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Executive Summary 

This research aims to assess the feasibility of using machine learning (ML) and 

explainable artificial intelligence (XAI) to identify the most effective drought indices for 

predicting changes in vegetation health. By doing so, the researcher intends to provide 

actionable results relevant to monitoring ecological drought and its impacts. The author, who 

has prior experience in conservation-related drought research focused on vegetation health 

and hydrological impacts, wanted to apply underutilized XAI techniques in the ecological 

drought space to a specific region to both determine the effectiveness of this approach and 

provide actionable results for drought monitoring in the study area. 

The author's experience performing remote sensing-based drought research, as well as 

technical and scientific skills developed during her Master of Science in Environmental Sciences 

and Policy at Johns Hopkins University, form the foundation of this project. The author has 

acquired expertise in courses such as Landscape Ecology, Hydrology & Water Resources, 

Programming and Data Management, Environmental Applications of GIS, and Analysis of 

Environmental & Ecological Data. Additionally, the author's proficiency in Python, a necessary 

skill for this project, was first developed during her experience as a researcher in the NASA 

DEVELOP National Program and was honed during her work as a research assistant in Benjamin 

Zaitchik's Hydroclimate Research Group in the Johns Hopkins University Department of Earth & 

Planetary Sciences. Overall, this capstone project synthesizes the author's learnings both inside 

and outside of the classroom during her time at Johns Hopkins University and contributes to 

the field of ecological drought research through the use of XAI methods. 
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Abstract 

Rangeland ecosystems across the United States have significant biological, economic, 

and cultural value. However, the increasing frequency and severity of droughts across the 

country may lead to unforeseen impacts on these ecosystems. To address this challenge, this 

study aimed to identify relationships between drought indices and vegetation health in the 

Cheyenne River Basin, USA, using machine learning (ML) and explainable artificial intelligence 

(XAI) methods. Using Terra Moderate Resolution Imaging Spectroradiometers (MODIS), 

University of Idaho Gridded Surface Meteorological Dataset (gridMET), and Daymet data, the 

study employed XGBoost Regressor and Extra Trees Regressor models in unison with SHapley 

Additive exPlanations (SHAP) to evaluate predictive performance and the connections between 

drought indices, environmental variables, and the Normalized Difference Vegetation Index 

(NDVI). Tests of model performance demonstrated that the XGBoost model performed 

moderately well at predicting NDVI and was therefore useful for further XAI analysis with SHAP. 

SHAP explainer results showed that the Palmer Drought Severity Index (PDSI), the 90-day 

Standardized Precipitation Index (SPI), and snow water equivalent (SWE), were the most 

important predictors of NDVI values and are therefore closely associated with vegetation health 

in the study area. The findings of this study first demonstrate the feasibility and usefulness of 

applying XAI, an underutilized method in the drought space, to study ecological drought 

indicators. Secondly, results provide an understanding of which commonly used drought indices 

correlate with effects on vegetation health in the study area, as well as the specific 

directionality of these relationships. These results can be used to inform drought research and 

monitoring practices and anticipate ecological drought impacts in the Cheyenne River Basin.  
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Ecological drought – A type of drought that affects ecosystems, typically characterized by 
reduced water availability and changes in vegetation and wildlife. 

EDDI – Evaporative Demand Drought Index, an index that quantifies the atmospheric demand 
for moisture. 

Environmental variable – A variable that describes a characteristic of the environment, such as 
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Feature Importance – A measure of the importance of each feature in a machine learning 
model for making predictions. 
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data. 
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ML – Machine Learning, a subfield of artificial intelligence that focuses on developing 
algorithms that can learn from and make predictions on data. 

MODIS – Moderate Resolution Imaging Spectroradiometer, a NASA Earth Observing System 
instrument that provides global coverage of land, ocean, and atmosphere. 

MSE – Mean Squared Error, a common metric for evaluating the performance of regression 
models. 

NDVI – Normalized Difference Vegetation Index, a remotely sensed index that measures the 
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PDSI – Palmer Drought Severity Index, a commonly used index for assessing drought conditions. 
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SPEI – Standardized Precipitation Evapotranspiration Index, a drought index that considers both 
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SPI – Standardized Precipitation Index, a meteorological drought index that quantifies 
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SVR – Support Vector Regression, a type of machine learning algorithm used for regression 
problems. 
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Tree-based methods – Machine learning algorithms that use decision trees as the primary 
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XGBoost – Extreme Gradient Boosting, a popular machine learning algorithm for regression and 
classification problems. 
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1. Introduction 

Ecological drought is increasingly cited as a result of a warming climate, shifting oceanic 

and atmospheric processes, and increased human water usage. As ecosystems become more 

vulnerable to these effects, processes driving ecological drought may result in ecosystem 

transformations and subsequent effects on ecosystem services (Crausbay et al., 2017). 

Crausbay et al. best define ecological drought in their foundational paper, Defining Ecological 

Drought for the Twenty-First Century, as an “episodic deficit in water availability that drives 

ecosystems beyond thresholds of vulnerability, impacts ecosystem services, and triggers 

feedbacks in natural and/or human systems,” (Crausbay et al., 2017). When exactly various 

ecosystems are driven beyond these thresholds, to what extent ecosystem services may be 

impacted, and how to properly measure and predict these variables, are each questions that 

vary by impact, ecosystem, and scale.  

While accurate drought characterization can be difficult, there are many established 

ways to measure and forecast hydrological and meteorological drought (Hao et al., 2017). For 

instance, the U.S. Drought Monitor (USDM) incorporates physical drought indicators, such as 

the Palmer Drought Severity Index (PDSI), the Standardized Precipitation Index (SPI), the 

Keetch-Byram Drought Index for fire, vegetation health and soil moisture data, and hydrologic 

data into one map to provide the current depiction of drought (Hao et al., 2017; U.S. Drought 

Monitor, 2022). However, links between many of these traditional drought indices and 

ecological drought impacts, such as declines in vegetation health, are not always well 

established at a variety of ecosystems and scales, particularly at scales useful to natural 

resource management (Bradford et al., 2020; Crausbay et al., 2020; Wiens & Bachelet, 2010).  
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To bridge this gap, this research employed a combined approach of machine learning 

(ML) models and SHapley Additive exPlanations (SHAP), an eXplainable AI (XAI) method, to 

evaluate connections between drought indices, environmental variables, and vegetation health. 

The purpose of this research was to determine which features, as indicated by SHAP values 

obtained from a trained ML model, contribute most towards predicting Normalized Difference 

Vegetation Index (NDVI) values in the Cheyenne River Basin, a subbasin within Missouri River 

Basin. The Cheyenne River Basin was selected due to the presence of non-agricultural areas 

that allowed for a more consistent assessment of vegetation health, as measured by Terra 

MODIS-derived NDVI, and the occurrence of multiple drought events across the basin over the 

past two decades. For this research, two alternative hypotheses were proposed:  

1. (H1) An ML regression model that incorporates drought indices and environmental 

variables can provide a reliable prediction of NDVI with at least 50% of the variance 

explained. 

