-1 and SSAT-s-

t-t̃-2, where SSAT-s-t-t̃-1’s domain adaptation loss is LDA(xs, xt), while SSAT-s-t-t̃-2

involves another term and becomes LDA(xs, xt) + LDA(xs, x̃t). In other words,

SSAT-s-t-t̃-1 explicitly transfers the supervised knowledge from xs to only xt, while

SSAT-s-t-t̃-2 transfers to both xt and x̃t. We expect that SSAT-s-t-t̃-1 and SSAT-s-t-t̃-2

enjoy higher clean accuracy than Self-Supervised AT-KL because they involve xt.

The lower part of Table 10.2 reports the results. We find that SSAT-s-t-t̃-1’s

robust accuracy drops significantly, but the clean accuracy does not improve much.

In contrast, SSAT-s-t-t̃-2 largely increases both clean and robust accuracies by 5.9%

and 4.4%, respectively. The improvement of clean performance matches our ex-

pectations, but we are surprised at that of robustness. We see this is due to our

Self-Supervised AT’s specific property. Self-Supervised AT leverages the objective
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Table 10.2: Results (%) of SS-AT variants on VisDA-2017. (xs, xt) denotes LDA(xs, xt). •:
selected. —: not applicable.

Training method xs x̃s xt x̃t (xs, xt) (xs, x̃t) (x̃s, xt) (x̃s, x̃t) Clean FGSM

Natural Training • • • —– —– —– 73.2 21.2
Conventional AT [150] • • —– —– • —– 62.9 27.1
SS-AT-KL • • —– • —– —– 67.1 35.0

SS-AT-s-t-t̃-1 • • • • —– —– 67.3 27.5
SS-AT-s-t-t̃-2 • • • • • —– —– 73.0 39.4
SS-AT-s-s̃-t-t̃-1 • • • • • • 63.4 41.6
SS-AT-s-s̃-t-t̃-2 • • • • • • 62.8 42.3
SS-AT-s-s̃-t-t̃-3 • • • • • • • • 61.3 41.6

LKL
(︁
C(x̃t), C(xt)

)︁
to do AT, so C(xt)’s quality is critical. Given that the labels yt

is unavailable, LDA(xs, xt) can transfer the supervised knowledge to xt and thus en-

hance C(xt)’s quality. Therefore, adding xt to Self-Supervised AT benefits robustness

as well. This observation is different from the conventional supervised AT that exists

the trade-off between performance and robustness [209, 240, 256]. We conclude that

involving xt in training does help, but an explicit supervised knowledge transfer to x̃t

is needed. This is rational since x̃t plays the most important role in Self-Supervised

AT, giving firm guidance to it is essential.

Second, we look into the effects of x̃s in Self-Supervised AT. We add x̃s and study

three variants: SSAT-s-s̃-t-t̃-1, SSAT-s-s̃-t-t̃-2 and SSAT-s-s̃-t-t̃-3. Their differences

are in their domain adaptation loss, which is also illustrated in Table 10.2. Intuitively,

we expect that adding x̃s falls into the trade-off that leads to lower clean performance

but better robustness, as x̃s is the conventional supervised adversarial example.

As shown in Table 10.2, all the three variants obtain lower clean accuracy and

higher robust accuracy than SSAT-s-t-t̃-1 and SSAT-s-t-t̃-2, which matches our assump-

tion. The results among these three are very close. Compared to SSAT-s-t-t̃-2, their

clean accuracy drops 9.6%-11.7%, but robust accuracy only improves 2.2%-2.9%.
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This is consistent with Conventional AT’s result, i.e., source domain robustness is not

easy to transfer to the target domain. Because training without x̃s achieves a better

trade-off between performance and robustness, we use SSAT-s-t-t̃-2 as a baseline for

the next investigation. To present our experiments more clear, in the following, we

summarize the objective functions of each Self-Supervised AT variant discussed in

this part:

– SSAT-s-t-t̃-1:

LCE
(︁
C(xs), ys

)︁
+ LKL

(︁
C(x̃t), C([xt]sg)

)︁
+ LDA

(︁
xs, xt

)︁
. (10.10)

– SSAT-s-t-t̃-2:

LCE
(︁
C(xs), ys

)︁
+ LKL

(︁
C(x̃t), C([xt]sg)

)︁
+ LDA

(︁
xs, xt

)︁
+ LDA

(︁
xs, x̃t

)︁
.

