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Abstract

In network inference applications, it is desirable to detect community structure, i.e.,

cluster vertices into potential blocks. Beyond adjacency matrices, many real-world

networks also involve vertex covariates that may carry information about underlying

block structure. Since accurate inference on random networks depends on exploiting

all available signal, we need scalable algorithms that can incorporate both network

connectivity data and additional insight from vertex covariates. In addition, it can be

prohibitively expensive to observe the entire graph in many real applications, especially

for large graphs. Thus it becomes essential to identify vertices that have the most

impact on block structure and only check whether there are edges between them given

a limited budget.

To assess the effects of vertex covariates on block recovery, we consider two model-

based spectral algorithms. The first algorithm uses only the adjacency matrix, and

directly estimates the block assignments. The second algorithm incorporates both the

adjacency matrix and the vertex covariates into the estimation of block assignments.

We employ Chernoff information to analytically compare the algorithms’ performance

and derive the information-theoretic Chernoff ratio for certain models of interest.

Analytic results and simulations suggest that the second algorithm is often preferred:

one can better estimate the induced block assignments by first estimating the effect

of vertex covariates. In addition, real data experiments also indicate that the second

algorithm has the advantage of revealing underlying block structure while considering

observed vertex heterogeneity in real applications.
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Moreover, we propose a dynamic network sampling scheme to optimize block

recovery for stochastic blockmodel in the case where it is prohibitively expensive

to observe the entire graph. Theoretically, we provide justification of our proposed

Chernoff-optimal dynamic sampling scheme via the Chernoff information. Practically,

we evaluate the performance of our method on several real datasets from different

domains. Both theoretically and practically results suggest that our method can

identify vertices that have the most impact on block structure so that one can only

check whether there are edges between them to save significant resources but still

recover the block structure.
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Chapter 1

Introduction

One of the important tasks in network inference is to identify potential block structure

from the observed network, i.e., community detection. In addition to the setting

for traditional community detection where only information about the connection

between vertices, usually represented in the form of adjacency matrices, is considered

to detect potential communities, there are other extended problems that have drawn

more and more attention recently. For example, if we have extra observed data, how

should we combine them with the information contained in adjacency matrices to

better identify the block structure? Moreover, even only with adjacency matrices,

there are cases when it is impossible to observe the entire graph. That is, one may

only have adjacency matrices with a small amount of edges, how should we utilize

the limited resources to still recover the potential block structure without knowing

all existing edges? This disseration aims to investigate these problems from a unique

perspective with the notion of Chernoff information.
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Background and Motivation

On one hand, network data which encodes interactions or relationships between

different entities, often involves more than mere links or connections across vertices. In

fact, a network dataset may contain not only an adjacency matrix, which consolidates

information about the connection between vertices in the network, but additional

vertex covariates as well. For example, diffusion magnetic resonance imaging (MRI)

connectome datasets [1] where vertices represent sub-regions of the brain defined via

spatial proximity and edges represent tensor-based fiber streamlines connecting these

sub-regions, can also have brain hemisphere and tissue labels for each vertex, which

can be considered as vertex covariates for inference tasks. In addition, social network

datasets [2–4], in which vertices can represent users or web pages and edges can

represent followers or relationships, may come with ancillary demographic information

for each vertex that can also be treated as vertex covariates for inference tasks.

Since accurate inference on random networks depends on exploiting all available

signal, scalable algorithms that can incorporate both network connectivity data and

any additional insight from vertex covariates are desirable. For instance, in the well-

known K-block stochastic blockmodel (SBM) [5], network vertices belong to K distinct

blocks, or communities, and the probabilities of connection across vertices depend on

their block memberships. That is, if τi denotes the block assignment associated with

vertex i, the connection probability between vertex i and j is a function of τi and τj.

Typically, a vertex’s block membership depends on inherent but unobserved (latent)

vertex features. Therefore, a classic inference task is to estimate block memberships

from a realization of the resulting network. If, however, we observe both adjacency

matrices and vertex covariates, and if both can contain information about the latent

communities or blocks, we need models and scalable algorithms that can effectively

incorporate information from both the adjacency structure and covariate data and
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account for their potentially disparate effects.

In fact, vertex covariates can affect the number of communities that are detected

in a blockmodel: for example, a 2-block SBM might bifurcate further into a 4-block

SBM because of the impact of a binary covariate (with each block splitting according

to this binary covariate). Standard community detection methods may yield a 4-block

assignment, but understanding the underlying 2-block SBM is very important in

inference applications as we show. To get to an estimate of the underlying two-block

assignment, we need to understand the role of the vertex covariates.

Moreover, a problem of interest in network hypothesis testing is to assess the

influence of latent blocks on downstream or outcome variables, controlling for vertex

covariate effects [6, 7]. For example, assume yi represents some outcome variable

associated to vertex i in a K-block SBM (for instance, in a demographic dataset, yi

might represent the educational attainment or earnings for individual i). Suppose the

distribution of this outcome variable depends on the vertex’s block assignment within

the network, that is if τi = k, then yi follows some distribution Fk that can depend on

this block. We denote this scenario by writing yi|(τi = k) ∼ Fk. A natural question

to ask is whether the distributions of the outcome variables are the same for different

blocks, i.e., to test whether Fk = F for k ∈ {1, · · · , K}. To achieve this goal when

we have information from both adjacency matrices and vertex covariates, it is crucial

to estimate the underlying block structure ˆ︁τ—namely, to obtain an estimate of the

block structure after accounting for, and effectively “netting out” the vertex covariate

effect. Here we write “induced block assignment” to refer to the block assignment

after accounting for the vertex covariates.

On the other hand, it can be prohibitively expensive to observe the entire graph

in many cases, especially when the number of vertices is very large. For example, in a

network where vertices represent landline phones and edges represent whether there

is a call between two landline phones. Based on the size of the network, in terms
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of the number of vertices, it can be extremely expensive to check whether there is

a call for every landline phone pairs. Therefore, if one can utilize the information

carried by a partially oberverd graph, that is only a small number of landline phone

pairs are verified, to identify the landline phones that may play a more important role

in formulating communities. Then given limited resources, one can choose to only

check whether there are calls between those landline phone pairs to achieve the goal of

detecting potential block structure. Thus it is important and useful to design certain

procedures that can help identify these vertices when we only have a limited budget

to observe a partial graph.
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Significance and Contributions

As we discuss before, accurate inference on graphs or networks depends on exploiting

all available signal, we need scalable algorithms that can incorporate both network

connectivity data and any additional insight from vertex covariates. In addition, given

limited resources that one can only observe the partial graph with a small portion

of edges, it also becomes esstienal to identify vertices that have the most impact on

block structure so that one can only check whether there are edges between these

vertices to save significant resources but still detect the potential block structure.

The innovation of this dissertation is the application of Chernoff information to

investigate problems in the area of community detection. To our knowledge, this is the

first time that it has been applied to community detection with vertex covariates and

network sampling problems. Motivated by the Chernoff analysis, we focus on models

and methods that can incorporate information from both the adjacency matrices and

the vertex covariates into the estimation of block assignments, and design algorithms

and techniques that can still recover the block structure when it is prohibitively

expensive to observe the entire graph. We also provide the framework and justification

for using Chernoff information in subsequent inference for graphs.
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Overview

The rest of this dissertation is organized as follows. Table 1-I includes a list of

abbreviations used in this dissertation.

Chapter 2 introduces some preliminaries including popular randam graph models,

commonly used spectral methods, the notion of Chernoff analysis and related works

in the area of community detection.

Chapter 3 focus on the problem of community detection with vertex covarites.

Specifically, it introduces model-based spectral algorithms for clustering vertices in

stochastic blockmodel graphs with vertex covariates; analytically compares the algo-

rithms’ performance via Chernoff information and derives the Chernoff ratio expression

for certain models of interest; conducts simulations and real data experiments to

compare the algorithms’ performance.

Chapter 4 focus on the problem of dynamic network sampling for community de-

tection. In particular, it introduces the dynamic network sampling scheme to optimize

block recovery for partially observed graphs; provides associated theoretical results

via the notion of Chernoff analysis; conducts simulations and real data experiments to

measure the algorithms’ performance in terms of empirical block recovery results.

Chapter 5 summarizes our findings, discusses the limitations and possible direction

for future work.

Appendix I provides additional preliminaries in random graph models.

Appendix II provides additional preliminaries in spectral methods.
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Table 1-I. List of abbreviations.

Abbreviation Description

SBM Stochastic Blockmodel

DCSBM Degree Corrected Stochastic Blockmodel

MMSBM Mixed Membership Stochastic Blockmodel

PCABM Pairwise Covariates-Adjusted Stochastic Blockmodel

RDPG Random Dot Product Graph

GRDPG Generalized Random Dot Product Graph

ASE Adjacency Spectral Embedding

LSE Laplacian Spectral Embedding

SCA Spectral Clustering with Adjacency

SCC Spectral Clustering with Covariates

CASC Covariate-Assisted Spectral Clustering

SCWA Spectral Clustering With Adjustment

CDF Cumulative Distribution Function

CLT Central Limit Theorem

MLE Maximum Likelihood Estimation

GMM Gaussian Mixture Modeling

BIC Bayesian Information Criterion

ARI Adjusted Rand Index

i.i.d. independent and identically distributed

stderr standard error

MRI Magnetic Resonance Imaging

NDMG NeuroData’s Magnetic Resonance Imaging to Graphs
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Chapter 2

Random Graph Models, Spectral
Methods, Chernoff Analysis and
Community Detection

In this chapter, we provide preliminaries including popular randam graph models

such as generalized random dot product graph and stochastic blockmodel, commonly

used spectral methods like adjacency spectral embedding and Laplacian spectral

embedding, the notion of Chernoff information and Chernoff analysis, and related

works in community detection from the classical methods to the approaches for more

complicated scenarios. All of these are necessary elements of applying Chernoff

information for solving problems in the area of community detection.
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Random Graph Models

To ground our analysis and results, we start with a particular family of models

known as latent position models [8, 9] for edge-independent random graphs. In these

models, each network vertex i is associated with a latent position Xi ∈ X where X is

some latent space such as Rd, and edges between vertices arise independently with

probability Pij = κ(Xi, Xj) for some kernel function κ : X × X → [0, 1]. This is an

appealing model to consider not only because of its wide applicability—as the kernel

can be any reasonable regular function—but because it is easily interpretable as well.

For example, social network connections are often a function of individual participants’

(potentially unobserved) interests in a core set of topics or hobbies, and levels of

interest can be easily encoded in a low-dimensional space. Moreover, the kernel and

this lower-dimensional space can possess intuitive geometry, wherein collinearity or

other “closeness” of latent positions increases the probability of a connection between

the associated vertices.

The core model we focus on here, the generalized random dot product graph

(GRDPG), has precisely such a property: the kernel function is taken to be the

(indefinite) inner product. As the name suggests, this model generalizes the random

dot product graph (RDPG) by relaxing the restriction that the kernel function be the

inner product, and this relaxation permits SBM with dissassortative structure, and in

fact subsumes all SBMs as special cases.

Definition 1 (Random Dot Product Graph [10]). Let A ∈ {0, 1}n×n be an adjacency

matrix and X = [X1, · · · , Xn]⊤ ∈ Rn×d where each Xi ∈ Rd denotes the latent

position for vertex i satisfying X⊤
i Xj ∈ [0, 1] for all i, j ∈ {1, · · · , n}. Then we say

(A, X) ∼ RDPG(n) if for any i, j ∈ {1, · · · , n}

Aij ∼ Bernoulli(Pij),

Pij = X⊤
i Xj.

(2.1)

9



Remark 1. The RDPG model has an inherent nonidentifiability. Let X be a matrix

of latent positions as in Definition 1 and W be a unitary matrix, i.e., WW⊤ = I.

Consider Y = XW, then we have

YY⊤ = (XW) (XW)⊤ = XWW⊤X = XX⊤. (2.2)

Thus latent positions X and Y could give rise to the same distribution over graphs.

Definition 2 (Generalized Random Dot Product Graph [11]). Let d = d+ + d− with

d+ ≥ 1 and d− ≥ 0. Let Id+d− = diag (1, · · · , 1, −1, · · · , −1), i.e., a d × d diagonal

matrix with 1 in first d+ entries and −1 in the next d− entries. Let A ∈ {0, 1}n×n

be an adjacency matrix and X = [X1, · · · , Xn]⊤ ∈ Rn×d where each Xi ∈ Rd denotes

the latent position for vertex i satisfying X⊤
i Id+d−Xj ∈ [0, 1] for all i, j ∈ {1, · · · , n}.

Then we say (A, X) ∼ GRDPG(n, d+, d−) if for any i, j ∈ {1, · · · , n}

Aij ∼ Bernoulli(Pij),

Pij = X⊤
i Id+d−Xj.

(2.3)

Remark 2. Similarly as RDPG, the GRDPG model has an inherent nonidentifiability.

Let X be a matrix of latent positions as in Definition 2 and Q ∈ O (d+, d−) ={︂
M : MId+d−M⊤ = Id+d−

}︂
. Consider Y = XQ, then we have

YId+d−Y⊤ = (XQ) Id+d− (XQ)⊤ = XQId+d−Q⊤X = XId+d−X⊤. (2.4)

Thus latent positions X and Y could give rise to the same distribution over graphs.

Remark 3. Also note that in addition to RDPG and GRDPG, most of the latent posi-

tion models would suffer from similar types of non-identifiability since edge probabilities

may be invariant to various transformations [12].

As a special case of random graph models, SBMs are popular in the literature for

community detection [5, 13, 14]. Degree corrected stochastic blockmodel (DCSBM) [14]

relaxes the standard SBM by allowing for vertices within each block to have different
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expected degrees. Mixed membership stochastic blockmodel (MMSBM) [15] extends

the standard SBM by allowing for each vertex to in a mixture of different blocks. Here

we focus on the standard SBM, additional details on DCSBM and MMSBM can be

found in Appendix I.

Definition 3 (K-block Stochastic Blockmodel Graph [5]). The K-block stochastic

blockmodel (SBM) graph is an independent-edge random graph with each vertex belong-

ing to one of K blocks. It can be parameterized by a block connectivity probability matrix

B ∈ [0, 1]K×K and a nonnegative vector of block assignment probabilities π ∈ [0, 1]K

summing to unity. Let A ∈ {0, 1}n×n be an adjacency matrix and τ ∈ {1, · · · , K}n

be a vector of block assignments with τi = k if vertex i is in block k (occurring with

probability πk). We say (A, τ ) ∼ SBM(n, B, π) if for any i, j ∈ {1, · · · , n}
Aij ∼ Bernoulli(Pij),

Pij = Bτiτj
.

(2.5)

Remark 4. The SBM is a special case of the GRDPG model. Let (A, τ ) ∼ SBM(n, B, π)

as in Definition 3 where B ∈ (0, 1)K×K with d+ strictly positive eigenvalues and d−

strictly negative eigenvalues. To represent this SBM in the GRDPG model, we can

choose ν1, · · · , νK ∈ Rd where d = d+ + d− such that ν⊤
k Id+d−νℓ = Bkℓ for all

k, ℓ ∈ {1, · · · , K}. For example, we can take ν = UB|SB|1/2 where B = UBSBU⊤
B is

the spectral decomposition of B after re-ordering. Then we have the latent position of

vertex i as Xi = νk if τi = k for i ∈ {1, · · · , n}.

Example 1 (2-block Rank One Model). As an illustration, consider the prototypical 2-

block SBM with rank one block connectivity probability matrix B where B11 = p2, B22 =

q2, B12 = B21 = pq with 0 < p < q < 1. Let Xi be the latent position of vertex i where

Xi = ν1 = p if τi = 1 and Xi = ν2 = q if τi = 2. Then we can represent this SBM in

the GRDPG model with latent positions ν =
[︂
p q

]︂⊤
as

B = νν⊤ =

⎡⎢⎢⎣p2 pq

pq q2

⎤⎥⎥⎦ . (2.6)
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Since one of our goals is to examine the impact of covariates on community

detection, we also consider the extension of the GRDPG model to permit vertex

covariates as follows.

Definition 4 (GRDPG with Vertex Covariates [16]). Consider GRDPG as in Def-

inition 2. Let Z denote the observed vertex covariate and β denote the effect of

the vertex covariate. Then we say (A, X, Z, β) ∼ GRDPG-Cov(n, d+, d−) if for any

i, j ∈ {1, · · · , n}

Aij ∼ Bernoulli(Pij),

Pij = X⊤
i Id+d−Xj + β1{Zi = Zj}.

(2.7)

Remark 5. In the case of an SBM as in Definition 3, Eq. (2.7) becomes

Aij ∼ Bernoulli(Pij),

Pij = Bτiτj
+ β1{Zi = Zj}.

(2.8)

Example 2 (2-block Rank One Model with One Binary Covariate). As an illustration,

consider the rank one matrix B in Eq. (2.6) and the SBM model in Remark 5. Let

Z ∈ {1, 2}n denote the observed binary covariate. Assume 0 < β < 1 with p2 + β, q2 +

β, pq + β ∈ [0, 1]. Then we have the block connectivity probability matrix with the

vertex covariate effect as

BZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2 + β p2 pq + β pq

p2 p2 + β pq pq + β

pq + β pq q2 + β q2

pq pq + β q2 q2 + β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.9)

Specifically,

• BZ,11 = p2 + β implies Pij = p2 + β if τi = 1, τj = 1, Zi = 1, Zj = 1.

• BZ,22 = p2 + β implies Pij = p2 + β if τi = 1, τj = 1, Zi = 2, Zj = 2.

• BZ,33 = q2 + β implies Pij = q2 + β if τi = 2, τj = 2, Zi = 1, Zj = 1.
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• BZ,44 = q2 + β implies Pij = q2 + β if τi = 2, τj = 2, Zi = 2, Zj = 2.