2. (H2) In a reliably predictive ML regression model that includes drought indices and 

environmental variables features, drought indices will have higher absolute mean SHAP 

values than environmental variables, indicating that drought indices have a stronger 

association with NDVI in the Cheyenne River Basin. 

This research project makes progress towards one of the National Oceanic and 

Atmospheric Administration's (NOAA) National Integrated Drought Information System (NIDIS) 

key priorities in the 2021-2023 Missouri River Basin Drought Early Warning System (DEWS) 

Strategic Action Plan (NOAA/NIDIS, 2020). This plan, which was developed in consultation with 

partners and stakeholders throughout the Missouri River Basin, recognizes the need to build a 
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comprehensive understanding of drought indicators and their application within the Basin, with 

a specific focus on identifying drought indicators most useful for monitoring ecological drought. 

By identifying the most significant predictors of NDVI in the basin using SHAP values, this 

research will contribute to the overall understanding of drought impacts on vegetation health 

in the region and provide valuable information for decision-making and resource management, 

including the identification of promising ecological drought indicators for the region. 

2. Literature Review 

2.1 Machine Learning and Explainable AI in Drought Research 

As the amount of available Earth system data continues to increase, a key research 

challenge comes with extracting useful and actionable information from these data (Reichstein 

et al., 2019). One of the main issues that research must address is how to create models that 

can learn as much from data as possible, while still providing actionable and directed insights. 

As such, ML has become a key approach in geoscience research (Reichstein et al., 2019).  In the 

arena of drought research, ML methods are beneficial since they are less time-consuming, 

typically require fewer inputs, and are generally less complex than complete physical models 

(Mokhtar et al., 2021; Sundararajan et al., 2021).   

ML techniques such as random forest, boosted regression trees, support vector 

regression (SVR), and neural networks (NNs) have increasingly been used to successfully model 

and predict drought conditions (Belayneh & Adamowski, 2013; Dikshit et al., 2022; Park et al., 

2016; Shamshirband et al., 2020; Sundararajan et al., 2021). However, as published research on 

ecological drought increases (Figure 1), there is still a relative lack of research specifically 

examining ecological drought using ML methodologies (Clarivate Web of Science, 2023). 
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Therefore, this area is ripe for exploration using ML techniques that have been used to 

successfully predict other types of drought. 

 

 
Figure 1. Number of published articles by year containing the term “ecological drought,” from 

Clarivate Web of Science, 2023. 
 

Extra Trees Regressor and XGBoost, the two ML models selected for this project, are 

powerful algorithms widely used in Earth science and environmental sciences (Chen & Guestrin, 

2016; Geurts et al., 2006; Liaw & Wiener, 2002). Extra Trees Regressor, a variant of decision 

tree-based ensemble methods, is an ML technique introduced by Geurts et al. (2006) as an 

extension of the Random Forest algorithm. It works by constructing multiple decision trees with 

randomized splitting rules and aggregating their predictions to obtain a final output. The Extra 

Trees Regressor is shown to be less prone to overfitting when compared with other tree-based 

ensemble methods, as the randomization of splitting rules reduces the variance of the 

predictions (Geurts et al., 2006).  

Extreme Gradient Boosting (XGBoost) is another popular variant of decision tree-based 

ensemble methods, similar to Extra Trees Regressor. XGBoost was introduced in 2014 as a 
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gradient tree boosting system and is available as an open-source software library.  Like Extra 

Trees Regressor, XGBoost constructs multiple decision trees, but instead of using randomized 

splitting rules, it utilizes gradient boosting to iteratively improve the accuracy of the predictions 

(Chen & Guestrin, 2016). XGBoost has been shown to be particularly effective in solving a wide 

range of machine learning problems and is scalable, running “more than ten times faster than 

existing popular solutions on a single machine,” making it particularly suitable for a project of 

this scope (Chen & Guestrin, 2016). 

Despite the significant benefits of ML methods, Balti et al. (2020) highlight that ML 

approaches for drought monitoring have faced recent criticism for their poor capacity in 

reasoning and diagnosing the logic behind generated decisions, a concern also echoed by 

Samek et al. (2017) (Balti et al., 2020; Samek et al., 2017). This limitation is often attributed to 

the limited interpretability of ML models. Therefore, in this project, SHAP will be used to 

interpret the relationships between features and results. SHAP was first introduced as a 

solution concept derived from Shapley values in game theory to determine the contributions of 

individual players in a cooperative game (Shapley, 2016). It was developed into a method for 

interpreting complex machine learning models by quantifying the contribution of each feature 

to the model's output (Lundberg & Lee, 2017; Shapley, 2016). SHAP measures how much a 

feature adds to or subtracts from the prediction compared to its absence, which allows for a 

more nuanced understanding of how a model is making its predictions than methods such as 

feature importance scoring. Research has shown that using SHAP for drought prediction can 

significantly inform resulting decision-making practices (Dikshit & Pradhan, 2021a, 2021b; 

Lundberg & Lee, 2017). 
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2.2 Machine Learner Target 

This project used the Normalized Difference Vegetation Index (NDVI) as a proxy for 

ecological drought and the target data for the machine learner. NDVI is a widely used remote 

sensing index that quantifies the greenness of vegetation on the Earth's surface based on the 

reflectance of near-infrared and red light by plants. NDVI can be derived from satellite imagery 

using the reflectance ratio between red and near-infrared bands (Pettorelli et al., 2005). This 

formula (below) generates values on a scale of -1 to +1. Negative values of NDVI typically 

indicate bare soil or little vegetative cover, while low positive values suggest unhealthy 

vegetative cover and high positive values indicate a high degree of healthy vegetative cover.   

 

Studies have shown that NDVI is a valuable tool to monitor drought conditions and their 

impacts on vegetation health (Anyamba & Tucker, 2012; Tucker et al., 1986). For example, 

studies have found that declining NDVI values are indicative of reduced vegetation activity and 

productivity during drought events (Park et al., 2016; Pettorelli et al., 2005; Phillips et al., 2008). 

According to Pettorelli et al. (2005), “NDVI has shown consistent correlation with vegetation 

biomass and dynamics in various ecosystems worldwide.”  NDVI is therefore a valuable proxy 

for the impacts of ecological drought on vegetation and has been successfully predicted in the 

past using ML methods (Li et al., 2021; Roy, 2021). However, this project was distinguished 

from past predictive NDVI research due to the goal of determining which commonly used and 

accessible drought indices and environmental variables contribute most towards predicting 

NDVI, thereby working towards identifying drought indicators for ecological drought in the 

study area. 
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2.3 Machine Learner Features 

Several drought indices and environmental variables were selected as features for the 

ML model. These features encompassed different aspects of drought dynamics, including short 

and long-term soil moisture status, atmospheric evaporative demand, precipitation anomalies, 

temperature, and snow cover dynamics. Features were selected by considering relationships 

between drought and vegetation dynamics and the inclusion of commonly used, easily 

reproducible indices that are accessible to a variety of stakeholders. The inclusion of multiple 

drought indices and environmental variables provided a more holistic approach to capturing 

the complex interactions between drought and vegetation dynamics, which can enhance the 

accuracy and robustness of a predictive model.  