(10.11)

– SSAT-s-s̃-t-t̃-1:

LCE
(︁
C(xs), ys

)︁
+ LKL

(︁
C(x̃t), C([xt]sg)

)︁
+ LCE

(︁
C(x̃s), ys

)︁
+ LDA

(︁
xs, xt

)︁
+ LDA

(︁
x̃s, x̃t

)︁
.

(10.12)

– SSAT-s-s̃-t-t̃-2:

LCE
(︁
C(xs), ys

)︁
+ LKL

(︁
C(x̃t), C([xt]sg)

)︁
+ LCE

(︁
C(x̃s), ys

)︁
+ LDA

(︁
xs, x̃t

)︁
+ LDA

(︁
x̃s, xt

)︁
.

(10.13)

– SSAT-s-s-’t-t̃-3:

LCE
(︁
C(xs), ys

)︁
+ LKL

(︁
C(x̃t), C([xt]sg)

)︁
+ LCE

(︁
C(x̃s), ys

)︁
+ LDA

(︁
xs, xt

)︁
+ LDA

(︁
xs, x̃t

)︁
+ LDA

(︁
x̃s, xt

)︁
+ LDA

(︁
x̃s, x̃t

)︁
.

(10.14)
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10.2.4 On the Effects of Batch Normalization in Self-Supervised
Adversarial Training

It has been well-known that the statistic estimation of BN [82] plays an important

role in both the UDA (Chapter 8 and [22, 124]) and the adversarial machine learning

(Chapter 6 and [240, 236]) fields. It is worth investigating the effects of BN given

these two research fields meet together in this chapter.

Recall that during training, BN computes the mean and variance of the feature

space for each mini-batch, referred to as batch statistics [240]. Each mini-batch

is normalized by its batch statistics at training time. Hence, the composition of a

mini-batch defines its batch statistics, thereby affecting the normalized values of each

data point’s features. To observe the effects on Self-Supervised AT, we create four

variants of SSAT-s-t-t̃-2. They involve the same data types {xs, xt, x̃t} into training but

with different mini-batch compositions. Specifically, at each training step, Batch-st-t̃

has two mini-batches, [xs, xt] and [x̃t]; Batch-s-tt̃ has two mini-batches, [xs] and

[xt, x̃t]; Batch-s-t-t̃ has three mini-batches, [xs], [xt] and [x̃t]; and Batch-stt̃ has one

mini-batch, [xs, xt, x̃t]. Batch-st-t̃ is the original SSAT-s-t-t̃-2, which follows the

setting of [92]. We expect that their batch statistics differences would cause different

results.

Table 10.3 shows the results. As can be seen, Batch-st-t̃ achieves the highest

clean accuracy, while Batch-stt̃ achieves the highest robust accuracy. We argue that

in Batch-stt̃, xs is with the same mini-batch as xt and x̃t, so it can also transfer the

supervised knowledge through batch statistics. In other words, the batch statistics

used to normalize xt and x̃t contain xs’s information. This shares a similar spirit

with the domain adaptation loss LDA
(︁
xs, xt

)︁
+LDA

(︁
xs, x̃t

)︁
discussed in Sec. 10.2.3,
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Table 10.3: Results (%) of different mini-batch combinations on the VisDA-2017 dataset.

Method Mini-batches Clean FGSM

Batch-st-t̃ [xs, xt], [x̃t] 73.0 39.4
Batch-s-tt̃ [xs], [xt, x̃t] 68.2 37.0
Batch-s-t-t̃ [xs], [xt], [x̃t] 68.2 35.5
Batch-stt̃ [xs, xt, x̃t] 69.0 41.4

and we have known that it can improve robustness. For Batch-st-t̃, we see its high

performance is due to the separation of xt and x̃t. Recall that clean and robust features

have distinct characteristics [84, 209], so putting them into the same mini-batch leads

to suboptimal results [240]. Batch-s-t-t̃, however, achieves lower performance than

Batch-st-t̃ though it has that separation as well. The reason is that in Batch-st-t̃, xs

and xt are with the same mini-batch. This encourages the knowledge transfer from xs

to xt, similar to the spirit of the domain adaptation loss LDA
(︁
xs, xt

)︁
.

Both Batch-st-t̃ and Batch-stt̃ achieve a good trade-off between performance and

robustness. We can choose according to the downstream application’s focus.