• BZ,12 = BZ,21 = p2 implies Pij = p2 if τi = 1, τj = 1, Zi = 1, Zj = 2 or

τi = 1, τj = 1, Zi = 2, Zj = 1.

• BZ,13 = BZ,31 = pq + β implies Pij = pq + β if τi = 1, τj = 2, Zi = 1, Zj = 1 or

τi = 2, τj = 1, Zi = 1, Zj = 1.

• BZ,14 = BZ,41 = pq implies Pij = pq if τi = 1, τj = 2, Zi = 1, Zj = 2 or

τi = 2, τj = 1, Zi = 2, Zj = 1.

• BZ,23 = BZ,32 = pq implies Pij = pq if τi = 1, τj = 2, Zi = 2, Zj = 1 or

τi = 2, τj = 1, Zi = 1, Zj = 2.

• BZ,24 = BZ,42 = pq + β implies Pij = pq + β if τi = 1, τj = 2, Zi = 2, Zj = 2 or

τi = 2, τj = 1, Zi = 2, Zj = 2.

• BZ,34 = BZ,43 = q2 implies Pij = q2 if τi = 2, τj = 2, Zi = 1, Zj = 2 or

τi = 2, τj = 2, Zi = 2, Zj = 1.

Example 3 (2-block Homogeneous Model with One Binary Covariate). As a second

illustration, consider the rank two matrix B where B11 = B22 = a, B12 = B21 = b with

0 < b < a < 1. Assume 0 < β < 1 with a + β, b + β ∈ [0, 1]. We then have the block

connectivity probability matrix with the vertex covariate effect as

BZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a + β a b + β b

a a + β b b + β

b + β b a + β a

b b + β a a + β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.10)

Specifically,

• BZ,11 = a + β implies Pij = a + β if τi = 1, τj = 1, Zi = 1, Zj = 1.
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• BZ,22 = a + β implies Pij = a + β if τi = 1, τj = 1, Zi = 2, Zj = 2.

• BZ,33 = a + β implies Pij = a + β if τi = 2, τj = 2, Zi = 1, Zj = 1.

• BZ,44 = a + β implies Pij = a + β if τi = 2, τj = 2, Zi = 2, Zj = 2.

• BZ,12 = BZ,21 = a implies Pij = a if τi = 1, τj = 1, Zi = 1, Zj = 2 or

τi = 1, τj = 1, Zi = 2, Zj = 1.

• BZ,13 = BZ,31 = b + β implies Pij = b + β if τi = 1, τj = 2, Zi = 1, Zj = 1 or

τi = 2, τj = 1, Zi = 1, Zj = 1.

• BZ,14 = BZ,41 = b implies Pij = b if τi = 1, τj = 2, Zi = 1, Zj = 2 or τi = 2, τj =

1, Zi = 2, Zj = 1.

• BZ,23 = BZ,32 = b implies Pij = b if τi = 1, τj = 2, Zi = 2, Zj = 1 or τi = 2, τj =

1, Zi = 1, Zj = 2.

• BZ,24 = BZ,42 = b + β implies Pij = b + β if τi = 1, τj = 2, Zi = 2, Zj = 2 or

τi = 2, τj = 1, Zi = 2, Zj = 2.

• BZ,34 = BZ,43 = a implies Pij = a if τi = 2, τj = 2, Zi = 1, Zj = 2 or

τi = 2, τj = 2, Zi = 2, Zj = 1.

Remark 6. The SBMs parameterized by B in Example 3 lead to the notion of the

homogeneous model [13, 17]. For K-block homogeneous model, we have Bkℓ = a

for k = ℓ and Bkℓ = b for k ̸= ℓ where k, ℓ ∈ {1, · · · , K}. For example, the block

connectivity probability matrix B of the 4-block homogeneous model is given by

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b b

b a b b

b b a b

b b b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.11)
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Spectral Methods

In Examples 2 and 3, an induced 2-block SBM becomes a 4-block SBM via the effect

of a binary vertex covariate. One of our goals is to cluster each vertex into one of the

two induced blocks after accounting for the vertex covariate effect. To this end, we

need to first recover the latent positions of the underlying GRDPG using spectral

methods, and then estimate the block assignments with certain clustering technique.

Spectral methods [18] that promise applicability to large graphs have been widely

used in random graph models for a variety of subsequent inference tasks such as

community detection [19–22], vertex nomination [23], nonparametric hypothesis test-

ing [24], and multiple graph inference [25]. Two particular spectral embedding methods,

adjacency spectral embedding (ASE) and Laplacian spectral embedding (LSE), which

are spectral decompositions of the graph adjacency and graph Laplacian matrices,

respectively, are popular, since they provide consistent [11, 26] and asymptotically

normal [11, 27, 28] estimates of underlying graph parameters.

Definition 5 (Adjacency Spectral Embedding). Let A ∈ {0, 1}n×n be an adjacency

matrix with eigendecomposition A = UΛU⊤. Given the embedding dimension d < n,

the adjacency spectral embedding (ASE) of A into Rd is the n×d matrix ˆ︂X = ˆ︂Ud| ˆ︁Λd|1/2

where ˆ︁Λd is a diagonal matrix with the d largest eigenvalues in magnitudes and ˆ︂Ud

contains the associated eigenvectors. Here hat notation suggests these terms estimate

the eigenvectors and eigenvalues of the matrix P as in Eq. (2.3).

Definition 6 (Laplacian Spectral Embedding). Let A ∈ {0, 1}n×n be an adjacency

matrix and L (A) be the normalized Laplacian of A defined by L (A) = D−1/2AD−1/2

where D is a diagonal matrix with Dii = ∑︁
j ̸=i Aij. Assume the eigendecomposition

of L (A) is given by L (A) = UΛU⊤. Given the embedding dimension d < n, the

Laplacian spectral embedding (LSE) of A into Rd is the n × d matrix ˜︂X = ˜︂Ud| ˜︁Λd|1/2

where ˜︁Λd is a diagonal matrix with the d largest eigenvalues in magnitudes and ˜︂Ud
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contains the associated eigenvectors. Here tilde notation suggests these terms estimate

the eigenvectors and eigenvalues of the matrix L (P) where P is defined as in Eq. (2.3).

Remark 7. There are different methods for choosing the embedding dimension [29, 30];

we adopt the well-established and computationally efficient profile likelihood method [31]

to automatically identify an elbow in the scree plot to select embedding dimension ˆ︁d in

real applications.

As mentioned above, ASE and LSE yield consistent and asymptotically normal

estimates of underlying graph parameters under different random graph models. Here

we review the central limit theorem (CLT) of ASE under the SBM model, which

are essential when we introduce the concept of Chernoff analysis later. Appendix II

provides additional details on asymptotic results of ASE and LSE under the GRDPG

model.

Theorem 1 (CLT of ASE for SBM [11]). Let (A(n), X(n)) ∼ GRDPG(n, d+, d−) be

a sequence of adjacency matrices and associated latent positions of a d-dimensional

GRDPG as in Definition 2 from a distribution F where F is a mixture of K point

masses in Rd, i.e.,

F =
K∑︂

k=1
πkδνk

with ∀k, πk > 0 and
K∑︂

k=1
πk = 1, (2.12)

where δνk
is the Dirac delta measure at νk. Let Φ(z, Σ) denote the cumulative dis-

tribution function (CDF) of a multivariate Gaussian distribution with mean 0 and

covariance matrix Σ, evaluated at z ∈ Rd. Let ˆ︂X(n) be the ASE of A(n) with ˆ︂X(n)
i as

the i-th row (same for X(n)
i ). Then there exists a sequence of matrices Mn ∈ Rd×d

satisfying MnId+d−M⊤
n = Id+d− such that for all z ∈ Rd and fixed index i,

P
[︂√

n
(︂
Mn

ˆ︂X(n)
i − X(n)

i

)︂
≤ z

⃓⃓⃓
X(n)

i = νk

]︂
→ Φ(z, Σk), (2.13)

where for ν ∼ F

Σk = Σ(νk) = Id+d−∆−1E
[︂(︂

ν⊤
k Id+d−ν

)︂ (︂
1 − ν⊤

k Id+d−ν
)︂

νν⊤
]︂

∆−1Id+d− , (2.14)
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with

∆ = E
[︂
νν⊤

]︂
. (2.15)

Remark 8. If the adjacency matrix A is sampled from an SBM parameterized by the

block connectivity probability matrix B in Eq. (2.6) and block assignment probabilities

π = (π1, π2) with π1 + π2 = 1, then as a special case for Theorem 1 [12, 28], we have

for each fixed index i,
√

n
(︂ˆ︂Xi − p

)︂
d−→ N

(︂
0, σ2

p

)︂
if Xi = p,

√
n
(︂ˆ︂Xi − q

)︂
d−→ N

(︂
0, σ2

q

)︂
if Xi = q.

(2.16)

where

σ2
p = π1p

4(1 − p2) + π2pq3(1 − pq)
[π1p2 + π2q2]2 ,

σ2
q = π1p

3q(1 − pq) + π2q
4(1 − q2)

[π1p2 + π2q2]2 .

(2.17)
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Chernoff Analysis

To analytically measure the performance of algorithms for block recovery, we consider

the notion of Chernoff information among other possible metrics. The concept of

Chernoff information is first employed for SBMs [13, 28] and then extended to consider

the underlying graph structure [17]. The advantages of Chernoff information are that

it is independent of the clustering procedure, i.e., it can be derived no matter which

clustering methods are used, and it is intrinsically related to the Bayes risk [12, 14, 28].

Formally following the analysis in [12, 28], let F1 and F2 be two absolutely contin-

uous multivariate distributions on Rd with density functions f1 and f2, respectively.

Suppose Y1, · · · , Ym are independent and identically distributed (i.i.d.) random vari-

ables with Yi ∼ F where F is either F1 or F2 for i ∈ {1, · · · , m}. We want to test the

following hypothesis:

H0 : F = F1 v.s. HA : F = F2. (2.18)

By Neyman-Pearson lemma [32], given the data y1, · · · , ym and a threshold ηm ∈ R,

the most powerful test at significance level αm = α (ηm) is the likelihood ratio test

that rejects H0 when

m∑︂
i=1

log f1 (yi) −
m∑︂

i=1
log f2 (yi) ≤ ηm. (2.19)

That is given the constraint that the Type I error is at most αm, this likelihood ratio

test minimizes the Type II error βm. Suppose that H0 is true with prior probability

π ∈ (0, 1). For a given significance level α∗
m ∈ (0, 1), let β∗

m = β∗
m (α∗

m) denote the

Type II error associated with the likelihood ratio test defined as in Eq. (2.19) subject

to the constraint that the Type I error is at most α∗
m. Then the Bayes risk of testing

the hypothesis as in Eq. (2.18) is given by

inf
α∗

m∈(0,1)
πα∗

m + (1 − π) β∗
m. (2.20)
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It has been shown [33, 34] that this Bayes risk is intrinsically linked to the Chernoff

information defined as follows.

Definition 7 (Chernoff Information [33, 34]). Let F1 and F2 be two continuous

multivariate distributions on Rd with density functions f1 and f2. The Chernoff

information is defined as

C (F1, F2) = − log
[︄

inf
t∈(0,1)

∫︂
Rd

f t
1(x)f 1−t

2 (x)dx
]︄

= sup
t∈(0,1)

[︃
− log

∫︂
Rd

f t
1(x)f 1−t

2 (x)dx
]︃

.

(2.21)

Remark 9. Consider the special case where we take F1 = N (µ1, Σ1) and F2 =

N (µ2, Σ2); then the corresponding Chernoff information is

C (F1, F2) = sup
t∈(0,1)

[︄
1
2t(1 − t)(µ1 − µ2)⊤Σ−1

t (µ1 − µ2) + 1
2 log |Σt|

|Σ1|t|Σ2|1−t

]︄
, (2.22)

where Σt = tΣ1 + (1 − t)Σ2.

Then by Eq. (2.20) and Eq. (2.21), we have

lim
m→∞

1
m

inf
α∗

m∈(0,1)
log [πα∗

m + (1 − π) β∗
m] = −C (F1, F2) . (2.23)

In other words, the Chernoff information between F1 and F2 is the exponential

rate at which the Bayes risk as in Eq. (2.20) decreases as m → ∞.

Similarly, we could extend the analysis to K hypotheses. Let F1, · · · , FK be abso-

lutely continuous multivariate distributions on Rd with density functions f1, · · · , fK ,

respectively. Suppose Y1, · · · , Ym are i.i.d. random variables with Yi ∼ F where

F ∈ {F1, · · · , FK} for i ∈ {1, · · · , m}. We want to test the following hypothesis:

H0 : F = F1 · · · HK−1 : F = FK . (2.24)

Suppose that Hk is true with prior probability πk ∈ (0, 1) for k ∈ {0, · · · , K − 1}.

Given a decision rule δ, let αℓk (δ) denote the probability of accepting Hℓ when Hk is
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true. Then we have [35]

inf
δ

lim
m→∞

r (δ)
m

= min
k ̸=ℓ

C (Fk, Fℓ) , (2.25)

where

r (δ) =
∑︂

k

πk

∑︂
ℓ̸=k

αℓk (δ) . (2.26)

That is, for any decision rule δ, the risk r (δ) decreases to 0 as m → ∞ at a rate

no faster than exp [−m mink ̸=ℓ C (Fk, Fℓ)] where k, ℓ ∈ {0, · · · , K − 1}.

Remark 10. With the similar notation in Definition 7, the Chernoff divergence

defined by

Ct (F1, F2) = − log
[︃∫︂

Rd
f t

1(x)f 1−t
2 (x)dx

]︃
(2.27)

belongs to the family of f -divergence as defined in [36, 37]. Note that Ct (F1, F2) is the

Bhattacharyya distance [38, 39] between F1 and F2 when t = 1
2 . As any f -divergence

such as the Kullback-Liebler divergence [40, 41] is invariant with respect to invertible

transformations [42], they can also be considered as alternative metrics. But the

Chernoff information is particularly appealing because of its explicit relationship with

the Bayes risk as we discuss before.

The comparsion of block recovery via Chernoff information is based on the statistical

information between the limiting distributions of the blocks and smaller statistical

information implies less information to discriminate between different blocks of the

SBM. With Theorem 1, we can describe the error rate for estimating the block

assignments using ASE via the notion of Chernoff information as follows.

For a K-block SBM, let B ∈ (0, 1)K×K be the block connectivity probability matrix

and π ∈ (0, 1)K be the vector of block assignment probabilities. Given an n vertex

instantiation of the SBM parameterized by B and π, for sufficiently large n, the large

sample optimal error rate for estimating the block assignments using ASE can be
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measured via Chernoff information as [12, 28]

ρ = min
k ̸=ℓ

sup
t∈(0,1)

[︄
1
2nt(1 − t)(νk − νℓ)⊤Σ−1

kℓ (t)(νk − νℓ) + 1
2 log |Σkℓ(t)|

|Σk|t|Σℓ|1−t

]︄
, (2.28)

where Σkℓ(t) = tΣk + (1 − t)Σℓ, Σk = Σ(νk) and Σℓ = Σ(νℓ) are defined as in

Eq. (2.14). Also note that as n → ∞, the logarithm term in Eq. (2.28) will be

dominated by the other term. Then we have the approximate Chernoff information as

ρ ≈ min
k ̸=l

Ck,ℓ(B, π), (2.29)

where

Ck,ℓ(B, π) = sup
t∈(0,1)

[︂
t(1 − t)(νk − νℓ)⊤Σ−1

kℓ (t)(νk − νℓ)
]︂

. (2.30)

We also introduce the following two notions based on Chernoff information, which

will be used when we introduce our dynamic network sampling scheme for community

detection.

Definition 8 (Chernoff-active Blocks). For K-block SBM parametrized by the block

connectivity probability matrix B ∈ (0, 1)K×K and the vector of block assignment

probabilities π ∈ (0, 1)K. The Chernoff-active blocks (k∗, ℓ∗) are defined as

(k∗, ℓ∗) = arg min
k ̸=l

Ck,ℓ(B, π), (2.31)

where Ck,ℓ(B, π) is defined as in Eq. (2.29).

Definition 9 (Chernoff Superiority). For K-block SBMs, given two block connectivity

probability matrices B, B′ ∈ (0, 1)K×K and a vector of block assignment probabilities

π ∈ (0, 1)K . Let ρB and ρB′ denote the Chernoff information obtained as in Eq. (2.29)

corresponding to B and B′ respectively. We say that B is Chernoff superior to B′,

denoted as B ≻ B′, if ρB > ρB′.

Remark 11. If B is Chernoff superior to B′, then we can have a better block recovery

from B than B′. In addition, Chernoff superiority is transitive, which is straightforward

from the definition.
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Community Detection

The goal of community detection in network inference is to cluster vertices into

several potential blocks. Many classical community detection methods only consider

the adjacency or Laplacian matrices for clustering vertices [43–52]. Following the

categories summarized in [45],

• Consensus clustering [53–55] tries to incorporate the information of various

outputs into a new partition. The goal is to search for a better consensus

partition compared with the input partitions. As this is a difficult combinatorial

optimization problem, an alternative greedy strategy is proposed to investigate

the consensus matrix based on the co-occurrence of vertices in communities

from the input partitions. In other words, this consensus matrix is treated as

the input of any graph clustering methods and the output is used to generate a

new consensus matrix. This procedure is repeated until the partitions no longer

change.

• Traditional spectral methods [18, 44] detect communites by investigating the

spectral properties of the the adjacency or Laplacian matrices. In other words,

these methods first embed the adjacency or Laplacian matrices into some lower

dimensional space via matrix decomposition. Then certain clustering techqiue

such as k-means is applied to the lower dimensional embeddings to identify

potential communities. Appendix II also provides additional details on classical

spectral clustering, which is the building block of our proposed methods.