Drought Indices 

● Palmer Drought Severity Index (PDSI): A widely used drought index that quantifies 

drought conditions based on precipitation and temperature data while taking into 

account the water-holding capacity of soils (Palmer, 1965). The index provides 

information on the long-term moisture status of an area with a timescale of 

approximately nine months (Svoboda & Fuchs, 2016). 

● Palmer Z Score: A derived score from PDSI that responds better to short-term drought 

conditions and can be used to identify developing and regressing drought conditions 

(Palmer, 1965; Svoboda & Fuchs, 2016). 

● Standardized Precipitation Index (SPI): An index that represents the likelihood of 

precipitation as calculated at any number of timescales, from 1 month to 48 months or 

longer, using historical precipitation records (McKee et al., 1993). The simplicity of the 
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index and the ability to calculate SPI at varying timescales allows for use in various 

applications, however, it does not account for a temperature component (Svoboda & 

Fuchs, 2016). 

● Standardized Precipitation Evapotranspiration Index (SPEI): A drought index that 

incorporates both precipitation and potential evapotranspiration (derived from 

temperature data) to determine drought (Svoboda & Fuchs, 2016). The inclusion of 

temperature data may help to account for a wider variety of drought impacts. Like SPI, 

SPEI is calculated over different time scales (Vicente-Serrano et al., 2010). 

● Evaporative Demand Drought Index (EDDI): An experimental drought index that 

indicates how anomalous atmospheric evaporative demand is across a variety of 

timescales, making it a relevant feature for capturing the atmospheric moisture stress 

on vegetation (Hobbins et al., 2016).  EDDI excels at catching the early warning signs of 

water stress on weekly to monthly timeframes (Hobbins et al., 2016). 

Environmental Variables 

● Daily Maximum and Minimum Temperature: An important factor in determining 

drought impacts as well as plant growth and development. Maximum temperature 

refers to the highest temperature recorded during a 24-hour period, while minimum 

temperature refers to the lowest temperature recorded during the same period 

(Abatzoglou, 2013). 

● Daily Precipitation: Refers to moisture in the form of rain, snow, sleet, or hail. 

Precipitation plays a critical role in determining water availability in ecosystems 

(Abatzoglou, 2013). 
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● Snow Water Equivalent (SWE): The amount of water that would be equivalent to the 

depth of snow cover if it melted. Snow cover can impact NDVI as it affects the amount 

of snowmelt and therefore the timing, amount, and duration of water available for the 

growing season (US Department of Commerce & NOAA’s Weather Service, n.d.). 

3. Methods 

This section presents the methods used in this study. It begins with an overview of the 

study area (3.1), and the subsequent subsections detail the data acquisition process, data 

preprocessing steps, model selection, and hyperparameter optimization techniques employed. 

Specifically, subsection 3.2 outlines the data sources used in this study, while subsection 3.3 

describes the steps taken to clean, preprocess, and transform the data into a format suitable 

for analysis. Subsection 3.4 discusses the selection methods and criteria used to choose the 

models for the analysis. Finally, subsection 3.5 provides a detailed explanation of the 

hyperparameter optimization techniques used to fine-tune the models. Together, these 

subsections provide a comprehensive account of the methods employed in this study. 

3.1 Area of Study 

The Cheyenne River Basin spanning South Dakota, Wyoming, and Nebraska was chosen 

for this study for its extensive rangeland ecosystem and history of drought (Figure 2). The study 

area is characterized by a range of physical features, including rolling hills, plains, badlands, and 

plateaus (Culler et al., 1961; Ehlert, 2022). The Cheyenne River runs through the center of the 

region, originating in Wyoming and flowing eastward through South Dakota before eventually 

joining the Missouri River. The geology of the region is primarily defined by marine sediments 

from the Mesozoic and Cenozoic eras, but also includes igneous and metamorphic rocks (Culler 
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et al., 1961; Ehlert, 2022). This region’s climate is characterized by its semi-arid to arid 

conditions, with limited precipitation and high variability in temperature (Ehlert, 2022). The 

annual precipitation in the basin ranges from 10 to 20 inches, with the majority falling as rain 

during the spring and summer months (Culler et al., 1961; United States Bureau of Reclamation, 

2019).  

 
Figure 2. The extent of the Cheyenne River Basin, spanning Wyoming, Nebraska, and South 

Dakota.  
 
The basin is predominantly made up of rangelands, with forests occurring in the north-

central portion of the study area, and a minimal amount of developed and agricultural land 

interspersed throughout (Figure 2). Rangelands are a key ecosystem in this region, with native 

rangeland accounting for 46% of Nebraska’s land mass, over 50% of South Dakota’s land mass, 
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and over 85% of Wyoming’s land mass (Boden, 2023; Ehlert, 2023; “Introduction to Wyoming 

Rangelands,” 2023). Rangelands consist primarily of native grasses, forbs, and shrubs, and may 

also include woodlands with open canopies and a substantial understory (Boden, 2023; Ehlert, 

2023; “Introduction to Wyoming Rangelands,” 2023). The definition does not specify a specific 

land use, emphasizing that rangelands are defined by the ecosystems they sustain, rather than 

how they are utilized. This means that resource management strategies must be designed to be 

implemented across private, state, and federal lands, and to consider the relationship between 

climatic, environmental, and sociological factors. According to Krista Ehlert, Assistant Professor 

and Range Specialist at South Dakota State University, “Land managers need tools and 

techniques to help them monitor rangeland condition, improve utilization of rangeland 

resources, control invasive species, and develop management plans to respond to challenges 

resulting from drought and other natural disasters,” (Ehlert, 2023). Due to the complex nature 

of these ecosystems and their uses, the effects of ecological drought on rangelands could lead 

to ecosystem transformations and impacts on a variety of ecosystem services. 

3.2 Data Acquisition 

The data acquisition process for this project involved acquiring data using the Google 

Earth Engine (GEE) Python API in a Jupyter Notebook hosted on Google Colaboratory.1 GEE 

provides open access to a diverse collection of satellite and remote sensing datasets. All data 

are available to any GEE user, improving reproducibility. The following Earth observation data 

were acquired as image collections for the date range of February 24, 2000 (Terra MODIS’s start 

 
1 In addition to the use of Google Colaboratory, Github was used for version control and code storage. See 
Appendix I for a link to the Github repository for this project. 
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date), and December 31, 2021: Terra Moderate Resolution Imaging Spectroradiometer (MODIS) 

surface reflectance data, Gridded Surface Meteorological (gridMET) Dataset Palmer Drought 

Severity Index (PDSI), Evaporative Demand Drought Index (EDDI), Standardized Precipitation 

Index (SPEI), Standardized Precipitation Evapotranspiration Index (SPEI), maximum and 

minimum temperature, and precipitation data, and Daymet snow water equivalent (SWE) data 

(Table 1).  