10.2.5 Recap

In this section, we explore four main aspects of AT for UDA, including Conventional

AT, our Self-Supervised AT, the effects of clean and adversarial examples in Self-

Supervised AT, and the effects of BN statistics. We progressively derive the best

method from each investigation, then we take Batch-stt̃ as our final method, referred

to as ARTUDA. ARTUDA’s training objective is Eq.(10.11), and Figure 10.1 offers a

visualized illustration. Note that some of the other variants also have their advantages,

e.g., Batch-st-t̃, so they are still useful for certain focusses.

184



10.3 Experiments

We extensively evaluate the proposed ARTUDA on five adversarial attacks, three

datasets and three different UDA algorithms. We further compare ARTUDA with the

nearly contemporary work, RFA [6]. An analysis of feature space is also presented.

10.3.1 Experimental Setup

Datasets. We use three UDA datasets for evaluation: VisDA-2017 [167], Office-31

[182] and Office-Home [217]. VisDA-2017 contains two domains: Synthetic and Real.

There are 152,409 Synthetic and 55,400 Real images from 12 object categories in this

large-scale dataset. Office-31 has three domains with 31 object categories. These are

Amazon (A) with 2,817 images, Webcam (W) with 795 images, and DSLR (D) with

498 images. We employ the D → W task for our experiments. Office-Home includes

four domains with 65 categories: Art (Ar) with 2,427 images, Clipart (Cl) with 4,365,

Product (Pr) with 4,439 images, and Real-World (Rw) with 4,375 images. We employ

the Ar → Cl task for our experiment.

Attack setting. We test UDA models’ adversarial robustness against four white-box

attacks, including FGSM [60], PGD [150], MI-FGSM [38] and MultAdv (proposed

in Chapter 3), where PGD is the default attack unless stated otherwise. A black-box

attack [164] is also considered. For AT, we use the PGD attack with jmax = 3 and

ϵ = 3 of L∞-norm. If not otherwise specified, we set the same for all the attacks at

testing time except that FGSM’s jmax is 1.

Benchmark UDA algorithms. We apply ARTUDA to three common UDA algo-

rithms, including DANN [53], JAN [147] and CDAN [146]. We use ResNet-50 [69]

as a backbone for all of them. If not otherwise specified, DANN is the default UDA
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algorithm in our experiments.

Baseline defenses. We employ two commonly-used conventional AT algorithms,

PGD-AT [150] and TRADES [256], to be our baseline defenses. To the best of our

knowledge, RFA [6] might be the only approach aiming at the same problem as ours,

and we also compare with it.

Implementation details. Our implementation is based on PyTorch [166]. We adopt

Transfer-Learning-library [92] to set up UDA’s experimental environment and follow

the training hyper-parameters used in [92]. We also use the widely-used library,

AdverTorch [36], to perform adversarial attacks.

10.3.2 Evaluation Results

White-box robustness. The robustness of multiple training methods against various

white-box attacks is reported in Table 10.4. Without a defense, Natural Training’s

accuracy drops to almost 0% under strong iterative attacks. PGD-AT and TRADES

improve adversarial robustness though they are originally designed for the traditional

classification task. However, they also reduce clean accuracy. The proposed method,

ARTUDA, significantly increases robust accuracy. Specifically, on VisDA-2017, it

achieves more than 10% and 20% higher robustness than TRADES and PGD-AT,

respectively. On Office-31, its robust accuracy is higher than PGD-AT and TRADES

by 25%-48% under white-box iterative attacks. On Office-Home, although TRADES

is slightly more robust to white-box iterative attacks, ARTUDA has higher accuracy

under clean data, FGSM and black-box attacks, leading by a decent margin. In

general, ARTUDA is effective across all the five attacks on three datasets. ARTUDA’s

clean accuracy drops but is still the best among the defenses. It can greatly improve
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Table 10.4: Results (%) of UDA models on multiple datasets under various adversarial attacks.

Dataset Training method Clean FGSM PGD MI-FGSM MultAdv Black-box

Natural Training 73.2 21.2 0.9 0.5 0.3 58.3
VisDA-2017 PGD-AT [150] 60.5 34.6 21.3 22.7 7.8 59.1

[167] TRADES [256] 64.0 42.1 29.7 31.2 16.4 62.6
ARTUDA (Ours) 65.5 52.5 44.3 45.0 27.3 65.1

Natural Training 98.0 52.7 0.9 0.6 0.1 95.0
Office-31 PGD-AT [150] 95.3 91.8 68.2 66.5 31.4 95.3

D → W[182] TRADES [256] 88.4 85.3 66.4 67.0 28.2 88.2
ARTUDA (Ours) 96.5 95.2 92.5 92.5 77.1 96.5

Natural Training 54.5 26.4 4.7 2.8 2.0 53.1
Office-Home PGD-AT [150] 42.5 38.8 36.0 35.8 21.7 43.0

Ar → Cl [217] TRADES [256] 49.3 45.1 41.6 41.6 22.5 49.4
ARTUDA (Ours) 54.0 49.5 41.3 39.9 21.6 53.9

robustness and maintain decent clean performance simultaneously.