• Statistical inference based methods [9, 14, 56–63] aim to identify communities by

fitting a generative network model from the data. For example, the commonly

used SBM and its extensions such as DCSBM and MMSBM. The estimation of

the parameters for these models mostly relies on the likelihood based methods

or their variations, which can be time consuming for large networks.
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• Optimization based methods [64–69] rely on finding the extremum of certain

function that could indicate the clustering quality, for example, modularity.

Most of these functions are proposed and chosen to estimate the quality of a

partition as potential communities for the network. Based on the choice of the

objective function, finding the extremum can be NP-hard. Therefore, various

approaches are also proposed to find the approximations of the extremum for

these functions.

• Dynamics based methods [70–81] focus on running dynamical processes on the

network to find communities. For example, some techniques first applies random

walk dynamics to estimate the similarity between vertex pairs and then detects

potential communities by standard hierarchical or partitional clustering methods.

On one hand, these methods are typically not designed to distinguishing the impact

of covariates from the mechanism of network generation itself—that is, delineating

in the observed data what may be underlying, or fundamental, network effects from

characteristics that are more properly functions of the covariates. By contrast,

covariate-aware inference in SBMs often relies on either variational methods [82–84] or

spectral approaches [16, 85, 86]. For example, [85] proposed covariate-assisted spectral

clustering (CASC) where the covariates are first parameterized as in linear regression,

i.e., categorical covariates are represented with dummy variables and continuous

covariates can go through standardization, and then combined with the graph for

subsequent spectral clustering. The pairwise covariates-adjusted stochastic blockmodel

(PCABM), in which pairwise covariate information is incorporated with the classical

SBM, was introduced in [86]. There, model parameters can be solved via maximum

likelihood estimation (MLE) or spectral clustering with adjustment (SCWA).

On the other hand, none of the classical methods focus on the problem of clustering

vertices for partially observed graphs. To address this issue, existing methods propose
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different types of random and adaptive sampling strategies to minimize the information

loss from the data reduction [87]. For example, [88] considered adaptive sampling

strategies to design a jointly sampling and clustering algorithms to recover the hidden

communities.
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Chapter 3

Community Detection with Vertex
Covariates

In this chapter, we focus on the problem of community detection with vertex covari-

ates. We start with two model-based spectral algorithms for clustering vertices in

stochastic blockmodel graphs with vertex covariates. The first algorithm uses only

the adjacency matrix, and directly estimates the block assignments. The second

algorithm incorporates both the adjacency matrix and the vertex covariates into the

estimation of block assignments, and moreover quantifies the explicit impact of the

vertex covariates on the resulting estimate of the block assignments. Theoretically,

we employ Chernoff information to analytically compare the algorithms’ performance

and derive the information-theoretic Chernoff ratio for certain models of interest.

Practically, we evaluate the performance, in terms of block recovery, of the algorithms

on several real datasets from different domains. Both theoretically and practically

results suggest that the second algorithm is often preferred: one can better estimate

the induced block assignments by first estimating the effect of vertex covariates. In

the meantime, it also has the advantage of revealing underlying block structure while

considering observed vertex heterogeneity in real applications.
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Model-based Spectral Inference

We are interested in estimating the induced block assignments (clustering vertices)

in a SBM with vertex covariates. To that end, we want to consider algorithms for

estimating the vertex covariate effect β as in Definition 4 and Remark 5, which can

be further used to estimate the induced block assignments. Our model-based spectral

algorithms take observed adjacency matrices (and vertex covariates) as inputs and

estimated block assignments for each vertex as outputs.

Algorithm 1: Estimation of induced block assignment using only the adja-
cency matrix [89]

Input: Adjacency matrix A ∈ {0, 1}n×n.
Output: Induced block assignments ˆ︁τ .

1 Estimate latent positions under the effects of both observed covariates and
unobserved heterogeneity of vertices as ˆ︁Y ∈ Rn×ˆ︁d using ASE of A where ˆ︁d is
chosen as in Remark 7.

2 Cluster ˆ︁Y using Gaussian mixture modeling (GMM) to estimate the block
assignments under the effects of both observed covariates and unobserved
heterogeneity of vertices as ˆ︁ξ ∈ {1, · · · ,ˆ︂K}n where ˆ︂K is chosen via Bayesian
Information Criterion (BIC).

3 Compute the estimated block connectivity probability matrix including the vertex
covariate effect as ˆ︁BZ = ˆ︁µId+d− ˆ︁µ⊤ ∈ [0, 1]ˆ︁K×ˆ︁K ,

where ˆ︁µ ∈ Rˆ︁K×ˆ︁d is the matrix of estimated means of all clusters.
4 Cluster the diagonal of ˆ︁BZ using GMM to estimate the cluster assignments of the

diagonal as ˆ︁ϕ ∈ {1, · · · , ˆ︁K2 }ˆ︁K .
5 Estimate the induced block assignments as ˆ︁τ by ˆ︁τk = c for

k ∈ {i | ˆ︁ξi = t for t ∈ {j | ˆ︁ϕj = c}} and c = 1, · · · , ˆ︁K2 .

In Algorithm 1, the estimation of the induced block assignments, i.e., ˆ︁τ , depends

on the estimated block connectivity probability matrix ˆ︁BZ (see Step 4 of Algorithm 1

for details). This suggests that we may not obtain an accurate estimate of the induced

block assignments if the diagonal of ˆ︁BZ does not contain enough information to

distinguish the induced block structure. To address this uncertainty, we consider

a modified algorithm that uses the information from vertex covariates to estimate
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the induced block assignments along with vertex covariate effect β summarized as in

Algorithm 2.

As an illustration of estimating β (Step 2 in Algorithm 2), consider the block

connectivity probability matrix BZ as in Eq. (2.10). To get β, we can take the

difference between two specific entries of BZ . For example,

BZ,11 − BZ,12 = (a + β) − a = β,

BZ,13 − BZ,14 = (b + β) − b = β.
(3.1)

We can then obtain ˆ︁β by subtracting two specific entries of ˆ︁BZ . However, the ASE

and GMM under GRDPG model can lead to the re-ordering of ˆ︁BZ . Thus we need to

identify pairs first so that we subtract the correct entries. Two alternative ways to

achieve this are described in Step 2(a) and 2(b) of Algorithm 2.

In Step 2(a), we find pairs in ˆ︁BZ by first assigning each block common covariates

using the mode. However, it is possible that we can not find any pairs using this

approach, especially in the unbalanced case where the size of each block is different

and/or the distribution of the vertex covariate is different. For example, one block

size is much larger than the others and/or vertex covariates are all the same within

one block.

In Step 2(b), instead of first finding pairs using the mode, we only compute the

probability that two entries of ˆ︁BZ form a pair. This will make the estimation more

robust to extreme cases or special structure by giving different weights to pairs [16].
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Algorithm 2: Estimation of induced block assignment incorporating both
the adjacency matrix and the vertex covariates [89]

Input: Adjacency matrix A ∈ {0, 1}n×n; observed vertex covariates Z ∈ {1, 2}n.
Output: Estimated vertex covariate effect ˆ︁β; induced block assignments ˜︁τ .

1 Steps 1 – 4 in Algorithm 1.
2 Estimate the vertex covariate effect as ˆ︁β using one of the following procedures [16].

(a) Assign the block covariates as ZB ∈ {−1, 1}ˆ︁K for each block using the mode,
i.e.,

ZB,k =

⎧⎨⎩−1 if n−1,k ≥ n1,k

1 if n−1,k < n1,k

where nz,k =
∑︂

i:ˆ︁ξi=k

1{Zi = z}.

Construct pair set
S = {(kℓ, kℓ′), k, ℓ, ℓ′ ∈ {1, · · · ,ˆ︂K} | ˆ︁ϕℓ = ˆ︁ϕℓ′ , ZB,k = ZB,ℓ, ZB,k ̸= ZB,ℓ′}. Estimate
the vertex covariate effect as

ˆ︁βSA = 1
|S|

∑︂
(kℓ,kℓ′)∈S

ˆ︁BZ,kℓ − ˆ︁BZ,kℓ′ .

(b) Compute the probability that two entries from ˆ︁BZ form a pair as

pkℓ,kℓ′ = n−1,kn−1,ℓn1,ℓ′ + n1,kn1,ℓn−1,ℓ′

nknℓnℓ′
where nk =

n∑︂
i=1

1{ˆ︁ξi = k}.

Construct pair set W = {(ℓ, ℓ′), ℓ, ℓ′ ∈ {1, · · · ,ˆ︂K} | ˆ︁ϕℓ = ˆ︁ϕℓ′}. Estimate the vertex
covariate effect as

ˆ︁βWA = 1ˆ︂K|W |

ˆ︁K∑︂
k=1

∑︂
(ℓ,ℓ′)∈W

pkℓ,kℓ′

(︂ ˆ︁BZ,kℓ − ˆ︁BZ,kℓ′

)︂
.

3 Account for the vertex covariate effect by

˜︁Aij = Aij − ˆ︁β1{Zi = Zj},

where ˆ︁β is either ˆ︁βSA or ˆ︁βWA.
4 Estimate latent positions after accounting for the vertex covariate effect as˜︁Y ∈ Rn×˜︁d using ASE of ˜︁A where ˜︁d is chosen as in Remark 7.
5 Cluster ˜︁Y using GMM to estimate the induced block assignments as˜︁τ ∈ {1, · · · , ˆ︁K2 }n.
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Spectral Inference Performance

Chernoff Ratio

To analytically investigate the proposed algorithms, we employ Chernoff information

to compare the performance of Algorithms 1 and 2 for estimating the induced block

assignments in SBMs with vertex covariates. There are other metrics for comparing

spectral inference performance such as within-class covariance. The advantages of

Chernoff information are that it is independent of the clustering procedure, i.e., it can

be derived no matter which clustering methods are used, and it is intrinsically related

to the Bayes risk [12, 14, 28] as we discuss in Chapter 2.

In short, there will be a quantity associated with each algorithm, say ρ∗
1 and ρ∗

2

are associated with the Algorithms 1 and 2 respectively. The comparison is based on

the ratio ρ∗ = ρ∗
1

ρ∗
2
. If ρ∗ > 1, then Algorithm 1 is preferred, otherwise Algorithm 2 is

preferred.

Formally by Eq, (2.29) and Eq. (2.30), we have the Chernoff ratio as

ρ∗ = ρ∗
1

ρ∗
2

→
min
k ̸=ℓ

sup
t∈(0,1)

[︂
t(1 − t)(ν1,k − ν1,ℓ)⊤Σ−1

1,kℓ(t)(ν1,k − ν1,ℓ)
]︂

min
k ̸=ℓ

sup
t∈(0,1)

[︂
t(1 − t)(ν2,k − ν2,ℓ)⊤Σ−1

2,kℓ(t)(ν2,k − ν2,ℓ)
]︂ . (3.2)

Here ρ∗
1 and ρ∗

2 are associated with the Algorithms 1 and 2 respectively. If ρ∗ > 1,

then Algorithm 1 is preferred, otherwise Algorithm 2 is preferred.

29



2-block Rank One Model with One Binary Covariate

As an illustration of using Chernoff ratio in Eq. (3.2) to compare the performance of

Algorithms 1 and 2 for estimating the induced block assignments, we consider the

2-block SBM with one binary covariate as in Example 2.

Proposition 1. For 2-block rank one model with one binary covariate as in Example 2

with the assumption that ni = nπi and nZ,j = nπZ,j for i ∈ {1, 2} and j ∈ {1, 2, 3, 4}

where π = (1
2 , 1

2) and πZ = (1
4 , 1

4 , 1
4 , 1

4), there is no tractable closed-form for Chernoff

ratio as in Eq. (3.2) but numerical experiments can be used to obtain ρ∗
1 and ρ∗

2 can be

derived analytically as

ρ∗
2 = (p − q)2(p2 + q2)2

2
[︂√︂

p2ϕp + q2ϕpq +
√︂

q2ϕq + p2ϕpq

]︂2 , (3.3)

where σ2
p, σ2

q are defined as in Eq. (2.17) and

ϕp = p2(1 − p2),

ϕq = q2(1 − q2),

ϕpq = pq(1 − pq).

(3.4)

Technical details of Proposition 1 can be found at the end of this chapter. Figure 3-1

shows the Chernoff ratio as in Eq. (3.2) when we fix p = 0.3 and take q ∈ (0.3, 0.7), β ∈

(0.1, 0.5) in the two-block rank one models with one binary covariate as in Example 2.

Observe that ρ∗ < 1 for most of the region while ρ∗ > 1 only when q and β are

relatively large. Recall that the performance of Algorithm 1 highly depends on the

estimated block connectivity probability matrix ˆ︁BZ . Large q and β lead to a relatively

well-structured ˆ︁BZ and thus Algorithm 1 can have better performance in this region.
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Figure 3-1. Chernoff ratio as in Eq. (3.2) for 2-block rank one model with one binary
covariate as in Example 2. p = 0.3, q ∈ (0.3, 0.7), β ∈ (0.1, 0.5), π = (1

2 , 1
2), πZ =

(1
4 , 1

4 , 1
4 , 1

4).
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2-block Homogeneous Model with One Binary Covariate

Now we consider the 2-block SBM with one binary covariate parameterized by the

block connectivity probability matrix BZ as in Eq. (2.10).

Corollary 1. For 2-block homogeneous model with one binary covariate as in Ex-

ample 3 with the assumption that ni = nπi and nZ,j = nπZ,j for i ∈ {1, 2} and

j ∈ {1, 2, 3, 4} where π = (1
2 , 1

2) and πZ = (1
4 , 1

4 , 1
4 , 1

4). The Chernoff ratio as in

Eq. (3.2) can be derived analytically as

ρ∗ = ρ∗
1

ρ∗
2

→

⎧⎪⎨⎪⎩
β2(ϕa+ϕb)

(a−b)2(ϕa+ϕb+ϕβ) if β ≤ a − b

ϕa+ϕb

ϕa+ϕb+ϕβ
if β > a − b

, (3.5)

where

ϕa = a(1 − a),

ϕb = b(1 − b),

ϕβ = β(1 − a − b − β).

(3.6)

Technical details of Corollary 1 can be found at the end of this chapter. Figure 3-2

shows Chernoff ratio as in Eq. (3.2) when we fix b = 0.1 and take a ∈ (0.1, 0.5), β ∈

(0.1, 0.5) in the two-block homogeneous models with one binary covariate as in Exam-

ple 3. Again observe that ρ∗ < 1 for most of the region while ρ∗ > 1 only when a and

β are relatively large, which agrees with the general expression for Chernoff ratio as

in Corollary 1. According to Eq. (3.5), we can have ρ∗ > 1 only when ϕβ < 0 and this

can happen only when a and β are relatively large. This implies that Algorithm 2

is often preferred for estimating the induced block assignments in terms of Chernoff

information.
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Figure 3-2. Chernoff ratio as in Eq. (3.2) for 2-block homogeneous model with one
binary covariate as in Example 3. b = 0.1, a ∈ (0.1, 0.5), β ∈ (0.1, 0.5), π = (1

2 , 1
2), πZ =

(1
4 , 1

4 , 1
4 , 1

4).

33



K-block Homogeneous Model with One Binary Covariate

We then extend the discussion from the two-block homogeneous model to the K-block

homogeneous model with one binary covariate.

Theorem 2. For the K-block homogeneous balanced model with one binary covariate

as in Remark 6 with the assumption that that ni = nπi and nZ,j = nπZ,j for i ∈

{1, · · · , K} and j ∈ {1, · · · , 2K} where π = ( 1
K

, · · · , 1
K

) and πZ = ( 1
2K

, · · · , 1
2K

).

The Chernoff ratio as in Eq. (3.2) can be derived analytically as

ρ∗ = ρ∗
1

ρ∗
2

→

⎧⎪⎨⎪⎩
K2β2(ϕa+ϕb)

2(a−b)2D4
if δ ≤ 0

ϕa+ϕb

ϕa+ϕb+ϕβ
if δ > 0

, (3.7)

where ϕa, ϕb, ϕβ are defined as in Eq. (3.6) and

D3 = K − 2a − 2(K − 1)b − Kβ,

D4 = 2ϕa + 2(K − 1)ϕb + βD3,

δ = K2β2(ϕa + ϕb + ϕβ) − 2(a − b)2D4.

(3.8)

Remark 12. Theorem 2 generalizes Corollary 1 beyond K = 2.

Technical details of Theorem 2 can be found at the end of this chapter. Figure 3-3

shows Chernoff ratio as in Eq. (3.2) when we fix b = 0.1 and take a ∈ (0.1, 0.5), β ∈

(0.1, 0.5) in the 4-block homogeneous models with one binary covariate as in Example 3

and Remark 6. Note that ρ∗ < 1 for most of the region while ρ∗ > 1 only when a

and β are relatively large. This implies again that Algorithm 2 is often preferred for

estimating the induced block assignments in terms of Chernoff information.
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Figure 3-3. Chernoff ratio as in Eq. (3.2) for 4-block homogeneous model with one
binary covariate as in Example 3 and Remark 6. b = 0.1, a ∈ (0.1, 0.5), β ∈ (0.1, 0.5), π =
(1

4 , 1
4 , 1

4 , 1
4), πZ = (1

8 , · · · , 1
8).
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Experiments

In addition to comparing the two algorithms’ performance analytically via the notion

of Chernoff ratio, we also compare Algorithms 1 and 2 by empirical clustering results.

Recall that the analytic comparison via Chernoff ratio is based on the limiting results

of ASE for SBM when the number of vertices n → ∞. The comparison via empirical

clustering results can measure the performance of these two algorithms for finite n.