Table 1. Earth observations acquired for the ML models. 

Data Type Data Platform Variable(s) Spatial & Temporal 
Resolution 

Time 
Period 

Drought 
Impact 
(Target) 

MOD09GA v006: 
MODIS/Terra 
Surface 
Reflectance Daily 
L2G Global 1 km 
SIN Grid 

Normalized Difference 
Vegetation Index (NDVI) - 
Derived 

1 km, Daily 2000 – 
Present 

Drought 
Indices 
(Features) 

Gridded Surface 
Meteorological 
(gridMET) 
Dataset 

Palmer Drought Severity 
Index (PDSI) 
 
Palmer Z Score 
 
Evaporative Demand 
Drought Index (EDDI) –  
30, 90, 180-day 
 
Standardized 
Precipitation Index (SPI) –  
30, 90, 180-day 
 
Standardized 
Precipitation 
Evapotranspiration Index 
(SPEI) –  30, 90, 180-day 

4 km, Pentads (5-
day) 

1979 – 
Present 

Environmental 
Variables 
(Features) 

Gridded Surface 
Meteorological 
(gridMET) 

Maximum & Minimum 
Temperature 
 

4 km, Daily 1979 – 
Present 
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Dataset Precipitation 

Daymet Snow Water Equivalent 
(SWE) 

1 km, Daily 1980 – 
Present 

 
3.3 Data Preprocessing 

To calculate an NDVI band from the MODIS surface reflectance data, the image 

collection obtained through GEE was first quality controlled. Using bits 10 (the internal cloud 

algorithm flag bit) and 15 (the internal snow mask bit) from the QA band, cloudy and snow 

pixels were masked from the images. Next, a new NDVI band was computed for each image in 

the filtered MODIS collection using the normalized difference of bands sur_refl_b02 and 

sur_refl_b01. The select function was then applied to retain only the NDVI band in the image 

collection. This process produced a new image collection that contained NDVI data for the 

selected date range with cloudy and snowy pixels masked out. 

After completing the masking and NDVI calculations on the MODIS data, GEE was used 

to calculate the spatially averaged value for each variable in Table 1 across the study area over 

time. First, the study area shapefile (AOI) was imported into Colab and converted to a GEE 

object. Next, a function was built to extract necessary parameters such as the image collection, 

variable, AOI, and spatial scale from an input list. The function then calculated the mean value 

of the variable across the AOI for every image in the collection. This process produced a list of 

lists where each image had a two element list that contained the image's date and mean value. 

The nested list was then converted to a DataFrame using the pandas.DataFrame constructor. 

Output DataFrames for each variable were concatenated into a single DataFrame containing 
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spatially averaged values for the AOI for all variables between February 24, 2000, and 

December 31, 2021. 

The next step was to calculate anomalies. This was done by creating a function to group 

the data by day of the year and calculate the daily mean for each variable. The function then 

mapped each day of data to the average value for that day of year and calculated the daily 

anomaly as the difference between the original value and the average value for that day of the 

year. The function was applied to each column of the DataFrame using a for-loop, resulting in a 

DataFrame that only contained the anomaly data. 

The next preprocessing step was to resample the environmental variable data to match 

the temporal frequency of the gridMET drought indices. Five-day periods - pentads - are used to 

calculate the drought indices acquired from gridMET. To both resample and smooth the data 

for the machine learner, a 30-day rolling average was calculated for every pentad date across 

all variables, ensuring that all data was resampled to a five-day temporal resolution. Finally, 

data were standardized using the following formula (Figure 3): 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝐷𝑎𝑡𝑎 = (𝐷𝑎𝑡𝑎 − 𝑀𝑒𝑎𝑛(𝐷𝑎𝑡𝑎)) ÷ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐷𝑎𝑡𝑎) 

 
Figure 3. Raw NDVI versus standardized NDVI anomaly data as an example of the difference 

between the raw and preprocessed data. 
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3.4 Model Selection 

After finalizing data preprocessing, the project next turned toward selecting an 

appropriate ML model. Using the .values() function, values in the DataFrame were converted to 

NumPy arrays. NDVI assumed the y value as the target for the learner, while all other variables 

served as features in the X set. Using the scikit-learn Python machine learning library, the data 

were first run through an untuned Decision Tree regressor to ensure that the data were 

formatted and preprocessed correctly. 

Next, the Lazy Predict package was used to explore the performance of a variety of 

regression models on the data. Lazy Predict is beneficial because it runs the data through 40+ 

regression models without having to code each model individually (Pandala, 2022). It provides 

several statistics for each model such as adjusted R-squared, R-squared, Root Mean Squared 

Error (RMSE), and time to run. To cross-validate these statistics across the data, a function was 

created to run Lazy Predict across five folds of shuffled data for each untuned model and take 

the mean of the folds’ performances. The results from Lazy Predict gave a preliminary idea of 

each model’s untuned performance on the data (Table 2).  

Table 2. Top five performing models from shuffled k-fold cross-validation of Lazy Predict. 

Model Adjusted R-
Squared 

R-Squared RMSE Time Taken 

Extra Trees Regressor 0.93 0.93 0.26 0.65 

Gaussian Process Regressor 0.92 0.93 0.27 0.23 

LGBM Regressor 0.89 0.90 0.32 0.20 

Hist Gradient Boosting Regressor 0.89 0.89 0.32 0.57 

XGBoost Regressor 0.89 0.89 0.33 0.57 
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Based on the performance of the models in Lazy Predict, the Extra Trees Regressor was 

selected as the primary model for the project, while the XGBoost Regressor was selected as a 

comparison model.  These models were chosen due to their Adjusted R-Squared and R-Squared 

values, RMSE, and the moderate amount of time they take to run. Additionally, the Extra Trees 

Regressor and XGBoost Regressor models are both tree-based models, which are generally 

considered to be more interpretable than Gaussian Process Regressors. Tree-based models can 

provide clear insights into feature importance and decision rules, which was key to this 

project’s goal of examining the SHAP values of each model’s features (Molnar, 2023).  

3.5 Hyperparameter Optimization 

Once models were selected, the data were split into training and test sets using scikit’s 

train_test_split function, reserving the last 20% of data for testing. This ensured that no 

information leakage would occur between the test and training sets when performing 

hyperparameter optimization. Hyperparameter optimization is an essential step in machine 

learning model development as it helps tune the model's performance and reduce overfitting 

by finding the best combination of hyperparameter values (Müller & Guido, 2016). In this study, 

the Extra Trees Regressor and the XGBoost Regressor were optimized using two steps of 

hyperparameter tuning on training data - random search and grid search - in combination with 

k-fold cross-validation (Figure 4). Cross-validation ensures that a variety of data are represented 

across folds and gives a better estimate of how model performance will generalize, leading to a 

more robust model (Müller & Guido, 2016). 
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Figure 4. “Cross-validation: evaluating estimator performance” from the scikit-learn 

documentation. 
 

In the first step of hyperparameter tuning, random search was performed on both 

models using the RandomizedSearchCV function from the scikit-learn model_selection module. 