Black-box robustness. The robustness against black-box attacks is shown in the last

column of Table 10.4. Here we consider a naturally trained DANN with ResNet-18 as

a substitute model and use MI-FGSM, which has better transferability, to generate

black-box adversarial examples for target models. In general, the black-box attacks

hardly fool the target models. However, we find that the conventional AT approaches

have lower black-box accuracy than Natural Training in some cases. This is due

to their lower clean accuracy. In contrast, ARTUDA has better clean accuracy and

consistently achieves the best black-box robustness across all the datasets.

Generalizability. To compare with the results of [6], in this part, we evaluate robust-

ness against the white-box PGD attack with jmax = 20 that used in [6]. Table 10.5

reports the adversarial robustness of multiple popular UDA algorithms. All of them

are vulnerable to adversarial attacks. The state-of-the-art approaches, Robust PT and

RFA, show excellent effectiveness in improving robustness. We apply our ARTUDA

training method to these UDA models to protect them as well. As can be seen, AR-

TUDA uniformly robustfies all of these models. It consistently achieves low accuracy
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Table 10.5: Results (%) of UDA models on the VisDA-2017 dataset under the PGD attack.
Three UDA algorithms are considered.

UDA algorithm → DANN [53] JAN [147] CDAN [146]
Training method ↓ Clean PGD Drop Clean PGD Drop Clean PGD Drop

Natural Training 73.2 0.0 -73.2 64.2 0.0 -64.2 75.1 0.0 -75.1
PGD-AT [150] 60.5 13.3 -47.2 47.7 5.8 -41.9 58.2 11.7 -46.5

TRADES [256] 64.0 19.4 -44.6 48.7 8.5 -40.2 64.6 15.7 -48.9
Robust PT [6] 65.8 38.2 -27.6 55.1 32.2 -22.9 68.0 41.7 -26.3

RFA [6] 65.3 34.1 -31.2 63.0 32.8 -30.2 72.0 43.5 -28.5

ARTUDA (Ours) 65.5 40.7 -24.8 58.5 34.4 -24.1 68.0 43.6 -24.4

drops and the highest robust accuracy, which outperforms both Robust PT and RFA.

This demonstrates that ARTUDA is generic and can be applied to multiple existing

UDA algorithms.

In terms of clean data accuracy, all the defenses lose clean accuracy to a certain

extent. Still, the proposed ARTUDA achieves the best or the second-best clean

accuracy among these defenses. Overall, it can significantly improve robustness and

maintain decent clean performance simultaneously.

10.3.3 Analysis

Stability of feature space. Small adversarial perturbations on image space are

enlarged considerably in feature space [239]. Hence, the stability of the feature space

can reflect a model’s robustness (discussed in Chapter 5). In other words, a robust

model’s feature space would hardly change under an adversarial example. We compute

the mean L2-norm distance between the feature space of clean images and that of

their PGD examples for our models: ∥ F(xt)− F(x̃t) ∥2. The features from the last

conv layer of the ResNet-50 backbone are used. As can be seen in Figure 10.2, Natual

Training has the largest distance, which means that its features are greatly changed
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Figure 10.2: Mean L2-norm distance between the feature space of clean images and that of
their adversarial examples. The values are the mean over an entire dataset.

Figure 10.3: The t-SNE visualization of the feature space on the Office-31 D→W task.

when images are adversarially perturbed and thus cause wrong predictions. PGD-AT

and TRADES can reduce the distance. ARTUDA attains the smallest distance on

both datasets, showing that its feature space is not easily affected by adversarial

perturbations.

Visualization of feature space. Figure 10.3 visualizes the different methods’ feature

space on the Office-31 D→W task using t-SNE [216]. The features are from the last

conv layer of the ResNet-50 backbone. The PGD data in the Natural Training model

are disorderly scattered and do not align with clean data. PGD-AT and TRADES
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Figure 10.4: Accuracy of models under PGD attacks (a) with varied numbers of attack
iterations jmax and (b) with varied perturbation sizes ϵ.

narrow the distribution gap to a certain extent. ARTUDA impressively aligns the

feature space of PGD and clean data which almost overlap with each other. This

implies that ARTUDA is effective in learning adversarially robust features. This result

is consistent with the above stability analysis.