As an illustration of this correspondence, we start with the setting related to “A”

(p = 0.3, q = 0.668, β = 0.49 with ρ∗ = 1.1 > 1) and “B” (p = 0.3, q = 0.564, β = 0.49

with ρ∗ = 0.91 < 1) in left panel of Figure 3-4 for 2-block rank one model with one

binary covariate Z ∈ {1, 2}n as in Example 2. We consider the balanced case where

n1 = n2 = n
2 and nZ,1 = nZ,2 = nZ,3 = nZ,4 = n

4 . For each n ∈ {100, 140, 180, 220, 260},

we simulate 100 adjacency matrices with n
2 vertices in each block and generate binary

covariate with n
4 vertices having each value of Z within each block. We then apply

Algorithms 1 and 2 (with β and ˆ︁β in Step 3 respectively) using embedding dimension
ˆ︁d = 3 to estimate the induced block assignments where adjusted Rand index (ARI) [90]

is used to measure the performance (ARI can take values from −1 to 1 where larger

value indicates a better alignment of the empirical clustering and the “truth”).

The upper right panel in Figure 3-4 shows that although ρ∗ > 1 and Algorithm 1

should be preferred in terms of Chernoff ratio, the ARI suggests that Algorithm 2

is preferred. While the Chernoff ratio is, in fact, a limit (computed as the sample

size n increases to infinity), the region for which ρ∗ > 1 is so easy for clustering—e.g.,

q − p is large for “A”—that both algorithms are essentially perfect even for small

n. The lower right panel in Figure 3-4 shows that Algorithm 2 tends to have better

performance than Algorithm 1, which agrees with the Chernoff ratio as in left figure

where ρ∗ < 1 and Algorithm 2 is preferred.
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Figure 3-4. Correspondence between Chernoff analysis and simulations.

Table 3-I summarizes the detailed simulation results associated with Fig. 3-4 right

panel for correspondence between Chernoff analysis and simulations.

Table 3-I. Detailed simulation results associated with Fig. 3-4 right panel

n 1 p 2 q 2 β 3 ˆ︁β4 ARI (Algo 1) 5 ARI (Algo 2 with β) 5 ARI (Algo 2 with ˆ︁β) 5

100 0.3 0.668 0.49 0.489 0.858 (± 0.025) 0.951 (± 0.005) 0.952 (± 0.005)

140 0.3 0.668 0.49 0.487 0.957 (± 0.013) 0.983 (± 0.002) 0.983 (± 0.002)

180 0.3 0.668 0.49 0.488 0.980 (± 0.010) 0.995 (± 0.000) 0.995 (± 0.000)

220 0.3 0.668 0.49 0.489 0.997 (± 0.000) 0.998 (± 0.000) 0.998 (± 0.000)

260 0.3 0.668 0.49 0.489 0.999 (± 0.000) 0.999 (± 0.000) 0.999 (± 0.000)

100 0.3 0.564 0.49 0.478 0.291 (± 0.030) 0.522 (± 0.027) 0.545 (± 0.026)

140 0.3 0.564 0.49 0.485 0.572 (± 0.034) 0.783 (± 0.010) 0.771 (± 0.013)

180 0.3 0.564 0.49 0.486 0.783 (± 0.025) 0.873 (± 0.004) 0.874 (± 0.005)

220 0.3 0.564 0.49 0.490 0.874 (± 0.016) 0.921 (± 0.003) 0.920 (± 0.003)

260 0.3 0.564 0.49 0.489 0.905 (± 0.018) 0.949 (± 0.003) 0.949 (± 0.003)
1 Number of vertices in the simulated adjacency matrices.
2 Adjacency matrices are simulated from a two-block SBM where vertices within block 1 connect with

probability p2, vertices within block 2 connect with probability q2, and vertices across two blocks connect
with probability pq.

3 Vertex covariate effect, see Definition 4 and Remark 5 for details.
4 Estimated vertex covariate effect by Algorithm 2.
5 Reported as mean(±stderr) from 100 trials. Best results in bold.
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2-block Rank One Model with One 5-categorical Covariate

To further investigate the flexibility of our models and algorithms, we also consider

categorical vertex covariates in the simulations. We begin with the 2-block rank one

model with one 5-categorical covariate Z ∈ {1, 2, 3, 4, 5}n, i.e., we have the block

connectivity probability matrix BZ ∈ [0, 1]10×10 with similar structure as in Eq. (2.9).

We first fix p = 0.3, β = 0.4 and consider q ∈ {0.35, 0.375, 0.4, 0.425, 0.45}. For

each q, we simulate 100 adjacency matrices with 1000 vertices in each block and

generate 5-categorical covariate with 200 vertices having each value of Z within each

block. We then apply Algorithms 1 and 2 (with β and ˆ︁β in Step 3 respectively) using

embedding dimension ˆ︁d = 6 to estimate the induced block assignments. Figure 3-5a

shows that both algorithms estimate more accurate induced block assignments as the

latent positions of two induced block move away from each other, i.e., two induced

blocks tend to be more separate, and Algorithm 2 can have better performance than

Algorithm 1 in terms of empirical clustering results measured by ARI.

Next we fix p = 0.3, q = 0.375 and consider β ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. For each

β, we simulate 100 adjacency matrices with 1000 vertices in each block and generate

5-categorical covariate with 200 vertices having each value of Z within each block. We

then apply both algorithms (with β and ˆ︁β in Step 3 of Algorithm 2 respectively) using

embedding dimension ˆ︁d = 6 to estimate the induced block assignments. Figure 3-5b

shows Algorithm 1 can only estimate accurate induced block assignments when β is

relatively small while Algorithm 2 can estimate accurate induced block assignments

no matter β is small or large. Intuitively, as Algorithm 1 directly estimates the

induced block assignments, when β is relatively large, i.e., vertex covariates can affect

block structure significantly, it lacks the ability to distinguish this effect. However,

Algorithm 2 can use additional information from vertex covariates to estimate β,

taking this effect into consideration when estimating the induced block assignments.
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Again, the overall performance of Algorithm 2 is better than that of Algorithm 1 in

terms of empirical clustering results measured by ARI.

Table 3-II summarizes the detailed simulation results associated with Fig. 3-5 for

2-block rank one model with one 5-categorical covariate.

Table 3-II. Detailed simulation results associated with Fig. 3-5

n 1 p 2 q 2 β 3 ˆ︁β 4 ARI (Algo 1) 5 ARI (Algo 2 with β) 5 ARI (Algo 2 with ˆ︁β) 5

2000 0.3 0.350 0.4 0.401 0.013 (± 0.000) 0.388 (± 0.012) 0.395 (± 0.010)

2000 0.3 0.375 0.4 0.400 0.283 (± 0.030) 0.763 (± 0.002) 0.763 (± 0.002)

2000 0.3 0.400 0.4 0.399 0.855 (± 0.014) 0.931 (± 0.000) 0.931 (± 0.000)

2000 0.3 0.425 0.4 0.399 0.967 (± 0.007) 0.985 (± 0.000) 0.985 (± 0.000)

2000 0.3 0.450 0.4 0.399 0.990 (± 0.005) 0.998 (± 0.000) 0.998 (± 0.000)

2000 0.3 0.375 0.10 0.097 0.774 (± 0.007) 0.803 (± 0.002) 0.802 (± 0.002)

2000 0.3 0.375 0.15 0.149 0.636 (± 0.026) 0.789 (± 0.001) 0.790 (± 0.001)

2000 0.3 0.375 0.20 0.199 0.452 (± 0.036) 0.779 (± 0.002) 0.780 (± 0.002)

2000 0.3 0.375 0.25 0.249 0.465 (± 0.034) 0.770 (± 0.002) 0.770 (± 0.002)

2000 0.3 0.375 0.30 0.300 0.340 (± 0.034) 0.766 (± 0.002) 0.767 (± 0.001)
1 Number of vertices in the simulated adjacency matrices.
2 Adjacency matrices are simulated from a two-block SBM where vertices within block 1 connect with

probability p2, vertices within block 2 connect with probability q2, and vertices across two blocks connect
with probability pq.

3 Vertex covariate effect, see Definition 4 and Remark 5 for details.
4 Estimated vertex covariate effect by Algorithm 2.
5 Reported as mean(±stderr) from 100 trials. Best results in bold.
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(a) ARI as latent positions of two induced blocks move away from each other
with β = 0.4.

(b) ARI as β increases with p = 0.3, q = 0.375.

Figure 3-5. Simulations for 2-block rank one model with one 5-categorical covariate,
balanced case.
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2-block Homogeneous Model with One 5-categorical Covariate

We now consider the 2-block homogeneous model with one 5-categorical covariate Z ∈

{1, 2, 3, 4, 5}n, i.e., we have the block connectivity probability matrix BZ ∈ [0, 1]10×10

with the similar structure as in Eq. (2.10). Note that we can re-write B like Eq. (2.6)

as

B = νν⊤ =
⎡⎣a b

b a

⎤⎦ with ν =
⎡⎣
√

a 0
b√
a

√︂
(a−b)(a+b)

a

⎤⎦ . (3.9)

With these canonical latent positions, the distance between two induced blocks

can be measured by(︄
√

a − b√
a

)︄2

+
⎛⎝0 −

√︄
(a − b)(a + b)

a

⎞⎠2

= 2(a − b). (3.10)

We first fix b = 0.1, β = 0.2 and consider a ∈ {0.12, 0.125, 0.13, 0.135, 0.14}. For

each a, we simulate 100 adjacency matrices with 1000 vertices in each block and gener-

ate 5-categorical covariate with 200 vertices having each value of Z within each block.

We then apply both algorithms (with β and ˆ︁β in Step 3 of Algorithm 2 respectively)

using embedding dimension ˆ︁d = 6 to estimate the induced block assignments. Figure 3-

6a shows that both algorithms estimate more accurate induced block assignments

as the latent positions of two induced block move away from each other, i.e., two

induced blocks tend to be more separate as measured by Eq. (3.10), and Algorithm 2

can have much better performance in terms of empirical clustering results measured

by ARI. Recall that Algorithm 1 tries to estimate the induced block assignments by

clustering the diagonal of ˆ︁BZ and re-assigning the block assignments including the

vertex covariate effect. For the homogeneous model, the diagonal of BZ are all the

same, which can make it hard for Algorithm 1 to accurately estimate the induced

block assignments. But Algorithm 2 is not affected by the homogeneous structure

since it estiamtes the vertex covariate effect first and then estimates the induced block

assignments by clustering the estimated latent positions like the canonical ones in

Eq. (3.9).
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Next we fix a = 0.135, b = 0.1 and consider β ∈ {−0.09, −0.08, −0.07, −0.06, −0.05}.

For each β, we also simulate 100 adjacency matrices with 1000 vertices in each block

and generate 5-categorical covariate with 200 vertices having each value of Z within

each block. We then apply both algorithms (with β and ˆ︁β in Step 3 of Algorithm 2

respectively) using embedding dimension ˆ︁d = 6 to estimate the induced block assign-

ments. Figure 3-6b shows that both algorithms are relative stable for this homogeneous

model if we fix a and b, due to the special structure. Still, Algorithm 2 can have much

better performance than Algorithm 1 in terms of empirical clustering results measured

by ARI.

Table 3-III summarizes the detailed simulation results associated with Fig. 3-6 for

2-block homogeneous model with one 5-categorical covariate.

Table 3-III. Detailed simulation results associated with Fig. 3-6

n 1 a 2 b 2 β 3 ˆ︁β 4 ARI (Algo 1) 5 ARI (Algo 2 with β) 5 ARI (Algo 2 with ˆ︁β) 5

2000 0.120 0.1 0.2 0.201 0.000 (± 0.000) 0.228 (± 0.014) 0.230 (± 0.014)

2000 0.125 0.1 0.2 0.200 0.001 (± 0.000) 0.608 (± 0.006) 0.583 (± 0.013)

2000 0.130 0.1 0.2 0.200 0.039 (± 0.007) 0.790 (± 0.008) 0.789 (± 0.008)

2000 0.135 0.1 0.2 0.199 0.058 (± 0.008) 0.893 (± 0.009) 0.893 (± 0.009)

2000 0.140 0.1 0.2 0.199 0.075 (± 0.010) 0.954 (± 0.000) 0.954 (± 0.000)

2000 0.135 0.1 -0.09 −0.088 0.098 (± 0.015) 0.969 (± 0.000) 0.969 (± 0.000)

2000 0.135 0.1 -0.08 −0.077 0.088 (± 0.012) 0.967 (± 0.000) 0.967 (± 0.000)

2000 0.135 0.1 -0.07 −0.065 0.073 (± 0.011) 0.965 (± 0.000) 0.965 (± 0.000)

2000 0.135 0.1 -0.06 −0.052 0.083 (± 0.013) 0.963 (± 0.000) 0.963 (± 0.000)

2000 0.135 0.1 -0.05 −0.037 0.069 (± 0.008) 0.960 (± 0.000) 0.960 (± 0.000)
1 Number of vertices in the simulated adjacency matrices.
2 Adjacency matrices are simulated from a two-block SBM where vertices from the same block connect with

probability a, and vertices across two blocks connect with probability b.
3 Vertex covariate effect, see Definition 4 and Remark 5 for details.
4 Estimated vertex covariate effect by Algorithm 2.
5 Reported as mean(±stderr) from 100 trials. Best results in bold.
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(a) ARI as latent positions of two induced blocks move away from each other
with β = 0.2.

(b) ARI as β increases with a = 0.135, b = 0.1.

Figure 3-6. Simulations for 2-block homogeneous model with one 5-categorical covariate,
balanced case.
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Connectome Data

Now we move from simulations to real data experiments. We start with the diffusion

MRI connectome datasets [1]. There are 114 graphs (connectomes) estimated by the

NDMG pipeline [91] in this data set where vertices represent brain sub-regions defined

via spatial proximity and edges represent tensor-based fiber streamlines connecting

these sub-regions. Each vertex in these graphs also has a {Left, Right} hemisphere

label and a {Gray, White} tissue label. We treat one label as the induced block and

the other one as the vertex covariate.

Each of the 114 connectomes (the number of vertices n varies from 23728 to 42022)

is represented by a point in Figure 3-7 with x = ARI(Algo2, LR) − ARI(Algo1, LR)

and y = ARI(Algo2, GW) − ARI(Algo1, GW) where ARI(Algo1, LR) denotes the

ARI when we apply Algorithm 1 and treat {Left, Right} as the induced block (with

analogous notation for the rest). We see that most of the points lie in the (+,+)

quadrant, indicating ARI(Algo2, LR) > ARI(Algo1, LR) and ARI(Algo2, GW) >

ARI(Algo1, GW). That is, Algorithm 2 is better at estimating the induced block

assignments for this real application. Note that this claim holds no matter which label

is treated as the induced block. This again emphasizes the importance of distinguishing

different factors that can affect block structure in graphs. Algorithm 2 is able to

identify particular block structure by using the observed vertex covariate information.

That is, it is more likely to discover the {Left, Right} structure after accounting for the

effect of {Gray, White} label and more likely to discover the {Gray, White} structure

after accounting for the effect of {Left, Right} label.
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Figure 3-7. Algorithms’ comparative performance on connectome data.

45



Social Network Data

We then utilize three social network datasets to compare our methods with several

existing methods that also incorporate vertex covariates and can be scaled to deal

with relatively large networks. Specifically, we compare with spectral clustering with

adjacency matrix only (SCA) and spectral clustering with covariates only (SCC) [18],

pairwise covariates-adjusted stochastic blockmodel via maximum likelihood estima-

tion (PCABM.MLE) and spectral clustering with adjustment (PCABM.SCWA) [86],

covariate-assisted spectral clustering (CASC) [85]. The description of these datasets

are summarized as follows.

• LastFM asia social network dataset [2, 4]: there are 7624 vertices that represent

LastFM users from asian countries and 27806 edges that represent mutual

follower relationships. We treat the location of users, which are derived from

the country field for each user, as the induced block. For the vertex covariate,

we focus on the number of artists liked by users, which is discretized into four

categories {0–200, 200–400, 400–600, 600+}.

• Facebook large page-page network dataset [2, 3]: there are 22470 vertices

that represent official Facebook pages and 171002 edges that represent mutual

likes. We treat four page types {Politician, Governmental Organization, Tele-

vision Show, Company}, which are defined by Facebook, as the induced block.

For the vertex covariate, we focus on the number of descriptions created by

page owners to summarize the purpose of the site, which is discretized into two

categories {0–15, 15+}.

• GitHub social network dataset [2, 3]: there are 37700 vertices that represent

GitHub developers and 289003 edges that represent mutual follower relationships.

We treat two developer types {Web, Machine Learning}, which are derived from

the job title of each developer, as the induced block. For the vertex covariate, we
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focus on the number of repositories starred by developers, which is discretized

into two categories {0–18, 18+}.

Table 3-IV summarizes the algorithms’ comparative performances. Algorithm 2

is better at estimating the induced block assignments for all 3 datasets. This again

suggests that we can better detect the block structure after accounting for the

information contained in vertex covariates with our methods.

Table 3-IV. Algorithms’ performance on social network data in terms of ARI. Best results
in bold.

LastFM Facebook GitHub

SCA [18] 0.229 0.050 0.000

SCC [18] 0.012 0.038 0.001

PCABM.SCWA [86] 0.008 -0.002 0.000

PCABM.MLE [86] 0.000 0.004 -0.002

CASC [85] 0.020 0.053 -0.043

Algo 1 (ours) 0.090 0.036 0.001

Algo 2 (ours) 0.297 0.076 0.013

In real data, we may not have ground truth for the block structure. Our findings

suggest that we are able to discover block structure by using observed vertex covariates,

which can lead to meaningful insights in widely varying applications. That is, we

can better reveal underlying block structure and thus better understand the data by

accounting for the vertex covariate effect.
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Latent Position Geometry and Chernoff Ratio

We end this chapter with the investigation of the latent position geometry and the

derivation of the Chernoff ratio for certain model of interest.