This function samples hyperparameter values randomly based on given ranges, taking the 

regression model, the parameter ranges to search over, the number of iterations, and the 

cross-validation object as inputs. Parameter ranges were defined using a dictionary, which 

specified the ranges of hyperparameter values to search over. Five-fold cross-validation was 

performed across 100 iterations of each regression model object. The best hyperparameters 

and their corresponding mean cross-validated R-Squared values were returned using the 

best_params_ and best_score_ attributes of the RandomizedSearchCV object, respectively. The 

best hyperparameters were selected based on the highest mean cross-validated R-Squared 

value. Six rounds of random search were performed to narrow the hyperparameter ranges in 

preparation for grid search. 

https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-evaluating-estimator-performance
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-evaluating-estimator-performance
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-evaluating-estimator-performance
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In the second step of hyperparameter tuning, a grid search was performed on both 

models based on the best parameter ranges from random search to further fine-tune the 

hyperparameters of the models. Unlike random search, grid search exhaustively searches 

through all possible combinations of hyperparameter values within a predefined range. Similar 

to the RandomizedSearchCV function, the GridSearchCV function from scikit-learn takes in the 

regression model object, the parameter grid to search over, and the cross-validation object as 

inputs. After three rounds of grid search, the final hyperparameters were selected for each 

model (Table 3). 

Table 3. Best hyperparameters for the Extra Trees Regressor and XGBoost Regressor models. 

Model Best Hyperparameters 

Extra Trees Regressor bootstrap = False 
max_depth = 18 
max_features = 1.0 

min_samples_leaf = 1 
min_samples_split = 2 
n_estimators = 900 

XGBoost Regressor colsample_bytree = 0.75 
max_depth = 7 
learning_rate = 0.031 

min_child_weight = 4 
subsample = 0.62 
n_estimators = 950 

 
4. Analysis 

4.1 Model Performance (H1) 

Using the parameters outlined above, scikit-learn’s fit() function was used to train each 

model on the training data. Once both models were trained, they were saved using Joblib’s 

dump() function to ensure reproducibility. Scikit-learn’s predict() function was used on the test 

data for each model, and Mean Squared Error (MSE), RMSE, and R-squared scores were 

computed for the test set's predictions to assess how well the models performed. MSE and 

RMSE are both measures of the accuracy of a regression model, with lower values indicating 
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better performance, as they reflect smaller prediction errors between the model's predictions 

and the actual values of the target variable (Chicco et al., 2021).  The R-squared value 

represents the proportion of variance in the target variable explained by the model and is 

arguably a more informative and truthful metric to evaluate regression analyses (Chicco et al., 

2021). Actual and predicted NDVI values were plotted on line charts using the Matplotlib 

library.  

4.2 Feature Importance and SHAP Values (H2) 

To determine the importance of features in each model, feature importance scores 

were calculated using the feature_importances_ attribute of each model. Feature importance 

scores are calculated based on the model's internal computations during the training process 

and provide a relative measure of how much each feature contributes to the model's predictive 

performance (Müller & Guido, 2016). These scores were visualized in horizontal bar charts 

using Matplotlib. 

Additionally, the SHAP library was used to explain the results of each model. SHAP 

values can be used to explain not only the magnitude but also the direction of the effect of 

each feature on a specific prediction (Lundberg & Lee, 2017). To compute SHAP values for each 

model, an explainer object was created using the Explainer class from the SHAP library, and the 

trained models were each passed as an argument. The explainer object was used to calculate 

the SHAP values for the test data in both models using the explainer() function with x_test as 

the input feature. To visualize the SHAP values, summary plots were created to display the 

feature importance values in descending order. Bar plots and decision plots of SHAP values 

were also created for each model as additional visualizations. 
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4.3 Adjusted V2 Model (H1 & H2) 

 Once analyses were performed on the models, additional research questions were 

formulated surrounding the time ranges of the selected drought indices. To look at the 

potential influence of longer-term drought indices on NDVI predictions, an additional XGBoost 

Regressor model (referred to as XGBoost Regressor V2) was created with adjusted features 

outlined in Table 4. Original features that had low feature importance scores and SHAP values, 

such as minimum and maximum temperature, were removed, while several indices with longer 

accumulation periods, up to five years, were added. All data were preprocessed using the same 

methodology as the data in the original models. 

Table 4. Earth observations used for the XGBoost Regressor V2 model. 

Data Type Variable(s) 

Drought Impact (Target) Normalized Difference Vegetation Index (NDVI) 

Drought Indices (Features) Palmer Drought Severity Index (PDSI) 
Palmer Z Score 
Evaporative Demand Drought Index (EDDI) – 1, 5-year 
Standardized Precipitation Index (SPI) – 90, 180, 270-

day; 1, 2, 5-year 
Standardized Precipitation Evapotranspiration Index 

(SPEI) –  270-day; 1, 2, 5-year 

Environmental Variables (Features) Snow Water Equivalent 

 
 The XGBoost Regressor V2 model underwent hyperparameter optimization in the same 

manner as the original, with several rounds of random search followed by grid searches to 

select the optimal parameters for the new model. Using the best parameters from grid search, 

the model was trained and saved. MSE, RMSE, and R-squared scores were computed for the 

model’s test set's predictions, and feature importance scores were again calculated. Lastly, 

SHAP values were produced and visualized to explain model predictions. 
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5. Results 

5.1 Model Performance (H1) 

The Extra Trees Regressor model returned an MSE of 0.54, an RMSE of 0.74, and an R-

squared of 0.48 (Table 5). These metrics suggest that the Extra Trees Regressor model 

performed moderately well in predicting NDVI values based on the input features. However, 

the XGBoost model demonstrated better performance than the Extra Trees Regressor model, 

with a lower MSE of 0.48 and RMSE of 0.69 (Table 5). The model’s R-squared value was higher 

at 0.54, suggesting that the XGBoost model explained a larger proportion of the variance in the 

NDVI values, making it a more accurate predictor. 

Table 5. Test set performance post-hyperparameter tuning. 

Model MSE RMSE R-Squared 

Extra Trees Regressor 0.54 0.74 0.48 

XGBoost Regressor 0.48 0.69 0.54 

 
Model performance is visually represented in Figure 5, which plots the true test values 

and predicted values from the Extra Trees and XGBoost Regressor models. Model predictions 

generally tended to be directionally correct, with much of the error coming from the 

underestimation of large NDVI spikes around indices 75 and 150 and the overall depression of 

NDVI values across the predicted set. From index 200 onward in both models, the predicted 

data are relatively accurate. Some lead and lag effects can be seen throughout. 
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Figure 5. True and predicted NDVI values from the Extra Trees (top) and XGBoost (bottom) 

Regressors. 
 