Attack budgets. We test our ARTUDA’s scalability to various attack budgets. We

vary the attack budgets by two aspects: the number of attack iterations jmax and

the perturbation size ϵ. Figure 10.4 shows the results. First, we can find that the

attack strength does not increase apparently along with the increase of jmax when

jmax > 3. This observation is consistent with that of [150]. The proposed ARTUDA

demonstrates stable adversarial robustness and consistently performs better than

Natural Training, PGD-AT [150] and TRADES [256] under varied jmax. On the other

hand, the attack strength dramatically increases along with the increase of ϵ. It can be

seen that ARTUDA consistently shows better robustness under varied ϵ. Obviously,

ARTUDA is scalable to various attack budgets.
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Table 10.6: Results (%) of ARTUDA models with varied hyperparameter λ.

λ Clean FGSM

0.2 68.9 33.3
0.5 66.1 39.3
1.0 69.0 41.1
2.0 66.5 48.5
5.0 68.0 54.4

Loss weight of Self-Supervised AT. We can impose a hyperparameter on our AR-

TUDA training scheme. Specifically, we can add a loss weight λ to Eq. (10.11), and it

is shown as follows:

LCE
(︁
C(xs), ys

)︁
+ λLKL

(︁
C(x̃t), C([xt]sg)

)︁
+ LDA

(︁
xs, xt

)︁
+ LDA

(︁
xs, x̃t

)︁
.

(10.15)

The loss weight λ controls the ratio of the Self-Supervised AT objective to the overall

objective. In all of our previous experiments, we set λ to 1. In this section, we

train multiple ARTUDA models with varied λ, where we use the experimental setup

described in Sec. 10.2. The results are reported in Table 10.6.

We can find that the robust accuracy significantly increases along with the increase

of λ, while the clean accuracy does not vary obviously. This implies that the robustness

of the proposed ARTUDA can be further improved with a larger λ though it already

outperforms the state-of-the-art methods.

Class-wise accuracy on VisDA-2017. In Table 10.7, we report class-wise accuracy

under PGD attacks [150] on the VisDA-2017 dataset [167]. The results correspond to

the PGD column in Table 10.4. We can see that ARTUDA achieves the best accuracy

across the majority of the classes.

Sanity checks to evaluation. To further verify the reliability of our evaluation, we
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Table 10.7: Class-wise accuracy (%) under PGD attacks on the VisDA-2017 dataset.

Training method aero bike bus car horse knife motor person plant skate train truck Mean

Natural Training 4.8 0.9 1.5 0.0 0.2 0.9 0.3 3.2 0.2 0.1 0.7 0.0 0.9
PGD-AT [150] 49.6 20.4 15.2 8.7 34.3 7.3 27.3 32.8 35.2 17.4 19.8 3.2 21.3

TRADES [256] 61.8 24.5 32.0 11.4 42.9 30.6 34.1 49.1 50.1 5.6 33.1 4.8 29.7

ARTUDA (Ours) 75.0 32.1 61.5 25.9 53.3 65.1 66.4 48.2 52.3 9.2 58.8 7.8 44.3

report our results on the basic sanity checks introduced in [5]:

• Table 10.4 shows that iterative attacks (PGD and MI-FGSM) are stronger than

one-step attacks (FGSM).

• Table 10.4 shows that white-box attacks are stronger than black-box attacks (by

MI-FGSM).

• Unbounded attacks reach 100% attack success rate (accuracy drops to 0.0%) on

all the three datasets.

• Figure 10.4 shows that increasing distortion bound increases attack success

(decreases accuracy).

10.4 Summary

This chapter explores AT methods for the UDA problem. Existing AT approaches

require labels to generate adversarial examples and train models, but this does not

apply to the unlabeled target domain. We provide a systematic study into multiple AT

variants that may suitable for UDA. This empirical contribution could offer useful

insight to the research community. Based on our study, we propose ARTUDA, a novel

AT method specifically designed for UDA. Our comprehensive experiments show that
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ARTUDA improves robustness consistently across multiple attacks and datasets, and

outperforms the state-of-the-art methods.
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Chapter 11

Adaptive Batch Normalization
Networks for Adversarial Robustness
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11.1 Motivation

AT has been a standard foundation of modern adversarial defense approaches [150,

256]. However, it is extremely time-consuming, as it involves multi-step adversarial

example generation for learning robust features. High computational cost refrains

AT from being widely deployed in real-world applications. Moreover, AT is known

for causing lower clean data performance [209, 256]. Image transformation-based

defenses [64, 126, 244] do not use AT, but they have been proven not robust against

white-box attacks [5].