For convenience, we first introduce the following notations. Define for t ∈ (0, 1),

g(νk, ν) =
(︂
ν⊤

k ν
)︂ (︂

1 − ν⊤
k ν
)︂

,

gt(νk, νℓ, ν) = tg(νk, ν) + (1 − t)g(νℓ, ν).
(3.11)

Then we can re-write Σk and Σkℓ(t) as

Σk = ∆−1E
[︂
g(νk, ν)νν⊤

]︂
∆−1,

Σkℓ(t) = ∆−1E
[︂
gt(νk, νℓ, ν)νν⊤

]︂
∆−1.

(3.12)

We also define for 1 ≤ k < ℓ ≤ K,

Ckℓ = sup
t∈(0,1)

t(1 − t)(νk − νℓ)⊤Σ−1
kℓ (t)(νk − νℓ). (3.13)

In addition, we review several useful results in linear algebra and matrix analysis

that motivate our derivation of the Chernoff ratio for certain model of interest.

Corollary 2 (Cholesky Decomposition [92]). Let A be a Hermitian matrix. Then

A is positive semi-definite (respectively, positive-definite) if and only if there exists a

lower triangular matrix L with nonnegative (respectively, positive) diagonal entries

such that A = LL∗. If A is positive-definite, then L is unique. If A is real, then L

may be taken to be real.

Corollary 3 (Sherman–Morrison–Woodbury Formula [92]). Let A be a nonsingular

matrix with a known inverse A−1. Let R be a nonsingular matrix and consider

B = A + XRY. If B and R−1 + YA−1X are nonsingular, then

B−1 = A−1 − A−1X
(︂
R−1 + YA−1X

)︂−1
YA−1. (3.14)
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Proof of Proposition 1

Proof. Via the idea of Cholesky decomposition as in Corollary 2, we can re-write BZ

as

BZ = νZν⊤
Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν⊤
1 ν1 ν⊤

1 ν2 ν⊤
1 ν3 ν⊤

1 ν4

ν⊤
2 ν1 ν⊤

2 ν2 ν⊤
2 ν3 ν⊤

2 ν4

ν⊤
3 ν1 ν⊤

3 ν2 ν⊤
3 ν3 ν⊤

3 ν4

ν⊤
4 ν1 ν⊤

4 ν2 ν⊤
4 ν3 ν⊤

4 ν4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.15)

where νZ =
[︂
ν1 ν2 ν3 ν4

]︂⊤
. Elementary calculations yield the canonical latent

positions as

νZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
p2 + β 0 0

p2√
p2+β

√︃
β(2p2+β)

p2+β
0

pq+β√
p2+β

√︃
βp2(q−p)2

(p2+β)(2p2+β)

√︃
β(q−p)2

(2p2+β)

pq√
p2+β

√︃
β(p2+pq+β)2

(p2+β)(2p2+β)

√︃
β(q−p)2

(2p2+β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.16)

For this model, the block connectivity probability matrix BZ is positive semi-

definite with rank(BZ) = 3. Then we have Id+d− = I3 and we can omit it in our

analytic derivations. With the canonical latent positions in Eq. (3.16), the only

remaining term to derive for Chernoff ratio is Σkℓ(t).

By the symmetric structure of BZ and the balanced assumption, we observe that

C13 = C24, C14 = C23. Thus we need only to evaluate C12, C13, C14, C34. Subsequent

calculations and simplification yield

C12 = β2

2[ϕp + ϕpq + β(1 − p2 − pq − β)] ,

C34 = β2

2[ϕq + ϕpq + β(1 − q2 − pq − β)] ,
(3.17)
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where for 0 < p < q < 1

ϕp = p2(1 − p2),

ϕq = q2(1 − q2),

ϕpq = pq(1 − pq).

(3.18)

Then we have the approximate Chernoff information for Algorithm 1 as

ρ∗
1 ≈ min

k∈{1,3},k<ℓ≤4
Ckℓ, (3.19)

where Ckℓ for k ∈ {1, 3}, k < ℓ ≤ 4 are defined as in Eq. (3.17). For this model,

there is no tractable closed-form analytic expression for C13 and C14, so we instead

obtain values ρ∗
1 by numerically solving the above optimization problem. By Remark 8

and similar calculations [12, 28], we have the approximate Chernoff information for

Algorithm 2 as

ρ∗
2 ≈ sup

t∈(0,1)
t(1 − t)(p − q)2

[︂
tσ2

p + (1 − t)σ2
q

]︂−1

= (p − q)2(p2 + q2)2

2
[︂√︂

p2ϕp + q2ϕpq +
√︂

q2ϕq + p2ϕpq

]︂2 ,
(3.20)

where ϕp, ϕq, ϕpq are defined as in Eq. (3.18) and

σ2
p = π1p

4(1 − p2) + π2pq3(1 − pq)
[π1p2 + π2q2]2 ,

σ2
q = π1p

3q(1 − pq) + π2q
4(1 − q2)

[π1p2 + π2q2]2 .

(3.21)
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Proof of Corollary 1

Proof. Similarly, the idea of Cholesky decomposition as in Corollary 2 and elementary

calculations yield the canonical latent positions as

νZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
a + β 0 0

a√
a+β

√︃
β(2a+β)

a+β
0

b+β√
a+β

√︃
β(b−a)2

(a+β)(2a+β)

√︃
2(a−b)(a+b+β)

(2a+β)

b√
a+β

√︃
β(a+b+β)2

(a+β)(2a+β)

√︃
2(a−b)(a+b+β)

(2a+β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.22)

Observe that for this model, the block connectivity probability matrix BZ is also

positive semi-definite with rank(BZ) = 3. Then we have Id+d− = I3 and we can omit

it in the derivations as for two-block rank one model. To evaluate the Chernoff ratio,

we also investigate the Ckℓ as defined in Eq. (3.13). Similar observations suggest

that C12 = C34, C13 = C24, C14 = C23. Thus we only need to evaluate C12, C13, C14.

Subsequent calculations and simplification yield

C12 = β2

2(ϕa + ϕb + ϕβ) ,

C13 = (a − b)2

2(ϕa + ϕb + ϕβ) ,

C14 = β2N1 + (a − b)N2

2[D1 + (ϕa + ϕb)(ϕa + ϕb + 2ϕβ)] ,

(3.23)

where for 0 < b < a < 1 and 0 < β < 1

ϕa = a(1 − a),

ϕb = b(1 − b),

ϕβ = β(1 − a − b − β),

N1 = a(1 − b) + b(1 − a) + ϕβ,

N2 = ab(a − b) + ϕa(a + β) − ϕb(b + β),

D1 = β2(1 − 2a − β)(1 − 2b − β).

(3.24)
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Then we have the approximate Chernoff information for Algorithm 1 as given by

ρ∗
1 ≈ min

ℓ∈{2,3,4}
C1ℓ, (3.25)

where C1ℓ for ℓ ∈ {2, 3, 4} are defined as in Eq. (3.23). Also observe that

C12 − C14 = −(a − b)2[ϕa + ϕb + β(1 − a − b)]2
D2

,

C13 − C14 = −β2N2
1

D2
,

(3.26)

where

D2 = 2(ϕa + ϕb + ϕβ)[D1 + (ϕa + ϕb)(ϕa + ϕb + 2ϕβ)]. (3.27)

Then we can further simplify ρ∗
1 as

ρ∗
1 ≈

⎧⎪⎨⎪⎩
β2

2(ϕa+ϕb+ϕβ) if β ≤ a − b,

(a−b)2

2(ϕa+ϕb+ϕβ) if β > a − b.
(3.28)

By the same derivations [17], we have the approximate Chernoff information for

Algorithm 2 as

ρ∗
2 ≈ (a − b)2

2 [a(1 − a) + b(1 − b)] = (a − b)2

2(ϕa + ϕb)
, (3.29)

where ϕa and ϕb are defined as in Eq. (3.24).
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Proof of Theorem 2

Proof. Observe that a K-block SBM can become a 2K-block SBM when adding a

binary covariate. To analytically derive the Chernoff ratio for the K-block homogeneous

model with one binary covariate, we first investigate the canonical latent positions for

this model via the idea of Cholesky decomposition as in Corollary 2.

Specifically, let B ∈ [0, 1]K×K denote the block connectivity probability matrix

after accounting for the vertex covariate effect and BZ ∈ [0, 1]2K×2K denote the block

connectivity probability matrix including the vertex covariate effect. Here we focus on

canonical latent positions for BZ , details about the canonical latent positions for B

have been discussed [17]. Let νZ(K, 2K) denote the canonical latent position matrix,

then we can re-write BZ as

BZ = νZ(K, 2K)νZ(K, 2K)⊤, (3.30)

where νZ(K, 2K) =
[︂
ν1 · · · ν2K

]︂⊤
. For K = 2 we have via the idea of Cholesky

decomposition as in Corollary 2

νZ(2, 4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
a + β 0 0

a√
a+β

√︃
β(2a+β)

a+β
0

b+β√
a+β

√︃
β(b−a)2

(a+β)(2a+β)

√︃
2(a−b)(a+b+β)

(2a+β)

b√
a+β

√︃
β(a+b+β)2

(a+β)(2a+β)

√︃
2(a−b)(a+b+β)

(2a+β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.31)
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And by induction, for K ≥ 3 we have

νZ(K, 2K)·,1 =

⎡⎢⎢⎢⎢⎢⎢⎣
νZ(K − 1, 2K − 2)·,1:(K−1)

νZ(K − 1, 2K − 2)2K−3,1:(K−1)

νZ(K − 1, 2K − 2)2K−2,1:(K−1)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

νZ(K, 2K)·,2 =

⎡⎢⎢⎢⎢⎢⎢⎣
νZ(K − 1, 2K − 2)·,K

κνZ(K − 1, 2K − 2)2K−3,K

κνZ(K − 1, 2K − 2)2K−2,K

⎤⎥⎥⎥⎥⎥⎥⎦ ,

νZ(K, 2K)·,3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0√︃

(a−b)[2a+2(K−1)b+Kβ]
2a+2(K−2)b+(K−1)β√︃

(a−b)[2a+2(K−1)b+Kβ]
2a+2(K−2)b+(K−1)β

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

(3.32)

where

κ = 2b + β

2a + 2(K − 2)b + (K − 1)β . (3.33)

For this K-block homogeneous model with one binary covariate, the symmetric

structure of BZ yields
ν⊤

1 ν1 = ν⊤
2 ν2 = · · · = ν⊤

2Kν2K = a + β,

ν⊤
1 ν2 = ν⊤

3 ν4 = · · · = ν⊤
2K−1ν2K = a,

ν⊤
1 ν3 = ν⊤

1 ν5 = · · · = ν⊤
2K−2ν2K = b + β,

ν⊤
1 ν4 = ν⊤

1 ν6 = · · · = ν⊤
2K−2ν2K−1 = b.

(3.34)

Along with the balanced assumption, i.e., πZ = ( 1
2K

, · · · , 1
2K

), the first four rows

of νZ(K, 2K) are ideal for derivation as they have the fewest non-zero entries and can

represent all the possible geometric structure. In other word, we can only evaluate

C12, C13, C14 where Ckℓ is defined as in Eq. (3.13) to derive the Chernoff ratio.

For K-block homogeneous model with one binary covariate, we observe that BZ

has eigenvalue 0 with algebraic multiplicity K − 1, eigenvalue Kβ with algebraic
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multiplicity 1, eigenvalue 2(a − b) with algebraic multiplicity K − 1 and eigenvalue

2a + 2(K − 1)b + Kβ with algebraic multiplicity 1. Along with the assumption that

0 < b < a < 1 and 0 < β < 1, we have among non-zero eigenvalues of BZ

λmax (BZ) = 2a + 2(K − 1)b + Kβ,

λmin (BZ) =

⎧⎪⎨⎪⎩
Kβ if β ≤ 2(a−b)

K
,

2(a − b) if β > 2(a−b)
K

.

(3.35)

Thus BZ is positive semi-definite with rank(BZ) = K + 1. Then we have Id+d− =

IK+1 which has no complicating effect on the subsequent derivations. As discussed in

the previous section, we only consider the first four rows of the canonical latent position

matrix νZ(K, 2K) and evalute C12, C13, C14. With the definition as in Eq. (3.11), we

have

E
[︂
g 1

2
(ν1, ν2, ν)νν⊤

]︂
= c0∆ + c12N12N⊤

12,

E
[︂
g 1

2
(ν1, ν3, ν)νν⊤

]︂
= ∆T + c13N13N⊤

13 + c24N24N⊤
24,

E
[︂
g 1

2
(ν1, ν4, ν)νν⊤

]︂
= c0∆ + c14N14N⊤

14 + c23N23N⊤
23,

(3.36)

where ∆ ∈ R(K+1)×(K+1) is defined as in Theorem 1, νZ ∈ R2K×(K+1) is defined as in
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Eq. (3.32) and

ϕa = a(1 − a),

ϕb = b(1 − b),

ϕbβ = (b + β)(1 − b − β),

c0 = ϕb + ϕbβ

2 ,

c12 = (a − b)(1 − a − b − β)
2K

,

c13 = c14 = (a − b)(1 − a − b − 2β)
4K

,

c23 = c24 = ϕa − ϕb

4K
,

cT = β(1 − 2b − β)
4K

,

Nkℓ =
[︂
νk νℓ

]︂
∈ R(K+1)×2,

IT = diag(1, −1, · · · , 1, −1) ∈ R2K×2K ,

∆T = ν⊤
Z

(︃
cT IT + c0

2K
I2K

)︃
νZ ∈ R(K+1)×(K+1).

(3.37)

With the canonical latent position matrix νZ(K, 2K) as in Eq. (3.32), observe that

56



N⊤
12∆−1N12 =

⎡⎢⎢⎣K + 1 K − 1

K − 1 K + 1

⎤⎥⎥⎦ ,

N⊤
13∆−1N13 =

⎡⎢⎢⎣K + 1 1

1 K + 1

⎤⎥⎥⎦ ,

N⊤
14∆−1N14 =

⎡⎢⎢⎣K + 1 −1

−1 K + 1

⎤⎥⎥⎦ ,

N⊤
13∆−1N24 =

⎡⎢⎢⎣K − 1 1

1 K − 1

⎤⎥⎥⎦ ,

N⊤
13∆−1

T N13 = 2
n13

⎡⎢⎢⎣ϕb + Kϕbβ ϕb

ϕb ϕb + Kϕbβ

⎤⎥⎥⎦ ,

N⊤
24∆−1

T N24 = 2
n24

⎡⎢⎢⎣Kϕb + ϕbβ ϕbβ

ϕbβ Kϕb + ϕbβ

⎤⎥⎥⎦ ,

N⊤
13∆−1

T N24 = 1
c0

⎡⎢⎢⎣K − 1 −1

−1 K − 1

⎤⎥⎥⎦ ,

(3.38)

where c0, ϕb, ϕbβ are defined as in Eq. (3.37) and

n13 = 2ϕ2
b + β2(1 − β)2 + 3βϕb(1 − 2b − β) − 4bβ2(1 − b − β),

n24 = ϕb(ϕb + ϕbβ).
(3.39)

57



By the Sherman-Morrison-Woodbury formula as in Corollary 3, we have

E
[︂
g 1

2
(ν1, ν2, ν)νν⊤

]︂−1
= 1

c0
∆−1 − 1

c2
0
∆−1M12∆−1,

E
[︂
g 1

2
(ν1, ν3, ν)νν⊤

]︂−1
= ∆−1

T − ∆−1
T M13∆−1

T − ∆−1
T M24∆−1

T

+ ∆−1
T M24∆−1

T M13∆−1
T + ∆−1

T M13∆−1
T M24∆−1

T

− ∆−1
T M13∆−1

T M24∆−1
T M13∆−1

T ,

E
[︂
g 1

2
(ν1, ν4, ν)νν⊤

]︂−1
= 1

c0
∆−1 − 1

c2
0
∆−1M14∆−1 − 1

c2
0
∆−1M23∆−1

+ 1
c3

0
∆−1M23∆−1M14∆−1 + 1

c3
0
∆−1M14∆−1M23∆−1

− 1
c4

0
∆−1M14∆−1M23∆−1M14∆−1,

(3.40)

where c0, c12, c13, c14, c23, c24 are defined as in Eq. (3.37) and

D12 = 1
c12

I2 + 1
c0

N⊤
12∆−1N12,

D13 = 1
c13

I2 + N⊤
13∆−1

T N13,

D14 = 1
c14

I2 + 1
c0

N⊤
14∆−1N14,

M12 = N12D−1
12 N⊤

12,

M13 = N13D−1
13 N⊤

13,

M14 = N14D−1
14 N⊤

14,

D23 = 1
c23

I2 + 1
c0

N⊤
23∆−1N23 − 1

c2
0
N⊤

23∆−1M14∆−1N23,

D24 = 1
c24

I2 + N⊤
24∆−1

T N24 − N⊤
24∆−1

T M13∆−1
T N24,

M23 = N23D−1
23 N⊤

23,

M24 = N24D−1
24 N⊤

24.

(3.41)
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Again by canonical latent position matrix νZ(K, 2K) as in Eq. (3.32), we have

(ν1 − ν2)⊤ ∆ (ν1 − ν2) = β2,

(ν1 − ν3)⊤ ∆ (ν1 − ν3) = 2
K

(a − b)2,

(ν1 − ν4)⊤ ∆ (ν1 − ν4) = 2
K

(a − b)2 + β2,

(ν1 − ν3)⊤ ∆∆−1
T ∆ (ν1 − ν3) = 1

c0

2
K

(a − b)2.