5.2 Feature Importance and SHAP Values (H2) 

Based on the performance evaluation of both models, the XGBoost model was selected 

for further analysis.2 The feature importance scores computed for this model were ranked 

 
2 Since the Extra Trees Regressor was not selected as the optimal model, its feature importance scores and SHAP 
summary plots have been included in the Appendix for brevity.  
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based on their contribution to the model's ability to predict NDVI values over time in the study 

area (Figure 6, left). The higher the importance score, the more influential the feature was in 

determining predicted NDVI values. According to the feature importance ranking scores, PDSI 

had the highest importance with a score of 0.26, followed by SPI 90-day with a score of 0.17, 

and SWE with a score of 0.11. Other important features included SPI 180-day with a score of 

0.09, Palmer Z with a score of 0.09, and SPEI 180-day with a score of 0.06. Features with 

relatively lower importance included SPEI 90-day, EDDI 90-day, EDDI 180-day, precipitation, 

EDDI 30-day, SPEI 30-day, SPI 30-day, minimum temperature, and maximum temperature. 

These features collectively contribute to the XGBoost model's ability to predict NDVI values in 

the study area, with PDSI and SPI 90-day being the most influential. 

 
Figure 6. Feature importance scores (left) and SHAP values (right) from the XGBoost 

Regressor. 
 

While feature importance scores provided a general indication of the relative 

importance of different features in the model, SHAP values offered a more detailed and 
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directional explanation of the contribution of each feature for a specific predicted NDVI value. 

The right plot in Figure 6 illustrates the SHAP values for each feature as individual points 

grouped by feature name. Shades of pink denote higher feature values while shades of blue 

indicate lower feature values. Negative impacts on NDVI are to the left of the vertical axis, while 

positive impacts are to the right. The plot shows that PDSI had the most significant overall 

contribution to NDVI prediction, with a direct relationship between higher PDSI values and 

higher SHAP values, and vice versa. The SPI 90-day index ranked second, with a relatively 

balanced impact on positive and negative SHAP values compared to PDSI, which had positively 

skewed SHAP values overall. SWE had an inverse relationship with resulting SHAP values and a 

wider distribution than SPI 90-day. Additionally, SPI 180-day and Palmer Z index had relatively 

high SHAP scores and mirrored the direct relationships observed for PDSI and SPI 90-day.  

5.3 Adjusted V2 Model (H1 & H2) 

After model features were adjusted to include indices with longer accumulation periods 

and remove unimportant features, the XGBoost Regressor V2 model resulted in an MSE of 0.59, 

an RMSE of 0.77, and an R-squared of 0.43, underperforming the original XGBoost Regressor 

model (R-squared: 0.54). Results from the feature importance ranking scores showed that SPEI 

1-year had the highest importance with a score of 0.22, followed by PDSI with a score of 0.14, 

SPEI 2-year with a score of 0.10, SPI 90-day with a score of 0.08, SPI 5-year with a score of 0.08, 

and SWE with a score of 0.08 (Figure 7, left). In descending order, the rest of the features were 

SPI 180-day, SPEI 5-year, SPEI 270-day, SPI 270-day, Palmer Z, SPI 1-year, EDDI 1-year, EDDI 5-

year, and SPI 2-year. 
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Figure 7. Feature importance scores (left) and SHAP values (right) from Version 2 of the 

XGBoost Regressor. 
 

According to the SHAP values calculated from the XGBoost V2 model (Figure 7, right), 

PDSI remained the most significant factor in predicting NDVI, just as in the original XGBoost V1 

model. Higher PDSI values consistently resulted in higher SHAP values, and vice versa, although 

the distribution of PDSI SHAP values in this model was only slightly positively skewed. The 

second most important factor was SPEI 1-year, which exhibited an overall positive skew in its 

SHAP values. SPI 90-day came in third place, with a relatively even distribution and a direct 

relationship with SHAP values. SPI 5-year was the next most important feature, but due to the 

distribution of its feature values across the x-axis, it was difficult to determine its directionality 

of impact. Finally, SWE was again among the top five features, demonstrating a similar 

relationship and distribution as in the first XGBoost model. 

6. Discussion 

6.1 Model Performance (H1) 
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 Model performance results show that the XGBoost model was more effective than the 

Extra Trees Regressor for this prediction task, and support the acceptance of alternative 

hypothesis one (H1), as the XGBoost Regressor's R-squared value was greater than 0.50. The 

acceptance of H1 demonstrates that the performance of the XGBoost model was deemed 

sufficient for the prediction task. This conclusion is important because it establishes the 

credibility and reliability of the subsequent analysis using SHAP. 

XGBoost has been the chosen method for several other drought and NDVI prediction 

studies, including Li et al.’s 2021 paper. In this study, the authors achieved an R-squared of 

0.83, significantly higher than the R-squared value achieved here, using historical NDVI values 

along with six environmental variables as model features (Li et al., 2021). While Li et al. 

developed a model that better explains the variance in their NDVI data, it did not incorporate 

drought indices and therefore addressed a different goal than this research. In comparison, this 

research aimed for a sufficiently predictive model to inform the relationship of commonly used 

drought indices to vegetation health. This is an important distinction between past predictive 

work and this research, as stakeholders throughout the wider Missouri River Basin have 

expressed the need to develop a more comprehensive understanding of drought indicators and 

their specific relationship to ecological drought (NOAA/NIDIS, 2020). 

In addition, it is worth discussing why XGBoost may have outperformed Extra Trees 

Regressor. One reason is the more advanced regularization techniques employed by XGBoost, 

such as L1 and L2 regularization and tree pruning, which help to prevent overfitting and 

improve model generalization (Chen & Guestrin, 2016). Moreover, while Extra Trees Regressor 

uses randomized methods to enhance model accuracy, XGBoost leverages gradient boosting 
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and adaptive boosting, resulting in a more sophisticated learning algorithm that improves 

model performance (Chen & Guestrin, 2016). However, it is important to note that the efficacy 

of these algorithms depends on the specific research question and data being analyzed, and 

XGBoost may not always outperform Extra Trees Regressor. It is therefore essential to test 

various models using tools like Lazy Predict to determine the best approach for a given task 

6.2 Feature Importance and SHAP Values (H2) 

The feature importance scores and SHAP values computed from both versions of the 

XGBoost model demonstrated that drought indices were among the most important features in 

predicting NDVI values in the Cheyenne River Basin. These findings support the acceptance of 

alternative hypothesis two (H2) that in a reliably predictive ML model that includes both 

drought indices and environmental variables features, drought indices will have higher absolute 

SHAP values than environmental variables, meaning that changes in the values of drought 

indices are more strongly linked to changes in the predicted NDVI values. Notably, for the V1 

and V2 XGBoost models, PDSI scored first and second respectively in computed feature 

importance scores and had the highest absolute mean SHAP value in both models. This 

reinforces that PDSI was the most important factor in predicting NDVI across models, 

demonstrating a direct relationship between PDSI values and NDVI, and highlights the feasibility 

of using SHAP to identify relationships between drought indices and vegetation health.  