In this chapter, we aim at a non-AT defense: How to design a defense method

that gets rid of AT but is still robust against strong adversarial attacks? To answer

this question, we view the adversarial robustness problem from the perspective of

domain adaptation. As discussed in Chapter 6, clean data and adversarial data have

distinct distributions, so we can treat adversarial examples as a kind of domain shift

problem. Several studies investigate adversarial effects through domain adaptation

techniques. For example, AdvProp [236] employs an auxiliary BN branch to learn

separate clean and adversarial feature distributions, improving image recognition.

This idea is originally from the domain adaptation field [22]. Similarly, DRRDN [247]

disentangles the clean and adversarial distributions to enhance robustness, which is

also motivated by domain adaptation [21]. Nevertheless, these works aim at different

problem settings and still involve AT.

To our purpose, we resort to an adaptive BN idea, inspired by Test-Time Adap-

tation (TTA) approaches [124, 212, 223]. We propose a novel adversarial defense

accordingly, referred to as Adaptive Batch Normalization Network (ABNN). ABNN

employs a pre-trained and frozen substitute model to generate cleaner BN statistics,
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Figure 11.1: The proposed ABNN framework.

and send them to the target model. The target model is exclusively trained on clean

data and learns to align the substitute model’s BN statistics. Experiments show that

ABNN can improve adversarial robustness and achieve higher clean data performance

than AT approaches [150].

11.2 Proposed Method

As demonstrated in Chapter 6 and [236, 240], adversarial examples have different BN

statistics from clean data. Such adversarial BN statistics cause accuracy drops. We

see this property from a domain shift perspective and propose ABNN based on an

adaptive BN idea. The framework of the proposed ABNN method is illustrated in

Figure 11.1. It consists of a target model and a pre-trained substitute model. An input

would pass through both models parallelly. We deploy our adaptive BN layer after

each convolution block of the target model (e.g., after the conv1, conv2, conv3, conv4
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and conv5 blocks of a ResNet [69]).

11.2.1 Adaptive Batch Normalization Layer

Recall that BN [82] normalizes features to address the covariate shift problem, im-

proving training efficiency and stability. A standard BN layer is defined as:

z′ = γ

[︃
z − µ(z)

σ(z)

]︃
+ β, (11.1)

where z is the input feature, z′ is the normalized output feature, {µ(z), σ(z)} denotes

the BN statistics of mean and standard deviation, and {γ, β} are trainable parameters

for scaling and shifting, respectively. Let us consider that given an input sample, zt

and zs represent its features extracted by the target and substitute models, respectively.

Our adaptive BN layer receives {µ(zs), σ(zs)}, the BN statistics estimated by the

substitute model, then normalizes the target model’s feature zt to z′t by:

z′t = γs
[︁
σ(zs)

[︃
zt − µ(zt)

σ(zt)

]︃
+ µ(zs)

]︁
+ βs. (11.2)

Inspired by [212, 214], we train the adaptive parameters {γs, βs} via the AdaIN [79]

encoding layer, i.e., {γs, βs} = AdaIN(zs). AdaIN encodes the substitute model’s

feature zs to derive the adaptive parameters used to align the BN statistics of the two

models.

11.2.2 Training and Inference

We first pre-train the substitute model on one or multiple large-scale datasets (e.g., Ima-

geNet [35]), where pre-training datasets are different from the target task dataset. This

pre-training stage aims to learn a good feature extractor that can extract semantically
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meaningful features, thereby acquiring clean and high-quality BN statistics.

Next, we train the target model with the target task dataset. The target model

learns its model parameters and the adaptive parameters {γs, βs}. At this stage, the

substitute model sends its corresponding BN statistics {µ(zs), σ(zs)} to the target

model’s adaptive BN layers, and the substitute model itself is frozen on training. Both

the pre-training and target task training stages train on clean data exclusively without

AT.