(3.42)

Similarly, we have

N⊤
12 (ν1 − ν2) = β

[︂
1 −1

]︂⊤
,

N⊤
13 (ν1 − ν3) = (a − b)

[︂
1 −1

]︂⊤
,

N⊤
14 (ν1 − ν4) = (a − b + β)

[︂
1 −1

]︂⊤
,

N⊤
23 (ν1 − ν4) = (a − b − β)

[︂
1 −1

]︂⊤
,

N⊤
13∆−1

T ∆ (ν1 − ν3) = (a − b)
c0

[︂
1 −1

]︂⊤
.

(3.43)

Then with all the results above, we have

C12 = Kβ2

2D4
,

C13 = (a − b)2

K(ϕa + ϕb + ϕβ) ,

C14 = K2β2(ϕa + ϕb + ϕβ) + 2KN3 + 4N4

2K[2(ϕ2
a − ϕ2

b) + D5]
,

(3.44)

59



where ϕa, ϕb are defined as in Eq. (3.37) and

ϕβ = β(1 − a − b − β),

D3 = K − 2a − 2(K − 1)b − Kβ,

D4 = 2ϕa + 2(K − 1)ϕb + βD3,

N3 = (a − b)2[2ϕb + β(1 + β − 2b)],

N4 = (a − b)3(1 − a − b − β),

D5 = 2β(a − b)[(1 − a − b − β) − 2(ϕa + ϕb) − ϕβ + 2b(a + β)]

+ K{2ϕb(ϕa + ϕb) − 2bβ(ϕb + a − b2) − 2abϕβ

+ β(1 − β)[ϕa + (3b + β)(1 − β) − aβ − 5b2]}.

(3.45)

Then we have the approximate Chernoff information for Algorithm 1 as

ρ∗
1 ≈ min

ℓ∈{2,3,4}
C1ℓ, (3.46)

where C1ℓ for ℓ ∈ {2, 3, 4} are defined as in Eq. (3.44). Also observe that

C12 − C14 = −(a − b)2N2
6

KD4[2(ϕ2
a − ϕ2

b) + D5]
,

C13 − C14 = −β2[2(a − b)2 + K(ϕa + ϕb + ϕβ)]2
2K(ϕa + ϕb + ϕβ)[2(ϕ2

a − ϕ2
b) + D5]

,

(3.47)

where ϕa, ϕb are defined as in Eq. (3.37), ϕβ, D4, D5 are defined as in Eq. (3.45) and

N5 = β[K − 2a − 2(K − 1)b],

N6 = 2ϕa + 2(K − 1)ϕb + N5.

(3.48)

Subsequent calculations and simplification yield ρ∗
1 as

ρ∗
1 ≈

⎧⎪⎨⎪⎩
Kβ2

2D4
if δ ≤ 0

(a−b)2

K(ϕa+ϕb+ϕβ) if δ > 0
, (3.49)
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where ϕa, ϕb, ϕβ are defined as in Eq. (3.24) and

D3 = K − 2a − 2(K − 1)b − Kβ,

D4 = 2ϕa + 2(K − 1)ϕb + βD3,

δ = K2β2(ϕa + ϕb + ϕβ) − 2(a − b)2D4.

(3.50)

Again by the same derivations [17], we have the approximate Chernoff information

for Algorithm 2 as

ρ∗
2 ≈ (a − b)2

K [a(1 − a) + b(1 − b)] = (a − b)2

K(ϕa + ϕb)
, (3.51)

where ϕa and ϕb are defined as in Eq. (3.24).
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Chapter 4

Dynamic Network Sampling for
Community Detection

In this chapter, we focus on the problem of dynamic network sampling for community

detection. Motivated by the Chernoff analysis, we propose a dynamic network sampling

scheme to optimize block recovery for stochastic blockmodel in the case where it

is prohibitively expensive to observe the entire graph. Theoretically, we provide

justification of our proposed Chernoff-optimal dynamic sampling scheme via the

notion of Chernoff information. Practically, we evaluate the performance, in terms of

block recovery, of our method on several real datasets from different domains. Both

theoretically and practically results suggest that our method can identify vertices that

have the most impact on block structure so that one can only check whether there are

edges between them to save significant resources but still recover the block structure.
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Dynamic Network Sampling Scheme

We start our analysis with the unobserved block connectivity probability matrix B for

SBM and then illustrate how to migrate the proposed methods for real applications

when we have the observed adjacency matrix A.

Initial Sampling

Consider the K-block SBM parametrized by the block connectivity probability matrix

B ∈ (0, 1)K×K and the vector of block assignment probabilities π ∈ (0, 1)K with

K > 2. Given initial sampling parameter p0 ∈ (0, 1), initial sampling is uniformly at

random, i.e.,

B0 = p0B. (4.1)

Note that this initial sampling simulates the case when one only obersves a partial

graph with a small portion of the edges instead of the entire graph with all existing

edges.

Theorem 3. For K-block SBMs, given two block connectivity probability matrices

B, pB ∈ (0, 1)K×K with p ∈ (0, 1) and a vector of block assignment probabilities

π ∈ (0, 1)K. We have B ≻ pB.

Technical details of Theorem 3 can be found at the end of this chapter. As an

illustration, consider a 4-block SBM parametrized by block connectivity probability

matrix B as

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.04 0.08 0.10 0.18

0.08 0.16 0.20 0.36

0.10 0.20 0.25 0.45

0.18 0.36 0.45 0.81

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.2)
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Figure 4-1 shows Chernoff information ρ as in Eq. (2.29) corresponding to B as in

Eq. (4.2) and pB for p ∈ (0, 1). In addition, Figure 4-1a assumes π = (1
4 , 1

4 , 1
4 , 1

4) and

Figure 4-1b assumes π = (1
8 , 1

8 , 3
8 , 3

8). As suggested by Theorem 3, for any p ∈ (0, 1)

we have ρB > ρpB and thus B ≻ pB. That is, we can have a better block recovery

from B than pB. Intuitively, as we sample more edges, we will have more information

that can be used to identify potential blocks and thus leads to the better performance.
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(a) Balanced: π = ( 1
4 , 1

4 , 1
4 , 1

4 ).

(b) Unbalanced: π = ( 1
8 , 1

8 , 3
8 , 3

8 ).

Figure 4-1. Chernoff information ρ as in Eq. (2.29) corresponding to B as in Eq. (4.2)
and pB for p ∈ (0, 1).
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Dynamic Sampling

Now given dynamic network sampling parameter p1 ∈ (0, 1−p0), the baseline sampling

scheme can proceed uniformly at random again, i.e.,

B1 = B0 + p1B = (p0 + p1)B. (4.3)

Note that this dynamic network sampling simulates the situation when one is given

limited resources to sample some extra edges after observing the partial graph with

only a small portion of the edges. Since we only have limited budget to sample another

small portion of edges, one would benefit from identifying vertex pairs that have much

influence on the community structure. In other words, the baseline sampling scheme

just randomly choosing vertex pairs without using the information from the initial

observed graphs and our goal is to design an alternative scheme to optimize this

dynamic network sampling procedure so that one could have a better block recovery

even with limited resources to only observe a partial graph with a small portion of

the edges.

Corollary 4. For K-block SBMs, given block connectivity probability matrix B ∈

(0, 1)K×K and a vector of block assignment probabilities π ∈ (0, 1)K. We have B ≻

B1 ≻ B0 where B0 is defined as in Eq. (4.1) with p0 ∈ (0, 1) and B1 is defined as in

Eq. (4.3) with p1 ∈ (0, 1 − p0).

Technical details of Corollary 4 can be found at the end of this chapter. This

corollay implies that we can have a better block recovery from B1 than B0. Similar

intuition as before, as we sample more edges compared with the initial observed graphs,

we could have more information to use for detecting block structure and thus leads to

the better performance.

Motivated by the Chernoff analysis, we now describe the proposed dynamic network

sampling scheme.
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Assumption 1. The Chernoff-active blocks after initial sampling is unique, i.e., there

exists an unique pair (k∗
0, ℓ∗

0) ∈ {(k, ℓ) | 1 ≤ k < ℓ ≤ K} such that

(k∗
0, ℓ∗

0) = arg min
k ̸=l

Ck,ℓ(B0, π), (4.4)

where B0 is defined as in Eq. (4.1) and π is the vector of block assignment probabilities.

To improve this baseline sampling scheme, we concentrate on the Chernoff-active

blocks (k∗
0, ℓ∗

0) after initial sampling given Assumption 1 holds. Instead of sampling

from the entire block connectivity probability matrix B like the baseline sampling

scheme as in Eq. (4.3), we only sample the entries associated with the Chernoff-active

blocks. As a competitor to B1, our Chernoff-optimal dynamic network sampling

scheme is then given by

˜︁B1 = B0 + p1(︂
πk∗

0
+ πℓ∗

0

)︂2 B ◦ 1k∗
0 ,ℓ∗

0
, (4.5)

where ◦ denotes Hadamard product, πk∗
0

and πℓ∗
0

denote the block assignment proba-

bilities for block k∗
0 and ℓ∗

0 respectively, and 1∗ is the K × K binary matrix with 0’s

everywhere except for 1’s associated with the Chernoff-active blocks (k∗
0, ℓ∗

0), i.e., for

any i, j ∈ {1, · · · , K}

1k∗
0 ,ℓ∗

0
[i, j] =

⎧⎪⎨⎪⎩
1 if (i, j) ∈ {(k∗

0, k∗
0) , (k∗

0, ℓ∗
0) , (ℓ∗

0, k∗
0) , (ℓ∗

0, ℓ∗
0)}

0 otherwise
. (4.6)

Note that the multiplier 1(︂
πk∗

0
+πℓ∗

0

)︂2 on p1B ◦ 1∗ assures that we sample the same

number of potential edges with ˜︁B1 as we do with B1 in the baseline sampling scheme.

In addition, to avoid over-sampling with respect to B, i.e., to ensure ˜︁B1[i, j] ≤ B[i, j]

for any i, j ∈ {1, · · · , K}, we require

p1 ≤ pmax
1 = (1 − p0)

(︂
πk∗

0
+ πℓ∗

0

)︂2
. (4.7)

Assumption 2. For K-block SBMs, given a block connectivity probability matrix

B ∈ (0, 1)K×K and a vector of block assignment probabilities π ∈ (0, 1)K. Let
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p∗
1 ∈ (0, pmax

1 ] be the smallest positive p1 ≤ pmax
1 such that

arg min
k ̸=l

Ck,ℓ( ˜︁B1, π) (4.8)

is not unique where pmax
1 is defined as in Eq. (4.7) and ˜︁B1 is defined as in Eq. (4.5).

If the arg min is always unique, let p∗
1 = pmax

1 .

For any p1 ∈ (0, p∗
1), we can have a better block recovery from ˜︁B1 than B1, i.e.,

our Chernoff-optimal dynamic network sampling scheme is better than the baseline

sampling scheme in terms of block recovery.

As an illustaration, consider the 4-block SBM with initial sampling parameter

p0 = 0.01 and block connectivity probability matrix B as in Eq. (4.2). Figure 4-2

shows the Chernoff information ρ as in Eq. (2.29) corresponding to B as in Eq. (4.2),

B0 as in Eq. (4.1), B1 as in Eq. (4.3), and ˜︁B1 as in Eq. (4.5) with dynamic network

sampling parameter p1 ∈ (0, p∗
1) where p∗

1 is defined as in Theorem 2. In addition,

Figure 4-2a assumes π = (1
4 , 1

4 , 1
4 , 1

4) and Figure 4-2b assumes π = (1
8 , 1

8 , 3
8 , 3

8). Note

that for any p1 ∈ (0, p∗
1) we have ρB > ρ˜︁B1

> ρB1 > ρB0 and thus B ≻ ˜︁B1 ≻ B1 ≻ B0.

That is, in terms of Chernoff information, when given same amount of resources, the

proposed Chernoff-optimal dynamic network sampling scheme can yield better block

recovery results. In other words, to reach the same level of performance, in terms

of Chernoff information, the proposed Chernoff-optimal dynamic network sampling

scheme needs less resources.

Again at this stage, the comparison is based on theoretical analysis. Later we will

show how the proposed method works for real applications.

As described earlier, it may be the case that p∗
1 < pmax

1 at which point Chernoff-

active blocks change to (k∗
1, ℓ∗

1). This potential non-uniquess of the Chernoff argmin is

a consequence of our dynamic network sampling scheme. In the case of p1 > p∗
1, our
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(a) Balanced: π = ( 1
4 , 1

4 , 1
4 , 1

4 ).

(b) Unbalanced: π = ( 1
8 , 1

8 , 3
8 , 3

8 ).

Figure 4-2. Chernoff information ρ as in Eq. (2.29) corresponding to B as in Eq. (4.2),
B0 as in Eq. (4.1), B1 as in Eq. (4.3), and ˜︁B1 as in Eq. (4.5) with initial sampling
parameter p0 = 0.01 and dynamic network sampling parameter p1 ∈ (0, p∗

1) where p∗
1 is

defined as in Assumption 2.
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Chernoff-optimal dynamic network sampling scheme is adopted as

˜︁B∗
1 = B0 + (p1 − p∗

1) B + p∗
1(︂

πk∗
0

+ πℓ∗
0

)︂2 B ◦ 1k∗
0 ,ℓ∗

0
, (4.9)

Similarly, the multiplier 1(︂
πk∗

0
+πℓ∗

0

)︂2 on p∗
1B ◦ 1k∗

0 ,ℓ∗
0

assures that we sample the same

number of potential edges with ˜︁B∗
1 as we do with B1 in the baseline sampling scheme.

In addition, to avoid over-sampling with respect to B, i.e., ˜︁B∗
1 [i, j] ≤ B[i, j] for any

i, j ∈ {1, · · · , K}, we require

p1 ≤ pmax
11 = 1 − p0 − p∗

1(︂
πk∗

0
+ πℓ∗

0

)︂2 + p∗
1. (4.10)

For any p1 ∈ [p∗
1, pmax

11 ], we can have a better block recovery from ˜︁B∗
1 than B1,

i.e., our Chernoff-optimal dynamic network sampling sheme is again better than the

baseline sampling scheme in terms of block recovery.

As an illustration, consider a 4-block SBM with initial sampling parameter p0 = 0.01

and block connectivity probability matrix B as in Eq. (4.2). Figure 4-3 shows the

Chernoff information ρ as in Eq. (2.29) corresponding to B as in Eq. (4.2), B0 as in

Eq. (4.1), B1 as in Eq. (4.3), and ˜︁B∗
1 as in Eq. (4.9) with dynamic network sampling

parameter p1 ∈ [p∗
1, pmax

11 ] where p∗
1 is defined as in Assumption 2 and pmax

11 is defined as

in Eq. (4.10). In addition, Figure 4-3a assumes π = (1
4 , 1

4 , 1
4 , 1

4) and Figure 4-3b assumes

π = (1
8 , 1

8 , 3
8 , 3

8). Note that for any p1 ∈ [p∗
1, pmax

11 ] we have ρB > ρ˜︁B∗
1

> ρB1 > ρB0 and

thus B ≻ ˜︁B∗
1 ≻ B1 ≻ B0. That is, the adopted Chernoff-optimal dynamic network

sampling scheme can still yield better block recovery results, in terms of Chernoff

information, given the same amout of resources.

Now we illustrate how the proposed Chernoff-optimal dynamic network sampling

sheme can be migrated for real applications. We summarize the uniform dynamic

sampling scheme (baseline) as Algorithm 3 and our Chernoff-optimal dynamic network

sampling scheme as Algorithm 4. Recall given potential edge set E and initial sampling

parameter p0 ∈ (0, 1), we have the initial edge set E0 ⊂ E with |E0| = p0|E|. The
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(a) Balanced: π = ( 1
4 , 1

4 , 1
4 , 1

4 ).

(b) Unbalanced: π = ( 1
8 , 1

8 , 3
8 , 3

8 ).

Figure 4-3. Chernoff information ρ as in Eq. (2.29) corresponding to B as in Eq. (4.2),
B0 as in Eq. (4.1), B1 as in Eq. (4.3), and ˜︁B∗

1 as in Eq. (4.9) with initial sampling
parameter p0 = 0.01 and dynamic network sampling parameter p1 ∈ [p∗

1, pmax
11 ] where p∗

1 is
defined as in Assumption 2 and pmax

11 is defined as in Eq. (4.10).
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goal is to dynamically sample new edges from the potential edge set so that we can

have a better block recovery.

In Algorithm 3, the dynamic sampling is done by randomly sampling edges from

potential edge set without using any information from the initial observed edge sets.

In Algorithm 4, the Chernoff-optimal dynamic network sampling scheme first

estimates the initial block assignments and block connectivity probability matrix from

the initial observed edge sets. Then it identifies the Chernoff-active blocks and samples

edges corresponding to these blcoks from potential edge set.

Algorithm 3: Uniform dynamic network sampling scheme (baseline) [93]
Input: Number of vertices n; potential edge set E = {(i, j) | i, j ∈ {1, · · · , n}};

initial edge set E0 ⊂ E; dynamic network sampling parameter
p1 ∈

(︂
0, 1 − |E0|

|E|

)︂
.

Output: Block assignments ˆ︁τ .
1 Construct dynamic edge set as

E1 = {(i, j) | (i, j) ∈ E \ E0} with |E1| = p1|E|.

2 Construct dynamic adjacency matrix as A ∈ {0, 1}n×n where for any
i, j ∈ {1, · · · , n}

Aij =

⎧⎨⎩1 if (i, j) ∈ E0
⋃︁

E1 or (j, i) ∈ E0
⋃︁

E1

0 otherwise
.

3 Estimate dynamic latent positions as ˆ︁X ∈ Rn×ˆ︁d using ASE of A where ˆ︁d is chosen
as in Remark 7.

4 Cluster ˆ︁X using GMM to estimate the block assignments as ˆ︁τ ∈ {1, · · · ,ˆ︂K}n whereˆ︂K is chosen via BIC.
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Algorithm 4: Chernoff-optimal dynamic network sampling scheme [93]
Input: Number of vertices n; potential edge set E = {(i, j) | i, j ∈ {1, · · · , n}};

initial edge set E0 ⊂ E; dynamic network sampling parameter
p1 ∈

(︂
0, 1 − |E0|

|E|

)︂
.