A key takeaway from the SHAP results across models is the importance of temporal 

scale. Top features in the feature importance and SHAP analyses capture drought conditions at 

different temporal scales (90 days, 180 days, 9 months - 1 year), which allows the model to 

account for both short-term and long-term drought impacts on NDVI. Drought conditions at 
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longer temporal scales (e.g., PDSI) may have a cumulative effect on vegetation health, while 

shorter-term drought conditions (e.g., SPI 90-day) may have a more immediate impact.  As PDSI 

incorporates precipitation and temperature data, and, by extension, water balance and 

potential evapotranspiration (PET), it is typically a good indicator of soil moisture at a timescale 

of 9-12 months (McEvoy et al., 2019; Vicente-Serrano et al., 2010). This may be one reason why 

SPI 90-day co-occurs with PDSI as a shorter-range precipitation-focused index that may 

complement the data provided by PDSI. This multi-scale information may be crucial for 

monitoring vegetation health over time in the study area. 

 

 

                   
Figure 8. Distribution of SHAP values for PDSI and SPI 90-day. SPI 90-day is more evenly 
distributed across negative and positive SHAP values than PDSI, which skews positive. 

 
An additional explanation for the co-occurrence of SPI 90-day and PDSI across models 

may be due to the distribution of the features’ SHAP values (Figure 8). SPI 90-day showed a 

more even distribution than PDSI across negative and positive SHAP values, while PDSI skewed 

positively overall. This implies that PDSI was stronger at predicting high NDVI values, and 

weaker at predicting low NDVI (Figure 9). Due to the more even distribution of SPI 90-day 

across both the V1 and V2 XGBoost models, it is possible that the relative importance of this 

index also has to do with its effectiveness at predicting lower NDVI values, and by extension 

negative drought impacts on vegetation health.  
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Figure 9. A decision plot of SHAP values and model features, highlighting PDSI. Within the 

PDSI feature row, lines skew positively towards higher SHAP values.  
 

SPEI 1-year also co-occurred with PDSI in the V2 model. As previously described, PDSI is 

based on the assumption that the availability of soil moisture is a key factor in determining 

whether a region is experiencing drought or not, while SPEI takes into account both 

precipitation and evapotranspiration directly (Palmer, 1965; Vicente-Serrano et al., 2010). In 

this way, SPEI accounts for a different way of measuring water availability than PDSI. The 

differences in the underlying index assumptions may provide the model with an additional way 

of predicting drought impacts on vegetation health and lead to the indices’ co-occurrence with 

high SHAP values. Fundamentally, the overall performance of PDSI across models demonstrates 

that it is a critical index for land managers and decision-makers to monitor when considering 
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the impacts of ecological drought on vegetation health in the Cheyenne River Basin, and is even 

more powerful when used in concert with complementary features such as shorter range 

indices (SPI 90-Day) or those with different underlying water availability assumptions (SWE).  

In this study, SWE was the one environmental variable to consistently outperform the 

absolute mean SHAP values of drought indices. However, in contrast to other model features, 

high SWE values were associated with low NDVI values, while low SWE values were associated 

with both high and low NDVI values (Figure 10). This relationship between SWE and NDVI 

values may seem counterintuitive as water availability typically leads to increased vegetation 

health. In this case, it is important to note that snow accumulation in the winter months 

suppresses vegetation growth, resulting in lower NDVI values (Grippa et al., 2005; T. Wang et 

al., 2013; Y. Wang et al., 2022). However, once the snow begins to melt in the spring, water 

availability for vegetation has been shown to increase, leading to higher NDVI values 

(Matongera et al., 2021; Paudel & Andersen, 2013). Thus, SWE can have an inverse relationship 

with NDVI values during the winter months and a positive relationship during the following 

spring and summer months, creating a lag effect that serves as an indicator of future snowmelt 

and water availability. In years with little snowpack, this mechanism may be weaker, as less 

snowpack leads to worsened vegetation health in the growing months. Therefore, the 

underlying mechanism driving the association of NDVI and SWE may explain the distribution of 

SHAP values across the x-axis. Nevertheless, the high SHAP values of SWE suggest that it is a 

critical variable in predicting water availability in the study area. 
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Figure 10. Distribution of SHAP values for SWE. High SWE values were associated with low 
NDVI values, while low SWE values were associated with both high and low NDVI values. 

 
SHAP results suggest that vegetation health monitoring efforts in the Cheyenne River 

Basin should focus on using PDSI, SPI 90-day, SPEI 1-year, and SWE, which were consistently 

identified as important predictors of NDVI values in this study. Further, the findings surrounding 

the importance of the temporal scale of the data provide clues as to which drought-related 

climate effects may affect vegetation health at different timescales. For example, if a shorter-

term precipitation index like SPI 90-day is found to be important in predicting vegetation 

health, this may indicate that vegetation types impacted by precipitation availability may be 

more susceptible to short-term droughts. If a longer-term index such as PDSI is found to be 

important, it may indicate that vegetation types impacted by trends of increased 

evapotranspiration may be susceptible to longer-term droughts. In summary, understanding 

the importance of different time scales of data can help reveal the mechanisms underlying 

drought impacts on vegetation health and can inform better decision-making in managing these 

impacts. 

These results also support the findings of the few previous studies that have used XAI 

techniques in the domain of drought research. In particular, this study’s successful use of SHAP 

aligns with findings in Dikshit and Pradhan’s paper Explainable AI in Drought Forecasting, which 

suggested that SHAP is useful to understand the impact of variables within drought-related 
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models. The utilization of SHAP in this study not only reinforces the findings presented by 

Dikshit and Pradhan but also emphasizes the practicality of using SHAP to assess the influence 

of various variables within drought-related models. These collective findings contribute to the 

growing consensus on the effectiveness of XAI methodologies in enhancing the understanding 

of complex phenomena like drought and pave the way for further advancements in the field. 

6.3 Limitations 

The main limitations of this research are four-fold. First, the MODIS-derived NDVI data 

have limitations that could affect their accurate representation of vegetation health. For 

instance, factors such as cloud cover, atmospheric conditions, and solar angle can affect the 

accuracy and consistency of NDVI. Additionally, NDVI may not capture changes in vegetation 

density or structure, which can also be a resultant impact of ecological drought conditions. 

Second, the pentad drought indices are limited in capturing daily drought conditions, as they 

represent only five-day intervals and may not capture spatial variability or lagged effects of 

drought on vegetation health. Daily data were resampled to this temporal resolution to avoid 

having to interpolate a significant portion of the data for many features used by the ML model. 

Next, XGBoost, Extra Trees, and ML regression algorithms in general have limitations 

that can impact their ability to predict targets accurately. Most notably, the quality and 

representativeness of the training data play a critical role in the performance of a machine 

learner. Even with careful preprocessing, remotely sensed data contain some amount of error 

and uncertainty, leading to potential loss in the model. For this research specifically, results are 

also limited by the moderate R-squared values of both models. Additionally, caution should be 

taken when interpreting and generalizing results from ML models, as they may not capture all 
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complex relationships between features and targets and may be influenced by region-specific 

factors. Lastly, while SHAP values can provide valuable insight into the importance of different 

features, they can be computationally expensive and may not provide accurate or meaningful 

insights if the model is poorly constructed or trained on biased data. SHAP values assume that 

input features are independent, which may not be true in all cases and may not fully capture 

joint interactions between features(Lundberg & Lee, 2017). Therefore, SHAP values should be 

used with caution and other interpretability techniques to understand the relationships 

between features and NDVI values comprehensively. 