At inference time, the pipeline follows the same forward pass as the target task

training stage. Under adversarial attacks, the target model’s BN statistics are perturbed,

resulting in indiscriminate features. In comparison, the substitute model’s BN statistics

are relatively unaffected even under white-box attacks, since the adversary focuses

more on the target model to attack the target task. Moreover, the substitute model is

pre-trained on large-scale datasets different from the target task dataset, making it

harder for the adversary to transfer the attack to the substitute model. Our adaptive

BN layer can adapt the substitute model’s cleaner BN statistics to the target model,

mitigating the adversarial effects in the target model’s features.

11.2.3 Discussion

ABNN does not rely on AT, so it is much more training-efficient. We present an

analysis of training complexity in Sec. 11.3.3. Besides, the pre-trained substitute

model can be reused for any number of downstream target task models, saving

additional training time. Avoiding AT enjoys better clean data performance as well.

Furthermore, compared to image transformation-based defenses, the entire ABNN

framework is fully differentiable and thus does not cause obfuscated gradients.
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On the other hand, ABNN is partly related to the adaptive test-time defense [33],

a defense category that delivers adaptive defense mechanisms at test time. However,

these adaptive test-time defenses involve iterative optimization during inference,

significantly increasing inference computation. In contrast, our ABNN does not have

test time optimization. The only extra computation overhead is the substitute model,

which is much lower than optimization. Their comparison is similar to the relation

between standard TTA [223] and on-the-fly adaptation [212]. In short, the proposed

method takes adversarial robustness, clean data performance, training and inference

efficiency into consideration, achieving a good balance among these aspects.

11.3 Experiments

11.3.1 Experimental Setup

We evaluate our method on CIFAR-10 [103], an image classification dataset that

comprises 60,000 images with size 32 × 32 from 10 classes. We employ a ResNet-18

[69] as the backbone network of the target model, and an ImageNet [35] pre-trained

VGG-19 [195] (with BN version) as the substitute model. At training time, the

substitute model is frozen, and the target model is trained by the SGD optimizer.

We use the PGD [150] attack to evaluate adversarial robustness, where we set

attack strength ϵ = 8/255 and the number of attack iterations tmax = 5. All

the attacks are conducted under the white-box setting, i.e., we generate adversarial

examples upon the entire framework, so the adversaries are fully aware of the defense.

Experiments are implemented by PyTorch [166] and performed on a single NVIDIA

RTX 2080 Ti GPU.
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Table 11.1: Evaluation results (%) on CIFAR-10.

Method Clean PGD

No Defense 93.4 0.0
PGD-AT [150] 83.3 51.6
ABNN (Ours) 87.5 31.5

11.3.2 Evaluation Results

Table 11.1 reports the experimental results. We can observe that the proposed ABNN

significantly improves robust accuracy from 0% to 31.5% on CIFAR-10 without using

AT. On the other hand, ABNN only sacrifices 5.9% clean accuracy, while PGD-AT

[150] sacrifices 10.1%. Hence, although ABNN is not as robust as PGD-AT, it enjoys

higher clean accuracy.

11.3.3 Training Time Complexity

Let us set each network pass (i.e., a forward pass or a backward pass) to have N com-

putational complexity, and let us suppose that ABNN’s target network and substitute

network have the same complexity. Therefore, ABNN spends 2N on a forward pass,

for it needs to pass through both networks. Since the substitute model is frozen during

training, ABNN spends N on a backward pass (passes through the target network

only). The total complexity of a training step is 2N + N = 3N.

PGD-AT requires generating multi-step adversarial examples for training. It spends

2N on each attack iteration (a forward pass plus a backward pass). It also spends

2N on training model parameters at each training step. Therefore, if the number of

attack iterations is tmax, the complexity of a single complete training step would be

(tmax + 1) · 2N. Hence, PGD-AT has (tmax + 1) · 2N/3N ≃ 0.67(tmax + 1) times
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more training complexity than ABNN, which linearly increases along with the AT’s

tmax. It clearly demonstrates that ABNN is much more efficient in terms of training

computation.

11.4 Summary

In this chapter, we propose a non-AT adversarial defense method, namely ABNN.

With cleaner BN statistics sent from a pre-trained substitute mode, it is able to mitigate

adversarial effects and thus improve robustness. Moreover, because ABNN avoids

AT, it is not only much more training-efficient but also achieves better clean data

performance. Adversarial robustness via domain adaptation ideas is less explored. We

demonstrate that this is a promising direction and worth further exploration.
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Chapter 12

Conclusion
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This dissertation studies the robustness of deep learning-based computer vision

models. First, we robustify computer vision models against adversarial examples,

where our research covers novel attacks, empirical defenses, generalizable defenses,

and defenses for less explored tasks. Next, we improve the robustness against domain

shifts via domain adaptation, covering both UDA and SFDA. Finally, we explore the

intersection of adversarial robustness and domain adaptation, which covers adversarial

defense for domain adaptation and adversarial defense via domain adaptations. These

essential topics are attracting more and more attention from computer vision and

artificial intelligence communities. We hope this dissertation, which aims at more

robust, reliable and trustworthy computer vision, will contribute to the research

community.