Output: Block assignments ˆ︁τ .
1 Construct dynamic adjacency matrix as A ∈ {0, 1}n×n where for any

i, j ∈ {1, · · · , n}

Aij =

⎧⎨⎩1 if (i, j) ∈ E0 or (j, i) ∈ E0

0 otherwise
.

2 Estimate dynamic latent positions as ˆ︁X ∈ Rn×ˆ︁d using ASE of A where ˆ︁d is chosen
as in Remark 7.

3 Cluster ˆ︁X using GMM to estimate the initial block assignments as ˆ︁ξ ∈ {1, · · · ,ˆ︂K}n

where ˆ︂K is chosen via BIC.
4 Estimate the dynamic block assignment probability vector as ˆ︁π ∈ (0, 1)K where for

k ∈ {1, · · · , K}

ˆ︁πk = 1
n

n∑︂
i=1

1{ˆ︁ξi = k}.

5 Estimate the dynamic block connectivity probability matrix as

ˆ︁B = ˆ︁µId+d− ˆ︁µ⊤ ∈ [0, 1]ˆ︁K×ˆ︁K ,

where ˆ︁µ ∈ Rˆ︁K×ˆ︁d is the estimated means of all clusters.
6 Find the Chernoff-active blocks as

(k∗, ℓ∗) = arg min
k ̸=l

Ck,ℓ

(︂ˆ︁B, ˆ︁π)︂ .

7 Construct dynamic edge set as

E1 ⊆ E∗ with |E1| = min
{︂

p1|E| (ˆ︁πk∗ + ˆ︁πℓ∗)2 , |E∗|
}︂

,

E11 ⊂ E \
(︂
E0
⋃︂

E1
)︂

with |E11| = p1|E| − |E1|,

where
E∗ =

{︂
(i, j) | (i, j) ∈ E \ E0 and ˆ︁ξi, ˆ︁ξj ∈ {k∗, ℓ∗}

}︂
.

8 Update dynamic adjacency matrix as A ∈ {0, 1}n×n where for any i, j ∈ {1, · · · , n}

Aij =

⎧⎨⎩1 if (i, j) ∈ E0
⋃︁

E1
⋃︁

E11 or (j, i) ∈ E0
⋃︁

E1
⋃︁

E11

0 otherwise
.

9 Update dynamic latent positions as ˆ︁X ∈ Rn×ˆ︁d using ASE of updated A where ˆ︁d is
chosen as in Remark 7.

10 Cluster ˆ︁X using GMM to estimate the block assignments as ˆ︁τ ∈ {1, · · · ,ˆ︂K}n whereˆ︂K is chosen via BIC.
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Experiments

Simulations

In addition to Chernoff analysis, we also evalute our Chernoff-optimal dynamic network

sampling scheme via simulations.

In particular, consider the 4-block SBM parameterized by block connectivity

probability matrix B as in Eq. (4.2) and dynamic network sampling parameter

p1 ∈ (0, pmax
11 ] where pmax

11 is defined as in Eq. (4.10). We fix initial sampling parameter

p0 = 0.01. For each p1 ∈ (0, p∗
1) where p∗

1 is defined as in Assumption 2, we simulate

50 adjacency matrices with n = 12000 vertices from B1 as in Eq. (4.3) and ˜︁B1 as in

Eq. (4.5) respectively. For each p1 ∈ [p∗
1, pmax

11 ], we simulate 50 adjacency matrices

with n = 12000 vertices from B1 as in Eq. (4.3) and ˜︁B∗
1 as in Eq. (4.9) respectively.

In addition, Figure 4-4a assumes π = (1
4 , 1

4 , 1
4 , 1

4), i.e., 3000 vertices in each block, and

Figure 4-4b assumes π = (1
8 , 1

8 , 3
8 , 3

8), i.e., 1500 vertices in two of the blocks and 4500

vertices in the other two blocks. We then apply ASE and GMM (Step 3 and 4 in

Algorithm 3) to recover block assignments and adopt ARI to measure the performance.

Figure 4-4 shows ARI (mean±stderr) associated with B1 for p1 ∈ (0, pmax
11 ], ˜︁B1

for p1 ∈ (0, p∗
1), and ˜︁B∗

1 for p1 ∈ [p∗
1, pmax

11 ] where the dashed lines denote p∗
1. Note that

we can have a better block recovery from ˜︁B1 and ˜︁B∗
1 than B1, which argee with our

results from Chernoff analysis.

Now we compare the performance of Algorithms 3 and 4 by empirical block

recovery results. In particular, we start with the 4-block SBM parameterized by

block connectivity probability matrix B as in Eq. (4.2). We consider dynamic network

sampling parameter p1 ∈ (0, 1−p0) where p0 is the initial sampling parameter. For each

p1, we simulate 50 adjacency matrices with n = 4000 vertices and retrieve associated

potential edge sets. We fix initial sampling parameter p0 = 0.15 and randomly sample

initial edge sets. We then apply both algorithms to estimate the block assignments
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(a) Balanced: π = ( 1
4 , 1

4 , 1
4 , 1

4 ).

(b) Unbalanced: π = ( 1
8 , 1

8 , 3
8 , 3

8 ).

Figure 4-4. Simulations for 4-block SBM parameterized by block connectivity probability
matrix B as in Eq. (4.2) with initial sampling parameter p0 = 0.01 and dynamic network
sampling parameter p1 ∈ (0, pmax

11 ] where pmax
11 is defined as in Eq. (4.10).

75



and adopt ARI to measure the performance.

Figure 4-5 shows ARI (mean±stderr) of two algorithms for p1 ∈ (0, 0.85) where

Figure 4-5a assumes π = (1
4 , 1

4 , 1
4 , 1

4), i.e., 1000 vertices in each block, and Figure 4-5b

assumes π = (1
8 , 1

8 , 3
8 , 3

8), i.e., 500 vertices in two of the blocks and 1500 vertices in

the other two blocks. Note that both algorithms tend to have a better performance

as p1 increases, i.e., as we sample more edges, and Algorithm 4 can always recover

more accurate block structure than Algorithm 3. That is, given the same amout of

resources, the proposed Chernoff-optimal dynamic network sampling scheme can yield

better block recovery results. In other words, to reach the same level of performance,

in terms of the empirical clustering results, the proposed Chernoff-optimal dynamic

network sampling scheme needs less resources.
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(a) Balanced: π = ( 1
4 , 1

4 , 1
4 , 1

4 ).

(b) Unbalanced: π = ( 1
8 , 1

8 , 3
8 , 3

8 ).

Figure 4-5. Simulations for 4-block SBM parameterized by block connectivity probability
matrix B as in Eq. (4.2) with initial sampling parameter p0 = 0.15 and dynamic network
sampling parameter p1 ∈ (0, 0.85).
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Connectome Data

We also evaluate the performance of Algorithms 3 and 4 for real applications. We

start the real data experiments with a diffusion MRI connectome dataset [1]. There

are 114 graphs (connectomes) estimated by the NDMG pipeline [91] in this dataset.

Each vertex in these graphs (the number of vertices n varies from 23728 to 42022) has

a {Left, Right} hemisphere label and a {Gray, White} tissue label. We consider the

potential 4 blocks as {LG, LW, RG, RW} where L and R denote the Left and Right

hemisphere label, G and W denote the Gray and White tissue label.

Here we consider initial sampling parameter p0 = 0.25 and dynamic network

sampling parameter p1 = 0.25. Let ∆ = ARI(Algo4) − ARI(Algo3) where ARI(Algo3)

and ARI(Algo4) denotes the ARI when we apply Algorithms 3 and 4 respectively.

The following hypothesis testing yields p-value=0.0184.

H0 : median(∆) ≤ 0 v.s. HA : median(∆) > 0. (4.11)

It suggests that the proposed Chernoff-optimal dynamic network sampling scheme

can yield better block recovery results given the same amout of resources.
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(a) Boxplot of ARI(Algo3) and ARI(Algo4).

(b) Histogram of ∆ = ARI(Algo4) − ARI(Algo3).

Figure 4-6. Algorithms’ comparative performance on diffusion MRI connectome data via
ARI with initial sampling parameter p0 = 0.25 and dynamic network sampling parameter
p1 = 0.25.
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Microsoft Bing Entity Data

Furthermore, we test our algorithms on a Microsoft bing entity dataset [94]. There

are 2 graphs in this dataset where each has 13535 vertices. We treat block as-

signments estimated from the complete graph as ground truth. We consider ini-

tial sampling parameter p0 ∈ {0.2, 0.3} and dynamic network sampling parameter

p1 ∈ {0, 0.05, 0.1, 0.15, 0.2}. For each p1, we sample 100 times and compare the

overall performance of Algorithm 3 and 4.

Figure 4-7 shows the results where ARI is reported as mean(±stderr). Still,

it suggests that given the same amout of resources, the proposed Chernoff-optimal

dynamic network sampling scheme can yield better block recovery results in general.

In other words, to reach the same level of performance, in terms of the empirical

clustering results, the proposed Chernoff-optimal dynamic network sampling scheme

needs less resources in general.
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(a) p0 = 0.2, p1 ∈ {0, 0.05, 0.1, 0.15, 0.2}.

(b) p0 = 0.3, p1 ∈ {0, 0.05, 0.1, 0.15, 0.2}.

Figure 4-7. Algorithms’ comparative performance on Microsoft bing entity data via ARI
with different initial sampling parameter p0 and dynamic network sampling parameter p1.
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Social Network Data

We also conduct real data experiments with 2 social network datasets. The description

of these datasets are summarized as follows.

• LastFM asia social network data set [2, 4]: Vertices (the number of vertices

n = 7624) represent LastFM users from asian countries and edges (the number of

edges e = 27806) represent mutual follower relationships. We treat the location

of users, which are derived from the country field for each user, as the potential

block.

• Facebook large page-page network data set [2, 3]: Vertices (the number of

vertices n = 22470) represent official Facebook pages and edges (the number

of edges e = 171002) represent mutual likes. We treat 4 page types {Politi-

cian, Governmental Organization, Television Show, Company}, which are defined

by Facebook, as the potential block.

We consider initial sampling parameter p0 ∈ {0.15, 0.35} and dynamic network

sampling parameter p1 ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. For each p1, we sample 100

times and compare the overall performance of Algorithm 3 and 4.

Figure 4-8 shows the results where ARI is reported as mean(±stderr). Again

it suggests that given the same amout of resources, the proposed Chernoff-optimal

dynamic network sampling scheme can yield better block recovery results. In other

words, to reach the same level of performance, in terms of the empirical clustering

results, the proposed Chernoff-optimal dynamic network sampling scheme needs less

resources.
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(a) LastFM: p0 = 0.15, p1 ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.

(b) Facebook: p0 = 0.35, p1 ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.

Figure 4-8. Algorithms’ comparative performance on social network data via ARI with
different initial sampling parameter p0 and dynamic network sampling parameter p1.
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Chernoff Information and Chernoff Superiority

We end this chapter with investigation of Chernoff information and the anlysis of

Chernoff superiority for certain case of interest.

Proof of Theorem 3

Proof. Let B = USU⊤ be the spectral decomposition of B and B′ = pB with

p ∈ (0, 1). Then we have

B′ = U′S (U′)⊤ where U′ = √
pU. (4.12)

By Remark 4, to represent these two SBMs parametrized by two block connectivity

matrices B and B′ respectively (with the same block assignment probability vector π)

in the GRDPG models, we can take

ν =
[︂
ν1 · · · νK

]︂⊤
= U|S|1/2 ∈ RK×d,

ν ′ =
[︂
ν ′

1 · · · ν ′
K

]︂⊤
= U′|S|1/2 = √

pU|S|1/2 = √
pν ∈ RK×d.

(4.13)

Then for any k ∈ {1, · · · , K}, we have ν ′
k = √

pνk ∈ Rd. By Theorem 1, we have

∆ =
K∑︂

k=1
πkνkν⊤

k ∈ Rd×d,

∆′ =
K∑︂

k=1
πkν ′

k (ν ′
k)⊤ = p

K∑︂
k=1

πkνkν⊤
k = p∆ ∈ Rd×d.

(4.14)

Note that B and B′ have the same eigenvalues, thus we have Id+d− = I′
d+d− . See
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also Lemma 2 of [95]. Then for k ∈ {1, · · · , K}, we have

Σk = Id+d−∆−1E
[︂(︂

ν⊤
k Id+d−ν

)︂ (︂
1 − ν⊤

k Id+d−ν
)︂

νν⊤
]︂

∆−1Id+d−

= Id+d−∆−1
[︄

K∑︂
ℓ=1

πℓ

(︂
ν⊤

k Id+d−νℓ

)︂ (︂
1 − ν⊤

k Id+d−νℓ

)︂
νℓν

⊤
ℓ

]︄
∆−1Id+d− ∈ Rd×d,

Σ′
k = 1

p2 Id+d−∆−1
[︄
p2

K∑︂
ℓ=1

πℓ

(︂
ν⊤

k Id+d−νℓ

)︂ (︂
1 − pν⊤

k Id+d−νℓ

)︂
νℓν

⊤
ℓ

]︄
∆−1Id+d−

= Id+d−∆−1
[︄
p

K∑︂
ℓ=1

πℓ

(︂
ν⊤

k Id+d−νℓ

)︂ (︂
1 − ν⊤

k Id+d−νℓ

)︂
νℓν

⊤
ℓ

]︄
∆−1Id+d−

+ Id+d−∆−1
[︄
(1 − p)

K∑︂
ℓ=1

πℓ

(︂
ν⊤

k Id+d−νℓ

)︂
νℓν

⊤
ℓ

]︄
∆−1Id+d−

= pΣk + V⊤Dk(p)V ∈ Rd×d,

(4.15)

where

V = ν∆−1Id+d− ∈ RK×d,

Dk(p) = (1 − p)diag
(︂
π1ν

⊤
k Id+d−ν1, · · · , πKν⊤

k Id+d−νK

)︂
∈ (0, 1)K×K .

(4.16)

Recall that by Remark 4, we have ν⊤
k Id+d−νℓ = Bkℓ ∈ (0, 1) for all k, ℓ ∈

{1, · · · , K}. Then we have Dk(p) is positive-definite for any k ∈ {1, · · · , K} and

p ∈ (0, 1). For k, ℓ ∈ {1, · · · , K} and t ∈ (0, 1), let Σkℓ(t) and Σ′
kℓ(t) denote the

matrics as in Eq. (2.29) corresponding to B and B′ respectively, i.e.,

Σkℓ(t) = tΣk + (1 − t)Σℓ ∈ Rd×d,

Σ′
kℓ(t) = tΣ′

k + (1 − t)Σ′
ℓ

= t
[︂
pΣk + V⊤Dk(p)V

]︂
+ (1 − t)

[︂
pΣℓ + V⊤Dℓ(p)V

]︂
= p [tΣk + (1 − t)Σℓ] + V⊤ [tDk(p) + (1 − t)Dℓ(p)] V

= pΣkℓ(t) + V⊤Dkℓ(p, t)V ∈ Rd×d,

(4.17)

where

Dkℓ(p, t) = tDk(p) + (1 − t)Dℓ(p) ∈ RK×K
+ . (4.18)
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Recall that Dk(p) and Dℓ(p) are both positive-definite for any k, ℓ ∈ {1, · · · , K}

and p ∈ (0, 1), thus Dkℓ(p, t) is also positive-definite for any k, ℓ ∈ {1, · · · , K} and

p, t ∈ (0, 1). Now by the Sherman-Morrison-Woodbury formula as in Corollary 3, we

have

[Σ′
kℓ(t)]

−1 =
[︂
pΣkℓ(t) + V⊤Dkℓ(p, t)V

]︂−1

= 1
p

Σ−1
kℓ (t) − 1

p2 Σ−1
kℓ (t)V⊤

[︄
D−1

kℓ (p, t) + 1
p

VΣ−1
kℓ (t)V⊤

]︄−1

VΣ−1
kℓ (t)

= 1
p

Σ−1
kℓ (t) − 1

p2 Σ−1
kℓ (t)V⊤M−1

kℓ (p, t)VΣ−1
kℓ (t) ∈ Rd×d,

(4.19)

where

Mkℓ(p, t) = D−1
kℓ (p, t) + 1

p
VΣ−1

kℓ (t)V⊤ ∈ RK×K . (4.20)

Recall that for any k, ℓ ∈ {1, · · · , K} and p, t ∈ (0, 1), Dkℓ(p, t) and Σkℓ(t) are both

positive-definite, thus Mkℓ(p, t) is also positive-definite. Then for any k, ℓ ∈ {1, · · · , K}

and p, t ∈ (0, 1), we have

(ν ′
k − ν ′

ℓ)⊤ [Σ′
kℓ(t)]

−1 (ν ′
k − ν ′

ℓ) = p(νk − νℓ)⊤[︄
1
p

Σ−1
kℓ (t) − 1

p2 Σ−1
kℓ (t)V⊤M−1

kℓ (p, t)VΣ−1
kℓ (t)

]︄
(νk − νℓ)

= (νk − νℓ)⊤Σ−1
kℓ (t)(νk − νℓ) − 1

p
x⊤M−1

kℓ (p, t)x

= (νk − νℓ)⊤Σ−1
kℓ (t)(νk − νℓ) − hkℓ(p, t),

(4.21)

where

x = VΣ−1
kℓ (t)(νk − νℓ) ∈ RK ,

hkℓ(p, t) = 1
p

x⊤M−1
kℓ (p, t)x.