7. Future Work 

The field of ML research related to ecological drought is currently limited, and there is a 

clear need for future studies to be conducted across various regions and ecosystems. This will 

help to determine whether the relative importance of drought indices change significantly 

based on the region or vegetation type, ultimately producing results at scales useful to natural 

resource management. When conducting these studies, a focus on improving model 

performance is advised, through the incorporation of additional data sources, such as soil 

moisture products, streamflow data, or the Vegetation Drought Response Index (VegDRI), or 

through the use of more sophisticated, proven, modeling techniques such as Long Short Term 

Memory (LSTM) models (Dikshit & Pradhan, 2021a). Additionally, while computing daily 

drought indices manually requires more time and effort, higher temporal resolution data would 

provide the machine learner with more points to train and test on. Another avenue worth 

exploring is using ML for spatial analysis to predict spatial patterns of NDVI based on drought 

indices across regions. Finally, it is clear that ensuring the interpretability of models in future 
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ML research related to ecological drought is key for developing actionable results. Continued 

exploration and integration of XAI techniques into drought research hold tremendous potential 

for refining models, improving accuracy, and better understanding variable importance and 

directionality. In summary, conducting studies across various regions and ecosystems, exploring 

other data sources, analyzing spatial patterns, and using XAI for interpreting ML models are 

each important areas of research that could contribute to better future understanding of 

ecological drought and provide relevant and actionable information to resource managers. 

8. Conclusion 

This research project stands apart from previous predictive NDVI research due to its 

focus on identifying the most influential drought indices and environmental variables for 

predicting NDVI, thereby uncovering indicators of vegetation stress in the study area. While 

relatively accurate NDVI prediction has been achieved in the past using machine learning 

methods (Li et al., 2021; Roy, 2021), the significance of this project lies in both its introduction 

of XAI methods into the ecological drought field and its identification of ecological drought 

indicators in the study area. By leveraging SHAP, this research not only provides insights into 

the ML model's predictions but also empowers human users to scrutinize their intuitions and 

validate them against the model's interpretations. The use of XAI to interpret ML predictions 

represents a novel and valuable approach in the domain of ecological drought. Consequently, 

this research contributes to both the application of interpretable predictive modeling 

techniques in the domain and the development of tools for drought monitoring and 

management. 



35 
 

To conclude, this study will offer a practical application of these results. As previously 

discussed, drought monitoring is carried out using a variety of methods across the United 

States, including those used by the United States Drought Monitor (USDM). For the UDSM, a 

variety of drought indicators are synthesized by a map author through a convergence of 

evidence approach, who then work with local observers (e.g., state climate offices, state 

agencies, National Weather Service offices, and others) across the country to provide an on-

the-ground view of the data and drought impacts for "ground truthing.” This method of 

drought monitoring can be informed by the results of this study, as they provide context to 

know which commonly used drought indices correlate with vegetation health impacts. This 

work can help those monitoring drought on a weekly basis in the region, and potentially in 

similar climates and ecosystems, better account for ecological drought and ultimately may 

result in more effective responses to these impacts. 
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11. Appendices 
 
Appendix I 
Link to Github Repository: github.com/anniebritton/Ecological-Drought-ML-Modeling 
  

https://github.com/anniebritton/Ecological-Drought-ML-Modeling
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Appendix II 
Normalized anomaly data versus raw data displaying the data achieved through preprocessing.  
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Appendix III 
Model Performance from shuffled k-fold cross-validation of Lazy Predict. 

Model Adjusted R-Squared R-Squared RMSE Time Taken 

ExtraTreesRegressor 0.93 0.93 0.26 0.65 

GaussianProcessRegressor 
0.92 0.93 0.27 0.23 

LGBMRegressor 0.89 0.90 0.32 0.20 

HistGradientBoostingRegressor 0.89 0.89 0.32 0.57 

XGBRegressor 0.89 0.89 0.33 0.57 

RandomForestRegressor 0.88 0.88 0.34 1.67 

BaggingRegressor 0.85 0.86 0.37 0.18 

KNeighborsRegressor 0.81 0.82 0.42 0.04 

GradientBoostingRegressor 0.78 0.79 0.45 0.78 

MLPRegressor 0.77 0.78 0.46 2.93 

SVR 0.77 0.78 0.47 0.17 

NuSVR 0.76 0.77 0.47 0.23 

DecisionTreeRegressor 0.73 0.74 0.51 0.08 

ExtraTreeRegressor 0.68 0.70 0.55 0.03 

AdaBoostRegressor 0.67 0.68 0.56 0.30 

KernelRidge 0.48 0.51 0.70 0.16 

Ridge 0.48 0.51 0.70 0.02 

RidgeCV 0.48 0.51 0.70 0.02 

LinearRegression 0.48 0.51 0.70 0.03 

TransformedTargetRegressor 0.48 0.51 0.70 0.02 

LassoLarsIC 0.48 0.51 0.70 0.04 

BayesianRidge 0.48 0.50 0.70 0.02 

SGDRegressor 0.48 0.50 0.70 0.02 

HuberRegressor 0.48 0.50 0.70 0.10 



45 
 

ElasticNetCV 0.47 0.50 0.70 0.21 

LassoCV 0.47 0.50 0.70 0.30 

LassoLarsCV 0.47 0.49 0.71 0.10 

LinearSVR 0.46 0.49 0.71 0.07 

OrthogonalMatchingPursuitCV 0.45 0.48 0.72 0.04 

LarsCV 0.45 0.47 0.72 0.07 

TweedieRegressor 0.42 0.45 0.74 0.18 

OrthogonalMatchingPursuit 0.32 0.36 0.80 0.02 

ElasticNet 0.03 0.08 0.96 0.01 

QuantileRegressor -0.05 -0.00 1.00 52.36 

DummyRegressor -0.05 -0.00 1.00 0.02 

Lasso -0.05 -0.00 1.00 0.03 

LassoLars -0.05 -0.00 1.00 0.04 

PassiveAggressiveRegressor -0.06 -0.01 0.98 0.02 

RANSACRegressor -0.08 -0.03 1.00 0.30 

Lars -2.60 -2.43 1.64 0.04 
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Appendix IV 
Feature importance scores (left) and  SHAP values (right) from the Extra Trees Regressor. 
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Appendix V 
Average absolute SHAP values for the XGBoost Regressor, Extra Trees Regressor, and XGBoost 
V2 Regressor. 
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Appendix VI  
Decision plots of SHAP values and model features showing the overall positive skew of 
predictions in the XGBoost V2 and Extra Trees models. The color of the top bar indicates 
whether the feature's value is high (red) or low (blue) relative to other instances in the dataset. 
The x-axis represents the impact of the feature on the model output, with positive values 
indicating that the feature increases the prediction and negative values indicating that it 
decreases the prediction.  
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