12.1 Future Directions

In the future, we plan to extend this thesis in several interesting directions. They

comprise three aspects: exploring the benefits of learning with perturbations, investi-

gating real-world domain adaptation for video data, and advancing toward broader

applications.

12.1.1 Benefits of Learning with Perturbations

In Part I, we study the case that perturbations are carefully crafted to be “adversarial”,

which are malicious to DNNs. However, perturbations can also be beneficial. For

instance, learning with adversarial examples in proper ways can improve image

recognition performance [74, 236]. This helps DNNs learn robust and meaningful

feature representations that may not be acquired from conventional data augmentation
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approaches.

Moreover, perturbations can be generated as visual prompts [8, 89]. A visual

prompt is a type of visual cue that helps a pre-trained vision model adapt to down-

stream tasks. The prompt is trained by backpropagation, then the optimized prompt

is added to input data at inference time. Such prompts may not interpretable to

human eyes but look like perturbations. Rather than directly adapting a large pre-

trained model to downstream tasks, visual prompting reframes the downstream tasks

to resemble those solved during the original model pre-training. This leads to much

more parameter-efficient tuning without requiring fine-tuning the model parameters.

The generation and visual form of visual prompts are highly similar to adversarial

perturbations, which is another showcase that perturbations can be beneficial.

Learning robust representations and visual prompting are emerging topics. Their

potential and applications are worth further exploring.

12.1.2 Real-World Domain Adaptation for Video Data

In Part II, we study two domain adaptation scenarios, UDA and SFDA. In addition

to UDA and SFDA, we would face more adaptation constraints in the real world.

For example, Test-Time Adaptation (TTA) [223] is of broad interest to the research

community as well. In many practical applications, a model needs to adapt itself to new

data domains at test time. Compared to SFDA having unlabeled target training data,

only unlabeled target test data are available for the TTA setting. TTA enables models

to be more flexible when the target domains continuously change. Recently, on-the-fly

adaptation [212] is introduced, which can adapt the model to a new test sample on-

the-fly without updating the model parameters. This avoids backpropagation during
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testing and thus further increases model flexibility.

Similar to SFDA, TTA, on-the-fly adaptation, and many other real-world adap-

tation settings (e.g., continual domain adaptation [219], versatile domain adaptation

[94]) are less explored for video data. Chapter 9 has shown that video-based methods

can significantly improve performance on video data. Hence, developing video-based

methods for real-world adaptation is a promising topic. We plan to explore more ad-

vanced self-supervised learning techniques, such as Barlow Twins [254] and Masked

Autoencoders [66], for our purposes.

12.1.3 Toward Broader Applications

This thesis focuses on computer vision tasks. We plan to bring this thesis’s ideas to

broader applications, e.g., speech processing, Natural Language Processing (NLP), and

medical image analysis. Specifically, we can explore the connections between existing

adversarial defense methods of image recognition (Part I) and speech recognition

[96], then develop a robust multi-modal framework. Furthermore, the robust one-class

algorithm proposed in Chapter 7 may also be extended to the one-class learning

problems of speech [257]. For NLP, generative text detection [181] will be important

for the ethical and reliable use of large language models [16]. For medical image

analysis, we can leverage adversarial examples to do data augmentation, improving

medical image segmentation [163]. Besides, existing approaches focus more on

Computed Tomography (CT) images than Cone Beam Computed Tomography (CBCT)

images. The domain adaptation algorithms proposed in Part II may be useful for

learning CT-to-CBCT knowledge transfer. Lastly, we plan to explore possible real-

world deployments of this thesis’s ideas, such as automated driving systems [27, 31,
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80, 133, 134, 135, 136], robotics [20, 242] and healthcare [158], as long-term goals.

In summary, this thesis can be advanced to broader artificial intelligence safety

and application fields. In general, we can propose robust methods, leverage ideas from

robustness to improve performance, and further explore diverse applications. We also

present several specific directions to go. We hope this dissertation will shed light on

future research.
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