(4.22)

Recall that for any k, ℓ ∈ {1, · · · , K} and p, t ∈ (0, 1), Mkℓ(p, t) is positive-definite,

thus we have hkℓ(p, t) > 0. Together with Eq. (4.21), we have

t(1 − t)(νk − νℓ)⊤Σ−1
kℓ (t)(νk − νℓ) > t(1 − t)(ν ′

k − ν ′
ℓ)⊤ [Σ′

kℓ(t)]
−1 (ν ′

k − ν ′
ℓ). (4.23)
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Thus for any k, ℓ ∈ {1, · · · , K}, we have

Ck,ℓ(B, π) = sup
t∈(0,1)

[︂
t(1 − t)(νk − νℓ)⊤Σ−1

kℓ (t)(νk − νℓ)
]︂

,

> sup
t∈(0,1)

[︂
t(1 − t)(ν ′

k − ν ′
ℓ)⊤ [Σ′

kℓ(t)]
−1 (ν ′

k − ν ′
ℓ)
]︂

= Ck,ℓ(B′, π).

(4.24)

Let ρB and ρB′ denote the Chernoff information obtained as in Eq. (2.29) corre-

sponding to B and B′ respectively (with the same block assignment probability vector

π). Then we have

ρB ≈ min
k ̸=l

Ck,ℓ(B, π) > min
k ̸=l

Ck,ℓ(B′, π) ≈ ρB′ . (4.25)

Thus we have B ≻ B′ = pB for p ∈ (0, 1).

Proof of Corollary 4

Proof. By Eq. (4.1) and Eq. (4.3), we have

B0 = p0

p0 + p1
B1,

B1 = (p0 + p1)B.

(4.26)

Recall that p0 ∈ (0, 1) and p1 ∈ (0, 1 − p0). Then by Theorem 3, we have

B ≻ B1 ≻ B0.
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Chapter 5

Conclusions and Discussion

This dissertation adopts the notion of Chernoff information to investigate two problems

in the area of community detection. Motivated by the Chernoff analysis, we focus

on models and algorithms that can incorporate information from both the adjacency

matrices and the vertex covariates into the estimation of block structure, and design

methods and procedures that can still identify the potential community structure

when only a limited number of edges in graphs is observed.

On one hand, we study the problem of community detection for SBMs with vertex

covariates. Specifically, we investigate two model-based spectral algorithms to assess

the effect of observed and unobserved vertex heterogeneity on block structure in

graphs. The major difference of these two algorithms in estimating the underlying

block assignments is whether we estimate the vertex covariate effect using the informa-

tion from the observed vertex covariates. To analyze the algorithms’ performance, we

employ the concept of Chernoff information and derive the Chernoff ratio expression

for certain model of interest. We also simulate multiple adjacency matrices with varied

type of covariates to compare the algorithms’ performance via empirical clustering

results measured by commonly used metrics such as ARI. In addition, we conduct real

data experiments on diffusion MRI connectome datasets and social network datasets

to evalute the performance of these algorithms for real applications. Analytic results,

simulations, and real data experiments suggest that the second algorithm is often
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preferred: we can better estimate the induced block assignments and reveal under-

lying block structure by using additional information contained in vertex covariates.

Our findings also emphasize the importance of distinguishing between observed and

unobserved factors that can affect block structure in graphs.

At this stage, we focus on the model specified as in Definition 4 and Remark 5

where indicator function is used to measure the vertex covariate effect and identity

function is used as the link between edge probabilities and latent positions. We

also investigate the flexibility and generalizability of our approaches by considering

categorical vertex covariates in the simulations. The extension from discrete vertex

covariates to continuous vertex covariates is under investigation, for instance, via

latent structure models [96]. The indicator function in our setting is used to measure

the vertex covariate effect for binary and generally categorical vertex covariates under

the intuition that vertices having the same covariates are more likely to form an

edge between them. That being said, different functions can also be adopted for the

continuous vertex covariates following the similar intuition. For example, similarity

and distance functions can be chosen based on the nature of different vertex covariates

to measure how they can influence graph structure in different ways. One another

extension for this problem is to replace the identity link with, say, the logit link

function. The idea of using Chernoff information to compare algorithms’ performance

can be adopted for all the above generalizations and numerical evaluations can be

obtained in the absence of closed-form expressions, which in turn can reveal how graph

structure will affect our algorithms and provide guidelines for real application.

On the other hand, we study the problem of dynamic network sampling for com-

munity detection. We propose a dynamic network sampling scheme to optimize block

recovery for SBM when we don’t have enough resources to observe the entire graphs.

Theoretically, we provide justification of our proposed Chernoff-optimal dynamic

sampling scheme via the notion of Chernoff information and Chernoff superiority.
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Practically, we evaluate the performance, in terms of block recovery, of our method

on several real datasets including diffusion MRI connectome dataset, Microsoft bing

entity graph transitions dataset and social network datasets. Both theoretically and

practically results suggest that our proposed method can identify vertices that have

the most impact on block structure and only check whether there are edges between

them to save significant resources but still recover the block structure.

As disscused before, the Chernoff-optimal dynamic sampling scheme depends on

the initial clustering results to identify Chernoff-active blocks and construct dynamic

edge set. To that end, the performance could be impacted if the initial clustering

is not very ideal. One of the future direction for this approach is to design certain

strategy to reduce this dependency such that the proposed scheme is more robust.
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Appendix I

Additional Preliminaries in
Random Graph Models

Degree Corrected Stochastic Blockmodel

Definition 10 (Degree Corrected Stochastic Blockmodel [14]). The K-block degree
corrected stochastic blockmodel (DCSBM) generalizes the standard K-block SBM by
allowing for vertices within each block to have different expected degrees. It can be
parameterized by a block connectivity probability matrix B ∈ [0, 1]K×K, a nonnegative
vector of block assignment probabilities π ∈ [0, 1]K summing to unity, and a vector of
weights w ∈ [0, 1]n. Let A ∈ {0, 1}n×n be an adjacency matrix and τ ∈ {1, · · · , K}n

be a vector of block assignments with τi = k if vertex i is in block k (occurring with
probability πk). We say (A, τ ) ∼ DCSBM(n, B, π, w) if for any i, j ∈ {1, · · · , n}

Aij ∼ Bernoulli(Pij),
Pij = wiwjBτiτj

.
(I.1)

Remark 13. The DCSBM is a special case of the GRDPG model. Let (A, τ ) ∼
DCSBM(n, B, π, w) as in Definition 10 where B ∈ (0, 1)K×K with d+ strictly posi-
tive eigenvalues and d− strictly negative eigenvalues. To represent this DCSBM in
the GRDPG model, we can choose ν1, · · · , νK ∈ Rd where d = d+ + d− such that
ν⊤

k Id+d−νℓ = Bkℓ for all k, ℓ ∈ {1, · · · , K}. For example, we can take ν = UB|SB|1/2

where B = UBSBU⊤
B is the spectral decomposition of B after re-ordering. Then for

any i, j ∈ {1, · · · , n}, given τi = k and τj = ℓ, we have

wiwjBτiτj
= wiwjBkℓ = (wiνk)⊤ Id+d− (wjνℓ) . (I.2)

Thus the latent position of vertex i for i ∈ {1, · · · , n} is given by Xi = wiνk if τi = k.
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Mixed Membership Stochastic Blockmodel

Definition 11 (Mixed Membership Stochastic Blockmodel [15]). The K-block mixed
membership stochastic blockmodel (MMSBM) extends the standard K-block SBM by
allowing for each vertex to in a mixture of different blocks. It can be parameter-
ized by a block connectivity probability matrix B ∈ [0, 1]K×K and n nonnegative
vectors of block assignment probabilities π1, · · · , πn ∈ [0, 1]K with each πi sum-
ming to unity for i ∈ {1, · · · , n}. Let A ∈ {0, 1}n×n be an adjacency matrix and
π = [π1, · · · , πn]⊤ ∈ [0, 1]n×K denote the matrix of block assignment probabilities. We
say A ∼ MMSBM(n, B, π) if for any i, j ∈ {1, · · · , n}

Aij ∼ Bernoulli(Pij),
Pij = π⊤

i Bπj.
(I.3)

Remark 14. The MMSBM is a special case of the GRDPG model. Let A ∼
MMSBM(n, B, π) as in Definition 11 where B ∈ (0, 1)K×K with d+ strictly posi-
tive eigenvalues and d− strictly negative eigenvalues. To represent this MMSBM in
the GRDPG model, we can choose ν1, · · · , νK ∈ Rd where d = d+ + d− such that
ν⊤

k Id+d−νℓ = Bkℓ for all k, ℓ ∈ {1, · · · , K}. For example, we can take ν = UB|SB|1/2

where B = UBSBU⊤
B is the spectral decomposition of B after re-ordering. Then we

have for any i, j ∈ {1, · · · , n}

π⊤
i Bπj =

(︄
K∑︂

k=1
πikνk

)︄⊤

Id+d−

(︄
K∑︂

k=1
πjkνk

)︄
. (I.4)

Thus the latent position of vertex i for i ∈ {1, · · · , n} is given by

Xi =
K∑︂

k=1
πikνk. (I.5)
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Appendix II

Additional Preliminaries in
Spectral Methods

Adjacency Spectral Embedding

Theorem 4 (Consistency of ASE for GRDPG [11]). Let (A, X) ∼ GRDPG(n, d+, d−)
be the adjacency matrix and associated latent positions of a d-dimensional GRDPG as
in Definition 2. Let ˆ︂X be the ASE of A with ˆ︂Xi as the i-th row (same for Xi). Under
certain sparsity conditions [11], there exists a universal constant c > 1 and a matrix
M ∈ Rd×d satisfying MId+d−M⊤ = Id+d− such that

max
i∈{1,··· ,n}

∥Mˆ︂Xi − Xi∥ = OP

(︄
logc n√

n

)︄
. (II.1)

Here a random variable X is said to be OP (f(n)) if for any constant C > 0 there
exists an integer NC and a constant MC such that for all n ≥ NC, |X| ≤ MCf (n)
with probability at least 1 − n−C.

Theorem 5 (CLT of ASE for GRDPG [11]). Let (A, X) ∼ GRDPG(n, d+, d−) be the
adjacency matrix and associated latent positions of a d-dimensional GRDPG as in
Definition 2 from a distribution F . Let ˆ︂X be the ASE of A with ˆ︂Xi as the i-th row
(same for Xi). Under certain sparsity conditions [11], there exists a matrix M ∈ Rd×d

satisfying MId+d−M⊤ = Id+d− such that for index i,
√

n
(︂
Mˆ︂Xi − Xi

)︂
d→ N (0, Σi) . (II.2)

where for Y ∼ F

Σi = Σ(Xi) = Id+d−∆−1E
[︂(︂

X⊤
i Id+d−Y

)︂ (︂
1 − X⊤

i Id+d−Y
)︂

YY⊤
]︂

∆−1Id+d− , (II.3)

with
∆ = E

[︂
YY⊤

]︂
. (II.4)
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Laplacian Spectral Embedding

Theorem 6 (Consistency of LSE for GRDPG [11]). Let (A, X) ∼ GRDPG(n, d+, d−)
be the adjacency matrix and associated latent positions of a d-dimensional GRDPG as
in Definition 2. Let ˜︂X be the LSE of A with ˜︂Xi as the i-th row (same for Xi). Under
certain sparsity conditions [11], there exists a universal constant c > 1 and a matrix
M ∈ Rd×d satisfying MId+d−M⊤ = Id+d− such that

max
i∈{1,··· ,n}

⃦⃦⃦⃦
⃦⃦M˜︂Xi − Xi√︂∑︁

j X⊤
i Id+d−Xj

⃦⃦⃦⃦
⃦⃦ = OP

(︄
logc n

n

)︄
. (II.5)

Here a random variable X is said to be OP (f(n)) if for any constant C > 0 there
exists an integer NC and a constant MC such that for all n ≥ NC, |X| ≤ MCf (n)
with probability at least 1 − n−C.

Theorem 7 (CLT of LSE for GRDPG [11]). Let (A, X) ∼ GRDPG(n, d+, d−) be the
adjacency matrix and associated latent positions of a d-dimensional GRDPG as in
Definition 2 from a distribution F . Let ˜︂X be the LSE of A with ˜︂Xi as the i-th row
(same for Xi). Under certain sparsity conditions [11], there exists a matrix M ∈ Rd×d

satisfying MId+d−M⊤ = Id+d− such that for index i,

n

⎛⎝M˜︂Xi − Xi√︂∑︁
j X⊤

i Id+d−Xj

⎞⎠ d→ N
(︂
0, ˜︁Σi

)︂
. (II.6)

where for Y ∼ F ˜︁Σi = ˜︁Σ(Xi) = Id+d−
˜︂∆−1 ˜︁Γi

˜︂∆−1Id+d− , (II.7)

with

µ = E [Y] ,

˜︂∆ = E
[︄

YY⊤

µ⊤Id+d−Y

]︄
,

T1 =
X⊤

i Id+d−Y
(︂
1 − X⊤

i Id+d−Y
)︂

X⊤
i Id+d−µ

,

T2 = Y
µ⊤Id+d−Y

−
˜︂∆Id+d−Xi

2µ⊤Id+d−Xi

,

˜︁Γi = E
[︂
T1T2T⊤

2

]︂
.

(II.8)
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Spectral Clustering

Definition 12 (Graph Notation). Let G = (V, E) denote a graph with vertex set V
and edge set E. Let W denote the weighted adjacency matrix of the graph G, i.e.,
Wij > 0 is the weight of the edge between vertex i and vertex j and Wij = 0 suggests
that there is no edge between vertex i and vertex j. If the graph G is undirected, then
W is symmetric. Let D denote the degree matrix of graph G, that is, a diagonal
matrix with

Dii =
∑︂
j ̸=i

Wij. (II.9)

Definition 13 (Similarity Matrix [18]). Given a data matrix A ∈ Rn×d where n is the
number of data points and d is the number of features for each data point. There are
several commonly used approaches to construct a similarity matrix W of the original
data matrix A where Wij represents the similarities between data point i and data
point j. For example,

• The ϵ-neighborhood approach: first compute the pairwise distances between all
data points and set Wij = wij if the distance between data point i and data point
j is smaller than ϵ where wij = 1 for unweighted case and some other positive
value based on certain similarity measure (for example, distances) for weighted
case, Wij = 0 otherwise.

• The k-nearest neighbor approach: first compute the pairwise distances between
all data points and set Wij = wij if data point j is among the k-nearest neighbors
of data point i where wij = 1 for unweighted case and some other positive value
based on certain similarity measure (for example, distances) for weighted case,
Wij = 0 otherwise. This strategy usually yields a non-symmetric similarity
matrix as the neighborhood relationship may not be symmetric, i.e., data point
j may be among the k-nearest neighbors of data point i but data point i may
not be among the k-nearest neighbors of data point j. Alternatively, one can
construct a symmetric similarity matrix by setting Wij = wij if data point j is
among the k-nearest neighbors of data point i or/and data point i is among the
k-nearest neighbors of data point j where wij = 1 for unweighted case and some
other positive value based on certain similarity measure (for example, distances)
for weighted case, Wij = 0 otherwise.

• The fully connected approach: construct the similarity matrix based on certain
function such as Gaussian similarity function. That is,

Wij = exp
(︄

−∥Ai· − Aj·∥2

2σ2

)︄
,

where σ is a hyperparameter to control the width of the neighborhoods, which
plays a similar role as ϵ in the ϵ-neighborhood approach.
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Definition 14 (Graph Laplacian Matrix [18]). Given a graph G and the associated
weighted adjacency matrix W. Let D denote the degree matrix of graph G as in
Definition 12. The unnormalized graph Laplacian matrix is given by

L = D − W. (II.10)

There are several similar characterizations for the normalized graph Laplacian matrix,
for example

Lsym = D−1/2LD−1/2 = I − D−1/2WD−1/2,

Lrw = D−1L = I − D−1W.
(II.11)

Remark 15 (Properties of Laplacian Matrix [18]). Let L denote the unnormalized
Laplacian matrix as in Eq. (II.10) and Lsym denote the normalized Laplacian matrix
as in Eq. (II.11).

• For any vector v ∈ Rn,

v⊤Lv = 1
2

n∑︂
i=1

n∑︂
j=1

Wij (vi − vj)2 ,

v⊤Lsymv = 1
2

n∑︂
i=1

n∑︂
j=1

Wij

⎛⎝ vi√
Dii

− vj√︂
Djj

⎞⎠2

.

(II.12)

• L is symmetric and positive semi-definite. Lsym is symmetric and positive
semi-definite.

• L has n non-negative, real-valued eigenvalues. The smallest one is 0 and the
associated eigenvector is the constant vector 1. Lsym has n non-negative, real-
valued eigenvalues. The smallest one is 0 and the associated eigenvector is the
vector D1/21.

The spectral clustering algorithms are based on Laplacian matrices as they have these
nice properties.
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Algorithm 5: Unnormalized Spectral Clustering [18]
Input: Data matrix A ∈ Rn×d; number of clusters K.
Output: Cluster assignments ˆ︁τ .

1 Construct the similarity graph W of A as in Defintion 13.
2 Compute the unnormalized Laplacian matrix L of W as in Definition 14.
3 Construct the matrix E containing the first K eigenvectors of L.
4 Cluster E using k-means to estimate the block assignments as ˆ︁τ ∈ {1, · · · , K}n.

Algorithm 6: Normalized Spectral Clustering [97]
Input: Data matrix A ∈ Rn×d; number of clusters K.
Output: Cluster assignments ˆ︁τ .

1 Steps 1 – 2 in Algorithm 5.
2 Compute the normalized Laplacian matrix Lsym of W as in Definition 14.
3 Construct the matrix E containing the first K eigenvectors of Lsym and normalize

the rows of E to norm 1.
4 Cluster E using k-means to estimate the block assignments as ˆ︁τ ∈ {1, · · · , K}n.
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